

Farzie Shelton, chE; REM

Manager of Environmental Affairs

February 16, 2001

Mr. Scott Sheplak, P.E., Administrator Title V Section Division of Air Resources Management Florida Department of Environmental Protection 111 S. Magnolia Suite 4 Tallahassee, Fl 32301

RECLED

114

FEB 20 2001

BUREAU OF AIR REGULATION

Re: C. D. McIntosh, Jr. Power Plant, Unit No. 5 FDEP File No. 1050004-004-AC (PSD-FL-245)

Attention: Mr. Edward J. Svec

Dear Ed:

We are in receipt of your letter dated August 21, 2000 in response to our request of amendment to the above referenced permit. In your letter you had requested further information, however, due to problems Siemens/Westinghouse has been encountering with this unit it was not possible for us to obtain the necessary information sufficient to address all your questions before this date.

Therefore, enclosed you will find five copies of the application prepared by Ken Kosky of Golder Associates. Attached to this application you will find Ken's explanation and data review fully covering all your questions. Additionally, this application has been certified by Mr. Kosky P. E., and Mr. Roger D. Haar, City Manager (our Responsible Official).

As always, your cooperation in processing our request is much appreciated. If you should have any questions, please do not hesitate to contact me.

Sincerely,

Farzie Shelton

Enc.

City of Lakeland @ Department of Electric Utilities

501 East Lemon Street & Lakeland, Fl 33801-5050 & (863) 834-6603 & Fax (863) 603-5670 & Message System 834-6592

PERMIT APPLICATION FOR UNIT 5 C.D. MCINTOSH, JR. POWER PLANT CITY OF LAKELAND DEPARTMENT OF ELECTRIC UTILITIES

. .

.....

Prepared For: Lakeland Electric 501 East Lemon Street Lakeland, FL 33801-5079

Prepared By: Golder Associates Inc. 6241 NW 23rd Street, Suite 500 Gainesville, Florida 32653-1500

> February 2001 9937510Y/F4

RECEIVED

FEB 20 2001

BUREAU OF AIR REGULATION

DISTRIBUTION: 6 Copies -- Lakeland Electric 1Copy-- Golder Associates Inc.

Department of Environmental Protection

Division of Air Resources Management

APPLICATION FOR AIR PERMIT - TITLE V SOURCE

See Instructions for Form No. 62-210.900(1)

I. APPLICATION INFORMATION

Identification of Facility

1.	Facility Owner/Company Name: City of Lakeland, Department of E		ilities	
2.	Site Name:			
	C.D. McIntosh, Jr. Power Plant.			
3.	Facility Identification Number:	1050004	4	[] Unknown
4.	Facility Location:			
	Street Address or Other Locator:	3030 Eas	it Lake Parker Driv	e
	City: Lakeland	County:	Polk	Zip Code: 33805
5.	Relocatable Facility?		6. Existing Pe	ermitted Facility?
	[] Yes [X] No		[X] Yes	[] No

Application Contact

1.	1. Name and Title of Application Contact:						
	Ms. Farzie Shelton, Manager of Environmental Affairs						
2.	2. Application Contact Mailing Address:						
	Organization/Firm: Lakeland Electric						
	Street Add	ress:	501 East Lem	ion Street			
	(City:	Lakeland	State:	FL	Zip Code:	33801-5079
3.	Application C	ontact	Telephone Nur	mbers:			
	Telephone: (863)	834 - 6603		Fax: (863)	834 - 6344	
Ap	Application Processing Information (DEP Use)						
1.	1. Date of Receipt of Application:						

2. Permit Number:	
3. PSD Number (if applicable):	
4. Siting Number (if applicable):	

Purpose of Application

Air Operation Permit Application

This Application for Air Permit is submitted to obtain: (Check one)

- [] Initial Title V air operation permit for an existing facility which is classified as a Title V source.
- [] Initial Title V air operation permit for a facility which, upon start up of one or more newly constructed or modified emissions units addressed in this application, would become classified as a Title V source.

Current construction permit number:

[X] Title V air operation permit revision to address one or more newly constructed or modified emissions units addressed in this application.

Current construction permit number: 1050004-004-AC/PSD-FL-245

Operation permit number to be revised: 1050004-003-AV

[] Title V air operation permit revision or administrative correction to address one or more proposed new or modified emissions units and to be processed concurrently with the air construction permit application. (Also check Air Construction Permit Application below.)

Operation permit number to be revised/corrected:_____

[] Title V air operation permit revision for reasons other than construction or modification of an emissions unit. Give reason for the revision; e.g., to comply with a new applicable requirement or to request approval of an "Early Reductions" proposal.

Operation permit number to be revised:

Reason for revision:_____

Air Construction Permit Application

This Application for Air Permit is submitted to obtain: (Check one)

- [] Air construction permit to construct or modify one or more emissions units.
- [] Air construction permit to make federally enforceable an assumed restriction on the potential emissions of one or more existing, permitted emissions units.
- [] Air construction permit for one or more existing, but unpermitted, emissions units.

1.	. Name and Title of Owner/Authorized Representative or Responsible Official: Roger D. Haar, City Manager							
2.	2. Owner/Authorized Representative or Responsible Official Mailing Address:							
	Organization/Firm: Lakeland Electric							
	Street Address: 501 East Lemon Street							
	City: Lakeland State: FL Zip Code: 338	01-5079						
3.	3. Owner/Authorized Representative or Responsible Official Telephone Numbers	3:						
	Telephone: (863) 834 - 6006 Fax: (863) 834 - 8402							
4.	4. Owner/Authorized Representative or Responsible Official Statement:							
	I, the undersigned, am the owner or authorized representative*(check here [the responsible official (check here [], if so) of the Title V source addressed application, whichever is applicable. I hereby certify, based on information ar formed after reasonable inquiry, that the statements made in this application a accurate and complete and that, to the best of my knowledge, any estimates of	in this nd belief re true,						

* Attach letter of authorization if not currently on file.

Professional Engineer Certification

1.	Professional Engine	er Name: Kenna	ard F. Kosk	у		
	Registration Numbe	r: 14996				
2.	Professional Engine	er Mailing Addro	ess:			
	Organization/Firm:	Golder Associa	tes Inc.			
	Street Address:	6241 NW 23rd S	Street, Suite	500		
	City:	Gainesville	State:	FL	Zip Code:	32653-1500
3.	Professional Engine	er Telephone Nu	mbers:		-	
	Telephone: (352)	336 - 5600		Fax: (35	52) 336 - 6603	

4. Professional Engineer Statement:

I, the undersigned, hereby certify, except as particularly noted herein, that:*

(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and

(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [X], if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [], if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [], if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Signature

<u>Fcb</u> 12, 2001 Date

* Attach any exception to certification statement.

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

9937510Y/F4/TV 2/9/01

Scope of Application

Emissions Unit ID	Description of Emissions Unit	Permit Type	Processing Fee
028	McIntosh Unit 5; W501G Combustion Turbine	ACM1/AFMM	

Application Processing Fee

.

Check one: [] Attached - Amount: \$: _____ [X] Not Applicable

I

	Description of Proposed Project or Alterations:
	See attached letters.
2.	Projected or Actual Date of Commencement of Construction:
3.	Projected Date of Completion of Construction:
	· ·
-	
-	plication Comment
-	plication Comment
-	plication Comment This application is a revision to the PSD and Title V permit issued to the C.D. McIntosh
-	plication Comment This application is a revision to the PSD and Title V permit issued to the C.D. McIntosh Power Plant to increase the heat input for Unit 5 (simple cycle).
-	plication Comment This application is a revision to the PSD and Title V permit issued to the C.D. McIntosh Power Plant to increase the heat input for Unit 5 (simple cycle).
-	plication Comment This application is a revision to the PSD and Title V permit issued to the C.D. McIntosh Power Plant to increase the heat input for Unit 5 (simple cycle).
-	plication Comment This application is a revision to the PSD and Title V permit issued to the C.D. McIntosh Power Plant to increase the heat input for Unit 5 (simple cycle).
-	plication Comment This application is a revision to the PSD and Title V permit issued to the C.D. McIntosh Power Plant to increase the heat input for Unit 5 (simple cycle).
-	plication Comment This application is a revision to the PSD and Title V permit issued to the C.D. McIntosh Power Plant to increase the heat input for Unit 5 (simple cycle).

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1.	Facility UTM Coor	dinates:					
	Zone: 17		East (km):	409.0	No	o rth (km) :	3106.2
2.	Facility Latitude/Lo Latitude (DD/MM/S	v	/ 50	Longi	tude (DD/N	/M/SS):	B1 / 55 / 32
3.	Governmental Facility Code:	4. Facility Code:	Status	5. Facilit Group	y Major SIC Code:		cility SIC(s):
	4	A		49		491	1
	The McIntosh Powe diesel powered gen fuel oil and natural fired with coal, refus	erators, and 1 gas (distillate	gas turbine oil is used	. FFFSG as an igr	Units 1 and	2 are fire	d with No. 6
<u>Fa</u>	<u>cility Contact</u>						
1.	Name and Title of F	acility Conta	ct:				
	Ms. Farzie Shelton, I	Manager of Er	vironmental	Affairs			
2.	Facility Contact Ma Organization/Firm: Street Address:	Lakeland Ele	ctric				
	City:	Lakeland	State	: FL	Zij	p Code: 3	3801-5079
3.	Facility Contact Tel Telephone: (863)	-	pers:				

Facility Regulatory Classifications

Check all that apply:

1.	[] Small Business Stationary Source? [] Unknown
2.	[X] Major Source of Pollutants Other than Hazardous Air Pollutants (HAPs)?
3.	[] Synthetic Minor Source of Pollutants Other than HAPs?
4.	[X] Major Source of Hazardous Air Pollutants (HAPs)?
5.	[] Synthetic Minor Source of HAPs?
6.	[X] One or More Emissions Units Subject to NSPS?
7.	[] One or More Emission Units Subject to NESHAP?
8.	[] Title V Source by EPA Designation?
9.	Facility Regulatory Classifications Comment (limit to 200 characters):
	Unit 5 is subject to NSPS Subpart GG.

List of Applicable Regulations

The facility regulation	ns identified in the Title \	/ permit (Final Pern	nit No. 10150004-003-AV)
will not change as a	result of this application.		

B. FACILITY POLLUTANTS

List of Pollutants Emitted

_

1. Pollutant Emitted	2. Pollutant Classif.	3. Requested Emissions Cap		4. Basis for Emissions	5. Pollutant Comment
	Ciussii.	lb/hour tons/year		Cap	Common
				- •	
				_	

C. FACILITY SUPPLEMENTAL INFORMATION

Supplemental Requirements

1.	Area Map Showing Facility Location:
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
2.	Facility Plot Plan:
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
3.	Process Flow Diagram(s):
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
4.	Precautions to Prevent Emissions of Unconfined Particulate Matter:
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
5.	Fugitive Emissions Identification:
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
6.	Supplemental Information for Construction Permit Application:
	[] Attached, Document ID: [X] Not Applicable
7.	Supplemental Requirements Comment:
	Area map and facility plot plan submitted with Title V application.

.

8.	List of Proposed Insignificant Activities: [] Attached, Document ID: [X] Not Applicable
9.	List of Equipment/Activities Regulated under Title VI:
	[] Attached, Document ID:
	[] Equipment/Activities On site but Not Required to be Individually Listed
	[X] Not Applicable
10.	Alternative Methods of Operation:
	[] Attached, Document ID: [X] Not Applicable
11.	Alternative Modes of Operation (Emissions Trading):
	[] Attached, Document ID: [X] Not Applicable
12.	Identification of Additional Applicable Requirements:
	[] Attached, Document ID: [X] Not Applicable
13.	Risk Management Plan Verification:
	[] Plan previously submitted to Chemical Emergency Preparedness and Prevention
	Office (CEPPO). Verification of submittal attached (Document ID:) or previously submitted to DEP (Date and DEP Office:)
	 [] Plan to be submitted to CEPPO (Date required:)
	[X] Not Applicable
14.	Compliance Report and Plan:
	[] Attached, Document ID: [X] Not Applicable
15.	Compliance Certification (Hard-copy Required):
	[] Attached, Document ID: [X] Not Applicable

.

.

.

III. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through J as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

A. GENERAL EMISSIONS UNIT INFORMATION (All Emissions Units)

Emissions Unit Description and Status

1.	Type of Emissior	ns Unit Addressed in Thi	s See	ction: (Check one)		
[×]	(] This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).					
]] This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.					
]	-	Unit Information Sectio		ý U		•
2.	Regulated or Unr	egulated Emissions Unit	? (C	Check one)		
[x	[] The emissions emissions unit.	unit addressed in this Em	nissio	ons Unit Information Se	ctio	n is a regulated
][] The emissions a emissions unit.	unit addressed in this Em	nissio	ons Unit Information Sec	ction	n is an unregulated
3.	Description of En	nissions Unit Addressed	in T	his Section (limit to 60	char	acters):
	McIntosh Unit 5					
4.	Emissions Unit Ic	lentification Number:			[] No ID
					Г] ID Unknown
	ID: 028				L	
5.	Emissions Unit	6. Initial Startup	7.	Emissions Unit Major	L 8.	Acid Rain Unit?
5.		6. Initial Startup Date:	7.	Emissions Unit Major Group SIC Code: 49	L 8.	-
5. 9.	Emissions Unit Status Code: A	-		Group SIC Code:	l 8.	Acid Rain Unit?
	Emissions Unit Status Code: A Emissions Unit C	Date: Comment: (Limit to 500 Conit is a Westinghouse 50	Chara	Group SIC Code: 49 acters)		Acid Rain Unit? [X]
	Emissions Unit Status Code: A Emissions Unit C This emission un	Date: Comment: (Limit to 500 Conit is a Westinghouse 50	Chara	Group SIC Code: 49 acters)		Acid Rain Unit? [X]
	Emissions Unit Status Code: A Emissions Unit C This emission un	Date: Comment: (Limit to 500 Conit is a Westinghouse 50	Chara	Group SIC Code: 49 acters)		Acid Rain Unit? [X]

Emissions Unit Control Equipment

. 111

1.	Control Equipment/Met	hod Description	(Limit to	200 characters	per device or method):
	Dry Low NO _x combustio	n – Natural gas fi	iring		
	Water injection – distilla	te oil firing			
2.	Control Device or Metho	od Code(s): 25	, 28		
	Control Device or Metho	od Code(s): 25	, 28		
Em	nissions Unit Details	od Code(s): 25	, 28		
Em 1.				Model Number:	501G

3.	Incinerator Information:	
	Dwell Temperature:	°F
	Dwell Time:	seconds
	Incinerator Afterburner Temperature:	°F

B. EMISSIONS UNIT CAPACITY INFORMATION (Regulated Emissions Units Only)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Heat Input Rate:		2,407	mmBtu/hr
2.	Maximum Incineration Rate:	lb/hr		tons/day
3.	Maximum Process or Throughp	out Rate:		
4.	Maximum Production Rate:			
5.	Requested Maximum Operating	g Schedule:		
	24	hours/day	7	days/week
	52	weeks/year	8,760	hours/year
6.	Operating Capacity/Schedule C	comment (limit to 200 ch	naracters):	
	Maximum heat input at ISO maximum for oil firing is 2,236 n temperature.	nmBtu/hr (ISO-LHV). Hea		
	See attached letter from Golder	Associates.		

.

Unit 5

C. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

List of Applicable Regulations

See Attachment LMC-EU1-C for operational requirements .

-14

ATTACHMENT LMC-EU1-C

Applicable Requirements Listing

EMISSION UNIT ID: EU1 - McIntosh Plant

FDEP Rules:

Air Pollution Control-General Provision 62-204.800(7)(b)37. (State Only) 62-204.800(7)(c) (State Only) 62-204.800(7)(d) (State Only) 62-204.800(12) (State Only) 62-204.800(13) (State Only) 62-204.800(14) (State Only) 62-204.800(16) (State Only)	ns: NSPS Subpart GG NSPS authority NSPS General Provisions Acid Rain Program Allowances Acid Rain Program Monitoring Excess Emissions (Potentially applicable over term of permit)
Stationary Sources-General: 62-210.650 62-210.700(1) 62-210.700(4) 62-210.700(6)	Circumvention; EUs with control device Excess Emissions Excess Emissions; poor maintenance Excess Emissions; notification
Acid Rain: 62-214.300 62-214.320(1)(a),(2) 62-214.330(1)(a)1. 62-214.340 62-214.350(2);(3);(6) 62-214.370 (Revisions; correction; potentially appli 62-214.430	All Acid Rain Units (Applicability) All Acid Rain Units (Application Shield) Compliance Options (if 214.430) Exemptions (new units, retired units) All Acid Rain Units (Certification) All Acid Rain Units cable if a need arises) All Acid Rain Units (Compliance Options-if required)
Stationary Sources-Emission Standards 62-296.320(4)(b)(State Only)	CTs/Diesel Units
Stationary Sources-Emission Monitorin 62-297.310(1) 62-297.310(2)(b) 62-297.310(2)(b) 62-297.310(4)(a) 62-297.310(4)(b) 62-297.310(4)(c) 62-297.310(4)(c) 62-297.310(4)(e) 62-297.310(5) 62-297.310(6)(a) 62-297.310(6)(c) 62-297.310(6)(d)	g (where stack test is required): All Units (Test Runs-Mass Emission) All Units (Operating Rate; other than CTs; no CT) All Units (Calculation of Emission) All Units (Calculation of Emission) All Units (Applicable Test Procedures; Sampling time) All Units (Sample Volume) All Units (Required Flow Rate Range-PM/H ₂ SO ₄ /F) All Units (Calibration) All Units (Calibration) All Units (EPA Method 5-only) All Units (Determination of Process Variable) All Units (Permanent Test Facilities-general) All Units (Sampling Ports) All Units (Work Platforms)

62-297.310(6)(e) 62-297.310(6)(f) 62-297.310(6)(g) 62-297.310(7)(a)1. 62-297.310(7)(a)2. 62-297.310(7)(a)3. 62-297.310(7)(a)4.a. 62-297.310(7)(a)5. 62-297.310(7)(a)6. 62-297.310(7)(a)9. 62-297.310(7)(c)62-297.310(8)

Federal Rules:

NSPS Subpart GG: 40 CFR 60.332(a)(1) 40 CFR 60.332(a)(3) 40 CFR 60.333 40 CFR 60.334 40 CFR 60.335

NSPS General Requirements: 40 CFR 60.7(a)(1) 40 CFR 60.7(a)(2) 40 CFR 60.7(a)(3) 40 CFR 60.7(a)(4) 40 CFR 60.7(a)(5) 40 CFR 60.7(b) 40 CFR 60.7(c) 40 CFR 60.7(d) 40 CFR 60.7(f) 40 CFR 60.8(a) 40 CFR 60.8(b) 40 CFR 60.8(c) 40 CFR 60.8(e) 40 CFR 60.8(f) 40 CFR 60.11(a) 40 CFR 60.11(b) 40 CFR 60.11(c) 40 CFR 60.11(d) 40 CFR 60.11(e)(2)40 CFR 60.12 40 CFR 60.13(a) 40 CFR 60.13(c) 40 CFR 60.13(d)(1) 40 CFR 60.13(d)(2) 40 CFR 60.13(e) 40 CFR 60.13(f) 40 CFR 60.13(h)

All Units (Access) All Units (Electrical Power) All Units (Equipment Support) Applies mainly to CTs/Diesels FFSG excess emissions Permit Renewal Test Required Annual Test PM exemption if < 400 hrs/yr PM FFSG semi annual test required if > 200 hrs/yr PM quarterly monitoring if > 100hrs/yr FDEP Notification – 15 days Waiver of Compliance Tests (Fuel Sampling) Test Reports

NO_x for Electric Utility CTs NO_x for Electric Utility CTs SO₂ limits Monitoring of Operations (Custom Monitoring for Gas) Test Methods

Notification of Construction Notification of Initial Start-Up Notification of Actual Start-Up Notification of Recordkeeping (Physical/Operational Cycle) Notification of CEM Demonstration Notification of Recordkeeping (startup/shutdown/malfunction) Notification of Recordkeeping (startup/shutdown/malfunction) Notification of Recordkeeping (startup/shutdown/malfunction) Notification of Recordkeeping (maintain records-2yrs) Performance Test Requirements Performance Test Notification Performance Tests (representative conditions) **Provide Stack Sampling Facilities** Test Runs Compliance (ref. S. 60.8 or Subpart; other than opacity) Compliance (opacity determined by EPA Method 9) Compliance (opacity; excludes startup/shutdown/malfunction) Compliance (maintain air pollution control equipment) Compliance (opacity; ref. S. 60.8) Circumvention Monitoring (Appendix B; Appendix F) Monitoring (Opacity COMS) Monitoring (CEMS; span, drift, etc.) Monitoring (COMS; span, system check) Monitoring (frequency of operation) Monitoring (frequency of operation) Monitoring (COMS; data requirements)

Acid Rain-Permits: 40 CFR 72.9(a) 40 CFR 72.9(b) $40 \, \text{CFR} \, 72.9(c)(1)$ 40 CFR 72.9(c)(2)40 CFR 72.9(c)(3)(iii) 40 CFR 72.9(c)(4) 40 CFR 72.9(c)(5) 40 CFR 72.9(d) 40 CFR 72.9(e) 40 CFR 72.9(f) 40 CFR 72.9(g) 40 CFR 72.20(a) 40 CFR 72.20(b) 40 CFR 72.20(c) 40 CFR 72.21 40 CFR 72.22 40 CFR 72.23 40 CFR 72.24 40 CFR 72.30(a) 40 CFR 72.30(b)(2) 40 CFR 72.30(c) 40 CFR 72.30(d) 40 CFR 72.31 40 CFR 72.32 40 CFR 72.33(b) 40 CFR 72.33(c) 40 CFR 72.33(d) 40 CFR 72.40(a) 40 CFR 72.40(b) 40 CFR 72.40(c) 40 CFR 72.40(d) 40 CFR 72.51 40 CFR 72.90 Allowances: 40 CFR 73.33(a),(c) 40 CFR 73.35(c)(1) Monitoring Part 75: 40 CFR 75.4 40 CFR 75.5 40 CFR 75.10(a)(1) 40 CFR 75.10(a)(2)40 CFR 75.10(a)(3)(iii) 40 CFR 75.10(b) 40 CFR 75.10(c) 40 CFR 75.10(e) 40 CFR 75.10(f) 40 CFR 75.10(g) 40 CFR 75.11(d)

Permit Requirements Monitoring Requirements SO₂ Allowances-hold allowances SO₂ Allowances-violation SO₂ Allowances-Phase II Units (listed) SO₂ Allowances-allowances held in ATS SO_2 Allowances-no deduction for 72.9(c)(1)(i)NO_x Requirements **Excess Emission Requirements Recordkeeping and Reporting** Liability Designated Representative; required Designated Representative; legally binding Designated Representative; certification requirements Submissions Alternate Designated Representative Changing representatives; owners Certificate of representation Requirements to Apply (operate) Requirements to Apply (Phase II-Complete) Requirements to Apply (reapply before expiration) Requirements to Apply (submittal requirements) Information Requirements; Acid Rain Applications Permit Application Shield Dispatch System ID; unit/system ID Dispatch System ID; ID requirements Dispatch System ID; ID change General; compliance plan General; multi-unit compliance options General; condition approval General; termination of compliance options Permit Shield Annual Compliance Certification

Authorized account representative Compliance: ID of allowances by serial number

Compliance Dates; Prohibitions Primary Measurement; SO₂ Primary Measurement; NO_X Primary Measurement; CO₂; O₂ monitor Primary Measurement; Performance Requirements Primary Measurement; Heat Input; Appendix F Primary Measurement; Heat Input; Appendix F Primary Measurement; Optional Backup Monitor Primary Measurement; Minimum Measurement Primary Measurement; Minimum Recording SO₂ Monitoring; Gas- and Oil fired units

Ĩ

-	
40 CFR 75.11(e)	SO ₂ Monitoring; Gaseous firing
40 CFR 75.12(a)	NOx Monitoring; Coal; Non-peaking oil/gas units
40 CFR 75.12(b)	NO _x Monitoring; Determination of NOX emission rate;
	Appendix F
40 CFR 75.13(b)	CO ₂ Monitoring; Appendix G
40 CFR 75.13(c)	CO ₂ Monitoring; Appendix F
40 CFR 75.14(c)	Opacity Monitoring; Gas units; exemption
40 CFR 75.20(a)	Initial Certification Approval Process; Loss of Certification
40 CFR 75.20(b)	Recertification Procedures (if recertification necessary)
40 CFR 75.20(c)	Certification Procedures (if recertification necessary)
40 CFR 75.20(d)	Recertification Backup/portable monitor
40 CFR 75.20(f)	Alternate Monitoring system
40 CFR 75.21(a)	QA/QC; CEMS; Appendix B (Suspended 7/17/95-12/31/96)
40 CFR 75.21(c)	QA/QC; Calibration Gases
40 CFR 75.21(d)	QA/QC; Notification of RATA
40 CFR 75.21(e)	QA/QC; Audits
40 CFR 75.21(f)	QA/QC; CEMS (Effective 7/17/96-12/31/96)
40 CFR 75.22	Reference Methods
40 CFR 75.24	Out-of-Control Periods; CEMS
40 CFR 75.30(a)(3)	General Missing Data Procedures; NO _x
40 CFR 75.30(a)(4)	General Missing Data Procedures; SO ₂
40 CFR 75.30(b)	General Missing Data Procedures; certified backup monitor
40 CFR 75.30(c)	General Missing Data Procedures; certified backup monitor
40 CFR 75.30(d)	General Missing Data Procedures; SO ₂ (optional before
	1/1/97)
40 CFR 75.30(e)	General Missing Data Procedures; bypass/multiple stacks
40 CFR 75.31	Initial Missing Data Procedures (new/re-certified CMS)
40 CFR 75.32	Monitoring Data Availability for Missing Data
40 CFR 75.33	Standard Missing Data Procedures
40 CFR 75.36 40 CFR 75.40	Missing Data for Heat Input
40 CFR 75.40 40 CFR 75.41	Alternate Monitoring Systems-General
40 CFR 75.42	Alternate Monitoring Systems-Precision Criteria Alternate Monitoring Systems-Reliability Criteria
40 CFR 75.43	Alternate Monitoring Systems-Accessibility Criteria
40 CFR 75.44	Alternate Monitoring Systems-Timeliness Criteria
40 CFR 75.45	Alternate Monitoring Systems-Daily QA
40 CFR 75.46	Alternate Monitoring Systems-Daily QA Alternate Monitoring Systems-Missing data
40 CFR 75.47	Alternate Monitoring Systems-Griteria for Class
40 CFR 75.48	Alternate Monitoring Systems-Petition
40 CFR 75.53	Monitoring Plan; revisions
40 CFR 75.54(a)	Recordkeeping-general
40 CFR 75.54(b)	Record keeping-operating parameter
40 CFR 75.54(c)	Record keeping-SO ₂
40 CFR 75.54(d)	Record keeping-NO _x
40 CFR 75.54(e)	Record keeping-CO ₂
40 CFR 75.54(f)	Record keeping-Opacity
40 CFR 75.55(c)	General Record keeping (Specific Situations)
40 CFR 75.55(e)	General Record keeping (Specific Situations)
40 CFR 75.56	Certification; QA/QC Provisions
40 CFR 75.60	Reporting Requirements-General
40 CFR 75.61	Reporting Requirements-Notification cert/recertification
_	

.

40 CFR 75.62	Reporting Requirements-Monitoring Plan
40 CFR 75.63	Reporting Requirements-Certification/Recertification
40 CFR 75.64(a)	Reporting Requirements-Quarterly reports; submission
40 CFR 75.64(b)	Reporting Requirements-Quarterly reports; DR statement
40 CFR 75.64(c)	Rep. Req.; Quarterly reports; Compliance Certification
40 CFR 75.64(d)	Rep. Req.; Quarterly reports; Electronic format
40 CFR 75.66	Petitions to the Administrator (if required)
Appendix A-1	Installation and Measurement Locations
Appendix A-2	Equipment Specifications
Appendix A-3	Performance Specifications
Appendix A-4	Data Handling and Acquisition Systems
Appendix A-5	Calibration Gases
Appendix A-6	Certification Tests and Procedures
Appendix A-7	Calculations
Appendix B	QA/QC Procedures
Appendix C-1	Missing Data; SO ₂ /NO _x for controlled sources
Appendix C-2	Missing Data; Load-Based Procedure; NO _x & flow
Appendix D	Optional SO ₂ ; Oil-/gas-fired units
Appendix F	Conversion Procedures
Appendix H	Traceability Protocol

Acid Rain Program-Excess Emissions (these are future requirements):

40 CFR 77.3	Offset Plans (future)
40 CFR 77.5(b)	Deductions of Allowances (future)
40 CFR 77.6	Excess Emissions Penalties (SO ₂ and NO _x ; future)

D. EMISSION POINT (STACK/VENT) INFORMATION (Regulated Emissions Units Only)

Emission Point Description and Type

.

H

1. Identification of Point on P Flow Diagram? N/A		2. Emission Po		
3. Descriptions of Emission P 100 characters per point):				
Exhausts through a single s	tack.			
4. ID Numbers or Description				
5. Discharge Type Code: V	6. Stack Heig	ht: 85 feet	7. Exit Diameter: 28 feet	
8. Exit Temperature: 1,095 °F	9. Actual Vol Rate: 3,3	umetric Flow 80,011 acfm	10. Water Vapor: 12.44 %	
11. Maximum Dry Standard Fle 989,68		12. Nonstack Er	nission Point Height: feet	
13. Emission Point UTM CoordZone:17E		9 Nortl	h (km): 3106.66	
Zone: 17East (km): 408.79North (km): 3106.6614. Emission Point Comment (limit to 200 characters):Stack parameters for ISO turbine inlet operating condition firing natural gas; for oil1,051°F and 3,011,513 ACFM.				

E. SEGMENT (PROCESS/FUEL) INFORMATION (All Emissions Units)

Segment Description and Rate: Segment 1 of 2

1. Segment Description (Process/Fuel Type) (limit to 500 characters):

Distillate (No. 2) Fuel Oil

2.	Source Classification Cod 2-01-001-01	e (SCC):	3. SCC Units: 1,000 gallon	
4.	Maximum Hourly Rate: 17.8	5. Maximum <i>.</i> 4,251	Annual Rate:	6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur: 0.05	8. Maximum 9	% Ash:	9. Million Btu per SCC Unit: 132

10. Segment Comment (limit to 200 characters):

mmBtu/SCC = 131.5 (rounded to 132). BASIS: Max. hourly = 30° F turbine inlet & 7.1 lb/gal; 18,500 Btu/lb LHV; Annual: 59° F, 250 hrs/yr operation. Max hourly; function of turbine inlet temp.

Segment Description and Rate: Segment 2 of 2

1.	Segment Description (Process/Fuel Type) (limit to 500 characters):			
	Natural Gas			
2.	Source Classification Code (SCC): 2-01-002-01	3.	SCC Units: Million Cubic Feet	

	2-01-002-01		Millio			661
4.	Maximum Hourly Rate: 2.737	5.	Maximum Annual Rat 22,195	te:	6.	Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8.	Maximum % Ash:	_	9.	Million Btu per SCC Unit: 950

10. Segment Comment (limit to 200 characters):

Max. based on 30°F; 950 Btu/CF LHV. Annual based on 59°F; 8,760 hrs/yr operation. Max. hourly a function of turbine inlet temperature. See attached chart of heat input.

Emissions Unit Information Section <u>1</u> of <u>1</u>

.

ų

2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
	· · · ·	EL
		EL
026	028	EL
_		EL
		EL
		EL
	Device Code	Device Code Device Code

F. EMISSIONS UNIT POLLUTANTS (All Emissions Units)

Emissions Unit Information Section _____ of ____

Pollutant Detail Information Page 1 of 6

Particulate Matter - Total

Unit 5

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2.	Total Percent Efficie	ency of Control:
	РМ			
3.	Potential Emissions: 139.6 lb/hour	4	9 tons/year	4. Synthetically Limited? []
5.	Range of Estimated Fugitive Emissions:			
		-	to to	ns/year
6.	Emission Factor: Reference: PSD-FL-245			7. Emissions Method Code:
8.	Calculation of Emissions (limit to 600 chara	cters	z).	2
	Tons/year (8,510 hours gas x 8.8 lb/hr + 250 l 49.0 Tons/Year.	hour	s oil x 92.8 lb/hour) /	2,000 hours/year =
	Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to and 250 hrs/yr oil firing; 59°F conditions.			
<u>Al</u>	lowable Emissions Allowable Emissions	1	of 2	
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Da Emissions:	te of Allowable
3.	Requested Allowable Emissions and Units:	4.	Equivalent Allowab	le Emissions:
	10% opacity		139.6 lb/hour	11.6 tons/year
5.	Method of Compliance (limit to 60 character Annual VE test; EPA Method 9	rs):	<u> </u>	
6.	Allowable Emissions Comment (Desc. of Op	perat	ing Method) (limit to	200 characters):
	Oil firing - 30°F; 50% load; annual based on 5	9°F;	100% load, 250 hrs/yr	•

-

En	nissions Unit Information Section	of	1			Unit 5
Ро	llutant Detail Information Page	of _	6	P	artic	ulate Matter - Total
<u>Po</u>	G. EMISSIONS UNIT POLLU (Regulated En Emissions-Limited and Precons tential/Fugitive Emissions	nissi	ions	Units -		
1.	Pollutant Emitted:	2.	Tota	l Percent Efficie	ency	of Control:
	РМ					
3.	Potential Emissions: lb/hour			tons/year	4.	Synthetically Limited? []
5.	Range of Estimated Fugitive Emissions:					
	[]] [] 2 [] 3			to to	, ``	
6.	Emission Factor: Reference:				7.	Emissions Method Code:
8	Calculation of Emissions (limit to 600 chara	cters)·			
9.	Pollutant Potential/Fugitive Emissions Com	ment	(lim	it to 200 charac	ters)	:
All	owable Emissions Allowable Emissions	2	of	2		
1.	Basis for Allowable Emissions Code: OTHER	2.		are Effective Da	ite o	f Allowable
3.	Requested Allowable Emissions and Units:	4.	Equ	ivalent Allowat	ole E	missions:
	10% opacity			9.1 lb/hour		38.5 tons/year
5.	Method of Compliance (limit to 60 character	s):				
	VE Test; EPA Method 9					
6.	Allowable Emissions Comment (Desc. of Op	perat	ing N	fethod) (limit to	o 200) characters):
	Gas firing - 30°F, 100% load; annual based on	59°I	=; 100)% load, 8,760 h	rs/yr	

.

÷.

<u>Pot</u>	Iutant Detail Information Page 2 G. EMISSIONS UNIT POLI (Regulated (Regulated Emissions-Limited and Preco ential/Fugitive Emissions Pollutant Emitted: SO2 SO2	UTAN Emissic	ons Units - on Review Pollu	
1.	(Regulated Emissions-Limited and Preco ential/Fugitive Emissions Pollutant Emitted:	Emissio	ons Units - on Review Pollu	
1.	Pollutant Emitted:	2. 1		
	SO		otal Percent Effic	ciency of Control:
3.				
	Potential Emissions: 127 lb/hour	48.5	tons/year	4. Synthetically Limited? []
5.	Range of Estimated Fugitive Emissions:			
	[]] []2 []3		to 1	
6	Emission Factor: See Comr Reference: PSD-FL-245	nent		7. Emissions Method Code: 2
1	Pollutant Potential/Fugitive Emissions Co Emission Factor: 1 grain S per 100 CF gas based on 8,510 hrs/yr gas firing and 250 hr	s; 0.05%	S oil. Ib/hr based	·
Allo	wable Emissions Allowable Emissions	1 (of 2	
	Basis for Allowable Emissions Code: OTHER		Future Effective I Emissions:	Date of Allowable
3. J	Requested Allowable Emissions and Unit		Equivalent Allow	able Emissions:
(0.05% Sulfur Oil		127 lb/hour	15.9 tons/year
	Method of Compliance (limit to 60 charac	ters):		
5. 1				
	Fuel Sampling			
F	Fuel Sampling Allowable Emissions Comment (Desc. of	Operatir	ng Method) (limit	to 200 characters):

- î

-	nissions Unit Information Section	<u> </u>	<u> </u>		
Po	Ilutant Detail Information Page	2 of	6		Sulfur Dioxi
Po	G. EMISSIONS UNIT PO (Regulat Emissions-Limited and Pr <u>tential/Fugitive Emissions</u>	ed Em	ssior	ns Units -	
	Pollutant Emitted:		<u> </u>	atal Darsont Eff	ficiency of Control:
1.	SO₂	4	. 10	otal Percent En	include of Control:
3.	Potential Emissions: lb/hour			tons/year	4. Synthetically Limited? [
5.	Range of Estimated Fugitive Emission [] 1 [] 2	s: 3		to	_ tons/year
6.	Emission Factor: Reference:				7. Emissions Method Code:
0	Pollutant Potential/Fugitive Emissions	Comm	ant (1	imit to 200 abo	rootoro);
9.	Pollutant Potential/Fugitive Emissions	Comm	ent (l	imit to 200 cha	racters):
	Pollutant Potential/Fugitive Emissions				racters):
		ns	of 2. F	f	racters): Date of Allowable
	lowable Emissions Allowable Emission Basis for Allowable Emissions Code: OTHER	ns	of 2. F E	f 2 uture Effective Emissions:	
<u>Al</u>	lowable Emissions Allowable Emissio Basis for Allowable Emissions Code: OTHER	ns	of 2. F E	f 2 uture Effective Emissions:	Date of Allowable wable Emissions:
<u>Al</u>	lowable Emissions Allowable Emission Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and U	ns 2 nits:	of 2. F E 4. E	f 2 uture Effective Emissions: Equivalent Alloy	Date of Allowable wable Emissions:
<u>Al</u> 1. 3.	lowable Emissions Allowable Emission Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and U 1 grain/100 CF	ns 2 nits:	of 2. F E 4. E	f 2 uture Effective Emissions: Equivalent Alloy	Date of Allowable wable Emissions:

F

I

Į.

Emissions	Unit	Information	Section	1	of	1

Unit 5

Pollutant Detail Information Page <u>3</u> of <u>6</u>

Nitrogen Oxides

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:
	NO _x	
3.	Potential Emissions: 433 lb/hour	4. Synthetically1,166tons/yearLimited?]
5.	Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3	to tons/year
6.	Emission Factor:	7. Emissions
	Reference: PSD-FL-245	Method Code: 2
8.	Calculation of Emissions (limit to 600 chara	
	Tons/year = (8,510 hours-gas x 262 lb/hr + 1,166 tons/year.	250 hours-oil x 413 lb/hr) / 2,000 lb/ton =
9.	Pollutant Potential/Fugitive Emissions Com	nent (limit to 200 characters):
	Lb/hr based on oil firing, 100% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions.	ons/yr based on 8,510 hrs/yr gas firing and
All	owable Emissions Allowable Emissions	<u>1</u> of <u>2</u>
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	413 lb/hr (3hr-avg)	431 lb/hour 51.6 tons/year
5.	Method of Compliance (limit to 60 character	s):
	CEM-30 Day Rolling Average (corrected to 15	% Oxygen)
6.	Allowable Emissions Comment (Desc. of Op	perating Method) (limit to 200 characters):
	Oil firing; 30°F; 100% load; annual based on 2	50 hrs/year at 59°F (413 lb/hour).

Emissions Unit Information Section _	1	of _	1			Un
Pollutant Detail Information Page _	3	of _	6			Nitrogen Oxio
G. EMISSIONS UNIT P (Regul Emissions-Limited and I	lated H	Emiss	ions	Units -		
Potential/Fugitive Emissions						• •
1. Pollutant Emitted:		2.	Tota	l Percent Eff	iciency	of Control:
NO _x						
3. Potential Emissions: lb/hour		-		tons/year		Synthetically Limited? [
5. Range of Estimated Fugitive Emission						
[] 1 [] 2 [6. Emission Factor:] 3			to	tons/ye	ar Emissions
						Method Code:
Reference:						
9. Pollutant Potential/Fugitive Emission	ns Con	nmen	t (lim	it to 200 chai	acters):	
Allowable Emissions Allowable Emiss						
1 Dania fan Allanahla Emissiona Cada	ions_	2	of	2		
OTHER			- <u> </u>	2 re Effective ssions:	Date of	
OTHER	:	2.	- – Futt Emi	re Effective		Allowable
OTHER	:	2.	- – Futt Emi	re Effective ssions:	vable Er	Allowable
OTHER 3. Requested Allowable Emissions and 237 lb/hr (24hr-avg)	Units:	2.	- – Futt Emi	re Effective ssions: ivalent Allov	vable Er	Allowable
OTHER 3. Requested Allowable Emissions and 237 lb/hr (24hr-avg)	Units:	2.	- – Futt Emi	re Effective ssions: ivalent Allov	vable Er	Allowable
 Requested Allowable Emissions and 237 lb/hr (24hr-avg) Method of Compliance (limit to 60 c 	Units:	2. 4. ers):	Futı Emi Equ	ure Effective ssions: ivalent Allov 262 lb/hou	vable Er ır	Allowable nissions: 1,148 tons/year

Emissions	Unit	Information	Section	1	of	1

Unit 5

Pollutant Detail Information Page _____ of ___6

Carbon Monoxide

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Tota	l Percent Effici	ency of Control:
	со			
3.	Potential Emissions: 568 lb/hour	752	tons/year	4. Synthetically Limited? []
5.	Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3		toto	ns/year
6.	Emission Factor: Reference: PSD-FL-245			7. Emissions Method Code: 2
8.	Calculation of Emissions (limit to 600 chara Tons/year = (8,510 hours-gas x 161 lb/hour + 752.		s-oil x 539 lb/h	our) / 2,000 lb/ton =
9.	Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing; 30°F tons/yr based firing; 59°F conditions.	,		,
Al	lowable Emissions Allowable Emissions	1 of	2	
1.	Basis for Allowable Emissions Code: OTHER		re Effective Da ssions:	ate of Allowable
3.	Requested Allowable Emissions and Units:	4. Equ	ivalent Allowal	ole Emissions:
	90 ppmvd @ 15% O₂		568 lb/hour	67.4 tons/year
5.	Method of Compliance (limit to 60 character	rs):		_
	EPA Method 10; annual compliance test > 400) hours/ye	ar	
6.	Allowable Emissions Comment (Desc. of Op	perating N	Iethod) (limit to	o 200 characters):
	Oil firing; 30°F; annual based on 250 hrs/yr at	59°F and	100% load. 539	lb/hr.

Unit 5 Emissions Unit Information Section 1 of 1 Carbon Monoxide Pollutant Detail Information Page 4 of 6 G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -**Emissions-Limited and Preconstruction Review Pollutants Only) Potential/Fugitive Emissions** 1. Pollutant Emitted: 2. Total Percent Efficiency of Control: со 3. Potential Emissions: 4. Synthetically lb/hour tons/year Limited? [] 5. Range of Estimated Fugitive Emissions: 11 tons/year Γ 12 Γ] 3 to 6. Emission Factor: 7. Emissions Method Code: Reference: 8. Calculation of Emissions (limit to 600 characters): 9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Allowable Emissions Allowable Emissions 2 of 2 1. Basis for Allowable Emissions Code: 2. Future Effective Date of Allowable OTHER Emissions: 3. Requested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: **161** lb/hour 25 ppmvd @ 15% O₂ 705 tons/year 5. Method of Compliance (limit to 60 characters): EPA Method 10; annual compliance test 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters): Gas firing; 59°F; annual based on 8,760 hrs/yr at 59°F 100% load, 157 lb/hr.

Po	nissions Unit Information Section <u>1</u>	of _	1		Unit 5
	Ilutant Detail Information Page 5	of _	6	Volat	ile Organic Compounds
<u>Pc</u>	G. EMISSIONS UNIT POLLU (Regulated En Emissions-Limited and Precons otential/Fugitive Emissions	miss	ions	Units -	-
1.	Pollutant Emitted:	2.	Tota	Percent Effici	ency of Control:
	Potential Emissions: 25 lb/hour	49.	9	tons/year	4. Synthetically Limited? []
5.	Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3			to to	ons/year
6.	Emission Factor: Reference: PSD-FL-245				7. Emissions Method Code: 2
9.					
	Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing. Tons/yr based o firing.				
Al	Lb/hr based on oil firing. Tons/yr based o				
	Lb/hr based on oil firing. Tons/yr based o firing.	n 8,5 1	of	rs/yr gas firing 2 re Effective Da	
1.	Lb/hr based on oil firing. Tons/yr based o firing. lowable Emissions Allowable Emissions Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and Units:	n 8,5	of Futu Emi	rs/yr gas firing 2 pre Effective Da ssions: ivalent Allowal	and 250 hrs/yr oil ate of Allowable ble Emissions:
1.	Lb/hr based on oil firing. Tons/yr based o firing. Iowable Emissions Allowable Emissions Basis for Allowable Emissions Code: OTHER	n 8,5	of Futu Emi	rs/yr gas firing 2 are Effective Da ssions:	and 250 hrs/yr oil ate of Allowable

I

Emissions Unit Information Section <u>1</u> of <u>1</u>

Unit 5

Pollutant Detail Information Page 5 of 6

Volatile Organic Compounds

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:				
	VOC					
3.	Potential Emissions: lb/hour	4. Synthetically tons/year Limited? []				
5.	Range of Estimated Fugitive Emissions:					
	[]]1 []2 []]3totons/year					
6.	Emission Factor:	7. Emissions				
	Reference:	Method Code:				
9.	Calculation of Emissions (limit to 600 chara Pollutant Potential/Fugitive Emissions Com					
<u>Al</u>	lowable Emissions Allowable Emissions	2 of 2				
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:				
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:				
	4 ppmvd	11 lb/hour 48.2 tons/year				
5.	Method of Compliance (limit to 60 character	·s):				
	Meeting CO emission limit					
6.	Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					
	Gas firing; annual based on 8,760 hrs/yr.					

	missions Unit Information Section <u>1</u> Ollutant Detail Information Page 6	of 6		Particulate Matter – PM
		<u> </u>		
	G. EMISSIONS UNIT POLLU	TANI	DETAIL IN	FORMATION
	(Regulated E			
_	Emissions-Limited and Precons	structi	on Review Po	llutants Only)
Po	otential/Fugitive Emissions			
1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:		
	PM ₁₀			
3.				4. Synthetically
_	139.6 lb/hour	49	tons/year	Limited? []
5.	Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3		to	_ tons/year
6.	<u> </u>		10	7. Emissions
	Reference: PSD-FL-245			Method Code: 2
8.	Calculation of Emissions (limit to 600 chara	acters):		
	Tons/year (8,510 hours-gas x 8.8 lb/hr + 250 49.0 tons/year.	hours	oil x 92.8 lb/ho	our) / 2,000 hours/year =
9.	49.0 tons/year. Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 ch	aracters):
9.	49.0 tons/year.	ment (limit to 200 ch	aracters):
	49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to	ment (ns/yea	limit to 200 ch	aracters):
	49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions.	ment (ns/yea 1 2. I	limit to 200 ch r based on 8,5 of	aracters):
<u>Al</u> 1.	49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions. Iowable Emissions Allowable Emissions Basis for Allowable Emissions Code:	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	limit to 200 ch r based on 8,5 of <u>2</u> Future Effectiv Emissions:	aracters): 10 hrs/yr gas firing and
<u>Al</u> 1.	49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions. Iowable Emissions Allowable Emissions Basis for Allowable Emissions Code: OTHER	1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	limit to 200 ch r based on 8,5 of <u>2</u> Future Effectiv Emissions:	aracters): 10 hrs/yr gas firing and e Date of Allowable owable Emissions:
<u>Al</u> 1. 3.	 49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions. Iowable Emissions Allowable Emissions Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and Units: 	1 0 1 1 2. 1 4. F	limit to 200 ch r based on 8,5 of 2 Future Effectiv Emissions: Equivalent Allo	aracters): 10 hrs/yr gas firing and e Date of Allowable owable Emissions:
<u>Al</u> 1. 3.	 49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions. Iowable Emissions Allowable Emissions Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and Units: 10% opacity 	1 0 1 1 2. 1 4. F	limit to 200 ch r based on 8,5 of 2 Future Effectiv Emissions: Equivalent Allo	aracters): 10 hrs/yr gas firing and e Date of Allowable owable Emissions:
<u>AI</u> 1. 3.	 49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions. lowable Emissions Allowable Emissions Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and Units: 10% opacity Method of Compliance (limit to 60 characted emissions) 	1 (ns/yea 2. I 4. F rs):	limit to 200 ch r based on 8,5 of 2 Future Effectiv Emissions: Equivalent Allo 139.6 lb/ho	aracters): 10 hrs/yr gas firing and e Date of Allowable owable Emissions: our 11.6 tons/year
<u>AI</u> 1. 3.	 49.0 tons/year. Pollutant Potential/Fugitive Emissions Com Lb/hr based on oil firing, 50% load, 30°F; to 250 hrs/yr oil firing; 59°F conditions. Iowable Emissions Allowable Emissions Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and Units: 10% opacity Method of Compliance (limit to 60 characte Annual VE test; EPA Method 9 	ment (ns/year 1 c 2. I 4. F rs):	limit to 200 ch r based on 8,5 of 2 Future Effectiv Equivalent Allo 139.6 lb/ho	aracters): 10 hrs/yr gas firing and e Date of Allowable owable Emissions: our 11.6 tons/year nit to 200 characters):

Emissions	Unit Information Section	 of	1	

Unit 5

Pollutant Detail Information Page 6 of 6

Particulate Matter - PM 10

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2.	Total Percent Efficie	ency o	of Control:
	PM ₁₀				
3.	Potential Emissions:			1	Synthetically
	lb/hour		tons/year		Limited? []
5.	6			,	
			to to	ns/yea	
6.	Emission Factor:				Emissions Method Code:
	Reference:				
8.	Calculation of Emissions (limit to 600 chara	cters	s):		
9.	Pollutant Potential/Fugitive Emissions Com	ment	(limit to 200 charac	ters):	
<u>Al</u>	lowable Emissions Allowable Emissions	2	of <u>2</u>		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Da	te of	Allowable
	OTHER		Emissions:	<u> </u>	
3.	Requested Allowable Emissions and Units:	4.	Equivalent Allowab	ole Em	nissions:
	10% opacity		9.1 lb/hour		38.5 tons/year
5.	Method of Compliance (limit to 60 character	rs):			
	VE Test, EPA Method 9				
				000	
6.	Allowable Emissions Comment (Desc. of Op	perat	ing Method) (limit to	5 200	characters):
	Gas firing - 30°F, 100% load; annual based on	ا 59°	F; 100% load, 8,760 h	rs/yr.	
	-			2	
L					,

Emissions Unit Information Section	1	of	1	
---	---	----	---	--

H. VISIBLE EMISSIONS INFORMATION (Only Regulated Emissions Units Subject to a VE Limitation)

Visible Emissions Limitation: Visible Emissions Limitation 1 of 2

1.	Visible Emissions Subtype: VE20	2. Basis for Allowable [X] Rule	Opacity: [] Other
3.	Requested Allowable Opacity: Normal Conditions: 10 % Ex Maximum Period of Excess Opacity Allowe	cceptional Conditions: ed:	% min/hour
4.	Method of Compliance:		
	Annual VE Test EPA Method 9		
5.	Visible Emissions Comment (limit to 200 c	haracters):	

I. CONTINUOUS MONITOR INFORMATION (Only Regulated Emissions Units Subject to Continuous Monitoring)

Continuous Monitoring System: Continuous Monitor 1 of 2

1.	Parameter Code: EM	2. Pollutant(s): NO _x
3.	CMS Requirement:	[X] Rule [] Other
4.	Monitor Information: Manufacturer: various	
	Model Number:	Serial Number: various
5.	Installation Date: 01 Jan 1999	6. Performance Specification Test Date:
7.	Continuous Monitor Comment (limit to 200	characters):
	NO _x CEM proposed to meet requirements of FDEP.	40 CFR Part 75, Monitoring Plan submitted to

H. VISIBLE EMISSIONS INFORMATION (Only Regulated Emissions Units Subject to a VE Limitation)

Visible Emissions Limitation: Visible Emissions Limitation 2 of 2

1.	Visible Emissions Subtype:	2. Basis for Allowable	
	VE99	[X] Rule	[] Other
3.	Requested Allowable Opacity:	•	
	Normal Conditions: % Ex	ceptional Conditions:	100 %
	Maximum Period of Excess Opacity Allowe	ed:	6 min/hour
4.	Method of Compliance:		
	None		
5.	Visible Emissions Comment (limit to 200 c	haracters):	
	FDEP Rule 62-210.700(1). Allowed for 2 hour	rs (120 minutes) per 24 ho	urs for start up,
	shutdown and malfunction.		

I. CONTINUOUS MONITOR INFORMATION (Only Regulated Emissions Units Subject to Continuous Monitoring)

<u>Continuous Monitoring System:</u> Continuous Monitor <u>2</u> of <u>2</u>

1.	Parameter Code: EM	2. Pollutant(s): NO _x
3.	CMS Requirement:	[X] Rule [] Other
4.	Monitor Information: Manufacturer: Westinghouse Model Number:	Serial Number:
5.	Installation Date: 01 Jan 1999	6. Performance Specification Test Date:
7.	Continuous Monitor Comment (limit to 200 Parameter Code: WTF. Required by 40 CFF	

J. EMISSIONS UNIT SUPPLEMENTAL INFORMATION (Regulated Emissions Units Only)

Supplemental Requirements

.

1.	Process Flow Diagram	
	[] Attached, Document ID:	[X] Not Applicable [] Waiver Requested
2.	Fuel Analysis or Specification	
	[] Attached, Document ID:	[X] Not Applicable [] Waiver Requested
3.	Detailed Description of Control Equipmen	t
	[] Attached, Document ID:	[X] Not Applicable [] Waiver Requested
4.	Description of Stack Sampling Facilities	
	[] Attached, Document ID:	[X] Not Applicable [] Waiver Requested
5.	Compliance Test Report	
	[X] Attached, Document ID: <u>Attachments</u>	6
	[] Previously submitted, Date:	
	[] Not Applicable	
6.	Procedures for Startup and Shutdown	
		X] Not Applicable [] Waiver Requested
7.	Operation and Maintenance Plan	
	[] Attached, Document ID: [2	X] Not Applicable [] Waiver Requested
8.	Supplemental Information for Construction	Permit Application
	[] Attached, Document ID:	[X] Not Applicable
9.	Other Information Required by Rule or Sta	tute
	[] Attached, Document ID: [2]	x] Not Applicable
10.	Supplemental Requirements Comment:	

Additional Supplemental Requirements for Title V Air Operation Permit Applications

11. Alternative Methods of Operation
[] Attached, Document ID: [X] Not Applicable
12. Alternative Modes of Operation (Emissions Trading)
[] Attached, Document ID: [X] Not Applicable
13. Identification of Additional Applicable Requirements
[] Attached, Document ID: [X] Not Applicable
14. Compliance Assurance Monitoring Plan
[] Attached, Document ID: [X] Not Applicable
15. Acid Rain Part Application (Hard-copy Required)
 Acid Rain Part - Phase II (Form No. 62-210.900(1)(a)) Attached, Document ID:
 Repowering Extension Plan (Form No. 62-210.900(1)(a)1.) Attached, Document ID:
 New Unit Exemption (Form No. 62-210.900(1)(a)2.) Attached, Document ID:
 [] Retired Unit Exemption (Form No. 62-210.900(1)(a)3.) Attached, Document ID:
 Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.) Attached, Document ID:
 Phase NOx Averaging Plan (Form No. 62-210.900(1)(a)5.) Attached, Document ID:
[X] Not Applicable

ATTACHMENTS

.

.

Golder Associates Letter of February 12, 2001 Siemens Westinghouase Maximum Heat Input Curve for McIntosh Unit 5 Compliance Test Results

Golder Associates Inc.

6241 NW 23rd Street, Suite 500 Gainesville, FL 32653-1500 Telephone (352) 336-5600 Fax (352) 336-6603

February 12, 2001

9937510

Mr. Scott Sheplak, P.E., Administrator Title V Section Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399

Attention: Mr. Edward J. Svec

RE: C.D. McIntosh, Jr. Power Plant, Unit No. 5 FDEP File No. 1050004-004-AC (PSD-FL-245) Amendment to Heat Input and Emissions-Tested Performance for Unit 5 Request for Additional Information

Dear Ed:

This correspondence provides the additional information requested by the Department regarding the request for an increase in the heat input for McIntosh Unit 5 when firing natural gas.

I have reviewed the information in the compliance test report as well as additional performance test data taken by Siemens Westinghouse for the purpose of demonstrating the thermal efficiency of Unit 5. The later tests only became recently available and because they contain sensitive performance information, they are proprietary. My professional engineering certification was taken in mechanical engineering.

The heat-input curve supplied in Ms. Shelton's July 27, 2000 letter was prepared by Siemens Westinghouse to initially account for the results obtained from the emission rate compliance tests taken in March 2000. Attached is a complete copy of the emission rate compliance tests.

The results of compliance tests found a heat-input rate of 2,171 mmBtu/hr [low heating value (LHV) basis] at a turbine inlet temperature of 80°F. (Note: turbine inlet refers to compressor inlet temperature; with a unit equipped with an evaporative cooler, like McIntosh Unit 5, the ambient temperature and turbine inlet temperature will be different depending upon the relative humidity and operating conditions of the evaporative cooler.) The original air construction and PSD permit application submitted to the Department contained expected performance data for the Siemens Westinghouse Frame 501G combustion turbine. At the time, this model of combustion turbine had not been constructed nor operated, and therefore, performance was based on expectations of the technology from the engineering design. It should be noted that McIntosh Unit 5 is the first Siemens Westinghouse Frame 501G to be constructed and operated.

Since the compliance tests performed in March 2000, thermal performance tests were conducted in August 2000 and additional tuning has been performed. As a result of these activities Siemens Westinghouse has provided a final heat input curve which is attached. Siemens Westinghouse, in its guarantees, provides adjustment to account for various factors

including test methods, instrumentation, and tolerances. The heat input curve is linear with an equation of:

Heat Input (mmBtu/hr) = -6.667 x (Turbine Inlet Temperature °F) + 2,800

Attached as Table 1 is a comparison of the data from the original permit application and the compliance and thermal performance tests. The table includes information on net power and heat input from the original air construction and PSD permit application for turbine inlet temperatures of 52.5°F and 87.5°F. These temperatures represent the operation of the evaporative cooler at ambient temperatures of 59°F and 90°F, respectively. The predicted performance at a turbine inlet temperature of 80°F under the original information provided by Siemens Westinghouse and included in the application was calculated based on the data for turbine inlet temperatures of 52.5 and 87.5°F. Since combustion turbine curves related to power and heat input are typically linear as shown by the current heat input curve, the information for 80°F was calculated as a proportional relationship from the data at turbine inlet temperatures of 52.5 and 87.5°F.

During the emission rate compliance tests in March 2000, the reported turbine inlet temperature was 80°F with a reported heat input of 2,171 mmBtu/hr. The expected maximum heat input is 2,048 mmBtu/hr for a turbine inlet temperature of 80°F. The test data indicate a heat input about 6 percent higher than what would be expected. The ratio of actual to expected is presented in the far right column. Note that 1.06 indicates a 6-percent difference. Note that power [in units of kilowatt (kW)] when multiplied by heat rate (in units of Btu/kW-hour), are heat input (i.e., kW x Btu/kW-hr = Btu/hr). The current Siemens Westinghouse curve for the unit has a maximum heat input of 2,288 mmBtu/hour for a turbine inlet temperature of 80°F.

The thermal performance tests were conducted in August 2000. During these tests the reported turbine inlet temperature was 76.8°F with a reported heat input of 2,145 mmBtu/hr. The expected maximum heat input for a turbine, based on the original Siemens Westinghouse data, is 2,063 mmBtu/hr for an inlet temperature of 76.8°F. The current maximum heat input based on the Siemens Westinghouse curve is 2,288 mmBtu/hr for a turbine inlet temperature of 76.8°F.

Thus, two independent tests indicate that the current heat-input curve supplied by Siemens Westinghouse envelopes the observed heat input during the tests and provides a margin necessary for the operation of the unit. The margin is necessary in establishing a heat input limit, since the City of Lakeland must rely on the terms of its contract with Siemens Westinghouse as the basis for turbine performance. The attached curve should be included as part of the permit and the maximum heat input when firing gas with a turbine inlet of 59°F, 60-percent relative humidity, and 100-percent load should be 2,407 mmBtu/hr (LHV).

The reason for the requested increase in mass emission rate was based directly on the maximum heat input curves developed by Siemens Westinghouse. With higher heat input, the turbine is capable of greater mass flow of air, which increases the power output. The increased power is a direct result of greater mass flow. Emissions are directly proportional to the mass flow. In addition, the maximum emission limits in the permit, which were listed at ISO, were actually for ambient air conditions at ISO and not for the turbine inlet conditions

Golder Associates

noted in the Siemens Westinghouse performance sheets. These data included the operation of an evaporative cooler. For the ISO ambient condition, the evaporative cooling decreases the turbine inlet temperature to 52.5°F.

The requested emission rates and heat input based on the current Siemens Westinghouse heat input curve are shown in Table 2. For CO, the requested increase would account for higher emissions at lower loads. As noted from Table 3-2 in the compliance test report, the CO emissions at 70-percent load were about 61 lb/hour. The current conditions in the permit do not distinguish between the emission limits for high and low loads. An adjustment to the CO emission limit to 161 lb/hour would cover the operating range of the turbine.

Regarding the General Condition in Section II.7., this condition is applicable to the combined-cycle portion of the project as a phased construction project. The emission limits in the original PSD approval contemplated the conversion to combined-cycle operation. Indeed, this portion of the project has been approved this year under the Power Plant Siting Act with full Florida Department of Environmental Protection (FDEP) participation. Review of the original BACT determination was not required. The request for an increase in heat input is considered to not be a "modification" under the FDEP's definition in 62-210.200 Florida Administrative Code (F.A.C.). The request to increase the heat input is neither a "physical change" nor "change in the method of operation" of Unit 5. The performance basis, including heat input, for the McIntosh Unit 5 was based on data supplied by Siemens Westinghouse as the first frame 501G combustion turbine. The turbine actually constructed had better performance than expected. Moreover, there is no request to change the emission rates established as BACT, which were established as pollutant concentrations (e.g., ppmvd corrected to 15-percent oxygen). These are listed on Page BD-10 of FDEP's BACT Determination. Heat input and mass emissions were not the basis of the BACT determination.

If you have any questions or need any further information to complete your review, please call me at 352-336-5600.

Sincerely,

GOLDER ASSOCIATES INC.

16 emmal 7.

Kennard F. Kosky, P.E. Principal Florida Professional Engineer No. 14996

KFK/nav/nav

Enclosures

cc: Ronald Tomlin, Lakeland Electric Farzie Shelton, Lakeland Electric

9937510a/L020901

Table 1. Comparison of Data from the PSD Permit Application and Recent Testing

	PSD Application Compliance Turbine Inlet Temperature ^a Test					-	- Ratio of
	52.5°F	80°F	87.5°F	80°F	Actual/Expected		
Power (MW-Net)	249.09	229	223.68	238.2	1.040		
Heat Input (MMBtu/hr-LHV)	2,174	2,048	2,014	2,171	1.060		

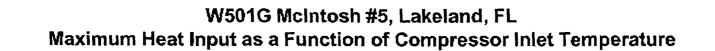
Comparison of Expected Data from PSD Permit and March 2000 Emission Compliance Tests

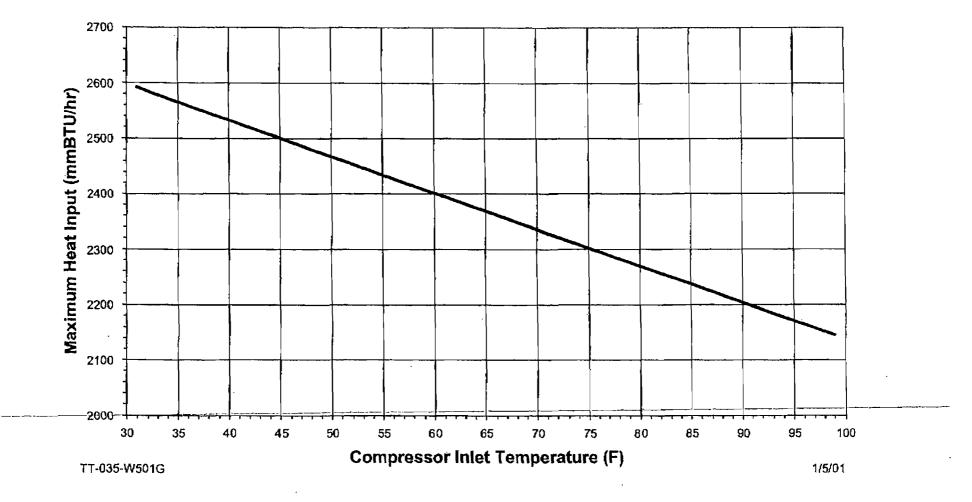
Comparison of Expected Data from PSD Permit and August 2000 Thermal Performance Tests

		PSD Application Turbine Inlet Temperature ^a		Power Test	— Batia of
	52.5°F	76.8°F	87.5°F	76.8°F	 Ratio of Actual/Expected
Power (MW-Net) Heat Input (mmBtu/hr-LHV)	249.09 2,174	231 2,063	223.68 2,014	236.629 2,145	1.022 1.0 4 0

^a The turbine inlet temperatures of 52.5 and 87.5 °F are turbine inlet temperatures with evaporative cooling. The ambient air temperatures are 59 and 90 °F.

.


	Turbine Inlet Temperature (°F)ª					
-	87.5	59	52.5	30		
Original Siemens Westinghouse Data						
Heat Input (mmBtu/hr-LHV)	2,014	2,144	2,174	2,279		
Mass Flow (lb/hr)	4,166,368	4,452,616	4,518,595	4,725,245		
Mass Flow/Heat Input	2,069	2,077	2,078	2,073		
Delta (Heat Input/°F)		4.61	4.61	4.63		
Data based on New Heat Input	87.2	59	52.5	30		
Heat Input (mmBtu/hr-LHV)	2,219	2,407	2,4 50	2,600		
Mass Flow (lb/hr)	4,589,702	4,998,086	5,092,217	5,390,781		
Delta (Heat Input/°F)		6.67	6.67	6.67		
Increase						
Heat Input	10.16%	12.25%	12.69%	14.08%		
Mass Flow	10.16%	12.25%	12.69%	14.08%		
Permited Emission Rates:						
NOx (lb/hr – ISO Ambient)			237			
CO (lb/hr – ISO Ambient)			145			
SO ₂ (lb/hr - 30 °F)				7.2		
VOC (lb/hr – ISO Ambient)			10			
Requested Changes:						
Heat Input (mmBtu/hr)		2,407				
NOx (lb/hr – ISO Turbine Inlet)		262				
CO (lb/hr – ISO Turbine Inlet)		161		8		
SO2 (lb/hr - 30 °F) VOC (lb/hr – ISO Turbine Inlet)		11		ō		
		11				


Table 2. Comparison of the Permitted and Current Turbine Data for City of Lakeland Unit 5 Simple Cycle (Siemens/Westinghouse 501G)

^a The turbine inlet temperatures of 52.5 and 87.5 °F are turbine inlet temperatures with evaporative cooling. The ambient air temperatures are 59 and 90 °F.

ATTACHMENTS

Siemens Westinghouse Maximum Heat Input Curve for McIntosh Unit 5

EMISSIONS COMPLIANCE TEST REPORT FOR THE LAKELAND UTILITIES McINTOSH POWER PLANT COMBUSTION TURBINE UNIT #5 LAKELAND, FLORIDA

FDEP PERMIT NO. PSD-FL-245/1050004-004-AC

Prepared for:

SIEMENS - WESTINGHOUSE POWER CORP. 4400 Alafaya Trail Orlando, Florida 32826-2399

Prepared by:

Source Testing And Consulting Services, Inc. 10210 SW 39th Place Gainesville, Florida 32607

TABLE OF CONTENTS

<u>Section</u>		<u>Page</u>
1.0	INTRODUCTION	1-1
2.0	PROCESS DESCRIPTION AND SAMPLING LOCATION	2-1
3.0	EMISSIONS TEST RESULTS	3-1
4.0	EPA TEST PROCEDURES	4-1
5.0	QUALITY ASSURANCE/QUALITY CONTROL	5-1

APPENDICES

APPENDIX A-DATA SUMMARIES AND SAMPLE CALCULATIONS APPENDIX B-RAW FIELD DATA APPENDIX C--CALIBRATION DATA AND GAS CERTIFICATES APPENDIX D-FDEP PERMIT SPECIFIC CONDITIONS APPENDIX E--PROJECT PARTICIPANTS

1.0 INTRODUCTION

Source Testing And Consulting Services, Inc. (STACS) is under contract to Siemens -Westinghouse Power Corporation (Siemens-Westinghouse) to conduct a series of emissions tests for Unit #5 at the McIntosh Power Plant in Lakeland, Florida. Unit #5 is a simple cycle Siemens-Westinghouse 501G combustion turbine and has recently completed construction. The facility is owned and operated by Lakeland Utilities.

Unit #5 is rated at a nominal electrical output capacity of 250 MW. The unit is the first of it's kind constructed in the United States. Emissions from the unit are controlled by good combustion practices and dry-low-NO_X burner technology. The unit is capable of firing natural gas or distillate fuel oil.

This document is the initial emissions compliance test report for the facility while firing natural gas. Emissions testing was conducted for visible emissions (VE), nitrogen oxides (NO_X), carbon monoxide (CO), volatile organic compounds (VOC) and for diluent oxygen as part of the permit compliance tests. Testing was conducted at two discrete load conditions (nominally 70% load and base load) for nitrogen oxides in order to comply with Federal Regulations contained in 40CFR60, Subpart GG. While Subpart GG requires testing at four load levels, it was only possible to conduct the sampling at two load conditions during this field effort due to an interruption in testing, caused by an equipment malfunction that prevented the test from being completed. The additional two load conditions (nominally 80% and 90% of base load) will be tested at a later date.

1.1 <u>TEST DESCRIPTION AND PURPOSE</u>

There are two phases to the scope of work for this project:

 To demonstrate that the unit meets the emissions limits for VE, NO_X, CO and VOC as stated in the air permit for natural gas at base load; and,

SWPCLakeland.rpt April 12, 2000 to comply with the federal emissions regulations contained in the <u>Code of Federal</u> <u>Regulations, Title 40, Part 60, Subpart GG (40CFR60, Subpart GG)</u> for combustion turbines, which requires testing for NO_x at four discrete load points.

This document contains the results of the test program as completed to date. An addendum to this report will be issued when the additional two load point tests have been completed.

The following test procedures were conducted during the gas emissions performance and compliance testing:

EPA Method 9:	Determination of opacity as visible emissions by a qualified and certified observer.
EPA Method 10:	Continuous determination of CO using a gas filter
	correlation/nondispersive infrared analyzer (GFC/NDIR).
EPA Method 20:	Oxides of Nitrogen (NO _x) analysis with a
	chemiluminescent continuous emission monitor and
	continuous determination of oxygen content in the flue gas.
	A fuel cell analyzer was used for O_2 determination.
EPA Method 25A	Continuous determination of volatile organic compounds as
	total hydrocabons using a flame ionization detector.
	Analysis is on a wet basis.

All procedures and quality control guidelines specified in the appropriate methods and the EPA <u>Quality Assurance Handbook for Air Pollution Measurement Systems - Volume III</u>

were strictly followed during the test program, in addition to STACS' more stringent internal quality control standards.

1.2 <u>TEST SCHEDULE</u>

Emissions testing for the facility took place on March 2, 2000. The additional two load conditions will be tested as soon as possible after any necessary repairs are completed.

1.3 EXECUTIVE SUMMARY

Table 1-1 presents a summary of the emissions test results conducted for the unit on natural gas at 70% load. Table 1-2 provides a summary of the test results at base load. All pollutant data is presented in the units of the emissions standard as provided in the emissions limits (ppmV@15% oxygen) as well as emission rates in lb/MMBtu and as mass emission rates in lb/hr. The values provided are the average of three valid test runs for each pollutant. More detail is given for each test in Section 3.0 and supporting data is presented in the appendices.

1.4 <u>TEST REPORT ORGANIZATION</u>

Section 2.0 of this document provides a brief description of the processes and the sampling locations. Section 3.0 presents the emissions test results. Section 4.0 outlines the procedures and test methods used, and Section 5.0 discusses the quality assurance/quality control measures followed during sampling and analysis. Sample calculations, field data sheets, calibration and certification data, process data and a list of project participants are included in the appendices to this document.

Table 1-1. Summary of Emissions Test Results - Lakeland Utilities CT Unit #5 Natural Gas Fining - 70% Load Condition

Date: 02 March 2000

Parameter	Units	70% Load	Emiss. Limit
Operating Parameters:			
Load:	MW	163.0	
Load (%)	(%)	70.0	
Fuel Flow:	koph	76.8	
Lower Heating Value:	Btu/b	21034.0	
Heat Input (LHV):	MMBtu/hr	1616.1	2174
		1010.1	@ ISO
Volumetric Flow (Method 19 based)	dscfm	691100.2	(c) (c)
		001100.2	
Ambient Data:			
Ambient Temperature	degrees F	77.68	
Barometric Pressure:	•Hg	29.88	
Specific Humidity (Hobs):	# H2O/# DA	0.01101	
Emissions Data:			
Oxygen:	%V, dry	13.0	
Nitrogen Oxides:	ppmV, dry	36.3	
-	Ib/MMBtu	0.1002	
	ppmV@15% O2	27.2	
	ppmV@15% O2 & ISO Conditions	28.2	117.4 (b)
	lb/hr (c)	179.6	237 (a)
Carbon Monoxide:	ppmV, dry	20.2	(d)
	lb/MMBtu	0.0339	
	ppmV@15% O2	15.1	25 (a)
	lb/hr (c)	60.8	145 (a)

Notes:

Combustion Turbine Model: SWPC 501G - Simple Cycle

Fuel Factor (Fd) = 8710scf@0%O2/MMBtu from 40CFR60 Appendix A, Method 19

Y = 9.197 Kilojoules/Watt-Hour (8725 Btu/kwh) for Natural Gas for NSPS limit calculation

(a) - BACT/FDEP Permit Emissions Limit (value at 15% O2 is for base load only - lb/hr applies at all load conditions)
 (b) - 40CFR60, Subpart GG - NSPS Emissions Limit. Note that the ratio of standard pressure to observed ambient pressure was used in the ISO correction since curves of combustor inlet pressure vs. unit load are not available for this type of unit. This ratio is known to closely track the ratio of reference combustor inlet pressure to observed combustor inlet pressure for combustor turbines.

(c) - Mass Emission Rates Calculated using the Volumetric Flowrate determined from the Method 19 approach.
 (d) - CO emissions testing not required at this load point, but is presented for completeness. Testing at this load was conducted using the Method 20 test times.

Table 1-2. Summary of Emissions Test Results - Lakeland Utilities CT Unit #5 Natural Gas Firing - Base Load

Date: 02 March 2000

Parameter	Units	Base Load	Emiss. Limit	
Operating Parameters:				
Load:	MW	238.2		
Load (%)	(%)	100.0		
Fuel Flow:	kpph	103.2		
Lower Heating Value:	Btu/b	21034.0		
Heat Input (LHV):	MMBtu/hr	2171.1	2174	
			@ ISO	
Volumetric Flow (Method 19 based)	dscfm	891459.4	(0	
Ambient Data:				
Ambient Temperature	degrees F	80.11		
Barometric Pressure:	"Hg	29.82		
Specific Humidity (Hobs):	# H2O/# DA	0.01006		
Emissions Data:				
Oxygen:	%V, dry	12.7		
Nitrogen Oxides:	ppmV, dry	31.4		
	lb/MMBtu	0.0832		
	ppmV@15% Q2	22.6	25 (a	
	ppmV@15% O2 &	22.8	117.4 (b	
	ISO Conditions			
	lb/hr (c)	200.3	237 (a	
Carbon Monoxide:	ppmV, dry	1.8		
	lb/MMBtu	0.0029		
	ppmV@15% O2	1.3	25 (a	
	lb/hr (c)	7.0	145 (a	
Volatile Organic Compounds (VOC):	ppmC,w	0.0	4	
(as carbon)	lb/MMBtu	0.0000		
	lb/hr (c)	0.0		
/isible Emissions:	% Opacity	0.0	10	

Notes:

Combustion Turbine Model: SWPC 501G - Simple Cycle

Fuel Factor (Fd) = 8710scf@0%O2/MMBtu from 40CFR60 Appendix A, Method 19

Y = 9.197 Kilojoules/Watt-Hour (8725 Btu/kwh) for Natural Gas for NSPS limit calculation

The first base load test was split between three periods with calibration checks between (14:12-14:36, 14:56-15:20, 15:35-15:59)

(a) - BACT/FDEP Permit Emissions Limit (value at 15% O2 is for base load only - lb/hr applies at all load conditions)
 (b) - 40CFR60, Subpart GG - NSPS Emissions Limit. Note that the ratio of standard pressure to observed ambient pressure was used in the ISO correction since curves of combustor inlet pressure vs. unit load are not available for this type of unit. This ratio is known to closely track the ratio of reference combustor inlet pressure to observed combustor inlet pressure for combustor inlet pressure to observed combustor inlet pressure for combustor inlet pressure to observed combustor inlet pressure for combustor inlet pressure to observed combustor inlet pressure for combustor turbines.

(c) - Mass Emission Rates Calculated using the Volumetric Flowrate determined from the Method 19 approach.

(d) - Heat Input during the Base Load test was between 95% and 105% of the permitted rate.

2.0 PROCESS DESCRIPTION AND SAMPLING LOCATION

Unit #5 at the McIntosh Power Plant is a Siemens-Westinghouse 501G combustion turbine. The unit is rated at a nominal load electrical output of 250 MW. The unit is the first in it's class to be constructed in the United States. The unit is permitted to fire natural gas or No. 2 distillate fuel oil. All testing during this effort was conducted on natural gas.

2.1 PROCESS DESCRIPTION

Unit #5 includes a compressor, combustor, turbine and electric generator and has a nominal load capacity of 250 MW. The turbine is capable of firing natural gas or distillate fuel oil. The rated maximum heat input of the unit at ISO conditions (59 °F, 14.7 psi, 60%RH) is 2174 MMBtu/hr on natural gas and 2236 MMBtu/hr for distillate fuel. Exhaust gases from the turbine are discharged into the atmosphere through a circular stack approximately 70 feet above grade.

The combustion turbine utilizes good combustion practices as a preliminary control for NO_x , CO and VOC. The emissions of NO_x are further controlled by dry low NO_x technology while firing natural gas and by water injection in the combustion zone to lower flame temperature while firing distillate fuel. Sulfur emissions are limited by the use of low sulfur fuels: natural gas and distillate fuel oil.

Emissions from the units are restricted under the New Source Performance Standards (NSPS) of 40CFR60, Subpart GG, and the FDEP air quality permit (PSD-FL-245/1050004-004-AC).

The following parameters were monitored during the sampling the document the tested conditions: electrical load, exhaust temperature, inlet guide vane (IGV) position, fuel

flow, exhaust flow, ambient (barometric) pressure, ambient temperature, and ambient humidity.

Emissions testing was performed at two discrete load conditions (70% and base) during this mobilization. Two additional conditions will be tested during a subsequent mobilization. Minimally, triplicate tests were/will be performed at each of the following nominal load and operating conditions:

70% Load Condition (~164 MW)

80% Load Condition (~190 MW)**

90% Load Condition (~214 MW)**

100% (Base) Load Condition (~238 MW)

(* * to be tested at a later date)

The percentages above are expressed as a percent of base load. It is important to note that base load (100%) is a function of ambient temperature and may be different for different days.

2.2 REFERENCE METHOD SAMPLING LOCATIONS

The inside diameter of the circular stack is 22' 2" (266) inches. The nipple length is 16". Four sampling ports are located around the stack at 90° intervals. EPA Method 20 (40 CFR 60, Appendix A) requires that 48 sampling points be used for a preliminary oxygen traverse for this duct based on the geometry and cross sectional area. Twelve sampling points were used in each port for the preliminary oxygen traverse. The sampling points were determined according to EPA Method 1 (40 CFR 60, Appendix A) guidelines so that each sample point was located in the center of an equal area section of the duct. The following distances were used for the sampling points for a given port:

Point

Distance (inches)

1	18.93
2	24.51
3	30.63

\Bill's\g\STACS\Reports\SWPCLakeland\SWPCLakeland.rpt.wpd April 11, 2000

4	37.01
5	43.91
6	51.11
7	58.83
8	67.60
9	77.18
10	88.35
11	101.91
12	121.86

(Note that the traverse point distances above include the nipple length.) Eight (8) traverse points were used for all subsequent sampling (after the preliminary oxygen traverse) as described in EPA Method 20.

3.0 EMISSIONS TEST RESULTS

Emissions testing was performed for the Combustion Turbine (Unit #5) at Lakeland Utilities McIntosh Power Plant on March 2, 2000. The tests were conducted to demonstrate that the unit meets the emissions limits provided in the facility air permit and also meets the Federal New Source Performance Standard (NSPS) emission limits given in 40CFR60, Subpart GG. The air permit test requirements include sampling for visible emissions, nitrogen oxides, carbon monoxide, and volatile organic compounds at base load. The NSPS requirements also require testing for nitrogen oxides to be conducted at three additional reduced loads spaced over the normal operating range of the combustion turbine. As stated previously, it was not possible to complete the 80% and 90% load conditions during this test effort. These tests will be completed at a later date. This section presents the results of the 70% and base load test conditions.

Three test runs were performed for each parameter at each condition. Test run times were based on the Method 20 test time requirements (each run consists of sampling at each of eight traverse points for one minute plus the system response time) except for the base load tests which were one hour in duration for each run.

3.1 PRELIMINARY OXYGEN TRAVERSE

A preliminary oxygen traverse was performed for the combustion turbine prior to additional testing as prescribed in EPA Method 20 to determine the eight lowest points of oxygen concentration in the duct which would be used for subsequent emissions testing. The traverse was performed while firing natural gas at the lowest percent load tested (Approximately 164 MW while firing natural gas).

The emissions sampling location for the unit consists of a circular stack with an inside diameter of 266 inches with four ports located at 90° angles around the circumference of the stack. The cross sectional area of the stack at the sampling platform is 385.9 ft².

Method 20 requires that a minimum of 48 traverse points be used for the oxygen traverse in stacks of this size. The traverse points were located using EPA Method 1 criteria (40 CFR 60, Appendix A). Twelve points were sampled in each of the four ports for at least 1 minute plus the system response time (30 seconds) each during the oxygen traverse.

The results of the preliminary oxygen traverse for are presented in Table 3-1. Oxygen concentrations are presented as percent by volume on a dry basis (%V, dry). Because the oxygen concentration was consistent throughout the traverses (maximum deviation $\leq 0.4\%$ O₂), eight convenient sampling points were selected for the remainder of the test program. In addition, calibration drift checks for NO_x and O₂ were conducted after sampling in each port so that the data collected during the oxygen traverse could be used toward the demonstration of NSPS compliance at the 70% load condition.

3.2. <u>NATURAL GAS EMISSIONS TEST RESULTS</u>

Tables 3-2 through 3-3 summarize the test results for natural gas testing. The low load test results are given in Table 3-2. Table 3-3 presents the test results for the base load tests. NO_x and CO emissions are presented as measured native concentrations in parts per million by volume (ppmV) on a dry basis and as concentrations normalized to 15 percent oxygen (ppmV @ 15% O₂). Emissions are also presented as emission rates in pounds per million Btu (lb/MMBtu) and as pounds per hour (lb/hr). Mass emissions of nitrogen oxides are expressed as pounds of NO₂. VOC data is expressed as total hydrocarbons as carbon. Emission rates in pounds per million Btu (lb/MMBtu) are calculated using the published dry fuel factor (Fd = 8710 dscf@0%O₂/MMBtu for natural gas) from EPA Method 19 (40CFR60, Appendix A). Mass emission rates in pounds per hour (lb/hr) are calculated using the Method 19 approach and the heat input to the unit. Visible emissions are provided as percent opacity.

Example calculations and data summaries are provided in Appendix A. Raw field data and process data is included in Appendix B. Calibration data and certifications are included in Appendix C.

.

Table 3-1. Preliminary Oxygen Traverse - Test Results Lakeland Utilities McIntosh Unit #5 Values in percent oxygen on a dry basis (%V,d)

Point	Port:	А	В	С	D
1		13.2	12.9	13.1	13.1
2		13.1	12.9	13.1	13.1
3		13.0	12.9	13.1	13.1
4		13.0	13.0	13.1	13.1
5		13.0	13.0	13.1	13 .1
6		13.0	13.0	13.1	13.1
7		13.0	13.0	13.1	13.1
8		13.0	13.0	13.1	13.1
9		13.0	13.0	13.1	13.1
10		13.0	13.0	13.1	13.1
11		13.0	13.0	13.1	13 .1
12		12.9	13.0	13.1	13.1
Average: Maximur Minimum Differenc	n: 1:	13.0 13.2 12.9 0.3	13.0 13.0 12.9 0.1	13.1 13.1 13.1 0.0	13.1 13.1 13.1 0.0
Overall	Average: Maximum: Minimum: Difference:	13.0 13.2 12.9 0.3			

Table 3-2. Emissions Test Results - Lakeland Utilities CT Unit #5 Natural Gas Firing 70% Load Test Point Data Date: 02 March 2000

Parameter	Units	Run #1	Run #2	Run #3	Average	Emiss. Limit
Start Time:		10:12	10:48	12:50		
Stop Time:		10:36	11:12	13:14		
Operating Parameters:						
Load:	MW	163.7	163.4	162.0	163.0	
Load (%)	(%)	70	70	70	70	
Fuel Flow:	kpph	76.83	77.08	76.60	76.83	
Lower Heating Value:	Btu/lb	21034	21034	21034	21034	
Heat Input (LHV):	MMBtu/hr	1616.0	1621.2	1611.2	1616.1	2174
						@ ISO
Turbine Exhaust Temperature:	degrees F	1157.6	1172.1	1155.7	1161.8	C
Volumetric Flow (Method 19 based)	dscfm	689967.9	688003.6	695329.0	691100.2	(0
Ambient Data:						
Ambient Temperature	degrees F	76.11	76.98	79.97	77.68	
Barometric Pressure:	"Hg	29.84	29.84	29.96	29.88	
Specific Humidity (Hobs):	# H2O/# DA	0.01192	0.01100	0.01012	0.01101	
Emissions Data:						
Oxygen:	%V, dry	13.0	13.0	13.1	13.0	
Nitrogen Oxides:	ppmV, dry	35.6	37.6	35.7	36.3	
-	lb/MMBtu	0.0981	0.1029	0.0996	0.1002	
	ppmV@15% O2	26.6	27.9	27.0	27.2	
	، ppmV@15% O2 ISO Conditions	28.2	29.0	27.3	28.2	117.4 (b
	lb/hr (c)	175.8	185.1	178.1	179.6	237 (a
Carbon Monoxide:	ppmV, dry	22.7	16.1	21.7	20.2	25 (d
	lb/MMBtu	0.0380	0.0268	0.0368	0.0339	145 (a
	ppmV@15% O2	17.0	12.0	16.4	15.1	•
	lb/hr (c)	68.3	48.3	65.9	60.8	

Notes:

Combustion Turbine Model: SWPC 501G - Simple Cycle Fuel Factor (Fd) = 8710scf@0%O2/MMBtu from 40CFR60 Appendix A, Method 19

Y = 9.197 Kilojoules/Watt-Hour (8725 Btu/kwh) for Natural Gas for NSPS limit calculation

(a) - BACT/FDEP Permit Emissions Limit

(b) - 40CFR60, Subpart GG - NSPS Emissions Limit. Note that the ratio of standard pressure to observed ambient pressure was used in the ISO correction since curves of combustor inlet pressure vs. unit load are not available for this type of unit. This ratio is known to closely track the ratio of reference combustor inlet pressure to observed combustor inlet pressure for combustion turbines.

(c) - Mass Emission Rates Calculated using the Volumetric Flowrate determined from the Method 19 approach.

(d) - CO emissions testing not required at this load point, but is presented for completeness. Testing at this load was conducted using the Method 20 test times.

Table 3-3.- Emissions Test Results - Lakeland Utilities CT Unit #5

"atural Gas Firing

se Load Test Point Data

.ate: 02 March 2000

Parameter	Units	Run #5,5a, & 6	Run #7	Run #8	Average	Emiss. Limit
Start Time:		14:12	16:17	17:37		
Stop Time:		15:59	17:17	18:37		
Operating Parameters:						
Load:	MW	237.3	237.5	239.9	238.2	
Load (%)	(%)	100	100	100	100	
Fuel Flow:	koph	102,83	102.99	103.83	103.22	
Lower Heating Value:	Btu/lb	21034	21034	21034	21034	
Heat Input (LHV):	MMBtu/hr	2162.9	2166.4	2183.9	2171.1	2174
						@ ISO
Turbine Exhaust Temperature:	degrees F	1135.0	1135.0	1132.8	1134.3	0
Volumetric Flow (Method 19 based)	dscfm	888184.3	889664.7	896529.2	891459.4	
Ambient Data:						
Ambient Temperature	degrees F	81.61	80.72	78.00	80.11	(c)
Barometric Pressure:	"Ha	29.75	29.74	29.96	29.82	(0)
Specific Humidity (Hobs):	# H2O/# DA	0.00968	0.01020	0.01031	0.01006	
Emissions Data:						
Oxygen:	%V, dry	12.7	12.7	12.7	12.7	
Nitrogen Oxides:	ppmV, dry	31.9	31.1	31.1	31.4	
	lb/MMBtu	0.0845	0.0825	0.0825	0.0832	
	ppmV@15% O2	22.9	22.4	22.4	22.6	25
	ppmV@15% O2 & ISO Conditions	23.0	22.7	22.8	22.8	117.4 (a)(d
	lb/hr (c)	202.7	198.3	199.8	200.3	
Carbon Monoxide:	ppmV, dry	1.7	1.8	1.9	1.8	
	b/MMBtu	0.0027	0.0030	0.0030	0.0029	
	ppmV@15% O2	1.2	1.3	1.3	1.3	25 (a)
	lb/hr (c)	6.5	7.1	7.3	7.0	145 (a)
Volatile Organic Compounds (VOC):	ppmC,w	0.0	0.0	0.0	0.0	4
as carbon)	ib/MMBtu	0.0000	0.0000	0.0000	0.0000	
-	lb/hr (c)	0.0	0.0	0.0	0.0	
visible Emissions:	% Opacity	0.0	0.0	0.0	0.0	10

Notes:

Combustion Turbine Model: SWPC 501G - Simple Cycle

Fuel Factor (Fd) = 8710scf@0%O2/MMBtu from 40CFR60 Appendix A, Method 19

Y = 9.197 Kilojoules/Watt-Hour (8725 Btu/kwh) for Natural Gas for NSPS limit calculation

The first base load test was split between three periods with calibration checks between (14:12-14:36, 14:56-15:20, 15:35-15:59) (a) - BACT/FDEP Permit Emissions Limit

...

(b) - 40CFR60, Subpart GG - NSPS Emissions Limit. Note that the ratio of standard pressure to observed ambient pressure was used in the ISO correction since curves of combustor inlet pressure vs. unit load are not available for this type of unit. This ratio is known to closely track the ratio of reference combustor inlet pressure to observed combustor inlet pressure for combustor turbines.

(c) - Mass Emission Rates Calculated using the Volumetric Flowrate determined from the Method 19 approach.

(d) - Heat Input during the Base Load test was between 95% and 105% of the permitted rate.

4.0 EPA TEST PROCEDURES

This section includes a brief description of the test methods used for sampling and analysis at the Lakeland Utilities McIntosh Unit #5 facility. Any deviations from standard procedures are clearly noted below.

4.1 METHOD 1: LOCATION OF SAMPLING POINTS

The locations of the traverse points used for the preliminary oxygen traverse were determined using the criteria of EPA Method 1, Appendix A, 40 CFR 60. For this test program, twelve sampling points were tested in each of four test ports located at 90° angles around the circumference of the circular stack. The sampling points are located at equal area sections of the duct.

4.2 INSTRUMENTAL SAMPLING PROCEDURES

Stack gas emissions of oxides of nitrogen (NO_x), carbon monoxide (CO), and volatile organic compounds (VOC) were measured using continuous instrumental techniques. Diluent oxygen concentration was also measured using continuous instrumental techniques. These tests were performed in accordance with EPA Methods 20 for oxygen, 10 for CO, 20 for NO_x and 25A for VOC as outlined in Title 40, Part 60, Appendix A of the <u>Code of Federal Regulations</u>. Copies of all on-line instrumental reference method data collected during the testing are included in Appendix B of this document. Calibration records are provided in Appendix C.

Flue gas sample is withdrawn from the stack at a constant rate via a heated stainless steel sample probe. The sample probe was equipped with an additional stainless steel line to enable probe tip calibrations. The probe was of sufficient length to allow traversing the duct as required by the applicable test methods. Extracted sample was passed from the probe through a filter and a heated teflon sample line to the moisture removal system. The moisture removal system (gas conditioner) was designed for minimal contact

between condensate and sample gas in order to prevent any reaction between the moisture and the measured pollutants. All components of the sampling and gas conditioning system were fabricated from glass, teflon, or stainless steel. The gas conditioning system consisted of Baldwin two stage thermoelectric chiller. Moisture was continuously removed from the traps by an external peristaltic pump. Dry gas sample from the gas conditioner then passed through an unheated 1/4-inch O.D. teflon tube to a teflon-lined diaphragm pump which delivered positive pressure sample to the instrument system. The sample for the Method 25A analyzer bypassed the gas conditioner and was injected to the instrument on a hot wet basis. Flow control valves were used to deliver the gas sample at a regulated positive pressure to the reference method analytical instruments through a teflon and stainless steel manifold delivery network. Flow and pressure to all monitors was held constant by monitoring sample and bypass rotameters. A diagram of the instrumental reference method sampling and analysis system used for the test program is given in Figure 4-1.

The sampling system was leak checked by passing known calibration gas standards up through a calibration line to the end of the probe. The gas standards are then pulled back through the sampling probe at stack pressure and subsequently through the entire sampling system to the instrument system. An oxygen analyzer response of less than or equal to 0.5% V to a zero oxygen standard was considered an acceptable leak check. Analyzer calibration error was calculated by the difference between the known calibration gas concentration and the concentration exhibited by the analyzer. Bias checks were performed by comparing calibration responses through the entire sampling system to these exhibited at the analyzer. EPA Protocol #1, NIST traceable standard calibration gases were used to calibrate the analyzers.

Acceptable system performance checks did not exceed +/-2% of scale initial calibration error (+/-5% of the gas value for Method 25A), +/-5% of scale system bias check, or the

method specific drift requirements (+/-2%) of scale for Method 20, +/-10% of scale in 8 hours for Method 10, and +/-3% of scale for Method 25A).

Instrument response time was found by alternating zero nitrogen and upscale span gases through the bias check line and recording the upscale and down scale time for a 95% response. The response time of the CEM sampling system was performed to determine the length of time for the reference method system to respond to changes in the stack gas exhaust stream. Known, Protocol 1 reference gases and zero nitrogen were passed through the heated sample line, sample conditioning system and the manifold delivery network to the continuous emission monitors.

4.3 STRATIFICATION TESTS

A preliminary oxygen traverse was performed on each turbine exhaust for the purpose of selecting the eight points of lowest oxygen concentration which were subsequently used for emissions sampling. The traverse was performed at the lowest load to be tested. For the preliminary oxygen traverse, the minimum number of traverse points are:

- 8 for stacks with area less than 16.1 ft²;
- $8 + (\text{Area of Stack } (\text{ft}^2))/2.2$, for stacks with areas between 16.1 to 107.6 ft²; or
- 48 or 49 for stacks greater than 107.6 ft^2 .

The minimum sampling time at each point is one minute plus the average system response time. Based on the results of the traverses, if all of the points were within 0.4% oxygen of each other (i.e. no significant stratification exists), then 8 convenient sample points were used for the subsequent testing.

All instrumental sampling runs at the base load conditions were conducted for a minimum of 1 hour. Test runs at the reduced load conditions are required for O_2 and NO_x

only by Method 20 and were conducted for the test durations prescribed in EPA Method 20, which is 1 minute plus the system response time (30 seconds) at each of the eight points of lowest oxygen concentration.

4.4 DATA ACQUISITION

The data system used for this test program is a PLC based data acquisition system which interfaces with an Enertec software package designed for emissions testing. The system includes automatic calibration capabilities. The system operates in a Windows NT PC environment.

4.5 <u>REFERENCE METHOD ANALYZER PRINCIPLES OF OPERATION</u>4.5.1 METHOD 3A: OXYGEN ANALYSIS

Flue gas sample is continuously analyzed for oxygen by a Servomex Model 1400A paramagnetic instrument. The Servomex 1400A analyzer uses electron paramagnetic resonance to detect the presence of oxygen molecules. Unlike most substances, oxygen has a triplet electron ground state which leaves one electron unpaired, making it a paramagnetic molecule. This electron may have one of two quantum spin states ($m_s = +/ \frac{1}{2}$). By applying an alternating electromagnetic field of the proper frequency, the Servomex 1400A O₂ analyzer induces resonance between the two spin quantum states. In effect, the O₂ analyzer measures the electromagnetic energy absorbed by O₂ molecules at the resonant frequency.

4.5.3 METHOD 20: OXIDES OF NITROGEN ANALYSIS

A Thermo Electron Model 42H instrument was used to analyze NO_X . The principle of operation of this instrument is a chemiluminescent reaction in which ozone (O_3) reacts with nitric oxide (NO) to form oxygen (O_2) and nitrogen dioxide (NO_2) . During this reaction, a photon with a specific ultraviolet wavelength is emitted which is detected by a photomultiplier tube. The instrument is capable of analyzing total oxides of nitrogen (NO + NO_2) by thermally converting NO_2 to NO in a separate reaction chamber prior to the

photomultiplier tube, if desired. The analyzer is operated in the NO_X mode during sampling.

A convertor efficiency test is performed on the Thermoelectron Model 42H during the test series. (See Section 5.2 for a description of the converter efficiency test.)

4.5.4 METHOD 10: CARBON MONOXIDE ANALYSIS

A TECO 48 Gas Filter Correlation Non-Dispersive Infrared (GFC/NDIR) analyzer was used for continuous CO analysis. The principle of operation of this analyzer is similar to traditional NDIR analyzers in that it relies on selective absorption; whereby, particular band widths of infrared energy are absorbed by a species based on its molecular orbital structure. Gas filter correlation NDIR differs from NDIR in the detection mechanism and because the GFC/NDIR does not require a reference cell. Infrared radiation passes through a rotating filter, through the sample cell and to the detector. The chopper wheel of the GFC/NDIR is a rotating disk separated into two chambers where one half is filled with nitrogen and the other half is filled with pure CO. These gas filled partitions act as alternating optical filters for the incident IR radiation from the IR source. The CO gas filter side acts to produce a signal which cannot be further attenuated by CO in the sample cell and is used as a reference signal. The nitrogen filter allows all incident radiation to pass. Carbon monoxide in the sample cell, therefore, attenuates the signal proportionally to concentration. This is considered the measurement cycle. Any other gases which absorb infrared radiation are absorbed equally during both the measurement and reference cycles, providing a real-time reference and minimal interferences. The detector for this analyzer is a lead-selenium photo detector.

It should be noted that EPA Method 10 prescribes the use of an ascarite trap to absorb carbon dioxide and excess moisture prior to introduction of the sample gas into the analyzer. The ascarite trap is prescribed since older technology dual cell NDIR carbon monoxide analyzers were subject to positive biases from carbon dioxide and water vapor. The single cell, gas filter correlation technology of the Teco Model 48, however, virtually eliminates this phenomenon since the sample gas itself is used as an optical attenuator during the reference cycle. Therefore, the ascarite traps were not be used for this test effort. Interference tests were conducted prior to and during the testing to demonstrate that carbon dioxide at stack concentrations and water vapor at the levels introduced to the analyzer do not generate a signal that represents a CO value of more than 10% of the CO emission limit. Interference test results are provided in Appendix C.

4.5.5 METHOD 25A: TOTAL HYDROCARBONS

EPA Method 25A is used to measure VOC expressed as total hydrocarbons on a hot, wet basis. The results are reported as parts per million by volume as methane basis (ppmC). Methane in air is the calibration standard. A gas sample is extracted from the source through a heated sample line and a glass fiber filter, directly into a hydrocarbon analyzer. The analyzer uses the flame ionization detector (FID) principle to detect hydrocarbons on a continuous basis. A TECO Model 51 FID analyzer was used for this test program.

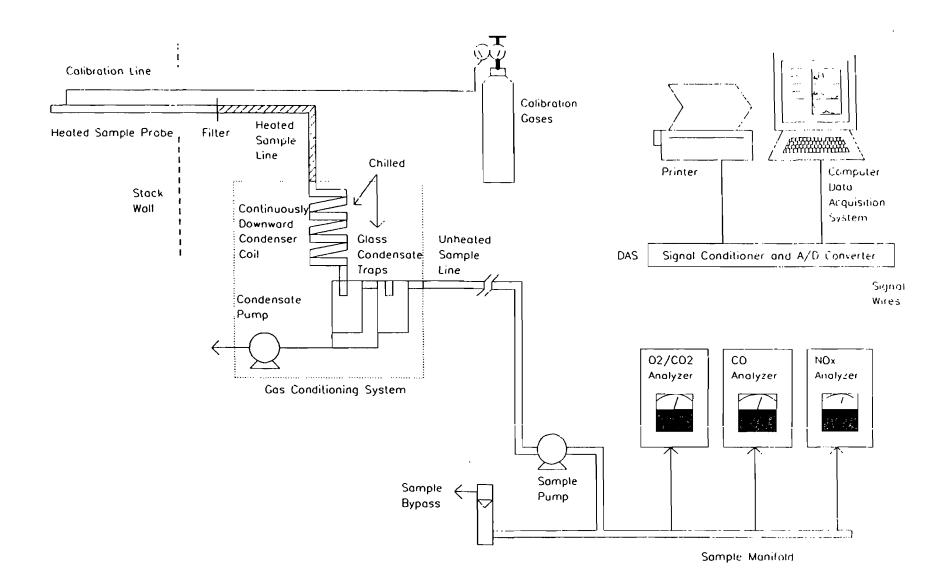


Figure 4-1. Schematic Diagram of STACS Reference Method System.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

Strict Quality Assurance/Quality Control (QA/QC) measures were observed for all sampling and analysis performed for the Lakeland McIntosh Unit #5 Combustion Turbine emissions test program. The STACS QA/QC program is designed to provide the highest quality data in terms of the accuracy and precision of the measurements as well as the completeness, representativeness and comparability of the results.

Accuracy is the degree to which a measurement agrees to the true value or to an accepted reference value. Precision is the degree of reproducibility (or agreement) of a set of individual measurements of an identical property.

The objective of the overall QA/QC program is to provide guidelines in terms of accuracy and precision which can be used to assess the uncertainty in the results and to substantiate the data in terms of the use of accepted procedures. Quality Control can be defined as the use of operational techniques and activities which sustain good quality data. Adherence to accepted sampling and analytical methods and procedures (and specifically noting any aberrations or exceptions to these procedures) is an example of quality control. Quality Assurance includes all those planned and systematic activities necessary to ensure that the accuracy and precision of the results meets the needs of the testing program. Quality Assurance programs can be internal or external.

Both internal and external programs are important to the overall integrity of the data. The internal QA program includes the activities planned by routine operators and analysts to provide an assessment of test data precision (and accuracy). Examples of implementation of an internal QA measure is routine calibration checks to assess the bias and drift of an analyzer after each test run. The measurement system bias is an indicator of the accuracy of the system and the drift is an indication of the precision of the measurements. External QA programs are those activities planned or conducted by an outside party or agency

(such as FDEP, Siemens-Westinghouse, Lakeland Utilities or independent consultants) which ensure that QC guidelines are followed and provide an indicator of the accuracy of the data. Examples of external QA procedures implemented by an outside entity would include review of the test matrix, observation of selected testing to ensure proper techniques are followed, submission of independent performance audits, and review of the final testing data.

The quality assurance/quality control measures for sampling and analysis included in the following documents were strictly followed during the emissions test program, except as noted below and elsewhere in this document. The procedures are incorporated by reference into the quality assurance program for this effort as they apply to the collection, analysis, and calculation of pollutant concentrations and mass emission rates from the unit.

The Code of Federal Regulations, Title 40, Part 60, Appendix A., EPA Methods 3A, 6C, 7E, and 10. The Quality Assurance Handbook for Air Pollution Measurement Systems -Volume III - Stationary Source Specific Methods (EPA-600/4-77-027b) Sections 3.0-3.4.

The following sections provide a brief synopsis of the internal QA program that was used for this test effort.

Experienced air quality personnel conducted the emissions testing project. Mr. Bill Mayhew of STACS was the project director and principal coordinator for the program. Mr. Mayhew has a B.S. in Chemical Engineering and is a Senior Project Engineer with over 15 years experience in emissions testing. Mr. Mayhew reviewed all data collected and calculations performed and participated in the production of the final report. Mr. Jamie Clark conducted the tests and reviewed the data and test report prior to submission. Mr.Clark has over 12 years experience in emissions testing and has a background in Mechanical Engineering. Mr. Clark was assisted on site by Mr. Charles Reshard., a chief technician with approximately 20 years experience in emissions testing and a current visible emissions certification. Mr. Ramesh Kagolanu and Mr. Jason Kraus of SWPC environmental engineering staff also observed and participated in the testing.

5.1 CALIBRATIONS AND DRIFT ASSESSMENTS

At the beginning of each test day, the EPA Reference Method 20, 10 and 25A test equipment is calibrated, and adjusted as required, on a two-point basis. EPA Protocol #1, NIST traceable standard calibration gases are used to calibrate the analyzers. Subsequently, additional calibration standards are introduced to the analyzers to check the linearity of the instrument response. If the linearity of the instrument is within +/-2% of full scale of the calibration standard value, the calibration is accepted (5% absolute of the gas value for Method 25A). Otherwise, corrective maintenance is performed, and the instrument is re-calibrated. During this time, bias checks are also performed by introducing calibration standards directly to the instrument manifold and through the entire sampling system and comparing the results.

Calibration checks are performed through the entire sampling system at the conclusion of each test run to determine calibration drift and any change in sample system bias.

Sampling system bias is assessed by introducing a mid-range or high-range gas through the sampling system and back to the analyzers. The maximum allowable bias is 5% of the value the analyzer read for the same gas when introduced to the probe tip as a percent of the span of the analyzer.

Sampling system drift checks are subsequently performed at the conclusion of each test run. Corrective actions are taken if the drift checks exceeds the method specific drift requirements after any test run (see section 4.2 for the requirements). All calibration gases were EPA Protocol 1, NIST traceable standards with a rated accuracy of +/- 1%.

5.2. <u>NO₂ CONVERTER EFFICIENCY</u>

An NO₂ to NO converter efficiency test is performed prior to sampling as prescribed in EPA Methods 7E and 20. The procedure used for testing the converter efficiency is given below:

- Fill a leak-free Tedlar bag approximately half full with an NO in N_2 blend.
- Fill the remainder of the bag with 0.1 UHP grade air.
- Immediately attach the NO/Air mixture to the inlet of the NO_x monitor being used.
- Allow the monitor to sample the gas in the bag for 30 minutes.

As the O_2 and NO in the bag are exposed to each other a reaction occurs which changes the NO to NO_2 . An attenuation in response over time of less than two percent absolute indicates that the converter efficiency is acceptable. Appendix C contains the NO_x convertor efficiency test results.

5.3 INSTRUMENT RESPONSE TIME

Maximum instrument system response time is determined by alternately passing zero and span gas through the entire sampling system and noting the time required for the monitors to achieve a change of 95% of the final concentrations. Both upscale and down scale response times are recorded. The instrument response time for this test program was determined to be 60 seconds.

5.4 LEAK CHECKS

Since all calibrations are performed through the entire sampling system, leak-checks are incorporated in each calibration. The criterion used for this test is an oxygen response to a zero gas of less than $0.5\% O_2$. Leak checks are also incorporated into the zero and span drift checks at the end of each run since the calibration gas is passed through the entire sampling system for each post test drift check. STACS also conducts a vacuum leak check of the system prior to sampling.

.'

SAMPLE CALCULATIONS

NO, Emissions Corrected to 15% Oxygen

$$NO_x @ 15\% O_2 = NO_x * ((20.9-15)/(20.9-O_2))$$

Where:

NO _x =	NO _x c (ppm)	oncentration as measured in the sample gas in parts per million by volume V).
O ₂ =		Oxygen concentration as measured in the sample gas by volume (%V).
NO _x @ 15% 0	2 =	NO_x concentration (ppmV) corrected to 15% oxygen.

NO, Emissions at 15% Oxygen and ISO Conditions

$$NO_{v150} = NO_{v} @15\% O_{2} * (Pref/Pobs)^{0.5} * e^{19(Hobs-0.00633)} * (288/Tamb)^{1.53}$$

Where:

NO_x @ 15% O₂ = NO_x concentration (ppmV) corrected to 15% oxygen.
NO_{xISO} = NO_x concentration (ppmV) at 15% oxygen and ISO conditions.
Pref = Reference compressor discharge pressure (PSIA).
Pobs = Observed compressor discharge pressure (PSIA).
Hobs = Specific humidity of ambient air (lb H₂O/lb Dry) air determined from the wet bulb and dry bulb readings and psychometric chart.

Tamb = Ambient temperature (K).

SAMPLE CALCULATIONS

Volumetric Flow Rate by EPA Method 19 Approach

 $Q_{std} = H (MMBtu/hr) \times F_d (scf @ 0\% O_2/MMBtu) \times 1hr/60min \times 20.9/(20.9-O_2)$

Where:

I

$$Q_{std} =$$
 Volumetric Flow Rate (dry standard cubic feet per minute or dscfm)
 $H =$ Heat Input Rate (MMBtu/hr)
 $F_d =$ Dry Oxygen based F-factor (scf @ 0% O₂/MMBtu)
 $O_2 =$ Measured Oxygen concentration (%V)

SAMPLE CALCULATIONS

Heat input rate:

I

I

1 MI

$H = HHV \ge Q_{fuel} \ge 3600 / 10^{6}$

Where:

Н	=	Heat Input Rate (Gross) to unit in MMBtu/hr.
HHV	=	Higher Heating Value of the fuel in Btu/lb (aka Gross Calorific Value).
Q _{fuel}	=	Flow rate of fuel in lb/sec.
10 ⁶	=	Conversion factor (Btu/MMBtu)
3600	=	Conversion factor (seconds/hours).

PORTA for O2 TRAV

. •

Run Data

Page 1

Time	co	NOx	02	THC	CO2	CO@15%O2	NOx@15%O2	NOx	co	Load	Load	Exth. Temp	IGV Pos.	Fuel Flow	Exh. Flow	Exh Flow	Amb. Press.	Amb Temp.	Rel Hurnidity	Specific Humidity
	ppm	ppm	%	ррт	%	ppm	ppm	(ib/hr)_	(lb/hr)	(MW)	(%)	(F)	(degrees)	_(KPPH)	M-19 (dscfn)	CT (b/sec)	(psia)	(F)	[%)	(ID h20/ID air)
Run 1: 10:1																				
10:12	39.3	32.0	13.2	0	4.24	30.1	24.5	160.9	120.3	163.7	68%	1139	28.2	76.45	42110124	966.8	14.65	74	64.83	.0117
10:13	41.3	31.6	13.2	0	4.23	31.6	24.2	158.9	126.4	163.8	68%	1137	28.1	76.47	42123539	966.4	14.65	75	65.37	0119
10:14	40.4	31.4	13.2	0	4.24	31.0	24.1	157.8	123.6	163.7	68%	1137	28.1	76.42	42092893	966.6	14,66	75	65.49	.0121
< 10:15	_37.5_		-13.1	0	4.26	28.4	23.8	156.0	113.4	163.8	68%	1139	28.1	76.51	41606108	964.3	14.66	75	64.89	.0121
3 10:16	24.2	32.4	13.0	0	4.33	18.1	24.2	159.7	72.6	164.4	69%	1149	28.5	76.89	41281872	963.6	14.66	76	64.74	.0123
10:17	21. <u>6</u>	35.Z	13.0	_ 0	4.32	16.1	26.7	175.7	64.7	162.9	68%	1153	28.5	76.79	41227699	954.1	14.66	77	64.02	.0125
10:18	22.6	35.7	13.0	0	4.33	16.9	26.7	175.7	67.7	164.1	66%	1155	28.6	76.76	41211155	953.2	14.66	76	63.21	.0122
10:19	21.9	35.4	13.0	_ 0	4.34	16.4	26.4	174.6	65.7	163.6	68%	1156	28.5	76.92	41300964	956.5	14.66	76	62.17	.0120
ς ^{10:20}	21.6	35.7	13.0	0	4.34	16.1	26.7	175.7	64.7	164.0	68%	1157	28.5	76.76	41214669	957.4	14.66	76	61.77	.0120
10:21	21.5	35.8	13.0	_ 0	4.34	16.1	26.7	178.1	64.4	163.9	68%	1158	28.5	76.75	41206157	954.1	14.66	76	61.22	.0119
(10:22	21.4	35.8	13.0	0	4.34	16.0	26.7	176.5	64.2	162.9	68%	1159	28.5	76.92	41296860	952.1	14.66	76	61.33	.0116
⁶ _10:23	20.9	35.8	13.0	_0	4.35		26.7	176.5	62.7	163.8	68%	1160	28.6	76.91	41294983	952.5	14.66	76	61.78	.0119
10:24	20.6	35.9	13.0	0	4.35	15.4	26.8	176.7	61.7	164.0	66%	1160	28 6	76.76	41215079		14.66			
7_10:25	19.7	36.0	13.0	0	4.36	14.7	26.9	177.4	59.1	163.4	68%	1161	28.5	76.87	41272843		14.66			
10:26	19.2	36.4	13.0	0	4.35	=	27.2	179.5	57.6	163.4	68%	1162	28.5	76.94	41309189		14.66			
8 <u>10:27</u>		36.5	13.0	_ 0	4.36		27.3	180.1	55.9	164.2	68%	1162	28.5	76.97	41326377		14.66			
5 10:28	18,6	36.9	13.0	0	4.36	13.9	27.6	182.1	55.9	163.6	68%	1162	28.6	76.98	41332844		14.66			
10:29	17.8	36.8	13.0	0	4.37	13.3	27.5	181.4	53,4	163.7	68%	1163	28.5	78.86	41276903	947.2	14.66	77	60.47	.0119
10:30	17.7	37.1	13.0	- 0	4.38	13.2	27.7	183.0	53.1	163.5	68%	1164	28.6	76.95	41316247	948.3	14.66	77	59.83	.0118
10:31	17.7	37.2	13.0		4.37	13.2	27.8	183.5	53.1	164.0	68%	1165	28.5	76.94	41306625	949.6	14.66	77	59.50	.0117
	17.6	37.4	13.0	0	4.37	13.1	27.9	184.4	52.8	163.6	68%	1166	28.5	76.93	41304827	950.0	14.66	77	59.42	.0117
10:33		<u>37.1</u> 37.5	_13.0		4.38		27.7	183.1	52.3	163.3	68%	1167	28.6	77.01	41344487	946.6	14.66	77	59.67	0117
-			12.9	0	4.38		27.7	182.7	48.9	163.3	68%	1187	28.5	76.98	40814769	948.0	14.66	76	59.57	.0113
1210:35	16.4	37.7	12.9	0	4.39		27.8	183.6	46.6	163.6	68%	1168	28.6	76.92	40779569	941.1	14.65	77	60.45	.0119
10:36	15.4	38.0	12.9	0	4.39		28.0	185.2	45.7	164.2	68%	1169	28.6	77.00	40826819	943.3	14.66	77	60.42	.0119
Averages:	22.7	35.8	13.0	0.0	4.3	17.0	26.6	175.5	68.3	163.7	68%	1157.6	28.5	76.8	41335738	954.1	14.7	76	62.01	0.012

.

```
Port B for Oz trav
```

•.

Run Data

ppm ppm % ppm % ppm ppm (bhn) (bhn) <th></th>																					
Run 2 10:48 - 11:12 D <thd< th=""> D <thd< th=""></thd<></thd<>	Time	co	NOx		THC	CO2	CO@15%O2	NOx@15%O2	NOx	co			Exh. Temp	IGV Pos						Rel Humidity	, ,
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		ppm	ppm	%	ppm	%	ppm	ppm	(lb/hr)	(Ib/hr)	(MW)	(%)	ரு	(degrees)	_(KPPH)	M-19 (dscfn)	CT (b/sec)	(psia)	(F)	(%)	(1b h2oAb eir)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					
$ \begin{array}{c} 10.49 \\ 10.49 \\ 14.6 \\ 38.0 \\ 12.9 \\ 12.9 \\ 12.9 \\ 12.9 \\ 12.9 \\ 12.1 \\$	Run 2 10:48	- 11:12																		_	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, 10:48	14,4	38.5	12.9	0	4.36	10.6	28.4	187.7	42.7	163.5	68%	1174	28.7	77.03	40839124	939.0	14.66	78	57.08	.0115
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		14.6	38.0	12.9	0	4.36	10.8	28.0	185.7	43.4	163.2	68%	1174	28.7	77.21	40938137	943 0	14.66	78	56.67	.0116
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		14,3	38.0	12.9	0	4.36	10.5	28.0	185.4	42.5	164.3	68%	1173	28.6	77.06	40853892	940.1	14.66	78	56.23	.0113
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				12.9	0	4.37	11.1	27.9	184.4	44.8	163.8	68%	1173	28.7	77.06	40854050	940.7				.0110
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		14.8	38.0	12.9	0	4.36	10.9	28.0	185.5	44.0	163.9	68%	1173	28.7	77.09	40873458	943.5	14.66	77	57.43	.0114
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_ 0			28.0													.0113
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					•																.0111
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					_ ~																.0112
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0																.0110
$ \begin{bmatrix} b_{10} : 59 & 15.6 & 37.9 & 12.9 & 0 & 4.37 & 11.5 & 28.0 & 184.9 & 48.3 & 183.6 & 68\% & 1172 & 28.8 & 77.08 & 40869291 & 943.0 & 14.66 & 76 & 54.90 & 0.0 \\ \hline 1130 & 135 & 37.7 & 13.0 & 0 & 4.37 & 11.8 & 28.2 & 186.4 & 46.7 & 163.2 & 68\% & 1172 & 28.7 & 77.13 & 41412487 & 943.6 & 14.66 & 77 & 55.49 & 0.0 \\ \hline 141:01 & 14.5 & 38.0 & 13.0 & 0 & 4.37 & 10.8 & 28.4 & 187.7 & 43.6 & 164.3 & 68\% & 1172 & 28.7 & 77.06 & 41373669 & 945.5 & 14.66 & 78 & 55.81 & 0.0 \\ \hline 1102 & 18.2 & 38.2 & 13.0 & 0 & 4.38 & 12.1 & 28.5 & 188.7 & 48.7 & 163.4 & 68\% & 1172 & 28.7 & 77.06 & 41373669 & 944.8 & 14.66 & 78 & 55.81 & 0.0 \\ \hline 1103 & 17.4 & 37.5 & 13.0 & 0 & 4.35 & 13.0 & 28.0 & 185.2 & 52.3 & 162.0 & 67\% & 1174 & 28.7 & 77.04 & 41365332 & 947.2 & 14.65 & 78 & 52.94 & 0.0 \\ \hline 1103 & 17.4 & 37.5 & 13.0 & 0 & 4.35 & 13.8 & 27.3 & 180.8 & 55.6 & 163.1 & 68\% & 1172 & 28.7 & 77.06 & 4137324 & 941.4 & 14.66 & 75 & 54.71 & 0.0 \\ \hline 1105 & 18.5 & 38.6 & 13.0 & 0 & 4.35 & 13.5 & 27.2 & 179.9 & 54.4 & 183.3 & 68\% & 1170 & 28.7 & 77.09 & 41386025 & 945.9 & 14.65 & 75 & 55.50 & 0.0 \\ \hline 1107 & 17.6 & 36.9 & 13.0 & 0 & 4.36 & 13.3 & 27.6 & 182.1 & 53.5 & 163.3 & 68\% & 1170 & 28.7 & 77.09 & 41386025 & 945.9 & 14.65 & 75 & 55.50 & 0.0 \\ \hline 1107 & 17.6 & 36.9 & 13.0 & 0 & 4.36 & 13.2 & 27.6 & 182.1 & 53.5 & 163.3 & 68\% & 1170 & 28.7 & 77.09 & 41386025 & 945.9 & 14.65 & 76 & 56.70 & 0.0 \\ \hline 1109 & 17.7 & 36.9 & 13.0 & 0 & 4.36 & 13.2 & 27.6 & 182.8 & 53.2 & 163.5 & 68\% & 1170 & 28.7 & 77.06 & 41376109 & 948.8 & 14.66 & 78 & 55.27 & 0.0 \\ \hline 11109 & 17.7 & 38.8 & 13.0 & 0 & 4.36 & 13.2 & 27.5 & 181.8 & 53.2 & 163.5 & 68\% & 1170 & 28.7 & 77.06 & 41376109 & 948.8 & 14.66 & 78 & 55.27 & 0.0 \\ \hline 11109 & 17.7 & 38.8 & 13.0 & 0 & 4.36 & 13.2 & 27.5 & 181.8 & 53.2 & 163.3 & 68\% & 1170 & 28.7 & 77.06 & 41376109 & 948.8 & 14.66 & 78 & 55.27 & 0.0 \\ \hline 11110 & 17.7 & 38.8 & 13.0 & 0 & 4.36 & 13.2 & 27.5 & 181.8 & 53.2 & 163.3 & 68\% & 1170 & 28.7 & 77.06 & 41376109 & 948.8 & 14.66 & 78 & 55.27 & 0.0 \\ \hline 11112 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.2 & 27.5 & 1$					0																.0112
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					0																.0110
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.0105
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0																.0109
$ \begin{bmatrix} 0 \\ 11:03 \\ 17.4 \\ 37.5 \\ 13.0 \\ 11:05 \\ 18.1 \\ 36.4 \\ 13.0 \\ 17.7 \\ 36.9 \\ 13.0 \\ 17.7 \\ 36.9 \\ 13.0 \\ 17.7 \\ 36.8 \\ 13.0 \\ 13.0 \\ 13.2 \\ 27.5 \\ 18.1 \\ 27.5 \\ 18.1 \\ 36.4 \\ 13.2 \\ 27.5 \\ 18.1 \\ 35.2 \\ 18.2 \\ 27.5 \\ 18.1 \\ 35.2 \\ 18.2 \\ 18.2 \\ 18.2 \\ 18.2 \\ 27.5 \\ 18.1 \\ 36.4 \\ 1170 \\ 28.7 \\ 77.0 \\ 41365332 \\ 28.7 \\ 77.04 \\ 41365332 \\ 947.2 \\ 14.65 \\ 77.03 \\ 41365332 \\ 947.2 \\ 14.65 \\ 77 \\ 53.63 \\ 0 \\ 1170 \\ 17.7 \\ 36.9 \\ 13.0 \\ 17.7 \\ 36.9 \\ 13.0 \\ 0 \\ 4.36 \\ 13.2 \\ 27.5 \\ 18.1 \\ 36.4 \\ 13.2 \\ 27.5 \\ 18.1 \\ 35.2 \\ 16.3 \\ 68\% \\ 1170 \\ 28.7 \\ 77.04 \\ 41365431 \\ 945.4 \\ 14.65 \\ 76 \\ 41376109 \\ 946.8 \\ 14.66 \\ 78 \\ 55.7 \\ 0 \\ 1111 \\ 17.7 \\ 36.8 \\ 13.0 \\ 0 \\ 4.36 \\ 13.2 \\ 27.5 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.1 \\ 32.2 \\ 75 \\ 18.4 \\ 53.2 \\ 163.3 \\ 68\% \\ 1170 \\ 28.7 \\ 77.06 \\ 4137609 \\ 944.3 \\ 14.65 \\ 78 \\ 55.57 \\ 0 \\ 11:12 \\ 17.8 \\ 36.9 \\ 13.0 \\ 0 \\ 4.36 \\ 13.2 \\ 27.5 \\ 18.1 \\ 32.2 \\ 75 \\ 18.4 \\ 53.2 \\ 163.3 \\ 68\% \\ 1170 \\ 28.7 \\ 77.1 \\ 41396001 \\ 943.8 \\ 14.66 \\ 76 \\ 55.24 \\ 0 \\ 14.66 \\ 76 \\ 55.24 \\ 0 \\ 1120 \\ 28.7 \\ 77.1 \\ 41396001 \\ 943.8 \\ 14.66 \\ 76 \\ 55.24 \\ 0 \\ 0 \\ 14.66 \\ 76 \\ 55.24 \\ 0 \\ 0 \\ 1112 \\ 17.8 \\ 18.2 \\ 10.1 \\ 1$				-	0																.0114
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					0																.0110
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					0																.0109
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					0					•											.0106 .0102
$ \begin{bmatrix} l_{011:07} & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.3 & 27.6 & 182.1 & 53.5 & 163.3 & 68\% & 1170 & 28.7 & 77.00 & 41341496 & 943.7 & 14.66 & 75 & 56.46 & 0.0 \\ \hline 11:09 & 17.7 & 36.9 & 15.0 & 0 & 4.36 & 13.2 & 27.6 & 182.3 & 53.2 & 163.5 & 68\% & 1170 & 28.7 & 77.04 & 41365431 & 945.4 & 14.65 & 76 & 56.70 & 0.0 \\ \hline 11:109 & 17.7 & 37.0 & 13.0 & 0 & 4.36 & 13.2 & 27.6 & 182.8 & 53.2 & 183.5 & 68\% & 1170 & 28.7 & 77.06 & 41376109 & 948.8 & 14.66 & 78 & 56.27 & 0.0 \\ \hline 11:109 & 17.7 & 36.8 & 13.0 & 0 & 4.36 & 13.2 & 27.5 & 181.9 & 53.3 & 163.9 & 68\% & 1170 & 28.7 & 77.12 & 41405299 & 944.3 & 14.65 & 77 & 54.97 & 0.0 \\ \hline 11:11 & 17.7 & 36.8 & 13.0 & 0 & 4.36 & 13.2 & 27.5 & 181.8 & 53.2 & 163.3 & 88\% & 1170 & 28.7 & 77.12 & 41405299 & 944.3 & 14.65 & 77 & 54.97 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 & 27.6 & 182.4 & 53.0 & 163.8 & 68\% & 1170 & 28.7 & 77.10 & 41396001 & 943.8 & 14.66 & 76 & 55.24 & 0.0 \\ \hline 11:12 & 17.8 & 36.9 & 13.0 & 0 & 4.36 & 13.1 $		_																			.0102
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					-																
11:10 17.7 37.0 13.0 0 4.36 13.2 27.6 182.8 53.2 183.5 68% 1170 28.7 77.06 41376109 948.8 14.66 78 56.27 0.0 11:10 17.7 38.8 13.0 0 4.36 13.2 27.5 181.9 53.3 163.9 68% 1171 28.7 77.12 41405299 944.3 14.65 77 54.97 0.0 1/41:11 17.7 36.8 13.0 0 4.36 13.2 27.5 181.8 53.2 163.3 88% 1170 28.7 77.06 41376109 944.3 14.65 76 55.57 0.0 11:12 17.8 36.9 13.0 0 4.36 13.1 27.6 182.4 53.0 163.8 68% 1170 28.7 77.10 41396001 943.8 14.66 76 55.24 .0 11:12 17.8 36.9 13.0					-																.0106 .0110
11:10 17.7 38.8 13.0 0 4.36 13.2 27.5 181.9 53.3 163.9 68% 1171 28.7 77.12 41405299 944.3 14.65 77 54.97 .0 /211:11 17.7 36.8 13.0 0 4.36 13.2 27.5 181.8 53.2 163.3 88% 1170 28.7 77.06 41375691 946.1 14.65 76 55.57 .0 11:12 17.6 36.9 13.0 0 4.36 13.1 27.6 182.4 53.0 163.8 68% 1170 28.7 77.10 41396001 943.8 14.66 76 55.24 .0																					.0110
121111 17.7 36.8 13.0 0 4.36 13.2 27.5 181.8 53.2 163.3 88% 1170 28.7 77.06 41375691 946.1 14.65 76 55.57 .0 11:12 17.6 36.9 13.0 0 4.36 13.1 27.6 182.4 53.0 163.8 68% 1170 28.7 77.10 41396001 943.8 14.66 76 55.24 .0																					.0110
<u>11:12 17.8 36.9 13.0 0 4.38 13.1 27.6 182.4 53.0 163.8 68% 1170 28.7 77.10 41396001 943.8 14.66 76 55.24 .0</u>					-				+												.0108
					•																.0107
Averages: 16.1 37.6 13.0 0.0 4.4 12.0 27.9 184.8 48.3 163.4 68% 1172.1 28.7 77.1 41216182 943.6 14.7 77 55.68 0.		16,1	37.6	_															77	55.68	0.011

Port C Oz TRAV.

Run Data

																			0	O
Tima	ço	NOx	02	тнс		-	NOx@15%02	NOx	co	Load	Load	Exh Temp		Fuel Flow	Exh. Flow	Exth Flow	Amb Press			Specific Humidity
	ppm	ppm	%	ppm	%	ppm	ppm	(Ib/hr)_	(lb/hr)	(MW)	(%)	(F)	(degrees)	(KPPH)	M-19 (dscfh)	CT (b/sec)	(psia)	(F)	(*)	(Ib h2o/Ib air)
		_																		
Run 3: 12:																				
12:50	19.4	38.8	13.1	0	4.28	14.7	29.3	189.8	57.8	157.5	66%	1156	30.0	75.3	40962477	942.5	14.84	80	46.87	.0102
42:51	21.1	36.7	13.1	0	4.28	16.0	27.8	181.7	63.6	160.5	87%	1161	29.7	76.3	41466279	943.6	14.64	80	47.47	.0102
12:52	21.6	36.3	13.1	0	4.28	16.3	27.5	181.5	65.7	163.8	68%	1155	28.6	77.0	41866786	954.7	14.64	79	47.34	.0100
212:53	21.3	36.0	13.1	0	4.28	16.1	27.2	179.8	64.8	163.9	68%	1154	28.6	76.9	41827999	955.0	14.64	79	47.83	0101
272:54	21.3	36.0	13.1	0	4.28	16.1	27.2	180.0	64.8	162.8	68%	1153	28.5	77.0	41864658	954.2	14.64	79	48.20	.0103
J 12:55	20.8	36.0	13.1	0	4.27	15.7	27.2	180.0	63.3	164.0	68%	1154	28.5	77.0	41883497	952.7	14.64	80	48.52	0104
12:56	24.1	35.5	13.1	0	4.26	18.2	26.9	177.4	73.3	163.1	88%	1154	28.5	77.0	41859372	954 6	14.84	79	48.05	.0102
412:57	23.4	34.6	13.1	0	4.26	17.7	26.2	172.9	71.2	182.6	68%	1154	28.5	77.0	41852431	954.0	14.64	80	47 75	.0103
12:58	23.7	34.9	13.1	0	4.26	17.9	26.4	173.7	71.8	161.9	67%	1153	28.5	76.7	41690647	948.2	14.64	80	48.29	.0106
512:59	23.4	34.8	13.1	0	4.26	17.7	26.3	172.8	70.7	161.5	67%	1153	28.5	78.5	41598653	947.5	14.64	81	47.18	.0105
13:00	23.6	34.9	13.1	0	4.25	17.9	26.4	173.4	71.4	162.0	67%	1154	28.5	76.5	41609245	949.0	14.64	81	46.75	.0104
6 13:01	23.9	34.7	13.1	0	4.26	18.1	26.2	172.6	72.4	161.6	67%	1155	28.5	76.6	41655354	946.8	14.64	81	46.12	.0104
13:02	23.5	34.8	13.1	0	4.26	17.6	26.3	172.9	71.1	161.5	87%	1155	28.5	76.5	41811967	948.5	14.64	80	45.95	.0101
7.13:03	23.0	35.0	13.1	0	4.26	17.4	26.5	173.8	89.5	162.0	67%	1155	26.5	76.5	41588082	947.9	14.63	80	46.45	.0101
€ 13:04	22.8	35.2	13.1	0	4.26	17.2	26.6	175.0	69.0	161.8	67%	1155	26.5	76.6	41837216	949.6	14.64	80	45.08	.0100
13:05	23.6	35.1	13.1	0	4.26	17.9	26.8	174.5	71.4	161.8	67%	1155	28.5	76.6	41633469	950.1	14.63	80	44.96	0099
9 13:06	22.9	34.8	-13:1	0	4.26	17.3	. 26.3	173.0	69.3	161.7	67%	1156	28.5	76.5	41624027	947.3	14.63	80	45.01	.0097
/ 13:07	22.1	35.2	13.1	0	4.26	16.7	26.6	174.9	66.6	161.9	67%	1155	28.5	76.5	41606328	946.7	14.63	78	45.27	.0094
13:08-	21.5	35.4	13.1	-	4.27	16.3	26.8	178.2	65.1	161.9	67%	1155	28.4	78.7	41687602	949.0	14.63	79	45.36	.0096
1 13:09	20.5	35.8	13.1		4.27	15.5	27.1	178.1	62.1	161.9	67%	1156	28.5	76.6	41667658	946.3	14.63	79	45.35	.0096
1,13:10	20.6	38.0	13.1	0	4.27	15.6	27.2	178.9	62.3	161.9	67%	1157	28.5	78.6	41630391	946.9	14.63	60	45.64	.0099
13:11	19.9	36.1	13.1	0	4.29	15.1	27.3	179.5	60.2	161.8	67%	1158	28.5	76.6	41649973	948.0	14.63	79	45.89	.0098
13:12	18.0	36.7	13.1	0	4.29	13.6	27.8	182.5	54.5	162.5	68%	1159	28.5	76.6	41650015	949.0	14.63	80	45.90	.0100
1213:13	18.4	37.3	13.1	0	4.26	13.9	28.2	165.4	55.7	162.1	68%	1160	26.5	76.6	41633951	948.5	14.63	82	46.25	.0107
13:14	16.7	37.1	13.1	0	4.28	14.1	28.1	184.2	56.5	161.2	67%	1162	28.5	76.5	41581647	948.8	14.63	83	43.82	.0105
Averages:	21.7	35.7	13.1	0.0	4.3	16.4	27.0	177.8	65.8	162.0	67%	1155.7	28.6	76.6	41653597	949.2	14.6	80	46.45	0.010

Averages:

21.2

35.3 13.1 0.0 4.3

PORT D - OZ TRAV.

16.0

۰.

26.7

175.7 64.1

161.9

67%

1159.2

28.2

76.5

Time CO NOx O2 THC CO2 CO2015%O2 NOx 015%O2 NOx CO Load Load Exh. Temp IGV Pos. Fuel Flow Exh. Flow Amb. Press Amb Temp Rel. Humidity Specific Humidity (degrees) (KPPH) M-19 (dscfh) CT (b/sec) ppm ppm % ppm % ppm ppm (Ib/hr) (Ib/hr) (MW) (%) (F) (psia) (F) (%) (Ib h2o/Ib air) Run 4: 13:25 - 13:49 13:25 21.5 36.1 13.1 0 4.23 40.15 .0094 16.3 27.3 179.2 65.0 162.4 68% 1161 28.5 76.5 41584236 948 2 14.63 82 13:26 21.4 35.1 13.1 0 16.2 76.5 41582207 948.4 14.63 82 40.81 .0095 4.24 26.6 174.3 84.7 161.6 67% 1160 28.4 Z_{13:26} Z_{13:28} 35.0 13.1 0 4.24 21.0 41.24 .0097 41596844 947.5 14.63 82 16.3 26.5 173.8 65.3 161.8 67% 1161 28.4 76.5 22.5 41.85 .0098 34.9 13.1 0 4.24 17.0 26.4 173.4 68.0 1159 28.2 76.5 41600416 951.1 14.63 82 161.8 67% 13:29 23.4 82 42.89 0098 34.5 13.1 0 4.24 17.7 26.1 171.2 70.7 161.3 67% 1158 28.2 76.4 41554228 953.2 14.63 313:30 13:31 113:32 24.4 34.2 13.1 0 4.24 18.5 76.6 41631216 952.7 14.63 83 43.08 .0102 25.9 1158 28.2 170.0 73.8 161.9 67% 23.5 82 34.0 13.1 0 4.24 17.8 25.7 169.0 71.1 161.9 67% 1158 28.2 76.6 41635635 945.0 14.63 44.01 .0101 22.4 34.3 13.1 0 4.25 170.3 76.5 41577308 950.1 14.63 81 44.21 .0098 16.9 25.9 67.7 1157 28.2 161.8 67% 513:39 513:34 -29.5-0 4.24 17.8 26.2 172.1 71.1 162.6 1156 28.2 76.6 41647484 951.4 14.62 80 44.64 .0098 66% 79 .0096 22.1 34.5 13.1 0 4.25 16.7 26.1 171.4 66.8 161.5 67% 1154 28.2 76.5 41603101 951.5 14.63 44.91 13:35 21.5 34.9 13.1- 0 4.25 16.3 26.4 173.2 64.9 161.7 67% 1155 28.2 76.4 41555241 950.3 14.62 80 45.11 .0099 613:38 20.8 41559688 14.63 45.63 .0104 35.3 13.1 0 4.26 15.7 26.7 175.2 62.8 161.8 67% 1156 28.2 76.4 950.0 81 -7^{13:37} 13:38 192 35.7 13.1 0 4.26 14.7 41605755 950.5 14.62 80 44.47 .0096 27.0 177.3 58.7 161.6 67% 1156 28.2 76.5 19.5 36.0 13.1 14.63 81 44.10 .0100 0 4.26 14.8 27.2 178.7 58.9 1157 28.2 76.4 41570246 951.7 162.8 68% 913:39 13:40 19.6 36.0 13.1 41573474 948.0 14.62 81 43.52 .0097 ~o 4.26 14.8 27.2 178.7 59.2 161.9 67% 1158 28.2 76.5 19.7 951.7 14.62 82 43,49 .0101 35.8 13.1 0 4.27 14.9 27.1 177.9 59.6 161.8 67% 1159 28.2 76.5 41623433 913:41 13:42 19.2 36.2 13.1 0 4.27 76.6 41634142 949.9 14.62 82 41.34 .0098 14 5 27.4 180.0 58.1 162.0 67% 1161 28.2 0098 19.4 82 41.67 36.2 13.1 0 4.27 14.7 27.4 180.1 58.7 161.9 67% 1161 26.2 76.6 41665165 951.0 14.62 13:43 19:5 36.1 13.1 0 4.27 14.8 76.5 41618583 949.3 14.62 82 41.52 0096 27.3 179.4 59.0 1161 28.2 161.9 67% 1413:44 19.8 35.9 13.1 0 4.27 14.8 27.2 178.5 59.3 162.1 68% 1162 28.2 76.6 41654246 948.6 14.62 83 41.32 .0100 13:45 20.5 36.1 13.1 0 4.26 15.5 27.3 76.8 41747277 951.5 14.62 83 40.59 .0097 179.9 62.2 162.8 68% 1162 28.2 213:46 21.3 35.7 13.1 0 4.26 16.1 27.0 177.7 64.5 161.7 67% 1162 28.2 76.7 41690166 952.0 14.62 82 41.43 .0098 13:47 21.7 35.3 82 .0099 13.1 -0 426 16.4 26.7 175.7 65.7 161.7 87% 1162 28.2 76.7 41681985 948.9 14.62 42.17 1213:48 21.2 35.5 13.1 0 4.26 16.0 41743672 947.6 14.62 82 .0099 26.9 176.9 64.3 162.2 68% 1163 28.2 76.8 42.25 13:49 20.3 35.8 13.1 15.4 76.6 41662427 945.4 14.62 81 42.75 .0096 0 4.27 27.1 178.1 61.5 162.2 68% 1162 28.2

Run Data

41623927

949.8

14.6

۰.

82

42.77

0.010

Page 4

Mointosh Urin and

۰.

Run Data

Time	co	NOx	02	тнс	CO2	CO@15%02	NOx@15%02	NOx	co	Load	Load	Exh Temp	IGV Pos.	Fuel Flow	Exh Flow	Exth Flow	Amb Press.	Amb, Temp	Rel Humidity	Specific Humidity
	ppm	ppm	%	ppm	%	ррт	ppm	(lb/hr)	(Ib/hr)	(MW)	(%)	(Ð	(degrees)	(KPPH)	M-19 (dscfh)	CT (b/sec)	(peia)	(F)	(%)	10 h20/10 air)
Run 6: 14:1	<u> </u>																			
14:12	1.6	31.3	12.8	0	4.43	1,2	22.8	200.0	6.2	236.4	99%	1128	0.8	102.2	53516518	1236.6	14.62	82	41.70	.0098
14:12	1.5	31.3	12.8	õ	4.43	1.1	22.9	200.2	5.8	235.3	98%	1128	0.8	102.2	53409178	1230.0	14.62	82	41.76	.0098
14:14	1.3	31.8	12.7	ŏ	4.45	0.9	22.9	200.5	5.0	236.1	98%	1130	0.8	102.0	52818190	1227.0	14.62	82	41.56	.0097
14:15	1.1	32.4	12.7	0	4.45	0.8	23.3	200.5	4.2	236.9	99%	1130	0.8	102.2	52863187	1227.5	14.62	82	40.70	.0094
14:16	0.8	32.6	12.7	ň	4.46	0.6	23.5	204.3	3.1	236.4	99%	1131	0.8	102.4	52985571	1227.5	14.61	02	40.70	.0034
14:17	0.9	32.5	12.7	ŏ	4.45	0.6	23.4	206.5	3.5	237.9	99%	1130	0.8	102.9	53205861		14.62			
14:16	1.2	32.5	12.7	õ	4.46	0.9	23.4	207.1	4.7	238.9	100%	1132	0.8	103.2	53363214		14.62			
14,19	1.2	32.2	12.7	ō	4.46	0.9	23.2	205.1	4.7	238.6	99%	1133	0.8	103.1	53340274		14.61			
14:20	1.4	32.0	12.7	Ō	4.46	1.0	23.0	203.9	5.4	239.3	100%	1133	0.8	103.2	53360641	1226.7	14.61	81	40.76	.0091
14:21	1.6	32.0	12.7	ō	4.45	1.2	23.0	203.5	6.2	238.2	99%	1134	0.8	103.0	53269804	1226.4	14.62	81	40.94	.0092
14:22	0.8	31.8	12.7	Ō	4.46	0.6	22.9	202.1	3.1	238.3	99%	1135	0.8	102.9	53239457	1226.3	14.62	81	41.04	.0093
14:23	1.7	31.7	12.7	Ō	4.45	1.2	22.8	201.7	6.6	236.5	99%	1134	0.8	103.0	53292341	1226.2	14.62	80	41.87	0092
14:24	1.3	31.8	12.7	Ó	4.46	0.9	22.9	202.3	5.0	237.6	99%	1135	0.8	103.0	53286288	1228.0	14.62	81	43.19	,0096
14:25	1.7	32.2	12.7	0	4.46	1.2	23.2	204.5	6.6	237.6	99%	1135	0.8	102.8	53177514	1223.7	14.61	81	43.94	.0099
14:26	1.6	32.3	12.7	0	4.46	1.2	23.2	205.3	6.2	236.8	99%	1135	0.8	102.9	53232692	1221.7	14.61	81	43.99	.0098
14:27	1.7	32.3	12.7	0	4.46	1.2	23.2	205.4	6.6	238.8	100%	1135	0.8	103.0	53261141	1218.8	14.61	80	43.74	.0096
14:28	1.7	32,4	12.7	0	4.47	1.2	23.3	206.2	6.6	238.3	99%	1135	0.8	103.1	53308600	1225.7	14.62	81	43.92	.0098
14:29	1.4	32.7	12.7	0	4.46	1.0	23.5	208.2	5.4	238.9	100%	1135	0.8	103.1	53326079	1222.4	14.62	81	43.81	.0097
14:30	1.4	32.7	12.7	0	4.47	1.0	23.5	208.3	5.4	236.7	99%	1135	0.8	103.1	53338076	1225.1	14.61	80	44.30	.0097
14:31	1.6	32.7	12.7	0	4.46	1.2	23.5	208.6	6.2	236.2	99%	1135	0.8	103.3	53439797	1220.6	14.62	80	44.68	.0096
14:32	1.7	32,7	12.7	0	4.46	1.2	23.5	208.6	6.6	237.5	99%	1135	0.8	103.3	53436178	1224.2	14.61	80	44.94	.0099
14:33	1.6	32.5	12.7	0	4.46	1.2	23.4	207.2	6.2	238.6	99%	1138	0.8	103.2	53397962		14.61			
14:34	1.7	32.5	12.7	0	4.46	1.2	23.4	207.0	6.8	237.8	99%	1136	0.8	103.1	53331835		14.62			
14:35	1.7	32.5	12.7	0	4.46	1.2	23.4	206.9	6.6	237,4	99%	1136	0.8	103,1	53322458	1224.0	14.62	82	42.05	.0096
14:36	1.7	32.3	12.7	0	4.45	1.2	23.2	205.2	6.6	237.3	99%	1136	0,8	102.9	53214969	1222.8	14.62	81	42.28	.0096
Averages:	1.4	32.2	12.7	0.0	4.5	1.0	23.2	205.0	5.6	237.8	99%	1133.5	0.8	102.9	53269506	1225.4	14.6	81	42.69	0.010

Run Data

Page 6

.

Time	co	NOx	02	THC		-	NOx@15%02	NOx	00	Load	Load	Exn. Temp		Fuel Flow (KPPH)	Exh. Flow M-19 (discili)		Amb. Press		•	Specific Humidity
	ppm	ppm	%	ррт	%	ppm	ppm	(Ib/hr)	(Ib/hr)	(MW)	(%)	(F)	(degrees)	(11971)	M-19 (dscm)	CT (b/sec)	(psia)	(F)	(%)	(10 h2o#b sir)
Run 6a: 14:	56 - 15:2	0			·															
14:56	1.7	32.0	12.7	0	4,43	1.2	23.0	203,1	6.6	237.0	99%	1136	0.1	102.8	53158335	1220.4	14.61	82	41.50	.0097
14:57	1.8	31.7	12.7	0	4.44	1.3	22.8	201.0	6.9	236.4	99%	1136	0.2	102.7	53104278	1225.0	14.61	82	41.78	.0096
14:58	1.8	31.8	12.7	0	4,45	1.3	22.9	201.5	6.9	236.9	99%	1137	0.1	102.6	53067328	1228.3	14.61	83	41.41	.0100
14:59	1.8	32.1	12.7	0	4.45	1.3	23.1	203.2	6.9	235.4	98%	1136	0.1	102.5	53014273	1223 5	14,61	83	40.73	.0097
15:00	1.8	32.1	12.7	0	4,45	1.3	23.1	203.4	6.9	237.1	99%	1135	0.1	102.6	53064605	1225.3	14.61	82	40.31	.0093
15:01	1.6	32.1	12.7	0	4,45	1.2	23.1	203.8	6.2	237.5	99%	1135	0,1	102.8	53161737	1222.0	14.61	82	40.65	0093
15:02	1.7	32.0	12.7	0	4,45	1.2	23.0	203.6	6.6	237.7	99%	1135	0.1	103.0	53280558	1224.2	14.61	81	40.98	.0093
15:03	1.8	32.0	12.7	0	4.45	1.3	23.0	203.6	7.0	237.8	99%	1135	0.1	103.0	53276875	1223.1	14.61	81	41.45	.0094
15:04	1.7	32.0	12.7	0	4.45	1.2	23.0	203.5	6.6	236.9	99%	1135	0.1	103.0	53256579	1227.0	14.61	82	41.77	0096
15:05	1.9	31.7	12.7	0	4.45	1.4	22.8	201.7	7.4	237.6	99%	1135	0.1	103.0	53277456	1225.3	14.61	81	42.16	.0096
15:06	1.8	31.4	12.7	0	4.45	1.3	22.6	199.8	7.0	237.4	99%	1135	0.1	103.0	53291059	1228.3	14.61	82	43.07	.0099
15:07	1.8	31.7	12.7	0	4,45	1.3	22.8	201.5	7.0	237.7	99%	1136	0.1	102.9	53244117	1227.4	14.61	82	42.70	.0098
15:08	1.8	31.7	12.7	0	4.46	1,3	22.8	201.1	7.0	236.6	99%	1136	0.1	102.7	53130257	1221.9	14.61	82	42.42	.0098
15:09	1.7	32.0	12.7	0	4,46	1.2	23.0	203.1	6.8	237.5	99%	1135	0.1	102.8	53148185	1222.8	14.61	81	41.83	.0093
15:10	1.8	31,9	12.7	0	4,45	1.3	23.0	202.9	7.0	237.5	99%	1135	0.2	103.0	53276931	1228.4	14.61	81	42.56	.0094
15;11	1.9	31.8	12.7	0	4,46	1.4	22.9	202.2	7.4	237.6	99%	1135	0.1	103.0	53255096	1224.8	14.61	81	42.70	.0096
15:12	1.7	32.1	12.7	0	4.46	1.2	23.1	204.2	6.6	237.8	99%	1136	0,1	103.0	53288040	1229.0	14.61	82	42.69	.0098
15:13	1.8	32.0	12.7	0	4,46	1.3	23.0	203.2	7.0	236.6	99%	1135	0.1	102.8	53181531	1226.5	14.61	82	41.94	.0096
15:14	1.7	31.9	12.7	0	4,45	1.2	23.0	202.8	6.6	238.4	99%	1135	0.1	102.9	53240131	1225.9	14.61	81	42.15	.0094
15:15	1.7	31.7	12.7	0	4.46	1.2	22.8	201.5	8.6	238.7	99%	1136	0.1	102.9	53236536	1224.6	14.61	83	43.05	.0101
15:16	1.9	32.1	12,7	0	4,45	1.4	23,1	203.9	7.3	236.8	99%	1136	0.1	102.8	53194989	1220.6	14.61	83	42.48	.0101
15:17	1.8	31.7	12.7	0	4.45	1.3	22.8	200.8	6.9	236.0	98%	1136	0.1	102.6	53052064	1226.8	14.61	83	39.95	.0095
15:18	1.8	31.5	12.7	0	4,45	1.3	22.7	199.5	6.9	236,8	99%	1136	0.1	102.5	53044155	1221.9	14.61	82	39.61	0092
15:19	1.8	31.8	12.7	0	4.45	1.3	22.9	201.6	6.9	237.0	99%	1137	0.2	102.6	53091823	1222.9	14.61	84	40.27	.0101
15:20	1,9	31.9	12.7	0	4,45	1,4	23.0	201.7	7.3	236.3	98%	1137	0.1	102.4	52948314	1220.8	14.61	83	39.08	.0093
Averages:	1.8	31.9	12.7	0.0	4.5	1.3	22.9	202.3	6.9	237.0	99%	1135.7	0.1	102.8	53171410	1224.7	14.6	82	41.57	0.010

.

٠.

Mointosh L 🗳 🤟

Ru. _ata

.

-			~									· · · ·								• • • • • • •
Time	co	NOx	02	THC		-	NOx@15%O2	NOx	co	Load	Load		IGV Pos.		Exh Flow		Amb Press.			
L	ppm	ppm	<u>%</u>	ppn	<u>%</u>	ppm	ppm	(lb/hr)	(ib/hr)	(MW)	(%)	<u>(F)</u>	(degrees)	(KPPH)	M-19 (dscfh)	CT (b/sec)	(psia)	(F)	(%)	(loh2o/loair)
Run 6: 15:3	6 45.50		_																	
15:35	1,8	31.7	12.7	٥	4.45	1.3 .	22.8	201.6	7.0	237.0	99%	1135	0.1	103.0	53251958	1227.2	14.61	82	43.36	0099
15:36	1.9	31.7	12.7	ő	4.45		22.8	201.6	7.4	237.0	99%	1135	0.1	103.0	53262846	1227.2	14.61	82 82	43.36	.0099
15:37	1.8	31.6	12.7	0	4.45	1.4 1.3	22.7	200.9	7.0	238.5	99%	1135	0.1	102.9	53240214	1220.7	14.61	82	43.43	.0100
15:38	1.8	31.0	12.7	0	4.45	1.3	22.8	200.9	7.0	238,5	99%	1135	0.1	102.9	53230881	1221.9	14.61	81	43.45	.0097
15:39	1,8	31.8	12.7	0	4.46	1.3	22.9	201.3	7.0	237.0	99%	1135	0.2	102.9	53285100	1224.9	14.61	81	43.45	.0099
15:40	1.8	31.6	12.7	0	4,45	1.3	22.9	202.3	7.0	237.1	98%	1136	0.1	103.0	53209389	1223.8	14.61	83	43.45	.0103
15:41	1.8	31.0	12.7	ň	4.45	1.3	22.3	196.5	6.9	235.5	98%	1138	0.1	102.5	53075615	1228.1	14.81	84	42.88	0103
15:42	1.8	31.1	12.7	ŏ	4.45	1.3	22.4	196.7	6.9	235.4	98%.	1136	0.1	102.0	52974561	1216.2	14.61	63	40,77	0097
15:43	1.7	31.4	12.7	ő	4.45	1.2	22.6	199.2	6.6	236.9	99%	1136	0.1	102.7	53141515	1221.1	14.61	82	41.65	.0096
15:44	1.8	31.4	12.7	ň	4 45	1.3	22.6	199.2	7.0	237.0	99%	1136	0.1	102.7	53133177	1222.2	14.61	82	41.64	.0097
15:45	1.8	31.3	12.7	ŏ	4.45	1.3	22.5	198.5	6.9	236.6	99%	1136	0.1	102.7	53109613	12.2.1	14.61			.0007
15:46	1.8	31.4	12.7	õ	4.45	1.3	22.6	199.0	6.9	237.9	99%	1136	0.2	102.8	53085035	1225.3	14.61	82	41.68	.0096
15:47	1.8	31.6	12.7	ŏ	4,46	1.3	22.7	200.8	7.0	237.1	99%	1135	0.1	102.9	53220798		14.61			
15:48	1.8	31.6	12.7	Ō	4.46	1.3	22.7	201.0	7.0	236.9	9 9%	1135	0.2	103.0	53278423		14.61			
15:49	1.8	31.4	12.7	Ō	4.45		22.6	199.5	7.0	237.0	99%	1136	0.2	102.9	53202719		14.61			
15:50	1.8	31.3	12.7	Ō	4,45		22.5	199.0	7.0	237.0	99%	1136	0.1	102.9	53246832		14.61			
15:51	1.8	31.3	12,7	Ō	4,45	1.3	22.5	198.6	7.0	237.2	99%	1136	0.2	102.7	53140971		14.61			
15:52	1.8	31.2	12.7	0	4.45		22.4	198.2	7.0	237.7	99%	1136	0.2	102.9	53214973		14.61			
15:53	1.8	31.4	12.7	0	4.45	1.3	22.6	199.3	7.0	238.9	99%	1136	02	102.8	53162159		14.61			
15:54	1.8	31.4	12.7	0	4.46	1.3	22.6	199.5	7.0	236,9	99%	1136	01	102.9	53206571		14.61			
15:55	1.8	31.6	12.7	0	4.46	1.3	22.7	200.4	6.9	236.1	98%	1136	0.1	102.7	53120580		14.61			
15:56	1.8	31.5	12.7	0	4,45	1.3	22.7	200.1	7.0	236.8	99%	1136	0.1	102.9	53200292	1230.3	14.61	82	42.50	.0097
15:57	1.9	31.5	12.7	0	4.45	1,4	22.7	199.9	7.3	237.4	99%	1136	0.2	102.7	53144692	1226.7	14.61	82	42.73	.0098
15:58	1.8	31.7	12.7	0	4,46	1.3	22.8	201.1	7.0	237.5	99%	1135	0.2	102.7	53138027	1225.4	14.61	81	42.59	.0096
15:59	1.8	31.7	12.7	0	4,46	1.3	22.8	201.4	7.0	237,6	99%	11 <u>35</u>	0.1	102.8	53198824	1225.7	14.61	81	43.11	.0096
Averages:	1.8	31.5	12.7	0.0	4.5	1.3	22.6	199.9	7.0	237,0	99%	1135.7	0,1	102.8	53179031	1224.8	14.6	82	42.62	0.010

Run Data

•

Page 1

.

Time	CO .ppm	NOx ppm	02 %	TH PPr		x02 (CO40,15%O2	NOx(0)15%O2	NOx (Ib/hr)	CO (lb/hr)	Load (MVV)	Load (%)	Exh. Temp (F)	IGV Pos (degrees)		Exh. Flow M-19 (dscfh)	Exh. Flow CT (16/6+44)	Amb Press. (psia)	Аттр. Тетр (F)	Ret. Humidity (%)	Specific Humidity (To h2o/to air)
un 7: 16:1	7 47.47																				
16:17	1.8	30.9	12.8	0		4.44	1,3	22.5	198.9	7.1	236.4	99%	1136	0.1	103 0	53915131		14,61			
16:18	1.8	31.0	12.8	ō		4.44	1,3	22.6	199.6	7.1	237.7	99%	1136	0.1	103.0	53919785	1225 1	14.61	81	46.34	.0104
16:19	1.8	30.8	12.7	Ō		4,45	1.3	22.2	195.6	7.0	236.7	99%	1135	0.2	102.8	53190008	1223 7	14.61	81	45 37	.0103
18:20	1.9	30.9	12.7	0) 4	4.45	1.4	22.2	196.2	7.3	236.8	99%	1135	0.1	102.8	53169014	1223 6	14,61	81	45.10	.0103
16:21	1.8	31.1	12.7	0) 4	4.45	1.3	22.4	197.4	7.0	237.2	99%	1135	0.1	102.8	53159242	1224.6	14.61	81	45.13	.0101
16:22	1.8	31.1	12.7	0		4.45	1.3	22.4	197.5	7.0	237.7	99%	1135	0.1	102,8	53176930	1226 2	14.61	81	45 20	.0101
16:23	1.9	31.2	12.7	0		4.45	1,4	22.4	198.3	7.3	237.0	99%	1135	02	102.9	53221031	1226 2	14.61	81	45 20	.0101
16:24	1.8	31.3	12.7	0		4.45	1.3	22.5	198.8	7.0	237.0 235.9	99% 98%	1135	0.2	102.9	53206634	1224.4	14.61	81	45.59	.0103
16:25 16:26	1.8 1.8	31.2 31.1	12.7 12.7	0		4,45 4,45	1,3 1,3	22.4 22.4	198.3 197.3	7.0 7.0	235.9	99%	1136 1135	0.2 0.2	102.9 102.7	53220525 53138441	1225 9	14.61 14.61	81	45.16	.0103
16:27	1.8	31.3	12.7	0		4,46	1.3	22.5	199.2	7.0	237.2	99%	1135	0.2	103.0	53292763		14.61			
16:28	1.8	31.1	12.7	ŏ		4.45	1.3	22.4	197,6	7.0	238.0	99%	1135	0.1	102.9	532 19725	1226.6	14.61	81	45.15	.0100
16:29	1.9	31.1	12.7			4.45	1.4	22.4	198.1	7.4	238.3	99%	1135	0.1	103.1	53336067	1223.3	14.61	81	45.36	.0100
16:30	1.9	31.1	12.7			4,45	1.4	22.4	198.3	7.4	238.3	99%	1135	0.1	103.2	53405653	1230.0	14.61	81	45.61	.0102
16:31	1.8	31.0	12.7			4.45	1.3	22.3	197.4	7.0	237.5	99%	1135	0.2	103.1	53323013	1229.2	14.61	81	45.53	.0101
18:32	1.8	31.2	12.7			4,46	1.3	22.4	198.3	7.0	237.9	99%	1135	0.1	102.9	53238892	1226.7	14.61	81	46.05	.0102
16:33	1.9	31.1	12.7	-	-	4,46	1.4	22.4	197.5	7.3	237.7	99%	1135	0.1	102.8	53194014	1226.5	14.61	81	46.28	.0102
16:34	1.8	31.1	12.7			4.46	1.3	22.4	197.5	7.0	237.8	99%	1135	01	102.8	53190589	1225.1	14.61	80	46.33	.0103
18:35	1.8	31.3	12.7			4.46	1.3	22.5	199.0	7.0	238.3	99%	1135	0.1	102.9	53236011	1226.8	14.61	80	45.30	.0102
18:36	1.9	31.2	12.7			4,46	1,4	22.4	198.5	7.4	237.8	99%	1134	0,1	103.0	53294386	1227.6	14.61	80	46 14	.0101
16:37	1.9	31.3	12.7			4.46	1.4	22.5	199.4 199.0	7.4	238.0 238.6	99% 99%	1134 1134	0.2 0.2	103.2 103.3	53356355	1229.5	14.60	80 80	47.08 47.81	.0101 .0104
16:38	17	31.2 31.0	12.7			4,46 4,46	1.2	22.4 22.3	199.0	6.6	238.3	99%	1134	0.2	103.3	53411174 53417713	1228.6 1228.1	14.61 14.61	80 80	47.90	.0105
16:39 18:40	1.7 1.9	31.0	12.7			4,40	1.4	22.3	197.6	7.4	237.8	99%	1135	0.2	103.2	53379197	1227.7	14.61	80	47.94	.0105
16:41	1.9	30.9	12.7		-	4,46	1.4	22.2	196.9	7.4	238.6	99%	1135	0.1	103.2	53366588	1224.7	14.61	80	47.83	.0105
16:42	1.8	30.9	12.7			4.46	1.3	22.2	196.6	7.0	238.1	99%	1135	0.2	103.0	53296730	1226.2	14.61	80	47.58	.0104
16:43	1.9	31.0	12.7			4,46	1.4	22.3	197.5	7.4	237.9	99%	1135	0.1	103.2	53364232	1226.4	14,61	80	47.52	0103
16:44	1.8	31.1	12.7			4.46	1.3	22.4	198 2	7.0	238.1	99%	1135	02	103.2	53365546	1226.4	14.61	80	47.52	.0103
16:45	1.8	31.2	12.7		0	4,46	1,3	22.4	198.7	7.0	238.5	99%	1135	0.1	103.1	53336517	1226.4	14.61	80	47.52	.0103
16:46	1.8	31.1	12.7			4,46	1,3	22.4	197.8	7.0	238.2	99%	1135	0.2	103.0	53277239	1228.3	14.61	80	47.71	.0104
16:47	1.8	31.1	12.7			4,46	1.3	22.4	198.1	7.0	238.1	99%	1135	0.1	103.1	53342965	1227.0	14.61	80	47.99	.0105
16:46	1.9	31.2	12.7			4.46	1.4	22.4	198.8	7.4	238.7	99%	1134	0.1	103, 1	53352160	1226.0	14,61	80	48.38	.0104
16:49	1.9	31.3	12.7			4,46	1.4	22.5	199.4	7.4	238.3	99%	1135	0.2	103.1	53349074	1227.1	14,61	80	48.64	.0106
16:50	1.8	31.1	12.7			4.46	1.3	22.4	198.3	7.0	237.7	99%	1134	0.2	103.2	53398850	1228.8	14.61	80	47.88	.0105
16:51	1.8	30.9	12.7			4,46	1.3	22.2	196.9 197 1	7.0 7.0	237.4 238.2	99% 99%	1134 1134	0.1 0.2	103.2 103.3	53377018	1228.4	14.61	80	48.04	.0103
16:52 16:53	1.8 1.8	30.9 30.9	12.7			4,46 4,46	1.3 1.3	22.2 22.2	197.2	7.0	238.6	99%	1134	0.2	103.3	53433826 53442327	1230 4 1230.0	14.61 14.61	80 80	48.47 48.28	.0105 .0104
16:53	1.8	31.1	12.7			4,46	1.3	22.4	198.2	7.0	237.2	99%	1135	0.2	103.2	53370854	1230.0	14.61	81	47.63	.0106
16:55	2.0	31.3	12.7		-	4.46	1.4	22.5	199.3	7.8	237.8	99%	1135	0.2	103.1	53318865	1226.1	14,60	81	46.40	.0103
16:56	1.9	31.2	12.7			4,45	1.4	22.4	198.6	7.4	238.0	99%	1135	0.1	103.0	53301312	1227.2	14.61	81	45 12	.0102
16:57	1.8	30.8	12.7			4,45	1,3	22.2	195.6	7.0	238.0	99%	1135	0.1	102.8	53198805		14.61		_	
16:58	1.8	31.0	12.7		0	4.46	1.3	22.3	197.0	7.0	237.4	99%	1135	0.1	102.9	53228513		14.61			
16:59	1.8	31.1	12.7		0	4.47	1.3	22.4	197 6	7.0	236.7	99%	1138	0.2	102.9	53212581		14.61			
17:00	1.8	31.7	12.7		0	4.45	1.3	22.8	201.0	6.9	236.5	99%	1136	0.2	102.7	53117368	1223.6	14.61	83	43.59	.0105
17:01	1.7	311	12.7		0	4,45	1.2	22.4	196.5	6.5	234.9	98%	1138	02	102.3	52906162	1219.8	14,60	85	41.49	.0104
17:02	1.9	31.0	12.		0	4,45	1.4	22.3	196.0	7.3	234.9 235.8	98% 98%	1136	0.1	102.4	52957915	1215 3	14,60	83 .	40.05	.0095
17:03 17:04	1.8 1.9	31.0 30 9	12. 12.		0	4,46 4,46	1.3 1,4	22.3 22.2	196.4 196.6	6.9 7.4	235.8	98%	1135 1135	0.1 0.1	102.6 103.0	53070240	1223.9	14.60	82 80	41.81	.0096
17:04	1.9	31.0	12.		0	4,40	1.4	22.2	190.0		237.1	99%	1135	0,1	103.0	53279970 53289449	1226.5 1224.9	14,61 14,60	80 82	43 36 44,73	.0095 .0104
17:06	1.9	30.8	12.		ŏ	4,45	1.5	22.2	195.0		235.0	98%	1137	02	102.5	53015792	1224.9	14.60	83	43.03	.0104
17:07	1.9	31.0	12.		ŏ	4.45	1.4	22.3	196.3		236.9	99%	1136	0.2	102.5	53036953	1219.6	14.61	81	42.56	.0097
17:08	1.9	31.1	12.		ŏ	4.46	1.4	22.4	197.1	73	236.2		1136	0.1	102.6	53080130	1221.2	14,61	82	42.87	.0098
17:09	1.9	31.6	12.		Ō	4.46		22.7	200.5		237.3	99%		0.1	102.7	53143228	1226.1	14,61	80	43 56	.0096
17:10	1.8	31.3	12.		0	4.46		22.5	198.8		236.2			0.2	102.9	53202065	1224.6	14.61	81	45.07	.0101
17:11	1.8	31.5	12.		0	4.46		22.7	200.3		238.0			0.2	102.9	53250348	1224.7	14,61	80	44.59	.0098
17:12	1.8	31.5	12.		0	4.46	1.3	22.7	200.7	7.0	238.1	99%	1135	0.2	103.2	53361785	1226 6	14,60	80	45.21	.0100
17:13	1.9	31.4	12.		0	4.46		22.6	200.3		238.2			0.2	103.3	53413116	1229.2	14,60	79	46.BO	.0099
17:14	1.8	31.3			0	4.46		22.5	200 0		238.8			01	103 5	53516530	1232.7	14,60	80	47,46	.0103
17:15	1.8	31.2			0	4.46		22.4	199.2		238.4	99%		02	103,4	53469008	1226 2	14.61	80	46 38	.0100
17:16 17:17	1.8	31.1	12.		0	4.46		22.4	198.5		237.5 238.9			0.2	103 3	53454971	1229.0	14,60	80	46 27	.0100
	1.9	31.0	12.	1	0	4.46	1.4	22.3	198.1	7.4	230.9	1007	6 1134	02	103.5	53514217	1229,1	14.61	79	46.91	.0100

McIntosh Unu #3

•

Run Data

Page 2

_

Tin		CO ppm	NOx ppm	02 %	THC ppm		CO@ 15%O2	NOx0015%-O2 ppm	NOx (Ib/hr)	CO (lb/hr)	Load (MW)	Load (%)	Exth. Temp	IGV Pos. (degrees)	Fuel Flow (KPPH)	Exh. Flow M-19 (dscfh)	Exh Flow ct(bhec)	Amb. Press. (psia)	Amb Temp. (F)	Rel Humidity (%)	Specific Humidity (16 h2o/h air)
Run 8	: 17:37	- 18:37																			
17:		1.9	31.1	12.7	0	4,45	1.4	22.4	198.7	7.4	239.9	100%	1133	0.1	103.4	53503925		14.61			
17:		1.8 1.9	31.0 30.9	12.7 12.7	0	4,45 4,45	1.3 1.4	22.3 22.2	198.0 197.7	7.0 7.4	238.4 238.6	99% 99%	1134 1133	0.2 0.2	103.4 103.6	53494438 53594881		14.61 14.60			
17		1.9	30.9	12.7	õ	4.46	1.4	22.2	197.7	7.4	239.2	100%	1133	0.1	103.6	53571653	1230.2	14.60	79	48.90	.0102
17:		1.8	31.0	12.7	0	4.46	1.3	22.3	198.4	7.0	240.0	100%	1134	0.1	103.6	53610327	1230.9	14.60	79	49.10	.0103
17:		2.0	31.0	12.7	0	4,46	1.4	22.3	198.5	7.8	239.8	100%	1133	0.1	103.7	53636373	1233.7	14.60	79	49 18	.0103
17:		1.8 1.9	31.0 31.1	12.7 12.7	0	4.46 4.46	1.3 1,4	22.3 22.4	198.3 199.3	7.0 7.4	239.5 238.1	100% 99%	1134 1134	01	103.6 103.8	53668527 53669996	1235 5 1235 5	14.60 14.60	79 79	49.25 49.25	.0103 .0103
17:		1.9	31.2	12.7	ŏ	4.46	1.4	22.4	199.6	7.4	239.6	100%	1134	02	103.6	53590375	1235.5	14.60	79	49.25	.0103
17:		1.9	31.1	12.7	0	4,46	1.4	22.4	199.0	7.4	238.8	100%	1134	0.2	103.6	53603993	1232.7	14.60	79	49.21	.0102
17		1.8 1.8	31.3 31.1	12.7	0	4,46 4,46	1.3 1.3	22.5 22.4	200.2 198.9	7.0 7.0	239.0 239.4	100%	1133 1133	0.2	103.6 103.6	53571736 53566625	1232.9 1235.9	14.60 14.60	78 79	49.26 49.79	.0102 .0104
17		1.9	31.0	12.7		4.46	1.3	22.3	198.2	7.4	238.5	99%	1133	0.1	103.5	53544028	1233.9	14.60	79	49.79	.0104
17		1.9	31.0	12.7		4.46	1.4	22.3	198.2	7.4	238.5	99%	1133	0.1	103.5	53544028	1233.0	14.60	79	49.80	.0104
17		1.9	31.1	12.7	0	4.46	1.4	22.4	199.1	7.4	239.3	100%	1133	0.2	103.6	53608879	1234,6	14.60	79	49.85	.0104
17		1.8 1.9	31.1 31.0	12.7	0	4,46 4,46	1.3 1.4	22.4 22.3	199.2 198.7	7.0 7.4	239.3 239.8	100%	1133 1133	0.2 0.2	103.7 103.8	53641405 53679768	1232.4 1235.1	14.60 14.60	79 78	49.99 49 94	.0104 .0103
17		1.9	31.0	12.7		4.47	1.4	22.3	198.6	7.4	239.7	100%	1133	0.1	103.7	53661626	12.00.1	14.60		1001	.0100
17	:55	1.9	31,1	12.7	0	4,47	1,4	22.4	199.2	7.4	239.5	100%	1133	0.1	103.7	53654783	1233.8	14.60	79	49.18	.0102
	:56	1.8	31.1	12.7		4.46	1.3	22.4	199.4	7.0	239.4	100%	1133	0.2	103.8	53694582	1235.6	14.60	79	48.71	.0101
	:57 :58	1.9 1.8	31.2 31.3	12.7 12.7		4.46 4.47	1.4 1.3	22.4 22.5	200.1 200.8	7.4 7.0	238.7 239.4	99% 100%	1133 1133	0.2	103.8 103.9	53703513 53718145	1232.2 1234.0	14.60 14.60	79 76	49.32 49.88	.0102 .0102
	:59	1.8	31.3	12.7		4.47	1.3	22.5	200.7	7.0	239.8	100%	1133	01	103.8	53696074	1204.0	14.60	.0	43.00	.0101
	:00	1.8	31.1	12.7		4,46	1,3	22.4	199.3	7.0	239.7	100%	1134	0.1	103 8	53665517		14.60			
	:01 :02	1.8 1.8	31.1 31.2	12,7 12,7		4.46 4.47	1.3 1.3	22.4 22.4	199.3 199.7	7.0 7.0	239.6 239.2	100%	1133 1133	0.2 0.2	103.7 103.6	53657917 53608780		14.60 14.60			
	03	1.9	31.2	12.7		4,46	1.3	22.4	199.8	7.4	239.7	100%	1133	0.1	103.7	53644613		14.60			
	:04	1.9	31.1	12.7		4.46		22.4	199.4	7.4	240.2	100%	1133	0.1	103.8	53693678		14.60			
	:05	1.8	31.1	12.7		4,47	1.3	22.4	199.4	7.0	240.0	100%	1133	0.2	103.8	53698398	1234.5	14.60	78	50.89	.0104
	:06 :07	1.9 1.8	31.2 31.2	12.7 12.7		4.47 4.47	1.4 1.3	22.4 22.4	200.1 200.3	7.4 7.0	239.5 239.9	100%	1133 1133	0.2 0.1	103.8 104.0	53716607 53771086	1233.7	14.60 14.60	78	51.01	.0104
	:08	1.9	31.2	12.7		4,47	1.4	22.4	200.4	7.4	240.0	100%	1133	0.2	104.0	53798695	1231.0	14.60	78	51.48	.0103
	:09	1.6	31.4	12.7		4.46	1.3	22.6	201.8	7.0	240.3	100%	1133	0.1	104.1	53827724	1231.3	14.60	78	51.25	.0103
	:10	1.9 1.9	31.2	12.7		4.47	1.4	22.4 22.4	200.2 199.9	7.4 7.4	240.5 240.4	100%	1133	0.1	103.9	53741248	1232.8	14.60	78	51.23	.0103
	11 12	1.9	31,1 31,1	12.7		4.47 4.47	1.4 1.4	22.4	199.2	7.4	239.8	100%	1132 1133	0.1	104.1 103.7	53825344 53656022		14.60 14.60			
	:13	1.8	31.0	12.7		4.47	1.3	22.3	198.5	7.0	240.2	100%	1132	0.2	103.7	53639037	1233.7	14.60	78	50.63	0102
	:14	1.9	31.0	12.7		4.47	1.4	22.3	198.8	7.4	240.4	100%	1132	0.1	103.8	53712858	1233.4	14.60	78	51.17	.0103
	k:15 k:16	1.9 2.0	31.2 31.0	12.7		4.47	1.4	22.4 22.3	200.3 199.1	7.4 7.8	240.7 240.9	100%	1132 1132	01	103.9	53766114	1233.2 1235.0	14.60 14.60	78 77	51,79	.0104
):17	1.9	30.7	12.7		4.46 4.47	1.4 1.4	22.3	197.5	7.4	240.5	100%	1132	0.2	104.0 104.2	53799178 53891576	1235.0	14.60	77	51,59 51,95	.0103 .0103
18	3:18	1.9	31.1	12.7	0	4.47	1.4	22.4	199.8	7.4	240.4	100%	1132	0.2	104.0	53815743	1238.3	14.60	78	52.62	.0107
	3:19	1.9	31.0	12.7		4.47	1.4	22.3	199.0	7.4	240.4	100%	1132	0.1	104.0	53769938	1234.4	14.60	77	51.09	.0102
	3:20 3:21	1.9 1.9	31.1 31.3	12.7		4.47 4.47		22.4 22.5	200.1 201.1	7.4 7.4	240.7 240.3	100%	1132 1132	0.2 0.2	104.2 104.0	53875049 53808454	1235.9 1235.9	14.60 14.60	77 77	51.91 51.89	.0104 .0103
	3:22	1.9	31.1	12.7				22.4	199.6	7.4	240.4	100%	1132	0.1	103.9	53764385	1233.9	14.60	77	51.96	.0103
18	3:23	1.9	31.2	12.7	0	4.47	1.4	22.4	200.4	7.4	240.4	100%	1132	0.1	104.0	53803320	1234.9	14.60	77	52.56	.0104
	3:24 D:05	1.8	31.1	12.1				22.4	199.0	7.0	239.5	100%	1134	0.2	103.6	53592793	1234.1	14.60	79	51.24	.0109
	3:25 3:26	1.8 1.8	31.0 31.2	12.1 12.1				22.3 22.4	198.0 199.6	7.0 7.0	238.5 239.1	99% 100%	1134	0.2 0.1	103.4 103.6	53496253 53575287	1234.0 1231.2	14,60 14,60	80 78	49.24 47.99	.0108 .0097
	3:20 3:27	1.8	31.2	12.				22.4	200.5	7.0	240.0	100%	1132	0.2	104.0	53809610	1236.1	14.60	77	50.09	.0097
	8:28	1.9	31.1	12.				22.4	199.9	7.4	240.3	100%	1132	02	104.1	53825140	1233.6	14.60	77	51,28	.0101
	8:29 8:30	1.9 1.9	31.3 31.4	12.				22.5 22.6	201.3	7.4 7.4	240.9 240.5	100%	1132	0.1	104.1	53867069	1237.8	14.60	77	52.03	.0102
	6.30 8:31	2.0	31.4	12. 12.				22.5	202.1	7.4	240.5	100%	1133	0.1 0.2	104.2 104.2	53900550 53911592	1231.3 1233.5	14.60 14.60	77 77	52.72 53.28	.0103 .0104
	8:32	1.9	31.2					22.4	200.6	7.4	240.4	100%		0.1	104.1	53854824	1200.0	14.60		33.20	.0104
	8:33	1.9	31.3					22.5	201.0	74	240.4	100%		0.2	103,99	53788205	1235.3	14.60	77	53 44	0104
	8:34 8:35	1.9 1.9	31.1 31.1	12				22.4	199.9 190 8	7.4 7.4	240.7 240.5	100%		02	104,07	53831919		14.60			
	8:35 8:36	1.9	31.1	12 12,				22.4 22.4	200.1	7.4	240.5	100%		02	104.03 104,18	53811651 53885302		14.60 14.60			
	8:37	1.9	<u>31.</u> 0	12.	70	4.4		22.3	199.4	7.4	241.1	100%	1132	0.1	104,13	53861229	1235 6	14.60	76	53.60	.0103
Ave	rages:	1.9	31,1	12.	70,	0 4.5	1.3	22.4	199.5	7.3	239.9	1.0	1132.8	02	103.8	53706465.4	1234,1	14.6	78	50.67	0.010

Time CO NOX O2 THC CO2 CO2 CO2 Specific Humidity Specific Humidity pom pom pom pom pom pom pom (bMY) (bMY) (F) (bSQ) (bSQ) (bMX) (bMY) (F) (bSQ) (bSQ) (bSQ) (bMY) (bMY) (F) (bSQ) (bSQ)

:

Ē

Time CO NO: O2 THC CO2 pom pom yet yet yet yet 1100 15.5 37.7 13.0 0 4.37 1101 17.4 37.5 13.0 0 4.35 1103 17.4 37.5 13.0 0 4.35 1106 18.1 30.0 13.6 13.0 0 4.36 1106 17.7 36.9 13.0 0 4.36 1110 17.7 36.8 13.0 0 4.36 1111 17.7 36.8 13.0 0 4.36 1111 17.7 38.8 13.0 0 4.33 1121 16.3 38.3 13.8 0 4.89 1112 16.3 38.3 13.6 0 4.33 1122 20.4 34.3 13.0 0.3 13.0 0.3 1122 20.6 3.20	ppm ppm 116 28.2 10.8 28.4 12.1 28.5 13.0 28.0 13.5 27.6 13.2 27.6 13.2 27.6 13.2 27.6 13.2 27.6 13.2 27.6 13.2 27.6 13.2 27.6 13.1 27.5 13.2 27.6 13.1 12.9 30.6 -0.2 -0.2 0.8 -0.2 0.8 14.4 0.4 13.8 10.5 16.5 26.2 16.5 26.2 16.5 26.2 16.5 26.1 18.7 25.9 94.4 68.6 106.2 25.9 94.4 68.6 106.3 21.3 17.7 8.9 17.7 8.9 17.7	NOx CO (b/r) (b/r) 186.4 46.7 185.7 43.6 185.7 43.6 185.7 44.6 185.7 44.6 185.7 54.4 180.8 55.6 179.9 54.4 182.1 53.2 182.8 53.2 182.8 53.2 182.4 33.0 124.4 34.3 73.6 46.3 85.2 52.7 93.4 57.4 202.4 52.2 20.9 -1.0 5.5 -0.7 26.6 55.6 171.0 75.2 2378.3 427.2 2378.3 427.2 2378.3 427.2 2378.3 427.2 244.6 83.1 97.4 71.1 5.4 71.1 0.0 0.0 0.0 0.0 <tr< th=""><th>163.9 1184 163.2 1161 163.5 1161 163.5 1161 163.5 1161 0.0 979 0.0 954 0.0 958 0 765 0 784 0 822 0 822 0 822 0 923 0 923 0 923 0 923 0 923 0 923 0 938 0.2 699 0.3 654 0.2 699 0.3 660 1.7.7 595 23.7 602 29.6 610 36.8 622 47.7 565 47.8 666 47.9 753 50 755 46.5 765 46.5</th><th>(begress) (KPPPH) 28 7 7713 28 6 7704 28 7 7706 28 7 7706 28 7 7706 28 7 7704 28 7 7706 28 7 7706 28 7 7706 28 7 7706 28 7 7706 28 7 7708 28 7 7708 28 7 7708 28 7 7712 28 7 7710 28 7 7710 28 7 7710 28 7 7710 28 7 7708 28 7 7709 28 7 7709 28 7 7709 28 7 7698 28 7 7699 28 7 7699 28 7 7699 28 7 7699 28 7 769 28 7 769 28 7 769 28</th><th>H 19 (dsch) 41 12 (dsch) 41 12 (ds 53 41 35 (268 59 41 37 366 85 41 35 (268 59 41 37 366 85 41 35 (268 59 41 37 366 85 41 35 (268 59 41 37 366 10.69 41 33 57 610.69 41 33 57 610.69 41 33 57 610,69 41 34 51 86 41 37 65 10 9 41 34 51 86 41 37 65 10 34 41 37 65 10 37 17 52 15 65 11 39 71 17 01 14 20 49 45 41 37 1 60 46 05 23 71 19 46 02 79 78 42 41 31 34 490 88 41 32 01 46 90 41 40 67 35 08 41 95 100.169 41 02 73 73 42 41 31 34 490 88 41 32 01 46 90 41 40 67 35 08 41 95 100.169 41 95 100.169 41 95 100.169 41 95 100.169 41 95 100.612 41 95 300.169 41 95 300.169 41 20 26 12 42 4 15 80 67 023 48 80 96 69 2 76 84 54 97 2 87 14 000 27 53 15 99 99 97 0.12 21 44 38 13 41 21 208 21 2.08 21 2.08</th><th>Exb. Flow CT (Exec) 943.6 945.5 944.8 945.5 944.8 945.4 945.9 945.4 945.4 945.4 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.5 945.5 945.5 945.5 945.5 945.7 945.7 945.7 945.7 952.7 1.3 1.3 1.3 1.3 1.3 1.0 1.8 2.5 211.0 239.5 476.5 951.7 952.7 952.7 978.1 119.4 1203.7 1235.8 1305.8 1075.5</th><th>Arab. Press. (psie) 14.86 14.86 14.86 14.85 14.8</th><th>Arnb, Temp (F) 77 78 78 78 78 76 75 75 76 77 78 78 76 77 76 77 78 78 77 76 77 78 78 77 76 77 78 78 77 76 77 78 78 77 76 77 78 77 78 77 78 77 78 78 77 76 77 78 78 77 76 77 78 78 77 76 77 78 78 77 78 78 77 78 78 77 78 78 77 78 78</th><th>Rei, Humdhy (%) 555 49 553 31 52 34 53 31 55 50 56 46 55 50 56 46 55 57 56 57 55 57 56 57 52 50 52 50 52 51 52 30 52 52 30 52 52 30 52 52 30 52 52 30 52 52 35 52 37 52 35 52 35 52 35 52 35 52 35 52 37 52 35 52 44 52 44 52 52 44 55 52 44 55 52 44 55 52 44 55 52 44 55 52 44 55 55 54 54 55 54 54 55 54 54 55 54 54 55 54 54</th><th>Specific Humidity (b h296 m) 0 109 0 109 0 100 0 100 0 100 0 110 0 100 0 100 0 100 0 100 0 100 0 100 0 108 0 110 0 110 0 110 0 110 0 108 0 100 0 108 0 100 0 108 0 100 0 108 0 100 0 108 0 100 0 108 0 100 0 100 0 108 0 100 0 100</th></tr<>	163.9 1184 163.2 1161 163.5 1161 163.5 1161 163.5 1161 0.0 979 0.0 954 0.0 958 0 765 0 784 0 822 0 822 0 822 0 923 0 923 0 923 0 923 0 923 0 923 0 938 0.2 699 0.3 654 0.2 699 0.3 660 1.7.7 595 23.7 602 29.6 610 36.8 622 47.7 565 47.8 666 47.9 753 50 755 46.5 765 46.5	(begress) (KPPPH) 28 7 7713 28 6 7704 28 7 7706 28 7 7706 28 7 7706 28 7 7704 28 7 7706 28 7 7706 28 7 7706 28 7 7706 28 7 7706 28 7 7708 28 7 7708 28 7 7708 28 7 7712 28 7 7710 28 7 7710 28 7 7710 28 7 7710 28 7 7708 28 7 7709 28 7 7709 28 7 7709 28 7 7698 28 7 7699 28 7 7699 28 7 7699 28 7 7699 28 7 769 28 7 769 28 7 769 28	H 19 (dsch) 41 12 (dsch) 41 12 (ds 53 41 35 (268 59 41 37 366 85 41 35 (268 59 41 37 366 85 41 35 (268 59 41 37 366 85 41 35 (268 59 41 37 366 10.69 41 33 57 610.69 41 33 57 610.69 41 33 57 610,69 41 34 51 86 41 37 65 10 9 41 34 51 86 41 37 65 10 34 41 37 65 10 37 17 52 15 65 11 39 71 17 01 14 20 49 45 41 37 1 60 46 05 23 71 19 46 02 79 78 42 41 31 34 490 88 41 32 01 46 90 41 40 67 35 08 41 95 100.169 41 02 73 73 42 41 31 34 490 88 41 32 01 46 90 41 40 67 35 08 41 95 100.169 41 95 100.169 41 95 100.169 41 95 100.169 41 95 100.612 41 95 300.169 41 95 300.169 41 20 26 12 42 4 15 80 67 023 48 80 96 69 2 76 84 54 97 2 87 14 000 27 53 15 99 99 97 0.12 21 44 38 13 41 21 208 21 2.08 21 2.08	Exb. Flow CT (Exec) 943.6 945.5 944.8 945.5 944.8 945.4 945.9 945.4 945.4 945.4 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.3 945.4 945.5 945.5 945.5 945.5 945.5 945.7 945.7 945.7 945.7 952.7 1.3 1.3 1.3 1.3 1.3 1.0 1.8 2.5 211.0 239.5 476.5 951.7 952.7 952.7 978.1 119.4 1203.7 1235.8 1305.8 1075.5	Arab. Press. (psie) 14.86 14.86 14.86 14.85 14.8	Arnb, Temp (F) 77 78 78 78 78 76 75 75 76 77 78 78 76 77 76 77 78 78 77 76 77 78 78 77 76 77 78 78 77 76 77 78 78 77 76 77 78 77 78 77 78 77 78 78 77 76 77 78 78 77 76 77 78 78 77 76 77 78 78 77 78 78 77 78 78 77 78 78 77 78 78	Rei, Humdhy (%) 555 49 553 31 52 34 53 31 55 50 56 46 55 50 56 46 55 57 56 57 55 57 56 57 52 50 52 50 52 51 52 30 52 52 30 52 52 30 52 52 30 52 52 30 52 52 35 52 37 52 35 52 35 52 35 52 35 52 35 52 37 52 35 52 44 52 44 52 52 44 55 52 44 55 52 44 55 52 44 55 52 44 55 52 44 55 55 54 54 55 54 54 55 54 54 55 54 54 55 54 54	Specific Humidity (b h296 m) 0 109 0 109 0 100 0 100 0 100 0 110 0 100 0 100 0 100 0 100 0 100 0 100 0 108 0 110 0 110 0 110 0 110 0 108 0 100 0 108 0 100 0 108 0 100 0 108 0 100 0 108 0 100 0 108 0 100 0 100 0 108 0 100 0 100
1255 241 365 131 0 426 1257 234 346 131 0 426 1258 237 349 131 0 426 1259 234 348 131 0 426 1300 236 349 131 0 425 1301 239 347 131 0 425 1302 235 348 131 0 426 1302 235 348 131 0 426 1304 228 352 131 0 426 1305 236 351 131 0 426	18.2 26.9 17.7 26.2 17.9 26.4 17.7 26.3 17.9 26.4 18.1 26.2 17.8 26.3 17.4 26.5 17.2 26.6 17.9 26.6 17.9 26.6	177.4 73.3 172.9 71.2 173.7 71.8 172.8 70.7 173.4 71.4 172.8 72.4 172.9 71.1 173.6 75.5 175.0 690.0 174.5 71.4 173.0 693.0	163.1 1154 162.6 1154 161.9 1153 161.5 1153 162.0 1154 161.5 1155 162.0 1155 162.0 1155 162.0 1155 162.0 1155 161.5 1155 162.0 1155 161.8 1155 161.8 1155 161.8 1155 161.7 1156	28.5 77.0 28.5 77.7.0 28.5 76.7 28.5 76.5 28.5 76.5 28.5 76.5 28.5 76.5 28.5 76.5 28.5 76.5 28.5 76.6 28.5 76.6 28.5 76.6 28.5 76.6 28.5 76.6 28.5 76.5	41856372.14 41852431.29 41690647.10 41598653.13 41609244.94 41865353.94 41861986.57 41588081.98 41837215.51 4183349.39 41624026.60	954.6 954.0 948.2 947.5 949.0 948.8 948.5 947.9 949.6 950.1 947.3 946.7	14.64 14.64 14.64 14.64 14.64 14.64 14.63 14.63 14.63 14.63 14.63	79 80 81 81 81 80 80 80 80 80 80 80	48.05 47.75 48.29 47.16 46.75 46.12 45.95 48.45 45.08 44.96 45.01 45.27	0102 0103 0106 0106 0104 0104 0101 0101 0100 0099 0097 0094

:

| pom
13 25 21.6
13 26 21.4
13 27 21.6
13 28 22.5
13 28 23.4
13 32 23.5
13 32 23.5
13 32 23.5
13 32 23.5
13 32 23.5
13 34 21.9
344 19.6
345 20.5
346 21.3
349 21.2
349 21.2
340 21.2
340 19.5
340 19.5
346 21.3
349 21.3
349 21.3
349 21.5
349 21.5

 | ppm % 361 13 350 13. 350 13. 349 13. 345 13. 34.5 13. 34.6 13. 34.6 13. 34.6 13. 34.6 13. 35.3 13. 36.0 13. 36.0 13. 36.0 13. 36.0 13. 36.2 13. 36.2 13. 36.2 13. 36.2 13. 36.1 13. 36.2 13. 36.1 13. 36.1 13. 36.1 13. 36.1 13. 36.1 13. 36.1 13.
 | ppm
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 0 | CO2
%
4.23
4.24
4.24
4.24
4.24
4.24
4.24
4.25
4.26
4.26
4.26
4.26
4.26
4.27
4.27
4.27
4.27
4.27
4.27
4.27
4.26
4.26
4.26
4.26
4.26
4.27
4.27
4.27
4.27
4.27
4.27
4.27
4.27 | CO2 15%02
ppm
16.3
16.3
17.0
17.7
18.5
16.9
17.8
16.7
16.3
16.7
16.3
16.7
16.3
16.7
16.3
16.7
14.8
14.8
14.5
14.5
16.1
16.5
16.1
16.5
16.1
16.5
14.8 | Norg 15%02
ppm
27 3
26 6
26 5
26 4
26 1
25 9
25 9
26 1
26 4
26 1
25 9
26 2
26 1
26 4
26 7
27 0
27 2
27 2
27 2
27 1
27 4
27 4
27 3
27 0
27 2
27 2
27 1
27 4
27 3
27 0
27 2
27 2
27 1
27 4
27 2
27 3
27 0
26 7
27 2
27 3
27 0
27 2
27 2
27 1
27 4
27 2
27 3
27 0
27 2
27 2
27 1
27 2
27 2
27 1
27 2
27 2 | NOx
(bhr)
179.2
173.8
173.8
173.4
171.2
170.0
170.3
172.1
171.4
173.2
177.3
178.7
178.7
178.7
178.7
178.7
178.9
170.0
180.1
179.4
178.5
179.9
176.9
176.9
176.9
176.9
176.9 | CO
(b/rv)
65.0
64.3
68.3
68.0
70.7
73.8
70.7
73.8
70.7
73.8
87.7
58.9
58.2
58.7
58.9
59.2
59.2
59.2
59.2
59.3
58.1
58.7
59.3
64.5
58.0
59.3
64.5
58.5
64.3
64.3
65.5 |
Load
(MVV)
162.4
161.6
161.8
161.9
161.9
161.9
161.8
162.6
161.7
161.8
162.6
161.7
161.8
162.8
161.9
161.9
161.9
161.9
161.9
161.9
161.9
162.0
161.9
162.2
161.7
162.2
162.2
162.2 | Exh. Temp
(F)
1161
1160
1159
1158
1158
1158
1157
1156
1156
1156
1156
1156
1156
1156 | (GV Pos.
(degrees)
28.5
28.4
28.2
28.2
28.2
28.2
28.2
28.2
28.2 | Fuel Flow (KPPH)
765
765
765
765
764
766
765
765
765
765
765
765
765
765
765 | Ext. Flow
M-19 (dscfn)
41584236.35
41582207.49
41596433.96
41600415.07
41554228.22
41631216.50
41632634.73
41557304.01
41647483.77
41603100.73
415550240.74
4155568.35
41500248.44
41573474.34
415273474.34
4152424.44
41573474.34
4152424.44
41573474.34
4152424.44
41573477.22
41680165.85
41681984.64
41743671.94
41652427.47 | Eth. Flow
GT (bhee)
948.2
948.2
947.5
953.2
952.7
945.0
955.1
955.4
955.3
950.3
955.3
955.0
955.5
955.7
949.9
945.6
951.5
952.0
948.6
951.5
952.0
948.6
951.5
952.0
948.5
957.5
957.6
945.4
947.9
 | Amb. Press.
(psia)
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.63
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62 | Amb. Temp
(F)
82
82
82
82
82
82
81
83
80
80
81
80
81
80
81
82
82
82
82
82
82
82
83
83
82
82
82
82
83
83
83
83
82
82
82
83
83
82
82
83
83
82
82
83
82
82
82
82
82
82
82
82
82
82
82
82
82 | Rel. Humidity
(%)
40.15
40.81
41.24
41.85
42.89
43.08
44.01
44.21
44.64
44.91
45.63
44.41
45.63
44.47
44.10
43.52
43.52
41.34
41.34
9
41.34
9
41.34
9
41.34
9
41.32
40.59
41.32
42.25
42.27
5
43.23
44.16 | Specific Humidity
(b h2wb
an)
.0094
.0095
.0098
.0098
.0098
.0098
.0098
.0099
.0104
.0099
.0104
.0099
.0104
.0099
.0104
.0098
.0099
.0104
.0098
.0096
.0098
.0096
.0098
.0096
.0096
.0098
.0096
.0096
.0096
.0096
.0098
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0096
.0006
.0006
.0006
.0006
.0006
.0006
.0006
.0006
.0006
.0006
.0006
.0006
.0006 | |

--
--|--|--|---|--|--
--|---|---|--|--
---|---|--
---|--|--|--|--|
| 3:52 46.3
3:53 46.4
3:54 46.3

 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0
0
0
0
0
0
0
0
0
0
0
0
0
0 | 0.42
-0.03
-0.04
-0.04
3.47
4.86
4.87
4.87
4.87
4.87
4.85
3.54
-0.01
-0.04
4.27
4.42
4.43
4.42
4.43
4.44
4.43
4.44
4.44 | 11.0
13.1
13.1
16.7
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.2
-0.4
-0.5
-0.5
-0.5
-0.5
-0.5
-0.5
-0.5
-0.5 | 10.3
12.4
12.9
12.9
33.2
7.3
1.0
0.5
0.3
0.1
27.7
432.7
44.3
11.8
0.7
5.1
17.3
20.7
22.7
22.2
22.7
22.8
22.9
23.3
23.5
23.4
23.4 | 67.8
81.6
85.0
84.9
218.8
48.1
6.5
3.3
22
0.5
183.2
2917.7
305.7
85.2
37.9
132.8
185.5
195.5
195.5
195.5
200.0
200.0
200.0
200.5
204.5
206.2
206.5
207.1
 | 44.0
52.5
52.3
66.9
-1.7
-1.0
-1.7
-1.0
28.9
76.1
193.7
62.0
76.1
193.7
62.0
76.4
13.4
8.3
5.5
1
5.3
6.2
5.3
6.2
5.3
6.2
5.3
6.2
5.3
6.2
5.3
6.2
5.3
6.2
5.3
6.2
5.3
6.2
5.3
6.3
6.4
7
7
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7
8
7 | 161.4
162.0
161.9
161.9
162.4
162.4
162.6
163.1
162.6
163.5
168.0
174.0
174.0
187.5
194.3
202.1
210.2
216.5
223.3
231.4
235.3
236.4
235.3
236.4
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9
236.9 | 1161
1161
1162
1163
1163
1163
1164
1165
1166
1166
1168
1166
1159
1150
1142
1135
1130
1142
1125
1130
1124
1128
1130
1131
1131 | 28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.2
28.3
20.6
11.5
11.5
11.5
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8 | 76.6
76.5
76.7
76.8
76.7
76.8
76.7
76.8
76.7
76.8
76.9
77.1
78.6
80.5
78.9
77.1
78.6
80.5
82.8
84.7
82.7
95.3
97.3
90.4
102.2 | 13765404.73
15534743.78
155571906.28
15552188.96
40190734.59
43799218.17
45815021.23
45895346.57
42365374.65
59442697.45
1110761816.50
1707005652.84
173704601.94
47383467.02
47548283.30
48561915.97
43845699.41
50334562.05
53516517.58
53409173.09
52818190.39
5281180.59
5281186.59
5284681.91
 | 947.4
950.2
948.2
947.5
950.3
946.7
947.5
947.5
947.5
946.2
946.2
946.2
946.2
946.2
947.6
968.1
942.9
91018.3
1034.2
1066.8
1099.4
1131.8
1131.8
1132.7
11227.9
1226.6
1227.5 | 14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62
14.62 | 81
82
82
82
82
81
82
82
82
82
82
82
82
82
81
81
81
81
81
82
82
82
82
82
82
82
82
82
82
82
82
82 | 44, 15
43, 79
42, 82
42, 15
42, 09
41, 82
41, 52
41, 52
41, 52
41, 52
40, 98
40, 97
40, 98
40, 97
40, 98
40, 98
40, 97
40, 98
40, 97
40, 98
40, 97
40, 98
40, 97
40, 90
40, 90
40 | 0099
0101
0099
0096
0097
0096
0096
0096
0096
0096
 | |
| 119 1.2 120 1.4 121 1.6 122 0.8 123 1.7 124 1.3 25 1.7 26 1.6 27 1.7 28 1.7 123 1.7 123 1.7 123 1.7 123 1.7 123 1.7 131 1.6 123 1.7 133 1.6 123 1.7 123 1.7 123 1.7 133 1.6 134 1.7 135 1.7 136 1.7 137 1.7 138 1.7

 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 777777777777777777777777777777777777777 | 4.45
4.45
4.45
4.45
4.46
4.46
4.46
4.46 | 0.9
10
1.2
0.8
1.2
0.9
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2 | 232
230
230
229
228
232
232
232
233
235
235
235
235
235
235 | 206.1
203.5
203.5
202.1
203.5
202.1
203.5
204.5
205.3
205.4
206.2
208.2
208.2
208.2
208.2
208.2
208.2
208.2
208.2
208.2
208.2
207.0
205.2
205.2
205.2
205.1
205.2
 | 47
5.4
5.2
3.1
5.0
6.5
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6
6.6 | 238.6
239.3
238.2
238.3
238.5
237.6
237.6
236.8
238.8
238.8
238.9
238.7
238.2
238.7
238.2
238.5
238.6
238.6
237.8
237.8
237.8
237.4
237.3
237.6
237.6
237.7
238.5
237.6
237.7
238.5
237.6
237.7
238.5
237.6
237.7
238.5
237.6
237.7
238.5
237.6
237.7
238.5
238.5
237.6
237.6
237.6
237.6
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.5
238.7
238.7
238.7
238.7
238.7
238.7
238.7
238.7
238.7
238.5
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.7
238.7
238.7
237.6
237.7
238.5
237.7
238.5
237.7
238.5
237.7
237.5
237.7
238.5
237.7
237.5
237.7
237.5
237.7
237.5
237.7
237.5
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.6
237.7
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
237.6
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
238.0
237.7
238.0
237.7
238.0
237.7
238.0
237.7
238.0
238.0
237.7
238.0
238.0
238.0
238.0
237.7
238.0
238.0
238.0
238.0
237.7
238.0
238.0
238.0
238.0
238.0
237.7
238.0
238.0
238.0
238.0
238.0
238.0
238.0
237.7
238.0
238.0
238.0
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7
237.7 | 1133
1133
1134
1135
1134
1135
1135
1135 | 0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8 | 103.1
103.0
103.0
102.9
103.0
102.8
102.8
102.8
102.8
102.8
103.1
103.1
103.1
103.1
103.1
103.2
103.1
103.2
103.1
103.2
103.1
103.2
103.1 | 53340274.07
53360641.07
53269803.99
53239456.51
532239456.51
5322386287.94
53177514.45
53227692.34
53236078.98
53339675.73
533326078.98
5333975.73
5333975.94
53333786.94
534337786.94
53337361.69
533327466.11
53224469.04
53224691.02
53322466.11
53224691.02
53224681.021
5332658.96
81
 | 1226.7
1226.4
1228.3
1226.2
1228.0
1223.7
1221.7
1221.8
1225.7
1222.4
1222.6
1224.2
1224.0
1222.8
1217.2
1222.8
1217.2
1222.8 | 14,61
14,62
14,62
14,62
14,62
14,61
14,61
14,61
14,61
14,62
14,62
14,62
14,62
14,62
14,62
14,62
14,62
14,62
14,61 | 81
81
81
81
81
81
80
80
80
80
80
80
80
80
81
81 | 40,76
40,94
41,04
41,87
43,99
43,99
43,74
43,92
43,81
44,30
44,68
44,94
42,05
42,28
42,78
43,21
43,87
 | 0091
0092
0096
0096
0098
0098
0098
0098
0098
0098 | |
| 40 18 441 20 442 17 843 -0.3 844 -0.2 845 -0.3 844 -0.2 845 -0.3 845 -0.3 845 -0.3 845 -0.3 845 -0.3 845 -0.3 845 -0.3 856 1.7 957 1.8 956 1.7 957 1.8 90 1.8 91 1.6 92 1.7 93 1.8 94 1.7 95 1.7 94 1.7 95 1.7 94 1.8 95 1.7 95 1.7 95 1.7 96 1.8 97 1.8 98 1.7 91 <t< td=""><td>32.1 12.
32.3 13.
1.7 13.
0.5 13.
0.1 12.
1.2 0.
18.7 0.
44.5 0.
45.0 0.
45.0 0.
45.0 1.
45.1 0.
45.1 0.
45.1 0.
45.1 0.
45.1 0.
45.1 0.
45.1 1.
32.4 12.
32.0 12.
32.1 12.
32.1 12.
32.1 12.
32.0 12.
31.7 12.
32.0 12.
32.0 12.
32.1 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
31.7 12.
31.9 12.
32.0 12.
31.9 12.
32.0 12.
31.9 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
31.</td><td>7 6 8 8 8 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>$\begin{array}{c} 4.44\\ 4.487\\ 4.889\\ 4.849\\ 4.8$</td><td>1.3 1.6 1.4 -0.2 -0.2 -0.1 10.2 13.2 13.3 14.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.4 1.2 1.3 1.4 1.2 1.4 1.3 1.4 1.3 1.4 1.3 1.4
1.3</td><td>23.1
26.1
19.1
1.4
0.4
0.2
0.1
0.3
5.3
12.6
12.7
14.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0</td><td>204.3
203.8
168.9
12.5
3.7
2.2
0.6
3.0
111.2
112.8
113.0
124.1
113.0
124.1
203.7
203.1
201.5
203.4
203.4
203.4
203.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.</td><td>7.0
7.6
-1.3
-0.9
-1.3
-0.4
-55.0
7.12
71.7
71.6
7.0
6.6
8.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6</td><td>238.0
237.2
237.2
237.3
237.3
238.3
238.5
238.5
239.1
239.2
239.1
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6</td><td>1135
1136
1137
1136
1136
1135
1135
1135
1135
1135
1135</td><td>08
08
08
08
08
05
01
01
01
01
01
01
01
01
01
01
01
01
01</td><td>103.1
102.0
102.9
102.8
102.8
102.8
102.9
102.8
102.9
102.9
102.9
102.9
102.9

102.9
102.9
102.9
102.9
103.1
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.5
103.4
103.5
103.4
103.5
103.5
103.5
103.4
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
102.5
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5</td><td>53306766.81
58843031.97
61500146.69
61392766.03
61392766.03
61425723.15
61405041.47
50733297.38
2098768299.37
20997667.88
20997667.88
20997667.88
20990688.76
20990688.76
20990688.76
20990688.76
20990688.76
20990688.76
20990688.76
20990688.77
20990688.77
20990688.77
2099068731.55
200906731.78
2009068731.55
200906731.78
2009068731.55
200906731.78
2009068.77
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.3</td><td>1228.4
1226.8
1224.1
1222.6
1223.9
1228.8
1228.1
1228.5
1229.2
1232.4
1223.6
1229.2
1232.4
1223.6
1228.6
1228.0
1224.7
1220.4
1225.0
1224.3
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1225.0
1224.2
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
12</td><td>$\begin{array}{c} 4.651\\ 14.651\\ 14.62\\ 14.61\\ 14.651\\
14.651\\ 14$</td><td>81
81
81
81
81
81
81
81
81
81
81
81
81
8</td><td>$\begin{array}{c} 43 \ 80 \\ 43 \ 57 \\ 43 \ 56 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 42 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \$</td><td>0097
0099
0099
0098
0098
0097
0094
0094
0094
0094
0098
0099
0097
0099
0099
0099
0099
0099</td><td></td></t<> | 32.1 12.
32.3 13.
1.7 13.
0.5 13.
0.1 12.
1.2 0.
18.7 0.
44.5 0.
45.0 0.
45.0 0.
45.0 1.
45.1 0.
45.1 0.
45.1 0.
45.1 0.
45.1 0.
45.1 0.
45.1 1.
32.4 12.
32.0 12.
32.1 12.
32.1 12.
32.1 12.
32.0 12.
31.7 12.
32.0 12.
32.0 12.
32.1 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
31.7 12.
31.9 12.
32.0 12.
31.9 12.
32.0 12.
31.9 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.9 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
32.0 12.
31.7 12.
31. | 7 6 8 8 8 8 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | $\begin{array}{c} 4.44\\ 4.487\\ 4.889\\ 4.849\\ 4.8$ | 1.3 1.6 1.4 -0.2 -0.2 -0.1 10.2 13.2 13.3 14.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.2 1.3 1.3 1.2 1.3 1.4 1.2 1.3 1.4 1.2 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 |
23.1
26.1
19.1
1.4
0.4
0.2
0.1
0.3
5.3
12.6
12.7
14.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0
23.0 | 204.3
203.8
168.9
12.5
3.7
2.2
0.6
3.0
111.2
112.8
113.0
124.1
113.0
124.1
203.7
203.1
201.5
203.4
203.4
203.4
203.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201.5
201. | 7.0
7.6
-1.3
-0.9
-1.3
-0.4
-55.0
7.12
71.7
71.6
7.0
6.6
8.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6.9
6 | 238.0
237.2
237.2
237.3
237.3
238.3
238.5
238.5
239.1
239.2
239.1
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
239.2
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6
237.6 | 1135
1136
1137
1136
1136
1135
1135
1135
1135
1135
1135 | 08
08
08
08
08
05
01
01
01
01
01
01
01
01
01
01
01
01
01 |
103.1
102.0
102.9
102.8
102.8
102.8
102.9
102.8
102.9
102.9
102.9
102.9
102.9
102.9
102.9
102.9
102.9
103.1
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.4
103.5
103.5
103.4
103.5
103.4
103.5
103.5
103.5
103.4
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
103.5
102.5
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
103.0
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5
102.5 | 53306766.81
58843031.97
61500146.69
61392766.03
61392766.03
61425723.15
61405041.47
50733297.38
2098768299.37
20997667.88
20997667.88
20997667.88
20990688.76
20990688.76
20990688.76
20990688.76
20990688.76
20990688.76
20990688.76
20990688.77
20990688.77
20990688.77
2099068731.55
200906731.78
2009068731.55
200906731.78
2009068731.55
200906731.78
2009068.77
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.31
201907.3 | 1228.4
1226.8
1224.1
1222.6
1223.9
1228.8
1228.1
1228.5
1229.2
1232.4
1223.6
1229.2
1232.4
1223.6
1228.6
1228.0
1224.7
1220.4
1225.0
1224.3
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1224.2
1225.0
1225.0
1224.2
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1225.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
1255.0
12 | $\begin{array}{c} 4.651\\ 14.651\\ 14.62\\ 14.61\\ 14.651\\
14.651\\ 14$ | 81
81
81
81
81
81
81
81
81
81
81
81
81
8 | $\begin{array}{c} 43 \ 80 \\ 43 \ 57 \\ 43 \ 56 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 43 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 41 \ 51 \\ 42 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \\ 51 \ 51 \$ | 0097
0099
0099
0098
0098
0097
0094
0094
0094
0094
0098
0099
0097
0099
0099
0099
0099
0099 | |
| 8 1.8
.9 1.8
.20 1.9
.21 1.5
.22 3.9
.23 0.5
.24 0.4

 | 31.8 12
31.9 12
31.7 12
31.5 13 | 7 0
7 0
7 0
6 1
8 0 | 4.45
4.45
4.45
4.33
4.89
4.89 | 1.3
1.3
1.4
1.1
3.1
0.4
0.3 | 22.7
22.9
23.0
22.8
25.1
8.2
0.7 | 199.5
201.6
201.7
201.3
221.5
72.7
5.9
 | 6.9
7.3
5.8
16.7
2.2
1.8 | 236.8
237.0
236.3
236.9
237.1
238.8
237.4 | 1137
1137
1135
1135
1135
1135 | 0.2
0.1
0.1
0.1
0.1
0.1 | 102.5
102.6
102.4
102.8
102.7
102.9
102.9 | 53091823.04
52948313.67
53177719.29
58890480.12
61492713.30
61497758.50
 | 1222.9
1220.8
1221.1
1222.2
1224.6
1224.5 | 14.61
14.61
14.61
14.61
14.61
14.61 | 84
83
74
81
81
81 | 40.27
39.08
38.42
41.77
41.92
42.19
 | .0101
.0093
.0068
.0094
.0094
.0095 | |

	(b) 123-bb arg 00597 00597 00599 00597 00599 00599 00599 00599 00599 00599 00599 00599 00599 00597 00596 00597 00596 00597 00596 00597 00596 00597 00596 0050	Rado Interferance on CO channel (2) 16:35
--	--	---

	e CO NOx O2 THC CO2 ppm ppm % ppm %	CO@15%O2	NOx@15%O2	NOx (104hr)	CO (10/hr)	(MW)	Ext. Temp (F)	IGV Pos. (degrees)	Fuel Flow (KPPH)	Exh. Flow M-19 (dscfh)	Exh. Flow CT (briec)	(psia)	Amb. Temp. (F)	Rel. Humidity (%) 47.78	Specific Humidity (1b h2o/lb air) .0101
_	25 0.9 0.1 13.8 0 4.88 26 0.9 0.1 11.9 0 4.84 27 35.2 6.0 0.1 0 0.02	0.7 0.6 10.0	0.1 0.1 1.7	0.7 0.6 15.1	4.0 3.2 53.9	237.7 238.8 238.5	1134 1134 1134	0.1 0.1 0.2	103.4 103.4 103.3	61783886.30 48746895.55 21071618.44	1225.4 1227.4 1228.2	14.60 14.60 14.60	79 80 79	47.78 48.31 47.27	0104 0101
	18 47.8 41.2 0.0 0 -0.01 19 47.7 44.9 0.0 0 -0.02	13.5 13.5 13.6	11.6 12.7 12.8	103.1 112.6 113.8	72.8 72.8 73.4	238.6 238.5 238.1	1133 1134 1134	0.1 0.1 0.1	103.3 103.5 103.5	20961956.29 21008742.36 21002380.10	1229.3 1227.2	14.60 14.61 14.61	79 79	47.50 47.23	0100
	20 48.1 45.4 0.0 0 -0.03 31 47.6 45.5 0.0 0 -0.03 32 22.3 45.7 11.3 0 3.58	13.4 13.7	12.8 28.1	114.0 249.0	72.6	238.1 238.2	1134 1134	0.1 0.1	103.4 103.3	20991133.20 45639967.48	1231.4 1230.4	14.60 14.60 14.60	79 79 79	47.95 47.65 48.13	.0102 .0101 .0101
_	33 1.9 33.9 12.7 0 4.44 34 1.8 31.3 12.7 0 4.45 35 2.0 31.1 12.7 0 4.45	1.4 1.3 1.4	24.4 22.5 22.4	216.3 199.9 198.9	7.4 7.0 7.8	238.5 238.7 239.7	1134 1133 1133	0.1 0.2 0.2	103.3 103.4 103.5	53426998.96 53479710.57 53554620.27	1228.6 1229.8 1231.7	14.61 14.61	79 79	48.68 49.11	.0102 .0103
	36 1.9 31.0 12.7 0 4.45 37 1.9 31.1 12.7 0 4.45	1.4 1.4	22.3 22.4	197.9 198.7	7.4 7.4	239.6 239.9	1133 1133 1134	0.1 0.1 0.2	103.4 103.4 103.4	53477220.49 53503925.44 53494438.43	1231.1	14.61 14.61 14.61	79	49.28	.0104
	38 1.8 31.0 12.7 0 4.45 39 1.9 30.9 12.7 0 4.45 40 1.9 30.9 12.7 0 4.45	1.3 1,4 1.4	22.3 22.2 22.2	198.0 197.7 197.7	7.0 7.4 7.4	238.4 238.6 239.2	1133 1133	0.2 0.1	103.6 103.6	53594880.98 53571653.03	1230.2	14.60 14.60	79	48.90 49.10	0102
	41 1.8 31.0 12.7 0 4.46 42 2.0 31.0 12.7 0 4.46	1.3 1.4 1.3	22.3 22.3 22.3	198.4 198.5 198.3	7.0 7.8 7.0	240.0 239.8 239.5	1134 1133 1134	0.1 0.1 0.1	103.6 103.7 103.6	53610327.31 53636373.28 53568527.24	1230.9 1233.7 1235.5	14.60 14.60 14.60	79 79 79	49.18 49.25	.0103 .0103
	14 1.9 31.1 12.7 0 4.46 45 1.9 31.2 12.7 0 4.46	1.4 1.4	22.4 22.4	199.3 199.6	7.4 7.4	238.1 239.6	1134 1134	0.2	103.8 103.6 103.6	53669996.03 53590374.63 53603993.50	1235.5 1235.5 1232.7	14.60 14.60 14.60	79 79 79	49.25 49.25 49.21	.0103 .0103 .0102
	46 1.9 31.1 12.7 0 4.46 47 1.8 31.3 12.7 0 4.48 48 1.8 31.1 12.7 0 4.48	1.4 1.3 1.3	22.4 22.5 22.4	199.0 200.2 198.9	7.4 7.0 7.0	238.8 239.0 239.4	1134 1133 1133	0.2 0.2 0.1	103.6 103.6	53571735.79 53566625.29	1232.9 1235.9	14.60 14.60	78 79	49.26 49.79 49.80	.0102 .0104 .0104
	49 1.9 31.0 12.7 0 4.46 50 1.9 31.0 12.7 0 4.46	1.4 1.4 1.4	22.3 22.3 22.4	198.2 198.2 199.1	7.4 7.4 7.4	238.5 238.5 239.3	1133 1133 1133	0.1 0.1 0.2	103.5 103.5 103.6	53544028.39 53544028.39 53608878.99	1233.0 1233.0 1234.6	14.60 14.60 14.60	79 79 79	49.80 49.85	.0104
	52 1.8 31.1 12.7 0 4.46 53 1.9 31.0 12.7 0 4.46	1.3 1.4	22.4 22.3	199.2 198.7	7.0 7.4	239.3 239.8	1133 1133	0.2 0.2	103.7 103.8 103.7	53641404.64 53679767.53 53661625.77	1232.4 1235.1	14.60 14.60 14.60	79 78	49.99 49.94	.0104 .0103
_	54 1.9 31.0 12.7 0 4.47 55 1.9 31.1 12.7 0 4.47 56 1.8 31.1 12.7 0 4.46	1.4 1.4 1.3	22.3 22.4 22.4	198.6 199.2 199.4	7.4 7.4 7.0	239.7 239.5 239.4	1133 1133 1133	0.1 0.1 0.2	103.7 103.8	53654782.98 53694581.78	1233.8 1235.6	14.60 14.60	79 79	49.18 48.71	.0102 .0101 .0102
	57 1.9 31.2 12.7 0 4.46 58 1.8 31.3 12.7 0 4.47 59 1.8 31.3 12.7 0 4.47	1,4 1,3 1,3	22.4 22.5 22.5	200.1 200.8 200.7	7.4 7.0 7.0	238.7 239.4 239.6	1133 1133 1133	0.2 0.2 0.1	103.8 103.9 103.8	53703512.74 53718145.43 53698074.30	1232.2 1234.0	14.60 14.60 14.60	79 78	49.32 49.86	.0102
	00 1.8 31.1 12.7 0 4.46 01 1.8 31.1 12.7 0 4.46	1.3 1.3	22.4 22.4	199.3 199.3	7.0 7.0 7.0	239.7 239.6 239.2	1134 1133 1133	0.1 0.2 0.2	103.8 103.7 103.6	53665517.10 53657916.52 53608780.19		14.60 14.60 14.60			
	02 1.8 31.2 12.7 0 4.47 03 1.9 31.2 12.7 0 4.48 04 1.9 31.1 12.7 0 4.46	1.3 1.4 1.4	22.4 22.4 22.4	199.7 199.8 199.4	7.4	239.7 240.2	1133 1133	0.1 0.1	103.7 103.8	53644613.18 53693678.13		14.60 14.60	70	50.89	0104
	05 1.8 31.1 12.7 0 4.47 06 1.9 31.2 12.7 0 4.47 07 1.8 31.2 12.7 0 4.47	1.3 1.4 1.3	22.4 22.4 22.4	199.4 200.1 200.3	7.0 7.4 7.0	240.0 239.5 239.9	1133 1133 1133	0.2 0.2 0.1	103.8 103.8 104.0	53698398.10 53718606.59 53771086.18	1234.5 1233.7	14.60 14.60 14.60	78 78	51.01	.0104
	08 1.9 31.2 12.7 0 4.47 09 1.8 31.4 12.7 0 4.45	1.4	22.4 22.6	200.4 201.8 200.2	7.4 7.0 7.4	240.0 240.3 240.5	1133 1133 1133	0.2 0.1 0.1	104.0 104.1 103.9	53798694.78 53827724.29 53741247.68	1231.0 1231.3 1232.8	14.60 14.60 14.60	78 78 78	51.48 51.25 51.23	.0103 .0103 .0103
	10 1.9 31.2 12.7 0 4.47 11 1.9 31.1 12.7 0 4.47 12 1.9 31.1 12.7 0 4.47	1.4 1.4 1.4	22.4 22.4 22.4	199.9 199.2	7.4 7.4	240.4 239.8	1132 1133	0.1 0.1	104.1 103.7	53825344.39 53656022.32	1233.7	14.60 14.60 14.60	78	50.63	.0102
	13 1.8 31.0 12.7 0 4.47 14 1.9 31.0 12.7 0 4.47 15 1.9 31.2 12.7 0 4.47	1.3 1.4 1.4	22.3 22.3 22.4	198.5 198.8 200.3	7.0 7.4 7.4	240.2 240.4 240.7	1132 1132 1132	0.2 0.1 0.1	103.7 103.8 103.9	53639037.15 53712857.51 53766113.79	1233.4 1233.2	14.60 14.60	78 78	51.17 51.79	.0103 .0104
	16 2.0 31.0 12.7 0 4.46 17 1.9 30.7 12.7 0 4.47	1.4 1.4	22.3 22.1 22.4	199.1 197.5 199.8	7.8 7.4 7.4	240.9 240.6 240.4	1132 1132 1132	0.1 0.2 0.2	104.0 104.2 104.0	53799176.35 53891576.06 53815743.06	1235.0 1234.8 1238.3	14.60 14.60 14.60	77 77 78	51.59 51.95 52.62	.0103 .0103 .0107
	18 1.9 31.1 12.7 0 4.47 1.19 1.9 31.0 12.7 0 4.47 1.20 1.9 31.1 12.7 0 4.47	1.4 1,4 1.4	22.3 22.4	199.0 200.1	7.4 7.4	240.4 240.7	1132 1132	0.1 0.2	104.0 104.2	53769937.87 53875049.18	1234.4 1235.9 1235.9	14.60 14.60 14.60	ד ד ד	51.09 51.91 51.89	.0102 .0104 .0103
	1:21 1.9 31.3 12.7 0 4.47 1:22 1.9 31.1 12.7 0 4.47 1:23 1.9 31.2 12.7 0 4.47	1,4 1,4 1,4	22.5 22.4 22.4	201.1 199.6 200.4	7.4 7.4 7.4	240.3 240.4 240.4	1132 1132 1132	0.2 0.1 0.1	104.0 103.9 104.0	53808454.39 53764385.11 53803320.09	1237.9 1234.9	14.60 14.60	77 77	51.96 52.56	.0103 .0104
	1:24 1.8 31.1 12.7 0 4.47 1:25 1.8 31.0 12.7 0 4.46	1.3 1.3	22.4 22.3 22.4	199.0 198.0 199.6	7.0 7.0 7.0	239.5 238.5 239.1	1134 1134 1132	0.2 0.2 0.1	103.6 103.4 103.6	53592793.33 53496253.49 53575287.28	1234.1 1234.0 1231.2	14.60 14.60 14.60	79 80 78	51.24 49.24 47.99	.0109 .0108 .0097
	3:26 1.8 31.2 12.7 0 4.47 3:27 1.8 31.2 12.7 0 4.47 3:28 1.9 31.1 12.7 0 4.47	1.3 1.3 1.4	22.4 22.4	200.5 199.9	7.0 7.4	240.0 240.3	1132 1132	0.2 0.2	104.0 104.1	53809610.46 53825139.56 53867069.45	1236.1 1233.6 1237.8	14.60 14.60 14.60	דד דד דד	50.09 51.28 52.03	.0099 .0101 .0102
	3:29 1.9 31.3 12.7 0 4.47 3:30 1.9 31.4 12.7 0 4.47 3:31 2.0 31.3 12.7 0 4.47	1.4 1.4 1.4	22.5 22.6 22.5	201.3 202.1 201.5	7.4 7.4 7.8	240.9 240.5 241.1	1132 1133 1132	0.1 0.1 0.2	104.1 104.2 104.2	53900550.47 53911592.36	1231.3 1233.5	14.60 14.60	77 77	52.72 53.28	.0103 .0104
	3:32 1.9 31.2 12.7 0 4.48 3:33 1.9 31.3 12.7 0 4.47 3:34 1.9 31.1 12.7 0 4.47	1.4 1.4 1.4	22.4 22.5 22.4	200.6 201.0 199.9	7.4 7.4 7.4	240.4 240.4 240.7	1133 1133 1132	0.1 0.2 0.2	104,1 103.99 104.07	53854823.91 53788205.32 53831919.24	1236.3	14.60 14.60 14.60	77	53.44	.0104
	3.35 1.9 31.1 12.7 0 4.47 3.36 1.8 31.1 12.7 0 4.47	1.4 1.3	22.4 22.4	199.8 200.1 199.4	7.4 7.0 7.4	240.5 241.1 241.1	1133 1132 1132	0.2 0.2 0.1	104.03 104.18 104.13	53811650.52 53885301.73 53861228.58	1235.6	14.60 14.60 14.60	76	53.60	.0103
	3:37 1.9 31.0 12.7 0 4.47 3:38 1.8 31.1 12.5 0 4.48 3:39 33.7 32.5 0.2 0 0.03	1.4 1.3 9.6	22.3 21.8 9.3	195.2 82.9	6.9 62.3	241.2 241.7	1132 1131	0.2 0.1	104.13 104.24	52577312.14 21359797.27	1236.8	14.60 14.60 14.60	76 76	54.33 55.01	.0103
	3:40 47.8 44.4 0.0 0 -0.01 3:41 47.6 45.8 1.9 0 0.43 3:42 13.8 45.5 18.8 22 0.75	13.5 14.8 35.4	12.5 14.2 118.7	112.2 127.5 1045.6	73.6 80.7 193.0	241.3 241.2 241.7	1131 1132 1132	0.1 0.1 0.1	104.33 104.47 104.36	21173559.07 23321279.05 192458715.44	1239.2 1238.3 1239.3	14.60 14.60	76 76	55.41 55.79	.0106 .0107
	3:43 0.9 12.8 20.8 24 -0.02 3:44 0.9 1.0 20.6 24 -0.03		247.8 19.7 9.8	2221.7 176.5 88.0	96.6 96.7 128.5	241.7 241.5 241.3	1132 1132 1132	0.1 0.1 0.2	104.45 104.56 104.24	1476747265.92 1478340786.60 1473798936.67	1238.0 1239.7 1237.8	14.60 14.60 14.60	75 76 76	56.20 56.47 56.34	.0105 .0108 .0107
	3:46 0.8 0.3 20.6 24 -0.04 3:47 1.0 0.2 17.4 12 2.14	15.7 1.7	5.9 0.3	52.8 3.0	85.8 9.2	241.5 241.3	1132 1132	0.1 0.1	104.32 104.29	1474879333.76 126384582.54	1237.2 0.0 1237.1	14.60 14.60 14.60	76 0 76	56.89 0.00 57.16	.0107 .0000 .0107
	3.48 1.0 0.1 13.8 1 4.86 3:49 0.8 0.1 13.8 0 4.87 3:50 18.2 0.3 4.1 0 1.61	0.8 0.7 6.4	0.1 0.1 0.1	0.7 0.7 0.9	4.5 3.6 34.9	242.0 242.0 241.9	1131 1131 1131	0.2 0.2 0.1	104.39 104.46 104.47	62361888.64 62405291.82 26374824.59	1238.7 1239.8	14.60 14.60	76 76	57.01 57.09	.0107 .0108
	3:51 45.9 29.9 0.1 0 -0.01 3:52 45.9 44.6 0.0 0 -0.02 8:53 45.7 45.3 0.0 0 -0.03	13.0 13.0 12.9	8.5 12.6 12.8	76.1 112.9 114.9	71.1 70.7 70.6	242.3 242.2 242.5	1131 1131 1131	0.1 0.2 0.2	104.48 104.43 104.67	21305428.34 21193777.27 21242510.98	1239.7 0.0 0.0	14.60 14.60 14.60	76 0 0	57.22 0.00 0.00	.0108 .0000 .0000
	8:54 45.7 45.5 1.1 17 -0.03 8:55 18.3 43.0 20.3 99 0.00	13.6 180.0	13.6 422.8	121.8 3774.5	74.4 977.8	242.2 240.4	1132 1130	0.2 0.1	104.63 104.00	22414550.70 735160322.52 1423684832.74	1239.2 1238.1 1222.6	14.60 14.60 14.60	76 76 75	57.58 57.27 57.31	.0108 .0108 .0106
	8:56 2.8 4.9 20.6 99 0.00 8:57 2.8 0.8 20.6 99 0.00 8:58 3.0 0.3 20.6 99 0.00	55.1 55.1 59.0	96.4 15.7 5.9	832.9 132.5 48.0	289.7 282.2 292.4	231.8 225.2 217.9	1114 1105 1103	0.1 1.5 6.4	100.70 98.10 94.86	1386958117.88 1341149739.09	1200.4 1172.2	14.61 14.61	75 75	57.39 57.53	.0107 .0107 .0000
	8:59 3.9 0.1 20.6 99 0.00	76.7	2.0	15.6	371.4	211.1	1104	10.2	92.67	1310260684.39	0.0	14.61	0	0.00	

March, 2000 10:53

. -

.

.

.

ACCERT		STAF	TME	141	0		END	TIME	151	0	
AIR CONSULTING	VISIBLE EMISSION OBSERVATION FORM	1 089	RVATION	DATE		TIM	ZONE		PAGE	1 05	- 1
	OBSERVATION FOR			15	30	45	SEC	D	15	30	45
COMPANY NAME LAKEL	AND ELECTRI	c 1	0	D	D	0	31	0	0	0	0
SOURCE		2	D	D	Þ	0	32	D	0	0	D
ADDRESS		3	D	0	0	0	33	0	0	0	0
CITY LAKELAND 5TA	JEFL. ZP	4	0	0	0	0	34	0	0	0	D
PHONE SO	URCE ID NO.	5	D	0	D	D	35	0	D	0	0
GRAS TURDINE	OPERATING MODE	6	D	D	0	D	36	0	D	D	0
	<u>PASELDAD</u> OPERATING MODE	7	0	0	0	D	37	0	D	D	D
			0	D	D	0	38	0	D	0	0
DESCRIBE EMISSION POINT	Sleek	9	0	0	0	0	39	0	0	0	0
278" dia. Meta HEGHT OF EMISSION POINT	HEGHT RELATIVE TO OBSERVE		0	0	0	0	40	0	0	D	D
START ~ 80' END SAME			0	0	0	0	40	0	0	0	0
DISTANCE TO EMISSION POINT			0	$\overline{0}$	D	0	41	0	0	0	0
START~ 250' BO SAME			+	0	U	0	1	D	D	0	0
VERTICAL ANGLE TO OBS. PT.	DIRECTION TO OBS. PT. (DEGR		0		$\frac{D}{D}$	-	43	0	D	D	
START ~ 20" END SAME	START- 49° END SAM	E 14	0	0			44		-	-	0
DISTANCE AND DIRECTION TO C	DBS., PT. FROM EM., PT.	15	D	D	D	D	45	D	0	0	0
START ~ 6 OBDUE STR EXIT	TEND SAME	16	D	0	D	D	46	0	0	0	0
DESCRIBE EMISSIONS	•	17	D	0	0	0	47	D	0	0	0
START NONE	BND SAME	18	D	0	0	0	48	D	0	D	0
EMISSION COLOR	WATER DROPLET PLUME NON	19	0	0	0	0	49	0	0	0	Ø
START NONEEND SAME		20	0	D	D	0	50	0	0	0	0
DESCRIBE PLUME BACKGROUND	Sum	21	D	D	0	0	51	0	0	0	Q
	END SAME	- 22	D	0	0	0	5 2	0	0	0	0
BACKGROUND COLOR	SKY CONDITIONS STARTSC. C/dgend SAN	23	0	D	D	D	53	D	0	D	0
START GRAY END SAME		24	0	0	0	D	54	0	٥	0	0
WIND SPEED START 5-8 END SAME	WIND DIRECTION START WEND SAM		0	0	D	D	5 5	0	0	0	0
AMBIENT TEMPERATURE	WET BULB TEMP. %RH	26	0	0	0	0	56	Ō	0	0	0
START 84 END 85	72 56	20	0	0	0	Ð	57	0	0	0	0
SOURCE LAY			0	0	0	0	57 58	0	0	0	0
	VI	28	$\overline{\mathcal{D}}$	0	0	D		00	0	0	0
\vee \otimes	OBSERVATION POINT	29	0	0	D	5	59 (2		0		
NORTH		30	\mathcal{D}	$\overline{\nu}$		$\overline{\mathcal{U}}$	60	0		0	<u> </u>
- LOS SUN LCOM	OBSERVER'S POSITION	OBSE ORG CERT	RVER'S RVER'S ANIZAIN IFIED BY	signaj on <u>A</u>	UREC <u>I</u> IR (acles	Res	hard		3-Z	- <i>DZ</i>
= SOURCE WITH PLUME	⊕=sun →=wind		MENTS								_

and the second second

÷

:

.

:

The second s

4 ;

1

.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		15 D D D D D D D D 0 0 0 0			2014 57 31 31 32 33 34 35 36 37 38		16 PAGE 15 00000000000000000000000000000000000	7 × 00000	1 4 0 0 0 0 0
COMPANY NAME LAKELAND ELECTRIC COMPANY NAME LAKELAND ELECTRIC SOURCE ADDRESS CITY LAKELAND STATE FL. ZP ADDRESS CITY LAKELAND STATE FL. ZP A PHONE SOURCE DNO. BOURCE DNO. BOURC	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15 D D D D D D D D D D D D D	× 000000000000000000000000000000000000		31 31 32 33 34 35 36 37	000000	00000	0 0 0	00000
SOURCE 2 ADDRESS 2 ADDRESS 3 CITY LAKELAND STATE FL. ZP 4 PHONE SOURCE D NO. 5 PHONE SOURCE D NO. 5 PHONE SOURCE D NO. 6 PHONE SOURCE D NO. 7 DESCRIBE EMESSION POINT 0 DESCRIBE EMESSION POINT 0 DESCRIBE EMESSION POINT 1 DESCRIBE TO BASSION POINT 1 DESCRIBE TART - 2D' BND SAME 5UART - 48' BND SAME 13 DESCRIBE TO BASSION BO TO TO DES. PT. FROM EM. PT. 15 START $2D'$ BND SAME 5UART - 48' BND SAME 14 DESCRIBE EMESSIONS 117 START ND ME END SAME 5UART - 48' BND SAME 15 DESCRIBE PLIME BACKGROUND 21 START ND ME BACKGROUND 21 START SLUY (CIDUALS BND SAME 5UART SLUY CONDITIONS 23 START SLUY (CIDUALS BND SAME 5UART SLUXT SKETCH 24 SOURCE LAVOUT SKETCH 28 NORTH 1 DESCRIPTION TO DES 7 TH 24 DESCRIPTION TO DES 7 TH 24 DESCRIPTION TO DES 7 THE BUD SAME 23 NORTH 200 POINT 1 DESCRIPTION TO DES 7 THE SUART SLUTTER 200 POINT 1 DESCRIPTION TO DES 7 TH 24 DESCRIPTION TO DES 7 TH 25 DESCRI	0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000000000000000000000000000000	D D D D D D D D D D D	0000000	32 33 34 35 36 37	00000	0000	000	000
ADDRESS 3 CITY LAKELAND STATE FL. TP 4 PHONE SOURCE D NO. 5 PROCESS TUY DINE BASELD AD 6 CONTROL EQUIPMENT OPERATING MODE 7 DESCRIBE EMISSION POINT 8 278" dia. Metal Start 9 DESCRIBE EMISSION POINT 8 278" dia. Metal Start 9 DESCRIBE EMISSION POINT 8 278" dia. Metal Start 9 DESCRIBE EMISSION POINT 1 278" dia. Metal Start 9 10 START 80' END SAME START 80' END SAME 11 DISTANCE TO EMISSION POINT 1 START 20' END SAME START 80' END SAME 11 DISTANCE TO EMISSION POINT 1 START 20' END SAME START 48" END SAME 11 DISTANCE TO EMISSION POINT 1 START 20' END SAME START 48" END SAME 13 START 20' END SAME START 48" END SAME 13 START 20' END SAME START 48" END SAME 15 ISTART 9 A CK EXIE END SAME 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DESCRIBE EMISSIONS 17 START MD/UE END SAME 16 DESCRIBE EMISSIONS 17 START ND/UE END SAME 12 START ND/UE END SAME 12 BACKGROUND COLOR SKY CONDITIONS 21 START SKY/CIDULS END SAME 22 BACKGROUND COLOR SKY CONDITIONS 23 START SKY/CIDULS END SAME 23 WIND SPEED WIND DIRECTION SCIENT 24 WIND DIRECTION SEART 24 WIND DIRECTION 24 START 5-8 END SAME START 0 AT CHED DETACHED 20 DESCRIBE PLIME BACKGROUND 21 START 5-8 END SAME START 26 MIND DIRECTION 24 START 85 END 83 74 60 27 SOURCE LAVOUT SKETCH 28 NORTH 30	000000000000	000000000000000000000000000000000000000	0000000000000	000000	33 34 35 36 37	00000	0000	0	0
$\begin{array}{c} \label{eq:constraint} \begin{array}{c} \label{eq:constraint} \begin{array}{c} \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \begin{array}{c} \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \label{eq:constraint} \\ \label{eq:constraint} \label{constraint} \label{eq:constraint} \label{constraint} \lab$		D 0 0 0 0 0 0 0 0	D 0 0 D D 0	D 0 0 0 0 0	34 35 36 37	0000	0	0	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		D 0 0 0 0 0 0 0 0	D 0 0 D D 0	00000	35 36 37	0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 D 0 D 0 D 0 0	00000000	0 0 0 0 0 0 0	0 0 0	35 36 37	0	0		
$\begin{array}{c ccccccccc} & & & & & & & & & & & & & & &$	0 D 0 D 0 D 0 0	00000000	0 D D 0	0 0 0	36 37	0		\sim	
CONTROL EQUIPMENT OPERATING MODE 7 DESCRIBE EMISSION POINT 8 278''' dia Metal Start Start Start C/K 9 HEIGHT OF EMISSION POINT HEIGHT RELATIVE TO OBSERVER 10 START & 80' END SAME START & 80' END SAME 11 DISTANCE TO EMISSION POINT DIRECTION TO EM. PT. OPEGREED 12 START 250' END SAME START & 48' END SAME 13 VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. OPEGREED 14 START $\sim 20''$ END SAME START & 48'' END SAME 13 VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. OPEGREED 14 INSTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 15 START SHACK EXIE END SAME 14 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DESCRIBE EMISSIONS 17 START MD/UE END SAME 10 DESCRIBE EMISSIONS 17 START MD/UE END SAME 10 DESCRIBE PLUME BACKGROUND 21 START SKY/C/DU/US END SAME 22 BACKGROUND COLOR SKY CONDITIONS 22 BACKGROUND COLOR SKY CONDITIONS 23 START SAME START SL, LINGEND SAME 23 WIND SPEED WIND DIRECTION PONT 24 START 8'S END SAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. XRH 26 START 8'S END S3 74 GO 27 SOURCE LAYOUT SKETCH 28 DESERVATION PONT 30		D D D 0	D D 0	D D	37			0	0
DESCRIBE EMISSION POINT 8 278" d i.a. Metal Start Start 20' BND Same 10 Start 20' END SAME START 20' END SAME 11 DISTANCE TO EMISSION POINT DESCRIPTION TO EM. PT. DEGREES 12 START 250' END START 248° END SAME 13 VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. DEGREES 14 START 20' END SAME START 248° END SAME 14 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 15 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 15 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DESCRIBE EMISSIONS START ND JUE END SAME 18 EMISSION COLOR WATER DROPLET PLUME NONET 19 START ND JUE END SAME 19 START ND JUE END SAME 21 START ND JUE END SAME 22 BACKGROUND COLOR SKY CONDITIONS START SKY / C/DU dS END SAME 22 BACKGROUND COLOR SKY CONDITIONS START SKY / C/DU dS END SAME 23 WIND SPEED WIND DIRECTION 24 START S5 END SAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. 26 START 85 END SAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. 26 START 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 29 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 29 DISTART 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 84 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 84 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 84 74 60 27 SOURCE LAYOUT SKETCH 28 DISTART 85 END 84 74 60 27 SOURCE LAYOUT SKETCH 30 DISTART 85 END 84 74 60 27 SOURCE LAYOUT SKETCH 30 DISTART 85 END 84 74 60	00000	D 0	D	D	+		12	0	
DESCRIBE EMESSION POINT $2.78'' dia. Metal Start Start A CK 9$ HEIGHT OF EMESSION POINT HEIGHT RELATIVE TO OBSERVER 10 START & 80' END SAME START & 80' END SAME 11 DISTANCE TO EMISSION POINT DIRECTION TO EM. PT. (DEGREES) 12 START $250'$ END START $48''$ END SAME 13 VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. (DEGREES) 14 START $20''$ END SAME START $48''$ END SAME 14 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 15 START $20''$ END SAME START $48''$ END SAME 14 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 15 START $3+ACK$ EXIE END SAME 16 DESCRIBE EMISSIONS 17 START MDME END ATACHED DETACHED 20 DESCRIBE EMISSIONS 21 START NDME END ATACHED DETACHED 20 DESCRIBE PLIME BACKGROUND START SLAME 22 BACKGROUND COLOR SKY CONDITIONS START SLAME 23 WIND SPEED WIND DAME START W END SAME 23 WIND SPEED WIND DAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. SRH 26 START 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 NORTH 30	D D 0 D	0	0		38	+	0		0
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	000	0	h	D	+	0	0	0	D
START \mathcal{A} 80' END $SAME$ START \mathcal{A} 80' END $SAME$ 11 DISTANCE TO EMISSION POINT DIRECTION TO EM. PT. (DEGREES) 12 START \mathcal{A} 250' END START \mathcal{A} 48' END $SAME$ 13 VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. (DEGREES) 14 START \mathcal{A} 20' END $SAME$ START \mathcal{A} 48' END $SAME$ 13 START \mathcal{A} 20' END $SAME$ START \mathcal{A} 48' END $SAME$ 14 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 15 START \mathcal{A} 450 4E END $SAME$ 16 DESCREE EMISSIONS 17 START $MDME$ END $SAME$ 10 START $MDME$ END $SAME$ 18 EMESSION COLOR WATER DROPLET PLUME (NONE) 19 START $NDME$ END AME 19 START $NDME$ END AME 21 START $NDME$ END $SAME$ 22 BACKGROUND COLOR SKY CONDITIONS 22 BACKGROUND COLOR SKY CONDITIONS 23 START \mathcal{A} 4N END $SAME$ START \mathcal{L} 4D $SAME$ 23 WIND DIRECTION 24 START 5-8 END $SAME$ START \mathcal{M} END $SAME$ 25 AMBIENT TEMPERATURE WET BULLE TEMP. 26 START 8'S END 83 74 60 27 SOURCE LAYOUT SKETCH 28 NORTH 30	0		D		39	0	0	0	0
DISTANCE TO EMISSION POINT DIRECTION TO EM. PT. (DEGREES) 12 START 4 25D'END START 4 48° END SAME 13 VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. (DEGREES) 14 VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. (DEGREES) 14 START ~ 2D'END SAME START 4 48° END SAME 15 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. 16 DISTART SHACK EXTERNAL END SAME 10 START ND IVE END SAME 110 START ND IVE END SAME 119 START ND IVE END ATTACHED DETACHED 20 DESCRIBE PLUME BACKGROUND START SLATT SLATE SL	D	0	-	0	40	D	0	0	0
START + 48° END SAME START + 48° END SAME VERTICAL ANGLE TO OBS. PT. DRECTION TO OBS. PT. DRECTION TO OBS. PT. START - 20° END SAME START - 20° END SAME START - 20° END SAME DRECTION TO OBS. PT. FROM EM. PT. DESTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. START SLACK EXTE END SAME DESTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. START SLACK EXTE END SAME DESCRIBE EMISSIONS START MD JUE START MD JUE END SAME START ND JUE BACKGROUND START SLY/Clouds END SAME START SLY/Clouds END SAME <t< td=""><td></td><td></td><td>0</td><td>D</td><td>41</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>			0	D	41	0	0	0	0
VERTICAL ANGLE TO OBS. PT. DIRECTION TO OBS. PT. (DEGREES) START ~ 20° END SAME START ~ 48° END SAME DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. START <u>SHACK</u> EXIE END SAME DESCRIBE EMISSIONS START <u>ND IUE</u> END SAME EMISSION COLOR START <u>NDNE</u> END ATTACHED DETACHED DESCRIBE PLUME BACKGROUND START <u>SKY</u> (CIDU dS END SAME BACKGROUND COLOR START <u>SKY</u> (CIDU dS END SAME BACKGROUND COLOR START <u>SKY</u> (CIDU dS END SAME START <u>SKY</u> CONDITIONS START <u>SKR</u> END <u>SAME</u> START <u>SF</u> END <u>SF</u> SOURCE LAYOUT SKETCH SOURCE LAYOUT SKETCH START <u>SF</u> END <u>SF</u> SOURCE LAYOUT SKETCH START <u>SF</u> END <u>SF</u> SOURCE LAYOUT SKETCH START <u>SF</u> START	0	0	0	0	42	0	0	0	0
START ~ 20° END SAME START ~ 48° END SAME 14 START ~ 20° END SAME START ~ 48° END SAME 15 DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. START $\tilde{S} + ACK = XIE$ END SAME 16 DESCRIBE EMISSIONS 17 START ND IUE END SAME 18 EMISSION COLOR WATER DROPLET PLUME NONET 19 START NDNE END ATTACHED DETACHED 20 DESCRIBE PLUME BACKGROUND 21 START SKY / CIDU d.S END SAME 22 BACKGROUND COLOR SKY CONDITIONS 22 BACKGROUND COLOR SKY CONDITIONS 22 BACKGROUND COLOR SKY CONDITIONS 22 START S.K.Y / CIDU d.S END SAME 22 WIND DIRECTION 24 START 5-8 END SAME START SC, CHOEND SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. XRH 26 START 85 END 83 74 600 27 SOURCE LAYOUT SKETCH 28 NORTH 29 NORTH 20	10	0	0	0	43	0	0	0	0
START ~ 20" END SAME START ~ 48" END SAME DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. START & 48" END SAME DISTANCE AND DIRECTION TO OBS. PT. FROM EM. PT. START SART & 48" END SAME DESCRIBE EMISSIONS START MD JUE END SAME END SAME START MD JUE END SAME START MD JUE END SAME START MD JUE BACKGROUND START SILV / C/DU S END SAME DESCRIBE PLIME BACKGROUND START SILV / C/DU S END SAME DESCRIBE PLIME BACKGROUND START SILV / C/DU S END SAME BACKGROUND COLOR SKY CONDITIONS START SILV / C/DU S END SAME MIND DIRECTION START SILV END SAME MIND DIRECTION START SILV END SAME START SILV END SAME START SILV END SAME START SI	0	0	0	0	44	0	0	0	0
DISTANCE AND DIRECTION TO OBS. PT. FROM BM. PT. START SHACK EXIE BND SAME 16 DESCRIBE BMISSIONS 17 START ND/UE END SAME 18 EMISSION COLOR WATER DROPLET PLUME (NONE) 19 START ND/E END ATTACHED DETACHED 20 DESCRIBE PLUME BACKGROUND 21 START SKY/C/DU/US END SAME 22 BACKGROUND COLOR SKY CONDITIONS 22 BACKGROUND COLOR SKY CONDITIONS 23 START GRAV END SAME STARTSC, CHOEND SAME 23 WIND SPEED WIND DIRECTION 24 START 5-8 END SAME STARTSC, CHOEND SAME 25 AMBIENT TEMPERATURE WET BULLE TEMP. XRH 26 START 85 END 83 74 600 27 SOURCE LAYOUT SKETCH 28 NORTH 29 NORTH 30	0	0	D	D	45	0	0	D	0
DESCRIBE EMISSIONS 17 START NDIVE END SAME 18 EMISSION COLOR WATER DROPLET PLUME (NONE) 19 START NDNE END ATTACHED DETACHED 20 DESCRIBE PLUME BACKGROUND START SILY / C/DUIDS 21 START SIANT SILY / C/DUIDS END SAME 22 BACKGROUND COLOR SKY CONDITIONS 23 START C.RAY END SAME START SL, C.MOEND SAME 24 WIND SPEED WIND DIRECTION 24 24 START START START END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. SRH 26 START 83 74 GO 27 SOURCE LAYOUT SKETCH 28 29 30	0	0	0	0		-			-
START ND/UE END SAME 18 EMISSION COLOR WATER DROPLET PLUME (NONE) 19 START NDNE END ATTACHED DETACHED 20 DESCRIBE PLUME BACKGROUND 21 START SKY/C/DUDS END SAME 22 BACKGROUND COLOR SKY CONDITIONS 22 START CARAY END SAME START SC, CHOEND SAME 23 WIND DIRECTION 24 START 5-8 END SAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. SKRH 26 START 85 END 83 74 600 27 SOURCE LAYOUT SKETCH 28 NORTH 29 NORTH 20					46	0	0	0	0
EMISSION COLOR WATER DROPLET PLUME (NONE) 19 START NONE END ATTACHED DETACHED 20 DESCRIBE PLUME BACKGROUND 21 START S KY / C / DU d.S END SAME 22 BACKGROUND COLOR SKY CONDITIONS 23 START CARAY END SAME START SC, CHOEND SAME 23 WIND SPEED WIND DIRECTION 24 START 5-8 END SAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. XRH 26 START 85 END 83 74 600 27 SOURCE LAYOUT SKETCH 28 29 30	D	D	0	D	47	0	0	0	0
START NONE END ATTACHED DETACHED 20 DESCRIBE PLIME BACKGROUND 21 START SILY/C/DUDS END SAME 21 BACKGROUND COLOR SKY CONDITIONS 22 BACKGROUND COLOR SKY CONDITIONS 22 START SILY/C/DUDS 23 START C.RAY END SAME START SIL, C.MOEND SAME 23 WIND SPEED WIND DIRECTION 24 START 5-8 END SAME START W END SAME 25 AMBRENT TEMPERATURE WET BULB TEMP. %RH 26 SOURCE LAYOUT SKETCH 28 NORTH 30	0	0	0	D	48	0	0	0	0
DESCRIBE FILIME BACKGROUND START SKY/C/DUDS END SAME 21 BACKGROUND COLOR SKY CONDITIONS START GRAVEND SAME STARTSC, CHOEND SAME 23 WIND SPEED WIND DIRECTION 24 START 5-8 END SAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. 26 START 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 NORTH 29 NORTH 29	0	D	0	D	49	0	0	0	0
START SKY/C/DUDS END SAME 21 BACKGROUND COLOR SKY CONDITIONS 22 START CARAY END SAME STARTSC, CHOEND SAME 23 WIND SPEED WIND DIRECTION 24 START 5-8 END SAME START W END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. 26 START 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 NORTH 29	0	0	0	0	50	D	0	0	0
BACKGROUND COLOR START CARAY END SAME START CARAY END SAME START SC, CHOEND SAME START SC, CHOEND SAME 23 23 23 23 24 24 24 24 25 24 25 26 27 26 27 26 27 20 27 20 24 25 25 26 27 26 27 20 24 25 25 26 27 26 27 20 24 25 25 26 27 26 27 20 24 25 25 25 26 27 26 27 20 27 20 24 25 25 25 25 25 26 26 27 26 27 20 27 29 20 29 20 20 27 29 20 20 29 20 20 29 20 20 29 20 20 29 20 20 29 20 20 20 20 20 20 20 20 20 20	0	0	0	0	61	0	0	0	0
BACKGROUND COLOR SKY CONDITIONS 23 START C.R.A.V. END SAME START SL, C.M. END SAME 23 WIND SPEED WIND DIRECTION 24 START 5-8 END SAME START W END SAME START 5-8 END SAME START W END SAME START 85 END 83 74 60 SOURCE LAYOUT SKETCH 28 NORTH 29	0	0	0	0	5 2	0	0	0	0
START CLARK Y END CHANTE START CLARK Y END CHANTE 24 WIND DIRECTION 24 START 5-8 END SAME 25 AMBIENT TEMPERATURE WIND DIRECTION 24 START 5-8 END SAME 25 AMBIENT TEMPERATURE WET BULB TEMP. XRH 26 SOURCE LAYOUT SKETCH 28 NORTH 20	D	0	0	0	53	0	0	0	
START 5-8 END SAME START W END SAME 25 AMBRENT TEMPERATURE WET BULB TEMP. %RH 26 START 85 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 NORTH 29			5			0	0	0	0
AMBIENT TEMPERATURE WET BULB TEMP. %RH 26 START 8'5 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 NORTH 29 30	0	0		0	54		~~~		
START 8'5 END 83 74 60 27 SOURCE LAYOUT SKETCH 28 NORTH 29 NORTH 30	0	0	0		55	0	0	0	$\frac{\partial}{\partial}$
SOURCE LAYOUT SKETCH 28 NORTH 29 30	0	D	0	0	<u>56</u>	0	0	0	0
NORTH 28 NORTH 29	0	D	D	0	5 7	0	0	0	0
NORTH 30	0	0	D	0	58	0	0	0	D
NORTH 30	0	0	0	0	59	0	0	0	0
	D	D	0	D	60	0	0	0	0
		IGNAT	RC	DNS	Kest	ng		3.2. EN9	

27 March, 2000 10:53

ļ

÷

:

ACE	•	STAR	TIME:	16	14		END	TME	17	14	
AID CONSULTING A ENGINEERING, NC	VISIBLE EMISSION OBSERVATION FORM	0858	MATION			M	ST		PAGE	10	1
	Observational Orivi	SEC		15	30	45	SEC	٥	15	30	46
COMPANY NAME LAKELA	ND ELECTRIC	1	0	0	0	0	31	0	0	0	0
SOURCE		2	0	0	0	0	32	0	0	0	0
ADORESS		3	0	0	0	0	33	0	0	D	C
CITY LAKELAND ST	VIE FL. ZIP	4	0	D	0	0	34	0	0	0	C
PHONE SC	URCE ID NO.	5	0	D	0	0	35	0	0	D	Z
GAS TURBINE	OPERATING MODE	6	0	0	10	0	36	0	D	0	0
CONTROLEQUIPMENT	BASE/DAD OPERATING MODE	7	0	D	0	0	37	0	0	0	0
			0	0	0	0	37	0	0	0	0
DESCRIBE EMISSION POINT		<u> </u>		0	0	D		0	0	0	0
278" diA. Met		9	0	<u> </u>		D	39	0	0	D	
HEIGHT OF EMISSION POINT	HEIGHT RELATIVE TO OBSERVER	10	0	D	D	<u>↓</u>	40		<u> </u>	f	0
START 1, 80 ' END SAME	START 4. 80 ' END SAME DIRECTION TO EM. PT. (DEGREES)	11	0	0	D	0	41	\bigcirc	00	0	
START & 25D'END SAME	•	12	0	0	0	0	42	0	<u> </u>	0	0
VERTICAL ANGLE TO OBS. PT.	DIRECTION TO OBS. PT. (DEGREES)	13	0	0	D	D	43	0	0	0	0
START ~ 20° END SAME		14	D	0	D	0	44	0	0	0	C
		15	D	D	0	0	45	0	0	0	C
DISTANCE AND DIRECTION TO C START STOLK_EXIL	END SAME	16	D	D	0	D	46	0	0	0	C
DESCRIBE EMISSIONS		17	0	0	0	0	47	0	0	0	0
START NONE	END SAME	18	0	0	0	0	48	0	0	0	0
EMISSION COLOR	WATER DROPLET PLUME NONE	19	0	0	0	0	49	0	0	0	0
START NONE END SAME	ATTACHED DETACHED	20	0	0	0	0	50	0	0	0	C
DESCRIBE PLUME BACKGROUN		21	0	0	0	0	51	0	0	0	0
START SKy/CLOUDS	END SAME	22	0	0	0	0	52	0	0	0	0
BACKGROUND COLOR	SKY CONDITIONS		0	0	0	0	53	0	0	0	0
	STARIOC CLOSEND SAME	23 24	0	0	0	0	54	0	0	0	0
WIND SPEED	WIND DIRECTION START W_ END SAME			0	0	0		0	0	0	0
START 5-8 END SAME			0				55	-			0
AMBIENT TEMPERATURE START 83 END 81	WET BULB TEMP. SKRH 72 59	26	0	0	0	0	56	0	00	0	0
SOURCE LAY		27	0	0	0	0	57				
		28	0	0	0	0	58	0	0	0	0
	OBSERVATION POINT	29	0	0	0	0	<u>59</u>	0	0	0	0
NORTH		30	0	0	0	0	60	0	0	0	0
		OBSER ORG/ CERTI	RVER'S INEZAJIK	agna) On A	OPRINT, TURE () IR T, A	Cons	Kest	hard		3-2	-A

		sh Uni Ition R		SWPC	C 5010	3											
		Measu		alues			Certifie	ed Conc	entrati	ons		Differe	ence (9	6 of Sc	ale)		
- Tir	me			02	THC	CO2		NOx	02	THC	CO2		NOx		тнс	CO2	
		ppm	ppm		ppm	%	ppm	ppm	%	ppm	%	100	100	25	50	20	
9:1	12	0.7	• •	19.8	0	-0.06											
9:.	13	0.7	0.1	19.8	1	-0.05			20			[-0.8%	,		Initial Cal/Cal Error
9:1	14	0.6	-0.3	19.8	0	-0.06											
9:2		0.7	89.2		0	-0.06											
9:2		0.5	89.3		17	-0.06		88.7					0.6%)			Initial Cal/Cal Error
9:2		289.5			50	0.65											
9:3		88.9	0.3	0.0	0	-0.06						0.000					lattice Cal/Cal Error
9:3		89.0	0.0	0.0	0	-0.06	91					-2.0%					Initial Cal/Cal Error
9:3 9:3		278.1	0.0 17.7	11.8 0.1	83 0	0.92 -0.04	l I										
9:3		237.9 21.5	18.3		o	-0.04	20	20.3				1 5%	-2 0%	0.0%		-0.3%	Initial Cal/Cal Error
9:3		21.5	19.5	0.0	ŏ	-0.06] 20	20.0				1.070	-2.070	0.070		-0.07	
9:3		47.7	37.5	0.0	ō	-0.06											
9:4		46.2	44.3		ō	-0.06	45.3	46				0.9%	-1.7%	0.0%		-0.3%	Initial Cal/Cal Error
9:4		46.3	44.7		0	-0.06											
9:4		-0.1		13.8	0	4.88											
9:4	45	-0.4	0.2	13.9	0	4.9	0	0	13.9		5.06	-0.4%	0.2%	0.0%		-0.8%	Initial Cal/Cal Error
9:4	46	-0.4	-0.1	13.9	0	4.93						1					
9:4	48	55.3	28.8	0.0	0	-0.04											
9:4		46.7		2.0	17	-0.04	45.3	46				1.4%	-1.3%	,			Bias
		440.1		15.2	99	2.86											
10:		-0.3		13.8	0	4.91		•	42.0		E 08	-0.5%	4 20/	0 494		-0.7%	Diag
10:		-0.5		13.8	0	4.91 4.1	0	0	13.9		5.00	-0.5%	1.3%	-0.4%		-0.7%	DIAS
10: _ 10:		0.5 38.9	11.3	10.3 0.0	0 0	4.1 0											
	:43	46.3	43.5	0.0	ŏ	-0.02	45.3	46	0		0	1.0%	-2.5%	0.0%		-0.1%	Drift/Bias
10:		46.4	45.1	0.0	õ	-0.03	40.0	40	Ŭ		Ŭ	1.070	2.070	•.•/•		•	
	14	40.5	39.2		0	0											
		46.3	45.6	0.0	0	-0.03	45.3	46	0		0	1.0%	-0.4%	0.0%		-0.2%	Drift/Bias
11:	16	48.4	46.0	1.7	0	0.13						}					
11:	18	-0.3	3.8	13.8	0	4.89											
11:		-0.2	1.0	13.8	0	4.9	0	0	13.9	0	5.06	-0.2%	1.0%	-0.4%	0.0%	-0.8%	Drift/Bias
11:		1.8	0.5	13.5	0	4.73											
12:		0.6	1.4	0.0	45	-0.05	[0.00/		
12:		0.6	1.2	0.0	45	-0.05				45.1					-0.2%		THC Initial Cal/Cal Error % Absolute
12:		99.8	0.7	15.1	35	0.21 -0.05											% ADSolute
12: 12:		0.7 0.6	1.7 0.6	20.7 20.7	33 24	-0.05				24.8					-3.2%		THC Initial Cal/Cal Error
12:		0.8	0.5	20.7	37	-0.05				24.0					-0.2 /0		% Absolute
12.		233.1		20.7	10	-0.03											
12:		0.6	5.0	20.7	10	-0.05				10					0.0%		THC Initial Cal/Cal Error
12:		1.0	1.0	19.8	40	0.27											% Absolute
13:		-0.3	1.3	13.8	0	4.89											
		-0.3	1.0	13.8	0	4.9	0	0	13.9	0	5.06	-0.3%	1.0%	-0.4%	0.0%	-0.8%	Drift/Bias
13: 13:		26.8	0.9	1.5	0	0.83											
13:		48.3	37.3	0.0	0	-0.01											
13:			44.7	0.0	0	-0.03	45.3	46	0	0	0	1.0%	-1.3%	0.0%	0.0%	-0.2%	Drift/Bias
13:		46.3	45.3	1.1	0	-0.03											
13:		46.4	45.7 45.7	0.0	0	-0.04	45.3	46	0	0	o	1 00/	0.00/	0.0%	0.0%	0.00/	
13: 13:		46.3 22.9	45.7 45.6		0	-0.04 3.47	45.5	40	U	U	٩	1.0%	-0.3%	0.0%	0.0%	-0.2%	Drift/Bias
13:		-0.5		12.0	0 0	4.87											
13:		-0.3		13.8	õ	4.88	0	0	13.9	0	5.06	-0.3%	0.4%	-0.4%	0.0%	-0.9%	Drift/Bias
14:0		9.4		13.2	õ	4.45	Ũ			v	0.00	0.070	0.170	0.470	0.070	0.070	
14:4		-0.2		13.8	õ	4.89											
14:4		-0.3		13.8	0	4.89	0	0	13.9	0	5.06	-0.3%	0.3%	-0.4%	0.0%	-0.9%	Drift/Bias
14:4		-0.1		12.3	0	4.84											
14:4		46.7	18.7			-0.02											
14:4	49	46.8	44.5	0.0	0	-0.03	45.3	46	0	0	0	1.5%	-1.5%	0.0%	0.0%	-0.2%	Drift/Bias

Calibrations

.

McIntosh Unit #5 - SWPC 501G
Calibration Record

.

-	Calibra	ation R	ecord															
		Measi	ured V	alues			Certifie	ed Con	centrati	ons		Differe	ence (%	of Sca	ale)			
	Time	co	NOx	02	THC	CO2	co	NOx	02	THC	CO2	co	NOx	02	тнс	CO2		
		ppm	ppm	%	ррт	%	ррт	ррт	%	ppm	%	100	100	25	50	20		
-	14:50	47.0	45.0	0.0	0	-0.03												
	15:24	0.4	0.8	13.8	0	4.89						í						
	15:25	0.6	0.4	13.8	0	4.9	0	0	13.9	0	5.06	0.6%	0.4%	-0.4%	0.0%	-0.8%	Drift/Bias	
	15:26	18.7	1.1	4.6	0	1.71												
	15:29	47.7	45.1	0.0	0	-0.02												
	15:30	47.6	45.3	0.0	0	-0.03	45.3	46	0	0	0	2.3%	-0.7%	0.0%	0.0%	-0.2%	Drift/Bias	
-	15:31	38.9	45.2	5.5	0	1.41					-							
	16:03	47.6	45.4	0.0	0	-0.02												
	16: 04	47.5	45.5	0.0	0	-0.03	45.3	46	0	0	0	2.2%	-0.5%	0.0%	0.0%	-0.2%	Drift/Bias	
	16:05	19.5		12.8	0	3.48												
-	16:07	0.7	0.9	13.7	0	4.88												
	16:08	0.8	0.3	13.8	0	4.89	0	0	13.9	0	5.06	0.8%	0.3%	-0.4%	0.0%	-0.9%	Drift/Bias	
	16:09	0.8	0.1	13.2	0	4.68												
	16:12	0.9	5.8	20.6	24	-0.01						ļ						
	16:13	1.0	0.5	20,6	24	-0.02				24.8					-1.6%		Drift/Bias	
_	16:14	1.1	0.2	16.4	8	2.11												
	17:21	1.0	1.1	20.6	23	-0.02												
	17:22	0.8	0.4	20.6	24	-0.03				24.8					-1.6%		Drift/Bias	
	17:23	0.8	0.3	15.1	3	3.56												
	17:24	0.8	0.3	13.8	Ō	4.87												
	7:25	0.9	0.1	13.8	0	4.88	0	0	13.9	0	5.06	0.9%	0.1%	-0.4%	0.0%	-0.9%	Drift/Bias	
	17:26	0.9	0.1	11.9	0	4.84		-		_								
	17:28	47.8	41.2	0.0	0	-0.01												
	17:29	47.7	44.9	0.0	Ō	-0.02	45.3	46	0	0	0	24%	-1 1%	0.0%	0.0%	-0.1%	Drift/Bias	
	17:30	48.1	45.4	0.0	0	-0.03			•	-	•			••••••	•••••	•••••		
-	18:39	33.7	32.5	0.2	Ō	0.03												
	18:40	47.8	44.4	0.0	Ō	-0.01	45.3	46	0	0	0	2.5%	-1 6%	0.0%	0.0%	-0.1%	Drift/Bias	
	18:41	47.6	45.8	1.9	0	0.43			_	-	-					••••		
	18:46	0.8	0.3	20.6	24	-0.04				24.8					-1.6%		Drift/Bias	
	18:47	1.0	0.2	17.4	12	2.14									,			
	18:48	1.0	0.1	13.8	1	4.86												
	18:49	0.8	0.1	13.8	Ó	4.87	0	0	13.9	0	5.06	0.8%	0.1%	-0.4%	0.0%	-0.9%	Drift/Bias	
	18:50	18.2	0.3	4.1	Ō	1.61	-	-		-			••••		••••	••••		
	18:52	45.9	44.6	0.0	Ō	-0.02					[
	18:53	45.7	45.3	0.0	Ō	-0.03	45.3	46	0	0	0	0.4%	-0 7%	0.0%	0.0%	-0.2%	Reset CO	
	18:54	45.7	45.5	1.1	-	-0.03			•	Ū	Ŭ	0.170	0	0.070	0.070	0.2.70		
	10.04	40.7	40.0	1.1	••	0.001					I							
	Calibra	tion Er	ror and	d Drift	Requi	rement	s:	I	nitial C	al Error	-	Drift						
		EPA M			•				2% of S			2% of §	Span					
		EPA M		-			•		2% of S			<10% i	•	กร				
					•					•		3% of Span						
	EPA Method 25A (THC)								5% Absolute				3% of Span					

,,,,Enertec NTDAHS® ,,,,Average Values ,,,,"03/23/00 17:03	Report "	Conv Thermo	erter i	E ffecuer	g Test 42C	
		Taermo	concon	meri		,
"Company: McIntosh" " Plant: ",,,,," "City/St: Lakeland, " Source: STACK",,, ,,,,,,Type: Block A	Period End: Florida",, ,,,"Averagi vg	: 03/23/00 1 .,,,,"Valida ing Period:	ation Type: 1 min"	: 1/1 min"	4211	294
. "Av	erage","Ave	erage","Ave	rage","Ave	rage","Ave	rage","Av	erage","Average
" "Average"						
, "NO	x","NOx Cor pm","ppm",'	r","CO","CO 'ppm","ppm") Corr","Ti ,"ppm","ppi	HC","THC C m","%","%"	orr","02"	,"CO2" 、
"03/23/00 16:16", N/A	N/A ,	N/A ,	N/A,	N/A ,	N/A ,	N/A , N/F
"03/23/00 16:17", N/A	N/A,	N/A ,	N/A ,	N/A,	N/A ,	N/A, N/F
*"03/23/00 16:18", 20.6 , ~0.01	42.3,	988.6 ,	999.9 ,	N/A ,	N/A	, N/A ,
"03/23/00 16:19",	42.1 ,	985.1 ,	999.9 ,	N/A ,	N/A	, N/A ,
20.6, ~0.02 "03/23/00 16:20",	42.1 ,	985.9 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.6 , -0.01 "03/23/00 16:21",	42.1 ,	985.1 ,	1000.0 ,	N/A ,	N/A	, N/A.,
20.6, ~0.02 "03/23/00 16:22",	42.2 ,	1424.9 ,	999.9 ,	N/A,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:23",	42.3 ,	1649.7 ,	999.9 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:24",	42.5 ,	1656.2 ,	999.9 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:25",	42.7 ,	1664.0 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:26",	42.9,	1671.2 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7, -0.01 "03/23/00 16:27",	43.1 ,	1679.0 ,	1000.0 ,	N/A,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:28",	43.1 ,	1680.9 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , ~0.01 "03/23/00 16:29",	43.3,	1690.0 ,	999.9 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:30",	43.3 ,	1690.0 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 103/23/00 16:31",	43.1 ,	1682.2 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:32",	43.4 ,	1692.0 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:33",	43.6,	1698.5 ,	999.9 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:34",	43.8 ,	1706.3 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:35",	43.8,	1708.9 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:36",	44.0 ,	1716.0 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:37",	44.0 ,	1716.0 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:38",	44.0 ,	1716.0 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , -0.01 "03/23/00 16:39",	43.8,	1707.5 ,	1000.0 ,	N/A ,	N/A	, N/A ,
20.7 , ~0.01 "n3/23/nn 16·4n".	477.	1702 4 .	1000 0.	м∕а .	N/A	. N/A .

rch. 2000 10:53		To: Bill Mayhew				From: J B Clark	ζ.		372	-9520		Page: 9 (of 9
				Con	IV,	EFF.		cont's	1.				
	-0.01	12 6				•				NT / T		17 / 5	
"03/23/00		43.6	'	1699.8	'	1000.0	'	N/A	'	N/A	'	N/A	'
	-0.01	42 7		1704 2		1000 0		N/A		N/A		N: / A	
"03/23/00		43.7	'	1704.3	'	1000.0	'	N/A	'	N/A	'	N/A	'
	-0.01	42.4		1601 3		000 0		NT / 7		NI / 7		NI / D	
"03/23/00		43.4	,	1091.3	'	999.9	'	N/A	'	N/A	'	N/A	'
	-0.01	43.6		1600 1		000 0		N / A		N/A		NI / 3	
"03/23/00		43.0	,	1033.1	1	999.9	,	N/A	,	N/ //	,	N/A	'
/	-0.01	12 6		1 (0 0 0		1000.0		N7 / D		N1 / 7		N ()	
"03/23/00		43.6	,	1699.8	'	1000.0	'	N/A	,	N/A	'	N/A	,
,	-0.01									N / N			
"03/23/00		43.6	'	1700.4	,	999.9	'	N/A	'	N/A	'	N/A	'
	-0.01											/.	
"03/23/00	16:47",	43.6	,	1698.5	,	999.9	'	N/A	,	N/A	,	N/A	.1
20.7 ,	-0.01												
"03/23/00	16:48",	43.6	,	1702.4	,	1000.0	,	N/A	,	N/A	,	N/A	,
20.7 ,	-0.01												
"03/23/00	16:49",	43.8	,	1705.6	,	1000.0	,	N/A	,	N/A	,	N/A	,
20.7 ,	-0.01												
"03/23/00	16:50",	43.8	,	1708.9	,	999.9	,	N/A	,	N/A	,	N/A	,
20.7 ,	-0.01												
"03/23/00	16:51",	43.7	,	1704.3	,	1000.0	,	N/A	,	N/A	,	N/A	,
	-0.01												
"03/23/00	16:52",	43.8	,	1706.3	,	999.9	,	N/A	,	N/A	,	N/A	,
	-0.01												
"C3/23/00		43.7	,	1704.9	,	1000.0	,	N/A	,	N/A	,	N/A	,
	-0.01												
"03/23/00		14.9	,	581.1	,	1000.0		N/A	,	N/A	,	N/A	,
	-0.01		•		•		'		•				
"03/23/00		0.3		12.3		1000.0		N/A		N/A		N/A	,
	-0.01	••••	,		'		'	•••,•••	•				
"03/23/00	-	0.3	_	11.7		1000.0		N/A		N/A	,	N/A	,
	-0.01	0.0	'		'		'	•••, ••	'				•
"03/23/00		0.3		13.0		999.9		N/A		N/A		N/A	,
	-0.01	0.0	,	10.0	'	555.5	'		'	,	,		,
"03/23/00		0.3		12.3		1000.0		N/A		N/A		N/A	
	-0.01	0.0	,		'	1000.0	,		,	,	,	.,,,,	,
"Final Ave		38.4		1428 1		1000.0	. 1	N/A.N/A.I	V/A.	2	0.7		0.01
	imum*",		,	1716 0		1000.0	'	0	יייי י	2	ο,		C
		44.0	,		'	1000.0	'	0.0	, ,		. ,		-
20.7 ,	0.00	0.3		11 7		000 0			n c	000000	0 0	nnnnn	00
	imum*",	0.3	'	11.7	'	555.9	'		, , , , ,		· · ·		50
20.6 ,	-0.02												

"*Does not include Invalid Averaging Periods ("N/A")

....

Peak = 49.0 Find = 43.6 \$2% = 0.9% pars The

SHIPPED FROM: 80 INDUSTRIAL DE IVE ALPHA, NJ. 08865 TEL; (908) 454-7455

SHIPPED TO:

Mointosh Power Station (Gate 8) 3030 East Lake Parker Drive Lakeland, FL 33805 Attn: Bill Barclay/Jason Kraus

CERTIFICATE OF ANALYSIS SGI ORDER #: 141693 ITEM#: 7 CYLINDER #: CC106855 CERTIFICATION DATE: 4/8/99 CYLINDER PRES: 2000 psig P.O.#: 4500158527 CYLINDER VALVE: CGA 660 BLEND TYPE CERTIFIEE

ANALYTICAL ACCURACY: +/-2%

COMPCINENT	REQUESTED GAS	ANALYSIS
Carbon Monoxi:le	45.0 ppm	45.3 ppm
Nitric Oxide	45.0 ppm	46 . 0 -pp.m
NOX	Reference Value Only	46.0 ppm
Nitrogen	Balance	Balance

ANALYST:____

Fred Pikula

.

SHIPPED FRCM: 80 INDUSTRIAL DF IVE ALPHA, NJ. 08865 TEL: (908) 454-7455

CERTIFICATE OF ANALYSIS		OF
SGI ORDER # :	141693	
ITEM#:	1	CYLINDER #: CC106729
CERTIFICATION DATE:	4/13/99	CYLINDER PRES: 2000 psig
P.O.#:	4500158527	CYLINDER VALVE: CGA 590
BLEND TYPE	CERTIFIED	

ANALYTICAL ACCURACY: + / - 2%

COMPONENT	REQUESTED GAS	ANALYSIS
Oxygen	20.0 %	20.0 %
Nitrogen	Balance	Balance

ANALYST:

Fred Pikula

;

.

004

SHIPPED FROM: 80 INDUSTRIAL DF IVE ALPHA, NJ. 08865 TEL: (908) 454-7455

SHIPPED TO:

McIntosh Priwer Station (Gate 8) 3030 East Lake Parker Drive Lakeland, F 1 33805 Attn: Bill Barclay/Jason Kraus

CERTIFICATE OF ANALYSIS

SGI ORDER # :	141693	
ITEM#:	8	CYLINDER # : CC106965
CERTIFICATION DATE:	4/8/99	CYLINDER PRES: 2000 psig
P.O.# :	4500158527	CYLINDER VALVE: CGA 660
BLEND TYPE	CERTIFIEL	

ANALYTICAL ACCURACY: + / - 2%

COMPCINENT	REQUESTED GAS	ANALYSIS
Carbon Monoxiele	20.0 ppm	20.0 ppm
Nitric Oxide	20.0 ppm	20.3 ppm
NOX	Reference Value Only	20.3 ppm
Nitrogen	Balance	Balance

ANALYST:____

Fred Pikula

DATE: 4/8/99

••••

.

.

6005

SHIPPED FROM: 80 INDUSTRIAL DEIVE ALPHA, NJ. 08865 TEL: (908) 454-7455

SHIPPED TO: Mcintosh Power Station (Gate 8) 3030 East I ake Parker Drive Lakeland, FL 33805 Attn: Bill Barclay/Jason Kraus

		CERTIFICATE OF ANALYSIS
SGI ORDER # :	141693	
ITEM# :	9	CYLINDER # : CC107045
CERTIFICATION DATE:	4/13/99	CYLINDER PRES: 2000 psig
P.O.# :	4500158527	CYLINDER VALVE: CGA 590
BLEND TYPE	CERTIFIED	

ANALYTICAL ACCURACY: + / - 2%

	REQUESTED GAS	ANALYSIS
Oxygen Carbon Dioxide	14.0 % 5.00 %	13.9 % 5.06 %
Nitrogen	Baiance	Balance

ANALYST:

Fred Pikula

2

DATE: 4/13/99

.

SHIPPED FROM: 80 INDUSTRIAL DEIVE ALPHA, NJ. 08865 TEL: (908) 454-7455

SHIPPED TO: CEM Servic es 247 Oaklan J Street Mansfield, vA 02048

		CERTIFICATE OF ANALYSIS	
SGI ORDER # :	141242	-	
ITEM#:	1		CYLINDER # : CC106652
CERTIFICATION DATE:	4/1/99		CYLINDER PRES: 2000 psig
P.O.#:	1141B		CYLINDER VALVE: CGA 580
GRADE:	ZERO NITF OGEN		

REQUESTED GAS
GRADE

NITROGEN

99.998 %

THC < 0.2 ppm

ANALYST:____

Ted Neeme

.

DATE: 4/1/99

FRI 14:08 FAX	19082520811 SPECT	RA ONE
		Poor Quality Original
SHIPPED FROM: 80 INC	DUSTRIAL DRIVE ALPHA, NJ. 08	865 TEL: (908) 454-7455
SHIPPED T D:	Mcintosh Power Station (Gate & 3030 Ea ;t Lake Parker Drive Lakelanc., FL 33805 Attn: Bill Barclay/Jason Kraus	;)
	an a	and a second
	CERI	IFICATE
		OF
SGI ORD R # : ITEM# : CERTIFICATION DATE:		OF

ANALYTICAL ACCURACY: +/ . 2%

CIDMPONENT	REQUESTED GAS	ANALYSIS
Carbon Monoxide	90.0 ppm	91.0 ppm
Nitröge	Balance	Balance

ANALYST:__

Fred Pi :ula

DATE: 4/8/99

Ø 008

SHIPPED FROM: 80 INDUSTRIAL DRIVE ALPHA, NJ. 08865 TEL: (908) 454-7455

SHIPPED TO: Mcintosh Power Station (Gate 8) 3030 East Lake Parker Drive Lakeland, FL 33805 Attn: Bill Barclay/Jason Kraus

CERTIFICATE OF ANALYSIS SGI ORDER # : 141693 CYLINDER #: CC106738 ITEM#: 10 CERTIFICATION DATE: 4/13/99 CYLINDER PRES: 2000 psig 4500158527 CYLINDER VALVE: CGA 590 P.O.# : BLEND TYPE: CERTIFIED

ANALYTICAL ACCURACY: + / - 2%

COMPOHENT	REQUESTED GAS	ANALYSIS
Methane	10.0 ррт	10.0 ppm
Air	Balance	Balance

ANALYST:____

Ted Neeme

DATE: 4/13/99

 $x_i Z$

Ø 009

SHIPPED FROM: 80 INDUSTRIAL DF IVE ALPHA, NJ. 08865 TEL: (908) 454-7455

SHIPPED TO:	Mcintosh Pc wer Station (Gate 8)
	3030 East Lake Parker Drive
	Lakeland, F. 33805
	Attn: Bill Bai clay/Jason Kraus

CERTIFICATE OF ANALYSIS SGI ORDER #: 141693 ITEM#: 6 CYLINDER #: CC107069 CERTIFICATICIN DATE: 4/13/99 CYLINDER PRES: 2000 pslg P.O.#: 4500158527 CYLINDER VALVE; CGA 350 BLEND TYPE: CERTIFIED

ANALYTICAL ACCURACY: + / - 2%

COMPONIENT		ANALYSIS
Methane	45.0 ppm	45.1 ppm
Nitrogen	Balance	Balance

ANALYST:

.

DATE: 4/13/99

Ted Neeme

ı

:

This is to Certify That

CHARLES RESHARD nes completed the STATE OF FLORIDA visible emissions evaluation training and is a gualified observer of visible emissions as specified by EPA reference method 9.

This Certificate Expires

۰.

Jun 9, 2000 Certificate Officer Bearar's Signature

Your certificate is valid for six (6) months. To keep your certification current, you must recertify on or before the expiration date on the card. Please mark your calendar accordingly.

.

Provided field certification is continuous the classroom certificate expires:

Nov 30, 2001

If field certification is not continue classroom certification must be obtained prior to your next field certification attempt.

If you have any questions about your certification, please contact M.D. Harley at 850/921-9509.

VISIBLE EMISSIONS EVALUATOR

This is to certify that

Charles Reshard

met the specifications of Federal Reference Method 9 and qualified as a visible emissions evaluator. Maximum deviation on white and black smoke did not exceed 7.5% opacity and no single error exceeding 15% opacity was incurred during the certification test conducted by Eastern Technical Associates of Raleigh, North Carolina. This certificate is valid for six months from date of issue.

27<u>4956</u>

Certificate Number

<u>Iacksonville, Florida</u> Location December 9, 1999 Date of Issue

Vines For

President

achard Juneford Director of Training

AIR CONSTRUCTION PERMIT PSD-FL-245 (1050004-004-AC)

SECTION III. EMISSION UNIT(S) SPECIFIC CONDITIONS

APPLICABLE STANDARDS AND REGULATIONS:

- Unless otherwise indicated in this permit, the construction and operation of the subject emission unit(s) shall be in accordance with the capacities and specifications stated in the application. The facility is subject to all applicable provisions of Chapter 403, F.S. and Florida Administrative Code Chapters 62-4, 62-103, 62-204, 62-210, 62-212, 62-213, 62-214, 62-296, 62-297; and the applicable requirements of the Code of Federal Regulations Section 40, Parts 60, 72, 73, and 75.
- 2. Issuance of this permit does not relieve the facility owner or operator from compliance with any applicable federal, state, or local permitting requirements or regulations. [Rule 62-210.300, F.A.C.]
- 3. These emission units shall comply with all applicable requirements of 40CFR60, Subpart A, General Provisions including:
 - 40CFR60.7, Notification and Recordkeeping
 - 40CFR60.8, Performance Tests
 - 40CFR60.11, Compliance with Standards and Maintenance Requirements
 - 40CFR60.12, Circumvention
 - 40CFR60.13, Monitoring Requirements
 - 40CFR60.19, General Notification and Reporting requirements
- 4. ARMS Emission Unit 028, Power Generation, consisting of a 250 megawatt combustion turbine with a once-through steam generator shall comply with all applicable provisions of 40CFR60, Subpart GG, Standards of performance for Stationary Gas Turbines, adopted by reference in Rule 62-204.800(7)(b), F.A.C. The Subpart GG requirement to correct test data to ISO conditions applies. However, such correction is not used for compliance determinations with the BACT standard(s).
- ARMS Emission Unit 029, Fuel Storage, consisting of a 1.05 million gallon distillate fuel oil storage tank shall comply with all applicable provisions of 40CFR60, Subpart Kb, Standards of Performance for Volatile Organic Liquid Storage Vessels, adopted by reference in Rule 62-204.800, F.A.C.
- 6. All notifications and reports required by the above specific conditions shall be submitted to the DEP's Southwest District office.

GENERAL OPERATION REQUIREMENTS

 Fuels: Only pipeline natural gas or maximum 0.05 percent sulfur fuel oil No. 2 or superior grade of distillate fuel oil shall be fired in this unit. [Applicant Request, Rule 62-210.200, F.A.C. (Definitions - Potential Emissions)]

AIR CONSTRUCTION PERMIT PSD-FL-245 (1050004-004-AC)

SECTION III. EMISSION UNIT(S) SPECIFIC CONDITIONS

- 8. <u>Capacity</u>: The maximum heat input rates, based on the lower heating value (LHV) of each fuel to Unit 5 at ambient conditions of 59°F temperature, 60% relative humidity, 100% load, and 14.7 psi pressure shall not exceed 2,174 million Btu per hour (mmBtu/hr) when firing natural gas, nor 2,236 mmBtu/hr when firing No. 2 or superior grade of distillate fuel oil. These maximum heat input rates will vary depending upon ambient conditions and the combustion turbine characteristics. Manufacturer's curves corrected for site conditions or equations for correction to other ambient conditions shall be provided to the Department of Environmental Protection (DEP) within 45 days of completing the initial compliance testing. [Design, Rule 62-210.200, F.A.C. (Definitions Potential Emissions)]
- 9. <u>Unconfined Particulate Emissions</u>: During the construction period, unconfined particulate matter emissions shall be minimized by dust suppressing techniques such as covering and/or application of water or chemicals to the affected areas, as necessary.
- 10. <u>Plant Operation</u> Problems: If temporarily unable to comply with any of the conditions of the permit due to breakdown of equipment or destruction by fire, wind or other cause, the owner or operator shall notify the DEP Southwest District office as soon as possible, but at least within (1) working day, excluding weekends and holidays. The notification shall include: pertinent information as to the cause of the problem; the steps being taken to correct the problem and prevent future recurrence; and where applicable, the owner's intent toward reconstruction of destroyed facilities. Such notification does not release the permittee from any liability for failure to comply with the conditions of this permit and the regulations. [Rule 62-4.130, F.A.C.]
- 11. <u>Operating Procedures</u>: Operating procedures shall include good operating practices and proper training of all operators and supervisors. The good operating practices shall meet the guidelines and procedures as established by the equipment manufacturers. All operators (including supervisors) of air pollution control devices shall be properly trained in plant specific equipment. [Rule 62-4.070(3), F.A.C.]
- 12. <u>Circumvention</u>: The owner or operator shall not circumvent the air pollution control equipment or allow the emission of air pollutants without this equipment operating properly. [Rules 62-210.650, F.A.C.]
- 13. <u>Maximum allowable hours</u> of operation for the stationary gas turbine and once-through stearn generator are 8760. Fuel usage as heat input, while burning natural gas in the stationary gas turbine, shall not exceed 15.639 x 10⁻¹² BTU (LHV) per year (rolled monthly) until the unit achieves the NO_x emission limits (other than the initial ones) given in Specific Condition 21. Thereafter, only the hourly heat input limits given in Specific Condition 8 apply. [Applicant Request, Rule 62-210.200, F.A.C. (Definitions Potential Emissions)]
- Fuel usage as heat input, while burning fuel oil in the stationary gas turbine, shall not exceed 559 x 10⁹ BTU (LHV) per year (rolled monthly). [Applicant Request, Rule 62-210.200, F.A.C. (Definitions Potential Emissions)]

⊁

≁

AIR CONSTRUCTION PERMIT PSD-FL-245 (1050004-004-AC)

SECTION III. EMISSION UNIT(S) SPECIFIC CONDITIONS

Control Technology

- Westinghouse Dry Low NO_X (DLN) combustors shall be installed on the stationary combustion turbine to control nitrogen oxides (NO_X) emissions while firing natural gas. [Design, Rule 62-4.070, F.A.C.]
- 16. The Dry Low NO_X (DLN) combustors shall be replaced with Westinghouse Ultra Low NO_X (ULN) combustors to accomplish further NO_X control in order to achieve the emission limits specified in Specific Condition 20 and 21. A high temperature selective catalytic reduction (Hot SCR) system or a low temperature SCR system shall be installed and in operation (together with DLN or ULN combustors) not later than <u>May 1, 2002</u> if the emission limits specified in Specific Condition No 20 and 21 are not achievable by ULN combustors by this date. [Design, Rules 62-4.070 and 62-212.400, F.A.C.]
- 17. The permittee shall design the stationary gas turbine, ducting, possible future heat recovery stearn generator, and stack(s) to accommodate installation of SCR equipment and/or oxidation catalyst in the event that the ULN technology fails to achieve the NO_X limits given in Specific Condition No. 20 and 21 or the carbon monoxide (CO) limits given in Specific Condition 22 are not met. [Rule 62-4.070, F.A.C.]
- 18. A water injection system shall be installed for use when firing No. 2 or superior grade distillate fuel oil for control of NO_X emissions. [Design, Rules 62-4.070 and 62-212.400, F.A.C.]
- 19. The permittee shall provide manufacturer's emissions performance versus load diagrams for the DLN and ULN systems prior to their installation. DLN and ULN systems shall each be tuned upon initial operation to optimize emissions reductions and shall be maintained to minimize NO_X emissions and CO emissions. Operation of the DLN or ULN systems in the diffusion firing mode shall be minimized when firing natural gas. [Rule 62-4.070, and 62-210.650 F.A.C.]

EMISSION LIMITS AND STANDARDS

20. The following table is a summary of the BACT determination and is followed by the applicable specific conditions. Values for NO_x are corrected to 15% O₂. Values for CO are corrected to 15% O₂ only until May 1, 2002. [Rule 62-212.400, F.A.C.]

Operational Mode	NO _x (ppm)	CO (ppm)	VOC (ppm)	PM/Visibility (% Opacity)	Technology and Comments
Simple Cycle	25 - NG (basis) 237 lb/hr (24-hr avg) 42 - FO (3 hr avg)	25 - NG or 10 - Ox Cat 90 - FO	4 - NG 10 - FO	10	DLN on gas, WI on oil. Applies until 05/1/2002 . Clean fuels, good combustion
Simple Cycle	9 - NG (basis) 85 lb/hr (24-hr avg) 42 - FO (3 hr avg)	25 - NG or 10 - Ox Cat 90 - FO	4 - NG 10 - FO	10	ULN on gas, WI on oil. Applies after 05/1/2002 Clean fuels, good combustion
Simple Cycle	9 - NG (3 hr avg) 15 - FO (3-hr avg)	25 - NG or 10 - Ox Cat 90 - FO	4 - NG 10 - FO	10	Hot SCR. Applies not later than 05/1/2002 if 9 ppm NO _X not achievable by ULN, Clean fuels, good combustion.
Combined Cycle	7.5 - NG (3 hr avg) 15 - FO (3-hr avg)	25 - NG or 10 - Ox Cat 90 - FO	4 - NG 10 - FO		Conventional SCR unless simple cycle limits are achieved on or before 05/01/2002. Clean fuels, good combustion

DEP File No. 1050004-004-AC Permit No. PSD-FL-245

AIR CONSTRUCTION PERMIT PSD-FL-245 (1050004-004-AC)

SECTION III. EMISSION UNIT(S) SPECIFIC CONDITIONS

21. Nitrogen Oxides (NO_x) Emissions:

- When NO_X monitoring data is not available, substitution for missing data shall be handled as required by Title IV (40 CFR 75) to calculate any specified average time.
- Until May 1, 2002, the concentration of NO_x in the exhaust gas <u>shall not exceed 237 lb/hr</u> (at ISO conditions) on a 24 hr block average (basis 25 ppm @ 15% O₂, full load) when firing natural gas and 42 ppmvd at 15% O₂ when firing fuel oil on the basis of a 3 hr average as measured by the continuous emission monitoring system (CEMS). In addition, NO_x emissions calculated as NO₂ (at ISO conditions) shall exceed neither 25 ppm @15% O₂ nor 237 lb/hr (when firing natural gas) and shall exceed neither 42 ppm @15% O₂ nor 413 lb/hr (when firing fuel oil) to be demonstrated by stack test. [Rule 62-212.400, F.A.C.]
- Not later than May 1, 2002, the concentration of NO_X concentrations in the exhaust gas shall not exceed 85 lb/hr (at ISO conditions) on a 24 hr block average (basis 9 ppm @ 15% O₂) when firing natural gas and 42 ppmvd at 15% O₂ when firing fuel oil on the basis of a 3 hr average as measured by the CEMS. In addition, NO_X emissions calculated as NO₂ (at ISO conditions) shall exceed neither 9 ppm @15% O₂ nor 85 lb/hr (when firing natural gas) and shall exceed neither 42 ppm @15% O₂ nor 413 lb/hr (when firing fuel oil) to be demonstrated by stack test. [Rule 62-212.400, F.A.C.]
- If Hot SCR is installed, achievable short-term NO_X concentrations in the exhaust gas shall be demonstrated at baseload during the first compliance test following installation not to exceed 9 ppmvd at 15% O₂ when firing natural gas. NO_X emissions shall not exceed 9 ppmvd at 15% O₂ when firing natural gas and 15 ppmvd at 15% O₂ when firing fuel oil on the basis of a 3-hr average, as measured by the CEMS. In addition, NO_X emissions calculated as NO₂ (at ISO conditions) shall not exceed 85 lb/hr (when firing natural gas) and 148 lb/hr (when firing fuel oil) to be demonstrated by stack test. [Rule 62-212.400, F.A.C.]
- If conventional SCR is installed in conjunction with conversion to combined cycle operation, achievable short-term NO_X concentrations in the exhaust gas shall be demonstrated at baseload during the first compliance test following installation not to exceed 7.5 ppmvd at 15% O₂ when firing natural gas. If conventional SCR catalyst is installed, NO_X emissions shall not exceed 7.5 ppmvd at 15% O₂ when firing fuel oil on the basis of 3-hr average, as measured by the CEMS. In addition, NO_X emissions calculated as NO₂ (at ISO conditions) shall not exceed 71.1 lb/hr (when firing natural gas) and 148 lb/hr (when firing fuel oil) to be demonstrated by stack test. [Rule 62-212.400, F.A.C.]

Lakeland Electric & Water Utilities C.D. McIntosh, Jr. Power Plant, Unit 5

AIR CONSTRUCTION PERMIT PSD-FL-245 (1050004-004-AC)

SECTION III. EMISSION UNIT(S) SPECIFIC CONDITIONS

22. <u>Carbon Monoxide (CO) emissions</u>: Prior to May 1, 2002, the concentration of CO (@15% O₂ in the exhaust gas when firing natural gas shall not exceed 25 ppmvd when firing natural gas and 90 ppmvd when firing fuel oil as measured by EPA Method 10. CO emissions (at ISO conditions) shall not exceed 145 lb/hr (when firing natural gas) and 539 lb/hr (when firing fuel oil). [Rule 62-212.400, F.A.C.]

After May 1, 2002, the concentration of CO in the exhaust gas when firing natural gas shall not exceed 25 ppmvd when firing natural gas and 90 ppmvd when firing fuel oil as measured by EPA Method 10. CO emissions (at ISO conditions) shall not exceed 106 lb/hr (when firing natural gas) and 386 lb/hr (when firing fuel oil). [Rule 62-212.400, F.A.C.]

- 23. <u>Sulfur Dioxide (SO₂) emissions</u>: SO₂ emissions (at ISO conditions) shall not exceed 7.2 pounds per hour when firing pipeline natural gas and 127 pounds per hour when firing maximum 0.05 percent sulfur No. 2 or superior grade distillate fuel oil as measured by applicable compliance methods described below. Emissions of SO₂ shall not exceed 38.4 tons per year. [Rules 62-4.070 and 62-212.400, F.A.C. to avoid PSD Review]
- 24. <u>Visible emissions (VE)</u>: VE emissions shall not exceed 10 percent opacity when firing natural gas or No. 2 or superior grade of fuel oil.
- 25. <u>Volatile Organic Compounds (VOC) Emissions</u>: The concentration of VOC in the exhaust gas when firing natural gas shall not exceed 4 ppmvd when firing natural gas and 10 ppmvd when firing fuel oil as assured by EPA Methods 18, and/or 25 A. VOC emissions (at ISO conditions) shall not exceed 10 lb/hr (when firing natural gas) and 25 lb/hr (when firing fuel oil). [Rule 62-212.400, F.A.C.]

EXCESS EMISSIONS

- 26. Excess emissions resulting from startup, shutdown, malfunction or fuel switching shall be permitted provided that best operational practices are adhered to and the duration of excess emissions shall be minimized. Excess emissions occurrences shall in no case exceed four hours in any 24-hour period for cold startup or two hours in any 24-hour period for other reasons unless specifically authorized by DEP for longer duration.
- 27. Excess emissions entirely or in part by poor maintenance, poor operation, or any other equipment or process failure that may reasonably be prevented during startup, shutdown or malfunction, shall be prohibited pursuant to Rule 62-210.700, F.A.C.
- 28. Excess Emissions Report: If excess emissions occur due to malfunction, the owner or operator shall notify DEP's Southwest District office within (1) working day of: the nature, extent, and duration of the excess emissions; the cause of the excess emissions; and the actions taken to correct the problem. In addition, the Department may request a written summary report of the incident. Pursuant to the New Source Performance Standards, excess emissions shall also be reported in accordance with 40 CFR 60.7, Subpart A. [Rules 62-4.130 and 62-210.700(6), F.A.C.]

PROJECT PARTICIPANTS

<u>STACS</u>

Bill Mayhew

Jamie Clark

Charles Reshard

Kiara Winans

Project Director

CEMS Specialist/Crew Chief

Chief Technician

Document Coordinator

Siemens-Westinghouse

Karen Weaver

Ramesh Kagolanu

Jason Kraus

Manager, Environmental Engineering

Senior Environmental Engineer

Senior Environmental Engineer

\Bill's\g\STACS\Reports\SWPCLakeland\SWPCLakeland.rpt.wpd April 5, 2000