Department of Environmental Protection

DIVISION OF AIR RESOURCES MANAGEMENT APPLICATION FOR AIR PERMIT - LONG FORM

See Instructions for Form No. 62-210.900(1)

I. APPLICATION INFORMATION

This section of the Application for Air Permit form provides general information on the scope of this application, the purpose for which this application is being submitted, and the nature of any construction or modification activities proposed as a part of this application. This section also includes information on the owner of the facility (or the responsible official in the case of a Title V source) and the necessary statements for the applicant and professional engineer, where required, to sign and date for formal submittal of the Application for Air Permit to the Department. If the application form is submitted to the Department on diskette, this section of the Application for Air Permit must also be submitted in hard-copy form.

Identification of Facility Addressed in This Application

Enter the name of the corporation, business, governmental entity, or individual that has ownership or control of the facility; the facility name, if any; and a brief reference to the facility's physical location. If known, also enter the ARMS or AIRS facility identification number. This information is intended to give a quick reference, on the first page of the application form, to the facility addressed in this application. Elsewhere in the form, numbered data fields are provided for entry of the facility data in computer-input format.

St. Johns River Power Park (SJRPP); Units 1 and 2		
Application Processing Information (DEP Use)	·	
1. Date of Receipt of Application:		
2. Permit Number:		
3. PSD Number (if applicable):		

1

DEP Form No. 62.210.900(1) - Form Effective: 11-23-94

4. Siting Number (if applicable):

2/29/96 15317Y/F1/TVAI

Owner/Authorized Representative or Responsible Official

1. Name and Title of Owner/Authorized Representative or Responsible Official:
Richard Breitmoser, P.E., Vice Pres. Eniv., Health & Safety

2. Owner/Authorized Representative or Responsible Official Mailing Address:

Organization/Firm: JEA/St. Johns River Power Park

Street Address: 21 West Church Street

City: Jacksonville

State: FL 2

Zip Code:

32202-3139

3. Owner/Authorized Representative or Responsible Official Telephone Numbers:

Telephone:

(904) 632-6245

Fax:

(904) 632-7376

4. Owner/Authorized Representative or Responsible Official Statement:

I, the undersigned, am the owner or authorized representative* of the facility (non-Title V source) addressed in this Application for Air Permit or the responsible official, as defined in Chapter 62-213, F.A.C., of the Title V source addressed in this application, whichever is applicable. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. Further, I agree to operate and maintain the air pollutant emissions units and air pollution control equipment described in this application so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof. If the purpose of this application is to obtain an air operation permit or operation permit revision for one or more emissions units which have undergone construction or modification, I certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit. I understand that a permit, if granted by the Department, cannot be transferred without authorization from the Department, and I will promptly notify the Department upon sale or legal transfer of any permitted source.

Signature

Date

* Attach letter of authorization if not currently on file.

DEP Form No. 62.210.900(1) - Form

Scope of Application

This Application for Air Permit addresses the following emissions unit(s) at the facility (or Title V source). An Emissions Unit Information Section (a Section III of the form) must be included for each emissions unit listed.

Unit #	ARMS ID	Emissions Unit Name/Description
1 2		SJRPP Unit 1 SJRPP Unit 2

See individual Emissions Unit sections for more detailed Emissions Unit descriptions.

Multiple ARMS IDs are indicated with an asterisk (*)

Purpose of Application and Category

Check one (except as otherwise indicated):

Category I: All Air Operation Permit Applications Subject to Processing Under Chapter 62-213, F.A.C.

This Application for Air Permit is submitted to obtain: Initial air operation permit under Chapter 62-213, F.A.C., for an existing facility which is classified as a Title V source. Initial air operation permit under Chapter 62-213, F.A.C., for a facility which, upon start up of one or more newly constructed or modified emissions units addressed in this application, would become classified as a Title V source. Current construction permit number: Air operation permit renewal under Chapter 62-213, F.A.C., for a Title V source. Operation permit to be renewed: Air operation permit revision for a Title V source to address one or more newly constructed or modified emissions units addressed in this application. Current construction permit number: Operation permit to be renewed: Air operation permit revision or administrative correction for a Title V source to address one or more proposed new or modified emissions units and to be processed concurrently with the air construction permit application. Also check Category III. Operation permit to be revised/corrected: Air operation permit revision for a Title V source for reasons other than construction or modification of an emissions unit. Give reason for the revision e.g., to comply with a new applicable requirement or to request approval of an "Early Reductions" proposal. Operation permit to be revised: Reason for revision:

Category II: All Air Construction Permit Applications Subject to Processing Under Rule 62-210.300(2)(b),F.A.C.

Thi	s Application for Air Permit is submitted to obtain:
[] Initial air operation permit under Rule 62-210.300(2)(b), F.A.C., for an existing facility seeking classification as a synthetic non-Title V source.
	Current operation/construction permit number(s):
[] Renewal air operation permit under Rule 62-210.300(2)(b), F.A.C., for a synthetic non-Title V source.
	Operation permit to be renewed:
[] Air operation permit revision for a synthetic non-Title V source. Give reason for revision; e.g.; to address one or more newly constructed or modified emissions units.
	Operation permit to be revised:
	Reason for revision:
Ca	tegory III: All Air Construction Permit Applications for All Facilities and Emissions Units.
	• • • • • • • • • • • • • • • • • • • •
Thi	Emissions Units.
Thi	Emissions Units. s Application for Air Permit is submitted to obtain:] Air construction permit to construct or modify one or more emissions units within a
Thi	Emissions Units. s Application for Air Permit is submitted to obtain:] Air construction permit to construct or modify one or more emissions units within a facility (including any facility classified as a Title V source). Current operation permit number(s), if any:
Thi	Emissions Units. s Application for Air Permit is submitted to obtain:] Air construction permit to construct or modify one or more emissions units within a facility (including any facility classified as a Title V source). Current operation permit number(s), if any: PA 81-13(PPSA); PSD-FL-010] Air construction permit to make federally enforceable an assumed restriction on the

5

DEP Form No. 62.210.900(1) - Form Effective: 11-23-94

Application Processing Fee Check one:] Attached - Amount: \$ _____ [x] Not Applicable. **Construction/Modification Information** 1. Description of Proposed Project or Alterations: See Attachment 1; Air permit fee not applicable pursuant to PPSA modification request. 2. Projected or Actual Date of Commencement of Construction (DD-MON-YYYY): 3. Projected Date of Completion of Construction (DD-MON-YYYY):

Professional Engineer Certification

1. Professional Engineer Name: Kennard F. Kosky

Registration Number: 14996

2. Professional Engineer Mailing Address:

Organization/Firm: KBN Eng. and Applied Sciences, Inc.

Street Address: 6241 NW 23rd Street, Suite 500

City: Gainesville

State: FL

Zip Code: 32653-1500

3. Professional Engineer Telephone Numbers:

Telephone: (352) 336-5600

Fax: (352) 336-6603

4. Professional Engineer's Statement:

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance (a) that the air pollutant emissions unit(s) and the air pollution control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; or (b) for any application for a Title V source air operation permit, that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application;
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application; and
- (3) For any application for an air construction permit for one or more proposed new or modified emissions units, the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound with sound in this applicable to the control of emissions of the air pollutants characterized in this application.

Signature 7

2/27/96

Date

Attach any exception to certification statement.

Application Contact

1. Name and Title of Application Contact:

Richard Breitmoser, Vice Pres. Env., Safety & Health

2. Application Contact Mailing Address:

Organization/Firm: JEA/St. Johns River Power Park

Street Address: 21 West Church Street

City: Jacksonville

State: FL

Zip Code: 32202-3139

3. Application Contact Telephone Numbers:

Telephone: (904) 632-6248

Fax: (904) 632-7376

Application Comment

This application is for the co-firing of petroleum coke, up to 20 percent, with coal in Units 1 and 2. The proposed emission limits for sulfur dioxide will not result in a significant net increase in emissions and therefore, the requested co-firing will not be a major modification under the department's rules in 62-212. Emissions of other pollutants will also not increase significantly from actual levels.

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Name, Location, and Type

1. Facility Owner of	or Operator: Jack	sonville Electric Autho	rity	
2. Facility Name:	St. Johns River Po	wer Park		
3. Facility Identific	ation Number:	[X] Unk	cnown	
4. Facility Location		 .		
Facility Street A City: Jacksonvi	ddress: 11201 New lle	Berlin Road County: Duval	Zip Code: 32226	
5. Facility UTM C				
Zone: 17	East (km)	446.9	North (km): 3366.3	
6. Facility Latitude/Longitude: Latitude (DD/MM/SS): 1 1 Longitude: (DD/MM/SS): 1 1				
7. Governmental	8. Facility Status	9. Relocatable	10. Facility Major	
Facility Code:	Code:	Facility?	Group SIC Code:	
4	Α	[]Yes [x]No	49	
11. Facility Comme				
Facility is authorized to	o operate under Power	Plant Site Certification PA	A-81-13.	
_		•		

Facility Contact

1. Name and Title of Facility Contact:

Jay Worley, Dir. of Environmental and Safety

2. Facility Contact Mailing Address:

Organization/Firm: St. Johns River Power Park

Street Address: 11201 New Berlin Road

City: Jacksonville

State: FL

Zip Code: 32226

3. Facility Contact Telephone Numbers:

Telephone: (904) 751-7729

Fax:

(904) 751-7719

DEP Form No. 62.210.900(1) - Form

Effective: 11-23-94

Facility Regulatory Classifications

Small Business Stat [] Yes	ionary Source? [x] No	[] Unknown
2. Title V Source? [x] Yes	[] No	
3. Synthetic Non-Title [] Yes,	V Source?	
4. Major Source of Po	ollutants Other than Hazardous Air P [] No	Pollutants (HAPs)?
5. Synthetic Minor So [] Yes	urce of Pollutants Other than HAPs? [x] No	?
6. Major Source of Ha	APs?	[x] Possible
7. Synthetic Minor So [] Yes	urce of HAPs? [x] No	
8. One or More Emiss [x] Yes	ions Units Subject to NSPS?	
9. One or More Emiss [] Yes	ions Units Subject to NESHAP? [x]No	
10. Title V Source by I	EPA Designation? [x] No	
11. Facility Regulatory	Classifications Comment:	
coal. The emission	not expected to change as a result on units are subject to NSPS codified unation is not affected by co-firing petro	ınder 40 CFR Part 60 Subpart

10

DEP Form No. 62.210.900(1) - Form Effective: 11-23-94

15317Y/F1/TVFI

2/29/96

B. FACILITY REGULATIONS

Depending on the application category, this subsection of the Application for Air Permit form provides either a brief analysis or detailed listing of federal, state, and local regulations applicable to the facility as a whole. (Regulations applicable to individual emissions units within the facility are addressed in Subsection III-B of the form.)

<u>Rule Applicability Analysis</u> (Required for Category II applications and Category III applications involving non Title-V sources. See Instructions.)

Not Applicable	

<u>List of Applicable Regulations</u> (Required for Category I applications and Category III applications involving Title-V sources. See Instructions.)

Not Applicable - Facility wide regulations not affected by co-firing petroleum coke and coal.	

C. FACILITY POLLUTANT INFORMATION

This subsection of the Application for Air Permit form allows for the reporting of potential and estimated emissions of selected pollutants on a facility-wide basis. It must be completed for each pollutant for which the applicant proposes to establish a facility-wide emissions cap and for each pollutant for which emissions are not reported at the emissions-unit level.

Fac	cility Pollutant Information: Pollutant	of	
1.	Pollutant Emitted:		
2.	Estimated Emissions:		(tons/yr)
3.	Requested Emissions Cap:	(lb/hr)	(tons/yr)
4.	Basis for Emissions Cap Code:		
5.	Facility Pollutant Comment:		
<u>Fac</u>	cility Pollutant Information Pollutant	of	·
1.	Pollutant Emitted:		·
2.	Estimated Emissions:		(tons/yr)
3.	Requested Emissions Cap:	(lb/hr)	(tons/yr)
4.	Basis for Emissions Cap Code:		
5.	Facility Pollutant Comment:		

Facility Pollutant Information: Pol	lutant of	
Pollutant Emitted:		
2. Estimated Emissions:		(tons/yr)
3. Requested Emissions Cap:	(lb/hr)	(tons/yr)
4. Basis for Emissions Cap Code:		-
5. Facility Pollutant Comment:		
		<u> </u>
Facility Pollutant Information, Pol	lutant of	
Facility Pollutant Information: Pol 1. Pollutant Emitted:	iutani 0i	
2. Estimated Emissions:		(tons/yr)
3. Requested Emissions Cap:	(lb/hr)	(tons/yr)
4. Basis for Emissions Cap Code:		
4. Basis for Emissions Cap Code:5. Facility Pollutant Comment:		
<u> </u>		

D. FACILITY SUPPLEMENTAL INFORMATION

This subsection of the Application for Air Permit form provides supplemental information related to the facility as a whole. (Supplemental information related to individual emissions units within the facility is provided in Subsection III-I of the form.) Supplemental information must be submitted as an attachment to each copy of the form, in hard-copy or computer-readable form.

Supplemental Requirements for All Applications

1. Area Map Showing Facility Location: [] Attached, Document ID: [x] Not Applicable [] Waiver Requested
2. Facility Plot Plan: [] Attached, Document ID: [x] Not Applicable [] Waiver Requested
3. Process Flow Diagram(s): [] Attached, Document ID(s): [x] Not Applicable [] Waiver Requested
4. Precautions to Prevent Emissions of Unconfined Particulate Matter: [] Attached, Document ID: [x] Not Applicable
5. Fugitive Emissions Identification: [] Attached, Document ID: [x] Not Applicable
 6. Supplemental Information for Construction Permit Application: [] Attached, Document ID: [x] Not Applicable
Additional Supplemental Requirements for Category I Applications Only
7. List of Insignificant Activities: [] Attached, Document ID: [x] Not Applicable
 8. List of Equipment/Activities Regulated under Title VI: Attached, Document ID: Equipment/Activities Onsite but Not Required to be Individually Listed Not Applicable

2/29/96

9. Alternative Methods of Operation: [x] Attached, Document ID: Attachment 1 [] Not Applicable
10. Alternative Modes of Operation (Emissions Trading): [] Attached, Document ID: [X] Not Applicable
11. Enhanced Monitoring Plan: [] Attached, Document ID: [X] Not Applicable
12. Risk Management Plan Verification: [] Plan Submitted to Implementing Agency - Verification Attached Attached, Document ID: [] Plan to be Submitted to Implementing Agency by Required Date [x] Not Applicable
13. Compliance Report and Plan [] Attached, Document ID: [X] Not Applicable
14. Compliance Statement (Hard-copy Required) [] Attached, Document ID: [x] Not Applicable

Emissions Unit Information Section	1	of 2	
---	---	------	--

III. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

A. GENERAL EMISSIONS UNIT INFORMATION

This subsection of the Application for Air Permit form provides general information on the emissions unit addressed in this Emissions Unit Information Section, including information on the type, control equipment, operating capacity, and operating schedule of the emissions unit.

Type of Emissions Unit Addressed in This Section

Check one:

[x] This Emissions Unit information Section addresses, as a single emissions un process or production unit, or activity, which produces one or more air poll which has at least one definable emission point (stack or vent).	
[] This Emissions Unit Information Section addresses, as a single emissions un individually-regulated emission point (stack or vent) serving a single proces production unit, or activity, which also has other individually-regulated emi points.	s or
[] This Emissions Unit Information Section addresses, as a single emissions un collectively-regulated group of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of process or production units and activities where the section is a single emission of the section of the se	nich has at
[This Emissions Unit Information Section addresses, as a single emissions unmore process or production units and activities which produce fugitive emissions.	•

DEP Form No. 62.210.900(1) - Form Effective: 11-23-94

Emissions Unit Description and Status

1.	Description of Emission	s Unit Addressed in This Section	· ·
	SJRPP Unit 1	·	
2.	ARMS Identification N	umber: [] No Correspond	ing ID [] Unknown
3.	Emissions Unit Status	4. Acid Rain Unit?	5. Emissions Unit Major
	Code:	[x] Yes [] No	Group SIC Code:
	A		49
6.	Initial Startup Date (DI	D-MON-YYYY):	
	(2 -	15 Dec 1986	
7.	Long-term Reserve Shu	tdown Date (DD-MON-YYYY)	
8.	Package Unit:		
0.	Manufacturer:	Model Nu	ımber:
9.	Generator Nameplate R	atina	n MW
9.	Generator Namepiate N	ating. 68	0 141 W
10.	Incinerator Information	-	•
	Dwell '	Temperature:	°F
		Dwell Time:	seconds
	Incinerator Afterburner	Temperature:	°F
11.	Emissions Unit Comme	nt:	
	Generator Nameplate Rat date is initial synchroniza	ing: 679.6 MW. Generator nameplate tion (generator) date.	rating is maximum. Initial start-up

Emissions Unit Control Equipment Information

1. Description:

Electrostatic precipitator

2. Control Device or Method Code: 10

В.

1. Description:

Flue Gas Desulfurization System. Wet Limestone Scrubbing

2. Control Device or Method Code: 67

C.

1. Description:

Modified Furnance and Low-NOx Burners

2. Control Device or Method Code: 24

Emissions Unit Operating Capacity

Emissions Unit Operating Schedule

1. Requested Maximum Operating Schedule:

hours/day,

days/week,

weeks/yr

8,760 hours/yr

B. EMISSIONS UNIT REGULATIONS

Depending on the application category, this subsection of the Application for Air Permit form provides either a brief analysis or detailed listing of all federal, state, and local regulations applicable to the emissions unit addressed in this Emissions Unit Information Section.

<u>Rule Applicability Analysis</u> (Required for Category II Applications and Category III applications involving non Title-V sources. See Instructions.)

Not Applicable	•		
	÷		

<u>List of Applicable Regulations</u> (Required for Category I applications and Category III applications involving Title-V sources. See Instructions.)

40 CFR 60 Subpart Da 40 CFR Part 72 (as applicable) 40 CFR Part 73 (as applicable) 40 CFR Part 75 (as applicable) 62-210.700(1) 62-296.405(2)(a) 62-296.405(2)(b) 62-296.405(2)(c) 62-296.800(2)(a)2 62-296.800(3) 62-296.800(4)(a) 62-296.800(4)(b) 62-296.800(4)(e) 62-297.310 62-297,330 62-297.340 62-297.345(1) 62-297.345(3) 62-297.350 62-297.400 62-297.401(1) 62-297.401(17) 62-297.401(19) 62-297.401(2) 62-297.401(3) 62-297.401(4) 62-297.401(5) 62-297.401(6) 62-297.401(7) 62-297.401(9)

Emissions Unit Information Section	1	of	2	
---	---	----	---	--

C. EMISSION POINT (STACK/VENT) INFORMATION

This subsection of the application for Air Permit form provides information about the emission point associated with the emissions unit addressed in this Emissions Unit Information Section. An emission point is typically a stack or vent but can be any identifiable location at which air pollutants, including fugitive emissions, are discharged into the atmosphere.

Emission Point Description and Type

1.	Identification of	of Point on Plot	Plan or Flow Di	agram:	
	Not Applicable				
2.	Emission Poin	t Type Code:			
	[x] ¹	[]2	[]3	[]4	
3.	Descriptions o	f Emissions Po	ints Comprising t	this Emissions Unit:	
	Unit 1 Stack				
Ļ					
4.	ID Numbers o	r Descriptions	of Emission Unit	s with this Emission Point	in Common:
5.	Discharge Typ	e Code:			
5.			[]H		
5.			[]H []W		

23

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

Source Information Section	<u>1</u> of	f 2
----------------------------	-------------	-----

6	Stack Height:		640	ft			
⁷ .	Exit Diameter:		22.3	ft			
8.	Exit Temperature:		160	°F			
9.	Actual Volumetric Flow Rate		2,230,000	acfm		,~ ~	
10.	Percent Water Vapor:	· ·		%			
11.	Maximum Dry Standard Flow	Rate:		dscfm			
12.	Nonstack Emission Point Heig	ght:		ft			
13.	Emission Point UTM Coordin	nates:					
	Zone: 17 East (km):	446.9	North	(km):	3366.3		
14.	Emission Point Comment:						
		-			-		
					·		

Emissions Unit Information Section 1 of	2	
---	---	--

D. SEGMENT (PROCESS/FUEL) INFORMATION

For the emissions unit addressed in this Emissions Unit Information Section, a separate set of segment data (Fields 1-10) must be completed for each segment required to be reported and for each alternative operating method or mode (emissions trading scenario) under Chapter 62-213, F.A.C., for which the maximum hourly or annual segment-related rate would vary. A segment is a material handling, process, fuel burning, volatile organic liquid storage, production, or other such operation to which emissions of the unit are directly related. See instructions for further details on this subsection of the Application for Air Permit.

Segment Description and Rate Information:	Segment	1	of 2	2
Degineral Description and real materialities.	OCEILIOIL	u	V1 -	_

Segment Description (Process/Fuel Type and Associated Operating Method/Mode): Coal			
2. Source Classification Code (SCC): 1	-01-001-01		
3. SCC Units: Tons			
4. Maximum Hourly Rate: 253.9	5. Maximum Annual Rate: 2,224,200		
6. Estimated Annual Activity Factor:			
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:		
4	18		
9. Million Btu per SCC Unit:			
	24		
10. Segment Comment:			
	ited based on typical heat content of coal (i.e., 12,100 it input. Maximum percent sulfur based on permit limit.		

25

DEP Form No. 62-210.900(1) - Form

Effective: 11-23-94

Emissions Unit Information Section 1 of 2 SJRPP Unit 1 Segment Description and Rate Information: Segment 2 of 2 1. Segment Description (Process/Fuel Type and Associated Operating Method/Mode): **Coal and Petroleum Coke (Heat Input Basis)** 2. Source Classification Code (SCC): 1-01-001-04 3. SCC Units: Tons 4. Maximum Hourly Rate: 5. Maximum Annual Rate: 2,142,700 6. Estimated Annual Activity Factor: 7. Maximum Percent Sulfur: 8. Maximum Percent Ash: 4.34 18 9. Million Btu per SCC Unit: 25 10. Segment Comment: Maximum hourly and annual rate based on maximum percentage of petroleum coke when co-firing (i.e., 20%). Heat content and sulfur content of petroleum coke based on typical values of 29.6 MMBtu/ton and 6% sulfur. (See Segment 1 of 2 for coal values). Maximum Percent Ash: <18. Million Btu per SCC Unit: 25.12.

Emissions	Unit Information S	ection 1	of	2	
	Cliff Illion mation S		O.	_	

E. POLLUTANT INFORMATION

For the emissions unit addressed in this Emissions Unit Information Section, a separate set of pollutant information must be completed for each pollutant required to be reported. See instructions for further details on this subsection of the Application for Air Permit.

Tonutant Totential Estimated Emissions. Tonutant	OI	
1. Pollutant Emitted: SO2		
2. Total Percent Efficiency of Control:	95 %	
3. Primary Control Device Code: 067		
4. Secondary Control Device Code:	•	
5. Potential Emissions: 491.5 lbs/hr	2,153	tons/yr
6. Synthetically Limited? [] Yes [x] No		
7. Range of Estimated Fugitive/Other Emissions:		
[]1 []2 []3	to	tons/yr
8. Emission Factor: 0.4 lb/MMBtu		
Reference: See Comment		
9. Emissions Method Code (check one):		
[]1 []2 []3 []4	[]5	
10. Calculation of Emissions:		
6,144 MMBtu/hr x 0.20 lb petcoke/lb coal x 0.4 lb/Ml	MBtu = 491.5 lb/hr	
11. Pollutant Potential/Estimated Emissions Comment	-	
Emission Factor Reference: Proposed Emission Limit emissions for petroleum coke only and based on assubased on the definition in 62-212.200 (See Attachment	for Petroleum Cok Iring no increase i	

27

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

2/29/96

15317Y/F1/TVEU1PI1

ssions Unit Information Section <u> </u>	of 2 on front page)		Sulfur Diox
Basis for Allowable Emissions Code: RULE			
Future Effective Date of Allowable Emission	ons:		
Requested Allowable Emissions and Units: 0.4 lb/MMBtu		-	
Equivalent Allowable Emissions:	491.5 lbs/hr	2,153	tons/yr
Method of Compliance:			
Proposed emission limit for petroleum coke	e only. See Aπachr	nent 1.	
Basis for Allowable Emissions Code:		-	
Future Effective Date of Allowable Emission	ons:		
Requested Allowable Emissions and Units:			
Equivalent Allowable Emissions:	lbs/hr		tons/yr
Method of Compliance:			
Pollutant Allowable Emissions Comment (Desc. of Related C	perating M	(ethod/Mode):
Pollutant Allowable Emissions Comment (Desc. of Related C	Operating M	(ethod/Mode):

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

Emissions	Unit Information Se	ection 1	of 2
13111100 - V V	V A VI III ALIVII DI	CLUUII	U1 -

F. VISIBLE EMISSIONS INFORMATION

This subsection of the Application for Air Permit form must be completed for only those emissions units which are subject to a visible emissions limitation. The intent of this subsection of the form is to identify each activity associated with the emissions unit addressed in this section for which a separate opacity limitation would be applicable. Visible emission subtype codes for each such activity are listed in the instructions for Field 1. Most emissions units will be subject to a "subtype VE" limit only.

Visib	ole Emissions Limitations: Visible Emissions Limitation1_ of1_
1.	Visible Emissions Subtype:
2.	Basis for Allowable Opacity: [] Rule [] Other
3.	Requested Allowable Opacity Normal Conditions: % Exceptional Conditions: %
	Maximum Period of Excess Opacity Allowed: min/hour
4.	Method of Compliance:
5.	Visible Emissions Comment:
	Proposed co-firing will not affect visible emission limits for the unit.
	•

	sions Unit Information Section 1 of 2	SJRPP Unit
/ ISIb	le Emissions Limitations: Visible Emissions Limitation of	
1.	Visible Emissions Subtype:	
2.	Basis for Allowable Opacity: [] Rule [] Other	
3.	Requested Allowable Opacity Normal Conditions:	%
	Maximum Period of Excess Opacity Allowed: min/hour	
4.	Method of Compliance:	
5.	Visible Emissions Comment:	
Visib	ole Emissions Limitations: Visible Emissions Limitation of	
√isib 1.	ole Emissions Limitations: Visible Emissions Limitation of Visible Emissions Subtype:	
1.	Visible Emissions Subtype:	%
1.	Visible Emissions Subtype: Basis for Allowable Opacity: [] Rule [] Other Requested Allowable Opacity	
1.	Visible Emissions Subtype: Basis for Allowable Opacity: [] Rule [] Other Requested Allowable Opacity Normal Conditions: % Exceptional Conditions:	

30

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

Emissions	Unit	Information	Section	1	of	2
		*****************			-	

G. CONTINUOUS MONITOR INFORMATION

This subsection of the Application for Air Permit form must be completed for only those emissions units which are required by rule or permit to install and operate one or more continuous emission, opacity, flow, or other type monitors. A separate set of continuous monitor information (fields 1-6) must be completed for each monitoring system required.

Continuous Monitoring System Continuous Monitor of

1. Parameter Code:

2. CMS Requirement: [] Rule [] Other

3. Monitor Information:
 Monitor Manufacturer:
 Model Number: Serial Number:

4. Installation Date (DD-MON-YYYY):

5. Performance Specification Test Date (DD-MON-YYYY):

Proposed co-firing will not affect CEMS requirements. CEMS meet requirements of 40 CFR Part 60 Subpart Da and 40 CFR Part 75. The Part 75 monitoring has previously

31

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

Continuous Monitor Comment:

been submitted to the Department.

L	tinuous Monitoring System Continuous Monitor of	
	Parameter Code:	
	CMS Requirement: [] Rule [] C	Other
	Monitor Information:	~=
	Monitor Manufacturer: Model Number: Serial Number:	
	Installation Date (DD-MON-YYYY):	
	Performance Specification Test Date (DD-MON-YYYY):	
·.	Continuous Monitor Comment:	
i .	tinuous Monitoring System Continuous Monitor of	
٠.	Parameter Code:	
 2.	Parameter Code: CMS Requirement: [] Rule [] C	Other
	· · · · · · · · · · · · · · · · · · ·	Other
	CMS Requirement: [] Rule [] C	
3.	CMS Requirement: [] Rule [] [] Rul	
3. 1.	CMS Requirement: [] Rule [] C Monitor Information: Monitor Manufacturer: Model Number: Serial Number	
3. 1.	CMS Requirement: [] Rule [] [
2. 3. 4. 5.	CMS Requirement: [] Rule [] [] Rul	

32

2/29/96

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

H. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

This subsection of the Application for Air Permit form must be completed for all applications, not just those undergoing prevention-of-significant-deterioration (PSD) review persuant to Rule 62-212.400, F.A.C. The intent of this subsection is to make a preliminary determination as to whether the emissions unit addressed in this Emissons Unit Information Section consumes PSD increment. PSD increment is consumed (or expanded) as a result of emission increases (decreases) occurring after pollutant-specific baseline dates. Pollutants for which baseline dates have been established are sulfur dioxide, particulate matter, and nitrogen dioxide.

PSD Increment Consumption Determination

1. Increment Consuming for Particulate Matter or Sulfur Dioxide?

If the emissions unit addressed in this section emits particulate matter or sulfur dioxide, answer the following series of questions to make a preliminary determination as to whether or not the emissions unit consumes PSD increment for particulate matter or sulfur dioxide. Check the first statement, if any, that applies and skip remaining statements.

- [x] The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.
 [] The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so,
- [] The facility addressed in this application is classified as an EPA major source and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and the emissions unit consumes increment.

baseline emissions are zero, and the emissions unit consumes increment.

- [] For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
- [] None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.

Emis	sions U	nit Information Section 1 of	2	SJRPP Unit 1
2.	Increr	nent Consuming for Nitrogen Dioxide?		
	follow the en	emissions unit addressed in this section ring series of questions to make a prelimissions unit consumes PSD increment ment, if any, that applies and skip remain	ninary determination for nitrogen dioxid	on as to whether or not
	[]	The emissions unit addressed in this so of this application, or has undergone dioxide. If so, emissions unit consum	PSD review previo	
	[]	The facility addressed in this applicat source pursuant to paragraph (c) of t pollution" in Chapter 62-213, F.A.C. section commenced (or will comment of so, baseline emissions are zero, and	he definition of "m , and the emissions ce) construction af	ajor source of air unit addressed in this ter February 8, 1988.
	[]	The facility addressed in this applicat source and the emissions unit began is before March 28, 1988. If so, baselin consumes increment.	nitial operation aft	er February 8, 1988, but
	[]	For any facility, the emissions unit be March 28, 1988. If so, baseline emis consumes increment.		-
	[x]	None of the above apply. If so, base nonzero. In such case, additional and needed to determine whether change after the baseline date that may const	alysis, beyond the s s in emissions have	scope of this application, is coccurred (or will occur)
3.	Incre	nent Consuming/Expanding Code:		
	PM	[x]C	[]E [] Unknown
	SO ₂ NO ₂	[x] C [] C	[]E [[]E [] Unknown] Unknown
4.	Basel	ne Emissions:		_
	PM ⁻	lbs/hr		ns/yr
	SO ₂	lbs/hr	to: 16.146 to:	ns/yr

5. **PSD Comment:**

> Proposed emission limits for SO2 and proposed conditions for other pollutants will not trigger PSD applicability for co-firing. See Attachment 1.

> > 34

Emissions	Unit	Information	Section	1	of	2
-----------	------	-------------	---------	---	----	---

I. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

This subsection of the Application for Air Permit form provides supplemental information related to the emissions unit addressed in this Emissions Unit Information Section. Supplemental information must be submitted as an attachment to each copy of the form, in hard-copy or computer-readable form.

Supplemental Requirements for All Applications

1.	Process Flow Diagram	
	[] Attached, Document ID:	
	[x] Not Applicable	[] Waiver Requested
2.	Fuel Analysis or Specification	
	[] Attached, Document ID:	
	[x] Not Applicable	[] Waiver Requested
3.	Detailed Description of Control Equipment	
	[] Attached, Document ID:	
	[x] Not Applicable	[] Waiver Requested
4.	Description of Stack Sampling Facilities	
	[] Attached, Document ID:	
	[x] Not Applicable	[] Waiver Requested
5.	Compliance Test Report	
	Attached, Document ID:	[X] Not Applicable
	Previously Submitted, Date:	
6.	Procedures for Startup and Shutdown	
	[] Attached, Document ID:	[X] Not Applicable
7.	Operation and Maintenance Plan	
	[] Attached, Document ID:	[x] Not Applicable
8.	Supplemental Information for Construction Permit	Application
	[X] Attached, Document ID: Attachment 1	[] Not Applicable
9.	Other Information Required by Rule or Statute	
	[] Attached, Document ID:	[x] Not Applicable

Additional Supplemental Requirements for Category I Applications Only

10.	Alternative Methods of Operation			
	[X] Attached, Document ID: Attachment 1 [] Not Applicable			
11.	Alternative Modes of Operation (Emissions Trading)			
	[] Attached, Document ID: [x] Not Applicable			
12.	Enhanced Monitoring Plan			
	[] Attached, Document ID: [x] Not Applicable			
13.	Identification of Additional Applicable Requirements			
	[] Attached, Document ID: [X] Not Applicable			
14.	Acid Rain Permit Application			
	Acid Rain Part - Phase II (Form No. 62-210.900(1)(a)) Attached, Document ID:			
	[] Repowering Extension Plan (Form No. 62-210.900(1)(a)1.) Attached, Document ID:			
	New Unit Exemption (Form No. 62-210.900(1)(a)2.) Attached, Document ID:			
	[] Retired Unit Exemption (Form No. 62-210.900(1)(a)3.) Attached, Document ID:			
	[x] Not Applicable			

Emissions	Unit	Information	Section	2	of 2	

III. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

A. GENERAL EMISSIONS UNIT INFORMATION

This subsection of the Application for Air Permit form provides general information on the emissions unit addressed in this Emissions Unit Information Section, including information on the type, control equipment, operating capacity, and operating schedule of the emissions unit...

Type of Emissions Unit Addressed in This Section

Check one:

[X] This Emissions Unit information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).
[] This Emissions Unit Information Section addresses, as a single emissions unit, an individually-regulated emission point (stack or vent) serving a single process or production unit, or activity, which also has other individually-regulated emission points.
[] This Emissions Unit Information Section addresses, as a single emissions unit, a collectively-regulated group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.
[.	This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.

17

DEP Form No. 62.210.900(1) - Form Effective: 11-23-94

Emissions Unit Description and Status

1.	Description of Emissions Unit Addressed in This Section:					
	SJRPP Unit 2					
				~-		
				·		
2.	ARMS Identification N	umber: [] No Corresp	oonding	ID [] Unknown		
3.	Emissions Unit Status	4. Acid Rain Unit?		5. Emissions Unit Major		
	Code:	[x] Yes [] No		Group SIC Code:		
	A 	_		49		
6.	Initial Startup Date (DI	D-MON-YYYY): 24 Mar 198	8			
7.	. Long-term Reserve Shutdown Date (DD-MON-YYYY):					
8.	Package Unit:		127 1			
	Manufacturer:	Mode	el Numb	er:		
9.	Generator Nameplate R	ating:	680	MW		
10.	Incinerator Information					
	Dwell	Temperature:		°F		
	Incinerator Afterburner	Dwell Time:		seconds °F		
11.	Emissions Unit Comme	nt:				
	Generator Nameplate Rat date is initial synchroniza	ing: 679.6 MW. Generator name tion (generator) date.	olate rati	ng is maximum. Initial start-up		
				8		
				χ		

Emissions Unit Control Equipment Information

1. Description:

Electrostatic precipitator

2. Control Device or Method Code: 10

В.

1. Description:

Flue Gas Desulfurization System. Wet Limestone Scrubbing

2. Control Device or Method Code: 67

C.

1. Description:

Modified Furnance and Low-NOx Burners

2. Control Device or Method Code:

19

24

DEP Form No. 62.210.900(1) - Form

Effective: 11-23-94

Emissions Unit Operating Capacity

1. Maximum Heat Input Rate:	6,144 mmBtu/hr
2. Maximum Incineration Rate:	
lbs/hr	tons/day
3. Maximum Process or Throughput Rate:	
4. Maximum Production Rate:	
5. Operating Capacity Comment:	•
The co-firing of petroleum coke and coal will not che emission unit. Maximum heat input limited by spec	• • • • •

Emissions Unit Operating Schedule

Requested Maximum Operating Schedule:						
hours/day,	days/week,					
weeks/yr 8,76	0 hours/yr					

B. EMISSIONS UNIT REGULATIONS

Depending on the application category, this subsection of the Application for Air Permit form provides either a brief analysis or detailed listing of all federal, state, and local regulations applicable to the emissions unit addressed in this Emissions Unit Information Section.

<u>Rule Applicability Analysis</u> (Required for Category II Applications and Category III applications involving non Title-V sources. See Instructions.)

Not Applicable	
	·

<u>List of Applicable Regulations</u> (Required for Category I applications and Category III applications involving Title-V sources. See Instructions.)

40 CFR 60 Subpart Da 40 CFR Part 72 (as applicable) 40 CFR Part 73 (as applicable) 40 CFR Part 75 (as applicable) 62-210.700(1) 62-296.405(2)(a) 62-296.405(2)(b) 62-296.405(2)(c) 62-296.800(2)(a)2 62-296.800(3) 62-296.800(4)(a) 62-296.800(4)(b) 62-296.800(4)(e) 62-297.310 62-297,330 62-297.340 62-297.345(1) 62-297.345(3) 62-297.350 62-297.400 62-297.401(1) 62-297.401(17) 62-297.401(19) 62-297.401(2) 62-297.401(3) 62-297.401(4) 62-297.401(5) 62-297.401(6) 62-297.401(7) 62-297.401(9)

Emissions	Unit	Information	Section	2	of	2	

SJRPP Unit 2

C. EMISSION POINT (STACK/VENT) INFORMATION

This subsection of the application for Air Permit form provides information about the emission point associated with the emissions unit addressed in this Emissions Unit Information Section. An emission point is typically a stack or vent but can be any identifiable location at which air pollutants, including fugitive emissions, are discharged into the atmosphere.

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram:	
	Not Applicable	
2.	Emission Point Type Code:	
	[x]1 []2 []3 []4	
3.	Descriptions of Emissions Points Comprising this Emissions Unit:	
	Unit 2 Stack	
	<u>-</u>	
4.	ID Numbers or Descriptions of Emission Units with this Emission Point in Common:	
5.	Discharge Type Code:	
	[]D	
	[]D	
ľ		

23

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

Source	Information	Section	2	of	2	

SJRPP Unit 2

6.	Stack Heigh	t:		640	ft			
7.	Exit Diamete	er:		22.3	ft			
8.	Exit Temper	ature:		160	°F			
9.	Actual Volum	metric Flow Rate:		2,230,000	acfm		े च	
10.	Percent Wat	er Vapor:	_		%			
11.	Maximum D	ry Standard Flow	Rate:		dscfm	l		
12.	Nonstack Er	nission Point Heig	ht:		ft			
13.	Emission Po	int UTM Coordina	ates:					
	Zone: 17	East (km):	446.9	North	(km):	3366.3		
14.	Emission Po	int Comment:						
						-		
				·				
		,						
	•							

24

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

D. SEGMENT (PROCESS/FUEL) INFORMATION

For the emissions unit addressed in this Emissions Unit Information Section, a separate set of segment data (Fields 1-10) must be completed for each segment required to be reported and for each alternative operating method or mode (emissions trading scenario) under Chapter 62-213, F.A.C., for which the maximum hourly or annual segment-related rate would vary. A segment is a material handling, process, fuel burning, volatile organic liquid storage, production, or other such operation to which emissions of the unit are directly related. See instructions for further details on this subsection of the Application for Air Permit.

Segment Description and Rate Information: Segment 1 of 2

1. Segment Description (Process/Fuel Type	1. Segment Description (Process/Fuel Type and Associated Operating Method/Mode):					
Coal						
2. Source Classification Code (SCC): 1-01-001-01						
3. SCC Units:						
Tons						
4. Maximum Hourly Rate:	5. Maximum Annual Rate:					
253.9	2,224,200					
6. Estimated Annual Activity Factor:						
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:					
4	18					
9. Million Btu per SCC Unit:						
10. Segment Comment:						
	Maximum hourly and annual rates calculated based on typical heat content of coal (i.e., 12,100 Btu/lb) and 6,144 MMBtu/hr maximum heat input. Maximum percent sulfur based on permit limit. Million Btu per SCC Unit is 24.2.					
	•					

25

DEP Form No. 62-210.900(1) - Form

Effective: 11-23-94

2/29/96

Segment Description and Rate Information: Segment 2 of 2

1. Segment Description (Process/Fuel Ty	pe and Associated Operating Method/Mode):						
Coal and Petroleum Coke (Heat Input I	Coal and Petroleum Coke (Heat Input Basis)						
	·						
2. Source Classification Code (SCC):	1-01-001-04						
3. SCC Units: To	ns						
4. Maximum Hourly Rate:	5. Maximum Annual Rate:						
244.6	2,142,700						
6. Estimated Annual Activity Factor:							
7. Maximum Percent Sulfur:	8. Maximum Percent Ash:						
4.34	18						
9. Million Btu per SCC Unit:	•						
	25						
10. Segment Comment:							
	on maximum percentage of petroleum coke when						
29.6 MMBtu/ton and 6% sulfur. (See Seg	Ifur content of petroleum coke based on typical values of ment 1 of 2 for coal values). Maximum Percent Ash: <18.						
Million Btu per SCC Unit: 25.12.							

	Emissions	Unit Information Section	2	of	2	
--	-----------	---------------------------------	---	----	---	--

E. POLLUTANT INFORMATION

For the emissions unit addressed in this Emissions Unit Information Section, a separate set of pollutant information must be completed for each pollutant required to be reported. See instructions for further details on this subsection of the Application for Air Permit.

Pollutant Potential/Estimated Emissions: Pollutant	of
1. Pollutant Emitted: SO2	
2. Total Percent Efficiency of Control:	95 %
3. Primary Control Device Code: 067	
4. Secondary Control Device Code:	
5. Potential Emissions: 491.5 lbs/hr	2,153 tons/yr
6. Synthetically Limited? [] Yes [x] No	
7. Range of Estimated Fugitive/Other Emissions:	
[]1 []2 []3	to tons/yr
8. Emission Factor: 0.4 lb/MMBtu	
Reference: See Comment	-
9. Emissions Method Code (check one):	
[]1 []2 []3 []4	[]5
10. Calculation of Emissions:	
6,144 MMBtu/hr x 0.20 lb petcoke/lb coal x 0.4 lb/MM	Btu = 491.5 lb/hr
11. Pollutant Potential/Estimated Emissions Comment:	
Emission Factor Reference: Proposed Emission Limit for	or Patroloum Cake only Patential
emissions for petroleum coke only and based on assur	ing no increase in 'actual emissions'
based on the definition in 62-212.200 (See Attachment 1	1).

27

llo	ssions Unit Information Section 2 wable Emissions (Pollutant identification	of <u>on on fr</u>	ont page)	·	Sulfur Dioxid
A.	<u></u>		_	<u>-</u>	_
1.	Basis for Allowable Emissions Code: RULE				
2.	Future Effective Date of Allowable Emis	sions:			
3.	Requested Allowable Emissions and Unit 0.4 lb/MMBtu	:s:			
4.	Equivalent Allowable Emissions:	491.5	lbs/hr	2,153	tons/yr
5.	Method of Compliance:	-	_		
6.	Pollutant Allowable Emissions Comment Proposed emission limit for petroleum co	`			ethod/Mode):
В.					
1.	Basis for Allowable Emissions Code:			-	
2.	Future Effective Date of Allowable Emis	sions:			
3.	Requested Allowable Emissions and Unit	ts:			
4.	Equivalent Allowable Emissions:		lbs/hr		tons/yr
5.	Method of Compliance:		4		
6.	Pollutant Allowable Emissions Comment	(Desc.	of Related (Operating M	[ethod/Mode):

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

Emissions Unit Information Section	2	of 2
---	---	------

SJRPP Unit 2

F. VISIBLE EMISSIONS INFORMATION

This subsection of the Application for Air Permit form must be completed for only those emissions units which are subject to a visible emissions limitation. The intent of this subsection of the form is to identify each activity associated with the emissions unit addressed in this section for which a separate opacity limitation would be applicable. Visible emission subtype codes for each such activity are listed in the instructions for Field 1. Most emissions units will be subject to a "subtype VE" limit only.

Visib	le Emissions Limitations: Visible Emissions Limitation 1 of 1
1.	Visible Emissions Subtype:
2.	Basis for Allowable Opacity: [] Rule [] Other
3.	Requested Allowable Opacity Normal Conditions: % Exceptional Conditions: %
	Maximum Period of Excess Opacity Allowed: min/hour
4.	Method of Compliance:
5.	Visible Emissions Comment:
	Proposed co-firing will not affect visible emission limits for the unit.
ı	

	sions Unit Information Section2 of2 ole Emissions Limitations: Visible Emissions Limitation of	SJRPP Unit 2
1.	Visible Emissions Subtype:	
2.	Basis for Allowable Opacity: [] Rule [] Other	
3.	Requested Allowable Opacity Normal Conditions:	%
	Maximum Period of Excess Opacity Allowed: min/hour	
4.	Method of Compliance:	
5.	Visible Emissions Comment:	
<u>Visib</u>	ole Emissions Limitations: Visible Emissions Limitation of	e.
1.	Visible Emissions Subtype:	
2.	Basis for Allowable Opacity: [] Rule [] Other	
3.	Requested Allowable Opacity Normal Conditions:	%
	Maximum Period of Excess Opacity Allowed: min/hour	
4.	Method of Compliance:	
5.	Visible Emissions Comment:	
•		

30

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

2/29/96 15317Y/F1/TVEU2VEI

E	TI:4 I	[mfaa4:a	C 4*	2	- 6	2
Lmissions	Unit	Information	Section		OI	

SJRPP Unit 2

G. CONTINUOUS MONITOR INFORMATION

This subsection of the Application for Air Permit form must be completed for only those emissions units which are required by rule or permit to install and operate one or more continuous emission, opacity, flow, or other type monitors. A separate set of continuous monitor information (fields 1-6) must be completed for each monitoring system required.

Continuous Monitoring System Continuous Monitor of Parameter Code: 1. 2. CMS Requirement: [] Rule [] Other Monitor Information: 3. Monitor Manufacturer: Model Number: Serial Number: Installation Date (DD-MON-YYYY): Performance Specification Test Date (DD-MON-YYYY): Continuous Monitor Comment: Proposed co-firing will not affect CEMS requirements. CEMS meet requirements of 40 CFR Part 60 Subpart Da and 40 CFR Part 75. The Part 75 monitoring plan has been previously submitted to the Department.

2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY): 6. Continuous Monitoring System Continuous Monitor of 1. Parameter Code: 2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY): 6. Continuous Monitor Comment:	miss	sions Unit Information Section 2 of 2	SJRPP Unit 2
2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY): 6. Continuous Monitor Comment: Continuous Monitoring System Continuous Monitor of 1. Parameter Code: 2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	Conti	nuous Monitoring System Continuous Monitor of	
3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY): 6. Continuous Monitor Comment: Continuous Monitoring System Continuous Monitor of 1. Parameter Code: 2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	1.	Parameter Code:	_
Monitor Manufacturer: Model Number: Serial Number: Installation Date (DD-MON-YYYY): Description: Continuous Monitor Comment: Continuous Monitoring System Continuous Monitor of Parameter Code: CMS Requirement: [] Rule [] Other Monitor Information: Monitor Manufacturer: Model Number: Serial Number: Installation Date (DD-MON-YYYY): Performance Specification Test Date (DD-MON-YYYY):	2.	CMS Requirement: [] Rule [] Other	
Model Number: Serial Number: Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY): 6. Continuous Monitor Comment: Continuous Monitoring System Continuous Monitor of 1. Parameter Code: 2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	3.	Monitor Information:	~ -3
5. Performance Specification Test Date (DD-MON-YYYY): 6. Continuous Monitor Comment: Continuous Monitoring System Continuous Monitor of 1. Parameter Code: 2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):			
6. Continuous Monitor Comment: Continuous Monitoring System Continuous Monitor of 1. Parameter Code: 2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	4.	Installation Date (DD-MON-YYYY):	
2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	5.	Performance Specification Test Date (DD-MON-YYYY):	
1. Parameter Code: 2. CMS Requirement: [] Rule [] Other 3. Monitor Information: Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	6.	Continuous Monitor Comment:	
 Monitor Information: Monitor Manufacturer: Model Number: Serial Number: Installation Date (DD-MON-YYYY): Performance Specification Test Date (DD-MON-YYYY): 			
Monitor Manufacturer: Model Number: Serial Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	2.	CMS Requirement: [] Rule [] Other	
Model Number: 4. Installation Date (DD-MON-YYYY): 5. Performance Specification Test Date (DD-MON-YYYY):	3.	Monitor Information:	
5. Performance Specification Test Date (DD-MON-YYYY):			
	4.	Installation Date (DD-MON-YYYY):	
6. Continuous Monitor Comment:	5.	Performance Specification Test Date (DD-MON-YYYY):	
	6.	Continuous Monitor Comment:	

32

2/29/96

DEP Form No. 62-210.900(1) - Form Effective: 11-23-94

H. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

This subsection of the Application for Air Permit form must be completed for all applications, not just those undergoing prevention-of-significant-deterioration (PSD) review persuant to Rule 62-212.400, F.A.C. The intent of this subsection is to make a preliminary determination as to whether the emissions unit addressed in this Emissons Unit Information Section consumes PSD increment. PSD increment is consumed (or expanded) as a result of emission increases (decreases) occurring after pollutant-specific baseline dates. Pollutants for which baseline dates have been established are sulfur dioxide, particulate matter, and nitrogen dioxide.

PSD Increment Consumption Determination

1. Increment Consuming for Particulate Matter or Sulfur Dioxide?

If the emissions unit addressed in this section emits particulate matter or sulfur dioxide, answer the following series of questions to make a preliminary determination as to whether or not the emissions unit consumes PSD increment for particulate matter or sulfur dioxide. Check the first statement, if any, that applies and skip remaining statements.

- [x] The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.
- [] The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and the emissions unit consumes increment.
- The facility addressed in this application is classified as an EPA major source and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and the emissions unit consumes increment.
- [] For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
- [] None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.

2. Increment Consuming for Nitrogen Dioxide?

If the emissions unit addressed in this section emits nitrogen oxides, answer the following series of questions to make a preliminary determination as to whether or not the emissions unit consumes PSD increment for nitrogen dioxide. Check first statement, if any, that applies and skip remaining statements.

- [] The emissions unit addressed in this section is undergoing PSD review as part of this application, or has undergone PSD review previously, for nitrogen dioxide. If so, emissions unit consumes increment.
- [] The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after February 8, 1988. If so, baseline emissions are zero, and the source consumes increment.
- The facility addressed in this application is classified as an EPA major source and the emissions unit began initial operation after February 8, 1988, but before March 28, 1988. If so, baseline emissions are zero, and the source consumes increment.
- [] For any facility, the emissions unit began (or will begin) initial operation after March 28, 1988. If so, baseline emissions are zero, and the emissions unit consumes increment.
- [x] None of the above apply. If so, baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.

Increment Consuming/Expanding Code: PM [x]C]E 1 Unknown SO₂ [x]C]E] Unknown]E NO₂ 1 C 1 Unknown 4. Baseline Emissions: PM lbs/hr tons/yr SO₂ lbs/hr tons/yr NO_2 16,146 tons/yr

5. PSD Comment:

Proposed emission limits for SO2 and proposed conditions for other pollutants will not trigger PSD applicability for co-firing. See Attachment 1.

I. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

This subsection of the Application for Air Permit form provides supplemental information related to the emissions unit addressed in this Emissions Unit Information Section. Supplemental information must be submitted as an attachment to each copy of the form, in hard-copy or computer-readable form.

Supplemental Requirements for All Applications

1.	Process Flow Diagram	, "
2.	[] Attached, Document ID: [x] Not Applicable Fuel Analysis or Specification	[] Waiver Requested
<i>L</i> .	ruel Analysis of Specification	
	[] Attached, Document ID:	[] Waiver Requested
3.	Detailed Description of Control Equipment	
	[] Attached, Document ID:	[] Waiver Requested
4.	Description of Stack Sampling Facilities	
	[] Attached, Document ID:	[] Waiver Requested
5.	Compliance Test Report	
	[] Attached, Document ID:	[x] Not Applicable
6.	Procedures for Startup and Shutdown	
	[] Attached, Document ID:	[x] Not Applicable
7.	Operation and Maintenance Plan	
	[] Attached, Document ID:	[x] Not Applicable
8.	Supplemental Information for Construction Permit	Application
	[X] Attached, Document ID: Attachment 1	[] Not Applicable
9.	Other Information Required by Rule or Statute	
	[] Attached, Document ID:	[x] Not Applicable

Additional Supplemental Requirements for Category I Applications Only

10.	Alterr	Alternative Methods of Operation					
	[x]	Attached, Document ID: Attachment 1 [] Not Applicable					
11.	Alterr	native Modes of Operation (Emissions Trading)					
	[]	Attached, Document ID: [x] Not Applicable					
12.	Enhar	nced Monitoring Plan					
	[]	Attached, Document ID: [x] Not Applicable					
13.	Identi	fication of Additional Applicable Requirements					
	[]	Attached, Document ID: [x] Not Applicable					
14.	Acid 1	Rain Permit Application					
	[]	Acid Rain Part - Phase II (Form No. 62-210.900(1)(a)) Attached, Document ID:					
	[]	Repowering Extension Plan (Form No. 62-210.900(1)(a)1.) Attached, Document ID:					
	[]	New Unit Exemption (Form No. 62-210.900(1)(a)2.) Attached, Document ID:					
	[]	Retired Unit Exemption (Form No. 62-210.900(1)(a)3.) Attached, Document ID:					
	[x]	Not Applicable					

ATTACHMENT 1

ATTACHMENT 1

1.0 PROJECT DESCRIPTION

The St. Johns River Power Park (SJRPP) proposes to co-fire a mixture of up to 20 percent petroleum coke with coal in a manner that would ensure that there is not a significant net increase in actual emissions of any regulated pollutant and, therefore, the Prevention of Significant Deterioration (PSD) Rules in 62-212.400, Florida Administrative Code (F.A.C.) would not apply. This would be accomplished through a limitation on sulfur dioxide (SO₂) emissions when co-firing petroleum coke that includes both an emission limit and a percent SO₂ reduction requirement. In addition, SJRPP proposes to accept a condition for carbon monoxide (CO) that would demonstrate that an net significant emission increase would not occur.

This permit application is associated with a modification request of the site certification for the units (PA 81-13). Approval from the FDEP is being sought to use up to 20 percent (heat input basis) of petroleum coke with coal. No new facilities or equipment are required to burn petroleum coke. Minor amendments to PSD permit are required. There will be no substantial changes made in the fuel handling facilities or the emission units to accommodate co-firing of petroleum coke. A temporary hopper and conveyor will be used to load petroleum coke with coal on the reclaim conveyor prior to transporting to the crusher house. From the crusher house, the blended fuel will be conveyed to the coal storage silos. Petroleum coke can be co-fired with coal as soon as approval is obtained from FDEP and it is received in the coal yard.

2.0 TRIAL BURN TEST RESULTS

A trial test burn for co-firing petroleum coke and coal was authorized by the Florida Department of Environmental Protection (FDEP) and conducted August 8-19, 1995. A copy of the trial test burn results is attached. A summary of the trial test burn results and a statistical comparison of the baseline tests (coal only) and co-firing petroleum coke and coal are presented in Table 1. A statistical analysis was performed using Appendix C to Part 60 (of 40 CFR).

The results of the trial test burn and the statistical analysis indicate that there are no emission rate increases for particulate matter or nitrogen oxides. The emission rates of sulfur dioxide, sulfuric acid mist, and CO were lower in the baseline tests than in the tests performed while the unit was co-firing petroleum coke and coal. The remainder of this attachment discusses these pollutants.

2.1 SULFUR DIOXIDE

A federally enforceable permit condition is proposed that prevents PSD applicability by preventing actual SO₂ emissions associated with the petroleum coke fraction of the blended fuel from exceeding past actual SO₂ emissions associated with burning coal. In this manner, there will be no prospective increase in SO₂ emissions caused by the proposed change (i.e., utilization of petroleum coke). Pursuant to EPA's June 21, 1992, WEPCO regulations (57 Federal Register 32314), increases in air emissions not caused by proposed changes must be excluded from steam electric power plants' future actual emissions in assessing PSD applicability. EPA emphasized in the preamble statement that new source review "applies only where the emissions increase is cause by the change" [57 Federal Register 32325]. The approach comports with the WEPCO regulations and corresponding state rules by eliminating the possibility that the petroleum coke portion of prospective fuel blends will exceed "past actual" SO₂ emissions associated with coal burning. Consistent with the WEPCO regulations, future increases in SO₂ emissions caused solely by enhanced electricity demand or caused by permissible variations in coal sulfur content should not count toward PSD applicability.

The emission limitation has the following components:

- a. When blends of petroleum coke and coal with a sulfur content of up to or equal to 2 percent are fired in Units 1 or 2, the SO₂ emissions shall not exceed 0.56 pound per million British thermal units (lb/MMBtu) and a minimum of 75 percent reduction in the flue gas desulfurization system.
- b. When co-firing petroleum coke with coals having a sulfur content between 2 and 3.63 percent, the emission limitation shall be based on the following formula:

$$SO_2$$
 emission limit (lb/MMBtu) = $(0.2 \times C/100) + 0.4$
where: C = percent of coal co-fired on a heat input basis (e.g., 80 percent)

c. When coals with a sulfur content greater than 3.63 percent are co-fired with petroleum coke, the SO₂ emissions shall not exceed the following formula:

$$SO_2$$
 emission limit (lb/MMBtu) = (0.1653 x C x S - 0.4 x C + 40) x 1/100 where: C = percent of coal co-fired on a heat input basis

where: C = percent of coal co-fired on a heat input basis

Low bus

- d. The maximum SO₂ emission rate when firing petroleum cokershall not exceed 0.688 lb/MMBtu.
- e. Compliance with the SO₂ emissions limit shall be based on a 30-day rolling average for those days when petroleum coke is fired. Any use of petroleum coke during a 24-hour period shall be considered 1 day of the 30-day rolling average. The 30-day rolling average shall be calculated according to the New Source Performance Standards (NSPS) codified in 40 CFR Part 60 Subpart Da, except as noted above.

The proposed emission limits for SO₂ were developed from the two fundamental requirements of the PSD approval and the specific conditions of the site certification and to assure no net increase in annual emissions. The PSD approval and site certification require that the NSPS Subpart Da be met and that emissions do not exceed 0.76 lb/MMBtu (30-day rolling average). The emission limits proposed for co-firing are supported by the following rationale:

- 1. The NSPS codified in 40 CFR Part 60 Subpart Da requires, in the range of coals to be fired, either 0.6 lb/MMBtu or a 70 percent reduction in the potential SO₂ combustion concentration. For coals with a sulfur content greater than 1.2 percent, the 0.6 lb/MMBtu emission limit would govern. For coals with sulfur contents of 1.2 percent or less, the 70 percent reduction requirement would govern. This is illustrated in the attached Table 2 which presents in the sixth and seventh columns the NSPS emission limit and the percent SO₂ removals as a function of the coal sulfur content (first column). In terms of practical application, under Subpart Da: (1) when the inlet air to the scrubber has SO₂ concentrations under 2.0 lb/MMBtu, 70 percent SO₂ reduction is required; (2) when the inlet SO₂ concentration is higher than 2.0 but less than 6.0 lb/MMBtu, required SO₂ scrubbing must result in emissions of 0.6 lb/MMBtu or less; (3) at higher concentrations, 90 percent removal is required. It should be noted that the facility has a 0.76 lb SO₂/MMBtu emission limit established as BACT for coal firing. The proposed emission limit for co-firing petroleum coke and coal could not exceed this limit, since this is inherent in the proposed limit.
- 2. The representative actual annual SO₂ emission rate for Units 1 and 2 over the last 2 years has been 0.4 lb/MMBtu. By ensuring that the emission rate when firing

- petroleum coke does not exceed 0.4 lb/MMBtu, the "representative actual annual emissions" as defined in 40 CFR 52.21(b)(33) would not exceed the past actual emissions. To achieve a 0.4 lb/MMBtu emission rate with the typical sulfur content for petroleum coke (e.g., 6 percent), a 95 percent reduction is required. This is shown on the last column of the Table 2.
- 3. Except for coals with a sulfur content of greater than 2 percent, the proposed percent reduction requirement and the emission limit are based on co-firing 20 percent petroleum coke with coal (on a heat input basis). This is the worst-case mixture proposed and ensures that when co-firing lower percentages of petroleum coke with coal, the resulting emission rate would be lower than could be allowed by meeting only the NSPS and the "actual" emission rate. For example, if a 10 percent mixture of petroleum coke is co-fired with a 1.2 percent sulfur coal, then the resulting emissions rate to meet NSPS and 0.4 lb/MMBtu would be 0.58 lb/MMBtu. In contrast, the proposed condition would limit the SO₂ emissions to 0.56 lb/MMBtu.
- 4. The effect of the proposed SO₂ emission limitation is shown on Table 2 (second and third columns). As shown, for coals with sulfur content less than 1.2 percent, the 75 percent reduction requirement would produce emission rates less than 0.56 lb/MMBtu while meeting the NSPS reduction requirement of 70 percent and the "actual" emission rate of 0.4 lb/MMBtu for petroleum coke. For coals with a sulfur content of 1.2 to 2 percent, the proposed emission limit of 0.56 lb/MMBtu would meet the NSPS limit of 0.6 lb/MMBtu for coal and 0.4 lb/MMBtu for petroleum coke.
- 5. The equation for an SO₂ emission limit for coals above 2 percent sulfur content would allow some flexibility for petroleum coke/coal mixtures. This formula would be applicable for sulfur contents from 2.0 to 3.63 percent, since coals in this range would be required to meet the 0.6 lb/MMBtu limit in Subpart Da. The proposed equations for SO₂ emission limitations for coal above 2 percent sulfur content would allow some flexibility for petroleum coke/coal mixtures (see Table 3 for derivation of equations). The equation in Paragraph b above will achieve compliance with the governing Subpart Da limit of 0.6 lb/MMBtu and 0.4 lb/MMBtu for petroleum coke. The equation in Paragraph c above accounts for the governing Subpart Da requirement of 90 percent SO₂ reduction and 0.4 lb/MMBtu for petroleum coke. The maximum SO₂ emission rate associated with firing only coal, regardless of coal sulfur

- content, cannot exceed 0.76 lb/MMBtu as required by PSD and Power Plant Siting Act (PPSA) approval. Therefore, mixtures of petroleum coke and coal can never exceed 0.688 lb/MMBtu.
- 6. SJRPP Units 1 and 2 feature an inlet continuous emission monitoring system to monitor inlet SO₂ levels prior to the flue gas desulfurization system as required by Subpart Da and an outlet continuous emission monitoring system which records SO₂ emissions as required by Subpart Da and 40 CFR Part 75. These SO₂ data are quality assured pursuant to Subpart Da and Part 75 requirements. The percent reduction requirements and the SO₂ emissions limitations for coals blended with petroleum coke that have a sulfur content less than 3.63 percent shall be ensured by operating in accordance with the data from the inlet and outlet continuous emissions monitoring system. The sulfur content of the coal shall be ensured by utilizing the "as received" coal analytical data or onsite sampling and analysis.

The proposed emission limitation meets the letter and intent of the WEPCO regulations. Also, this condition comports with EPA's "federal enforceability" guidance because it is enforceable both as a matter of law and as a practical matter; simply put, this condition obviates the possibility of an increase in actual emissions attributable to petroleum coke. Moreover, this proposal comports with good environmental policy. As shown in Figures 1 and 2, under the proposed permit condition, co-firing petroleum coke will be subject to lower emissions limitations than the limitations applicable when utilizing only coal. These graphs compare the emission limits and reduction percentages currently applicable to coal firing and proposed for petroleum coke co-firing. With the proposed permit condition, co-firing petroleum coke will not require PSD analysis pursuant to Rules 62-212.400 and 62.212.200(2)(d), F.A.C.

2.2 SULFURIC ACID MIST

The trial test values for sulfuric acid mist were a direct result of an associated increase in SO_2 emissions. Table 4 presents a comparison of the SO_2 and SO_3 emissions between the baseline tests and the co-firing test. The ratios of the blend to baseline test results are 1.78 and 1.70 for SO_2 and SO_3 emissions, respectively. This indicates that the SO_3 increase was in the relatively same proportion for both SO_3 and SO_2 (actually slightly greater for SO_2). In addition, the amount

of SO₂ removal for both the baseline test and blend test was almost identical at about 73 percent. The proposed SO₂ emission limit, if implemented during the test burn, would have ensured lower SO₂ emissions and concomitantly lower SO₃ emissions that would ensure no significant increase in the emission rates for both pollutants. Overall reduction in SO₂ emissions would have likely been 20 to 30 percent higher. For these reasons, no condition for sulfuric acid mist should be required.

2.3 CARBON MONOXIDE

The CO emissions during the baseline tests were lower than those observed during the blend tests. Since there was no attempt to control CO emissions during the co-firing tests, the combustion conditions were not "fine tuned" to optimize combustion of the petroleum coke and coal blend. Many factors, such as the grindability of the petroleum coke/coal blend and combustion controls (e.g., oxygen concentrations, NO_x control systems, load, etc.) can significantly influence CO concentrations. Data from other petroleum coke/coal co-firing test burns indicate no changes in CO emission rates. In addition, a review of the last several months of CO data from the SJRPP indicates CO values in the range reported for the co-firing test burn. For these reasons, SJRPP proposes to optimize combustion of co-firing petroleum coke and coal to ensure no net increase in emissions. A condition is proposed that has been issued in other Department permits approving co-firing of petroleum coke and coal:

(a) The applicant shall maintain and submit to the Department on an annual basis for a period of 5 years from the date the unit is co-fired with petroleum coke, information demonstrating that the co-firing did not result in significant emission increases of CO. The CO emissions shall be based on test results using EPA Method 10.

Table 1. Statistical Analysis of Petroleum Coke Trial Burn, St. John's River Power Park

Test Case	Date	PM (lb/hr)	SO3 (ppm)	CO (ppm)	NOx out (lb/MMBtu)	SO2 in (lb/MMBtu)	SO2 out (lb/MMBtu)
Baseline	07/18/95	44.14	6.96	10.29	0.468	1.029 =	0.283
Baseline	07/19/95	21.50	5.19	45.16	0.502	1.026	0.282
Baseline	07/20/95	64.92	5.55	67.00	0.474	1.031	0.282
Baseline	08/08/95	61.85	7.04	21.15	0.549	0.973	0.270
	Average	48.1	6.19	35.9	0.498	1.015	0.279
	Std. Dev.	20.0	0.95	25.3	0.0369	0.0279	0.0062
	Sample Var	398.4	0.91	642.1	0.0014	0.0008	0.0000
	n	4	. 4	4	4	4	4
Blend	08/11/95		7.54	312.96	0.502	1.636	0.457
Blend	08/12/95		9.21	497.58	0.494	1.709	0.485
Blend	08/13/95		14.03	745.64	0.463	1.728	0.482
Blend	08/14/95	80.76			0.498	1.757	0.477
Blend	08/15/95	42.95			0.503	1.730	0.471
Blend	08/16/95	28.98			0.535	1.720	0.477
Blend	08/17/95	63.28			0.559	1.938	0.521
Blend	08/18/95		11.37	467.90	0.498	2.244	0.566
Blend	08/19/95	23.47			0.470	2.376	0.545
	Average	47.9	10.54	506.0	0.502	1.871	0.498
	Std. Dev.	24.0	2.81	179.1	0.030	0.264	0.037
	Sample Var	573.9	7.88	32071.4	0.001	0.070	0.001
	n	5	4	4	9	9	9
Degrees of I	Freedom	7	6	6	11	11	11
-	t prime at 95%	1.895	1.943	1.943	1.796	1.796	1.796
	Sp	22.33	2.10	127.89	0.032	0.225	0.032
	t calc	-0.0143188	2.937	5.198	0.220	6.322	11.406
	Result	OK	Sig Diff	Sig Diff	OK	Sig Diff	Sig Diff

Table 2. Combined Emissions Limit and Scrubber Efficiency for Co-firing Petroleum Coke and Coal at St. Johns River Power Park

Coal Sulfur Content	Combined Emission Limit (lb/mmBtu)	Combined Scrubber Efficiency	Uncontrolled Emissions				
			Coal SO2 (lb/mmBtu)	Pet Coke SO2 (lb/mmBtu)	Coal SO2 NSPS Limit (lb/mmBtu)	Coal SO2 Removal	Pet Coke SO2 Removal
0.80%	0.40	75.01%	1.32	8.11	0.40	70.00%	95.07%
0.80%	0.44	75.01%	1.49	8.11	0.45	70.00%	95.07%
1.00%	0.48	75.01% 75.01%	1.65	8.11	0.43	70.00%	95.07 % 95.07%
				-		70.00%	
1.10%	0.52	75.01%	1.82	8.11	0.55		95.07%
1.20%	0.56	75.01%	1.98	8.11	0.60	70.00%	95.07%
1.30%	0.56	76.67%	2.15	8.11	0.60	72.08%	95.07%
1.40%	0.56	78.27%	2.31	8.11	0.60	74.07%	95.07%
1.50%	0.56	79.65%	2.48	8.11	0.60	75.80%	95.07%
1.60%	0.56	80.86%	2.64	8.11	0.60	77.31%	95.07%
1.70%	0.56	81.93%	2.81	8.11	0.60	78.65%	95.07%
1.80%	0.56	82.88%	2.98	8.11	0.60	79.83%	95.07%
1.90%	0.56	83.73%	3.14	8.11	0.60	80.89%	95.07%
2.00%	0.56	84.49%	3.31	8.11	0.60	81.85%	95.07%
2.10%	0.56	85.18%	3.47	8.11	0.60	82.71%	95.07%
2.20%	0.56	85.81%	3.64	8.11	0.60	83.50%	95.07%
2.30%	0.56	86.39%	3.80	8.11	0.60	84.22%	95.07%
2.40%	0.56	86.91%	3.97	8.11	0.60	84.88%	95.07%
2.50%	0.56	87.40%	4.13	8.11	0.60	85.48%	95.07%
2.60%	0.56	87.84%	4.30	8.11	0.60	86.04%	95.07%
2.70%	0.56	88.26%	4.46	8.11	0.60	86.56%	95.07%
2.80%	0.56	88.64%	4.63	8.11	0.60	87.04%	95.07%
2.90%	0.56	89.00%	4.79	8.11	0.60	87.48%	95.07%
3.00%	0.56	89.33%	4.96	8.11	0.60	87.90%	95.07%
3.10%	0.56	89.65%	5.12	8.11	0.60	88.29%	95.07%
3.20%	0.56	89.94%	5.29	8.11	0.60	88.66%	95.07%
3.30%	0.56	90.21%	5.45	8.11	0.60	89.00%	95.07%
3.40%	0.56	90.47%	5.62	8.11	0.60	89.32%	95.07%
3.50%	0.56	90.72%	5.79	8.11	0.60	89.63%	95.07%
3.60%	0.56	90.95%	5.95	8.11	0.60	89.92%	95.07%
3.63%	0.56	91.01%	6.00	8.11	0.60	90.00%	95.07%
3.70%	0.57	91.01%	6.12	8.11	0.61	90.00%	95.07% 95.07%
3.70% 3.80%	0.57 0.58	91.01%	6.28			90.00%	95.07% 95.07%
				8.11	0.63		
3.90%	0.60	91.01%	6.45	8.11	0.64	90.00%	95.07%
4.00%	0.61	91.01%	6.61	8.11	0.66	90.00%	95.07%

Assumptions:

12,100 Btu/lb for Coal

14,800 Btu/lb for Petroleum Coke

6% sulfur content of Petroleum Coke

20% Petroleum Coke firing (mmBtu/hr basis)

0.40 lb/mmBtu for Petroleum Coke

Fundamental Requirements:

- 1. Coal Meet NSPS Subpart Da and BACT Emission Limit
 - a. 0.6 lb / MMBtu or 70% SO₂ Reduction (NSPS),
 - b. 1.2 lb / MMBtu or 90% SO₂ Reduction (NSPS), and
 - c. 0.76 lb / MMBtu (30 day rolling average).
- 2. Petroleum Coke Meet 0.4 lb / MMBtu; Equivalent to 95% Reduction

Calculation:
$$\frac{0.06 \text{ lb S}}{\text{lb fuel}} \times \frac{\text{lb fuel}}{14,800 \text{ Btu}} \times \frac{2 \text{ lb SO}_2}{\text{lb S}} \times \frac{10^6}{\text{MM}} \times (1 - 0.95)$$

= 0.4 lb / MMBtu

Proposed Limits:

- 1. Coals ≤ 2% Sulfur; Assume 20% Petroleum Coke Co Firing at All Times
 - a. NSPS = 0.6 lb / MMBtu

Calculation:
$$\frac{0.0121 \text{ lb S}}{\text{lb fuel}} \times \frac{\text{lb fuel}}{12,100 \text{ Btu}} \times \frac{2 \text{ lb SO}_2}{\text{lb S}} \times \frac{10^6}{\text{MM}} \times (1 - 0.7)$$

$$= 0.6 lb / MMBtu$$

b. Petroleum Coke = 0.4 lb / MMBtu

c. Result:
$$\left(\frac{80}{100} \times 0.6 \text{ lb / MMBtu}\right) + \left(\frac{20}{100} \times 0.4 \text{ lb / MMBtu}\right)$$

= 0.56 lb / MMBtu and 75% reduction

Proposed Limits, continued:

- 2. Coals >2% Sulfur and $\leq 3.63\%$ Sulfur; Variable Amount of Petroleum Coke
 - a. NSPS = 0.6 lb / MMBtu

Calculation:
$$\frac{3.63 \text{ lb S}}{100 \text{ lb fuel}} \times \frac{\text{lb fuel}}{12,100 \text{ Btu}} \times \frac{2 \text{ lb SO}_2}{\text{lb S}} \times \left(1 - \frac{90}{100}\right)$$

$$= 0.6 lb / MMBtu$$

- b. Petroleum Coke = 0.4 lb / MMBtu
- c. Let C = % Coal Fired

Equation:
$$\left(\frac{C}{100} \times 0.6 \text{ lb / MMBtu}\right) + \left[\left(1 - \frac{C}{100}\right) \times 0.4 \text{ lb / MMBtu}\right]$$

$$SO_2 \text{ Limit} = \frac{0.6C}{100} - \frac{0.4C}{100} + 0.4 = \frac{0.2C}{100} + 0.4$$

- 3. Coals > 3.63% Sulfur; Variable Amount of Petroleum Coke
 - a. NSPS = 90% Reduction
 - b. Petroleum Coke = 0.4 lb / MMBtu
 - c. Let C = % Coal Fired and S = % Sulfur in Coal

Equation:
$$\left[\frac{C}{100} \times \frac{S}{100} \times \frac{1}{12,100} \times 2 \times \left(1 - \frac{90}{100} \right) \times 10^6 \right] + \left[\left(1 - \frac{C}{100} \right) \times 0.4 \right]$$
$$= \left(\frac{C}{100} \times S \times 0.1653 \right) + \left(0.4 - 0.4 \times \frac{C}{100} \right)$$
$$SO_2 \text{ Limit} = \frac{1}{100} \times (0.1653 \times C \times S - 0.4C + 40)$$

Example: 80% Coal and 3.8% Sulfur

$$(0.1653 \times 80 \times 3.8 - 0.4 \times 80 + 40] \times \frac{1}{100} = 0.58 \text{ lb / MMBtu}$$

- 4. Maximum limit when co firing:
 - a. Coal at 0.76 .b / MMBtu, and
 - b. Petroleum Coke at 0.4 .b / MMBtu

Calculation:

$$\left(\frac{80}{100} \times 0.76 \text{ lb / MMBtu}\right) + \left(\frac{20}{100} \times 0.4 \text{ lb / MMBtu}\right) = 0.688 \text{ .b / MMBtu}$$

Table 4. Summary of SO_3 and SO_2 Test Cases

		SO ₂			
Test Case	SO ₃ (ppm)	Outlet (lb/MMBtu)	Inlet (lb/MMBtu)	Removal (%)	
Baseline	6.19	0.279	1.015	72.7	
Blend	10.54	0.498	1.87	73.4	
Ratio ^a	1.70	1.784	1.843		

Note: SO_3 and SO_2 are averages of test cases.

^a Ratio = Baseline ÷ Blend.

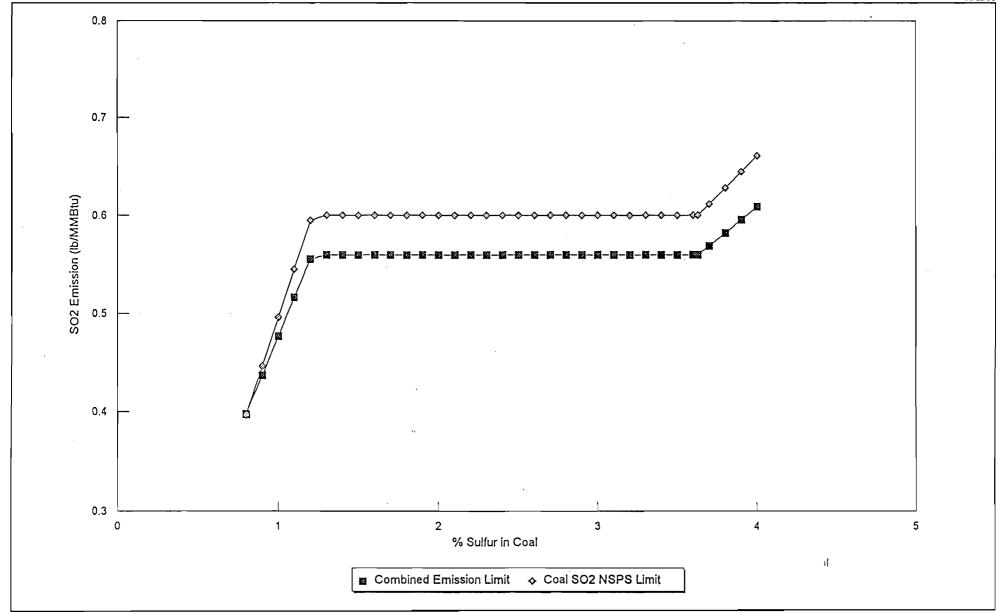


Figure 1
Emission Limits—SO₂ Emission Rate vs. Percent Sulfur in Coal

Source: KBN, 1996.

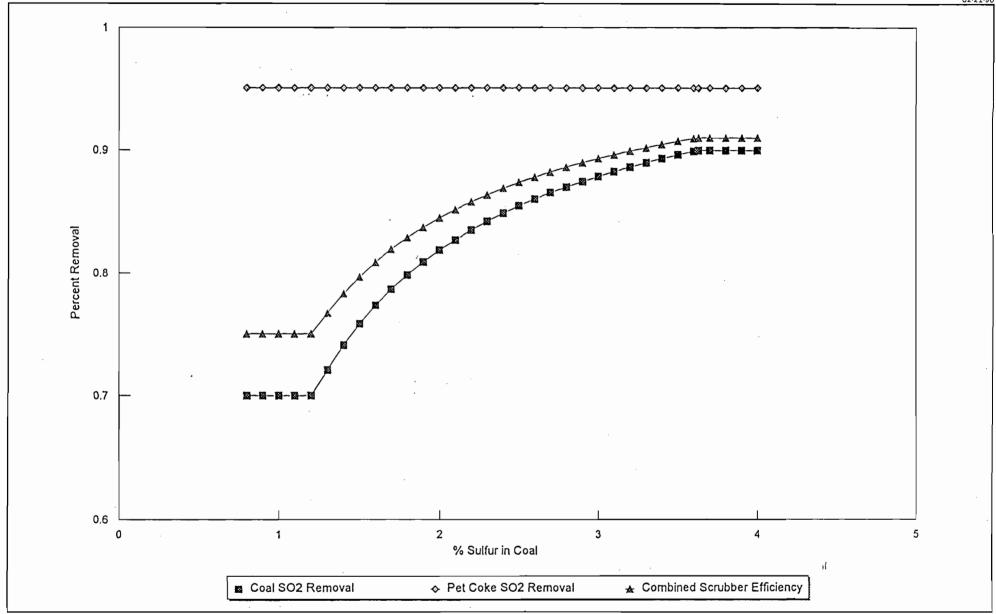


Figure 2
Percent Removal—SO₂ Removal vs. Percent Sulfur in Coal

Source: KBN, 1996.

PETROLEUM COKE-COAL TRIAL TEST BURN RESULTS

de de

CERTIFIED MAIL

KDK WOJ

SJRO LC 95 483

October 2, 1995

Mr. Hamilton Oven Adm. of Power Plant Siting Florida Dept. of Environmental Protection 3900 Commonwealth Blvd. Tallahassee, Florida 32399-2400

RE: St. Johns River Power Park Unit 1
Site Certification No. PA 81-13
Petroleum Coke/Coal Test Burn Final Report

Dear Mr. Oven:

The above referenced facility was authorized by the Florida Department of Environmental Protection's (FDEP) March 30, 1995 letter to test burn a blend of petroleum coke with coal. The test burn was performed August 8 - 19, 1995. Condition #1 of the FDEP authorization letter specifies that a written test report be submitted within 45 days upon completion of the last test run. Please find enclosed the test report with supporting documentation.

The results of the baseline and blend testing indicate that a blend of 80% coal and 20% petroleum coke can be burned successfully at SJRPP. Please note that SJRPP Units 1 and 2 are identical in design and are both required to comply with the limitations set forth in the Conditions of Certification. Based on the successful test of Unit 1 depicted in the enclosed test report, SJRPP requests that the Conditions of Certification be modified to burn petroleum coke in Units 1 & 2.

Condition #14 of the Certification states "Coal fired in Units 1 & 2 shall have an ash content not to exceed 18% and a sulfur content not to exceed 4% by weight." Condition #6 of the Letter of Authorization states "The maximum sulfur content of the coal shall not exceed 1.50%, by weight, during the baseline tests and the petroleum coke-coal blend tests. The maximum sulfur content of the petroleum coke shall not exceed 4%, by weight, which is the permitted value of the coal sulfur content at the facility."

SJRO IOC 95 482 September 29, 1995 PETROLEUM COKE/COAL TEST BURN FINAL REPORT Page 2

The sulfur content of the coal and petroleum coke were below 1.5% and 4.0% respectively during the baseline and blend testing. In order to remain consistent with the Conditions of Certification as well as derive the most beneficial usage of a coal/petroleum coke fuel, SJRPP requests that the Conditions of Certification Condition #14 be modified to reflect that the sulfur content of the coal/petroleum coke blend not exceed 4%.

Please contact Jay Worley at (904)751-7729 if you have any question or require any additional information regarding this report and request for modification.

Sincerely,

Righard Breitmoser

Director Environmental, Health & Safety

RB(JAW/sj

xc: VJ. Worley (SJRPP)

CERTIFIED MAIL

SJRO LC 95 482

October 2, 1995

Mr. Clair Fancy
Florida Dept. of Environmental Protection
Bureau of Air Regulation
Mail Station 5505
2600 Blairstone Road
Tallahassee, Florida 32399-2400

RE: St. Johns River Power Park Unit 1 Site Certification No. PA 81-13

Petroleum Coke/Coal Test Burn Final Report

Dear Mr. Fancy:

The above referenced facility was authorized by the Florida Department of Environmental Protection's (FDEP) March 30, 1995 letter to test burn a blend of petroleum coke with coal. The test burn was performed August 8 - 19, 1995. Condition #1 of the FDEP authorization letter specifies that a written test report be submitted within 45 days upon completion of the last test run. Please find enclosed the test report with supporting documentation.

The results of the baseline and blend testing indicate that a blend of 80% coal and 20% petroleum coke can be burned successfully at SJRPP. Please note that SJRPP Units 1 and 2 are identical in design and are both required to comply with the limitations set forth in the Conditions of Certification. Based on the successful test of Unit 1 depicted in the enclosed test report, SJRPP requests that the Conditions of Certification be modified to burn petroleum coke in Units 1 & 2.

Condition #14 of the Certification states "Coal fired in Units 1 & 2 shall have an ash content not to exceed 18% and a sulfur content not to exceed 4% by weight." Condition #6 of the Letter of Authorization states "The maximum sulfur content of the coal shall not exceed 1.50%, by weight, during the baseline tests and the petroleum coke-coal blend tests. The maximum sulfur content of the petroleum coke shall not exceed 4%, by weight, which is the permitted value of the coal sulfur content at the facility."

SJRO IOC 95 482 September 29, 1995 PETROLEUM COKE/COAL TEST BURN FINAL REPORT Page 2

The sulfur content of the coal and petroleum coke were below 1.5% and 4.0% respectively during the baseline and blend testing. In order to remain consistent with the Conditions of Certification as well as derive the most beneficial usage of a coal/petroleum coke fuel, SJRPP requests that the Conditions of Certification Condition #14 be modified to reflect that the sulfur content of the coal/petroleum coke blend not exceed 4%.

Please contact Jay Worley at (904)751-7729 if you have any question or require any additional information regarding this report and request for modification.

Sincerely,

Richard Breitmoser

Director Environmental, Health & Safety

RB/JAW/si

xc: V. Worley (SJRPP)

CERTIFIED MAIL

SJRO LC 95 484

October 2, 1995

Mr. Steve Pace RESD 421 West Church Street Jacksonville, Florida 32202

RE: St. Johns River Power Park Unit 1

Site Certification No. PA 81-13

Petroleum Coke/Coal Test Burn Final Report

Dear Mr. Pace:

The above referenced facility was authorized by the Florida Department of Environmental Protection's (FDEP) March 30, 1995 letter to test burn a blend of petroleum coke with coal. The test burn was performed August 8 - 19, 1995. Condition #1 of the FDEP authorization letter specifies that a written test report be submitted within 45 days upon completion of the last test run. Please find enclosed the test report with supporting documentation.

The results of the baseline and blend testing indicate that a blend of 80% coal and 20% petroleum coke can be burned successfully at SJRPP. Please note that SJRPP Units 1 and 2 are identical in design and are both required to comply with the limitations set forth in the Conditions of Certification. Based on the successful test of Unit 1 depicted in the enclosed test report, SJRPP requests that the Conditions of Certification be modified to burn petroleum coke in Units 1 & 2.

Condition #14 of the Certification states "Coal fired in Units 1 & 2 shall have an ash content not to exceed 18% and a sulfur content not to exceed 4% by weight." Condition #6 of the Letter of Authorization states "The maximum sulfur content of the coal shall not exceed 1.50%, by weight, during the baseline tests and the petroleum coke-coal blend tests. The maximum sulfur content of the petroleum coke shall not exceed 4%, by weight, which is the permitted value of the coal sulfur content at the facility."

SJRO IOC 95 482 September 29, 1995 PETROLEUM COKE/COAL TEST BURN FINAL REPORT Page 2

The sulfur content of the coal and petroleum coke were below 1.5% and 4.0% respectively during the baseline and blend testing. In order to remain consistent with the Conditions of Certification as well as derive the most beneficial usage of a coal/petroleum coke fuel, SJRPP requests that the Conditions of Certification Condition #14 be modified to reflect that the sulfur content of the coal/petroleum coke blend not exceed 4%.

Please contact Jay Worley at (904)751-7729 if you have any question or require any additional information regarding this report and request for modification.

Sincerely,

Richard Breitmoser

Director Environmental, Health & Safety

RB/JAW/sj

xc: \J.\Worley (SJRPP)

ST. JOHNS RIVER POWER PARK UNIT 1

PETROLEUM COKE/COAL TEST BURN

BACKGROUND

St. Johns River Power Park (SJRPP) investigated the feasibility of fueling the facility with a blend of bituminous coal and petroleum coke. SJRPP submitted a request to the Florida Department of Environmental Protection (FDEP) on December 20, 1994 to conduct a test burn of petroleum coke/bituminous coal. The FDEP's authorization letter dated March 30, 1995 approved the test burn in accordance with conditions as specified in the letter (Attachment A). The conditions specified notifications and coal baseline and petroleum coke/coal blend operational requirements, data collection and air emissions testing with fuel sampling and analyses. In addition, SJRPP collected in-house unit data to record and review operational performance.

DISCUSSION

The petroleum coke was received at SJRPP on July 15, 1995. FDEP baseline testing was conducted from July 18 - 20, 1995. Baseline testing was delayed due to pulverizer mechanical repairs. Upon repair, the final baseline test was conducted on August 8, 1995.

The petroleum coke/bituminous coal blend was introduced August 9, 1995 to commence the loading process to achieve the steady state operation of an 80% bituminous coal / 20% petroleum coke blend. SJRPP Unit 1 achieved a steady state 80/20 blend on August 11, 1995 in conjunction with the commencement of the FDEP blend testing.

The 80/20 blend was steady state through August 15, 1995. A new blend of approximately 87/13 and 83/17 was introduced on August 16 and 17, 1995, respectively, to assess the on-site bituminous coal supply. On August 18, 1995 an 80/20 blend was returned to the unit for the remainder of the test burn. By the morning of August 20, 1995, the supply of petroleum coke had been completely consumed.

RESULTS - Results of conditions set forth in FDEP's Letter of Authorization.

The following corresponds to the numbered Conditions 1 - 21 of the FDEP's Letter of Authorization (Attachment A).

Condition 1:

1) Please refer to Attachment B for the written notification of commencement. 2) This report submittal and attachments serve as the written test result report which has been submitted within 45 days upon completion of the final test run (8-19-95).

Condition	2:
-----------	----

The petroleum coke - coal blend performance tests were not conducted for more than 21 days. The blend tests commenced August 11, 1995 and were completed August 19, 1995 (9 days). An 80/20 blend steady state operation was established within 2 days of introduction of the blend. No problems were encountered that prevented steady state operation. The petroleum coke was first introduced into SJRPP's Unit 1 on August 9, 1995 and was completely consumed by the morning of August 20, 1995 (11.5 days).

Condition 3:

Please refer to Attachment C.

Condition 4:

Please refer to Attachment C.

Condition 5:

The petroleum coke and coal were fed into the reclaim hoppers located in the SJRPP coal yard (one hopper receiving petroleum coke and the other receiving coal). The belt feeders at the bottom of the hoppers each deliver fuel to the loading conveyor. The belt feeders were scale tested and adjusted prior to the test to operate at 80% and 20% of the conveyor's normal capacity of 1,600 tons/hour. A consistent 80/20 blend was accomplished by having both feeders operating simultaneously during this test.

Condition 6:

Please refer to Attachment D for the baseline coal and petroleum coke as-received analytical results.

Condition 7:

Please refer to Attachment E for the 1)Continuous Emissions Monitoring Systems (CEMS) data, 2)CEMS Quality Assurance data - most recent relative accuracy test audit and cylinder gas/linearity audit and 3)stack test results for particulate matter, carbon monoxide and sulfuric acid mist.

Condition 8:

Please refer to Attachment E for the baseline and blend pollutant emissions results.

Condition 9:

Please refer to Attachment F.

Condition 10:

The test burn was completed within the specified time frame.

Condition 11:

Please refer to Attachment G for the boiler operations and control equipment data.

Please contact Duval County's R&ESD office.

Condition 13:

Condition 12:

Complete documentation shall be kept on file for a minimum of five years.

Condition 14: There was no release of objectional odors.

Condition 15: Performance testing was conducted in accordance to these

conditions and testing was not required to cease.

Condition 16: Please refer to the Total Source Analysis, Inc. final baseline and

blend test reports in Attachment E for the signature and stamp of the

Florida Professional Engineer.

Condition 17: Please refer to Attachment H.

Condition 18: Please refer to Attachment I.

Condition 19: SJRPP Unit 1 was operating at permitted capacity during the

emissions testing. Please refer to Attachment G for boiler

operational data.

Condition 20: Please refer to Attachment J.

Condition 21: Please refer to Attachment A.

CONCLUSIONS

The results of the baseline and blend testing indicate that a blend of 80% coal and 20% petroleum coke can be burned successfully at SJRPP. There was not observed adverse effects on equipment or operational activities. The pollutant emissions testing and CEMS data resulted in no increases above the permitted limitations.

ATTACHMENT A

Department of Environmental Protection

Lawton Chiles Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Virginia B. Wetherell Secretary

March 30, 1995

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. Richard Breitmoser, P.E. Division Chief Environmental Affairs Division St. Johns River Power Park 11201 New Berlin Road Jacksonville, Florida 32226

Dear Mr. Breitmoser:

Re: Request to Conduct Tests for Pollutant Emissions While Firing a Blend of Petroleum Coke and Bituminous Coal in the St. Johns River Power Park (SJRPP) Unit #1; Site Certification No. PA 81-13; and, Amendment to the Federal Permit No. PSD-FL-010(A)

The Department has reviewed the request that you provided in a letter on December 20, 1994, and supplementary material on February 7, 1995, via the FAX. We have also considered the Department's legal authority to allow SJRPP to conduct the performance tests on Unit #1. Paragraph 403.061(15), Florida Statutes (F.S.), authorizes the Department to consult with any person proposing to construct, install, or otherwise acquire a pollution control device or system concerning the efficacy of such device or system, or the pollution problem which may be related to the source, device, or system. Paragraph 403.061(16), F.S., authorizes the Department to encourage voluntary cooperation by persons in order to achieve the purposes of the state environmental control act. Paragraph 403.061(18), F.S., authorizes the Department to encourage and conduct studies, investigations, and research relating to the causes and control of pollution. Rule 62-210.700(5), Florida Administrative Code (F.A.C.), authorizes the Department to consider variations in industrial equipment and make allowances for excess emissions that provide practical regulatory controls consistent with the public interest.

In accordance with the provisions of Paragraphs 403.061(15), (16), (18), and 403.516(1), F.S., and contingent on 14 days prior public notice and on resolution of any written responses by persons whose substantial interests are negatively affected by your proposal, you are hereby authorized to conduct performance tests for pollutant emissions on SJRPP's Unit #1 while firing a blend

Letter to Authorize a Test Burn Using Petroleum Coke with Coal St. Johns River Power Park: Unit #1 Site Certification No. PA 81-13/Federal Permit No. PSD-FL-010(A) March 30, 1995 Page Two

of petroleum coke and bituminous coal. SJRPP's Unit #1 was permitted under Site Certification, No. PA 81-13, and Federal Permit No. PSD-FL-010, and is certified/permitted to fire only coal in accordance with the referenced Site Certification/Federal Permit.

The emissions tests are being proposed in order to gather data regarding pollutant emissions while firing a maximum of 20%, by weight, blend of petroleum coke and bituminous coal. Screening to determine whether this change results in a modification and to determine Prevention of Significant Deterioration (PSD) and/or Nonattainment Area (NAA) applicability shall be in accordance with Chapter 403, F.S.; Chapters 62-209 thru 62-297 and 62-4, F.A.C.; and, Title 40 Code of Federal Regulations (CFR; July 1, 1993 version), which will compare the actual pollutant emissions of the baseline tests (100% coal) with the actual pollutant emissions of the performance tests while firing a blend of petroleum coke and bituminous coal. The performance test results will be reviewed by the Department's Bureau of Air Regulation (BAR) and involved agencies/parties (i.e., Duval County's Regulatory and Environmental Services Department (R&ESD), U.S. EPA, National Park Service, etc.).

The performance tests shall be subject to the following conditions:

- 1. The permittee shall notify, in writing, the Department's BAR office, the Duval County's R&ESD office, and the Site Certification office at least 15 days prior to commencement of the baseline and the petroleum coke-coal blend performance tests. A written test result report shall be submitted to these offices within 45 days upon completion of the last test run.
- The petroleum coke-coal blend performance tests shall be conducted for not more than 21 days. Based on the proposed testing protocol (faxed letter dated February 7, 1995, included as an attachment) to establish steady state operation and to achieve a maximum (20%) blend for which the tests shall be conducted, the Department will allow the first 4 days of petroleum coke-coal blend burning to establish these parameters. If, for any reasons, a steady state operation of 20% petroleum coke-coal blend, or less, is not achieved, the testing shall be curtailed. The Department shall be immediately notified of the problems that have prevented steady state operations and what steps will be initiated to correct this. Note that all petroleum coke-coal blend firing counts

Letter to Authorize a Test Burn Using Petroleum Coke with Coal St. Johns River Power Park: Unit #1 Site Certification No. PA 81-13/Federal Permit No. PSD-FL-010(A) March 30, 1995 Page Three

against the 21 days of approved time for conducting tests. All testing shall be concluded within 60 days of when petroleum coke is first introduced into SJRPP's Unit \$1.

- 3. As-burned fuel samples shall be collected and analyzed for the sulfur, nitrogen, and metals (see condition No. 4) content throughout the petroleum coke-coal blend and the baseline coal test periods. Weekly composites from daily sampling shall be required; in addition and during the particulate matter test runs, a minimum of three (3) separate samples shall be taken and analyzed.
- 4. The concentration of chromium, lead, mercury, nickel, beryllium, vanadium, and zinc in the petroleum coke-coal blend shall be compared with the concentration of the same metals in the coal used during the baseline tests.
- 5. The trial burn of the petroleum coke-coal blends shall be limited to a maximum of 20% petroleum coke, by weight. The maximum weight of the petroleum coke burned during the petroleum coke-coal blend performance tests shall not exceed 100,000 lbs/hr.
- 6. The maximum sulfur content of the coal shall not exceed 1.50 percent, by weight, during the baseline tests and the petroleum coke-coal blend tests. The maximum sulfur content of the petroleum coke shall not exceed 4 percent, by weight, which is the permitted value of the coal sulfur content at the facility.
- 7. Sulfur dioxide, nitrogen oxides (NOx), and opacity emissions data shall be recorded using continuous emissions monitors (CEMS) during the baseline and the petroleum coke-coal blend tests. If the plant CEMS are used for these tests, these systems shall be quality assured pursuant to 40 CFR 60, Appendix F requirements. The data assessment report from 40 CFR 60, Appendix F, for the most recent relative accuracy test audit (RATA) and most recent cylinder gas audit (CGA), shall be submitted with the test report. In addition, stack tests shall be conducted for the pollutants particulate matter (PM; assume that all of PM is PM10), carbon monoxide, and sulfuric acid mist. A satisfactory performance test for each baseline test and each petroleum coke-coal blend shall consist of a minimum of three tests at three runs per test.

Letter to Authorize a Test Burn Using Petroleum Coke with Coal St. Johns River Power Park: Unit #1 Site Certification No. PA 81-13/Federal Permit No. PSD-FL-010(A) March 30, 1995 Page Four

- 8. For PSD, NAA, and modification assessment purposes, the actual pollutant emissions results from the petroleum coke-coal blend performance tests shall be compared with the actual pollutant emissions results from the baseline performance tests when firing coal only.
- 9. Any performance tests shall be conducted using EPA Reference Methods, as contained in 40 CFR 60 (Standards of Performance for New Stationary Sources), 40 CFR Part 61 (National Emission Standards for Hazardous Air Pollutants), and 40 CFR 266, Appendix IX (Multi-metals), or any other method approved by the Department, in writing, in accordance with Chapter 62-297, F.A.C.
- 10. If additional time is needed, the permittee shall request an extension of time and provide the Department with documentation of the progress accomplished to date and shall identify what is left to be done to complete the performance tests.
- 11. Daily records (i.e., heat input, steam production, pressure, temperature, MW, fuel input rates, etc.) of boiler operations while firing the petroleum coke-coal blend and while firing only coal (baseline) during the tests shall be required. Also, daily record keeping of the control equipment parameters (i.e., the pH of the scrubbing medium, the mix ratio of the water and medium and the injection rate to the scrubber, the pressure drop across the scrubber, etc.) shall be required and any alteration of the control equipment operational parameters between the baseline and the petroleum coke-coal blend tests shall be documented and summarized in the final report.
- 12. A Type I or II stack audit may be conducted by the Duval County's R&ESD office.
- 13. Complete documentation (recording) of any firing of the petroleum coke-coal blend shall be required (i.e., all CEMs records; testing results; materials utilized, by weight; etc.) and kept on file for a minimum of five years.
- 14. The authorized petroleum coke-coal blend performance tests shall not result in the release of objectionable odors pursuant to Rule 62-296.320(2), F.A.C.

Letter to Authorize a Test Burn Using Petroleum Coke with Coal St. Johns River Power Park: Unit #1 Site Certification No. PA 81-13/Federal Permit No. PSD-FL-010(A) March 30, 1995
Page Five

- 15. Performance testing shall immediately cease if SJRPP's Unit #1 operations are not in accordance with the conditions in the air section of the Site Certification, No. PA 81-13; the Federal Permit, No. PSD-F1-010; and, this authorization protocol. Performance testing shall not resume until appropriate measures to correct the problem(s) have been implemented.
- 16. The performance tests for pollutant emissions shall be conducted under the direct supervision and responsible charge of a professional engineer registered in Florida.
- 17. This Department action is only to authorize the performance tests for a petroleum coke-coal blend performance tests, where prior public notice was published in a newspaper of general circulation in the Jacksonville area. Any firing of petroleum coke after the last performance test run is completed will be deemed a violation of the Site Certification, No. PA 81-13, and the Federal Permit, No. PSD-FL-010.
- 18. The Duval County's R&ESD office shall be notified, in writing, on the date of the last test run completion.
- 19. The testing series shall include emissions tests for each of the petroleum coke-coal blends and pollutants with the source operating at permitted capacity. Permitted capacity is defined as 90-100 percent of the Site Certification (PA 81-13) and Federal Permit (PSD-FL-010) capacity allowed. If it is impracticable to test at this capacity, then the source may be tested at less than capacity for the petroleum coke-coal blend and the baseline tests, but the tests must be conducted at the same capacity; and, in this case, subsequent source operation with a petroleum coke-coal blend, if requested and approved by the Department, shall be limited to 110 percent of the tested capacity until new tests are conducted, which requires prior Department authorization.
- 20. Prior written approval of the pollutants to be tested for and the appropriate test methods are mandatory prior to commencement of testing. The proposal shall be submitted to the Site Certification office, the Department's BAR office, and the Duval County's R&ESD office for approval.

Letter to Authorize a Test Burn Using Petroleum Coke with Coal St. Johns River Power Park: Unit #1 Site Certification No. PA 81-13/Federal Permit No. PSD-FL-010(A) March 30, 1995 Page Six

21. Attachments to be incorporated:

- o SJRPP's December 20, 1994 letter with Attachment.
- o SJRPP's February 7, 1995 facsimile.

This letter amendment must be attached to the Federal Permit, No. PSD-FL-010(A) (Site Certification No. PA 81-13), and shall become a part of the permit.

Sincerely,

Howard L. Rhodes, Director Division of Air Resources

Management

HLR/sa/t

Enclosure

cc: Buck Oven, DEP Steve Pace, R&ESD

Jewell Harper, EPA/Region IV

John Bunyak, NPS

Doug Beason, Esq., DEP

Jay Worley, SJRPP

December 20, 1994

Mr. Hamilton S. Oven, P.E. Administrator, Siting Coordination Office Florida Dept. of Environmental Protection 3900 Commonwealth Blvd. Tallahassee, FL 32399-3000

RE: Request to Conduct a Test Burn of Petroleum Coke/Bituminous Blend in St. Johns River Power Park's (SJRPP) Unit #1, Site Certification No. PA 81-13 and PSD-FL-010.

Dear Mr. Oven:

Pursuant to your December 13, 1994 telephone conversation with Jay Worley, SJRPP Sr. Environmental Engineer, SJRPP requests to conduct a petroleum coke/bituminous coal mixture test burn commencing February 01, 1995. The test burn is anticipated to be completed by March 03, 1994 in order to inspect operational equipment during the scheduled Unit 1 outage which commences March 04, 1995.

Approximately 10,000 tons of petroleum coke will be mixed with bituminous coal to achieve mixtures up to 20% petroleum coke. Please refer to Attachment A for an example of the analytical data for the type of petroleum coke SJRPP intends to test burn.

Please contact Jay Worley at (904) 751-7729 if you have any questions or require any additional information regarding this request.

Very truly yours,

Richard Breitmoser, P.E.

Division Chief

Environmental Affairs Division

RB/JAW/pct

xc: C. Fancy, FDEP

E. Frey, FDEP

W. Tutt. RESD

J. Worley, SJRPP -

ATTACHMENT A

December 8, 1994

Sample of:

TYPICAL 4" X 0 PETROLEUM COKE; ANOCO - YORKTOWN, VIRGINIA

From

· Louisiana Carbon

Date Sampled:

Week of December 4. 1994

Quality "As Received"

"As Received" Guaranteed Quality

Heat Content (Btu/1b)

14000 minimum

Hardgrove Grindability

60 minimum

Proximate Analysis (% by weight)

Volatile Matter Fixed Carbon

Ash

Moisture

12 - 13.5

75 - 79

0.75 maximum

10 maximum

Ultimate Analysis (& by weight)

Carbon

Hydrogen Sulphur

Oxygen

Mitrogen

Chlorine

89.50 DCB

4.00 DCB

4.00 As Received

4.25 DCB

1.45 DCB

<0.01

611 HOWMET DRIVE HAMPTON, VIRGINIA 23661 (804) 826-5310 FAX: (804) 827-1366

Hampton Roads Testing Laboratories. Inc.

December 12, 1994

Sample of:

TYPICAL 4" X O PETROLEUM COKE;

ANOCO - YORKTOWN, VIRGINIA

Prom:

Louisiana Carbon

Date Sampled:

Week of December 4, 1994

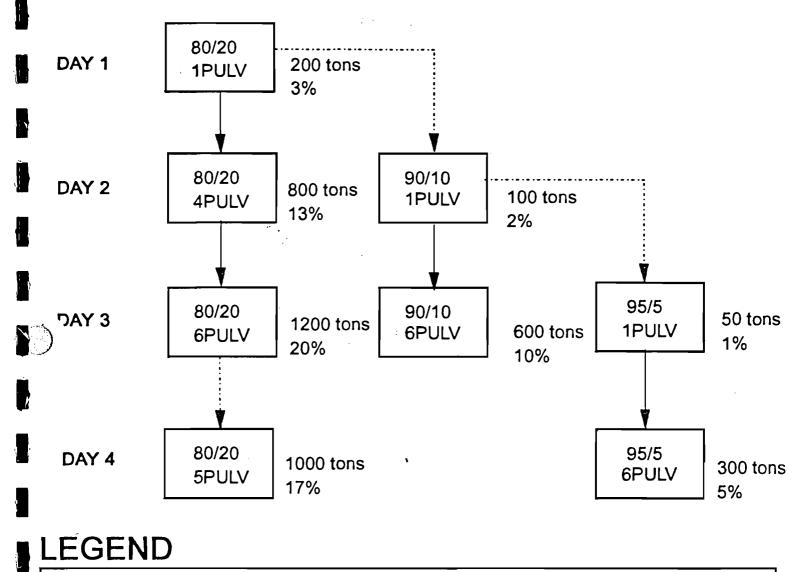
PETROLEUM COKE MINERAL ANALYSIS OF ASH DRY BASIS

Hineral	Percent				
Calcium Oxide	2.4 - 3.0				
Magnesium Oxide	0.5 - 1.0				
Potessium Oxide	0.4 - 0.9				
Iron Oxide	4.0 - 6.0				
Sodium Oxide	0.7 - 1.2				
Aluminium Oxide	6.5 - 10.0				
Silicon Dioxide	16.0 -22.0				
Titenium Dioxide	0.3 - 0.8				
Mangamese Dioxide	0.04- 0.09				

METAL DETERMINATION OF PETROLEUM COKE

Vanadium 1400 - 2000 ppm Mickel 200 - 350 ppm

Respectfully Submitted,


Robert IV Lanier

611 HOWMET DRIVE HAMPTON, VIRGINIA 23681 (804) 826-5310 FAX: (804) 827-1366

St. Johns River Power Park PETROLEUM COKE TEST BURN SCHEDULE

Represents action following operationally successful test burn

Represents action following operationally unsucessful test burn

Note: Incremental loading of petroleum coke fuel is required to anticipate operational limitations.

ATTACHMENT B

CERTIFIED MAIL

June 22, 1995

Mr. Clair Fancy FDEP Bureau of Air Regulation Mail Station 5505 2600 Blairstone Road Tallahassee, FL 32399-2400

RE: Site Certification No. PA 81-13

St. Johns River Power Park (SJRPP) Unit I

Notification of Test Burn Petroleum Coke-Coal Blend

Dear Mr. Fancy:

The above referenced facility was authorized by the Florida Department of Environmental Protection's March 30, 1995, letter to test burn a blend of petroleum coke with coal. Condition #1 requires that "the permittee shall notify, in writing, the Department's BAR office, the Duval County's RESD office and the Site Certification Office at least 15 days prior to commencement of the baseline and the petroleum cokecoal blend performance tests. In accordance with Condition #1, the tentative date to commence the baseline and petroleum coke-coal blend performance tests is July 11, 1995.

Please contact me at (904) 751-7729 if you have any questions.

\$incerely,

Jay Worley

Environmental & Safety Manager

JAW/pct

CERTIFIED MAIL

SJRO LC 95 120

July 20, 1995

Mr. Clair Fancy
Fla. Dept. of Environmental Protection
Bureau of Air Regulation
Mail Station 5505
2600 Blair Stone Rd.
Tallahassee, FL 32399-2400

RE: Site Certification No. PA 81-13

St. Johns River Power Park (SJRPP) Unit 1

Notification of Petroleum Coke/Coal Test Burn Delay

Dear Mr. Fancy:

The above referenced testing at SJRPP has been delayed due to pulverizer mechanical repairs. The unit loading of petroleum coke is now anticipated to commence August 7, 1995. Please note that the baseline testing was completed July 20, 1995, however, these repairs have become necessary to ensure that the unit will remain available throughout the pet coke testing period.

Please contact me at (904) 751-7729 if you have any questions.

Sincerely,

Jay Worley

Environmental & Safety Manager

JAW/pct

xc: R. Breitmoser

ATTACHMENT C

SJRPP UNIT 1 TEST BURN PETROLEUM COKE/BITUMINOUS COAL ANALYTICAL RESULTS

A) BASELINE - COMPOSITE - 7/18, 7/19, 7/20, 8/8 - (Analyses in ug/g)

DATE	S	N	Cr	Pb	Hg	Ni	Be	V	Zn
BASELINE COMPOSITE	0.86	1.59	10	7	0.06	3	0.7	21	13

B) DAILY - BASELINE - (Analyses in ug/g)

DATE	S	N	Cr	Pb	Hg	Ni	Be	V	Zn
7/18	0.61	1.58	8	3	0.07	1	0.3	16	10
7/18	0.62	1.59	7	3	0.06	1	0.3	15	10
7/18	0.65	1.54	8	3	0.05	1	0.3	17	12
7/19	0.85	1.56	11	6	0.09	6	0.7	21	14
7/19	0.86	1.54	11	2_	0.07	6	0.8	22	15
7/19	0.85	1.54	11	3	0.06	3	0.7	22	16
7/20	1.24	1.46	15	5	0.09	13	2.1	32	17
7/20	1.22	1.61	14	7	0.15	12	2.0	32	18
7/20	1.26	1.61	15	7	0.11	12	2.1	35	17
8/8	0.77	1.59	8	3	0.04	<1	0.3	18	12
8/8	0.72	1.58	8	5	0.03	1	0.3	17	10
8/8	0.72	1.55	8	3	0.04	1	0.3	18	11

SJRPP UNIT 1 TEST BURN PETROLEUM COKE/BITUMINOUS COAL ANALYTICAL RESULTS

A) BLEND A - COMPOSITE - 8/9, 8/10, 8/11, 8/12, 8/13 (Analyses in ug/g)

DATE	S	N	Cr	Pb	Hg	Ni	Be	V	Zn
COMPOSITE BLEND A	1.05	1.42	8	3	0.05	33	0.5	220	12

B) BLEND B - COMPOSITE - 8/14, 8/15, 8/16, 8/17, 8/18, 8/19 (Analyses in ug/g)

DATE	S	N	Cr	Pb	Hg	Ni	Be	V	Zn
COMPOSITE BLEND B	1.62	1.50	12	7	0.05	62	1.3	400	18

SJRPP UNIT 1 TEST BURN PETROLEUM COKE/BITUMINOUS COAL ANALYTICAL RESULTS

A) DAILY BLEND - (Analyses in ug/g)

DATE	S	N	Cr	Pb	Hg	Ni	Be	V	Zn
8/14	1.34	1.52	7	3	0.06	57	0.7	380	13
8/14	1.44	1.55	7	4	0.03	73	1.2	500	13
8/14	1.31	1.53	8	4	0.06	50	1.0	350	14
8/15	1.48	1.53	6	3	0.04	77	1.1	500	11
8/15	1.32	1.51	7	3	0.05	58	1.0	380	12
8/15	1.33	1.53	8	· 3	0.05	54	1.2	360	15
8/16	1.40	1.53	7	4	0.07	60	1.0	390	14
8/16	1.40	1.53	7	3	0.03	61	1.2	390	13
8/16	1.32	1.45	7	<2	0.05	58	0.9	380	13
8/17	1.33	1.34	7	<2	0.04	54	1.0	360	13
8/17	1.94	1.56	11	9	0.07	65	1.7	430	16
8/17	1.49	1.43	24	11	0.04	58	2.0	330	25
8/18	1.77	1.50	18	11	0.07	71	2.0	460	23
8/18	1.72	1.51	17	10	0.08	65	2.1	380	20
8/18	1.86	1.46	15	11	0.08	68	2.0	420	21
8/19	1.89	1.49	15	11	0.09	68	1.8	420	22

09/05/95 12:37

Best Available Copy

COMMERCIAL TESTING & ENGINEERING CO.

GÊNERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 • (312) 953-9300

Mamber of the SGS Group (Societe Gehelete de Surveillance)

September 1, 1995

PLEASE ADDRESS ALL CORRESPONDENC P.O. BOX 752, HENDERSON, KY TELEPHONE: (502) 827 FAX: (502) 826

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by SJRPP

60 Mesh Split Sample #0928 Comp-A 7/18, 7/19, 7/20, 8/8 P.O. #002363

7.31% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at

Sample taken by

BURN PATE

Pate sampled July 18,19,20, 1995 August 8, 1995 Date received August 22, 1995

> 63-90708 Analysis report no.

<u>Parameter</u>	Results
Beryllium, Be	0.7
Chromium, Cr	10
Lead, Pb	7
Mercury, Mg	0.06
Nickel, Ni	3
Vanadium, V	21
Zinc, Zn	13
Sulfur, S	0.86
Mitrogen, M	1.59

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalganation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight Respectfully submitted,
COMMERCIAL TESTING & ENGINEERING CO. percent (Wt.4), all on a dry basis.

Manager, Henderson Laboratory

MALTILCCATED IN PRINCIPAL COAL MINING AREAS,

OVER 40 BRANCH LACCOM. TIDEWATER

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 • (312) 953-9300

Member of the SGS Group (Societal Geherale de Surveillance)

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

PLEASE ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 752, HENDERSON, KY 42420 TELEPHONE: (502) 827-1187 FAX: (502) 826-0719

Sample identification by SJRPP

60 Mesh Split Sample #0913A P.O. #002363

63-00506

8.81% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at

Sample taken by

BURN DATE Date sumpled

July 18, 1995

Date received August 22, 1995

analysis report no.	03-30030
Parameter	Results
Beryllium, Be	0.3
Chrosium, Cr	8
Lead, Pb	3
Mercury, Hg	0.07
Nickel, Ni	1
Vanadiu≡, V	16
Zinc, Zn	10
Sulfur, S	0.61
Nitrogen, N	1.58

Analysis report no

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Hethod D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.%), all on a dry basis. Polymencial restings engineering

Manager, Henderson Laboratory

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATORIES COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS FACILITIES

Original Copy Water 2015

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 * (312) 953-9300

Member of the SGS Group (Societe Geheirale de Surveillance)

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE TO:
P.O. BOX 752, HENDERSON, KY 42420
TELEPHONE: (502) 827-1187
FAX: (502) 826-0719

Sample identification by

SJRPP

60 Mesh Split Sample #0914B P.O. #002363

8.81% A.D.L. Provided by Client .

Kind of sample Coal reported to us

Sample taken at

Sample taken by

Date Sampled

July 18, 1995

Date received August 22, 1995

	Analysis report no.	63-90697
	<u>Parameter</u>	Results
	Beryllium, Be	0.3
	Chronium, Cr	7
•	Lead, Pb	3
1 .	Mercury, Hg	0.06
	Nickel, Ni	1
_	Vanadium, V	15
l	Zinc, Zn	10
	Sulfur, S	0.62
	Mitrogen, H	1.59

Procedure:

The samples were prepared according to ASTM, Part 5.05, Hethod D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Hercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.*), all on a dry basis.

Respectfully submitted.
COMMERCIAL TESTING & ENGINEERING CO.

Deliving 1 Som ald the Co

TO APPLAS.

GENERAL OFFICES: 1918 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (312) 953-9300

SWCC 1908

Member of the SGS Group (Société Genérale de Surveillance)

) s

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE TO. P.O. BOX 752, HENDERSON, KY 42420 TELEPHONE: (502) 827-1187 FAX: (502) 828-0719

Sample identification by SJRPP

60 Mesh Split Sample #0915C P.O. #002363

8.81% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at ----

Sample taken by

BURN DATE
Date sampled July 18, 1995

Date received August 22, 1995

Analysis report no.	63-90698
<u>Parameter</u>	Results
Beryllium, Be	0.3
Chronium, Cr	8
Lead, Pb	3
Hercury, Hg	0.05
Nickel, Ni	1
Vanadium, V	17
Zinc, Zn	12
Sulfur, S	0.65
Mitrogen, M	1.54

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g),
except for Nitrogen and Sulfur, which are reported in weight
percent (Wt.1), all on a dry basis.

Respectfully submitted.

PROPRIEMENTAL TESTING & ENGINEERING CO.

Manager, Hendorana 1

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINICE
TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITISS
Original Copy Watermarked For Your Protection

GENERAL OFFICES: 1918 SOUTH HIGHLAND AVE., SUITE 210-B. LOMBARD, ILLINOIS 80148 . (312) 953-9300

Member of the SGS Group (Sociate Générale de Survelllance)

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 752, HENDERSON, KY 42420 TELEPHONE: (502) 827-1187 FAX: (502) 826-0719

Sample identification by SJRPP

60 Mesh Split Sample #0918D P.O. #002363

8.70% A.D.L. Provided by Client

Kind of mample Coal reported to us

Sample taken at -----

Sample taken by

ン Date appled July 19, 1995

Date received August 22, 1995

	Abalysis report no.	63-90699
	<u>Parameter</u>	Results
	Beryllium, Be	0.7
	Chronium, Cr	11
	Lead, Pb	6
	Mercury, Hg	0.09
/	Nickel, Ni	6
	Vanadium, V	21
	Zinc, Zn	14
	Sulfur, S	0.85
	Mitrogen, M	1.56

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Hercury per ASTN, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.*), all on a dry basis.

Respectfully submitted.

COMMERCIAL TESTING & ENGINEERING CO

Manager, Henderson Laboratory

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (312) 953-9300

Member of the SGS Group (Société Générale de Burverlance)

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 752, HENDERSON, KY 42420 TELEPHONE: (502) 827-1187 FAX: (502) 826-0719

Sample identification by

SJRPP

60 Mesh Split Sample #0919E P.O. #002363

8.70% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at ----

Sample taken by

Date **August** July 19, 1995

Date received August 22, 1995

Analysis report no.	63-90700 <u>Results</u>	
<u>Parameter</u>		
Beryllium, Be	0.8	
Chronium, Cr	11	
Lead, Pb	2	
Mercury, Hg	0.07	
Nickel, Ni	6	
Vanadium, V	22	
Zinc, Zn	15	
Sulfur, S	0.86	
Witrogen. N	1.54	

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Mitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.*), all on a dry basis.

Respectfully submitted.

Respectfully submitted.

Respectfully submitted.

Respectfully submitted.

Respectfully submitted.

Respectfully submitted.

Violande I menderen Laboratory

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES
Original Copy Watermarked For Your Protection

GENERAL OFFICES; 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 • (312) 853-9300

Member of the SGS Group (Société Geherale de Surveillance)

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 752, HENDERSON, KY 42420 TELEPHONE: (502) 827-1187 FAX: (502) 826-0719

Sample identification by SJRPP

60 Mesh Split Sample #0920P P.O. #002363

8.70% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at ----

Sample taken by

BURN Date campled July 19, 1995

Date received August 22, 1995

	Analysis report no.	63-90701
	<u>Parameter</u>	Results
	Beryllium, Be	0.7
	Chromium, Cr	11
	Lead, Pb	3
1	Mercury, Hg	0.06
D .	Mickel, Ni	3
	Vanadium, V	22
1	Zine, Zn	16
	Sulfur, S	0.85
9	Hitrogen, H	1.54

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Witrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight

percent (Wt.4), all on a dry basis.

Respectfully submitted, SOMMERCIAL TESTING & ENGINEERING CO.

Manager, Henderson Laboratory

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 . (312) 953-9300

Member of the SGS Group (Societal Generale de Surveillance)

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 752, HENDERSON, KY 42420 TELEPHONE: (502) 827-1187 FAX: (502) 828-0719

Sample identification by SJRPP

60 Mesh Split Sample #0923G P.O. #002363

4.00% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at -----

Sample taken by -----

RM Date July 20, 1995

Date received August 22, 1995

Analysis report no.	63-90702
<u>Parameter</u>	Results
Beryllium, Be	2.1
Chromium, Cr	15
Lead, Pb	5
Mercury, Hg	0.09
Nickel, Ni	13
Vanadium, V	32
Zinc, Zn	17
Sulfur, S	1.24
Mitrogen. M	1.46

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Mitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.*), all on a dry basis. Commercial Testing Pengineering CO.

Manager, Handerson Laboratory

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 (312) 953-9300

Member of the SGS Group (Société Behérate de Burvaillance)

September 1, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE TO: P.O. BOX 752, HENDERSON, KY 42420 TELEPHONE: (502) 827-1187 FAX: (502) 826-0719

Sample identification by SJRPP

60 Mesh Split Sample #0924H P.O. #002363

4.00% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at ----

Sample taken by -

Date 20, 1995

Date received August 22, 1995

Analysis report no.	63-90703
<u>Parameter</u>	Results
Beryllium, Be	2.0
Chronium, Cr	14
Lead, Pb	7
Mercury, Hg	0.15
Wickel, Wi	12
Vanadium, V	32
Zinc, Zn	18
Sulfur, S	1.22
Mitrogen, N	1.61

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTH, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Vt.1), all on a dry basis.

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Manager, Henderson Laboratory

D

15:85

FROM

HAMPTON POODS TESTING

Tal: (804) 825-5310 Fax: (804) 827-1388

Laboratory Report No. 312917

Date of Report July 14, 1995

CERTIFICATE OF ANALYSIS

Sample of: PETROLEUM COKE - LOT 2

Hark: Representing a 48 car sample of PET COKE, car top sampled at the Yorktown Refinery

FSON: Louisiana Carbon/Amoco

Date Sampled: July 12, 1995

Sampled By: Hampton Roads Testing Labs., Inc.

PROJUMNTS AMALYSIS As Received Dry Besis

Moisture	5.45	
Volatile Hatter	14.31	15.13
Pixed Carbon	79.89	84.50
Ash	0.35	0.37
Total (100%)	100.00	100.00
Sulphur	3.04	3.22
B.T.U./Lb.	14811	15665
Calories/Gram	8228	8703

MOISTURE/ASH PREE B.T.U. 15723

PLEASE ADDRESS ALL CORRESPONDENCE P.O. BOX 752, HENDERSON, KY 42

TELEPHONE: (502) 827-1 FAX: (502) 828-0

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., BUITE 210-8, LOMBARD, ILLINOIS 60148 4 (312) 953-9300

Member of the SGS Group (Bociete' Generale de Surveitance)

September 7, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

Sample identification by SJRPP

60 Mesh Split Sample #0925I P.O. #002363

63-90704

4.00% A.D.L. Provided by Client

Corrected analysis

1.61

Kind of sample Coal reported to us

Sample taken at -----

Sample taken by -----

Date sampled July 20, 1995

Date received August 22, 1995

Parameter	Results
Beryllium, Be	2.1
Chromium, Cr	15
Lead, Pb	7
Mercury, Hg	0.11
Mickel, Mi	12
Vanadium, V	35
Zinc, Zn	17
Sulfur, S	1.26

Analysis report no.

Mitrogen, M

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Nethod D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Mitrogen and Sulfur, which are reported in weight MARRIAL TESTING & PNGINEERING CO. RR percent (Wt.4), all on a dry basis.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 • (312) 953-9300

Member of the SGS Group (Société Générale de Survoitance)

September 1, 1995

PLEASE ADDRESS ALL CORRESPONDENCE P.O. BOX 762, HENDERSON, KY 4 TELEPHONE: (502) 827-FAX: (502) 826-

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

Sample identification by SJRPP

60 Mesh Split Sample #0929J P.O. #002363

63-90705

Kind of sample Coal reported to us

7.74% A.D.L. Provided by Client

Sample taken at ----

Sample taken by

August 8, 1995

Date received August 22, 1995

·	
<u>Parameter</u>	Results
Beryllium, Be	0.3
Chronium, Cr	8
Lead, Pb	3
Hercury, Hg	0.04
Mickel, Ni	<1
Vanadium, V	18
Zinc, Zn	12
Sulfur, S	0.77
Witrogen. W	1.59

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.%), all on a dry basis.

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Manager, Henderson Laboratory

TOTAL LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS,

GÉNERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILUNOIS 60148 . (312) 953-9300

Member of the SGS Group (Societe Generale de Surveillance)

September 1, 1995

PLEASE ADDRESS ALL CORRESPONDENCE P.O. 80X 752, HENDERSON, KY 4 TELEPHONE: (502) 827-FAX: (502) 826-

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by SJRPP

60 Kesh Split Sample #0930K P.O. #002363

63-90706

7.74% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at

Sample taken by -----

Date applied August 8, 1995

Date received August 22, 1995

Parameter	Results
Beryllium, Be	0.3
Chronium, Cr	8
Lead, Pb	5
Mercury, Hg	0.03
Nickel, Ni	1
Vanadium, V	17
Zinc, Zn	10
Sulfur, S	0.72
Nitrogen. H	1.58

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight Bespectfully submitted, COMMERCIAL TESTING & EJIGINEERING CO. percent (Wt.3), all on a dry basis.

PLEASE ADDRESS ALL CORRESPONDENCE P.O. BOX 752, HENDERSON, KY 4 TELEPHONE: (502) 827

FAX: (502) 828-

COMMERCIAL TESTING & ENGINEERING CO.

GÈNERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 80148 + (312) 953-9300

Member of the SGS Group (Societé Générale de Burveillance)

September 1, 1995

Sample identification by SJRPP

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

> 60 Mesh Split Sample #0931L

P.O. #002363

63-90707

Kind of sample Coal reported to us

7.74% A.D.L. Provided by Client

Sample taken at -----

Sample taken by

BURN Date sampled August 8, 1995

Date received August 22, 1995

Parameter	Results
Beryllium, Be	0.3
Chromium, Cr	8
Lead, Pb	3
Mercury, Eg	0.04
Nickel, Ni	1
Vanadium, V	18
Zinc, Zn	11
Sulfur, S	0.72
Witrogen, W	1.55

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTH, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Mitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.1), all on a dry basis.

Bencettully submitted, COMMERCIAL TESTING & ENGINEERING CO

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1818 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 * (312) 953-9300

Member of the EGS Group (Socielal Geheltale de Surveillance)

September 11, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226 PLEASE ADDRESS ALL CORRESPONDENCE P.O. BOX 752, HENDERSON, KY 45 TELEPHONE: (502) 827-1 FAX: (502) 826-0

Sample identification by

6.92% A.D.L. Provided by Client

SJRPP

Sample #0939M P.O. #008306

63-90988

Kind of sample Coal reported to us

Sample taken at ----

Sample taken by ----

Date sampled August 14, 1995

Date received August 25, 1995

Parameter	Results
Beryllium, Be	0.7
Chromium, Cr	7
Lead, Pb	3
Hercury, Hg	0.06
Nickel, Ni	57
Vanadium, V	380
Zinc, Zn	13
Sulfur, S	1.34
Nitrogen, N	1.52

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g),

except for Nitrogen and Sulfur, which are reported in weight

percent (Wt.*), all on a dry basis.

Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 + (312) 953-9300

Member of the SGS Group (Société Gahairate de Survettance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE T P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by SJRPP

Sample #0940N P.O. #008306

Kind of sample Coal reported to us

4.74% A.D.L. Provided by Client

Sample taken at ----

Sample taken by -----

Date sampled August 14, 1995

Date received August 25, 1995

Analysis report no.	63-30383	
Parameter	Results	
Beryllium, Be	1.2	
Chromium, Cr	7	
Lead, Pb	4	
Mercury, Hg	0.03	
Nickel, Ni	73	
Vanadium, V	500	
Zinc, Zn	13	
Sulfur, S	1.44	

1.55

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mitrogen, M

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Mitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.*), all on a dry basis.

Respectivity submitted, COMMERCIAL JESTING & ENGINEERING CO

GENERAL OFFICES: 1918 SOUTH HIGHLAND AVE., SUITE 21D-B, LOMBARD, ILLINOIS 60148 • (312) \$53-9300

Member of the SGS Group (Societé Générale de Surveillance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE ? P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

Sample identification by SJRPP

Sample #09410 P.O. #008306

47-0000U

Kind of sample Coal reported to us

7.514 A.D.L. Provided by Client

Sample taken at

Sample taken by

Date sampled August 14, 1995

Date received August 25, 1995

43-70330
Results
1.0
8
4
0.06
50
350
14
1.31
1.53

Inslucie comort no

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Nethod D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis. Respectfully submitted.

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B. LOMBARD, ILLINOIS 60148 + (312) 953-9300

Member of the SGS Group (Societo Generale de Surveillance)

September 11, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

PLEASE ADDRESS ALL CORRESPONDENCE 1 P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

Sample identification by SJRPP

Sample #0943P P.O. #008306

63-90991

77

500

Sample taken at -----

reported to us

Sample taken by -----

Kind of sample Coal

Date sampled August 15, 1995

Date received August 25, 1995

4.71% A.D.L. Provided by Client

<u>Parameter</u>	Results
Beryllium, Be	1.1
Chromium, Cr	. 6
Lead, Pb	3
Mercury, Eg	0.04

Analysis report no.

Nickel, Ni

Vanadium, V

Zinc, Zn 11 Sulfur, S 1.48 Mitrogen, M 1.53

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis. Respectfully submitted,

COMMERCIAL TESTING & ENGINEERING CO

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 80148 + (312) 953-9300

Member of the SGS Group (Societé Générale de Eurweitence)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE T P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

Sample identification by **SJRPP**

Sample #09440 P.O. #008306

1.51

Kind of sample Coal reported to us

6.91% A.D.L. Provided by Client

Sample taken at -----

Sample taken by -----

Date sampled August 15, 1995

Date received August 25, 1995

	Analysis report no.	63-90992	
()	<u>Parameter</u>	Results	
/	Beryllium, Be	1.0	
•	Chronium, Cr	7	
	Lead, Pb	3	
	Hercury, Hg	0.05	
	Wickel, Mi	5 8	
	Vanadium, V	380	
	Zinc, Zn	12	
	Sulfur, S	1.32	

Mitrogen, M

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atonic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Mitrogen and Sulfur, which are reported in weight Respectfully submitted, SOMMERÇIAL TESTING & ENDINEERING CO. percent (Wt.%), all on a dry basis.

GENERAL OFFICES: 1819 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 • (312) 953-9300

Member of the SGS Group (Societé Osherate de Surveillance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE T P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by SJRPP

Sample #0945R P.O. #008306

Kind of sample Coal reported to us

7.56% A.D.L. Provided by Client

Sample taken at

Sample taken by -----

Date sampled August 15, 1995

Date received August 25, 1995

Analysis report no.	63-90993	
Parameter	Results	
Beryllium, Be	1.2	
Chromium, Cr	8	
Lead, Pb	3	
Mercury, Hg	0.05	
Hickel, Ni	54	
Vanadium, V	360	
Zinc, Zn	15	
Sulfur, S	1.33	
Mitrogen, M	1.53	

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Analgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Hitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight Respectfully submitted.
COMMERCIAL TESTING & ENGINEERING CO percent (Wt. %), all on a dry basis.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 + (312) 853-9300

Member of the 505 Group (Societal Geheltale de Surveillance)

September 11, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

PLEASE ADDRESS ALL CORRESPONDENCE P.O. BOX 752, HENDERSON, KY 42 TELEPHONE: (502) 827-FAX: (602) \$26-0

Sample identification by SJRPP

Sample #09475 P.O. #008306

Kind of sample Coal reported to us

7.15% A.D.L. Provided by Client

Sample taken at

Sample taken by -----

Date sampled August 16, 1995

Date received August 25, 1995

Analysis report no.	63-90994
<u>Parameter</u>	Results
Beryllium, Be	1.0
Chromium, Cr	7
Lead, Pb	4
Mercury, Hg	0.07
Nickel, Wi	60
Vanadium, V	390
Zinc, Zn	14
Sulfur, S	1.40
Mitrogen, M	1.53

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Mitrogen and Sulfur, which are reported in weight percent (Vt.4), all on a dry basis. ectfully submitted. OMMEDIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1918 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 + (312) 953-9300

Member of the SGS Group (Societé Générale de Surveillence)

September 11, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

PLEASE ADDRESS ALL CORRESPONDENCE TO P.O. BOX 752, HENDERSON, KY 4242 TELEPHONE: (502) 827-118 FAX: (502) 828-071

Sample identification by

7.15% A.D.L. Provided by Client

SJRPP

Sample #0948T P.O. #008306

Sample taken at ----

Kind of sample Coal

reported to us

Sample taken by -----

Date sampled August 16, 1995

Date received August 25, 1995

Analysis report no. 63-90995

<u>Parameter</u>	Results
Beryllium, Be	1.2
Chromium, Cr	7
Lead, Pb	3
Mercury, Hg	0.03
Nickel, Ni	61
Vanadium, V	390
Zinc, Zn	13
Sulfur, S	1.40
Mitrogen, M	1.53

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Hercury per ASTH, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Mitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 80148 + (312) 953-9300

Member of the SGS Group (Sociale Generale de Survettance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE T P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11: FAX: (502) 828-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

Sample identification by SJRPP

Sample #0949U P.O. #008306

63-90996

Kind of sample Coal reported to us

7.15% A.D.L. Provided by Client

Sample taken at ----

Sample taken by -----

Date sampled August 16, 1995

Date received August 25, 1995

Chromium, Cr Lead, Pb Mercury, Hg	03 200,0
<u>Parameter</u>	Results
Beryllium, Be	0.9
Chronius, Cr	7
Lead, Pb	₹2
Mercury, Hg	0.05
Beryllium, Be Chromium, Cr Lead, Pb Hercury, Hg Wickel, Wi Vanadium, V Zinc, Zn	58
Vanadium, V	380
Zinc, Zn	13
Sulfur, S	1.32
Mitrogen, M	1.45

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Hercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTK, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Vt.4), all on a dry basis. Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 + (312) 953-9300

Member of the SGS Group (Societé Générale de Surveillance)

September 11, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE PL 32226

PLEASE ADDRESS ALL CORRESPONDENCE TO P.O. BOX 752, HENDERSON, KY 4242 TELEPHONE: (502) 827-116 FAX: (502) 826-071

Sample identification by

7.23% A.D.L. Provided by Client

SJRPP

Sample #0952V P.O. #008306

£3-00007

1.34

reported to us Sample taken at

Kind of sample Coal

Sample taken by

Date sampled August 17, 1995

Date received August 25, 1995

Analysis report no.	63-30331
<u>Parameter</u>	Results
Beryllium, Be	1.0
Chromium, Cr	7
Lead, Pb	<2
Mercury, Hg	0.04
Nickel, Ni	54
Vanadium, ∀	360
Zinc, Zn	13
Sulfur, S	1.33

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mitrogen, N

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Analgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.%), all on a dry basis. Respectfully submitted.

PLEASE ADORESS ALL CORRESPONDENCE T P.O. BOX 752, HENDERSON, KY 424

TELEPHONE: (502) 827-11 FAX: (502) 826-07

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B. LOMBARD, ILLINOIS 60146 + (312) 953-9300

Member of the SGS Group (Societé Gehérale de Surveillance)

September 11, 1995

Sample identification by

ST. JOHNS RIVER POWER PARE 11201 NEW BERLIN RD JACKSONVILLE FL 32226

> Sample #0953W P.O. #008306

63-90998

SJRPP

Kind of sample Coal reported to us

3.44% A.D.L. Provided by Client

Sample taken at -----

Sample taken by -----

Date sampled August 17, 1995

Date received August 25, 1995

mieriara refert me.	00 300,00					
Parameter Beryllium, Be Chromium, Cr Lead, Pb Mercury, Hg Mickel, Mi Vanadium, V Zinc, Zn Sulfur, S Mitrogen, N	Results					
Beryllium, Be	1.7					
Chromium, Cr	11					
Lead, Pb	· 9					
Mercury, Eg	0.07					
Nickel, Ni	65					
Vanadium, V	430					
Zinc, Zn	16					
Sulfur, \$	1.94					
Nitrogen, N	1.56					

Analysis report no.

Procedure:

The samples were prepared according to ASTH, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Vt.%), all on a dry basis.

Respectfully submitted.
COMMERCIAL TESTING & ENGINEERING CO.

With Still well

BEST AVAILABLE COPY NO.989 P017

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B. LOMBARD, ILLINOIS 60148 * (312) 953-9300

Member of the SGS Group (Societé Gehelate de Surveillance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE TO P.O. BOX 752, HENDERSON, KY 424; TELEPHONE: (502) 827-111 FAX: (502) 628-07*

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by **SJRPP**

Sample #0954X P.O. #008306

63-90999

Kind of sample Coal reported to us

4.19% A.D.L. Provided by Client

Sample taken at

Sample taken by

Date sampled August 17, 1995

Date received August 25, 1995

Parameter Beryllium, Be Chromium, Cr Lead, Pb Hercury, Hg Hickel, Hi Vanadium, V	Results					
Beryllium, Be	2.0					
Chromium, Cr	24					
Lead, Pb	11					
Mercury, Hg	0.04					
Mickel, Ni	58					
Vanadium, ▼	330					
Zinc, Zn	25					

Analysis report no.

Sulfur, S 1.49 1.43 Mitrogen, M

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Mitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis. Respectfully submitted.

OMMERCIAL TESTING & ENGINEERING CO.

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

Original Copy Watermarked For Your Protection

09/11/95 13:24

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 21D-8, LOMBARD, ILLINOIS 60148 • (312) 953-9300

Member of the SGS Group (Societé Générale de Surveillance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE 1 P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 828-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by

SJRPP

Sample #0956Y P.O. #008306

Kind of sample Coal reported to us

5.24% A.D.L. Provided by Client

Sample taken at

Sample taken by

Date sampled August 18, 1995

Date received August 25, 1995

Analysis report no.	63-91000
<u>Parameter</u>	Results
Beryllium, Be	2.0
Chromium, Cr	18
Lead, Pb	11
Mercury, Hg	0.07
Mickel, Ni	71
Vanadium, V	460
Zinc, Zn	23
Sulfur, S	1.77
Mitrogen, M	1.50

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Mitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis. Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-9, LORAGEND, ILLINOIS 60148 + (312) 853-9300

Member of the SGS Group (Société Générale de Surveillance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE T P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by SJRPP

Sample #09572 P.O. #008306

63-91001

Kind of sample Coal reported to us

4.17% A.D.L. Provided by Client

Sample taken at ----

Sample taken by -----

Date sampled August 18, 1995

Date received August 25, 1995

Parameter Beryllium, Be Chromium, Cr Lead, Pb Hercury, Hg Hickel, Hi Vanadium, V Zinc, Zn Sulfur, S					
Beryllium, Be Chromium, Cr Lead, Pb Mercury, Hg Mickel, Mi Vanadium, V Zinc, Zn	Results				
Beryllium, Bo	2.1				
Chromium, Cr	17				
Lead, Pb	10				
Hercury, Hg	0.08				
Mickel, Mi	65				
Vanadium, V	380				
Zinc, Zn	20				
Sulfur, 5	1.72				
Mitrogen, M	1.51				

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTH, Part 5.05, Method D 4239 (method C). Nitrogen per ASTH, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.%), all on a dry basis.

Aespectuly submitted, COMMERCIAL TESTING & ENGINEERING CO.

(1)

PLEASE ADDRESS ALL CORRESPONDENCE P.O. BOX 752, HENDERSON, KY 4: TELEPHONE: (502) 827-

FAX: (502) 826-

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 + (312) 953-9300

Member of the SGE Group (Société Générale de Surveillance)

September 11, 1995

Sample identification by

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample #0958Z1

P.O. #008306

63-91002

SJRPP

Kind of sample Coal reported to us

4.72% A.D.L. Provided by Client

Sample taken at -----

Sample taken by -----

Date sampled August 18, 1995

Date received August 25, 1995

	00 5600					
Parameter Beryllium, Be Chromium, Cr Lead, Pb Mercury, Mg Nickel, Ni Vanadium, V Zinc, Zn Sulfur, S	Results					
Beryllium, Be	2.0					
Chromium, Cr	15					
Lead, Pb	11					
Hercury, Eg	0.08					
Nickel, Ni	68					
Vanadium, V	420					
Zinc, Zn	21					
Sulfur, S	1.86					
Mitrogen, N	1.46					

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Nethod D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis.

Baspectivity submitted.

COMMERCIAL TESTING & PAGINEERING CO

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 + (312) 953-9300

Member of the SGS Group (Société Odhéfale de Surveillance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE T P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by

SJRPP

Sample #0960 P.O. #008306

Kind of sample Coal reported to us

5.50% A.D.L. Provided by Client

Sample taken at -----

Sample taken by -----

Date sampled August 19, 1995

Date received August 25, 1995

Analysis report no.	63-91003	`w.
Parameter	Results	
Beryllium, Be	1.8	
Chromium, Cr	15	
Lead, Pb	11	
Mercury, Hg	0.09	
Nickel, Ni	68	
Vanadium, V	420	
Zinc, Zn	22	
Sulfur, S	1.89	
Hitrogen, H	1.49	

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Analgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis. Respectfully submitted. OMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60146 • (312) 953-9300

Member of the SGS Group (Societé Generale de Surveillance)

September 11, 1995

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

PLEASE ADDRESS ALL CORRESPONDENCE TO P.O. BOX 752, HENDERSON, KY 424; TELEPHONE: (502) 827-11/ FAX: (502) 826-07

Sample identification by SJRPP

Sample #0951 · Composite C P.O. #008306

5.27% A.D.L. Provided by Client

Kind of sample Coal

reported to us

Sample taken at -----

Sample taken by -----

Date sampled August 14,15,16,17,18,19, 1995

Date received August 25, 1995

wantages tebolt no.	63-31002
<u>Parameter</u>	Results
Beryllium, Be	1.3
Chromium, Cr	13
Lead, Pb	7
Hercury, Hg	0.05
Nickel, Hi	62
Vanadium, ¥	400
Zinc, Zn	18
Sulfur, S	1.62
Mitrogen, M	1.50

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Mercury per ASTM, Part 5.05, Method D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Method D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.%), all on a dry basis. Respectfully aubmitted. MERCIAL-TESTING & ENGINEERING CO.

GENERAL OFFICES: 1818 SOUTH HIGHLAND AVE., SUITE 210-B, LOMBARD, ILLINOIS 60148 * (312) 953-9300

Member of the SGS Group (Societé Générale de Surveillance)

September 11, 1995

PLEASE ADDRESS ALL CORRESPONDENCE 1 P.O. BOX 752, HENDERSON, KY 424 TELEPHONE: (502) 827-11 FAX: (502) 826-07

ST. JOHNS RIVER POWER PARK 11201 NEW BERLIN RD JACKSONVILLE FL 32226

Sample identification by **SJRPP**

Sample #0938 Composite B

P.O. #008306

63-91004

7.65% A.D.L. Provided by Client

Kind of sample Coal reported to us

Sample taken at

Sample taken by -----

Date sampled August 9,10,11,12,13, 1995

Date received August 25, 1995

Chromium, Cr Lead, Pb Mercury, Hg Mickel, Mi Vanadium, V Zinc, Zn Sulfur, S	Results
Beryllium, Be	0.5
Chromium, Cr	8
Lead, Pb	3
Mercury, Hg	0.05
Nickel, Ni	33
Vanadium, V	220
Zinc, Zn	12
Sulfur, S	1.05
Mitrogen, M	1-42

Analysis report no.

Procedure:

The samples were prepared according to ASTM, Part 5.05, Method D 3683. The samples were analyzed for trace elements by Inductively Coupled Plasma Emission Spectroscopy.

Hercury per ASTM, Part 5.05, Hethod D 3684, Double Gold Amalgamation Cold Vapor Atomic Absorption.

Sulfur per ASTM, Part 5.05, Nethod D 4239 (method C). Nitrogen per ASTM, Part 5.05, Method D 5373-93.

Results:

Results are reported as micrograms per gram (ug/g), except for Nitrogen and Sulfur, which are reported in weight percent (Wt.4), all on a dry basis. Respectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS. TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES Odninal Conu Watermarked Enr Verill Deviation

ATTACHMENT D

ST. JOHNS RIVER POWER PARK

BEST AVAILABLE COPY

1

COAL ANALYSIS REPORT

SUPPLIER: EXXON SAMPLE TAKEN AT EXXON BY EXXON
ANALYZED BY EXXON

DATE SMP	TONS	*MOIST		:IVED - %SULFU		#SO2/MBTU			UR BTU	-AGM FREE- BTU
CONTRACTUAL		9.20	9.60	0.70	11810					
07/01/95 V513	45540.00	10.60	7.66	0.69	11831	1.16	8.57	0.77	13234	14474
07/16/95 V514	60025.00	10.78	7.38	0.62	11843	1.05	8.27	0.69	13274	14471
07/29/95 V515	59789.00	11.05	7.18	0.63	11823	1.06	8.07	0.71	13292	14459
WEIGHTED AVG	165354.00	10.83	7.38	0.64	11832	1.08	8.28	0.72	13269	14467

09/14/95 14:59:46

ST. JOHNS RIVER POWER PARK COAL ANALYSIS REPORT

SUPPLIER: ASHLAND SAMPLE TAKEN AT ASHLAND BY ASHLAND ANALYZED BY ASHLAND

DATE SMP	TONS	%MOIST	AS RECE SASH	IVED - %SULFU	R BTU	#SO2/MBTU	*ASH		UR BTU	-AGM FREE- BTU
CONTRACTUAL		6.00	11.00	0.85	12000					
08/01/95 7173	9522.00	5.69	13.33	0.88	12074	1.46	14.13	0.93	12802	14910
08/07/95 7174	9526.10	6.53	13.33	0.95	11947	1.59	14.26	1.02	12782	14908
08/11/95 7175	9720.80	5.80	13.63	1.00	12084	1.65	14.47	1.06	12828	14998
08/16/95 7176	9518.65	5.86	13.06	0.81	12129	1.33	13.87	0.86	12884	14959
08/22/95 7177	9376.50	5.83	13.93	0.81	11986	1.35	14.79	0.86	12728	14938
08/25/95 7178	9347.65	5.25	13.34	0.89	12161	1.46	14.08	0.94	12835	14938
WEIGHTED AVG	57011.70	5.83	13.44 	0.89	12063 	1.47	14.27	0.95	12810	14942

15:85

HAMPTON ROADS

PRISH

Hampton Roads Testing Laborat , Inc. 611 Houset Drive, Hampton, Virginia 23651-1390 Text (804) 825-3310 Fext (804) 827-1385

Laboratory Report No. 312916

Date of Report July 14, 1995

CERTIFICATE OF ANALYSIS

Sample of: PETROLEUM COKE - LOT 1

Mark: Representing a 71 car sample of PST COKE, car top sampled at the Yorktown Refinery and at Lee Hall. Virginia

From: Louisiana Carbon/Amoco

Date Sampled: July 13, 1995

Sampled By: Hampton Roads Testing Labs., Inc.

PROXIMATE AWALYSIS As Received Dry Basis

Noisture	5.40	
Volatile Matter	14.28	15.09
Fixed Carbon	79.94	84.51
Ash	0.38	0.40
Total (100%)	100.00	100.00
Sulphur	3.15	3.33
B.T.U./Lb.	14777	15621
Calories/Gram	8209	8678

HOISTURE/ASH FREE S.T.U. 15684

Hamping Brade lesting Laboratories, Inc.

SENI BY

15:05

FROM

HAMPTON PORDS

TESTNG

ᆸ

Hampton Roads Testing Laborato __nc. 611 Hownet Offic, Hempton, Virginia 22801-1390 Tel: (809) 825-5316 Fac (809) 827-1388

Leboratory Report No. 312917

Date of Report July 14, 1995

CERTIFICATE OF ANALYSIS

Sample of: PETROLEUM COKE - LOT 2

Hark: Representing a 48 car sample of PET COKE, car top sampled at the Yorktown Refinery

From: Louisiana Carbon/Amoco

Date Sampled: July 12, 1995

Sampled By: Hampton Roads Testing Labs., Inc.

PROXIMATE AMALYSIS As Received Dry Basis

Hoisture	5.45	
Volatile Hatter	14.31	15.13
Pixed Carbon	79.89	84.50
Ash	0.35	0.37
Total (100%)	100.00	100.00
Sulphur	3.04	3.22
B. T. U. /Lb.	14811	15665
Calories/Gram	8228	8703
Moisture/Ash	PREE B.T.U.	15723

JUL-14-1995

15:88

HAMPTON ROADS

611 Howard Orive, Hampton, Virginia __d61-1360 THE (804) 826-6310 Fac (804) 827-1366

Laboratory Report No. 312918

Date of Report July 14, 1995

CERTIFICATE OF ANALYSIS

Sample of. PETROLEUM COKE - DOMESTIC SHIPMENT

Harki

Calculated composite representing 119 cars of PST COKE for shipment to Jacksonville Electric, car top sampled at the Yorktown Refinery and at Lee Hall, Virginia

Frome

Louisiana Carbon/Amoco

Date Sampled:

July 12 and 13, 1995

Sampled By: Hampton Roads Testing Labs., Inc.

PROXIMATE ANALYSIS As Received Dry Basis

Hoisture	5.42	
Volatile Hatter	14.29	15.11
Fixed Carbon	79.92	84.50
Ash	0.37	0.39
Total (100%)	100.00	100.00
Sulphur	3.11	3.29
B. T. V. /Lb.	14791	15639
Calories/Gram	8217	8688
HOISTURE/ASH	FREE B.T.U.	15700

boratories, Inc.

ATTACHMENT E

ATTACHMENT E-1

St. Johns Unit 1

Daily Summary

FROM 07/18/95 00:00 TO 07/19/95 00:00

Date/ Time	linCO2_C	loutCO2_C	loutNOX_MM	linSO2_MM	1outSO2_MM
	% - 0 - 1 -	8	#/M	#/M	#/M
	13.45	12.68	0.451	1.024	0.294
07-18-95 01:00	13.07	12.41	0.438	1.020	0.292
07-18-95 02:00	12.70	11.88	0.444	1.021	0.289
07-18-95 03:00	12.64	11.87	0.451	1.013	0.284
_07-18-95 04:00	12.68	11.90	0.454	1.015	0.284
77-18-95 05:00	12.67	11.94	0.454	1.014	0.283
■ 07-18-95 06:00	13.08	12.27	0.504	1.020	0.270
07-18-95 07:00	13.23	12.47	0.529	1.005	0.271
■ 07-18-95 08:00	13.27	12.45	0.523	0.996	0.269
07-18-95 09:00	13.23	12.43	0.519	0.992	0.270
07-18-95 10:00	13.31	12.44	0.520	0.991	0.270
_07-18-95 11:00	13.27	12.45	0.524	1.000	0.273
07-18-95 12:00	13.33	12.45	0.525	1.007	0.274
07-18-95 13:00	13.31	12.47	0.522	1.016	0.277
07-18-95 14:00	13.33	12.45	0.514	1.021	0.279
D7-18-95 15:00	13.03	12.26	0.465	1.030	0.282
07-18-95 16:00	13.17	12.31	0.500	1.057	0.289
07-18-95 17:00	13.26	12.40	0.490	1.072	0.296
■ 718-95 18:00	13.37	12.49	0.480	1.072	0.293
18 -95 19:00 1	13.28	12.49	0.472	1.063	0.290
07-18-95 20:00	13.33	12.49	0.477	1.059	0.289
18-95 19:00 07-18-95 20:00 _07-18-95 21:00	13.24	12.50	0.457	1.061	0.293
07-18-95 22:00	13.25	12.43	0.459	1.059	0.294
07-18-95 22:00 07-18-95 23:00	13.13	12.40	0.482	1.055	0.291
FINAL AVERAGE(s) 13.15	12.35	0.486	1.029	0.283

FINAL AVERAGE(s) 13.15 12.35 0.486 1.029 0.283 FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 07/19/95 00:00 TO 07/20/95 00:00

Date/ Time -19-95 00:00 07-19-95 01:00 07-19-95 02:00 07-19-95 03:00 07-19-95 05:00 07-19-95 06:00 07-19-95 08:00 07-19-95 09:00 07-19-95 10:00 07-19-95 11:00	1inCO2_C % 13.16 13.18 13.30 13.29 13.25 13.31 13.22 13.31 13.28 13.31 13.23	loutCO2_C % 12.28 12.39 12.46 12.54 12.51 12.54 12.54 12.52 12.52 12.52 12.54	1outNOX_MM #/M 0.488 0.490 0.490 0.486 0.505 0.507 0.506 0.500 0.502 0.505 0.507	linSO2_MM #/M 1.048 1.043 1.039 1.040 1.041 1.043 1.042 1.040 1.040 1.050 1.047 1.034	1outSO2_MM #/M 0.297 0.290 0.286 0.285 0.285 0.284 0.285 0.287 0.287 0.290 0.289
07-19-95 14:00 7-19-95 15:00 07-19-95 16:00 07-19-95 17:00 19-95 18:00 19-95 19:00 07-19-95 20:00 07-19-95 21:00 07-19-95 22:00 07-19-95 23:00	13.30 13.27 13.29 13.28 13.36 13.31 13.37 13.32 13.41 13.31	12.41 12.48 12.45 12.50 12.50 12.54 12.54 12.53 12.55	0.517 0.510 0.515 0.501 0.501 0.507 0.498 0.495 0.489	1.011 1.011 1.007 1.010 1.009 1.005 1.006 1.008 1.009	0.277 0.275 0.272 0.275 0.276 0.272 0.273 0.276 0.277

FINAL AVERAGE(s) 13.29 12.49 0.502 1.026 0.282 FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS 0.282

St. Johns Unit 1
Daily Summary

FROM 07/20/95 00:00 TO 07/21/95 00:00

Date/ Time	linCO2_C	1outCO2_C	loutNOX_MM #/M	linSO2_MM #/M	loutSO2_MM #/M
-20-95 00:00	13.39	12.44	0.485	1.002	0.286
€07-20-95 00:00	13.29	12.54	0.478	1.002	0.282
4 3 3 3 3 3 3 3 3 3 3		12.55	0.460	1.004	0.277
07-20-95 03:00	13.29	12.52	0.459	1.002	0.274
07-20-95 04:00	13.34	12.51	0.443	0.994	0.272
07-20-95 05:00	13.33	12.49	0.399	1.003	0.275
4 07-20-95 06:00	13.36	12.43	0.444	0.999	0.273
07-20-95 07:00	13.30	12.50	0.447	1.008	0.272
07-20-95 08:00	13.37	12.53	0.446	1.021	0.275
07-20-95 09:00	13.33	12.49	0.448	1.029	0.280
07-20-95 10:00	13.42	12.50	0.458	1.037	0.284
-07-20-95 11:00	13.38	12.54	0.466	1.043	0.281
07-20-95 12:00	13.37	**	**	1.045	**
■ 07-20-95 13:00	13.31	12.29	0.488	1.049	0.280
07-20-95 14:00	13.38	12.40	0.505	1.050	0.288
07-20-95 15:00	13.33	12.44	0.504	1.050	0.284
07-20-95 16:00	13.35	12.49	0.502	1.051	0.285
07-20-95 17:00	13.29	12.44	0.498	1.051	0.287
20-95 18:00	13.39	12.42	0.496	1.050	0.289
20-95 19:00	13.35	12.48	0.494	1.048	0.289
07-20-95 20:00	13.34	12.42	0.489	1.048	0.289
_07-20-95 21:00	13.31	12.44	0.496	1.047	0.289
07-20-95 22:00	13.37	12.47	0.501	1.049	0.288
07-20-95 22:00	13.26	12.44	0.496	1.045	0.286
-07-20-95 25:00	13.20	12.44	0.496	1.040	0.200
*FINAL AVERAGE(3) 13.34	12.47	0.474	1.031	0.282

*FINAL AVERAGE (S) 13.34 12.47 0.474 1.031 0.282
*FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/08/95 00:00 TO 08/09/95 00:00

Date/ Time	linCO2_C	1outCO2_C %	loutNOX_MM #/M	linSO2_MM #/M	1outSO2_MM #/M
-08-95 00:00	13.38	12.27	**	1.041	0.306
∆ 8-08-95 01:00	13.30	12.38	**	1.023	0.296
8-08-95 02:00		12.39	**	1.020	0.291
08-08-95 03:00	13.31	**	**	1.017	**
08-08-95 04:00	13.31	12.10	0.546	1.011	0.415
8-08-95 05:00	13.25	12.29	0.537	1.003	0.278
5 8-08-95 06:00	13.32	12.32	0.533	1.000	0.274
08-08-95 07:00	13.28	12.34	0.538	0.997	0.274
6 8-08-95 08:00	13.36	12.40	0.552	0.986	0.272
8-08-95 09:00		12.38	0.562	0.975	0.268
08-08-95 10:00	13.39	12.37	0.574	0.975	0.266
<u>0</u> 8-08-95 11:00	13.37	12.37	0.568	0.969	0.264
8-08-95 12:00	13.38	12.36	0.567	0.953	0.258
₩ 8-08-95 13:00	13.33	12.21	0.566	0.948	0.254
08-08-95 14:00	13.35	12.38	0.535	0.938	0.250
8-08-95 15:00	13.29	12.38	0.553	0.938	0.248
8-08-95 16:00	13.38	12.39	0.562	0.942	0.249
08-08-95 17:00	13.35	12.41	0.562	0.951	0.251
€ \08-95 18:00	13.47	12.44	0.557	0.954	0.248
1 08-95 19:00	13.33	12.39	0.550	0.950	0.249
08-08-95 20:00	13.39	12.39	0.536	0.941	0.247
<u>0</u> 8-08-95 21:00	13.30	12.39	0.531	0.942	0.249
8-08-95 22:00		12.46	0.546	0.944	0.250
9 8-08-95 23:00	13.26	12.37	0.514	0.943	0.249
THE TAXABLE ASSERTING TO A	~\ 12 24	12.26	0 540	0 073	0.270

FINAL AVERAGE(s) 13.34 12.36 0.549 0.973 0.270 FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/09/95 00:00 TO 08/10/95 00:00

Date/ Time -09-95 00:00 08-09-95 01:00 08-09-95 02:00 08-09-95 03:00 08-09-95 04:00 08-09-95 06:00 08-09-95 06:00 08-09-95 08:00 08-09-95 09:00 08-09-95 10:00 08-09-95 11:00	linCO2_C % 13.34 13.27 13.37 13.26 13.29 13.25 13.34 13.31 13.36 13.25 13.32 13.30	loutCO2_C % 12.28 13.43 12.31 12.36 12.31 12.33 12.34 12.37 12.38 12.34 12.34 12.34 12.34	1outNOX_MM	linSO2_MM #/M 0.938 0.939 0.953 0.956 0.962 0.960 0.965 0.979 0.994 1.020 1.032 1.047	loutSO2_MM
08-09-95 14:00 08-09-95 15:00 08-09-95 16:00 08-09-95 17:00 08-09-95 18:00 08-09-95 20:00 08-09-95 21:00 08-09-95 22:00 08-09-95 23:00	13.09 13.17 13.26 13.39 13.42 13.31 13.30 13.24 13.29 13.25	12.34 12.46 12.56 12.67 12.65 12.65 12.62 12.58 12.58	0.611 0.595 0.568 0.482 0.484 0.491 0.491 0.493 0.482	1.078 1.083 1.124 1.152 1.136 1.135 1.140 1.139 1.157	0.298 0.306 0.310 0.316 0.313 0.311 0.312 0.318 0.323

FINAL AVERAGE(s) 13.27 12.49 0.542 1.051 0.286 FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/10/95 00:00 TO 08/11/95 00:00

Date/ Time	linCO2_C 1	outCO2_C	loutNOX_MM #/M	linSO2_MM #/M	1outSO2_MM #/M
-10-95 00:00	13.30 1	2.48	0.490	1.188	0.337
# 8-10-95 01:00	13.22	12.55	0.478	1.263	0.348
8-10-95 02:00	13.32	12.55	0.470	1.235	0.349
08-10-95 03:00	13.18	12.49	0.489	1.230	0.350
_08-10-95 04:00	13.11	12.37	0.497	1.275	0.359
8-10-95 05:00	13.15	12.49	0.516	1.287	0.355
♥ 8-10 - 95 06:00	13.21	12.53	0.502	1.284	0.352
08-10-95 07:00	13.23	12.54	0.489	1.291	0.356
R 8-10-95 08:00	13.33	12.62	0.498	1.313	0.362
8-10-95 09:00	13.23	12.59	0.497	1.328	0.367
08-10-95 10:00	13.16	12.52	0.512	1.333	0.368
4 8-10-95 11:00	13.01	12.40	0.564	1.294	0.354
8-10-95 12:00	13.08	12.41	0.582	1.300	0.355
7 8-10-95 13:00	13.02	12.30	0.505	1.359	0.379
08-10-95 14:00	13.07	12.35	0.501	1.375	0.391
8-10-95 15:00	13.05	12.44	0.491	1.361	0.385
8 -10-95 16:00	13.21	12.49	0.546	1.371	0.378
08-10-95 17:00	13.27	12.49	0.535	1.398	0.394
10-95 18:00	13.29	**	**	1.394	**
10-95 19:00	13.22	12.54	0.508	1.405	0.387
08-10-95 20:00	13.34	12.57	0.490	1.407	0.379
_ 08-10-95 21:00	13.29	12.60	0.461	1.406	0.378
8-10-95 22:00	13.38	12.66	0.464	1.419	0.380
₹8-10-95 23:00	13.13	12.55	0.458	1.468	0.393
_					
FINAL AVERAGE (12.50	0.502	1.333	0.368
ETNAL AVERAGE	Summation of	AVERACING	PERIODS exclud	ding TNVALID	PERTODS

FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/11/95 00:00 TO 08/12/95 00:00

Date/ Time -11-95 00:00 08-11-95 01:00 08-11-95 02:00 08-11-95 04:00 08-11-95 05:00 08-11-95 06:00 08-11-95 07:00 08-11-95 08:00 08-11-95 10:00 08-11-95 10:00 08-11-95 12:00 08-11-95 13:00 08-11-95 13:00 08-11-95 15:00 08-11-95 16:00 08-11-95 16:00 08-11-95 19:00 08-11-95 19:00 08-11-95 19:00	13.37 13.34 13.44 13.34	1outCO2_C % 12.24	loutNOX_MM #/M 0.468 0.484 0.501 0.509 0.517 0.527 0.523 0.508 0.499 0.500 0.493 0.484 0.491 0.562 0.549 0.508 0.497 0.496 0.496 0.495	linSO2_MM #/M 1.480 1.497 1.488 1.516 1.558 1.597 1.621 1.646 1.670 1.684 1.710 1.705 1.672 1.582 1.579 1.682 1.579 1.682 1.699 1.705 1.704 1.694 1.689	loutSO2_MM
11-95 19:00	13.39	12.73	0.496	1.694	0.473

FINAL AVERAGE(s) 13.32 12.62 0.502 1.636 0.457 FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/12/95 00:00 TO 08/13/95 00:00

Date/ Time	linCO2_C	1outCO2_C	loutNOX_MM #/M	linSO2_MM #/M	loutSO2_MM #/M
-12-95 00:00	13.40	12.63	0.482	1.700	0.478
m 98-12-95 01:00	13.20	12.64	0.480	1.699	0.477
	13.26	12.57	0.485	1.707	0.479
08-12-95 03:00	13.21	12.56	0.484	1.713	0.485
_08-12-95 04:00	13.23	12.53	0.484	1.722	0.492
08-12-95 05:00	13.14	12.50	0.485	1.722	0.494
08-12-95 06:00	13.25	12.57	0.495	1.723	0.494
08-12-95 07:00	13.23	12.64	0.498	1.711	0.495
D8-12-95 08:00	13.35	12.72	0.509	1.712	0.482
08-12-95 09:00	13.31	12.71	0.507	1.715	0.482
08-12-95 10:00	13.39	12.68	0.498	1.722	0.485
■ 08-12-95 11:00	13.35	12.68	0.498	1.727	0.489
08-12-95 12:00	13.43	12.68	0.501	1.721	0.489
08-12-95 13:00	13.31	12.67	0.503	1.717	0.488
_08-12-95 14:00	13.39	12.67	0.509	1.710	0.485
08-12-95 15:00	13.27	12.60	0.508	1.716	0.486
4 08-12-95 16:00	13.28	12.56	0.507	1.712	0.484
08-12-95 17:00	13.22	12.54	0.514	1.708	0.483
12-95 18:00	13.34	12.59	0.492	1.703	0.482
# 12-95 19:00	13.26	12.64	0.486	1.703	0.478
08-12-95 20:00	13.33	12.63	0.488	1.691	0.473
_08-12-95 21:00	13.24	12.63	0.479	1.686	0.479
08-12-95 22:00	13.28	12.59	0.472	1.687	0.487
08-12-95 23:00	13.25	12.64	0.483	1.694	0.492
_					
*FINAL AVERAGE(s	3) 13.29	12.62	0.494	1.709	0.485

*FINAL AVERAGE(s) 13.29 12.62 0.494 1.709 0.485 *FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1
Daily Summary

FROM 08/13/95 00:00 TO 08/14/95 00:00

Date/ Time	1inCO2_C %	1outCO2_C %	loutNOX_MM #/M	linSO2_MM #/M	loutSO2_MM #/M
-13-95 00:00	13.33	12.49	0.483	1.702	0.502
08-13-95 01:00	13.22	12.63	0.488	1.714	0.497
08-13-95 02:00	13.22	12.64	0.493	1.715	0.479
08-13-95 03:00	13.33	12.72	0.495	1.714	0.475
08-13-95 03:00	13.37	12.68	0.489	1.706	0.473
108-13-95 05:00	13.25	12.62	0.492	1.693	0.473
08-13-95 06:00	13.25	12.61	0.492	1.686	0.478
08-13-95 07:00	13.25	12.63	0.483	1.687	0.478
■08-13-95 07:00 ■08-13-95 08:00	13.42	12.72	0.475		
				1.686	0.482
08-13-95 09:00	13.38	12.73	0.462	1.696	0.486
08-13-95 10:00	13.51	12.74	0.448	1.715	0.493
08-13-95 11:00	13.49	12.78	0.451	1.733	0.496
08-13-95 12:00	13.54	12.76	0.478	1.743	0.496
08-13-95 13:00	13.47	12.80	0.471	1.751	0.492
08-13-95 14:00	13.50	12.70	0.461	1.752	0.489
08-13-95 15:00	13.41	12.68	0.447	1.752	0.495
08-13-95 16:00	13.49	12.66	0.439	1.759	0.499
08-13-95 17:00	13.45	12.71	0.446	1.765	0.502
13-95 18:00	13.51	12.72	0.447	1.759	0.491
13-95 19:00	13.46	12.77	0.443	1.755	0.467
08-13-95 20:00	13.54	12.77	0.444	1.752	0.459
_08-13-95 21:00	13.46	12.81	0.432	1.750	0.458
08-13-95 22:00	13.50	12.75	0.434	1.741	0.455
08-13-95 23:00	13.43	12.80	0.430	1.743	0.456
The state of the s	-\ 70 47	10 70	0.460		

*FINAL AVERAGE(s) 13.41 12.70 0.463 1.728 0.482 *FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/14/95 00:00 TO 08/15/95 00:00

Date/ Time	linCO2_C %	1outCO2_C %	loutNOX_MM #/M	linSO2_MM #/M	loutSO2_MM #/M
-14-95 00:00	13.50	12.72	π/1°4 ★★	1.749	0.466
■ 08-14-95 01:00	13.29	14.22	**	1.751	0.458
08-14-95 02:00	13.42	12.58	0.499	1.743	0.481
08-14-95 03:00	13.37	12.69	0.487	1.742	0.475
08-14-95 04:00	13.44	12.67	0.498	1.740	0.476
1 08-14-95 05:00	13.40	12.73	0.496	1.744	0.478
08-14-95 06:00	13.46	12.74	0.500	1.755	0.484
08-14-95 07:00	13.36	12.72	0.496	1.762	0.489
■ 08-14-95 08:00	13.47	12.73	0.502	1.767	0.492
08-14-95 09:00	13.41	12.75	0.477	1.778	0.498
08-14-95 10:00	13.49	12.74	0.479	1.787	0.504
_08-14-95 11:00	13.44	12.75	0.471	1.784	0.506
08-14-95 12:00	13.55	12.76	0.469	1.775	0.502
3 08-14-95 13:00	13.50	12.78	0.467	1.764	0.493
08-14-95 14:00	13.57	12.77	0.467	1.762	0.479
08-14-95 15:00	13.40	12.66	0.490	1.764	0.467
08-14-95 16:00	13.43	12.60	0.499	1.761	0.458
08-14-95 17:00	13.40	12.62	0.517	1.758	0.461
-09-14-95 18:00	13.54	12.68	0.525	1.757	0.463
14-95 19:00	13.44	12.72	0.525	1.753	0.456
- 08-14-95 20:00	13.47	12.67	0.517	1.744	0.462
_08-14-95 21:00	13.37	12.66	0.509	1.736	0.464
08-14-95 22:00	13.46	12.66	0.550	1.741	0.466
08-14-95 23:00	13.32	12.61	0.516	1.747	0.467
*FINAL AVERAGE(s) 13.44	12.76	0.498	1.757	0.477

^{*}FINAL AVERAGE(s) 13.44 12.76 0.498 1.757 0.477 *FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/15/95 00:00 TO 08/16/95 00:00

<pre>Date/ Time</pre>	1inCO2_C	1outCO2_C	<pre>loutNOX_MM</pre>	linSO2_MM	loutSO2 MM
Date/ Time	8	% . — .	#/M _	#/M _	#/M
-15-95 00:00	13.33	12.26	**	1.740	0.572
_08-15-95 01:00	13.29	14.15	**	1.722	0.454
08-15-95 02:00	. 13.43	12.55	0.491	1.720	0.463
■ 08-15-95 03:00	13.41	12.67	0.482	1.731	0.457
08-15-95 04:00	13.44	12.65	0.503	1.743	0.458
1 08-15-95 05:00	13.36	12.67	0.505	1.741	0.457
08-15-95 06:00	13.42	12.65	0.495	1.739	0.455
-08-15-95 07:00	13.30	12.61	0.510	1.728	0.458
08-15-95 08:00	13.39	12.65	0.512	1.726	0.482
08-15-95 09:00	13.34	12.70	0.497	1.729	0.485
■ 08-15-95 10:00	13.29	12.57	0.491	1.732	0.489
08-15-95 11:00	13.27	12.56	0.528	1.726	0.481
1 08-15-95 12:00	13.36	12.58	0.530	1.728	0.472
3 08-15-95 13:00	13.31	12.51	0.343	1.725	0.466
08-15-95 14:00	13.40	12.35	0.535	1.723	0.463
3 08-15-95 15:00	13.38	12.49	0.519	1.727	0.471
08-15-95 16:00 08-15-95 17:00	13.44	12.64	0.536	1.730	0.468
08-15-95 17:00	13.34	12.67	0.516	1.733	0.466
^3-15-95 18:00	13.43	12.63	0.509	1.730	0.466
08-15-95 19:00 08-15-95 20:00	13.34	12.70	0.518	1.727	0.468
■ 08-15-95 20:00	13.42	12.67	0.515	1.730	0.464
08-15-95 21:00	13.34	12.68	0.512	1.730	0.463
08-15-95 22:00	13.40	12.61	0.520	1.734	0.464
08-15-95 23:00	13.32	12.66	0.493	1.728	0.462

^{*}FINAL AVERAGE(s) 13.36 12.66 0.503 1.730 *FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/16/95 00:00 TO 08/17/95 00:00

Date/ Time	1inCO2_C	1outCO2_C %	loutNOX_MM #/M	linSO2_MM #/M	loutSO2_MM #/M	
-16-95 00:00	13.43	12.60	0.501	1.728	0.469	
-08-16-95 01:00	13.31	12.71	0.510	1.716	0.463	
	13.41	12.69	0.524	1.715	0.459	
08-16-95 03:00	13.27	12.65	0.519	1.719	0.461	
_08-16-95 04:00	13.37	12.63	0.525	1.715	0.461	
08-16-95 05:00	13.31	12.67	0.528	1.723	0.467	
3 08-16-95 06:00	13.39	12.68	0.526	1.722	0.463	
08-16-95 07:00	13.33	12.58	0.524	1.720	0.484	
1 08-16-95 08:00	13.37	12.62	0.535	1.717	0.484	
08-16-95 09:00	13.38	11.63	0.518	1.718	0.502	
08-16-95 10:00	13.46	12.32	0.529	1.717	0.503	
_08-16-95 11:00	13.39	12.71	0.561	1.722	0.479	
08-16-95 12:00	13.46	12.74	0.543	1.732	0.483	
08-16-95 13:00	13.40	12.68	0.575	1.726	0.482	
08-16-95 14:00	13.38	12.62	0.579	1.718	0.479	
08-16-95 15:00	13.25	12.47	0.598	1.710	0.477	
3 8-16-95 16:00	13.33	12.57	0.595	1.715	0.479	
08-16-95 17:00	13.31	12.62	0.555	1.720	0.480	
■ 16-95 18:00	13.40	12.61	0.555	1.730	0.481	
16-95 19:00	13.35	12.69	0.538	1.732	0.476	
08-16-95 20:00	13.45	12.70	0.517	1.725	0.478	
<u>_</u> 08-16-95 21:00	13.36	12.69	0.499	1.714	0.476	
08-16-95 22:00	13.48	12.71	0.499	1.714	0.476	
8-16-95 23:00	13.33	12.67	0.497	1.711	0.476	
FINAL AVERAGE (3) 13.37	12.59	0.535	1.720	0.477	

FINAL AVERAGE(s) 13.37 12.59 0.535 1.720 0.477
FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/17/95 00:00 TO 08/18/95 00:00

Date/ Time -17-95 00:00 08-17-95 01:00 08-17-95 02:00 08-17-95 03:00 08-17-95 04:00 08-17-95 05:00 08-17-95 06:00	linCO2_C % 13.43 13.24 13.35 13.27 13.28 13.20	1outCO2_C % 12.63 13.92 12.54 12.62 12.55	loutNOX_MM #/M ** 0.575 0.560 0.517 0.547	linSO2_MM #/M 1.717 1.718 1.702 1.707 1.716 1.733	loutSO2_MM #/M 0.485 0.464 0.479 0.479 0.476
08-17-95 06:00 08-17-95 07:00 08-17-95 08:00 08-17-95 09:00 08-17-95 10:00	13.41 13.30 13.22 13.18 13.19	12.70 12.68 12.55 12.53 12.47	0.544 0.534 0.537 0.525 0.560	1.727 1.732 1.759 1.790	0.485 0.483 0.489 0.500
08-17-95 10:00 08-17-95 11:00 08-17-95 12:00 08-17-95 13:00 08-17-95 14:00	13.27 13.42 13.37 13.45	12.47 12.57 12.62 12.66 12.56	0.572 0.573 0.558 0.538	1.859 1.969 2.086 2.140 2.156	0.525 0.538 0.560 0.552 0.560
08-17-95 15:00 08-17-95 16:00 08-17-95 17:00 	13.39 13.51 13.38 13.44	12.63 12.56 12.61 12.60	0.547 0.559 0.588 0.598	2.167 2.187 2.196 2.166	0.561 0.576 0.574 0.565
17-95 19:00 08-17-95 20:00 08-17-95 21:00 08-17-95 22:00 08-17-95 23:00	13.33 13.42 13.30 13.24 13.26	12.61 12.51 12.59 12.49 12.58	0.601 0.602 0.597 0.551 0.520	2.112 2.067 2.039 2.029 2.029	0.547 0.543 0.533 0.524 0.526

*FINAL AVERAGE(s) 13.33 12.64 0.559 1.938 0.521 *FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/18/95 00:00 TO 08/19/95 00:00

Date/ Time	linCO2_C %	1outCO2_C %	loutNOX_MM #/M	linSO2_MM #/M	loutSO2_MM #/M
-18-95 00:00	13.32	12.46	0.516	2.039	0.536
08-18-95 01:00	13.22	12.57	0.519	2.061	0.538
	13.44	12.63	0.522	2.101	0.561
08-18-95 03:00	13.27	12.63	0.547	2.128	0.549
_08-18-95 04:00	13.41	12.67	0.531	2.165	0.564
08-18-95 05:00	13.34	12.69	0.527	2.190	0.575
□ 08-18-95 06:00	13.38	12.67	0.518	2.209	0.584
08-18-95 07:00	13.29	12.59	0.513	2.220	0.585
10 8-18-95 08:00	13.35	12.63	**	2.235	0.587
08-18-95 09:00	13.29	**	**	2.248	**
08-18-95 10:00	13.35	12.46	0.459	2.259	0.577
08-18-95 11:00	13.32	12.47	0.463	2.269	0.589
08-18-95 12:00	13.41	12.52	0.468	2.272	0.596
08-18-95 13:00	13.36	12.46	0.487	2.272	0.562
_08-18-95 14:00	13.43	12.56	0.494	2.277	0.550
808-18-95 15:00	13.35	12.60	0.489	2.276	0.555
3 08-18-95 16:00	13.45	12.59	0.488	2.267	0.546
08-18-95 17:00	13.38	12.63	0.489	2.268	0.544
18-95 18:00	13.47	12.64	0.490	2.282	0.560
18-95 19:00	13.36	12.63	0.491 '	2.305	0.561
08-18-95 20:00	13.44	12.62	0.489	2.332	0.565
_08-18-95 21:00	13.19	12.51	0.495	2.368	0.579
08-18-95 22:00	13.35	12.56	0.475	2.405	0.579
3 08-18-95 23:00	13.20	12.51	0.485	2.418	0.575
*FINAL AVERAGE(s	3) 13.35	12.58	0.498	2.244	0.566

*FINAL AVERAGE(S) 13.35 12.58 0.498 2.244 0.566
*FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS

St. Johns Unit 1

Daily Summary

FROM 08/19/95 00:00 TO 08/20/95 00:00

Date/ Time	linCO2_C	1outCO2_C %	loutNOX_MM #/M	linSO2_MM #/M	loutSO2_MM #/M
-19-95 00:00	13.00	12.31	0.501	2.428	0.581
■ 08-19-95 01:00	13.00	12.33	0.512	2.443	0.582
	13.18	12.39	0.505	2.453	0.572
08-19-95 03:00	13.08	12.35	0.493	2.455	0.563
_08-19-95 04:00	13.20	12.41	0.483	2.462	0.563
08-19-95 05:00	13.10	12.41	0.481	2.472	0.563
4 08-19-95 06:00	13.16	12.38	0.490	2.481	0.560
08-19-95 07:00	13.12	12.45	0.496	2.494	0.560
1 08-19-95 08:00	13.11	12.41	0.490	2.504	0.566
08-19-95 09:00	13.03	12.37	0.467	2.504	0.559
08-19-95 10:00	13.09	12.32	0.505	2.499	0.560
_08-19-95 11:00	13.01	12.31	0.489	2.507	0.557
08-19-95 12:00	13.38	12.61	0.435	2.519	0.560
08-19-95 13:00	13.47	12.77	0.431	2.518	0.580
08-19-95 14:00	13.57	12.78	0.436	2.489	0.564
1 08-19-95 15:00	13.52	12.80	0.435	2.457	0.558
10 8-19-95 16:00	13.59	12.80	0.437	2.406	0.531
08-19-95 17:00	13.49	12.86	0.451	2.332	0.504
■ ~19-95 18:00	13.49	12.81	0.458	2.253	0.489
19-95 19:00	13.45	12.85	0.454	2.180	0.498
08-19-95 20:00	13.48	12.74	0.464	2.115	0.520
_08-19-95 21:00	13.38	12.75	0.456	2.052	0.509
08-19-95 22:00	13.47	12.74	0.455	2.010	0.493
0 8-19-95 23:00	13.38	12.81	0.452	1.986	0.494
FINAL AVERACE (s) 13 28	12 57	0 470	2 376	0 545

*FINAL AVERAGE(s) 13.28 12.57 0.470 2.376 0.545 *FINAL AVERAGE -- Summation of AVERAGING PERIODS excluding INVALID PERIODS Company: St. Johns Unit 1

Source : Unit 1

7-18-95

Location:

Channel: 10pacity Units: %

00:00 5.5 5.5 5.9 5.3 6.6 5.7 5.5 6.0 5.5 11.72C Avg: 5.7 9 01:00 15.9SC 5.8 6.1 5.8 6.1 5.2 5.8 6.5 5.2 5.3 5.8 9 Avg: 02:00 5.6 5.3 5.7 5.8 5.4 6.2 6.1 6.1 5.3 5.0 Avg: 5.6 10 03:00 5.5 5.2 5.2 4.9 5.3 5.3 5.0 5.1 5.4 5.0 Avg: 5.2 10 5.6 5.7 04:00 5.3 4.9 5.2 5.8 5.3 5.4 5.8 4.8 5.3 10 Avg: 5.6 5.6 5.3 5.3 5.4 05:00 5.8 5.0 5.0 5.2 5.3 Avg: 5.4 10 06:00 5.3 5.5 5.3 5.9 5.5 5.7 7.3 5.7 6.2 5.8 Avg: 5.8 10 07:00 5.6 6.0 5.1 5.1 5.3 5.8 5.8 5.6 5.5 5.9 5.6 10 Avg: 08:00 5.7 5.5 5.8 5.8 5.2 5.6 5.4 5.5 5.5 5.6 : PVA 5.6 10 09:00 5.4 5.5 5.4 5.1 5.4 5.3 5.2 5.6 5.3 5.5 5.4 10 Avg: 10:00 5.7 5.9 5.3 5.6 5.6 5.4 5.4 5.4 5.5 5.4 5.5 10 Avg: 5.2 5.8 5.4 5.6 5.4 5.5 5.5 5.4 11:00 5.2 5.4 Avg: 5.4 10 12:00 5.4 5.7 5.7 5.5 6.3 5.9 5.8 5.6 5.7 5.9 5.8 10 Avg: 13:00 5.7 5.3 5.5 5.9 5.7 6.0 6.2 6.1 5.6 5.7 Avg: 5.8 10 14:00 5.9 5.7 5.7 6.2 5.9 5.9 6.1 5.6 5.8 6.4 Avg: 5.9 10 15:00 6.3 5.7 6.0 5.8 6.2 6.1 6.2 6.1 6.3 6.6 Avg: 6.1 10 6.7 6.4 6.4 6.7 6.3 6.1 6.7 16:00 6.4 6.3 6.2 6.4 10 Avg: 6.7 17:00 6.3 6.1 6.1 6.4 6.6 6.2 6.3 6.0 6.1 6.3 10 Avg: 5.9 18:00 5.7 6.2 6.1 6.0 6.1 6.1 6.3 6.0 5.9 6.0 10 Avg: 6.0 19:00 6.0 6.1 6.1 5.9 6.6 6.1 6.0 5.9 5.9 Avg: 6.1 10 20:00 5.8 5.7 6,1 5.9 6.2 6.1 5.6 5.7 5.5 5.8 Avg: 5.8 10 21:00 5.9 6.0 5.6 5.8 5.9 5.6 5.5 6.0 5.2 5.5 Avg: 5.7 10 22:00 5.7 5.5 6.4 6.4 5.9 5.7 5.7 5.8 5.7 5.7 Avg: 5.8 10 23:00 6.0 5.4 5.4 5.5 5.5 5.9 6.0 5.7 5.9 5.9 Avg: 5.7 10

Daily Average: 5.7 Count: 238

Company: St. Johns Unit 1 Source: Unit 1

Location: Channel: 10pacity Units: %

2/19-95

00:00	6.1	5.7	5.7	5.8	6.0	6.2	5.7	6.6	6.0	10.72C	Avg:	6.0 9
01:00	16.7SC	5.8	5.8	6.8	5.7	5.5	5.8	5.6	5.7	5.5	Avg:	5.8 9
02:00	5.7	5.8	5.7	5.9	5.7	5.7	5.6	5.5	5.6	5.9	Avg:	5.7 10
03:00	5.4	5.5	5.6	6.3	5.8	5.4	6.1	5.7	5.6	5.7	Avg:	5.7 10
04:00	5.7	6.4	5.7	5.8	5.7	6.0	6.1	5.7	5.7	5.7	Avg:	5.8 10
05:00	6.2	5.5	5.7	5.9	5.5	5.5	5.8	5.8	5.5	5.8	Avg:	5.7 10
06:00	5.3	5.5	5.4	5.8	5.5	5.5	5.5	5.7	5.5	5.3	Avg:	5.5 10
07:00	5.4	5.8	5.8	6.2	6.0	5.4	5.9	5.9	5.6	5.5	Avg:	5.7 10
08:00	5.7	5.6	5.7	5.7	5.8	5.5	5.7	5.7	5.3	5.6	Avg:	5.6 10
09:00	5.4	6.2	5.4	5.0	5.5	5.9	6.3	5.3	5.0	5.3	Avg:	5.5 10
10:00	5.2	5.0	5.1	5.2	5.4	5.0	4.9	5.6	5.5	5.7	Avg:	5.3 10
11:00	5.8	5.8	6.1	5.7	5.5	5.7	5.6	5.6	5.5	5.9	Avg:	5.7 10
12:00	5.5	5.6	5.6	5.6	5.5	5.4	5.3	5.2	5.3	5.2	Avg:	5.4 10
13:00	5.3	5.7	5.6	5.3	5.5	5.4	5.5	5.4	5.4	5.5	Avg:	5.4 10
14:00	5.8	5.5	5.3	5.4	5.7	5.8	5.7	5.5	5.6	5.5	Avg:	5.6 10
15:00	5.5	5.6	5.5	5.6	5.4	5.4	5.6	5.7	5.6	5.5	Avg:	5.5 10
16:00	5.5	5.9	5.7	6.0	5.7	5.8	5.8	5.7	5.8	6.1	Avg:	5.8 10
17:00	6.3	6.3	6.0	6.1	6.2	6.3	6.0	6.1	6.1	6.1	Avg:	6.1 10
18:00	6.2	6.3	6.0	6.0	6.1	6.1	6.0	6.0	6.0	6.1	Avg:	6.1 10
19:00	6.1	5.8	6.0	6.1	5.9	5.9	6.0	6.2	5.9	5.8	Avg:	6.0 10
20:00	6.0	5.8	5.9	6.0	5.8	6.4	6.0	5.8	5.9	5.9	Avg:	5.9 10
21:00	5.9	5.8	5.6	5.7	5.8	5.6	5.6	5.8	6.3	6.0	Avg:	5.8 10
22:00	5.8	5.8	5.7	6.0	5.7	5.9	7.1	5.8	5.6	5.8	Avg:	5.9 10
23:00	5.8	5.8	5.7	5.6	5.9	5.7	5.6	5.4	5.7	5.7	Avg:	5.7 10

Daily Average: 5.7 Count: 238

Location: Company: St. Johns Unit 1 Source : Unit 1 Channel: 10pacity Units: % 7-20-95 00:00 5.5 5.3 5.7 5.7 6.1 5.6 5.4 5.5 5.5 10.1ZC Avg: 5.6 9 01:00 10.9SC 5.3 5.6 5.2 5.3 5.7 5.6 5.5 5.3 5.5 Avg: 5.4 9 02:00 5.6 5.6 5.5 5.5 5.6 5.6 5.3 5.6 5.7 5.5 Avg: 5.5 10 5.7 5.8 6.2 5.7 10 03:00 5.7 5.5 5.7 5.6 5.5 5.5 5.7 Avg: 6.5 5.7 04:00 5.9 6.1 5.7 6.3 5.9 6.2 6.3 6.1 Avg: 6.1 10 5.7 , 6.3 6.3 6.8 5.8 5.8 5.9 5.9 05:00 6.3 6.4 Avg: 6.1 10 5.5 5.8 6.0 6.4 7.1 06:00 5.6 6.4 5.3 6.9 6.3 Avg: 6.1 10 07:00 6.1 6.5 6.5 6.8 7.5 6.4 7.1 7.5 6.7 6.9 Avg: 6.8 10 7.2 17.0 7.0 7.0 7.3 10.8 08:00 6.1 7.1 6.4 6.4 Avg: 8.2 10 09:00 7.0 6.5 6.2 6.7 6.4 6.5 6.6 6.0 6.2 6.3 Avg: 6.4 10 6.7 7.0 6.6 6.6 6.9 6.9 6.6 6.4 6.6 10 10:00 5.7 6.8 Avq: 6.2 6.2 6.1 6.5 6.0 6.3 11:00 6.0 6.6 6.8 6.4 Avq: 6.3 10 6.3 6.5 6.5 6.3 6.1 6.6 6.6 6.2 12:00 5.9 6.4 Avg: 6.3 10 13:00 7.2 6.6 6.6 6.4 6.8 6.5 6.4 6.8 6.6 6.5 Avg: 6.6 10 14:00 6.4 6.3 6.3 6.6 6.6 6.6 6.7 7.0 6.8 Avg: 6.6 10 6.4 7.3 7.1 7.5 7.4 7.0 7.0 15:00 7.1 7.0 6.9 7.0 Avg: 7.1 10 16:00 7.1 6.8 7.3 7.5 7.4 7.2 7.3 7.1 6.8 6.9 7.1 10 Avg: 17:00 7.0 7.1 7.2 7.4 7.2 7.1 7.2 7.1 7.8 7.0 7.2 10 Avg: 18:00 7.0 7.3 6.8 7.1 7.0 6.9 7.2 7.3 7.0 6.8 7.1 10 Avg: 7.0 7.3 7.0 6.6 7.4 6.7 7.1 7.0 19:00 6.7 6.8 Avg: 7.0 10

Daily Average: 6.5 Count: 238 Max: (17.0)

6.4

6.5

6.4

6.8

6.3

6.6

6.4

6.7

6.7

6.2

6.2

6.8

6.6

6.4

6.4

6.3

6.3

6.0

6.5

6.7

6.5

6.6

6.4

6.7

6.5

6.6

7.0

6.6

5.9

6.4

6.4

6.1

6.3

6.7

6.2

Avg:

Avg:

Avg:

Avg:

6.5 10

6.4 10

6.5 10

6.6 10

20:00

21:00

22:00

23:00

6.7

6.5

6.4

6.6

SOZ, COZ. NOX 1715-1300 CAL. DREMO. A.R.

Company: St. Johns Unit 1 Location: Source: Unit 1 9-3-55 Channel:									pacity	ī	Units	: %
00:00	6.5	6.9	6.7	5.6	6.8	6.7	5.0 ·	6.9	6 . B	5.2	Avg:	6.3 10
01:00	9.8ZC	17.7SC	6.8	5.7	7.1	6.6	4.6	6.5	6.5	4.7	Avg:	6.1 8
02:00	6.2	7.3	5.8	5.9	6.4	7.1	4.8	7.1	6.9	4.8	Avg:	6.2 10
03:00	6.6	6.9	6.1	5.8	7.1	6.8	5.1	7.5	6.9	5.0	Avg:	6.4 10
04:00	6.2	7.1	5.9	5.6	6.5	7.2	4.7	6.9	6.7	5.1	Avg:	6.2 10
05:00	6.5	6.9	5.6	6.2	6.8	6.7	4.6	7.0	6.7	4.8	Avg:	6.2 10
06:00	6.4	6.9	5.9	5.6	7.0	6.8	5.3	6.8	6.5	4.8	Avg:	6.2 10
07:00	6.7	6.8	5.3	6.3	6.9	6.7	5.2	6.7	6.8	4.9	Avg:	6.2 10
08:00	7.0	7.3	5.3	6.9	7.1	6.5	5.2	7.1	7.2	5.0	Avg:	6.5 10
09:00	6.7	7.1	5.1	6.6	7.0	6.4	5.1	7.2	6.8	4.9	Avg:	6.3 10
10:00	6.7	6.9	5.5	6.5	6.8	6.4	5.2	7.2	6.9	5.0	Avg:	6.3 10
11:00	7.0	7.1	5.4	6.7	7.3	7.1	5.4	7.3	6.9	4.9	Avg:	6.5 10
12:00	7.6	7.1	5.2	6.8	7.6	6.4	6.1	6.8	6.9	4.9	Avg:	6.5 10
13:00	7.6	7.5	5.2	6.6	8.0	. 6.2	6.1	7.0	7.4	5.1	Avg:	6.7 10
14:00	7.6	7.1	5.4	6.7	7.1	5.9	6.0	7.1	7.0	4.8	Avg:	6.5 10
15:00	7.2	7.0	5.1	6.4	6.8	6.1	5.7	7.2	7.3	5.1	Avg:	6.4 10
16:00	6.9	7.1	5.9	7.4	7.9	6.4	6.0	7.5	7.7	5.4	Avg:	6.8 10
17:00	7.6	7.5	5.7	7.2	7.9	6.8	6.4	6.1	6.4	6.7	Avg:	6.8 10
18:00	6.2	6.8	6.2	6.5	6.5	6.4	5.9	6.0	6.3	6.5	Avg:	6.3 10
_ 19:00	6.0	5.7	5.9	6.0	5.9	6.1	5.7	5.6	6.0	6.1	Avg:	5.9 10
20:00	6.0	6.0	6.0	6.1	5.6	6.0	5.9	5.8	5.8	5.6	Av g :	5.9 10
21:00	5.5	5.8	6.0	5.6	5.2	5.1	5.2	5.5	5.5	5.5	Avg:	5.5 10
22:00	5.2	5.4	5.3	5.6	5.8	5.5	5.3	5.0	5.4	5.9	Av g :	5.5 10
23:00	5.4	5.2	5.4	5.5	5.3	5.4	5.8	5.6	5.7	5.2	Avg: △4	5.5 10

Daily Average: 6.2 Count: 238 Max:

NOX >5 < 10 0007 - 0430 APP. B PATTS SOZ. COZ MON 03.00 - 0345 OTHER

Compa	any: S	St. Jol Jnit 1		nit 1 -95			Locati Channe		pacity	1	Units	: %
00:00	5.2	5.7	5.2	5.2	5.7	6.0	5.5	5.4	5.4	5.8	Avg:	5.5 10
01:00	9.9ZC	16.4SC	5.5	5.7	6.1	5.6	5.7	5.8	5.5	-5.5	Avg:	5.7 8
02:00	5.1	6.3	5.6	5.6	5.8	5.7	5.6	5.3	5.7	5.5	Avg:	5.6 10
03:00	5.8	5.4	5. 4	5.8	5.4	5.4	5.6	5.7	5.7	6.0	Avg:	5.6 10
04:00	6.1	6.0	5.5	5.7	5.8	5.6	5.9	5.8	5.8	5.8	Avg:	5.8 10
05:00	6.0 '	5.4	5.9	5.7	5.8	6.5	6.1	5.5	6.1	6.1	Avg:	5.9 10
06:00	6.1	6.3	5.6	5.8	5.5	5.5	5.6	5.6	6.5	6.1	Avg:	5.9 10
07:00	5.8	5.6	5.8	5.4	5.9	5.5	5.6	5.7	5.8	6.2	Avg:	5.7 10
08:00	5.8	5.5	5.9	6.0	6.2	5.8	5.7	6.3	5.7	6.2	Avg:	5.9 10
09:00	5.8	5.8	5.9	5.5	5.9	6.5	6.2	6.3	6.0	6.3	Avg:	6.0 10
10:00	5.8	5.8	6.0	5.6	5.5	6.0	- 5 . 8	6.8	6.0	6.2	Avg:	6.0 10
11:00	6.0	6.0	6.4	5.8	5.6	6.0	6.0	5.9	6.2	6.2	Avg:	6.0 10
12:00	6.2	5.9	5.9	6.1	5.8	6.1	6.1	6.0	6.1	5.9	Avg:	6.0 10
13:00	6.0	5.9	6.1	6.3	6.3	6.3	6.5	6.3	6.4	6.4	Avg:	6.2 10
14:00	6.2	7.1	6.0	6.1	5.8	6.0	6.2	7.4	6.1	6.1	Avg:	6.3 10
15:00	6.2	6.1	5.9	7.0	6.0	6.1	6.3	5.8	6.0	6.2	Avg:	6.2 10
16:00	5.9	6.2	6.1	6.3	6.7	5.9	6.3	6.2	6.5	5.9	Avg:	6.2 10
17:00	6.5	6.0	6.7	6.3	6.2	6.6	6.9	6.3	5.9	6.2	Avg:	6.4 10
18:00	6.0	6.6	6.3	6.4	6.2	5.8	5.8	6.0	6.3	6.2	Avg:	6.2 10
19:00	6.1	6.1	5.9	5.9	5.8	6.0	6.0	6.3	5.7	6.0	Avg:	6.0 10
20:00	5.9	5.8	5.9	5.7	6.2	5.9	6.0	6.0	6.1	5.7	Avg:	5.9 10
21:00	5.9	5.6	6.1	6.3	6.0	5.7	6.0	6.2	6.0	5.9	Avg:	6.0 10
22:00	6.0	5.5	6.1	6.1	5.9	6.3	6.2	6.2	6.0	5.8	Avg:	6.0 10
23:00	6.1	6.0	5.8	6.1	5.9	6.1	5.9	5.9	6.3	6.5	Avg:	6.1 10
Daily Av	erage:	6.0 Cou	nt: 238	Max:	7.4)			NOX O	- 70	9 13 P	3. B - P4	धार्

Pollution Monitor Daily Report V4.1 08/10/1995 Page # 1 Company: St. Johns Unit 1 Location:

Channel: 10pacity Units: % Source : Unit 1

00:00	6.3	5.8	5.7	5.8	5.8	6.2	6.1	6.1	5.8	6.0	Avg:	6.0 10
01:00	14.5IC	11.6SC	6.3	5.8	5.6	5.9	5.4	6.0	5.8	5.9	Avg:	5.9 8
02:00	6.9	6.1	6.0	5.6	6.0	, 5.8	5.8	5.5	6.1	5.3	Avg:	5.9 10
03:00	6.8	5.7	5.7	5.7	5.4	5.7	5.6	5.5	5.9	5.4	Avg:	5.7 10
04:00	5.7	5.6	5.6	5.6	5.9	5.7	5.7	5.6	5.7	5.7	Avg:	5.7 10
05:00	5.6	6.2	5.6	5.9	6.0	5.9	6.0	5.4	5.3	6.2	Avg:	5.8 10
06:00	5.5	5.5	5.5	5.9	6.1	5.9	5.7	6.1	5.9	5.9	Avg:	5.8 10
07:00	5.8	6.1	6.0	5.8	5.9	5.6	5.7	5.8	5.7	5 . 8	Avg:	5.8 10
08:00	5.7	5.7	6.3	5.8	6.2	5.8	5.8	5.7	5.8	6 . 4	Avg:	5.9 10
09:00	5.7	5. 7	5.8	5.9	5.5	5.9	5.8	5.8	5.5	5.9	Avg:	5.7 10
10:00	5.7	5.5	6.0	5.8	5.8	6.1	5.9	6.0	6.3	6.7	Avg:	6.0 10
11:00	6.4	6.2	6.3	5.8	6.0	6.1	6.0 /	6.1	6.3	6.3	Avg:	6.1 10
12:00	6.3	6.7	6.3	5.9	6.2	6.1	5.8	6.1	5.6	6.3	Avg:	6.1 10
13:00	5.9	5.7	6.1	6.2	6.2	6.1	6.0	6.2	6.0	6.8	Avg:	6.1 10
14:00	6.4	6.2	5.9	6.0	5.9	5.9	5.8	5.9	5.8	6.0	Avg:	6.0 10
15:00	5.8	5.8	6.2	6.0	6.5	6.2	6.3	6.4	6.4	6.2	Avg:	6.2 10
16:00	6.2	6.5	6.8	6.7	7.3	6.9	6.5	6.6	6.4	6.4	Avg:	6.6 10
17:00	6.8	6.7	6.5	6.9	6.5	6.7	6.9	6.8	6.7	6.6	Avg:	6.7 10
18:00	6.4	6.5	6.5	6.5	6.4	6.6	6.7	7.0	6.6	6.2	Avg:	6.5 10
19:00	6.5	6.8	6.3	6.5	6.7	6.2	6.3	6.2	7.1	6.4	Avg:	6.5 10
20:00	6.7	6.7	6.6	6.7	6.8	6.7	6.5	6.8	6.5	6.5	Avg:	6.6 10
21:00	7.1	6.7	6.7	6.8	6.2	6.3	6.6	6.7	6.2	6.2	Avg:	6.5 10
22:00	6.6	6.2	6.3	6.6	6.5	6.6	6.1	6.6	5.9	6.2	Avg:	6.4 10
23:00	6.4	5.8	6.1	6.4	6.4	7.7	6.6	6.6	6.6	6.1	Avg:	6.5 10
				,	\sim							

Daily Average: 6.1 Count: 238 Max: (7.7)

Soz 1315-1330 U.E.

NGA 1615-1645 W.E.

502,652, VON 1800-1815 11.E.

Pollution Monitor Daily Report V4.1 08/11/1995 Page # 1

Company: St. Johns Unit 1 Location: Source: Unit 1 Channel: Channel: 1Opacity Units: %

00:00	6.4	6.2	6.0	6.7	6.2	6.3	6.5	6.3	6.6	5.9IC	Avg:	6.3 9
01:00	13.2IC	11.1SC	5.8	6.0	6.1	6.1	6.0	5.5	5.4	6.4	A∨g:	5.9 8
02:00	5.9	6.8	5.8	6.1	5.8	5.8	6.1	5.3	5.6	5.5	Avg:	5.9 10
03:00	5.6	5.8	6.1	6.0	6.1	5.7	5.7	5.5	5.6	6.1	Avg:	5.8 10
04:00	5.5	5.8	5.8	6.2	6.4	5.7	5.8	5.8	5.9	6.1	Avg:	5.9 10
05:00	5.8	5.9	5.9	5.9	6.2	6.2	5.7	6.3	5.7	5.6	Avg:	5.9 10
06:00	6.4	5.8	6.3	5.8	5.8	5.8	5.9	5.8	6.1	6.1	Avg:	6.0 10
07:00	5.9	5.9	5.9	6.0	5.7	5.8	5.4	5.8	5.6	5.6	Avg:	5.8 10
08:00	6.2	5.8	5.6	6.2	5.5	5.9	5.3	5.4	5.8	5.7	Avg:	5.7 10
09:00	6.2	5.5	5.9	. 6.2	5.6	5.8	5.9	5.6	5. 9	5.7	Avg:	5.8 10
10:00	5.9	5.7	5.3	5.6	5.2	5.6	5.6	5.3	5.7	6.3	Avg:	5.6 10
11:00	6.2	6.5	5.9	6.0	5.8	5.7	6.2	5.9	5.8	6.2	Avg:	6.0 10
12:00	6.1	6.3	5.5	5.8	5.9	6.0	5.8	5.8	5.8	6.2	Avg:	5.9 10
13:00	6.4	6.3	6.6	6.5	6.8	6.3	6.6	6.5	6.0	6.3	Avg:	6.4 10
14:00	6.4	6.0	6.3	6.0	6.3	5.9	6.2	6.5	6.0	6.3	Avg:	6.2 10
15:00	5.9	5.9	6.3	6.0	6.0	6.1	6.1	6.1	6.1	6.2	Avg:	6.1 10
16:00	5.9	6.2	6.0	6.1	6.0	6.4	6.1	6.3	6.2	6.2	Avg:	6.1 10
17:00	5.9	6.4	6.3	6.5	6.6	6.3	. 6.7	6.6	6.4	6.2	Avg:	6.4 10
18:00	6.2	6.2	6.3	6.5	6.5	6.5	6.5	6 . 4	6.1	6.4	Avg:	6.4 10
19:00	6.2	6.2	6.2	6.0	6.3	6.0	6.0	6.6	6.5	6.3	Avg:	6.2 10
20:00	6.4	6.1	6.3	5.9	6.1	6.2	6.1	6.2	6.0	6.1	Avg:	6.1 10
21:00	6.1	6.3	6.1	5.9	5.9	6.2	5.9	6.5	5.7	6.4	Avg:	6.1 10
22:00	5.8	5.7	6.3	5.8	5.7	6.0	5.7	5.6	5.7	5.5	Avg:	5.8 10
23:00	6.1	5.8	5.9	6.0	5.8	5.9	6.0	5.8	5.9	6.0	Avg:	5.9 10

Daily Average: 6.0 Count: 237 Max: (6.8)

Pollution Monitor Daily Report V4.1 08/12/1995 Page # 1 Company: St. Johns Unit 1 Location: Source: Unit 1 Channel: 10pacity Unit Channel: 10pacity Units: %

00:00	5.6	5.8	6.1	5.9	6.0	6.2	5.8	5.9	6.1	11.6IC	Avg:	5.9 9
01:00	13.2IC	12.2SC	6.6	7.0	6.2	6.1	6.2	5.9	6.2	6.3	Avg:	6.3 8
02:00	6.0	6.3	5.9	6.1	6.1	. 5 . 9	6.5	5.8	6.2	6.3	Avg:	6.1 10
03:00	5.8	6.6	5.7	6.4	6.3	5.7	6.0	5.7	5.3	5.9	Avg:	5.9 10
04:00	5.6	6.1	6.3	5.8	5.9	5.8	5.8	5.1	5.4	5.8	Avg:	5.8 10
05:00	5.5	6.0	5.8	5.6	6.0	5.3	5.8	5.4	5.4	5.9	Avg:	5.7 10
06:00	5.7	5.8	6.1	5.7	6.2	5.7	6.0	5.6	5.5	5.8	Avg:	5.8 10
07:00	5.7	5.5	5.6	6.1	5.9	5. 4	5.8	6.0	5.6	5.8	Avg:	5.7 10
08:00	6.1	5.6	6.1	5.4	5.5	5.9	5.2	6.1	5.5	5.6	Avg:	5.7 10
09:00	5.9	5.6	6.9	6.1	5.5	6.0	5.5	5.6	5.8	5.3	Avg:	5.8 10
10:00	5.4	5.4	5.6	5.5	5.2	5.9	5.5	5.8	5.8	5.5	Avg:	5.6 10
11:00	7.7	5.5	5.7	5.7	5.8	5.9	5.7	5.8	5.9	5.6	Avg:	5.9 10
12:00	6.5	5.8	5.5	6.1	5. 4	5.6	5.7	5.8	5.6	5.8	Avg:	5.8 10
13:00	5.8	6.0	5.5	5.7	5.6	5.9	6.4	5.9	6 . 8	6.9	Avg:	6.1 10
14:00	5.8	6.1	6.0	6.0	6.1	6.1	6.9	6.4	6.1	6.4	Avg:	6.2 10
15:00	6.4	6.2	6.1	6.3	6.5	6.4	6.4	6.5	6.1	6.3	Avg:	6.3 10
16:00	6 . 4	6.5	6.4	6.3	6.4	6.3	6.4	6.4	6.0	6.4	Avg:	6.3 10
17:00	6.1	6.1	6.6	6.1	6.3	6 . 4	6.7	7.1	6.3	6 . 4	Avg:	6.4 10
18:00	6.3	6.2	6.1	6.0	6.0	6.3	6.1	6.3	6.0	5.7	Avg:	6.1 10
19:00	6.2	5.8	6.1	6.0	6.1	6.4	6.5	6.0	6.4	6.3	Avg:	6.2 10
20:00	6.3	6.1	5.7	6.1	5.8	6.1	6.1	5.5	5.7	6.0	Avg:	6.0 10
21:00	6.3	6.2	6.0	6.2	6.1	6.0	6.7	6.4	6.1	6.6	Avg:	6.3 10
22:00	6.2	6.0	5.9	6.6	6.4	6.1	5.8	5.4	5.6	5.9	Avg:	6.0 10
23:00	5.8	5.8	5.7	5.8	6.3	5.7	6.1	6.0	5.9	6.0	Avg:	5.9 10

Pollution Monitor Daily Report V4.1 08/13/1995 Page # 1 Company: St. Johns Unit 1 Location:

Source : Unit 1 Channel: 10pacity Units: %

00:00	5.7	6.0	5.9	5.5	5.9	6.0	5.5	6.3	5.3	11.1IC	Avg:	5.8 9
01:00	11.8IC	10.9SC	6.1	5.9	6.3	6.8	5.8	6.6	6.6	6.1	Avg:	6.3 8
02:00	5.5	6.0	6.5	5.8	5.7	6.1	5.6	5.8	5.5	5.8	Avg:	5.8 10
03:00	6.0	5.7	5.7	6.5	6.0	6.1	5.9	6.3	6.1	6.0	Avg:	6.0 10
04:00	5.8	5.7	5.7	5.7	5.8	5.9	5.6	5.7	5.6	5.3	Avg:	5.7 10
05:00	5.7	5.5	5.3	5.8	5.5	5.6	6.3	5.9	6.1	6.0	Avg:	5.8 10
06:00	5.9	5.6	5.3	5.7	6.2	5.6	5.5	5.4	5.3	5.7	Avg:	5.6 10
07:00	6.0	5.7	6.0	6.8	6.4	6.4	6.3	6.2	6.4	6.2	Avg:	6.2 10
08:00	6.0	6.1	6.2	6.8	6.4	5.9	5.8	6.3	6.1	6.0	Avg:	6.2 10
09:00	5.9	6.0	5.9	6.1	.6.3	6.0	6.2	6.0	6.3	6.0	Avg:	6.1 10
10:00	6.2	5.9	5.9	6.0	5.8	5.7	6.2	5.7	5.7	6.0	Avg:	5.9 10
11:00	5.9	6.4	5.9	5.6	5.7	6.1	6.3	5.7	6.0	6.3	Avg:	6.0 10
12:00	5.9	6.2	6.0	5.9	6.2	6.1	5.8	5.8	5.8	6.1	Avg:	6.0 10
13:00	5.9	6.7	6.0	6.1	6.6	6.0	6.3	7.1	6.4	7.7	Avg:	6.5 10
14:00	7.0	6.6	6.7	6.4	6.4	7.0	6.6	6.6	6.8	6.6	Avg:	6.7 10
15:00	7.0	6.6	7.1	6.8	6.8	6.7	6.6	6.9	6.6	6.7	Avg:	6.8 10
16:00	7.5	7.1	7.1	7.3	6.8	6.7	7.5	7.0	6.8	6.9	Avg:	7.1 10
17:00	6.9	6.8	6.8	7.1	6.5	7.0	7.3	6.5	7.0	6.6	Avg:	6.9 10
18:00	6.9	6.7	6.7	6.8	6.6	6.9	6.9	6.7	6.8	7.0	Avg:	6.8 10
19:00	7.0	6.8	6.5	6.6	6.9	6.3	6.7	6.9	6.9	6.8	Avg:	6.7 10
20:00	6.5	6.7	6.5	. 6.5	6.4	6.6	6.3	6.8	6.4	6.5	Avg:	6.5 10
21:00	6.7	6.3	6.6	6.0	6.5	6.3	6.3	6.5	6.3	6.5	Avg:	6.4 10
22:00	6.4	6.2	6.6	6.3	6.3	6.2	6.3	5.9	6.1	6.5	A∨g:	6.3 10
23:00	6.2	5.7	5.9	5.8	6.2	6.7	6.2	5.7	6.8	6.3	Avg:	6.1 10
				/	$\overline{}$				1		a	(A

Daily Average: 6.3 Count: 237 Max: (7.7)

NEX 6007-2400 (400.F.-P.i.

Pollution Monitor Daily Report V4.1 08/14/1995 Page # 1
Company: St. Johns Unit 1 Location:
Source: Unit 1 Channel: 10pacity Unit Channel : 10pacity Units: %

00:00	6.7	6.5	5.5	5.6	5.8	5.5	6.4	6.3	6.1	11.6IC	Avg:	6.1 9
01:00	11.7IC	11.5SC	5.8	6.7	5.9	6.2	6.4	6.2	6.1	7.6	Avg:	6.4 8
02:00	6.3	7.2	5.9	5.9	6.5	5.8	6.3	6.0	6.1	6.6	λvg:	6.2 10
03:00	5.7	6.2	6.6	5.9	6.6	6.2	7.0	6.8	6.2	6.5	Avg:	6.4 10
04:00	6.1	5.8	6.2	6.3	6.6	5.8	5.5	6.1	5.9	6.0	Avg:	6.0 10
05:00	6.2	5.4	5.9	5.7	5.8	5.8	5.8	6.3	6.5	5.9	Avg:	5.9 10
06:00	5.9	5.8	6.1	5.3	5.8	6.2	6.0	5.9	6.2	6.4	Avg:	6.0 10
07:00	6.5	5.8	6.3	6.1	6.0	6.7	6.0	6.6	6.4	6.2	Avg:	6.3 10
08:00	5.6	6.1	5.8	6.0	5.8	6.4	6.2	5.7	5.9	5.5	Avg:	5.9 10
09:00	6.6	5.8	5.7	6.2	5.6	6.3	6.3	5.9	6.2	6.0	Avg:	6.1 10
10:00	5.7	6.0	6.0	6.2	5.9	5.9	6.3	6.0	6.2	6.0	Avg:	6.0 10
11:00	5.7	6.2	5.7	5.9	6.6	6.2	6.4	6.3	6.7	6.1	Avg:	6.2 10
12:00	6.1	5.9	6.2	6.0	6.3	6.2	6.4	6.0	5.9	6.0	Avg:	6.1 10
13:00	5.9	6.2	6.3	6.3	6.7	6.2	6.7	6.3	6.0	6.7	Avg:	6.3 10
14:00	6.3	6.3	6.2	6.0	6.0	7.5	7.1	6.3	6.3	6.6	Avg:	6.4 10
15:00	6.3	6.5	6.3	6.5	6.7	6.7	6.7	6.3	6.3	6.5	Avg:	6.5 10
16:00	5.8	8.5	7.4	7.4	8.2	7.4	7.9	7.5	7.6	8.5	Avg:	7.6 10
17:00	7.6	7.5	7.9	7.8	8.2	8.3	8.5	8.1	7.4	8.0	Avg:	7.9 10
18:00	7.7	7.8	7.6	8.4	7.8	7.0	7.5	7.5	6.7	7.7	Avg:	7.6 10
19:00	7.2	7.5	7.5	7.5	7.7	7.2	7.8	7.5	7.0	7.6	Avg:	7.4 10
20:00	6.7	7.6	7.2	7.0	7.7	7.1	7.5	7.4	6.7	7.8	Avg:	7.3 10
21:00	6.9	6.8	7.9	6.8	7.2	6.7	7.1	7.5	6.6	7.6	Avg:	7.1 10
22:00	6.2	6.3	7.3	6.3	6.4	6.3	6.3	7.2	6.3	6.9	Avg:	6.6 10
23:00	6.1	5.8	6.9	5.7	6.3	6.0	6.0	6.9	5 . 8	7.2	Avg:	6.3 10
D= (3								116.0	AAC7 - 6	715 40	B - Ar	7.F_

Daily Average: 6.5 Count: 237 Max:

NEX 0967-6215 APR.B- APP.F-

Pollution Monitor Daily Report V4.1 08/15/1995 Page # 1 Company: St. Johns Unit 1 Location:

Source : Unit 1 Channel : 10pacity Units: %

00:00	6.5	6.3	7.2	6.2	7.0	6.6	6.5	6.8	6.3	11.8IC	Avg:	6.6 9
01:00	11.6IC	6.6	7.7	6.1	6.8	6.8	6.8	7.1	7.0	6.5	Avg:	6.8 9
02:00	6.8	6.3	7.0	6.5	6.7	6.6	6.9	6.6	6.0	6.2	Avg:	6.5 10
03:00	7.1	6.4	7.0	6.3	7.0	7.7	6.5	7.1	6.6	7.2	Avg:	6.9 10
04:00	7.4	6.8	7.1	6.4	6.6	7.1	6.1	6.9	6.4	6.1	Avg:	6.7 10
05:00	7.6	7.1	6.9	6.7	6.2	7.1	6.6	7.5	6.4	6.6	Avg:	6.9 10
06:00	7.6	6.7	7.1	6.8	6.5	7.5	6.5	6.7	6.6	6.5	Avg:	6.9 10
07:00	7.2	6.3	6.9	7.2	6.5	7.8	6.1	7.2	6.6	7.1	Avg:	6.9 10
08:00	7.2	6.0	7.2	7.6	6.4	7.3	6.4	7.7	6.6	6.1	Avg:	6.8 10
09:00	6.0	5.8	5.7	5.8	4.8	7.2	6.6	5.9	5.9	6.3	Avg:	6.0 10
10:00	6.0	5.7	5.6	6.2	5.8	5.8	5.6	6.0	5.6	5.7	Avg:	5.8 10
11:00	5.5	5.9	5.7	5.7	5.6	5.7	5.5	5.4	5.2	5.3.	Avg:	5.5 10
12:00	5.2	5.4	5.2	5.6	6.1	5.6	5.0	5.6	5.6	5.1	Avg:	5.4 10
13:00	5.5	5.2	5.1	5.6	5.2	5.4	5.8	5.2	5.4	5.3	Avg:	5.4 10
14:00	5.1	5.4	5.5	5.9	6.0	6.1	5.9	5.7	6.3	6.2	Avg:	5.8 10
15:00	5.8	5.9	6.0	6.1	5.5	5.3	6.1	5.6	5.5	5.4	Avg:	5.7 10
16:00	5.6	6.1	5.7	5.5	5.6	5.4	5.4	5.5	5.2	5.5	Avg:	5.5 10
17:00	5.5	5.3	5.7	5.5	5.5	5.3	5.3	5.9	5.6	5.9	Avg:	5.5 10
18:00	5.8	5.6	5.8	5.5	5.4	5.9	5.3	5.6	5.7	6.0	Avg:	5.6 10
19:00	7.2	5.5	5.8	6.3	5.3	5.5	5.7	5.4	5.8	5.4	Avg:	5.8 10
20:00	5.9	7.3	6.2	7.0	5.2	5.7	5.5	5.1	5.5	5.2	Avg:	5.9 10
21:00	5.5	5.5	5.5	5.2	5.0	5.1	5.0	5.1	5.0	5.1	Avg:	5.2 10
22:00	5.0	5.3	5.5	5.2	5.5	5.4	4.8	4.9	4.8	5.0	Avg:	5.1 10
23:00	5.2	4.7	4.9	4.4	4.4	5.3	5.1	5.1	5.1	4.7	Avg: (צר גאני	4.9 10 0007-0215
Daily A	verage:	6.0 C o	unt: 238	Max:	7.8			NOX:	>5 216	- 414 · D.C	···· ·	

11 6945-1000 U.E. 502 LOZ NON 1330-1430 U.E.

Pollution Monitor Daily Report V4.1 08/16/1995 Page # 1
Company: St. Johns Unit 1 Location:

Channel : 10pacity Units: % Source : Unit 1

00:00	6.2	5.3	4.7	4.8	4.4	4.8	4.8	4.8	5.1	10.1IC	Avg:	5.0 9
01:00	14.3IC	4.9	4.7	4.7	4.7	5.0	4.8	4.6	4.8	4.8	Avg:	4.8 9
02:00	5.2	5.3	4.5	4.9	4.8	4.7	4.7	4.8	4.8	4.8	Avg:	4.9 10
03:00	5.5	5.3	5.9	4.8	5.0	4.8	5.2	5.4	5.0	4.8	Avg:	5.2 10
04:00	5.2	4.7	4.9	4.5	5.4	4.7	4.4	4.9	4.5	4.6	Avg:	4.8 10
05:00	5.3	4.5	5.0	4.5	4.5	4.8	5.0	5.1	4.7	4.7	Avg:	4.8 10
06:00	5.2	4.5	4.8	4.4	4.6	4.9	4.3	4.8	4.8	4.8	Avg:	4.7 10
07:00	5.2	4.3	4.6	5.1	4.6	5.3	5.7	5.7	5.7	6.1	Avg:	5.2 10
08:00	5.7	5.5	5.1	5.4	4.8	5.5	5.4	5.5	5.6	5.8	Avg:	5.4 10
09:00	5.5	5.1	5.1	6.2	5.5	5.6	5.6	5.4	5.8	5.9	Avg:	5.6 10
10:00	5.3	5.8	5.4	5.5	5.3	5.3	5.5	5.4	5.4	5.9	λvg:	5.5 10
11:00	5.3	5.9	5.1	5.5	5.2	5.2	5.5	5.3	6.0	6.1	Avg:	5.5 10
12:00	5.4	5.5	5.3	5.4	5.4	5.0	5.5	5.2	5.5	5.7	Avg:	5.4 10
13:00	5.2	5.5	5.3	5.2	5.5	5.5	5.7	5.3	5.8	6.2	Avg:	5.5 10
14:00	6.0	5.6	5.8	5.8	6.1	5.9	5.5	5.6	5.5	6.2	Avg:	5.8 10
15:00	5.8	6.0	6.3	5.6	5.9	5.8	6.2	6.2	6.2	6.2	Avg:	6.0 10
16:00	6.2	6.1	6.3	6.4	6.4	6.2	6.2	6.3	6.1	6.3	Avg:	6.3 10
17:00	6.4	6.4	6.2	6.4	6.2	6.6	6.8	6.5	6.6	6.2	Avg:	6.4 10
18:00	6.8	6.6	6.1	6 . 6	5.9	6.0	6.2	6.1	6.3	6.2	Avg:	6.3 10
19:00	6.3	6.2	6.1	6.2	6.1	6.4	6.3	6.1	6.5	6.3	Avg:	6.3 10
20:00	6.0	6.1	5.7	5.8	5.7	5.8	6.3	6.1	6.3	6.0	Avg:	6.0 10
21:00	6.8	5.9	5.9	6.2	6.1	6.3	6.1	6.0	6.6	6.7	Avg:	6.3 10
22:00	6.2	6.3	5.8	6.0	6.3	5.9	5.9	5.8	6.0	6.0	Avg:	6.0 10
23:00	6.4	6.3	5.8	6.1	5.5	6.2	6.0	6.0	6.2	6.5	Avg:	6.1 10
				/				· ^ ^*/1×	1546	3 60	٠	

Daily Average: 5.6 Count: 238 Max: 6.8

SOZ, COZ, MOX 1245-1360 W.E. 1445-1515 42. Pollution Monitor Daily Report V4.1 08/17/1995 Page # 1

Company: St. Johns Unit 1 Location:

Source : Unit 1 Channel : 10pacity Units: %

00:00	5.8	6.0	5.7	5.6	5.8	6.0	6.0	5.6	6.1	11.910	Avg:	5.8 9
01:00	8.9IC	6.8	6.0	5.7	6.0	6.4	7.1	6.1	8.3	7.2	Avg:	6.6 9
02:00	6.1	6.3	6.1	6.0	5.7	. 5.8	5.5	6.1	5.9	6.4	Avg:	6.0 10
03:00	5.6	5.7	5.6	5.4	6.0	5.6	5.4	6.2	5.4	6.1	Avg:	5.7 10
04:00	5.3	5.4	5.2	5.0	5.0	5.2	5.1	4.9	6.1	5.3	Avg:	5.2 10
05:00	5.0	5.5	5.8	6.2	6.0	6.3	5.6	6.2	6.5	5.6	Avg:	5.9 10
06:00	5.9	5.8	5,.7	5.8	5.3	5.9	5.5	5.5	6.1	5.3	Avg:	5.7 10
07:00	5.4	5.3	5.7	5 . 4	4.6	10.2	5.5	9.5	9.2	6.8	Avg:	6.8 10
08:00	7.6	8.4	8.2	5.3	8.8	8.1	5.2	8.0	8.7	6.2	Avg:	7.4 10
09:00	6.6	7.9	8.2	5.1	7.9	8.1	5.4	8.4	8.6	6.1	Avg:	7.2 10
10:00	6.2	7.6	7.3	5.0	6.9	7.3	5.0	7.0	7.0	5.5	Avg:	6.5 10
11:00	5.8	6.9	6.2	5.3	6.8	7.1	4.8	6.8	6.8	5.2	Avg:	6.2 10
12:00	6.8	5.7	5.7	5.5	5.5	5.7	6.1	5.9	5.6	5.5	Avg:	5.8 10
13:00	5.4	6.0	5.5	5.6	5.7	5.5	5.4	5.7	5.5	6.0	Avg:	5.6 10
14:00	5.8	5.5	5.9	5.6	5.7	6.0	6.0	6.4	5.8	5.8	Avg:	5.8 10
15:00	6.0	6.0	6.4	5.7	6.0	6.6	6.1	6.5	6.1	6.0	Avg:	6.1 10
16:00	6.3	6.2	6.6	6.7	6.2	6.5	6.4	6.5	6 . 4	6.1	Avg:	6.4 10
17:00	6.6	6.5	6.3	6.6	6.6	7.0	7.1	6.6	6.8	6.5	Avg:	6.7 10
18:00	6.7	6.9	6.5	6.9	6.6	6.7	7.1	6.7	7.2	6.9	Avg:	6.8 10
19:00	6.9	7.3	6.7	6.7	6.8	6.8	7.5	6.5	6.9	7.0	Avg:	6.9 10
20:00	6.6	6.9	6.6	6.6	7.0	6.6	7.1	6.5	6.6	6.4	Avg:	6.7 10
21:00	6.3	6.4	6.7	6.8	6.4	6.4	6.9	6.8	6.8	6.6	Avg:	6.6 10
22:00	6.3	6.2	6.8	5.9	6.6	6.3	6.8	6.9	6.3	6.1	Avg:	6.4 10
23:00	6.0	6.0	6.9	5.7	6.1	6.6	6.9	5.9	6.6	6.6	Avg:	6.3 10

Daily Average: 6.3 Count: 238 Max: 10.2

NOX 0007-0215 A17.8-14575>5

_		St. Jo Jnit 1	ohns U	nit 1			ocatio hannel		pacity	Ţ	Jnits	. %
				15-7/2								
00:00	5.9	6.0	6.1	5.7	5.6	6.1	5.6	5.7	6.0	15.4IC	Avg:	5.9 9
01:00	13.3IC	5.5	5.5	. 5.9	5.9	, 5.7	5.3	5.3	5.8	5.2	Avg:	5.6 9
02:00	5.4	6.3	5.8	6.1	5.5	6.0	5.6	5.4	5.3	5.5	Avg:	5.7 10
03:00	5.3	5.3	5.3	6.1	5.7	6.5	5.8	5.8	6.5	5.6	Avg:	5.8 10
04:00	5:9	5.8	5.4	5.4	5.7	6.1	5.8	5.8	5.4	5.5	Avg:	5.7 10
05:00	5.6	6.0	5.3	5.8	6.3	6.2	5.9	5.5	6.2	6.2	Avg:	5.9 10
06:00	5.7	5.6	5.5	5.6	5.9	6.0	6.3	5.6	5.9	5.5	Avg:	5.8 10
07:00	5.8	6.2	5.9	5.5	6.3	7.0	6.3	5.8	6.1	5.6	Avg:	6.0 10
08:00	5.0	5.5	6.0	5.7	6.3	5.8	5.7	5.4	5.5	5.2	Avg:	5.6 10
09:00	5.3	5.4	5.3	5.3	5.6	5.5	5.5	5.6	5.2	5.9	Avg:	5.5 10
10:00	5.9	5.5	5.4	5.5	5.7	5.4	5.7	5.7	5.3	5.5	Avg:	5.5 10
11:00	5.4	5.5	5.7	5.6	5.5	5.7	6.1	5.8	5.6	5.6	Avg:	5.7 10
12:00	5.7	5.3	5.5	5.8	5.4	5.6	5.7	5.7	5.7	5.4	Avg:	5.6 10
13:00	5.2	5.6	5.7	5.5	5.6 .	5.7	6.3	6.4	5.6	6.0	Avg:	5.7 10
14:00	6.1	5.7	5.8	5.7	6.1	5.8	5.7	6.2	5.9	6.1	Avg:	5.9 10
15:00	6.1	5.9	6.1	6.0	5.9	6.0	6.1	6.8	6.1	5.9	Avg:	6.1 10
16:00	6.4	6.0	6.3	6.2	6.3	6.5	6.5	6.3	6.4	6.2	Avg:	6.3 10
17:00	6.5	6.2	6.8	6.9	6.6	6.9	6.7	6.6	6.7	6.3	Avg:	6.6 10
18:00	6.7	6.5	6.4	6.4	6.4	6.9	6.8	6.6	6.4	6.1	Avg:	6.5 10
19:00	6.7	6.3	6.1	6.4	6.3	6.5	6.6	6.5	6.6	6.5	Avg:	6.5 10
20:00	6.2	6.2	6.4	6.6	6.2	6.4	6.1	6.0	6.5	6.2	Avg:	6.3 10
21:00	6.5	6.3	6.2	6.7	6.3	6.6	6.2	5.8	6.3	5.9	Avg:	6.3 10
22:00	5.8	5.7	5.8	6.3	5.5	5.8	5.5	5.8	5.7	5.8	Avg:	5.8 10
23:00	5.5	5.9	5.3	5.7	6.5	5.9	6.6	5.6	6.1	6.8	Avg:	6.0 10
Daily A	Average:	5.9 Cd	ount: 238	Max:	7.0				00-0900			
						500	(04 V	0x 591	5-1000	4, € -		

Channel: 10pacity Source : Unit 1 Units: % 14-15 6.1 00:00 6.2 6.2 5.7 6.3 5.9 6.1 5.7 5.7 13.0IC Avg: 6.0 9 8.9IC 6.7 6.0 6.2 01:00 5.9 5.9 6.9 6.0 6.7 6.8 Avg: 6.3 9 02:00 6.0 5.6 6.1 5.8 6.6 5.9 6.2 6.6 6.0 6.3 Avg: 6.1 10 6.3 6.5 6.5 6.3 6.5 7.3 5.9 03:00 6.2 5.8 6.6 Avg: 6.4 10 04:00 6.3 6.0 6.1 6.8 7.6 6.9 6.2 6.0 6.5 5.9 Avg: 6.4 10 6.4 6.3 5.7 6.9 6.7 6.4 7.3 5.A 6.6 6.4 Avg: 6.5 10 05:00 5.7 7.0 6.8 6.3 6.4 7.1 6.6 6.7 6.5 10 6.8 Avg: 06:00 5.8 07:00 6.5 7.1 6.5 6.8 6.4 6.3 6.8 6.8 6.1 Avg: 6.5 10 5.8 08:00 7.3 6.8 7.0 6.4 6.5 6.5 6.3 6.5 6.7 6.5 Avg: 6.7 10 09:00 7.1 7.7 7.4 6.6 6.8 6.5 6.5 6.5 6.6 6.1 Avg: 6.8 10 6.1 6.3 6.8 6.3 6.3 6.1 6.0 6.0 5.8 5.9 Avg: 6.2 10 10:00 11:00 6.3 7.1 6.1 6.2 5.6 6.5 6.3 6.5 6.2 6.1 Avg: 6.3 10 6.0 5.8 5.6 5.8 5.9 6.3 5.9 Avg: 5.9 10 12:00 6.0 6.0 5.9 5.6 5.9 6.3 5.9 6.2 6.2 6.0 10 13:00 5.9 5.7 6.1 Avg: 6.0 10 7.1 5.8 5.8 5.9 5.8 5.6 5.7 5.9 14:00 6.3 6.3 Avg: 6.2 5.8 6.3 6.1 5.9 6.2 6.5 6.3 6.2 10 15:00 6.3 6.7 Avg: 6.2 5.6 5.7 5.8 6.0 10 16:00 6.0 6.3 6.1 6.1 6.3 5.6 Avg: 17:00 5.7 6.3 5.9 5.8 5.6 5.9 6.2 7.6 7.4 6.3 Avg: 6.3 10 18:00 6.1 6.0 5.6 5.4 5.6 5.6 5.0 6.0 5.9 5.7 Avg: 5.7 10 9.0 5.8 6.1 5.**5** 6.3 5.6 5.9 5.8 5.4 Avg: 6.2 10 19:00 6.4 4.7 20:00 7.2 5.4 5.1 5.1 4.8 5.3 5.1 4.9 4.7 Avg: 5.2 10 5.2 4.9 5.0 5.2 4.9 5.3 5.1 5.2 10 21:00 5.0 5.1 Avg: 6.0 4.9 5.1 22:00 5.1 5.2 4.9 5.1 4.8 5.1 10 5.8 5.0 4.6 Avq: 5.4 5.7 5.5 10 23:00 5.5 5.1 4.9 5.3 5.5 6.3 5.6 5.5 Avg:

Location:

Daily Average: 6.1 Count: 238 Max:

9.0

Company: St. Johns Unit 1

ATTACHMENT E-2

RELATIVE ACCURACY
TEST REPORT
FOR
KVB
AT
S.J.R.P.P.

UNIT 1
November 17-19 & 21, 1994

94-489-FL

Unit 1 Outlet

RELATIVE ACCURACY - NOx lb/mmBtu

RATA TABLE 1

ANALYZER TYPE MODEL NUMBER **MANUFACTURER** SERIAL NUMBER **MEASUREMENT SPAN** Fc FACTOR **BOILER LOAD**

	-
NOx	
42	
TECO	
42-49353-28	2
1000	PPM
1800	
650	MW

RUN	RUN	RM	RM	RM	DATE	TIME	CEMS	CEMS	CEMS	DIFFERENCE
USED	NUMBER	NOx	CO2	NOx			NOx	CO2	. NOx	lb/mmBtu
		ppm	%	lb/mmBtu			ppm	%	lb/mmBtu	
N	1	279.9	12.2	0.49	17-Nov-94	08:30-09:00	290.3	12.62	0.49	0.00
Υ	2	277.9	11.9	0.50	17-Nov-94	09:20-09:50	282.9	12.27	0.50	0.00
Υ	3	281.5	12.0	0.50	17-Nov-94	10:10-10:40	293.6	12.72	0.50	0.00
Y	4	289.3	12.1	0.51	17-Nov-94	11:10-11:40	298.4	12.76	0.50	0.01
Y.	5	289.7	12.4	0.50	17-Nov-94	12:05-12:35	297.2	12.77	0.50	0.00
Y	6	286.2	11.9	0.52	17-Nov-94	13:25-13:55	298.3	12.74	0.50	0.02
Y	7	287.8	12.1	0.51	17-Nov-94	14:10-14:40	296.2	12.72	0.50	0.01
Υ	8	283.8	12.2	0.50	17-Nov-94	15:05-15:35	302.6	12.71	0.51	-0.01
Y	9	300.7	12.4	0.52	17-Nov-94	16:05-16:35	304.9	12.72	0.52	0.00
Y	10	296.1	12.3	0.52	17-Nov-94	16:55-17:25	303.2	12.76	0.51	0.01
N	11	302.1	12.4	0.52	17-Nov-94	17:40-18:10	301.3	12.73	0.51	0.01
N	12	293.5	12.2	0.52	17-Nov-94	18:30-19:00	299.3	12.73	0.51	0.01

AVERAGE CEM VALUE AVERAGE RM VALUE MEAN DIFFERENCE NUMBER OF RUNS STANDARD DEVIATION T - VALUE CONFIDENCE COEFFICIENT RELATIVE ACCURACY, %

0.504
0.509
0.004
9
0.009
2.306
0.007
2 16

Conversion Factor = 1.194 E-07

BIAS TEST

PASS **BIAS ADJUSTMENT FACTOR** 1.000

NEXT TEST ANNUAL

Unit 1 Outlet

RELATIVE ACCURACY CO2 ANALYZER

RATA TABLE 2

ANALYZER TYPE
MODEL NUMBER
MANUFACTURER
SERIAL NUMBER
MEASUREMENT SPAN
BOILER LOAD

CO2	
41H	
TECO	
41H-49357-282	2
20	%
650	NA/A/

RUN USED	RUN NUMBER	RM DATA	DATE	TIME	CEMS DATA	DIFFERENCE % ©O2
		%			%	4
Υ]	12.2	17-Nov-94	08:30-09:00	12.6	-0.4
Υ	2	11.9	17-Nov-94	09:20-09:50	12.3	-0.4
Υ	3	12.0	17-Nov-94	10:10-10:40	12.7	-0.7
N	4	12.1	17-Nov-94	11:10-11:40	12.8	-0.7
Υ	5	12.4	17-Nov-94	12:05-12:35	12.8	-0,4
N	6	11.9	17-Nov-94	13:25-13:55	12.7	-0.8
N	7	12.1	17-Nov-94	14:10-14:40	12.7	-0.6
Y	8	12.2	17-Nov-94	15:05-15:35	12.7	-0.5
Υ	9	12.4	17-Nov-94	16:05-16:35	12.7	-0.3
Y	10	12.3	17-Nov-94	16:55-17:25	12.8	-0.5
Υ	11	12.4	17-Nov-94	17:40-18:10	12.7	-0.3
Ÿ	12	12.2	17-Nov-94	18:30-19:00	12.7	-0.5

AVERAGE CEM VALUE
AVERAGE RM VALUE
MEAN DIFFERENCE
NUMBER OF RUNS
STANDARD DEVIATION
T - VALUE
CONFIDENCE COEFFICIENT
RELATIVE ACCURACY, %

12.67
12.22
-0.44
99
0.12
2.306
0.09
4.34

Unit 1 Outlet

RELATIVE ACCURACY SO2 ANALYZER

RATA TABLE 3

ANALYZER TYPE
MODEL NUMBER
MANUFACTURER
SERIAL NUMBER
MEASUREMENT SPAN
BOILER LOAD

SO2	
43.4	
TECO	
43B-49122-282	
3500	PPM
650	Пмw

RUN USED	RUN NUMBER	RM DATA	DATE	TIME .	CEMS DATA	DIFFERENCE ppm
		ppm			ppm	
Y]	141.5	17-Nov-94	08:30-09:00	142.0	-0.5
Υ	2	136.7	17-Nov-94	09:20-09:50	139.0	-2.3
Υ	3	140.0	17-Nov-94	10:10-10:40	144.0	-4.0
N	4	163.3	17-Nov-94	11:10-11:40	142.0	21.3
Y	5	140.7	17-Nov-94	12:05-12:35	150.0	-9.3
Y	6	130.7	17-Nov-94	13:25-13:55	140.0	-9.3
Υ	7	142.9	17-Nov-94	14:10-14:40	142.0	0.9
Y	8	92.0	17-Nov-94	15:05-15:35	94.0	-2.0
N	9	169.2	17-Nov-94	16:05-16:35 ~	147.0	22.2
Y	10	166.4	17-Nov-94	16:55-17:25	150.0	16.4
N	11	166.9	17-Nov-94	17:40-18:10	149.0	17.9
Y	12	163.8	17-Nov-94	18:30-19:00	150.0	13.8

AVERAGE CEM VALUE AVERAGE RM VALUE MEAN DIFFERENCE NUMBER OF RUNS STANDARD DEVIATION T - VALUE CONFIDENCE COEFFICIENT RELATIVE ACCURACY, %

139.00	
139.41	
0.41	
9	
9.06	BIAS TEST
2.306	BIAS ADJUSTMENT FACTOR
6.96	
5.29	NEXT TEST

PASS	
1.000	
ANNUAL	

Unit 1 Outlet

RELATIVE ACCURACY FLOW LOW LOAD

ANALYZER TYPE MODEL NUMBER MANUFACTURER

SERIAL NUMBER
MEASUREMENT SPAN

BOILER LOAD

FLOW	
Ultraflow 100	
USĪ	
R-08771U-0194	
144000000	scfh

MW

307

RATA TABLE 4

RUN	RUN	RM	DATE	TIME	CEMS	DIFFERENCE
USED	NUMBER	DATA			DATA	scfh
		scfh			scfh	
Υ	1	56594400	18-Nov-94	22:00-22:25	60270000	-3675600
Y	2	56820800	18-Nov-94	22:30-22:55	59766000	-2945200
N	3	56538200	18-Nov-94	23:00-23:25	60846000	-4307800
Υ	4	57604000	18-Nov-94	23:30-23:55	60474000	-2870000
N	5	56676900	19-Nov-94	00:00-00:25	61140000	-4463100
Υ	6	56896200	19-Nov-94	00:30-00:55	60114000	-3217800
Υ	7	56930300	19-Nov-94	01:00-01:25	60264000	-3333700
Υ	8	56423000	19-Nov-94	01:30-01:55	60492000	-4069000
Υ	9	56467800	19-Nov-94	02:00-02:25	60576000	-4108200
Y	10	56633000	19-Nov-94	02:30-02:55	60156000	-3523000
Υ	11	56740100	19-Nov-94	03:00-03:25	60090000	-3349900
N						_

AVERAGE CEM VALUE
AVERAGE RM VALUE
MEAN DIFFERENCE
NUMBER OF RUNS
STANDARD DEVIATION
T - VALUE
CONFIDENCE COEFFICIENT
RELATIVE ACCURACY, %
BIAS TEST
BIAS ADJUSTMENT FACTOR
NEXT TEST

60255750
56809575
-3446175
9
468409
2.306
360050
6.70
PASS
1.000
ANNUAL

Unit 1 Outlet

RELATIVE ACCURACY MID FLOW

ANALYZER TYPE
MODEL NUMBER
MANUFACTURER
SERIAL NUMBER
MEASUREMENT SPAN
BOILER LOAD

_	
FLOW	
Ultraflow100	
USI	
R-08771U-0194	
144000000	scfh
450	MW

RATA TABLE 5

RUN USED	RUN NUMBER	RM DATA scfh	DATE	TIME	CEMS DATA scfh	DIFFERENCE scfh
	1	72549000	19-Nov-94	05:00-05:25	76992000	-4443000
- T	2	72741000	19-Nov-94	05:30-05:55	77328000	-4587000
- T						
· · · · · ·	3	72860100	19-Nov-94	06:00-06:25	77592000	-4731900
Υ	4	72718600	19-Nov-94	06:30-06:55	77370000	-4651400
N	5	72188600	19-Nov-94	07:00-07:25	77436000	-5247400
Υ	6	73290900	19-Nov-94	07:30-07:55	77922000	-4631100
Y	7	72769300	19-Nov-94	08:00-08:25	77202000	-4432700
Y	8	72696600	19-Nov-94	08:30-08:55	77634000	-4937400
Y	9	72631700	19-Nov-94	09:00-09:25	77226000	-4594300
Y	10	72646800	19-Nov-94	09:30-10:00	77016000	-4369200
N						
N						1

AVERAGE CEM VALUE
AVERAGE RM VALUE
MEAN DIFFERENCE
NUMBER OF RUNS
STANDARD DEVIATION
T - VALUE
CONFIDENCE COEFFICIENT
RELATIVE ACCURACY, %
BIAS TEST
BIAS ADJUSTMENT FACTOR
NEXT TEST

77364667
72767111
-4597556
9
173530
2.306
133387
6.50
PASS
1.000
ANNUAL

Unit 1 Outlet

RELATIVE ACCURACY HIGH LOAD FLOW

ANALYZER TYPE
MODEL NUMBER
MANUFACTURER
SERIAL NUMBER
MEASUREMENT SPAN
BOILER LOAD

FLOW	
Ultraflow100	
USI	
R-087 <u>71U-0194</u>	
144000000	scfh
650	MW

RATA TABLE 6

RUN	RUN	RM	DATE	TIME	CEMS	DIFFERENCE
USED	NUMBER	DATA			DATA	scfh
		scfh			scfh	
Υ	1	90767400	17-Nov-94	08:30-09:00	95928000	-5160600
Υ	2	90740100	17-Nov-94	09:20-09:50	96048000	-5307900
Y	3	91426700	17-Nov-94	10:10-10:40	95712000	-4285300
N	4	90410800	17-Nov-94	11:10-11:40	96402000	-5991200
Y	5	91297900	17-Nov-94	12:05-12:35	96144000	-4846100
N	6	106028300	17-Nov-94	13:25-13:55	96144000	9884300
Υ	7	92663000	17-Nov-94	14:10-14:40	96486000	-3823000
Y	8	93143000	17-Nov-94	15:05-15:35	97848000	-4705000
Υ	9	92152700	17-Nov-94	16:05-16:35	97482000	-5329300
Υ	10	92531600	17-Nov-94	16:55-17:25	97920000	-5388400
Υ	11	92229000	17-Nov-94	17:40-18:10	97452000	-5223000
N	12	92414600	17-Nov-94	18:30-19:00	98460000	-6045400

AVERAGE CEM VALUE
AVERAGE RM VALUE
MEAN DIFFERENCE
NUMBER OF RUNS
STANDARD DEVIATION
T - VALUE
CONFIDENCE COEFFICIENT
RELATIVE ACCURACY, %
BIAS TEST
BIAS ADJUSTMENT FACTOR
NEXT TEST

96780000
91883489
-4896511
9
540840
2.306
415726
5.78
PASS_
1.000
ANNUAL

CGA Results

CGA/Linearity Set Name: C02sk06/95

Low High Mid Avg Ref Val: 4,900 11.120 17.040 Avg Mon Val: 4,990 11.340 17.247 Results: 1.837 1.213 1.978 APS Flag: 0 #00C Hrs: 0

Exit

CGA / Linearity Test Data Entry

Calibrations on: 10utC02_C

120 -123 Monitor/Component ID

Analyzer Range: 20.000

CGA Set Members

06/07/95 06:18

06/07/95 09:17

06/07/95 12:17

CGA Set Name: CO2sk06/95

Legend:

Cal In Bet

CGA Type Cal

Non CGA Cal

06//07//95	06/07/95	Date/Tir
0.0	06:1	me
7////4//	8 4/5	Low
19///1//	19 11.	H.
33.00	35 1	id
	7.27	Hìgh

Exit

Delete

Tester

View Results

Save

CGA Results

CGA/Linearity Set Name: NOXsk06/95

Low Mid

High

Avg Ref Val: 252.000

554.000

858,000

Avg Mon Val: 258.500

555.100

849.567

Results: 2.579

0.199

0.983

APS Flag: 0

#00C Hrs: 0

Exit

CGA / Linearity Test Data Entry

130 - 133 Monitor/Component ID Calibrations on: loutNOX C

Analyzer Range: 1000.000

CGA Set Members

06/07/95 06:18

06/07/95 09:17

06/07/95 12:17

CGA Set Name: NOXsk06/95

Legend: Cal In Set

CGA Type Cal

Non CGA Cal

	I).	3	t		9	Z	•	ľ	i	I	n	E	•						Ĺ	C)	H							ŀ	1	í	C	l					I	I.	i	Ç	ı	h		
į	Ž	į			Ø				ģ		ž			g			Ž	B	Ï		į	g		þ	ï	Ĭ		ž	9	Ž		0	ź	Q		Ž	Ž	3	Ý			Š	g		0	

05/07/95 12 17 237 60 553 20 847 10 06/08/95 00:07 0.20 -999.90 849.90 06/09/95 00:07 0.20 -999.90 858.00 06/10/95 00:07 0.20 -999.90 864.40 06/11/95 00:07 0.20 -999.90 859.50

06/12/95 00:07 0.20 -999.90 691.20

Exit

Delete

Tester

Yiew Results

Save

CGA Results

CGA/Linearity Set Name: S021606/95

Low

Mid

High

Avg Ref Val: 75.000

164.200

257.000

Avg Mon Val:

77.167

168.367

262.433

Results:

2,889

2.538

2.114

APS Flag: 0

#OOC Hrs: 0

Exit

CGA / Linearity Test Data Entry

140 - 143 Monitor/Component ID Calibrations on: loutSO2L C

Analyzer Range: 300.000

CGA Set Members

CGA Set Name: 5021006/95

06/07/95 06:18 06/07/95 09:17

06/07/95 12:17

Legend: CSI IN Net CGA Type Cal Non CGA Cal

Date/Time	Low	Mid	High	
06/07/95 06:11	3 76,40	167/50	261.40	T
06/07/95 09:1	***************************************	(1)	30000000000000000000000000000000000000	
06/07/95/12/1	44.04.04.04.04.04.04.04.04.04.04.04.04.0	//////////////////////////////////////	30000000000000000000000000000000000000	
06/08/95 00:0	88.55.58.65.86.58.65.88.68.88.68.68.68.68.68.68.68.68.68.68.	-999,90		
06/09/95 00:01	*************	-999,90	000000000000000000000000000000000000000	
06/10/95 00:0° 06/11/95 00:0°	*************************	-999.90 -999.90		
06/12/95 00:0		-999.90 -999.90	888.000.0000.0000.0000.0000.0000.0000	=
GOVITANDO ON IN			230.00	Į.V.

Exit

Delete

Tester

View Results

Save

CGA Results

CGA/Linearity Set Name: SO2h106/95

Low

Mid

High

Avg Ref Val: 862.000

1939,000

2964.000

Avg Mon Val: 868.000

1913,000

2873.667

Results:

0.696

1.341

3.048

APS Flag: 0

#OOC Hrs: 0

Exit

CGA / Linearity Test Data Entry

Calibrations on: 1out502H_C

140 - 143 Monitor/Component ID

Analyzer Range: 3500.000

CGA Set Members

06/07/95 06:18

06/07/95 09:17

06/07/95 12:17

CGA Set Name: S02hi06/95

Legend:

Cal In Set

CGA Type Cal

Non CGA Cal

Date/Time Low Mid Hìgh

06/07/95/06/18/867/00/1915/00/2874/00 06/07/95/09/17/869/00/1910/00/28/3/00

067/07//S5 1/2 1/7 B68 00 1344 00 /237/4 00

06/08/95 00:07 0.00 -9999 00 2982 00

06/09/95 00:07 0.00 - 9999.00 2981.00

06/10/95 00:07 0.00 - 9999.00 2990.00

06/11/95 00:07 06/12/95 00:07 0.00 - 9999.00 2978.00

06/12/95 00:07 0.00 -9999.00 2972.00

Exit

Delete

Tester

View Results

Save

ATTACHMENT E-3

SJRPP UNIT 1 TEST BURN PETROLEUM COKE/BITUMINOUS COAL AIR EMISSIONS TEST

A) STACK TEST - BASELINE RESULTS

DATE	(3 RUN AVE.) PARTICULATE (lbs/MBN)	(3 RUN AVG.) SO3 (ppm)	(3 RUN AVG.) CO (ppm)
7/18/95	0.007	6.96	10.29
7/19/95	0.003	5.19	45.16
7/20/95	0.0096	5.55	67.00
8/8/95	0.009	7.04	21.15

B) STACK TEST - BLEND RESULTS

DATE	(3 RUN AVG.) PARTICULATE (Ibs/MBN)	(3 RUN AVG.) SO3 (ppm)	(3 RUN AVG.) CO (ppm)
8/11/95		7.54	312.96
8/12/95		9.21	497.58
8/13/95		14.03	745.64
8/14/95	0.011		
8/15/95	0.006		
8/16/95	0.004		
8/17/95	0.009		
8/18/95		11.37	467.90
8/19/95	0.003	gan days dark file	

ATTACHMENT F

CERTIFIED MAIL

SJRO LC 95 094

June 14, 1995

Mr. Steve Pace RESD 421 W. Church St. Jacksonville, FL 32202

RE: Site Certification No. PA 81-13

St. Johns River Power Park (SJRPP) Unit I

Authorization of Test Burn Using Petroleum Coke with Coal Request for Approval - Pollutants & Testing Methodology

Dear Mr. Pace:

The above referenced facility was authorized by your agency's March 30, 1995, letter to test burn a blend of petroleum coke with coal (Attachment A). Condition #20 requires "Prior written approval of the pollutants to be tested for and the appropriate test methods are mandatory prior to commencement of testing. The proposal shall be submitted to the Site Certification Office, the Department's BAR office and the Duval County's RESD office for approval."

Pursuant to Condition #7, stack tests shall be conducted for the pollutants particulate matter, carbon monoxide and sulfuric acid mist. The following are the EPA Reference methodologies which are contained in 40 CFR 60 that shall be conducted:

1) Particulate matter - EPA Method 5B
 2) Carbon Monoxide - EPA Method 10

3) Sulfuric Acid Mist - EPA Method 8

Conditions #3 and #4 specifies that as-burned fuel samples shall be collected and analyzed for sulfur, nitrogen and metals. The baseline coal and pet coke/coal blend shall be sampled from the sampling building loading belt transfer to the Unit 1 to analyze the parameters in accordance with the following methods:

SJRO LC 95 092 Page 2

Sulfur	ASTM D 4239 Method "C"
Nitrogen	ASTM D 5373
Chromium	ASTM D 3683
Lead	ASTM D 3683
Mercury	ASTM D 3684
Nickel	ASTM D 3683
Beryllium	ASTM D 3683
Vanadium	ASTM D 3683
Zinc	ASTM D 3683
	Nitrogen Chromium Lead Mercury Nickel Beryllium Vanadium

The testing is scheduled to commence July 11, 1995 for the baseline. Your expeditious review and response are appreciated.

Please contact me at (904) 751-7729 if you have any questions.

Sincerely,

Environmental & Safety Manager

JAW/pct

cc: R. Breitmoser

REGULATORY & ENVIRONMENTAL SERVICES DEPARTMENT

Air Quality Division

June 22, 1995

Mr. Jay Worley
Environmental & Safety Manager
St. Johns River Power Park (SJRPP)
11201 New Berlin Road
Jacksonville, Florida 32226

RE: Request for Approval - Pollutants & Testing Methodology Unit #1 Test Burn Using Petroleum Coke with Coal Site Certification No. PA 81-13 SJRPP Correspondence of June 14, 1995

Dear Mr. Worley:

This is to acknowledge receipt and review of the above captioned SJRPP correspondence, submitted June 15, 1995.

Regulatory & Environmental Services Department (RESD) agrees that the use of EPA Reference Test Methods 5B, 10, and 8 for the testing of particulate matter, carbon monoxide, and sulfuric acid mist, respectively, during the above referenced test burn, satisfies Condition No. 20 of the Site Certification.

If there are any questions concerning this matter, please contact me at (904) 630-3484.

Very truly yours,

Robert S. Pace, P.E. Division Chief

RSP/WLW/be

c: AQD File 1710 B

Wayne Walker, AQD

ATTACHMENT, G

DATE: 7-18-95 UNIT #: 2494 TEAT EXPLT STEAM 64 <u> 5</u>24 404 464 524 344 704 ७पप 5005S PRODUCTION FUEL INPUT RATE (TONS/HR) NITIALS TIME (MMBTU/BR) (MMLBS/HR) MWASE C 0000 0100 0200 0300 0400 0500 0600 B8. E.A. 3.52 36.5 34 34 36 4132 511 95 36.5 35.5 86.4 0700 4952 9/5 43.5 45 E.A. 47 44 46 4.40 640 44 44.5 36: 0800 E-A. 46.5 44.5 5131 4.57 657 9/5 45.5 40 45.5 80.1 0900 658 44.5 E.A 5152 4.56 46 44 9/5 44.5 40 9/5 86. 1000 4.58 5161 455 K5 E.A 658 46 44 40 44 455 42 % بيوي 1100 45 EA 5152 4.56 658 43 40 44 PE. 1200 43 95 Z A 5146 45.5 40:45 4.57 659 46 44 44 32. 1300 EA 5119 4.58 659 46.5 45 435 44 38.5 EA 98. i 1400 4.57 95 44.5 38.5 5176 658 46 43.5 30 405 88. 4.36 5078 1500 ۶A 632 43.5 41.5 41.5 95 9/5 39.5 79 9 4,37 1600 ZA. 5042 636 39 38,5 38,5 39.5 40,5 4.59 42.5 87.0 1700 EA 5172 43 660 42.5 42,5 42.5 38.1 4.58 1800 43 42.5 43 43.5 43.5 5155 656 43 35 % 1900 4.56 42.5 42.5 43.5 43.5 mgt 5165 659 4.3 35. 2000 42.5 42.5 43.5 43.5 5125 4.52 657 ブルケ 15 42.5 96.E 2100 658 44 42 42.543 43 4.56 mit 5161 2200 4999 629 42.5 40 41 41.5 42.5 42.5 4.32 ZulT 2300 4.35 630 45.5 43 43 4989 43 44 mIT

BASELINE & BLEND OPERATIONAL DATA - POWER BLOCK

		DATE:	7/19/95	•		UNIT#:	1					
TIME	NITIALS	2494 HEAT ENPUT (MMBTU/BR)	STEAM 64 PRODUCTION (MMLBS/HR)	Gross MW/HR	344	464 B	FUEL NE	E 24 UT RATE D	584 (TONS/HR) E	644 . F	704 G	
0000	mIT	4961	4.34	629	42	39.5	41	41.5	43	<i>o</i> /s	42.5	34.
0100	mtt	5227	4.53	658	47.5	45	45	45.5	45.5	0/5	45	33.
0200	mit	5121	4.53	654	44	41.5	42.5	43	44	0/5	44	59
0300	mtt	5176	4.51	654	46	43	43.5	37.5	4	0/5	43.5	95
0400	mIT	5106	4.50	653	45	42.5	43.5	40.5	45	0/5	45.5	<u>ي.</u> کونو
0500	nto	5162	4.55	657	44.5	41	41.5	4	42.5	0/5	42	33
0600		5147	4.56	659	45	42	42.5	43.	44	0/5	43.5	33
07 00		5142	4.55	657	44.5	42	42.5	43	44	0/5	43	38.:
0800	0	5188	4.55	628	44	41	42	43	43.5	°/s	44	8S.
0900	\bigcirc	5181	4.53	657	46	43	43.5	44	44	%	45	86.
1000		5146	4.59	659	44.5	41.5	43	44	44.5	ols	43.5	<i>Æ.</i>
1100		5206	4.57	659	45	41.5	42.5	42.5	44.5	0/5	43	ge.
1200		5325	4.71	675	46	25	43.5	43.5	45	2/0	44	88.
1300	d	5394	4.71	676	46	43	44	44	45	%	44.5	£6.
1400	A	5317	4.68	673	44.5	41.5	42.5	42.5	44	0/5	43	BE.
1500	d	5293	4.74	674	42.5	40	41	41	41.5	%	42	% .
1600		5267	4.67	667	44.5	42.5	43.5	43.5	44.5	0/5	44	£6.
1700		5248	4.70	677	45	42.5	43.5	44	144.5	%	44	<u>β</u> €.
1800	Ear	5275	4.70	673	45			435	:		44,5	66.
1900	ECIP	5267	4.70	674	45	42	43	43	44	%	43.5	છે.
2000	Eaf	5285	4.70	674	45,5	43	43,5	43,5	45	%	44.5	9£.
2100	Ear	5308	4.68	675					44.5	_		~ 3 .
2200	East	5287	4.70	673				-			44	À '4.
2300	Eaf	5279	4.71	675							44.5	1

		DATE:	7/20/95		٠.	UNIT#:						
TIME	NITIALS	2454 HEAT INPUT (MMBTU/HR)	STEAM 64 PRODUCTION (MMLBS/HR)	∳ MW/HR	344	404 B	464 FLEL INP C	524 TRATE D	5 14 (TONS/HR) E	644 F	704	η
0000	Ear	5299	4,73	678	455	43	43.5	4Z	44	9/5	44	34
0100	Ear	5309	4.70	674	46	44	45	41	46	%	45,5	ا يا ي
0200	gas	5303	4,73	670	46	435	44	42	45,5	%	45,5	38.
0300	Eap	5307	4.72	671	46	44	44,5	41	45,5	%	45	වීම.
0400	gas	5323	4.68	473	45,5	43	43.5	41	45	95	44,5	ĝ.,
0500	Eaf	5318	4,72	671	44.5	41.5	44.5	%	45.5	41.5	45,5	έ7,
0600	EA	5209	4.51	651	43	40,5	4z.5	%	42,5	42	42	314
0700	EA	5200	4.56	660	44	43	43	%	44,3	43	43.5	EFI
0800	EA	5188	4.59	660	45.5	42,5	43.5	95	44.5	43	44	88.
0900	EA	5170	4.60	659	44	44.5	43.5	95	44.5	43	44.5	88.
1000	EA	5184	4.59	658	45	42,5	43	%	44.5	43	46	88.
1100	EA	5291	4.68	671	46	44	44	9/5	45	43.5	45	88.2
1200	EA	5274	4.68	674	46	44.5	44	%5	45	43.5	45	88.:
1300	EΑ	5262	4.69	671	46	44,5	44	%5	45	43.5	45	88.
1400	EA	5265	4.69	671	46	44	43.5	%	44.5	43.5	1445	88.
1500	EA.	5258	4.69	671	46	44	44	9/5	45.5	43	44.5	88.
1600	EA	5332	ı	672	46.5	44	44	•	45	ì	ı	88.
1700	EA	5318	4.68	668	46.5	45	45	95	45.0	43,5	45	88.
1800	MD	5322	A.69	670	46	45	45	0/5	45	435	144.5	88
1900	Loss	Domp	let pe	ر)	5.5	S						
2000		-1										
2100									!	!	:	
2200	i ·									!	:	
2300	1											

ST.JOIINS RIVER POWER PARK 8-8-95 PETROLEUM COKE/COAL TRIAL BURN DATE: UNIT #: BASELINE & BLEND OPERATIONAL DATA - POWER BLOCK MAIN STEAM BOIL FR MAIN STEAM STEAM HEAT INPUT PRINCIPAL'Y TEMPERATURE PRESSURE PR.: DUCTION GROSS PUEL INPUT RATE (TONGOLE) TIME INITIALS (MMSTU/HR) (DEG. P) (MMLBS/HR) (%) (pelg) 1B % 88.6 4.58 88,5 1.0 88.6 38.6 1.70 XM 4.70 88. _. 4.70 88.5 4.72 (.7) 4.60 2.88 4.57 88.8 88.6 4.59

DESTUNE

							S RIVER POWE M COKE/COAL TRI OPERATIONAL DA	AL BURN	C #	DATE:	8-9-	95	UNIT#:		
	TIME	INITIALS	HEAT INPUT (MMBTUЛIR)	BOILER EPPICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. P)	MAINSTEAM PRESSURE (pole)	STEAM PRODUCTION (MMLB5/HB)	GROSS MW	A		Niti.i	NMIT BATE 4FO	K (4	ctt/hr) "
	1000	\bigcirc	5733	88.6	1002	2421	4.41	634	76	69	72	86	77	74	
L	100	\bigcirc /_	5880	88.6	1002	2398	4.61	660	85	78	80	.79	81	77	
	⁸²⁰⁰ (5780	88.8	1003	2422	4.5%	660	84	78	79	79	81	77	
	e300 (\nearrow	5843	88. ୫	1002	2406	4.60	658	83	77	79	80_	82	79	
_	0400	α	5859	88.7	1008	2407	4.59	459	86	79	82	82	63	80	
	0500		5885	88.8	1006	2399	4.59	660	85	80	81	81	83	78	
	0600	M	5878	8.88	1∞3	2394	4.49	650	84	77	81_	80	გ3	78	
·L	0700	m	5979	88.88	999	2405	4.72	675	86	81	84	84	87	82	
	0800	min	5958	28.7	999	2405	4.72	672	હી	80	8Z_	8Z_	85	80	
	0900	mo	5958	88.7	1001	2401	4-7	672	86	80	84	83	86	18	
	1000	M	5976	88.6	1003	2403	4,71	672	87	8(84	84	87	82	
	1100	W	5949	88.7	999	240Z	4.72	672	81	82	85	84	87	8Z	
	1200	CMN	5992	88-6	EQUI	2412	4.71	673	87	8Z_	85	84	පිපි	82	
	1300	W >	5968	88,4	[03	2415	4.73	674	86	80	89	88	87	80	
	1400	w	<i>5</i> 983	88.5	1005	2910	4.72	674	77	73	76	75	79	74	<i>5</i> 5
	1500	MD	5951	83.6	1009	2394	4,69	670	79	74	76	75	80	55	77
	1600	MD	5949	£8.6	994	2417	4.76	674	75	70	74	73	16	70	74
_	1700	MD	6028	88.5	996	2905	4,74	670		83	86	85	89	83	87
	1800	EA	5989	88.6	1008	2402	4.70	669		83	85	84	88	83	87
	1900	EA	5849	88.9	1004	2392	4.60	659		82	85	84	86	83	86
L	2000	EA	5851	88.7	985	2400	4.65	657		82	83	83	85	81	84
	2100	EA	5878	88.7	1006	2420	4.60	658		82	82	82	86	80	84
	1200	EA	5920	88.8	1005	2405	4.50	659	-	80	82	83	84	80	84
	2300	EA	3837	88.8	1002					84	85	85	86	84	87

VWO→

G Pury

A Amy

	ST. JOHNS RIVER POWER PARK PETROLEUM COKE/COAL TRIAL BURN BASELINE & BLEND OPERATIONAL DATA - POWER BLOCK HEAT INPUT BOILER MAIN STEAM MAIN STEAM MAIN STEAM MAIN STEAM PRESSURE PRODUCTION GROSS FUEL INPUT RATE TROPS/IIIS/ WHEN INPUT RATE TROPS/IIIS/ PRESSURE PRODUCTION BOY OF THE PRODUCTION GROSS FUEL INPUT RATE TROPS/IIIS/ FUEL INPUT RATE TROPS/IIS/ FUEL RATE TROPS/IIS/ FU														
	TIME	INITIALS	HEAT INPUT (MMBTU/HR)	BOILER EPPICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. P)	MAIN STEAM PRESSURE (polg)	STEAM PRODUCTION (MMLBS/HR)	GROSS MW	A .		C PURI.	NPUT BATE TE	inie (K	t/hr	, (
	0000	EA	5827	88.8	996	2410	4.60	653		78	80	81	83	79	83
	0100	EA	5790	88.8	1002	2400	4.60	658		82	83	-84	85	80	85
	0200	ZA	5792	88.8	997	2408	4.60	658	_	81	82	83	8.5	80	85
	0300	ZA	5790	88.8	1000	2405	4.60	656		80	81	83	83	79	82
	0400	EA	5087	88.5	996	2391	3.69	550		65	68	68	69	6.7	69
	0500	EA	5364	88.7	1001	2402	4,18	613		76	77	77	79	75	80
	0600	B	5850	88.6	1010	2412	4.57	655		77	80	80	80	77	82
	0700	Py	5849	88.7	1001	2383	4.58	653		79	81	82	83	78	83
- [0800	Ry	583]	88.9	1001	2398	4.5-9	65-9 -		81	82	32	84	80	84
	0900	je3	5882	88.9	1005	2412	4.55	660		80	82	82	83	29	8.3
.	1000	the	5622	88.8	996	2319	4.40	639		81	82	84	84	81	81
	1100	Ty	5809	88.6	992	2409	4.63	659	74	67	70	70	73	68	72
. [1200	16	5813	88.7	1006	2401	4.61	659	77	71	73	73	76	50	76
	1300	By-	5848	88.7	1004	2404	4,59	658	75	69	71	71	73	68	72
-	1400	Ory_	5871	૪ ૪.૪	1007	2400	4.62	658	84	79		81	83	78	82
	1500	10	5839	88.8	999	2414	4.59	658	84	78		79	81	76	80
-	1600	/	Busy-	Proble	ms v	iti un	it & Pa	UV SU	ב בין.םנ	•					
	1700	16	6063	88.6	1004	240/	4.71	672		83	84	84	86	8.5	85
-	1800	DB	6001	88.7	1005	2401	4.70	670		81	84	83	PG	82	P5
	1900	BB	6003	88.8	994	2385	4.69	668	-	78	82	80	85	79	84
-	2000	PB	59 79	88-9	993	2382	4.48	445	_	77	82	81	85	78	83
	2100	DB	6029	88.8	1001	2425	4.74	679		79	82	81	85	29	84
	2200	DB	5852	88.9	1011	2368	4.64	664		85	89	89	95	86	92
	2300	D3	5898	88.7	1005	2397	4.61	658	+-	79	83	83	86	80	\$5

			1	B.1.	PETROLEU	S RIVER POWI M COKE/COAL TRI OPERATIONAL DA	AL BURN		DATE:	8-11	-95	UNIT#:		
TIME	INITIALS	HEAT INPUT (MMBTU/IR)	BOILER EFFICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. P)	MAIN STEAM PRESSURE (psig)	STEAM PRODUCTION (MMLBS/HR)	GROSS	A	в	c Pub. i	NEUT BATE (TO	NS/IIB)	V	G
0000	PB	5756	89	1000	2401	4.60	659	0/5	74	16	77	8/	76	50
0100	DB	5865	88.7	1001	2409	4.58	653	0/5	78	83	81	85	80	85
0200	DB	5705	88.9	997	2397	4.50	642	0/5	75	77	76	80	74	77
0300	DB	5745	88.9	1008	2402	4.52	655	0/5	77	82	81	85	79	8-2/
0400	DB	5784	88.8	1007	2413	4.53	452	0/5	78	83	82	86	81	85
0500	DB	5813	58.9	1004	2407	4.58	658	015	79	83	81	85	80	84
0600	met	5794	89	1007	2387	4.57	659	°/s	80	83	83	85	80	84
0 700	ZutT	5801	89	1004	2388	4.58	659	%	80	81	82	84	80	84
0800	nott.	5821	88.9	996	2385	4-61	658	°/ _S	79	80	83	83	79	83
0900	mtt	5787	89	1000	2384	4.59	659	0/5	79	80	81	82	78	83
1000	Zutt	5803	89	1003	238 1	4.59	659	°/s	80	80	81	83	79	83
1100	mtt	5955	88.8	1010	2384	4.65	669	%5	81	83	84	86	81	86
1200	In IT	5934	88.8	1008	2383	4.68	673	°/ _S	81	83	82	86	81	85
1300	mft	6019	88.7	987	2391	4.76	670	7/3	50	73	73	74	70	74
1400	mit	5919	88.7	998	2384	4.71	669	77	71	73	50	75	71	74
1500	mitt	5993	88.8	997	2372	4.69	665	0/5	74	76	76	78	74	77
1600	mtt	5928	89	1000	2380	4,70	670	0/5	80	81	81	83	79	84
1700	mtT	5931	88.9	1003	2389	4.70	672	0/5	80	81	82	84	80	84
1800	D5_	5925	89.0	1002	2383	4.70	670	0/5	80	82	81	84	79	83
1900	D 5	5897	89.0	1002	2386	4.69	668	0/5	80	87	87	84	29	84
2000	DS	5893	89.0	100 Z	2391	4.68	669	0/3	01	82	42	84	80	84
2100	25	5937	88.9	1003	2390	4.71	669	0/5	80	83	82	84	81	84
2200	⊅5	5934	89.1	1011	2382	4.68	669	0/5	81	82	82	84	80	45
2300	25	5916	93.9	-1001	2385	4.68	667	0/5	80	43	83	84	79	83

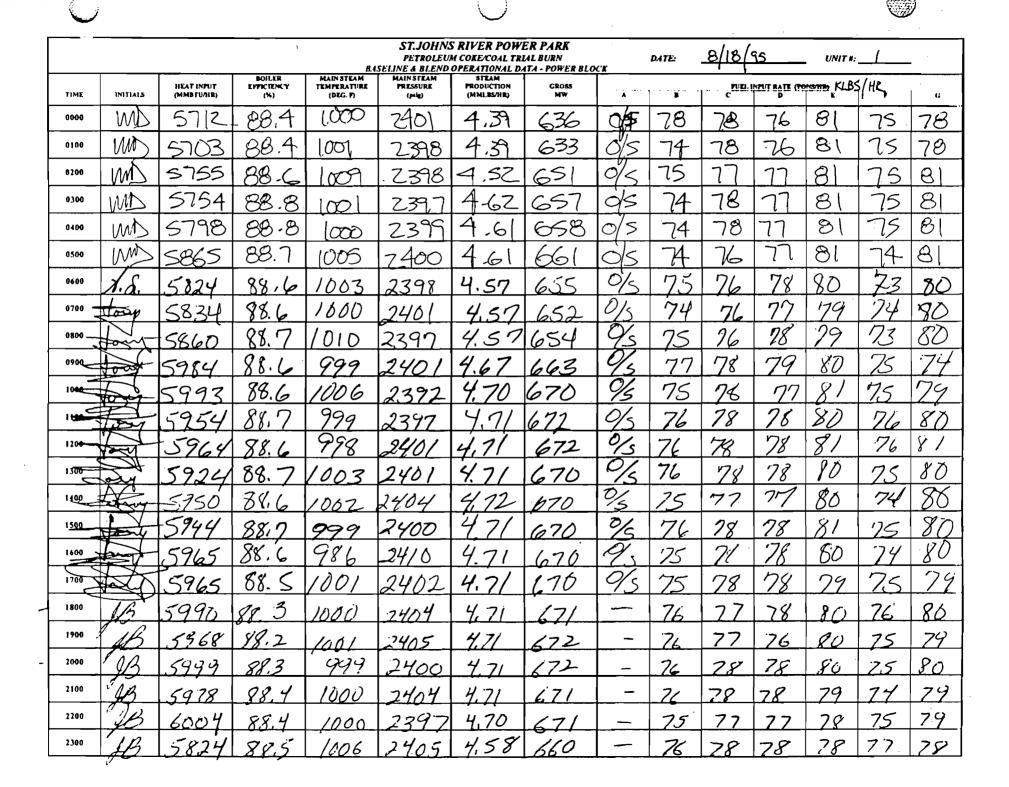
VWO

			1			RIVER POWI	AL BURN		DATE:	8 .1	2.95	UNIT #:	ONE	
TIME	INITIALS	HEAT INPUT (MM8 (U/HR)	BOILER EPFICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. F)	MAIN STEAM PRESSURE (pole)	BITAM PRODUCTION (MMI.RS/HR)	GROSS MW	A		- Chirri	NEUT BATE (TO	NS/IIR)	y	G
0000	D 5	5914	88.9	1005	2381	4.68	670	0/5	81	82	82	83	79	84
0100	DS.	5942	89.2	100/	2392	4.72	668	0/5	81	82	.83	84	19	84
0200	25	5889	88.8	1005	2381	4.65	657	0/5	79	81	82	83	78	32
0300	D 5	5789	88.9	1001	2389	4.55	650	0/3	79	81	8)	83	78	82
0400	25	5633	89.0	999	2401	4.43	635	0/5	75	77	78	80	75	79
0500	25	3264	94.0	995	2381	4.09	595	%5	15	77	77	79	74	78
0600	EAP	5445	94.0EAP	999	2394	4.18	612	9/5	72	75	75	76	72	76
0700	EAP	5611	89.0	992	2378	4,35	632	9/5	73	76	76	78	73	72
0800	E.A.P	5699	89,0	1005	2376	4,51	650	9/3	78	8/	80	82	78	80
0900	EAR	5/60	87.1	977	2378	1.61	659	9/5	30	81	82	84	77	83
1000	EAR	5 794	89,1	1007	2371	4.56	657	0/5	75	78	860	80	7/2	79
1100	EAP	5777	89.1	1000	2381	4.61	657	9/3	79	82	82	71.1	79	४३
1200	EAR	5/11	89.0	100 (2373	4.57	654	95	76	80	79	87	76	80
1300	EAR	5857	39,0	1006	1578	4.59	660	9/3	80	82	80	84	77	85
1400	ENP	5810	88,9	1801	2385	4.63	658	9/5	74	77	77	79	19	81
1500	EAP	5877	88.5	1003	2380	4.61	656	0/5	77	80	82	83	77	25
1600	EXX	5922	88.7	1002	2393	4.61	158	9/3	79	81	81	83	79	33
1700	EAP	5809	89,0	999	2387	4.60	657	95	79	81	81	84	78	83
1800	DB	5806	89	1000	2.393	4.55	659	0/5	77	81	80	84	77	82.
1900	DB	5777	89.1	1004	2402	4.60	657	0/5	28	82	81	85	80	84
2000	P.B	5804	89.1	1002	2398	4.59	657	015	77	8/	81	84	77	83
2100	03	5832	89.0	993	2401	4.62	-657	0/5	77	8/	79	82	77	80
2200	DB	5780	89.0	997	2395	4.51	654	0/5	78	81	80	84	78	81
2300	DB	5790	88.9	998	2391	4.46	648	05	81	85	84	88	82	25

ST.JOHNS RIVER POWER PARK 8-13-95 PETROLEUM COKE/COAL TRIAL BURN DATE: UNIT #: BASEILNE & BLEND OPERATIONAL DATA - POWER BLOCK BOILER MAIN STEAM MAINSTEAM STEAM HEAT INPUT EPPICIENCY TEMPERATURE PRESSURE PRODUCTION CROSS C PUEL INPUT BATE (TONNIB) (MMI,BS/IIR) TIME INITIALS (MMBTU/HR) . (%) (DEG. P) (pelg) MW c: 88. 0/5 .35 mtt 89.0 88.8 8 O 4.60 m 17 .58 mi 83.4 4.60 Ó .60 . 0 88.9 88.9 4.65 ้ ร 88.8 4.70 n 1+ 88.8 That 88.7 0.1 4.71 89. Z. \ 0/5 4.70 **DS** 88.9 4.68 4.69 0/5 593° 49.0 88.9 OA 88.9 DS 0/5 4.67

1W0 VW0 VW0

Best Available Copy


			·	8.43	PETROLEU/	RIVER POWE M CORE/COAL TRI OPERATIONAL DA	AL BURN		DATE:	8.12	1.95	UNIT #:	ONE	
TIME	INITIALS	HEAT INPUT (MMB FU/HR)	BOILER EPFICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. P)	MAIN STEAM PRESSURE (psig)	STEAM PRODUCTION (MMI.BS/HR)	GRORS MW	. A		C PUEL. 1	NPUT BATE (TO	NS/IIR) E	P	. G
0000	75	5829	88.9	997	2403	4.59	658	0/5	80	87	82	811	80	84
0100	P3	5879	889	994	2391	464	638	°/5	80	82	-81	43	79	83
0200	P 5	5885	888	1002	2391	4.63	659	0/5	79	82	82	84	80	83
0300	D5	5844	88.9	997	7404	4.61	639	0/5	77	76	77	77	75	74
0400	703	5906	88.8	1001	2389	4.67	658	0/5	79	81	81	77	1/8	3_
0500	D5	5838	88.7	1001	2385	4.59	658	0/5	19	12	82	82	15	84
0600	\mathcal{A}	5828	33.9	(00)	7409	4.59	657	0/5	79	82	82	81	73	34/
0700		5801	X6.4	্ৰস্কুণ	1400	463	655	الر	77	80	81	80	74	79
0800		5731	93.9	97	2 105	4.62	657	<i>7</i> 5	78	&	91	31	73	3 4
0900	X.	5814	89.0	100'7	2401	4.60	653	9/5	80	31	82	81	77	83 .
1000	1	5761	33.7	1.00%	\$ <u>-</u> 30	4.63	667	03	83	84	815	94.	33	80
1100		J951	871	1001	1399	1/70	667	3/2	පිර	33	33	37.	111	35
1200		5123	89.1	1505	१८५५	4.70	(36)	٠٠/١	. XI	8 5	83	8,	ረ ን	85
1300	Y	5915	39.1	1005	2411	4.72	671	0/5	CS	82	83	83	81	84/
1400	\simeq	5955	89.1	000	2398	4,71	665	6/5	81	βr	85	81	875_	83
1500	0	<i>5</i> 953	89.0	001	2404	4.72	668	015	86	ζι	82	84	82	84
1600	CY/	5957	89.0	996	5396	4.72	665	e/5	80	81	81	٤١	810	83
1700	\mathcal{A}	5959	89.0	998	2451	4.71	667	°ls	80	81	82	81	80	83
1800	Eap	5942	87.9	1000	2384	4,72	671	9/5	80	82	12	12	79	84
1900	EAP	5934	89.0	997	2387	4,71	470	%	80	72	82	82	79	83
2000	Eap	5950	89 D	997	2393	4.72	670	0/5	8/	81	8/	8/	79	83
2100	Fus	5970	39,0	1007	2372	4.66	47	0/3	82	84	84	84	81	86
2200	Ecop	5974	89.0	1004	2390	4.7/	672	9/5	78	80	80	80	16	82
2300	Earl	5877	88,9	1001	2372	4.64	668	9/5	79	3/	81	81	78	82

			1	B.4.	PETROLEU	S RIVER POWE M COKE/COAL TRE OPERATIONAL DA	AL BURN		DATE:	8-/	5.95	UNIT #:	ONE	
TIME	INITIALS	HEAT INPUT (MMBTU/HR)	BOILER EPPICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. F)	MAIN STEAM PRESSURE (p=1g)	STEAM PRODUCTION (MMLBS/HR)	GROSS MW		• 1	C NIEL I	MIT BATE (TO	ห หลังมีชา	ν	G
0000	Eap	5680	89.1	1012	238/	4,39	640	9/3	77	79	80	80	77	83
0100	Sax	5818	87,9	100 Z	2393	4.63	659	9/3	80	81	· 7Z	72	79	84
0200	Ear	5864	89.0	1003	2391	4,60	457	9/3	78	80	80	79	77	8/
0300	gas	5818	89.1	997	2389	4.61	657	9/3	78	80	80	80	78	82
0400	Eap	5791	88.9	987	2399	4,57	648	9/5	77	79	78	78	75	79
0500	gas	5833	89.0	1013	2374	4,52	658	9/3	80	81	8/	81	78	82
0600	EA	5841	88.8	1006	2408	4.57	658	%	78	79	ชอ	80	78	81
0700	EA	5815	88.9	988	2401	4,60	659	%	79	81	80	8/	77	83
0800	EA	5676	88,7	1000	2426	4.38	635	9/5	69	7.2	72	72	70	75
0900	EA	5904	88.6	928	2392	4.69	667	%	78	80	80	86	78	82
1000	EA	6025	88.7	. 995	2404	4.74	672	9/5	83	82	83	82	80	83
1100	ZA	5983	88,7	1002	2399	4.70	667	%5	80	82	83	81	8 l	82
1200	EA	5975	88.7	994	2401	4.72	667	%	79	83	82	82	80	.84
1300	EA	5947	88.5	1008	2406	4.70	670	75	81	82	83	82	81	85
1400	EA	5990	88.3	998	2411	4.73	669	%	81	82	82	83	80	84
1500	EA	5970	88.3	999	2400	4.70	667	%	79	81	82	81	79	83
1600	EA	5938	88.8	1000	2412	4.73	470	%	79	83	84	82	81	84
1700	EA	5935	88.5	1002	2393	4.68	667	%	81	82	83	82	80	84
1800	mIT	6006	88.5	992	2401	4.75	672	%	77	79	79	79	77	82
1900	24	6005	88.4	998	2399	4.75	677	0/3	82	84	84	83	82	85
1000	not	5991	88.4	997	2391	4.71	671	%	81	82	84	82	80	83
2100	mtr	6012	88.6	1000	2389	4.71	673	6/5	81	83	83	81	80	84
2200		5975		1000	2393	4.73	675	0/5	80	81	81	81	79	83
2300	Zutt	5898	89.0	1002	2405	4.60	660	0/5	78	19	80	79	78	81

Best Available Copy

	ST.JOHNS RIVER POWER PARK PETROLEUM COKE/COAL TRIAL BURN BASELINE & BLEND OPERATIONAL DATA - POWER BLOCK BASELINE & BLEND OPERATIONAL DATA - POWER BLOCK													
TIME	INITIALS	HEAT INPUT (MMBTU/HR)	BOILER ÉPFICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. F)	Mainstram Pressure (polg)	STEAM PRODUCTION (MMLBS/HR)	GROSS MW	À	· · · · · · · · · · · · · · · · · · ·	C MIET'S	NPUT HATE (TO	NS/IIB)	"	G
0008	mit	5814	88.9	1003	2382	4.58	658	0/5	78	80	80	80	77	83
0100	mft	5815	88.9	1001	2385	4.57	661	6/5	18	80	80	81	78	81
0200	mIT	5848	88.8	1001	2393	4.57	651	0/5	74	76	77	77	75	79
0300	mAT	5825	88.8	986	2393	4.62	660	°/s	79	81	81	83	79	83
0400	uft	5867	88.7	995	2388	4.62	661	%	79	81	81	83	79	83
0500	mtt	5812	88.8	999	2388	4.57	654	%	75	78	78	80	7.6	80
0600	\mathcal{O}	5721	88.8)Xic	2399	4.52	650	5/5	78	79	80	8.5	78	82.
0700	CY'	5800	88.9	1008	2400	4.58	660	١١١	77	78	'78'	81	76	31
0800	CH .	BD	BD	10P7	2399	4.29	621	95	75	77	78	81	'74s	81
0900		5924	88.7	1004	2389	468	668	c/5	79	82	80	83	78	83.
1000		5959	88.7	1002	2345	4.70	671	د/2	80	82	82	84	79	84
1100	V	99	88.7	<u>်</u>	2411	4.72	73°ئ	٥/ړ	80	83	82	84	50	84
1200	¥.	5956	88.6	1000	2407	4,73	671	و/ع	82	82	83	8.5	80	85
1300	- /	59.70	88.6	1508	2392	4.67	669	0/5	82	85	84	87	83	د 8
1400	Ø/	6037	88.7	987	2399	4.74	665	።	79	8 p	8%	83	78	51
1500	γ	6007	68.6	1000	2381	4.66.	660	ి	82	84	85	٤7	82	87
1600	7.11	5114	33.5	770	2371	4.75	668	0/_	7.7	31	81	3	! 7	3.3
1700	unto	6042	88.6	730	2013	4.75	663	0/3	77	タム	30	32	17	31
1800	Fuf	5949	88.9	1001	24/3	4.75	677	0/5	70	83	83	85	30	85
1900	Eup .	5950	89.1	992	2350	4.12	664	%	74	80	82	81	78	82
2000	Eas	5971	89,1	995	2389	4,72	671	2/5	80	8/	81	83	79	જ
2100	Ear	5922	89./	999	2386	4,10	612	%	81	83	83	84	75	85
2200	Eux	5929	89,1	999	237/	4,72	673	9/3	81	32	82	83	79	84
2300	Eur	5829	89,3	1005	2393	4,59	658	%	79	80	80	罗二	フフ	83

ST.JOHNS RIVER POWER PARK PETROLEUM COKE/COAL TRIAL BURN BASELINE & BLEND OPERATIONAL DATA POWER BLOCK BASELINE & BLEND OPERATIONAL DATA POWER BLOCK														
TIME	INITIALS	HEAT INPUT (MMBTU/HR)	BOILER EPPICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. F)	MAINSTEAM PRESSURE (polg)	STEAM PRODUCTION (MMI.BS/HR)	GROSS MW	٨		e Pirei. I	NEUT BATE (TO	Kaviir)	پ	G
0000	ECP	5827	89.3	1003	,2399	4.62	658	4/5	81	すこ	72	84	80	84
0100	SUP	5813	89, Z	1004	2379	4.62	458	0/5	80	81	80	74	79	85
0200	EUP	5897	89,1	994	239/	4.63	658	9/3	81	7Z	80	85	70	84
0300	Eisp	5839	89,2	998	2383	4,61	657	0/5	80	8/	92	83	79	83
0400	Fas	5669	88.8	1002	2383	4,46	637	9/5	77	80	79	81	7.5	18
0500	Fap	5/23	89,0	1011	2374	3,97	560	9/3	72	75	74	76	71	75
0600	EA	5866	88.6	992	2411	4.62	658	%	76	78	79	80	25	80
0700	ZA	5882	88.6	999	2398	4.60	658	9/5	78	79	78	8z	78	82
0800	EA	5919	88.4	986	2393	4.61	655	9/5	80	82	82	84	79	83
0900	EA	5859	88.4	1003	2407	4.60	658	95	79	80	80	84	78	82
1000	EA	5913	88.4	1004	2401	4.60	658	9/5	79	81	81	83	79	82
1100	EA	5962	88.6	1001	2407	4.72	673	9/5	80	81	81	83	80	83
1200	EA	6000	88,6	996	2397	4.7/	669	95	77	79	88	81	76	81
1300	EA	5968	88.7	997	2405	4.72	672	95	77	79	80	81	77	81
1400	EA	6013	88.6	1001	2404	4.71	670	%	77	79	79	81	77	81
1500	EA	5960	88.5	997	2403	4.73	670	°/s	77	79	79	80	76	81
1600	ZA	6012	88.4	1001	2401	4.71	670	75	77	79	79	81	76	8/
1700	EA	5962	88.4	1001	2409	4.73	673	%5	77	29	77	81	76	8/
1800	M	5993	88.3	1006	2402	4.69	669	0/5	76	78	78	79	76	81
1900	W	5997	89.3	1801	2401	1.69	672	0/5	76	76	78	78	77	පා
2000	(MD)	5999	88.3	1002	2407	4.72	672	0/S	76	80	79	84	77	82
2100	M	5959	පිහි.3	1000	2406	4,72	672	0/5	77	81	80	84	78	83
2200	Py.	5794	88.4	993	2313	4,55	657	9/5	71	72	73	76	73	76
2300	M	5734	88.4	993	2393	4.47	638	0/5	74	78	76	81.	75	78

	ST.JOHNS RIVER POWER PARK PETROLEUM COKE/COAL TRIAL BURN BASELINE & BLEND OPERATIONAL DATA - POWER BLOCK BASELINE & BLEND OPERATIONAL DATA - POWER BLOCK														
	TIME	INITIALS	HEAT INPUT (MMBTU/HR)	BOILER EPPICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. P)	MAINSTEAM PRESSURE (psig)	BTEAM PRODUCTION (MMI.BS/HR)	CROSS MW	A	0	c Purt I	NPUT BATE (TO	NSVIIB) K L	BS/HR	G .
-[0000	16	5969	88.2	398	2403	4,62	658	9/5	74	76	76	78	74	78
	0100	43	5868	88.5	937	2408	4.61	660	%	76	75	77	76	75	76
-	0200	46	5900	88.5	1003	2400	4.61	659	-	76	75	77	76	75	75
	0300	B	5918	88.5	1006	2402	4.68	672		76	74	27	76	75	76
-	0400	#3	5883	88.6	1005	2401	4.67	670	%	76	75	77	76	74	7E
	0500	43	5885	88.6	1004	2402	4.64	664	_	77	7.5	77	<i>77</i>	74	76
	9600	1.5	5942	88.5	1002	3383	4.65	665	9:	16	75	777	76	1/4	1/4
	0700	A, C.	5991	88,5	1002	239.7	4.67	667	%	76	75	77	76	75	76
	0800	A, S.	5923	88.5	997	2401	4.63	662	0/3	76	76	77	76	25	76
	0900	1. d.	5906	88.6	1001	2402	4.67	664	9/3	74	74	71	75	25	70
	1000	AL.	5924	88.5	1000	2387	4.64	658	0/5	76	74	77	77	74	75
	1100	Ass.	5831	88.8	1003	2402	4.59	664	0/5	77	75	77	76	75	76
	1200	1.6.	5890	88.9	994	2400	4.66	665	%	76	75	77	76	75	16
	1300	28	5930	89.2	1002	2386	4.70	672	0/5	77	79	79	77	7.7	80
	1400	Ds	5957	89.2	999	2393	4.74	672	0/5	76	78	79	27	76	80
	1500	Til.	5941	89,2	996	2403	4.72	671	0/5	76	78	78	72	76	8.0
	1600	J.L	5943	89.2	1002	2405	4.72	673	0/5	76	18	79	75	16	80
	1700	Ti	5904	89.2	1004	2404	4,70	672	9/5	77	79	79	76	178	8/
	1800	M	BD	BD	990	2405	4.74	675	CS	76	80	75	78	77	82.
	1900	m	BD	BD	1000	2398	4.68	673	0/5	77	81	80	78	79	83
_ _[مر	2000	W/>	BD	BD	was	2401	4,70	674	0/5	77	82	80	79	79	83
1	2100	W.	BD	BD	1003	2407	4,65	660	0/5	78	8Z	79	83	76	79
	2200	w/>	BD	BD	(005	2398	4.59	660	0/5	75	පිට	79	83	76	81
	2300	ill	BD	BD	1004	2395	4.58	660	6/5	75	8	77]	B	77	80

built off und

)
	-		ı	BA		S RIVER POWI M COKE/COAL TRI OPERATIONAL DA	AL BURN		DATE:	8/20/	B	UNIT #:		-
TIME	INITIALS	HEAT INPUT (MMBTU/HR)	BOILER EPFICIENCY (%)	MAIN STEAM TEMPERATURE (DEG. P)	MAIN STEAM PRESSURE (psig)	STEAM PRODUCTION (MMLBS/HR)	GROSS MW	1		c Nutt.	INPUT RATE (P	KLBS	/HC	1 4
0000	M	B	BD	995	2397	4.54	65	9	75	80	77	81	78	B I
0100			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					l						
0200														
0300														
0400														
0500														
9600														
6700														
0800							,							
0900					:									
1000														
1100														
1200			-											
1300														
1409											II			
1500														
1600							•							
1700														
1800														
1900														
2000														
2100														
2200														

7-18-95 1A DATE: TOWER: ABSORBER QUENCHER INJECTION RATE MIX RATIO PRESSURE DROP INTITALS pΗ ACROSS TOWER TIME (% time of rangest find valve) (Density) 0000 0100 0200 0300 0400 0500 0600 3.09 6.07 0700 0 2.89 4 5.96 1.33 1.25 0800 3 1,335 1.25 2.98 6.08 3 0900 1,335 1.25 cs 1000 2.69 3 1.34 1.25 3 1100 1.25 1.335 2.96 7.74 1200 3 1.33 1.32 1300 3 1.25 1.34 3 1400 1.34 1.25 1500 4 حک 1.25 1,34 4 1600 1.34 1.70 1700 5 1.345 1.25 1800 5 You 1.34 1.25 3.65 1900 3 1.34 1.20 yan 3.32 2000 3 1.335 Yam 1.20 2100 4 1.335 1.25 van 2200 1.33 1.20 Uan 6.03 5.94 2300 1.25 Vam 1.33

	DATE:	7-19-95		TOWER:	<u> 1 A</u>	
TIME	INTIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% time of ranges) find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	van	6.07.98	3.72	4	1.34	1.20
0100	van	4.05	3.38	4	1.33	1.25
0200	ram	6.05	3.33	4	1.32	1.20
0300	20-	6.85	3.26	. 4	1.33	1.20
0400	2-	6.86 5.97	3.29	4	1.33	1. 25
0500	20-	6.04 5.95	3.01	3	1. 33	1.25
0600	es	6.03 5.95	3.30	3	1.32	1.25
0700	W	6073.98	3.77 3.57	3	1.33	1.10
0800	es	4.05 94	3.46	3	1.335	1.20
0900	CS	6.05 5.96	3.33	3	1.33	1,20
1000	CS	6.045.94	3.33	3	/·33	1.20
1100	cs		3 3 1 308	. 3	7.33	1.25
1200	CS	6.075.93	3.33	3	1.33	1.25
1300	23		3273.06	4	1.34	1.25
1400	es	6.03 5.94	3.22	4	1.325	1.20
1500	CS	6.03 5.94	3.16 2.94	5	/.33	1.25
1600	CA		3.48 3.27	5	1.33	1.25
1700	es		3.36	4	1.33	1.25
1800	20-	6.03 5 91	3.27	3	1.33	1.25
1900	vam	6.045.92	3.62	3	1. 3.3	1.25
2000	Zam	6.85	3.813.59	3	1.33	1.25
2100	vom	6.02.93	3.51	૩	1.33	1.25
2200	Van	6.015.91	3.40	. 4	1.33	1.25
2300	vom	4.00 5.90	3.33	4	1.33	1. 25

Best Available Copy

	DATE:	7-20-95		TOWER:	/A	
TIME	INTIALS	ABSORBER pH	QUENCHER pH	ENJECTION RATE (% does of resquest food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	20-	6.00 5.90	3.24	4	1.33	1.25
0100	20-	0.11	3.21	5	1. 33	1.25
0200 .	van	3.91	3.23	5	1.33	1.26
0300	ran	5.44	3.58	5	1,33	1.20
0400	van	3.96	3.41	5	1.33	1.20
0500	MN		3.30 3.08	4	1.33	1.30
0600			3.23	4	/· 33	1.20
0700	es		3.18 2.94	4	/.32	1.25
0800	es		3.43 3.21	4	1.3/5	1,20
0900	cs		3.45	4	1.32	1.20
1000	es	605 S.94	3.26	4	1.31	1.20
1100	cs	3 .	3.11 2.88	5	1.31	1.25.
1200	cs		3.48 3.26	5	1.32	1.25
1300	es		3.56 3.35	4	1.37	1.25
1400	101	6.06 5.96	3.35 3.13	4	1.365	1.30
1500	(c)		3.53 3.33	4	1.375	1.25
1600	es	6.09 5.99	3.55	, 4	1.37	1.25
1700	1	3				
1800				,		
1900						
2000					: 03.7	1.027
2100						
2200						
2300						

1A 2.8.95 DATE: TOWER: ABSORBER QUENCHER **INJECTION RATE** MIX RATIO PRESSURE DROP ACROSS TOWER INTIALS TIME pВ pΒ (Density) (% time of reagent food valve) 9000 0100 0200 8300 0500 0600 6.94 T.D. 5.75 0700 3.48 3 1.30 1.33 0800 3.70 1.25 T.D. 3.51 3 /. 33 5.84 T.D. 0900 3.55 1.20 1.33 T.D. 1.33 1.30 6. 28 T.D. 5.73 1100 5 1.33 1.30 3.55 T.D. <u>5</u>.13 1.25 1200 1.33 5 4.14 1,30 1300 1.33 T. D. 1.20 1400 TD 5.76 5 *J*: 3.3 4.10 T.D. 1500 J. 07 1.20 1.33 TD 1600 <u>/.</u>33 1.25 4.05 ک 1.21 1700 1.33 370 1800 1.25 1.33 5.90 3.87 5 1900 1.325 1.25 3.88 5 3.65 2000 1.33 1.25 5 2100 1,33 1:25 5 2200 1.33 1.30 3.85 1.25 2300 1.34

,	DATE:	8-9-95	- ·	TOWER:	A	
TIME	INITIALS	ABSORBER pH	QUENCHER PH	INJECTION RATE (% time of reagent feed valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	eδ	5.93 5.80	3.86 3.63	4	1.34	1.25
0100	cs	5.91 5.77	3.86 3.63	4	1.34	1.25
0200	CD	5.90 5.77	3.84 3.40	4	1.34	1.25
Q 300	CS		3.84 3.59	4	1.34	1.25
0400	cs		3.87 3.62	5.	1.34	1.25
0500	cs	5.93 5.77	3.86	5	1.34	1.25
0600	T.D.	6.19 5.77	3.37 3.41	5	1.34	1.30
0700	1,1.	5.67	2.98 2.10	5	1.335	1.25
0800	T.d.	5.77 5.67	2.73	5	1.34	1.20
0900	T.D.	3.35 5.64	5.30 2.53	6	1.34	1.40
1000	T. D.	5.37 5.67	2.53 2.57	Le	1.335	1.30
1100	T.D.	5.0 5.62	2.61 2.61	6	/· 3 <i>3</i>	1.30
1200	T,D.	5.0 5.70	2.667	4	/. 3 3	1.30
1300	TO.	5.71 5.76	2.65	4	1,335	1.30
1400	T.D.	5.73 5.71	2.92	7	/- 33	1.30
1500	T. D.	5.78 5.74	3.17 3.17	4	1.331	1.25
1600	T.D.	5.79 5.74	3.30	5	1.33	1.21
1700	T.D,	5.76 5.74	3.22 324	6	/· 33	1.21
1800	<u></u>	579 5.77	3.27 3.27	6	1.33	1.25
1900	cs	5.81 5.78	3.22	6	1.345	1.25
2000	\mathcal{C}	5.81 5.80	3.44	6	1.34	1.25
2100	es	5.84 5.8>	3.40	5	1.34	1.25
2200	cs	5.84 5.82	3.273.27	4	1,33	1,25
2300	()	5.83 5.81	3.18 3.19	4	1.34	1.25

	DATE:	8-10-95	-	TOWER:	A	•
TIME	INTIALS	ABSORBER pB	QUENCHER pB	INJECTION RATE (% time of rangeon food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	C)	5.83	3.11	4	1.33	1.25
0100	es	5.93 5.81	2.70 2.69	4	1.345	1.25
0200	cs		2.60	4	(· 8 3	1.25
. 0300	0	5.79 5.78	2.63 2.61	4	1.335	1.25
0400	cs	5.81 5.79	2.44	3	1.33	/· O.
0500	cs	578 577	2.6	3	1.34	1,20
0600	T.D.		2.64	5	1.34	1.25
0700	T.D.	5.75 5.75	2.62 2.63	le	134	1.15
0800	TD	5:35 5.25	2.63	. 4	1.34	1.25
0900	TD	5.74 5.76	2.66	7	1.34	1.15
1000	T.D.	5.77 5.27	2.72	7	1.34	1.05
1100	TD	579 5.70	2.72	7	1.34	1.25
1200	1.0.	5.21 5.70	2.30	7	1.34	1.25
1300	T.D.	5.31 5.31	2.162.71	7	1.33.5	1.30
1400	T.D.). •	2.71 2.76	7	1.34	1.40
1500	7.D.	5.32 5.32	2.73 2.74	7	1.33	1.31
1600	T.D.	5.81 5.71	2.72 2.73	7 .	1.335	1,21
1700	T.D.	5.30	2,77	7	1.34	1.30
1800	DA	5.83	3.31 3.35	7	1.33	1.40
1900	y W	5.82 5.84	3.44	7	1.36	1.30
2000	2/12	585 586	351 353	6	1,34	1.25
2100	LOW	589 585	350 351	5	1.335	1.25
2200	MM	5.82	3.43	5	1.335	1.28
2300	mm	5.82	3.46 3.49	5	1.33	1.25

	DATE:	8/11/95		TOWER:	A	
TIME	INTTIALS	ABSORBER pH	QUENCHER pB	INJECTION RATE (% time of resignal final valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	NM	5.00 5.82	3.39/	5	1.335	1.25
0100	MM	5.35/4.83	3.35/3.38	5	1,33	1.20
0200	MA	5.00/5.83	3,72/3,341	5	1,325	1,20
0300	mm	58/5/82	3.26/2.28	6	1.325	1.10
0400	Min	5.81/5.83	3.34/3.37	Le Le	1,34	1,20
0500	MM	5.81/5.84	3,07/200	5	1.34	1.20
0600	Vam	5.78	3.00	4	1.34	1.25
0700	vom	5.67	2.87	6	1.355	1.25
0800	vom	5.79	3.10	6	1.345	1. 2.5
0900	van	5.80	3.19	4	1.355	1.25
1000	rom	5.80	3.09	4	1.355	1.25
1100	van	5.80	3.15	6	1.36	1.25
1200	Vam	5.88	3.17 3.2Ø	5	1.37	1.30
1300	vam	5.83 5.84	3.05	5	1,365	1.7.5
1400	You	5.81	3.03.12	6	1.38	1.35
1500	vam	5.815.86	3.15	5	1.38	1.35
1600	Zam	5.82	3.13	5	1.38	1.30
1700	rem	5.89	3.08	6	1.38	1.30
1800	R.R.S.	5.79	2.96	6	1.38	1,30
1900	R. Rus	5.81	2.96	6	1.37	1.31
2000	P. Zug.	5.87	3.17	7	1.35	1.27
2100	7. Rus	5.82 5.89	3.13	7	1.032	1.27
2200	R. Rul	5.81	3.04	6	1.021	1.25
2300	R. Wy.	5.83	3.03	4	1.033	1.26

	DATE:	8-12-45	•	TOWER:	A	
TIME	INITIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% time of rangest food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	P. Roy	5.81	3.05	6	1.034	1.27
0100	R. Rudz	5.82	3.03 3.05	6	1.037	1.26
0200	R. Ruly	5.81 5.88	3.04 3.05	6	1.026	1.25
0300	B. Ruf	5.86	3.10	.4	1.034	1.25
0400	R. Redy	· 5 ·	3.08	6	1.036	1.20
0500	R. Rus	5.83	3.13	le	1.041	1.22
0600	Vam	5.83 5.91	3.09	6	1.37	1.10
0700	van	5.80	2.692.70	6	1.37	1.15
0800	van	5.815.90	3.13	6	1.37	1. a5
0900	Zam	5.83	3.11	6	1.355	1.25
1000	Van	5.82 5.88	3.12	6	1.34	1.25
1100	vam	5.82	3.12	6	1.37	1.25
1200	vom	5.83	3.14	6	1.36	1.25
1300	20m	5.80	3.06	6	1,37	1,25
1400	Zam	5.83	3.11	6	1.36	1.15
1500	vam	5.81	3.07	4	.37	1.30
1600	vom	5.84 5.90	3.06	6	1.365	1.25
1700	Zen	5.89	2.73	6	1.35	1.20
1800	1.D.	1.83	3.11	6	1.35	1.30
1900	T.D.	5.34 5.90	3.04 3.07	b	1.35	1.20
2000	T.D.	5.3>5.37	3.22 3.25	4	1.35	1.25
2100	T.D.	5.31 5.37	3.09 3.12	Le	1.35	1.30
2200	T.D.	5.30 5.31	2.77	5	1.35	1.30
2300	TD_	5.77 5.32	2.6 2.63	6	1.31	1.25

	DATE:	3.13.91	•	TOWER:	A	
TIME	NITIALS	ABSORBER pH	QUENCHER PH	INJECTION RATE (% that of reagant field valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	TD	3:30 <.31	1.62 1.63	7	1.34	1.20
0100	TD	5.77 5.42	2.63 7.63	7	1.345	1.20
6260	7.0.	5.76 5.30	2.65	7	1.34	1.20
Q300	T. D.	5.30 5.84	264 2.65	~?	1.345	1.25
0400	1.D.	5.77 5.71	2.42 2.45	8	1.341	1.15
0500	T.D.	5.79 5.83	2.60	3	1.34	1.20
0600	vam	5.79	2.58	8	1.34	1.25
0700	van	5.79 5.84	2.59	8	1.34	1.25
0800	zom	5.80	2.56	8	1.34	1.3Ø
0900	vam	5.80	2.57	8	1.32	1.a5
1000	vom	5.80	2.56	8	1.34	1,25
1100	van	5.81	2.55	8	1.34	1,62
1200	van	5.81 5.83	2.56	8	1.34	1.25
1300	vam	5.81	2.54	8	1.34	1.3Ø
1400	vam	5.83	3.00	8	1.35	1.30
1500	von	5.80	2.65	8	1.35	1,30
1600	van	5.80	2.59	8	1.36	1.30
1700	70m	5.82	2.55	8	1,355	1.30
1800	T.D.	5.73	2.59	~?	1.34	1.20
1900	T.D.	5:30 5:04	7.6	9	1.35	1.20
2000	T.D.	5.34 5.36	1	9	1.37	1.30
2100	T.D.	5.05 5.77	2.17 3.17	9	1:31	120
2200	TD	5.37	3.17 3.13	7	1.35	1.25
2300	T.D.	5 14 5.17		-g	1.34	1.30

	DATE: 3.14.91			TOWER: A		
TIME	INTTIALS	ABSORBER pH	QUENCHER pH	ENJECTION RATE (% time of rangest find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	T.D.	5.24 5.87	3.17 3.14	7	1.34	1.20
0100 .	T.D.	5.73 5.34	3:11 3.12	78	1.34	1.25
9200	T.D.	5.81	3.17 3.17	8	1.34	1.11
9300	T.D.	5.72 5.36	3.12 3.12	8	1.33	1.25
0400	D	5.32 5.34	3.10 3.10	7	1.34	1.21
0500	TD	5.79 5.82	3.13 3.13	7	1.34	1.25
0600	\sim		3.08	8	1.33	1.25
. 0700	25	5.80	3.09	8	1.33	1.25
0800	cs	5.80	3.16	8	1.33	1.25
0900	C	5.81	3.09 3.08	8	1.33	1.25
1000	حا		3.14	8	/-33	1.25
1100	es	5.79 5.80	3.12 3.13	8	1.33	1.25
1200	ر کی	5.79 5.81	3.16	8	1.34	1.25
1300	CS	5.81	3.47	8	1.34	1.25
1400	cs	5.78 5.81	3.17 3.17	8	1.35	1.25
1500	2	5.80	3.13	<u> </u>	1.35	1.30
1600	C	5.78 5.81	3.52 3.55	8	1.34	1.30
1700	cs	5.81	3.45	8	1.35	1.30
1800	Van	5.77.80	3.14 3.13	8	1.35	1.40
1900	vom	5.80 5.82	3.45 3.44	8	1.36	1.30
2000	van	5.795.82	3.47	Ş	1.34	1.30
2100	van	5.80	3.49	8	1.355	1.30
2200	vom	5.78	3.16	8	1.35	1.30
2300	van	5.79 5.81		8	1.36	1.30

	DATE: 8-15-95			TOWER: A		
TIME	INITIALS	ABSORBER pB	QUENCHER pB	INJECTION RATE (% there of rangest food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	van	5.79	3,29	7	1.35	1.20
0100	van	5.79 5.82	3.19	8	1.35	1.20
0200	von	5.90	3.20	8	1.345	1.25
0300	zam	5.79	3.27	\$	1,345	1.30
0400	vam	5.83	3.30	8	1,34	1.3¢
0500	vam	5.83 5.85	3.25	8	1.34	1,25
0600	CS	7 00-	3.26	8	1.35	1.20
0700	es	5.80 5.83	3.33	8	1.34	1.20
0800	2	5.83	3.36	6	1.34	1.20
6900	ω	5.84	3.35	8	1.34	1.25
1000		5.82 5.84	3.35	8	1.34	1.25
1100	CS	5.85 5.87	3.32 3.32	8	1.35	1.25
1200	2	5.86	3.90	9	1.34	1.25
1300	CS	5.87 5.89	4.33 4.37	9	1.34	1.25
1400	0	5.89	4.65	9	1.34	1.25
1500	Cs	5.97 593	4.64	9	1.35	1.25
1600	cs	5.92 5.93	4.76	9	1.33	1.25
1700	Cl		470 4.76	9	7.33	1.25
1800	yon	5.93	4.54.71	9	1.34	1.30
1900	Tom	5.93 5.94	4.55	9	1,34	1.30
2000	vam	5.92 5.93	4.61	9	1.34	1.3¢
2100	Van	5.94 5.95	4.574.64	8	1.34	1.25
2200	von	5.93	4.51	8	1.34	1.30
2300	vam	5.92	4.51	€	1,33	1.25

	DATE: 8-16-95		TOWER:			
TIME	INTTIALS	ABSORBER pH	QUENCHER PH	INJECTION RATE (% time of rangeon food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	vam	5.93	4.75	8	1.325	1.25
0100	vam	5.93 5.94	469	8	1.34	1.25
0200	vam	5.94	4.64.71	7	1.32	1.25
Q300	Vom	5.93	4.61	7	1.325	1, 25
0400	vam	5.93	4.56	7	1.32	1.25
0500	vam	5.93	4.43	7	1.32	1.20
0600	cs	5.93 5.95	4.43	7	1.32	1.25
0700	cs	5.94 5.95	4.40	6	/.32	1,20
0800	es	5.94 5.95	4.40 4.53	6	1.32	1.25
0900	es	~	4.53 4.59	7	1.33	1.20
1000	2	5.95 5.96	4.52 4.58	4	1.33	1.25
1100	cs		459 467	5	1.35	1.25
1200	cl		4.74 4.81	5	/.36	1.25
1300	\mathcal{C}	5.95 5.96	4.49 4.56	5	1.33	1.25
1400	d	5.94 5.94	4.31	5	<i> .</i> 33	1.25
1500	<u>a</u>	5.94 5.95		5	1,33	1.25
1600	()	5.94 5.94		5	1.34	1.25
1700	ال	5.93	4.51 4.56	7	1.34	1.25
1800	von-	5.95.94	4.63	4	1.24	1,25
1900	vam	5.96	4.80	4	1,30	1.25
2000	2011	5.95 96	4.87	5	1.33	1.25
2100	Tour	5.94 5.95	4.84.95	5	1.32	1,20
2200	Vien	5.75	4.854 93	7	1.32.	1.25
2300	Varn	5.95	4.87	7	1.3	1.25

	DATE:	8-17-95		TOWER:	_A	
TIME	INITIALS	ABSORBER pH	QUENCHER pH	ENJECTION RATE (% time of reagant food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	van	5.965.98	4.78 4.86	7	1.3/	1.25
0100	vam	5.975.98	4.67	4	1.31	1.20
0200	vom	5.98	4.58	8	1.31	1.25
0300	von	5.99	4.49	4	1.31	1.25
0400	van	5.99	4.34.40	9	1.31	1.20
0500	van	6.00	4.09	4	1.305	1,10
0600	cs	5.98 5.99	4.48 4.53	8	1.30	1.25
0700	es		4.14 4.21	8	1.34	1.25
0800	es		4.71 4.78	8	1,31	1.25
0900	e	6.01 6.01	4.64 4.70	8	1.31	1.25
1000	cs	6.016.01	4.06	Ø	1.31	1.25
1100	\mathcal{C}		4.59 4.58	8	1.31	1.25
1200	cs	5.99	4.21	11	1.31	1.25
1300	CS		3.96 3.97	11	1.32	1.25
1400	(2)		3.95 3.93	/2	1.34	1.25
1500	CS		4.36.74	12	1.335	1.25
1600	cs	6.00	4.17 4.15	12	1.34	1.40
1700	CS	5.97	3.93	12	1.34	1.25
1800	丁.].	3.99	3.91	12	1.22	1.25
1900	T.).	5.92 5.97	3.32 3.77	13	1.32	1.25
2000	T.D.	5.99 5.58		13	1.32	1.30
2100	T.), -		3.95	13	1.3/	1.30
2200	T. D.	<u> </u>	4.20 4.11	/3	1-30	1.30
2300	T.D.	6.0 6.01	4.03 3.98	10	1.31	1.25

.*

	DATE:	2.17.95		TOWER:	A	
TIME	INTTIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% time of reagent had valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	τ.δ.	6.0 5.99	4.14 4.11	10	1.31	1.21
0100	T.).	6.0	4.04 1.0	10	1.36 1	1.25
0200	T.d.	5.57 5.98	3.72 3.75	10	1-31	1.21
0300	T.D.	5:17 5:97	3.47 3.42	10	1.305	ハン「
0400	T.D,	5.57 5.58	4.63 4.62	/1	1.30	1.30
0500	7.0.	5.94	40 3.74	11	1.30	1.35
0600	LSA	597 596	3.95 3.89	12	1.29	1.30
0700	Lya	596	408	12	129	1.25
0800	9218	597	4.15	13	1 79	1.28
0900	MA	596	397	13	1.28	1.25
1000	1114	598	4.24	14	1.28	1-30
1100	1JU	511 699	435	14	1.28	1.28
1200	DUA	597	4124/1	14	1.295	1,35
1300	INA	595	403	15	1.09	1.30
1400	MA	400	4.28	16	1.29	1.40
1500	224	598 597	192	1/2	1.29	140
1600	LIVA	596 (94	377336Y	17	1.29	1.35
1700	Lu	598 597	4.32	17	1.30	1.50
1800	T.D.	5.55 5.58	3.67	۱٦	1.30	1.45
1900	T.D	5.94 5.54	3.58 3.49	17	1.28	1.41
2000	TD	517 5.94	3.83 3.77	17	1. 28	1. 40
2100	J.D.	5.97	3.97	,)	1.27	1.40
2200	1.1.	537 5.54	3.51	1)	1.17	1.40
2300	T. V.	5.99 5.91	3.51	17	1.27	1.45

	DATE:	3.19.95	- •	TOWER:	A	ı
TIME	INITIALS	ABSORBER pH	QUENCHER pB	ENJECTION RATE (% disc of rangest find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	て.か.	5.97 5.17	3.94 3.71	17	1.27	1.40
0100	T· D.	559 5.98	3.92 3.36	17	1.27	1.45-
0200	T.D.	5.94	3.14.3.81	17	1.26	1.45
0300	T.D.	5.94 5.51	3.36 3.11	19	1.265	1.40
0400	TD	5:37 (55	201	20	1.267	1.4
0500	T.D.	5.54	3.91 3.90	20	1.27	1.4
0600	ess	598 597	372 86	71	1.265	1.45
0700	254	600 598	455	2.2	1.26). 45
0800	1114	600 599	469	22	1.27	145
0900	LIM	10100	3.65	22-	1.265	1.50
1000	in	602 601	473469	21	1.27	1:50
1100	LIN	600 599	359 351	21	1.27	1.45
1200	and	600	463 459	21	1.27	1.50
1300	Lju	601 599	391385	21	1.27	1.47
1400	1211	596 94	3.52 44	21	1.27	1.45
1500	PJA	599 597	146/	21	1.29	1.40
1600	210	598 596	350 342	2/	1.325	1.45
1700	LIA	605 603	480 476	19	1.30	1.45
1800	1.0.	607 6.08	4.14.68	12	1.29	1.35
1900	T.D.	6.07	3.37 3.11	12	1.29	1.31
2000	T.D.	6.12	4.20	9	1.29	125
2100	T.D.	6.11 6.05	B.6/3.50	6	1.19	1.30
2200	T),	6.07	462 3.19	6	1.19	1.21
2300		6000	3-93.76	4	1.29	1.25

	DATE:	7-18-95		TOWER:	18	
TIME	INITIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% time of reagent find rates)	MIX RATIO (Deadty)	PRESSURE DROP ACROSS TOWER
9000			l,			·
0100						
0200			1) [
0300						
0400			i i			
0500						
0600			H			
0700	es	5.86	3.41 3.30	5	1,33	1.15
0800	C8		3.45 3.33	5	1.335	1.20
0900	cs	5.88 5.96	3.44 3.33	4	1.32	1.20
1000	CS	5.84 5.92	3.44	4	1.34	1.20
1100	es		3.40	4	1.33	1,20
1200	es	5.86	3.40	4	1.33	1.20
1300	CS	5.84 5.92	3.37	4	1.33	1.20
1400	CS	5.83 5.91	3.40 3.27	+	1,34	1.20
1500	cs	5.82.90	3.44 3.33	. 5	1.33	1.15
1600	es	5.85 5.93	3.40	4	1.33	1.20
1700	CS	5.84 5.91	3.39 230	4	<i>1.</i> 33	1.25
1800	van	5.83	3.42	4	1.34	1.25
1900	von	5.79	13.54 30	11	1. 33	1.20
2000	van	5.78 5.85	3.42	4	1.33	1.20
2100	com	5.78 5.87	3 200	4	1.33	1.25
2200	vam	5.78 5.87	3.36	4	1.33	1.20
2300	vam	5.78 5.84	3.44	4	1.33	1.10

	DATE: 7-19-95			TOWER: 18		
TIME	INITIALS	ABSORBER PB	QUENCHER PH	INJECTION RATE (% time of reagon) find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	Va	5.79 5.88	3.43	, 4	1.34	1.10
0100	20-	5.77 5.84	3.41 3.31	4	1.33	1.25
0200	2-	5.77 5.85	3.38	. 4	1.32	1.20
6300	va	5.77	3.41	4	1.32	1.20
6400	20-	5.76.84	3.44	4	1.33	1.20
0500	van	5.76	3.41	. 4	1.32	1.20
0600	es	5.76.84	3.44 3.31	4	1.32	1.15
0700	es	5.76 5.84	3.44	5	1.32	1.10
0800	es	5.75 5.84	3.41	4	/.32	1.10
0900	es	5.75 5.82	3.49	4	1.32	1.15
1000	cs	5.75 5.82	3.41 3.31	4	/·32	1.20
1100	2	5.77 5.83	3.373.27	4	1.32	1.20
1200	cs	5.77 5.84	3.34	4	1.32	1.25
1300	CS.	5.76 5.83	3.35	4	1.32	1.25
1400	2	5.74 5.80	3.41	4	1.335	1.25
1500	es	5.75 5.83	3.38 3.27	4	1.32	1.20
1600	CS	5.74 5.81	3.60 3.45	5	1.32	1.25
1700	C	5.77 5.84	3.47 3.37	4	1.37	1.25
1800	Van	5.76	3.49 3.36	4	<i>J.</i> 33	1. 25
1900	20-	5.72	3.37	4	1.33	1.25
2000	van	5.67 5.82	3.61	4	1.33	1.25
2100	van	5.72	3.59	4	1.33	1.20
2200	Vam	5.72	3.46	4	1.33	1.25
2300	van	5.73 5.82	3.14	4	1.33	1.25

	DATE:	7-20-95	5	TOWER:	<u> 18</u>	
TIME	NITIALS	ABSORBER pH	QUENCHER pB	INJECTION RATE (% time of rangest find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	7,000	5.73	3.68	5	1, 33	1.20
0100	Van	5.72	3.10 3.83	5	1.33	1.20
0200	2000	5.74	3.05	5	1.33	1.25
0300	200	5.75	3.04	, 5	1.33	1.20
0400	va	5.77 5.85	3.65	5	1.33	1.20
0500	MW	5.77 5.84	3.06	5	1.33	1.25
0600	es	5.75 5.84	3.03 2.97	5	7.33	1.20
0700	2	5.77 5.85	3.02 2.96	5	1.32	1.25
0800	es	<u> </u>	3.02.97	5	1.3/5	1.25
0900	2	5.76 5.84	3.01 2.96	4	1.32	1./0
1000	es	5.75 5.82	2.95 2.91	4	/·3o	1.25
1100	es	5.74 5.81	2.91 2.88	4	1.31	1.20
1200	3	5.75 5.82	3.37 5.25	4	1.32	1.32
1300	10	5.76 5.83	3.2/3.12	4	1.37	1.25
1400	es	5.78	3.41	4	1.365	1.25
1500	cs	5.75 5.83	3.13 3.07	4	1.375	1.25
1600	2	5.74 5.82		4	1.37	1.25
1700						
1800						
1900						
2000						
2100						
2200						_
2300			į			

18 8.8.95 DATE: TOWER: ABSORBER **QUENCHER** INJECTION RATE MIX RATIO PRESSURE DROP TIME INTIIALS pН ACROSS TOWER (% time of reagent feed valve) (Density) 9000 0100 0200 6300 0400 0500 0600 4.54 T.D. 0700 3.04 1.33 5.96 1.20 0800 1.20 5.93 1.33 T.D. 3.04 T. D. 0900 5 1.33 1.20 T.D. 1000 1.33 1.15 3 63 1100 T.D. 1.25 1.33 3.07 1200 1.33 T.D. 1.20 1.33 T.D. 1300 1.20 4.60 1400 TD /.33 1.20 T.D. 1500 1.33 1.20 313 TD 1600 1.25 /.33 3.14 1.20 1700 $\mathcal{T}.\Delta$. /. 33 3.15 1800 1.33 1.25 1900 5 1,325 1.20 2000 1.33 1.20 2100 5 1.33 1.20 2200 1.33 1.20 4.75 2300 1.34 1.20

	DATE:	8-9-95	• •	TOWER:	B	
TIME	INTITALS	ABSORBER pH	QUENCHER PH	ENJECTION RATE (% time of rangem; find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	es	5.81 5.98	4.78 3.28	4	1.34	1.10
0100	CD		4.78 3.29	4	1.34	1.10
0200	S	5.80 5.98	4.71 3.22	4	1.34	1.10
2300	دگ	5.79 5.98	4.64	4	1.34	1.20
0400	cs	5.78 3.98	4.64	4	1.34	1.20
0500	cs	5.83 6.01	5.2 3.66	4	1.34	1,20
0600	T.D.	5.31 5.99	5.06 3.51	3	1.335	1.20
0700	T.D	5.31 5.78	3.363.42	3	1.34	1.20
0800	T.d.	5.36 5.77	3.27 3.33	3	1.34	1.10
0900	T.D.	5.92 5.77	3,14 3.24	, 3	1.34	1.20
1000	T.D.	5.92 5.77	3.10 3.20	4	1.33	1.25
1100	T.D.	5.97 5.77	3.02 3.13	4	1.33	1.25
1200	T.D.	3.92 5.77	2.98 3.09	4	/.33	1.20
1300	T.D.	5.27 5.27	2.53	4	1.33	1.25
1400	T.D	5.31 5.75	2.94 3.07	4	1.33	1.15
1500	7.D.	5:3173	3.0 3.12	5	1.335	1.15
1600	T.D.	5.30 5.74	2.98	5	1.33	1.10
1700	T,D.	5.31 5.78	2.9 3.06	5	1.33	1.10
1800	S	5.82 5.76	3.95	5	1.33	1, 10
1900	as	5.77 5.78	2.89 3.02	5	1.34	1.10
2000	cs		3.27	6	1.34	1.10
2100	cs	5.90 5.85	3.373.42	5	1.33	/./0
2200	\sim	5.82 5.84	3.0 3.16	5	1.33	1.10
2300	$C\lambda$	5.88 5.84	3.12 3.21	4	1,33	1./0

	DATE:	8-10-95		TOWER:	B	
TIME	NITIALS	ABSORBER pH	QUENCHER pB	INJECTION RATE (% Base of reagent feed valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	cs	5.83 5.82	2.973.08	4	1.33	1.10
0100	cs	5.84 5.83	2.95 3.05	4	1.34	1./0
0200	(L)	5.80 5.80	2.93 3.04	4	1.34	1.10
0300	es	5.82	2.89	4	1.335	1.15
0400	es	5.81 5.82	2.87 3.00	3	1.33	1.10
0500	cs	5.80	2.80 2.95	3	1.33	1.05
0600	T.D.	5.79 5.81	272291	5	/ 3.3	1.10
0700	TO	5.77 5.90	2.35	5	/33	1.10
08 00	T.D.	5.24 5.79	732 34	4	1.33	1.10
09 00	T.D.	5.17 5.81	2.36 2.90	7.	1.335	1.1D
1000	T.D.	5.72 C.1L	2.32 1.93	7	1.32	1.01
1100	10	5.30 5.31	2.91 2.97	5	1.33	1.10
1200	T.D.	5.30 5.21	2.75	5	/. 33	1.10
1300	T.D.	5.77 5.79		4	1.35	1.15
.1400	T.D.	5.74 5.79	2.90	4	1.34	1.10
1500	T.D.	5.30 5.30	2.93	6	1.34	1.20
1600	TD	5.77 5.79	2.92 2.95	6	1.33	1.10
1700	T.D.	5.75 5. 30	2.96 2.97	4	1.3~/	1.05
1800	RIA	582	3.14 3.14	7	1.33	1,20
1900	LJA	5.24 5.81	3.13	8	1.33	1. \$ 20
2000	LJUA	582 584	320	ÿ	1.32	1.20
2100	1110	581 584	3.20	7	1.335	1,20
2200	My	5.81 5.84	3.18	7	1.325	1.18
2300	m	5.80 5.84	3.27	7	1.325	1.15

	DATE:	8/11/95		TOWER:	<u></u>	
TIME	INITIALS	ABSORBER pH	QUENCHER PH	INJECTION RATE (% there of ringest find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	M	5.86/5.85	3.2 /3.23	le	1.325	1.09
0100	M	5.31/5.84	3.20/3.13	e le	1.325	1.10.
0200	mm	5.81/5.85	3.13/3.15	6	1.325	1,41
0300	MM	5.25/5.84	3.15/3.13	7	1.375	1.02
0400	nin	5.33/5.87	3.19/	7	1.33	1.05
0500	MMI	5.83/5.85	3.1/5.0	6	1.335	1.01
0600	van	5.83	3.10	4	1.345	1.10
0700	von-	5.80	3.04	4	1.34	1,10
0800	vam	5.79	3.03	<u> </u>	1.34	1.08
0900	van	5.80	3.04	6	1.35	1.10
1000	vam	5.84	3.08	6	1.35	1.6.5
1100	Van-	5.81	3.04	4	1.36	1.15
1200	van	5.83 5.84	3.07	5	1.37	1.15
1300	Vam	5.85	3.19	6	1.37	1.20
1400	Van_	5.83	3.24	6	1.37	1.20
1500	Van	5.85 5.86	3.28	. 5	1.37	1.25
1600	vam	5.83	3.23.18	5	1.375	1.25
1700	van	5.81	3.00 3.00	6	1.37.5	1.15
1800	R. Poes.	5.81	2.98	6	1,023	1.25
1900	B. Parl	5.80 5.84	2.99	6	1.022	1.20
2000	7. Ports.	5.81 5.86	3.85	4	1.022	1.20
2100	R. Poeg.	5.98	4.15 4.01	6	11026	1.15
2200	R. Roes.	5.91	4.43	5	1.024	1.15
2300	R. Ray	5.92	4.54	5	1.025	1.15

	DATE:	8.12-95	·	TOWER:		
TIME	INITIALS	ABSORBER pB	QUENCHER pB	INJECTION RATE (% time of reagent food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	R. Roy	3.13	4.30	5	1,023	1-20
0100	R. Rub.	5.93	3.56	5	1.023	1.20
0200	R. Rod.	597	3.35	<u> </u>	1.020	1.20
0300	R. Pors.	5.92	3.12	5	1.020	1.10
0400	77. Rog	5.88	2.97	5	1.018	11.10
0500	R. Rodge	5.87	2.78	35	1.016	1.0
0600	vam	5.90	2.73	5	1,36	1.15
0700	vam	5.89 5.94		6	1.36	1.10
0800	Vam	5.89 5.94	2.70	6	1.36	1.10
0900	20m	5.89 5.94		4	1.35	1,20
1000	rom	> 5.43	2.75	þ	1.35	1.15
1100	vam	5.88	2.71	6	1.35	1.1Ø
1200	vam	5.87	2.74 2.77	6	1.36	1.15
1300	vam			6	1.36	1.20
1400	vam		2.74 . 77	6	1.36	1.15
1500	vam	0.01	2.75	<i>چ</i>	1.37	1.20
1600	vam	5.89 5.90	2.73	6	1.34	1.20
1700	van	5.84,90	3.05	6	1.36	1.26
1800	T.D.	5.825.87	2.71 2.73	4	1.34	1.15
1900	T.D.	5.31	2.67 2.71	4	1.345	1.15
2000	T.D.	5.35 5.89	2.70	7	1.35	1.20
2100	T.D.	5.33 5.87	2.72	7	1.35	1.15
2200	T,D		2.73	7	1.34	1.10
2300	TD	2: 33 5.36	2.75	7	1.34	J. 10

	DATE:	9-13-05		TOWER:	B	
TIME	INITIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% due of respect field valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	TD	522 5.27	2.71 3.74	7	1.34	7.10
6100	TD	5.77 5.34	2.63 7.73	7	1.33	1.05
0200	TD	5.32 5.19	3.40	. 8	1.33	1.15
0300	10	5.84 5.92	3.67	-3	1.33	1.10
0400	T.D.	5.33 5.93	3.13	~	/. 33	1.00
0500	T.D.	5.91 5.74	3.64 3.5)	le	1.33	1
0600	van	5.98 5.93	3.123.10	6	1, 33	1.05
0700	tom	5.94 5.93	2.75	6	1.33	1.05
0800	van	5.86 5.91	7.68	4	1.32	1.15
0900	zam	5.82	2.4	7	1,32	1.10
1000	vam	5.85	2.45	7	1.32	1.15
1100	van	5.84 5.89	2.69	8	1.33	1.15
1200	vom	5.86 5.91	2.59	8	1.34	1.15
1300	vom	5.85	2.60	8	1,335	1.15
1400	vam	5.89	2.62	8	1.34	1.25
1500	vom	5.84	2.69	8	1.35	1.25
1600	van	5.89	2.63	8	1.34	1.15
1700	rom	5.80	11/12	8	1.35	1.20
1800	T.D.	5.72 5.84		-7	1.364	1.10
1900	T.D.	5.79 5.37	3.12 3.11	9	1.34	1.15
2000	T.D.	5.72		9	1.35	1.15
2100	T.D.	5:963.9	3.32 3.71	9	1.35	1.20
2200	T.D.	5.91 5.94	3.74	8	1.3×1	1.15
2300	1.7.	6.29 5.97		-7	134	1.15

		DATE:	3.14.95		TOWER:	B	
	TIME	INITIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% there of reagant food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
	9000	T.D.	6.21 6.0	3.13 3.73	7	1-34	1.10
	0100	T.).	5.97 5.99	3.77 3.64	7	1.34	1.10
	0200	T.D.	6.01 5.99	3.15	7	1.34	1.1 D
	0300	T.D.	5.93 5.97	2772.71	7	1.33	1.15
ſ	0400	T.D.	5.39 5.94	262,67	7	1.335	1.15
. [0500	T.D.	5.45 5.93	2.55 2.60	.7	1.33	1-10
	0600	cs		2.47 2.53	7	1.33	1.15
	8700	cs	5.75 5.90	2.45	7	1.33	1.15
	0800	ک	5.77 5.92	2.40	7	/. 33	1.15
	0900	را	5.72 5.87	2.3 2.42	8	/· 32	1.20
	1000	es	5.78 5.88	2.30	8	1,33	1.20
	1100	لي		2.31	8	1.34	1.20
	1200	S	5.79 5.88	2.30	8'	1.34	1.20
	1300	cs	5.74 5.86	2.27.38	8'	1.33	1.20
	1400	\mathcal{C}	5.80	3.3 3.28	8	1.34	1.20
	1500	2		3.23	8	1.35	1.15
	1600	\sim	5.91	3.73 3.65	8	1.34	1,25
	1700	\mathcal{C}	5.83 5.90	3.70 3.63	8	1.35	1.20
	1800	Jam	5.91	3.66	8	1.345	1,25
	1900	Van	5.82	3.55	8	1.35	1,25
	2000	Vam	5.89 5.89	3.5 3.45	8	1.35	1.25
	2100	vam	5.07	3.48	\$	1.35	1.30
	2200	van	5.80	3.45	8	1.35	1.25
	2300	vam	5.82	3.44	8	1.35	1.20

	DATE:	8-15-95		TOWER:	B	
TIME	INITIALS	ABSORBER pH	QUENCHER pH	ENJECTION RATE (% Give of resquest food valve)	MEX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	Van	5.81	3.40	7	1.35	1.06
0100	van	5.80	3.44 3.39	8	1.35	1.25
0200	von	5.84 5.89	3.43	4 .	1.35	1.20
Q300	vam	5.86	3.45	8	1.35	1.20
0400	vam	5.89 5.92	3.48	8	1.34	1.15
0500	Vam	5.85	3.49	8	1.34	1.10
0600	es	5.85 3.88	3.50	8	1.33	1.10
0700	cs		3.50 3.45	8	/·33	1.10
0800	CS		3.52 3.46	6	1.34	1.10
0900	cs		3.06	8	1.34	1.20
1000	2	L	3.023.01	8	1.34	1.15
1100	CS		2.962.99	8'	1.34	1.15
1200	es	5.88 5.87	2.94	? ?	1.34	1.15
1300	cs	5.85 5.86	3.01	8	1.33	1.15
1400	CS	5.85 5.86	3.02 3.08	8	1.33	1.20
1500	الم	/	3.07	8	1.34	1.15
1600	\cd	5.86	3.04 5.08	9	1.33	1.20
1700	CS	5.85 5.84	3.00	9	1.34	1.20
-1800	vam	5.81	3.24 3.25	9	1.325	1.20
1900	vam	5.77 5.84	2.69	9	1. 33	1.20
2000	Um	5.88	3.05	9	1.33	1.26
2100	ram	5.89 586	3.32	9	1.325	1.15
2200	Van	5.965.85	3.32	9	1.33	1.15
2300	vam	5.88 5.84	3.37	9	1.33	1,15

	DATE:	8-16-95		TOWER:	B	
TIME	INTITALS	ABSORBER pB	QUENCHER pB	INJECTION RATE (% there of reagent find valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
9000	van	5.86	3.30	9	1.33	1.20
0100	vam	5.83 5.84	3.29	8	1.325	1.15
0200	vam	5.82	3.41	9	1.31	1.20
@300	van	5.84	3.33	10	1.32	1.15
0400	van	5.90	3.49	10	1.32	1.15
0500	von	5.77 5.86	2.84	10	1.32	1.10
0600	0	5.87 5.87	3.37	10	1.32	1.15
0700	cs	5.82 5.86	3.51	9	/.32_	1.10
0800	es	5.84 5.87	3.50 3.46	9	1.32	1.15
0900	\sim		3.50	8	1.33	1.15
1000	2	5.84 5.85	3.50	6	1.33	1.15
1100	CS		3.48	6	1.34	1.15
1200	el	5.78	3.49	ું ડ	1.34	1.15
1300	2	5.78 5.81	3.37	b	1.33	1.15
1400	(2)	5.78 5.80	3,41 3,39	6	1.33	1.15
1500	(2)	5.85	3.48 3.46	6	/.33	1.15
1600			3.36	5	1.34	1.15
1700	(D)	5.80 5.81	3.39 3.37	6	1.34	1.15
1800	Ton-		3.34	7	1.34	1.2Ø
1900	van	5.80	3.73	8.	1.34	1.10
2000	Van	5.83	3.69	8	1.33	1.15
2100	701r	5.84	3.43	ε	1.32	1.15
2200	30m	5.84	3.52	9	1.35	1.20
2300	201	5.84	3.4.7	10	1.31	1.13

	DATE:	8-17-9	.5	TOWER:	Ł	
TIME	INITIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% time of reagon) food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	van	5.85	3.48	14	1.3.	1.15
0100	rom	5.915.89	3.64	14	1,31	1.15
0200	vom	5.93 5.87	3.57	10	1.31	1.10
0300	van	5.86	3.62	, 10	1.3 /	1.10
0400	vam	5.90	3.65	11	1.31	1.00
0500	Von	5.90	3.73	7	1.305	1.00
0600	(c)		3.59 3.55	9	1.30	1.15
0700	C.	5.89 5.89	3.70 3.63	9	<i>1.3</i> 3	1.10
0800	cs	5.96 5.90	3.73 3.67	8	1.31	1.10
0900	0	5.92 5.89	3.68 3.63	7	1.31	1.10
1000	2	5.93 5.89	<u> </u>	7	1.31	1.10
1100	CS	5.84 5.87	3.47	7	1.37	1.10
1200	10	5.84 5.86	3,46	10	1.31	1.15
1300	CS	5.82 5.87	3.40	14	1.32	1.20
1400	S	5.88 5.88	3.96 3.88	14	1.34	1.15
1500	cs	5.89 5.90	4.05 3.94	. 14	1.33	1.15
1600	<u>ا</u>	5.89 5.89	4.12 4.00	14	1.34	1.15
:"00	2)	5.91	4.15 4.03	14	1.34	1.20
1800	7.1.	390 5.93	4.19 4.67	, 14	1.33	1.15
1900	T.D.	5.39 5.92	444.13	14	1.3.1	1.20
2000	T.D.	5.92	4.12401	,4	1.31	/. 20
2100	T.D.	5.92	3.74 3.77	/3	1.31	/. 20
2200	TD.	5.90 5.93	3.91	/3	1.31	1.20
2300	T. D.	5.93 5.90	3.90	11	1.31	1.10

	DATE:	3.18.95	• •	TOWER:	<u>B</u>	
TIME	INTIALS	ABSORBER pH	QUENCHER pH	INJECTION RATE (% Size of ranges) food valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
0000	T.D.	5.55 5.55	3.945.75	12	1-31	1.10
0100	T.D.	5.94 5.94	3.37	/3	1.301	1.10
0200	7.1.	5.13 5.97	3.75 3.71	۱ ۶	1.31	1.15
0300	ア.ひ.	5.21 5.57	3.52	12	1.30	1.10
0400	T.D.	5.54 5.57	377 3.71	1,2	1.30	1.10
0500	T.D.	5.24 5.54	3.37 3.86	12	1-30	1.10
0600	g sur	594 595	378 371	12	1.29	1.10
0700	LMA	593	3 33 332	1.2.	1, 295	1.20
0800	LIVA	597 596	3.80 3.77	12	1.29	1.20
0900	RNA	596 597	3.79	17	1 28.	1.26
1000	11A	521 594	378	14	1.28	1.20
1100	PLA	594 595	379372	14	1.028	1,20
1200	LJA	594 596	384 376	. 14	1.295	1, 20
1300	Ynt	590 553	390 381	16	1.295	1.25
1400	I LIVE	525594	3.92 3.44	16	1.29	1.25
1500	1254	595 595	394387	16	1.29	1.25
1600	PH	596 596	404394	17	1.29	1.25
1.700	1110	598 598	413 4.02	17	1.30	1.25
1800	T.D.	5.96 5.5/	4.07 3.95	17	1.3D	1.20
1900	7.2	6.0 5.97		17	1.28	1.21
2000	T.D.	6.01 5.97	403 402	/7	1.28	1.25
2100	T.D	5.97 5.97	4.20 4.13	. 17	1.27	1.20
2200	T.D.	5.53 5.9	3.14 3.14	17	1.47	1.25
2300	T.D.	5.975.55	3963.36	17	1.27	1.25

•	DATE:	3.19.91	· -	TOWER:	В	
TIME	INTTIALS	ABSORBER pH	QUENCHER pH	ENJECTION RATE (% time of respect field valve)	MIX RATIO (Density)	PRESSURE DROP ACROSS TOWER
8000	T.D.	5.97 (.96	4.04 3.94	/7 .	1.17	1.20
0100	T.D.	6.01 5.99	4.16 4.03	18	1.27	1.25
0200	7. A.	6.0 5.57	2.79 3.18	1)	1.26	1.25
9300	T.D.	5.98 5.09	4.013.94	19	1.261	1.20
0400	TD	5.98 7.97	4.12 4.0	. 19	/-2)	1.21
0500	T.D.	5.29 5.49	4.62 4.07	19	1.27	1.25
0600	Lybr	592 556	426412	21	1.27	1.25
0700	2514	596596	3 33	21	1.26	1.25
0800	DO	598 595	410 399	21	1.27	1.78
0900	214	602 597	426 414	21	1.27	125
1000	LIVA	bell 5 98	433 4.2	0 20	1.27	1.25
1100	PIA	5 98 5 9 9	4.35	20	1.275	1.25
1200	Dy	598 598	442428	20	1.27	1.25
1300	PHA	596 591	434/21	20	1.27	1.25
1400	FUA	597	439425	ZU	1-27	1.25
1500	2114	554594	433 419	20	1.29	1.20
1600	LIN	596 5 54	438	20 3	1.32	1.25
1700	WH	597 596	445431	21	1:30	1,25
1800	T.D.	5.96.90	4.414.39	21	1.29	1.20
1900	TD	600 6.2	4.69 4.10	2/-	1.29	1.20
2000	TD	6.07 6.06	3.113.45	9	1.29	110
2100	T, か,	6.01 6.06	3.10	7	1.29	1.10
2200	7. D.	400 6.07		7	1. 69	1-10
2300	(A),	60.9	4.27 4.16	.)	1.29	1.10

ATTACHMENT H

March 17, 1995

Mr. C.H. Fancy, P.E. Chief, Bureau of Air Regulation Florida Dept. of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400

RE: St. Johns River Power Park Unit #1
Request to Fire a Blend of Petroleum Coke and Bituminous Coal
Public Notice of Intent to Issue an Amendment

Dear Mr. Fancy:

A request to conduct tests for pollutant emissions while firing a blend of petroleum coke and bituminous coal at the above referenced facility was submitted to your agency on 12-20-94 with supplemental material submitted on 02-07-95. Your agency prepared a draft letter authorization and the "Public Notice Intent to Issue" which was received in our office 02-16-95.

A copy of the "Notice of Intent to Issue an Amendment" which was published in the Florida Times Union Friday, February 24, 1995 to commence the 14 day public comment period was submitted to your attention February 27, 1995. Pursuant to your request please find enclosed the "Affidavit of Publication" from the newspaper that published the notice, Florida Times Union.

Sincerely,

JayWorley

Environmental & Safety Manager

JAW/pct

xc: H. O

H. Oven, FDEP

E. Frey, FDEP

S. Pace, RESD

R. Breitmoser, JEA

FLORIDA PUBLISHING COMPANY Publisher

JACKSONVILLE, DUVAL COUNTY, FLORIDA

STATE OF FLORIDA	
COUNTY OF DUVAL	

COUNTY OF DUVAL \$		
Before the undersigned auth	ority personally a	appeared
Cappy MacPhe	rson	who on oath says that he
Classified Adv	Inside Sale	es REP of The Florida Times-Unio
a daily newspaper published	at Jacksonville	e in Duval County, Florida; that the
attached copy of advertisemen	nt, being a	Legal Notice
n the matter of <u>Notice</u>	of Intent	to Issue an Amendment
n the		Cour
vas published in THE FLORI	DA TIMES-UNIO	ON in the issues of
Fe	bruary 24,	1995
		
aid Duval County, Florida, and that aid Duval County, Florida, The Flo- latter at the postoffice in Jacksonv reconding the first publication of the either paid nor promised any person tourpose of securing this advertises:	t the said newspaper rida Times-Union es tille, in said Daval (attached copy of adv , firm or corporation sent for publication in	nion is a newspaper published at Jacksonville, in has heretofore been continuously published at ach day, has been entered as second class ma County, Florida, for a period of one year nevertisement; and affiant further says that he has any discount, rebate, commission or refund for said newspaper.
February A.I. Notaty Pu State of Florida VERA AMELIKER Ay Communication of CO22 255	day of 0. 19 95 blic, at Large.	Cappy Hadrone
June 1, 1996	A EXPIRES.	
DA 444 BOILED THRU TROY FAIR BISURY	A EXPIRES.	

Inter sections, 21. Johns River Peace Peace, leve Sertin Read, Jacksowilla. Florida 275, shifted a request on December 28. 1998, and superitory material on February 7, 1995, in swelps from the conduct pollutari emissions bases or LURPP's Unit or before will be conducted at base and cool. The partermence test and cool of the conducted at base assettions (firling 180% coal safety) and with \$1 sections of the angle of the conducted at base assettions (firling 180% coal safety) and with \$1 sections with the blanded of safetyleum coals and coal, Phytraleum with the blanded of advise the trail sections weight, with coal during the trail sections less. \$1,87PP's Unit \$1 was cardified under Correction files. No. P3D-FL-90, and it set corresponds to cardification in accordance and security.

Scremble for a modification and a determination Provintion of Signification and/or Insperticular Area (MAA) requirements shall be in accordant with Charter 40. Florida Statutes (F.S.); Florida Administrative Code (F.A.C.) Customs 50. Horsup 40-37 and 43-4; and, 'Title 40 of the Code Federal Requirement (CFR; Paris 52. 46, 61 and 30 Cluby 1, 1970 seraion).

Lyelly I, 1931 terrales).

H. offer the performance test results are evaluate by the Descriment's Site Certification Section and Proceed outside I.O. Duvet County's Requisiter state Service. Descriment: Benes di Air Regulation, and etc.) and it is described at Reputation, and etc.) and it is described that requisition, and etc.) and it is described that requisition, and etc.) and it is described that a stand of perfoleum coke and cost) did relacted to the Site Certification. No. P.A. 51-13, and a amendment to the Federal Pervett, No. PSD-FL 810(A), authorizing continuous utilization/fring of bissel of periodeum coles and cost in the SURPPUINT (I flowever, I'll flower is an actival emission increase in polariant emissions. SJR PP will set b sermified to fire a biend of periodeum coles and cost in the emissions with without further PSD and/o NAA evaluation by the Descriment's Site Certification Section and involved opencies/perties. The arc seed project will accur at the apolicant's fectitionated in Jecksonville. Duvel County, Florids.

The Department has jurisdiction under Perserso 483.514(1). F.S. The project is not express from \$1.514(1). F.S. The project is not express from \$1.514(1). F.S. The project is not express from \$1.514(1). F.S. The project is not express \$1.514(1). F.S. The project is not expressed but a \$10 Certification modification and stead and are expressed to the Federal Permit an assumed to the response underlying any and are applied to project in \$1.518 PP. Unit \$1 on a permanent bests, subsequently exceeding will be announced previation on opportunity for any effected person to object it the settlement manuser.

A nurses where substantial interests are offense the Descriptor's processed permitting decisions and self-inner self-inner a self-inner self-in

The Politica shall contain the following

(a) The harms, address, and telephone number of each petitioner, the applicant's name and address the Department Site Cartification Fits Number an tile county is which the project is proposed;

(b) A sinternent of how and when each pertitions received natice of the Department's action or arc seems action:

(c) A statement of how each patitioner's suc stantial inverses are affected by the Department' action or proceed action;

Politican, I cary)

brids operant reversal or medification of the permanent action or proposed actions of the control of the contro

(7) A Statement of which rules or statute to seem contents require reversal or reconflictation of Descriptions's difference presented actions and all it discovered of the rules seemed by policy of a string-projector for action parties require Description in late yith record to the leading reprint action or second action.

I a self-to-fin tage, the administrative will proposed to feel the self-to-asset accounting the self-to-asset accounting to the self-to-asset accounting to the self-to-asset accounting to the self-to-asset ac

Contract of Entracements Properties

Dovat County Repository and Environmental Services Despitment

ATTACHMENT I

CERTIFIED MAIL

SJRO LC 95 137

August 21, 1995

Mr. Steve Pace RESD 421 West Church Street Jacksonville, Florida 32202

RE: Site Certification No. PA 81-13

St. Johns River Power Park (SJRPP) Unit 1

Notification of Petroleum Coke/Coal Test Run Completion

Dear Mr. Pace:

The above referenced facility was authorized by the Florida Department of Environmental Protection's March 30, 1995 letter to test burn a blend of petroleum coke with coal. Condition #18 require that "The Duval County's R&ESD office shall be notified, in writing on the date of the last test run completion".

The petroleum coke/coal blend test burn was completed on August 19, 1995. Stack testing was conducted throughout the test burn and completed on this date.

Please contact me at (904) 751-7729 if you have any questions.

Jay Worley

Sincerely,

Envilonmental & Safety Manager

JW/sj

XC:

C. Fancy, FDEP

H. Oven, FDEP

R. Breitmoser, JEA

S. Serrian

ATTACHMENT J

REGULATORY & ENVIRONMENTAL SERVICES DEPARTMENT

Air Quality Division

June 22, 1995

Mr. Jay Worley Environmental & Safety Manager St. Johns River Power Park (SJRPP) 11201 New Berlin Road Jacksonville, Florida 32226

RE: Request for Approval - Pollutants & Testing Methodology Unit #1 Test Burn Using Petroleum Coke with Coal Site Certification No. PA 81-13 SJRPP Correspondence of June 14, 1995

Dear Mr. Worley:

This is to acknowledge receipt and review of the above captioned SJRPP correspondence, submitted June 15, 1995.

Regulatory & Environmental Services Department (RESD) agrees that the use of EPA Reference Test Methods 5B, 10, and 8 for the testing of particulate matter, carbon monoxide, and sulfuric acid mist, respectively, during the above referenced test burn, satisfies Condition No. 20 of the Site Certification.

If there are any questions concerning this matter, please contact me at (904) 630-3484.

Very truly yours,

Robert S. Pace, P.E. Division Chief

Division Chief

RSP/WLW/be

c: AQD File 1710 B Wayne Walker, AQD

CERTIFIED MAIL

SJRO LC 95 094

June 14, 1995

Mr. Steve Pace RESD 421 W. Church St. Jacksonville, FL 32202

RE: Site Certification No. PA 81-13

St. Johns River Power Park (SJRPP) Unit I

Authorization of Test Burn Using Petroleum Coke with Coal Request for Approval - Pollutants & Testing Methodology

Dear Mr. Pace:

The above referenced facility was authorized by your agency's March 30, 1995, letter to test burn a blend of petroleum coke with coal (Attachment A). Condition #20 requires "Prior written approval of the pollutants to be tested for and the appropriate test methods are mandatory prior to commencement of testing. The proposal shall be submitted to the Site Certification Office, the Department's BAR office and the Duval County's RESD office for approval."

Pursuant to Condition #7, stack tests shall be conducted for the pollutants particulate matter, carbon monoxide and sulfuric acid mist. The following are the EPA Reference methodologies which are contained in 40 CFR 60 that shall be conducted:

1) Particulate matter - EPA Method 5B

2) Carbon Monoxide - EPA Method 10

3) Sulfuric Acid Mist - EPA Method 8

Conditions #3 and #4 specifies that as-burned fuel samples shall be collected and analyzed for sulfur, nitrogen and metals. The baseline coal and pet coke/coal blend shall be sampled from the sampling building loading belt transfer to the Unit 1 to analyze the parameters in accordance with the following methods:

SJRO LC 95 092 Page 2

1)	Sulfur	ASTM D 4239 Method "C"
2)	Nitrogen	ASTM D 5373
3)	Chromium	ASTM D 3683
4)	Lead	ASTM D 3683
5)	Mercury	ASTM D 3684
6)	Nickel	ASTM D 3683
7)	Beryllium	ASTM D 3683
8)	Vanadium	ASTM D 3683
9)	Zinc	ASTM D 3683

The testing is scheduled to commence July 11, 1995 for the baseline. Your expeditious review and response are appreciated.

Please contact me at (904) 751-7729 if you have any questions.

Sincerely,

Environmental & Safety Manager

JAW/pct

cc: R. Breitmoser