Power Turbine Repair Meeting Agenda

- Project Description
- LM5000 Design
- New Source Review Criteria
 - Nature
 - Extent
 - Purpose
 - Frequency
 - Cost
- Conclusion

Reedy Creek Improvement District November 16, 2000

Project Description

- Power Turbine Oil Contamination September 28, 2000
 - Probable Cause: Seal/Liner Failure
 - Probable Bearing Damage
 - Repairs Require Maintenance Depot Overhaul
- Decision to Exchange Power Turbine Early October
- Exchange Completed November 9
- Startup Test Scheduled for November 20

Component Failure Required Maintenance Action

- Designed for Modularity
 - Lightweight

"...The design features of modern aircraft derivative turbines in conjunction with maintenance oriented packaging techniques help owners achieve unit availability of 95 -97 percent...In the event of a serious engine failure, the owner of the LM5000 package has a fallback position of complete engine removal and replacement. A lease engine can be installed and online within 48 hours and customer's operations can return to normal while the engine is being repaired ..."

1987 Stewart and Stevenson bid proposal

- Designed for Modularity
 - Lightweight
 - Small Size

- Designed for Modularity
 - Lightweight
 - Small Size
- On-site Repairs Not Possible

GEK 95450 NOVEMBER 1985

MARINE AND INDUSTRIAL ENGINE DIVISION

INDUSTRIAL GAS TURBINES

T-5000-1 SERIES POWER TURBINES

"CHAPTER I: INTRODUCTION

1-1. GENERAL INFORMATION

1-1.1. Purpose and Scope of Technical Manual. This manual is to be used for on-site installation, operation and maintenance of the T-5000-1 Power Turbine designed by the General Electric Company...This manual contains all authorized maintenance tasks that may be performed on-site..."

"CHAPTER VI: CORRECTIVE MAINTENANCE

6-1.2. Levels of Maintenance

Level 1 maintenance tasks cover all work on the exterior of the installed power turbine plus scheduled inspections, cleaning (water wash) and removal/replacement of the power turbine, accelerometer, speed transducer and the lube pump."

LM5000 Power Turbine Configuration and Design

- Designed for Modularity
 - Lightweight
 - Small Size
- On-site Repairs Not Possible
- Maintenance Decision 2 Options
 - Repair Failed Power Turbine at Depot
 - Install Depot-reconditioned ("Exchange") Power Turbine

By Design, Exchange = Repair

Nature of Project

Routine component maintenance at 73,000 hours

- General Electric Recommends Depot Overhaul at 50,000 hours
 - Maintenance Interval Determined by Actual Conditions
 - Most Users Get More Than 50K hours
 - Exchange Power Turbine Program Reflects This Approach
- PT exchange is with exact duplicate
- Exchange required three weeks
- Work was performed with plant operation and maintenance staff

Not an Upgrade - a Repair

Extent of Project Single Component Maintenance

- Power Turbine Is Only One Part of the Emissions Unit
- PT Does Not, in Itself, Create Any Emissions
- Exchange Took Only Three Weeks to Complete
- No Additional Parts Needed for This Work
- Exchange PT Is Exact Duplicate of Original

Repair Limited to a Single Component

Purpose of Project Maintenance of a failed component

- Repair Broken Parts to Return Unit to Service
- Unit Needs to Return to Service for Economic and Operational Reasons
- Operational Needs Include Requirement for Steam for District Cooling and District Heating
- No Changes to the Emissions Unit's Fuel Consumption, Hours of Operation, Emissions, Efficiency, or Power Output
- No Additional Life Expectancy for the Emission Unit Will Result From This Maintenance Activity

Keep Plant Operating in Its Present Condition

Frequency of Project Repair/Exchange is Frequent and Expected

- Repair/Exchange of a Power Turbine Is Expected Every 50,000
 Hours by General Electric's Design Criteria
- Some Units Have Gone in Excess of 50,000 Hours Before Overhaul
- GE Established a Power Turbine Exchange Program Due to Fleet's PT Hours Increasing to >50,000 Hours
- In a Plant Life Anticipated to Be a Minimum of 20 Years, With 95% Availability, a PT Overhaul Can Be Expected Every 6 Years

Repair Frequency Consistent With Design Life

Cost of Project

Option

	<u>Exchange</u>	<u>Repair</u>
Exchange PT	\$1.9 M	
Core Credit	\$0.8 M	
Repair		\$0.9 M
Effective Cost	\$1.1 M	\$0.9 M
Plant Replacement Cost	\$	45 M
Percent	2.4%	2.0%

Costs are Modest in Absolute and Relative Terms

Conclusion

- Power Turbine Failure Necessitated Repair
- Design Is Modular, Intended for Component Replacement
- Design Life ~ 50,000 Hours
- Exchange vs. Repair an Engineering Economic Decision
- No Performance Changes Will Result
- Cost Is 2.4% of Plant Replacement Cost
- Funded From Operating Expense Budget--Not Capital
- All Work Was Performed by Plant Operating/Maintenance Staff

Power Turbine Repair/Exchange is Routine