

August 5, 2013

Electronic Submittal

Joe Lurix Florida Department of Environmental Protection 400 N. Congress Avenue, Suite 300 West Palm Beach, FL 33401

Subject: Biosolids Pelletization Facility (BPF) PM/PM10 Compliance Testing & Annual VE 2013 Impingement Tray Scrubber and Cyclone Separator Retrofit Project FDEP Exemption from Air Construction Permitting 0990234-026-AC Title V Air Operation Permit No. 0990234-022-AV

Dear Joe:

The Solid Waste Authority of Palm Beach County (Authority) owns a Biosolids Pelletization Facility (BPF) that is collocated with the Authority's Palm Beach Renewable Energy Park (PBREP) in West Palm Beach, Florida. The BPF is operated by the New England Fertilizer Company (NEFCO) under FDEP Title V Air Operation Permit No. 0990234-022-AV.

On December 13, 2012, the Department issued an exemption from obtaining an Air Construction permit for the Impingement Tray Scrubber and Cyclone Separator Retrofit Project at the BPF. As part of the authorization, the BPF is required to conduct particulate matter (PM/PM10) and visible emissions (VE) tests on both dryers 180 days after the tray scrubber/cyclonic separator work is complete. As part of this permitting exemption, the BPF will now rely upon the venturi scrubbers for PM control to meet the PM/PM10 emission limits (BPF had not relied upon venturi scrubbers in the initial Title V permit application). Consequently, the Title V permit will be revised to include the venturi scrubbers in the CAM Plan.

As of May 10, 2013, construction was complete for both sludge dryer trains. On May 17, 2013, the Department issued a Letter of Authorization (0990234-027-AC) allowing the Authority to operate the venturi scrubber at variable flows/pressure drops during tuning (i.e. preliminary) stack testing to establish Compliance Assurance Monitoring (CAM) parameters. From June 24th – 26th, preliminary PM/PM10 testing was performed with variable venturi scrubber flow at 109 gpm, 55 gpm, 10 gpm, and 0 gpm. Compliance testing was performed June 27th on both trains with the venturi scrubber operating at 10 gpm and open throat.

Mr. Joe Lurix August 5, 2013 Page 2

As required by the Letter of Authorization, please find enclosed all the results from the tuning and compliance stack tests. PM/PM10 emissions are well below the permitted emission limit and also have not increased from the initial 2009 stack test.

Visible Emission tests were also conducted for both dryer trains (RTO stack) and material recycling bin/pellet silo (odor control scrubber). These VE tests satisfy the annual testing required by the Title V Air Permit.

If you have any questions or need additional information, please contact Mike Tyson at mtyson@swa.org or at (561) 640-4000 ext. 4616.

Sincerely,

mark M

Mark Hammond Executive Director

Enclosure

cc: Scott Sheplak, FDEP Tallahassee Marc Bruner, SWA Ray Schauer, SWA Mark McLean, SWA Jim Greer, SWA Mary Beth Morrison, SWA Mike Tyson, SWA Manuel Irujo, NEFCO Mike Thayer, NEFCO Peter Kiproff, NEFCO Cynthia Hibbard, CDMSmith Sal Mohammad, Golder

August 4, 2013

Mark Hammond Executive Director Solid Waste Authority of Palm Beach County 7501 North Jog Road West Palm Beach, FL 33412

RE: Biosolids Pelletization Facility (BPF) Impingent Tray Scrubber/Cyclone Retrofit Project 0990234-026-AC CAM Testing Authorization – Venturi Scrubbers 0990234-027-AC

Dear Mr. Hammond:

Attached please find a report of the stack testing that was performed at the Biosolids Pelletization Facility during June 24-June 27, 2013. This testing was required by the Florida Department of Environmental Protection as a condition of making certain improvements to the air handling system of the dryers at the facility.

The letter authorizing the modifications by the Department is attached.

As predicted by modeling, PM emissions after these modifications have not increased over the permit values, nor have they increased over the initial 2009 stack testing. Further, the venturi scrubber has proved to be redundant, offering little in the way of PM removal over that provided by the remainder of the PM control devices, i.e. the three stage tray condenser/scrubbers. A summary of all the PM tests and test conditions, including preliminary "tuning tests" is located on the following page.

PM was much lower than the permit values during all of the tests and lower than initial stack testing on all of the tests except one. One preliminary test at 55 gpm water flow through the venturi scrubber was slightly higher than initial stack testing however all other tests were below, including zero water flow. NEFCO will work closely with the Solid Waste Authority to revise the CAM plan for PM.

New England Fertilizer Company 500 Victory Road, 4th Floor, North Quincy, MA 02171 (t) 617.773.3131 (f) 617.773.3122

Visible Emissions tests were also conducted for both the RTO stack and for the odor scrubbers. They exhibited zero visible emissions. The VE tests are intended to satisfy the annual permit requirement.

NEFCO would like to thank the department for its prompt review and assistance in our pursuit of safe and efficient biosolids processing for the Solid Waste Authority.

Sincerely,

Monal J. Ibujo

Manuel Irujo Vice President of Operations

cc: Mary Beth Morrison, Environmental Programs Supervisor, Solid Waste Authority Jim Greer, Manager Recovered Materials Processing, Solids Waste Authority Mike Thayer, Technology Manager, NEFCO Peter Kiproff, Plant Manager, NEFCO

Biosolids Pelletization Facility - Cyclone/Tray Scrubber Retrofit Project Summary of June 2013 PM testing at SWA

Preliminary tests @ 109, 55, 10, &

0 gpm	Unit #1				Unit #2				Units
Date	6/25/2013	6/25/2013	6/25/2013	6/25/2013	6/24/2013	6/24/2013	6/25/2013	6/25/2013	
Run I.D.	U1-M5/202-Pre1	U1-M5-Pre2	U1-M5-Pre3	U1-M5/202-Pre4	U2-M5-Pre1	U2-M5-Pre2	U2-M5/202-Pre3	U2-M5/202-Pre4	
Start time	1317	1450	1615	1755	1718	1854	915	1055	hour
Measured PM/PM ₁₀ concentration	1.71	8.22	4.06	4.51	1.75	2.60	3.90	5.22	mg/dscm
Measured PM/PM ₁₀ rate	0.047	0.217	0.103	0.133	0.043	0.064	0.096	0.128	lb / hr
PM/PM ₁₀ rate permit limit	2.42	2.42	2.42	2.42	2.42	2.42	2.42	2.42	lb / hr
2009 PM/PM ₁₀ testing results	0.162	0.162	0.162	0.162	0.193	0.193	0.193	0.193	∜o/hr
EPA Method	5/202	5	5	5/202	5	5	5/202	5/202	
Dryer average feed rate	13.3	13.7	13.6	13.3	13.5	13.3	13.8	13.3	tons / hr
Condenser/scrubber delta p	9.3	9.1	9.0	8.6	8.0	8.0	8.1	8.1	ìn wc
Condenser/scrubber flow	1,123	1,126	1,130	1,137	1,117	1,136	1,122	1,111	gpm
Venturi scrubber nominal delta p	6	6	wide open	wide open	6	wide open	6	wide open	in wc
Venturi scrubber average delta p	6.7	6.7	3.6	3.3	6.9	3.3	7.0	3.0	in wc
Venturi scrubber nominal flow	109	55	10	0	55	10	109	0	gpm
Venturi scrubber average flow	112	58	10	0	53.8	9	114	. 0	gpm
RTO average temperature	1,599	1,600	1,600	1,599	1,601	1,601	1,591	1,598	F
Heat input	28.449	30.510	32.771	31.254	27.555	28.449	28.278	30.224	MM8tu/hr
Stack flow rate	8,066	7,704	7,634	8,834	6,963	6,918	7,331	7,691	dscfm

Preliminary tests @ 10 gpm	Unit #1		
Date	6/26/2013	6/26/2013	6/26/2013
Run I.D.	U1-M5-Pre5	U1-M5-Pre6	U1-M5-Pre7
Start time	900	1020	1148
Measured PM/PM ₁₀ concentration	3.90	3.30	3.83
Measured PM/PM ₁₀	0.100	0.086	0.103
PM/PM ₁₀ permit limit	2.42	2.42	2.42
2009 PM/PM ₁₀ testing results	0.162	0.162	0.162
EPA Method	5	5	5
Dryer average feed rate	13.7	13.7	13.5
Condenser/scrubber delta p	9,1	8.9	9.0
Condenser/scrubber flow	1,132	1,129	1,125
Venturi scrubber nominal delta p	wide open	wide open	wide open
Venturi scrubber average delta p	4.3	4.1	4.4
Venturi scrubber nominal flow	10	10	10
Venturi scrubber average flow	10.0	10.8	10.6
RTO average temperature	1,599	1,600	1,599
Heat Input	31.998	33.080	29.397
Stack flow rate	7,764	7,800	8,149
Compliance test @ 10 gpm	Unit #1		
Date	6/27/2013	6/27/2013	6/27/2013
Run I.D.	U1-M5-R1	U1-M5-R2	U1-M5-R3
Start time	1340	1500	1620

Run I.D.	U1-M5-R1	U1-M5-R2	U1-M5-R3
Start time	1340	1500	1620
Measured PM/PM ₁₀ concentration	3.26	3.06	1.56
Measured PM/PM ₁₀	0.085	0.083	0.043
PM/PM ₁₀ permit limit	2.42	2.42	2.42
2009 PM/PM ₁₀ testing results	0.162	0.162	0.162
EPA Method	5	5	5
Dryer average feed rate	13.3	13.1	13.1
Condenser/scrubber delta p	9.2	9.0	8.8
Condenser/scrubber flow	1,117	1,125	1,133
Venturi scrubber nominal deita p	wide open	wide open	wide open
Venturi scrubber average delta p	3.8	4.1	4.0
Venturi scrubber nominal flow	10	10	10
Venturi scrubber average flow	10.3	10.7	10.1
RTO average temperature	1,598	1,598	1,600
Heat input	30,138	31.991	32.147
Stack flow rate	7,975	7,974	8,162

Unit #2		
6/26/2013	6/26/2013	6/26/2013
U2-M5-Pre5	U2-M5-Pre6	U2-M5-Pre7
1332	1515	1634
1.57	2.12	1.73
0.044	0.055	0.046
2.42	2.42	2.42
0.193	0.193	0.193
5	5	5
13.3	13.2	13.6
7.9	7.8	7.8
1,120	1,122	1,120
wide open	wide open	wide open
3.9	3.4	3.6
10	10	10
10.3	9.4	10,5
1,602	1,600	1,598
21.848	29.650	30.616
7,590	7,312	7,343
Unit #2		

Units

hour mg/dscm lb / hr lb / hr lb / hr in wc gpm in wc gpm F MMBtu/hr dscfm

Units

hour mg/dscm lb / hr lb / hr lb / hr tons / hr in wc gpm in wc gpm gpm F MMBtu/hr dscfm

Unit#2		
6/27/2013	6/27/2013	6/27/2013
U2-M5-R1	U2-M5-R2	U2-M5-R3
812	933	1128
2.11	1.55	3.88
0.054	0.040	0.103
2.42	2.42	2.42
0.193	0.193	0.193
5	5	5
13.1	13.4	13.6
7.9	8.0	7.9
1,120	1,123	1,122
wide open	wide open	wide open
3.6	3,5	3.8
10	10	10
10.7	10.3	10,2
1,598	1,601	1,600
32.716	31.382	28.494
7,182	7,156	7,059

FLORIDA DEPARTMENT OF

ENVIRONMENTAL PROTECTION BOB MARTINEZ CENTER 2600 BLAIR STONE ROAD TALLAHASSEE, FLORIDA 32399-2400 RICK SCOTT GOVERNOR

JENNIFER CARROLL LT. GOVERNOR

HERSCHEL T. VINYARD JR. SECRETARY

Sent by Electronic Mail - Received Receipt Requested

Mr. Mark Hammond, Executive Director North County Regional Resource Recovery Facility Solid Waste Authority of Palm Beach County 7501 North Jog Road West Palm Beach, Florida 33412-2414

Re: North County Regional Resource Recovery Facility
 Project No. 0990234-026-AC
 Physical Changes Proposed to Tray Scrubbers and Cyclonic Separators at the Biosolids Pelletization
 Facility (Project)
 Exemption from Requirement to Obtain an Air Construction Permit and Authorization

Dear Mr. Hammond:

This is a response to your letter dated December 7, 2012, regarding the proposed physical changes to tray scrubbers and cyclonic separators at the Biosolids Pelletization Facility (BPF) (project) at the North County Regional Resource Recovery Facility located in Palm Beach County at 7501 North Jog Road in West Palm Beach, Florida.

Determination: The permittee requested a case-by-case permitting exemption from an air construction (AC) permit for the proposed physical changes to scrubbers and cyclonic separators at the BPF (project).

Pursuant to Rule 62-4.040(1)(b), F.A.C. and for the reasons stated in the Technical Evaluation, the Office of Permitting and Compliance hereby determines that the proposed activity (project) will not emit air pollutants "... *in sufficient quantity, with respect to its character, quality or content, and the circumstances surrounding its location, use and operation, as to contribute significantly to the pollution problems within the State, so that the regulation thereof is not reasonably justified.*" Therefore, the project is exempt from the requirement to obtain an AC permit. The permittee is authorized to conduct this activity.

For purposes of demonstrating compliance with the particulate matter (PM) and visible emission (VE) standards applicable to the sludge dryer train #1 and #2 in Permit No. 0990234-022-AV, a test for PM and VE shall be completed within 180 days after tray scrubber/cyclonic separator work is done.

Within 180 days after tray scrubber/cyclonic separator work is done, the applicant will need to submit a request to revise the Title V air operation permit to include the venturi scrubber(s) in the CAM Plan.

This determination may be revoked if the proposed activity is substantially modified or the basis for the exemption is determined to be materially incorrect. A copy of this letter shall be maintained at the site of the proposed activity. This permitting decision is made pursuant to Chapter 403, Florida Statutes.

Permitting Authority: Applications for air construction permits are subject to review in accordance with the provisions of Chapter 403, Florida Statutes (F.S.) and Chapters 62-4, 62-210 and 62-212, F.A.C. The Permitting Authority responsible for making a permit determination for this project is the Office of Permitting and Compliance in the Department of Environmental Protection's Division of Air Resource Management. The Permitting Authority's physical and mailing address is: 2600 Blair Stone Road, MS #5505, Tallahassee, Florida 32399-2400. The Permitting Authority's telephone number is 850/717-9000.

Petitions: A person whose substantial interests are affected by the proposed permitting decision may petition for an administrative hearing in accordance with Sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed with (received by) the agency clerk in the Office of General Counsel of the Department of Environmental Protection, 3900 Commonwealth Boulevard, Mail Station #35, Tallahassee, Florida 32399-3000. Petitions must be filed within 21 days of

receipt of this exemption from air permitting requirements. A petitioner shall mail a copy of the petition to the applicant at the address indicated above, at the time of filing. The failure of any person to file a petition within the appropriate time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under Sections 120.569 and 120.57, F.S., or to intervene in this proceeding and participate as a party to it. Any subsequent intervention (in a proceeding initiated by another party) will be only at the approval of the presiding officer upon the filing of a motion in compliance with Rule 28-106.205, F.A.C.

A petition that disputes the material facts on which the Permitting Authority's action is based must contain the following information: (a) The name and address of each agency affected and each agency's file or identification number, if known; (b) The name, address, and telephone number of the petitioner; the name, address and telephone number of the petitioner's representative, if any, which shall be the address for service purposes during the course of the proceeding; and an explanation of how the petitioner's substantial interests will be affected by the agency determination; (c) A statement of when and how each petitioner received notice of the agency action or proposed decision: (d) A statement of all disputed issues of material fact. If there are none, the petition must so state; (e) A concise statement of the ultimate facts alleged, including the specific facts the petitioner contends warrant reversal or modification of the agency's proposed action; (f) A statement of the specific rules or statutes the petitioner contends require reversal or modification of the agency's proposed action including an explanation of how the alleged facts relate to the specific rules or statutes; and, (g) A statement of the relief sought by the petitioner, stating precisely the action the petitioner wishes the agency to take with respect to the agency's proposed action. A petition that does not dispute the material facts upon which the Permitting Authority's action is based shall state that no such facts are in dispute and otherwise shall contain the same information as set forth above, as required by Rule 28-106.301, F.A.C.

Because the administrative hearing process is designed to formulate final agency action, the filing of a petition means that the Permitting Authority's final action may be different from the position taken by it in this action. Persons whose substantial interests will be affected by any such final decision of the Permitting Authority on the application have the right to petition to become a party to the proceeding, in accordance with the requirements set forth above.

Mediation: Mediation is not available in this proceeding.

Effective Date: This permitting decision is final and effective on the date filed with the clerk of the Permitting Authority unless a petition is filed in accordance with the above paragraphs or unless a request for extension of time in which to file a petition is filed within the time specified for filing a petition pursuant to Rule 62-110.106, F.A.C., and the petition conforms to the content requirements of Rules 28-106.201 and 28-106.301, F.A.C. Upon timely filing of a petition of a request for extension of time, this action will not be effective until further order of the Permitting Authority.

Judicial Review: Any party to this permitting decision (order) has the right to seek judicial review of it under Section 120.68, F.S., by filing a notice of appeal under Rule 9.110 of the Florida Rules of Appellate Procedure with the clerk of the Department of Environmental Protection in the Office of General Counsel, Mail Station #35, 3900 Commonwealth Boulevard, Tallahassee, Florida, 32399-3000, and by filing a copy of the notice of appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The notice must be filed within 30 days after this order is filed with the clerk of the Department.

Executed in Tallahassee, Florida

for Jeffery F. Koerner, Program Administrator Office of Permitting and Compliance Division of Air Resource Management

JFK/sa/sms

CERTIFICATE OF SERVICE

The undersigned duly designated deputy agency clerk hereby certifies that this **Exemption from Air Construction Permit/Authorization** and the **Technical Evaluation** were sent by electronic mail, or a link to these documents made available electronically on a publicly accessible server, with received receipt requested before the close of business on the date indicated below to the persons listed below.

Mr. Mark Hammond, SWA: <u>mhammond@swa.org</u>

Ms. Mary Beth Morrison, SWA: mmorrison@swa.org

Mr. David S. Dee, Gardner, Bist, Wiener, Wadsworth, Bowden, Bush, Dee, LaVia & Wright, P.A.: <u>ddee@gbwlegal.com</u>

Mr. Lee Hoefert, P.E., DEP SED: lee.hoefert@dep.state.fl.us

Mr. James Stormer, PBCHD: james stormer@doh.state.fl.us

Ms. Cindy Mulkey, DEP Siting: cindy.mulkey@dep.state.fl.us

Ms. Heather Ceron, U.S. EPA Region 4: ceron.heather@epa.gov

Ms. Katy R. Forney, U.S. EPA Region 4: forney.kathleen@epa.gov

Ms. Barbara Friday, DEP OPC: <u>barbara.friday@dep.state.fl.us</u>

Ms. Lynn Scearce, DEP OPC: lynn.scearce@dep.state.fl.us

Clerk Stamp

FILING AND ACKNOWLEDGMENT FILED, on

this date, pursuant to Section 120.52(7), Florida Statutes, with the designated agency clerk, receipt of which is hereby acknowledged.

Final Report

PM/PM₁₀ & VE Compliance Testing -

Solid Waste Authority's Biosolids Pelletization Facility (Facility ID No. 0990234)

Prepared for . . .

Solid Waste Authority of Palm Beach County West Palm Beach, Florida

Prepared by . . .

South Florida Environmental Services, LLC Test Dates: June 27th, 2013 Project No. 13-527

CONTENTS

1.0 INTR		1-1
1.1	Overview	1-1
1.2	Program Scope	1-1
1.3	Report Organization	1-2
2.0 SUM	MARY OF RESULTS	2-1
2.1	Overview	2-1
2.2	Preliminary Test Results	2-1
	2.2.1 Preliminary Test Results – Venturi Flow at ~10 gpm	2-4
2.3	Compliance Test Results	2-6
2.4	Visible Emissions Test Results	2-8
3.0 SOU	RCE SUMMARY	3-1
3.1	Source Description	3-1
3.2	Process Operations During Testing	3-1
3.3	Sample Point Description – Particulate Matter	3-2
4.0 TEST	۲ PROCEDURES	4-1
4.1	Overview	4-1
	4.1.1 Particulate Matter Monitoring – Method 5	
	4.1.2 Particulate Matter Monitoring – Methods 5/202 with Particle Sizing and CPM	
	4.1.3 Visible Emission Monitoring4.1.4 Diluent Monitoring	
4.2	Particulate Matter Sampling System Description	
	4.2.1 Isokinetic Sampling Procedures	4-5
4.3	CEMS Sampling System Description	4-7

i

	4.3.1 Sample Delivery and Conditioning System	4-7
	4.3.2 Calibration System	
	4.3.3 Data Acquisition System	
5.0 QUA	LITY ASSURANCE/QUALITY CONTROL	5-1
5.1	Overview	5-1
5.2	Particulate Matter QA	5-1
5.3	CEMS QA	
	5.3.1 Calibration Gases	5-3
	5.3.2 Instrumental Monitoring	5-3
	5.3.3 Sampling Setup	5-3
	5.3.4 Calibration Criteria	5-3
	5.3.5 Calibration Drift and System Bias Correction	5-5

LIST OF TABLES

Table 1-1 Test Program Informational Summary	1-3
Table 2-1 Preliminary Test Results – Unit No. 1	2-2
Table 2-2 Preliminary Test Results – Unit No. 2	2-3
Table 2-3 Preliminary Test Results – Unit No. 1 (10 gpm)	2-4
Table 2-4 Preliminary Test Results – Unit No. 2 (10 gpm)	2-5
Table 2-5 Compliance Test Results – Unit No. 1	2-6
Table 2-6 Compliance Test Results – Unit No. 2	2-7
Table 2-7 Visible Emissions Summary of Results	2-8
Table 5-1 Particulate Sampling Procedural Summary	5-2

LIST OF FIGURES

Figure 3-1 Sampling Schematic – RTO Outlet	
--	--

APPENDICES

- A Reference Method Emissions Data Preliminary Particulate Matter Emissions Data
 - 1 RTO / Dryer No. 1 "Tuning" Emissions Data (6/25/13)
 - 2 RTO / Dryer No. 2 "Tuning" Emissions Data (6/24/13 and 6/25/13)
 - 3 RTO / Dryer No. 1 Pre-Compliance Emissions Data (6/26/13)
 - 4 RTO / Dryer No. 2 Pre-Compliance Emissions Data (6/26/13)
- B Reference Method Emissions Data Compliance Particulate Matter Emissions Data
 - 1 RTO / Dryer No. 1 Compliance Emissions Data
 - 2 RTO / Dryer No. 2 Compliance Emissions Data
 - 3 Visible Emissions Readings / Data
- C Facility Process Datasheets
- D Cylinder Gas Certificaiton and Equipment Calibraiton Sheets
- E Facility Permit (Final Permit No. 0990234-022-AV, Tuning Test Request Letter & Tuning Venturi Permission Letter)

SOLID WASTE AUTHORITY OF PALM BEACH COUNTY

BIOSOLIDS PELLETIZATION FACILITY

Title V Air Operation Permit No. 0990234-022-AV

Owner/Responsible Official Certification

I, the undersigned, am the Responsible Official as defined in Chapter 62-210.200 F.A.C. I herby certify, based on information and belief formed after reasonable inquiry, the statements and information in the document are true, accurate, and complete.

mark M

8/5/13

Mark Hammond Executive Director Solid Waste Authority of Palm Beach County

Date

Statement of Certification

Report: SWA Biosolids Pelletization Facility Final Report – Particulate Matter & Visible Emissions Compliance Testing

I hereby certify that the contents of this report were gathered and prepared in accordance with the test methods and/or procedures outlined herein. Furthermore, all calculations, emission summaries and supporting data are accurate to the best of my knowledge. I was both the field team leader and primary individual responsible for the report preparation.

Anh S

Andrew Seaha, QSTI Vice President / General Manager Eastmount Environmental, LLC

8/2/13

Date

Compliance Test Date: June 27th, 2013 P:\2013 Projects\13-061\REPORT\NEFCO WPB Final Report.doc

Report Distribution List

Report:SWA Biosolids Pelletization Facility Final Report –Particulate Matter & Visible Emissions Compliance Testing

Date	Number of Paper Copies	Delivered To	Company/Agency
8/2/13	6	Manuel Irujo	NEFCO

Date	Number of Electronic Copies	Delivered To	Company/Agency
8/2/13	1	Manuel Irujo	NEFCO

Revision Description

Report:SWA Biosolids Pelletization Facility Final Report –Particulate Matter & Visible Emissions Compliance Testing

Revision Number	Revision Date	Revision Description

1.0 INTRODUCTION

1.1 Overview

South Florida Environmental Services, LLC of West Palm Beach, FL was retained by NEFCO to conduct a Particulate Matter (PM/PM₁₀) and Visible Emission (VE) test program at the Biosolids Pelletization Facility (BPF) plant located in West Palm Beach, Florida. The facility is owned by the Solid Waste Authority of Palm Beach County (SWA) and is operated by NEFCO. As part of recent modifications on the two existing dryer systems cyclones and scrubbers, the Florida Department of Environmental Protection (FDEP) has mandated that each system (Dryer Train #1 and #2) need to be retested for PM/PM₁₀ within 180 days of completion of the upgrades. VE testing was completed as part of permit-required annual testing. As such, a compliance test date of June 27th, 2013 was chosen to verify compliance with the facility's permit. Per FDEP's approval, preliminary testing was performed on both Dryer Train Venturi Scrubbers to determine CAM operating parameters. A copy of the Testing Authorization letter is included in Appendix F. Preliminary testing was performed on June 24th, 25th, and 26th, 2013. A summary of the primary parties involved in this test program is presented in Table 1-1.

1.2 Program Scope

The objective of the program was twofold:

The first objective was to determine the optimum operating conditions of the "polishing" venturi scrubbers, by conducting a series of one-hour tests at water flows of 109, 55, 10, and 0 gpm and throat openings resulting in six inches of water column delta pressure and wide open. Eight individual tests were conducted, four per dryer. From these results, the optimum operating condition was established for compliance testing. Additionally, each dryer was then subjected to three additional test runs at its optimum operating condition, as determined through pretesting.

The second objective was to determine compliance with particulate matter and visible emissions requirements, as set forth by the FDEP (Permit 0990234-022-AV) for each of the two dryer systems. As stated in the permit, PM/PM_{10} and VE testing must be conducted in accordance with procedures set forth in Appendix A of 40 CFR 60. Testing consisted of three 60-minute test runs on each dryer / RTO unit while it was operated between 90 and 100% of the maximum permitted processing rate for each dryer (i.e. between 12.65 and 14.06 tons per hour) for PM/PM_{10} and one 60-minute test run for VE's.

1.3 Report Organization

The remainder of this Final Report is organized into four additional Sections. Section 2 provides a Summary of Results, while Section 3 presents a sampling point description. A description of the flue gas monitoring procedures is provided in Section 4, while Section 5 addresses the quality assurance/quality control aspects of the program. All reference method emissions data, laboratory data, facility process data sheets, cylinder gas certification and equipment calibration sheets and the facility permit is presented in Appendices A through F, respectively.

Source Information						
Facility Name:	Biosolids Pelletization Facility					
Owned By:	Solid Waste Authority of Palm Beach County					
Operated By:	New England Fertilizer Company (NEFCO)					
Plant Address:	6600 – 45 th Street West Palm Beach, FL 33412					
Contact:	Mr. Mike Thayer (NEFCO)					
Phone:	(617) 773-3131					
Email:	sludgy@nefcobiosolids.com					
Test Firm Information						
Test Firm Name:	South Florida Environmental Services, LLC					
Address:	2257 Vista Parkway, Suite 25 West Palm Beach, FL 33412					
Contact:	Mr. Andrew R. Seaha					
Phone:	(978) 499-9300 x14					
Email:	aseaha@eastmount.com					
Regulatory	Information					
Organization:	Florida Department of Environmental Protection (Division of Air Resource Management)					
Address:	2600 Blair Stone Road, MS#5505 Tallahassee, FL 32399					
Contact:	Mr. Scott Trainor					
Phone:	(561) 681-6629					
Email:	scott.trainor@dep.state.fl.us					

Table 1-1 Test Program Informational Summary

2.0 SUMMARY OF RESULTS

2.1 Overview

This test program was conducted over four test days. Testing on each RTO was conducted while each dryer / RTO train was operated between 90 and 100% of the maximum permitted processing rate for each dryer. Each test was one-hour and comprised of sampling of the control device for the determination of particulate matter and flow rate (scfm). South Florida Environmental also verified that each drying train and scrubber met its visible emission standard.

2.2 Preliminary Test Results

South Florida Environmental Services (SFES) conducted the preliminary (or "tuning") testing for the determination of concentrations for particulate matter while the drying trains were operating on natural gas and the RTOs were operating on landfill gas. Preliminary testing on each dryer train consisted of four test runs while each unit's venturi scrubber was operated at different operating conditions. The results of these tests were used to determine the optimum operating conditions for the compliance testing. SFES utilized a transportable Continuous Emission Monitoring System (CEMS) to conduct all diluent monitoring (oxygen and carbon dioxide), while using a Clean Air Engineering (CAE) EPA Method 5 metering system to conduct particulate matter sampling. Also, for two runs on each dryer train (as outlined in the pretest protocol) partical sizing and condensable particulate matter testing was conducted. Tables 2-1 and 2-2 show the test results for each dryer train. All data can be found in Appendix A1 and A2 of this report. Please note that the particle size distribution data can be found in Appendix A5 of this report.

		NEFCO/S	WA Biosolids	Drying Facili	ty			
	Summary	of Preliminary	"Tuning" Part	iculate Emiss	ion Test Result	s		
			RTO #1 Stat	ck				
Date		25-Jun-13	25-Jun-13	25-Jun-13	25-Jun-13			
Run I.D.		U1-M5/202-Pre1	U1-M5-Pre2	U1-M5-Pre3	U1-M5/202-Pre4			2009
Start Time		13:17	14:50	16:15	17:55		PM/PM10	PM/PM10
End Time		14:23	15:53	17:18	19:00	AVERAGE	Limit	Results
Venturi Scrubber Flow Setpoint	gpm	109	55	10	0			
Venturi Scrubber Flow	gpm	112.0	58.0	10.0	0.0			
Venturi Pressure Setpoint	inches wc	6.0	6.0	wide open	wide open			
Venturi Pressure	inches wc	6.7	6.7	3.6	3.3			
Tray Scrubber Flow Rate	gpm	1,123	1,126	1,130	1,137			
Tray Scrubber Delta P	inches wc	9.3	9.1	9.0	8.6			
Sludge Feed Rate Limit	Wet Tons/hr	14.0625	14.0625	14.0625	14.0625			
Sludge Feed Rate	Wet Tons/hr	13.3	13.7	13.6	13.3			
Heat Input	MMBtu/hr	28.449	30.510	32.771	31.254			
Isokinetics	(%)	87.2	103.7	107.7	79.2	94.5		
Stack Temp	(°F)	269.8	271.3	275.4	277.6	273.5		
Moisture	%by Vol	15.4%	16.8%	18.7%	19.0%	17.48%		
Velocity	Ft./Sec	30.94	30.10	30.68	35.75	31.87		
Stack Flow	DSCFH	483,940	462,211	458,049	530,053	483,563		
	DSCFM	8,066	7,704	7,634	8,834	8,059		
	ACFH	787,398	765,978	780,647	909,804	810,957		
	ACFM	13,123	12,766	13,011	15,163	13,516		
Oxygen	(%)	8.26	8.19	8.51	8.47	8.36		
Carbon Dioxide	(%)	7.64	7.65	7.48	7.54	7.58		
Condensible PM	LB/HR	0.797	n/a	n/a	1.245	1.021		
Particulate	mg/dscm	1.56	7.52	3.61	4.03	4.18	1	3.79
	mg/dscm @7%O2	1.71	8.22	4.06	4.51	4.63		-
	LB/HR	0.047	0.217	0.103	0.133	0.125	2.42	0.162
							ļ	

Table 2-1 Preliminary Test Results – Unit No. 1

NEFCO / SWA Biosolids Drying Facility								
	Summary of	of Preliminary	-		on Test Result	S		
Date		24-Jun-13	RTO #2 Sta 24-Jun-13	CK 25-Jun-13	25-Jun-13		1	1
Run I.D.		U2-M5-Pre1	U2-M5-Pre2	U2-M5/202-Pre3				2009
Start Time		17:18	18:54	9:15	10:55		PM/PM10	PM/PM10
End Time		18:23	20:03	10:22	12:04	AVERAGE	Limit	Results
Venturi Scrubber Flow Setpoint	apm	55	10	109	0	ATENAOL		Results
Venturi Scrubber Flow	gpm	53.8	9.2	113.8	0.0			
Venturi Pressure Setpoint	inches wc	6	wide open	6	wide open			
Venturi Pressure	inches wc	6.9	3.3	7.0	3.0			
Tray Scrubber Flow Rate	gpm	1,117	1,136	1,122	1,111		1	
Tray Scrubber Delta P	inches wc	8.0	8.0	8.1	8.1			
Sludge Feed Rate Limit	Wet Tons/hr	14.0625	14.0625	14.0625	14.0625			
Sludge Feed Rate	Wet Tons/hr	13.5	13.3	13.8	13.3			
Heat Input	MMBtu/hr	27.555	28.449	28.278	30.224			
Isokinetics	(%)	108.3	105.1	94.7	87.1	98.8		
Stack Temp	(°F)	225.9	234.2	239.3	247.2	236.7		
Moisture	%by Vol	15.4%	16.8%	15.6%	20.2%	17.00%		
Velocity	Pt./Sec	25.09	25.66	27.00	30.28	27.01		
Stack Flow	DSCFH	417,801	415,073	439,854	461,438	433,542		
	DSCFM	6,963	6,918	7,331	7,691	7,226		
	ACFH	638,389	652,916	687,193	770,501	687,250		
	ACFM	10,640	10,882	11,453	12,842	11,454		
Oxygen	(%)	7.85	7.68	8.43	9.07	8.26		
Carbon Dioxide	(%)	7.97	8.11	7.72	7.32	7.78		
Condensible PM	LB/HR	n/a	n/a	0.589	1.011	0.800		
Particulate	mg/dscm	1.64	2.47	3.50	4.44	3.01		4.48
	mg/dscm @7%02	1.75	2.60	3.90	5.22	3.37	1	-
	LB/HR	0.043	0.064	0.096	0.128	0.083	2.42	0.193

Table 2-2 Preliminary Test Results – Unit No. 2

2.2.1 Preliminary Test Results – Venturi Flow at ~10 gpm

After preliminary particulate matter testing revealed that a venturi scrubber flow setting of approximately 10 gallons per minute and open venturi throat would be used to prove compliance, a total of three runs on each dryer train was conducted prior to actual compliance testing. A summary of the individual test runs are presented in Tables 2-3 and 2-4. All data can be found in Appendix A3 and A4 of this report.

Date Run I.D. Start Time End Time Venturi Scrubber Flow Setpoint gpn Venturi Scrubber Flow gpn	Summa	-	ate Emission 1 #1 Stack	est Results							
Run I.D. Start Time End Time Venturi Scrubber Flow Setpoint gpn Venturi Scrubber Flow gpn			#1 Stack								
Run I.D. Start Time End Time Venturi Scrubber Flow Setpoint gpn Venturi Scrubber Flow gpn		26-Jun-13		RTO #1 Stack							
Start Time End Time Venturi Scrubber Flow Setpoint gpn Venturi Scrubber Flow gpn			26-Jun-13	26-Jun-13							
End Time Venturi Scrubber Flow Setpoint gpn Venturi Scrubber Flow gpn		U1-M5-Pre5	U1-M5-Pre6	U1-M5-Pre7			2009				
Venturi Scrubber Flow Setpoint gpn Venturi Scrubber Flow gpn		9:00	10:20	11:48		PM/PM10	PM/PM10				
Venturi Scrubber Flow gpn		10:03	11:27	12:52	AVERAGE	Limit	Results				
	m	10	10	10	10						
	m	10.0	10.8	10.6	10.5						
Venturi Pressure Setpoint incl	hes wc	wide open	wide open	wide open	wide open						
Venturi Pressure incl	hes wc	4.3	4.1	4.4	4.3						
Tray Scrubber Flow Rate gpn	m	1,132	1,129	1,125	1,129						
Tray Scrubber Delta P incl	hes wc	9.1	8.9	9.0	9.0						
Sludge Feed Rate Limit We	et Tons/hr	14.0625	14.0625	14.0625	14.0625						
Sludge Feed Rate We	et Tons/hr	13.7	13.7	13.5	13.6						
Heat Input MM	/IBtu/hr	31.998	33.080	29.397	31.492						
Isokinetics (%)		106.3	102.6	103.4	104.1						
Stack Temp (°F))	273.1	272.4	271.7	272.4						
Moisture %b	oy Vol	20.1%	18.6%	19.5%	19.42%						
Velocity Ft./S	Sec	31.77	31.31	33.05	32.04						
Stack Flow DSC	CFH	465,846	468,007	488,963	474,272						
DSC	CFM	7,764	7,800	8,149	7,905						
ACF	FH	808,383	796,811	841,064	815,419						
ACF	FM	13,473	13,280	14,018	13,590						
Oxygen (%))	8.59	8.52	8.64	8.58						
Carbon Dioxide (%))	7.52	7.54	7.42	7.49						
Particulate mg	g/dscm	3.45	2.94	3.38	3.26		3.79				
mg/	g/dscm @7%O2	3.90	3.30	3.83	3.68		-				
LB/I		0.100	0.086	0.103	0.096	2.42	0.162				

Table 2-3 Preliminary Test Results – Unit No. 1 (10 gpm)

NEFCO / SWA Biosolids Drying Facility								
	Summary of Particulate Emission Test Results							
RTO #2 Stack								
Date		26-Jun-13	26-Jun-13	26-Jun-13				
Run I.D.		U2-M5-Pre5	U2-M5-Pre6	U2-M5-Pre7			2009	
Start Time		13:32	15:15	16:34		PM/PM10	PM/PM10	
End Time		14:34	16:17	17:37	AVERAGE	Limit	Results	
Venturi Scrubber Flow Setpoint	gpm	10	10	10	10			
Venturi Scrubber Flow	gpm	10.3	9.4	10.5	10.0			
Venturi Pressure Setpoint	inches wc	wide open	wide open	wide open	wide open			
Venturi Pressure	inches wc	3.9	3.4	3.6	3.6			
Tray Scrubber Flow Rate	gpm	1,120	1,122	1,120	1,121			
Tray Scrubber Delta P	inches wc	7.9	7.8	7.8	7.8			
Sludge Feed Rate Limit	Wet Tons/hr	14.0625	14.0625	14.0625	14.0625			
Sludge Feed Rate	Wet Tons/hr	13.3	13.2	13.6	13.4			
Heat Input	MMBtu/hr	21.848	29.650	30.616	27.371			
Isokinetics	(%)	105.3	104.9	106.4	105.5			
Stack Temp	(°F)	219.7	230.8	230.3	226.9			
Moisture	% by Vol	18.6%	18.3%	18.1%	18.32%			
Velocity	Ft./Sec	28.25	27.58	27.59	27.81			
Stack Flow	DSCFH	455,382	438,695	440,579	444,885			
	DSCFM	7,590	7,312	7,343	7,415			
	ACFH	718,857	701,783	702,021	707,554			
	ACFM	11,981	11,696	11,700	11,793			
Oxygen	(%)	7.23	7.65	7.53	7.47			
Carbon Dioxide	(%)	8.16	7.93	8.04	8.04			
Particulate	mg/dscm	1.55	2.02	1.66	1.74		4.48	
	mg/dscm @7%O2	1.57	2.12	1.73	1.81		-	
	LB/HR	0.044	0.055	0.046	0.048	2.42	0.193	

Table 2-4 Preliminary Test Results – Unit No. 2 (10 gpm)

2.3 Compliance Test Results

South Florida Environmental Services (SFES) conducted the compliance testing for the determination of concentrations for particulate matter while the drying trains were operated on natural gas and the RTOs were operated on landfill gas. Compliance testing on each dryer train consisted of three 60-minute test runs (with visible emissions being read on one of the runs) while each unit was operated between 90% and 100% of the maximum permitted feed rate. Venturi Scrubber operating parameters were 10 gpm water flow and wide open throat. The results of the tests show that the facilities emissions in units of standard are within the facility permit and lower than results from previous stack testing performed in 2009. SFES also utilized a transportable Continuous Emission Monitoring System (CEMS) to conduct all diluent monitoring (oxygen and carbon dioxide), while using a Clean Air Engineering (CAE) EPA Method 5 metering system to conduct particulate matter sampling. A summary of the individual test runs are presented in Tables 2-5 and 2-6. All data pertaining to this testing can be found in Appendix B of this report.

NEFCO / SWA Biosolids Drying Facility							
	Summary of Particulate Emission Test Results						
RTO #1 Stack							
Date		27-Jun-13	27-Jun-13	27-Jun-13			
Run I.D.		U1-M5-R1	U1-M5-R2	U1-M5-R3			2009
Start Time		13:40	15:00	16:20		PM/PM10	PM/PM10
End Time		14:44	16:03	17:23	AVERAGE	Limit	Results
Venturi Scrubber Flow Setpoint	gpm	10	10	10	10		
Venturi Scrubber Flow	gpm	10.3	10.7	10.1	10.4		
Venturi Pressure Setpoint	inches wc	wide open	wide open	wide open	wide open		
Venturi Pressure	inches wc	3.8	4.1	4.0	4.0		
Tray Scrubber Flow Rate	gpm	1,117	1,125	1,133	1,125		
Tray Scrubber Delta P	inches wc	9.2	9.0	8.8	9.0		
Sludge Feed Rate Limit	Wet Tons/hr	14.0625	14.0625	14.0625	14.0625		
Sludge Feed Rate	Wet Tons/hr	13.3	13.1	13.1	13.2		
Heat Input	MMBtu/hr	30.138	31.991	32.147	31.425		
Isokinetics	(%)	103.1	103.9	103.1	103.4		
Stack Temp	(°F)	247.8	254.4	260.0	254.1		
Moisture	% by Vol	18.6%	18.4%	17.9%	18.29%		
Velocity	Ft./Sec	30.91	31.15	31.91	31.32		
Stack Flow	DSCFH	478,505	478,448	489,738	482,230		
	DSCFM	7,975	7,974	8,162	8,037		
	ACFH	786,523	792,555	812,135	797,071		
	ACFM	13,109	13,209	13,536	13,285		
Oxygen	(%)	8.72	8.35	8.46	8.51		
Carbon Dioxide	(%)	7.23	7.40	7.29	7.31		
Particulate	mg/dscm	2.86	2.76	1.40	2.34		3.79
	mg/dscm @7%O2	3.26	3.06	1.56	2.63		-
	LB/HR	0.085	0.083	0.043	0.070	2.42	0.162

Table 2-5 Compliance Test Results – Unit No. 1

NEFCO / SWA Biosolids Drying Facility Summary of Particulate Emission Test Results							
RTO #2 Stack							
Date		27-Jun-13	27-Jun-13	27-Jun-13			
Run I.D.		U2-M5-R1	U2-M5-R2	U2-M5-R3			2009
Start Time		8:12	9:33	11:28		PM/PM10	PM/PM10
End Time		9:15	11:08	12:33	AVERAGE	Limit	Results
Venturi Scrubber Flow Setpoint	gpm	10	10	10	10		
Venturi Scrubber Flow	gpm	10.7	10.3	10.2	10.4		
Venturi Pressure Setpoint	inches wc	wide open	wide open	wide open	wide open		
Venturi Pressure	inches wc	3.6	3.5	3.8	3.6		
Tray Scrubber Flow Rate	gpm	1,120	1,123	1,122	1,122		
Tray Scrubber Delta P	inches wc	7.9	8.0	7.9	7.9		
Sludge Feed Rate Limit	Wet Tons/hr	14.0625	14.0625	14.0625	14.0625		
Sludge Feed Rate	Wet Tons/hr	13.1	13.4	13.6	13.4		
Heat Input	MMBtu/hr	32.716	31.382	28.494	30.864		
Isokinetics	(%)	102.3	104.0	104.0	103.4		
Stack Temp	(°F)	240.7	242.3	242.9	242.0		
Moisture	% by Vol	15.6%	17.5%	19.2%	17.43%		
Velocity	Ft./Sec	26.57	27.17	27.40	27.05		
Stack Flow	DSCFH	430,938	429,360	423,532	427,943		
	DSCFM	7,182	7,156	7,059	7,132		
	ACFH	676,204	691,333	697,179	688,238		
	ACFM	11,270	11,522	11,620	11,471		
Oxygen	(%)	7.55	7.45	7.02	7.34		
Carbon Dioxide	(%)	7.86	7.90	8.16	7.97		
Particulate	mg/dscm	2.02	1.50	3.88	2.47		4,48
	mg/dscm @7%O2	2.02	1.55	3.88	2.51		
	LB/HR	0.054	0.040	0.103	0.066	2.42	0.193

Table 2-6 Compliance Test Results – Unit No. 2

2.4 Visible Emissions Test Results

South Florida Environmental Services (SFES) also conducted compliance visible emissions testing on both drying trains as well as both building odor scrubbers. Table 2-7 below shows the results of this testing. All data pertaining to this testing can be found in Appendix B3.

Source	Location	Date	Time	Max 6-min Average	Permit Limit %Opacity
RTO #2	Stack Exit	6/27/13	8:12 – 9:12	0.0	5.0
Scrubber #2	Stack Exit	6/27/13	8:12 – 9:12	0.0	5.0
RTO #1	Stack Exit	6/27/13	13:55 – 14:55	0.0	5.0
Scrubber #1	Stack Exit	6/27/13	13:55 – 14:55	0.0	5.0

Table 2-7 Visible Emissions Summary of Results

3.0 SOURCE SUMMARY

3.1 Source Description

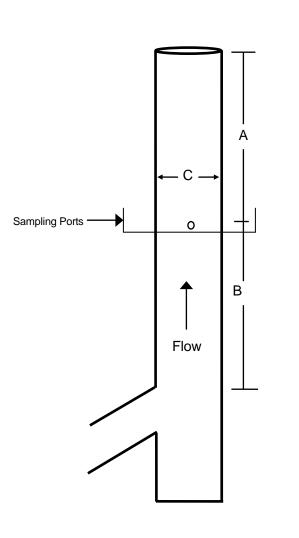
The SWA has selected NEFCO to operate the Biosolids Pelletization Facility located in West Palm Beach, FL. The facility consists of two identical, independent drying trains consisting of the following:

- A Baker RullIman direct-fired rotary dryer equipped with a Maxon low NOx burner and separator cyclone;
- A Sly three stage impingement tray scrubber/condenser;
- A Sly variable throat venturi scrubber; and
- A Cycletherm Regenerative Thermal Oxidizer (RTO).

Each dryer train is permitted to process 337.5 wet tons of sludge per day (wtpd) and can either combust natural gas or landfill gas, which is available from the landfill near the facility. During both preliminary testing and compliance testing, sufficient landfill gas was not available to operate each dryer at 90 – 100% of the permitted rate, and all preliminary tests were conducted while the dryer used natural gas and the RTO used landfill gas. Each dryer has a rated capacity of 40 MMBTU/hr heat input (either from landfill or natural gas) plus an additional 2 MMBTU/hr heat input from each RTO for a total rated capacity of 84 MMBTU/hr heat input for the dryers and RTOs.

The facility also operates two odor scrubbers that treat ventilation air as well as baghouse exhaust. These scrubbers were tested for their annual Visible Emissions as part of this program.

All sampling (both PM/PM_{10} and VE) was conducted at the discharge end of the system at the stack location.


3.2 **Process Operations During Testing**

For each test run, NEFCO personnel recorded all pertinent operating data, or as appropriate. These include gas usage (i.e. estimated firing rates), feed rates, dryer temperatures and emission control parameters. This data can be found in Appendix D of this report.

3.3 Sample Point Description – Particulate Matter

All Particulate Matter test runs utilized two sampling ports located 90 degrees to each other on a vertical section of stack with an inside diameter of 36". The ports are located approximately 26' downstream and approximately 88' upstream from the closest bend or expected pollution concentration change (stack exit) and each test port is 4" in diameter. A summary of the traverse points are presented in Figure 3-1.

Figure 3-1 Sampling Schematic – RTO Outlet

Stack Configuration							
Description	Distance	Equivalent Diameters					
Upstream (A)	~88'	~29.3					
Downstream (B)	~28'	~9.3					
Diameter (C)	36"	NA					
Number of Ports	2	NA					
PM/PM ₁₀ Traverse Points (per diameter) – not including port sleeve							
Traverse Points	% Diameter	Distance (inches)					
1	4.4	1.6					
2	14.6	5.3					
3	29.6	10.7					
4	70.4	25.3					
5	85.4	30.7					
6	95.6	34.4					
	CEM Traverse Points						
Traverse Points	% Diameter	Distance (inches)					
1	16.7	6.0					
2	50.0	18.0					
3	83.3	30.0					
A stratification test was conducted at these traverse points prior to							

A stratification test was conducted at these traverse points prior to compliance testing to determine proper number of sampling points in accordance with Section 8.1.2 of EPA Method 7E.

4.0 TEST PROCEDURES

4.1 Overview

Diagnostic testing for these sources consisted of concurrent reference method testing for particulate matter (either Method 5 or Method 202 with particle sizing) and instrumental monitoring for CEMS (O_2 and CO_2) while each dryer train was operated at the specified condition. The remainder of this section provides greater detail to each of the monitoring procedures that as a whole comprised that portion of the test program.

Compliance testing for these sources consisted of concurrent reference method testing for particulate matter (using Method 5 only) and instrumental monitoring for CEMS (O_2 and CO_2) while each dryer train was operated at greater than a 90% feed rate. The remainder of this section provides greater detail to each of the monitoring procedures that as a whole comprised the test program.

4.1.1 Particulate Matter Monitoring – Method 5

Particulate matter was measured using EPA Methods 1 through 5. Reference Method 5 (RM5) measurements include the determination of the proper number of sampling points and their locations in the stack (RM1), stack velocity and volumetric flow rate (RM2), stack gas molecular weight (RM3) and stack gas moisture content (RM4). The train was an EPA Method 5-type isokinetic sampling train. Sampling was conducted isokinetically for a period of 60 minutes per run, collecting a minimum of 30 dry standard cubic feet.

The sampling train consisted of a stainless steel nozzle, stainless steel union, heated glass-lined probe, a glass filter holder, heated quartz glass filter, Teflon filter support, and a series of impingers. Please refer to Section 4.1.4 for a description of the impinger configuration. All glassware was thoroughly cleaned and sealed as per EPA Methods 5 prior to mobilization.

All filters and beakers were weighed before and after sampling in strict accordance with the Method and the EPA Quality Assurance Handbook. They were desiccated for at least 24 hours, and then weighed at six-hour intervals until two consecutive weighings demonstrated a constant weight, \pm 0.5 milligrams.

Prior to sampling, the K-factor was established, the train was assembled and leak checked. After the probe and filter box reached the desired operating temperature, the probe was placed in the stack, and isokinetic sampling took place.

At the completion of isokinetic sampling, the train was leaked checked, disassembled, and sealed. All train recovery procedures were conducted in accordance with EPA Method 5. The filter was carefully removed from the filter holder, placed in a labeled petri dish and stored in a portable desiccator. The nozzle, probe and filter holder front half were thoroughly brushed and rinsed with acetone into a container labeled for identification. Volumes were noted and liquid levels marked.

A set of reagent blanks were also taken for analysis along with the samples. The impinger condensate was measured in a graduated cylinder for determination of moisture in the flue gas.

Particulate samples were analyzed gravimetrically at South Florida Environmental's laboratory in accordance with the method. The acetone rinses were evaporated to dryness in tared beakers. All filters and beakers were desiccated before and after sampling for 24 hours, and weighed at 6-hour intervals until two consecutive weights are within ± 0.5 mg.

4.1.2 Particulate Matter Monitoring – Methods 5/202 with Particle Sizing and CPM

PM_{2.5/10} and condensable particulate matter (CPM) was measured using EPA Method 5/202. This involved using a combined train consisting of a nozzle, inertial impactor equipped with tared filter substrates and a tared filter, glass-lined heated probe, a filter bypass contained in a hot box, and a Method 202 type impinger condenser.

Particle size testing for $PM_{2.5/10}$ utilized an inertial impactor manufactured by Andersen Samplers, Inc. This is an 8-stage impactor equipped with eight tared substrate filters and a tared final collection filter. The flow rate in the inertial impactor was set to allow determination of both PM_{10} and $PM_{2.5}$ cut sizes while maintaining an approximate isokinetic sampling rate. The final stage filter is supported in a stainless steel in-stack filter holder located in the stack. CPM was collected in the impinger train and the probe (after the in-stack filter).

Before sampling, the appropriate nozzle size and sample rate was calculated in order to achieve a 2.5 and 10 micron cut size. After the train was assembled and leak checked, the impactor was placed in the stack for approximately ten minutes to allow the cyclone to heat up to the stack temperature.

Sampling was then conducted at a constant sampling rate under approximate isokinetic conditions for one hour. The required flow rate through the cyclone was very specific in order to achieve the proper cut size.

During sampling, specific CPM criteria was also maintained. Sample gas exiting the tared PM filter

traveled through the probe to the external filter bypass. The gas exited the filter bypass, and was routed through a water-jacketed glass coil condenser which is designed to reduce the sample temperature to $65^{\circ} - 85^{\circ}F$. Upon exiting the condenser coil, the sample passed through an empty knockout (short stem) impinger, an empty modified Greenburg Smith impinger, and then a dry, condensable PM filter (consisting of a glass filter holder, Teflon filter support, and an untared Teflon CPM filter). A thermocouple was located at the outlet of the dry filter holder to verify that the dry gas sample temperature was between $65^{\circ}F$ and $85^{\circ}F$. The remainder of the sampling train consisted of a third impinger initially loaded with 100ml of DI H₂0 and a fourth impinger initially loaded with a known amount of silica gel (200-300g).

After sampling was completed, the 8-stages of the impactor were recovered to their respective petri dishes with the filter tare weight and identification number. Extra care was taken to insure that any substrate filter fibers that remaining on the stages ring were recovered to the appropriate petri dish. The nozzle and portion of the impactor body prior to the first stage was rinsed with acetone into a labeled jar.

Also after sampling was completed, the CPM portion of the sampling train (dry impingers 1 and 2) were first measured for net condensate gain. The contents of the third and fourth impingers were also measured for moisture net gain, but then discarded as they are not considered part of the CPM sample.

The contents of the first two impingers (dry impingers) were then poured back into a single dry, modified G/S impinger before being purged with nitrogen (long stem impinger was placed first in the purge) for 60-minutes at a rate of at least 14 liters per minute. If there was not adequate moisture in the impinger to promote bubbling, then 100 ml of DI water may have been added to the impinger for the purge. A filter was placed between the nitrogen tank and the coil condenser inlet to remove any contaminant particulate. Purging of the coil condenser, CPM condensate, and dry filter then occured for 60 minutes.

Following the purge, the contents of the first two (dry) impingers were poured into a sample recovery bottle (CPM DI H2O fraction). Subsequently, each of the components in the dry impinger section (probe, filter bypass, offset 90°, condenser coil, two dry impingers, and the front half of the condensable PM filter housing) were rinsed twice with DI water into the same DI H2O sample jar. Lastly, each of these components were rinsed first with acetone (once) and then hexane (twice) into a separate sample recovery bottle (CPM acetone/hexane fraction). The dry CPM Teflon filter was placed in a separate sample jar. All three fractions were analyzed for condensable particulate matter (organic and inorganic).

The PM_{2.5/10} samples were then analyzed gravimetrically by South Florida Environmental in

accordance with the methods. Condensable particulate matter samples were shipped to Maxxam Analytics where they were analyzed in strict accordance with EPA Method 202.

4.1.3 Visible Emission Monitoring

EPA Reference Method 9 was adhered to for the determination of opacity emissions during this test program. During the compliance test, opacity emission readings were taken at fifteen-second intervals for a minimum of one-hour. Ten 6-minute averages were then calculated from the 15-second readings and the highest 6-minute average reported for compliance purposes. A certified observer recorded all opacity emissions.

4.1.4 Diluent Monitoring

In general, the sample was extracted, analyzed, and recorded in accordance with the applicable EPA sampling methods and performance specifications while following procedures delineated in the applicable instrumental analyzer procedures. All calibrations were conducted utilizing EPA Protocol G1 gases. The results of calibrations were used to determine the acceptability of the test data. Each analyzer that was used during this test program is detailed below.

4.1.4.1 Oxygen

During this test program, oxygen was monitored in accordance with both Performance Specification 3 (PS3) and EPA Method 3A, 40 CFR 60, Appendix A. SFES complied with instrumental analyzer procedure 3A by utilizing a Teledyne Model 326A oxygen analyzer operated on a 0-25% range.

4.1.4.2 Carbon Dioxide

During this test program, carbon dioxide was monitored in accordance with 40 CFR 60, Appendix A, Method 3A. SFES complied with instrumental analyzer procedure 3A by utilizing a Fuji Model 3400 non-dispersive infrared analyzer (NDIR) operated on a 0-20% range.

4.2 Particulate Matter Sampling System Description

Clean Air Engineering (CAE) manufactures the specific train that was used during this test. The design specifications of this train meet all the requirements of EPA's Reference Method 5 as found in the Federal Regulations under Section 40 CFR 60 Appendix A, as amended. The following is a description of the individual pieces of equipment that made up the train.

Nozzle - The nozzle was constructed of stainless steel of the buttonhook design. A range of sizes suitable for isokinetic sampling were available. All nozzles were calibrated before testing and the calibration data can be found in Appendix E of this report.

Probe - A 5-foot heated stainless steel probe with heated quartz or borosilicate glass liner was used at the stack.

Heating System - The filter temperature was regulated by maintaining the hot box temperature at $248^{\circ} + 25^{\circ}$ F. This temperature was constantly monitored by use of a thermocouple (located in the hot box) and temperature readout.

Pitot Tube - A Type S pitot tube attached to the probe was used to monitor the stack gas velocity. Since the pitot tube meets all of the dimensional criteria set forth in Method 2 of 40CFR60, a coefficient of 0.84 was used.

Filter Holder - A borosilicate glass type filter holder with a Teflon support was used for all isokinetic testing.

Condenser - Four impingers, connected in series with leak-free ground glass fittings, was used as the condenser. The first, third and fourth impingers were of the Greenburg-Smith design modified by replacing the tip with a 1/2" diameter glass tube extending to approximately 1/2" from the bottom of the flask. The second impinger was a standard Greenburg-Smith.

Metering System - A vacuum gauge, inclined manometer, leak-free pump, calibrated thermocouples, and a calibrated dry gas meter were the basic components used to meter the dry sample gas through the system. Meter box and thermocouple calibration sheets may be found in Appendix E of this report.

Gas Molecular Weight Determination - CEMS was used to determine O_2 and CO_2 content. They were used to calculate the molecular weight of the flue gas and for correcting results to a common diluent.

4.2.1 Isokinetic Sampling Procedures

All sampling procedures were conducted in strict accordance with the Methods prescribed in the Code of Federal Regulations as found in 40CFR60 as amended, where available. The following is the sequence of events that occurred prior to and during the actual test.

Traverse Points - The traverse points were calculated in accordance with Method 1 and the probe was marked accordingly.

Static Pressure - The static pressure of the ducts were checked and recorded.

Preliminary Traverse - A preliminary traverse was conducted. Readings included the pressure drops and gas temperatures.

Nomograph - Once the above information had been obtained, the nomograph for the actual test was set up to correlate the isokinetic relationships.

Barometric Pressure - Barometric pressure was obtained and recorded from a local weather station via the internet.

Sampling Train Set-Up:

(a) The filter was placed in the filter holder and visually checked. Filter number and tare weight was recorded on the field data sheets.

(b) The impingers were loaded with de-ionized water. Volumes were recorded on the field data sheets.

(c) Approximately 200 grams of silica gel was placed in the final impinger. Exact weights are logged on the field data sheets.

- (d) Crushed ice was placed around the impingers.
- (e) Once the entire train was assembled, the probe and hot box heaters were turned on.

Pre-Test Leak Check - Once the heater box was at the desired temperature for testing, the system was leak checked at fifteen inches of vacuum (15"Hg). A leak rate of less than 0.02 CFM was achieved prior to the start of sampling.

Final Check – When sampling was ready to commence, plant operations was checked to confirm that the facility was operating at the desired capacity.

Sampling - Isokinetic sampling, per the Reference Method then took place.

Post-Test Leak Check - Upon completion of each test run, the system was leak checked at the

highest vacuum recorded during that run. All leak checks were less than 0.02 CFM.

Sample Recovery - All samples were recovered according to the respective Reference Method procedures. Because of the extreme importance of proper sample recovery techniques, details of the sample recovery procedures may be found in Sections 5 of this report.

Isokinetics - Once all sample recovery was completed (including moisture determination), calculations were conducted to determine the percent isokinetics of the test run.

4.3 CEMS Sampling System Description

What follows is a description of the individual components of South Florida's CEM system that was used to quantify each of the diluents/pollutants that comprised this test program.

4.3.1 Sample Delivery and Conditioning System

- **Sample Probe** A stainless steel probe was used to reach the sampling points as described in Table 3-1.
- Filter A spun glass fiber filter contained in a heated sheath. The filter was located between the sample probe and sample line; it was designed to remove particulate from the gas stream.
- **Sample Line** 3/8" Teflon tubing in a heated sample line prior to the condenser designed to transport the sample gas from the probe to the sample conditioning system (in the CEMS trailer).
- **Condensers (2)** A thermo-electric chiller was located just prior to the main sample pump for removal of moisture from the gas stream.
- **Sample Pump** A diaphragm type vacuum pump was used to draw gas from the sample probe through the conditioning system before distributing the gas to the individual analyzers. The pump head is stainless steel while the valve disks are Viton and the diaphragm is Teflon coated.
- **Sample Distribution System** A series of flow meters, valves and backpressure regulators allowed the operator to maintain constant flow and pressure conditions during sampling and calibration.

4.3.2 Calibration System

- **Calibration Gases** Only EPA Protocol Gases certified in accordance with EPA Protocol G1 procedures were used.
- **Calibration Solenoid System** A series of solenoids designed to deliver a specified gas either directly to an analyzer or through the entire sampling system by activating the appropriate solenoid.
- **Calibration Line** Teflon line (1/4") run in parallel to the sample line.
- **Calibration Tee** Stainless steel tee (3/8") located between the probe and the filter that allows the operator to inject calibration gas through the entire sampling system. Excess calibration gas exits the probe eliminating any potential over pressurization.

4.3.3 Data Acquisition System

- **Computer** A Dell Vostro 1710, 2.50 GHz.
- **Software** lotech data acquisition system (Personnel Daq 55/56). This system is programmed to collect data once per 2 seconds, while reporting 1-minute averages. This software operates in a Windows environment.

5.0 QUALITY ASSURANCE/QUALITY CONTROL

5.1 Overview

Strict QA/QC protocols were followed during all phases of this project. These protocols include:

- QA objectives for measurement data;
- Data reduction;
- Internal QC;
- Calibration of equipment;
- Corrective action, if necessary; and
- Use of standardized field data sheets.

The following sections summarize specific aspects of the test program.

5.2 Particulate Matter QA

South Florida's meter boxes, pitot tubes, thermocouples and barometers are maintained in accordance with specifications set forth in EPA "Quality Assurance Handbook for Air Pollution Measurement Systems – Volume III Stationary Source Specific Methods" and with manufacturer's suggested procedures. A summary is presented below:

- Dry Gas Meter and Orifice Meter/EPA Method 5 All dry gas meters are calibrated against a GCA/Precision wet test meter that is calibrated against a spirometer. The orifice meters in the meter control box are calibrated against the wet test meter and checked against the dry gas meter to which it is attached.
- **Balance** All analytical balances are calibrated against Class M weights. A daily onsite check is also conducted using a Class S weight.
- **Thermocouples** All type K thermocouples are calibrated against ASTM mercury in glass thermometers at three points. The first point is in an ice bath and the second in ambient air and the third in boiling oil.
- Pitot Tubes All standard and Type "S" stainless steel pitot tubes are designed to meet the dimensional criteria set forth in Method 2, therefore a coefficient of 0.99 (standard) or 0.84 (Type "S") was used.

Task		Procedure
	1.	Identify filters and beakers. Wash beakers in warm, soapy water, rinse with DI water and allow to air dry.
	2.	Desiccate filters and beaker for 24 hours.
Filter/beaker preparation	3.	Calibrate balance to within 0.5 mg of standard daily using 1 g. and 100 g. NIST traceable weights.
	4.	Weigh filter and beakers to nearest 0.1 mg every six hours until two consecutive weight agree within \pm 0.5 mg
Glassware/Teflon	1.	Wash all glassware and Teflon components in warm, soapy water. Rinse clean with tap water. Rinse thoroughly with DI water.
Preparation	2.	Allow to air dry and seal with parafilm.
roparation	3.	Use only high purity quartz filters and glass or Teflon components.
Sampling Train	1.	Load/assemble sampling train components in field lab. Re-seal components and send up to stack.
Set up	2.	Finish assembling train on stack.
Sampling Train	1.	Operate sampling train between 0.50 and 1.0 cfm.
Operation	2.	After leak check, seal train components with parafilm.
Sampling Train	1.	Rinse components from nozzle through front half of filter holder with reagent-grade acetone into container 1.
Recovery	2.	Remove filter and place in original petri dish.
	3.	Obtain reagent and filter blanks.
Sample Identification	1.	Identify all samples by stack, method, run no. fraction and contents.
and Shipping	2.	Generate chain of custody form identifying all samples.
	3.	Ship samples to analytical laboratory.
	1.	Desiccate filters for 24 hours.
	2.	Slowly evaporate acetone rinses in tared beakers. Desiccate beaker for 24 hours.
Particulate Analysis	3.	Calibrate balance to within 0.5 mg of standard daily using 1 g. and 100 g. NIST traceable weights.
	4.	Weigh filter and beakers to nearest 0.1 mg every six hours until two consecutive weight agree within \pm 0.5 mg.
	1.	Evaporate acetone rinse in container #2 to dryness in tared beaker.
PM2.5/10	2.	Place filter and beaker in desiccator and desiccate for 24 hour hours.
	3.	Weight at six hour intervals until two consecutive weights agree by +0.5 mg.
	1.	Receive samples, verify chain of custody/contents.
СРМ	2.	Combine container #3 and #4 into separatory funnel and shake. Allow fractions to separate. Drain off organic fraction into a clean container. Rinse funnel with 75 ml of methylene chloride, shake, separate and drain. Repeat.
Sample Analysis	3.	Evaporate organic fraction and inorganic fraction separately in tared beakers.
	4.	Evaporate front half acetone rinse in tared beaker.
	5.	Desiccate beakers for 24 hours. Weight at six hour intervals until two consecutive weights agree by +0.5 mg.

Table 5-1 Particulate Sampling Procedural Summary

5.3 CEMS QA

Specific procedures were followed to ensure the validity of the CEMS data collected for this program. The following subsections outline the specific procedures and performance criteria that were utilized to maintain quality assurance throughout this program.

5.3.1 Calibration Gases

All calibration gases utilized for the emission testing were prepared according to EPA Protocol G1 quality standards. Gas specification sheets for all calibration gases utilized during this test program are presented in Appendix E.

5.3.2 Instrumental Monitoring

CEMS data quality was assured throughout the test program by following procedures delineated in Performance Spec 3 for O_2 and CO_2 .

5.3.3 Sampling Setup

The following procedures were conducted during the initial phase of the program:

- Leak Check Prior to the initiation of testing the reference method CEMS system wasleak checked from the end of the sample probe. If a leak was detected, it would be traced and fixed. The procedure would then repeated until successful.
- System Response Time Prior to the initiation of sampling a Reference Method (RM) CEMS response time was determined. During the test program, the reference method CEMS was allowed to sample a minimum of 2.5 times the RM CEMS response time prior to the initiation of any sampling runs.

5.3.4 Calibration Criteria

The following subsections present the CEMS criteria that was adhered to throughout the conduct of the test program.

 Analyzer Calibration Error (ACE) – At the beginning of each test day an analyzer calibration error (direct calibration) was conducted for each analyzer by introducing zero and an upscale calibration gas upstream from the respective analyzers and calibrating the respective analyzers to the corresponding calibration gas value. A mid-range gas is then injected to the respective analyzers in order to demonstrate linearity. The maximum allowable calibration error is 2% of instrument span. If this limit were not achieved, corrective action would be taken and the procedure would be repeated until successful. Analyzer calibration error is calculated as follows:

$$ACE = \frac{(C_{Dir} - C_v)}{CS} \times 100$$

Where:

- C_{Dir} = Measured concentration of a calibration gas (low, mid, or high) when introduced in direct calibration mode, ppmv.
- C_v = Manufacturer certified concentration of a calibration gas (low, mid, or high), ppmv.
- CS = Calibration span, ppmv.
- Sampling System Bias (SB) Following the performance of the analyzer calibration error a system bias check was conducted by introducing sampling gas through the entire sampling system (system calibration) and comparing the response of the analyzer calibration error with that of the system calibration. The maximum allowable calibration error is 5% of instrument span. If this limit were not achieved, the test run would be voided and corrective action would be taken. If analyzer adjustments were made, the analyzer calibration error and system bias checks would be repeated until the calibration met the EPA Method 7E criteria. System bias is calculated as follows:

$$SB = \frac{(C_s - C_{Dir})}{CS} \times 100$$

Where:

- C_s = Measured concentration of a calibration gas (low, mid, or high) when introduced in system calibration mode, ppmv.
- Calibration Drift (D) Prior to and following each test run a system calibration was conducted in order to determine calibration drift during each test period. The maximum allowable calibration drift is 3% of instrument span. If the calibration drift were exceeded, corrective action would be taken. If any analyzer adjustments were made, a new analyzer calibration error and system bias check would be conducted. Calibration drift is calculated as follows:

 $D = |SB_{final} - SB_{iniital}| \times 100$

5.3.5 Calibration Drift and System Bias Correction

Each instrumental analyzer method requires the correction of CEMS data for the system bias and calibration drift observed over each test period. All run averages are corrected for system bias and calibration drift as follows:

$$C_{Gas} = (C_{Avg} - C_o) \left[\frac{C_{MA}}{C_M - C_o} \right]$$

Where:

C_{Gas} = Average effluent gas concentration adjusted for bias, ppmv.

 C_{Avg} = Average unadjusted gas concentration indicated by data recorder for test run.

C_o = Average of initial and final system calibration bias (or 2-point system calibration error) check responses from the low-level (or zero) calibration gas, ppmv.

C_M = Average of initial and final system calibration bias (or 2-point system calibration error) check responses for the upscale calibration gas, ppmv.

 C_{MA} = Actual concentration of the upscale calibration gas, ppmv.

Appendix A

Reference Method Emissions Data – Preliminary Particulate Matter Emissions Data

1	-	RTO / Dryer No. 1 "Tuning" Emissions Data (6/25/13)
2	-	RTO / Dryer No. 2 "Tuning" Emissions Data (6/24/13 & 6/25/13)
3	-	RTO / Dryer No. 1 Pre-Compliance Emissions Data (6/26/13)
4	-	RTO / Dryer No. 2 Pre-Compliance Emissions Data (6/26/13)
5	-	Particle Size Distribution Data

ŀ

١,

1. A. 1.

,

A1 RTO / Dryer No. 1 "Tuning" Emissions Data (6/25/13)

PLANT: LOCATION:	NEFCO / SWA Bioso West Palm Beach, F	18 S.	UN # : ATE:	U1-M5/202-Pr 25-Jun-13	e1
<u>FILTER</u> NUMBER : PS3	BEAKER 9C		BLANK FILTER 1445	S <u>BEAKER</u> B5-48	
FINAL 1.3905	69.9058		0.4408	67.0280	
TARE : 1.3895	69.9054	,	0.4408	67.0279	
NET : 0.0010	0.0004		0.0000	0.0001	
	VOLUME BLANK RI VOLUME OF RINSE			130 60	
Mn = 1.400 Ar = 0.046	O2 CO2 Vs As			ft/sec	
Ar = 0.046	CO2		7.64 30.94 7.07	ft/sec	
Ar = 0.046 Mn = 1.400 not	CO2 Vs As Vm st t blank corr s)(As)(17.64)(Ps/Ts)		7.64 30.94 7.07	ft/sec ft2 DSCF DSCFH ACFH	
Ar = 0.046 Mn = 1.400 not Qs = 3600(1-Bwo)(Vs) 3600 (Vs) (As)	CO2 Vs As Vm st t blank corr s)(As)(17.64)(Ps/Ts)	d =	7.64 30.94 7.07 31.73 483940 787398	ft/sec ft2 DSCF DSCFH ACFH ACFH	
Ar = 0.046 $An = 1.400 not$ $Ar = 3600(1-Bwo)(Vs)$ $3600 (Vs) (As)$ $ACFH / 60$ $Cs = (2.205 E-6) (Mr)$	CO2 Vs As Vm st blank corr s)(As)(17.64)(Ps/Ts)	d =	7.64 30.94 7.07 31.73 483940 787398 13123	ft/sec ft2 DSCF DSCFH ACFH ACFH LB/SCF	
Ar = 0.046 $An = 1.400 not$ $An = 1.400 not$ $Ac = 3600(1-Bwo)(Vs)$ $3600 (Vs) (As)$ $ACFH / 60$ $Ac = (2.205 E-6) (Mr)$ $Cs' = 0.0154 (Mr) / (Vs)$	CO2 Vs As Vm st blank corr s)(As)(17.64)(Ps/Ts)	d =	7.64 30.94 7.07 31.73 483940 787398 13123 9.73048E-08	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SC	
Ar = 0.046 $Mn = 1.400 not$ $Qs = 3600(1-Bwo)(Vs)$ $3600 (Vs) (As)$ $ACFH / 60$ $Cs = (2.205 E-6) (Mr)$ $Cs' = 0.0154 (Mn) / (Vs)$	CO2 Vs As Vm st t blank corr s)(As)(17.64)(Ps/Ts) n) / (Vm Std) /mStd)	d =	7.64 30.94 7.07 31.73 483940 787398 13123 9.73048E-08 0.0007	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SC mg/dscm	

PARTICULATE EMISSION CALCULATION SHEET

and the second	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : DATE:	U1-M5-Pre2 25-Jun-13
<u>FILTER</u> NUMBER: 1427	BEAKER D3100	BLANK <u>FILTER</u> 1445	S <u>BEAKER</u> B5-48
FINAL : 0.4468	70.2351	0.4408	67.0280
TARE : 0.4451	70.2271	0.4408	67.0279
NET : 0.0017	0.0080 VOLUME BLANK RINSE VOLUME OF RINSE	0.0000 E	0.0001 130 110
Mn - Ar = Mn Mn = 9.700 Ar = 0.085 Mn = 9.700 not	O2 = CO2 = Vs = As = Vm std = blank corr	8.19 7.65 30.10 7.07 45.56	ft/sec
Qs = 3600(1-Bwo)(Vs 3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (Mr)(As)(17.64)(Ps/Ts) = = =)) / (Vm Std) =	462211 765978 12766 4.6942E-07	ACFH ACFM
Cs' = 0.0154 (Mn) /(V	′mStd) =	0.0033	GRAINS/SCF
Cs ^t = Mn / VmStd		7.52	mg/dscm
Cs' @ = Mn / Vm Std x 20 7% O2 PMR = Os x Cs	.9-7/20.9-02% =	8.22	mg/dscm @7% O2

=

PMR = QsxCs

0.217 LB/HR

PARTICULATE EMISSION CALCULATION SHEET

PLANT LOCATION	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : DATE	U1-M5-Pre3 25-Jun-13	
The second se	a di Africa da Arriente	BLANK	S	· · · · · · · · · · ·
FILTER NUMBER 1428	<u>BEAKER</u> 417	<u>FILTER</u> 1445	BEAKER B5-48	
FINAL 0.4398	68.7232	0.4408	67.0280	
TARE : 0.4380	68.7202	0.4408	67.0279	
NET : 0.0018	0.0030	0.0000	0.0001	
e of teacher all the The second states of the	VOLUME BLANK RINSE VOLUME OF RINSE		130 125	and and a second se
Ar = 0.096 Mn = 4.800	As = Vm std= not blank corr	7.07 46.90	the second se	
			- BOOPLI	
	(Vs)(As)(17.64)(Ps/⊤s) =	458049		
Qs = 3600(1-Bwo) 3600 (Vs) (As ACFH / 60		458049 780647.4942 13011	ACFH	
3600 (Vs) (As ACFH / 60)	780647.4942	ACFH	
3600 (Vs) (As ACFH / 60) = = (Mn) / (Vm Std) =	780647.4942 13011	ACFH ACFM	CF
3600 (Vs) (As ACFH / 60 Cs = (2.205 E-6) () = = (Mn) / (Vm Std) =	780647.4942 13011 2.2568E-07	ACFH ACFM LB/SCF	CF.
3600 (Vs) (As ACFH / 60 Cs = (2.205 E-6) (Cs' = 0.0154 (Mn) Cs' = Mn / VmStd) = = (Mn) / (Vm Std) =	780647.4942 13011 2.2568E-07 0.0016	ACFH ACFM LB/SCF GRAINS/S	

¢

	PLANT LOCATION	NEFCO / SWA Biosol West Palm Beach, F	takan bertakan bertak	U1-M5/202-Pre4 25-Jun-13
·		na se	BLANK	S
NUMBER	FILTER PS4	BEAKER BK2	<u>FILTER</u> 1445	BEAKER B5-48
FINAL	1.3961	69.2838	0.4408	67.0280
TARE	: 1.3950	69.2813	0.4408	67.0279
NET	: 0.0011	0.0025	0.0000	0.0001
		VOLUME BLANK RI VOLUME OF RINSE		130 55
Mn - Ar = Mn = År = Mn =	3,600 0.042	O2 CO2 Vs As Vm st iot blank corr	= 8.47 = 7.54 = 35.75 = 7.07	ft/sec
Mn = Ar = <u>Mn =</u>	= 3.600 = <u>0.042</u> = <u>3.600 n</u>	CO2 Vs As Vm st ot blank corr	= 8.47 = 7.54 = 35.75 = 7.07 d= 31.53	ft/sec ft2 DSCF
Mn = Ar = <u>Mn =</u>	= 3.600 = <u>0.042</u> = <u>3.600 n</u>	CO2 Vs As Vm st ot blank corr Vs)(As)(17.64)(Ps/Ts)	= 8.47 = 7.54 = 35.75 = 7.07	ft/sec ft2 DSCF DSCFH DSCFH ACFH
Mn = Ar = Mn = Qs =	= 3.600 = 0.042 = 3.600 n = 3600(1-Bwo)(3600 (Vs) (As)	CO2 Vs As Vm st ot blank corr Vs)(As)(17.64)(Ps/Ts)	= 8.47 = 7.54 = 35.75 = 7.07 d= 31.53 = 530053 = 909804	ft/sec ft2 DSCF DSCFH ACFH ACFH
Mn = Ar = Qs = Cs	= 3.600 0.042 3.600 n 3600(1-Bwo)(3600 (Vs) (As) ACFH / 60	CO2 Vs As Vm st iot blank corr Vs)(As)(17.64)(Ps/Ts) Vs)(As)(17.64)(Ps/Ts)	= 8.47 = 7.54 = 35.75 = 7.07 d= 31.53 = 909804 = 15163	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF
Mn = Ar = Qs = Cs =	= 3.600 0.042 = 3.600 n = 3600(1-Bwo)(3600 (Vs) (As) ACFH / 60 = (2.205 E-6) (I	CO2 Vs As Vm st iot blank corr Vs)(As)(17.64)(Ps/Ts) Vs)(As)(17.64)(Ps/Ts)	= 8.47 = 7.54 = 35.75 = 7.07 d= 31.53 = 909804 = 15163 = 2.51787E-07	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF GRAINS/SCF
Mn = Ar = Qs = Cs : Cs' =	= 3.600 0.042 = 3.600 m = 3600(1-Bwo)(3600 (Vs) (As) ACFH / 60 = (2.205 E-6) (I = 0.0154 (Mn) / = Mn / VmStd	CO2 Vs As Vm st iot blank corr Vs)(As)(17.64)(Ps/Ts) Vs)(As)(17.64)(Ps/Ts)	= 8.47 = 7.54 = 35.75 = 7.07 d= 31.53 = 909804 = 15163 = 2.51787E-07 = 0.0018	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF mg/dscm

Inorganic (mg): 9.7 As = 7,07 ft ² Organic (mg): 14.0 Vm std = 31.73 DSCF Total Gain (mg) 23.7 23.7 Qs = 3600(1-Bwo)(Vs)(As)(17,64)(Ps/Ts) = 483,940 DSCFH 3600 (Vs) (As) = 787,398 ACFH = ACFH / 60 = 13,123 ACFM Cs = (2.205 E-6) (Mn) / (Vm Std) = 1.64723E-06 LB/SCF Cs' = 0.0154 (Mn) / (Vm Std) = 0.0115 GRAINS/SCF	Fractional Weights: $CO_2 = 7.64$ Inorganic (mg): 9.7 As = 7.07 ft ² Organic (mg): 14.0 Vm std = 31.73 DSCF Total Gain (mg) 23.7 Qs = 3600(1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = 483,940 DSCFH 3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (Mn) / (Vm Std) = 1.64723E-06 LB/SCF	PLANT : NEFCO / SWA Biosolids LOCATION : Unit No. 1			U1-M5/202-Pre1 25-Jun-13
Organic (mg): 14.0 Vm std = 31.73 DSCF Total Gain (mg) 23.7 Vm std = 31.73 DSCF Qs = $3600(1-Bwo)(Vs)(As)(17.64)(Ps/Ts)$ = $483,940$ DSCFH 3600 (Vs) (As) = $787,398$ ACFH $ACFH / 60$ = $13,123$ ACFM Cs = $(2.205 E-6)$ (Mn) / (Vm Std) = $1.64723E-06$ LB/SCF Cs' = 0.0154 (Mn) /(Vm Std) = 0.0115 GRAINS/SCF	Organic (mg): 14.0 Vm std = 31.73 DSCF Total Gain (mg) 23.7 Vm std = 31.73 DSCF Qs = $3600(1-Bwo)(Vs)(As)(17.64)(Ps/Ts)$ = $483,940$ DSCFH 3600 (Vs) (As) = $787,398$ ACFH $ACFH / 60$ = $13,123$ ACFM Cs = $(2.205 E-6)$ (Mn) / (Vm Std) = $1.64723E-06$ LB/SCF Cs' = 0.0154 (Mn) /(Vm Std) = 0.0115 GRAINS/SCF	Fractional Weights:	CO ₂ = Vs =	7.64 30.94	ft/sec
3600 (Vs) (As) = 787,398 ACFHACFH / 60 = 13,123 ACFMCs = (2.205 E-6) (Mn) / (Vm Std) = 1.64723E-06 LB/SCFCs' = 0.0154 (Mn) / (VmStd) = 0.0115 GRAINS/SCF	3600 (Vs) (As) = 787,398 ACFHACFH / 60 = 13,123 ACFMCs = (2.205 E-6) (Mn) / (Vm Std) = 1.64723E-06 LB/SCFCs' = 0.0154 (Mn) / (Vm Std) = 0.0115 GRAINS/SCF	Organic (mg):14.0_			
Cs' = 0.0154 (Mn) /(VmStd) = 0.0115 GRAINS/SCF	Cs' = 0.0154 (Mn) /(VmStd) = 0.0115 GRAINS/SCF	3600 (Vs) (As)	=	787,398	ACFH
		Cs = (2.205 E-6) (Mn) / (Vm Std)	1994 (1994) 1994 - 19 1994 - 1994 (1994)	1.64723E-06	LB/SCF
	PMR = Qs x Cs = 0.797 LB/HR	Cs' = 0.0154 (Mn) /(VmStd)	=	0.0115	GRAINS/SCF
		PMR = Qs x Cs	=	0.797	LB/HR

PLANT : NEFCO / SWA Biosolids LOCATION : Unit No. 1	RUN NO.: U1-M5/202-Pre4 DATE: 25-Jun-13
Lab ID: O2 = CO2 = Fractional Weights: Vs = Inorganic (mg): 18.0 As = Organic (mg): 19.0 Vm std = Total Gain (mg) 37.0	= 7.54 = 30.94 ft/sec = 7.07 ft ²
Qs = 3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = = 3600 (Vs) (As) = ACFH / 60 =	= 13,123 ACFM
Cs = (2.205 E-6) (Mn) / (Vm Std) = Cs' = 0.0154 (Mn) /(VmSTD) =	= 2.57163E-06 LB/SCF = 0.0180 GRAINS/SCF
PMR = QsxCs =	= 1.245 LB/HR

PLANT: LOCATION:		/ SWA Bios alm Beach,			RUN # : DATE :		-M5/202 25-Jun-	
As (SQFT) :	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA		S METER	STACK
Dn (INCHES)	0.312	POINT	HEAD	ROOT	H			TEMP (F)
PITOT COEFFICIENT:	0.84				, , , , , , , , , , , , , , , , , , ,			
n e se se se 🖓 📑 e e e E		A1	0.21	0.46	1.00	92	92	265
IMP-1 (INT) :	0	2	0.20	0.45	1.00	93	93	266
		3	0.21	0.46	1.00	93	93	267
IMP-2 (INT) :	0	4 5	0.22 0.21	0.47 0.46	1.00 1.00	93 93	93 93	270 270
IMP-3 (INT) :	100	6	0.21	0.40	1.00	93 93	93 93	270
<u> </u>		Ŭ	0.22	0.47	1.00	00	00	211
IMP-4 (INT) :	808.0	B1	0.20	0.45	1.00	93	93	270
		2	0.21	0.46	1.00	93	93	272
IMP-1 (FIN) :	108	3	0.23	0.48	1.00	94	94	269
		4	0.21	0.46	1.00	94	94	271
IMP-2 (FIN) :		5	0.22	0.47	1.00	94	94	273
IMP-3 (FIN) :	106	6	0.21	0.46	1.00	93	93	274
IMP-4 (FIN) :	816.0							
% CO2 (OUT):	7.64							
% O2 (OUT) :	8.26							
— % СО (ОUT) : Г	0							
Pbar	30.1							
Pstack	-0.42					x		
	12							
TEST LENGTH	60							
FINAL METER	527.044							
	493.151							
BEGIN TIME	13:17							
	<u> </u>							
END TIME	14:23							
								
A	VERAGE:		0.21	0.46	1.00	93.2	93.2	269.8

PLANT: LOCATION:	and the second	/SWA Bios Palm Beach,			RUN # : DATE :	in generation and the second	U1-M5-Pi 25-Jun-'	i an
As (SQFT)	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	DRY GA	SMETER	STACK
Dn (INCHES)	0.351	POINT	HEAD	ROOT	н	IN	OUT	TEMP (F)
PITOT COEFFICIENT:	0.84						•	
		A1	0.16	0.40	1.68	92	92	251
IMP-1 (INT) :	100	2	0.20	0.45	2.10	92	92	272
IMP-2 (INT) :	100	3	0.22 0.22	0.47 0.47	2.31 2.31	93 93	93 93	277 280
1817 * 2 (1141 <i>) ;</i>		5	0.22	0.47	2.31	93 93	93 93	280 281
IMP-3 (INT) :		6	0.20	0.45	2.10	93	93	281
								-01
IMP-4 (INT) :	798.0	B1	0.17	0.41	1.79	93	93	254
		2	0.18	0.42	1.89	93	93	260
IMP-1 (FIN) :	279	3	0.21	0.46	2.21	93	93	279
		4	0.23	0.48	2.42	92	92	275
IMP-2 (FIN) :	107	5	0.21	0.46	2.21	92	92	275
IMP-3 (FIN):	3	6	0.19	0.44	2.00	92	92	271
IMP-4 (FIN) :	804.5							
% CO2 (OUT):	7.65							
% O2 (OUT) :	8.19							
% CO (OUT):	0							
Pbar	30.1							
Pstack	-0.41							
NUMBER OF POINTS	12							
TEST LENGTH	60							
FINAL METER	575.902							
INTIAL METER	527.406							
BEGIN TIME	14:50							
END TIME	15:53							
	AVERAGE:		0.20	0.45	2.10	92.6	92.6	271.3

PLANT :	NEFCO / SWA Biosolids	RUN#:	U1-M5-Pre3
LOCATION :	West Palm Beach, FL	DATE :	25-Jun-13

As (SQFT) :	7.069	TRAVERSE	VELOCITY	SQUARE	DELŤA	DRY GA	SMETER	STACK
Dn (INCHES)	0.351	POINT	HEAD	ROOT	н	ÍN	OUT	TEMP (F)
PITOT COEFFICIENT:	0.84		0.40	0.40	4 65	00	~~	074
		A1	0.16	0.40	1.68	90	90	271
IMP-1 (INT) :	100	2	0.19	0.44	2.00	90	90	276
	100	3	0.20 0.23	0.45 0.48	2.10 2.42	91 91	91 91	286 276
IMP-2 (INT) :		5	0.23	0.48	2.42	91	91	270
IMP-3 (INT) :	0	6	0.20	0.43	1.89	91	91	200
		Ŭ	0.10	0,42	1.00	01	0.	2, 1
IMP-4 (INT) :	804.5	B1	0.22	0.47	2.31	91	91	267
	L	2	0.22	0.47	2.31	91	91	270
IMP-1 (FIN) :	310	3	0.23	0.48	2.42	91	91	273
		4	0.23	0.48	2.42	91	91	286
IMP-2 (FIN) :	110	5	0.22	0.47	2.31	91	91	274
	· · · · · · · · · · · · · · · · · · ·	6	0.18	0.42	1.89	91	91	275
IMP-3 (FIN)	4							
IMP-4 (FIN) :	809.0							
% CO2 (OUT):	7.48							
,,, oor (oor).								
% O2 (OUT) :	8.51							
% CO (OUT) :	0							
in an		1						
Pbar	30.1							
e de la territoria de la composición de En este de la composición de la								
Pstack	-0.38							
NUMBER OF POINTS								
TEST LENGTH	60							
an ann an								
FINAL METER	625.923							
INTIAL METER	576.171							
BEGIN TIME	16:15							
END TIME	17:18							
	AVERAGE:		0.21	0.45	2.15	90.8	90.8	275.4
·····	AVERAGE:		V.4 I	0.40	<u> </u>	50.0	50.0	210.4

PLANT :	NEFCO / SWA Biosolids	RUN # :	U1-M5/202-Pre4
LOCATION :	West Palm Beach, FL	DATE :	25-Jun-13

As (SQFT)	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	DRY GA	SMETER	STACK
On (INCHES)	0.312	POINT	HEAD	ROOT	́н	ÎN	ουτ	TEMP (F)
PITOT COEFFICIENT:	0.84							
	· · ·	A1	0.24	0.49	1.00	87	87	264
MP-1 (INT) :	0	2	0.26	0.51	1.00	87	87	278
		3	0.28	0.53	1.00	86	86	276
MP-2 (INT) :		4 5	0.27 0.28	0.52 0.53	1.00 1.00	86 86	86 86	284 277
MP-3 (INT) :	100	6	0.28	0.53	1.00	87	87	288
	784.0	B1	0.28	0.53	1.00	86	86	274
MP-4 (INT) :	704.0	2	0.28	0.55	1.00	86	86	274
VIP-1 (FIN) :	130	3	0.29	0.54	1.00	86	86	270
	······································	4	0.30	0.55	1.00	86	86	279
/IP-2 (FIN)	12	5	0.28	0.53	1.00	86	86	275
		6	0.26	0.51	1.00	87	87	290
/IP-3 (FIN) :	108							
IP-4 (FIN) :	791.0							
CO2 (OUT):	7.54							
O2 (OUT):	8.47							
CO (OUT) :	0							
Dar	30.1							
stack	-0.40							
UMBER OF POINTS	12							
EST LENGTH	60							
NAL METER	659.434							
ITIAL METER	626.169							
EGIN TIME	17:55							
NDTIME	19:00							
	AVERAGE:		0.28	0.53	1.00	86.3	86.3	277.6

PLANT : NEFCO / SWA Biosolids RUN # : U1-M5/202-Pre1 LOCATION : West Palm Beach, FL DATE : 25-Jun-13

Ts (°F) =	269.8	% CO2 = 7.64	Vm (CF) =	33.893
Ts (°R) =	729.8	% O2 = 8.26	DELTA H (ABS) =	30.17
Tm (°F) =	93.2	% CO = 0	Ps (ABS) =	30.07
Tm (°R) =	553.2	% N2 = 84.10	SQRT DELTA P =	0.4609
VI (TOT) =	123.0	Cp = 0.84	Y =	0.9728
VI (adj) =	NA	TIME = 60	An =	0.000531

Vm std =	17.64 (Vm)(Y)(DELTA H ABS)	= <u></u>	31.725 DSCF
	(Tm)		
Vw std =	.04707 (VI TOT)		5.790 CF
Bwo =	Vw std / (Vw std) + (Vm std)	, m	0.154
Bwo =	by steam tables	=	NA
1 - Bwo =	1 - Bwo	·	0.846
Md (DRY)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	II.	29.552 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	=	27.769 LB/LB MOLE
G = =	SQRT (Ts/Ps/Ms)		0.935
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	· · · · ·	30.943 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)	=	483940 DSCFH
% ISO =	<u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)	87.2

: NEFCO / SWA Biosolids PLANT RUN # : U1-M5-Pre2 LOCATION : West Paim Beach, FL DATE : 25-Jun-13 $Ts(^{\circ}F) =$ 271.3 % CO2 = 7.65 Vm (CF) = 48.496 Ts (°R) = 731.3 % O2 = 8.19 DELTA H (ABS) = 30.25 Tm (°F) = % CO = 0 92.6 Ps (ABS) 30.07 = $Tm(^{\circ}R) =$ 552.6 % N2 = 84.17 SQRT DELTA P = 0.4466

0,84

60

Y

An

0.9728

0.000672

= .

Ξ

Cp =

TIME =

VI(TOT) =

VI (adj) =

195.5

NA

Vm std =	17.64 (Vm)(Y)(DELTA H ABS)	= 45.564 DSCF
	<u>(</u> Tm)	
Vw std =	.04707 (VI TOT)	= 9.202 CF
Bwo =	Vw std / (Vw std) + (Vm std)	= 0.168
Bwo =	by steam tables	= NA
1 - Bwo =	1 - Bwo	= 0.832
Md (DRY)=	0.44 (% CO2) + 0.32 (% O2) +	Balancia de la companya de la company Reference de la companya de la compa
	0.28 (% CO) + 0.28 (% N2)	= 29.551 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	= 27.610 LB/LB
G =	SQRT (Ts/Ps/Ms)	MOLE = 0.939
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 30.101 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)	= 462211 DSCFH
% ISO =	<u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)	≒ 103.7

PLANT : NEFCO / SWA Biosolids RUN # : U1-M5-Pre3 LOCATION : West Palm Beach, FL (example) 25-Jun-13 % CO2 = Ts (°F) = 275.4 Vm (CF) 49,752 7.48 . **-** . Ts (°R) = % O2 = 735.4 8.51 DELTA H (ABS) = 30.26 Tm (°F) = 90.8 % CO = 0 Ps (ABS) = 30.07 Tm (°R) = % N2 = 550.8 SQRT DELTA P = 84.01 0.4521 = VI (TOT) = 228.5 Cp = 0.84Y. 0.9728 TIME = VI (adj) = NA 60 An Ξ. 0.000672 Vm std = ______17.64 (Vm)(Y)(DELTA H ABS) = 46.898 DSCF

	(Tm)	· · · · · · · · · · · · · · · · · · ·		
Vw std =	.04707 (VI TOT)	. =	10.755 CF	
Bwo =	Vw std / (Vw std) + (Vm std)	—	0.187	
Bwo =	by steam tables	: = , ,	NA	
1 - Bwo =	1 - Bwo	=	0.813	•
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)		29.537 LB/LB MOLE	
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	=	27.385 LB/LB MOLE	
G =	SQRT (Ts/Ps/Ms)		0.945	
Vs =	85.49 (Cp) (G) (SQRT DELTA P)		30.678 FPS	
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)	=	458049 DSCFH	
% ISO =	100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bv	= vo)	107.7	•••

	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : U (example)		Pre4
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =	$\begin{array}{c cccccc} 277.6 \\ 737.6 \\ 86.3 \\ 546.3 \\ 157.0 \\ NA \end{array} \begin{array}{c} \% & CO2 = & 7.54 \\ \% & O2 = & 8.47 \\ \% & CO = & 0 \\ \% & N2 = & 83.99 \\ Cp = & 0.84 \\ OB \\ Cp = & 60 \end{array}$	Vm (CF) DELTA H (A Ps (ABS) SQRT DELTA Y An	\BS) = =	33.265 30.17 30.07 0.5258 0.9728 0.000531
Vm std = Vw std =	17.64 (Vm)(Y)(DELTA H ABS (Tm) .04707 (VI TOT)		31.527 7.390	
Bwo = Bwo =	Vw std / (Vw std) + (Vm std) by steam tables		0.190 NA	
1 - Bwo =	1 - Bwo		0.810	
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)		29.545	LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)		27,352	LB/LB MOLE
G =	SQRT (Ts/Ps/Ms)		0.947	
Vs =	85.49 (Cp) (G) (SQRT DELTA P)		35.753	FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/T	s) =	530053	DSCFH
% ISO =	100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-	= Bwo)	79.2	

Analyzer Calibrations

PLANT : NEFCO	/ SWA Bio	solids	DATE :	25-Ju	า-13
LOCATION : West I	Palm Beac	h, FL			
	1		7		
Diluent/Pollutant	0 ₂				
Units	%	%			
Monitor Range Selected	25	20			
Monitor Range (Effective, per Method)	20.42	18.69			
Low Level	Analyzer C	alibration I	Error		
Cylinder Value (C _{v,Low})	0.00	0.00			
Analyzer Response (C _{Dir,Low})	0.10	0.21			
Analyzer Calibration Error (ACE,Low)	0,49	1.12			· · · · · ·
Calibration Status (Pass/Fail)	Pass	Pass			· · · · · · · · · · · · · · · · · · ·
Mid Level	Analyzer Ca	libration E	rror		
Cylinder Value (C _{v,Mid})	10.49	9.45			
Analyzer Response (C _{Dir,Mid})	10.50	9.41			
Analyzer Calibration Error (ACE, _{Mid})	0.05	-0.21	na unu		·
Calibration Status (Pass/Fail)	Pass	Pass			
High Level	Analyzer C	alibration I	Error		
Cylinder Value (C _{v,High})	20.42	18.69			a ta tan
Analzyer Response (C _{Dfr,High})	20.43	18.70	a transmissione		an an an Ardan Ar
Analyzer Calibration Error (ACE, High)	0.05	0.05			
Calibration Status (Pass/Fail)	Pass	Pass			the second
Cylinder Ga	s Selected f	or Bias Ch	iecks		
Use Mid (M) or High (H) Span	M	nin M			· · ·
ZERO	0.10	0.21			
SPAN	10.5	9.41			
Mid Level	Gas Range	Assessme	ent		
Cylinder Value (Mid)	10.49	9.45			
Cylinder Value (High/Span)	20.42	18.69			
Percentage of Span (%)	51.4	50.6			
Assessment Status (Pass/Fail)	Pass	Pass			

PLANT : NEFCO / SWA LOCATION : West Palm Bea	RUN # : U1-M5/202-Pre1 DATE : 25-Jun-13		
	GAS		anta ang ang ang ang ang ang ang ang ang an
START TIME :	13:17		
END TIME :	14:23		
	0.797.5	00 (01)	
Diluent/Pollutant; Instrument Span =	O ₂ (%)	CO ₂ (%)	
Analyzer Zero Response =	<u>20.42</u> 0.10	18.69 0.21	· · · · · · · · · · · · · · · · · · ·
Analyzer Span Response =	10.50	9.41	
Initial Sytem Zero Response =	0.09	0.14	
Final System Zero Response =	0.05	0.12	
Average Zero Response (C_o) =	0.07	0.13	
Initial Sytem Span Response =	10.51	9.42	
Final System Span Response =	10.54	9.40	
Average Span Response (C _m) =	10.53	9.41	
Calibration gas values (C_{ma}) =	10.49	9.45	
System Bias and Drift Calculations			
Initial Zero Bias (SB _i) =	0.05	0.37	
Final Zero Bias (SB _{final}) =	0.24	0.48	
Zero Drift (D) =	0.20	0.11	
Initial Span Bias (SB _i) =	0.05	0.05	
Final Span Bias (SB _{final}) =	0.20	0.05	
Span Drift (D) =	0.15	0.00	
	0.10	0.11	
Uncorrected Ave. $(C_{Avg}) =$	8.30	7.63	
	0.00		
orrected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	8.26	7.64	
PLANT DATA		n na star star Heistoria	
(1) A set of a set	· · · · · · · · · · · · · · · · · · ·	·	

PLANT : NEFCO / SWA LOCATION : West Palm Bea			RUN # : L DATE : 2		·	
	GAS					·· · ·
START TIME : END TIME :	14:50 15:53					
	10.00					
					•••=	
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)			1917 - 1917 1917 - 1917	
Instrument Span =	20.42	18.69				
Analyzer Zero Response =	0.10	0.21				
Analyzer Span Response =	10.50	9.41				
Initial Sytem Zero Response =	0.05	0.12				
Final System Zero Response = Average Zero Response (C _o) =	0.09	0.13				
	0.07	0.13				
Initial Sytem Span Response =	10.54	9.40				
Final System Span Response =	10.55	9.38				ļ
Average Span Response (C _m) =	10.55	9.39				
	10.10					
Calibration gas values (C _{ma}) =	10.49	9.45				
System Bias and Drift Calculations						
Initial Zero Bias (SB _i) =	0.24	0.48				
Final Zero Bias (SB _{final}) =	0.05	0.43				
Zero Drift (D) =	0.20	0.05				
Initial Span Blas (SB _i) =	0.20	0.05				
Final Span Bias (SB _{final}) =	0.24	0.16				
Span Drift (D) =	0.05	0.11				
Uncorrected Ave. $(C_{Avg}) =$	8.24	7.62				
ang ang ang ang <u>a</u> ng ang ang ang ang ang ang ang ang ang a	1		· · · ·			· .
orrected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	8.19	7.65			· · ·	: •
					· .	t far d
						·
PLANT DATA				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
					· · · · · · · · · · · · · · · · · · ·	

PLANT : NEFCO/SWA LOCATION : West Palm Be				: U1-M5 : 25-Jun	
		·			
ана на селото на село Година на селото на с	GAS			1	
	16:15				
END TIME :	17:18				
	·	and the second second		······································	 "
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)	an a		1
Operating Range =	20.42	18.69			
Analyzer Zero Response =	0.10	0.21			
Analyzer Span Response =	10.50	9.41			
Sytem Zero Response (Initial) =	0.09	0.13			
System Zero Response (Final) =	0.10	0.09			
Average Zero Response (C_o) =	0.10	0.11			
Sytem Span Response (Initial) =	10.55	9.38			
System Span Response (Final) =	10.60	9.36			
Average Span Response (C _m) =	10.58	9.37			
Calibration gas values (C _{ma}) =	10.49	9,45			
System Bias and Drift Calculations:					
lnitial Zero Bias (SB _I) =	0.05	0.43			
Final Zero Blas (SB _{final}) =	0.00	0.64			
Zero Drift (D) =	0.05	0.21			
Initial Span Bias (SB _i) =	0.24	0.16			
Final Span Bias (SB _{final}) =	0.49	0.27			
Span Drift (D) =	0,24	0.11			
Uncorrected Ave. (C _{Avg}) =	8.60	7. 4 4			
					:
prected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	8.51	7.48	· · · ·		'
					<u></u>
PLANT DATA					 · .
<u>FLANT DATA</u>			· ·		
		· ·			 ·

-

PLANT : NEFCO / SWA LOCATION : West Palm Bea			RUN # : U1-M5/202-Pre4 DATE : 25-Jun-13
	GAS		The second se
START TIME : T	17:55		
END TIME :	19:00		
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)	
Operating Range =	20.42	18.69	
Analyzer Zero Response =	0.10	0.21	
Analyzer Span Response =	10.50	9.41	
Sytem Zero Response (Initial) =	0.10	0.09	
System Zero Response (Final) =	0.10	0.11	
Average Zero Response (C_o) =	0.10	0.10	
Sytem Span Response (Initial) =	10.60	9.36	
System Span Response (Final) =	10.58	9.40	
Average Span Response $(C_m) =$	10.59	9.38	
Calibration gas values (C _{ma}) =	10.49	9.45	
System Bias and Drift Calculations:			
Initial Zero Blas (SB _i) =	0.00	0.64	
Final Zero Bias (SB _{final}) =	0.00	0.54	
Zerő Drift (D) =	0.00	0.11	
Initial Span Bias (SB _i) =	0.49	0.27	
Final Span Bias (SB _{final}) =	0.39	0.05	
Span Drift (D) =	0.10	0.21	
Uncorrected Ave. $(C_{Avg}) =$	8.57	7.50	
principal Ave.= $C_{gas} = (C_{Ava} - C_o)(C_{ma}/(C_m - C_o)) =$	8,47	7.54	
		<u> </u>	
PLANT DATA			

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location:	West Palm Bear	sh, FL	Start Time:		
Run No.:	U1-M5/202-Pre1		Stop Time:	14:23	
Date/t/me	0 ₂ (% _{vd})	CO ₂ (% _{vd})			
6/25/2013 1:17:03 PM	8,75	7.43			
6/25/2013 1:18:03 PM	8.75	7.43			
6/25/2013 1:19:03 PM	8.67	7,44			
6/25/2013 1:20:03 PM	8,96	7.41			
6/25/2013 1:21:03 PM	8,61	7.42			
6/25/2013 1:22:03 PM	9.16	7.32			
6/25/2013 1:23:03 PM	8,97	7.36			
6/25/2013 1:24:03 PM 6/25/2013 1:25:03 PM	8,82	7.32			
6/25/2013 1:26:03 PM	8.76 8.73	7,35 7,49			
8/25/2013 1:27:03 PM	8.47	7.49			
6/25/2013 1:28:03 PM	8.52	7.50			
6/25/2013 1:29:03 PM	8,55	7,52			
6/25/2013 1:30:03 PM	8.60	7.52			
6/25/2013 1:31:03 PM	8.59	7.48			
6/25/2013 1:32:03 PM	8,65	7.51			
6/25/2013 1:33:03 PM 6/25/2013 1:34:03 PM	8.51 8.50	7.45			
6/25/2013 1:35:03 PM	8.50 8.67	7.51 7,50			
6/25/2013 1:36:03 PM	8.49	7.51			
6/25/2013 1:37:03 PM	8.26	7.64			
6/25/2013 1:38:03 PM	8.10	7.76			
6/25/2013 1:39:03 PM	8,18	7.73		i	
6/25/2013 1:40:03 PM	8.15	7.74			
6/25/2013 1:41:03 PM	7.92	7.75			
6/25/2013 1:42:03 PM 6/25/2013 1:43:03 PM	7.87	7.77			
6/25/2013 1:44:03 PM	8.05 8.17	7.78 7.74			
6/25/2013 1:45:03 PM	8.11	7.74			
6/25/2013 1:46:03 PM	8,15	7.71			
6/25/2013 1:47:03 PM					
6/25/2013 1:48:03 PM			Port		
6/25/2013 1:49:03 PM			Change		
6/25/2013 1:50:03 PM					
6/25/2013 1:51:03 PM - 6/25/2013 1:52:03 PM					
6/25/2013 1:53:03 PM	8.19	7.66			
6/25/2013 1:54:03 PM	8.21	7.68			
6/25/2013 1:55:03 PM	8,14	7.74			
6/25/2013 1:56:03 PM	8.11	7.76			
6/25/2013 1:57:03 PM	7.86	7.73			
6/25/2013 1:58:03 PM	8.17	7.74			
6/25/2013 1:59:03 PM	8,04	7.72			
6/25/2013 2:00:03 PM 6/25/2013 2:01:03 PM	8.11	7.72			
6/25/2013 2:01:03 PM	8.10 8.06	7.71 7.74			
6/25/2013 2:03:03 PM	8.06	7.74 7.73		ļ	
6/25/2013 2:04:03 PM	8.08	7,76			
6/25/2013 2:05:03 PM	8.32	7.74			
5/25/2013 2:06:03 PM	8.03	7.74			
8/25/2013 2:07:03 PM	8.21	7.72			
5/25/2013 2:08:03 PM	8.04	7.75			
3/25/2013 2:09:03 PM	8.03 8.03	7.77			
5/25/2013 2:10:03 PM 5/25/2013 2:11:03 PM	8.03 8.09	7.73 7.72			
5/25/2013 2:12:03 PM	8,10	7.69			
3/25/2013 2:13:03 PM	8.06	7.73	ļ		
5/25/2013 2:14:03 PM	8.06	7.72	ſ		i
3/25/2013 2:15:03 PM	8.12	7.70			
3/25/2013 2:16:03 PM	8.02	7.65			
3/25/2013 2:17:03 PM	8.22	7.70	ļ		
3/25/2013 2:18:03 PM	8.17	7.70			
5/25/2013 2:19:03 PM	8.17	7.67			
3/25/2013 2:20:03 PM 3/25/2013 2:21:03 PM	8.20 8.16	7.67 7.67			
5/25/2013 2:22:03 PM	8,27	7.70			
	5,21				
Run Averages:	8.30	7.63		ł	

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location:	NEFCO / SWA I West Palm Beac		Start Time:		
Rún No.:	01-M5-Pre2 0₂	CO ₂	Stop Time:	15:53	
Date/time	(% _{vd})	(% _{vd})			
6/25/2013 2:50:03 PM	8.24	7.60			
6/25/2013 2:51:03 PM	8.32	7.62			
6/25/2013 2:52:03 PM	8.55	7.60		1	
6/25/2013 2:53:03 PM	8.10	7.58			
6/25/2013 2:54:03 PM 6/25/2013 2:55:03 PM	8.54 8.20	7.61 7.58			
6/25/2013 2:56:03 PM	8,36	7.61			
6/25/2013 2:57:03 PM	8.14	7.56		ł	
6/25/2013 2:58:03 PM	8.30	7.58		1	
6/25/2013 2:59:03 PM	8.30	7.58			
6/25/2013 3:00:03 PM	8,28	7.62			
6/25/2013 3:01:03 PM	8.32 8.25	7.60 7.60			
6/25/2013 3:02:03 PM 6/25/2013 3:03:03 PM	8.41	7.58			
6/25/2013 3:04:03 PM	8.10	7.58			
6/25/2013 3:05:03 PM	8,36	7.57			
6/25/2013 3:06:03 PM	8,23	7.63	1		
6/25/2013 3:07:03 PM	8.42	7.55	1		
6/25/2013 3:08:03 PM	8,32	7.59			
6/25/2013 3:09:03 PM 6/25/2013 3:10:03 PM	8.33 8.32	7.57 7.59			
6/25/2013 3:11:03 PM	8,35	7.57			
6/25/2013 3:12:03 PM	8.31	7.58			
6/25/2013 3:13:03 PM	8.45	7.52			
6/25/2013 3:14:03 PM	8.34	7.58			
6/25/2013 3:15:03 PM	8,60	7.59			
6/25/2013 3:16:03 PM	8.43	7,62			
6/25/2013 3:17:03 PM 6/25/2013 3:18:03 PM	8.10 8.24	7.58 7.59			
6/25/2013 3:19:03 PM	8.25	7.60			
6/25/2013 3:20:03 PM	0.20	1,00			
6/25/2013 3:21:03 PM			Port		
6/25/2013 3:22:03 PM			Change		
6/25/2013 3:23:03 PM]	
6/25/2013 3:24:03 PM	8.58 8,39	7.54 7.47		ł	
6/25/2013 3:25:03 PM 6/25/2013 3:26:03 PM	8,39 8,36	7.56			
6/25/2013 3:27:03 PM	8.31	7.61			
6/25/2013 3:28:03 PM	8.10	7.69			
6/25/2013 3:29:03 PM	8,23	7.66			
6/25/2013 3:30:03 PM	8,20	7.69			
6/25/2013 3:31:03 PM	8.10	7.66			
6/25/2013 3:32:03 PM 6/25/2013 3:33:03 PM	8,28 8.21	7.66 7.70			ļ
6/25/2013 3:33:03 PM	8.33	7.67			
6/25/2013 3:35:03 PM	8,12	7.67			×
6/25/2013 3:36:03 PM	8.04	7.67	1		
6/25/2013 3:37:03 PM	8.07	7.72			
6/25/2013 3:38:03 PM	8,22	7.57			
6/25/2013 3:39:03 PM 6/25/2013 3:40:03 PM	8.28 8,21	7.57 7.59			
6/25/2013 3:40:03 PM	8.21	7.61			
6/25/2013 3:42:03 PM	8.09	7.61	1		
6/25/2013 3:43:03 PM	8.03	7.72			
6/25/2013 3:44:03 PM	7.97	7.67			
6/25/2013 3:45:03 PM	7.92	7.77			
6/25/2013 3:46:03 PM	8.03	7.77			
6/25/2013 3:47:03 PM 6/25/2013 3:48:03 PM	8.04 7.98	7.81 7.77			
6/25/2013 3:49:03 PM	8.14	7.74	1		
6/25/2013 3:50:03 PM	8.29	7.66			
6/25/2013 3:51:03 PM	8.14	7.67			
6/25/2013 3:52:03 PM	8,15	7.62			
Run Averages:	8.24	7.62			

South Flordia Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location:	NEFCO / SWA) West Palm Beau		Start Time:		
Run No.:	U1-M5-Pre3	60	Stop Time:	17:18	alegiote Referire Transcentre en est
Date/time	O ₂ (% _{va})	CO ₂ (% _{vd})			
6/25/2013 4:15:03 PN 6/25/2013 4:16:03 PN		6.41 6.39			
6/25/2013 4:10:03 PM		6.39			
6/25/2013 4:18:03 PM		6.51			
6/25/2013 4:19:03 PM		6,54			
6/25/2013 4:20:03 PM		6.52			
6/25/2013 4:21:03 PM	1 10.31	6.55	Ì	·	1
6/25/2013 4:22:03 PM	9,29	7.09			l i
6/25/2013 4:23:03 PM	1	6,24			
6/25/2013 4:24:03 PM		6.38			
6/25/2013 4:25:03 PM		6,59			
6/25/2013 4:26:03 PM 6/25/2013 4:27:03 PM		6,62 6,43			
6/25/2013 4:28:03 PM		6,33			
6/25/2013 4:29:03 PM		6.41			
6/25/2013 4:30:03 PM		7,75			
6/25/2013 4:31:03 PM	1	7.77			
6/25/2013 4:32:03 PM		7.70			
6/25/2013 4:33:03 PM		7.70			1
6/25/2013 4:34:03 PN	1 8.05	7.71			
6/25/2013 4:35:03 PN		7.67			
6/25/2013 4:36:03 PM		7.65			
6/25/2013 4:37:03 PM		7.53			
6/25/2013 4:38:03 PM		7.34			
6/25/2013 4:39:03 PN 6/25/2013 4:40:03 PN		6.52			
6/25/2013 4:41:03 PM		6.66 6.64			
6/25/2013 4:42:03 PM		6,68			
6/25/2013 4:43:03 PM		6.61			
6/25/2013 4:44:03 PM		6.63			
6/25/2013 4:45:03 PM					
6/25/2013 4:46:03 PM	1		Port		
6/25/2013 4:47:03 PM	1		Change		
6/25/2013 4 48:03 PM	1				
6/25/2013 4:49:03 PM	1	8.12			
6/25/2013 4:50:03 PN	1	8.15			
6/25/2013 4:51:03 PM	1	8.07			
6/25/2013 4:52:03 PN 6/25/2013 4:53:03 PN	1	8.10			
6/25/2013 4:54:03 PM		8.06 8.05			
6/25/2013 4:55:03 PM	1	8.01			
6/25/2013 4:56:03 PM	1	8,01			
6/25/2013 4:57:03 PN	1 1	8.02			
6/25/2013 4:58:03 PN	.1	8.00			
6/25/2013 4:59:03 PN		8.01			
6/25/2013 5:00:03 PN	1	7.99			
6/25/2013 5:01:03 PM		8.00			
6/25/2013 5:02:03 PN		8.01			
6/25/2013 5:03:03 PM 6/25/2013 5:04:03 PM		8.03 8.00			
6/25/2013 5:05:03 PM		8.00 8.03			
6/25/2013 5:06:03 PN		8.01			
6/25/2013 5:07:03 PM		8.03			
6/25/2013 5:08:03 PM		8.00			
6/25/2013 5:09:03 PM	1 1	8.04			
6/25/2013 5:10:03 PM		8.01		· ·	
6/25/2013 5:11:03 PM		8,05			
6/25/2013 5:12:03 PM		8.01	ł I		
6/25/2013 5:13:03 PM	1 1	8.03			
6/25/2013 5:14:03 PM		8.00			
6/25/2013 5:15:03 PM	1 1	8.06 8.02			
6/25/2013 5:16:03 PM 6/25/2013 5:17:03 PM		8.02 8.06	Į – – – – – – – – – – – – – – – – – – –		
5/20/2010 0.17/001W		0.00			
Averages:	8.60	7.44			

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location:	-West Palm Bead	oh, FL	Start Time:	17:55	
Run No.:	U1-M5/202-Pre4		Stop Time:	19:00	
Date/time	(% _{vd})	CO ₂ (% _{vd})			
		in the second			
6/25/2013 5:55:03 PM		7,60			
6/25/2013 5:56:03 PN 6/25/2013 5:57:03 PM		7,63 7.60			
6/25/2013 5:58:03 PM		7,64			
6/25/2013 5:59:03 PM		7,58			
6/25/2013 6:00:03 PM		7.63			
6/25/2013 6:01:03 PM		7.55			
6/25/2013 6:02:03 PM		7,60			
6/25/2013 6:03:03 PM 6/25/2013 6:04:03 PM		7.54 7.61]
6/25/2013 6:05:03 PM		7,53			
6/25/2013 6:06:03 PM		7,55			
6/25/2013 6:07:03 PM		7.52			
6/25/2013 6:08:03 PM		7.49			
6/25/2013 6:09:03 PM 6/25/2013 6:10:03 PM		7.47			
6/25/2013 6:11:03 PM		7.54 7,51			
6/25/2013 6:12:03 PM		7,50			ſ
6/25/2013 6:13:03 PM	8.77	7,46			ļ
6/25/2013 6:14:03 PM		7,47			
6/25/2013 6:15:03 PM		7,50			
6/25/2013 6:16:03 PM 6/25/2013 6:17:03 PM		7.48 7.46			
6/25/2013 6:18:03 PM		7.40			ľ
6/25/2013 6:19:03 PM		7.44	í l		
6/25/2013 6:20:03 PM	8.55	7.45			
6/25/2013 6:21:03 PM		7.38]		ľ
6/25/2013 6:22:03 PM 6/25/2013 6:23:03 PM	8.72 8,63	7.41 7.45			
6/25/2013 6:24:03 PM	8.66	7.45			
6/25/2013 6:25:03 PM	0.00	1.40			
6/25/2013 6:26:03 PM					
6/25/2013 6:27:03 PM			Port		
6/25/2013 6:28:03 PM 6/25/2013 6:29:03 PM			Change	1	
6/25/2013 6:30:03 PM	8,92	7.28			
6/25/2013 6:31:03 PM	8.87	7.36			
6/25/2013 6:32:03 PM	8.71	7.42		l l	
6/25/2013 6:33:03 PM	8,72	7.44			
6/25/2013 6:34:03 PM	8,65	7.47			
6/25/2013 6:35:03 PM 6/25/2013 6:36:03 PM	8,48 8,60	7.48 7.41			
6/25/2013 6:37:03 PM	8,80	7.45	1 1		
6/25/2013 6:38:03 PM	8,52	7.51]		ĺ
8/25/2013 6:39:03 PM	8,59	7.55		ĺ	
6/25/2013 6:40:03 PM 6/25/2013 6:41:03 PM	8,48 8,55	7.56			
6/25/2013 6:41:03 PM	8,55	7.53 7.50			1
6/25/2013 6:43:03 PM	8.59	7.49	[1	
6/25/2013 6:44:03 PM	8,59	7.44			
6/25/2013 6:45:03 PM	8,52	7.43	1		
6/25/2013 6:46:03 PM 6/25/2013 6:47:03 PM	8,52	7.46			
6/25/2013 6:47:03 PM 6/25/2013 6:48:03 PM	8,69 8,53	7.53 7.52	ļ l		
6/25/2013 6:49:03 PM	8.70	7.53	ł I		
6/25/2013 6:50:03 PM	8.65	7.49			
6/25/2013 6:51:03 PM	8.63	7.45			ľ
6/25/2013 6:52:03 PM	8.45	7.45			
6/25/2013 6:53:03 PM 6/25/2013 6:54:03 PM	8.64 8.60	7.46			
6/25/2013 6:55:03 PM	8.60 8.58	7.49 7.55			
6/25/2013 6:56:03 PM	8.55	7.57			
6/25/2013 6:57:03 PM	8.56	7.59			
6/25/2013 6:58:03 PM	8.57	7.54		1	
6/25/2013 6:59:03 PM	8.53	7.53			
Averages:	8.57	7.50			
	0.01	1.00	L	l	

TRAVERSE DATA SHEET

			<u>1 K</u>	AVERS	DA.	<u>IA 51</u>							
PL/ANIUS	NEF	10 1	ing (Biosolia	ls		RUR #	UI-	M5/20	2 12	El		
LOIS/SHIDINE		<u> </u>		- 1	wit 1		DANIE		6/25	13			
Filteritios			Hitariita	ier Ville.			Inter	અંદિએ.					
11,12-0 ((1210))s.		ULZAVIARSI -	(9)=(*1)(4)	$(\underline{\mathbf{b}}(\mathbf{i}), \mathbf{b}'_{i})$	10/64/(11	y-Shittena (ta	ishiyiteki	MENUR	TEROROPA-	incolars.	INCASE.	in t	
(L122 ((NH)) a	0	(:@)[?](7	P		00	(والالول). الم	Seame(ia)	READINE		1 C 10 C	SIMPLE	TEMP	
(MP265 ((Rhp)) &)00	<u></u> A_(.21	1.0	92-	92	265		244	245	83	65	2
How we have a strength of the second strength of the	809	2	.20		93	93	2.66	496.3	249	242	82	61	2
(MP3 ((M)) s.	<u> </u>	- 3	.21	 	93	93	267	499.0	248	241	81	62	
(11:16) (11:11) (102-100	4	22		973	93	270	501.8	249	244	79	62	2
11212972 ((1X10)), X	1	5	.21		93	93 93	270	509.6	2-4 9 249	246	32	63	2
una com	108-	BI	.22		93	1 1 10	270	569.9	250	241	83	64	2
IEIEEE (EEN)) IMEEE (EIN)		2	121		<i>13</i> <i>9</i> 3	9 <u>3</u> 93	272	512.1	251	249	82	58	2
	06	3	. 23		<u>13</u> 94	94	269	516,0	249	247	83	5%	2
	816	4	121		94	94	271	518.6	250	241	84	55	2
12.124.3 (13121)		5	122		44	94	273	5218	249	244	83	56	2
171249 ((EIR))74		le	.21		93	93	274	524.2	249	241	85	57	2
0/0F17/ (0/0R0) 8.													
Peterola	42				ļ								
Denostra este	30.												
					· · · · · · · · · · · · · · · · · · ·								
ທສອນເພສນອົທສ	20 C												
INALEMENER ランプ、ロイイ	12												
INMAUMENTER	Contraction of the second s			,	<u> </u>			107, p					
493,151	3					1.							
	and the second second second								·····				
HEGIN THME	1317						-						
							-						
END OF MER.	1423												
en angelen de seinen en er		I Good TE Addate			1977-7-1976-9-1976-9-1			LAP A CONTRACT					
CERTION PULS	<u>N/4</u> 4	Pro Losk Postillós		NIA-		B N/A	PMer PPier	Notosia Pavae	fest @	1347	1		
	19728	Pro-Inition	Checks	0.0	w (c) - s	>3	出出国の意識	Restar	f-fest	Ø			
	2.04 AS	200111-110 1867-11571		0.0 4	(0) Richel	les Notaes	HH205H P-S-1				· · · · ·	, _	
And State Day	2	Noz Diei	iil		A PARTY OF A								
											••• •• ••• ·· ··		

.

TRAVERSE DATA SHEET

			<u></u>			<u> </u>								
PLANT	NE	FC0 /	SWA	Bizsolia	ls,		RAUINIER	<u>-11</u>	M5-	- Pre	a			
LOGANILON	West	Palm	Beach,	fr	/Uni	1=1	DXVIE?"		<u>6/25/17</u>	3	÷			
Hiter New			Fillencher	ROMAGE 1			ि गार्थ	01863	ע	1A-				
1 7.1 7940 (11.000)8	1000	THEYAVER BE	(o) altada	(9) - (1, (9))	D. N.C.	en jaiar	Shizek	-3.150633	dit di 612	ાંશરાજીકોન	ili.	сцэ	0519	
1216422 ((1810)) ::-	100	Rolling	P .		101	(o]U))r ⁴	TENE(C)	[[[]]][][][][][][][][][][][][][][][][]	liffer.	而期度		ŰĽ	anair .	WAYS -
1. ((1.2.16) (31.2.11.)) 1	0	AI	.16	68	92	92	251	~ 19 11	248	236	N	1 0.9-	65	2
(ETC+4), ((ET0)), 8.	796.0	2	,20	2.10	92	92	272	531.3	249	E46			60	3
ASE+6 ((RD)) 8		3	0.22	2.31	93	83	277	535.2	250	241	\square		58	3
ILIPO (IRIII) 2	¢	4	0-22	2.31	93	93	280	538.8		255			57	3
HALPOV (URUA) a j		5	0.21	2.21	93	93	281	54.3.4		24-9	\square		57	3
	an and a second and	6	20	2.10	93	93	281	547.6	252	237			570	3
nabol (hur)) v	279	Вι	,17	179	93	93	254	551.7	242	241			64	2
(AP22 (FIB)) (107	2	.18	1.89	93	93	260	5551	249	239			56	2
(MIP & (MIN)) 3	3.	3	.21	2.21	93	93	279	557,2	249	247	\square		56	2
	804.5	4	,23	2.42	92	92	275	563.0		242			56	3
11.126 (FiR)		5	.21	2.21	92	92	275	567.9	238	246			56	3
utres (int)		<u></u>	.19	2.00	92	92	271	572.0	246	246			57	3
UMP57 ((408)) a -														
f SRooft	41						i							
Endox (Fineds)	30.1													
			:									_		├───┨
naso partonej	in a star and the second s													
HINAL MEDER														
575.902														
INNUALIMENTER 527.406				· · · · · ·										
					·									
Electronities	Nulling and the state of the second													
19199-11X1/19171-95			·											
LAND MILLIE	1553													
1.146.5 100.0-25													, .	
Rennantin		Fictor	Chieck	ADUZ		10		Neces					,	
P10705/2		rostice Scilice			- (D) (D)	8	"[h[s] "[h[s]0)]	<u>Pause</u> H Respect	est (1520 21527]
Deltalite		Contration		0.0		73	9149799 914970	Kesport	YEST (*	و سەن م	<u>}</u>			
[5](0};<{(0]});	As I	Kor IDK	(ē)		Photosix	6	P-5-1							
	<u>ـ ديـ</u>	1. 1072 (DIA)	Û.	1251									- » t. t. t.	l
	12	RECTRANS					j.	L	at the state of the			•		

TRAVERSE DATA SHEET

·									1				
PLANNA	DEFC	16 / 5	WA (<u> Sieseli</u>	dş		RURA	i.i	1415	- Pre	3		
LOXEVALITEDIAR	West		Beau			+ #1	DAVIES		115	113		·	
letticar (No).			lallen üt	na We			îner	ગ્રાપ્ટ અપ્રાહ					,
		"ORVANIARETE!	MENAN	AVERED	(8);N/(cf.	द्यः। ।।	ି କାନ (କାନ	MANER	TELENA (IV)	নাহতলেল	THRMP	લાયા	
	100	latolishi				(Qunit	JURINA	1815A6/ISO	inter .	STREE -	iewe:	-nEIP	of W
	0	AI	.16	1.62	90	90	271		248	237	NIA	55	3
· · · · · · · · · · · · · · · · · · ·	304.5	2	,19	200	90	90	276	330.1	249	239		53	3
		<u>></u> 4	,20	2.10	91	91 91	286	3890	248	236	\vdash	55	3
11.1134(3) (11.11(1)) (4 11.1134(3) (11.11(1)) (4		5	,20	2.42	91	71 91	276	588,1	250	239 240		57	4
GLUPAC (IIIN MIZ. 6-1		 	18	1.89	91	91	271	596.3	253	243		54	4
IMPHI (HK)A	310	BI	27.	2,31	91	91	267	600.5	236	241		54	4
	110	2	,22	2.31	91	91	270	604.6	249	Z4K		55	4
	4	3	23	2.42	91	91	173	608.8	Z50	248		56	4
	509.0	4	23	2.42	91	91	286	63.1	250	238		57	4
(1MF#3 ((F(1N)) 8; 1	I	5	.22	2.31	91	91.	274	67.7	250	Z40		56	4
and a child		6	.18	1.39	91	91	275	622.0	249	244		56	4
9CD37 (FID) 8		*											
	. 20												
137743	-38		·····										
enestrien.	30,1						·····						
Instantius New R	,0			·								· · ·	
EDBYAY-AMEMERA									·				
CL55.923													
UNDER MEDICE													
576.171													
	1615												
	- 111.												
eniomme /	7 <i>1</i> 0		<u> </u>										
Relationship / Bow?	0.5	heillerike	lhreik	DIPOD	(@)	8	HALE I	Notestal	1		110 A. A.		
30797-11-1 X	5	loss licesk Rost North	Checke Bhacket	0,000		8	1400	Pause Restait	test 6	2 164	5		
Denaiti a L	04 1	ost Pitot	Check	0.0		73	H2Q	Kestart	MANT (*	1640	2		
		167711071819			eliolo: - IXI		P-5-1						
Sector State and the sector state of the sector states	~	loss idenni		.351	an a				-, <u></u>				
	57.20 57.20 57.20			3									

625

			<u>TR</u>	AVERS	E DA'	<u>ra sh</u>	<u>EET</u>	n.					
PLANTI	NE	FC0 / 5	SWH L	Sissolid	5		RÜN#:	v	1 - MS	hoz.	-PRE	4	
LOCATION		Parlan te			alf #	H L	DATE		/	zs /1	3		
FiltenNo			Filter Ta	A CONTRACTOR OF A CONTRACT			Tra	o No.	ر ليو	14			
IMP 1 (INT)	0	TRAVERSE	DELTA	DELTA		S METER	A BTACK	METER	" FIGTER "	PROBE	DRY T	IMÊ	
IMP-2 ((NT)) (*	<u>0</u> 160	POINT	s.≓P		IN IN			READING	BOX		FILTER	TEMP	VAC
IMP-33 (INT) sie	784	<u>A</u> 1	.24	1.0 A	<u>87</u> 87	87 87	264	629.0	240 250	241	81	66	2
IMP 4 (INT) IMP 6 (INT)	<u>, 0</u>]	<u> </u>	:28		810 810	86	278 276	631.2	248	244 246	75	62	2
IMP-6 (INIT):	10 X 10 227.3	 	,27		21	54	2.84	634.5	248 279	245	75	62	2
IMP-7 (INT)	¹¹¹ ≪#10446	5	28		86	86	277	637.6	2 70	241	75	60	Z
		L	28		87	87	288	640.3	248	251	46	61	2
MP.1. (FIN) :	130	B#	.28	<u> </u>	36	86	274	642,9	218	249	80	64	2
imp 2 (fin):	12-	2	30		86	86	276	645.6	248	243	73	57	2
IMR-3 (FIN) T	108	<u>3</u> 4	,29		86	86 87	270 279	647.6	219	218	77- 78	58	2
IMP 4 (FIN) IMP 5 (FIN)	79	1 5	.30 .2B		86 86	<u>86</u> 86	275	653.7	249 850	244 249	78	59	2
IMP-6 (FIN)	. 12 F ^{34 3} - 1		.26		37	87	240	6566	247	242	70	60	2
IMR 7 (EIN)	7 WWW 7.9 ⁻¹⁰												
Pstack -	-,40												
				·····									
Baro, Pres,	<u> </u>			· · ·									
TEST LENGTH	400												
FINAL METER	10. To						<u>.</u>						
659,43													
INTIALMETER	Artist containers refer to a report of the												
626.169	and Names and a list												
	ار بر المراجع المراجع المراجع المراجع												
BEGINTIME	<u>1755</u>												
	1900											<u> </u>	
							<u> </u>	<u> </u>					
Relationship Box#	N ja 5	Pre Leak Post Lea		6,004 NJA	-@- @-	10	Ч но Чно 24	Notesi			····		
Yestersee	,9728	Pre-Pitot	Check	0.0	e @	73	4H2O						
Delta H Box Op	<u>7.04</u> AS	PÖSI-PILO NÖZ IDIN	CONTRACTOR OF A DESCRIPTION OF A DESCRIP	0.0 4	@ Probe N		H2O Reserve						
Probe Op.	<u>দ</u> হ ১)	NoziDian	n Alexan	,312	ang sina.		<u>/*>\</u>						
					and the second								
		1970 (Jan 1970 Ada-				1999年1月1日(1997年) 1997年1月1日(1997年) 1997年1月1日(1997年)			· · · · · · · · · · ·				

NEFCO / SWA Biosolids # たるまっ Client/Site: Source:

: ; } ! _____

Upscale (seconds): RM Response Time:

20

Operator. Andrew Secha 6/25/13 Date:

0 N Downscale (seconds):_

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

Analyzer Calibration Error (ACE) – Reference Method

		Low	Σ	Mid	High/Full	High/Full Scale (CS)
Londaliublinent	Cylinder Value (C _v)	Analyzer Response (C _{DIR})	Cylinder Value (C _v)	Analyzer Response (C _{biR})	Cylinder Vatue (C _v)	Analyzer Response (C _{DIR})
Oxygen	0.00	0,10	10.49	10.50	20.42	20.43
Carbon Dioxide	0.00	2. Z	9.45	9.41	18.69	18.70
		3	-	•		

Range selected for analyzer operation:

١
1
°2
52

Analyzer Calibration Error (ACE) Acceptance Criteria: 5±2%

Where: $ACE = [(C_{Dir} - C_v)/CS] * 100\%$

Protocol Gases Used During Program:

Cylinder No.	Diluent/Pollutant Concentrations(s)	Expiration
		7410
(c 421863	70.42 UZ /18.69 COZ	11/2/20
9591227	10.4902 19.45102	11/2/20
	-	•

ses. Èi ť

Client/Site: NEFCO / Swar Bissolils Source: R-TO II Sheet

UI-WS 702-Pre1 1317

Run Number.

Start Time: End Time:

Operator: Date:

25 13 1. U

.

123	

System Blas (SB)/Drift (D) Assessments - Reference Method

Contained of C _v) Cylinder Value Analyzer Cylinder (C _v) (C _v) Response (C _s) (C _v) Oxygen 0.00 • • • • • • • • • • • • • • • • • • •		Start Zero	Zего	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final S _I	Final Span (C _{MA})
0.00 0.14]	er Value ≿v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
0.00 0.14	0.0	0	1.09	10.49	10.5)	00.0	aes	64.61	12.54
		00	0.14	9.45	263	00.0	0.12	546	9.40

 ١))	52	25
 SO ₂ (ppm)	NO _x (ppm)	CO (ppm)	CO2 (%)	O ₂ (%)

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dit})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: 41 3% of span, where

 $D = \left| SB_{final} - SB_{i} \right|$

NEFIC SWA Biosulials PTO #1 Stuck Client/Site: Source:

U1-m5 202 - Pre 2

Run Number.

Start Time: End Time:

1450 1553

Operator: Date:

1 Seche	4/25/13	25 94

ference Method
– Re
sessments
ť (D) As
s (SB)/Drift (
System Bias

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
rolluzany unuelit	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	0.oS	اه. يما	last	0.00	0.09	10.49	10.55
Carbon Dioxide	0.00	<u>6</u>	۶. ۲	540	0.00	0.13	945	9 7 6

			· · · · · · · · · · · · · · · · · · ·	
	1	l	62	5
SO ₂ (ppm)	(mqq) ×ON	CO (ppm)	CO ₂ (%)	O ₂ (%)

Sampling System Bias (SB) Criteria: 4± 5% of span for zero and upscale gas, where:

Where: SB = [($C_s - C_{Dit}$)/CS] * 100%

 $D = \left| SB_{\text{final}} - SB_{\text{i}} \right|$

Zero and Calibration Drift (D) Criteria: 5± 3% of span, where

ClientSite: NEFCO SWA Sissalids Source: RTD #1 SheC

1

4. Sealer 4/25/13

> Operator: Date:

> > Run Number:
> > UI - MS - Pre 3
> >
> >
> > Start Time:
> > 1415

End Time:

System Bias (SB)/Drift (D) Assessments - Reference Method

	Start	Start Zero	Start Sp	Start Span (C _{wa})	Final	Final Zero	Final Sp	Final Span (C _{MA})
Louinangunent	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	e.e 9	62.01	10.55	0.00	Ø. (0	64.01	10.60
Carbon Dioxide	0.00	0.(3	345	938	00.0	0.09	いい	936

1		١	20	15
SO ₂ (ppm)	NO _x (ppm)	CO (ppm)	CO ₂ (%)	O ₂ (%)

Sampling System Bias (SB) Criteria: ≦± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dit})/CS] * 100\%$

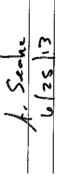
and the second se

the second se

.

 $\mathbf{D} = [\mathbf{S}\mathbf{B}_{\text{final}} - \mathbf{S}\mathbf{B}_{\text{i}}]$

Zero and Calibration Drift (D) Criteria: 5± 3% of span, where


Client/Site: NEFCo SwA Bissilals Source: Right Shee

WI- MS-Pret

Run Number:

Start Time: End Time:

Operator. Date:

j

System Bias (SB)/Drift (D) Assessments – Reference Method

100 Martin 100	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	0.10	اه ،لام	09.0	00.0	010	10.49	10.58
Carbon Dioxide	0.00	6.09	24.6	9. 3L	0.00	0. 1/	546	9.40
	· ·							

}	١	•	20	25
SO ₂ (ppm)	NO _x (ррт)	CO (ppm)	CO ₂ (%)	O ₂ (%)

Zero and Calibration Drift (D) Criteria: <= 3% of span, where

Where: $SB = [(C_s - C_{Dir})/CS] + 100\%$

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

 $D = [SB_{final} - SB_{i}]$

A2 RTO / Dryer No. 2 "Tuning" Emissions Data (6/24/13 & 6/25/13)

PLANT: LOCATION:	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : DATE:	U2-M5-Pre1 24-Jun-13
NUMBER: 1425	<u>BEAKER</u> 03-12	BLANKS FILTER 1445	S <u>BEAKER</u> B5-48
	03-12	1440	B0-40
FINAL : 0.4399	70.7995	0.4408	67.0280
TARE : 0.4391	70.7983	0.4408	67.0279
NET : 0.0008	0.0012	0.0000	0.0001
	VOLUME BLANK RINSE VOLUME OF RINSE		130 120
Mn - Ar = Mn Mn = 2.000	O2 = CO2 = Vs =	7.85 7.97 25.09	flaa
	As = Vm std = ot blank corr	7.07 43.02	ft2
Mn = 2.000 nc	Vm std =	7.07	ft2
Mn = 2.000 nc	Vm std = ot blank corr /s)(As)(17.64)(Ps/Ts) =	7.07 43.02	ft2 DSCF
Mn = 2.000 nc Qs = 3600(1-Bwo)(V 3600 (Vs) (As) ACFH / 60	Vm std = <u>ot blank corr</u> /s)(As)(17.64)(Ps/Ts) = = =	7.07 43.02 417801 638389	ft2 DSCF DSCFH ACFH
$\frac{Mn}{Qs} = \frac{3600(1-Bwo)(V)}{3600 (Vs) (As)}$ ACFH / 60 Cs = (2.205 E-6) (M	Vm std = <u>ot blank corr</u> (s)(As)(17.64)(Ps/Ts) = = = In) / (Vm Std) =	7.07 43.02 417801 638389 10640	ft2 DSCF DSCFH ACFH ACFH ACFM
$\frac{Mn}{Qs} = \frac{3600(1-Bwo)(V)}{3600 (Vs) (As)}$ ACFH / 60 Cs = (2.205 E-6) (N Cs' = 0.0154 (Mn) /(Vm std = <u>ot blank corr</u> (s)(As)(17.64)(Ps/Ts) = = = In) / (Vm Std) =	7.07 43.02 417801 638389 10640 1.02518E-07	ft2 DSCF DSCFH ACFH ACFM LB/SCF
$\frac{Mn}{R} = \frac{2.000 \text{ nc}}{3600(1-Bwo)(V)}$ $\frac{Qs}{3600} (Vs) (As)$ $ACFH / 60$ $Cs = (2.205 \text{ E-6}) (N)$ $Cs' = 0.0154 (Mn) / (N)$	Vm std = <u>ot blank corr</u> (s)(As)(17.64)(Ps/Ts) = = In) / (Vm Std) = VmStd) =	7.07 43.02 417801 638389 10640 1.02518E-07 0.0007	ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF

•

· · · ·	PLANT	NEFCO / SWA Biosolids	RUN #	U2-M5-Pre2
· · · ·	LOCATION	West Palm Beach, FL	DATE :	24-Jun-13
			BLANK	(S
	FILTER	BEAKER	<u>FILTER</u>	BEAKER
NUMBER	1426	411	1445	B5-48
=INAL	0.4496	67.5175	0.4408	67.0280
TARE .	0.4473	67.5169	0.4408	67.0279
NET :	0.0023	0.0006	0.0000	0.0001
1.11		VOLUME BLANK RINSE		130
<u> </u>		VOLUME OF RINSE		110
VIn = Ar =	2.900 0.085	O2 = CO2 = Vs = As = Vm std= ot blank corr	7.07	ft/sec
Mn - Ar = Mn = Ar = Mn = Qs =	2.900 0.085 2.900 nd 3600(1-Bwo)(\	CO2 = Vs = As = Vm std= <u>t blank corr</u>	8.11 25.66 7.07 41.47 415073	ft/sec ft2 DSCF DSCFH
VIn = Ar = VIn =	2.900 0.085 2.900 no	CO2 = Vs = As = Vm std= ot blank corr	8.11 25.66 7.07 41.47	ft/sec ft2 DSCF DSCFH ACFH
VIn = Ar = VIn = Qs =	2.900 0.085 2.900 nd 3600(1-Bwo)(V 3600 (Vs) (As)	CO2 = Vs = As = Vm std= <u>vm std=</u> /s)(As)(17.64)(Ps/Ts) = = =	8.11 25.66 7.07 41.47 415073 652916.0411 10882	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM
VIn = Ar = Qs = Cs =	2.900 0.085 2.900 nd 3600(1-Bwo)(V 3600 (Vs) (As) ACFH / 60	CO2 = Vs = As = Vm std= vm std= vm std= vm std= (n) / (Vm Std) =	8.11 25.66 7.07 41.47 415073 652916.0411 10882	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF
VIn = Ar = Qs = Cs =	2.900 0.085 2.900 nd 3600(1-Bwo)(V 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (N	CO2 = Vs = As = Vm std= vm std= vm std= vm std= (n) / (Vm Std) =	8.11 25.66 7.07 41.47 415073 652916.0411 10882 1.54179E-07	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF GRAINS/SCF
VIn = Ar = Qs = Cs = Cs' =	2.900 0.085 2.900 nd 3600(1-Bwo)(V 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (M 0.0154 (Mn) /(Mn / VmStd	CO2 = Vs = As = Vm std= ot blank corr /s)(As)(17.64)(Ps/Ts) = = (n) / (Vm Std) = (VmSTD) =	8.11 25.66 7.07 41.47 415073 652916.0411 10882 1.54179E-07 0.0011	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF mg/dscm

PARTICULATE EMISSION CALCULATION SHEET

PARTI	CULATE	EMISSION	N CALCULATION	N SHEET

	PLANT:	NEFCO / SWA Bios	1	the second se	U2-M5/202-Pre	a ing the s
	LOCATION:	West Palm Beach,	FL [DATE:	25-Jun-13	
NUMBER	<u>FILTER</u> PS1	BEAKER 7C	· · · ·	BLANKS FILTER 1445	S <u>BEAKER</u> B5-48	
FINAL	1.3880	69.9648		0.4408	67.0280	
TARE	: 1.3865	69.9632		0.4408	67.0279	
NET	: 0.0015	0.0016		0,0000	0.0001	
		VOLUME BLANK R VOLUME OF RINS			130 55	· · · · ·
Mn - Ar = Mn = Ar =	= 3.100 0.042	O2 CO2 Vs As Vm s	=	8.43 7.72 27.00 7.07 31.30	ft/sec ft2	
Mn = Ar = <u>Mn =</u>	= 3.100 0.042 = 3.100 n = 3600(1-Bwo)(\	CO2 Vs As Vm s ot blank corr /s)(As)(17.64)(Ps/Ts)	П. И.	7.72 27.00 7.07 31.30 439854	ft/sec ft2 DSCF DSCFH	
Mn = Ar = <u>Mn =</u>	= 3.100 0.042 = 3.100 n	CO2 Vs As Vm s ot blank corr /s)(As)(17.64)(Ps/Ts)	= = std = =	7.72 27.00 7.07 31.30	ft/sec ft2 DSCF	
Mn = Ar = Mn =	= 3.100 0.042 = 3.100 n = 3600(1-Bwo)(\ 3600 (Vs) (As)	CO2 Vs As Vm s ot blank corr /s)(As)(17,64)(Ps/Ts)	= = std = =	7.72 27.00 7.07 31.30 439854 687193	ft/sec ft2 DSCF DSCFH ACFH	
Mn = Ar = Mn = Qs = Cs =	= 3.100 0.042 = 3.100 n = 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60	CO2 Vs As <u>ot blank corr</u> /s)(As)(17,64)(Ps/Ts) /n) / (Vm Std)	= = std = = =	7.72 27.00 7.07 31.30 439854 687193 11453	ft/sec ft2 DSCF DSCFH ACFH ACFH	
Mn = Ar = Qs = Cs : Cs' =	= 3.100 0.042 = 3.100 n = 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60 = (2.205 E-6) (N	CO2 Vs As <u>ot blank corr</u> /s)(As)(17,64)(Ps/Ts) /n) / (Vm Std)	= = std = = =	7.72 27.00 7.07 31.30 439854 687193 11453 2.18376E-07	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF	
Mn = Ar = Qs = Cs : Cs' =	 3.100 0.042 3.100 n 3600(1-Bwo)(' 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (N 0.0154 (Mn) / Mn / VmStd 	CO2 Vs As <u>ot blank corr</u> /s)(As)(17,64)(Ps/Ts) /n) / (Vm Std)	= = std = = =	7.72 27.00 7.07 31.30 439854 687193 11453 2.18376E-07 0.0015	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF	

,

PARTICULA	TE EMISSION O	CALCULATION SHE	ET

PLANT LOCATION	NEFCO / SWA Bioso West Palm Beach, F		U2-M5/202-Pre4 25-Jun-13
FILTER NUMBER PS2	BEAKER BK5	BLANK <u>FILTER</u> 1445	S <u>BEAKER</u> B5-48
FINAL : 1.3997	67.1995	0.4408	67.0280
TARE : 1.3984	67.1970	0.4408	67.0279
NET : 0.0013	0.0025	0.0000	0.0001
	VOLUME BLANK RI VOLUME OF RINSE	and the second	130 55
Mn = 3.800 Ar = 0.042 Mn = 3.800 not	CO2 Vs As Vm st blank corr	= 7.07	ft/sec ft2 DSCF
Qs = 3600(1-Bwo)(Vs 3600 (Vs) (As) ACFH / 60)(As)(17.64)(Ps/Ts) ,	= 461438 = 770500.6962 = 12842	ACFH
and the second			LB/SCF
Cs = (2.205 E-6) (Mr	i) / (vm Sta)	= 2.77424E-07	ED/301
Cs = (2.205 E-6) (Mr Cs' = 0.0154 (Mn) /(V		= 2.77424E-07 = 0.0019	
			GRAINS/SCF
Cs' = 0.0154 (Mn) /(\	′mSTD)	= 0.0019	GRAINS/SCF mg/dscm

Facility/Site: NEFCO / SWA Biosolids Source: Unit No. 2		and the second	U2-M5/202-Pre3 25-Jun-13
Lab ID: Fractional Weights: Inorganic (mg): 13.0 Organic (mg): <u>6.0</u> Total Gain (mg) 19.0	$O_2 = CO_2 = Vs = As = Vm std = Vm st$	7.07	ft/sec
Qs = 3600(1-Bwo)(Vs)(As)(17.64)(Ps/Ts) 3600 (Vs) (As) ACFH / 60		439,854 687,193 11,453	
Cs = (2.205 E-6) (Mn) / (Vm Std)		1.33843E-06	LB/SCF
Cs' = 0.0154 (Mn) /(VmStd)	=	0.0093	GRAINS/SCF
PMR = Qs x Cs	=	0.589	LB/HR

Lab ID: $O_2 = 9.07$ C $O_2 = 7.32$ Fractional Weights: Vs = 30.28 ft/sec Inorganic (mg): 18.0 As = 7.07 ft ² Organic (mg): 12.0 Vm std = 30.20 DSCF Total Gain (mg) 30.0 30.0 Qs = 3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = 461,438 DSCFH 3600 Us)(As) ACFH / 60 = 770,501 ACFH ACFH / 60 = 12,842 ACFM Cs = (2.205 E-6) (Mn) / (Vm Std) = 2.19019E-06 LB/SCF Cs' = 0.0154 (Mn) /(VmSTD) = 0.0153 GRAINS/SCF
3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (Mn) / (Vm Std) = 2.19019E-06 LB/SCF
3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (Mn) / (Vm Std) = 2.19019E-06 LB/SCF
Cs' = 0.0154 (Mn) /(VmSTD) = 0.0153 GRAINS/SCF
PMR = Qs x Cs = 1.011 LB/HR

PLANT:	NEFCO / SWA Biosolids	RUN # :	U2-M5-Pre1
LOCATION:	West Palm Beach, FL	 DATE :	24-Jun-13

-

As (SQFT) :	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	1.1	S METER	STACK
On (INCHES) PITOT COEFFICIENT:	0.351	POINT	HEAD	ROOT	Ĥ	IN		TEMP (F)
		A1	0.13	0.36	1.64	87	87	217
MP-1 (INT) :	100	2	0.14	0.37	1.76	87	87	219
		3	0.14	0.37 0.40	1.76 2.02	87 87	87 87	223 229
MP-2 (INT) :	100	4 5	0.16 0.15	0.40	2.02 1.89	87	87	229 226
MP-3 (INT) :	0	6	0.15	0.39	1.89	87	87	227
MP-4 (INT) :	794.0	B1	0.12	0.35	1 .51	87	87	220
		2	0.14	0.37	1.76	87	87	224
MP-1 (FIN) :	245	3	0.16	0.40	2.02	87	87	233
	<u> </u>	4	0.17	0.41	2.14	87 87	87 87	229 235
MP-2 (FIN) ;	113	5 6	0.17 0.16	0.41 0.40	2.14 2.02	87 87	87 87	235
MP-3 (FIN) :		0	0.10	0.40	2.02	07	0,	220
MP-4 (FIN) :	801.0							
% CO2 (OUT):	7.97							
6 O2 (OUT) :	7.85							
6 CO (OUT) :	0							
bar	30.1							
Pstack	-0.40							
NUMBER OF POINTS	12							
EST LENGTH	60							
INAL METER	378.912							
NTIAL METER	333.565							
BEGIN TIME	17:18							
ND TIME	18:23							
	AVERAGE:		0.15	0.39	1.88	87.0	87.0	225.9

PLANT:NEFCO / SWA BiosolidsRUN # :U2-M5-Pre2LOCATION :West Palm Beach, FLDATE :24-Jun-13

As (SQFT)	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA		S METER	STACK
On (INCHES)	0.351	POINT	HEAD	ROOT	÷ Н	IN ¹¹	ОUT	TEMP (F)
PITOT COEFFICIENT:	0.84			_				
		A1	0.14	0.37	1.54	85	85	231
VIP-1 (INT) :	100	2	0.16	0.40	1.76	85	85	231
	100	3	0.16	0.40	1.76	85	85	229
MP-2 (INT) : [4 5	0.16 0.16	0.40 0.40	1.76 1.76	86 86	86 86	240 234
IP-3 (INT) :	0	6	0.15	0.40	1.65	85	85	234 236
		Ŭ	0.10	0.00	1.00	00	00	200
P-4 (INT) :	794.5	B1	0.11	0.33	1.21	85	85	234
		2	0.15	0.39	1.65	85	85	237
P-1 (FIN) :	262	3	0.16	0.40	1.76	85	85	234
		4	0,16	0.40	1.76	85	85	234
P-2 (FIN):	106	5	0.17	0.41	1.87	85	85	235
		6	0.16	0.40	1.76	85	85	235
P-3 (FIN) :	4							
-4 (FIN) :	800.5							
- Aria [
D2 (OUT):	8.11							
(OUT) :	7.68							
O (OUT) :	0							
	30.1							
ick	-0.40							
BER OF POINTS	12							
	1							
LENGTH	60	ļ						
a mangala sebagai dan sebagai s								
L METER [423.903							
И ВЛЕТЕР Г	200.000							
AL METER [380.308							
IN TIME	18:54							
О ТІМЕ	20:03							
	AVERAGE:		0.15	0.39	1.69	85.2	85.2	234.2

	CO/SWA Bios	in the second		RUN # : DATE :		-M5/202- 25-Jun-1	1
LOCATION: Wes	t Palm Beach,	ΕL ·	<u> </u>	DATE:		25-Jun-	3
As (SQFT) : 7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	DRY GA	S METER	STACK
Dn (INCHES) 0.312	POINT	HEAD	ROOT	н	IN	Ουτ	TEMP (F)
PITOT COEFFICIENT: 0.84	A1	0.14	0.37	1.00	94	94	239
IMP-1 (INT) : 0		0.15	0.39	1.00	93	93	233
·····	3	0.16	0.40	1.00	93	93	240
IMP-2 (INT) : 0	4	0.17	0.41	1.00	92	92	236
	5	0.17	0.41	1.00	92	92	238
IMP-3 (INT) : 100	6	0.18	0.42	1.00	92	92	242
IMP-4 (INT) : 800.0	В1	0,16	0.40	1.00	90	90	234
Republic de la company part de la company	2	0.18	0.42	1.00	91	91	241
IMP-1 (FIN) : 106	3	0.20	0.45	1.00	91 01	91 01	244
		0.17	0.41	1.00	91 02	91 02	242 239
IMP-2 (FIN) :	5	0.17 0.18	0.41 0.42	1.00 1.00	92 92	92 92	239 244
IMP-3 (FIN) : 108		0.16	0.42	1.00	52	52	277
IMP-4 (FIN) : 808.0							
% CO2 (OUT): 7.72							
% O2 (OUT) : <u>8.43</u>							
% СО (ОИТ):							
Pbar 30.1							÷
Pstack							
NUMBER OF POINTS 12							
TEST LENGTH 60							
FINAL METER 458.203							
INTIAL METER 424.838							
BEGIN TIME 9:15							
END TIME 10:22							
AVERAGE:		0.17	0.41	.1.00	91.9	91.9	239.3

PLANTNEFCO / SWA BiosolidsRUN # :U2-M5/202-Pre4LOCATION :West Palm Beach, FLDATE :25-Jun-13

As (SQFT) :	7.069	TRAVERSE	VELOCITY	SQUARE	. DELTA .	DRY GA	SMETER	STACK
Dn (INCHES)	0.312	POINT	HEAD	ROOT	н	IN	оυт	TEMP (F
PITOT COEFFICIENT:	0.84							
	·	A1	0.19	0.44	1.00	90	90	242
MP-1 (INT) :		2	0.19	0.44	1.00	91	91	245
	·	3	0.20	0.45	1.00	91	91	252
MP-2 (INT) :		4	0.20	0.45	1.00	92	92	254
IMP-3 (INT) :	100	5 6	0.21 0.20	0.46 0.45	1.00 1.00	92	92 92	.245
		0	0.20	0.45	1.00	92	92	248
MP-4 (INT) :	778.0	B1	0.21	0.46	1.00	93	93	244
		2	0.20	0.45	1.00	93	93	243
MP-1 (FIN) :	149	3	0.21	0.46	1.00	93	93	242
		4	0.21	0.46	1.00	94	94	249
MP-2 (FIN) :	1	5	0.22	0.47	1.00	94	94	252
		6	0.23	0.48	1.00	94	94	250
MP-3 (FIN) :	106							
MP-4 (FIN) :	784.0							
% CO2 (OUT):	7.32							
6 O2 (OUT) :	9.07							
6 CO (OUT) :	0							
²bar	30.1							
Pstack	-0.41							
NUMBER OF POINTS	12							
TOTICUOTI								
EST LENGTH	60							
INAL METER	492.724							
NTIAL METER	460.501							
BEGIN TIME	10:55							
ND TIME	12:04							
			0.04	o 47	4.00		<u></u>	• • •
·	AVERAGE:		0.21	0.45	1.00	92.4	92.4	247.2

PLANT : NEFCO / SWA Biosolids RUN # : U2-M5-Pre1 LOCATION : West Palm Beach, FL DATE : 24-Jun-13 $Ts(^{\circ}F) =$ 225.9 % CO2 = 7.97 Vm (CF) = 45.347 DELTA H (ABS) = Ts (°R) = 685.9 % O2 = 7.85 30.24 Tm (°F) = 87.0 % CO = 0 Ps (ABS) = 30.07 $Tm(^{\circ}R) =$ % N2 = 547,0 84.17 SQRT DELTA P = 0.3857 VI(TOT) =166.0 Y :: Cp = 0.84. . **.** . . 0.9728 VI (adj) = NA TIME = 60 An = 0.000672 V/m etd -

Vm std =	17.64 (Vm)(Y)(DELTA H ABS)	= -	43.017 DSCF
	(Tm)	:	
Vw std =	.04707 (VI TOT)	:	7.814 CF
Bwo =	Vw std / (Vw std) + (Vm std)	=	0.154
Bwo =	by steam tables	=	NA
1 - Bwo =	1 - Bwo	. =	0.846
Md (DRY)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)		29.589 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)		27.808 LB/LB
G =	SQRT (Ts/Ps/Ms)	=	MOLE 0.906
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	=	25.087 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)	· =	417801 DSCFH
% ISO =	<u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)		108.3

PLANT : NEFCO / SWA Biosolids RUN#: U2-M5-Pre2 LOCATION : West Palm Beach, FL (example) 24-Jun-13 $Ts(^{\circ}F) =$ 234.2 % CO2 = 8,11 Vm (CF) . · · · = 43.595 Ts (°R) = 694.2 % O2 = 7,68 DELTA H (ABS) = 30.22 Tm (°F) = 85.2 % CO = 0 Ps (ABS) 30.07 . = . $Tm(^{\circ}R) =$ % N2 = 545.2 84.21 SQRT DELTA P = 0.3911 VI (TOT) = 178.0 Cp = ··· 0.84 Y٠ = 0.9728 VI (adj) = NA . TIME = 60 An = . 0.000672 Vm std = 17.64 (Vm)(Y)(DELTA H ABS) = . . 41 475 DSCF (Tm) Vw std = 8.378 CF = Vw std / (Vw std) + (Vm std) Bwo. = = 0.168 Bwo by steam tables ü NA 1 - Bwo = 1 - Bwo 0.832 Ms (WET)= 0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 29.604 LB/LB \exists 0.28 (% N2) MOLE Ms (WET)= MD (1-Bwo) + 18 (Bwo) 27.654 LB/LB = MOLE G == SQRT (Ts/Ps/Ms) 0.914 ÷. Vs = 85.49 (Cp) (G) (SQRT DELTA P) æ 1 1 25.658 FPS Qs 3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = ÷ 415073 DSCFH % ISO = 100 (Ts) (Vm std) (Pstd) 105.1 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)

PLANT : NEFCO / SWA Biosolids RUN # : U2-M5/202-Pre3 LOCATION : West Palm Beach, FL DATE 25-Jun-13 $Ts(^{\circ}F) =$ 239.3 % CO2 = 7.72 Vm (CF) = 33.365 Ts (°R) = 699.3 DELTA H (ABS) = % O2 = 8.43 30.17 Tm (°F) = 91.9 % CO = 0 Ps (ABS) · · · = · 30.07 Tm (°R) = 551.9 % N2 👘 = 83.85 SQRT DELTA P = 0.4109 VI (TOT) = 123.0 Cp = 0.84 Y = 0.9728 VI (adj) = NA TIME = 60 An = 0.000531

Vm std =	17.64 (Vm)(Y)(DELTA H ABS) (Tm)	=	31.302 DSCF
Vw std =	.04707 (VI TOT)	=	5.790 CF
Bwo =	Vw std / (Vw std) + (Vm std)		0.156
Bwo =	by steam tables		NA
1 - Bwo =	1 - Bwo	=	0.844
Md (DRY)=	0.44 (% CO2) + 0.32 (% O2) +		
ite de la composition de la compositio de la composition de l de la composition de la	0.28 (% CO) + 0.28 (% N2)	u	29.573 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)		27.767 LB/LB MOLE
Э.	SQRT (Ts/Ps/Ms)	Ξ	0.915
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	=	27.005 FPS
Ωs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)	= ^{1,1} ,1	439854 DSCFH
% ISO =	100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)	* = *	94.7

PLANT : NEFCO / SWA Biosolids RUN # U2-M5/202-Pre4 LOCATION : West Palm Beach, FL (example) 25-Jun-13 $Ts(^{\circ}F) =$ 247.2 % CO2 = 7.32 Vm (CF) 32.223 Ts (°R) = % O2 = 707.2 9.07 DELTA H (ABS) = 30.17 $Tm(^{\circ}F) =$ 92.4 % CO = 0 Ps (ABS) = 30.07 $Tm(^{\circ}R) =$ 552.4 % N2 = 83.61 SQRT DELTA P = 0.4535 VI(TOT) =162.0 Cp = 0.84 Y 0.9728 = VI (adj) = NA TIME = 60 An = 0.000531 **=** ¹ 1 1 Vm std = 17.64 (Vm)(Y)(DELTA H ABS) 30.203 DSCF (Tm) Vw std = .04707 (VI TOT) = 7.625 CF Bwo = Vw std / (Vw std) + (Vm std) 0.202 = ; Bwo bv steam tables = = NA 1 - Bwo = 1 - Bwo 0.798 = Ms (WET)= 0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 29.533 LB/LB Ξ 0.28 (% N2) MOLE Ms (WET)= MD (1-Bwo) + 18 (Bwo) 27.208 LB/LB = MOLE = SQRT (Ts/Ps/Ms) G 0.930 = Vs = 85.49 (Cp) (G) (SQRT DELTA P) = . ' 30.279 FPS Qs 3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = .* = 461438 DSCFH % ISO ___= 100 (Ts) (Vm std) (Pstd) 87.1 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)

Analyzer Calibrations

PLANT : NEFCO	/ SWA Bio	solids	DATE :	25-Ju	n-13
LOCATION : West	Palm Beac	h, FL			
Diluent/Pollutant	0 ₂				
Units	%	%			
Monitor Range Selected	25	20			
Monitor Range (Effective, per Method)	20.42	18.69			
Low Level	Analyzer C	alibration I	Error		
Cylinder Value (C _{v,Low})	0.00	0.00			
Analyzer Response (C _{Dir,Low})	0.10	0.21			
Analyzer Calibration Error (ACE, Low)	0.49	1.12			
Calibration Status (Pass/Fail)	Pass	Pass			: 14 A
Mid Level	Analyzer Ca	libration E	rror		
Cylinder Value (C _{v,Mid})	10.49	9,45			
Analyzer Response (C _{Dir,Mid})	10.50	9.41			
Analyzer Calibration Error (ACE, _{Mid})	0.05	-0.21			
Calibration Status (Pass/Fail)	Pass	Pass			
High Level	Analyzer Ca	alibration I	Error		
Cylinder Value (C _{v,High})	20.42	18.69			
Analzyer Response (C _{Dir,High})	20.43	18.70			
Analyzer Calibration Error (ACE, _{High})	0.05	0.05	1		
Calibration Status (Pass/Fail)	Pass	Pass			
Cylinder Ga	s Selected f	or Bias Ch	ecks		
Use Mid (M) or High (H) Span	M	М			· .
ZERO	0.10	0.21			
SPAN	10.5	9.41			
Mid Level	Gas Range	Assessme	nt		
Cylinder Value (Mid)	10.49	9.45			
Cylinder Value (High/Span)	20.42	18.69			
Percentage of Span (%)	51.4	50.6		an tha chain an tao 1990. An tao 1990 a	:
Assessment Status (Pass/Fail)	Pass	Pass			

PLANT NEFCO / SWA LOCATION : West Palm Be				U2-M5/2 25-Jun-1	and the second	
	GAS	ta por construction		:	÷	· *
START TIME :	9:15					
END TIME :	10:22					
	0 001	00 000			1 - A	
Diluent/Pollutant;	O ₂ (%)	CO ₂ (%)				نة. 1. 1
Instrument Span ≍	20.42	18.69			· · · · · · · · · · · · · · · · · · ·	· .
Analyzer Zero Response =	0.10	0.21				
Analyzer Span Response = Initlal Sytem Zero Response =	10.50 0.05	9.41 0.11				
Final System Zero Response =	0.05	0.11				
Average Zero Response (C_0) =	0.08	0.10				
Initial Sytem Span Response =	0.08 10.50	9.41				
Final System Span Response =	10.50	9.41 9.39				
Average Span Response (C _m) =	10.52	9.39 9,40				
	10.01	3.40				
Calibration gas values (C _{ma}) =	10.49	9.45				
System Bias and Drift Calculations	10.49	9.45				
Initial Zero Bias (SB) =	0.24	0.54				
		0.54				
Final Zero Bias (SB _{final}) =	0.05	0.59				
Zero Drift (D) =	0.29	0.05				
Initial Span Bias (SB _i) =	0.00	0.00				
Final Span Blas (SB _{final}) =	0.10	0.11				
Span Drift (D) =	0.10	0.11				
Uncorrected Ave. $(C_{Avg}) =$	8.46	7.70				
						· . ·
prrected Ave.= $C_{gas} = (C_{Avg}-C_o)(C_{ma}/(C_m-C_o)) =$	8.43	7.72	· · ·			
	<u> </u>			· .		÷., ,
PLANT DATA			eta di di			17. 19. st. st. st. st. st. st. st. st. st. st
		<u> </u>				

PLANT : NEFCO / SWA LOCATION : West Palm Be			RUN # : L DATE : 2	J2-M5/202-F 25-Jun-13	⁵ re4	
	GAS			e gala a		
START TIME :	10:55					
END TIME :	12:04				÷	
Diluent/Pollutant:	O ₂ (%)		· · ·			
Operating Range = _	20.42	18.69		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	1	:
Analyzer Zero Response =	0.10	0.21				
Analyzer Span Response =	10.50	9.41				
Sytem Zero Response (Initial) =	0.11	0.10				
System Zero Response (Final) =	0.09	0.14				
Average Zero Response $(C_o) =$	0.10	0.12				
Sytem Span Response (Initial) =	10.52	9.39				
System Span Response (Final) =	10.51	9.42				
Average Span Response (C _m) =	10.52	9.41				
Calibration gas values (C _{ma}) =	10.49	9.45				
System Bias and Drift Calculations:						
Initial Zero Bias (SB _i) =	0.05	0.59				
Final Zero Bias (SB _{final}) =	0.05	0.37				
Zero Drift (D) =	0.10	0.21				
Initial Span Bias (SB _i) =	0.10	0.11				
Final Span Blas (SB _{final}) =	0.05	0.05				
Span Drift (D) =	0.05	0.16				
Uncorrected Ave. (C _{Avg}) =	9.11	7.31				
prected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_c)) =$	0.07	7.00				
$(\Box_{Avg} = \Box_o)(\Box_{ma}(\Box_m = \Box_o)) =$	9.07	7.32			*	÷
PLANT DATA						•
an a	· · · · ·	<u> </u>			· ·	

Analyzer Calibrations

	/ SWA Bio	osolids	DATE :	24-Ju	in-13
LOCATION : West	Palm Beac	h, FL		-	
Diluent/Pollutant	O ₂				
Units	%	%			
Monitor Range Selected	25	20			
Monitor Range (Effective, per Method)	20.42	18.69			
Low Level	Analyzer Ca	alibration	Error		
Cylinder Value (C _{v,Low})	0.00	0.00			
Analyzer Response (C _{Dir,Low})	0.11	0.05			
Analyzer Calibration Error (ACE, Low)	0.54	0.27		:	
Calibration Status (Pass/Fail)	Pass	Pass			
Mid Level	Analyzer Ca	libration E	rror		
Cylinder Value (C _{v,Mid})	10.49	9.45		· · · · · · · · · · · ·	
Analyzer Response (C _{Dir,Mid})	10.53	9.40			
Analyzer Calibration Error (ACE, Mid)	0.20	-0.27		· · · · · · · · · · · · · · · · · · ·	
Calibration Status (Pass/Fail)	Pass	Pass			
High Level	Analyzer Ca	alibration	Error		
Cylinder Value (C _{v,High})	20.42	18.69		· · · ·	
Analzyer Response (C _{Dir,High})	20.41	18.69	1.1.1		
Analyzer Calibration Error (ACE, _{High})	-0.05	0.00			
Calibration Status (Pass/Fall)	Pass	Pass			
Cylinder Gas	s Selected f	or Bias Ch	ecks		
Use Mid (M) or High (H) Span	M	M			
ZERO	0.11	0.05			
SPAN	10.53	9.4			
Mid Level	Gas Range	Assessme	nt		
Cylinder Value (Mid)	10.49	9.45			
Cylinder Value (High/Span)	20.42	18.69			
Percentage of Span (%)	51.4	50.6			
Assessment Status (Pass/Fail)	Pass	Pass		<u>·</u>	

PLANT NEFCO / SW/ LOCATION : West Palm Be	A Biosolids ach, FL			U2-M5-Pre 24-Jun-13	1	
	GAS					
START TIME :	17:18		•••••••••••••••••••••••••••••••••••••••			
END TIME :	18:23				i	
						u
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)				i ner
Instrument Span =	20.42	18.69				•
Analyzer Zero Response =	0.11	0.05				
Analyzer Span Response =	10.53	9.40				
Initial System Zero Response =	0.15	0.14				
Final System Zero Response = Average Zero Response (C _o) =	0.14	0.05				
	0.15	0.10				
Initial Sytem Span Response = Final System Span Response ≕	10.57	9.40				
Average Span Response (C _m) =	10.61	9.37				
Average opan Response (Cm) =	10.59	9.39				
Calibration and uplying (O.)	10.10					
Calibration gas values (C _{ma}) =	10.49	9.45				
System Bias and Drift Calculations	• • • •	• · · •				
Initial Zero Bias (SB _i) =	0.20	0.48				
Final Zero Bias (SB _{final}) =	0.15	0.00				
Zero Drift (D) =	0.05	0.48				
Initial Span Bias (SB _i) =	0.20	0.00				
Final Span Bias (SB _{final}) =	0.39	0.16				
Span Drift (D) =	0.20	0.16				
Uncorrected Ave. $(C_{Avg}) =$	7.97	7.93				
prected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	7.85	7.97				1 .
	<u> </u>				:.	
PLANT DATA			1. · · · ·			
	ang tao sa				1.16.1	
			<u> </u>			······

PLANT : NEFCO / SWA LOCATION : West Palm Be				: U2-M5-P 24-Jun-1		
START TIME : [GAS 18:54				<u> </u>	
END TIME :	20:03					
			gar the s			
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)				
Operating Range =	20.42	18.69				
Analyzer Zero Response =	0.11	0.05				
Analyzer Span Response =	10.53	9.40				
Sytem Zero Response (Initial) =	0.14	0.05				
System Zero Response (Final) =	0.12	0.07				
Average Zero Response (C _o) =	0.13	0.06				
Sytem Span Response (Initial) =	10.61	9.37				
System Span Response (Final) = Average Span Response (C _m) =	10.57	9.36				
Average open Response (C_m) =	10.59	9.37				
Calibration gas values (C _{ma}) =	10.49	9.45				
System Bias and Drift Calculations:						
Initial Zero Bias (SB _i) =	0.15	0.00				ĺ
Final Zero Bias (SB _{final}) =	0.05	0.11				
Zero Drift (D) =	0.10	0.11				
Initial Span Bias (SB _i) =	0.39	0.16				
Final Span Bias (SB _{final}) =	0.20	0.21				
Span Drift (D) =	0.20	0.05				
리 양말 (1997) - 1989 - 1989 - <u>1</u> 987 - 1989 - 19800 - 19800 - 1980 - 1980 - 1980 - 19800 - 1980 - 19800 - 1980 - 1980 - 19						
Uncorrected Ave. $(C_{Avg}) =$	7.79	8.04				
			4 C 1			
orrected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	7.68	8.11		:		1. A.
<u>Molecular Weights (MW):</u> <u>F-Facto</u> NO- 46.006 F _d =					- 1.	an di Li su su su
그는 것 같은 것 같	9,600	an a		1		
CO- 28,01 SO2- 64,04	en de es		· ··· · · ·			· · · ·
302- 04.04						
PLANT DATA						
				· .		
			<u> </u>			

.

;

ľ

- -- -

ł

Facility/Site: Location: Run No.:	NEFCO / SWA West Palm Bea U2-M5-Pre1		Start Time:	en maria da como porte de espa	
	02-W3-P1e1	CO2	Stop Time:	18:23	
Date/time	(%,)	(% _{va})			
6/24/2013 5:18:00 PM	8.11	7,87			
6/24/2013 5:19:00 PM	8,12	7.86			
6/24/2013 5:20:00 PM	8.22	7,83			
6/24/2013 5:21:00 PM	8.16	7,84			
6/24/2013 5:22:00 PM	8.16	7.84			
6/24/2013 5:23:00 PM	8.07	7,88			
6/24/2013 5:24:00 PM	8.07	7.90			
6/24/2013 5:25:00 PM	8.16	7,89			1
6/24/2013 5:26:00 PM	8.16	7.91			
6/24/2013 5:27:00 PM	8.27	7,88			1
6/24/2013 5:26:00 PM 6/24/2013 5:29:00 PM	8.16	7,83			
6/24/2013 5:30:00 PM	8.13	7.81			
6/24/2013 5:31:00 PM	8.15 8.32	7.88			
6/24/2013 5:32:00 PM	7.95	7,93 7,93			1
6/24/2013 5:33:00 PM	7.89	7,93			
6/24/2013 5:34:00 PM	8,04	7,93	1		1
6/24/2013 5:35:00 PM	7.98	7,95			
6/24/2013 5:36:00 PM	7.77	7,92			ĺ
6/24/2013 5:37:00 PM	8.02	7,87			
6/24/2013 5:36:00 PM	8.10	7,84			}
6/24/2013 5:39:00 PM	8.15	7,82			
6/24/2013 5:40:00 PM	7.94	7,85			
6/24/2013 5:41:00 PM	8.23	7,89			
6/24/2013 5:42:00 PM	6.16	7.93			1
6/24/2013 5:43:00 PM	6.09	7.92			
6/24/2013 5:44:00 PM	8.04	7.91			1
3/24/2013 5:45:00 PM 6/24/2013 5:46:00 PM	8.04	7.86			
3/24/2013 5:47:00 PM	6.03 7.69	7.90			
5/24/2013 5:48:00 PM	7.09	7.89			
5/24/2013 5:49:00 PM			Port		
6/24/2013 5:50:00 PM			Change		
5/24/2013 5:51:00 PM			Unange		
5/24/2013 5:52:00 PM	ļ				
6/24/2013 5:53:00 PM	7.77	8.00			
6/24/2013 5:54:00 PM	7.72	8.04			
5/24/2013 5:55:00 PM	7.89	7.97			
5/24/2013 5:56:00 PM	7.87	7.96			ľ
6/24/2013 5:57:00 PM	7.94	7.97			
5/24/2013 5:58:00 PM 5/24/2013 5:59:00 PM	7.68	6.00			
i/24/2013 6:00:00 PM	7.83	7.99			
24/2013 6:01:00 PM	7.64 7.60	8.02	í I		
24/2013 6:02:00 PM	7.85	6.00 6.07			1
/24/2013 6:03:00 PM	7.75	7.98	1		
/24/2013 6:04:00 PM	7.78	8.02	1 1		
/24/2013 6:05:00 PM	7,86	7.94			
/24/2013 6:06:00 PM	7.86	6.01			
/24/2013 6:07:00 PM	7.77	7.98	1		
/24/2013 6:08:00 PM	7.67	7.99			
/24/2013 6:09:00 PM	7.87	7.99			
/24/2013 6:10:00 PM	7.77	7.98	{		
/24/2013 6:11:00 PM /24/2013 6:12:00 PM	7.61	7.96	F		
24/2013 6:12:00 PM	7.67	7.96			
24/2013 6:13:00 PM	7.82 7.68	8.00 7.98			
24/2013 6:15:00 PM	7.97	7.98			
24/2013 6:16:00 PM	7.99	7.91]		
/24/2013 6:17:00 PM	7.89	7.95			
/24/2013 6:18:00 PM	7.90	7.95			
24/2013 6:19:00 PM	7.88	7.92			
/24/2013 6:20:00 PM	7.85	7.98		ĺ	i.
/24/2013 6:21:00 PM	7.67	7,96			
/24/2013 6:22:00 PM	7.94	7.94			
Run Averages:	7.97	7.93			

i

Location: Run No _r :		UZ-WU-FIGZ		Date Start Time Stop Time	: 06/24/13 18:54 20:03	
Date/tim	IÐ	O ₂ (% _{vd})	CO2 (%va)			
6/24/2013 6:5			7.97			
6/24/2013 6:5			8.01		1	
6/24/2013 6:5 6/24/2013 6:5			8.00			
6/24/2013 6:5			8.01 8.01			
6/24/2013 6:5			8.01			
6/24/2013 7:00		7.74	8.03			1
6/24/2013 7:01			8.01			
6/24/2013 7:02		7.81	8.00			
6/24/2013 7:03 6/24/2013 7:04		7.82	8.00			
6/24/2013 7:05		8.02 7.75	8.03 8.04			
6/24/2013 7:06		7.82	8.04			
6/24/2013 7:07	:00 PM	7.79	8.03			
6/24/2013 7:08		7.91	B.03			
6/24/2013 7:09		7.65	8.06			
6/24/2013 7:10 6/24/2013 7:11		7.62	8.06			
6/24/2013 7:12		7.81 8.14	7.98 7.98			
6/24/2013 7:13		7.77	B.00			
6/24/2013 7:14		7.77	8.02			
6/24/2013 7:15		7.76	8.00			
6/24/2013 7:18		7.77	8.06			
6/24/2013 7:17 6/24/2013 7:18		7.76 7,81	8.05			
6/24/2013 7:19		7.62	8.04 8.02			
6/24/2013 7:20		7.80	8.04			
6/24/2013 7:21		7.B1	7.99	1 1		
6/24/2013 7:22		7,82	7.99			
6/24/2013 7:23		7.77	8.01			
6/24/2013 7:24 6/24/2013 7:25		7,88	8.02			
6/24/2013 7:26				Port		
6/24/2013 7:27				Change		
6/24/2013 7:28:				onango		
6/24/2013 7:29:		7.87	8.04			
6/24/2013 7:30: 6/24/2013 7:31:		7.81	8,02	1 1		
6/24/2013 7:31:		7.74 7.83	8,02 8.05			
6/24/2013 7:33:		7.79	8.08			
6/24/2013 7:34:		7.70	8,08			
6/24/2013 7:35:		7.97	8.09			
6/24/2013 7:36:		7.67	8.08			
6/24/2013 7:37: 6/24/2013 7:38:		7.80	8.08			
6/24/2013 7:39:		7.74 7.73	8.11 8.07			
8/24/2013 7:40:		7,68	8,05			
6/24/2013 7:41:0		7.73	8,06			[
6/24/2013 7:42;(7.94	8.06			
6/24/2013 7:43:0 6/24/2013 7:44:0		7.55	8.08			1 1
6/24/2013 7:44:0		7.80 7.70	8.07 8.07			
6/24/2013 7:46:0		7.74	8.06			ļ
5/24/2013 7:47:0	00 PM	7.79	8,05			
5/24/2013 7:48:0		7.80	8.01			
5/24/2013 7:49:0		7.76	8.04			
5/24/2013 7:50:0 5/24/2013 7:51:0		7.80 7.64	8.04			
5/24/2013 7:52:0		7.84	8.08 8.08			
6/24/2013 7:53:0		7.80	8.09			
3/24/2013 7:54:0	0 PM	7.85	8.04	1		
3/24/2013 7:55:0		7.80	8,06			
24/2013 7:56:0		7.77	8.03			
6/24/2013 7:57:0 6/24/2013 7:58:0		8.01	8.03	1		
24/2013 7:58:0 24/2013 7:59:0		7.62 7.75	8.05 8.09			
/24/2013 8:00:0		7.75	8.09			
/24/2013 8:01:0		7.75	8.11			
/24/2013 8:02:0	0 PM	7.73	8.08			
	1					

j

Facility/Site: Location: Run No.:	NEFCO / SWA West Palm Bea U2-M5/202-Prea	Blosolids ch, FL	Date: Start Time: Stop Time:	06/25/13 9:16 10:22	
Date/fime	O ₂ (% _{vd})	CO ₂ (% _{vd})			
6/25/2013 9:15:03 AM	8,96	7.33			
6/25/2013 9:16:03 AM	9.23	7.29			
6/25/2013 9:17:03 AM	9.26	7.25			
6/25/2013 9:18:03 AM	8,58	7.64			
6/25/2013 9:19:03 AM	8.21	7.87			1
6/25/2013 9:20:03 AM 6/25/2013 9:21:03 AM	8.74 8.63	7.71 7.67			
6/25/2013 9:22:03 AM	8.80	7.63			
6/25/2013 9:23:03 AM	8,99	7.42			
6/25/2013 9:24:03 AM	9.17	7.27			
6/25/2013 9:25:03 AM	9.36	7.21			
6/25/2013 9:26:03 AM	9.08	7.36			
6/25/2013 9:27:03 AM	8.98	7.44			
6/25/2013 9:28:03 AM 6/25/2013 9:29:03 AM	9.28 9,34	7.33 7,32			
6/25/2013 9:30:03 AM	9.42	7.24			
6/25/2013 9:31:03 AM	9.84	7.02			
6/25/2013 9:32:03 AM	9.46	7.15			
6/25/2013 9:33:03 AM	9,61	7.07	ļ		
6/25/2013 9:34:03 AM	8.93	7.41	i l		
6/25/2013 9:35:03 AM	8.25	7.77			
6/25/2013 9:36:03 AM	8,24	7.95			
6/25/2013 9:37:03 AM 6/25/2013 9:38:03 AM	7.96 8.07	8.01 7.99			
6/25/2013 9:39:03 AM	8.29	7.86			
6/25/2013 9:40:03 AM	8.41	7.72			
6/25/2013 9:41:03 AM	8.54	7.63			
6/25/2013 9:42:03 AM	8,36	7.60			
6/25/2013 9:43:03 AM	8,47	7.70			
6/25/2013 9:44:03 AM	8.20	7.84			
6/25/2013 9:45:03 AM	8.04	7.94			
6/25/2013 9:46:03 AM 6/25/2013 9:47:03 AM					
6/25/2013 9:48:03 AM					
6/25/2013 9:49:03 AM					
6/25/2013 9:50:03 AM			Port		
6/25/2013 9:51:03 AM			Change		
6/25/2013 9:52:03 AM	8,39	7.80			
6/25/2013 9:53:03 AM	9.01	7.50			
6/25/2013 9:54:03 AM 6/25/2013 9:55:03 AM	8.83 9.03	7.57 7.58			
6/25/2013 9:56:03 AM	9.03 7.80	8.13			
6/25/2013 9:57:03 AM	7.48	8.15			
6/25/2013 9:58:03 AM	7.71	8.06			
6/25/2013 9:59:03 AM	7.73	8.04			
6/25/2013 10:00:03 AM	7.58	8.11			
6/25/2013 10:01:03 AM 6/25/2013 10:02:03 AM	7.53	8.24			
6/25/2013 10:02:03 AM	7.24 7.35	8.32 8.32			
8/25/2013 10:04:03 AM	8.32	8.32 7.70			
3/25/2013 10:05:03 AM	8.94	7.48			
3/25/2013 10:06:03 AM	8.51	7.68			
3/25/2013 10:07:03 AM	8,19	7.79			ļ
5/25/2013 10:08:03 AM	8.49	7.67			1
3/25/2013 10:09:03 AM	7.91	7.93			
5/25/2013 10:10:03 AM 5/25/2013 10:11:03 AM	7.88 7.82	7.97 8.10			
5/25/2013 10:12:03 AM	7.84	8.10 8.03			
3/25/2013 10:13:03 AM	7.86	8.03			
5/25/2013 10:14:03 AM	8,04	7.85			1
3/25/2013 10:15:03 AM	8.13	7.73			
5/25/2013 10:16:03 AM	8.28	7.72			
3/25/2013 10:17:03 AM	8.67	7.64			
6/25/2013 10:18:03 AM	8.41 8.25	7,63			
6/25/2013 10:19:03 AM 6/25/2013 10:20:03 AM	8.35 8.04	7.78 7.82			
5/25/2013 10:21:03 AM	8.04	7.82 7,83			
Run Averages:	8.46	7.70			

Facility/Site: Location:	NEFCO / SWA West Palm Bea	xh, FL	Start Time:		
Run No.:	U2-M5/202-Pre4	CO ₂	Stop Time:	12:04	1
Date/time	(% _{vd})	(% _{vd})			
6/25/2013 10:55:03 AM		7.40			
6/25/2013 10:56:03 AM		7.47			
6/25/2013 10:57:03 AM		7.32			
6/25/2013 10:58:03 AM	8.87	7.27			
6/25/2013 10:59:03 AM	9.00	7.20			
6/25/2013 11:00:03 AM		7.32			
6/25/2013 11:01:03 AM 6/25/2013 11:02:03 AM		7.64 8.01			
6/25/2013 11:03:03 AM		8.04			
6/25/2013 11:04:03 AM		7.62			
6/25/2013 11:05:03 AM	9.21	7.26			
6/25/2013 11:06:03 AM	9.09	7.26			
6/25/2013 11:07:03 AM	9.01	7.25			
6/25/2013 11:08:03 AM	1	7.20			
6/25/2013 11:09:03 AM	1	7.25			
6/25/2013 11:10:03 AM	9.07	7.27			
6/25/2013 11:11:03 AM		7.28			
6/25/2013 11:12:03 AM		7.35			
6/25/2013 11:13:03 AM		7.34			
6/25/2013 11:14:03 AM	8.00	7.85			
6/25/2013 11:15:03 AM	8.42	8.30			
6/25/2013 11:16:03 AM	9.58	8.66			
6/25/2013 11:17:03 AM	7.91	7.86			
6/25/2013 11:18:03 AM	7.99	7.88			
6/25/2013 11:19:03 AM	8.57	7.54			
6/25/2013 11:20:03 AM	8.78	7.39			
6/25/2013 11:21:03 AM	8.64	7.53	1		
6/25/2013 11:22:03 AM 6/25/2013 11:23:03 AM	8.56	7.60			
6/25/2013 11:23:03 AM	8.19	7.81			
6/25/2013 11:25:03 AM	8.31	7.70			
6/25/2013 11:26:03 AM					
6/25/2013 11:27:03 AM					
6/25/2013 11:28:03 AM			Port		
6/25/2013 11:29:03 AM			Change		
6/25/2013 11:30:03 AM					
6/25/2013 11:31:03 AM					
6/25/2013 11:32:03 AM					
6/25/2013 11:33:03 AM					
6/25/2013 11:34:03 AM	7.76	8.01			
6/25/2013 11:35:03 AM	8.34	7.63			
6/25/2013 11:36:03 AM	10.36	6,58			
6/25/2013 11:37:03 AM	10.35	6.61			
6/25/2013 11:38:03 AM	10.85	6.30			
6/25/2013 11:39:03 AM	10.14	6.79			
6/25/2013 11:40:03 AM	9.46	7.04			
6/25/2013 11:41:03 AM	9,53	7.05	1		
6/25/2013 11:42:03 AM 6/25/2013 11:43:03 AM	9,59 9,63	7.05 7.04			
6/25/2013 11:44:03 AM	9,53	7.04			
6/25/2013 11:45:03 AM	9.37	7.08			
6/25/2013 11:46:03 AM	9,39	7.11			
6/25/2013 11:47:03 AM	9.28	7.12			
6/25/2013 11:48:03 AM	9.44	7,08			
6/25/2013 11:49:03 AM	9,66	7.11			
6/25/2013 11:50:03 AM	9.40	7.09			
6/25/2013 11:51:03 AM	9.47	7.11			
6/25/2013 11:52:03 AM	9,50	7.07			
6/25/2013 11:53:03 AM	9,51	7.09			
6/25/2013 11:54:03 AM	9.75	7.02			
6/25/2013 11:55:03 AM	9.35	7.05			
6/25/2013 11:56:03 AM	9.44	7.05			
6/25/2013 11:57:03 AM	9.53	7.06			
6/25/2013 11:58:03 AM	9.37	7.10			
6/25/2013 11:59:03 AM	9.55	7.09			
6/25/2013 12:00:03 PM	9.51	7.08		1	
6/25/2013 12:01:03 PM	9.57	7.04			
6/25/2013 12:02:03 PM 6/25/2013 12:03:03 PM	9.48 9,44	7,05 7,01			
0/20/2010 12.00.00 PW	3,44	7,01			
verages:	9.11	7.31			

TRAVERSE DATA SHEET

PLANE		NEFCO	15WM	r Bios	solid	15	RIURE		U2	m5-1	RI	F1		
1 (OTCANITION)		Unit:					OV HER		6/:	24/1	3			
নোকেলসক	142	5	littlen Tie	neyWa	143	391	না হ	ə1 x10 ,	NI	14	Τ			
1216 ¹ (0 (0 (0 (0)) a		TRAMEREE'S	(o) al 2004	(c10.38)	(૦) : ૬૪(૯ <i>1</i> ,	entra da c	Chirten C	(definitio	TELETROP -	(FIRME PL)	4	DAG ¹	- IIMP	
(LAP 22 ((Rhi)) a		(POINT)				lolun.	Steral Pages	(REAMPINE)	1	DEMP		ekip.	Menter .	AVAGI
MF20 ((Rh)) s	D	4 (,13	164	87	87	217	·	255	254		14-	58	
	794.0	2	<u> </u>	1.76	87	87		338,1	255	253			51	1
11.47963 ((1801)) 8 11.19969 ((1811)) 8		<u>3</u> 4	.14	[:76	87	87	223	341.4	255	256	$\left \right $		51	1
11512967 (01800) - 8 11512977 (01800) - 8		5	.16	2.62	87 87	87 87	226	<u>345,1</u> 348,8	257	254 255	+		49 49	2
mm <i>an (</i> mmh e l		6	.15	1.87	87	87	227	352.6	256	255			50	2
1.21.240 ((e0.8)) ×	245	31	.12	1.51	87	87	220	356.7	231	249			50	2
ILLEP 24 (CHN) 8 -	113	2	, 14	1.76	87	87	224	361.2	250	250	[1	51	2
NUP ((FIN)) .	1	3	16	2.02	\$7	87	233	364.1	249	249			52	2
	801.0	<u> </u>	.17	2.14	57	87	127	367.5	248	247			52	2
LIDG THURS		5	,17	2.14	\$7	87	235	371.0	249	249			53	Z
Marka (tang) i		6	,16	2.02	87	87	229	375.8	249	246			53	3
	\sim													
		ā.												
194619K	<u>-40</u>													
Dento, Phota	30,1										_			
02000.070613														
માસ્ટ્રેમાં પિસરાઓતર	1.57													
EINAL CIENTES	200 March 100 ME 中国語													
370,912														
IN MICHAELEN I AR														
333.565														
	<u>unas antes</u> y													
BREINDIME	1 18													
nene en en en en en els. En els														
ECDADAE!	1823												. <u></u>	
Refrationshilps	12.6	and the Rea	shtetok -	0.004		16	"Roj 🔛	Notester	·					
Eox#4		itestileet Ensistem	(Chrudte)	0.006		12-	99.00	a sur ann ann ann ann ann ann ann ann ann an	•••••					
		Post Allo			$\frac{(0)}{(0)}$		4476) 4420)							
-10).4(0)01,	AZ B	NESS HENTE				0								
Pieloc@p	رر	Nora <u>no</u> Ku Nora <u>Iuliani</u> L	l series de la companya de la company	351										
				£										
	· · · · · · · · · · · · · · · · · · ·		100,000 (00,000) (00,000)			and a subscription of the second s			· · · · · · · · · · · · · · · · · · ·					THE OWNER OF THE OWNER OWNE

		and the second second	<u>TR</u> A	VERS	E DA'	ГА SH	EET						
ALZANIII'S	N	eflo	/SwA	Bios	ollals		RUNKAR	U2	- <i>v</i> n S	- P	re Z		
L(OX67A)11(O)7)	L	Jest P	colm B	each,	FL		DAMENDA		6/24	<u>[13</u>			
Hitten Ros			lallerter	the second s			una j	olNos	NI	H			
((1210)) 8 ((1210)) 8	100	STR7AVedRela	া গাঁগা⁄্ব	(a)315#A		ennaite.	. ISWATER		enda de l	1:12(0]:13	TIRAIP	- IMP	
1MP42 (1100) 8-	100	1701Mp/	2.10	60	- IM	(01)ir	น้ำมาและ	ISI-MEINED	täfftic.	Call Mr.	<u>D</u> ERIE	UTALE .	VZ.C
1141:243 ((1210)) P	0	_ <u>_</u>	.14	1.54	85	55	231	,	239	256	NIM		l
(126) (1260) (1260)	794.5	2	.16	1.76	85	85	231	384.0	246	251		57	1
M243 (180)) s	-	3	.16	1.76	85	85	229	3877	249	250		55	
19026) (180)) is		<u> </u>	<u>, 1 le</u>	1.76	86	86	240	392.5	250	254		52	1
11.17 ¹ 77 ((11.10)) +		5	,16	1.76	86	86	234	395,4	249	243		<u>52</u> 53	
	212	6	.15	1.65	<u>85</u> 85	85	236	399.0	249	255	- -	52	
imeno (inix)su-	262	<u>B1</u> 2	11	1.21	05 85	<u>85</u> 85	237 237	4025	250	252 2 54		51	
181923 ((463))); 1915 ((463));	4	3	.16	1.65	05 85	85	234	409,0	249	252		52	2
(MP8) ((HS)) 3 151949 ((HS)) 7	iii	4	.16	1.76	85	35	234	412.8		256		53	2
11. 11. 11. 11. 11. 11. 11. 11. 11. 11.		5	 7	1.87	85	85	235	416.4	250	253		54	2
1.01246-((-1121)). 1.01246-((-1121)).		6	.16	1.76		85	235	420.2	250	251		54	2
M(P97_((ED))).	~									<u> </u>			
	Constant of												
24040	c,40												
ng sing tang kara Mang sing karang													
BENGAR -	301												
111={\$\$17_141=12(@%) #	60												
angalan baren	12												
423.90	53							······					
hthur a chear a	15												
380,308						 			·				
									"···				
	1859												
	2003		· · · · · · · · · · · · · · · · · · ·										
END HIME	2003									1			
Reletitionstiller	11.0	(Pho-Reals	(chereko)					Notes					
: (o)(d) 7		ROULO ROUTO		0.004	= (0)	10	11810 p. 318 11810 (0) 338						
[D2][百代][二	2.04	FOSTERING	ii Chracik	0.0	(Ø)	>3	11812(O).						
Flox(9))	AS	Nozadion	0,		Phile (a)	No.	P-S-1						
121(0)5(2)(0)5),	<u> </u>	Noza Diri	n. 	.351					· · · · · · · · · · · · · · · · · · ·				

TRAVERSE DATA SHEET

			<u>1 IX</u>		DA								
RLANT		NEFCO	/SWX	1 Bio	solid 3	,	RUN#	132	- mst	207-	Pre]		:
LOCATION		West					DATE		6/25				
Filter No.	a j a		Filiter Ta		State and			0.No.	NI				
IMP212 (INID) Sea	Ø	TRAVERSE		PELTA	DRY G/	s Meter 1	BTACK2	and the second second	ELTER	AVERAGE CONTRACTOR	DEY.	IMP &	
IMP-22 ((IND)-+-	Ø	POINT			Sector and the sector of the s	Contraction of the second second	TEMP (F)	A REAL PROPERTY AND	- YEOX		STATE OF STATE	TEMP	VACAN
IMP+9 ((NII))	100	<u> </u>	. 14	1.0	94	94	239	-	248	250	83	64	2
2. 10. 11. 11. 11. 11. 11. 11. 11. 11. 11	800	۲ 	15		93	93	233	427.8	246	246	81	59	2
IMP35 ((NRI))	<u></u>	3	10		93	93	240	4307	249	249	8 (56	2
IMP+0+((INR)) as		4	.17		92	92	236	433.9	218	249	80	56	2
(MB272 ((INT))+		5	.17	┝─┥─	92	92	238	426.0	248	249	79	57	2
	107.	6	.18		92	92	242	438.7	7.50	247	80	57	2
IME (FIN) IME 2 (FIN)	104	<u>Bı</u>	.16		90	90	234	441.7	747	246	B2 83	60	2
	108	2 3	.18		91	91	241	44 <i>5,0</i> 447.4	2551 247	248 246	82	59	2
3244 10 10 10 10 10 10 10 10 10 10 10 10 10	808		17		91	9,	244 242	450,1		245	84	59 55	2 2
(MERG (FIN))		5	17		92	92	239	453.0	243 248	246	83	56	2
IME-56 (FIIS)	******	6	118		92	92	244	455.5	251	246	83	55	2
IMP.7 (FIN)			<u> </u>					10010		- 10	0.0		-
	s areas												
Rstack	42										L		
and an													
Baro, Pres	30.1												
			1. 191										
MEST LENGTH	60												
FINALIMETER								ļ					
458,20	THE TOTAL PLANT OF THE PLANT												
INTIAL METER	Pa.												
424.579	<u>838</u>												
BEGINTIME	<u>0915</u>												
END TIME	KZZ												
	<u> NLL</u>				<u></u>								
Relationship	Alu	Proleak		8,016	×@		THE ST	Notes	· · · · · · · · · · · ·	· · · · · · · · · · · · · ·			
Box #	420.00 M	Post-Leal Pre-Plitot		NIN	@	N/14-	u Hgy	gause.	<u>kst (q</u>	at chigo		945	
	9728	Post-Pito	t Check	0.0 0.0	0	7 <u>3</u> 73	7H2O 1H2O	<u> Kt3105</u>	1-1-151	1 ort	9.5	2	
Вох Ор	<u>8</u> 5	Noz ID N	6.	4	Probe N	Sec. 1	P-5-1						
Probe Op.	<u>FM</u>	Noz. Dian	1.	, 31Z									
	1994 (ALT)								. <u></u>				
A CONTRACTOR OF A CONTRACTOR OF		to be a set of the set	an share a sha	1	Constantial Strength (70.7543 4.55 5.55				····. ···. ····		فاطر فكالمستج يستحصانه	

ł

TRAVERSE DATA SHEET

			No.										
PLANTING	p	EFCO /	SWA	Biese	kols		RUN#1		12~m	5/202	- Pr	<u>e 4</u>	
LOCATION		West &				12	DATE :		6	/25/	13		
EliteriNo			Fliter Tar	e Wt.			ca da Tiraj	b No.		1.11.11.11.11.11.11.11.11.11.11.11.11.1			REPORT OF THE
IMP-1- (INT)	\bigcirc	TRAVERSE	DELTA	IDELTA "	DRY GA	S METER	STACK	METER	FILTER	PROBE		a MP	
IMP-2-(INT)	Ø	POINT			N.		NTEMP (F)	READING	BOX		TELETER		VAO N
	100	<u>Al</u>	. 19	1.0	90	90	242		242	246	<u>84</u>	66	2
MP4 (INT) X		2	.19		91	91	ZUS	462.6	240	247	83	62	~~
IMPES (INT)	778	3	,20		91	91	252	464.7	248	246	81	62	22
IMP-6: (INT) -		4	.20		92	92	254	467.8	247	244	79 78	63	2
IMP-7.4(INT)		5	121		92	92	245	4704	247	244	80	67	2
	149		,20		92	92	Z48 Z44	475.9	249	242	81	68	2
MP-1 (FIN)		Bt Z	121	<u> </u>	<u>93</u> 93	93 93	243	47 9.0	ZNG	244	83	60	2
IMP-2: (EIN) IMP-3: (EIN)	106	23	20.		13	93	242	481.6	7.49	2.441	83	61	î.
IMP-3 (FIN) IMP-4 (FIN)/(3		4	.21		94	94	249	484,B	248	245	BO	60	2
IMP-5 (FIN)		4	22.		94	94	252	1819	246	245	80	60	2
IMP 6 (FIN)	经 。 新	<u> </u>	.23		94	94	250	409.4	247	247	79	61	Z
IMP-7: (FIN) -		Q			<u> </u>	/							
and a second second													
Rstack .	41												
Baro, Rres	30.1												
TESTILENGTH	62					ļ							
FINAL METER-	<u>ti sitin</u>												
492.72	A DESCRIPTION OF THE PARTY OF THE												
INTIAL METER													
460.501					<u> </u>						<u> </u>		
	م المراجع				 						<u> </u>		
BEGINTIME	1057						 				<u> </u>	+	
ÊND TIME	1204		:										
ENDTIME	1201		<u> </u>			I					<u> </u>		
Relationship	NIA	Proleak		0,015	- @ .	12	////i	Notes					
Box #		Postiliea Pre-Phot	k Check	NIA	@ @	~ /µ-	"Ho "H2O	Per usa	@ 102 : @ 1134	<u>5 (Po</u> 1	of them	ige)	
Y Delta H	204	Presentor	of Check	0.0 0.0	@	>3	4H2O	<u>n csp./r</u>	(<u>* 11,99</u>				
Box Op.	NG	Noz IDIN	lõ.	4	Probe		P-5-1		·		• 1		
<u>Brobe Op</u>	77	Noz Dia	<u> </u>	,312									<u></u>
						1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 -	1987						
		SALES AND			100 Mar 10 Mar 10	teres and the second	91 <u></u>	<u></u>		5			

8 2 NEFCO / SwA Brasolids 270 #2 Shel Client/Site: Source:

Upscale (seconds):

RM Response Time:

Andrew Seele 6/24/13 Operator: Date:

,

202 Downscale (seconds):

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

Analyzer Calibration Error (ACE) – Reference Method

	2	Low	2	Mid	High/Full	High/Full Scale (CS)
Pollutant/Diluent	Cylinder Value (C _v)	Analyzer Response (C _{DIR})	Cyfinder Value (C _v)	Analyzer Response (C _{DIR})	Cylinder Value (C _v)	Analyzer Response (C _{DIR})
Oxygen	0.00	0.11	10.49	10.53	26.02	204/
Carbon Dioxide	00.00	که. ه	9.45	9.40	18.69	1269

Range selected for analyzer operation:

SO ₂ (ppm)	1
NO _x (ppm)	
CO (ppm)	
CO ₂ (%)	20
02 (%)	25

Analyzer Calibration Error (ACE) Acceptance Criteria: 5± 2%

Where: ACE = [($C_{Dir} - C_v$)/CS] * 100%

	Diluent/Pollutant	Expiration
Cylinder No.	Concentrations(s)	Date
Cc 421 B6 3	70.42 0 / 12.65 (UL	oz/2/11
5 42 10 SG	10,49 02 / 9.45 102	11/2/20
		f 1

Protocol Gases Used During Program:

Stack Sw Q-240 42 MEFCG Client/Site: Source:

U2 - MS-1961

Run Number:

Start Time: End Time:

1718 1823

Operator: Date:

20

• • •

Assessments – Reference Method
System Bias (SB)/Drift (D) Assessm

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final Zero	Zero	Final Sp	Final Span (C _{MA})
PollutantDiluent	Cylinder Value (Cv)	Analyzer Response (C _S)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _S)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	0.15	10.49	45.01	0.00	41.0	10.49	10.01
Carbon Dioxide	0.00	0.14	9.45	9.40	0.00	0.05	9.45	9.37

NO _x (ppm) SO ₂ (ppm)
CO (ppm)
CO2 (%)
02 (%)

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{D_{12}})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: <= 3% of span, where

 $D = [SB_{final} - SB_i]$

Client/Site: NEFCO / SWA Source: 7270 #2 Stuck

U2- M5-PRE 2

Run Number:

Start Time: End Time:

(854 2023

Operator: Date:

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _v)	Anahyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	00.0	0.7	الم.49	10,01	00.00	0,12	10.49	501
Carbon Dioxide	0.00	٥.٥	9.45	4.37	0.00	0.07	5.45	9.36

	[
SO ₂ (ppm))
NO _x (ppm)	
CO (ppm)	ł
CO ₂ (%)	20
O ₂ (%)	15

Sampling System Bias (SB) Criteria: 44 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dit})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: $\leq \pm 3\%$ of span, where $D = |SB_{Invl} - SB_l|$

Client/Site: NEFro / Sup Biosolids Source: RTD #2 + +/

Operator: Andrew Serke Date: 6/25/13

4 N Downscale (seconds):

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

20

Upscale (seconds):

RM Response Time:

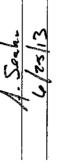
Analyzer Calibration Error (ACE) – Reference Method

Dollintant/Dilinant		Low	2	Mid	High/Full	High/Full Scale (CS)
	Cylinder Value (C _v)	Analyzer Response (C _{DIR})	Cylinder Value (C _v)	Analyzer Response (C _{olR})	Cylinder Value (C,)	Analyzer Response (C _{bin})
Oxygen	0.00	0,10	10.49	10.50	20.42	20.43
Carbon Dioxide	0.00	12.2	9.45	9.41	18.69	18.70
		3				

Range selected for analyzer operation:

SO ₂ (ppm)	١
NO _x (ppm)	1
CO (ppm)	
CO ₂ (%)	20
O ₂ (%)	52

Analyzer Calibration Error (ACE) Acceptance Criteria: 5±2%


Where: ACE = $[(C_{Dir} - C_v)/CS] * 100\%$

Expiration Date	"/2/10	11/2/10			
Diluent/Pollutant Concentrations(s)	20.42.02 / 18.69 Car 11/2/20	10.4902 / 9.45102	*		
Cylinder No.	(c 421863	62912620			

Protocol Gases Used During Program:

NEFLO / SWA BLOSALIAS PTO #2 Stuck Client/Site: Source:

Operator: Date:

1000

U2- M5 202 - Dre 3 Run Number.

Start Time: End Time:

. -

-

-

grs 1201

System Bias (SB)/Drift (D) Assessments – Reference Method

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final Zero	Zero	Final Sp	Final Span (C _{MA})
Pointantubluent	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	50.0	lo.49	10.50	0.00	0.11	10.49	10.52
Carbon Dioxide	0.00	0.11	9.45	9.41	00.0	01.0	9.45	9.39
							-	
					-			

02 (%)	CO2 (%)	СО (ррт)	NO _x (ррт)	ыт) SO ₂ (ррт)
25	02	ł		١

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

 $\mathbf{D}=[\mathbf{S}\mathbf{B}_{\mathbf{final}}-\mathbf{S}\mathbf{B}_{\mathbf{i}}]$

Zero and Calibration Drift (D) Criteria: ≤± 3% of span, where

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

Client/Site: NEFCO/SWA Siuse/1265 Source: RTO #2 Stree

Operator. Date:

See ye <u> (125 |17</u>

UZ- MS ZOZ-PRE4	lo55	1204
Run Number:	Start Time;	End Time;

System Bias (SB)/Drift (D) Assessments - Reference Method

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
Poliurant Uliuent	Cylinder Value (C _v)	Analyzer Response (C ₅)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)
Oxygen	0.00	0.11	(c, Yg	1052	0.00	601	10.44	10,51
Carbon Dioxide	0.00	0.10	9.45	9.39	0.00	0.1%	545	3,42
							-	

	1
SO2 (ppm)	١
NO _x (ppm)	١
CO (ppm)	1
CO ₂ (%)	02
O ₂ (%)	15

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: SB = [($C_s \sim C_{Dir}$)/CS] * 100%

Zero and Calibration Drift (D) Criteria: ≤± 3% of span, where

 $D = [SB_{final} - SB_{i}]$

A3 RTO / Dryer No. 1 Pre-Compliance Emissions Data (6/26/13)

PARTICULATE EMISSION CALCULATION SHEET

11 J.	PLANT:] LOCATION:	NEFCO / SWA West Palm Be		1	JN # : ATE:		1-M5-Pre5 26-Jun-13	
NUMBER :	<u>FILTER</u> 1429	<u>BEAKER</u> Z1			BLAN FILTER 1445	IKS	BEAKER B5-48	
FINAL :	0.4425	70.0041			0.4408		67.0280	
TARE :	0.4397	70.0023	.* *. 		0.4408	•	67.0279	-
NET :	0.0028	0.0018	· · · · · · · · · · · · · · · · · · ·		0.0000		0.0001	
		VOLUME BLA VOLUME OF I					130 120	
Mn - Ar = N			CO2		7.9	59 52 77 ft		
Mn = Ar = <u>Mn =</u>	4.600 0.092 4.600 not	blank corr	Vs = As = Vm std :		7.(07 ft		
Ar = Mn =	0.092		As = Vm std :		7.(07 ft 09 D	2 .	
Ar = Mn =	0.092 4.600 not		As = Vm std : Ts)		7.(47.(07 ft 09 D 46 83	2 ISCF	
Ar = <u>Vin =</u> Qs =	0.092 4.600 not 3600(1-Bwo)(Vs) 3600 (Vs) (As)	(As)(17.64)(Ps/	As = Vm std : Ts)		7.(47.(07 ft 09 D 46 83 73	2 ISCF DSCFH ACFH	
Ar = <u> Μn =</u> Ωs = Cs =	0.092 4.600 not 3600(1-Bwo)(Vs) 3600 (Vs) (As) ACFH / 60	(As)(17.64)(Ps/) / (Vm Std)	As = Vm std : Ts)		7.(47.(46584 80838 134	07 ft: 09 D 46 83 73 07	2 SCF DSCFH ACFH ACFH	SCF
Ar = <u>Mn =</u> Ωs = Cs =	0.092 4.600 not 3600(1-Bwo)(Vs) 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (Mn)	(As)(17.64)(Ps/) / (Vm Std)	As = Vm std : Ts)		7.(47.(46584 80836 134 2.15396E-(07 ft 09 D 46 83 73 07	2 SCF DSCFH ACFH ACFH ACFM LB/SCF	SCF
Ar = <u>Mn =</u> Qs = Cs = Cs' = Cs' =	0.092 4.600 not 3600(1-Bwo)(Vs) 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (Mn) 0.0154 (Mn) /(Vi	(As)(17.64)(Ps/) / (Vm Std) mStd)	As = Vm std : Ts)		7.(47.(46584 80838 134 2.15396E-(0.00	07 ft 09 D 46 83 73 07 15 45	2 SCF DSCFH ACFH ACFM LB/SCF GRAINS/S	

PARTICULATE EMISSION CALCULATION SHEET

	et de la calendaria.	· · · ·	BLANK	S
FILTER NUMBER : 1435	BEAKER BS-8		<u>FILTER</u> 1445	BEAKER B5-48
FINAL : 0.4559	69.8986		0.4408	67.0280
TARE : 0.4538	69.8969		0.4408	67.0279
NET : 0.0021	0.0017		0.0000	0.0001
	VOLUME BLANK I VOLUME OF RINS			130 110
Mn - Ar = Mn Mn = 3.800 Ar = 0.085)2 = =	8.52 7.54 31.31 7.07 45.65	ft2
	blank corr)(As)(17.64)(Ps/Ts)	=	468007	DSCFH
3600 (Vs) (As) ACFH / 60	J(~3)(11.04)(1313)		796811.376 13280	ACFH ACFM
Cs = (2.205 E-6) (Mr	n) / (Vm Std)		1.83545E-07	LB/SCF
Cs' = 0.0154 (Mn) /(\	/mSTD)	en di 🚊 Ngana se s	0.0013	GRAINS/SCF
Cs' = Mn / VmStd			2.94	mg/dscm
Cs' @ = Mn / Vm Std x 20).9-7/20.9-O2%		3.30	mg/dscm @7% O2
7% O2 PMR = QsxCs			0.086	LB/HR

.

PLANT LOCATION	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : DATE :	U1-M5-Pre7 26-Jun-13
FILTER NUMBER: 1436	<u>BEAKER</u> 03-14	BLANK <u>FILTER</u> 1445	S <u>BEAKER</u> B5-48
=INAL : 0.4610	67.4111	0.4408	67.0280
TARE : 0.4574	67.4101	0.4408	67.0279
NET : 0.0036	0.0010 VOLUME BLANK RINSE VOLUME OF RINSE	0.0000	0.0001 130 125
Mn = 4.600 Ar = 0.096 Mn = 4.600 n	Vs = AS = Vm std= ot blank corr	7.07	ft/sec ft2 DSCF
VIII = 4.000 II			
	/s)(As)(17.64)(Ps/Ts) =	488963 841063.8901 14018	DSCFH ACFH ACFM
Qs = 3600 (1-Bwo)(\ 3600 (Vs) (As) ACFH / 60	√s)(As)(17.64)(Ps/Ts) = = =	841063.8901	ACFH ACFM
Qs = 3600 (1-Bwo)(\ 3600 (Vs) (As) ACFH / 60	√s)(As)(17.64)(Ps/Ts) = = = Mn) / (Vm Std) =	841063.8901 14018	ACFH ACFM LB/SCF
Qs = 3600 (1-Bwo)(3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (N Cs' = 0.0154 (Mn) /	√s)(As)(17.64)(Ps/Ts) = = = Mn) / (Vm Std) =	841063.8901 14018 2.1105E-07	ACFH ACFM LB/SCF
Qs = 3600 (1-Bwo)(3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (N Cs' = 0.0154 (Mn) /	Vs)(As)(17.64)(Ps/Ts) = = = Mn) / (Vm Std) = (VmSTD) =	841063.8901 14018 2.1105E-07 0.0015	ACFH ACFM LB/SCF GRAINS/SCF

.

As (SQFT) : Dn (INCHES) PITOT COEFFICIENT: MP-1 (INT) : MP-2 (INT) : MP-4 (INT) : MP-1 (FIN) : [MP-2 (FIN) :	7.069 0.351 0.84 100 100 811.5 331 112	TRAVERSE POINT A1 2 3 4 5 6 8 1 2 3 4	VELOCITY HEAD 0.18 0.23 0.23 0.25 0.22 0.18 0.20 0.22	SQUARE ROOT 0.42 0.48 0.48 0.50 0.47 0.42 0.45	DELTA 1.80 2.30 2.30 2.50 2.20 1.80	DRY GA IN 94 94 94 93 94 94 94	S METER OUT 94 94 94 93 93 94	245 272 279 294 279
Dn (INCHES) PITOT COEFFICIENT: MP-1 (INT) : MP-2 (INT) : MP-3 (INT) : MP-4 (INT) : MP-1 (FIN) :	0.351 0.84 100 100 0 811.5 331 112	POINT A1 2 3 4 5 6 8 1 2 3	HEAD 0.18 0.23 0.23 0.25 0.22 0.18 0.20	ROOT 0.42 0.48 0.48 0.50 0.47 0.42 0.45	1.80 2.30 2.30 2.50 2.20 1.80	94 94 94 93 94	оит 94 94 93 94	<u>темр (F)</u> 245 272 279 294 279
Dn (INCHES) PITOT COEFFICIENT: MP-1 (INT) : MP-2 (INT) : MP-3 (INT) : MP-4 (INT) : MP-1 (FIN) :	0.84 100 100 0 811.5 331 112	A1 2 3 4 5 6 81 2 3	0.18 0.23 0.23 0.25 0.22 0.18 0.20	0.42 0.48 0.48 0.50 0.47 0.42 0.45	1.80 2.30 2.30 2.50 2.20 1.80	94 94 94 93 94	94 94 94 93 94	272 279 294 279
MP-1 (INT) : [MP-2 (INT) : [MP-3 (INT) : [MP-4 (INT) : [MP-1 (FIN) : [MP-2 (FIN) : [100 100 0 811.5 331 112	2 3 4 5 6 B1 2 3	0.23 0.23 0.25 0.22 0.18 0.20	0.48 0.48 0.50 0.47 0.42 0.45	2.30 2.30 2.50 2.20 1.80	94 94 93 94	94 94 93 94	272 279 294 279
MP-2 (INT) : [MP-3 (INT) : [MP-4 (INT) : [MP-1 (FIN) : [MP-2 (FIN) : [100 0 811.5 331 112	2 3 4 5 6 B1 2 3	0.23 0.23 0.25 0.22 0.18 0.20	0.48 0.48 0.50 0.47 0.42 0.45	2.30 2.30 2.50 2.20 1.80	94 94 93 94	94 94 93 94	272 279 294 279
MP-2 (INT) : [MP-3 (INT) : [MP-4 (INT) : [MP-1 (FIN) : [MP-2 (FIN) : [100 0 811.5 331 112	3 4 5 6 B1 2 3	0.23 0.25 0.22 0.18 0.20	0.48 0.50 0.47 0.42 0.45	2.30 2.50 2.20 1.80	94 93 94	94 93 94	279 294 279
MP-3 (INT) : [MP-4 (INT) : [MP-1 (FIN) : [MP-2 (FIN) : [0 811.5 331 112	4 5 6 B1 2 3	0.25 0.22 0.18 0.20	0.50 0.47 0.42 0.45	2.50 2.20 1.80	93 94	93 94	294 279
MP-3 (INT) : [MP-4 (INT) : [MP-1 (FIN) : [MP-2 (FIN) : [0 811.5 331 112	5 6 B1 2 3	0.22 0.18 0.20	0.47 0.42 0.45	2.20 1.80	94	94	279
MP-4 (INT) : [MP-1 (FIN) : [MP-2 (FIN) : [811.5 331 112	6 B1 2 3	0.18 0.20	0.42 0.45	1.80		04	074
MP-1 (FIN):	<u>331</u> 112	2 3			0.00		94	271
MP-2 (FIN):	112	3	0.22		2.00	93	93	262
MP-2 (FIN):	112			0.47	2,20	93	93	284
		A 1	0.22	0.47	2.20	92	92	271
		4	0.24	0.49	2.40	92	92 92	273 280
		5	0.23 0.22	0.48 0.47	2.30 2.20	92 92	92 92	260 267
MP-3 (FIN) :	4	6	0.22	0.47	2.20	JZ	ΞZ	207
MP-4 (FIN) :	816.0							
% СО2 (ОИТ):	7.52							
% О2 (ОИТ) :	8.59							
% со (оит) :	0							
Pbar	30.0							
Pstack	-0.42							
	12							
TEST LENGTH	60							
FINAL METER	710.099							
	659.777							
BEGIN TIME	9:00							
END TIME	10:03							
	AVERAGE:		0.22	0.47	2.18	93.1	93.1	273.1

PLANT LOCATION :		SWA Bios alm Beach,		· · ·	RUN#: DATE:		J1-M5-Pi 26-Jun-′	
LUCATION	Westr	ann Deach,			DATE .		20 <u>-</u> 5411-	
		·····			,r			
As (SQFT)	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA		SMETER	STACK
Dn (INCHES) PITOT COEFFICIENT:	0.351	POINT	HEAD	ROOT	H .	IN.	OUT	TEMP (F)
FITOT GOEFFIGIENT.		A1	0.22	0.47	2.20	92	92	279
IMP-1 (INT) :	100	2	0.22	0.47	2.20	91	91	272
		3	0.21	0.46	2.02	92	92	283
IMP-2 (INT) :	100	4	0.22	0.47	2.11	92	92	268
	· · · · · · · · · · · · · · · · · · ·	5	0.21	0.46	2.02	92	92	266
IMP-3 (INT) :	0	6	0.18	0.42	1.73	92	92	273
IMP-4 (INT) :	805.0	B1	0.22	0.47	2.11	93	93	270
		2	0.22	0.47	2.11	93	93	271
IMP-1 (FIN) :	300	3	0.23	0.48	2.21	94	94	277
	· · · · · · · · · · · · · · · · · · ·	4	0.22	0.47	2.11	94	94	270
IMP-2 (FIN) :	112	5	0.21	0.46	2.02	94	94	271
IMP-3 (FIN):	4	6	0.20	0.45	1.92	94	94	269
IMP-4 (FIN) :	811.0							
% CO2 (OUT):	7.54							
% O2 (OUT) :	8.52							
% CO (OUT) :								
Pbar	30.0							
Pstack	-0.42							
NUMBER OF POINTS	12							
TEST LENGTH	60							
FINAL METER	759.140							
INTIAL METER	710.371							
BEGIN TIME	10:20							
END TIME	11:27							
· · · ·	AVERAGE:		0.21	0.46	2.06	92.8	92.8	272.4

.

PLANT : LOCATION :		/ SWA Bios alm Beach,			RUN # : DATE :		J1-M5-Pi 26-Jun-′	
······································								
As (SQFT)	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	DRY GA	S METER	STACK
Dn (INCHES)	0.351	POINT	HEAD	ROOT	· H	IN	ουτ	TEMP (F)
PITOT COEFFICIENT:	0.84							
		A1	0.20	0.45	1.92	93	93	262
IMP-1 (INT) :	100	2	0.18	0.42	1.73	93	93	269
	100	3	0.22 0.24	0.47 0.49	2.11 2.30	94 93	94 93	270 268
IMP-2 (INT) :		4 5	0.24	0.49	2.30	93 94	93 94	200
IMP-3 (INT) :		6	0.24	0.50	2.40	94	94 94	279
		U U	U.LO	0.00	E	•••	•••	
IMP-4 (INT) :	816.0	B1	0.27	0.52	2.59	94	94	280
		2	0.27	0.52	2.59	94	94	271
IMP-1 (FIN) :	324	3	0.26	0.51	2.50	94	94	272
		4	0.26	0.51	2.50	94	94	272
IMP-2 (FIN) :	114	5	0.24	0.49	2.30	94	94	266
		6	0.22	0.47	2.11	94	94	270
IMP-3 (FIN) :	2							
IMP-4 (FIN) :	824.0							
1191 2- 4 (FIN) ;	024.0							
% CO2 (OUT):	7.42							
// 002 (001).								
% O2 (OUT) :	8.64							
% CO (OUT) :	0							
Pbar	30.0							
Pstack	-0.40							
NUMBER OF POINTS	12							
TEST LENGTH	60							
FINAL METER	810.801							
INTIAL METER	759.393							
BEGIN TIME	11:48							
	12:52							
	12:52							
· · · · · · · · · · · · · · · · · · ·	AVERAGE:		0.24	0.49	2.28	93.8	93.8	271.7
	AVENAGE.	I	V.24	V.43	2.20	33.0	00.0	

- -

· ·--

. .

	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : U1-M5-Pre5 DATE : 26-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vm (CF) = 50.322 DELTA H (ABS) = 30.16 Ps (ABS) = 29.97 SQRT DELTA P = 0.4667 Y = 0.9728 An = 0.00067
Vm std =	17.64 (Vm)(Y)(DELTA H ABS (Tm)	<u>) =</u> 47.090 DSCF
Vw std =	.04707 (VI TOT)	= 11.838 CF
Bwo =	Vw std / (Vw std) + (Vm std)	= 0.201
Bwo =	by steam tables	= NA
1 - Bwo =	1 - Bwo	= 0.799
Md (DRY)=	0.44 (% CO2) +	
	0.32 (% O2) +	
	0.28 (% CO) +	
	0.28 (% N2)	MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	= 27.227 LB/LB MOLE
G =	SQRT (Ts/Ps/Ms)	= 0.948
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 31.767 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts	s) = 465846 DSCFH
% ISO =	100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-	= 106.3 Bwo)

Ts(°F) = Ts(°R) = Tm(°F) = Tm(°R) =	732.4 % O2 = 8.52 DELTA H 92.8 % CO = 0 Ps (ABS)	= 48,769 H (ABS) = 30,15 S) = 29.97 ELTA P = 0.4617
VI (TOT) = VI (adj) =	222.0 Cp = 0.84 Y NA TIME = 60 An	= 0.9728 = 0.000672
Vm std =	17.64 (Vm)(Y)(DELTA H ABS) = (Tm)	2 45.651 DSCF
Vw std =	.04707 (VI TOT)	= 10.450 CF
Bwo =	Vw std / (Vw std) + (Vm std) =	0.186
Bwo =	by steam tables =	NA
1 - Bwo =	1 - Bwo =	0.814
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	29.548 LB/LB MOLE
Ms (WET)= G =	MD (1-Bwo) + 18 (Bwo) = SQRT (Ts/Ps/Ms) =	27.397 LB/LB MOLE 0.944
Vs =	85.49 (Cp) (G) (SQRT DELTA P) =	31.313 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = 100 (Ts) (Vm std) (Pstd) =	468007 DSCFH 102.6

	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : DATE :	U1-M5-Pre7 26-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =		Ps (ABS)	(ABS) = 30.17
Vm std =	17.64 (Vm)(Y)(DELTA H ABS) (Tm)) =	48.060 DSCF
Vw std =	.04707 (VI TOT)	=	11.673 CF
Bwo =	Vw std / (Vw std) + (Vm std)	· · · · · · · · · · · · · · · · · · ·	0.195
Bwo =	by steam tables	=	NA
1 - Bwo =	1 - Bwo	=	0.805
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)		29.533 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	=	27.279 LB/LB
G =	SQRT (Ts/Ps/Ms)	=	MOLE 0.946
√s =	85.49 (Cp) (G) (SQRT DELTA P)		33.052 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)) =	488963 DSCFH
% ISO =	<u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1-E		103.4

·····

Analyzer Calibrations

		DATE :	26-JL	n-13	
LOCATION : West	Palm Beac	sh, FL			· · · · · · · · · · · · · · · · · · ·
	<u> </u>	····			
Diluent/Pollutant	O ₂	CO2			
Units	%	%			
Monitor Range Selected	25	20			
Monitor Range (Effective, per Method)	20.42	18.69			
Low Level	Analyzer C	alibration l	Error		
Cylinder Value (C _{v,Low})	0.00	0.00	1. · · ·	· · · · · · · · · · · · · · · · · · ·	
Analyzer Response (C _{Dir,Low})	0.09	0.14	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Analyzer Calibration Error (ACE,Low)	0.44	0.75			
Calibration Status (Pass/Fail)	Pass	Pass			·
Mid Level	Analyzer Ca	alibration E	rror	· · · · · · · · · · · · · · · · · · ·	
Cylinder Value (C _{v,Mld})	10.49	9.45			
Analyzer Response (C _{DIr,Mid})	10.55	9.44			
Analyzer Calibration Error (ACE, Mid)	0.29	-0.05	-		
Calibration Status (Pass/Fail)	Pass	Pass			
High Level	Analyzer C	alibration E	Error		
Cylinder Value (C _{v,High})	20.42	18.69			
Analzyer Response (C _{Dir,High})	20.43	18.68			
Analyzer Calibration Error (ACE, _{High})	0.05	-0.05			
Calibration Status (Pass/Fail)	Pass	Pass			-
Cylinder Gas	s Selected f	or Bias Ch	ecks		
Use Mid (M) or High (H) Span	M	М			
ZERO	0.09	0.14			
SPAN	10.55	9.44			
Mid Level	Gas Range	Assessme	nt		
Cylinder Value (Mid)	10.49	9.45			
Cylinder Value (High/Span)	20.42	18.69			
Percentage of Span (%)	51.4	50.6			
Assessment Status (Pass/Fail)	Pass	Pass			

CAS START TIME : 9:00 END TIME : 9:00 Instrument Span = 20.42 Analyzer Zero Response = 0.09 Initial Sytem Zero Response = 0.10 Final System Zero Response = 0.10 Initial Sytem Zero Response = 0.10 Initial Sytem Span Response = 0.10 Initial Sytem Span Response = 0.10 Initial Sytem Span Response = 10.55 Final System Span Response = 10.52 Final System Span Response = 10.55 Final System Span Response = 10.55 Final System Span Response = 10.54 Average Span Response (Cm) = 10.49 Average Span Response (Cm) = 10.49 System Bias and Drift Calculations 0.00 Initial Zero Bias (SB _{in}) = 0.05 Erinal Span Bias (SB _{in}) = 0.15 Span Drift (D) = 0.15 Outcorrected Ave. (C_{Avg}^{-1}) 8.64 T.52 8.59 7.52	PLANT : NEFCO / SWA LOCATION : West Palm Bea			RUN # : U DATE : 26		: ' : '
END TIME : 10:03 Diluent/Pollutant: O_2 (%) CO_2 (%) Instrument Span = 20.42 18.69 Analyzer Zero Response = 0.09 0.14 Analyzer Span Response = 0.09 0.14 Initial Sytem Zero Response = 0.09 0.10 Average Zero Response = 0.09 0.10 Average Zero Response = 0.10 0.11 Initial Sytem Span Response = 10.55 9.44 Average Zero Response = 0.10 0.11 Initial Sytem Span Response = 10.52 9.45 Final System Span Response = 10.55 9.41 Average Span Response (Cm) = 10.54 9.43 Callbration gas values (Cme) = 10.49 9.45 System Bias and Drift Calculations 0.05 0.11 Initial Zero Bias (SB _{tinal}) = 0.05 0.11 Initial Span Bias (SB _{tinal}) = 0.05 0.11 Initial Span Bias (SB _{tinal}) = 0.05 0.16 System Dian Bias (SB _{tinal}) = 0.15 0.21		GAS	•	11.11. J.M.		
Diluent/Pollutant: O_2 (%) CO_2 (%) Instrument Span = 20.42 18.69 Analyzer Zero Response = 0.09 0.14 Analyzer Span Response = 10.55 9.44 Initial System Zero Response = 0.10 0.12 Average Zero Response (C ₀) = 0.10 0.11 Initial Sytem Span Response = 10.52 9.45 Final System Span Response = 10.55 9.41 Average Span Response = 10.55 9.41 Average Span Response = 10.55 9.41 Average Span Response = 10.55 9.43 Callbration gas values (C _m) = 10.49 9.45 System Bias and Drift Calculations 10.49 9.45 Initial Zero Bias (SB ₁) = 0.05 0.11 Final Zero Bias (SB ₁) = 0.00 0.21 Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _{1mal}) = 0.00 0.15 Span Drift (D) = 0.15 0.21 Uncorrected Ave. (C _{Avg}) = 8.64 7.53 orrected Ave. = C _{gas}						
Instrument Span = 20.42 18.69 Analyzer Zero Response = 0.09 0.14 Analyzer Span Response = 10.55 9.44 Initial Sytem Zero Response = 0.09 0.10 Average Zero Response (C _o) = 0.10 0.11 Initial Sytem Span Response = 0.09 0.10 Average Zero Response (C _o) = 0.10.55 9.44 Initial Sytem Span Response = 0.09 0.10 Average Span Response = 10.52 9.45 Average Span Response = 10.55 9.41 Average Span Response = 10.54 9.43 Calibration gas values (C _{ma}) = 10.49 9.45 System Bias and Drift Calculations 10.49 9.45 Initial Zero Bias (SB _i) = 0.05 0.11 Final Zero Bias (SB _{inal}) = 0.00 0.21 Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _{inal}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. (C _{Avg}) = 8.64 7.53 orrected Ave. =C _{gas} = (C _{Avg} -C _o)(C _{ma} /(C _m -C _o)) = 8.59	END TIME	10:03		- 1145		
Instrument Span = 20.42 18.69 Analyzer Zero Response = 0.09 0.14 Analyzer Span Response = 10.55 9.44 Initial System Zero Response = 0.09 0.10 Average Zero Response (C _o) = 0.10 0.11 Initial System Zero Response = 0.09 0.10 Average Zero Response (C _o) = 0.152 9.45 Final System Span Response = 10.52 9.45 Average Span Response = 10.54 9.43 Calibration gas values (C _{ma}) = 10.49 9.45 System Bias and Drift Calculations 0.05 0.11 Initial Zero Bias (SB _i) = 0.05 0.11 Final Span Bias (SB _i) = 0.05 0.11 Initial Span Bias (SB _i) = 0.05 0.11 Initial Span Bias (SB _i) = 0.15 0.05 Final Span Bias (SB _i) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. (C _{Avg}) = 8.64 7.53		0 (0()				
Analyzer Zero Response = 0.09 0.14 Analyzer Span Response = 10.55 9.44 Initial Sytem Zero Response = 0.09 0.10 Final System Zero Response = 0.09 0.10 Average Zero Response (C_0) = 0.10 0.11 Initial Sytem Span Response = 0.09 9.45 Final System Span Response = 10.52 9.43 Average Span Response (C_m) = 10.54 9.43 Calibration gas values (C_{ma}) = 10.49 9.45 System Bias and Drift Calculations 0.05 0.11 Initial Zero Bias (SB_i) = 0.05 0.11 Final Span Bias (SB_i) = 0.05 0.11 Initial Span Bias (SB_i) = 0.05 0.11 Initial Span Bias (SB_i) = 0.15 0.05 Final Span Bias (SB_{inel}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. (C_{Avg}) = 8.64 7.53 orrected Ave. = C_{gas} = ($C_{Avg}^{-1}C_o$)($C_{ma}/(C_m - C_o$)) = 8.59 7.52					i i i i i i i i i i i i i i i i i i i	
Analyzer Span Response = Initial Sytem Zero Response = Final System Zero Response = Average Zero Response (C_0) = 0.1010.559.44 0.12Average Zero Response = Average Zero Response (C_0) = Initial Sytem Span Response = Average Span Response = Average Span Response (C_m) = 				· · · ·		
Initial Sytem Zero Response = Final System Zero Response = Average Zero Response (C_0) = Initial Sytem Span Response = Final System Span Response = Average Span Response = Average Span Response (C_m) = 10.52 9.45 10.55 9.41 10.54 9.43 Calibration gas values (C_{me}) = 10.49 9.45 System Bias and Drift Calculations Initial Zero Bias (SB _i) = Calibration gas values (C_{me}) = 10.49 9.45 0.05 0.11 0.00 0.21 Zero Drift (D) = Initial Span Bias (SB _i) = Final Span Bias (SB _i) = 0.00 0.16 0.15 0.21 Uncorrected Ave. (C_{Avg}) = 8.59 7.52						
Final System Zero Response = Average Zero Response (C_0) = 0.09 0.10 Initial Sytem Span Response = Final System Span Response = Average Span Response (C_m) = 10.52 9.45 Calibration gas values (C_m) = Average Span Response (C_m) = 10.49 9.45 Calibration gas values (C_ma) = Initial Zero Bias (SB _i) = Trinal Zero Drift (D) = Initial Span Bias (SB _i) = 0.00 0.11 Difficult Span Bias (SB _i) = Final Span Bias (SB _i) = Span Drift (D) = Initial Span Bias (SB _i) = 0.05 0.11 Ourcerted Ave. = C _{gas} = (C _{Avg} -C _o)(C _{ma} /(C _m -C _o)) = 8.59 7.52						
Average Zero Response $(C_o) =$ 0.100.11Initial Sytem Span Response =10.529.45Final System Span Response =10.559.41Average Span Response $(C_m) =$ 10.549.43Callbration gas values $(C_ma) =$ 10.499.45System Bias and Drift Calculations10.499.45Initial Zero Bias $(SB_i) =$ 0.050.11Final Zero Bias $(SB_{final}) =$ 0.000.21Zero Drift (D) =0.050.11Initial Span Bias $(SB_i) =$ 0.150.05Final Span Bias $(SB_{final}) =$ 0.000.16Span Drift (D) =0.150.21Uncorrected Ave. $(C_{Avg}) =$ 8.647.53						
Initial System Span Response = Final System Span Response = Average Span Response (C_m) = 10.55 9.41 10.54 9.43 Calibration gas values (C_{ma}) = 10.49 9.45 System Bias and Drift Calculations Initial Zero Bias (SB_i) = 0.05 0.11 Final Zero Bias (SB_{final}) = 0.00 0.21 Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB_{inal}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. (C_{Avg}^{-}) = 8.59 7.52						
Final System Span Response = 10.55 9.41 Average Span Response (C _m) = 10.54 9.43 Calibration gas values (C _{ma}) = 10.49 9.45 System Bias and Drift Calculations 10.49 9.45 Initial Zero Bias (SB _i) = 0.05 0.11 Final Zero Bias (SB _{inal}) = 0.00 0.21 Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _{inal}) = 0.00 0.21 Initial Span Bias (SB _{inal}) = 0.00 0.15 Oncorrected Ave. (C _{Avg}) = 8.64 7.53 orrected Ave. = C _{gas} = (C _{Avg} -C _o)(C _{ma} /(C _m -C _o)) = 8.59 7.52						
Average Span Response (C_m) = 10.54 9.43 Calibration gas values (C_{me}) = 10.49 9.45 System Bias and Drift Calculations 10.49 9.45 Initial Zero Bias (SB _i) = 0.05 0.11 Final Zero Bias (SB _{final}) = 0.00 0.21 Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _i) = 0.15 0.05 Final Span Bias (SB _{final}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. (C_{Avg}) = 8.64 7.53 orrected Ave.= $C_{gas} = (C_{Avg}^{-}C_o)(C_{ma}/(C_m-C_o)) =$ 8.59 7.52						
Calibration gas values (C_{ma}) = 10.49 9.45 System Bias and Drift Calculations 0.05 0.11 Initial Zero Bias (SB _i) = 0.00 0.21 Final Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _i) = 0.05 0.11 Initial Span Bias (SB _i) = 0.05 0.11 Initial Span Bias (SB _i) = 0.15 0.05 Final Span Bias (SB _{final}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. (C _{Avg}) = 8.64 7.53 orrected Ave. =C _{gas} = (C _{Avg} -C _o)(C _{ma} /(C _m -C _o)) = 8.59 7.52						
System Bias and Drift Calculations Initial Zero Bias $(SB_i) =$ 0.050.11Final Zero Bias $(SB_{final}) =$ 0.000.21Zero Drift (D) =0.050.11Initial Span Bias $(SB_i) =$ 0.150.05Final Span Bias $(SB_{final}) =$ 0.000.16Span Drift (D) =0.150.21Uncorrected Ave. $(C_{Avg}) =$ 8.647.53orrected Ave. $= C_{gas} = (C_{Avg}^{-}C_o)(C_{ma}/(C_m^{-}C_o)) =$ 8.597.52		10.01	0,10			
System Bias and Drift Calculations Initial Zero Bias $(SB_i) =$ 0.050.11Final Zero Bias $(SB_{final}) =$ 0.000.21Zero Drift (D) =0.050.11Initial Span Bias $(SB_i) =$ 0.150.05Final Span Bias $(SB_{final}) =$ 0.000.16Span Drift (D) =0.150.21Uncorrected Ave. $(C_{Avg}) =$ 8.647.53orrected Ave. $= C_{gas} = (C_{Avg}^{-}C_o)(C_{ma}/(C_m^{-}C_o)) =$ 8.597.52	Calibration gas values $(C_{}) =$	10.49	Q 45			
Initial Zero Bias (SB _i) = 0.05 0.11 Final Zero Bias (SB _{final}) = 0.00 0.21 Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _i) = 0.15 0.05 Final Span Bias (SB _{final}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. ($\overline{C_{Avg}}$) = 8.64 7.53 orrected Ave.= C_{gas} = ($\overline{C_{Avg}}$ - $\overline{C_o}$)($\overline{C_{ma}}$ /($\overline{C_m}$ - $\overline{C_o}$)) = 8.59 7.52		10.40	0.40			
Final Zero Bias (SB _{final}) = 0.00 0.21 Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _i) = 0.15 0.05 Final Span Bias (SB _{final}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. $(C_{Avg}) =$ 8.64 7.53 orrected Ave. = C _{gas} = $(C_{Avg}^{-}C_o)(C_{ma}/(C_m^{-}C_o)) =$ 8.59 7.52		0.05	0.11			
Zero Drift (D) = 0.05 0.11 Initial Span Bias (SB _i) = 0.15 0.05 Final Span Bias (SB _{final}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. $(C_{Avg}) =$ 8.64 7.53 orrected Ave.=C _{gas} = $(C_{Avg}^-C_o)(C_{ma}/(C_m^-C_o)) =$ 8.59 7.52						
Initial Span Bias (SB _i) = 0.15 0.05 Final Span Bias (SB _{final}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. $(C_{Avg}) =$ 8.64 7.53 orrected Ave. = $C_{gas} = (C_{Avg}^{-}C_o)(C_{ma}/(C_m^{-}C_o)) =$ 8.59 7.52						
Final Span Bias (SB _{final}) = 0.00 0.16 Span Drift (D) = 0.15 0.21 Uncorrected Ave. ($\overline{C_{Avg}}$) = 8.64 7.53 orrected Ave.= C_{gas} = ($\overline{C_{Avg}}$ - $\overline{C_o}$)($\overline{C_{ma}}$ /($\overline{C_m}$ - $\overline{C_o}$)) = 8.59 7.52						
Span Drift (D) = 0.15 0.21 Uncorrected Ave. $(C_{Avg}^{-}) = \frac{8.64}{7.53}$ orrected Ave. $=C_{gas} = (C_{Avg}^{}C_o)(C_{ma}/(C_m-C_o)) = 8.59$ 7.52						
Uncorrected Ave. $(C_{Avg}) = 8.64 7.53$ orrected Ave. $= C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) = 8.59 7.52$		-				
orrected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) = 8.59$ 7.52	Span Drift (D) =	0.15	0.21			
	Uncorrected Ave. $(C_{Avg}) =$	8.64	7.53			
PLANT DATA	orrected Ave.=C _{gas} = (C _{Avg} -C _o)(C _{ma} /(C _m -C _o)) =	8.59	7.52			
	PLANT DATA		· · · ·	· · · .		

PLANT : NEFCO / SWA LOCATION : West Palm Bea			RUN # : L DATE : 2		6	- - -
	GAS	<u> </u>				· · .
START TIME :	10:20	<u>.</u>	···· .	•		·
END TIME :	11:27					
			· · · · · · · · · · · · · · · · · · ·		·· .	
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)		· ·		te ti
Operating Range =	20.42	18.69		-		
Analyzer Zero Response =	0.09	0.14				
Analyzer Span Response =	10.55	9.44				
Sytem Zero Response (Initial) =	0.09	0.10				
System Zero Response (Final) =	0.10	0.12				
Average Zero Response (C _o) =	0.10	0.11				
Sytem Span Response (Initial) =	10.55	9.41				
System Span Response (Final) =	10.56	9.41				
Average Span Response (C _m) =	10.56	9.41				
Calibration gas values (C _{ma}) =	10.49	9.45				
System Bias and Drift Calculations:		0.10				
Initial Zero Bias (SB _i) =	0.00	0.21				
Final Zero Bias (SB _{final}) =	0.05	0.11				
Zero Drift (D) =	0.05	0.11				
Initial Span Bias (SB _i) =	0.05	0.11				
Final Span Bias (SB _{final}) =	0.05	0.16				
Span Drift (D) =	0.05	0.00				
Uncorrected Ave. $(C_{Avg}) =$	8.59	7.53				
prrected Ave.= $C_{gas} = (C_{Avg} C_o)(C_{ma}/(C_m - C_o)) =$	8.52	7.54				
	0,02	r.J7				
PLANT DATA			· · · · · ·			•
			·			

į

ſ

PLANT : NEFCO / SWA LOCATION : West Palm Be				U1-M5-Pre7 26-Jun-13	
	GAS				
START TIME :	11:48	· · · · · · · · · · · · · · · · · · ·		···	
END TIME :	12:52		····· ,		
Diluent/Pollutant:	$O_{2}(\%)$	CO ₂ (%)			·
Operating Range =	20.42	18.69			
Analyzer Zero Response =	0.09	0.14		· · · · · · · · · · · ·	·
Analyzer Span Response =	10.55	9.44			
Sytem Zero Response (Initial) =	0.10	0.12			
System Zero Response (Final) =	0.10	0.10			
Average Zero Response (C _o) =	0.10	0.11			
Sytem Span Response (Initial) =	10.56	9.41			
System Span Response (Final) =	10.57	9.39			
Average Span Response (C _m) =	10.57	9.40			
Calibration gas values (C _{ma}) =	10.49	9.45			
System Bias and Drift Calculations:					
Initial Zero Bias (SB _i) =	0.05	0.11			
Final Zero Bias (SB _{final}) =	0.05	0.21			
Zero Drift (D) =	0.00	0.11			
Initial Span Bias (SB _i) =	0.05	0.16			
Final Span Bias (SB _{final}) =	0.10	0.27			
Span Drift (D) =	0.05	0.11			
· · · · · · · · · · · · · · · · · · ·	0.00	0.11			
Uncorrected Ave. $(C_{Avg}) =$	8.72	7.40			i
prected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{me}/(C_m - C_o)) =$	8.64	7.42	· · · · ·		
		······································	······································	· · · · · · · · · · · · · · · · · · ·	
PLANT DATA			· · ·		
			·······		
					Í

ł

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Location: Run No.	NEFCO / SWA West Palm Bea U1-M5-Pre5	ach, FL	Date: Start Time: Stop Time:	Contract of the second s	
Date/time	O2 (%yd)	CO ₂ (% _{vd})			
6/26/2013 9:00:00 AM	9.02	7.27			
6/26/2013 9:01:00 AM	9.05	7.29			
6/26/2013 9:02:00 AM	9.03	7.32			
6/26/2013 9:03:00 AM	8.98	7.29			
6/26/2013 9:04:00 AM	9.17	7.36			
6/26/2013 9:05:00 AM	9,00	7.31			
6/26/2013 9:06:00 AM 6/26/2013 9:07:00 AM	9.10	7.29			
6/26/2013 9:08:00 AM	9.04 9.00	7.29			
6/26/2013 9:09:00 AM	8.89	7.33			
6/26/2013 9:10:00 AM	9.06	7.40			
6/26/2013 9:11:00 AM	8.69	7.49			
6/26/2013 9:12:00 AM	8.68	7.56			
6/26/2013 9:13:00 AM	8.66	7.52			
6/26/2013 9:14:00 AM	8,60	7.53			
6/26/2013 9:15:00 AM	8.74	7.52	1 .		
6/26/2013 9:16:00 AM	8.73	7.46			
6/26/2013 9:17:00 AM	8,58	7.48			1
6/26/2013 9:18:00 AM	8.68	7.49			
6/26/2013 9:19:00 AM 6/26/2013 9:20:00 AM	8.63 8.47	7.50			
6/26/2013 9:21:00 AM	8.47 8.69	7.49			
6/26/2013 9:22:00 AM	8.71	7.49	1		
6/26/2013 9:23:00 AM	8.69	7.48			
6/26/2013 9:24:00 AM	8.62	7.59			
6/26/2013 9:25:00 AM	8.56	7.58			
6/26/2013 9:26:00 AM	8,42	7.64			
6/26/2013 9:27:00 AM	8.46	7.60			
6/26/2013 9:28:00 AM	8.55	7.57			
6/26/2013 9:29:00 AM	8.56	7.52			
6/26/2013 9:30:00 AM	8.58	7.58			
6/26/2013 9:31:00 AM			Port		
6/26/2013 9:32:00 AM 6/26/2013 9:33:00 AM			Change		
6/26/2013 9:34:00 AM	8.42	7.00			
3/26/2013 9:35:00 AM	8.39	7.66 7.62			
5/26/2013 9:36:00 AM	8.65	7.64	1		
5/26/2013 9:37:00 AM	8,70	7.58			
5/26/2013 9:38:00 AM	8.44	7.65			
5/26/2013 9:39:00 AM	8.34	7.69			
5/26/2013 9:40:00 AM	8.40	7.70			[]
5/26/2013 9:41:00 AM	8.41	7,68			
5/26/2013 9:42:00 AM	8.41	7.65			
5/26/2013 9:43:00 AM	8.53	7.59			j . I
8/26/2013 9:44:00 AM 8/26/2013 9:45:00 AM	8.47	7.62			j l
8/26/2013 9:46:00 AM	8.47 8.44	7.60			
5/26/2013 9:47:00 AM	8,44 8,48	7.62 7.66	ļ		
\$/26/2013 9:48:00 AM	8.48	7.66	[
\$/26/2013 9:49:00 AM	8.44	7.64			
26/2013 9:50:00 AM	8.37	7.66			í l
26/2013 9:51:00 AM	8.50	7.59			
/26/2013 9:52:00 AM	8.46	7.56			
/26/2013 9:53:00 AM	8.57	7.52			
/26/2013 9:54:00 AM	8.54	7.61			
/26/2013 9:55:00 AM	8.52	7.60	[
/26/2013 9:56:00 AM	8,50	7.57			
/26/2013 9:57:00 AM	8.63	7.56			
/26/2013 9:58:00 AM	8.59	7.54	ł]]
/26/2013 9:59:00 AM /26/2013 10:00:00 AM	8.69	7.50			
/26/2013 10:00:00 AM	8.67	7.48			
/26/2013 10:02:00 AM	8.88 8.66	7.52			
	0.00	7.56			
Run Averages:	8.64	7.53	1		I 11

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location: Run No.:	West Palm Bea U1-M5-Pre6	ićh, FL	Date: Start Time: Stop Time:	a state a service of the set of t	
Date/time	O2 (%vd)	CO ₂ (% _{vd})			
6/26/2013 10:20:00 AM		7.54			
6/26/2013 10:21:00 AM		7.52			
6/26/2013 10:22:00 AM 6/26/2013 10:23:00 AM		7.57			
6/26/2013 10:23:00 AM	8,47 8.83	7.57			
6/26/2013 10:25:00 AM	8.45	7.56 7.57		1	
6/28/2013 10:26:00 AM	8,61	7.59]
6/26/2013 10:27:00 AM	8.61	7.58			İ
6/26/2013 10:28:00 AM	8,79	7,57			
6/26/2013 10:29:00 AM	8.64	7.58			1
6/26/2013 10:30:00 AM 6/26/2013 10:31:00 AM	8.57	7,55			
6/26/2013 10:32:00 AM	8.40 8,53	7.61 7.52	1		
6/26/2013 10:33:00 AM	8,44	7.56			
6/26/2013 10:34:00 AM	8,66	7,56			
6/26/2013 10:35:00 AM	8.51	7.57	ļ		
6/26/2013 10:36:00 AM	8.48	7.59			
6/26/2013 10:37:00 AM	8.55	7.59			
6/26/2013 10:38:00 AM	8,68	7.58			ļ
6/26/2013 10:39:00 AM 6/26/2013 10:40:00 AM	8.64 8.47	7.55	1		
6/26/2013 10:41:00 AM	8.47	7.57 7.60]
6/26/2013 10:42:00 AM	8,54	7.56	1		
6/26/2013 10:43:00 AM	8.55	7.56			
6/26/2013 10:44:00 AM	8,54	7,59			
6/26/2013 10:45:00 AM	8.50	7.57			í
6/26/2013 10:46:00 AM	8.32	7.60			
6/26/2013 10:47:00 AM	8.55	7,59			
6/26/2013 10:48:00 AM 6/26/2013 10:49:00 AM	8,38 8,53	7.59			
6/26/2013 10:50:00 AM	0.55	7.61	1		
6/26/2013 10:51:00 AM					
6/26/2013 10:52:00 AM			Port		
6/26/2013 10:53:00 AM			Change		i
6/26/2013 10:54:00 AM					
6/26/2013 10:55:00 AM					
6/26/2013 10:56:00 AM 6/26/2013 10:57:00 AM					
6/26/2013 10:58:00 AM	8.59 8.71	7.42 7.52			1
6/26/2013 10:59:00 AM	8.63	7.52			
6/26/2013 11:00:00 AM	8.60	7.52	}		
6/26/2013 11:01:00 AM	8.47	7.52			
6/26/2013 11:02:00 AM	8.62	7.49			
6/26/2013 11:03:00 AM	8.53	7.51			
6/26/2013 11:04:00 AM 6/26/2013 11:05:00 AM	8.63	7.53			
6/26/2013 11:06:00 AM	8.81 8.63	7.47		ļ	
6/26/2013 11:07:00 AM	8,62	7.51 7.52			
6/26/2013 11:08:00 AM	8.63	7.49			
6/26/2013 11:09:00 AM	8.61	7.54	1		
6/26/2013 11:10:00 AM	8,56	7.51			
6/26/2013 11:11:00 AM	8.66	7.51	1		
6/26/2013 11:12:00 AM 6/26/2013 11:13:00 AM	8.56	7,50			Į.
6/26/2013 11:14:00 AM	8.59 8.68	7.48 7.51			
6/26/2013 11:15:00 AM	8.65	7.51		ľ	1
6/26/2013 11:16:00 AM	8,69	7.49		ļ	
6/26/2013 11:17:00 AM	8.79	7.42		Í	1
6/26/2013 11:18:00 AM	8.74	7.52			
6/26/2013 11:19:00 AM	8.61	7.45			
6/26/2013 11:20:00 AM	8.48	7.54	ļ		
6/26/2013 11:21:00 AM 6/26/2013 11:22:00 AM	8,69	7.46	l I		ĺ
6/26/2013 11:23:00 AM	8.68 8.64	7,50 7,50			
6/26/2013 11:24:00 AM	8,69	7.50	1		ŀ
3/26/2013 11:25:00 AM	8.64	7.45			
3/26/2013 11:26:00 AM	8.67	7.54		ļ	
rerages:	8.59	7.53	Í		í

Ť.

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Date://time Os. CO. 6/29/2013 11:48:00 AM 8.56 7.54 6/29/2013 11:30:00 AM 8.40 7.58 6/29/2013 11:50:00 AM 8.64 7.56 6/29/2013 11:51:00 AM 8.64 7.52 6/29/2013 11:51:00 AM 8.55 7.46 6/29/2013 11:50:00 AM 8.55 7.47 6/29/2013 11:50:00 AM 8.65 7.47 6/29/2013 11:50:00 AM 8.65 7.45 6/29/2013 11:50:00 AM 8.65 7.45 6/29/2013 11:50:00 AM 8.65 7.45 6/29/2013 11:20:00 PM 8.67 7.44 6/29/2013 12:00:00 PM 8.67 7.44 6/29/2013 12:00 PM 8.67 7.44 6/29/2013 12:00	Facility/Site: Location: Run No.:	NEFCO / SWA West Palm Bea U1-M5-Pre7	čh, FL	Date: 0 Start Time: 1 Stop Time: 1	1,48	
9/20/2013 11:40:00 AM 8.40 7:56 9/202013 11:51:00 AM 8.63 7:50 9/202013 11:51:00 AM 8.63 7:50 9/202013 11:52:00 AM 8.65 7:44 9/202013 11:55:00 AM 8.55 7:47 9/202013 11:55:00 AM 8.55 7:47 9/202013 11:55:00 AM 8.65 7:45 9/202013 11:55:00 AM 8.65 7:44 9/202013 11:55:00 AM 8.65 7:44 9/202013 11:55:00 AM 8.62 7:47 9/202013 11:50:00 AM 8.62 7:44 9/202013 12:00 DPM 8.64 7:56 9/202013 12:00 DPM 8.67 7:44 9/202013 12:00 DPM 8.77 7:54 9/202013 12:00 DPM 8.74 7:40 9/202013 12:00 DPM 8.74 7:40 9/202013 12:10:0 DPM 8.97 7:31 9/202013 12:10:0 DPM 8.97 7:21 9/202013 12:10:0 DPM	Date/time					
9/20/2013 11:45:00 AM 8:46 7:56 9/202013 11:51:00 AM 8:58 7:49 9/202013 11:51:00 AM 8:53 7:50 9/202013 11:55:00 AM 8:55 7:47 9/202013 11:55:00 AM 8:55 7:47 9/202013 11:55:00 AM 8:55 7:47 9/202013 11:55:00 AM 8:50 7:45 9/202013 11:55:00 AM 8:50 7:46 9/202013 11:55:00 AM 8:52 7:47 9/202013 12:50:00 AM 8:52 7:47 9/202013 12:00 OPM 8:57 7:54 9/202013 12:00 OPM 8:57 7:54 9/202013 12:00 OPM 8:57 7:40 9/202013 12:00 OPM 8:74 7:40 9/202013 12:00 OPM 8:74 7:40 9/202013 12:10:00 PM 8:74 7:40 9/202013 12:10:00 PM 8:97 7:31 9/202013 12:10:00 PM 8:97 7:21 9/202013 12:10:00 PM	6/26/2013 11:48:00 AM	6.58	7.54			
9/26/2013 11:50:00 AM 8.64 7.49 9/26/2013 11:52:00 AM 8.53 7.50 9/26/2013 11:52:00 AM 8.55 7.48 9/26/2013 11:50:00 AM 8.55 7.47 9/26/2013 11:50:00 AM 8.57 7.51 9/26/2013 11:50:00 AM 8.50 7.43 9/26/2013 11:50:00 AM 8.65 7.44 9/26/2013 11:50:00 AM 8.65 7.44 9/26/2013 11:50:00 AM 8.65 7.44 9/26/2013 12:00:00 PM 8.50 7.44 9/26/2013 12:00:00 PM 8.64 7.42 9/26/2013 12:00:00 PM 8.64 7.43 9/26/2013 12:00 PM 8.64 7.36 9/26/2013 12:00 PM 8.64 7.36 9/26/2013 12:10 PM 8.64 7.27 9/26/2013 12:10 PM </td <td>6/26/2013 11:49:00 AM</td> <td></td> <td>1 · · · ·</td> <td></td> <td></td> <td>í</td>	6/26/2013 11:49:00 AM		1 · · · ·			í
6/26/2013 11:51:00 AM 8.64 7.52 6/26/2013 11:53:00 AM 8.55 7.45 6/26/2013 11:53:00 AM 8.55 7.46 6/26/2013 11:53:00 AM 8.55 7.47 6/26/2013 11:55:00 AM 8.50 7.53 8/26/2013 11:50:00 AM 8.50 7.43 8/26/2013 11:50:00 AM 8.52 7.47 8/26/2013 11:50:00 AM 8.52 7.47 9/26/2013 12:00:00 PM 8.67 7.47 9/26/2013 12:00:00 PM 8.67 7.44 9/26/2013 12:00:00 PM 8.64 7.60 9/26/2013 12:00:00 PM 8.63 7.42 9/26/2013 12:00:00 PM 8.67 7.44 9/26/2013 12:00:00 PM 8.74 7.40 9/26/2013 12:10:00 PM 8.67 7.44 9/26/2013 12:10:00 PM 8.67 7.44 9/26/2013 12:10:00 PM 8.67 7.44 9/26/2013 12:10:00 PM 8.67 7.22 26/2013		8.56	1			
6/26/2013 11:52:00 AM 8.55 7.46 6/26/2013 11:54:00 AM 8.55 7.47 6/26/2013 11:56:00 AM 8.57 7.51 0/26/2013 11:56:00 AM 8.50 7.48 0/26/2013 11:56:00 AM 8.50 7.49 0/26/2013 11:56:00 AM 8.52 7.47 0/26/2013 11:56:00 AM 8.52 7.47 0/26/2013 11:50:00 AM 8.52 7.47 0/26/2013 11:50:00 AM 8.55 7.43 0/26/2013 12:00:00 PM 8.64 7.42 0/26/2013 12:00:00 PM 8.64 7.42 0/26/2013 12:00:00 PM 8.64 7.44 0/26/2013 12:00:00 PM 8.67 7.36 0/26/2013 12:00 OPM 8.67 7.36 0/26/2013 12:10:00 PM 8.67 7.36 0/26/2013 12:10:00 PM 8.67 7.22 0/26/2013 12:10:00 PM 8.69 7.27 0/26/2013 12:10:00 PM 8.69 7.26 0/26/2013	6/26/2013 11:51:00 AM		1			
02/02/03 11:53:00 AM 8:55 7.46 02/02/03 11:55:00 AM 8:57 7.51 02/02/03 11:55:00 AM 8:50 7.43 02/02/03 11:55:00 AM 8:50 7.45 02/02/03 11:50:00 AM 8:50 7.44 02/02/03 11:50:00 AM 8:50 7.44 02/02/03 12:00:00 PM 8:60 7.40 02/02/03 12:00:00 PM 8:67 7.47 02/02/03 12:00:00 PM 8:64 7.50 02/02/03 12:00:00 PM 8:64 7.40 02/02/03 12:00 PM 8:63 7.44 02/02/03 12:00 PM 8:64 7.40 02/02/03 12:10:00 PM 8:64 7.40 02/02/03 12:10:00 PM 8:67 7.41 02/02/03 12:10:00 PM 8:69 7.41 02/02/03 12:10:00 PM	6/26/2013 11:52:00 AM	8,53				
6/26/2013 11:54:00 AM 8.55 7.47 6/26/2013 11:56:00 AM 8.50 7.53 6/26/2013 11:56:00 AM 8.65 7.45 6/26/2013 11:56:00 AM 8.65 7.44 6/26/2013 11:56:00 AM 8.65 7.47 5/26/2013 11:56:00 AM 8.62 7.47 5/26/2013 12:00 PM 8.47 7.45 5/26/2013 12:00 PM 8.67 7.44 5/26/2013 12:00 PM 8.63 7.44 5/26/2013 12:00 PM 8.63 7.44 5/26/2013 12:00 PM 8.74 7.40 5/26/2013 12:00 PM 8.74 7.40 5/26/2013 12:10 PM 8.69 7.21 5/26/2013 12:10 PM 8.67 7.31 5/26/2013 12:10 PM 8.67 7.34 5/26/2013 12:10 PM 8.67 7.36 5/26/2013 12:10 PM 8.67 7.31 5/26/2013 12:10 PM 8.67 7.25 5/26/2013 12:20 PM 8.97	6/26/2013 11:53:00 AM	8,55				ĺ
3/26/2013 11:56:00 AM 8.50 7.53 3/26/2013 11:58:00 AM 8.65 7.49 3/26/2013 11:20:00 PM 8.62 7.47 3/26/2013 12:00:00 PM 8.67 7.45 3/26/2013 12:00:00 PM 8.67 7.44 3/26/2013 12:00:00 PM 8.67 7.44 3/26/2013 12:00:00 PM 8.63 7.42 3/26/2013 12:00:00 PM 8.63 7.42 3/26/2013 12:00:00 PM 8.63 7.42 3/26/2013 12:00:00 PM 8.75 7.43 3/26/2013 12:00:00 PM 8.74 7.40 2/26/2013 12:10:00 PM 8.77 7.36 2/26/2013 12:16:00 PM 8.90 7.27 2/26/2013 12:16:00 PM 8.90 7.27 2/26/2013 12:16:00 PM 8.90 7.25 2/20/2013 12:20:00 PM 8.90 7.25 2/20/2013 12:20:00 PM 8.90 7.25 2/20/2013 12:20:00 PM 8.90 7.25 2/20/2013	6/26/2013 11:54:00 AM	8.55	7.47			
97/26/2013 11:57:00 AM 8.65 7.49 97/26/2013 11:58:00 AM 8.65 7.44 97/26/2013 12:00:00 PM 8.60 7.40 97/26/2013 12:00:00 PM 8.67 7.47 97/26/2013 12:02:00 PM 8.67 7.44 97/26/2013 12:02:00 PM 8.67 7.44 97/26/2013 12:06:00 PM 8.64 7.60 97/26/2013 12:06:00 PM 8.68 7.44 97/26/2013 12:06:00 PM 8.74 7.40 97/26/2013 12:00 PM 8.67 7.43 97/26/2013 12:00 PM 8.77 7.43 97/26/2013 12:100 PM 8.87 7.36 97/26/2013 12:100 PM 8.90 7.27 26/2013 12:100 PM 8.90 7.27 26/2013 12:100 PM 8.90 7.26 26/2013 12:2:00 PM 8.92 7.27 26/2013 12:2:2:00 PM 8.93 7.25 26/2013 12:2:00 PM 8.92 7.27 26/2013 12:2:0	6/26/2013 11:55:00 AM	8.57	7.51			
2/26/2013 11:56:00 AM 8.65 7.45 2/20/2013 12:00:00 PM 8.47 7.45 2/20/2013 12:00:00 PM 8.67 7.47 2/20/2013 12:00:00 PM 8.67 7.45 2/20/2013 12:00:00 PM 8.67 7.54 2/20/2013 12:00:00 PM 8.63 7.42 2/20/2013 12:00:00 PM 8.63 7.42 2/20/2013 12:00:00 PM 8.75 7.43 2/20/2013 12:00:00 PM 8.76 7.43 2/20/2013 12:00:00 PM 8.77 7.36 2/20/2013 12:10:00 PM 8.77 7.36 2/20/2013 12:10:00 PM 8.67 7.43 2/20/2013 12:10:00 PM 8.90 7.24 2/20/2013 12:10:00 PM 8.90 7.24 2/20/2013 12:16:00 PM 8.90 7.24 2/20/2013 12:16:00 PM 8.90 7.22 2/20/2013 12:26:00 PM 8.90 7.22 2/20/2013 12:26:00 PM 8.90 7.25 2/20/2013	3/26/2013 11:56:00 AM	8,50	7.53			ļ
V202013 11:59:00 AM 8.52 7.47 V202013 12:00:00 PM 8.50 7.40 V202013 12:01:00 PM 6.57 7.47 V202013 12:01:00 PM 6.57 7.44 V202013 12:01:00 PM 6.57 7.44 V202013 12:01:00 PM 6.57 7.44 V202013 12:01:00 PM 8.63 7.42 V202013 12:01:00 PM 8.64 7.50 V202013 12:01:00 PM 8.74 7.40 V202013 12:01:00 PM 8.77 7.36 V202013 12:10:00 PM 8.67 7.41 V202013 12:10:00 PM 8.67 7.31 V202013 12:10:00 PM 8.67 7.31 V202013 12:10:00 PM 8.90 7.24 V202013 12:10:00 PM 8.90 7.28 V202013 12:10:00 PM 8.90 7.28 V202013 12:20:00 PM 9.03 7.25 V202013 12:20:00 PM 8.90 7.25 V202013 12:20:00 PM 8.9	26/2013 11:57:00 AM		7.49			
N29/2013 12:00:00 PM 6.67 7.40 V26/2013 12:02:00 PM 6.67 7.45 V26/2013 12:03:00 PM 6.67 7.44 V26/2013 12:03:00 PM 8.54 7.44 V26/2013 12:06:00 PM 8.54 7.44 V26/2013 12:06:00 PM 8.54 7.44 V26/2013 12:06:00 PM 8.75 7.43 V26/2013 12:06:00 PM 8.75 7.43 V26/2013 12:06:00 PM 8.77 7.36 V26/2013 12:10:00 PM 8.87 7.36 V26/2013 12:11:00 PM 8.97 7.31 V26/2013 12:14:00 PM 8.90 7.27 V26/2013 12:16:00 PM 8.90 7.27 V26/2013 12:20:00 PM 8.90 7.27 V26/2013 12:20:00 PM 8.90 7.24 V26/2013 12:20:00 PM	26/2013 11:58:00 AM		1			
W29/2013 12:01:00 PM 8.67 7.45 V26/2013 12:03:00 PM 6.64 7.54 V28/2013 12:04:00 PM 6.64 7.54 V28/2013 12:06:00 PM 8.63 7.42 V28/2013 12:06:00 PM 8.63 7.42 V28/2013 12:06:00 PM 8.74 7.40 V28/2013 12:06:00 PM 8.77 7.43 V28/2013 12:10:00 PM 8.77 7.36 V28/2013 12:10:00 PM 8.87 7.36 V28/2013 12:10:00 PM 8.97 7.31 V28/2013 12:10:00 PM 8.90 7.27 V28/2013 12:10:00 PM 8.90 7.27 V28/2013 12:10:00 PM 8.90 7.22 V28/2013 12:10:00 PM 8.90 7.22 V28/2013 12:20:00 PM 9.03 7.24 V28/2013 12:20:00 PM 8.90 7.25 V28/2013 12:20:00 PM 8.90 7.25 V28/2013 12:20:00 PM 8.90 7.25 V28/2013 12:28:00 PM	3/20/2013 11:59:00 AM					
V/26/2013 12:02:00 PM 8.67 7.47 V/26/2013 12:04:00 PM 8.57 7.54 V/26/2013 12:05:00 PM 8.71 7.44 V/26/2013 12:05:00 PM 8.63 7.42 V/26/2013 12:05:00 PM 8.63 7.42 V/26/2013 12:05:00 PM 8.75 7.43 V/26/2013 12:05:00 PM 8.76 7.40 V/26/2013 12:10:00 PM 8.77 7.36 V/26/2013 12:11:00 PM 8.87 7.36 V/26/2013 12:15:00 PM 8.64 7.27 28/2013 12:16:00 PM 8.90 7.24 28/2013 12:16:00 PM 8.90 7.27 28/2013 12:16:00 PM 8.90 7.27 28/2013 12:16:00 PM 8.92 7.27 28/2013 12:20:00 PM 8.92 7.24 28/2013 12:20:00 PM 8.93 7.24 28/2013 12:20:00 PM 8.92 7.27 28/2013 12:20:00 PM 8.92 7.27 28/2013 12:20:00 P	V26/2013 12:00:00 PM					
V20/2013 12:03:00 PM 6.67 7:54 V26/2013 12:06:00 PM 8:64 7:50 V26/2013 12:06:00 PM 8:63 7:42 V26/2013 12:06:00 PM 8:63 7:44 V26/2013 12:06:00 PM 8:75 7:43 V26/2013 12:00:00 PM 8:75 7:43 V26/2013 12:10:00 PM 8:76 7:40 V26/2013 12:10:00 PM 8:86 7:44 V26/2013 12:10:00 PM 8:87 7:36 V26/2013 12:16:00 PM 8:90 7:27 V26/2013 12:16:00 PM 8:90 7:27 V26/2013 12:16:00 PM 8:90 7:27 V26/2013 12:20:00 PM 8:90 7:27 V26/2013 12:20:00 PM 8:90 7:27 V26/2013 12:20:00 PM 8:90 7:25 V26/2013 12:20:00 PM	26/2013 12:01:00 PM	-				
V22/2013 12:04:00 PM 8.64 7.50 V22/2013 12:06:00 PM 8.63 7.42 V22/2013 12:06:00 PM 8.64 7.43 V22/2013 12:06:00 PM 8.75 7.43 V22/2013 12:06:00 PM 8.76 7.40 V22/2013 12:10:00 PM 8.77 7.40 V22/2013 12:10:00 PM 8.87 7.36 V22/2013 12:10:00 PM 8.87 7.36 V22/2013 12:10:00 PM 8.87 7.36 V22/2013 12:10:00 PM 8.90 7.24 V22/2013 12:16:00 PM 8.90 7.27 V22/2013 12:16:00 PM 8.90 7.27 V22/2013 12:16:00 PM 8.90 7.25 V22/2013 12:2:100 PM 9.08 7.25 V22/2013 12:2:2:00 PM 9.08 7.25 V22/2013 12:2:2:00 PM 8.90 7.25 V22/2013 12:2:2:00 PM 8.90 7.25 V22/2013 12:2:2:00 PM 8.90 7.25 V22/2013 12:2:2:	26/2013 12:02:00 PM					
V26/2013 12:05:00 PM 8:71 7.44 V26/2013 12:07:00 PM 8:63 7.42 V26/2013 12:07:00 PM 8:75 7.43 V26/2013 12:07:00 PM 8:75 7.43 V26/2013 12:10:00 PM 8:79 7.40 V26/2013 12:10:00 PM 8:77 7.31 V26/2013 12:11:00 PM 8:86 7.44 V26/2013 12:11:00 PM 8:87 7.36 V26/2013 12:11:00 PM 8:90 7.24 V26/2013 12:21:00 PM 8:92 7.26 V26/2013 12:22:00 PM 9.24 7.26 V26/2013 12:22:00 PM 9.00 7.25 V26/2013 12:22:00 PM 8:92 7.27 V26/2013 12:26:00 PM 8:90 7.25 V26/2013 12:26:00 PM 8:90 7.25 V26/2013 12:30:00 PM	26/2013 12:04:00 PM					
V26/2013 12:06:00 PM 8.63 7.42 V26/2013 12:09:00 PM 8.74 7.40 V26/2013 12:09:00 PM 8.74 7.40 V26/2013 12:09:00 PM 8.74 7.40 V26/2013 12:10:00 PM 8.66 7.44 V26/2013 12:10:00 PM 8.67 7.36 V26/2013 12:12:00 PM 8.67 7.31 V26/2013 12:12:00 PM 8.64 7.27 V20/2013 12:16:00 PM 8.90 7.28 V20/2013 12:16:00 PM 8.90 7.27 V20/2013 12:16:00 PM 8.90 7.28 V20/2013 12:21:00 PM 8.90 7.28 V20/2013 12:21:00 PM 8.90 7.27 V20/2013 12:21:00 PM 8.92 7.27 V20/2013 12:22:00 PM 8.93 7.24 V20/2013 12:23:00 PM 8.92 7.27 V20/2013 12:23:00 PM 8.94 7.26 V20/2013 12:23:00 PM 8.94 7.26 V20/2013 12:23:00 PM	26/2013 12:05:00 PM					
/26/2013 12:07:00 PM 8.34 7.44 /28/2013 12:08:00 PM 8.75 7.40 /26/2013 12:09:00 PM 8.79 7.40 /26/2013 12:00:00 PM 8.79 7.40 /26/2013 12:10:00 PM 8.86 7.44 /26/2013 12:10:00 PM 8.87 7.36 /26/2013 12:13:00 PM 8.97 7.31 /26/2013 12:16:00 PM 8.90 7.24 /26/2013 12:16:00 PM 8.90 7.24 /26/2013 12:16:00 PM 8.90 7.27 /26/2013 12:20:00 PM 9.03 7.24 /26/2013 12:20:00 PM 8.92 7.25 /26/2013 12:20:00 PM 8.93 7.24 /26/2013 12:20:00 PM 8.92 7.27 /26/2013 12:26:00 PM 8.94 7.26 /26/2013 12:30:00 PM	/26/2013 12:06:00 PM			+		
/29/2013 12:08:00 PM 8.75 7.43 /26/2013 12:10:00 PM 8.74 7.40 /28/2013 12:11:00 PM 8.86 7.44 /28/2013 12:11:00 PM 8.86 7.40 /28/2013 12:13:00 PM 8.97 7.31 /28/2013 12:13:00 PM 8.90 7.24 /28/2013 12:14:00 PM 8.90 7.28 /28/2013 12:16:00 PM 8.90 7.28 /28/2013 12:17:00 PM 8.90 7.28 /28/2013 12:16:00 PM 8.90 7.28 /28/2013 12:21:00 PM Port Change /28/2013 12:24:00 PM 8.92 7.24 /28/2013 12:26:00 PM 8.92 7.27 /28/2013 12:26:00 PM 8.90 7.25 /28/2013 12:26:00 PM 8.90 7.26 /28/2013 12:26:00 PM 8.90 7.26 /28/2013 12:26:00 PM 8.90 7.28 /28/2013 12:30:00 PM 8.96 7.27 /26/2013 12:30:00	26/2013 12:07:00 PM					
2/2/2013 12:09:00 PM 8.74 7.40 2/2/2013 12:11:00 PM 8.79 7.40 2/2/2013 12:11:00 PM 8.87 7.31 2/2/2013 12:12:00 PM 8.87 7.31 2/2/2013 12:14:00 PM 8.97 7.31 2/2/2013 12:14:00 PM 8.90 7.24 2/2/2013 12:16:00 PM 8.90 7.24 2/2/2013 12:16:00 PM 8.92 7.28 2/2/2013 12:16:00 PM 8.90 7.27 2/2/2013 12:20:00 PM 8.77 7.22 2/2/2013 12:22:00 PM 9.04 7.26 2/2/2013 12:22:00 PM 8.93 7.24 2/2/2013 12:22:00 PM 8.93 7.25 2/2/2013 12:22:00 PM 8.93 7.25 2/2/2013 12:22:00 PM 8.90 7.25 2/2/2013 12:26:00 PM 8.92 7.27 2/2/2013 12:26:00 PM 8.90 7.25 2/2/2013 12:30:00 PM 8.94 7.26 2/2/2013 12:30:00 PM	/26/2013 12:08:00 PM					
2/2/2013 12:10:00 PM 8.79 7.40 2/2/2013 12:11:00 PM 8.86 7.44 2/2/2013 12:12:00 PM 8.97 7.31 2/2/2013 12:13:00 PM 8.97 7.31 2/2/2013 12:16:00 PM 8.90 7.24 2/2/2013 12:16:00 PM 8.90 7.24 2/2/2013 12:16:00 PM 8.90 7.27 2/2/2013 12:16:00 PM 8.90 7.27 2/2/2013 12:16:00 PM 8.90 7.24 2/2/2013 12:16:00 PM 9.02 7.28 2/2/2013 12:16:00 PM 9.03 7.24 2/2/2013 12:20:00 PM 9.08 7.27 2/2/2013 12:20:00 PM 8.93 7.24 2/2/2013 12:22:00 PM 8.94 7.27 2/2/2013 12:26:00 PM 8.90 7.25 2/2/2013 12:30:00 PM 8.90 7.26 2/2/2013 12:30:00 PM 8.96 7.27 2/2/2013 12:30:00 PM 8.96 7.28 2/2/2013 12:30:00 PM	/26/2013 12:09:00 PM	-				
2/2/2013 12:11:00 PM 8.86 7.44 2/26/2013 12:12:00 PM 8.87 7.36 2/26/2013 12:13:00 PM 8.90 7.27 2/26/2013 12:16:00 PM 8.90 7.24 2/26/2013 12:16:00 PM 8.90 7.27 2/26/2013 12:17:00 PM 8.90 7.27 2/26/2013 12:16:00 PM 8.90 7.27 2/26/2013 12:20:00 PM 8.93 7.26 2/20/2013 12:22:00 PM 9.24 7.26 2/20/2013 12:22:00 PM 8.93 7.24 2/20/2013 12:22:00 PM 8.93 7.24 2/20/213 12:22:00 PM 8.93 7.24 2/20/213 12:25:00 PM 9.06 7.25 2/20/213 12:26:00 PM 8.90 7.25 2/2/213 12:26:00 PM 8.94 7.26 2/2/213 12:26:00 PM 8.90 7.25 2/2/213 12:26:00 PM 8.90 7.25 2/2/213 12:26:00 PM 8.94 7.26 2/2/213 12:30:				{		
/28/2013 12:12:00 PM 8.87 7.36 /26/2013 12:13:00 PM 8.97 7.31 /28/2013 12:14:00 PM 8.90 7.24 /28/2013 12:16:00 PM 8.90 7.24 /28/2013 12:16:00 PM 8.90 7.24 /28/2013 12:16:00 PM 8.90 7.27 /28/2013 12:16:00 PM 8.90 7.27 /28/2013 12:21:00 PM 9.24 7.26 /28/2013 12:22:00 PM 8.93 7.24 /28/2013 12:23:00 PM 8.93 7.24 /28/2013 12:26:00 PM 8.93 7.24 /28/2013 12:26:00 PM 8.92 7.27 /28/2013 12:26:00 PM 8.94 7.25 /28/2013 12:26:00 PM 8.94 7.25 /28/2013 12:28:00 PM 8.94 7.26 /28/2013 12:30:00 PM 8.96 7.27 /28/2013 12:30:00 PM 8.96 7.26 /29/2013 12:30:00 PM 8.96 7.26 /20/2013 12:30:00 PM	/26/2013 12:11:00 PM					
22/2013 12:13:00 PM 8.97 7.31 226/2013 12:14:00 PM 8.94 7.27 226/2013 12:16:00 PM 8.92 7.28 226/2013 12:16:00 PM 8.90 7.27 226/2013 12:16:00 PM 8.90 7.27 226/2013 12:16:00 PM 8.90 7.27 226/2013 12:21:00 PM 9.24 7.26 226/2013 12:21:00 PM 9.24 7.26 226/2013 12:22:00 PM 9.08 7.22 226/2013 12:22:00 PM 8.93 7.24 226/2013 12:22:00 PM 8.92 7.27 226/2013 12:25:00 PM 8.92 7.27 226/2013 12:26:00 PM 8.90 7.25 226/2013 12:26:00 PM 8.90 7.25 226/2013 12:28:00 PM 8.90 7.26 22/2013 12:30:00 PM 8.90 7.28 28/2013 12:30:00 PM 8.94 7.28 26/2013 12:30:00 PM 8.96 7.31 6/2013 12:36:00 PM	/26/2013 12:12:00 PM					
22/2013 12:14:00 PM 8.94 7.27 28/2013 12:16:00 PM 8.90 7.24 28/2013 12:16:00 PM 8.90 7.28 28/2013 12:16:00 PM 8.90 7.27 28/2013 12:16:00 PM 8.90 7.27 28/2013 12:16:00 PM 9.04 7.26 28/2013 12:20:00 PM 9.24 7.26 28/2013 12:20:00 PM 8.93 7.22 28/2013 12:23:00 PM 8.93 7.24 28/2013 12:26:00 PM 8.93 7.24 28/2013 12:26:00 PM 8.92 7.27 28/2013 12:26:00 PM 8.90 7.25 28/2013 12:26:00 PM 8.90 7.25 28/2013 12:28:00 PM 8.90 7.26 28/2013 12:28:00 PM 8.90 7.28 28/2013 12:28:00 PM 8.94 7.28 28/2013 12:39:00 PM 8.94 7.28 28/2013 12:39:00 PM 8.96 7.27 6/2013 12:39:00 PM 8.96	26/2013 12:13:00 PM	8,97		1		
22/2013 12:15:00 PM 8.90 7.24 28/2013 12:16:00 PM 8.92 7.28 28/2013 12:17:00 PM 8.90 7.27 28/2013 12:17:00 PM 9.90 7.27 28/2013 12:10:00 PM Port Change 28/2013 12:20:00 PM 9.24 7.26 28/2013 12:20:00 PM 8.93 7.24 28/2013 12:22:00 PM 8.92 7.27 28/2013 12:27:00 PM 8.92 7.27 28/2013 12:30:00 PM 8.90 7.25 28/2013 12:30:00 PM 8.94 7.27 28/2013 12:30:00 PM 8.94 7.27 28/2013 12:30:00 PM 8.94 7.28 28/2013 12:30:00 PM 8.95 7.43 6/2013 12:36:00 PM 8.54 7.41 6/2013 12:36:00 PM 8.5	26/2013 12:14:00 PM	8.94		í l		
22/2013 12:16:00 PM 8.92 7.28 226/2013 12:17:00 PM 8.90 7.27 226/2013 12:19:00 PM Port 226/2013 12:20:00 PM 9.24 7.26 226/2013 12:22:00 PM 9.24 7.26 226/2013 12:22:00 PM 8.93 7.24 226/2013 12:22:00 PM 8.93 7.24 226/2013 12:25:00 PM 9.08 7.25 226/2013 12:26:00 PM 8.92 7.27 226/2013 12:26:00 PM 8.90 7.25 226/2013 12:26:00 PM 8.90 7.25 226/2013 12:28:00 PM 8.90 7.25 226/2013 12:30:00 PM 8.94 7.26 226/2013 12:30:00 PM 8.92 7.27 226/2013 12:30:00 PM 8.96 7.27 226/2013 12:30:00 PM 8.96 7.27 226/2013 12:36:00 PM 8.96 7.27 226/2013 12:36:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.96 </td <td>/26/2013 12:15:00 PM</td> <td>8.90</td> <td></td> <td></td> <td>ļ</td> <td></td>	/26/2013 12:15:00 PM	8.90			ļ	
22/2013 12:17:00 PM 8.90 7.27 22/2013 12:18:00 PM Port 22/2013 12:20:00 PM Port 22/2013 12:22:00 PM 9.24 7.26 22/2013 12:22:00 PM 8.77 7.22 22/2013 12:23:00 PM 8.93 7.24 22/2013 12:22:00 PM 8.93 7.24 22/2013 12:25:00 PM 8.92 7.27 22/2013 12:26:00 PM 8.92 7.27 26/2013 12:26:00 PM 8.90 7.25 26/2013 12:28:00 PM 8.90 7.25 26/2013 12:30:00 PM 8.90 7.25 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:34:00 PM 8.96 7.43 96/2013 12:36:00 PM 8.54 7.47 96/2013 12:36:00 PM 8.54 7.47 96/2013 12:40:00 PM 8.71 7.42		8.92				
226/2013 12:19:00 PM Port 226/2013 12:20:00 PM 9.24 7.26 226/2013 12:22:00 PM 9.24 7.26 226/2013 12:23:00 PM 8.77 7.22 226/2013 12:23:00 PM 8.93 7.24 226/2013 12:25:00 PM 8.93 7.25 226/2013 12:26:00 PM 8.92 7.27 226/2013 12:28:00 PM 8.94 7.27 226/2013 12:28:00 PM 8.90 7.25 226/2013 12:29:00 PM 8.94 7.27 226/2013 12:30:00 PM 8.99 7.28 226/2013 12:30:00 PM 8.96 7.27 226/2013 12:36:00 PM 8.59 7.43 25/2013 12:36:00 PM 8.59 7.43 26/2013 12:37:00 PM 8.54 7.47 26/2013 12:36:00 PM 8.71 <td>/26/2013 12:17:00 PM</td> <td>8.90</td> <td>7.27</td> <td> </td> <td>í</td> <td></td>	/26/2013 12:17:00 PM	8.90	7.27		í	
226/2013 12:20:00 PM 9.24 7.26 226/2013 12:22:00 PM 9.24 7.26 226/2013 12:22:00 PM 8.77 7.22 226/2013 12:25:00 PM 8.93 7.24 226/2013 12:25:00 PM 8.93 7.25 226/2013 12:26:00 PM 8.92 7.27 226/2013 12:26:00 PM 8.94 7.27 226/2013 12:28:00 PM 8.90 7.25 226/2013 12:28:00 PM 8.90 7.25 226/2013 12:28:00 PM 8.90 7.28 226/2013 12:30:00 PM 8.94 7.28 226/2013 12:31:00 PM 8.94 7.26 226/2013 12:35:00 PM 8.94 7.26 226/2013 12:35:00 PM 8.59 7.43 226/2013 12:36:00 PM 8.59 7.43 226/2013 12:36:00 PM 8.59 7.43 226/2013 12:36:00 PM 8.51 7.31 26/2013 12:40:00 PM 8.71 7.42 26/2013 12:40:00 PM </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
226/2013 12:21:00 PM 9.24 7.26 226/2013 12:22:00 PM 8.77 7.22 226/2013 12:22:00 PM 8.93 7.24 226/2013 12:25:00 PM 9.08 7.25 226/2013 12:26:00 PM 8.92 7.27 226/2013 12:26:00 PM 8.90 7.25 226/2013 12:28:00 PM 8.90 7.25 226/2013 12:29:00 PM 9.00 7.25 226/2013 12:29:00 PM 9.00 7.25 226/2013 12:30:00 PM 8.90 7.26 226/2013 12:30:00 PM 8.94 7.26 226/2013 12:30:00 PM 8.94 7.26 226/2013 12:30:00 PM 8.96 7.27 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:36:00 PM 8.54 7.47 50/2013 12:36:00 PM 8.54 7.47 50/2013 12:36:00 PM 8.71 7.42 6/2013 12:40:00 PM		1		Port		
26/2013 12:22:00 PM 9.24 7.26 26/2013 12:22:00 PM 8.77 7.22 28/2013 12:22:00 PM 8.93 7.24 26/2013 12:25:00 PM 9.08 7.25 26/2013 12:26:00 PM 8.92 7.27 26/2013 12:26:00 PM 8.90 7.25 26/2013 12:26:00 PM 8.90 7.25 26/2013 12:29:00 PM 8.90 7.26 26/2013 12:30:00 PM 8.99 7.28 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.62 7.31 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:36:00 PM 8.54 7.47 26/2013 12:36:00 PM 8.71 7.47 26/2013 12:36:00 PM 8.71 7.42 6/2013 12:40:00 PM 8.70	26/2013 12:20:00 PM			Change		
26/2013 12:23:00 PM 8.77 7.22 26/2013 12:24:00 PM 8.93 7.24 26/2013 12:25:00 PM 9.08 7.25 26/2013 12:26:00 PM 8.92 7.27 26/2013 12:26:00 PM 8.90 7.25 26/2013 12:28:00 PM 8.90 7.25 26/2013 12:29:00 PM 9.00 7.25 26/2013 12:30:00 PM 8.89 7.28 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.92 7.27 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.75 7.40 66/2013 12:36:00 PM 8.59 7.43 66/2013 12:36:00 PM 8.71 7.47 66/2013 12:36:00 PM 8.71 7.42 6/2013 12:40:00 PM 9.14 7.06 6/2013 12:40:00 PM 8.70<	26/2013 12:21:00 PM			_	1	
28/2013 12:24:00 PM 8.93 7.24 26/2013 12:25:00 PM 9.08 7.25 26/2013 12:25:00 PM 8.92 7.27 26/2013 12:26:00 PM 8.90 7.25 26/2013 12:26:00 PM 8.90 7.25 26/2013 12:29:00 PM 9.00 7.25 26/2013 12:30:00 PM 8.90 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.59 7.43 66/2013 12:36:00 PM 8.59 7.43 66/2013 12:36:00 PM 8.54 7.47 66/2013 12:39:00 PM 8.91 7.31 66/2013 12:39:00 PM 8.91 7.31 66/2013 12:40:00 PM 8.70 7.44 6/2013 12:40:00 PM 8.70 7.44 6/2013 12:40:00 PM 8.43<						
26/2013 12:25:00 PM 9.08 7.25 26/2013 12:26:00 PM 8.92 7.27 26/2013 12:27:00 PM 8.90 7.25 26/2013 12:29:00 PM 9.00 7.25 26/2013 12:29:00 PM 9.00 7.26 26/2013 12:30:00 PM 8.89 7.28 26/2013 12:30:00 PM 8.94 7.28 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:38:00 PM 8.91 7.31 26/2013 12:38:00 PM 8.91 7.31 26/2013 12:40:00 PM 9.04 7.27 26/2013 12:40:00 PM 8.71 7.42 6/2013 12:40:00 PM 8.71 7.42 6/2013 12:40:00 PM 8.34<						
26/2013 12:26:00 PM 8.92 7.27 26/2013 12:27:00 PM 8.94 7.27 26/2013 12:28:00 PM 8.90 7.25 26/2013 12:29:00 PM 9.00 7.25 26/2013 12:29:00 PM 8.89 7.28 26/2013 12:30:00 PM 8.89 7.28 26/2013 12:31:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.96 7.27 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.92 7.31 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:36:00 PM 8.54 7.47 6/2013 12:36:00 PM 8.54 7.47 6/2013 12:36:00 PM 8.91 7.31 6/2013 12:36:00 PM 8.71 7.42 6/2013 12:40:00 PM 8.71 7.42 6/2013 12:41:00 PM 8.71 7.42 6/2013 12:40:00 PM 8.39						
26/2013 12:27:00 PM 8.94 7.27 26/2013 12:28:00 PM 9.00 7.25 26/2013 12:29:00 PM 9.00 7.25 26/2013 12:30:00 PM 8.89 7.28 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.62 7.31 6/2013 12:36:00 PM 8.54 7.40 6/2013 12:36:00 PM 8.54 7.47 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.71 7.42 6/2013 12:40:00 PM 8.71 7.42 6/2013 12:40:00 PM 8.70 7.44 6/2013 12:44:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.34			1	·	1	
26/2013 12:28:00 PM 8.90 7.25 26/2013 12:30:00 PM 8.89 7.28 26/2013 12:30:00 PM 8.89 7.28 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:30:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:36:00 PM 8.69 7.43 26/2013 12:36:00 PM 8.59 7.43 26/2013 12:38:00 PM 8.59 7.43 26/2013 12:38:00 PM 8.59 7.43 26/2013 12:38:00 PM 8.61 7.31 26/2013 12:38:00 PM 8.61 7.31 26/2013 12:38:00 PM 8.01 7.31 26/2013 12:40:00 PM 8.71 7.42 26/2013 12:40:00 PM 8.71 7.42 26/2013 12:40:00 PM 8.43 7.54 26/2013 12:40:00 PM 8.39 7.59 26/2013 12:46:00 PM 8.3						
26/2013 12:29:00 PM 9.00 7.25 26/2013 12:30:00 PM 8.89 7.28 26/2013 12:31:00 PM 9.22 7.24 26/2013 12:32:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.92 7.31 66/2013 12:36:00 PM 8.75 7.40 76/2013 12:36:00 PM 8.59 7.43 66/2013 12:36:00 PM 8.54 7.47 66/2013 12:36:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:30:00 PM 8.61 7.31 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:40:00 PM 8.70 7.44 6/2013 12:40:00 PM 8.70 7.44 6/2013 12:46:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.34 7.61 6/2013 12:46:00 PM 8.52						
26/2013 12:30:00 PM 8.89 7.28 26/2013 12:31:00 PM 9.22 7.24 26/2013 12:32:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:35:00 PM 8.82 7.31 66/2013 12:36:00 PM 8.56 7.40 66/2013 12:36:00 PM 8.54 7.47 66/2013 12:36:00 PM 8.54 7.47 66/2013 12:38:00 PM 8.54 7.47 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.01 7.31 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:40:00 PM 8.70 7.44 6/2013 12:40:00 PM 8.70 7.44 6/2013 12:44:00 PM 8.43 7.54 6/2013 12:46:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.34 7.61 6/2013 12:46:00 PM 8.52						
28/2013 12:31:00 PM 9.22 7.24 26/2013 12:32:00 PM 8.94 7.26 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:33:00 PM 8.96 7.27 26/2013 12:33:00 PM 8.82 7.31 26/2013 12:35:00 PM 8.59 7.40 6/2013 12:36:00 PM 8.59 7.43 6/2013 12:36:00 PM 8.54 7.47 6/2013 12:36:00 PM 8.54 7.47 6/2013 12:39:00 PM 8.54 7.47 6/2013 12:39:00 PM 8.91 7.31 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:41:00 PM 8.71 7.42 6/2013 12:42:00 PM 9.14 7.06 6/2013 12:44:00 PM 8.43 7.54 6/2013 12:44:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.52 7.50 6/2013 12:46:00 PM 8.52		r i	1		Í	
36/2013 12:32:00 PM 8.94 7.26 6/2013 12:33:00 PM 8.96 7.27 76/2013 12:34:00 PM 8.82 7.31 76/2013 12:35:00 PM 8.75 7.40 6/2013 12:36:00 PM 8.59 7.43 6/2013 12:36:00 PM 8.59 7.43 6/2013 12:36:00 PM 8.54 7.47 6/2013 12:36:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:39:00 PM 8.01 7.31 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:42:00 PM 9.14 7.06 6/2013 12:42:00 PM 8.70 7.44 6/2013 12:44:00 PM 8.43 7.54 5/2013 12:45:00 PM 8.39 7.59 3/2013 12:46:00 PM 8.34 7.61 3/2013 12:49:00 PM 8.52 7.50 3/2013 12:49:00 PM 8.18 7.58 3/2013 12:50:00 PM 8.57 <td< td=""><td></td><td></td><td></td><td>[</td><td></td><td></td></td<>				[
26/2013 12:33:00 PM 8.96 7.27 26/2013 12:34:00 PM 8.82 7.31 6/2013 12:35:00 PM 8.75 7.40 6/2013 12:36:00 PM 8.59 7.43 6/2013 12:36:00 PM 8.54 7.47 6/2013 12:38:00 PM 8.54 7.47 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.91 7.31 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:42:00 PM 8.71 7.42 6/2013 12:42:00 PM 8.70 7.44 6/2013 12:43:00 PM 8.39 7.59 6/2013 12:45:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.52 7.50 6/2013 12:49:00 PM 8.52 7.50 6/2013 12:49:00 PM 8.52 7.50 6/2013 12:49:00 PM 8.52	26/2013 12:32:00 PM					
26/2013 12:34:00 PM 8.82 7.31 66/2013 12:35:00 PM 8.75 7.40 66/2013 12:35:00 PM 8.59 7.43 66/2013 12:36:00 PM 8.54 7.47 66/2013 12:38:00 PM 8.54 7.47 66/2013 12:38:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.91 7.31 6/2013 12:38:00 PM 8.91 7.31 6/2013 12:38:00 PM 8.91 7.31 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:42:00 PM 8.71 7.42 6/2013 12:42:00 PM 8.70 7.44 6/2013 12:44:00 PM 8.39 7.59 6/2013 12:45:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.52 7.50 6/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18	6/2013 12:33:00 PM					
66/2013 12:35:00 PM 8.75 7.40 66/2013 12:36:00 PM 8.59 7.43 66/2013 12:37:00 PM 8.54 7.47 66/2013 12:38:00 PM 8.71 7.47 66/2013 12:38:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.01 7.31 6/2013 12:39:00 PM 8.01 7.31 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:42:00 PM 8.71 7.42 6/2013 12:42:00 PM 8.70 7.44 6/2013 12:43:00 PM 8.39 7.59 6/2013 12:45:00 PM 8.39 7.59 6/2013 12:45:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.52 7.50 6/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.57 7.58 5/2013 12:50:00 PM 8.57 <	26/2013 12:34:00 PM				1	
86/2013 12:37:00 PM 8.54 7.47 66/2013 12:38:00 PM 8.71 7.47 66/2013 12:38:00 PM 8.01 7.31 66/2013 12:39:00 PM 8.01 7.31 66/2013 12:40:00 PM 9.04 7.27 66/2013 12:41:00 PM 8.71 7.42 66/2013 12:42:00 PM 9.14 7.09 66/2013 12:42:00 PM 8.70 7.44 66/2013 12:44:00 PM 8.43 7.54 66/2013 12:45:00 PM 8.39 7.59 66/2013 12:45:00 PM 8.34 7.61 6/2013 12:46:00 PM 8.34 7.61 6/2013 12:46:00 PM 8.52 7.50 6/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.57 7.50 5/2013 12:51:00 PM 8.57 7.50		8.75				
6/2013 12:37:00 PM 8.54 7.47 6/2013 12:38:00 PM 8.71 7.47 6/2013 12:38:00 PM 8.91 7.31 6/2013 12:39:00 PM 9.04 7.27 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:41:00 PM 8.71 7.42 6/2013 12:42:00 PM 9.14 7.09 6/2013 12:42:00 PM 8.70 7.44 6/2013 12:44:00 PM 8.70 7.44 6/2013 12:45:00 PM 8.39 7.59 6/2013 12:45:00 PM 8.34 7.61 6/2013 12:46:00 PM 8.34 7.61 6/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.57 7.50 5/2013 12:51:00 PM 8.57 7.50	6/2013 12:36:00 PM			1		ľ
6/2013 12:39:00 PM 8.91 7.31 6/2013 12:40:00 PM 9.04 7.27 6/2013 12:41:00 PM 8.71 7.42 6/2013 12:42:00 PM 9.14 7.09 3/2013 12:42:00 PM 8.70 7.44 5/2013 12:44:00 PM 8.43 7.54 5/2013 12:44:00 PM 8.39 7.59 3/2013 12:45:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.44 7.54 5/2013 12:46:00 PM 8.44 7.54 5/2013 12:46:00 PM 8.44 7.54 5/2013 12:47:00 PM 8.44 7.54 5/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.55 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	6/2013 12:37:00 PM	8.54				
6/2013 12:40:00 PM 9.04 7.27 6/2013 12:41:00 PM 8.71 7.42 6/2013 12:42:00 PM 9.14 7.06 6/2013 12:42:00 PM 8.70 7.44 6/2013 12:43:00 PM 8.70 7.44 6/2013 12:43:00 PM 8.39 7.59 6/2013 12:45:00 PM 8.39 7.59 6/2013 12:46:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	6/2013 12:38:00 PM				ĺ	
6/2013 12:41:00 PM 8.71 7.42 6/2013 12:42:00 PM 9.14 7.09 6/2013 12:43:00 PM 8.70 7.44 6/2013 12:43:00 PM 8.43 7.54 6/2013 12:44:00 PM 8.39 7.59 5/2013 12:45:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.34 7.61 5/2013 12:47:00 PM 8.44 7.54 5/2013 12:48:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	6/2013 12:39:00 PM		7.31			
6/2013 12:42:00 PM 9.14 7.09 6/2013 12:43:00 PM 8.70 7.44 6/2013 12:44:00 PM 8.43 7.54 6/2013 12:45:00 PM 8.39 7.59 6/2013 12:45:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.34 7.61 5/2013 12:47:00 PM 8.44 7.54 3/2013 12:47:00 PM 8.44 7.54 3/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	6/2013 12:40:00 PM		7.27	[ľ
6/2013 12:43:00 PM 8.70 7.44 6/2013 12:44:00 PM 8.43 7.54 5/2013 12:45:00 PM 8.39 7.59 5/2013 12:46:00 PM 8.34 7.61 5/2013 12:46:00 PM 8.34 7.61 5/2013 12:47:00 PM 8.44 7.54 5/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50						ļ
6/2013 12:44:00 PM 8.43 7.54 5/2013 12:45:00 PM 8.39 7.59 3/2013 12:46:00 PM 8.34 7.61 5/2013 12:47:00 PM 8.44 7.54 5/2013 12:47:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	0/2013 12:42:00 PM				1	
5/2013 12:45:00 PM 8.39 7.59 5/2013 12:46:00 PM 8.34 7.61 5/2013 12:47:00 PM 8.44 7.54 5/2013 12:48:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	0/2013 12:43:00 PM					
3/2013 12:46:00 PM 8.34 7.61 3/2013 12:47:00 PM 8.44 7.54 3/2013 12:48:00 PM 8.52 7.50 3/2013 12:49:00 PM 8.18 7.58 3/2013 12:50:00 PM 8.45 7.58 3/2013 12:51:00 PM 8.57 7.50	6/2013 12:44:00 PM					
5/2013 12:47:00 PM 8.44 7.54 5/2013 12:48:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	3/2013 12:45:00 PM	(1	!	Į.
6/2013 12:48:00 PM 8.52 7.50 5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	0/2013 12:46:00 PM			ľ	ĺ	1
5/2013 12:49:00 PM 8.18 7.58 5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50	3/2013 12:47:00 PM					li li
5/2013 12:50:00 PM 8.45 7.58 5/2013 12:51:00 PM 8.57 7.50					1	ľ
5/2013 12:51:00 PM 8.57 7.50						
	5/2013 12:50:00 PM					
	2010 12.01:00 PM	8.57	7.50	1	1	
Run Averages: B.72 7.40	Run Averegee	070			1	1

I.

TRAVERSE DATA SHEET

			11	AVLIN	<u>DA</u>	IABL							
PLANT	NE	FCO / 54	SA Bia	solids			RUN#1	U)- M	5-P	~5		
LOCATIO			m Ben	•	Unir	+#1	DATE		1	16/13			
FilterNo			Filter Ta	ne Wt.	1450 C ++2-5			p Nó.	N	A			
IMP 1. (IN		TRAVERSE	Y DELTA	DELTA	DRY G/	S METER	STACK-	METER	FILTER	PROBE	DBY	IMP	
IMP-2 (IN	10000	ROINT	一名海 乙	s sa H		., όψτ.,	ETEMP.(P)	READING	VID IS PALAKE	TEMP	SH THE A	TEMP .	VAC
IMP23 (IN	總約派	<u> </u>	.10	1.30	94	94	245		B \$3	246	N/A	62	2
IMR-4 (IN		L L	.23	2.30	94	94	272	643.5	248	244		64	3
IMP 5 (IN	and the state	<u> </u>	123	7.30	94	94	279	668.1	248	240		62	3
IMP-6 (IN	100 A 100	<u> </u>	.25	2,50	93	93	294	672,2	248	245		62	3
IME 7 (IN		5	.22	2.20	94	94	274	676.7		249		62	3
a see See Diese		· 论	. 18	1.80	94	94	271	680.8	251	243	 	62	3
IMP-12(FIN	1949-1948	<u> 77</u>	.20	2.00	93	13	262	684.6	251	249		64	3
IMP 27(FIN		2	.22	2.20	93	93	284	6085	250	244		60	2
IMR-3. (RIN		<u>3</u> 4	. 22	2.20	92	92	271	69Z.9	Z48	245	⊢ ├ ──	60	3
IMP 4 ((FIN		- W	,24	2.40	92	92	273	697.0	249	245	<u> </u>	61	4
IMPL6X(FIN		5	,23	2.30	92	92	280	701.5	250	244		61	4
IMP+6_(FIN		<u> </u>	,22	2.20	92	92	267	705,9	248	246		62	4
IMP/72(FIN			[
Determine													
Pstack	-0.42	22 24 25											— I
Baro, Rres	30.0				. <u> </u>								
Calore as													
TESTILENC													
FINAL MET	The second state and the second state of the second state							·					
710.0													
INTIAL ME	SALE AND THE THE PARTY AND A DOT												
659.7		/# 											
BEGIN TIM	900	1	· · · · · · · · · · · · · · · · · · ·					-					
治 不可能													
ENDTIME	1003												······
				<u></u>									
Relationsh Box #		RichLeak	Check	0.00Z			<u>श्</u> रमुख्	Notes:		n i de la televisión de la com			
Yangara	.9728	Postilieal		0.002	@. @		‼Н ў ИН2О	Port Ch	inn . e	2	80-93	3	
Delta H	2.04	Rost-Rito	t Check	0.0		73	‼ ∺l2 Ø		· · · ·				
Biox(Op) Probe Op.	AC FM	Noz. ID N			Probe N	0	P-5-1						
	יאיז	Noz. Dian	lester y	,351		6.0 <u>1</u> 19.7 7.27675		<u> </u>		······································			
	4.000855 2000 20 2006												
					Contraction (Contra	100 C	· · · · · · · · · · · ·	9-88-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	×	~ 4 v.a.		····. · · · · · · · · · · · · · · · · ·	

· A start

TRAVERSE DATA SHEET

			<u>1</u> K	AVER	<u>de da</u>	<u>IA S</u>	HEEL							
PLANT!	NEF	co / su	UA B	osolid	5		RUN#1	VI-	M5 -	- 0~	6			
LOCATION	West	- Palm I	Beach, 1	EL 1	Unit	#/	DATE	<u>·</u> ·	6/2	6/13	<u>v</u>		— .	
Filter No.			Filter			·····		p.Noi			<u> </u>			
IMP:1-(INT))-	100	TRAVERSE	Contraction of the second	. DEUTA	DRY G	AS METER	STACK	METER	FLTER	PROBE	÷ D	ev.	IMP	
IMR-2 (INT) :	100	POINT	s de R	E Hoto	FIC SPANNER 1		State of the second state	READING	BOX		和語			VAG
IMP-3 (INT)	0	<u>A1</u>	.22	2.20	92	92	279	-	244	240	ا قسر		62	1
IMP-40 (INT)-1	3050	<i>A</i> ;	. 22	2,20	91	11	272	714.7	248	Z46	l		56	1
IME(5:(INT))		* >	.21	2.02	92	92	283	719.2	249	244			57	l
IMPS6 (INT)		¥	.22	2.11	92	92	268	723.6	249	<u>244</u>			58	1
IMP 7 (INT)		5	1.21	2.02	92	92	266	727.0	249	244			58	1
 A second of the second sec second second sec	A		.18	1.73	n	92	273	731.4	254	Z44			58	1
IMP 1 (EIN)	300	81	.22	2.11	93	93	270	734.7	249	242			64	2_
MP-2 (FIN) MP-3 (FIN)	4	2	.22	2,11	93	13	271	738.9	248	245	-		55	2
IMP-4 (FIN)?	811.0		.23	2.21	<u>94</u>	94	277	742.8	250	245			58	2
IMP451(FIN)	-	<u> </u>	.22	2.11		14	270	747.1	248	246			60	2
MP-6 (EIN)		6	.20	1.92	94 94	94 94	271	751.0	247	243 243			61	2
IMP-7 (FIN)		194		1.16	_//	77	2.69	730,9	249	295	1		0 -	
	1													
Rstack	<u>42</u>						<u> </u>							
												┥		
Baro Rres.	30.0							f						
and a second	1. 1. 1. 1. 1.						· · ·							
TESTUENOTH	60													
FINAL METER		·						· · · · · · · · ·				1	-	
759.140		<u> </u>												
710.37	1													
	<u></u>													
BEGINTIME.	1020								_					
	1127													
		<u> </u>												
Relationship.	10.0	Pre Leak	Chéčk	6-004		12	"Hg	Notes:		•		••••••••	la su ta su su di ta	,3 ¹ 1
Box #	5	Post Leak	ccheeke Cheeke	9.00Z		卷	Hg	Port and	inge 1	150-11	57			2
Delta H		Prespitor Rost-Pitor		0.0			'(H20) ''H20 - '	Port Cha C/0.00 C	V banes	r.E.L		4,	GL	
Contraction of the second s		Noz. ID N			robe No	Sectors of Constants	P-5-1		······································				7.8	
Probe Op	Fm	Noz. Diam		<u>·351</u>										
		<u>la de la constan</u> te Norder de la constante de la co Norder de la constante de la co									. <u> </u>			
			ana ng Kangalang kang kang kang kang kang kang kang k		-9. S. S. S.			a and a state of the second						

TRAVERSE DATA SHEET

			<u> </u>			IA DI							
PLANT	NEF	co / s	SWA	Biasul	ids		RUN#1	01	- m	5-1	Pre	7	
LOCATION	West	Pulm	Beach	, FL	10.	571	DATE		- m 6/	20/1	3		
Ellter No.			Filiter Ta	re Wit			Tra	5 NO.					
IMP.1. (INT)	100	TRAVERSE	DELTA	DELTA	DRYGA	S METER	STACK	METER	FILTER	PROPE	- DRY	IMP	
IMP-2 (INT)	100	RONT -	R	EH S	N	out	TEMP (F)	READING	BOX	ATEMR.	FUTE	R) TEMP	VAC
IMP-3_(INT) T	0	A1	.20	1.92	93	93	242		245	256	414		2
IMP-4 (INT)	814	۲. 	18	1.73	93	93	269	763.4	245	248	\square	40	2
IMP35 ((INT) 44		3	,22	2,11	94	94	270	766.0	250	245		61	2
IMP-6 ((NT));;;		4	,24	2.30	93	93	268	771,0	250	250		62	
IMP-7-(INT)	-	5	.24	2,30	94	94	281	776.1	249	245	\vdash	62	
	2201	6	.25	2.40	94	94	279	779.6	251	242	\vdash	63	4
AND PARTY THE MINING WORK	<u>304</u> 114	<u><u><u></u></u><u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u></u>	.27	2.59	94	94	280	734.0	250	242	+	63	5
IME-2-(EIN)		2	,27	2.59	<u>94</u> 94	94	271	788.6	249	247		63	5
IMP 3 (FIN)	au	3 4	,26	2.50		91		797.9	249			63	5
IMP-4 (FIN) IMP-6 (FIN)	824	1 5	.26	2.50	94 94	94 94	272	+11.9 802.4	249 250	246 249	\vdash	64	5
IMP-6 (FIN)	2,200	ь 	, 22	2.30	94	94	266	806.6		251	┝╌╌┠╌	64	5
MP-7 (FIN)) 	•	,	2.1/	77	74	270	0000	250	231	•	67	/
													1
P etack	- 40											-	
Pstack					~							-	-
Baro. Pres.	30.0												
TEST LENGTH	60												
FINAL METER													
810.801													
INTIAL METER													
759.39	3												
BEGIN TIME	1148												
an an tha former and Marine an Angles (1994)			<u>.</u>										
ENDITIME	1252			- 1 <u></u>									
Relationship	9.6	Predeak	emine			, <u>,</u> ,	ulio Second	Notes,+			- 1 - 1		
Box #	5	Postlea	Check	6,003	0	10	NHGANAN	Port C	hange	1213-	122	2	
Y Dolta H	9728	Projettot		0.0	····@····		"H2O		7				
Délta H. Box Op	2.04	Post-Pito Noz-IDIN			@ Probe N		"H2O [-5-/						
Probe Op.	FM	Noz. Dlán		.351								<u> </u>	
	and the second se									u-ward			
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Staff person		a					1 A. J. 1 A. A. A. A.				

Client/Site: N EFCo / Su + BioSolilsSource: $RTO \pm 1 \frac{1}{2} \pm 2 \frac{1}{2}$ RM Response Time: Upscale (seconds): 20

Operator Andrew Seenle Date: U/26/13

Downscale (seconds): 20

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

Analyzer Calibration Error (ACE) – Reference Method

Doll	Ľ	Low		Mid	High/Full	High/Full Scale (CS)
	Cylinder Value (C _v)	Analyzer Response (C _{DIR})	Cylinder Value (C _v)	Analyzer Response (C _{DiR})	Cylinder Value (C _v)	Analyzer Response (C _{DIR})
Oxygen	00.00	0,09	10.49	10.55	20.42	20.43
Carbon Dioxide	00.00	0.14	٩.٢٢	9.44	18.69	18.65
	ī					

Range selected for analyzer operation:

SO ₂ (ppm)	١
NO _x (ppm)	
CO (ppm)	1
CO ₂ (%)	20
O ₂ (%)	とく

Analyzer Calibration Error (ACE) Acceptance Criteria: S± 2%

Where: ACE = $[(C_{Dir} - C_v)/CS] * 100\%$

* * * *

Date	11 [2] 17	ez/z/ 11	*		
Concentrations(s)	20.42 06 (13.69 co2	with or / a. 45 con			
Cylinder No.	CC421863	CC421656			

Protocol Gases Used During Program:

&NEFCC / SWA Biusolids PTU # 1 Steck UI-MS-Pres Run Number: Client/Site: Source:

900 (00)

Start Time: End Time:

Operator: Date:

<120/12/0 , Seahe

n in the second se

		•

System Bias (SB)/Drift (D) Assessments - Reference Method

Pollutant/Diluent	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final Zero	Zero	Final Sp	Final Span (C _{MA})
	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value	Analyzer Response (C.)
Oxygen	0.00	1,10	10.49	10.52	0.00	0.99	10 40	
Carbon Dioxide	0.00	21:0	3.45	9.45	0.00		1.56	(()a)
						2		12.4

SO ₂ (ppm))
NO _x (ppm)	
CO (ppm)	
CO ₂ (%)	20
O ₂ (%)	25

Zero and Calibration Drift (D) Criteria: ≤± 3% of span, where

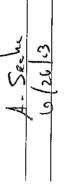
Sampling System Bias (SB) Criteria: <= 5% of span for zero and upscale gas, where:

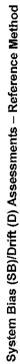
Where: SB = [($C_s - C_{Dir}$)/CS] * 100%

 $D = [SB_{final} - SB_i]$

Client/Site: Source:

NEFCO / SWA Biosolials RTU # 1 Stree


UI-MS-Preb


Run Number.

Start Time: End Time:

1020

Operator: Date:

Start Zero	tero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Vatue (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)
0.00	0.09	10.49	10.55	0.00	0.10	10.45	10.56
0.00	0.10	9.45	14.6	0.00	0,12	54.6	9.41

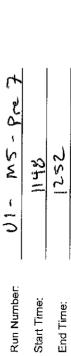
ł))	10	>2
SO ₂ (ppm)	NO _x (ppm)	CO (ppm)	CO2 (%)	O ₂ (%)

Sampling System Bias (SB) Criteria: <± 5% of span for zero and upscale gas, where:

Where: SB = $[(C_s - C_{Dir})/CS] * 100\%$

 $D = [SB_{final} - SB_i]$

Zero and Calibration Drift (D) Criteria: 5± 3% of span, where


Client/Site: Source:

Stret NEFCE /SWA Bis _ ₽ Unit

<u>0</u> **Operator:** Date:

1

System Bias (SB)/Drift (D) Assessments - Reference Method

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
	Cylinder Value (Cv)	Analyzer Response (C _s)						
Oxygen	0.00	0110	10.49	10-56	0.00	0.10	10-49	65.01
Carbon Dioxide	0.00	0,12	9.45	9.41	0.00	0.10	9.45	9.39
		λ.						

SO ₂ (ppm)	1
NO _x (ppm)	J
CO (ppm)	1
CO ₂ (%)	20
O ₂ (%)	25

Sampling System Bias (SB) Criteria: 45% of span for zero and upscale gas, where:

Where: SB = [($C_s - C_{Di_c}$)/CS] * 100%

Zero and Calibration Drift (D) Criteria: <1 3% of span, where

 $D = \left| SB_{final} - SB_{i} \right|$

A4 RTO / Dryer No. 2 Pre-Compliance Emissions Data (6/26/13)

PLANT: LOCATION:	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : DATE:	U2-M5-Pre5 26-Jun-13
<u>FILTER</u> NUMBER : 1437	BEAKER 7D	BLANK <u>FILTER</u> 1445	S <u>BEAKER</u> B5-48
FINAL : 0.4511	67.2800	0,4408	67.0280
TARE : 0.4503	67.2788	0.4408	67.0279
NET : 0.0008	0.0012	0.0000	0.0001
	VOLUME BLANK RINSE VOLUME OF RINSE	· · · · · · · · · · · · · · · · · · ·	130 110
Mn - Ar = Mn	O2 =	7.23	
Mn = 2.000 Ar = 0.085	O2 = CO2 = Vs = As = Vm std =	8.16 28.25 7.07	ft/sec
Mn = 2.000 Ar = 0.085 Mn = 2.000 no	CO2 = Vs = As = Vm std =	8.16 28.25 7.07	ft/sec ft2 DSCF DSCFH
Mn = 2.000 Ar = 0.085 Mn = 2.000 no Qs = 3600(1-Bwo)(V 3600 (Vs) (As)	CO2 = Vs = As = Vm std = s)(As)(17.64)(Ps/Ts) = = =	8.16 28.25 7.07 45.61 455382 718857	ft/sec ft2 DSCF DSCFH ACFH ACFH
Mn = 2.000 Ar = 0.085 Mn = 2.000 no Qs = 3600(1-Bwo)(V 3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (M	CO2 = Vs = As = Vm std = t blank corr s)(As)(17.64)(Ps/Ts) = = =	8.16 28.25 7.07 45.61 455382 718857 11981	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF
Mn = 2.000 Ar = 0.085 Mn = 2.000 no $Qs = 3600(1-Bwo)(V = 3600 (Vs) (As) = 3600 (Vs) (As) = ACFH / 60$ $Cs = (2.205 E-6) (M = 0.0154 (Mn) / (100 m))$	CO2 = Vs = As = Vm std = t blank corr s)(As)(17.64)(Ps/Ts) = = =	8.16 28.25 7.07 45.61 455382 718857 11981 9.66811E-08	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF GRAINS/SCF
Mn = 2.000 Ar = 0.085 Mn = 2.000 no Qs = 3600(1-Bwo)(V 3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (M Cs' = 0.0154 (Mn) /(CO2 = Vs = As = Vm std = t blank corr s)(As)(17.64)(Ps/Ts) = = = In) / (Vm Std) = VmStd) =	8.16 28.25 7.07 45.61 455382 718857 11981 9.66811E-08 0.0007	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF mg/dscm

PARTICULATE EMISSION CALCULATION SHEET

PARTICULATE	EMISSION CALC	ULATION SHEET

PLANT LOCATION	NEFCO / SWA Bios West Palm Beach, I		and the second se	U2-M5-Pre6 26-Jun-13
FILTER NUMBER : 1438	<u>BEAKER</u> 405	· · · · · · · · · · · · · · · · · · ·	BLANKS <u>FILTER</u> 1445	8 <u>BEAKER</u> B5-48
FINAL 0.4528	67.5405		0.4408	67.0280
TARE : 0.4513	67.5395		0.4408	67.0279
NET : 0.0015	0.0010		0.0000	0.0001
	VOLUME BLANK R VOLUME OF RINSI			130 115
Mn - Ar = Mn $Mn = 2.500$ $Ar = 0.088$ $Mn = 2.500 no$	O2 CO2 Vs As Vm s t blank corr		7.65 7.93 27.58 1 7.07 1 43.75 1	ť2
Qs = 3600(1-Bwo)(V 3600 (Vs) (As) ACFH / 60	s)(As)(17.64)(Ps/Ts)		438695 701783.4741 11696	DSCFH ACFH ACFM
Cs = (2.205 E-6) (M	n) / (Vm Std)	=	1.26013E-07	LB/SCF
Cs' = 0.0154 (Mn) /(\	/mSTD)	=	0.0009	GRAINS/SCF
Cs' = Mn / VmStd			2.02	mg/dscm
).9-7/20.9-02%	-	2.12	mg/dscm @7% O2
7% O2 PMR = Qs x Cs		=	0.055	LB/HR

..... --

į

PARTICULATE EMISSION CALCULATION SHEET

PLA LOC	NT CATION	NEFCO / SWA Bi West Palm Beac		RUN #: DATE	U2-M5-Pre7 26-Jun-13	
	<u>ILTER</u> 1439	BEAKER G12		BLANK <u>FILTER</u> 1445	S <u>BEAKER</u> B5-48	
FINAL C	.4446	65.8297		0.4408	67.0280	
TARE : 0	.4436	65.8286	···	0.4408	67.0279	• • • •
NET : C	.0010	0.0011 VOLUME BLANK VOLUME OF RIN		0.0000	0.0001 130 125	
Mn-Ar=Mn Mn =	2.100	C(Vs	2 =)2 = =	7.53 8.04 27.59	ft/sec	-
Ar = Mn =	0.096 2.100 not	Vr	S = n std=	7.07 44.60		
3600	0(1-Bwo)(Vs) 0 (Vs) (As) H / 60	(As)(17.64)(Ps/Ts)		440579 702020.7184 11700	DSCFH ACFH ACFM	:
	205 E-6) (Mn) / (Vm Std)	: 	1.03827E-07		
Cs' = 0.0	154 (Mn) /(Vi	mSTD)		0.0007	GRAINS/SCF	- 1 - 1 - 1
Cs' = Mn	/ VmStd		=	1,66	mg/dscm	
Cs'@ = Mn / 7% O2	VmStd x 20.	9-7/20.9-02%		1.73	mg/dscm @7% O2	
(V/, (\)	1. B. C. B.		1. Sec.		and the second	

LANT: NEFCO / SWA Biosolids OCATION: West Palm Beach, FL					RUN # : DATE :	U2-M5-Pre5 26-Jun-13		
As (SQFT) :	7.069 0.351	TRAVERSE	VELOCITY	SQUARE	DELTA		S METER OUT	STACK
Dn (INCHES) PITOT COEFFICIENT:	0.84	POINT	HEAD	ROOT	Н	IN -	001	TEMP (F)
		A1	0.17	0.41	1.87	91	91	205
IMP-1 (INT) :	100	2	0.17	0.41	1.87	92	92	220
	:	3	0.18	0.42	1.98	93	93	222
IMP-2 (INT) :	100	4	0.19	0.44	2.09	94	94	213
	<u> </u>	5	0.19	0.44	2.09	93	93	218
IMP-3 (INT) : [0	6	0.20	0.45	2.20	93	93	217
	811.0	B1	0.19	0.44	2.09	94	94	212
IMP-4 (INT) :	011.0	2	0.19	0.44	2.09	94 94	94 94	212
IMP-1 (FIN) :	300	3	0.21	0.45	2.20	94 94	94	230
		4	0.20	0.45	2.20	94	94	229
IMP-2 (FIN) :	114	5	0.18	0.42	1.98	94	94	226
······ = (· ····) ·	······································	6	0.17	0.41	1.87	94	94	224
IMP-3 (FIN) :	2							
IMP-4 (FIN) :	816.0							
		1						
% CO2 (OUT):	8.16							
% O2 (OUT) : [7.23							
% CO (OUT) : [0							
Pbar [30.0							
Pstack	-0.35							
NUMBER OF POINTS	12							
TEST LENGTH	60							
FINAL METER	859.902							
INTIAL METER	811.121	1						
BEGIN TIME	13:32							
END TIME	14:34							
· · · · · · · · · · · · · · · · · · ·	AVERAGE:		0.19	0.43	2.06	93.3	93.3	219.7

- - · · · ·

INPUT DATA SHEET

PLANT : LOCATION :		/ SWA Bios alm Beach,			RUN # : DATE ;		J2-M5-P 26-Jun-	
A- (COFT)	7.000			_ mai _ m				J
As (SQFT) : Dn (INCHES)	7.069 0.351	TRAVERSE	VELOCITY	SQUARE	DELTA		S METER	STACK
PITOT COEFFICIENT:	0.84	POINT	HEAD	ROOT	÷Н	IN	ÖÜT	TEMP (F)
		A1	0.17	0.41	1.70	90	90	221
IMP-1 (INT) :	100	2	0.18	0.42	1.80	90	90	227
		3	0.17	0.41	1.63	90	90	222
IMP-2 (INT) :	100	4	0.19	0.44	1.82	90	90	221
		5	0.18	0.42	1.73	90	90	231
IMP-3 (INT):	0	6	0.17	0.41	1.63	89	89	222
IMP-4 (INT) :	816.0	B1	0.17	0.41	1.63	90	90	225
	· · · ·	2	0.19	0.44	1.82	90	90	254
IMP-1 (FIN) :	280	3	0.18	0.42	1.73	90	90	248
	445	4	0.18	0.42	1.73	90	90	251
IMP-2 (FIN) :	115	5	0.18	0.42	1.73	90	90	224
IMP-3 (FIN):	5	6	0.15	0.39	1.44	89	89	224
IMP-4 (FIN) :	824.5							
% CO2 (OUT):	7.93							
% O2 (OUT) :	7.65							
% CO (OUT) : [0							
Pbar	30.0	ļ						
Pstack	-0.36							
NUMBER OF POINTS	12							
TEST LENGTH [60							
FINAL METER	906.953							
NTIAL METER	860.425							
BEGIN TIME	15:15							
END TIME	16:17							
	AVERAGE:		0.18	0.42	1.70	89.8	89.8	230.8

· _ · · · · ·

......

- -

PLANT **NEFCO / SWA Biosolids** U2-M5-Pre7 : **RUN # :** LOCATION : West Palm Beach, FL DATE : 26-Jun-13 As (SQFT) : 7.069 TRAVERSE VELOCITY SQUARE DELTA DRY GAS METER STACK **Dn** (INCHES) 0.351 POINT HEAD ROOT TEMP (F) н 1N Ουτ **PITOT COEFFICIENT:** 0.84 A1 0.14 0.37 1.54 89 89 227 IMP-1 (INT) : 100 2 0.16 0.40 1.76 88 88 221 3 0.17 0.41 88 229 1.87 88 IMP-2 (INT) : 100 4 0.17 0.41 1.87 88 88 231 0.18 0.42 1.98 229 5 88 88 IMP-3 (INT) : 0 6 0.16 1.76 228 0.40 89 89 IMP-4 (INT) : 811.0 B1 0.18 0.42 1.98 88 88 226 0.19 0.44 230 2 2,09 88 88 IMP-1 (FIN) : 286 3 0.20 0.45 2.20 88 88 236 4 0.20 0.45 2.20 88 88 238 IMP-2 (FIN) : 112 5 0.20 0.45 2.20 87 236 87 6 0.17 232 0.41 1.87 87 87 IMP-3 (FIN) : 4 IMP-4 (FIN) : 818.0 % CO2 (OUT): 8.04 % O2 (OUT) : 7.53 % CO (OUT) : 0 Pbar 30.0 Pstack -0.35 NUMBER OF POINTS 12 TEST LENGTH 60 FINAL METER 954.530 INTIAL METER 907.281 **BEGIN TIME** 16:34 END TIME 17:37 AVERAGE: 0.18 0.42 1.94 88.0 88.0 230.3

		JN # : U2-M5-Pre5 ATE : 26-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =	679.7 % O2 = 7.23 DH 93.3 % CO = 0 Ps 553.3 % N2 = 84.61 SC	m (CF) = 48.781 ELTA H (ABS) = 30.15 S (ABS) = 29.97 QRT DELTA P = 0.4328 = 0.9728 n = 0.000672
Vm std = Vw std =	17.64 (Vm)(Y)(DELTA H ABS) (Tm) .04707 (VI TOT)	= 45.614 DSCF = 10.402 CF
Bwo =	Vw std / (Vw std) + (Vm std)	= 0.186
Bwo =	by steam tables	= NA
1 - Bwo =	1 - Bwo	= 0.814
Md (DRY)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	= 29.594 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	= 27.441 LB/LB
G =	SQRT (Ts/Ps/Ms)	MOLE = 0.909
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 28.249 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/⊤s)	= 455382 DSCFH
% ISO =	<u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bw	= 105.3 /o)

.....

	NEFCO / SWA Biosolids West Palm Beach, FL	RUN # : U2-M5-Pre6 (example) 26-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =	$\begin{array}{c ccccc} 690.8 \\ 89.8 \\ 549.8 \end{array} \begin{array}{c} \% & O2 &= & 7.65 \\ \% & CO &= & 0 \\ \% & N2 &= & 84.42 \end{array}$	Vm (CF) = 46.528 DELTA H (ABS) = 30.12 Ps (ABS) = 29.97 SQRT DELTA P = 0.4191 Y = 0.9728 An = 0.000672
	17.64 (Vm)(Y)(DELTA H ABS (Tm)	
Vw std = Bwo =	.04707 (VI TOT) Vw std / (Vw std) + (Vm std)	= 9.814 CF = 0.183
	by steam tables	= NA
1 - Bwo =	1 - Bwo	= 0.817
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	
	MD (1-Bwo) + 18 (Bwo) SQRT (Ts/Ps/Ms)	= 27.454 LB/LB MOLE = 0.916
	85.49 (Cp) (G) (SQRT DELTA P)	
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts	s) = 438695 DSCFH
% ISO =	100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-	

ISOKINETIC CALCULATION SHEET

RUN # : PLANT : NEFCO / SWA Biosolids U2-M5-Pre7 DATE 26-Jun-13 LOCATION : West Palm Beach, FL 47.249 Ts(°F) = 230,3 % CO2 = 8.04 Vm (CF) = % O2 = 7.53 DELTA H (ABS) = 30.14 Ts (°R) = 690.3 % CO = 29.97 Tm (°F) = 88.0 Ps (ABS) ... 0 -Tm (°R) = SQRT DELTA P = 548.0 % N2 = 84.44 0.4198 VI(TOT) =Cp = 0.84 0.9728 209.0 Y 0.000672 VI (adj) = NA TIME = 60 An = Vm std ≒ 17.64 (Vm)(Y)(DELTA H ABS) = 44.598 DSCF (Tm) = 9.838 CF ,04707 (VI TOT) Vw std = 0.181 Vw std / (Vw std) + (Vm std) Bwo = = NA by steam tables Bwo Ξ 0.819 1 - Bwo = 1 - Bwo Ξ 0.44 (% CO2) + Ms (WET)= 0.32 (% O2) + 0.28 (% CO) + 29.587 LB/LB Ξ 0.28 (% N2) MOLE 27.493 LB/LB Ms (WET)= MD (1-Bwo) + 18 (Bwo) ≓

MOLE 0.915 G Ξ SQRT (Ts/Ps/Ms) = ·`. 27.588 FPS = 85.49 (Cp) (G) (SQRT DELTA P) Vs -. = 440579 DSCFH Qs 3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = = ... 106.4 % ISO = 100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)

Analyzer Calibrations

PLANT NEFCO	/ SWA Bio	solids	DATE :	26-Jur	า-13
LOCATION : West F	Palm Beac	h, FL			
Diluent/Pollutant	O ₂	CO2			
Units	%	%			
Monitor Range Selected	25	20			
Monitor Range (Effective, per Method)	20.42	18.69			
Low Level	Analyzer Ca	alibration l	Fror		
Cylinder Value (C _{v,Low})	0.00	0.00			
Analyzer Response (C _{Dir,Low})	0.09	0.14	н. — — — — — — — — — — — — — — — — — — —		1.1
Analyzer Calibration Error (ACE,Low)	0.44	0.75			
Calibration Status (Pass/Fail)	Pass	Pass			
Mid Level	Analyzer Ca	libration E	Error		
Cylinder Value (C _{v,Mid})	10.49	9.45	1		
Analyzer Response (C _{Dir,Mid})	10.55	9.44			
Analyzer Calibration Error (ACE, _{Mid})	0.29	-0.05			
Calibration Status (Pass/Fail)	Pass	Pass			
High Level	Analyzer Ca	alibration	Error		
Cylinder Value (C _{v,High})	20.42	18.69			
Analzyer Response (C _{Dir,High})	20.43	18.68	1. A.		
Analyzer Calibration Error (ACE, _{High})	0.05	-0.05			
Calibration Status (Pass/Fail)	Pass	Pass			
Cylinder Ga	s Selected f	or Bias Cl	necks		
Use Mid (M) or High (H) Span	M	M			
ZERO	0.09	0.14			
SPAN	10.55	9.44			
Mid Level	Gas Range	Assessm	ent		
Cylinder Value (Mid)	10.49	9.45			
Cylinder Value (High/Span)	20.42	18.69			
Percentage of Span (%)	51.4	50.6			
Assessment Status (Pass/Fail)	Pass	Pass			

PLANT : NEFCO / SWA LOCATION : West Palm Bea		· · · · · · · · · · · · · · · · · · ·	RUN # :U2-M5-Pre5 DATE :26-Jun-13					
	GAS	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
START TIME :	13:32							
END TIME ;	14:34							
	A							
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)		· · · ·		.* .		
Instrument Span =	20.42	18.69		· · ·		<u> </u>		
Analyzer Zero Response =	0.09	0.14						
Analyzer Span Response =	10.55	9,44						
Initial Sytem Zero Response ≍ Final System Zero Response =	0.10 0.09	0.10 0.11						
Average Zero Response (C_0) =	0.09	0.11						
Initial System Span Response = 1								
Final System Span Response =	10,57 10.60	9.39 9.35						
Average Span Response (C_m) =	10.60	9.35 9.37						
Average opant Kesponse (Cm) -	10.59	9.37						
Calibration gas values (C _{ma}) =	40.40	0.45						
	10.49	9.45						
System Bias and Drift Calculations	0.05							
Initial Zero Blas (SB _i) =	0.05	0.21						
Final Zero Bias (SB _{final}) =	0.00	0.16						
Zero Drift (D) =	0.05	0.05						
initial Span Bias (SB _i) =	0.10	0.27						
Final Span Bias (SB _{final}) =	0.24	0.48						
Spān Drift (D) =	0.15	0.21						
Uncorrected Ave. (C _{Avg}) =	7.33	8.10			·			
prrected Ave.= C_{gas} = (C_{Avg} - C_o)($C_{ma}/(C_m$ - C_o)) =	7.23	8.16		teres de la composición de la composicinde la composición de la composición de la composición de la co				
		.: .						
PLANT DATA	·	<u> </u>				· . · ·		
		· . · · · ·	ta se	· · ·				
				· · · · · · · · · · · · · · · · · · ·		•		

n de la composición d Composición de la composición de la comp
· · · · · · · · · · · · · · · · · · ·

.

PLANT : NEFCO / SW/ LOCATION : West Palm Be			RUN # : U2-M5-Pre7 DATE : 26-Jun-13	
	GAS			
START TIME :	16:34		······	
END TIME :	17:37			
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)		a status
Operating Range =	20.42	18.69		
Analyzer Zero Response =	0.09	0.14		
Analyzer Span Response =	10.55	9.44		
Sytem Zero Response (Initial) =	0.15	0.10		
System Zero Response (Final) =	0.12	0.06		
Average Zero Response (C_o) =	0.14	0.08		
Sytem Span Response (Initial) =	10.59	9.35		
System Span Response (Final) =	10.55	9.42		
Average Span Response (C _m) =	10.57	9.39		
Calibration gas values (C _{ma}) =	10.49	9.45		
System Bias and Drift Calculations:				
Initial Zero Bias (SB _i) =	0.29	0.21		
Final Zero Bias (SB _{final}) =	0.15	0.43		
Zero Drift (D) =	0.15	0.21		
Initial Span Bias (SB _i) =	0.20	0.48		
Final Span Bias (SB _{final}) =	0.00	0.11		
Span Drift (D) =	0.20	0.37		
	0.20	0.01		
Uncorrected Ave. (C _{Avg}) =	7.62	8.00		
	• • • • •			
principal Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	7.53	8.04		
			·	
PLANT DATA				
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

i

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location: Run No.:	NEFCO / SWA West Palm Bea U2-M5-Pre5	ch, FL	Date: Start Time: Stop Time:		
Date/time	O2 (%vd)	CO₂ (%vd)			
6/26/2013 1:32:00 PM	7.48	8.03			
6/26/2013 1:33:00 PM		8.00			
6/26/2013 1:34:00 PM		8.00			
6/26/2013 1:35:00 PM		8.02			1
6/26/2013 1:36:00 PM 6/26/2013 1:37:00 PM	7.46	8.03			
6/26/2013 1:38:00 PM	7.33	8.10			
6/26/2013 1:39:00 PM	7.26	8.12 8.09			
6/26/2013 1:40:00 PM	7.47	8.02			
6/26/2013 1:41:00 PM	7.52	8.00			
6/26/2013 1:42:00 PM	7.49	7.96	1		
6/26/2013 1:43:00 PM	7.54	7.99			
6/26/2013 1:44:00 PM	7.60	7.99			
6/26/2013 1:45:00 PM	7.28	8.09	}		
6/26/2013 1:46:00 PM	7.30	8.15			
6/26/2013 1:47:00 PM	7.33	8.14			
6/26/2013 1:48:00 PM 6/26/2013 1:49:00 PM	7.34	8.12	1		
6/26/2013 1:50:00 PM	7.37 7.39	8.06			
6/26/2013 1:51:00 PM	7.39	8.05 8.06			
6/26/2013 1:52:00 PM	7.30	8.09			
6/26/2013 1:53:00 PM	7.28	8.11			
6/26/2013 1:54:00 PM	7.43	8.16			
6/26/2013 1:55:00 PM	7.22	8.17			
6/26/2013 1:56:00 PM	7.27	8.17		i	
6/26/2013 1:57:00 PM	7.46	8.12			
6/26/2013 1:58:00 PM	7.29	8.07			
6/26/2013 1:59:00 PM	7.38	8.09]		
6/26/2013 2:00:00 PM	7.38	8.08			
6/26/2013 2:01:00 PM	7.29	8.13			
6/26/2013 2:02:00 PM 6/26/2013 2:03:00 PM			Port		
6/26/2013 2:04:00 PM			Change		
6/26/2013 2:05:00 PM	7.26	8.15			
6/26/2013 2:06:00 PM	7.33	8.12			
6/26/2013 2:07:00 PM	7.54	8.13			
6/26/2013 2:08:00 PM	7.37	8.07			
6/26/2013 2:09:00 PM	7.29	8.07			
6/26/2013 2:10:00 PM	7.36	8.10			
5/26/2013 2:11:00 PM	7.31	8.17			
5/26/2013 2:12:00 PM	7.19	8.21			
5/26/2013 2:13:00 PM 5/26/2013 2:14:00 PM	7.02 6.96	8.23			
5/26/2013 2:15:00 PM	6.96 7.19	8.21 8.16			
5/26/2013 2:16:00 PM	7.21	8.10			
5/26/2013 2:17:00 PM	7.30	8.08			
5/26/2013 2:18:00 PM	7.29	8.10			
5/26/2013 2:19:00 PM	7.20	8.14			
5/26/2013 2:20:00 PM	7.26	8.13			
5/26/2013 2:21:00 PM	7.22	8.15		ĺ	
5/26/2013 2:22:00 PM	7.17	8.17			
0/26/2013 2:23:00 PM	7.20	8.13		1	
6/26/2013 2:24:00 PM 6/26/2013 2:25:00 PM	7.36	8.11			
%26/2013 2:25:00 PM	7.39	8.12			
6/26/2013 2:27:00 PM	7.21	8.12 8.12			
26/2013 2:28:00 PM	7.13	8.13 8.17			
/26/2013 2:29:00 PM	7.15	8.17			Í
/26/2013 2:30:00 PM	7.43	8.11			
/26/2013 2:31:00 PM	7.34	8.05	l l		
/26/2013 2:32:00 PM	7.33	8.09			
/26/2013 2:33:00 PM	7.37	8.09			
Run Averages:	7.33	8.10			

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Fácility/Site: Location: Run No.:	U2-M5-Pre6	ch, FL	Start Time: Stop Time:		
Date/time	0 ₂ (% _{yd})	CO2 (%vd)			
6/26/2013 3:15:00 PM			<u></u>	an air a sharran a sharran a sharran a	<u> </u>
6/26/2013 3:16:00 PM	7.39 7.51	8.01			
6/26/2013 3:17:00 PM	7.39	8.01 7.99			
6/26/2013 3:18:00 PM	7.46	7.99			
6/26/2013 3:19:00 PM	7.39	8.01			
6/26/2013 3:20:00 PM	7,48	7.99			
6/26/2013 3:21:00 PM	7,39	8.00			
6/26/2013 3:22:00 PM	7.47	7.93	1		
6/26/2013 3:23:00 PM	7.48	7.85			
6/26/2013 3:24:00 PM	7.80	7.79			
6/26/2013 3:25:00 PM	7.78	7.87			
6/26/2013 3:26:00 PM	7.78	7.85			
6/26/2013 3:27:00 PM	7.70	7.89			
6/26/2013 3:28:00 PM 6/26/2013 3:29:00 PM	7.74	7.89			
6/26/2013 3:30:00 PM	7.69	7.88			
6/26/2013 3:31:00 PM	7.74	7.87			
6/26/2013 3:32:00 PM	7.73 7.51	7.89 7.92			
6/26/2013 3:33:00 PM	7.57	7.92			
6/26/2013 3:34:00 PM	7.61	7.95			
6/26/2013 3:35:00 PM	7.64	7.91			
6/26/2013 3:36:00 PM	7.69	7.94	1		
6/26/2013 3:37:00 PM	7.59	7.91			
6/26/2013 3:38:00 PM	7.63	7.94			
6/26/2013 3:39:00 PM	7.62	7.92			
6/26/2013 3:40:00 PM	7.53	7.95			
6/26/2013 3:41:00 PM	7.56	7.96			
6/26/2013 3:42:00 PM	7.66	7.96			
6/26/2013 3:43:00 PM	7.62	7.95			
6/26/2013 3:44:00 PM	7.55	7.93			
6/26/2013 3:45:00 PM			Port		
6/26/2013 3:46:00 PM 6/26/2013 3:47:00 PM	0.07	7.40	Change		
6/26/2013 3:48:00 PM	9.67 7.78	7.10			
6/26/2013 3:49:00 PM	8.02	7.84 7.81			
6/26/2013 3:50:00 PM	8.09	7.81			
6/26/2013 3:51:00 PM	7.85	7.80			
6/26/2013 3:52:00 PM	7.85	7.84			
6/26/2013 3:53:00 PM	7.88	7.80			
6/26/2013 3:54:00 PM	7.91	7.85			
6/26/2013 3:55:00 PM	7.92	7.82			
6/26/2013 3:56:00 PM	7.85	7.80			
6/26/2013 3:57:00 PM	7.75	7.83			
6/26/2013 3:58:00 PM	7.92	7.83	1		
6/26/2013 3:59:00 PM 6/26/2013 4:00:00 PM	7.84	7.80			
6/26/2013 4:00:00 PM	7.80	7.81	1		
6/26/2013 4:02:00 PM	7.91 7.87	7,82		[
6/26/2013 4:03:00 PM	7.87	7.84 7.82			
6/26/2013 4:04:00 PM	7.79	7.82	ļ		
6/26/2013 4:05:00 PM	7.82	7.84			
6/26/2013 4:06:00 PM	7.84	7.84			
6/26/2013 4:07:00 PM	7,84	7.84			i
6/26/2013 4:08:00 PM	7.72	7.84			
6/26/2013 4:09:00 PM	7.67	7.80			
6/26/2013 4:10:00 PM	7.90	7.83			
6/26/2013 4:11:00 PM	7.98	7.80			Í
6/26/2013 4:12:00 PM	7.94	7.79			
6/26/2013 4:13:00 PM	7.84	7.78			
6/26/2013 4:14:00 PM	7.96	7.79			
6/26/2013 4:15:00 PM	7.85	7.80	[
6/26/2013 4:16:00 PM	7.90	7.83			
	7.76			1	

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location: Run No.:	NEFCO / SWA West Palm Bea U2-M5-Pre7		Date: Start Time: Stop Time:		
Date/time	O ₂ (% _{vd})	CO2 (%vd)			
		170vd/	and and the strength of the second		
6/26/2013 4:34:00 PM 6/26/2013 4:35:00 PM	7.80 8.04	7.82			
6/26/2013 4:36:00 PM	7.72	7.86 7.86			ļ
6/26/2013 4:37:00 PM	7.83	7.88			
6/26/2013 4:38:00 PM	7.81	7.86			
6/26/2013 4:39:00 PM	7.89	7.83			
6/26/2013 4:40:00 PM	7.86	7.82			
6/26/2013 4:41:00 PM	7,88	7.83			
6/26/2013 4:42:00 PM 6/26/2013 4:43:00 PM	7.87 7.88	7.84 7.87			
6/26/2013 4:44:00 PM	7.94	7.86			
6/26/2013 4:45:00 PM	7.78	7.89			
6/26/2013 4:46:00 PM	8.11	7.87			
6/26/2013 4:47:00 PM	7.86	7.86			
6/26/2013 4:48:00 PM	7.77	7.82			
6/26/2013 4:49:00 PM 6/26/2013 4:50:00 PM	7.94 7.97	7,85			
6/26/2013 4:51:00 PM	7.97	7.81 7.85			
6/26/2013 4:52:00 PM	7.76	7.90			
6/26/2013 4:53:00 PM	7,60	7.97			
6/26/2013 4:54:00 PM	7.55	8.01			
6/26/2013 4:55:00 PM	7,59	8.00			
6/26/2013 4:56:00 PM 6/26/2013 4:57:00 PM	7.57	8.02			
6/26/2013 4:58:00 PM	7.71 7.70	7.97 7.95			
6/26/2013 4:59:00 PM	7.84	7.97			
6/26/2013 5:00:00 PM	7,62	7.99			
6/26/2013 5:01:00 PM	7.61	8.01			
6/26/2013 5:02:00 PM	7.58	8.05			
6/26/2013 5:03:00 PM 6/26/2013 5:04:00 PM	7.58	8.04			
6/26/2013 5:05:00 PM	7.53	8.02			
6/26/2013 5:06:00 PM			Port		
6/26/2013 5:07:00 PM			Change		
6/26/2013 5:08:00 PM					Í
6/26/2013 5:09:00 PM	7.77	7.98			
6/26/2013 5:10:00 PM 6/26/2013 5:11:00 PM	7,56	8.03			
6/26/2013 5:12:00 PM	7.47 7.43	8.12 8.14			
6/26/2013 5:13:00 PM	7.51	8.12]		
6/26/2013 5:14:00 PM	7.37	8,12	1		
6/26/2013 5:15:00 PM	7.41	8.08			
5/26/2013 5:16:00 PM	7.47	8,06		ļ	
6/26/2013 5:17:00 PM	7,54	8.03			
5/26/2013 5:16:00 PM 5/26/2013 5:19:00 PM	7.38 7.40	8.08 8.11			
5/26/2013 5:20:00 PM	7,40	8.13			
6/26/2013 5:21:00 PM	7.39	8.15	ļ	ĺ	
5/26/2013 5:22:00 PM	7.24	8.11	í		
5/26/2013 5:23:00 PM	7.36	8.13		[
0/26/2013 5:24:00 PM 0/26/2013 5:25:00 PM	7.30	8.13			1
26/2013 5:25:00 PM	7.51 7,62	8.09 8.10		ļ	
26/2013 5:27:00 PM	7.48	8.09		Í	
/26/2013 5:26:00 PM	7.16	8.17			ļ
/26/2013 5:29:00 PM	7.20	8.14	· .		
/26/2013 5:30:00 PM	7.40	8.15			
26/2013 5:31:00 PM	7.24	8.21			
0/26/2013 5:32:00 PM	7.40	8.13			
0/26/2013 5:33:00 PM 0/26/2013 5:34:00 PM	7.42 7.42	8,10 8,14			
26/2013 5:35:00 PM	7.42	8.14 6.09			
/26/2013 5:36:00 PM	7.40	6,12			
0/26/2013 12:51:00 PM	8.57	7.50			l I
Run Averages:	7.62	8.00	<u> </u>		

TRAVERSE DATA SHEET

PLANTE A	NETO	io / Sw	a Bi	osolide	<u> .</u>		RUN#A	U	2- m	5 - 1	Pre	5	ن 	
LOCATION	Wist	Palm P	Seach	<u>, fl</u>	/ Uns	12	PATER		6/2	<u>4 /1:</u>	3			
Fille (No.			RILLERITE	owie st	Development Development		es inci	NO.	14.77.92.97.57.68.44.720 PT051	NUTRICIPALITY	1111111111111	感知感的問		
IMEND (IND) ?*	100	UTRAVERED	U. DEUGIA	A DHEIMSE	2018年1月1日日日日日		STACK.	METER	E FULTER	FROBE		n j	ME	
IMP224 (IND) - P	د و ا			1			A TEMPTON	READING					TEMP	A VADA
IMP(3.(IND))	•	A!	0.17	1.87	91	91	205		247	234	<u>_</u> N	<u>4</u>	62	- <u> </u>
MIP-4 (INII)	<u>B110</u>	2	.17	1.87	92	92	220	<u>815,1</u>	250	241	-+		63	i
MP26 ((NT)) at	<u> </u>		,18	1.98	<i>93</i> 94	93 94	222	819.0	249	246 247	+1		62	1
IMIPIG (INIT)).		4	.19 .19	2.09		93	218	827.0	247 242	241	$\left \right $		62	2
(MP27/ ((N0)) 5		<u> </u>	20	2.09	93 93	<u>75</u> 93	217	831.1	249	245	┠─╂		63	2
imeral (EDN) :	300	BI	.19	2.09	94	94	212	835.3	749	247			65	2
IMP 21 (FIN) 1		<u> </u>]2 /	.21	2.31	94	94	220	839.3	251	247			63	2
IMP 39 (FIN) S	2	3	.20	2.20	94	94	230	844.1	248	242			63	٢
IMP-42(FIN)	8160		.20	2.20	94	94	229	\$ 47.9	250	245			63	2
ME25 (EIN)		5	.18	1.92	94	94	226	852,0	250	24Z			64	2
IMPROV(HIN)	-	6	.17	1.87	94	94	224	856-2	246	236	- '		65	2
IMPLY (BIN)	ŝ					,								
	<u></u>									L				
Pstäck	- 35		<u></u>							ļ	ļ			
	· · · · · · · · ·			ļ	ļ							· · · ·		
Davo, Pres.	30.0													
TESTILENCI														
BINALMETER	1								,					
059.90														
		1	· · · ·	 										
811.121									_ <u></u>					
BEGIN TIME -	1327										1			
											1		aanaa daaraa kaanada ta taraa ka	
	1434	5				-								ingeneration of the
Refeationship	<u>]].0</u> 5 \	Proteetk Postulee	Checks	0.005		10	HHC 48	Notes	Chan se	140	17 ~	140	04	
Box # . Y at the second	9928	Frontio	aon ee Reis	0.0	0 3.@	>3	R120		14172			<u> </u>		
Delival Hissess	2.04	Plast Plice	ik@inedk	0.0		73	H2O							
BoxOp	AS Fun	NGZ DIN		.35.1	Rhóbe h	NO.	10-5-1							
The contract of the part of the line of the set of the set	No. of Concession, Name			<u>, 23.(</u>										
													ریچ ماند برد باز خرج بین همین	

,				TR	AVERS	E DA'	TA SH	IEET		19. M (Karana ang Kalangana					
FLAN	Vijaga	NEF	10/5	wa	Biosoli	ds	· · · · ·	RUN#	U2	- M5	- Pre	6		, ,	
toe	Andona	21.T	Palm B	ench,	FL /	Unit	2	DATE.		6/26/	13		-		
	- Nos			HIRECT	ie With.			Ла						- 1 <u></u>	
IMR.1	. ((NH)) ;:	100	TRAVERSE	aprilyA		, DRY GA	O METTERS	аласка. Зпаска	MELER	el all'intere	PROBE	i Di			
化物物物质	((N 0)) ()	100	RONTES	Less diastra	Part Hand	N. N. S	oura	TEMETON	ALC: SALES AS A SALES	130 M IN MILLION	10.043786424143	- S	12,659	TEMR	A VACA
12334 (ALBA)	F.([[X][i)]);;;	0	<u> </u>	.17	1.87	90	90	221	-	250	२५५	NI	'n	65	1
计数据的分数分	((NII)) S;	816.0	2	.18	1.98	90	90	227	364.8	251	245	\square		66	1
Sec. 2010	((Ni)) <u>, (</u>		š	.17	1.87	90	90	222	568.4	249	246			63	
IMIPE6	新建筑的新闻、新闻、		4	.19	2.09	90	90	221	872.6	248	243			62	
	((INIT)) -		5	18	1.98	90 89	90 81	271	875.9	249	243			60	
	(EUS)): 	280	BI	.17	1.87	90	90	225	879.8 833.5	248	248			60	
() 相关法律的 ()	(F(N))	115	2	19	2.09	90	90	254	887.4	251	248 249	-+-		61	
1003662636	(FUN)	5	3	.18	1.98	90	90	248	891.6	247	237	-+-		57	
1203010-00404	1.1.1	824.5	14	18	1.98	90	90	251	895,6	246	234			55	$\frac{\prime}{1}$
	((E(N)))) :		5	.18	1.98	90	90	224	900.1	2.48	237			58	
IMP/6	(((IN)))		6	\$،	1.65	Bg	89	Z 24	903.4	249	250			59	1
IMP-7	(FIN)?										-				
									-						
Pstace		- 36													
															
Baro	Picon (30.0		-			· · · · · ·								
ABC -	LEING TH					<u> </u>	·						+		
	nanas. Manas	the second second second		·····									-+		
and the second se	.953			·					·	······			-		
2-14-56 (BE-	METER														
	0.425												-+		
						·····	· <u></u>								
BEGIN	TIME	1515										···-			
END TI	ME .	1617			L	<u> </u>	<u>مرد به در محافظ م</u>								
RCIE	สารเสียง	11.0	RIGHERRI	alitativase	0,002		10	HANNER STATE	Notogen	gan an a					
B(5)+# ₹		5	Poellerak	Check	0,002	- @	8	1.619) 1.619	Port (1	mile	155	15-	15	47	
V Doltad		. 9768 2.04	Pre-Filtota PostiPilio		0.0		>3	4120) 11:120		/					
50×0	p (A5	NGAIDRE	2		Tope N	Realized and women's	P-5-1				·			
Anoleic)	<u>Ope</u>		Noz Dian		0.351										
										,,_,_,,,,,,,,,,,,,,,,,,,,,,,,,,					·····
COMPRESS OF		Š.			. R	·经出货中心: "	动的 一般		L						

.

٩,

TRAVERSE DATA SHEET

		<u>1 K/</u>	IVERD									
PLANE	EFCO 15	WA DO	osplie	>		RUN#	12	- MA 5	$-\rho_{rc}$	7		
	PB,FL		+2			DATE	6	126/1	3			
FilterNo		Ellerun	e\W(⊨.).⊂		•	e static)	No			Calcon Discover Andrew Andre	P-122 (102 (102 (102 (102 (102 (102 (102 (-
IMPERIONNAL 10				承信在1,30 年1月2	METRIC	9TACK	METER .	en hilter	PROBE	D DBY	MP 1	
IMP22 (INII) 55 10	N CARGO A CARG	1			oufs	ATEMP (6);	READING	a state of the local data is a second data in the local data in the l	STEMP.	FILTER		NAC .
IMPLA (INIT) 2 2	$\frac{A(}{D}$. 14	1.54	89	89	127		248	231	NA	<u>58</u> 57	• •
MP-4. (INT) 811	<u>D</u> <u>L</u> - <u>.</u> 3	-16	1.76	88	88	221	91.4	218	236 243		57	ì
MP25 ((NŤ))		17	1.87	<u>88</u> 88	88	231	<u>914.8</u> 918.4	249	246		<u>37</u> 57	1
IMR.6. (INT),	5	187	2.00	88	88	229	924.8	-249	294		58	1
indro 2 - Open 2 - I	6	.16	1.76	89	89	228	927.1	250	247		59	1
MEDICENST 28		18	1.98	88	88	226	930,0	248	245		63	i
IMP.2. (FIN) & LC2		.14	2.09	88	88	230	934.4	249	245		60	ļ
IMP 3 (FIN)	3	.20	2.20	88	88	236	937.6	2 50	244	ļ	58	1
IME-4 (EIN) ろして。	0 4	.20	2.20	88	88	238	942.1	250	247		58	
IMP/62 (FIN)	- 5	.20	2.20	87	87	236	946.5	249	249	┠┠	59	
IMP & (PUN)(S	<u> </u>	17	1.87	87	87	232	950.6	248	246		59	
IMP.7. (F(N)		<u> </u>						·	<u> </u>			
	<u></u>											
Pstack in the -13	2		ļ									
2.												
Barol Pres 22 30									 			
restauenone 60	>			·		· · · · · · · · · · · · · · · · · · ·						
PINALTMETER		1										
954,530												
INTIAL METER	5 12 12 12 12 12 12											
907.281					ļ			<u> </u>		 		
		<u> </u>			<u> </u>				<u> </u>	 		
BEGINTIME //	2/1				<u> </u>	 			<u> </u>		<u> </u>	
			<u> </u>		<u> </u>				<u> </u>		<u> </u>	
ENDTIME 17	⁄招	1	1	I				<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u>L</u>
Relationship -10			0.002	(O) (12-	Hereday	Notesist				<u> </u>	
Box# 5 Y 942	Postile	ak Check it Check		¢.	10	1460 1420	Pot	Chan pt	1'70'	+-47	66-17	-07
Delta H	Y POSEPI	of Check		- (Ø)	·73	MH20						
Box Op	NO2 ID		<u> </u>		No.	P-51				<u></u>		
Probe@phile Fr	2 53392006-05530	<u>im: Artes</u>	.351									

Client/Site: NEFCo / Surry Bioso/L/S Source: RTO # 1 3 If 2 Strats RM Response Time: Upscale (seconds): 20

Operator: Andres Seenhe Date: L (26/13

ţ

Downscale (seconds): 20

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

Analyzer Calibration Error (ACE) – Reference Method

	onse					
High/Full Scale (CS)	Analyzer Response (C _{DIR})	2043	18.65		- -	
High/Full	Cylinder Value (C _v)	20,42	18.69			
Mid	Analyzer Response (C _{DIR})	10.55	9.44			
W	Cylinder Value (C _v)	64.01	34.45		2	
Low	Analyzer Response (C _{มห})	60.09	0.14			
- L	Cylinder Value (C _v)	0.00	0.00			
	Politicality Diffeent	Oxygen	Carbon Dioxide			

Range selected for analyzer operation:

SO ₂ (ppm)	
NO _x (ppm)	
CO (ppm)	ļ
CO ₂ (%)	20
O ₂ (%)	25

Analyzer Calibration Error (ACE) Acceptance Criteria: ≤± 2%

Where: $ACE = [(C_{Dir} - C_v)/CS] * 100\%$

Expiratíon Date	11 [2] 20	11 [2/29	•		
Diluent/Pollutant Concentrations(s)	20069.81 20 Lh.02	10-48 or / 8. 42 cor			
Cylinder No.	CC421863	25421656		-	

Protocol Gases Used During Program:

NEFCO / SWA Biosolids Unit #2 Stack Client/Site: Source:

Uz-ms-Pres Run Number. Start Time:

1332

End Time:

(26/13 Operator: Date:

· ·.

System Bias (SB)/Drift (D) Assessments – Reference Method

Doilintent/Dilnent	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
	Cylinder Value (C _V)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C ₃)
Oxygen	0.00	0.10	10.4 9	F S.e/	00.0	6,09	66.01	0,101
Carbon Dioxide	0.00	0.10	9.4 ×	9,39	0.00		3.4<	9.35
						•		

SO ₂ (ppm)	/
NO _x (ppm)	
CO (ppm)	
CO ₂ (%)	10
O ₂ (%)	15

Sampling System Bias (SB) Criteria: <= 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

with a sum of the manual sector of the sector of

Zero and Calibration Drift (D) Criteria: S± 3% of span, where

 $D = |SB_{final} - SB_{i}|$

WEFCO / SwA Riasolids \$70 # 2 Sheet Client/Site: Source:

 $_{i}!$

1. Sealer 6/26/13

Operator: Date:

> U2-MS-Prelo 1515 Run Number. Start Time:

End Time:

1617

System Bias (SB)/Drift (D) Assessments - Reference Method

Pollutant/Diluent	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
	Cylinder Value (C _v)	Analyzer Response (C _S)	Cylinder Value (C _v)	Analyzer Response (C _S)	Cylinder Value (Cv)	Anałyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _c)
Oxygen	0.00	0-09	64.01	10-60	0.00	0.15	10.49	10.59
Carbon Dioxide	0.00	11.0	345	9.35	0.00	0. 10	9.4	926
						•		
				-				

SO ₂ (ppm))	
NO _x (ppm)		
CO (ppm)		
CO ₂ (%)	50	
O ₂ (%)	25	

Zero and Calibration Drift (D) Criteria: <± 3% of span, where

Where: $SB = [(C_s - C_{Dit})/CS] * 100\%$

and the second secon

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

 $D = \left| SB_{final} - SB_{i} \right|$

Client/Site: NEFCe / Sw A Biosulids Source: PTD # Z Stuck

Operator: Date:

M

U2- MS- Pre 7	1634
Run Number:	Start Time:

Start Time: 163 ' End Time: 73

すいたこ

System Bias (SB)/Drift (D) Assessments - Reference Method

According to Accor	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
	Cylinder Value (C _v)	Analyzər Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _V)	Analyzer Response (C _s)
Oxygen	0.00	0.15	10.49	10.59	00.0	0.12	10.49	10.55
Carbon Dioxide	0.00	6.10	9.45	9.35	00.0	J. Cie	9.45	64.6

(mqq	
SO ₂ (ppm)	
NO _x (ppm)	
CO (ppm)	
CO ₂ (%)	20
O ₂ (%)	25

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: 5± 3% of span, where

 $D = \left| SB_{\text{final}} - SB_{\text{i}} \right|$

A5 Particle Size Distribution Data

i.

WinCIDRS: Results for Sample NEFCO Unit 1 Pre01.DI Diameter Basis: Aerodynamic

Stage	e C.C	orr D5	0 Cur	n.% R	e.No. V*I	D50 Skip
1	1.02	9.368	47.83	1619.8	30.07	
2	1.02	11.614	47.83	47.5	8.48 X	
3	1.03	7.615	47.83	62.2	9.51 X	
4		4.952				
5	1.06	3.531	47.83	102.7	12.02	
6	1.11	2.071	47.83	146.2	14.29	
7	1.22	1.034	39.13	227.2	17.24	
8	1.39	0.582	34.78	306.8	17.73	
9	1.71	0.337	30.43	519.2	17.49	

Total Concentration = 2.58E+00 mg/dscm

Results of Spline Fit:

. **•**

22

i

Dia.	Cum.%	Cum.Conc. dM/dLogD_dN/dLogD
um		mg/dncm mg/dncm No./dncm
0.10	0.04	1.03E-03 3.04E-02 5.80E+10
0.13	0.50	1.29E-02 2.75E-01 2.63E+11
0.16	2.95	7.60E-02 1.10E+00 5.26E+11
0.20	9.47	2.44E-01 2.24E+00 5.38E+11
0.25	19.35	4.98E-01 2.66E+00 3.21E+11
0.32	28.58	7.36E-01 1.92E+00 1.16E+11
0.40	33.52	8.64E-01 6.73E-01 2.04E+10
0.50	34.68	8.94E-01 5.78E-02 8.77E+08
0.63	35.00	9.02E-01 2.00E-01 1.52E+09
0.79	36.34	9.36E-01 4.85E-01 1.85E+09
1.00	38.72	9.98E-01 7.36E-01 1.41E+09
1.26	41.92	1.08E+00 8.77E-01 8.40E+08
1.58	45.21	1.16E+00 7.73E-01 3.71E+08
2.00	47.60	1.23E+00 4.13E-01 9.94E+07
2.51	48.31	1.24E+00 5.84E-05 7.04E+03
3.16	47.99	1.24E+00 5.84E-05 3.53E+03
3.98	47.83	1.23E+00 1.69E-02 5.11E+05
5.01	47.83	1.23E+00 8.62E-05 1.31E+03
6.31	47.83	1.23E+00 8.62E-05 6.55E+02
7.94	47.83	1.23E+00 7.24E-02 2.76E+05
10.00	48.29	1.24E+00 4.86E-01 9.28E+05
12.59	51.08	1.32E+00 9.44E-01 9.04E+05
15.85	55.58	1.43E+00 1.37E+00 6.55E+05
19.95	61.59	1.59E+00 1.71E+00 4.12E+05
25.12	68.72	1.77E+00 1.93E+00 2.33E+05
31.62	76.35	1.97E+00 1.96E+00 1.19E+05
39.81	83.69	2.16E+00 1.78E+00 5.39E+04
50.12	89.94	2.32E+00 1.41E+00 2.15E+04
63.10	94.56	2.44E+00 9.65E-01 7.34E+03
79.43	97.48	2.51E+00 5.55E-01 2.11E+03
100.00	99.02	2.55E+00 2.62E-01 5.01E+02

WinCIDRS: INERTIAL PARTICLE SIZING ANALYSIS PROGRAM, VERSION 8.4.20

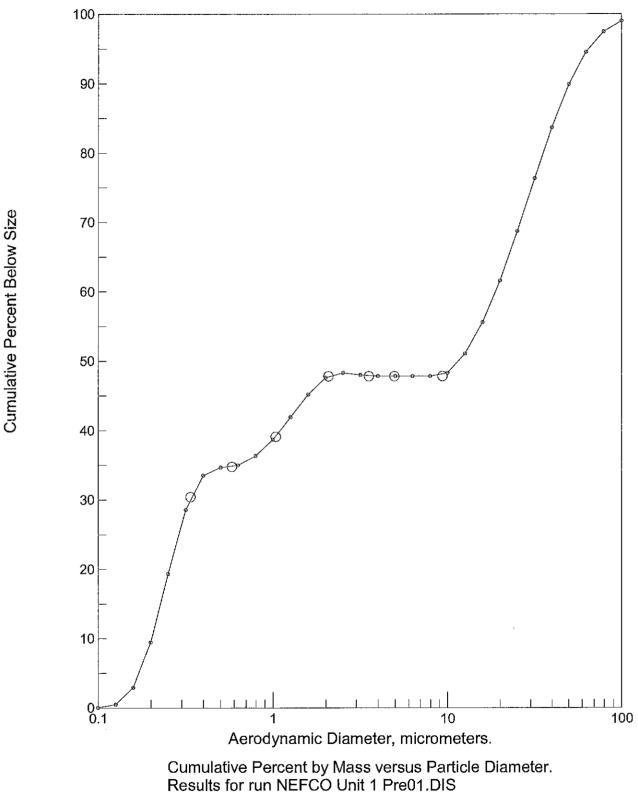
Test Desig.: NEFCO Unit 1 Pre Run Number: 01 Test Type: Outlet Test Date: 6/25/13 Test Location: Unit 1 Stack Time of Test: 13:17 to 14:23 Run Remarks: Used Filter Set PS3

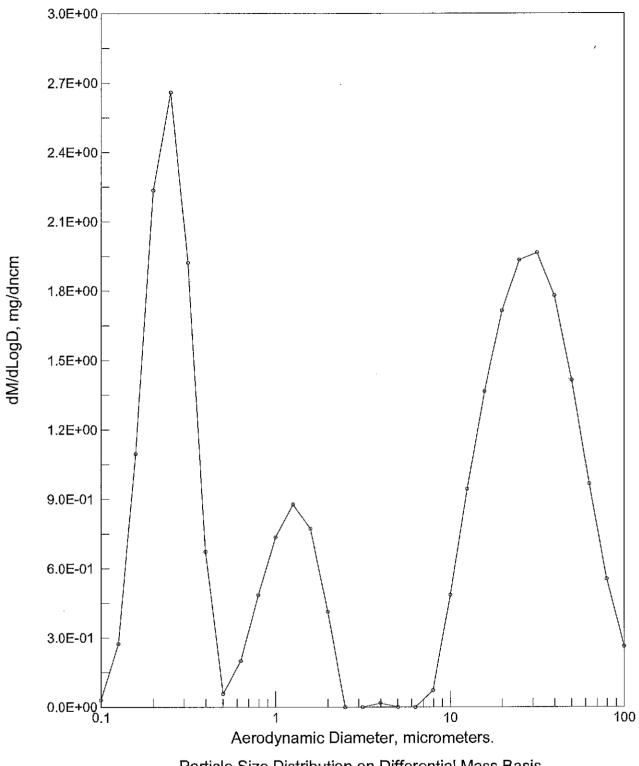
Sizing Device: ANDWRAPC.IMP RAPC p0-s1 1-s2 2-s3 3-s4 4-s5 5-s6 6-s7 7-s8

Substrate Type: Fibrous

Basis of Diameters for Results: Aerodynamic (Particle density = 1)

Gas Composition - Bulk Gas Percentages on DRY BASISO2 = 8.2CO2 = 7.8N2 = 84CO = 0H2O = 15.5


Sampling Details:


Gas Meter Start: 493.151 GAS METER END: 527.044 NET VOLUME = 33.893 Meter Correction Factor = .9728 Orifice DH (in. wa) = 1DH@ = 2.04Meter Temperature (deg. F) = 93.2 Stack Temperature (deg. F) = 269.8 Impactor Temperature (deg. F) = 269.8 Barometric Pressure (in. Hg) = 29.9 Stack Pressure Differential to Ambient (in. wg) = -.42Impactor Pressure Drop (in. Hg) = 0.85Sample Duration (min.) = 60Sample Flow Rate (acfm) = .8614 Pitot DP (in. wg) = .2124PITOT CONSTANT = .84 Gas Velocity (fps) = 31.02Nozzle Diameter (in.) = .312 Percent Isokinetic = 87.2 Volume Condensed H2O (cc) = 123

Stage Weights (mg):

Stage	Initial	Final	Gross	Blank	Net
RAPC	70798.	30 7079	9.50	1.20	0.00 1.20
S1	156.10	156.10	0.00	0.00	0.00
S2	139.60	139.60	0.00	0.00	0.00
S3	155.50	155.50	0.00	0.00	0.00
S4	139.10	139.10	0.00	0.00	0.00
S5	155.70	155.70	0.00	0.00	0.00
S6	139.60	139.80	0.20	0.00	0.20
S7	156.30	156.40	0.10	0.00	0.10
S8	139.00	139.10	0.10	0.00	0.10

i		Blank Stag	ge	0.0	0	0.00	0.00	0.00	0.00
	£3	Filter	208	.60	209	9.30	0.70	0.00	0.70
-		Blank Filte	er (0.00	(0.00	0.00	0.00	0.00

Particle Size Distribution on Differential Mass Basis. Results for run NEFCO Unit 1 Pre01.DIS WinCIDRS: Results for Sample NEFCO Unit 1 Pre04.DI Diameter Basis: Aerodynamic

Stage	C.Co	orr D50	0 Cun	1.% R	e.No. V*D50 Skip
1	1.02	9.380	50.00	1597.3	30.27
2	1.02	11.668	50.00	46.9	8.56 X
3	1.03	7.649	50.00	61.3	9.61 X
4	1.05	4.973	44.44	81.1	10.91
5	1.06	3.546	44.44	101.2	12.14
6	1.11	2.080	44,44	144.2	14.44
7	1.22	1.039	38.89	224.0	17.41
8	1.40	0.584	33.33	302.5	17.88
9	1.72	0.337	33.33	512.0	17.57

Total Concentration = 2.03E+00 mg/dscm

Results of Spline Fit:

ť

1

Dia.	Cum.%	Cum.Conc. dM/dLogD dN/dLogD
um	n	ng/dncm mg/dncm No./dncm
0.10	0.07	1.33E-03 3.89E-02 7.43E+10
0.13	0.78	1.59E-02 3.27E-01 3.13E+11
0.16	4.24	8.61E-02 1.16E+00 5.59E+11
0.20	12.43	2.52E-01 2.08E+00 5.01E+11
0.25	23.31	4.73E-01 2.14E+00 2.58E+11
0.32	31.93	6.48E-01 1.23E+00 7.41E+10
0.40	34.90	7.08E-01 6.85E-02 2.07E+09
0.50	33.99	6.89E-01 5.84E-05 8.86E+05
0.63	33.45	6.78E-01 1.60E-01 1.21E+09
0.79	35.34	7.17E-01 5.55E-01 2.11E+09
1.00	38.40	7.79E-01 6.33E-01 1.21E+09
1.26	41.17	8.35E-01 4.84E-01 4.63E+08
1.58	43.16	8.75E-01 3.21E-01 1.54E+08
2.00	44.33	8.99E-01 1.55E-01 3.72E+07
2.51	44.71	9.07E-01 1.29E-02 1.56E+06
3.16	44.59	9.04E-01 4.49E-05 2.71E+03
3.98	44.46	9.02E-01 4.65E-05 1.41E+03
5.01	44.47	9.02E-01 1.02E-01 1.55E+06
6.31	45.48	9.22E-01 3.13E-01 2.38E+06
7.94	47.63	9.66E-01 5.65E-01 2.15E+06
10.00	51.12	1.04E+00 8.54E-01 1.63E+06
12.59	56.02	1.14E+00 1.13E+00 1.08E+06
15.85	62.15	1.26E+00 1.35E+00 6.47E+05
19.95	69.16	1.40E+00 1.48E+00 3.55E+05
25.12	76.50	1.55E+00 1.48E+00 1.78E+05
31.62	83.48	1.69E+00 1.34E+00 8.06E+04
39.81	89.47	1.81E+00 1.08E+00 3.26E+04
50.12	94.01	1.91E+00 7.62E-01 1.16E+04
63.10	97.02	1.97E+00 4.65E-01 3.54E+03
79.43	98.72	2.00E+00 2.41E-01 9.17E+02
100.00	99.54	2.02E+00 1.04E-01 1.98E+02

WinCIDRS: INERTIAL PARTICLE SIZING ANALYSIS PROGRAM, VERSION 8.4.20

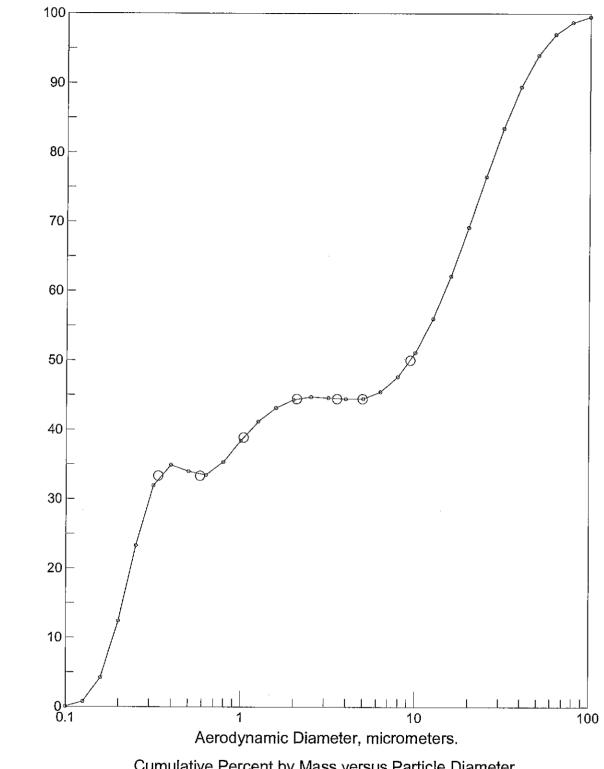
Test Desig.: NEFCO Unit 1 Pre Run Number: 04 Test Type: Outlet Test Date: 6/25/13 Test Location: Unit 1 Stack Time of Test: 17:55 to 19:00 Run Remarks: Used Filter Set PS4

Sizing Device: ANDWRAPC.IMP RAPC p0-s1 1-s2 2-s3 3-s4 4-s5 5-s6 6-s7 7-s8

Substrate Type: Fibrous

Basis of Diameters for Results: Aerodynamic (Particle density = 1)

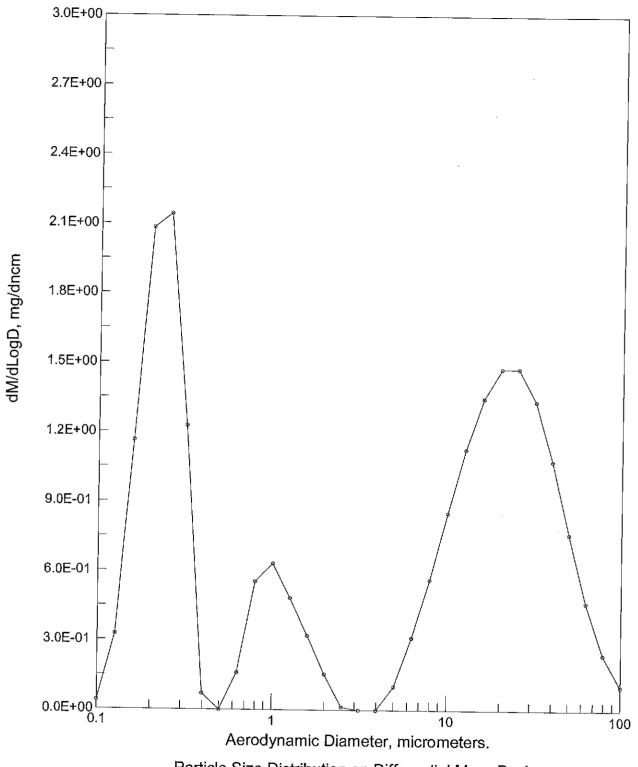
Gas Composition - Bulk Gas Percentages on DRY BASISO2 = 8.4CO2 = 7.7N2 = 83.9CO = 0H2O = 15.6


Sampling Details:

Gas Meter Start: 626.169 GAS METER END: 659.434 NET VOLUME = 33.265 Meter Correction Factor = .9728 Orifice DH (in, wa) = 1DH@ = 2.04Meter Temperature (deg. F) = 86.2 Stack Temperature (deg. F) = 277.6 Impactor Temperature (deg. F) = 277.6 Barometric Pressure (in. Hg) = 29.9Stack Pressure Differential to Ambient (in. wg) = -.4 Impactor Pressure Drop (in. Hg) = 0.85 Sample Duration (min.) = 60Sample Flow Rate (acfm) = .8662Pitot DP (in. wq) = .2764PITOT CONSTANT = .84Gas Velocity (fps) = 35.58Nozzle Diameter (in.) = .312 Percent Isokinetic = 76.4 Volume Condensed H2O (cc) = 123

Stage Weights (mg):

Stage	Initial	Final	Gross	Blank	Net	
RAPC	67516.	90 6751	7.50	0.60	0.00	0.60
S1	156.30	156.60	0.30	0.00	0.30	
S2	142.00	142.00	0.00	0.00	0.00	
S3	157.10	157.20	0.10	0.00	0.10	
S4	139.60	139.60	0.00	0.00	0.00	
S5	155.40	155.40	0.00	0.00	0.00	
S6	140.60	140.70	0.10	0.00	0.10	
S7	155.60	155.70	0.10	0.00	0.10	
S8	139.70	139.70	0.00	0.00	0.00	


Blank Sta	ge 0.0	00.0	0.00	0.00	0.00
; Filter	208.70	209.30	0.60	0.00	0.60
Blank Filte	ər 0.00	0.00	0.00	0.00	0.00

Cumulative Percent by Mass versus Particle Diameter. Results for run NEFCO Unit 1 Pre04.DIS

Cumulative Percent Below Size

, -2

ì

, <u>)</u>

Particle Size Distribution on Differential Mass Basis. Results for run NEFCO Unit 1 Pre04.DIS WinCIDRS: Results for Sample NEFCO Unit 2 Pre03.DI Diameter Basis: Aerodynamic

Stage	e C.C	orr D5	0 Cur	n.% R	e.No. V*D50 Skip
1	1.02	9.469	45.21	1655.7	28.80 ·
2	1.02	11.679	45.21	48.6	8.08 X
3					9.07 X
4		4.985			
5	1.06	3.557	41.98	104.9	11.48
6	1.10	2.089	38.75	149.4	13.67
7	1.20	1.047	35.52	232.1	16.55
8	1.36	0.593	29.06	313.4	17.14
9	1.64	0.349	25.83	530.4	17.16

Total Concentration = 3.52E+00 mg/dscm

Results of Spline Fit:

, 1

۰**٬**

Dia.	Cum.%	
um		ng/dncm mg/dncm No./dncm
0.10	0.03	1.01E-03 2.96E-02 5.66E+10
0.13	0.36	1.27E-02 2.73E-01 2.61E+11
0.16	2.19	7.70E-02 1.14E+00 5.46E+11
0.20	7.30	2.57E-01 2.45E+00 5.88E+11
0.25	15.44	5.43E-01 3.07E+00 3.70E+11
0.32	23.42	8.24E-01 2.32E+00 1.40E+11
0.40	27.76	9.76E-01 7.59E-01 2.30E+10
0.50	28.68	1.01E+00 9.33E-02 1.42E+09
0.63	29.46	1.04E+00 6.15E-01 4.68E+09
0.79	32.01	1.13E+00 1.08E+00 4.12E+09
1.00	35.04	1.23E+00 9.39E-01 1.79E+09
1.26	36.94	1.30E+00 4.35E-01 4.17E+08
1.58	37.81	1.33E+00 2.27E-01 1.09E+08
2.00	38.55	1.36E+00 3.51E-01 8.43E+07
2.51	39.95	1.40E+00 5.83E-01 7.02E+07
3.16	41.50	1.46E+00 4.42E-01 2.67E+07
3.98	42.14	1.48E+00 1.26E-02 3.81E+05
5.01	42.02	1.48E+00 4.04E-01 6.13E+06
6.31	42.24	1.49E+00 2.30E-01 1.75E+06
7.94	43.43	1.53E+00 6.31E-01 2.40E+06
10.00	45.96	1.62E+00 1.17E+00 2.24E+06
12.59	50.10	1.76E+00 1.73E+00 1.66E+06
15.85	55.76	1.96E+00 2.24E+00 1.07E+06
19.95	62.71	2.20E+00 2.62E+00 6.30E+05
25.12	70.46	2.48E+00 2.80E+00 3.37E+05
31.62	78.35	2.75E+00 2.70E+00 1.63E+05
39.81	85.56	3.01E+00 2.33E+00 7.05E+04
50.12	91.40	3.21E+00 1.76E+00 2.67E+04
63.10	95.52	3.36E+00 1.14E+00 8.69E+03
79.43	98.00	3.45E+00 6.26E-01 2.38E+03
100.00	99.25	3.49E+00 2.83E-01 5.41E+02

WinCIDRS: INERTIAL PARTICLE SIZING ANALYSIS PROGRAM, VERSION 8.4.20

Test Desig.: NEFCO Unit 2 Pre Run Number: 03 Test Type: Outlet Test Date: 6/25/13 Test Location: Unit 2 Stack Time of Test: 09:15 to 10:22 Run Remarks: Used Filter Set PS1

Sizing Device: ANDWRAPC.IMP RAPC p0-s1 1-s2 2-s3 3-s4 4-s5 5-s6 6-s7 7-s8

Substrate Type: Fibrous

Basis of Diameters for Results: Aerodynamic (Particle density = 1)

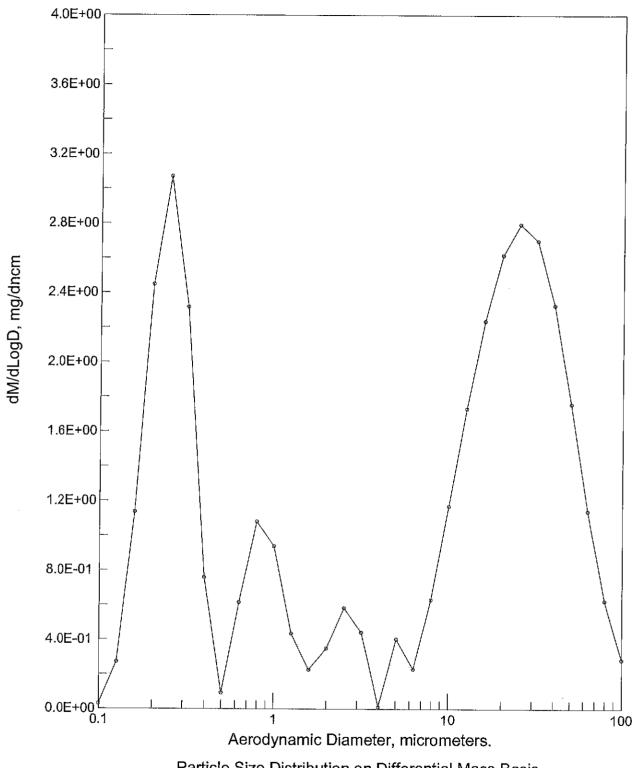
Gas Composition - Bulk Gas Percentages on DRY BASISO2 = 8.4CO2 = 7.8N2 = 83.8CO = 0H2O = 15.7

Sampling Details:

Gas Meter Start: 424.838 GAS METER END: 458.203 NET VOLUME = 33.365 Meter Correction Factor = .9728 Orifice DH (in, wa) = 1DH@ = 2.04Meter Temperature (deg. F) = 92 Stack Temperature (deg. F) = 239.6 Impactor Temperature (deg. F) = 240 Barometric Pressure (in. Hg) = 29.9 Stack Pressure Differential to Ambient (in. wg) = -.42 Impactor Pressure Drop (in. Hg) = 0.8 Sample Duration (min.) = 60 Sample Flow Rate (acfm) = .8164 Pitot DP (in. wg) = .1688PITOT CONSTANT = .84 Gas Velocity (fps) = 27.08Nozzle Diameter (in.) = .312Percent Isokinetic = 94.6 Volume Condensed H2O (cc) = 123

Stage Weights (mg):

Stage	Initial		Gross	Blank	Net
RAPC	69963.	20 6996	4.80	1.60	0.00 1.60
S1	154.20	154.30	0.10	0.00	0.10
S2	140.00	140.00	0.00	0.00	0.00
S3	155.20	155.30	0.10	0.00	0.10
S4	139.00	139.00	0.00	0.00	0.00
S5	156.40	156.50	0.10	0.00	0.10
S6	139.00	139.10	0.10	0.00	0.10
S7	155.50	155.70	0.20	0.00	0.20
S8	139.30	139.40	0.10	0.00	0.10


	Blank Sta	ge	0.00	0	0.00	0.00	0.00	0.00
``	Filter	207	.90	208	.70	0.80	0.00	0.80
	Blank Filte	er	0.00	0	.00	0.00	0.00	0.00

.'

Cumulative Percent Below Size

2) 6

у а.,

> Particle Size Distribution on Differential Mass Basis. Results for run NEFCO Unit 2 Pre03.DIS

WinCIDRS: Results for Sample NEFCO Unit 2 Pre04.DI Diameter Basis: Aerodynamic

Stage	C.C	orr D50	0 Cun	n.% R	e.No. V*D50 Skip
1	1.02	9.333	35.90	1652.4	29.06
2	1.02	11.517	35.90	48.5	8.16 X
3	1.03	7.555	35.90	63.4	9.15 X
4	1.04	4.914	35.90	83.8	10.40
5	1.06	3.505	35.90	104.7	11.57
6	1.10	2.057	30.77	149.1	13.78
7	1.21	1.029	28.20	231.7	16.65
8	1.37	0.582	25.64	313.0	17.19
9	1.67	0.340	20.51	529.6	17.13

Total Concentration = 4.59E+00 mg/dscm

Results of Spline Fit:

 $t_{\rm ex}$

5.

Dia.	Cum.%	Cum.Conc. dM/dLogD dN/dLogD
um	r	ng/dncm mg/dncm No./dncm
0.10	0.02	7.96E-04 2.34E-02 4.46E+10
0.13	0.22	1.03E-02 2.24E-01 2.15E+11
0.16	1.43	6.56E-02 1.01E+00 4.85E+11
0.20	5.10	2.34E-01 2.40E+00 5.77E+11
0.25	11.58	5.31E-01 3.36E+00 4.04E+11
0.32	18.66	8.56E-01 2.89E+00 1.74E+11
0.40	23.32	1.07E+00 1.38E+00 4.16E+10
0.50	25.13	1.15E+00 4.41E-01 6.69E+09
0.63	25.97	1.19E+00 4.49E-01 3.42E+09
0.79	27.07	1.24E+00 5.27E-01 2.01E+09
1.00	28.12	1.29E+00 3.94E-01 7.53E+08
1.26	28.75	1.32E+00 2.34E-01 2.24E+08
1.58	29.34	1.35E+00 3.60E-01 1.73E+08
2.00	30.54	1.40E+00 7.93E-01 1.91E+08
2.51	32.81	1.51E+00 1.19E+00 1.43E+08
3.16	35.21	1.62E+00 8.93E-01 5.39E+07
3.98	36.24	1.66E+00 5.39E-02 1.63E+06
5.01	35.91	1.65E+00 1.03E-04 1.56E+03
6.31	35.91	1.65E+00 1.03E-04 7.83E+02
7.94	35.91	1.65E+00 2.23E-01 8.50E+05
10.00	36.46	1.67E+00 9.60E-01 1.83E+06
12.59	39.45	1.81E+00 1.79E+00 1.71E+06
15.85	44.26	2.03E+00 2.62E+00 1.26E+06
19.95	50.83	2.33E+00 3.39E+00 8.16E+05
25.12	58.93	2.70E+00 4.00E+00 4.82E+05
31.62	68.01	3.12E+00 4.27E+00 2.58E+05
39.81	77.19	3.54E+00 4.08E+00 1.23E+05
50.12	85.44	3.92E+00 3.42E+00 5.18E+04
63.10	91.86	4.21E+00 2.45E+00 1.86E+04
79.43	96.11	4.41E+00 1.47E+00 5.62E+03
100.00	98.45	4.52E+00 7.24E-01 1.38E+03

WinCIDRS: INERTIAL PARTICLE SIZING ANALYSIS PROGRAM, VERSION 8.4.20

Test Desig.: NEFCO Unit 2 Pre Run Number: 04 Test Type: Outlet Test Date: 6/25/13 Test Location: Unit 2 Stack Time of Test: 10:55 to 12:04 Run Remarks: Used Filter Set PS2

Sizing Device: ANDWRAPC.IMP RAPC p0-s1 1-s2 2-s3 3-s4 4-s5 5-s6 6-s7 7-s8

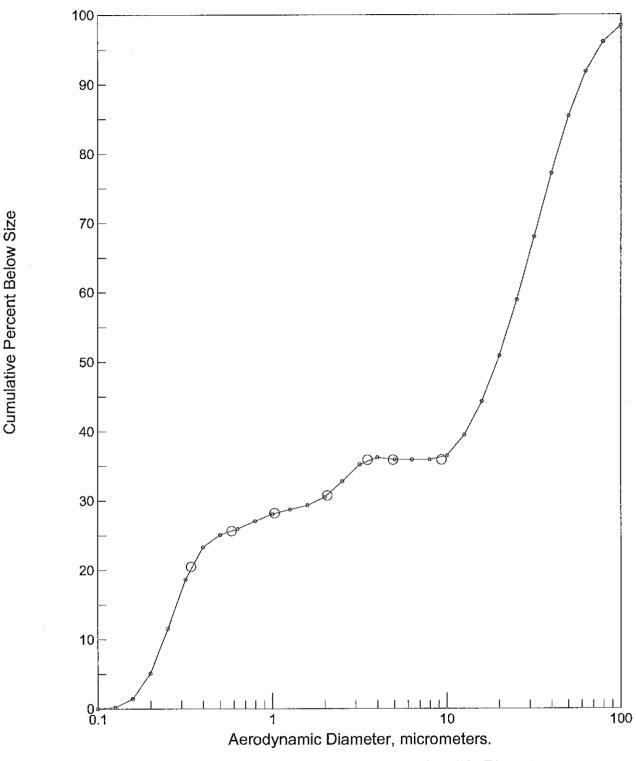
Substrate Type: Fibrous

Basis of Diameters for Results: Aerodynamic (Particle density = 1)

Gas Composition - Bulk Gas Percentages on DRY BASISO2 = 10.0CO2 = 6.8N2 = 83.2CO = 0H2O = 19.7

Sampling Details:

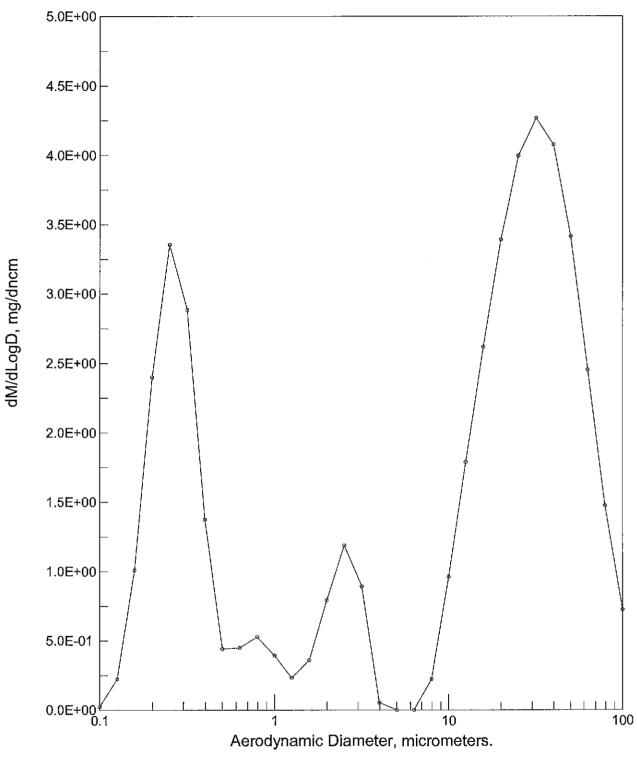
Gas Meter Start: 460.501 GAS METER END: 492.724 NET VOLUME = 32.223 Meter Correction Factor = .9728 Orifice DH (in. wg) = 1DH@ = 2.04Meter Temperature (deg. F) = 92.4 Stack Temperature (deg. F) = 247.2 Impactor Temperature (deg. F) = 247.2 Barometric Pressure (in. Hg) = 29.9 Stack Pressure Differential to Ambient (in. wa) = -.41 Impactor Pressure Drop (in. Hg) = 0.81Sample Duration (min.) = 60Sample Flow Rate (acfm) = .8357 Pitot DP (in. wg) = .2016PITOT CONSTANT = .84Gas Velocity (fps) = 30.05 Nozzle Diameter (in.) = .312Percent Isokinetic = 87.3 Volume Condensed H2O (cc) = 156


Stage Weights (mg):

Stage	Initial	Final	Gross	Blank	Net	
RAPC	67197.	00 6719	9.50	2.50	0.00 2	2.50
S1	158.20	158.20	0.00	0.00	0.00	
S2	139.90	139.90	0.00	0.00	0.00	
S3	155.50	155.50	0.00	0.00	0.00	
S4	140.50	140.50	0.00	0.00	0.00	
S5	157.10	157.30	0.20	0.00	0.20	
S6	140.40	140.50	0.10	0.00	0.10	
S7	157.80	157.90	0.10	0.00	0.10	
S8	141.00	141.20	0.20	0.00	0.20	

è	Blank Stag	ge 0. [.]	00	0.00	0.00	0.00	0.00
	Filter	208.00	208	8.80	0.80	0.00	0.80
	Blank Filte	er 0.00) (00.0	0.00	0.00	0.00

.


1 .

Cumulative Percent by Mass versus Particle Diameter. Results for run NEFCO Unit 2 Pre04.DIS

, I.,

r .,

1 · . . .

_ . _ . .

.

Particle Size Distribution on Differential Mass Basis. Results for run NEFCO Unit 2 Pre04.DIS

Appendix B

Reference Method Emissions Data – Compliance Particulate Matter Emissions Data

- 1 RTO / Dryer No. 1 Compliance Emissions Data
- 2 RTO / Dryer No. 2 Compliance Emissions Data
- 3 Visible Emissions Readings / Data

. ÷

B1 RTO / Dryer No. 1 Compliance Emissions Data

PLANT: LOCATION:	NEFCO / SWA Biosolids RTO #1 Stack	i i i i i i i i i i i i i i i i i i i	U1-M5-R1 27-Jun-13
n na ta ta ta ta ta ta	N	BLANKS	Biotechnik (Markan (Markan)
NUMBER <u>FILTER</u> 1449	<u>BEAKER</u> 05-7-34	<u>FILTER</u> 1445	ACETONE B5-48
FINAL 0.4615	69.6092	0.4408	67.0280
TARE : 0.4593	69.6076	0.4408	67.0279
NET : 0.0022	0.0016	0.0000	0.0001
	VOLUME BLANK RINSE VOLUME OF RINSE		130 100
Mn - Ar = Mn Mn = 3.800 Ar = 0.077	O2 = CO2 = Vs = As = Vm std =	8.72 7.23 30.91 7.07 46.92	ft/sec ft2
Mn = 3.800 n	ot blank corr	이 것 이 것 같아. 김 영향	a a gebra a ser a seter tradición de la companya
	or Marix con		de <u>raigit, un tablum (se leafer st</u> i
	/s)(As)(17.64)(Ps/Ts) =	786523	DSCFH ACFH ACFM
Qs = 3600(1-Bwo)(\ 3600 (Vs) (As)	/s)(As)(17.64)(Ps/Ts) = = =	786523 13109	ACFH ACFM
Qs = 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60	/s)(As)(17.64)(Ps/Ts) = = = /n) / (Vm Std) =	786523 13109 1.78598E-07	ACFH ACFM
Qs = 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (N	/s)(As)(17.64)(Ps/Ts) = = = /n) / (Vm Std) =	786523 13109 1.78598E-07	ACFH ACFM LB/SCF
Qs = 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60 Cs = (2.205 E-6) (N Cs' = 0.0154 (Mn) /	/s)(As)(17.64)(Ps/Ts) = = 4 (1) / (Vm Std) = (VmStd) =	786523 13109 1.78598E-07 0.0012	ACFH ACFM LB/SCF GRAINS/SCF

DTICHTATE EMISSION CALCUIT ATION SHEET **D** 4

and the second	NEFCO / SWA RTO #1 S		RUN # : DATE :		
NUMBER 1470	<u>BEAKER</u> BK-49		BLANK <u>FILTER</u> 1445	S ACETONE B5-48	
FINAL 0.4621	70.0995		0.4408	67.0280	······································
TARE : 0.4590	70.0989		0.4408	67.0279	
NET : 0.0031	0.0006		0.0000	0.0001	
	VOLUME BL/ VOLUME OF			130 110	
en de la seconda de					
Ar = 0.085	not blank corr	CO2 = Vs = As = Vm std=	7.40 31.15 7.07 47.29	ft/sec	
Ar = 0.085 Mn = 3.700)(Vs)(As)(17.64)(Ps	Vs = As = Vm std=	31.15 7.07 47.29	ft/sec ft2 DSCF DSCFH ACFH	
Ar = 0.085 Mn = 3.700 Qs = 3600(1-Bwo) 3600 (Vs) (As ACFH / 60)(Vs)(As)(17.64)(Ps	Vs = As = Vm std=	31.15 7.07 47.29 478448 792555.1889	ft/sec ft2 DSCF DSCFH ACFH ACFH	
Ar = 0.085 Mn = 3.700 Qs = 3600(1-Bwo) 3600 (Vs) (As ACFH / 60)(Vs)(As)(17.64)(Ps s) (Mn) / (Vm Std)	Vs = As = Vm std=	31.15 7.07 47.29 478448 792555.1889 13209	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF	SCF
Ar = 0.085 $Mn = 3.700$ $Qs = 3600(1-Bwo)$ $3600 (Vs) (As)$ $ACFH / 60$ $Cs = (2.205 E-6)$)(Vs)(As)(17.64)(Ps s) (Mn) / (Vm Std)) /(VmSTD)	Vs = As = Vm std= \$/Ts) = = =	31.15 7.07 47.29 478448 792555.1889 13209 1.72517E-07	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF	SCF
Ar = 0.085 $Mn = 3.700$ $Qs = 3600(1-Bwo)$ $3600 (Vs) (As)$ $ACFH / 60$ $Cs = (2.205 E-6)$ $Cs' = 0.0154 (Mn)$)(Vs)(As)(17.64)(Ps s) (Mn) / (Vm Std)) /(VmSTD)	Vs = As = Vm std= s/Ts) = = = =	31.15 7.07 47.29 478448 792555.1889 13209 1.72517E-07 0.0012	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/S mg/dscm	

PLANT NEFCO / SWA Bios LOCATION RTO #1 Stack	in a second s	U1-M5-R3 27-Jun-13
na an an Anna an Anna an Anna an Anna An Anna Anna	BLANK	(S
FILTERBEAKERNUMBER :1471SGC-01	<u>FILTER</u> 1445	ACETONE B5-48
FINAL : 0.4588 67.4031	0.4408	67.0280
TARE : 0.457667.4024	0.4408	67.0279
NET : 0.0012 0.0007	0.0000	0.0001
VOLUME BLANK I VOLUME OF RINS		130
Vm Mn = 1.900 not blank corr	std= 48.00) DSCF
Qs = 3600(1-Bwo)(Vs)(As)(17.64)(Ps/Ts)	= 489738	
3600 (Vs) (As) ACFH / 60	= 812134.6485 = 13536	
Cs = (2.205 E-6) (Mn) / (Vm Std)	= 8.72892E-08	LB/SCF
Cs' = 0.0154 (Mn) /(VmSTD)	= 0.0006	GRAINS/SCF
Cs' = Mn / VmStd	= 1.40) mg/dscm
	= 1.56	mg/dscm @7% O2
Cs' @ = Mn / VmStd x 20.9-7/20.9-O2% 7% O2		

PLANT: LOCATION:	and the second) / SWA Bios FO #1 Stack	olids		RUN # : DATE :		U1-M5-F 27-Jun-	
As (SQFT) :	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA		S METER	STACK
Dn (INCHES) PITOT COEFFICIENT:	0.351	POINT	HEAD	ROOT	H :	IN	OUT	TEMP (F)
		A1	0.20	0.45	2.00	85	85	241
IMP-1 (INT) :	100	2	0.21	0.46	2.10	85	85	245
		3	0.21	0.46	2.10	86	86	247
IMP-2 (INT) :	100	4	0.22	0.47	2.20	86	86	248
	· · · · · · · · · · · · · · · · · · ·	5	0.23	0.48	2.30	87	87	251
IMP-3 (INT) :	0	6	0.23	0.48	2,30	87	87	250
IMP-4 (INT) :	818.0	B1	0.18	0.42	1.80	88	88	242
mu (mar)		2	0.10	0.42	2.00	88	88	247
IMP-1 (FIN) :	304	3	0.20	0.46	2.10	89	89	248
		4	0.23	0.48	2.30	90	90	249
IMP-2 (FIN) :	112	5	0.23	0.48	2.30	90	90	253
		6	0.23	0.48	2.30	90	90	253
IMP-3 (FIN):	6							
IMP-4 (FIN) ;	823.0							
% CO2 (OUT):	7.23							
% O2 (OUT) :	8.72							
% CO (OUT) :	0							
Pbar	30.0							
Pstack	-0.38							
NUMBER OF POINTS	12							
TEST LENGTH	60							
FINAL METER	139.892							
INTIAL METER	90,251							
BEGIN TIME	13:40							
END TIME	14:44							
	AVERAGE:		0.22	0.46	2.15	87.6	87.6	247.8

PLANTNEFCO / SWA BiosolidsRUN # :U1-M5-R2LOCATIONRTO #1 StackDATE :27-Jun-13

As (SQFT) :	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	DRY GA	S METER	STACK
Dn (INCHES)	0.351	POINT	HEAD	ROOT	н	ÌŇ	ουτ	TEMP (F)
PITOT COEFFICIENT:	0.84		·····					
n an an taon ann an Airtean. <u>Taoinn an Airtean</u> an Aontaichtean an Airtean		A1	0.18	0.42	1.80	89	89	239
IMP-1 (INT) :	100	2	0.18	0.42	1.80	89	89	237
		3	0.22	0.47	2.20	88	88	246
IMP-2 (INT) :	100	4 r	0.23	0.48	2.30	89	89	264 251
IMP-3 (INT) :		5 6	0.24 0.21	0.49 0.46	2.40 2.10	89 90	89 90	251
mr-o (mr)		Ŭ	0.21	0.40	2.10	30	30	202
MP-4 (INT) :	824.0	B1	0.20	0.45	2.00	90	90	255
		2	0.23	0.48	2.30	90	90	257
MP-1 (FIN) :	306	3	0.23	0.48	2.30	90	90	260
		4	0.22	0.47	2.20	90	90	259
MP-2 (FIN) :	112	5	0.22	0.47	2.20	90	90	269
		6	0.24	0.49	2,40	91	91	264
MP-3 (FIN) :	4							
MP-4 (FIN) :	829.0							
ar-4 (rna) -	029.0							
6 CO2 (OUT):	7.40							
6 O2 (OUT) :	8.35							
% CO (OUT) :	0							
Pbar	30.0							
Pstack	-0.37							
NUMBER OF POINTS	12							
EST LENGTH	60							
INAL METER	190.330							
NTIAL METER	140.111							
BEGIN TIME	15:00							
	16:03							
				• · •		•• •		
	AVERAGE:		0.22	0.46	2.17	89.6	89.6	254.4

PLANT :NEFCO / SWA BiosolidsRUN # :LOCATION :RTO #1 StackDATE :

U1-M5-R3 27-Jun-13

As (SQFT)	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	DRY GA	SMETER	STACK
Dn (INCHES)	0.351	POINT	HEAD	ROOT	н	IN	OUT	TEMP (F)
PITOT COEFFICIENT:	0.84						-	
		A1	0.21	0.46	2.10	90	90	253
MP-1 (INT) :	100	2	0.22	0.47	2.20	89	89	261
	1	3	0.24	0.49	2.40	89	89	270
IMP-2 (INT) :	100	4	0.25	0.50	2,50	90	90	259
		5	0.23	0.48	2.30	90	90	261
MP-3 (INT) :		6	0.21	0.46	2.10	89	89	251
MP-4 (INT) :	821.0	B1	0.23	0.48	2.30	89	89	252
MT-4 (MT) -	021.0	2	0.23	0.48	2.30	89	89	261
IMP-1 (FIN) :	300	3	0.23	0.40	2.30	89	89	257
		4	0.22	0.48	2.30	89	89	272
IMP-2 (FIN) :	115	5	0.23	0.48	2.30	89	89	263
		.6	0.21	0.46	2.10	89	89	260
MP-3 (FIN) :	2		•				•••	
MP-4 (FIN) :	826.0							
% CO2 (OUT):	7.29							
% O2 (OUT) :	8.46							
% CO (OUT) :	0							
Pbar	30.0							
Pstack	-0.38							
NUMBER OF POINTS	12							
TEST LENGTH	60							
		r						
FINAL METER	241.623							
NTIAL METER	190.698							
		1						
BEGIN TIME	16:20							
	17:23							
· · · · · · · · · · · · · · · · · · ·	AVERAGE:		0.23	0.48	2.26	89.3	89,3	260.0

	NEFCO / SWA Biosolids RTO #1 Stack	RUN # : U1-M5-R1 DATE : 27-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =		Vm (CF) = 49.641 DELTA H (ABS) = 30.16 Ps (ABS) = 29.97 SQRT DELTA P = 0.4634 Y = 0.9728 An = 0.00067
Vm std =	17.64 (Vm)(Y)(DELTA H ABS (Tm)	<u>S) =</u> 46.915 DSCF
Vw std =	.04707 (VI TOT)	= 10.685 CF
Bwo =	Vw std / (Vw std) + (Vm std)	= 0.186
Bwo =	by steam tables	= NA
1 - Bwo =	1 - Bwo	= 0.814
Md (DRY)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	≈ 27.372 LB/LB MOLE
G =	SQRT (Ts/Ps/Ms)	= 0.929
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 30.908 FPS
Qs = % ISO =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/T <u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1	= 103.1

PLANT : NEFCO / SWA Biosolids RUN#: U1-M5-R2 LOCATION : RTO #1 Stack (example) 27-Jun-13 50.219 $Ts(^{\circ}F) =$ 254.4 % CO2 = 7.40 Vm (CF) = . Ts (°R) = 714.4 % O2 = 8.35 DELTA H (ABS) = 30.16 % CO = Tm(°F) =89.6 . 0 Ps (ABS) 29.97 = $Tm(^{\circ}R) =$ 549.6 % N2 = 84.25 SQRT DELTA P = 0.4650 VI (TOT) = Cp = 0.9728 227.0 0.84 Ý = VI (adj) = NA 60 An Ξ 0.000672 TIME = 47.291 DSCF Vm std = 17.64 (Vm)(Y)(DELTA H ABS) = • • (Tm) Vw std = .04707 (VI TOT) = 10.685 CF Vw std / (Vw std) + (Vm std) 0,184 Bwo Ξ = by steam tables NA Bwo = = 1 - Bwo = 1 - Bwo 0.816 0.44 (% CO2) + Ms (WET)= 0.32 (% O2) + 0.28 (% CO) + 29.518 LB/LB = 0.28 (% N2) MOLE 27.395 LB/LB Ms (WET)= MD (1-Bwo) + 18 (Bwo) \equiv MOLE G = SQRT (Ts/Ps/Ms) 0.933 = 31.145 FPS Vs = 85.49 (Cp) (G) (SQRT DELTA P) 3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts) = 478448 DSCFH Qs = % ISO = 100 (Ts) (Vm std) (Pstd) 103.9 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)

	NEFCO / SWA Biosolids RTO #1 Stack	RUN # : U1-M5-R3 DATE : 27-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =	720.0 % O2 = 8.46 89.3 % CO = 0 549.3 % N2 = 84.25	Vm (CF) = 50.925 DELTA H (ABS) = 30.17 Ps (ABS) = 29.97 SQRT DELTA P = 0.4751 Y = 0.9728 An = 0.00067
Vm std =	17.64 (Vm)(Y)(DELTA H ABS) (Tm)) = 47.996 DSCF
Vw std =	.04707 (VI TOT)	= 10.450 CF
Bwo =	Vw std / (Vw std) + (Vm std) by steam tables	= 0.179 = NA
1 - Bwo =	1 - Bwo	= 0.821
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	= 27.448 LB/LB
G =	SQRT (Ts/Ps/Ms)	MOLE = 0.936
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 31.915 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts	s) = 489738 DSCFH
% ISO =	100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-	= 103.1 ·Bwo)

Analyzer Calibrations

PLANT : NEFCO	/ SWA Bio	solids	DATE :	27-Jur	1 -13
LOCATION : RI	「O #1 Stac	k			
Diluent/Pollutant	0 ₂	CO ₂			
Units	%	%			
Monitor Range Selected	25	20			
Monitor Range (Effective, per Method)	20.42	18.69	14		
Low Level	r		Error		
Cylinder Value (C _{v,Low})	0.00	0.00			e en tratil
Analyzer Response (C _{Dir,Low})	0.11	0.24	1999 - T		
Analyzer Calibration Error (ACE,Low)	0.54	1.28			
Calibration Status (Pass/Fail)	Pass	Pass			
Mid Level	Analyzer Ca	alibration E	Error		
Cylinder Value (C _{v,Mid})	10.49	9.45			
Analyzer Response (C _{Dir,Mid})	10.47	9.40			· · · · .
Analyzer Calibration Error (ACE, _{Mid})	-0.10	-0.27			
Calibration Status (Pass/Fail)	Pass	Pass			N 1
High Level	Analyzer C	alibration	Error		
Cylinder Value (C _{v,High})	20.42	18.69			
Analzyer Response (C _{Dir,High})	20.46	18.62			
Analyzer Calibration Error (ACE, High)	0.20	-0.37			
Calibration Status (Pass/Fail)	Pass	Pass			
Cylinder Ga	s Selected t	for Bias Cl	necks		
Use Mid (M) or High (H) Span	M N	M			
ZERO	0.11	0.24			· ·
SPAN	10.47	9.4			
Mid Level	Gas Range	Assessm	ent		
Cylinder Value (Mid)	10.49	9.45			
Cylinder Value (High/Span)	20.42	18.69			
Percentage of Span (%)	51.4	50.6			
Assessment Status (Pass/Fail)	Pass	Pass			1997 - A.

PLANT : NEFCO / SWA LOCATION : RTO #1 Stack				: U1-M5-R1 : 27-Jun-13	
	GAS		·	- 1 - 1 - 1 - 1	· · · · · · · · · · · · · · · · · · ·
START TIME :	13:40				
END TIME :	14:44	· · · · · ·			
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)			
Instrument Span =	20.42	18.69	÷ .		
Analyzer Zero Response =	0.11	0.24			
Analyzer Span Response =	10.47	9.40			
Initial Sytem Zero Response =	0.05	-0.05			
Final System Zero Response =	0.21	-0.04			
Average Zero Response (C _o) =	0.13	-0.05			
Initial Sytem Span Response =	10.71	9.30			
Final System Span Response =	10.71	9.23			
Average Span Response (C _m) =	10.71	9.27			
Calibration gas values (C _{ma}) =	10.49	9.45			
System Bias and Drift Calculations					
Initial Zero Bias (SB _I) =	0.29	1.55			
Final Zero Bias (SB _{final}) =	0.49	1.50			
Zero Drift (D) =	0.78	0.05			
Initial Span Bias (SB _i) =	1.18	0.54			
Final Span Bias (SB _{final}) =	1.18	0.91			
Span Drift (D) =	0.00	0.37			
	0,00	0.01			
Uncorrected Ave. (C _{Avg}) =	8.92	7.08			
orrected Ave = $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	8.72	7.23			an an the state
	0.72	1.20	•		
PLANT DATA				an an an	al sa an a
		· · · ·		and the second	

<u>CEMS Calibratio</u>	<u>ns and (</u>	Calculation	ns Sheet	-		
PLANT : NEFCO/SWA		· · · · · · ·		U1-M5-R2	·	
LOCATION : RTO #1 Stack		<u> </u>	DATE	27-Jun-13		
	GAS			· · · · · · ·		
START TIME :	15:00					
END TIME :	16:03					
na setter a				· . ·		
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)				
Operating Range =	20.42	18.69				
Analyzer Zero Response =	0.11	0.24				
Analyzer Span Response =	10.47	9.40				
Sytem Zero Response (Initial) =	0.21	-0.04				
System Zero Response (Final) =	0.19	-0.05				
Average Zero Response (C _o) =	0.20	-0.05				
Sytem Span Response (Initial) =	10.71	9.23				
System Span Response (Final) =	10.69	9.22				
Average Span Response (C _m) =	10.70	9.23				
Calibration gas values (C _{ma}) =	10.49	9.45				
System Bias and Drift Calculations:						
Initial Zero Bias (SB _i) =	0.49	1.50				
Final Zero Bias (SB _{final}) =	0.39	1.55				
Zero Drift (D) =	0.10	0.05				
Initial Span Blas (SB ₁) =	1.18	0.91				
Final Span Bias (SB _{final}) =	1.08	0.96				
Span Drift (D) =	0.10	0.05				
Uncorrected Ave. $(C_{Avg}) =$	8.56	7.21				
orrected Ave = $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	8.35	7.40				
PLANT DATA		la su su su s	· · · · ·	e se de la composición		÷
			•			*
			· · · · · · · · · · · · · · · · · · ·			

CEMS Calibratio	ons and	Calculation	ns Sheet		
PLANT : NEFCO/SWA	Biogolide	· . · · · · · · · · · · · · · · · · · ·	RUN#	U1-M5-R3	
LOCATION : RTO #1 Stack				27-Jun-13	
	GAS		the state of the s	· · ·	
START TIME :	16:20				
END TIME :	17:23				
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)			
Operating Range =	20.42	18.69		· ·	
Analyzer Zero Response =	0.11	0.24			
Analyzer Span Response =	10.47	9.40			
Sytem Zero Response (Initial) =	0.19	-0.05			
System Zero Response (Final) =	0.17	-0.09			
Average Zero Response (C _o) =	0.18	-0.07			
Sytem Span Response (Initial) =	10.69	9.22			
System Span Response (Final) =	10.70	9.25			
Average Span Response (C _m) =	10.70	9.24			
Calibration gas values (C _{ma}) =	10.49	9.45			
System Bias and Drift Calculations:					
Initial Zero Bias (SB _i) =	0.39	1.55			
Final Zero Bias (SB _{final}) =	0.29	1.77			
Zero Drift (D) =	0.10	0.21			
Initial Span Bias (SB _i) =	1.08	0.96			
Final Span Bias (SB _{final}) =	1.13	0.80			
					1
Span Drift (D) =	0.05	0.16			
Uncorrected Ave. $(C_{Avg}) =$	8.66	7.11			
	0.00				
l Corrected Ave.=C _{gas} = (C _{Avg} -C _o)(C _{ma} /(C _m -C _o)) =	8.46	7.29			
	0.40	1.23		144	
					·
PLANT DATA					
		e de la construcción Angle de la construcción			

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

ţ

Facility/Site:	NEFCO / SWA I	Biosolids	Date;	06/27/13	
Location:	RTO #1 Stack		Start Time:	13:40	
Run No.:	U1-M5-R1		Stop Time:	14:44	
Date/time	O ₂ (% _{vd})	CO₂ (%va)			
Datentime	(70vd)	(70vd)	admini padata (C. 1867		a de la constancia de la dela
6/27/2013 1:40:00 PM	7.40	7.93			
6/27/2013 1:41:00 PM	7.28	7.95			
6/27/2013 1:42:00 PM	12.13	4.64			
6/27/2013 1:43:00 PM	11.66	5.78			
6/27/2013 1:44:00 PM 6/27/2013 1:45:00 PM	8,80 8,73	7,20 7.24			
6/27/2013 1:46:00 PM	8.81	7.20			
8/27/2013 1:47:00 PM	8.69	7.22			
6/27/2013 1:48:00 PM	8.79	7.22			
6/27/2013 1:49:00 PM	8.77	7.25			
6/27/2013 1:50:00 PM 6/27/2013 1:51:00 PM	8.77 8.76	7.23 7.23			
6/27/2013 1:52:00 PM	8.73	7.26			
6/27/2013 1:53:00 PM	8.68	7.25			
6/27/2013 1:54:00 PM	8.65	7.25			
6/27/2013 1:55:00 PM	8.58	7.24			
6/27/2013 1:56:00 PM	8.76	7.25			
6/27/2013 1:57:00 PM 6/27/2013 1:58:00 PM	8.78 8.76	7.19 7.22			
6/27/2013 1:59:00 PM	8.92	7.20			
6/27/2013 2:00:00 PM	8.79	7.16			
6/27/2013 2:01:00 PM	8.81	7.17			
6/27/2013 2:02:00 PM	8,87	7.19			
6/27/2013 2:03:00 PM 6/27/2013 2:04:00 PM	9.03 8,81	7.15 7.16			
6/27/2013 2:05:00 PM	8,90	7.13			
6/27/2013 2:06:00 PM	8.86	7.17			
6/27/2013 2:07:00 PM	8.82	7.14			
6/27/2013 2:08:00 PM	8.87	7.13			
6/27/2013 2:09:00 PM	8.77	7.12			
6/27/2013 2:10:00 PM 6/27/2013 2:11:00 PM			Port		
6/27/2013 2:12:00 PM			Change		
6/27/2013 2:13:00 PM			o nango		
6/27/2013 2:14:00 PM					
6/27/2013 2:15:00 PM	8.93	7.07			
6/27/2013 2:16:00 PM 6/27/2013 2:17:00 PM	8.95 8.87	7.10 7.03			
6/27/2013 2:18:00 PM	8,99	7.08			
6/27/2013 2:19:00 PM	8.93	7.05			
6/27/2013 2:20:00 PM	8.97	7.12			
6/27/2013 2:21:00 PM	8,75	7.05			
6/27/2013 2:22:00 PM	8.93	7.03			
6/27/2013 2:23:00 PM 6/27/2013 2:24:00 PM	8.96 8.90	7.02 7.07			
6/27/2013 2:25:00 PM	8.96	7.04			
6/27/2013 2:26:00 PM	9.03	7.08			
6/27/2013 2:27:00 PM	8,99	7.04			
6/27/2013 2:28:00 PM	8.98	7.05			
6/27/2013 2:29:00 PM 6/27/2013 2:30:00 PM	9.10 9.00	7.02 7.06			
6/27/2013 2:30:00 PM	8.88	7.00			
6/27/2013 2:32:00 PM	8.89	6.98			
6/27/2013 2:33:00 PM	9,09	7.03			
6/27/2013 2:34:00 PM	9.06	7.04			
6/27/2013 2:35:00 PM	8.95	7.05			
6/27/2013 2:36:00 PM 6/27/2013 2:37:00 PM	8,90 8.88	7.07 7.01			
6/27/2013 2:38:00 PM	8.99	7.03			
6/27/2013 2:39:00 PM	9.10	7.04			
6/27/2013 2:40:00 PM	8.88	7.00			
6/27/2013 2:41:00 PM	8.81	7.01			
6/27/2013 2:42:00 PM	8.89	7.07			
6/27/2013 2:43:00 PM	8.88	7.14			
Run Averages:	8.92	7.08			
					L

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location:		NEFCO / SWA RTO #1 Stack	Biosolids	Start Time:		
Run No.;		<u>U1-M5-R2</u>		Stop Time:	16:03	
Date	/time	O ₂	CO2			
Date		(% _{vd})	(% _{vd})	. Birinder by Mild h. Barry		
	3:00:00 PM	8,65	7.22			
	3:01:00 PM	8.54	7.24			
	3:02:00 PM 3:03:00 PM	8.51 8.48	7.22 7.25			
	3:04:00 PM	8.61	7.26			
	3:05:00 PM	8,63	7.21			
	3:06:00 PM	8,55	7.22			
	3:07:00 PM	8.79	7.28			
	3:08:00 PM 3:09:00 PM	8,47 8,38	7.21 7.22			
	3:10:00 PM	8.47	7,26			
	3:11:00 PM	8,57	7.26			
	3:12:00 PM	8,51	7.24			
	3:13:00 PM	8.49	7.22			
	3:14:00 PM 3:15:00 PM	8.58 8.65	7.24 7.29	1		
	3:16:00 PM	8.27	7.29	1		
	3:17:00 PM	8.52	7.26			
	3:18:00 PM	8,49	7.23			
	3:19:00 PM	8,50	7.22			
	3:20:00 PM 3:21:00 PM	8.53 8,60	7.22 7.20			
	3:22:00 PM	8,63	7.16			
	3:23:00 PM	8.67	7.18			
	3:24:00 PM	8.56	7.27			
	3:25:00 PM	8,50	7.21			
	3:26:00 PM 3:27:00 PM	8.46 8.49	7.29 7.29			
	3:28:00 PM	8,43	7.28			
6/27/2013	3:29:00 PM	8.45	7,25			
	3:30:00 PM			Port		
	3:31:00 PM			Change		
	3:32:00 PM 3:33:00 PM	8.50	7.23			
	3:34:00 PM	8.50	7.19			
6/27/2013	3:35:00 PM	8,67	7.16			
	3:36:00 PM	8.64	7.23			
	3:37:00 PM 3:38:00 PM	8.78	7.15 7.16			
6/27/2013	3:39:00 PM	8,76 8.66	7.12			
	3:40:00 PM	8,67	7.16			
6/27/2013	3:41:00 PM	8,64	7.17			
	3:42:00 PM	8.62	7.17			
	3:43:00 PM 3:44:00 PM	8.63 8,60	7.15 7.19			
	3:44:00 PM	8.60	7.16			
	3:46:00 PM	8,56	7.21	1		
6/27/2013	3:47:00 PM	8,54	7.17			
6/27/2013		8.65	7.15			
6/27/2013 6/27/2013	3:49:00 PM 3:50:00 PM	8.67 8.52	7.11 7.25	1		
6/27/2013	3:51:00 PM	8.66	7.25			
6/27/2013	3.52:00 PM	8.40	7.21			
6/27/2013	3:53:00 PM	8.51	7.20			
6/27/2013		8.41	7.25			
6/27/2013 6/27/2013	3:55:00 PM 3:56:00 PM	8.58 8.59	7.21 7.19			
6/27/2013	3:57:00 PM	8,53	7.13			
6/27/2013		8.46	7.26			
6/27/2013		8.62	7.25			
	4:00:00 PM	8.61	7.24			
	4:01:00 PM 4:02:00 PM	8.70 8.54	7,19 7.15			
012112013	4.02.00 FIVI	0.04	1.10			
Averages:		8.56	7.21			

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location:	NEFCO / SWA RTO #1 Stack	Biosolids	Date: Start Time:	06/27/13 16:20	
Run No.:	U1-M5-R8		Stop Time:	17:23	
Date/time	O ₂ (% _{vd})	CO2 (%vd)			
				and the strength of the streng	
6/27/2013 4:20:00 PM 6/27/2013 4:21:00 PM		7.21			
6/27/2013 4:22:00 PM		7.18	1		
6/27/2013 4:23:00 PM		7.19			
6/27/2013 4:24:00 PM		7.18			
6/27/2013 4:25:00 PM	A 8.68	7.22			
6/27/2013 4:26:00 PM		7.22			
6/27/2013 4:27:00 PM		7.19			
6/27/2013 4:28:00 PM 6/27/2013 4:29:00 PM		7.12			
6/27/2013 4:30:00 PM		7.10			
6/27/2013 4:31:00 PM		7.11			
6/27/2013 4:32:00 PM	A 8,64	7.13			
6/27/2013 4:33:00 PM		7.14			
6/27/2013 4:34:00 PM		7.15			
6/27/2013 4:35:00 PM 6/27/2013 4:36:00 PM		7.14 7.15			
6/27/2013 4:36:00 PM		7.15			
6/27/2013 4:38:00 PM		7.13			
6/27/2013 4:39:00 PM		7,14	1		
6/27/2013 4:40:00 PM	A 8.60	7.12			
6/27/2013 4:41:00 PM		7.13			
6/27/2013 4:42:00 PM	1	7.07			
6/27/2013 4:43:00 PM 6/27/2013 4:44:00 PM		7.13			
6/27/2013 4:45:00 PM		7.19			
6/27/2013 4:46:00 PM		7,23			
6/27/2013 4:47:00 PM	A 8.58	7.18			
6/27/2013 4:48:00 PM		7.18			
6/27/2013 4:49:00 PM		7.19			
6/27/2013 4:50:00 PM			Det		
6/27/2013 4:51:00 PM 6/27/2013 4:52:00 PM			Port Change		
6/27/2013 4:53:00 PM		7.04	onunge		
6/27/2013 4:54:00 PM		7.07			
6/27/2013 4:55:00 PM	/ 9,03	7.02			
6/27/2013 4:56:00 PM		7.08			
6/27/2013 4:57:00 PM		7.03			
6/27/2013 4:58:00 PM 6/27/2013 4:59:00 PM		7.07			
6/27/2013 5:00:00 PM		7.03			
6/27/2013 5:01:00 PM		7.02	}		
6/27/2013 5:02:00 PM	8,57	7.07			
6/27/2013 5:03:00 PM		7.04			
6/27/2013 5:04:00 PM		7.05			
6/27/2013 5:05:00 PM 6/27/2013 5:06:00 PM		7.03			
6/27/2013 5:07:00 PM		7.05			
6/27/2013 5:08:00 PM		7.06			
6/27/2013 5:09:00 PM	1 8.72	7.07			
6/27/2013 5:10:00 PM		7.07			
6/27/2013 5:11:00 PM		7.02			
6/27/2013 5:12:00 PM 6/27/2013 5:13:00 PM		7.08			
6/27/2013 5:14:00 PM		7.12			
6/27/2013 5:15:00 PM		7.07			
6/27/2013 5:16:00 PM		7.09			
6/27/2013 5:17:00 PM		7.06			
6/27/2013 5:18:00 PM		7.08			
6/27/2013 5:19:00 PM		7.09			
8/27/2013 5:20:00 PM 6/27/2013 5:21:00 PM		7.08			
6/27/2013 5:22:00 PM		7.05			
Run Average	es: 8.66	7.11			

<u></u>			<u>TR</u>	VERS	E DAT	ra sh	(EET	·······					
PLANT:	NEFC	> / SW	A/Bios	olido			RUN # :	01-1	ns - P	1			
LOCATION:	W13	,FL /	Unit	-#二1			DATE :	6/2	27/13				
Filter No.		t	Filter Ta				Tra	, o No.					
IMP-1 (INT):	wo	TRAVERSE	DELTA	DELTA	DRY GA	S METER	STACK	METER	FILTER	PROBE	DRY	IMP	
IMP-2 (INT) :	100	POINT	P	н	IN IN	олт	TEMP (F)	READING	вох	TEMP	FILTER	темр	VAC
IMP-3 (INT) :	ð	AI	120	2,00	35	65	241	-	249	247	N/A		(
IMP-4 (INT) :	818	2	121	2.10	85	85	245	94.1	250	251	1	56	1
IMP-5 (INT) :	<u> </u>	3	.21	2,10	86	81	247	98.4	249	243		56	1
IMP-6 (INT) :		4	.22	2.20	86	86	248	102.6	248	250		56	1
IMP-7 (INT) :		5	.23	2.30	87	87	251	106.9	248	249		56	2
Tum at finally e [- <u>></u>	.23	2.30	87	87	250	110.7	249	250		56	2
IMP-1 (FIN):	304	вŸ	.18	1.80	88	88	242	115.0	250	250		62	2
IMP-2 (FIN):	112	2	,20	2,00	88	88	247	119.1	250	252		57	2
IMP-2 (FIN) :	6	3	,21	2,10	89	89	248	122.9	249	249		58	2
IMP-4 (FIN) :	823	4	122	2.30	90	90	249	12.6.9	248	247		57-	2
IMP-5 (FIN) :	~	5	123	2.30	90	90	253	131.2	248	248		57	2
IMP-6 (FIN):		6	.23	2.30	90	90	253	135.4		248		57	2
• ,				2.90	10	10	230	1.20, 1		-10		<u> </u>	
IMP-7 (FIN):	<u>~~</u>			<u> </u>									
Pstack	38									<u> </u>			
Baro. Pres.	30.0												
								·					
TEST LENGTH	(10				······								
FINAL METER	<u> </u>												
139.89	2												
INTIAL METER	-			. *									
90.251												<u> </u>	
				· <u> </u>								-	
	1340												
	R					·····.							
	1444						<u> </u>			 			
				l		<u> </u>	L				<u></u>		
Relationship	10,0	Pre Leak		0-002	@	12	"Hg	Notes:					
Box #	5	Post Lea		ODOL	@	8	"Hg	·					
Y Dolto H	.9728	Pre-Pitot Post-Pito		0.0	00	73	"H2O "H2O	 					
Delta H	2.04			0.0	Probe N								
Box Op.	AS FM	Noz. ID N Noz. Diar		·351	r-robe N	NU.	P-5-1						
Probe Op.	r <i>m</i> ,	Dian		· <u>2</u> >1							• • • •		
										a			
	Construction of the local division of the lo			a sa ka s		constraint Plant	Instanting and Allocation						

2. j. 1

TRAVERSE DATA SHEET

			<u>TR</u> 4	AVERS	E DA	<u>la sh</u>	<u>EET</u>						
PLANT:	NE	Fco /	SWA	Biose	dids		RUN # :						
LOCATION:		B,FL		nst t			DATE :	Free	<u>-m-5-</u>	- R- T_	6	127/	3
Filter No.			Filter Ta	re Wt.			Tra	p No.		r			
IMP-1 (INT):	100	TRAVERSE	DELTA	DELTA	DRY GA	S METER	STACK	METER	FILTER	PROBE	DRY	IMP	
IMP-2 (INT) :		POINT	P	н	IN	ουτ	TEMP (F)	READING	BOX	TEMP	FILTER	TEMP	VAC Z
IMP-3 (INT) :		<u>p</u> i	,18	1.80	89	89	239		232	230	NA	65	<u>∔</u>
IMP-4 (INT) :		2	,18	1.80	89	89	237	144.3		238	┝╌╢──	62	2
IMP-5 (INT) :		3	.22	2.20	88	88	246	147.7	251	247	┝╌╂╌──	62	3
IMP-6 (INT) :		4	23	2.30	89	89	244	152.0	249	23%	┝─╁──	58	3 4
IMP-7 (INT) :	,	5	.24	2,40	89	89	251	156.3	248	243	┼╌╂──	57	+ <u>^</u>
			,21	2,10	90	90	252	160.8	248	248 250	-+	<u>56</u> 56	<u>ц</u> 4
IMP-1 (FIN):	306	BI	.20	2.00	90	90	255	1650			-		4
IMP-2 (FIN):	112	2	,23	2.30	90 90	90	257	169.1	249	250	\vdash	<u>55</u> 54	- <u>7</u> -4
IMP-3 (FIN):	4	3	.23	2.30		90	260	173.9	248	248	┢─┼╴	35	4
IMP-4 (FIN):	829.0	4	22	2.20	90	90	259	177.9	247	248	┠━━┼━	56	1 <u>7</u> 4
IMP-5 (FIN):	*******	5	,22	2,20	90	90 91		<u>181, 2</u> 185,9	249		┟──{─	57	$\frac{-1}{4}$
IMP-6 (FIN):		6	124	2.40	91	<u> </u>	264	105,1	201	247			+ --
IMP-7 (FIN):	~											- <u> </u>	
	ביכי			·····.			· ·····						
Pstack	-,37										<u> </u>		
Davis Davis	30.0			·								-	
Baro. Pres.	30,0										<u></u>	+	
TEST LENGT	60										·		
FINAL METER		·											
190.3													
140.1													
			<u> </u>								ļ		
BEGIN TIME	1500												
												<u> </u>	
END TIME	1603										<u> </u>		
			0	1			1011	Netari					
Relationship Box #	10.0 5	Pre Leak Post Lea		0.004 6,604	00	12	"Hg "Hg	Notes:	Change	153	30 - 153	53	
Y	,9728	Pre-Pitot	Check	0,0	@	>3	"H2O		<u> </u>				
Delta H	2.04	Post-Pito		0.0	@ Probe I	<u> 73</u>	"H2O P-5-1						
Box Op. Probe Op.	<u>rs</u> Fm	Noz. ID N Noz. Diai		0.35)	Prope I	10.	F-3-1						
	1												
			·										

÷

ij,

· · · · · ·

			<u>TR</u> 4	AVERS	E DAT	r <mark>a s</mark> h	EET			<u></u>			
PLANT:	NE	760 /	SWA	Bios	solids		RUN#:	U	1-ms	- R3			
LOCATION:	WP	B,FL	10	n'it #	/		DATE :	10	27 13				
Filter No.			Filter Ta				Tra	No.	NI	14			
IMP-1 (INT):	100	TRAVERSE	DELTA	DELTA	DRY GAS	METER	BTACK	METER	FILTER	PROBE	DRY	IMP	
IMP-2 (INT) :	100	POINT	Р	н	IN	OUT	TEMP (F)	READING	вох	TEMP	FILTER	TEMP	VAC
IMP-3 (INT) :	0	AI	.21	2.10	90	90	233	-	2.49	239	NA	64	2
IMP-4 (INT) :	821	τ	122	z.20	89	89	261	194,7	249	247		60	2
IMP-5 (INT) :		3	,24	2.40	89	89	270	199.0	249	249		59	2
IMP-6 (INT) :		Ч	0.25	2.50	90	90	259	203.	247	247		59	2
IMP-7 (INT) ;		5	0.23	2.30	90	90	261	207.8		248		59	2
		6	0.21	2.10	89	89	251	212.1	24.8	Z4-8		58-	2
IMP-1 (FIN) :	300	BI	.23	2.30	81	<u> </u>	252	216,2	249	253	_ 	59	2
1MP-2 (FIN) :	แร	2	.23	2.30	89	89	261	220.1	248	248		55	3
IMP-3 (FIN) :	2	3	.22	2.20	89	89	257	224.6	248	249		55	3
IMP-4 (FIN) :	826	4	,23	2.30	89	89	272	228.9	248	250		55	3
IMP-5 (FIN):		5	,23	2.30	89	89	263	233.1	248	245		576	3
IMP-6 (FIN):		6	.21	2.10	89	89	260	237.5	248	254		57	3
IMP-7 (FIN) :												·	
Pstack	38		ļ										
Baro. Pres.	30.0												
TEST LENGTH	60							 					
FINAL METER													
241.6	23		i										
INTIAL METER									· · · · · · · · · · · · · · · · · · ·				
190.699		•											
BEGIN TIME	1420												
	ß							L				<u> </u>	ļ
END TIME	1723												<u> </u>
Relationship	10.0	Pre Leak	Check	0,000	@	12	"Hg	Notes:					
Box #	5	Post Lea	k Check	0.000	@	11	"Hg	Post-C	hange	1650-	105 ⁻³	,	
Y Delta H	9728	Pre-Pitot Post-Pito		6.0	@ @	73	"H2O "H2O		V		· · · · ·		
Box Op.	2.04 As	Noz. ID I		<u>ə.</u> v	Probe 1		P-5-1						
Probe Op.	>>	Noz. Dia		.351									
												· · · · ·	
										5			är

ſ.

Client/Site: NEFCo / Swh Biosol'ids Source: <u>RTO かし そ ア</u>2 RM Response Time: Upscale (seconds): ここ

Operator: Andrew Seale

1

Ļ

Downscale (seconds): Z-O

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

Analyzer Calibration Error (ACE) – Reference Method

Pollutant/Diluent	_	Low	2	Mid	High/Full	High/Full Scale (CS)
	Cylinder Value (C _v)	Analyzer Response (C _{DIR})	Cylinder Value (C.)	Analyzer Response (Cond)	Cylinder Value	Analyzer Response
Oxygen	0.00	0.11	10.49		70.47	(LDIR)
Carbon Dioxide	0.00	6.74	9 1 4	5	2/21	60.40 1973
			(, ,)	2 . /	10.01	10.61

Range selected for analyzer operation:

SO ₂ (ppm)	
NO _x (ppm)	
CO (ppm)	
CO ₂ (%)	20
O ₂ (%)	25

Analyzer Calibration Error (ACE) Acceptance Criteria: ≤±2%

Where: ACE = $[(C_{Dir} - C_v)/CS] * 100\%$

Expiration Date	11/2/20	11/2/20	-		
Diluent/Pollutant Concentrations(s)	20.420, 18.69 (01	10.49 02 19.45 (07	-		
Cylinder No.	10421863	154/24 27			

Protocol Gases Used During Program:

Client/Site: Source:

NEFCO / SwA Biosolids PTO #1 Sheek

Operator: Date:

4. Seehe 6/27/13

11- MS-R1 1340 Run Number: Start Time: End Time:

hhh.

System Bias (SB)/Drift (D) Assessments - Reference Method

	Start	Start Zero	Start Span (C _{MA})	ап (Смд)	Final	Final Zero	Final Sp	Final Span (C _{MA})
rolluzanzuluem	Cylinder Value (Cv)	Analyzer Response (C ₃)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	ð. o S	ام. لام	1 t.01	0.00	0.21	(0.49	16.91
Carbon Dioxide	0.00	1 or a K	9.45	9. Zo	0.00	10.04	9.45	9.23

١
ļ
1
5 0
دح

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: ≤± 3% of span, where $D = \left| SB_{final} - SB_i \right|$

:

Operator: Date:

A. Seehu 6 23 13

NEFCO / SWA Giosalials Burper Unit # 1 Stuck U1- MS-R2 Run Number Source:

Client/Site:

1		
	1500	1603
	Start Time:	End Time:

System Bias (SB)/Drift (D) Assessments – Reference Method

	Start	Start Zero	Start Sp.	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
Poliutant/Ulluent	Cytinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _V)	Analyzer Response (C _s)	Cylinder Value (C _v)	Anatyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	0.2	6t.al	12.01	0.00	0.19	10.49	10.69
Carbon Dioxide	0.00	-0.04	9.45	9.23	0.00	-0.05	9.4 ぐ	5.22
				-				

SO ₂ (ppm)		
NO _x (ppm))	
CO (ppm)	l	
CO2 (%)	مع	
O ₂ (%)	25	

۹. ب

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

 $\mathbf{D} = [\mathbf{S}\mathbf{B}_{\text{final}} - \mathbf{S}\mathbf{B}_{\mathbf{i}}]$

Zero and Calibration Drift (D) Criteria: ≤± 3% of span, where

/ SwA Biasolids PTO #1 Shee

NEFCo /

Client/Site;

Source:

Operator: Date:

1. Seehe

U1- M5-23 Run Number:

1620 Start Time: End Time:

System Bias (SB)/Drift (D) Assessments – Reference Method

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final S _F	Final Span (C _{MA})
	Cyfinder Value (C _V)	Analyzer Response (C _S)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	0.19	64.01	(c. 69	00.0	t.1.0	10.49	10.70
Carbon Dioxide	0.00	-0.05	9.45	722	00.0	-0.09	9.45	9.25
-								
		2						

)	l	e2	22
SO ₂ (ppm)	NO _x (ppm)	CO (ppm)	CO ₂ (%)	02 (%)

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_{\rm s} - C_{\rm Du})/CS] \ * \ 100\%$

Zero and Calibration Drift (D) Criteria: 54 3% of span, where

 $D = \left| SB_{final} - SB_{i} \right|$

B2 RTO / Dryer No. 2 Compliance Emissions Data

.

PARTICULATE EMISSION	CALCULATION SHEET

1 dete				BLANK	(S
al de espec	FILTER	BEAKER	· · · · · · · · · · · · · · · · · · · ·	FILTER	ACETONE
NUMBER	1446	11130		1445	B5-48
		e e e e di			
FINAL	0.4460	87.3345		0.4408	67.0280
	0.4400	07 00 40		0.4400	67.0070
TARE	0.4439	87.3342	-	0.4408	67.0279
NET	0.0021	0,0003		0.0000	0.0001
<u> </u>	0.0021	VOLUME BL	ANK RINSF		130
					120
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
5 A A	N.A.	in the second second	02 =	7.55	
Mn - Ar =	IVITI	,			
			CO2 =	7.86	
Mn =	2.400		CO2 = Vs =	26.57	ft/sec
	2.400		CO2 = Vs = As =	26.57 7.07	ft/sec ft2
Mn = Ar =	2.400 0.092		CO2 = Vs =	26.57 7.07	ft/sec
Mn =	2.400 0.092	ot blank corr	CO2 = Vs = As =	26.57 7.07	ft/sec ft2
Mn = Ar = Mn =	2.400 0.092 2.400 n		CO2 = Vs = As = Vm std =	26.57 7.07 41.90	ft/sec ft2 DSCF
Mn = Ar =	2.400 0.092 2.400 n 3600(1-Bwo)(1	/s)(As)(17.64)(P	CO2 = Vs = As = Vm std = s/Ts) =	26.57 7.07 41.90 430938	ft/sec ft2 DSCF DSCFH
Mn = Ar = Mn =	2.400 0.092 2.400 n 3600(1-Bwo)(\ 3600 (Vs) (As)	/s)(As)(17.64)(P	CO2 = Vs = As = Vm std =	26.57 7.07 41.90 430938 676204	ft/sec ft2 DSCF DSCFH ACFH
Mn = Ar = Mn =	2.400 0.092 2.400 n 3600(1-Bwo)(1	/s)(As)(17.64)(P	CO2 = Vs = As = Vm std = s/Ts) =	26.57 7.07 41.90 430938	ft/sec ft2 DSCF DSCFH ACFH
Mn = Ar = Mn = Qs =	2.400 0.092 2.400 n 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60	/s)(As)(17.64)(P	CO2 = Vs = As = Vm std = s/Ts) =	26.57 7.07 41.90 430938 676204 11270	ft/sec ft2 DSCF DSCFH ACFH ACFM
Mn = Ar = Mn =	2.400 0.092 2.400 n 3600(1-Bwo)(\ 3600 (Vs) (As)	/s)(As)(17.64)(P	CO2 = Vs = As = Vm std = s/Ts) =	26.57 7.07 41.90 430938 676204	ft/sec ft2 DSCF DSCFH ACFH ACFH
Mn = Ar = Mn = Qs = Cs =	2.400 0.092 2.400 n 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60 = (2.205 E-6) (N	/s)(As)(17.64)(P) /n) / (Vm Std)	CO2 = Vs = As = Vm std = s/Ts) = =	26.57 7.07 41.90 430938 676204 11270 1.26286E-07	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF
Mn = Ar = Mn = Qs =	2.400 0.092 2.400 n 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60 = (2.205 E-6) (N	/s)(As)(17.64)(P) /n) / (Vm Std)	CO2 = Vs = As = Vm std = s/Ts) =	26.57 7.07 41.90 430938 676204 11270	ft/sec ft2 DSCF DSCFH ACFH ACFH ACFM LB/SCF
Mn = Ar = Qs = Cs = Cs' =	2.400 0.092 2.400 n 3600(1-Bwo)(\ 3600 (Vs) (As) ACFH / 60 = (2.205 E-6) (M = 0.0154 (Mn) /	/s)(As)(17.64)(P) /n) / (Vm Std)	CO2 = Vs = As = Vm std = s/Ts) = =	26.57 7.07 41.90 430938 676204 11270 1.26286E-07 0.0009	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF
Mn = Ar = Mn = Qs = Cs =	2.400 0.092 2.400 n 3600(1-Bwo)(1 3600 (Vs) (As) ACFH / 60 = (2.205 E-6) (N = 0.0154 (Mn) /	/s)(As)(17.64)(P) /n) / (Vm Std)	CO2 = Vs = As = Vm std = s/Ts) = =	26.57 7.07 41.90 430938 676204 11270 1.26286E-07	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF
Mn = Ar = Mn = Qs = Cs = Cs' =	2.400 0.092 2.400 n 3600(1-Bwo)(1 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (N 0.0154 (Mn) / Mn / VmStd	/s)(As)(17.64)(P) /n) / (Vm Std)	CO2 = Vs = As = Vm std = s/Ts) = =	26.57 7.07 41.90 430938 676204 11270 1.26286E-07 0.0009	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRA1NS/SCF mg/dscm
Mn = Ar = Mn = Qs = Cs = Cs' =	2.400 0.092 2.400 n 3600(1-Bwo)(1 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (N 0.0154 (Mn) / Mn / VmStd	/s)(As)(17.64)(P / /n) / (Vm Std) (VmStd)	CO2 = Vs = As = Vm std = s/Ts) = =	26.57 7.07 41.90 430938 676204 11270 1.26286E-07 0.0009 2.02 2.11	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRA1NS/SCF mg/dscm mg/dscm @7% O2
Mn = Ar = Mn = Cs = Cs' = Cs' =	2.400 0.092 2.400 n 3600(1-Bwo)(1 3600 (Vs) (As) ACFH / 60 (2.205 E-6) (N 0.0154 (Mn) / Mn / VmStd Mn / VmStd x 2	/s)(As)(17.64)(P / /n) / (Vm Std) (VmStd)	CO2 = Vs = As = Vm std = s/Ts) = =	26.57 7.07 41.90 430938 676204 11270 1.26286E-07 0.0009 2.02	ft/sec ft2 DSCF DSCFH ACFH ACFM LB/SCF GRA1NS/SCF mg/dscm mg/dscm @7% O2

PLANT	NEFCO / SWA Biosolids		U2-M5-R2
LOCATION	West Palm Beach, FL	DATE :	27-Jun-13
Vergebañ i rein vergi		BLANK	Singgan agata sigte
FILTER	BEAKER	<u>FILTER</u>	ACETONE
NUMBER: 1447	B5-7-32	1445	B5-48
FINAL : 0.4304	69,4633	0.4408	67.0280
FINAL 0.4304	09,4033	0.4400	07.0200
TARE : 0.4292	69.4627	0.4408	67.0279
NET : 0.0012	0.0006	0.0000	0.0001
	VOLUME BLANK RINSE		130
	VOLUME OF RINSE		120
Mn - Ar = Mn		7.45	la de la companya de
	CO2 =	7.90	
Mn 🐘 😑 😑 🗄 1.800 -	Vs =	27.17	ft/sec
	Vs = As =	27.17 7.07	
Ar = <u>0.092</u>	As = Vm std=		ft2
Ar = <u>0.092</u>	As =	7.07	ft2
Ar = <u>0.092</u> Mn = <u>1.800</u> r	As = Vm std= not blank corr	7.07 42.48	ft2 DSCF
Ar = 0.092 $Mn = 1.800 r$ $Qs = 3600(1-Bwo)(1-Bwo)$	As = Vm std= Ns)(As)(17.64)(Ps/Ts) =	7.07 42.48 429360	ft2 DSCF DSCFH
Ar = <u>0.092</u> Mn = 1.800 r	As = Vm std= Ns)(As)(17.64)(Ps/Ts) =	7.07 42.48 429360 691332.6396	ft2 DSCF DSCFH
Ar = 0.092 $Mn = 1.800 t$ $Qs = 3600(1-Bwo)(3600 (Vs) (As)$ $ACFH / 60$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) = = =	7.07 42.48 429360 691332.6396 11522	ft2 DSCF DSCFH ACFH ACFM
Ar = 0.092 $Mn = 1.800 t$ $Qs = 3600(1-Bwo)(3600 (Vs) (As)$ $ACFH / 60$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) =) =	7.07 42.48 429360 691332.6396	ft2 DSCF DSCFH ACFH
Ar = 0.092 $Mn = 1.800 m$ $Qs = 3600(1-Bwo)(3600 (Vs) (As))(3600 (Vs) (As))(3600 (Vs))(3600 (Vs)$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) =) = Mn) / (Vm Std) =	7.07 42.48 429360 691332.6396 11522 9.34292E-08	ft2 DSCF DSCFH ACFH ACFM LB/SCF
Ar = 0.092 $Mn = 1.800 t$ $Qs = 3600(1-Bwo)(3600 (Vs) (As)$ $ACFH / 60$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) =) = Mn) / (Vm Std) =	7.07 42.48 429360 691332.6396 11522	ft2 DSCF DSCFH ACFH ACFM
Ar = 0.092 $Mn = 1.800 m$ $Qs = 3600(1-Bwo)(3600 (Vs))(As)$ $ACFH / 60$ $Cs = (2.205 E-6) (Cs' = 0.0154 (Mn))$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) =) = Mn) / (Vm Std) =	7.07 42.48 429360 691332.6396 11522 9.34292E-08 0.0007	ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF
Ar = 0.092 $Mn = 1.800 m$ $Qs = 3600(1-Bwo)(3600 (Vs) (As))(3600 (Vs) (As))(3600 (Vs))(3600 (Vs)$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) =) = Mn) / (Vm Std) =	7.07 42.48 429360 691332.6396 11522 9.34292E-08	ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF
Ar = 0.092 $Mn = 1.800 m$ $Qs = 3600(1-Bwo)(3600 (Vs) (As))(3600 (Vs))(As)$ $ACFH / 60$ $Cs = (2.205 E-6) (Cs' = 0.0154 (Mn))$ $Cs' = Mn / VmStd$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) =) = Mn) / (Vm Std) =	7.07 42.48 429360 691332.6396 11522 9.34292E-08 0.0007	ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF mg/dscm
Ar = 0.092 $Mn = 1.800 m$ $Qs = 3600(1-Bwo)(3600 (Vs) (As))(3600 (Vs))(As)$ $ACFH / 60$ $Cs = (2.205 E-6) (Cs' = 0.0154 (Mn))$ $Cs' = Mn / VmStd$	As = Vm std= Vs)(As)(17.64)(Ps/Ts) =) = (Mn) / (Vm Std) = /(VmSTD) =	7.07 42.48 429360 691332.6396 11522 9.34292E-08 0.0007 1.50 1.55	ft2 DSCF DSCFH ACFH ACFM LB/SCF GRAINS/SCF mg/dscm

PARTICULATE EMISSION CALCULATION SHEET

PLANT LOCATIO	NEFCO / SWA Biosolids N West Palm Beach, FL			
<u>FILTER</u>	BEAKER	BLAN	and the second	
NUMBER 1448	PB6	<u>FILTER</u> 1445	ACETONE B5-48	· · · · ·
FINAL 0.4475	69.4160	0.4408	67.0280	· · · · · ·
TARE : 0.4442	69.4147	0.4408	67.0279	
NET : 0.0033	0.0013	0.0000	0.0001	
	VOLUME BLANK RINS VOLUME OF RINSE	E	130 110	
	<u>85</u> AS =	7.0	}) ft/sec 7 ft2	
Ar = <u>0.0</u>	CO2 = 00 Vs =	8.10 27.40 7.01) ft/sec	
Ar = 0.00 Mn = 4.60 Qs = $3600(1-B_{\rm N})$	CO2 = 00 Vs = 85 AS = Vm std= 00 not blank corr wo)(Vs)(As)(17.64)(Ps/Ts) =	8.16 27.40 7.07 41.89 = 423532	5) ft/sec 7 ft2) DSCF 2 DSCFH	
Ar = <u>0.00</u> Mn = 4.60	CO2 = 00 Vs = 85 AS = Vm std= 00 not blank corr wo)(Vs)(As)(17.64)(Ps/Ts) = (As) =	8.16 27.40 7.01 41.85	5) ft/sec 7 ft2) DSCF 2 DSCFH 3 ACFH	
Ar = 0.00 $Mn = 4.60$ $Qs = 3600(1-Bu)$ $3600 (Vs)$ $ACFH / 60$	CO2 = 00 Vs = 85 AS = Vm std= 00 not blank corr wo)(Vs)(As)(17.64)(Ps/Ts) = (As) =	8.16 27.4(7.0 41.89 = 423532 697179.0116	5) ft/sec 7 ft2 9 DSCF 2 DSCFH 3 ACFH 5 ACFH 0 ACFM	
Ar = 0.00 $Mn = 4.60$ $Qs = 3600(1-Bx)$ $3600 (Vs)$ $ACFH / 60$ $Cs = (2.205 E-$	CO2 = 00 Vs = 85 AS = Vm std= 00 not blank corr wo)(Vs)(As)(17.64)(Ps/Ts) = (As) =	8.16 27.4(7.0 41.89 = 423532 697179.0116 11620	5 7 ft/sec 7 ft2 9 DSCF 2 DSCFH 3 ACFH 0 ACFM 7 LB/SCF	Э́ Г
Ar = 0.00 $Mn = 4.60$ $Qs = 3600(1-BA)$ $3600 (Vs)$ $ACFH / 60$ $Cs = (2.205 E-Cs' = 0.0154 (N))$	CO2 = 00 Vs = 85 AS = Vm std= 00 not blank corr wo)(Vs)(As)(17.64)(Ps/Ts) = (As) (As) = -6) (Mn) / (Vm Std) = Mn) /(VmSTD) =	8.16 27.40 7.07 41.85 = 423532 697179.0116 11620 2.4215E-07	5 7 ft/sec 7 ft2 9 DSCF 2 DSCFH 3 ACFH 3 ACFH 4 ACFM 7 LB/SCF 7 GRAINS/SC	×F
Ar = 0.02 $Mn = 4.60$ $Qs = 3600(1-Bx)$ $3600 (Vs)$ $ACFH / 60$ $Cs = (2.205 E-Cs') = 0.0154 (M)$ $Cs' = Mn / VmS$	CO2 = 00 Vs = 85 AS = Vm std= 00 not blank corr wo)(Vs)(As)(17.64)(Ps/Ts) = (As) (As) = -6) (Mn) / (Vm Std) = Mn) /(VmSTD) =	8.16 27.4(7.07 41.85 = 423532 697179.0116 11620 2.4215E-07 0.0012	5) ft/sec 7 ft2) DSCF 2 DSCFH 3 ACFH 3 ACFH 4 ACFM 7 LB/SCF 7 GRAINS/SC 3 mg/dscm	

.

DADTICHT ATTE EMISSION CATCHE ATTON SHEET

PLANT: LOCATION:		/ SWA Biose alm Beach, l			RUN # : DATE :		U2-M5-R 27-Jun-1	
	7.069	TRAVERSE POINT	VELOCITY HEAD	SQUARE ROOT	DELTA H	DRY GA		STACK TEMP (F)
	0.84	A1	0.12	0.35	1.28	84	84	230
IMP-1 (INT) :	100	2	0.14	0.37	1.50	84	84 85	233 242
IMP-2 (INT) :	100	3	0.14 0.16	0.37 0.40	1.50 1.71	85 86	85 86	242 243
		5	0.18	0.42	1.93	88	88	242
IMP-3 (INT) :	0	6	0.18	0.42	1,93	88	88	244
IMP-4 (INT) :	311.0	B1	0.16	0.40	1,71	88	88	231
IMP-1 (FIN) :	246	2	0.16 0.18	0.40 0.42	1.71 1.93	89 90	89 90	238 244
IM(P-1 (FIN) :	240	3 4	0.18	0.42 0.45	2.14	90 90	90 90	244 247
IMP-2 (FIN) :	107	5	0.17	0.41	1.82	91	91	248
[MP-3 (FIN) :	4	6	0.17	0.41	1.82	91	91	246
uur - 5 (i iid) .								
(MP-4 (FIN) :	318.0							
% CO2 (OUT):	7.86		-					
% O2 (OUT) :	7.55							
% СО (ОИТ) :	0							
Pbar	30.0							
Pstack	0.32							
	12							
TEST LENGTH	60							
	99.786							
	55.383							
	8:12							
	9:15							
	ERAGE:	1	0.16	0.40	1.75	87.8	87.8	240.7

PLANT :	NEFCO / SWA Biosolids	RUN # :	U2-M5-R2
LOCATION :	West Palm Beach, FL	DATE	27-Jun-13

-

As (SQFT) :	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA		SMETER	STACK
Dn (INCHES)	0.351	POINT	HEAD	ROOT	Η	IN	OUT	TEMP (F)
PITOT COEFFICIENT:	0.84		0.40	0.40	4 - 4	~~	00	0.14
		A1	0.16	0.40	1.71	90	90	241
IMP-1 (INT) :	100	2	0.17	0.41	1.82	91	91 01	248
		3	0.17 0.17	0.41 0.41	1.82 1.82	91 92	91 92	249 242
IMP-2 (INT) :	100	4 5	0.17	0.41	1.02	92 92	92 92	242 247
IMP-3 (INT) :		6	0.18	0.42	1.83	92 93	.93	247 246
11WIC-5 (11KT) -		0	0.17	0.41	1.02	55	.00	240
IMP-4 (INT) :	818.0	B1	0.15	0.39	1.61	88	88	237
		2	0.16	0.40	1.71	88	88	239
IMP-1 (FIN) :	277	3	0.16	0.40	1.71	88	88	236
		4	0.18	0.42	1.93	87	87	237
IMP-2 (FIN) :	110	5	0.18	0.42	1.93	87	87	245
		6	0.17	0.41	1.82	87	87	241
IMP-3 (FIN)	1							
IMP-4 (FIN) :	821.5							
% CO2 (OUT):	7.90							
0/ 01 (OUT) ·	745							
% O2 (OUT) :	7.45							
% CO (OUT) :								
Pbar	30.0							
Pstack	-0.35							
NUMBER OF POINTS	12							
	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1							
TEST LENGTH	60							
FINAL METER	45.313							
INTIAL METER	0.168							
	0,100							
BEGIN TIME	9:33							
	11:08							
	AVERAGE:		0.17	0.41	1.80	89.5	89.5	242.3

PLANTNEFCO / SWA BiosolidsRUN # :U2-M5-R3LOCATION :West Palm Beach, FLDATE :27-Jun-13

As (SQFT)	7.069	TRAVERSE	VELOCITY	SQUARE	DELTA	DRY GAS	METER	STACK
Dn (INCHES)	0.351	POINT	HEAD	ROOT	н	IN	ουτ	TEMP (F)
PITOT COEFFICIENT:	0.84							
		A1	0.15	0.39	1.61	87	87	246
IMP-1 (INT) :	100	2	0.17	0.41	1.82	87	87	240
	100	3	0.18	0.42	1.93	87 87	87 87	248 242
IMP-2 (INT) :	100	4 5	0.18 0.18	0.42 0.42	1.93 1.93	88	88	242 244
IMP-3 (INT) :	0	6	0.18	0.42	1.82	88	88	245
IMP-4 (INT) :	818.0	B1	0.15	0.39	1 .61	87	87	241
L		2	0.16	0.40	1.71	88	88	236
IMP-1 (FIN) :	302	3	0.18	0.42	1.93	88	88	241
		4	0.18	0.42	1.93	88	88	242
IMP-2 (FIN) :	101	5	0.18	0.42	1.93	87	87	243
IMP-3 (FIN) :	3	6	0.16	0.40	1.71	87	87	247
IMP-4 (FIN) :	824.0							
% СО2 (ОՍТ):	8.16							
% O2 (OUT) :	7.02							
% со (оит) ;	0							
Pbar	30.0							
Pstack	-0.35							
NUMBER OF POINTS	12							
TEST LENGTH	60							
FINAL METER	89.911							
n an an Anna a Anna an Anna an	<u> </u>							
INTIAL METER	45.568							
BEGIN TIME	11:28							
	12:33							
	12.33							
	AVERAGE:		0.17	0.41	1.82	87.4	87.4	242.9

PLANT : NEFCO / SWA Biosolids RUN # : U2-M5-R1 LOCATION : West Palm Beach, FL DATE : 27-Jun-13

Ts (°F) =	240.7	% CO2 =	7,86	Vm (CF) =	44.403
Ts (°R) =	700.7	% O2 =	7.55	DELTA H (ABS) =	30.13
Tm (°F) =	87.8	% CO =	0	Ps (ABS) =	29.98
Tm (°R) =	547.8	% N2 =	84.58	SQRT DELTA P =	0.4033
VI (TOT) =	164.0	Cp =	0.84	Y =	0.9728
VI (adj) =	NA	TIME =	60	An =	0.000672

Vm std =	17.64 (Vm)(Y)(DELTA H ABS) (Tm)	= 41.905 DSCF
Vw std =	.04707 (VI TOT)	= 7.719 CF
Bwo =	Vw std / (Vw std) + (Vm std)	= 0.156
Bwo =	by steam tables	= NA
1 - Bwo =	1 - Bwo	= 0.844
Md (DRY)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	= 29.560 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	= 27.762 LB/LB
G =	SQRT (Ts/Ps/Ms)	MOLE = 0.918
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 26.573 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)	= 430938 DSCFH
	<u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1-Bwo)	= 102.3

		RUN # : U2-M5-R2 (example) 27-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Vm (CF) = 45.145 DELTA H (ABS) = 30.13 Ps (ABS) = 29.97 SQRT DELTA P = 0.4101 Y = 0.9728 An = 0.0006
Vm std =	17.64 (Vm)(Y)(DELTA H ABS) (Tm)) <u>=</u> 42.481 DSCF
Vw std =	.04707 (VI TOT)	= 9.014 CF
Bwo =	Vw std / (Vw std) + (Vm std)	= 0.175
Bwo =	by steam tables	= NA
1 - Bwo =	1 - Bwo	≂ 0.825
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	= 27.538 LB/LB MOLE
G =	SQRT (Ts/Ps/Ms)	= 0.922
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 27.168 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts	s) = 429360 DSCFH
% ISO =	<u>100 (Ts) (Vm std) (Pstd)</u> 60 (Tstd) (Vs) (Time) (An) (Ps) (1-	= 104.0 Bwo)

		RUN#: U2-M5-R3 DATE : 27-Jun-13
Ts (°F) = Ts (°R) = Tm (°F) = Tm (°R) = VI (TOT) = VI (adj) =	702.9 % O2 = 7.02 87.4 % CO = 0 547.4 % N2 = 84.83 212.0 Cp = 0.84	Vm (CF)= 44.343 DELTA H (ABS) = 30.13 Ps (ABS)=29.97SQRT DELTA P=0.4121Y=0.9728An=0.00067
Vm std =	17.64 (Vm)(Y)(DELTA H ABS) (Tm)	=41.887 DSCF
Vw std =	.04707 (VI TOT)	= 9.979 CF
Bwo =	Vw std / (Vw std) + (Vm std)	= 0.192
Bwo =	by steam tables	⊨ NA
1 - Bwo =	1 - Bwo	= 0.808
Ms (WET)=	0.44 (% CO2) + 0.32 (% O2) + 0.28 (% CO) + 0.28 (% N2)	= 29.586 LB/LB MOLE
Ms (WET)=	MD (1-Bwo) + 18 (Bwo)	= 27.357 LB/LB
G =	SQRT (Ts/Ps/Ms)	MOLE = 0.926
Vs =	85.49 (Cp) (G) (SQRT DELTA P)	= 27.397 FPS
Qs =	3600 (1-Bwo)(Vs)(As)(17.64)(Ps/Ts)) = 423532 DSCFH
% ISO =	100 (Ts) (Vm std) (Pstd) 60 (Tstd) (Vs) (Time) (An) (Ps) (1-E	= 104.0 3wo)

Analyzer Calibrations

PLANT : NEFCO	/ SWA Bio	solids	DATE :	27-Jun-13	
LOCATION : West Palm Beach, FL					
	r 	T	1		
Diluent/Pollutant	O ₂	CO ₂			
Units	%	%			
Monitor Range Selected	25	20			
Monitor Range (Effective, per Method)	20.42	18.69			
Low Level	Analyzer Ca	alibration I	Error		
Cylinder Value (C _{v,Low})	0.00	0.00		· · · ·	
Analyzer Response (C _{Dir,Low})	0.11	0.24			
Analyzer Calibration Error (ACE,Low)	0.54	1.28			
Calibration Status (Pass/Fail)	Pass	Pass			
Mid Level	Analyzer Ca	libration E	Érror		
Cylinder Value (C _{v,Mid})	10.49	9.45			
Analyzer Response (C _{Dir,Mid})	10.47	9.40		and an and a start of the	
Analyzer Calibration Error (ACE, _{Mid})	-0.10	-0.27			
Calibration Status (Pass/Fail)	Pass	Pass			
High Level	Analyzer Ca	alibration	Error		
Cylinder Value (C _{v,High})	20.42	18.69			1.1. A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A.A
Analzyer Response (C _{Dir,High})	20.46	18.62			
Analyzer Calibration Error (ACE, High)	0.20	-0.37			
Calibration Status (Pass/Fail)	Pass	Pass			
Cylinder Ga	s Selected f	for Bias Cl	necks		
Use Mid (M) or High (H) Span	M	M			
ZERO	0.11	0.24			
SPAN SPAN	10.47	9.4			
Mid Level	Gas Range	Assessme	ent		
Cylinder Value (Mid)	10.49	9.45			
Cylinder Value (High/Span)	20.42	18.69			
Percentage of Span (%)	51.4	50.6			
Assessment Status (Pass/Fail)	Pass	Pass			· · · · ·

PLANT NEFCO/SW	A Biosolids		RUN # : U2-M5-R1	· · · .
LOCATION : West Palm Be			DATE : 27-Jun-13	
	GAS 8:12		··· · · · · · · · · · · · · · · · · ·	
START TIME : END TIME :	9:15			
	0.10			
				· · ·
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)		
Instrument Span =	20.42	18.69	<u></u>	
Analyzer Zero Response =	0.11	0.24		
Analyzer Span Response =	10.47	9.40		
Initial Sytem Zero Response =	0.15 0.05	0.22 0.01		
Final System Zero Response = Average Zero Response (C_o) =		0.01		
	10.69	9.46		
Initial Sytem Span Response = Final System Span Response =	10.69	9.40 9.31		
Average Span Response (C_m) =	10.44	9.39		
Average Span Response (Cm) -	10.57	9.09		
	10.40	0.45		
Calibration gas values (C _{ma}) =	10.49	9.45		
System Bias and Drift Calculations	0.00	0.14		
Initial Zero Bias (SB _i) =		0.11		
Final Zero Bias (SB _{final}) =		1.23		
Zero Drift (D) =	0.49	1.12		
Initial Span Blas (SB _i) =		0.32		
Final Span Bias (SB _{final}) =	0.15	0.48		
Span Drift (D) =	1.22	0.80		
가 같은 같은 것은 것은 것은 물건을 <u>도</u> 다				
Uncorrected Ave. $(C_{Avg}) =$	7.63	7.83		
이 비행할 수요 있습니다. <u> 전</u> 환 가지 않는 것이다.	 		and and a second se	en e stille
Corrected Ave.= $C_{gas} = (C_{Avg} - C_o)(C_{ma}/(C_m - C_o)) =$	7.55	7.86		
			· · · · · · · · · · · · · · · · · · ·	
	· · · · · · · · · · · · · · · · · · ·			
PLANT DATA				
	<u></u>	· · · · · · · · · · · · · · · · · · ·	· · · ·	

PLANT : NEFCO / SWA LOCATION : West Palm Bea		· ·	RUN # : U2-M5 DATE : 27-Jun		
	GAS				
START TIME : END TIME :	9:33 11:08				
	O ₂ (%)	CO ₂ (%)			
Diluent/Pollutant: Operating Range =		18.69		· · ·	
Analyzer Zero Response =	<u>20.42</u> 0.11	0.24			
Analyzer Span Response =	10.47	9.40			
Sytem Zero Response (Initial) =	0.05	0.01			
System Zero Response (Final) =	0.09	-0.09			
Average Zero Response (C_o) =	0.07	-0.04			
Sytem Span Response (Initial) =	10.44	9.31			
System Span Response (Final) =	10.67	9.35			
Average Span Response (C _m) =	10.56	9.33			
Calibration gas values (C _{ma}) =	10.49	9.45			
System Bias and Drift Calculations:					
Initial Zero Bias (SB _I) =	0.29	1.23			
Final Zero Bias (SB _{final}) =	0.10	1.77			
Zero Drift (D) =	0.20	0.54			
Initial Span Bias (SB _i) =	0.15	0.48			
Final Span Blas (SB _{final}) =	0.98	0.27			
Span Drift (D) =	1.13	0.21			
		•			
Uncorrected Ave. $(C_{Avg}) =$	7.52	7.79			
orrected Ave.= $C_{gas} = (C_{Avg}^{-}C_{o})(C_{ma}/(C_{m}^{-}C_{o})) =$	7.45	7.90	n an	n an	•
	7.40	1,00		n an Na Airtí	
PLANT DATA					
a da se					

PLANT : NEFCO / SWA LOCATION : West Palm Bea			RUN # DATE		
and a second	GAS		a da an	 . *	· · · · · ·
START TIME :	12:57				
END TIME :	13:59			 	
		00.00		 	· · · · · ·
Diluent/Pollutant:	O ₂ (%)	CO ₂ (%)			
Operating Range =	<u>20.42</u> 0.11	18.69 0.24			·· · · ·
Analyzer Zero Response = Analyzer Span Response =	10.47	0.24 9.40			
Sytem Zero Response (Initial) =	0.09	9.40 -0.09			
System Zero Response (Final) =	0.05	-0.05			
Average Zero Response (C_o) =	0.07	-0.07			
Sytem Span Response (Initial) =	10.67	9.35			
System Span Response (Final) =	10.71	9.30			
Average Span Response (C _m) =	10.69	9.33			
Calibration gas values (C _{ma}) =	10,49	9,45			
System Bias and Drift Calculations:	10110	0110			
Initial Zero Blas (SB _i) =	0.10	1.77			
Final Zero Bias (SB _{final}) =	0.29	1.55			
Zero Drift (D) =	0.20	0.21			
Initial Span Bias (SB _i) ≠	0.20	0.27			
	1.18	0.54			
Final Span Bias (SB _{final}) =		0.54			
Span Drift (D) =	0.20	0.27			
Uncorrected Ave. (C _{Avg}) =	7.17	8.04			
orrected Ave = $C_{gas} = (C_{Avg}-C_o)(C_{ma}/(C_m-C_o)) =$	7.02	8.16			
PLANT DATA		n Alago A			

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site: Location:	NEFCO / SWA L West Palm Beac	 Southern and the state of the s	Start Time: Stop Time:		
Run No.:	U2-M5-R1 O2	CO ₂	Stop Time;	9. IQ	i ener de la companya
Date/time	(%vd)	(% _{vd})	and the second sec		
6/27/2013 8:12:00 AM	7.85	7,70			
6/27/2013 8:13:00 AM	7.60	7.74			
6/27/2013 8:14:00 AM	7.97	7.74			
6/27/2013 8:15:00 AM	7.82	7.76			
6/27/2013 8:16:00 AM	7.89	7.72			
6/27/2013 8:17:00 AM	7.84	7.70			
6/27/2013 8:18:00 AM 6/27/2013 8:19:00 AM	7.91 7.67	7.71 7.70			
6/27/2013 8:20:00 AM	7.85	7.70			
6/27/2013 8:21:00 AM	7.68	7.72			
6/27/2013 8:22:00 AM	7.82	7,75			
6/27/2013 8:23:00 AM	7.85	7.78			
6/27/2013 8:24:00 AM	7.79	7.79			
6/27/2013 8:25:00 AM	7.91	7.78			
6/27/2013 8:26:00 AM 6/27/2013 8:27:00 AM	7.59 7.57	7.84 7.89			
6/27/2013 8:28:00 AM	7.57	7.85			4
6/27/2013 8:29:00 AM	7.61	7.85			
6/27/2013 8:30:00 AM	7.62	7.84			
6/27/2013 8:31:00 AM	7.61	7.86			
6/27/2013 8:32:00 AM	7.61	7.86			
6/27/2013 8:33:00 AM	7.63	7.87			
6/27/2013 8:34:00 AM 6/27/2013 8:35:00 AM	7.43 7.34	7,95 7,97			
6/27/2013 8:36:00 AM	7.47	7.91			
6/27/2013 8:37:00 AM	7.48	7.89			
6/27/2013 8:38:00 AM	7.56	7.86			
6/27/2013 8:39:00 AM	7.50	7.90			
6/27/2013 8:40:00 AM	7.63	7.91			
6/27/2013 8:41:00 AM	7.70	7.95			
6/27/2013 8:42:00 AM 6/27/2013 8:43:00 AM			Port Change		
6/27/2013 8:44:00 AM			Undrige		
6/27/2013 8:45:00 AM	7.83	7.87			
6/27/2013 8:46:00 AM	7.72	7.82			
6/27/2013 8:47:00 AM	7.55	7.83			
6/27/2013 8:48:00 AM	7.64	7.84			
6/27/2013 8:49:00 AM	7.59	7.85			
6/27/2013 8:50:00 AM	7.52	7.86 7.86			
6/27/2013 8:51:00 AM 6/27/2013 8:52:00 AM	7.41 7.71	7.88			
6/27/2013 8:53:00 AM	7.75	7.85			
6/27/2013 8:54:00 AM	7.58	7,83			
6/27/2013 8:55:00 AM	7.61	7.81			
6/27/2013 8:56:00 AM	7.61	7.81			
6/27/2013 8:57:00 AM	7.65	7.82			
6/27/2013 8:58:00 AM	7.66	7.82			
6/27/2013 8:59:00 AM 6/27/2013 9:00:00 AM	7.53 7.48	7.84 7.91			
6/27/2013 9:01:00 AM	7.43	7.88			
6/27/2013 9:02:00 AM	7.64	7.84			
6/27/2013 9:03:00 AM	7.63	7.82	1		
6/27/2013 9:04:00 AM	7.52	7.80	1		
6/27/2013 9:05:00 AM	7.60	7.81	1		
6/27/2013 9:06:00 AM	7.78	7.78	1		
6/27/2013 9:07:00 AM 6/27/2013 9:08:00 AM	7.64 7.51	7.81 7.86	1		
6/27/2013 9:09:00 AM	7.51	7.88	1		
6/27/2013 9:10:00 AM	7.40	7.90	1		1
6/27/2013 9:11:00 AM	7.45	7.90	1		1
6/27/2013 9:12:00 AM	7.52	7.86			1
6/27/2013 9:13:00 AM	7.58	7.81]		
6/27/2013 9:14:00 AM	7.62	7.79			4

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

Facility/Site:	NEFCO / SWA	 MANAGER AND A DESCRIPTION OF AND AND AND AND AND AND AND AND AND AND	Date: Start Time:	06/27/13	
Location: Run No.:	West Palm Bea U2-M5-R2	ui, CE	Start Time: Stop Time:		
	O ₂	CO ₂			
Date/time	(%va)	(% _{vd})			
6/27/2013 9:33:00 AM	7.30	7.89			
6/27/2013 9:34:00 AM		7.89			
6/27/2013 9:35:00 AM	7.32	7.90			
6/27/2013 9:36:00 AM	7.32	7.90			
6/27/2013 9:37:00 AM		7.92			
6/27/2013 9:38:00 AM		7.91			
6/27/2013 9:39:00 AM		7.88			
6/27/2013 9:40:00 AM		7.89			
6/27/2013 9:41:00 AM		7.88 7.83			
6/27/2013 9:42:00 AM 6/27/2013 9:43:00 AM		7.85			
6/27/2013 9:44:00 AM		7.79			
6/27/2013 9:45:00 AM		7.76			
6/27/2013 9:46:00 AM	1	7.78			
6/27/2013 9:47:00 AM		7.79			
6/27/2013 9:48:00 AM	1	7.83			
6/27/2013 9:49:00 AM	1	7.81			
6/27/2013 9:50:00 AM		7.82			
6/27/2013 9:51:00 AM		7.81			
6/27/2013 9:52:00 AM		7.75			
6/27/2013 9:53:00 AM		7.81			
6/27/2013 9:54:00 AM		7.83			
6/27/2013 9:55:00 AM		7.84			
6/27/2013 9:56:00 AM 6/27/2013 9:57:00 AM		7.88			
6/27/2013 9:58:00 AM		7.84			
6/27/2013 9:59:00 AM		7.82			
6/27/2013 10:00:00 AM		7.78			
6/27/2013 10:01:00 AM		7.80			
6/27/2013 10:02:00 AM		7.77			
			Port		
			Change		
6/27/2013 10:38:00 AM	6.94	8.12			
6/27/2013 10:39:00 AM		7.72			
6/27/2013 10:40:00 AM		7.76			
6/27/2013 10:41:00 AM		7.74			
6/27/2013 10:42:00 AM		7,73			
6/27/2013 10:43:00 AM		7.75			
6/27/2013 10:44:00 AM		7.72			
6/27/2013 10:45:00 AM 6/27/2013 10:46:00 AM		7.09			
6/27/2013 10:47:00 AM		7.75			
6/27/2013 10:48:00 AM		7.74			
6/27/2013 10:49:00 AM		7.72			
6/27/2013 10:50:00 AM		7.76			
6/27/2013 10:51:00 AM		7.75			
6/27/2013 10:52:00 AM		7.75			
6/27/2013 10:53:00 AM		7.75			
6/27/2013 10:54:00 AM		7.74		1	
6/27/2013 10:55:00 AM		7,76			
6/27/2013 10:56:00 AM		7.75			
6/27/2013 10:57:00 AM		7.74			
6/27/2013 10:58:00 AM 6/27/2013 10:59:00 AM		7.74			
6/27/2013 11:00:00 AM		7.78			
6/27/2013 11:01:00 AM		7.76			
6/27/2013 11:02:00 AM		7.73			
6/27/2013 11:03:00 AM		7.71			
6/27/2013 11:04:00 AM		7.71		Į .	
6/27/2013 11:05:00 AM		7.76		} Í	
6/27/2013 11:06:00 AM		7.72			
6/27/2013 11:07:00 AM	7.58	7.76			
		_			
Averages:	7.52	7.79		<u> </u>	

South Florida Environmental Services, LLC Uncorrected CEMS Monitoring Results Instrumental Reference Methods - 3A, 6C, 7E and 10

i i

:

Run No.: U2-M5-R3 Stop Time: 13:69 0 0 CO _A (%a) (%a) (%a) 6U27/2013 11:28:00 AM 7.40 7.90 (%a) (%a) 6U27/2013 11:28:00 AM 7.40 7.92 (%a) (%a) (%a) (%a) (%a) 6U27/2013 11:3:00 AM 7.30 7.92 (%a) (%a)		06/27/13 12/57	Date: Start Time:	s. in garden and a second of the second	NEFCO / SWA E West Palm Beac	Facility/Site: Location:
Date/Time (%,) (%,) (%,) 6/27/2013 11:28:00 AM 7.49 7.90 (%,) 6/27/2013 11:28:00 AM 7.40 7.95 (%,) 6/27/2013 11:30:00 AM 7.40 7.92 (%////////////////////////////////////						
6/27/2013 11:28:00 AM 7.40 7.90 6/27/2013 11:30:00 AM 7.32 7.92 6/27/2013 11:30:00 AM 7.32 7.92 6/27/2013 11:30:00 AM 7.39 7.93 6/27/2013 11:30:00 AM 7.30 7.93 6/27/2013 11:36:00 AM 7.30 7.93 6/27/2013 11:36:00 AM 7.33 7.91 6/27/2013 11:36:00 AM 7.45 7.91 6/27/2013 11:36:00 AM 7.45 7.93 6/27/2013 11:36:00 AM 7.45 7.90 6/27/2013 11:40:00 AM 7.45 7.90 6/27/2013 11:40:00 AM 7.48 6.05 6/27/2013 11:40:00 AM 7.18 6.04 6/27/2013 11:40:00 AM 7.18 8.04 6/27/2013 11:40:00 AM 7.17 8.04 6/27/2013 11:50:00 AM 7.02 8.09 6/27/2013 11:50:00 AM 7.02 8.09				ĆO ₂		
6227/2013 11:26:00 AM 7.40 7.95 6277/2013 11:30:00 AM 7.32 7.92 6277/2013 11:30:00 AM 7.30 7.93 6277/2013 11:30:00 AM 7.30 7.93 6277/2013 11:30:00 AM 7.30 7.93 6277/2013 11:30:00 AM 7.33 7.91 6277/2013 11:30:00 AM 7.45 7.91 6277/2013 11:30:00 AM 7.45 7.93 6277/2013 11:30:00 AM 7.45 7.90 6277/2013 11:40:00 AM 7.45 7.90 6277/2013 11:40:00 AM 7.45 7.90 6277/2013 11:40:00 AM 7.16 8.05 6277/2013 11:40:00 AM 7.11 8.01 6277/2013 11:40:00 AM 7.11 8.01 6277/2013 11:40:00 AM 7.12 8.00 6277/2013 11:40:00 AM 7.12 8.00 6277/2013 11:50:00 AM 7.02 8.09 6277/2013 11:50:00 AM 7.08 8.06 6277/2013				(% _{va})	(% _{vd})	Date/time
6227/2013 11:26:00 AM 7.40 7.95 6277/2013 11:30:00 AM 7.32 7.92 6277/2013 11:30:00 AM 7.30 7.93 6277/2013 11:30:00 AM 7.30 7.93 6277/2013 11:30:00 AM 7.30 7.93 6277/2013 11:30:00 AM 7.33 7.91 6277/2013 11:30:00 AM 7.45 7.91 6277/2013 11:30:00 AM 7.45 7.93 6277/2013 11:30:00 AM 7.45 7.90 6277/2013 11:40:00 AM 7.45 7.90 6277/2013 11:40:00 AM 7.45 7.90 6277/2013 11:40:00 AM 7.16 8.05 6277/2013 11:40:00 AM 7.11 8.01 6277/2013 11:40:00 AM 7.11 8.01 6277/2013 11:40:00 AM 7.12 8.00 6277/2013 11:40:00 AM 7.12 8.00 6277/2013 11:50:00 AM 7.02 8.09 6277/2013 11:50:00 AM 7.08 8.06 6277/2013				7.90	7.49	6/27/2013 11:28:00 AM
69272013 11:31:00 AM 7.40 7.92 692712013 11:32:00 AM 7.30 7.93 622712013 11:35:00 AM 7.30 7.93 622712013 11:35:00 AM 7.33 7.91 622712013 11:35:00 AM 7.37 7.68 622712013 11:36:00 AM 7.45 7.91 622712013 11:36:00 AM 7.46 7.93 622712013 11:36:00 AM 7.46 7.90 622712013 11:36:00 AM 7.46 7.90 622712013 11:40:00 AM 7.46 7.90 622712013 11:40:00 AM 7.16 8.05 622712013 11:45:00 AM 7.18 8.04 6/22712013 11:45:00 AM 7.18 8.04 6/22712013 11:45:00 AM 7.12 8.08 6/22712013 11:50:00 AM 7.02 8.09 6/22712013 11:50:00 AM 7.08 8.08 6/22712013 11:50:00 AM 7.08 8.08 6/22712013 11:50:00 AM 7.08 8.06 6/22712013 </td <td></td> <th></th> <td></td> <td></td> <td></td> <td></td>						
6/27/2013 11:32:00 AM 7.39 7.93 6/27/2013 11:33:00 AM 7.25 7.93 6/27/2013 11:36:00 AM 7.33 7.91 6/27/2013 11:36:00 AM 7.33 7.93 6/27/2013 11:36:00 AM 7.45 7.93 6/27/2013 11:36:00 AM 7.46 7.93 6/27/2013 11:36:00 AM 7.46 7.90 6/27/2013 11:41:00 AM 7.46 7.90 6/27/2013 11:42:00 AM 7.34 7.96 6/27/2013 11:42:00 AM 7.16 8.05 6/27/2013 11:46:00 AM 7.16 8.04 6/27/2013 11:40:00 AM 7.12 8.08 6/27/2013 11:40:00 AM 7.08 8.08 6/27/2013 11:50:00 AM 7.08 8.08 6/27/2013 11:60:00 AM 7.08 8.06 6/27/2013				7.92		6/27/2013 11:30:00 AM
62272013 11:35:00 AM 7.26 7.93 62272013 11:35:00 AM 7.30 7.91 62272013 11:35:00 AM 7.37 7.86 62272013 11:35:00 AM 7.45 7.91 62272013 11:35:00 AM 7.45 7.93 62272013 11:35:00 AM 7.45 7.90 62272013 11:40:00 AM 7.46 7.90 62272013 11:40:00 AM 7.45 7.90 62272013 11:40:00 AM 7.45 7.90 62272013 11:40:00 AM 7.16 8.05 62272013 11:40:00 AM 7.18 8.04 62272013 11:46:00 AM 7.18 8.04 62272013 11:46:00 AM 7.17 8.04 62272013 11:46:00 AM 7.07 8.09 62272013 11:50:00 AM 7.07 8.09 62272013 11:50:00 AM 7.02 8.08 62272013 11:50:00 AM 7.03 8.13 62272013 11:50:00 AM 7.08 8.13 62272013 11:60:00 AM						
6227(2013 11:34:00 AM 7:30 7:93 627/2013 11:35:00 AM 7:33 7:91 627/2013 11:36:00 AM 7:45 7:93 627/2013 11:36:00 AM 7:45 7:93 627/2013 11:36:00 AM 7:46 7:90 627/2013 11:40:00 AM 7:48 7:90 627/2013 11:41:00 AM 7:46 7:90 627/2013 11:41:00 AM 7:16 8:05 627/2013 11:40:00 AM 7:16 8:05 627/2013 11:40:00 AM 7:16 8:04 627/2013 11:40:00 AM 7:17 8:04 627/2013 11:40:00 AM 7:16 8:03 627/2013 11:40:00 AM 7:06 8:08 627/2013 11:50:00 AM 7:07 8:09 627/2013 11:50:00 AM 7:08 8:13 627/2013 11:50:00 AM 7:08 8:13 627/2013 11:50:00 AM 7:08 8:08 627/2013 11:50:00 AM 7:08 8:08 627/2013 11:60:00 A						
6227/2013 11:35:00 AM 7:33 7.91 6/27/2013 11:36:00 AM 7:45 7.93 6/27/2013 11:36:00 AM 7:45 7.93 6/27/2013 11:36:00 AM 7:45 7.90 6/27/2013 11:40:00 AM 7:46 7.90 6/27/2013 11:40:00 AM 7:45 7.90 6/27/2013 11:40:00 AM 7:45 7.90 6/27/2013 11:40:00 AM 7:26 8:05 6/27/2013 11:40:00 AM 7:16 8:06 6/27/2013 11:40:00 AM 7:18 8:04 6/27/2013 11:40:00 AM 7:18 8:04 6/27/2013 11:40:00 AM 7:18 8:04 6/27/2013 11:50:00 AM 7:06 8:08 6/27/2013 11:50:00 AM 7:08 8:08 6/27/2013 11:60:00 AM 7:08 8:06 6/27/2013						
6227(2013 11:36:00 AM 7.37 7.88 6277(2013 11:36:00 AM 7.45 7.91 6277(2013 11:36:00 AM 7.36 7.93 6277(2013 11:36:00 AM 7.45 7.90 6277(2013 11:41:00 AM 7.45 7.90 6277(2013 11:41:00 AM 7.45 7.90 6277(2013 11:41:00 AM 7.16 8.05 6277(2013 11:41:00 AM 7.16 8.05 6277(2013 11:45:00 AM 7.18 8.04 6277(2013 11:45:00 AM 7.18 8.04 6277(2013 11:45:00 AM 7.16 8.03 6277(2013 11:45:00 AM 7.06 8.09 6277(2013 11:50:00 AM 7.07 8.09 6277(2013 11:50:00 AM 7.08 8.13 6277(2013 11:50:00 AM 7.08 8.13 6277(2013 11:50:00 AM 7.08 8.08 6277(2013 11:50:00 AM 7.08 8.06 6277(2013 11:50:00 AM 7.08 8.06 6277(2013						
6/27/2013 11:38:00 AM 7.45 7.93 6/27/2013 11:39:00 AM 7.48 7.99 6/27/2013 11:40:00 AM 7.44 7.90 6/27/2013 11:42:00 AM 7.34 7.96 6/27/2013 11:42:00 AM 7.34 7.96 6/27/2013 11:43:00 AM 7.16 8.05 6/27/2013 11:45:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.18 8.04 6/27/2013 11:49:00 AM 7.02 8.09 6/27/2013 11:50:00 AM 7.06 8.08 6/27/2013 11:50:00 AM 7.02 8.09 6/27/2013 11:50:00 AM 7.08 8.13 6/27/2013 11:50:00 AM 7.08 8.08 6/27/2013 11:50:00 AM 7.08 8.06 6/27/2013						
6/27/2013 11:39:00 AM 7.36 7.90 6/27/2013 11:41:00 AM 7.44 7.90 6/27/2013 11:41:00 AM 7.45 7.90 6/27/2013 11:42:00 AM 7.25 8.05 6/27/2013 11:44:00 AM 7.16 8.05 6/27/2013 11:44:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.16 8.03 6/27/2013 11:50:00 AM 7.07 8.09 6/27/2013 11:50:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 12:00:00 PM 7.03 8.06 6/27/2013						
6/27/2013 11:40:00 AM 7.49 7.90 6/27/2013 11:40:00 AM 7.34 7.96 6/27/2013 11:40:00 AM 7.25 8.05 6/27/2013 11:40:00 AM 7.16 8.05 6/27/2013 11:40:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.12 8.08 6/27/2013 11:50:00 AM 7.05 8.09 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.12 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.00 8.06 6/27/2013 11:50:00 AM 7.00 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.15 8.05 6/27/2013						
6/27/2013 11:41:00 AM 7.45 7.90 6/27/2013 11:42:00 AM 7.25 8.05 6/27/2013 11:43:00 AM 7.16 8.05 6/27/2013 11:46:00 AM 7.11 8.04 6/27/2013 11:46:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.17 8.04 6/27/2013 11:46:00 AM 7.17 8.04 6/27/2013 11:46:00 AM 7.16 8.03 6/27/2013 11:50:00 AM 7.06 8.08 6/27/2013 11:50:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.07 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.04 8.05 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013						
6/27/2013 11:4:300 AM 7.34 7.96 6/27/2013 11:4:300 AM 7.16 8.05 6/27/2013 11:4:00 AM 7.11 8.01 6/27/2013 11:4:00 AM 7.11 8.04 6/27/2013 11:4:00 AM 7.17 8.04 6/27/2013 11:4:00 AM 7.17 8.04 6/27/2013 11:5:00 AM 7.07 8.09 6/27/2013 11:5:00 AM 7.07 8.09 6/27/2013 11:5:00 AM 7.06 8.08 6/27/2013 11:5:00 AM 7.02 8.09 6/27/2013 11:5:00 AM 7.08 8.13 6/27/2013 11:5:00 AM 7.08 8.08 6/27/2013 11:5:00 AM 7.08 8.09 6/27/2013 11:5:00 AM 7.08 8.06 6/27/2013 11:5:00 AM 7.08 8.06 6/27/2013 11:5:00 AM 7.08 8.05 6/27/2013 12:0:00 PM 7.01 8.05 6/27/2013 12:0:00 PM 7.12 8.06 6/27/2013 12:0:00						
6/27/2013 11:44:00 AM 7.18 8.05 6/27/2013 11:45:00 AM 7.18 8.04 6/27/2013 11:46:00 AM 7.18 8.04 6/27/2013 11:48:00 AM 7.17 8.04 6/27/2013 11:48:00 AM 7.16 8.03 6/27/2013 11:50:00 AM 7.07 8.09 6/27/2013 11:50:00 AM 7.06 8.08 6/27/2013 11:50:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.09 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:50:00 AM 7.08 8.08 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.15 8.05 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 P						
6/27/2013 11:45:00 AM 7.11 6.01 6/27/2013 11:47:00 AM 7.17 8.04 6/27/2013 11:47:00 AM 7.17 8.04 6/27/2013 11:48:00 AM 7.28 8.02 6/27/2013 11:48:00 AM 7.16 8.03 6/27/2013 11:50:00 AM 7.07 8.08 6/27/2013 11:50:00 AM 7.02 8.08 6/27/2013 11:50:00 AM 7.02 8.09 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:50:00 AM 7.08 8.07 6/27/2013 11:50:00 AM 7.08 8.07 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013				8.05	7.25	
6/27/2013 11:46:00 AM 7.18 6.04 6/27/2013 11:47:00 AM 7.17 8.04 6/27/2013 11:49:00 AM 7.18 8.02 6/27/2013 11:50:00 AM 7.12 8.08 6/27/2013 11:51:00 AM 7.02 8.09 6/27/2013 11:52:00 AM 7.08 8.13 6/27/2013 11:55:00 AM 7.08 8.13 6/27/2013 11:55:00 AM 6.99 8.09 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:65:00 AM 7.08 8.08 6/27/2013 12:00:00 PM Change Change 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.15 8.05 6/27/2013 12:00:00 PM 7.14 8.07 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 <td></td> <th></th> <td></td> <td></td> <td></td> <td></td>						
6/27/2013 11:47:00 AM 7.17 8.04 6/27/2013 11:48:00 AM 7.16 8.02 6/27/2013 11:49:00 AM 7.16 8.03 6/27/2013 11:50:00 AM 7.07 8.09 6/27/2013 11:50:00 AM 7.02 8.08 6/27/2013 11:52:00 AM 7.08 8.13 6/27/2013 11:55:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.07 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:00:00 PM 7.00 8.05 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.14 8.07 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013						
6/27/2013 11:48:00 AM 7.28 6.02 6/27/2013 11:69:00 AM 7.07 6.09 6/27/2013 11:50:00 AM 7.07 8.08 6/27/2013 11:52:00 AM 7.08 8.08 6/27/2013 11:53:00 AM 7.02 8.09 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.12 6/27/2013 11:56:00 AM 7.08 8.12 6/27/2013 11:56:00 AM 7.08 8.09 6/27/2013 11:56:00 AM 7.08 8.02 6/27/2013 11:56:00 AM 7.08 8.07 6/27/2013 12:00:00 PM Change 6/27/2013 6/27/2013 12:00:00 PM 7.00 8.05 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013<						
6/27/2013 11:49:00 AM 7.16 6.03 6/27/2013 11:50:00 AM 7.07 8.09 6/27/2013 11:51:00 AM 7.12 8.08 6/27/2013 11:52:00 AM 7.08 8.09 6/27/2013 11:53:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.09 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 12:00:00 PM 7.03 8.06 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:06:00 PM 7.15 8.05 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013						
6/27/2013 11:50:00 AM 7.07 8.09 6/27/2013 11:51:00 AM 7.12 8.08 6/27/2013 11:52:00 AM 7.08 8.09 6/27/2013 11:53:00 AM 7.08 8.13 6/27/2013 11:55:00 AM 6.99 8.09 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.09 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:00:00 PM 7.00 8.05 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.12 8.06 6/27/2013 12:11:00 P						
6/27/2013 11:52:00 AM 7.08 8.08 6/27/2013 11:53:00 AM 7.02 8.09 6/27/2013 11:55:00 AM 6.99 8.09 6/27/2013 11:56:00 AM 7.08 8.13 6/27/2013 11:56:00 AM 7.08 8.09 6/27/2013 11:56:00 AM 7.08 8.09 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.07 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.00 8.05 6/27/2013 12:00:00 PM 7.15 8.06 6/27/2013 12:00:00 PM 7.12 8.07 6/27/2013 12:10:00 PM 7.02 8.08 6/27/2013 12:10:00 PM 7.02 8.08 6/27/2013 12:16:00 P				8.09	7.07	6/27/2013 11:50:00 AM
6/27/2013 11:53:00 AM 7.02 8.09 6/27/2013 11:55:00 AM 7.08 8.13 6/27/2013 11:55:00 AM 7.30 8.12 6/27/2013 11:56:00 AM 7.30 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.00 8.05 6/27/2013 12:00:00 PM 7.15 8.05 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.02 8.08 6/27/2013 12:10:00 PM 7.02 8.08 6/27/2013 12:10:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 P						
6/27/2013 11:54:00 AM 7.08 8.13 6/27/2013 11:55:00 AM 6.99 8.09 6/27/2013 11:56:00 AM 7.30 8.12 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 11:56:00 AM 7.08 8.08 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.15 8.05 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.02 8.08 6/27/2013 12:10:00 PM 7.12 8.06 6/27/2013 12:14:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.04 8.14 6/27/2013 12:16:00 P						
6/27/2013 11:65:00 AM 6.99 8.09 6/27/2013 11:66:00 AM 7.30 8.12 6/27/2013 11:65:00 AM 7.08 8.08 6/27/2013 11:65:00 AM Port 6/27/2013 11:65:00 AM Port 6/27/2013 12:00:00 PM Port 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 7.03 6/27/2013 12:00:00 PM 7.00 6/27/2013 12:00:00 PM 7.00 6/27/2013 12:06:00 PM 7.15 7.02 8.06 6.07 6/27/2013 12:06:00 PM 7.14 6/27/2013 12:00:00 PM 7.12 6/27/2013 12:00:00 PM 7.03 6/27/2013 12:00:00 PM 7.03 6/27/2013 12:10:00 PM 7.06 6/27/2013 12:10:00 PM 7.08 6/27/2013 12:14:00 PM 7.02 6/27/2013 12:16:00 PM 7.04 6/27/2013 12:16:00 PM 7.04 6/27/2013 12:16:00 PM 7.						
6/27/2013 11:56:00 AM 7.30 8.12 6/27/2013 11:57:00 AM 7.08 8.08 6/27/2013 11:58:00 AM Port 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:02:00 PM 6.94 8.07 6/27/2013 12:03:00 PM 7.03 8.05 6/27/2013 12:05:00 PM 7.15 8.05 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:10:00 PM 7.02 8.08 6/27/2013 12:10:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.04 8.01 6/27/2013 12:16:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.2						1
6/27/2013 11:58:00 AM Port 6/27/2013 12:00:00 PM Change 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:00:00 PM 6.94 8.07 6/27/2013 12:00:00 PM 7.03 8.05 6/27/2013 12:00:00 PM 7.00 8.05 6/27/2013 12:00:00 PM 7.15 8.05 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.14 8.07 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.26 8.05 6/27/2013 12:11:00 PM 7.26 8.08 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:14:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.14 8.14 6/27/2013 12:16:00 PM 6.9			:			
6/27/2013 11:59:00 AM Port 6/27/2013 12:00:00 PM Change 6/27/2013 12:01:00 PM 6.94 8.07 6/27/2013 12:02:00 PM 6.94 8.07 6/27/2013 12:02:00 PM 7.03 8.05 6/27/2013 12:02:00 PM 7.00 8.05 6/27/2013 12:06:00 PM 7.15 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.14 8.07 6/27/2013 12:00:00 PM 7.14 8.07 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.12 8.06 6/27/2013 12:00 PM 7.12 8.07 6/27/2013 12:10:00 PM 7.08 8.09 6/27/2013 12:13:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.04 8.11 6/27/2013 12:16:00 PM 7.04 8.14 6/27/2013 12:19:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.96 </td <td></td> <th></th> <td></td> <td>8.08</td> <td>7.08</td> <td>6/27/2013 11:57:00 AM</td>				8.08	7.08	6/27/2013 11:57:00 AM
6/27/2013 12:00:00 PM Change 6/27/2013 12:01:00 PM 6.94 8.07 6/27/2013 12:02:00 PM 6.94 8.07 6/27/2013 12:03:00 PM 7.03 8.05 6/27/2013 12:03:00 PM 7.00 8.05 6/27/2013 12:04:00 PM 7.00 8.05 6/27/2013 12:06:00 PM 7.15 8.06 6/27/2013 12:06:00 PM 7.14 8.07 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.12 8.06 6/27/2013 12:11:00 PM 7.12 8.07 6/27/2013 12:11:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.24 8.11 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:20:00 PM </td <td>1</td> <th></th> <td></td> <td></td> <td></td> <td></td>	1					
6/27/2013 12:01:00 PM 6.94 8.07 6/27/2013 12:03:00 PM 7.03 8.05 6/27/2013 12:03:00 PM 7.00 8.05 6/27/2013 12:04:00 PM 7.00 8.05 6/27/2013 12:06:00 PM 7.15 8.05 6/27/2013 12:06:00 PM 7.14 8.07 6/27/2013 12:06:00 PM 7.14 8.07 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.26 8.05 6/27/2013 12:11:00 PM 7.16 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.14 8.14 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:16:00 PM 6.96 8.12 6/27/2013						
6/27/2013 12:02:00 PM 6.94 8.07 6/27/2013 12:03:00 PM 7.03 8.05 6/27/2013 12:04:00 PM 7.00 8.05 6/27/2013 12:05:00 PM 7.15 8.05 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.14 8.07 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:07:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.26 8.05 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:13:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.14 8.14 6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:190 PM 6.96 8.14 6/27/2013			Change			
6/27/2013 12:03:00 PM 7.03 8.05 6/27/2013 12:04:00 PM 7.00 8.05 6/27/2013 12:05:00 PM 7.15 8.05 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:06:00 PM 7.14 8.07 6/27/2013 12:06:00 PM 6.98 8.07 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.26 8.05 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:13:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.04 8.14 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.96 8.12 6/27/2013				8.07	6.94	
6/27/2013 12:05:00 PM 7.15 8.05 6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:07:00 PM 7.14 8.07 6/27/2013 12:08:00 PM 6.98 8.07 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:11:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.16 8.08 6/27/2013 12:13:00 PM 7.16 8.08 6/27/2013 12:16:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.04 8.11 6/27/2013 12:16:00 PM 7.04 8.14 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013				8.05		
6/27/2013 12:06:00 PM 7.12 8.06 6/27/2013 12:07:00 PM 7.14 8.07 6/27/2013 12:08:00 PM 6.98 8.07 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.06 8.05 6/27/2013 12:12:00 PM 7.16 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.14 8.14 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.90 8.13 6/27/2013 12:20:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.16 6/27/2013						
6/27/2013 12:07:00 PM 7.14 8.07 6/27/2013 12:08:00 PM 6.98 8.07 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:01:00 PM 7.03 8.07 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.26 8.05 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:13:00 PM 7.16 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.24 8.11 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:100 PM 6.90 8.13 6/27/2013 12:20:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.12 6/27/2013 12:24:00 PM 6.96 8.16 6/27/2013						
6/27/2013 12:08:00 PM 6.98 8.07 6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:00:00 PM 7.03 8.07 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.26 8.05 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:13:00 PM 7.16 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:15:00 PM 7.08 8.09 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:17:00 PM 6.96 8.14 6/27/2013 12:18:00 PM 6.98 8.15 6/27/2013 12:19:00 PM 6.99 8.15 6/27/2013 12:20:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.17 6/27/2013 12:24:00 PM 6.96 8.16 6/27/2013 12:24:00 PM 6.96 8.16 6/27/2013						
6/27/2013 12:09:00 PM 7.12 8.06 6/27/2013 12:10:00 PM 7.03 8.07 6/27/2013 12:11:00 PM 7.26 8.05 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:20:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.12 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:26:00 PM 7.10 8.07 6/27/2013						
6/27/2013 12:11:00 PM 7.26 8.05 6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:13:00 PM 7.16 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:15:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.14 8.11 6/27/2013 12:16:00 PM 7.14 8.14 6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:22:00 PM 6.96 8.16 6/27/2013 12:22:00 PM 6.96 8.16 6/27/2013 12:26:00 PM 7.10 8.07 6/27/2013						
6/27/2013 12:12:00 PM 7.12 8.07 6/27/2013 12:13:00 PM 7.16 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:15:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.04 8.11 6/27/2013 12:16:00 PM 7.24 8.11 6/27/2013 12:16:00 PM 6.96 8.14 6/27/2013 12:17:00 PM 6.98 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:20:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:22:00 PM 6.96 8.16 6/27/2013 12:22:00 PM 6.95 8.16 6/27/2013 12:26:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013				8.07	7,03	6/27/2013 12:10:00 PM
6/27/2013 12:13:00 PM 7.16 8.08 6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:16:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.24 8.11 6/27/2013 12:16:00 PM 7.14 8.14 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:18:00 PM 6.98 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:26:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08						
6/27/2013 12:14:00 PM 7.02 8.08 6/27/2013 12:15:00 PM 7.08 8.09 6/27/2013 12:16:00 PM 7.24 8.11 6/27/2013 12:16:00 PM 7.14 8.14 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:21:00 PM 7.02 8.14 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.17 6/27/2013 12:23:00 PM 6.95 8.16 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:24:00 PM 7.10 8.07 6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:27:00 PM 7.34 8.08						
6/27/2013 12:15:00 PM 7.06 8.09 6/27/2013 12:16:00 PM 7.24 8.11 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:17:00 PM 6.96 8.14 6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.90 8.13 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.17 6/27/2013 12:23:00 PM 6.95 8.16 6/27/2013 12:22:00 PM 6.95 8.16 6/27/2013 12:23:00 PM 6.96 8.17 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:26:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08						
6/27/2013 12:16:00 PM 7.24 8.11 6/27/2013 12:17:00 PM 7.14 8.14 6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:22:00 PM 6.95 8.16 6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08		<u> </u>				
6/27/2013 12:18:00 PM 6.96 8.14 6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:21:00 PM 7.02 8.14 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:23:00 PM 6.95 8.16 6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08	l					
6/27/2013 12:19:00 PM 6.93 8.15 6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:21:00 PM 7.02 8.14 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:22:00 PM 6.96 8.17 6/27/2013 12:22:00 PM 6.95 8.16 6/27/2013 12:22:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08						
6/27/2013 12:20:00 PM 6.90 8.13 6/27/2013 12:21:00 PM 7.02 8.14 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.17 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08						
6/27/2013 12:21:00 PM 7.02 8.14 6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.17 6/27/2013 12:23:00 PM 6.95 8.16 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08]					
6/27/2013 12:22:00 PM 6.96 8.12 6/27/2013 12:23:00 PM 6.96 8.17 6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08	1					
6/27/2013 12:24:00 PM 6.95 8.16 6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08	1					
6/27/2013 12:25:00 PM 7.10 8.07 6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08					6,96	6/27/2013 12:23:00 PM
6/27/2013 12:26:00 PM 7.22 8.07 6/27/2013 12:27:00 PM 7.34 8.08						
6/27/2013 12:27:00 PM 7.34 8.08						
6/27/2013 12:29:00 PM 7.23 8.03						
5/27/2013 12:30:00 PM 7.14 8.04						
6/27/2013 12:31:00 PM 7.16 8.04						
6/27/2013 12:32:00 PM 7.23 8.00				8.00	7.23	6/2//2013 12:32:00 PM
Run Averages: 7.17 8.04				8.04	7,17	Run Averages:

			<u>TR</u> A	VERS	E DA'	ra sh	EET	·····						_
PLANT:	NE	FLO /	SWA	Biosolia	ds		RUN#:	U Z	- ms	- R1				
LOCATION:	w	RE, FL	/	Unit -	±Ζ		DATE :		6/27/	13				
Filter No.		. <u> </u>	Filter Ta	re Wt.			Tra	p No.						
IMP-1 (INT):	100	TRAVERSE	DELTA	DELTA	DRY GA	S METER	STACK	METER	FILTER	PROBE	D	RY	IMP	
IMP-2 (INT) :	100	POINT	Р	н	IN	оυт	TEMP (F)	READING	вох	ТЕМР	FIL	TER	TEMP	VAC
IMP-3 (INT) :	0	AL	.72	1.28	84	84	220	_	248	247		14	62	1
IMP-4 (INT) :	811.0	2	.14	150	84	84	233	938.6	248	249	L		56	1
IMP-5 (INT) :		3	.14	1.50	85	82	242	962.0	247	249	Ц		57	1
IMP-6 (INT) :		4	.16	1.71	86	86	243	965.4	249	248			57	1
IMP-7 (INT) :	-	5	.18	1.93	88	88	242	969.0	248	247			57	1
		<u>م</u>	.18	1.93	88	88	244	973.0		249			57	1
IMP-1 (FIN):	246	BI	.16	1.71	88	85	231	976.8	248	248			57	
IMP-2 (FIN) :	107	2	16	1.71	89	39	238	980.1	249	ZYE	\square		57	
IMP-3 (FIN):	4	3	.15	1.93	90	90	244	984.2		245			58	1
IMP-4 (FIN):	818.0	4	.20	2.14	90	90	247	937.9	247	246			58	2
IMP-5 (FIN) :	~	5	17	1.82	91	91	248	<u>992.2</u>	248	242	$\left - \right $		58	2
IMP-6 (FIN):		6	17	1.82_	91	91	246	996.0	248	247	<u> </u>		59	2
IMP-7 (FIN) :														
							1							
Pstack	32											-	·	
	20 0									<u> </u>				
Baro. Pres.	30,0	. <u>.</u>				·								
TEST LENGTH	60						1				┢──			
FINAL METER	60	i											· · · · · · · · · · · · · · · · · · ·	
999.78	86													
INTIAL METER														
955.3			l				<u> </u>				1			
	<u>* *</u>													
BEGIN TIME	812													
END TIME	915													
Relationship Box #	10.7	Pre Leak	Check k Check	6.002	@	12	"Hg "Hg	Notes:	honge	B42 -	P.	<u>,</u>		
Y	.9728	Pre-Pitot	Check	6.00	@	>3	"H2O	- -"	your a		<u>دی</u>	<u></u>		
Delta H	2.04	Post-Pito		6.0		73	"H2O							
Box Op.	AS CM	Noz. ID N	· · · · · ·	1 2(1	Probe I	NO.	P.S-1							
Probe Op.	1"1	Noz. Dia		0.351			<u> </u>							.,
			· · · ·											

<u></u>		.											
			<u>TR</u>	AVERS	E DA]	Г <mark>А S</mark> H	<u>IEET</u>						
PLANT:	NEFC	o /sh	A Bi	osolid	S		RUN # :	<u>.</u>	2-ms	- P-7	_		
LOCATION:	WPB		i	#2			DATE :		6/27	P			
Filter No.		t.	Filter Ta	re Wt.			Trap	o No.					
IMP-1 (INT):	100	TRAVERSE	DELTA	DELTA	DRY GA	S METER	STACK	METER	FILTER	PROBE	DRY	ІМР	
IMP-2 (INT) :	100	POINT	P	н	IN	OUT	TEMP (F)	READING	вох	ТЕМР	FILTER		VAC
IMP-3 (INT) :	0	AI	16	1.71	90	90	241		248	246	NI		(
IMP-4 (INT) :	818,0	2	,17	1.82	91	91	248	3,9	2.49	248		60	
IMP-5 (INT) :		3	17	1.92	91	91	249	7.7	247	246	\vdash	<u>58</u>	1
IMP-6 (INT) :	~	Y	.17	1,87	92	92	242	115	248	249		55	1
IMP-7 (INT) :	æ	5	<u>, 19</u>	1.93	92	92	247	15.3	247	249	\vdash	55	1
	······	6	.17	1.82	93	93	246	19.0	248	249		35	
IMP-1 (FIN) :	277	BI	.15	1.61	88	88	237	22.9	249	250		57	f
IMP-2 (FIN) :	110	2	16	1.71	88	88	239	2617	248	249		50	P
IMP-3 (FIN):	1	3	مار	171	88	88	236	20.2	248	248		<u>51</u>	/
IMP-4 (FIN):	821.5	4	18	1.93	87	87	237	34.0	249	248		51)
IMP-5 (FIN):	-	5	13	1.93	87	87	215	37.6	240	248		52	1
IMP-6 (FIN):	***	6	.1'7	1.82	87	87	241	41.5	249	249	1	57_	1
IMP-7 (FIN):	.~												
Pstack	-,35												
Baro, Pres.	30.0												
TEST LENGTH	60												
FINAL METER													
45,3	12		·····										
INTIAL METER	-												
4000.11	· · · · · · · · · · · · · · · · · · ·					·			· · · · · · · · ·				
				•			· · · · ·						
BEGIN TIME	933												
			••••••••••••••••••••••••••••••••••••••					·					
END TIME	1108											_	
				<u> </u>		<u> </u>	<u></u>		L	<u> </u>			
Relationship	10.7	Pre Leak		0.004	@	12-	"Hg	Notes:					
Box # Y	5	Post Lea		8,002	@	10	"Hg "H2O	Port ()	renge 1	003 -	(0)	30	=
Y Deita H	19728	Pre-Pitot Post-Pito		00	00	73 73	"H2O "H2O		<u> </u>				
Box On		Noz ID N			Probe N		PSI			. <u> </u>		·	

PS-1

Probe No.

Pause test @ port change due to meather (lightning)

.351

Noz. ID No.

Noz. Diam.

MS

FM

Box Op.

Probe Op.

TRAVERSE DATA SHEET

Г

1

			<u>TR</u>	AVERS	<u>E DA</u>	FA SH	<u>IEET</u>							
PLANT:	NEFC	, /500	* Bios	solids			RUN#:	U	2- m	5 - F	23			
LOCATION:	WRA	3,FL	(0.	vit #-	2		DATE :	1	6/27	13				
Filter No.			Filter Ta	re Wt.			Tra	p No.						
IMP-1 (INT):	100	TRAVERSE	DELTA	DELTA	DRY GA	9 METER	STACK	METER	FILTER	PROBE	ס	RY	IMP	
IMP-2 (INT) :	·	POINT	Р	н	IN	OUT	TEMP (F)	READING	BOX	TEMP		TER	TEMP	VAC
IMP-3 (INT) :		<u>A(</u>	0.15	1.61	87	87	246		248	247	14	la-	59	1
IMP-4 (INT) :		٤	0.17	1.8Z	87	87	Z.4.0	4.9,2		<u>248</u>	\square		56	1
IMP-5 (INT) :		3	0.18	1.93	87	87	24.8			248			55	l'
IMP-6 (INT) :		4	0,18	1.93	87	87-	24.2	56.9.	·····	248			54	1
IMP-7 (INT) :	·	5	0.18	1.93	88	88	244	60.0	245				55	1
		6	0.17	1.82	88	88	245			2459			55	1
IMP-1 (FIN):	302		.15	1.61	87	87	241		249	851		<u> </u>	55	
IMP-2 (FIN):	101	2	16	1.71	88	88	236	40.6		249	-		34	
IMP-3 (FIN):		3	.18	1.93	88	88	24/	74.3	250	249	┝─┼		54	2
IMP-4 (FIN):	824.0	4	18	1.13	38	88	242	78.2.		248	┝╌╏		54	
IMP-5 (FIN):		·	,18	1.93	87	87	243	86.1	248 249	248 248			55	2 2
IMP-6 (FIN) :		b	16	1.31	87	87	247	00.1	211	248	-1		55	<u> </u>
IMP-7 (FIN):													<u> </u>	
Detect														
Pstack	35													
Baro. Pres.	30.0													
	20.0													
TEST LENGTH	60					<u> . </u>							·	
FINAL METER														
89.911														
INTIAL METER	<u>د ا</u>													
45,569	,												o	
BEGIN TIME	1128													
END TIME	1233													
Relationship	10:7	Pre Leak	Check	0.002	@	10	"Hg	Notes:		<u></u>				
Box #	5	Post Leal		0.002	@	8	"Hg	Pouse	at 11	50 ; R	estu	<u>ct (</u>	Roz	= Pool-1
Y Delta H	.9720 2.04	Pre-Pitot Post-Pito		0.0 0.0	 @	<u>>3</u> 73	"H2O "H2O							
Box Op.	AS	Noz. ID N			Probe N		P-5-1							
Probe Op.	FM	Noz. Dian	า.	0.351										
			ener alterna de					I				1		

hange

1

Client/Site: NEFCO / Sw# Biosolids Source: RTO #1 + E2

Indres Seale 202 Downscale (seconds):__ Operator: Date:

Note: System Response Time is the longer of the upscale and downscale response times. Performed during initial zero and bias checks:

200

RM Response Time: Upscale (seconds):

Analyzer Calibration Error (ACE) – Reference Method

		Low	×	Mid	High/Full	High/Full Scale (CS)
Lointailuointent	Cylinder Value (C _v)	Analyzer Response (C _{DIR})	Cylinder Value (C _v)	Analyzer Response (C _{biR})	Cylinder Value (C _v)	Analyzer Response (C _{DIR})
Oxygen	0.00	0.11	10.49	10.47	Z0.4Z	20.46
Carbon Dioxide	0.00	6.24	9.45	9.4a	18.69	18.62

Range selected for analyzer operation:

Protocol Gases Used During Program:

SO ₂ (ppm)	١
NO _x (ppm)	
CO (ppm)	ł
CO ₂ (%)	02
O ₂ (%)	22

Analyzer Calibration Error (ACE) Acceptance Criteria: 5±2%

Where: ACE = $[(C_{Dir} - C_v)/CS] * 100\%$

Cylinder No.	Diluent/Pollutant Concentrations(s)	Expiration Date
10421863	20.420, 18.69 (02	11/2/20
15 421 MSP	10.49 02 19.45 (02	il'ilio
	7	

Client/Site: NEFLO / Surt Bioso/ids Source: 72TD # 2 Stuck

Operator: Date:

. Sea he

िर

UZ- MS. RI

Run Number:

Start Time:

End Time: 915

System Bias (SB)/Drift (D) Assessments - Reference Method

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
Lourannum	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)
Oxygen	0.00	0.15	10.49	10.69	00.0	0.05	10.49	10.54
Carbon Dioxide	0.00	4 2 Z	9.45	9.46	00.0	10.0	9.45	12.6 24.6
			-					
					-			

ppm) SO ₂ (ppm)		
NC _x (ppm	1	
CO (ppm)	t	
CO ₂ (%)	20	
O ₂ (%)	52	

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

 $D = |SB_{fingl} - SB_{i}|$

Zero and Calibration Drift (D) Criteria: ≤± 3% of span, where

Date: NEFCO / SwA Blackhols ETO #2 Sheek U2 - MS-R2 Run Number. Client/Site: Source:

Operator:

M c/27

oert-
G
-
Pause
M
933

Start Time: End Time:

9011

change about to weather 5 へりば

System Bias (SB)/Drift (D) Assessments – Reference Method

,	Start	Start Zero	Start Sp.	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
Louingang	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)
Oxygen	0.00	ه. هک	10.49	りょう	0.00	0.09	10.49	FJ.01
Carbon Dioxide	0.00	0.0	9.45	9.45 9.31	00.0	20.0-	9.45	9.35
			-					

1	1	l	らて	2 <
SO ₂ (ppm)	NO _x (ppm)	CO (ppm)	CO ₂ (%)	O ₂ (%)

Sampling System Bias (SB) Criteria: ≤± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: ≤± 3% of span, where

 $D = \left| SB_{final} - SB_i \right|$

NEFCO / Swith Biosolids 270 ±2 Stack Client/Site: Source:

Operator: Date:

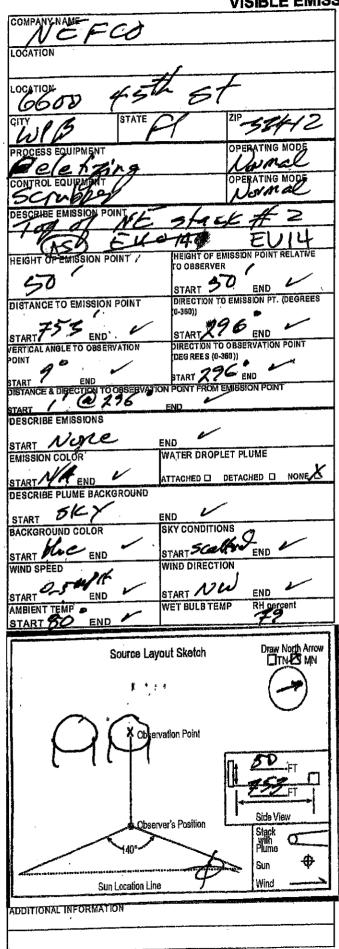
<u>ر</u> See le 53

U2 - M5- 23	128	1233
Run Number.	Start Time:	End Time:

System Bias (SB)/Drift (D) Assessments - Reference Method

	Start	Start Zero	Start Sp	Start Span (C _{MA})	Final	Final Zero	Final Sp	Final Span (C _{MA})
Logungue Dinneut	Cylinder Value (C _v)	Anatyzer Respon se (C ₃)	Cylinder Value (Cv)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)	Cylinder Value (C _v)	Analyzer Response (C _s)
Oxygen	0.00	0.09	10.49	10.67	0.00	0.05	64.01	16.01
Carbon Dioxide	0.00	10.09	9.45	9.35	0.00	- 0.05	9.45	9.30
							-	

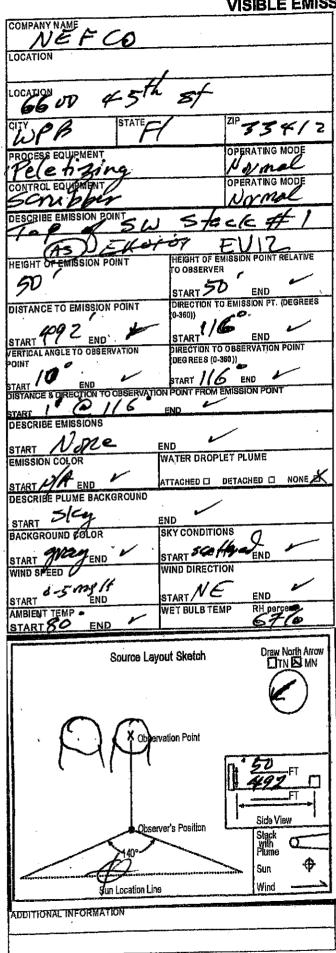
SO ₂ (ррт)	l
NO _x (ppm)	1
CO (ppm)	l
CO2 (%)	CJ
O ₂ (%)	25

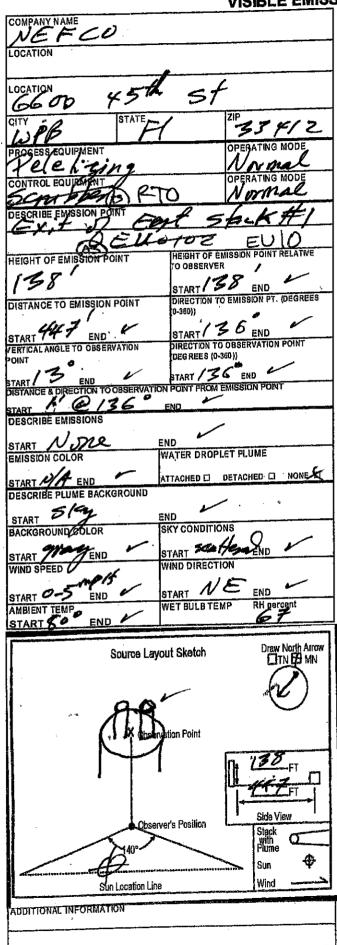

Sampling System Bias (SB) Criteria: 4± 5% of span for zero and upscale gas, where:

Where: $SB = [(C_s - C_{Dir})/CS] * 100\%$

Zero and Calibration Drift (D) Criteria: <1 3% of span, where

 $D = [SB_{final} - SB_{i}]$


B3 Visible Emissioins Readings / Data


BSERVATI	ON DATE	3		TTIME	1Z	E		12	<u>د.</u>	
SEC	O	15	30	45	SEC	0	15	30	45	
1	6	0	0	0	1	ව	0	٥	0	
2	3	0	5	0	2	0	0	0	0	
3	0	0	0	U	3	D	C	J	2	
4	0	0	0	0	4	0	C	0	0	
5	$\overline{\mathcal{O}}$	5	0	0	5	C	S	0	2	
6	υ	0	C	0	6	6	ଧ	Ó	0	
7	υ	3	J	\mathcal{O}	7	J	ت	0	U	
8	0	0	0	U	8	0	S	Ð	U	
9	Ο	0	0	J	9	0	0	0	σ	
10	0	0	C	0	10	J	0	Ö	0	
11	0	0	o	0	11	0	0	0	0	
12	\mathcal{O}	0	0	υ	12	U	0	σ	Ο	
13	υ	0	0	J	13	\mathcal{O}	0	0	0	
14	J	S	0	0	14	0	C	0	0	
15	0	J	0	0	15	0	J	O	0	
16	\mathcal{O}	2	0	υ	18	0	S	\mathcal{O}	Ð	
17	0	S	C	S	17	0	0	C	0	
18	9	O	い	0	18	0	C	S	0	
19	υ	0	C	Û	19	e	0	S	U U	
20	0	0	0	Θ	20	0	0	0	0	
21	0	0	0	0	21	O	0	0	0	
22	0	0	S	0	.22	0	C	0	C	
23	0	0	0	S	23	0	0	0	0	
24	0	0	0	0	24	J	0	4	0	
25	0	0	Ο	0	25	υ	U	0	σ	
26	0	0	0	υ	20	Ø	0	C	0	
27	ບ ບ	υ	0	0	27	0	C	0	0	
28	0	0	J	0	28	C	0	0	U U	
29	0	0	0	0	29	ට	0	U	S	;
30	С О	0	0	S	30	Ò	<u></u> ට	0	0	
BSERVER' BSERVER' RGANIZAT		(PRINT).	Sc Ud E) hu 5	DATE 6	all. [2.	al. 7/1	3		
ERTIFIED	BY C	E 7	Ā		DATE	1/2	8/1.	3		

	VISIBLE EMIS
COMPANY NAME	
LOCATION	
LOCATION OU 45th 7	A
CITY B STATE	ZIP 57 K/2
PROCESS EQUIPMENT	OPERATING MODE
Telet ging	NOTING MODE
SCHORENT RTO	Dormal
DESCRIBE EMISSION POINT	lock #2
CHI West	EUII
HEIGHT OF EMISSION POINT HEIGHT OF	EMISSION POINT RELATIVE
1.19	38 END L
DISTANCE TO EMISSION POINT DIRECTION	TO EMISSION PT. (DEGREES
(U-360))	apo v
	END TO OBSERVATION POINT
POINT DEG REES ((0-360))
START END START 20	END MEMISSION POINT
START 1 2 290 END U	
DESCRIBE EMISSIONS	
START NER END END	PLET PLUME
	K
DESCRIBE PLUME BACKGROUND	
START SKY END	
RACKGROUND COLOR SKY CONDIT	
START HALL END START SE	TION
-mlh - KI	(\mathbf{r}) \mathbf{r}
START	END END EMP RH percent
START 89 END	77
Source Layout Sketch	Draw North Arrow
	()
PAR	$\mathbf{\mathbf{\hat{C}}}$
A observation Point	
	TTTTTT
Observer's Position	Side View
	Stack with Plume
140°-	Sun 🗘
Sun Location Line	Wind

OBSERVATI	ON DATE		STAR	T TIME	/2	EN	ID TIME 9.	(2		
SEC	0	15	30	46	SEC	o	15	30	45	
	J	0	ί Δ	υ	1	0	0	0	0	
1			ັ ບ	<u>ට</u>	2	\mathcal{O}	J	U	J	8
2	0	00	ں د	0	3	0	0	d	U	
3	0			0	4	J	Q	3	0	
4	0	2	0	$\overline{\mathcal{O}}$	5	$\boldsymbol{\mathcal{O}}$	0	\mathcal{O}	0	
5	00	Ð	0	$\overline{\mathcal{O}}$	6	0	0	3	Q	
6	00	0	$\overline{\mathcal{O}}$	<u>ි</u>	. 7	0	0	0	C	• :
7	00	0	0	U U	8	0	0	Э	Ð	 1
6	0	υ	ð	0	9	2	0	0	0	
9	0	0	2	0	10	0	ల	Ũ	0	<u> </u>
10	00	<u></u>	0	0	11	0	Ο	Ð	C	
11		0			12	0	0	ວ	Ο	
12	00	0	00	00	13	0	S	Д	Ð	-
13		0	C C	$\frac{0}{2}$	14	0	0	ີ ເ	0	
14	0		5	0	15	0	C_	Ο	ð	
15	9	0				0	0 (0	0	.
16	0	c c	C C	2	16	$\frac{0}{2}$	olu	G		
17	0		C .	0	17	0	0 (0	0	
18	0	0	C	0	18	0	0 (0) ව	·
19	0	0	0	8	19	0		0 (0	5
20	0	0	0	0	20		0	010		
21	Ο	0	U	0	21	0	00		0	
22	0	0	0	0	.22	00		c 0		
23	0	0	C	0	28		0	0	\geq	-
24	0	0	0	0	24	0	e S		00	
25	<u>ට</u>	9	0	Õ	25	0	0	0		
28	0	0	0	0	28	0	0	00	0	
27	C	0	ల	0	27	0	0		0	
28	0	J	0	0	28	6	0	0	0	
29	υ	S	0	0	29	0	Ð	0	0	
30	0	G	0	0	30	0	0		0	Ļ
DBSERVER DBSERVER DRGANIZAT	S CIGN	(PRINT)	Fo Kd E	ha 5	DATE 6	114	h eli:	5		
CERTIFIED	BYE	TA			DATE	1/8	11:	3		
		<u> </u>								

			STAR	T TIME	55	Ē		55		
SEC	0	15	30	45	SEC	0	15	30	45	
N	0	0	J	υ	1	0	0	0	0	
 2	0	0 (0	υ	2	0	0	0	0	
 3	0 0	נ ר	0 ((0	3	0	0	C	0	
	0	c 0	1	6	4:	0	0	0	0	
 5	0 0	0	6	0	5	D	0	φ	υ	
 6	00	0	C C	C	6	0	0	Ø	0	
 7	0	0	0	0	.7	0	Ð	D	0	
	0	0	0	0	8	0	ප	0	0	
 9	0	0	0	Õ	9	0	Θ	ల	0	
	0	0	<u>)</u> ט	ဂု(10	0	0	Ø	0	
11	0	0	0	0	11	0	0	Ø	ບ	
12	0	0	0	$\overline{\mathcal{O}}$	12	Ø	Э	Ð	J	
13	$\overline{\mathbf{a}}$	0	0	\overline{O}	13	0	Ð	Ø	O	
	0	0	0	0	14	0	Ø	Θ	ට	
15	0	0	0	0	. 15	0	ð	.0	0	
16	0	0	0	ð	18	0	O	Ο	Ο	
17	0	J	ΰ	0	17	0	0	Ô	0	
18	0	0	б	0	18	0	0	0	0	
= 19	ð	J	0	J	19	0	0	0	Õ	
20	J	Э	0	0	20	0	O	0	Ø	
21	0	0	0	0	21	0	0	\bigcirc	0	_
22	ъ	ఎ	Ð	J	.22	0	0	0	0	
23	8	ري	U	0	23	0	0	0	0	L
24	0	0	0	0	24	0	0	0	0	
25	0	0	0	U	25	0	0	Ο	O	
26	0	0	Ø	0	20	\bigcirc	0	0	0	
27	0	д	0	0	27	0	0	0	0	_
28	0	0	0	0	28	0	0	0	0	Ļ
29	0	Ø	Θ	0	29	0	0	0	0	-
30	0	0	0	0	30	$ \mathcal{O} $	0	0	0	Ļ
BSERVER BSERVER RGANIZA	'S SIGNA	. >	401 011-0	hn h	DATE 61	1/a. [27]	h (13	3		
ERTIFIED		$\frac{\nabla r}{\Xi \tau}$	<u> </u>		DATE	1/2	3/5	3		
		= 11	1			1 -				

OBSERVAT	ON DAT		STAR		-5-	EN		53	>	
SEC					SEC	0	- 15	30	45	
MIN	0	15	30	45	MIN 1		0	0	0	
1	0	٩ ا	<u>م</u> (2	0	0	0	0	
2	0	<u>ں</u>	د د	C 0	3	Э	0	C	0	
3	0	<u>)</u> 0		0	4	0	0	0	0	
4	C C	clo	2	ہ ت	5	0	0	D	\mathcal{D}	
5		د (0 0	0 0	6	0	$\overline{\mathcal{O}}$	0	0	·
6	00	0			. 7	0	0	0	C	•
7		0	0 9	00	8	0	0	0	0	
8	0		0 0	0	9	0	0	0	0	
9	0	00	5	0	10	Ō	0	0	Ø	
10	0	0	0	0	11	0	0	D.	0	
11	00	0	0	5	12	0	0	Ο	0	
12	0	0	0	0	13	ð	0	0	0	~~~~
13	0	0	5	J	14	0	0	8	ð	
14	0	0	0	Ð	. 15	0	0	0	$\boldsymbol{\upsilon}$	
15		0	0	$\overline{\mathcal{O}}$	16	0	8	Э	Θ	
16	0	0	0	0	17	0	0	0	0	• •
17	0	0	0	E	D 18	0	0	0	D	
18	3	0	0	0	10	0	0	0	Ð	
19	0	0	3	2	20	0	υ	0	0	
20	0	0	0	Ø	21	0	0	0	0	
,22	0	0	5	0	,22	0	0	0	0	
23	0	0	0	0	23	0	0	0		
23	0	0	0	0	24	0	0	0	0	
25	0	0	0	Ø	25	0	0	Ø	Õ	
20	0	-	0	0	26	0	0	0	0	
27	0	0	O	0	27	0	0	0	0	
28	0	0	D	0	28	0	0	Ø	\Box	Ł
29	0	0	0	0	29	0	0	ළ	0	
30	0	O	0	0	30	0	0	Ø	$ \mathcal{O} $	Ļ
OBSERVER OBSERVER ORGANIZA	'S SIGNA	(PRINT)	Foh FE	n 1 5	DATE 6	1a [27	1	2		
CERTIFIED	вү	E	TA			18	<u>// _</u>	5		

Appendix C

Particulate Matter Laboratory Data

•

ł

Job Name: NEFtO SUR Sizelials Project # 13-527

Location: West Parlin Beach, FC Source: UNHS 1+2-

Eastmount Environmental Services, LLC

Beakers

Weighing's $\frac{\text{Weighing's}}{1 - \frac{1}{k} \frac{2}{22} \frac{1}{k} \frac{1}{3} \frac{1}{222} \frac{1}{k} \frac{1}{222} \frac{1}{k} \frac{1}{222} \frac{1}{k} \frac{1}{222} \frac{1}{k} \frac{1}{222} \frac{1}{k} \frac{1}{222} \frac{1}{k}

Weight	67.6092- Standard	70.0395		\$73345	69.4693	69.4160									Temperature *F	Humidity %	Zero Weight 0.0000 g	it inscale Weinht 50 0002 d
のため、日本のなど																		
A COMPANY PROPERTY OF A COMPANY	69.6092	70.0995	67.4031	G7. 3345	69.4632	69.4160	e ≁. 0230		*****				, page 1. 14	 				
ļ.	_	70-0992		8-7, 3-341	69.4033	હવ. માં કડ	 61.0200	 						11+10+				,
	69.6076	70.0989	67.4024	\$7.334.0	69.46 CF	69.414.7	64.0274											
	00	110	100	[20		(10	136			****								
	5-7-34	34-49	Sec-ci	11130	BS-7-32	- 23 PB6	<u>65-48</u>					 				- - -	Nove	
	ð	-62	1	U2- M5- R1	- 22	- 83	WS-Blank-A BS-48										Weighted By: Francis Now	
	6127113 W			10			 M i	 						 	والمتعادية والمتعادية والمتعادية والمتعادية والمتعادية		Weighted By:	

Signature:

Weighing's Date Time <u>し 3 \cite 3 \cite 3 \cite 2 \cite 2 \cite 2 \cite 1 \cite 2 \cite 1 \cite 2 \cite 1 \cite 2 \cite 1 \cite </u>		0,9,42,1	58.8	o, 446 o	30 H	0.4475	e yyob										Temperature *F	dity %	Zero Weight 0.0000 g	Upscale Weight 0.99967 g
$\frac{1}{3}\frac{\frac{1}{7}}{\frac{1}{2}}$		5 0	ð Ö	6	E.S	0	5 <u>.</u> 0										Temp	Humídity	Zero	Upsci
SW SW													-						a. 1 - 1 Mar -	
چا	N-D-T-O	0.4621	c.4586	6 dd Spr 0	0.4303	ぐしょうく	toph"										بو من			
Location: West Pula Baach, Source: P.TO ^S I + 2 Filters Minime	2444 A		0,4588	0,44(w)		2	1		 *()*11+)							 			4411-11-1	
Location: Mes Source: P-TO Filters		0.4590	0.4576	0, 4439	6. 4292	54442	8044°			1014-04		Januari I I d				 				
s ان تولیک	5771	1170	14.24)	2446	ት ትክ	1448	1445	ļ			1461				-141664			ب م د	Morro	
13-527	UI- MS- PI	- 62	-63	12- MS-RI	-92	- 83	MS- 8 but-8												Weighted By. Francis Morly	
Job Name: NERCO / Swith Brusculul S Project #: 13-527		1			S 1 IA									**********					Weighted By:	

Eastmount Environmental Services, LLC

Signature:

Sup	
NEFCe /	13-527
Job Name:	Project #:

Hat #2 WP9,FL Location: Source:

Time 2010 مدروه Weighing's 2 6 24 13 3 1 4/25/13 Date

	. Total mo													ŕ	%	0.0000 g	0.99967 g
3	A Pinal	a 4399	હ વધ્વડિ											Temperature	Humidity	Zero Weight	Upscale Weight
	2007 - 1707 - 1886 - 1886			 		 	 	 			 		 ******				
	Wit																
	W Star	6.4309	ه.4495	 	 		 	,	F=301 FT=	1414014				ot	40		0.9997
		0.4399	0.4496											25	42	0.0000	0.9996
Filters	a. Tare.	1627.9	6.4473														
	E FILEER CA	1425	1426													Indrew Seaha	
	Renal IP	U2-MS - Pr. 1	~ P.M. Z									British and a sum of the set of 				Andrea	•
	Sample	62413 62														Weighted By:	

Eastmount Environmental Services, LLC

Signature:

EFCe Surve Location: WPB, EC. Source: Unit #1 Build atta take Wa Wa Wa Build atta take Wa Wa Build atta take Wa Wa Build atta take Wa Wa Ward Phase Outse Outse Outse Outse Ward Phase Outse Outse Outse Ward Phase Outse Outse Market Salk Outse Outse Concernent of the Outse Concernent of	Date Time 1 6/21/13 /750 2 (1/73/13 0500	3 2/22/2	We with the second function of the second fun		665 A 3										210	Zero Weight 0.0000 g	Upscale Weight 0.99967 g
1425 3 1 142 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	WPB,FC Unit #1	S	The second se	6.446S	0.4398									,			
	1 1	Filters		ークナイ	1428											 maker Serke	

Eastmount Environmental Services, LLC

Weighing's

Sant	
NEFCO	13-527
Job Name:	Project #:

Location: WPB, FC Source: Unit 72 2

Eastmount Environmental Services, LLC

 Weighing's

 Date

 1
 $L_{25}/13$ $2\omega co$ $u_{22}-\Delta c$ l_x

 2
 $u_{21}/13$ $2\omega co$ $u_{22}-\Delta c$ l_x

 3
 $u_{127}/13$ $occo
 <math>u_{22}-\Delta c$ 3/4

4 3/4 4																	
0600 U2-Prc 3/4	a di la contra di la La contra di la contra												ŗ	%	0.000 g	50.0002 g	
3 6/27 113	and the second sec	-263E -24	SEIS CO										Temperature	Humidity	Zero Weight	Upscale Weight	
	A CONTRACT OF												70	35	0.0000	6.9997	50.002
		70.7995	5615-29	 69.9648	67.1995								Fe	38	0. 0000	0 - 4997 D	50.0002
	ALC: NO.	70.2994		 69.9646 6	67.1994								72	ц 2-	0000	76660	50.002
Beakers	Maron 1	~		69.9632	67-1970									β., (1+3+2	6 , (***) >	- mart 1997	,
		120	011	 \$ \$	ہ بر										3		(
	Beater	62.12		Ч С											Lec Leve		R
	Ruc D.	2413 U2 WS-Per 1	- Pre 2	25/13 U2-M5-P-3	7 20 -				 					*****	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
	Sample	[_24 - 3		 1 52 1											Meichted Br		

Signature:

JOD NAME: NEFCO/Sava-Project #: 13-52'7

ŧ Location: WPB, FC Source: Unit #

Eastmount Environmental Services, LLC

Beakers

Time /&CCD 2150 1 6/26/13 57 2 6

q

Weighing's

A liotal														Ļ	%	0.0000 g	50.0002 g	
sti si Tual - Santa Weight -	850669	70.2351	68 7232	68.2533										Temperature	Humidity	Zero Weight	Upscale Weight	
100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100						(1)+1)-					 	 1414444						
									en11)			 	 					
And	629057	70.2351	62.7232	6 9. 2B3S										69	<u></u> Ч	6.0000	F7995.0	30.000
	69.9058	1	68.7231	69.2838										20	38	6.0000	6.9997	56,0002
Verbin 1	69. 9054		68.7202															
(Hi) Majumer	0 9	10	125	5 2	1											Ne		(
Series Series	$\mathcal{T}_{\mathcal{B}}$	RD3100	た 5	BKZ											5	Andrew Seeks	4	R
Run (p. 1977) J		1.1	- 623	7 20-			1					 			ĸ	the	./	X
Samples	(125/13 101-MS-Per									 						Weighted By:		Sígnature:

Job Name: NEPCO Scu.A. Reesiler

Location: 12 est Palm Break, FL Source: Unids 1+2

Eastmount Environmental Services, LLC

w Reinsteiner 0220 Time 1900 Weighing's Date 1 _______1_3 2 6/20/13

	ting all all all all all all all all all al																	Ļ	%	0.0000 g	50.0002 g
	E-Inal Aveigin	1400 00	63.8956	1405 C.9		0007 1 0	67-5-495		1252327									Temperature	Humidity	Zero Weight	Upscale Weight
e	nti Nationalista Nationalista				 	and do not a reason of the second									4111444	1,14991	.,				
	ET TA STAR				 							11401 (7)		 	1001-100						×
		PO.0039	~	67,4111		47.2800	62.5405		62:8293							Lagree		74	42		
	ML	70.0041	69.2985	د 7 .4 110		127.2799	62.5405 62.5405		658296									92.24	R	0,0000	50.0401
Beakers		70,0023	69.8966	011 67.4 101 ET.4 110		(r7.2788 ((*******
			011	125	 	110	انک		125		-										
			R5-33	02-14			HoS	- 65-38-	G 12										(Indrew Sarka	(`
	Runta	1-WS-Pre 5	- 646	た ~ ~ ~	¥	U2-MS-PRES	-Pre 6	En - En	-Prez 612										113 778	milier	, l
	-Satuple -Satuple	6 76 12 U			<u>, 7</u>															Weighted By:	

Signature:

Q.
pescal r
Ś
ices
Š
С С
••
lta!
C
อี
ž
Ľ
>
E
ш
2
3
õ
E
ദ്ദ
Ш

West Pilm Beach, FL

Job Name: NEPCO/SUA Riasticts Project #: 13-527

1 + 2 11143 Filters Location: Source:

1900 0200 Time Weighing's 3 s l Date / 12210 6/28/ ۵ °

•~

Final Toler F	2.22.5	OLSSA C	0.461D		0 45 H	04550	0.4446								Temperature *F	Humidity %	Zero Weight 0.0000 g	Upscale Weight 0.99967 g
100 MF 100								(*****										•
÷. ₹	X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0		/	۰	~							 			0	se 7 :
100 A	0, 442	~		1	0.4511	0,4525	ه. بليلا ك	******			****				んと	727	0	
1/f	0.4423	0,4559	0.4609		1156.	0.4528	oruith								76	40	0,0000	50.0001
Vieight	6.4397	a. 453 &	0.4574		6.4503	6.4513	6.443G											
L LEUSE S	1429	1435	1430		1437	1	1439									, (Spala	(
- (Buolio - #	UI-MS-Pees	- 026	twd -		U2-MS-Pres	- 22	たいし、									-	Ampen Scalics	`
Sample Date	1 21/129																Weighted By:	, ,

Signature:

Run Filter Set	U1-M5/202-Pre1 PS3							
	Tare (grams)	prelim wt	wt. #1 wt. #2 Final (gra					
S1	0.1561	0.1561	0.1561	0.1561	0.1561			
S2	0.1396	0.1396	0.1396	0.1396	0.1396			
S3	0.1555	0.1555	0.1555	0.1555	0.1555			
S4	0.1391	0.1390	0.1390	0.1390	0.1390			
S5	0.1557	0.1557	0.1557	0.1557	0.1557			
S6	0.1396	0.1398	0.1398	0.1398	0.1398			
S7	0.1563	0.1564	0.1564	0.1564	0,1564			
S8	0.1390	0.1392	0.1391	0.1391	0.1391			
Filter	0.2086	0.2094	0.2093	0.2093	0.2093			
Total	1.3895	1.3907	1.3905	1.3905	1.3905			

6/26/2013	6/26/2013	6/27/2013
0515	1915	0530

Run Filter Set			U1-M5/202-Pre4 PS4		
	Tare (grams)	prelim wt	wt. #1	wt. #2	Final (grams)
S1	0.1563	0.1563	0.1563	0.1563	0.1566
S2	0.1420	0.1420	0.1419	0.1420	0.1420
S3	0.1571	0.1572	0.1572	0.1572	0.1572
S4	0.1396	0.1396	0.1396	0.1396	0.1396
S5	0.1554	0.1554	0.1554	0.1554	0.1554
S6	0.1406	0.1407	0.1407	0.1407	0.1407
S7	0.1556	0.1558	0.1557	0.1557	0,1557
S8	0.1397	0.1396	0.1396	0.1396	0.1396
Filter	0.2087	0.2093	0.2093	0.2093	0.2093
Total	1.3950	1.3959	1.3957	1.3958	1.3961

6/26/2013	6/26/2013	6/26/2013
0515	1915	1915

Run	U2-M5/202-Pre3							
Filter Set	PS1							
	Tare (grams)	prelim wt	wt. #1	wt. #2	Final (grams)			
S1	0.1542	0.1543	0.1543	0.1543	0.1543			
S2	0.1400	0.1401	0.1400	0.1400	0.1400			
S3	0.1552	0.1553	0.1553	0.1553	0.1553			
S4	0.1390	0.1390	0.1390	0.1390	0.1390			
S5	0.1564	0.1564	0.1565	0.1564	0.1565			
S6	0.1390	0.1391	0.1391	0.1391	0.1391			
S7	0.1555	0.1557	0.1557	0.1557	0.1557			
S8	0.1393	0.1394	0.1394	0,1394	0.1394			
Filter	0.2079	0.2087	0.2087	0.2087	0.2087			
Total	1.3865	1.3880	1.3880	1,3879	1.3880			

6/26/2013	6/26/2013	6/27/2013
0515	1915	0530

Run Filter Set	U2-M5/202-Pre4 PS2						
finter bet	Tare (grams)	prelim wt	wt. #1	wt. #2	Final (grams)		
S1	0.1582	0.1582	0.1582	0.1582	0,1582		
S2	0.1399	0.1399	0.1399	0.1399	0.1399		
S3	0.1555	0.1556	0.1555	0.1555	0.1555		
S4	0.1405	0.1404	0.1404	0.1404	0.1404		
S5	0.1571	0.1571	0.1572	0.1573	0.1573		
S6	0.1404	0.1405	0.1405	0.1405	0.1405		
S7	0.1578	0.1580	0.1579	0.1579	0,1579		
S8	0.1410	0.1412	0.1412	0.1412	0.1412		
Filter	0.2080	0.2089	0.2088	0.2088	0.2088		
Total	1.3984	1.3998	1.3996	1.3997	1.3997		

6/26/2013	6/26/2013	6/27/2013
0515	1915	0530

Your Project #: 13-527 Site Location: NEFCO/SWA Your C.O.C. #: 0813

Attention: Andrew Seaha

Eastmount Environmental Services 2 New Pasture Road Unit 5 Newburyport, MA USA 1950

Report Date: 2013/07/03

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B3A2353 Received: 2013/06/27, 13:00

Sample Matrix: Stack Sampling Train # Samples Received: 5

Analyses	Quantity			Laboratory Method	Method <u>Reference</u>
Extractable Condensables (M202)				BRL SOP-00118	EPA 202
Non Extractable Condensibles (M202)	5	2013/06/29		BRL SOP-00118 / BRL SOP-00109	EPA 202
Weight of Solvent from Impingers	5	N/A	2013/06/28		
Weight of Water from Impingers	5	N/A	2013/06/28		

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Ancy Sebestian

03 Jul 2013 09:22:34 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Ancy Sebastian, C.Tech., Senior Project Manager, Air Toxics Email: ASebastian@maxxam.ca Phone# (905) 817-5831

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Total cover pages: 1

Page 1 of 6

Maxam

Maxxam Job #: B3A2353 Report Date: 2013/07/03 Eastmount Environmental Services Client Project #: 13-527 Site Location: NEFCO/SWA

EPA M202 CONDENSIBLE PM (STACK SAMPLING TRAIN)

Maxxam ID	1	SB2464	SB2465	SB2466	SB2467	SB2468		
Sampling Date		2013/06/25 00:01	2013/06/25 00:01	2013/06/25 00:01	2013/06/25 00:01	2013/06/25 00:01		
COC Number		0813	0813	0813	0813	0813		
	Units	M202-FIELD BLANK	U1-M202-PRE1	U1-M202-PRE4	U2-M202-PRE3	U2-M202-PRE4	RDL	QC Batch
Weight		130	390	470	340	460	0.1	3262975
Weight of Solvent	g g	140	150	180	91	180	0.1	3262974
Inorganic Condensibles	g mg	1.8	9.7	18	13	18	0.5	3262989
Organic Condensibles	mg	7.0	14	19	6.0	12	1.0	3262973

Maxzam

Maxxam Job #: B3A2353 Report Date: 2013/07/03

Eastmount Environmental Services Client Project #: 13-527 Site Location: NEFCO/SWA

Test Summary

Maxxam ID SB2464					Collected 2013/06/25 Shipped
Sample ID M202-FIELD BLANK Matrix Stack Sampling Train					Received 2013/06/27
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Extractable Condensables (M202)	BAL	3262973	2013/06/28	2013/06/28	Manoj Gera
Non Extractable Condensibles (M202)	BAL	3262989	2013/06/29	2013/06/29	Frank Mo
Weight of Solvent from Impingers		3262974	<u>N/A</u>	2013/06/28	Frank Mo
Weight of Water from Impingers		3262975	N/A	2013/06/28	Frank Mo
					Collected 2013/06/25
Maxxam ID SB2465					Shipped
Sample ID U1-M202-PRE1					Received 2013/06/27
Matrix Stack Sampling Train					
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Extractable Condensables (M202)	BAL	3262973	2013/06/28	2013/06/28	Mano Gera
Non Extractable Condensibles (M202)	BAL	3262989	2013/06/29	2013/06/29	Frank Mo
Weight of Solvent from Impingers	<u></u>	3262974	N/A	2013/06/28	Frank Mo
Weight of Water from Impingers		3262975	N/A	2013/06/28	Frank Mo
					0 - No start - 0012/08/25
Maxxam ID SB2466					Collected 2013/06/25
Sample ID U1-M202-PRE4					Shipped Received 2013/06/27
Matrix Stack Sampling Train					Received 2015/00/21
	1	Datab	Extracted	Analyzed	Analyst
Test Description	Instrumentation	Batch 3262973	2013/06/28	2013/06/28	Manoj Gera
Extractable Condensables (M202)	BAL	3262973	2013/06/29	2013/06/29	Frank Mo
Non Extractable Condensibles (M202) Weight of Solvent from Impingers	BAL.	3262969	N/A	2013/06/28	Frank Mo
Weight of Water from Impingers	····	3262975	N/A	2013/06/28	Frank Mo
weight of water from implingers		0202010	(11/1	2010/00/20	
Maxxam ID SB2467					Collected 2013/06/25
Sample ID U2-M202-PRE3					Shipped
Matrix Stack Sampling Train					Received 2013/06/27
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Extractable Condensables (M202)	BAL	3262973	2013/06/28	2013/06/28	Manoj Gera
Non Extractable Condensibles (M202)	BAL	3262989	2013/06/29	2013/06/29	Frank Mo
Weight of Solvent from Impingers		3262974	N/A	2013/06/28	Frank Mo
Weight of Water from Impingers		3262975	N/A	2013/06/28	Frank Mo
					Collected 2013/06/25
Maxxam ID SB2468					Shipped
Sample ID U2-M202-PRE4					Received 2013/06/27
Matrix Stack Sampling Train					
Test Description	Instrumentation	Batch	Extracted	Analyzed	Analyst
Extractable Condensables (M202)	BAL	3262973	2013/06/28	2013/06/28	Manoj Gera
Non Extractable Condensibles (M202)	BAL	3262989	2013/06/29	2013/06/29	Frank Mo
Weight of Solvent from Impingers	· · · · · · · · · · · · · · · · · · ·	3262974	N/A	2013/06/28	Frank Mo
Weight of Water from Impingers		3262975	N/A	2013/06/28	Frank Mo

Maxiam

Maxxam Job #:B3A2353 Report Date: 2013/07/03 Eastmount Environmental Services Client Project #: 13-527 Site Location: NEFCO/SWA

GENERAL COMMENTS
FILTERS : Untared filters were received.
Sample SB2464-01: ORGANIC EXTRACTION : Oily material found in vial. INORGANIC EXTRACTION:Whitish residue found in Teflon dish.
Sample SB2465-01; ORGANIC EXTRACTION : Oily material found in vial. NORGANIC EXTRACTION : Brownish residue found in Teflon dish.
Sample SB2466-01: ORGANIC EXTRACTION : Oily material found in vial. NORGANIC EXTRACTION : Brownish residue found in Teflon dish.
Sample SB2467-01: ORGANIC EXTRACTION : Oity material found in vial. INORGANIC EXTRACTION:Brownish residue found in Teflon dlsh.
Sample SB2468-01: ORGANIC EXTRACTION : Oily material found in vial. INORGANIC EXTRACTION: Brownish residue found in Teflon dish.
Results relate only to the items tested.

Eastmount Environmental Services Attention: Andrew Seaha Client Project #: 13-527 P.O. #: Site Location: NEFCO/SWA

Quality Assurance Report Maxxam Job Number: GB3A2353

QA/QC Batch Num Init		Parameter	Date Analyzed yyyy/mm/dd	Value	%Recovery	Unlts	QC Limits
3262973 MGE	Spiked Blank	Organic Condensibles Organic Condensibles Organic Condensibles	2013/06/28 2013/06/28 2013/06/28	0.2	92 92	% %	70 - 130 70 - 130 20
3262989 MGE	Method Blank Method Blank	Organic Condensibles Inorganic Condensibles	2013/06/28 2013/06/29	<1.0 <0.5		mg mg	

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Validation Signature Page

Maxxam Job #: B3A2353

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Janher

Frank Mo, B.Sc., Inorganic Lab. Manager

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Page 6 of 6

Appendix D

Facility Process Datasheets

R CONDENSER VENTURI VENTURI VENTURI Pressure Pressure Provinti RTO R.O. R.O. R.O. Rumature R.O. R.O. Rumature Rumature R.O. R.O. R.O. Rumature R.O. R.O. Rumature Rumature R.O. R.O. Rumature Ruma		and a surface and a subsection of the						un r	(anoningas) (Natural Pas	•		
FEED REED SEMARTOR CONTRIGEN CONTRICT CONTRICT FEED SEMARTOR CONTRICT FEED SEMARTOR FED SEMARTOR FED SEMARTOR FED SEMARTOR FED SEMARTOR FED SEMARTOR FED FED <th></th> <th>TIME</th> <th>PROCESS</th> <th>DATA</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>		TIME	PROCESS	DATA									
α_{12} State and Scale 201 Temperature Temperature			FEED	EED	SEPARATOR				CONDENSER	Shillion	VENTURI	RTO	RTO
Instant Tons Tons <thtons< th=""> Tons Tons</thtons<>	, Mari		Scale 102	Scale 202	Concercio	Temprature	Flow	æ	Pressure	مينتينية (FIDW	Temprature	Offi
1.5 (http://doi.org/10.55 1/4/3 5/44 8/10 (6/55 5/34 1/4/3 00 073 X X 1/3 1/4 1/3 1/3 1/3 1/3 1/4 <td< th=""><th>100 100 K</th><th></th><th>Tons</th><th>Tons</th><th>Inter/outlet*F</th><th></th><th>uida</th><th>Std Units</th><th>Inchestwo</th><th>inches wc.</th><th>Bpm</th><th>i i i</th><th>Press.</th></td<>	100 100 K		Tons	Tons	Inter/outlet*F		uida	Std Units	Inchestwo	inches wc.	Bpm	i i i	Press.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N #1 STARI		X	I So		u. 2, 2, 1	と外目	Squ	\$.0	5.5	53.6		29
00. [823] × [140. [641/2455] (143.0 552 7.0 7.0 546 1641 8666 × 13.5 × 13.5 5.10 15.1 10.0 7.0 576 1641 8666 × 13.5 × 13.5 5.50 7.0 7.0 576 1641 00 7603 × 13.5 5.50 7.0 7.0 7.1 10.0 10.0 100 70.03 × 13.5 13.5 5.10 11.7 2.0 10.0 10.0 100 70.03 × 13.5 13.5 5.10 1.7 10.0 1	1.00	1755 1	X	¢ €		142 6	\$ C 5	75.2	¢		200		8
000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000 000	2.00	11833	X		166 W 208.5		WE IN	 					1818
1 1										>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	owl 6020												
	N #2 START		X		NAWA XING		120	200.5	s s		8		2
	1:00	1923	l s	1	North Cont	A LUNGIN			20		2 0 2	222	
	2:00	LANK	X	14	104 C 8 Dans						s r \$ s		, , , , ,
				and submark			\$ \$			7	0	3	ł
	X HO OL HY												
	1:00												
	2:00												
	INPLS ## 1												
	1:00												
	2:00												
	ES:												

		ABATOR CONDENSER prature Temprature (outlet's "F //Bq.6 //S99 //Pq.6 //J.9 //Pq.6 //J.9 //Pq.6 //J.9 //Doc. * oc			VENTURI VENTURI Pressure Flow inches we gpm d. (13.9 8.0 (13.9)) 8.0 (13.9) 8.0 (13.9)	RED Fremp 1592 1592 1592 1592 1592 1592 1592 1592	RTO 0111
HEED Scale FEED Scale Cess USAGE SEPARATOR CONDENSER North Totalina USTANT Totalina Totalina Totalina AL Field Totalina Totalina Totalina Totalina Encontracter Encontracter AL Field Field Totalina Totalina Totalina Encontracter Encont		ABATOR CONDENSER prature Temprature /outlet's 1399 //1996 1399 //1996 14/19 //1996 14/19 //2006 14/5:4	and the second		VENTURI VENTURI Pressure Flow niches wie gom 6.6 113.9 8.0 113.9 8.0 113.9 8.0 113.9 8.0 113.9 8.0 113.9	R10 15298 15398 15	
MACCON DUNIZER Temperature Emporature Emporature 11 STRVIT 055/10 1205/10 1205/10 127 1205/10 <t< th=""><th></th><th>Temprature *F 1399 1419 1419 1429 1429</th><th></th><th></th><th>Pressure Flow Inches we gom 4.1 113.5 6.8 113.9 9 Pech 6 9 Pech 6</th><th>temp 4 15 15 15 15 15 15 15 15 15 15</th><th></th></t<>		Temprature *F 1399 1419 1419 1429 1429			Pressure Flow Inches we gom 4.1 113.5 6.8 113.9 9 Pech 6 9 Pech 6	temp 4 15 15 15 15 15 15 15 15 15 15	
All states Stat units Stat units total All states		1329 1329 1329 14224 14224 14224					
Mile Mile <th< th=""><th></th><th>1399 1414 14144 1425 1425 1425 1425 1425 142</th><th></th><th>a penera presenta presenta presenta ante a presenta presenta presenta presenta presenta presenta presenta prese A penera presenta pre</th><th></th><th></th><th>0 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 1 9 1</th></th<>		1399 1414 14144 1425 1425 1425 1425 1425 142		a penera presenta presenta presenta ante a presenta presenta presenta presenta presenta presenta presenta prese A penera presenta pre			0 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 6 1 9 9 1 9 1
Molecular Molecular <t< td=""><td></td><td>1111.9 1111.9 1111.9 1111.9 11.9 11.9</td><td></td><td></td><td></td><td>na sena taka bata bata kasa kasa bata sena sena taka bata kasa bata bata bata bata bata bata bata b</td><td></td></t<>		1111.9 1111.9 1111.9 1111.9 11.9 11.9				na sena taka bata bata kasa kasa bata sena sena taka bata kasa bata bata bata bata bata bata bata b	
		1469 1444 1454 14554				na sense and	222
						ter verse pener state forme state press parte bette state and and and the state state and the state state and the state state of the state of the state state of the state state of the state state of the	
		uc Intra Puscu Intscu				tin sanya Xinin Aldan Mang Ditan Alam bashi birga bashi bira Na Sima Aldan Kang katat kana sanya mana kana kana kana	336
		hShi hShi				nen erenn belen verst beste blend beste beste senen beste beste An alben start sette senen som senen armen senen	222
							225
		hShi I					29
							Ś
	M. M						
No. o. No. </td <td>NA NA A NA NA NA NA <</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	NA A NA NA NA NA <						
And Process and Pro							
Alter Alter <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
And Processing And Pro							
No. No. <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Alter Alter <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
And the second							
And the second							
Matrix Matrix<							
And Proceeding And Pro							
						4 	
Alter of the sector o							
				testi içine açırığından batalar			
						-	
					-		
							21
					-		
					· · ·		
						·	

in the second	Itune PHOLESS DAIA REED Scale FI 1 Tons/hr 1 1 1 31 31 1 1 1 31 31 1 1 1 31 31 31 1 1 1 31	ED State					THAT	Landill gass Natural gas	Sali le Iura			
UN#1.START (3/7 Middle 553 End 1435 Middle 1450 End 2555	ter han a star in the second star in the se	HED State	The sector register where the	0.0000000000000000000000000000000000000								
UNEL START 1317 Middle 753 End 1435 Middle 1450 Middle 1535 End 1535			GASUSAGE	SEPARATOR	CONDENSER	CONDENSER CONDENSER CONDENSER	CONDENSER	CONDENSER	VENTURI	VENTURI	RTO	M M
UN#1 START (317 Middle (353 End (353 Middle (353 Middle (355 End (355			TOTALIZER	Temprature	Temprature	Flow	ht	Pressure	Pressure	Flow	Tenn	DIR.
Middle (557 End (935 Middle (555 Middle (536 Middle (536		Totalizer	CCF SCF.NG	linet/outlet*P	4	l gan	Stat Units	inches wc	Incheswc	RDM	4	Press
Muddle (2013 End (435 Middle (530 End (530		· · · · ·	192577	10441 202.4	1.35.1	E'CEN	24 15	47	5.2		002	
Lend (140) JN #2.START (1450 Middle (530 End (5355		3081593	109. j	PY944	137.6	1110	17S	3.0	-1+) \\$	l.		
IN #25TART 1450 Middle 1535 End 1535		7000335	r R	11.021196.3	132.4	1240	8				ľ	1
IN #2.5TART 450 Middle 530 End 535		Wentur. S	S com / Wil	wohen SIS and Wills Viexter	1 N. N. N.				P.		222	0.7
Ju #2 START 1450 Middle 536 Eed 255			3									
		328282E	142622	mm & rav ~	o e e							
			81 A.	Network 1 100.0	13011	11286	2.56	10 Y	10	100	1600	0 9 09
And a line of the second state		dracon -		NAM 122 IN	1250	1140.9	Sist	24.9	1 6 .6	S. 33	<i>1</i> ,400	282
		K.K.Kox	1216/21	Japan P. Su	133.2	1953	Ň			155	1601	8
		1										
		1.11	FORM	JOSPM LONG	Prisue =	080						
12		92316.05	192638	N62/2/ANY	1200	9-1EI	それ	<u>6</u>			1.2.2.4	10 01
21 2 21 2	60 ()	تقيتني أثنا	192709	1/16/1/203	132.5	112.5.4	2.51				-	1.01
End N73		1233230.SJ	VECCO	118021 2471	20 6	1220						ŝ
							295		689	40.F	1602	5.0
RUN #4 START / 1-65	18,5	S2039.46	192755	175/25	520	1.0214	k	00				
Middle 1773		100	72-54.01	1302/2051		0 171	3	00	C 80	3		5
End 1/900			TOLCO	2216/0761			22.0	Ċ,	V 20	0		13.50 1
	-				1.073	4 2 7 31	2:40	42	ORA	Ø	/STR	A.Y
NULLS												
		Car www										
23205-50		4									: : : :	
			5 • •		5					· · ·		
									- - - - -			

Interest Anticipate Anticipat	Turk RED Scale Sources D.C. And FUEL Candilinga Nature is the form 10x RED Scale Second State Second State Second State Restate <	E :	ERTEA	STACK TEST DRYER TRAIN DATA LOG						DRVERTRAIN: #			PATE	64643	
Image: Constraint of the part o	University Pressure EEDS scale Service Service Constances Fressure Service Networker Fressure Fressure Service Networker Fressure Fressure Fressure Service Networker Fressure				Natural gas					RTO FUEC:		Natural gas			
102/02 Concenters Symotom Concenters File	Return from the service of concenters Eventual service of concenters Eventual service of the servic			PROCESS Dr											
Totology Constants Tensmenter	102/202 COM/LES Temperature T			FEED Scale	âsi. E	GASUSAGE	SEPARATOR	CONDENSER	CONDENSER	CONDENSER	CONDENSER	VENTUR	VENTURI	RTO	RTO
Towelly Totellar SSC Interlateries Te gen Statistical (1) Territy 12, 5 Territy 12, 5 <th>Tonolifie Tonolifie State State</th> <th></th> <th></th> <th>102/202</th> <th>C02/202</th> <th>TOTALIZER</th> <th>Temprature</th> <th>Temprature</th> <th>How</th> <th>EC</th> <th>Pressure</th> <th>Pressure</th> <th>Flow 1</th> <th>Temo</th> <th>Diff</th>	Tonolifie Tonolifie State			102/202	C02/202	TOTALIZER	Temprature	Temprature	How	EC	Pressure	Pressure	Flow 1	Temo	Diff
7ma 13-3 200413 134-3 134-5 130-6 559 120 159 120 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 159 150 159 159 150 159 150 159 159 150 159 150 159 150 159 150 159 150 159 150 159 150 159 150 159 150	Face 13-9 20083.17 147.231 1147.23.5 13-4 130.8 5.49 9.2 900.440 1005 Hoo 7003.34 184355 166.87 155.6 7.3 900.410 1005 Hoo 7003.34 184355 166.13.4 135.1 5.49 92.40 1005 Hoo 7005.37 156.13 135.1 131.1 131.1 5.49 900.410 1010 156.1 199.1 131.1 131.1 131.5 5.46 900.410 1015 156.1 199.1 131.1 131.1 131.5 5.46 900.410 1015 1119.1 1119.1 131.1 131.5 133.5 133.5 900.410 1015 1119.1 1119.1 131.1 132.5 5.46 9.7 900.410 1015 1119.1 1119.5 1132.5 1132.5 1132.5 5.46 9.7 900.410 1115 1119.5 1135.5 1135.5 1135.5 5.46 9.7 900.410 1115 1113.5 1135.5 1135.5 5.46 9.7 900.410 1115 1119.5 1135.5 1135.5 5.46 9.7 900.			Tons/hr	Totalizer	SCF SCF		UL.	Edg	Std Units	Inches wo	Inches wc	gm	6	Press.
(12) 20500(3) (23)	OCDE 1.3-1 78.243 186.3 187.3 <th< td=""><td>START</td><td>6.00</td><td>ð;</td><td>20382.19</td><td>ŧ.</td><td>WRAN'S</td><td>37.9</td><td>1130.8</td><td>EXES S</td><td>53</td><td>estimation of</td><td></td><td>2521</td><td>16.9</td></th<>	START	6.00	ð;	20382.19	ŧ.	WRAN'S	37.9	1130.8	EXES S	53	estimation of		2521	16.9
NOS HCo 37093341 194555 Indiana 334-5 0.36 5.41 3.79 900-410 1.11 1.1601 1620 155 2070557 197455 1332.1 1334.1 5.49 900-410 1.077 1.041 1620 155 2070.0 1134.1 1332.1 1134.5 5.40 900-410 1.077 1.076 1	Box H.c. Text an. 3 134.7 135.6 5.4 8.9 pr. 4.0 Bar H.c. H.c. 137.1 137.1 5.4 8.3 pr. 4.0 Bar H.c. H.c. 193.15.4 138.1 137 5.40 8.3 pr. 4.0 Bar H.c. H.c. 193.05 119.13.1 134.5 5.40 8.3 pr. 4.0 Bar H.c. 201.1 119.6 134.5 134.5 5.40 8.4 5.9 pr. 4.0 Bar H.c. 201.2 133.1 134.5 134.5 134.5 5.40 8.4 2.4 Bar 140.5 133.1 134.5 135.6 5.46 9.6 9.6 4.0 Bar 133.5 133.1 113.5 133.6 137.9 137.9 134.6 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 <td></td> <td>000</td> <td>3.1</td> <td>18.14805</td> <td>192931</td> <td>1150/817.3</td> <td>138, 3</td> <td>736 P. C.</td> <td>220</td> <td>ci c</td> <td>10 (P.D.C. 7)</td> <td></td> <td>665</td> <td>14.6</td>		000	3.1	18.14805	192931	1150/817.3	138, 3	736 P. C.	220	ci c	10 (P.D.C. 7)		665	14.6
(030 138 1134 138.1 1134 5.43 8.9 Amount 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7 10.4 10.7	Initial First <		22	100	70962.34	192955	1646/201.3	1346.7	M30	S.W		0% 0%0		1601	
(a) (3) <td>100 138 139 139 139 139 543 949 949 100 138 2465 193 138 133</td> <td></td>	100 138 139 139 139 139 543 949 949 100 138 2465 193 138 133														
1030 18.8 2710587 1831.4 1381 1374 5.13 8.13 10.77 16.41 10.7 16.3 16.41 16.3 16.43 16.43 16.43 16.43 16.43 16.43 16.43 16.43	Iology RSR Perfociant RSR Ref Costant Ref Costa														
NSS PAGe PAGE <thp< td=""><td>NSO 13.4 799.65 19212 1711 113.5 5.36 9.2 564.45 1111 111 113.5 113.5 113.5 5.46 81.7 684.45 1111 1112 112.5 113.5</td><td>000040-</td><td>020</td><td>588</td><td>128.20105</td><td>-</td><td>27</td><td>1267</td><td>M39</td><td>5.43</td><td></td><td>10.</td><td>1× 1</td><td>K. c</td><td>2</td></thp<>	NSO 13.4 799.65 19212 1711 113.5 5.36 9.2 564.45 1111 111 113.5 113.5 113.5 5.46 81.7 684.45 1111 1112 112.5 113.5	000040-	020	588	128.20105	-	27	1267	M39	5.43		10.	1× 1	K. c	2
NBF H-684 A67165 1931412 143.3 113.3 546 8.2 40.4 10.8 559 1113 112 759 124.5 134.5 546 8.2 16.8 559 113 12 759 113.5 132.5 5.60 9.7 159.6 113 13.2 757 5.96 9.0 9.0 159.6 159.7 159.6 113.5 13.10 113.55.3 133.6 5.97 9.0 9.0 159.7 159.7 13.5 13.10 113.55.3 139.6 19.1 1135.5 5.96 9.0 9.0 159.7 159.7 13.5 13.10 113.55.3 139.6 130.6 1.135.6 5.60 9.0 159.7 159.7 13.5 13.5 13.5 13.5 1.135.5 5.57 9.0 1.57 1.57 13.6 13.7 13.7 1.135.5 5.59 9.0 9.0 1.57	11-0 12-0 <th< td=""><td></td><td>020</td><td></td><td>969 Q 695</td><td>G</td><td>Ĩ.</td><td>1.3%1</td><td></td><td>55.5</td><td></td><td></td><td>1 <u>3</u> *</td><td>1 × 1</td><td>10.0</td></th<>		020		969 Q 695	G	Ĩ.	1.3%1		55.5			1 <u>3</u> *	1 × 1	10.0
		End [/	1 - 1 (14.636	70921.65	1/4/2011	T.	1 22.3	1123			· · · · · · · · · · · · · · · · · · ·	14 00		
1117 112 7011 553 29 2013 1599 1231 703 1030 111 503 1031 1599 1231 133 1931 500 72 500 72 1599 1231 1333 131 1353 131 1353 500 72 500 72 1599 1331 1333 131 1133 1333 1311 11333 13964 1599 1599 1599 1331 1333 1331 11333 1331 11333 1331 13359 5560 72 72 1599 1331 1333 1331 11353 1331 11353 1331 11353 1391 1599 1331 1135 1135 1135 1135 11355 11355 1599 1599 1331 1135 1135 11355 11355 11355 11355 1599 1599 1599 1331 1135 11355 11355 11355 11155 1599 1599												2	5		3
11.11. 11.2. 25.33 123.1. 5.33 1.35															
		START	<u>IRS</u>		70947.49	1 1030 28	13ht/2n9		1 27.71	× <2	11411.138	au ber			2 2 2
		dia	250	6 24	N. 789 65	10% 1/2 2-1	13111752		1.5.5			ing in			
			55		Section 2	102 112	2 X C O W		10010	2602		10000			(C-+
							6								
		STARF													
		a l				A									
	<form><form><form></form></form></form>	Kanati													
	M. M	úaitti													
			منسه												

* on 3 cd test (state 3ad) but theirs (rugal r Red) on on NG - 200 (112) on on

Ŷ

A	RAINDATAL	2					DRYER TRAINER J	ር (ፈፕ		DATE	DATE: 10/3/01	
DRYER FUEL: Landfill gas	lligas	(Sealendiges)		ventur 10 would	a S S S		RTO FUEL: 🗸	Cardini (B)	-Natural gas			0
		MIN										
	FEED Scale		GASIUSAGE	SEPARATOR	CONDENSER CONDENSER	0.07	CONDENSER	CONDENSER	VENTURI I	VENTURI	RTO 1	RTD 1
	102,602		TOTALIZER	Temprature	Temprature	HOW	ł	Pressure	Pressure	Flow	Temp.	DHE
	Tons/hr		*******	Inlet/outlet*F	1	mdS	Std Units	Inches we	I hiches wo	- WOZ	LL.	
RUN EI START (/332	21 / 23 3	8229293	193557	1048991202-4	142.Z	6707	05.39	0	13.25 IS	2.5	Ros I	
Nude 1000		State 99	193181	N NGAROGS		11 19 2	Ş	0 6	1 11 1	0	N.N.N) N N
		823 09.64	a state of the second	14567384		2.62.7	255				1000	
			3	10 11 5 Janua	3.43 J				207 P		8	<u>,</u>
			43									
MUN#251ANT 1/2/5		202531	175427	10465,244.6	13.9		549	Xt	Trinery	X 9	NGG	× X
ð		82320.4V	193 250	165a.G/299.C		11 33 0	5.W					
End	Annun	82337.67	133272	602 1 20g	1 . Y CYX	1121.9	523	×,5	1.150	Q.2	14.1	
			÷									
RUN #3 START / (634		S2331.38	133,82	040E183590	589	5.001	× V V		32	C S	L D Z	
Middle 1705	<u>.</u>	33337.99	/9330A	274C / 694/	1442,3	11200	lo K K	× K		ľ	1222	
End 737		8234578	193332	10902/3063	145.3	トモン	E V		C 22 (64 De 169		ő F
											2	
RUN#4.STAKT												
									999			
									1944 - 1944 1944 - 1944 - 1944 1944 - 1944 - 1944			
NOTES												

- 1 set of left we have 2 trains on NC/MBS on LG

orver auet: Landill gas	Landfill gas	Sec	(tatural gas)					RTO RUEL: Candhi	Zendhit gas Natural gas	Natural gas			
	11ME	PROCESS D		- loasm /	even 127 =	1.34							
		FEED Scale	FEED Scale	GAŠUSAGE		CONDENSER CONDENSER CONDENSER CONDENSER	CONDENSER	CONDENSER	CONDENSER	VENTURI	VENTURI	R10	RTO
		102/202	102/202	TOTALIZER	Temprature	[Temprature]	Flow	ł	Pressure	Pressure	Flow	Temp	DIÉ.
		Tons/hr	Totalizer		Interfounder*F	dênîn kir	uda	Std Units	Inches wo		80M	ų.	Press.
TARTS THING	812	3.6	3107L19	19379y	1059/209	1. 1 . 1	122.9	553	8 14	12.1 1 1000 12.1	IL 6	1599	29
Middle	840	63	76077-53	193810	16311199	1 .9h	1 See	¥4.5	s't	128 31	1 X X	1585	S.N.
	050	1.2	710376	193840	134/207	1465	551	5 60	04	Lan 3.8	2	164	81
UN #2 START 933	933	5	3[032.[]	193 846	1/125/208	1463	831/I	5.53	6 8	102m/ 327	19:04	16.01	ľ.
100002.8	Nool	34	7 096.9r	93865	1097/2015	145,3 E	exeri-	3:6	<i>2</i> -8	<i>1</i>	L N 3	1604	0
13	1039		ZROZEN	193887	1039/(248	143.5	13.45	£5'S	8	brai 33	8	1593	575
8	108	13.6	F1/10.29	1939.06	(093.0 Jacs 5	143.6	11243	<u>96'5</u>	6£	- addining a	101	2091	ĽΎ
										*			
E	lia t	Š	10.05	14, 49,18	III as 7 dol 10	143.5	1224	563	S.	hen/34	10.2	Cost	e¥.
	9	90 Q	124.00	175%67	1193/2035	6:23	722.5	(SrtS	ð- Ní		<i>6</i> 0	<i>[ko</i> 0	\$ \$ \$
Ba	<u>A335</u>	14.6	711 30.70	193996	11601,2025	1.265	(L'LSS	l 64%/	Sr± 1	000138	10.5	1599	81£
AUN#4 START													
Mudie							The second particular second						
B													
IOTES:													

* Ron & was pured at middle of test due to use when * The End set of numbers is actually the list of the Ind 112 hr of the 2nd test run.

TIME PROCESS DATA: TT PROCESS DATA: P	Hilds gpm Yenleria lå gpm Gas Usade serarator coll TOTALIZER Tamprature fem TOTALIZER Tamprature fem SC Interjoutter*F [] 1994/12 [] [] [] 1994/12 [] [] [] 1994/12 [] [] [] 1994/12 [] [] [] 1994/12 [] [] [] [] 1994/12 [] [] [] [] [] [] 1994/12 [] <td< th=""><th>Prov Lork CONDENSER CONDENSER Temprature Flow *F Bpm *Std Lints Fick 136.1 1117.8 55.3 7.49 337.3 1116.4 55.4 9.0 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54</th><th>CONDENSER CONDENSER Style S</th><th>VENTLIRI VENTLIRI Pressure Flow inches we gpm open/3/5/10.0 open/4/10/10.0 open/9/0 9.0 open/9/0 9.9 open/9/0 9.9</th><th>uni rro a 1599 1598 1598 1598 1598</th><th>RE 1233 1426 1328 1328 1329 1329 1329 1329 1329 1329</th></td<>	Prov Lork CONDENSER CONDENSER Temprature Flow *F Bpm *Std Lints Fick 136.1 1117.8 55.3 7.49 337.3 1116.4 55.4 9.0 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54 138.1 5.54	CONDENSER CONDENSER Style S	VENTLIRI VENTLIRI Pressure Flow inches we gpm open/3/5/10.0 open/4/10/10.0 open/9/0 9.0 open/9/0 9.9 open/9/0 9.9	uni rro a 1599 1598 1598 1598 1598	RE 1233 1426 1328 1328 1329 1329 1329 1329 1329 1329
	SEPARATOR Temprature Interfouttert 1070/206 11/05/198.3 11/45/2014 11/45/2014 11/45/2014 11/45/2014	NDENSER CONDENSER Inprature How *F Bpm 36.1 1115.9 37.3 1116.4 37.1 1131.4 38.1 1131.4 38	CONDENSER Std Lints Std Lints Std Lints Std Lints Std Lints Std Lints Std Lints	るので、ないので、		810 Diff. 13.3 13.4 13.4 13.4 13.4 13.4 13.4 13.
	Temprature Inter(ourter F 10%0/2016 110%1/99% 110%1/20% 110%2/20% 10%2/20%					Pites, 12.3 12.3 13.4 13.4 13.4 13.4 13.4 13.4 13.4 13
	Interformert5 1030/2016 11103/19914 11103/19914 11163/19914 1163/203 1161/2010.5 1164/2010.5 1164/2010.5				몡딦돜╘룜롎놑똣드르厚丶匚훅놰혂 뀛몡벩됫 괾 풥쎠븮렮쀨볞혦뜒곜럟쫕	Press 12.3 12.3 12.3 14.0 13.4 13.8 13.8 13.8 13.8
	202/0201 1103/1904 1103/1904 1103/1914 1102/2017 11102/2017 111125/2017 111125/2017			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		123 124 124 124 124 124 124 124 124 124 124
	1 5:01/5011 1 5:01/501 1 5:01/501 1 6:01/501 1 6:01/501 1 6:01/501 1 101/501					14.0
	1111 (1911) 1112 (1911) 1112 (1911) 1112 (1912) 1111 (1912) 1111 (1912) 1111 (1912) 1111 (1912) 1111 (1912) 1111					14.6 13.9 13.8 13.8
	1162/199.4 1145/202-1 1165/202-1 1165/206-3 1165/205-1			330 323		140
	1162/1994			22 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2		140 134 138 138 138
	1145/2014 1145/2014 1161/2013 1161/2013 1161/2013 1161/2013 1161/2013			333 383		1410
	1					13.9 13.8 13.8
	1 5:07/ESI			3.328		158
	1161/2002 1165/2013 1165/2013					148 138 139
	1011 1012 1125/213 1125/213					138
	1115/213					13.9 13.9
	1175/20-5					13.8
						139
						- - -

Appendix E

Cylinder Gas Certification & Equipment Calibration Sheets

•

Meter Box Cali	bration Sheet

Meter Box N Dry Gas Me Orifice Mete	ter No. :	5 N/Á N/A			Expi Calib	oration Date: ration Date: orated By: metric Press;	21-Mar-13 21-Sep-13 FK Morlu 29.94
Run No.	Wet Meter Vol. (ft*)	Dry Meter Vol. (ft°)	Delta H ("H₂O)	Delta H ("Hg)		Abs. Press. ("Hg)	Run Time (min)
1	5	5.078	0.5	0,0368		29.98	13.37
2	5	5,085	1.0	0.0735		30.01	9,37
3	10	10.230	1.5	0.1103		30.05	15.62
4	10	10.203	2.0	0.1471		30.09	13.52
5	10	10,327	3.0	0.2206		30.16	11.03
6	10	10.450	4.0	0.2941		30.23	9.45
Run No.	Wet Meter Temp ('F)	Dry Meter In Temp ('F)	Dry Meter Or Temp ('F)	ut Dry Mete Temp ('F		Y	Delta H@
1	76.0	75.0	75.0	75.0		0.9816	2.03
2	76.0	76.0	76.0	76.0		0.9809	1.99
3	76.0	76.8	76.8	76.8		0.9753	2.07
4	76.0	77.0	77,0	77.0		0.9771	2.07
5	76.Ò	77.5	77.5	77.5		0.9639	2.07
6	76.0	82.0	82.0	82.0		0.9582	2.00
				Averages:	Y=	0.9728 H@=	2.04
				Max. Deviation Y: Allowed Deviation: Status:		1.50% 2,00% Pass	
				Allowed Range Y: Status:		.9500 - 1.050 Pass	
Equations: Y	/=(Vw) (/ (Vd) (Pb	^D b) (Td) Abs) (Tw)	Delta H@=	0.0317 (Delta H) (Pb) (Td)		[(Tw) (Time)] (Vw)	2

Calibration By: 44 Mortu

EASTMOUNT ENVIRONMENTAL SERVICES Meter Box 5 Thermocouple Calibration Air Quality Specialists

TC ID: DG-In Tech.: M. Bruni

Cal Date: 5/11/2013 Exp Date: 5/11/2014

Reference Type: Reference Cert. No.:

Mercury in Glass ASTM-3

Ice Bath (~32°F)

	Ref Temp (T _R)	TC Temp (T _⊺)	% Error
Run 1	32	33	0,33%
Run 2	32	33	-0.33%
Run 3	32	33	-0.33%
		Pass/Fc	ii PASS
Ambient (~70°F)			

	Ref Temp (T _R)	TC Temp (T _⊺)	% Error
Run 1	68	69	-0.29%
Run 2	68	69	0,29%
Run 3	68	69	-0.29%
	••		

Pass/Fail

Pass/Fail

PASS

Boiling Water (~212°F)

	Ref Temp (T _R)	TC Temp (T _⊺)	% Error
Run 1	212	212	- 0.00%
Run 2	212	212	0.00%
Run 3	212	212	0.00%

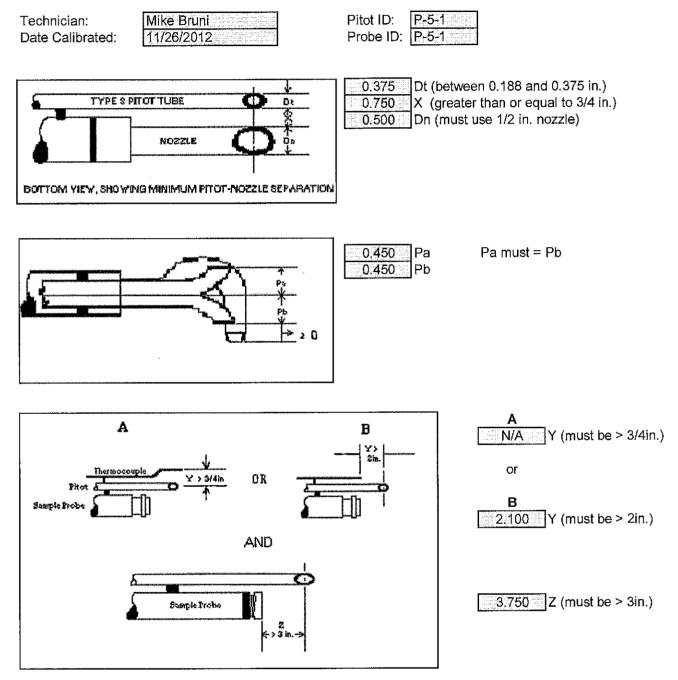
Test Pass/Fail

Calibration tolerance for each run is 1.5%. % Error = (((T_R + 273) - (T_T + 273)) / (T_R + 273)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.

EASTMOUNT ENVIRONMENTAL SERVICES Air Quality Specialists

Meter Box	5 Thermocoup	le Calibration

TC ID: DG-Out	Cal Date: 5/11/2013	Reference Type:	Mercury in Glass
Tech.: M. Bruni	Exp Date: 5/11/2014	Reference Cert. No.:	ASTM-3

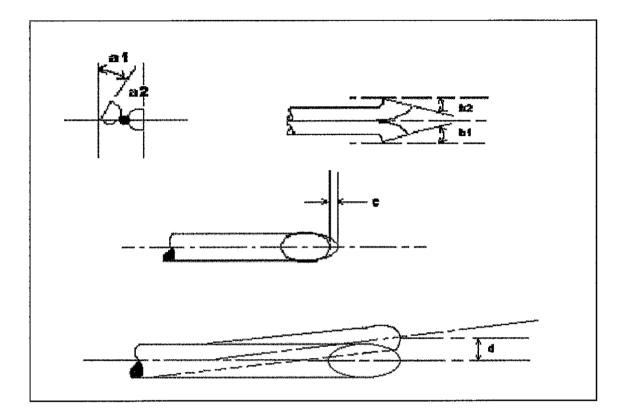

lce Bath (~32°F)

Run 1 Run 2 Run 3	Sef Temp (T _R) 32 32 32 33	TC Temp (Τ _T) 32 32 33 Pass/Fail	% Error 0.00% 0.00% 0.00% PASS
Ambient (~70°F)			
Run 1 Run 2 Run 3 Boiling Water (~212	Ref Temp (T _R) 68 68 68 68 68	TC Temp (T _T) 69 69 69 Pass/Fail	% Error -0.29% -0.29% -0.29% PASS
Run 1 Run 2 Run 3	Ref Temp (T _R) 212 212 212	TC Temp (Tr) 214 212 212 Pass/Fail	% Error -0.41% 0.00% 0.00% PASS
Test Pass/Fail	PASS		

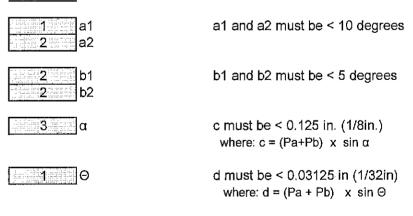
Calibration tolerance for each run is 1.5%. % Error = (((T_R + 273) - (T_T + 273)) / (T_R + 273)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.

Eastmount Environmental Services Pitot Calibration Data Input Sheet

* All calibrations are in accordance with CFR Pt.60, App.A, Meth.2, sect4.1.2 (Type S Pitot Calibration)


SEAPORT INDUSTRIAL PARK 65 PARKER ST UNIT 3 NEWBURYPORT, MA 01950

TEL: 978.499.9300 FAX: 978.499.9303 E-MAIL: INFO@EASTMOUNT.COM WWW.EASTMOUNT.COM



Page:2 of 2Pitot ID:P-5-1Probe ID:P-5-1

Eastmount Environmental Services Pitot Calibration Data Input Sheet

Degrees

SEAPORT INDUSTRIAL PARK 65 PARKER ST UNIT 3 NEWBURYPORT, MA 01950

TEL: 978.499.9300 FAX: 978.499.9303 E-MAIL: INFO@EASTMOUNT.COM WWW.EASTMOUNT.COM

Thermocouple Calibration

TC ID:	TC P-5-1	Cal Date: 11/26/2012	Reference Type:	Mercury in Glass
Tech.:	M. Bruni	Exp Date: 11/26/2013	Reference Cert. No.:	ASTM-3

Ice Bath (32°F)

	Ref Temp (T _R)	TC Temp (Τ _τ)	% Error
Run 1	33	32	0.83%
Run 2	33	32	0.33%
Run 3	33	32	0.33%
	••••••••••••••••••••••••••••••••••••••		

Pass/Fail

PASS

Ambient (~70°F)

	Ref Temp (T _R)	TC Temp (Tr)	% Error
Run 1	65	65	0.00%
Run 2	65	65	0.00%
Run 3	65	65	0.00%

Pass/Fail

PASS

Boiling Water (~212°F)

Run	1		
Run	2		
Run	3		

Ref Temp (T _R)	
212	
212	
212	

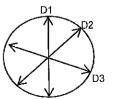
_	TC Temp (T _T)
	213
ſ	213
ſ	213

 /0	Erro	
Ó,	21%	\$
-Q.	21%	5
-Q.	21%	, 5

Pass/Fail

PASS

Test Pass/Fail


Calibration folerance for each run is 1.5%. % Error = (((T_R + 273) - (T_T + 273)) / (T_R + 273)) • 100 Calibration conducted in accordance with EPA Method 2, Section 10.3.

EASTMOUNT ENVIRONMENTAL SERVICES Air Quality Specialists

NOZZLE CALIBRATION SHEET

Project #	13-52	7	Test Date :	6/27/13
Tech :	<u> 3-52</u> <u>A.Se</u>	e la		-
		Nozzle #	Nozzle #	Nozzle #
	Point #			
	D1	0.352	, <u>,</u>	
	D2	0.352		
	D3	0.350		
	Average (D _N)	0.351		
		Metal Pyrex Quartz	Metal Pyrex Quartz	Metal Pyrex Quartz
		Nozzle #	Nozzle #	Nozzle #
	Point #		<u></u>	
	D1		Martin 1977 - 1 - 1	
	D2			
	D3			
	Average (D _N)			
		Metal Pyrex Quartz	Metal Pyrex Quartz	Metal Pyrex Quartz

 $Dn = \frac{D_1 + D_2 + D_3}{3}$

The difference between the highest and lowest numbers shall not exceed 0.004 in.

65 PARKER STREET / UNIT 3 / NEWBURYPORT, MASSACHUETTS 01850 5 6 tol 976.489.9300 / fax 978.499.9303 / www.eastmount.com

An Eastmount Company

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol ^{630 United Drive} ^{B10-544-3773 Fax} www.airgas.com

Airgas Specialty Gases 630 United Drive Durham, NC 27713 919-544-3773 Fax: 919-544-3774 www.airgas.com

Part Number:	
Gylinder Number:	
Laboratory:	
PGVP Number:	
Gas Code:	

Airgas

E03NI80E15AC003 CC421656 ASG - Durham - NC B22012 OC2

003 Reference Number: 122-Cylinder Volume: 151 NC Cylinder Pressure: 201 Valve Outlet: 590 Analysis Date: Nov Expiration Date: Nov 02, 2020

122-124343711-1 151 Cu.Ft. 2015 PSIG 590 Nov 02, 2012

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/531, using the assay procedures listed. Analytical Methodology does not require correction for analytical Interference. This cylinder has a total analytical uncertainty as stated below.

using the assay procedures fisied. Analytical Methodology does not require correction for analytical Interference. This cylinder has a total analytical uncertainty as stated below. with a confidence level of 95%. There are no significant impurities which affact the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

otherwise noted. Do Not Use This Cylinder below 100 psig. i.e. 0.7 megapascals.

Compon	ent		Requested Concentration	YTICAL RESULT Actual Concentration	Protocol Method	Total Relative Uncertainty
CARBON	DIOXIDE	9	,500 %	9.453 %	G1	+/- 1% NIST Traceable
OXYGEN		. 1	0.50 %	10.49 %	Ġ1	+/- 1% NIST Traceable
NITROGE	N	E	alance			
Туре	Lot ID	Cylinder No	· · · ·	ATION STANDA	RDS	Expiration Date
090606	090606	CC262103	9,921%	CARBON DIOXIDE/NI	FROGEN	Apr 10, 2013
NTRM	82658	SG9163064BAL	9.507%	6 OXYGEN/NITROGEN		Dec 01, 2015
			ANALY	ICAL EQUIPMI	ENT	
Instrume	nt/Make/Mod	el	Analy	tical Principle		Last Multipoint Calibration
Horiba VIA610 CO2 42399380022		Nondle	Nondispersive Infrared (NDIR)		Oct 19, 2012	
tionod th						

Triad Data Available Upon Request

Notes:

Annroved for Release

Approved for Release

Page 1 of 122-124343711-1

Airgas

630 United Drive **CERTIFICATE OF ANALYSIS** Durham, NC 27713 919-544-3773 Fax: 919-544-3774 Grade of Product: EPA Protocol WWW.airgas.com

Part Number: Cylinder Number: Laboratory: PGVP Number:

E03NI61E15ACPK1 CC421863 ASG - Durham - NC B22012

Reference Number: Cylinder Volume: 158 Cu.Ft. Cylinder Pressure: Valve Outlet: **590** Nov 02, 2012 Analysis Date:

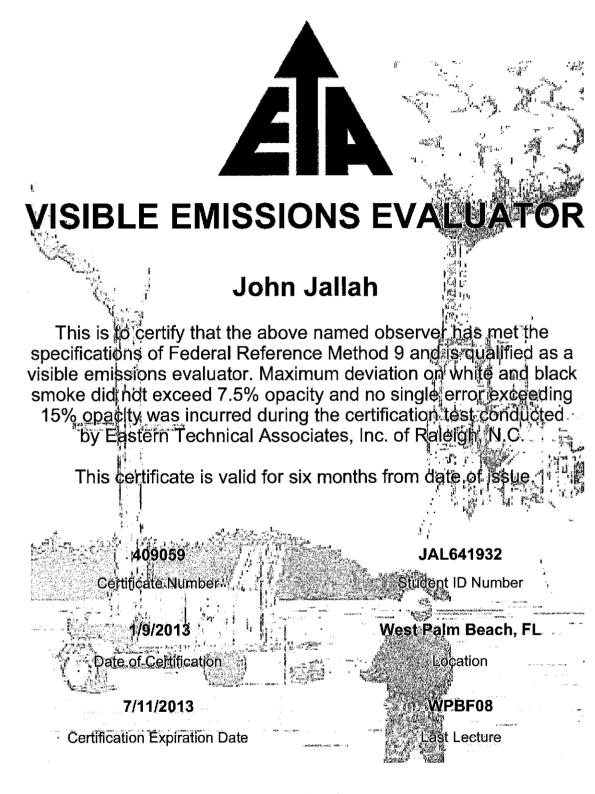
122-124343712-1 2015 PSIG

Airgas Specialty Gases

Expiration Date: Nov 02, 2020

Certification performed in accordance with "EPA Traceability Protocol for Assay and Certification of Gaseous Calibration Standards (May 2012)" document EPA 600/R-12/631, using the assay procedures listed. Analytical Methodology does not require correction for analytical interference. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Oylinder below 100 psig, i.e. 0.7 megapascals.


			ANAL	YTICAL RESUL'	rs	a ta anta any amin'ny desima dia mampina mandritra dia mandritra dia mandritra dia dia dia dia dia dia dia dia
Component		Requested Concentration	Actual Concentration	Protocol Method	Total Relative Uncertainty	
CARBON DIOXIDE			18.50 %	18.69 %	G1	+/- 1% NIST Traceable
OXYGEN			20.50 %	20.42 %	G1	+/- 1% NIST Traceable
NITROGE	EN		Balanco			
			CALIBRA	ATION STANDA	RDS	te silinanye natio in egenya en ingenina in ini ina an ata a ini ini na ananye nation
Туре	Lot ID	Cylinder No	Concentra	tion		Expiration Date
NTRM	090814	CC273522	22.53% OX)	22.53% OXYGEN/NITROGEN		Aug 01, 2013
NTRM	120815	CC354889	19,87% CAF	BON DIOXIDE/NITROG	EN	Jan 27, 2018
			ANALY	TICAL EQUIPM	ENT	
Instrum	ont/Make/Mo	del	Analytical	Principle		Last Multipoint Calibration
Horiba VI	4510 CO2 4239	9380022	Nondispersiv	Nondispersive Infrared (NDIR)		Oct 19, 2012
Horiba MPA610 O2 41499150042			Paramagnetic			Oct 18, 2012

Triad Data Available Upon Request

Notes:

Approved for Release

Page 1 of 122-124343712-1

Marty Hughes
Director of Training

Appendix F

Facility Permit (Final Permit No. 0990234-022-AV, Tuning Test Request Letter & Tuning Verturi Permission Letter)

Solid Waste Authority of Palm Beach County North County Regional Resource Recovery Facility Facility ID No. 0990234 Palm Beach County

Title V Air Operation Permit Renewal

Final Permit No. 0990234-022-AV (1st of Title V Air Operation Permit No. 0990234-020-AV)

<u>Permitting Authority:</u>

State of Florida Department of Environmental Protection Division of Air Resource Management Office of Permitting and Compliance

2600 Blair Stone Road Mail Station #5505 Tallahassee, Florida 32399-2400

Telephone: (850) 717-9000 Fax: (850) 717-9097

Compliance Authority:

State of Florida Department of Environmental Protection Southeast District Office

> 400 North Congress Avenue West Palm Beach, FL 33401

Telephone: (561) 681-6600 Fax: (561) 681-6755 ii N

<u>Title V Air Operation Permit Renewal</u> Final Permit No. 0990234-020-AV

Table of Contents

Section Pag	<u>e Number</u>
Placard Page	iii
 I. Facility Information. A. Facility Description. B. Summary of Emissions Units. C. Applicable Requirements. 	I1
II. Facility-wide Conditions.	II1
 III. Emissions Units and Conditions. A. E.U. ID Nos. 001, 002 & 019: Municipal Solid Waste Boiler Nos. 1 and 2. Ash Building and Handling System. B. E.U. ID Nos. 004 & 008: Landfills and Flares. C. E.U. ID Nos. 010, 011, 012 & 014: Biosolids Pelletization Facility (BPF). D. E.U. ID Nos. 016, 017, 021 & 035-043: Engines. 	III.B1 III.C1
 IV. Appendices	micipal 21/2008). e for /06/2009). d
06/30/2010).	* * *

Referenced Attachments. At End

DEP approval dated October 25, 2005 regarding Landfill Higher Wellhead Operating Temperature. DEP approval dated December 13, 2005 regarding Landfill Gas Well Inactivation Plan.

Table 1, Summary of Air Pollutant Standards and Terms.

Table 2, Compliance Requirements.

Table E-1. Summary of Maintenance Requirements for Engines.

Table L-1. Summary of Monitoring Requirements for MSW Landfills (40 CFR 60, Subpart WWW and 40 CFR 63, Subpart AAAA).

Table L-2. Summary of Recordkeeping Requirements for MSW Landfills (40 CFR 60, Subpart WWW and 40 CFR 63, Subpart AAAA).

Table L-3. Summary of Compliance Reporting Requirements for MSW Landfills (40 CFR 60, Subpart WWW and 40 CFR 63, Subpart AAAA).

Table H, Permit History.

U.S. EPA letter dated July 7, 1999 regarding CAM applicability for MWCs.

U.S. EPA letter dated April 6, 2000 regarding Beryllium Containing Wastes.

U.S. EPA approval letter dated June 7, 2002 regarding Reduction in Frequency of Surface Monitoring of Methane Gas Emissions.

U.S. EPA e-mail dated January 22, 2009 regarding Testing Schedule for Fugitive Ash and HCl Emissions.

Florida Department of Environmental Protection

> Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Rick Scott Governor

Jennifer Carroll Lt. Governor

Herschel T. Vinyard Jr. Secretary

PERMITTEE: Solid Waste Authority of Palm Beach County Permit No. 0990234-022-AV North County Regional Resource Recovery Facility Facility ID No. 0990234 Project: Title V Air Operation Permit Revision

The purpose of this permit is to revise the Title V air operation permit for the above referenced facility to reflect the refurbishment of the two existing municipal solid waste combustors (Units 1 and 2) previously authorized by Permit No. 0990234-015-AC/PSD-FL-108H and to incorporate minor revisions from Permit No. 0990234-021-AC/PSD-FL-108J, issued concurrently with this permit. This existing facility is located in Palm Beach County at 7501 North Jog Road, West Palm Beach; UTM Coordinates: Zone 17, 585.82 km East and 2960.474 km North; Latitude: 26° 45' 53" North and Longitude: 80° 08' 12" West.

This Title V air operation permit is issued under the provisions of Chapter 403, Florida Statutes (F.S.), and Florida Administrative Code (F.A.C.) Chapters 62-4, 62-210 and 62-213. The above named permittee is hereby authorized to operate the facility in accordance with the terms and conditions of this permit.

Effective Date: January 20, 2012 Renewal Application Due Date: February 23, 2016 Expiration Date: October 5, 2016

Executed in Tallahassee, Florida *Electronic Signature*

JFK/sa/sms

Subsection A. Facility Description.

This existing facility is a municipal waste combustor plant designed to process 2,000 tons per day (TPD) of municipal solid waste (MSW). The facility burns processed MSW that is called "refuse derived fuel" (RDF). The RDF plant is equipped with three MSW processing lines, any two of which can handle the 2,000 TPD of incoming MSW. The boiler plant includes two Babcock & Wilcox (B&W) boilers (Nos. 1 and 2) with auxiliary burners. Each boiler was designed with a maximum heat input of 427.5 MMBtu/hr and a maximum steam production rating of 324,000 lbs/hour. At a reference heating value of 5,700 Btu/lb, this is equivalent to 900 TPD of RDF per boiler. The gross nominal electric generating capacity of the facility is 62 megawatts (MW).

Two landfills, a Class I Landfill and a Class III Landfill, each with its own gas collection system and flare, are located at the facility. Additional activities at the facility include: a composting facility, material processing systems, a metals recovery system, storage and handling systems for RDF; lime storage and processing facilities; storage and handling systems for ash and ash treatment; and, cooling towers. A biosolids pelletization facility (BPF) is located adjacent to the existing landfill.

The facility is owned by the Solid Waste Authority.

Also included in this permit are miscellaneous unregulated/insignificant emissions units and/or activities.

E.U. ID No.	Brief Description			
Regulated Em	ssions Units			
001	Municipal Solid Waste Boiler No. 1			
002	Municipal Solid Waste Boiler No. 2			
019	Ash Building and Handling System			
	Landfills and Flares			
004	Class III Landfill and Flare (1,800 scfm, manufactured by LFG Specialties, model number PCF82018)			
008	Class I Landfill and Flare (3,500 scfm, manufactured by Shaw LFG Specialties, model number CF1238I10)			
	Biosolids Pelletization Facility (BPF)			
010	BPF Sludge Dryer Train #1			
011	BPF Sludge Dryer Train #2			
012	BPF Recycle Material Bin and Pellet Storage Silo for Sludge Dryer Train #1			
014	BPF Recycle Material Bin and Pellet Storage Silo for Sludge Dryer Train #2			
	Engines			
016	Emergency Generator - Biosolids Pelletization Facility (BPF) (EPA Tier 3 certified)			
017	Woody Waste Facility Diesel Engine (primary engine)			
021	Emergency Generator - Operations Building (EPA Tier 3 certified)			

Subsection B. Summary of Emissions Units.

SECTION I. FACILITY INFORMATION.

E.U. ID No.	Brief Description			
035	Emergency Generator - North County Resource Recovery Facility (NCRRF)			
036	Fire Water Pump - NCRRF			
037	Emergency Generator - NCRRF Scalehouse			
038	Emergency Generator - Utilities Facility			
039	Emergency Generator - Landfill Scalehouse E1			
040	Emergency Generator - Landfill Scalehouse E2			
041	Emergency Generator - MIS			
042	Emergency Generator - Administration			
043	Emergency Generator - Materials Recovery Facility (MRF) (EPA Tier 2 certified)			
Unregulated E	missions Units and/or Activities			
005	RDF Storage			
006	RDF Processing Lines			
007	Oversized Bulk Waste Processing Line			
018	Cooling Towers (3) at North County Resource Recovery Facility (RRF) {The cooling towers do no not use chromium-based water treatment chemicals.}			
044	Woody Waste Facility Diesel Engine (EPA Tier 1 certified) (backup engine)			

Subsection C. Applicable Requirements.

Based on the Title V air operation permit application renewal received on November 17, 2010, this facility is a major source of hazardous air pollutants (HAP). This facility is classified as a Prevention of Significant Deterioration (PSD) major facility. A summary of important applicable requirements is shown in the following table.

Applicable Requirement	E.U. ID No(s).
Rule 62-212.400, F.A.C., Prevention of Significant Deterioration (PSD)	001, 002 & 019 010, 011, 012 & 014
Rule 62-212.400(6), F.A.C., Best Available Control Technology (BACT)	001, 002, 019 010, 011, 012 & 014
40 CFR 60, Subpart A, New Stationary Source Performance Standards (NSPS) General Provisions	001, 002 & 019
40 CFR 60, Subpart Cb, Emissions Guidelines (EG) and Compliance Times for Large Municipal Waste Combustors	001, 002 & 019
Rule 62-296.416, F.A.C., Waste-to-Energy Facilities	001 & 002
Rule 62-210.300, F.A.C., Permits Required	004 & 008
Rule 62-212.400, F.A.C., Prevention of Significant Deterioration (PSD)	004 & 008
40 CFR 60, Subpart A, New Stationary Source Performance Standards (NSPS) General Provisions	004 & 008
40 CFR 60, Subpart WWW, Standards of Performance for Municipal Solid Waste Landfills	004 & 008
40 CFR 61, Subpart M, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Asbestos	004 & 008
40 CFR 63, Subpart A, General Provisions	004 & 008
40 CFR 63, Subpart AAAA, National Emission Standards for Hazardous Air Pollutants: Municipal Solid Waste Landfills	004 & 008
40 CFR 61, Subpart E, National Emission Standards for Hazardous Air Pollutants for Mercury	010 & 011
40 CFR 64, Compliance Assurance Monitoring (CAM)	010 & 011
40 CFR 63, Subpart A, General Provisions	016, 017, 021 & 035-044
40 CFR 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Stationary Reciprocating Internal Combustion Engines (RICE)	016, 017, 021 & 035-044
40 CFR 60, Subpart A, General Provisions	016, 021, 042 & 043
40 CFR 60, Subpart IIII, NSPS for Compression Ignition Internal Combustion Engines (CI-ICE)	016, 021, 042 & 043

The following conditions apply facility-wide to all emission units and activities:

FW1. <u>Appendices</u>. The permittee shall comply with all documents identified in Section IV., Appendices, listed in the Table of Contents. Each document is an enforceable part of this permit unless otherwise indicated. [Rule 62-213.440, F.A.C.]

Emissions and Controls

- **FW2.** Not federally enforceable. <u>Objectionable Odor Prohibited</u>. No person shall cause, suffer, allow or permit the discharge of air pollutants, which cause or contribute to an objectionable odor. An "objectionable odor" means any odor present in the outdoor atmosphere which by itself or in combination with other odors, is or may be harmful or injurious to human health or welfare, which unreasonably interferes with the comfortable use and enjoyment of life or property, or which creates a nuisance. [Rules 62-296.320(2) & 62-210.200 (Definitions), F.A.C.]
- **FW3.** <u>General Volatile Organic Compounds (VOC) Emissions or Organic Solvents (OS) Emissions</u>. The permittee shall allow no person to store, pump, handle, process, load, unload or use in any process or installation, volatile organic compounds or organic solvents without applying known and existing vapor emission control devices or systems deemed necessary and ordered by the Department. [Rule 62-296.320(1), F.A.C.]</u>

{Permitting note: Nothing is deemed necessary and ordered at this time.}

- **FW4.** <u>General Visible Emissions</u>. No person shall cause, let, permit, suffer or allow to be discharged into the atmosphere tbe emissions of air pollutants from any activity equal to or greater than 20% opacity. EPA Method 9 is the method of compliance pursuant to Chapter 62-297, F.A.C. This regulation does not impose a specific testing requirement. [Rule 62-296.320(4)(b), F.A.C.]
- **FW5.** <u>Unconfined Particulate Matter</u>. No person shall cause, let, permit, suffer or allow the emissions of unconfined particulate matter from any activity, including vehicular movement; transportation of materials; construction; alteration; demolition or wrecking; or industrially related activities such as loading, unloading, storing or handling; without taking reasonable precautions to prevent such emissions. Reasonable precautions to prevent emissions of unconfined particulate matter at this facility include:
 - a. Chemical or water application to unpaved road and unpaved yard and landfill areas;
 - b. Paving and maintenance of roads, parking areas and yards;
 - c. Landscaping or planting of vegetation;
 - d. Confining abrasive blasting where possible and appropriate;
 - e. Unpaved roads and active unpaved areas are sprayed with a water truck;
 - f. Landfill areas that are closed are promptly re-vegetated;
 - g. Ash is quenched with water prior to landfilling; and,
 - h. Waste transfer trucks are tarped.

[Rule 62-296.320(4)(c), F.A.C. and proposed by applicant in Title V air operation permit renewal application received on November 17, 2010.]

Annual Reports and Fees

See Appendix RR, Facility-wide Reporting Requirements, for additional details.

- **FW6.** <u>Annual Operating Report</u>. The permittee shall submit an annual report that summarizes the actual operating rates and emissions from this facility. Annual operating reports shall be submitted to the Compliance Authority by April 1st of each year. [Rule 62-210.370(3), F.A.C.]
- FW7. <u>Annual Emissions Fee Form and Fee</u>. The annual Title V emissions fees are due (postmarked) by March 1st of each year. The completed form and calculated fee shall be submitted to: Major Air Pollution Source Annual Emissions Fee, P.O. Box 3070, Tallahassee, Florida 32315-3070. The forms are available for download by accessing the Title V Annual Emissions Fee On-line Information Center at the following Internet web site: <u>http://www.dep.state.fl.us/air/emission/tvfee.htm</u>. [Rule 62-213.205, F.A.C.]
- **FW8.** <u>Annual Statement of Compliance</u>. The permittee shall submit an annual statement of compliance to the compliance authority at the address shown on the cover of this permit within 60 days after the end of each calendar year during which the Title V air operation permit was effective. [Rules 62-213.440(3)(a)2. & 3. and (b), F.A.C.]
- **FW9.** <u>Prevention of Accidental Releases (Section 112(r) of CAA)</u>. If and when the facility becomes subject to 112(r), the permittee shall:
 - a. Submit its Risk Management Plan (RMP) to the Chemical Emergency Preparedness and Prevention Office (CEPPO) RMP Reporting Center. Any Risk Management Plans, original submittals, revisions or updates to submittals, should be sent to: RMP Reporting Center, Post Office Box 10162, Fairfax, VA 22038, Telephone: 703/227-7650.
 - b. Submit to the permitting authority Title V certification forms or a compliance schedule in accordance with Rule 62-213.440(2), F.A.C.

[40 CFR 68.]

Subsection A. Emissions Units 001, 002 & 019

E.U. ID No.	Brief Description
001	Municipal Solid Waste Boiler No. 1
002	Municipal Solid Waste Boiler No. 2
019	Ash Building and Handling System

The specific conditions in this section apply to the following emissions unit(s):

Description: Units 1 and 2 are identical Babcock & Wilcox MSWC units that began commercial operation on November 15, 1989. The following descriptions include the changes being made in this permit.

Boiler Type: The boiler use a moving grate to burn the RDF fuel.

Fuel: RDF

Supplementary Fuel: Natural gas is used for startup, shutdown and during combustion of low Btu waste to maintain combustor temperature.

Capacity: The permitted capacity is 324,000 pounds per hour of steam (4-hour block average) based on a unit design capacity of 900 tons per day of RDF.

Generator Nameplate Rating: 62 Megawatts (MW).

Spray Dryer Absorber (SDA): Each unit uses lime injection to control acid gas emissions.

Fabric Filter System: Each unit uses a fabric filter system to control particulate matter (PM) emissions.

Combustion Control System and OFA System: Each unit optimizes furnace conditions with an automated control system and OFA system for proper combustion while minimizing carbon monoxide (CO), nitrogen oxides (NOx) and volatile organic compounds (VOC).

SNCR System: Each unit injects urea with an SNCR system to control NOx emissions.

ACI System: Each unit injects activated carbon to adsorb metal and dioxin/furan emissions, which are then collected by the fabric filter system.

Continuous Monitors: Each unit uses the following equipment to continuously monitor the following pollutants and parameters: continuous emissions monitoring systems (CEMS) for CO, carbon dioxide (CO_2), NOx and sulfur dioxide (SO_2); continuous opacity monitoring system (COMS) for opacity; and continuous monitoring systems (CMS) for the temperature of the flue gas stream at the fabric filter inlet, the steam production rate and urea injection rate.

Stack Parameters: Units 1 and 2 each have a stack that is 250 feet tall with a diameter of 8 feet and are both surrounded by a single stack shell. The volumetric flow rates of each MSWC at permitted capacity are approximately 191,494 actual cubic feet per minute (acfm) and 116,274 dry standard cubic feet per minute (dscfm) @ 7% oxygen (O₂).

Exit Temperature: Approximately 310 °F, as measured downstream of the SDA.

Emissions Unit ID No. 019 is the Ash Building and Handling System. Fly ash from the fabric filter system is wetted to control the dust and minimize fugitive emissions. Bottom ash from the RDF boilers is combined with the fly ash prior to going to the landfill (see Subsection III.B.). Emissions from the building are uncontrolled.

{Permitting notes: These emissions units are regulated under 40 CFR 60, Subpart Cb, Emissions Guidelines (EG) and Compliance Times for Large Municipal Waste Combustors (MWC) adopted and incorporated by reference in Rule 62-204.800(9)(b), F.A.C.; Rule 62-296.416, F.A.C., Waste-to-Energy Facilities; Rule 62-212.400, F.A.C., Prevention of Significant Deterioration (PSD) [PSD-FL-108, as amended]; Rule 62-212.400(6), F.A.C., Best Available Control Technology (BACT); and, Florida Electrical Power Plant Site Certifications [PA84-20].}

Essential Potential to Emit (PTE) Parameters

Subsection A. Emissions Units 001, 002 & 019

- A.1. <u>Hours of Operation</u>. These emissions units may operate continuously (8,760 hours/year). [Rule 62-210.200 (Definitions Potential to Emit (PTE)), F.A.C.; and, Permit No. 0990234-015-AC/PSD-FL-108H.]
- A.2. <u>Capacity</u>. The following maximum values (capacities) shall not be exceeded:

a. 324,000 lbs/hr individual MWC unit steam production on a 4-hour block arithmetic average. The MWC units shall not be loaded in excess of their maximum operating capacity, equivalent to 2,000 TPD of mixed MSW. See 40 CFR 60.31b of Appendix 40 CFR 60, Subpart Cb and 40 CFR 60.58b(j) of Appendix 40 CFR 60, Subpart Eb for additional restrictions on capacity. [Rules 62-4.160(2) & 62-210.200 (PTE), F.A.C.; 40 CFR 60.31b & 40 CFR 60.58b(j); and, Permit No. 0990234-015-AC/PSD-FL-108H.]

- A.3. <u>Emissions Unit Operating Rate Limitation After Testing</u>. See the related testing provisions in Appendix TR, Facility-wide Testing Requirements. See the "maximum demonstrated municipal waste combustor unit load" provisions of 40 CFR 60.34b(b) and 40 CFR 60.51b for additional restrictions on operating rate. [Rule 62-297.310(2), F.A.C.; and, 40 CFR 60.34b(b) & 40 CFR 60.51b.]
- A.4. <u>MWCs Fuels</u>. The open storage of solid waste outside of a building is prohibited. [PSD-FL-108A, specific condition 10.]
- A.5. <u>MWCs Methods of Operation Fuels</u>.
 - a. Allowable Fuels.
 - (1) The only fuels allowed to be burned in the MWCs are mixed municipal solid waste (MSW) from RDF, with natural gas as an auxiliary fuel. Other fuels or wastes, not specifically listed herein, shall not be burned without written prior approval from the Department. Fuels or wastes specifically authorized herein do not require prior Department approval before combustion.
 - (2) The primary fuel for the facility is mixed municipal solid waste (MSW) from RDF, including the items and materials that fit within the definition of MSW contained in either 40 CFR 60.51b or Section 403.706(5), Florida Statutes (2010).
 - b. Unauthorized Fuels. Subject to the limitations contained in this permit, the authorized fuels for the facility also include the other solid wastes that are not MSW, which are described in d. f., below. However, the facility
 - (1) shall not burn:
 - (a) those materials that are prohibited by state or federal law;
 - (b) those materials that are prohibited by this permit;
 - (c) lead acid batteries;
 - (d) hazardous waste;
 - (e) nuclear waste;
 - (f) radioactive waste;
 - (g) sewage sludge;
 - (h) sewage sludge from sewage treatment plants 1 ;
 - (i) explosives;
 - (j) beryllium-containing waste, as defined in 40 CFR 61, Subpart C. {The U.S. EPA letter dated April 6, 2000 (see attached), on 40 CFR 61, Subpart C further addresses the applicability of this federal regulation with regard to beryllium-containing waste(s).}
 - (2) and shall not knowingly burn:
 - (a) untreated biomedical waste from biomedical waste generators regulated pursuant to Chapter 64E-16, F.A.C., and from other similar generators (or sources). See the attached Appendix BW, Biomedical Waste Definitions, for definitions of what constitutes biomedical waste;
 (b) segregated loads of biological waste.
 - c. *Fuel Handling.* The fuel may be received either as a mixture or as a single-item stream (segregated load) of discarded materials. If the facility intends to use an authorized fuel that is segregated non-MSW material, the fuel shall be well mixed with MSW. For the purposes of this permit, a <u>segregated load</u> is defined to mean a container or truck that is almost completely or exclusively filled with a single item or homogeneous composition of waste material, as determined by visual observation.

Subsection A. Emissions Units 001, 002 & 019

- d. *Other Solid Waste*. Subject to the conditions and limitations contained in this permit, the following other solid waste may be used as fuel at the facility:
 - (1) Confidential, proprietary or special documents (including but not limited to business records, lottery tickets, event tickets, coupons and microfilm);
 - (2) Contraband which is being destroyed at the request of appropriately authorized local, state or federal governmental agencies, provided that such material is not an explosive, a propellant, a hazardous waste, or otherwise prohibited at the facility. For the purposes of this section, contraband includes but is not limited to drugs, narcotics, fruits, vegetables, plants, counterfeit money, and counterfeit consumer goods;
 - (3) Wood pallets, clean wood, and land clearing debris;
 - (4) Packaging materials and containers;
 - (5) Clothing, natural and synthetic fibers, fabric remnants, and similar debris, including but not limited to aprons and gloves; or
 - (6) Rugs, carpets, and floor coverings, but not asbestos-containing materials or polyethylene or polyurethane vinyl floor coverings.
- e. *Waste Tires.* Subject to the conditions and limitations contained in this permit, waste tires may be used as fuel at the facility. The total quantity of waste tires received as <u>segregated loads</u> and burned at the facility shall not exceed 3%, by weight, of the facility's total fuel. Compliance with this limitation shall be determined on a calendar month basis.
- f. Non-MSW Material. Subject to the conditions and limitations contained in this permit, the following other solid waste materials may be used as fuel at the facility (i.e., the following are authorized fuels that are non-MSW material). The total quantity of the following non-MSW material received as <u>segregated</u> loads and burned at the facility shall not exceed 5%, by weight, of the facility's total fuel. Compliance with this limitation shall be determined on a calendar month basis.
 - (1) Construction and demolition debris.
 - (2) Oil spill debris from aquatic, coastal, estuarine or river environments. Such items or materials include but are not limited to rags, wipes, and absorbents.
 - (3) Items suitable for human, plant or domesticated animal use, consumption or application where the item's shelf-life has expired or the generator wishes to remove the items from the market. Such items or materials include but are not limited to off-specification or expired consumer products, pharmaceuticals, medications, health and personal care products, cosmetics, foodstuffs, nutritional supplements, returned goods, and controlled substances.
 - (4) Consumer-packaged products intended for human or domesticated animal use or application but not consumption. Such items or materials include but are not limited to carpet cleaners, household or bathroom cleaners, polishes, waxes and detergents.
 - (5) Waste materials that:
 - (a) are generated in the manufacture of items in categories **f.(3**) or **f.(4**), above and are functionally or commercially useless (expired, rejected or spent); or
 - (b) are not yet formed or packaged for commercial distribution. Such items or materials must be substantially similar to other items or materials routinely found in MSW.
 - (6) Waste materials that contain oil from:
 - (a) the routine cleanup of industrial or commercial establishments and machinery; or
 - (b) spills of virgin or used petroleum products. Such items or materials include but are not limited to rags, wipes, and absorbents.
 - (7) Used oil and used oil filters. Used oil containing a polychlorinated biphenyls (PCB) concentration equal or greater than 50 parts per million (ppm) shall not be burned, pursuant to the limitations of 40 CFR 761.20(e).
 - (8) Waste materials generated by manufacturing, industrial or agricultural activities, provided that these items or materials are substantially similar to items or materials that are found routinely in MSW, subject to written prior approval of the Department.

[Rules 62-4.070(1), (3), 62-213.410 & 62-213.440, F.A.C.; and, ¹ PSD-FL-108A, specific condition 11.]

Subsection A. Emissions Units 001, 002 & 019

{*Permitting note: At RDF plants, the 3% (or 5%) restriction applies to the municipal solid waste received. On-site processing of material at the facility is not included in this restriction. Exceedance of this percentage requires prior department approval.*}

- A.6. <u>Auxiliary Burners Methods of Operation Fuels</u>. Auxiliary burners for each MWC shall be fired only with natural gas. Natural gas may be used as a supplemental fuel during startups, shutdowns, and at other times when necessary and consistent with good combustion practices. [Rules 62-4.160(2), 62-210.200 (PTE), 62-213.410, & 62-213.440, F.A.C.; and, PSD-FL-108A.]
- A.7. <u>Auxiliary Gas Burner Operations</u>.
 - a. During boiler startup, the auxiliary gas burners shall be operating at their maximum capacity prior to the introduction of RDF to the boilers, and shall remain in operation until the lime spray dryer absorbers and particulate matter emissions control device (fabric filter system) are fully operational.
 - b. During normal, non-emergency boiler shutdown, the auxiliary gas burners shall be operated at their maximum capacity until all RDF has been combusted.
 [Rules 62-4.160(2), 62-210.200 (PTE), 62-213.410, & 62-213.440, F.A.C.; 0992034-015-AC/PSD-FL-108H; and, PSD-FL-108A, specific conditions 7. & 8.]

Air Pollution Control Technologies and Measures

A.8. <u>Carbon Usage Rate</u>. The carbon injection rate operating standard and monitoring requirements set forth in 40 CFR 60.58b(m) of 40 CFR 60, Subpart Eb, incorporated by reference in Rule 62-204.800, F.A.C., shall apply. See Appendix 40 CFR 60, Subpart Eb. [Rule 62-296.416(5), F.A.C.]

Emission Limitations and Standards

{Permitting note: Table 1, Summary of Air Pollutant Standards and Terms, summarizes information for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.}

Unless otherwise specified, the averaging times for Specific Conditions A.9. - A.19. are based on the specified averaging time of the applicable test method.

{Permitting note: The May 10, 2006 amendments to 40 CFR 60 Subpart Cb changed some of the emission standards and limitations for Unit Nos. 1 & 2. Five (5) air pollutant standards/limitations were lowered under the amendments: PM, cadmium (Cd), Hg, Pb and dioxin/furan (D/F).}

Stack Emissions

- A.9. <u>Particulate Matter</u>. The emission limit for particulate matter (PM) contained in the gases discharged to the atmosphere is 25 milligrams (mg) per dry standard cubic meter, corrected to 7 percent oxygen. [Rule 62-204.800(9)(b)3.a., F.A.C.; 40 CFR 60.33b(a)(1)(i); and, PSD-FL-108A, specific condition 3.a.]
- A.10. Opacity. As determined by the continuous opacity monitoring system (COMS) or EPA Method 9, the emission limit for opacity exhibited by the gases discharged to the atmosphere is 10 percent (6-minute average). [Rule 62-204.800(9)(b)3.b., F.A.C.; 40 CFR 60.33b(a)(1)(iii); and, PSD-FL-108A, specific condition 3.k. & Permit No. 0990234-015-AC/PSD-FL-108H, specific condition 17.e.]
- A.11. <u>Cadmium</u>. The emission limit for cadmium (Cd) contained in the gases discharged to the atmosphere is 35 micrograms (ug) per dry standard cubic meter, corrected to 7 percent oxygen. [Rule 62-204.800(9)(b)3.c., F.A.C. and 40 CFR 60.33b(a)(2)(i).]
- A.12. <u>Mercury</u>. The emission limit for mercury (Hg) contained in the gases discharged to the atmosphere is 50 micrograms per dry standard cubic meter or 15 percent of the potential mercury emission concentration (85-percent reduction by weight), corrected to 7 percent oxygen, whichever is less stringent. [Rule 62-204.800(9)(b)3.d., F.A.C.; 40 CFR 60.33b(a)(3); and, PSD-FL-108A, specific condition 3.e.]

Subsection A. Emissions Units 001, 002 & 019

- A.13. <u>Lead</u>. The emission limit for lead (Pb) contained in the gases discharged to the atmosphere is 400 micrograms per dry standard cubic meter, corrected to 7 percent oxygen. [Rule 62-204.800(9)(b)3.c., F.A.C.; 40 CFR 60.33b(a)(4); and, PSD-FL-108A, specific condition 3.d.]
- A.14. <u>Sulfur Dioxide</u>. As determined by the continuous emissions monitoring system (CEMS), the emission limit for sulfur dioxide (SO₂) contained in the gases discharged to the atmosphere is 29 parts per million by volume (ppmv) or 25 percent of the potential sulfur dioxide emission concentration (75-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent. Compliance with this emission limit is based on a 24-hour daily geometric mean. [Rule 62-204.800(9)(b)3.e., F.A.C.; 40 CFR 60.33b(b)(3)(i); and, PSD-FL-108A, specific condition 3.i. & Permit No. 0990234-015-AC/PSD-FL-108H, specific condition 17.d.]
- **A.15.** <u>Hydrogen Chloride</u>. The emission limit for hydrogen chloride (HCl) contained in the gases discharged to the atmosphere is 25 parts per million by volume or 5 percent of the potential hydrogen chloride emission concentration (95-percent reduction by weight or volume), corrected to 7 percent oxygen (dry basis), whichever is less stringent. [Rule 62-204.800(9)(b)3.f., F.A.C.; 40 CFR 60.33b(b)(3)(ii); and, PSD-FL-108A, specific condition 3.j.]
- A.16. <u>Dioxin/Furan</u>. The emission limit for dioxin/furan (D/F) contained in the gases discharged to the atmosphere from designated facilities that do not employ an electrostatic precipitator-based emission control system is 30 nanograms per dry standard cubic meter (total mass), corrected to 7 percent oxygen. [Rule 62-204.800(9)(b)3.g., F.A.C.; 40 CFR 60.33b(c)(1)(iii); and, 0990234-021-AC/PSD-FL-108J]
- A.17. <u>Nitrogen Oxides</u>. As determined by the CEMS, the emission limit for nitrogen oxides (NOx) contained in the gases discharged to the atmosphere from a refuse derived fuel type municipal waste combustor technology is 250 parts per million by volume, corrected to 7 percent oxygen, dry basis. Compliance with this emission limit is based on the 24-hour daily arithmetic average of the hourly emission concentrations using continuous emission monitoring system outlet data. Emissions averaging pursuant to 40 CFR 60.33b(d)(1) shall be allowed. 40 CFR 60.33b(d)(2) shall not apply. [Rule 62-204.800(9)(b)3.h., F.A.C.; 40 CFR 60.33b(d); and, PSD-FL-108A, specific condition 3.b. & Permit No. 0990234-015-AC/PSD-FL-108H, specific condition 17.d.]
- A.18. <u>Carbon Monoxide</u>. As determined by the CEMS:
 - a. the emission limit for carbon monoxide (CO) contained in the gases discharged to the atmosphere from a refuse derived fuel stoker type municipal waste combustor technology is 200 parts per million by volume (ppmvd), measured at the combustor outlet in conjunction with a measurement of oxygen concentration, corrected to 7 percent oxygen, dry basis, and calculated on a 24-hour block average. Calculated as an arithmetic average. [Rule 62-204.800(9)(b)3.i., F.A.C.; 40 CFR 60.34b(a); and, Permit No. 0990234-015-AC/PSD-FL-108H, specific condition 17.d.]
 - b. CO emissions shall not exceed 400 ppmvd, corrected to 7 percent oxygen, dry basis, and calculated on a 4-hour block average. [Permit No. 0990234-015-AC/PSD-FL-108H, specific conditions 3.c. & 17.d.]
- **A.19.** <u>Volatile Organic Compounds</u>. Volatile organic compound (VOC) emissions shall not exceed 1.6 x 10⁻² lb/MMBtu. [PSD-FL-108A, specific condition 3.h.]

Fugitive Ash Emissions

- A.20. (This condition only applies to the ash conveying systems of E.U. ID No. 019.) Fugitive Ash Emissions.
 - No owner or operator of an affected facility shall cause to be discharged to the atmosphere visible emissions of combustion ash from an ash conveying system (including conveyor transfer points) in excess of 5 percent of the observation period (i.e., 9 minutes per 3-hour period), as determined by EPA Reference Method 22 observations as specified in 40 CFR 60.58b(k), except as provided in paragraphs b. and c.

Subsection A. Emissions Units 001, 002 & 019

- b. The emission limit specified in paragraph a. does not cover visible emissions discharged inside buildings or enclosures of ash conveying systems; however, the emission limit specified in paragraph a. does cover visible emissions discharged to the atmosphere from buildings or enclosures of ash conveying systems.
- c. The provisions of paragraph a. do not apply during maintenance and repair of ash conveying systems. [Rule 62-204.800(9)(b)6., F.A.C.; and, 40 CFR 60.36b and 40 CFR 60.55b.]

Excess Emissions

Rule 62-210.700 (Excess Emissions), F.A.C., cannot vary any requirement of an EG, NSPS or NESHAP provision.

- A.21. Excess Emissions Allowed Startup, Shutdown or Malfunction. Excess emissions resulting from startup, shutdown or malfunction shall be permitted providing (1) best operational practices to minimize emissions are adhered to and (2) the duration of excess emissions shall be minimized but in no case exceed two hours in any 24 hour period unless specifically authorized by the Department for longer duration. <u>The Department authorizes three hours per occurrence in any 24-hour period for these emissions units</u>. A malfunction means any unavoidable failure of air pollution control equipment or process equipment to operate in a normal or usual manner. [Rules 62-210.700(1) & (5), F.A.C. and PSD-FL-108A, specific condition 15.]
- A.22. <u>Excess Emissions Prohibited</u>. Excess emissions which are caused entirely or in part by poor maintenance, poor operation, or any other equipment or process failure which may reasonably be prevented during startup, shutdown or malfunction shall be prohibited. [Rule 62-210.700(4), F.A.C.]

Continuous Monitoring Requirements

{*Permitting note: The following continuous monitors are installed on these emissions units: steam flow, urea injection rate, ACI rate, inlet temperature to the fabric filter, opacity, SO₂, NOx, CO and carbon dioxide (CO₂).}*

- A.23.1. <u>Steam Flow Meter</u>. The owner or operator shall calibrate, maintain, and operate a steam flow meter or a feedwater flow meter; to measure steam (or feedwater) flow in kilograms per hour (or lbs/hour) on a continuous basis; and record the output of the monitor. Steam (or feedwater) flow shall be calculated in 4-hour block arithmetic averages. [Rule 62-213.440, F.A.C.; 40 CFR 60.34b, 40 CFR 60.53b & 40 CFR 60.58b(i)(6); and, PSD-FL-108A.]
- A.23.2. Urea Injection Rate: The permittee shall calibrate, operate and maintain a CMS to continuously monitor and record the urea injection rate of each SNCR system. [0990234-015-AC/PSD-FL-108H]
- A.23.3. ACI Rate: The permittee shall calibrate, operate and maintain a CMS to continuously monitor and record the ACI injection rate of each ACI system. [0990234-015-AC/PSD-FL-108H]
- A.24. <u>Inlet Temperature to Particulate Matter Control Device</u>. The owner or operator shall calibrate, maintain, and operate a device for measuring on a continuous basis the temperature of the flue gas stream at the inlet to each particulate matter control device utilized. Temperature shall be calculated in 4-hour block arithmetic averages. [Rule 62-213.440, F.A.C.; 40 CFR 60.34b, 40 CFR 60.53b & 40 CFR 60.58b(i)(7); and, 0990234-015-AC/PSD-FL-108H]
- A.25. <u>Continuous Emissions Monitoring Systems (CEMS) Required</u>. The owner or operator shall calibrate, operate and maintain continuous emissions monitoring systems (CEMS) for monitoring opacity, sulfur dioxide (SO₂), nitrogen oxides (NOx) and carbon monoxide (CO). [Rule 62-213.440, F.A.C.; and, 40 CFR 60.38b; 40 CFR 60.58b(c)(8) (opacity); 40 CFR 60.58b(e)(5) (SO₂); 40 CFR 60.58b(h)(4) (NOx) & 40 CFR 60.58b(i)(3) (CO).]
- **A.26.** Oxygen (O₂) or Carbon Dioxide (CO₂) CEMS. The owner or operator shall calibrate, maintain, and operate a continuous emission monitoring system (CEMS) for measuring the oxygen or carbon dioxide content of the flue gas at each location where carbon monoxide, sulfur dioxide, or nitrogen oxides emissions are monitored and record the output of the system. [Rule 62-213.440, F.A.C. and 40 CFR 60.38b, & 40 CFR 60.58b(b).]

Subsection A. Emissions Units 001, 002 & 019

Test Methods and Procedures

{Permitting note: Table 2, Summary of Compliance Requirements, summarizes information for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.}

A.27. <u>Test Methods</u>. Required tests shall be performed in accordance with the following reference methods:

Method(s)	Description of Method(s) and Comment(s)
EPA Methods 1-4	Traverse Points, Velocity and Flow Rate, Gas Analysis, and Moisture Content
EPA Methods 5	Methods for Determining PM Emissions
EPA Methods 6, 6A, 6C or 8	Methods for Determining SO ₂ Emissions
EPA Method 7, 7A, 7B, 7C, 7D or 7E	Determination of NOx Emissions
EPA Method 9	Visual Determination of the Opacity of Emissions (VE)
EPA Method 10, 10A or 10B	Determination of CO Emissions
EPA Method 12	Determination of Pb Emissions
EPA Method 19	Determination of "F" factors used in determining heating value of RDF
EPA Method 22	Visual Determination of Fugitive Emissions from Material Sources
EPA Method 23	Measurement of D/F Emissions. Authorized to omit methylene chloride rinse. ¹
EPA Method 25 or 25A	Determination of VOC Emissions
EPA Method 26 or 26A	Determination of HCl Emissions from Stationary Sources. Changes were approved to the EPA Method 26 testing methodology. ²
EPA Method 29	Determination of Metal (e.g., Cd, Hg and Pb) Emissions from Stationary Sources
EPA Method 101A	Determination of Hg Emissions

The above methods are described in Chapter 62-297, F.A.C. and/or 40 CFR 60, Appendix A, and adopted by reference in Rule 62-204.800, F.A.C. No other methods may be used unless prior written approval is received from the Department. [Chapter 62-297, F.A.C.; Rule 62-204.800(9)(b)7., F.A.C.; PSD-FL-108A; ¹ Appendix ATP, U.S. EPA Alternative Test Procedure Approval dated June 3, 2004; and, ² Permit No. 0990234-019-AC/PSD-FL-108I.]

- A.28. <u>Common Testing Requirements</u>. Unless otherwise specified, tests shall be conducted in accordance with the requirements and procedures specified in Appendix TR, Facility-Wide Testing Requirements, of this permit. [Rule 62-297.310, F.A.C.]
- A.29. <u>Annual Compliance Test</u>. The owner or operator shall conduct a performance test for PM, opacity, Cd, Hg, Pb and D/F emissions on a calendar year basis (no less than 9 calendar months and no more than 15 calendar months following the previous performance test; and must complete five performance tests in each 5-year calendar period). For each required cadmium, dioxin/furan, lead, mercury, and PM test run, the permittee shall also record and report the actual ACI rate, lime injection rate, and temperature data for the fabric filter system. The owner or operator shall conduct a performance test for HCl emissions on an annual

basis. For each required hydrochloric acid test run, the permittee shall also record and report the actual lime injection rate. [Rule 62-297.310(8), F.A.C. [Rules 62-297.310(7) & 62-204.800(9)(b)7., F.A.C. and PSD-FL-108A, specific condition 4. and PSD-FL-108H]

- **A.30.** <u>VOC Emission Testing</u>. Compliance with the VOC limit shall be demonstrated by compliance with both Carbon Monoxide limits in lieu of stack testing, but should the Department feel the VOC limit is not being met, a special compliance test could be required. [0990234-021-AC/PSD-FL-108J]
- **A.31.** <u>Dioxins/Furans</u>. The alternative performance testing schedule for dioxins/furans (D/F) specified in 40 CFR 60.58b(g)(5)(iii) (See Appendix 40 CFR 60, Subpart Eb) shall apply to municipal waste combustor plants that achieve a dioxin/furan emission level less than or equal to **15** nanograms per dry standard cubic meter, corrected to 7 percent oxygen. [Rule 62-204.800(9)(b)7.b, F.A.C.]
- A.32. <u>HCl Emission Testing</u>. EPA Method 26 shall be used for the determination of hydrochloric acid concentration or other methods approved by DEP and EPA. The permittee may modify the EPA Method 26 sampling train as follows: full-size (Greenburg-Smith design) impingers may be used in lieu of midget impingers; and, the two sodium hydroxide (NaOH) impingers may be replaced with one empty impinger. [Permit No. 0990234-019-AC/PSD-FL-108I, specific condition 4.i.]
- **A.33.** <u>Mercury Testing Frequency</u>. The Department's Order Granting Variance dated August 25, 1997, is a part of this permit. The variance allows the facility to test mercury emissions annually provided each future annual test demonstrates compliance. The order contains additional terms. If compliance is not demonstrated by each annual test, the Department retains the right to reinstate quarterly testing. The variance does not apply to any other new or existing state or federal rule which may require more frequent mercury testing. [Rule 62-296.416(3)(a)3., F.A.C.; and, Order Granting Variance dated August 25, 1997.]

{Permitting note: 40 CFR 60, Subpart Cb requires annual Hg testing.}

A.34. <u>RDF Analysis</u>. During compliance stack tests, the RDF shall be analyzed by at least two separate labs, approved by the Department, using split samples for the Btu and moisture contents. [PSD-FL-108A, specific condition 12.]

Recordkeeping and Reporting Requirements

A.35. <u>Reporting Schedule</u>. The following reports shall be submitted to the Compliance Authority:

Report	Reporting Deadlines	Related Conditions
Excess Emissions from Malfunctions, if requested by the Compliance Authority	Every 3 months (quarter)	A.36.
NSPS Excess Emissions and Monitoring System Performance	Every 6 months (semi-annual), except when more frequent reporting is specifically required	A.46.
EG Cb (Eb) Annual Report	Every 6 months (semi-annual)	A.44 & 45.
		Appendix Cb/Appendix Eb - 40 CFR 60.59b(g)
EG Cb (Eb) Semi-Annual Report	Every 6 months (semi-annual)	A.44 & 45.
		Appendix Cb/Appendix Eb - 40 CFR 60.59b(h)

[Rule 62-210.700(6), F.A.C.; 40 CFR 60, Subparts A, Cb & Eb.]

A.36. <u>Excess Emissions from Malfunctions</u>. In the case of excess emissions resulting from malfunctions, each owner or operator shall notify the Compliance Authority in accordance with Rule 62-4.130, F.A.C. A full

Subsection A. Emissions Units 001, 002 & 019

written report on the malfunctions shall be submitted in a quarterly report, if requested by the Compliance Authority. [Rule 62-210.700(6), F.A.C.]

- A.37. <u>Other Reporting Requirements</u>. See Appendix RR, Facility-Wide Reporting Requirements, for additional reporting requirements. [Rule 62-213.440, F.A.C.]
- **A.38.** <u>Records of Non-MSW</u>. The facility owner or operator shall prepare and maintain records concerning the description and quantities of all <u>segregated loads</u> of non-MSW material which are received and used as fuel at the facility, and subject to a percentage weight limitation (see Specific Conditions **A.5.e.** and **A.5.f.**). The following records shall be prepared and maintained to demonstrate compliance with the segregated non-MSW percentage limitations:
 - a. Segregated Loads of non-MSW Materials. Each segregated load of non-MSW materials, that is subject to the percentage weight limitations (see Specific Conditions A.5.e. and A.5.f.), which is received for processing shall be documented as to the description and weight of the waste. The weight of all waste materials received for processing shall be measured using the facility truck scale and recorded.
 - b. *Waste Tires*. Each day the total weight of segregated tires received shall be computed, and the daily total shall be added to the sum of the daily totals from the previous days in the current calendar month. At the end of each calendar month, the resultant monthly total weight of tires shall be divided by the total weight of all waste materials received in the same calendar month, and the resultant number shall be multiplied by 100 to express the ratio in percentage terms. The percentage computed shall be compared to the 3% limitation.
 - c *Non-MSW Material.* Each day the total weight of segregated non-MSW materials received that are subject to the 5% restriction shall be computed, and the daily total shall be added to the sum of the daily totals from the previous days in the current calendar month. At the end of each calendar month, the resultant monthly total weight of segregated non-MSW materials subject to the 5% restriction shall be divided by the total weight of all waste materials received in the same calendar month, and the resultant number shall be inultiplied by 100 to express the ratio in percentage terms. The percentage computed shall be compared to the 5% limitation.
 - [Rules 62-4.070(1), (3), 62-213.410 & 62-213.440, F.A.C.]
- A.39. <u>Daily Waste Logs Required</u>. The permittee shall maintain a daily log of the municipal solid waste received. Such a log must record, at a minimum, the amount of waste, the time, and the type of waste received. [PSD-FL-108A, specific condition 18. and Rule 62-213.440, F.A.C.]
- A.40. <u>Reporting and Recordkeeping</u>. The reporting and recordkeeping requirements applicable to each municipal waste combustor unit subject to Rule 62-204.800(9)(b), F.A.C., shall be the same as set forth in 40 CFR 60.59b, except for the siting requirements under 40 CFR 60.59b(a), (b)(5) and (d)(11). See Appendix 40 CFR 60, Subpart Eb. [Rule 62-204.800(9)(b)7.b, F.A.C.]

Operator Practices, Training and Certification

- A.41. Operating Practices. The owner or operator shall comply with the operating practices as set forth in 40 CFR 60.53b(b) and (c). [Rule 62-204.800(9)(b)4., F.A.C.; and, 40 CFR 60.34b & 40 CFR 60.53b.]
- A.42. <u>Operator Training and Certification</u>. The owner or operator shall comply with the operator training and certification requirements of 40 CFR 60.54b. Compliance with these requirements shall be conducted according to the schedule specified in 40 CFR 60.39b(c)(4). [Rule 62-204.800(9)(b)5., F.A.C.; and, 40 CFR 60.35b & 40 CFR 60.54b.]

EG 40 CFR 60, Subpart Cb Requirements

A.43. <u>EG Requirements - General Applicability and Definitions</u>. These emissions units shall comply with all applicable requirements of 40 CFR 60, Emission Guidelines and Compliance Times which have been adopted by reference in Rule 62-204.800(9), F.A.C., except that the term "Administrator," when used in any provision

of 40 CFR 60 that is delegated to the Department by the U.S. Environmental Protection Agency, shall mean the Secretary or the Secretary's designee. [Rule 62-204.800(9)(a), F.A.C.]

A.44. <u>EG Requirements - Subpart Cb</u>. These emissions units shall comply with all applicable requirements of 40 CFR 60, Subpart Cb, Emissions Guidelines (EG) and Compliance Times for Large Municipal Waste Combustors, which have been adopted and incorporated by reference in Rule 62-204.800(9), F.A.C. These emissions units shall comply with Appendix 40 CFR 60 Subpart Cb included with this permit. [Rule 62-204.800(9)(b), F.A.C.]

NSPS 40 CFR 60, Subpart A & Eb Requirements

{Permitting notes: The EG 40 CFR 60, Subpart Cb, cross references conditions (applicable requirements) that are contained in the NSPS 40 CFR 60, Subparts A and Eb.}

- A.45. <u>NSPS Requirements Subpart Eb</u>. Except as otherwise provided in this permit, these emissions units shall comply with all applicable provisions of 40 CFR 60, Subpart Eb, Large Municipal Waste Combustors, adopted and incorporated by reference in Rule 62-204.800(8)(b), F.A.C.; except that the Secretary is not the Administrator for purposes of the authorities cited at 40 CFR 60.50b(n). These emissions units shall comply with all applicable provisions of Appendix 40 CFR 60 Subpart Eb included with this permit. [Rule 62-204.800(8)(b)7., F.A.C.]
- **A.46.** <u>NSPS Requirements Subpart A</u>. This emissions unit shall comply with all applicable requirements of 40 CFR 60, Subpart A, General Provisions, including:
 - 40 CFR 60.7, Notification and Recordkeeping
 - 40 CFR 60.8, Performance Tests
 - 40 CFR 60.11, Compliance with Standards and Maintenance Requirements
 - 40 CFR 60.12, Circumvention
 - 40 CFR 60.13, Monitoring Requirements
 - 40 CFR 60.19, General Notification and Reporting Requirements,

which have been adopted by reference in Rule 62-204.800(8)(d), F.A.C.; except that the Secretary is not the Administrator for purposes of 40 CFR 60.4, 40 CFR 60.8(b)(2) and (3), 40 CFR 60.11(e)(7) and (8), 40 CFR 60.13(g), (i) and (j)(2), and 40 CFR 60.16. This emissions unit shall comply with all applicable provisions of Appendix 40 CFR 60 Subpart A included with this permit. [Rule 62-204.800(8)(d), F.A.C.]

Other Requirements

A.47. Acid Rain Part Application. For any unit which is a solid waste incinerator, burning less than 20 percent fossil fuel as described in 40 CFR 72.6(b)(7), adopted and incorporated by reference at Rule 62-204.800, F.A.C., the designated representative of the source containing the unit shall submit a complete Acid Rain Part application governing such unit to the Department before March 1st of the year following the three calendar year period in which the incinerator consumed 20 percent or more fossil fuel on a British thermal unit (BTU) basis. [Rule 62-214.320(1), F.A.C.]

Subsection B. Emissions Units 004 & 008

E.U. ID No.	Brief Description
004	Class III Landfill and Flare (1,800 scfm, manufactured by LFG Specialties, model number PCF820I8)
008	Class I Landfill and Flare (3,500 scfm, manufactured by Shaw LFG Specialties, model number CF1238110)

The specific conditions in this section apply to the following emissions units:

The facility currently has two contiguous landfills, a Class I landfill and a Class III landfill, each with its own gas collection system and flare.

Both landfills have a design capacity greater than 2.5 million megagrams (Mg) by mass or 2.5 million cubic meters by volume. The design capacity of the Class I landfill is 33,212,516 Mg by mass and the Class III landfill is 5,723,708 Mg by mass. The landfills commenced construction in August 1988. A minor modification was requested and approved in 1994, expanding the landfills and changing the slopes. The Class I landfill started receiving waste in August 1989 and the Class III landfill started receiving waste in April 1990. The yearly waste acceptance at the Class I and Class III landfills in fiscal year (FY) 2004 was 643,501 and 203,470 Mg/yr, respectively. The Class I landfill currently accepts both municipal solid waste and ash from the resource recovery facility. The Class III landfill accepts predominately construction and demolition (C&D) debris. The Class I landfill, which continues to receive the material.

Non-methane organic compound (NMOC) emissions from each landfill were calculated to be greater than 50 Mg per year, therefore, gas collection and control systems were required. Collection and control of landfill gas emissions began in February 1996 for both landfills.

The facility has two flares with one located at each landfill. The flares are used to control emissions from the landfills. The gas flow rates from the Class I and Class III landfill flares are 1,839.6 million ft³/year and 946.08 million ft³/year, respectively. Each flare is rated based on a maximum heat content of 550 Btu/scfm. The Class I landfill flare, a 3,500 scfm flare (Emissions Unit ID No. 008) was manufactured by Shaw LFG Specialties, model number CF1238110 and began operations on May 15, 2008. The Class III landfill flare, a 1,800 scfm flare (Emissions Unit ID No. 004) was manufactured by LFG Specialties, model number PCF820I8 and began operations in 1999.

The landfills are collocated with a major source of HAP; however, individually they are not major sources of HAP. The landfills do not contain bioreactors.

The Class III landfill is expected to close by 2016 and the Class I landfill between 2023 and 2026.

{Permitting note(s): These emissions units are regulated under Rule 62-210.300, F.A.C., Permits Required; 40 CFR 60, Subpart WWW, Standards of Performance for Municipal Solid Waste Landfills adopted by reference in Rule 62-204.800(8)(b), F.A.C.; 40 CFR 63, Subpart AAAA, National Emission Standards for Hazardous Air Pollutants: Municipal Solid Waste Landfills adopted by reference in Rule 62-204.800(11)(b)59., F.A.C.; and, 40 CFR 61, Subpart M, National Emission Standards for Hazardous Air Pollutants (NESHAP) for Asbestos adopted by reference in Rule 62-204.800(10)(b), F.A.C. The flares are regulated under the NSPS 40 CFR 60, Subpart A, General Provisions, specifically at 40 CFR 60.18(b), adopted by reference in Rule 62-204.800(8)(d), F.A.C.}

Essential Potential to Emit (PTE) Parameters

- **B.1.** <u>Hours of Operation</u>. These emissions units may operate continuously (8,760 hours/year). [Rule 62-210.200 (Definitions Potential to Emit (PTE), F.A.C. and Permit No. 0990234-002-AC/PSD-FL-108D.]
- **B.2.** <u>Flares Landfill Gas Flow Rate</u>. The owner or operator shall not allow more than 3,500 scfm of landfill gas to be directed to the Class I flare and 1,800 scfm of landfill gas to be directed to the Class III flare. [Rule 62-4.070(3), F.A.C., and Permit No. 0990234-002-AC/PSD FL-108D, specific condition 3.]

Subsection B. Emissions Units 004 & 008

Landfills - Collection and Control System Design Plan

B.3. Landfills - Collection and Control System Design Plan. As an amendment to the gas collection and control plan, the owner requested and received approval from the Department for alternative provisions to inactivate gas wells. The owner or operator shall inactivate gas wells in accordance with the plan approved by the Department. [Rule 62-204.800(8)(b)75., F.A.C.; 40 CFR 60.752(b)(2)(i) & 40 CFR 60.753(b); Class I and Class III Landfill Gas Well Inactivation Plan received September 19, 2005; and, DEP approval dated December 13, 2005.]

Landfills - Collection System Temperature, Oxygen and Nitrogen Requirements

B.4. <u>Landfills - Collection System Temperature, Oxygen and Nitrogen Requirements</u>. The permittee requested and received approval from the Department to establish a higher landfill gas temperature of 82.2° C for the interior wellhead in the gas collection system. The owner or operator shall operate each interior wellhead in the collection system with a landfill gas temperature less than 82.2° C. [Rule 62-204.800(8)(b)75., F.A.C.; 40 CFR 60.753(c); and, DEP approval dated October 25, 2005.]

Landfills - Surface Methane Requirements

B.5. Landfills - Surface Methane Requirements. The permittee requested and received approval from the USEPA to reduce the frequency of surface monitoring of methane gas emissions. The frequency of surface monitoring of methane gas emissions shall be annual for the Class III Landfill, provided that the methane concentration level remains below 250 parts per million (ppm). If the methane concentration equals or exceeds 250 ppm, then the surface monitoring shall revert back to a quarterly monitoring frequency. If no readings of 250 ppm or greater are detected in three consecutive subsequent quarterly samples, the frequency shall again become annual. Note that although quarterly monitoring shall be required if the methane concentration equals or exceeds 250 ppm, corrective action measures, as required by 40 CFR 60.755(c)(4), shall only be required when the concentration level equals or exceeds 500 ppm or more above background at any location. [Rule 62-204.800(7)(b), F.A.C.; 40 CFR 60.755(c)(1); USEPA approval dated June 7, 2002; and, Permit No. 0990234-005-AC/PSD-FL-108E, specific condition 2.]

Flares - General Control Device Requirements

- **B.6.** <u>Flares Operation</u>. The flares shall be operated with a flame present at all times, as determined by the methods specified in 40 CFR 60.18(f). [Rule 62-204.800(8)(d), F.A.C.; and, 40 CFR 60.18(c)(2)]
- **B.7.** <u>Flares Exit Velocity</u>. The flares shall be operated with an exit velocity, in accordance with 40 CFR 60.18(c)(4) and (5), as determined by the methods specified in 40 CFR 60.18(f)(4) and (f)(6). [Rule 62-204.800(8)(d), F.A.C.; and, 40 CFR 60.18(c)(4) & (5)]
- **B.8.** <u>Flares Actual Exit Velocity</u>. The owner or operator shall annually determine the actual exit velocity of each flare. [Permit No. 0990234-002-AC/PSD FL-108D, specific condition 5.]
- **B.9.** <u>Flares Operation</u>. Flares used to comply with provisions of 40 CFR 60, Subpart A shall be operated at all times when emissions may be vented to them. [Rule 62-204.800(8)(d), F.A.C.; and, 40 CFR 60.18(e)]

Emission Limitations and Standards

B.10. <u>Flares - Visible Emissions</u>. The flares shall be operated with no visible emissions (VE), except for periods not to exceed a total of 5 minutes during any 2 consecutive hours. [Rule 62-204.800(8)(d), F.A.C.; and, 40 CFR 60.18(c)(1).]

Monitoring Requirements

{Permitting note: TABLE L-1. SUMMARY OF MONITORING REQUIREMENTS FOR MSW LANDFILLS under 40 CFR 60, Subpart WWW and 40 CFR 63, Subpart AAAA, summarizes information for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.}

Subsection B. Emissions Units 004 & 008

- **B.11.** <u>Flares Landfill Gas Flow Rate</u>. Total landfill gas flow to the flares shall be continuously measured and recorded. [Rules 62-4.160(2) & 62-4.070(3), F.A.C.; and, Permit No. 0990234-012-AC, specific condition 2.]
- **B.12.** <u>Flares Landfill Gas Flow Rate</u>. The actual flow rate shall be determined for each flare on a monthly average basis by dividing the measured flow by the hours that each flare was operated each month. Compliance with this limitation shall be by measuring landfill gas flows to each flare and recording flows with a totalizing meter. Records of the totalizing meter values shall be recorded in an operators log monthly, or whenever the meter is reset for any purpose, whichever is more frequent. The owner or operator shall maintain a strip chart recorder to record the flow rate to each flare as a backup device in the event that the totalizer meter is not functioning; the strip chart recorder shall also be used in conjunction with an operators log to document the hours each month that each flare was operated. [Rule 62-4.070(3), F.A.C., and Permit No. 0990234-002-AC/PSD FL-108D, specific condition 3.]
- **B.13.** <u>Sampling & Analysis of Sulfur Content of Landfill Gas</u>. The sulfur content of each landfill's gas shall be sampled annually, analyzed and the results provided to the compliance authority with a copy to the Bureau of Air Regulation. The sulfur content of each landfill's gas shall be analyzed at the inlet to the flare. Based on the sampling results and Rule 62-297.310(7)(b), F.A.C., the Department may request additional gas sampling and analyses. [Rules 62-4.070(3) and 62-297.310, F.A.C.; Permit No. 0990234-012-AC, specific condition 7.; and, Permit No. 0990234-002-AC/PSD FL-108D, specific condition 5.]</u>
- **B.14.** <u>Startup, Shutdown and Malfunction Plan under NESHAP 40 CFR 63, Subpart AAAA</u>. The owner or operator shall follow the written startup, shutdown and malfunction plan (SSM Plan). A copy of the SSM Plan must be maintained on site. [Rule 62-204.800(11)(d)1., F.A.C. and 40 CFR 63.1960.]

Test Methods and Procedures

B.15. <u>Flares - Test Methods</u>. Required tests shall be performed in accordance with the following reference methods:

Method(s)	Description of Method(s) and Comment(s)
ASTM Method D1072- 90, or later method	Sulfur Content Analysis of Landfill Gas
ASTM D1945-03 ¹	Alternative Method of Determining Net Heating Value of Landfill Gas
In-place Calibrated Flow Meter ¹	Determining Flare Gas Exit Velocity
EPA Method 22	Visual Determination of Smoke Emissions from Flares

The above methods are described in Chapter 62-297, F.A.C. and/or 40 CFR 60, Appendix A, and adopted by reference in Rule 62-204.800, F.A.C. No other methods may be used unless prior written approval is received from the Department. [Chapter 62-297, F.A.C. & Rule 62-204.800(9)(b)7., F.A.C.; Permit No. 0990234-002-AC/PSD FL-108D, specific condition 5.; and, ¹ USEPA approval dated August 10, 2005.]

- **B.16.** <u>Common Testing Requirements</u>. Unless otherwise specified, tests shall be conducted in accordance with the requirements and procedures specified in Appendix TR, Facility-Wide Testing Requirements, of this permit. [Rule 62-297.310, F.A.C.]
- **B.17.** <u>Annual Compliance Test</u>. During each federal fiscal year (October 1st to September 30th), the flares shall be tested to demonstrate compliance with the emission limitations for VE. [Rule 62-297.310(7), F.A.C.]
- **B.18.** <u>Flares Determining Net Heating Value of Landfill Gas</u>. The owner or operator requested and received approval from USEPA for an alternative method of determining the net heating value of the gas being combusted in the flares. ASTM D1945-03 shall be used in place of EPA Method 18. A minimum collection of three (3)-thirty (30) minute samples is required. The requirement to test for hydrogen with ASTM D1946

Subsection B. Emissions Units 004 & 008

is waived due to the low levels of hydrogen in the landfill gas. [Rule 62-204.800(8)(d), F.A.C.; 40 CFR 60.18(f)(3); and, USEPA approval dated August 10, 2005.]

- **B.19.** <u>Flares Determining Flare Gas Exit Velocity</u>. The owner or operator requested and received approval from USEPA for an alternative method of determining the flare gas exit velocity. The in-place calibrated flow meter shall be used in place of EPA Methods 2, 2A, 2C, or 2D. [Rule 62-204.800(8)(d), F.A.C.; 40 CFR 60.18(f)(4); and, USEPA approval dated August 10, 2005.]
- **B.20.** <u>Flares Visible Emission Test Method</u>. EPA Method 22 shall be used to determine the compliance with the visible emission limit for the flares. The observation period is 2 hours and shall be used according to EPA Method 22. [Rule 62-204.800(8)(d), F.A.C.; and, 40 CFR 60.18(f)(1).]
- **B.21.** <u>Flares Sulfur Content of Landfill Gas</u>. The owner or operator shall amually analyze the sulfur content of the landfill gas directed to each flare using ASTM Method D1072-90, or later method. [Perinit No. 0990234-002-AC/PSD FL-108D, specific condition 5.]

Recordkeeping and Reporting Requirements

{Permitting note: TABLE L-2. SUMMARY OF RECORDKEEPING REQUIREMENTS FOR MSW LANDFILLS under 40 CFR 60, Subpart WWW and 40 CFR 63, Subpart AAAA, summarizes information for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.}

{*Permitting note: TABLE L-3. SUMMARY OF COMPLIANCE REPORTING REQUIREMENTS FOR MSW LANDFILLS under 40 CFR 60, Subpart WWW and 40 CFR 63, Subpart AAAA, summarizes information for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.*}

B.22.	Reporting Schedule.	The following reports shall be submitted	to the Compliance Authority:
	Troporting bonoution	The following reports blain of basimites	to the company.

Report	Reporting Deadline	Related Condition
Semi-Annual Compliance Reports	Every 6 months, due March 1 st and September 1 st	B.24.

[Rule 62-213.440, F.A.C.]

- **B.23.** <u>Flares Reporting Requirements.</u> The owner or operator shall annually report the actual exit velocity of each flare and the sulfur content of the landfill gas directed to each flare. The actual exit velocity shall be reported to the Department as an attachment to the facility's annual operating report (AOR). The sulfur content along with SO₂ emissions in tons per year (TPY) for each flare shall also be included with the AOR. [Permit No. 0990234-002-AC/PSD FL-108D, specific condition 5.]
- **B.24.** <u>Landfills Semi-Annual Compliance Reports under NESHAP 40 CFR 63, Subpart AAAA</u>. The owner or operator shall submit semi-annual compliance reports. The semi-annual compliance reports shall be due March 1st and September 1st. [Rule 62-204.800(11)(d)1., F.A.C.; 40 CFR 63.1980(a); and, Applicant's Request.]
- **B.25.** <u>Other Reporting Requirements</u>. See Appendix RR, Facility-Wide Reporting Requirements, for additional reporting requirements. [Rule 62-213.440, F.A.C.]

NSPS 40 CFR 60, Subpart A & WWW Requirements

- **B.26.** <u>NSPS Requirements Subpart WWW</u>. Except as otherwise provided in this permit, these emissions units shall comply with all applicable provisions of 40 CFR 60, Subpart WWW, Municipal Solid Waste Landfills, adopted by reference in Rule 62-204.800(8)(b), F.A.C.; except that the Secretary is not the Administrator for purposes of 40 CFR 60.754(a)(5). These emissions units shall comply with all applicable provisions of **Appendix 40 CFR 60 Subpart WWW** included with this permit. [Rule 62-204.800(8)(b)75., F.A.C.]
- **B.27.** <u>NSPS Requirements Subpart A</u>. These emissions units shall comply with all applicable requirements of 40 CFR 60, Subpart A, General Provisions, including:
 - 40 CFR 60.7, Notification and Recordkeeping

Subsection B. Emissions Units 004 & 008

40 CFR 60.8, Performance Tests

40 CFR 60.11, Compliance with Standards and Maintenance Requirements

40 CFR 60.12, Circumvention

40 CFR 60.13, Monitoring Requirements

40 CFR 60.19, General Notification and Reporting Requirements,

which have been adopted by reference in Rule 62-204.800(8)(d), F.A.C.; except that the Secretary is not the Administrator for purposes of 40 CFR 60.4, 40 CFR 60.8(b)(2) and (3), 40 CFR 60.11(e)(7) and (8), 40 CFR 60.13(g), (i) and (j)(2), and 40 CFR 60.16. These emissions units shall comply with all applicable provisions of **Appendix 40 CFR 60 Subpart A** included with this permit. [Rule 62-204.800(8)(d), F.A.C.]

NESHAP 40 CFR 61, Subpart A & M - Asbestos Disposal Site Standards

- **B.28.** <u>NESHAP 40 CFR 61 Requirements Subpart M [Set A]</u>. The asbestos waste disposal sites shall comply with all applicable requirements of 40 CFR 61, Subpart M, National Emission Standard for Asbestos, which have been adopted by reference in Rule 62-204.800(10)(b), F.A.C.; except that the Secretary is not the Administrator for the purposes of 40 CFR 61.149(c)(2), 40 CFR 61.150(a)(4), 40 CFR 61.151(c), 40 CFR 61.152(b)(3), 40 CFR 61.154(d), and 40 CFR 61.155(a). These emissions units shall comply with all applicable provisions of **Appendix 40 CFR 61, Subpart M "Set A,"** included with this permit. [Rule 62-204.800(10)(b)8., F.A.C.]
- B.29. <u>NESHAP 40 CFR 61 Requirements Subpart A</u>. The asbestos waste disposal sites shall comply with all applicable requirements of 40 CFR 61, Subpart A, General Provisions, which have been adopted by reference in Rule 62-204.800(10)(d), F.A.C.; except for 40 CFR 61.08 and except that the Secretary is not the Administrator for the purposes of 40 CFR 61.04, 40 CFR 61.11, and 40 CFR 61.18. In lieu of the process set forth in 40 CFR 61.08, the Department will follow the permit processing procedures of Rule 62-4.055, F.A.C. The asbestos waste disposal sites shall comply with all applicable provisions of Appendix 40 CFR 61
 Subpart A General Provisions included with this permit. [Rule 62-204.800(10)(d), F.A.C.]

NESHAP (MACT) 40 CFR 63, Subpart A & AAAA Requirements

{Permitting note: Most of the requirements of NESHAP 40 CFR 63, Subpart AAAA cross references conditions (applicable requirements) that are contained in NSPS 40 CFR 60, Subpart WWW. However, NESHAP 40 CFR 63, Subpart AAAA does include several additional requirements, most importantly the requirement to develop and implement a written startup, shutdown and malfunction plan (SSM Plan) (see 40 CFR 63.1960 in Appendix 40 CFR 63 Subpart AAAA, and 40 CFR 63.6(e)(3) in Appendix 40 CFR 63 Subpart A), and the requirement for submittal of a semi-annual compliance report (see 40 CFR 60.757(f) in Appendix 40 CFR 60 Subpart WWW and 40 CFR 63.1980 in Appendix 40 CFR 63 Subpart AAAA).)}

- **B.30.** <u>40 CFR 63 Requirements Subpart A</u>. These emissions units shall comply with all applicable requirements of 40 CFR 63, Subpart A, General Provisions, which have been adopted by reference in Rule 62-204.800(11)(d)1., F.A.C., except that the Secretary is not the Administrator for purposes of 40 CFR 63.5(e), 40 CFR 63.5(f), 40 CFR 63.6(g), 40 CFR 63.6(h)(9), 40 CFR 63.6(j), 40 CFR 63.13, and 40 CFR 63.14. These emissions units shall comply with **Appendix 40 CFR 63 Subpart A** included with this permit. [Rule 62-204.800(11)(d)1., F.A.C.]
- B.31. <u>40 CFR 63 Requirements Subpart AAAA</u>. These emissions units shall comply with all applicable requirements of 40 CFR 63, Subpart AAAA, Municipal Solid Waste Landfills, which have been adopted by reference in Rule 62-204.800(11)(b)59., F.A.C., except that the Secretary is not the Administrator for purposes of the authorities cited at 40 CFR 63.1985(c). These emissions units shall comply with Appendix 40 CFR 63 Subpart AAAA included with this permit. [Rule 62-204.800(11)(b)59., F.A.C.]

E.U. ID No.	Brief Description	
	Biosolids Pelletization Facility (BPF)	
010	BPF Sludge Dryer Train #1	
011	BPF Sludge Dryer Train #2	
012	BPF Recycle Material Bin and Pellet Storage Silo for Sludge Dryer Train #1	
014	BPF Recycle Material Bin and Pellet Storage Silo for Sludge Dryer Train #2	

The specific conditions in this section apply to the following emissions units:

The BPF has two 337.5 wet tons per day (wtpd) {67.5 dry tpd} sludge drying trains, Dryer Train #1 and #2, and related appurtenances. The sludge dryer trains were manufactured by Baker Rullman Drum Assembly, Model No. SD-125-42. Each dryer train at the BPF combusts landfill gas generated from the nearby landfill and/or natural gas in a rotary drum dryer to dry sewage sludge and then screens the dried sludge into marketable fertilizer pellets. Each dryer has a rated capacity of 40 MMBtu/hour heat input (natural gas or landfill gas) plus an additional 2 MMBtu/ hour heat input from each regenerative thermal oxidizer (RTO) for a total rated capacity of 84 MMBtu/ hour heat input from the dryers and the RTOs.

Dry low NOx burners and acid addition in the tray/condenser scrubber are used to control NOx emissions from each dryer's exhaust. A tray/condenser scrubber and a venturi scrubber are used to control PM emissions from each dryer's exhaust. The BPF uses a regenerative thermal oxidizer (RTO) on each dryer exhaust to control VOC emissions with an efficiency of 98%. The RTO also minimizes odors. VOCs are also combusted in the dryer burners with an estimated efficiency of 98%. CO emissions are controlled by good combustion in the dryer and in the RTO.

Each dryer RTO train has its own flue within a shared single stack. The stack parameters are: height, 138 feet; diameter, 2.5 feet; exit temperature, 194 degrees F; and, actual stack gas flow rate, 15,000 acfm. The sludge dryer trains began operation on May 22, 2009.

Each biosolids dryer train also has the following: a recycle material bin and pellet storage silo, and a cooling tower. Dusty air from silo filling operations is ducted to each recycle bin baghouse. Material captured by each baghouse is returned back into the process/operation. Each recycle material bin baghouse vents through a building odor scrubber which exhausts through an approximately 0.5 feet diameter outlet at about 50 feet above grade. Emissions from the cooling towers are uncontrolled.

{Permitting note(s): The sludge drying trains are regulated under 40 CFR 61, Subpart E, National Emission Standards for Hazardous Air Pollutants for Mercury, adopted and incorporated by reference in Rule 62-204.800(10)(b)3., F.A.C. and 40 CFR 64, Compliance Assurance Monitoring (CAM). The sludge drying trains are <u>not</u> regulated under 40 CFR 60, Subpart LLLL, Standards of Performance for New Stationary Sources: Sewage Sludge Incineration Units and 40 CFR 60, Subpart MMMM, Emission Guidelines for Existing Sources: Sewage Sludge Incineration Units pursuant to the specific exemptions at 40 CFR 60.4780 and 40 CFR 60.5065. Some of these emissions units are regulated under Rule 62-212.400, F.A.C., Prevention of Significant Deterioration (PSD) [PSD-FL-108F, G & I and, Rule 62-212.400(6), F.A.C., Best Available Control Technology (BACT).}

Essential Potential to Emit (PTE) Parameters

- C.1. <u>Hours of Operation</u>. These emissions units may operate continuously (8,760 hours/year). [Rule 62-210.200 (Definitions Potential to Emit (PTE), F.A.C. and Permit No. 0990234-006-AC/PSD-FL-108F.]
- **C.2.** <u>Permitted Capacity</u>. The maximum process rate for each dryer train is 337.5 wet tons of sludge per day (wtpd, at 20% solids) or 67.5 dry tpd. The maximum process rate for the Biosolids Pelletization Facility (BPF) is 675 wet tons of sludge per day (wtpd, at 20% solids) or 135 dry tpd. The maximum heat input rate for each dryer and RTO are as follows:

E.U. ID No.	Brief Description	Max. Heat Input (Natural or Landfill Gas)
010	BPF Sludge Dryer Train #1	42 MMBtu/hour
011	BPF Sludge Dryer Train #2	42 MMBtu/hour

[Rules 62-4.160(2) & 62-210 (PTE), F.A.C. and Permit Nos. 0990234-006-AC/PSD-FL-108F & 0990234-019-AC/PSD-FL-108I.]

- C.3. <u>Methods of Operation Fuels</u>. The dryers may be fired with natural gas and/or landfill gas. [Rules 62-4.160(2) & 62-210.200 (PTE), F.A.C. and Permit Nos. 0990234-006-AC/PSD-FL-108F & 0990234-019-AC/PSD-FL-108I.]
- **C.4.** <u>Emissions Unit Operating Rate Limitation After Testing</u>. See the related testing provisions in Appendix TR, Facility-wide Testing Requirements. [Rule 62-297.310(2), F.A.C.]

Monitoring of Operations

C.5. <u>Sludge Process Rate</u>. The owner or operator shall monitor and record daily the sludge process rate for each dryer train. [Rule 62-4.070(1) & (3), F.A.C.; and, Permit No. 0990234-006-AC/PSD-FL-108F.]

Operation and Maintenance of Air Pollution Control Technologies

- **C.6.** <u>Operation and Maintenance of Air Pollution Control Technologies</u>. The owner or operator shall operate and maintain the selected air pollution control technologies, e.g., dry low NOx burners, exhaust gas recirculation system, tray scrubber/condenser scrubber, venturi scrubbers and RTOs. [BACT Determination and Permit No. 0990234-006-AC/PSD-FL-108F.]
- **C.7.** <u>Operation and Maintenance of Fabric Filters</u>. The owner or operator shall operate and maintain fabric filters on each material recycle bin exhaust to control PM emissions from the material recycle bin and the pellet storage silo. [BACT Determination and Permit No. 0990234-006-AC/PSD-FL-108F.]
- **C.8.** <u>Operation and Maintenance Manuals</u>. The owner or operator shall follow the manufacturers' Operation and Maintenance Manuals for the selected air pollution control technologies, e.g., dry low NOx burners, exhaust gas recirculation system, tray scrubber/condenser scrubber, venturi scrubber, RTOs and fabric filters. [BACT Determination and Permit No. 0990234-006-AC/PSD-FL-108F.]

Emission Limitations and Standards

{*Permitting note: Table 1, Summary of Air Pollutant Standards and Terms, summarizes information for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.*}

Unless otherwise specified, the averaging times for Specific Conditions C.9. - C.17. are based on the specified averaging time of the applicable test method.

- C.9. <u>Nitrogen Oxides</u>. NOx emissions from each sludge dryer RTO train shall not exceed 5.60 lbs/hour and 24.55 tons/year. [BACT Determination and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- **C.10.** <u>Particulate Matter</u>. PM/PM₁₀ emissions from each sludge dryer RTO train shall not exceed 2.42 lbs/hour and 10.6 tons/year. [BACT Determination and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- C.11. <u>Visible Emission</u>. VE from each sludge dryer RTO train shall not exceed 5% opacity, except 20% opacity is allowed for up to 3 minutes in 1 hour. [BACT Determination and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- **C.12.** <u>Particulate Matter</u>. PM/PM₁₀ emissions from each recycle material bin and pellet storage silo baghouse shall not exceed 0.010 gr/dscf. [BACT Determination and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- **C.13.** <u>Visible Emission.</u> VE from each recycle material bin and pellet storage silo baghouse shall not exceed 5% opacity. [BACT Determination and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]

- C.14. <u>Sulfur Dioxide</u>. SO₂ emissions from each sludge dryer RTO train shall not exceed 4.45 lbs/hour and 19.5 tons/year. [Rules 62-212.400(12) (Source Obligation, escape PSD), 62-4.070(1), & (3), F.A.C., and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- C.15. <u>Carbon Monoxide</u>. CO emissions from each sludge dryer RTO train shall not exceed 3.37 lbs/hour and 14.75 tons/year. [Rules 62-212.400(12) (Source Obligation, escape PSD), 62-4.070(1), & (3), F.A.C., and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- C.16. <u>Volatile Organic Compound</u>. VOC emissions from each sludge dryer RTO train shall not exceed 1 lbs/hour and 4.4 tons/year. [Rules 62-212.400(12) (Source Obligation, escape PSD), 62-4.070(1), & (3), F.A.C., and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- C.17. <u>Mercury</u>. Hg emissions from each sludge dryer RTO train shall not exceed 2.2 E-02 lb/24-hour period. {The Hg emissions standard under the NESHAP is 3.2 kg (7.1 lb)/24-hour period. The applicant proposed a limit which is much lower than the NESHAP standard.} [Rules 62-212.400(12) (Source Obligation, escape PSD), 62-4.070(1), & (3), F.A.C., and Table AP-1 from Permit No. 0990234-006-AC/PSD-FL-108F.]
- **C.18.** <u>Unconfined Particulate Matter Emissions at BPF</u>. Pursuant to Rules 62-296.320(4)(c)1., 3. and 4., F.A.C., reasonable precautions to prevent emissions of unconfined particulate matter at the BPF include the following requirements consistent with current practices by the Solid Waste Authority:
 - a. Pave all parking lots and permanent drives;
 - b. Street sweep paved areas on a regular basis; and,
 - c. Use a water truck to spray water on unpaved roads and active unpaved areas.
 - [Rule 62-296.320(4)(c)2., F.A.C. and Permit No. 0990234-006-AC/PSD-FL-108F.]

Excess Emissions

Rule 62-210.700 (Excess Emissions), F.A.C., cannot vary any requirement of a NESHAP provision.

- **C.19.** <u>Excess Emissions Allowed</u>. Excess emissions resulting from startup, shutdown or malfunction of any emissions unit shall be permitted providing (1) best operational practices to minimize emissions are adhered to and (2) the duration of excess emissions shall be minimized but in no case exceed two hours in any 24 hour period unless specifically authorized by the Department for longer duration. [Rule 62-210.700(1), F.A.C.]
- **C.20.** Excess Emissions Prohibited. Excess emissions which are caused entirely or in part by poor maintenance, poor operation, or any other equipment or process failure which may reasonably be prevented during startup, shutdown, or malfunction shall be prohibited. [Rule 62-210.700(4), F.A.C.]

Monitoring Requirements

C.21. Compliance Assurance Monitoring (CAM) Requirements. Each sludge dryer RTO train is subject to the CAM requirements contained in the attached Appendix CAM. Failure to adhere to the monitoring requirements specified does not necessarily indicate an exceedance of a specific emissions limitation; however, it may constitute good reason to require compliance testing pursuant to Rule 62-297.310(7)(b), F.A.C. [40 CFR 64; and, Rules 62-204.800 & 62-213.440(1)(b)1.a., F.A.C.]

{Permitting note: The excursion level specified in the approved CAM Plan was established based upon the initial PM test data (September 2009) and the manufacturer's recommendations. The excursion level shall be re-evaluated at the time of permit renewal based upon the new most recent test data and the manufacturer's recommendations.}

Test Methods and Procedures

{Permitting note: Table 2, Summary of Compliance Requirements, summarizes information for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.}

C.22. <u>Test Methods</u>. Required tests shall be performed in accordance with the following reference methods:

Method(s)	Description of Method(s) and Comment(s)
EPA Methods 1-4	Traverse Points, Velocity and Flow Rate, Gas Analysis, and Moisture Content
EPA Method 5	Methods for Determining Particulate Matter (PM) Emissions
EPA Method 6C	Method for Determining Sulfur Dioxide (SO ₂) Emissions
EPA Method 7 or 7E	Method for Determining Nitrogen Oxides (NOx) Emissions
EPA Method 9	Visual Determination of the Opacity of Emissions (VE)
EPA Method 10	Method for Determining Carbon Monoxide (CO) Emissions
EPA Method 25 or 25A	Methods for Determining Volatile Organic Compound (VOC) Emissions
EPA Method 101A or EPA Method 105	Method for Determining Particulate and Gaseous Mercury (Hg) Emissions from Sewage Sludge Incinerators or Method for Determining Mercury (Hg) in Wastewater Treatment Plant Sewage Sludge
	The specific testing and sampling conditions as outlined in 40 CFR 61.53 and 61.54 shall be followed as described.

The above methods are described in Chapter 62-297, F.A.C. and/or 40 CFR 60, Appendix A, and adopted by reference in Rule 62-204.800, F.A.C. No other methods may be used unless prior written approval is received from the Department. [Chapter 62-297, F.A.C. and Permit No. 0990234-006-AC/PSD-FL-108F.]

- C.23. <u>Annual Compliance Test</u>. Except as specified in Specific Condition C.26., during each federal fiscal year (October 1st to September 30th), Emissions Unit ID Nos. 010 and 011 (Sludge Dryer Train #1 and #2) and 012 & 014 (Recycle Material Bins & Pellet Storage Silos for Sludge Dryer Train #1 and #2) shall be tested to demonstrate compliance with the emission limitations for VE. Compliance with the visible emissions limit for the recycle bin fabric filter exhaust is determined at the building odor control scrubber exhaust. [Rule 62-297.310(7), F.A.C. and Permit No. 0990234-006-AC/PSD-FL-108F.]
- C.24. <u>Compliance Test Prior To Renewal</u>. Prior to permit renewal, Emissions Unit ID Nos. 010 and 011 (Sludge Dryer Train #1 and #2) shall be tested to demonstrate compliance with the emission limitations for NOx, PM/PM₁₀, SO₂, and Hg. [Rule 62-297.310(7)(a)3., F.A.C. and Permit No. 0990234-006-AC/PSD-FL-108F.]
- C.25. <u>Compliance Testing CO and VOC Emissions</u>. The testing frequency for CO and VOC emissions was an initial demonstration only; no subsequent testing is required for CO and VOC because the lb/hour emission rates stated in Table AP-1 were achieved in the initial test. In lieu of frequent testing for CO and VOC emissions, the owner or operator shall follow the Operation and Maintenance Manuals for the dry low NOx burners and the RTOs. [Permit No. 0990234-006-AC/PSD-FL-108F and Rule 62-297.310(7)(a)4., F.A.C.]
- C.26. <u>Minor PM Source Testing</u>. The recycle material bins and pellet storage silos are minor sources of particulate matter. Because of the expense and complexity of conducting a stack test on minor sources of particulate matter, and because these sources are equipped with baghouses, the Department pursuant to the authority granted under Rule 62-297.620(4), F.A.C., hereby establishes a visible emission limitation not to exceed an opacity of 5% in lieu of a particulate matter stack test. In accordance with Rule 62-297.620(4), minor particulate matter sources equipped with baghouses with visible emissions that are greater than or equal to 5 percent opacity may result in the permittee being required to perform a stack test in accordance with approved methods to verify compliance with the gr/dscf emission limits. The visible emissions test shall be conducted by a certified observer using Method 9 and the procedures in 40 CFR. 60.11 and Rule 62-297.320, F.A.C. [Rule 62-297.620(1)-(4), F.A.C. and Permit No. 0990234-006-AC/PSD-FL-108F.]

C.27. <u>Common Testing Requirements</u>. Unless otherwise specified above, tests shall be conducted in accordance with the requirements and procedures specified in Appendix TR, Facility-Wide Testing Requirements, of this permit. [Rule 62-297.310, F.A.C.]

Recordkeeping and Reporting Requirements

C.28. <u>Reporting Schedule</u>. The following report shall be submitted to the Compliance Authority:

Report	Reporting Deadline	Related Condition
Excess Emissions from Malfunctions, if requested by the Compliance Authority	Every 3 months (quarter)	C.29.
[Rule 62-210,700(6), F.A.C.]		

- **C.29.** <u>Excess Emissions from Malfunctions</u>. In the case of excess emissions resulting from malfunctions, each owner or operator shall notify the Compliance Authority in accordance with Rule 62-4.130, F.A.C. A full written report on the malfunctions shall be submitted in a quarterly report, if requested by the Compliance Authority. [Rule 62-210.700(6), F.A.C.]
- **C.30.** <u>Other Reporting Requirements</u>. See Appendix RR, Facility-Wide Reporting Requirements, for additional reporting requirements. [Rule 62-213.440, F.A.C.]

NESHAP 40 CFR 61, Subparts A & E Requirements

- C.31. <u>NESHAP 40 CFR 61 Requirements Subpart A</u>. The dryers shall comply with all applicable requirements of 40 CFR 61, Subpart A, General Provisions, which have been adopted by reference in Rule 62-204.800(10)(d), F.A.C., except for 40 CFR 61.08 and except that the Secretary is not the Administrator for the purposes of 40 CFR 61.04, 40 CFR 61.11, and 40 CFR 61.18. In lieu of the process set forth in 40 CFR 61.08, the Department will follow the permit processing procedures of Rule 62-4.055, F.A.C. The dryers shall comply with all applicable provisions of Appendix 40 CFR 61 Subpart A General Provisions included with this permit. [Rule 62-204.800(10)(d), F.A.C.]
- C.32. <u>NESHAP 40 CFR 61 Requirements Subpart E</u>. The dryers shall comply with all applicable requirements of 40 CFR 61, Subpart E, National Emission Standards for Hazardous Air Pollutants for Mercury, which have been adopted by reference in Rule 62-204.800(10)(b)3., F.A.C., except that the term "Administrator," when used in any provision of 40 CFR Part 61 that is delegated to the Department by the U.S. Environmental Protection Agency, shall mean the Secretary or the Secretary's designee. The dryers shall comply with all applicable provisions of Appendix 40 CFR 61 Subpart E NESHAP for Mercury included with this permit. [Rule 62-204.800(10)(a) & (b)3., F.A.C.]

Engines in this subsection are grouped by similar engine type as regulated by EPA. Each group number is followed by a very brief explanation of the engine type as described in the EPA regulations/tables.

	Group 1: "Existing" stationary CI RICE less than or equal to 500 HP	See Specific Conditions
E.U. ID No.	Brief Description	D.1 D.11. & D.71 D.74.
035	Emergency Generator - North County Resource Recovery Facility (NCRRF) (SWA of PBC ID# WTE-E2)	
036	Fire Water Pump - NCRRF (SWA of PBC ID# WTE-E1)	
037	Emergency Generator - NCRRF Scalehouse (SWA of PBC ID# WTES-E1)	
039	Emergency Generator - Landfill Scalehouse E1 (SWA of PBC ID# LFSC-E1)	
040	Emergency Generator - Landfill Scalehouse E2 (SWA of PBC ID# LFSC-E2)	
041	Emergency Generator - MIS (SWA of PBC ID# MIS-E1)	
	Group 2: "Existing" stationary CI RICE greater than 500 HP	See Specific Conditions
E.U. ID No.	Brief Description	D.12 D.13. & D.71 D.74.
038	Emergency Generator - Utilities Facility (SWA of PBC ID# U-E5)	
	Group 3: "Existing" stationary CI RICE greater than 500 HP, Non- Emergency	See Specific Conditions
E.U. ID No.	Brief Description	D.14 D.38. & D.71 D.74.
017	Woody Waste Facility Diesel Engine (primary engine) (SWA of PBC 1D# WW)	
	Group 4: "New" stationary CI RICE greater than or equal to 175 HP and less than or equal to 500 HP	See Specific Conditions
E.U. ID No.	Brief Description	D.39 D.54. & D.71 D.74.
021	Emergency Generator - Operations Building (EPA Tier 3 certified) (SWA of PBC ID# OPS-E1)	
	Group 5: "New" stationary CI RICE greater than 500 HP	See Specific Conditions
E.U. ID No.	Brief Description	D.55 D.70. & D.71 D.74.
016	Emergency Generator - Biosolids Pelletization Facility (BPF) (EPA Tier 3 certified)	

	(SWA of PBC ID# BPF-E1)	
042	Emergency Generator - Administration (EPA Tier 1 certified) (SWA of PBC 1D# A-E1)	
043	Emergency Generator - Materials Recovery Facility (MRF) (EPA Tier 2 certified) (SWA of PBC 1D# MRF-E1)	

This subsection of the permit is comprised of 12 compression ignition (CI) type engines, 11 of which are emergency generators. Air pollutant emissions from these engines are uncontrolled.

{Permitting notes: These emissions units, engines, are regulated under 40 CFR 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollulants (NESHAP) for Stationary Reciprocating Internal Combustion Engines (RICE) adopted in Rule 62-204.800(11)(b), F.A.C. The permittee identified numerous other non-road engines (portable) located at the facility; these engines are <u>not</u> regulated under 40 CFR 63, Subpart ZZZZ. The "new" engines must meet 40 CFR 60, Subpart IIII, NSPS for Compression Ignition Internal Combustion Engines (CI ICE).}

Each part of this subsection includes unit-specific applicable requirements for each group of engines which were customized from the entire 40 CFR 63, Subpart ZZZZ and/or 40 CFR 60, Subpart IIII.

	Group 1: "Existing" stationary CI RICE less than or equal to 500 HP
E.U. ID No.	Brief Description
035	Emergency Generator - North County Resource Recovery Facility (NCRRF) (SWA of PBC 1D# WTE-E2)
036	Fire Water Pump - NCRRF (SWA of PBC ID# WTE-E1)
037	Emergency Generator - NCRRF Scalehouse (SWA of PBC ID# WTES-E1)
039	Emergency Generator - Landfill Scalehouse E1 (SWA of PBC ID# LFSC-E1)
040	Emergency Generator - Landfill Scalehouse E2 (SWA of PBC ID# LFSC-E2)
041	Emergency Generator - MIS (SWA of PBC ID# MIS-E1)

The specific conditions in this part of the subsection apply to the following group of emissions units:

{Permitting note: This part of the subsection addresses "existing" stationary CI RICE less than or equal to 500 horsepower (HP) that are located at a major source of HAP and that have <u>not</u> been modified or reconstructed after 6/12/2006. Unless the RICE is modified or reconstructed after 7/11/2005, NSPS 40 CFR 60, Subpart IIII, will not apply.}

Subsection D. Emissions Units 016, 017, 021, 035 - 044

E.U. ID No,	Engine Brake HP	Date of Construction	Model Year	Primary Fuel	Type of Engine	Displacement liters/cylinder (l/c)	Manufacturer Model # Engine Serial #
035	356	1989	-	Diesel	Emergency	1.73	Caterpillar® 3306 85Z04092
036	273	1994	-	Diesel	Emergency	1.75	Caterpillar® 3306D 6AF15B
037	19	04/01/1997	_	Diesel	Emergency	0.6	Generac® 97A00 N/A
039	19	04/01/1997	_	Diesel	Emergency	0.6	Generac® 97A00 N/A
040	63	05/19/2005	-	Diesel	Emergency	0.6	Generac® 5204150200 5030TF270c
041	47	05/01/1997	-	Diesel	Emergency	0.6	Generac® 97A02 N/A

The following table provides important details for these emissions units:

Compliance Deadline

D.1. <u>Compliance Deadline</u>. The permittee shall comply with the following emissions and operating limitations no later than May **3**, **2013**. [40 CFR 63.6595(a)(1)]

Essential Potential to Emit (PTE) Parameters

D.2. <u>Hours of Operation</u>.

- a. *Emergency Situations*. There is no time limit on the use of emergency stationary RICE in emergency situations. [40 CFR 63.6640(f)(1)]
- b. *Maintenance and Testing*. Each RICE is authorized to operate for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by federal, state or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. [40 CFR 63.6640(f)(1)]
- c. Non-emergency Situations. Each RICE is authorized to operate up to 50 hours per year in non-emergency situations, but those 50 hours are counted towards the 100 hours per year provided for maintenance and testing. [40 CFR 63.6640(f)(1)]

- d. Other Situations. Each RICE cannot be used for peak shaving or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity; except that owners and operators may operate the emergency engine for a maximum of 15 hours per year as part of a demand response program if the regional transmission organization or equivalent balancing authority and transmission operator has determined there are emergency conditions that could lead to a potential electrical blackout, such as unusually low frequency, equipment overload, capacity or energy deficiency, or unacceptable voltage level. The engine may not be operated for more than 30 minutes prior to the time when the emergency condition is expected to occur, and the engine operation must be terminated immediately after the facility is notified that the emergency condition is no longer imminent. The 15 hours per year of demand response operations. The supply of emergency power to another entity or entities pursuant to financial arrangement is not limited by this paragraph, as long as the power provided by the financial arrangement is limited to emergency power. [40 CFR 63.6640(f)(1)]
- e. *Engine Startup*. During periods of startup the owner or operator must minimize the engine's time spent at idle and minimize the engine's startup time to a period needed for the appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. [40 CFR 63.6625(h)]

Emission Limitations and Operating Requirements

{*Permitting note: These "existing" stationary CI engines with* \leq 500 *HP do not have specific numerical emission limitations and standards.*}

- D.3. Work or Management Practice Standards.
 - a. *Oil.* Change oil and filter every 500 hours of operation or annually, whichever comes first. [40 CFR 63 Table 2c(1)(a)]
 - b. *Air Cleaner*. Inspect air cleaner every 1,000 hours of operation or annually, whichever comes first. [40 CFR 63 Table 2c(1)(b)]
 - c. *Hoses and Belts*. Inspect all hoses and belts every 500 hours of operation or annually, whichever comes first, and replace as necessary. [40 CFR 63 Table 2c(1)(c)]
 - d. Operation and Maintenance. Operate and maintain the stationary RICE according to the manufacturer's emission-related operation and maintenance instructions or develop and follow your own maintenance plan which must provide, to the extent practicable for the maintenance and operation of the engine in a manner consistent with good air pollution, control practice for minimizing emissions. [40 CFR 63.6625(e)]
 - e. *Oil Analysis*. The owner or operator has the option of using oil analysis to extend the change requirement. The oil analysis must be performed at the same frequency specified for changing the oil. The analysis program must at a minimum analyze the following three parameters: Total Base Number, viscosity, and percent of water content. The condemning limits for these parameters are as follows: Total Base Number is less than 30 percent of the Total Base Number of the oil when new; viscosity of the oil has changed by more than 20 percent from the viscosity of the oil when new; or percent of water content (by volume) is greater than 0.5. If all of these condemning limits are not exceeded, the engine owner or operator is not required to change the oil. If any of the limits are exceeded, the engine is not in operation when the results of the analysis are received, the engine owner or operator must change the oil within 2 days of receiving the results of the analysis; if the engine is not in operation when the results of the analysis are received, the engine owner or operator must keep records of the parameters that are analyzed as part of the program, the results of the analysis, and the oil changes for the engine. The analysis program must be part of the maintenance plan for the engine. [40 CFR 63.6625(i)]

Subsection D. Emissions Units 016, 017, 021, 035 - 044

Monitoring of Operations

D.4. <u>Hour Meter</u>. The owner or operator must install a non-resettable hour meter if one is not already installed. [40 CFR 63.6625(f)]

Compliance Requirements

- **D.5.** <u>Continuous Compliance</u>. Each unit shall be in compliance with the emission limitations and operating standards in this section at all times. [40 CFR 63.6605(a)]
- **D.6.** <u>Operation and Maintenance of Equipment</u>. At all times the owner or operator must operate and maintain, any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the compliance authority which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. [40 CFR 63.6605(b)]

Recordkeeping Requirements

- D.7. Notification, Performance and Compliance Records.
 - a. A copy of each notification and report that the owner or operator submitted to comply with this section, including all documentation supporting any Initial Notification or Notification of Compliance Status that the owner or operator submitted.
 - b. The owner or operator must keep the records required in 40 CFR 63.6625(e) of this section to show continuous compliance with each emission limitation or operating requirement.
 - c. The owner or operator must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engines are used for demand response operation, the owner or operator must keep records of the notification of the emergency situation, and the time the engine was operated as part of demand response.
 - [40 CFR 63.6655]

D.8. <u>Malfunction Records</u>.

- a. Records of the occurrence and duration of each malfunction of operation (i.e. process equipment) or the air pollution control and monitoring equipment.
- b. Records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR 63.6605(b) of this section including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- [40 CFR 63.6655]

D.9. <u>Maintenance Records</u>.

- a. Records of all required maintenance performed on the air pollution control and monitoring equipment.
- b. (The owner or operator must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that the stationary RICE and after-treatment control device (if any) are operated and maintained according to its own maintenance plan.
- [40 CFR 63.6655]

D.10. <u>Record Retention</u>.

- a. The owner or operator must keep records in a suitable and readily available form for expeditious reviews.
- b. The owner or operator must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record.
- [40 CFR 63.6660 and 40 CFR 63.10(b)(1)]

Subsection D. Emissions Units 016, 017, 021, 035 - 044

Reporting Requirements

D.11. <u>Emergency Situation</u>. If an emergency engine is operating during an emergency and it is not possible to shut down the engine in order to perform the work practice requirements on the schedule required of this section, or if performing the work practice on the required schedule would otherwise pose an unacceptable risk under federal, state, or local law, the work practice can be delayed until the emergency is over or the unacceptable risk under federal, state, or local law has abated. The work practice should be performed as soon as practicable after the emergency has ended or the unacceptable risk under federal, state, or local law has ended or the unacceptable risk under federal, state, or local law has ended or the unacceptable risk under federal, state, or local law has ended or the unacceptable risk under federal, state, or local law has ended or the unacceptable risk under federal, state, or local law has ended or the unacceptable risk under federal, state, or local law has ended or the unacceptable risk under federal, state, or local law has ended. Sources must report any failure to perform the work practice on the schedule required and the federal, state or local law under which the risk was deemed unacceptable. [40 CFR 63.6602 Table 2c, footnote 1]

The specific conditions in this part of the subsection apply to the following group of emissions units:

	Group 2: "Existing" stationary CI RICE greater than 500 HP
E.U. ID No.	Brief Description
	Emergency Generator - Utilities Facility (SWA of PBC ID# U-E5)

{Permitting note: This part of the subsection addresses "existing" stationary CI RICE greater than 500 HP that are located at a major source of HAP and that have <u>not</u> been modified or reconstructed after 12/19/2002. Unless the RICE is modified or reconstructed after 7/11/2005, NSPS 40 CFR 60, Subpart IIII, will not apply. This RICE is not used as a fire pump.}

The following table provides important details for this emissions unit:

E.U. ID No.	Engine Brake HP	Date of Construction	Model Year	Primary Fuel	Type of Engine	Displacement liters/cylinder (l/c)	Manufacturer Model # Engine Serial #
038	3,164	5/7/2002	-	Diesel	Emergency	4.3	Caterpillar® 3516B 1HZ02187

Essential Potential to Emit (PTE) Parameters

D.12. Hours of Operation.

- a. *Emergency Situations*. There is no time limit on the use of emergency stationary RICE in emergency situations. [40 CFR 63.6640(f)(2)]
- b. *Maintenance and Testing.* Each RICE is authorized to operate for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by the manufacturer, the vendor, or the insurance company associated with the engine. Required testing of such units should be minimized, but there is no time limit for routine testing and maintenance. [40 CFR 63.6640(f)(2)]
- c. *Non-emergency situations*. Each RICE is authorized to operate for an additional 50 hours per year in nonemergency situations. The 50 hours per year for non-emergency situations cannot be used for peak shaving or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity. [40 CFR 63.6640(f)(2)]
- d. *Engine Startup*. During periods of startup the owner or operator must minimize the engine's time spent at idle and minimize the engine's startup time to a period needed for the appropriate and safe loading of the

Subsection D. Emissions Units 016, 017, 021, 035 - 044

engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. [40 CFR 63.6625(h)]

Emission Limitations and Operating Requirements

{*Permitting note: This "existing" stationary CI engine with* > 500 *HP does not have a specific numerical emission limitations and standards.*}

Record keeping Requirements

D.13. <u>Record Retention</u>.

- a. The owner or operator must keep records in a suitable and readily available form for expeditious reviews.
- b. The owner or operator must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record. [40 CFR 63.6660 and 40 CFR 63.10(b)(1)]

The specific conditions in this part of the subsection apply to the following group of emissions units:

	Group 3: "Existing" stationary CI RICE greater than 500 HP, Non- Emergency
E.U. ID No.	Brief Description
017	Woody Waste Facility Diesel Engine (primary engine) (SWA of PBC ID# WW)

{Permitting note: This part of the subsection addresses "existing" stationary CI RICE greater than 500 HP that are located at a major source of HAP and that have been constructed or reconstructed before 12/19/2002. This RICE is not used as a fire pump.}

The following table provides important details for this emissions unit:

E.U. ID No.	Engine Brake HP	Date of Construction	Model Year	Primary Fuel	Type of Engine	Displacement liters/cylinder (l/c)	Manufacturer Model # Engine Serial #
017	1,180	12/10/2001	2001	Diesel	Non- Emergency	2.25	Caterpillar® 3412
							BDT00610

Essential Potential to Emit (PTE) Parameters

- **D.14.** <u>Compliance Deadline</u>. The permittee shall comply with the following emissions and operating limitations no later than **May 3, 2013**. [40 CFR 63.6595(a)(1)]
- **D.15.** <u>Allowable Fuel</u>. The stationary RICE must use diesel fuel that meets the following requirements for non-road diesel fuel:
 - a. *Sulfur Content*. The sulfur content shall not exceed 15 ppm (0.0015% by weight) for non-road diesel fuel.
 - b. *Cetane and Aromatic*. The fuel must have a minimum cetane index of 40 or must have a maximum aromatic content of 35 volume percent.
 - [40 CFR 63.6604 and 40 CFR 80.510(b)]

Emission Standards and Limitations

D.16. Hours of Operation.

- a. *Normal Operation.* The stationary RICE may operate continuously (8,760 hours a year) if needed. [40 CFR 63.6640(f)(1)]
- b. *Engine Startup*. During periods of startup the owner or operator must minimize the engine's time spent at idle and minimize the engine's startup time at startup to a period needed for appropriate and safe loading of the engine, not to exceed 30 minutes, after which time the non-startup emission limitations apply. [40 CFR 63.6625(h)]
- D.17. <u>CO Emissions</u>. The owner or operator must reduce carbon monoxide (CO) emissions by 70 percent or more; or limit concentration of CO in the stationary RICE exhaust to 23 parts per million by volume, dry (ppmvd) or less at 15 percent O₂. [40 CFR 63.6600(d) Table 2c]

Operating Limitations

D.18. <u>Operating Limitations</u>. The owner or operator must comply with any operating limitations approved by the Administrator. [40 CFR 63.6603; Table 2b]

Compliance Requirements

- **D.19.** <u>Continuous Compliance</u>. Each unit shall be in compliance with the emission limitations and operating standards in this section at all times. [40 CFR 63.6605(a)]
- **D.20.** <u>Operation and Maintenance of Equipment</u>. At all times the owner or operator must operate and maintain, any affected source, including associated air pollution control equipment and monitoring equipment, in a manner consistent with safety and good air pollution control practices for minimizing emissions. Determination of whether such operation and maintenance procedures are being used will be based on information available to the compliance authority which may include, but is not limited to, monitoring results, review of operation and maintenance procedures, review of operation and maintenance records, and inspection of the source. [40 CFR 63.6605(b)]
- **D.21.** <u>Continuous Compliance Monitoring and Data</u>. If the owner or operator must comply with emission and operating limitations, they must monitor and collect data according to this section.
 - a. Except for monitor malfunctions, associated repairs, and required quality assurance or control activities (including, as applicable, calibration checks and required zero and span adjustments), they must monitor continuously at all times that the stationary RICE is operating.
 - b. The owner or operator may not use data recorded during monitoring malfunctions, associated repairs, and required quality assurance or control activities in data averages and calculations used to report emission or operating levels. They must, however, use all the valid data collected during all other periods.
 [40 CFR 63.6635(a)]
- **D.22.** <u>Continuous Compliance</u>. The owner or operator must demonstrate continuous compliance by:
 - a. Conducting performance tests every 8,760 hours or 3 years, whichever comes first, for CO to demonstrate that the required CO percent reduction is achieved or that emissions remain at or below the CO concentration limit; and,
 - b. Collecting the approved operating parameter (if any) data according to 40 CFR 63.6625(b); and
 - c. Reducing these data to 4-hour rolling averages; and,
 - d. Maintaining the 4-hour rolling averages within the operating limitations for the operating parameters established during the performance test.
 - [40 CFR 63.6640(a) Table 6 10.i.]

Monitoring, Installation, Collection, Operation and Maintenance Requirements

D.23. <u>CEMS</u>. If the owner or operator elects to install a CEMS as specified in Table 5 of 40 CFR 63, Subpart ZZZZ, they must install, operate, and maintain a CEMS to monitor CO and either oxygen or carbon dioxide (CO₂) at both the inlet and the outlet of the control device according to the requirements in 40 CFR 63.6625(a)(1) through (4). [40 CFR 63.6625(a)]

- **D.24.** <u>Continuous Parameter Monitoring System (CPMS)</u>. If the owner or operator is required to install a continuous parameter monitoring system (CPMS) as specified in Table 5 of 40 CFR 63, Subpart ZZZZ, they must install, operate, and maintain each CPMS according to the requirements in 40 CFR 63.6625(b)(1) through (8). [40 CFR 63.6625(b)]
- **D.25.** <u>Crankcase Ventilation System</u>. If you own or operate an existing non-emergency, non-black start CI engine greater than or equal to 300 HP that is not equipped with a closed crankcase ventilation system, you must comply with either 40 CFR 63.6625(g)(1) or (g)(2):
 - a. Install a closed crankcase ventilation system that prevents crankcase emissions from being emitted to the atmosphere. [40 CFR 63.6625(g)(1)]

b. Install an open crankcase filtration emission control system that reduces emissions from the crankcase by filtering the exhaust stream to remove oil mist, particulates, and metals. [40 CFR 63.6625(g)(2)]
Owners and operators must follow the manufacturer's specified maintenance requirements for operating and maintaining the open or closed crankcase ventilation systems and replacing the crankcase filters, or can request the Administrator to approve different maintenance requirements that are as protective as manufacturer requirements. [40 CFR 63.6625(g)]

D.26. <u>Temperature Measurement Device</u>. If the owner or operator has an operating limitation that requires the use of a temperature measurement device, they must meet the requirements in 40 CFR 63.6625(k)(1) through (4). [40 CFR 63.6625(k)]

Testing Requirements

D.27. <u>Initial Compliance Testing</u>. The owner or operator has demonstrated initial compliance when:

- a. CO Emissions.
 - (1) The average reduction of emissions of CO determined from the initial performance test achieves the required CO percent reduction; and,
 - (2) The owner or operator has installed a CPMS to continuously monitor operating parameters approved by the Administrator (if any) according to the requirements in 40 CFR 63.6625(b); and,
 - (3) The owner or operator has recorded the approved operating parameters (if any) during the initial performance test.
- [40 CFR 63.6630 Table 5]
- **D.28.** <u>Testing Frequency</u>. The owner or operator must conduct performance tests every 8,760 hours or 3 years, whichever comes first. [40 CFR 63.6615 Table 3]
- **D.29.** Measurements to Determine O_2 and CO.
 - a. Measurements to Determine O₂. The owner or operator must measure the O₂ at the inlet and outlet of the control device using a portable CO and O₂ analyzer according to the ASTM D6522-00 (2005) (incorporated by reference, see 40 CFR 63.14) requirements. Measurements to determine O₂ must be made at the same time as the measurements for CO concentration. Methods 3A and 10 may also be used as options to ASTM-D6522-00 (2005).
 - b. Measurements to Determine CO. The owner or operator must measure the CO at the inlet and the outlet of the control device using a portable CO and O₂ analyzer according to the ASTM D6522--00 (2005) (incorporated by reference, see 40 CFR 63.14) or Method 10 of 40 CFR appendix A requirements. The CO concentration must be at 15 percent O₂, dry basis. Methods 3A and 10 may also be used as options to ASTM-D6522-00 (2005). Method 320 of 40 CFR part 63, appendix A, or ASTM D6348-03 may also be used.

[40 CFR 63.6620 Table 4]

Subsection D. Emissions Units 016, 017, 021, 035 - 044

Recordkeeping Requirements

D.30. Notification, Performance and Compliance Records.

- a. The owner or operator must keep a copy of each notification and report that the owner or operator submitted to comply with this section, including all documentation supporting any Initial Notification or Notification of Compliance Status that the owner or operator submitted.
- b. The owner or operator must keep the records required in 40 CFR 63.6625(e) of this section to show continuous compliance with each emission limitation or operating requirement.
- c. The owner or operator must keep records of the hours of operation of the engine that is recorded through the non-resettable hour meter. The owner or operator must document how many hours are spent for emergency operation including what classified the operation as emergency and how many hours are spent for non-emergency operation. If the engines are used for demand response operation, the owner or operator must keep records of the notification of the emergency situation, and the time the engine was operated as part of demand response.
- [40 CFR 63.6655]

D.31. Malfunction Records.

- a. The owner or operator must keep records of the occurrence and duration of each malfunction of operation (i.e. process equipment) or the air pollution control and monitoring equipment.
- b. The owner or operator must keep records of actions taken during periods of malfunction to minimize emissions in accordance with 40 CFR 63.6605(b) of this section including corrective actions to restore malfunctioning process and air pollution control and monitoring equipment to its normal or usual manner of operation.
- [40 CFR 63.6655]

D.32. <u>Maintenance Records</u>.

- a. The owner or operator must keep records of all required maintenance performed on the air pollution control and monitoring equipment.
- b. The owner or operator must keep records of the maintenance conducted on the stationary RICE in order to demonstrate that the stationary RICE and after-treatment control device (if any) are operated and maintained according to its own maintenance plan.
- [40 CFR 63.6655]
- **D.33.** <u>Performance Records</u>. The owner or operator must keep records of performance tests and performance evaluations as required. [40 CFR 63.6655]

D.34. <u>Record Retention</u>.

- a. The owner or operator must keep records in a suitable and readily available form for expeditious reviews.
- b. The owner or operator must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record.
- [40 CFR 63.6660 and 40 CFR 63.10(b)(1)]

Reporting Requirements

- **D.35.** <u>Notification Requirements</u>. The owner or operator must submit all of the notifications in 40CFR 63.7(b) and (c), 63.8(e), (f)(4) and (f)(6), 63.9(b) through (e), and (g) and (h) that apply to you by the dates specified. [40 CFR 63.6645(a)]
- **D.36.** <u>Notification of Intent to Conduct a Performance Test</u>. If the owner or operator is required to conduct a performance test, they must submit a Notification of Intent to conduct a performance test at least 60 days before the performance test is scheduled to begin as required in 40 CFR 63.7(b)(1). [40 CFR 63.6645(g)]</u>
- **D.37.** <u>Notification of Compliance Status</u>. If the owner or operator is required to conduct a performance test as specified in Tables 4 and 5 of 40 CFR 63, Subpart ZZZZ, they must submit a Notification of Compliance Status according to 40 CFR 63.9(h)(2)(ii).

Subsection D. Emissions Units 016, 017, 021, 035 - 044

- a. For each compliance demonstration required in Table 5 of 40 CFR 63, Subpart ZZZZ that does not include a performance test, the owner or operator must submit the Notification of Compliance Status before the close of business on the 30th day following the completion of the initial compliance demonstration.
- b. For each compliance demonstration required in Table 5 of 40 CFR 63, Subpart ZZZZ that includes a performance test conducted according to the requirements in Table 3 of 40 CFR 63, Subpart ZZZZ, the owner or operator must submit the Notification of Compliance Status, including the performance test results, before the close of business on the 60th day following the completion of the performance test according to 40 CFR 63.10(d)(2).
- [40 CFR 63.6645(h)]
- **D.38.** <u>Compliance Report</u>. The owner or operator must submit a Compliance Report. The Report must contain:
 - a. If there are no deviations from any emission limitations or operating limitations that apply to the owner or operator, a statement that there were no deviations from the emission limitations or operating limitations during the reporting period. If there were no periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in 40 CFR 63.8(c)(7), a statement that there were not periods during which the CMS was out-of-control during the reporting period; or
 - b. If the owner or operator had a deviation from any emission limitation or operating limitation during the reporting period, the information in 40 CFR 63.6650(d). If there were periods during which the CMS, including CEMS and CPMS, was out-of-control, as specified in 40 CFR 63.8(c)(7), the information in 40 CFR 63.6650(e); or
 - c. If the owner or operator had a malfunction during the reporting period, the information in 40 CFR 63.6650(c)(4).

The owner or operator must submit the report semiannually according to the requirements in 40 CFR 63.6650(b).

[40 CFR 63.6650 (except 63.6650(g)) Table 7]

The specific conditions in this part of the subsection apply to the following group of emissions units:

	Group 4: "New" stationary CI RICE greater than or equal to 175 HP and less than or equal to 500 HP
E.U. ID No.	Brief Description
021	Emergency Generator - Operations Building (EPA Tier 3 certified) (SWA of PBC ID# OPS-E1)

{Permitting note: This part of the subsection addresses "new" stationary CI RICE greater than or equal to 175 HP and less than or equal to 500 HP, with a displacement less than 10 liters per cylinder, that are located at a major source of HAP and that have been modified, reconstructed or commenced construction on or after 6/12/2006 and have a 2007 or later model year. This RICE is not used as a fire pump.}

The following table provides important details for this emissions unit:

E.U. ID No.	Engine Brake HP	Date of Construction	Model Year	Primary Fuel	Type of Engine	Displacement Iters/cylinder (l/c)	Manufacturer Model # Engine Serial #
021	250	2008	-	Diesel	Emergency	1.115	Cummings/Onan® DSGAB -

Subsection D. Emissions Units 016, 017, 021, 035 - 044

Applicability

D.39. <u>Applicability</u>. Pursuant to 40 CFR 63.6590(c), these engines must comply with 40 CFR 63, Subpart ZZZZ by meeting the requirements of NSPS 40 CFR 60, Subpart IIII. Pursuant to 40 CFR 63.6590(c), no further requirements apply to the engine under 40 CFR 63, Subpart ZZZZ. [Rules 62-204.800(11) & (8), F.A.C.; and, 40 CFR 63.6590(c)]

Essential Potential to Emit (PTE) Parameters

- **D.40.** <u>Allowable Fuel</u>. The stationary RICE must use diesel fuel that meets the following requirements for non-road diesel fuel:
 - c. *Sulfur Content*. The sulfur content shall not exceed 15 ppm (0.0015% by weight) for non-road diesel fuel.
 - d. *Cetane and Aromatic*. The fuel must have a minimum cetane index of 40 or must have a maximum aromatic content of 35 volume percent.
 - [40 CFR 60.4207(b) and 40 CFR 80.510(b)]
- D.41. Hours of Operation.
 - a. *Emergency Situations*. There is no time limit on the use of emergency stationary RICE in emergency situations. [40 CFR 60.4211(e)]
 - b. *Maintenance and Testing*. Each RICE is authorized to operate for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by federal, state, or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. [40 CFR 60.4211(e)]
 - c. *Other Situations*. Each RICE cannot be used for peak shaving or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity. [40 CFR 60.4219]

Emission Standards and Limitations

- **D.42.** <u>NMHC + NOx Emissions</u>. Non-methane hydrocarbons and nitrogen oxide emissions shall not exceed 4.0 g/KW-hr {equivalent to: 3.2 lbs/hour (OPS-E1)}. [40 CFR 60.4205(b)]
- **D.43.** <u>CO Emissions</u>, Carbon monoxide emissions shall not exceed 3.5 g/KW-hr {equivalent to: 1.4 lbs/hour (OPS-E1)}. [40 CFR 60.4205(b)]
- **D.44.** <u>PM Emissions</u>. Particulate matter emissions shall not exceed 0.2 g/KW-hr {equivalent to: 4.3 lbs/hour (OPS-E1)}. [40 CFR 60.4205(b)]
- **D.45.** <u>Operation and Maintenance</u>. The owner or operator must operate and maintain the stationary CI internal combustion engine according to the manufacturer's written instructions or procedures developed by the owner or operator that are approved by the engine manufacturer. In addition, owners and operators may only change those settings that are permitted by the manufacturer. The owner or operator must meet the requirements of 40 CFR 89, 94 and/or 1068, as they apply. [40 CFR 60.4211(a)]

Monitoring of Operations

D.46. <u>Hour Meter</u>. The owner or operator must install a non-resettable hour meter if one is not already installed. [40 CFR 60.4209(a)]

Compliance Requirements

- **D.47.** <u>Compliance Requirements</u>. Owner or operator must demonstrate compliance according to one of the methods below:
 - e. *Certification.* Have purchased an engine certified according to 40 CFR 89 or 94, as applicable, for the same model year and maximum engine power.
 - f. Manufacturer Data. Keep records of engine manufacturer data indicating compliance with the standards.
 - g. Vendor Data. Keep records of control device vendor data indicating compliance with the standards.

Subsection D. Emissions Units 016, 017, 021, 035 - 044

- h. *Performance Test.* Conduct an initial performance test to demonstrate compliance with the emission standards according to the testing requirements in this section.
- i. *Similar Engine Tests*. Keep records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.
- [40 CFR 60.4211(b)]

Testing Requirements

- **D.48.** <u>Performance Test</u>. Performance test must be conducted according to the in-use testing procedures in 40 CFR 1039, Subpart F. [40 CFR 60.4212]
- **D.49.** Engine Manufacturer's Recommendations and Instructions. If the owner/operator does not install, configure, operate, and maintain the engine according to the manufacturer's recommendations and instructions, any required testing shall be completed in accordance with 40 CFR 60, Subpart IIII. [40 CFR 60.4212.]
- **D.50.** <u>Not to exceed (NTE) Standards</u>. Exhaust emissions from stationary CI ICE that are complying with the emission standards must not exceed the not to exceed (NTE) numerical requirements, rounded to the same number of decimal places as the applicable standard, determined from the following equation: NTE = (1.25) x (Standard). [40 CFR 60.4212]

Recordkeeping Requirements

- **D.51.** <u>Required Records</u>. Owner or operator must keep records of the operation of the engine in emergency and non-emergency service that are recorded through the non-resettable hour meter. The owner or operator must record the time of operation of the engine and the reason the engine was in operation during that time. [40 CFR 60.4214]
- D.52. Record Retention.
 - a. The owner or operator must keep records in a suitable and readily available form for expeditious reviews.
 - b. The owner or operator must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record.
 - [40 CFR 63.6660 and 40 CFR 63.10(b)(1)]

NSPS 40 CFR 60, Subpart A & IIII Requirements

- **D.53.** <u>NSPS Requirements Subpart A</u>. These emissions units shall comply with all applicable requirements of 40 CFR 60, Subpart A, General Provisions, including:
 - 40 CFR 60.7, Notification and Recordkeeping
 - 40 CFR 60.8, Performance Tests
 - 40 CFR 60.11, Compliance with Standards and Maintenance Requirements
 - 40 CFR 60.12, Circumvention
 - 40 CFR 60.13, Monitoring Requirements
 - 40 CFR 60.19, General Notification and Reporting Requirements,

which have been adopted by reference in Rule 62-204.800(8)(d), F.A.C.; except that the Secretary is not the Administrator for purposes of 40 CFR 60.4, 40 CFR 60.8(b)(2) and (3), 40 CFR 60.11(e)(7) and (8), 40 CFR 60.13(g), (i) and (j)(2), and 40 CFR 60.16. The applicable 40 CFR 60, Subpart A, General Provisions to which these emissions are subject to are found at 40 CFR 63.4218 and are included in **Appendix 40 CFR 60 Subpart A**. [Rule 62-204.800(8)(d), F.A.C.]

D.54. <u>40 CFR 60 Requirements - Subpart IIII [Generally Applicable Requirements]</u>. These emissions units shall comply with all applicable requirements of 40 CFR 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines, which have been adopted by reference in Rule 62-204.800(8), F.A.C. These emissions units shall comply with Appendix 40 CFR 60 Subpart IIII

"Generally Applicable Requirements," included with this permit, which includes applicable requirements that apply in general to all engines regulated under 40 CFR 60, Subpart IIII. This appendix also contains useful information like definitions (see 40 CFR 60.4219) that are specific to engines regulated under 40 CFR 60 Subpart IIII. [Rule 62-204.800(8), F.A.C.]

The specific conditions in this part of the subsection apply to the following group of emissions units:

	Group 5: "New" stationary CI RICE greater than 500 FLP
E.U. ID No.	Brief Description
016	Emergency Generator - Biosolids Pelletization Facility (BPF) (EPA Tier 3 certified) (SWA of PBC ID# BPF-E1)
042	Emergency Generator - Administration (EPA Tier 1 certified) (SWA of PBC ID# A-E1)
043	Emergency Generator - Materials Recovery Facility (MRF) (EPA Tier 2 certified) (SWA of PBC ID# MRF-E1)

{Permitting note: This part of the subsection addresses "new" stationary CI RICE greater than 500 HP, with a displacement less than 10 liters per cylinder, that are located at a major source of HAP and that have been modified, reconstructed or commenced construction on or after 12/19/2002 and have a pre-2007 or 2007 & later model year. These RICE are not used as fire pumps.}

<u>The following table</u>	provides	important	details for	these	emissions	units:
-		•				

E.U. 10 No.	Engine Brake HP	Date of Construction	Model Year	Primary Fuel	Type of Engine	Displacement liters/cylinder (l/c)	Manufacturer Model # Engine Serial #
016	550	2009	2007	Diesel	Emergency	2.33	Kohler [®] 350REOZDD 2180993
042	913	5/2/2006	2001	Diesel	Emergency	2.25	Caterpillar® 3412 BPG00204
043	775	2009	-	Diesel	Emergency	2.48	Cummings/Onan® DFEG 60 Hz -

Applicability

D.55. <u>Applicability</u>. Pursuant to 40 CFR 63.6590(c), these engines must comply with 40 CFR 63, Subpart ZZZZ by meeting the requirements of NSPS 40 CFR 60, Subpart IIII. Pursuant to 40 CFR 63.6590(c), no further requirements apply to the engine under 40 CFR 63, Subpart ZZZZ. [Rules 62-204.800(11) & (8), F.A.C.; and, 40 CFR 63.6590(c)]

Essential Potential to Emit (PTE) Parameters

Subsection D. Emissions Units 016, 017, 021, 035 - 044

- **D.56.** <u>Allowable Fuel</u>. The stationary RICE must use diesel fuel that meets the following requirements for non-road diesel fuel:
 - a. *Sulfur Content*. The sulfur content shall not exceed 15 ppm (0.0015% by weight) for non-road diesel fuel.
 - b. *Cetane and Aromatic*. The fuel must have a minimum cetane index of 40 or must have a maximum aromatic content of 35 volume percent.
 - [40 CFR 60.4207(b) and 40 CFR 80.510(b)]

D.57. Hours of Operation.

- a. *Emergency Situations*. There is no time limit on the use of emergency stationary RICE in emergency situations. [40 CFR 60.4211(e)]
- b. *Maintenance and Testing*. Each RICE is authorized to operate for the purpose of maintenance checks and readiness testing, provided that the tests are recommended by federal, state, or local government, the manufacturer, the vendor, or the insurance company associated with the engine. Maintenance checks and readiness testing of such units is limited to 100 hours per year. [40 CFR 60.4211(e)]
- c. *Other Situations*. Each RICE cannot be used for peak shaving or to generate income for a facility to supply power to an electric grid or otherwise supply power as part of a financial arrangement with another entity. [40 CFR 60.4219]

Emission Standards and Limitations

- **D.58.** The following emission standards and limitations apply to E.U. ID No. 016, Emergency Generator Biosolids Pelletization Facility (BPF) (EPA Tier 3 certified):
 - a. <u>NMHC + NOx Emissions</u>. Non-methane hydrocarbons and nitrogen oxide emissions shall not exceed 4.0 g/KW-hr {equivalent to: 3.62 lbs/hour}. [40 CFR 60.4205(b)]
 - b. <u>CO Emissions</u>. Carbon monoxide emissions shall not exceed 3.5 g/KW-hr {equivalent to: 3.17 lbs/hour}. [40 CFR 60.4205(b)]
 - c. <u>PM emissions</u>. Particulate matter emissions shall not exceed 0.2 g/KW-hr{equivalent to: 0.18 lbs/hour}. [40 CFR 60.4205(b)]
- **D.59.** The following emission standards and limitations apply to E.U. ID No. 042, Emergency Generator Administration (EPA Tier 1 certified):
 - a. <u>HC Emissions</u>. Hydrocarbon emissions shall not exceed 1.3 g/KW-hr or 1.0 g/HP-hr {equivalent to: 1.9 lbs/hour}. [40 CFR 60.4205(a)]
 - b. <u>NOx Emissions</u>. Nitrogen oxide emissions shall not exceed 9.2 g/KW-hr or 6.9 g/HP-hr {equivalent to: 13.8 lbs/hour}. [40 CFR 60.4205(a)]
 - c. <u>CO Emissions</u>. Carbon monoxide emissions shall not exceed 11.4 g/KW-hr or 8.5 g/HP-hr {equivalent to: 17.1 lbs/hour}. [40 CFR 60.4205(a)]
 - d. <u>PM emissions</u>. Particulate matter emissions shall not exceed 0.54 g/KW-hr or 0.40 g/HP-hr {equivalent to: 0.8 lbs/hour}. [40 CFR 60.4205(a)]
- **D.60.** The following emission standards and limitations apply to E.U. ID No. 043, Emergency Generator Materials Recovery Facility (MRF) (EPA Tier 2 certified):
 - a. <u>NMHC + NOx Emissions</u>. Non-methane hydrocarbons and nitrogen oxide emissions shall not exceed 6.4 g/KW-hr {equivalent to: 7.95 lbs/hour}. [40 CFR 60.4205(b)]
 - b. <u>CO Emissions</u>. Carbon monoxide emissions shall not exceed 3.5 g/KW-hr {equivalent to: 4.35 lbs/hour}. [40 CFR 60.4205(b)]
 - c. <u>PM emissions</u>. Particulate matter emissions shall not exceed 0.2 g/KW-hr {equivalent to: 0.25 lbs/hour}. [40 CFR 60.4205(b)]
- **D.61.** <u>Operation and Maintenance</u>. The owner or operator must operate and maintain the stationary Cl internal combustion engine according to the manufacturer's written instructions or procedures developed by the owner or operator that are approved by the engine manufacturer. In addition, owners and operators may only change

Subsection D. Emissions Units 016, 017, 021, 035 - 044

those settings that are permitted by the manufacturer. The owner or operator must meet the requirements of 40 CFR 89, 94 and/or 1068, as they apply. [40 CFR 60.4211(a)]

Monitoring of Operations

D.62. <u>Hour Meter</u>. The owner or operator must install a non-resettable hour meter if one is not already installed. [40 CFR 60.4209(a)]

Compliance Requirements

- **D.63.** <u>Compliance Requirements</u>. Owner or operator must demonstrate compliance according to one of the methods below:
 - a. *Certification.* Have purchased an engine certified according to 40 CFR 89 or 94, as applicable, for the same model year and maximum engine power.
 - b. *Manufacturer Data*. Keep records of engine manufacturer data indicating compliance with the standards.
 - c. *Vendor Data*. Keep records of control device vendor data indicating compliance with the standards.
 - d. *Performance Test.* Conduct an initial performance test to demonstrate compliance with the emission standards according to the testing requirements in this section.
 - e. *Similar Engine Tests*. Keep records of performance test results for each pollutant for a test conducted on a similar engine. The test must have been conducted using the same methods specified in this subpart and these methods must have been followed correctly.
 - [40 CFR 60.4211(b)]

Testing Requirements

- **D.64.** <u>Performance Test</u>. Performance test must be conducted according to the in-use testing procedures in 40 CFR 1039, Subpart F. [40 CFR 60.4212]
- **D.65.** <u>Engine Manufacturer's Recommendations and Instructions</u>. If the owner/operator does not install, configure, operate, and maintain the engine according to the manufacturer's recommendations and instructions, any required testing shall be completed in accordance with 40 CFR 60, Subpart IIII. [40 CFR 60.4212.]
- **D.66.** <u>Not to exceed (NTE) Standards</u>. Exhaust emissions from stationary CI ICE that are complying with the emission standards must not exceed the not to exceed (NTE) numerical requirements, rounded to the same number of decimal places as the applicable standard, determined from the following equation: NTE = (1.25) x (Standard). [40 CFR 60.4212]

Recordkeeping Requirements

- **D.67.** <u>Required Records</u>. Owner or operator must keep records of the operation of the engine in emergency and non-emergency service that are recorded through the non-resettable hour meter. The owner or operator must record the time of operation of the engine and the reason the engine was in operation during that time. [40 CFR 60.4214]
- D.68. <u>Record Retention</u>.
 - a. The owner or operator must keep records in a suitable and readily available form for expeditious reviews.
 - b. The owner or operator must keep each record readily accessible in hard copy or electronic form for at least 5 years after the date of each occurrence, measurement, maintenance, corrective action, report, or record.
 - [40 CFR 63.6660 and 40 CFR 63.10(b)(1)]

NSPS 40 CFR 60, Subpart A & IIII Requirements

- **D.69.** <u>NSPS Requirements Subpart A</u>. These emissions units shall comply with all applicable requirements of 40 CFR 60, Subpart A, General Provisions, including:
 - 40 CFR 60.7, Notification and Recordkeeping 40 CFR 60.8, Performance Tests

Subsection D. Emissions Units 016, 017, 021, 035 - 044

40 CFR 60.11, Compliance with Standards and Maintenance Requirements

40 CFR 60.12, Circumvention

40 CFR 60.13, Monitoring Requirements

40 CFR 60.19, General Notification and Reporting Requirements,

which have been adopted by reference in Rule 62-204.800(8)(d), F.A.C.; except that the Secretary is not the Administrator for purposes of 40 CFR 60.4, 40 CFR 60.8(b)(2) and (3), 40 CFR 60.11(e)(7) and (8), 40 CFR 60.13(g), (i) and (j)(2), and 40 CFR 60.16. The applicable 40 CFR 60, Subpart A, General Provisions to which these emissions are subject to are found at 40 CFR 63.4218 and are included in **Appendix 40 CFR 60** Subpart A. [Rule 62-204.800(8)(d), F.A.C.]

D.70. <u>40 CFR 60 Requirements - Subpart IIII [Generally Applicable Requirements]</u>. These emissions units shall comply with all applicable requirements of 40 CFR 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines, which have been adopted by reference in Rule 62-204.800(8), F.A.C. These emissions units shall comply with Appendix 40 CFR 60 Subpart IIII
 "Generally Applicable Requirements," included with this permit, which includes applicable requirements that apply in general to all engines regulated under 40 CFR 60, Subpart IIII. This appendix also contains useful information like definitions (see 40 CFR 60.4219) that are specific to engines regulated under 40 CFR 60 Subpart IIII. [Rule 62-204.800(8), F.A.C.]

THE FOLLOWING SPECIFIC CONDITIONS APPLY TO <u>ALL</u> GROUPS OF EMISSIONS UNITS.

Operation and Maintenance Requirements

{Permitting note: TABLE E-1. SUMMARY OF MAINTENANCE REQUIREMENTS FOR ENGINES, summarizes maintenance requirements under 40 CFR 63, Subpart ZZZZ for convenience purposes only. This table does not supersede any of the terms or conditions of this permit.}

Test Methods and Procedures

D.71. <u>Common Testing Requirements</u>. Any tests, if required, shall be conducted in accordance with the requirements and procedures specified in Appendix TR, Facility-Wide Testing Requirements, of this permit. [Rule 62-297.310, F.A.C.]

Record keeping and Reporting Requirements

D.72. <u>Other Reporting Requirements</u>. See Appendix RR, Facility-Wide Reporting Requirements, for additional reporting requirements. [Rule 62-213.440, F.A.C.]

NESHAP 40 CFR 63, Subpart A & ZZZZ Requirements

- D.73. <u>40 CFR 63 Requirements Subpart A</u>. These emissions units shall comply with all applicable requirements of 40 CFR 63, Subpart A, General Provisions, which have been adopted by reference in Rule 62-204.800(11)(d)1., F.A.C., except that the Secretary is not the Administrator for purposes of 40 CFR 63.5(e), 40 CFR 63.5(f), 40 CFR 63.6(g), 40 CFR 63.6(h)(9), 40 CFR 63.6(j), 40 CFR 63.13, and 40 CFR 63.14. The applicable 40 CFR 63, Subpart A, General Provisions to which these emissions are subject to are found at 40 CFR 63.6665 and are included in Appendix 40 CFR 63 Subpart A. [Rule 62-204.800(11)(d)1., F.A.C.]
- D.74. <u>40 CFR 63 Requirements Subpart ZZZZ [Generally Applicable Requirements]</u>. These emissions units shall comply with all applicable requirements of 40 CFR 63, Subpart ZZZZ, National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE), which have been adopted by reference in Rule 62-204.800(11)(b), F.A.C. These emissions units shall comply with Appendix 40 CFR 63 Subpart ZZZZ "Generally Applicable Requirements," included with this permit, which includes applicable requirements that apply in general to all engines regulated under 40 CFR 63 Subpart ZZZZ. This appendix also contains useful information like provisions that are not delegated to state or local

Subsection D. Emissions Units 016, 017, 021, 035 - 044

agencies (see 40 CFR 63.6670) and contains definitions (see 40 CFR 63.6675) that are specific to engines regulated under 40 CFR 63 Subpart ZZZZ. [Rule 62-204.800(11)(b), F.A.C.]

SECTION IV. APPENDICES.

The Following Appendices are Enforceable Parts of This Permit:

Appendix A, Glossary.

Appendix ATP, U.S. EPA Alternative Test Procedure Approval dated June 3, 2004.

Appendix BW, Biomedical Waste Definitions.

Appendix CAM, Compliance Assurance Monitoring Plan.

Appendix HGV, DEP Order Granting Variance for Mercury Testing dated August 25, 1997.

Appendix I, List of Insignificant Emissions Units and/or Activities.

Appendix RR, Facility-wide Reporting Requirements.

Appendix TR, Facility-wide Testing Requirements.

Appendix TV, Title V General Conditions.

Appendix U, List of Unregulated Emissions Units and/or Activities.

Appendix 40 CFR 60 Subpart A, NSPS General Provisions (version dated 2/5/2010).

Appendix 40 CFR 60 Subpart Cb, Emissions Guidelines (EG) and Compliance Times for Large Municipal Waste Combustors (version dated 03/24/2010).

Appendix 40 CFR 60 Subpart Eb, NSPS for Large Municipal Waste Combustors (version dated 04/21/2008).

Appendix 40 CFR 60 Subpart IIII "Generally Applicable Requirements," Standards of Performance for Stationary Compression Ignition Internal Combustion Engines (version dated 07/11/2006).

Appendix 40 CFR 60 Subpart WWW, NSPS for Municipal Solid Waste Landfills (version dated 08/06/2009).

Appendix 40 CFR 61 Subpart A, NESHAP General Provisions (version dated 05/06/2004).

Appendix 40 CFR 61 Subpart E, NESHAP for Mercury (version dated 03/20/03).

Appendix 40 CFR 61 Subpart M "Set A," NESHAP for Asbestos (version dated 08/19/2004).

Appendix 40 CFR 63 Subpart A, NESHAP General Provisions (version dated 01/29/2008).

Appendix 40 CFR 63 Subpart AAAA, NESHAP for Municipal Solid Waste Landfills (version dated 08/06/2009).

Appendix 40 CFR 63 Subpart ZZZZ "Generally Applicable Requirements," National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (version dated 06/30/2010)

May 2, 2013

Syed Arif Program Administrator Florida Department of Environmental Protection Division of Air Resource Management Office of Permitting & Compliance 2600 Blair Stone Road, MS #5505 Tallahassee, FL 32399-2400

Subject: Biosolids Pelletization Facility (BPF) Request for Preliminary Testing Venturi Scrubber – CAM Plan Criteria Impingement Tray Scrubber and Cyclone Separator Retrofit Title V Air Operating Permit No. 0990234-022-AV

Dear Mr. Arif:

The Solid Waste Authority of Palm Beach County (Authority) owns a Biosolids Pelletization Facility (BPF) that is collocated with the Authority's North County Resource Recovery Facility in West Palm Beach, Florida. The BPF is operated by the New England Fertilizer Company (NEFCO) under FDEP Title V Air Operating Permit No. 0990234-022-AV.

On December 13, 2012, the Department issued an exemption from obtaining an Air Construction permit for the Impingement Tray Scrubber and Cyclone Separator Retrofit Project at the BPF. As part of the authorization, we are to conduct particulate matter (PM/PM10) and visible emissions (VE) tests on both dryers 180 days after the tray scrubber/cyclonic separator work is complete. According to information submitted from NEFCO's consultant (CH2MHill), the BPF will now rely upon the venturi scrubbers for PM control to meet the PM/PM10 emission limits (BPF had not relied upon venturi scrubbers in the initial Title V permit application). Consequently, the Title V permit will be revised to include the venturi scrubbers in the CAM Plan.

NEFCO is proposing to perform diagnostic testing on the venturi scrubbers prior to the official stack test to determine operating criteria for the CAM Plan (see attachments). The test values range from 109 gpm to D gpm (zero flow), along with various pressure drops. The Authority is sending this letter to the Department to ask permission to perform the preliminary PM/PM10 testing at the proposed operating rates (i.e. no flow) for the venturi scrubbers.

Mr. Jeff Koerner May 2, 2013 Page 2

NEFCO anticipates completing the tray scrubber/cyclonic separator work the second week of May and to complete emission testing on or before June 30, 2013. The Authority would greatly appreciate your prompt consideration of this approval to test the venturi scrubbers with no flow and variable rates because NEFCO wishes to proceed with the preliminary testing within the next few weeks. If you have any questions or need additional information, please contact Mary Beth Morrison at mmorrison@swa.org or at (561) 640-4000 ext. 4613.

Sincerely,

POR

Mark Hammond Executive Director

Enclosures

cc: Scott Sheplak, FDEP Tallahassee Joe Lurix, FDEP SE District Marc Bruner, SWA Ray Schauer, SWA Mary Beth Mörrison, SWA Bill Hansen, NEFCO

April 30, 2013 via email

Mary Beth Morrison Solid Waste Authority of Palm Beach County 7501 North Jog Road West Palm Beach, FL 33412

RE: Scrubber tuning

Dear Mary Beth,

As we discussed, NEFCO would like to "tune" the operation of the venturi scrubbers serving the dryer systems at SWA. To reiterate, the dryers are equipped with both tray scrubbers and venturi scrubbers, and the tray scrubbers by themselves are very good PM collection devices. The venturi scrubbers clean the dryer exhaust minimally better than the trays (if at all) and merely contribute to excess operating cost.

In the conservative analysis prepared by NEFCO and sent to FDEP previous to the cyclone and scrubber modifications, the particle size distribution and mass loadings were worst-case. Moreover, the tray scrubbers' PM collection efficiency was based solely on the scrubbing effect of warm circulating water; i.e. no credit was taken due to condensation effects¹. Under such a conservative analysis, and in the interest of time, NEFCO concluded that the venturi scrubbers should be operated at nominal flow conditions until stack testing could demonstrate adequate PM collection by the tray scrubbers alone.

NEFCO has herein provided stack test data to support operating the venturi scrubbers with reduced or zero water flow. Our Greater Lawrence Sanitary District (GLSD) dryers located in North Andover, MA are equipped with Sly tray scrubber/condensers and Sly venturi scrubbers much like those at SWA. The pressure drop and extrapolated water flows of the GLSD tray scrubbers are very similar to those at SWA subsequent to the most recent modification.

¹ Condensation has a beneficial effect on PM collection. For example, see Perry's Chemical Engineers Handbook, Sixth Edition, page 20-92.

In stack compliance testing in June 2003 at our GLSD facility, PM emission rates of 0.219, 0.190, 0.262, 0.293, 0.389, and 0.167 pounds per hour were measured with nominal water flow to the tray scrubber/condensers and with 35 gpm flowing to the venturi scrubbers.

In March 2008, NEFCO asked for and received permission from the Massachusetts DEP to conduct venturi tuning tests at GLSD similar to those proposed at SWA. With water supplied only to the tray scrubbers, PM emissions were 0.06, 0.01, 0.06, 0.05, 0.07, and 0.04 pounds per hour. PM emission rates were very close regardless of whether the venturi scrubbers were supplied with water. For unknown reasons, emissions were actually slightly lower with all scrubbing provided by the tray scrubbers and none by the venturi scrubbers.

A similar scenario was repeated in the initial stack testing in September 2009 when the SWA dryer systems were tested using just 10 gpm in each venturi (a fraction of the nominal water flow of 109 gpm).

The tested PM emission rates were an order of magnitude lower than the FDEP permit values: 0.172, 0.171, 0.144, 0.196, 0.193, and 0.191; compared with a permitted emission rate of 2.42.

Although the incorporation of venturi scrubbers in our dryer systems provides a certain amount of design comfort to regulators, developers and to clients, the venturis actually do little or nothing to further control PM above that provided by the trays scrubbers. Rather, in operation, the venturis simply consume power and create indirect emissions at off-site power plants.

We therefore ask permission to perform tuning stack tests with the tray scrubber/condensers operating at 1000 gpm or more per the CAM plan, at the venturi operating conditions below:

- 1. Dryer # 1, with venturi scrubber set at 109 gpm and 6" delta p
- 2. Dryer # 1, with venturi scrubber set at 55 gpm and 6" delta p
- 3. Dryer # 1, with venturi scrubber set at 10 gpm and maximum throat opening
- 4. Dryer # 1, with venturi scrubber set at 0 gpm and maximum throat opening
- 5. Dryer # 2, with venturi scrubber set at 109 gpm and 6" delta p
- 6. Dryer # 2, with venturi scrubber set at 55 gpm and 6" delta p
- 7. Dryer #2, with venturi scrubber set at 10 gpm and maximum throat opening
- 8. Dryer #2, with venturi scrubber set at 0 gpm and maximum throat opening

New England Fertilizer Company 500 Victory Road, 4th Floor, North Dufney, MA 02171 (t) 617.773.3131 (l) 617.773.3122

Each test is expected to take two hours. After the tuning tests are completed, the venturi scrubbers will be returned to operation at the current CAM plan conditions.

If the tuning tests indicate that less stringent venturi conditions will provide equivalent emission rates, NEFCO will then instruct the test firm to perform the compliance tests at those conditions. If tested PM emissions during tuning are unexpectedly high, the compliance tests will be performed at the current CAM plan conditions.

The last of the modifications to the air handling systems are scheduled to be complete by May 10. We plan to solicit proposals for stack testing starting tomorrow, with a due date of May 15, and to complete the testing on or before June 30, 2013.

Sincerely Michael W. Thayer

Technical Manager

cc Jim Greer, SWA Brad Vermeulen, SWA William Hansen, NEFCO Manuel Irujo, NEFCO Larry Bishop, NEFCO Jordan Dimitrov, NEFCO

Enclosures (3)

New England Fertilizer Company Lawrence, MA

Compliance Test Report for Dryer Units A and B.

ENSR Corporation July 2003 Document Number 10402-001-400

TABLE 2-2 UNIT A PARTICULATE RESULTS

.

Run No.	\$************************	R1	R2	R3	
Date		04-Jun-03	¢6-,1up-03	60-nut-00	
Start Time	Units	. 1	0	4	
Stop Time		1	1	1	AVG6
<u>Sampling Parameters</u>					
Barometric Pressure	In. Hg	30,00	29.85	29.85	29,90
Volume Metered	dcf	76:954	79:039	89,337	79.777
Volume of Gas Collected	i dsof i "	75.054	77.020	80.936	77.670
Moisture	% v/v	3.9	3,6	3.6	3.7
O₂ at Stack	% dry	10,92	11.39	11.57	11.29
CO ₂ at Stack	% dry	8.04	7.95	7.72	7.90
Avg. Stack Temp.	∘⊨ੰ	198	222	231	217
Stack Flowrate	dscfm	3,187	3,265	3,427	3,293
Isokinetics	%	100	100	100	100
<u>la de la construcción de la constru I</u>	li <u>Andria andria andria</u> I	<u>la concerción de por</u>		1	
<u> Particulate Envission Results –</u>					, ,
Front Half Rinse	тg	2,9	3.2	2.3	2.8
Particulate Filter	mg	26,0	26.2	21.0	24.1
Condensible Particulate	mg	10,2	5.8	23.5	13,1
Total Particulate	៣g	38.1	34.0	46.8	40,0
PM Loading @ 7% O ₂	mg/dscm	25.55	22,71	30.32	26.19
Grain Loading	gr/dscf	0.008	0.007	0,009	0.008
Grain Loading @ 7% Oz	gr/dscf	0.011	0.010	0.013	0.011
Grain Loading @ 12% CO2	gr/dacf	0.012	0.010	0.014	0.012
Emission Rate	lb/hr	0,219	0.190	0,262	0.224
	<u>k </u>	<u> </u>	<u>de beseededed</u>	<u>director en el el</u>	

.

.

TABLE 2-3 UNIT B PARTICULATE RESULTS

,,

100000000000000000000000000000000000000		0000000000			5.55555555
Run No.	•	1*	2	3	
Date		03-Jun-03	03-Jun-03	04-Jun-03	le la
Start Time	Units ,	0	1	Q	
Stop Time		1	1	1	AVGS
Sampling Parameters					
Barometric Pressure		. 29.95	_29.95_		29,98
Volume Metered	dof	87.146	88.939	76,588	82,764
Volume of Gas Collected	dsof	81,563	85.113	74.246	79.679
Moisture .	% v/v	8.0	8,0	8,0	8.0
O ₂ at Stack	% dry	12.27	11.52	11.15	11.34
CO ₂ at Stack	% dry	7,95	8.40	7.69	8.05
Avg. Stack Temp.	, °F	220	224	240	232
Stack Flowrate	dscfm	3,284	3,545	3,055	3,300
Isokinetics	%	106	102	103	103
******	0.000.000.000	<u></u>			
Particulate Emission Results					
Front Half Rinse	mg	1.3	2.1	2.9	2,5
Particulate Filter	mg	26.4	30.3	18.4	24.4
Condensible Particulate	mg	27.5	38.3	9.4	23.9
Total Particulate	mg	65.20	70,70	30.70	60.70
PM Loading	mg/decm	23,90	29,33	14.60	21.97
Grain Loading	gr/dacf	0,010	0.013	0.006	0.010
Grain Loading @ 7% O2	gr/dscf	0.017	0.019	0.009	0.014
Grain Loading @ 12% CO2	gr/dscf	0.016	0,018	0.010	0.014
Emission Rate	lb/hr	0.293	0.389	0.167	0.278

* Run number one felled time look deck due to a broken liner and results presented for Run 1 are for informational purposes only.

Emissions Test Report

Testing of Sludge Dryer Emission Controls at the Greater Lawrence Sanitary District North Andover, Massachusetts

Greater Lawrence Sanitary District 240 Charles St. North Andover, Massachusetts 01845

TRC Environmental Corporation Wannalancit Mills 650 Suffolk St Lowell, Massachusetts 01854

Test Number	Train A R		<u>`</u> `		
Test Rumber Test Date Start Time Stop Time	· 1 11/7/2007 845 · 1053	2 11/7/2007 1132 _ 1345	3 11/7/2007 1422 1627	3 - Run Average	Permit Limit
Stack Gas Properties					
Oxygen Concentration (% - dry)	.11.46	10.65	11.00	1100	
Carbon Dioxide Concentration (% dry)	.7.76	· 8.39	11.08° 8.11	11.07	
Moisture Concentration (%)	8.18	9.28	8.11 9.28	8.09	
Gas Flow Rate (scfm - dry)	3,104	3,225	9.20 3,441	8.91 3,257	
Gas Flow Kate (sefm - wet)	3,380		3,793	3,576	,
<u>NOx Emissions</u> Concentration (ppm-dry) Mass Emission Rate (lbs/hour)	36.01	31.20	30.51	32.57	,
	0.80	0.72	0.75	0.76	1.2
Carbon Monoxide Emissions	L L				
Concentration (ppm-dry) Mass Emission Rate (lbs/hour)	20.66 0.280	21.39 0.301	21.80 0.327	21,28 0.303	0.89
Sulfur Dioxide Emissions Concentration (ppm-dry) Mass Emission Rate (lbs/hour)	0.00 . 0.000	0.00 0.000	0.14 0.005	0.05 0.002	1.3
NMOC Emissions		,		·	
Concentration (ppm as propane-wet)	0.05	0,00	0.15	0.07	
Concentration (ppm as carbon-dry) Mass Emission Rate (Ibs/hour)	0.163	0.000	0.496	0.220	
· · · · · · · · · · · · · · · · · · ·	0.001	0.000	0.004	0.002	0.22
<u>Particulate Emissions</u> Filterable Particulate (mg)		4			
Jas Sample Volume at Standard Conditions,	9.0	1.7	8.4	6.4	
Brain Loading, gr/dscf	60.478 2.29E-03	63.247 4.14E-04	66.029 1.96È-03	63.251	
Auss Emission Rate (Ibs/hour)	0.06	4.14E-04 0.01	1.96E-03 0.06	1.55E-03 0.04	0.64
	· ·				
<u>Aetals Emissions</u> rsenic (ug)	-0.55	0.57			
adium (ug)	< 3.75	< 3.75	< 3.75	< 3.75	. •
as Sample Volume at Standard Conditions,	5.13 60.478	2.43	< 0.12	<2,56	
s Mass Emission Rate (lbs/hour)	00.478 < 2.55E-05	63.247 < 2.53E-05	66.029	63.251	5.68E-05
d Mass Emission Rate (lbs/hour)	< 2.55E-05 3.48E-05	< 2.53B-05 1.64E-05	< 2.59E-05 · < 8.27E-07	< 2.55E-05	3.59E-04

Table 2-1

•

, ,

 · · · .

L2007~590

.

5

. .

	Train B Re	sults	"		
Test Number	. 1	2	. 3		
Test Date .	11/6/2007	11/6/2007	11/6/2007	3 - Run	Permit
Start Time	918	1155	1437	Average	Limit
Stop Time	1125	1409	1647	Aroingo	,
			1017	-	, ,
Stack Gas Properties				· •	
Oxygen Concentration (% - dry)	12.15	12.12	12.00	12.09	
Carbon Dioxide Concentration (% - dry)	7.16	7:24	7.33	7.25	
Moisture Concentration (%)	11.37	. 9,37	9.51	10.08	· ,
Gas Flow Rate (setin dry)		······································		* 3,374	
Gas Flow Rate (scfm - wet)	3,916	3,359	3,984	3,753	•
	5,510	2000			
		·			·····
NOx Emissions	r.	;	•		· ·
Concentration (ppm-dry)	36.39	32.52	34,03	34.31	•
Mass Emission Rate (Ibs/honr)	0.90	0.71	0.88	0.83	1,2
· · · · ·		, GETA	v	0.05	-1,164
	· · · · · · · · · · · · · · · · · · ·	······································			
Carbon Monoxide Emissions				[]	
Concentration (ppm-dry)	8.26	7.98	8.22	· 8.15	•
lass Emission Rate (lbs/hour)	0.125	0.106	0.129	0.120	0,89
	·······			V.120	
	The second se	t	• • •	· · · · ·	ruve-sulauss.
hulfur Dioxide Emissions			• • •		í I
Concentration (ppm-dry)	0.15	0.00	0.10	0.08	
lass Emission Rate (lbs/hour)	0.005	0.000	0.004	0.003	1.3
·			· ,		
·		7			
MOC Emissions		•	-		
oncontration (ppm as propane-wet)	0.02	0.19	0.53	. , 0.25	
oncentration (ppm as carbon-dry)	0.068	0.629	1.757	0.818	· · ·
lass Buission Rate (Ibs/hour)	0.001	0.004	0.014	0.000	0.22
		- · · · · · · · · · · · · · · · · · · ·			
a de la companya de l		•			
articulate Emissions			•	• • •	· · ·
lterable Particulate (mg)	8.1	11.3	5.9	8.4	
as Sample Volume at Standard Conditions,	73.814	60.725	70.910	68.483	-
rain Loading, gr/dscf	1.69E-03	2.87E-03	1.28E-03	1.95E-03	· ·
ass Emission Rate (lbs/hour)	′ 0. 05	0.07	0.04	0.05	0.64
	**			· · ·	
	-	•			
etals Emissions	Į .			•	
senic (ug)	.4.45	< 3.75	< 3.75	< 3.98	
dium (ug)	< 0.12	1.03	< 0.12	< 0.42	· ·
s Sample Volume at Standard Conditions,	73.814	60,725	70.910	68.483	
Mass Emission Rate (lbs/hour)	2.77E-05	× 2.51E-05	< 2.52E-05	< 2.60E-05	5.68E-05
Mass Emission Rate (lbs/hour)	< 7.46E-07	6.90B-06	< 8.08E-07	<2.82E-06	3.59E-04

L2007-590

1

۰.

6 ·

1

TEST REPORT

COMPLIANCE EMISSIONS TESTING

NEW ENGLAND FERTILIZER COMPANY

OCTOBER 12, 2009

PREPARED FOR:

New England Fertilizer Company 500 Victory Road, 4th Floor North Quincy, Massachusetts 02171

CONCERNING:

×.

Compliance Emissions Testing Solid Waste Authority of Palm Beach County North County Resource Recovery Facility (NCRRF) Biosolids Pelletization Facility 7501 North Jog Road West Palm Beach, Florida 33412 (FDEP) Permit No. 0990234-006-AC/PSD-FL-108F

PREPARED BY:

CK Environmental, Inc. 1020 Turnpike Street, Unit 8 Canton, MA 02021 CK Project No.3490

> CN Badronsernet, to 1972 Parises & State E Construction Bade Use Toll-freetes Construction International: 197423 Care Port 185 CCS 2015

Tathe 3-2 Summery of Performance Tracting Renestions Million - STVA Train #1 PLO Exhaust Plan Brotch, 10.4 PAIN Brotch, 10.4

) .

.

1

Ervicencestol		- 10	SUDIO	:		
Trast Run No.		MIQIA-Ruml arono	Run 2 Attanto	RuteS	á trentre	
Date		CONTRA-	-2010276	ADDIA	windle	Pacifity Permit Limbt (Ib / Irr)
line	Ster	950I	1346	1520 1626		
Samulo Conditions						
Untrast	(de-RF	95.27W	20202	56,203		
	(Therein P		2.725	2.734	2.724	
	(Pa)	410 1.6	67	竹昆	122	
Sladge Freed Rate	(wet tonsfire)	7	14.4	٦¥ ۲	روايع روايع	
Chine Jandistans						
Contract Longer to the	(W)	U	च	¢1	ţ.	עיני
	(dscrint)	1244	34611	17 T	11.521	
	E	2845	÷LL	235.5	220.8	
And Division	(96)	211	1.11	9.6	<u>44</u>	
Ordered	%	111	10.5	5.03	10,6	
Contact Providence	ê	許	016	2	89. 89	
Oxides of Mitneren	CMEAD	0.05	503	201	90	1.
Octides of Nitrosen		ሥን ተሳ	4	4	3	54 54 71
Carbon Monoride	(Merty)	5771	13.8		7. 2.	617 c
Cation hitmorade	(Julia)	សំដ	<u>67</u>	÷۲	3 5	2
Volatie Organic Compounds	(Maa)	56		18		
Valade Organic Conpounds	(1 43)	花口	130	31	t in the second s	
Sulfur Dieside	(Maa)	(A)	al-mail	20 Y	<u>1</u> .	
Sulfur Dioxide	百名	1.86	162		1 mg)
h farming that Card.	(Terl)	0.95	3.18	ន្ម		
blances (Light Pale)	(me)	0.00095	0.00315	202000	8	
The Concertration	(meldscr)	1.000E-05	3,29815-05	3.060.0	2458-05	_ YC
Hg Emission Rate	(UNIC)	1,5167E-05	1,92208-05	4,6658E-US	9-304 S	
and and a second se						
Particulate Manager (200 27/14 0 Managerous)		201	11	,,, 5	10.3	
Local FWI Cated	(melikefut)	MILL	0.1142	0.0945	U.I	
	(ag/dscfm)	113,353	2460	0.755		
sterior	(applump)	6.015	500.0			
Enabelicati Rutte	(IP(PI)	CIN	. 1 <i>1</i> 11	0,141	0.163	S.

à

]

)) ಮೇಳ ತುಹಾದಕೊಂಗ ಭಾತ್ರದೇ ನೀವ A) ತೊಳಿ ತಡೆಬಾರೆಯದ ಯೂನೇ ಹಾಗಲಾಂ ಲೈ ರೊಳ ತುಗುತ್ತದೇವು ತಡಿಗಿತ್ತೇ ಗೆಲವ ಗ್ಲಿತ್ ಹಾಗಲ್ಲುಕ ಲೈ based ಯ PNS emission pace

North States		Samaary of Pert NG Taini Taini	Sammary of Perthemance Testing Darkstons REFCO - SWA Train # 2 RFO Exhaust Paler Beech, ELA 9/12/19	ani estimat		
l'est Run No. Date: Time	Start Stop	MIRIA - Run I 972/89 12:32 14:36	Run 2 912069 15250 1730	Rom 3 9/12/05 19:34 21:40	Attege	Facility Pennit Limit
Sample Condition Voltane Yohine Sokinches Sindey Feed Rate	(tisct) (decard) (test) (wet tons(by)	112.0854 1120 1120 1120	106.33) 1201 1335	690711 1917	12.5% 12.5% 12.5%	
Struck Considitants Operating Flow Facto Turapperature Motetore Oxyges Corbon Disosite	8883 1995 1995 1995 1995 1995 1995 1995 199	0 11 0 0 10 10 0 10 0 0 10 10 0 10 10 10 10 10 10 10 10 10 10 10 10 10	0 2322 2322 2322 232 232 232 232 232 232	9 315,521 315,421 115,	• 1 <u>5 1</u> 2 2 2 3	'vb.
Orados of Natougen Oratios of Natougen Carbon Monextue Carbon Monextue Carbon Monextue Volatile Organic Components Volatile Organic Components Suffar Dioxido	(1490) (1	88899 <u>558</u> 8		22.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	84498%%	8 8 7 7 7 8
Marcary (Hs) Católi Marcary (Ligi) Católi Hg Concentralica Hg Bailssfez Ranc Servisivity, Martine Farite Farite	(105) (105) (105) (105) (105) (105)	5.26 0.00536 4.9222645 7.706118-05	6.17 0.00519 5.741 Б-05 8.4553E-05	3.50 0.00350 0.003512 2.122212 4.7352124	0.0 6.0 6.0 6.0 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 6.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9.22E.04
Total P.W. Catch Concentration			14.9 1961 1961 1961 1961 1960 1960 1960 196	140 0.1240 0.1240 0.1240 0.1240	3 a 1	ţ.
aips increase	(ara)	9,150	STATA)	17 (A)		7

· .;

CONTRACTOR OF A DECK

.... · Ę

**cLu4*

ť

Strange of

.

ж. . .

..

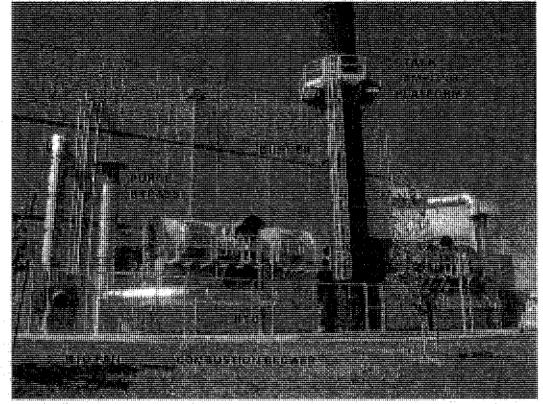
a) dry standard erthfe feet th dry standard erbyte meters - cy dry standard erbyte feet per minute th based on PM emission mire

Constraints

REQUEST FOR PROPOSALS

FOR

STACK TESTING SERVICES


AT THE

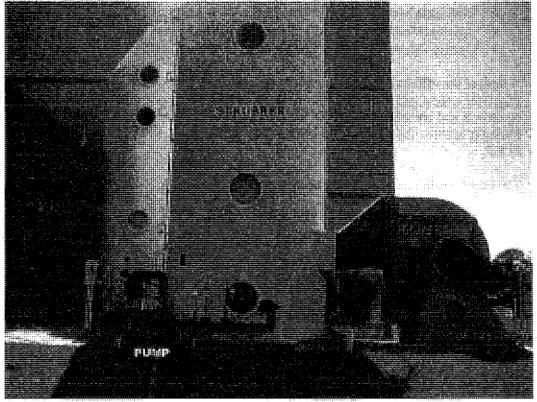
SOLID WASTE AUTHORITY OF PALM BEACH COUNTY

BIOSOLIDS DRYING FACILITY

APRIL 30, 2013

Proposals will be accepted until noon, May 15, 2013. Proposals should be addressed to New England Fertilizer Company, 500 Victory Road, Quincy MA 02171, Attn: Mike Thayer. Proposals may be mailed or emailed in protected format such as Adobe pdf files to sludgy@nefcobiosolids.com

STACK SAMPLING LOCATION

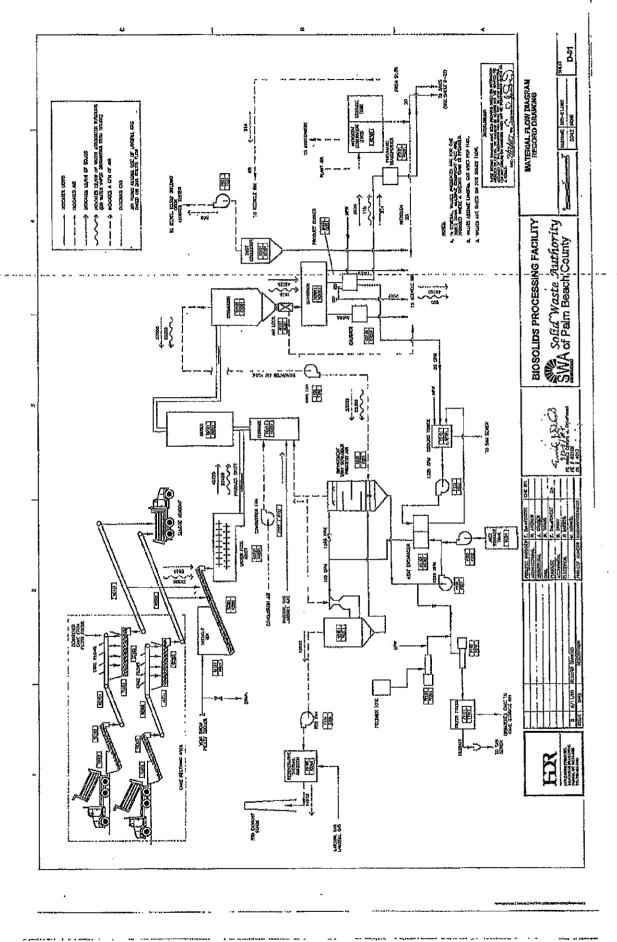

II. Preliminary "tuning":

The preliminary test program will consist of eight initial PM tests to make adjustments to determine the best operating conditions for its pollution controls. VE testing of the dryers is not required during tuning. Each dryer system will be tuned and tested separately. All tests shall be conducted at the RTO outlet stack, and with the RTO operating.

The target conditions for all tests:

- Dryer feed rate between 25,000 and 28,000 (wet) pounds per hour
- 15 20% solids in feed
- >1000 gpm flow through tray scrubber
- RTO temperature setpoint at 1600°F

The separator outlet ducts have been drilled with $\sim \frac{1}{2}$ " diameter holes and tapped to allow insertion of pitot tubes. The ducts are accessible from the roof via a ladder inside the building.


OFOR SCRUREERS

The odor control scrubber stacks are visible from ground level.

The site may be visited by proposers by contacting our on-site construction manager, Armand Asselin by phone 508-868-2128, or email: aasselin@nefcobiosolids.com.

Deliverables for tuning tests:

The PM and flow data collected during the tuning test program shall be summarized and presented in writing to NEFCO within 24 hours of the completion of the eight tests. Once the data has been received and reviewed by NEFCO, venturi scrubber operating adjustments will be made prior to the official testing.

Ì

FLORIDA DEPARTMENT OF

ENVIRONMENTAL PROTECTION

BOB MARTINEZ CENTER 2600 BLAIR STONE ROAD TALLAHASSEE, FLORIDA 32399-2400 RICK SCOTT GOVERNOR

HERSCHEL T. VINYARD JR. SECRETARY

Sent by Electronic Mail - Received Receipt Requested

Mr. Mark Hammond, Executive Director North County Regional Resource Recovery Facility Solid Waste Authority of Palm Beach County 7501 North Jog Road West Palm Beach, Florida 33412-2414

Re: North County Regional Resource Recovery Facility Project No. 0990234-027-AC CAM Testing - Venturi Scrubbers (Project) Testing Authorization

Dear Mr. Hammond:

This is a response to your letter dated May 2, 2013, regarding the proposed stack testing to establish Compliance Assurance Monitoring (CAM) parameters for the modified tray scrubbers and cyclonic separators at the Biosolids Pelletization Facility (BPF) (project) at the North County Regional Resource Recovery Facility located in Palm Beach County at 7501 North Jog Road in West Palm Beach, Florida.

Determination: The permittee proposed stack testing to establish CAM parameters for the modified tray scrubbers and cyclonic separators at the BPF (project).

Pursuant to Rule 62-4.040(1)(b), Florida Administrative Code (F.A.C.) and for the reasons stated in the Technical Evaluation, the Office of Permitting and Compliance hereby determines that the proposed activity (project) will not emit air pollutants "... in sufficient quantity, with respect to its character, quality or content, and the circumstances surrounding its location, use and operation, as to contribute significantly to the pollution problems within the State, so that the regulation thereof is not reasonably justified."

Section 403.061(18), Florida Statutes, authorizes the Department to encourage studies, investigations and research relating to pollution and its causes, effects, prevention, abatement and control. Stack testing was requested by the applicant to study scrubber performances.

Therefore, the permittee is authorized to conduct the proposed activity. The applicant shall submit the tuning stack tests and compliance stack tests along with the scrubbers' operating parameters during all of the testing to the Department. In the test results, the applicant shall indicate whether or not the venturi scrubbers are needed in fact to achieve the particulate matter (PM) emission limit. This testing authorization expires on **June 30, 2013**.

This determination may be revoked if the proposed activity is substantially modified or the basis for the authorization is determined to be materially incorrect. A copy of this letter shall be maintained at the site of the proposed activity. This decision is made pursuant to Chapter 403, Florida Statutes.

Permitting Authority: Applications for air construction permits are subject to review in accordance with the provisions of Chapter 403, Florida Statutes (F.S.) and Chapters 62-4, 62-210 and 62-212, F.A.C. The Permitting Authority responsible for making a determination for this project is the Office of Permitting and Compliance in the Department of Environmental Protection's Division of Air Resource Management. The Permitting Authority's physical and mailing address is: 2600 Blair Stone Road, MS #5505, Tallahassee, Florida 32399-2400. The Permitting Authority's telephone number is 850/717-9000.

Petitions: A person whose substantial interests are affected by the proposed decision may petition for an administrative hearing in accordance with Sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed with (received by) the agency clerk in the Office of General Counsel of the Department of Environmental Protection, 3900 Commonwealth Boulevard, Mail Station #35,

Tallahassee, Florida 32399-3000. Petitions must be filed within 21 days of receipt of this exemption from air permitting requirements. A petitioner shall mail a copy of the petition to the applicant at the address indicated above, at the time of filing. The failure of any person to file a petition within the appropriate time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under Sections 120.569 and 120.57, F.S., or to intervene in this proceeding and participate as a party to it. Any subsequent intervention (in a proceeding initiated by another party) will be only at the approval of the presiding officer upon the filing of a motion in compliance with Rule 28-106.205, F.A.C.

A petition that disputes the material facts on which the Permitting Authority's action is based must contain the following information: (a) The name and address of each agency affected and each agency's file or identification number, if known; (b) The name, address, and telephone number of the petitioner; the name, address and telephone number of the petitioner's representative, if any, which shall be the address for service purposes during the course of the proceeding; and an explanation of how the petitioner's substantial interests will be affected by the agency determination; (c) A statement of when and how each petitioner received notice of the agency action or proposed decision; (d) A statement of all disputed issues of material fact. If there are none, the petitioner must so state; (e) A concise statement of the ultimate facts alleged, including the specific facts the petitioner contends warrant reversal or modification of the agency's proposed action including an explanation of how the alleged facts relate to the specific rules or statutes; and, (g) A statement of the relief sought by the petitioner, stating precisely the action the petitioner wishes the agency to take with respect to the agency's action is based shall state that no such facts are in dispute and otherwise shall contain the same information as set forth above, as required by Rule 28-106.301, F.A.C.

Because the administrative hearing process is designed to formulate final agency action, the filing of a petition means that the Permitting Authority's final action may be different from the position taken by it in this action. Persons whose substantial interests will be affected by any such final decision of the Permitting Authority on the application have the right to petition to become a party to the proceeding, in accordance with the requirements set forth above.

Mediation: Mediation is not available in this proceeding.

Effective Date: This decision is final and effective on the date filed with the clerk of the Permitting Authority unless a petition is filed in accordance with the above paragraphs or unless a request for extension of time in which to file a petition is filed within the time specified for filing a petition pursuant to Rule 62-110.106, F.A.C., and the petition conforms to the content requirements of Rules 28-106.201 and 28-106.301, F.A.C. Upon timely filing of a petition of a request for extension of time, this action will not be effective until further order of the Permitting Authority.

Judicial Review: Any party to this decision (order) has the right to seek judicial review of it under Section 120.68, F.S., by filing a notice of appeal under Rule 9.110 of the Florida Rules of Appellate Procedure with the clerk of the Department of Environmental Protection in the Office of General Counsel, Mail Station #35, 3900 Commonwealth Boulevard, Tallahassee, Florida, 32399-3000, and by filing a copy of the notice of appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The notice must be filed within 30 days after this order is filed with the clerk of the Department.

Executed in Tallahassee, Florida

for Jeffery F. Koerner, Program Administrator Office of Permitting and Compliance Division of Air Resource Management

JFK/sa/sms

CERTIFICATE OF SERVICE

The undersigned duly designated deputy agency clerk hereby certifies that this **Testing Authorization** and the **Technical Evaluation** were sent by electronic mail, or a link to these documents made available electronically on a publicly accessible server, with received receipt requested before the close of business on the date indicated below to the persons listed below.

Mr. Mark Hammond, SWA: <u>mhammond@swa.org</u> Ms. Mary Beth Morrison, SWA: <u>mmorrison@swa.org</u> Mr. Lee Hoefert, P.E., DEP SED: <u>lee.hoefert@dep.state.fl.us</u> Mr. James Stormer, PBCHD: <u>james_stormer@doh.state.fl.us</u> Ms. Cindy Mulkey, DEP Siting: <u>cindy.mulkey@dep.state.fl.us</u> Ms. Heather Ceron, U.S. EPA Region 4: <u>ceron.heather@epa.gov</u> Ms. Katy R. Forney, U.S. EPA Region 4: <u>forney.kathleen@epa.gov</u> Ms. Barbara Friday, DEP OPC: <u>barbara.friday@dep.state.fl.us</u> Ms. Lynn Scearce, DEP OPC: <u>lynn.scearce@dep.state.fl.us</u>

Clerk Stamp

FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to Section I20.52(7), Florida Statutes, with the designated agency clerk, receipt of which is hereby acknowledged.