Department of Environmental Protection Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 David B. Struhs Secretary August 11, 1999 ## CERTIFIED MAIL - RETURN RECEIPT REQUESTED Mr. Walter P. Bussels, Managing Director and CEO Jacksonville Electric Authority Brandy Branch Facility 21 West Church Street Jacksonville, Florida 32202-3139 Re: DEP File No. 0310485-001-AC (PSD-FL-267) Brandy Branch Facility Three 170 Megawatt Combustion Turbines Dear Mr. Bussells: Enclosed is one copy of the Draft Permit, Technical Evaluation and Preliminary Determination, and Draft BACT Determination, for the Brandy Branch Facility to be located near Baidwin City Duval County. The Department's Intent to Issue PSD Permit and the "PUBLIC NOTICE OF INTENT TO ISSUE AIR CONSTRUCTION" are also included. The "PUBLIC NOTICE OF INTENT TO ISSUE AIR CONSTRUCTION PERMIT" must be published one time only as soon as possible in a newspaper of general circulation in the area affected, pursuant to Chapter 50, Florida Statutes. Proof of publication, i.e., newspaper affidavit, must be provided to the Department's Bureau of Air Regulation office within 7 (seven) days of publication. Failure to publish the notice and provide proof of publication within the allotted time may result in the denial of the permit. Please submit any written comments you wish to have considered concerning the Department's proposed action to A. A. Linero, P.E., Administrator, New Source Review Section at the above letterhead address. If you have any questions, please call Michael P. Halpin, P.E. at 850/921-9530. Sincerely, C. H. Fancy, P.E., Chief, Bureau of Air Regulation CHF/mph Enclosures In the Matter of an Application for Permit by: Mr. Walter P. Bussells, Managing Director and CEO JEA 21 West Church Street Jacksonville, FL 32202 DEP File No. 0310485-001-AC (PSD-267) Brandy Branch Facility, Units 1 –3 Duval County #### INTENT TO ISSUE AIR CONSTRUCTION PERMIT The Department of Environmental Protection (Department) gives notice of its intent to issue an air construction permit (copy of DRAFT Permit attached) for the proposed project, detailed in the application specified above and the attached Technical Evaluation and Preliminary Determination, for the reasons stated below. The applicant, JEA, applied on May 18, 1999 to the Department for an air construction permit to construct three 170-MW dual-fuel "F" class combustion turbines and three 1 million gallon fuel oil storage tanks for the Brandy Branch facility, located approximately 1 mile northeast of Baldwin City, Duval County. The Department has permitting jurisdiction under the provisions of Chapter 403, Florida Statutes (F.S.), and Florida Administrative Code (F.A.C.) Chapters 62-4, 62-210, and 62-212. The above actions are not exempt from permitting procedures. The Department has determined that an air construction permit under the provisions for the Prevention of Significant Deterioration (PSD) of Air Quality is required for the proposed work. The Department intends to issue this Air construction permit based on the belief that reasonable assurances have been provided to indicate that operation of these emission units will not adversely impact air quality, and the emission units will comply with all appropriate provisions of Chapters 62-4, 62-204, 62-210, 62-212, 62-296, and 62-297, F.A.C. Pursuant to Section 403.815, F.S., and Rule 62-103.150, F.A.C., you (the applicant) are required to publish at your own expense the enclosed "Public Notice of Intent to Issue AIR CONSTRUCTION PERMIT". The notice shall be published one time only within 30 (thirty) days in the legal advertisement section of a newspaper of general circulation in the area affected. For the purpose of these rules, "publication in a newspaper of general circulation in the area affected" means publication in a newspaper meeting the requirements of Sections 50.011 and 50.031, F.S., in the county where the activity is to take place. Where there is more than one newspaper of general circulation in the county, the newspaper used must be one with significant circulation in the area that may be affected by the permit. If you are uncertain that a newspaper meets these requirements, please contact the Department at the address or telephone number listed below. The applicant shall provide proof of publication to the Department's Bureau of Air Regulation, at 2600 Blair Stone Road. Mail Station #5505. Tallahassee, Florida 32399-2400 (Telephone: 850/488-0114: Fax 850/ 922-6979) within 7 (seven) days of publication. Failure to publish the notice and provide proof of publication within the allotted time may result in the denial of the permit pursuant to Rule 62-103.150 (6), F.A.C. The Department will issue the FINAL Permit, in accordance with the conditions of the enclosed DRAFT Permit unless a response received in accordance with the following procedures results in a different decision or significant change of terms or conditions. The Department will accept written comments and requests for a public hearing (meeting) concerning the proposed DRAFT Permit issuance action for a period of 30 (thirty) days from the date of publication of "PUBLIC NOTICE OF INTENT TO ISSUE AIR CONSTRUCTION PERMIT." Written comments and requests for a public meeting should be provided to the Department's Bureau of Air Regulation, 2600 Blair Stone Road, Mail Station #5505, Tallahassee, Florida 32399-2400. Any written comments filed shall be made available for public inspection. If written comments received result in a significant change in this DRAFT Permit, the Department shall issue a Revised DRAFT Permit and require, if applicable, another Public Notice. DEP File No. 0310485-001-AC Page 3 of 3 The Department will grant a variance or waiver when the petition demonstrates both that the application of the rule would create a substantial hardship or violate principles of fairness, as each of those terms is defined in Section 120.542(2) F.S., and that the purpose of the underlying statute will be or has been achieved by other means by the petitioner. Persons subject to regulation pursuant to any federally delegated or approved air program should be aware that Florida is specifically not authorized to issue variances or waivers from any requirements of any such federally delegated or approved program. The requirements of the program remain fully enforceable by the Administrator of the EPA and by any person under the Clean Air Act unless and until the Administrator separately approves any variance or waiver in accordance with the procedures of the federal program. Executed in Tallahassee, Florida. C. H. Fancy, P.E., Chief Bureau of Air Regulation #### CERTIFICATE OF SERVICE The undersigned duly designated deputy agency clerk hereby certifies that this INTENT TO ISSUE AIR CONSTRUCTION PERMIT (including the PUBLIC NOTICE, Technical Evaluation and Preliminary Determination, Draft BACT Determination, and the DRAFT permit) was sent by certified mail (*) and copies were mailed by U.S. Mail before the close of business on 6-12-99 to the person(s) listed: Walter P. Bussells, JEA * N. Bert Gianazza, P.E., JEA Gregg Worley, EPA John Bunyak, NPS Chris Kirts, NED James L. Manning, P.E. RESD Anthony L. Compaan, Black & Veatch Clerk Stamp FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to §120.52, Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged. Kyni Jober 8-12-99 (Clerk) (Date) ## PUBLIC NOTICE OF INTENT TO ISSUE AIR CONSTRUCTION PERMIT # STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION DEP File No. 0310485-001-AC (PSD-FL-267) JEA Brandy Branch Facility – Units 1-3 Duval County The Department of Environmental Protection (Department) gives notice of its intent to issue an air construction permit under the requirements for the Prevention of Significant Deterioration (PSD) of Air Quality to JEA. The permit is to construct three nominal 170 megawatt (MW) natural gas and distillate fuel oil-fired combustion turbine-electrical generators with 90-foot stacks and three 1 million gallon fuel oil storage tanks for the proposed Brandy Branch Facility near Baldwin City, Duval County. A Best Available Control Technology (BACT) determination was required for sulfur dioxide (SO₂), particulate matter (PM/PM₁₀), nitrogen oxides (NO_x), sulfuric acid mist (SAM), and carbon monoxide (CO) pursuant to Rule 62-212.400, F.A.C. The applicant's name and address are JEA, 21 West Church Street, Jacksonville, Florida 32202. The new units will be General Electric nominal 170 MW PG7241FA combustion turbines-electrical generators. The units will operate in simple cycle mode and intermittent duty. The units will operate primarily on natural gas and will be permitted to operate 4000 hours per year of which no more than 750 hours per year and 16 hours per day will be using 0.05 percent sulfur distillate fuel oil. NO_X emissions will be controlled by Dry Low NO_X (DLN-2.6) combustors. The units must achieve the manufacturer's initial "new and clean" performance guarantee of 9 parts per million by volume at 15 percent oxygen (ppm) and meet a continuous emission limit based on 10.5 ppm. NO_X will be controlled to 42 ppm by wet injection when firing fuel oil. Sulfuric acid mist, SO_2 , and PM/PM_{10} will be limited by use of clean fuels. Emissions of VOC and CO will be controlled by good combustion practices. The maximum emissions in tons per year based on the original application are summarized below. All emissions will be somewhat lower as a result of the Department's proposed BACT determination. | <u>Pollutant</u> | Maximum Potential Emissions | PSD Significant Emission Rate | |---------------------|-----------------------------|-------------------------------| | PM/PM ₁₀ | 74.4 | 25/15 | | СО | 366.2 | 100 | | NO_X | 857.7 | 40 | | VOC | 21 | 40 | | SO ₂ | 124.3 | 40 | | Sulfuric Acid Mist | 15.2 | 7 | An air quality
impact analysis was conducted. Maximum predicted impacts due to proposed emissions from the project are less than the applicable PSD Class II significant impact levels. PSD Class I significant impact levels are exceeded for sulfur dioxide, therefore a Class I PSD increment analysis for SO₂ was conducted. Based on the required analyses, the Department has reasonable assurance that the proposed project will not cause or significantly contribute to a violation of any AAQS or PSD increment. Concurrent with the startup of the new facility, JEA will shutdown the Southside facility located at 801 Colorado Avenue in Jacksonville, Florida. The Southside emissions along with the net effect of these actions is shown below: | <u>Pollutant</u> | Southside Emissions | Net Emissions | |---------------------|---------------------|---------------| | PM/PM ₁₀ | 74.9 | (0.4) | | СО | 54.2 | 312 | | NO_X | 735.5 | 122.2 | | SO ₂ | 902.3 | (778) | The Department will accept written comments and requests for a public hearing (meeting) concerning the proposed permit issuance action for a period of 30 (thirty) days from the date of publication of "Public Notice of Intent to Issue PSD Permit." Written comments should be provided to the Department's Bureau of Air Regulation at 2600 Blair Stone Road, Mail Station #5505, Tallahassee, FL 32399-2400. Any written comments filed shall be made available for public inspection. If written comments received result in a significant change in the proposed agency action, the Department shall revise the proposed permit and require, if applicable, another Public Notice. The Department will issue the FINAL Permit, in accordance with the conditions of the DRAFT Permit, unless a response received in accordance with the following procedures results in a different decision or significant change of terms or conditions. The Department will accept written comments concerning the proposed DRAFT Permit issuance action for a period of 30 (thirty) days from the date of publication of this Notice. Written comments should be provided to the Department's Bureau of Air Regulation, 2600 Blair Stone Road, Mail Station #5505, Tallahassee, Florida 32399-2400. Any written comments filed shall be made available for public inspection. If comments received result in a significant change in this DRAFT Permit, the Department shall issue a Revised DRAFT Permit and require, if applicable, another Public Notice. The Department will issue FINAL Permit with the conditions of the DRAFT Permit subject to the exceptions noted above unless a timely petition for an administrative hearing is filed pursuant to Sections 120.569 and 120.57 F.S. The procedures for petitioning for a hearing are set forth below. Mediation is not available for the proposed action. A person whose substantial interests are affected by the Department's proposed permitting decision may petition for an administrative hearing in accordance with Sections 120.569 and 120.57 F.S. The petition must contain the information set forth below and must be filed (received) in the Office of General Counsel of the Department, 3900 Commonwealth Boulevard, Mail Station #35, Tallahassee, Florida 32399-3000, telephone: 850/488-9370, fax: 850/487-4938. Petitions must be filed within fourteen days of publication of the public notice or within fourteen days of receipt of this notice of intent, whichever occurs first. A petitioner must mail a copy of the petition to the applicant at the address indicated above, at the time of filing. The failure of any person to file a petition within the appropriate time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under Sections 120.569 and 120.57 F.S., or to intervene in this proceeding and participate as a party to it. Any subsequent intervention will be only at the approval of the presiding officer upon the filing of a motion in compliance with Rule 28-5.207 of the Florida Administrative Code. A petition that disputes the material facts on which the Department's action is based must contain the following information: (a) The name and address of each agency affected and each agency's file or identification number, if known; (b) The name, address, and telephone number of the petitioner's representative, if any, which shall be the address for service purposes during the course of the proceeding; and an explanation of how the petitioner's substantial interests will be affected by the agency determination; (c) A statement of how and when petitioner received notice of the agency action or proposed action; (d) A statement of all disputed issues of material fact. If there are none, the petition must so indicate; (e) A concise statement of the ultimate facts alleged, as well as the rules and statutes which entitle the petitioner to relief; and (f) A demand for relief. A petition that does not dispute the material facts upon which the Department's action is based shall state that no such facts are in dispute and otherwise shall contain the same information as set forth above, as required by Rule 28-106.301. Because the administrative hearing process is designed to formulate final agency action, the filing of a petition means that the Department's final action may be different from the position taken by it in this notice of intent. Persons whose substantial interests will be affected by any such final decision of the Department on the application have the right to petition to become a party to the proceeding, in accordance with the requirements set forth above. A complete project file is available for public inspection during normal business hours, 8:00 a.m. to 5:00 p.m., Monday through Friday, except legal holidays, at: Department of Environmental Protection Bureau of Air Regulation 111 S. Magnolia Drive, Suite 4 Tallahassee, Florida 32301 Telephone: 850/488-0114 Fax: 850/922-6979 Department Environmental Protection Northeast District Office 7825 Baymeadows Way, Suite 200B Jacksonville, Florida 32256-7590 Telephone: 904/448-4300 Fax: 904/448-4366 Environmental Services Department Suite 225, 117 W. Duval Street Jacksonville, Florida 32202 Telephone: 904/630-3484 Jacksonville Regulatory and Fax: 904-630-6338 The complete project file includes the application, technical evaluations, Draft Permit, and the information submitted by the responsible official, exclusive of confidential records under Section 403.111, F.S. Interested persons may contact the Administrator, New Resource Review Section at 111 South Magnolia Drive, Suite 4, Tallahassee, Florida 32301, or call 850/488-0114, for additional information. # **TECHNICAL EVALUATION** # **AND** # PRELIMINARY DETERMINATION JEA Brandy Branch Facility Units 1 - 6 Three 170 Megawatt Combustion Turbines Three 1 Million Gallon Fuel Oil Storage Tanks Baldwin City, Duval County DEP File No. 0310485-001-AC (PSD-FL-267) Department of Environmental Protection Division of Air Resources Management Bureau of Air Regulation August 11, 1999 ## 1. APPLICATION INFORMATION #### 1.1 Applicant Name and Address JEA (formerly Jacksonville Electric Authority) 21 West Church Street Jacksonville, FL 32202 Authorized Representative: Mr. Walter P. Bussells, Managing Director and CEO # 1.2 Reviewing and Process Schedule | 05-18-99: | Date of Receipt of Application | |------------------------|--| | 05-24-98: | DEP Incompleteness Letter | | 06-22 - 99: | Received JEA Response to Incompleteness Letter | | 07-21-99: | DEP Second Incompleteness Letter | | 08-05-99: | Received JEA Response to Incompleteness Letter | | ∩ 2 _11_00⋅ | Intent Issued | ## 2. FACILITY INFORMATION ## 2.1 Facility Location The JEA Brandy Branch Facility will be located approximately 1 mile northeast of Baldwin City, Duval County (See Figure 1). This site is approximately 34 kilometers southeast and 127 kilometers southwest of the Okefenokee and Wolf Island Class I National Wilderness Areas, respectively. UTM coordinates for this facility are Zone 17; 408.81 km E; 3354.38 km N. - - ## 2.2 Standard Industrial Classification Codes (SIC) | Industry Group No. | 49 | Electric, Gas, and Sanitary Services | |--------------------|------|--------------------------------------| | | 4911 | Electric Services | mmBtu/hr higher heating value (HHV) at 20°F while operating at 100% load. The main fuel will be natural gas and the units are proposed by JEA to operate up to 4,000 hours per year on natural gas and 800 hours per year (16 hours per day maximum) on fuel oil. JEA proposes to shutdown its Southside Station upon startup of the Brandy Branch facility, resulting in a net reduction of regulated pollutant emissions. This is further discussed in Section 6. The key components of the GE MS 7001FA (a predecessor of the PG 7241FA) are identified in Figure 2 below. An exterior view is shown in Figure 3. Each unit will be delivered with 14 can-annular design, DLN-2.6 combustors instead of the earlier-generation combustors supplied with the MS7001FA. #### FIGURE 2 1st Stape Piece – separate Destroited Swedister Transition. Piece – separate Destroited swedi around transition diede conservation diede conservation diede conservation destroited and entertain and effectively. FIGURE 3 ## 2.3 Facility Category This proposed facility will generate 510 megawatts (nominal MW) of electrical power. The facility is classified as a Major or Title V Source of air pollution because emissions of at least one regulated air pollutant, such as particulate matter (PM/PM₁₀), sulfur dioxide (SO₂), nitrogen oxides (NO_X), carbon monoxide (CO), or volatile organic compounds (VOC) exceeds 100 TPY. This facility is <u>not</u> within an industry included in the list of the 28 Major Facility Categories per Table 62-212.400-1, F.A.C. Because emissions are greater than 250 TPY for at least one criteria pollutant, the facility is also a major facility with respect to Rule 62-212.400, F.A.C.,
Prevention of Significant Deterioration (PSD), and a Best Available control Technology determination is required. Given that emissions of at least one single criteria pollutant will exceed 250 TPY, PSD Review and a BACT determination are required for each pollutant emitted in excess of the Significant Emission Rates listed in Table 62-212.400-2, F.A.C. These values are: 40 TPY for NO_X, SO₂, and VOC; 25/15 TPY of PM/PM₁₀, 7 TPY of Sulfuric Acid Mist (SAM); and 100 TPY of CO. ## 3. PROJECT DESCRIPTION This permit addresses the following emissions units: | EMISSION
UNIT | System | Emission Unit Description | | | |------------------|------------------|---|--|--| | 001 | Power Generation | One nominal 170 Megawatt Gas Combustion Turbine-Electrical Generator | | | | 002 | Power Generation | One nominal 170 Megawatt Gas Combustion
Turbine-Electrical Generator | | | | 003 | Power Generation | One nominal 170 Megawatt Gas Combustion
Turbine-Electrical Generator | | | | 004 | Fuel Storage | 1 Million Gallon Fuel Oil Storage Tank | | | | 005 | Fuel Storage | 1 Million Gallon Fuel Oil Storage Tank | | | | 006 | Fuel Storage | l Million Gallon Fuel Oil Storage Tank | | | JEA proposes to construct three nominal 170 MW General Electric PG7241FA simple cycle, intermittent duty combustion turbine-electrical-generators with 90-foot stacks and three 1 million gallon fuel oil storage tanks at the planned Brandy Branch Facility. According to the application, the facility will emit approximately 856.8 tons per year (TPY) of NO_X, 366 TPY of CO, 74.4 TPY of PM/PM10, 124.3 TPY of SO₂, 20.4 TPY of VOC, and 15 TPY of SAM. Significant emission rate increases per Table 212.400-2, F.A.C. will occur for carbon monoxide (CO), sulfur dioxide (SO₂), sulfuric acid mist (SAM), particulate matter (PM/PM₁₀), volatile organic compounds (VOC) and nitrogen oxides (NO_X). A BACT determination is required for each of these pollutants. An air quality impact review is also required for CO, PM/PM₁₀, NO_X, and SO₂. Each turbine will be equipped with Dry Low NO_X (DLN-2.6) combustors for the control of NO_X emissions to 9 - 10.5 ppmvd at 15% O_2 from 50% load up to 100% load conditions during normal operations. Each turbine will have a maximum heat input rating of 1,736 (gas) and 1,935 (oil) ## 4. PROCESS DESCRIPTION Much of the following discussion is from a 1993 EPA document on Alternative Control Techniques for NO_x Emissions from Stationary Gas turbines. Project specific information is interspersed where appropriate. A gas turbine is an internal combustion engine that operates with rotary rather than reciprocating motion. Ambient air is drawn into the 18-stage compressor of the GE 7FA where it is compressed by a pressure ratio of about 15 times atmospheric pressure. The compressed air is then directed to the combustor section, where fuel is introduced, ignited, and burned. The combustion section consists of 14 separate can-annular combustors. Flame temperatures in a typical combustor section can reach 3600 degrees Fahrenheit (°F). Units such as the 7FA operate at lower <u>flame</u> temperatures, which minimize NO_X formation. The hot combustion gases are then diluted with additional cool air and directed to the turbine section at temperatures of approximately 2400 °F. Energy is recovered in the turbine section in the form of shaft horsepower, of which typically more than 50 percent is required to drive the internal compressor section. The balance of recovered shaft energy is available to drive the external load unit such as an electrical generator. In the JEA project, the units will operate as peaking units in the simple cycle mode. Cycle efficiency, defined as a percentage of useful shaft energy output to fuel energy input, is approximately 35 percent for F-Class combustion turbines in the simple cycle mode. In addition to shaft energy output, 1 to 2 percent of fuel input energy can be attributed to mechanical losses. The balance is exhausted from the turbine in the form of heat. In combined cycle projects, the gas turbine drives an electric generator while the exhausted gases are used to raise additional steam in a heat recovery steam generator. The steam, in-turn, drives another electrical generator producing another 80-90 MW. In combined cycle mode, the thermal efficiency of the 7FA can exceed 56 percent. At high ambient temperature, the units cannot generate as much power because of lower compressor inlet density. To compensate for the loss of output (which can be on the order of 20 MW compared to referenced temperatures), an evaporative inlet cooler (fogger) can be installed ahead of the combustion turbine inlet. At an ambient temperature of 95 °F, roughly 7-14 MW of power can be regained per unit by using the foggers. Additional process information related to the combustor design, and control measures to minimize pollutant emissions are given in the draft BACT determination distributed with this evaluation. ## 5. RULE APPLICABILITY The proposed project is subject to preconstruction review requirements under the provisions of Chapter 403, Florida Statutes, and Chapters 62-4, 62-204, 62-210, 62-212, 62-214, 62-296, and 62-297 of the Florida Administrative Code (F.A.C.). This facility will be located in Duval County, an area designated as attainment for all criteria pollutants in accordance with Rule 62-204.360, F.A.C. The proposed project is subject to review under Rule 62-212.400, F.A.C., Prevention of Significant Deterioration (PSD) for the reasons given in Section 2.3, Facility Category, above This PSD review consists of an evaluation of resulting ambient air pollutant concentrations, and increases with respect to the National Ambient Air Quality Standards and Increments as well as a determination of Best Available Control Technology (BACT) for PM/PM₁₀, VOC, CO, SAM and NO_X. An analysis of the air quality impact from proposed project upon soils, vegetation and visibility is required along with air quality impacts resulting from associated commercial, residential, and industrial growth The emission units affected by this PSD permit shall comply with all applicable provisions of the Florida Administrative Code (including applicable portions of the Code of Federal Regulations incorporated therein) and, specifically, the following Chapters and Rules: #### 5.1 State Regulations | Chapter 62-4 | Permits. | |-----------------|---| | Rule 62-204.220 | Ambient Air Quality Protection | | Rule 62-204.240 | Ambient Air Quality Standards | | Rule 62-204.260 | Prevention of Significant Deterioration Increments | | Rule 62-204.800 | Federal Regulations Adopted by Reference | | Rule 62-210.300 | Permits Required | | Rule 62-210.350 | Public Notice and Comments | | Rule 62-210.370 | Reports | | Rule 62-210.550 | Stack Height Policy | | Rule 62-210.650 | Circumvention | | Rule 62-210.700 | Excess Emissions | | Rule 62-210.900 | Forms and Instructions | | Rule 62-212.300 | General Preconstruction Review Requirements | | Rule 62-212.400 | Prevention of Significant Deterioration | | Rule 62-213 | Operation Permits for Major Sources of Air Pollution | | Rule 62-214 | Requirements For Sources Subject To The Federal Acid Rain Program | | Rule 62-296.320 | General Pollutant Emission Limiting Standards | | Rule 62-297.310 | General Test Requirements | | Rule 62-297.401 | Compliance Test Methods | | Rule 62-297.520 | EPA Continuous Monitor Performance Specifications | | | | #### 5.2 Federal Rules | 40 CFR 52.21 | Prevention of Significant Deterioration | |--------------|--| | 40 CFR 60 | Applicable sections of Subpart A, General Requirements, NSPS Subparts GG and Kb | | 40 CFR 72 | Acid Rain Permits (applicable sections) | | 40 CFR 73 | Allowances (applicable sections) | | 40 CFR 75 | Monitoring (applicable sections including applicable appendices) | | 40 CFR 77 | Acid Rain Program-Excess Emissions (future applicable requirements) | | 40 CFR 52 | Prevention of Significant Deterioration of Air Quality (applicable requirements) | ## 6. SOURCE IMPACT ANALYSIS #### 6.1 Emission Limitations The proposed Units 1-3 will emit the following PSD pollutants (Table 212.400-2, F.A.C.): PM/PM₁₀, SO₂, NO_x, CO, SAM, and negligible quantities of fluorides (F), mercury (Hg) and lead (Pb). The applicant's proposed annual emissions are summarized in the Table below and form the basis of the source impact review. The Department's proposed permitted allowable emissions for Units 1-3 are summarized in the Draft BACT document and Specific Condition Nos. 20-25 of Draft Permit PSD-FL-267. #### 6.2 Emission Summary The annual emissions increases for all PSD pollutants as a result of the project are presented below: PROJECT EMISSIONS (TPY) AND PSD APPLICABILITY |
 Pollutant | Gas Firing ¹ | Oil Firing ¹ | Total ¹ | PSD
Significance | PSD
REVIEW? | |---------------------|-------------------------|-------------------------|--------------------|---------------------|----------------| | PM/PM ₁₀ | 54 | 20 | 74.4 | 25 | Yes | | SO ₂ | 6 | 118 | 124.3 | 40 | Yes | | NOx | 475 | 382 | 8 57.7 | 40 | Yes | | ¢ο | 288 | 78 | 366.2 | 100 | Yes | | Ozone(VOC) | 17 | 4 | 21 | 40 | No | | Sulfuric Acid Mist | | | 15.2 | 7 | Yes | | Total Fluorides | <<3 | <<3 | <<3 | 3 | No | | Mercury | <<0.1 | <<0.1 | <0.1 | 0.1 | No | | Lead | <<0.6 | <<0.6 | <0.6 | 0.6 | No | ^{1.} Based on 4000 hours of gas firing and 800 hours of fuel oil firing. Reference ambient temperature is 59 °F. The annual reductions for major PSD pollutants as a result of the Southside Station shutdown are: # SOUTHSIDE EMISSIONS (TPY) AND OVERALL NET IMPACT | Pollutant | Tons per Year ² | Net Emission Changes (TPY) | |---------------------|----------------------------|----------------------------| |
PM/PM ₁₀ | 74.9 | (0.4) | | SO ₂ | 902.3 | (778) | | NO _X | 735.5 | 122.2 | | СО | 54.2 | 312 | ^{2.} Based on data submitted by JEA for the operation of the Southside Station for the years of 1997 and 1998. ## 6.3 Control Technology The PSD regulations require new major stationary sources to undergo a control technology review for each pollutant that may be potentially emitted above significant amounts. The control technology review requirements of the PSD regulations are applicable to emissions of NO_X, SO₂, CO, SAM, VOC and PM/PM₁₀. Emissions control will be accomplished primarily by good combustion of clean natural gas and the limited use of low sulfur (0.05 percent) distillate fuel oil. The combustors will operate in lean pre-mixed mode to minimize the flame temperature and nitrogen oxides formation potential. A full discussion is given in the Draft Best Available Control O_1^h balance, there will be a net reduction of regulated pollutants emitted in Duval County as a result of this project, with the largest reductions being SO_2 emissions. Technology (BACT) Determination (see Permit Appendix BD). The Draft BACT is incorporated into this evaluation by reference. #### 6.4 Air Quality Analysis #### 6.4.1 Introduction The proposed project (absent the Southside Station shutdown) will increase emissions of five pollutants at levels in excess of PSD significant amounts: PM₁₀, CO, NO_x, SO₂, and SAM. PM₁₀, SO₂ and NO_x are criteria pollutants and have national and state ambient air quality standards (AAQS), PSD increments, and significant impact levels defined for them. CO is a criteria pollutant and has only AAQS and significant impact levels defined for it. There are no applicable PSD increments or AAQS for SAM. The applicant's initial PM₁₀, CO, and NO_X air quality impact analyses for this project predicted no significant impacts; therefore, further applicable AAQS and PSD increment impact analyses for these pollutants were not required. However, the initial SO₂ analysis showed a significant impact in a Class I area; therefore, a Class I PSD increment analysis for SO₂ was conducted. Based on the preceding discussion the air quality analyses required by the PSD regulations for this project are the following: - A significant impact analysis for PM₁₀, CO, SO₂, and NO_x; - A Class I PSD increment analysis for SO₂; - An analysis of impacts on soils, vegetation, visibility, and of growth-related air quality modeling impacts. Based on these required analyses, the Department has reasonable assurance that the proposed project, as described in this report and subject to the conditions of approval proposed herein, will not cause or significantly contribute to a violation of any AAQS or PSD increment. However, the following EPA-directed stack height language is included: "In approving this permit, the Department has determined that the application complies with the applicable provisions of the stack height regulations as revised by EPA on July 8, 1985 (50 FR 27892). Portions of the regulations have been remanded by a panel of the U.S. Court of Appeals for the D.C. Circuit in NRDC v. Thomas, 838 F. 2d 1224 (D.C. Cir. 1988). Consequently, this permit may be subject to modification if and when EPA revises the regulation in response to the court decision. This may result in revised emission limitations or may affect other actions taken by the source owners or operators." A more detailed discussion of the required analyses follows. ## 6.4.2 Models and Meteorological Data Used in the Significant Impact Analysis The EPA-approved Industrial Source Complex Short-Term (ISCST3) dispersion model was used to evaluate the pollutant emissions from the proposed project and other existing major facilities. The model determines ground-level concentrations of inert gases or small particles emitted into the atmosphere by point, area, and volume sources. The model incorporates elements for plume rise, transport by the mean wind, Gaussian dispersion, and pollutant removal mechanisms such as deposition. The ISCST3 model allows for the separation of sources, building wake downwash, and various other input and output features. A series of specific model features, recommended by the EPA, are referred to as the regulatory options. The applicant used the EPA recommended regulatory options. Direction-specific downwash parameters were used for all sources for which downwash was considered. The stacks associated with this project all satisfy the good engineering practice (GEP) stack height criteria. Meteorological data used in the ISCST3 model consisted of a concurrent 5-year period of hourly surface weather observations and twice-daily upper air soundings from the National Weather Service (NWS) stations at Jacksonville, Florida (surface data) and Waycross, Georgia (upper air data). The 5-year period of meteorological data was from 1984 through 1988. These NWS stations were selected for use in the study because they are the closest primary weather stations to the study area and are most representative of the project site. The surface observations included wind direction, wind speed, temperature, cloud cover, and cloud ceiling. For determining the project's significant impact area in the vicinity of the facility and if there are significant impacts from the project on any PSD Class I area, the highest predicted short-term concentrations and highest predicted annual averages were compared to their respective significant impact levels. #### 6.4.3 Significant Impact Analysis Initially, the applicant conducts modeling using only the proposed project's emissions at worst load conditions. In order to determine worst-case load conditions the ISCST3 model was used to evaluate dispersion of emissions from the simple cycle facility for three loads (50%, 75%, and 100%) using worst case or "enveloped" stack parameters. If this modeling at worst-case load conditions shows significant impacts, additional multi-source modeling is required to determine the project's impacts on the existing air quality and any applicable AAQS and PSD increments. Receptors were placed along the fence line of the facility at 50-meter intervals. They were also placed in the Okefenokee National Wilderness Area (ONWA), and the Wolf Island National Wilderness Area (WINWA), which are the closest PSD Class I areas. ONWA and WINWA are located approximately 34 km southeast and 127 km southwest of the project respectively. The receptor grid for predicting maximum concentrations in the vicinity of the project was a Cartesian receptor grid that contained close field, near field, mid field, and far field receptors with dimensions centered on the simple-cycle facility stacks. The inner portion of the grid had receptors at 100 m spacing out to 2,000 m. A 250 m spacing was used out to 5,000 m; a 500 m spacing was used out to 7.000 m; and a 1.000 m spacing was used out to 10,000 m. For predicting impacts at the PSD Class I areas, ten discrete receptors and one discrete receptor were placed along the borders of the ONWA and WINWA, respectively. For each pollutant subject to PSD and also subject to PSD increment and/or AAOS analyses, this preliminary modeling compares maximum predicted impacts due to the project with PSD significant impact levels to determine whether significant impacts due to the project are predicted in the vicinity of the facility or in the Class I areas. The tables below show the results of this modeling. # MAXIMUM PROJECT AIR QUALITY IMPACTS FOR COMPARISON TO THE PSD CLASS II SIGNIFICANT IMPACT LEVELS IN THE VICINITY OF THE FACILITY | Pollutant | Averaging
Time | impact i in | | Significant
Impact? | |------------------|-------------------|-------------|------|------------------------| | PM ₁₀ | Annual | 0.04 | 1 | NO | | | 24-hour | 4.18 | 5 | NO | | CO | 8-hour | 4.64 | 500 | NO | | | 1-hour | 10.78 | 2000 | NO | | NO _x | Annual | 0.58 | 1 | NO | | SO ₂ | Annual | 0.04 | 1 | NO | | | 24-hour | 4.22 | 5 | NO | | | 3-hour | 14.88 | 25 | NO | # MAXIMUM PROJECT AIR QUALITY IMPACTS FOR COMPARISON TO THE PSD CLASS I SIGNIFICANT IMPACT LEVELS (ONWA AND WINWA) | Pollutant | Averaging
Time | Max. Predicted Impact at Class I Area (ug/m³) | | Proposed EPA Significant Impact Level (ug/m³) | | ificant
pact? | |------------------|-------------------|---|-------|---|------|------------------| | | | ONWA | WINWA | | ONWA | WINWA | | PM ₁₀ | Annual | 0.002 | 0.001 | 0.2 | NO | NO | | | 24-hour | 0.090 | 0.040 | 0.3 | NO | NO | | NO ₂ | Annual | 0.010 | 0.005 | 0.1 | NO | NO | | SO ₂ | Annual | 0.002 | 0.001 | 0.1 | NO | NO | | | 24-hour | 0.236 | 0.110 | 0.2 | YES | NO | | | 3-hour | 1.381 | 0.762 | 1 | YES | NO | The results of the significant impact modeling show that there are no significant impacts predicted due to the emissions from this project in the Class II area. However, the maximum predicted air quality impact due to SO₂ emissions is greater than the significant impact levels in the ONWA Class I area for the 24-hour and 3-hour averaging periods. Therefore, the applicant was required to conduct full impact SO₂ modeling in the ONWA Class I area. Full impact modeling is modeling that considers not only the impact of the project but the impacts of the existing facility and other major sources located within the vicinity of the project and the Class I areas. No further modeling of any other pollutants were required. ## 6.4.4 PSD Increment Analysis The PSD increment represents the amount that new sources in an area may increase ambient ground level concentrations of a pollutant. Atmospheric dispersion modeling, as previously described, was performed to quantify the amount of PSD increment consumed in the ONWA Class I area. The results of this analysis are shown in the tables below. Maximum SO₂ concentrations predicted for the proposed project at receptors in the ONWA show impacts greater
than the PSD Class I increments for the 3-hour and 24-hour averaging times on numerous occasions. In order to assess the proposed project's contribution to any predicted ONWA Class I exceedances, an analysis was performed to determine all time periods and receptors at which an exceedance was predicted to occur. For each case, the proposed modification's impact was determined and compared to the EPA recommended significance levels of 1 ug/m³ and 0.2 ug/m³ for the 3-hour and 24-hour averaging times, respectively. The impact of the proposed project was always less than these significance levels at any receptor and for any time period when there were predicted exceedances or violations of increments. Therefore, the proposed modification will not contribute significantly to any predicted exceedance or violation of Class I increments and may be permitted by Department rules. #### PSD CLASS I INCREMENT ANALYSIS (ONWA) | | | Max. | Impact | | Maximum | EPA | | |-----------------|----------|--------------|------------|-----------|--------------|-------------|--------------| | 1 1 | Averagi | ng Predicted | Greater | Allowable | Project | Significant | Project | | Polluta | ant Time | Impact | Than | Increment | Contribution | Impact | Contribution | | | | (ug/m³) | Allowable | (ug/m³) | To Any | Level | Significant? | | | | | Increment? | 1 | Exceedance | | | | SO ₂ | 24-hr | 7.1 | YES | 5.0 | 0.100 | 0.2 | NO | | | 3-hr | 28.7 | YES | 25.0 | 0.00032 | 1.0 | NO | # 6.4.5 Impacts Analysis Impact Analysis Impacts On Soils, Vegetation, And Wildlife Very low emissions are expected from this natural gas-fired combustion turbine in comparison with conventional power plant generating equal power. Emissions of acid rain and ozone precursors will be very low. The maximum ground-level concentrations predicted to occur for PM₁₀, CO, NO_X, SO₂ and sulfuric acid mist as a result of the proposed project, including background concentrations and all other nearby sources, will be less than the respective AAQS. The project impacts are less than the significant impact levels, which in-turn, are less than the applicable allowable increments for each pollutant. Because the AAQS are designed to protect both the public health and welfare and the project impacts are less than significant, it is reasonable to assume the impacts on soils, vegetation, and wildlife will be minimal or insignificant. Impact On Visibility N_1 atural gas and low sulfur distillate fuel oil are clean fuels and produce little ash. This will minimize smoke formation. The low NO_X and SO_2 emissions will also minimize plume opacity. Because no add-on control equipment and no reagents are required, there will be no steam plume or tendency to form ammoniated particulate species. Due to the close proximity of this project to the ONWA Class I area, a multi-tiered regional haze analysis was performed. The first tier consisted of a regional haze analysis utilizing the California Puff (CALPUFF) modeling system in a screening mode otherwise known as CALPUFF Lite. CALPUFF is a non-steady state, Lagrangian, long-range transport model that incorporates Gaussian puff dispersion algorithms. CALPUFF requires the use of the CALMET model for preparation of meteorological data, whereas CALPUFF Lite utilizes the same meteorological data that is input into the ISCST3 model. As a result, CALPUFF Lite often overestimates visibility impacts and is adequate for use as a screening tool. CALPUFF is recommended by the National Park Service (NPS) for use in regional haze analyses because of its ability to handle atmospheric chemical transformations as well as wet/dry deposition. The results of the CALPUFF Lite modeling analysis indicated a change in visibility of 5.6% and 27.2% for natural gas and fuel oil, respectively. Both of these values were greater than the NPS threshold of 5%. However, the cumulative effects of this project include the shut down of the JEA Southside Station. The Southside shut down will result in a net decrease in SO₂ and PM/PM₁₀ emissions. Therefore, the proposed project will not result in adverse impacts on visibility in the ONWA. #### Growth-Related Air Quality Impacts There will be short-term increases in the labor force to construct the project. These temporary increases will not result in significant commercial and residential growth in the vicinity of the project. Operation of the additional unit will require 6 more permanent employees, which will cause no significant impact on the local area. Over the past few years the Public Service Commission has determined that a number of power projects are needed will help meet the low electrical reserve capacity throughout the State of Florida. The project is a response to statewide and regional growth and also accommodates more growth. There are no adequate procedures under the PSD rules to fully assess these impacts. However, the type of project proposed has a small overall physical "footprint," low water requirements, and the among the lowest air emissions per unit of electric power generating capacity for intermittent duty. #### Hazardous Air Pollutants The project is not a major source of hazardous air pollutants (HAPs) and is not subject to any specific industry or HAP control requirements pursuant to Section 112 of the Clean Air Act. #### 8. CONCLUSION Based on the foregoing technical evaluation of the application and additional information submitted by the applicant, the Department has made a preliminary determination that the proposed project will comply with all applicable state and federal air pollution regulations, provided the Department's BACT determination is implemented. A. A. Linero, P.E., Administrator Michael P. Halpin, P.E., Permit engineer Chris Carlson, Meteorologist #### PERMITTEE: Jacksonville Electric Authority Brandy Branch Facility 21 West Church Street Jacksonville, Florida 32202-3139 Authorized Representative: | File No. | PSD-FL-267 | |----------|------------| | FID No. | 0310485 | | SIC No. | 4911 | | Expires: | | | | | Walter P. Bussells, Chief Executive Officer #### PROJECT AND LOCATION: Permit pursuant to the requirements for the Prevention of Significant Deterioration of Air Quality (PSD Permit) for the construction of: three dual-fuel nominal 170 megawatt (MW) General Electric PG7241FA combustion turbine-electrical generators and three 90-foot stacks. The units will operate in simple cycle mode and intermittent duty. The units will be equipped with Dry Low NO_X (DLN-2.6) combustors and wet injection capability. They are designated by JEA as Combustion Turbine Generators 1, 2 and 3 and by the Department as ARMS Emissions Units 001, 002 and 003. The project will be located approximately 1 mile N.E. of Baldwin City, Duval County. UTM coordinates are: Zone 17; 408.81 km E; 3354.38 km N. #### STATEMENT OF BASIS: This PSD permit is issued under the provisions of Chapter 403 of the Florida Statutes (F.S.), and Chapter's 62-4, 62-204, 62-210, 62-212, 62-296, and 62-297 of the Florida Administrative Code (F.A.C.) and 40CFR52.21. The above named permittee is authorized to modify the facility in accordance with the conditions of this permit and as described in the application, approved drawings, plans, and other documents on file with the Department of Environmental Protection (Department). Attached Appendices and Tables made a part of this permit: Appendix BD **BACT** Determination Appendix GC Construction Permit General Conditions Howard L. Rhodes, Director Division of Air Resources Management JEA DEP File No. 0310485-001-AC Permit No. PSD-FL-267 #### SECTION I. FACILITY INFORMATION #### **FACILITY DESCRIPTION** This facility is a new site. This permitting action is to install three dual-fuel nominal 170 megawatt (MW) General Electric PG7241FA combustion turbine-electrical generators with three 90-foot stacks and three fuel oil storage tanks. Emissions from the new units will be controlled by Dry Low NO_X (DLN-2.6) combustors when operating on natural gas and wet injection when firing fuel oil. Inherently clean fuels and good combustion practices will be employed to control all pollutants. #### **EMISSION UNITS** This permit addresses the following emission units: | ARMS Emissions Unit | System | Emission Unit Description | |---------------------|------------------|--| | . 001 | Power Generation | One nominal 170 Megawatt Gas Simple Cycle
Combustion Turbine-Electrical Generator | | 002 | Power Generation | One nominal 170 Megawatt Simple Cycle Gas
Combustion Turbine-Electrical Generator | | 003 | Power Generation | One nominal 170 Megawatt Simple Cycle Gas
Combustion Turbine-Electrical Generator | | 004 | Fuel Storage | 1 Million Gallon Fuel Oil Storage Tank | | 005 | Fuel Storage | 1 Million Gallon Fuel Oil Storage Tank | | 006 | Fuel Storage | 1 Million Gallon Fuel Oil Storage Tank | #### REGULATORY CLASSIFICATION The facility is classified as a Major or Title V Source of air pollution because emissions of at least one regulated air pollutant, such as particulate matter (PM/PM₁₀), sulfur dioxide (SO₂), nitrogen oxides (NO_x), carbon monoxide (CO), or volatile organic compounds (VOC) exceeds 100 tons per year (TPY). This facility is not within an industry included in the list of the 28 Major Facility Categories per Table 212.400-1, F.A.C. Because emissions are greater than 100 TPY for at least one criteria pollutant, the facility is also a Major Facility with respect to Rule 62-212.400, Prevention of Significant Deterioration (PSD). Pursuant to Table 62-212.400-2, modifications at this facility resulting in emissions increases greater than any of the following values require review per the PSD rules as well as a determination of Best Available Control Technology (BACT): 40 TPY of NO_X, SO₂, or VOC; 25/15 TPY of PM/PM₁₀; 100 TPY of CO; or 7 TPY of sulfuric acid mist (SAM). This facility and the
project are also subject to applicable provisions of Title IV, Acid Rain, of the Clean Air Act. **JEA** DEP File No. 0310485-001-AC Permit No. PSD-FL-267 #### SECTION I. FACILITY INFORMATION ## PERMIT SCHEDULE - 08/x½/99 Notice of Intent published in The XXXXX - 08/12/99 Distributed Intent to Issue Permit - 08/06/99 Application deemed complete - 05/18/99 Received Application #### **RELEVANT DOCUMENTS:** The documents listed below are the basis of the permit. They are specifically related to this permitting action, but not all are incorporated into this permit. These documents are on file with the Department. - Application received on May 18, 1999 - Department letters dated May 26 and July 21, 1999 - Comments from the National Park Service dated July 20, 1999 - Letter from JEA dated June 21, 1999 - Letter (e-mail) from JEA dated August 4, 1999 and related submittals - Department's Intent to Issue and Public Notice Package dated August 12, 1999 - Department's Final Determination and Best Available Control Technology Determination issued concurrently with this permit. ## SECTION II. ADMINISTRATIVE REQUIREMENTS - Regulating Agencies: All documents related to applications for permits to construct, operate or modify an emissions unit should be submitted to the Bureau of Air Regulation (BAR), Florida Department of Environmental Protection (FDEP), at 2600 Blair Stone Road, Tallahassee, Florida 32399-2400 and phone number (850) 488-1344. All documents related to reports, tests, and notifications should be submitted to the DEP Northeast District office, 7825 Baymeadows Way, Suite 200B, Jacksonville, Florida 32256 and phone number 904/448-4300; additionally, such documents shall be submitted to RESD, Suite 225, 117 W. Duval St., Jacksonville, Florida 32202 and phone number 904/630-3484. - 2. <u>General Conditions</u>: The owner and operator is subject to and shall operate under the attached General Permit Conditions G.1 through G.15 listed in Appendix GC of this permit. General Permit Conditions are binding and enforceable pursuant to Chapter 403 of the Florida Statutes. [Rule 62-4.160, F.A.C.] - 3. <u>Terminology</u>: The terms used in this permit have specific meanings as defined in the corresponding chapters of the Florida Administrative Code. - 4. <u>Forms and Application Procedures</u>: The permittee shall use the applicable forms listed in Rule 62-210.900, F.A.C. and follow the application procedures in Chapter 62-4, F.A.C. [Rule 62-210.900, F.A.C.] - 5. <u>Modifications</u>: The permittee shall give written notification to the Department when there is any modification to this facility. This notice shall be submitted sufficiently in advance of any critical date involved to allow sufficient time for review, discussion, and revision of plans, if necessary. Such notice shall include, but not be limited to, information describing the precise nature of the change; modifications to any emission control system; production capacity of the facility before and after the change; and the anticipated completion date of the change. [Chapters 62-210 and 62-212] - 6. Expiration: Approval to construct shall become invalid if construction is not commenced within 18 months after receipt of such approval, or if construction is discontinued for a period of 18 months or more, or if construction is not completed within a reasonable time. The Department may extend the 18-month period upon a satisfactory showing that an extension is justified. [40 CFR 52.21(r)(2)]. - 7. <u>BACT Determination</u>: In accordance with paragraph (4) of 40 CFR 52.21(j) the Best Available Control Technology (BACT) determination shall be reviewed and modified as appropriate in the event of a plant conversion. This paragraph states: "For phased construction project, the determination of best available control technology shall be reviewed and modified as appropriate at the latest reasonable time which occurs no later than 18 months prior to commencement of construction of each independent phase of the project. At such time, the owner or operator of the applicable stationary source may be required to demonstrate the adequacy of any previous determination of best available control technology for the source." This reassessment will also be conducted for this project if there are any increases in heat input limits, hours of operation, oil firing, low or baseload operation (e.g. conversion to combined- ## SECTION II. ADMINISTRATIVE REQUIREMENTS - cycle operation) short-term or annual emission limits, annual fuel heat input limits or similar changes. [40 CFR 52.21(j)(4), Rule 62-4.070 F.A.C.] - 8. <u>Application for Title V Permit</u>: An application for a Title V operating permit, pursuant to Chapter 62-213, F.A.C., must be submitted to the DEP's Bureau of Air Regulation, and a copy to the Department Northeast District office as well as RESD. [Chapter 62-213, F.A.C.] - 9. Newlor Additional Conditions: Pursuant to Rule 62-4.080, F.A.C., for good cause shown and after notice and an administrative hearing, if requested, the Department may require the permittee to conform to new or additional conditions. The Department shall allow the permittee a reasonable time to conform to the new or additional conditions, and on application of the permittee, the Department may grant additional time. [Rule 62-4.080, F.A.C.] - 10. <u>Annual Reports</u>: Pursuant to Rule 62-210.370(2), F.A.C., Annual Operation Reports, the permittee is required to submit annual reports on the actual operating rates and emissions from this facility. Annual operating reports shall be sent to the DEP's Northeast District office as well as RESD by March 1st of each year. [Rule 62-210.370(2), F.A.C.] - 11. <u>Stack Testing Facilities</u>: Stack sampling facilities shall be installed in accordance with Rule 62-297.310(6), F.A.C. - 12. <u>Permit Extension</u>: The permittee, for good cause, may request that this construction permit be extended. Such a request shall be submitted to the Bureau of Air Regulation prior to 60 days before the expiration of the permit [Rule 62-4.080, F.A.C.] - 13. Quarterly Reports: Quarterly excess emission reports, in accordance with 40 CFR 60.7 (a)(7) (c) (1997 version), shall be submitted to the DEP's N.E. District office as well as RESD. Each excess emission report shall include the information required in 40 CFR 60.7(c) and 60.334. - 14. Retirement of existing facility: In accordance with JEA's analyses of regional haze in the nearby Class I areas, the Brandy Branch facility may cause or contribute to haze values greater than 5%. In order to mitigate this possibility, JEA shall retire the existing Southside Facility (AIRS ID 0310046) located at 801 Colorado Avenue, Jacksonville, Florida upon JEA's application for a Title V permit for the Brandy Branch facility (including certification that the facility is in compliance with applicable requirements and permit conditions). JEA shall concurrently submit a letter from the designated representative of the Southside facility certifying that the facility has been shutdown and that related permits are being surrendered. This shall occur on or before October 31, 2001. # SECTION III. EMISSION UNITS SPECIFIC CONDITIONS # APPLICABLE STANDARDS AND REGULATIONS: - 1. Unless otherwise indicated in this permit, the construction and operation of the subject emission unit(s) shall be in accordance with the capacities and specifications stated in the application. The facility is subject to all applicable provisions of Chapter 403, F.S. and Florida Administrative Code Chapters 62-4, 62-103, 62-204, 62-210, 62-212, 62-213, 62-214, 62-296, 62-297; and the applicable requirements of the Code of Federal Regulations Section 40, Parts 60, 72, 73, and 75. - 2. Issuance of this permit does not relieve the facility owner or operator from compliance with any applicable federal, state, or local permitting requirements or regulations. [Rule 62-210.300, F.A.C.] - 3. These emission units shall comply with all applicable requirements of 40CFR60, Subpart A, General Provisions including: - 40CFR60.7, Notification and Recordkeeping - 40CFR60.8, Performance Tests - 40CFR60.11, Compliance with Standards and Maintenance Requirements - 40CFR60.12, Circumvention - 40CFR60.13, Monitoring Requirements - 40CFR60.19, General Notification and Reporting requirements - 4. ARMS Emission Units 001-003, Power Generation, consisting of three 170 megawatt combustion turbines shall comply with all applicable provisions of 40CFR60, Subpart GG, Standards of performance for Stationary Gas Turbines, adopted by reference in Rule 62-204.800(7)(b), F.A.C. The Subpart GG requirement to correct test data to ISO conditions applies. However, such correction is not used for compliance determinations with the BACT standard(s). [Rule 62-204.800(7)(b), F.A.C.] - 5. ARMS Emission Units 004-006, Fuel Storage, consisting of three 1 million gallon distillate fuel oil storage tanks shall comply with all applicable provisions of 40CFR60, Subpart Kb, Standards of Performance for Volatile Organic Liquid Storage Vessels, adopted by reference in Rule 62-204.800, F.A.C. [Rule 62-204.800(7)(b), F.A.C.] - 6. All notifications and reports required by the above specific conditions shall be submitted to the DEP's Northeast District office as well as RESD. ## GENERAL OPERATION REQUIREMENTS 7. Fuels: Only pipeline natural gas or maximum 0.05 percent sulfur fuel oil No. 2 or superior grade of distillate fuel oil shall be fired in this unit. [Applicant Request, Rule 62-210.200, F.A.C. (Definitions - Potential Emissions)] {Note: The limitation of this specific condition is more stringent than the NSPS sulfur dioxide limitation and thus assures compliance with 40 CFR 60.333 and 60.334} ## SECTION III. EMISSION UNITS SPECIFIC CONDITIONS - 8. Capacity: The maximum heat input rates, based on the lower heating value (LHV) of each fuel to each Unit (1-3) at ambient conditions of 59°F temperature, 60% relative humidity, 100%
load and 14.7 psi pressure shall not exceed 1,623 million Btu per hour (MMBtu/hr) when firing natural gas, nor 1,822 MMBtu/hr when firing No. 2 or superior grade of distillate fuel oil. These maximum heat input rates will vary depending upon ambient conditions and the combustion turbine characteristics. Manufacturer's curves corrected for site conditions or equations for correction to other ambient conditions shall be provided to the Department of Environmental Protection (DEP) within 45 days of completing the initial compliance testing. [Design, Rule 62-210.200, F.A.C. (Definitions - Potential Emissions)] - 9. <u>Unconfined Particulate Emissions</u>: During the construction period, unconfined particulate matter emissions shall be minimized by dust suppressing techniques such as covering and/or application of water or chemicals to the affected areas, as necessary. [Rule 62-296.320(4)(c)., F.A.C.1 - 10. Plant Operation Problems: If temporarily unable to comply with any of the conditions of the permit due to breakdown of equipment or destruction by fire, wind or other cause, the owner or operator shall notify the DEP Northeast District office and RESD as soon as possible, but at least within (1) working day, excluding weekends and holidays. The notification shall include: pertinent information as to the cause of the problem; the steps being taken to correct the problem and prevent future recurrence; and where applicable, the owner's intent toward reconstruction of destroyed facilities. Such notification does not release the permittee from any liability for failure to comply with the conditions of this permit and the regulations. [Rule 62-4¹130, F.A.C.1 - 11. Operating Procedures: Operating procedures shall include good operating practices and proper training of all operators and supervisors. The good operating practices shall meet the guidelines and procedures as established by the equipment manufacturers. All operators (including supervisors) of air pollution control devices shall be properly trained in plant specific equipment. [Rule 62-4.070(3), F.A.C.] - 12. <u>Circumvention</u>: The owner or operator shall not circumvent the air pollution control equipment or allow the emission of air pollutants without this equipment operating properly. [Rules 62-210.650, F.A.C.] - 13. Maximum allowable hours: The stationary gas turbines shall only operate up to 4000 hours during any calendar year. [Applicant Request, Rule 62-210.200, F.A.C. (Definitions -Potential Emissions)] - 14. Fuel usage as heat input, while burning natural gas at the site, shall not exceed 19.476 x 10¹² BTU (LHV) per year during any consecutive 12 month period. [Applicant Request, Rule 62-210.200, F.A.C. (Definitions - Potential Emissions)] - 15. Fuellusage as heat input, while burning fuel oil at the site, shall not exceed 4.099 x 10¹² BTU (LHV) per year during any consecutive 12 month period. Fuel usage as heat input, while ## SECTION III. EMISSION UNITS SPECIFIC CONDITIONS burning fuel oil at the site, shall not exceed 8.746 x 10¹⁰ BTU (LHV) on a daily basis. Additionally, the amount of back-up fuel (fuel oil) burned at the site (in BTU's) shall not exceed the amount of natural gas (primary fuel) burned at the site (in BTU's) during any consecutive 12-month period. Note: Basis for daily fuel oil limit is 16 hrs. of daily operation. [Applicant Request, Rule 62-210.200, F.A.C. (Definitions - Potential Emissions)] ## **Control Technology** - 16. Dry Low NO_x (DLN) combustors shall be installed on the stationary combustion turbine to control nitrogen oxides (NO_x) emissions while firing natural gas. [Design, Rule 62-4.070, F.A.C.] - 17. The permittee shall design each stationary combustion turbine, ducting, and stack(s) so as to not preclude installation of SCR equipment and/or oxidation catalyst in the event of a failure to achieve the NO_x limits given in Specific Condition No. 20 and 21 or the carbon monoxide (CO) limits given in Specific Condition 22. [Rule 62-4.070, F.A.C.] - 18. A water injection (WI) system shall be installed for use when firing No. 2 or superior grade distillate fuel oil for control of NO_X emissions. [Design, Rules 62-4.070 and 62-212.400, F.A.C.] - 19. The DLN systems shall each be tuned upon initial operation to optimize emissions reductions and shall be maintained to minimize NO_x emissions and CO emissions. Operation of the DLN systems in the diffusion-firing mode shall be minimized when firing natural gas. [Rule 62-4.070 and 62-210.650 F.A.C.] #### **EMISSION LIMITS AND STANDARDS** 20. The following table is a summary of the BACT determination and is followed by the applicable specific conditions. Values for NO_X are corrected to 15% O₂ on a dry basis. [Rule 62-212.400, F.A.C.] | Operational
Mode (Fuel) | NO _X
(15%O2) | со | voc | PM/Visibility
(% Opacity) | SO ₂ /SAM | Technology and Comments | |----------------------------|----------------------------|--------|---------|------------------------------|----------------------------|--| | Natural Gas | 10.5 ppm | 12 ppm | 2 ppm | 10 | 2 grain S
per 100
CF | Dry Low NOx Burners.
Clean fuels, good combustion | | Fuel Oil | 42 ppm | 20 ppm | 3.5 ppm | 10 | 0.05%
sulfur oil | Water Injection. Units limited to 750 hrs equivalent full load oil operation (per CT) annually. Clean fuels, good combustion | #### SECTION III. EMISSION UNITS SPECIFIC CONDITIONS # 21. Nitrogen Oxides (NO_x) Emissions: - When NO_x monitoring data is not available, substitution for missing data shall be handled as required by Title IV (40 CFR 75) to calculate any specified average time. - While firing Natural Gas: The emission rate of NO_x in the exhaust gas shall not exceed 69.3 lb/hr (at ISO conditions) on a 24 hr block average as measured by the continuous emission monitoring system (CEMS). In addition, NO_x emissions calculated as NO₂ (at ISO conditions) shall not exceed 10.5 ppm @15% O₂ to be demonstrated by annual stack test nor 9 ppm @15% O₂ to be demonstrated by the initial "new and clean" GE performance stack test. Note: Basis for lb/hr limit is 10.5 ppm @ 15% O₂, full load. [Rule 62-212.400, F.A.C.] - While firing Fuel oil: The concentration of NO_X in the exhaust gas shall not exceed 42 ppmvd at 15% O₂ on the basis of a 3 hr average as measured by the continuous emission monitoring system (CEMS). In addition, NO_X emissions calculated as NO₂ (at ISO conditions) shall not exceed 42 ppm @15% O₂ to be demonstrated by stack test. [Rule 62-212.400, F.A.C.] - Within 18 months after the initial compliance test, the permittee shall prepare and submit for the Department's review and acceptance an engineering report regarding the lowest NO_X emission rate that can consistently be achieved when firing distillate oil. This lowest recommended rate shall include a reasonable operating margin, taking into account long-term performance expectations and good operating and maintenance practices. The Department may revise the NO_X emission rate based upon this report. [BACT determination] - 22. Carbon Monoxide (CO) emissions: The concentration of CO in the exhaust gas when firing natural gas shall not exceed 12 ppmvd when firing natural gas and 20 ppmvd when firing fuel oil as measured by EPA Method 10. CO emissions (at ISO conditions) shall not exceed 38.4 lb/h; (when firing natural gas) and 65.0 lb/hr (when firing fuel oil). [Rule 62-212.400, F.A.C.] - 23. <u>Sulfur Dioxide (SO₂) emissions</u>: SO₂ emissions (at ISO conditions) shall not exceed 1.1 pounds per hour when firing pipeline natural gas and 98.2 pounds per hour when firing maximum 0.05 percent sulfur No. 2 or superior grade distillate fuel oil as measured by applicable compliance methods described below. [Rule 62-212.400, F.A.C.] - 24. <u>Visible emissions (VE)</u>: VE emissions shall not exceed 10 percent opacity when firing natural gas or No. 2 or superior grade of fuel oil, except for during startup and shutdown at which time emissions shall not exceed 20 percent opacity. [Rule 62-296.320(4)(b), F.A.C.] - 25. Volatile Organic Compounds (VOC) Emissions: The concentration of VOC in the exhaust gas when firing natural gas shall not exceed 2 ppmvd when firing natural gas and 3.5 ppmvd when firing fuel oil as assured by EPA Methods 18, and/or 25 A. VOC emissions (at ISO conditions) shall not exceed 4.0 lb/hr (when firing natural gas) and 7.5 lb/hr (when firing fuel oil). [Rule 62-212.400, F.A.C.] # SECTION III. EMISSION UNITS SPECIFIC CONDITIONS #### **EXCESS EMISSIONS** - 26. Excess emissions resulting from startup, shutdown or malfunction shall be permitted provided that best operational practices are adhered to and the duration of excess emissions shall be minimized. Excess emissions occurrences shall in no case exceed two hours in any 24-hour period for other reasons unless specifically authorized by DEP for longer duration. Operation below 50% output shall be limited to 2 hours per unit cycle (breaker closed to breaker open). Excess emissions entirely or in part by poor maintenance, poor operation, or any other equipment or process failure that may reasonably be prevented during startup, shutdown or malfunction, shall be prohibited pursuant to Rule 62-210.700, F.A.C. - 27. Excess Emissions Report: If excess emissions occur due to malfunction, start-up or shut-down the owner or operator shall notify DEP's Northeast District office and RESD within (1) working day of: the nature, extent, and duration of the excess emissions; the cause of the excess emissions; and the actions taken to correct the problem. In addition, the Department may request a written summary report of the incident. Pursuant to the New Source Performance Standards, excess emissions shall also be reported in accordance with 40 CFR 60.7, Subpart A. [Rules 62-4.130 and 62-210.700(6), F.A.C.] #### COMPLIANCE DETERMINATION - 28. Compliance
with the allowable emission limiting standards shall be determined within 60 days after achieving the maximum production rate, for each fuel, at which this unit will be operated, but not later than 180 days of initial operation of the unit for that fuel, and annually thereafter as indicated in this permit. by using the following reference methods as described in 40 CFR 60. Appendix A (1997 version), and adopted by reference in Chapter 62-204.800, F.A.C. - 29. Initial (I) performance tests shall be performed on each unit while firing natural gas as well as while firing fuel oil. Initial tests shall also be conducted after any modifications (and shake down period not to exceed 100 days after starting the CT) to air pollution control equipment, including low NO_X burners or SCR. Annual (A) compliance tests shall be performed during every federal fiscal year (October 1 September 30) pursuant to Rule 62-297.310(7), F.A.C., on each unit as indicated. The following reference methods shall be used. No other test methods may be used for compliance testing unless prior DEP approval is received in writing. - EPA Reference Method 9, "Visual Determination of the Opacity of Emissions from Stationary Sources" (I, A). - EPA Reference Method 10, "Determination of Carbon Monoxide Emissions from Stationary Sources" (I, A). - EPA Reference Method 20, "Determination of Oxides of Nitrogen Oxide, Sulfur Dioxide and Diluent Emissions from Stationary Gas Turbines." Initial test only for compliance with 40CFR60 Subpart GG and (I, A) short-term NO_X BACT limits (EPA reference Method 7E, #### SECTION III. EMISSION UNITS SPECIFIC CONDITIONS - "Determination of Nitrogen Oxides Emissions from Stationary Sources" or RATA test data may be used to demonstrate compliance for annual test requirement). - EPA Reference Method 18, and/or 25A, "Determination of Volatile Organic Concentrations." Initial test only. - 30. Continuous compliance with the NO_X emission limits: Continuous compliance with the NO_X emission limits shall be demonstrated with the CEM system based on the applicable averaging time of 24-hr block average (DLN technology) or a 3-hr average (if SCR is used). For the 24-hr block average (lb/hr) emissions may be determined via EPA Method 19 or equivalent EPA approved methods. Based on CEMS data, a separate compliance determination is conducted at the end of each operating day (or 3-hr period when applicable) and a new average emission rate is calculated from the arithmetic average of all valid hourly emission rates from the previous operating day (or 3-hr period when applicable). Valid hourly emission rates shall not include periods of startup, shutdown, or malfunction as defined in Rule 62-210.200 F.A.C., where emissions exceed the applicable NO_X standard. These excess emissions periods shall be reported as required in Conditions 26 and 27. A valid hourly emission rate shall be calculated for each hour in which at least two NO_X concentrations are obtained at least 15 minutes apart. [Rules 62-4.070 F.A.C., 62-210.700, F.A.C., and 40 CFR 75] - 31. Compliance with the SO₂ and PM/PM₁₀ emission limits: Notwithstanding the requirements of Rule 62-297.310(7), F.A.C., the use of pipeline natural gas and maximum 0.05 percent sulfur (by weight) No. 2 or superior grade distillate fuel oil, is the method for determining compliance for SO₂ and PM₁₀. For the purposes of demonstrating compliance with the 40 CFR 60.333 SO₂ standard and the 0.05% S limit, fuel oil analysis using ASTM D2880-941 or D4294-90 (or equivalent latest version) for the sulfur content of liquid fuels and D1072-80, D3031-81, D4084-82 or D3246-81 (or equivalent latest version) for sulfur content of gaseous fuel shall be utilized in accordance with the EPA-approved custom fuel monitoring schedule. The applicant is responsible for ensuring that the procedures above are used for determination of fuel sulfur content. Analysis may be performed by the owner or operator, a service contractor retained by the owner or operator, the fuel vendor, or any other qualified agency pursuant to 40 CFR 60.335(e) (1997 version). - 32. Compliance with CO emission limit: An initial test for CO shall be conducted concurrently with the initial NO_x test, as required. The initial NO_x and CO test results shall be the average of three valid one-hour runs. Annual compliance testing for CO may be conducted concurrent with the annual RATA testing for NO_x required pursuant to 40 CFR 75 (required for gas only). - 33. <u>Compliance with the VOC emission limit</u>: An initial test is required to demonstrate compliance with the BACT VOC emission limit. Thereafter, CO emission limit will be employed as surrogate and no annual testing is required. - 34. <u>Testing procedures:</u> Testing of emissions shall be conducted with the combustion turbine operating at permitted capacity. Permitted capacity is defined as 90-100 percent of the maximum heat input rate allowed by the permit, corrected for the average ambient air Page 11 of 14 ## SECTION III. EMISSION UNITS SPECIFIC CONDITIONS temperature during the test (with 100 percent represented by a curve depicting heat input vs. ambient temperature). If it is impracticable to test at permitted capacity, the source may be tested at less than permitted capacity. In this case, subsequent operation is limited by adjusting the entire heat input vs. ambient temperature curve downward by an increment equal to the difference between the maximum permitted heat input (corrected for ambient temperature) and 110 percent of the value reached during the test until a new test is conducted. Once the unit is so limited, operation at higher capacities is allowed for no more than 15 consecutive days for the purposes of additional compliance testing to regain the permitted capacity. Test procedures shall meet all applicable requirements (i.e., testing time frequency, minimum compliance duration, etc.) of Chapter 62-204.800 F.A.C. - 35. <u>Test Notification</u>: The DEP's Northeast District office and RESD shall be notified, in writing, at least 30 days prior to the initial performance tests and at least 15 days before annual compliance test(s). [40 CFR 60.11] - 36. <u>Special Compliance Tests</u>: The DEP or RESD may request a special compliance test pursuant to Rule 62-297.310(7), F.A.C., when, after investigation (such as complaints, increased visible emissions, or questionable maintenance of control equipment), there is reason to believe that any applicable emission standard is being violated. - 37. <u>Test Results</u>: Compliance test results shall be submitted to RESD and the DEP's N.E. District office no later than 45 days after completion of the last test run. [Rule 62-297.310(8), F.A.C.] ## NOTIFICATION, REPORTING, AND RECORDKEEPING - 38. <u>Records</u>: All measurements, records, and other data required to be maintained by JEA shall be recorded in a permanent form and retained for at least five (5) years following the date on which such measurements, records, or data are recorded. These records shall be made available to DEP and RESD representatives upon request. - 39. Emission Compliance Stack Test Reports: A test report indicating the results of the required compliance tests shall be filed as per Condition 37. above. The test report shall provide sufficient detail on the tested emission unit and the procedures used to allow the Department to determine if the test was properly conducted and if the test results were properly computed. At a minimum, the test report shall provide the applicable information listed in Rule 62-297.310(8), F.A.C. - 40. <u>Special Record Keeping Requirements</u>: The owner or operator shall obtain, make, and keep the following records related to fuel usage: - (1) Monthly Fuel usage as heat input, for natural gas and fuel oil at the site. - (2) <u>Fuel usage</u> as heat input, for natural gas and fuel oil at the site for each consecutive 12-month period. - (3) <u>Fuel usage</u> as heat input, for natural gas and fuel oil at the site during each calendar year shall be submitted with the Annual Operation Report (AOR). DEP File No. 0310485-001-AC #### SECTION III. EMISSION UNITS SPECIFIC CONDITIONS - (4) Hours of operation for each combustion turbine shall be reported during each calendar year with the Annual Operation Report (AOR). - (5) <u>Daily fuel oil usage</u> records, as heat input shall be kept at the site. # MONITORING REQUIREMENTS - 41. Continuous Monitoring System: The permittee shall install, calibrate, maintain, and operate a continuous emission monitor in the stack to measure and record the nitrogen oxides emissions from each (CT) unit. Periods when NO_x emissions are above the standards as listed in Specific Condition No 21, shall be reported to RESD and the DEP Northeast District Office pursuant to Rule 62-4.160(8), F.A.C. Following the format of 40 CFR 60.7, periods of startup, shutdown, malfunction, and fuel switching shall be monitored, recorded, and reported as excess emissions when emission levels exceed the standards listed in Specific Condition No. 21 except as noted in Specific Condition No. 30. [Rule 62-204.800 and 40 CFR 60.7 (1997 version)] - 42. CEMS in lieu of Water to Fuel Ratio: The NO_x CEMS shall be used in lieu of the water/fuel monitoring system for reporting excess emissions in accordance with 40 CFR 60.334(c)(1), Subpart GG (1997 version). The calibration of the water/fuel-monitoring device required in 40 CFR 60.335 (c)(2) (1997 version) will be replaced by the 40 CFR 75 certification tests of the NO_x CEMS. Upon request from DEP, the CEMS emission rates for NO_x shall be corrected to ISO conditions to demonstrate compliance with the NO_x standard established in 40 CFR 60.332. - 43. Continuous Monitoring System Reports: The monitoring devices shall comply with the certification and quality assurance, and any other applicable requirements of Rule 62-297.520, F.A.C., 40 CFR 60.13, including certification of each device
in accordance with 40 CFR 60, Appendix B, Performance Specifications and 40 CFR 60.7(a)(5) or 40 CFR Part 75. Quality assurance procedures must conform to all applicable sections of 40 CFR 60, Appendix F or 40 CFR 75. Data on CEM equipment specifications, manufacturer, type, calibration and maintenance needs, and its proposed location shall be provided to the Department's Northeast District Office as well as RESD for review at least 90 days prior to installation. - 44. Fuel Oil Monitoring Schedule: The following monitoring schedule for No. 2 or superior grade fuel oil shall be followed: For all bulk shipments of No. 2 or superior grade fuel oil received at the Brandy Branch Power Plant, an analysis which reports the sulfur content and nitrogen content of the fuel shall be provided by the fuel vendor. The analysis shall also specify the methods by which the analyses were conducted and shall comply with the requirements of 40 CFR 60.335(d). - 45. <u>Natural Gas Monitoring Schedule</u>: The following custom monitoring schedule for natural gas is approved (pending EPA concurrence) in lieu of the daily sampling requirements of 40 CFR 60.334 (b)(2): **JEA** ## SECTION III. EMISSION UNITS SPECIFIC CONDITIONS - The permittee shall apply for an Acid Rain permit when the deadlines specified in 40 CFR 72.30. - The permittee shall submit a monitoring plan, certified by signature of the Designated Representative that commits to using a primary fuel of pipeline supplied natural gas (sulfur content less than 20 gr/100 scf pursuant of 40 CFR 75.11(d)(2)). - Each unit shall be monitored for SO₂ emissions using methods consistent with the requirements of 40 CFR 75 and certified by the USAEPA. - JEA shall notify DEP of any change in natural gas supply for reexamination of this monitoring schedule. A substantial change in natural gas quality (i.e., sulfur content variation of greater than 1 grain per 100 cubic foot of natural gas) shall be considered as a change in the natural gas supply. Sulfur content of the natural gas will be monitored weekly by the natural gas supplier during the interim period when this monitoring schedule is being reexamined. ## 46. Determination of Process Variables: - The permittee shall operate and maintain equipment and/or instruments necessary to determine process variables, such as process weight input or heat input, when such data is needed in conjunction with emissions data to determine the compliance of the emissions unit with applicable emission limiting standards. - Equipment and/or instruments used to directly or indirectly determine such process variables, including devices such as belt scales, weigh hoppers, flow meters, and tank scales, shall be calibrated and adjusted to indicate the true value of the parameter being measured with sufficient accuracy to allow the applicable process variable to be determined within 10% of its true value [Rule 62-297.310(5), F.A.C] # APPENDIX BD BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) # JEA Brandy Branch Facility PSD-FL-267 and 0310485-001-AC Duval County, Florida ## BACKGROUND The applicant, JEA (formerly Jacksonville Electric Authority) proposes to install three nominal 170 megawatt (MW) General Electric PG 7241 FA combustion turbine-electrical generators at the planned Brandy Branch Facility near Baldwin City, Duval County. The proposed project will result in "significant increases" with respect to Table 62-212.400-2, Florida Administrative Code (F.A.C.) of emissions of particulate matter (PM and PM₁₀), carbon monoxide (CO), nitrogen oxides (NO_X), sulfur dioxide (SO₂), and sulfuric acid mist (SAM). The project is therefore subject to review for the Prevention of Significant Deterioration (PSD) and a determination of Best Available Control Technology (BACT) in accordance with Rules 62-212.400, F.A.C. The new units will operate in simple cycle mode and intermittent duty and exhaust through separate 90-foot stacks. JEA proposes to operate these units up to 4000 hours on natural gas and 800 hours on maximum 0.5 percent sulfur distillate fuel oil. Descriptions of the process, project, air quality effects, and rule applicability are given in the Technical Evaluation and Preliminary Determination dated August 11, 1999, accompanying the Department's Intent to Issue. ## DATE OF RECEIPT OF A BACT APPLICATION: The application was received on May 18, 1999 and included a proposed BACT proposal prepared by the applicant's consultant, Black & Veatch # **REVIEW GROUP MEMBERS:** A. A. Linero, P.E. and Michael P. Halpin, P.E., Permit Engineer ## **BACT DETERMINATION REQUESTED BY THE APPLICANT:** | POLLUTANT | CONTROL TECHNOLOGY | PROPOSED BACT LIMIT | | |--------------------|---|---|--| | Nitrogen Oxides | Dry Low NO _x Combustors Water Injection (Oil) | 12 ppmvd @ 15% O ₂ (gas)
42 ppmvd @ 15% O ₂ (oil)
10% Opacity | | | Particulate Matter | Pipeline Natural Gas No. 2 Distillate Oil (876 hr/yr) Combustion Controls | | | | Carbon Monoxide | As Above | 15 ppm (gas, baseload)
20 ppm (oil baseload) | | | Sulfur Dioxide | As Above | 0.05% S in fuel oil | | | Sulfuric Acid Mist | As Above | 0.05% S in fuel oil | | According to the application, the maximum emissions from the facility will be approximately 858 tons per year (TPY) of NO_x, 366 TPY of CO, 75 TPY of PM/PM₁₀, 124 TPY of SO₂, 15 TPY of SAM, and 21 TPY of VOC. ## APPENDIX BD ## BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) ## **BACT DETERMINATION PROCEDURE:** In accordance with Chapter 62-212.400, F.A.C., this BACT determination is based on the maximum degree of reduction of each pollutant emitted which the Department of Environmental Protection (Department), on a case by case basis, taking into account energy, environmental and economic impacts, and other costs, determines is achievable through application of production processes and available methods, systems, and techniques. In addition, the regulations state that, in making the BACT determination, the Department shall give consideration to: - Any Environmental Protection Agency determination of BACT pursuant to Section 169, and any emission limitation contained in 40 CFR Part 60 - Standards of Performance for New Stationary Sources or 40 CFR Part 61 - National Emission Standards for Hazardous Air Pollutants. - All scientific, engineering, and technical material and other information available to the Department. - The emission limiting standards or BACT determination of any other state. - The social and economic impact of the application of such technology. The EPA currently stresses that BACT should be determined using the "top-down" approach. The first step in this approach is to determine, for the emission unit in question, the most stringent control available for a similar or identical emission unit or emission unit category. If it is shown that this level of control is technically or economically unfeasible for the emission unit in question, then the next most stringent level of control is determined and similarly evaluated. This process continues until the BACT level under consideration cannot be eliminated by any substantial or unique technical, environmental, or economic objections. ## STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES: The minimum basis for a BACT determination is 40 CFR 60, Subpart GG, Standards of Performance for Stationary Gas Turbines (NSPS). The Department adopted subpart GG by reference in Rule 62-204.800, F.A.C. The key emission limits required by Subpart GG are 75 ppmvd NO_X @ 15% O_2 (assuming 25 percent efficiency) and 150 ppmvd SO_2 @ 15% O_2 (or <0.8% sulfur in fuel). The BACT proposed by JEA is within the NSPS limit, which allows NO_X emissions, over 110 ppmvd for the high efficiency unit to be purchased for the Brandy Branch Facility. No National Emission Standard for Hazardous Air Pollutants exists for stationary gas turbines. ## **DETERMINATIONS BY EPA AND STATES:** The following table is based primarily on "F" Class intermittent-duty simple cycle turbines recently permitted or still under review. One project (PREPA) based on smaller units but permitted to operate continuously is included as an example of a simple cycle unit with add-on control equipment. Another continuous-duty project (Lakeland) based on the larger "G" Class is also included. The proposed JEA Brandy Branch project is included to facilitate comparison. # APPENDIX BD BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) |
 Project Location | Power Output
and Duty | NO _x Limit
ppmvd @ 15% O ₂
and Fuel | Technology | Comments | |------------------------|--------------------------|---|---------------------|---| | Lakeland, FL | 250 MW SC CON | 9/9 – NG (by 2002)
42/15 - No. 2 FO | DLN/HSCR
WI/HSCR | 250 MW WH 501G CT
Initially 25 ppm NO _x limit on gas
Issued 7/98. 250 hrs on oil. | | Oleander Cocoa, FL | 850 MW SC INT | 9 - NG
42 - No. 2 FO | DLN
WI | 5x170 MW GE PG7241FA CTs
Draft 4/99. 1000 hrs on oil | | JEA Brandy, FL | 510 MW SC INT | 12 - NG
42 - No. 2 FO | DLN
WI | 3x170 MW GE MS7241FA CTs
Application 5/99. 800 hrs on oil | | JEA Kennedy, FL | 170 MW SC INT | 15 - NG
42 - No. 2 FO | DLN
WI | 170 MW GE MS7241FA CT
Issued 2/99. Not PSD/BACT | | TEC Polk Power, FL | 330 MW SC INT | 10.5 – NG
42 – No. 2 F.O. | DLN
WI | 2x165 MW GE MS7241FA CTs
Application 2/99. 876 hrs on oil | | Dynegy Heard, GA | 510 MW SC INT | 15 – NG | DLN | 3x170 MW WH 501F CTs
Application. Gas only | | Tenaska Heard, GA | 960 MW SC INT | 15 - NG
42 - No. 2 FO | DLN
WI | 6x170 MW GE PG7241FA CTs
Issued 12/98. 720 hrs on oil | | Thomaston, GA | 680 MW
SC INT | 15 - NG
42 - No. 2 FO | DLN
WI | 4x170 MW GE PG7241FA CTs
Application. 1687 hrs on oil | | Dynegy Reidsville, NC | 900 MW SC INT | 15 - NG (by 2002)
42 - No. 2 FO | DLN
WI | 5x180 MW WH 501F CTs
Initially 25 ppm NO _x limit on gas
Draft 5/98. 1000 hrs on oil. | | RockGen Cristiana, WI | 525 MW SC INT | 15/12 – NG
42 - No. 2 FO | DLN WI | 3x175 MW GE PG7241FA CTs
15/12 ppm are on 1/24 hr basis
Issued 1/99. 800 hrs on oil | | SEI Neenah, WI | 330 MW SC INT | 15/12 - NG
42 - No. 2.FO | DLN
WI | 2x165 MW GE PG7241FA CTs
15/12 ppm are on 1/24 hr basis
Issued 1/99. 8760/699 hrs gas/oil | | PREPA, PR | 248 MW SC CON- | 10 - No. 2 FO | WI & HSCR | 3x83 MW ABB GT11N CTs
Issued 12/95. | CON = Continuous SC = Simple Cycle INT = Intermittent $DLN = Dry Low NO_x Combustion f$ FO = Fuel Oil SCR = Selective Catalytic Reduction HSCR = Hot.SCR NG = Natural Gas GE = General Electric WH = Westinghouse | NT = Intermittent H | SCR = Hot,SCR \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | WI = Water or Steam Injection ABB = Asea Brown Boyari | | | | |------------------------|---|---|-------------------|-----------------|--| | Project Location | CO - ppm | VOC - ppm | PM - lb/hr | Technology and | | | 1 Toject Bocation | (or as indicated) | (or as indicated) | (or as indicated) | Comments | | | Lakaland El | 25 - NG or 10 by Ox Cat | 4 – NG | 109/ Openity | Clean Fuels | | | Lakeland, FL | 75 - FO @ 15% O ₂ | 10 – FO | 10% Opacity | Good Combustion | | | Oleanday Casas EV | 12 - NG | 3 – NG | 100/ Openie | Clean Fuels | | | Oleander Cocoa, FL | 20 - FO | 6 – FO | 10% Opacity | Good Combustion | | | ICA Day and CI | 15 - NG | 1.4 – NG | 9 lb/hr - NG | Clean Fuels | | | JEA Brandy, FL | 20/26 (full/part load) - FO | 1.4 – FO | 17 lb/hr - FO | Good Combustion | | | IEA Vonada, EI | 15 - NG | 1.4 – NG | 9 lb/hr - NG | Clean Fuels | | | JEA Kennedy, FL | 20 - FO | 3.5 – FO | 17 lb/hr - FO | Good Combustion | | | TEC Dalle Dames El | 15 - NG | 7 – NG | 109/ () | Clean Fuels | | | TEC Polk Power, FL | 33 - FO | 7 – FO | 10% Opacity | Good Combustion | | | Dunany Heard Co. CA | 25 NG | 2 NC | 2 NC | Clean Fuels | | | Dynegy Heard Co., GA | 25 - NG | ? – NG | ? - NG | Good Combustion | | | Tenaska Heard Co., GA | 15 - NG | ? – NG | ? - NG | Clean Fuels | | | Tellaska Heald Co., GA | 20 - FO | ?-FO | ? lb/hr - FO | Good Combustion | | | Dynegy Reidsville, NC | 25 - NG | 6 lb/hr – NG | 6 lb/hr - NG | Clean Fuels | | | Dynegy Keidsville, NC | 50 - FO | 8 lb/hr – FO | 23 lb/hr - FO | Good Combustion | | | RockGen Cristiana, WI | 12@>50% load - NG | 2 - NG | 18 lb/hr – NG | Clean Fuels | | | RockGen Cristiana, Wi | 15@>75% 24@<75% - FO | 5 - FO | 44 lb/hr - FO | Good Combustion | | | SEI Neenah, WI | 12@>50% load - NG | 2 - NG | 18 lb/hr - NG | Clean Fuels | | | JEI NECHAII, WI | 15@>75% 24@<75% - FO | 5 - FO | 41 lb/hr - FO | Good Combustion | | | PREPA, PR | 0 FO @159/ O | 11 FO @159/ C | 0.0171/doof | Clean Fuels | | | rkera, jrk | 9 – FO @15% O ₂ | 11 – FO @15% O ₂ | 0.0171 gr/dscf | Good Combustion | | JEA Brandy Branch Facility - Units 001 - 006 Three 170 MW Simple Cycle Combustion Turbines Permit No. PSD -FL-267 Facility I.D. No. 0310485 #### APPENDIX BD #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) # OTHER INFORMATION AVAILABLE TO THE DEPARTMENT: Besides the information submitted by the applicant and that mentioned above, other information available to the Department consists of: - Comments from the Fish and Wildlife Service dated July 20, 1999 - DOE website information on Advanced Turbine Systems Project - Alternative Control Techniques Document NO_x Emissions from Stationary Gas Turbines - General Electric 39th Turbine State-of-the-Art Technology Seminar Proceedings - GE Guarantee for Jacksonville Electric Authority Branch Station Project - GE Power Generation Speedtronic[™] Mark V Gas Turbine Control System - GE Combustion Turbine Startup Curves - JEA Website www.jea.com - Goal Line Environmental Technologies Website www.glet.com - Catalytica Website www.catalytica-inc.com # REVIEW OF NITROGEN OXIDES CONTROL TECHNOLOGIES: Some of the discussion in this section is based on a 1993 EPA document on Alternative Control Techniques for NO_x Emissions from Stationary Gas Turbines. Project-specific information is included where applicable. ## Nitrogen Oxides Formation Nitrogen oxides form in the gas turbine combustion process as a result of the dissociation of molecular nitrogen and oxygen to their atomic forms and subsequent recombination into seven different oxides of nitrogen. Thermal NO_x forms in the high temperature area of the gas turbine combustor. Thermal NO_x increases exponentially with increases in flame temperature and linearly with increases in residence time. Flame temperature is dependent upon the ratio of fuel burned in a flame to the amount of fuel that consumes all of the available oxygen. By maintaining a low fuel ratio (lean combustion), the flame temperature will be lower, thus reducing the potential for NO_X formation. Prompt NO_X is formed in the proximity of the flame front as intermediate combustion products. The contribution of Prompt to overall NO_X is relatively small in near-stoichiometric combustors and increases for leaner fuel mixtures. This provides a practical limit for NO_X control by lean combustion. Fuel NO_x is formed when fuels containing bound nitrogen are burned. This phenomenon is not important when combusting natural gas. It is not a significant issue for the JEA project because these units will not be continuously operated, but rather will be "peakers". Also, low sulfur fuel oil (which has more fuel-bound nitrogen than natural gas) is proposed to be used for no more than 800 hours per year (per CT). Uncontrolled emissions range from about 100 to over 600 parts per million by volume, dry, corrected to 15 percent oxygen (ppmvd @15% O₂). The Department estimates uncontrolled #### APPENDIX BD #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) emission's at approximately 200 ppmvd @15% O_2 for each turbine of the JEA Project. The proposed NO_X controls will reduce these emissions significantly. # NO_x Control Techniques # Wet Injection Injection of either water or steam directly into the combustor lowers the flame temperature and thereby reduces thermal NO_x formation. Typical emissions achieved by wet injection are in the range of 15–25 ppmvd when firing gas and 42 ppmvd when firing fuel oil in large combustion turbines. These values often form the basis, particularly in combined cycle turbines, for further reduction to BACT limits by other techniques. Carbon monoxide (CO) and hydrocarbon (HC) emissions are relatively low for most gas turbines. However steam and (more so) water injection increase emissions of both of these pollutants. ## Combustion Controls The excess air in lean combustion cools the flame and reduces the rate of thermal NO_X formation. Lean premixing of fuel and air prior to combustion can further reduce NO_X emissions. This is accomplished by minimizing localized fuel-rich pockets (and high temperatures) that can occur when trying to achieve lean mixing within the combustion zones. The above principle is depicted in Figure 1 for a General Electric DLN-1 can-annular combustor operating on gas. For ignition, warm-up, and acceleration to approximately 20 percent load, the first stage serves as the complete combustor. Flame is present only in the first stage, which is operated as lean stable combustion will-permit. With increasing load, fuel is introduced into the secondary stage, and combustion takes place in both stages. When the load reaches approximately 40 percent, fuel is cut off to the first stage and the flame in this stage is extinguished. The venturi ensures the flame in the second stage cannot propagate upstream to the first stage. When the fuel in the first-stage flame is extinguished (as verified by internal flame detectors), fuel is again introduced into the first stage, which becomes a premixing zone to deliver a lean, unburned, uniform mixture to the second stage. The second stage acts as the complete combustor in this configuration. To further reduce NO_X emissions, GE developed the DLN-2.0 (cross section shown in Figure 1) wherein air usage (other than for premixing) was minimized. The venturi and the centerbody assembly were eliminated and each combustor has a single burning zone. So-called "quaternary fuel" is introduced through pegs located on the circumference of the outward combustion casing. GE has made further improvements in the DLN design. The most recent version is the DLN-2.6 (proposed for the JEA project). The combustor is similar to the DLN-2 with the addition of a sixth (center) fuel nozzle. The emission characteristics of the DLN-2.6 combustor while firing natural gas are given in Figure 2 for a unit tuned to meet a 15 ppmvd NO_X limit (by volume, dry corrected to at 15 percent oxygen) at Jacksonville Electric Authority's Kennedy Station. NO_X concentrations are higher in the exhaust at lower loads because the combustor does not operate in the lean pre-mix mode. Therefore such a combustor emits NO_X at concentrations of 15 ppmvd at loads between 50 and 100 percent of capacity, but concentrations as high as 100 ppmvd at less than 50 percent of capacity. Note that VOC comprises a very small amount of the "unburned hydrocarbons" which in turn is mostly non-VOC methane. #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) The combustor can be tuned differently to achieve emissions as low as 9 ppm of NO_X and 9 ppm of CO. Emissions characteristics while firing oil are expected to be similar for the DLN-2.6 as they are for those of the DLN-2.0 shown in Figure 3. Simplified cross sectional views of the totally premixed DLN-2.6 combustor to be installed at the
JEA project are shown in Figure 4. In all but the most recent gas turbine combustor designs, the high temperature combustion gases are cooled to an acceptable temperature with dilution air prior to entering the turbine (expansion) section. The sooner this cooling occurs, the lower the thermal NO_x formation. Cooling is also required to protect the first stage nozzle. When this is accomplished by air cooling, the air is injected into the component and is ejected into the combustion gas stream, causing a further drop in combustion gas temperature. This, in turn, lowers achievable thermal efficiency for the unit. Larger units, such as the Westinghouse 501 G or the planned General Electric 7H, use steam in a closed loop system to provide much of the cooling. The fluid is circulated through the internal portion of the nozzle component or around the transition piece between the combustor and the nozzle and does not enter the exhaust stream. Instead it is normally sent back to a steam generator. The difference between flame temperature and firing temperature into the first stage is minimized and higher efficiency is attained. Another important result of steam cooling is that a higher firing temperature can be attained with no increase in flame temperature. Flame temperatures and NO_X emissions can therefore be maintained at comparatively low levels even at high firing temperatures. At the same time, thermal efficiency should be greater when employing steam cooling. A similar analysis applies to steam cooling around the transition piece between the combustor and first stage nozzle. The relationship between flame temperature, firing temperature, unit efficiency, and NO_x formation can be appreciated from Figure 5 which is from a General Electric discussion on these principles. In addition to employing pre-mixing and steam cooling, further reductions are accomplished through design optimization of the burners, testing, further evaluation, etc. At the present time, emissions achieved by combustion controls are as low as 9 ppmvd from gas turbines smaller than 200 MW (simple cycle), such as GE "F Class" units. Even lower NO_X emissions are achieved from certain units smaller than 100 MW, such as the GE 7EA line. #### Selective Catalytic Combustion Selective catalytic reduction (SCR) is an add-on NO_X control technology that is employed in the exhaust stream following the gas turbine. SCR reduces NO_X emissions by injecting ammonia into the flue gas in the presence of a catalyst. Ammonia reacts with NO_X in the presence of a catalyst and excess oxygen yielding molecular nitrogen and water. The catalysts used in combined cycle, low temperature applications (conventional SCR), are usually vanadium or titanium oxide and account for almost all installations. For high temperature applications (Hot SCR up to 1100 °F), such as simple cycle turbines, zeolite catalysts are available but used in few applications to-date. SCR units are typically used in combination with wet injection or DLN combustion controls. In the past, sulfur was found to poison the catalyst material. Sulfur-resistant catalyst materials are now becoming more available. Catalyst formulation improvements have proven effective in resisting sulfur-induced performance degradation with fuel oil in Europe and Japan, where conventional SCR catalyst life in excess of 4 to 6 years has been achieved, while 8 to 10 years catalyst life has been reported with natural gas. #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) Excessive ammonia use tends to increase emissions of CO, ammonia (slip) and particulate matter (when sulfur-bearing fuels are used). As of early 1992, over 100 gas turbine installations already used SCR in the United States. Per the above table, only one combustion turbine project in Florida (FPC Hines Power Block 1) employs SCR. The equipment was installed on a temporary basis because Westinghouse had not yet demonstrated emissions as low as 12 ppmvd by DLN technology at the time the units were to start up in 1998. SCR is also proposed on a permanent basis for the expansion of the FPC Hines Facility (Power Block II). Seminole Electric will install SCR on a previously-permitted 501F unit at the Hardee Unit 3 project. The reasons are similar to those for the FPC Hines Power Block I. Permit limits as low as 2.25 to 3.5 ppmvd NO_x have been specified using SCR on combined cycle F Class projects throughout the country. #### Selective Non-Catalytic Combustion Selective non-catalytic reduction (SNCR) reduction works on the same principle as SCR. The differences are that it is applicable to hotter streams than conventional or hot SCR, no catalyst is required, and urea can be used as a source of ammonia. No applications have been identified wherein SNCR was applied to a gas turbine because the exhaust temperature of 1100 °F is too low to support the NO_X removal mechanism. The Department did, however, specify SNCR as one of the available options for the combined cycle Santa Rosa Energy Center. The project will incorporate a large 600 MMBtu/hr duct burner in the heat recovery steam generator (HRSG) and can provide the acceptable temperatures (between 1400 and 2000 °F) and residence times to support the reactions. ### Emerging Technologies: SCONOXTM and XONONTM There are at last two technologies on the horizon that will influence BACT determinations. These, as usual, are prompted by the needs specific to non-attainment areas such as Southern California. The first technology is called SCONO_XTM and is a catalytic technology that achieves NO_X control by oxidizing and then absorbing the pollutant onto a honeycomb structure coated with potassium carbonate. The pollutant is then released as harmless molecular nitrogen during a regeneration cycle that requires a dilute hydrogen reducing gas. The technology has been demonstrated on small units in California and has been purchased for a small source in Massachusetts.¹ California regulators and industry sources have stated that the first 250 MW block to install SCONOx TM will be at U.S. Generating's La Paloma Plant near Bakersfield.² The overall project includes several more 250 MW blocks with SCR for control.³ USEPA has identified an "achieved in practice" BACT value of 2.0 ppmvd over a three-hour rolling average based upon the recent performance of a Vernon, California natural gas-fired 32 MW combined cycle turbine (without duct burners) equipped with the patented SCONOxTM system SCONOxTM technology (at 2.0 ppmvd) is considered to represent LAER in non-attainment areas where cost is not a factor in setting an emission limit. It competes with less-expensive SCR in those areas, but has the advantages that it does not cause ammonia emissions in exchange for NO_X reduction. Advantages of the SCONOx TM process include in addition to the reduction of NO_X, the elimination of ammonia and the control of some CO emissions. SCONOxTM has not been applied on any major sources in ozone attainment areas. #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) In a letter dated March 23, 1998 to Goal Line Environmental Technologies, the SCONOxTM process was deemed as technically feasible for maintaining NO_x emissions at 2 ppmvd on a combined cycle unit. ABB Environmental was announced on September 10, 1998 as the exclusive licensee for SCONOxTM for United States turbine applications larger than 100 MW. ABB Power Generation has stated that scale up and engineering work will be required before SCONOxTM can be offered with commercial guarantees for large turbines (based upon letter from Kreminski/Broemmelsiek of ABB Power Generation to the Massachusetts Department of Environmental Protection dated November 4, 1998). SCONOx requires a much lower temperature regime that is not available in simple cycle units and is therefore not feasible for this project. Therefore the SCONOx system cannot be considered as achievable or demonstrated in practice for this application. The second technology is XONONTM, which works by partially burning fuel in a low temperature pre-combustor and completing the combustion in a catalytic combustor. The overall result is low temperature partial combustion (and thus lower NO_x combustion) followed by flameless catalytic combustion to further attenuate NO_x formation. The technology has been demonstrated on combustors on the same order of size as SCONO_x TM has. However GE has teamed with Catalytica to develop a combustor for gas turbines in the 80-90 MW range before continuing with development on a combustor for a larger unit. XONONTM avoids the emissions of ammonia and the need to generate hydrogen. It is also extremely attractive from a mechanical point of view. Catalytica Combustion Systems, Inc. develops, manufactures and markets the XONONtm Combustion System. In a press release on October 8, 1998 Catalytica announced the first installation of a gas turbine equipped with the XONONTM Combustion System in a municipally owned utility for the production of electricity. The turbine was started up on that day at the Gianera Generating Station of Silicon Valley Power, a municipally owned utility serving the City of Santa Clara, Calif. The XONONtm Combustion System, deployed for the first time in a commercial setting, is designed to enable turbines to produce environmentally sound power without the need for expensive cleanup solutions. Previously, this XONONtm system had successfully completed over 1,200 hours of extensive full-scale tests which documented its ability to limit emissions of nitrogen oxides, a primary air pollutant, to less than 3 parts per million. Catalytica's XONONTM system is represented as a powerful technology that essentially eliminates the formation of nitrogen oxides air emissions in gas turbines without impacting the turbine's operating performance. In a definitive agreement signed on November 19, 1998, GE Power Systems and Catalytica agreed to cooperate in the design,
application, and commercialization of XONONTM systems for both new and installed GE E-class and F-class turbines used in power generation and mechanical drive applications. This appears to be an up-and-coming technology, the development of which will be watched closely by the Department for future applications. It is not yet available for fuel oil and cycling operation. #### REVIEW OF SULFUR DIOXIDE (SO2) AND SULFURIC ACID MIST (SAM) SO₂ control processes can be classified into five categories: fuel/material sulfur content limitation, absorption by a solution, adsorption on a solid bed, direct conversion to sulfur, or direct conversion to sulfuric acid. A review of the BACT determinations for combustion turbines #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) contained in the BACT Clearinghouse shows that the exclusive use of low sulfur fuels constitutes the top control option for SO₂. For this project, the applicant has proposed as BACT the use of 0.05% sulfur oil and pipeline natural gas. The applicant estimated total emissions for the project at 124 TPY of SO₂ and 15 TPY of SAM. The Department expects the emissions to be lower because of the limited oil consumption and the typical natural gas in Florida that contains less than 1 grain of sulfur per 100 standard cubic feet (gr S/100ft³). This value is well below the "default" maximum value of 20 gr. S/100 ft³, but high enough to require a BACT determination. #### REVIEW OF PARTICULATE MATTER (PM/PM₁₀) CONTROL TECHNOLOGIES: Particulate matter is generated by various physical and chemical processes during combustion and will be affected by the design and operation of the NO_X controls. The particulate matter emitted from this unit will mainly be less than 10 microns in diameter (PM₁₀). Natural gas and 0.05 percent sulfur No. 2 (or superior grade) distillate fuel oil will be the only fuels fired and are efficiently combusted in gas turbines. Such fuels are necessary to avoid damaging turbine blades and other components already exposed to very high temperature and pressure. Natural gas is an inherently clean fuel and contains no ash. The fuel oil to be combusted contains a minimal amount of ash and its use is proposed for only 800 hours per year making any conceivable add-on control technique for PM/PM₁₀ either unnecessary or impractical. A technology review indicated that the top control option for PM/PM₁₀ is a combination of good combustion practices, fuel quality, and filtration of inlet air. Total annual emissions of PM₁₀ for the project are expected to be approximately 75 tons per year. #### REVIEW OF CARBON MONOXIDE (CO) CONTROL TECHNOLOGIES CO is emitted from combustion turbines due to incomplete fuel combustion. Combustion design and catalytic oxidation are the control alternatives that are viable for the project. The most stringent control technology for CO emissions is the use of an oxidation catalyst. All combustion turbines using catalytic oxidation appear to be combined cycle units. Among the most recently permitted ones are the 500 MW Wyandotte Energy project in Michigan, the El Dorado project in Nevada, Ironwood in Pennsylvania, Millenium in Massachusetts, and Sutter Calpine in California. The permitted CO values of these units are between 3 and 5 ppm. Catalytic oxidation was recently installed at a cogeneration plant at Reedy Creek (Walt Disney World), Florida to avoid PSD review which would have been required due to increased operation at low load. Seminole Electric recently proposed catalytic oxidation in order to meet the permitted CO limit at its planned 244 MW Westinghouse 501FD combined cycle unit in Hardee County, Florida.⁴ Most combustion turbines incorporate good combustion to minimize emissions of CO. So far this appears to be the only technology proposed at simple cycle turbine projects. These installations typically achieve emissions between 10 and 25 ppm at full load while firing gas. The values of 15 and 20 ppm for gas and oil respectively at baseload proposed in JEA's original application are within the range of recent determinations for simple cycle CO BACT determinations. By comparison, values of 12 and 20 ppm for gas and oil respectively (at baseload) were proposed for ## APPENDIX BD BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) the Oleander's project using identical equipment. Values given in GE-based applications are representative of operations between 50 and 100 percent of full load. #### REVIEW OF VOLATILE ORGANIC COMPOUND (VOC) CONTROL TECHNOLOGIES Volatile organic compound (VOC) emissions, like CO emissions, are formed due to incomplete combustion of fuel. There are no viable add-on control techniques as the combustion turbine itself is very efficient at destroying VOC. The applicant has proposed good combustion practices to control VOC. The limits proposed by JEA for this project are 1.4 ppm for both gas and oil firing at baseload. According to GE, however, VOC emissions less than 1.4 ppm were achieved during recent tests of the DLN-2.6 technology when firing natural gas.⁵ By comparison, limits of 3 and 6 ppm were proposed for gas and oil firing respectively in the Oleander application. The limits proposed by JEA are sufficiently low to exempt the Brandy Branch project from BACT for VOC. #### **BACKGROUND ON PROPOSED GAS TURBINE** JEA plans the purchase of three 170 MW (nominal) General Electric PG 7241FA simple cycle gas turbines. This is the most recent designation of GE's line of "F" Class units. The first commercial GE 7F Class unit was installed in a <u>combined cycle</u> project at the Virginia Power Chesterfield Station in 1990.⁶ The initial units had a firing temperature of 2300 °F and a combined cycle efficiency exceeding 50 percent. By the mid-90s, the line was improved by higher combustor pressure, a firing temperature of 2400 °F, and a combined cycle efficiency of approximately 56 percent based on a 167 MW combustion turbine. The line was redesignated as the 7FA Class. The first GE 7F/FA project in Florida was at the FPL Martin Plant in 1993 and entered commercial service in 1994.⁷ The units were equipped with DLN-2 combustors with a permitted NO_x limit of 25 ppmvd. These actually achieved emissions of 13-25 ppmvd of NO_x, 0-3 ppm of CO, and 0-0.17 ppm of VOC.⁸ The City of Tallahassee recently received approval to install a GE 7FA Class unit at its Purdom Plant.⁹ Although permitted emissions are 12 ppmvd of NO_x, the City obtained a performance guarantee from GE of 9 ppmvd.¹⁰ FPL also obtained a guarantee and permit limit of 9 ppmvd NO_x for six GE 7241FA turbines to be installed at the Fort Myers Repowering project.¹¹ The Santa Rosa Energy Center in Pace, Florida, also received a permit with a 9 ppmvd NO_x limit for a GE 7241 turbine with DLN-2.6 burners.¹² Most recently, the Department issued draft BACT determinations for the <u>simple cycle</u> Oleander project in Brevard County and the combined cycle projects in Volusia (Duke Energy) and Osceola County (Kissimmee Utilities). These three draft permits also include NO_x limits of 9 ppmvd based on the DLN-2.6 technology installed on F Class units. General Electric has primarily relied on further advancement and refinement of DLN technology to provide sufficient NO_X control for their <u>combined cycle</u> turbines in Florida. Where required by BACT determinations of certain states, General Electric incorporates SCR in combined cycle projects.¹³ In its recent permits, Florida has included separate and lower limits in the event that DLN emissions limits are not attainable or the applicant selects a manufacturer that does not provide combustors capable of meeting 9 ppmvd. #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) GE's approach of progressively refining such technology is a proven one, even on some relatively large units. Recently GE Frame 7FA units met performance guarantees of 9 ppmvd with "DLN-2.6" burners at Fort St. Vrain, Colorado and Clark County, Washington. Although the permitted limit is 15 ppmvd, GE has already achieved emission levels of approximately 6-7 ppmvd on gas at a dual-fuel 7EA (120 MW combined cycle) KUA Cane Island Unit 2. Unit 2 is equipped with DLN-2 combustors. According to GE, similar performance is expected soon on the 7FA line such as the one that will be installed for the JEA Brandy Branch Project. Performance guarantees less than 9 ppmvd can be expected for DLN-2.6 combustors on units delivered in a couple of years. The 12 ppmvd NO_X limit on natural gas proposed by JEA is a fairly stringent BACT determination for simple cycle F Class, though it is becoming less so. The company has obtained a guarantee from GE to achieve 9 ppmvd, which is for a performance test on a "new and clean unit." The test must be conducted at a steady-state load of 50 to 100 percent and completed within the first 100 fired hours of operation as specified in the GE protocols. With the frequent start-ups and shutdowns of the unit, JEA is concerned about the ability to maintain the low (9 ppmvd) NO_X values for long periods of time following the performance tests. Presumably, this concern would be lessened should these units be converted to a more continuous duty (i.e. combined cycle). Although the Department is not fully aware of the details of the GE guarantee for Oleander (proposed 9 ppmvd on a simple cycle unit), the Department is aware from discussions with other applicants that a continuing guarantee is available at a substantial cost.¹⁷ The GE SpeedtronicTM Mark V Gas Control System will be used. This control system is designed to fulfill all gas turbine control requirements. These include control of liquid, gas, or both fuels in accordance with the requirements of the speed, load control under part-load conditions, temperature control under maximum capability conditions, or during start-up conditions. Since emissions are controlled utilizing dry low NO_x techniques, fuel staging and combustion mode are also
controlled by the Mark V, which also monitors the process. Sequencing of the auxiliaries to allow fully automated start-up, shutdown and cool-down are also handled by the Mark V.¹⁸ #### **DEPARTMENT BACT DETERMINATION** Following are the BACT limits determined for the JEA project assuming full load. Values for NO_x are corrected to 15% O₂ on a dry volume basis. The emission limits or their equivalents in terms of pounds per hour and NSPS units, as well as the applicable averaging times, are given in the permit Specific Conditions No. 20 through 25. | POLLUTANT | CONTROL TECHNOLOGY | PROPOSED BACT LIMIT | |--------------------------|--|---| | PM/PM ₁₀ , VE | Pipeline Natural Gas Good Combustion | 10 Percent Opacity | | со | As Above | 12 ppm – Gas
20 ppm – Fuel Oil | | SO ₂ /SAM | As Above | 2 grains of sulfur per 100 ft ³ gas
0.05 percent sulfur in fuel oil | | NO _x | Dry Low NO _x , WI for F.O., limited oil use | 10.5 ppmvd – Gas
42 ppmvd – F.O. for 750 of 4000hours | #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) #### **RATIONALE FOR DEPARTMENT'S DETERMINATION** - General Electric has provided a "clean and new" one time guarantee of 9 ppmvd NO_x. - Typical "continuous" permit limits nation-wide for these GE 7FA units while operating on natural gas and in simple cycle mode and intermittent duty are 12-15 ppmvd even though GE provides the same "new and clean" guarantees for them. Limits as high as 25 ppmvd have been recently proposed by some for similar units produced by other manufacturers. - A level of 9 ppmvd NO_X by DLN has been demonstrated on GE 7FA combustion turbines at Fort St. Vrain, Colorado and Clark County, Washington. However the permitted limits are actually higher at these two facilities providing some level of operating margin. - A limit of 9 ppmvd was <u>proposed</u> by Oleander for five GE7 FA units and is reflected in the Department's recent Draft BACT Determination for that facility. A BACT level of 9 ppmvd has been proposed by Virginia Power for a GE 7FA unit to avoid non-attainment New Source Review. - The proposed 9 ppmvd limit at Oleander and Virginia Power while firing natural gas is the lowest known <u>Draft BACT</u> value for an "F" frame combustion turbine operating in simple cycle mode and intermittent duty. The 42 ppmvd limit while firing fuel oil is typical. - The Department prepared a Draft permit for the TEC Polk Power Station Project adopting TEC's proposed 10.5 ppmvd limit for two GE 7FA units, but limited the hours of operation on fuel to less than the hours allowed at Oleander. The TEC Draft BACT is being issued concurrently with the Draft BACT for the JEA project. - JEA's <u>proposed</u> 12 ppmvd limit for the Brandy Branch Facility while firing natural gas is relatively low for a GE 7FA Class simple cycle, intermittent duty unit. - The <u>Department</u>, however proposes a BACT limit of 10.5 ppmvd which is the same as proposed for the TEC project. The Department also proposes to limit oil firing to the same number of hours as TEC (750) and less than the number of hours at Oleander (1000). - The Department will still require JEA to meet to meet the "clean and new" limit of 9 ppmvd during initial testing as well as requiring a continuous 9 ppmvd guarantee in the event that JEA converts the units to continuous duty (i.e. combined cycle). - The proposed BACT limit of 10.5 ppmvd is about one-tenth of the applicable NSPS limit per 40 CFR 60, Subpart GG for units as efficient as the 7FA. - The units will be operated in simple cycle mode. Therefore control options, which are feasible for combined cycle units, are not applicable. This rules out Low Temperature (conventional) SCR, which achieves 4.5 ppmvd NO_x or lower. It also rules out the possibility of SCONOx. XONON is not available for F Class dual fuel projects. - The simple cycle "F Class" turbines have very high exhaust temperatures of up to 1200 °F. This is at the higher limit of the present operational temperature of Hot SCR zeolite catalyst (around 1050 °F). The PREPA simple cycle turbines, which use Hot SCR, have exhaust temperatures ranging from 824 to 1024 °F. #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) - The levelized costs of NO_X removal by Hot SCR for the JEA project were estimated by Black & Veatch at \$13,380 per ton assuming 4000 hours of operation on natural gas and a reduction from 12 to 5 ppmvd. - TEC estimated the cost of Hot SCR at \$9,717 per ton of NO_X removed assuming 4,380 and 876 hours per year of operation on gas and oil respectively. - The Department previously concluded that Hot SCR is cost-effective for continuous duty simple cycle service (Lakeland). EPA also concluded Hot SCR is cost-effective on continuous duty simple cycle projects (PREPA). - Although the Department does not have a "bright line" cost-effectiveness figure and does not necessarily adopt the precise cost calculations for the JEA and TEC projects, the values projected by JEA and TEC indicate that Hot SCR is not cost-effective for their respective projects. - Comments from the National Park Service on the Oleander project suggested that a reduction in the applicant's proposed NO_x emissions on oil from 42 ppmvd to 25 ppmvd is possible based on reported oil-fired units listed in the BACT Clearinghouse. GE has advised that it only offers a 42 ppmvd NO_x guarantee on F Class units when firing oil. - The Department is aware that ABB offers a DLN technology for fuel oil firing applicable to at least certain smaller combustion turbines (ABB-GTX). It is noted, however that ABB does not offer a guarantee of 9 ppmvd on the same unit when firing natural gas. - It is possible that the NO_X emissions while firing oil from may be reduced from 42 ppmvd by increasing the water injection rate. In order to address this possibility, a specific condition will be added to conduct appropriate testing and prepare an engineering report. The report will be submitted for the Department's review to ensure that the lowest reliable NO_X emission rates while firing oil have been achieved. - The Department's overall BACT determination is equivalent to approximately 0.3 lb/MW-hr by Dry Low NO_x. For reference, the new NSPS promulgated on September 3, 1998 requires that new conventional power plants (based on boilers, etc.) meet a limit of 1.6 lb/MW-hr. - VOC emissions of 1.4 ppm while firing gas or oil proposed by the applicant clearly reflect BACT and, in fact, exempt the project from a BACT determination for VOC. The Department will set VOC limits at 2 ppm (gas) and 3.5 ppm (oil). These values are still sufficient to maintain VOC emissions to less than 40 tons per year. - The Department will set CO limits achievable by good combustion at full load as 12 ppm (gas) and 20 ppm (oil). These values are equal to the lowest values from permitted or proposed simple cycle units. These limits are equal to those proposed by the Department for Oleander and TEC project. - Black & Veatch evaluated the use of an oxidation catalyst for the JEA project with an 88 percent control efficiency and having a three-year catalyst life. The oxidation catalyst control system was estimated to increase the capital cost of the project by \$1,905,000 with an annualized cost of \$509,000 per year. Levelized costs for CO catalyst control were calculated at \$4,700 per ton. This figure does not appear to be cost-effective for removal c? CO. ## APPENDIX BD BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) - BACT for PM₁₀ was determined to be good combustion practices consisting of: inlet air filtering; use of pipeline natural gas; use of clean, low ash, low sulfur fuels, and operation of the unit in accordance with the manufacturer-provided manuals. - PM₁₀ emissions will be very low and difficult to measure. Additionally, the higher emission mode will involve fuel oil firing which will occur only approximately 750 hours per year. It is not practical to require running the turbine on oil, simply to conduct tests. Therefore, the Department will set a Visible Emission standard of 10 percent opacity as BACT for both natural gas and fuel oil firing, consistent with the definition of BACT. Examples of installations with similar VE limits include the City of Lakeland, the City of Tallahassee, Santa Rosa Energy Center, FPL Fort Myers, and the Southern Company Barry projects. #### **Compliance Procedures** | POLLUTANT | COMPLIANCE PROCEDURE | |---------------------------------------|--| | Visible Emissions | Method 9 | | Carbon Monoxide | Annual Method 10 (can use RATA if at capacity) | | NO _X (performance) | Annual Method 20 (can use RATA if at capacity) | | NO _X (24-hr block average) | NO _X CEMS, O ₂ or CO ₂ diluent monitor, and flow device as needed | | SO ₂ and SAM | Custom Fuel Monitoring Schedule | #### **DETAILS OF THE ANALYSIS MAY BE OBTAINED BY CONTACTING:** A. A. Linero, P.E. Administrator, New Source Review Section Michael P. Halpin, P.E., Review Engineer, New Source Review Section Department of Environmental Protection Bureau of Air Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400 | Recommended By: | Approved By: | |--|---| | C. H. Farran, D.F. Child | Harris II. Dhadaa Director | | C. H. Fancy, P.E., Chief
Bureau of Air Regulation | Howard L. Rhodes, Director Division of Air Resources Management | | | | | Date: | Date: | #### BEST AVAILABLE CONTROL TECHNOLOGY DETERMINATION (BACT) #### REFERENCES - News Release. Goaline Environmental. Genetics Institute Buys SCONOx Clean Air System. August 20, 1999. - ² "Control Maker Strives to Sway Utility Skeptics." Air Daily. Volume 5, No. 199.
October 14, 1998. - ³ Telecom. Linero, A.A., FDEP, and Beckham, D., U.S. Generating. Circa November 1998. - Letter from Opalinski, M.P., SECI to Linero, A.A., FDEP. Turbines and Related Equipment at Hardee unit 3. December 9, 1998. - ⁵ Telecon. Vandervort, C., GE, and Linero, A.A., DEP. "VOC Emissions from FA Gas Turbines with DLN-2.6 Combustors." - ⁶ Brochure. General Electric. "GE Gas Turbines MS7001FA." Circa 1993. - Davis, L.B., GE. "Dry Low NO_x Combustion Systems for GE Heavy Duty Gas Turbines." 1994. - ⁸ Report. Florida Power & Light. "Final Dry Low NO_x Verification Testing at Martin Combine Cycle Plant." August 7, 1995. - ⁹ Florida DEP. PSD Permit, City of Tallahassee Purdom Unit 8. May, 1998. - ¹⁰ City of Tallahassee. PSD/Site Certification Application. April, 1997. - Florida DEP. Intent to Issue Permit. FPL Fort Myers Repowering Project. September, 1998. - Florida DEP. Final Permit. Santa Rosa Energy Center. December, 1998. - State of Alabama. PSD Permit, Alabama Power/Barry Sithe/IPP (GE 7FA). - Telecon. Schorr, M., GE, and Costello, M., Florida DEP. March 31, 1998. Status of DLN-2.6 Program - Florida DEP. Bureau of Air Regulation Monthly Report. June, 1998. - Telecon. Schorr, M., GE, and Linero, A.A., Florida DEP. August, 1998. Cost effectiveness of DLN versus SCR. - Telecon. Gianazza, N.B., JEA, and Linero, A.A., Florida DEP. Proposed NO_X limits at Brandy Branch Project. - ¹⁸ Rowen, W.I. "General Electric SpeedtronicTM Mark V Gas Turbine Control System. 1994." Figure 1 - Dry Low NOx Operating Modes - DLN-1 Cross Section of GE DLN-2 Figure 2 - Emissions Performance Curves for GE DLN-2.6 Combustor Firing Natural Gas in a Dual Fuel GE 7FA Combustion Turbine (Simple Cycle, Intermittent Duty - If Tuned to 15 ppm NOx) Figure 3 - Emissions Performance for DLN-2 Combustors Firing Fuel Oil in Dual Fuel GE 7FA Turbine Figure 4 - DLN-2.6 Nozzle and Burner Arrangement Figure 5 - Relation Between Flame Temperature and Firing Temperature - G.1 The terms, conditions, requirements, limitations, and restrictions set forth in this permit are "Permit Conditions" and are binding and enforceable pursuant to Sections 403.161, 403.727, or 403.859 through 403.861, Florida Statutes. The permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions. - G.2 This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings or exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department. - G.3 As provided in Subsections 403.087(6) and 403.722(5), Florida Statutes, the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state or local laws or regulations. This permit is not a waiver or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in the permit. - G.4 This permit conveys no title to land or water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title. - This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department. - G.6 The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit, as required by Department rules. This provision includes the operation of backup or auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules. - G.7 The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at a reasonable time, access to the premises, where the permitted activity is located or conducted to: - a) Have access to and copy and records that must be kept under the conditions of the permit; - b) Inspect the facility, equipment, practices, or operations regulated or required under this permit, and, - c) Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules. Reasonable time may depend on the nature of the concern being investigated. - G.8 If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information: - a) A description of and cause of non-compliance; and - b) The period of noncompliance, including dates and times; or, if not corrected, the anticipated time the non-compliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the non-compliance. The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit. - G.9 In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Sections 403.73 and 403.111, Florida Statutes. Such evidence shall only be used to the extend it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules. - G.10 The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance, provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules. - G.11 This permit is transferable only upon Department approval in accordance with Florida Administrative Code Rules 62-4.120 and 62-730.300, F.A.C., as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department. - G.12 This permit or a copy thereof shall be kept at the work site of the permitted activity. - G.13 This permit also constitutes: - a) Determination of Best Available Control Technology (X) - b) Determination of Prevention of Significant Deterioration (X); and - c) Compliance with New Source Performance Standards (X). - G.14 The permittee shall comply with the following: - a) Upon request, the permittee shall furnish all records and plans required under Department rules. During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department. - b) The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application or this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule. - c) Records of monitoring information shall include: - 1. The date, exact place, and time of sampling or measurements; - 2. The person responsible for performing the sampling or measurements; - 3. The dates analyses were performed; - 4. The person responsible for performing the analyses; - 5. The analytical techniques or methods used; and - 6. The results of such analyses. - G.15 When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware that relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly. #### Z 333 618 124 | | US Postal Service
Receipt for Cer
No Insurance Coverage | | | | | | | | |----------------------------------|--|---------|--|--|--|--|--|--| | | Do not use for International Mail (See reverse) | | | | | | | | | | Sent to Walter Bussels | | | | | | | | | | Street & Number | A-BB | | | | | | | | | Post Office, State, & ZIP Code | | | | | | | | | | Posiage . | \$ | | | | | | | | | Certified Fee | | | | | | | | | | Special Delivery Fee | | | | | | | | | | Restricted Delivery Fee | | | | | | | | | 199 | Return Receipt Showing to
Whom & Date Delivered | | | | | | | | | PS Form 3800 , April 1995 | Return Receipt Showing to Whom,
Date, & Addressee's Address | | | | | | | | | 800 | TOTAL Postage & Fees | \$ | | | | | | | | Ē | Postmark or Date | 8-12-99 | | | | | | | | S Fo | 0310485-001
P30-F1-3 | -AC | | | | | | | | Δ | 1420-1-1-9 | 167 | | | | | | | |
 <u>•</u> | | | | | |-------------------------|---|---------------------|--|---|---------------------------| | n the reverse side? | SENDER: Complete items 1 and/or 2 for additional services. Complete items 3 4a, and 4b. Print your name and address on the reverse of this form so that we card to you. Attach this form to the front of the mailpiece, or on the permit. Write "Return Receipt Requested" on the mailpiece below the article. The Return Receipt will show to whom the article was delivered and delivered. | does not | I also wish to receive the following services (for an extra fee): 1. Addressee's Address 2. Restricted Delivery Consult postmaster for fee. | | ipt Service. | | BN ADDRESS completed or | 3. Article Addressed to: Walter Diwsels JEA - Brandy Branch 31 W Church St. Sacks Diville, Fl 32302-3139 | Registered Certifie | | 9 | you for using Return Rece | | Is your BETURN | 6. Signature: (Addressee or Agent) X PS Form 3811 , December 1994 | and fee is | | | Thank | # Florida Department of Environmental Protection #### Memorandum TO: Clair Fancy THRU: Al Linero aa L 8/11 FROM: Michael P. Halpin DATE: August 11, 1999 SUBJECT: JEA Brandy Branch Facility Three 170 MW Combustion Turbines DEP File No. 0310485-001-AC (PSD-FL-267) Attached is the public notice package for construction of three dual-fuel, intermittent duty, simple cycle, 170 MW combustion turbines at the planned JEA Brandy Branch Facility. Nitrogen Oxides (NO_X) emissions from the gas turbine will be controlled by Dry Low NO_X (DLN-2.6). We propose to require that the unit meet the manufacturer's <u>new and clean</u> (one-time) guarantee of 9 ppm, and a <u>continuous</u> (24-hour average) emission limit of 10.5 ppm. The use of fuel oil will be limited to 750 hours from the 800 hours requested as a means of being consistent. We recently issued a draft permit for identical NO_X and fuel oil firing characteristics (750 hours) at TEC Polk Power station. NO_X emissions will be controlled to 42 ppm during the limited fuel oil use. Emissions of carbon monoxide, volatile organic compounds, sulfur dioxide, sulfuric acid mist, and particulate matter (PM/PM_{10}) will be very low because of the inherently clean pipeline quality natural gas, limited fuel oil use and, especially, the design of the GE unit. Recent simple cycle emission limits in Region IV have typically been at 15 ppm for simple cycle "F Class" units. In fact, North Carolina recently issued a draft BACT to Dynegy for six dual-fuel Westinghouse "F Class" units with limits of 25 ppm. The Dynegy Westinghouse units must meet 15 ppm by early 2002. For reference, the draft BACT requested by Oleander is a <u>continuous</u> limit of 9 ppm. Oleander will be allowed to operate on fuel oil for 1000 hours instead of the 2000 hours they requested (or the 750 hours to which JEA will be limited). Oleander is either more willing than JEA to take a risk on continuous compliance or more willing to pay for a continuing guarantee. Oleander's parent company, Constellation, included an identical simple cycle project for its planned High Desert Project in California where LAER is required. They undoubtedly tried to get them permitted for the lowest emission rate while avoiding SCR. When they shifted the simple cycle option to the Florida site, they decided to propose 9 ppm. This intent is being issued with the NPS concurrence that JEA's regional haze analysis (for the Class I areas) is satisfactory. This concurrence has been achieved due to JEA's commitment to shutdown its Southside Station (as a means of mitigating any modeled haze problems) yielding a corresponding 100% offset in PM₁₀ and a net reduction of over 700 TPY of SO₂ in Duval County. The Southside Station shutdown has been addressed in the Draft permit as a condition. Accordingly, I recommend your approval of the attached Intent to Issue. AAL/mph Attachments ## Department of Environmental Protection Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400 David B. Struhs Secretary #### P.E. Certification Statement JEA (formerly Jacksonville Electric Authority) Brandy Branch Facility Duval County DEP File No.: 0310485-001-AC (PSD-FL-267) Facility ID No.: 0310485 Project: Air Construction Permit I HEREBY CERTIFY that the engineering features described in the above referenced application and related additional information submittals, if any, and subject to the proposed permit conditions, provide reasonable assurance of compliance with applicable provisions of Chapter 403, Florida Statutes, and Florida Administrative Code Chapters 62-4 and 62-204 through 62-297. However, I have not evaluated and I do not certify aspects of the proposal outside of my area of expertise (including but not limited to the electrical, mechanical, structural, hydrological, and geological features). Chris Carlson and I conducted this review. (Seal) Michael P. Haipin, F.E. Registration Number: 31970 Date Permitting Authority: Florida Department of Environmental Protection Division of Air Resources Management Bureau of Air Regulation New Source Review Section Mail Station #5505 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Telephone: 850/488-0114 Fax: 850/922-6979