

MINOR SOURCE AIR CONSTRUCTION PERMIT APPLICATION FOR THE FLORIDA POWER & LIGHT COMPANY FORT MYERS UNIT 2 COMBUSTION TURBINE UPGRADE PROJECT LEE COUNTY, FLORIDA

REPORT

Submitted To: Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408

Submitted By: Golder Associates Inc. 6026 NW 1st Place Gainesville, FL 32607 USA

Distribution: FDEP – 4 copies FPL – 2 copies Golder – 2 copies

December 2014

14-14282

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

A world of capabilities delivered locally **PART I**

APPLICATION FOR AIR PERMIT – LONG FORM

Department of Environmental Protection

Division of Air Resource Management

APPLICATION FOR AIR PERMIT - LONG FORM

I. APPLICATION INFORMATION

Air Construction Permit – Use this form to apply for an air construction permit:

- For any required purpose at a facility operating under a federally enforceable state air operation permit (FESOP) or Title V air operation permit;
- For a proposed project subject to prevention of significant deterioration (PSD) review, nonattainment new source review, or maximum achievable control technology (MACT);
- To assume a restriction on the potential emissions of one or more pollutants to escape a requirement such as PSD review, nonattainment new source review, MACT, or Title V; or
- To establish, revise, or renew a plantwide applicability limit (PAL).

Air Operation Permit – Use this form to apply for:

- An initial federally enforceable state air operation permit (FESOP); or
- An initial, revised, or renewal Title V air operation permit.

To ensure accuracy, please see form instructions.

Identification of Facility

	1. Facility Owner/Company Name: Florida Power & Light Company (FPL)				
2.	Site Name: Fort Myers Power Plant				
3.	Facility Identification Number: 0710002				
4.	Facility Location				
	Street Address or Other Locator:	10650 St	ate l	Road 80	
	City: Fort Myers	County: Lo	ee	Zip Code: 33905	
5.	Relocatable Facility?		6.	Existing Title V Permitted Facility?	
	\Box Yes \boxtimes No			Yes No	

Application Contact

1.	Application Contact Name: John Hampp, Environmental Manager						
2.	Application Contact Mailing Address						
	Organization/Firm: Florida Power & Light Company – FPL Environmental Services						
	Street Address: 700 Universe Blvd.						
		City:	Juno Beach	State:	FL	Zip Code: 33408	
3.	Application	Contact	t Telephone Num	nbers			
	Telephone:	(561) 6	91-2894	ext.	Fax:	(561) 691-7049	
4.	Application	Contact	t E-mail Address	:			

Application Processing Information (DEP Use)

1. Date of Receipt of Application:	3. PSD Number (if applicable):
2. Project Number(s):	4. Siting Number (if applicable):

Purpose of Application

This application for air permit is being submitted to obtain: (Check one)
Air Construction Permit
Air construction permit.
Air construction permit to establish, revise, or renew a plantwide applicability limit (PAL).
Air construction permit to establish, revise, or renew a plantwide applicability limit (PAL), and separate air construction permit to authorize construction or modification of one or more emissions units covered by the PAL.
Air Operation Permit
☐ Initial Title V air operation permit.
☐ Title V air operation permit revision.
☐ Title V air operation permit renewal.
☐ Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is required.
☐ Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is not required.
Air Construction Permit and Revised/Renewal Title V Air Operation Permit (Concurrent Processing)
Air construction permit and Title V permit revision, incorporating the proposed project.
Air construction permit and Title V permit renewal, incorporating the proposed project.
Note: By checking one of the above two boxes, you, the applicant, are requesting concurrent processing pursuant to Rule 62-213.405, F.A.C. In such case, you must also check the following box:
☐ I hereby request that the department waive the processing time
requirements of the air construction permit to accommodate the processing time frames of the Title V air operation permit.
Application Comment
Minor source air construction permit application to improve the performance of existing General Electric (GE) Model PG7241(7FA.03) CTs associated with Units 2A, 2B, 2C, 2D, 2E and 2F at the Fort Myers Power Plant with GE 7FA.04 / 7FA.05 components.

Scope of Application

Emissions		Air	Air Permit
Unit ID Number	Description of Emissions Unit	Permit	Processing
	Unit 24 250 MW Combined Cycle Combustion Turbine		
010	(CT) with Non-fired HRSG	ACTB	N/A
019	Unit 2B - 250 MW Combined-Cycle Unit (CT) with Non- fired HRSG	AC1B	N/A
020	Unit 2C - 250 MW Combined-Cycle Unit (CT) with Non- fired HRSG	AC1B	N/A
021	Unit 2D - 250 MW Combined-Cycle Unit (CT) with Non- fired HRSG	AC1B	N/A
022	Unit 2E - 250 MW Combined-Cycle Unit (CT) with Non- fired HRSG	AC1B	N/A
023	Unit 2F - 250 MW Combined-Cycle Unit (CT) with Non- fired HRSG	AC1B	N/A

Application Processing Fee

Check one: Attached - Amount: Not Applicable

Owner/Authorized Representative Statement

Complete if applying for an air construction permit or an initial FESOP.

1.	Owner/Authorized Representative Name : Timothy Panoff, Plant General Manager				
2	Owner/Authorized Representative Mailing Address				
	Organization/Firm: Florida Power & Light Company				
	Street Address: 10650 State Road 80				
	City: Fort Myers State: FL Zip Code: 33905				
3.	Owner/Authorized Representative Telephone Numbers				
	Telephone: (239) 693-4252 ext. Fax: (239) 693-4333				
4.	Owner/Authorized Representative E-mail Address: timothy.panoff@fpl.com				
5.	Owner/Authorized Representative Statement:				
	I, the undersigned, am the owner or authorized representative of the corporation, partnership, or other legal entity submitting this air permit application. To the best of my knowledge, the statements made in this application are true, accurate and complete, and any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department.				
	Signature Date				

DEP Form No. 62-210.900(1) – Form Effective: 03/11/2010

Application Responsible Official Certification

Complete if applying for an initial, revised, or renewal Title V air operation permit or concurrent processing of an air construction permit and revised or renewal Title V air operation permit. If there are multiple responsible officials, the "application responsible official" need not be the "primary responsible official."

1.	Application Responsible Officia	ıl Name:			
2.	2. Application Responsible Official Qualification (Check one or more of the following options, as applicable):				
	□ For a corporation, the president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213 F A C				
	For a partnership or sole propri	etorship, a general partner	or the proprietor, respectively.		
	For a municipality, county, stat officer or ranking elected office	te, federal, or other public a ial.	agency, either a principal executive		
	The designated representative a	at an Acid Rain source or C	CAIR source.		
3.	Application Responsible Officia	l Mailing Address			
	Street Address:				
	City:	State:	Zip Code:		
4.	Application Responsible OfficialTelephone:ext.Fax:	l Telephone Numbers			
5.	Application Responsible Officia	ll E-mail Address:			
6.	Application Responsible Officia	l Certification:			
6. Application Responsible Official Certification: I, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof and all other applicable requirements identified in this application to which the Title V source is subject. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit. Finally, I certify that the facility and each emissions unit are in compliance with all applicable requirements to which they are subject, except as identified in compliance plan(s) submitted with this application.					
	Signature	<u> </u>	Date		

Professional Engineer Certification

1.	Professional Engineer Name: Kennard F. Kosky				
	Registration Number: 14996				
2.	Professional Engineer Mailing Address				
	Organization/Firm: Golder Associates Inc.**				
	Street Address: 6026 NW 1st Place				
	City: Gainesville State: FL Zip Code: 32607				
3.	Professional Engineer Telephone Numbers				
	Telephone: (352) 336-5600 ext. 21156 Fax: (352) 336-6603				
4.	Professional Engineer E-mail Address: Ken_Kosky@golder.com				
5.	Professional Engineer Statement:				
	I, the undersigned, hereby certify, except as particularly noted herein*, that:				
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental				

Protection; and

(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

(3) If the purpose of this application is to obtain a Title V air operation permit (check here \Box , if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.

(4) If the purpose of this application is to obtain an air construction permit (check here \boxtimes , if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here \square , if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units (check here \Box , if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Signature.

16880

(seal) 1997 * Attach any exception to certification statement. ** Board of Professional Engineers Certificate of Authorization # 00001670

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1.	. Facility UTM Coordinates		2.	Facility Latitude/Lo	ongitude
	Zone 17 East (km) 422.3		Latitude (DD/MM/SS) 26° 41' 49"		
North (km) 2952.9		Longitude (DD/MM/SS) 81° 46' 55"			
3.	Governmental	4. Facility Status	5.	Facility Major	6. Facility SIC(s):
	Facility Code:	Code:		Group SIC Code:	
	0	Α		49	4911
7.	Facility Comment :				

Facility Contact

1.	Facility Contact Name:		
	Brenda Bays, PGD Environmenta	l Specialist	
2.	Facility Contact Mailing Address	5	
	Organization/Firm: Florida Powe	er & Light Company	
	Street Address: P.O. Box 430	1	
	City: Fort Myers	State: FL	Zip Code: 33902-0430
3.	Facility Contact Telephone Num	bers:	
	Telephone: (239)-693-4390	ext. Fax: ()	
4.	Facility Contact E-mail Address:	brenda_bays@fpl.co	m

Facility Primary Responsible Official

Complete if an "application responsible official" is identified in Section I that is not the facility "primary responsible official."

1.	Facility Primary Responsible Off	icial Name:			
2.	Facility Primary Responsible Official Mailing Address Organization/Firm: Street Address:				
	City:	State:	Zip Code:		
3.	Facility Primary Responsible Off	icial Telephone Numbers.			
	Telephone: () - ext.	Fax: () -			
4.	Facility Primary Responsible Off	icial E-mail Address:			

Facility Regulatory Classifications

Check all that would apply *following* completion of all projects and implementation of all other changes proposed in this application for air permit. Refer to instructions to distinguish between a "major source" and a "synthetic minor source."

- 1. Small Business Stationary Source
 Unknown

 2. Synthetic Non-Title V Source
- 3. \square Title V Source
- 4. X Major Source of Air Pollutants, Other than Hazardous Air Pollutants (HAPs)
- 5. Synthetic Minor Source of Air Pollutants, Other than HAPs
- 6. X Major Source of Hazardous Air Pollutants (HAPs)
- 7. Synthetic Minor Source of HAPs
- 8. One or More Emissions Units Subject to NSPS (40 CFR Part 60)
- 9. One or More Emissions Units Subject to Emission Guidelines (40 CFR Part 60)
- 10. One or More Emissions Units Subject to NESHAP (40 CFR Part 61 or Part 63)
- 11. Title V Source Solely by EPA Designation (40 CFR 70.3(a)(5))
- 12. Facility Regulatory Classifications Comment:

List of Pollutants Emitted by Facility

1. Pollutant Emitted	2. Pollutant Classification	3. Emissions Cap
		[Y or N]?
РМ/РМ10	А	N
СО	A	N
VOC	A	N
SO2	A	N
NOx	A	N
HAPS	В	N
Pb	В	N
SAM	A	N

B. EMISSIONS CAPS

I. PollutantSubject toEmissions	2. Facility- Wide Cap [Y or N]?	3. Emissions Unit ID's Under Cap	4. Hourly Cap (lb/hr)	5. Annual Cap (ton/yr)	6. Basis for Emissions Cap
Cap	(all ullits)	(II not all units)			
	• 1 • • • • • • • • • •				
7. Facinty-w	ide of Multi-Unit	Emissions Cap Con	nment:		

Facility-Wide or Multi-Unit Emissions Caps

C. FACILITY ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	 Facility Plot Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) ☑ Attached, Document ID: Figure 2-1 ☑ Previously Submitted, Date:
2.	 Process Flow Diagram(s): (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) ☑ Attached, Document ID: Figure 2-2 ☑ Previously Submitted, Date:
3.	Precautions to Prevent Emissions of Unconfined Particulate Matter: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought)
	Attached, Document ID Attached, Date. May 2012
<u>A0</u>	Iditional Requirements for Air Construction Permit Applications
1.	Area Map Showing Facility Location: Attached, Document ID: Not Applicable (existing permitted facility)
2.	Description of Proposed Construction, Modification, or Plantwide Applicability Limit
	(PAL):
2	Anached, Document ID. <u>Part II</u> Dyla Applicability Applysics
э.	Kule Applicability Analysis: ⊠ Attached, Document ID: Part II
4.	List of Exempt Emissions Units:
	Attached, Document ID: Not Applicable (no exempt units at facility)
5.	Fugitive Emissions Identification:
	Attached, Document ID: Not Applicable
6.	Air Quality Analysis (Rule 62-212.400(7), F.A.C.):
/.	Source Impact Analysis (Rule 62-212.400(5), F.A.C.): \Box Attached, Document ID: \Box Not Applicable
8.	Air Quality Impact since 1977 (Rule 62-212.400(4)(e), F.A.C.): Attached, Document ID: Not Applicable
9.	Additional Impact Analyses (Rules 62-212.400(8) and 62-212.500(4)(e), F.A.C.): Attached, Document ID: Not Applicable
10	. Alternative Analysis Requirement (Rule 62-212.500(4)(g), F.A.C.):
	□ Attached, Document ID:

C. FACILITY ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for FESOP Applications -- NA

1.	List of Exempt Emissions Units:	
	Attached, Document ID:	□ Not Applicable (no exempt units at facility)

Additional Requirements for Title V Air Operation Permit Applications-- NA

1.	List of Insignificant Activities: (Required for initial/renewal applications only) Attached, Document ID: Not Applicable (revision application)
2.	Identification of Applicable Requirements: (Required for initial/renewal applications, and for revision applications if this information would be changed as a result of the revision being sought) Attached, Document ID:
	□ Not Applicable (revision application with no change in applicable requirements)
3.	Compliance Report and Plan: (Required for all initial/revision/renewal applications) Attached, Document ID: Note: A compliance plan must be submitted for each emissions unit that is not in compliance with
	all applicable requirements at the time of application and/or at any time during application processing. The department must be notified of any changes in compliance status during application processing.
4.	List of Equipment/Activities Regulated under Title VI: (If applicable, required for initial/renewal applications only) Attached, Document ID:
	 Equipment/Activities Onsite but Not Required to be Individually Listed Not Applicable
5.	Verification of Risk Management Plan Submission to EPA: (If applicable, required for initial/renewal applications only) Attached, Document ID: Not Applicable
6.	Requested Changes to Current Title V Air Operation Permit: Attached, Document ID: Not Applicable

C. FACILITY ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Facilities Subject to Acid Rain, CAIR, or Hg Budget Program

1.	Acid Rain Program Forms:
	Acid Rain Part Application (DEP Form No. 62-210.900(1)(a)): □ Attached, Document ID: □ Previously Submitted, Date: May 2012 □ Not Applicable (not an Acid Rain source)
	Phase II NO _X Averaging Plan (DEP Form No. 62-210.900(1)(a)1.): □ Attached, Document ID: □ Previously Submitted, Date: ☑ Not Applicable
	New Unit Exemption (DEP Form No. 62-210.900(1)(a)2.): □ Attached, Document ID: □ Previously Submitted, Date: ⊠ Not Applicable
2.	CAIR Part (DEP Form No. 62-210.900(1)(b)): □ Attached, Document ID: Previously Submitted, Date: May 2008 □ Not Applicable (not a CAIR source)

Additional Requirements Comment

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for an initial, revised or renewal Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application. Some of the subsections comprising the Emissions Unit Information Section is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for an air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised or renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes, and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this application that is subject to air construction permitting and for each such emissions unit that is a regulated or unregulated unit for purposes of Title V permitting. (An emissions unit may be exempt from air construction permitting but still be classified as an unregulated unit for Title V purposes.) Emissions units classified as insignificant for Title V purposes are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

A. GENERAL EMISSIONS UNIT INFORMATION

<u>Title V Air Operation Permit Emissions Unit Classification</u>

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit					
	The emissions unregulated em	unit addressed in this Er nissions unit.	nissions Unit Information	on Section is an		
En	nissions Unit Descr	ription and Status				
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)			
	☐ This Emissions	S Unit Information Section	on addresses, as a single	e emissions unit, a		
	single process	or production unit, or ac	tivity, which produces of	one or more air		
	pollutants and	which has at least one de	efinable emission point	(stack or vent).		
	\boxtimes This Emissions	S Unit Information Section	on addresses, as a single	emissions unit, a group		
	of process or p	vent) but may also prod	vities which has at least	one definable emission		
				· · ·		
	more process of	or production units and a	on addresses, as a single ctivities which produce	fugitive emissions only.		
2.	Description of Em	issions Unit Addressed i	n this Section:			
	Units 2A – 2F: Six i	dentical combined-cycle	combustion turbines w	ith unfired heat recovery		
3	steam generators	ntification Number				
5.	EU 018 (Unit 2A), E	U 019 (Unit 2B), EU 020 ((Unit 2C), EU 021 (Unit 2	D), EU 022 (Unit 2E), EU		
	023 (Unit 2F)					
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit		
	Status Code:	Construction	Date:	Major Group		
8	Federal Program A	Date:	that apply)	SIC Code: 49		
0.	Acid Rain Unit	$\square \square $	(inat appry)			
0	Package Unit:					
9.	9. Package Unit: Manufacturer: General Electric Model Number: MS7241, 7FA.04 / 7FA.05					
10	. Generator Namepl	ate Rating:				
11.	. Emissions Unit Co 6-on-1 combined of combustion turbin sufficient steam to	omment: cycle system consisting e-electrical generator so generate additional 80 M	of six nominal 170 MW ets with each unfired H IW.	GE 7FA.04 / 7FA.05 HRSG that produces		
	Initial startup date Dec-02 (Unit 2D), 3	s: 26-Oct-00 (Unit 2A), 2 1-Dec-02 (Unit 2E) and 3′	2-Nov-00 (Unit 2B), 22- 1-Dec-02 (Units 2F).	Dec-00 (Unit 2C), 31-		

Emissions Unit Control Equipment/Method: Control 1 of 1

1. Control Equipment/Method Description:

Low NOx Burners - Dry low-NOx combustors

2. Control Device or Method Code: 205

Emissions Unit Control Equipment/Method: Control _ of _

- 1. Control Equipment/Method Description:
- 2. Control Device or Method Code:

Emissions Unit Control Equipment/Method: Control _ of _

1. Control Equipment/Method Description:

2. Control Device or Method Code:

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

	Maximum Process or Throughput Rate:	
2.	Maximum Production Rate: Nominal power output for the combined-cycle unit – 1,500 MW	
3.	Maximum Heat Input Rate: 10,560 MMBtu/hr (LHV)	
4.	Maximum Incineration Rate: pounds/hr	
	tons/day	
5.	Requested Maximum Operating Schedule:	
	24 hours/day7 days/week	
	52 weeks/year 8,760 hours/yea	r
6.	Operating Capacity/Schedule Comment:	
	Maximum heat input and power outputs based on compressor inlet conditions of 59 °F ambient temperature, 60% relative humidity, 100% load, and 14.7 psia. Maximum heat input rate for each turbine: 1,760 MMBtu/hr/ (LHV) Maximum heat input rate for each turbine in peak mode operation: 1,838 MMBtu/hr (HHV (see Conditions B.2.a and B.6 of Permit No. 0710002-018-AV))

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1. Identification of Point on I Flow Diagram: 2A-2F HRS	Plot Plan or SG STACK	2. Emission Point 7 3	ſype Code:	
3. Descriptions of Emission I	Points Comprising	g this Emissions Unit :	for VE Tracking:	
4. ID Numbers or Description	ns of Emission Ur	nits with this Emission	1 Point in Common:	
5. Discharge Type Code:V	 6. Stack Height 125 feet 	:	 Exit Diameter: 19 feet 	
8. Exit Temperature: 220°F	 9. Actual Volur 1,119,162 acf 	metric Flow Rate: 10. Water Vapor: 7.6 %		
11. Maximum Dry Standard F dscfm	low Rate:	12. Nonstack Emission Point Height: feet		
13. Emission Point UTM Coor Zone: East (km):	rdinates	14. Emission Point Latitude/Longitude Latitude (DD/MM/SS)		
North (km)	:	Longitude (DD/MM/SS)		
15. Emission Point Comment: Stack parameters based of Table 2-1 in Part II for estin	on Title V permit nated stack param	renewal application of eters for project.	dated May 2012. See	

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment <u>1</u> of <u>1</u>

1.	1. Segment Description (Process/Fuel Type): Internal Combustion Engines; Electric Generation; Natural Gas Turbine					
2. Source Classification Code (SCC): 2-01-002-01		3. SCC Units: Million cubic feet burned				
4.	Maximum Hourly Rate: 11.11	5.	Maximum . 97,374	Annual Rate:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8.	Maximum	% Ash:	9.	Million Btu per SCC Unit: 950 (LHV)
10	Segment Comment: Hourly rate = 1,760 MMBtu = 11.11 MMft ³ /hr (Condition Annual rate = 11.11 x 10 ⁶ ft	/hr / า B.2 t ³ /hr	950 MMBtu/ 2.a of Permit I x 8,760 hrs/y	MMft ³ x 6 turbine No. 0710002-018- r = 97,374 MMft ³ /	es AV) /yr	

Segment Description and Rate: Segment _ of _

1. Segment Description (Process/Fuel Type):						
2. Source Classification Cod	e (SCC):	3. SCC Units:				
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:		
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:		
10. Segment Comment:	1		1			

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	2. Primary Control	3. Secondary Control	4. Pollutant
	Device Code	Device Code	Regulatory Code
NOx	205		EL
CO			EL
PM/PM ₁₀			WP
VOC			EL
SO ₂			WP
CO ₂ e			EL

Page [1] of [6] Nitrogen Oxide – NO_x

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions

1. Pollutant Emitted: NOx	2. Total Percent Efficiency of Control:		
3. Potential Emissions lb/hour	tons/year4. Synthetically Limited?YesNo		
5. Range of Estimated Fugitive Emissions (as to tons/year			
6. Emission Factor: Reference:			7. Emissions Method Code:
8.a. Baseline Actual Emissions (if required): 904.6 tons/year	8.b. Baseline From: 1/1/20	24-month 09 To:	Period: 12/31/2010
9.a. Projected Actual Emissions (if required): 929.9 tons/year	9.b. Projected ⊠ 5 yea	l Monitorir ars 🔲 10 <u>:</u>	ng Period: years
10. Calculation of Emissions:			
11. Potential, Fugitive, and Actual Emissions C	omment:		

EMISSIONS UNIT INFORMATION

Section [1] Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines Page [1] of [6] Nitrogen Oxide – NO_x

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 3

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 9 ppmvd @ 15% O ₂	4.	Equivalent Allowable Emissions: 65 lb/hour tons/year
5.	Method of Compliance: CEMS (30-day rolling average)		
6.	 Allowable Emissions Comment (Description of Operating Method): Based on ISO conditions and Permit Nos. 0710002-004-AC and 0710002-018-AV. Equivalent emissions rates are for each turbine. 		

Allowable Emissions 2 of 3

1. Basis for Allow OTHER	able Emissions Code:	2.	Future Effective Date of Allowable Emissions:	
3. Allowable Emi	ssions and Units:	4.	Equivalent Allowable Emissions:	
15 ppmvd @ 15	% O ₂		102 lb/hour tons/year	
5. Method of Com	pliance:			
CEMS (24-hr Bl	ock Average)			
6. Allowable Emi Based on peaki Equivalent emis Based on Perm	 Allowable Emissions Comment (Description of Operating Method): Based on peaking mode of operation at ISO conditions. Equivalent emissions rates are for each turbine. Based on Permit Nos. 0710002-014-AC and 0710002-018-AV. 			
Allowable Emissions Allowable Emissions <u>3 of 3</u>				
1. Basis for Allow	able Emissions Code:	2.	Future Effective Date of Allowable	
RULE			Emissions	

	RULE		Emissions:	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable I	Emissions:
	75/110 ppmvd @ 15% O2		lb/hour	tons/year
5.	Method of Compliance:			
	Initial compliance test only			

 Allowable Emissions Comment (Description of Operating Method): Limit based on for a total of 90 day period/turbine at the end of construction. Based on 40 CFR 60 Subpart GG [60.32(a)(1)] and Permit No. 0710002-018-AV.

Page [2] of [6] Carbon Monoxide – CO

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions

1. Pollutant Emitted: CO	2. Total Perc	ent Efficie	ency of Control:		
3. Potential Emissions lb/hour	tons/year	4. Synth	etically Limited? es 🔲 No		
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):				
6. Emission Factor: Reference:			7. Emissions Method Code:		
8.a. Baseline Actual Emissions (if required): 49.6 tons/year	8.b. Baseline From: 1/1/20	24-month 12 To:	Period: 12/31/2013		
9.a. Projected Actual Emissions (if required):47.3 tons/year	9.b. Projected	Monitorir ars 🗌 10	ng Period: years		
10. Calculation of Emissions: See Table 3-8 of Part II.					
11. Potential, Fugitive, and Actual Emissions Comment:					

EMISSIONS UNIT INFORMATION

Section [1]

Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines

Page [2] of [6] Carbon Monoxide – CO

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units: 12.0 ppmvd @ 15% O ₂	4. Equivalent Allowable Emissions:43 lb/hourtons/year		
5.	Method of Compliance: Stack test (3-hr average) using EPA Method 1	10		
6.	 Allowable Emissions Comment (Description of Operating Method): Based on ISO conditions and Permit Nos. 0710002-004-AC and 0710002-018-AV. Equivalent emissions rates are for each turbine. 			
Al	lowable Emissions Allowable Emissions 2 of	of <u>2</u>		
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units: 9 ppmvd @ 15% O ₂	4. Equivalent Allowable Emissions: 29 lb/hourtons/year		
5.	Method of Compliance:			
	None			
6.	 Allowable Emissions Comment (Description of Operating Method): Based on peaking mode of operation at ISO conditions. Equivalent emissions rates are for each turbine. Based on Permit Nos. 0710002-014-AC and 0710002-018-AV 			
Al	Allowable Emissions _ of _			
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable		

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	fAllowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	missions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Dperating Method):	

Section [1] Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines

Page [3] of [6]

VOC

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions

1. Pollutant Emitted: VOC	2. Total Perce	ent Efficiency of Control:		
3. Potential Emissions lb/hour	tons/year	4. Synthetically Limited? ☐ Yes ☐ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):			
6. Emission Factor: Reference:		7. Emissions Method Code:		
8.a. Baseline Actual Emissions (if required): 0.07 tons/year	8.b. Baseline 24-month Period: From: 1/1/2009 To: 12/31/2010			
9.a. Projected Actual Emissions (if required): 0.07 tons/year	9.b. Projected ∑ 5 year	Monitoring Period: rs [] 10 years		
10. Calculation of Emissions: See Table 3-8 of Part II.				
11. Potential, Fugitive, and Actual Emissions Comment:				

EMISSIONS UNIT INFORMATION Section [1]

[3]

Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines

of [6] VOC

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of A Emissions:	llowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emis	ssions:
	1.4 ppmvd @ 15% O ₂		2.9 lb/hour t	tons/year
5.	Method of Compliance:			
	Initial compliance test required			
6.	Allowable Emissions Comment (Description	of (Operating Method):	
	CO limit to be used as a surrogate to demonstrate annual compliance.			
	Based on ISO conditions and Permit Nos. 0710002-004-AC and 0710002-018-AV.			
	Equivalent emissions rates are for each turbine.			

Allowable Emissions Allowable Emissions 2 of 2

1. Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:	
 Allowable Emissions and Units: 1.4 ppmvd @ 15% O₂ 	4. Equivalent Allowable Emissions:3 lb/hour tons/year	
5. Method of Compliance:		
None		
6. Allowable Emissions Comment (Description	of Operating Method):	
Based on peaking mode of operation at ISO conditions.		
Equivalent emissions rates are for each turbine. Hours of operation limited to 400 hr/yr. Based on Permit Nos. 0710002-014-AC and 0710002-018-AV		

Allowable Emissions Allowable Emissions _ of _

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year	
5. Method of Compliance:		
6. Allowable Emissions Comment (Description of Operating Method):		

of [6] PM/PM10

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions

1. Pollutant Emitted: PM/PM10	2. Total Percent Efficiency of Control:					
3. Potential Emissions lb/hour	4. Synthetically Limited?tons/yearYesNo					
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):					
6. Emission Factor: Reference:	7. Emissions Method Code:					
8.a. Baseline Actual Emissions (if required): 212.3 tons/year	8.b. Baseline 24-month Period: From: 1/1/2008 To: 12/31/2009					
9.a. Projected Actual Emissions (if required):200.4 tons/year	9.b. Projected Monitoring Period:☑ 5 years □ 10 years					
10. Calculation of Emissions:						
See Table 3-8 of Part II.						
11. Potential, Fugitive, and Actual Emissions Comment:						

[4] of [6] PM/PM10

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:
	<u><</u> 10% Opacity		lb/hour tons/year
5.	Method of Compliance: EPA Method 9		
6.	 Allowable Emissions Comment (Description of Operating Method): Opacity used as surrogate standard to demonstrate annual compliance. Based on normal and peaking mode of operation at ISO conditions and Permit Nos 0710002-014-AC and 0710002-018-AV. 		

Allowable Emissions _ of _

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable En	nissions:
			lb/hour	tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

Allowable Emissions _ of _

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	of Operating Method):

Page [5] of [6] Sulfur Dioxide – SO2

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions

1. Pollutant Emitted: SO2	2. Total Percent Efficiency of Control:			
3. Potential Emissions lb/hour	tons/year	4. Synth	etically Limited? es No	
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):			
6. Emission Factor: Reference:			7. Emissions Method Code:	
8.a. Baseline Actual Emissions (if required): 19.1 tons/year	8.b. Baseline From: 1/1/20	24-month 09 To:	Period: 12/31/2010	
9.a. Projected Actual Emissions (if required): 18.5 tons/year	9.b. Projected	l Monitorii ars 🔲 10	ng Period: years	
10. Calculation of Emissions:				
See Table 3-8 of Part II.				
11. Potential, Fugitive, and Actual Emissions C	omment:			

Page [5] of [6]

Sulfur Dioxide – SO2

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date Emissions:	e of Allowable
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		e Emissions:
	0.8 percent S		lb/hour	tons/year
5.	Method of Compliance: Use of Natural gas assures compliance with NSPS limit.			
6.	Allowable Emissions Comment (Description Based on 40 CFR 60.333 .	of (Deprating Method):	

Allowable Emissions Allowable Emissions 2 of 2

1.	Basis for Allowable Emissions Code: Other	2.	Future Effective Date o Emissions:	f Allowable	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable H	Emissions:	
	Natural gas		lb/hour	tons/year	
5.	Method of Compliance:				
	Use of pipeline natural gas				
6.	Allowable Emissions Comment (Description of Operating Method):				
	Permit Nos. 0710002-004-AC and 0710002-018-AV				

Allowable Emissions _ of _

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date o Emissions:	f Allowable	
3.	Allowable Emissions and Units:	4.	4. Equivalent Allowable Emissions:		
			lb/hour	tons/year	
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description	of (Operating Method):		

Page [1] of [2] Equivalent carbon dioxide - CO₂e

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

 Pollutant Emitted: Equivalent carbon dioxide - CO₂e 	2. Total Percent Efficiency of Control:				
3. Potential Emissions: lb/hour	tons/year	4. Synthetically Limite ☐ Yes ⊠ No	d?		
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year					
6. Emission Factor: See Part II. Reference:		7. Emissions Method C	ode:		
8 a Baseline Actual Emissions (if required):	8 b Baseline	24-month Period			
3,813,002 tons/year	From: 1/1/200	9 To: 12/31/2010			
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitoring Period:			
3,613,333 tons/year	🖂 5 yea	rs 🔲 10 years			
 10. Calculation of Emissions: See Table 3-8 of Part II. 11. Potential, Fugitive, and Actual Emissions Compared to the second seco	omment:				
	omment.				

Page [2] of [2] Equivalent carbon dioxide - CO₂e

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	of Operating Method):

Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		vable
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
			lb/hour	tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2.	2. Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
			lb/hour	tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

EMISSIONS UNIT INFORMATION

Section [1]

Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 2

visible Linissions Subtype.	2. Dasis for Allowable	Jpacity:
VE10	🗌 Rule	X Other
Allowable Opacity:		
Normal Conditions: 10 % Ex	ceptional Conditions:	%
Maximum Period of Excess Opacity Allowe	ed:	min/hour
Method of Compliance: EPA Method 9		
Visible Emissions Comment:		
Based on Permit Nos. 0710002-004-AC and 0	710002-018-AV.	
	VE10 Allowable Opacity: Normal Conditions: 10 % Ex Maximum Period of Excess Opacity Allowe Method of Compliance: EPA Method 9 Visible Emissions Comment: Based on Permit Nos. 0710002-004-AC and 0	VE10 Rule Allowable Opacity: Normal Conditions: Normal Conditions: 10 % Exceptional Conditions: Maximum Period of Excess Opacity Allowed: Method of Compliance: EPA Method 9 Visible Emissions Comment: Based on Permit Nos. 0710002-004-AC and 0710002-018-AV.

Visible Emissions Limitation: Visible Emissions Limitation 2 of 2

1.	Visible Emissions Subtype: VE99	2. Basis for Allowable Opacity: X Rule Other	
3.	Allowable Opacity:		
	Normal Conditions: %	Exceptional Conditions: 100%	
	Maximum Period of Excess Opacity All	lowed: 60 min/hour	
4.	Method of Compliance: None		
5.	Visible Emissions Comment:		
	Per 62-210.700(1), excess emissions du hours per 24 hour period.	ring startup, shutdown, or malfunction limited to	o 2

EMISSIONS UNIT INFORMATION

Section [1]

Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 2

1.	Parameter Code:	2. Pollutant(s):		
	O2 - Oxygen			
3.	CMS Requirement:	X Rule Other		
4.	Monitor Information			
	Manufacturer: SERVOMEX			
	Model Number: 1440C			
	Serial Number: 2A:01420C/1302, 2B: 01420C/1304, 2C: 01420C/1402,			
2D: 01420C/1403 2E: 01420C/1466 2F: 01420C/1444				
5.	Installation Date:	6. Performance Specification Test Date:		
	2A:01-Sep-00 2B:01-Nov-00 2C:01-Dec-00	2A:11-Oct-00 2B:08-Nov-00 2C:12-Dec-00		
	2D: 12-Apr-01 2E:03-Apr-01 2F:01-Mar-01	2D: 12-Apr-01 2E:03-Apr-01 2F:31-May-01		
7. Continuous Monitor Comment:				
CEM required pursuant to 40 CFR 75.				

Continuous Monitoring System: Continuous Monitor 2 of 2

1.	Parameter Code: EM - EMISSION	2. Pollutant(s): NOx	
3.	CMS Requirement:	X Rule Other	
4.	Monitor Information Manufacturer: TEI		
	Model Number: 42CHL		
	Serial Number: 2A:66125-351/ 2B:66427-352/ 2C:66490-352 2D:66131-351/ 2E:65868-650/ 2F:69215-362		
5.	Installation Date: 2A: 01-Oct-00/ 2B: 01-Nov-00/ 2C: 01-Dec-00/ 2D: 01-Jan-01/ 2E:01-Feb-01/ 2F:01-Mar-01	 6. Performance Specification Test Date: 2A: 11-Oct-00/ 2B: 08-Nov-00/ 2C: 12-Dec-00/ 2D: 12-Apr-01/ 2E: 03-Apr-01/ 2F: 31-May-01 	
7.	Continuous Monitor Comment: CEM required pursuant to 40 CFR 75 .		
EMISSIONS UNIT INFORMATION

Section [1]

Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	 Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 2012</u>
2.	 Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 2012</u>
3.	 Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 2012</u>
4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) □ Attached, Document ID: Previously Submitted, Date ○ Not Applicable
6.	Compliance Demonstration Reports/Records: □ Attached, Document ID:
7.	Other Information Required by Rule or Statute:

EMISSIONS UNIT INFORMATION

Section [1]

Units 2A, 2B, 2C, 2D, 2E and 2F Combustion Turbines

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7), F.A.C.; 40						
	CFR 63.43(d) and (e)):						
	Attached, Document ID:	🔀 Not Applicable					
2.	Good Engineering Practice Stack Height Analysis (Rules 62-212.400(4)(d) and 62-212.500(4)(f),						
	F.A.C.):						
	Attached, Document ID:	🔀 Not Applicable					
3.	Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities						
	only)						
	Attached, Document ID:	Not Applicable					

Additional Requirements for Title V Air Operation Permit Applications – N/A

1.	Identification of Applicable Requirements: Attached, Document ID: Image: Not Applicable
2.	Compliance Assurance Monitoring:
3.	Alternative Methods of Operation:
4.	Alternative Modes of Operation (Emissions Trading):

Additional Requirements Comment

PART II

Table of Contents

PART II

1.0	INTRODUCTION	1
2.0	PROJECT DESCRIPTION	3
2.1	Facility Description	3
2.2	7FA.04/7FA.05 Gas Turbine Upgrade ("the Project")	3
2.3	Source Emission Units and Stack Parameters	4
3.0	AIR QUALITY REVIEW REQUIREMENTS AND PROJECT APPLICABILITY	5
3.1	Applicable FDEP PSD Regulations	5
3.2	Baseline Actual to Projected Actual Emissions for the Project	5
3.3	New Source Performance Standards	7
3.4	Proposed Permit Conditions	9

List of Tables

Table 2-1	Stack, Operating, and Emission Data for Combustion Turbines - Natural Gas Combustion, GE 7FA.05
Table 3-1	Fort Myers Unit 2 Annual Heat Inputs and Operating Hours, 2009 – 2013
Table 3-2	Annual Emissions Reported in 2009 – 2013 Annual Operating Reports and Acid Rain Database for Unit 2 $$
Table 3-3	Actual Annual Emissions of N_2O and CH_4 for the Period 2009 – 2013, Unit 2 Upgrade Project
Table 3-4	Annual Average Emissions for Fort Myers Unit 2 for Each Consecutive Two-Year Period, 2009-2013
Table 3-5	Actual Hourly Emission Rates, FPL Fort Myers Units 2A, 2B, 2C, 2D, 2E, and 2F
Table 3-6	Fort Myers Unit 2 Actual Emissions as a Function of Heat Input, 2009 - 2013
Table 3-7	Projected Utilization of Unit 2 with the Upgrade Project
Table 3-8	PSD Applicability – Fort Myers Unit 2 Upgrade Project

List of Figures

- Figure 1-1 Location Map
- Figure 2-1 Facility Plot Plan
- Figure 2-2 Process Flow Diagram for Each CT Base Load Operation, Turbine Inlet Temperature of 75°F

List of Appendices

Appendix A Baseline Actual Emissions Information and for GE 7FA.05 CT Emission Rates and Stack Parameters

14-14282

1.0 INTRODUCTION

Florida Power & Light Company's (FPL's) existing Fort Myers Plant is located at 10650 State Road 80, in Lee County Florida (see Figure 1-1) and consists of a six-on-two natural gas combined cycle unit (Unit 2) (EUs 018 to 024), two simple cycle combustion turbines (CTs) (Units 3A and 3B) (EUs 027 and 028) and one block of 12 simple cycle gas turbines (GT1 through GT12) (EUs 003 to 014). The facility is currently operating under Title V Permit No. 0710002-018-AV. The facility also operates eight natural gas preheaters for simple cycle operation.

Unit 2 consists six of General Electric (GE) Model MS7241 CTs associated with six heat recovery steam generators (HRSGs) referred to as Units 2A through 2F (EU IDs 018, 019, 020, 021, 022, and 023). The GE CT version installed in Unit 2 is referred to as the 7FA.03. On March 13, 2014 FDEP issued Air Construction Permit No. 0710002-020-AC that authorized the installation of GE 7FA.04 components. The installation of the GE 7FA.04 components would substitute for replacement of GE 7FA.03 components that are necessary as routine maintenance, repair, and replacement scheduled for 2015 to 2016. The 7FA.04 components would increase the power output by approximately 5 percent (base load at 75°F). As a result of the greater output, mass emission rates of all criteria pollutants will decrease on a per megawatt hour (MW-hr) basis. The expiration date of the permit is December 31, 2016 which would allow sufficient time for installation of the 7FA.04 components.

In further discussions with GE, FPL identified an additional upgrade that consisted of installing 7FA.05 components along with 7FA.04 components to provide even greater benefits than installing only the 7FA.04 components. At a turbine inlet temperature of 75 °F, the gas turbine power increases about 18.6 percent (new and clean) with 7FA.04/7FA.05 components. The improvements by installing 7FA.05 components along with the 7FA.04 components are even greater when compared to the existing conditions of the CTs since the 7FA.04 components will be new and clean compared to the existing CTs that have been in operation for some time and are scheduled for routine maintenance, repair, and replacement. FPL estimates that there will be an overall increase of 14.6 percent in combined cycle power output over the 7FA.03 new and clean condition, with a decrease in heat rate of about 1.7 percent. Improvements over the existing condition of the 7FA.03 turbines are projected to be 17.6 percent in power output and a 2.4 percent decrease in heat rate. The improvements with only like-kind replacement parts that are scheduled would only achieve 3 percent increase in power output and only a 0.7 percent decrease in heat rate. After recognizing the benefits of 7FA.04/7FA.05 improvements over those of just replacing components parts of the 7FA.03, FPL has requested Golder Associates Inc. to prepare this Air Construction/Prevention of Significant Deterioration (PSD) Permit Application to allow the option of installing 7FA.05 components along with the 7FA.04 components as previously authorized (the Project).

Based on information provided by GE, the Project will result in no increases in emission rates of regulated air pollutants compared to the existing units. The increased power will result in higher emission rates for

the same turbine inlet temperature (new and clean). An evaluation of Unit's 2 projected utilization after the upgrades to determine the projected actual emission after the change does not result in a significant net emission increases above the baseline actual emissions of any regulated PSD air pollutant. Therefore, pursuant to FDEP Rule 62-212.400, F.A.C., the Project is not subject to PSD review.

This Application is being filed for the purpose of obtaining a minor source air construction permit for the Project in accordance with FDEP's federally approved minor source air construction permit program under Florida's federally-approved State Implementation Plan. This Air Construction Permit Application Report is divided into three sections.

- Section 1.0 presents an introduction to the Project
- Section 2.0 presents a description of the Project, including air emissions and stack parameters
- Section 3.0 provides a review of the regulatory analysis conducted, including proposed permit conditions for the Project
- Appendices which include historical operation
- FDEP Form No. 62-210.900(1): Application for Air Permit Long Form (Part I)

14-14282

2.0 PROJECT DESCRIPTION

2.1 Facility Description

The existing FPL Fort Myers Plant is located within unincorporated Lee County, Florida. The existing plant is situated within approximately 460 acres of land owned by FPL. The facility is located on Palm Beach Boulevard (State Road 80), Fort Myers, Florida. Figure 2-1 presents the facility plot plan for the facility.

2.2 7FA.04/7FA.05 Gas Turbine Upgrade ("the Project")

Fort Myers Unit 2's six gas turbines are permitted to fire only natural gas. The current maximum design heat input rate for the turbines are 1,760 million British thermal units per hour (MMBtu/hr) [59 degrees Fahrenheit (°F) ambient temperature, lower heating value (LHV)]. The design heat input rate for natural gas-firing will increase by about 12 percent) based on GE data with the upgraded 7FA.04/7FA.05 components at 75°F ambient temperature (new and clean). Data from the National Climatic Data Center (NCDC) indicate the 30-year (1983 to 2012) average temperature for Fort Myers is 74°F (median 75°F). The increased heat input rate will not exceed the currently permitted maximum heat input rate.

The current permitted emissions limits for the Unit 2 gas turbines are listed in Condition Nos. B.9 through B.16 of Title V Permit No. 0710002-018-AV. GE will guarantee the same concentration-based emissions limits for NO_x, CO, and VOC with the improved 7FA.04/7FA.05 hybrid turbine. Based on GE performance data for the 7FA.03, the potential hourly mass emission rate of NO_x will theoretically increase from 55.1 to 62.2 pound per hour (lb/hr) (at 75°F). However, the increased rate is less than the current permitted emissions rate of 65 lb/hr.

There are currently no mass-based emissions limits for SO₂, SAM, or PM/PM₁₀/PM_{2.5}. Since emissions of these pollutants are directly proportional to fuel flow and the Project would increase the design fuel flow capacity of the turbines, the potential hourly mass emission rates of these pollutants would also theoretically increase. Due to the 7FA.04/7FA.05 component installation, potential emissions of all pollutants will decrease on a per megawatt-hour (MW-hr) basis for all regulated pollutants including NO_x.

Unit 2 currently has no post-combustion control technologies for emissions of CO, VOC, SO₂, SAM, or $PM/PM_{10}/PM_{2.5}$. Emissions of NO_x are controlled by Dry Low-NO_x (DLN) combustion technology. The upgrade Project will rely on the same existing control technologies.

The currently-permitted 7FA.04 upgrade includes installation of new hot gas path components, new combustion liners and flow sleeves, and new control software to increase firing temperature. The advanced gas path of 7FA.04 uses less air for cooling the parts. The 7FA.05 upgrade involves improvements to the compressor that are applied to the 7FA.04 hot gas path and incorporate

3-dimensional airfoil aerodynamics and a 4 stage variable stator vane system to improve performance and efficiency of the hybrid combustion turbine. The 14-stage compressor adds 25% more mass flow to produce an 18 to 1 pressure ratio in 4 fewer compressor stages. The rotor compressor blades are field replaceable for easier maintenance, saving turn time during outages. The design has incorporated lessons learned from 7FA.03 and 7FA.04 experience resulting in a more robust blade profile adding to improved reliability of the unit.

2.3 Source Emission Units and Stack Parameters

Performance, estimated maximum hourly emissions, and exhaust information representative of both CT operating options at base load conditions (100 percent load) in combined cycle mode are presented in Table 2-1. The performance and emissions data for the other CT operating conditions are given in Appendix A for turbine inlet temperatures of 35°F, 75°F, and 95°F and various operating load conditions. There are no changes in the emission rates from the GE 7FA.03 in terms of concentration or Ib/MMBtu. While the mass flow increases, the amount of heat input required for amount of generation is reduced so that emissions of all air pollutants decrease on a Ib/MW-hr basis.

A process flow diagram of the new CT configuration, operating at base load conditions with a compressor inlet temperature of 75°F, is presented in Figure 2-2.

3.0 AIR QUALITY REVIEW REQUIREMENTS AND PROJECT APPLICABILITY

3.1 Applicable FDEP PSD Regulations

The U.S. Environmental Protection Agency's (EPA's) PSD regulations are promulgated under Title 40, Part 51.166 of the Code of Federal Regulations (40 CFR 51.166). Florida's PSD regulations are codified in FDEP Rule 62-212.400, Florida Administrative Code (F.A.C.), and have been approved by EPA. The Florida PSD regulations incorporate the requirements of EPA's PSD regulations. Under these requirements, the existing Fort Myers Plant is classified as an existing major facility. A modification to an existing major facility that results in a significant net emissions increase equal to or exceeding the significant emissions rates (SERs) listed in the Florida regulations under Section 62-212.400, Table 62-212.400-2, F.A.C., is classified as a major modification and will be subject to the PSD preconstruction permitting program for those pollutants that exceed the PSD SERs.

The procedures for determining applicability of the PSD permitting program to the Project are specified in FDEP Rule 62-212.400(2), F.A.C. For each regulated pollutant, PSD is triggered as a result of a modification at an existing facility if the difference between the projected actual emissions and the baseline actual emissions equals or exceeds the SER for that pollutant, as defined at FDEP Rule 62-210.200 (243), F.A.C.

On June 3, 2010, EPA promulgated regulations related to PSD and Title V GHG Tailoring Rule [75 Federal Register (FR) 31514-31608]. This change in EPA's PSD regulations requires PSD review and approval for new major projects and modifications exceeding the PSD thresholds for review. This application includes information to address PSD review of GHGs under EPA's rules and the recent Supreme Court decision regarding the Tailoring Rule. Florida has obtained authority to issue PSD permits for GHGs that exceed the GHG significant emission levels and are included a PSD review of other air pollutants.

3.2 Baseline Actual to Projected Actual Emissions for the Project

The Fort Myers Power Plant is an existing major facility under PSD rules. The U.S. Environmental Protection Agency (EPA) has approved Florida's State Implementation Plan (SIP), which contains PSD regulations. The applicable PSD rules in Florida are found in Rule 62-212.400, Florida Administrative Code (F.A.C.). For an existing major facility for which a modification is proposed, the project is subject to PSD review if the net increase in emissions due to the modification is greater than the PSD significant emission rates for any applicable pollutant. The comparison is based on the Baseline Actual-to-Projected Actual Applicability Test for Modifications at Existing Emission Units pursuant to FDEP Rule 62-212.400(2)(a)1., F.A.C.

The first step in determining PSD applicability is whether a potential increase in emissions from a particular change alone is significant by making an emissions comparison between baseline actual emissions and projected actual emissions. The baseline, or current, actual emissions are the emissions over a consecutive 24-month period within the 5 years immediately preceding the date that a complete application is submitted. The use of different consecutive 24-month periods for each pollutant is allowed. Projected actual emissions are maximum annual rate, in tons per year, at which the existing emission unit is projected to emit a PSD pollutant in any of the 5 years following the date the unit resumes regular operation.

The Annual Operating Reports (AORs) for Unit 2 were used to determine baseline actual emissions for the Project. Table 3-1 presents the actual annual heat inputs reported in the Annual Operating Reports (AORs) for the period 2009 through 2013. This table also presents the total actual heat input for Units 2A through 2F, as well as the actual operating hours for each unit.

Table 3-2 summarizes the annual emissions reported in the AORs for each calendar year in the period 2009 through 2013. The carbon dioxide (CO_2) emission rates in Table 3-2 were obtained from EPA's Acid Rain database.

On June 3, 2010, EPA promulgated regulations related to PSD and Title V Greenhouse Gas Tailoring Rule (75 FR 31514-31608). In EPA's promulgation, GHGs are defined to include an aggregate group of six GHGs: CO_2 , methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). Each of these GHGs has a specific Global Warming Potential that is calculated as "CO₂ equivalent emissions" or CO₂e that is equivalent to one ton of CO₂.

For the Project, the GHGs emitted are CO_2 , CH_4 , and N_2O with one ton of CH_4 equivalent to 25 tons of CO_2e and one ton of N_2O equivalent to 294 tons of CO_2e . Since emissions of nitrous oxide (N_2O) and methane (CH_4) were not reported in the AORs, they were calculated based on the actual annual heat input and emission factors from Title 40, Part 98 of the Code of Federal Regulations (40 CFR 98), Subpart C. These emissions are summarized in Table 3-3, which also shows the CO_2 equivalent (CO_2e) rates for these pollutants.

Table 3-4 presents the average emissions for each consecutive 2-year period based on the calendar year emissions in Tables 3-2 and 3-3. The annual average emissions for each consecutive 2-year period are consistent with the definition of baseline actual emissions for fossil fuel-fired steam electric generating units.

The actual hourly emission rates were calculated based on the reported annual emission rates and operating hours in the AORs, which are summarized in Table 3-5.

14-14282

The actual emission factors in pounds per million British thermal units heat input (lb/MMBtu) are shown in Table 3-6 for each calendar year in the period 2009 through 2013. The factors are calculated by dividing the total annual emissions by the total annual heat input for natural gas-firing. To conservatively estimate future emissions with the upgrade, the upper 90 percent confidence interval was used. Since 5 years of data are being evaluated, the Student "t" test probability function is the appropriate method. There is normal variability in emissions, so the upper 90 percent confidence intervals will envelope the small potential increases in emissions due to increased performance. For CO_2 , the emission rates in lb/MMBtu based on the Part 75 monitoring was used since this data was the basis of the annual CO_2 emissions. For the N₂O and CH₄, the Part 98 emission factors are used.

To determine the projected actual emissions, FPL performed system forecast modeling of its system to evaluate the utilization of Unit 2 with the improvements resulting from the 7FA.04/7FA.05 upgrades. The result of the forecast modeling presented in Table 3-7 shows the projected generation of Unit 2 with the Project in FPL's system, along with actual generation of Unit 2 from 2009 through 2013.

The generation projections in Table 3-7 are presented for the 5-years after the Project is complete. The 5-year time period is based on FDEP Rule 62-212.300(1)(e)1., F.A.C., that states in part "The permittee shall monitor the emissions of any PSD pollutant that the Department identifies could increase as a result of the construction or modification and that is emitted by any emissions unit that could be affected, and using the most reliable information available, calculate and maintain a record of the annual emissions, in tons per year on a calendar year basis, for a period of 5 years following resumption of regular operations after the change." The 5-year period is appropriate since there is no increase in emission rates and Unit 2 is limited by its existing electric generators associated with the project (i.e., the 6 CT generators and 2 steam turbine/electric generators). No physical or operation changes are being made to the electric generators associated except for RMRR as required during normal outages. The maximum electric generating design capacity of Unit 2 is not changing, and the potential emissions will remain the same.

The PSD applicability analysis is presented in Table 3-8. The baseline actual emissions are obtained from Table 3-4, which are maximum 2-year average emissions for each pollutant. As shown, the Project will not result in net emission increase greater than the PSD significant emission rates for any regulated PSD air pollutant.

3.3 New Source Performance Standards

Fort Myers Units 2A through 2F are currently subject to 40 CFR 60 Subpart GG, Standard of Performance for Stationary Gas Turbines. For the purpose of New Source Performance Standards (NSPS) applicability, 40 CFR 60.14 defines modification as any physical or operational change to an existing facility that results in an increase in the emission rate to the atmosphere of any pollutant to which a standard applies. 40 CFR 60.14 also states that the emission rate shall be expressed as kilograms per

hour (kg/hr). NO_x and SO₂ are regulated under NSPS for Stationary Gas Turbines. Since the hourly emission rates for these pollutants may potentially increase, the proposed project is a potential modification according to the rules for NSPS. As a result, the Unit 2 combustion turbines 2A through 2F may be subject to 40 CFR 60 Subpart KKKK, the revised Standard of Performance for Stationary Combustion Turbines, which applies to stationary combustion turbines with a heat input at peak load equal to greater than 10 MMBtu/hr that commence construction, modification, or reconstruction after February 18, 2005.

After the installation of the 7FA.04/7FA.05 components, the turbines will comply with the same concentration-based NO_X emissions standards they are currently subject to, which are 9 parts per million, dry volume basis, at 15-percent oxygen (ppmvd @ 15% O_2) for natural gas-firing during normal combined-cycle operation and 15 ppmvd @15% O_2 for peak mode operation (limited to 400 hour/year operation).

NSPS Subpart KKKK limits NO_x emissions to 15 ppmvd @ 15% O₂ for natural gas-firing with heat input rate greater than 850 MMBtu/hr (high heating value). NSPS Subpart KKKK also has an alternative limit for NO_x emissions that is 0.43 pound per megawatt-hour (lb/MWh) for natural gas-firing. The improved combined-cycle units will comply with the emissions standard.

The 7FA.04/7FA.05 improvement increases the exhaust mass flow of the combustion turbine. However, the NO_X emissions on a per MWh basis will decrease due to improved efficiency. In addition, Section 60.14(2) of 40 CFR 60 recognizes the potential for statistical variability in determining an increase in kg/hr (i.e., Appendix C of 40 CFR 60).

For these reasons, it is believed an increase in kg/hr NO_x emissions may not occur from the project. It is proposed that the CEMs data post the upgrades be reviewed to determine if an increase has occurred. In any event, the 7FA.04/7FA.05 project will comply with, and be much less than, the emission limiting standards of Subpart KKKK for NO_x .

NSPS Subpart KKKK limits SO_2 emissions by limiting the sulfur in the fuel (0.06 lb/MMBtu) or based on the output (0.9 lb/MWh). Based on AOR data for the period 2009 – 2013, the current actual maximum SO_2 emission rate is 0.00061 lb/MMBtu. SO_2 emissions are directly proportional to heat input for the same sulfur content of fuel and the lb/MMBtu rate is expected to remain the same. Since natural gas is the primary fuel, the amount of sulfur will vary only slightly. As a result, the projected minor increase in heat input will not increase emissions based on the normal variability of sulfur in natural gas. Future sulfur content data post upgrades will be reviewed to determine if an increase in kg/hr SO_2 emissions has

occurred. In any event, the 7FA.04/7FA.05 project will comply with the emission limiting standards of Subpart KKKK for SO₂, if applicable.

3.4 **Proposed Permit Conditions**

The 7FA.04/7FA.05 Upgrade Project does not result in a significant net increase in emissions of any PSD pollutant and is therefore similar in regulatory applicability to the 7FA.04 Upgrade Project authorized under FDEP Permit No. 0710002-020-AC. As a result, the relevant conditions included in that Permit are proposed for consideration in the permit for the 7FA.04/7FA.05 Upgrade Project with appropriate revisions. These conditions are provided below.

REPORTING REQUIREMENTS AND NSPS APPLICABILITY TESTS (FROM FDEP PERMIT NO. 0710002-020-AC)

This permit requires actual emissions reporting for Unit 2 pursuant to Rule 62-212.300(1)(e), F.A.C.; and, tests data to demonstrate NSPS applicability/non-applicability of 40 CFR 60, Subpart KKKK as follows:

3. Actual Emissions Reporting: This permit is based on an analysis that compared baseline actual emissions with projected actual emissions and avoided the requirements of subsection 62-212.400(4) through (12), F.A.C. for several pollutants. Therefore, pursuant to Rule 62-212.300(1)(e), F.A.C., the permittee is subject to the following monitoring, reporting and recordkeeping provisions.

a. The permittee shall monitor the emissions of any PSD pollutant that the Department identifies could increase as a result of the construction or modification and that is emitted by any emissions unit that could be affected; and, using the most reliable information available, calculate and maintain a record of the annual emissions, in tons per year on a calendar year basis, for a period of 5 years following resumption of regular operations after the change. Emissions shall be computed in accordance with the provisions in Rule 62-210.370, F.A.C., which are provided in Appendix C of this permit.

b. The permittee shall report to the Department within 60 days after the end of each calendar year during the 5-year period setting out the unit's annual emissions during the calendar year that preceded submission of the report. The report shall contain the following:

(1) The name, address and telephone number of the owner or operator of the major stationary source;

(2) The annual emissions calculations pursuant to the provisions of 62-210.370, F.A.C., which are provided in Appendix C of this permit;

(3) If the emissions differ from the preconstruction projection, an explanation as to why there is a difference; and

(4) Any other information that the owner or operator wishes to include in the report.

c. The information required to be documented and maintained pursuant to subparagraphs 62-212.300(1)(e)1 and 2, F.A.C., shall be submitted to the Department, which shall make it available for review to the general public.

d. For this project, the permittee estimated the following baseline actual emissions: 49.6 tons/year of CO; 904.6 tons/year of NO_X; 19.1 tons/year of SO₂; 0.07 tons/year of VOC; 212.3 tons/year of PM/PM₁₀; and 2.92 tons/year of sulfuric acid mist (SAM).

e. The Department has identified NO_X as the only PSD-pollutant that could reasonably increase as a result of this modification. For the purpose of comparisons with baseline actual emissions, the permittee shall use the installed CEMS to determine and report the actual annual emissions of NO_X .

f. Heat input rates will vary depending upon gas turbine characteristics, ambient conditions, alternate methods of operation, and evaporative cooling. The permittee shall provide manufacturer's performance curves (or equations) that correct for site conditions to the Permitting and Compliance Authorities within 45 days of completing the initial compliance testing. Operating data may be adjusted for the appropriate site conditions in accordance with the performance curves and/or equations on file with the Department. [Rule 62-210.200(PTE), F.A.C.]

[Application 0710002-020-AC; and Rules 62-212.300(1)(e) & 62-210.370, F.A.C.]

4. NSPS, KKKK Applicability Determination: The permittee shall conduct tests in accordance with 40 CFR 60, Appendix C - Determination of Emission Rate Change. The permittee shall submit the data with the Title V Permit application required by Section 2, Condition 9 above. The submittal shall include a preliminary inference whether the short-term NOX emission rates (in pounds per hour), while operating in the normal combined cycle mode and burning natural gas, after the change are greater than before the change with 95% confidence and an analysis regarding the applicability of 40 CFR 60, Subpart KKKK – Standards of Performance for Stationary Combustion Turbines. The tests shall be conducted using the installed NOX CEMS with the units operated as if a manual test were being performed. Valid data using the averaging time which would be required if a manual emission test were being conducted shall be used. The number (n) of runs shall be between 20 and 29. If test data shows NOX emissions for any combustion turbine increases, the permittee will become subject to 40 CFR 60, Subpart KKKK, and shall immediately begin complying with all of the provisions applicable to the unit. In such case, the applicable provisions of 40 CFR 60, Subpart KKKK will be incorporated into the Title V air operation permit during the next revision or renewal. [Rule 62-4.070, F.A.C., Application 0710002-020-AC]

TABLES

December 2014

		Basel	oad Turbir	ne inlet	75% [oad Turbir	o Inlot	50% (ad Turbin	e inlet	Peak
		Temperature			Temperature			Temperature			l oad at
Parameter	Units	35° F	75° F	95° F	35° F	75° F	95° F	35° F	75° F	95° F	95° F
CT - HRSG Stack Data											
Height	ft	125	125	125	125	125	125	125	125	125	125
Diameter	ft	19	19	19	19	19	19	19	19	19	19
Temperature	°F	220	220	220	220	220	220	220	220	220	220
Velocity	ft/sec	66.4	65.7	58.6	53.2	51.7	47.6	42.0	42.1	43.0	58.2
CT - Bypass Stack Data											
Height	ft	98	98	98	98	98	98	98	98	98	98
Diameter	ft	22	22	22	22	22	22	22	22	22	22
Temperature	°F	1.092	1.109	1.144	1.132	1.161	1.201	1.215	1.215	1.215	1.165
Velocity	ft/sec	113.0	113.1	103.0	92.8	91.8	86.7	77.2	77.4	79.1	103.8
Maximum Hourly Emissio	ons per Unit										
SO ₂	ar/100 cf	2	2	2	2	2	2	2	2	2	2
	lb/hr	11.0	10.6	9.5	8.8	8.5	7.8	6.9	6.7	6.5	9.7
PM ₁₀ /PM _{2.5}	lb/hr	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
NO	ppmvd @15% O2	9	9	9	9	9	9	9	9	9	15
- *	lb/hr	64.6	62.3	55.6	51.7	49.7	45.5	40.7	39.3	38.2	94.3
СО	ppmvd @15% O2	7.25	7.36	7.26	7.25	7.23	7.20	7.30	7.49	7.80	7.08
	lb/hr	31.9	31.2	27.5	25.5	24.5	22.3	20.2	20.0	20.3	27.3
VOC (as methane)	ppmvw	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
	 lb/hr	2.8	2.8	2.4	2.3	2.2	2.0	1.8	1.8	1.8	2.4
Sulfuric Acid Mist	lb/hr	1.1	1.1	0.9	0.9	0.8	0.8	0.7	0.7	0.7	1.0

Table 2-1. Stack, Operating, and Emission Data for Combustion Turbines (CT)—Natural Gas Combustion GE 7FA.05

Source: General Electric Company, 2014 (CT Performance Data); Golder, 2014.

Table 3-1. Fort Myers Unit 2 Annual Heat Inputs and Operating Hours, 2009 - 2014

UNIT	2
------	---

	Actual Heat Input from Natural gas (MMBtu/yr)									
Year	Unit 2A	Unit 2B	Unit 2C	Unit 2D	Unit 2E	Unit 2F	Total			
2013	9,972,000	8,458,000	8,177,000	9,199,000	8,515,000	9,089,000	53,410,000			
2012	10,359,000	10,976,000	10,956,000	10,632,000	10,970,000	10,440,000	64,333,000			
2011	8,475,000	9,407,468	7,158,622	9,177,539	8,923,028	9,139,000	52,280,657			
2010	10,276,000	10,285,000	10,376,000	10,332,000	11,280,000	10,993,000	63,542,000			
2009	10,757,000	11,165,000	10,436,000	10,894,000	10,991,000	10,863,000	65,106,000			

UNIT 2

Operating Hours (hr/yr)									
Unit 2A	Unit 2B	Unit 2C	Unit 2D	Unit 2E	Unit 2F	Total			
7,301	6,289	6,015	6,802	6,314	6,884	39,605			
7,427	7,779	7,774	7,542	7,780	7,556	45,858			
5,956	6,570	6,372	6,244	6,410	4,163	35,715			
7,172	7,161	7,216	7,184	7,814	7,617	44,164			
7,525	7,781	7,326	7,625	7,666	7,606	45,529			
	Unit 2A 7,301 7,427 5,956 7,172 7,525	Unit 2AUnit 2B7,3016,2897,4277,7795,9566,5707,1727,1617,5257,781	O Unit 2A Unit 2B Unit 2C 7,301 6,289 6,015 7,427 7,779 7,774 5,956 6,570 6,372 7,172 7,161 7,216 7,525 7,781 7,326	Operating HourUnit 2AUnit 2BUnit 2CUnit 2D7,3016,2896,0156,8027,4277,7797,7747,5425,9566,5706,3726,2447,1727,1617,2167,1847,5257,7817,3267,625	Unit 2AUnit 2BUnit 2CUnit 2DUnit 2E7,3016,2896,0156,8026,3147,4277,7797,7747,5427,7805,9566,5706,3726,2446,4107,1727,1617,2167,1847,8147,5257,7817,3267,6257,666	Operating Hours (hr/yr)Unit 2AUnit 2BUnit 2CUnit 2DUnit 2EUnit 2F7,3016,2896,0156,8026,3146,8847,4277,7797,7747,5427,7807,5565,9566,5706,3726,2446,4104,1637,1727,1617,2167,1847,8147,6177,5257,7817,3267,6257,6667,606			

Note: All values are based on annual operating reports for the period 2009 - 2013.

Table 3-2. Annual Emissions Reported in 2009-2013 Annual Operating Reports and Acid Rain Database for Fort Myers Unit 2

		Unit 2A	Unit 2B	Unit 2C	Unit 2D	Unit 2E	Unit 2F	Total
Year	Pollutant	(tons)						
2012	NO	215 7	129.5	111.0	126.6	125.0	124.4	961 1
2013	CO	215.7	50.5	72	6.2	7.6	8.8	46.1
	50	3.0	2.6	2.5	2.8	2.6	2.8	40.1
		0.011	0.000	0.000	2.0	0.000	2.0	0.050
	PM	22.0	0.009	0.009	20.4	0.009	20.0	0.059
	FIVI	32.9	27.9	27.0	30.4	20.1	30.0	170.3
	FIVI ₁₀	52.9	21.9	27.0	30.4	20.1	30.0	170.3
	SAM "							2.5
	CO ₂	602,702.2	511,149.5	498,667.3	560,128.0	514,597.1	549,362.8	3,236,606.9
2012	NO _x	133.9	149.8	161.9	141.0	147.1	139.6	873.2
2012	CO	10.5	7.4	9.3	6.9	9.4	9.6	53.1
	SO ₂	3.2	3.3	3.3	3.2	3.3	3.2	19.6
	VOC	0.011	0.012	0.012	0.011	0.012	0.011	0.069
	PM	34.2	36.2	36.2	35.1	36.2	34.5	212.3
	PM ₁₀	34.2	36.2	36.2	35.1	36.2	34.5	212.3
	SAM ^a				_			3.0
	CO	625 265 1	662 506 9	661 266 1	641 702 0	662 227 6	620 226 2	2 002 505 7
	OO_2	025,305.1	002,590.0	001,300.1	641,793.9	002,227.0	030,230.2	3,003,505.7
2011	NO _x	130.3	153.1	106.0	125.4	140.9	137.7	793.4
	CO	2.8	4.0	4.6	5.9	5.8	2.9	26.0
	SO ₂	2.6	2.8	2.2	2.8	2.8	2.7	15.9
	VOC	0.009	0.010	0.007	0.010	0.009	0.010	0.055
	PM	27.97	31.04	23.62	30.29	29.4	30.2	172.5
	PM ₁₀	27.97	31.04	23.62	30.29	29.4	30.2	172.5
	SAM ^a							2.4
	CO ₂	503,635.1	559,072.3	425,427.1	545,405.3	530,284.2	543,116.9	3,106,940.9
2010	NO	440 7	452.0	140.4	407.0	140.0	452.4	000 7
2010	NO _x	149.7	152.0	149.4	137.0	148.9	153.1	890.7
	00	5.5	4.4	0.1	7.4	0.3	5.0	34.6
	SO ₂	3.1	3.1	3.1	3.1	3.3	3.3	19.0
	VOC	0.011	0.011	0.011	0.011	0.012	0.011	0.066
	PM	33.9	33.9	34.2	34.1	37.2	36.3	209.7
	PM ₁₀	33.9	33.9	34.2	34.1	37.2	36.3	209.7
	SAM ^a							2.9
	CO ₂	604,805.0	606,658.6	610,736.1	611,177.0	665,799.9	655,706.3	3,754,882.9
2009	NOx	159.8	154.0	148.7	145.4	154.6	155.9	918.4
	CO	5.1	6.7	7.2	5.5	7.4	6.5	38.4
	SO ₂	3.2	3.3	3.1	3.2	3.3	3.1	19.2
	VOC	0.011	0.012	0.011	0.011	0.011	0.011	0.068
	PM ^b	35.50	36.84	34 44	35.95	36.3	35.8	214.8
	PM	35 50	36.84	34 44	35.95	36.3	35.8	214.8
		00.00	00.04	77.77	00.00	00.0	00.0	217.0
	SAIVI							2.9
		641,893.1	663,942.5	618,333.8	642,406.0	649,491.6	647,286.1	3,863,353.0

 a Not reported in AORs - based on assuming 10% of SO $_{2}$ converts to SO $_{3}$, all of which converts to SAM.

Source: Annual Operating Report (AOR) for Fort Myers Unit 2 2009 - 2013; EPA's Acid Rain database (ORIS Code 0612).

Table 3-3. Actual Annual Emissions of N₂O and CH₄ for the Period 2009 - 2013; Fort Myers Unit 2

	Actual Annual Heat Input ^a 'ear (MMBtu/yr)		N₂O Em	issions			CH₄ Emissions				
		nual Emission Input ^a Factor ^b A Btu/yr) (Ib/MMBtu) (Ib	Annual Emissions		CO₂e ^c Rate	Emission Factor ^b	Annual Emissions		CO₂e ^c Rate		
Year			(lb/yr)	(TPY)	(TPY)	(Ib/MMBtu)	(lb/yr)	(TPY)	(TPY)		
2013	53,410,000	2.20E-04	11,771.6	5.9	1,754.0	2.2E-03	117,715.6	58.9	1,471.4		
2012	64,333,000	2.20E-04	14,179.0	7.1	2,112.7	2.2E-03	141,789.9	70.9	1,772.4		
2011	52,280,657	2.20E-04	11,522.7	5.8	1,716.9	2.2E-03	115,226.6	57.6	1,440.3		
2010	63,542,000	2.20E-04	14,004.7	7.0	2,086.7	2.2E-03	140,046.6	70.0	1,750.6		
2009	65.106.000	2.20E-04	14,349.4	7.2	2,138.1	2.2E-03	143,493.6	71.7	1,793.7		

^a Based on AOR data - see Table 3-1.

^b Table C-2, Subpart C, 40 CFR 98. Emission factors in kg/MMBtu were converted to lb/MMBtu by multiplying by 2.204.

 c N₂O and CH₄ are multiplied by a factor of 294 and 25, respectively, to determine CO₂ equivalence.

Table 3-4.	Annual Ave	rage Emissions	for Fort Myer	s Unit 2 for Each	Consecutive T	wo-Year Period.	2009-2013
	/	ago Ennociono	ion i ore myor		00110000001110	no rour ronou;	2000 2010

		Annual	Emissions fo	or Unit 2			Two-Year Aver	age Emissions	
	2013	2012	2011	2010	2009	2013-2012	2012-2011	2011-2010	2010-2009
Pollutant						(tons)	(tons)	(tons)	(tons)
	004.4	070.0	700 4		040.4	007.0	000.0	0.40.4	004.0
NO _x	861.1	873.2	793.4	890.7	918.4	867.2	833.3	842.1	904.6
CO	46.1	53.1	26.0	34.6	38.4	49.6	39.5	30.3	36.5
SO ₂	16.3	19.6	15.9	19.0	19.2	18.0	17.8	17.5	19.1
VOC	0.059	0.069	0.055	0.066	0.068	0.064	0.062	0.061	0.067
PM	176.3	212.3	172.5	209.7	214.8	194.3	192.4	191.1	212.3
PM ₁₀	176.3	212.3	172.5	209.7	214.8	194.3	192.4	191.1	212.3
PM _{2.5} ^a	176.3	212.3	172.5	209.7	214.8	194.3	192.4	191.1	212.3
SAM ^b	2.5	3.0	2.4	2.9	2.9	2.8	2.7	2.7	2.9
CO ₂	3,236,606.9	3,883,585.7	3,106,940.9	3,754,882.9	3,863,353.0	3,560,096.3	3,495,263.3	3,430,911.9	3,809,118.0
N ₂ O ^c (CO ₂ e)	1,754.0	2,112.7	1,716.9	2,086.7	2,138.1	1,933.32	1,914.8	1,901.8	2,112.4
CH ₄ ^c (CO ₂ e)	1,471.4	1,772.4	1,440.3	1,750.6	1,793.7	1,621.91	1,606.4	1,595.5	1,772.1

^a Assuming equal to PM₁₀ emissions.

^b Not reported in AORs - based on assuming 10% of SO₂ converts to SO₃, all of which converts to SAM.

^c Calculated based on actual annual heat input - see Table 3-3.

Source: Annual Operating Report (AOR) for Fort Myers, 2009 - 2013; EPA's Acid Rain database (ORIS Code 0612).

Table 3-5. Actual Hourly Emission Rates, FPL Fort Myers Unit 2

			А	nnual Emiss	sions ^a (tor	is)				Operatin	a Hours ^a				Но	urlv Emissio	on Rates (Ib	/hr)		Maximum
Pollutant	Year	Unit 2A	Unit 2B	Unit 2C	Unit 2D	Unit 2E	Unit 2F	Unit 2A	Unit 2B	Unit 2C	Unit 2D	Unit 2E	Unit 2F	Unit 2A	Unit 2B	Unit 2C	Unit 2D	Únit 2E	Unit 2F	Rate (Ib//hr)
																				· · · ·
NO _x	2013	215.7	138.5	111.0	126.6	135.0	134.4	7,301	6,289	6,015	6,802	6,314	6,884	59.1	44.0	36.9	37.2	42.7	39.0	
	2012	133.9	149.8	161.9	141.0	147.1	139.6	7,427	7,779	7,774	7,542	7,780	7,556	36.1	38.5	41.7	37.4	37.8	37.0	
	2011	130.3	153.1	106.0	125.4	140.9	137.7	5,956	6,570	6,372	6,244	6,410	4,163	43.8	46.6	33.3	40.2	44.0	66.2	
	2010	149.7	152.0	149.4	137.6	148.9	153.1	7,172	7,161	7,216	7,184	7,814	7,617	41.7	42.5	41.4	38.3	38.1	40.2	
	2009	159.8	154.0	148.7	145.4	154.6	155.9	7,525	7,781	7,326	7,625	7,666	7,606	42.5	39.6	40.6	38.1	40.3	41.0	
													Maximum =	59.1	46.6	41.7	40.2	44.0	66.2	66.15
со	2013	10.3	5.9	7.2	6.2	7.6	8.8	7,301	6,289	6,015	6,802	6,314	6,884	2.8	1.9	2.4	1.8	2.4	2.6	
	2012	10.5	7.4	9.3	6.9	9.4	9.6	7,427	7,779	7,774	7,542	7,780	7,556	2.8	1.9	2.4	1.8	2.4	2.6	
	2011	2.8	4.0	4.6	5.9	5.8	2.9	5,956	6,570	6,372	6,244	6,410	4,163	0.9	1.2	1.4	1.9	1.8	1.4	
	2010	5.5	4.4	6.1	7.4	6.3	5.0	7,172	7,161	7,216	7,184	7,814	7,617	1.5	1.2	1.7	2.1	1.6	1.3	
	2009	5.1	6.7	7.2	5.5	7.4	6.5	7,525	7,781	7,326	7,625	7,666	7,606	1.4	1.7	2.0	1.5	1.9	1.7	
													Maximum =	2.8	1.9	2.4	2.1	2.4	2.6	2.82
voc	2013	0.011	0.009	0.009	0.010	0.009	0.010	7,301	6,289	6,015	6,802	6,314	6,884	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	
	2012	0.011	0.012	0.012	0.011	0.012	0.011	7,427	7,779	7,774	7,542	7,780	7,556	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	
	2011	0.009	0.010	0.007	0.010	0.009	0.010	5,956	6,570	6,372	6,244	6,410	4,163	0.0030	0.0030	0.0024	0.0031	0.0029	0.0046	
	2010	0.011	0.011	0.011	0.011	0.012	0.011	7,172	7,161	7,216	7,184	7,814	7,617	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	
	2009	0.011	0.012	0.011	0.011	0.011	0.011	7,525	7,781	7,326	7,625	7,666	7,606	0.0030	0.0030	0.0030	0.0030	0.0030	0.0030	
													Maximum =	0.0030	0.0030	0.0030	0.0031	0.0030	0.0046	0.0046
SO ₂	2013	3.0	2.6	2.5	2.8	2.6	2.8	7,301	6,289	6,015	6,802	6,314	6,884	0.8	0.8	0.8	0.8	0.8	0.8	
	2012	3.2	3.3	3.3	3.2	3.3	3.2	7,427	7,779	7,774	7,542	7,780	7,556	0.9	0.9	0.9	0.9	0.9	0.8	
	2011	2.6	2.8	2.2	2.8	2.8	2.7	5,956	6,570	6,372	6,244	6,410	4,163	0.9	0.9	0.7	0.9	0.9	1.3	
	2010	3.1	3.1	3.1	3.1	3.3	3.3	7,172	7,161	7,216	7,184	7,814	7,617	0.9	0.9	0.9	0.9	0.8	0.9	
	2009	3.2	3.3	3.1	3.2	3.3	3.1	7,525	7,781	7,326	7,625	7,666	7,606	0.9	0.8	0.8	0.8	0.9	0.8	
													Maximum =	0.9	0.9	0.9	0.9	0.9	1.3	1.30
PM/PM ₁₀ /PM _{2.5}	2013	32.9	27.9	27.0	30.4	28.1	30.0	7,301	6,289	6,015	6,802	6,314	6,884	9.0	8.9	9.0	8.9	8.9	8.7	
	2012	34.2	36.2	36.2	35.1	36.2	34.5	7,427	7,779	7,774	7,542	7,780	7,556	9.2	9.3	9.3	9.3	9.3	9.1	
	2011	27.97	31.04	23.62	30.29	29.45	30.16	5,956	6,570	6,372	6,244	6,410	4,163	9.4	9.5	7.4	9.7	9.2	14.5	
	2010	33.9	33.9	34.2	34.1	37.2	36.3	7,172	7,161	7,216	7,184	7,814	7,617	9.5	9.5	9.5	9.5	9.5	9.5	
	2009	35.50	36.84	34.44	35.95	36.27	35.85	7,525	7,781	7,326	7,625	7,666	7,606	9.4	9.5	9.4	9.4	9.5	9.4	
													Maximum =	9.5	9.5	9.5	9.7	9.5	14.5	14.49

^a Reported in AORs for the period 2009 - 2013.

	Actual Annual Heat Input		Units 2A, 2	2B, 2C, 2D, 2	2E & 2F To	tal Actual Em	issions (TPY) ^b				Emissions	s per Unit H (Ib/MMBtu)	eat Input ^c		
Year	(MMBtu/yr) ^a	NO _X	СО	VOC	SO ₂	PM/PM ₁₀	SAM		_	NO _X	СО	VOC	SO ₂	PM/PM ₁₀	SAM	CO ₂
2013	53.410.000	861.1	46.1	0.06	16.3	176.3	2.5	3.236.606.9		0.0322	0.0017	2.22E-06	0.00061	0.00660	9.37E-05	118.9
2012	64,333,000	873.2	53.1	0.07	19.6	212.3	3.0	3,883,585.7		0.0271	0.0016	2.14E-06	0.00061	0.00660	9.33E-05	118.9
2011	52,280,657	793.4	26.0	0.05	15.9	172.5	2.4	3,106,940.9		0.0304	0.0010	2.10E-06	0.00061	0.00660	9.31E-05	118.9
2010	63,542,000	890.7	34.6	0.07	19.0	209.7	2.9	3,754,882.9		0.0280	0.0011	2.09E-06	0.00060	0.00660	9.16E-05	118.9
2009	65,106,000	918.4	38.4	0.07	19.2	214.8	2.9	3,863,353.0		0.0282	0.0012	2.10E-06	0.00059	0.00660	9.03E-05	118.9
								Average	=	0.0292	0.0013	2.13E-06	0.0006	0.0066	9.24E-05	118.8600
								Std. Deviation	=	0.0021	0.0003	5.73E-08	9.27E-06	5.46E-10	1.42E-06	1.59E-14
								t	=	1.533	1.533	1.533	1.533	1.533	1.533	1.533
								n	=	5	5	5	5	5	5	5
								Upper 90% C.I	=	0.0306	0.0016	2.17E-06	6.10E-04	0.0066	9.34E-05	118.86

Notes: Confidence Interval (C.I), n= number of values Student 't' test Upper 90% C.I = Average + "t" x (Std. Deviation/(vn))

^a Based on AOR data, see Table 3-1.

^b Based on AOR data, see Table 3-2.

^c Total actual emissions divided by total heat input for all pollutant except CO₂. For CO₂, the emission rates are based on the Part CEMs lb/MMBtu emisson rates since annual CO₂ emissions are based on Part 75 data.

1	4-	1	4282
---	----	---	------

YEAR	Actual (MW-hr)	Actual Annual Heat Input (MMBtu)
2009	8,981,377	65,106,000
2010	8,637,392	63,542,000
2011	6,924,517	52,280,657
2012	9,027,151	64,333,000
2013	7,180,964	53,410,000
	Upgrade Project (MW-hr)	Projected Actual Heat Input (MMBtu) *
2016	8,686,730	60,739,614
2017	7,485,980	52,343,694
2018	6,894,150	48,205,482
2019	5,570,730	38,951,825
2020	5,330,480	37,271,942

6,992

Table 3-7. Projected Utilization of Unit 2 with theUpgrade Project

* Based on:

Heat Rate =

Btu/kW-hr

Table 3-8. PSD Applicability - Fort Myers Unit 2 Upgrade Project

		Projected Emission	Projected Actual	Projected Maximum Actual	Increase/Decrease in Annual	PSD Significant
Pollutant	Baseline Actual Emissions ^a	Factor ^b	Annual Heat Input ^c	Annual Emissions ^d	Emissions ^e	Emission Rates
Pollulani	(1F1)			(1F1)	(1F1)	(1F1)
NO _x	904.55	0.0306	60.739.614	929.85	25.30	40
CO	49.56	0.0016	60,739,614	47.31	-2.25	100
SO ₂	19.10	0.00061	60,739,614	18.52	-0.58	40
VOC	0.07	2.17E-06	60,739,614	0.0658	0.00	40
PM	212.27	0.0066	60,739,614	200.441	-11.83	25
PM ₁₀	212.27	0.0066	60,739,614	200.44	-11.83	15
PM _{2.5}	212.27	0.0066	60,739,614	200.44	-11.83	10
SAM	2.92	0.0001	60,739,614	2.84	-0.089	7
<u>GHGs</u>						
CO_2	3,809,117.99	118.86	60,739,614	3,609,664	-199,454	
N_2O (CO_2e)	2,112.37	6.57E-02	60,739,614	1,995.21	-117.2	
CH_4 (CO_2e)	1,772.13	5.51E-02	60,739,614	1,673.83	-98.3	
Total GHGs (CO ₂ e)	3,813,002			3,613,333	-199,669	75,000

^a Maximum 2-Year average emissions - see Table 3-5.

^b Based on 90th percentile over 5-years; see Table 3-6. CO₂ based on 40 CFR Part 75; N₂O and CH₄ based on 40 CFR Part 98.

^c Maximum Projected Heat Input - see Table 3-7.

^d Projected actual emissions = Emission factor x Projected actual heat input x (1 ton/2000 lb)

^e Projected actual emissions minus baseline actual emissions.

FIGURES

Gas

Steam

FPL Fort Myers Plant Unit 2, Lee County, Florida

Source: GE, 2014; Golder, 2014.

APPENDIX A

BASELINE ACTUAL EMISSIONS INFORMATION AND GE 7FA.05 CT EMISSION RATES AND STACK PARAMETERS AOR & CO_2 HISTORICAL DATA

2	2013	Diesel TPY	Natural Gas TPY	Total TPY	Hours	2013	Diesel TPY	Natural Gas TPY	Total TPY	Hour
Ox			215.74	215.74	7301	NOx		138.46	138.46	6289
0			10.2944	10.29		CO		5.94311	5.94	
02			3.04	3.04		SO2		2.58	2.58	
OC			0.010952	0.01		VOC		0.009434	0.01	
M			32.9076	32.91		PM		27.9114	27.91	
PM10			32.9076	32.91		PM10		27.9114	27.91	
nit 2A -	Combined	Cycle CT with	Non-fired HRSG	(170 MW)		Unit 2B - Combin	ed Cycle CT w	vith Non-fired HR	<u>SG (170 M</u> W)	
		Diesel	Natural Gas	Total			Diesel	Natural Gas	Total	
2	2012	TPY	TPY	TPY	Hours	2012	TPY	TPY	TPY	Hour
Юx			133.91	133.91	7427	NOx		149.75	149.75	7779
0			10.4721	10.47		CO		7.35116	7.35	
SO2			3.16	3.16		SO2		3.34	3.34	
/OC			0.011141	0.01		VOC		0.011669	0.01	
РМ			34.1847	34.18		PM		36.2208	36.22	
PM10			34.1847	34.18		PM10		36.2208	36.22	
Jnit 2A -	Combined	Cycle CT with	Non-fired HRSG	(170 MW)		Unit 2B - Combin	ed Cycle CT w	vith Non-fired HR	<u>SG (170 M</u> W)	
		Diesel	Natural Gas	Total			Diesel	Natural Gas	Total	
2	2011	TPY	TPY	TPY	Hours	2011	TPY	TPY	TPY	Hou
Юx			130.3	130.30	5956	NOx		153.1	153.10	657
0			2.76954	2.77		CO		4.0077	4.01	
602			2.6	2.60		SO2		2.8	2.80	
/00			0.008934	0.0089		VOC		0.009855	0.010	
PM			27.9675	27.97		PM		31.0446	31.04	
PM10			27.9675	27.97		PM10		31.0446	31.04	
Jnit 2A -	Combined	Cycle CT with	Non-fired HRSG	(170 MW)		Unit 2B - Combin	ed Cycle CT w	vith Non-fired HR	<u>SG (170 M</u> W)	
2	2010	Diesel TPY	Natural Gas TPY	Total TPY	Hours	2010	Diesel TPY	Natural Gas TPY	Total TPY	Hour
			149 7	149 70	7172	NOx		152	152.00	716 ⁴
20			5 48658	5 49		<u>CO</u>		4 40402	4 40	
SO2			3.40000	3 10		SO2		3 1	3 10	
			0.010758	0.01		VOC		0 010742	0.01	
PM			33 9108	33.91		PM		33 9405	33.94	
PM10			33.9108	33.91		PM10		33.9405	33.94	
Jnit 2A -	Combined	Cycle CT with	Non-fired HRSG	(170 MW)		Unit 2B - Combin	ed Cycle CT w	rith Non-fired HR	<u>SG (170 M</u> W)	
		Diesel	Natural Gas	Total			Diesel	Natural Gas	Total	
2	2009	TPY	TPY	TPY	Hours	2009	TPY	TPY	TPY	Hou
lOx			159.8	159.80	7525	NOx		154	154.00	778 [,]
0			5.07938	5.08		CO		6.69166	6.69	
SO2			3.2	3.20		SO2		3.3	3.30	
/OC			0.011288	0.01		VOC		0.011672	0.01	
РМ			35.4981	35.50		PM		36.8445	36.84	
			35 4081	35 50		PM10		36 8445	36 84	

		Natural							
0040	Diesel	Gas	Total		0040	Diesel	Natural Gas	Total	
2013	IPY	110.00		Hours	2013	IPY	1PY 100.01		- Hou
NOX		110.96	110.96	6015	NUX		126.64	126.64	68(
		7.218	7.22		00		0.18982	0.19	
502		2.52	2.52		SU2		2.83	2.83	
VOC		0.009023	0.01		VOC		0.010203	0.01	
PM		26.9841	26.98		PM		30.3567	30.36	
PM10		26.9841	26.98		PM10		30.3567	30.36	
Unit 2C - Comb	bined Cycle C	T with Non-fired Natural	HRSG (170 M)	<u>/</u> /)	Unit 2D - Comb	oined Cycle C	T with Non-fired	HRSG (170	MW)
	Diesel	Gas	Total			Diesel	Natural Gas	Total	
2012	TPY	TPY	TPY	Hours	2012	TPY	TPY	TPY	Ног
		161.0	161.90	- 777/	NOv		1/0.97	1/0 97	- 75/
CO		0 2080	0 22				6 86300	6 96	134
50 802		3.3∠00 2.24	3.JJ 2.24		00 802		0.00322	0.00	
		3.34	J.J4		302		J.24	3.24	
		0.011661	0.01		VUC		0.011313	0.01	
PM		36.1548	36.15		PM		35.0856	35.09	
PM10		36.1548	36.15		PM10		35.0856	35.09	
Unit 2C - Comb	oined Cycle C	T with Non-fired	HRSG (170 M	<u>(</u> V)	Unit 2D - Comb	oined Cycle C	T with Non-fired	HRSG (170	MW)
	Diacal	Coo	Total			Discol	Notural Cas	Total	
2014	Diesei	Gas	TOLAI	11	2011	Diesei			
2011	IPY			Hours	2011	IPY			_ Ηοι
NOX		106	106.00	6372	NOx		125.4	125.40	624
CO		4.6176	4.62		CO		5.8941	5.89	
SO2		2.2	2.20		SO2		2.8	2.80	
VOC		0.007488	0.01		VOC		0.009558	0.01	
PM		23.6235	23.62		PM		30.2859	30.29	
PM10		23.6235	23.62		PM10		30.2859	30.29	
Unit 2C - Comb	oined Cycle C	T with Non-fired	HRSG (170 M	<u>(</u> V)	Unit 2D - Comb	oined Cycle C	T with Non-fired	HRSG (170	MW)
		Natural							
	Diesel	Gas	Total			Diesel	Natural Gas	Total	
2010	TPY	TPY	TPY	Hours	2010	TPY	TPY	TPY	Hou
NOx		149.4	149.40	7216	NOx		137.6	137.60	718
CO		6.06144	6.06		CO		7.39952	7.40	
SO2		3.1	3.10		SO2		3.1	3.10	
VOC		0.010824	0.01		VOC		0.010776	0.01	
PM		34.2408	34.24		PM		34.0956	34.10	
PM10		34.2408	34.24		PM10		34.0956	34.10	
		T 14 NL 6 L							
	omea Cycle C	Natural	TIKOG (170 M)	<u>vv</u>)	Unit 2D - Comb	omea Cycle C		TKSG (170	<u>ivivv)</u>
	Diesel	Gas	Total			Diesel	Natural Gas	Total	
2009	TPY	TPY	TPY	Hours	2009	TPY	TPY	TPY	Hou
NOx		148.7	148.70	7326	NOx		145.4	145.40	762
со		7.17948	7.18		CO		5.52813	5.53	
SO2		3.1	3.10		SO2		3.2	3.20	
VOC		0.010989	0.01		VOC		0.011438	0.01	
PM		34 4388	34 44		PM		35 9502	35.95	
		0-7000	VT.TT		1 111		00.0002	00.00	

Fue	I Usage	Fuel Heat	Content
Diesel	Natural Gas	Diesel	Natural Gas
1000 gal/yr	MMft3/yr	MMBtu/1000 gal	MMBtu/MMft3
Unit 2A - Combined Cycle CT	with Non-fired HRSG (170 MW)	Unit 2A - Combined Cycle CT with	Non-fired HRSG (170 MW)
2013	9972	2013	1000
2012	10359	2012	1000
2011	8475	2011	1000
2010	10276	2010	1000
2009	10757	2009	1000
Unit 2B - Combined Cycle CT	with Non-fired HRSG (170 MW)	Unit 2B - Combined Cycle CT with	Non-fired HRSG (170 MW)
2013	8458	2013	1000
2012	10976	2012	1000
2011	9407	2011	1000
2010	10285	2010	1000
2009	11165	2009	1000
Unit 2C - Combined Cycle C	with Non-fired HRSG (170 MW)	Unit 2C - Combined Cycle CT with	Non-fired HRSG (170 MW)
2013	8177	2013	1000
2012	10956	2012	1000
2011	7159	2011	1000
2010	10376	2010	1000
2009	10436	2009	1000
Unit 2D - Combined Cycle C1	with Non-fired HRSG (170 MW)	Unit 2D - Combined Cycle CT with	Non-fired HRSG (170 MW)
2013	9199	2013	1000
2012	10632	2012	1000
2011	9178	2011	1000
2010	10332	2010	1000
2009	10894	2009	1000
Linit 2E Combined Ovela CT	with Non fired HPSC (170 MM)	Unit 2E Combined Cycle CT with	Non fired HPSC (170 MM/)
2013	10070	2013	1000
2012	10970	2012	1000
2011	8923	2011	1000
2010	11280	2010	1000
2009	10991	2009	1000
Unit 2F - Combined Cycle CT	with Non-fired HRSG (170 MW)	Unit 2F - Combined Cycle CT with	Non-fired HRSG (170 MW)
2013	9089	2013	1000
2012	10440	2012	1000
2011	9139	2011	1000
2010	10993	2010	1000
2009	10863	2009	1000

	<u>Heat Input</u>	per Year	
	Diesel	Natural Gas Total	
	MMBtu/yr	MMBtu/yr MMBtu/yr	
Unit 2A - Com	bined Cycle CT	with Non-fired HRSG (170 MW)	
2013	0	9972000 9972000	
2012	0	10359000 10359000	
2011	0	8475000 8475000	
2010	0	10276000 10276000	
2009	0	10757000 10757000	
Unit 2B - Com	bined Cvcle CT	with Non-fired HRSG (170 MW)	
2013	0	8458000 8458000	
2012	0	10976000 10976000	
2011	0	9407468 9407468	
2010	0	10285000 10285000	
2009	0	11165000 11165000	
Linit 20 Com	hinad Cycla CT	with Non fired HPSC (170 MM)	
2012		9177000 9177000	
2013	0	10056000 10056000	
2012	0	71596000 7159600	
2011	0	10276000 10276000	
2010	0	10426000 10276000	
2009	0	10438000 10438000	
Unit 2D - Com	bined Cycle CT	with Non-fired HRSG (170 MW)	
2013	0	9199000 9199000	
2012	0	10632000 10632000	
2011	0	9177539 9177539	
2010	0	10332000 10332000	
2009	0	10894000 10894000	
Unit 2E - Com	bined Cvcle CT	with Non-fired HRSG (170 MW)	
2013	0	8515000 8515000	
2012	0	10970000 10970000	
2011	0	8923028 8923028	
2010	0	11280000 11280000	
2009	0	10991000 10991000	
Linit 2E Com	hinad Cuala CT	with Non fired HPSC (170 MM)	
2012 2012			
2013	0	3003000 3003000 10440000 10440000	
2012	0		
2011	0	9139000 9139000	
2010	0	10993000 10993000	
2009	U	10863000 10863000	

							Natural		
2013	Diesel TPY	Natural Gas TPY	Total TPY	Hours	2013	Diesel TPY	Gas TPY	Total TPY	н
NOx		134.95	134.95	6314	NOx		134.35	134.35	6
0		7.63994	7.64		CO		8.7771	8.78	
502		2.6	2.60		SO2		2.77	2.77	
/00		0.009471	0.01		VOC		0.010326	0.01	
DM		28 0995	28 10		PM		20 0037	29.99	
PM10		28.0995	28.10		PM10		29.9937	29.99	
Jnit 2E - (Combined C	cycle CT with Non-fir	ed HRSG (170 MW)		Unit 2F - Com	oined Cycle C	T with Non-fired	HRSG (170 MW)	
	D ' I					D. 1	Natural		
	Diesel	Natural Gas	Total			Diesel	Gas	Total	
2012	TPY	TPY	TPY	Hours	2012	TPY	TPY	TPY	Н
VO x		147.11	147.11	7780	NOx		139.6	139.60	7
0		9.4138	9.41		CO		9.6339	9.63	
602		3.34	3.34		SO2		3.18	3.18	
/OC		0.01167	0.01		VOC		0.011334	0.01	
PM		36.201	36.20		PM		34.452	34.45	
PM10		36.201	36.20		PM10		34.452	34.45	
Jnit 2E - (Combined C	cycle CT with Non-fir	ed HRSG (170 MW)		Unit 2F - Com	oined Cycle C	T with Non-fired	HRSG (170 MW)	
	Discal	Notural Occ	Toto			Disast	inatural	Totol	
0044	Diesei	Natural Gas	i otal		0011	Diesei	Gas	l otal	
2011	IPY	IPY		Hours	2011	IPY			н
1Ox		140.9	140.90	6410	NOx		137.7	137.70	2
0		5.83814	5.84		CO		2.85245	2.85	
502		2.8	2.80		SO2		2.7	2.70	
/OC		0.009366	0.01		VOC		0.009615	0.01	
PM		29.446	29.45		PM		30.1587	30.16	
PM10		29.446	29.45		PM10		30.1587	30.16	
Jnit 2E - (Combined C	cycle CT with Non-fir	ed HRSG (170 MW)		Unit 2F - Com	oined Cycle C	T with Non-fired	HRSG (170 MW)	
	Diesel	Natural Gas	Total			Diesel	Gas	Total	
2010	TPY	TPY	TPY	Hours	2010	TPY	TPY	TPY	н
NOx		148.9	148.90	7814	NOx		153.1	153.10	7
0		6.2512	6.25		CO		4.95105	4.95	
SO2		3.3	3.30		SO2		3.3	3.30	
/OC		0.011721	0.01		VOC		0.011426	0.01	
PM		37.224	37.22		PM		36.2769	36.28	
PM10		37.224	37.22		PM10		36.2769	36.28	
Jnit 2E - (Combined C	ycle CT with Non-fir	ed HRSG (170 MW)		Unit 2F - Com	oined Cycle C	T with Non-fired	HRSG (170 MW)	
	Diesel	Natural Gas	Total			Diesel	Natural Gas	Total	
2009	TPY	TPY	TPY	Hours	2009	TPY	TPY	TPY	н
		154.6	154 60	7666			155.0	155 90	7
\sim		7 20760	7 /0	1000			6 5/110	6 54	
202		5018C.1	1.4V 2.20		500 500		0.04110	2 40	
		3.3	3.30		502		3.1	3.10	
/UC		0.011499	0.01		VOC		0.011409	0.01	
		36.2703	36.27		PM		35.8479	35.85	
PM					— • • • •				

Appendix A-2. **CEM Reports from Acid Rain Database Annual Reports**

STATE	FACILITY_ NAME	orispl_ Code unitid	AS OP_YEAR S	SSOC_ TACKS_PRG_CODE	SUM_OP _TIME	NUM_ MONTHS_ REPORTE D	GLOAD	SO2_MASS	NOX_RATE NOX	_MASS	CO2_MASS
FL	Fort Myers Power Plant	612 FMCT2A	2009	ARP	7473.2	12	973985.1	3.24	0.032	159.73	641893.05
FL	Fort Myers Power Plant	612 FMCT2B	2009	ARP	7752.7	12	1014755.9	3.352	0.0289	153.99	663942.469
FL	Fort Myers Power Plant	612 FMCT2C	2009	ARP	7253.2	12	933207.7	3.122	0.0312	148.69	618333.778
FL	Fort Myers Power Plant	612 FMCT2D	2009	ARP	7567.0	12	976755.3	3.243	0.0295	145.40	642406.033
FL	Fort Myers Power Plant	612 FMCT2E	2009	ARP	7632.0	12	985226.6	3.279	0.03	154.60	649491.643
FL	Fort Myers Power Plant	612 FMCT2F	2009	ARP	7547.8	12	980063.0	3.268	0.0309	155.89	647286.065
					45226.0	,	5863993.6			918.30	
FL	Fort Myers Power Plant	612 FMCT2A	2010	ARP	7075.2	12	923551.2	3.053	0.0334	149.82	604805.018
FL	Fort Myers Power Plant	612 FMCT2B	2010	ARP	7079.8	12	932924.9	3.063	0.0333	152.00	606658.648
FL	Fort Myers Power Plant	612 FMCT2C	2010	ARP	7141.4	12	928107.3	3.083	0.0317	149.43	610736.12
FL	Fort Myers Power Plant	612 FMCT2D	2010	ARP	7112.6	12	931689.1	3.085	0.0295	137.54	611176.991
FL	Fort Myers Power Plant	612 FMCT2E	2010	ARP	7761.6	12	1019471.6	3.361	0.0286	148.85	665799.852
FL	Fort Myers Power Plant	612 FMCT2F	2010	ARP	7566.6	12	999942.8	3.31	0.03	153.20	655706.305
					43737.2		5735686.9			890.84	
FL	Fort Myers Power Plant	612 FMCT2A	2011	ARP	5833.2	12	773274.2	2.543	0.0417	130.29	503635.083
IFL	Fort Myers Power Plant	612 FMCT2B	2011	ARP	6470.7	12	860275.4	3.193	0.0411	153.13	559072.254
IFL	Fort Myers Power Plant	612 FMCT2C	2011	ARP	4936.2	12	644213.9	2.148	0.0325	106.00	425427.143
IFL	Fort Myers Power Plant	612 FMCT2D	2011	ARP	6275.4	12	830532.6	2.753	0.0312	125.35	545405.299
IFL	Fort Myers Power Plant	612 FMCT2E	2011	ARP	6132.7	12	808212.9	2.677	0.0408	140.94	530284.183
FL	Fort Myers Power Plant	612 FMC12F	2011	ARP	6311.6	12	839837.5	2.742	0.0392	137.79	. 543116.889
					35959.8		4756346.6	i		793.50	
FL	Fort Myers Power Plant	612 FMCT2A	2012	ARP	7327.5	12	954011.4	3.157	0.029	133.91	625365.116
FL	Fort Myers Power Plant	612 FMCT2B	2012	ARP	7728.4	12	1010151.5	3.584	0.0288	149.75	662596.781
FL	Fort Myers Power Plant	612 FMCT2C	2012	ARP	7730.0	12	993207.5	3.339	0.0305	161.90	661366.108
FL	Fort Myers Power Plant	612 FMCT2D	2012	ARP	7483.1	12	971515.9	3.24	0.0281	140.97	641793.91
FL	Fort Myers Power Plant	612 FMCT2E	2012	ARP	7721.3	12	998563.9	3.343	0.0286	147.11	662227.646
FL	Fort Myers Power Plant	612 FMCT2F	2012	ARP	7497.4	12	977740.4	3.182	0.029	139.60	630236.156
					45487.7		5905190.7			873.23	
FL	Fort Myers Power Plant	612 FMCT2A	2013	ARP	7222.7	12	905338.5	3.043	0.0448	215.74	602702.213
FL	Fort Myers Power Plant	612 FMCT2B	2013	ARP	6148.0	12	767258.9	2.58	0.0435	138.46	511149.496
FL	Fort Myers Power Plant	612 FMCT2C	2013	ARP	5966.4	12	733831.9	2.517	0.028	110.96	498667.349
FL	Fort Myers Power Plant	612 FMCT2D	2013	ARP	6729.6	12	835144.5	2.828	0.0292	126.64	560128.029
FL	Fort Myers Power Plant	612 FMCT2E	2013	ARP	6178.9	12	762782.1	2.598	0.0421	134.95	514597.053
IFL	Fort Myers Power Plant	612 FMCT2F	2013	ARP	6775.2	12	840075.2	2.773	0.0364	134.35	549362.792

39020.7

4844431.0

861.10
GENERAL ELECTRIC (GE) INFORMATION

December 2014

Base Load Turbine Inlet Temperature 75% Load Turbine Inlet Temperature 50% Load Turbine Inlet Temperature Peak Load Parameter 35° F 75° F 95° F 35° F 75° F 95° F 35° F 75° F 95° F <th< th=""><th>.oad at 5° F 559.8 731.4 60% 9,792 6,079 .11</th></th<>	.oad at 5° F 559.8 731.4 60% 9,792 6,079 .11
Parameter 35° F 75° F 95° F 35° F 75° F 95° F 35° F 75° F 95° F	559.8 731.4 60%),792 1,079 .11
Combustion Turbine PerformanceHeat Input (MMBtu/hr, LHV)1,782.01,717.21,532.81,426.61,371.01,255.71,121.21,082.41,053.91,55Heat Input (MMBtu/hr, HHV)1,978.11,906.11,701.41,583.61,521.81,393.91,244.51,201.51,169.91,75Relative Humidity (%)50%60%50%50%60%50%50%50%50%50%50%Fuel heating value (Btu/lb, LHV)20,79220,79220,79220,79220,79220,79220,79220,79220,792	559.8 731.4 50%),792 3,079 .11
Heat Input (MMBtu/hr, LHV)1,782.01,717.21,532.81,426.61,371.01,255.71,121.21,082.41,053.91,55Heat Input (MMBtu/hr, HHV)1,978.11,906.11,701.41,583.61,521.81,393.91,244.51,201.51,169.91,75Relative Humidity (%)50%60%50%50%60%50%60%50%50%50%50%50%50%Fuel heating value (Btu/lb, LHV)20,79220,79220,79220,79220,79220,79220,79220,79220,79220,792	559.8 731.4 50%),792 3,079 .11
Heat Input (MMBtu/hr, HHV)1,978.11,906.11,701.41,583.61,521.81,393.91,244.51,201.51,169.91,73Relative Humidity (%)50%60%50%50%60%50%60%50% <td< td=""><td>731.4 50%),792 },079 .11</td></td<>	731.4 50%),792 },079 .11
Relative Humidity (%) 50% 60% 50% 60% 50% 60% 50%	50%),792 },079 .11
Fuel heating value (Btu/lb, LHV) 20,792 20,79),792 },079 '.11
	3,079 ⊥.11
Fuel heating value (Btu/lb, HHV) 23,079	1.11
Ratio of fuel heating values (HHV/LHV) 1.11 <th1.11< th=""> 1.11 1.11</th1.11<>	
<u>CT Exhaust Flow</u>	
Volume flow (acfm) = [Mass flow (lb/hr) x 1545.4 x Temp ($^{\circ}F$ + 460 K)] / [2116.8 x 60 min/hr x MW] (see note below for constants)	
Mass Flow (lb/hr) 3.882.884 3.827.277 3.396.772 3.110.125 3.006.588 2.760.282 2.458.814 2.454.454 2.498.991 3.376	76.027
Temperature (°F) 1.092 1.109 1.144 1.132 1.161 1.201 1.215 1.215 1.215 1.215 1.215 1.215	.165
Moisture (% Vol.) 7.84 9.00 10.00 7.84 9.12 10.06 7.80 8.88 9.53 10	0.17
Oxygen (% Vol.) 12.51 12.45 12.23 12.51 12.32 12.16 12.56 12.59 12.75 12	2.04
Molecular Weight 28.45 28.32 28.21 28.45 28.31 28.21 28.46 28.33 28.24 28	8.20
Volume flow (acfm) 2,577,209 2,579,908 2,349,816 2,116,945 2,094,632 1,977,740 1,760,921 1,765,965 1,803,546 2,367	37,499
Fuel Usage	
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000,000 Btu/MMBtu [Fuel Heat Content, Btu/lb (LHV)]	
Heat Input (MMBtu/hr, LHV) 1,782.0 1,717.2 1,532.8 1,426.6 1,371.0 1,255.7 1,121.2 1,082.4 1,053.9 1,55	559.8
Heat Content (Btu/lb, LHV) 20,792 20,),792
Fuel Usage (lb/hr) 85,707 82,589 73,721 68,613 65,939 60,394 53,924 52,059 50,689 75,0	j.019
Heat Content (Btu/cf, LHV) 924 924 924 924 924 924 924 924 924 924	924
Fuel Density (lb/ft ³) 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444 0.0444	0444
Fuel Usage (cf/hr) 1,929,663 1,859,466 1,659,808 1,544,800 1,484,593 1,359,749 1,214,086 1,172,090 1,141,247 1,685	39,030
CT -HRSG Stack Parameters	
Stack Height (feet) 125 125 125 125 125 125 125 125 125 125	125
Stack Diameter (feet) 19 <t< td=""><td>19</td></t<>	19
CT - Bypass Stack Parameters	
Stack Height (feet) 98 98 98 98 98 98 98 98 98 98 98 98 98	98
Stack Diameter (feet) 22 <t< td=""><td>22</td></t<>	22
CT Stack Flow Conditions - Simple-Cycle	
Velocity (ft/sec) = Volume flow (acfm) / [((diameter) ² /4) x 3.14159] / 60 sec/min	
Stack Temperature (°F) 1,092 1,109 1,144 1,132 1,161 1,201 1,215 1,215 1,215 1,215 1,215 1,2	,165
Volume flow (acfm) 2,577,209 2,579,908 2,349,816 2,116,945 2,094,632 1,977,740 1,760,921 1,765,965 1,803,546 2,367	37,499
Diameter (feet) 22 22 22 22 22 22 22 22 22 22 22 22 22	22
Velocity (ft/sec)- calculated 113.0 113.1 103.0 92.8 91.8 86.7 77.2 77.4 79.1 103.0	03.8
CT Stack Flow Conditions - Combined-Cycle	
Velocity (ft/sec) = Volume flow (acfm) / [((diameter) ² /4) x 3.14159] / 60 sec/min	
Stack Temperature (°F) 220 220 220 220 220 220 220 220 220 22	220
Volume flow (acfm) 1,129,037 1,118,223 996,254 904,332 878,667 809,678 714,881 716,929 732,186 990,	0,541
Diameter (feet) 19 </td <td>19</td>	19
Velocity (ft/sec)- calculated 66.4 65.7 58.6 53.2 51.7 47.6 42.0 42.1 43.0 58	8.2

Table GE-A-1: Design Information and Stack Parameters- Simple & Combined Cycle Operation (GE 7FA.05) Dry Low NO_x Combustor, Natural Gas

Note: Based on information provided by General Electric Company, 2014

December 2014

Table GE-A-2: Maximum	Emissions for	Criteria Pollutants	- Simple Cycl	e Operation (GE 7FA.05) Dr	v Low NO _v Combusto
						$\mathbf{y} = 0 \mathbf{w} + 1 0 \mathbf{x}$

	CT Only									
	Base Load Turbine Inlet Temperature			75% Load Turbine Inlet Temperature			50% Load Turbine Inlet Temperature			Peak Load at
Parameter	35° F	75° F	95° F	35° F	75° F	95° F	35° F	75° F	95° F	95° F
Particulate Matter (PM10/PM2.5)										
Basis: GE Data										
$PM_{10}/PM_{2.5}$ Emission Rate (lb/hr) - Filterable	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
$PM_{10}/PM_{2.5}$ Emission Rate (lb/hr) - Condensable	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1	4.1
PM ₁₀ /PM _{2.5} Emission Rate (lb/hr) - Total	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2	8.2
<u>Sulfur Dioxide (SO₂)</u>										
SO_2 (lb/hr)= Natural gas (scf/hr) x sulfur content(gr/100 scf) x 1 lb	/7000 gr x (lb S	O ₂ /lb S) /100								
Fuel Use (scf/hr)	1,929,663	1,859,466	1,659,808	1,544,800	1,484,593	1,359,749	1,214,086	1,172,090	1,141,247	1,689,030
Sulfur Content (grains/ 100 cf)	2	2	2	2	2	2	2	2	2	2
lb SO ₂ /lb S (64/32)	2	2	2	2	2	2	2	2	2	2
SO ₂ Emission Rate (lb/hr)	11.0	10.6	9.5	8.8	8.5	7.8	6.9	6.7	6.5	9.7
Nitrogen Oxides (NO _x)										
NO_{x} (ppmv actual) = NO_{x} (ppmd @ 15%O ₂) x [(20.9 - O ₂ dry)/(2	20.9 - 15)] x [1·	- Moisture(%)/1	00]							
Oxygen (%, dry)(O_2 dry) = Oxygen (%)/[1-Moisure (%)]	/2 2		-							
NO_{*} (<i>lb/hr</i>) = NO_{*} (ppm actual) x Volume flow (acfm) x 46 (mole.	wat NO $_{\rm v}$) x 21	16.8 lb/ft^2 (pre	ssure) / [1545.4	ft-lb (gas consta	nt. R) x Actual	Temp. (°R)1 x 60	min/hr			
Basis, ppmy actual	10.3	10.0	10.0	10.3	10.2	10.1	10.2	9.9	9.4	17.1
NO_{x} , ppmvd @15% O_{2} (15 ppmvd)	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	15.0
Moisture (%)	7.84	9.00	10.00	7.84	9.12	10.06	7.80	8.88	9.53	10.17
Oxygen (%)	12.51	12.45	12.23	12.51	12.32	12.16	12.56	12.59	12.75	12.04
Oxygen (%) dry	13.57	13.68	13.59	13.58	13.55	13.52	13.62	13.81	14.10	13.40
Flow (acfm)	2,577,209	2,579,908	2,349,816	2,116,945	2,094,632	1,977,740	1,760,921	1,765,965	1,803,546	2,367,499
Flow (acfm), dry	2,375,044	2,347,647	2,114,874	1,950,969	1,903,619	1,778,858	1,623,625	1,609,137	1,631,620	2,126,774
Exhaust Temperature (°F) - Simple-Cycle	1,092	1,109	1,144	1,132	1,161	1,201	1,215	1,215	1,215	1,165
NO _x Emission Rate (lb/hr) - Simple-Cycle	64.7	62.3	55.6	51.8	49.7	45.6	40.7	39.3	38.2	94.3
Exhaust Temperature (°F) - Combined-Cycle	220	220	220	220	220	220	220	220	220	220
NO _x Emission Rate (lb/hr) - Combined-Cycle	64.7	62.3	55.6	51.8	49.7	45.6	40.7	39.3	38.2	94.3
NO _x Emission Rate (lb/hr) - GE Data	64.6	62.3	55.6	51.7	49.7	45.5	40.7	39.3	38.2	94.3

14-14282

tor, Natural Gas

December 2014

Table GE-A-2: Maximum Emissions for Criteria Pollutants - Simple Cycle Operation (GE 7FA.05) Dry Low NO_X Combustor, Natural Gas

	CT Only									
	Base Load Turbine Inlet Temperature 75% Load Turbine Inlet Temperature			emperature	50% Load	emperature	Peak Load at			
Parameter	35° F	75° F	95° F	35° F	75° F	95° F	35° F	75° F	95° F	95° F
Carbon Monovide (CO)										
$\frac{Oalborn Nonoxide (OO)}{CO (ppmyd @ 15%O_{a}) \times [/20.9 - O_{a}]}$	dn//(20.9 - 15)	x [1- Moisture(%)/1001							
Ov(gap (% dn))(O dn) = Ov(gap (%)/[1-Moisure (%)])			/0// 100]							
$Oxygen (76, dry)(O_2 dry) = Oxygen (76)/[1-Moisure (76)]$		11. 16.2			· · · · · · · · · · · · · · · · · · ·		1			
$CO(ID/hr) = CO(ppm actual) \times Volume flow (actm) \times 28 (mole. V$	wgt CO) x 2116.8	Ib/ft ⁻ (pressure	e) / [1545.4 ft-lb	(gas constant, R) x Actual Temp	5. (°R)] x 60 min/	hr			
Basis, ppmv actual	8.29	8.19	8.10	8.29	8.18	8.09	8.30	8.20	8.14	8.08
Basis, ppmvd	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0	9.0
Basis, ppmvd @ 15% O ₂	7.25	7.36	7.26	7.25	7.23	7.20	7.30	7.49	7.80	7.08
Moisture (%)	7.84	9.00	10.00	7.84	9.12	10.06	7.80	8.88	9.53	10.17
Oxygen (%)	12.51	12.45	12.23	12.51	12.32	12.16	12.56	12.59	12.75	12.04
Oxygen (%) dry	13.57	13.68	13.59	13.58	13.55	13.52	13.62	13.81	14.10	13.40
Flow (acfm)	2,577,209	2,579,908	2,349,816	2,116,945	2,094,632	1,977,740	1,760,921	1,765,965	1,803,546	2,367,499
Flow (actm), dry	2,375,044	2,347,647	2,114,874	1,950,969	1,903,619	1,778,858	1,623,625	1,609,137	1,631,620	2,126,774
Exhaust Temperature (°F) - Simple-Cycle	1,092	1,109	1,144	1,132	1,161	1,201	1,215	1,215	1,215	1,165
CO Emission Rate (ID/Nr) - Simple-Cycle	31.7	31.0	27.3	25.4	24.3	22.2	20.1	19.9	20.2	27.1
Exhaust Temperature ("F) - Combined-Cycle	220	220	220	220	220	220	220	220	220	220
CO Emission Rate (Ib/hr) - Combined-Cycle	31.7	31.0	27.3	25.4	24.3	22.2	20.1	19.9	20.2	27.1
CO Emission Rale (ID/III) - GE Dala	31.9	31.2	27.5	20.0	24.3	22.3	20.2	20.0	20.3	27.3
Volatile Organic Compounds (V/OC)										
VOC ($ppmy$ wet or actual) – GE Data										
$VOC (lb/hr) = VOC (npm actual) \times Volume flow (actm) \times 16 (mol$	lowat CU \x21	16.9 lb/ft^2 (pro	souro) / [15/5 /	ft lb (and constr	nt D) v Actual	Tomp (°P)1 x 60	min/hr			
Posis ppmy actual	$\frac{1}{4} \frac{1}{4} \frac{1}$	10.0 ID/IL (PIE	ssure) / [1545.4	1 10 (yas consid	$(110, T) \times Actual$		1 40	1 40	1 40	1 40
Elow (optm)	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40	1.40
Flow (aciiii) Exhaust Tomporaturo (°E) - Simplo-Cyclo	2,377,209	2,379,900	2,349,010	2,110,940	2,094,032	1,977,740	1,700,921	1,705,905	1,003,040	2,307,499
V/OC Emission Rate (lb/br) as methane - Simple-Cycle	3.06	3.03	2 70	2 45	2.28	2 10	1.213	1.213	1.08	2.68
Expanse Temperature (°E) - Combined-Cycle	220	220	220	2.45	2.30	220	220	220	220	2:00
VOC Emission Rate (lb/br) - Combined-Cycle	3.06	3 03	2 70	220	2 38	220	1 94	1 94	1 98	2.68
VOC Emission Rate (lb/hr) - GE Data	2.84	2 78	2.70	2.40	2.00	1 99	1.80	1.34	1.80	2.00
	2.01	2.10	2.10	2.20	2.10	1.00	1.00	1.70	1.01	2.10
Sulfuric Acid Mist (SAM)										
Sulfuric Acid Mist (lb/hr)= SO ₂ Emission Rate (lb/hr) x Convers	ion to H₂SO₄ (% I	ov weight)/100								
SO_2 Emission Rate (lb/hr)	11.0	10.6	9.5	8.8	8.5	7.8	6.9	6.7	6.5	9.7
Conversion to $H_s S O_s$ (% by weight)	10	10	10	10	10	10	10	10	10	10
SAM Emission Rate (lb/br)	1 1	1 1	0.0	0.0			07	07	07	1.0
	1.1	1.1	0.9	0.9	0.0	0.0	0.7	0.7	0.7	1.0

Note: ppmvd= parts per million, volume dry; O_2 = oxygen.

Source: General Electric Company, 2014

14-14282

At Golder Associates we strive to be the most respected global group of companies specializing in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organizational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

Africa	+ 27 11 254 4800
Asia	+ 852 2562 3658
Australasia	+ 61 3 8862 3500
Europe	+ 356 21 42 30 20
North America	+ 1 800 275 3281
South America	+ 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Inc. 6026 NW 1st Place Gainesville, FL 32607 USA Tel: (352) 336-5600 Fax: (352) 336-6603

