

5237 Summerlin Commons Blvd.

Fort Myers, FL 33907 T: (239) 332.1300

F: (239) 275.2501 www.pirnie.com

February 28, 2011

Mr. Jon Holtom, P.E. Florida Department of Environmental Protection Bob Martinez Center 2600 Blair Stone Road Mail Station 5505 Tallahassee, Florida 32399

Re: Request for Additional Information, File Number 0570127-006-AV

Title V Air Operation Permit Renewal Application

McKay Bay Refuse to Energy Facility

Dear Mr. Holtom:

On October 28, 2010, the City of Tampa ("City") submitted a Title V Air Operation Permit renewal application ("Application") to the Florida Department of Environmental Protection ("Department" or "FDEP") for the City's McKay Bay Refuse to Energy Facility ("Facility"). On December 20, 2010, the Department issued a Request for Additional Information ("RAI") concerning the Application. On behalf of the City, Malcolm Pirnie, Inc. ("Malcolm Pirnie") is submitting the following responses to the Department's RAI. The Department's RAI comments are quoted in bold italics, followed by the City's responses ("Responses"). The numbering/lettering designations of the comments and responses reflect the designations provided in the Department's RAI letter.

Department RAI Comment 1:

1. Previously submitted information. All renewal applications are required to be treated the same as an initial application for purposes of identifying and certifying compliance with all applicable requirements. For renewal applications, it is not acceptable to reference previously submitted information. To be a complete application, all information must be reviewed, updated, submitted and certified as to its accuracy. The following is a sample of missing information from this renewal application that must be submitted. You should thoroughly review the application to ensure that all of the information necessary to validate the Professional Engineer's and the Responsible Official's certifications is included.

Mr. Jon Holtom, P.E. FDEP
Tallahassee, Florida
February 28, 2011
Page 2 of 7

a. Section 1 of 8, Page 26, Box 3: Detailed description of control equipment.

Revised Page 26 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 2 for a detailed description of control equipment.

b. Section 1 of 8, Page 27, Box 2: Compliance Assurance Monitoring Plan. (see item 2)

Revised Page 27 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 1, Section 4.3, Compliance Assurance Monitoring Plan for revised CAM applicability determinations and potential emissions calculations.

c. Section 1 of 8, Page 27, Box 3: Alternative Methods of Operation (if applicable). In order to be able to switch between different methods of operation available for operating emissions without first notifying the permitting authority, those available methods must be listed in the permit. Provide a listing and description of all desired/implemented methods of operation.

Revised Page 27 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit).

d. Section 2 of 8, Page 39, Box 3: Detailed description of control equipment.

Revised Page 39 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 2 for a detailed description of control equipment.

e. Section 2 of 8, Page 40, Box 2: Compliance Assurance Monitoring Plan. (see item 2)

Revised Page 40 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 1, Section 4.3, Compliance Assurance Monitoring Plan for revised CAM applicability determinations and potential emissions calculations.

f. Section 2 of 8, Page 40, Box 3: Alternative Methods of Operation (if applicable)

Revised Page 40 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit).

Mr. Jon Holtom, P.E. FDEP
Tallahassee, Florida
February 28, 2011
Page 3 of 7

g. Section 3 of 8, Page 52, Box 3: Detailed description of controlled equipment.

Revised Page 52 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 2 for a detailed description of control equipment.

h. Section 3 of 8, Page 53, Box 2: Compliance Assurance Monitoring Plan. (see item 2)

Revised Page 53 of the Application is included with this RAI response letter (See Attachment 1, Section 2 - Application for Air Permit). Please refer to Attachment 1, Section 4.3, Compliance Assurance Monitoring Plan for revised CAM applicability determinations and potential emissions calculations.

i. Section 3 of 8, Page 53, Box 3: Alternative Methods of Operation (if applicable)

Revised Page 53 of the Application is included with this RAI response letter (See Attachment 1, Section 2 - Application for Air Permit).

j. Section 4 of 8, Page 78, Box 3: Detailed description of control equipment.

Revised Page 78 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 2 for a detailed description of control equipment.

k. Section 4 of 8, Page 79, Box 2: Compliance Assurance Monitoring Plan. (see item 2)

Revised Page 79 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 1, Section 4.3, Compliance Assurance Monitoring Plan for revised CAM applicability determinations and potential emissions calculations.

1. Section 4 of 8, Page 79, Box 3: Alternative Methods of Operation (if applicable)

Revised Page 79 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit).

Mr. Jon Holtom, P.E. FDEP
Tallahassee, Florida
February 28, 2011
Page 4 of 7

m. Section 5 of 8, Page 104, Box 3: Detailed description of control equipment.

Revised Page 104 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 2 for a detailed description of control equipment.

n. Section 5 of 8, Page 105, Box 2: Compliance Assurance Monitoring Plan. (see item 2)

Revised Page 105 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 1, Section 4.3, Compliance Assurance Monitoring Plan for revised CAM applicability determinations and potential emissions calculations.

o. Section 5 of 8, Page 105, Box 3: Alternative Methods of Operation (if applicable)

Revised Page 105 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit).

p. Section 6 of 8, Page 130, Box 3: Detailed description of control equipment.

Revised Page 130 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 2 for a detailed description of control equipment.

q. Section 6 of 8, Page 131, Box 2: Compliance Assurance Monitoring Plan. (see item 2)

Revised Page 131 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 1, Section 4.3, Compliance Assurance Monitoring Plan for revised CAM applicability determinations and potential emissions calculations.

r. Section 6 of 8, Page 131, Box 3: Alternative Methods of Operation (if applicable)

Revised Page 131 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit).

Mr. Jon Holtom, P.E. FDEP
Tallahassee, Florida
February 28, 2011
Page 5 of 7

s. Section 7 of 8, Page 156, Box 3: Detailed description of control equipment.

Revised Page 156 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 2 for a detailed description of control equipment.

t. Section 7 of 8, Page 157, Box 2: Compliance Assurance Monitoring Plan. (see item 2)

Revised Page 157 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit). Please refer to Attachment 1, Section 4.3, Compliance Assurance Monitoring Plan for revised CAM applicability determinations and potential emissions calculations.

u. Section 7 of 8, Page 157, Box 3: Alternative Methods of Operation (if applicable)

Revised Page 157 of the Application is included with this RAI response letter (See Attachment 1, Revised Section 2 - Application for Air Permit).

v. Section 8 of 8, Page 160, Box 3: Detailed description of control equipment and designed drift rate.

Cooling Tower is an unregulated emissions unit and control equipment description is not applicable.

Department RAI Comment 2:

2. Compliance Assurance Monitoring (CAM). CAM applicability had been addressed and described in a previous permitting actions for Unit Nos. 1-4, as not applicable. However, CAM does apply to the MWC Units contained in Permit No. 0570127-002-AC, PSD-FL-086(A) for the controlled emissions of particulate matter (PM) and may apply for other pollutants. Even though the units are exempt from the CAM requirements for the NSPS established emissions limits, they are still potentially subject to the CAM requirements for the prevention of significant deterioration (PSD) established emissions limits. Please propose a CAM plan that will provide reasonable assurances of compliance with the PSD established PM emissions limit. The plan should include the use of COMS and the pressure drop across the baghouse as monitored indicators. Also include CAM applicability determinations and propose CAM plans as applicable for all other pollutants for which an add-on control device is used to comply with the emissions limits.

Mr. Jon Holtom, P.E. FDEP
Tallahassee, Florida
February 28, 2011
Page 6 of 7

Please refer to Attachment 1, which contains the, Section 4.3 Compliance Assurance Monitoring Plan with revised CAM applicability determinations and potential emissions calculations. PSD-FL-086(A) limits PM emissions from the MWC units to 27 mg/dscm, corrected to 7% O₂. The PSD permit implemented the Federal 40 CFR 60, Subpart Cb requirements. The "new" Subpart Cb requirements limit PM emissions to 25 mg/dscm. Therefore, the Federal 40 CFR 60 Subpart Cb governs the regulation of PM, and the Facility Emissions Units 1 - 4 are exempt from CAM requirements for particulate matter. The additional PSD limits for PM (0.0230 lb/MMBtu, 2.76 lb/hr, and 12.1 ton/yr) are equivalents of the previous Federal Subpart Cb PM limit of 27 mg/dscm.

Department RAI Comment 3:

3. Equivalency Calculations. It was noted that equivalency calculations were included in the previous renewal application, but they were not evident in this submittal. The dry standard flow rates that were used to show the equivalent allowable emissions in the previous application were listed as 27,289.8 dscfm. The flow rates listed in this application are shown as 36,686 dscfm. Please explain the reason for the increase in the dry standard flow rates and provide the equivalent allowable calculations for all pollutants based on the new Subpart Cb standards.

Please refer to Attachment 3 – Equivalency Calculations for revised calculations for all pollutants based on the new Subpart Cb standards. The dry standard flow rate for the MWC units has not changed and remains 27,289.8 dscfm. The 36,686 dscfm flow rate shown in the application was incorrectly transcribed during the Application document preparation. The revised Application sections replacing those submitted in the October 28, 2010 Application are provided in Attachment 1, Revised Section 2 – Application Forms.

Department RAI Comment 4:

4. Welding Equipment. Please clarify if the portable welding equipment is powered by electrical generation equipment or internal combustion engines. If powered by internal combustion engines, please evaluate each engine for applicability under 40 Code of Regulations (CFR) 63, Subpart ZZZZ and 40 CFR 60, Subparts IIII or JJJJ.

There is one Miller portable welding machine that is powered by a gasoline engine. However, the engine meets the definition of a "non-road engine" as provided in 40 CFR 1068.30 and is therefore not subject to Subpart ZZZZ. Subparts IIII and JJJJ apply to stationary sources, which are defined in 40 CFR 60.2 as "any building, structure, facility, or

Solutions for Life™

Mr. Jon Holtom, P.E. FDEP
Tallahassee, Florida
February 28, 2011
Page 7 of 7

installation which emits or may emit any air pollutant" and are therefore not applicable to the portable welding machine.

We trust that the information presented herein, with the attached supporting documents, provides adequate information and clarification to address each of the Department RAI comments and fulfills the requirements for renewal of the Facility's Title V Air Operation Permit.

Should you have any questions or need additional information, please do not hesitate to contact me at (239) 738-3303 or Tamara Stankunas, Earthshine Environmental, Inc. at (813) 545-7067. We look forward to working with you and the Department.

Very truly yours,

MALCOLM PIRNIE, INC.

Christopher C. Tilman, P.E.

Senior Consultant

Attachments:

- 1. Revised Section 2: Application for Air Permit & Revised Section 4: Facility Additional Information-Additional Requirements for Title V Air Operations Permit Applications
- 2. Detailed Description of Control Equipment
- 3. Equivalency Calculations

Copies: S. Woodard, Environmental Protection Commission of Hillsborough County

Tonja M. Brickhouse, MPA, Director, City of Tampa

- S. Daignault, City of Tampa
- N. McCann, City of Tampa
- G. Grotecloss, City of Tampa
- C. Fletcher, City of Tampa
- H. McKnight, Wheelabrator McKay Bay, Inc.
- S. Rosania, Malcolm Pirnie, Inc.
- C. Tilman, Malcolm Pirnie, Inc.
- T. Stankunas, Earthshine Environmental, Inc.

City of Tampa McKay Bay Refuse-to-Energy Facility Title V Permit Renewal Application

Attachment 1:

Revised Section 2 – Application for Air Permit

Revised Section 4 – Facility Additional Information - Additional Requirements for Title V Air Operations Permit Applications

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for an initial, revised or renewal Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for an air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised or renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes, and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this application that is subject to air construction permitting and for each such emissions unit that is a regulated or unregulated unit for purposes of Title V permitting. (An emissions unit may be exempt from air construction permitting but still be classified as an unregulated unit for Title V purposes.) Emissions units classified as insignificant for Title V purposes are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) – Form

Section [1] of [8]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	. Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	 ▼ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. □ The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit. 					
En	nissions Unit Desci	ription and Status				
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)	<u>.</u>		
	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).					
	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.					
		s Unit Information Section production units and a		e emissions unit, one or fugitive emissions only.		
2.	Description of Em	issions Unit Addressed i	in this Section:			
	Ash Handling Syst	tem including scrubber f	or ash building and sca	lper building.		
3.	Emissions Unit Ide	entification Number: 10	0			
4.	Emissions Unit Status Code: A	5. Commence Construction Date:	6. Initial Startup Date: 08/30/2001	7. Emissions Unit Major Group SIC Code: 49		
8.	Federal Program A	applicability: (Check all	that apply)			
	Acid Rain Unit	t Not Applicable				
	CAIR Unit					
9.	Package Unit: Manufacturer: Tri	-Mer Corp.	Model Number:			
10.	. Generator Namepl	ate Rating: MW Not	Applicable			
11.	. Emissions Unit Co	mment:				

DEP Form No. 62-210.900(1) – Form

Section [1] of [8]

Emissions Unit Control Equipment/Method: Control of
Control Equipment/Method Description: This emissions unit uses two wet scrubbers and a containment building to control fugitive emissions.
2. Control Device or Method Code: 141, 54
Emissions Unit Control Equipment/Method: Control of
1. Control Equipment/Method Description:
2. Control Device or Method Code:
Emissions Unit Control Equipment/Method: Control of
1. Control Equipment/Method Description:
2. Control Device or Method Code:
Emissions Unit Control Equipment/Method: Control of
1. Control Equipment/Method Description:
2. Control Device or Method Code:

DEP Form No. 62-210.900(1) – Form

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Throughput Rate: 280 tons/day (see note 6)				
2.	. Maximum Production Rate:				
3.	Maximum Heat Input Rate: million Btu/hr				
4.	Maximum Incineration Rate: pounds/hr				
	tons/day				
5.	Requested Maximum Operating Schedule:				
	24 hours/day	7 days/week			
	52 weeks/year	8,760 hours/year			
6.	Operating Capacity/Schedule Comment:				
	280 tons/day maximum process/throughput rate is provided for informonly, and is not a compliance requirement.	national purposes			

DEP Form No. 62-210.900(1) – Form

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on I Flow Diagram: See Appe		2. Emission Point 7	Type Code: 3	
3.	Descriptions of Emission	Points Comprising	g this Emissions Unit	for VE Tracking:	
	Ash handling system scrubber stacks				
4.	4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common:				
	Not Applicable				
5.	Discharge Type Code: V	6. Stack Height 50 feet	:	7. Exit Diameter: 1.3 feet	
8.	Exit Temperature: °F N/A	9. Actual Volum acfm	netric Flow Rate:	10. Water Vapor: % N/A	
11.	Maximum Dry Standard F dscfm	Flow Rate:	12. Nonstack Emission Point Height: feet		
13.	Emission Point UTM Coo	rdinates	14. Emission Point Latitude/Longitude Latitude (DD/MM/SS)		
	Zone: 17 East (km): North (km)	, .	Lantude (DD/MM/SS) Longitude (DD/MM/SS)		
15.	Emission Point Comment:		Longitude (DD)		

DEP Form No. 62-210.900(1) - Form

Section [1]

of [8]

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment <u>1</u> of <u>2</u>

1. Segment Description (Process/Fuel Type):

Industrial Processes – Mineral Processes Bulk Materials Conveyors – Other Not Classified					
2. Source Classification Cod 30510199	` ,		3. SCC Units: Tons transferred or handled		
4. Maximum Hourly Rate:	5. Maximum	5. Maximum Annual Rate:		Estimated Annual Activity Factor:	
7. Maximum % Sulfur: N/A	8. Maximum N/A	• • • • • • • • • • • • • • • • • • • •		Million Btu per SCC Unit: N/A	
10. Segment Comment:					
		_			
Segment Description and Ra	ate: Segment 2 of	of <u>2</u>			
1. Segment Description (Pro	cess/Fuel Type):				
		T			
2. Source Classification Cod	le (SCC):	3. SCC Units:			
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:	
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:	
10. Segment Comment:					

DEP Form No. 62-210.900(1) – Form

Section [1] of [8]

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
VE (Opacity)	141	054	EL
	,	_	
,			

20

POL	LUI	'ANT	DET	AIL	INFORMATION
ſ	1	of	ſ	1	

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated Fugitive, and Daseline o	t Projecteu Ac	tuai Einis	SIOHS		
1. Pollutant Emitted:	2. Total Perc	ent Efficie	ency of Control:		
3. Potential Emissions:		4. Syntl	hetically Limited?		
lb/hour	tons/year	Y	es □ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):				
6. Emission Factor:			7. Emissions		
Reference:			Method Code:		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:		
tons/year	From:	7	Го:		
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:		
tons/year	5 years 10 years				
10. Calculation of Emissions:					
10. Calculation of Emissions: Not Applicable					
11. Potential, Fugitive, and Actual Emissions Co	omment:				

DEP Form No. 62-210.900(1) - Form

P	OLLU	J T	ANT	DE	TAII	<u>.</u>]	INFO	RMA'	TION
ſ	•	7	of	Г	1	ı			

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Al	lowable Emissions Allowable Emissions	of _	_
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):
<u>Al</u>	lowable Emissions Allowable Emissions	of _	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of O	Operating Method)
Al	lowable Emissions Allowable Emissions	of _	<u></u>
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):

DEP Form No. 62-210.900(1) – Form

Section [1]

of [8]

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Vi	sible Emissions Limitation: Visible Emissi	ions Limitation <u>1</u> of <u>1</u>				
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity:				
3.	Allowable Opacity:					
		sceptional Conditions: 100 %				
	Maximum Period of Excess Opacity Allowed: 2 hours					
4.	Method of Compliance:	-				
	Compliance with opacity emission limits wi	ill be demonstrated annually using EPA				
	Reference Method 22.					
_	Will B. C.					
5.	Visible Emissions Comment:	- hutdown on molfingtion manided that the				
		p, shutdown, or malfunction, provided that the sions are adhered to and the duration of these				
	events does not exceed 2 hours in any 24-ho					
	events does not exceed 2 notifs in any 24-no	our period (Rule 02-210.700(1), 1.7x.C.)				
Vi	sible Emissions Limitation: Visible Emissi	ions Limitation of				
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity:				
		Rule Other				
3.	Allowable Opacity:					
	Normal Conditions: % Ex	cceptional Conditions: %				
	Maximum Period of Excess Opacity Allowe	ed: min/hour				
4.	Method of Compliance:					
_	Will David					
5.	Visible Emissions Comment:					
1						

DEP Form No. 62-210.900(1) - Form

Effective: 03/11/2010

[8]

Section [1] of

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

<u>Co</u>	ontinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
	Not Apr	plicable
<u>Co</u>	ontinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
_	Installation Date:	6. Performance Specification Test Date:
5.	installation Date:	o. Terrormance Specification Test Date.

DEP Form No. 62-210.900(1) – Form

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

<u>Ca</u>	ontinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
		pplicable
_	ontinuous Monitoring System: Continuous	
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer: Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

	1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix B Previously Submitted, Date
	2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: See Section 5 Previously Submitted, Date
	3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Attachment 2 Previously Submitted, Date
	4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix C Previously Submitted, Date
		☐ Not Applicable (construction application)
	5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Value Previously Submitted, Date Not Applicable Not Applic
	6.	Compliance Demonstration Reports/Records:
l		Attached, Document ID:
		Test Date(s)/Pollutant(s) Tested:
		Previously Submitted, Date:
		Test Date(s)/Pollutant(s) Tested: <u>FY 2010 compliance testing results and 2009</u> <u>Statement of Compliance are included in Appendix D.</u> To be Submitted, Date (if known):
		Test Date(s)/Pollutant(s) Tested:
		Not Applicable
		Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
	7.	Other Information Required by Rule or Statute: Attached, Document ID:
1		

DEP Form No. 62-210.900(1) - Form

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),
	F.A.C.; 40 CFR 63.43(d) and (e)): Attached, Document ID: Not Applicable
2.	
	212.500(4)(f), F.A.C.): ☐ Attached, Document ID:
3.	Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities
	only) ☐ Attached, Document ID:
A	dditional Requirements for Title V Air Operation Permit Applications
1.	Identification of Applicable Requirements: √ Attached, Document ID: See Section 4
2.	Compliance Assurance Monitoring: ✓ Attached, Document ID: See Section 4 Not Applicable
3.	Alternative Methods of Operation: ☐ Attached, Document ID: Not Applicable
4.	Alternative Modes of Operation (Emissions Trading): ☐ Attached, Document ID:
A	dditional Requirements Comment
No tha	Ilternative Methods of Operation: o alternative methods of operation are proposed at this time. However, in the unlikely event at a national shortage or delivery interruption of chemicals occurs, the City shall request a proval of alternative methods of operation from the FDEP.

DEP Form No. 62-210.900(1) – Form

Section [2]

of [8]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	 ✓ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☐ The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit. 					
En	nissions Unit Desci	ription and Status	-			
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)			
	√ This Emiss	sions Unit Information S	ection addresses, as a si	ingle emissions unit, a		
		or production unit, or ac				
	-	which has at least one d	-			
				e emissions unit, a group		
	of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.					
	This Emissions Unit Information Section addresses, as a single emissions unit, one or					
	more process or production units and activities which produce fugitive emissions only.					
2.	Description of Em	issions Unit Addressed	in this Section:			
	Pebble Lime Storage Silos					
3.	Emissions Unit Ide	entification Number: 10	1			
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit		
	Status Code:	Construction	Date:	Major Group		
	A	Date:	08/30/2001	SIC Code: 49		
8.	Federal Program A	 Applicability: (Check all	that apply)	<u> </u>		
	Acid Rain Unit Not Applicable					
	CAIR Unit					
9.	Package Unit:					
	Manufacturer:		Model Number:			
10.	. Generator Namepl	ate Rating: MW Not	Applicable			
11.	. Emissions Unit Co	mment:				
 	, (2) oilosid	nna an vant filtan fan sta		for said ass soutestie		
1	% (2) \$1108 with con OA units.	minon vent inter for stora	age of peoble time used	for acid gas control in		
 Tu	o (2) silos with con	nmon vent filter for stor	age of pebble lime used	for acid gas control in		
SD	A units.					

DEP Form No. 62-210.900(1) - Form

Emissions	Unit	Control	Equip	nent/Method	: Control	1 of	1

	<u> </u>
1.	Control Equipment/Method Description:
	This emissions unit is equipped with a fabric filter on the silo exhaust that activates only
	during silo loading operations.
	and the second of the second o
	Control Davids on West of Codes 10
2.	Control Device or Method Code: 18
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
<u>En</u>	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
	1 1
-	Control Daviga or Mathed Code:

DEP Form No. 62-210.900(1) – Form

Section [2] of [8]

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

- 1. Maximum Process or Throughput Rate: 3,300 tons/year
- 2. Maximum Production Rate:
- 3. Maximum Heat Input Rate: million Btu/hr
- 4. Maximum Incineration Rate: pounds/hr

tons/day

5. Requested Maximum Operating Schedule:

hours/day days/week weeks/year 500 hours/year

6. Operating Capacity/Schedule Comment:

The vent filter serving the lime silos only activates (exhausts carrier air) during lime loading operations, which occur approximately 500 hours per year. The silos continuously feed lime to the slakers that serve the SDA units.

DEP Form No. 62-210.900(1) – Form

Section [2] of

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram: See Appendix A		2. Emission Point 7	Type Code: 2	
3.	Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking:				
	Not Applicable				
4.	ID Numbers or Descriptio	ns of Emission Ur	nits with this Emissior	Point in Common:	
	Not Applicable				
5.	Discharge Type Code: P	6. Stack Height	:	7. Exit Diameter:	
8.	Exit Temperature: °F Ambient	9. Actual Volur acfm	netric Flow Rate:	10. Water Vapor: %	
11.	. Maximum Dry Standard Flow Rate: 1,200 dscfm		12. Nonstack Emission Point Height: feet		
13.	Emission Point UTM Coo Zone: 17 East (km):	rdinates	14. Emission Point Latitude/Longitude Latitude (DD/MM/SS)		
	North (km)	:	Longitude (DD/MM/SS)		
15.	Emission Point Comment:				
Two pebble lime storage silos exhaust through a common vent filter during silo loading operations.					
				,	

DEP Form No. 62-210.900(1) - Form

Effective: 03/11/2010 31

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

1.	Segment Description (Process/Fuel Type):						
2.	Source Classification Code	e (SCC):	3. SCC Units: Tons trans		or handled		
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:	1	stimated Annual Activity actor:		
7.	Maximum % Sulfur: N/A	8. Maximum (% Ash:	1	Million Btu per SCC Unit:		
Se	Segment Description and Process/Fuel Type): Segment Description (Process/Fuel Type):						
2.	Source Classification Code	e (SCC):	3. SCC Units:				
4.	Maximum Hourly Rate:	5. Maximum	Annual Rate:		stimated Annual Activity actor:		
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9. N	Million Btu per SCC Unit:		
10.	Segment Comment:			•			

DEP Form No. 62-210.900(1) – Form

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
PM	018		EL
_			

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[1] of [1]

34

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Fotential, Estimated Fugitive, and Dasenne o	t Frojecteu Ac	tuai Eilliss	<u>sions</u>	
Pollutant Emitted: PM	2. Total Perc	ent Efficie	ncy of Control:	
3. Potential Emissions: 0.36 lb/hour	tons/year	-	etically Limited?	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: 0.015 grains/dscf . Reference:			7. Emissions Method Code: 5	
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:		Period: o:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected 5 year		ng Period:) years	
10. Calculation of Emissions: Limited by Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Comment:				
Limited by Florida permit PSD-FL-086(B)				

DEP Form No. 62-210.900(1) - Form

Effective: 03/11/2010

POLLUTANT DETAIL INFORMATION [1] of [1]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of	I of I	sions]	Emission	owable	AI.	Emissions	<u>Allowable</u>	Α
--------------------------	--------	---------	----------	--------	-----	-----------	------------------	---

Allowable Emissions Allowable Emissions 1	^* _
Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.015 grains/dscf	4. Equivalent Allowable Emissions: 0.36 lb/hour tons/year
5. Method of Compliance: The emission unit has the potential to emit with a baghouse.	less than 100 tons per year and is equipped
6. Allowable Emissions Comment (Description Limited By Florida permit PSD-FL-086(B)	n of Operating Method):
Allowable Emissions Allowable Emissions	of
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	
Allowable Emissions Allowable Emissions	of
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	n of Operating Method):

DEP Form No. 62-210.900(1) – Form

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

<u>Visible Emissions Limitation:</u> Visible Emissions Limitation $\underline{1}$ of $\underline{1}$			
1.	Visible Emissions Subtype: VE05	2. Basis for Allowable Opacity:	
3.	1 ,	acceptional Conditions: 100 % ed: 2 hours	
4.	Method of Compliance: EPA Method 9 shall be used to determine opacity compliance pursuant to Chapter 62-297, F.A.C.		
5.	Excess emissions are allowed during startup, shutdown, or malfunction, provided that the best operational practices to minimize emissions are adhered to and the duration of these events does not exceed 2 hours in any 24-hour period (Rule 62-210.700(1), F.A.C.)		
Vi	sible Emissions Limitation: Visible Emissi	ons Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity: Rule	
3.	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	acceptional Conditions: % ed: min/hour	
4.	Method of Compliance:		
5.	Visible Emissions Comment:		

DEP Form No. 62-210.900(1) – Form

Section [2] of [8]

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

<u></u>	Continuous Monitoring System: Continuous Monitor of				
1.	Parameter Code:	2. Pollutant(s):			
3.	CMS Requirement:	Rule Other			
4.	Monitor Information Manufacturer: Model Number:	Serial Number:			
L_					
5.	Installation Date:	6. Performance Specification Test Date:			
	7. Continuous Monitor Comment: Not Applicable				
Continuous Monitoring System: Continuous Monitor of					
1.	Parameter Code:	2. Pollutant(s):			
1. 3.	Parameter Code: CMS Requirement:				
		2. Pollutant(s):			
3.	CMS Requirement: Monitor Information	2. Pollutant(s):			
3.	CMS Requirement: Monitor Information Manufacturer:	2. Pollutant(s): Rule Other			

 $DEP\ Form\ No.\ 62\text{-}210.900(1) - Form$

Section [2]

of [8]

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

Continuous Monitoring System: Continuous Monitor of			
1.	Parameter Code:	2. Pollutant(s):	
3.	CMS Requirement:	☐ Rule ☐ Other	
4.	Monitor Information Manufacturer: Model Number:	Serial Number:	
_			
5.	Installation Date:	6. Performance Specification Test Date:	
7.	7. Continuous Monitor Comment: Not Applicable		
Continuous Monitoring System: Continuous Monitor of			
<u>Ca</u>			
_			
_	ontinuous Monitoring System: Continuous	Monitor of	
1.	Parameter Code:	Monitor of 2. Pollutant(s):	
1. 3.	Parameter Code: CMS Requirement: Monitor Information	Monitor of	
1. 3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	Monitor of 2. Pollutant(s): Rule	

DEP Form No. 62-210.900(1) – Form

Effective: 03/11/2010

Section [2]

of [8]

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix B Previously Submitted, Date	
2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: See Section 5 Previously Submitted, Date	
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Attachment 2 Previously Submitted, Date	
4.	Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix C Previously Submitted, Date	
	☐ Not Applicable (construction application)	
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix C Previously Submitted, Date Not Applicable	
6.	Compliance Demonstration Reports/Records:	
	Attached, Document ID:	
	Test Date(s)/Pollutant(s) Tested:	
	√ Previously Submitted, Date:	
	Test Date(s)/Pollutant(s) Tested: FY 2010 compliance testing results and 2009 Statement of Compliance are included in Appendix D. To be Submitted, Date (if known):	
	Test Date(s)/Pollutant(s) Tested:	
	Not Applicable	
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.	
7.	7. Other Information Required by Rule or Statute: ☐ Attached, Document ID:	

DEP Form No. 62-210.900(1) – Form

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.			
	F.A.C.; 40 CFR 63.43(d) and (e)): ☐ Attached, Document ID:	Not Applicable	
2. Good Engineering Practice Stack Height Analysis (Rules 62-212.400(4)(d) and 62-			
2.	212.500(4)(f), F.A.C.):	(Nuics 02-212.400(4)(a) and 02-	
	Attached, Document ID:	Not Applicable	
3.	1 0	d for proposed new stack sampling facilities	
	only)	Nat Applicable	
	Attached, Document ID:	Not Applicable	
<u>Ac</u>	Additional Requirements for Title V Air Operation	Permit Applications	
1.	. Identification of Applicable Requirements:		
	Attached, Document ID: See Section 4		
2.	3		
	Attached, Document ID: See Section 4 No	ot Applicable	
3.	3. Alternative Methods of Operation:		
		Not Applicable	
4.	1		
	Attached, Document ID: V	Not Applicable	
Ad	Additional Requirements Comment		
A	Alternative Methods of Operation:		
	No alternative methods of operation are proposed at this time. However, in the unlikely event		
	that a national shortage or delivery interruption of chemicals occurs, the City shall request		
ap	approval of alternative methods of operation from the FDEP.		

DEP Form No. 62-210.900(1) – Form

Section [3]

of [8]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)			
,	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.			
	The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.			
<u>En</u>	nissions Unit Descr	ription and Status		
1.	. Type of Emissions Unit Addressed in this Section: (Check one)			
	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).			
	☐ This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.			
	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.			
2.	Description of Em	issions Unit Addressed	in this Section:	
	Activated carbon storage silos			
3.	Emissions Unit Ide	entification Number: 10	12	
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit
	Status Code: A	Construction Date:	Date: 08/30/2001	Major Group SIC Code: 49
	A	Date.	00/30/2001	Die Code. 15
8.	Federal Program A	Applicability: (Check all	that apply)	
	☐ Acid Rain Unit	t Not Applicable		
	CAIR Unit			
9.	Package Unit:			
	Manufacturer: Model Number:			
	Generator Namepla		t Applicable	
11. Emissions Unit Comment:				λ units Fach silo is
Two (2) activated carbon storage silos used for mercury control in SDA units. Each silo is equipped with a vent filter that operates only during silo loading operations.				

DEP Form No. 62-210.900(1) - Form

Section [3] of [8]

Emissions Unit Control Equipment/Method: Control 1 of 1

1.	Control Equipment/Method Description:
	This emissions unit is equipped with a fabric filter on each silo exhaust that activates only
	during silo loading operations.
2.	Control Device or Method Code: 18
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
<u>En</u>	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2	Control Device or Method Code:

Section [3]

of [8]

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

- 1. Maximum Process or Throughput Rate: 120 tons/year
- 2. Maximum Production Rate:
- 3. Maximum Heat Input Rate: million Btu/hr
- 4. Maximum Incineration Rate: pounds/hr

tons/day

5. Requested Maximum Operating Schedule:

hours/day

days/week

weeks/year

110 hours/year

6. Operating Capacity/Schedule Comment:

The vent filters serving the carbon silos only activate (exhaust carrier air) during carbon loading operations, which occur approximately 110 hours per year. The silos continuously feed activated carbon to the SDA units.

DEP Form No. 62-210.900(1) – Form

Section [3] of [8]

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Flow Diagram: See Appe		2. Emission Point	Гуре Code: 2
3.	Descriptions of Emission	Points Comprising	g this Emissions Unit	for VE Tracking:
	Not Applicable			
4.	ID Numbers or Descriptio	ns of Emission Ur	nits with this Emission	Point in Common:
	Not Applicable	·		
5.	Discharge Type Code: P	6. Stack Height	:	7. Exit Diameter:
8.	Exit Temperature: °F Ambient	9. Actual Volur acfm	netric Flow Rate:	10. Water Vapor: % N/A
11.	Maximum Dry Standard F 1,200 dscfm	Flow Rate:	12. Nonstack Emissi Feet	on Point Height:
13.	Emission Point UTM Coo	rdinates		Latitude/Longitude
	Zone: 17 East (km): North (km)	ı.	Latitude (DD/M) Longitude (DD/M)	
15.	Emission Point Comment:			
Eac	ch activated carbon storage	silo exhausts thro	ugh a vent filter durin	g silo loading operations.

DEP Form No. 62-210.900(1) – Form

Section [3] of [8]

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment <u>1</u> of <u>2</u>

1. Segment Description (Process/Fuel Type):

	A 1010	icable Units:
2. Source Classification Cod	Not App	Units:
4. Maximum Hourly Rate:	5. Maximum Annual F	tate: 6. Estimated Annual Activity Factor:
7. Maximum % Sulfur: N/A	8. Maximum % Ash: N/A	9. Million Btu per SCC Unit: N/A
10. Segment Comment:		
Segment Description and Ra	ate: Segment 2 of 2	
1. Segment Description (Prod	cess/Fuel Type):	·
2. Source Classification Cod	e (SCC): 3. SCC	C Units:
4. Maximum Hourly Rate:	5. Maximum Annual R	tate: 6. Estimated Annual Activity Factor:
7. Maximum % Sulfur:	8. Maximum % Ash:	9. Million Btu per SCC Unit:
10. Segment Comment:		

DEP Form No. 62-210.900(1) - Form

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
PM	018		EL
			_
			_

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [1] of [1]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

2. Total Perce	ent Efficiency of Control:	
	4. Synthetically Limited?	
	-	
	1 es110	
s applicable):		
		•
	7 Emissions	
		e :
	5	
8.b. Baseline 2	24-month Period:	
From:	To:	
9.b. Projected	Monitoring Period:	
	O	
<u> </u>		
omment:		
	2. Total Percentage tons/year sapplicable): 8.b. Baseline 2 From: 9.b. Projected	8.b. Baseline 24-month Period: From: 9.b. Projected Monitoring Period: 5 years 10 years

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [1] of [1]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.015 grains/dscf	4.	Equivalent Allowable Emissions: 0.36 lb/hour tons/year
Th	Method of Compliance: is emission unit has the potential to emit less t ghouse.	han	100 tons per year and is equipped with a
	Allowable Emissions Comment (Description mited by Florida permit PSD-FL-086(B)	of (Operating Method):
Al	lowable Emissions Allowable Emissions	of _	_
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of C	Operating Method):
<u>A</u> l	lowable Emissions Allowable Emissions	of _	_
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):

DEP Form No. 62-210.900(1) – Form

Section [3]

of [8]

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation $\underline{1}$ of $\underline{1}$ 2. Basis for Allowable Opacity: 1. Visible Emissions Subtype: **VE05 √** Rule Other 3. Allowable Opacity: 5 % 100 % Normal Conditions: Exceptional Conditions: Maximum Period of Excess Opacity Allowed: 2 hours 4. Method of Compliance: EPA Method 9 shall be sued to determine opacity compliance pursuant to Chapter 6 -297, F.A.C. 5. Visible Emissions Comment: Excess emissions are allowed during startup, shutdown, or malfunction, provided that the best operational practices to minimize emissions are adhered to and the duration of these events does not exceed 2 hours in any 24-hour period (Rule 62-210.700(1), F.A.C.) <u>Visible Emissions Limitation:</u> Visible Emissions Limitation ___ of ____ 2. Basis for Allowable Opacity: 1. Visible Emissions Subtype: ☐ Rule ☐ Other 3. Allowable Opacity: **Normal Conditions:** % **Exceptional Conditions:** min/hour Maximum Period of Excess Opacity Allowed: 4. Method of Compliance: 5. Visible Emissions Comment:

DEP Form No. 62-210.900(1) – Form

Section [3] of [8]

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

<u>C</u>	ontinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
	Not Ap	plicable
	ontinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer: Model Number:	Serial Number:
	Wiodel Humber:	
5.	Installation Date:	6. Performance Specification Test Date:

DEP Form No. 62-210.900(1) - Form

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

<u>Co</u>	ntinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
,,	Continuous Monitor Comment:	pplicable
Co	ontinuous Monitoring System: Continuous	
_		
1.	ontinuous Monitoring System: Continuous	Monitor of
1.	Parameter Code:	Monitor of 2. Pollutant(s):
3. 4.	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	Monitor of 2. Pollutant(s):
3. 4.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	Monitor of 2. Pollutant(s): Rule Other

DEP Form No. 62-210.900(1) – Form

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix B Previously Submitted, Date
2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: See Section 5 Previously Submitted, Date
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: Attachment 2 Previously Submitted, Date
4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Value Appendix C Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Value Attached, Document ID: Appendix C Previously Submitted, Date
6.	Compliance Demonstration Reports/Records: Attached, Document ID: Test Date(s)/Pollutant(s) Tested:
	Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested: FY 2010 compliance testing results and 2009 Statement of Compliance are included in Appendix D. To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute: ☐ Attached, Document ID: ☐ Not Applicable

DEP Form No. 62-210.900(1) - Form

Section [3] of [8]

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.	
	F.A.C.; 40 CFR 63.43(d) and (e)): ☐ Attached, Document ID:
2.	0
	212.500(4)(f), F.A.C.): ☐ Attached, Document ID:
3.	Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities only)
	Attached, Document ID: Not Applicable
<u>A</u>	dditional Requirements for Title V Air Operation Permit Applications
1.	Identification of Applicable Requirements: √ Attached, Document ID: See Section 4
2.	Compliance Assurance Monitoring: √ Attached, Document ID: See Section 4 Not Applicable
3.	Alternative Methods of Operation: ☐ Attached, Document ID:
4.	Alternative Modes of Operation (Emissions Trading): Attached, Document ID: Not Applicable
A	dditional Requirements Comment
No tha	Iternative Methods of Operation: o alternative methods of operation are proposed at this time. However, in the unlikely event at a national shortage or delivery interruption of chemicals occurs, the City shall request proval of alternative methods of operation from the FDEP.

DEP Form No. 62-210.900(1) – Form

Section [4]

of [8]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	_	gulated Emissions Unitation of air operation permit. Simple only.)		_
		ons unit addressed in thi	s Emissions Unit Inform	nation Section is a
	regulated emis		missions IIuit Informati	an Saatian is an
	unregulated en	unit addressed in this Entire in this Entire in the Entire	missions Ome informati	on section is an
∟ Er	nissions Unit Desci			
1.		Unit Addressed in this	Section: (Check one)	
	single process	ions Unit Information S or production unit, or ac which has at least one d	tivity, which produces of	one or more air
	of process or p	s Unit Information Secti roduction units and activent) but may also prod	vities which has at least	e emissions unit, a group one definable emission
		s Unit Information Section production units and a	_	e emissions unit, one or fugitive emissions only.
2.	Description of Em	issions Unit Addressed	in this Section:	
	Municipal Waste (Combustors and Auxilia	ry Burners – Unit No. 1	
3.	Emissions Unit Ide	entification Number: 10	3	
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit
	Status Code: A	Construction Date:	Date: 08/30/2001	Major Group SIC Code: 49
	1	Dutc.	00/30/2001	gie code. 45
8.	Federal Program A	applicability: (Check all	that apply)	
	Acid Rain Unit	t Not Applicable		
	CAIR Unit			
9.	Package Unit: Manufacturer: D.I	3. Riley	Model Number:	2753
10	. Generator Namepl	ate Rating: 22.5 MW		
Ex du	ration of these event	omment: allowed during startup, s als does not exceed 3 hou also period is limited to 1	rs per occurrence. For C	•

DEP Form No. 62-210.900(1) – Form

Effective: 03/11/2010

54

Emissions Unit Control Equipment/Method: Control 1 of 1

1.	Control Equipment/Method Description:
	This emissions unit equipped with a spray dryer absorber (SDA), activated carbon injection
	system, fabric filter baghouse, and selective non-catalytic reduction (SNCR).
2.	Control Device or Method Code: 016, 048, 067, 107
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
	THE WAY OF A LET A MAKE A COLUMN ASSESSMENT OF A SECOND ASSESSMENT O
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:

DEP Form No. 62-210.900(1) – Form

Section [4]

of [8]

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1. Maximum Process or Throughput Rate:
2. Maximum Production Rate:
3. Maximum Heat Input Rate: million 120 MMBtu/hr (see item 6)
4. Maximum Incineration Rate: pounds/hr
288 tons/day
5. Requested Maximum Operating Schedule:
24 hours/day
52 weeks/year
7 days/week
52 weeks/year
8,760 hours/year
6. Operating Capacity/Schedule Comment:
120 MMBtu/hour heat input rate for information purposes only, not for compliance.
Maximum steam flow and nominal capacity are limited by Florida permit PSD-FL-086(B).

DEP Form No. 62-210.900(1) – Form

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Flow Diagram: See Appe		2. Emission Point	Гуре Code: 1	
3.	Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking:				
	Not Applicable				
4.	ID Numbers or Descriptio	ns of Emission Ur	nits with this Emission	n Point in Common:	
	Not Applicable				
5.	Discharge Type Code: V	6. Stack Height 201 feet		7. Exit Diameter: 4.2 feet	
8.	Exit Temperature: 315.°F	9. Actual Volum 60,894 acfm	netric Flow Rate:	10. Water Vapor: 20 % ±	
11.	1. Maximum Dry Standard Flow Rate: 27,289.8 dscfm		12. Nonstack Emission Point Height: Feet		
13.	Emission Point UTM Coo Zone: 17 East (km):		14. Emission Point Latitude/Longitude Latitude (DD/MM/SS)		
	North (km): 3091.0		Longitude (DD/MM/SS)		
15.	Emission Point Comment				
Fo	Four MWCs have separate stacks (flues) located within a common enclosure.				

DEP Form No. 62-210.900(1) – Form

Section [4] **of** [8]

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

36	gment Description and Ka	ite. Segment I o	n <u>z</u>		
1.	Segment Description (Process/Fuel Type):				
	Solid Waste Disposal – Go	overnment			
	Municipal Incineration – S		Burn Waterwall (Combustor	
	-	-			
2	Source Classification Code	e (SCC):	3. SCC Units:		
ے.	50100105	<i>5</i> (500).	1	ed (all solid fuels)	
4.	Maximum Hourly Rate:	5. Maximum		6. Estimated Annual Activity	
7.	See item 10	See item 19		Factor:	
7.	Maximum % Sulfur:	8. Maximum		9. Million Btu per SCC Unit:	
′ .	N/A	N/A	70 7 kG11.	10 ±	
10	. Segment Comment:	L		I.	
PS	D-FL-086(B) limits nomina	al heat input to 10	04 MMBtu/hr an	d nominal capacity to 250 tons	
pe	per day (rolling 12-month average).				
Segment Description and Rate: Segment 2 of 2					
1.	1. Segment Description (Process/Fuel Type):				
	Solid Waste Disposal – Go				
	Auxiliary Fuel/No Emissions – Natural Gas				
2.	Source Classification Code	e (SCC):	3. SCC Units:		
	50100106		Million Cubic l	Feet Burned (all gaseous fuels)	
4.	Maximum Hourly Rate:	5. Maximum A	Annual Rate:	6. Estimated Annual Activity	
	See item 10	See item 10	0	Factor:	

10. Segment Comment:

7. Maximum % Sulfur:

PSD-FL-086(B) limits the maximum hourly rate by the 10% annual capacity factor.

8. Maximum % Ash:

9. Million Btu per SCC Unit:

1027 ±

DEP Form No. 62-210.900(1) – Form

Section [4]

of [8]

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	2. Primary Control	3. Secondary Control	4. Pollutant
	Device Code	Device Code	Regulatory Code
PM	016		EL
SO2	067	016	EL
NOx	107		EL
CO			EL
HCL (H106)	067	016	EL
H107	016		EL
PB	016		EL
H021	016		EL
H114	048		EL
DIOX	067	016	EL
H027	016	•	EL
		_	

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[1] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 otential, Estimated 1 agint et and Dasenne et 110 jeune 11euan Emissions			
Pollutant Emitted: PM	2. Total Percent Efficie	ency of Control:	
3. Potential Emissions:	4 Synth	etically Limited?	
	1 -	es √ No	
		<u> </u>	
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year			
6. Emission Factor: 25 mg/dscm, corrected to	7% O2	7. Emissions	
		Method Code:	
Reference: Revised 40 CFR 60 Subpart Cb		0	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:	
tons/year	From:	o:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitori	ng Period:	
tons/year	☐ 5 years ☐ 10 years		
10 Calculation of Emissions:	<u>-</u>		
10. Calculation of Emissions: Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B).			
11. Potential, Fugitive, and Actual Emissions Comment:			
The current permitted emission limit for PM is 27 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 25 mg/dscm. Limited by Florida permit PSD-FL-086(B).			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
[2] of [11]

61

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 otential, Estimated Fugitive, and Dasenne & 1 ofected Actual Emissions			
1. Pollutant Emitted:	2. Total Perc	ent Efficie	ency of Control:
SO2			
3. Potential Emissions:		4. Synth	etically Limited?
lb/hour	tons/year	_ Y	es No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 29 ppmvd or 75% remova	l, corrected to	7% O2	7. Emissions
			Method Code:
Reference: PSD-FL-086(B)			0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	T	o:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitorii	ng Period:
tons/year		ırs 🔲 10	0 years
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
11.1 otential, 1 ugitive, and Actual Emissions Comment.			
Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emissions limited to 460 tons/year.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
[3] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1. Pollutant Emitted:	2. Total Percent Effici	ency of Control:		
NOx	2. Total Fercent Effici	ency of Control.		
3. Potential Emissions:		netically Limited?		
40.1 lb/hour	tons/year \	es √ No		
5. Range of Estimated Fugitive Emissions (as	s applicable):			
to tons/year				
6. Emission Factor: 205 ppmvd, corrected to 7	1% O2	7. Emissions		
		Method Code:		
Reference: PSD-FL-086(B)		0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:		
tons/year	From:	Го:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitori	ng Period:		
tons/year	5 years 1	0 years		
10. Calculation of Emissions:				
Limited by Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Comment:				
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of				
0.335 lb/MMBtu. Facility-wide NOx emission limited to 679 tons/year.				

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [4] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otential, Estimated Fugitive, and Daseinie & 110 jected Actual Emissions			
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:		
CO			
3. Potential Emissions:	4. Synthetically Limited?		
11.9 lb/hour	tons/year Yes V No		
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year			
6. Emission Factor: 100 ppmvd, corrected to 7	7% O2 7. Emissions		
	Method Code:		
Reference: PSD-FL-086(B)	0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:		
tons/year	From: To:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:		
tons/year	5 years 10 years		
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0995 lb/MMBtu. Facility-wide CO emission limited to 185 tons/year.			

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [5] of [11]

64

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otential, Estimated Fugitive, and Dasenne & Frojected Actual Emissions			
1. Pollutant Emitted:	2. Total Percent Effic	ciency of Control:	
HCL (H106)			
3. Potential Emissions:	4. Syr	thetically Limited?	
lb/hour 67.9	tons/year	Yes √ No	
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: 29 ppmvd or 95% remova	l, corrected to 7% O2	7. Emissions	
		Method Code:	
Reference: PSD-FL-086(B)		0	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-mon	th Period:	
tons/year	From:	To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monito	ring Period:	
tons/year	5 years	10 years	
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
	•		
11. Potential, Fugitive, and Actual Emissions Co	omment:		
Limited by Florida permit PSD-FL-086(B) limits HCL emissions to 29 ppmvd or 5% of the			
potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2,			
whichever is less stringent.			
windlevel is less stringent.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [6] of [11]

65

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1. Pollutant Emitted: H107 (Fluoride as HF)	2. Total Percent Efficiency of Control:		
3. Potential Emissions:	4. Synthetically Limited?		
1.5 lb/hour 6.57	7 tons/year ☐ Yes ☑ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor:	7. Emissions		
Reference: PSD-FL-086(B)	Method Code: 0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:		
tons/year	From: To:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:		
tons/year	5 years 10 years		
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0125 lb/MMBtu.			

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[7] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Fotential, Estimated Fugitive, and Daseline & Frojected Actual Emissions				
1. Pollutant Emitted:	2. Total Percent Effic	ciency of Control:		
PB				
3. Potential Emissions:	4. Syn	thetically Limited?		
0.0408 lb/hour 0.179	tons/year	Yes √ No		
5. Range of Estimated Fugitive Emissions (as	applicable):			
to tons/year				
6. Emission Factor: 0.40 mg/dscm, corrected t	to 7% O2	7. Emissions		
		Method Code:		
Reference: Revised 40 CFR 60 Subpart Cb		0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-mon	th Period:		
tons/year	From:	To:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monito	ring Period:		
tons/year	5 years	10 years		
10. Calculation of Emissions:		_		
10. Calculation of Emissions: Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B) 11. Potential, Fugitive, and Actual Emissions Comment:				
11. Potential, Fugitive, and Actual Emissions Co	omment:			
The current permitted emission limit for lead is 0.44 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.40 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.				

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [8] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Totential, Estimated Fugitive, and Dasenne & Tojected Actual Emissions			
Pollutant Emitted: H021 (Beryllium Compounds)	2. Total Percent Efficiency of Control:		
3. Potential Emissions: 0.000115 lb/hour 5.04E-04	4. Synthetically Limited? I tons/year		
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year			
6. Emission Factor: Reference: PSD-FL-086(B)	7. Emissions Method Code: 0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:		
· · · · · · · · · · · · · · · · · · ·			
tons/year	From: To:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:		
tons/year	5 years 10 years		
10 Calculation of Emissions:			
10. Calculation of Emissions: Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
11. Polential, Fugitive, and Actual Emissions Comment:			
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.			

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[9] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otential, Estimated Pugitive, and Dascinic o	r rojectcu Actuai Emissions		
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:		
H114 (Mercury Compounds)			
3. Potential Emissions:	4. Synthetically Limited?		
lb/hour 0.0223	B tons/year ☐ Yes √ No		
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: 0.050 mg/dscm or 85% re	· ·		
7% O2	Method Code:		
Defended 40 CED (0 Subject Ch	0		
Reference: Revised 40 CFR 60 Subpart Cb			
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:		
tons/year	From: To:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:		
tons/year	5 years 10 years		
10. Calculation of Emissions:			
Limited by revised 40 CFR 60 Subpart Cb and F	Florida permit PSD_FL_086(R)		
Elimited by levised 40 Cl it 00 Subpart Cb and I	Torida perint FSD-FL-080(B)		
11. Potential, Fugitive, and Actual Emissions Comment:			
The current permitted emission limit for mercury is 0.070 mg/dscm and the revised 40 CFR 60			
Subpart Cb limit is 0.050 mg/dscm.			
Limited by Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of			
the potential mercury emission concentration (85% reduction by weight or volume), corrected			
to 7% O2, whichever is less stringent.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [10] of [11]

69

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

rotential, Estimated rugitive, and Dasenne o	Trojecteu Actual Eliilissiolis	
Pollutant Emitted: DIOX	2. Total Percent Efficiency of Control:	
3. Potential Emissions: 3.07E-06 lb/hour 1.35E-05	4. Synthetically Limited? Totons/year Yes No	
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year		
6. Emission Factor: 30 ng/dscm (total mass), of Reference: PSD-FL-086(B)	7. Emissions Method Code:	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:	
` •		
tons/year	From: To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:	
tons/year	5 years 10 years	
10. Calculation of Emissions:		
Limited by Florida permit PSD-FL-086(B)		
11. Potential, Fugitive, and Actual Emissions Comment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 2.56E-08 lb/MMBtu.		

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [11] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions			
1. Pollutant Emitted:	2. Total Percent	Efficie	ncy of Control:
H027 (Cadmium Compounds)			
3. Potential Emissions:	4.	Synth	etically Limited?
3.6E-03 lb/hour 0.0156	o tons/year		es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.035 mg/dscm, corrected	to 7% O2		7. Emissions Method Code:
Reference: Revised 40 CFR 60 Subpart Cb			0 .
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-	month	Period:
tons/year	From:	T	o:
9.a. Projected Actual Emissions (if required):	9.b. Projected Mo	onitorii	ng Period:
tons/year		<u> </u>) years
10. Calculation of Emissions:			
Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
The current permitted emission limit for cadmium is 0.040 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.035 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.24E-05 lb/MMBtu.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [1] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:	
25 mg/dscm, corrected to 7% O2	2.55 lb/hour 11.19 tons/year	
5. Method of Compliance: Compliance with PM emission limits will be der Method 5.	nonstrated annually using EPA Reference	
6. Allowable Emissions Comment (Description of Operating Method): The revised 40 CFR 60 Subpart Cb limit for PM is 25 mg/dscm. Limited by Florida permit PSD-FL-086(B).		

Allowable Emissions Allowable Emissions 2 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
29 ppmvd or 85% reduction, corrected to 7% O2	lb/hour tons/year

5. Method of Compliance:

Compliance with SO2 emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily geometric average SO2 concentration.

6. Allowable Emissions Comment (Description of Operating Method): Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emission limited to 460 tons/year.

Allowable Emissions 3 of 11

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Allowable Emissions:
3.		4.	Equivalent Allowable Emissions:
	205 ppmvd, corrected to 7% O2		40.1 lb/hour tons/year

5. Method of Compliance:

Compliance with NOx emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily arithmetic average NOx concentration.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B). Facility-wide NOx emissions limited to 679 tons/year.

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [2] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 4 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units: 100 ppmvd, corrected to 7% O2	4. Equivalent Allowable Emissions: 11.9 lb/hour tons/year	
5. Method of Compliance: Compliance with CO emission limits will be den average.	nonstrated via CEMS using a 4-hour block	
6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B). Facility-wide CO emissions limited to 185 tons/year.		

Allowable Emissions Allowable Emissions 5 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:29 ppmvd or 95% removal, corrected to 7% O2	4. Equivalent Allowable Emissions: lb/hour 67.9 tons/year

5. Method of Compliance:

Compliance with HCL emission limits will be demonstrated annually using EPA Reference Method 26 or 26A.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 5% of the potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.

Allowable Emissions 6 of 11

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date Emissions:	of Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable	Emissions:
	1.5 lb/hour		lb/hour	6.57 tons/year

5. Method of Compliance:

Compliance with H107 (Fluoride as HF) emission limits will be demonstrated every 5 years using EPA Reference Method 13A or 13B.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0125 lb/MMBtu.

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [3] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 7 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.40 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 0.0408 lb/hour 0.179 tons/year

5. Method of Compliance:

Compliance with PB emission limits will be demonstrated annually using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method):

The revised 40 CFR 60 Subpart Cb limit for lead is 0.40 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.

Allowable Emissions Allowable Emissions 8 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.000115lb/hr	4. Equivalent Allowable Emissions: lb/hour 5.04E-04 tons/year

5. Method of Compliance:

Compliance with H021 (Beryllium Compounds) emission limits will be demonstrated every 5 years using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method):

Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.

Allowable Emissions Allowable Emissions 9 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.050 mg/dscm or 85% removal, @ 7% O2	4. Equivalent Allowable Emissions: lb/hour 0.00223 tons/year

5. Method of Compliance:

Compliance with H114 (Mercury Compounds) emission limits will be demonstrated annually using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method):

The revised 40 CFR 60 Subpart Cb limit for mercury is 0.050 mg/dscm. Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of the potential mercury emission concentration (85% reduction by weigh or volume), corrected to 7% O2, whichever is less stringent.

DEP Form No. 62-210.900(1) – Form

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 10 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units: 30 ng/dscm (total mass), corrected to 7% O2	4. Equivalent Allowable Emissions: 3.07E-06 lb/hour 1.35E-05 tons/year	
5. Method of Compliance: Compliance with DOIX emission limits will be demonstrated annually using EPA Reference Method 23.		
6. Allowable Emissions Comment (Description Limited by Florida permit PSD-FL-086(B), which 2.56E-08 lb/MMBtu.	•	

Allowable Emissions Allowable Emissions 11 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units: 0.035 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 3.60E-03 lb/hour 0.0156 tons/year 3.0E-05 lb/MMBtu	
5. Method of Compliance: Compliance with H 027 (Cadmium Compounds) emission limits will be demonstrated annually using EPA Reference Method 29.		
6. Allowable Emissions Comment (Description of Operating Method): Florida permit PSD-FL-086(B). The revised 40 CFR 60 Subpart Cb limit for cadmium is 0.035 mg/dscm.		

DEP Form No. 62-210.900(1) – Form

Section [4] of [8]

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Vi	sible Emissions Limitation: Visible Emiss	ions Limitation $\underline{1}$ of $\underline{1}$	
1.	Visible Emissions Subtype: VE10	2. Basis for Allowable Opacity:	
3.	1 3	ed: 100 % 3 hours	
4.	Method of Compliance: EPA Reference Method 9 shall be used to descept as provided under 40 CFR 60.11(e).	demonstrate compliance with the opacity limit	
5.	Visible Emissions Comment: Excess emissions are allowed during startuged duration of these events does not exceed 3 leaves and exceed 3 leaves are allowed.	p, shutdown, or malfunction, provided that the hours (40 CFR 60.56(b)).	
Vi	Visible Emissions Limitation: Visible Emissions Limitation of		
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity: Rule Other	
3.	Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allow	xceptional Conditions: % ed: min/hour	
4.	Method of Compliance:		
5.	Visible Emissions Comment:		

DEP Form No. 62-210.900(1) – Form

Section [4] of

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 3

[8]

Parameter Code: VE	Pollutant(s): Visible Emissions (Opacity)
3. CMS Requirement:	Rule Other
Monitor Information Manufacturer: Land Model Number: 4500 MK II +	Serial Number: 0095466
5. Installation Date:	-
5. Installation Date:	6. Performance Specification Test Date:
7. Continuous Monitor Comment:	
Monitor located at Fabric Filter outlet	
Continuous Monitoring System: Continuous	Monitor 2 of 3
Parameter Code: EM, TEMP, FLOW	2. Pollutant(s): SO2, O2, Temperature, Steam Flow
3. CMS Requirement:	✓ Rule
Monitor Information Manufacturer: Sick	
Model Number: MCS100EHW	Serial Number: 193
5. Installation Date:	6. Performance Specification Test Date:
7. Continuous Monitor Comment:	
Monitor located at SDA inlet	

DEP Form No. 62-210.900(1) – Form

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

Continuous Monitoring System: Continuous Monitor 3 of 3

	Parameter Code: EM, TMP, FLOW	2. Pollutant(s): O2, NOx, CO, SO2, Temperature, Steam Flow
3. (CMS Requirement:	√ Rule
4. 1	Monitor Information Manufacturer: Sick	
	Model Number: MCS100EHW	Serial Number: 197
5.]	Installation Date:	6. Performance Specification Test Date:
7. (Continuous Monitor Comment:	
Mon	nitor located at Fabric Filter outlet	
Con	tinuous Monitoring System: Continuous	Monitor of
	Parameter Code:	Monitor of 2. Pollutant(s):
1. I	····	
3. (4. I	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Pollutant(s):
3. (4. N	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. Pollutant(s): Rule Other Serial Number:
3. (4. N	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Pollutant(s):
3. (4. h	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. Pollutant(s): Rule Other Serial Number:
3. (4. h	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
3. (4. h	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
3. (4. M	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:

DEP Form No. 62-210.900(1) – Form

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: Appendix B Previously Submitted, Date
2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: See Section 5 Previously Submitted, Date
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: Attachment 2 Previously Submitted, Date
4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought)
	✓ Attached, Document ID: <u>Appendix C</u> Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: Appendix C Previously Submitted, Date Not Applicable
6.	Compliance Demonstration Reports/Records: Attached, Document ID:
	Test Date(s)/Pollutant(s) Tested:
	Previously Submitted, Date: Test Date(s)/Pollutant(s) Tested: FY 2010 compliance testing results and 2009 Statement of Compliance are included in Appendix D. To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	□ Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute: Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) - Form

Section [4]

of [8]

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),
F.A.C.; 40 CFR 63.43(d) and (e)): ☐ Attached, Document ID:
2. Good Engineering Practice Stack Height Analysis (Rules 62-212.400(4)(d) and 62-
212.500(4)(f), F.A.C.):
Attached, Document ID: Not Applicable
3. Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities
only) ☐ Attached, Document ID:
Attactica, Document D Not Applicable
Additional Requirements for Title V Air Operation Permit Applications
1. Identification of Applicable Requirements:
Attached, Document ID: See Section 4
2. Compliance Assurance Monitoring:
Attached, Document ID: See Section 4 Not Applicable
3. Alternative Methods of Operation:
Attached, Document ID: Vot Applicable
4. Alternative Modes of Operation (Emissions Trading):
Attached, Document ID: Not Applicable
Additional Requirements Comment
Alternative Methods of Operation:
No alternative methods of operation are proposed at this time. However, in the unlikely event
that a national shortage or delivery interruption of chemicals occurs, the City shall request
approval of alternative methods of operation from the FDEP.

DEP Form No. 62-210.900(1) – Form

Section [5]

of [8]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

.1.	. Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.					
	The emissions unregulated en	unit addressed in this Ennissions unit.	missions Unit Information	on Section is an		
<u>En</u>	nissions Unit Descr	ription and Status				
1.	- 1	S Unit Addressed in this	,			
	single process	sions Unit Information So or production unit, or ac which has at least one do	ctivity, which produces of	one or more air		
	of process or p	s Unit Information Section production units and active vent) but may also production	vities which has at least	e emissions unit, a group one definable emission		
		s Unit Information Section production units and a		e emissions unit, one or fugitive emissions only.		
2.	2. Description of Emissions Unit Addressed in this Section:					
	Municipal Waste (Combustors and Auxilian	ry Burners – Unit No. 2			
3.	Emissions Unit Ide	entification Number: 10	4			
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit		
	Status Code: A	Construction Date:	Date: 08/30/2001	Major Group SIC Code: 49		
	A	Date.	06/30/2001	31C Couc. 49		
8.	Federal Program A	Applicability: (Check all	that apply)			
	☐ Acid Rain Unit	t Not Applicable				
	CAIR Unit					
9.	Package Unit:					
	Manufacturer: D.F		Model Number: 2	2754		
	. Generator Namepla					
11. Emissions Unit Comment: Excess emissions are allowed during startup, shutdown, or malfunction, provided that the duration of these events does not exceed 3 hours per occurrence. For CO compliance, the duration of a malfunction period is limited to 15 hours per occurrence.						

DEP Form No. 62-210.900(1) - Form

Emissions Unit Control Equipment/Method: Control 1 of 1

1.	Control Equipment/Method Description:
	This emissions unit equipped with a spray dryer absorber (SDA), activated carbon injection
	system, fabric filter baghouse, and selective non-catalytic reduction (SNCR).
	system, rust and anomala, and server non analysis reduction (arresty)
<u> </u>	0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2.	Control Device or Method Code: 016, 048, 067, 107
En	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
۷٠	Control Device of Method Code:
<u>En</u>	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2.	Control Device or Method Code:
۷٠	Control Device of Method Code.
<u>En</u>	nissions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
2	Control Device or Method Code:

DEP Form No. 62-210.900(1) – Form

Section [5] of

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

[8]

<u>C.1</u>	missions Only Operating Capacity and Schedule		
1.	. Maximum Process or Throughput Rate:		
2.	Maximum Production Rate:		
3.	Maximum Heat Input Rate: million 120 MMBtu/hr (see item 6)		
4.	Maximum Incineration Rate: pounds/hr		
	288 tons/day		
5.	Requested Maximum Operating Schedule:		
	24 hours/day	7 days/week	
	52 weeks/year	8,760 hours/year	
6.	Operating Capacity/Schedule Comment:		
	120 MMBtu/hour heat input rate for information purposes only, not for compliance. Maximum steam flow and nominal capacity are limited by Limited by Florida permit PSD-FL-086(B).		

DEP Form No. 62-210.900(1) – Form

Section [5]

of [8]

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram: See Appendix A		2. Emission Point Type Code: 1		
3.	Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking:				
	Not Applicable				
			_		
4.	ID Numbers or Descriptio	ns of Emission Ur	nits with this Emission	Point in Common:	
	Not Applicable			•	
5.	Discharge Type Code: V	6. Stack Height 201 feet	:	7. Exit Diameter: 4.2 feet	
8.	Exit Temperature: 315 °F	9. Actual Volur 60,894 acfm	netric Flow Rate:	10. Water Vapor: 20 % ±	
11.	Maximum Dry Standard Flow Rate: 27,289.8 dscfm		12. Nonstack Emission Point Height: Feet		
13.	Emission Point UTM Coo		14. Emission Point Latitude/Longitude		
	Zone: 17 East (km): North (km)		Latitude (DD/MM/SS) Longitude (DD/MM/SS)		
15.	Emission Point Comment:		Longitude (DD/I		
Four MWCs have separate stacks (flues) located within a common enclosure.					

DEP Form No. 62-210.900(1) - Form

Effective: 03/11/2010

83

Section [5]

of [8]

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

1.	Segment Description (Process/Fuel Type):				
	Solid Waste Disposal – Government Municipal Incineration – Stationary Mass Burn Waterwall Combustor				
2.	2. Source Classification Code (SCC): 50100105		3. SCC Units: Tons burned (all solid fuels)		
4.	Maximum Hourly Rate: See item 10	5. Maximum See item 1		6. Estimated Annual Activity Factor:	
7.	Maximum % Sulfur: N/A	8. Maximum % Ash: N/A		9. Million Btu per SCC Unit: 10 ±	
10	10. Segment Comment:				
ı	PSD-FL-086(B) limits nominal heat input to 104 MMBtu/hr and nominal capacity to 250 tons per day (rolling 12-month average).				

Segment Description and Rate: Segment 2 of 2

<u>50</u>	Segment Description and Nate. Segment 2 of 2					
1.	Segment Description (Process/Fuel Type):					
	Solid Waste Disposal – Government Auxiliary Fuel/No Emissions – Natural Gas					
2.	Source Classification Code (SCC): 3. SCC Units:					
	50100106	`	_	Million Cubic I	Feet	Burned (all gaseous fuels)
4.	Maximum Hourly Rate:	5.	Maximum A	Annual Rate:	6.	Estimated Annual Activity
	See item 10	See item 10 Factor:		Factor:		
7.	Maximum % Sulfur:	8. Maximum % Ash: 9. Million Btu per SCC Unit: 1027 ±				
10.	10. Segment Comment:					

DEP Form No. 62-210.900(1) - Form

Effective: 03/11/2010 84

PSD-FL-086(B) limits the maximum hourly rate by the 10% annual capacity factor.

Section [5] of [8]

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Po	llutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
			Device Code	
	PM	016		EL
	SO2	067	016	EL
	NOx	107	•	EL
	CO			EL
]	HCL (H106)	067	016	EL
H107		016		EL
PB		016		EL
H021		016		EL
H114		048		EL
DIOX		067	016	EL
H027		016		EL
			•	
		-		

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [1] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Totential, Estimated Fugitive, and Dasenne & Hojected Actual Emissions				
1. Pollutant Emitted:	2. Total Percent Efficie	ency of Control:		
PM				
3. Potential Emissions:	4. Synth	netically Limited?		
2.55 lb/hour 11.19	tons/year Y	es √ No		
5. Range of Estimated Fugitive Emissions (as				
to tons/year	з аррисаоте).			
•	7.00	7 5		
6. Emission Factor: 25 mg/dscm, corrected to	7% O2	7. Emissions		
		Method Code:		
Reference: Revised 40 CFR 60 Subpart Cb		0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:		
tons/year	From:	To:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:			
tons/year	5 years 10 years			
10. Calculation of Emissions:	_			
Limited by revised 40 CFR 60 Subpart Cb and I	Florida permit PSD-FL-08	36(B)		
	-			
11. Potential, Fugitive, and Actual Emissions Comment:				
The current permitted emissions limit for PM is	•			
Subpart Cb limit is 25 mg/dscm. Limited by Flo	rida permit PSD-FL-086(B).		
,				

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[2] of [11]

87

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Fotential, Estimated Fugitive, and Daseinie & Flojected Actual Emissions			
Pollutant Emitted: SO2	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions:		4. Synth	netically Limited?
lb/hour	tons/year	☐ Y	es No
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: 29 ppmvd or 75% remova	l, corrected to	7% O2	7. Emissions
			Method Code:
Reference: PSD-FL-086(B)			0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	T	Co:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:
tons/year		ırs 🔲 1	0 years
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emissions limited to 460 tons/year.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [3] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 otomban, Estimated 1 agreeve, and Dasenne d	7110,100000 1100000		
Pollutant Emitted: NOx	2. Total Percent Efficiency of Control:		
3. Potential Emissions:	4. Synthetically Limited?		
40.1 lb/hour	tons/year ☐ Yes √ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 205 ppmvd, corrected to 7	7% O2 7. Emissions Method Code:		
Reference: PSD-FL-086(B)	0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:		
tons/year	From: To:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:		
tons/year	☐ 5 years ☐ 10 years		
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.335 lb/MMBtu. Facility-wide NOx emission limited to 679 tons/year.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [4] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Fotential, Estimated Fugitive, and Dasenne & Projected Actual Emissions			
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:		
CO			
3. Potential Emissions:		4. Synth	etically Limited?
11.9 lb/hour_	tons/year	Y∈	es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 100 ppmvd, corrected to 7	7% O2		7. Emissions
			Method Code:
Reference: PSD-FL-086(B)			0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	T	o:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitorir	ng Period:
tons/year		ırs 🔲 10) years
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0995 lb/MMBtu. Facility-wide CO emission limited to 185 tons/year.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [5] of [11]

90

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

i Otential, Estimated i agitive, and Dasenne o	t 110 jecteu 11c	tuul Diilis	510115
1. Pollutant Emitted:	2. Total Perc	ent Efficie	ency of Control:
HCL (H106)			
3. Potential Emissions:		4. Synth	netically Limited?
lb/hour 67.9	tons/year	Y	es √ No
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: 29 ppmvd or 95% remova	l, corrected to	7% O2	7. Emissions
			Method Code:
Reference: PSD-FL-086(B)			0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:		Го:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:
tons/year		rs 🔲 1	0 years
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
Limited by Florida permit PSD-FL-086(B) limits HCL emissions to 29 ppmvd or 5% of the potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
[6] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otential, Estimated Fugitive, and Dasenne 6	, I rojected Actual Ellissions	
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:	
H107 (Fluoride as HF)		
3. Potential Emissions:	4. Synthetically Limited?	
1.5 lb/hour 6.57	7 tons/year	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor: Reference: PSD FL 086(P)	7. Emissions Method Code:	
Reference: PSD-FL-086(B)		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:	
tons/year	From: To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:	
tons/year	5 years 10 years	
10. Calculation of Emissions:		
Limited by Florida permit PSD-FL-086(B)		
11. Potential, Fugitive, and Actual Emissions Comment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0125 lb/MMBtu.		

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
[7] of [11]

92

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Pollutant Emitted: PB	2. Total Percent Efficient	ciency of Control:	
3. Potential Emissions:	Potential Emissions: 4. Synthetically Limited?		
0.0408 lb/hour 0.179	tons/year	Yes √ No	
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year	•		
6. Emission Factor: 0.40 mg/dscm, corrected to	o 7% O2	7. Emissions Method Code:	
Reference: Revised 40 CFR 60 Subpart Cb		0	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-mon	th Period:	
tons/year	From:	To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monito	oring Period:	
tons/year	5 years	10 years	
10. Calculation of Emissions:	_		
Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B) 11. Potential, Fugitive, and Actual Emissions Comment:			
11. Potential, Fugitive, and Actual Emissions Comment:			
The current permitted emissions limit for lead is 0.44 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.40 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [8] of [11]

93

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otential, Estimated Fugitive, and Dasenne d	t I lojecteu Actual Emissions	
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:	
H021 (Beryllium Compounds)		
3. Potential Emissions:	4. Synthetically Limited?	
0.000115 lb/hour 5.04E-04	tons/year Yes V No	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor:	7. Emissions	
	Method Code:	
Reference: PSD-FL-086(B)	0	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:	
tons/year	From: To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:	
tons/year	5 years 10 years	
10. Calculation of Emissions:		
Limited by Florida permit PSD-FL-086(B)		
11. Potential, Fugitive, and Actual Emissions Comment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.		

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [9] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

rotenual, Estimated Fugitive, and baseline & Projected Actual Emissions			
1. Pollutant Emitted:	2. Total Perce	ent Efficie	ency of Control:
H114 (Mercury Compounds)			
3. Potential Emissions:		4. Synth	netically Limited?
lb/hour 0.0223	3 tons/year		es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	5. Range of Estimated Fugitive Emissions (as applicable): to tons/year		
6. Emission Factor: 0.050 mg/dscm or 85% reduction, corrected to 7. Emissions Method Code 0 Reference: Revised 40 CFR 60 Subpart Cb		Method Code:	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 2	24-month	Period:
tons/year	From:	Т	o:
9.a. Projected Actual Emissions (if required):	9.b. Projected	Monitori	ng Period:
tons/year	☐ 5 year	rs 🔲 1	0 years
10. Calculation of Emissions: Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
The current permitted emissions limit for mercury is 0.070 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.050 mg/dscm. Limited by Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of the potential mercury emission concentration (85% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [10] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated rugitive, and Baseline &	rrojected Actua	ai Emi <u>s</u> s	<u>sions</u>
Pollutant Emitted: DIOX	2. Total Percent	t Efficie	ncy of Control:
3. Potential Emissions: 3.07E-06 lb/hour 1.35E-05	tial Emissions: 3.07E-06 lb/hour 1.35E-05 tons/year 4. Synthetically Limited? ☐ Yes ☑ No		•
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 30 ng/dscm (total mass), corrected to 7% O2 7. Emissions Method Cod Reference: PSD-FL-086(B) 0		Method Code:	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-	-month	Period:
tons/year	From:		o:
9.a. Projected Actual Emissions (if required):	9.b. Projected M	Ionitorir	ng Period:
tons/year	5 years	<u> </u>) years
10. Calculation of Emissions: Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 2.56E-08 lb/MMBtu.			

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [11] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Fotential, Estimated Fugitive, and Dasenne & Frojected Actual Emissions			
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:		
H027 (Cadmium Compounds)			
3. Potential Emissions:		4. Synth	netically Limited?
3.6E-03 lb/hour 0.0156	o tons/year		es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.035 mg/dscm, corrected to 7% O2			7. Emissions Method Code:
Reference: Revised 40 CFR 60 Subpart Cb			0
8.a. Baseline Actual Emissions (if required): 8.b. Baseline 24-month Period:		Period:	
tons/year	From:	7	To:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:
tons/year		rs 🔲 1	0 years
10. Calculation of Emissions:			
Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B) 11. Potential, Fugitive, and Actual Emissions Comment:			
11. Potential, Fugitive, and Actual Emissions Comment:			
The current permitted emissions limit for cadmium is 0.040 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.035 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.24E-05 lb/MMBtu.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [1] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:		
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
25 mg/dscm, corrected to 7% O2	2.55 lb/hour 11.19 tons/year		
5. Method of Compliance:			
Compliance with PM emission limits will be demonstrated annually using EPA Reference			
Method 5.			
6. Allowable Emissions Comment (Description of Operating Method):			
The revised 40 CFR 60 Subpart Cb limit for PM is 25 mg/dscm. Limited by Florida permit			

Allowable Emissions Allowable Emissions 2 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
29 ppmvd or 75% reduction, corrected to 7%	lb/hour tons/year
O2	

5. Method of Compliance:

PSD-FL-086(B).

Compliance with SO2 emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily geometric average SO2 concentration.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emission limited to 460 tons/year.

Allowable Emissions Allowable Emissions 3 of 11

Basis for Allowable Emissions Code: RULE	Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 205 ppmvd, corrected to 7% O2	4. Equivalent Allowable Emissions: 40.1 lb/hour tons/year

5. Method of Compliance:

Compliance with NOx emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily arithmetic average NOx concentration.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B). Facility-wide NOx emissions limited to 679 tons/year.

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [2] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 4 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:		
3. Allowable Emissions and Units: 100 ppmvd, corrected to 7% O2	4. Equivalent Allowable Emissions: 11.9 lb/hour tons/year		
5. Method of Compliance: Compliance with CO emission limits will be demonstrated via CEMS using a 4-hour block average.			
6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B). Facility-wide CO emissions limited to 185 tons/year.			

Allowable Emissions Allowable Emissions 5 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
29 ppmvd or 95% removal, corrected to 7% O2	lb/hour 67.9 tons/year

5. Method of Compliance:

Compliance with HCL emission limits will be demonstrated annually using EPA Reference Method 26 or 26A.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 5% of the potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.

Allowable Emissions Allowable Emissions 6 of 11

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date Emissions:	of Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable	e Emissions:
	1.5 lb/hour		lb/hour	6.57 tons/year

5. Method of Compliance:

Compliance with H107 (Fluoride as HF) emission limits will be demonstrated every 5 years using EPA Reference Method 13A or 13B.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of

0.0125 lb/MMBtu.

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [3] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 7 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.40 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 0.0408 lb/hour 0.179 tons/year

5. Method of Compliance:

Compliance with PB emission limits will be demonstrated annually using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method): The revised 40 CFR 60 Subpart Cb limit for lead is 0.40 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.

Allowable Emissions Allowable Emissions 8 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.000115lb/hr	4. Equivalent Allowable Emissions: lb/hour 5.04E-04 tons/year

5. Method of Compliance:

Compliance with H021 (Beryllium Compounds) emission limits will be demonstrated every 5 years using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.

Allowable Emissions Allowable Emissions 9 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.050 mg/dscm or 85% removal, @ 7% O2	4. Equivalent Allowable Emissions: lb/hour 0.0223 tons/year

5. Method of Compliance:

Compliance with H114 (Mercury Compounds) emission limits will be demonstrated annually using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of the potential mercury emission concentration (85% reduction by weigh or volume), corrected to 7% O2, whichever is less stringent. The revised 40 CFR 60 Subpart Cb limit for mercury is 0.050 mg/dscm.

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [4] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 10 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units: 30 ng/dscm (total mass), corrected to 7% O2	4. Equivalent Allowable Emissions: 3.07E-06 lb/hour 1.35E-05 tons/year	
5. Method of Compliance: Compliance with DOIX emission limits will be demonstrated annually using EPA Reference Method 23.		
6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 2.56E-08 lb/MMBtu.		

Allowable Emissions 11 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units: 0.035 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 3.6E-03 lb/hour 0.0156 tons/year 3.0E-05 lb/MMBtu	
5. Method of Compliance: Compliance with H 027 (Cadmium Compounds) emission limits will be demonstrated annually using EPA Reference Method 29.		
6. Allowable Emissions Comment (Description of Operating Method): Florida permit PSD-FL-086(B). The revised 40 CFR 60 Subpart Cb limit for cadmium is 0.035 mg/dscm.		

DEP Form No. 62-210.900(1) – Form

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

<u>Visible Emissions Limitation:</u> Visible Emissions Limitation <u>1</u> of <u>1</u>

	Sidle Brinssions Emilitation.		
1.	Visible Emissions Subtype: VE10	2. Basis for Allowable √ Rule	Opacity:
<u> </u>			
3.	Allowable Opacity:		
		ceptional Conditions:	100 %
	Maximum Period of Excess Opacity Allowe	ed:	3 hours
4.	Method of Compliance:		
	EPA Reference Method 9 shall be used to de	emonstrate compliance w	ith the opacity limit
	except as provided under 40 CFR 60.11(e).	•	•
5.	Visible Emissions Comment:		
	Excess emissions are allowed during startup	, shutdown, or malfuncti	on, provided that the
	duration of these events does not exceed 3 h	nours (40 CFR 60.56(b)).	_
Visible Emissions Limitation: Visible Emissions Limitation of			
Vi	sible Emissions Limitation: Visible Emission	ons Limitation of	
_	sible Emissions Limitation: Visible Emissions Subtype:		
_		ons Limitation of 2. Basis for Allowable	
1.	Visible Emissions Subtype:	2. Basis for Allowable	Opacity:
_	Visible Emissions Subtype: Allowable Opacity:	2. Basis for Allowable Rule	Opacity: Other
1.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3. 4.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3. 4.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3. 4.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3. 4.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3. 4.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other
3. 4.	Visible Emissions Subtype: Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allowe Method of Compliance:	2. Basis for Allowable Rule ceptional Conditions:	Opacity: Other

DEP Form No. 62-210.900(1) – Form

Section [5]

of [8]

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 3

1.	Parameter Code:		ollutant(s):	
	VE	V	isible Emi	issions (Opacity)
3.	CMS Requirement:	□ R	ule	Other
4.	Monitor Information			
	Manufacturer: Land			
	Model Number: 4500 MK II +			ımber: 9995460
5.	Installation Date:	6. Pe	erformance	Specification Test Date:
7.	Continuous Monitor Comment:			
Mo	onitor located at Fabric Filter outlet			
<u>Co</u>	ntinuous Monitoring System: Continuous	Monito	or <u>2</u> of <u>3</u>	
1.	Parameter Code:	2.	Pollutant	t(s):
	EM, TEMP, FLOW		SO2, O2	, Temperature, Steam Flow
3.	CMS Requirement:	√ I	Rule	Other
4.	Monitor Information Manufacturer: Sick			
	Model Number: MCS100EHW		Serial Nu	ımber: 186
5.	Installation Date:	6.	Performa	ance Specification Test Date:
7.	Continuous Monitor Comment:			
Mo	onitor located at SDA inlet			

DEP Form No. 62-210.900(1) – Form

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

<u>Continuous Monitoring System:</u> Continuous Monitor <u>3</u> of <u>3</u>

1.		
1	Parameter Code:	2. Pollutant(s):
	EM, TMP, FLOW	O2, NOx, CO, SO2, Temperature, Steam
	•	Flow
<u> </u>		
3.	CMS Requirement:	√ Rule
4.	Monitor Information	
	Manufacturer: Sick	
	Model Number: MCS100EHW	Serial Number: 196
5.	Installation Date:	6. Performance Specification Test Date:
7	Continuous Monitor Comment:	
' .	Continuous Monitor Comment.	
Mo	onitor located at Fabric Filter outlet	
1.1		
<u>Co</u>	ntinuous Monitoring System: Continuous	Monitor of
	P 0 1	
11.	Parameter Code:	2. Pollutant(s):
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	2. Pollutant(s): Rule Other
	CMS Requirement: Monitor Information	
3.	CMS Requirement:	
3.	CMS Requirement: Monitor Information	
3.	CMS Requirement: Monitor Information Manufacturer:	Rule Other Serial Number:
3.	CMS Requirement: Monitor Information Manufacturer: Model Number:	Rule Other
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number:	Rule Other Serial Number:
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:

DEP Form No. 62-210.900(1) – Form

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

	1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix B Previously Submitted, Date
	2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: See Section 5 Previously Submitted, Date
	3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Attachment 2 Previously Submitted, Date
	4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix C Previously Submitted, Date
l		Not Applicable (construction application)
	5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: Appendix C Previously Submitted, Date
ſ	6.	Compliance Demonstration Reports/Records:
		Attached, Document ID:
		Test Date(s)/Pollutant(s) Tested:
		Previously Submitted, Date: _
		Test Date(s)/Pollutant(s) Tested: FY 2010 compliance testing results and 2009
		Statement of Compliance are included in Appendix D.
		To be Submitted, Date (if known):
		Test Date(s)/Pollutant(s) Tested:
		Not Applicable
		Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
	7.	Other Information Required by Rule or Statute:
		Attached, Document ID: \text{V} Not Applicable

DEP Form No. 62-210.900(1) - Form

Section [5] of

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

[8]

1.	1. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7), F.A.C.; 40 CFR 63.43(d) and (e)):		
		∏ Not Applicable	
2.		is (Rules 62-212.400(4)(d) and 62-	
	212.500(4)(f), F.A.C.): Attached, Document ID:	∏ Not Applicable	
3.	3. Description of Stack Sampling Facilities: (Requi		
	only) Attached, Document ID:	∏ Not Applicable	
A	Additional Requirements for Title V Air Operati	on Permit Applications	
1.	 Identification of Applicable Requirements: ✓ Attached, Document ID: See Section 4 		
2.	2. Compliance Assurance Monitoring: √ Attached, Document ID: See Section 4 —	Not Applicable	
3.	3. Alternative Methods of Operation: ☐ Attached, Document ID:	Not Applicable	
4.		ding):] Not Applicable	
<u>A</u>	Additional Requirements Comment		
No tha	Alternative Methods of Operation: No alternative methods of operation are proposed at that a national shortage or delivery interruption of chapproval of alternative methods of operation from the	nemicals occurs, the City shall request	

DEP Form No. 62-210.900(1) – Form

Section [6]

of [8]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	 ▼ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ▼ The emissions unit addressed in this Emissions Unit Information Section is an 					
	unregulated en					
<u>En</u>	nissions Unit Descr	ription and Status				
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)			
	single process	sions Unit Information So or production unit, or ac which has at least one do	tivity, which produces of	one or more air		
	of process or p	s Unit Information Section roduction units and active vent) but may also produce	vities which has at least	e emissions unit, a group one definable emission		
		s Unit Information Section production units and a		e emissions unit, one or fugitive emissions only.		
2.	Description of Em	issions Unit Addressed i	n this Section:			
	Municipal Waste (Combustors and Auxilian	ry Burners – Unit No. 3			
3.	Emissions Unit Ide	entification Number: 10	5			
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit		
	Status Code:	Construction	Date:	Major Group		
	A	Date:	08/30/2001	SIC Code: 49		
8.	Federal Program A	pplicability: (Check all	that apply)			
	☐ Acid Rain Unit	Not Applicable				
	CAIR Unit					
9.	Package Unit:					
	Manufacturer: D.E		Model Number:	2759		
	Generator Namepla					
Exe du	11. Emissions Unit Comment: Excess emissions are allowed during startup, shutdown, or malfunction, provided that the duration of these events does not exceed 3 hours per occurrence. For CO compliance, the duration of a malfunction period is limited to 15 hours per occurrence.					

DEP Form No. 62-210.900(1) - Form

Emissions	Unit	Control E	qui	pment/Method:	Control 1	of	1
-----------	------	-----------	-----	---------------	-----------	----	---

1.	Control Equipment/Method Description:
	This emissions unit equipped with a spray dryer absorber (SDA), activated carbon injection
	system, fabric filter baghouse, and selective non-catalytic reduction (SNCR).
	system, fuorie finer oughouse, una serecure non outarytic reaction (Sixex).
2.	Control Device or Method Code: 016, 048, 067, 107
<u>E</u> :	missions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
_	Control Device on Medical Code
2.	Control Device or Method Code:
<u>E</u> :	missions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
	Control Design on Make I Code
2.	Control Device or Method Code:
<u>E</u> 1	missions Unit Control Equipment/Method: Control of
1.	Control Equipment/Method Description:
	· · · · · · · · · · · · · · · · · ·
2	Control Device on Make I Code
1 /	Control Device or Method Code:

DEP Form No. 62-210.900(1) - Form

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Throughput Rate:	
2.	Maximum Production Rate:	
3.	Maximum Heat Input Rate: million 120 MMBtu/hr (see item 6)	
4.	Maximum Incineration Rate: pounds/hr	
	288 tons/day	
5.	Requested Maximum Operating Schedule:	
	24 hours/day	7 days/week
	52 weeks/year	8,760 hours/year
6.	Operating Capacity/Schedule Comment:	
	120 MMBtu/hour heat input rate for information purposes only, no Maximum steam flow and nominal capacity are limited by Limited FL-086(B).	_

DEP Form No. 62-210.900(1) – Form

Section [6] of [8]

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram: See Appendix A		2. Emission Point 7	Type Code: 1				
3.	Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking:							
	Not Applicable							
4.	ID Numbers or Descriptio	ns of Emission Ur	nits with this Emission	Point in Common:				
	Not Applicable							
5.	Discharge Type Code: V	6. Stack Height 201 feet	:	7. Exit Diameter: 4.2 feet				
8.	Exit Temperature: 315 °F	9. Actual Volum 60,894 acfm	netric Flow Rate:	10. Water Vapor: 20 % ±				
11.	Maximum Dry Standard F 27,289.8 dscfm	low Rate:	12. Nonstack Emission Point Height: Feet					
13.	Emission Point UTM Coo		14. Emission Point Latitude/Longitude Latitude (DD/MM/SS)					
	Zone: 17 East (km): North (km)		Longitude (DD/MM/SS)					
15.	Emission Point Comment:		<u> </u>	<u> </u>				
Fo	Four MWCs have separate stacks (flues) located within a common enclosure.							

DEP Form No. 62-210.900(1) - Form

Section [6]

of [8]

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

1.	Segment Description (Process/Fuel Type):						
	Solid Waste Disposal – Government Municipal Incineration – Stationary Mass Burn Waterwall Combustor						
2.	Source Classification Code	e (SCC):	3. SCC Units:				
	50100105		Tons burne	ed (all solid fuels)			
4.	Maximum Hourly Rate:	5. Maximum		6. Estimated Annual Activity			
	See item 10	See item 10		Factor:			
7.	Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:			
	N/A	N/A		10 ±			
PS	10. Segment Comment: PSD-FL-086(B) limits nominal heat input to 104 MMBtu/hr and nominal capacity to 250 tons per day (rolling 12-month average).						
Se	gment Description and Ra	te: Segment 2 o	of <u>2</u>				
1.	1. Segment Description (Process/Fuel Type):						
	Solid Waste Disposal – Go		e e				
	Auxiliary Fuel/No Emissions – Natural Gas						

2.	Source Classification Code 50100106	e (SCC):	3. SCC Units: Million Cubic Feet Burned (all gaseous fuels)		
4.	Maximum Hourly Rate: See item 10	5. Maximum A		6. Estimated Annual Activity Factor:	
7.	Maximum % Sulfur:	8. Maximum % Ash:		9. Million Btu per SCC Unit: 1027 ±	

10. Segment Comment:

PSD-FL-086(B) limits the maximum hourly rate by the 10% annual capacity factor.

DEP Form No. 62-210.900(1) - Form

Section [6] of [8]

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

Dist of I onutures Diff		•	
1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
PM	016		EL
SO2	067	016	EL
NOx	107		EL
СО			EL
HCL (H106)	067	016	EL
H107	016		EL
PB	016		EL
H021	016		EL
H114	048		EL
DIOX	067	016	EL
H027	016		EL
		_	

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[1] of [11]

112

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 otential, Estimated Fugitive, and Dasenne of	e i rojecteu retuai Biins	<u> </u>		
Pollutant Emitted: PM	2. Total Percent Efficiency of Control:			
3. Potential Emissions:	4. Synth	netically Limited?		
2.55 lb/hour 11.19	tons/year Y	es √ No		
5. Range of Estimated Fugitive Emissions (as	applicable):			
to tons/year				
6. Emission Factor: 25 mg/dscm, corrected to	7% O2	7. Emissions		
		Method Code:		
Reference: Revised 40 CFR 60 Subpart Cb		0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:		
tons/year	From:	Co:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitori	ng Period:		
tons/year	5 years 10 years			
10. Calculation of Emissions:				
Limited by revised 40 CFR 60 Subpart Cb and I	Florida permit PSD-FL-08	86(B)		
11. Potential, Fugitive, and Actual Emissions Co	omment:			
	07 /1- 1.1	1.40 CED (0		
The current permitted emissions limit for PM is 27 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 25 mg/dscm. Limited by Florida permit PSD-FL-086(B).				
Support Co mint to 25 mg/dscm. Limited by 110	1100 point 1 5D-1 L-000(<i>D</i>).		

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
[2] of [11]

113

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 otential, Estimated Fugitive, and Dascinic & Trojected Actual Emissions					
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:				
SO2					
3. Potential Emissions:		4. Synth	etically Limited?		
lb/hour	tons/year	-	es √ No		
5. Range of Estimated Fugitive Emissions (as	applicable):				
to tons/year					
6. Emission Factor: 29 ppmvd or 75% remova	l, corrected to	7% O2	7. Emissions Method Code:		
Reference: PSD-FL-086(B)			0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:		
tons/year	From:	T	o:		
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:		
tons/year		rs 🔲 1	0 years		
10. Calculation of Emissions:					
Limited by Florida permit PSD-FL-086(B)					
•					
	•				
11. Potential, Fugitive, and Actual Emissions Comment:					
Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emissions limited to 460 tons/year.					

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [3] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

rotential, Estimated rugitive, and Dasenne o	t Trojecteu Ac	tuai Eiiiis	<u> </u>
1. Pollutant Emitted:	2. Total Perc	ent Efficie	ency of Control:
NOx			
3. Potential Emissions:		4. Synth	netically Limited?
40.1 lb/hour	tons/year		es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 205 ppmvd, corrected to 7	7% O2		7. Emissions
Reference: PSD-FL-086(B)			Method Code: 0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	Γ	o:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:
tons/year	5 yea	ırs 🔲 1	0 years
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.335 lb/MMBtu. Facility-wide NOx emission limited to 679 tons/year.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [4] of [11]

115

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions			
Pollutant Emitted: CO	2. Total Perc	ent Efficie	ncy of Control:
3. Potential Emissions: 11.9 lb/hour	tons/year		etically Limited? es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 100 ppmvd, corrected to 7 Reference: PSD-FL-086(B)	7% O2		7. Emissions Method Code: 0
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:		Period: o:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected 5 years		ng Period:) years
10. Calculation of Emissions: Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	11. Potential, Fugitive, and Actual Emissions Comment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0995 lb/MMBtu. Facility-wide CO emission limited to 185 tons/year.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
[5] of [11]

116

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Oten man, Estimated 1 agitive, and Daseime o	c i rojecteu rict	dal Lillio	BIOLIB
1. Pollutant Emitted:	2. Total Perce	ent Efficie	ency of Control:
HCL (H106)			
3. Potential Emissions:		4. Synth	netically Limited?
lb/hour 67.9	ons/year		es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 29 ppmvd or 95% remova	al, corrected to 7	% O2	7. Emissions
			Method Code:
Reference: PSD-FL-086(B)			0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 2	24-month	Period:
tons/year	From:	1	Co:
9.a. Projected Actual Emissions (if required):	9.b. Projected	Monitori	ng Period:
tons/year	☐ 5 year	rs 🔲 1	0 years
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		-
Limited by Florida permit PSD-FL-086(B) limits HCL emissions to 29 ppmvd or 5% of the potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [6] of [11]

117

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1. Pollutant Emitted:	2. Total Percent Efficiency of Control:	
H107 (Fluoride as HF)		
3. Potential Emissions:	4. Synthetically Limited?	
1.5 lb/hour 6.5°	7 tons/year ☐ Yes ▼ No	
5. Range of Estimated Fugitive Emissions (as	s applicable):	
to tons/year	,	
6. Emission Factor:	7. Emissions	
o. Emission factor.		
	Method Code:	
Reference: PSD-FL-086(B)	0	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:	
tons/year	From: To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:	
tons/year	5 years 10 years	
10. Calculation of Emissions:		
Limited by Florida permit PSD-FL-086(B)		
Enimed by Florida perime 1 515 TE 555(B)		
11 Date did E vid a and Art of Euclidean C		
11. Potential, Fugitive, and Actual Emissions Comment:		
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0125 lb/MMBtu.		

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [7] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions			
1. Pollutant Emitted: PB	2. Total Perc	ent Efficier	ncy of Control:
3. Potential Emissions: 0.0408 lb/hour 0.179	tons/year	4. Synthe	etically Limited? es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.40 mg/dscm, corrected to Reference: Revised 40 CFR 60 Subpart Cb	to 7% O2		7. Emissions Method Code: 0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month l	Period:
tons/year	From:	To	o:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitorin	g Period:
tons/year		irs 🔲 10	years
10. Calculation of Emissions: Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
The current permitted emissions limit for lead is 0.44 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.40 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION
[8] of [11]

119

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

	TTO CECEUTICIONI EMISSIONS	`
1. Pollutant Emitted:	2. Total Percent Efficiency of Co	ontrol:
H021 (Beryllium Compounds)		
3. Potential Emissions:	4. Synthetically L	imited?
0.000115 lb/hour 5.04E-04	1 2	
	<u> </u>	110
5. Range of Estimated Fugitive Emissions (as	applicable):	
to tons/year		
6. Emission Factor:	7. Emis	ssions
. Emission ractor.		
		od Code:
Reference: PSD-FL-086(B)	0	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:	
tons/year	From: To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period	
tons/year	v	
·	☐ 5 years ☐ 10 years	
10. Calculation of Emissions:		
Limited by Florida permit PSD-FL-086(B)		
2		
		1
11. Potential, Fugitive, and Actual Emissions Co	omment:	
11.1 Contint, 1 aginto, and 1 total Limbsons Co	, miniviti.	
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.		

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [9] of [11]

120

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions			
1. Pollutant Emitted:	2. Total Perc	ent Efficie	ency of Control:
H114 (Mercury Compounds)			
3. Potential Emissions:		4. Synth	netically Limited?
lb/hour 0.0223	3 tons/year		es √ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 0.050 mg/dscm or 85% re 7% O2 Reference: Revised 40 CFR 60 Subpart Cb	duction, correct	ted to	7. Emissions Method Code: 0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:		Co:
9.a. Projected Actual Emissions (if required):	9.b. Projected	Monitori	ng Period:
tons/year		rs 🔲 1	0 years
10. Calculation of Emissions: Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
The current permitted emissions limit for mercury is 0.070 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.050 mg/dscm. Limited by Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of the potential mercury emission concentration (85% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [10] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otential, Estimated Fugitive, and Dasenne of	t Tojecicu Actuai Enni	<u> </u>
Pollutant Emitted: DIOX	2. Total Percent Effici	ency of Control:
3. Potential Emissions:	4 Synt	hetically Limited?
	1	Yes √ No
	<u> </u>	102 [1140
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor: 30 ng/dscm (total mass), of	corrected to 7% O2	7. Emissions
		Method Code:
Reference: PSD-FL-086(B)		0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:
tons/year		
•		Го:
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitor	ing Period:
tons/year	5 years	0 years
10. Calculation of Emissions:	<u> </u>	
10. Calculation of Emissions: Limited by Florida permit PSD-FL-086(B)		
11. Potential, Fugitive, and Actual Emissions Co	omment:	
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 2.56E-08 lb/MMBtu.		

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [11] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated Fugitive, and Dasenne & Projected Actual Emissions			
1. Pollutant Emitted:	2. Total Perc	ent Efficie	ency of Control:
H027 (Cadmium Compounds)			
3. Potential Emissions:		4. Synth	netically Limited?
3.6E-03 lb/hour 0.0156	6 tons/year		es No
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):		
6. Emission Factor: 0.035 mg/dscm, corrected	to 7% O2		7. Emissions
			Method Code:
Reference: Revised 40 CFR 60 Subpart Cb			0
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	7	Го:
9.a. Projected Actual Emissions (if required):	9.b. Projected	Monitori	ng Period:
tons/year	☐ 5 yea	rs 🔲 1	0 years
10. Calculation of Emissions:			
Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Co	omment:		
The current permitted emissions limit for cadmium is 0.040 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.035 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.24E-05 lb/MMBtu.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [1] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:		
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
25 mg/dscm, corrected to 7% O2	2.55 lb/hour 11.19 tons/year		
5. Method of Compliance: Compliance with PM emission limits will be demonstrated annually using EPA Reference Method 5.			
6. Allowable Emissions Comment (Description of Operating Method): The revised 40 CFR 60 Subpart Cb limit for PM is 25 mg/dscm. Limited by Florida permit			

Allowable Emissions Allowable Emissions 2 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
29 ppmvd or 75% reduction, corrected to 7%	lb/hour tons/year
O2	•

5. Method of Compliance:

PSD-FL-086(B).

Compliance with SO2 emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily geometric average SO2 concentration.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emission limited to 460 tons/year.

Allowable Emissions Allowable Emissions 3 of 11

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 205 ppmvd, corrected to 7% O2	4.	Equivalent Allowable Emissions: 40.1 lb/hour tons/year

5. Method of Compliance:

Compliance with NOx emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily arithmetic average NOx concentration.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B). Facility-wide NOx emissions limited to 679 tons/year.

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [2] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 4 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 100 ppmvd, corrected to 7% O2	4. Equivalent Allowable Emissions: 11.9 lb/hour tons/year
5. Method of Compliance: Compliance with CO emission limits will be demonstrated via CEMS using a 4-hour block average.	
6. Allowable Emissions Comment (Description Limited by Florida permit PSD-FL-086(B). Facilitons/year.	

Allowable Emissions Allowable Emissions 5 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 29 ppmvd or 95% removal, corrected to 7% O2	4. Equivalent Allowable Emissions: lb/hour 67.9 tons/year

5. Method of Compliance:

Compliance with HCL emission limits will be demonstrated annually using EPA Reference Method 26 or 26A.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 5% of the potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.

Allowable Emissions Allowable Emissions 6 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 1.5 lb/hour	4. Equivalent Allowable Emissions: lb/hour 6.57 tons/year

5. Method of Compliance:

Compliance with H107 (Fluoride as HF) emission limits will be demonstrated every 5 years using EPA Reference Method 13A or 13B.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0125 lb/MMBtu.

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [3] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 7 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.40 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 0.0408 lb/hour 0.179 tons/year
5. Method of Compliance: Compliance with PB emission limits will be demonstrated annually using EPA Reference Method 29.	
6. Allowable Emissions Comment (Description The revised 40 CFR 60 Subpart Cb limit for lea	· · · · · · · · · · · · · · · · · · ·

Allowable Emissions Allowable Emissions 8 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.000115lb/hr	4. Equivalent Allowable Emissions: lb/hour 5.04E-04 tons/year

PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.

5. Method of Compliance:

Compliance with H021 (Beryllium Compounds) emission limits will be demonstrated every 5 years using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.

Allowable Emissions Allowable Emissions 9 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.050 mg/dscm or 85% removal, @ 7% O2	4. Equivalent Allowable Emissions: lb/hour 0.0223 tons/year

5. Method of Compliance:

Compliance with H114 (Mercury Compounds) emission limits will be demonstrated annually using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method): Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of the potential mercury emission concentration (85% reduction by weigh or volume), corrected to 7% O2, whichever is less stringent. The revised 40 CFR 60 Subpart Cb limit for mercury is 0.050 mg/dscm.

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [4] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 10 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 30 ng/dscm (total mass), corrected to 7% O2	4. Equivalent Allowable Emissions: 3.07E-06 lb/hour 1.35E-05 tons/year
5. Method of Compliance: Compliance with DOIX emission limits will be demonstrated annually using EPA Reference Method 23.	
6. Allowable Emissions Comment (Description Limited by Florida permit PSD-FL-086(B), which	•

Allowable Emissions 11 of 11

2.56E-08 lb/MMBtu.

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.035 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 3.6E-03 lb/hour 0.0156 tons/year 3.0E-05 lb/MMBtu
5. Method of Compliance: Compliance with H 027 (Cadmium Compounds) emission limits will be demonstrated annually using EPA Reference Method 29.	
6. Allowable Emissions Comment (Description	of Operating Method):

Florida permit PSD-FL-086(B). The revised 40 CFR 60 Subpart Cb limit for cadmium is 0.035 mg/dscm.

DEP Form No. 62-210.900(1) – Form

Section [6]

of [8]

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

<u>Vi</u>	<u>Visible Emissions Limitation:</u> Visible Emissions Limitation $\underline{1}$ of $\underline{1}$		
1.	Visible Emissions Subtype: VE10	2. Basis for Allowable Opacity:	
3.	Allowable Opacity: Normal Conditions: 10 % E Maximum Period of Excess Opacity Allow	xceptional Conditions: 100 % yed: 3 hours	
4.	Method of Compliance: EPA Reference Method 9 shall be used to except as provided under 40 CFR 60.11(e).	demonstrate compliance with the opacity limit	
5.	Visible Emissions Comment: Excess emissions are allowed during startu duration of these events does not exceed 3	p, shutdown, or malfunction, provided that the hours (40 CFR 60.56(b)).	
<u>Vi</u>	sible Emissions Limitation: Visible Emiss	ions Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity: Rule Other	
3.	Allowable Opacity: Normal Conditions: % E Maximum Period of Excess Opacity Allow	xceptional Conditions: % red: min/hour	
4.	Method of Compliance:		
5.	Visible Emissions Comment:		

DEP Form No. 62-210.900(1) - Form

Section [6]

of [8]

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 3

1.	Parameter Code: VE	Pollutant(s): Visible Emissions (Opacity)
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer: Land Model Number: 4500 MK II +	Serial Number: 0095471
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	
Mo	onitor located at Fabric Filter outlet	
<u>Co</u>	ontinuous Monitoring System: Continuous	Monitor <u>2</u> of <u>3</u>
1.	Parameter Code: EM, TEMP, FLOW	2. Pollutant(s): SO2, O2, Temperature, Steam Flow
3.	CMS Requirement:	√ Rule
4.	Monitor Information Manufacturer: Sick Model Number: MCS100EHW	Serial Number: 185
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	•
Mo	onitor located at SDA inlet	,

DEP Form No. 62-210.900(1) – Form

Section [6] **of** [8]

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

Continuous Monitoring System: Continuous Monitor 3 of 3

1. Parameter Code:	2. Pollutant(s):
EM, TMP, FLOW	O2, NOx, CO, SO2, Temperature, Steam
	Flow
0 (0 f)	
3. CMS Requirement:	▼ Rule
4. Monitor Information	
Manufacturer: Sick	
Model Number: MCS100EHW	Serial Number: 195
5. Installation Date:	6. Performance Specification Test Date:
7. Continuous Monitor Comment:	
Monitor located at Fabric Filter outlet	
Continuous Monitoring System: Continuous	s Monitor of
Continuous Monitoring System: Continuous 1. Parameter Code:	
	2. Pollutant(s):
1. Parameter Code:	2. Pollutant(s):
Parameter Code: CMS Requirement:	
 Parameter Code: CMS Requirement: Monitor Information 	2. Pollutant(s):
Parameter Code: CMS Requirement:	2. Pollutant(s):
 Parameter Code: CMS Requirement: Monitor Information 	2. Pollutant(s):
Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Pollutant(s): Rule Other
 Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: 	2. Pollutant(s): Rule Other Serial Number:
 Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: 	2. Pollutant(s): Rule Other Serial Number:
 Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date: 	2. Pollutant(s): Rule Other Serial Number:
 Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date: 	2. Pollutant(s): Rule Other Serial Number:
 Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date: 	2. Pollutant(s): Rule Other Serial Number:
 Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date: 	2. Pollutant(s): Rule Other Serial Number:
 Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date: 	2. Pollutant(s): Rule Other Serial Number:

DEP Form No. 62-210.900(1) – Form

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought)
2.	Attached, Document ID: <u>Appendix B</u> Previously Submitted, Date Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: <u>See Section 5</u> Previously Submitted, Date
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) \[\textstyle{\textstyle{\textstyle{1}}}\] Attached, Document ID: \[\textstyle{\textstyle{1}}\] Previously Submitted, Date \[\textstyle{1}\]
4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix C Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) V Attached, Document ID: Appendix C Previously Submitted, Date
6.	Compliance Demonstration Reports/Records: Attached, Document ID: Test Date(s)/Pollutant(s) Tested:
	▼ Previously Submitted, Date: _ Test Date(s)/Pollutant(s) Tested: FY 2010 compliance testing results and 2009 Statement of Compliance are included in Appendix D. To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested: Not Applicable Not Applicable Test Date(s)/Pollutant(s) Tested: Not Applicable Test Date(s)/Pollutant(s) Tested: Test Date(s)/Pollutant(s) Tested:
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute: Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) - Form

I. EMISSIONS UNIT ADDÍTIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

_					
1.	1. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7), F.A.C.; 40 CFR 63.43(d) and (e)):				
	☐ Attached, Document ID:				
2.					
	212.500(4)(f), F.A.C.): ☐ Attached, Document ID:				
3	Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities				
3.	only)				
	Attached, Document ID: Not Applicable				
<u>A</u> (dditional Requirements for Title V Air Operation Permit Applications				
1.	Identification of Applicable Requirements:				
	Attached, Document ID: See Section 4				
2.	Compliance Assurance Monitoring:				
	Attached, Document ID: See Section 4 Not Applicable				
3.	1				
	Attached, Document ID: Not Applicable				
4.	Alternative Modes of Operation (Emissions Trading):				
	Attached, Document ID: Not Applicable				
<u>A</u> (dditional Requirements Comment				
	ternative Methods of Operation:				
	alternative methods of operation are proposed at this time. However, in the unlikely event				
	at a national shortage or delivery interruption of chemicals occurs, the City shall request				
ap	proval of alternative methods of operation from the FDEP.				

DEP Form No. 62-210.900(1) – Form

Section [7]

of [8]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	√ The emissi	ons unit addressed in the	is Emissions Unit Inform	mation Section is a		
	regulated emis					
	unregulated en	unit addressed in this E	missions Unit Informati	on Section is an		
_	nissions Unit Desc			_		
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)			
		sions Unit Information S				
		or production unit, or ac which has at least one d				
	of process or p		vities which has at least	e emissions unit, a group one definable emission		
		s Unit Information Section production units and a		e emissions unit, one or fugitive emissions only.		
2.	Description of Em	issions Unit Addressed	in this Section:			
	Municipal Waste	Combustors and Auxilia	ry Burners – Unit No. 4			
3.	Emissions Unit Ide	entification Number: 10	06			
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit		
	Status Code:	Construction	Date:	Major Group		
	A	Date:	08/30/2001	SIC Code: 49		
8.	Federal Program A	pplicability: (Check all	that apply)			
	Acid Rain Uni					
	CAIR Unit					
9.	Package Unit:			<u>. </u>		
	Manufacturer: D.B. Riley Model Number: 2760					
10. Generator Nameplate Rating: 22.5 MW						
1	11. Emissions Unit Comment:					
	Excess emissions are allowed during startup, shutdown, or malfunction, provided that the					
1	duration of these events does not exceed 3 hours per occurrence. For CO compliance, the					
uui	duration of a malfunction period is limited to 15 hours per occurrence.					

DEP Form No. 62-210.900(1) – Form

Emissions Unit Control Equipment/Method: Control 1 of 1

<u></u>			
1. Control Equipment/Method Description: This emissions unit equipped with a spray dryer absorber (SDA), activated carbon injection system, fabric filter baghouse, and selective non-catalytic reduction (SNCR).			
2. Control Device or Method Code: 016, 048, 067, 107			
Emissions Unit Control Equipment/Method: Control of			
1. Control Equipment/Method Description:			
2. Control Device or Method Code:			
Emissions Unit Control Equipment/Method: Control of			
1. Control Equipment/Method Description:			
2. Control Device or Method Code:			
Emissions Unit Control Equipment/Method: Control of			
1. Control Equipment/Method Description:			
2. Control Device or Method Code:			

DEP Form No. 62-210.900(1) – Form

Section [7] of

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

[8]

- 1. Maximum Process or Throughput Rate:
- 2. Maximum Production Rate:
- 3. Maximum Heat Input Rate: million 120 MMBtu/hr (see item 6)
- 4. Maximum Incineration Rate: pounds/hr

288 tons/day

5. Requested Maximum Operating Schedule:

24 hours/day

7 days/week

52 weeks/year

8,760 hours/year

6. Operating Capacity/Schedule Comment:

120 MMBtu/hour heat input rate for information purposes only, not for compliance. Maximum steam flow and nominal capacity are limited by Limited by Florida permit PSD-FL-086(B).

DEP Form No. 62-210.900(1) – Form

Section [7] of [8]

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on I Flow Diagram: See Appe		2. Emission Point Type Code: 1			
3.	Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking:					
	Not Applicable					
4.	ID Numbers or Description	ns of Emission Ur	nits with this Emission	Point in Common:		
	Not Applicable					
5.	Discharge Type Code: V	6. Stack Height 201 feet	:	7. Exit Diameter: 4.2 feet		
8.	Exit Temperature: 315 °F	9. Actual Volur 60,894 acfm	metric Flow Rate:	10. Water Vapor: 20 % ±		
11.	1. Maximum Dry Standard Flow Rate: 12. Nonstack Emission Point Height: Feet					
13.	Emission Point UTM Coo		14. Emission Point I	<u> </u>		
	Zone: 17 East (km): North (km)	360.0 : 3091.9	Latitude (DD/MM/SS) Longitude (DD/MM/SS)			
15.	Emission Point Comment:		(
For	Four MWCs have separate stacks (flues) located within a common enclosure.					

DEP Form No. 62-210.900(1) – Form

Section [7]

of [8]

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

Segment Description (Process/Fuel Type):					
Solid Waste Disposal – Government Municipal Incineration – Stationary Mass Burn Waterwall Combustor					
 2. Source Classification Code (SCC): 50100105 3. SCC Units: Tons burned (all solid fuels) 					
Maximum Hourly Rate: See item 10			6. Estimated Annual Activity Factor:		
Maximum % Sulfur: N/A	8. Maximum % Ash: N/A		9. Million Btu per SCC Unit: 10 ±		
10. Segment Comment:					
PSD-FL-086(B) limits nominal heat input to 104 MMBtu/hr and nominal capacity to 250 tons per day (rolling 12-month average).					
	Solid Waste Disposal – Go Municipal Incineration – S Source Classification Code 50100105 Maximum Hourly Rate: See item 10 Maximum % Sulfur: N/A Segment Comment:	Solid Waste Disposal – Government Municipal Incineration – Stationary Mass I Source Classification Code (SCC): 50100105 Maximum Hourly Rate: 5. Maximum See item 10 See item 1 Maximum % Sulfur: 8. Maximum N/A N/A Segment Comment: D-FL-086(B) limits nominal heat input to 10	Solid Waste Disposal – Government Municipal Incineration – Stationary Mass Burn Waterwall of Source Classification Code (SCC): 50100105 Maximum Hourly Rate: See item 10 Maximum % Sulfur: N/A Segment Comment: D-FL-086(B) limits nominal heat input to 104 MMBtu/hr are		

Segment Description and Rate: Segment 2 of 2

36	Segment Description and Nate: Segment 2 of 2						
1.	Segment Description (Process/Fuel Type):						
	Solid Waste Disposal – Government Auxiliary Fuel/No Emissions – Natural Gas						
2.	Source Classification Code (SCC): 50100106 3. SCC Units: Million Cubic Feet Burned (all gaseous fuels)						
	30100100		Willion Cubic 1	reet Burnet (all gaseous rueis)			
4.	Maximum Hourly Rate: See item 10	5. Maximum A		6. Estimated Annual Activity Factor:			
7.	Maximum % Sulfur:	8. Maximum 9	% Ash:	9. Million Btu per SCC Unit: 1027 ±			
10. Segment Comment:							
PS	PSD-FL-086(B) limits the maximum hourly rate by the 10% annual capacity factor						

DEP Form No. 62-210.900(1) - Form

Section [7] of

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
PM	016		EL
SO2	067	016	EL
NOx	107		EL
СО			EL
HCL (H106)	067	016	EL
H107	016		EL
PB	016		EL
H021	016		EL
H114	048		EL
DIOX	. 067	016	EL
H027	016		EL

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [1] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Totellai, Estimated Fugitive, and Daseinie & Projected Actual Emissions					
Pollutant Emitted: PM	2. Total Percent Efficiency of Control:				
	_				
3. Potential Emissions:	4. Synthetically Limited?				
2.55 lb/hour 11.19	tons/year Yes V No				
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):				
6. Emission Factor: 25 mg/dscm, corrected to	7% O2 7. Emissions Method Code:				
Reference: Revised 40 CFR 60 Subpart Cb	0				
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:				
tons/year	From: To:				
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:				
tons/year	5 years 10 years				
10. Calculation of Emissions:					
Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)					
11. Potential, Fugitive, and Actual Emissions Comment:					
The current permitted emissions limit for PM is 27 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 25 mg/dscm. Limited by Florida permit PSD-FL-086(B).					

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [2] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Fotential, Estimated Fugitive, and Daseline & Frojected Actual Emissions				
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:			
SO2				
3. Potential Emissions:		4. Synth	netically Limited?	
lb/hour	tons/year	Y	es √ No	
5. Range of Estimated Fugitive Emissions (as	applicable):			
to tons/year				
6. Emission Factor: 29 ppmvd or 75% remova	l, corrected to	7% O2	7. Emissions	
			Method Code:	
Reference: PSD-FL-086(B)			0	
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:	
tons/year	From:	Γ	Co:	
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:	
tons/year		urs 🔲 1	0 years	
10. Calculation of Emissions:				
Limited by Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Comment:				
Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emissions limited to 460 tons/year.				

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [3] of [11]

140

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otenual, Estimated Fugitive, and Dasenne & 1 Tojected Actual Emissions					
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:				
NOx					
3. Potential Emissions:	4. Synthetically Limited?				
40.1 lb/hour	tons/year Yes No				
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year					
6. Emission Factor: 205 ppmvd, corrected to 7	7% O2 7. Emissions				
	Method Code:				
Reference: PSD-FL-086(B)	0				
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:				
tons/year	From: To:				
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:				
tons/year	5 years 10 years				
10. Calculation of Emissions:					
Limited by Florida permit PSD-FL-086(B)					
11. Potential, Fugitive, and Actual Emissions Comment:					
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.335 lb/MMBtu. Facility-wide NOx emission limited to 679 tons/year.					

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [4] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Occident Estimated 1 agric of and Baseinie e				
Pollutant Emitted: CO	2. Total Percent Efficiency of Control:			
CO				
3. Potential Emissions:	4. Synth	netically Limited?		
11.9 lb/hour		es √ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):			
6. Emission Factor: 100 ppmvd, corrected to 7	7% O2	7. Emissions Method Code:		
Reference: PSD-FL-086(B)		0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:		
tons/year	From:	Го:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitori	ng Period:		
tons/year	5 years 10 years			
10. Calculation of Emissions:				
10. Calculation of Emissions: Limited by Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Co				
11. Folential, Fugitive, and Actual Emissions Comment.				
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0995 lb/MMBtu. Facility-wide CO emission limited to 185 tons/year.				

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [5] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Potential, Estimated Fugitive, and Dasenne o	z Projecteu Ac	tuai Emis	<u>sions</u>	
1. Pollutant Emitted: HCL (H106)	2. Total Perc	ent Efficie	ency of Control:	
3. Potential Emissions: lb/hour 67.9	tons/year	•	netically Limited? Tes ☑ No	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: 29 ppmvd or 95% remova Reference: PSD-FL-086(B)	l, corrected to	7% O2	7. Emissions Method Code: 0	
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:		Period: o:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitoring Period: 5 years 10 years			
tons/year 5 years 10 years 10. Calculation of Emissions: Limited by Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Comment:				
Limited by Florida permit PSD-FL-086(B) limits HCL emissions to 29 ppmvd or 5% of the potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.				

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [6] of [11]

143

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Folential, Estimated Fugitive, and Dasenne & Frojected Actual Emissions				
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:			
H107 (Fluoride as HF)				
3. Potential Emissions:	4. Synthetically Limited?			
1.5 lb/hour 6.57	7 tons/year ☐ Yes ☑ No			
5. Range of Estimated Fugitive Emissions (as	s applicable):			
to tons/year				
6. Emission Factor: 7. Emissions				
	Method Code:			
Reference: PSD-FL-086(B)	0			
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:			
tons/year	From: To:			
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:			
tons/year 5 years 10 years				
10. Calculation of Emissions:	1			
Limited by Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Comment:				
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0125 lb/MMBtu.				

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[7] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Folential, Estimated Fugitive, and Dasenne & Frojected Actual Emissions				
Pollutant Emitted: PB	2. Total Percent Efficiency of Control:			
_	4 Country of the Triange of the Market			
3. Potential Emissions: 0.0408 lb/hour 0.179	4. Synthetically Limited? tons/year			
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year				
6. Emission Factor: 0.40 mg/dscm, corrected to 7% O2 7. Emissions				
	Method Code:			
Reference: Revised 40 CFR 60 Subpart Cb	0			
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:			
tons/year	From: To:			
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:			
tons/year	5 years 10 years			
10. Calculation of Emissions:	`			
Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Comment:				
The current permitted emissions limit for lead is 0.44 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.40 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.				

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [8] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Pollutant Emitted: H021 (Beryllium Compounds)	2. Total Percent Efficiency of Control:		
3. Potential Emissions:	4. Synthetically Limited?		
0.000115 lb/hour 5.04E-04	tons/year ☐ Yes ☑ No		
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor:	7. Emissions		
D C DOD FL 00C(D)	Method Code:		
Reference: PSD-FL-086(B)	0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:		
tons/year	From: To:		
9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period:			
tons/year	☐ 5 years ☐ 10 years		
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
. ,			
11. Potential, Fugitive, and Actual Emissions Comment:			
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.			

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [9] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 otential, Estimated Fugitive, and Dasenne & 1 Tojected Actual Emissions					
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:				
H114 (Mercury Compounds)					
3. Potential Emissions:	4. Synthetically Limited?				
lb/hour 0.0223	B tons/year ☐ Yes ✓ No				
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year					
6. Emission Factor: 0.050 mg/dscm or 85% re7% O2Reference: Revised 40 CFR 60 Subpart Cb	duction, corrected to 7. Emissions Method Code: 0				
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:				
tons/year From: To:					
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Period:				
tons/year					
10. Calculation of Emissions: Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)					
11. Potential, Fugitive, and Actual Emissions Comment:					
The current permitted emissions limit for mercury is 0.070 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.050 mg/dscm. Limited by Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of the potential mercury emission concentration (85% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.					

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION [10] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Toteliai, Estimated Tugitive, and Daseine & Tojected Actual Emissions			
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:		
DIOX			
3. Potential Emissions:	4. Synthetically Limited?		
	5 tons/year Yes V No		
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year			
6. Emission Factor: 30 ng/dscm (total mass), o	corrected to 7% O2 7. Emissions Method Code:		
Reference: PSD-FL-086(B)	0		
8.a. Baseline Actual Emissions (if required): 8.b. Baseline 24-month Period:			
tons/year	From: To:		
9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period:			
tons/year 5 years 10 years			
10. Calculation of Emissions:			
Limited by Florida permit PSD-FL-086(B)			
11. Potential, Fugitive, and Actual Emissions Comment:			
Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 2.56E-08 lb/MMBtu.			

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[11] of [11]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1. Pollutant Emitted:	2. Total Percent Efficie	ency of Control:		
H027 (Cadmium Compounds)				
3. Potential Emissions:	4. Synth	netically Limited?		
3.6E-03 lb/hour 0.0156	tons/year Y	es No		
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year				
6. Emission Factor: 0.035 mg/dscm, corrected	to 7% O2	7. Emissions Method Code:		
Reference: Revised 40 CFR 60 Subpart Cb		0		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:		
tons/year	Co:			
9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Peri		ng Period:		
tons/year	5 years 1	0 years		
10. Calculation of Emissions: Limited by revised 40 CFR 60 Subpart Cb and Florida permit PSD-FL-086(B)				
11. Potential, Fugitive, and Actual Emissions Comment:				
The current permitted emissions limit for cadmium is 0.040 mg/dscm and the revised 40 CFR 60 Subpart Cb limit is 0.035 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.24E-05 lb/MMBtu.				

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION [1] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 11

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units: 25 mg/dscm, corrected to 7% O2	4.	Equivalent Allowable E 2.55 lb/hour	missions: 11.19 tons/year

5. Method of Compliance:

Compliance with PM emission limits will be demonstrated annually using EPA Reference Method 5.

6. Allowable Emissions Comment (Description of Operating Method): The revised 40 CFR 60 Subpart Cb limit for PM is 25 mg/dscm. Limited by Florida permit PSD-FL-086(B).

Allowable Emissions Allowable Emissions 2 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
29 ppmvd or 75% reduction, corrected to 7% O2	lb/hour tons/year

5. Method of Compliance:

Compliance with SO2 emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily geometric average SO2 concentration.

6. Allowable Emissions Comment (Description of Operating Method): Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 25% of the potential sulfur dioxide emission (75% reduction by weight or volume), corrected to 7% O2, whichever is less stringent. Facility-wide SO2 emission limited to 460 tons/year.

Allowable Emissions Allowable Emissions 3 of 11

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 205 ppmvd, corrected to 7% O2	4.	Equivalent Allowable Emissions: 40.1 lb/hour tons/year

5. Method of Compliance:

Compliance with NOx emission limits will be demonstrated via CEMS using EPA Reference Method 19 to calculate the daily arithmetic average NOx concentration.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B). Facility-wide NOx emissions limited to 679 tons/year.

DEP Form No. 62-210.900(1) – Form

EMISSIONS UNIT INFORMATION Section [7] of [8] Page

POLLUTANT DETAIL INFORMATION [2] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 4 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 100 ppmvd, corrected to 7% O2	4. Equivalent Allowable Emissions: 11.9 lb/hour tons/year
100 ppinva, corrected to 170 O2	11.7 10/110til tolls/ year

5. Method of Compliance:

Compliance with CO emission limits will be demonstrated via CEMS using a 4-hour block average.

6. Allowable Emissions Comment (Description of Operating Method): Limited by Florida permit PSD-FL-086(B). Facility-wide CO emissions limited to 185 tons/year.

Allowable Emissions Allowable Emissions 5 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
29 ppmvd or 95% removal, corrected to 7% O2	lb/hour 67.9 tons/year

5. Method of Compliance:

Compliance with HCL emission limits will be demonstrated annually using EPA Reference Method 26 or 26A.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits SO2 emissions to 29 ppmvd or 5% of the potential sulfur dioxide emission (95% reduction by weight or volume), corrected to 7% O2, whichever is less stringent.

Allowable Emissions Allowable Emissions 6 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 1.5 lb/hour	4. Equivalent Allowable Emissions: lb/hour

5. Method of Compliance:

Compliance with H107 (Fluoride as HF) emission limits will be demonstrated every 5 years using EPA Reference Method 13A or 13B.

6. Allowable Emissions Comment (Description of Operating Method):

Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 0.0125 lb/MMBtu.

DEP Form No. 62-210.900(1) - Form

EMISSIONS UNIT INFORMATION Section [7] of [8] Page

POLLUTANT DETAIL INFORMATION [3] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 7 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.40 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 0.0408 lb/hour 0.179 tons/year

5. Method of Compliance:

Compliance with PB emission limits will be demonstrated annually using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method):

The revised 40 CFR 60 Subpart Cb limit for lead is 0.40 mg/dscm. Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 3.76E-04 lb/MMBtu.

Allowable Emissions 8 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.000115lb/hr	4. Equivalent Allowable Emissions: lb/hour 5.04E-04 tons/year

5. Method of Compliance:

Compliance with H021 (Beryllium Compounds) emission limits will be demonstrated every 5 years using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method):

Limited by Florida permit PSD-FL-086(B), which also contains additional emission limit of 9.58E-07 lb/MMBtu.

Allowable Emissions Allowable Emissions 9 of 11

Basis for Allowable Emissions Code: RULE	Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.050 mg/dscm or 85% removal, @ 7% O2	4. Equivalent Allowable Emissions: lb/hour 0.0223 tons/year

5. Method of Compliance:

Compliance with H114 (Mercury Compounds) emission limits will be demonstrated annually using EPA Reference Method 29.

6. Allowable Emissions Comment (Description of Operating Method):

Florida permit PSD-FL-086(B) limits H114 emissions to 0.070 mg/dscm or 15% of the potential mercury emission concentration (85% reduction by weigh or volume), corrected to 7% O2, whichever is less stringent. The revised 40 CFR 60 Subpart Cb limit for mercury is 0.050 mg/dscm.

DEP Form No. 62-210.900(1) – Form

POLLUTANT DETAIL INFORMATION
[4] of [4]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 10 of 11

	
Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 30 ng/dscm (total mass), corrected to 7% O2	4. Equivalent Allowable Emissions: 3.07E-06 lb/hour 1.35E-05 tons/year
5. Method of Compliance: Compliance with DOIX emission limits will be demonstrated annually using EPA Reference Method 23.	
6. Allowable Emissions Comment (Description Limited by Florida permit PSD-FL-086(B), whi 2.56E-08 lb/MMBtu.	

Allowable Emissions 11 of 11

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 0.035 mg/dscm, corrected to 7% O2	4. Equivalent Allowable Emissions: 3.6E-03 lb/hour 0.0156 tons/year 3.0E-05 lb/MMBtu
5. Method of Compliance: Compliance with H 027 (Cadmium Compounds) annually using EPA Reference Method 29.	emission limits will be demonstrated
6. Allowable Emissions Comment (Description Florida permit PSD-FL-086(B). The revised 40 C mg/dscm.	- ·

DEP Form No. 62-210.900(1) – Form

EMISSIONS UNIT INFORMATION

Section [7]

of [8]

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

<u>Vi</u>	<u>Visible Emissions Limitation:</u> Visible Emissions Limitation <u>1</u> of <u>1</u>		
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity:	
	VE10	V Rule ☐ Other	
3.	Allowable Opacity:		
	Normal Conditions: 10 % Ex	ceptional Conditions: 100 %	
	Maximum Period of Excess Opacity Allowe	ed: 3 hours	
4.	Method of Compliance:		
		emonstrate compliance with the opacity limit	
	except as provided under 40 CFR 60.11(e).		
_	W. Th. E. dada G. annual		
5.	Visible Emissions Comment:	hout decrees an another street and that the	
	duration of these events does not exceed 3 h	o, shutdown, or malfunction, provided that the	
	duration of these events does not exceed 3 i.	lours (40 CFR 00.30(0)).	
<u>Vi</u>	sible Emissions Limitation: Visible Emissi	ons Limitation of	
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity:	
		☐ Rule ☐ Other	
3.	Allowable Opacity:		
	Normal Conditions: % Ex	ceptional Conditions: %	
	Maximum Period of Excess Opacity Allowe	ed: min/hour	
4.	Method of Compliance:		
Ļ			
5.	Visible Emissions Comment:		

DEP Form No. 62-210.900(1) – Form

EMISSIONS UNIT INFORMATION

Section [7]

of [8]

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 3

1.	Parameter Code: VE	2. Pollutant(s): Visible Emissions (Opacity)
3.	<u> </u>	Rule Other
4.	Monitor Information Manufacturer: Land	
	Model Number: 4500 MK II +	Serial Number: 9995456
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	-
Mo	onitor located at Fabric Filter outlet	
<u>Co</u>	entinuous Monitoring System: Continuous	Monitor $\underline{2}$ of $\underline{3}$
1.	Parameter Code:	2. Pollutant(s):
	EM, TEMP, FLOW	SO2, O2, Temperature, Steam Flow
3.	CMS Requirement:	√ Rule
4.	Monitor Information Manufacturer: Sick	
	Model Number: MCS100EHW	Serial Number: 184
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	
Mo	onitor located at SDA inlet	

DEP Form No. 62-210.900(1) – Form

EMISSIONS UNIT INFORMATION Section [7] of [8]

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

<u>Continuous Monitoring System:</u> Continuous Monitor <u>3</u> of <u>3</u>

1.	Parameter Code:	2. Pollutant(s):
	EM, TMP, FLOW	O2, NOx, CO, SO2, Temperature, Steam
	LNI, IIVII , I LO V	Flow
		<u> </u>
3.	CMS Requirement:	
4.	Monitor Information	
	Manufacturer: Sick	
	Model Number: MCS100EHW	Serial Number: 194
5.	Installation Date:	6. Performance Specification Test Date:
		•
7.	Continuous Monitor Comment:	
1.4	where the sand of February 1.4	
M	onitor located at Fabric Filter outlet	
Co	ntinuous Monitoring System: Continuous	Monitor of
	ntinuous Monitoring System: Continuous	
	Parameter Code:	Monitor of 2. Pollutant(s):
1.	Parameter Code:	2. Pollutant(s):
 3. 	Parameter Code: CMS Requirement:	
 3. 	Parameter Code: CMS Requirement: Monitor Information	2. Pollutant(s):
 3. 	Parameter Code: CMS Requirement:	2. Pollutant(s): Rule Other
 3. 	Parameter Code: CMS Requirement: Monitor Information	2. Pollutant(s):
3. 4.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Pollutant(s): Rule Other
3. 4.	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:

DEP Form No. 62-210.900(1) – Form

EMISSIONS UNIT INFORMATION Section [7] of [8]

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation
*•	permit revision applications if this information was submitted to the department within the
	previous five years and would not be altered as a result of the revision being sought)
	Attached, Document ID: Appendix B Previously Submitted, Date
2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air
۷.	operation permit revision applications if this information was submitted to the department within
	the previous five years and would not be altered as a result of the revision being sought)
	Attached, Document ID: See Section 5 Previously Submitted, Date
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title
) 3.	V air operation permit revision applications if this information was submitted to the department
	within the previous five years and would not be altered as a result of the revision being sought)
	Attached, Document ID: Attachment 2 Previously Submitted, Date
1	
4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the
	department within the previous five years and would not be altered as a result of the revision being
	sought)
	Attached, Document ID: Appendix C Previously Submitted, Date
	Not Applicable (construction application)
5.	
٥.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within
	the previous five years and would not be altered as a result of the revision being sought)
	Attached, Document ID: Appendix C Previously Submitted, Date
	Not Applicable
_	
6.	Compliance Demonstration Reports/Records:
	Attached, Document ID:
	Test Date(s)/Pollutant(s) Tested:
	Description of Colonies of Description
	Previously Submitted, Date:
	Test Date(s)/Pollutant(s) Tested: FY 2010 compliance testing results and 2009
	Statement of Compliance are included in Appendix D.
	To be Submitted, Date (if known):
	Test Date(s)/Pollutant(s) Tested:
	☐ Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be
	submitted at the time of application. For Title V air operation permit applications, all required
	compliance demonstration reports/records must be submitted at the time of application, or a
	compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute:
	Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) - Form

EMISSIONS UNIT INFORMATION

Section [7] of

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

[8]

1.	1. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),					
	F.A.C.; 40 CFR 63.43(d) and (e)):					
	Attached, Document ID:	Not Applicable				
2.	2. Good Engineering Practice Stack Height Analysis	(Rules 62-212.400(4)(d) and 62-				
	212.500(4)(f), F.A.C.):					
	Attached, Document ID:	Not Applicable				
3.	 Description of Stack Sampling Facilities: (Require only) 	ed for proposed new stack sampling facilities				
	Attached, Document ID:	Not Applicable				
<u>A</u>	Additional Requirements for Title V Air Operation	Permit Applications				
1.	1. Identification of Applicable Requirements:					
	✓ Attached, Document ID: <u>See Section 4</u>	·				
2.	2. Compliance Assurance Monitoring:					
	✓ Attached, Document ID: <u>See Section 4</u> ☐ N	ot Applicable				
3.	3. Alternative Methods of Operation:					
	Attached, Document ID:	Not Applicable				
4.	4. Alternative Modes of Operation (Emissions Tradia	ng):				
	Attached, Document ID: V	Not Applicable				
<u>A</u>	Additional Requirements Comment					
A	Alternative Methods of Operation:					
	No alternative methods of operation are proposed at the					
	that a national shortage or delivery interruption of che					
ap	approval of alternative methods of operation from the	FDEP.				
		·				

DEP Form No. 62-210.900(1) – Form

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)								
	 ☐ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. ☐ The emissions unit addressed in this Emissions Unit Information Section is an 								
	unregulated en								
Er	nissions Unit Descr	ription and Status		<u>-</u>					
1.	• •	Unit Addressed in this							
	This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).								
	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.								
	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.								
2.	Description of Em	issions Unit Addressed i	n this Section:						
	Cooling Tower								
3.	Emissions Unit Ide	entification Number: 10	7						
4.	4. Emissions Unit Status Code: A5. Commence Construction Date:6. Initial Startup Date:7. Emissions Un Major Group SIC Code: 49								
8.	Federal Program A	pplicability: (Check all	that apply)	L					
	☐ Acid Rain Unit Not Applicable ☐ CAIR Unit								
9.	9. Package Unit: Manufacturer: Marley Cooling Tower Co. Model Number: 597-58-2								
10	10. Generator Nameplate Rating: MW Not Applicable								
11.	11. Emissions Unit Comment:								
No	None								

DEP Form No. 62-210.900(1) – Form

EMISSIONS UNIT INFORMATION Section [8] of [8]

<u>Emis</u>	ssions Unit Control Equipment/Method: Control of
1. C	Control Equipment/Method Description:
2. C	Control Device or Method Code:
2. (Control Device of Method Code:
<u>Emis</u>	ssions Unit Control Equipment/Method: Control of
1. C	Control Equipment/Method Description:
2. C	Control Device or Method Code:
<u>Emis</u>	ssions Unit Control Equipment/Method: Control Equipment/Method:
1. C	Control Equipment/Method Description
•	
2. C	Control Device or Method Code:
<u>Emis</u>	ssions Unit Control Equipment/Method: Control of
1. C	Control Equipment/Method Description:
2. C	Control Device or Method Code:

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

	1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix B Previously Submitted, Date
	2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: See Section 5 Previously Submitted, Date
	3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Attachment 2 Previously Submitted, Date
	4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Appendix C Previously Submitted, Date
l		Not Applicable (construction application)
	5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) ✓ Attached, Document ID: Appendix C Previously Submitted, Date Not Applicable
ſ	6.	Compliance Demonstration Reports/Records:
l		Attached, Document ID:
l		Test Date(s)/Pollutant(s) Tested:
l		Previously Submitted, Date:
		Test Date(s)/Pollutant(s) Tested:
l		
l		To be Submitted, Date (if known):
		Test Date(s)/Pollutant(s) Tested:
		√ Not Applicable
		Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
	7.	Other Information Required by Rule or Statute: Attached, Document ID:
1		The replication

DEP Form No. 62-210.900(1) – Form

EMISSIONS UNIT INFORMATION Section [8] of [8]

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),							
F.A.C.; 40 CFR 63.43(d) and (e)):							
Attached, Document ID:							
. Good Engineering Practice Stack Height Analysis (Rules 62-212.400(4)(d) and 62-							
212.500(4)(f), F.A.C.):							
Attached, Document ID: Vot Applicable							
3. Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities only)							
Attached, Document ID: Not Applicable							
Additional Requirements for Title V Air Operation Permit Applications							
1. Identification of Applicable Requirements:							
Attached, Document ID: See Section 4							
2. Compliance Assurance Monitoring:							
Attached, Document ID: See Section 4 Not Applicable							
3. Alternative Methods of Operation:							
Attached, Document ID: Not Applicable							
4. Alternative Modes of Operation (Emissions Trading):							
Attached, Document ID: Not Applicable							
Additional Requirements Comment							
None							
•							

DEP Form No. 62-210.900(1) – Form

4. Facility Additional Information - Additional Requirements for Title V Air Operations Permit Applications

4.1. List of Insignificant Activities

The process or production units or other pollutant-emitting activities listed below are located at the Facility and are, by virtue of size or operating rate, eligible for treatment as insignificant emission units in accordance with the criteria of Rule 62-213.430(6)(b), F.A.C., and are requested to be treated as such pursuant to Rule 62-213.420(3), F.A.C.

Activity/Source	Comments					
Paint Usage (less than 6 gal/day)	Meets criteria of Rule 62-213.430(6)(b)					
Boiler Water Treatment	Listed as trivial source in USEPA White Paper No.1 (1995)					
Cooling Tower Water Treatment	Meets criteria of Rule 62-213.430(6)(b)					
Solvent Degreaser	Meets criteria of Rule 62-213.430(6)(b)					
Urea Storage Tank	Meets criteria of Rule 62-213.430(6)(b)					
Caustic Soda Tank	Meets criteria of Rule 62-213.430(6)(b)					
Sulfuric Acid Tank	Meets criteria of Rule 62-213.430(6)(b)					
500 Gallon Diesel Fuel Above Ground Storage Tank	Meets criteria of Rule 62-210.300(3)(a)(19)					
On-site Vehicular Traffic	Categorically exempt under Rule 62- 210.300(3)(a)(2)					
Mobile on-site Equipment	Not stationary RICE source, therefore not subject to 40 CFR 63 Subpart ZZZZ.					
Refuse Pit	Meets criteria of Rule 62-213.430(6)(b)					
Portable Air Compressors	Listed as trivial source in USEPA White Paper No. 1 (1995). Not stationary RICE source, therefore not subject to 40 CFR 63 Subpart ZZZZ.					
Portable Welding Machines	Categorically exempt under Rule 62- 210.300(3)(a)(13). Not stationary RICE source, therefore not subject to 40 CFR 63 Subpart ZZZZ.					
Sandblasting Equipment	Meets criteria of Rule 62-213.430(6)(b). Not stationary RICE source, therefore not subject to 40 CFR 63 Subpart ZZZZ.					
250 Gallon Gasoline Above Ground Storage Tank	Meets criteria of Rule 62-210.300(3)(a)(19)					

Descriptions and emissions estimates (as necessary) for these insignificant activities/sources are included on the pages that follow.

4.1.1. Activity Descriptions and Emission Estimate Calculations

4.1.1.1. Paint Usage (less than 6.0 gallons per day)

Paint usage of less than six (6) gallons per day associated with plant maintenance and upkeep activities meets the criteria of Rule 62-213.430(6)(b), F.A.C. and should be considered insignificant.

4.1.1.2. Boiler Water Treatment

Chemicals used in boiler feedwater operations are listed as trivial in the White Paper for Streamlined Development of Part 70 Permit Applications (EPA, 1995) and should be considered insignificant.

4.1.1.3. Cooling Tower Water Treatment

The emissions activity associated with the cooling tower water treatment meets the criteria of Rule 62-213.430(6)(b), F.A.C. and should be considered insignificant.

4.1.1.4. Solvent Degreaser

The facility has a cold cleaner unit in the maintenance area. The degreasing unit satisfies the requirements of Rules 62-210.300(3)(a)(23), F.A.C. and 62-213.430(6)(b), F.A.C. and should be considered insignificant.

4.1.1.5. Urea Storage Tank

The facility has one 6,000-gallon urea tank for the NOx control system. The tank satisfies the requirements of Rule 62-213.430(6)(b), F.A.C. and should be considered insignificant.

4.1.1.6. Caustic Soda Tank

The emissions activity associated with this tank meets the criteria of Rule 62-213.430(6)(b), F.A.C. and should be considered insignificant.

4.1.1.7. Sulfuric Acid Tank

The facility has one 5,000-gallon sulfuric acid tank on site for water treatment operations. The tank satisfies the requirements of Rule 62-213.430(6)(b), F.A.C. and should be considered insignificant.

4.1.1.8. Diesel Fuel Above Ground Storage Tank

The Facility has one 500-gallon diesel fuel storage tank for refueling mobile on-site equipment and vehicles. The tank is exempt under Rule 62-210.300(3)(a)(19), F.A.C. and should be considered insignificant.

4.1.1.9. On-site Vehicular Traffic

Internal combustion engines in vehicles used for transportation of passengers or freight are exempt from permitting requirements under Rule 62-210.300(3)(a)2, F.A.C.

4.1.1.10. Mobile On-Site Equipment

The on-site mobile equipment at the Facility are powered by reciprocating internal combustion engines (RICE) that meet the definition of non-road engines in 40 CFR 1068.30. They are therefore not stationary RICE sources, and are not subject to the emissions standards in 40 CFR 63 Subpart ZZZZ.

4.1.1.11. Refuse Pit

Refuse pit emissions satisfy the requirements of Rule 62-213.430(6)(b), F.A.C. and should be considered insignificant.

4.1.1.12. Portable Air Compressors

Air compressors and pneumatically operated equipment are listed as trivial in the White Paper for Streamlined Development of Part 70 Permit Applications (EPA, 1995) and should be considered insignificant. The portable air compressors at the Facility are powered by reciprocating internal combustion engines (RICE) that meet the definition of non-road engines in 40 CFR 1068.30. They are therefore not stationary RICE sources, and are not subject to the emissions standards in 40 CFR 63 Subpart ZZZZ.

4.1.1.13. Portable Welding Machines

Brazing, soldering or welding equipment is exempt under Rule 62-210.300(3)(a)(13), F.A.C. and should be considered insignificant. The portable welding machines at the Facility are powered by reciprocating internal combustion engines (RICE) that meet the definition of non-road engines in 40 CFR 1068.30. They are therefore not stationary RICE sources, and are not subject to the emissions standards in 40 CFR 63 Subpart ZZZZ.

4.1.1.14. Sandblasting Equipment

Sandblasting equipment satisfies the requirements of Rule 62-213.430(6)(b), F.A.C. and should be considered insignificant. The sandblasting equipment at the Facility are powered by reciprocating internal combustion engines (RICE) that meet the definition of non-road engines in 40 CFR 1068.30. They are therefore not stationary RICE sources, and are not subject to the emissions standards in 40 CFR 63 Subpart ZZZZ.

4.1.1.15. Gasoline Above Ground Storage Tank

The Facility has one 250-gallon diesel fuel storage tank for refueling mobile on-site equipment and vehicles. The tank is exempt under Rule 62-210.300(3)(a)(19), F.A.C. and should be considered insignificant.

4.2. List of Applicable Air Quality Regulations

4.2.1. Federal Regulations

- 40 CFR 50 National Primary and Secondary Ambient Air Quality Standards
- 40 CFR 52 (All terms and conditions of Florida permit PSD-FL-086(A))
- 40 CFR 60, Subparts A, Cb
- 40 CFR 61 National Emissions Standards for Hazardous Air Pollutants (NESHAP)
- 40 CFR 64 Compliance Assurance Monitoring Rule
- 40 CFR 82 Stratospheric Ozone Protection

4.2.2. Florida Administrative Code (F. A. C.)

- All terms and conditions of Florida Permit PSD-FL-086(B)
- 62-4 Permits
- **62-4.030**
- **62-4.040**
- **62-4.050**
- **62-4.060**
- **62-4.070**
- **62-4.080**
- **62-4.090**
- **62-4.100**
- 62-4.120
- **■** 62-4.130
- **62-4.160**
- **62-4.210**
- 62-204.800(9)(b) Emissions Guidelines and Compliance Times for Municipal Waste Combustors incorporated by reference
- 62-210 Stationary Sources General Requirements
- 62-210.200 Definitions
- 62-210.300 Permits Required
- 62-210.300(3) Exemptions
- 62-210.300(3)(a)13 Exemption for Brazing, Soldering, or Welding Equipment

- 62-210.300(3)(a)15 Fire & Safety Equipment
- 62-210.300(3)(a)35 Exemption for One or More Emergency Generators located within a Single Facility
- 62-210.300(3)(a)36 Exemption for General Purpose Internal Combustion Engines and Other Reciprocating Internal Combustion Devices
- 62-210.300(5) Notification of Startup
- 62-210.350 Public Notice and Comment
- 62-210.360 Administrative Permit Corrections and Amendments
- 62-210.370(3) Annual Operating Report
- 62-210.650 Circumvention
- 62-210.700 Excess Emissions
- 62-210.900 Forms and Instructions
- 62-212.400 Stationary Sources Preconstruction Review, Prevention of Significant Deterioration (PSD)
- 62-213 Operation Permits for Major Sources of Air Pollution
- 62-296 Stationary Sources Emissions Standards
- 62-296.320 General Pollutant Emission Limiting Standards
- 62-296.416 Waste-to-Energy Facilities
- 62-296.416(3) Mercury Emissions Limiting Standards
- 62-297.310(1) Required Number of Test Runs
- 62-297.310(2) Operating Rate During Testing
- 62-297.310(3) Calculation of Emission Rate
- 62-297.310(4) Applicable Test Procedures
- 62-297.310(5) Determination of Process Variables
- 62-297.310(6) Required Stack Sampling Facilities
- 62-297.310(7) Frequency of Compliance Tests
- 62-297.310(8) Test Reports
- 62-297.401 Compliance Test Methods
- 62-297.620 Exceptions and Approval of Alternate Procedures and Requirements

4.3. Compliance Assurance Monitoring Plan

On October 3, 1997, EPA promulgated new rules under 40 CFR Part 64 and revised 40 CFR Parts 70 and 71 to implement Compliance Assurance Monitoring (CAM) for major

stationary sources of air pollution that are required to obtain permits under Title V of the Clean Air Act (the "Act"). Subject to certain exemptions, the CAM rule requires owners or operators of such sources to conduct monitoring that satisfies particular criteria provided in the rule to provide a reasonable assurance of compliance with applicable requirements under the Act. The CAM rule applies to all initial Part 70 and 71 permit applications and applications for a significant permit revision submitted after April 20, 1998.

4.3.1. Applicability Determination

The first step in the CAM process is the determination of the applicability of the CAM rules in 40 CFR Part 64 to each pollutant-specific emissions unit ("unit"). Any unit subject to CAM rules must satisfy all of the criteria included in Section 64.2, which include the following:

- The unit must be located at a major source that is required to obtain a Part 70 or 71 permit
- The units is subject to an emission limitation or standard for the applicable pollutant
- The unit uses a control device to achieve compliance with the emission limitation or standard
- Potential pre-control emissions of the applicable pollutant from the unit are at least 100% of major source amount
- The unit is not otherwise exempt

Malcolm Pirnie completed a CAM applicability determination for each unit at the City of Tampa's McKay Bay Refuse to Energy Facility (the "Facility"). The rationale for the determination is presented in the sections that follow. Whenever possible, estimates of potential pre-control emissions were calculated using actual stack test data or emission factors obtained from the EPA's Compilation of Air Emission Factors (AP-42). Potential pre-control emission estimates for pollutants not listed in AP-42 were calculated from stack test data and known (or assumed) control device efficiencies. Post-control estimates for pollutant subject to CAM were based on published emission factors, stack test data, or Continuous Emissions Monitoring System (CEMS) data. Emission factors calculated in the EPA's Compilation of Air Emission Factors (AP-42) assumed a waste HHV of 4,500 Btu/lb. and were corrected for the 5,000 Btu/lb assumption used at the Facility. A summary of the determination results is included as Table 1.

4.3.2. Ash Building and Handling System (Emissions Unit No. 100)

Description

The ash building and handling system consists of the ash conveyors, grizzly scalper, and an enclosed prefabricated metal structure at the terminus of the ash collection system that stores the ash prior to landfilling. Fly ash discharged to the collection system from various points in the combustion trains is wetted to prevent fugitive emissions and mixed with bottom ash. The wet combined ash is then conveyed to the grizzly scalper, where large ferrous metals are removed. The wet ash continues on to the ash building, where smaller ferrous and nonferrous metals are removed. The finished ash is discharged to the ground floor and stored for later transport to the Hillsborough County Southeast Landfill. The ash building is equipped with two wet scrubbers to control particulate emissions.

Particulate (PM/PM10)

The existing Title V operation permit limits particulate emissions from the ash building under Florida permit no. PSD-FL-086(A). The ash building is equipped with a baghouse to control particulate emissions. The pre-control emissions factor for the wetted ash was calculated using the predictive emission factor equation in AP-42 Section 13, Aggregate Handling and Storage Piles.

AP-42 references landfill fly ash with 27% moisture content as a typical material used in the predictive equation. The wetted ash stored in the ash building is a similar material, with moisture content ranging from 13-22%. In order to provide a conservative estimate, the largest particle size multiplier (0.74), the lowest moisture content (13%), and an estimated wind speed of 5 mph was used in the equation. Calculations for potential precontrol particulate emissions estimates for the wetted ash are shown on the following page. The estimated potential uncontrolled emissions are below the major source threshold for PM, so the CAM rule does not apply to the ash building at the Facility for particulate emissions.

Opacity (VE)

Opacity is regulated under Florida permit no. PSD-FL-086. However, there is no major source threshold defined for opacity in 40 CFR 60. Therefore, the CAM rule does not apply to the ash building and handling system at the Facility for opacity emissions.

Pre-Control PM Estimate

E = Emission Factor¹

k = Particle size multiplier (0.74)

U = Mean wind speed (5 mph)

M = Material moisture content (13%)

$$E = k*(0.0032)* \frac{(U/5)^{1.3}}{(M/2)^{1.4}}$$

E =
$$0.74*(0.0032)*\frac{(5/5)^{1.3}}{(13/2)^{1.4}}$$
 = 1.72 E-04 lb./ton

Emission factor x ton conversion x design feed rate² x operating time³ = PM emissions estimate (1.72 E-04 lb./ton) x (ton/2,000 lb.) x (60 tons/hr.) x (8,760 hrs./yr.) = 0.04 tons/yr.

0.04 tons/yr. < 100 tons/yr. (major source threshold for PM), so CAM rules are not applicable to PM for the ash building.

² Design feed rate for the ash building is 60 tons per hour.

4.3.3. Lime Silos (Emissions Unit No. 101)

Description

The Facility is equipped with two lime storage silos that store pebble lime used in the production of lime slurry for the dry scrubbers. The silos are equipped with a common fabric vent filter to remove entrained lime from conveying air vented during loading operations.

Particulate (PM/PM10)

Turbulent conditions in the lime silos during loading operations entrain lime particles in the conveying air. As the air moves through the silos, the heavier particles settle out in areas of low air velocity. The remaining particles are removed by the vent filters in the baghouse above the silos. The turbulent conditions that generate particulate emissions only exist in the lime silos when conveying air (and new lime) enters the silos during loading operations. Lime loading operations are only performed at the Facility approximately 6 hours per week, but will be conservatively estimated at 500 hours per year.

The existing Title V operation permit limits particulate emissions from the lime silos under permit no. PSD-FL-086. The silos use a control device (baghouse) to achieve compliance with the particulate emission limitation. Potential pre-control particulate emissions estimates are calculated below.

¹ Emission factor from AP-42, Vol. 1, Chapter 13, predictive emission factor equation 1)

³ Operating time is based on 100% availability. Actual operating time is less than 8,760 hours per year

Pre-Control PM Estimate

Emission Factor¹ x ton conversion x design fill rate² x operating time³ = PM emissions estimate (0.61 lb./ton) x (ton/2,000 lb.) x (20 tons/hr.) x (500 hrs./yr.) = 3.1 tons/yr.

3.1 tons/yr. < 100 tons/yr. (major source threshold for PM), so CAM rules are not applicable to PM for the lime silo unit.

Opacity (VE)

Opacity is regulated under Florida permit no. PSD-FL-086. However, there is no major source threshold defined for opacity in 40 CFR 60. Therefore, the CAM rule does not apply to the lime silo at the Facility for opacity emissions.

4.3.4. Activated Carbon Silos (Emissions Unit 102)

Description

The Facility is equipped with two activated carbon storage silos that store activated carbon used for mercury control in the MWC units. Each silo is equipped with a fabric vent filter to remove entrained carbon from conveying air vented during loading operations.

Particulate (PM/PM10)

Turbulent conditions in the carbon silos during loading operations entrain carbon particles in the conveying air. As the air moves through the silos, the heavier particles settle out in areas of low air velocity. The remaining particles are removed by the vent filters in the baghouse above the silos. The turbulent conditions that generate particulate emissions only exist in the carbon silos when conveying air (and new carbon) enters the silos during loading operations. Carbon loading operations are only performed at the Facility approximately 3 hours per month, but will be conservatively estimated at 100 hours per year.

The existing Title V operation permit limits particulate emissions from the carbon silos under permit no. PSD-FL-086. The silos use a control device (baghouse) to achieve compliance with the particulate emission limitation. Potential pre-control particulate emissions estimates are calculated below.

Uncontrolled Particulate Matter Emission Factor for Lime Product Processing and Handling (from AP-42, Vol. 1, Chapter 11), factor for product loading, enclosed truck.

² Lime silo design fill rate used as a conservative estimate. Actual fill rate may be less.

³ Operating time is based on 500 hours per year. Actual operating time may be less.

Pre-Control PM Estimate

Emission Factor¹ x ton conversion x design fill rate² x operating time³ = PM emissions estimate $(0.58 \text{ lb./ton}) \times (\text{ton/2,000 lb.}) \times (20 \text{ tons/hr.}) \times (100 \text{ hrs./yr.}) = 0.58 \text{ tons/yr.}$

0.58 tons/yr. < 100 tons/yr. (major source threshold for PM), so CAM rules are not applicable to PM for the carbon silo unit.

Opacity (VE)

Opacity is regulated under Florida permit no. PSD-FL-086. However, there is no major source threshold defined for opacity in 40 CFR 60. Therefore, the CAM rule does not apply to the ash building and handling system at the Facility for opacity emissions

4.3.5. Municipal Waste Combustor Units (Emissions Unit Nos. 103, 104, 105 and 106)

Description

The Facility is equipped with four stationary mass-burn waterwall municipal waste combustor (MWC) units, each rated for a maximum heat input capacity of 120 MMBtu/hr. The heat input capacity is comparable to a feed rate of approximately 288 tons per day at 5,000 Btu/lb. Emissions are controlled on each combustion train by a spray dryer absorber, fabric filter baghouse, powdered activated carbon injection and selective non-catalytic reduction (SNCR) systems. Using lime slurry, the scrubber neutralizes acid-forming gases such as hydrogen fluoride, sulfur dioxide, and hydrogen chloride. Activated carbon is injected into the economizer outlet duct to control mercury emissions. The baghouse captures particulate matter entrained in the flue gas. Captured dry ash particles fall into hoppers where they are discharged to the ash collection system.

All four MWC units are permitted major sources under the existing Title V operations permit No. 0570127-005-AV. The pollutants regulated under that permit and their CAM applicability are shown in Table 1.

Uncontrolled Particulate Matter Emission Factor for Carbon Black Manufacture (from AP-42, Vol. 1, Chapter 6), factor for pneumatic system vent, bag filter.

² Carbon silo design fill rate used as a conservative estimate. Actual fill rate may be less.

³ Operating time is based on 100 hours per year. Actual operating time may be less.

Table 1 - CAM Applicability Review Summary

	CAM Applicability										CAM Plan Require	ments				
Parameter	40 CFR 60 Subpart Cb NSPS Emission Limit	PSD-FL-086 Emission Limit	Test (1) The unit is subject to an emission limitation or standard for the applicable regulated air pollutant (or a surrogate thereof), other than an emission limitation or standard that is exempt under paragraph (b)(1)	Test (2) The unit uses a control device to achieve compliance with any such emission limitation or standard	Test (3) The unit has potential pre-control device emissions of the applicable regulated air pollutant that are equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source	CAM applicable? If Tests (1), (2), and (3) are all yes, then CAM applies.	Monitored By CEMS	Comments	Monitoring Parameters	Design Pollutant Averaging Period	The unit has the potential to emit, including the effect of control devices, the applicable regulated air pollutant in an amount equal to or greater than 100 percent of the amount, in tons per year, required for a source to be classified as a major source. If yes, data collection requirements of 40 CFR 64 paragraph b(4)(ii) apply.	Monitoring Frequency	Link to CEMS?	Comments		
Ash Building and	Handling System (Emis	sions Unit 100)						Angelia de la companya de la company	1		100 (15) (15)					
Opacity (VE)		5%	Yes - Regulated under PSD-FL-086	Yes - Wet Scrubbers	No - Major source threshold not defined	No		No major source threshold for opacity								
Lime Storoge Sile	rs (Emissions Unit 101)		13.32	3				10 5 K 15 K 1				1.0	, ,			
Particulate (PM/PM10)		0.015 gr/dscf, up to 0.36 lb/hr.	Yes - Regulated under PSD-FL-086	Yes - Baghouse	No - PTE < 100 tpy	No		Pre-control PTE based on uncontrolled emission factor from AP-42, Volume 1, Chapter 11						nighistonia kasing nighistonia kasing nighistoria		
Opacity (VE)		5%	Yes - Regulated under PSD-FL-086	Yes - Baghouse	No - Major source threshold not defined	No		No major source threshold for opacity		and the second						
Activated Carbon	r Storage Silos (Emissio	ns Unit 102)						Pre-control PTE based on								
Particulate (PM/PM10)		0.015 gr/dscf, up to 0.36 lb/hr.	Yes - Regulated under PSD-FL-086	Yes - Baghouse	No - PTE < 100 tpy	No		uncontrolled emission factor from AP-42, Volume 1, Chapter 6								
Opacity (VE)		5%	Yes - Regulated under PSD-FL-086	Yes - Baghouse	No - Major source threshold not defined	No		No major source threshold for opacity								
Miniaripal Waste	Combustor Units 1-4 (Emissions Units 103, 104	, 105, 106)				4,10				BERTHER T					
Particulate (PM/PM10)	25 mg/dscm	27 mg/dscm, 0.0230 lb/MMBtu, 2.76 lbs./hr, 12.1 tons/yr per unit.	No - Subpart Cb limits are more restrictive	Yes - Baghouse	Yes - PTE >100 tpy	No		Regulated under Subpart Cb - Exempt								
Opacity (VE)	10%	10%	No - Regulated under Subpart Cb	Yes - Baghouse	No - Major source threshold not defined	No	х	Regulated under Subpart Cb - Exempt								
Cadmium (Cd)	0.035 mg/dscm	3.42E-05 lb/ MMBtu, 4.10E-03 lbs./hr, 0.0179 lons/yr	No -Subpart Cb limits are more restrictive	Yes - Baghouse	No - PTE <10 tpy	No		Regulated under Subpart Cb - Exempt								
Lead (Pb)	0.40 mg/dscm	0.44 mg/dscm, 3.76E-04 lb/MMBtu, 0.0451 lbs./hr, 0.197 tons/yr	No - Subpart Cb limits are more restrictive	Yes - Baghouse	Yes - PTE >5 tpy	No		Regulated under Subpart Cb- Exempt						-		
Mercury (Hg)	0.050 mg/dscm or 15% of potential mercury emission concentration, whichever is less stringent	0.070 mg/dscm, 0.0605 ton/yr.	No - Subpart Cb limits are more restrictive	Yes - Carbon System	No - PTE <10 tpy	No		Regulated under Subpart Cb - Exempt								
Sulfur Dioxide (SO2)	29 ppm or 25% of the potential SO2 emission concentration, whichever is less stringent	29 ppm or 25% of the potential SO2 emission concentration, whichever is less stringent. Facility-wide emissions shall not exceed 460 tons in any consecutive 12-month period.	No - The PSD implements Subpart . Cb	Yes - Scrubber	Yes - PTE >100 tpy	No	x	Regulated under Subpart Cb - Exempt								
Hydrogen Chloride (HCI)	29 ppm or 5% of the potential HCI emission concentration, whichever is less stringent	29 ppm or 5% of the potential HCI emission concentration, whichever is less stringent, and 67.9 tons/yr.	No - The PSD implements Subpart Cb	Yes - Scrubber	Yes - PTE >10 tpy	No .		Regulated under Subpart Cb - Exempt								
Dioxins/ Furans	For non-electrostatic precipitator controls, 30 ng/dscm	30 ng/dscm, 2.56x10-8 lbs/MMBtu, 3.07x10-6 lbs/hr and 1.35xE-05 tons/year.	Yes - Regulated under Subpart Cb and PSD-FL-086	Yes - Carbon System	No - PTE <10 tpy	No		Pre-control PTE based on uncontrolled emission factor from AP-42, Volume 1, Chapter 2								
Nitrogen Oxides (NOx)	205 ppmv	205 ppmdv, 0.335 lbs/MMBtu, 40.1 lbs/hr. Facility-wide emissions shall not exceed 679 tons in any consecutive 12-month period.	No - The PSD implements Subpart Cb	Yes - Thermal Denox (Urea)	Yes - PTE >100 tpy	No	х	Regulated under Subpart Cb- Exempt								
Carbon Monoxide (CO)		100 ppmdv on 4 hr block avg, 0.0995 lb/MMBtu, 11.9 lbs/hr. Facility-wide emissions shall not exceed 185 tons in any consecutive 12-month period.	Yes - Regulated under Subpart Cb and PSD-FL-086	No	Yes - PTE >100 tpy	.No	x	No control device								
Fluoride (F)		0.0125 lb/MMBtu, 1.5 lbs/hr and 6.57 tons/year per unit.	Yes - Regulated under PSD-FL-086	Yes - Scrubber	No - PTE <10 tpy	No		PTE based on 2010 stack test data and assumed 90% control efficiency								
Beryllium (Be)		9.58E-07 lb/MMBtu, 0.000115 lb/hr and 5.04E-04 tons/yr per unit.	Yes - Regulated under PSD-FL-086	Yes - Baghouse	No - PTE <10 tpy	No		PTE based on 2010 stack test data and assumed 99.9% control efficiency								

Particulate (PM/PM10)

Particulate matter generated during solid waste combustion is comprised of both unburned combustible material and inert material that was present in the solid waste. Turbulent conditions in the combustor entrain this material in the flue gas as fly ash. As the flue gas moves through the boiler and heat recovery equipment, the heavier particles settle out in areas of low gas velocity (i.e. hoppers and scrubbers) and are removed. The remaining particles are removed by the fabric filters in the baghouses.

PSD-FL-086(A) limits PM emissions from the MWC units to 27 mg/dscm, corrected to 7% O₂. The PSD permit implemented the old Federal 40 CFR 60, Subpart Cb requirements. The new Subpart Cb requirements limit PM emissions to 25 mg/dscm, corrected to 7% O₂, which is more restrictive as shown in the calculations below. Therefore, the new Federal 40 CFR 60 Subpart Cb standard governs the regulation of PM, and the Facility is exempt from CAM requirements for particulate matter. The additional PSD limits for PM (0.0230 lb/MMBtu, 2.76 lb/hr, and 12.1 ton/yr) are equivalents of the old 27 mg/dscm Subpart Cb limit.

PM Equivalency Calculations

New PM limit in 40 CFR 60.33b = 25 mg/dscm, corrected to 7% O₂

MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O₂)

 $(25 \text{ mg/dscm}) \times (g/1000 \text{ mg}) \times (lb/453.59 \text{ g}) \times (dscm/35.31 \text{ dscf}) \times (7,000 \text{ gr/lb}) = 0.0109 \text{ gr/dscf}$

(25 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g)

x (60 min/hr) = 2.55 lb/hr

 $(2.55 \text{ lb/hr}) \times (8760 \text{ hr/yr}) \times (\text{ton/2000 lb}) = 11.19 \text{ tons/yr}$

(2.55 lb/hr) / 120 MMBtu/hr = 0.0213 lb/MMBtu

PM limits in PSD-FL-086 = 2.76 lb/hr, 12.1 ton/yr, 0.0230 lb/MMBtu

Opacity (VE)

Opacity is regulated under 40 CFR 60, Subpart Cb and is therefore exempt from the CAM rule.

Cadmium (Cd)

Cadmium is a trace metal found in many components of solid waste, and is volatilized during combustion. Cadmium will solidify in the cooler areas of the heat recovery equipment by condensing on the surface of entrained particles in the flue gas or will form particulate itself. These particles are carried in the flue gas stream to the baghouse,

where they settle out by gravity or are captured on the filter bag surface and removed. Therefore, the capture of particulate matter in the baghouse results in the capture of cadmium.

PSD-FL-086(A) limits Cd emissions from the MWC units to 0.040 mg/dscm, corrected to 7% O₂. The PSD permit implemented the old Federal 40 CFR 60, Subpart Cb requirements. The new Subpart Cb requirements limit Cd emissions to 0.035 mg/dscm, corrected to 7% O₂, which is more restrictive as shown in the calculations below. Therefore, the new Federal 40 CFR 60 Subpart Cb standard governs the regulation of Cd, and the facility is exempt from CAM requirements for cadmium. The additional PSD limits for Cd (3.42E-05 lb/MMBtu, 4.1E-03 lb/hr, and 0.0179 ton/yr) are equivalents of the old 0.040 mg/dscm Subpart Cb limit.

Cd Equivalency Calculations

New Cd limit in 40 CFR 60.33b = 0.035 mg/dscm, corrected to $7\% O_2$

MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O₂)

(0.035 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g)

x (60 min/hr) = 0.0036 lb/hr

 $(0.0036 \text{ lb/hr}) \times (8760 \text{ hr/yr}) \times (\text{ton/2000 lb}) = 0.0156 \text{ tons/yr}$

(0.0036 lb/hr) / 120 MMBtu/hr = 0.000030 lb/MMBtu

Cd limits in PSD-FL-086 = 3.42E-05 lb/MMBtu, 4.1E-03 lb/hr, and 0.0179 ton/yr

Lead (Pb)

Lead is a trace metal found in most components of solid waste, and is readily volatilized during combustion. Lead vapor will solidify in the cooler areas of the heat recovery equipment by condensing on the surface of entrained particles in the flue gas or will form particulate itself. These particles are carried in the flue gas stream to the baghouse, where they settle out by gravity or are captured on the filter bag surface and removed. Therefore, the capture of particulate matter in the baghouse results in the capture of lead. A fraction of the lead remains as fine particulate and will escape capture in the control device.

PSD-FL-086(A) limits Pb emissions from the MWC units to 0.44 mg/dscm, corrected to 7% O₂. The PSD permit implemented the old federal 40 CFR 60, Subpart Cb lead requirement. The new Subpart Cb requirements limit Pb emissions to 0.40 mg/dscm, corrected to 7% O₂, which is more restrictive as shown in the calculations below. Therefore, the Federal 40 CFR 60 Subpart Cb standard governs the regulation of Pb, and

the facility is exempt from CAM requirements for lead. The additional PSD limits for lead (3.76E-04 lb/MMBtu, 0.0451 lb/hr, and 0.197 ton/yr) are equivalents of the old Federal limit.

Pb Equivalency Calculations

New Pb limit in 40 CFR 60.33b = 0.40 mg/dscm, corrected to 7% O₂

MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to $7\% O_2$)

(0.40 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g)

x (60 min/hr) = 0.0408 lb/hr

 $(0.0408 \text{ lb/hr}) \times (8760 \text{ hr/yr}) \times (\text{ton/2000 lb}) = 0.179 \text{ tons/yr}$

(0.0408 lb/hr) / 120 MMBtu/hr = 0.00034 lb/MMBtu

Pb limits in PSD-FL-086(A) = 0.0451 lb/hr, 0.197 ton/yr, 0.000376 lb/MMBtu

Mercury (Hg)

Mercury is also a trace metal found in solid waste that is readily volatilized during combustion. Mercury vapor condenses on the surface of entrained particles in the flue gas, especially fine particulates because of the high surface area to volume ratio. Activated carbon is injected into the scrubber to provide a fine particulate surface on which the mercury vapor can adsorb or condense, which effectively removes mercury from the flue gas. The mercury-laden particles are then carried in the flue gas stream to the baghouse, where they settle out by gravity or are captured on the filter bag surface and removed. Therefore, the capture of particulate matter in the baghouse results in the capture of mercury. A very small fraction of the mercury remains as fine particulate and will escape capture in the control device.

PSD-FL-086(A) limits Hg emissions from the MWC units to 0.070 mg/dscm, corrected to 7% O₂. The PSD permit implemented the old federal 40 CFR 60, Subpart Cb mercury requirement. The new Subpart Cb requirements limit Hg emissions to 0.050 mg/dscm, corrected to 7% O₂, which is more restrictive as shown in the calculations below. Therefore, the Federal 40 CFR 60 Subpart Cb standard governs the regulation of Hg, and the facility is exempt from CAM requirements for mercury.

Hg Equivalency Calculations

New Hg limit in 40 CFR 60.33b = 0.050 mg/dscm, corrected to 7% O₂

MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to $7\% O_2$)

(0.050 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g)

x (60 min/hr) = 0.0051 lb/hr

 $(0.0051 \text{ lb/hr}) \times (8760 \text{ hr/yr}) \times (\text{ton/}2000 \text{ lb}) = 0.0223 \text{ tons/yr}$

(0.0051 lb/hr) / 120 MMBtu/hr = 0.0000425 lb/MMBtu

Sulfur Dioxide (SO₂)

Sulfur dioxide formation is a function of the chemical form and content of sulfur in the solid waste fuel. Sulfur occurs in organic and inorganic forms and usually converts to SO₂ during combustion. A small amount of SO₂ generated during solid waste combustion is further oxidized to SO₃, which combines with water to form sulfuric acid (H₂SO₄) mist, or SAM. SAM is discussed later as a separate pollutant.

Flue gas containing sulfur dioxide enters the dry scrubbers, where it comes in contact with finely atomized alkaline (lime) slurry. The alkaline slurry chemically reacts with the sulfur dioxide in the flue gas, forming neutralized calcium compounds that settle out in the scrubber hopper or are captured on the baghouse filters.

PSD-FL-086(A) limits SO₂ emissions from the MWC units to 29 ppmdv corrected to 7% O2 or 75% reduction by weight or volume, whichever is greater. The PSD permit implements the federal Subpart Cb requirements, so Subpart Cb governs the regulation of SO₂ at the facility. Therefore, the facility is exempt from CAM requirements for sulfur dioxide.

Hydrogen Chloride (HCl)

Hydrogen chloride forms during the combustion of solid waste. The amount of HCl formed during combustion depends on the amount of chlorine-containing materials (i.e. salts, PVC, etc.) present in the solid waste.

Flue gas containing hydrogen chloride enters the dry scrubbers, where it comes in contact with finely atomized alkaline (lime) slurry. The alkaline slurry chemically reacts with the HCl in the flue gas, forming neutralized calcium compounds that settle out in the scrubber hopper or are captured on the baghouse filters.

PSD-FL-086(A) limits HCl emissions from the MWC units to 29 ppmdy corrected to 7% O2 or 95% reduction by weight or volume, whichever is greater. The PSD permit

4-15

implements the federal Subpart Cb requirements, so Subpart Cb governs the regulation of HCl at the facility. Therefore, the facility is exempt from CAM requirements for hydrogen chloride.

Dioxins/Furans (PCDD/PCDF)

Dioxins/furans (or MWC organics) are two groups of structurally similar compounds that contain 210 isomers. The chemical, physical, and toxicological characteristics of each isomer vary relative to its chemical structure, but some of the isomers are highly toxic.

Dioxin and furan formation can be minimized by maintaining good combustion practices in combination with scrubbers and fabric filters. The Facility uses scrubbers and fabric filters, but also injects activated carbon into the scrubber, which promotes further removal of dioxins and furans.

The existing Title V operation permit limits dioxin/furan emissions from the MWC units under 40 CFR 60, Subpart Cb and permit no. PSD-FL-086. The MWC units use control devices (scrubber and baghouse) to achieve compliance with the lead emission limitation. However, the pre-control dioxin/furan emissions estimate is below the major source threshold, so the CAM rule does not apply to the MWC units at the Facility for dioxin/furan emissions. The potential pre-control emissions estimate calculation is shown below.

Pre-Control CDD/CDF Estimate

Emission factor¹ Btu conversion $(1.67 \text{ E-}06 \text{ lb./ton}) \times (5,000/4,500) = (1.85 \text{ E-}06 \text{ lb./ton})$

Emission Factor x ton conversion x design feed rate² x operating time³ = CDD/CDF emissions estimate $(1.85 \text{ E}-06 \text{ lb./ton}) \times (\text{ton/2,000 lb.}) \times (12 \text{ tons/hr.}) \times (8,760 \text{ hrs./yr.}) = 0.00009 \text{ tons/yr.}$

0.00009 tons/yr. < 10 tons/yr. (major source threshold for CDD/CDF), so CAM rules are not applicable to CDD/CDF for all MWC units.

Nitrogen Oxides (NO_x)

0043046

Nitrogen oxides are products of all conventional combustion processes. NO_x forms during the combustion of solid waste through two mechanisms, thermal NO_x and fuel NO_x. Thermal NO_x is formed by high temperature oxidation of nitrogen in the combustion air, and fuel NO_x is formed by the oxidation of nitrogen in the solid waste.

¹ Uncontrolled CDD/CDF Factor for Mass Burn Combustors (from AP-42, Vol. 1, Chapter 2) used a heating value of 4,500 Btu/lb. The Facility reference waste heating value is 5,000 Btu/lb.

² MWC design feed rate used as a conservative estimate. Actual feed rate may be less.

³ Operating time is based on 100% availability. Actual operating time is less than 8,760 hours per year.

Because of the temperatures at which MWC units operate, 70-80% of NO_x formed is fuel NO_x.

The Facility uses a Selective Non-Catalytic Reduction (SNCR) system to control NO_x concentration in the flue gas. The system injects a mixture of air and urea into the boiler above the stoker grate. The urea reacts with NO_x in the gas path, resulting in the formation of elemental nitrogen, carbon dioxide, and water.

 NO_x emissions from each MWC unit are regulated under 40 CFR 60, Subpart Cb and Florida permit no. PSD-FL-086(A). The Subpart Cb requirements limit NO_x emissions to 205 ppmdv, corrected to 7% O_2 , which is above the major source threshold of 100 tons/yr for each unit as shown in the calculations below. However, the City of Tampa uses the existing nitrogen oxide CEMS system to demonstrate compliance with the permit limits, thereby exempting NO_x from CAM requirements under 40 CFR 64.2(b)(vi).

Nitrogen Oxides (NOx) Equivalency Calculation

 NO_x limit in 40 CFR 60.33b = 205 ppmdv, corrected to 7% O_2

MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O₂)

 $(27,289.8 \text{ dscfm}) \times (60 \text{ min/hr}) \times (205 \text{ parts/}10^6 \text{ parts}) \times (46.01 \text{ lb/lb-mole})$

x (1 lb-mole/385.3 dscf) = 40.08 lb/hr

 $(40.08 \text{ lb/hr}) \times (8760 \text{ hr/yr}) \times (\text{ton/}2000 \text{ lb}) = 175.5 \text{ tons/yr}$

(40.08 lb/hr) / 120 MMBtu/hr = 0.334 lb/MMBtu

Carbon Monoxide (CO)

Carbon Monoxide is formed by the incomplete oxidation of carbon compounds in fuel. Some carbon monoxide is formed during all combustion processes where carbon-containing fuel is used. However, the amount of carbon dioxide formed is dependent upon the combustion efficiency of the fuel-burning process. Incomplete oxidation can be caused by several factors, including:

- Fuel-rich conditions (low oxygen)
- Poor fuel-air mixing
- Low combustion temperature
- Short combustion zone residence time

Carbon monoxide formation can be effectively controlled by designing the combustor to provide an adequate supply of combustion air and maximizing combustion efficiency. The Facility's MWC units control CO through good combustion design and operational practices.

CO emissions from each MWC unit are regulated under 40 CFR 60, Subpart Cb and Florida permit no. PSD-FL-086(A). The Facility does not use a control device to achieve compliance with emission limitations, so the CAM rule does not apply to the MWC units at the Facility for carbon monoxide emissions.

Fluoride (F)

Fluoride production during solid waste combustion is a function of the fluorine content of the waste (primarily in fluorinated plastics and other fluorocarbons), combustion temperature, and thermally driven chemical reactions between the combustion air and the fluorine-containing wastes. Fluorides are highly soluble in water and can be effectively controlled by contact with the finely atomized alkaline (lime) slurry in the dry scrubber.

The existing Title V operation permit limits fluoride emissions from the MWC units under Florida permit no. PSD-FL-086(A). The MWC units use a control device (scrubber) to achieve compliance with the fluoride emission limitation. Potential precontrol fluoride emissions estimates are calculated below. No fluoride emission factors were published in AP-42, so the most recent (2010) stack test data for fluoride was used in conjunction with an assumed scrubber control efficiency of 90% to obtain the precontrol emission estimate.

Assuming 90% control efficiency, the pre-control fluoride emission estimate is below the major source threshold. Therefore, the CAM rule does not apply to the MWC units at the Facility for fluoride emissions. The potential pre-control fluoride emissions estimate calculation is shown below.

Pre-Control F Estimate

Emission rate¹ x ton conversion x operating time² x scrubber efficiency factor = F emissions estimate (0.0037 lb./hr.) x (ton/2,000 lb.) x (8,760 hrs./yr.) x (100/100-90) = 0.16 tons/yr.

0.16 tons/yr. < 10 tons/yr. (major source threshold for F), so CAM rules are not applicable to F for the MWC units.

Maximum fluoride emissions rate from 2010 stack test.

² Operating time is based on 100% availability. Actual operating time is less than 8,760 hours per year.

Beryllium (Be)

Beryllium is a metal found only in trace quantities in solid waste, and is much less volatile than lead or mercury. Therefore, most of the beryllium in the solid waste will be retained in the bottom ash after combustion. Small amounts of beryllium vapor will solidify in the cooler areas of the heat recovery equipment by condensing on the surface of entrained particles in the flue gas. These particles are carried in the flue gas stream to the baghouse, where they settle out by gravity or are captured on the filter bag surface and removed. Therefore, the capture of particulate matter in the baghouse results in the capture of beryllium. A small fraction of the beryllium remains as fine particulate and will escape capture in the control device.

Beryllium emissions from each MWC unit are regulated under 40 CFR 60, Subpart Cb and Florida permit no. PSD-FL-086(A). The MWC units use a control device (baghouse) to achieve compliance with the beryllium emission limitation. Potential pre-control beryllium emissions estimates are calculated below. No beryllium emission factors were published in AP-42, so the most recent (2010) stack test data for beryllium was used in conjunction with an assumed scrubber control efficiency of 99.9% to obtain the pre-control emission estimate. Malcolm Pirnie has no data on dry scrubber control efficiencies for beryllium, but an efficiency assumption of 99.9% produces a very conservative estimate of pre-control emissions.

Assuming 99.9% control efficiency, the pre-control beryllium emission estimate is below the major source threshold. Therefore, the CAM rule does not apply to the MWC units at the Facility for beryllium emissions. The potential pre-control beryllium emissions estimate calculation is shown below.

Pre-Control Be Estimate

Emission rate 1 x ton conversion x operating time 2 x scrubber efficiency factor = Be emissions estimate (2.06 E-06 lb./hr.) x (ton/2,000 lb.) x (8,760 hrs./yr.) x (100/100-99.9) = 0.009 tons/yr.

0.009 tons/yr. < 10 tons/yr. (major source threshold for Be), so CAM rules are not applicable to Be for the MWC units.

¹ Maximum beryllium emissions rate from 2010 stack test.

² Operating time is based on 100% availability. Actual operating time is less than 8,760 hours per year.

4.4. Requested Changes to Title V Air Operating Permit

The following administrative error corrections are requested to the current Title V Air Operating Permit:

Page 1 of Statement of Basis, last paragraph: "Emissions from the silos are controlled by baghouses" should be changed to "Emissions from the silos are controlled by a baghouse."

Page 51, Section III, Subsection C: "Lime from the spray dryer absorbers for each municipal waste combustor is stored in two silos. Emissions from the silos are controlled by a baghouse."

The silos share a common vent filter. This information was correctly stated in the Facility's Title V Renewal Application, dated December 27, 2005.

Page 45, III. B. Emissions Unit- 100 Ash Building and Handling System: "Since the estimated potential uncontrolled PM emissions are below the major source threshold, the CAM rule does not apply to the ash transfer and storage system's baghouse" should be changed to "Since the estimated potential uncontrolled PM emissions are below the major source threshold, the CAM rule does not apply to the ash transfer and storage system's scrubber." The Ash Management Building and Handling System has always been equipped with two wet scrubbers, as was stated in the Facility's Title V Renewal Application, dated December 27, 2005.

City of TampaMcKay Bay Refuse-to-Energy Facility Title V Permit Renewal Application

Attachment 2:

Detailed Description of Control Equipment

Wheelabrator Air Pollution Control Pittsburgh, Pennsylvania 1-800-327-8727 www.wapc.com

City of Tampa Retrofit Project

McKay Bay Refuse to Energy Facility

O & M Manual No. 3834 Revision 0 Section II

Page 1

City of Tampa McKay Bay Refuse to Energy Facility Retrofit Project Operation & Maintenance Manual

II. GENERAL DESCRIPTION

Summary
Dry Scrubbing System
Process Description
Spray Dryer Absorber
Absorbent Preparation System
Activated Carbon Injection System
Fabric Filter
Fabric Filter Bags
Cleaning Sequence and Pulse Jet Mechanism
Hopper Impactor Control
Safety Considerations
SNCR NO _x Control System
Process Description
System Description
Continuous Emissions Monitoring (CEM)
Major Auxiliary Equipment List

City of Tampa McKay Bay Refuse to Energy Facility Retrofit Project **Operation & Maintenance Manual**

II. GENERAL DESCRIPTION

Wheelabrator Air Pollution Control has supplied the following major components for the City of Tampa McKay Bay Refuse to Energy Facility Retrofit Project.

- A Spray Dryer Absorber/Fabric Filter (SDA/FF) Dry Scrubbing System with Absorbent Preparation System and Powdered Activated Carbon (PAC) Injection, to control acid gas, solid particulates, heavy metal and dioxin/furan emissions from the four refuse fired boilers.
- A Selective Non Catalytic Reduction (SNCR) System to control Nitrogen Oxide (NO₂) formation in the boiler.
- A Continuous Emissions Monitoring (CEM) to monitor the performance of the two above systems and provide the required compliance data.

1.0 **SUMMARY**

1.1 **Dry Scrubbing System**

The Dry Scrubbing System has been designed to provide acid gas (SO₂, HCl), solid particulate (dust), heavy metal and dioxin/furan control from each of four (4) refuse fired boilers. The Dry Scrubbing System consists of a Spray Dryer Absorber (SDA) and a Fabric Filter (FF) for each boiler.

Flue gas enters the top of each SDA. Lime slurry is atomized into the flue gas in the SDA. The fine spray droplets absorb acid gases (SO₂, HCl) from the flue gas. The heat of the flue gas evaporates the slurry water creating a solid particle. The flue gas is then ducted to a fabric filter where the fly ash from the boiler and the dried reaction products from the SDA are collected. Additional acid gas removal occurs as the flue gas passes through the dust on the fabric filter bags. Two lime slurry preparation systems are provided to prepare the lime slurry. Redundant slakers are provided to mix the pebble lime with city water and make the lime slurry (Ca(OH)₂). The slurry is stored in redundant lime slurry storage tanks and pumped through a complete recirculation loop to the four SDA's. Wastewater from the plant is piped to a dilution water tank and pre-softened with some of the lime slurry. This water is also pumped to the SDA'S. The

Wheelabrator Air Pollution Control Pittsburgh, Pennsylvania 1-800-327-8727 www.wapc.com City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 2

evaporation of the slurry water in the SDA cools the flue gas. This causes heavy metals and dioxin/furans that exist as vapors at the SDA inlet to condense.

To further enhance the collection of mercury and dioxin/furans, powdered activated carbon (PAC) will be injected upstream of each SDA. The PAC adsorbs additional mercury and dioxin/furans. Two PAC injection systems are provided, one for each pair of boilers. PAC is stored in a silo and is fed to three (2 operating /1 spare) feeder/educator assemblies for each pair of boilers. The educator pneumatically conveys the PAC to the SDA inlet ductwork where is it injected it into the boiler flue gas.

1.2 SNCR NOx Control System

The SNCR NO_x Control System injects a urea-based solution (NO_xOUT A) into the boiler to reduce nitrogen oxide emissions to nitrogen and water. NO_xOUT A is a mixture of urea and proprietary chemicals. It is stored in a common storage tank. A circulation module pumps the solution to four metering modules, one per boiler. The metering individual modules mix a controlled amount of concentrated solution with dilution water. The diluted reagent is then pumped to four distribution modules. The reagent is then transported to eight injector nozzles per boiler where compressed air is added to atomize the solution. The air / reagent mixture is injected into the boiler off gas above the boiler overfire air ports. The dilute urea decomposes and then reacts with the NO_x to form harmless nitrogen gas.

1.3 Continuous Emission Monitoring System

A Continuous Emission Monitoring System is utilized to measure, record and report the performance of the individual boiler trains and their emission control systems to the local Environmental Authorities. Table 1.3 summarizes the data that will be collected. A dedicated multi-component analyzer will be supplied for the inlet of each SDA and the outlet of each FF. An in situ opacity monitor will be installed at each fabric filter outlet. The analyzers are a "Hot-Wet" extractive design. A representative flue gas sample is extracted, filtered and conveyed by heated sampling lines to the analyzer. The analyzer will also be heated to prevent condensation of the moisture in the sample. The outlet test stations are also equipped with opacity monitors. The analyzers are located in an enclosure along with the Data Acquisition System. Sulfur Dioxide (SO₂) and Nitrogen Oxides (NO_x) signals are fed back via the DCS to the Dry Scrubbing and SNCR Systems. These signals will be used to adjust lime slurry flow (Dry Scrubbing) and NOxOut Solution (SNCR) feed to maintain compliance.

City of Tampa O & M Manual No. 3834 McKay Bay Refuse to Energy Facility Retrofit Project

Revision 0 Section II Page 3

The CEM System is supplied by Aldora. Please refer to their manual for additional information and operating instructions.

Table 1.3 CEM Measurement Da	ata	
SDA Inlet		
CO ₂ SO ₂ CO (Low) CO (High) H ₂ O O ₂	0-20% 0-600 0-100 0-2,000 0-25% 0-25%	Dgb ppm-dgb ppm-dgb ppm-dgb wgb wgb
FF Outlet CO ₂ SO ₂ NO _x H ₂ O O ₂ Opacity	0-20% 0-150 0-400 0-25% 0-25% 0-100%	dgb ppm-dgb ppm-dgb wgb wgb
Recorded Process Parameters	SDA Outlet Temperature PAC Feeder Speed Boiler Stream Flow	

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 4

2.0 DRY SCRUBBING SYSTEM

The Dry Scrubbing System is designed to provide HCl, SO₂ and acid gas, solid particulate, heavy metal and dioxin/furan control. Calcium hydroxide slurry (Ca(OH)₂) is atomized into the flue gas using a Spray Dryer Absorber (SDA). See process flow diagrams, drawings 04-21-3-001 and 002. Acid gases are absorbed by the slurry, while the heat of the flue gas evaporates the slurry water, and cools the flue gas. The cooled gas is directed to a fabric filter where solid particulates (fly ash and dried reaction products) are collected. Cooling the flue gas promotes the condensation of heavy metals (mercury, cadmium, lead) and dioxin/furans, allowing them to be captured as a solid or aerosol in the fabric filter. Powdered Activated Carbon (PAC) is pneumatically injected upstream of the SDAs. The PAC adsorbs mercury and dioxin/furans from the flue gas.

Design Removal/Emission levels are:

SO₂ Least stringent of 29 ppm_{v-dgb} @ 7% O₂ (24 hr geometric mean) outlet

concentration

- or -

80% removal (24 hr geometric mean)

HCl Least stringent of 25 ppm_{v-deb} @ 7% O₂ outlet concentration

- or -

95% removal

Solid Particulate Outlet concentration less than 0.010 gr/dscf @ 7% O₂ (24 mg/dscm)

Opacity (%) Less than 10% (6 min avg.)

PCDD/PCDF Outlet concentration less than 13 ng/DSCM @ 7% O₂ total

PCDD/PCDF

Mercury Least stringent of 85% removal or an outlet concentration less than 70

μg/DSCM @ 7% O₂

Lead Outlet concentration less than 0.20 mg/DSCM @ 7% O₂

Cadmium Outlet concentration less than 0.020 mg/DSCM @ 7% O₂

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 5

2.1 Process Description

2.1.1 Acid Gas Control

Flue gas is ducted from each boiler's economizer to the top of a dedicated spray dryer absorber. An atomized calcium hydroxide $(Ca(OH)_2)$ slurry is used to absorb SO_2 and HCl from the flue gas (see Drawings No. 04-21-3-001 and 002). The slurry and a controlled amount of dilution water are mixed and then atomized with compressed air and injected into the flue gas. The SO_2 and HCl are absorbed by the atomized slurry droplets. The SO_2 reacts with the $Ca(OH)_2$ to form calcium sulfite $(CaSO_3 \bullet \frac{1}{2}H_2O)$. Some of the calcium sulfite is further oxidized to calcium sulfate $(CaSO_4 \bullet H_2O)$ by oxygen in the boiler off gas. The HCl reacts with the $Ca(OH)_2$ to form $CaCl_2$. Trace amounts of HF produced by the boiler are also absorbed and solid CaF_2 is produced.

Evaporation of the slurry water in the droplets occurs simultaneously with these reactions. The absorption of SO₂ and HCl continues after the droplet has dried and a solid particle is formed. The flue gas and solid particulate are then directed to a fabric filter where the solid materials are collected from the flue gas. The efficiency of the process is improved as the spray dryer absorber exit temperature decreases and approaches the saturation temperature. A lower exit temperature increases the time required to dry the slurry droplet, thereby increasing the reaction time of the more efficient liquid absorption step. The amount of lime slurry and dilution water that is introduced to the process is controlled to obtain maximum SO₂ and HCl removal, while producing a dry product. The system will be designed to operate, at an outlet temperature setpoint between 275° and 315°F at design conditions. The initial recommended set point is 285°F. The spray dryer absorber is designed to provide eleven (11) seconds residence time, based on the design boiler load of 100 MM BTU/hr and 485°F SDA inlet temperature.

The selected outlet temperature is also critical for the collection of dioxin/furans and heavy metals. WAPC's experience indicates that a maximum outlet temperature of 350°F is required to optimize collection of all the specified heavy metals. CaCl₂ is deliquescent, or in English it means that it will absorb water. Operation at too low of a SDA outlet temperature will cause the dust to clump and become sticky, creating ash handling problems. Once the CaCl₂ has absorbed more water, the dust also become more corrosive.

Additional SO₂ and HCl removal occurs in the fabric filter as the flue gas passes through the filter cake layer on the filter's bags. The fabric filter cleaning sequence is designed to maintain maximum filter cake on the bags to improve acid gas removal in the fabric filter and minimize lime consumption. The cleaning cycle will also be designed to operate based on pressure drop initiated cleaning, with a maximum time interval override. The pressure drop initiation maximizes the time dust is retained on the fabric, for acid gas capture, compared with a straight time interval. The timer override minimizes the upsets that can occur with a rapid increase in boiler load. Cleaning frequency, if based on pressure drop, decreases at lower boiler loads, increasing the thickness of the built up filter cake. If there is a step

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 6

change increase in load, there will be a corresponding large increase in pressure drop. This can require the rapid cleaning of several compartments to maintain the pressure drop setpoint, thereby exposing several compartments of cloth with little or no filter cake to the flue gas.

2.1.2 Heavy Metal and Dioxin/Furan Control

There are specific heavy metal emission limits for mercury (Hg), cadmium (Cd) and lead (Pb). The primary mechanism for heavy metal and dioxin/furan is condensation in the SDA and collection of the subsequent aerosol in the fabric filter. Collection is primarily dependent on fine (sub-micron) particulate collection, and to a lesser degree, SDA outlet temperature. Dioxin/Furan control temperature dependence is insignificant once threshold temperatures are reached. Dioxin/furan and mercury capture improves little as the SDA exit temperature is decreased from 350° to 230°F.

Mercury emissions are present as elemental mercury and mercuric chloride. The elemental mercury is present as a vapor and very little is condensed and collected at the proposed SDA outlet temperatures. Elemental mercury and mercuric chloride collection is improved with the introduction of Powdered Activated Carbon (PAC) into the flue gas upstream of the SDA. Mercury and Mercuric Chloride are adsorbed into the pore structure of the activated carbon. The PAC also improves Dioxin/Furan capture.

PAC is metered into a venturi type educator that pneumatically conveys the material to the ductwork upstream of the flue gas SDA where it is injected into the flue gas. The separate injection system provides a steady flow of PAC, independent of the SDA operation.

For each of the two boilers, there are two PAC silos. There are 3 blowers for each set of two boilers (2 operating/1 spare).

2.1.3 Design Basis

Table 2.1.1 lists the range design conditions at the inlet of the Spray Dryer Absorber (SDA). The SDA has been designed for a maximum slurry water feed rate of 15 gpm. This corresponds approximately to boiler operation at 100 MM BTU/hr at 100% excess air and SDA inlet/outlet temperatures of 485/285 °F.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 7

Tables 2.1.2 thru 2.1.4 show flow rates and temperatures, at steady state operation for the following conditions.

TABLE	BOILER LOAD	SO,/HCI CONCENTRATION	INLET TEMPERATURE
2.1.2	100% MCR	90% UCI	485
2.1.3	75% MCR	90% UCI	465
2.1.4	110% MCR	Average	495

Tables 2.1.2 thru 2.1.4 show flow rates and temperatures, at steady state operation for the following conditions.

City of Tampa O & M M McKay Bay Refuse to Energy Facility Retrofit Project

O & M Manual No. 3834
Facility Revision 0
Section II
Page 8

Table 2.1.1	SDA Inlet Design Parameter
	(per Boiler)

(per l	Boiler)
Boiler Load	100 MM BTU/HR
Flue Gas Flow Rate	146,670 lb/hr 36,701 SCFM 63,487 ACFM
Temperature @ Full Load (1) Minimum Temperature	495°F 485°F

Maximum Acid Gas and Particulate at Inlet

	99% UCL ⁽²⁾ Max. Removal Design	90% UCl Lime System Design	Mean
SO ₂ lb/hr	122	77	100
$ppm(v-dgb)@7\%O_2$	526	77	302
HCl lb/hr	197	143	170
$ppm(v-dgb)@7\%O_2$	1482	981	. 1232
HF lb/hr	2	3	3
ppm(v-dgb)@7%O ₂	34	34	34
Solid Particulate lb/hr	528	576	552
gr/sdcf@7%O ₂	2.6	2.6	2.6

- (1) Return to Figure 2.1.1 to determine maximum temperature at reduced load operation.
- (2) UCL Upper Confidence Limit; eg. 90% UCL: Concentration/flow will be below limit 90% of time.

City of Tampa McKay Bay Refé Retrofit Project

O & M Manual No. 3834 Energy Facility

Revision 0 Section II Page 9

WHEELABRATOR MCKAY BAY APC RETROFIT PROJECT

Absorbent Preperation System Mass Balance

WAPE CONTRACT 3834 MARCH 26, 1999

Bullet # 1, Case # 8, 100% MCK, 80%LA, Diny Boilet, 90% UCL Boiler # 2; Case # 8; 100% MCR; 80%EA; Dirty Boiler; 90% UCL Boiler # 3; Case # 8; 100% MCR; 80%EA; Dirty Boiler; 90% UCL Boiler # 4; Case # 8; 100% MCR; 80%EA; Dirty Boiler; 90% UCL

		V-1 7 1 190								V: b: M:::::					
	Slaker	Siaker	Lime	L/4 Lime	Lime to Dil	Lime Pump	L/	Dil H2O	Dil H2O	Lime Slurry	L10.2 Lime Slurry	Lime Sturry	L10.4 Lime Slurry	Dil H2O	L11.2 Dil H2O
	Water	Discharge	Tank Out	Pump Out	H2O Tank	Return	H2O Tank				to SDA-2	to SDA-3	to SDA-4	to SDA-1	to SDA-2
lb/min H2O	33.6	69.6	366.5	3/4.8	9.2	296.9	406.1	415.3	415.3	17.2	17.2	17.2	17.2	93.5	93.3
b/min CaO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0
tb/min Ca(OH)2	0.0	20.3	97.6	97.6	2.4	77.3	0.0	2.4	2.4	4.5	4.5	4.5	4.5	0.5	0.5
1b/min CaSO3*1/2H2O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min CaCl2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.0
lb/min CaF2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min Inerts	0.0	1.4	6.6	6.6	0.2	5.2	4.1	4.3	4.3	0.3	0.3	0.3	0.3	1.0	1.0
lb/min ash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min subtotal solids	0.0	21.6	104.1	104.1	2.6	82.5	4.1	6.7	6.7	4.8	4.8	4.8	4.8	1.5	1.5
lb/min total	33.6	91.2	470.6	479.0	11.8	379.4	410.2	422.0	422.0	22.0	22.0	22.0	22.0	95.0	95.0
wt % moisture	100.0	76.3	0.0	0.0	0.0	0.0	0.0	0.0	6.7	0.0	0.0	0.0	0.0	0.0	0.0
wt% solids	0.0	23.7	22.1	21.7	21.7	21.7	1.0	1.6	422.0	21.7	21.7	21.7	21.7	1.6	1.6
GPM	4.0	9.4	49.0	50.0	1.2	39.6	48.9	50.1	50.1	2.3	2.3	2.3	2.3	11.3	11.3
	L11.3	L11.4	L12.1	LIZ.Z	L12.3	L12.4	L13	1		31	200	2.001	SWZODKO-SS	SW3	3W4-P030
									.14		32				
	Dil H2O	Dil H2O	Slurry Feed	Slurry Feed	Slurry Feed	Slurry Fccd	Dil H2O	Total	Contact	Peb Lime	Slaker Grit	Lime Pump	Lime Pump	Dil Pump	Strainer
n / · • • • • • • • • • • • • • • • • • •	to SDA-3	to SDA-4	Slurry Feed to SDA-1	Slurry Feed to SDA-2	Slurry Feed to SDA-3	Slurry Feed to SDA-4	Dil H2O to Slaker	Total H	Contact 20	Peb Lime to Slaker	Slaker Grit Discharge	Lime Pump Seal H2O	Lime Pump Seal H2O		
lb/min H2O	to SDA-3	to SDA-4	Sharry Feed to SDA-1	Slurry Feed to SDA-2	Slurry Feed to SDA-3	Slurry Feed to SDA-4	Dil H2O to Slaker 41.4	Total H 44	Contact 12O 17.5	Peb Lime to Slaker U.2	Slaker Grit Discharge 0.3	Lime Pump Seal H2O 8.3	Lime Pump Seal H2O 8.3	Dil Pump Seal H2O U	Strainer Flush H2O U
lb/min CaO	to SDA-3 93.5 0.0	to SDA-4 93.5 0.0	Shurry Feed to SDA-1 110.7 0.0	Slurry Feed to SDA-2 110.7 0.0	Slurry Feed to SDA-3 110.7 0.0	Slurry Feed to SDA-4 110.7 0.0	Dil H2O to Slaker 41.4 0.0	Total H 44	Contact 12O 17.5	Peb Lime to Slaker U.2 15.3	Slaker Grit Discharge 0.3 0.0	Lime Pump Seal H2O 8.3 0.0	Lime Pump Seal H2O 8.3 0.0	Dil Pump Seal H2O U 0	Strainer Flush H20 U 0
lb/min CaO lb/min Ca(OH)2	to SDA-3 93.5 0.0 0.5	93.3 0.0 0.5	Slurry Feed to SDA-1 110.7 0.0 5.0	Slurry Feed to SDA-2 110.7 0.0 5.0	Slurry Feed to SDA-3 110.7 0.0 5.0	Slurry Feed to SDA-4 110.7 0.0 5.0	Dil H2O to Slaker 41.4 0.0 0.2	Total H 44 0 0	Contact 12O 17.5 1.0	Peb Lime to Slaker U.2 15.3 0.2	Slaker Grit Discharge 0.3 0.0 0.0	Lime Pump Seal H2O 8.3 0.0 0.0	Lime Pump Seal H2O 8.3 0.0 0.0	Dil Pump Seal H2O 0 0	Strainer Flush H2O U
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*[/2H2O	93.5 0.0 0.5 0.0	93.5 0.0 0.5 0.0	Slurry Feed to SDA-1 110.7 0.0 5.0 0.0	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0	Slurry Feed to SDA-3 110.7 0.0 5.0 0.0	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0	Dil H2O to Slaker 41.4 0.0 0.2 0.0	Total H 44 0 0	Contact 12O 17.5 1.0 1.2	Peb Lime to Slaker 0.2 15.3 0.2 15.2	Slaker Grit Discharge U.3 0.0 0.0 0.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0	Dil Pump Seal H2O 0 0 0	Strainer Flush H20 U 0
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*[/2H2O lb/min CaCl2	93.5 0.0 0.5 0.0 0.0	93.5 0.0 0.5 0.0 0.0	Slurry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0 0.0	Slurry Feed to SDA-3 110.7 0.0 5.0 0.0 0.0	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0	Total H 44 0 0 0 0 0 0	Contact 12O 17.5 1.0 1.2 1.0	Peb Lime to Slaker 0.2 15.3 0.2 15.2 0.0	Slaker Grit Discharge 0.3 0.0 0.0 0.0 0.0	Eime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0	Dil Pump Seal H2O U 0 0 0	Strainer Flush H20 U
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3* l/2H2O lb/min CaCl2 lb/min CaF2	93.5 0.0 0.5 0.0 0.0 0.0	93.5 0.0 0.5 0.0 0.0 0.0	Slurry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0 0.0	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0 0.0	Slurry Feed to SDA-3 110.7 0.0 5.0 0.0 0.0	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0 0.0	Total H 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contact 12O 17.5 1.0 1.2 1.0 1.0	Peb Lime to Slaker 0.2 15.3 0.2 15.2 0.0 0.0	Slaker Grit Discharge 0.3 0.0 0.0 0.0 0.0 0.0	Eime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0	Eime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0	Dil Pump Seal H2O 0 0 0 0	Strainer Flush H20 U 0
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3* [/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts	93.5 0.0 0.5 0.0 0.0 0.0 1.0	93.5 0.0 0.5 0.0 0.0 0.0 1.0	Slurry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0 0.0 1.3	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0 0.0 0.0 1.3	Slurry Feed to SDA-3 110.7 0.0 5.0 0.0 0.0 0.0 1.3	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0 0.0 1.3	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0 0.0	Total H 44 0 0 0 0 0 0 0 0 0 4	Contact 12O 77.5 1.0 1.2 1.0 1.0 1.0	Peb Lime to Staker 0.2 15.3 0.2 15.2 0.0 0.0 1.9	Slaker Grit Discharge 0.3 0.0 0.0 0.0 0.0 0.0 1.0	Eime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0	Dil Pump Seal H2O 0 0 0 0 0	Strainer Flush H20 U
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3* [/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash	93.5 0.0 0.5 0.0 0.0 0.0 1.0	93.5 0.0 0.5 0.0 0.0 0.0 1.0	Sharry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0	Slurry Feed to SDA-2 11U.7 0.0 5.0 0.0 0.0 1.3 0.0	Shury Feed to SDA-3 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0 1.3 0.0	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0 0.0 0.4 0.0	Total H 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contact 12O 77.5 1.0 1.2 1.0 1.0 1.0 1.0 1.5	Peb Lime to Slaker U.2 15.3 0.2 15.2 0.0 0.0 1.9 0.0	Slaker Grit Discharge 0.3 0.0 0.0 0.0 0.0 0.0 1.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0	Elme Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0	Dil Pump Seal H2O U 0 0 0 0 0 0	Strainer Flush H20 U
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*[/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash lb/min subtotal solids	to SDA-3 93.5 0.0 0.5 0.0 0.0 1.0 0.0	93.5 0.0 0.5 0.0 0.0 0.0 1.0 0.0	Sharry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3	Shurry Feed to SDA-3 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.6	Total H 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contact 12O	Peb Lime to Slaker 0.2 15.3 0.2 15.2 0.0 0.0 1.9 0.0 17.3	Slaker Grit Discharge 0.0 0.0 0.0 0.0 0.0 1.0 0.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Elme Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Dil Pump Seal H2O 0 0 0 0 0 0 0	Strainer Flush H20 0 0 0 0 0 0 0
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*[/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash lb/min subtotal solids lb/min total	to SDA-3 93.5 0.0 0.5 0.0 0.0 1.0 0.0 1.5 95.0	to SDA-4 93.5 0.0 0.5 0.0 0.0 0.0 0.0 1.0 0.0 1.5 95.0	Sharry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Shurry Feed to SDA-3 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0 1.3 0.0 6.3 116.9	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.6 42.0	Total H 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contact 12O	Peb Lime to Slaker 0.2 15.3 0.2 15.2 0.0 0.0 1.9 0.0 17.3 17.4	U.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	Dil Pump Seal H2O 0 0 0 0 0 0 0 0	Strainer Flush H2C 0 0 0 0 0 0 0 0
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*[/2H2O lb/min CaCi2 lb/min CaF2 lb/min Inerts lb/min ash lb/min subtotal solids lb/min total wt % moisture	to SDA-3 93.5 0.0 0.5 0.0 0.0 0.0 0.0 1.0 0.0 1.5 95.0 0.0	to SDA-4 93.5 0.0 0.5 0.0 0.0 0.0 1.0 0.0 1.5 95.0 0.0	Sharry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Shurry Feed to SDA-3 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.6 42.0 98.5	Total H 44 45 99	Contact 12O .7.5	Peb Lime to Slaker U.2 15.3 0.2 15.2 0.0 1.9 0.0 17.3 17.4 17.1	U.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Dil Pump Seal H2O 0 0 0 0 0 0 0 0 0	Strainer Flush H20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b/min CaO b/min Ca(OH)2 b/min CaSO3*[/2H2O b/min CaCl2 b/min CaCl2 b/min CaF2 b/min Inerts b/min ash lb/min subtotal solids b/min total	to SDA-3 93.5 0.0 0.5 0.0 0.0 1.0 0.0 1.5 95.0	to SDA-4 93.5 0.0 0.5 0.0 0.0 0.0 0.0 1.0 0.0 1.5 95.0	Sharry Feed to SDA-1 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Slurry Feed to SDA-2 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Shurry Feed to SDA-3 110.7 0.0 5.0 0.0 0.0 0.0 1.3 0.0 6.3 116.9	Slurry Feed to SDA-4 110.7 0.0 5.0 0.0 0.0 1.3 0.0 6.3 116.9	Dil H2O to Slaker 41.4 0.0 0.2 0.0 0.0 0.0 0.4 0.0 0.6 42.0	Total H 44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Contact 12O	Peb Lime to Slaker 0.2 15.3 0.2 15.2 0.0 0.0 1.9 0.0 17.3 17.4	U.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	Lime Pump Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	Dil Pump Seal H2O 0 0 0 0 0 0 0 0	Strainer Flush H2O 0 0 0 0 0 0 0 0

Retrofit Project

Section II \ Page 10

WHEELABRATOR MCKAY BAY APC RETROFIT PROJECT

WAPC CONTRACT 3834 MARCH 26, 1999

Table 2.1.2 Dry Scrubbing System Mass Balance

		100% MCR:	-	ly Boiler; 90%				
and the second of the second s	FI	F2	F3	F4	F5	F6	S3	S 4
	SDA	SDA	SDA	SDA	FF	FF	SDA	FF
	Inlet	Inleak	Atom Air	Out	Leak	Out	Discharge	Discharge
lb/min CO2	339.4	0.0	0.0	339.4	0.0	339.4	0.0	0.0
lb/min O2	221.6	11.9	6.0	239.5	13.6	253.1	0.0	0.0
Ib/min N2	1,635.0	39.4	19.7	1,694.1	45.0	1,739.2	0.0	0.0
lb/min H2O	246.4	0.7	0.3	358.0	0.8	358.7	0.1	0.1
lb/min SO2	1.17	0.00	0.00	0.35	0.00	0.23	0.00	0.00
lb/min HCl	2.17	0.00	0.00	0.22	0.00	0.11	0.00	0.00
1b/min HF	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lb/min SO3	0.05	0.00	0.00	0.05	0.00	0.01	0.00	0.00
lb/min subtotal fluegas	2,445.8	52.0	26.0	2,631.6	59.4	2,690.8	0.0	0.0
lb/min Ca(OH)2	0.0	0.0	0.0	1.6	0.0	0.0	0,4	1.3
lb/min CaSO3*1/2H2O	0.0	0.0	0.0	1.3	0.0	0.0	0.3	1.6
lb/min CaCl2	0.0	0.0	0.0	2.4	0.0	0.0	0.6	2.5
11-/min CaF2	0.0	0.0	0.0	0.1	0.0	0.0	0.0	0.1
in Inerts	0.0	0.0	0.0	0.8	0.0	0.0	0.2	0.8
torinin ash	8.8	0.0	0.0	7.0	0.0	0.0	1.8	7.0
lb/min subtotal solids	8.8	0.0	0.0	13.1	0.0	0.0	3.4	13.3
lb/min total	2454.6	52.0	26.0	2644.8	59.4	2690.8	3.4	13.4
SCFM	33,454	701	350	36,846	801	37,645	0	0
SDCFM	28,177	686	343	29,180	784	29,962	0	0
ACFM	60,672	691	60	52,842	789	54,532	0	0
vol % CO2	8.89	0.00	0.00	8.07	0.00	7.90	0.00	0.00
vol % O2	7.98	20.50	20.50	7.83	20.50	8.10	0.00	0.00
vol % N2	67.27	77.40	77.40	63.29	77.40	63. 5 9	0.00	0.00
vol % H2O	15.77	2.10	2.10	20.81	2.10	20.41	0.00	0.00
ppm (v-wgb) SO2	210	0	0	57	0	37	0	0
ppm (v-wgb) HCl	684	0	0	62	0	30	0	0
ppm (v-wgb) HF	24	0	0	2	0	2	0	0
ppm (v-wgb) SO3	7	0	0	7	0	. 1	0	0
gr/scf	1.831	0.000	0.000	2.492	0.000	0.006	0.000	0.000
gr/acf	1.010	0.000	0.000	1.738	0.000	0.004	0.000	0.000
ppm (v-dgb) SO2 @7% O2	303	0	0	91	0	61	0	0
ppm (v-dgb) HCl @7% O2	988	0	0	99	0	49	0	0
ppm (v-dgb) HF @7% O2	34	0	0	3	0	3	0	0
ppm (v-dgb) SO3 @7% O2	10	0	0	10	0	1	0	0
gr/sdcf @7% O2	2.644	0.000	0.000	3.971	0.000	0.010	0.000	0.000
deg F	489	60	120	285	60	277	. 0	0
deg F	148	66	87	147	20	146	20	0
Tdp deg F	130	65	65	141	19	140	19	0
Pa (in Hg)	29.65	29.90	192.73	29.44	29.90	28.85	0.00	0.00
Ps (in Wg)	-3.30	0.00	0.00	-6.15	0.00	-14.15	0.00	0.00

City of Tampa McKay Bay Refu **Retrofit Project**

O & M Manual No. 3834 **Energy Facility** Revision 0 Section II Page 11

> WAPC CONTRACT 3834 MARCH 26, 1999

WHEELABRATOR MCKAY BAY

APC RETROFIT PROJECT

Absorbent Preperation System Mass Balance

Botter # 1, Case # 9, 100% MCRC 80%EA, Clean Botter, 50% UCL Boiler # 2; Case # 9; 100% MCR; 80%EA; Clean Boiler; 50% UCL Boiler # 3; Case # 9; 100% MCR; 80%EA; Clean Boiler; 50% UCL Boiler # 4; Case # 9; 100% MCR; 80%EA; Clean Boiler; 50% UCL

	Ci T	LZ	13	LA	L3	LO	L/	1.8	Ly	LIV.I	LIU.Z	LIU.J	L10.4	LIL	LITZ
	Slaker	Slaker	Lime	Lime		Lime Pump			Dil H2O				Lime Slurry	Dil H2O	Dil H2O
	Water	Discharge	Tank Out	Pump Out	H2O Tank	Return		Tank Out	Pump Out	to SDA-I	to SDA-2	to SDA-3	to SDA-4	to SDA-I	to SDA-2
lb/min H2O	20.2	41.8	369.1	371.4	6.5	321.2	286.0	292.5	292.5	10.9	10.9	10.9	10.9	66.9	66.9
lb/min CaO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min Ca(OH)2	0.0	12.2	91.7	91.7	1.6	79.5	0.0	1.6	1.6	2.7	2.7	2.7	2.7	0.4	0.4
lb/min CaSO3*1/2H2O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min CaCl2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
b/min CaF2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min Inerts	0.0	0.8	6.2	6.2	0.1	5.4	2.9	3.0	3.0	0.2	0.2	0.2	0.2	0.7	0.7
lb/min ash	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ib/min subtotal solids	0.0	13.0	97.9	97.9	1.7	84.9	2.9	4.6	4.6	2.8	2.8	2.8	2.8	1.1	1.1
lb/min total	20.2	54.8	467.0	475.3	8.2	412.1	288.9	297.0	297.0	13.8	13.8	13.8	13.8	67.9	67.9
wt % moisture	100.0	76.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
wt% solids	0.0	23.7	21.0	20.6	20.6	20.6	1.0	1.5	1.5	20.6	20.6	20.6	20.6	1.5	1.5
GPM	2.4	5.6	49.0	50.0	0.9	43.4	34.4	35.3	35.3	1.4	1.4	1.4	1.4	8.1	8.1
	L11.3	L11.4	£12.1	LIZ.Z	LIZ.3	L12.4	L13	LI4	LIS	31	32		SWZ-EXCESS		SW4-Pmai
	Dil H2O	Dil H2O		Slurry Feed				Totai	Lime Slurry	Pcb Lime	Grit	Lime Pump	Lime Pump	Dil Pump	Strainer
W ('- ****		to SDA-4	to SDA-1	to SDA-2	to SDA-3	to SDA-4	to Slaker	H2O	to Ash cond.	to Slaker	Discharge	Seal H2O	Seal H2O	Seal H2O	Flush H2O
lb/min H2O lb/min CeO	56.9														
		66.9	77.8	77.8	77.8	77.8	24.9	310.8	22.2	0.1	0.2	8.3	8.3	0.0	0.0
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	310.8 0.0	22.2 0.0	9.1	0.2	0.0	8.3 0.0	0.0	0.0
lb/min Ca(OH)2	0.0 0.4	0.0 0.4	0.0 3.0	0.0 3.0	0.0 3.0	0.0 3.0	0.0 3.1	310.8 0.0 0.1	0.0 6.5	9.1 0.0	0.2 0.0 0.0	0.0 0.0	8.3 0.0 0.0	0.0 0.0 0.0	0.0 0.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O	0.0 0.4 0.0	0.0 0.4 0.0	0.0 3.0 0.0	0.0 3.0 0.0	0.0 3.0 0.0	0.0 3.0 0.0	0.0 0.1 0.0	310.8 0.0 0.1 0.0	0.0 6.5 0.0	9.1 0.0 0.0	0.2 0.0 0.0 0.0	0.0 0.0 0.0	8.3 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2	0.0 0.4 0.0 0.0	0.0 0.4 0.0 0.0	0.0 3.0 0.0 0.0	0.0 3.0 0.0 0.0	0.0 3.0 0.0 0.0	0.0 3.0 0.0 0.0	0.0 0.1 0.0 0.0	310.8 0.0 0.1 0.0 0.0	22.2 0.0 6.5 0.0 0.0	9.1 0.0 0.0 0.0	0.2 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	8.3 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2	0.0 0.4 0.0 0.0 0.0	0.0 0.4 0.0 0.0 0.0	0.0 3.0 0.0 0.0 0.0	0.0 3.0 0.0 0.0 0.0	0.0 3.0 0.0 0.0 0.0	0.0 3.0 0.0 0.0 0.0	0.0 0.1 0.0 0.0 0.0	310.8 0.0 0.1 0.0 0.0	22.2 0.0 6.5 0.0 0.0	9.1 0.0 0.0 0.0 0.0	0.2 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	8.3 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts	0.0 0.4 0.0 0.0 0.0 0.0	0.0 0.4 0.0 0.0 0.0 0.0	0.0 3.0 0.0 0.0 0.0 0.0	0.0 3.0 0.0 0.0 0.0 0.0	0.0 3.0 0.0 0.0 0.0 0.9	0.0 3.0 0.0 0.0 0.0 0.9	0.0 0.1 0.0 0.0 0.0 0.3	310.8 0.0 0.1 0.0 0.0 0.0 3.2	22.2 0.0 6.5 0.0 0.0 0.0 0.4	9.1 0.0 0.0 0.0 0.0 1.1	0.2 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0	8.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash	0.0 0.4 0.0 0.0 0.0 0.7 0.0	0.0 0.4 0.0 0.0 0.0 0.7 0.0	0.0 3.0 0.0 0.0 0.0 0.9	0.0 3.0 0.0 0.0 0.0 0.9	0.0 3.0 0.0 0.0 0.0 0.9	0.0 3.0 0.0 0.0 0.0 0.9 0.0	0.0 0.1 0.0 0.0 0.0 0.3 0.0	310.8 0.0 0.1 0.0 0.0 0.0 3.2 0.0	22.2 0.0 6.5 0.0 0.0 0.0 0.4 0.0	9.1 0.0 0.0 0.0 0.0 1.1 0.0	0.2 0.0 0.0 0.0 0.0 0.0 0.6 0.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.3 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	9.0 9.0 9.0 9.0 9.0 9.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash lb/min subtotal solids	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9	0.0 0.1 0.0 0.0 0.0 0.3 0.0 0.4	310.8 0.0 0.1 0.0 0.0 0.0 0.0 3.2 0.0 3.3	22.2 0.0 6.5 0.0 0.0 0.0 0.4 0.0 6.9	9.1 0.0 0.0 0.0 0.0 1.1 0.0 10.3	0.2 0.0 0.0 0.0 0.0 0.0 0.6 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0	8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.1 0.0 0.0 0.0 0.0 0.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash lb/min subtotal solids lb/min total	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1 67.9	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1 67.9	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 0.1 0.0 0.0 0.0 0.3 0.0 0.4 25.2	310.8 0.0 0.1 0.0 0.0 0.0 3.2 0.0 3.3 314.1	22.2 0.0 6.5 0.0 0.0 0.0 0.4 0.0 6.9 29.1	9.1 0.0 0.0 0.0 0.0 1.1 0.0 10.3	0.2 0.0 0.0 0.0 0.0 0.0 0.6 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.1 0.1 0.2 0.4 0.4 0.6 0.6
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash lb/min subtotal solids lb/min total wt % moisture	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1 67.9	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1 67.9	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.9 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.9 0.0 3.9 81.7 0.0	0.0 0.1 0.0 0.0 0.3 0.0 0.4 25.2 98.5	310.8 0.0 0.1 0.0 0.0 0.0 3.2 0.0 3.3 314.1 98.5	22.2 0.0 6.5 0.0 0.0 0.0 0.4 0.0 6.9 29.1 76.3	9.1 0.0 0.0 0.0 0.0 1.1 0.0 10.3 10.4	0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.6	0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2 lb/min Inerts lb/min ash lb/min subtotal solids lb/min total	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1 67.9	0.0 0.4 0.0 0.0 0.0 0.7 0.0 1.1 67.9	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.0 0.0 0.0 0.0 0.9 0.0 3.9 81.7	0.0 3.1 0.0 0.0 0.0 0.3 0.0 0.4 25.2 98.5	310.8 0.0 0.1 0.0 0.0 0.0 3.2 0.0 3.3 314.1 98.5 2.5	22.2 0.0 6.5 0.0 0.0 0.0 0.4 0.0 6.9 29.1	9.1 0.0 0.0 0.0 0.0 1.1 0.0 10.3 10.4 1.0	0.2 0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.6 0.8 25.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3	8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.3 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

WHEELABRATOR MCKAY BAY

WAPC CONTRACT 3834 MARCH 26, 1999

APC RETROFIT PROJECT

Table 2.1.2 Dry Scrubbing System Mass Balance

100% MCR; 80%EA; Clean Boiler; 50% UCL								
The second section of the second seco	F1	F2	F3	F4	F5	F6	S3	S4
	SDA	SDA	SDA	SDA	FF	FF	SDA	FF
	Inlet	Inicak	Atom Air	Out	Leak	Out	Discharge	Discharge
lb/min CO2	339.4	0.0	0.0	339.4	0.0	339.4	0.0	0.0
lb/min O2	221.6	11.9	6.0	239.5	13.6	253.1	0.0	0.0
ib/min N2	1,635.0	39.4	19.7	1,694.1	45.0	1,739.2	0.0	0.0
Ib/min H2O	246.4	0.7	0.3	325.2	0.8	325.9	0.1	0.1
Ib/min SO2	0.67	0.00	0.00	0.20	0.00	0.13	0.00	0.00
lb/min HCl	1.33	0.00	0.00	0.13	0.00	0.07	0.00	0.00
lb/min HF	0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00
lb/min SO3	0.05	0.00	0.00	0.05	0.00	0.01	0.00	0.00
lb/min subtotal fluegas	2,444.5	52.0	26.0	2,598.6	59.4	2,657.8	0.0	0.0
lb/min Ca(OH)2	0.0	0.0	0.0	1.0	0.0	0.0	0.2	0.8
lb/min CaSO3*1/2H2O	0.0	0.0	0.0	0.8	0.0	0.0	0.2	1.0
lb/min CaCl2	0.0	0.0	0.0	1.4	0.0	0.0	0.4	1.5
lb/min CaF2	0.0	0.0	0.0	0.1	0.0	0,0	0.0	0.1
lb/min Inerts	0.0	0.0	0.0	0.6	0.0	0.0	0.1	0.6
lb/min ash	8.8	0.0	0.0	7.0	0.0	0.0	1.8	7.0
h/min subtotal solids	8.8	0.0	0.0	10.8	0.0	0.0	2.8	10.9
b/min total	2453.3	52.0	26.0	2609.3	59.4	2657.9	2.8	11.0
SCFM	33,442	701	350	36,141	801	36,941	0	0
SDCFM	28,165	686	343	29,178	784	29,961	0	0
ACFM	56,849	691	60	51,686	789	53,347	0	0
vol % CO2	8.89	0.00	0.00	8.23	0.00	8.05	0.00	0.00
vol % O2	7.98	20.50	20.50	7.98	20.50	8.25	0.00	0.00
vol % N2	67.30	77.40	77.40	64.52	77.40	64.80	0.00	0.00
vol % H2O	15.78	2.10	2.10	19.27	2.10	18.89	0.00	0.00
ppm (v-wgb) SO2	120	0	0	33	0	22	0	0
ppm (v-wgb) HCl	421	0	0	39	0	19	0	0
ppm (v-wgb) HF	24	0	0	2	0	2	0	0
ppm (v-wgb) SO3	7	0	0	7	0	1	0	0
gr/scf	1.832	0.000	0.000	2.085	0.000	0.006	0.000	0.000
gr/acf	1.077	0.000	0.000	1.458	0.000	0.004	0.000	0.000
ppm (v-dgb) SO2 @7% O2	173	0	G	52	0	35	0	9
ppm (v-dgb) HCl @7% O2	608	0	0	61	0	30	0	0
ppm (v-dgb) HF @7% O2	34	0	0	3	0	3	0	0
ppm (v-dgb) SO3 @7% O2	10	0	0	10	0	1	0	0
gr/sdcf @7% O2	2.646	0.000	0.000	3.260	0.000	0.010	0.000	0.000
Tdb deg F	432	60	120	285	60	277	0	1 0
Twb deg F	146	66	87	144	20	144	20	0
Tdp deg F	130	65	65	138	19	137	19	0
Pa (in Hg)	29.73	29.90	192.73	29.52	29.90	28.93	0.00	0.00
Ps (in Wg)	-2.20	0.00	0.00	-5.05	0.00	-13.05	0.00	0.00

City of Tampa McKay Bay Refu **Retrofit Project**

→ Energy Facility

O & M Manual No. 3834 Revision 0 Section II Page 13

WHEELABRATOR MCKAY BAY

APC RETROFIT PROJECT

Absorbent Preperation System Mass Balance

WAPC CONTRACT 3834 MARCH 26, 1999

Bollet # 1, Case # 13, 100% MCR, 80%EA, Diny Bollet, 30% UCL, SDA Off-Line

Boiler # 2; Case # 15; 100% MCR; 80%EA; Dirty Boiler; 50% UCL; SDA Off-Line Boiler # 3; Case # 8; 100% MCR; 80%EA; Dirty Boiler; 90% UCL Boiler # 4; Case # 8; 100% MCR; 80%EA; Dirty Boiler, 90% UCL

	LI T	L,Z		1.4	L3	Lo	1.7	La	Ly	LIVI	L10.2	L10.3	U10.4		LIIZ
	Slaker	Slaker	Lime	Lime	Lime to Dil	Lime Pump		Dil H2O	Dil H2O	Lime Slurry			Lime Sturry	Dil H2O	Dil H2O
	Water	Discharge	Tank Out	Pump Out	H2O Tank	Return	H2O Tank	Tank Out	Pump Out	to SDA-1	to SDA-2	to SDA-3	to SDA-4	to SDA-I	to SDA-2
lb/min H2O	10.8	34.8	370.1	378.5	4.5	335.4	198.9	203.4	203.4	0.0	0.0	1.1	7.1	0.0	0.
lb/min CaO	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.
lb/min Ca(OH)2	0.0	10.1	89.0	89.0	1.1	78.9	0.0	1.1	1.1	0.0	0.0	1.7	1.7	0.0	0.
1b/min CaSO3*1/2H2O	0.0	0.0		***	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.
lb/min CaCl2	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
lb/min CaF2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0
lb/min Inerts	0.0	0.7	6.0	6.0	0.1	5.3	2.0	2.1	2.1	0.0	0.0	0.1	0.1	0.0	0.
lb/min ash	0.0	0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		0.
lb/min subtotal solids	0.0	10.8	95.0		1.1	84.2		3.2	3.2	0.0	0.0	1.8	1.8	0.0	0.
lb/min total	16.8	45.6		473.5	5.7	419.5	200.9	206.5	206.5	0.0	0.0	8.9	8.9		0.
wt % moisture	100.0	76.3		0.0		0.0		0.0	0.0	0.0	0.0	0.0	0.0		0.
wt% solids	0.0	23.7	20.4	20.1	20.1	20.1	[1.0		1.5	0.0		20.1	20.1	0.0	0.
GPM	2.0	4.7	49.0	50.0	0.6	44.3	24.0	24.6	24.6	0.0		0.9	0.9	0.0	0.
	כווט	L11.4	LIZ.I	L12.Z	LIZ.3	LIZ.4	LI3	L14	£13	- 51	52	SWI	SWZ-EXCESS	3W3	3W4-FIRE
	Dil H2O				Slurry Feed		Dil H2O	Total Contact	Lime Slurry	Peb Lime	Grit	Lime Pump	Lime Pump	Dil Pump	Strainer
	to SDA-3	to SDA-4	to SDA-1	to SDA-2	to SDA-3	to SDA-4	to Slaker	H2O	to Ash cond.	Peb Lime to Slaker		Seal H2O	Lime Pump Seal H2O	Seal H2O	Strainer Flush H2C
lb/min H2O	to SDA-3	to SDA-4 103.5	to \$DA-1	to SDA-2	to SDA-3	to SDA-4	to Slaker 20.7	H2O 219.6	to Ash cond.	to Slaker	Grit Discharge 0.2	Seal H2O 8.3	Seal H2O 8.3	Seal H2O	Strainer Flush H2C
lb/min CaO	to SDA-3 103.5 0.0	to SDA-4 103.5 0.0	to SDA-1 0.0 0.0	to SDA-2 0.0 0.0	to SDA-3 110.7 0.0	to SDA-4 110.7 0.0	to Slaker 20.7 0.0	H2O 219.6 0.0	to Ash cond. 22.2 0.0	to Slaker 0.1 7.6	Grit Discharge 0.2 0.0	Seal H2O 8.3 0.0	Seal H2O 8.3 0.0	Seal H2O 0.0 0.0	Strainer Flush H2C U.
lb/min CaO lb/min Ca(OH)2	to SDA-3 103.5 0.0 0.5	to SDA-4 103.5 0.0 0.5	to SDA-1 0.0 0.0 0.0	to SDA-2 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2	to SDA-4 110.7 0.0 2.2	to Slaker 20.7 0.0 0.1	H2O 219.6 0.0 0.1	to Ash cond. 22.2 0.0 6.5	to Slaker 0.1 7.6 0.0	Grit Discharge 0.2 0.0 0.0	Seal H2O 8.3 0.0 0.0	Seal H2O 8.3 0.0 0.0	Seal H2O 0.0 0.0 0.0	Strainer Flush H2C 0. 0.
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*1/2H2O	to SDA-3 103.5 0.0 0.5 0.0	to SDA-4 103.5 0.0 0.5 0.0	to SDA-1 0.0 0.0 0.0 0.0	to SDA-2 0.0 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2 0.0	to SDA-4 110.7 9.0 2.2 0.0	to Slaker 20.7 0.0 0.1 0.0	H2O 219.6 0.0 0.1 0.0	to Ash cond. 22.2 0.0 6.5 0.0	to Slaker 0.1 7.6 0.0 0.0	Grit Discharge 0.2 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0	Seal H2O 0.0 0.0 0.0 0.0	Strainer Flush H2C 0. 0.
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2	to SDA-3 103.5 0.0 0.5 0.0	to SDA-4 103.5 0.0 0.5 0.0 0.0	to SDA-1 0.0 0.0 0.0 0.0 0.0	to SDA-2 0.0 0.0 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2 0.0 0.0	to SDA-4 110.7 0.0 2.2 0.0 0.0	to Slaker 20.7 0.0 0.1 0.0 0.0	H2O 219.6 0.0 0.1 0.0 0.0	to Ash cond. 22.2 0.0 6.5 0.0 0.0	to Slaker 0.7 7.6 0.0 0.0 0.0	Grit Discharge 0.2 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0	Seal H2O 0.0 0.0 0.0 0.0 0.0	Strainer Flush H2C 0. 0. 0.
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2	to SDA-3 103.5 0.0 0.5 0.0 0.0	to SDA-4 103.5 0.0 0.5 0.0 0.0	to SDA-1 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-2 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2 0.0 0.0 0.0	to SDA-4 110.7 0.0 2.2 0.0 0.0	to Slaker 20.7 0.0 0.1 0.0 0.0 0.0	H2O 219.6 0.0 0.1 0.0 0.0 0.0	to Ash cond. 22.2 0.0 6.5 0.0 0.0	to Slaker 0.1 7.6 0.0 0.0 0.0 0.0	Grit Discharge 0.0 0.0 0.0 0.0 0.0	8.3 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0	Seal H2O 0.0 0.0 0.0 0.0 0.0 0.0	Strainer Flush H2C 0. 0. 0. 0.
lb/min CaO b/min Ca(OH)2 b/min CaSO3*1/2H2O b/min CaCl2 b/min CaF2 b/min Inerts	10 SDA-3 103.5 0.0 0.5 0.0 0.0 0.0	to SDA-4 103.5 0.0 0.5 0.0 0.0 0.0	to SDA-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2 0.0 0.0 0.0 1.2	to SDA-4 110.7 0.0 2.2 0.0 0.0 0.0 1.2	to Slaker 20.7 0.0 0.1 0.0 0.0 0.0 0.0	H2O 219.6 0.0 0.1 0.0 0.0 0.0 2.2	to Ash cond. 22.2 0.0 6.5 0.0 0.0 0.0 0.0	to Slaker 0.1 7.6 0.0 0.0 0.0 0.0 0.0	Grit Discharge 0.0 0.0 0.0 0.0 0.0 0.0	8.3 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Strainer Flush H2C 0. 0. 0. 0. 0.
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaC12 lb/min CaF2 lb/min Inerts lb/min ash	10 SDA-3 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0	to SDA-4 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0	to SDA-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0	to SDA-4 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0	to Slaker 20.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0	H2O 219.6 0.0 0.1 0.0 0.0 0.0 0.0 2.2 0.0	to Ash cond. 22.2 0.0 6.5 0.0 0.0 0.0 0.0 0.4 0.0	to Slaker 0.1 7.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9	Grit Discharge 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Strainer Flush H2C 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
lb/min CaO lb/min Ca(OH)2 lb/min CaSO3*1/2H2O lb/min CaCl2 lb/min CaF2 lb/min lnerts lb/min ssh lb/min subtotal solids	to SDA-3 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0 1.6	to SDA-4 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0	to SDA-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	to SDA-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2 0.0 0.0 1.2 0.0 3.4	to SDA-4 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0 3.4	20.7 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.0	H2O 219.6 0.0 0.1 0.0 0.0 0.0 0.0 2.2 0.0 2.3	to Ash cond. 22.2 0.0 6.5 0.0 0.0 0.0 0.0 0.4 0.0 6.9	0.1 7.6 0.0 0.0 0.0 0.0 0.0 0.9 0.9	Grit Discharge 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Strainer Flush H2C 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
ib/min CaO Ib/min Ca(OH)2 Ib/min CaSO3*1/2H2O Ib/min CaCt2 Ib/min CaF2 Ib/min Inerts Ib/min ash Ib/min subtotal solids Ib/min total	to SDA-3 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0 1.6	to SDA-4 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0 1.6 105.1	to SDA-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	to SDA-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	to SDA-3 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0 3.4 114.0	to SDA-4 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0 3.4	to Slaker 20.7 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.3 21.0	H2O 219.6 0.0 0.1 0.0 0.0 0.0 0.0 2.2 0.0 2.3 221.9	to Ash cond. 22.2 0.0 6.5 0.0 0.0 0.0 0.0 0.4 0.0 6.9 29.1	to Slaker 0.1 7.6 0.0 0.0 0.0 0.0 0.0 0.9 0.0 8.5	Grit Discharge 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Strainer Flush H20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ib/min CaO Ib/min Ca(OH)2 Ib/min CaSO3*1/2H2O Ib/min CaCl2 Ib/min CaF2 Ib/min Inerts Ib/min ash Ib/min subtotal solids Ib/min total wt % moisture	to SDA-3 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0 1.6 105.1	to SDA-4 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0 1.6 105.1	to SDA-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	to SDA-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	to SDA-3 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0 3.4 114.0	to SDA-4 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0 3.4 114.0	to Slaker 20.7 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.3 21.0 98.5	H2O 219.6 0.0 0.1 0.0 0.0 0.0 2.2 0.0 2.3 221.9 98.5	to Ash cond. 22.2 0.0 6.5 0.0 0.0 0.0 0.0 0.4 0.0 6.9 29.1 76.3	to Slaker 0.1 7.6 0.0 0.0 0.0 0.0 0.0 0.9 0.0 8.5 8.6	Grit Discharge 0.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 25.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Strainer Flush H20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
ib/min CaO Ib/min Ca(OH)2 Ib/min CaSO3*1/2H2O Ib/min CaCt2 Ib/min CaF2 Ib/min Inerts Ib/min ash Ib/min subtotal solids Ib/min total	to SDA-3 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0 1.6	to SDA-4 103.5 0.0 0.5 0.0 0.0 0.0 1.1 0.0 1.6 105.1	to SDA-1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	to SDA-2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	to SDA-3 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0 3.4 114.0 0.0 3.0	to SDA-4 110.7 0.0 2.2 0.0 0.0 0.0 1.2 0.0 3.4	to Slaker 20.7 0.0 0.1 0.0 0.0 0.0 0.0 0.2 0.0 0.3 21.0 98.5	H2O 219.6 0.0 0.1 0.0 0.0 0.0 2.2 0.0 2.3 221.9 98.5 2.5	to Ash cond. 22.2 0.0 6.5 0.0 0.0 0.0 0.4 0.0 6.9 29.1 76.3 23.7	to Slaker 7.6 0.0 0.0 0.0 0.0 0.0 0.9 0.0 8.5 8.6 1.0	Grit Discharge 0.2 0.0 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.6 25.0 75.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Seal H2O 8.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Seal H2O 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Strainer Flush H20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WHEELABRATOR MCKAY BAY
APC RETROFT PROJECT

WAPC CONTRACT 3834 MARCH 26, 1999

Table 2.1.2 Dry Scrubbing System Mass Balance 100% MCR; 80%EA; Dirty Boiler; 50% UCL; SDA Off-Line

	Fi	F2	F3	F4	F5	F6	S3	S4
	SDA	SDA	SDA	SDA	FF	FF	SDA	FF
	Inlet	Inleak	Atom Air	Out	Leak	Out	Discharge	Discharge
lb/min CO2	339.4	0.0	0.0	339.4	0.0	339.4	0.0	0.0
lb/min O2	221.6	11.9	0.0	233.5	13.6	247.1	0.0	0.0
lb/min N2	1,635.0	39.4	0.0	1,674.4	45.0	1,719.5	0.0	0.0
lb/min H2O	246.4	0.7	0.0	247.1	0.8	247.8	0.0	0.1
lb/min SO2	0.67	0.00	0.00	0.67	0.00	0.67	0.00	0.00
lb/min HCl	1.33	0.00	0.00	1.33	0.00	1.33	0.00	0.00
lb/min HF	0.04	0.00	0.00	0.04	0.00	0.04	0.00	0.00
lb/min SO3	0.05	0.00	0.00	0.05	0.00	0.05	0.00	0.00
lb/min subtotal fluegas	2,444.5	52.0	0.0	2,496.5	59.4	2,555.9	0.0	0.0
lb/min Ca(OH)2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min CaSO3*1/2H2O	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min CaC12	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
lb/min CaF2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
hh/min Inerts	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
min ash	8.8	0.0	0.0	7.0	0.0	0.0	1.8	7.0
no/min subtotal solids	8.8	0.0	0.0	7.0	0.0	0.0	1.8	7.0
lb/min total	2453.3	52.0	0.0	2503.5	59.4	2556.0	1.8	7.0
SCFM	33,442	701	0	34,142	801	34,942	0	0
SDCFM	28,165	686	0	28,851	784	29,635	0	0
ACFM	60,651	691	0	61,319	789	63,033	0	.0
vol % CO2	8.89	0.00	0.00	8.71	0.00	8.51	0.00	0.00
vol % O2	7.98	20.50	0.00	8.24	20.50	8.52	0.00	0.00
vol % N2	67.30	77.40	0.00	67.51	77.40	67.73	0.00	0.00
vol % H2O	15.78	2.10	0.00	15.49	2.10	15.19	0.00	0.00
ppm (v-wgb) SO2	120	0	0	118	0	115	0	0
ppm (v-wgb) HCl	421	0	0	412	0	403	0	0
ppm (v-wgb) HF	24	0	0	23	0	23	0	0
ppm (v-wgb) SO3	7	0	0	7	0	7	0	0
gr/scf	1.832	0.000	7000.000	1.435	0.000	0.007	0.000	0.000
gr/acf	1.010	0.000	7000.000	0.799	0.000	0.004	0.000	0.000
ppm (v-dgb) SO2 @7% O2	173	0	0	174	0	174	0	0
ppm (v-dgb) HCl @7% O2	608	0	0	608	0	608	0	0
ppm (v-dgb) HF @7% O2	34	0	0	34	0	34	0	0
ppm (v-dgb) SO3 @7% O2	10	0	0	10	0	10	0	0
gr/sdcf @7% O2	2.646	0.000	0.000	2.117	0.000	0.010	0.000	0.000
Tdb deg F	489	60	120	473	60	458	0	0
Twb deg F	148	66	0	147	20	146	20.	0
tp deg F	130	65	0	130	19	129	19	0
(in Hg)	29.65	29.90	192.73	29.44	29.90	28.85	0.00	0.00
Ps (in Wg)	-3.30	0.00	0.00	-6.15	0.00	-14.15	0.00	0.00

City of Tampa O & M Manual No. 3834 McKay Bay Refuse to Energy Facility Retrofit Project

Revision 0 Section II Page 15

2.2 Spray Dryer Absorber

Flue gas enters the top of each Spray Dryer Absorber (SDA) through a diverging cone section and into the absorption section of the vessel. See Figure 2.2.1. One (1) multiple port two fluid nozzle sprays the atomized slurry down the center of the vessel, parallel to the gas glow. The flue gas and the evaporating slurry droplets pass downward toward to the hopper. The flue gas makes a 90° turn and exits the SDA. Ductwork connects the SDA outlet with the

new pulse jet fabric filter (FF) inlet. Some of the flyash from the boiler and dried reaction products fall out of the flue gas and are discharged from the SDA hopper. The down flow design presents several advantages over up flow designs. In a down flow unit, the largest droplets are at a greater distance from the bottom and less likely to hit the sides as gravity affects the flow pattern. In an up flow dryer, drops can hit the walls and dried material can fall on nozzles and disrupt the inlet gas distribution devices.

One (1) 16 ft. diameter SDA is provided for each boiler unit. The SDA is designed to provide 11 seconds flue gas residence time based on the design gas flow conditions (100% MCR).

The top cone of the SDA has two banks of chevrons. Each bank of chevrons is a series of bent plates. The plates help push the gas from the center of the vessel out to chamber walls, resulting in an even distribution of the flue gas across the spray dryer absorber cross section at the slurry injection point.

2.2.1 **Atomizing Nozzles**

Each SDA will be provided with one (1) operating and one (1) shelf spare nine port twofluid nozzle. Each two-fluid nozzle consists of a stainless steel (630) head with multiple, ceramic two-fluid nozzle inserts. Each nozzle is provided with a supporting lance assembly

Fig. 2.2.1 Two Fluid Nozzle Spray Dryer

consisting of a structural tube and an aerodynamic shroud (see Figure 2.2.2 and 2.2.3). The lance firmly positions the nozzle in the dryer. The nozzle consists of a 630 SS head with

multiple ceramic inserts. Slurry passes down the enter pipe of the head. The atomizing (compressed) air passes down the annular pipe on the outside of the slurry pipe. Ambient air is induced down the shroud through a silencer (not shown).

Slurry enters the center of the nozzle and is distributed to the back of the inserts (Figure 2.3). Atomizing air passes through the annular space and through the holes in the side of the inserts. The compressed air expands as it passes through these holes and exits the inserts. This expansion accelerates the slurry and shears it into fine droplets. Each nozzle is rated at a maximum flow of 15 gpm.

A minimum of 350 SCFM of compressed air should be supplied to each nozzle.

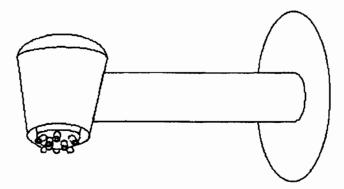
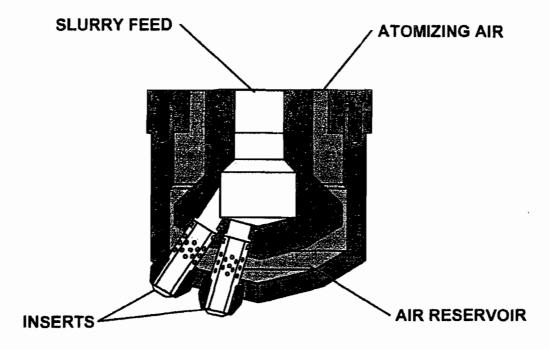


Fig 2.2.2 Multiple Ceramic Insert Single Nozzle w/ Straight Lance

There are three major areas of nozzle maintenance. The most frequent is the external buildup of lime slurry, flyash, or reaction products on the nozzle face. This buildup will grow out from the face around the spray patterns. If it is allowed to grow large enough, it will interfere with the spray pattern, causing the required fine droplets to coalesce into larger ones. This will cause drying and dust discharge problems. A nozzle inspection port is provided to inspect the nozzles the nozzles while the SDA is on-line. This buildup is soft and can be discharged by rapping the back end of the nozzle slurry and air piping with a hammer. Each nozzle should be inspected once a shift by looking in the port to observe buildup and/or poor atomization.


City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 17

Each nozzle assembly (nozzle, slurry and atomizing air piping) is flanged. Hose connections are provided to connect the nozzle assemblies to the slurry and compressed air manifolds. A nozzle may be isolated, removed, and the spare assembly installed in less than fifteen minutes.

This allows quick change out of spray nozzles for maintenance.

The nozzle inserts are made of a ceramic to minimize erosion. Nozzle wear is monitored

during periodic nozzle inspections. If periodic nozzle inspections are not conducted, nozzle wear can cause a reduction in atomization efficiency. This in turn can cause damp material in the hopper catch and related ash handling problems. Although the ceramic inserts are hard and resistant to wear, they are brittle and easily cracked. Please refer to Section IV of this manual for detailed maintenance procedures for the nozzles.

The minimum orifice size in the nozzles is slightly less than 5/16 inch (7 mm). There is minimal chance of the nozzles plugging. To further minimize this, there is a rotary filter at the nozzle level to act as a final filter. A single plugged nozzle or nozzle port is not a problem in itself. A problem occurs if too many ports are plugged and too much flow is diverted to the remaining nozzles (ports). Then the air/liquid ratio decreases and poor atomization occurs. This problem can be alleviated by periodically inspecting the nozzle operation in the dryer, as described above, for external buildup.

A final feed strainer is provided to remove tramp materials from the slurry and prevent nozzle

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 18

plugging. The strainer includes a circular screen. Slurry enters the center of the screen and passed outward. A circular brush removes collected particles. These drop to a small holding chamber. The holding chamber is isolated and the collected solids blown down to a drain (SDA sump) based on a local timer. A manual basket strainer is installed in a by pass line around the automatic strainer for maintenance.

2.2.2 Hopper

The flue gas passes to the bottom of the spray dryer absorber and then up and out of the side of the vessel. The outlet duct extends into the center of the SDA. This is to maintain an even gas distribution pattern in the bottom of the SDA vessel. A shed plate is installed over the duct, to minimize dust buildup. The majority of the fly ash entering the spray dryer absorber and the solid reaction products generated by the spray dryer absorber are conveyed with the gas to the downstream particulate collection equipment. The remaining portion falls out in the spray dryer absorber hopper. This two-point discharge (flue gas and solids) provides improved operation safety over a one-point dryer discharge where all solids and flue gas exit at one point. The two-point discharge ensures an open flue gas path from the boiler through the spray dryer absorber into the fabric filter should a major dryer upset occur. The design also minimizes the carryover of any wet droplets or moist particulate that may be created by improper drying during upset conditions.

Due to the caking tendency of both the flyash and reaction products, it is recommended that the hoppers be kept as empty as possible and the ash be discharged continuously. To minimize the buildup of ash in the hoppers, the following features are provided:

- Hopper heaters are provided to keep the hopper walls warm. This minimizes the chance of material caking or sticking to the walls.
- A six (6) ft. diameter live bin bottom with an 18" discharge flange is provided on the SDA bottom to minimize rat holing. The activator is interlocked with the ash removal system.
- Air impactor hammers are provided to vibrate walls. These are manually initiated at a panel located at the hopper level for a preset time period and then automatically shut down. The impactors should only be used for upset conditions. Overuse may damage the hoppers.

2.2.3 Access/Nozzle Enclosure

A nozzle enclosure is provided for nozzle and slurry feed control valve maintenance. The enclosure includes a checkered plate floor, drains, ventilation fans, and air intake louvers. There are cross walls between the enclosures. These also serve as pipe bridges.

2.2.4 Spray Dryer Absorber Process Control

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 19

The main control loops for the spray dryer absorber are total slurry feed control, which is designed to maintain the SDA outlet temperature (285 °F recommended) and the control of the mixture of concentrated lime slurry and dilution water, to maintain the required SO₂ emission limits (see WAPC Drawing 04-21-3-110). Experience has shown that HCl is absorbed much more readily than SO₂.

Temperature control is considered primary. The SO₂ compliance requirement is averaged over a larger period. SO₂ removal and heavy metal removal are very temperature dependent. The filter cake built up in the Fabric Filter also provides residual SO₂ and HCl control, without slurry feed to the SDA. Instability in temperature control can cause an upset in the SO₂ control loop.

Lime slurry and dilution water are pumped to each SDA. A lime slurry shutoff valve is provided for each SDA (FV-1550). (See drawing No. 04-21-3-110). The lime slurry and dilution water are mixed upstream prior to the SDA Total Feed Control Valve (FCV-1630). This valve is modulated to maintain the flue gas outlet temperature setpoint from the SDA.

Spray dryer inlet, outlet and hopper flue gas temperature will be monitored and recorded at the operator's control console of the DCS. Low outlet temperature (TAL(TIC-1050)) (see Drawing 04-21-3-310) indicates too much slurry is being added to the SDA. This results in damp material in the SD/A hopper catch and related ash handling problems. Alarms are provided for a low and a low-low outlet temperature condition. A low-low condition results in slurry feed shutdown.

The ratio of lime slurry to dilution water is controlled by the SO₂ concentration entering and leaving the system. The spray dryer outlet temperature is monitored by two thermocouples located in the spray dryer outlet ductwork (TE-1050 A&B). Two thermocouples are provided for redundancy. The operator selects which measurement is used for control (HS-1050, Drawing 04-21-3-310). Both measurements are continuously indicated. The selected temperature signal is fed to the spray/dryer outlet temperature controller (TIC-1050), which is used to control the total amount of lime slurry / water mixture entering the SD/A. The output signal from the SDA outlet temperature controller (TIC-1050) is cascaded as a setpoint to the total flow controller (FIC-1551), which adjusts the total flow control valve (FCV-1551) based on a signal from the total flow meter (FIT-1551).

The spray dryer outlet temperature is compared to the spray dryer flue gas temperature measured within the hopper of the SDA (TIT-1100). Operational experiences have shown that if the temperature in the spray dryer hopper is more than 8°F lower than the outlet flue gas temperature, an operation problem is occurring and can typically be traced to poor atomization an/or nozzle problems. An alarm (TDAH-1075) will annunciate this condition and alert the operators to investigate causes and fix the problem.

The concentration of SO₂ will be measured at the inlet of the SDA (AE-1010) (Drawing 04-

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 20

21-3-110) and at the outlet of the FF (AE-1071) by the Continuous Emission Monitoring System. Results will be reported as parts per million on a dry gas basis at 7% Oxygen (ppm(v-dgb) @ 7% O₂). This is to (a) meet emission reporting requirements, and (b) provide a signal that is adjusted for the water added in the SDA and inleakage of ambient air that occurs across the SDA/FF. The distributed control system (DCS) will calculate the least stringent outlet emission rate necessary to meet the 80% SO₂ removal requirement (AT-1071A, Drawing 04-21-3-311) or 29 ppm(d) @ 7% O₂ requirement (AT-1071A). The

DCS will then adjust the ratio of concentrated slurry and dilution water feed to the SD/A to meet the requirement.

The output from the two SO₂ controllers is comparable to the percent dilution water required to maintain SO₂ control. This percent is multiplied by the measured total flow rate to determine the dilution water flow rate. This rate is cascaded as a setpoint to the dilution water flow controller (AIC-1020) which modulates the dilution water flow control valve (FCV-1630) (Drawing - 04-21-3-310) based on a signal from the dilution water flow meter (FY-1630). Dilution water is always controlled at some level below total flow. Lime slurry flow makes up the difference between total and dilution water flow.

A hand control station (HIC-1630) is provided to override the SO₂ controllers during startup or if needed during periods of SO₂ analysis maintenance. This hand controller also includes high and low limits. The low limit is to prevent feeding 100% slurry that has shown to cause nozzle plugging. The high limit is to always assure there is a minimum amount of lime entering the SDA. This is to provide a solid surface to promote drying. There would also be conditions of low SO₂/high HCl concentrations leaving the boiler. This could result, using only SO₂ control in too little lime to control the HCl and a SDA product with high concentrations of calcium chloride (CaCl₂). CaCl₂ is hydroscopic and tends to cake and stick. Providing a minimum lime feed is beneficial for ash handling.

2.3 Absorbent Preparation System

The purpose of the Absorbent Preparation System is to prepare a concentrated lime slurry and dilution water; and pump both streams to the SDA's. The equipment consists of:

- two pebble lime storage silo/accessories
- redundant lime slakers and grit screens
- redundant lime slurry storage tanks
- dilution water tank and grit screen
- redundant lime slurry pump set
- redundant dilution water pumps
- redundant seal water pumps

2.3.1 Process Considerations

a) Slaking System

The primary purpose of the Absorbent Preparation System is to provide a reactive, lime slurry to the SDAs. The slurry consists of very fine calcium hydroxide (Ca(OH)₂) particles suspended in water. The finer the particle, the more SO₂/HCl it will absorb from the flue gas in the SDA.

Pebble lime (sometimes called quick lime) will be supplied in self-unloading trucks and pneumatically conveyed into the storage silo(s). Pebble lime is mostly calcium oxide (approx. 90% by weight). The pebble lime particle size is based on delivery sources will range from granular (<1/8 in.) to pebble size (3/4 in.). Chemically speaking, pebble or quick lime is essentially calcium oxide (CaO). Calcium Oxide is made by heating limestone (calcium carbonate (CaCO₃)) to drive off carbon dioxide molecules from the limestone.

Redundant "paste type" slakers are provided to mix the pebble lime (CaO) with water and produce lime slurry Ca(OH)₂. Chemically, the reaction proceeds as:

$$CaO + H_2O \rightarrow Ca(OH)_2$$

There are three process considerations of which to be aware of when "slaking" lime: (1) the above chemical reaction is "exothermic" which means it releases large amounts of heat. (2) The reaction rate is temperature dependent. The warmer the lime/water mixture is, the faster the reaction progresses, which gives off additional heat. This causes the lime slurry to get hotter, and then gets faster. . . etc. (3) A slurry that is slaked very hot produces a much finer Ca(OH)₂ particle, and a much more reactive slurry. A slurry that is slaked cold, (<170°F) is not as reactive and presents handling problems. Therefore, the lime slakers will also operate very hot (170-212°F). Use caution when working around the slaker, grit screen, slurry tank and pumps.

NOTE: The most important consideration during the lime slaking process is Safety.

Please read the special safety section in this manual relating to the lime system.

The most important consideration during the lime slaking process is Safety. Lime dust (CaO) will react with the moisture on your skin, in you eyes, and in your lungs. It will react with this moisture and create heat causing severe chemical burns. Proper safety equipment must be worn whenever doing maintenance on the silo and lime feeder that meters dry lime into the slaker.

The "paste type" slaker takes advantage of these factors. The paste slaker is a two chamber reactor (See Figure 2.3). The first chamber is similar to a pug mill that mixes the pebble lime and water to make a paste (approximately 40 wt%). The paste

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 22

then is diluted to the design concentration 20 wt% downstream of the paste section. This allows the paste to reach a higher temperature much faster than if a 20 wt% slurry is made in one step because there is less water to heat up.

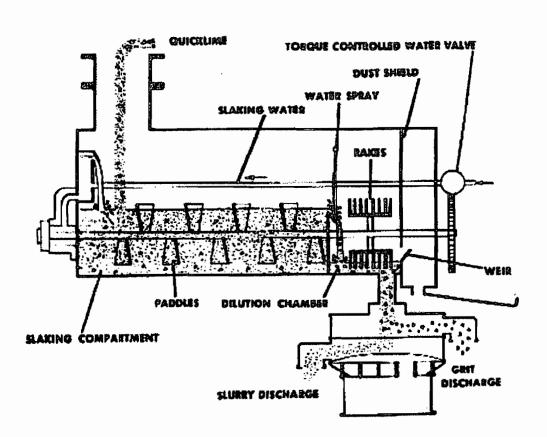


Figure 2.3 Paste Slaker

(b) Dilution Water System

Various sources of water, including plant wastewater, will be used for slurry dilution. The water is considered "hard". Chemically speaking, this means it has a high concentration of liquid phase carbonate (CO₃) and sulfite/sulfate (SO₃/SO₄). When hard water is mixed with lime slurry, a calcium carbonate (CaCO₃) or and/or Calcium Sulfite/Sulfate scale is formed. This would create a severe problem if the hard dilution water was mixed with the lime slurry in the piping immediately upstream of the nozzles. The scale would quickly plug the piping. To slow this type of reaction, a small amount of lime slurry is added in the dilution water tank. This allows many of the scaling reactions to take place within the tank where it is much less of a problem.

2.3.2 <u>Silo</u>

The two lime silos are sized to provide a total of either ten (10) days storage at the MCR Flow/Nominal SO₂/HCl concentration conditions or design (90% UCl) boiler outlet SO₂/HCl

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 24

concentration or 10 days storage (240 hrs) at the average SO₂/HCl concentration with the three boilers operating. Lime will be conveyed from self-loading pneumatic trucks into the silo(s). A limit switch, connected to the fill tube connection, will activate a bin vent filter, located on the silo roof.

High and Low Level alarms are provided for each silo. The high level indicates a full silo and is used to alarm the truck driver not to overfill the silo. The low level indicates that very soon there will be insufficient lime to operate. Level indication is provided on the DCS panel using a sonic type level instrument.

Pebble lime is discharged from each silo using a live bottom through a automatic slide gate type valve to a dedicated slaker. The slide gates are provided for maintenance of the slaker, if required. (See drawing 04-21-3-120.)

2.3.3 Slaking System

Lime is fed from the silo to the slaker using a volumetric screw feeder. The slakers are designed to produce a 22 wt% Ca(OH)₂ slurry (approximately).

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 25

Each of the two redundant slaking systems consists of a volumetric feeder, paste slaker, and grit screen. The volumetric feeder is set at a fixed rate based on the slaker capacity and expected lime consumption. Lime falls into the slaker "paste chamber". Water is mixed with the pebble lime using two horizontal paddle agitators. Lime paste overflows a weir at the end of the first chamber and falls into the dilution chamber. An electronic torque valve controls water fed to the first chamber. Electric current to the agitator motor is monitored. Water feed is modulated to maintain a set torque that relates to paste consistency. Water is introduced to the dilution chamber using "cut off" sprays. The spray directs the water to the overflow weir from the paste chamber. This water flow is set manually. The paste chamber agitator blades extend through the dilution chamber. Rakes installed on the shafts mix the paste with the dilution water. The diluted slurry overflows the slaker to the grit screen.

The cut off spray flow rate, as mentioned above, is manually set during start-up. Operation below a critical point will produce too weak of a spray that will not cut the paste as it passes over the weir. This can result in paste plugging the drain line from the slaker to the grit screen. This critical point is close to the maximum flow capacity of the nozzles.

This requires that the slakers be operated over a narrow lime feed rate range. The slakers will be set up to run at approximately 1,200 lbs/hr of pebble lime. Operation above this point will cause too thick a slurry to be made since the dilution spray is set at a fixed flow rate. Operation too far below the set point will cause too thin a slurry to be produced. If the slakers are to operate at a different flow rate, the cut off spray nozzle tips should be changed to match the revised flow rate.

The grit screen is used to remove inert materials and unslaked lime. Slurry flows from each slaker onto a dedicated oscillating grit screen. The oscillating motion causes the collected grits to vibrate toward the discharge chute. The collected grits fall to a grit box at grade. A spray is provided to wash lime from the grit particles. Both grit screens are located above their dedicated lime slurry tank.

The material collected on the grit screen and box should be "clean" sand and gravel particles with a few hard white flakes of hard burned or unreacted quick lime. If there is excessive flakes, it means that the lime slaked was hard burned. If there is excessive white sticky gel, it means that the slaker is not operating properly.

The grit screen has 20 mesh openings. Trace carbon dioxide (CO₂) in the air will react with the lime slurry and cause scale to form on the screen. This will, over several weeks, cause the screen to blind. To remedy this, the screen element is removed and a spare installed. The dirty screen is then soaked in acid to remove the scale. Please refer to the Vendor Slaker Manual.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 26

2.3.4 Slurry Tanks, Pumps, Recirculation Loop

Lime slurry overflows each slaker grit screen into a dedicated agitated slurry tank. The slurry tanks provide eight (8) hours storage at the design lime consumption rate. Redundant slurry pump sets are provided to pump slurry from the slurry storage tank to the spray dryers and back to the storage tank. Each slurry pump set consists of two slurry pumps in series to produce the necessary head, while maintaining suitable impeller tip speeds. Each slurry pump has a hardened alloy impeller (27% chrome) and a casing liner. The slurry is pumped through single slurry recirculation loop to both SDAs (phase I) and shall flow to all four SDA's upon completion of phase II.

Each pump is provided with a water-flushed packing gland seal. High pressure water is produced by the seal water pumps and is delivered to the packing gland and flows into the slurry feed pumps. Operation without seal water will cause slurry to flow from the pump through the seals and damage the pump shaft and seals and causing messy conditions on the floor. Adequate seal water pressure is a permissive to start the pumps. During operation, low seal water pressure will alarm and stop the pumps.

The lime slurry recirculation loop is utilized to maintain proper flow and pressure to all operating SDA's. Lime slurry consists of suspended particles (approx. 22%) in water. If flow is stopped for an extended time, the particles will settle out, unless the loop is properly flushed and drained. The lime recirculation loop is equipped with automatic flush valves that will open upon pump shutdowns. The recirculation line is flushed back into the slurry storage tank(s) to prevent lime fallout in the pipeline.

2.3.5 Slurry Tank/Recirculation Loop Control

Lime slurry flow in the recirculation loops is controlled to maintain a constant flow leaving the slurry pumps. Slurry flow is measured by a magnetic flow meter (FIT-0520, Drawing 04-21-3-121) and indicated on the DCS. The measured flow is then used to modulate a double pinch valve in the return line to the slurry tank (FCV-0520, Drawing 04-21-3-122). The two (2) valves in series are provided to minimize pressure loss across an individual valve that reduces wear. The valves are a hydraulic type design that compresses around the full circumference. This minimizes wear compared to a mechanical actuator that pinches only from two (2) sides. The two-side pinch produces an internal ridge that erodes faster.

2.3.6 Lime and Water Quality

To produce a reactive lime slurry, a highly reactive pebble or quick lime should be purchased. WAPC recommends that the pebble lime should meet the following requirements:

Size < 3/4"

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 27

CAO Content
Reactivity per ASTM
Slaking Temperature Rise
Maximum Reaction Time

minimum 85% < 110-7 4° C / minute 10 minutes

Lower CAO content than specified will effectively lower the capacity rating of the slakers. If a low reactivity lime is supplied, it may not react or slake fully within slaker. This situation will cause the grit screen to plug. Low lime reactivity is a function of the original limestone and how that particular limestone was calcined to make the lime. The lime can be "hard burned". This sinters or produces a hard glassy surface on the lime particles. This slows down the slaking reaction.

Lime samples should be taken periodically and analyzed to assure you are receiving the lime you pay for. It is a good practice to take a sample from every delivery, even if you do not analyze it. The truck driver will see it, and tell the plant, and then you will be less likely to get a bad batch.

This slaking system and lime feeder has been designed to use "pebble lime", or 1/2 or 3/4" particles. Lime is sometimes supplied in granular or powdered form. The slaker will slake granular or powdered lime; however, the lime feeder may flood. This can result in powdered lime flowing through the feeder and out the top of the slaker feed chute creating a severe safety hazard. It is possible to lose a whole silo of lime during these situations.

The "pebble type" design feeder auger has large clearances to prevent binding. The feeder auger may be changed to handle granular or powdered lime, however it must be done prior to receiving this type of lime. The powder design feeder auger or screw, however, will not work with pebble lime.

The primary requirement for water feed to the "paste" chamber is that it contains less than 500 mg/l of total dissolved sulfate, sulfite and bisulfite. These components react with the lime particle or pebble. This prevents the water from reacting with the calcium oxide behind the scale.

2.3.7 Dilution Water

Various sources of water, mainly plant wastewater, is used for slurry dilution. The wastewater is fed to a dilution water tank that holds approximately 2 hours usage (12,000 gal). An oscillating grit screen is provided to filter tramp materials prior to the tank.

Lime slurry is added to the dilution tank to minimize precipitation within the pipelines. This precipitates dissolved carbonates and metals within the wastewater tank, not in the water pipes. If the lime were not added in the tank, the precipitation would occur in the

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 28

piping, just upstream of the nozzles, where the dilution water is added to the concentrated lime slurry. The precipitated carbonates would very quickly scale the piping, and restrict the flow.

Two (2) 100% plant capacity pumps are provided to pump water from the dilution water tank to the four SDAs. See Drawing 04-21-3-122. The pumps are arranged in parallel. Both pumps are equipped with manual inlet and outlet isolation valves. A recirculation valve circulates water back to the dilution water tank to maintain a constant flow from the pumps (FCV and FY-0620). This protects the pump from overheating when water demand is low (i.e. one or two SDAs off line).

Water is continuously added to the tank to maintain a preset level. This is accomplished by using a continuous sonic level transmitter (LIT-0600), controller (LIC-0600), and level control valve (LCV-0600). The water flow rate is controlled by tank level. The flow into the tank is monitored (FE-0660).

The pH of the water in the dilution water tank should be monitored periodically. The target pH value is between 11.5 and 12.0. Operating at lower pH values will result in excessive pipe scaling at the nozzle level as solid precipitation will not occur within the tank. Operation above 12.0 pH is also not desirable as scaling potential will not improve much. Higher pH values indicate that too much lime is being added to the tank adding excessive solids to the water system. This will result in premature wear of the dilution water pumps.

2.4 Activated Carbon Injection System

Two Powdered Activated Carbon (PAC) Injection Systems (one for each pair of boilers) are provided to enhance both Mercury and Dioxin/Furan Control. Each system consists of storage silo and three feeder/educator systems (two operating/one spare) to pneumatically feed a controlled amount of PAC into the inlet ductwork of each SDA. The amount of activated carbon feed into the system is manually adjusted. Flow rates will range from 2-25 lbs/hr per boiler. The feeder speed is monitored and recorded by the Continuous Emission Monitor. The initial setpoint is 5 lbs/hr. This will be optimized during start-up.

PAC will be stored in two (2) activated carbon storage silos. One silo is dedicated to one set of boilers. Powdered carbon will be loaded into the silo from pneumatic discharge bulk trucks. Each silo is sized to hold approximately 70,000 lbs of PAC. Each silo will have a multi-pleated bag filter to clean the conveying air from dust.

PAC is discharged through three points in the bottom of the inverted cone hopper. The hopper is fluidized with compressed air to maintain flow. Each discharge point includes a manual slide gate isolation valve. A rotating feeder is used to meter the PAC to a surge hopper/feed chute that supplies PAC to a screw feeder. The screw feeder meters PAC to

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 29

the inlet throat of a venturi educator. A positive displacement blower also feeds air to the back of the venturi. The high air velocity in the venturi throat creates a negative pressure, and sucks in additional air and the PAC. The air expands downstream of the venturi into the piping. Three (3) pipe lines are provided to convey PAC to the SDA inlet ductwork. Flexible hose connections are provided to connect any of the four feeder/eductors to the three conveying lines.

PAC feed from the silo is based on level control in the feed hoppers. See Drawing 04-21-3-128. Upon reaching a low level in one of the hoppers (LSL-0711A) the hopper fluidizing system and rotary valve are started (M-0704A). Feed is stopped when the high level LSH-0710A is reached.

A high and low pressure switches are provided for each conveying line. The high pressure switch indicates a plug and shuts down the feeder in addition to providing an alarm. The low pressure switch (PSH-0723A) alarm indicates a blower or pipeline failure.

Please refer to the Powdered Activated Carbon Injection Manual for more detailed information.

Safety Consideration

Powdered Activated Carbon is very fluid. Proper care must be taken to assure that the silo feed is closed off when doing maintenance on any equipment. Even a small leak can cause the entire content of the silo to empty into the very small equipment enclosure.

It is recommended that the entire feed hopper be emptied before doing any maintenance. This is accomplished by running the feeder and blower in manual with the manual silo knife gate closed.

Pneumatic conveying of PAC also creates static electricity. All equipment should be grounded.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 30

2.5 Fabric Filter

Each boiler is supplied with a WAPC six (6) module, Size 1211 TA-SB, Model 192 Series 6P Jet III Fabric Filter Pulse-Jet Dust Collector. Each module contains 12 rows of 11 glass fiber bags supported on wire cages.

This system is designed to filter 52,800 acfm of 285°F flyash and hydrated lime dust laden air with a gross air-to-cloth ratio of 2.65:1 (all modules on-line); and a net ratio of 3.18:1 (one (1) module off line); and a net/net ratio of 3.98:1 (two (2) modules off line).

The filter bags for these units are constructed of woven fiber glass with PTFE membrane and acid resistant finish.

These filter bags have the following physical characteristics:

Maximum allowable operating temperature: 525°F

Weight finished 16 oz/sq.yd.

Filter bag diameter 6"
Filter bag length 192"

Modules are 1/4" ASTM A-36, welded, stiffened to withstand ±25" W.G. at 525°F. Hoppers have a minimum valley angle of 60°. Hopper auxiliaries consist of the following:

- 10" x 10" flanged discharge opening
- two (2) 6" x 6" striking anvils
- one (1) 24" diameter hinged access door c/w Viton Seals
- one (1) 20" x 48" hinged plenum access door (oval design)
- one (1) 12" diameter rod out door
- channel frame

One (1) inlet damper is provided for each module. Each damper is a 18" x 36" butterfly type with chain wheel-operated manual actuator. The inlet damper is closed only when a compartment must be isolated for personnel entry when other compartments remain on line.

One (1) outlet damper is provided for each module. Each damper is a 30" diameter poppet type assembly which includes air cylinder, manual lockout, 4-way solenoid valve, air speed control valves, and two (2) limit switches. Outlet dampers must be closed for off-line bag cleaning and isolation for personnel entry when other modules remain on line.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 31

The Jet III Pulse Jet Fabric Filter Collector is a continuous automatic dust collector capable of filtering dust-laden air through a felted filter media.

The dirty or contaminated gas enters the dust collector through the module inlet. A baffle plate distributes the gas uniformly throughout the housing and drops out the heavy particulate into the hopper. The dust laden air then passes through a number of filter bags which retain the dust particles on the exterior surface while allowing the gas to pass through the module outlet.

As the fabric filter collector operates, the collected dust begins to form a dust cake that eventually diminishes the porosity of the filter bags. This reduction in porosity is measured as pressure loss by the pressure gauges located at each module.

To maintain stable pressure drop a cleaning cycle is employed to provide continuous cleaning of the filter bags. The cleaning system consists of a solid state timer located at each module that actuates electric solenoids governing the air valves. These air valves deliver a momentary burst of pulse of high-pressure compressed air through the manifold pipe into the filter bag. This pulse of air creates a reverse airflow that expands the filter bags to remove the collected dust.

The dust cake, when removed from the filter bag, falls directly into the hopper where it is removed by the dust conveying system.

There is a combination of six (6) possible cleaning formats on the fabric filter collector. The operating mode of the fabric filter collector can be selected to clean either online or offline. Either of the previous states is to be selected and used with one of three (3) cleaning modes. The cleaning modes that control the cleaning operation of the fabric filter collector are: pressure drop (delta-p), time, and manual. The operator may select any one of these three modes depending on the cleaning needs of the fabric filter collector.

It is recommended that the fabric filter collector be cleaned in the online operating mode and the delta-p cleaning mode.

On/off line operating modes

The fabric filter collector will utilize two (2) operating modes of cleaning: online and offline. Online cleaning is done when all of the inlet and outlet dampers of non-isolated modules are open. This will allow all of the modules to be actively filtering while they are cleaning. When using this method of cleaning, the fabric filter collector will clean a predetermined number of filter bags in one module, and then step to the next module in the cleaning sequence. There is a memory built into the cleaning system to ensure that all filter bags are cleaned only once during a cleaning cycle.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 32

The second operating mode of cleaning available is offline cleaning. When a module is cleaned offline, the outlet damper of that module will be closed. With the outlet damper closed, the module is considered to be offline. This operating mode will allow the cleaning of the fabric filter collector one module at a time.

2.5.2 Cleaning Sequence and Pulse Jet Mechanism

The cleaning of the fabric filter system relies on one of three (3) cleaning modes at anytime during the operation. The three modes (manual, time and delta-p) are described below.

2.5.2.1 Manual Cleaning Mode

The <u>manual cleaning mode</u> is primarily to be used as a troubleshooting and maintenance tool. This mode of cleaning will clean one module, on demand, and stop all other automatic cleaning sequences completely. To restart the automatic cleaning, the operator must reset the delta-p or time cleaning mode. The cleaning is done by the operator and is a totally manual procedure. While in manual cleaning, the operator may select any module to be cleaned. The operator action required to initiate this mode of cleaning is as follows:

- 1) select manual cleaning mode.
- 2) select a module to clean. Once the manual mode has been selected the operator may select a module to be cleaned.
- 3) select offline cleaning. When offline cleaning has been selected the operator must manually close the module outlet damper before the module is cleaned.
- 4) start the cleaning cycle. To start the cleaning of the fabric filter, the operator is required to press a start key. When offline cleaning has been selected and the cleaning is complete, the operator must open the module outlet damper.

The operator is to make sure that the system is returned to the delta-p or time mode when finished in the manual cleaning mode.

2.5.2.2 Time Mode

The second mode of cleaning is the <u>time mode</u>. The time mode will clean the fabric filter regardless of the system operating conditions. Cleaning will continue on a strict time basis until the operator changes the cleaning mode.

The operator action required to initiate this mode of cleaning is as follows:

- select online or offline cleaning. The selection of the online or offline mode is to be done as was described earlier.
- 2) select the time cleaning mode. Cleaning will start.

2.5.2.3 Delta-p Mode

The final mode of cleaning the fabric filter is by use of the <u>delta-p mode</u>. When in this mode, the baghouse will clean only when the system differential pressure exceeds the preset value. The differential pressure is measured from the inlet of the fabric filter collector to the outlet of the collector using a differential pressure-indicating transmitter. When a high differential pressure is recognized, the system will clean until the pressure has decreased to an acceptable value. After this has happened, the cleaning cycle will finish cleaning the module selected and then stop its cycle. When the differential pressure again increases to the setpoint, the cleaning cycle will begin again starting with the module following the last one cleaned.

The operator action required to initiate the mode of cleaning is as follows:

- 1) select online or offline cleaning. The selection of the online or offline cleaning mode is to be done as was described earlier.
- 2) select the delta-p cleaning mode.

2.5.2.4 Baghouse Cleaning Timer Adjustment

There are a number of timers needed in order to give the cleaning cycle the versatility needed. The following is a list of timers that will be needed.

- damper close time this timer will allow the outlet damper the correct amount of time needed in order to close. This timer will only be needed in offline method of cleaning.
- 2.) Module clean time this timer will set the amount of time that the Jet III timer boards are to be energized. There will be two timers available to perform this function. There will be one timer for online cleaning and another for offline cleaning. Because of the differences in cleaning methods it may be necessary to clean the modules for different periods of time. The online timer is set to sequential pulse 2-3 rows of bags. The offline timer is set to clean all the bags in a module.

- 3.) settle time this timer will allow for the dust to settle in the hopper after being cleaned and before the module is brought back into service. If the dust has not settled into the hopper, when the module returns online the dust may be reentrained onto the filter bags. This timer is for offline cleaning only.
- 4.) interval time this timer will allow the outlet damper to be opened after the module has been cleaned, using the offline mode of cleaning. When using the online mode of cleaning, this timer will act as a transition timer that allows the fabric filter flow to stabilize before cleaning another module whether it be in the online or offline mode.

2.5.2.5 Cleaning Cycle Timer Sequences

The following table indicates the cleaning options and their required timer sequences for the two cleaning methods, online and offline. The cleaning cycle must be programmed using the same sequence of operations as is listed below.

	online	offline
time:	clean time interval time	outlet damper close time clean time settle time interval time
delta-p:	clean time interval time	outlet damper close time clean time settle time interval time
manual:	clean time interval time	outlet damper close time clean time settle time interval time

2.5.2.6 Individual module isolation

The information presented here is to familiarize the fabric filter operators with the recommended procedure for isolating one (1) module from gas flow for personnel entry while the others modules remain on-line filtering.

The following safety rules are recommended for personnel entering an isolated module:

 Always carry and/or know where the closest communication device is located.

- 2) Any person entering an isolated compartment should be properly attired in coveralls, hard hat, hard soled work shoes and gloves. Also, some form of protective breathing device and eye protection should be used.
- 3) Remove rings, watches, metal frame glasses, etc. Metallic items may be heated by radiation from compartment interior surfaces.
- 4) Never enter an isolated module without having another person standing outside the module door.

2.5.2.7 Module Isolation

Place the selected module isolation switch to the "isolate" position. Tag or lockout switch. The isolation switch is located adjacent to the tubesheet access door. When the isolation switch is turned off, the outlet damper should close, which should be visually verified by the operator. Additionally, the isolation switch locks out the module pulse valves from the control panel so that a module may not be cleaned manually or automatically while it is isolated.

Close the module inlet damper and tag out. The inlet damper is hand operated by pull chain. A padlock placed through the chain links will prevent anyone from opening the inlet damper.

Open the module access door. Allow cool down time before entering the module.

2.5.2.8 Placing module back on-line

After inspection and/or maintenance is complete, the module should be placed back into operation by following this procedure.

- verify that all personnel are out of the compartment.
- close and seal the access door.
- make sure that the hopper door is also closed and sealed.
- remove tag and/or unlock the isolation switch.
- place the isolation switch into "in-service" (outlet damper should open).
- remove tag and/or unlock inlet damper.
- open inlet damper via pull chain.

2.5.2.9 Fabric Filter Protective Interlocks

The following is a summary of abnormal fabric filter operating conditions and the automatic interlocking action that will take place for each. The fabric filter high-high differential pressure will be alarmed at 10" w.c.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 36

The fabric filter low-low inlet temperature will be alarmed at 250°F and a signal is then sent to shutdown the SDA.

The SDA outlet/fabric filter high inlet temperature will be alarmed at 325°F (from TIC-1050).

The fabric filter high-high inlet temperature (TSHH-1050) will be alarmed at 500°F and a signal sent to trip the primary air fan.

2.5.3 Hopper impactor control

Two (2) impactors are provided on each fabric filter compartment hopper to assist in ash removal. Each pair of impactors constitutes a system inasmuch as it is operated in a timed and interlocked sequence.

The hopper impactor system is initiated for a pre-determined time period after one hour of filter operation or when a compartment cleaning cycle is complete. Each time the hopper double dust valve is opened the first impactor (single impact) energizes. After a 5 second delay the second impactor (single impact) energizes. This sequence will continue until the pre-determined time period is complete and the next cleaning cycle is initiated.

Both the impactor "on-time" and maximum interval (one-hour) time can be changed if required to accommodate actual field conditions.

2.5.4 Safety Considerations

- keep alert at all times!
- follow all plant safety regulations concerning protective clothing, eye, ear, and head protection. Always wear your hard hat. Wear safety glasses when working in the absorbent preparation area and when working on the sd/a nozzles on slurry piping. Wear ear protection in the sd/a penthouse.
- follow all caution signs posted throughout the installation. Remember the process uses lime, a caustic chemical.
- study the lockout procedures carefully. Remember the equipment is used to process flue gas which is not safe to breath. Make sure the section you are entering has been ventilated before entering. Only enter the SD/A when the boiler is off. Open the penthouse access door before entering the SD/A hopper. Allow the FF compartments to ventilate for 15 minutes 1 hour before entering. Wear a dust mask when entering any hopper.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 37

always make sure a hopper is empty or ash level is below the door level before opening a hopper. Do this by opening a higher level door, or removing a bag from the fabric filter tube sheet. Drowning in hot ash is a terrible way to die.

If there are any questions, contact your supervisor or plant safety personnel. Your safety is your responsibility.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 38

3.0 SNCR NOx Control System

3.1 Process Description

The NOxOUT© Process is a post-combustion NOx reduction method that reduces NOx through a controlled injection of an aqueous solution containing NOxOUT A or other NOxOUT© reagent into the combustion gas path of fossil-fired boilers, furnaces, incinerators or heaters. The reagent is a 50% urea solution plus a small amount of additives for scale and corrosion control. This reagent is readily available and requires no special safety precautions for handling.

The use of urea for control of oxides of nitrogen was developed under the sponsorship of the Electric Power Research Institute (EPRI) between 1976 and 1981. These investigations provided fundamental thermodynamic and kinetic information of the NOx-urea reaction chemistry and identified some traces of by-products. Though some trace quantities of ammonia and carbon monoxide may form, the quantities of these can often be controlled through application know-how. The predominant reaction is described as:

$$CO(NH_2)_2 + 2NO + 1/2 O_2 \rightarrow 6 2N_2 + CO_2 + 2H_2O$$

Urea + 2 Nitrogen Oxide + ½Oxygen \rightarrow 6 Nitrogen + Carbon Dioxide + 2 Water

The NOx removal efficiency and reagent utilization are related by a variable known as Normalized Stoichiometric Ratio (NSR). This ratio is defined as shown below. Reagent utilization is equal to the NOx reduction divided by NSR.

NSR = Actual Molar Ratio of Reagent to Inlet NOx
Stoichiometric Molar Ratio of Reagent to Inlet NOx

The technology has expanded by developing chemical injection hardware, widening the applicable temperature range, and process control expertise required for commercial applications. The technology's licensing agreement with EPRI, combined with successful inhouse developments, is marketed commercially under the trade name NOxOUT©.

Two key parameters that affect the process performance are flue gas temperature and the reagent distribution. The NOx reducing reaction is temperature sensitive; by-product emissions become significant at lower than the optimum temperature range while chemical utilization and NOx reduction decrease at higher than the optimum temperature range. This optimum range is specific to each application. The reagent needs to be evenly and appropriately distributed within this optimum temperature zone to obtain the best performance.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 39

Chemical injectors developed specifically for the process facilitate the reagent distribution. Utilizing pressurized air, these injectors atomize and direct the reagents into the combustion gas path. The droplet size distribution and spray coverage developed by the injectors promote efficient contact between the reagent and NOx in the flue gas.

The process provides effective boiler load following capabilities. Through the computer modeling, an injection strategy can be developed that makes use of multilevel injection, control of reagent concentration, and droplet size and spray patterns.

Several years of field-testing indicate that the NOxOUT© Process is applicable on various types of units firing many different fuels. The process was successfully proven on units fired with coal, oil, gas, wood, or municipal solid or hazardous waste. These units varied in size and type: package boilers, process heaters, incinerators, circulating or bubbling fluidized beds, waste heat boilers, and utility boilers. Being a post-combustion process, size and type of unit and type of fuel have some, but no major, effect on the process.

There are substantial benefits gained from the application of the NOxOUT© Process compared to first generation NOx control technologies, such as ammonia injection. These benefits are:

- Use of non-toxic, non-hazardous chemicals
- Potentially lower capital cost due to the lack of large system compressors and elimination of anhydrous ammonia storage, handling and safety equipment.
- Lower operating costs resulting primarily from minimizing of gas (steam or compressed air) requirements.
- Inherently more effective control of spray patterns and chemical distribution for better mixing with the use of liquid rather than gas-based reagents, thereby resulting in better chemical utilization.
- Chemical enhancers which can be used to improve control of potential byproduct generation while reducing NOx over an expanded temperature range.

3.2 System Description

A reagent storage and delivery system is incorporated to inject the SNCR reagent solution into the combustion gases of the boiler. The concentrated reagent (50% urea) is delivered by truck and transferred into the chemical Storage Tank.

The chemical Storage Tank is a closed top vertical tank, fabricated of fiberglass reinforced polyester and premium grand vinylester resin. It is designed per ASTM D3299-88. The tank is supplied with a level indicator, thermocouple, manway, vent, internal down pipe, external fill pipe, ladder, hold down and lifting lugs, and necessary connections and isolation valves. Site conditions determine the locations of the connections and isolating valves. Site conditions will also determine the need for heat trace, insulation and seismic qualifications.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 40

The Circulation Module serves the process in a dual role. While its primary purpose is to supply the concentrated chemical to the Metering Modules, it has a secondary purpose of keeping the chemical at a temperature above 80°F, through constant circulation and, if necessary, a circulation heater. The Module is skid mounted and fully shop tested. It consists of redundant centrifugal pumps, an electric in-line heater, a flowmeter, a duplex strainer, one self-contained control panel, and all associated stainless steel pipe, tubing and valves and instrumentation.

The control panel consists of local controls for the Circulation Module. The heater is controlled by a thermostat and is preset to a temperature of 80°F. When the pump is running, and the temperature falls below the setpoint, the heater will automatically activate. The circulation pump should run at all times. The pressure indicators will show if the system is not running properly. There are temperature and pressure indicators, and a flow meter/indicator for monitoring the correct system operation. The local control panel will also digitally show the tank level and temperature.

The Metering Module is a skid mounted unit used to supply diluted chemical to each Distribution Module. The unit is prepackaged and shop tested and includes a chemical metering pump, turbine pump to supply water pressure boost, an in-line mixer, and a local control panel. At the discharge of the boost pump is a recirculation loop with a pneumatic pressure control valve to control flow and pressures to the injectors. In addition, the module contains all necessary valves, check valves, water strainer, flow transmitters, pressure and flow switches and stainless steel piping/tubing to make it a self-contained metering and pumping system. Redundant pumps with motors are provided.

NOx reduction is a function of the chemical feed rate, which is controlled by varying the speed of the metering pumps through a 4-20 mA signal. Control for the Metering Module is provided at the Local Control Panel or from the plant's DCS. The system will operate in local or remote mode. In the local mode, instrumentation and electrical control is performed at the module. In the remote mode, control is performed from the plant DCS. The module also has a hand/auto mode associated with the metering pump and the water boost pump. When the system is in auto and is turned off, the chemical pump will stop, the chemical valve closes and an automatic water flush occurs. In any mode, the pumps will shutdown for low air pressure, low chemical flow, or low water flow. A low low tank level alarm will shut the metering module down in the auto mode. The flow control for the metering pump also has a local and remote mode. In the remote mode, the metering pump receives a 4-20 mA signal from the DCS which controls the pump motor speed. This controls the chemical feed rate. In the local mode, metering pump control is performed at the local control panel using the digital flow controller. Chemical totalization is provided on the flow indicator.

Mixed chemical is transported from the Metering Module to the Distribution Modules, which channel the mixture to each injector. Each Distribution Module consists of flow meters, balancing valves and regulators which accurately control and display the chemical and atomizing air to each injector. Also contained on these modules are the necessary manual ball valves, gauges and stainless steel tubing required to adequately control the injection

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 41

process.

The injectors consist of an atomizing chamber in which the air and chemical mixture first meet. Liquid is sprayed through small orifices forming a jet. The atomizing air shears this jet forming small droplets. The atomized chemical then flows through the injector tube to the nozzle. The nozzle is specially designed and characterized to meet the appropriate plant conditions. The atomized reagent then enters the boiler and mixes with the boiler flue gas to form nitrogen, carbon dioxide and water. Air is required for cooling at any time the injectors are in operation and not retracted from the boiler. The injectors are equipped with quick disconnects and hydraulic hoses for flexibility and ease of maintenance.

The final addition to the injector is an outer cooling air jacket. This shield is attached to the atomizing chamber. Plant air is fed into the coolant air jacket at a low volume and pressure. The air acts as a coolant for the nozzle and the jacket minimizes direct contact between the corrosive flue gas and the injector. This maximizes the useful life of the nozzle in a hostile environment.

4.0 CONTINUOUS EMISSIONS MONITORING SYSTEM

A Continuous Emission Monitoring System is utilized to measure, record and report the performance of the individual boiler trains and their emission control systems to the local Environmental Authorities. Table 1.3 summarizes the data that will be collected. A dedicated multi-component analyzer will be supplied for the inlet of each SDA and the outlet of each FF. An in situ opacity monitor will be installed at each fabric filter outlet. The analyzers are a "Hot-Wet" extractive design. A representative flue gas sample is extracted, filtered and conveyed by heated sampling lines to the analyzer. The analyzer will also be heated to prevent condensation of the moisture in the sample. The outlet test stations are also equipped with opacity monitors. The analyzers are located in an enclosure along with the Data Acquisition System. SO₂ and NO_x signals are fed back via the DCS to the Dry Scrubbing and SNCR Systems. These signals will be used to adjust lime slurry flow (Dry Scrubbing) and NOxOut Solution (SNCR) feed to maintain compliance.

The CEM System is supplied by Aldora. Please refer to their manual for additional information and operating instructions.

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 42

5.0 MAJOR AUXILIARY EQUIPMENT LIST

5.1 SPRAY DRYER ABSORBER / FABRIC FILTER AREA

EQUIPMENT NUMBER	ITEM (P&ID 4-21-3-xxx)	TOTAL (Operating + Spare)
04-S-1100 [†]	Spray Dryer Absorber (-110)	1(1+0)
04-M-1100 †	SDA Live Bottom (-110)	1(1+0)
04-M-1101 A,B,C †	SDA Hopper Impactors (-110)	3(3+0)
04-EV-1101 A,B,C †	SDA Hopper Impactor Solenoids (-110)	3(3+0)
04-M-1560 [†]	Feed Slurry Final Filter (-110)	1(1+0)
04-M-1104 [†]	SDA Double Slide Gate (-110)	1(1+0)
04-B-1200 *	Fabric Filter Compt No. 1-1 (-111)	1(1+0)
04-D-1200 *	FF Inlet Damper to Compt No. 1-1 (-111)	1(1+0)
04-D-1210 *	FF Outlet Damper from Compt No. 1-1 (-111)	1(1+0)
04-M-1215 *	FF Hopper Compt No. 1-1 Impactor #1 (-111)	1(1+0)
04-M-1216 *	FF Hopper Compt No. 1-1 Impactor #2 (-111)	1(1+0)
04-M-1218 *	FF Compt No. 1-1 Double Dump Valve (-111)	1(1+0)
04-M-1120 A	FF Compt No. 1-1 Screw Conveyor A (-111/112)	1(1+0)

This equipment in §6.1 is shown for Unit #1. For Units #2, #3, and #4, the unit number (fourth digit) is changed to 2 for Unit #2 and 3 for Unit #3 and 4 for Unit #4. See following example:

Unit #1 04-M-1202

Unit #3 04-M-3202

Unit #2 04-M-2202

Unit #4 04-M-4202

^{*} This equipment in 6.1 is shown for FF Compt No. 1-1, but is typical for Compt No. 1-2 thru 1-6. For example:

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 43

	Compt No. 1-1 No. 1-2	04-M-1218 04-M-1228	No. 1-4 No. 1-5	04-M-1248 04-M-1258	
	No. 1-2	04-M-1238	No. 1-6	04-M-1268	
04-M-1120 A		ather Screw Convey			1(1+0)
04-M-1120 B	Unit 1 FF G	ather Screw Convey	yor B (-112)		1(1+0)
04-M-1121 A	Unit 1 FF G	ather Screw Conv.	A Disch. Slide G	ate (-112)	1(1+0)
04-M-1121 B	Unit 1 FF G	ather Screw Conv. 1	B Disch. Slide G	ate (-112)	1(1+0)
04-M-1110	Unit 1 SDA	Drag Conveyor (-1	12)		1(1+0)
04-M-1111	Unit 1 SDA	Drag Conveyor Dis	sch. Slide Gate (-	-112)	1(1+0)
04-M-0130 A	Fly Ash Co	llecting Conveyor A	. (-112)		1(1+0)
04-M-0130 B	Fly Ash Co	llecting Conveyor B	(-112)		1(1+0)
04-F-1080	Unit 1 ID F	an (-113)			1(1+0)
04-C-0900 A,B	Atomizing A	Air Compressors (-1	25)		2(1+1)
04-T-0910	Atomizing A	Air Accumulator (-1	25)		1(1+0)
04-M-0915 A,B	Instrument A	Air Dryers (-125)			2(1+1)
04-M-0950 A,B	Glycol Air	Coolers (-127)			2(1+1)
04-F-0950 A1-A8	Glycol Coo	ling Fans (-127)			8(8+0)
04-F-0950 B1-B8	Glycol Coo	ling Fans (-127)	1		8(8+0)
04-C-0900 A,B	Glycol Air	Compressors (-127)			2(1+1)
04-T-0950	Glycol Surg	ge Tank (-127)			1(1+0)
04-P-0950 A,B	Glycol Circ	ulating Pumps (-127	")		2(1+1)

5.2 REAGENT PREPARATION AREA

EQUIPMENT		TOTAL
NUMBER	ITEM (P&ID 4-21-3-xxx)	(Operating + Spare)

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision 0
Retrofit Project Section II
Page 44

04-M-0405	Lime Silo Dust Collector (-120)	1(1+0)
04-T-0400 A,B	Lime Silos (-120)	2(2+0)
04-M-0403 A,B	Lime Silo Live Bottoms (-120)	2(2+0)
04-M-0404 A,B	Lime Feeder Inlet Slide Gates (-120)	2(2+0)
04-M-0401 A,B	Lime Feeders (-120)	2(2+0)
04-F-0400 A,B	Lime Slaker Vapor Extractors (-120)	2(2+0)
04-M-0400 A,B	Lime Slakers (-120)	2(2+0)
04-M-0402 A,B	Lime Slurry Grit Screens (-120)	2(2+0)
04-M-0406	Lime Slurry Grit Screw (-120)	1(1+0)
04-T-0500 A,B	Lime Slurry Storage Tanks (-121)	2(2+0)
04-A-0500 A,B	Lime Slurry Storage Tank Agitators (-121)	2(2+0)
04-P-0500 A1,A2,B1,B2	Lime Slurry Feed Pumps (-121)	4(2+2)
04-T-0600	Dilution Water Tank (-122)	1(1+0)
04-A-0600	Dilution Water Tank Agitator (-122)	1(1+0)
04-P-0600 A,B	Dilution Water Pumps (-122)	2(1+1)
04-P-0820 A,B	Seal Water Pumps (-123)	2(1+1)
5.3 SNCR SYSTEM		
EQUIPMENT <u>NUMBER</u>	ITEM (P&ID 4-21-3-xxx)	TOTAL (Operating + Spare)
04-T-0300	SNCR Storage Tank (-130)	1(1+0)
04-P-0300 A,B	SNCR Circulating Pumps (-130)	2(1+1)

City of Tampa O & M Manual No. 3834
McKay Bay Refuse to Energy Facility Revision O
Retrofit Project Section II
Page 45

04-H-0301	SNCR In-line Heater (-130)	1(1+0)
04-P-1320 A,B	Unit #1 SNCR Metering Pumps	s (-131) 2(1+1)
04-P-1330 A,B	Unit #1 SNCR Dilution Water I	Booster Pumps (-131) 2(1+1)
5.4 ACTIVA	TED CARBON PREPARATION AREA	
EQUIPMENT NUMBER	ITEM (P&ID 4-21-3-xxx)	TOTAL (Operating + Spare)
INCIMIDEIX	11 LNI (1 CHD 4-21-3-XX)	(Operating + Spare)
04-M-0702 A	Activated Carbon Silo Dust Col	llector (-128) 1(1+0)
04-T-0700 A	Activated Carbon Silo (-128)	1(1+0)
04-M-0703 A1,A	A2,A3 Activated Carbon Silo Slide Ga	ates (-128) 3(2+1)
04-M-0704 A1,A	A2,A3 Activated Carbon Rotary Valve	es (-128) 3(2+1)
04-T-0701 A1,A2	2,A3 Activated Carbon Feed Hoppers	s (-128) 3(2+1)
04-M-0700 A1,A	A2,A3 Activated Carbon Feeders (-128	3(2+1)
04-M-0701 A1,A	A2,A3 Activated Carbon Eductors (-12	28) 3(2+1)

This equipment in §6.3 is shown for Unit #1. For Units #2, #3, and #4, the unit number (fourth digit) is changed to 2 for Unit #2 and 3 for Unit #3 and 4 for Unit #4. See following example:

Unit #1 04-P-1330 Unit #3 04-P-3330 Unit #2 04-P-2330 Unit #4 04-P-4330

Activated Carbon Blowers (-128)

Activated Carbon Air Receiver (-128)

This equipment in §6.4 is shown for SDA Units #1 and #2. For Units #3 and #4, change the letter (A) of the tag/equipment number listed to (B). See following example:

Units #1&2 04-T-0700 A

04-F-0700 A1,A2,A3

09-M-0750

Units #3&4 04-T-0700 B

3(2+1)

1(1+0)

City of Tampa McKay Bay Refuse-to-Energy Facility Title V Permit Renewal Application

Attachment 3:

Equivalency Calculcations

McKay Bay Refuse to Energy Facility Title V Renewal Application, File Number 0570127-006-AV Equivalency Calculations Based On Federal 40 CFR 60 Subpart Cb Standards

Particulate Matter (PM)

New PM limit in 40 CFR 60.33b = 25 mg/dscm, corrected to 7% O_2 MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O_2) (25 mg/dscm) x (g/1000 mg) x (lb/453.59 g) x (dscm/35.31 dscf) x (7,000 gr/lb) = 0.0109 gr/dscf (25 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g) x (60 min/hr) = 0.0215 lb/hr (2.55 lb/hr) x (8760 hr/yr) x (ton/2000 lb) = 0.0213 lb/MMBtu (2.55 lb/hr) / 120 MMBtu/hr = 0.0213 lb/MMBtu

Cadmium (Cd)

New Cd limit in 40 CFR 60.33b = 0.035 mg/dscm, corrected to 7% O_2 MWC·Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O_2) (0.035 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g) x (60 min/hr) = 0.0036 lb/hr (0.0036 lb/hr) x (8760 hr/yr) x (ton/2000 lb) = 0.0156 tons/yr (0.0036 lb/hr) / 120 MMBtu/hr = 0.000030 lb/MMBtu

Mercury (Hg)

New Hg limit in 40 CFR 60.33b = 0.050 mg/dscm, corrected to 7% O_2 MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O_2) (0.050 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g) x (60 min/hr) = 0.0051 lb/hr (0.0051 lb/hr) x (8760 hr/yr) x (ton/2000 lb) = 0.0223 tons/yr (0.0051 lb/hr) / 120 MMBtu/hr = 0.0000425 lb/MMBtu

Lead (Pb)

New Pb limit in 40 CFR 60.33b = 0.40 mg/dscm, corrected to 7% O_2 MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O_2) (0.40 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g) x (60 min/hr) = 0.0408 lb/hr (0.0408 lb/hr) x (8760 hr/yr) x (ton/2000 lb) = 0.179 tons/yr (0.0408 lb/hr) / 120 MMBtu/hr = 0.00034 lb/MMBtu

Hydrogen Chloride (HCl)

HCl limit in 40 CFR 60.33b = 29 ppmdv, corrected to 7% O_2 MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O_2) (27,289.8 dscfm) x (60 min/hr) x (29 parts/ 10^6 parts) x (36.5 lb/lb-mole) x (1 lb-mole/385.3 dscf) = 4.498 lb/hr (4.498 lb/hr) x (8760 hr/yr) x (ton/2000 lb) = 19.7 tons/yr (4.498 lb/hr) / 120 MMBtu/hr = 0.0375 lb/MMBtu

Sulfur Dioxide (SO₂)

SO₂ limit in 40 CFR 60.33b = 29 ppmdv, corrected to 7% O₂ MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O₂) $(27,289.8 dscfm) x (60 min/hr) x (29 parts/<math>10^6$ parts) x (64.0 lb/lb-mole) x (1 lb-mole/385.3 dscf) = 7.887 lb/hr (7.887 lb/hr) x (8760 hr/yr) x (ton/2000 lb) = <math>34.5 tons/yr (7.887 lb/hr) / 120 MMBtu/hr = <math>0.0657 lb/MMBtu

Dioxins/Furans

Dioxins/Furans limit in 40 CFR 60.33b = 0.000030 mg/dscm, corrected to 7% O_2 MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O_2) (0.000030 mg/dscm) x (g/1000 mg) x (dscm/35.31 dscf) x (27,289.8 dscf/min) x (lb/453.59 g) x (60 min/hr) = 3.067E-06 lb/hr (3.067E-06 lb/hr) x (8760 hr/yr) x (ton/2000 lb) = 1.34E-05 tons/yr (3.067E-06 lb/hr) / 120 MMBtu/hr = 2.55E-08 lb/MMBtu

Nitrogen Oxides (NOx)

NO_x limit in 40 CFR 60.33b = 205 ppmdv, corrected to 7% O₂ MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O₂) $(27,289.8 \text{ dscfm)} \text{ x (60 min/hr)} \text{ x (205 parts/10}^6 \text{ parts)} \text{ x (46.01 lb/lb-mole)} \text{ x (1 lb-mole/385.3 dscf)}$ $= \underline{40.08 \text{ lb/hr}}$ $(40.08 \text{ lb/hr)} \text{ x (8760 hr/yr)} \text{ x (ton/2000 lb)} = \underline{175.5 \text{ tons/yr}}$ $(40.08 \text{ lb/hr)} / 120 \text{ MMBtu/hr} = \underline{0.334 \text{ lb/MMBtu}}$

Carbon Monoxide (CO)

CO limit in 40 CFR 60.33b = 100 ppmdv, corrected to 7% O₂

MWC Flowrate = 27,289.8 dscfm (original retrofit modeled flowrate corrected to 7% O₂)

(27,289.8 dscfm) x (60 min/hr) x (100 parts/ 10^6 parts) x (28.0 lb/lb-mole) x (1 lb-mole/385.3 dscf)

= 11.9 lb/hr

(11.9 lb/hr) x (8760 hr/yr) x (100 m/2000 lb) = 100 m/3 tons/yr

(11.9 lb/hr) / 120 m/3 m/3 tons/yr 100 m/3 m/3 tons/yr