Pasco County Solid Waste Resource Recovery Facility

Title V Operating Permit Application

Florida Department of Environmental Protection Division of Air Resources Management

October 1999

Prepared for:
Pasco County
7530 Little Road
New Port Richey, Florida 34654

Prepared By:
Camp Dresser & McKee Inc.
1725 North Westshore Boulevard
Suite 875
Tampa, Florida 33607

Table of Contents

Section 1: Application Information

Section 2: Facility Information

Section 3: Emissions Unit Information

Appendix A:

Section 1: Facility Applicable Regulations

Section 2: Facility Location Map Section 3: Facility Plot Plan

Section 4: Process Flow Diagram

Section 5: Precautions to Prevent Emissions of Unconfined Particular Matter

Section 6: Fugitive Emissions Identification Section 7: List of Proposed Exempt Activities

Section 8: List of Equipment Activities Regulated Under Title V

Section 9: Power Plant Citing Certification Section 10: Compliance Report and Plan Section 11: Compliance Certification

Appendix B:

Section 1: Emission Unit Flue

Section 2: Detailed Description of Control Equipment

Section 3: Stack Sampling Facilities

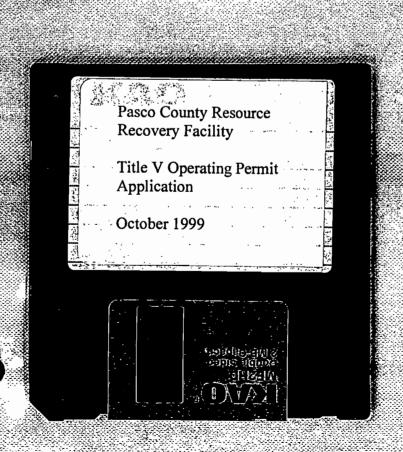
Section 4: Procedure for Startup and Shutdown Section 5: Operation and Maintenance Plan

Section 6: Identification of Additional Applicable Requirements

Appendix C: Carbon Silo Supplemental Information

Appendix D: Leachate Treatment Facility Permit

Appendix E: Supporting Documentation for Fugitive Landfill Gas Emissions


Section 1: Regulatory Applicability Determination

Section 2: Emissions Calculations

RECEIVED

OCT 14 1999

BUREAU OF AIR REGULATION

Department of Environmental Protection

DIVISION OF AIR RESOURCES MANAGEMENT

APPLICATION FOR AIR PERMIT - LONG FORM

I. APPLICATION INFORMATION

Identification of Facility Addressed in This Application

Facility Owner/Company Name: Pasco County		·
2. Site Name:		
Pasco County Resource Recovery Fac	ility	
3. Facility Identification Number:	1010056	[] Unknown
4. Facility Location: Pasco County Waste-to-Energy Facility	у	
Street Address or Other Locator:	14230 Hayes Rd.	
City: Spring Hill	County: Pasco	Zip Code: 34610
5. Relocatable Facility?		6. Existing Permitted Facility?
[] Yes [X] No		[X] Yes [] No

RECEIVED

OCT 14 1999

BUREAU OF AIR REGULATION

I. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

Owner/Authorized Representative or Responsible Official

1. Name and Title of Owner/Authorized Representative or Responsible Official:

Name:

John Gallagher

Title:

County Administrator

2. Owner or Authorized Representative or Responsible Official Mailing Address:

Organization/Firm:

Pasco County

Street Address:

7530 Little Road

City: New Port Richey

State:

Zip Code:

34654

3. Owner/Authorized Representative or Responsible Official Telephone Numbers:

Telephone: (813)847-8115

Fax: (813)847-8021

4. Owner/Authorized Representative or Responsible Official Statement:

FL

I, the undersigned, am the owner or authorized representative* of the non-Title V source addressed in this Application for Air Permit or the responsible official, as defined in Rule 62-210.200, F.A.C., of the Title V source addressed in this application. whichever is applicable. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof. I understand that a permit, if granted by the Department, cannot be transferred without authorization from the Department, and I will promptly notify the Department upon sale or legal transfer of any permitted emissions units.

Signature

tach letter of authorization if not currently on file.

I. Part 2 - 1

DEP Form No. 62-210.900(1) - Form

Scope of Application

Emissions Unit ID	Description of Emissions Unit	Permit Type
001	Municipal Waste Combustion Unit - #1	
002	Municipal Waste Combustion Unit - #2	
003	Municipal Waste Combustion Unit - #3	
004	Cooling Tower	
005	Carbon Silo vent equipped with dust collector	
006	Leachate Treatment Facility	
007	Fugitive Landfill Gas Emissions	

DEP Form No. 62-210.900(1) - Form

Purpose of Application and Category

ategory I: All Air Operation Permit Applications Subject to Processing Under Chapter 62-213, .A.C.

This Application for Air Permit is submitted to obtain:

- [X] Initial air operation permit under Chapter 62-213, F.A.C., for an existing facility which is classified as a Title V source.
- Initial air operation permit under Chapter 62-213, F.A.C., for a facility which, upon start up of one or more newly constructed or modified emissions units addressed in this application, would become classified as a Title V source.

Current construction permit number:

[] Air operation permit renewal under Chapter 62-213, F.A.C., for a Title V source.

Operation permit to be renewed:

Air operation permit revision for a Title V source to address one or more newly constructed or modified emissions units addressed in this application.

Current construction permit number:

Operation permit to be revised:

Air operation permit revision or administrative correction for a Title V source to address one or more proposed new or modified emissions units and to be processed concurrently with the air construction permit application.

Operation permit to be revised/corrected:

I. Part 4 - 1

DEP Form No. 62-210.900(1) - Form

Air operation permit revision for a Title V source for reasons other than construction or modification of an emissions unit.
Operation permit to be revised:
Reason for revision:
ategory II: All Air Operation Permit Applications Subject to Processing Under Rule 2-210.300(2)(b), F.A.C.
This Application for Air Permit is submitted to obtain :
Initial air operation permit under Rule 62-210.300(2)(b), F.A.C., for an existing facility seeking classification as a synthetic non-Title V source.
Current operation/construction permit number(s):
Renewal air operation permit under Fule 62-210.300(2)(b), F.A.C., for a synthetic non-Title V source.
Operation permit to be renewed:
[] Air operation permit revision for a synthetic non-Title V source.
Operation permit to be revised:
Reason for revision:
Category III: All Air Construction Permit Applications for All Facilities and Emissions Units
This Application for Air Permit is submitted to obtain:

I. Part 4 - 2

Air construction permit to construct or modify one or more emissions units within a facility (including any facility classified as a Title V source).

Current operation permit number(s), if any:

Air construction permit to make federally enforceable an assumed restriction on the potential emissions of one or more existing, permitted emissions units.

Current operation permit number(s):

Air construction permit for one or more existing, but unpermitted, emissions units.

I. Part 4 - 3

DEP Form No. 62-210.900(1) - Form

Application Processing Fee

Check one:

[] Attached - Amount :

\$0.00

[X] Not Applicable.

Construction/Modification Information

1. Description of Proposed Project or Alterations:

Not Applicable

- 2. Projected or Actual Date of Commencement of Construction:
- 3. Projected Date of Completion of Construction:

Professional Engineer Certification

1. Professional Engineer Name:

Darwish Q. El-Hajji

Registration Number:

43929

2. Professional Engineer Mailing Address:

Organization/Firm: Camp Dresser & McKee Inc.

Street Address: 1715 N. Westshore Blvd, S875

City: Tampa

State: FL Zip Code: 33607

Ĺ

3. Professional Engineer Telephone Numbers:

Telephone: (813)281-2900

Fax: (812)288-8787

4. Professional Engineer Statement:

- I, the undersigned, hereby certify, except as particularly noted herein*, that:
- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollutant control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [I if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [] if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [] if so), I further certify that, with the exception of any changes detailed as part of this application, each Buch emissions has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such per

I. Part 6 - 1

DEP Form No. 62-210.900(1) - Form

* Attach any exception to certification statement.

Application Contact

1. Name and Title of Application Contact:

Name: Darwish Q. El-Hajji
Title: Environmental Engineer

2. Application Contact Mailing Address:

Organization/Firm: Camp Dresser & McKee Inc.

Street Address: 1715 N. Westshore Blvd, S875

City: Tampa

State: FL Zip Code: 33607

3. Application Contact Telephone Numbers:

Telephone: (813)281-2900 Fax: (813)288-8787

Application Comment

The Pasco County Waste to Energy Facility (PCWTEF) is a Power Plant Siting Act (PPSA) facility. The facility PSD permint Nos. is PSD-FL-127 and the PPSC No. is PA87-23. Air quality requirements are contained in both permits.

The emissions are controlled by a dry scrubber. Using lime slurry, the scrubber neutralizes any acid forming gases, such as sulfur oxides and hydrogen chlorides. On April 20, 1995, the PCWTEF reveived a FDEP permit No. AC51-266667 to construct and operate an activated carbon storage silo and associated transport and injection equipment. The silo and the equipment will be used to store and inject activated carbon into the flue gas to control mercuriy emissions.

Contiguous to the property is the Shady Hill Wastewater Treatment Plant, ash landfill and a leachate treatment facility. The wastewater treatment plant has insignificant emissions. The leachate treatment facility has received an FDEP air permit No. 1010056-001-AC, and is requested to submit it under PPSC No. PA87-23. The ash landfill accepts small quantities of municipal solid waste as bypass, and is regulated by 40 CFR 60 Subpart Cc, Emission Guidelines for Municipal Solid Waste Landfills.

I. Part 7 - 1

DEP Form No. 62-210.900(1) - Form

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility, Location, and Type

1. Facility UTM Coordinates:

Zone:

17

East (km):

347.30

North (km):

3138.75

2. Facility Latitude/Longitude:

Latitude (DD/MM/SS):

22

4. Facility Status

5 Longitude (DD/MM/SS): 82

33 30

3. Governmental

Facility Code:

Code:

5. Facility Major Group SIC Code: 6. Facility SIC(s):

3

Α

49

4953

7. Facility Comment:

(813) 856-2917 - Robert Sitz

(813) 856-0119 - Vince Mannella

Facility Contact

1. Name and Title of Facility Contact:

Robert Sitz/Vince Mannella Facility Manager/Landfill Manager

2. Facility Contact Mailing Address:

Organization/Firm:

Ogden Martin Systems of Pasco, Inc.

Street Address:

14230 Haynes Rd.

City:

Spring Hill

State: FL Zip Code: 34610

3. Facility Contact Telephone Numbers:

Telephone:

(813)856-2917

Fax:

(813)856-0007

II. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

Facility Regulatory Classifications

1. Small Business Stationary Source?	N
2. Title V Source?	Y
3. Synthetic Non-Title V Source?	N
4. Major Source of Pollutants Other than Hazardous Air Pollutants (HAPs)?	Y
5. Synthetic Minor Source of Pollutants Other than HAPs?	N
6. Major Source of Hazardous Air Pollutants (HAPs)?	Y
7. Synthetic Minor Source of HAPs?	N
8. One or More Emissions Units Subject to NSPS?	Y
9. One or More Emission Units Subject to NESHAP?	N
10. Title V Source by EPA Designation?	Y
11. Facility Regulatory Classifications Comment:	

DEP Form No. 62-210.900(1) - Form

B. FACILITY REGULATIONS

Rule Applicability Analy	<u>sis</u>		

II. Part 3a - 1

B. FACILITY REGULATIONS

List of Applicable Regulations

Refer to Appendix A - Section 1

II. Part 3b - 1

C. FACILITY POLLUTANTS

Facility Pollutant Information

1. Pollutant Emitted	2. Pollutant Classification
PM	В
PM10	А
СО	В
РВ	В
NOX	A .
SO2	A
VOC	В
FL	В
SAM	В
HCL	A
H114	В
H021	В

II. Part 4 - 1

DEP Form No. 62-210.900(1) - Form

C. FACILITY POLLUTANTS

Facility Pollutant Information

1. Pollutant Emitted	2. Pollutant Classification	
PM	В	

Facility Pollutant Information	Pollutant1	
1. Pollutant Emitted: PM		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

II. Part 4b - 1

Facility Pollutant Information	Pollutant2	
1. Pollutant Emitted: PM10		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

Facility Pollutant Information	Pollutant3	
1. Pollutant Emitted: CO		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

Pollutant4	
·	
(lbs/hour)	(tons/year)

Facility Pollutant Information	Pollutant <u>5</u>	
1. Pollutant Emitted: NOX		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

Facility Pollutant Information	Pollutant6	
1. Pollutant Emitted:	SO2	
2. Requested Emissions Cap :	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code	:	
4. Facility Pollutant Comment:		
Not Applicable. No cap requested	d.	

DEP Form No. 62-210.900(1) - Form

Facility Pollutant Information	Pollutant/	
1. Pollutant Emitted: VOC		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		,
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

II. Part 4b - 7

DEP Form No. 62-210.900(1) - Form

Facility Pollutant Information	Pollutant <u>8</u>	
1. Pollutant Emitted: FL		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:	,	
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

II. Part 4b - 8

Facility Pollutant Information	Pollutant9	
1. Pollutant Emitted: SAM		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

DEP Form No. 62-210.900(1) - Form

Facility Pollutant Information	Pollutant10	
1. Pollutant Emitted: HCL		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		-
Not Applicable. No cap requested.		

DEP Form No. 62-210.900(1) - Form

Facility Pollutant Information	Pollutant11	
1. Pollutant Emitted: H114		
2. Requested Emissions Cap :	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

Facility Pollutant Information	Pollutant <u>12</u>	
1. Pollutant Emitted: H021		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

DEP Form No. 62-210.900(1) - Form

Facility Pollutant Information	Pollutant <u>13</u>	
1. Pollutant Emitted: PM		
2. Requested Emissions Cap:	(lbs/hour)	(tons/year)
3. Basis for Emissions Cap Code:		
4. Facility Pollutant Comment:		
Not Applicable. No cap requested.		

DEP Form No. 62-210.900(1) - Form

D. FACILITY SUPPLEMENTAL INFORMATION

Supplemental Requirements for All Applications

1. Area Map Showing Facility Location:	App. A, Sec. 2
2. Facility Plot Plan:	App. A, Sec. 3
3. Process Flow Diagram(s):	App. A, Sec. 4
4. Precautions to Prevent Emissions of Unconfined Particulate Matter:	App. A, Sec. 5
5. Fugitive Emissions Identification:	App. A, Sec. 6
6. Supplemental Information for Construction Permit Applica	NA

Additional Supplemental Requirements for Category I Applications Only

7. List of Proposed Exempt	App. A, Sec. 7
8. List of Equipment/Activities Regulated under	App. A, Sec. 8
9. Alternative Methods of Operation:	NA
10. Alternative Modes of Operation (Emissions	NA
11. Identification of Additional Applicable	App. A, Sec. 9
12. Compliance Assurance Monitoring	NA
13. Risk Management Plan Verification:	Plan Submit
14. Compliance Report and Plan:	App. A, Sec. 10
15. Compliance Certification (Hard-copy Require	App. A, Sec. 11

II. Part 5 - 1

DEP Form No. 62-210.900(1) - Form

Section 3

III. EMISSIONS UNIT INFORMATION

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Em	issio	ons Unit Information Section1_
Mu	nicip	al Waste Combustion Unit - #1
Туј	oe of	f Emissions Unit Addressed in This Section
1.]	Regu	ulated or Unregulated Emissions Unit? Check one:
[X]	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.
[]	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.
2. :	Sing	le Process, Group of Processes, or Fugitive Only? Check one:
	x]	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.
[]	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.

III. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1. Description of Emissions Unit Addressed in This Section :					
Municipal Waste Combustion U	nit - #1				
Emissions Unit Identification Number: 001 No Corresponding ID Unknown					
3. Emissions Unit Status Code: A	4. Acid Rain Unit? [] Yes [X] No	5. Emissions Unit Major Group SIC Code: 49			
6. Emissions Unit Comment:					

Emissions Unit Information Section	1		
Municipal Waste Combustion Unit - #1			
Emissions Unit Control Equipment	1		

1. Description: Dry Scrubber - Using lime slurry, the scrubber neutralizes any acid-forming gases, such as sulfur oxides and hydrogen chloride.

2. Control Device or Method Code: 13

III. Part 3 -

1

Emissions Unit Information Section	1		
Municipal Waste Combustion Unit - #1			
Emissions Unit Control Equipment	2		
Description: Fabric Filter - Baghouse			

2. Control Device or Method Code: 16

III. Part 3 -

2

Emissions Unit Information Section	. 1
Municipal Waste Combustion Unit - #1	
Emissions Unit Control Equipment	3

Description: Carbon Injection System		
2. Control Device or Method Code :	48	

III. Part 3 -

3

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #1	
Emissions Unit Details	
1. Initial Startup Date : 01-Jan-199	1
2. Long-term Reserve Shutdown Date :	`
3. Package Unit : Manufacturer :	Model Number :
4. Generator Nameplate Rating: 29 MW	
5. Incinerator Information: Dwell Temperature: 1,800 Dwell Time: 1.00 Incinerator Afterburner Temperature:	Degrees Fahrenheit Seconds Degrees Fahrenheit
Emissions Unit Operating Capacity	
1. Maximum Heat Input Rate: 160 mn	nBtu/hr
2. Maximum Incinerator Rate: 33500.00 lb/l	hr 402.00 tons/day
3. Maximum Process or Throughput Rate:	04000 lb steam/hr
4. Maximum Production Rate:	
5. Operating Capacity Comment: 1. Demonstration of compliance with maximum through 2. Maximum incinerator rate is 114% of rated name capa 3. Item 4 is for entire facility.	
Emissions Unit Operating Schedule	
Requested Maximum Operating Schedule:	7 daya/waal
24 hours/day 52 weeks/year	7 days/week 8,760 hours/year

III. Part 4 - 1

DEP Form No. 62-210.900(1) - Form

III. Part 4 -

DEP Form No. 62-210.900(1) - Form

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Emissions Unit Information Section	1	
Municipal Waste Combustion Unit - #1		
Rule Applicability Analysis		
Tare Experience Email 200		
		,

III. Part 6a - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

Municipal Waste Combustion Unit - #1

List of Applicable Regulations

Refer to Appendix A, Section 1

III. Part 6b - 1

DEP Form No. 62-210.900(1) - Form

E. EMISSION POINT (STACK/VENT) INFORMATION

Emissions Unit Information Section 1		
Municipal Waste Combustion Unit - #1		
Emission Point Description and Type:		
1. Identification of Point on Plot Plan or Flow Diagram: Flue #	1	
2. Emission Point Type Code: 1		
3. Descriptions of Emission Points Comprising this Emissions Unit (limit to 100 characters per point)	for VE	Tracking:
4. ID Numbers or Descriptions of Emission Units with this Emission	n Point	in Common:
5. Discharge Type Code:	V	
6. Stack Height:	275	feet
7. Exit Diameter :	4.7.	feet
8. Exit Temperature :	250	°F
9. Actual Volumetric Flow Rate:	5300	acfm
10. Percent Water Vapor:	8.70	%
11. Maximum Dry Standard Flow Rate: 47	7600	dscfm
12. Nonstack Emission Point Height :	0	feet
13. Emission Point UTM Coordinates:		
Zone: 0 East (km): 0.000 No	rth (kn	n): 0.000
14. Emission Point Comment:		_

III. Part 7a - 1

DEP Form No. 62-210.900(1) - Form

F. SEGMENT (PROCESS/FUEL) INFORMATION

Emissions Unit Information Section 1				
Municipal Waste Combustion Unit - #1				
Segment Description and Rate: Segment 1				
1. Segment Description (Process/Fuel Type and	Associated Operating Method/Mode):			
Municipal Waste Mass Burn				
2. Source Classification Code (SCC): 50100	102			
3. SCC Units: Tons Burned (all solid fuels)				
4. Maximum Hourly Rate: 16.75	5. Maximum Annual Rate: 146,730.00			
6. Estimated Annual Activity Factor:				
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:			
9. Million Btu per SCC Unit: 10				
10. Segment Comment :				
Maximum hourly rate based upon 114% of the n	ame plate capacity pursuant to PSD-FL-127.			

III. Part 8 - 1

DEP Form No. 62-210.900(1) - Form

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	1
Municipal Waste Combustion Unit - #1	

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
1 - PM	016		EL
2 - CO			EL
3 - PB	016		EL
4 - NOX			EL
5 - SO2	013		EL
6 - VOC			EL
7 - FL	013		EL
8 - SAM	013		EL
9 - HCL	013		EL
10 - H114	013	016	EL
11 - H021	016	·	EL
12 - H015	016		EL

III. Part 9a - 1

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	1
Municipal Waste Combustion Unit - #1	

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
		·	
			·

III. Part 9a - 2

Emissions Unit Information Section Municipal Waste Combustion Unit - #1	
Pollutant Potential/Estimated Emissions: Pollutant1	
1. Pollutant Emitted: PM	
2. Total Percent Efficiency of Control: %	,
3. Potential Emissions : 5.1300000 lb/hour	22.5000000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions: to	tons/year
6. Emissions Factor Units: Reference: PSD-FL-127 (9/22/88)	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
0.0322 lb PM/mmBtu * 140 mmBtu/hr * 1.14 = 5.13 lb PM/hr 5.13 lb PM/hr * 8760 hr/yr * 1 ton/2000 lb = 22.5 ton PM/yr	
9. Pollutant Potential/Estimated Emissions Comment:	
	(

III. Part 9b - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #1	
Pollutant Potential/Estimated Emissions: Pollutant2	
1. Pollutant Emitted: CO	
2. Total Percent Efficiency of Control: %	
3. Potential Emissions: 62.4000000 lb/hour	68.4000000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions:	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
For 1-hour average: 3.75 lb CO/ton refuse * 399 tons refuse/24 hr = 62.4	lb CO/hr
For 8-hour average: 0.94 lb CO/ton refuse * 399 ton refuse/24 hr * 8760 ton CO/yr	hr/yr * 1 ton/2000 lb = 68.44
9. Pollutant Potential/Estimated Emissions Comment:	
Emission factors obtained from PSD specific condition 400 ppmdv corrected to 7% O2, 1-hour average, 100 ppmdv corrected to 7% O2, 8-hour average.	

III. Part 9b - 2

DEP Form No. 62-210.900(1) - Form

Municipal Waste Combustion Unit - #1	
Pollutant Potential/Estimated Emissions: Pollutant3	
1. Pollutant Emitted: PB	
2. Total Percent Efficiency of Control: %	
3. Potential Emissions:	
0.1100000 lb/hour	0.4900000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions:	
t	to tons/year
6. Emissions Factor Units : Reference : PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions :	
7E-4 lb PB/mmBtu * 140 mmBtu/hr * 1.14 = 0.11 lb PB/hr	·
0.11 lb PB/hr * 8760 hr/yr * 1 ton/2000 lb = 0.49 tons PB/yr	
9. Pollutant Potential/Estimated Emissions Comment:	
Emission factor is 7E-4 lb/mmBtu	

DEP Form No. 62-210.900(1) - Form

Municipal Waste Combustion Unit - #1		
Pollutant Potential/Estimated Emissions: Pollutant 4	_	
1. Pollutant Emitted: NOX		
2. Total Percent Efficiency of Control: %		
3. Potential Emissions:		
102.6000000 lb/hour		449.4000000 tons/year
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:		
	to	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions :		
0.643 lb NOx/mmBtu * 140 mmBtu/hr * 1.14 = 102.6 lb NOx/hr		
102.6 lb NOx/hr * 8760 hr/yr * 1 ton/2000 lb = 449.4 ton NOx/yr		
9. Pollutant Potential/Estimated Emissions Comment:		

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #1		
Pollutant Potential/Estimated Emissions: Pollutant 5		
1. Pollutant Emitted: SO2		
2. Total Percent Efficiency of Control: 70.00 %		
3. Potential Emissions: 37.2000000 lb/hour	93.9000000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions: to	tons/year	
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
2.236 lb SO2/ton refuse * 399 ton refuse/24 hr = 37.2 lb SO2/hr		
1.29 lb SO2/ton refuse * 399 ton refuse/24 hr * 8760 hr/yr * 1 ton/2000 lb = 93/9 ton SO2/yr		
9. Pollutant Potential/Estimated Emissions Comment:		
Emission factor for the 3 hr rolling average is 2.36 lb/ton refuse. Emission factor for the 6 hr rolling average is 1.29 lb/ton refuse. PSD-FL-127. Based on 104 ppmdv (3hr) and 60 ppmdv (6h @7% O2		

III. Part 9b - 5

DEP Form No. 62-210.900(1) - Form

Municipal Waste Combustion Unit - #1		
Pollutant Potential/Estimated Emissions: Pollutant 6		
1. Pollutant Emitted: VOC		
2. Total Percent Efficiency of Control: %		
3. Potential Emissions: 3.3500000 lb/hour	14.7000000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:	tons/year	
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
0.021 lb VOC/mmBtu * 140 mmBtu/hr * 1.14 = 3.35 lb VOC/hr		
3.35 lb VOC/hr * 8760 hr/yr * 1 ton/2000 lb = 14.7 ton VOC/yr		
9. Pollutant Potential/Estimated Emissions Comment:		
Emission factor is increased by 14% pursuant to PSD specific conditions.		

DEP Form No. 62-210.900(1) - Form

Municipal Waste Combustion Unit - #1		
Pollutant Potential/Estimated Emissions: Pollutant	7	
1. Pollutant Emitted: FL		
2. Total Percent Efficiency of Control: 90.00	%	
3. Potential Emissions : 1.2700000 lb/hour	·	5.6000000 tons/year
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:	to	tons/year
6. Emissions Factor Uni Reference: PSD-FL-127	its:	
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
0.008 lb FL/mmBtu * 140 mmBtu/hr * 1.14 = 1.27 lb FL/l	ır	
1.27 lb FL/hr * 8760 hr/yr * 1 ton/2000 lb = 5.60 ton FL/y	r	
9. Pollutant Potential/Estimated Emissions Comment :		

III. Part 9b - 7

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #1	
Pollutant Potential/Estimated Emissions: Pollutant 8	
1. Pollutant Emitted: SAM	
2. Total Percent Efficiency of Control: 90.00 %	
3. Potential Emissions: 5.6000000 lb/hour	24.5200000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions:	to tons/year
6. Emissions Factor Units : Reference : PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
0.035 lb SAM/mmBtu * 140 mmBtu/hr * 1.14 = 5.60 lb SAM/hr	•
5.60 lb SAM/hr * 8760 hr/yr * 1 ton/2000 lb = 24.52 ton SAM/yr	
9. Pollutant Potential/Estimated Emissions Comment:	

III. Part 9b - 8

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #1		
Pollutant Potential/Estimated Emissions: Pollutant 9		
1. Pollutant Emitted: HCL		
2. Total Percent Efficiency of Control: 90.00 %		
3. Potential Emissions: 19.2000000 lb/hour	168.2000000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:	tons/year	
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0	·	
8. Calculations of Emissions:		
0.12 lb HCl/mmBtu * 140 mmBtu/hr * 1.14 = 19.2 lb HCl/hr		
19.2 lb HCl/hr * 8760 hr/yr * 1 ton/2000 lb = 168.2 ton HCl/yr		
9. Pollutant Potential/Estimated Emissions Comment:		

III. Part 9b - 9

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #1		
Pollutant Potential/Estimated Emissions: Pollutant 10		
1. Pollutant Emitted: H114		
2. Total Percent Efficiency of Control: 80.00 %		
3. Potential Emissions : 0.0200000 lb/hour	0.0700000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:	to tons/year	
6. Emissions Factor Units: Reference: 62-296.416(b)(1)(a)		
7. Emissions Method Code: 0		
8. Calculations of Emissions:	-	
70 ug Hg/dscm @7%O2 ((21%-10.53%O2)/(21%-7%O2)) = 52.35 ug	g Hg/cu.m @actual O2	
52.35 ug/cu.m actual O2 * 1 g/1e6 ug * 1cu.m/35.3 cu.ft * 1 lb/453.6	g = 3.27E-9 lb Hg/cu.ft	
3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min.hr = 0.0167 lb Hg/hr		
0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr		
9. Pollutant Potential/Estimated Emissions Comment:		

III. Part 9b - 10

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	1
Municipal Waste Combustion Unit - #1	

III. Part 9b - 11

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #1	1	
Pollutant Potential/Estimated Emissions:	Pollutant 11	
1. Pollutant Emitted: H021		
2. Total Percent Efficiency of Control:	%	
3. Potential Emissions:	lb/hour	tons/year
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emiss	sions:	tons/year
6. Emissions Factor Reference: PSD-FL-127	Units:	
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
1.35E-7 lb Be/mmBtu * 140 mmBtu/hr * 1	.14 = 2.2e-5 lb Be/hr	
2.2e-5 lb Be/hr * 8760 hr/yr * 1 ton/2000 lb	b = 9.6E-5 ton Be/yr	
9. Pollutant Potential/Estimated Emissions	Comment :	
Emission factor is 1.35E-7 lb Be/mmBtu		

Municipal Waste Combustion Unit - #1		
Pollutant Potential/Estimated Emissions: Pollutant 12		
1. Pollutant Emitted: H015		
2. Total Percent Efficiency of Control: %		
3. Potential Emissions: lb/hour	0.0100000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions: to	tons/year	
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
9.1E-6 lb Ar/mmBtu * 140 mmBtu/hr * 1.14 = 1.5E-3 lb Ar/hr		
1.5E-3 lb Ar/hr * 8760 hr/yr * 1 ton/2000 lb = 6.6E-3 ton Ar/yr		
9. Pollutant Potential/Estimated Emissions Comment :		
Emission factor is 9.1E-6 lb/mmBtu		

Emissions Unit Information Section Municipal Waste Combustion Unit - #1					
Po	llutant Information Section 1				
Al	lowable Emissions 1				
1.	Basis for Allowable Emissions Code:	01	THER		
2.	Future Effective Date of Allowable Emis	ssions :			
3.	Requested Allowable Emissions and Un	its: 0.	03	lb/mmBtu	
4.	Equivalent Allowable Emissions:				
	5.13	lb/hour	22.50	tons/year	
5.	Method of Compliance:				
	40 CFR 60.8 (a)(b)(d)(e)(f)				
6.	Pollutant Allowable Emissions Commer	it (Desc. of Re	lated Operating	g Method/Mode):	
	PSD Permit - PSD-FL-127 Based on head value of 140 mmBtu/hr Based on 114% of the design heat input val	ue			

	nissions Unit Information Section unicipal Waste Combustion Unit - #1	1			
Po	llutant Information Section1			-	
Al	lowable Emissions 2				
1.	Basis for Allowable Emissions Code:	OTHER			
2.	Future Effective Date of Allowable Emission	ons:		s.	_
3.	Requested Allowable Emissions and Units	: 0.02		gr/dscf@12% CO2	
4.	Equivalent Allowable Emissions :				-
	5.13	lb/hour	22.50	tons/year	
5.	Method of Compliance :				-
	FAC 62-297.401(5) and 40 CFR 60				
6.	Pollutant Allowable Emissions Comment (Desc. of Related C	perating	Method/Mode):	_
	Power Plant Site Certification No. PA 87-23 at Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value	nd PSD-FL-127			

Emissions Unit Information Section Municipal Waste Combustion Unit - #1			
Pollutant Information Section 2			
Allowable Emissions 1			
1. Basis for Allowable Emissions Code : OTHER			
2. Future Effective Date of Allowable Emissions :			
3. Requested Allowable Emissions and Units: 400.00 ppmdv			
4. Equivalent Allowable Emissions:			
62.40 lb/hour 68.40 tons/year			
5. Method of Compliance:			
40 CFR 60.8 (a)(b)(d)(e)(f)			
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):			
Emission factor is a 1-hour average, corrected to 7% O2. PSD permit - PSD-FL-127 Based on heat content of 140 mmBtu/hr Based on 114% of the design heat input value.			

Emissions Unit Information Section Municipal Waste Combustion Unit - #1
Pollutant Information Section 2
Allowable Emissions 2
1. Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions :
3. Requested Allowable Emissions and Units: 100.00 ppmdv
4. Equivalent Allowable Emissions :
62.40 lb/hour 68.40 tons/year
5. Method of Compliance :
FAC 62-297.401(10) and 40 CFR 60
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
Emission factor is an 8-hour rolling average, corrected to 7%O2 Power plant site certification - PA 87-23 based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value.

Emissions Unit Information Section Municipal Waste Combustion Unit - #1				
Poll	utant Information Section 3			
Allo	owable Emissions 1			
1. 1	Basis for Allowable Emissions Code:	OTHER		
2. 1	Future Effective Date of Allowable Emission	ons :		
3. 1	Requested Allowable Emissions and Units	: 0.00		lb/mmBtu
4. I	Equivalent Allowable Emissions:		•	
	0.11	lb/hour	0.48	tons/year
5. 1	Method of Compliance :			
	FAC 62-297.40(12)			
6. I	Pollutant Allowable Emissions Comment (l	Desc. of Related C	perating	Method/Mode):
]	PSD Permit - PSD-FL-127 & Power Plant Site Based on a heat value of 140 mmBtu/hr Based on 114% of the design heat input value Requested allowable emission is 7E-4 lb/mmB		87-23	

III. Part 9c - 5

Emissions Unit Information Section Municipal Waste Combustion Unit - #1	1		
Pollutant Information Section	4		
Allowable Emissions 1			
1. Basis for Allowable Emissions Code	: (OTHER	
2. Future Effective Date of Allowable I	Emissions :		
3. Requested Allowable Emissions and	Units:).64 1	b/mmBtu
4. Equivalent Allowable Emissions:			
102.60	lb/hour	449.40	tons/year
5. Method of Compliance:			
FAC 62-297.401(7) and 40 CFR 60			
6. Pollutant Allowable Emissions Com	ment (Desc. of R	elated Operating N	Method/Mode):
PSD Permit - PSD-FL-127 & Power Planesed on 140 mmBtu/hr Based on 114% of the design heat input		on - PA 87-23	

Emissions Unit Information Section Municipal Waste Combustion Unit - #1
Pollutant Information Section5_
Allowable Emissions 1
1. Basis for Allowable Emissions Code: OTHER
2. Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units: 35.79 lb/hr
4. Equivalent Allowable Emissions :
37.20 lb/hour 93.90 tons/year
5. Method of Compliance:
40 CFR 60, Appendix A
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
PSD Permit - PSD-FL-127
Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value
Based on 104 ppmdv @ 7% O2 - 3 hr rolling avg
Based on 60 ppmdv @7% O2 - 6 hr rolling av

Emissions Unit Information Section Municipal Waste Combustion Unit - #1				
Pollutant Information Section 5				
Allowable Emissions 2				
1. Basis for Allowable Emissions Code:	OTHER			
2. Future Effective Date of Allowable Emission	ns:			
3. Requested Allowable Emissions and Units:	60.00	ppr	ndv (6 hr)	
4. Equivalent Allowable Emissions:				
23.40	lb/hour	104.86	tons/year	
5. Method of Compliance :				
FAC 62-297.401				
6. Pollutant Allowable Emissions Comment (D Emission factor units at 12% CO2, 6 hr rolling a Power Plant Site Certification - PA 87-23		perating Me	thod/Mode):	

Emissions Unit Information Section Municipal Waste Combustion Unit - #1				
Po	llutant Information Section 6			
Al	owable Emissions 1			
1.	Basis for Allowable Emissions Code:	OTHER		
2.	Future Effective Date of Allowable Emission	ons:		
3.	Requested Allowable Emissions and Units:	0.02		lb/mmBtu
4.	Equivalent Allowable Emissions:			
	3.35	lb/hour	14.70	tons/year
5.	Method of Compliance :	_		
	FAC 62-297.401(21) and 40 CFR 60			
6.	Pollutant Allowable Emissions Comment (I	Desc. of Related C	perating !	Method/Mode):
	PSD Permit - PSD-FL-127 & Power Plant Site Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value	Certification - PA	37-23	

Emissions Unit Information Section 1						
Po	Pollutant Information Section 7_					
All	lowable Emissions 1_					
1.	Basis for Allowable Emissions Code:	OTHER				
2.	Future Effective Date of Allowable Emission	ns:				
3.	Requested Allowable Emissions and Units:	0.01		lb/mmBtu		
4.	Equivalent Allowable Emissions:					
	1.27	lb/hour	5.60	tons/year		
5.	Method of Compliance :					
	FAC 62-297.401(13) and 40 CFR 60					
6.	Pollutant Allowable Emissions Comment (D	Desc. of Related O	perating	Method/Mode):		
	PSD Permit - PSD-FL-127 & Power Plant Siting Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value	g Certification - PA	87-23			

Emissions Unit Information Section Municipal Waste Combustion Unit - #1				
Pollutant Information Section 8_				
Allowable Emissions 1				
1. Basis for Allowable Emissions Code:	OTHER			
2. Future Effective Date of Allowable Emission	ns:			
3. Requested Allowable Emissions and Units:	0.04	1	b/mmBtu	
4. Equivalent Allowable Emissions:				
5.60	lb/hour	24.52	tons/year	
5. Method of Compliance:				
40 CFR 60.8 (a)(b)(d)(e)(f)				
6. Pollutant Allowable Emissions Comment (D	esc. of Related O _j	perating N	/lethod/Mode):	
PSD Permit - PSD-FL-127 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value				

Emissions Unit Information Section Municipal Waste Combustion Unit - #1
Pollutant Information Section 9
Allowable Emissions 1_
1. Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units: 0.13 lb/mmBtu
4. Equivalent Allowable Emissions :
19.20 lb/hour 168.20 tons/year
5. Method of Compliance:
FAC 62-297.401(26) and 40 CFR 60
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode): PSD Permit - PSD-FL-127 and Power Plant Site Certification - PA 87-23 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value.

Emissions Unit Information Section Municipal Waste Combustion Unit - #1					
Pollutant Information Section 10 Allowable Emissions 1					
2.	2. Future Effective Date of Allowable Emissions:				
3.	Requested Allowable Emissions and Units	s: 70.00		ug/dscm@7%O2	
4.	Equivalent Allowable Emissions:				
	0.02	lb/hour	0.07	tons/year	
5.	Method of Compliance:				
	40 CFR 60.8 (6)(b)(d)(e)(f)				
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/M					•
	PSD Permit - PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value				

Emissions Unit Information Section Municipal Waste Combustion Unit - #1
Pollutant Information Section 10
Allowable Emissions 2
1. Basis for Allowable Emissions Code : OTHER
·
2. Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units: 70.00 ug/dscm@7%O2
4. Equivalent Allowable Emissions :
0.02 lb/hour 0.07 tons/year
5. Method of Compliance :
40 CFR, method 101A, Appendix B
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
PSD permit - PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value

Emissions Unit Information Section Municipal Waste Combustion Unit - #1					
Pollutant Information Section 11					
Allowable Emissions 1					
1. Basis for Allowable Emissions Code: OTHER					
2. Future Effective Date of Allowable Emissions :					
3. Requested Allowable Emissions and Units: 0.00 lb/1000 mmBtu					
4. Equivalent Allowable Emissions :					
0.00 lb/hour 0.00 tons/year					
5. Method of Compliance:					
40 CFR 61 Method 103 or 104					
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):					
Power Plant Site Certification - PA 87-23 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value Requested allowable emission of 1.35E-7 lb/mmBtu					

Emissions Unit Information Section Municipal Waste Combustion Unit - #1
Pollutant Information Section 12
Allowable Emissions 1
1. Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units: 0.01 lb/1000 mmBtu
4. Equivalent Allowable Emissions :
0.00 lb/hour 0.01 tons/year
5. Method of Compliance :
40 CFR 60.8 (a)(b)(d)(e)(f)
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
PSD Permit - PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value Requested allowable emission is 1.35E-7 lb/1000 mmBtu

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Municipal Waste Combustion Unit - #1 Visible Emissions Limitation: Visible Emissions Limitation 1					
1. Visible Emissions Subt	ype :	VE			
2. Basis for Allowable Op	pacity:	OTHER			
3. Requested Allowable C	pacity:				
	Norma	l Conditions:	15	%	
	-	l Conditions:	20	%	
Maximum Period of E	xcess Opaci	ity Allowed:	6	min/hour	
4. Method of Compliance	:				
40 CFR 60.11 (b) and (e)					
5. Visible Emissions Com	ment:				-
PSD Permit - PSD-FL-12	7				

III. Part 10 - 1

DEP Form No. 62-210.900(1) - Form

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section1 Municipal Waste Combustion Unit - #1					
Visible Emissions Limitation: Visible Emissions Lim	nitation _	2			
1. Visible Emissions Subtype: VE					
2. Basis for Allowable Opacity: RULE					
3. Requested Allowable Opacity:		_			
Normal Conditions:	15	%			
Exceptional Conditions:	20	%			
Maximum Period of Excess Opacity Allowed:	3	min/hour			
4. Method of Compliance:					
FAC 62-297.401 Method 9					
5. Visible Emissions Comment:					
Power Plant Site Certification - PA 87-23					

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #1				
Continuous Monitoring System Continuous M	Monitor 1			
1. Parameter Code: VE	2. Pollutant(s):			
3. CMS Requirement RULE				
4. Monitor Information				
Manufacturer: Thermo Environmental Model Number: 400/500 Serial Number: 400-28123-232				
5. Installation Date:	01-Nov-1990			
6. Performance Specification Test Date:	01-Apr-1991			
7. Continuous Monitor Comment: 40 CFR 60, Appendix B Continuous Monitoring System Continuous M	fonitor 2			
1. Parameter Code: O2	2. Pollutant(s):			
3. CMS Requirement RULE				
4. Monitor Information				
Manufacturer: Servomax Model Number: 1400 Serial Number: 01420-701-285				
5. Installation Date :	01-Nov-1990			
6. Performance Specification Test Date:	01-Apr-1991			
7. Continuous Monitor Comment : 40 CFR 60 Appendix B				

III. Part 11 - 1

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #1					
Continuous Monitoring System Continuous Monitor 3					
1. Parameter Code: CO2	2. Pollutant(s):				
3. CMS Requirement RULE					
4. Monitor Information					
Manufacturer: ACS Model Number: 3300 Serial Number: N9J-3748T	·				
5. Installation Date:	01-Nov-1990				
6. Performance Specification Test Date:	01-Apr-1991				
7. Continuous Monitor Comment : 40 CFR 60, Appendix B					
Continuous Monitoring System Continuous M	onitor 4				
1. Parameter Code: EM	2. Pollutant(s): CO				
3. CMS Requirement RULE					
4. Monitor Information					
Manufacturer: Thermoenvironmental Model Number: 48 Serial Number: 48-2845-231					
5. Installation Date:	01-Nov-1990				
6. Performance Specification Test Date:	01-Apr-1991				
7. Continuous Monitor Comment : 40 CFR 60, Appendix B					

III. Part 11 - 2

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #1					
Continuous Monitoring System Continuous Monitor 5					
1. Parameter Code: EM	2. Pollutant(s): SO2				
3. CMS Requirement RULE					
4. Monitor Information Manufacturer: Western Research Model Number: 721-AT Serial Number: 90-721AT2-76236					
5. Installation Date :	01-Nov-1990				
6. Performance Specification Test Date:	01-Apr-1991				
7. Continuous Monitor Comment : 40 CFR 60, Appendix B					

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

Emissions Unit Information Section1_					
M	uni	cipal Waste Combustion Unit - #1			
<u>P\$</u>	PSD Increment Consumption Determination				
1.	In	crement Consuming for Particulate Matter or Sulfur Dioxide?			
[>	(]	The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.			
[]	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.			
]]	The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.			
Ì]	For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.			
[]	None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.			

III. Part 12 - 1

DEP Form No. 62-210.900(1) - Form

2.	Incı	rement Const	ıming f	or Nitrogen Dioxid	e?			
[X	, a		r has un	dergone PSD revie		undergoing PSD revie viously, for nitrogen d	-	
[r t	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after February 8, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.						
[The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after February 8, 1988, but before March 28, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.							
[For any facility, the emissions unit began (or will begin) initial operation after March 28, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.							
Į.	None of the above apply. If so, baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.							
	T		• "					
3.	Inc	rement Cons	uming/l	Expanding Code:				
		PM:	С	SO2:	С	NO2:	C	
4.	Ba	seline Emissi	ions :					
		PM: SO2: NO2:		lb/hour lb/hour			tons/year tons/year tons/year	•
5.	PS	D Comment	:					

III. Part 12 - 2

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

Emissions Unit Information Section1	
Municipal Waste Combustion Unit - #1	
Supplemental Requirements for All Applications	
1. Process Flow Diagram:	App. A, Sec. 4
2. Fuel Analysis or Specification:	NA
3. Detailed Description of Control Equipment :	App. B, Sec. 2
4. Description of Stack Sampling Facilities :	App. B, Sec. 3
5. Compliance Test Report :	7/6/95
6. Procedures for Startup and Shutdown:	App. B, Sec. 4
7. Operation and Maintenance Plan :	App. B, Sec. 5
8. Supplemental Information for Construction Permit Application :	NA .
9. Other Information Required by Rule or Statue :	NA
Additional Supplemental Requirements for Category I Application	ns Only
10. Alternative Methods of Operations:	NA .
11. Alterntive Modes of Operation (Emissions Trading):	NA
III. Part 13 - 1	

DEP Form No. 62-210.900(1) - Form

12. Identification of Add	App. B, Sec. 6		
13. Compliance Assuran Plan :	NA		
14. Acid Rain Application	on (Hard-copy Required):		
NA	Acid Rain Part - Phase II (Form	No. 62-210.900(1)(a))	
NA Repowering Extension Plan (Fo		m No. 62-210.900(1)(a)1.)	
NA New Unit Exemption (Form No. 62-210.900(1)(a)2.)			
NA Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)			

DEP Form No. 62-210.900(1) - Form

III. EMISSIONS UNIT INFORMATION

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Emissio	ons Unit Information Section 2
Municip	al Waste Combustion Unit - #2
Type of	Emissions Unit Addressed in This Section
1. Regu	ulated or Unregulated Emissions Unit? Check one:
[X]	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.
[]	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.
2. Sing	le Process, Group of Processes, or Fugitive Only? Check one:
[X]	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.
[]	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.

III. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

Emissions	Unit	Information Section	1 2
------------------	------	---------------------	-----

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1. Description of Emissions Unit Addressed in This Section :				
Municipal Waste Combustion U	nit - #2			
Emissions Unit Identification No Corresponding I		ıknown		
3. Emissions Unit Status Code: A	4. Acid Rain Unit? [] Yes [X] No	5. Emissions Unit Major Group SIC Code: 49		
6. Emissions Unit Comment:				

III. Part 2 - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	
Municipal Waste Combustion Unit - #2	
Emissions Unit Control Equipment	
Description: Dry scrubber - using lime slurry, the scrubdes and hydrogen chloride.	ubber neutralizes any acid forming gases, such as sulfur
2. Control Device or Method Code:	13

Emissions Unit Information Section	2	
Municipal Waste Combustion Unit - #2		
Emissions Unit Control Equipment	2	

Description: Fabric filter - Baghouse	
2. Control Device or Method Code:	16

III. Part 3 -

2

Emissions Unit Information Section	2		
Municipal Waste Combustion Unit - #2			
Emissions Unit Control Equipment	3	4	
Description: Carbon Injection System			
2 Control Daviga or Method Code:			

III. Part 3 -

3

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

Emissions	Unit	Informa	tion	Section
------------------	------	---------	------	---------

2

Municipal Waste Combustion Unit - #2

Emissions Unit Details

1. Initial Startup Date:

01-Jan-1991

2. Long-term Reserve Shutdown Date:

3. Package Unit:

Manufacturer:

Model Number:

4. Generator Nameplate Rating:

29 MW

5. Incinerator Information:

Dwell Temperature:

1,800

Degrees Fahrenheit

Dwell Time:

1.00

Seconds

Incinerator Afterburner Temperature:

0

Degrees Fahrenheit

Emissions Unit Operating Capacity

1. Maximum Heat Input Rate:

160

mmBtu/hr

2. Maximum Incinerator Rate:

33500.00

lb/hr

402.00

tons/day

3. Maximum Process or Throughput Rate:

104000

lb steam/hr

- 4. Maximum Production Rate:
- 5. Operating Capacity Comment:
 - 1. Demonstration of compliance with maximum throughput capacity shall be measured by steamflow.
 - 2. maximum incinerator rate is 114% of rated name capacity.
 - 3. Item 4 is for the entire facility.

Emissions Unit Operating Schedule

Requested Maximum Operating Schedule:

24 hours/day

7 days/week

52 weeks/year

8,760 hours/year

III. Part 4 -

1

DEP Form No. 62-210.900(1) - Form

III. Part 4 - 2

DEP Form No. 62-210.900(1) - Form

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #2	
Rule Applicability Analysis	

III. Part 6a - 1

Emissions Unit Information Section Municipal Waste Combustion Unit - #2

List of Applicable Regulations

Refer to Appendix A, Section 1

III. Part 6b - 1

DEP Form No. 62-210.900(1) - Form

E. EMISSION POINT (STACK/VENT) INFORMATION

2

Municipal Waste Combustion Unit - #2		
Emission Point Description and Type:		
1. Identification of Point on Plot Plan or Flow Diagram:	Flue #2	·
2. Emission Point Type Code: 1		
3. Descriptions of Emission Points Comprising this Emissio (limit to 100 characters per point)	ns Unit for VI	E Tracking:
4. ID Numbers or Descriptions of Emission Units with this	Emission Poin	t in Common :
5. Discharge Type Code:	V	
6. Stack Height:	275	feet
7. Exit Diameter :	4.7	feet
8. Exit Temperature :	250	°F
9. Actual Volumetric Flow Rate :	85300	acfm
10. Percent Water Vapor:	18.70	%
11. Maximum Dry Standard Flow Rate:	47600	dscfm
12. Nonstack Emission Point Height:	0	feet
13. Emission Point UTM Coordinates :		
Zone: 0 East (km): 0.000	North (kr	m): 0.000
14. Emission Point Comment :		

III. Part 7a - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

F. SEGMENT (PROCESS/FUEL) INFORMATION

Emissions Unit Information Section 2_			
Municipal Waste Combustion Unit - #2			
Segment Description and Rate: Segment	1		
1. Segment Description (Process/Fuel Type and As	ssociated Operating Method/Mode):		
Municipal Waste Mass Burn			
2. Source Classification Code (SCC): 5010010)2		
3. SCC Units: Tons Burned (all solid fuels)			
4. Maximum Hourly Rate: 16.75 5	. Maximum Annual Rate: 146,730.00		
6. Estimated Annual Activity Factor:			
7. Maximum Percent Sulfur:	3. Maximum Percent Ash:		
9. Million Btu per SCC Unit: 10			
10. Segment Comment:			
Maximum hourly rate based upon 114% of the nam	ne plate capacity pursuant to PSD-FL-127		

III. Part 8 - 1

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	2
Municipal Waste Combustion Unit - #2	

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
1 - PM	016		EL
2 - CO			EL
3 - PB	016		EL
4 - NOX			EL
5 - SO2	013		EL
6 - VOC			EL
7 - FL	013		EL
8 - SAM	013		EL
9 - HCL	013		EL
10 - H114	013	016	EL
11 - H021	016		EL
12 - H015	016		EL

III. Part 9a - 1

DEP Form No. 62-210.900(1) - Form

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	2
Municipal Waste Combustion Unit - #2	

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	Pollutant Regulatory Code
			·

III. Part 9a - 2

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 2 Municipal Waste Combustion Unit - #2			
Pollutant Potential/Estimated Emissions: Pollutant 1			
1. Pollutant Emitted: PM			
2. Total Percent Efficiency of Control: %			
3. Potential Emissions: 5.1300000 lb/hour	22.5000000 tons/year		
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions: to	tons/year		
6. Emissions Factor Units : Reference : PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions :			
0.0322 lb PM/mmBtu * 140 mmBtu/hr * 1.14 = 5.13 lb PM/hr			
5.13 lb PM/hr * 8760 hr/yr * 1 ton/2000 lb = 22.5 ton PM/yr			
9. Pollutant Potential/Estimated Emissions Comment:			

III. Part 9b - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #2			
Pollutant Potential/Estimated Emissions: Pollutant 2			
1. Pollutant Emitted: CO			
2. Total Percent Efficiency of Control: %			
3. Potential Emissions: 62.4000000 lb/hour	68.4000000 tons/year		
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions:	to tons/year		
6. Emissions Factor Units: Reference: PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions:			
1-hour avg: 3.75 lb CO/ton refuse * 399 ton refuse/24 hr = 62.4 lb C	CO/hr		
8-hr avg: 0.94 lb CO/ton refuse * 399 ton refuse/24 hr * 8760 hr/yr * 1 ton/2000 lb = 68.44 ton CO/yr			
9. Pollutant Potential/Estimated Emissions Comment:			
Emission factors obtained from PSD specific condition 400 ppmdv corrected to 7%O2 (1-hr avg) 100 ppmdv corrected to 7%O2 (8-hr avg)			

III. Part 9b - 2

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 2 Municipal Waste Combustion Unit - #2 Pollutant Potential/Estimated Emissions: Pollutant 3			
Pollutant Potential/Estimated Emissions: Pollutant 3			
1. Pollutant Emitted: PB			
2. Total Percent Efficiency of Control: %			
3. Potential Emissions: 0.1100000 lb/hour		0.4900000 tons/year	
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions:	to	tons/year	
6. Emissions Factor Units: Reference: PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions:			
7E-4 lb PB/mmBtu * 140 mmBtu/hr * 1/14 = 0.11 lb PB/hr			
0.11 lb PB/hr * 8760 hr/yr * 1 ton/2000 lb = 0.49 tons PB/yr			
9. Pollutant Potential/Estimated Emissions Comment:			
Emission factor is 7E-4 lb/mmBtu			

III. Part 9b - 3

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #2			
Pollutant Potential/Estimated Emissions: Pollutant 4			
1. Pollutant Emitted: NOX			
2. Total Percent Efficiency of Control: %			
3. Potential Emissions: 102.6000000 lb/hour	449.4000000 tons/year		
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions:	tons/year		
6. Emissions Factor Units : Reference : PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions:			
0.643 lb NOx/mmBtu * 140 mmBtu/hr * 1.14 = 102.6 lb NOx/hr			
102.6 lb NOx/hr * 8760 hr/yr * 1 ton/2000 lb = 449.4 ton NOx/yr			
9. Pollutant Potential/Estimated Emissions Comment:			

III. Part 9b - 4

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #2			
Pollutant Potential/Estimated Emissions: Pollutant 5			
1. Pollutant Emitted: SO2			
2. Total Percent Efficiency of Control: 70.00 %			
3. Potential Emissions: 37.2000000 lb/hour 93.9000000 tons/year			
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions: to tons/year			
6. Emissions Factor Units : Reference: PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions:			
2.236 lb SO2/ton refuse * 399 ton refuse/24 hr = 37.2 lb SO2/hr			
1.29 lb SO2/ton refuse * 300 ton refuse/24 hr * 8760 hr/yr * 1 ton/2000 lb = 93/9 ton SO2/yr			
9. Pollutant Potential/Estimated Emissions Comment:			
Emission factor for 3-hour rolling average is 2.236 lb/ton refuse Emission factor for 6-hour rolling average is 1.29 lb/ton refuse PSD-FL-127 Based on 104 ppmdv (3h) and 60 ppmdv (6h) @7%O2			

III. Part 9b - 5

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 2 Municipal Waste Combustion Unit - #2		
Pollutant Potential/Estimated Emissions: Pollutant 6		
1. Pollutant Emitted: VOC		
2. Total Percent Efficiency of Control: %		
3. Potential Emissions : 3.3500000 lb/hour	14.7000000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions: to	tons/year	
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
0.021 lb VOC/mmBtu * 140 mmBtu/hr * 1.14 = 3.35 lb VOC/hr		
3.35 lb VOC/hr * 8760 hr/yr * 1 ton/2000 lb = 14.7 ton VOC/yr		
9. Pollutant Potential/Estimated Emissions Comment:		
Emission factor is increased by 14% pursuant to PSD specific condition.		

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #2			
Pollutant Potential/Estimated Emissions: Pollutant 7			
1. Pollutant Emitted: FL			
2. Total Percent Efficiency of Control: 90.00 %			
3. Potential Emissions: 1.2700000 lb/hour	5.6000000 tons/year		
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions: to	tons/year		
6. Emissions Factor Units : Reference : PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions :			
0.008 lb Fl/mmBtu * 140 mmBtu/hr * 1.14 = 1.27 lb Fl/hr			
1.27 lb Fl/hr * 8760 hr/yr * 1 ton/2000 lb = 5.60 ton Fl/yr			
9. Pollutant Potential/Estimated Emissions Comment:			

III. Part 9b - 7

DEP Form No. 62-210.900(1) - Form

Municipal Waste Combustion Unit - #2		
Pollutant Potential/Estimated Emissions: Pollutant 8		
1. Pollutant Emitted: SAM		
2. Total Percent Efficiency of Control: 90.00 %		
3. Potential Emissions : 5.6000000 lb/hour	24.5200000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions: to	tons/year	
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
0.035 lb SAM/mmBtu * 140 mmBtu/hr * 1.14 = 5.60 lb SAM/hr		
5.60 lb SAM/hr * 8760 hr/yr * 1 ton/2000 lb = 24.52 ton SAM/yr		
9. Pollutant Potential/Estimated Emissions Comment:		

III. Part 9b - 8

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

Emissions Unit Information Section Municipal Waste Combustion Unit - #2			
Pollutant Potential/Estimated Emissions: Pollutant 9			
1. Pollutant Emitted: HCL	-		
2. Total Percent Efficiency of Control: 90.00 %			
3. Potential Emissions: 19.2000000 lb/hour	168.2000000 tons/year		
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions: to	tons/year		
6. Emissions Factor Units: Reference: PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions:			
0.12 lb HCl/mmBtu * 140 mmBtu/hr * 1.14 = 19.2 lb HCl/hr			
19.2 lb HCl/hr * 8760 hr/yr * 1 ton/2000 lb = 168.2 ton HCl/yr			
9. Pollutant Potential/Estimated Emissions Comment:			

III. Part 9b - 9

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 2

Pollutant Potential/Estimated Emissions: Pollutant	Municipal Waste Combustion Unit - #2	
2. Total Percent Efficiency of Control: 80.00 % 3. Potential Emissions: 0.0200000 lb/hour 0.0700000 tons/year 4. Synthetically Limited? [] Yes [X] No 5. Range of Estimated Fugitive/Other Emissions: to tons/year 6. Emissions Factor Units: Reference: 62-296.416(b)(1)(a) 7. Emissions Method Code: 0 8. Calculations of Emissions: 70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/le6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	Po	llutant Potential/Estimated Emissions: Pollutant 10
3. Potential Emissions: 0.0200000 lb/hour 0.0700000 tons/year 4. Synthetically Limited? [] Yes [X] No 5. Range of Estimated Fugitive/Other Emissions: to tons/year 6. Emissions Factor Reference: 62-296.416(b)(1)(a) 7. Emissions Method Code: 0 8. Calculations of Emissions: 70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	1.	Pollutant Emitted: H114
0.0200000 lb/hour 0.0700000 tons/year 4. Synthetically Limited? [] Yes [X] No 5. Range of Estimated Fugitive/Other Emissions: to tons/year 6. Emissions Factor Units: Reference: 62-296.416(b)(1)(a) 7. Emissions Method Code: 0 8. Calculations of Emissions: 70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	2.	Total Percent Efficiency of Control: 80.00 %
[] Yes [X] No 5. Range of Estimated Fugitive/Other Emissions: to tons/year 6. Emissions Factor Units: Reference: 62-296.416(b)(1)(a) 7. Emissions Method Code: 0 8. Calculations of Emissions: 70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	3.	
to tons/year 6. Emissions Factor Units: Reference: 62-296.416(b)(1)(a) 7. Emissions Method Code: 0 8. Calculations of Emissions: 70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/le6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	4.	
Reference: 62-296.416(b)(1)(a) 7. Emissions Method Code: 0 8. Calculations of Emissions: 70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	5.	· · · · · · · · · · · · · · · · · · ·
8. Calculations of Emissions: 70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	6.	
70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2 52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	7.	Emissions Method Code: 0
52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft 3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	8.	Calculations of Emissions:
3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr 0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr		70 ug Hg/dscm @7%O2 ((21%-10.53% O2)/(21%-7%O2)) = 52.35 ug Hg/cu.m actual O2
0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr		52.35 ug Hg/cu.m actual O2 * 1 g/1e6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g = 3.27E-9 lb Hg/cu.ft
		3.27E-9 lb Hg/cu.ft * 86300 cu.ft/min * 60 min/hr = 0.0167 lb Hg/hr
9. Pollutant Potential/Estimated Emissions Comment:		0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr
	9.	Pollutant Potential/Estimated Emissions Comment :
		· · · · · · · · · · · · · · · · · · ·

III. Part 9b - 10

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

Municipal Waste Combustion Unit - #2

III. Part 9b - 11

DEP Form No. 62-210.900(1) - Form

H. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Only - Emissions Limited Pollutants Only)

Emissions Unit Information Sectio Municipal Waste Combustion Unit - #2	on <u>2</u>	
Pollutant Potential/Estimated Emission	ns: Pollutant 11	
1. Pollutant Emitted: H021		
2. Total Percent Efficiency of Control:	%	
3. Potential Emissions:	lb/hour	tons/year
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other E	Emissions: to	tons/year
6. Emissions Factor Reference: PSD-FL-127	Units:	
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
1.35E-7 lb Be/mmBtu * 140 mmBtu/hr	r * 1.14 = 2.2E-5 lb Be/hr	
2.2E-5 lb Be/hr * 8760 hr/yr * 1 ton/20	000 lb = 9.6E-5 ton Be/yr	
9. Pollutant Potential/Estimated Emission	ons Comment :	
Emission factor is 1.35E-7 lb/mmBtu		. •

III. Part 9b - 12

DEP Form No. 62-210.900(1) - Form

H. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Only - Emissions Limited Pollutants Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #2	2			
Pollutant Potential/Estimated Emissions:	Pollutant 12	_		
1. Pollutant Emitted: H015				
2. Total Percent Efficiency of Control:	%			
3. Potential Emissions:	lb/hour		0.0100000 tons/year	
4. Synthetically Limited? [] Yes [X] No				
5. Range of Estimated Fugitive/Other Emis	ssions:	to	tons/year	
6. Emissions Factor Reference: PSD-FL-127	Units:			
7. Emissions Method Code: 0				
8. Calculations of Emissions:				
9.1E-6 lb Ar/mmBtu * 140 mmBtu/hr * 1.	14 = 1.5E-3 lb Ar/hr			
1.5E-3 lb Ar/hr * 8760 hr/yr * 1 ton/2000 lb = 6.6E-3 ton Ar/yr				
9. Pollutant Potential/Estimated Emissions	Comment:			
Emission factor is 9.1E-6 lb/mmBtu				

III. Part 9b - 13

DEP Form No. 62-210.900(1) - Form

	Emissions Unit Information Section 2 Municipal Waste Combustion Unit - #2							
Po	Pollutant Information Section1_							
<u>Al</u>	owable Emissions 1							
1.	Basis for Allowable Emissions Code: OTHER							
2.	Future Effective Date of Allowable Emissions:							
3.	Requested Allowable Emissions and Units: 0.03 lb/mmBtu							
4.	Equivalent Allowable Emissions :							
	5.13 lb/hour 22.50 tons/year							
5.	Method of Compliance:							
	40 CFR 60.8 (a)(b)(d)(e)(f)							
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):							
	PSD Permit - PSD-FL-127 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value							

Emissions Unit Information Section Municipal Waste Combustion Unit - #2
Pollutant Information Section 1
Allowable Emissions 2
1. Basis for Allowable Emissions Code: OTHER
2. Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units: 0.02 gr/dscf@12%CO2
4. Equivalent Allowable Emissions :
5.13 lb/hour 22.50 tons/year
5. Method of Compliance:
FAC 62.297.401(5)
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode): Power Plant Site Certification - PA 87-23 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value

	Emissions Unit Information Section Municipal Waste Combustion Unit - #2							
Po	Pollutant Information Section 2							
<u>Al</u>	lowable Emissions 1							
1.	Basis for Allowable Emissions Code: OTHER							
2.	Future Effective Date of Allowable Emissions :							
3.	Requested Allowable Emissions and Units: 400.00 ppmdv							
4.	Equivalent Allowable Emissions :							
	62.40 lb/hour 68.40 tons/year							
5.	Method of Compliance :							
	40 CFR 60.8 (a)(b)(d)(e)(f)							
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):							
	Emission factor is a 1-hour average, corrected to 7% O2 PSD Permit - PSD-FL-127 Based on heat content ot 140 mmBtu/hr Based on 114% of the design heat input value							

Emissions Unit Information Section 2 Municipal Waste Combustion Unit - #2							
Pollutant Information Section 2							
Allowable Emissions 2							
1. Basis for Allowable Emissions Code : OTHER							
2. Future Effective Date of Allowable Emissions:							
3. Requested Allowable Emissions and Units: 100.00 ppmdv							
4. Equivalent Allowable Emissions :							
62.40 lb/hour 68.40 tons/year							
5. Method of Compliance :							
FAC 62-297.401(10)							
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):							
Emission factor is an 8-hour rolling average, corrected to 7% O2 Power Plant Site Certification - PA 87-23 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value							

Emissions Unit Information Section2_ Municipal Waste Combustion Unit - #2							
Polluta	nt Information Section	on 3			·		
Allowal	ole Emissions	1					
1. Basi	s for Allowable Emiss	sions Code :	ОТНЕ	R			
2. Futu	re Effective Date of A	llowable Emis	ssions :				
3. Req	uested Allowable Emi	ssions and Uni	ts: 0.00	lb	/mmBtu		
4. Equ	ivalent Allowable Emi	ssions :					
		0.11	lb/hour	0.48	tons/year		
5. Met	hod of Compliance:				·		
FAC	C 62-297.40(12)						
6. Poll	utant Allowable Emiss	sions Commen	t (Desc. of Relate	d Operating M	ethod/Mode):		
Base Base	Permit - PSD-FL-127 & ed on a heat value of 140 ed in 114% of the designuested allowable emission) mmBtu/hr n heat input valu	ıe	PA 87-23			

Emissions Unit Information Section Municipal Waste Combustion Unit - #2					
Pollutant Information Section4					
Allowable Emissions 1					
1. Basis for Allowable Emissions Code: OTHER					
2. Future Effective Date of Allowable Emissions :					
3. Requested Allowable Emissions and Units: 0.64 lb/mmBtu					
4. Equivalent Allowable Emissions :					
102.60 lb/hour 449.40 tons/year					
5. Method of Compliance:					
FAC 62-297.401(7)					
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):	-				
PSD Permit - PSD-FL-127 & Power Plant Siting Certification - PA 87-23 Based on 140 mmBtu/hr Based on 114% of the design heat input value					

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #2
Pollutant Information Section5_
Allowable Emissions 1
1. Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions :
3. Requested Allowable Emissions and Units: 35.79 lb/hr
4. Equivalent Allowable Emissions :
37.20 lb/hour 93.90 tons/year
5. Method of Compliance:
40 CFR 60, Appendix A
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
PSD Permit - PSD-FL-127
Based on heating value of 140 mmBtu/hr
Based on 114% of design heat input value
Based on 104 ppmdv @7%O2 - 3 hr rolling avg
Based on 60 ppmdv @7%O2 - 6 hr rolling avg

III. Part 9c - 7

Emissions Unit Information Section Municipal Waste Combustion Unit - #2	<u>: </u>		
Pollutant Information Section 5			
Allowable Emissions 2			
1. Basis for Allowable Emissions Code:	OTHER		
2. Future Effective Date of Allowable Emissio	ns:		,
3. Requested Allowable Emissions and Units:	60.00	ppn	ndv (6 hr)
4. Equivalent Allowable Emissions:			
23.40	lb/hour	104.86	tons/year
5. Method of Compliance:			
FAC 62-297.401			
6. Pollutant Allowable Emissions Comment (D Emission factor units at 12% CO2, 6 hr rolling		perating Me	thod/Mode):

	Emissions Unit Information Section2 Municipal Waste Combustion Unit - #2							
Po	Pollutant Information Section 6							
Al	Allowable Emissions 1							
1.	1. Basis for Allowable Emissions Code: OTHER							
2.	2. Future Effective Date of Allowable Emissions:							
3.	3. Requested Allowable Emissions and Units: 0.02 lb/mmBtu							
4.	4. Equivalent Allowable Emissions :							
	3.35 lb/hour 14.50 tons/yea	r						
5.	5. Method of Compliance :							
	FAC 62-297.401(21)							
6.	5. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode) PSD Permit - PSD-FL-127 & Power Plant Siting Certification - PA 87-23 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value	:						

	Emissions Unit Information Section 2 Municipal Waste Combustion Unit - #2						
Po	llutant Information Section 7						
Al	lowable Emissions 1						
1.	Basis for Allowable Emissions Code:	OT	HER				
2.	Future Effective Date of Allowable Emissi	ions :					
3.	Requested Allowable Emissions and Units	s: 0.0	D1 I	b/mmBtu			
4.	Equivalent Allowable Emissions :						
	1.27	lb/hour	5.60	tons/year			
5.	Method of Compliance:						
	FAC 62-297.401(13)						
6.	Pollutant Allowable Emissions Comment	(Desc. of Rela	ated Operating N	/lethod/Mode):			
	PSD Permit - PSD-FL-127 & Power Plant Sit Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value	_	on - PA 87-23				

Emissions Unit Information Section Municipal Waste Combustion Unit - #2	_	
Pollutant Information Section 8		
Allowable Emissions 1		
1. Basis for Allowable Emissions Code:	OTHER	
2. Future Effective Date of Allowable Emission	s:	
3. Requested Allowable Emissions and Units:	0.04	lb/mmBtu
4. Equivalent Allowable Emissions:		
5.60	lb/hour 24.	52 tons/year
5. Method of Compliance:		
40 CFR 60.8 (a)(b)(d)(e)(f)		
6. Pollutant Allowable Emissions Comment (De	esc. of Related Operat	ing Method/Mode):
PSD Permit - PSD-FL-127 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value		

Emissions Unit Information Section 2 Municipal Waste Combustion Unit - #2
Pollutant Information Section 9
Allowable Emissions 1
1. Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions :
3. Requested Allowable Emissions and Units: 0.13 lb/mmBtu
4. Equivalent Allowable Emissions :
19.20 lb/hour 168.20 tons/year
5. Method of Compliance :
FAC 62-297.401(26) and 40 CFR 60
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
PSD Permit - PSD-FL-127 & Power Plant Site Certification PA 87-23 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value

	nissions Unit Information Section unicipal Waste Combustion Unit - #2	2			
Po	llutant Information Section 10				
Al	lowable Emissions 1				
1.	Basis for Allowable Emissions Code:	OTHER			
2.	Future Effective Date of Allowable Emissi	ons:			
3.	Requested Allowable Emissions and Units	: 70.00		ug/dscm@7%O2	
4.	Equivalent Allowable Emissions:				
	0.02	lb/hour	0.07	tons/year	
5.	Method of Compliance :				
	40 CFR 60.8 (6)(b)(d)(e)(f)				
6.	Pollutant Allowable Emissions Comment (Desc. of Related	Operating	Method/Mode):	
	PSD permit - PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input rate				

Emissions Unit Inform Municipal Waste Comb		2			
Pollutant Information	Section 10				
Allowable Emissions	2				
1. Basis for Allowable	Emissions Code:	OTHER			
2. Future Effective Dat	e of Allowable Emissic	ons:			
3. Requested Allowabl	e Emissions and Units	70.00		ug/dscm@7%O2	
4. Equivalent Allowab	le Emissions :				
	0.02	lb/hour	0.07	tons/year	٠
5. Method of Complian	nce:				
40 CFR 61, Method 1	01A, Appendix B				
6. Pollutant Allowable	Emissions Comment (I	Desc. of Related O	perating	Method/Mode):	
PSD Permit - PSD-FI Based on heating valu Based on 114% of the				·	

	Emissions Unit Information Section Municipal Waste Combustion Unit - #2			
Po	llutant Information Section11			
<u>Al</u>	lowable Emissions 1			
1.	Basis for Allowable Emissions Code: OTHER			
2.	Future Effective Date of Allowable Emissions:			
3.	Requested Allowable Emissions and Units: 0.00 lb/1000 mmBtu			
4.	Equivalent Allowable Emissions:			
	0.00 lb/hour 0.00 tons/year			
5.	Method of Compliance:			
	40 CFR 61 Method 103 or 104			
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):			
	PSD Permit - PSD-FL-127 & Power Plant Siting Certification PA 87-23 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value Requested allowable E.R. is 1.35E-10 lb/mmBtu			

Emissions Unit Information Section	2
Municipal Waste Combustion Unit - #2	

141	winnerpar waste Combustion Ont - #2			
Po	Pollutant Information Section 12			
<u>Al</u>	Allowable Emissions 1			
1.	1. Basis for Allowable Emissions Code:	OTHER		
2.	2. Future Effective Date of Allowable Emissions:			
,				
3.	3. Requested Allowable Emissions and Units:	0.01	lb/1000	mmBtu
4.	4. Equivalent Allowable Emissions:			
	0.00 lb/hou	ır 0.	.01	tons/year
5.	5. Method of Compliance :			
	40 CFR 60.8 (a)(b)(d)(e)(f)			
6.	6. Pollutant Allowable Emissions Comment (Desc. o	f Related Oper	ating Method	l/Mode):
	PSD Permit - PSD-FL-127			
	Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value			
	Requested allowable emission is 1.35E-7 lb/mmBtu			

DEP Form No. 62-210.900(1) - Form

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Municipal Waste Combustion Unit - #2 Visible Emissions Limitation: Visible Emissions Limitation 1. Visible Emissions Subtype: VE 2. Basis for Allowable Opacity: **OTHER** 3. Requested Allowable Opacity: Normal Conditions: 15 % **Exceptional Conditions:** 20 % Maximum Period of Excess Opacity Allowed: min/hour 4. Method of Compliance: 40 CFR 60.11 (b) and (e) 5. Visible Emissions Comment: PSD Permit No: PSD-FL-127

III. Part 10 - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section
Municipal Waste Combustion Unit - #2

Visible Emissions Limitation: Visible Emissions Li	imitation		
1. Visible Emissions Subtype: VE		·	
2. Basis for Allowable Opacity: RULE			
3. Requested Allowable Opacity:			
Normal Conditions:	15	%	
Exceptional Conditions:	20	%	
Maximum Period of Excess Opacity Allowed:	3	min/hour	
4. Method of Compliance:			
FAC 62-297.401 Method 9			
5. Visible Emissions Comment:			
Power Plant Site Certification - PA 87-23			

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #2	
Continuous Monitoring System Continuous N	Monitor 1
1. Parameter Code: VE	2. Pollutant(s):
3. CMS Requirement RULE	
4. Monitor Information	
Manufacturer: Thermo Environmental Model Number: 400/500 Serial Number: 400-28124-232	
5. Installation Date :	01-Nov-1990
6. Performance Specification Test Date:	01-Apr-1991
7. Continuous Monitor Comment: 40 CFR 60, Appendix B Continuous Monitoring System Continuous N	Monitor 2
1. Parameter Code: O2	2. Pollutant(s):
3. CMS Requirement RULE	
4. Monitor Information	
Manufacturer: Servomax Model Number: 1400 Serial Number: 01420-701-296	
5. Installation Date :	01-Nov-1990
6. Performance Specification Test Date:	01-Apr-1991
7. Continuous Monitor Comment: 40 CFR 60, Appendix B	

III. Part 11 - 1

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Municipal Waste Combustion Unit - #2	
Continuous Monitoring System Continuous M	onitor 3
1. Parameter Code: CO2	2. Pollutant(s):
3. CMS Requirement RULE	-
4. Monitor Information	·
Manufacturer: ACS Model Number: 3300 Serial Number: N9J-3734T	
5. Installation Date :	01-Nov-1990
6. Performance Specification Test Date :	01-Apr-1991
7. Continuous Monitor Comment : 40 CFR 60, Appendix B	
Continuous Monitoring System Continuous M	onitor 4
1. Parameter Code: EM	2. Pollutant(s): CO
3. CMS Requirement RULE	
4. Monitor Information	
Manufacturer: Thermoenvironmental Model Number: 48 Serial Number: 48-28454-231	
5. Installation Date:	01-Nov-1990
6. Performance Specification Test Date:	01-Apr-1991
7. Continuous Monitor Comment : 40 CFR 60, Appendix B	

III. Part 11 - 2

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Municipal Waste Combustion Unit - #2	
Continuous Monitoring System Continuous M	Ionitor 5
1. Parameter Code: EM	2. Pollutant(s): SO2
3. CMS Requirement RULE	
4. Monitor Information	
Manufacturer: Western Research Model Number: 721-AT Serial Number: 90-721At2-76235	
5. Installation Date :	01-Nov-1990
6. Performance Specification Test Date :	01-Apr-1991
7. Continuous Monitor Comment :	
40 CFR 60, Appendix B	

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

Emi	ssions Unit Information Section 2
Muni	cipal Waste Combustion Unit - #2
<u>PSD</u>	Increment Consumption Determination
1. Ir	acrement Consuming for Particulate Matter or Sulfur Dioxide?
[X]	The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.
[]	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.
[]	The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
[]	For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
[]	None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment

III. Part 12 - 1

DEP Form No. 62-210.900(1) - Form

2.	In	crement Consur	ning for Nitro	gen Dioxi	de?					
[X]		The emissions unit addressed in this section is undergoing PSD review as part of this application, or has undergone PSD review previously, for nitrogen dioxide. If so, emissions unit consumes increment.								
[]	paragraph (c) o the emissions u	f the definition init addressed	n of "major in this secti	source o	fied as an EPA maj of air pollution" in Onenced (or will contero, and emissions	Chapter 62-213, nmence) constru	F.A.C., and ction after		
[]	_	al operation a	fter Februa	ry 8, 198	fied as an EPA ma 8, but before March increment.	•			
[[] For any facility, the emissions unit began (or will begin) initial operation after March 28, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.							ch 28, 1988.		
[None of the above apply. If so, baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.							ne whether		
			-							
3.	It	ncrement Consu	ming/Expandi	ing Code:						
		PM:	С	SO2:	C	NO2:	С			
4	. В	Baseline Emissio	ons :							
		PM:		lb/hour			tons/year	•		
		SO2:		lb/hour			tons/year			
		NO2:					tons/year			
5	P	SD Comment:								

III. Part 12 - 2

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

____2

Emissions Unit Information Section

DEP Form No. 62-210.900(1) - Form

Municipal Waste Combustion Unit - #2	
Supplemental Requirements for All Applications	
1. Process Flow Diagram:	App. A, Sec. 3
2. Fuel Analysis or Specification:	NA
3. Detailed Description of Control Equipment :	App. A, Sec. 2
4. Description of Stack Sampling Facilities :	App. A, Sec. 3
5. Compliance Test Report :	7/6/95
6. Procedures for Startup and Shutdown:	App. A, Sec. 4
7. Operation and Maintenance Plan :	App. A, Sec. 5
8. Supplemental Information for Construction Permit Application:	NA
9. Other Information Required by Rule or Statue :	NA
Additional Supplemental Requirements for Category I Applicatio	ns Only
10. Alternative Methods of Operations:	NA
11. Alterntive Modes of Operation (Emissions Trading):	NA
III. Part 13 - 1	

12. Identification of A	Additional Applicable Requirements:	App. A, Sec. 6				
13. Compliance Assur Plan:	rance Monitoring	NA				
14. Acid Rain Application (Hard-copy Required):						
NA	Acid Rain Part - Phase II (Form	No. 62-210.900(1)(a))				
NA	Repowering Extension Plan (For	rm No. 62-210.900(1)(a)1.)				
NA	New Unit Exemption (Form No.	62-210.900(1)(a)2.)				
NA	Retired Unit Exemption (Form N	No. 62-210.900(1)(a)3.)				

III. EMISSIONS UNIT INFORMATION

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Emissio	ons Unit Information Section3_
Municip	al Waste Combustion Unit - #3
Type of	f Emissions Unit Addressed in This Section
1. Regu	ulated or Unregulated Emissions Unit? Check one:
[X]	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.
[]	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.
2. Sing	le Process, Group of Processes, or Fugitive Only? Check one:
[X]	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.
[]	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.

III. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

	Emissions	Unit	Information	Section	3
--	------------------	------	--------------------	---------	---

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1. Description of Emissions Unit Addressed in This Section:							
Municipal Waste Combustion U	nit - #3						
Emissions Unit Identification No Corresponding I		known					
3. Emissions Unit Status Code: A	4. Acid Rain Unit? [] Yes [X] No	5. Emissions Unit Major Group SIC Code: 49					
6. Emissions Unit Comment :							

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	3	
Municipal Waste Combustion Unit - #3		
Emissions Unit Control Equipment	1	

1. Description: Dry scrubber - using lime slurry, the scrubber neutralizes any acid-forming gases, such as sulfur oxides and hydrogen chloride.

2. Control Device or Method Code: 13

1

III. Part 3 -DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	3	
Municipal Waste Combustion Unit - #3		
Emissions Unit Control Equipment	2	
Description: Fabric Filter - Baghouse		
2. Control Device or Method Code:	16	

III. Part 3 -

2

Emissions Unit Information Section	3		
Municipal Waste Combustion Unit - #3			
Emissions Unit Control Equipment	3		
Description: Carbon Injection System			_
2. Control Device or Method Code:	48		

III. Part 3 -

3

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

3

Em	issio	ns	Unit	Info	rm	atio	n	Sec	tion

on ___

Municipal Waste Combustion Unit - #3

Emissions Unit Details

1. Initial Startup Date:

01-Jan-1991

2. Long-term Reserve Shutdown Date:

3. Package Unit:

Manufacturer:

Model Number:

4. Generator Nameplate Rating: 29

5. Incinerator Information:

Dwell Temperature:

1,800

Degrees Fahrenheit

Dwell Time: 1.00 Seconds

MW

Incinerator Afterburner Temperature:

Degrees Fahrenheit

Emissions Unit Operating Capacity

1. Maximum Heat Input Rate: 160 mmBtu/hr

2. Maximum Incinerator Rate: 33500.00 lb/hr 402.00 tons/day

3. Maximum Process or Throughput Rate: 104000 lb steam/hour

4. Maximum Production Rate:

5. Operating Capacity Comment:

- 1. Demonstration of compliance with max throughput shall be measured by steamflow.
- 2. Max incinerator rate is 114% of rated name capacity
- 3. Item 4 is for entire facility and not for one unit only.

Emissions Unit Operating Schedule

Requested Maximum Operating Schedule:

24 hours/day 52 weeks/year 7 days/week 8,760 hours/year

eeks/year 8,

1

III. Part 4 -

DEP Form No. 62-210.900(1) - Form

III. Part 4 - 2

DEP Form No. 62-210.900(1) - Form

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #3	3	
Rule Applicability Analysis		
		•

III. Part 6a - 1

Emissions Unit Information Section

Municipal Waste Combustion Unit - #3

List of Applicable Regulations

Refer to Appendix A, Section 1

E. EMISSION POINT (STACK/VENT) INFORMATION

3

Emission Point Description and Type:		
1. Identification of Point on Plot Plan or Flow Diagram:	Flue #3	
2. Emission Point Type Code:		
3. Descriptions of Emission Points Comprising this Emiss (limit to 100 characters per point)	sions Unit for VI	E Tracking :
4. ID Numbers or Descriptions of Emission Units with the	is Emission Poin	t in Common :
5. Discharge Type Code:	V	
6. Stack Height:	275	feet
7. Exit Diameter :	4.7	feet
8. Exit Temperature :	250	°F
9. Actual Volumetric Flow Rate:	85300	acfm
10. Percent Water Vapor :	18.70	%
11. Maximum Dry Standard Flow Rate:	47600	dscfm
12. Nonstack Emission Point Height:	0	feet
13. Emission Point UTM Coordinates:		
Zone: 0 East (km): 0.000	North (k	m): 0.000
14. Emission Point Comment :		

III. Part 7a - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

F. SEGMENT (PROCESS/FUEL) INFORMATION

Emissions Unit Information Section 3	_
Municipal Waste Combustion Unit - #3	
Segment Description and Rate: Segment	1
1. Segment Description (Process/Fuel Type and	Associated Operating Method/Mode):
Solid Waste Mass Burn	
2. Source Classification Code (SCC): 50100)102 .
3. SCC Units: Tons Burned (all solid fuels)	
4. Maximum Hourly Rate: 16.75	5. Maximum Annual Rate: 146,730.00
6. Estimated Annual Activity Factor:	<u>.</u>
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:
9. Million Btu per SCC Unit: 10	<u> </u>
10. Segment Comment:	
Maximum hourly rate based upon 114% of the n	name plate capacity pursuant to PSD-FL-127

III. Part 8 - 1

DEP Form No. 62-210.900(1) - Form

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	3
Municipal Waste Combustion Unit - #3	_

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	Pollutant Regulatory Code
. 104	016		FY.
1 - PM	016		EL
2 - CO			EL
3 - PB	016		EL
4 - NOX			EL
5 - SO2	013	1	EL
6 - VOC			EL
7 - FL	013		EL
8 - SAM	013		EL
9 - HCL	013		EL
10 - H114	013	016	EL
11 - H021	016		EL
12 - H015	016		EL .

III. Part 9a - 1

DEP Form No. 62-210.900(1) - Form

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	3
Municipal Waste Combustion Unit - #3	-

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	Pollutant Regulatory Code
			·
		·	
		·	
	III Post Oo	2	

III. Part 9a - 2

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3 Pollutant Potential/Estimated Emissions: Pollutant 1	
1. Pollutant Emitted: PM	
1. Fondiant Emitted. FW	
2. Total Percent Efficiency of Control: %	
3. Potential Emissions : 5.1300000 lb/hour	22.5000000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions: to	tons/year
6. Emissions Factor Units: Reference: PSD-FL-127 (9/22/88)	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
0.0322 lb PM/mmBtu * 140 mmBtu/hr * 1.14 = 5.13 lb PM/hr	
5.13 lb PM/hr * 8760 hr/yr * 1 ton/2000 lb = 22.5 ton PM/yr	
9. Pollutant Potential/Estimated Emissions Comment:	

III. Part 9b - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section ____3__

Municipal Waste Combustion Unit - #3	
Pollutant Potential/Estimated Emissions: Pollutant2	
1. Pollutant Emitted: CO	
2. Total Percent Efficiency of Control: %	
3. Potential Emissions:	
62.4000000 lb/hour	68.4000000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions:	
to	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
1-hr avg: 3.75 lb CO/ton refuse * 399 ton refuse/24 hr = 62.4 lb CO/hr	
8-hr avg: 0.94 lb CO/ton refuse * 399 ton refuse/24 hr * 8760 hr/yr * 1	ton/2000 lb = 68.44 ton CO/yr
9. Pollutant Potential/Estimated Emissions Comment:	
The 1-hr avg emission factor for CO is 3.75 lb/ton refuse	
Emission factors obtained from PSD specific condition	
400 ppmdv corrected to 7%O2, 1-hr avg 100 ppmdv corrected to 7%O2, 8-hr avg	
<u></u>	

III. Part 9b - 2

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3			
Pollutant Potential/Estimated Emissions: Pollutant3			
1. Pollutant Emitted: PB	•		
2. Total Percent Efficiency of Control: %			
3. Potential Emissions: 0.1100000 lb/hour	0.4900000 tons/year		
4. Synthetically Limited? [] Yes [X] No			
5. Range of Estimated Fugitive/Other Emissions: to	tons/year		
6. Emissions Factor Units : Reference : PSD-FL-127			
7. Emissions Method Code: 0			
8. Calculations of Emissions :			
7E-4 lb Pb/mmBtu * 140 mmBtu/hr * 1.14 = 0.11 lb Pb/hr			
0.11 lb Pb/hr * 8760 hr/yr * 1 ton/2000 lb = 0.49 tons Pb/yr			
9. Pollutant Potential/Estimated Emissions Comment:			

III. Part 9b - 3

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 3 Municipal Waste Combustion Unit - #3		
Pollutant Potential/Estimated Emissions: Pollutant 4		
1. Pollutant Emitted: NOX		
2. Total Percent Efficiency of Control: %		
3. Potential Emissions: 102.6000000 lb/hour		449.4000000 tons/year
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:	to	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions :		
0.643 lb NOx/mmBtu * 140 mmBtu/hr * 1.14 = 102.6 lb NOx/hr		
102.6 lb NOx/hr * 8760 hr/yr * 1 ton/2000 lb = 449 ton NOx/yr		
9. Pollutant Potential/Estimated Emissions Comment:		

III. Part 9b - 4

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3	
Pollutant Potential/Estimated Emissions: Pollutant 5	
1. Pollutant Emitted: SO2	
2. Total Percent Efficiency of Control: 70.00 %	
3. Potential Emissions: 37.2000000 lb/hour	93.9000000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions: to	tons/year
6. Emissions Factor Units : Reference : PSD-FI-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
2.236 lb SO2/ton refuse * 399 ton refuse/24 hr = 37.2 lb SO2/hr	
1.29 lb SO2/ton refuse * 399 ton refuse/24 hr * 8760 hr/yr * 1 ton/2000 lb	= 93.9 ton SO2/yr
9. Pollutant Potential/Estimated Emissions Comment:	
Emission factor for 3-hr rolling avg is 2.236 lb/ton refuse Emission factor for 6-hr rolling avg is 1.29 lb/ton refuse PSD-FL-127	
Based on 104 ppmdv (3hr) & 60 ppmdv (6hr) @7%O2	

Emissions Unit Information Section3 Municipal Waste Combustion Unit - #3	
Pollutant Potential/Estimated Emissions: Pollutant 6	
1. Pollutant Emitted: VOC	
2. Total Percent Efficiency of Control: %	
3. Potential Emissions: 3.3500000 lb/hour	14.7000000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions: to	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions :	
0.021 lb VOC/mmBtu * 140 mmBtu/hr * 1.14 = 3.35 lb VOC/hr	
3.35 lb VOC/hr * 8760 hr/yr * 1 ton/2000 lb = 14.7 ton VOC/yr	
9. Pollutant Potential/Estimated Emissions Comment:	
Emission factor is increased by 14% pursuant to PSD specific conditions	

III. Part 9b - 6

DEP Form No. 62-210.900(1) - Form

Municipal Waste Combustion Unit - #3	
Pollutant Potential/Estimated Emissions: Pollutant 7	
1. Pollutant Emitted: FL	
2. Total Percent Efficiency of Control: 90.00 %	
3. Potential Emissions: 1.2700000 lb/hour	5.6000000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions: to	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
0.008 lb Fl/mmBtu * 140 mmBtu/hr * 1.14 = 1.27 lb Fl/hr	
1.27 lb Fl/hr * 8760 hr/yr * 1 ton/2000 lb = 5.60 ton Fl/yr	
9. Pollutant Potential/Estimated Emissions Comment:	

III. Part 9b - 7

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3	
Pollutant Potential/Estimated Emissions: Pollutant 8	
1. Pollutant Emitted: SAM	
2. Total Percent Efficiency of Control: 90.00 %	
3. Potential Emissions : 5.6000000 lb/hour	24.5200000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions:	to tons/year
6. Emissions Factor Units: Reference: PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
0.035 lb SAM/mmBtu * 140 mmBtu/hr * 1.14 = 5.60 lb SAM/hr	
5.6 lb SAM/hr * 8760 hr/yr * 1 ton/2000 lb = 24.52 ton SAM/yr	
9. Pollutant Potential/Estimated Emissions Comment:	

III. Part 9b - 8

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3		
Pollutant Potential/Estimated Emissions: Pollutant 9	_	
1. Pollutant Emitted: HCL		
2. Total Percent Efficiency of Control: 90.00 %		
3. Potential Emissions: 19.2000000 lb/hour		168.2000000 tons/year
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:	to	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions :		
0.12 lb HCl/mmBtu * 140 mmBtu/hr * 1.14 = 19.2 lb HCl/hr		
19.2 lb HCl/hr * 8760 hr/yr * 1 ton/2000 lb = 168.2 ton HCl/yr	,	
9. Pollutant Potential/Estimated Emissions Comment:		

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section ___3_

Municipal Waste Combustion Unit - #3	
Pollutant Potential/Estimated Emissions: Pollutant10	
1. Pollutant Emitted: H114	
2. Total Percent Efficiency of Control: 80.00 %	
3. Potential Emissions: 0.0200000 lb/hour	0.0700000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions: to	tons/year
6. Emissions Factor Units : Reference : PSD-FL-127	
7. Emissions Method Code: 0	
8. Calculations of Emissions:	
70 ug/dscm@7%O2 ((21%-10.53% O2)/(21%-7% O2)) = 52.35 ug Hg/cu.r	n actual O2
52.35 ug Hg/cu.m actual O2 * 1 g/1E6 ug * 1 cu.m/35.3 cu.ft * 1 lb/453.6 g	g = 3.27E-9 lb Hg/cu.ft
3.27E-9 lb Hg/cu.ft * 86300 cu.ft * 60 min/hr = 0.0167 lb Hg/hr	
0.0167 lb Hg/hr * 8760 hr/yr * 1 ton/2000 lb = 0.073 ton Hg/yr	
9. Pollutant Potential/Estimated Emissions Comment:	

III. Part 9b - 10

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section
Municipal Waste Combustion Unit - #3

III. Part 9b - 11

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3		
Pollutant Potential/Estimated Emissions: Pollutant11		
1. Pollutant Emitted: H021		
2. Total Percent Efficiency of Control: %		
3. Potential Emissions : lb/hour	tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions: to	tons/year	
6. Emissions Factor Units : Reference : PSD-FL-127	,	
7. Emissions Method Code: 0		
8. Calculations of Emissions :		
1.35E-7 lb Be/mmBtu * 140 mmBtu/hr * 1/14 = 2.2E-5 lb Be/hr		
2.2E-5 lb Be/hr * 8760 hr/yr * 1 ton/2000 lb = 9.6E-5 ton Be/yr		
9. Pollutant Potential/Estimated Emissions Comment:		
Emission factor 1.35E-7 lb/mmBtu		

III. Part 9b - 12

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3		
Pollutant Potential/Estimated Emissions: Pollutant 12		
1. Pollutant Emitted: H015		
2. Total Percent Efficiency of Control: %		
3. Potential Emissions : lb/hour	0.1000000 tons/year	
4. Synthetically Limited? [] Yes [X] No		
5. Range of Estimated Fugitive/Other Emissions:	tons/year	
6. Emissions Factor Units: Reference: PSD-FL-127		
7. Emissions Method Code: 0		
8. Calculations of Emissions:		
9.1E-6 lb Ar/mmBtu * 140 mmBtu/hr * 1.14 = 1.5E-3 lb Ar/hr		
1.5E-3 lb Ar/hr * 8760 hr/yr * 1 ton/2000 lb = 6.6E-3 ton Ar/yr	•	
9. Pollutant Potential/Estimated Emissions Comment:		
Emission Factor 9.1E-6 lb/mmBtu		

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3			
Pollutant Information Section 1			
Allowable Emissions 1			
1. Basis for Allowable Emissions Code:	OTHER		
2. Future Effective Date of Allowable Emission	ns:		
3. Requested Allowable Emissions and Units:	0.03	1	b/mmBtu
4. Equivalent Allowable Emissions :			
5.13	lb/hour	22.50	tons/year
5. Method of Compliance:			
40 CFR 60.8 (a)(b)(d)(e)(f)			
6. Pollutant Allowable Emissions Comment (D	esc. of Related O	perating N	Method/Mode):
PSD Permit - PSD-FL-127 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value			

Emissions Unit Information Section Municipal Waste Combustion Unit - #3			
Pollutant Information Section 1			
Allowable Emissions 2			
1. Basis for Allowable Emissions Code:	OTHER		
2. Future Effective Date of Allowable Emission	ns:		
3. Requested Allowable Emissions and Units :	0.02		gr/dscf@12%CO2
4. Equivalent Allowable Emissions:			
5.13	lb/hour	22.50	tons/year
5. Method of Compliance:			
FAC 62-297.401(5) and 40 CFR 60			
6. Pollutant Allowable Emissions Comment (D	esc. of Related Op	perating	Method/Mode):
Power Plant Site Certification - PA 87-23			
Based on heat value of 140 mmBtu/hr			
Based on 114% of the design heat input value			

Emissions Unit Information Section Municipal Waste Combustion Unit - #3			
Po	llutant Information Section 2		
Al	lowable Emissions 1		
1.	Basis for Allowable Emissions Code : OTHER		
2.	Future Effective Date of Allowable Emissions:		
3.	Requested Allowable Emissions and Units: 400.00 ppmdv		
4.	Equivalent Allowable Emissions :		
	62.40 lb/hour 68.40 tons/year		
5.	Method of Compliance:		
	40 CFR 60.8 (a)(b)(d)(e)(f)		
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):		
	Emission factor is a 1-hr avg, corrected to 7%O2 PSD Permit - PSD-FL-127 Based on heat content of 140 mmBtu/hr Based on 114% of the design heat input value		

Emissions Unit Information Section Municipal Waste Combustion Unit - #3
Pollutant Information Section 2
Allowable Emissions 2
Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units: 100.00 ppmdv
4. Equivalent Allowable Emissions :
62.40 lb/hour 68.40 tons/year
5. Method of Compliance:
FAC 62-297.401(10) and 40 CFR 60
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
Emission factor is an 8-hour rolling average, corrected to 7%O2
Power Plant Site Certification - PA 87-23 Based on heat value of 140 mmBtu/hr
Based on 114% of the design heat input value

	nicipal Waste Combustion Unit - #3
Pol	lutant Information Section 3
All	owable Emissions 1
1.	Basis for Allowable Emissions Code : OTHER
2.	Future Effective Date of Allowable Emissions:
3.	Requested Allowable Emissions and Units: 0.00 lb/mmBtu
4.	Equivalent Allowable Emissions:
	0.11 lb/hour 0.49 tons/year
5.	Method of Compliance:
	FAC 62-297.40(12)
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
	PSD Permit PSD-FL-127 and Power Plant Site Cert. PA 87-23 Based on a heat value of 140 mmBtu/hr Based on 114% of the design heat input value Requested allowable emissions is 7E-4 lb/mmBtu
	requested anomatic chinasions is /L-T to/initibia

	nissions Unit Information Section unicipal Waste Combustion Unit - #3
Po	llutant Information Section4_
Al	lowable Emissions 1
1.	Basis for Allowable Emissions Code: OTHER
2.	Future Effective Date of Allowable Emissions :
3.	Requested Allowable Emissions and Units: 0.64 lb/mmBtu
4.	Equivalent Allowable Emissions :
	102.60 lb/hour 449.40 tons/year
5.	Method of Compliance :
	FAC 62-297.401(7) and 40 CFR 60
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
	PSD Permit - PSD-FL-127 & Power Plant Site Certification - PA 87-23 Based on 140 mmBtu/hr Based on 114% of the design heat input value

Emissions Unit Information Section Municipal Waste Combustion Unit - #3
Pollutant Information Section 5
Allowable Emissions 1
1. Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions :
3. Requested Allowable Emissions and Units: 35.79 lb/hr
4. Equivalent Allowable Emissions :
37.20 lb/hour 93.90 tons/year
5. Method of Compliance:
40 CFR 60, Appendix A
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
PSD Permit-PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of design heat input value Based on 104 ppmdv @7%O2 - 3hr rolling avg Based on 60 ppmdv @7%O2 - 6hr rolling avg

III. Part 9c - 7

Smissions Unit Information Section Municipal Waste Combustion Unit - #3
collutant Information Section5_
Allowable Emissions 2
. Basis for Allowable Emissions Code :
2. Future Effective Date of Allowable Emissions:
8. Requested Allowable Emissions and Units: 60.00 ppmdv (6 hr)
Equivalent Allowable Emissions :
23.40 lb/hour 104.86 tons/year
6. Method of Compliance:
FAC 62-297.401 and 40 CFR 60, Appendix A
5. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
Emission factor units at 12% CO2, 6 hr rolling avg Power Plant Site Certification - PA 87-23

Emissions Unit Information Section Municipal Waste Combustion Unit - #3						
Pollutant Information Section 6						
Allowable Emissions 1						
1. Basis for Allow	able Emissions Code :	OTHER				
2. Future Effective	e Date of Allowable Emissio	ons:				
3. Requested Allo	wable Emissions and Units:	0.02	11	b/mmBtu		
4. Equivalent Allo	wable Emissions :					
	3.35	lb/hour	14.70	tons/year		
5. Method of Com	pliance :					
FAC 62-297.401	(21)					
6. Pollutant Allow	rable Emissions Comment (I	Desc. of Related O	perating N	lethod/Mode):		
Based on heating	D-FL-127 & Power Plant Siting value of 140 mmBtu/hr of the design heat input value.	ng Certification PA	87-23			

Emissions Unit Information Section Municipal Waste Combustion Unit - #3
Pollutant Information Section 7
Allowable Emissions 1
1. Basis for Allowable Emissions Code : OTHER
2. Future Effective Date of Allowable Emissions :
3. Requested Allowable Emissions and Units: 0.01 lb/mmBtu
4. Equivalent Allowable Emissions :
1.27 lb/hour 5.60 tons/year
5. Method of Compliance :
FAC 62-297.401(13) and 40 CFR 60
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):
PSD Permit - PSD-FL-127 & Power Plant Site Certification PA 87-23 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value.

Emissions Unit Information Section Municipal Waste Combustion Unit - #3						
Pollutant Information Section 8						
Allowable Emissions 1						
1. Basis for Allowable Emissions Code:	OTHER					
2. Future Effective Date of Allowable Emission						
3. Requested Allowable Emissions and Units:	0.04	. lb	/mmBtu			
4. Equivalent Allowable Emissions:						
5.60	lb/hour	24.52	tons/year			
5. Method of Compliance:						
40 CFR 60.8 (a)(b)(d)(e)(f)						
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):						
PSD Permit - PSD-FL-127 Based on heat value of 140 mmBtu/hr Based on 114% of the design heat input value			·			

Emissions Unit Information Section 3 Municipal Waste Combustion Unit - #3						
Pollutant Information Secti	on <u>9</u>					
Allowable Emissions	1					
1. Basis for Allowable Emis	sions Code :	ОТН	ER			
2. Future Effective Date of A	Allowable Emissi	ons :				
3. Requested Allowable Em	issions and Units	: 0.13	lb	/mmBtu		
4. Equivalent Allowable Em	issions :					
	19.20	lb/hour	168.20	tons/year		
5. Method of Compliance:						
FAC 62-297.401(26) and 40	0 CFR 60					
6. Pollutant Allowable Emis	sions Comment (Desc. of Relate	ed Operating M	ethod/Mode):		
PSD Permit - PSD-FL-127 Based on heating value of 1 Based on 114% of the desig	40 mmBtu/hr	ng Certification	PA 87-23			

Emissions Unit Information Section Municipal Waste Combustion Unit - #3							
Pollutant Information Section10							
Allowable Emissions 1							
1. Basis for Allowable Emissions Code: OTHER							
2. Future Effective Date of Allowable Emissions :							
3. Requested Allowable Emissions and Units: 70.00 ug/dscm@7%O2							
4. Equivalent Allowable Emissions :							
0.02 lb/hour 0.07 tons/year							
5. Method of Compliance :							
40 CFR 60.8 (6)(b)(d)(e)(f)							
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):							
PSD Permit PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input rate							

Emissions Unit Information Section Municipal Waste Combustion Unit - #3						
Pollutant Information Section 10						
Allowable Emissions 2						
1. Basis for Allowable Emissions Code:	OTHER					
2. Future Effective Date of Allowable Emission	ıs:					
3. Requested Allowable Emissions and Units:	70.00		ug/dscm@7%O2			
4. Equivalent Allowable Emissions :						
0.02	lb/hour	0.07	tons/year			
5. Method of Compliance:						
40 CFR 61, Method 101A, Appendix B						
6. Pollutant Allowable Emissions Comment (De	esc. of Related Op	perating	Method/Mode):			
PSD Permit - PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value						

	Emissions Unit Information Section Municipal Waste Combustion Unit - #3						
Po	Pollutant Information Section11						
Al	Allowable Emissions 1						
1.	1. Basis for Allowable Emissions Code: OTHE	ER					
2.	2. Future Effective Date of Allowable Emissions:						
3.	3. Requested Allowable Emissions and Units: 0.00	11:	/1000 mmBtu				
4.	4. Equivalent Allowable Emissions :						
	0.00 lb/hour	0.00	tons/year				
5.	5. Method of Compliance:						
	40 CFR 61 Method 103 or 104						
6.	6. Pollutant Allowable Emissions Comment (Desc. of Relate	ed Operating M	(ethod/Mode):				
	Power Plant Siting Certification - PA 87-23 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value Requested allowable emission 1.35E-7 lb/1000 mmBtu						

Emissions Unit Information Section Municipal Waste Combustion Unit - #3						
Pollutant Information Section 12						
Allowable Emissions 1						
1. Basis for Allowable Emissions Code: OTHER						
2. Future Effective Date of Allowable Emissions:						
3. Requested Allowable Emissions and Units: 0.01 lb/1000 mmBtu						
4. Equivalent Allowable Emissions:						
0.00 lb/hour 0.01 tons/year						
5. Method of Compliance :						
40 CFR 60.8 (a)(b)(d)(e)(f)						
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):						
PSD Permit - PSD-FL-127 Based on heating value of 140 mmBtu/hr Based on 114% of the design heat input value Requested allowable emission 1.35E-7 lb/1000 mmBtu						

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

	Emissions Unit Information Section Municipal Waste Combustion Unit - #3					
Vi	sible Emissions Limitation: Visible Emissions Limitation 1					
1.	Visible Emissions Subtype: VE					
2.	Basis for Allowable Opacity: OTHER					
3.	Requested Allowable Opacity:					
	Normal Conditions: 15 %					
	Exceptional Conditions: 20 %					
	Maximum Period of Excess Opacity Allowed: 6 min/hour					
4.	Method of Compliance:					
	40 CFR 60.11 (b) and (e)					
5.	Visible Emissions Comment:					
	PSD Permit - PSD-FL-127					

III. Part 10 - 1

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section 3 Municipal Waste Combustion Unit - #3						
Visible Emissions Limitation: Visible Emissions Limitation 2						
1. Visible Emissions Subtype: VE						
2. Basis for Allowable Opacity: RULE			÷			
3. Requested Allowable Opacity:						
Normal Conditions:	15	%				
Exceptional Conditions:	20	%				
Maximum Period of Excess Opacity Allowed:	3	min/hour				
4. Method of Compliance:						
FAC 62-297.401 Method 9						
5. Visible Emissions Comment:						
Power Plant Site Certification - PA 87-23		·				

III. Part 10 - 2

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Continuous Monitoring System Continuous Monitor 1	
1. Parameter Code: VE	2. Pollutant(s):
3. CMS Requirement RULE	
4. Monitor Information	
Manufacturer: Thermo Environmental Model Number: 400/500 Serial Number: 400-28125-232	
5. Installation Date:	01-Nov-1990
6. Performance Specification Test Date:	01-Apr-1991
7. Continuous Monitor Comment : 40 CFR 60, Appendix B	
Continuous Monitor 2	
1. Parameter Code: O2	2. Pollutant(s):
3. CMS Requirement RULE	
4. Monitor Information	
Manufacturer: Servomax Model Number: 1400 Serial Number: 01420-701-297	
5. Installation Date :	01-Nov-1990
6. Performance Specification Test Date:	01-Apr-1991
7. Continuous Monitor Comment : 40 CFR 60, Appendix B	

III. Part 11 - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Municipal Waste Combustion Unit - #3

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Municipal Waste Combustion Unit - #3				
Continuous Monitoring System Continuous Monitor 3				
1. Parameter Code: CO2	2. Pollutant(s):			
3. CMS Requirement RULE				
4. Monitor Information				
Manufacturer: ACS Model Number: 3300 Serial Number: N9J-3741T				
5. Installation Date:	01-Nov-1990			
6. Performance Specification Test Date:	01-Apr-1991			
7. Continuous Monitor Comment : 40 CFR 60, Appendix B				
Continuous Monitoring System Continuous M	Ionitor 4			
1. Parameter Code: EM	2. Pollutant(s): CO			
3. CMS Requirement RULE				
4. Monitor Information	-			
Manufacturer: Thermoenvironmental Model Number: 48 Serial Number: 48-28469-231				
5. Installation Date:	01-Nov-1990			
6. Performance Specification Test Date:	01-Apr-1991			
7. Continuous Monitor Comment: 40 CFR 60, Appendix B				

III. Part 11 - 2

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section 3

Municipal Waste Combustion Unit - #3

Continuous Monitoring System Continuous Mo	onitor 5.
1. Parameter Code: EM	2. Pollutant(s): SO2
3. CMS Requirement RULE	
4. Monitor Information Manufacturer: Western Research Model Number: 721-AT Serial Number: 90-721AT2-76234	
5. Installation Date :	01-Nov-1990
6. Performance Specification Test Date:	01-Apr-1991
7. Continuous Monitor Comment : 40 CFR 60, Appendix B	

DEP Form No. 62-210.900(1) - Form

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

E	mis	sions Unit Information Section 3
M	uni	cipal Waste Combustion Unit - #3
<u>P</u>	SD	Increment Consumption Determination
1.	In	crement Consuming for Particulate Matter or Sulfur Dioxide?
[>	(]	The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.
[]	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.
]]	The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
[]	For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
[]	None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.

III. Part 12 - 1

2.]	[n	crement Consur	ming for Nitroge	en Dioxid	le?			
[X]		has undergone I			dergoing PSD reviously, for nitrogen of	-	
[The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after February 8, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.							
[]	unit began initi	_	r Februar	ry 8, 1988	ied as an EPA maj , but before March increment.		
[]	•	•	•	•	begin) initial opera unit consumes incre		n 28, 1988.
]]	case, additiona	l analysis, beyon	nd the sco	pe of this	as of the emissions application, is need after the baseline	ded to determin	e whether
3.	Ir	ncrement Consu	ming/Expandin	g Code :				
		PM:	С	SO2:	С	NO2:	C	
4.	В	aseline Emissio	ons :					
		PM:		lb/hour			tons/year	
		SO2 : NO2 :		lb/hour			tons/year tons/year	
5.	P	SD Comment:						

III. Part 12 - 2

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

Emissions Unit Information Section

DEP Form No. 62-210.900(1) - Form

Supplemental Requirements for All Applications	
1. Process Flow Diagram:	App. A, Sec. 4
2. Fuel Analysis or Specification:	NA
3. Detailed Description of Control Equipment :	App. B, Sec. 2
4. Description of Stack Sampling Facilities :	App. B, Sec. 3
5. Compliance Test Report :	7/6/95
6. Procedures for Startup and Shutdown:	App. B, Sec. 4
7. Operation and Maintenance Plan :	App. B, Sec. 5
8. Supplemental Information for Construction Permit Application :	NA
9. Other Information Required by Rule or Statue :	NA
Additional Supplemental Requirements for Category I Application	ns Only
10. Alternative Methods of Operations :	NA
11. Alterntive Modes of Operation (Emissions Trading):	NA
III. Part 13 - 1	

12. Identification of A	Additional Applicable Requirements:	App. B, Sec. 6
13. Compliance Assur Plan:	rance Monitoring	NA ·
14. Acid Rain Applic	eation (Hard-copy Required):	
NA	Acid Rain Part - Phase II (Forn	n No. 62-210.900(1)(a))
NA Repowering Extension Plan (For		orm No. 62-210.900(1)(a)1.)
NA	NA New Unit Exemption (Form No. 62-210.900(1)(a)2.)	
NA Retired Unit Exemption (Form No		No. 62-210.900(1)(a)3.)

III. EMISSIONS UNIT INFORMATION

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Emissio	ons Unit Information Section4
Cooling	Tower
Type of	Emissions Unit Addressed in This Section
1. Regu	ulated or Unregulated Emissions Unit? Check one:
[]	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.
[X]	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.
2. Sing	le Process, Group of Processes, or Fugitive Only? Check one:
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.
[X]	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.

III. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Se	ection 4	
--------------------------------------	----------	--

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1. Description of Emissions Unit Addressed in This Section :				
Cooling Tower				
Emissions Unit Identification No Corresponding I		known		
3. Emissions Unit Status Code: A	4. Acid Rain Unit? [] Yes [X] No	5. Emissions Unit Major Group SIC Code: 49		
6. Emissions Unit Comment:		·		

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	
Emissions Unit Control Equipment	
1. Description:	
2. Control Device or Method Code:	

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section 4 Cooling Tower	_	
Emissions Unit Details		
1. Initial Startup Date :		
2. Long-term Reserve Shutdown Date:		
3. Package Unit : Manufacturer :		Model Number :
Manufacturer:		Wiodel Number:
4. Generator Nameplate Rating:	MW	
5. Incinerator Information : Dwell Temperature : Dwell Time :		Degrees Fahrenheit Seconds
Incinerator Afterburner Temperature:		Degrees Fahrenheit
Emissions Unit Operating Capacity 1. Maximum Heat Input Rate:	mmBtu/hr	
2. Maximum Incinerator Rate :	lb/hr	tons/day
3. Maximum Process or Throughput Rate:		-
4. Maximum Production Rate:	_	
5. Operating Capacity Comment:		
Emissions Unit Operating Schedule		
Requested Maximum Operating Schedule:		
hours/day		days/week
weeks/year		hours/year

III. Part 4 - 1

DEP Form No. 62-210.900(1) - Form

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Emissions Unit Information Section Cooling Tower	4	
Rule Applicability Analysis		

III. Part 6a - 1

DEP Form No. 62-210.900(1) - Form

List of Applicable Regulations

E. EMISSION POINT (STACK/VENT) INFORMATION

Emissions Unit Information Section 4		
Cooling Tower		
Emission Point Description and Type:		
1. Identification of Point on Plot Plan or Flow Diagram:		
2. Emission Point Type Code:		
3. Descriptions of Emission Points Comprising this Emissions (limit to 100 characters per point)	s Unit for VE	Tracking:
4. ID Numbers or Descriptions of Emission Units with this En	nission Point	in Common:
5. Discharge Type Code :		
6. Stack Height:	0	feet
7. Exit Diameter :	0.0	feet
8. Exit Temperature:	0	°F
9. Actual Volumetric Flow Rate :	0	acfm
10. Percent Water Vapor:	0.00	%
11. Maximum Dry Standard Flow Rate:	0	dscfm
12. Nonstack Emission Point Height:	0	feet
13. Emission Point UTM Coordinates:		
Zone: 0 East (km): 0.000	North (kn	n): 0.000
14. Emission Point Comment :		

III. Part 7a - 1

F. SEGMENT (PROCESS/FUEL) INFORMATION

Emissions Unit Information Section 4		
Cooling Tower		
Segment Description and Rate: Segment	1	
1. Segment Description (Process/Fuel Type and	Associated Operating Method/Mode):	
Induced Draft Cooling Tower		
2. Source Classification Code (SCC): 38500	0101	
3. SCC Units: Thousand Gallons Processed		
4. Maximum Hourly Rate: 1,260.00	5. Maximum Annual Rate:	
6. Estimated Annual Activity Factor:		
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:	
9. Million Btu per SCC Unit:		
10. Segment Comment:		
5. Maximum Annual Rate: 11,000,000.00 thous	sand gallons processed	

III. Part 8 - 1

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	4
Cooling Tower	

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
1 - PM10			NS
2 - H038			NS

III. Part 9a - 1

H. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Only - Emissions Limited Pollutants Only)

Cooling Tower	4		
Pollutant Potential/Estimated Emissions	s: Pollutant	1	
1. Pollutant Emitted: PM10		·	
2. Total Percent Efficiency of Control:		%	
3. Potential Emissions :	lb/hour		tons/year
4. Synthetically Limited? [] Yes [] No			
5. Range of Estimated Fugitive/Other Em	nissions:	to	tons/year
6. Emissions Factor Reference:	Units	::	
7. Emissions Method Code:			
8. Calculations of Emissions:			
9. Pollutant Potential/Estimated Emission	ns Comment :		

H. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Only - Emissions Limited Pollutants Only)

Emissions Unit Information Section Cooling Tower	· <u>4</u>		
Pollutant Potential/Estimated Emission	s: Pollutant2		
1. Pollutant Emitted: H038			
2. Total Percent Efficiency of Control:	%		
3. Potential Emissions:	lb/hour		tons/year
4. Synthetically Limited? [] Yes [] No			
5. Range of Estimated Fugitive/Other En	nissions:	to	tons/year
6. Emissions Factor Reference:	Units :		
7. Emissions Method Code:			
8. Calculations of Emissions:			,
9. Pollutant Potential/Estimated Emission	ns Comment :		

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Pollutant Information Section Allowable Emissions 1. Basis for Allowable Emissions Code: 2. Future Effective Date of Allowable Emissions: 3. Requested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: lb/hour tons/year 5. Method of Compliance: 6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode):

DEP Form No. 62-210.900(1) - Form

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section

Visible Emissions Limitation: Visible Emissions Limitation	itation
1. Visible Emissions Subtype:	
2. Basis for Allowable Opacity:	
3. Requested Allowable Opacity:	
Normal Conditions: Exceptional Conditions: Maximum Period of Excess Opacity Allowed:	% % min/hour
4. Method of Compliance:	
5. Visible Emissions Comment:	

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section

III. Part 11 - 1

DEP Form No. 62-210.900(1) - Form

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

Emi	Emissions Unit Information Section4_		
Cooli	ing Tower		
<u>PSD</u>	Increment Consumption Determination		
1. Ir	acrement Consuming for Particulate Matter or Sulfur Dioxide?		
[]	The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.		
[X]	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.		
[]	The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.		
[]	For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.		
[]	None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.		

2.	In	crement Consur	ning for Nitrog	en Dioxide?		
[]		has undergone		rgoing PSD review as part of this sly, for nitrogen dioxide. If so, emi	ssions
[]	paragraph (c) o the emissions u	of the definition anit addressed in	of "major source of a this section commen	d as an EPA major source pursuant ir pollution" in Chapter 62-213, F. aced (or will commence) construction, and emissions unit consumes incompared to the consumer of the cons	A.C., and on after
I]	unit began initi	ial operation aft		d as an EPA major source, and the but before March 28, 1988. If so, crement.	
[]	•	-	~ `	egin) initial operation after March 2 it consumes increment.	28, 1988.
[None of the above apply. If so, baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.					
3	. In	ncrement Consu	ming/Expandir	ng Code :		
		PM:	C	SO2:	NO2:	
4	. В	Baseline Emissio	ons:			
		PM : SO2 : NO2 :		lb/hour lb/hour	tons/year tons/year tons/year	
5	. P	SD Comment:				

III. Part 12 - 2

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

Emissions Unit Information Section 4		
Cooling Tower		
Supplemental Requirements for All Applications		
1. Process Flow Diagram:		
2. Fuel Analysis or Specification :		
3. Detailed Description of Control Equipment :		
4. Description of Stack Sampling Facilities :		
5. Compliance Test Report :		
6. Procedures for Startup and Shutdown:		
7. Operation and Maintenance Plan :		
8. Supplemental Information for Construction Permit Application :		
9. Other Information Required by Rule or Statue :		
Additional Supplemental Requirements for Category I Applications Only		
10. Alternative Methods of Operations:		
11. Alterntive Modes of Operation (Emissions Trading):		
III. Part 13 - 1		

DEP Form No. 62-210.900(1) - Form

12.	Identification of Additional Applicable Requirements:
13. Pla	Compliance Assurance Monitoring n:
14.	Acid Rain Application (Hard-copy Required):
	Acid Rain Part - Phase II (Form No. 62-210.900(1)(a))
	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
	New Unit Exemption (Form No. 62-210.900(1)(a)2.)
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)

III. EMISSIONS UNIT INFORMATION

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Emis	ssio	ons Unit Information Section5_
Carbo	on S	Silo vent equipped with dust collector
Турс	e of	Emissions Unit Addressed in This Section
1. R	egu	lated or Unregulated Emissions Unit? Check one:
[]	ζ]	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.
[}	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.
2. Si	ingl	le Process, Group of Processes, or Fugitive Only? Check one:
[X	(]	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.
[]	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.

III. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

5
5

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1. Description of Emissions Unit Addressed in This Section :			
Carbon Silo vent equipped with o	Carbon Silo vent equipped with dust collector		
2. Emissions Unit Identification Number: 005 [] No Corresponding ID [] Unknown			
3. Emissions Unit Status Code: A	4. Acid Rain Unit? [] Yes [X] No	5. Emissions Unit Major Group SIC Code: 49	
6. Emissions Unit Comment: The carbon silo equipped with in	njection equipment to inject activ	vated carbon into the flue gas to	
control mercury emissions.			

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	5
Carbon Silo vent equipped with dust collector	
Emissions Unit Control Equipment	1
Description: Fabric filter dust collector for carbon sile v	vent
2. Control Device or Method Code :	 18

III. Part 3 -1

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Carbon Silo vent equipped with dust colle		
Emissions Unit Details		,
1. Initial Startup Date:	01-Jan-1995	
2. Long-term Reserve Shutdown Dat	e :	
3. Package Unit:	· · · · · · · · · · · · · · · · · · ·	
Manufacturer:		Model Number:
4. Generator Nameplate Rating:	MW	
5. Incinerator Information: Dwell Temperature Dwell Time Incinerator Afterburner Temperature	e:	Degrees Fahrenheit Seconds Degrees Fahrenheit
Emissions Unit Operating Capacity 1. Maximum Heat Input Rate:	mmBtu/hr	•
2. Maximum Incinerator Rate:	lb/hr	tons/day
3. Maximum Process or Throughput	Rate:	
4. Maximum Production Rate:		
5. Operating Capacity Comment: Carbon emissions from the silo filter truck. Filling is expected to occur one		
Emissions Unit Operating Schedule		
Emissions Unit Operating Schedule Requested Maximum Operating Schedule		

III. Part 4 - 1

DEP Form No. 62-210.900(1) - Form

III. Part 4 - 2

DEP Form No. 62-210.900(1) - Form

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Emissions Unit Information Section	. 5
Carbon Silo vent equipped with dust collecto	r
Rule Applicability Analysis	
·	

III. Part 6a - 1

Emissions Unit Information Section

Carbon Silo vent equipped with dust collector

List of Applicable Regulations

State 62-210.300(1)

62-210.300

62-212.300

62-296.310(2) and (3)

62-296.330(1)(b)

62-297.340

62-297.420

62-297.520

62-297.570

III. Part 6b - 1

DEP Form No. 62-210.900(1) - Form

E. EMISSION POINT (STACK/VENT) INFORMATION

Emissions Unit Information Section 5		
Carbon Silo vent equipped with dust collector		
Emission Point Description and Type:		
1. Identification of Point on Plot Plan or Flow Diagram:	App. C, Doc.	III.C.14
2. Emission Point Type Code: 1		
3. Descriptions of Emission Points Comprising this Emiss (limit to 100 characters per point)	sions Unit for VE	E Tracking:
4. ID Numbers or Descriptions of Emission Units with thi	s Emission Poin	t in Common :
5. Discharge Type Code :	Н	
6. Stack Height:	0	feet
7. Exit Diameter :	0.0	feet
8. Exit Temperature :	77	°F
9. Actual Volumetric Flow Rate:	0	acfm
10. Percent Water Vapor:	0.00	%
11. Maximum Dry Standard Flow Rate:	0	dscfm
12. Nonstack Emission Point Height:	44	feet
13. Emission Point UTM Coordinates :		
Zone: 17 East (km): 3289.030	North (kr	n): 2686.000
14. Emission Point Comment : Appendix C, Document III.C.14		

III. Part 7a - 1

DEP Form No. 62-210.900(1) - Form

F. SEGMENT (PROCESS/FUEL) INFORMATION

Emissions Unit Information Section Segment Description and Rate: Segment			
2. Source Classification Code (SCC)):		
3. SCC Units :	<u> </u>		
4. Maximum Hourly Rate:	5. Maximum Annual Rate:		
6. Estimated Annual Activity Factor	:		
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:		
9. Million Btu per SCC Unit :	·		
10. Segment Comment:			

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section 5
Carbon Silo vent equipped with dust collector

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
ı - PM	018		EL

III. Part 9a - 1

DEP Form No. 62-210.900(1) - Form

H. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Only - Emissions Limited Pollutants Only)

Emissions Unit Information Section5_ Carbon Silo vent equipped with dust collector	
Pollutant Potential/Estimated Emissions: Pollutant 1	
1. Pollutant Emitted: PM	
2. Total Percent Efficiency of Control: 99.90 %	
3. Potential Emissions: 0.0800000 lb/hour	0.3700000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions: to	tons/year
6. Emissions Factor Units : Reference : AC51-266667	
7. Emissions Method Code: 0	
8. Calculations of Emissions :	
0.084 lb PM/hr * 8760 hr/yr * 1 ton/2000 lb = 0.37 ton PM/yr	
9. Pollutant Potential/Estimated Emissions Comment:	
Permit AC51-266667 is included in Appendix C	

Emissions Unit Information Section 5 Carbon Silo vent equipped with dust collector				
Pollutant Information Section 1 Allowable Emissions 1				
1. Basis for Allowable Emissions Code: OTHER				
2. Future Effective Date of Allowable Emissions:				
3. Requested Allowable Emissions and Units: 0.08 lb/hr				
4. Equivalent Allowable Emissions:				
0.08 lb/hour 0.37	tons/year			
5. Method of Compliance :				
6. Pollutant Allowable Emissions Comment (Desc. of Related Operating Meth Permit No. AC51-266667	od/Mode) :			

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Carbon Silo vent equipped with dust collector Visible Emissions Limitation: Visible Emissions Limitation 1. Visible Emissions Subtype: VE 2. Basis for Allowable Opacity: **OTHER** 3. Requested Allowable Opacity: Normal Conditions: 5 % **Exceptional Conditions:** 0 % Maximum Period of Excess Opacity Allowed: min/hour 4. Method of Compliance: **DEP Method 9** 5. Visible Emissions Comment: Rule 62-296.310(2) and Rule 62-296.310(3)

III. Part 10 - 1

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section

III. Part 11 - 1

DEP Form No. 62-210.900(1) - Form

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

Er	nis	ssions Unit Information Section 5								
Ca	Carbon Silo vent equipped with dust collector									
<u>PS</u>	SD_	Increment Consumption Determination								
1.	In	crement Consuming for Particulate Matter or Sulfur Dioxide?								
[[] The emissions unit is undergoing PSD review as part of this application, or has undergone PS review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.									
[X	[]	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.								
[]	The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.								
į]	For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.								
[]	None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.								

III. Part 12 - 1

DEP Form No. 62-210.900(1) - Form

2.	In	crement Consur	ning for Nitrog	en Dioxide?							
[The emissions unit addressed in this section is undergoing PSD review as part of this application, or has undergone PSD review previously, for nitrogen dioxide. If so, emissions unit consumes increment.										
[The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after February 8, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.										
[The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after February 8, 1988, but before March 28, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.										
]	•		unit began (or will begin) in ero, and emissions unit consu	itial operation after March 28, 1988. mes increment.						
I	None of the above apply. If so, baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.										
3.		ncrement Consu	ming/Expandin	g Code :							
		PM:	C	SO2:	NO2:						
4	4. Baseline Emissions:										
		PM : SO2 : NO2 :		lb/hour lb/hour	tons/year tons/year tons/year						
5.	. P	SD Comment:									

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

Emissions Unit Information Section 5

Carbon Silo vent equipped with dust collector	
Supplemental Requirements for All Applications	
1. Process Flow Diagram:	App. C
2. Fuel Analysis or Specification :	NA
3. Detailed Description of Control Equipment :	App. C
4. Description of Stack Sampling Facilities:	NA
5. Compliance Test Report :	NA
6. Procedures for Startup and Shutdown:	NA
7. Operation and Maintenance Plan :	NA
8. Supplemental Information for Construction Permit Application:	NA
9. Other Information Required by Rule or Statue :	NA
Additional Supplemental Requirements for Category I Application	ns Only
10. Alternative Methods of Operations:	NA
11. Alterntive Modes of Operation (Emissions Trading):	NA
III. Part 13 - 1	

12. Identification of Additional Applicable Requirements: NA										
13. Compliance Assurance Monitoring Plan:										
14. Acid Rain Applie	cation (Hard-copy Required):									
NA	Acid Rain Part - Phase II	I (Form No. 62-210.900(1)(a))								
NA	Repowering Extension P	Plan (Form No. 62-210.900(1)(a)1.)								
NA New Unit Exemption (Form No. 62-210.900(1)(a)2.)										
NA	Retired Unit Exemption	(Form No. 62-210.900(1)(a)3.)								

III. EMISSIONS UNIT INFORMATION

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section							
Leachate	e Treatment Facility						
Type of	f Emissions Unit Addressed in This Section						
1. Regi	ulated or Unregulated Emissions Unit? Check one:						
[X]	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.						
[]	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.						
2. Sing	le Process, Group of Processes, or Fugitive Only? Check one:						
[X]	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).						
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.						
[]	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.						

III. Part 1 - 6

DEP Form No. 62-210.900(1) - Form

Emissions	Unit l	Information	Section	6

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1. Description of Emissions Unit Addressed in This Section :										
Leachate Treatment Facility										
2. Emissions Unit Identification Number: 006 [] No Corresponding ID [] Unknown										
3. Emissions Unit Status Code: C 4. Acid Rain Unit? 5. Emissions Unit Major Group SIC Code: 49										
6. Emissions Unit Comment:										
The treatment facility treats landfill leachate using a spray drying system.										

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	6
Leachate Treatment Facility	
Emissions Unit Control Equipment	1

1.	Description:	
	Particulate control will be accomplished by a baghouse/solids hopper.	The solids will be discharged
	from the baghouse filter material by 50-70 psig compressed air pulse.	

2. Control Device or Method Code: 16

III. Part 3 - 12

. . .

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

6		
01-Oct-1996		· ·
	Model Num	ber: AA-6
MW .		
	Seconds	Fahrenheit Fahrenheit
mmBtu/hr		
lb/hr	0.00	tons/day
1800	lb/h	ır
	MW mmBtu/hr lb/hr	Model Num MW Degrees I Seconds Degrees I mmBtu/hr lb/hr 0.00

III. Part 4 - 10

DEP Form No. 62-210.900(1) - Form

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Emissions Unit Information Section Leachate Treatment Facility	6_	_							
Rule Applicability Analysis									
Not required for Title V source.									

III. Part 6a - 6

DEP Form No. 62-210.900(1) - Form

List of Applicable Regulations

Refer to Appendix A, Section 1

E. EMISSION POINT (STACK/VENT) INFORMATION

6

Leachate Treatment Facility		
Emission Point Description and Type:		
1. Identification of Point on Plot Plan or Flow Diagram:	App. A, Secti	on 11
2. Emission Point Type Code: 1		
3. Descriptions of Emission Points Comprising this Emissions (limit to 100 characters per point)	S Unit for VE	E Tracking:
4. ID Numbers or Descriptions of Emission Units with this Er	nission Point	in Common :
5. Discharge Type Code:	V	
6. Stack Height:	30	feet
7. Exit Diameter :	1.0	feet
8. Exit Temperature:	350	°F
9. Actual Volumetric Flow Rate :	900	acfm
10. Percent Water Vapor:	7.00	%
11. Maximum Dry Standard Flow Rate:	580	dscfm
12. Nonstack Emission Point Height:	0	feet
13. Emission Point UTM Coordinates:		
Zone: 17 East (km): 347.370	North (kn	n): 3139.050
14. Emission Point Comment:		

III. Part 7a - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

F. SEGMENT (PROCESS/FUEL) INFORMATION

Emissions Unit Information Section 6	-			
Leachate Treatment Facility				
Segment Description and Rate: Segment	1			
Segment Description (Process/Fuel Type and A Natural Gas Boiler	Associated Operating Method/Mode):			
2. Source Classification Code (SCC): 10300	603			
3. SCC Units: Million Cubic Feet Burned (all gaseous fuels)				
4. Maximum Hourly Rate :	5. Maximum Annual Rate: 8.76			
6. Estimated Annual Activity Factor:				
7. Maximum Percent Sulfur: 0.10	8. Maximum Percent Ash:			
9. Million Btu per SCC Unit: 1,000				
10. Segment Comment :				

III. Part 8 - 5

DEP Form No. 62-210.900(1) - Form

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	6
Leachate Treatment Facility	

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
1 - CO			NS
2 - NOX			NS
3 - PM			EL
4 - SO2			NS
5 - VOC			NS

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Leachate Treatment Facility	6	•
Pollutant Potential/Estimated Emission	s: Pollutant 1	
1. Pollutant Emitted: CO		
2. Total Percent Efficiency of Control:	%	
3. Potential Emissions:	lb/hour	tons/year
4. Synthetically Limited? [] Yes [] No		
5. Range of Estimated Fugitive/Other En	nissions: to	tons/year
6. Emissions Factor Reference:	Units :	
7. Emissions Method Code:		
8. Calculations of Emissions:		
9. Pollutant Potential/Estimated Emission	ns Comment :	

DEP Form No. 62-210.900(1) - Form

Leachate Treatment Facility			
Pollutant Potential/Estimated Emissions:	Pollutant 2		
1. Pollutant Emitted: NOX			
2. Total Percent Efficiency of Control:	%		
3. Potential Emissions : lb/ho	our	tons/year	
4. Synthetically Limited? [] Yes [] No			
5. Range of Estimated Fugitive/Other Emissions	s: to	tons/year	
6. Emissions Factor Reference:	Units :		
7. Emissions Method Code :			
8. Calculations of Emissions:		. `	
9. Pollutant Potential/Estimated Emissions Com	ment :		

DEP Form No. 62-210.900(1) - Form

Leachate Treatment Facility	on <u>6</u>		
Pollutant Potential/Estimated Emissio	ons: Pollutant _	3	
1. Pollutant Emitted: PM			,
2. Total Percent Efficiency of Control:		%	
3. Potential Emissions :	lb/hour		tons/year
4. Synthetically Limited? [] Yes [] No			
5. Range of Estimated Fugitive/Other E	Emissions:	to	tons/year
6. Emissions Factor Reference:	Units	:	<u> </u>
7. Emissions Method Code:			
8. Calculations of Emissions:	·		
9. Pollutant Potential/Estimated Emissi	ons Comment :		

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section Leachate Treatment Facility	6	
Pollutant Potential/Estimated Emissions:	Pollutant4	
1. Pollutant Emitted: SO2	· ·	
2. Total Percent Efficiency of Control:	%	
3. Potential Emissions:		
11	o/hour	tons/year
4. Synthetically Limited? [] Yes [] No		
5. Range of Estimated Fugitive/Other Emiss	ions:	
	t	o tons/year
6. Emissions Factor Reference:	Units :	
7. Emissions Method Code:		
8. Calculations of Emissions:		
9. Pollutant Potential/Estimated Emissions C	Comment :	

DEP Form No. 62-210.900(1) - Form

Leachate Treatment Facility	n <u>6</u>	
Pollutant Potential/Estimated Emission	ns: Pollutant 5	
1. Pollutant Emitted: VOC		
2. Total Percent Efficiency of Control:	%	
3. Potential Emissions:	lb/hour	tons/year
4. Synthetically Limited? [] Yes [] No		
5. Range of Estimated Fugitive/Other E		
	to	tons/year
6. Emissions Factor Reference:	Units:	
7. Emissions Method Code:		
8. Calculations of Emissions:	-	
9. Pollutant Potential/Estimated Emission	ons Comment :	

III. Part 9b - 47

DEP Form No. 62-210.900(1) - Form

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section 6_ Leachate Treatment Facility
Visible Emissions Limitation: Visible Emissions Limitation1_
1. Visible Emissions Subtype: VE
2. Basis for Allowable Opacity: OTHER
3. Requested Allowable Opacity:
Normal Conditions: 5 % Exceptional Conditions: % Maximum Period of Excess Opacity Allowed: min/hour
4. Method of Compliance :
40 CFR 60, Appendix A, Methods 1,2,3,4,5 & 9
5. Visible Emissions Comment:
Based on FDEP permit no. 1010056-001-AC, Specific condition 10

III. Part 10 - 8

DEP Form No. 62-210.900(1) - Form

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Leachate Treatment Facility			
Continuous Monitoring System Continuous Monitor 1			
1. Parameter Code :	2. Pollutant(s):		
3. CMS Requirement			
4. Monitor Information Manufacturer: Model Number: Serial Number:			
5. Installation Date:			
6. Performance Specification Test Date :			
7. Continuous Monitor Comment : Not required for this emission unit based on FDEP	permit 1010056-001-AC specific condition 10		

DEP Form No. 62-210.900(1) - Form

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

E	Emissions Unit Information Section 6				
Le	each	nate Treatment Facility			
PSD Increment Consumption Determination					
1.	1. Increment Consuming for Particulate Matter or Sulfur Dioxide?				
[]	The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.			
[]	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.			
]]	The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.			
[]	For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.			
[]	None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.			

III. Part 12 - 11

DEP Form No. 62-210.900(1) - Form

2.	2. Increment Consuming for Nitrogen Dioxide?						
[The emissions unit addressed in this section is undergoing PSD review as part of this application, or has undergone PSD review previously, for nitrogen dioxide. If so, emissions unit consumes increment.						
[The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after February 8, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.						
[The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after February 8, 1988, but before March 28, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.						
[For any facility, the emissions unit began (or will begin) initial operation after March 28, 1988. If so, baseline emissions are zero, and emissions unit consumes increment.						
[None of the above apply. If so, baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.						
3		ncrement Consuming/Ex	panding Code :				
	•	PM :	SO2:	NO2:			
4	. E	Baseline Emissions:					
		PM : SO2 : NO2 :	1b/hour 1b/hour	tons/year tons/year tons/year			
5	. P	SD Comment:		· · · · · · · · · · · · · · · · · · ·			

III. Part 12 - 12

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

Emissions Unit Information Section 6
Leachate Treatment Facility
Supplemental Requirements for All Applications
1. Process Flow Diagram:
2. Fuel Analysis or Specification:
3. Detailed Description of Control Equipment :
4. Description of Stack Sampling Facilities :
5. Compliance Test Report:
6. Procedures for Startup and Shutdown:
7. Operation and Maintenance Plan :
8. Supplemental Information for Construction Permit Application :
9. Other Information Required by Rule or Statue :
Additional Supplemental Requirements for Category I Applications Only
10. Alternative Methods of Operations :
11. Alterntive Modes of Operation (Emissions Trading):
III. Part 13 - 11

DEP Form No. 62-210.900(1) - Form

2. Identification of Additional Applicable Requirements :			
13. Compliance Assurance Mon Plan:	itoring		
14. Acid Rain Application (Hard	d-copy Required):		
	Acid Rain Part - Phase II (Form No. 62-210.900(1)(a))		
	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)		
	New Unit Exemption (Form No. 62-210.900(1)(a)2.)		
	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)		

III. EMISSIONS UNIT INFORMATION

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section7		
Fugitive	Landfill Gas Emissions	
Type of	Emissions Unit Addressed in This Section	
1. Regu	lated or Unregulated Emissions Unit? Check one:	
[X]	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.	
[]	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.	
2. Sing	le Process, Group of Processes, or Fugitive Only? Check one:	
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).	
[]	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.	
[X]	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.	

III. Part 1 - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	7
---	---

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1. Description of Emissions Unit Addressed in This Section :			
Fugitive Landfill Gas Emissions			
Emissions Unit Identification Number: 007 No Corresponding ID I Unknown			
3. Emissions Unit Status Code: A	4. Acid Rain Unit? [] Yes [X] No	5. Emissions Unit Major Group SIC Code: 49	
6. Emissions Unit Comment:			
The landfill primarily accepts ash with smaller amounts of bypassed MSW from the associated municipal waste combustors. There is no gas collection and control system in place. All emissions from the landfill are fugitive.			
See Appendix E for a description of waste acceptance rates, emissions calculations and rule applicability.			

Emissions Unit Information Section		
Emissions Unit Control Equipment		
1. Description:		
2. Control Device or Method Code :		

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section 7 Fugitive Landfill Gas Emissions		
ugitive Landim Gas Emissions		•
Emissions Unit Details		
. Initial Startup Date :		
2. Long-term Reserve Shutdown Date:		
3. Package Unit : Manufacturer : Not Applicable		Model Number : Not Applicable
4. Generator Nameplate Rating:	MW	,
5. Incinerator Information: Dwell Temperature: Dwell Time: Incinerator Afterburner Temperature: Emissions Unit Operating Capacity		Degrees Fahrenheit Seconds Degrees Fahrenheit
1. Maximum Heat Input Rate:	mmBtu/hr	
2. Maximum Incinerator Rate :	lb/hr	tons/day
3. Maximum Process or Throughput Rate:		Not Applicable
4. Maximum Production Rate:	Not Applicable	
5. Operating Capacity Comment : Not Applicable		
Emissions Unit Operating Schedule		

III. Part 4 -

DEP Form No. 62-210.900(1) - Form

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Emissions Unit Information Section Fugitive Landfill Gas Emissions	7
Rule Applicability Analysis	
See Appendix E, Section 1	

III. Part 6a - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section

Fugitive Landfill Gas Emissions

List of Applicable Regulations

62-204.800(8)(c), F.A.C.

40 CFR 60 Subpart Cc

E. EMISSION POINT (STACK/VENT) INFORMATION

Emissions Unit Information Section 7	
Fugitive Landfill Gas Emissions	
Emission Point Description and Type:	
1. Identification of Point on Plot Plan or Flow Diagram: See App. A	, Sec. 3
2. Emission Point Type Code: 4	
3. Descriptions of Emission Points Comprising this Emissions Unit for V (limit to 100 characters per point)	/E Tracking :
4. ID Numbers or Descriptions of Emission Units with this Emission Poi	int in Common :
Not Applicable	
5. Discharge Type Code:	-
6. Stack Height: 0	feet
7. Exit Diameter: 0.0	feet
8. Exit Temperature:	°F
9. Actual Volumetric Flow Rate: 0	acfm
10. Percent Water Vapor: 0.00	%
11. Maximum Dry Standard Flow Rate: 0	dscfm
12. Nonstack Emission Point Height: 0	feet
13. Emission Point UTM Coordinates :	
Zone: 0 East (km): 0.000 North (km): 0.000
14. Emission Point Comment : Not Applicable	

III. Part 7a - 1

F. SEGMENT (PROCESS/FUEL) INFORMATION

Emissions Unit Information Section 7				
Fugitive Landfill Gas Emissions				
Segment Description and Rate: Segment	1			
1. Segment Description (Process/Fuel Type and	Associated Operating Method/Mode):			
Municipal Solid Waste Landfill				
2. Source Classification Code (SCC): 50200	0602			
3. SCC Units: Acres Storage				
4. Maximum Hourly Rate:	5. Maximum Annual Rate:			
6. Estimated Annual Activity Factor: 238.00				
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:			
9. Million Btu per SCC Unit:				
10. Segment Comment:				
Total estimated area of waste placement encompasses approximately 238 acres.				

III. Part 8 - 1

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

Emissions Unit Information Section	7
Fugitive Landfill Gas Emissions	

1. Pollutant Emitted	Primary Control Device Code	Secondary Control Device Code	Pollutant Regulatory Code
1 - VOC			EL

III. Part 9a - 1

Fugitive Landfill Gas Emissions	•
Pollutant Potential/Estimated Emissions: Pollutant 1	· -
1. Pollutant Emitted: VOC	
2. Total Percent Efficiency of Control: %	
3. Potential Emissions: 0.1600000 lb/hour	0.7100000 tons/year
4. Synthetically Limited? [] Yes [X] No	
5. Range of Estimated Fugitive/Other Emissions:	to tons/year
6. Emissions Factor Units : Reference : AP-42	
7. Emissions Method Code:	
8. Calculations of Emissions:	
Landfill Gas Emissions Model (LandGEM) output for 1999: 0.64 M	Ig/yr NMOC
0.64 Mg/yr * 1.102 ton/Mg = 0.71 tons/yr NMOC	
9. Pollutant Potential/Estimated Emissions Comment:	
See Appendix E, Section 2 for LandGEM output and calculations. In the regulated pollutant.	VOC is a surrogate for NMOC,

III. Part 9b - 1

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 7 Fugitive Landfill Gas Emissions		
ollutant Information Section 1		
llowable Emissions 1		
. Basis for Allowable Emissions Code : OTHER		
. Future Effective Date of Allowable Emissions :		
. Requested Allowable Emissions and Units :		
. Equivalent Allowable Emissions :		
lb/hour tons/year		
. Method of Compliance :		
. Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode) :		
Not Applicable		

DEP Form No. 62-210.900(1) - Form Effective: 3-21-96

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section Fugitive Landfill Gas Emissions		
<u>Visible Emissions Limitation</u> : Visible Emissions Limitation	1	
1. Visible Emissions Subtype :		
2. Basis for Allowable Opacity:		
3. Requested Allowable Opacity:		
Normal Conditions: Exceptional Conditions: Maximum Period of Excess Opacity Allowed:	% % min/hour	
4. Method of Compliance :		
5. Visible Emissions Comment :	_	
Not Applicable		

DEP Form No. 62-210.900(1) - Form

Effective: 3-21-96

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Emissions Unit Information Section

III. Part 11 - 1

DEP Form No. 62-210.900(1) - Form

Effective: 3-21-96

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

E	mis	sions Unit Information Section 7
Fı	ıgiti	ive Landfill Gas Emissions
<u>P</u>	<u>SD</u>	Increment Consumption Determination
1.	In	crement Consuming for Particulate Matter or Sulfur Dioxide?
]]	The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.
[]	The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.
[]	The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
[]	For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
]	J	None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.

III. Part 12 - 1

DEP Form No. 62-210.900(1) - Form

Effective : 3-21-96

2.	2. Increment Consuming for Nitrogen Dioxide?				
[]		gone PSD review previous	dergoing PSD review as part of this usly, for nitrogen dioxide. If so, emissions	
[]	paragraph (c) of the define the emissions unit address	nition of "major source of seed in this section comme	ed as an EPA major source pursuant to fair pollution" in Chapter 62-213, F.A.C., an enced (or will commence) construction after ro, and emissions unit consumes increment.	ıd
[]	unit began initial operati		ied as an EPA major source, and the emission, but before March 28, 1988. If so, baseline increment.	
[]	•	ssions unit began (or will are zero, and emissions u	begin) initial operation after March 28, 1988 unit consumes increment.	3.
[None of the above apply. If so, baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.				
3.	Iı	ncrement Consuming/Exp	panding Code:		
		PM:	SO2:	NO2:	
4.	. В	Baseline Emissions :	<u></u>		
		PM: SO2: NO2:	lb/hour lb/hour	tons/year tons/year tons/year	
5.	P	SD Comment:			

III. Part 12 - 2

DEP Form No. 62-210.900(1) - Form Effective : 3-21-96

Not Applicable

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

Emissions Unit Information Section 7	
Fugitive Landfill Gas Emissions	·
Supplemental Requirements for All Applications	
1. Process Flow Diagram:	NA
2. Fuel Analysis or Specification:	NA
3. Detailed Description of Control Equipment:	NA
4. Description of Stack Sampling Facilities :	NA
5. Compliance Test Report :	NA
6. Procedures for Startup and Shutdown:	NA
7. Operation and Maintenance Plan:	NA
8. Supplemental Information for Construction Permit Application :	NA
9. Other Information Required by Rule or Statue :	NA
Additional Supplemental Requirements for Category I Application	as Only
10. Alternative Methods of Operations:	NA
11. Alterntive Modes of Operation (Emissions Trading):	NA

III. Part 13 - 1

DEP Form No. 62-210.900(1) - Form Effective: 3-21-96

12. Identification of A	Additional Applicable Requirements:	see Appendix E
13. Compliance Assurance Monitoring Plan:		NA
14. Acid Rain Applic	cation (Hard-copy Required):	
NA	Acid Rain Part - Phase II (Form I	No. 62-210.900(1)(a))
NA	Repowering Extension Plan (For	m No. 62-210.900(1)(a)1.)
NA	New Unit Exemption (Form No.	62-210.900(1)(a)2.)
NA	Retired Unit Exemption (Form N	o. 62-210.900(1)(a)3.)

Appendix A.

Facility Supplemental Information

Facility Applicable Regulations

LIST OF APPLICABLE REGULATIONS PASCO COUNTY RESOURCE RECOVERY FACILITY INITIAL TITLE V OPERATION PERMIT APPLICATION

Facility applicable Regulations:

Florida Title V "Core List" regulations (dated 3/25/96) applicable to the facility and any other regulations applicable to the facility or specific emission units are given below.

40 CFR 82	Protection of Stratospheric Ozone (Core List)
FAC 62-4	Permits (Core List)
FAC 62-17	Power Plant Siting
FAC 62-103	Rules of Administrative Procedure (Core List)
FAC 62-204.800	Federal Regulations Adopted (40 CFR 60 Subparts Cb and Cc)
FAC 62-210	Stationary Sources – General Requirements (as listed below)
FAC 62-210.300	Permits Required
FAC 62-210.300(3)(a)5	Exemption for internal combustion engines in boats, aircraft and vehicles used for transportation of passengers or freight (earth moving equipment and solid waste delivery vehicles at resource recovery facility and landfill areas)
FAC 62-210.300(3)(a)16	Exemption for brazing, soldering or welding equipment
FAC 62-210.300(3)(a)20-(3)(a)21	Exemption for emergency electrical generators, heating units, and general-purpose internal combustion engines not subject to Acid Rain Program
FAC 62-210.300(5)	Notification of startup (for sources shut down > 1 year)
FAC 62-210.300(6)	Emission Unit Reclassification
FAC 62-210.350	Public Notice and Comment
FAC 62-210.350(3)	Additional public notice requirements for Title V Sources
FAC 62-210.360	Administrative Permit Corrections
FAC 62-210.370(3)	Annual Operating Reports
FAC 62-210.550	(GEP) Stack Height Policy
FAC 62-210.650	Circumvention

Appendix A, Section I List of Applicable Regulations

Page 1 of 4

LIST OF APPLICABLE REGULATIONS PASCO COUNTY RESOURCE RECOVERY FACILITY INITIAL TITLE V OPERATION PERMIT APPLICATION (continued)

FAC 62-210.700	Excess emissions
FAC 62-210.900	Forms and Instructions
FAC 62-213	Operating Permits for Major Sources of Air Pollution (Core List)
FAC 62-256	Open Burning and Frost Protection fires (Core List)
FAC 62-296	Stationary Sources – Emission Standards (as listed below)
FAC 62-296.320(2)	Objectionable odor prohibited
FAC 62-296.320(3)	Industrial, commercial, and municipal open burning prohibited
FAC 62-296.320(4)(c)	Unconfined emissions of particulate matter
FAC 62-296.416(3)(e)	Specific emission limiting and performance standards mercury emissions inventory (testing requirements)

Facility Applicable Requirements (concluded)

Exemptions from Regulations for Facility and Specific Emission Units:

FAC 62-296.320(4)(a)	General Particulate Emission Limiting Standards ^a
FAC 62-296.500	RACT – VOC and NO _X Emitting Facilities NOT APPLICABLE ^b
FAC 62-296.600	RACT – Lead NOT APPLICABLE c

^a Emission units described in this application are not subject to FAC 62-296.320(4)(a). The MWCs are subject to a particulate emission limit elsewhere in this chapter (FAC 62-296.401(3)(a)) and are also exempted by FAC 62-296.320(4)(a)1.b. (i.e., burn refuse).

^b Florida VOC RACT rules at FAC 62-296.500 to .516 or FAC 62-296.401 to .415 could be applicable (except for emission units which received BACT/LAER determinations pursuant to FAC 62-212.400/.500) since Hillsborough County is an ozone maintenance area (as defined at FAC 62-204.340(4)(a)). However, there are no VOC RACT requirements in FAC 62-296.500 to .516 or FAC 62-296.401 to .415 applicable to any emission unit at the Pasco County Resource Recovery Facility (and the MWCs underwent BACT review as part of the original PSD permits). Also, the VOC and NO_X RACT rules in FAC 62-296.570 are not applicable since these requirements apply only to Broward, Dade, and Palm Beach Counties as described at FAC 62-296.500(1)(b).

^c Florida PM RACT rules at FAC 62-296.700 to .715 or FAC 62-296.401 to .415 could be applicable since the Pasco County Resource Recovery Facility is within a Pb maintenance area (portion of Hillsborough County as defined at FAC 62-204.340(4)(c)) and therefore located within the "area of influence" (i.e.,

LIST OF APPLICABLE REGULATIONS PASCO COUNTY RESOURCE RECOVERY FACILITY INITIAL TITLE V OPERATION PERMIT APPLICATION (continued)

FAC 62-296,700

40 OFF 60 O 1

RACT - Particulate matter NOT APPLICABLE d

MWC Units 1 through 3 Applicable Regulations:

40 CFR 60 Subpart A	New Source Performance Standards – General Provisions
40 CFR 60 Subpart E	Standards of Performance for Incinerators
40 CFR Subpart Cb	Emission Guidelines for Large Municipal Waste Combustors
40 CFR 60.43b	Standards of Performance for Steam Generating Units
40 CFR 60.44b	Standards of Performance for Steam Generating Units
40 CFR 64	Compliance Assurance Monitoring
40 CFR 68	Chemical Releases
FAC 62-210.700	Excess Emissions
FAC 62-296.320(4)(b)	General Visible Emissions Standards
FAC 62-296.401(3)	Specific Emission Limiting and Performance Standards Requirements (PM/odor) for New Incinerators (after 1/18/72) with Charging Rates equal to or greater than 50 tons per day
FAC 62-297.310(1)	Required number of tests
FAC 62-297.310(2)	Operating rate during testing
FAC 62-297.310(3)	Calculation of emission rate

witihn 50 km of area boundary). However, there are no Pb RACT requirements in FAC 62-296.601 to .605 applicable to any emissions unit at the complex.

MWC Units 1-3: Exempted by undergoing PSD review and receiving BACT determination (all MWC unites meet the PM emission requirement of 0.08 gr/dscf pursuant to FAC 62-296.401(3))

^d Florida PM RACT rules at FAC 62-296.700 to .712 or FAC 62-296.401 to .415 could be applicable (except for emission units which received BACT/LAER determinations pursuant to FAC 62-212.400/.500) since the Pasco County Resource Recovery Facility is located within a PM maintenance area (portion of Hillsborough County as defined at FAC 62-204.340(4)(b)) and therefore located within the "area of influence" (within 50 km of area boundary). Exemptions from or applicability of PM RACT requirements for each emission unite described in this application are given below:

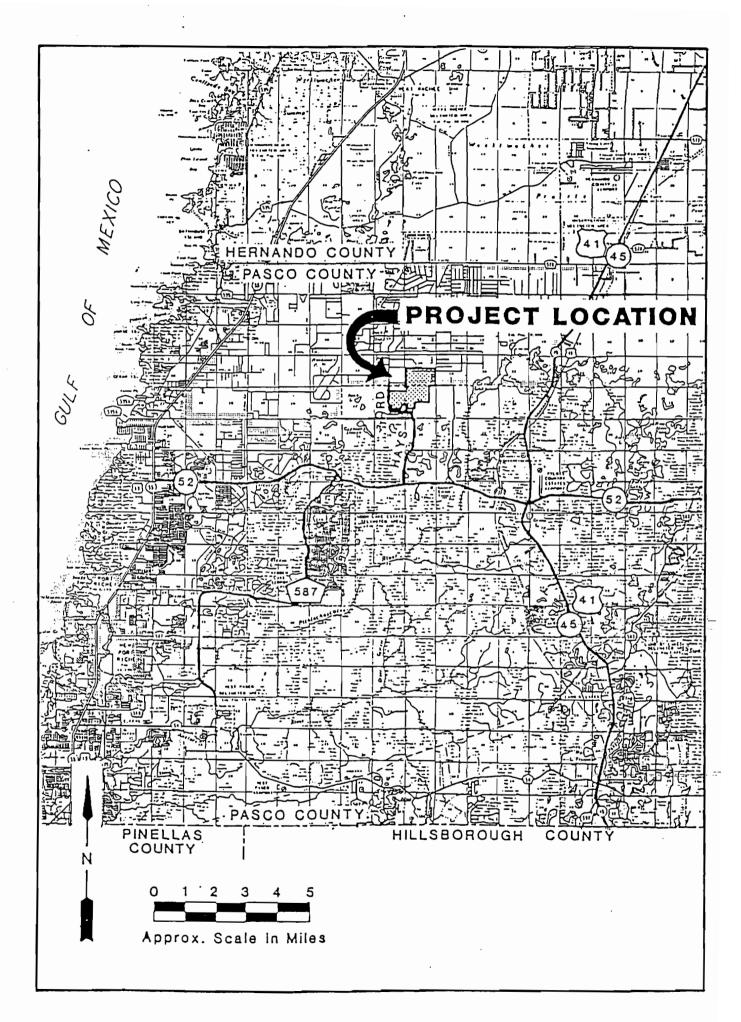
LIST OF APPLICABLE REGULATIONS PASCO COUNTY RESOURCE RECOVERY FACILITY INITIAL TITLE V OPERATION PERMIT APPLICATION (continued)

FAC 62-297.310(5) Required stack sampling facilities

FAC 62-297.310(6) Frequency of compliance tests

FAC 62-297.310(7) Test Reports

Landfill Gas Applicable Regulations:

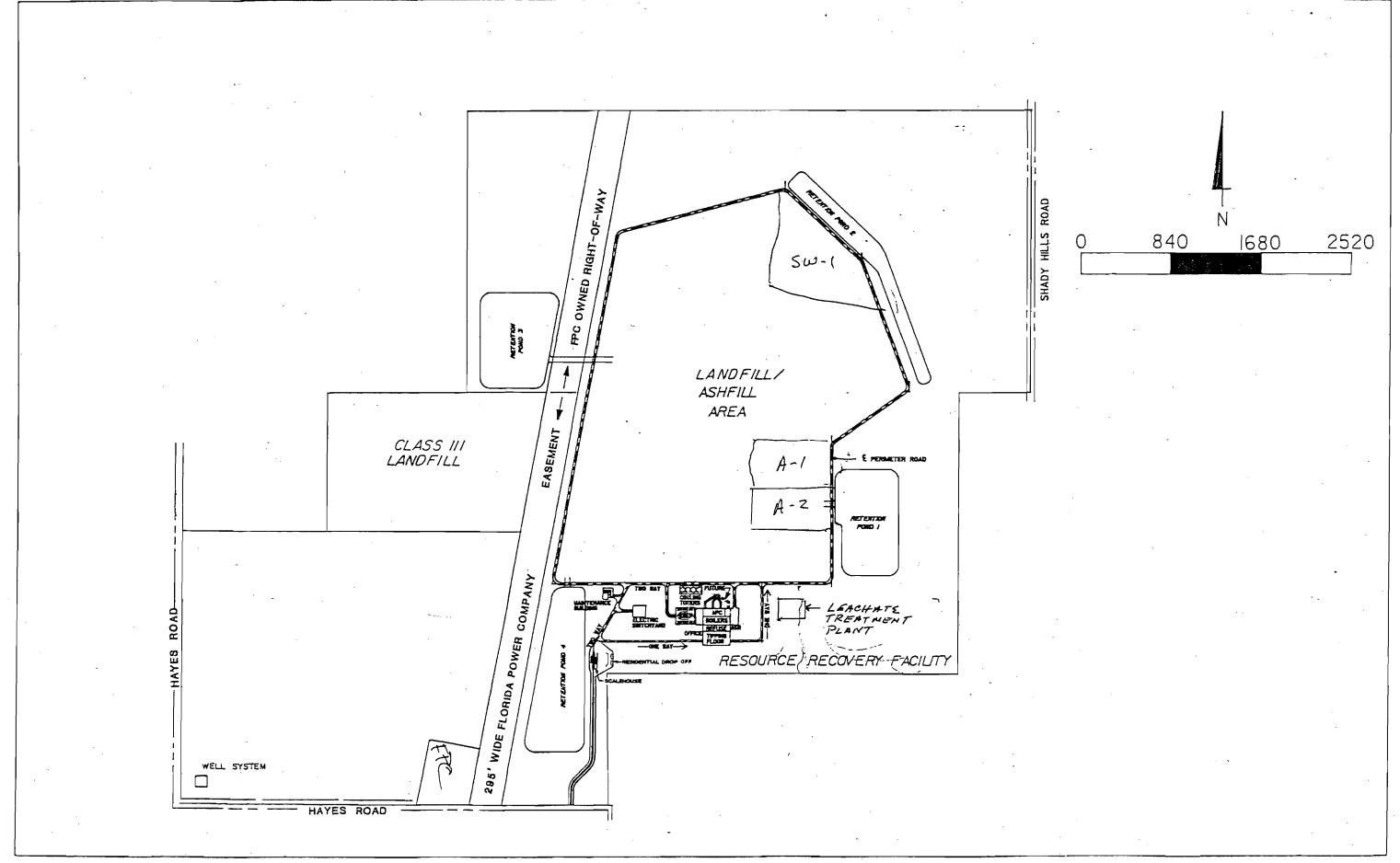

40 CFR 60 Subpart Cc Emission Guidelines for Municipal Solid Waste

Landfills

FAC 62-204.800(8)(c) Federal Regulations Adopted by Reference –

Municipal Solid Waste Landfills

Facility Location Map



Facility Plot Plan

environmental engineers, scientists,

PASCO COUNTY RESOURCE RECOVERY FACILITY

SITE PLAN

Pasco County Resource Recovery Program
Site Layout

Process Flow Diagram

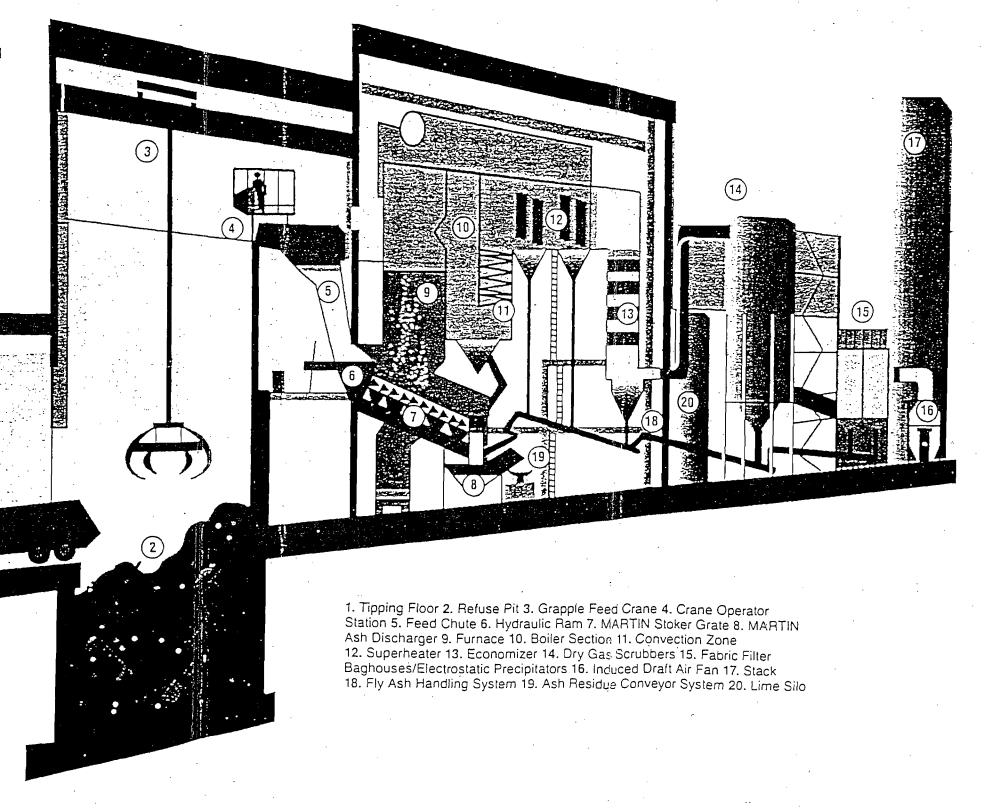
R

efuse collection trucks are weighed at the scalehouse and monitored for safety. Once cleared, they enter the tipping building and dump their waste into the storage pit. An overhead crane mixes the waste in the pit and lifts the waste up into a feed chute leading to the furnace.

From the feed chute, waste is pushed by hydraulic ram feeders onto a stoker grate. The MARTIN Reverse-Reciprocating Stoker Grate is sloped downward and is composed of alternate rows of fixed and moving grate bars. The grate bars push upward against the natural downward movement of the waste bed. This constant movement ensures that the burning waste is continually agitated and pushed back, thus serving as underfire for freshly-fed waste. A forced draft fan supplies the primary combustion air underneath the grate. In addition, overfire air is injected through the front and rear walls of the furnace.

Inside the steel tubes that form the furnace walls and the boiler, heat from the combustion process converts water to steam. The superheater further heats the steam before it is sent to a turbine generator to produce electricity. After passing through the boiler sections, the hot combustion gases are used to preheat boiler feedwater in the economizer.

While the combustion gases move through the boiler, the bottom ash


slowly makes its way to the end of the grate where it falls into the water quench trough of the Martin Ash Discharger. From the boiler, the cooled gases enter the advanced air pollution control system. Using lime slurry, the dry scrubber neutralizes any acid-forming gases, such as sulfur oxides and hydrogen chloride.

Next, particulates are captured by a high-efficiency electrostatic precipitator or by a baghouse. As the gas stream travels through these filter devices, more than 99 percent of particulate matter is removed. Captured fly ash particles fall into hoppers and are transported by an enclosed conveyor system to the Martin Ash Discharger where they are wetted to prevent dust, and mixed with the bottom ash from the grate.

The ash residue is then conveyed to an enclosed building where it is loaded into covered, leak-proof trucks and taken to a landfill designed to protect against groundwater contamination. Ash residue from the furnace can be processed for removal of recyclable scrap iron.

All aspects of the plant's operation are monitored from a central control room 24 hours a day, seven days a week, 365 days a year.

A Typical Ogden Martin Facility

Precautions to Prevent Emission of Unconfined Particular Matter

ATTACHMENT 5

PRECAUTIONS TO PREVENT EMISSIONS OF UNCONFINED PARTICULATE MATTER

Reasonable precautions include the following:

- a. Roads, parking areas and yards are paved.
- b. A street sweeper equipped with a vacuum system is used to remove particulate matter from roads and other paved areas.
- c. The unpaved areas of the facility are maintained and either sodded or landscaped.
- d. Hoods, fans, filters, or similar equipment is used to contain, capture, and/or vent particulate matter.
- e. The conveyor systems of the facility are enclosed.

Fugitive Emissions Identification

ATTACHMENT 6

FUGITIVE EMISSIONS IDENTIFICATION

The following processes have been identified as contributing to fugitive emissions:

- a. Mobile operating equipment including the front-end loaders, street sweeper, and forklift.
- b. The cooling tower
- c. Landfill operations (See Appendix E).

List of Proposed Exempt Activities

ATTACHMENT 7

LIST OF PROPOSED EXEMPT ACTIVITIES

The following acivities are proposed to be exempt:

- 1. Fire and safety equipment (Chapter 62-210.300(3)(a)22, F.A.C).
- 2. Paint (Chapter 62-210.300(3)(a)23, F.A.C.)
- 3. Diesel storage tanks (1100 gallons and 300 gallons) (Estimated emission of VOCs were less than ore equal to 1 lb/yr).
- 4. Vehicular traffic (Chapter 62-210.300(3)(a)5, F.A.C.)
- 5. Generator (Chapter 62-210.300(3)(a)25, F.A.C.)
- 6. Refuse pit (insignificant source, below reporting thresholds for any of the criteria pollutants).
- 7. Mineral spirit drums (grouped with the paint, below reporting thresholds).
- 8. Cooling water treatment bulk drum (container is sealed).
- 9. Flanges and valves (insignificant source, below reporting thresholds for any of the criteria pollutants).
- 10. The adjoining natural gas dryer or the leachate treatment facility.

List of Equipment Activities Regulated under Title VI

ATTACHMENT 8

LIST OF EQUIPMENT/ACTIVITIES REGULATED UNDER TITLE VI

The following item at the facility is regulated under Title VI:

a. AC unit located in the administration area with a refrigerant (R22) capacity of 95 pounds.

Power Plant Siting Certification

In re: APPLICATION FOR POWER PLANT)
SITE CERTIFICATION OF PASCO)
COUNTY SOLID WASTE RESOURCE)

RECOVERY FACILITY

DOAH CASE NO. 87-5337 CERTIFICATION NO. PA-87-23 OGC FILE NO. 87-1587

FINAL ORDER

BY THE GOVERNOR AND CABINET

On August 23, 1988, this matter came before the Governor and Cabinet, sitting as the Siting Board pursuant to the Florida Electrical Power Plant Siting Act, Section 403.501 et seq., Florida Statutes (1987), for final action concerning a Recommended Order dated July 20, 1988, attached as Exhibit 1, which recommends certification of the Pasco County Solid Waste Resource Recovery Facility. On August 1, 1988, as allowed by Rule 17-103.200(1), F.A.C. Intervenor Shady Hills Park and Civic Association, Inc., ("the Association") filed timely exceptions to the Recommended Order. On August 9, 1988, Applicant Pasco County Board of County Commissioners ("the County") filed a timely response to the Association's exceptions.

The Association directs six exceptions to findings of fact contained in the Recommended Order. The Association challenges findings by the hearing officer that metals will be removed from incinerator ash prior to landfilling; that the County considered source separation and recycling when considering Best Available Control Technology (BACT) for the facility; and that hazardous waste, hospital waste, and infectious waste will

B. Environmental Control Program

an environmental control program shall be established under the supervision of a Florida registered professional engineer to assure that all construction activities conform to applicable environmental regulations and the applicable conditions of certification. If harmful effects or irreversible environmental damage not anticipated by the application or the evidence presented at the certification hearing are detected during construction, the Permittee shall notify the Southwest District Office as required by Condition II.

C. Reporting

- l. Notice of commencement of construction shall be submitted to the Southwest District Office within 15 days of initiation. Starting three (3) months after construction commences, a quarterly construction status report shall be submitted to the Southeast District Office. The report shall be a short narrative describing the progress of construction.
- 2. Upon or immediately prior to completion of construction of the resource recovery facility or a phase thereof and upon or immediately prior to completion of all necessary preparation for the operation of each landfill cell, the Southwest District Office will be notified of a date on which a site or facility inspection should be performed in accordance with Condition V, and the inspection shall be performed within fourteen (14) days of the date of notification by Permittee.

Ar Air of the

The operation of the Resource Recovery Facility shall be in accordance with all applicable provisions of Chapter 17-2, 17-5, and 17-7. Florida Administrative Code. In addition to the

foregoing, the Permittee shall comply with any and all applicable air emission standards for municipal waste incinerators adopted by the Department and the EPA under Sections 111 or 112 of the Clean Air Act, or its sucessor. The Permittee shall also comply with the following specific conditions of certification:

- 1. Emission Limitations upon Operation of Units 1-3
- a. Stack emissions from each unit shall not exceed the following assuming a Btu content of 4800 Btu/lb of MSW:
 - (1) Particulate matter: 0.015 grains per standard cubic foot dry gas corrected to 12% CO₂.
 - (2) SO₂: 60 ppmdv at (12% CO₂), 6-hour rolling average; or 70% reduction by weight of uncontrolled SO₂ emissions; not to exceed 100 ppmdv corrected to 7% O₂.
 - (3) Nitrogen Oxides: 0.643 lbs/MBtu heat input.
 - (4) Carbon Monoxide: 100 ppmdv corrected to 7%O2, 8-hour rolling average.
 - (5) Lead: 0.0007 lbs/MBtu heat input.
 - (6) Mercury: 8.0 x E-4 lb/MBtu
 - (7) Odor: there shall be no objectionable odor at or outside the site boundary.
 - (8) Visible emissions: opacity shall be no greater than 15% 6-minute average except that visible emissions with no more than 20% opacity may be allowed for up to three consecutive minutes in any one hour except during start up, shut down or malfunction when the provisions of 17-2.250,FAC, shall apply. Opacity compliance shall be demonstrated in accordance with Florida Administrative Code Rule

 $k_{i} \sim code$ Florida Administrative Code Ru (62-3476404) 17-2.700(6)(a)9, DER Method 9.

- (9) Fluoride: 0.0080 lb/MBtu heat input.
- (10) Arsenic: 9.1 x E-6 lb/MBtu heat input.
- (11) Beryllium: 1.35 x E-7 lb/MBtu heat input.
- (12) VOC: 0.021 lb/MBtu heat input.
- (13) Hydrogen Chloride: 0.127 lb/MBtu heat input.

- p. The neight of the poiler exhaust stack shall not be less than 275 feet above grade.
- c. The resource recovery facility's boilers shall not be loaded in excess of either 115% of their rated nameplate capacity of 29,167 pounds of MSW or 115% of 140 x 10^6 Btu per hour each.
- d. The incinerator boilers shall have a metal name plate affixed in a conspicuous place on the shell showing manufacturer, model number, type waste, and rated capacity.
- Compliance with the limitations for particulates, sulfur oxides, nitrogen oxides, carbon monoxide, fluoride, VOC and lead shall be determined in accordance with Florida 💛 ट्र- टिप्पा. Administrative Code Rule 17-2.700, DER Methods 1,2, 3, 4, and 6 and 40 CFR 60, Appendix A, Methods 5, 7, (modified with prefilter), 10, 12, 13A or 13B (or modified method 5 for . fluorides), and 18 or other methods as approved by the DER. stack test for each unit shall be performed at +10% of the maximum heat input rate of 140×10^6 Btu heat input per hour or the maximum charging rate of 29,167 pounds of MSW per hour. Compliance with the beryllium emission limitation shall be determined in accordance with 40 CFR 61, Method 103 or 104, Appendix B. Compliance testing for mercury shall be determined in accordance with 40 CFR 61, Method 101A, Appendix B. Particulatetesting shall include one run during representative soot blowing which shall be averaged proportionally to normal daily operations. Visible emission testing shall be conducted simultaneously with soot blowing and non-soot blowing runs. Compliance with the opacity limit shall be demonstrated in accordance with Florida Administrative Code Rule 17-2.700(6)(a)9., DER Method 9. Compliance with SO2 emissions when firing supplemental oil may be determined by submission of a chemical analysis of the oil as fired.
- f. Combustion efficiency shall be calculated by: $\$CE = (1/(1+(CO/CO_2))) \times 100$, and shall be at least 99.5% for an 8 hour average.

BEST AVAILABLE COPY

1. Imission Control Equipment

- a. The boiler particulate control system shall be designed constructed and operated to achieve a maximum emission rate of 0.015 grains per dscf corrected to 12% CO_2 . All other particulate control devices shall be designed to meet the provisions of Section 17-2.610, FAC.
- b. The facility shall be equipped with dry scrubbers which are designed, constructed and operated to remove SO_2 at an efficiency of 70% by weight or to achieve an emission rate of 100 ppmdv at 7% O_2 which ever is less stringent and to cool the flue gases to an average temperature not to exceed $300^{\circ}F$ (3-hour rolling average).
- c. The Permittee must submit to the Department within thirty (30) days after it becomes available, copies of technical data pertaining to the selected emissions control systems. These data should include, but not be limited to, guaranteed efficiency and emission rates, and major design parameters. The data shall be processed and approved or denied in accordance with Condition XIII above.

3. Air Monitoring Program

a. The Permittee shall install and operate continuously monitoring devices to measure combustion temperature and flue gas temperature at the exit of the acid gas control equipment plus SO2, CO, and CO2 levels and opacity for each unit. The monitoring devices shall meet the applicable requirements of Chapter 17-2, Section 17-2.710, FAC, and 40 CFR 60.45, and 40 CFR 60.13, including certification of each device in accordance with 40 CFR 60, Appendix B, Performance Specifications and 40 CFR 60.7 (a)(5). Re-certification shall be conducted annually from initial certification. Data on monitoring equipment specifications, manufacturer, type, calibration and maintenance needs, and its proposed location after the economizer or in the air pollution control equipment outlet duct shall be provided to the Southwest. District Office for approval prior to installation together with and subject to the same provisions as submittal of air pollution

BEST AVAILABLE COPY

con the equipment parsuatt to Paragraph MIII neterf.

- b. The Permittee shall provide sampling ports in the air pollution control equipment outlet duct or stack and shall provide access to the sampling ports in accordance with Section 17-2.700, FAC. Drawings of testing facilities including sampling port locations as required by Section 17-2.700 shall be submitted to the Department for approval at least 60 days prior to construction of the sampling ports and stack.
- c. The Permittee shall have a sampling test of the emissions performed by a commercial testing firm within 60 days after achieving the maximum rate at which the boilers will be operated but not later than 180 days of the start of operation of the boilers and annually for particulate and NO_X from the date of testing thereafter. Thirty (30) days prior notice of the initial sampling test shall be provided to the Southwest District 'Office and fifteen (15) days notice before subsequent annual testing. The notification requirements of 40 CFR parts 60 and 61 will also be observed.

4. Reporting

- a. Two copies of the results of the emissions tests for the pollutants listed in XIV.A.l.a. shall be submitted within forty-five days of the last sampling run to the Southwest District Office.
- b. Emissions monitoring shall be reported to the Southwest District Office on a quarterly basis in accordance with Section 17-2.710, FAC, 40 CFR, Part 60, Subsection 60.7 or 40 CFR Part 61 as appropriate..
- c. Notice of anticipated and actual start-up dates of each incinerator boiler shall be submitted to the DER Southwest District Office.

5. Unconfined Emissions

Proper dust control techniques such as water sprays or chemical Wetting agents or other containment method shall be used to control visible unconfined (fugitive) emissions to the outside air no more than 10% opacity as determined by DER Method 9 for

FDEP Prevention of Significant Deterioration Permit

Florida Department of Environmental Regulation

Twin Towds Office Bldg. ● 2000 Blair Stone Road ● Tallahussee, Florida 32 080240-

ILAN MARTINEY CONCENSION

Dale Iwachimann Secretary

tonn shearer assistant secreta-

PERMITTEE:
Pasco County
7536 State Street
New Port Richey, FL 33553

Permit Number: PSD-PL-127

County: Pasco

Latitude/Longitude: 28° 22' 05"N

82° 33' 30"W

Project: Pasco County Resource Recovery Facility Units 1, 2, and 3

This permit is issued under the provisions of Chapter 403, Florida Statutes, and Florida Administrative Code Rule(s) 17-2 and 17-4. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawings, plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

For the construction of a municipal solid waste (MSW) resource recovery facility with an ultimate capacity of 1200 TPD (tons per day), generating 29 MW of electricity. Initially, three combustors will be installed each with a design capacity of 350 TPD (total of 1050 TPD for the facility). The design rated heat input capacity of each unit will be 140 MMBTJ/hr. The normal operating range of each unit will be between 30% and a maximum of 114% of the design rated capacity. Acid gases and particulates will be controlled by dry scrubber and baghouse technology. DER will be notified of the final choice of control/combustor equipment. The power plant site certification number for this project is PA 87-23.

Construction shall be in accordance with the attached permit application and additional information except as otherwise noted in the Specific Conditions.

Attachments are as follows:

- 1. Power Plant Site Certification package PA 87-23 and its associated attachments, dated April 4, 1988.
- 2. Letter from David Dee, for Pasco County, of August 10, 1988.
- 3. Letter from EPA dated September 8, 1988.
- 4. DER's Final Determination dated September 14, 1988.

PERMITTEE: Pasco County Permit Number: PSD-FL-127

GENERAL CONDITIONS:

- 1. The terms, conditions, requirements, limitations, and restrictions set forth herein are "Permit Conditions" and as such are binding upon the permittee and enforceable pursuant to the authority of Sections 403.161, 403.727, or 403.859 through 401.861, Florida Statutes. The permittee is hereby placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of the "Permit Conditions" by the permittee, its agents, employees, servants or representatives.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in Subsections 403.087(6) and 403.722(5), Florida Statutes, the issuance of this permit does not convey any vested rights or any exclusive privileges. Nor does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations. This permit does not constitute a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in the permit.
- 4. This permit conveys no title to land or water, does not constitute state recognition or acknowledgement of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the state. Only the Trustees of the Internal Improvement Trust Fund may express state opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, plant or aquatic life or property and penalties therefore caused by the construction or operation of this permitted source, nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.

PERMITTEE: Pasco County Permit Number: PSD-FL-127

GENERAL CONDITIONS:

- 6. The permittee shall at all times properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit, as required by department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized department personnel, upon presentation of credentials or other documents as may be required by law, access to the premises, at reasonable times, where the permitted activity is located or conducted for the purpose of:
 - a. Having access to and copying any records that must be kept under the conditions of the permit;
 - b. Inspecting the facility, equipment, practices, or operations regulated or required under this permit; and
 - c. Sampling or monitoring any substances or parameters at any location reasonably necessary to assure compliance with this permit or department rules.

Reasonable time may depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately notify and provide the department with the following information:
 - a. a.description of and cause of non-compliance; and
 - b. the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance.

MAY 08 '96 03:37PM

BEST AVAILABLE COPY

PERMITTEE: Pasco County Permit Number: PSD-PL-127

GENERAL CONDITIONS:

The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or revocation of this permit.

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source, which are submitted to the Department, may be used by the Department as evidence in any enforcement case arising under the Florida Statutes or Department rules, except where such use is proscribed by Sections 403.73 and 403.111, Florida Statutes.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance, provided however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Florida Administrative Code Rules 17-4.12 and 17-30.30, as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit is required to be kept at the work site of the permitted activity during the entire period of construction or operation.
- This permit also constitutes: 13.
 - (x) Determination of Best Available Control Technology (BACT)
 - (x) Determination of Prevention of Significant Deterioration (PSD)
 - (x) Compliance with New Source Performance Standards.
- 14. The permittee shall comply with the following monitoring-and record keeping requirements:
 - Upon request, the permittee shall furnish all records and plans required under Department rules. The retention period for all records will be extended automatically, unless otherwise stipulated by the department, during the course of any unresolved enforcement action.

PERMITTEE: Pasco County Permit Number: PSD-FL-127

GENERAL CONDITIONS:

- b. The permittee shall retain at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation), copies of all reports required by this permit, and records of all data used to complete the application for this permit. The time period of retention shall be at least three years from the data of the sample, measurement, report or application unless otherwise specified by Department rule.
- c. Records of monitoring information shall include:
 - the date, exact place, and time of sampling or measurements;
 - the person responsible for performing the sampling or measurements;
 - the dath(s) analyses were performed;
 - the person responsible for performing the analyses;
 - - the analytical techniques or methods used; and
 - the results of such analyses.

15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be submitted or corrected promptly.

SPECIFIC CONDITIONS:

- 1. Municipal_Solid Waste Combustor
- Each of the three municipal waste combustors (MWC) shall have a design rated capacity of 350 tons municipal solid wasta (MSW) per day, 140 million Btu heat input per hour, assuming a heating value of 4,800 Btu per pound.
 - b. The maximum individual MWC's throughput shall not exceed l14% of either the design MSW charging rate of 350 TPD or the heat input rate of 140 MMBTU/hr.

PERMITTEE: Pasco County

Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

- c. The furnade mean temperature at the fully mixed zone of the combustor shall not be less than 1,800°F.
- d. The normal operating range of the MWC shall be 80% to a maximum of 114% of design rated capacity.
- e. The MWC shall be fueled with municipal solid waste only. Other wastes shall not be burned without specific prior written approval of Florida DER.
- f. Auxiliary fuel burner(s) shall be fueled only with natural the annual capacity factor for gas is greater than 10%, as determined by 40 CFR 60.43b(d), the facility shall be subject to 40 CFR 60.44b, standards for nitrogen oxides.
- g. Auxiliary fuel burner(s) shall be used at start up during the introduction of MSW fuel until design furnace gas temperature is achieved.
- h. The facility may operate continuously (8760 hrs/yr).
- 2. Air Pollution Control Equipment Design
 - a. Each MWC shall be equipped with a baghouse for particulateemission control.
 - b. Each MWC shall be equipped with a dry scrubber for acid gas control, to remove at least 70% of SO2 and 90% of other acid gases (namely HCL, H2SO4 mist, and fluorides.
 - c. The acid gas emission control system shall be capable of cooling flue gases to an average temperature not exceeding 300°F (3-hour rolling average).
 - d. DER shall be notified of the control devices chosen.
- 3. Flue gas emissions from each unit shall not exceed the following:.
 - a. Particulate:

0.0150 grains/dscf corrected to 12% CO2

b. Sulfur Dioxide:

104 ppmdv corrected to 7% 02 3-hour (rolling) average, and 60 ppmdv corrected to 7% 02 6-hour rolling average;

Pasco County PERMITTEE:

Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

or

70% reduction of uncontrolled SO2 emissions, 6-hour rolling average. Not to exceed 100 ppmdv corrected to 7% 02, 6-hr rolling average.

c. Nitrogen Oxides:

0.643 lb/MMBtu heat input.

d. Carbon Monoxide:

400 ppmdv corrected to 7% 02, 1-hr average, and 100 ppmdv corrected to 7% 02, 8-hr rolling average.

e. Volatile Organic Compounds:

0.021 lb/MMBtu heat input

f. Lead:

0.0007 lb/MMBtu heat input

g. Fluoride:

0.008 lb/MMBtu heat input

h. Beryllium:

 1.35×10^{-7} lb/MMBtu heat input

i. Mercury:

0.0008 lb/MMBtu heat input-

j. Visible Emissions:

Opacity of MWC emissions shall not exceed 15% opacity (6-min. average), except for one 6-min. period per hour of not more than 20% opacity. Excess emissions resulting from startup, shut down, or malfunction shall be permitted provided that best operational practices to minimize emissions are adhered to, and the duration of excess emissions are minimized.

For each pollutant for which a continuous emissions monitoring system is required in Condition No. 5, the emission averaging time specified above shall be used to establish operating limits and reportable excess emissions.

PERMITTEE: Pasco County

Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

Compliance with the permit emission limits shall be determined by EPA reference test methods included in 40 CFR Parts 60 and 61, 1987 version, and listed in Condition No. 4 of this permit. Other DER approved methods may be used only after prior Departmental approval.

For the purpose of establishing specific increment consumption for TSP and SO₂ at the facility, an hourly emission rate shall be established for each pollutant at the time of performance testing using flue gas flow rates (corrected to 12% CO₂ or 7% O₂ at furnace capacity as appropriate) and the applicable concentration limits established above for TSP and SO₂. Projected emissions are listed below, based on 4800 Btu/lb heat content and 350 TPD MSW charging rate for each combustor (140 MMBTU/hr). Maximum emissions will be 14% above the tabulated values below and will occur at 114% of the design heat input rate.

Pollutant	Proj lb/MMBtu Heat Input	ected Daissions 1b/hr 4 100%
Particulate	0.0322	4.5
Sulfur Dioxide	0.224	31.4
Nitrogen Oxides	0.224v	90.0
Carbon Monoxide	v 0.098 ¹ , 0.391 ²	13.7 1, 54.7 2
Volatile Organics	0.021	2.9
Fluoride	0.008	1.1
Hydrogen Chloride	0.127	17.8
Sulfuric Acid Mist	0.035	5.0
Lead	<7 x 10-4	0.098
Mercury .	∨8 x 10-4	0.112
Beryllium	1.35×10^{-7}	1.9×10^{-5}
Arsenic	9.1 × 10-6	1.3×10^{-3}

^{1 8-}hr average 2 1-hr average

PERMITTEE: Pasco County

Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

The combustors are subject to 40 CFR Part 60, Subpart E, and Subpart Db, New Source Performance Standards (NSPS), except that where requirements within the permit are more restrictive, the requirements of the permit shall apply.

4. Compliance Tests

- a. Initial compliance tests for particulate matter, SO₂, nitrogen oxides, CO, VOC, lead, fluorides, mercury and beryllium shall be conducted in accordance with 40 CFR 60.8 (a), (b), (d), (e), and (f).
- b. Annual compliance test(s) for particulate matter and nitrogen oxides shall be performed.
- c. Compliance with the opacity standard shall be determined in accordance with 40 CFR 60.11(b) and (e).
- d. Compliance with the requirement for 70% control of sulfur dioxide emissions will be determined by using the test methods in Condition 4.f. below or a continuous emission monitoring system for 502 emissions, before and after the air pollution control equipment, which meets the requirements of Performance Specification 2 of 40 CFR 60, Appendix 3.
- e. The compliance tests shall be conducted within +10% of the design rated capacity for each permitted fuel.
- f. Prior DER approval shall be obtained for the location of the source sampling platform(s). The following test methods and procedures of 40 CFR Parts 60 and 61 (1987 version) or other DER approved methods with prior DER approval shall be used for compliance testing:
 - (1) Method | for selection of sample site and sample traverses.
 - (2) Method 2 for determining stack gas flow rate.
 - (3) Method B or JA for gas analysis for calculation of percent O2 and CO2.
 - (4) Method 4 for determining stack gas moisture content to convert the flow rate from actual standard cubic feet to dry standard cubic feet.
 - 5) Method 3 or Method 17 for concentration of particulate matter.

PERMITTEE: Pascd County Permit Number: PSD-FL-127

. (.1

SPECIFIC CONDITIONS:

- (6) Method 9 for visible determination of the opacity of emissions as required in this permit in accordance with 40 CFR 60.11.
- (7) Method 6, 6C, or 8 for concentration of SO2.
- (8) Method 7, 7A, 7B, 7C, 7D, or 7E for concentration of nitrogen oxides.
- (9) Method 13 for determination of CO concentration.
- (10) Method 12 for determination of lead concentration.
- (11) Method 13B for determination of fluoride concentrations.
- (12) Method 25 for determination of VOC concentration.
- (13) Method TOIA for determination of mercury emission rate.
- (14) Method 104 for determination of beryllium emission
- g. The permittee shall submit to DER a list of the pertinentoperating parameters which indicate proper operation of the control equipment.
- 5. Continuous Emission Monitoring

Continuous emission monitors for opacity, oxygen, carbon monoxide, carbon dioxide, and sulfur dioxide shall be installed, calibrated, maintained and operated for each unit.

- a. Each continuous emission monitoring system (CEMS) shall meet performance specifications of 40 CFR 60, Appendix B. The SO2 CEMS sample point shall be located downstream of control devices for Each Unit.
- b. CEMS data shall be recorded during periods of startup, shutdown and malfunction but shall be excluded from emission averaging calculations for CO, SO2, and opacity.

PERMITTEE: Pasco dounty

Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

- c. A malfunction means any sudden and unavoidable failure of air pollution control equipment or process equipment to operate in a normal or usual manner. Failures that are caused entirely or in part by poor maintenance, careless operation, any other preventable upset condition, or preventable equipment breakdown shall not be considered malfunctions.
- d. The procedures under 40 CFR 60.13 shall be followed for installation, evaluation and operation of all CEMS.
- e. Opacity monitoring system data shall be reduced to 6-minute averages, based on 36 or more data points, and gaseous CEMS data shall be reduced to 1-hour averages, based on 4 or more data points, in accordance with 40 CFR 60.13(h).
- f. Average CO and SO₂ emission concentrations, corrected for O₂, shall be computed in accordance with the appropriate averaging time periods included in Condition No. 3.
- g. For purposes of reports required under this permit, excess emissions are defined as any calculated average emission concentration, as determined pursuant to Condition No. 5 herein, which exceeds the applicable emission limit in Condition No. 3.

6. Operations Monitoring

- a. Devices shall be installed to continuously monitor and record steam production, furnace exit gas temperature (FEGT) and flue gas temperature at the exit of the acid gas control equipment. A FEGT to combustion zone correlation shall be established to relate furnace temperature at the temperature monitor location (as close to fully mixed zone as possible) to furnace temperature in the overfire air fully mixed zone.
- b. The furnace heat load shall be maintained between 30% and 114% of the design rated capacity during normal operations. The lower limit may be extended provided compliance with the carbon monoxide emissions limit and the FEGT within this permit at the extended turndown rate are achieved.

7. Reporting

a. A minimum of fifteen (15) days prior notific compliance testing shall be given to the DER District Office.

PERMITTEE: Pasco County Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

- b. The results of compliance test shall be submitted to the DER district office within 45 days after completion of the test.
- c. The owner or operator shall submit excess emission reports for any calendar quarter during which there are excess emissions from the facility. If there are no excess emissions during the calendar quarter, the owner or operator shall submit a report semiannually stating that no excess emissions occurred during the semiannual reporting period. The report shall include the following:
 - (1) The magnitude of excess emissions computed in accordance with 40 CFR 60.13(h), any conversion factors used, and the date and time of commencement and completion of each period of excess emissions (60.7(d)(1)).
 - (2) Specific identification of each period of excess emissions that occurs during startups, shutdowns, and malfunctions of the furnace boiler system. The nature and cause of any malfunction (if known) and the corrective action taken or preventive measured adopted (60.7(c)(2)).
 - (3) The date and time identifying each period during which the continuous monitoring system was inoperative except for zero and span checks, and the nature of the system repairs of adjustments (60.7(c)(3)).
 - (4) When no excess emissions have occured or the continuous monitoring system has not been inoperative, repaired, or adjusted, such information—shall be stated in the report (60.7(c)(4)).
 - (5) The owner or operator shall maintain a file of all measurements, including continuous monitoring systems performance evaluations; monitoring systems or monitoring device calibration; checks; adjustments and maintenance performed on these systems or devices; and, all other information required by this permit recorded in a permanent form suitable for inspection (60.7(d)).

PERMITTEE: Pasco County

Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

- 8. The construction shall reasonably conform to the plans and schedule submitted in the application. If the permittee is unable to complete construction on schedule, the Department must be notified in writing (Rule 17-2, F.A.C.).
- Any change in the method of operation, fuels, equipment or operating hours shall be submitted for approval to DER's district office.
- 10. This facility shall be operated in such a manner so as to preclude objectionable odors pursuant to F.A.C. Rule 17-2.600(1).
- 11. All reasonable precautions shall be taken to prevent and control generation of unconfined emissions of particulate matter in accordance with F.A.C. Rule 17-2.610(3).
- 12. The permittee shall comply with all the applicable provisions of F.A.C. Chapter 17-2, 17-4, and 40 CFR 60 and 61.

Issued this 32 day of 20

STATE -OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION

Dale Twachtmann, Secretary

Compliance Report and Plan

ATTACHMENT 10

COMPLIANCE REPORT AND PLAN

The Ogden Martin Systems Pasco municipal solid waste combustion facility is located in Spring Hill, Florida. The facility consists of three identical mass fired boilers of Martin GmbH Stoker Combustion System design. Each boiler is rated at 350 tons of municipal solid waste per day. In addition, the site contains an ash landfill that accepts some municipal solid waste (MSW) as bypass, and a construction and demolition debris (C&D) landfill.

Ogden Martin Systems of Pasco, Inc. (OMSP) performed compliance emission tests at the Pasco County Resource Recovery Facility from May 22 through May 24, 1995. The purpose of this test program was for demonstration of compliance with the Florida Department of Environmental protection, Air Quality Permit No. PSD-FL-127, Specific Condition 4. The testing was performed by Entropy Environmentalists, Inc.

The results of the stack testing, presented in the Environmental Compliance Test Report, was submitted to DEP on July 6, 1995. In addition, a test for Mercury was conducted on October 25 through October 27, 1995, and the results were submitted to DEP on December 20, 1995. A copy of the test results ins attached.

The Results demonstrated the facility is in compliance with FDEP regulation permit number PSD-FL-127.

CDM has reviewed the applicable regulations and the results of the compliance emission tests appear to conform to the regulations for the solid waste combustion facility.

The landfills have been found to be regulated by the Emissions Guidelines for MSW landfills (40 CFR 60 Subpart Cc, as incorporated by reference at 62-204.800(8)(c), F.A.C.). (See Appendix E for this Applicability Determination). Ogden Martin Systems is required by this rule to have submitted two reports, an Initial Design Capacity Report and a Non-Methane Organic Compounds (NMOC) emissions report by December 31, 1996. These reports were not submitted by the required date. Once they are submitted, however, the landfills will be in compliance with the Emissions Guidelines. Therefore, these two reports are included, and submitted to DEP as part of this Compliance Plan.

OGDEN MARTIN SYSTEMS, INC.

40 LANE ROAD P.O. BOX 2615 FAIRFIELD, NJ 07007-2615 (201) 882-9000

Environmental Engineering Department

VOLUME I

EXECUTIVE SUMMARY

ENVIRONMENTAL TEST REPORT

PREPARED FOR:

Ogden Martin Systems of Pasco, Inc.

1387 Hays Road

Spring Hills, FL 34610

REGARDING:

Pasco County Resource Recovery Facility

Weber

Units 1, 2, 3

REGULATORY AGENCY:

Florida Department of Environmental Regulation

PURPOSE:

To determine compliance with Air Quality Permit No. PSD-FL-127

TEST DATES:

May 2-5, 1994

ASSOCIATED REPORTS:

OPI Report No. 738

PREPARED BY:

Jay J. Weber

Environmental Engineer

Michelle L. Herman

Environmental Engineer

G. J. Aldina.

Sr. Vice President, Environmental Testing/CEM

June 10, 1994 OPI Report No. 795

TABLE OF CONTENTS

SEC	<u>NOIT</u>		PAGE
VOL	.UME	_ <u>1:</u>	
1.0	INT	RODUCTION	1
2.0	SUM	MMARY OF RESULTS	
	2.1	Summary of Source Test Results - Unit 1	2
	22	Summary of Source Test Results - Unit 2	3
	2.3	Summary of Source Test Results - Unit 3	. 4
3.0	TES	T PROGRAM	
	3.1	Test Participants	. 5
	3.2	Test Program	. 6
	3.3	Schedule of Activities	. 7
4.0	OPE	ERATIONAL DATA DURING EMISSION TESTING	. 8
5.0	MET	THODOLOGY	
	-5.1	References	. 9
		•	
	•		
		-·	
VOI	LUME	Entropy Environmentalists, Inc. Report on Compliance Testing (Bound Separately)	·
<u>VOI</u>	LUME	E 3: Confidential Process Data (Bound Separately)	•

1.0 INTRODUCTION

Ogden Martin Systems of Pasco, Inc. (OMSP) performed compliance emission tests at the Pasco County Resource Recovery Facility from May 2 through May 5, 1994. The purpose of this test program was for demonstration of compliance with the Florida Department of Environmental Regulations (DER), Air Quality Permit No. PSD-FL-127, Specific Condition 4. The testing was performed by Entropy Environmentalists, Inc. Entropy in accordance with all procedures in the DER approved test protocol.

The OMS Pasco municipal solid waste combustion facility is located in Spring Hill, Florida. The facility consists of three identical mass-fired boilers of Martin GmbH Stoker Combustion System design. Each boiler is rated at 350 tons of municipal solid waste per day. Compliance emission testing for the pollutants was performed at the stack.

A summary of emission test results for the facility is presented in Section 2.0, Tables 2.1 - 2.3. The Entropy report (Volume 2) includes all data gathered at the site and all laboratory analytical data.

The test program, as indicated in the Source Test Plan (OPI Report No. 738), is presented in Section 3.0, Table 3.2. The test observers are presented in Table 3.1. The Schedule of Activities at the site is presented in Table 3.3

20 SUMMARY OF RESULTS

TABLE 2.1
SUMMARY OF TEST RESULTS - UNIT 1

ı		-Run Number			Permitted Maximum
Pollutant	1	2	3	Average	Emission Limit
Conc. gr/dscf @ 12% CO ₂					
Total Suspended Particulate (TSP)	0.00152	0.00166	0.00177	0.00165	0.0150
Mercury	6.86E-05	7.36E-05	8.56E-05	7.59E-05	
Emission Rate, lb/MMBtu(1)					
Oxides of Nitrogen (NO.)	0.436	0.405	0.397	0.413	0.643
Mercury	1.46E-04	1.54E-04	1.82E-04	1.61E-04	***************************************
Visible Emissions					
Opacity %	0	0	0	0	15

⁽¹⁾ Calculated with Fd factor = 9520 dscf/mmBtu (40 CFR 60, Appendix A, RM 19).

TABLE 2.2

SUMMARY OF TEST RESULTS - UNIT 2

		-Run Number			Permitted Maximum
Pollutant	1	2	3	Average	Emission Limit
Conc. gr/dscf @ 12% CO ₂					
Total Suspended Particulate (TSP)	0.00154	0.00164	0.00148	0.00155	0.0150
Mercury	4.89E-05	5.28E-05	3.24E-05	4.47E-05	
Emission Rate, lb/MMBtu ⁽¹⁾					
Oxides of Nitrogen (NO,)	0.518	0.513	0.531	0.521	0.643
Mercury	1.09E-04	1.15E-04	7.05E-05	9.28E-05	
Visible Emissions					
Opacity %	o	0	0	0	15

⁽¹⁾ Calculated with Fd factor = 9520 dscf/mmBtu (40 CFR 60, Appendix A, RM 19).

TABLE 2.3

SUMMARY OF TEST RESULTS - UNIT 3

1		Day March or			Permitted Maximum
Pollutant	1	-Run Number 2	3	Average	Emission Limit
Conc. gr/dscf @ 12% CO2					
Total Suspended Particulate (TSP)	0.00136	0.00151	0.00147	0.00145	0.0150
Mercury	5.65E-05	5.23E-05	7.79E-05	6.22E-05	
Emission Rate, lb/MMBtu(1)					
Oxides of Nitrogen (NO,)	0.481	0.502	0.522	0.502	0.643
Mercury	1.22E-04	1.13E-04	1.66E-04	1.34E-04	
Visible Emissions				•	
Opacity %	0	0	0	0	15

⁽¹⁾ Calculated with Fd factor of 9520 dscf/mmBtu (40 CFR 60, Appendix A, RM 19).

3.0 TEST PROGRAM

TABLE 3.1

TEST PARTICIPANTS

Ogden Martin Systems, Inc.

Jay J. Weber

Entropy Environmentalists, Inc.

Wayne D. Abbott Stephen Miller Danny L. Speer Allan F. Lowe

TABLE 3.2
TEST PROGRAM

Parameter	. Testing Method	Location
TSP	U.S. EPA Method 5	Stack
NO _z	U.S. EPA Method 7E	Stack
Opacity	U. S. EPA Method 9	Stack
Hg	U.S. EPA Method 101A	Stack

TABLE 3.3
SCHEDULE OF ACTIVITIES

DATE/			SAMPLING		
TIME	UNIT .	LOCATION	METHOD	RUN	PARAMETER
102/94	•				
1006-1106	2	Stack	EPA 7E	1	NO _z
1006-1216	2	Stack	EPA 5	1 .	PM
1130-1230	2	Stack	EPA TE	2	NO _x
1254-1354	2	Stack	EPA 7E	3	NO _x
1320-1542	2 2	Stack	EPA 5	2	PM
1652-1709	2	Stack	EPA 5	3	PM.
5/03/94					
0910-1117	3	Stack	EPA 5/101A	1	PM/Hg
0912-1012	3	Stack	EPA 7E	1	NO,
1048-1148	3	Stack	EPA 7E	2	NO _x
1212-1312	3	Stack	EPA 7E	3	NO _x
1235-1440	3	Stack	EPA 5/101A	2	PM/Hg
1535-1740	3	Stack	EPA 5/101A	3	PM/Hg
5/04/94					
0854-0954	1	Stack	EPA 7E	1	NO,
0918-1140	1	Stack	EPA 5/101A	1	PM/Hg
1012-1112	1	Stack	EPA 7E	2	NO _x
1130-1230	1	Stack	EPA 7E	3	NO _x
1228-1436	1	Stack	EPA 5/101A	2 3	PM/Hg
1512-1719	1	Stack	EPA 5/101A	3	PM/Hg
5/05/94			•		
0755-1004	2	Stack	EPA 101A	4(1)	Hg
1016-1227	2	Stack	EPA 101A	5	Hg
1239-1442	2	Stack	EPA 101A	6	Hg

⁽¹⁾ Runs 1, 2, and 3 were aborted due to sampling problems.

4.0 OPERATIONAL DATA DURING EMISSION TESTING

5.0 METHODOLOGY

4.0 OPERATIONAL DATA DURING EMISSION TESTING

Operational data were collected from process recorders connected to plant instruments. The operator logs are in Volume 3.

TABLE 5.1

REFERENCES

Parameter	Test Method	Reference
TSP ·	U.S. EPA Method 5	40 CFR 60, App. A
NO _z	U.S. EPA Method 7E	40 CFR 60, App. A
Opacity	U.S. EPA Method 9	40 CFR 60, App. A
Hg	U.S. EPA Method 101A	40 CFR 61, App. B
Hg	U.S. EPA Method 101A	40

OGDEN MARTIN OYSTEMS, INC.

45 LANE ROAD ON 2615 FAIRFIELD, NJ 07007-2615

201 382-9000

Environmental Engineering Department

VOLUME I

EXECUTIVE SUMMARY

ENVIRONMENTAL TEST REPORT

PREPARED FOR:

Ogden Martin Systems of Pasco, Inc.

1387 Havs Road

Spring Hills, FL 34610

REGULATORY AGENCY:

Florida Department of Environmental Regulation

PURPOSE:

To determine compliance with Air Quality Permit No. PSD-FL-127.

TEST DATES:

May 22-24, 1995

ASSOCIATED REPORTS:

OPI Report No. 937

PREPARED BY:

Michelle L. Herman

Environmental Engineer

G. J. Aldina

Sr. Vice President, Environmental Testing/CEM

July 6. 1995 OPI Report No. 981

TABLE OF CONTENTS

<u>SEC</u>	TION	<u>P</u> A	AGE
<u>VOL</u>	.UME	<u>1:</u>	
1.0	INT	RODUCTION	1
2.0	SUM	MMARY OF RESULTS	
	2.1	Summary of Source Test Results - Unit I	2
	2.2	Summary of Source Test Results - Unit 2	3
	2.3	Summary of Source Test Results - Unit 3	4
3.0	TES	T PROGRAM	
	3.1	Test Participants	5
	3.2	Test Program	6
	3.3	Schedule of Activities	7
4.0	OPE	RATIONAL DATA DURING EMISSION TESTING	8
5.0	MET	THODOLOGY	
	5.1	References	9
		·	:
VOI	LUME	E 2: Entropy Environmentalists, Inc. Report on Compliance Testing (Bound Separately)	٧٠
VOI	LUME	E 3: Confidential Process Data (Bound Separately)	

1.0 INTRODUCTION

Ogden Martin Systems of Pasco, Inc. (OMSP) performed compliance emission testing at the Pasco County Resource Recovery Facility from May 22-24, 1995. The purpose of this test program was for demonstration of compliance with the Florida Department of Environmental Regulations (DER), Air Quality Permit No. PSD-FL-127, Specific Condition 4. The testing was performed by Entropy, Inc. in accordance with all procedures in the DER approved test protocol.

The OMS Pasco municipal solid waste combustion facility is located in Spring Hill, Florida. The facility consists of three identical mass-fired boilers of Martin GmbH Stoker Combustion System design. Each boiler is rated at 350 tons of municipal solid waste per day. Compliance emission testing for the pollutants was performed at the stack.

A summary of emission test results for the facility is presented in Section 2.0, Tables 2.1 - 2.3. The Entropy report (Volume 2) includes all data gathered at the site and all laboratory analytical data.

The test program, as indicated in the Source Test Plan (OPI Report No. 937), is presented in Section 3.0, Table 3.2. The test observers are presented in Table 3.1. The Schedule of Activities at the site is presented in Table 3.3

2.0 SUMMARY OF RESULTS

TABLE 2.1
SUMMARY OF TEST RESULTS - UNIT 1

	Permitted Maximum				
Pollutant Limit	1	-Run Number- 2	3	Average	Emission
Conc. gr/dscf @ 12% CO₂					
Total Suspended Particulate (TSP)	0.00194	0.00205	0.00299	0.00233	0.0150
Emission Rate, Ib/MMBtu(1)					
Oxides of Nitrogen (NO _x)	0.435	0.448	0.438	0.441	0.643
Visible Emissions					
Opacity %	0	0	0	0	15

⁽¹⁾ Calculated with Fd factor = 9520 dscf/mmBtu (40 CFR 60, Appendix A, RM 19).

TABLE 2.2
SUMMARY OF TEST RESULTS - UNIT 2

	Permitted Maximum				
Pollutant Limit	1	lun Number 2	3	Average	Emission
Conc. gr/dscf @ 12% CO ₂		_			
Total Suspended Particulate (TSP)	0.00215	0.00189	0.00176	0.00193	0.0150
Emission Rate, lb/MMBtu(1)					
Oxides of Nitrogen (NO _x)	0.469	0.433	0.451	0.451	0.643
Visible Emissions					
Opacity %	0	0	0	0	15

⁽¹⁾ Calculated with Fd factor = 9520 dscf/mmBtu (40 CFR 60, Appendix A, RM 19).

TABLE 2.3
SUMMARY OF TEST RESULTS - UNIT 3

	R	lun Number			Permitted Maximum
Pollutant Limit	1	2	3	Average	Emission
Conc. gr/dscf @ 12% CO ₂	0.00101	0.00101	0.00010	0.00000	0.0150
Total Suspended Particulate (TSP)	0.00191	0.00191	0.00219	0.00200	0.0150
Emission Rate, lb/MMBtu ⁽¹⁾					
Oxides of Nitrogen (NO _x)	0.458	0.490	0.494	0.481	0.643
Visible Emissions					
Opacity %	0	0	0	0	15

⁽¹⁾ Calculated with Fd factor of 9520 dscf/mmBtu (40 CFR 60, Appendix A, RM 19).

3.0 TEST PROGRAM

TABLE 3.2
TEST PROGRAM

Parameter	Testing Method	Location
TSP	U.S. EPA Method 5	Stack
NO _x	U.S. EPA Method 7E	Stack
Opacity	U. S. EPA Method 9	Stack

TABLE 3.3
SCHEDULE OF ACTIVITIES

1124-1224	DATE/ TIME	ŲNIT	LOCATION	SAMPLING METHOD	RUN	PARAMETER
1055-1303	<u>5/22/95</u>					
1310-1517	0840-1047	1	Stack	EPA 5	1	Particulate
0900-1000 1 Stack EPA 7E 1 Nitrogen Oxides 1012-1112 1 Stack EPA 7E 2 Nitrogen Oxides 1124-1224 1 Stack EPA 9 1 Visible Emission 0850-0950 1 Stack EPA 9 1 Visible Emission 1058-1158 1 Stack EPA 9 2 Visible Emission 1322-1422 1 Stack EPA 9 3 Visible Emission 5/23/95 3 Stack EPA 5 1 Particulate 1045-1250 3 Stack EPA 5 2 Particulate (1045-1250 3 Stack EPA 5 3 Particulate (1302-1508 3 Stack EPA 5 3 Particulate (0818-0918 3 Stack EPA 7E 1 Nitrogen Oxides 0930-1030 3 Stack EPA 7E 2 Nitrogen Oxides 0930-1030	1055-1303	1	Stack	EPA 5	2	Particulate
1012-1112	1310-1517	I	Stack	EPA 5	3	Particulate
1124-1224	0900-1000	I		EPA 7E	1	Nitrogen Oxides
0850-0950 1 Stack EPA 9 1 Visible Emission 1058-1158 1 Stack EPA 9 2 Visible Emission 5/23/95 5 L EPA 9 3 Visible Emission 5/23/95 Stack EPA 5 1 Particulate 0815-1029 3 Stack EPA 5 2 Particulate 1045-1250 3 Stack EPA 5 2 Particulate 0818-0918 3 Stack EPA 5 3 Particulate 0818-0918 3 Stack EPA 7E 1 Nitrogen Oxides 0930-1030 3 Stack EPA 7E 2 Nitrogen Oxides 1042-1142 3 Stack EPA 7E 3 Nitrogen Oxides 0838-0938 3 Stack EPA 9 1 Visible Emission 1056-1156 3 Stack EPA 9 2 Visible Emission 5/24/95 Stack EPA 5 1 Particulate<	1012-1112	I	Stack	EPA 7E	2	Nitrogen Oxides
1058-1158	1124-1224	I	Stack	EPA 7E	3	
1322-1422	0850-0950	1	Stack	EPA 9	1	Visible Emissions
S/23/95 Stack	1058-1158	1	Stack	EPA 9		Visible Emissions
0815-1029 3 Stack EPA 5 1 Particulate 1045-1250 3 Stack EPA 5 2 Particulate (1302-1508 3 Stack EPA 5 3 Particulate (0818-0918 3 Stack EPA 7E 1 Nitrogen Oxides 0930-1030 3 Stack EPA 7E 2 Nitrogen Oxides 0930-1030 3 Stack EPA 7E 2 Nitrogen Oxides 0942-1142 3 Stack EPA 7E 3 Nitrogen Oxides 0838-0938 3 Stack EPA 9 1 Visible Emission 1056-1156 3 Stack EPA 9 2 Visible Emission 1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 0 2 Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 0836-0936 <t< td=""><td>1322-1422</td><td>I</td><td>Stack</td><td>EPA 9</td><td>3</td><td>Visible Emissions</td></t<>	1322-1422	I	Stack	EPA 9	3	Visible Emissions
1045-1250 3	<u>5/23/95</u>					
1302-1508 3 Stack EPA 5 3 Particulate 0818-0918 3 Stack EPA 7E 1 Nitrogen Oxides 0930-1030 3 Stack EPA 7E 2 Nitrogen Oxides 1042-1142 3 Stack EPA 7E 3 Nitrogen Oxides 0838-0938 3 Stack EPA 9 1 Visible Emission 1056-1156 3 Stack EPA 9 2 Visible Emission 1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 0841-1047 2 Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 1315-1522 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 1103-1203	0815-1029	3	Stack	EPA 5	1 .	Particulate
0818-0918 3 Stack EPA 7E 1 Nitrogen Oxides 0930-1030 3 Stack EPA 7E 2 Nitrogen Oxides 1042-1142 3 Stack EPA 7E 3 Nitrogen Oxides 0838-0938 3 Stack EPA 9 1 Visible Emission 1056-1156 3 Stack EPA 9 2 Visible Emission 1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 0841-1047 2 Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 9 1 Visible Emission 0857-0957 2 Stack EPA 9 2 Visible Emission	1045-1250	3	Stack	EPA 5	2	Particulate (
0930-1030 3 Stack EPA 7E 2 Nitrogen Oxides 1042-1142 3 Stack EPA 7E 3 Nitrogen Oxides 0838-0938 3 Stack EPA 9 1 Visible Emission 1056-1156 3 Stack EPA 9 2 Visible Emission 1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95	1302-1508	3	Stack	EPA 5	3	Particulate
1042-1142 3 Stack EPA 7E 3 Nitrogen Oxides 0838-0938 3 Stack EPA 9 1 Visible Emission 1056-1156 3 Stack EPA 9 2 Visible Emission 1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 0841-1047 2 Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	0818-0918	3	Stack	EPA 7E	I	Nitrogen Oxides
0838-0938 3 Stack EPA 9 1 Visible Emission 1056-1156 3 Stack EPA 9 2 Visible Emission 1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 0841-1047 2, Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	0930-1030	3	Stack	EPA 7E		Nitrogen Oxides
1056-1156 3 Stack EPA 9 2 Visible Emission 1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 0841-1047 2 Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	1042-1142	3	Stack	EPA 7E	3	Nitrogen Oxides
1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 5/24/95 0841-1047 2 Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	0838-0938	3	Stack	EPA 9	1	Visible Emissions
1313-1413 3 Stack EPA 9 3 Visible Emission 5/24/95 0841-1047 2 Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	1056-1156	3	Stack	EPA 9	2	Visible Emissions
0841-1047 2, Stack EPA 5 1 Particulate 1058-1305 2 Stack EPA 5 2 Particulate 1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	1313-!413	3	Stack	EPA 9		Visible Emissions
1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	<u>5/24/95</u>					
1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	0841-1047	2,	Stack	EPA 5	1	Particulate
1315-1522 2 Stack EPA 5 3 Particulate 0836-0936 2 Stack EPA 7E 1 Nitrogen Oxides 0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	1058-1305	2	Stack	EPA 5	2	Particulate
0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA 7E 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	1315-1522	2	Stack	EPA 5	. 3	Particulate
0948-1048 2 Stack EPA 7E 2 Nitrogen Oxides 1100-1200 2 Stack EPA-7E- 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission		2	Stack	EPA 7E	1	Nitrogen Oxides
1100-1200 2 Stack EPA-7E- 3 Nitrogen Oxides 0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	0948-1048	2	Stack	EPA 7E	2	Nitrogen Oxides
0857-0957 2 Stack EPA 9 1 Visible Emission 1103-1203 2 Stack EPA 9 2 Visible Emission	1100-1200	2	Stack	EPA-7E-	3	Nitrogen Oxides
1103-1203 2 Stack EPA 9 2 Visible Emission	0857-0957	2	Stack	EPA 9	1	Visible Emissions
and the second s	1103-1203	2	Stack		2	Visible Emissions
	1328-1428	2	Stack	EPA 9	3	Visible Emissions

4.0 OPERATIONAL DATA DURING EMISSION TESTING

4.0 OPERATIONAL DATA DURING EMISSION TESTING

Operational data were collected from process recorders connected to plant instruments. The operator logs are in Volume 3.

5.0 METHODOLOGY

TABLE 5.1

REFERENCES

Parameter	Test Method	Reference	
TSP	U.S. EPA Method 5	40 CFR 60, App. A	
NO _x	U.S. EPA Method 7E	40 CFR 60, App. A	
Opacity	U.S. EPA Method 9	40 CFR 60, App. A	
		•	

APPENDIX A

BEST AVAILABLE COPY

Florida Department of Environmental Regulatic

Twin Towers office Bidg. ● 2000 Blair Sione Road ● Tallahussee, Florida +1300.2

on Martings on Compression

, significant more more thank

PERMITTEE:
Pasco County
7536 State Street
New Port Richey, FL 33553

Permit Number: PSD-FL-127

County: Pasco

Latitude/Longitude: 28° 22' 05"N

82° 33' 30"W

and shearer assistant sea-

Project: Pasco County Resource Recovery Facility Units 1, 2, and 3

This permit is issued under the provisions of Chapter 403, Florida Statutes, and Florida Administrative Code Rule(s) 17-2 and 17-4. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawings, plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

For the construction of a municipal solid waste (MSW) resource recovery facility with an ultimate capacity of 1200 TPD (tons per day), generating 29 MW of electricity. Initially, three combustors will be installed each with a design capacity of 350 TPD (total of 1050 TPD for the facility). The design rated hear input capacity of each unit will be 140 MMBTU/hr. The normal operating range of each unit will be between 303 and a maximum of 114% of the design rated capacity. Acid gases and particulates will be controlled by dry scrubber and baghouse technology. DER will be notified of the final choice of control/combustor equipment. The power plant site certification number for this project is PA 87-23.

Construction shall be in accordance with the attached permit application and additional information except as otherwise noted in the Specific Conditions.

Attachments are as follows:

- 1. Power Plant Site Certification package PA 87-23 and its associated attachments, dated April 4, 1988.
- 2. letter from David Dee, for Pasco County, of August 10, 1988.
- 3. Letter from EPA dated September 3, 1988.
- 4. DER's Final Determination dated September 14, 1988.

GENERAL CONDITIONS:

- 1. The terms, conditions, requirements, limitations, and restrictions set forth herein are "Permit Conditions" and as such are binding upon the permittee and enforceable pursuant to the authority of Sections 403.161, 403.727, or 403.859 through 403.861, Florida Statutes. The permittee is hereby placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of the "Permit Conditions" by the permittee, its agents, employees, servants or representatives.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action—by the Department.
- 3. As provided in Subsections 403.087(6) and 403.722(5), Florida Statutes, the issuance of this permit does not convey any vested rights or any exclusive privileges. Nor does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations. This permit does not constitute a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in the permit.
 - 4. This permit conveys no title to land or water, does not constitute state recognition or acknowledgement of title, and does not constitute authority for the use of submerged lands unless harein provided and the necessary title or leasehold interests have been obtained from the state. Only the Trustees of the Internal Improvement Trust Fund may express state opinion as to title.
 - 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, plant or aquatic life or property and penalties therefore caused by the construction or operation of this permitted source, nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.

GENERAL CONDITIONS:

- 6. The permittee shall at all times properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit, as required by department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized department personnel, upon presentation of credentials or other documents as may be required by law, access to the premises, at reasonable times, where the permitted activity is located or conducted for the purpose of:
 - a. Having access to and copying any records that must be kept under the conditions of the permit;
 - b. Inspecting the facility, equipment, practices, or operations regulated or required under this permit; and
 - c. Sampling or monitoring any substances or parameters at any location reasonably necessary to assure compliance with this permit or department rules.

Reasonable time may depend on the nature of the concernbeing investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately notify and provide the department with the following information:
 - a. a description of and cause of non-compliance; and
 - the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance.

GENERAL CONDITIONS:

The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or revocation of this permit.

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source, which are submitted to the Department, may be used by the Department as evidence in any enforcement case arising under the Florida Statutes or Department rules, except where such use is proscribed by Sections 403.73 and 403.111, Florida Statutes.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance, provided however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- Il. This permit is transferable only upon Department approval in accordance with Florida Administrative Code Rules 17-4.12 and 17-30.30, as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit is required to be kept at the work site of the permitted activity during the entire period of construction or operation.
- 13. This permit also constitutes:
 - (x) Determination of Best Available Control Technology (BACT)
 - (x) Determination of Prevention of Significant Deterioration (PSD)
 - (x) Compliance with New Source Performance Standards.
- 14. The permittee shall comply with the following monitoring and record keeping requirements:
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. The retention period for all records will be extended automatically, unless otherwise stipulated by the department, during the course of any unresolved enforcement action.

GENERAL CONDITIONS:

- b. The permittee shall retain at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation), copies of all reports required by this permit, and records of all data used to complete the application for this permit. The time period of retention shall be at least three years from the data of the sample, measurement, report or application unless otherwise specified by Department rule.
- c. Records of monitoring information shall include:
 - the date, exact place, and time of sampling or measurements;
 - the person responsible for performing the sampling or measurements;
 - the date(s) analyses were performed;
 - the person responsible for performing the analyses;
 - the analytical techniques or methods used; and
 - the results of such analyses.
- 15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be submitted or corrected promptly.

SPECIFIC CONDITIONS:

- 1. Municipal Solid Wasta Combustor
 - a. Each of the three municipal waste combustors (MWC) shall have a design rated capacity of 350 tons municipal solid waste (MSW) per day, 140 million Btu heat input per hour, assuming a heating value of 4,800 Btu per pound.

Leading the Live Con-

5. The maximum individual MWC's throughput shall not exceed 114% of either the design MSW charging rate of 350 TPD or the heat input rate of 140 MMBTU/hr.

SPECIFIC CONDITIONS:

- c. The furnace mean temperature at the fully mixed zone of the combustor shall not be less than 1,800°F.
- d. The normal operating range of the MWC shall be 80% to a maximum of 114% of design rated capacity.
- e. The MWC shall be fueled with municipal solid waste only. Other wastes shall not be burned without specific prior written approval of Florida DER.
- f. Auxiliary fuel burner(s) shall be fueled only with natural gas. If the annual capacity factor for gas is greater than 10%, as determined by 40 CFR 60.43b(d), the facility shall be subject to 40 CFR 60.44b, standards for nitrogen oxides.
- g. Auxiliary fuel burner(s) shall be used at start up during the introduction of MSW fuel until design furnace gas temperature is achieved.
- h. The facility may operate continuously (8760 hrs/yr).
- 2. Air Pollution Control Equipment Design
 - a. Each MWC shall be equipped with a baghouse for particulateemission control.
 - b. Each MWC shall be equipped with a dry scrubber for acid gas control, to remove at least 70% of SO2 and 90% of other acid gases (namely HCL, H2SO4 mist, and fluorides.
 - c. The acid gas emission control system shall be capable of cooling flue gases to an average temperature not exceeding 300°F (3-hour rolling average).
 - d. DER shall be notified of the control devices chosen.
- 3. Flue gas emissions from each unit shall not exceed the following:
 - a. Particulate:

0.0150 grains/dscf corrected to 12% CO2

b. Sulfur Dioxide:

104 ppmdv corrected to 7% O2 3-hour (rolling) average, and 60 ppmdv corrected to 7% O2 6-hour rolling average;

SPECIFIC CONDITIONS:

or

70% reduction of uncontrolled 502 emissions, 6-hour rolling average. Not to exceed 100 ppmdv corrected to 7% 02, 6-hr rolling average.

c. Nitrogen Oxides: ~

•

d. Carbon Monoxide: -

e. Volatile Organic Compounds:

f. Lead: -

g. Fluoride:

h. Beryllium:

i. Mercury:

j. Visible Emissions:

0.643 lb/MMBtu heat input.

400 ppmdv corrected to 7% O2, 1-hr average, and 100 ppmdv corrected to 7% O2, 8-hr rolling average.

0.021 lb/MMBtu heat input

0.0007 lb/MMBtu heat input

0.008 lb/MMBtu heat input

 1.35×10^{-7} lb/MMBtu heat input

0.0008 lb/MMBtu heat input_

Opacity of MWC emissions shall not exceed 15% opacity (6-min. average), except for one 6-min. period per hour of not more than 20% opacity. Excess emissions resulting from startup, shut down, or malfunction shall be permitted provided that best operational practices to minimize emissions are adhered to, and the duration of excess emissions are minimized.

For each pollutant for which a continuous emissions monitoring system is required in Condition No. 5, the emission averaging time specified above shall be used to establish operating limits and reportable excess emissions.

SPECIFIC CONDITIONS:

Compliance with the permit emission limits shall be determined by EPA raference test methods included in 40 CFR Parts 60 and 61, 1987 version, and listed in Condition No. 4 of this permit. Other DER approved methods may be used only after prior Departmental approval.

For the purpose of establishing specific increment consumption for TSP and SO₂ at the facility, an hourly emission rate shall be established for each pollutant at the time of performance testing using flue gas flow rates (corrected to 12% CO₂ or 7% O₂ at furnace capacity as appropriate) and the applicable concentration limits established above for TSP and SO₂. Projected emissions are listed below, based on 4800 Btu/lb heat content and 350 TPD MSW charging rate for each combustor (140 MMBTU/hr). Maximum emissions will be 14% above the tabulated values below and will occur at 114% of the design heat input rate.

Pollutant	lb/MMBtu Heat Input	Projected Emissions lb/hr 100%
Particulate	0.0322	4.5
Sulfur Dioxide	0.224	31.4
Nitrogen Oxides	0.643	90.0
Carbon Monoxide	0.098 1, 0.391	2 13.7 1, 54.7 2
Volatile Organics	0.021	2.9
Fluoride	0.008	1.1
Hydrogen Chloride	0.127	17.8
Sulfuric Acid Mist	0.035	50
Lead	7×10^{-4}	0.098
Mercury	8×10^{-4}	0.112
Servilium	1.35×10^{-7}	1.9 x 10 ⁻⁵
Arsenic	9.1 × 10 ⁻⁶	1.3 x 10 ⁻³

^{1 8-}hr average 2 1-hr average

SPECIFIC CONDITIONS:

The combustors are subject to 40 CFR Part 60, Subpart E, and Subpart Db, New Source Performance Standards (NSPS), except that where requirements within the permit are more restrictive, the requirements of the permit shall apply.

4. Compliance Tests

- a. Initial compliance tests for particulate matter, SO₂, nitrogen exides, CO, VOC, lead, fluorides, mercury and beryllium shall be conducted in accordance with 40 CFR 60.8 (a), (b), (d), (e), and (f).
- b. Annual compliance test(s) for particulate matter and nitrogen oxides shall be performed.
- c. Compliance with the opacity standard shall be determined in accordance with 40 CFR 60.11(b) and (e).
- d. Compliance with the requirement for 70% control of sulfur dioxide emissions will be determined by using the test methods in Condition 4.f. below or a continuous emission monitoring system for 50% emissions, before and after the air pollution control equipment, which meets the requirements of Performance Specification 2 of 40 CFR 60, Appendix 3.
- e. The compliance tests shall be conducted within $\pm 10\%$ of the design rated capacity for each permitted fuel.
- f. Prior DER approval shall be obtained for the location of the source sampling platform(s). The following test methods and procedures of 40 CFR Parts 60 and 61 (1987 version) or other DER approved methods with prior DER approval shall be used for compliance testing:
 - (1) Method 1 for selection of sample site and sample traverses.

(2) Method 2 for determining stack gas flow rate.

(3) Method 3 or 3A for gas analysis for calculation of percent O₂ and CO₂.

(4) Method 4 for determining stack gas moisture content to convert the flow rate from actual standard cubic feet to dry standard cubic feet.

5) Method 5 or Method 17 for concentration of particulate matter.

SPECIFIC CONDITIONS:

- .(6) Method 9 for visible determination of the opacity of emissions as required in this permit in accordance with 40 CFR 60.11.
- (7) Method 6, 6C, or 8 for concentration of SO2.
- (8) Method 7, 7A, 7B, 7C, 7D, or 7E for concentration of nitrogen oxides.
- (9) Method 10 for determination of CO concentration.
- (10) Method 12 for determination of lead concentration.
- (11) Method 13B for determination of fluoride concentrations.
- (12) Method 25 for determination of VOC concentration.
- (13) Method Tola for determination of mercury emission rate.
- (14) Method 104 for determination of beryllium emission rate.
- g. The permittee shall submit to DER a list of the pertinent operating parameters which indicate proper operation of the control equipment.
- 5. Continuous Emission Monitoring

Continuous emission monitors for opacity, oxygen, carbon monoxide, carbon dioxide, and sulfur dioxide shall be installed, calibrated, maintained and operated for each unit.

- a. Each continuous emission monitoring system (CEMS) shall meet performance specifications of 40 CFR 60, Appendix 3. The SO2 CEMS sample point shall be located downstream of control devices for each unit.
- b. CEMS data shall be recorded during periods of startup, shutdown and malfunction but shall be excluded from emission averaging calculations for CO, SO₂, and opacity.

SPECIFIC CONDITIONS:

- c. A malfunction means any sudden and unavoidable failure of air pollution control equipment or process equipment to operate in a normal or usual manner. Failures that are caused entirely or in part by poor maintenance, careless operation, any other preventable upset condition, or preventable equipment breakdown shall not be considered malfunctions.
- d. The procedures under 40 CFR 60.13 shall be followed for installation, evaluation and operation of all CEMS.
- e. Opacity monitoring system data shall be reduced to 6-minute averages, based on 36 or more data points, and gaseous CEMS data shall be reduced to 1-hour averages, based on 4 or more data points, in accordance with 40 CFR 60.13(h).
- f. Average CO and SO₂ emission concentrations, corrected for O₂, shall be computed in accordance with the appropriate averaging time periods included in Condition No. 3.
- g. For purposes of reports required under this permit, excess emissions are defined as any calculated average emission concentration, as determined pursuant to Condition No. 5 herein, which exceeds the applicable emission limit in Condition No. 3.

6. Operations Monitoring

- a. Devices shall be installed to continuously monitor and record steam production, furnace exit gas temperature (FEGT) and flue gas temperature at the exit of the acid gas control equipment. A FEGT to combustion zone correlation shall be established to relate furnace temperature at the temperature monitor location (as close to fully mixed zone as possible) to furnace temperature in the overfire air fully mixed zone.
- b. The furnace heat load shall be maintained between 30% and 114% of the design rated capacity during normal operations. The lower limit may be extended provided compliance with the carbon monoxide emissions limit and the FEGT within this permit at the extended turndown rate are achieved.

7. Reporting

a. A minimum of fifteen (15) days prior notification of compliance testing shall be given to the DER Southwest District Office.

SPECIFIC CONDITIONS:

- b. The results of compliance test shall be submitted to the DER district office within 45 days after completion of the test.
- c. The owner or operator shall submit excess emission reports for any calendar quarter during which there are excess emissions from the facility. If there are no excess emissions during the calendar quarter, the owner or operator shall submit a report semiannually stating that no excess emissions occurred during the semiannual reporting period. The report shall include the following:
 - (1) The magnitude of excess emissions computed in accordance with 40 CFR 60.13(h), any conversion factors used, and the date and time of commencement and completion of each period of excess emissions (60.7(c)(1)).
 - (2) Specific identification of each period of excess emissions that occurs during startups, shutdowns, and malfunctions of the furnace boiler system. The nature and cause of any malfunction (if known) and the corrective action taken or preventive measured adopted (60.7(c)(2)).
 - (3) The date and time identifying each period during which the continuous monitoring system was inoperative except for zero and span checks, and the nature of the system repairs of adjustments (60.7(c)(3)).
 - (4) When no excess emissions have occured or the continuous monitoring system has not been inoperative, , repaired, or adjusted, such information shall be stated in the report (60.7(c)(4)).
 - (5) The owner or operator shall maintain a file of all measurements, including continuous monitoring systems performance evaluations: nonitoring systems or monitoring device calibration; checks; adjustments and maintenance performed on these systems or devices; and, all other information required by this permit recorded in a permanent form suitable for inspection (60.7(d)).

SPECIFIC CONDITIONS:

- 8. The construction shall reasonably conform to the plans and schedule submitted in the application. If the permittee is unable to complete construction on schedule, the Department must be notified in writing (Rule 17-2, F.A.C.).
- 9. Any change in the method of operation, fuels, equipment or operating hours shall be submitted for approval to DER's district office.
- 10. This facility shall be operated in such a manner so as to preclude objectionable odors pursuant to F.A.C. Rule 17-2.600(1).
- 11. All reasonable precautions shall be taken to prevent and control generation of unconfined emissions of particulate matter in accordance with F.A.C. Rule 17-2.610(3).
- 12. The permittee shall comply with all the applicable provisions of F.A.C. Chapter 17-2, 17-4, and 40 CFR 60 and 61.

Issued this 22 day of 50, 1988

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION

Dale Twachtmann, Secretary

INITIAL DESIGN CAPACITY REPORT FORM

(Please Print or Type)

This form fulfills the requirements of the Initial Design Capacity Report for the municipal solid waste landfills new source performance standards and emission guidelines promulgated on 3/12/96, 19954 (60 FR 9905) 40 CFR 60, subparts WWW and Cc. For new landfills, this report also fulfills the requirements of the notification of the date construction is commenced as required under 40 CFR 60.7(a)(1).

This report is to be submitted to the Department (Attention: Venkata Panchakarla, Division of Air Resources Management, Department of Environmental Protection, Mail Station 5500, 2600 Blair Stone Road, Tallassee, FL 32399-2400) no later than December 31.

I.

ID	ENTIFYING INFORMATION
1.	Name of person completing form
	Telephone number(813) 281-2900
2.	Person's position Senieor Engineer, Camp Dresser &McKee Inc.
3.	Name of landfill West Pasco Sanitary Landfill/Resource Recovery Facility
4.	Address of landfill 14230 Hays Road, Spring Hill, Florida 34610
	Name of landfill owner Pasco County
	Address of landfill owner Pasco County Utilities, 7530 Little Road, New Port Richey, Fl 33553
	Name of landfill operator Pasco County
8.	Address of landfill operator See No. 4 above
9.	Is landfill new or existing?
	new (began construction, reconstruction, or modification on or after May 30, 1991)
	X existing (began construction, reconstruction, or modification before May 30, 1991, has accepted waste after November 8, 1987: or has additional capacity available for future waste disposition)

II. DA	ATES				
10.	Date construction or operating permit was issued <u>August 23, 1988 (Power Plant Site Certification</u>				
<u>NO.</u>	PA-87-23)				
11.	Date landfill began construction, modification, or reconstruction 1990				
12.	Date landfill first accepted waste 1991				
13.	Date this form is submitted				
III. DI	ESIGN CAPACITY INFORMATION				
14.	Maximum design capacity of landfill in Mg or m ³ 14,210,031 m ³				
	A. If the landfill has a State or county construction or RCRA permit stating the maximum design capacity, attach a copy of the permit to this form.				
	B. If maximum design capacity is NOT specified in a permit, attach design capacity calculations, and fill out the following information:				
	B1. Depth of refuse 40 ft (average)				
	B2. Refuse acceptance rate				
	B3. Compaction practices 800-1000 lb/yd³				
15.	Attach a map or plot map of the landfill to this form. The map should provide the size and location of the landfill. Include an identification of all areas where refuse may be landfilled according to the provisions of the State or county permit.				
IV. SI	GNATURE				
16.	Signature of person completing form Danus Clim				
17.	Date of signature				
	10/8/99				

INITIAL NMOC EMISSION RATE REPORT

Mr. Venkata Panchakarla Division of Air Resources Management Department of Environmental Protection Mail Station 5500 2600 Blair Stone Road, Tallahassee, FL 32399-2400

SUBJECT: Initial Design Capacity and NMOC Emission Rate Reports, as required by the MSW Landfill NSPS - Pasco County, FL, Pasco County Waste to Energy Facility Landfill

Dear Mr. Panchakarla:

The Pasco County Waste to Energy Facility Landfill (Landfill) is currently regulated according to the MSW Landfill NSPS. Under the requirements of the regulations, the Landfill must submit an Initial Design Capacity Report. This report is attached on the forms supplied by the Department. This landfill has been accepting waste since 1991. The estimated capacity of 14,210,031 cubic meters was calculated from aerial surveys of landfill volume. A copy of the calculations and supporting documentation is attached, along with the forms.

Because the Landfill's design capacity is greater than 2.5 million megagrams, this landfill is also required to submit an estimate of the NMOC emissions (40 CFR 60.752 (a)). The estimated uncontrolled NMOC emission ratefor 1999 is 8.9 Mg/yr. This estimate was calculated using EPA's Landfill Gas Emissions Model (LandGEM), based on the Tier 1 procedures in the regulations. A copy of the model output is enclosed.

enclosure

EXAMPLE TIER 1 NMOC EMISSION RATE CALCULATION FORM

NMOC EMISSION RATE REPORT

ENCLOSURE 1: TIER 1 CALCULATION FORM

This calculation form presents the equations and default values used in the Tier 1 NMOC
emission rate analysis. Completing this form will yield the annual NMOC emission rate,
which should be entered in the space provided in the cover letter. Note that the first
emission rate equation is for landfills where the annual MSW acceptance rate is not known.
The second emission rate equation is to be used if the annual acceptance rate is known.

Equation 1. (For landfills where the annual acceptance rate is not known)

$$M_{NMOC} = 2L_oR(e^{-kc} - e^{-kt})(C_{NMOC})(3.595 \times 10^{-9})$$

where,

 M_{NMOC} = mass emission rate of NMOC, Mg/yr

2. 3.	Averag Methar	e annual acc	eneration potential: <u>170*</u> L _o (m³/Mg) ceptance rate: R (Mg/yr) n rate constant: <u>0.05*</u> k (1/yr)
			l/or new landfills):c (yrs)
6.	Concer	landfill: ntration of NN rsion factor:_	MOC: 4,000* C _{NMOC} (ppm as hexane)
M _{NI}	мос	= 2 (170) () (e ^{-(0.05)()} - e ^{-(0.05)()}) (4,000) (3.6 x 10 ⁻⁹)
M _N	мос	=	Mg/yr
*De	efault va	alues	

NMOC EMISSION RATE CALCULATION (continued)

Equation 2. (For landfills where the annual acceptance rate is known)

$$M_{NMOC} = \sum_{i=1}^{n} 2 k L_{o} M_{i} (e^{kt_{i}}) (C_{NMOC}) (3.6 \times 10^{-9})$$

where,

 M_{NMOC} = total mass emission rate of NMOC from the landfill, Mg/yr

- 1. Refuse methane generation potential: 170* L_o (m³/Mg)
- 2. Mass of waste in the ith section:_____M_i (Mg)
- 3. Methane generation rate constant: 0.05* k (1/yr)
- 4. Age of the ith section:____t_i(yrs)
- 5. Concentration of NMOC: 4.000* C_{NMOC} (ppm as hexane)
- 6. Conversion factor: 3.6 x 10-9
- 7. Number of sections accepting MSW:____n

$$Q_i = 2 (0.05) (170) () (e^{-(0.05)()}) (4,000) (3.6 \times 10^{-9})$$

$$M_{NMOC} =$$
 Mg/yr

^{*}Default values

NMOC EMISSION RATE REPORT

ENCLOSURE 2: EMISSION INVENTORY DATA

For emission inventory purposes, source identification, facility description, and control equipment descriptions are provided below.

Name of the Landfill: Pasco County Waste to Energy Facility					
Address:14230 Hayes Road, Spring Hill, FL 34610					
County: Pasco County					
Maximum MSW design capacity (in Mg): _	13,116,390 Mg				
LFG collection system description (i.e., act	ive vertical):	NONE			
Gas mover (i.e., blower, air compressor): Control device (i.e., flare, internal combust					
Optimal control efficiency: N/	Α				
Annual average control efficiency:	N/A				
Maximum hourly NMOC emissions:	2.2 lb/hr				
_	11.7 Mg/yr 14.4 Mg/yr	(2000) (2001) (2002)			

Determination of Landfill Capacity

The Pasco County Solid Waste Resource Recovery Facility landfill has accepted waste since 1987 and, based on our calculations, the current volume design capacity is estimated to be 18,586,137 cubic yards (14,210,031 cubic meters).

Approximately 619,296 tons (522,805 megagrams) of ash has been accepted between 1991 and 1999. We estimate an ash acceptance rate of 88,148 tons per year (1,050 tons of waste per day for 365 days at 92% operating capacity, and 25% of the waste converted to ash) between 2000 and closure year, 2067. Based on the current ash in place, forecast ash acceptance rates, and an ash density of 2,400 pounds per cubic yard, it is estimated that approximately 5,511,105 cubic yards (6,613,326 tons) of ash will occupy the landfill at closure. This leaves approximately 13,075,032 cubic yards in the landfill for MSW based on a density of 1,200 pounds per cubic yard for MSW. This is equivalent to a mass-based MSW capacity of 7,845,019 tons (7,116,845 megagrams) is calculated.

Therefore, the total mass design capacity of the landfill is 6,613,326 tons of ash plus 7,845,019 tons of MSW, totalling 14,458,345 tons (13,116,390 megagrams) of landfill capacity.

Source: C:\MY DOCS\PROJECTS\PASCOCTY\NEW-NSPS.PRM

Model Parameters

Lo : 170.00 m^3 / Mg k : 0.0500 1/yr NMOC : 4000.00 ppmv

Methane: 50.0000 % volume

Carbon Dioxide : 50.0000 % volume

Landfill Parameters

Landfill type : No Co-Disposal

Year Opened: 1989 Current Year: 2005 Closure Year: 2067

Capacity: 7116845 Mg

Average Acceptance Rate Required from

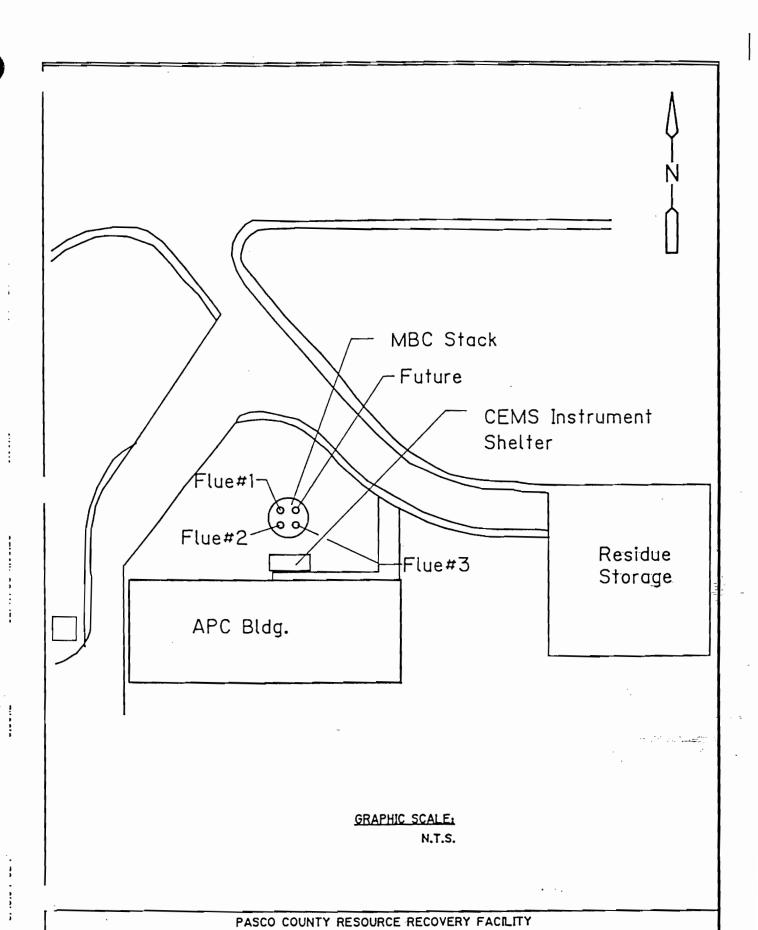
Current Year to Closure Year: 112140.31 Mg/year

Model Results

NMOC Emission Rate Year Refuse In Place (Mg) (Mg/yr) (Cubic m/yr) ______ 1990 0.000E+00 1991 0.000E+00 3.540E+03 8.628E-01 1.801E+00 1992 5.024E+02 7.560E+03 1993 9.153E+03 1994 2.101E+00 5.862E+02 1.045E+04 6.456E+02 1995 2.314E+00 1.688E+04 1996 3.769E+00 1.052E+03 2.392E+04 1.479E+03 1997 5.301E+00 1.884E+03 2.488E+03 3.094E+04 4.118E+04 1998 6.754E+00 1999 8.919E+00 3.267E+03 4.021E+03 1.171E+01 2000 5.441E+04 1.441E+01 2001 6.785E+04 2002 8.482E+04 1.785E+01 4.979E+03 2003 1.065E+05 2.226E+01 6.209E+03

Compliance Certification

COMPLIANCE CERTIFICATION


Compliance statements will be submitted to DEP on an annual basis, or as required throughout the permit term.

I, the undersigned, am the responsible official as defined in Chapter 62-210.200 F.A.C., of the Title V source for which this report is being submitted. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made and data contained in this report are true, accurate, and complete.

ponsible Official

Date

Emission Unit Flue

Stack and Vicinity

environmental engineers, scientists, planners, & management consultants

Figure No. 1.3

Detailed description of Control Equipment

The facility air pollution control equipment consist of the following components:

- 1. Dry scrubber
- 2. Fabric filter (baghouse)
- 3. Activated carbon injection system

The dry scrubber utilizes lime slurry to neutralize acid-forming gases, such as sulfur oxides and hydrogen chloride. The bag house captures the particulates. Activated carbon is injected into the flue gases prior to the bag house to control the mercury emissions. The bag house recovers more than 99 percent of the particulate matter. Captured fly ash particles fall into hoppers and are transported by an enclosed conveyor system to the bottom ash discharger where they are wetted to prevent dust, and mixed with the bottom ash.

I, <u>Darwish O. El-Haiji. P.E.</u>, am satisfied that the air pollution equipment associated with the emission unit addressed in this section will achieve a control efficiency to meet the applicable emission limitations.

Darwish Q. El-Hajji

JOY ENVIRONMENTAL EQUIPMENT COMPANY A company of JOY Technologies

3.0 EQUIPMENT SPECIFICATIONS

3.1 DESIGN BASIS

The following criteria provided the basis for the design of the fabric filter particulate removal system described in this manual. Standard conditions are defined as 70 F and 14.7 psia.

3.1.1	Operating Conditions (Inlet)			
	Process Gas Volume, acfm	80,019		
	Inlet Gas Temperature, °F	300		
	Inlet Dust Concentration, gr/ACF	3.3		
	Operating Pressure, inches wg	-10		

3.1.2	Design Criteria	
	Maximum Design Temperature, °F	500
	Maximum Design Pressure, inches wg	±20
	Snow Load, PSF	0
	Wind Load, PSF	15-19
	Live Load, PSF	50
	Dust Load (hopper), PCF	100
	Seismic Zone	ANST Zone O

3.1.3	Filter Data	
	Effective Filter Area (sf):	
	Each bag	31.42
	Each compartment	4,524
	Each fabric filter	27,144
	One (1) compartment out per fabric filter*	22,619
	Filter (air-to-cloth) Ratio:	
	311 compartments active	2 05.1

Filter	(air-to-cloth) Ratio:	
All	compartments active	2.95:1
One	(1) compartment out per fabric filter*	3.54:1

3.1.4 <u>Instrumentation Setpoints</u> Inlet Gas Temperature, °F:

HI alarm		500
LO alarm		240
Differential Pressure,	"wg:	
HI HI Delta P Alarm	-	10
HI Delta P Alarm	•	6

Hopper Heater setpoint,	°F	285
Compressed Air Pressure,	PSIG	5 0-6 0**

^{*}One (1) compartment off line, cleaning **Operation below 40 psig will void any performance guarantee

JOY ENVIRONMENTAL EQUIPMENT COMPANY A company of JOY Technologies

3.2 EQUIPMENT CONFIGURATION

Details regarding the specific configuration of the purchased equipment are summarized in this section.

3.2.1 Configuration

PULSEFLO® Fabric Filter Model 6 Module PF6020-144
Number of Fabric Filters Three
Number of Modules per Fabric Filter 6
Module Arrangement 2 x 3
Module size (width depth) 6'-4" x 11"-0"
Inlet Configuration Spool Inlet
Outlet Configuration Spool Outlet

3.2.2 Filter Bags

Bag Arrangement 9 x 16
Number of Bags per Module 144
Total Number of Bags per Fabric Filter 864
Bag Size (1.57' net circumference):
Nominal Diameter (inches) 6
Overall Length (feet) 20

Bag Type Teflon Coated Fiberglass
Fabric Weight 16 Oz\Square Yard
Bag Cage Electrozinc plated carbon steel
Bag Tube Sheet Connection Snap Ring

3.2.3 Dampers

Inlet Manual Butterfly Outlet Pneumatic Butterfly

3.2.4 Hoppers

Hopper Type Pyramidal
Hopper Valley Angle 55°
Hopper Capacity

3.2.5 <u>Materials of Construction</u>

Casing Plate 3/16" ASTM A36
Hopper Plate 1/4" ASTM A36
Shapes ASTM A36
Pipe A53 Grade B or A501
Bolts ASTM A325

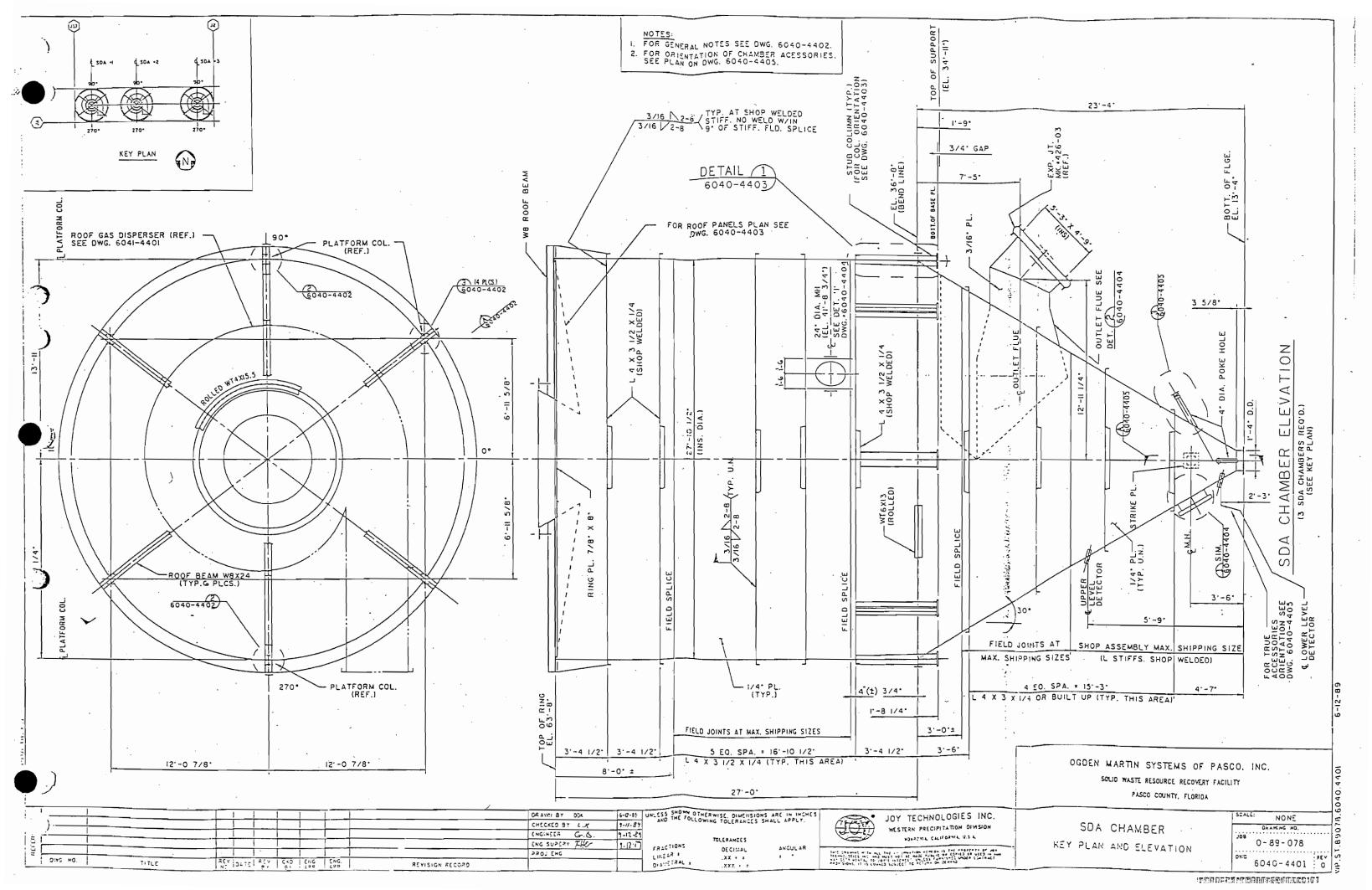
One baghouse is installed Ryton on Ryton Scrim Felt Bags over an Empigard Epoxy coated cage.

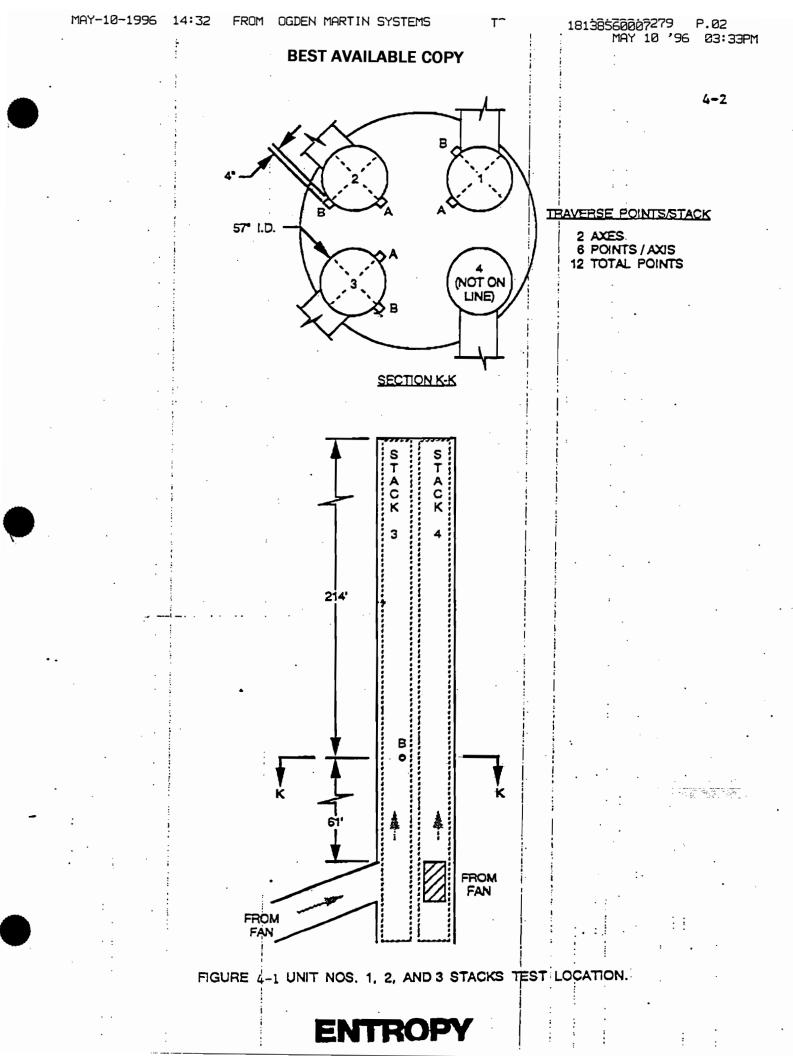
JOY ENVIRONMENTAL EQUIPMENT COMPANY A company of JOY Technologies

3.3 OPTIONAL AUXILIARY EQUIPMENT

The PULSEFLO® fabric filter may be supplemented with accessories as necessary to meet individual requirements. Auxiliary equipment provided is identified on the "Table of Supplied Auxiliary Equipment"

3.3.1 Table Of Supplied Auxiliary Equipment


EQUIPMENT	TYPE	SUPPLIED YES NO
Hopper Accessories Heaters Vibrators Level Detectors Air Locks Conveyors	Blanket/Strip Electric Capacitance	x x x
Bypass Duct Dampers Expansion Joints	Poppet Fabric	x x
Inlet Manifold Dampers	Butterfly/Chain Operated	x
Outlet Manifold Dampers Expansion Joints	Butterfly/Pneumatic Fabric	X X
Compressed Air Compressor Accumulator Valves Gauges	Screw Steel Tank	x x x x
Electrical Equipment Control Room Motor Control Center Power Distribution Panel Switchgear	- - -	X X X
Interlocks .	Key	х


JOY ENVIRONMENTAL EQUIPMENT COMPANY A company of JOY Technologies

3.3.1 Table Of Supplied Auxiliary Equipment - continued

EQUIPMENT	TYPE	SUPP YES	NO
Instrumentation	•		
Bag Failure	-		X
Fire Protection	-		X
Temperature	Thermocouple	X	•
Pressure &	-		
Pressure Drop	Photohelic	X	
Outlet Damper			
Position Indicator	Limit Switches/Lights	X	_
Bypass Damper			
Position Indicator	Limit Switches/Lights		X

Stack Sampling Facilities

Oaden Projects, Inc. 40 Lane Road, CN 2615 Fairfield: NJ 07007-2615 USA Tel: 201 882 9000

SOURCE TEST PLAN

Source Information

Type Unit:

Municipal Solid Waste-to-Energy Facility

Facility:

Ogden Martin Systems of Pasco, Inc.

1387 Hays Road

Spring Hill, FL 34610

Purpose of Test:

Demonstration of Compliance with Florida Department

of Environmental Protection, Permit No. PSD-FL-127,

Rule 62-296 and 40 CFR 60, Appendix F.

Person(s) to Contact:

Mr. Robert Sitz, Facility Manager

(813) 856-2917

Mr. G. J. Aldina

Sr. Vice President, Environmental Testing/CEM

(201) 882-4136

Mr. Derek A. Porter

Director - CEM Systems

(201) 882-7259

Testing Firm Information

Company:

Contractor to be selected

Testing Information

Procedure:

Testing three (3) municipal solid waste-fired boilers for

various air pollutant emissions. Perform a relative

accuracy test audit of the continuous emission monitoring

system.

Proposed Test Dates:

June 4-6, 1996

Prepared by:

Michelle L. Herman

April 12, 1996 OPI Report No. 1049

TABLE OF CONTENTS

<u>عدر-</u>	I ION		1:	,	TAG!
:		:] - -	: !	
1.0	INTRODUCTION	. .		• • • • • • • • • • • • • • • • • • •	 1
2.0	SCHEDULE OF ACTIVITIES			 	 4
3.0	QUALITY ASSURANCE / QUALITY CONTROL .	· ·		: !	 5
			- - -	! !	,
4.0	SOURCE TEST INFORMATION	• • • •	ķ -		 6
5.0	OPERATIONAL PARAMETERS		[]: 	i :	 8

APPENDIX A: PERMIT CONDITIONS

APPENDIX B: RULE 62-296

1.0 INTRODUCTION

1.0 INTRODUCTION

A contractor for Ogden Martin Systems of Pasco, Inc., will test the following air pollutant emissions from the Pasco County Resource Recovery Facility for determination of compliance with Florida Department of Environmental Protection, Permit No. PSD-FL-127, Specific Condition 4 and Rule 62-296.

Pasco/Report No. 1047

1.0 INTRODUCTION - CONTD.

Table 1-1: Emission Test Procedures

Pollutant · ·	Permit Condition	Sampling Method	Unit No.	Replicates	Approximate Sampling Time (Minutes)
Particulate Matter (PM)	4B	. U.S. EPA Method 5	Unit 1,2,3	1, 2, 3	120
Oxides of Nitrogen (NO,)	4B	U.S. EPA Method 7E	Unit 1,2,3	1, 2, 3	60
Visible Emissions (VE)	4C	U.S. EPA Method 9	Unit 1,2,3	1, 2, 3	60
Mercury (Hg)	Rule 62-296	U.S. EPA Method 101A	Unit 1,2,3	1, 2, 3	90

1.0 INTRODUCTION - CONTD.

A relative accuracy test audit (RATA) will be performed on the continuous emission monitoring system (CEMS). The CEMS is a dedicated system consisting of the following analyzers.

Pollutant Monitor	Unit Number	Location	Emission Limit	Range	Monitor Manufacturer	Model Number	Secial Number
SO ₂	1	Stack	104 ppindv @ 7% O ₂	0-200 ppու	Western Research	721AT	90-721AT2-7623-6
со	l	Stack	400 ppnidv @ 7% O2	0-500 բթու	Thermo Environmental	48	48-28459-231
CO,	1	Stack	••••••	0-20%	Auto Customs Systems	3300	N9J3748T
O _z	1	Stack	• • • • • • • • • • • • • • • • • • • •	0∙25%	Servomex	1400	01420/701/285
so,	2	Stack	104 ppm @ 7% O ₂	0-200 ppm	Western Research	721AT	90-721AT2-7623-5
со	2	Stack	400 ppm @ 7% O ₂	0·500 թթյո	Thermo Environmental	48	48-28454-231
CO	2	Stack		0-20%	Auto Customs Systems	3300	N9J3734T
Ο,	2	Stack	. •••	0-25%	Servomex	1400	01420/701/296
SO,	<u>3</u>	Stack	104 ppnidv @ 7% O ₂	0-200 թթու	Western Research	721AT	90-721AT2-7623-4
co	3	Stack	400-ppn1dv:@-7%-07		Thermo Environmental	48	48-28469-231
CO ₇	3	Stack	***************************************	0-20%	Auto-Gustoms-Systems	3300	N9J3741'I`
O2	3	Stack	******	0-25%	Servomex	1400	01420/701/297

2.0 SCHEDULE OF ACTIVITIES

2.0 SCHEDULE OF ACTIVITIES (1)

Day	Unit	Parameter	Reference Method	Replicates	Approximate Sampling Time (minutes)
1.		Setup	:	: :	
2	1	PM	EPA 5	1, 2, 3	120
	1	VE	EPA 9	1, 2, 3	. 60
	1	NO _x	EPA 7E	1, 2, 3	60
	1	O ₂ , CO ₂ SO ₂ , CO (RATA)	EPA 3A, 6C, 10	1-9	30
	1	Hg	EPA IOIA	1, 2, 3	90
		:	:	. :	
	:2	PM	EPA 5	1, 2, 3	120.
:	2	Hg .	AIOI AGS	1, 2, 3	90
:	2	VE .	EPA 9	1, 2, 3	60
:	2	NO,	EPA 7E	1, 2, 3	60
:	2	O ₂ , CO ₂ SO ₂ , CO (RATA)	EPA 3A, 6C, 10	1-9	. 30
:					
	- 3	PM	EPA 5	1, 2, 3	120
	3	VE	EPA 9	1,2,3	60
:	3	NO _x	EPA 7E	1, 2, 3	60
:	3	O ₂ , CO ₂ SO ₂ , CO (RATA)	EPA 3A, 6C, 10	1-9	. 30
	3	Hg	EPA 101A	1, 2, 3	90
	:			:	•

⁽¹⁾ Schedule may change during testing to accommodate site conditions

3.0 QUALITY ASSURANCE / QUALITY CONTROL

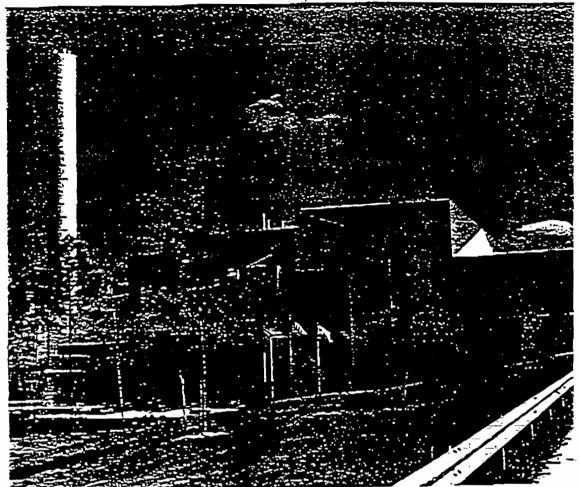
Pasco/Report No. 1049

3.0 QUALITY ASSURANCE / QUALITY CONTROL

OPI has instituted a rigorous Quality Assurance/Quality Control (QA/QC) program for all of its air pollution testing. This program ensures that the emission data reported for OPI facilities are as accurate and meaningful as possible.

Glass or Teflon is employed in all of the sampling equipment in contact with the sample gas.

This includes the nozzle, probe liner, filter housing, sample line and impingers. Calibration of all gas meters, thermocouples, and pitot tubes used in the test program will be performed using reference methods with calibration sheets included in the final report.


Transportation blanks, method blanks, inert sample containers, field data and chain of custody forms from the U.S. EPA QA Handbook for Air Pollution Measurement Systems, Volume III, Stationary Source Specific Methods, EPA-600/4-77-027b, are used during all phases of the test program.

All test programs include a supervising engineer from OPI's Fairfield, New Jersey, office to ensure the integrity of the test program according to the Source Test Plan.

4.0 SOURCE TEST INFORMATION

UCULANAN ATSIEMS TO 181385588897279

BEST AVAILABLE COPY

The Pasco County Solia Waste Resource Recovery Facility

OGDEN MARTIN SYSTEMS OF PASCO, INC.

TIVE WATCHES TO THE FILL PARTY 10 '96

RHCK(9) UTK (MOURH CX CX) VICE A Y

THE PASCO COUNTY SOLID WASTE RESOURCE RECOVERY FAGILITY

BEST AVAILABLE COP

The Pasco County Solid Waste Resource Recovery Facility. which began commercial operation in May, 1991, converts up to 1,050 tons per day of nonrecycled solid waste into saleable energy. Producing up to 31.2 megawans of electricity daily, the facility consumes less than four megawants of the power it generates and sells the remainder to the local utility. Designed, built and operated by Ogden Martin Systems of Pasco, Inc. (OMSP),

the facility is owned by Pasco County.

OMSP provides Pasco County residents with lond-term. environmentally sound waste disposal under a 20-year operating contract with the County. The County retains 90% of electricity sales revenues. which helps offset operation and construction costs.

RECYCLING WASTE INTO ENERGY

The facility's mass burn combustion system incorporates the technology of German-based Martin GmbH, Waste is combusted at furnace temperatures exceeding 1,800 degrees Fahrenheit and reduced to an

inert ash residue that is approximately 10% of the original volume: the ash is disposed at an adjacent County landfill. Before leaving the facility, combustion air is directed through technologically advanced air pollution

control equipment, including a flue gas scrubbers and fabric liter baghouses. Facility emissions are strictly regulate by both state and federal agencies, as are handling and disposal of combustion ash.

VN INTEGRATED SYSTEM

Anchored by the resource recovery facility. Pasco County's integrated solid waste management plan is part of a statewide initiative to reduce reliance on landfilling by implementing integrated solutions on the county level. Plant operations not only conserve landfill space, but offset fossil fuel consumption, as well.

Other elements of the County's integrated system include recycling of paper goods. aluminum cans, glass and plastic containers and white goods and i other metals. The County also runs special disposal programs for household hazardous waste. used motor oil, tires and construction and demolition debas. In an effort to reduce the amount of mercury in the waste stream, the County places battery collection buckets in public buildings and retail stores to provide citizens with a safe

batteries, in addition, ferrous metal recovered from combustion ash is a major contrib to the County's recycling effo The Pasco County Solid Waste Resource Recovery Facility is located in Spring H

means of disposing of houset

For more information or to arrange a tour, please call 813-856-2917.

EVOLUTY SPECIFIC VITONS Rated Refuse **Burning Capacity** 1.050 tons per day

Unit Design Three 350 ton per day waterwall fumaces

Guaranteed Throughput 328,000 tons per year

Guaranteed Waste Delivery 318.500 tons per year

Energy Generation at Rated Capacity up to 31.2 MW, sold to Florida Power Company

OGDEN MARTIN SYSTEMS OF PASCO, INC.

14220 Hays Road Soring Hill, Florida 114610 MAY-10-1996 14:37 FROM OGDEN MARTIN SYSTEMS TO 18138560007279 P.16 MAY 10 '96 03:33PM

BEST AVAILABLE COPY

5.0 OPERATIONAL PARAMETERS

5.0 OPERATIONAL PARAMETERS

During the air pollutant emissions testing, plant process data will be monitored and collected by OMS personnel to ensure representative operation of the facility. Steam flow rate will be documented to ensure representative heat input at design conditions.

APPENDIX A: PERMIT CONDITIONS

33553

Florida Department of Environmental Regulati

Twin Towers Office Bldg. • 2000 Blair Stone Road. • Fillabassee, Florida 52300.

Bob Marrinez Concernor

Date Iwas firmann secretary

feing populates Assistant Se.

PERMITTEE:
Pasco County
7536 State Street
New Port Richey, FL 33

Permit Number: PSD-PL-127

County: Pasco ;

Latitude/Longitude: 28° 22' 05"N

82° 33! 30"W

Project: Pasco County Resource

Recovery Facility Units 1, 2, and 3

This permit is issued under the provisions of Chapter 403, Florida Statutes, and Florida Administrative Code Rule(s) 17-2 and 17-4. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawings, plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

For the construction of a municipal solid waste (MSW) resource recovery facility with an ultimate capacity of 1200 TPD (tons per day), generating 29 MW of electricity. Initially, three combustors will be installed each with a design capacity of 350 TPD (total of 1050 TPD for the facility). The design rated heat input capacity of each unit will be 140 MMBTI/hr. The normal operating range of each unit will be between 30% and a maximum of 114% of the design rated capacity. Acid gases and particulates will be controlled by dry scrubber and baghouse technology. DER will be notified of the final choice of control/combustor equipment. The power plant site certification number for this project is PA 87-23.

Construction shall be in accordance with the attached permit application and additional information except as otherwise noted in the Specific Conditions.

Attachments are as follows:

- i. Power Plant Site Certification package PA 87-23 and its associated attachments, dated April 4, 1988.
- 2. Letter from David Dee, for Pasco County, of August 10, 1988.
- 3. Letter from EPA dated September 8, 1988.
- 4. DER's Final Determination dated September 14, 1988.

PERMITTEE: Pasco County Permit Number: PSD-FL-127

GENERAL CONDITIONS:

- 1. The terms, conditions, requirements, limitations, and restrictions set forth herein are "Permit Conditions" and as such are binding upon the permittee and enforceable pursuant to the authority of Sections 403.161, 403.727, or 403.859 through 403.861, Florida Statutes. The permittee is hereby placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of the "Permit Conditions" by the permittee, its agents, employees, servants or representatives.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in Subsections 403.087(6) and 403.722(5), Florida Statutes, the issuance of this permit does not convey any vested rights or any exclusive privileges. Nor does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations. This permit does not constitute a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in the permit.
- 4. This permit conveys no title to land or water, does not constitute state recognition or acknowledgement of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the state. Only the Trustees of the Internal Improvement Trust Fund may express state opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or velfare, animal, plant or aquatic life or property and penalties therefore caused by the construction or operation of this permitted source, nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.

Page 2 of 13

PERMITTEE: Pasco County Permit Number: PSD-FL-127

GENERAL CONDITIONS:

- 6. The permittee shall at all times properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit, as required by department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized department personnel, upon presentation of credentials or other documents as may be required by law, access to the premises, at reasonable times, where the permitted activity is located or conducted for the purpose of:
 - a. Having access to and copying any records that must be kept under the conditions of the permit:
 - Inspecting the facility, equipment, practices, or operations regulated or required under this permit;
 and
 - c. Sampling or monitoring any substances or parameters at any location reasonably necessary to assure compliance with this permit or department rules.

Reasonable time may depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately notify and provide the department with the following information:
 - a. a description of and cause of non-compliance; and
 - the period of noncompliance, including exact dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance.

Page 3 of 13

PERMITTEE: Pasco County Permit Number: PSD-PL-127

GENERAL CONDITIONS:

The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or revocation of this permit.

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source, which are submitted to the Department, may be used by the Department as evidence in any enforcement case arising under the Florida Statutes or Department rules, except where such use is proscribed by Sections 403.73 and 403.111, Florida Statutes.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance, provided however, the permittee does not vaive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Florida Administrative Code Rules 17-4.12 and 17-30.30, as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit is required to be kept at the work site of the permitted activity during the entire period of construction or operation.
- 13. This permit also constitutes:
 - (x) Determination of Best Available Control Technology (BACT)
 - (x) Determination of Prevention of Significant Deterioration (PSD)
 - (x) Compliance with New Source Performance Standards.
- 14. The permittee shall comply with the following monitoring and record keeping requirements:
 - a. Upon request, the permittee stall furnish all records and plans required under Department rules. The retention period for all records will be extended automatically, unless otherwise stipulated by the department, during the course of any unresolved enforcement action.

PERMITTEE: Pasco County Permit Number: PSD-FL-127

GENERAL CONDITIONS:

- The permittee shall retain at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation), copies of all reports required by this permit, and records of all data used to complete the application for this permit. The time period of retention shall be at least three years from the date of the sample, measurement, report or application unless otherwise specified by Department rule.
- c. Records of monitoring information shall include:
 - the date, exact place, and time of sampling or measurements:
 - the person responsible for performing the sampling or measurements;
 - the date(s) analyses were performed;
 - the person responsible for performing the analyses;
 - the analytical techniques or methods used; and
 - the results of such analyses.
- 15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware that relevant facts were notsubmitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be submitted or corrected promptly.

SPECIFIC CONDITIONS:

- 1. Municipal Solid Waste Combustor
 - a. Each of the three municipal waste combustors (MWC) shall have a design rated capacity of 350 tons municipal solid waste (MSW) per day, 140 million Btu heat input per hour, assuming a heating value of 4,800 Htm per pound.
 - The maximum individual MWC's throughput shall not exceed The maximum includual mwc a charging rate of 350 TPD or the heat input rate of 140 MMBTU/hr.

Page 5 of 13

MO/Report No. 937

PERMITTEE: Pasco County Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

the furnace mean temperature at the fully mixed zone of the combustor shall not be less than 1,800°F.

T^

- d. The normal operating range of the MWC shall be 80% to a maximum of 114% of design rated capacity.
- e. The MWC shall be fueled with municipal solid waste only. Other wastes shall not be burned without specific prior written approval of Florida DER.
- f. Auxiliary fuel burner(s) shall be fueled only with natural gas. If the annual capacity factor for gas is greater than 10%, as determined by 40 CFR 60.43b(d), the facility shall be subject to 40 CFR 60.44b, standards for nitrogen oxides.
 - g. Auxiliary fuel burner(s) shall be used at start up during the introduction of MSW fuel until design furnace gas temperature is achieved.
 - h.: The facility may operate continuously (8760 hrs/yr).
- 2. Air Pollution Control Equipment Design
 - a. Each MWC shall be equipped with a baghouse for particulate emission control.
 - b. Each MWC shall be equipped with a dry scrubber for acid gas control, to remove at least 70% of SO₂ and 90% of other acid gases (namely HCL, H₂SO₄ mist, and fluorides.
 - c. The acid gas emission control system shall be capable of cooling flue gases to an average temperature not exceeding 300°F (3-hour rolling average).
 - d. DER shall be notified of the control devices chosen.
- 3. Flue gas emissions from each writ shall not exceed the following:
 - a. Particulate:

0.0150 grains/dscf corrected to 12% CO2

b. Sulfur Dioxide:

104 ppmdv corrected to 7% O2 3-hour (rolling) average, and 60 ppmdv corrected to 7% O2 6-hour rolling average;

Page 6 of 13

PERMITTEE: Pasco County Permit Number: PSD-PL-127

SPECIFIC CONDITIONS:

ar

70% reduction of uncontrolled 502 emissions, 6-hour rolling average. Not to exceed 100 ppmdv corrected to 7% 02, 6-hr rolling average.

c. Nitrogen Oxides:

0.643 15/MMBtu heat input.

d. Carbon Monoxide:

400 ppmdv corrected to 7% 02, 1-hr average, and 100 ppmdv corrected to 7% 07, 8-hr rolling average.

- e. Volatile Organic Compounds:
- 0.021 15/MMBtu Leut input

f. Lead:

0.0007 lb/MMBtu heat input

g. Fluoride:

0.008 15/MMBtu heat input

h. Beryllium:

1.35 x 10^{-7} lb/MMBtu heat input

i. Mercury:

0.0008 lb/MMBtu heat input

j. Visible Emissions:

Opacity of MWC emissions shall not exceed 15% opacity (6-min. average), except for one 6-min. period per hour of not more than 20% opacity. Excess emissions resulting from startup, shut down, or malfunction shall be permitted provided that best operational practices to minimize emissions are adhered to, and the duration of excess emissions are minimized.

For each pollutant for which a continuous emissions monitoring system is required in Condition No. 5, the emission averaging time specified above shall be used to establish operating limits and reportable excess emissions.

PERMITTEE: Pasco County Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

neco/Report No. 237

Compliance with the permit emission limits shall be determined by EPA reference test methods included in 40 CFR Parts 60 and 61, 1987 version, and listed in Condition No. 4 of this permit. Other DER approved methods may be used only after prior Departmental approval.

For the purpose of establishing specific increment consumption for TSP and SO2 at the facility, an hourly emission rate shall be established for each pollutant at the time of performance testing using flue gas flow rates (corrected to 12% CO2 or 7% O2 at furnace capacity as appropriate) and the applicable concentration limits established above for TSP and SO2. Projected emissions are listed below, based on 4800 Btu/lb heat content and 350 TPD MSW charging rate for each combustor (140 MMBTU/hr). Maximum emissions will be 14% above the tabulated values below and will occur at 114% of the design heat input rate.

Pollutant	lb/MMBtu Reat Input	Projected Emissions lb/hr 100%
Particulate	0.0322	4.5
Sulfur Dioxide	0.224	31.4
Nitrogen Oxides	0.643	90.0
Carbon Monoxide	0.098 1, 0.391 2	13.7 1, 54.7 2
Volatile Organics	0.021	2.9
Fluoride	0.008	1.1
Hydrogen Chloride	0.127	17.8
Sulfuric Acid Mist	0.035	50
Lead	7 × 10 ⁻⁴	0.098
Mercury	8 x 10-4	0.112
3eryllium	1.35×10^{-7}	1.9×10^{-5}
Arsenic	9.1 × 10 ⁻⁶	1.3 × 10 ⁻³
1 8-hr average 2 1-hr average		

Page 8 of 13

PERMITTEE: Pasco County Permit Number: PSD-FL-127:

SPECIFIC CONDITIONS:

The combustors are subject to 40 CFR Part 60, Subpart E, and Subpart Db, New Source Performance Standards (NSPS), except that where requirements within the permit are more restrictive, the requirements of the permit shall apply.

4. Compliance Tests

- a. Initial compliance tests for particulate matter, SO2, nitrogen oxides, CO, VOC, lead, fluorides, mercury and beryllium shall be conducted in accordance with 40 CFR 60.8 (a), (b), (d), (e), and (f).
- b. Annual compliance test(s) for particulate matter and nitrogen oxides shall be performed.
- c. Compliance with the opacity standard shall be determined in accordance with 40 CFR 60.11(b) and (e).
- d. Compliance with the requirement for 70% control of sulfur dioxide emissions will be determined by using the test methods in Condition 4.f. below or a continuous emission monitoring system for 500 emissions, before and after the air pollution control equipment, which meets the requirements of Performance Specification 2 of 40 CFR 60, Appendix 3.
- e. The compliance tests shall be conducted within +10% of the design rated capacity for each permitted fuel.
- f. Prior DER approval shall be obtained for the location of the source sampling platform(s). The following test methods and procedures of 40 CFR Parts 60 and 61 (1987 version) or other DER approved methods with prior DER approval shall be used for compliance testing:
 - (1) Method 1 for selection of sample site and sample traverses.
 - (2) Method 2 for determining stack gas flow rate.
 - (3) Method 3 or 3A for cas analysis for calculation of percent O₂ and CO₂.
 - (4) Method 4 for determining stack gas moisture content to convert the flow race from actual standard cubic faet to dry standard cubic faet.
 - 5) Method 5 or Method 17 for concentration of particulate matter.

Page 9 of 13

PERMITTEE: Pasco County Permit Num

Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

- (6) Method 9 for visible determination of the opacity of emissions as required in this permit in accordance with 40 CFR 60.11.
- (7) Method 6, 6C, or 8 for concentration of SO2.
- (8) Method 7, 7A, 7B, 7C, 7D, or 7E for concentration of nitrogen oxides.
- (9) Method 10 for determination of CO concentration.
- (10) Method 12 for determination of lead concentration.
- (11) Method 13B for determination of fluoride concentrations.
- (12) Method 25 for determination of VOC concentration.
- (13) Method Tolk for determination of mercury emission rate.
- (14) Method 104 for determination of beryllium emission rate.
- g. The permittee shall submit to DER a list of the pertinent operating parameters which indicate proper operation of the control equipment.
- 5. Continuous Emission Monitoring

Continuous emission monitors for opacity, oxygen, carbon monoxide, carbon dioxide, and sulfur dioxide shall be installed, calibrated, maintained and operated for each unit.

- a. Each continuous emission monitoring system (CEMS) shall meet performance specifications of 40 CFR 60, Appendix 8. The SO2 CEMS sample point shall be located downstream of control devices for each unit.
- b. CEMS data shall be recorded during periods of startup, shutdown and malfunction but shall be excluded from emission averaging calculations for CO, SO2, and opacity.

PERMITTEE: Pasco County Per

Permit Number: PSU-PL-127

SPECIFIC CONDITIONS:

c. A malfunction means any sudden and unavoidable failure of air pollution control equipment or process equipment to operate in a normal or usual manner. Failures that are caused entirely or in part by poor maintenance, careless operation, any other preventable upset condition, or preventable equipment breakdown shall not be considered malfunctions.

T^

- d. The procedures under 40 CFR 60.13 shall be followed for installation, evaluation and operation of all CEMS.
- e. Opacity monitoring system data shall be reduced to 6-minute averages, based on 36 or more data points, and gaseous CEMS data shall be reduced to 1-hour averages; based on 4 or more data points, in accordance with 40 CFR 60.13(h).
- f. Average CO and SO₂ emission concentrations, corrected for O₂, shall be computed in accordance with the appropriate averaging time periods included in Condition No. 3.
- g. For purposes of reports required under this permit, excess emissions are defined as any calculated average emission concentration, as determined pursuant to Condition No. 3 herein, which exceeds the applicable emission limit in Condition No. 3.

6. Operations Monitoring

- a. Devices shall be installed to continuously monitor and record steam production, furnace exit gas temperature (FEGT) and flue gas temperature at the exit of the acid gas control equipment. A FEGT to combustion zone correlation shall be established to relate furnace temperature at the temperature monitor location (as close to fully mixed zone as possible) to furnace temperature in the overfire air fully mixed zone.
- b. The furnace heat load shall be mintained between 30% and 114% of the design rated capacity during normal operations. The lower limit may be extended provided compliance with the carbon monoxide emissions limit and the FEGT within this permit at the extended turndown rate are achieved.

: 7. Reporting

a. A minimum of fifteen (15) days prior notification of compliance testing shall be given to the DER Southwest District Office.

Page 11 of 13

PERMITTEE: Pasco County Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

- b. The results of compliance test shall be submitted to the DER district office within 45 days after completion of the test.
- for any calendar quarter during which there are excess emissions from the facility. If there are no excess emissions during the calendar quarter, the owner or operator shall submit a report semiannually stating that no excess emissions occurred during the semiannual reporting period. The report shall include the following:
 - (1) The magnitude of excess emissions computed in accordance with 40 CFR 60.13(h), any conversion factors used, and the date and time of commencement and completion of each period of excess emissions (60.7(c)(1)).
 - (2) Specific identification of each period of excess emissions that occurs during startups, shutdowns, and malfunctions of the furnace boiler system. The nature and cause of any malfunction (if known) and the corrective action taken or preventive measured adopted (60.7(c)(2)).
 - (3) The date and time identifying each period during which the continuous monitoring system was inoperative except for zero and span checks, and the nature of the system repairs of adjustments (60.7(c)(3)).
 - (4) When no excess emissions have occured or the continuous monitoring system has not been inoperative, repaired, or adjusted, such information shall be stated in the report (60.7(c)(4)).
 - (5) The owner or operator shall maintain a file of all measurements, including continuous monitoring systems performance evaluations; monitoring systems or monitoring device calibration; checks; adjustments and maintenance performed on these systems or devices; and, all other information required by this permit recorded in a permanent form suitable for inspection (60.7(d)).

Page 12 of 13

PERMITTEE: Pasco County Permit Number: PSD-FL-127

SPECIFIC CONDITIONS:

- 8. The construction shall reasonably conform to the plans and schedule submitted in the application. If the permittee is unable to complete construction on schedule, the Department must be notified in writing (Rule 17-2, F.A.C.).
 - 9. Any change in the method of operation, fuels, equipment or operating hours shall be submitted for approval to DER's district office.
 - 10. This facility shall be operated in such a manner so as to preclude objectionable odors pursuant to F.A.C. Rule 17-2.600(1).
 - 11. All reasonable precautions shall be taken to prevent and control generation of unconfined emissions of particulate matter in accordance with F.A.C. Rule 17-2.610(3).
 - 12. The permittee shall comply with all the applicable provisions of F.A.C. Chapter 17-2, 17-4, and 40 CFR 60 and 61.

Issued this 32 day of 20, 1988

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION

Dale Twachtmann, Secretary

Page 13 of 13

Procedure for Start up and Shut down

4. MWC UNIT STARTUP, SHUTDOWN, AND MALFUNCTION PROCEDURES

4.1 MWC UNIT STARTUP PROCEDURES

4.1.1 COMBUSTION UNIT STARTUP

This procedure covers the startup of one unit consisting of the boiler and its auxiliaries as well as all associated air pollution control equipment. The procedure assumes that other units are already in normal operation and all plant systems that are common to all units are also operating in a normal manner.

VERIFY THAT ALL SAFETY CLEARANCES HAVE BEEN PROPERLY RELEASED BEFORE PREPARING THE UNIT FOR SERVICE.

- 1. Verify Scrubber and Baghouse flyash hopper heaters have been energized and operating properly for approximately 24 hours.
- 2. Check that feed chute, feed rams and table, grate surface, clinker rollers, ash discharger, and boiler fans are clear of personnel, tools and debris and are ready for service.
- 3. Verify that overfire air nozzles in front and rear walls of furnace are clear-of slag and ready for service.
- 4. Verify feed chute cooling water system is full, vented, and ready for service.
- 5. Check that all access plates in feeder area are closed and locked.
- 6. Check that all access doors in feeder riddling hoppers and ducts are closed.
- 7. Verify power to the MARTIN control panel.
- 8. Verify that grate and auxiliaries' lubrication system is now placed into service.
- 9. Verify residue and fly ash handling equipment are ready for service.
- 10. Verify power to unit instrumentation in control room.
- 11. Verify correct operation of orifice damper position indicators in the control room.

 Leave dampers in closed position.

- 12. Verify water level in ash discharger and check setting of float valve. Normal water level 18 inches below the upper edge of the ash discharger.
- 13. Inspect grate hydraulic system and verify availability for service.
- 14. Start one hydraulic pump, check the system and verify:
 - System pressure is 1500 psig.
 - Feed chute dampers open and reclose.
 - Feed ram operation from the local pushbuttons.
 - Grate operation from the local pushbuttons.
 - Clinker roller operation.
 - Ash discharger operation.
- 15. Allow pump to run for approximately 3 minutes after completing Item 14. Start standby pump. Check for proper operation of the stand-by pump and that system pressure is 1500 psig. Secure Stand-by pump.
- 16. Verify operability of riddlings flap, pneumatic cylinders.
- 17. Ensure seal air filter dampers are open and filter is clean.
- 18. Record Stoker Operating Hours in the control room.
- 19. Close boiler and economizer drains.
- 20. Open boiler vents.
- 21. Verify the main stop/check, angle valve as well as main steam supply valves are closed and associated drains are open.
- 22. Open superheater vents and drains.
- 23. Open economizer inlet stop valve.
- 24. Set Feedwater Regulator to "Manual" and close the valve.
- 25. Open Feedwater Regulating stop valves and ensure the by-pass valve is closed.
- 26. Commence filling the boiler by manually opening the Feedwater Regulator to achieve a flow rate of approximately 20,000 lbs/hr. Stop filling when approximately -5 inches is indicated in the drum.

- 27. Inspect Baghouse and Scrubber systems. Verify personnel, tools, and debris have been removed. Close all access doors and ports.
- 28. Open Baghouse compartment outlet dampers and verify that the bypass damper is closed.
- 29. Open the inlet dampers on baghouse compartments #1 & #2.
- 30. The Induced Draft Fan will be in the fail "Open" position, start the Induced Draft Fan and ensure the damper closes and the fan starts: inspect and verify satisfactory operation.
- 31. Set Induced Draft Fan damper controller to "Automatic" to hold -0.2 inches of H₂O.
- 32. Start the Seal Air Fan, inspect and verify satisfactory operation.
- 33. Close Underfire Air Dampers in accordance with the Startup Curve "Step 1" and set the Overfire Air Dampers to 0% opening.
- 34. Set Forced Draft Fan damper controller to "Manual" and close them.
- 35. Attempt to start both the Overfire and Forced Draft Fans. They should <u>not</u> start due to Low Drum Level Interlock.
- 36. Continue filling the boiler to a level of -2 inches as indicated by the eye-hye or drum level controller.
- 37. The Forced Draft Fan damper will be in the fail "Open" position, start the Forced Draft Fan and ensure the damper closes and the fan starts: inspect and verify satisfactory operation.
- 38. The Overfire Fan damper will be in the fail "Open" position, start the Overfire Fan and ensure the damper closes and the fan starts: inspect and verify satisfactory operation.
- 39. Shutdown the Induced Draft Fan and verify that the Overfire and Forced Draft Fans trip.
- 40. Verify stoker controls are as follows:
 - Feeders (all) "ON"
 - Interlock "OFF"
 - Speed 15%
 - Stroke 8.2 inches

- Grates (all) "ON"
 - Interlock "OFF"
 - Speed 15%
- Optimizing Controller "OFF"
 - Running Time 75%
- Fuel Combustion Controller Setpoint 0%
 - Furnace Temperature Mode
- UFA Dampers (all) "MANUAL"
 - Closed
- OFA Dampers (all) Closed
- Riddling Flaps Cycle 1 (off)
- 41. Verify the following conditions on the air pollution control equipment
 - Lime Slurry system in operation and ready for service.
 - Flyash Handling Equipment inspected and ready for service.
- 42. Start the Induced Draft Fan. Verify satisfactory operation.
- 43. Place ID Fan damper control in "AUTO" and the furnace pressure setpoint for -0.2 inches WG.
- 44. Start the Seal Air Fan, place in auto. Verify satisfactory operation.
- 45. Start the Forced Draft Fan. Verify satisfactory operation.
- 46. Place FD Fan inlet damper control in AUTO and set fan discharge pressure for 16 inches WG.
- 47. In accordance with burner management requirements, purge and light off the propane gas burners.
- 48. Shutdown the Forced Draft Fan.
- 49. In accordance with the boiler startup curve slowly increase the gas-burner firing rates to achieve gas temperature of at least 300°F at the Baghouse inlet.
- 50. Upon reaching 300°F at the Baghouse inlet, start the Forced Draft Fan. Verify satisfactory operation.
- 51. Place FD Fan inlet damper control in AUTO and set fan discharge pressure for 16 inches WG.

- 52. Cut in the steam supply to the combustion air preheater.
- 53. Start the boiler, scrubber and baghouse residue/flyash handling equipment.
- 54. Maintain 300°F at the Baghouse inlet and allow the Baghouse to warmup while the boiler is brought online.
- 55. Upon completion of the baghouse warmup, start the scrubber air compressors. Verify satisfactory operation.
- 56. Start the Slurry Feed Pump. Verify satisfactory operation.
- 57. Align the lime feed system to the reactor feed tank.
- Monitor furnace roof temperature. If temperature is less than 1200°F, adjust the gas burners to achieve a stable gas temperature of at least 1200°F. (Permit requires that roof temperature be equal to or greater than 1166°F when MSW is being combusted.)
- 59. Set ID and FD Fan dampers' controls to "MANUAL" and reduce Furnace pressure to 0 inches WG.
- 60. Prepare to fill the feedchute with the gas burners in service:
 - The initial several charges of refuse should be selected for apparent dryness and burning qualities.
 - Open the feedchute damper long enough to distribute a grapple full of refuse, keeping the furnace pressure slightly negative; then close the feedchute damper.
 - Repeat the above step until the feedchute is full and the boiler is sealed...
- 61. After charging the hopper, stroke the feeder with several 20 inch strokes.
- 62. Light off the refuse at the feeder table.
- 63. Set ID Fan damper control to "AUTO". Adjust Furnace Pressure-for-0.2 inches WG.
- 64. Increase gas burner firing rates to hold 1200°F gas temperature at furnace roof. Continue to monitor roof temperatures and verify gas temperature is maintained at least 1200°F.
- 65. Set FD Fan damper control to "AUTO". Adjust discharge pressure for 16 inches WG.

- 66. Start the following equipment:
 - Stoker Grease Pump
 - Ash Discharger 40% speed (interlocked)
 - Clinker Rollers 10% speed (interlocked)
 - Riddling Flaps Cycle 1
- 67. Start the Overfire Air Fan, ensure a minimum of 4 inches WG for the front and rear headers. Verify satisfactory operation.
- 68. Set Underfire Air dampers to "AUTO".
- 69. Set the Grate to "On" and interlocked.
- 70. Adjust the Fuel Combustion Controller set point approximately 2.5% above the actual gas temperature. Verify the grates start.
- 71. Set the Feeders to "ON" and interlocked. Verify satisfactory burning across the feeder table.
- 72. Check burning conditions on the grate and if satisfactory, open the front and rear Overfire Air dampers to 6 inches WG.
- 73. Slowly decrease the gas burners firing rates. Verify that the furnace gas temperature is continuously at least 1200°F and that the Fuel Combustion Controller adjusts the grates and feeder to hold gas temperature set point. Make small, step decreases to the gas burner firing rates and allow the refuse fire to stabilize at setpoint each time.
- 74. Observe the fire development on the grate. In the event of a poor fire, periodically stop the feeders and grates. This will allow a smooth fire to develop on the grates before being covered by new, wet refuse. During this phase, it is absolutely necessary to observe the refuse feed and fire development continuously. On the basis of these observations manually adjust, as necessary, the feeder and grate speeds as well as the Underfire Air damper openings.
- 75. When the gas burner firing has been reduced to 50% and the refuse fire is stable, open the front and rear Overfire Air dampers to 10 inches WG.
- 76. Continue reducing the gas burner firing until minimum load is reached on each. If refuse fire is stable and at least 1200°F gas temperature is maintained at the furnace roof thermocouple, shutdown the gas burners.

- 77. Partly close the superheater drains and manual vents when a steady flow of dry steam occurs at each. Leave sufficiently cracked to ensure some flow through the superheater.
- 78. As necessary, adjust Fuel Combustion Controller set point to achieve 830°F superheat outlet temperature and 865 psig. Be sure to continuously maintain furnace gas temperature above 1166°F.
- 79. Upon achieving 865 psig boiler pressure, allow boiler conditions to stabilize.
- 80. Slowly release the stop handle on the boiler stop/check valve and verify the check remains closed.
- 81. Slowly open the bypass around the main steam supply valve and allow the main steam header to warm up.
- 82. When the line is thoroughly warmed, close the drains and slowly open the main steam supply valve.
- 83. Verify main steam pressure exceeds the boiler pressure by approximately 15 psig and superheater outlet temperature is approximately 830°F.
- 84. Gradually increase the Fuel Combustion Controller set point until the boiler pressure equals and then slightly exceeds the main steam pressure.
- 85. Verify flow through the boiler stop/check valve and indication of flow on the main steam flow meter.
- 86. Close the superheater vents and drains.
- 87. Continue to slowly increase the Fuel Combustion Controller set point and verify increasing main steam flow. Monitor boiler pressure, main steam temperature and furnace gas temperature.
- When all conditions are stable, switch the Fuel Combustion Controller to "STEAM FLOW" mode and adjust the set point to 67% This corresponds to a steam flow of 60,546 lbs/hr.
- 89. Open superheater Attemperator stop valves and adjust the Attemperator set point to 830°F final steam temperature.

- 90. Gradually increase the boiler output to the desired level by increasing the Fuel Combustion Controller Setpoint in steps, approximately 3% every 5 minutes. Stoker setting table should be referred to for the different steam output.
- 91. The following conditions should be monitored and maintained:
 - Economizer outlet O₂ 8.5% to 9.5%.
 - Furnace gas temperature at roof thermocouple 1750°F maximum.
 - Front and rear overfire air dampers must be set such that flames never reach above the furnace refractory.
 - Underfire air pressure in plenum must be 16 inches WG at all times.
- 92. Increase boiler load utilizing settings in accordance with the Stoker Table.
- 93. Turn on the Optimizing Controller.
 - Set the Fuel Combustion Controller to O₂ mode and the setpoint to 7.5%.
 - Adjust Air Combustion Controller by steps to the desired boiler load.

-ALWAYS EXERCISE SAFETY-

4.1.2 COMBUSTION UNIT HOT RESTART

This procedure covers the hot restart of one unit consisting of the boiler and its auxiliaries as well as all associated air pollution control equipment. The procedure assumes that plant systems which are common to all units are already operating in a normal manner.

VERIFY THAT ALL SAFETY CLEARANCES HAVE BEEN PROPERLY RELEASED BEFORE PREPARING THE UNIT FOR SERVICE.

- 1. Verify power to the MARTIN control panel.
- 2. Verify power to unit instrumentation in control room.
- 3. Verify water level in ash discharger and check setting of float valve.
- 4. Record Stoker Operating Hours in the control room.
- 5. Check reactor lime system and prepare slurry.
- 6. Ensure the baghouse inlet and outlet dampers are open and the by-pass dampers are closed.
- 7. Close the Superheater Attemperator stop valves.
- 8. Open main steam lead drains.
- 9. Verify stoker controls are as follows:
 - Feeders (all)- "ON"
 - Interlock "OFF"
 - Speed 15%
 - Stroke 8.2 inches
 - Grates (all)- "ON"
 - Interlock "OFF"
 - Speed 15%
 - Optimizing Controller "OFF"
 - Running Time 67%
 - Fuel Combustion Controller Setpoint 0%
 - Furnace Temperature Mode
 - UFA Damper Controllers "MANUAL"
 - Opening Step 1
 - UFA Dampers (all) "AUTO"
 - OFA Dampers (all) "AUTO"
 - Riddling Flaps Cycle 1 (off)

- 10. Start one stoker hydraulic pump. Verify satisfactory operation.
- 11. Start the Induced Draft Fan. Verify satisfactory operation.
- 12. Place ID Fan damper control in "AUTO" and set furnace pressure for -0.2 inches WG.
- 13. Start the Seal Air Fan. Verify satisfactory operation.
- 14. Set the Forced Draft Fan damper control to "Manual" and close them.
- 15. Start the Forced Draft Fan. Verify satisfactory operation.
- 16. Verify the Lime Slurry System is aligned properly. Verify satisfactory operation.
- 17. Verify furnace roof temperature is greater than 1265°F. If not, purge and light off the natural gas burners in accordance with burner management requirements. Set the burner controls for 1365°F gas temperature and allow furnace roof temperature to reach setpoint.
- 18. Place FD Fan damper control in AUTO and set fan discharge pressure for 16 inches WG.
- 19. Start the Overfire Air Fan. Verify satisfactory operation.
- 20. Start the following equipment:
 - Stoker Grease Pump
 - Ash Discharger 40% speed (interlocked)
 - Clinker Rollers 50% speed (interlocked)
 - Riddling Flaps Cycle 1
- 21. Set Underfire Air dampers to "AUTO".
- 22. Set the Grate to "ON" and interlocked.
- 23. Adjust the Fuel Combustion Controller set point approximately 2.5% above the actual gas temperature. Verify the grates start.
- 24. Set the Feeders to "ON" and interlocked. Verify satisfactory burning across the feeder.

- 25. Check burning conditions on the grate and if satisfactory, open the front and rear Overfire Air dampers to maintain 4 inches WG.
- 26. Slowly decrease the gas burners firing rates. Verify that the furnace gas temperature is continuously at least 1325°F and that the Fuel Combustion Controller adjusts the grates and feeder to hold gas temperature set point. Make small, step decreases to the gas burner firing rates and allow the refuse fire to stabilize at setpoint each time.
- 27. Observe the fire development on the grate. In the event of a poor fire, periodically stop the feeders and grates. This will allow a smooth fire to develop on the grates before being covered by new, wet refuse. During this phase, it is absolutely necessary to observe the refuse feed and fire development continuously. On the basis of these observations manually adjust, as necessary, the feed and grate speeds as well as the Underfire Air damper openings.
- 28. Open superheater attemperator stop valves and adjust the Final Attemperator set point to 700°F.
- 29. When the gas burner firing has been reduced to 50% and the refuse fire is stable, open the front and lower rear Overfire Air dampers to 10 inches WG.
- 30. Continue reducing the gas burner firing until minimum load is reached on each. If refuse fire is stable and at least 1325°F gas temperature is maintained at the furnace roof thermocouple, shutdown the gas burners.
- 31. Partly close the main steam drains when a steady flow of dry steam occurs at each. Leave sufficiently cracked to ensure some flow through the superheater.
- 32. As necessary, adjust Fuel Combustion Controller set point to achieve 830° superheat outlet temperature and 865 psig. Be sure to continuously maintain greater than 1200°F furnace roof temperature.
- 33. Slowly increase the Fuel Combustion Controller set point and verify increasing main steam flow and generator load. Monitor boiler pressure, main steam temperature and furnace gas temperatures.
- 34. When all conditions are stable switch the Fuel Combustion Controller to "STEAM FLOW" mode and adjust the set point to 62%. This corresponds to a steam flow of 56,027 lbs/hr.

- 35. Gradually increase the boiler output to the desired level by increasing the Fuel Combustion Controller setpoint in steps, approximately 3% every 5 minutes. Stoker setting table should be referred to for the different steam output.
- 36. The following conditions should be monitored and maintained:
 - Economizer outlet 0₂ 7% to 8%.
 - Furnace roof temperature 1600°F maximum.
 - Underfire air pressure in plenum must be 16 inches WG at all times.
- 37. Increase boiler load utilizing settings in accordance with the Stoker Settings Table.
- 38. Turn on the Optimizing Controller.
- 39. Select the appropriate underfire air flow for the actual steam flow.
- 40. Front and rear overfire air dampers must be set such that flames never reach above the furnace refractory.
- 41. Set the Fuel Combustion Controller to 0_2 mode and the setpoint to 7.5% (30% on the Controller).

4.2 MWC UNIT SHUTDOWN PROCEDURES

4.2.1 COMBUSTION UNIT SHUTDOWN

This procedure covers the shutdown of one unit consisting of the boiler and its auxiliaries as well as all associated air pollution control equipment. The procedure assumes the second unit will remain in normal operation and all plant systems that are common to both units will continue operating in a normal manner.

- 1. Discontinue feeding refuse to the feedchute hopper.
- 2. Turn off the Air Combustion Controller by setting the Underfire Air dampers to "Manual".
- Switch the Fuel Combustion Controller to "STEAMFLOW" mode and reduce set point to 60%.
- 4. Monitor furnace roof temperature and verify in excess of 1265°F is maintained.
- 5. Monitor refuse level in the feedchute and close the feedchute damper when refuse has dropped below that level.
- 6. Light off the gas burners and adjust firing rate to hold in excess of 1265°F gas temperature.
- 7. When steam flow has dropped below 54220 lbs/hr:
 - Turn off the Optimizing Controller.
 - Set Feeder speed to 45%.
 - Set Feeder stroke to 10.2 inches.
- 8. Adjust gas burners firing rate set to hold in excess of 1200°F actual furnace gas temperature.
- 9. When refuse stops falling from the feedtable increase the feeder stroke 10 inches every 5 minutes.

10. Adjust the Front Overfire Air Header to 8 inches WG and close the Rear Overfire Air damper.

- 11. Approximately 10 minutes after the feeder stroke reaches 50 inches, verify the Feeder table is empty. If so:
 - Close the Front Overfire Air damper.
 - Turn Feeders off.
 - Shutdown Overfire Air Fan.
- 12. When refuse on the Grate is burned out:
 - Turn the Grate off.
 - Start a Riddlings Flap sequence.
- 13. When the Riddlings Flap sequence is completed, turn the Riddlings Flaps off.
- 14. Shutdown, Secure and flush the Air Pollution Control system equipment.
- 15. If the unit shutdown is scheduled for more than 4 hours, manually cycle the Baghouse system through two complete cleanings. If the shutdown is to be less than 4 hours, a single, light manual cleaning is to be done.
- 16. Gradually reduce the steam flow to 10,000 lbs/hr. by decreasing the Gas Burner firing rate.
- 17. Slowly open the superheater outlet drains and vents until fully open and close the superheater outlet valve.
- 18. When the superheater outlet valve is fully closed:
 - Manually close the Underfire Air Dampers.
 - Reduce Forced Draft Fan discharge pressure to 0 inches WG.
- 19. Shutdown the Forced Draft Fan.
- 20. Shutdown the Seal Air Fan.
- 21. Shutdown and secure the gas burners.
- 22. Isolate the steamside of the combustion air preheater.
- 23. Close the stop valves to the superheater attemperators.
- 24. Initiate a final cleaning cycle for the Baghouse system.

- 25. After approximately 1 hour, shutdown:
 - Clinker rollers
 - Ash Dischargers
 - Grease Pump
 - Hydraulic Pumps
- 26. Close boiler blowdowns.
- 27. Monitor and maintain a drum level of +1.0° as indicated on the level controller.
- 28. After approximately 15 hours, shut down:
 - Flyash handling system
 - Superheater ash hopper flap gates
 - Baghouse ash hopper heaters
- 29. When boiler pressure is below 40 psig open drum vents and Primary and Secondary Superheater drains.

Operation and Maintenance Plan

- Volume 1 is a generic Ogden Martin Manual for all Ogden Martin facilities and is not specific to this facility.
- 2. The operation and maintenance plan manual is comprised of a large 3 ring binder. The cover pages and table of contents are copied and attached herein. A complete copy of the manual is at the site and available for review.

PASCO RESOURCE RECOVERY FACILITY

ENVIRONMENTAL COMPLIANCE OPERATING MANUAL

VOLUME I

"QUALITY ASSURANCE"

OGDEN MARTIN SYSTEMS OF PASCO, INC. SPRING HILL, FLORIDA

TABLE OF CONTENTS

1.0	INT	RODUCTION	1-1
2.0	Stag Stag Stag Stag	TRONMENTAL COMPLIANCE PROCEDURES ge 1 - Waste Receiving and Screening ge 2 - Pit Management ge 3 - Combustor Operations ge 4 - Residuals and Chemicals Management entenance Activities	2-1 2-3 2-10 2-18 2-25 2-39
3.0	REC	CORDKEEPING AND REPORTING	3-1
4.0	EMI	PLOYEE TRAINING	4-1
5.0	EMI	ERGENCY RESPONSE	5-1
APPENI	OIX A	FACILITY OVERVIEW	
APPENI	OIX B	PERMIT REQUIREMENTS	
APPENI	OIX C	CONTINUOUS ENVIRONMENTAL IMPROVEN	IENT
APPENI	OIX D	CORPORATE INTERACTION AND SUPPORT	
APPFNIT	DIX F	FNVIRONMENTAL MANAGEMENT SYSTEMS	

LIST OF FIGURES

		Following Page
1-1	Facility Operating Stages	1-3
1-2	Organization Chart	1-3
1-3	Layout of Environmental Quality Manual	1-3
1-4	Example of Environmental Compliance Procedure	1-3
2-1	Unacceptable and Atypical Wastes	2-1
C-1	Quality Improvement Process Framework	C-1

LIST OF TABLES

		Following Page
5-1	Reportable Quantity (RQ) List	5-3
5-2	Content of Oral Spill Report	5-3
5-3	SPCC Notification Form	5-3
5-4	Spill History	5-3
5-5	Information for Emergency Plan	5-3
C-1	Price of Noncompliance	C-2
C-2	Training Course Record	C-11
C-3	Personal Training Record	C-11

PASCO RESOURCE RECOVERY FACILITY

ENVIRONMENTAL COMPLIANCE OPERATING MANUAL

VOLUME II

"OPERATIONS TRAINING"

OGDEN MARTIN SYSTEMS OF PASCO, INC. SPRING HILL, FLORIDA

Table of Contents

Section 1	-	Summary of the Applicable Standards Under 40 CFR 60 Subpart Ea, § 60.56a
1.1	-	Air Containment Discharge Permit Summary - Ogden Martin Systems of Pasco, Inc.
1.2	-	40 CFR 60 Subpart Ca, § 60.30 - 60.39a, and Subpart Ea, § 60.50a - 60.59a
Section 2	-	Description of Basic Combustion Theory Applicable to a MWC Unit
2.1	-	Combustion and Gas Reactions Text
2.2 2.2.1 2.2.2 2.2.3	-	Combustion Principles I: Complete Combustion Combustion Principles II: Thermochemistry Combustion Principles III: Reaction Rates
Section 3	-	Procedures for Receiving, Handling, and Feeding MSW
3.1 3.1.1 3.1.2		Procedures for Receiving MSW Rules and Regulations for Waste Delivery Haulers Unacceptable and Hazardous Waste Program
3.2 3.2.1 3.2.2		Procedures for Handling MSW Refuse Pit Management Preparing Fuel with the Refuse Cranes
3.3 3.3.1 3.3.2		Procedures for Feeding MSW Loading Stoker Fuel and Miscellaneous Tasks Refuse Crane Safety and Operator Response Refuse Fires
Section 4	-	MWC Unit Startup, Shutdown, and Malfunction Procedures
4.1 4.1.1 4.1.2		MWC Startup Procedures Combustion Unit Startup Combustion Unit Hot Restart

4.2	2 -	MWC Unit Shutdown Procedures
4.2	2.1 -	Combustion Unit Shutdown
4.3	3 -	MWC Unit Malfunction Procedures
4.3	3.1 -	Plant Blackout
	3.2 -	Martin Stoker System: Feedchute Plugs
	3.3 -	Martin Stoker System: Broken Grate Bars
_	3.4 -	Martin Stoker System: Riddlings Discharge System Plugs
	3.5 -	Martin Stoker System: Ash Discharger Plugs
	3.6 - 3.7 -	Martin Stoker System: Ash Discharger Transition Chute Plugs Martin Stoker System: Boiler Tube Rupture
Section 5	-	Procedures for Maintaining Proper Combustion Air Supply Levels
5.1	l -	Martin Stoker System Automatic Controls: Theory of Operation
5.2	2 -	Martin Stoker System Automatic Controls: Modes of Operation
Section 6	-	Procedures for Operating the MWC Unit Within the Standards Established Under 40 CFR 60 Subpart Ea, § 60.56a
6.1	.	Table - Martin Stoker Setting Table
6.2	2 -	Table - Standards and Guidelines for New and Existing MWC's
Section 7	-	Procedures for Responding to Periodic Upset or Off-Specification Conditions
7.1	-	Response to Carbon Monoxide (CO) Excursion
7.2	2 -	Response to Sulfur Dioxide (SO ₂) Excursion
Section 8	_	Procedures for Minimizing Particulate Matter Carryover
	_	110000dd 5 101 14mmmziig 1 at doddato 14lattor Carryovor
8.1	_	Response to Opacity (Particulate Emission) Excursion

Section 9	-	Procedure for Monitoring the Degree of MSW Burnout
9.1	-	Procedures for Monitoring the Degree of MSW Burnout: Refuse Bed Thickness Control
9.2	-	Procedures for Monitoring the Degree of MSW Burnout: Underfire Air Control
Section 10	-	Procedures for Handling Ash
10.1	-	Ash Residue Management Plan
Section 11	-	Procedures for Monitoring MWC Unit Emissions
11.1	-	Introduction
11.2	-	Quality Assurance Objectives
11.3	-	Organization & Responsibilities
11.4	-	Plant Description
11.5	-	CEM System
11.6	-	Quality Control: Calibration & Operation Checks
11.7	-	Quality Control: Preventative Maintenance
11.8	-	Quality Control: Corrective Maintenance
11.9	-	Quality Control: Performance Audits
Section 12	-	Reporting and Recordkeeping Procedures
12.1	-	Data Calculation
12.2	-	CEM System Records & Reports

Identification of Additional Applicable Requirements

Additional Applicable Requirement:

- Demonstrate that the furnace mean temperature at the fully mixed zone of the combuster not to be less than 1800° F. (A copy of the demonstration performed by Ogden Martin on May 24, 1991 is attached)
- 2. Temperature Standard. Except during a malfunction, the max flow gas temperature at the final particle matter control device inlet, during the combustion of waste shall not exceed 30° F above the max temperature measured at the PM control devices inlet during the most recent mercury test. (62-296.416(3)(a)).

PASCO COUNTY SOLID WASTE RESOURCE RECOVERY FACILITY DEMONSTRATION OF 1800 DEGREE COMBUSTION TEMPERATURE and DEVELOPMENT OF FURNACE ROOF THERMOCOUPLE CORRELATION

SUBMITTED BY:

Z/, Semanyshyn/ Manager, Facility

Performance

APPROVED BY:

K.F. Stianche Vice-President,

Technical Operations

OGDEN MARTIN SYSTEM OF PASCO 1387 HAYS ROAD SPRING HILL, FL 34610

MAY 24, 1991

PASCO COUNTY SOLID WASTE RESOURCE RECOVERY FACILITY DEMONSTRATION OF 1800 DEGREE COMBUSTION TEMPERATURE and

DEVELOPMENT OF FURNACE ROOF THERMOCOUPLE CORRELATION

1.0 OBJECTIVE

The objective of the furnace temperature traverse was to obtain furnace gas temperature data to demonstrate the Florida Department of Environmental Regulation (DER) condition which requires the furnace mean temperature at the fully mixed zone of the combustor not to be less than 1800°F. The fully mixed zone of the combustor is viewed as the distance the combustion gas travels in one second above the grate (i.e. a one second residence time).

In addition the temperature traverse was performed to establish a monitoring method for insuring that the minimum 1800 degree temperature requirement is met on a continuous basis during long term facility operation by correlating the thermocouple readings at the top of the radiant pass ("rooftop") to the combustion zone temperature.

The three combustion units at the facility are of identical design and construction, therefore, per agreement with The Florida DER the traverse was performed in one of the three boilers (boiler 3) to demonstrate the permit condition.

2.0 BACKGROUND

The development of a correlation between the rooftop thermocouples and the actual combustion zone temperature is required since reliable and accurate combustion zone temperature measurement is not achievable on a long term basis using conventional "bare" type thermocouples. This is due to:

- a) the high temperatures and harsh environment in and directly above the combustion zone, and
- b) the radiation effect of the cooler furnace waterwalls on the thermocouple measurement.

The radiation effect stems from the exchange of radiant heat between the thermocouple and the cooler tempertures of the surrounding furnace waterwall surfaces. Due to this radiation effect the temperature indicated by a "bare" type thermocouple at the combustion zone and at the furnace roof will yield correspondingly lower temperatures than the true temperature of the gas. The general magnitude of temperature error observed in watercooled furnaces at 1800 degrees is 100 - 200 degrees (Refer to Tab 2 - Attachment 1).

To measure the true combustion gas temperature in the furnace a water cooled high velocity temperature thermocouple (HVT) is required. A HVT probe is the only reliable method of obtaining the true gas temperature since it eliminates the radiation effect on the measurement by shielding the thermocouple with a ceramic shield. For a detailed description of flue gas temperature measurement in boiler furnaces using HVT probes, refer to Tab 2 - Attachment 2).

3.0 DEMONSTRATION OF 1800 DEGREE F, 1 SECOND RESIDENCE TIME

A furnace temperature traverse, at full load operation, was performed on April 22, 1991. The traverse was performed at a boiler steam flow of 98,208 lbs/hr by Total Source Analysis Inc. using a 16 foot HVT, type K thermocouple, probe.

Due to the location of available boiler penetrations and constraints of HVT probe insertion into the furnace, the temperature traverse was performed at the 57.2 foot elevation or approximately 15 feet above the elevation where the minimum 1800 degree, one second residence time is required.

The traverse was performed by inserting the probe through a furnace sidewall observation port. The port was located at the approximate quarter point of the right sidewall. The average flue gas temperature at El. 57.2' was measured by traversing the furnace at one foot intervals for a total of 9 individual measurement points.

The average temperature measured was 1861 degrees. The raw data sheets and the averaged results of the traverse are included in Tab 1.

The furnace elevation where the minimum 1800 degree, 1 second residence point is required is determined as follows:

Flue gas flow rate (ACFM) = 93,050 (Refer to Tab 1, pgs. 9 measured at economizer & 10) outlet

Flue gas temperature = 450 F

VOLUMETRIC FLOWRATE(ACFM) = 93,050 $\times \frac{460+1861}{460+450} = 237,329$

Furnace cross-sectional area = 13'6" X 17'10" = 240.7 sq.ft.

Flue gas Velocity (V) in the Furnace

$$V = \frac{237329}{240.7 \times 60} = 16.4 \frac{ft}{\text{sec}}$$

Therefore, the minimum 1800 degrees for 1 second requirement exists 16.4 feet above the center of the combustion grate.

Grate elevation = 28.4' EL.
Gas travel distance in 1 second = +16.4'

Elevation of 1800 degree,
1 second requirement = 44.8' EL.

Since the furnace traverse was performed at the 57.2' elevation or 14.8 feet above the furnace elevation where a minimum 1800 degree flue gas temp must be demonstrated, the measured traverse temperature of 1861 must be adjusted to the 44.8' elevation. The temperature at the 44.8' elevation is approximated as follows:

Combustion temp on grate (Design-Theoretical) = 2012 F (EL. 28.4')

HVT traverse temp. = 1861 F (EL. 57.2')

The temperature drop of 151 degrees F (2012 minus 1861) between the combustion grate elevation and the traverse elevation (28.8 feet) yields a furnace absorption of 5.24 degrees per vertical foot.

The furnace temperature at the elevation where the 1800 degree, 1 second residence time is required:

$$TEMP._{1 \ second} = 1861 + 12.4 \ ft \times 5.24 \frac{degrees}{ft}$$

= 1925 F

The furnace traverse yields a gas temperature of 1925 degrees F and therefore demonstrates the requirement of having a minimum combustion gas temperature of 1800 degrees at a residence time of 1 second.

4.0 DEVELOPMENT OF TEMPERATURE CORRELATION

In accordance with the permit requirement and recognizing the difficulty of accurately measuring combustion zone temperatures continuously, a correlation has been developed utilizing the furnace rooftop thermocouples as a surrogate temperature measurement for monitoring the 1800 degree minimum combustion zone temperature requirement.

Using the permanently installed thermocouples at the top of the first pass, temperature data was collected by the facility's Distributed Control System (DCS) and compared to data obtained simultaneously at the 57.2' furnace elevation using a HVT probe.

The temperature corresponding to the 1 second residence time point was demonstrated to average 1925 degrees F (refer to Section 3). During this period the rooftop thermocouple temperature averaged 1308 degrees F.

The individual rooftop temperature readings were grouped into a nominal temperature band of 24 degrees F about the average temperature, when firing refuse. This slight temperature variation is reflective of the process associated with the actual charging of waste fuel, i.e., there is a slight rise and fall in the furnace temperature as the feed ram pushes the fuel into the furnace and then retreats. One therefore needs to account for the inherent process variations characteristic of this cyclic feeding. Since the purpose of the correlation is to determine the minimum rooftop temperature corresponding to the 1800 degree requirement, the low end of the temperature bandwith has been applied to the average measured rooftop temperature measurement. An average bandwith of 24 degrees would thus yield a processing variation of \pm 12° from the average temperature of 1308 degrees.

As previously noted in Section 3.0, during the test the unit exceeded the 1800°F by 125°F therefore, the minimum rooftop thermocouple temperature which will ensure a minimum 1800 degrees combustion zone temperature is (1308 - 125 -12) = 1167 degrees F.

5.0 ACKNOWLEDGEMENTS

The furnace traverses were conducted by Ogden Martin Systems of Pasco in conjunction with Total Source Analysis, Inc. The Ogden Martin test participants were:

- S. Deduck
- D. Porter

FIELD DATA SHEET

CLIENT Coden Martin Systems - Pasco	OPERATOR 4. Stiles
PROJECT NO. 91-070-FL	
DIANTE POSCO CO Flo - Unit 3	hiler

Time	Samp	7.		•/=							
	-	-		Hi	Lo						
15022		10'		1841	1/2844				-		
1502 1506				1846	1684						
7570		9,		190311	101120						
1510 1313		7		1865.2	1742.8						
		8.		· ·	1						
1517 1519		8'		1908 /	1730.2 1741.6						
1											
1529 -1523 1532 1525		7'		2077.6	1718.8				-		
1552 1525				1924.6	1866,4		-			_	
1529 1532		6'		1993 1902	1805						
1532				1902	1812			_			
1534		5'		1960	1846.4						
1534 1536				1894.4	1846.4 1866						
75/10		4'		100011	12/20						
1540 1544		4	<u> </u>	1918.4 2029.4	17620						
,) i						
1548 1550		3'		<u> 1951 -</u>	1754 1809.4	}					<u> </u>
•					1 1						
1554 1556		2.		1998.2	1747						
1506				7025	1787						
										-	
1											-
						-					
									•		
					-				1		
-		 			-		-				

TOTAL SOURCE ANALYSIS, INC.

Date 22-Apr-91

Furnace Gas Traverse UNIT 3

Performed at burner elevation through rear-right side observatio

Time	MAX	MIN	
1502 1506 1510 1513 1517 1519 1523 1525 1529	1346.Ø 1882.4 19Ø3.4 1365.2 193Ø.4 19Ø8.6 2Ø77.6 1924.6	1630.0 1742.8 1769.0 1730.2 1741.6 1713.8 1866.4	
1532 1534 1536 1540 1544 1548 1550 1554	1902.0 1902.0 1960.0 1984.4 1973.4 2029.4 1951.0 1959.6 1993.2	1312.0 1846.4 1866.0 1762.0 1749.4 1754.0 1509.4 1747.0	
Averages	1951.1	1770.6	1860.8

																r an el en l'an la range de la range de semanteur etc. d'a
	6															
1	4															
	C	BOILER	31-HR-FERP	ORMANCE-1	1EST-LOG	PAGE	ι	06-31				1812012	3 -22- 481	R=91-HO	NDXY	
	داع	1														
	13	-1	3-FR-13		AATH-STEAM-											
	داع	2 3	3-FR-610 FR-606		BFW 10 BLR BFW HEADER		4	-								
	7	-4	9-FR-1-460-		VEHF1RE-A1	R										
	داه	5 6	3-FR-1426 3-FR-2007		ROPANE 10											
	•	-	TR-609	t	FH-HENDER-	TEMP										
	6.0	€ •	3-1R-55 3-1R-56		'RIMARY';SUP 'RIMARY SUP											
	13	-10	-3-1 R-7	1	NI-SUPENHT	R } NLE	1-1688-66	к-с						- 41		
	6.0	11	3-TR-8 3-TR-11		INAL SUPER INAL SUPER		T TEMP-BLI									
	: <u>:</u>	13	-3-18-13-	•	AINTETEAMT											
THE STREET STREET	اداع			•												
81 Carrie 195-19-19	:-															
ALLES AND FRANCE	ه با ڪ	TIME	1 Klb/Hr	2 KL b/HR	3 Klb/Hr	4 ACFH	5 Alfm	6 LB/HR	7 DE6 F	B DEG F	9 DEG F	I O Deg f	II DEG F	12 Deg f	13 DEG F	
	2.2															
	دما	15:01 15:02	90.250 92.000	69.000 92.250	264.000 289.500	17216 17504	31200 31456	0	293 293	542 542	675 675	605 607	756 759	763 763	615 615	
TO THE PARTY OF TH	-	-15:03	91.500	91:125-	- z90;000-	17536-	31484	ŏ-	<u>2</u> 93	542-	675	605-	75e-	763-	612	
	وراج	15:04 15:05	90.750 93.125	90.375 90.750	284.500 286.500	17088 17216	30976 31264	0	293 293	542 543	675 676	6 0 5 6 0 8	757 759	762 764	814 814	
		-15:00	74-675		-292:000-	17664-	31168-	 -	273	5 43-	- 677	811~	761	768	-818-	
	امل	15:07 15:08	92.750 91.125	93.500 91.875	291.500 285.500	17472 17248	30528 32736	0	293	542	676	608	760	765	816	
	30	15:09	71.500	-71:12 5-	-287.0 00-		30528		293 294-	542 542-	674 	605 604	758 757-	763 763	814 813	
	ء ما ے	15:10	95.250	93.875	288.500	17344	30784	0	294	543	675	608	759	764	813	
	22	15:11 -15:12	95,500 9 2,375	93.375 	264.000 	17760 17632 -	30624 30020		294	543 542	675	808 203	760 759	765 764		
7.2	ه د	15:13	94,250 93,375	93.875	265.500	17568	30016	0	295	543	674	605	758	763	814	
	30	15:14 -15:15	9 4.000	93.750 93 :875-	283.500 279:000-	17440 17344-	29216 26416	0-	295 295	542 542-	673 672-	603 60z-	756 755	762 761	613 	
	C 30	15:16	93.625 90.000	94.375	277.000	17824	23512	0	296	543	671	602	755	760	611	
		15:17 -15 :16		91,125 91-625-	278.500 284.0 00	17952 17600	26448 		296 29 6	542 542	671 	599 579	754 753	760 755-	811	
	ر ا	15:19	94.250	94.250	285.000	17856	28512	0	296	543	671	601	753	758	808	
CEL TENED		15:20 -15:21	92.500 	93.500 - 93.375 -	282.000 - 2 82 .0 00-	17824 17568	28128 27872	°-	297 29 7-	542 542-	670 870-	108 	753 752-	758 757-	609 	
	امماے	15:22	98.250	97.250	284.000	18240	28128	Ō	297	543	671	604	754	759	808	
		15123 -15124	97.125 7 5 .5 00	95.375 	260.000 23 0 .50 0	19008 	28064 27104	 0-	297 	543 543-	671 870	601	755 753	. 760 759-		
	دماع	15:25	95.500	95.625	261.000	18752	26496	ō	297	543	669	600	75Z	758	809	
		15126 -15727	94.625 95.3 75	94.250 95.62 5-	281.500 	18304 18464	25344 	·	297 298-	543 543	667 	598 	751 750	757 7 56-	€07 	
	4 100	15:28	93.625	95.375	280.000	18528	. 23608	ŏ	298	542	666	595	748	754	606	
第二五章 第二章 第		15:29 -15 :3 0	92.375 	93.750 9 3-185	276.500 	18560 168 2 4	23520 	<u>0</u> -	296 29 8-	542 		593 	746 747	752 753	₽04 	
	۲.	[5:31	93.000	94.250	261.500	16366	23616	ŏ	298	542	665	593	746	752	803	
		15:32 -16: 3 3	91.625 	93.000 91.25 0	277.500 - 272.5 00	18336 1 7696	24000 	0	298 	541 541	663 	591 589-	743 742	750 748	801 	
		15;34	90.125	93.375	275.000	17888	25536	0	298	542	664	590	743	748	798	
	6.	15:35 -15:36	90.625	93.000	276.000 271.500-	17856	26080 		296	541	665	591	744	749	798	
	<u>_</u>	15:37	90.250	91.500	273.500	17656	27520	0	297	542 542	667	592- 594	744 746	751	79 8—	
	•	15:38 15:39	90.750 91.000	91.625	274.500	17632	27872	. 0	297 297	542 547	667	594 525	746 746	751 . 752	80 0	
					273.500				4.1 (4.1)			F			. 500	
						4	11 .1 1.1									

15141 73,000 73,200 271,000 17546 27442 0 277 542 270 598 750 755 603 15142 270	15:40	92.250														
19143 91,750 92,620 277,000 17344 29964 0 277 542 471 597 152 157 004 19149 70.700 91,675 80,500 16972 10046 0 277 542 471 597 151 156 605 19149 70.700 91,675 91,675 260,500 16972 10046 0 277 542 470 597 151 156 605 19149 70.970 70.7710 70.071																
19144 90.750 91.675 280.500 16992 30046 0 277 542 470 597 751 756 805 19145 70.788 927 19145 70.788 927 19145 70.788 927 19145 70.788 927 19145 70.788 927 19145 70.788 927 19145 70.788 927 19145 70.788 928 928 928 928 928 928 928 928 928 9																
13:45																, •
151-44 92,000 92,000 174,000 17444 30432 0 277 542 449 578 750 756 103																
19718	15146		92.000	278.000	17344	30432		297	542	669	598	750	756	€03		
15149															*	
19150 94.375 95.625 283.000 17568 29666 0 277 543 671 602 754 759 E07 19151 12.2151 92.000 2197.000 17564 29600 0 278 542 640 599 752 751 767 19152 93.625 94.375 280.000 17562 29248 0 278 542 649 599 752 757 807 19152 93.625 94.375 280.000 17562 29248 0 278 542 649 599 752 757 807 19155 95.375 94.375 286.500 17628 29248 0 278 542 649 599 752 757 807 19155 95.875 94.375 286.500 17628 27946 0 278 542 649 699 752 757 807 19155 95.875 94.375 286.500 17628 27946 0 278 542 649 600 752 757 808 19156 94.200 97.000 287.000 1860 2796.00 0 278 542 649 600 752 757 808 19157 94.125 94.7500 283.7500 18648 24793 0 278 542 649 800 750 756 609 19159 94.625 95.375 285.500 18648 24793 0 278 543 648 597 750 756 609 19150 97.4252 95.375 285.500 18648 24960 0 278 543 648 597 750 756 609 19150 97.4252 95.375 285.500 18648 25172 0 278 543 648 597 750 756 609 19150 97.4252 95.375 285.500 18648 25172 0 278 543 648 597 750 756 609 19150 97.4252 95.375 285.500 18648 25172 0 278 543 648 597 750 755 647 19100 97.7315 97.7378 285.500 18048 26100 0 278 19 542.27 669.78 597.73 752.02 757.40 607.35 NIMITION 97.500 97.250 97.250 277.0001906.00027728.000 978.09 276.00 543.00 677.00 411.00 761.00 762.00 763.0																
19152 93.625 94.376 260.000 17504 27800 0 278 542 667 597 752 757 666 19153 97.752 75.7500 75.000 75																
15153 93.375 92.500 283.500 17546 29240 0 278 542 649 579 752 757 607 15155 97.675 94.375 285.500 17688 27945 0 278 542 649 670 642 775 758 607 15156 97.475 97.500 257.500 18624 27732 0 278 542 649 640 752 751 608 15158 97.475 97.500 257.500 18624 27732 0 278 542 649 640 752 751 608 15158 97.475 97.500 257.500 18624 27732 0 278 543 648 640 750 755 666 15158 97.475 97.500 267.500 18644 25192 0 278 543 646 579 750 755 647 15159 97.425 97.375 255.500 18644 25192 0 278 543 646 579 750 755 647 15159 97.425 97.375 255.500 18644 25192 0 278 543 646 579 750 755 647 15159 97.425 97.375 255.500 18644 25192 0 278 543 646 579 750 755 647 15150 97.725 97.725 255.000 16344 25192 0 278 543 646 579 757 757 647 15150 97.725 97.227 281.53317725.33228341.600 0.000 276.19 547.27 647.98 599.73 752.02 757.40 807.35 15164 97.500 87.700 277.50018894700025250.000 0.000 276.19 547.27 647.98 599.73 752.02 757.40 807.35 15164 97.500 87.700 277.50018894700025250.000 0.000 276.00 543.00 277.00 611.00 764.00 816.00 1																
13134 71.52 73.525 253.000 1708 23512 0 278 542 667 600 752 757 607 15150 759.100 245.500 1708 27906 0 2796 543 670 602 753 756 667 15150 741.750 745.7500 145.500 1708 27906 0 2796 543 670 602 753 755 667 15150 741.7500 745.7500 145.500 145.600 1708 2792 0 2796 542 669 600 752 757 608 15150 741.7500 745.7500 145.500 145.000																
15155 95,875 94.375 286.500 17688 2796 0 296 543 670 602 753 758 807 15156 94.250 97.2750 285.500 17644 2400 0 276 542 668 396 750 758 807 15157 94.250 97.250 185.00 1864 2400 0 276 542 668 396 750 758 801 15158 94.000 76.000 185.500 18608 26772 0 278 543 688 600 750 758 808 15159 94.622 95.315 285.500 18144 25152 0 278 543 687 579 750 755 607 15159 94.625 97.327 285.500 18144 25152 0 278 543 687 579 750 755 607 15150 94.625 97.327 285.500 18304 24600 0 278 543 687 579 750 755 607 15150 94.625 97.250 285.500 18304 24600 0 278 543 687 579 750 755 607 15150 94.625 97.327 281.53317725.33228361.600 0.000 276.175 542.27 669.78 579.73 752.02 757.40 807.35 16161 187 187 187 187 187 187 187 187 187 18																
10137																
13158 94.000 74.000 72.000 18208 28272 0 278 543 643 640 750 756 606 15159 74.625 95.375 285.500 1814 25152 0 278 543 647 557 750 755 607 15100 75.315 74.775 255.000 18304 24420 0 278 343 645 578 747 754 807 15100 75.315 74.775 255.000 18304 24420 0 278 343 646 578 747 754 807 15100 75.315 74.775 255.000 18304 24420 0 278 343 646 578 747 754 807 15100 75.315 74.775 255.000 18304 24420 0 278 343 646 578 747 754 807 15100 75.000 15100 7															. •	•
15159																
	15:59															
AVERAGE 92.969 93.327 281.53317725.33228361.600 0.000 296.19 542.27 669.98 599.73 752.02 757.40 807.35 MINIMUM 897.500 877.000 271.75001889670002352507000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 0.000 298.00 543.00 677.00 611.00 761.00 761.00 766.00 816.00 0.000 298.00 610.00 960.	-00:00															
AMERICE 92,969 93.327 281.53317725.33228361.600 0.000 296.19 542.27 669.98 597.73 752.02 757.40 807.35 minimum 87.500 87.500 271.500168767000235207000 0.000 272.30 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.00019006.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.0001906.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.0001906.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.0001906.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.0001906.00032736.000 0.000 298.00 543.00 677.00 611.00 761.00 766.00 816.00 maximum 98.250 97.250 292.0001906.00032736.000 0.000 298.00 677.00 611.00 76	.															
AVERAGE 92.969 93.327 281.53317725.33228361.600 0.000 296.19 \$42.27 669.98 899.73 752.02 757.40 807.35 MINITHUM 97:300 87:000 271.53018896.00023220.000 0.000 725.30 541.00 863.00 543.00 677.00 611.00 766.00 816.00 AVERAGE 92.969 93.327 281.53317725.33228361.600 0.000 726.30 683.00 543.00 677.00 611.00 766.00 816.00 AVERAGE 92.969 93.327 281.53317725.33228361.600 0.000 726.30 683.00 543.00 677.00 611.00 766.00 816.00 AVERAGE 92.969 93.327 281.53317725.33228361.600 0.000 726.30 683.00 543.00 677.00 611.00 766.00 816.00																
MINIMUM 89.250 27.000 271.50018896.00023520.000 0.000 292.00 543.00 277.00 411.00 761.00 766.00 816.00 MAXIMUM 98.250 97.250 292.00019000.00032736.000 0.000 292.00 543.00 677.00 611.00 761.00 766.00 816.00																
MAXINUM 98.250 97.250 292.0001900€.00032736.000 0.000 29€.00 543.00 €77.00 611.00 7€1.00 7€6.00 816.00	AVERAGE															
	HANIDUD	98.250	97.250	292.00019	006.00032	738.000	0.000 21	76.00 3	43.00 6	77.00 8	11.00 7	1.00 /	60.00 8	18.00		
	; ;															
				·····												
	· ••															
	••••															
	17:1													,		
	1.															
																
															*	
																
				•			_									
		·	· · · · · · · · · · · · · · · · · · ·													
		<u> </u>	- :													
		. , ,														
					:											
		•														
		• 3			:											
		•			;											
	,	•														
	•	•			;											

	•			•						•					•	•	
	L																
1	C																•
1	_															•	
	٤																
1		ATTEOTIER	3 1-HR FERF	ORMANCE	TEST-L-00	- PAGE-2-	t	06-32				5710732 -2 3	-APR-91-	HONDAY			
_	1						_		•		-						
1	£																
		*	3-1R-1425		AIR-PREHTR	-FX14-41R	-1 FHP-RI-R										
1	ĺ	15	3-TR-1401/		COMBUSTION			-									•
	ز				OKEUSTION												
	- 1	. 16	3-TR-1401E					•								_	
	J	777	3-1R-1104/		UKNACE-RU		P-BLR-C-										
	اع	. 18	3-1R-1404E		URNACE RO		P-BLR C										
	1	. 19	3-TR-14040		FURNACE RO		P-BLR C										
	1	70		F	PURNACETSU	PERHTR-TE	4 P- ELR-C-										
	, I	21	3-TR-1407E	F	FURNACE SUF	PEHHIR TEI	MP-BLR C										
	٠,	,, 22	3-TR-14070	F	FURNACE SUF	PERHTR TEI	4P-ELR C										
	- Ł	3 23	3-TR-14070	 Р	UKNACE SUF	FERHTR-TER	1P-8LR-C-										
	I.	24	3-TR-1407E	F	URNACE SUF	PERHTR TEN	1P-BLR C				•						
	- E	AA .	3-TR-1411		URN ECONOR	112ER EX11	I TEMP-BL	R C									
	J:	-6U	3-11-3867-		CRUCEER-OL												
	- 1	, cc	3-11-1437		AGHS EXIT-			MP									
	'[ع	'1						· · ·					•			.•	
a proceeding grades gain and a control of the things	ľ	1							·								
	l,	•	14	15	16	17	18	19	20	21	22	23	24	AA	P B	cc	
	€!	TIME	DEGF	DEG F	DEG F	DEG F	DEG F	DEGF	DEG F	DEG F	DEG F	DEG F	DEG F	DEG F	DEG F	DEG F	
	_ [11116	DE G F	DEG F	DEG F	DEG F	DEG F	DC O F	DEG F	DE G F	Dr. C. L	DEGF	DEG F	DEG P	DEG F	DEG P	
	ŀ	3															
	٠Ŀ	, 15:01	229	1428	1420	1238	1340	1314	1036	925	789	729	729	461	303	298	
	_ ,	15:02	229	1434	1422	1238	1340	1316	1038	927	790	730	729	461	302	298	
•	- 1	75:03	229	1428-	1418-	1238-	1340		1036-		7 90	730~	729-	461-			
	ان)	15:04	229	1432	1420	1238	1340	1316	1036	925	769	730	729	461	303	298	
7)	_	, 15:05	229	1454	1424	1236	1340	1318	1044	931	793	732	730	462	305	299	
	Į.	15706		1458	1420-	1236	1340	1318	1050	735	796	734	731	482	304	279	
	4	15:07	229	1442	1412	1236	1340	1320	1046	933	793	733	731	462	302	299	
100	E,	15:08	229	1438	1412	1236	1340	1320	1042	930	791	731	731	462	302	.299	
. 0		1 15:09-		1442-	1420-	1236	340-	7320-	3042		791	731	731	4.61	303-	299	
1		, 15:10	229	.1456	1470	1236	1340	1322	1046	932	793	732	731	461	304	299	
•	CI.	, 15:11	229	1458	1486	1236	1340	1322	1046	935	796	734	731	462	304	299	
•	Ę	13:12			1486	1236-	1340-	1322	1046		774-	733	731	462-	304-		
•	. [.	15:13	229	1448	1462	1236	1340	1324	1044	931	792	732	731	462	303	299	
·		15:14	228	1440	1472	1236	1340	1326	1042	927	769	730	731	461	301	299	
•	12	75:75	zz8-	1442-	1476-	1236		1326	1040	9 25	706-	7 29	731-	461-	301-		
	ľ.	15:16	228	1444	1478	1236	1342	1328	1040	. 925	788	729	732	460	301	298	
الأعرادان والمراجي والمستعلق والمستوال	(L)	15:17	227	1428	1466	1236	1342	1328	1036	922	766	727	731	460	301	299	
TO THE PARTY OF TH	12	15:18		1422-	1462	1236	342	1330	1032-		786		730	480-	Joz-	- - 2 98	
TV AVE THE NAME OF THE PARTY OF	٣	15:19	227	1436	1462	1236	1342	1330	1036	924	766	728	730	460	301	299	
But with a say by him bearing a sime were	~ "	15:20	227	1432	1454	1236	1342	1330	1036	923	786	727	731		300		
	1	15121		1442-	1.462	1234		7332	- 1036-					460		298	
· .	^ :	15:22	227	1476		1234		-		922	765	727	731-		301-	798	
	€ h.		227		1484		1344	1332	1046	928	789	729	732	460	301	298	
		15:23		1460	1478	1234	1344	1334	1050	930	769	730	733	460	301	298	
A Company of the Comp	-	15:24		1469-		1236	1344	336	1048	929-	788	729	733	-044	301-	78	
According to the second	£ 4:	15:25	227	1462	1484	1236	1344	1336	1046	928	787	729	733	460	300	297	
【1 2000年 2	[+	15:26	227	1454	1492	1236	1346	1338	1044	925	785	727	733	459	299	297	
192734	- 1	15127	228	1452	192	7236	7346	340	1040	721	7ε3	726	733~	459	7 75		
· 14 (19) (14) (14) (15) (16) (16) (16) (16) (16) (16) (16) (16) (16) (16) (16) (16) (16) (16	<u>4</u> ×	15;28	228	1438	1 4821:	1238	1348	1342	1034	916	779	723	732	458	298	296	
4.30-31-198		15:29	229	1440	1494	1238	1348	1342	1032	913	776	722	731	458	298	296	
	• 1	12130	230	1442		1238	1348	7344	1034	213	178	722	731	457-	797-	298	
15000000000000000000000000000000000000	روا ہے	15:31	230	1430	1496	1238	1350	1346	1028	909	775	720	730	457	295	296	
12.47 经经济	—	15:32	230	1416	1492	1238	1350	1346	1022	903	771	718	729	456	294	295	
15-11 沿地南部		12133	230	-318	3492-	1238-	735 0	345	7018-	700	770	716	726	455	795	794	
中国政策是代理	_	15:34	- 231	1424	1490	1238	1350	1348	1020	901	771	717	728	455	296	294	
计记忆 邓内田号四部 。第		15:35	: 231	1418	1484	1238	1350	1348	1020	901	771	717	727	455	296	294	
1200年。 科查尔斯斯 亚		15136	231	1420	1492	1238	1357	1348	1022	704	- 113	718	121	456	778	 ,	
有一种的一种的一种	4	15:37	231	1420	1496	1238	1352	1350	1024	906	774	719	727	456	296	293	
15年以上24年73年		15:38	231	1412	1500	1236	1352	1350	1022	904	773	718	727	456	296	293	
THE REPORT OF THE PARTY OF THE		15:39	231	1427	1504	1234	1352	1352	1027	904	7.75	720	727	456	297	293	
	38 327		231	1122	THE PARTY OF THE	77.34	******		1027		1477	WEILER'S	10000	وروز وسنها والأ	14.11.4		
The State of the S	433	تنف التعافة	الكناب المتعاقبات		المنسسنين فستنت	بشنعشنتك	شنة تشنية 4.5 أ		المستحد	1 Transition							

15140															, –	
15.41				::55	·· ·· ::::·										_\	
15.42 220 1444 1494 1224 1354 1352 1354 1004 916 702 724 726 100 916 202 725 725 150 150 150 150 150 150 150 150 150 15	6															
15143 227 1442 1474 1224 1354 1354 1354 1354 1702 714 780 723 727 456 279 273 725 127 427 1428 1428 1324 1335 1354 1354 1354 1352 1352 1352 1352 1352 1352 1352 1352	•															
15:44 229 1426 1462 1234 1354 1356 1032 914 760 723 729 456 295 295																
15/10 727 742 142 15/2 15	€.															
15146 227 1442 1494 1254 1354 1354 1030 714 781 724 728 458 277 729	6															
1	ذا ہے		229	1442	1494	1234	1354	1356	1030	914	781	724	728	458	297	293
151-69 229 1450 1500 1234 1356 1356 1358 1036 972 786 127 729 459 259 259	• ₁ ,															
15150 227 1446 1494 1234 1356 1356 1036 723 726 727 729 629 24	17															
1 15:12 227 1442 149 1234 1356 1356 1036 721 725 726 727 439 277 273 140 1308 1234 1356 1360 1036 721 725 726 727 730 459 277 273 13155 1325	٠)ے															
15152 229 1446 1508 1234 1356 1356 1356 136 721 165 724 729 458 297 279 730 150 721 730 459 277 273 730 459 277 273 730 459 277 273 730 459 277 273 730 459 277 273 730 459 277 273 730 459 277 273 730 459 277 273 730 459 277 273 730 459 277 273 730 459 278 273 730 459 278 273 730 459 278 273 730 459 278 273 730 459 278 273 730 459 278 273 730 459 278 273 27	-															
15,53 227 1442 1512 1224 1356 1360 1038 722 188 1721 730 459 279 273																
15:55 228 14:50 15:00 12:34 13:60 13:04 10:40 922 764 728 731 460 275 274 73:05 73:0	€;;															
151.56 228 1440 1492 1234 1358 1362 1040 922 784 727 731 460 275 274 1515 1515 1256 1356	10	15:54		1442	1203-	1234	1358	1360	1038	453-	765	721	730	459	Z¥8_	493
151.07	ر اے															
151.56 229 144.0 1492 132.6 136.0 1362 1042 971 762 725 731 459 276 274 1355 275 131 459 276 276 131 1355 276 277 1355 131 1355 276 277 1355 131 1355 276 277 1355 131 1355 136 13	— _{-,}															
15:57 229 1454 1470 1236 1360 1364 1040 919 782 725 731 459 276 279 16:00 229 1452 1466 1238 1360 1364 1033 918 780 722 732 458 298 55295 799 AVERAGE 228.833 1470.833 1476.533 1235.933 1348.267 1341.233 1036.163 920.000 783.983 726.033 729.967 456.86 298.55295.57 THINITUM 2277.000 1412.000 1232.000 1236.000 1344.000 1050.000 935.000 794.000 734.000 732.000 462.00 304.50299.00 AVE. = 13.08 MIN = 12.96 MAX = 13.20	1.5															
AVG. = 308	€ !'*															
AV6. = 1308 MAX = 1320	1,50															
AVE. = 1308 MIN = 1296 MAX = 1320					f_{ij}^{a}											
AV6. = 13.08 MIN = 1296 MAX = 13.20	773			<u> </u>												
AV6. = 13.08 MIN = 1296 MAX = 13.20				.:	1 . 1											
AV6. = 1308 MIN = 1296 MAX = 1320	. 6	AVERAGE	228.833 14	440.633 1	476.533	1235.933 13	46.267	1341.233	1036.163	920.000	783.983	726.033	729.967	458.86	298.5529	5.57
AV6. = 1308 MIN = 1296 MAX = 1320																
MIN = 1296 MAX = 1320	دماڪ شيخ	MYXIMAM	231.000 14	160.000 i	512.000	1238.000 13	000.00	1,364.000	1050.000	935.000	796.000	734.000	733.000	462.00	304.5029	79.00
MIN = 1296 MAX = 1320							$\rightarrow \sim$									
MAX = 1320	Child Cha					A	16. =	1308								
MAX = 1320		1.1,				Mi	N =	1296	,		· · · · · · · · · · · · · · · · · · ·					
	海	111												•		
							4 X ~-	1360							- -	
	ادا کا	•														
								, ,								·
	79.350 II		-													
	اما _ اخت														•	
	88 <u> </u>															
	33 6															
	اما کھ			•												
	*															
	6"			·												
																
	53 Tul															
	32												:			
			: y													
			4.												,	
	اوما ہے		5(5)												4	
	· •												•	•		
			Y .											. :	m_{j}	
	B 😉															

	6							·					•			
						•									•	
	(1	1	יז א ז ין דאר יניי בי	DRMANCE T	EST LOG -	PAGE	<u> </u>	06-33				61201Z6 A	(Z-APR-9)	Y K G N D H		
	د ا	l				15 C										
		25	3-P1-4 3-PR-13		RUNTERESSI AIN STEAM											
	<u> </u>	27	3-P1-611	F	EEDWATER F	RESS PLR	C									
	7	l	3-P1-1416		URNACETBLA URN ECON E									-		
	٩	30	3-P1-1432		CRBR EXIT-											
	1.0	31-	3-P1-1435	1:	<u> YPHS-EXIT</u>	TER C FEE	JE GXS FRI									
	۰۰ نے	32	3-11-1445		D FAN-BLR		OR AMPS									
	- 1	33	3-11-1421 3-11-1450		D FAN-BLR Fa tf an-blr		OR AMPS					<u> </u>				
		35	3-41-1427		LUE GAS-IN											
	٠ <u>٠</u>	36	3-LR-41		RUM LEVEL	BLR					*					
•	14	37	3*********		LUE-GXS-*	ECK C UPA	C111									
	<u>د</u> ا::															
	,.					•••										
	6 po	TIME	· 25 PS1G	26 PS1G	27 PS16	1N HC	29 1n hc	30 1n hc	31 1n hc	3Z AHPS	33 Amps	34 Amps	35 Percent	36 Inches	37 Percent	
	- 1											7111.3	TENCENT		TENCENT	
	7 40	15:01	950.0	871.0	1040.0	-0.4	-1.9	-7.7	-16.4	50.2	145.0	86.9	€.3	5.1	1.0	
	<u>_</u> _	15:02 -15:03	950.0 948 .0	971.0 	1042.0 	-0.5 	-2.1	-7.9 	-16.5 76.4	50.2 	145.8	69.5	7.1	4 . 2	1.0	
:		15103	951.0	871.0	1042.0	-0.2	-1.4	-7.5	-16.5	50.2	145.0	89.3 68.4	7.9	5, 0-	1.0	
•	6 ,,	15:05	956.0	873.0	1046.0	-0.4	-1.9	-7.7	-16.7.	50.1	145.0	86.9	5.9	5.4	1.0	
	-	15106	754.0	871.0	3044.0		-1.9	7.6	-17.2	50.2	144.3	69.6	7.0	5.3	1.0	
•	6k.	15:07 15:08	950.0 950.0	868.0 871.0	1040.0 1040.0	-0.2 -0.0	-1.4 -1.1	-7.0 -6.7	-17.5 -17.4	50.2 50.2	145.0 147.5	69.1 88.5	6.6 8.0	5.5 4.4	1.0	
•	30	15109	953.0	671.0	1044.0	0.1-		-6.y	-17.3	50.2	744.0	66.7-	7.5 -	i.i.	1:0	
	بدان	15:10	956.0	870.0	1048.0	-0.4	-1.8	-7.8	-16.5	50.2	143.8	89.4	5.6	5.3	1.0	
	_ <u>_</u>	15:11	954.0 954.0	869.0 872.0	1044.0	-0.4	-1.9	-7.9	-16.7 -16.9	50.2	142.8	90.0	7.0	5.9	1.0	
	ودا ر	15:13	953.0	871.0	1044.0	-0.4	-1.8	-7.3	-17.6	50.0	140.6	69.6	7.5	4.5	1.0	
	6	15:14	951.0	868.0	1042.0	-0.2	-1.5	-7.1	-17.6	50.1	138.8	89.3	8.5	4.6	0.9	
	, 📆	15:16	954.0 953.0	—689 .0 — 871.0	044:0 1044.0	-0.9	-1.9	-7.4	-17.5 -17.1	50.1 50.1	136.5	90.4	7.4 6.9	-38-	7.0	
	(a)	15:17	949.0	874.0	1040.0	-0.6	-2.3	-8.3	-17.0	50.1	136.3	89.8	6.9	4.4	1.0 1.0	
		75:15	752.0	870.0	1042.0	*0.7	-2.5	*8.3	*17.3	50.1	136.8		8.3			
•••	64	15:19 15:20	952.0 950.0	870.0 870.0	1042.0 1040.0	-0.8	-2.5	- E. 1 - 7.8	-18.0	50.1	136.5	90.1	6.8	3.6	0.9	
	- 12	15:21	> 5 c.o	 672.0	1010.0	-0.6 0.5	·2.2	-7.6	-17.9 17.9	50.1 	135.8 	90.0 	8.4	3.7	0.9 0 .9	
	, [.]	48.52	961.0	870.0	1052.0	-1.0	-3.1	-8.9	-17.5	50.1	135.5	91.9	5.5	4.3	0.9	
	6	15123	957.0	£70.0	1048.0	-1.0	-3.0	-8.8	-17.4	50.1	134.0	92.5	7.4	5.2	0.9	
. :		15:25	957.0 956.0	671.0	1046.0	-0.9	-2.8	-8.9 -8.2	-17.5	50.1	130.0	92.3	7.6	4.6	0.9	
	64,	15126	955.0	971.0	1046.0	-0.9	-2.8	-8.1	-18.0	50.0	127.3	91.6	8.0	4.8	0.9 0.9	
	10	15127	753.0	569.0	1044.0	-1.3	-3.8	-7.0	*17.4	49.1	125.9	92.4	7.2	4.6	0.y	
	6100	15:28	95010	867.0	1040.0 1044.0	-1.1	-3.3	-8.8	-17.0	49.8	123.3	92.0	8.7	3.4	0.9	
• • •		15129 -1513 0	952.0 752.0	871.0	-1011.0 -1012.0	-1.3	-3.5 	- 6.9 	-17.0	46.6	123.0	92.1	7.2	3.6 3.8	0.9	
		15:31	947.0	848.0	1038.0	-i.i	-3.1	-8.1	-17.5	48.1	123.1	91.6	ε.3	3.3	0.9	
	-	15:32	944.0 	0.638	1034.0	-0.9	-2.7	-7.9	-17.4	48.1	124.1	90.9	€.5	3.3	0.9	
: }	P • •	15:34	947,0	670.0 871.0	1036.0 1038.0	-1.1	-3.1	- 6.5	-16.3	48.1	128.8	90.3	6.8	3.0	0.8	
7.		15:35	945.0	9.8.0	1036.0	-0.8	-2.7	-8.2	-16.3	49.0	129.8	90.0	B.0	3.0	0.B	
	4	"15136" -	748:0	870.0	1040.0	-0.9		-8.1	16.1	48.1	131.6	90.1	7.1	3.4	0.8	
	6	15:37 15:38	947.0 947.0	671.0 669.0	1040.0 1040.0	-0.8 -0.6	-2.5 -2.1	-8.0 -7.8	-16.2 -16.1	48.1 49.1	133.8 135.8	89.9 89.6	7.5 8.4	3.8 3.7	0.8 0.8	
M.		15139	950.0	870.0	1044.0	0.3	1,-1.6		15 St. 54	SERBANINE	1111		7.7.	3.7	0 A	
	وسنون و		一一河 网络红红		ACCOUNT 1 11 11 11 11 11	他の公司ではこと は	(本の)をうてのない			الكياب المستعدد الاست		انسوة الانتحد	ALC: TO C	الأستانين والمستوان		

•				BES	T AVAILA	ABLE CO	OPY .							•		•
	د	15:40 15:41 15:42 15:43 15:44	952.0 946.0 951.0 950.0 946.0	£72.0 £66.0 £70.0 £73.0 £70.0	1046.0 1044.0 1048.0 1048.0 1044.0	-0.5 -0.4 -0.3 -0.3	-2.0 -1.7 -1.6 -1.6	-7.6 -7.4 -7.0 -6.8 -6.8	-16.1 -15.9 -16.5 -16.7	48.9 49.3 48.8 48.1	140.0 140.0 140.3 141.3	69.4 69.3 83.9 66.9 66.3	6.6 7.8 6.1 7.1 9.0	3.4 3.5 4.0 4.1 3.3	0.8 0.8 0.8 0.8	. •
•	۲,	15:45 15:49 15:50 15:51	951.0 948.0 955.0 955.0 951.0	872.0 872.0 671.0 	1050.0 1046.0 1052.0 1056.0 1052.0	-0.2 -0.5 -0.3 -0.2 -0.3 -0.2	-1.4 -2.1 -1.7 -1.4 -1.5 -1.4 -1.7	-7.8 -7.5 -7.5 -6.6 -7.0	-16.3 -16.1 -16.1 -16.7 -16.7 -16.3	49.6 49.4 49.9 47.9 46.3 48.7	141.3 142.5 142.8 142.3 141.5 140.0	86.1 89.3 88.6 26.3 69.0 88.8	8.7 6.4 6.5 3.3 6.3 7.6	3.9 4.3 4.3 3.7 4.2 3.8 4.0	0.8 0.8 0.8 0.8 0.8	
	ر ا، ا	15:52 15:53 15:55 15:55 15:56 15:56 15:58 15:59	954.0 952.0 955.0 955.0 957.0 957.0 954.0	872.0 871.0 872.0 872.0 869.0 870.0 872.0 871.0	1058.0 1054.0	-0.6 -0.7 -0.6 -0.7 -1.1 -1.0	-2.2 -2.3 -2.3 -2.2 -2.3 -3.1 -2.9	-7.6 -7.7 -7.5 -7.4 -7.3 -8.5 -2.4	-16.3 -16.3 -17.2 -17.2 -17.3 -17.4 -16.6 -16.5	50.1 47.6 48.6 49.2 48.1 48.9	138.5 136.8 135.0 133.0 130.6 130.0	89.4 89.4 69.3 90.1 90.0 91.1 90.9	7.1 6.2 3.1 6.6 8.9 7.9 6.5 6.5	3.9 4.6 4.1 4.3 4.7 4.0 4.4	0.8 0.8 0.8 0.8 0.8 0.8	
	£ ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	AVERAGE	951.733 	£70.333	1045.900	-0.608	-2.293 -3.518	-7.792 -6.953	-16.886	49.443	136.433	89.925 28.125	7.666	4.200	0.671	
		HAXIRUM	981.000	674.000		-0.037	-1,125	-6.625	-15.906	50.168	147.500	92.500	9.016	5.898	1.016	
0	3 3 4 3 1 5		· · · · · · · · · · · · · · · · · · ·													
	3 18 2 17 2 3							•								
and high that he was the first					A A		•						`			
					·							•		<u>.</u>		

OGDEN MARTIN SYSTEMS, INC. CAE Project No. 5661

Pasco County Resource Recovery Facility Energy Tests

4/22/91

1500-1530

Run 15	Unit 1	Unit 2	Unit 3
Pbar	29.94	29.94	29.94
SRDp	0.775	0.813	0.815
Ts	436	456	450
St	-1.5	-2.0	-1.2
% CO2	10.1	9.9	9.7
% O2	10.0	10.2	10.3
% N2	79.9	79.9	80.0
Bwo	0.150	0.149	0.146
Md	30.02	29.99	29.96
Ms	28.22	28.21	28.22
Ps	29.83	29.79	29.85
Vs	57.4	61.0	60.8
acím	89,000	94,500	94,300
dscím	44,500	46,200	
lb/hr	229,900	298,400	239,700

OGDEN MARTIN SYSTEMS, INC. CAE Project No. 5661

asco County Resource Recovery Facility Energy Tests

4/22/91

1530-1600

Run 16 Unit 1 Unit 2 Pbar 29.94 29.94 SRDp 0.796 0.803	Unit 3 29.94 0.794 (449)
	0.794
SRDp 0.796 0.803	
	(449)
Ts 434 457	
St -1.5 -2.0	-1.2
% CO2 10.1 9.9	9.7
% O2 10.0 10.2	10.3
% N2 79.9 79.9	0.08
Bwo 0.150 0.149	0.146
Md 30.02 29.99	29.96
Ms 28.22 28.21	28.22
rs 29.83 29.79	29.85
Vs 58.9 60.2	59.2
acím 91,300 93,400	91.800
dscfm 45,700 45,600	45,400
lb/hr 236,100 235,300	233,500

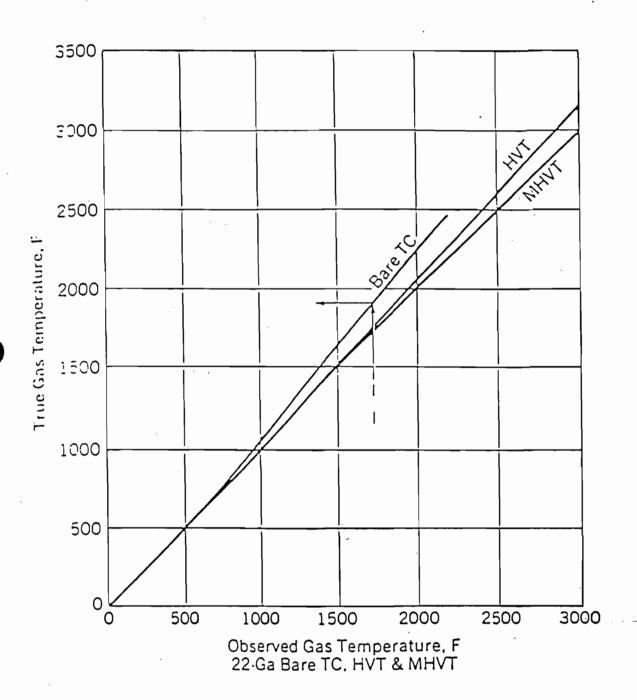


Fig. 28 General magnitude of error in observed readings when measuring gas temperature in boiler cavities with thermospuples.

REF. B&W STEAM BOOK SECTION, 2 ATTACHMENT 2

MEASUREMENT OF GAS TEMPERATURE IN BOILER FURNACES

High Velocity Thermocouples

Babcock & Wilcox

TABLE OF CONTENTS

INTRODUCTION
GENERAL PRINCIPLES
HIGH VELOCITY THERMOCOUPLE TYPES
HVT — (Single Shield)
MHVT - (Multiple Shield)
TEMPERATURE CORRECTION
CONSTRUCTION
Water - Cooled Holder
Thermocouple Assembly
PROCEDURE8
SPERATION9
Water Supply9
Compressed Air Supply9
Recording Data
Repair of Thermocouple Assembly
Calibration of Thermocouple
APPLICATION TO BOILER TESTING
ILLUSTRATIONS
- igh Velocity Thermocouple Shield (HVT)
High Velocity Thermocouple Shields (MHVT)
Comparision of MHVT and Bare Thermocouples -vs- HVT in Furnace Gases
Water Cooled HNT Probe Arrangement
Water - Cooled HVT Probe Thermocouple Assembly
Polarity Check of Thermoelements for High Velocity Thermocouples
Temperature and Error Limits for Thermocouple Wire
Influence of Gas Mass Flow on Indicated Temperature
Calibrated Orifice Assembly
Typical Orifice Gas Flow Curve Fig. 9

INTRODUCTION

Progressive design and operation of modern steam generating units depends, to an increasing extent, upon the critical evaluation of gas temperature conditions in the furnace and superheater sections of the equipment. Successful performance must take into account the limitations imposed by metal temperatures of superheater tubes, and by the fusing characteristics of ash and slag from the fuel in current or expected use.

While the over-all complexity of combustion and heat-transfer relationships prevents exact calculation, much valuable information can be obtained by taking direct and accurate measurement of the gas temperatures occurring in operating units, and making comparative studies of related factors.

Methods and equipment have been developed for this purpose and are described in this bulletin. They employ the portable, water-cooled high-velocity-thermocouple (HVT) for traversing various sections of the gas stream. Practical details for the construction and use of the equipment are included.

GENERAL PRINCIPLES

A simple exposed thermocouple, immersed in a hot gas stream, is affected not only by convection heat transfer from the gas to the thermocouple junction, but also by radiant heat exchange with sumounding surfaces which it can "see". If these surfaces are at the same temperature as the gas, the thermocouple junction will attain that temperature, and its reading will be the true gas temperature.

If the surrounding surfaces are at a temperature higher than that of the gas, heat exchange by radiation to the thermocouple junction will take place, resulting in a reading that is higher than the true gas temperature by an amount representing the equilibrium condition of the thermocouple in relation to its environment. On the other hand, if the surrounding surfaces are cooler than the gas, a net loss of heat from the thermocouple junction will result in readings that are lower than the true gas temperature.

The latter situation is more commonly encountered in boiler practice, because of the presence of water-cooled boiler and furnace wall tubes or steam-cooled superheater surfaces. Under some conditions the reading obtained from a bare exposed thermocouple in boiler passes may be several hundred degrees below the true temperature of the gas stream. For the sake of simplicity, in the descriptions which follow, it will be generally considered that the surrounding surfaces are cooler than the gas.

HIGH VELOCITY THERMOCOUPLE TYPES

HVT - (Single Shield)

Radiation error may be largely overcome by use of the high-velocity-thermocouple (HVT); which interposes a procelain radiation shield around the thermocouple junction, as shown in Figure 1. In this device, hot gas is aspirated over the thermocouple junction at a high velocity,

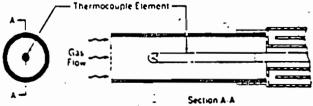


Fig. 1 High Velocity Thermocoupie Shield Assembly

to increase the rate of heat transfer by convection from the gas to the thermocouple, and simultaneously impart heat to the radiation shield. The shield greatly reduces the amount of colder boiler surface which the thermocouple can "see", and substitutes surface at a temperature much closer to that of the gas, thereby reducing radiation loss from the thermocouple.

MHVT - (Multiple Shield)

By the use of multiple shields, all of which are heated by the aspirated gas stream, the radiation error may be further decreased, and the reading of the thermocouple caused to approach, very nearly, the true gas temperature. In such an arrangement the shielding surface nearest the thermocouple reaches higher temperatures, because its own heat losses are diminished by the outer shields.

One form of multiple shielding, (designated MHVT), which is widely adopted as a standard of reference in boiler testing, is shown in Figure 2. This assembly consists of an outer porcelain tube, connected to the aspirating source, and packed with smaller thin-wall porcelain tubes that surround the thermocouple element.

The MHVT can be used for traverse purposes in gas-fired or oil-fired units, where the products of combustion are relatively clean. Its small openings tend to clog rapidly if used in dust-laden gases from coal firing, and consequently require frequent cleaning or replacement. It can be operated for short periods, however, to serve as a standard of comparision in calibrating the more practical, though less effective, types of shielding.

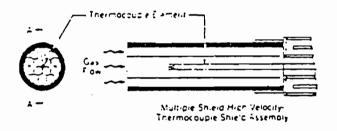


Fig. 2 Shield assemblies for high-velocity thermocouple (HVT) and multiple shield high velocity thermocouple (MHVT).

TEMPERATURE CORRECTION

The amount of thermocouple radiation error will vary with many factors. These include the size of the thermocouple junction, its relation to the gas flow and surrounding boiler surfaces, the distribution and thickness of ash or slag as they affect the resultant surface temperature, the composition of the gases as well as the radiation characteristics of the active combustion zone, including its size and position. These factors vary with the design of the unit, rate of firing, and nature of the fuel.

Considering that the MHVT gives substantially accurate reading of true gas temperature, the general magnitude of error shown by a bare thermocouple and the single-shielded HVT, are indicated in Figure 3. It will be noted that the amount of error is greater in the high range of temperatures, and becomes negligible in the cooler range corresponding to economizer or airheater gas passages.

The curves may be used for approximate correction of HVT readings taken in water-cooled furnaces and in cavity spaces of superheater and boiler convection banks. Inasmuch as they represent generalized data, obtained from a great many units, involving different fuels and

operating rates, they should not be regarded as precise values. Where more exact corrections are desired, it may be necessary to run specific calibration by direct comparison of HVT and MHVT readings, taken under the particular conditions of the test.

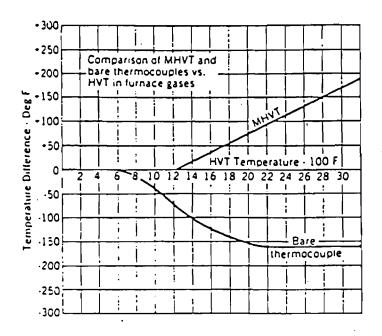


Fig. 3

CONSTRUCTION

General arrangement of the HVT test probe is shown in Figure 4. The assembly consists of a thermocouple element, supported by a water-cooled holder of sufficient length to span the traverse distance required for the boiler setting. Details of construction are such that it can be readily fabricated from stainless steel tubing and fittings. Certain features are provided to facilitate repair when it becomes necessary through normal use of the equipment.

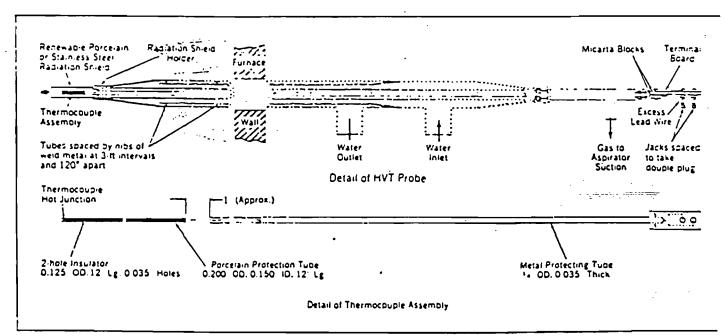


Fig. 4 Rugged water-cooled high-velocity thermocouple (HVT) for determination of high gas temperatures.

Water-Cooled Holder

The water-cooled holder consists of three concentric tunes. Cooling water flows through the wo outer annuli and gases are drawn through the inner annulus by means of an aspirator opered by compressed air. At the furnace end, the thermocouple hot-junction projects beyond me water-cooled holder, and is surrounded by a porcelain radiation shield through which the gas is drawn at high velocity, simultaneously heating the thermocouple junction and the refractory shield.

Several factors must be considered in selecting the proper diameter and length of probe. Among these are the location and size of available doors, the traverse area to be covered, external clearances for access and manipulation as well as the probable range of the temperature of the gases and the available pressure of cooling water. Probes can be made in various lengths up to twenty feet. In the longer probes a larger diameter tubing is required to assure adequate water circulation for a given water supply pressure.

Two sizes are presently being fabricated with stainless steel tubing and fittings and should be considered standard. 1½" O.D. up to and including 15'-0 and 2" O.D. over 15'-0 up to and including 20'-0 in length.

The probes are normally made of straight tubing. For some special cases they may be made with a moderate degree of curvature in order to reach otherwise inaccessible areas. Brass, mild steel, or stainless steel tubes may be used in the construction. Stainless steel tubing is preferred because of its strength and corrosion resistance. It is desirable to have the outer tube of sufficient thickness to withstand physical damage in handling. The tubes are held in concentric position by the use of small spacing nibs of brazed metal shown in the detail.

Thermocouple Assembly

The thermocouple assembly is shown in Figure 4. The basic circuit consists of a paired length of 24 AWG platinum, and 90% platinum, 10% rhodium wire, joined to a suitable length of 22 AWG extension lead wire. The hot junction between the platinum and the platinum-rhodium wires can be made by twisting the ends together and fusing the twist into a small bead, by means of a portable electric welder, or acetylene torch. Welding flux should not be used. The copper and copper alloy lead wires should be given a polarity check, as outlined in Figure 5, before being permanently joined to the thermocouple wires by silver solder. For stainless steel tubing, welding or silver soldering should be used instead of brazing. Figure 6 shows the temperature and error limits for thermocouple wire.

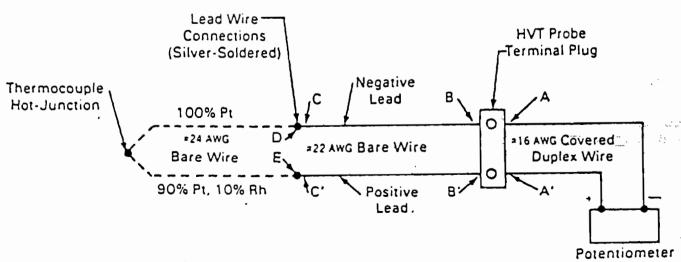


Fig. 5 Polarity check for thermoelement for high velocity thermocouple.

BEST AVAILABLE COPY

.

Temperature limits for standard thermocouples that are protected with a closed end protecting tube are snown. These limits are suggested for continuous temperature sensing where it sulation is not a factor. For unprotected thermocouples where fast response is required these limits should be reduced for equivalent service life.

	ISA		(AWG)	i)		
Thermocouple	Type		14	20	24	20
Copper-Constantan	1	-	700°F	500°F	- 400°F	400°F
"on-Constantan	ر	1400°F	1100°F	900°F	700°F	7000
Chamei-Constantan	ı ê	10000	1200°F	1000° F	800° F	800"
Chrame Atumet	٠,	27000	2000	1800°F	1600°F	1600
Plat num-Piatinum	A 5 5	-	_	_	2700°5	_
Phatingmail Rhod ym Phatige 30's Rhodium	В	_	_	_	3100°F	_
Tungsien Tungsien Anenium	%5 %5			-	4200° F	-

	i		LIMITS 0		ĺ
WIRE ALLOTS	AMS! TYPE	TEMPERATURE AAMGE (F)	STANDARD	SMICIAL	
Copper(-) vs Constantan(-)	T	-300 to -75 -150 to -75 -75 to -200 -200 to -700	2% 11:15 13:46	140 F	. منشند
'iron(+) vs Constantan(-)	J	32 to 530 530 to 1400	: 4° F : 1, %	7 440 7 54E 1977	
Chromei(-) vs Constantant-)	E	32 to 600 600 to 1600	131F	2 3 % F	
Chromel(+) vs *Alumel(—)	ĸ	32 to 530 530 to 2300	2 4 ° F 2 3, 8g	: 2°F	
Platinum(—) vs Platinum Rhodium(~)	ALS	32 to 1000 1000 to 2700	12':*F	. V.	
Platinum 6% Rhodium(-) Platinum 30% Rhodium(*)		1600 10 3100	2 7 2 %		
Tungsten(+) vs Tungsten 26% Rhenium	WA.	10 800	: 6^F		
Tungsten 3% Anenium(+) Tungsten 25% Ahenium(+)	ı wı	800 to 4200	. 1%	_	
Tungsten 5% Rhenium(*) Tungsten 26% Rhenium	w5.		.,,		

Fig. 6 Temperature and error limits for thermocouple

Magnetic Conductor

Correction values thus obtained for the service thermocouple should be applied to the readings taken in the test traverses of the operating boiler unit. With repeated use, the service thermocouple may show progressively increasing deviation from the calibrating thermocouple, due to accumulating contamination effects. This tendency is more pronounced when the service thermocouple is used at temperatures above 2600F. A couple is considered usable if correction values at its highest operating temperature do not exceed approximately 40 to 50 degrees. If a greater deviation is shown, the contaminated portion should be cut off and a new hot junction made. A record should be kept of the amount cut off the service thermocouple to insure that it is not used after its length is reduced below 50 inches.

APPLICATION TO BOILER TESTING

The high velocity thermocouple described is primarily a tool for accurate measurement of high gas temperature under the difficult conditions encountered in steam boiler practice. Its application to boiler testing is, of course, quite varied, depending on the purpose of the test. In common practice it is used to explore the range and distribution of temperature in sections of the unit where information is needed relative to heat transfer rates, duty on pressure parts of superheater or other components of the equipment, and for investigating the behavior of ash and slag.

Graphical correlation is usually the most satisfactory method for appraising the data, and may be developed in the form of temperature-profile plots for individual traverse sections, or as area plots of isotherms, drawn in conformity with the readings obtained at local traverse points.

In any consideration of average temperature values, attention should be given to the nature and distribution of gas mass flow in the traverse area, which may require separate investigation by velocity traverse, using other test equipment.

Where the study requires a determination of gas composition, in conjunction with temperature data, the gases may be sampled from the line ahead of the aspirator, simultaneously with the progress of the temperature traverse. For separate traverse to determine gas composition, the water-cooled holder may be used conveniently as a sampling tube, after withdrawing the thermocouple element.

Progress and improvement in boiler design and operation depend very largely upon procuring more complete and accurate knowledge of the relationship of factors involved in the problem. Intelligent use of the HVT probe can yield data of primary significance to the resolution of this problem, and its extended application is encouraged.

OGDEN MARTIN SYSTEMS, INC.

40 LANE ROAD CN 2615 FAIRFIELD, NEW JERSEY 07007-2615 (201) 882-9000

September 20, 1989

RECEIVED SEP 27 1989 OMSP

Florida Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400

Attention: Mr. C.H. Fancy, Deputy Bureau Chlef

SUBJECT: PASCO COUNTY SOLID WASTE RESOURCE RECOVERY FACILITY

PSD - FL - 127

Dear Mr. Fancy:

Specific condition 1.F. of the above referenced PSD Permit for the Pasco County Solid Waste Resource Recovery Facility states that only natural gas be utilized to fuel the auxiliary burners. Subsequent to the PSD application and the power plant site certification applications, natural gas has been determined to be unavailable to this facility. As a result, Ogden Martin has been directed by the county to substitute natural gas with propane for the auxiliary burners. Ogden Martin understands with discussions to Barry Andrews that these two fuels can be used interchangeably without permit modification according to current FDER Policy.

Please verify in writing that the above change in auxiliary fuel is acceptable and that no permit modification is required.

If you have any questions regarding this matter, please do not hesitate to contact the undersigned or our resident construction manager, Mr. Paul Hauck at (813) 856-7697.

Sincerely,

OGDEN MARTIN SYSTEMS OF PASCO, INC.

Joseph N. Conover

Project Manager

LB:r1/2-96

cc: J. Gallagher - Pasco County

D. Bramlett - Pasco County

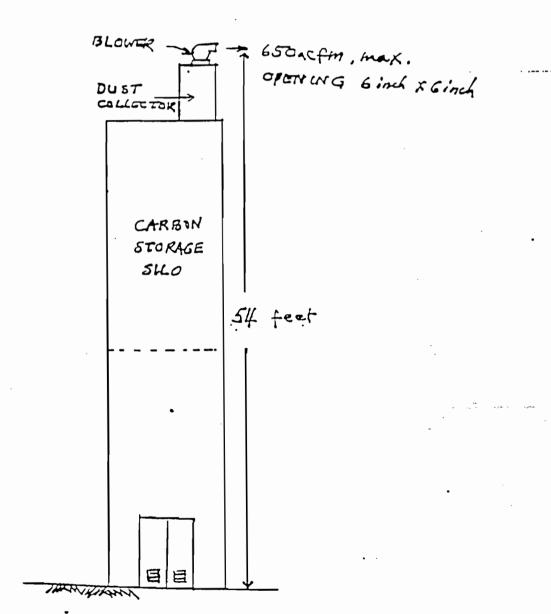
D. Strobridge - CDM

P. Hauck OMSP > PIf- 5.1

Appendix C

Carbon Silo Supplemental Information

PASCO FACILITY CARBON STORAGE SILO

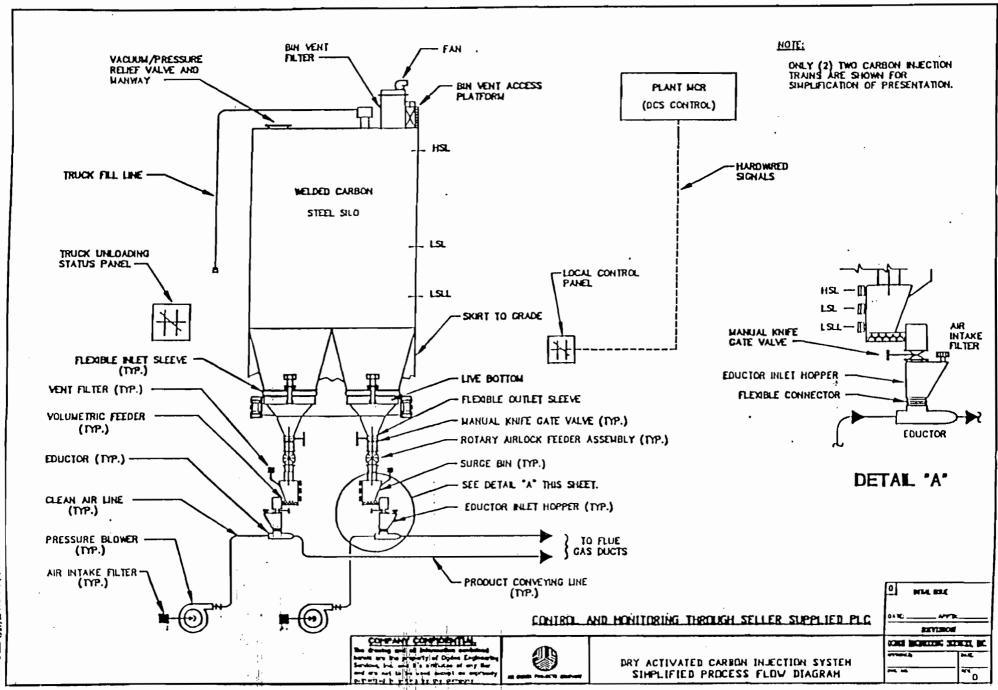

DOCUMENT III.C.14 Emission Stack Geometry and Flow Characteristics

The emission point is the blower outlet, which is a 6 inch by 6 inch opening.

The blower outlet is approximately 54 feet from the ground.

Air flow rate is 650 acfm, maximum, at ambient temperature, with ambient air moisture content.

Air flow exit velocity is 43 fps, maximum.


Carbon Silo Simplified Process Flow Diagram

DOCUMENT III.I.3

Detailed Description of Control Equipment

The dust collector system will be provided on the silo vent to clean the air exhausted during the pneumatic transfer of carbon into the silo from delivery trucks. Vent filter bags will be pulse jet cleaned, sized for a maximum air to cloth ratio of 3 to 1, and made of Mikropul or equal. The baghouse is designed for 99.9% particulate removal efficiency. Exhaust air will have less than 0.015 gr/DSCF of particulate.

Bag material will be 16 oz. polyester and treated to be fire resistant. Bag cage material will be, as a minimum, 16 gauge, galvanized carbon steel wire. The vent filter housings will be constructed of minimum 12 gauge carbon steel and adequately reinforced to withstand pressures of 15 inches H2O above and below atmospheric pressure without pulsation or drumming on flat surfaces. All vent filter housings will be dust tight at the maximum design pressure and air flow.

Carbon Silo Permit # AC51-266667 SPECIFIC CONDITIONS:

Permit: AC51-266667 Carbon Storage Silo

REPORTING REQUIREMENTS

12. All test reports shall be submitted to the Air Compliance Section of the Southwest District Office of the Department of Environmental Protection within 45 days of testing. [Rule 62-296.570(2), F.A.C.]

- 13. Submit to the Air Compliance Section of the Southwest District Office of the Department of Environmental Protection each calendar year, on or before March 1, completed DEP Form 62-210.900(5), "Annual Operating Report for Air Pollutant Emitting Facility", including the Emissions Report, for the preceding calendar year. [Rule 62-210.370(3), F.A.C.]
- 14. The minimum requirements for stack sampling facilities, source sampling and reporting, shall be in accordance with Chapter 62-297, F.A.C., Stationary Sources Emission Monitoring and 40 CFR 60, Appendix A. [Rule 62-297.420, F.A.C.]

OPERATION PERMIT REQUIREMENTS

15. The permittee is subject to the permitting requirements of Rule 62-213.400 and shall apply for a Title V operation permit by submitting a completed application, DEP Form 62-210.900(1), to the Air Permitting Section of the Southwest District Office of the Department of Environmental Protection by the appropriate date referenced in Rule 62-213.420(1)(a), F.A.C.

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Richard D. Garrity, Ph.D.

Director of District Management

Southwest District

5pc 667c.pmt

ATTACHMENT - GENERAL CONDITIONS:

- 1. The terms, conditions, requirements, limitations, and restrictions set forth in this permit are "Permit Conditions" and are binding and enforceable pursuant to Sections 403.141, 403.727, or 403.859 through 403.861, Florida Statutes. The permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in Subsections 403.087(6) and 403.722(5), F.S., the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in the permit.
- 4. This permit conveys no title to land or water, does not constitute State recognition or acknowledgement of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit, as required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at a reasonable time, access to the premises, where the permitted activity is located or conducted to:

GENERAL CONDITIONS:

- a. Have access to and copy any records that must be kept under the conditions of the permit;
- b. Inspect the facility, equipment, practices, or operations regulated or required under this permit; and
- c. Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

Reasonable time may depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - a. a description of and cause of non-compliance; and
 - b. the period of noncompliance, including dates and times; or, if not corrected, the anticipated time the non-compliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the non-compliance.

The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Sections 403.73 and 403.111, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance, provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Florida Administrative Code Rules 17-4.120 and 17-730.300, F.A.C., as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.

GENERAL CONDITIONS:

- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. This permit also constitutes:
 - () Determination of Best Available Control Technology (BACT)
 - () Determination of Prevention of Significant Deterioration (PSD)
 - () Compliance with New Source Performance Standards (NSPS)
- 14. The permittee shall comply with the following:
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - c. Records of monitoring information shall include:
 - the date, exact place, and time of sampling or measurements;
 - the person responsible for performing the sampling or measurements;
 - the dates analyses were performed;
 - the person responsible for performing the analyses;
 - the analytical techniques or methods used; and
 - the results of such analyses.
- 15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.

Department of Environmental Protection

Lawton Chiles Governor Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

Virginia B. Wetherell Secretary

In the matter of an Application for Permit by:

DEP File: AC51-266667 Pasco County

Mr. John L. Gallagher, County Administrator Pasco County 7530 Little Road New Port Richey, Florida 34654

NOTICE OF PERMIT

Enclosed is air pollution permit AC51-266667 for the construction of a new storage silo for activated carbon to be used at the Pasco Resource Recovery Facility located at 14230 Hays Road, Spring Hill, Florida, issued pursuant to Section 403.087, Florida Statutes.

Any party to this Order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Executed in Tampa, Florida.

Sincerely,

John J. Taylor, P.E. Air Permit Engineer

Enclosure

Page 1 of 2

Mr. John L. Gallagher Pasco County

copies: (1) Ms. Caroline G. Nagge
Environmental Planner
Ogden Martin Systems, Inc.
40 Lane Road

3

Fairfield, New Jersey 07007-2615

(2) Mr. Jason Gorrie
Environmental Engineer
Ogden Martin Systems of Pasco, Inc.
14230 Hays Road
Spring Hill, Florida 34610

CERTIFICATE OF SERVICE

The undersigned duly designated deputy agency clerk hereby certifies that this NOTICE OF PERMIT and sall copies were mailed before the close of business on AFR 20 1833 to the listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGEMENT FILED, on this date, pursuant to Section 120.52(11), Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

erk) (Date

DEP File: AC51-266667

Department of

Environmental Protection 23

Lawton Chiles Governor Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

Virginia B. Wetherell Secretary

PERMITTEE:

Pasco County 7530 Little Road

New Port Richey, Florida 34654

PERMIT/PROJECT:

Permit: AC51-266667

County: Pasco

Expiration Date: 03/15/98
Project: Carbon Storage Silo

and Injection Equipment

This permit is issued under the provisions of Chapter 403, Florida Statutes, Chapter 62-4, Permits, and Chapters 62-200 through 62-297, Florida Administrative Code. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans and other documents, attached hereto or on file with the Department and made a part hereof and specifically described as follows:

For the construction of a storage silo and associated transport and injection equipment which will be used to store and inject dry activated carbon into the flue gas at the Pasco Resource Recovery Facility. The carbon injection will be used to control mercury emissions at the facility. Particulate matter emissions from the silo during pneumatic loading will be controlled by a Mikopul, or equivalent, baghouse dust collector.

This source is located in a particulate matter (PM) "area of influence" and is subject to the requirements of Rule 62-296.700, F.A.C., Reasonably Available Control Technology (PM-RACT), but qualifies for a PM-RACT exemption per Rule 62-296.700(2)(b), F.A.C.

Location:

Pasco Resource Recovery Facility

14230 Hays Road, Spring Hill, Florida

UTM:

17-328.9 km E 2686.0 km N

NEDS No:

0056

Point ID:

004

Facility ID:

40TPA510056

Page 1 of 4

Permit: AC51-266667 Carbon Storage Silo

SPECIFIC CONDITIONS:

1. A part of this permit is the attached GENERAL CONDITIONS. [Rule 62-4.160, F.A.C.]

2. Issuance of this permit does not relieve the permittee from complying with applicable emission limiting standards or other requirements of Chapters 62-200 through 62-299, Florida Administrative Code, or any other requirements under federal, state or local law. [Rule 62-210.300, F.A.C.]

OPERATIONAL LIMITATIONS

- 3. The hours of operation of the storage silo and the associated handling and injection system are not restricted. [Rule 62-4.070(3), F.A.C.]
- 4. The permittee shall not allow any person to circumvent the operation of the baghouse collector. The baghouse must be operational during pneumatic loading of the storage silo. [Rule 62-210.650, F.A.C.]
- 5. All reasonable precautions shall be taken to prevent and control the generation of unconfined emissions of particulate matter. These provisions are applicable to any source, including but not limited to, vehicular movement, transportation of materials, construction, alteration, demolition or wrecking, or industrial related activities such as loading, unloading, storing and handling. These precautions shall include the use of water when necessary to control fugitive emissions, such as the use of water to keep roadways and work areas damp to control dust and windborne emissions. [Rule 62-296.310(3), F.A.C.]

EMISSION LIMITATIONS

- 6. Visible emissions from the baghouse exhaust and the support equipment (the dry carbon transport piping and metering system) shall not exceed 5% opacity. Pursuant to Rule 62-297.620(4), F.A.C. for a source equipped with a baghouse, this visible emission limitation is being established in lieu of a particulate matter emissions stack test.

 [Rule 62-297.620(4), F.A.C.]
- 7. The maximum allowable particulate matter emission rate from storage silo exhaust shall not exceed 0.084 pounds per hour and 0.37 tons per year. This particulate matter emission rate limitation qualifies the source for the PM-RACT exemption per Rule 62-296.700(2)(b), F.A.C. [Requested in construction permit application, 03/03/95]

Page 2 of 4

SPECIFIC CONDITIONS:

Permit: AC51-266667 Carbon Storage Silo

TESTING AND COMPLIANCE REQUIREMENTS

- 8. Test for visible emissions per Specific condition No. 6 within 60 days after initial start up. "Initial start up" is defined as the first introduction of activated carbon into the storage silo. Testing for visible emissions shall be conducted annually, thereafter, within the 60 day period prior to the anniversary date established by the initial compliance testing. A copy of the test data shall be submitted to the Air Compliance Section, Southwest District Office of the Department of Environmental Protection within 45 days of testing.

 [Rule 62-297.340(1)(a) and 62-297.570(2), F.A.C.]
- 9. Compliance with the visible emission limitation of Specific Condition No. 6, shall be determined using EPA Method 9 and shall be conducted by a certified observer and be a minimum of 30 minutes in duration. The test observation period shall include the period during which the highest opacity emissions can reasonably be expected to occur. This period is expected to be the last minutes of silo loading. For a silo loading operation that is normally completed in less than 30 minutes, the visible emissions test shall be conducted for the normal duration of the silo loading operation. [Rules 62-297.330(1)(b), and 62-4.070(3) F.A.C.]
- 10. The visible emissions test shall be conducted while pneumatically loading the silo at a rate that is representative of the normal silo loading rate. The silo loading rate shall be at least 25 tons per hour and shall occur in less than one hour. Each test report shall include a calculation indicating the actual silo loading rate during the visible emission test. The dry carbon injection system is assumed to be in continuous operation and should be operating normally during all visible emission testing. If these operations are not in simultaneous operation during a scheduled visible emissions test, it shall be so noted on the test report. [Rule 62-4.070(3), F.A.C.]

NOTIFICATION REQUIREMENTS

11. The permittee shall notify the Air Compliance Section of the Department of Environmental Protection at least 15 days prior to the date on which each formal compliance test is to begin of the date, time, and place of each test, and the contact person who will be responsible for coordinating the test. [Rule 62-297.340(1)(i), F.A.C.]

Appendix D.

Leachate Treatment Facility Permit

Department of Proceedion

MAR 2 | 1996

Camp Dresser & McKee - Tar

Lawton Chiles Governor Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

Virginia B. Wetherell Secretary

NOTICE OF PERMIT ISSUANCE

In the matter of an Application for Permit by:

Mr. Doug Bramlett
Assistant County Administrator
Pasco County
7530 Little Road
New Port Richey, FL 33553

DEP File No.: 1010056-001-AC

County: Pasco

Enclosed is Permit Number 1010056-001-AC for the construction of a Leachate Treatment Facility at the Pasco County Solid Waste Resource Recovery Facility located at 14230 Hays Road, Spring Hill, Pasco County, issued pursuant to Section 403.087, Florida Statutes and Florida Administrative Code (F.A.C.), Rules 62-210 through 62-297 and 62-4.

Any party to this Order (permit) has the right to seek judicial review of the Order (permit) pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400; and by filing a copy of the Notice of Appeal accompanied by the applicable filing feeswith the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Executed in Tampa, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL-PROTECTION

George W. Richardson Air Permitting Engineer Southwest District

3804 Coconut Palm Drive Tampa, FL 33619-8318 (813)744-6100, Ext. 105

cc: Darwish Elhajji, P.E., Camp Dresser & McKee, Inc. 1 Tampa City Center, Suite 1750 Tampa, FL 33602

"Protect, Conserve and Manage Florida's Environment and Natural Resources"

Page Two

CERTIFICATE OF SERVICE

The undersigned duly designated Deputy Department Clerk hereby certifies that this NOTICE OF PERMIT ISSUANCE and all copies were mailed before the close of business on _____MAR 20 1996 _____ to the listed persons.

FILING AND ACKNOWLEDGEMENT

FILED, on this date, pursuant to Section 120.52(11), Florida Statutes, with the designated Deputy Department Clerk, receipt of which is hereby acknowledged.

(Clerk) MAR 20 1996
(Clerk) (Date)

Attachment:

Department of Environmental Protection

Lawton Chiles Governor Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

Virginia B. Wetherell Secretary

PERMITTEE:

Pasco County 7530 Little Road New Port Richey, FL 33553 /

PERMIT/PROJECT:

Permit No: 1010056-001-AC

County: Pasco

Expiration Date: 02/20/1997 Project: Leachate Treatment

Facility

This permit is issued under the provisions of Chapter 403, Florida Statutes, and Florida Administrative Code Rules 62-210 through 297 & 62-4. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans and other documents, attached hereto or on file with the Department and made a part hereof and specifically described as follows:

For the construction of a Leachate Treatment Facility at the Pasco County Solid Waste Resource Recovery Facility. The emissions unit is a Bowen Model No. AA-6 natural gas fired spray drying system for the ashfill leachate. The maximum heat input rate to the dryer is 3.0 MMBTU/hour. The design leachate feed rate is 1724 pounds/hour with an evaporation rate of 1207 pounds/hour and a powder rate of 517 pounds/hour. Also, for the construction of a natural gas fired Parker Boiler Company 1.0 MMBTU/hour startup boiler to be used for the first 24 hours during startup of the spray drying system. Emissions from the spray drying system will be controlled with a Niro, Inc. baghouse having an air to cloth ration of 3.9:1.

Location: 14230 Hays Road, Spring Hill, Pasco County

UTM: 17-347.1 E 3139.2 N

Facility ID No: 0056 Emission Unit ID: 005-Leachate Treatment Baghouse

Note: Please reference Permit No., Facility No., and Emission Unit ID in all correspondence, test report submittals, applications, etc.

Replaces Permit No.: N/A New Source

Page 1 of 3.

"Protect, Conserve and Manage Florida's Environment and Natural Resources"

Printed on recycled paper.

PERMITTEE:
Pasco County

Permit No.: 1010056-001-AC Project: Leachate Treatment

Facility

SPECIFIC CONDITIONS:

- 1. A part of this permit is the attached 15 General Conditions (Rule 62-4.160, F.A.C.).
- 2. The maximum permitted allowable emission rate of particulate matter from the dryer baghouse shall not exceed 0.52 pounds/hour and 2.26 tons/year (construction permit application received 11/17/95). These emission limitations will exempt the facility from the requirements of Rule 62-296.700, F.A.C., Particulate RACT, (Rule 62-296.700(2), F.A.C.).
- 3. Visible emissions from the dryer baghouse shall not be equal to or exceed 20% opacity (Rule 62-296.310(2), F.A.C.).
- 4. The facility is allowed to operate continuously, 8,760 hours/year (construction permit application received 11/17/95).
- 5. All reasonable precautions shall be taken to prevent and control the generation of unconfined emissions of particulate matter in accordance with Rule 62-296.310(3), F.A.C. These provisions are applicable to any source, including, but not limited to, vehicular movement, transportation of materials, construction, alteration, demolition of wrecking, or industrial related activities such as loading, unloading, storing and handling.
- 6. Test the emissions from the dryer baghouse for the following pollutants within 60 days of startup. A report of the test data shall be submitted to the Air Compliance Section of the Department's Southwest District Office within 45 days of the testing (Rules 62-297.340 and 62-297.570, F.A.C.).
 - (X) Particulate matter (waived per Specific Condition No. 10)
 - (X) Visible emissions
- 7. Compliance with the emission limitations of Specific Conditions No. 2 and 3 shall be determined using EPA Methods 1, 2,3,4,5 and 9 contained in 40 CFR 60, Appendix A and adopted by reference in Rule 62-297, F.A.C. The minimum requirements for stationary point source sampling and reporting shall be in accordance with Rule 62-297, F.A.C. and 40 CFR 60, Appendix A. The visible emissions compliance tests shall be conducted by a certified observer and be a minimum of 30 minutes in duration.
- 8. The permittee shall notify the Air Compliance Section of the Department's Southwest District Office in writing at least 15 days prior to the date on which the compliance test is to begin. The notice shall include, the date, time, and place of each test (Rule 62-297.340(1)(i), F.A.C.).

PERMITTEE:
Pasco County

Permit No.: 1010056-001-AC Project: Leachate Treatment

Facility

Testing of emissions to show compliance shall be conducted within 90-100% of the maximum permitted dryer feed rate of 1724 pounds/hour. A compliance test submitted at an operating rate less than 90% of the permitted rate will automatically constitute an amended permit at the lesser rate plus 10%, until another test, showing compliance at a higher rate is submitted. time the permitted rate of the source is exceeded by more than 10% a compliance test shall be performed within 30 days of initiation of the higher rate and the test results shall be submitted to the Department within 45 days of testing. Acceptance of the test by the Department will constitute an amended permit at the higher rate plus 10%, but in no case shall the maximum permitted dryer feed rate of 1724 pounds/hour be exceeded. Failure to submit the dryer feed rate and actual operating conditions in the test report may invalidate the test data (Rule 62-4.070(3), F.A.C.).

- 10. Due to the expense and complexity of conducting a stack test on a minor source of particulate matter, and because the dryer is equipped with a baghouse emission control device, the Department, pursuant to the authority granted under Rule 62-297.620(4), F.A.C., hereby establishes a visible emission limitation not to exceed an opacity of 5% from these sources baghouse exhaust in lieu of a particulate stack test and 20% opacity.
- 11. Should the Department have reason to believe the particulate emission standard as specified in Specific Condition No. 2 is not being met, the Department may require that compliance with the particulate emission standard be demonstrated by testing in accordance with Rule 62-297, F.A.C. (Rule 62-297.620(4), F.A.C.).
- 12. The permittee shall submit a minimum of two short form applications (DEP Form No. 62-210.900(2)) for an operating permit to the Air Permitting Section of the Department's Southwest District Office at least 60 days prior to the expiration date of this permit (Rule 62-4.090, F.A.C.).

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

W.C. Thomas, P.E.

District Air Program Administrator

Southwest District

ATTACHMENT - GENERAL CONDITIONS:

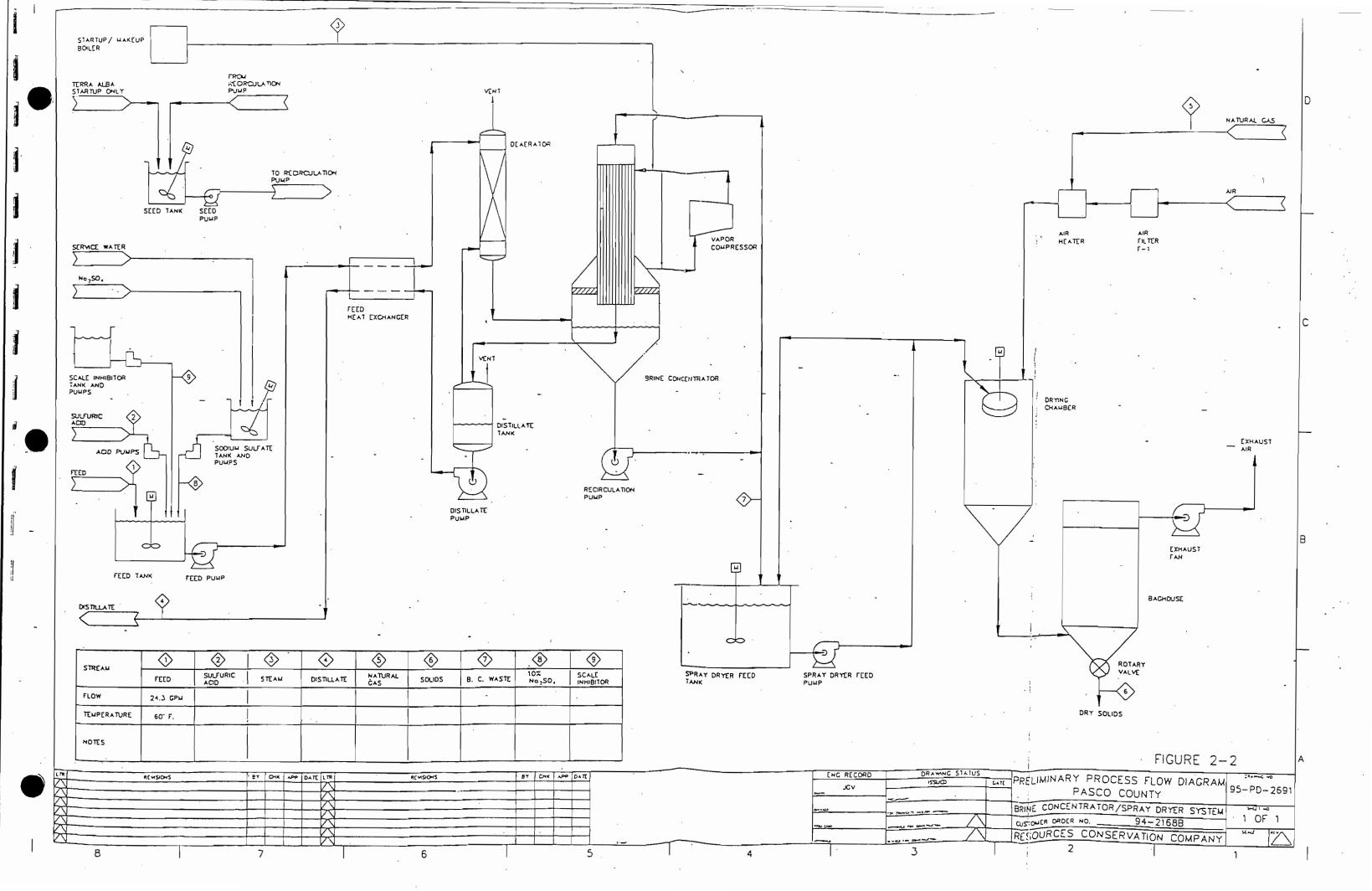
- 1. The terms, conditions, requirements, limitations, and restrictions set forth in this permit are "Permit Conditions" and are binding and enforceable pursuant to Sections 403.141, 403.727, or 403.859 through 403.861, Florida Statutes. The permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in Subsections 403.087(6) and 403.722(5), F.S., the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in the permit.
- 4. This permit conveys no title to land or water, does not constitute State recognition or acknowledgement of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit, as required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at a reasonable time, access to the premises, where the permitted activity is located or conducted to:

GENERAL CONDITIONS:

- a. Have access to and copy any records that must be kept under the conditions of the permit;
- b. Inspect the facility, equipment, practices, or operations regulated or required under this permit; and
- c. Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

Reasonable time may depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - a. a description of and cause of non-compliance; and
 - b. the period of noncompliance, including dates and times; or, if not corrected, the anticipated time the non-compliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the non-compliance.


The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Sections 403.73 and 403.111, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance, provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Florida Administrative Code Rules 62-4.120 and 62-730.300, F.A.C., as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.

GENERAL CONDITIONS:

- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. This permit also constitutes:
 - () Determination of Best Available Control Technology (BACT)
 - () Determination of Prevention of Significant Deterioration (PSD)
 - () Compliance with New Source Performance Standards (NSPS)
- 14. The permittee shall comply with the following:
 - a. Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department.
 - b. The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - c. Records of monitoring information shall include:
 - the date, exact place, and time of sampling or measurements;
 - the person responsible for performing the sampling or measurements;
 - the dates analyses were performed;
 - the person responsible for performing the analyses;
 - the analytical techniques or methods used; and
 - the results of such analyses.
- 15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.

Leachate Treatment Facility Process Flow Diagram

Appendix Z

Supporting Documentation for Fugitive Landfill Gas Emissions

Regulatory Applicability Determination

Memorandum

To:

Dan Strobridge

From:

Cynthia Hibbard

Vincent R. Tino

Date:

October 6, 1999

Subject:

Pasco County Solid Waste Resource Recovery Facility

Emission Guidelines Applicability Determination

This memorandum contains the results of the landfill gas modeling Emission Guidelines (62-204.800(8)(c), F.A.C.) applicability determination for the Pasco County Solid Waste Resource Recovery Facility solid waste landfill. We found that the landfill exceeds some of the applicability criteria contained in the Emission Guidelines for municipal solid waste landfills, and, therefore, that Emission Guidelines requirements and compliance actions must be listed in the revised Title V Air Operation Permit Application.

Although the landfill is primarily an ash landfill, it also accepts municipal solid waste (MSW) as bypass from the Resource Recovery Facility. The rule defines an MSW landfill subject to the rule as "an entire disposal facility in a contiguous geographical area where household waste is placed in or on land." (40 CFR 60.751, incorporated by reference at 62-204.800(8)(c)., F.A.C.) All RCRA Subtitle D wastes accepted on the contiguous property, including combustor ash and construction and demolition (C&D) wastes, are included in the determination of a landfill's design capacity. However, the non-degradable portion of the waste, such as the ash, can be excluded from calculations of landfill gas emission rates. (40 CFR 60.751 and 60.754, incorporated by reference at 62-204.800(8)(c)., F.A.C.)

In brief, the Emission Guidelines thresholds that affect municipal solid waste (MSW) landfills are:

- 1) Has the landfill accepted waste at any time since November 8, 1987, or does it have additional design capacity?
- 2) Is the landfill design capacity greater than 2.5 million megagrams (Mg) (2.75 million tons) AND 2.5 million cubic meters (3.27 million cubic yards)?
- 3) Does the landfill generate emissions of 50 Mg/year (55 tons/year) or more of nonmethane organic compounds (NMOC)?

Of the preceding questions, if the facility can answer "yes" to:

Question 1) only,

Then a Design Capacity Report was required to have been submitted by December 31, 1996 or within 90 days of the issuance of the solid waste permit for additional capacity.

Questions 1) and 2),

Then all requirements stated above for question 1) plus an NMOC emissions report must be submitted on an annual or 5-year basis. The initial report was required to have been submitted by December 31, 1996. The landfill would also be subject to Title V Operating Permit requirements on its own, if it were not already part of a Title V Facility, the Resource Recovery Facility.

Questions 1), 2), and 3),

Then all requirements stated above for questions 1) and 2) plus the facility must install a gas collection and control system by June 30, 1999, or within 30 months of the date when the first annual NMOC emission calculation exceeds 50 Mg/yr.

The Pasco County Solid Waste Resource Recovery Facility landfill has accepted waste since 1987 and, based on our calculations, the current design capacity is estimated to be 18,586,137 cubic yards (14,210,031 cubic meters). Therefore, the answers to questions 1) and 2) are "yes," and Design Capacity and NMOC Emission Rate Reports are required.

Approximately 619,296 tons (522,805 megagrams) of ash has been accepted between 1991 and 1999. We estimate an ash acceptance rate of 88,148 tons per year (1,050 tons of waste per day for 365 days at 92% operating capacity, and 25% of the waste converted to ash) between 2000 and closure year, 2067. Based on the current ash in place, forecast ash acceptance rates, and an ash density of 2,400 pounds per cubic yard, it is estimated that approximately 5,511,105 cubic yards of ash will occupy the landfill at closure. This leaves approximately 13,075,032 cubic yards in the landfill for MSW based on a density of 1,200 pounds per cubic yard for MSW. This is equivalent to a mass-based MSW capacity of 7,845,019 tons (7,116,845 megagrams) is calculated.

The NMOC emission rate for both the MSW/ash landfill and the C&D landfill must be estimated to answer question 3). The rule provides a conservative "Tier 1" formula in 40 CFR 60.754, that predicts NMOC emission rate solely as a function of the degradable waste (all non-ash waste) acceptance rate. EPA's Landfill Gas Emissions Model (LandGEM) contains this formula. It was used to calculate the NMOC emission rate for each year the landfill has operated.

Based on the waste acceptance rates presented in Attachment 1, the estimated 1999 NMOC emission rate is 8.9 Mg/yr. A copy of the model output is also attached (Attachment 2).

Based on this modeling, the Facility does not <u>currently</u> produce more than 50 Mg/year of NMOC emissions, nor will the Facility meet this threshold before 2004. However, the Facility could exceed this threshold sometime before 2067, depending on waste acceptance rates. The Facility could then be required to install a landfill gas collection and control system. However, between now and then, Pasco County could collect information that would support excluding the non-degradable C&D waste from this calculation. Alternatively, the County could conduct "Tier 2" testing as described in 40 CFR 60.754(a)(3). Either of these, or a change in projected waste acceptance rates could lower the calculated NMOC emission rate below the threshold for requiring a collection and control system in the future.

ATTACHMENT 1: Waste Acceptance Table

Average Yearly Accepted Degradable Waste 1

Year	Accepted C&D (Tons)	Accepted C&D (Mg)	Accepted MSW (Mg)	TOTAL Accepted (Mg)	Total In Place at Beginning of Year (Mg)
1991	3902	3540	0	3540	0
1992	4432	4021	0	4021	3540
1993	1756	1593	0	1593	7561
1994	1426	1294	0	1294	9154
1995	1883	1708	5210	6434	10447
1996	2546	2310	5210	7036	16882
1997	2531	2296	5210	7022	23918
1998	6073	5509	5210	10236	30940
1999	9381	8510	5210	13237	41175
2000 ²	9522	8638	5288	13435	54412
2001	9665	8768	9039	16968	67847
2002	9810	8899	14065	21659	84815
2003	9957	9033	19166	26420	106474
2004	10106	9168	24343	31252	132893
2005	N/A	N/A	N/A	N/A	164145

¹ Average annual waste acceptance rate was calculated from data provided by the Pasco County Solid Waste Authority. Municipal solid waste (MSW) acceptance rates reflect the average waste acceptance over the years 1995-1999, inclusive. Since the landfill is used as an overflow area for the incinerator, the waste totals accepted by the landfill vary greatly, even becoming negative when the waste accepted for the incinerator is too low to provide proper operation of the incinerator. Future MSW acceptance rates are calculated internally by LandGEM based on the number of years remaining until closure year, and available capacity.

² Years 2000 through 2004 projected based on 1.5% growth.

ATTACHMENT 2: LandGEM Model Output

Source: C:\MY_DOCS\PROJECTS\PASCOCTY\NEW-NSPS.PRM

Model Parameters

Lo : 170.00 m^3 / Mg k : 0.0500 1/yr NMOC : 4000.00 ppmv

Methane: 50.0000 % volume

Carbon Dioxide : 50.0000 % volume

Landfill Parameters

Landfill type : No Co-Disposal

Year Opened: 1989 Current Year: 2005 Closure Year: 2067

Capacity: 7116845 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 112140.31 Mg/year

Model Results

Model Results

202022				=====
			nission Rate	
Year	Refuse In Place (Mg)	(Mg/yr)	(Cubic m/yr)	
======	=			
1990	0.000E+00	0.000E+00	0.000E+00	
1991	0.000E+00	0.000E+00	0.000E+00	
1992	3.540E+03	8.628E-01	2.407E+02	
1993	7.560E+03	1.801E+00	5.024E+02	
1994	9.153E+03	2.101E+00	5.862E+02	
1995	1.045E+04	2.314E+00	6.456E+02	
1996	1.688E+04	3.769E+00	1.052E+03	
1997	2.392E+04	5.301E+00	1.479E+03	
1998	3.094E+04	6.754E+00	1.884E+03	
1999	4.118E+04	8.919E+00	2.488E+03	
2000	5.441E+04	1.171E+01	3.267E+03	
2001	6.785E+04	1.441E+01	4.021E+03	
2002	8.482E+04	1.785E+01	4.979E+03	
2003	1.065E+05	2.226E+01	6.209E+03	
2004	1.329E+05	2.761E+01	7.703E+03	

Emissions Calculations

Source: C:\MY DOCS\PROJECTS\PASCOCTY\NEW-NSPS.PRM

Model Parameters

Lo: 170.00 m³ / Mg k: 0.0500 1/yr NMOC: 4000.00 ppmv

Methane: 50.0000 % volume

Carbon Dioxide : 50.0000 % volume

Landfill Parameters

Landfill type : No Co-Disposal

Year Opened: 1989 Current Year: 2005 Closure Year: 2067

Capacity: 7116845 Mg

Average Acceptance Rate Required from

Current Year to Closure Year: 112140.31 Mg/year

Model Results

NMOC Emission Rate (Mg/yr) (Cubic m/yr) Refuse In Place (Mg) 0.000E+00 1990 0.000E+00 0.000E+00 0.000E+00 1991 0.000E+00 0.000E+00 2.407E+02 3.540E+03 1992 8.628E-01 5.024E+02 7.560E+03 1.801E+00 1993 5.862E+02 1994 9.153E+03 2.101E+00 1995 1.045E+04 2.314E+00 6.456E+02 1996 1.688E+04 3.769E+00 1.052E+03 1997 2.392E+04 5.301E+00 1.479E+03 1998 3.094E+04 6.754E+00 1.884E+03 2.488E+03 1999 4.118E+04 8.919E+00

CALCULATION OF HAZARDOUS AIR POLLUTANT EMISSIONS

Pasco County Waste-to-Energy Facility

Total Landfill Gas Generated

178.2 cu, m/yr 12,586 cu. Ft./yr

from LandGEM modeling (2 x 1999 peak methane emission rate using AP-42 coefficients)

595 ppmv, NMOC concentration in Landfill Gas (Assume as hexane MW of 86.16)

 $2,095,695 [\mu g/m^3 = (ppm)40.87(MW)]$

500,000 ppmv, Methane concentration in Landfill Gas (50%)(Assume as Methane MW of 16.0)
326,960,000 [μg/m³ = (ppm)40.87(MW)]

Uncontrolled LFG HAPs Calculations

AP-42 Default Maximum

	Wadiilaii					
	Concentration in	Molecular	14. O / . tum	Annual Emissions	Annual Emissions	
Compound	LFG (ppm)	Wt.	Max Conc (µg/m³)	(lbs/yr)	(tons/yr)	HAP or Not?
1,1,1-Trichloroethane	0.46	133.41	2617.2	2.06E-03	1.03E-06	HAP
1,1,2,2-Tetrachloroethane	1.11	167.85	7614.6	5.98E-03	2.99E-06	HAP
1,1-Dichloroethane	2.35	98.97	9505.5	7.47E-03	3.73E-06	HAP
1,1-Dichloroethene	0.2	96.94	792.4	6.23E-04	3.11E-07	HAP
1,2-Dichloroethane	0.41	98.96	1658.2	1.30E-03	6.51E-07	HAP
1,2-Dichloropropane	0.18	112.99	831.2	6.53E-04	3.27E-07	HAP
2-Propanol	50.1	60.11	123080.5	9.67E-02	4.84E-05	
Acetone	7.01	58.08	16639.8	1.31E-02	8.54E-06	
Acrylonitrile	6.33	53.08	13727.0	1.08E-02	5.39E-08	HAP
Bromodichloromethane	3.13	183.63	20957.8	1.65E-02	8.23E-08	
Butane	5.03	58.12	11948.1	9.39E-03	4.69E-06	
Carbon Disulfide	0.58	78.13	1804.8	1.42E-03	7.09E-07	HAP
Carbon Monoxide	141	28.01	161412.4	1.27E-01	6.34E-05	
Carbon Tetrachloride	0.004	153.84	25.1	1.98E-05	9.88E-09	HAP
Carbonyl Sulfide	0.49	60.07	1203.0	9.45E-04	4.73E-07	HAP
Chlorobenzene	0.25	112.56	1150.1	9.04E-04	4.52E-07	HAP
Chlorordifluoromethane	1.3	86.47	4594.2	3.61E-03	1.80E-06	
Chloroethane	1.25	64.52	3296.2	2.59E-03	1.29E-06	HAP
Chloroform	0.03	119.39	146,4	1.15E-04	5.75E-08	HAP
Chloromethane	1.21	50,49	2496.9	1.96E-03	9.81E-07	
Dichlorobenzene	0.21	147	1261.7	9.91E-04	4.96E-07	
Dichlorodifluoromethane	15.7	120.91	77583.0	6.10E-02	3.05E-05	
Dichlorofluoromethane	2.62	102.92	11020.6	8.66E-03	4.33E-06	
Dichloromethane	14.3	84.94	49642.4	3.90E-02	1.95E-05	HAP
Dimethyl Sulfide	7.82	62.13	19857.0	1.56E-02	7.80E-08	
Ethane	889	30.07	1092546.2	8.58E-01	4.29E-04	
Ethanol	27.2	46.08	51225.5	4.02E-02	2.01E-05	
Ethyl Mercaptan	2.28	62.13	5789.5	4.55E-03	2.27E-06	
thylbenzene	4.61	106.18	20001.7	1.57E-02	7.86E-06	HAP
Ethylene Dibromide	0.001	187.88	7.7	8.03E-06	3.02E-09	
Fluorotrichloromethane	0.76	137,38	4267.2	3.35E-03	1.68E-06	
-lexane	8.57	86.18	23140.7	1.82E-02	9.09E-06	HAP
lydrogen Sulfide	35.5	34.08	49448.2	3.89E-02	1.94E-05	FLAC
Mercury	2.92E-04	200.61	2.4	1.88E-06	9.41E-10	HAP
Methyl Ethyl Ketone	7.09	72.11	20895.2	1.64E-02		HAP
Methyl Isobutyl Ketone	7.0 9 1.87	100.16	20895.2 7654.9	6.01E-03	8.21E-06 3.01E-06	HAP
	1.87 2.49	100.16 48.11	7654.9 4896.0			HAP
Methyl Mercaptan				3.85E-03	1.92E-06	
Pentane	3.29	72.15	9701.5	7.62E-03	3.81E-06	
Perchloroethylene	3.73	165.83	25280.0	1.99E-02	9.93E-06	HAP
ropane	11.1	44.09	20001.7	1.57E-02	7.88E-06	•
-1,2-dichloroethene	2.84	96.94	11251.9	8.64E-03	4.42E-06	
Trichloroethylene	2.82	131.4	15144.3	1.19E-02	5.95E-06	HAP
√inyl Chloride	7.34	62.5	18749.1	1.47E-02	7.37E-06	HAP
Xylenes	12.1	106.16	52499.0	4.13E-02	2.06E-05	HAP

	Annual Emissions	Annual Emissions
	(lbs/yr)	(tons/yr)
Total Speciated Air Pollutants	1.55E+00	7.77E-04
Total Hazardous Air Pollutants	2.18E-01	1.09E-04

HAPS Page 1

CALCULATION OF FUGITIVE DUST EMISSIONS

Pasco County Waste-to-Energy Facility

Summary of ALL Fugitive Dust Sources

Total TSP Emissions from Landfill Working Face	6.91	Tons/year
Total PM10 Emissions from Landfill Working Face	6.90	Tons/year
Total TSP Emissions from Paved and Unpaved Roadways	0.70	Tons/year
Total PM10 Emissions from Paved and Unpaved Roadways	0.14	Tons/year

Summary of Landfill Openface Area Sources

Truck uni		

		140103.
Particle Size Multiplier (unitless)	0.74	AP42 - particles ≤ 30 µm (TSP)
Particle Size Multiplier (unitless)	0.35	AP42 - particles ≤ 10µm
Mean Wind Speed (mph)	8.8	Climate Summaries (Tampa)
Material moisture content (%)	11	AP42 - Table 13.2.4-1

Emission Factor (lb/ton)	0.000453984	AP42 Section 13.2.4 (TSP)
Emission Factor (lb/ton)	0.000214722	AP42 Section 13.2.5 (PM10)

Refuse Unloaded per year (tons/vr)	75 209	Average (sum of MSW + C&D + Ast

Emission Rate (lbs/yr)	34.14	TSP
Emission Rate (lbs/yr)	16.15	PM10
Emission Rate (tons/yr)	0.02	TSP
Emission Rate (tons/yr)	0.01	PM10

Compacting

Emission Factor (kg/hr)	0.75	AP42 Table 11.9.1 Dozing Overburden
-------------------------	------	-------------------------------------

Emission Rate (g/s)	0.21	TSP
Emission Rate (lb/hr)	1.65	TSP
Emission Rate (lb/yr)	4900.90	TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr
Emission Rate (lb/yr)	4900.90	PM10 Assumed same as TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr
Emission Rate (tons/yr)	2.45	TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr
Emission Rate (tons/yr)	2.45	PM10 Assumed same as TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr

Grading

Emission Factor (lb/VMT)	0.6	AP42 Table 11.9-2 Grading
--------------------------	-----	---------------------------

Average mileage per day (miles/day)	47.5	Estimated (9.5 hrs/day * 5 mph)

Emission Rate (lb/day)	28.5	TSP
Emission Rate (g/s)	0.377991667	TSP; Based on 9.5 hr/day
Emission Rate (lb/hr)	3	TSP
Emission Rate (lb/yr)	8892	TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr
Emission Rate (lb/yr)	8892	PM10 Assumed seme as TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr
Emission Rate (tons/yr)	4.45	TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr
Emission Rate (tons/yr)	4.45	PM10 Assumed same as TSP; Based on 9.5 hr/day * 6 days/wk * 52 wk/yr

Sum of Fugitive TSP Emissions (lb/yr)	13827
Sum of Fugitive PM10 Emissions (lb/yr)	13809
Sum of Fugitive TSP Emissions (tons/yr)	6.91
Sum of Fugitive PM10 Emissions (tons/yr)	6.90

CALCULATION OF FUGITIVE DUST EMISSIONS

Pasco County Waste-to-Energy Facility

Summary of Roadway Sources - PM

General Info
Number of days with at least 0.01" of precip/yr 107 Climate Summaries (Tampa)

Site Info

Particle Size Multiplier for Paved Roads (lb/VMT) 0.082 AP42 - TSP (<30 μm)
Particle Size Multiplier for UNPaved Roads (lb/VMT) 10 AP42 - TSP (<30 μm)
Particle Size Multiplier for Paved Roads (lb/VMT) 0.016 AP42 - PM10 (<10 μm)
Particle Siza Multiplier for UNPaved Roads (lb/VMT) 2.6 AP42 - PM10 (<10 μm)
Sitt Content of Paved Road Surface Material (g/m²) 7.4 AP42 - MSW Landfills Table 13.2.1-2
Sitt Content of UNPaved Road Surface Material (g/m²) 6.4 AP42 - MSW Landfills Table 13.2.2-1
UNPaved Road Surface Material Moisture (%) 0.03 AP42 - MSW Landfills Table 13.2.2-3

					Total	
					Number of	Average
					Vehicles per	Weight of
Traffic Path	Haul Material	Paved/ Unpaved	Length (ft)	Length (miles)	year	ALL vehicles
Onsite Paved Roads	Waste	Paved	10560	2.000	550	10.64
Onsite Unpaved Roads	Waste	Unpaved	0	0.000	0	0.00

				TSP			PM10		
Roadway Emissions	Haul Material	Paved/ Unpaved	VMT/vr	Ib//MT	lb/vr	tons/vr	Ib/VMT	lb/vr	tons/vr
Onsite Paved Roads	Waste	Paved	1100.00	1.28131	1409.44	0.70	0.25001	275.01	0.14
Onsite Unpaved Roads	Waste	Unpaved	0.00	0.40519	0.00	0.00	0.10535	0.00	0.00

IbJyr tons/yr IbJyr tons/yr
TOTAL Fugitive Particulate Emissions TSP 1409.44 0.70 PM10 275.01 0.14