

Wheelabrator North Broward, Inc. 2600 NW 48th Street Pompano Beach, FL 33073

RECEIVED

APR 27 2010 BUREAU OF AIR REGULATION

REPORT ON RELATIVE ACCURACY TEST AUDIT

Performed for:
WHEELABRATOR NORTH BROWARD, INC.
UNITS 1, 2 AND 3 FF OUTLETS
POMPANO BEACH, FL

CleanAir Project No: 10955-1 Revision 0: April 23, 2010

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program.

Submitted by,

Scott Brown

Project Manager V sbrown@cleanair.com

(800) 627-0033 ext. 4544

Reviewed by,

Scott Lehmann

Midwest Engineering Group Leader

slehmann@cleanair.com (800) 627-0033 ext. 4660

Wheelabrator North Broward Inc.

A Waste Management Company

2600 Wiles Road Pompano Beach, FL 33073 (954) 971-8701 Tel (954) 971-8703 Fax

April 27, 2010

RECEIVED

Mr. Lennon Anderson Air Program Administrator Florida Department of Environmental Protection Southeast District 400 North Congress Ave., Suite 200 West Palm Beach, FL 33401 APR 27 2010

BUREAU OF
AIR REGULATION

4.23/14

1.38

S 7,11

Re:

Wheelabrator North Broward

2010 Annual Compliance Stack Test and RATA Reports

Dear Mr. Anderson:

Please find enclosed a copy of the final compliance stack test report and the continuous emissions monitoring system certification RATA report for testing conducted on March 16-18 of this year by Clean Air Engineering, Inc.

l, the undersigned, am a responsible official, as defined in Rule 62-210.200, F.A.C., of the Title V source addressed in this submittal. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements and information in this document are true, accurate and complete.

If there are any questions, please contact this office at (954) 971-8701.

Sincerely,

Scott McIlvaine Plant Manager

cc:

USEPA, Region IV, Pesticides and Toxics Management Division, Air & EPCRA Enforcement Branch, Air

Enforcement Section (with) UPS# 1Z26X1500390744304

FDEP, Tallahassee, Bureau of Air Regulation, New Source Review Section,

(with) UPS# 1Z26X1500394730124

Broward County Department of Planning and Environmental Protection, Air Quality Division

(with) UPS# 1Z26X1500393811511

Chuck Faller (with)

Ram Tewari - BCWRS (without)

Tim Porter (without)

Rob French - MPI (with) UPS# 1Z26X1500392976131

WASTE MANAGEMENT

CleanAir Project No: 10955-1

REVISION HISTORY

ii

REPORT ON RELATIVE ACCURACY TEST AUDIT

DRAFT REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
D0a	04/15/10	All	Draft version of original document.
			_
			_

FINAL REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
0	04/23/10	All	Final version of original document.

CleanAir.

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-1

CC	DNITENTS	
1	PROJECT OVERVIEW 1-	1
	INTRODUCTION 1-	
	Key Project Participants1-	1
	Test Program Parameters1-	
	TEST PROGRAM SYNOPSIS1-	
	Results Summary1-	
	Table 1-1: Summary of Test Results1-2	
	Discussion of Test Program1-2	2
2	RESULTS2-2	1
_	Table 2-1: Relative Accuracy Unit 1 FF Outlet - Oxygen2-	
	Table 2-2: Relative Accuracy Unit 1 FF Outlet - Sulfur Dioxide2-	
	Table 2-3: Relative Accuracy Unit 1 FF Outlet - Nitrogen Oxides	
	Table 2-4: Relative Accuracy Unit 1 FF Outlet - Carbon Monoxide	
	Table 2-5: Relative Accuracy Unit 2 FF Outlet - Oxygen2-3	
	Table 2-6: Relative Accuracy Unit 2 FF Outlet - Sulfur Dioxide	3
	Table 2-7: Relative Accuracy Unit 2 FF Outlet - Nitrogen Oxides2-4	1
	Table 2-8: Relative Accuracy Unit 2 FF Outlet - Carbon Monoxide	
	Table 2-9: Relative Accuracy Unit 3 FF Outlet - Oxygen2-5	
	Table 2-10: Relative Accuracy Unit 3 FF Outlet - Sulfur Dioxide	5
	Table 2-11: Relative Accuracy Unit 3 FF Outlet - Nitrogen Oxides	3
	Table 2-12: Relative Accuracy Unit 3 FF Outlet - Carbon Monoxide	3
3	DESCRIPTION OF INSTALLATION	
	PROCESS DESCRIPTION	
	PERKIN ELMER MCS-100 /E ANALYZER	
	ESC DAS	
	CEM CALIBRATION	
	CEMS SCHEMATIC	
	Figure 3-1: General CEMS Schematic	
	Figure 3-2: Process Flow Diagram and CEM Locations	
	DESCRIPTION OF SAMPLING LOCATIONS	
	Table 3-1: Sampling Points	į
	Figure 3-3: Units 1, 2 and 3 FF Outlets – RATA Sampling Point Determination (PS 2) 3-6	i
4	METHODOLOGY4-1	
·	Table 4-1: Summary of Sampling Procedures4-1	
5	APPENDIX	
	TEST METHOD SPECIFICATIONSA	
	SAMPLE CALCULATIONSB	
	PARAMETERSC	
	QA/QC DATAD	
	REFERENCE METHOD FIELD DATA	
	CEM MONITOR AND PROCESS DATA F	

1-1

CleanAir Project No: 10955-1

PROJECT OVERVIEW

INTRODUCTION

Wheelabrator North Broward, Inc. contracted Clean Air Engineering (CleanAir) to perform the relative accuracy test audit (RATA) at the municipal waste combustor (MWC) facility, located in Pompano Beach, Florida.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (EPA) and the Florida Department of Environmental Protection (FDEP).

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

C. Faller – Wheelabrator North Broward, Inc.

S. Brown – CleanAir

E. Dieter - CleanAir

Test Program Parameters

The testing performed at the Units 1, 2 and 3 fabric filter (FF) baghouse outlets from March 16 through 18, 2010, included the following emissions measurements:

- carbon monoxide (CO)
- nitrogen oxide (NO_X)
- sulfur dioxide (SO₂)
- oxygen (O₂)

TEST PROGRAM SYNOPSIS

Results Summary

Table 1-1, on page 1-2, summarizes the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown in Tables 2-1 through 2-12 on pages 2-1 through 2-6. The oxygen (O₂) RATA results are presented for comparison purposes only.

CleanAir Project No: 10955-1

			Table	1-1:	_			<u> </u>
		Summ	ary of T	est Resul	ts			
Monitor	CEM Serial	RM	CEM			Relative Accuracy		Basis of
Constituent	Number	Avg	Avg	Difference	95% CC	Result	Limit	Limit
Jnit 1 FF Outlet CEMS (units	of RATA)							
SO ₂ (ppmdv @ 7% O ₂)	280	15.2	12.2	3.0	0.315	11.3%	20%	S ¹
NO _x (ppmdv @ 7% O₂)	280	196.2	196.2	0.0	0.815	0.4%	20%	RM^2
CO (ppmdv @ 7% O₂)	280	15.3	16.4	-1.2	0.255	1.4%	5%	S³
Unit 2 FF Outlet CEMS (units	of RATA)							
SO ₂ (ppmdv @ 7% O ₂)	281	18.2	18.8	-0.6	0.592	4.1%	20%	S¹
NO _X (ppmdv @ 7% O ₂)	281	186.9	195.5	-8.6	0.411	4.4%	10%	S⁴
CO (ppmdv @ 7% O₂)	281	14.1	16.1	-2.0	0.248	2.2%	5%	S3
Unit 3 FF Outlet CEMS (units	of RATA)							
SO ₂ (ppmdv @ 7% O ₂)	271	8.9	7.7	1.2	0.269	5.2%	20%	S¹
NO _x (ppmdv @ 7% O₂)	271	191.9	192.3	-0.4	0.367	0.4%	10%	RM ²
CO (ppmdv @ 7% O ₂)	271	12.2	12.1	0.1	0.097	0.2%	5%	S³

¹SO, FF Outlet Relative Accuracy calculated as a percentage of the 29 ppm standard as per Performance Specification 2, Section 13.2.

Basis of Limit: RM = Reference Method S = Standard

Discussion of Test Program

Each boiler was operated at greater than 50% (93,000 lbs/hr steam flow) during each RATA. The steam load is presented in Appendix F with the plant CEM run data. All RATA runs were 27 minutes in duration with 10 runs being performed on each unit.

A NO_X analyzer converter check was performed after the calibration error on Units 1 and 3 and after the final bias check on Unit 2. The converter efficiency data is presented along with the reference method data in Appendix E.

End of Section 1 - Project Overview

²Limit from 40 CFR 60 Appendix B Perfromance Specification 2.

³CO FF Outlet Relative Accuracy calculated as a percentage of the 100 ppm standard as per Performance Specification 4A, Section 13.2.

⁴NO_x FF Outlet Relative Accuracy calculated as a percentage of the 205 ppm standard as per Performance Specification 2, Section 13.2.

CleanAir Project No: 10955-1

.RESULTS

Table 2-1:

Relative Accuracy Unit 1 FF Outlet - Oxygen

					3	
				CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	RM Data (%d	/) (%dv)	(%dv)	Difference
1	7:12	Mar 18	9.7	1 9.70	0.01	0.12%
2	7:46	Mar 18	9.4	5 9.40	0.05	0.54%
3	8:20	Mar 18	9.2	9.30	-0.01	-0.14%
4	8:55	Mar 18	9.3	9.30	0.03	0.36%
5	9:29	Mar 18	9.3	9.30	0.02	0.18%
6	10:03	Mar 18	9.5	9.50	0.00	-0.02%
7	10:38	Mar 18	9.3	9.30	0.02	0.17%
8	11:13	Mar 18	9.6	9.60	0.03	0.34%
9	11:47	Mar 18	10.0	10.00	0.08	0.77% *
10	12:21	Mar 18	9.6	9.60	0.02	0.21%
Average			9.4	6 9.44	0.02	0.20%

Standard Deviation 0.0192

Confidence Coefficient (CC) 0.0148

. Limit Avg. Absolute Diff. + CC (%dv) 0.04 NA

Table 2-2:

Relative Accuracy Unit 1 FF Outlet - Sulfur Dioxide

-			RM Data	CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	(ppm@7% O 2)	(ppm@7%O2)	(ppm@7%O2)	Difference
1	7:12	Mar 18	17.07	14.60	2.47	14.48%
2	7:46	Mar 18	16.99	14.30	2.69	15.83%
3	8:20	Mar 18	17.89	15.20	2.69	15.02%
4	8:55	Mar 18	17.49	15.10	2.39	13.67%
5	9:29	Mar 18	11.34	8.20	3.14	27.71%
6	10:03	Mar 18	14.66	11.20	3.46	23.61%
7	10:38	Mar 18	12.72	9.40	3.32	26.13%
8	11:13	Mar 18	13.55	10.00	3.55	26.20% *
9	11:47	Mar 18	16.11	12.80	3.31	20.53%
10	12:21	Mar 18	12.08	8.80	3.28	27.13%
Average		•	15.15	12.18	2.97	19.62%

Limits

Standard Deviation 0.4103

Confidence Coefficient (CC) 0.3154

Relative Accuracy (as % of RM) 21.7% 20.0%

Relative Accuracy (as % of Applicable Std.) 11.3% 20.0%

Standard = 29 (ppm@7%O2)

^{*} Indicates that the run was not included in the RATA calculations.

^{*} Indicates that the run was not included in the RATA calculations.

CleanAir Project No: 10955-1

 	Table

		Table 2-3:		
Relative	Accuracy L	Init 1 FF Out	let - Nitroge	n Oxides

			RM Data	CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7%O2)	(ppm@7%O2)	Difference
1	7:12	Mar 18	196.60	198.00	-1.40	-0.71%
2	7:46	Mar 18	210.04	211.10	-1.06	-0.51%
3	8:20	Mar 18	199.91	199.60	0.31	0.15%
4	8:55	Mar 18	192.26	191.60	0.66	0.35%
5	9:29	Mar 18	188.94	190.90	-1.96	-1.03%
6	10:03	Mar 18	197.58	196.90	. 0.68	0.35%
7	10:38	Mar 18	198.86	197.70	1.16	0.58%
8	11:13	Mar 18	194.43	194.90	-0.47	-0.24%
9	11:47	Mar 18	185.99	184.90	1.09	0.58%
10	12:21	Mar 18	197.81	196.80	1.01	0.51%
Average			196.24	196.24	0.00	0.00%

Standard Deviation 1.1391

0.8148 Confidence Coefficient (CC) Limit

0.4% Relative Accuracy (as % of RM) 20.0%

Table 2-4:

Relative Accuracy Unit 1 FF Outlet - Carbon Monoxide

	reconstruction of the contract							
			RM Data	CEMS Data	Difference	Percent		
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7%O2)	(ppm@7%O2)	Difference		
1	7:12	Mar 18	15.75	17.40	-1.65	-10.47%		
2	7:46	Mar 18	14.53	15.90	-1.37	-9.41%		
3	8:20	Mar 18	12.43	13.30	-0.87	-7.04%		
4	8:55	Mar 18	14.29	15.20	-0.91	-6.35%		
5	9:29	Mar 18	12.36	13.70	-1.34	-10.84%		
6	10:03	Mar 18	13.48	15.00	-1.52	-11.31%		
7	10:38	Mar 18	15.51	16.20	-0.69	-4.44%		
8	11:13	Mar 18	18.70	20.80	-2.10	-11.22% *		
9	11:47	Mar 18	19.71	20.80	-1.09	-5.52%		
10	12:21	Mar 18	19.59	20.50	-0.91	-4.67%		
Average		•	15 29	16 44	-1 15	-7 52%		

Average -7.52%

0.3316 Standard Deviation

Confidence Coefficient (CC) 0.2549

Limits 9.2% 10.0% Relative Accuracy (as % of RM)

Relative Accuracy (as % of Applicable Std.) 1.4% 5.0%

^{*} Indicates that the run was not included in the RATA calculations.

CleanAir Project No: 10955-1

Table 2-5:

Relative Accuracy Unit 2 FF Outlet - Oxygen

	TOTAL TOTAL OF THE PARTY OF THE							
				CEMS Data		Percent		
Run No.	Start Time	Date (2010)	RM Data (%d\) (%dv)	(%dv)	Difference		
1	9:48	Mar 16	9.4	9.50	-0.03	-0.34%		
2	10:31	Mar 16	9.5	9.60	-0.01	-0.10%		
3	11:15	Mar 16	9.69	9.70	-0.01	-0.12%		
4	12:02	Mar 16	9.49	9.50	-0.01	-0.10%		
5	12:40	Mar 16	9.79	9.70	0.09	0.88% *		
6	13:15	Mar 16	9.79	9.70	0.05	0.50%		
7	13:51	Mar 16	9.60	9.60	0.06	0.58%		
8	14:26	Mar 16	9.5	9.60	-0.03	-0.27%		
9	15:02	Mar 16	9.66	9.60	0.06	0.58%		
10	15:37	Mar 16	9.50	9.50	0.00	0.04%		
Average			9.60	9.59	0.01	0.09%		

RATA 0.0356

Standard Deviation

0.0274

Confidence Coefficient (CC)

Limit

0.06 NA

Table 2-6:

Relative Accuracy Unit 2 FF Outlet - Sulfur Dioxide

			RM Data	CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7% O 2)	(ppm@7%O2)	Difference
1	9:48	Mar 16	12.93	16.20	-3.27	-25.29% *
2	10:31	Mar 16	17.63	19.60	-1.97	-11.17%
3	11:15	Mar 16	18.82	19.60	-0.78	-4.14%
4	12:02	Mar 16	17.64	18.80	-1.16	-6.57%
5	12:40	Mar 16	17.23	17.20	0.03	0.15%
6	13:15	Mar 16	16.99	17.30	-0.31	-1.80%
7	13:51	Mar 16	19.26	19.30	-0.04	-0.20%
8	14:26	Mar 16	20.66	20.00	0.66	3.17%
9	15:02	Mar 16	18.39	19.30	-0.91	-4.94%
10	15:37	Mar 16	17.26	18.10	-0.84	-4.86%
Average			18.21	18.80	-0.59	-3.25%

Standard Deviation 0.7700

Confidence Coefficient (CC) 0.5919

Limits Relative Accuracy (as % of RM) 6.5% 20.0%

Relative Accuracy (as % of Applicable Std.) 4.1% 20.0%

Standard = 29 (ppm@7%O2)

Avg. Absolute Diff. + CC (%dv)

^{*} Indicates that the run was not included in the RATA calculations.

^{*} Indicates that the run was not included in the RATA calculations.

CleanAir Project No: 10955-1

RESULT	S						
Table 2-7:							
	Relati	ive Accuracy	Unit 2 FF Out				
			RM Data	CEMS Data		Percent	
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7%O2)	(ppm@7%O2)	Difference	
1	9:48	Mar 16	196.09	205.70	-9.61	-4.90%	
2	10:31	Mar 16	188.66	198.90	-10.24	-5.43% *	
3	11:15	Mar 16	184.62	193.90	-9.28	-5.03%	
4	12:02	Mar 16	185.49	194.50	-9.01	-4.85%	
5	12:40	Mar 16	181.00	189.20	-8.20	-4.53%	
6	13:15	Mar 16	186.64	194.90	-8.26	-4.43%	
7	13:51	Mar 16	190.21	198.40	-8.19	-4.30%	
8	14:26	Mar 16	183.11	191.50	-8.39	-4.58%	
9	15:02	Mar 16	184.02	192.60	-8.58	-4.66%	
10	15:37	Mar 16	190.59	198.80	-8.21	-4.31%	
Average			186.86	195.50	-8.64	-4.62%	
			RATA				
Standard De	viation		0.5342				
Confidence C	Confidence Coefficient (CC)						
				Limits			
Relative Accuracy (as % of RM)			4.8%	20.0%			
Relative Accuracy (as % of Applicable Std.) Standard = 205 (ppm@7%O2)			4.4%	10.0%			

^{*} Indicates that the run was not included in the RATA calculations.

Table 2-8:
Relative Accuracy Unit 2 FF Outlet - Carbon Monoxide

			RM Data	CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7%O2)	(ppm@7%O2)	Difference
1	9:48	Mar 16	15.50	17.70	-2.20	-14.19%
2	10:31	Mar 16	15.90	17.90	-2.00	-12.58%
3	11:15	Mar 16	15.70	18.10	-2.40	-15.28%
4	12:02	Mar 16	11.41	13.40	-1.99	-17.44%
5	12:40	Mar 16	13.34	15.00	-1.66	-12.43%
6	13:15	Mar 16	11.90	14.00	-2.10	-17.64% *
7	13:51	Mar 16	15.10	17.20	-2.10	-13.87%
8	14:26	Mar 16	14.05	16.10	-2.05	-14.56%
9	15:02	Mar 16	15.67	17.80	-2.13	-13.61%
10	15:37	Mar 16	10.30	11.60	-1.30	-12.59%
Average		-	14.11	16.09	-1.98	-14.03%
			RATA			
Standard Dev	viation		0.3232			
Confidence C	Coefficient (CC)		0.2484			
,				Limits		
Relative Accuracy (as % of RM)			15.8%	10.0%		
Relative Accuracy (as % of Applicable Std.) Standard = 100 (ppm@7%O2)			2.2%	5.0%		

^{*} Indicates that the run was not included in the RATA calculations.

CleanAir Project No: 10955-1

RESULTS

Table 2-9:

Relative Accuracy Unit 3 FF Outlet - Oxygen

					CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	RM Data (%	dv)	(%dv)	(%dv)	Difference
1	7:10	Mar 17	- 8	.41	8.20	0.21	2.47%
2	7:45	Mar 17	8	44	8.20	0.24	2.80%
3	8:20	Mar 17	8	.43	8.20	0.23	2.70%
4	8:54	Mar 17	8	.22	8.00	0.22	2.68%
5	9:28	Mar 17	8	.68	8.40	0.28	3.22% *
6	10:02	Mar 17	8	.57	8.30	0.27	3.17%
7	10:37	Mar 17	8	.11	7.90	0.21	2.60%
8	11:13	Mar 17	7	96	7.70	0.26	3.29%
9	11:48	Mar 17	8	15	7.90	0.25	3.06%
10	12:25	Mar 17	9	09	8.90	0.19	2.09%
Average			8	38	8.14	0.23	2.75%

0.0268

Standard Deviation

Confidence Coefficient (CC) 0.0206

Table 2-10:

Relative Accuracy Unit 3 FF Outlet - Sulfur Dioxide

			RM Data	CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7%O2)		Difference
1	7:10	Mar 17	11.76	11.40	0.36	3.05%
2	7:45	Mar 17	15.84	14.70	1.14	7.21%
3	8:20	Mar 17	12.75	11.30	1.45	11.40%
4	8:54	Mar 17	11.05	9.70	1.35	12.24%
5	9:28	Mar 17	6.89	5.40	1.49	21.59%
6	10:02	Mar 17	4.64	3.30	1.34	28.84%
7	10:37	Mar 17	2.52	1.10	1.42	56.29%
8	11:13	Mar 17	3.76	2.30	1.46	38.82% *
9	11:48	Mar 17	5.22	3.80	1.42	27.17%
10	12:25	Mar 17	9.48	8.30	1.18	12.41%
Average	<u> </u>	•	8.90	7.67	1.24	13.90%

0.3505

Confidence Coefficient (CC) 0.2694

Relative Accuracy (as % of RM)

Limit
20.0%

Relative Accuracy (as % of Applicable Std.) 5.2% 20.0%

Standard = 29 (ppm@7%O2)

Standard Deviation

^{*} Indicates that the run was not included in the RATA calculations.

^{*} Indicates that the run was not included in the RATA calculations.

CleanAir Project No: 10955-1

2-6

		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	The Country Section of the			进入公司的		
	Table 2-11:							
	Relative Accuracy Unit 3 FF Outlet - Nitrogen Oxides							
		_	RM Data		Difference	Percent		
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7%O2)	(ppm@7% O 2)	Difference		
1	7:10	Mar 17	184.53	185.20	-0.67	-0.36%		
2	7:45	Mar 17	186.08	187.20	-1.12	-0.60% *		
3	8:20	Mar 17	190.07	190.90	-0.83	-0.43%		
4	8:54	Mar 17	195.01	195.20	-0.19	-0.10%		
5	9:28	Mar 17	194.81	194.50	0.31	0.16%		
6	10:02	Mar 17	198.06	198.20	-0.14	-0.07%		
7	10:37	Mar 17	188.75	189.50	-0.75	-0.40%		
8	11:13	Mar 17	185.39	185.90	-0.51	-0.27%		
9	11:48	Mar 17	198.14	199.00	-0.86	-0.43%		
10	12:25	Mar 17	192.59	192.20	0.39	0.20%		
Average			191.93	192.29	-0.36	-0.19%		

 Standard Deviation
 0.4780

 Confidence Coefficient (CC)
 0.3675

 Limit

 Relative Accuracy (as % of RM)
 0.4%
 20.0%

Table 2-12:
Relative Accuracy Unit 3 FF Outlet - Carbon Monoxide

		_	RM Data	CEMS Data	Difference	Percent
Run No.	Start Time	Date (2010)	(ppm@7%O2)	(ppm@7%O2)	(ppm@7%O2)	Difference
1	7:10	Mar 17	15.24	15.00	0.24	1.60%
2	7:45	Mar 17	14.82	14.70	0.12	0.78%
3	8:20	Mar 17	11.64	11.50	0.14	1.22%
4	8:54	Mar 17	9.66	9.70	-0.04	-0.43%
5	9:28	Mar 17	14.05	13.90	0.15	1.08%
6	10:02	Mar 17	13.64	13.40	0.24	1.78%
7	10:37	Mar 17	12.98	12.60	0.38	2.90% *
8	11:13	Mar 17	8.45	8.40	0.05	0.58%
9	11:48	Mar 17	9.67	9.50	0.17	1.72%
10	12:25	Mar 17	12.66	12.80	-0.14	-1.08%
Average			12.20	12.10	0.10	0.85%

Standard Deviation	0.1266	
Confidence Coefficient (CC)	0.0973	
Relative Accuracy (as % of RM)	1.6%	Limit 10.0%
Relative Accuracy (as % of Applicable Std.) Standard = 100 (ppm@7%O2)	0.2%	5.0%

^{*} Indicates that the run was not included in the RATA calculations.

^{*} Indicates that the run was not included in the RATA calculations.

3-1

CleanAir Project No: 10955-1

DESCRIPTION OF INSTALLATION:

PROCESS DESCRIPTION

The North Broward Resource Recovery facility, located in Pompano Beach, Florida, operates three (3) 750 tons-per-day municipal refuse-fired, water-wall boiler trains. The trains were manufactured by Babcock and Wilcox to produce electricity for sale to a local utility company. Each boiler is equipped with a spray dryer absorber (SDA) for acid gas removal, followed by an FF baghouse for the control of particulate emissions. The control equipment is manufactured by Wheelabrator Air Pollution Control, Inc. Each FF baghouse is followed by an induced draft fan, which directs the flue gas to a dedicated flue in a common stack.

CEMS GENERAL DESCRIPTION

The CEMs was supplied by Aldora Technologies and consists of the following major components: three (3) Perkin Elmer MCS-100 /e infrared-based multi-gas measurement analyzers (one for each unit) and an Environmental System Corporation (ESC) UNIX-based data acquisition system (DAS). With the recent addition of M and C chillers the MCS-100 /e analyzers measure pollutant and diluent concentrations on a cold-dry basis.

Each MCS-100 /e system includes the following: a SICK 100 /e analyzer with integrated zirconium oxide based O_2 analyzer, programmable logic controller (PLC) and heated probe and sample line. The FF outlet 100 /e systems monitor oxygen (O_2) , carbon dioxide (CO_2) , carbon monoxide (CO), sulfur dioxide (SO_2) and nitrogen oxides (NO_X) from the respective stack ductwork.

The ESC DAS consists of three (3) Model 8816 data loggers (one for each MWC unit), a central polling (located in the CEM shelter), data archiving and reporting computer, and a remote engineering workstation (located in the control room). An environmentally-controlled shelter houses the MCS-100 /e analyzers, calibration gas systems and ESC Model 8816 data loggers. A general CEMs schematic is shown in Figure 3-1 on page 3-3.

PERKIN ELMER MCS-100 /E ANALYZER

The analyzer uses multiple infrared measurements, including Gas Filter Correlation for measuring NO_X and CO, a single beam-dual wavelength for SO₂ and an integrated heated zirconium oxide (ZrO₂) electrochemical cell for O₂, which is controlled by the 100 /e motherboard. All measurements are performed on a cold-dry basis in a single once-through sample cell with common optical bench (infrared source, filters, chopper wheel and detector). All sampling components (probe, sample line, pump) and measurement cell are maintained at 385°F to prevent condensation prior to the chillers.

The MSC-100 /e includes an integrated PLC that controls all analyzer functions, including optical bench operation, detector signal processing, dynamic gas calibrations, sample system operation and operational status alarms. The dry-based SO_2 , NO_X , CO CO_2 and O_2 measurement signals and operational status outputs are sent to the ESC 8816 data logger.

CleanAir Project No: 10955-1

DESCRIPTION OF INSTALLATION

ESC DAS

The DAS consists of three (3) Model 8816 data loggers, a central data polling and reporting computer and engineering workstation. The 8816 data loggers receive the measurement signals from the MCS-100 /e analyzers and transmit the data to the central computer. The 8816 data loggers also receive the necessary status inputs from the MCS-100 /e to properly record analyzer calibrations, provide appropriate status flags to data and generate alarms to alert operators of CEM problems or excess emissions events.

The data loggers store up to four (4) weeks of hourly CEM data, consequently, in the event the central computer goes down, data recording and archiving is not affected. The data logger also receives the steam flow rate and fabric filter temperature signals from the control room to provide calculation of appropriate averages and permanent recording.

The Central Polling and Reporting Computer, located in the CEMS building, receives all data from the 8816 data loggers, calculates the required emission units and averaging times, generates the daily calibration reports and provides all required Subpart Cb data recording and reporting. Data from this computer is used for the relative accuracy testing and calibration drift determinations. The computer also provides the necessary permanent data storage using data storage tapes. The engineering workstation provides a remote link to the central computer for data review and generation of reports.

CEM CALIBRATION

The outlet CEM systems are calibrated daily using the appropriate calibration gases. Calibration gases are injected at the probes to provide a complete assessment of CEM response. The MCS-100 /e performs an automatic zero adjustment to all measurement channels after the calibration is completed and the zero and span responses recorded by the 8816 data logger. No other adjustments or corrections are performed on the data.

CleanAir Project No: 10955-1

DESCRIPTION OF INSTALLATION.

CEMS SCHEMATIC

Figure 3-1 is a general schematic of each of the outlet CEM systems. Figure 3-2 on page 3-4 presents the RM and CEM outlet sampling locations, as well as a general facility process flow diagram.

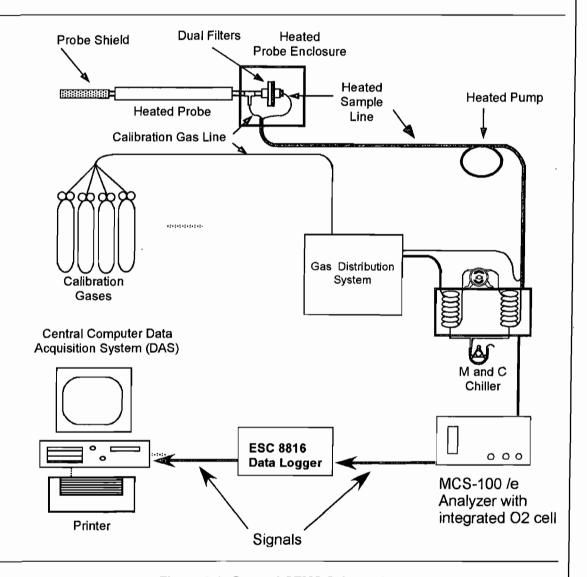


Figure 3-1: General CEMS Schematic

CleanAir Project No: 10955-1

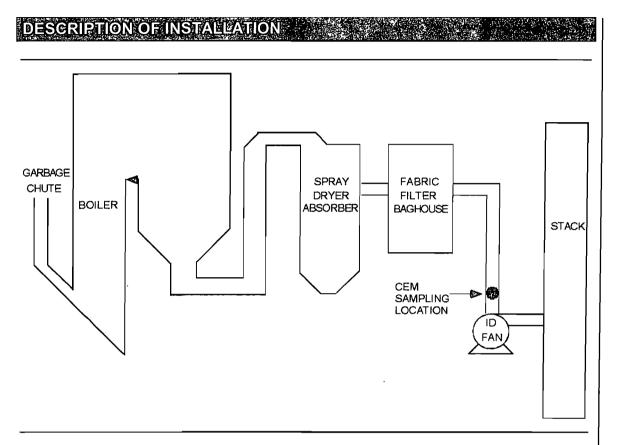


Figure 3-2: Process Flow Diagram and CEM Locations

CleanAir Project No: 10955-1

DESCRIPTION OF INSTALLATION

DESCRIPTION OF SAMPLING LOCATIONS

Sampling point locations were determined according to EPA Method 1.

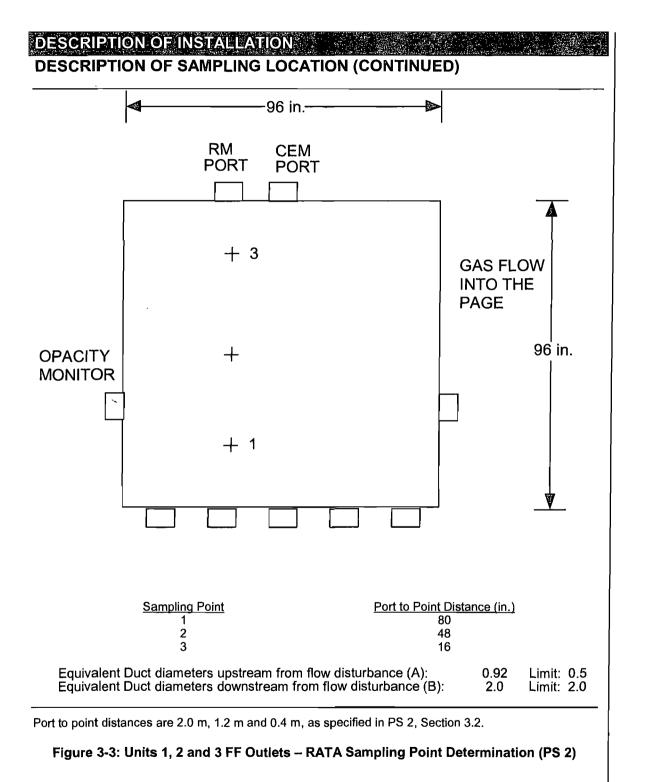

Table 3-1 outlines the sampling point configurations. Figure 3-3 on page 3-6 illustrates the sampling points and orientation of sampling ports for each of the sources tested in the program.

Table 3-1: Sampling Points

Location Constituent	Methods	Run No.	Ports	Points per Port	Minutes per Point	Total Minutes	Figure
Unit 1 FF Outlets CEM	3A, 6C, 7E, 10	1-10	1	3	9	27	3-3
Unit 2 FF Outlet CEM	3A, 6C, 7E, 10	1-10	1	3	9	27	3-3
Unit 3 FF Outlet CEM	3A, 6C, 7E, 10	1-10	1	3	9	27	3-3

CleanAir Project No: 10955-1

3-6

End of Section 3 - Description of Installation

CleanAir Project No: 10955-1

METHODOLOGY

Title 40 CFR Part 60 Appendix A

4-1

Clean Air Engineering followed procedures as detailed in EPA Methods 3A, 6C, 7E and 10, as well as Performance Specifications 2, 3 and 4A. The following table summarizes the methods and their respective sources.

Table 4-1: Summary of Sampling Procedures

Method 3A	Stationary Sources (Instrumental Analyzer Procedure)"
Method 6C	"Determination of Sulfur Dioxide Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 7E	"Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 10	"Determination of Carbon Monoxide Emissions from Stationary Sources"
Title 40 CFR Par	t 60 Appendix B (Performance Specifications (PS))
PS2	"Specifications and Test Procedures for SO ₂ and NO _x Continuous Emission Monitoring Systems in Stationary Sources"
PS3	"Specifications and Test Procedures for O ₂ and CO ₂ Continuous Emission Monitoring
100	Systems in Stationary Sources" "Specifications and Test Procedures for Carbon Monoxide Continuous Emission

These methods appear in detail in Title 40 of the Code of Federal Regulations (CFR) and on the World Wide Web at http://www.cleanair.com.

Diagrams of the sampling apparatus and major specifications of the sampling, recovery and analytical procedures are summarized for each method in Appendix A.

CleanAir followed specific quality assurance and quality control (QA/QC) procedures as outlined in the individual methods and in EPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods", EPA/600/R-94/038C. Additional QA/QC methods, as prescribed in CleanAir's internal Quality Manual, were also followed. Results of all QA/QC activities performed by CleanAir are summarized in Appendix D.

End of Section 4 - Methodology

CleanAir.

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-1

APPENDIX	
TEST METHOD SPECIFICATIONS	A
SAMPLE CALCULATIONS	B
PARAMETERS	C
QA/QC DATA	D
REFERENCE METHOD FIELD DATA	
CEM MONITOR AND PROCESS DATA	

TEST METHOD SPECIFICATIONS

A

CleanAir Project No: 10955-1

This Page Intentionally Left Blank

Specification Sheet for

EPA Methods 6C, 7E and 10

Source Location Name(s)

Units 1, 2 and 3 FF Outlets

Pollutant(s) to be Determined

Sulfur Dioxide (SO₂), Nitrogen Oxides (NO_x) and Carbon Monoxide (CO)

Other Parameters to be Determined from Train

O2 and CO2 (EPA Method 3A)

Pollutant	Sampling	Information
r vijutant	Camping	11110111111111011

Duration of Run

No. of Sample Traverse Points

Sample Time per Point

Sampling Rate

Standard Method Specification

27 minutes

Actual Specification Used

N/A N/A

N/A

Constant Rate

9 minutes Constant Rate

Sampling Probe

Nozzle Material

Nozzle Design

Probe Liner Material

Effective Probe Length

Probe Temperature Set-Point

N/A

N/A

Stainless Steel or Pyrex Glass

Sufficient to Traverse Points

Prevent Condensation

None N/A

Stainless Steel

3 points (16", 48" and 80")

248'F±25'F

Particulate Filter

In-Stack Filter

In-Stack Filter Material

External Filter

External Filter Material

External Filter Set-Point

Yes

Non-reactive to gas

Borosilicate, Quartz Glass Wool or Fiber Mat

Prevent Condensation

Yes

Fritted Stainless Steel

Yes

Borosilicate Glass Fiber Mat

248°F±25°F

Sample Delivery System

Heated Sample Line Material Heated Sample Line Set-Point

Heated Sample Line Connections

Moisture Removal System

Sample Pump Type

Sample Pump Material Sample Flow Control

Non-Heated Sample Line Material

Non-Heated Sample Line Connections

Additional Filters Additional Filter Type

Filter Material

Additional Filter Location

Stainless Steet or Teflon **Prevent Condensation**

Probe Exit to Moisture Removal System Refrigerator-type condenser or similar

Leak-Free, minimal response time

Non-reactive to sample gases Constant Rate

Stainless Steel or Teflon

Moisture Removal to Sample Gas Manifold

Optional N/A

Optional

Non-reactive to sample gases

Teflon 248'F±25'F

Probe to Moisture Removal System

Refrigerator-type condenser

Diaphragm

Teflon

Constant Rate (±10%)

Teflon

Moisture Removal to Sample Gas Manifold

No N/A N/A

N/A

Analyzer Description

Oxygen (O₂)

Carbon Dioxide (CO₂) Sulfur Dioxide (SO₂)

Nitrogen Oxides (NO_x) Carbon Monoxide (CO)

Total Hydrocarbon (THC) Hydrogen Chloride (HCI) Ammonia (NH₃)

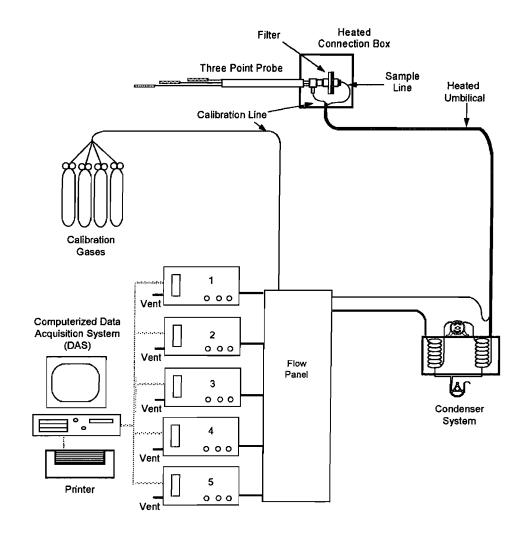
EPA Method 3A (Paramagnetic)

EPA Method 3A (NDIR)

EPA Method 6C (UV, NDIR or Fluorescence) EPA Method 7E (Chemiluminescent)

EPA Method 10 (Gas Filter Correlation IR) N/A N/A N/A

EPA Method 3A (Paramagnetic) EPA Method 3A (NDIR)


EPA Method 6C (UV Absorption) EPA Method 7E (Chemiluminescent) EPA Method 10 (Gas Filter Correlation IR)

Specification Sheet for

EPA Methods 6C, 7E and 10

Standard Method Specification	Actual Specification Used
A A OO to Firm and add Mandager	
	0-14.1
	0-13.9%
	0-89.9 ppm
≤ 1.33 x Expected Maximum	0-453 ppm
≤ 1.33 x Expected Maximum	0-98.5 ppm
N/A	N/A
N/A	N/A
N/A	N/A
Strip chart, Analog Computer or Digital Recorder	Digital Recorder
0.5 Percent of Span	0.1 Percent of Span
Manually or Automatic	Automatic
1-min. intervals or 30 measurements (less restrictive)	One reading per second
1-min. intervals or 30 measurements (less restrictive)	One Minute Average (60, 1 second readings)
2-mln. intervals or 96 measurements (less restrictive)	N/A
2-min. intervals or 96 measurements (less restrictive)	N/A
EPA Protocol 1	EPA Protocol 1
EPA Protocol 1	EPA Protocol 1
EPA Protocol 1	EPA Protocol 1
EPA Protocol 1	EPA Protocol 1
EPA Protocol 1	EPA Protocol 1
N/A	
N/A	
N/A	
	≤ 1.33 x Expected Maximum N/A N/A N/A N/A Strip chart, Analog Computer or Digital Recorder 0.5 Percent of Span Manually or Automatic 1-min. intervals or 30 measurements (less restrictive) 1-min. intervals or 30 measurements (less restrictive) 2-min. intervals or 96 measurements (less restrictive) 2-min. intervals or 96 measurements (less restrictive) EPA Protocol 1

EPA Methods 3A, 6C, 7E and 10 Sampling Train Configuration

				Calibration Gas
Number	Gas	Monitor	Range Used	Concentrations
1	NO _X	T.E.I. 42i-HL	0-453 ppm	0, 225, 453
2	SO ₂	Western Research 921L	0-89.9 ppm	0, 44.9, 89.9
3	СО	T.E.I. 48i	0-95.48 ppm	0, 48.2, 95.48
4	O ₂	Servomex 1420C	0-14.1 %	0, 6.01, 14.1
5	CO ₂	Servomex 1415C	0-13.9 %	0, 5.91, 13.9

This Page Intentionally Left Blank

CleanAir Project No: 10955-1

SAMPLE CALCULATIONS

В

This Page Intentionally Left Blank

Wheelabrator North Broward CleanAir Project No. 10955 Pompano Beach, FL FF Outlet 1

CEM Field Sample Calculations for SO2 FF Outlet 1

Sample data taken from and Channel 3

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124605

1. Average of a calibration series

$$C_{mce} = \frac{(C_1 + C_2 + C_3)}{3}$$

Where:

 C_1, C_2, C_3 = concentrations of 3 consecutive gas samples that are

representative of the calibration gas

 C_{moe} = average concentration of a calibration series = 43.520 ppmdv

In this case the low cal series for channel 3

2a. Calibration Error Check for Hydrocarbons (5% of actual calibration gas value error allowed by Method 25A)

$$\begin{array}{lll} E_{HC} & = abs \left| \frac{C_{mce} - C_{ma}}{C_{ma}} \right| \leq l_{cal} \\ \text{Where:} & = \operatorname{average} \text{ concentration of a calibration series} & = & 43.520 & \operatorname{ppmdv} \\ & & & \operatorname{In this case the low cal series for channel 3} \\ C_{ma} & = & \operatorname{concentration of actual calibration gas value} & = & 44.900 & \operatorname{ppmdv} \\ l_{cal} & = & \operatorname{limit for calibration error for hydrocarbons} & = & 5.0\% \\ E_{HC} & = & \operatorname{calibration error check value} & = & \operatorname{NA} \end{array}$$

2b. Calibration Error Check for non-Hydrocarbons (2% of Instrument Span)

$$E = abs \left| \frac{C_{mce} - C_{ma}}{Span} \right| \leq l_{cal}$$
 Where:
$$C_{mce} = \text{average concentration of a calibration series} = 43.520 \quad \text{ppmdv}$$

$$\text{In this case the low cal series for channel 3}$$

$$C_{ma} = \text{concentration of actual calibration gas value} = 44.900 \quad \text{ppmdv}$$

$$\text{Span} = \text{instrument span value} = 89.900$$

$$l_{cal} = \text{limit for calibration error for non-hydrocarbons} = 2.0\%$$

$$\text{Pass}$$

3. System Bias as Percent of Span Value (5% is allowed)

$$E_{Bias} = abs \frac{C_{mf} - C_{mce}}{Span} \le l_{bias}$$

Where:				
C _{mce}	 average concentration of a calibration series in this case the Low cal series for channel 3 	=	43.520	ppmdv
C_{mf}	= calibration error response concentration for Cal01	=	41.950	ppmdv
Span	= instrument span value	=	89.900	ppmdv
bias	= limit for system bias error	=	5.0%	
Ebias	= calibration bias error check value	=	1.75%	Pass

4. System Drift as Percent of Span Value (3%)

Wheelabrator North Broward CleanAir Project No. 10955 Pompano Beach, FL

FF Outlet 1

$$E_{Drift} = abs \left| \frac{C_{mf} - C_{mi}}{Span} \right| \le l_{drift}$$

Where:

ration	on drift e	error chec	k value			=	0.34%	Pass
for sy	system o	drift error				=	3.0%	
umen	nt span	value				=	89.900	ppmdv
oration	on error	response	concentr	ration for Cal	00 (initial)	=	42.254	ppmdv
ration	on error	response	e concentr	ration for Cal	01 (final)	=	41.950	ppmdv
4!					04 (61)		44.050	

5. Average Concentration for an entire Run $_{\rm N}$

$$C = \frac{\frac{1}{N}}{N}$$
Where:
$$C_{1} = \text{All concentration readings for the entirety of Run 1} = \frac{11.203}{11.203} \quad \text{ppmdv}$$
for the monitor looking for SO2 on channel 3
$$N = \text{total number of readings in Run 1} = \frac{27}{12.981} \quad \text{ppmdv}$$

$$C = \text{average SO2 concentration for Run 1} = \frac{12.981}{12.981} \quad \text{ppmdv}$$

6. Drift-Corrected Average Concentration for an entire Run

$$C_{DC} = \left(C - \frac{C_{oi} + C_{of}}{2}\right) \left(\frac{C_{ma}}{\frac{C_{mi} + C_{mf}}{2} - \frac{C_{oi} + C_{of}}{2}}\right)$$

C _{ms}	 concentration of actual calibration gas value average SO2 concentration for Run 1 	=	44.900 12.981	ppmdv ppmdv
Cmf	= calibration error response concentration for Cal01 (final)	=	41.950	ppmdv
C _{mi}	= calibration error response concentration for Cal00 (initial)	=	42.254	ppmdv
C_{of}	 calibration error response concentration for Cal01 (final) for zero gas 	=	0.272	ppmdv
C_{oi}	 calibration error response concentration for Cal00 (initial) for zero gas 	=	0.003	ppmdv
Cnc	= drift corrected average concentration for Run 1	=	13.742	ppmdv

CEM Emissions Sample Calculations for SO2 FF Outlet 1

Sample data taken from Run 1 and Channel 3

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124702

1. SO2 concentration (ppmdv)

$$C(ppmdv) = k_1 \times C_{DC} \qquad if \qquad dry \qquad gas$$

$$C(ppmdv) = \frac{k_1 \times C_{DC}}{\left(1 - \frac{B_W}{100}\right)} \qquad if \qquad wet \qquad gas$$

Where:

 C_{DC} = drift corrected average concentration = 13.742 ppmdv B_{w} = actual water vapor in gas (% v/v) = 0.000 % v/v 100 = conversion factor to change percentage to decimal = 100

100 = conversion factor to change percentage to decimal = 100 k₁ = ppm/% to ppm conversion factor for diluent gases = 1

C (ppmdv) = SO2 concentration (ppmdv) = 13.742 ppmdv

2. SO2 concentration (lb/dscf)

$$C(lb/dscf) = \frac{C(ppmdv) \times MW(gas)}{10^{6} ppm \times 385.3}$$

Where:

C (ppmdv) = SO2 concentration (ppmdv) = 13.742 ppmdv

MW = Molecular Weight of SO2 gas = 64.0628 lb/lb-mole

10⁶ = conversion factor from decimal to ppm = 1.00E+06

385.3 = molar volume = 385.3 dscf/lb-mole

C (lb/dscf) = SO2 concentration (lb/dscf) = 2.285E-06 lb/dscf

3. SO2 concentration (mg/dscm)

$$C(mg/dscm) = C(lb/dscf) \times k_2 \times 35.31$$

Where:

C (lb/dscf) = SO2 concentration (lb/dscf) = 2.285E-06 lb/dscf k_2 = conversion factor from lb to mg = 453515 mg/lb 35.31 = conversion factor from dscf to dscm = 35.31 ft³/m³

C (mg/dscm) = SO2 concentration (mg/dscm) = 36.590 mg/dscm

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

4. SO2 concentration (mg/Nm3 dry)

$$C \qquad \left(mg / Nm^3 dry \right) \qquad = C \left(lb / dscf \right) \times k_2 \times 35.31 \times \left(\frac{68 + 460}{32 + 460} \right)$$

Where:

C (lb/dscf)	= SO2 concentration (lb/dscf)	=	2.285E-06	lb/dscf
k ₂		=	453515	mg/lb
35.31	= conversion factor from dscf to dscm	=	35.31	ft ³ /m ³
68	= standard temperature (°F)	=	68	°F
32	⇒ normal temperature (°F)	=	32	°F
460	= °F to °R conversion constant	=	460	

C (mg/Nm3 dr = SO2 concentration (mg/Nm3 dry) = 39.267 mg/Nm³ dry

5. SO2 concentration corrected to 7% O2 (ppmdv example)

$$C(ppmdv@x\%02) = C(ppmdv) \times \left(\frac{20.9 - x}{20.9 - O_2}\right)$$

Where:

C (ppmdv)	= SO2 concentration (ppmdv)	=	13.742	ppmdv
x	= oxygen content of corrected gas (%)	=	7.00	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.711	%
20.9	= oxygen content of ambient air (%)	=	20.9	%

C (ppmdv - O2 = SO2 concentration corrected to 7% O2 (ppmdv example) = 17.073 ppmdv @ 7%O2

6. SO2 concentration corrected to 12% CO2 (ppmdv example)

$$C(ppmdv @ y\%C0_2) = C(ppmdv) \times \left(\frac{y}{CO_2}\right)$$

Where:

C (ppmdv)	= SO2 concentration (ppmdv)	=	13.742	ppmdv
у	= carbon dioxide content of corrected gas (%)	=	12.00	%
CO ₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.715	%

C (ppmdv -CO = SO2 concentration corrected to 12% CO2 (ppmdv example) = 16.974 ppmdv @ 12%CO2

Wheelabrator North Broward CleanAir Project No. 10955 Pompano Beach, FL FF Outlet 1

CEM RATA Sample Calculations for SO2 FF Outlet 1

Sample data taken from Run 1
and Channel 3

i=1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124937

1. SO2 value difference between Plant CEM Data and CleanAir RM Data (ppm@7%O2)

D	$= C_R - C_P$			
Where:				
C _P	= SO2 value from Plant CEM Data	=	14.600	ppm@7%O2
C_R	= SO2 value from CleanAir RM Data	=	17.073	ppm@7%O2
_			a .=a	
ט	= SO2 value difference between 2 methods	=	2.473	ppm@7%O2

2. Percent Value Difference (%)

$$D_{\%} = \frac{D}{C_{R}}$$

 C_R = SO2 value from CleanAir RM Data = 17.073 ppm@7%O2 D = SO2 value difference between 2 methods = 2.473 ppm@7%O2

D_% = SO2 value difference as a percentage of RM Data ≈ 14.5%

3. Average SO2 Value (Plant CEM Data example) (ppm@7%O2)

$$C_{p,avg} = \frac{\sum_{i=1}^{N} C_{p,i}}{N}$$

C_{p,i} = SO2 value from Plant CEM Data for ith run = 14.600 ppm@7%O2
N = total number of runs included in the CEM data = 9

C_{p,avg} = Average SO2 value from Plant CEM Data = 12.178 ppm@7%O2

Where:

Wheelabrator North Broward

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

4. Standard Deviation of Plant CEM data and CleanAir RM data

$$STDEV = \sqrt{\frac{\sum_{i=1}^{N} (C_{R,i} - C_{p,i})^{2} - \frac{\left(\sum_{i=1}^{N} (C_{R,i} - C_{p,i})\right)^{2}}{N}}{N-1}}$$

Where:

$C_{R,i}$	= SO2 value from CleanAir RM Data for ith run	=	17.073	ppm@7%O2
$C_{p,i}$	= SO2 value from Plant CEM Data for ith run	=	14.600	ppm@7%O2
N	= total Number of RATA Runs	=	9	
STDEV	= standard deviation of plant CEM data and CleanAir RM data	=	0.410	nnm@7%O2

5. Confidence Coefficient

$$CC = STDEV \times \frac{t}{\sqrt{N}}$$

Where:

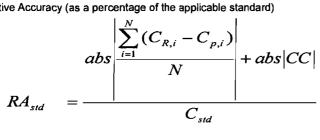
STDEV t N	 standard deviation of plant CEM data and CleanAir RM data confidence factor total Number of RATA Runs 	= =	0.410 2.306 9	ppm@7%O2
CC	= confidence coefficient	=	0.315	ppm@7%O2

6. Relative Accuracy (as a percentage of the reference method)

$$RA = \frac{abs \left| \sum_{i=1}^{N} (C_{R,i} - C_{p,i}) \right|}{N} + abs |CC|}{\sum_{i=1}^{N} C_{R,i}}$$

Where:

$C_{R,i}$	= SO2 value from CleanAir RM Data for ith run =	17.073	ppm@7%O2
$C_{p,i}$	= SO2 value from Plant CEM Data for ith run =	14.600	ppm@7%O2
N	= total Number of RATA Runs =	9	
CC	= confidence coefficient ==	0.315	ppm@7%O2
RA	= relative accuracy (as a percentage of the reference method) =	21.701%	
	Limit =	20.000%	


Wheelabrator North Broward

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

7. Relative Accuracy (as a percentage of the applicable standard)

Where:				
$C_{R,l}$	= SO2 value from CleanAir RM Data for ith run	=	17.073	ppm@7%O2
$C_{p,l}$	= SO2 value from Plant CEM Data for ith run	=	14.600	ppm@7%O2
N	= total Number of RATA Runs	=	9	
CC	= confidence coefficient	=	0.315	
C_{std}	= SO2 value of applicable standard	=	29.000	ppm@7%O2
RA	= relative accuracy (as percentage of the applicable standard) Limi		11.337% 20.000%	

Wheelabrator North Broward CleanAir Project No. 10955 Pompano Beach, FL FF Outlet 1

CEM Field Sample Calculations for NOX FF Outlet 1

Sample data taken from and Channel 4

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124829

1. Average of a calibration series

$$C_{mce} = \frac{(C_1 + C_2 + C_3)}{3}$$

Where:

 C_1, C_2, C_3 = concentrations of 3 consecutive gas samples that are

representative of the calibration gas

C_{mce} = average concentration of a calibration series = 225.573 ppmdv

In this case the low cal series for channel 4

2a. Calibration Error Check for Hydrocarbons (5% of actual calibration gas value error allowed by Method 25A)

$$\begin{array}{lll} E_{HC} & = abs \left| \frac{C_{mce} - C_{ma}}{C_{ma}} \right| \leq l_{cal} \\ \text{Where:} & = \operatorname{average} \ \operatorname{concentration} \ \operatorname{of} \ \operatorname{a} \ \operatorname{calibration} \ \operatorname{series} & = \ 225.573 \ \operatorname{ppmdv} \\ & \quad \ln \ \operatorname{this} \ \operatorname{case} \ \operatorname{the} \ \operatorname{low} \ \operatorname{cal} \ \operatorname{series} \ \operatorname{for} \ \operatorname{channel} \ 4 \\ C_{ma} & = \operatorname{concentration} \ \operatorname{of} \ \operatorname{actual} \ \operatorname{calibration} \ \operatorname{gas} \ \operatorname{value} & = \ 225.000 \ \operatorname{ppmdv} \\ l_{cal} & = \ \operatorname{limit} \ \operatorname{for} \ \operatorname{calibration} \ \operatorname{error} \ \operatorname{for} \ \operatorname{hydrocarbons} & = \ 5.0\% \end{array}$$

2b. Calibration Error Check for non-Hydrocarbons (2% of Instrument Span)

$$E = abs \left| \frac{C_{mce} - C_{ma}}{Span} \right| \leq I_{cal}$$
 Where:
$$C_{mce} = \text{average concentration of a calibration series} = 225.573 \quad \text{ppmdv}$$
 In this case the low cal series for channel 4
$$C_{ma} = \text{concentration of actual calibration gas value} = 225.000 \quad \text{ppmdv}$$
 Span = instrument span value = 453.000
$$I_{cal} = \text{limit for calibration error for non-hydrocarbons} = 2.0\%$$

$$E = \text{calibration error check value} = 0.13\% \quad \text{Pass}$$

3. System Bias as Percent of Span Value (5% is allowed)

$$E_{Blas} = abs \left| \frac{C_{mf} - C_{mce}}{Span} \right| \le l_{bias}$$

Where:

C _{mce}	 average concentration of a calibration series in this case the Low cal series for channel 4 	=	225.573	ppmdv
C _{mf} Span I _{blas}	 = calibration error response concentration for Cal01 = instrument span value = limit for system bias error 	= =	220.681 453.000 5.0%	ppmdv ppmdv
Ehias	= calibration bias error check value	=	1.08%	Pass

4. System Drift as Percent of Span Value (3%)

FF Outlet 1

$$E_{Drift} = abs \left| \frac{C_{mf} - C_{mi}}{Span} \right| \le l_{drift}$$

Where:

C _{mf} C _{ml} Span I _{drift}	 calibration error response concentration for Cal01 (final) calibration error response concentration for Cal00 (initial) instrument span value limit for system drift error 	= = =	220.681 221.623 453.000 3.0%	ppmdv ppmdv ppmdv
E _{drift}	= calibration drift error check value	=	0.21%	Pass

5. Average Concentration for an entire Run

$$C = \frac{\sum_{i=1}^{N} C_{i}}{N}$$

Where: i=1 = All concentration readings for the entirety of Run 1 C_i 149.497 ppmdv for the monitor looking for NOX on channel 4 Ν = total number of readings in Run 1 27 С = average NOX concentration for Run 1 155.665 ppmdv

6. Drift-Corrected Average Concentration for an entire Run

$$C_{DC} = \left(C - \frac{C_{oi} + C_{of}}{2}\right) \left(\frac{C_{ma}}{\frac{C_{mi} + C_{mf}}{2} - \frac{C_{oi} + C_{of}}{2}}\right)$$

Cma	= concentration of actual calibration gas value	=	225.000	ppmdv
С	= average NOX concentration for Run 1	=	155.665	ppmdv
C_{mf}	= calibration error response concentration for Cal01 (final)	=	220.681	ppmdv
C _{mi}	= calibration error response concentration for Cal00 (initial)	=	221.623	ppmdv
C_{of}	 calibration error response concentration for Cal01 (final) for zero gas 	=	0.673	ppmdv
C _{ol}	= calibration error response concentration for Cal00 (initial) for zero gas	=	0.122	ppmdv
C _{DC}	= drift corrected average concentration for Run 1	=	158.254	ppmdv

CEM Emissions Sample Calculations for NOX FF Outlet 1

Sample data taken from Run 1 and Channel 4

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124829

1. NOX concentration (ppmdv)

$$C(ppmdv) = k_1 \times C_{DC} \quad \text{if} \quad dry \quad gas$$

$$C(ppmdv) = \frac{k_1 \times C_{DC}}{\left(1 - \frac{B_W}{100}\right)} \quad \text{if} \quad wet \quad gas$$

Where:

CDC	= drift corrected average concentration	=	158.254	ppmdv
B _w	= actual water vapor in gas (% v/v)	=	0.000	% v/v
100	= conversion factor to change percentage to decimal	=	100	
k.	= ppm/% to ppm conversion factor for diluent gases	=	1	

C (ppmdv) = NOX concentration (ppmdv) = 158.254 ppmdv

2. NOX concentration (lb/dscf)

$$C(lb/dscf) = \frac{C(ppmdv) \times MW(gas)}{10^{6} ppm \times 385.3}$$

Where:

C (ppmdv)	= NOX concentration (ppmdv)	=	158.254	ppmdv
MW	= Molecular Weight of NOX gas	=	46.0055	lb/lb-mole
10 ⁶	= conversion factor from decimal to ppm	=	1.00E+06	
385.3	= molar volume	=	385.3	dscf/lb-mole
C (lb/dscf)	= NOX concentration (lb/dscf)	=	1.890E-05	lb/dscf

3. NOX concentration (mg/dscm)

$$C(mg/dscm) = C(lb/dscf) \times k_2 \times 35.31$$

Where:

C (lb/dscf)	= NOX concentration (lb/dscf)	=	1.890E-05	lb/dscf
k ₂	= conversion factor from lb to mg	=	453515	mg/lb
35.31	= conversion factor from dscf to dscm	=	35.31	ft ³ /m ³

C (mg/dscm) = NOX concentration (mg/dscm) = 302.589 mg/dscm

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

4. NOX concentration (mg/Nm3 dry)

$$C = (mg/Nm^3 dry) = C(lb/dscf) \times k_2 \times 35.31 \times \left(\frac{68 + 460}{32 + 460}\right)$$

Where:

C (lb/dscf)	= NOX concentration (lb/dscf)	=	1.890E-05	lb/dscf
k ₂	= conversion factor from lb to mg	=	453515	mg/lb
35.31	= conversion factor from dscf to dscm	=	35.31	ft ³ /m ³
68	= standard temperature (°F)	=	68	°F
32	= normal temperature (°F)	=	32	°F
460	= °F to °R conversion constant	=	460	

C (mg/Nm3 dr = NOX concentration (mg/Nm3 dry) = 324.730 mg/Nm³ dry

5. NOX concentration corrected to 7% O2 (ppmdv example)

$$C(ppmdv@x\%02) = C(ppmdv) \times \left(\frac{20.9 - x}{20.9 - O_2}\right)$$

Where:

C (ppmdv)	= NOX concentration (ppmdv)	=	158.254	ppmdv
x	= oxygen content of corrected gas (%)	=	7.00	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.711	%
20.9	= oxygen content of ambient air (%)	=	20.9	%

C (ppmdv - O2 = NOX concentration corrected to 7% O2 (ppmdv example) = 196.605 ppmdv @ 7%O2

6. NOX concentration corrected to 12% CO2 (ppmdv example)

$$C(ppmdv @ y\%C0_2) = C(ppmdv) \times \left(\frac{y}{CO_2}\right)$$

Where:

C (ppmdv)	= NOX concentration (ppmdv)	=	158.254	ppmdv
у	= carbon dioxide content of corrected gas (%)	=	12.00	%
CO ₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.715	%

C (ppmdv -CO = NOX concentration corrected to 12% CO2 (ppmdv example) = 195.469 ppmdv @ 12%CO2

CEM RATA Sample Calculations for NOX FF Outlet 1

Sample data taken from Run 1

and Channel 4

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124914

1. NOX value difference between Plant CEM Data and CleanAir RM Data (ppm@7%O2)

$$D = C_R - C_P$$
Where:
 $C_P = NOX \text{ value from Plant CEM Data}$

C_P = NOX value from Plant CEM Data = 198.000 ppm@7%O2 C_R = NOX value from CleanAir RM Data = 196.605 ppm@7%O2

D = NOX value difference between 2 methods = -1.395 ppm@7%O2

2. Percent Value Difference (%)

$$D_{\%} = \frac{D}{C_{R}}$$

Where:

C_R	= NOX value from CleanAir RM Data	=	196.605	ppm@7%O2
D	= NOX value difference between 2 methods	=	-1.395	ppm@7%O2

D_% = NOX value difference as a percentage of RM Data = -0.7%

3. Average NOX Value (Plant CEM Data example) (ppm@7%O2)

$$C_{p,avg} = \frac{\sum_{i=1}^{N} C_{p,i}}{N}$$

Where: i=1 $C_{p,l}$ = NOX value from Plant CEM Data for ith run = 198.000 ppm@7%O2 N = total number of runs included in the CEM data = 10

 $C_{p,avg}$ = Average NOX value from Plant CEM Data = 196.240 ppm@7%O2

Wheelabrator North Broward

CleanAir Project No. 10955

Pompano Beach, FL

FF Qutlet 1

4. Standard Deviation of Plant CEM data and CleanAir RM data

$$STDEV = \sqrt{\frac{\sum_{i=1}^{N} \left(C_{R,i} - C_{p,i}\right)^{2} - \frac{\left(\sum_{i=1}^{N} \left(C_{R,i} - C_{p,i}\right)\right)^{2}}{N}}{N-1}}$$

Where:

$C_{R,i}$	= NOX value from CleanAir RM Data for ith run	=	196.605	ppm@7%O2
$C_{p,i}$	= NOX value from Plant CEM Data for ith run	=	198.000	ppm@7%O2
N	= total Number of RATA Runs	=	10	
STDEV	= standard deviation of plant CEM data and CleanAir RM data	=	1.139	ppm@7%O2

5. Confidence Coefficient

$$CC = STDEV \times \frac{t}{\sqrt{N}}$$

Where:

STDEV	= standard deviation of plant CEM data and CleanAir RM data	=	1.139	ppm@7%O2
t	= confidence factor	=	2.262	
N	= total Number of RATA Runs	=	10	
СС	= confidence coefficient	=	0.815	ppm@7%O2

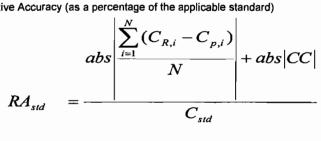
6. Relative Accuracy (as a percentage of the reference method)

$$RA = \frac{abs \left| \frac{\sum_{i=1}^{N} (C_{R,i} - C_{p,i})}{N} \right| + abs |CC|}{\sum_{i=1}^{N} C_{R,i}}$$

Where:

$C_{R,i}$	= NOX value from CleanAir RM Data for ith run	=	196.605	ppm@7%O2
$C_{p,i}$	= NOX value from Plant CEM Data for ith run	=	198.000	ppm@7%O2
N	= total Number of RATA Runs	=	10	
CC	= confidence coefficient	=	0.815	ppm@7%O2

RA = relative accuracy (as a percentage of the reference method) = 0.417% Limit = 20.000%


Wheelabrator North Broward

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

7. Relative Accuracy (as a percentage of the applicable standard)

Where: C _{R,i}	= NOX value from CleanAir RM Data for ith run	_	196.605	ppm@7%O2
$C_{p,i}$	= NOX value from Plant CEM Data for ith run	=	198.000	ppm@7%O2
N .	= total Number of RATA Runs	=	10	,, 0
CC	= confidence coefficient	=	0.815	
$C_{\rm std}$	= NOX value of applicable standard	=	205.000	ppm@7%O2
RA	= relative accuracy (as percentage of the applicable standard) Limi		0.399% 10.000%	

CEM Field Sample Calculations for CO FF Outlet 1

Sample data taken from Channel 5

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124951

1. Average of a calibration series

$$C_{mce} = \frac{(C_1 + C_2 + C_3)}{3}$$

Where:

C₁,C₂,C₃ = concentrations of 3 consecutive gas samples that are

representative of the calibration gas

 C_{mce} = average concentration of a calibration series = 49.165 ppmdv

In this case the low cal series for channel 5

2a. Calibration Error Check for Hydrocarbons (5% of actual calibration gas value error allowed by Method 25A)

$$E_{HC} = abs \left| \frac{C_{mce} - C_{ma}}{C_{ma}} \right| \leq l_{cal}$$
 Where:
$$C_{mce} = \text{average concentration of a calibration series} = 49.165 \quad \text{ppmdv}$$
 In this case the low cal series for channel 5
$$C_{ma} = \text{concentration of actual calibration gas value} = 48.200 \quad \text{ppmdv}$$

$$l_{cal} = \text{limit for calibration error for hydrocarbons} = 5.0\%$$

$$E_{HC} = \text{calibration error check value} = \text{NA}$$

2b. Calibration Error Check for non-Hydrocarbons (2% of Instrument Span)

$$E = abs \left| \frac{C_{mce} - C_{ma}}{Span} \right| \leq l_{cal}$$
 Where:
$$C_{mce} = \text{average concentration of a calibration series} = 49.165 \quad \text{ppmdv}$$

$$\text{In this case the low cal series for channel 5}$$

$$C_{ma} = \text{concentration of actual calibration gas value} = 48.200 \quad \text{ppmdv}$$

$$\text{Span} = \text{instrument span value} = 98.500$$

$$l_{cal} = \text{limit for calibration error for non-hydrocarbons} = 2.0\%$$

$$E = \text{calibration error check value} = 0.98\% \quad \text{Pass}$$

3. System Bias as Percent of Span Value (5% is allowed)

$$E_{Bias} = abs \left| \frac{C_{mf} - C_{mce}}{Span} \right| \le l_{bias}$$

Where:

WINCIE.				
C _{mce}	= average concentration of a calibration series	=	49.165	ppmdv
	in this case the Low cal series for channel 5			
C_{mf}	= calibration error response concentration for Cal01	=	48.750	ppmdv
Span	= instrument span value	=	98.500	ppmdv
l _{bias}	= limit for system bias error	=	5.0%	
Ewas	= calibration bias error check value	=	0.42%	Pass

4. System Drift as Percent of Span Value (3%)

 $E_{Drift} = abs \left| \frac{C_{mf} - C_{mi}}{Span} \right| \le l_{drift}$

Where:

 C_{mf} = calibration error response concentration for Cal01 (final) 48.750 ppmdv C_{ml} = calibration error response concentration for Cal00 (initial) 48.978 ppmdv Span = instrument span value 98.500 ppmdv I_{drift} = limit for system drift error 3.0%

 $\mathsf{E}_{\mathsf{drift}}$ = calibration drift error check value 0.23% **Pass**

5. Average Concentration for an entire Run

 \boldsymbol{C}

Where: j=1 Cı = All concentration readings for the entirety of Run 1 16.102 ppmdv for the monitor looking for CO on channel 5 Ν = total number of readings in Run 1 27 С = average CO concentration for Run 1 12.574 ppmdv

6. Drift-Corrected Average Concentration for an entire Run

 $C_{DC} = \left(C - \frac{C_{oi} + C_{of}}{2}\right) \left(\frac{C_{ma}}{\frac{C_{mi} + C_{mf}}{2} - \frac{C_{oi} + C_{of}}{2}}\right)$

C _{ma}	= concentration of actual calibration gas value	=	48.200	ppmdv
С	= average CO concentration for Run 1	=	12.574	ppmdv
Cmf	= calibration error response concentration for Cal01 (final)	=	48.750	ppmdv
C_{mi}	= calibration error response concentration for Cal00 (initial)	=	48.978	ppmdv
Cof	= calibration error response concentration for Cal01 (final) for zero gas	=	-0.378	ppmdv
C _{oi}	= calibration error response concentration for Cal00 (initial) for zero gas	=	-0.380	ppmdv
C _{DC}	= drift corrected average concentration for Run 1	=	12.678	ppmdv

CEM Emissions Sample Calculations for CO FF Outlet 1

Sample data taken from Run 1 and Channel 5

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 124951

1. CO concentration (ppmdv)

$$C(ppmdv) = k_1 \times C_{DC} \qquad if \qquad dry \qquad gas$$

$$C(ppmdv) = \frac{k_1 \times C_{DC}}{\left(1 - \frac{B_W}{100}\right)} \qquad if \qquad wet \qquad gas$$

Where:

C _{DC}	= drift corrected average concentration	=	12.678	ppmdv
B _w	= actual water vapor in gas (% v/v)	=	0.000	% v/v
100	= conversion factor to change percentage to decimal	=	100	
k ₁	= ppm/% to ppm conversion factor for diluent gases	=	1	

C (ppmdv) = CO concentration (ppmdv) = 12.678 ppmdv

2. CO concentration (lb/dscf)

$$C(lb/dscf) = \frac{C(ppmdv) \times MW(gas)}{10^{6} ppm \times 385.3}$$

Where:

C (ppmdv)	= CO concentration (ppmdv)	=	12.678	ppmdv
MW	= Molecular Weight of CO gas	=	28.0106	lb/lb-mole
10 ⁶	= conversion factor from decimal to ppm	=	1.00E+06	
385.3	= molar volume	=	385.3	dscf/lb-mole
C (lb/dscf)	= CO concentration (lb/dscf)	=	9.217E-07	lb/dscf

3. CO concentration (mg/dscm)

$$C(mg/dscm) = C(lb/dscf) \times k_2 \times 35.31$$

Where:

C (lb/dscf) k ₂	= CO concentration (lb/dscf) = conversion factor from lb to mg	=	9.217E-07 453515	lb/dscf mg/lb	
35.31	= conversion factor from dscf to dscm	=	35.31	ft ³ /m ³	
C (mg/dscm)	= CO concentration (mg/dscm)	=	14.759	mg/dscm	

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

4. CO concentration (mg/Nm3 dry)

$$C \qquad \left(mg / Nm^3 dry \right) \qquad = C \left(lb / dscf \right) \times k_2 \times 35.31 \times \left(\frac{68 + 460}{32 + 460} \right)$$

Where:

C (lb/dscf)	= CO concentration (lb/dscf)	=	9.217E-07	lb/dscf
k ₂	= conversion factor from lb to mg	=	453515	mg/lb
35.31	= conversion factor from dscf to dscm	=	35.31	ft ³ /m ³
68	= standard temperature (°F)	=	68	°F
32	= normal temperature (°F)	=	32	۰F
460	= °F to °R conversion constant	=	460	

C (mg/Nm3 dr = CO concentration (mg/Nm3 dry) = 15.839 mg/Nm³ dry

5. CO concentration corrected to 7% O2 (ppmdv example)

$$C(ppmdv@x\%02) = C(ppmdv) \times \left(\frac{20.9 - x}{20.9 - O_2}\right)$$

Where:

C (ppmdv)	= CO concentration (ppmdv)	==	12.678	ppmdv
x	= oxygen content of corrected gas (%)	=	7.00	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.711	%
20.9	= oxygen content of ambient air (%)	=	20.9	%

C (ppmdv - O2 = CO concentration corrected to 7% O2 (ppmdv example) = 15.750 ppmdv @ 7%O2

6. CO concentration corrected to 12% CO2 (ppmdv example)

$$C(ppmdv @ y\%C0_2) = C(ppmdv) \times \left(\frac{y}{CO_2}\right)$$

Where:

C (ppmdv)	= CO concentration (ppmdv)	=	12.678	ppmdv
y	= carbon dioxide content of corrected gas (%)	=	12.00	%
CO ₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.715	%

C (ppmdv -CO = CO concentration corrected to 12% CO2 (ppmdv example) = 15.660 ppmdv @ 12%CO2

CEM RATA Sample Calculations for CO FF Outlet 1

Sample data taken from Run 1
and Channel 5

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

040710 125020

1. CO value difference between Plant CEM Data and CleanAir RM Data (ppm@7%O2)

$$D = C_R - C_P$$

Where:

C _P C _R	= CO value from Plant CEM Data= CO value from CleanAir RM Data	=	17.400 15.750	ppm@7%O2 ppm@7%O2
D	= CO value difference between 2 methods	=	-1.650	ppm@7%O2

2. Percent Value Difference (%)

$$D_{\%} = \frac{D}{C_{R}}$$

Where:

C _R D	= CO value from CleanAir RM Data= CO value difference between 2 methods	=	15.750 -1.650	ppm@7%O2 ppm@7%O2
D _%	= CO value difference as a percentage of RM Data	=	-10.5%	

3. Average CO Value (Plant CEM Data example) (ppm@7%O2)

$$C_{p,avg} = \frac{\sum_{i=1}^{N} C_{p,i}}{N}$$

Where:			i=1	
$C_{p,i}$	= CO value from Plant CEM Data for ith run	=	17.400	ppm@7%O2
N	= total number of runs included in the CEM data	=	9	
C _{n ava}	= Average CO value from Plant CEM Data	=	16.444	ppm@7%O2

Wheelabrator North Broward

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

4. Standard Deviation of Plant CEM data and CleanAir RM data

$$STDEV = \sqrt{\frac{\sum_{i=1}^{N} \left(C_{R,i} - C_{p,i}\right)^{2} - \frac{\left(\sum_{i=1}^{N} \left(C_{R,i} - C_{p,i}\right)\right)^{2}}{N}}}{N-1}}$$

Where:

$egin{aligned} \mathbf{C}_{R,l} \ \mathbf{C}_{p,i} \ \mathbf{N} \end{aligned}$	= CO value from CleanAir RM Data for ith run= CO value from Plant CEM Data for ith run= total Number of RATA Runs	п п	15.750 17.400 9	ppm@7%O2 ppm@7%O2
STDEV	≈ standard deviation of plant CEM data and CleanAir RM data	=	0.332	ppm@7%Q2

5. Confidence Coefficient

$$CC = STDEV \times \frac{t}{\sqrt{N}}$$

Where:

STDEV	= standard deviation of plant CEM data and CleanAir RM data	=	0.332	ppm@7%O2
t	= confidence factor	=	2.306	
N	= total Number of RATA Runs	=	9	
CC	= confidence coefficient	=	0.255	ppm@7%O2

6. Relative Accuracy (as a percentage of the reference method)

$$RA = \frac{\left| \sum_{i=1}^{N} \left(C_{R,i} - C_{p,i} \right) \right|}{N} + abs \left| CC \right|$$

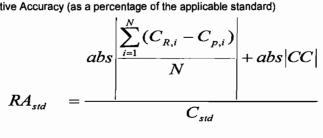
$$\sum_{i=1}^{N} C_{R,i}$$

Where:

$C_{R,i}$	= CO value from CleanAir RM Data for ith run	=	15.750	ppm@7%O2
$C_{p,i}$	= CO value from Plant CEM Data for ith run	=	17.400	ppm@7%O2
N	= total Number of RATA Runs	=	9	
CC	= confidence coefficient	=	0.255	ppm@7%O2
RA	= relative accuracy (as a percentage of the reference method)	=	9.188%	

Limit =

10.000%


Wheelabrator North Broward

CleanAir Project No. 10955

Pompano Beach, FL

FF Outlet 1

7. Relative Accuracy (as a percentage of the applicable standard)

Where:				
$C_{R,i}$	= CO value from CleanAir RM Data for ith run	=	15.750	ppm@7%O2
$C_{p,i}$	= CO value from Plant CEM Data for ith run	=	17.400	ppm@7%O2
N	= total Number of RATA Runs	=	9	
CC	⇒ confidence coefficient	=	0.255	
C_{std}	= CO value of applicable standard	=	100.000	ppm@7%O2
RA	= relative accuracy (as percentage of the applicable standard) Limit		1.405% 5.000%	

This Pag	e Intentionally	Left Blank

CleanAir Project No: 10955-1

PARAMETERS

C

Revision 0, Final

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

Run Number	1	•			
Date (2010)	Mar 18				
Start Time	7:12				
End Time	7:39				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 1				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.72	9.71	13.74	158.25	12.68
Concentration (ppmdv)			13.74	158.25	12.68
Concentration (lb/dscf)			2.285E-06	1.890E-05	9.217E-07
Concentration (%dv)	9.715	9.711	0.00137	0.0158	0.00127
Concentration (mg/dscm)			36.59	302.59	14.76
Concentration (mg/Nm3)			39.27	324.73	15.84
Concentration @7%O2 (ppm)			17.07	196.60	15.75
Concentration @12%CO2 (ppm)			16.97	195.47	15.66
Concentration @7%O2 (lb/scf)			2.839E-06	2.347E-05	1.145E-06
Concentration @12%CO2 (lb/scf)			2.822E-06	2.334E-05	1.138E-06
Concentration @7%O2 (mg/scm)			45.46	375.92	18.34
Concentration @12%CO2 (mg/scm)			45.19	373.75	18.23
Concentration @7%O2 (mg/Nm3)			48.78	403.42	19.68

48.50

401.10

19.56

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

S CEM Version 06-2004a

QA/QC_____ Date____

Copyright © 2004 Clean Air Engineering Inc.

Continuous Emissions Monitoring Parameters

Continuous Emissions Monitoring Parameters						
Run Number	2					
Date (2010)	Mar 18					
Start Time	7:46					
End Time	8:13					
Elapsed Time (hh:mm)	00:27					
Channel	1	2	3	4	5	
Parameter	CO2	02	SO2	NOX	CO	
Location	FF Outlet 1					
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv	
Measured Average (drift-corrected)	9.91	9.45	13.99	173.00	11.97	
Concentration (ppmdv)			13.99	173.00	11.97	
Concentration (lb/dscf)			2.327E-06	2.066E-05	8.702E-07	
Concentration (%dv)	9.909	9.451	0.00140	0.0173	0.00120	
Concentration (mg/dscm)			37.26	330.79	13.93	
Concentration (mg/Nm3)			39.99	355.00	14.95	
Concentration @7%O2 (ppm)			16.99	210.04	14.53	
Concentration @12%CO2 (ppm)			16.95	209.52	14.50	
Concentration @7%O2 (lb/scf)			2.825E-06	2.508E-05	1.056E-06	
Concentration @12%CO2 (lb/scf)			2.818E-06	2.502E-05	1.054E-06	
Concentration @7%O2 (mg/scm)			45.24	401.60	16.92	
Concentration @12%CO2 (mg/scm)			45.13	400.61	16.88	
Concentration @7%O2 (mg/Nm3)			48.55	430.98	18.16	
Concentration @12%CO2 (mg/Nm3)			48.43	429.92	18.11	

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

QA/QC_ Date_

Continuous Emissions Monitoring Parameters

Run Number	3				
Date (2010)	Mar 18				
Start Time	8:20			•	
End Time	8:47				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 1				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.03	9.29	14.94	167.02	10.38
Concentration (ppmdv)			14.94	167.02	10.38
Concentration (lb/dscf)			2.485E-06	1.994E-05	7.547E-07
Concentration (%dv)	10.028	9.287	0.00149	0.0167	0.00104
Concentration (mg/dscm)			39.79	319.35	12.09
Concentration (mg/Nm3)			42.70	342.72	12.97
Concentration @7%O2 (ppm)			17.89	199.91	12.43
Concentration @12%CO2 (ppm)			17.88	199.87	12.42
Concentration @7%O2 (lb/scf)			2.974E-06	2.387E-05	9.033E-07
Concentration @12%CO2 (lb/scf)			2.973E-06	2.387E-05	9.031E-07
Concentration @7%O2 (mg/scm)			47.62	382.23	14.46
Concentration @12%CO2 (mg/scm)			47.61	382.17	14.46
Concentration @7%O2 (mg/Nm3)			51.11	410.20	15.52
Concentration @12%CO2 (mg/Nm3)			51.10	410.13	15.52

Prepared by Clean Air Engineering Proprletary Software SS CEM Version 08-2004a

QA/QC___ Date____

Copyright @ 2004 Clean Air Engineering Inc.

Continuous Emissions Monitoring Parameters

Continuous Emissions Monitoring Parameters					
Run Number	4				
Date (2010)	Mar 18				
Start Time	8:55				
End Time	9:22				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 1				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.97	9.33	14.55	159.99	11.89
Concentration (ppmdv)			14.55	159.99	11.89
Concentration (lb/dscf)			2.420E-06	1.910E-05	8.646E-07
Concentration (%dv)	9.970	9.333	0.00146	0.0160	0.00119
Concentration (mg/dscm)			38.75	305.91	13.85
Concentration (mg/Nm3)			41.59	328.29	14.86
Concentration @7%O2 (ppm)			17.49	192.26	14.29
Concentration @12%CO2 (ppm)			17.52	192.56	14.31
Concentration @7%O2 (lb/scf)			2.908E-06	2.296E-05	1.039E-06
Concentration @12%CO2 (lb/scf)			2.913E-06	2.299E-05	1.041E-06
Concentration @7%O2 (mg/scm)			46.57	367.62	16.64
Concentration @12%CO2 (mg/scm)			46.64	368.19	16.66
Concentration @7%O2 (mg/Nm3)			49.98	394.52	17.86
Concentration @12%CO2 (mg/Nm3)			50.05	395.13	17.88

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

3 CEM VEISION 00-20048

QA/QC____ Date____

Continuous Emissions Monitoring Parameters

5
CO
F Outlet 1
ppmdv
10.30
10.30
.488E-07
0.00103
11.99
12.87
12.36
12.39
.986E-07
.005E-07
14.39
14.42
15.44
15.47
CCF Outppm 10 10 10 10 12 12 12 12 12 14 15 14 15

Prepared by Clean Air Engineering Proprletary Software SS CEM Version 08-2004a

QA/QC_____ Date_____

Continuous Emissions Monitoring Parameters

Opinaliadas Ellis		Jimig i aramet			
Run Number	6				
Date (2010)	Mar 18				
Start Time	10:03				
End Time	10:30				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.84	9.50	12.03	162.07	11.05
Concentration (ppmdv)			12.03	162.07	11.05
Concentration (lb/dscf)			2.000E-06	1.935E-05	8.036E-07
Concentration (%dv)	9.841	9.498	0.00120	0.0162	0.00111
Concentration (mg/dscm)			32.02	309.89	12.87
Concentration (mg/Nm3)			34.37	332.56	13.81
Concentration @7%O2 (ppm)			14.66	197.58	13.48
Concentration @12%CO2 (ppm)			14.67	197.62	13.48
Concentration @7%O2 (lb/scf)			2.438E-06	2.359E-05	9.797E-07
Concentration @12%CO2 (lb/scf)			2.438E-06	2.360E-05	9.799E-07
Concentration @7%O2 (mg/scm)			39.04	377.79	15.69
Concentration @12%CO2 (mg/scm)			39.05	377,86	15.69
Concentration @7%O2 (mg/Nm3)			41.90	405.43	16.84
Concentration @12%CO2 (mg/Nm3)			41.90	405.51	16.84

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC_____ Date____

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

• • • • • • • • • • • • • • • • • • • •	•••••				
Run Number	7				
Date (2010)	Mar 18				
Start Time	10:38				
End Time	11:05				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 1				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.96	9.32	10.60	165.73	12.93
Concentration (ppmdv)			10.60	165.73	12.93
Concentration (lb/dscf)			1.763E-06	1.979E-05	9.398E-07
Concentration (%dv)	9.960	9.316	0.00106	0.0166	0.00129
Concentration (mg/dscm)			28.24	316.89	15.05
Concentration (mg/Nm3)			30.30	340.08	16.15
Concentration @7%O2 (ppm)			12.72	198.86	15.51
Concentration @12%CO2 (ppm)			12.78	199.67	15.57
Concentration @7%O2 (lb/scf)			2.116E-06	2.374E-05	1.128E-06
Concentration @12%CO2 (lb/scf)			2.124E-06	2.384E-05	1.132E-06
Concentration @7%O2 (mg/scm)			33.88	380.24	18.06
Concentration @12%CO2 (mg/scm)			34.02	381.78	18.13
Concentration @7%O2 (mg/Nm3)			36.36	408.06	19.38

36.51

409.72

19.46

Prepered by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

S CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date

Continuous Emissions Monitoring Parameters

Coffilinates Line	SSIONS MONIE	Jing ralame	.613		
Run Number	8				
Date (2010)	Mar 18				
Start Time	11:13				
End Time	11:40				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.76	9.63	10.98	157.60	15.16
Concentration (ppmdv)			10.98	157.60	15.16
Concentration (lb/dscf)			1.826E-06	1.882E-05	1.102E-06
Concentration (%dv)	9.763	9.633	0.00110	0.0158	0.00152
Concentration (mg/dscm)			29.24	301.35	17.65
Concentration (mg/Nm3)			31.38	323.40	18.94
Concentration @7%O2 (ppm)			13.55	194.43	18.70
Concentration @12%CO2 (ppm)			13.50	193.72	18.63
Concentration @7%O2 (lb/scf)			2.253E-06	2.322E-05	1.360E-06
Concentration @12%CO2 (lb/scf)			2.245E-06	2.313E-05	1.355E-06
Concentration @7%O2 (mg/scm)			36.08	371.76	21.77
Concentration @12%CO2 (mg/scm)			35.95	370.41	21.69
Concentration @7%O2 (mg/Nm3)			38.72	398.97	23.37
Concentration @12%CO2 (mg/Nm3)			38.58	397.51	23.28

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date__

Continuous Emissions Monitoring Parameters

Run Number	9				
Date (2010)	Mar 18				
Start Time	11:47				
End Time	12:14				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 1				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.41	10.08	12.54	144.81	15.35
Concentration (ppmdv)			12.54	144.81	15.35
Concentration (lb/dscf)			2.085E-06	1.729E-05	1.116E-06
Concentration (%dv)	9.415	10.077	0.00125	0.0145	0.00153
Concentration (mg/dscm)			33.39	276.89	17.87
Concentration (mg/Nm3)			35.83	297.15	19.17
Concentration @7%O2 (ppm)			16.11	185.99	19.71
Concentration @12%CO2 (ppm)			15.98	184.57	19.56
Concentration @7%O2 (lb/scf)			2.678E-06	2.221E-05	1.433E-06
Concentration @12%CO2 (lb/scf)			2.658E-06	2.204E-05	1.422E-06
Concentration @7%O2 (mg/scm)			42.88	355.62	22.95
Concentration @12%CO2 (mg/scm)			42.56	352.91	22.77
Concentration @7%O2 (mg/Nm3)			46.02	381.64	24.63
Concentration @12%CO2 (mg/Nm3)			45.67	378.74	24.44

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_____ Date____

Continuous Emissions Monitoring Parameters

Run Number Date (2010) Start Time End Time Elapsed Time (hh:mm)	10 Mar 18 12:21 12:48 00:27				
Channel Parameter	1 CO2	2 O2	3	4	5
Location	FF Outlet 1	FF Outlet 1	SO2 FF Outlet 1	NOX FF Outlet 1	CO FF Outlet 1
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.74	9.62	9.80	160.52	15.89
Concentration (ppmdv)			9.80	160.52	15.89
Concentration (lb/dscf)			1.629E-06	1.917E-05	1.155E-06
Concentration (%dv)	9.743	9.620	0.00098	0.0161	0.00159
Concentration (mg/dscm)			26.09	306.92	18.50
Concentration (mg/Nm3)			28.00	329.38	19.86
Concentration @7%O2 (ppm)			12.08	197.81	19.59
Concentration @12%CO2 (ppm)			12.07	197.70	19.58
Concentration @7%O2 (lb/scf)			2.008E-06	2.362E-05	1.424E-06
Concentration @12%CO2 (lb/scf)			2.007E-06	2.361E-05	1.423E-06
Concentration @7%O2 (mg/scm)			32.15	378.22	22.80
Concentration @12%CO2 (mg/scm)			32.13	378.01	22.79
Concentration @7%O2 (mg/Nm3)			34.50	405.90	24.47
Concentration @12%CO2 (mg/Nm3)			34.49	405.67	24.46

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC Date

Continuous Emissions Monitoring Parameters

Run Number Date (2010) Start Time End Time Elapsed Time (hh:mm)	1 Mar 16 9:48 10:15 00:27	•			
Channel Parameter Location Measurement Units	1 CO2 FF Outlet 2 %dv	2 O2 FF Outlet 2 %dv	3 SO2 FF Outlet 2 ppmdv	4 NOX FF Outlet 2 ppmdv	5 CO FF Outlet 2 ppmdv
Measured Average (drift-corrected)	9.86	9.47	10.64	161.29	12.75
Concentration (ppmdv) Concentration (lb/dscf) Concentration (%dv) Concentration (mg/dscm) Concentration (mg/Nm3) Concentration @7%O2 (ppm) Concentration @12%CO2 (ppm) Concentration @7%O2 (lb/scf) Concentration @12%CO2 (lb/scf) Concentration @7%O2 (mg/scm) Concentration @12%CO2 (mg/scm) Concentration @7%O2 (mg/Nm3) Concentration @12%CO2 (mg/Nm3)	9.858	9.467	10.64 1.769E-06 0.00106 28.32 30.40 12.93 12.95 2.151E-06 2.153E-06 34.44 34.48 36.96 37.00	161.29 1.926E-05 0.0161 308.39 330.95 196.09 196.33 2.341E-05 2.344E-05 374.94 375.40 402.37 402.87	12.75 9.271E-07 0.00128 14.85 15.93 15.50 15.52 1.127E-06 1.129E-06 18.05 18.07 19.37 19.39

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC Date_

Continuous Emissions Monitoring Parameters

Continuous Ellissions Monttoring Farameters							
Run Number	2						
Date (2010)	Mar 16						
Start Time	10:31						
End Time	10:58						
Elapsed Time (hh:mm)	00:27						
Channel	1	2	3	4	5		
Parameter	CO2	O2	SO2	NOX	CO		
Location	FF Outlet 2						
Measurement Units	%d∨	%dv	ppmdv	ppmdv	ppmdv		
Measured Average (drift-corrected)	9.78	9.59	14.34	153.46	12.93		
Concentration (ppmdv)			14.34	153.46	12.93		
Concentration (lb/dscf)			2.385E-06	1.832E-05	9.402E-07		
Concentration (%dv)	9.781	9.594	0.00143	0.0153	0.00129		
Concentration (mg/dscm)			38.18	293.42	15.06		
Concentration (mg/Nm3)			40.98	314.89	16.16		
Concentration @7%O2 (ppm)			17.63	188.66	15.90		
Concentration @12%CO2 (ppm)			17.59	188.27	15.87		
Concentration @7%O2 (lb/scf)			2.932E-06	2.253E-05	1.156E-06		
Concentration @12%CO2 (lb/scf)			2.925E-06	2.248E-05	1.153E-06		
Concentration @7%O2 (mg/scm)			46.95	360.74	18.51		
Concentration @12%CO2 (mg/scm)			46.85	359.97	18.47		
Concentration @7%O2 (mg/Nm3)			50.38	387.13	19.86		
Concentration @12%CO2 (mg/Nm3)			50.27	386.31	19.82		

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC Date

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

		•	_		
Run Number	3				
Date (2010)	Mar 16				
Start Time	11:15				
End Time	11:42				
Elapsed Time (hh:mm)	00:27			•	
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 2				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.79	9.69	15.18	148.91	12.66
Concentration (ppmdv)			15.18	148.91	12.66
Concentration (lb/dscf)			2.524E-06	1.778E-05	9.206E-07
Concentration (%dv)	9.786	9.689	0.00152	0.0149	0.00127
Concentration (mg/dscm)			40.42	284.72	14.74
Concentration (mg/Nm3)			43.38	305.56	15. 8 2
Concentration @7%O2 (ppm)			18.82	184.62	15.70
Concentration @12%CO2 (ppm)			18.62	182.60	15.53
Concentration @7%O2 (lb/scf)			3.129E-06	2.204E-05	1.141E-06
Concentration @12%CO2 (lb/scf)			3.095E-06	2.180E-05	1.129E-06
Concentration @7%O2 (mg/scm)			50.11	353.00	18.28
Concentration @12%CO2 (mg/scm)			49.56	349.15	18.08
Concentration @7%O2 (mg/Nm3)			53.78	378.83	19.62

53.19

374.69

19.40

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_____ Date____

Continuous Emissions Monitoring Parameters

Run Number	4
Date (2010)	Mar 16
Start Time	12:02
End Time	12:29
Elapsed Time (hh:mm)	00:27

Channel	1 CO2	2 O2	3 SO2	4 NOX	5 CO
Parameter	FF Outlet 2				
Location		%dv			
Measurement Units	%dv	76UV	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.94	9.49	14.48	152.26	9.37
Concentration (ppmdv)			14.48	152.26	9.37
Concentration (lb/dscf)			2.408E-06	1.818E-05	6.809E-07
Concentration (%dv)	9.941	9.490	0.00145	0.0152	0.00094
Concentration (mg/dscm)			38.56	291.14	10.90
Concentration (mg/Nm3)			41.38	312.44	11.70
Concentration @7%O2 (ppm)			17.64	185.49	11.41
Concentration @12%CO2 (ppm)			17.48	183.80	11.31
Concentration @7%O2 (lb/scf)			2.933E-06	2.215E-05	8.295E-07
Concentration @12%CO2 (lb/scf)			2.906E-06	2.195E-05	8.219E-07
Concentration @7%O2 (mg/scm)			46.97	354.67	13.28
Concentration @12%CO2 (mg/scm)			46.54	351.43	13.16
Concentration @7%O2 (mg/Nm3)			50.41	380.63	14.25
Concentration @12%CO2 (mg/Nm3)			49.95	377.15	14.12

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_____ Date_____

Continuous Emissions Monitoring Parameters

Continuous Emi	SSICIIS MOINE	oinig i araine			
Run Number	5				
Date (2010)	Mar 16				
Start Time	12:40				
End Time	13:07				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	02	SO2	NOX	CO
Location	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.67	9.79	13.77	144.72	10.67
Concentration (ppmdv)			13.77	144.72	10.67
Concentration (lb/dscf)			2.290E-06	1.728E-05	7.755E-07
Concentration (%dv)	9.671	9.786	0.00138	0.0145	0.00107
Concentration (mg/dscm)			36.67	276.71	12.42
Concentration (mg/Nm3)			39.36	296.96	13.33
Concentration @7%O2 (ppm)			17.23	181.00	13.34
Concentration @12%CO2 (ppm)			17.09	179.57	13.24
Concentration @7%O2 (lb/scf)			2.864E-06	2.161E-05	9.699E-07
Concentration @12%CO2 (lb/scf)			2.842E-06	2.144E-05	9.622E-07
Concentration @7%O2 (mg/scm)			45.87	346.09	15.53
Concentration @12%CO2 (mg/scm)			45.50	343.34	15.41
Concentration @7%O2 (mg/Nm3)			49.22	371.41	16.67
Concentration @12%CO2 (mg/Nm3)			48.83	368.47	16.54

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_____ Date_____

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

Continuous Emissions Monitoring Parameters						
	Run Number	6				
	Date (2010)	Mar 16				
	Start Time	13:15				
	End Time	13:42				
	Elapsed Time (hh:mm)	00:27				
	Channel	1	2	3	4	5
	Parameter	CO2	O2	SO2	NOX	co
	Location	FF Outlet 2				
	Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
	Measured Average (drift-corrected)	9.74	9.75	13.63	149.73	9.55
	Concentration (ppmdv)			13.63	149.73	9.55
	Concentration (lb/dscf)			2.267E-06	1.788E-05	6.941E-07
	Concentration (%dv)	9.737	9.749	0.00136	0.0150 *	0.00095
	Concentration (mg/dscm)			36.30	286.29	11.11
	Concentration (mg/Nm3)			38.96	307.24	11.93
	Concentration @7%O2 (ppm)			16.99	186.64	11.90
	Concentration @12%CO2 (ppm)			16.80	184.53	11.77
	Concentration @7%O2 (lb/scf)			2.826E-06	2.229E-05	8.652E-07
	Concentration @12%CO2 (lb/scf)			2.794E-06	2.203E-05	8.554E-07
	Concentration @7%O2 (mg/scm)			45.25	356.86	13.85
	Concentration @12%CO2 (mg/scm)			44.74	352.83	13.70
	Concentration @7%O2 (mg/Nm3)			48.56	382.98	14.87

48.01

378.65

14.70

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

QA/QC_ Date

Continuous Emissions Monitoring Parameters

Continuous Emi	2210112 MOHIL	oning raname	rei 2		
Run Number	7				
Date (2010)	Mar 16				
Start Time	13:51				
End Time	14:18				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2
Measurement Units	%d∨	%d∨	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.84	9.66	15.58	153.87	12.22
Concentration (ppmdv)			15.58	153.87	12.22
Concentration (lb/dscf)			2.591E-06	1.837E-05	8.883E-07
Concentration (%dv)	9.840	9.656	0.00156	0.0154	0.00122
Concentration (mg/dscm)			41.48	294.20	14.22
Concentration (mg/Nm3)			44.52	315.73	15.27
Concentration @7%O2 (ppm)			19.26	190.21	15.10
Concentration @12%CO2 (ppm)			19.00	187.64	14.90
Concentration @7%O2 (ib/scf)			3.202E-06	2.271E-05	1.098E-06
Concentration @12%CO2 (lb/scf)			3.159E-06	2.240E-05	1.083E-06
Concentration @7%O2 (mg/scm)			51.28	363.70	17.58
Concentration @12%CO2 (mg/scm)			50.59	358.78	17.35
Concentration @7%O2 (mg/Nm3)			55.03	390.31	18.87
Concentration @12%CO2 (mg/Nm3)			54.29	385.03	18.62

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_____ Date_____

Copyright @ 2004 Clean Air Engineering Inc.

Continuous Emissions Monitoring Parameters

0010110 111011111	ormig i aramor	.010		
8				
Mar 16				
14:26				
14:53				
00:27				
· 1	2	3	4	5
CO2	O2	SO2	NOX	co
FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2
%dv	%dv	ppmdv	ppmdv	ppmdv
9.90	9.57	16.83	149.20	11.45
		16.83	149.20	11.45
		2.798E-06	1.782E-05	8.325E-07
9.896	9.574	0.00168	0.0149	0.00115
		44.81	285.28	13.33
		48.09	306.16	14.31
		20.66	183.11	14.05
		20.41	180.93	13.89
		3.434E-06	2.186E-05	1.022E-06
		3.393E-06	2.160E-05	1.009E-06
		55.00	350.12	16.36
		54.34	345.94	16.17
		59.02	375.73	17.56
		58.32	371.25	17.35
	8 Mar 16 14:26 14:53 00:27 1 CO2 FF Outlet 2 %dv 9.90	8 Mar 16 14:26 14:53 00:27 1 2 CO2 O2 FF Outlet 2 FF Outlet 2 %dv %dv 9.90 9.57	Mar 16 14:26 14:53 00:27 1	8 Mar 16 14:26 14:53 00:27 1

Prepared by Clean Air Engineering Proprletary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date_____

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

Run Number	9				
Date (2010)	Mar 16				
Start Time	15:02				
End Time	15:29				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	02	SO2	NOX	CO
Location	FF Outlet 2				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	9.80	9.66	14.88	148.85	12.67
Concentration (ppmdv)			14.88	148.85	12.67
Concentration (lb/dscf)			2.474E-06	1.777E-05	9.213E-07
Concentration (%dv)	9.803	9.656	0.00149	0.0149	0.00127
Concentration (mg/dscm)			39.61	284.62	14.75
Concentration (mg/Nm3)			42.51	305.44	15.83
Concentration @7%O2 (ppm)			18.39	184.02	15.67
Concentration @12%CO2 (ppm)			18.21	182.22	15.51
Concentration @7%O2 (lb/scf)			3.058E-06	2.197E-05	1.139E-06
Concentration @12%CO2 (lb/scf)			3.028E-06	2.176E-05	1.128E-06
Concentration @7%O2 (mg/scm)			48.97	351.86	18.24
Concentration @12%CO2 (mg/scm)			48.49	348.41	18.06
Concentration @7%O2 (mg/Nm3)			52.55	377.61	19.57

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC_ Date_

19.38

373.91

52.04

Concentration @7%O2 (mg/Nm3)

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

Continuous Linissions monitoring Farameters								
Run Number	10							
Date (2010)	Mar 16							
Start Time	15:37							
End Time	16:04							
Elapsed Time (hh:mm)	00:27							
Channel	1	2	3	4	5			
Parameter	CO2	O2	SO2	NOX	CO			
Location	FF Outlet 2							
Measurement Units	%dv	%d∨	ppmdv	ppmdv	ppmdv			
Measured Average (drift-corrected)	9.93	9.50	14.15	156.26	8.45			
Concentration (ppmdv)			14.15	156.26	8.45			
Concentration (lb/dscf)			2.353E-06	1.866E-05	6.141E-07			
Concentration (%dv)	9.925	9.504	0.00142	0.0156	0.00084			
Concentration (mg/dscm)			37.68	298.78	9.83			
Concentration (mg/Nm3)			40.44	320.64	10.55			
Concentration @7%O2 (ppm)			17.26	190.59	10.30			
Concentration @12%CO2 (ppm)			17.11	188.92	10.21			
Concentration @7%O2 (lb/scf)			2.870E-06	2.276E-05	7.490E-07			
Concentration @12%CO2 (lb/scf)			2.845E-06	2.256E-05	7.424E-07			
Concentration @7%O2 (mg/scm)			45.96	364,42	11.99			
Concentration @12%CO2 (mg/scm)			45.55	361.23	11.89			
=								

49.32

48.89

391.08

387.66

12.87

12.76

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_____ Date_____

Continuous Emissions Monitoring Parameters

Run Number	1				
Date (2010)	Mar 17				
Start Time	7:10				
End Time	7:37				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.88	8.41	10.57	165.85	13.70
Concentration (ppmdv)			10.57	165.85	13.70
Concentration (lb/dscf)			1.757E-06	1.980E-05	9.960E-07
Concentration (%dv)	10.884	8.407	0.0011	0.017	0.0014
Concentration (mg/dscm)			28.14	317.12	15.95
Concentration (mg/Nm3)			30.20	340.32	17.12
Concentration @7%O2 (ppm)			11.76	184.53	15.24
Concentration @12%CO2 (ppm)			11.65	182.85	15.10
Concentration @7%O2 (lb/scf)			1.955E-06	2.203E-05	1.108E-06
Concentration @12%CO2 (lb/scf)			1.937E-06	2.183E-05	1.098E-06
Concentration @7%O2 (mg/scm)			31.31	352.84	17.75
Concentration @12%CO2 (mg/scm)			31.02	349.62	17.58
Concentration @7%O2 (mg/Nm3)			33.60	378.66	19.04
Concentration @12%CO2 (mg/Nm3)			33.29	375.21	18.87

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

OEM VEISION OF EDUAL

QA/QC_____ Date____

Copyright @ 2004 Clean Air Engineering Inc.

Continuous Emissions Monitoring Pa

ssions Monite	oring Paramet	ters		
2				
Mar 17				
7:45				
8:12				
00:27				
1	2	3	4	5
CO2	02	SO2	NOX	CO
FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
%dv	%dv	ppmdv	ppmdv	ppmdv
10.89	8.44	14.21	166.86	13.29
		14.21	166.86	13.29
		2.362E-06	1.992E-05	9.658E-07
10.887	8.436	0.0014	0.017	0.0013
		37.82	319.04	15.47
		40.59	342.38	16.60
		15.84	186.08	14.82
		15.66	183.92	14.64
		2.634E-06	2.222E-05	1.077E-06
		2.603E-06	2.196E-05	1.065E-06
		0.0016	0.019	0.0015
		0.0016	0.018	0.0015
		42.18	355.80	17.25
		41.69	351.66	17.05
		45.27	381.83	18.51
		44.74	377.39	18.29
	2 Mar 17 7:45 8:12 00:27 1 CO2 FF Outlet 3 %dv 10.89	2 Mar 17 7:45 8:12 00:27 1 2 CO2 O2 FF Outlet 3 FF Outlet 3 %dv %dv 10.89 8.44	Mar 17 7:45 8:12 00:27 1	2 Mar 17 7:45 8:12 00:27 1

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date_

Continuous Emissions Monitoring Parameters

Run Number ·	3	_			
Date (2010)	Mar 17				
Start Time	8:20				
End Time	8:47				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.72	8.43	11.44	170.55	10.45
Concentration (ppmdv)			11.44	170.55	10.45
Concentration (lb/dscf)			1.903E-06	2.036E-05	7.594E-07
Concentration (%dv)	10.721	8.428	0.0011	0.017	0.0010
Concentration (mg/dscm)			30.47	326.11	12.16
Concentration (mg/Nm3)			32.70	349.97	13.05
Concentration @7%O2 (ppm)			12.75	190.07	11.64
Concentration @12%CO2 (ppm)			12.81	190.90	11.69
Concentration @7%O2 (lb/scf)			2.121E-06	2.270E-05	8.463E-07
Concentration @12%CO2 (lb/scf)			2.130E-06	2.279E-05	8.500E-07
Concentration @7%O2 (%v)			0.0013	0.019	0.0012
Concentration @12%CO2 (%v)			0.0013	0.019	0.0012
Concentration @7%O2 (mg/scm)			33.96	363.43	13.55
Concentration @12%CO2 (mg/scm)			34.11	365.02	13.61
Concentration @7%O2 (mg/Nm3)			36.44	390.03	14.54
Concentration @12%CO2 (mg/Nm3)			36.60	391.73	14.61

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC__ Date___

Continuous Emissions Monitoring Parameters

Conunadus Enni	.CI 3				
Run Number	4				
Date (2010)	Mar 17				
Start Time	8:54				
End Time	9:21				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.95	8.22	10.08	177.89	8.81
Concentration (ppmdv)			10.08	177.89	8.81
Concentration (lb/dscf)			1.677E-06	2.124E-05	6.405E-07
Concentration (%dv)	10.945	8.220	0.0010	0.018	0.0009
Concentration (mg/dscm)			26.85	340.14	10.26
Concentration (mg/Nm3)			28.81	365.03	11.01
Concentration @7%O2 (ppm)			11.05	195.01	9.66
Concentration @12%CO2 (ppm)			11.06	195.04	9.66
Concentration @7%O2 (lb/scf)			1.838E-06	2.328E-05	7.021E-07
Concentration @12%CO2 (lb/scf)			1.838E-06	2.329E-05	7.023E-07
Concentration @7%O2 (%v)			0.0011	0.020	0.0010
Concentration @12%CO2 (%v)			0.0011	0.020	0.0010
Concentration @7%O2 (mg/scm)			29.43	372.87	11.24
Concentration @12%CO2 (mg/scm)			29.43	372.93	11.25
Concentration @7%O2 (mg/Nm3)			31.58	400.15	12.07
Concentration @12%CO2 (mg/Nm3)			31.59	400.21	12.07

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_____ Date_____

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

Run Number	5	-			
Date (2010)	Mar 17				
Start Time	9:28				
End Time	9:55				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.55	8.68	6.05	171.27	12.35
Concentration (ppmdv)			6.05	171.27	12.35
Concentration (lb/dscf)			1.007E-06	2.045E-05	8.981 E-07
Concentration (%dv)	10.549	8.680	0.00061	0.017	0.0012
Concentration (mg/dscm)			16.12	327.47	14.38
Concentration (mg/Nm3)			17.30	351.44	15.43
Concentration @7%O2 (ppm)			6.89	194.81	14.05
Concentration @12%CO2 (ppm)			6.89	194.82	14.05
Concentration @7%O2 (lb/scf)			1.145E-06	2.326E-05	1.022E-06
Concentration @12%CO2 (lb/scf)			1.145E-06	2.326E-05	1.022E-06
Concentration @7%O2 (mg/scm)			18.34	372.49	16.36
Concentration @12%CO2 (mg/scm)			18.34	372.52	16.36
Concentration @7%O2 (mg/Nm3)			19.68	399.75	17.56
0 1 11 0 100 (000 (01 0)			40.00		4

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date

399.77

17.56

19.68

Continuous Emissions Monitoring Parameters

Continuous Enni	2210112 141011116	ning raianiei	EIS		
Run Number	6				
Date (2010)	Mar 17				
Start Time	10:02				
End Time	10:29				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	. 5
Parameter	CO2	O2	SO2	NOX	co
Location	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.58	8.57	4.11	175.67	12.10
Concentration (ppmdv)			4.11	175.67	12.10
Concentration (lb/dscf)			6.839E-07	2.098E-05	8.796E-07
Concentration (%dv)	10.581	8.571	0.00041	0.018	0.0012
Concentration (mg/dscm)			10.95	335.89	14.09
Concentration (mg/Nm3)			11.75	360.47	15.12
Concentration @7%O2 (ppm)			4.64	198.06	13.64
Concentration @12%CO2 (ppm)			4.66	199.22	13.72
Concentration @7%O2 (lb/scf)			7.711E-07	2.365E-05	9.918E-07
Concentration @12%CO2 (lb/scf)			7.756E-07	2.379E-05	9.976E-07
Concentration @7%O2 (mg/scm)			12.35	378.70	15.88
Concentration @12%CO2 (mg/scm)			12.42	380.93	15.97
Concentration @7%O2 (mg/Nm3)			13.25	406.41	17.04
Concentration @12%CO2 (mg/Nm3)			13.33	408.80	17.14

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date____

Continuous Emissions Monitoring Parameters

Run Number	7	•			
Date (2010)	Mar 17				
Start Time	10:37				
End Time	11:04				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.98	8.11	2.32	173.66	11.91
Concentration (ppmdv)			2.32	173.66	11.91
Concentration (lb/dscf)			3.850E-07	2.074E-05	8.659E-07
Concentration (%dv)	10.982	8.111	0.00023	0.017	0.0012
Concentration (mg/dscm)			6.16	332.05	13.87
Concentration (mg/Nm3)			6.62	356.35	14.88
Concentration @7%O2 (ppm)			2.52	188.75	12.95
Concentration @12%CO2 (ppm)			2.53	189.75	13.01
Concentration @7%O2 (lb/scf)			4.184E-07	2.254E-05	9.412E-07
Concentration @12%CO2 (lb/scf)			4.206E-07	2.266E-05	9.462E-07
Concentration @7%O2 (mg/scm)			6.70	360.89	15.07
Concentration @12%CO2 (mg/scm)			6.74	362.81	15.15
Concentration @7%O2 (mg/Nm3)			7.19	387.30	16.17
Concentration @12%CO2 (mg/Nm3)			7.23	389.36	16.26

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_ Date_

Continuous Emissions Monitoring Parameters

Oontinuous Link		Jinig i aramet	613		
Run Number	8				
Date (2010)	Mar 17				
Start Time	11:13				
End Time	11:40				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	11.11	7.96	3.50	172.56	7.85
Concentration (ppmdv)			3.50	172.56	7.85
Concentration (lb/dscf)			5.817E-07	2.060E-05	5.704E-07
Concentration (%dv)	11.112	7.962	0.00035	0.017	0.0008
Concentration (mg/dscm)			9.32	329.94	9.13
Concentration (mg/Nm3)			10.00	354.08	9.80
Concentration @7%O2 (ppm)			3.76	185.39	8.43
Concentration @12%CO2 (ppm)			3.78	186.34	8.47
Concentration @7%O2 (lb/scf)			6.250E-07	2.214E-05	6.128E-07
Concentration @12%CO2 (lb/scf)			6.282E-07	2.225E-05	6.160E-07
Concentration @7%O2 (mg/scm)			10.01	354.48	9.81
Concentration @12%CO2 (mg/scm)			10.06	356.30	9.86
Concentration @7%O2 (mg/Nm3)			10.74	380.41	10.53
Concentration @12%CO2 (mg/Nm3)			10.80	382.37	10.59

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_ Date

Continuous Emissions Monitoring Parameters

Run Number Date (2010)	9 Mar 17	•			
Start Time	11:48				
End Time	12:15				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3				
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.99	8.15	4.79	181.75	8.87
Concentration (ppmdv)			4.79	181.75	8.87
Concentration (lb/dscf)			7.958E-07	2.170E-05	6.446E-07
Concentration (%dv)	10.989	8.150	0.00048	0.018	0.0009
Concentration (mg/dscm)			12.74	347.52	10.32
Concentration (mg/Nm3)			13.68	372.95	11.08
Concentration @7%O2 (ppm)			5.22	198.14	9.67
Concentration @12%CO2 (ppm)			5.23	198.48	9.68
Concentration @7%O2 (lb/scf)			8.675E-07	2.366E-05	7.027E-07
Concentration @12%CO2 (lb/scf)			8.690E-07	2.370E-05	7.039E-07
Concentration @7%O2 (mg/scm)			13.89	378.85	11.25
Concentration @12%CO2 (mg/scm)			13.92	379.50	11.27
Concentration @7%O2 (mg/Nm3)			14.91	406.57	12.08
Concentration @12%CO2 (mg/Nm3)			14.93	407.27	12.10

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date____

Concentration @12%CO2 (mg/Nm3)

Continuous Emissions Monitoring Parameters

Continuous Emis	ssions Monito	oring Paramet	ers		
Run Number	10				
Date (2010)	Mar 17				
Start Time	12:25				
End Time	12:52				
Elapsed Time (hh:mm)	00:27				
Channel	1	2	3	4	5
Parameter	CO2	O2	SO2	NOX	CO
Location	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
Measurement Units	%dv	%dv	ppmdv	ppmdv	ppmdv
Measured Average (drift-corrected)	10.19	9.09	8.05	163.63	10.76
Concentration (ppmdv)			8.05	163.63	10.76
Concentration (lb/dscf)			1.339E-06	1.954E-05	7.822E-07
Concentration (%dv)	10.189	9.090	0.00081	0.016	0.0011
Concentration (mg/dscm)			21.44	312.86	12.53
Concentration (mg/Nm3)			23.00	335.76	13.44
Concentration @7%O2 (ppm)			9.48	192.59	12.66
Concentration @12%CO2 (ppm)			9.48	192.71	12.67
Concentration @7%O2 (lb/scf)			1.576E-06	2.300E-05	9.206E-07
Concentration @12%CO2 (lb/scf)			1.577E-06	2.301E-05	9.212E-07
Concentration @7%O2 (mg/scm)			25.23	368.24	14.74
Concentration @12%CO2 (mg/scm)			25.25	368.47	14.75
Concentration @7%O2 (mg/Nm3)			27.08	395.18	15.82

27.09

395.43

15.83

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC_____ Date QA/QC DATA

D

CleanAir Project No: 10955-1

This Page Intentionally Left Blank

RATA CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: Interference Free Multi-Component EPA Protocol Gas

Assay Laboratory

P.O. No.: 24252-66WHEELABRATOR CLEAN AIR ENGINEERING

AIR LIQUIDE AMERICA SPECIALTY GASES LLC

Project No.: 05-68618-001

1290 COMBERMERE STREET

DON ALLEN 500 W. WOOD STREET PALATINE IL 60087

TROY, MI 48083

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gasaous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number: Cylinder Pressure **: ALM010885 Certification Date: 1914 PSIG

19Sep2008

Exp. Date: 19Sep2010

COMPONENT CARBON DIOXIDE NITRIC OXIDE

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

SULFUR DIOXIDE .

10.2 PPM 225 PPM 44.9

TRACEABILITY
Direct NIST and VSL
Direct NIST and VSL Direct NIST and VSL

NITROGEN - OXYGEN FREE

BALANCE

TOTAL OXIDES OF NITROGEN

PPM 225.

Reference Value Only

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1. September 1997.

REFERENCE STANDARD

EXPIRATION DATE TYPE/SRM NO.

NTRM 1800 01Mar2009 NTRM 1685 01Sep2010

E891 MRTM 01Dec2011 CYLINDER NUMBER

K005478 KAL003525 KAL004073 CONCENTRATION

17.87 % 247,1 PPM 50.20 PPM COMPONENT CARBON DIOXIDE

NITRIC OXIDE SULFUR DIOXIDE

INSTRUMENTATION INSTRUMENT/MODEL/SERIAL#

FTIR//0928621 FTIR//0928621 FTIR//0928821

DATE LAST CALIBRATED

04Sep2008 28Aug2008 18Sep2008 ANALYTICAL PRINCIPLE

FTIR FTIR

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

CARBON DIOXIDE

Date: 12Sep2008 Response Unit: % Z1 = -0.00238 R1 = 17.78265 T1 = 10.09628 R2=17.78884 Z2=0.00216 T2 - 10.09698 Z3 = 0.00421 T3 = 10.10938 83 = 17.79053

10.15 Avg. Concentration:

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r = 9.99988E-1

Constants: A = 0.00000E +0

B=9.31148E-1 D = 0.00000E+0 E = 0.00000E+0

C=1.22400E-2

NITRIC OXIDE

Date: 12Sep2008 Response Unit:PPM Z1 = 0.01885 R1 = 248.7477 T1 = 226.2887R2 = 249.0275 Z2 = 0.12671 T2 = 226.6309 Z3 = 0.46283 T3 = 226.8421 R3 = 249.3030224,8 Avg. Concentration:

Date: 198ep2008 Response Unit: PPM 21 = -0.34230 R1 = 248.0816 T1 = 226.5803 R2 = 248.1206 Z2 = 0.32020 T2 = 226.8173

Avg. Concentration:

225.9 Avg. Concentration:

Concentration = A + Bx + Cx2 + Dx3 + Ex4r=9.99998E-1

A = 0.00000E +0 Constants: B=9.44080E-1 C=3.90000E-5 D = 0.00000E + 0 E = 0.00000E + 0

SULFUR DIOXIDE *

Date: 12Sep2008 Response Unit:PPM 21 4-0.00016 R1 = 50,25512 T1 = 44.99951T2 = 46.03611Z3 = 0.06619 T3 - 45,08546 R3 - 50.30269 Avg. Concentration: 44,97 PPM

Date: 195ep2008 Response Unit: PPM Z1 -0.03964 R1 -50.33410 T1 -44.83878 R2=50,43386 Z2=0.04622 T2=44.92096 Z3=0.06640 T3=44.96287 R3=50.44218

Concentration = A + 8x + Cx2 + Dx3 + Ex4r=9.99994E-1 Constants: A = 0.000000E + 0B = 1.00099E+0 C = 0.000000E + 0 $\hat{\mathbf{D}} = \mathbf{0.000000E} + \mathbf{0}$ 6 = 0.00000E + 0

APPROVED BY:

Rob McCrandal

Page 1 of

44.72

RATA CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: Interference Free Multi-Component EPA Protocol Gas

Assay Laboratory

P.O. No.: 24859-66-65000

Customer CLEAN AIR ENGINEERING

AIR LIQUIDE AMERICA SPECIALTY GASES LLC Project No.: 05-84187-001

SCOTT BROWN

1290 COMBERMERE STREET

500 WEST WOOD STREET

TROY, MI 48083

PALATINE IL 60067

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number: CC124384 Certification Date:

28Jan2010

Exp. Date: 28Jan2012

Cylinder Pressure ***:

1888 PSIG

ACCURACY**

TRACEABILITY

COMPONENT CARBON DIOXIDE NITRIC OXIDE

CERTIFIED CONCENTRATION (Moles) 10.0 PPM 453

+/- 1%

Direct NIST and VSL Direct NIST and VSL

SULFUR DIOXIDE *

89.9 PPM **BALANCE**

Direct NIST and VSL

NITROGEN - OXYGEN FREE

TOTAL OXIDES OF NITROGEN

453.

PPM

Reference Value Only

*** Oo not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

S

TYPE/SRM NO. EXPIRATION DATE NTRM 1675 B

020ct2012 01Jun2012

01Sep2010

CYLINDER NUMBER K000696

KAL003496

KAL004124

CONCENTRATION

13.93 % 490.0 PPM 100.4 PPM

COMPONENT

CARBON DIOXIDE NITRIC OXIDE SULFUR DIOXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

FTIR//0928621 FTIR//0928621

NTRM 1686

NTRM 1694

FTIR//0928621

DATE LAST CALIBRATED

310ec2009 08Jan2010

14Jan2010

ANALYTICAL PRINCIPLE

FTIR FTIR FTIR

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

CARBON DIOXIDE

Oate: 19Jan2010 Response Unit:%

Z1 = 0.00116 R1 = 13.91162 T1 = 10.01153 $R2 = 13.91811 \quad Z2 = 0.00130$ T2 = 10.01366Z3 = 0.01087 T3 = 10.01880 R3 = 13.91889

Avg. Concentration: 10.02

Concentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 9.99994E \cdot 1$

Constants: A = 0.00000E + 08 = 9.29116E-1 C = 1.26900E-2D = 0.00000E + 0 E = 0.00000E + 0

NITRIC OXIDE

Date: 19Jan2010 Response Unit:PPM

Z1 = -0.03529 R1 = 488.9653 T1 = 451.6460R2 = 490.2213 Z2 = 0.37681 T2 = 454.1722Z3 = 0.69378 T3 = 455.3191R3 = 490.9652

Avg. Concentration: 453.6 PPM Date: 28Jan2010 Response Unit: PPM Z1 = 0.35355 R1 = 490.4896 T1 = 450.8998

R2 = 491.2955 Z2 = 0.72792 T2 = 453.3129Z3 = 1.26294 T3 = 454.9297 R3 = 491.3667 PPM 452.0 Avg. Concentration:

Concentration = A + Bx + Cx2 + Dx3 + Ex4r = 9.99995E-1

Constants: $A \approx 0.00000E + 0$ 8 = 8.97507E-1C = 3.40000E-5D = 0.00000E + 0 E = 0.00000E + 0

SULFUR DIOXIDE *

Date: 19Jan 2010 Response Unit:PPM

Z1 = -0.00177 R1 = 101.3279T1 = 91.01780R2 = 101.5012 Z2 = 0.03768T2 = 91.02749Z3 = 0.15600 T3 = 91.04919 R3 = 101.6885Avg. Concentration: PPM

90.03

Date: 28Jan2010 Response Unit: PPM Z1 = -0.03477 R1 = 101.4266 T1 = 90.68078 R2 = 101.4765 Z2 = -0.02790 T2 = 90.81634Z3=0.10977 T3=90.94830 R3=101.6130

Concentration = A + Bx + Cx2 + Dx3 + Ex4r = 9.99999E-1Constants: A = 0.00000E + 0B = 1.05169E + 0 $C \approx 6.00000E-6$ D = 0.00000E + 0 $E \approx 0.00000E + 0$

APPROVED BY:

Rob McCrandall

Page 1 of 1

89.82

Avg. Concentration:

RATA CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No.: 57858-71-65000

Customer CLEAN AIR ENGINEERING

AIR LIQUIDE AMERICA SPECIALTY GASES LLC Project No.: 05-83307-001

DON ALLEN

1290 COMBERMERE STREET

500 W. WOOD STREET

TROY, MI 48083

PALATINE IL 60067

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number:

EB0011451 Certification Date: 04Jan2010

Exp. Date: 03Jan2013

Cylinder Pressure***:

1849 PSIG

ANALYTICAL

ACCURACY**

TRACEABILITY

CARBON MONOXIDE

CERTIFIED CONCENTRATION (Moles)

+/- 1%

Direct NIST and VSL

PPM 48.2

NITROGEN

COMPONENT

BALANCE

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.

EXPIRATION DATE

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 1679

020ct2010

KAL003109

101.0 PPM

CARBON MONOXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

DATE LAST CALIBRATED

ANALYTICAL PRINCIPLE

E=0.000D0E+0

FTIR//0928621

24Dec 2009

FTIR

ANALYZER READINGS

(Z=Zero Gas R≈Reference Gas

T = Test Gas

r = Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

Calibration Curve

CARBON MONOXIDE

Date: 28Dec2009 Response Unit:PPM

Z1=0.03183 R1 = 101.1946

T1 = 48.26642 T2=48.27261

R3 = 101.2757

R2=101.2298 Z2=0.03304 23=0.06765 T3=48.33387

Avg. Concentration:

Date: 04Jan2010 Response Unit: PPM

Z1 = 0.01474 R1 = 101.1599 T1 = 48.20196 R2=101.2582 22=0.05407

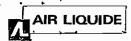
48.21

T3=48,45435 Z3=0.10127

Avg. Concentration:

T2=48.37728 R3 = 101,2630 PPM

Concentration = A + Bx + Cx2+ Dx3+ Ex4


r=9.99990E-1

D= 1.00000E-6

0+300000E+0 Constants: B=9.81711E-1 C=6.28000E-4

APPROVED BY:

Rob McCrandall

RATA CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No.: 57534-71-65000

CLEAN AIR ENGINEERING

AIR LIQUIDE AMERICA SPECIALTY GASES LLC Project No.: 05-78153-002

DON ALLEN

Customer

1290 COMBERMERE STREET

500 W. WOOD STREET

PALATINE IL 60067

TROY, MI 48083

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number:

ALM054744 Certification Date:

28Jul2009

Cylinder Pressure***:

1983 PSIG

Exp. Date: 27Jul2012

COMPONENT

ANALYTICAL ACCURACY**

CERTIFIED CONCENTRATION (Moles)

TRACEABILITY

CARBON MONOXIDE

+/- 1%

Direct NIST and NMi

NITROGEN

98.5 PPM **BALANCE**

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

KAL003128

REFERENCE STANDARD

TYPE/SRM NO. NTRM 1679

EXPIRATION DATE

020ct2010

CYLINDER NUMBER

CONCENTRATION

COMPONENT

CARBON MONOXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

FTIR//0928621

DATE LAST CALIBRATED 16Jul2009

101.0 PPM

ANALYTICAL PRINCIPLE

ANALYZER READINGS

(Z=Zero Gas

R3 = 25.13916

R=Reference Gas T=Test Gas Second Triad Analysis

r=Correlation Coefficient)

Calibration Curve

CARBON MONOXIDE

Date: 21Jul2009 Response Unit:PPM

21 = -0.02619 R1 = 25.05672 T1 = 98.05983 T2=98.21467 R2 = 26.09760 Z2=0.03499

First Triad Analysis

T3=98.44034 Avg. Concentration:

Date: 28Jul2009 Z1 = 0.04 130

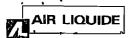
R1=101.1553 T1=98,43124 T2=98.44001 R2=101.2594 22=0.09861 T3=98.51880

Response Unit: PPM

Avg. Concentration:

R3 = 101.2611

Concentration = A + Bx + Cx2 + Dx3 + Ex4


r=9.99991E-1

A=0.00000E+0 8 = 9.93719E-1 C = 8.63000E-4 D=1.00000E-8 E=0.00000E+0

APPROVED BY:

Rob McCrandali

D-6

RATA CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

P.O. No.: 57534-71-65000

Customer CLEAN AIR ENGINEERING

AIR LIQUIDE AMERICA SPECIALTY GASES LLC Project No.: 05-78153-003

DON ALLEN

1290 COMBERMERE STREET

TROY, MI 48083

500 W. WOOD STREET PALATINE IL 60067

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

Cylinder Number:

ALM033730 Certification Date:

27Jul2009

Exp. Date: 26Jul2012

Cylinder Pressure***:

2000 PSIG

ANALYTICAL

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

CARBON DIOXIDE

COMPONENT

5.91

+/- 1%

Direct NIST and NMi

OXYGEN **NITROGEN** 14.1 **BALANCE** +/- 1%

Direct NIST and NMi

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

EXPIRATION DATE TYPE/SRM NO.

CYLINDER NUMBER

CONCENTRATION COMPONENT

NTRM 2300

01Nov2010 01Dec2011

*** Do not use when cylinder pressure is below 150 psig.

1D002807

23.04 %

CARBON DIOXIDE

NTRM 2350

K018398

23.20 %

OXYGEN

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

DATE LAST CALIBRATED

ANALYTICAL PRINCIPLE

PIR/2000/609016

16Jul2009

NDIR

CAI/110P/V03018

01Jul2009

PARAMAGNETIC

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

D= 1.40219E-05

First Triad Analysis

Second Triad Analysis

Calibration Curve

CARBON DIOXIDE

Date: 27Jul2009 Response Unit:MV

R2=102,5000 Z2=0.00000

T1=43.00000

23=0.00000 T3 = 43.00000 T2=43.00000

Avg. Concentration:

Z1=0.00000 R1 = 102,5000

R3 = 102.5000

Concentration = A + Bx + Cx2 + Dx3 + Ex4 r=0.899992 Constants: A=-0.00322681 B=0.13615338 C=-0.0005754

OXYGEN

Z3=0.00000

Avg. Concentration:

Date: 28Jul2009 Response Unit:%

21=0.00000 R1 = 23,20000 R2=23,20000 Z2=0.000D0

T3 = 14.06000

T1 = 14.06000T2=14.08000 R3 = 23.20000

Concentration = A + Bx + Cx2 + Dx3 + Ex4 ·=0.999992

Constants: A = -0.00675568 8=0.999864575 C=0

APPROVED BY:

RATA CLASS

Dual-Analyzed Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No.: 57439-71-65000

CLEAN AIR ENGINEERING

AIR LIQUIDE AMERICA SPECIALTY GASES LLC Project No.: 05-76738-005

DON ALLEN

Customer

1290 COMBERMERE STREET

500 W. WOOD STREET

PALATINE IL 60067

TROY, MI 48083

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure G-1; September, 1997.

ALMO46255 Certification Date:

09Jun2009

Exp. Date: 08Jun2012

Cylinder Number: Cylinder Pressure***:

2000 PSIG

ANALYTICAL

CERTIFIED CONCENTRATION (Moles)

ACCURACY**

TRACEABILITY

CARBON DIOXIDE

+/- 1%

Direct NIST and NMI

OXYGEN

COMPONENT

13.9 6.01 96

+/- 1%

Direct NIST and NMi

NITROGEN

BALANCE

*** Do not use when cylinder pressure is below 150 psig.

** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

EXPIRATION DATE TYPE/SRM NO.

CYLINDER NUMBER

CONCENTRATION

COMPONENT

NTRM 1875 NTRM 2658 020ct2012 01Jan2010

K006545 K001290 13.93 % 10.03 % CARBON DIOXIDE

OXYGEN

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL#

DATE LAST CALIBRATED

ANALYTICAL PRINCIPLE

PIR/2000/609015

CAI/110P/V03018

11May2009

PARAMAGNETIC

01Jun2009

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas

First Triad Analysis

Second Triad Analysis

r = Correlation Coefficient)

Calibration Curve

CARBON DIOXIDE

Oate: 09Jun2009 Response Unit:MV

R1=80.60000 Z1=0.00000

T2=80.30000 ZZ=0.00000

Z3 = 0.00000 T3 = 80.30000 T1=80.30000 R3 = 80.60000 Concentration = A+Bx+Cx2+Dx3+Ex4

r = 0.999998

Constants: B=0.111614122

A=-0.00492643 C = 0.00014738

D = 6.76093E-06E-0

OXYGEN

R2=80.60000

Avg. Concentration:

Date: 09Jun2009 Response Unit:%

T1=6.01000 21=0.00000 R1 = 10.06000R2 = 10.06000 Z2 = 0.00000

23-0.00000 T3=6.01000 Avg. Concentration:

T2 = 6.01000 R3=10.06000

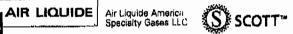
Concentration = A+Bx+Cx2+Dx3+Ex4

r=0.999998

Constants

D = 0

A = -0.00970246


B=0.999816092

C=0 E=0

APPROVED BY:

JEFA

1290 COMBERMERE STREET

Shipped

TROY

MI 48083

From:

Phone: 248-589-2950

Fax: 248-589-2134

CERTIFICATE OF ANALYSIS

CLEAN AIR ENGINEERING

SCOTT BROWN

500 WEST WOOD STREET

PROJECT #: 05-76361-001

PO#: 24559-66-65000

ITEM #: 0501813 AL DATE: 29May2009

PALATINE

IL 60067

CYLINDER #: AAL14589

FILL PRESSURE: 02000 PSIG

PURE MATERIAL: NITROGEN

CAS# 7727-37-9

GRADE:

ZERO GAS

PURITY: 99.998%

MUTHURAN COMPENSATIONS

ANALYST:

CERTIFIED MASTER CLASS

Single-Certified Calibration Standard

1290 COMBERMERE STREET, TROY, MI 48083

Phone: 248-589-2950 Fax: 248-589-2134

CERTIFICATE OF ACCURACY: Certified Master Class Calibration Standard

Product Information Project No.: 05-76093-001 Item No.: 05020002680PAL P.O. No.: 57397-71-65000

Cylinder Number: ALM000611 Cylinder Size: AL Certification Date: 19May2009 Expiration Date: 19May2011

Customer

CLEAN AIR ENGINEERING DON ALLEN 500 W. WOOD STREET PALATINE, IL 60067

CERTIFIED CONCENTRATION

Component Name

NITROGEN DIOXIDE NITROGEN

Concentration (Moles)

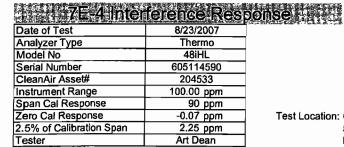
Accuracy (+/-%)

49.7

PPM BALANCE

2

TRACEABILITY


Traceable To

Scott Reference Standard

APPROVED BY:

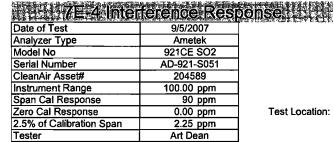
DATE: 5/27/09

Page 1 of 2

Test Location: CleanAir 500 West Wood St. Palatine, IL 60067

You may introduce the appropriate Interference test gasses into the analyzer separately or as mixtures. This test must be performed both with and without CO.

interferences are gasses that are potentially encountered during a test.


The total interference response must not be greater than 2.5% of the calibration span for the analyzer tested.

Cray Triby represe			
Test Gas Type	Conclusion	Prienti Amores	Action of the
NO	13.73 ppm	89.50	0.56%
NO2	15.50 ppm	90.00	0.00%
HCL	9.48 ppm	90.00	0.00%
H2	45.41 ppm	90.30	0.33%
SO2	17.50 ppm	90.00	0.00%
CH4	44.93 ppm	90.00	0.00%
NH3	8.88 ppm	90.00	0.00%
СО	45.56 ppm	NA	NA
N2O	9.06 ppm	89.70	0.33%
CO2 High	15.43 %	82.50	8.33%
CO2 Low	4.52 %	86.10	4.33%
H2O	2.00 %	87.40	0.91%
Electronic description of the contract of the			

Capasian , Supparation			_
Test Gas Type		inserves kasmisis	AVBStetelfer (* 166)
NO	15.15 ppm	0.00	0.00%
NO2	17.1 ppm	0.00	0.00%
HCL	10.46 ppm	0.00	0.00%
H2	50.1 ppm	0.00	0.00%
SO2	19.31 ppm	0.00	0.00%
CH4	49.57 ppm	0.00	0.00%
NH3	9.8 ppm	0.00	0.00%
CO	50.27 ppm	NA	NA
N2O	10 ppm	-0.62	0.69%
CO2 High	17.02 %	-6.35	7.06%
CO2 Low	4.99 %	-3.50	3.89%
H2O	2 %	-1.40	1.56%

Garrens Continues	and Court a Upice of	
NO	15.15 ppm	AAL20914
NO2	17.1 ppm	1L1652
HCL	10.46 ppm	NA25733
H2	50.1 ppm	ALM52896
SO2	19.31 ppm	ALM46049
CH4	49.57 ppm	AAL21367
NH3	9.80 ppm	ALM52993
00	50.27 ppm	ALM10054
N2O	10.00 ppm	ALM51673
CO2 High	17.02 %	ALM 36532
CO2	4.99 %	ALM37876
%H2O	2.00 %	MKS205321
N2	99.99 %	K24662
CO High Span	961 ppm	ALM47921

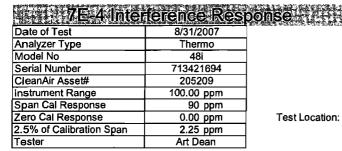
Tester:

Test Location: CleanAir

500 West Wood St. Palatine, IL 60067

You may introduce the appropriate interference test gasses into the analyzer separately or as mixtures. This test must be performed both with and without SO2.

Interferences are gasses that are potentially encountered during a test.


The total interference response must not be greater than 2.5% of the calibration span for the analyzer tested.

Gos Medias				
Test Gas Type		4191	745 (1974) (AVINGO DA)	Wesouth From
NO	13.71	ppm	90.00	0.00%
NO2	15.47	ppm	90.20	0.22%
HCL	9.46	ppm	90.00	0.00%
H2	45.33	ppm	90.00	0.00%
SO2	17.47	ppm	NA	NA
CH4	44.85	ppm	90.00	0.00%
NH3	8.87	ppm	90.00	0.00%
CO	45.49	ppm	90.00	0.00%
N2O	9.05	ppm	90.00	0.00%
CO2 High	15.40	%	89.90	0.11%
CO2 Low	4.52	%	90.00	0.00%
H2O	1.04	%	89.10	0.04%
Evidencia i i i i i i i i i i i i i i i i i i				

SPECIS PERINGS			
Test Gas Type	E Consultation	Asking of Carminate	
NO	15.15 ppm	0.00	0.00%
NO2	17.1 ppm	0.20	0.22%
HCL	10.46 ppm	0.00	0.00%
H2	50.1 ppm	0.00	0.00%
SO2	19.31 ppm	NA	NA
CH4	49.57 ppm	0.00	0.00%
NH3	9.8 ppm	0.00	0.00%
CO	50.27 ppm	0.00	0.00%
N2O	10 ppm	0.00	0.00%
CO2 High	17.02 %	0.00	0.00%
CO2 Low	4.99 %	0.00	0.00%
H2O	1.035 %	0.00	0.00%

		en i di Gennera (alemania)
NO	15.15 ppm	AAL20914
NO2	17.1 ppm	1L1652
HCL	10.46 ppm	NA25733
H2	50.1 ppm	ALM52896
SO2	19.31 ppm	ALM46049
CH4	49.57 ppm	AAL21367
NH3	9.80 ppm	ALM52993
CO	50.27 ppm	ALM10054
N2O	10.00 ppm	ALM51673
CO2 High	17.02 %	ALM 36532
CO2	4.99 %	ALM37876
%H2O	1.04 %	MKS209040
N2	99.99 %	K24662
SO2 High Span	945.7 ppm	ALM57777

20	tΔ	r	•
63	ľ		

Test Location: CleanAir 500 West Wood St. Palatine, IL 60067

You may introduce the appropriate interference test gasses into the analyzer separately or as mixtures. This test must be performed both with and without CO.

Interferences are gasses that are potentially encountered during a test.

The total interference response must not be greater than 2.5% of the calibration span for the analyzer tested.

Gen Walnes				
Test Gas Type	Ca is	Uñ.	Altai ea Saganna.	Arrangua Trico
NO	13.73	ppm	89.70	
NO2	15.50	ppm	89.70	0.33%
HCL		ppm	89.70	0.33%
H2	45.41	ppm	89.60	0.44%
SO2	17.50		89.70	0.33%
CH4	44.93	ppm	90.00	0.00%
NH3	8.88	ppm	89.90	0.11%
CO	45.56	ppm	NA	NA .
N2O	9.06		89.70	0.33%
CO2 High	15.43	%	94.70	
CO2 Low	4.52	%	91.00	1.11%
H2O	1.40	%	90.00	1.42%
EXCLUSION REGULE W. F.CO.				

High Section And Constitution			
Test Gas Type	Spirit Jac	Jakes Add Contract	Additional Engine
NO	15.15 ppm	-0.38	0.42%
NO2	17.1 ppm	-0.38	0.42%
HCL	10.46 ppm	-0.38	0.42%
H2	50.1 ppm	-0.39	0.43%
SO2	19.31 ppm	-0.34	0.38%
CH4	49.57 ppm	0.00	0.00%
NH3	9.8 ppm	-0.13	0.14%
CO	50.27 ppm	NA	NA
N2O	10 ppm	-0.38	0.42%
CO2 High	17.02 %	-0.30	0.33%
CO2 Low	4. <u>9</u> 9 %	0.00	0.00%
H2O	1.4 %	0.11	0.12%

(\$81/40;	nei Charlada	e e civiliacea a sel
NO	15.15 ppm	AAL20914
NO2	17.1 ppm	1L1652
HCL	10.46 ppm	NA25733
H2	50.1 ppm	ALM52896
SO2	19.31 ppm	ALM46049
CH4	49.57 ppm	AAL21367
NH3	9.80 ppm	ALM52993
CO	50.27 ppm	ALM10054
N2O	10.00 ppm	ALM51673
CO2 High	17.02 %	ALM 36532
CO2	4.99 %	ALM37876
%H2O	1.40 %	MKS205321
N2	99.99 %	K24662
CO Span Gas	961 ppm	ALM47921

Tester:

This Page	Intentionally	Left	Blank
-----------	---------------	------	-------

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-1

REFERENCE METHOD FIELD DATA

Ε

This Page Intentionally Left Blank	

_		
Date:	March	18, 2010
_	Start Time	6:18
	Stop Time	6:33
CALIE	BRATION ERRO	OR

Channel 4

Channel 5

Channel 3

	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
	CO2	02	SO2	NOX	CO
	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
	%dv	%dv	ppmdv	ppmdv	ppmdv
Instrument Info	rmation		• • •	• • •	• • •
Manufacturer	: Servomex	Servomex	Rsrch	T.E.I.	T.E.I.
Model	: 1415C	1420C	921NMP	42i-HL	48C
Detection	: NDIR	Paramagn.	UV Photo.	Chemilumi.	GFC/NDIR
Asset or Serial No	204217	205832	205184	205956	205194
Calibration Spa	n Value (CS)				
oundration opu	13.900	14.100	89.900	453.000	98.500
System Respon			20.000	.00.000	00.000
cyclem nespon	45	45	45	45	45
Manufacturer C					
Zero	0.000	0.000	0.000	0.000	0.000
Low	5.910	6.010	44.900	225.000	48.200
Mid					
High	13.900	14.100	89.900	453.000	98.500
Actual gas to b	e used for bia	s checks			
Notali gas is a	5.910	14.100	44.900	225 000	49 200
	5.910	14.100	44.900	225.000	48.200
Cylinder ID					
Zero	AAL14589	AAL14589	AAL14589	AAL14589	AAL14589
Low	ALM033730	ALM046255	ALM010885	ALM010885	EB0011451
Mid					
High	ALM046255	ALM033730	CC124384	CC124384	ALM054744
Analyzer Calibra	ation Respon	se (C _{Dir})			
Zero	-0.003	0.001	-0.018	0.117	-0.217
Low	6.001	6.046	43.520	225.573	49.165
Mid					
High	13.943·	14.149	90.178	453.377	98.578
Analyzer Calibration Error (ACE) (Limit = 2	% Method 25	Δ limit = 5%	of gas value	۸.	
Zero	0.0%	0.0%	0.0%	0.0%	-0.2%
Low	0.7%	0.3%	-1.5%	0.1%	1.0%
Mid	N/A	N/A	N/A	N/A	N/A
High	0.3%	0.3%	0.3%	0.1%	0.1%
Calibration Erro	r Status				
Zero		ок	OK	ОК	ок
Low	OK OK	OK	OK OK	OK	OK
Mid	N/A	N/A	N/A	N/A	N/A
High	OK	OK	OK	OK	OK
	-		• • • • • • • • • • • • • • • • • • • •		
040710 121047 06:18:14	-0.004	0.002	-0.008	0.114	-0.210
06:18:14 06:18:14	-0.004	0.002	-0.008	0.114	-0.210 -0.210
06:18:29	-0.004	0.002	-0.008	0.114	-0.210
06:18:44 06:18:44	-0.002	0.101	0.057	0.114	-0.239
06:18:59	6.267	0.315	39.013	0.122	-0.221
06:19:14	9.727	0.013	80.326	218.983	-0.182
06:19:29	9.894	-0.006	89.110	391.249	-0.252
06:19:44	9.910	-0.010	90.694	449.711	-0.353
06:19:59	9.916	-0.011	91.137	453.545	-0.454

Channel 1

Channel 2

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 05-2004a

QA/QC_____ Date_____

Date:	March 18	, 2010
•	Start Time	6:18
	Stop Time	6:33
CALI	BRATION ERROR	

	Channel 1	Channel 2 O2	Channel 3 SO2	Channel 4	Channel 5
	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
	%dv	%dv	ppmdv	ppmdv	ppmdv
06:20:14	9.915	-0.010	90.128	453.203	-0.488
06:20:29	9.916	-0.012	90.169	453.382	-0.513
06:20:44	9.920	-0.012	90.237	453.545	-0.513
06:20:59	9.603	0.214	70.984	453.773	-0.513
06:21:14	9.924	0.023	37.828	421.384	-0.513
06:21:29	10.040	-0.018	41.208	348,702	-0.484
06:21:44	10.043	-0.022	42,678	234.937	-0.513
06:21:59	10.042	-0.022	43.173	226.675	-0.518
06:22:14	10.042	-0.024	43.386	225.706	-0.537
06:22:29	10.041	-0.024	43,541	225.576	-0.537
06:22:44	10.041	-0.024	43.634	225.438	-0.524
06:22:59	9.379	3.718	37.592	225.430	-0.513
06:23:14	6.424	13.166	8.112	214.090	-0.510
06:23:29	6.002	14.114	1.226	146.325	-0.381
06:23:44	5.978	14.164	0.366	12.454	-0.239
06:23:59	5.974	14,169	0.168	2.051	-0.055
06:24:14	6.958	11.886	0.208	0.814	0.047
06:24:29	13,000	6.487	0.246	1.669	0.029
06:24:44	13,885	6.058	0.122	3.345	-0.096
06:24:59	13.938	6.041	0.119	1.172	-0.228
06:25:14	13.945	6.038	0.066	0.374	-0.298
06:25:29	13.947	6.037	0.085	0.293	-0.322
06:25:44	12.497	8.223	0.106	0.244	-0.339
06:25:59	6.770	13.632	0.173	0.244	-0.337
06:26:14	6.035	14.146	0.122	0.244	-0.272
06:26:29	5,986	14,172	0.078	0.244	-0.112
06:26:44	5.981	14.174	0.066	0.244	0.011
06:26:59	4.771	10.470	0.213	0.244	0.189
06:27:14	0.492	0.864	0.376	1.888	3.984
06:27:29	0.054	0.043	0.208	2.353	22.760
06:27:44	0.030	0.010	0.116	0.561	55,338
06:27:59	0,021	0.006	0.098	0.309	82.559
06:28:14	0.017	0.002	0.100	0.244	94.824
06:28:29	0.013	0.000	0.088	0.244	97,903
06:28:44	0.008	-0.002	0.050	0.244	98.317
06:28:59	0.011	-0.001	0.075	0.252	98.649
06:29:14	0.009	0.000	0.085	0.244	98.768
06:29:29	0.210	0.251	0.182	0.244	98.486
06:29:44	0.063	0.039	0.228	0.350	95.051
06:29:59	0.012	-0.002	0.147	0.782	80.812
06:30:14	0.006	-0.005	0.086	0.325	63.443
06:30:29	0.006	-0.005	0.053	0.114	52.615
06:30:44	0.003	-0.007	0.080	0.122	49.590
06:30:59	0.004	-0.005	0.098	0.122	49.167
06:31:14	0.006	-0.007	0.086	0.122	49.208
06:31:29	0.001	-0.006	0.070	0.122	49.120
06:31:44	0.051	0.305	0.080	0.122	49.066
06:31:59	0.061	1.024	0.370	0.122	47.269
06:32:14	0.002	1.002	0.832	15.849	36.624
06:32:29	0.000	1.001	0.962	31.111	18.522
06:32:44	0.000	0.998	1.003	42.011	5.672
06:32:59	-0.004	1.001	1.047	44.005	0.822

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC_ Date_

_		
Date:	March 1	18, 20 <u>10</u>
_	Start Time	6:18
	Stop Time	6:33
CALIE	BRATION ERRO	R

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1	FF Outlet 1	FF Outlet 1
06:33:14	0.000	1.001	1.060	44.624	-0.080
06:33:29 06:33:44	-0.002 -0.003	1.000 1.000	1.050 1.076	44.884 45.210	-0.177 -0.182
06:33:59	0.000	1.000	1.096	45.210	-0.187

NOX Conversion Efficiency NO2 = 49.7 Efficiency = 91.0%

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004e

Copyright © 2004 Clean Air Engineering Inc.

QA/QC____ Date____

March 18, 2010 Start Time 6:38 Stop Time CALIBRATION BIAS 00 6:44

		Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
		CO2	02	SO2	NOX	CO
				_	FF Outlet 1	
		%dv	%dv	ppmdv	ppmdv	ppmdv
Svs	tem Response to	Calibration G	asses (C _c)			
C _{of}	Zero gas	0.001	0.036	0.003	0.122	-0.380
Cuf	Upscale gas	5.925	14.012	42.254	221.623	48.978
	lyzer Calibration					
	Zero gas	-0.003	0.001	-0.018	0.117	-0.217
-	Upscale gas	6.001	14.149	43,520	225.573	49.165
****	ual Upscale Gas			10.020		.000
	Upscale gas	5.910	14.100	44,900	225.000	48.200
****			14.100	44.500	223.000	40.200
Can	ibration Span Val		14 100	00.000	452 000	00 500
_		13.900	14.100	89.900	453.000	98.500
Sys	tem Bias as Perc		-			
	Zero gas	0.0%	0.2%	0.0%	0.0%	-0.2%
	Upscale gas	-0.5%	-1.0%	-1.4%	-0.9%	-0.2%
Sys	tem Bias Status					
	Zero gas	OK	OK	OK	ok	OK
	Upscale gas	ок	OK	OK	OK	ok
Pre	vious System Re	sponse to Cal	ibration Gase	es (C _s)		
Col	Zero gas	N/A	N/A	N/A	N/A	N/A
Cui	Upscale gas	N/A	N/A	N/A	N/A	N/A
Drif	t Assessment as	Percent of Ca	libration Spa	n Value (D) ((3%)	
	Zero gas	N/A	N/A	N/A	N/A	N/A
	Upscale gas	N/A	N/A	N/A	N/A	N/A
Drif	t Assessment Sta					
	Zero gas	N/A	N/A	N/A	N/A	N/A
	Upscale gas	N/A	N/A	N/A	N/A	N/A
	Opodaic gas		14,71	1 477 1	1071	
040710 085121					0.10-	10.000
	06:38:21		0.037	0.000	0.122	48.938
	06:38:36		0.036	0.003	0.122	48.956
	06:38:51		0.033	0.006	0,122	49.042
	06:39:06		0.037	0.662	0.114	49.060
	06:39:21		0.018	19.770	0.122	46.245
	06:39:36		0.247	34.668	124.526	36.124
	06:39:51		0.630	37,765	195.442	17.340
	06:40:06		0.687	38.766 30.247	213.366 214.082	6.942 1.260
	06:40:21 06:40:36		0.753 0.776	39.347 39.758	213.398	-0.013
	06:40:51		0.779	40.038	212.910	-0.357
	06:41:06		0.805	40.269	212.756	-0.391
	06:41:21	_	0.537	40.562	212.454	-0.393
	06:41:36		0.060	41.273	213.618	-0.396
	06:41:51		0.009	41.812	216.573	-0.404
	06:42:06		0.006	42.102	221.343	-0.430
	06:42:21		0.006	42.274	221.669	-0.435
	06:42:36		0.002	42.387	221.856	-0.453
	06:42:51		0.001	42,468	221.856	-0.449
	06:43:06		1.213	41.921	221.978	-0.437
	06:43:21		11.665	19.823	221.897	-0.358
	06:43:36		13.872	5.058	102.434	-0.192
	06:43:51		13.982	2.509	29.345	0.111
	06:44:06		14.003	1.747	2.426	0.195
		•				

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date_

March 18, 2010
Start Time 6:38
Stop Time 6:44
CALIBRATION BIAS 00

	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
	CO2	O2	SO2	NOX	CO
	FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
06:44:21	5.923	14.014	1.356	1.360	0.195
06:44:36	5.920	14.019	1.104	0.936	0.193

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

SS CEM Version 06-2004a
Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date____

March 18, 2010 Start Time 7:12 7:39 Stop time **REFERENCE METHOD RUN 1**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Cali	bration Checks					
Coi	Initial zero	0.001	0.036	0.003	0.122	-0.380
C _{ui}	Initial upscale	5.925	14.012	42.254	221.623	48.978
C _{of}	Final zero	0.085	0.032	0.272	0.673	-0.378
=:						
C _{uf}	Final upscale	5.939	13.991	41.950	220.681	48.750
C_{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
Ana	lyzer Averages (c	oncentration	s)			
C_{Avg}	Average conc.	9.724	9.654	12.981	155.665	12.574
C _{Gas}	Bias adjusted	9.715	9.711	13.742	158.254	12.678
Clock Time (at end	of sample period)					
040710 085121	•			:		
	07:13	9.270	10.230	11.203	149.497	16.102
	07:14	10.475	8.706	11.908	171.823	17.542
	07:15	10.299	9.019	10.685	183.101	14.505
	07:16	8.926	10.689	7.196	165.212	10.790
	07:17	9.213	10.266	6.799	153.999	12.154
	07:18	10.190	9.019	10.280	167.285	13.571
	07:19	9.978	9.349	13.301	169.616	12.281
	07:20	10.062	9.203	14.507	160.012	11.472
	07:21	9.733	9.616	14.503	161.642	10.285
	07:22	9.599	9.825	12.153	160.977	11.184
	07:23	9.501	9.938	11.330	149.679	12.099
	07:24	10.011	9.252	12.501	151.245	14.006
	07:25	10.152	9.065	14.051	156.150	11.223
	07:26	9.723	9.646	13.744	142.043	11.050
	07:27	9.559	9.893	14.494	139.235	10.276
	07:28 07:29	9.608 9.550	9.813 9.888	15.070 15.365	132.877 136.052	10.600 10.059
	07:30	9.500	9.979	16.536	134.601	10.039
	07:31	9.962	9.357	17.196	143.732	13.825
	07:32	10.053	9.268	17.190	151.317	12.316
	07:33	9.221	10.340	15.073	141.506	12.057
	07:34	9.519	9.937	13.818	141.827	13.910
	07:35	9.506	9.938	12.394	148.915	13.394
	07:36	10.000	9.249	12.237	165.547	13.740
	07:37	9.941	9.353	12.257	180.849	13.740
	07:38	9.669	9.692	11.565	171.284	13.121
	07:39	9.322	10.140	12.841	171.204	13.319
	01.35	0.022	10.140	12.071	172,002	10.010

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date_

March 18, 2010 7:41 Start Time Stop Time 7:45 **CALIBRATION BIAS 01**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
		%dv	%dv	ppmdv	ppmdv	ppmdv
	System Response	e to Calibration G	asses (C _c)			
	C _{of} Zero gas	0.085	0.032	0,272	0.673	-0.378
	C _{uf} Upscale gas	5.939	13.991	41.950	220.681	48.750
	Analyzer Calibrat			71,000 1		
	C _{oce} Zero gas	-0.003	0.001	-0.018	0.117	-0.217
	C _{mce} Upscale gas	6.001	14.149	43,520	225.573	49.165
	Actual Upscale G		נדו.דו	45,520	223.373	49.103
			14 100	44 000	225 000	49 200
	C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
	Calibration Span	• •	44400		450.000	
		13.900	14.100	89.900	453.000	98.500
	System Bias as P					
	Zero gas	0.6%	0.2%	0.3%	0.1%	-0.2%
	Upscale gas	-0.4%	-1.1%	-1.7%	-1.1%	-0.4%
	System Bias State	ıs				
	Zero gas	OK	OK	OK	OK	OK
	Upscale gas	OK	OK	OK	OK	OK
	Previous System	Response to Cali	bration Gase	es (C _s)		
	Coi Zero gas	0.001	0.036	0.003	0,122	-0.380
	Cul Upscale gas	5.925	14.012	42.254	221.623	48.978
	Drift Assessment	as Percent of Cal	libration Spa		3%)	
	Zero gas	0.6%	0.0%	0.3%	0.1%	0.0%
	Upscale gas	0.1%	-0.1%	-0.3%	-0.2%	-0.2%
	Drift Assessment		0.170	0.070	0.270	0.270
	Zero gas	OK	ок	ок	ок	ОК
	Upscale gas	OK OK	OK	OK	OK	OK
	Opscale gas	OK .	OK	OK	OK	OK
10 085121						
	07:41		0.045	0.485	1.392	43.995
	07:41		0.038	0.365	0.936	47.630
	07:41	I	0.033	0.308	0.822	48.586
	07:41		0.030	0.256	0.676	48.793
	07:42		0.035	0.252	0.521	48.871
	07:42		0.022	14.672	14.449	47.989
	07:42		-0.014	35.447	70.346	38.688
	07:42:		-0.001	39.909	172.666	23.492
	07:43:		-0.008	41.083	217.957	8.687
	07:43:		-0.008	41.595	220.432	2.373
	07:43:		0.002	42.024	220.724	0.088
	07:43: 07:44:		0.036 <u> </u>	42.230	220.887	-0.366 -0.417
	07:44: 07:44:		13.737	29.208 6.836	186.837	-0.417
	07:44: 07:44:		13.737	2.393	50.647	-0.350
	07:44: 07:44:	,	13.997	1.397	6.724	0.029
	07:44: 07:45:		14.008	1.087	1.546	0.025
	07.40.	0.929	17.000	1.007	1.040	0.177

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright @ 2004 Clean Air Engineering Inc.

04071

QA/QC Date_

March 18, 2010 7:46 Start Time Stop time 8:13 REFERENCE METHOD RUN 2

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Cali	bration Checks					
Coi	Initial zero	0.085	0.032	0.272	0.673	-0.378
Cui	Initial upscale	5.939	13.991	41.950	220.681	48.750
Cof	Final zero	0.062	0.032	0.257	0.787	-0.423
C _{uf}	Final upscale	5.946	13.984	42.230	220.472	48.736
	•					
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
Ana	lyzer Averages (co	oncentration	s)			
C _{Ava}	Average conc.	9.913	9.386	13.301	169.772	11.804
	Blas adjusted	9.909	9.451	13.995	173.004	11.970
Clock Time (at end	of sample period)					
040710 085121						
	07:47	9.695	9.613	13.042	148.002	11.277
	07:48	9.888	9.348	14.393	148.372	11.024
	07:49	10.155	9.024	19.788	155.381	10.277
	07:50	10.364	8.765	20.206	164.797	10.328
	07:51	10.367	8.762	16.120	154.908	10.668
	07:52	9.723	9.653	13.885	146.624	12.472
	07:53	9.538	9.908	11.805	138.647	15.365
	07:54	9.760	9.574	12.059	142.993	14.065
	07:55	10.552	8.564	13.151	162.725	12.956
	07:56	10.058	9.250	12.812	169.782	11.857
	07:57	9.747	9.606	12.142	154.790	11.760
	07:58	9.384	10.109	10.608	151.154	11.429
	07:59	9.659	9.703	10.775	154.674	12.565
	08:00 08:01	10.148 10.622	9.043 8.486	12.383 14.335	170.879 181.412	11.775 9.940
	08:02	10.022	9.155	15.078	180.822	8.490
	08:03	9.880	9.467	15.602	182.741	9.395
	08:04	9.481	9.980	13.887	187.493	9.909
	08:05	9.384	10.116	12.207	177.395	13.850
	08:06	9.869	9.444	10.855	183.081	15.175
	08:07	10.319	8.863	10.730	192.515	14.006
	08:08	9.788	9.557	9.522	198.274	12.277
	08:09	9.895	9.441	10,417	193.063	12.241
	08:10	9.451	9.974	10.746	181.954	11.453
	08:11	10.434	8.699	14.527	189.849	13.320
	08:12	9.471	9.952	15.816	192.261	11.500
	08:13	9.926	9.366	12.231	179.243	9.334

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC Date_

March 18, 2010 8:14 Start Time Stop Time
CALIBRATION BIAS 02 8:19

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
					FF Outlet 1	
		%dv	%dv	ppmdv	ppmdv	ppmdv
Sy	stem Response to	Calibration G	asses (C _s)			
C	_r Zero gas	0.062	0.032	0.257	0.787	-0.423
C _u		5.946	13.984	42.230	220.472	48.736
Aı	nalyzer Callbration	Error Repons	es (C _{Dir})			
•	ce Zero gas	-0.003	0.001	-0.018	0.117	-0.217
	_{nce} Upscale gas	6.001	14.149	43.520	225.573	49.165
Ac	ctual Upscale Gas \	/alue (C _{MA})				
· ·	_{na} Upscale gas	5.910	14.100	44.900	225.000	48.200
Ca	alibration Span Valu	• •				
_		13.900	14.100	89.900	453.000	98.500
Sy	stem Bias as Perce		•		•	
	Zero gas	0.5%	0.2%	0.3%	0.1%	-0.2%
	Upscale gas	-0.4%	-1.2%	-1.4%	-1.1%	-0.4%
Sy	stem Bias Status					
	Zero gas	OK	OK	OK	OK	OK
_	Upscale gas	ОК	OK	OK	OK	ок
	evious System Res	•		,		
Coi	•	0.085	0.032	0.272	0.673	-0.378
C _{ul}		5.939	13.991	41.950	220.681	48.750
Dr	lft Assessment as I				•	
	Zero gas	-0.2%	0.0%	0.0%	0.0%	0.0%
	Upscale gas	0.0%	-0.1%	0.3%	0.0%	0.0%
Dr	ift Assessment Star		014			-
	Zero gas	OK OK	OK	OK	OK	OK
	Upscale gas	OK	OK	OK	OK	ок
040710 085121				•		
	08:14:56	-0.017	-8.328	0.493	2.035	38.615
	08:15:11	0.002	-6.759	0.314	0.830	46.281
	08:15:26	0.069	0.035 0.031	0.270	0.936	48.218
	08:15:41 08:15:56	0.063 0.055	0.031	0.259 0.241	0.782 0.643	48.767 48.752
	08:16:11	0.235	0.030	0.236	0.529	48.690
	08:16:26	7.368	0.016	16.788	14.392	47.479
	08:16:41	9.745	0.005	36.410	65.291	37.708
	08:16:56	9.879	0.003	40.345	171.998	22.090
	08:17:11	9.906	0.002	41.374	217.404	7.904
	08:17:26	9.913	0.000 _	41.838_	219.886	2.124
	08:17:41	9.928	0.000	42.092	220.293	0.001
	08:17:56	9.934	0.000	42.247	220.513	-0.370
	08:18:11	9.943	0.019	42.352	220.611	-0.438
	08:18:26 08:18:41	8.005 6.107	8.686 13.720	30.963 7.233	219.080 <u></u> 206.545	-0.461 -0.371
	08:18:41 08:18:56	6.107 5.959	13.720	7.233 2.460	200.545 70.989	-0.371 -0.195
	08:19:11	5.940	13.988	1.438	6.919	0.026
	08:19:26	5.938	14.000	1.110	1.620	0.122

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date

March 18, 2010
Start Time 8:20
Stop time 8:47
REFERENCE METHOD RUN 3

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5
	FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Calibration Checks					
C _{oi} Initial zero	0.062	0.032	0.257	0.787	-0.423
C _{ul} Initial upscale	5.946	13.984	42.230	220.472	48.736
C _{of} Final zero	0.056	0.026	0.268	0.613	-0.447
C _{uf} Final upscale	5.948	13.982	42.434	220.556	48,762
C _{ma} Actual gas value		14.100	44.900	225.000	48.200
Analyzer Averages (concentration	s)			
C _{Avg} Average conc.	10.049	9.220	14.264	163.871	10.158
C_{Gas} Bias adjusted	10.028	9.287	14.944	167.021	10,381
-					
Clock Time (at end of sample period))				
040710 085121					
08:21		8.530	11.060	199.962	10.160
08:22		9.826	10.322	178.744	8.766
08:23		9.677	11.529	171.966	10.076
08:24		9.490	14.115	168.512	10.848
08:25		8.788	16.341	177.804	10.493
08:26		8.164	19.024	198.836	12.343
08:27		9.782	13.260	176.901	9.223
08:28		9.221 9.131	15.289	185.370	8.919
08:29			15.488	182.021	9.729
08:30		8.711 9.522	16.963	170.940	11.130 11.287
08:31 08:32		9.009	14.653 13.714	161.046 147.588	11.556
08:33		9.087	12.668	136.925	10.804
08:34		8.593	13.712	145.407	11.210
08:35		9.353	14.209	154.512	9.067
08:36		9.038	16.078	149.815	8.438
08:37		9.863	17.862	143.793	7.925
08:38		9.395	19.423	148.952	9.025
08:39		9.189	19.011	167.597	11.814
08:40		9.183	16.165	166.191	12.701
08:41		9.567	10.947	150.999	12.168
08:42		9.295	10.005	159.064	13.080
08:43		9.348	10.096	155.981	11.548
08:44		9.212	11.163	149.794	8.803
08:45	10.162	8.988	14.135	162.845	7.881
08:46	9.814	9.478	13.926	155.924	7.080
08:47	9.809	9.492	13.976	157.033	8.203

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date

March 18, 2010
Start Time 8:49
Stop Time 8:53
CALIBRATION BIAS 03

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
		3	%dv	%dv	ppmdv	ppmdv	ppmdv
	Sys	tem Response to	Calibration G	asses (C _s)			
	Cof	Zero gas	0.056	0.026	0.268	0.613	-0.447
	Cut	Upscale gas	5.948	13.982	42.434	220.556	48.762
	Ana	alyzer Calibration	Error Repons	es (C _{Dir})	•	•	
	Coce	Zero gas	-0.003	0.001	-0.018	0.117	-0.217
	Cmo	Upscale gas	6.001	14.149	43.520	225.573	49.165
	Act	ual Upscale Gas \	√alue (C _{MA})				
		Upscale gas	5.910	14,100	44.900	225.000	48.200
		ibration Span Val	ue (CS)	,-			
			13.900	14.100	89.900	453.000	98.500
	Sys	tem Bias as Perce					00.000
	_	Zero gas	0.4%	0.2%	0.3%	0.1%	-0.2%
		Upscale gas	-0.4%	-1.2%	-1.2%	-1.1%	-0.4%
	Sys	tem Bias Status					
	-	Zero gas	OK	ок	ок	ок	ОК
		Upscale gas	OK	OK	OK	OK	ОК
	Pre	vious System Res	ponse to Cali	bration Gase	es (C _c)		
	Cai	Zero gas	0.062	0.032	0.257	0.787	-0.423
	Cui	Upscale gas	5.946	13.984	42,230	220.472	48.736
		t Assessment as I	Percent of Cal	ibration Spa	n Value (D) (
		Zero gas	0.0%	0.0%	0.0%	0.0%	0.0%
		Upscale gas	0.0%	0.0%	0.2%	0.0%	0.0%
	Drift	t Assessment Sta		2.2,0	0.270	0.070	2.2.0
		Zero gas	ОК	ок	ОК	ОК	ОК
		Upscale gas	OK	OK OK	OK	OK	OK
		o potalo gao			•	<u> </u>	
040710 085121		20.40.40	2.270	0.010	2.452		45.000
		08:49:16 08:49:31	0.079	0.040	0.459	1.001	45.392 48.311
		08:49:46	0.069 0.062	0.030 0.023	0.373 0.283	0.847 0.749	48.754
		08:50:01	0.055	0.029	0.283	0.586	48.814
		08:50:16	0.051	0.027	0.238	0.504	48.798
		08:50:31	2.702	0.024	3.839	0.399	48.676
		08:50:46	9.268	0.009	29.350	36.361	44.936
		08:51:01	9.846	0.004	39,103	157.118	30.179
		08:51:16	9.898	0.001	40.858	206.951	14.867
		08:51:31	9.911	0.000	41.639	219.267	4.223
		08:51:46	9.925	-0.001	42.002	220.171	0.767
		08:52:01	9.934	-0.001	42.227	220.472	-0.327
		08:52:16	9.943	0.000	42.385	220.562	-0.449
		08:52:31 08:52:46	9.944 8.619	0.123 <u> </u>	42.689 37.841	220.635 220.993	-0.462 -0.428
		08:53:01	6.202	13.528	9.776	220.993 <u></u> 215.205	-0.428
		08:53:16	5.961	13.954	2.821	77.542	-0.296
•		08:53:31	5.944	13.988	1.548	10.045	0.055
•		08:53:46	5.940	14.005	1.122	1.750	0.116

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date

March 18, 2010 8:55 Start Time Stop time 9:22 **REFERENCE METHOD RUN 4**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
C	alibration Checks					
C	ol Initial zero	0.056	0.026	0.268	0.613	-0.447
C		5.948	13.982	42.434	220.556	48.762
C		0.095	0.030	0.287	0.754	-0.426
C		5.950	13.983	42.243	220.111	48.701
	ma Actual gas value	5.910	14.100	44.900	225.000	48.200
A	nalyzer Averages (c	oncentration	s)			
C	Ava Average conc.	9.984	9.265	13.912	156.868	11.696
	Gas Bias adjusted	9.970	9.333	14.554	159.988	11.893
	-					
Clock Time (at e	nd of sample period)					
040710 085121						
	08:56	11.198	7.853	14.412	177.361	11.834
	08:57	10.207	9.017	9.774	168.321	9.286
	08:58	9.560	9.820	8.035	134.618	9.713
	. 08:59	9.743	9.579	9.600	132.572	13.165
	09:00 09:01	10.066 10.117	9.157 9.097	13.693 17.494	146.418	13.983
	09:02	9.808	9.493	18.618	156.253 145.796	12.444 10.990
	09:03	9.993	9.263	16.479	148.755	11.860
	09:04	9.733	9.597	15.818	146.656	12.365
	09:05	9.766	9.557	12.554	149.909	10.511
	09:06	9.499	9.885	12.009	149.318	11.848
	09:07	9.631	9.733	14.850	155.751	11.670
	09:08	9.654	9.635	14.541	159.168	9.242
	09:09	9.387	10.015	17.137	153.281	9.113
	.09:10	9.834	9.418	18.041	155.095	9.643
	09:11	10.864	8.174	19.418	171.085	11.214
	09:12	10.175	9.002	13.072	165.924	11.438
	09:13	9.479	9.892	8.829	138.559	11.333
	09:14	9.419	9.978	7.742	134.837	15.211
	09:15	9.745	9.546	9.606	142.857	15.898
	09:16	10.189	8.971	12.771	151.986	15.813
	09:17	10.277	8.903	15.098	167.422	14.817
	09:18	9.935	9.325	14.670	160.796	14.497
	09:19	9.770	9.516	14.058	167.880	11.068
	09:20	10.184	8.948	15.804	181.764	9.232
	09:21	10.477	8.619	15.869	186.416	8.841
	09:22	10.855	8.173	15.619	186.638	8.755

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date_

March 18, 2010 Start Time 9:24 Stop Time
CALIBRATION BIAS 04 9:28

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
		%dv	%dv	ppmdv	ppmdv	ppmdv
5	System Response to	Callbration G	asses (C _c)			
	C _{of} Zero gas	0.095	0.030	0.287	0.754	-0.426
	Cuf Upscale gas	5.950	13.983	42.243	220.111	48.701
	Analyzer Calibration	Error Repons	es (C _{hir})			
	C _{oce} Zero gas	-0.003	0.001	-0.018	0.117	-0.217
	C _{mce} Upscale gas	6.001	14,149	43.520	225.573	49.165
	Actual Upscale Gas V	/alue (C _{MA})				
	C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
	Calibration Span Valu	ie (CS)				
	and the second	13.900	14.100	89.900	453.000	98.500
9	System Bias as Perce					33.333
_	Zero gas	0.7%	0.2%	0.3%	0.1%	-0.2%
	Upscale gas	-0.4%	-1.2%	-1.4%	-1.2%	-0.5%
9	System Bias Status		,.	,.	,,	5.2,5
	Zero gas	ок	ок	ок	ок	ок
	Upscale gas	OK	ok	OK	OK	OK
P	revious System Res	ponse to Cali	bration Gase			
	Zero gas	0.056	0.026	0.268	0.613	-0.447
	Upscale gas	5.948	13.982	42.434	220.556	48.762
	rift Assessment as F					
_	Zero gas	0.3%	0.0%	0.0%	0.0%	0.0%
	Upscale gas	0.0%	0.0%	-0.2%	-0.1%	-0.1%
р	rift Assessment Stat		0.070	0.270	0.170	0.170
_	Zero gas	ОК	ок	ок	ок	OK
	Upscale gas	OK	OK OK	ok	ok	ok
	operate gar		• • • • • • • • • • • • • • • • • • • •	•		
	****		2 2 2 2	2 2 2 1		
	09:24:24	0.082	0.035	0.371	1.091	47.744
	09:24:39	0.071 0.067	0.031 0.029	0.324 0.271	0.904	48.575
	09:24:54 09:25:09	0.067	0.029	0.271	0.749 0.610	48.697 48.830
	09:25:24	6.984	0.023	15.694	15.026	47.735
	09:25:39	9.736	0.006	36.076	87.709	37.376
	09:25:54	9.884	0.003	40.233	173.936	21.444
	09:26:09	9.908	0.001	41.263	217.851	7.355
	09:26:24	9.928	0.000	41.779	219.723	1.765
	09:26:39	9.936	0.000	42.094	220.016	-0.093
	09:26:54	9.945	-0.001	42.261	220.114	-0.399
	09:27:09	9.953	0.118	42.375	220.204	-0.436
	09:27:24	7.704	9.718	28.101	211.404	-0.443
	09:27:39	6.090	13.775	6.488	167.456	-0.332
	09:27:54	5.965	13.964	2.473	64.827	-0.138
	09:28:09 09:28:24	5.943 5.940	13.988	1.576	4.192 1.514	0.042 0.106
	09.20.24	0.540	13.997	1.211	1.014	0.100

Propared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

040710 085121

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date

March 18, 2010 9:29 Start Time Stop time 9:56 **REFERENCE METHOD RUN 5**

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO					
	FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv					
Calibration Checks										
Coi Initial zero	0.095	0.030	0.287	0.754	-0.426					
C _{ul} Initial upscale	5.950	13.983	42.243	220.111	48.701					
C _{of} Final zero	0.059	0.028	0.200	0.687	-0.408					
C _{uf} Final upscale	5.958	13.957	42.096	219.436	48.654					
C _{ma} Actual gas value	5.910	14.100	44.900	225.000	48.200					
Analyzer Averages (concentrations)										
C _{Avg} Average conc.	10.000	9.241	9.070	154.008	10.074					
C _{Gas} Bias adjusted	9.979	9.317	9.452	157.449	10.300					
Clock Time (at end of sample period)										
Clock Time (at end of sample period) 040710 085121			J							
09:30	10.386	8.734	13.545	172.175	9.634					
09:31	10.253	8.899	13.162	158.270	9.339					
09:32	9.941	9.303	12.326	153.097	8.574					
09:33	10.019	9.207	11.870	156.301	9.683					
09:34	10.831	8.263	12.203	164.662	11.300					
09:35	9.967	9.325	10.091	168.403	9.803					
09:36	9.799	9.481	8.641	147.491	9.412					
09:37 09:38	10.371 10.954	8.745 8.147	9.543 11.573	158.482 171.125	10.474 11.858					
09:39	9.932	9.324	9.912	166.427	9.100					
09:40		3.324								
	10 235									
	10.235 9.509	8.913	8.335	162.308	10.337					
09:40 09:41 09:42	10.235 9.509 9.758	8.913 9.875	8.335 7.276	162.308 155.582	10.337 10.080					
09:41	9.509	8.913	8.335	162.308	10.337					
09:41 09:42 09:43 09:44	9.509 9.758	8.913 9.875 9.558	8.335 7.276 7.686	162.308 155.582 153.004	10.337 10.080 10.914					
09:41 09:42 09:43	9.509 9.758 9.737	8.913 9.875 9.558 9.553 9.397 9.600	8.335 7.276 7.686 8.128	162.308 155.582 153.004 149.780	10.337 10.080 10.914 10.654					
09:41 09:42 09:43 09:44 09:45 09:46	9.509 9.758 9.737 9.864 9.710 9.749	8.913 9.875 9.558 9.553 9.397 9.600 9.512	8.335 7.276 7.686 8.128 8.977 9.330 8.747	162.308 155.582 153.004 149.780 157.043 145.521 146.707	10.337 10.080 10.914 10.654 10.327 9.620 9.253					
09:41 09:42 09:43 09:44 09:45 09:46 09:47	9.509 9.758 9.737 9.864 9.710 9.749 9.764	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646					
09:41 09:42 09:43 09:44 09:45 09:46 09:47 09:48	9.509 9.758 9.737 9.864 9.710 9.749 9.764 9.922	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488 9.301	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263 7.580	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084 154.748	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646 10.526					
09:41 09:42 09:43 09:44 09:45 09:46 09:47 09:48 09:49	9.509 9.758 9.737 9.864 9.710 9.749 9.764 9.922 9.774	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488 9.301 9.470	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263 7.580 6.818	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084 154.748 150.946	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646 10.526 8.428					
09:41 09:42 09:43 09:44 09:45 09:46 09:47 09:48 09:49	9.509 9.758 9.737 9.864 9.710 9.749 9.764 9.922 9.774 10.832	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488 9.301 9.470 8.247	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263 7.580 6.818 6.869	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084 154.748 150.946 162.759	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646 10.526 8.428 9.619					
09:41 09:42 09:43 09:44 09:45 09:46 09:47 09:48 09:49 09:50	9.509 9.758 9.737 9.864 9.710 9.749 9.764 9.922 9.774 10.832 9.776	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488 9.301 9.470 8.247 9.559	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263 7.580 6.818 6.869 6.049	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084 154.748 150.946 162.759 151.369	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646 10.526 8.428 9.619 8.570					
09:41 09:42 09:43 09:44 09:45 09:46 09:47 09:48 09:49 09:50 09:51	9.509 9.758 9.737 9.864 9.710 9.749 9.764 9.922 9.774 10.832 9.776 9.614	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488 9.301 9.470 8.247 9.559 9.724	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263 7.580 6.818 6.869 6.049 5.505	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084 154.748 150.946 162.759 151.369 126.836	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646 10.526 8.428 9.619 8.570 9.453					
09:41 09:42 09:43 09:44 09:45 09:46 09:47 09:48 09:49 09:50 09:51	9.509 9.758 9.737 9.864 9.710 9.749 9.764 9.922 9.774 10.832 9.776 9.614 9.521	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488 9.301 9.470 8.247 9.559 9.724 9.862	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263 7.580 6.818 6.869 6.049 5.505 6.220	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084 154.748 150.946 162.759 151.369 126.836 136.020	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646 10.526 8.428 9.619 8.570 9.453 11.193					
09:41 09:42 09:43 09:44 09:45 09:46 09:47 09:48 09:49 09:50 09:51	9.509 9.758 9.737 9.864 9.710 9.749 9.764 9.922 9.774 10.832 9.776 9.614	8.913 9.875 9.558 9.553 9.397 9.600 9.512 9.488 9.301 9.470 8.247 9.559 9.724	8.335 7.276 7.686 8.128 8.977 9.330 8.747 8.263 7.580 6.818 6.869 6.049 5.505	162.308 155.582 153.004 149.780 157.043 145.521 146.707 147.084 154.748 150.946 162.759 151.369 126.836	10.337 10.080 10.914 10.654 10.327 9.620 9.253 9.646 10.526 8.428 9.619 8.570 9.453					

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004e

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC Date_

March 18, 2010
Start Time 9:58
Stop Time 10:02
CALIBRATION BIAS 05

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
		%dv	%dv	ppmdv	ppmdv	ppmdv
Syste	m Response to	Calibration G	asses (C _c)			
_	Zero gas	0.059	0.028	0:200	0.687	-0.408
Cuf	Upscale gas	5.958	13,957	42.096	219.436	48.654
Analy	zer Calibration	Error Repons	es (C _{Dir})			
	Zero gas	-0.003	0,001	-0.018	0.117	-0.217
***	Upscale gas	6.001	14.149	43.520	225.573	49.165
	al Upscale Gas V	alue (C _{MA})				
	Upscale gas	5.910	14.100	44.900	225.000	48.200
	ration Span Valu					
54	· anon opan van	13.900	14.100	89.900	453.000	98.500
Syste	m Bias as Perce	ent of Calibrat	ion Span Va	lue (SB) (5%)		
	Zero gas	0.5%	0.2%	0.2%	0.1%	-0.2%
	Upscale gas	-0.3%	-1.4%	-1.6%	-1.4%	-0.5%
Syste	m Bias Status					
<u>-</u>	Zero gas	ок	ОК	OK	ОК	ок
1	Upscale gas	ОК	ок	ок	OK	ок
Previo	ous System Res	ponse to Cali	bration Gase	es (C _s)		
C _{oi}	Zero gas	0.095	0.030	0.287	0.754	-0.426
	Upscale gas	5.950	13.983	42.243	220.111	48.701
Drift A	Assessment as F	Percent of Cal	ibration Spa	n Value (D) (3%)	
	Zero gas	-0.3%	0.0%	-0.1%	0.0%	0.0%
	Upscale gas	0.1%	-0.2%	-0.2%	-0.1%	0.0%
	Assessment Stat	tus			,	
	Zero gas	ОК	ок	ок	` ok	ок
	Jpscale gas	ОК	ок	ОK	ок	OK
	, ,					
040710 085121	09:58:06	0.085	0.039	0.376	1,050	45.066
	09:58:21	0.072	0.034	0.288	0.888	48.143
	09:58:36	0.066	0.030	0.234	0.855	48.545
	09:58:51	0.059	0.028	0.186	0.635	48.703
	09:59:06	0.053	0.025	0.181	0.570	48.699
	09:59:21	2.620	0.026	3.228	1.164	48.558
	09:59:36	9.230	0.006	28.160	13.301	44.563
	09:59:51	9.842	0.000	38.771	96.435	29.517
	10:00:06	9.893	0.000	40.734	214.074	14.185
	10:00:21	9.910	0.000	41.508	218.062	3.795
	10:00:36	9.928 9.938	-0.002 -0.001	41.903 42.094	219.325	0.561
	10:00:51 10:01:06	9.938 9.943	-0.001	42.094 42.292	219.479 219.503	-0.327 -0.422
	10:01:21	9.337	3.570	40.060	219.731	-0.422
	10:01:36	6.441	12.967	14.740	217.591	-0.435
	10:01:51	5.991	13.924	3.840	134.555	-0.275
	10:02:06	5.948	13.966	1.933	9.426	-0.037
	10:02:21	5.936	13.982	1.346	2.938	0.152

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004e

Copyright © 2004 Clean Air Engineering Inc.

March 18, 2010
Start Time 10:03
Stop time 10:30
REFERENCE METHOD RUN 6

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Calil	oration Checks					
C _{ol}	Initial zero	0.059	0.028	0.200	0.687	-0.408
Cui	Initial upscale	5.958	13.957	42.096	219.436	48.654
C _{of}	Final zero	0.056	0.028	0.224	0.687	-0.437
C _{uf}	Final upscale	5.949	13.953	41.979	218.564	48.351
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
	<u>-</u>			11.500	220.000	10.200
	yzer Averages (co			44.440	457.044	40.700
	Average conc.	9.875	9.410	11.416	157.941	10.798
C_{Gas}	Bias adjusted	9.841	9.498	12.027	162.071	11.054
Ola ali Wissa (at and	-flid\					
Clock Time (at end 040710 085121	or sample period)					. "
040710 003127	10:04	9.990	9.216	10.695	168.370	9.128
	10:05	9.803	9.511	10.773	173.791	9.618
	10:06	10.503	8.589	11.436	171.013	8.768
	10:07	9.743	9.594	10.934	174.194	8.013
	10:08	9.882	9.357	10.411	162.601	8.132
	10:09	9.831	9.441	10.958	166.339	9,352
	10:10	10.396	8.761	11.999	171.937	11.330
	10:11	9.972	9.285	10.818	150.141	9.556
	10:12	9.889	9.421	10.951	148.154	12.264
	10:13	9.623	9.761	10.410	140.556	12.160
	10:14	9.644	9,711	11.466	140.635	12.287
	10:15	9.586	9.831	13.320	144.758	15.803
	10:16	9.951	9.318	16.311	138.551	15,355
	10:17	9.558	9.841	15.188	139.579	12.685
	10:18	9.642	9.741	15.356	147.062	12.033
	10:19	9.652	9.691	15.483	143.103	11.317
	10:20	9.978	9.242	14.577	154.243	11.771
	10:21	10.141	9.060	13.013	164.009	12.685
	10:22	9.653	9.721	10.843	151.109	10.733
	10:23	9.657	9.688	8.988	159.390	10.950
	10:24	10.197	8.969	8.950	166.520	9.933
	10:25	9.821	9.470	8.640	171.516	7.613
	10:26	10.336	8.780	9.788	168.783	8.831
	10;27	9.697	9.665	9.228	165.283	8.306
	10:28	9.926	9.319	9.217	156.750	11.257
	10:29	9.617	9.744	9.129	161.713	11.214
	10:30	9.940	9.338	9.347	164.310	10.457

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____

March 18, 2010 Start Time 10:31 Stop Time
CALIBRATION BIAS 06 10:36

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
					•	
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
6.	otom Boonones to			PP	PF	pp
	stem Response to		0.028	0.224	0.607	0.427
င့		0.056 5.949	13.953	0.224 41.979	0.687 218.564	-0.437 48.351
C _u	alyzer Calibration			41.979	210.504	46.301
	=	-0.003	0.001	0.019	0 117	0.217
	ce Zero gas	6.001	14.149	-0.018 43.520	0.117 225.573	-0.217 49.165
	ce Upscale gas		14.149	43.520	225.573	49.165
	tual Upscale Gas \		44.400	44.000		40.000
••	a Upscale gas	5.910	14.100	44.900	225.000	48.200
Ca	libration Span Valu	• •				
		13.900	14.100	89.900	453.000	98.500
Sy	stem Bias as Perce	ent of Calibra	•	ılu e (SB) (5%)	
	Zero gas	0.4%	0.2%	0.3%	0.1%	-0.2%
	Upscale gas	-0.4%	-1.4%	-1.7%	-1.5%	-0.8%
Sy	stem Bias Status					
	Zero gas	OK	OK	OK	OK	OK
	Upscale gas	OK	OK	OK	OK	OK
Pre	evious System Res	ponse to Cali	bration Gase	es (C _s)		
,C⁰i	=	0.059	0.028	0.200	0.687	-0.408
C _{ui}	-	5.958	13.957	42.096	219.436	48.654
-	ft Assessment as I	Percent of Ca	libration Spa	n Value (D) (3%)	
	Zero gas	0.0%	0.0%	0.0%	0.0%	0.0%
	Upscale gas	-0.1%	0.0%	-0.1%	-0.2%	-0.3%
Dri	ft Assessment Sta		0.070	0.170	0.270	0.070
Dii	Zero gas	OK	ок	ок	ок	ок
	Upscale gas	OK	OK	OK	OK	OK
	Opsicale gas	- OK	OK	ON	ON	<u> </u>
085121	10:31:40	0.136	0.065	1.045	24.006	24.553
		0.136	0.065		21.986 2.613	24.553 36.507
	10:31:55 10:32:10	0.100	0.046	0.571 0.422	1.180	45.760
	10:32:25	0.069	0.041	0.422	0.936	47.893
	10:32:40	0.061	0.031	0.257	0.330	48.352
	10:32:55	0.057	0.028	0.218	0.684	48.352
	10:33:10	0.049	0.026	0.197	0.603	48.352
	10:33:25	2.735	0.024	3.925	0.635	48.350
	10:33:40	9.261	0.009	29.060	0.733	43.389
	10:33:55	9.836	0.005	38.697	137,721	30.297
	10:34:10	9.889	0.003	40.570	210.191	12.249
	10:34:25	9.909	0.000	41.315	218.112	4.062
	10:34:40	9.924	0.001	41.742	218.421	0.269
	10:34:55	9.935	0.000	41.999	218.592	-0.353
	10:35:10	9.939	0.000 _	42.196	218.681	-0.469
	10:35:25	9.029	4.785	37.796	218.836	-0.488
	10:35:40	6.313	13.254	11.943	218.852	-0.430
	10:35:55	5.976	13.929	3.453	83.549	-0.285
	10:36:10	5.939	13.958	1.864	11.111	-0.065
	10:36:25	5.931	13.972	1.319	1.710	0.075

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

QA/QC Date

March 18, 2010 Start Time 10:38 Stop time 11:05 **REFERENCE METHOD RUN 7**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Calibra	ition Checks					
	nitial zero	0.056	0.028	0.224	0.687	-0.437
	itial upscale	5.949	13.953	41.979	218.564	48.351
	inal zero	0.060	0.028	0.230	0.736	-0.467
	inal upscale	5.940	13.954	41.959	218.038	48.308
	ctual gas value	5.910	14.100	44.900	225.000	48.200
	_					
	er Averages (co			40.000	400 007	40.004
	verage conc.	9.979	9.228	10.086	160.987	12.631
C _{Gas} Bi	ias adjusted	9.960	9.316	10.605	165.734	12.927
Clock Time (at end of	sample period)					
040710 085121	Sample period)	: /:		• .		
<u> </u>	10:39	9.943	9.272	8.713	151.243	15.041
	10:40	10.133	9.001	8.787	155.901	13.585
	10:41	9.820	9.468	8.906	149.249	12.168
	10:42	9.859	9.409	9.059	143.209	14.260
	10:43	10.073	9.116	9.797	149.878	16.629
	10: 44	9.830	9.433	10.741	156.593	14.543
	10:45	9.709	9.593	11.544	162.291	12.409
	10:46	9.876	9.398	13.130	165.041	12.240
	10:47	9.841	9.425	13.578	161.482	13.501
	10:48	9.724	9.575	13.230	159.811	16.347
	10:49	10.007	9.184	11.640	164.300	18.792
	10:50	9.857	9.379	10.277	165.684	16.301
	10:51	10.742	8.308	10.666	187.412	16.276
	10:52	10.326	8.770	9.505	192.796	12,174
	10:53	9.639	9.647	7.548 7.450	165.755	9.149
	10:54	9.880 9.981	9.350 9.193	7.450 7.601	169.221	10.582 9.108
	10:55 10:56	10.243	8.848	8.516	166.471 170.792	9.685
	10:57	10.243	8.956	9.057	170.792	9.066
	10:58	10.163	8.887	9.392	160.490	9.000
	10:58	9.807	9.446	9.346	151.793	9.760
	11:00	9.738	9.530	9.646	140.554	12.520
	11:01	9.836	9.424	11.017	149.056	13.882
	11:02	9.921	9.291	11.353	149.371	12.387
	11:03	10.173	8.935	11.156	157.190	10.800
	11:04	10.221	8.896	11.013	170.279	10.635
	11:05	9.845	9.428	9.650	157.529	9.995

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date

March 18, 2010
Start Time 11:06
Stop Time 11:11
CALIBRATION BIAS 07

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
	Syst	em Response to	Calibration G	asses (C _s)			
	Cof	Zero gas	0.060	0.028	0.230.	0.736	-0.467
	Cuf	Upscale gas	5.940	13.954	41.959	218.038	48.308
	Anal	yzer Calibration	Error Repons	es (C _{Dir})			
		Zero gas	-0.003	0.001	-0.018	0.117	-0.217
		Upscale gas	6.001	14.149	43.520	225.573	49.165
		al Upscale Gas V	alue (C _{MA})				
		Upscale gas	5.910	14.100	44.900	225.000	48.200
		oration Span Valu					
			13.900	14.100	89.900	453.000	98.500
:	Svst	em Bias as Perce					55.455
	-,	Zero gas	0.5%	0.2%	0.3%	0.1%	-0.3%
		Upscale gas	-0.4%	-1.4%	-1.7%	-1.7%	-0.9%
:	Svst	em Bias Status	51175		,0	,0	0.070
·	- ,	Zero gas	ОК	ок	ОК	ок	ок
		Upscale gas	ok ok	ok ok	OK OK	OK	OK
ı	Prev	ious System Res				O.C	O.K
	C _{oi}	Zero gas	0.056	0.028	0.224	0.687	-0.437
	C _{uí}	Upscale gas	5.949	13.953	41,979	218.564	48.351
		Assessment as P				•	10.001
•	J	Zero gas	0.0%	0.0%	0.0%	0.0%	0.0%
		Upscale gas	-0.1%	0.0%	0.0%	-0.1%	0.0%
ſ	Drift	Assessment Stat		0.078	0.075	0.170	0.070
•	Jiiit	Zero gas	OK	ок	ОК	ок	ОК
		Upscale gas	OK	OK	OK	OK	OK
		Opacaic gas	<u> </u>	OIX .	OK .	- OK	
040710 085121					1.001		
		11:06:32	0.139	0.063	1.061	28.262	26.867
		11:06:47 11:07:02	0.102	0.047 0.037	0.554 0.347	2.116 1.229	37.540
		11:07:02	0.081	0.037	0.249	0.928	45.472 47.842
		11:07:32	0.059	0.030	0.226	0.766	48.313
		11:07:47	0.052	0.027	0.200	0.725	48.306
		11:08:02	0.161	0.027	0.264	0.717	48.306
		11:08:17	7.080	0.015	16.710	0.717	47.310
		11:08:32	9.726	0.005	35.876	85.747	37.871
		11:08:47	9.867	0.000	39.824	199.113	21.950
		11:09:02	9.896	0.001	40.891	214.709	7.541
		11:09:17	9.918	0.001	41.498	217.485	1.853
		11:09:32	9.934	0.000	41.820	217.876	-0.152
		11:09:47	9.943	0.000	41.994 42.061	218.152	-0.445
		11:10:02 11:10:17	9.941 7.589	0.182 L 10.053	26.151	218.087 218.470	-0.472 -0.485
		11:10:17	6.073	13.768	6.597	134.432	-0.401
		11:10:47	5.959	13.936	2.541	28.710	-0.226
		11:11:02	5.937	13.957	1.595	5.804	0.013
		11:11:17	5.925	13.967	1.197	1.604	0.096
		11:11:32	5.923	13.976	0.902	1.066	0.124

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright @ 2004 Clean Air Engineering Inc.

March 18, 2010 Start Time 11:13 Stop time 11:40 **REFERENCE METHOD RUN 8**

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
	Calib	ration Checks					
(Col	Initial zero	0.060	0.028	0.230	0.736	-0.467
	C_{ui}	Initial upscale	5.940	13.954	41.959	218.038	48.308
	C _{of}	Final zero	0.062	0.026	0.194	0.703	-0.527
	Cuf	Final upscale	5.933	13.953	41.766	217.686	48.253
	C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
	Anal	yzer Averages (c	oncentration	s)			
		Average conc.	9.767	9.541	10.401	152.819	14.844
		Bias adjusted	9.763	9.633	10.984	157.604	15.160
	end o	of sample period)					
040710 085121		11:14	9.932	9.245	8.394	148.712	14,174
		11:15	10.394	8.743	9.495	165.576	15.109
		11:16	9.592	9.730	8.514	142.894	13.589
		11:17	9.522	9.821	8.909	142.509	16.565
		11:18	9.937	9.248	9.494	152.497	16.818
		11:19	9.966	9.254	10.281	155.739	15.793
		11:20	9.876	9.382	10.000	151.982	13.792
		11:21	9.699	9.650	9.697	155.533	12.147
		11:22	9.744	9.596	9.615	153.002	13.307
		11:23	9.958	9.279	10.538	153.973	12.941
		11:24	9.943	9.321	11.681	162.995	13.402
		11:25	10.062	9.164	11.437	152.757	13.847
		11:26	9.647	9.714	10.832	148.570	15.531
		11:27	9.435	10.017	10.059	148.461	15.875
		11:28	9.268	10.136	9.126	139.245	13.556
		11:29	9.496	9.906	9.565	139.567	18.708
		11:30	10.236	8.920	10.626	166.207	21.689
		11:31	9.703	9.661	10.028	170.092	15.000
		11:32	10.360	8.787	10.560	164.327	15.356
		11:33	9.600	9.783	9.431	165.012	16.573
		11:34	9.300	10.141	9.569	141.304	19.299
		11:35	9.345	10.068	11.632	139.272	13.266
		11:36	9.343	10.093	11.678	146.160	12.661
		11:37	9.808	9.487	13.556	157.178	13.832
		11:38	9.385	10.047	12.712	154.035	11.055
		11:39	9.313	10.128	11.580	146.549	11.861
		11:40	10.833	8.290	11.814	161.978	15.050

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004s

QA/QC Date_

March 18, 2010
Start Time 11:41
Stop Time 11:46
CALIBRATION BIAS 08

			Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
			CO2	02	SO2	NOX	CO
			FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1	FF Outlet 1
			%dv	%dv	ppmdv	ppmdv	ppmdv
	Svs	tem Response to	Calibration G	asses (C _e)			
	Cof	Zero gas	0.062	0.026	0.194	0.703	-0.527
	Cuf	Upscale gas	5.933	13.953	41.766	217.686	48.253
		lyzer Calibration					.0.200
		Zero gas	-0.003	0.001	-0.018	0.117	-0.217
		Upscale gas	6.001	14.149	43.520	225.573	49.165
		ial Upscale Gas V		0	10.020		
		Upscale gas	5.910	14.100	44.900	225.000	48.200
		bration Span Valu	• -	14.100	44.500	220.000	40.200
	Calli	Diation Span vaic	13.900	14.100	89.900	453.000	98.500
	Suct	em Bias as Perce					96.500
	3ysi		0.5%	0.2%	0.2%	, 0.1%	-0.3%
		Zero gas	-0.5%	-1.4%	-2.0%	-1.7%	-0.3 <i>%</i> -0.9%
	Sunt	Upscale gas em Bias Status	-0.5 /6	-1.470	-2.0 /6	-1.770	-0.5 /6
	Jysi		ок	ОК	ок	ок	OK
		Zero gas	OK OK	OK OK	OK OK	OK OK	OK OK
	D	Upscale gas				UK	OK
		ious System Res	•		. •	0.700	0.407
	C₀i	Zero gas	0.060	0.028	0.230	0.736	-0.467
	Cul	Upscale gas	5.940	13.954	41.959	218.038	48.308
	Drift	Assessment as F		-		-	- 404
		Zero gas	0.0%	0.0%	0.0%	0.0%	-0.1%
		Upscale gas	-0.1%	0.0%	-0.2%	-0.1%	-0.1%
	Drift	Assessment Stat					
		Zero gas	ок	ok	OK	OK	OK
		Upscale gas	ок	OK	OK	OK	OK
040710 085121							
		11:41:33	0.102	0.044	0.611	2.548	38.992
		11:41:48_	0.084	0.036	0.402	1.091	45.514
		11:42:03	0.071	0.03 <u>1</u>	0.293	0.871	47.847
		11:42:18	0.061	0.028	0.228	0.790	48.244
		11:42:33	0.055	0.024	0.184	0.709	48.257
		11:42:48	0.105 _	0.025	0.170	0.611	48.259
		11:43:03	6.712	0.012	14.548	12.406	47.122
		11:43:18	9.709 9.865	0.005	35.292	90.908	37.653
		11:43:33 11:43:48	9.900	0.001 0.000	39.683 40.837	169.654 215.368	21.478 7.821
		11:44:03	9.918	-0.001	41.392	216.996	1.700
		11:44:18	9.927	-0.001	41.679	217.403	-0.152
		11:44:33	9.937	-0.002	41.854	217.705	-0.490
		11:44:48	9.872	0.887	41.766	217.949	-0.555
		11:45:03	7.065	11.484	22.230	204.135	-0.536
		11:45:18	6.033	13.834	5.327	111.616	-0.423
		11:45:33	5.946	13.936	2.365	38.763	-0.238
		11:45:48	5.930	13.956	1.542	2.833	-0.020
		11:46:03	5.922_	13.968	1.154	1.343	0.060

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date

040710

March 18, 2010
Start Time 11:47
Stop time 12:14
REFERENCE METHOD RUN 9

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Ca	libration Checks					
C _{ol}		0.062	0.026	0.194	0.703	-0.527
Cui		5.933	13.953	41.766	217.686	48.253
C _{of}		0.052	0.030	0.176	0.730	-0.493
C _{uf}		5.934	13.938	41.740	217.460	48.208
C _m		5.910	14.100	44,900	225.000	48.200
	- •			44.500	223.000	40.200
An	alyzer Averages (c	oncentration	s)			
CAN	g Average conc.	9.418	9.975	11.795	140.287	15.010
C _G	Blas adjusted	9.415	10.077	12.541	144.811	15.348
	d of sample period)				<u> </u>	
710 085121		0.000				10.000
	11:48	9.973	9.237	9.535	149.939	12.688
	11:49	9.412	9.979	8.532	146.982	12.403
	11:50	9.808	9.420	9.514	143.606	13.673
	11:51	9.660	9.641	11.101	151.225	13.962
	11:52	9.666	9.617	12.442	146.467	13.144
	11:53	9,409	9.988	11.909	146.856	13.599
	11:54	9.535	9.837	12.111	137.664	14.996
	11:55	9.951	9.243	13.255	134.485	13.564
	11:56	10.679	8.389	13.948	153.394	13.842
	11:57	10,291	8.838	12.761	151.213	10.790
	11:58	9.044	10.444	9.944	136.960	8.794
	11:59	9.129	10.313	9.580	126.756	8.806
	12:00	9.718	9.567	11.405	134.760	10.403
	12:01	9.734	9.583	12.853	140.547	11.316
	12:02	9.830	9.458	13.378	139.377	14.490
	12:03	9.128	10.389	11.749	129.125	14.623
	12:04	8.974	10.577	10.667	121.463	17.408
	12:05 12:06	9.412 9.025	10.027 10.510	11.803	127.340	21.524
				11.800	131.019	17.766
	12:07	8.686	10.919 10.555	11.686	132.933	17.888
	12:08	8.968		12.710	138.968	17.827
	12:09	9.340	10.111	14.600	144.750	19.045
	12:10	9.054	10.449	14.281	136.642	18.442 17.167
	12:11	8.579	11.029	12.344	137.979	17.167
	12:12	8.683	10.879	10.622	138.020	15.990
	12:13 12:14	9.246 9.363	10.207 10.116	11.639 12.299	149.475 159.796	20.964 20.158
	12:14	9.303	10.110	12.239	103.730	20, 100

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 18, 2010 12:15 Start Time Stop Time
CALIBRATION BIAS 09 12:19

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Sys	tem Response to	Calibration G	asses (C _s)			
C_{of}	Zero gas	0.052	0.030	0.176	0.730	-0.493
C_{uf}	Upscale gas	5.934	13.938	41.740	217.460	48.208
Ana	lyzer Calibration	Error Repons	es (C _{OIr})			
	Zero gas	-0.003	0.001	-0.018	0.117	-0.217
	, Upscale gas	6.001	14.149	43.520	225.573	49.165
	ual Upscale Gas V					
-1	Upscale gas	5.910	14.100	44.900	225.000	48.200
Cali	bration Span Valւ	• •				
		13.900	14.100	89.900	453.000	98.500
Syst	tem Bias as Perce			lue (SB) (5%)		
	Zero gas	0.4%	0.2%	0.2%	0.1%	-0.3%
	Upscale gas	-0.5%	-1.5%	-2.0%	-1.8%	-1.0%
Syst	tem Bias Status					
	Zero gas	OK	OK	OK	OK	ок
	Upscale gas	ок	ок	ок	OK	ок
Prev	rious System Res			,		
Col	Zero gas	0.062	0.026	0.194	0.703	-0.527
C_{ul}	Upscale gas	5.933	13.953	41.766	217.686	48.253
Drift	Assessment as F		•		•	
	Zero gas	-0.1%	0.0%	0.0%	0.0%	0.0%
	Upscale gas	0.0%	-0.1%	0.0%	0.0%	0.0%
Drift	Assessment Stat					
	Zero gas	ок	OK	OK	ОК	ОК
	Upscale gas	ок	OK	OK	OK	OK
					•	
	12:15:43	0.079	0.043	0.487	1.587	42.974
	12:15:58_	0.068	0.037	0.283	0.969	46.838
	12:16:13	0.057	0.032	0.225	0,831	48.121
	12:16:28	0.052	0.029	0.184	0.733	48.251
	12:16:43	0.046	0.028	0.119	0.627	48.254
	12:16:58	2.846	0.024	4.423	0.611	48.055
	12:17:13 12:17:28	9.280 9.827	0.006 0.004	29.320 38.631	46.976 121.238	43.935 30.063
	12:17:43	9.874	0.004	40.384	205.796	13.296
	12:17:58	9.893	0.002	41.114	216.183	4.064
	12:18:13	9.912	0.000	41.521	217.151	0.371
	12:18:28	9.921	-0.001	41.753	217.541	-0.388
	12:18:43	9.928	-0.001	41.945	217.688	-0.536
	12:18:58	9.056	4.680	37.250	217.884	-0.555
	12:19:13_	6.311	13.223	11.629	183.378	-0.490
	12:19:28	5.958	13.911	3.416	113.919	-0.383
	12:19:43	5.927	13.944	1.825	14.823	-0.142
	12:19:58	5.916	13.960	1.240	2.320	0.020

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

040710 085121

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date_

March 18, 2010
Start Time 12:21
Stop time 12:48
REFERENCE METHOD RUN 10

	co
FF Outlet 1 FF Outlet 1 FF Outlet 1 FF O %dv %dv ppmdv ppmdv p	utlet 1 pmdv
Calibration Checks	
C _{oi} Initial zero 0.052 0.030 0.176 0.730	0.493
	8.208
	0.537
	8.318
	8.200
Analyzer Averages (concentrations)	
	5.569
7.119	5.894
,	
Clock Time (at end of sample period)	
040710 085121	
	4.059
	3.502
	6.683
	9.074
	0.216
	6.699
	5.288
	3.674
	1.976
	3.323
	3.297
	1.505
	3.664
	5.896
	1.394 1.271
	2.759
	1.388
	5.552
	1.676
	5.457
	5.058
	5.244
	2.779
	.444
	3,994
	.506

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 18, 2010
Start Time 12:49
Stop Time 12:54
CALIBRATION BIAS 10

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 1 %dv	FF Outlet 1 %dv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv	FF Outlet 1 ppmdv
Sveta	m Response to	Calibration G	35505 (C-\	• • •	•••	
	Zero gas	0.051	0.023	0.067	0.763	-0.537
0.	Jpscale gas	5.921	13.949	41.336	218.158	48.318
	zer Calibration (41.550	210.130	40.516
		-0.003	0.001	-0.018	0.117	-0.217
	Zero gas	6.001	14.149		0.117	
	Jpscale gas		14.149	43.520	225.573	49.165
	l Upscale Gas V		44400	44.000	005 000	40.000
	Jpscale gas	5.910	14.100	44.900	225.000	48.200
Calibra	ation Span Valu		44400	20.000	450.000	00.500
_		13.900	14.100	89.900	453.000	98.500
_	n Bias as Perce					
	ero gas	0.4%	0.2%	0.1%	0.1%	-0.3%
	Jpscale gas	-0.6%	-1.4%	-2.4%	-1.6%	-0.9%
•	n Bias Status					
	čero gas	OK	ок	OK	OK	OK
	Jpscale gas	OK	OK	OK	OK	OK
Previo	us System Res	ponse to Cali	bration Gase	es (C _s)		
C _{oi} Z	ero gas	0.052	0.030	0.176	0.730	-0.493
C _{ui} U	lpscale gas	5.934	13.938	41.740	217.460	48.208
Drift A	ssessment as P	Percent of Cal	ibration Spa	n Value (D) (3%)	
z	ero gas	0.0%	0.0%	-0.1%	0.0%	0.0%
U	lpscale gas	-0.1%	0.1%	-0.4%	0.2%	0.1%
Drift A	ssessment Stat	us '				
Z	ero gas	ок	ok	ОК	ок	ОК
	pscale gas	OK	OK	OK	OK	ОК
	• •					
040710 085121	12:49:27	0.098	0.043	0.578	3.459	36.990
	12:49:42	0.080	0.043	0.376	1.481	44.695
	12:49:57	0.065	0.032	0.215	0.920	47.583
	12:50:12	0.053	0.019	0.126	0.831	48.322
	12:50:27	0.054	0.026	0.049	0.733	48.327
	12:50:42	0.046	0.024	0.027	0.725	48.327
	12:50:57	1.015	0.024	1.139	0.733	48.301
	12:51:12	8.518	0.009	23.489	13.952	46.014
	12:51:27	9.777	0.000	37.257	71.722	35.381
	12:51:42	9.863	0.001	39.691	194.025	17.210
	12:51:57	9.887	-0.003	40.557	216.060	6.198
	12:52:12	9.894	-0.002	41.058	217.607	0.915
	12:52:27	9.899	-0.006	41.364	217.925	-0.267
	12:52:42	9.908	-0.006	41.604	218.201	-0.542
	12:52:57	9.768	1.386 _	41.040	218.348	-0.559
	12:53:12	6.853	11.948	19.066	215.238	-0.511
	12:53:27	5.993	13.856	4.578	164.713	-0.415
	12:53:42	5.929	13.939	2.082	29.703	-0.228
	12:53:57	5.922	13.948	1.268	3.736	-0.052
	12:54:12	5.914	13.958	0.917	1.286	0.060

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Date:	March	16, 2010
_	Start Time	7:19
	Stop Time	9:22
CALIE	RATION FRRC)R

	Channel 1	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5
			_	FF Outlet 2	
In a Amount and Indian	%dv	%dv	ppmdv	ppmdv	ppmdv
Instrument Infor		_			
Manufacturer:		Servomex	Rsrch	T.E.I.	T.E.I.
Model:	1415C	1420C	921NMP	42i-HL	48C
Detection:		Paramagn.		Chemilumi.	GFC/NDIR
Asset or Serial No:	204217	205832	205184	205956	205194
Calibration Spar		44400		450.000	00.500
	13.900	14.100	89.900	453.000	98.500
System Respons	-	-			4-
	45	45	. 45	45	45
Manufacturer Ce					
Zero	0.000	0.000	0.000	0.000	0.000
Low	5.910	6.010	44.900	225.000	48.200
Mid High	13.900	14.100	89.900	453.000	98.500
_			09.900	433.000	30.300
Actual gas to be			44.000	005.000	40.000
	5.910	14.100	44.900	225.000	48.200
Cylinder ID					
Zero	AAL14589	AAL14589	AAL14589	AAL14589	AAL14589
Low	ALM033730	ALM046255	ALM010885	ALM010885	EB0011451
Mid					
High	ALM046255	ALM033730	CC124384	CC124384	ALM054744
Analyzer Calibra	ition Respon	se (C _{Dir})			
Zero	0.014	0.016	-0.137	0.122	0.146
Low	6.149	6.045	43.254	221.172	49.151
Mid					
High [13.934	14.147	90.083	453.125	98.666
Analyzer Calibration Error (ACE) (Limit = 2%	%, Method 25	iA limit = 5%	of gas value	e)	
Zero	0.1%	0.1%	-0.2%	0.0%	0.1%
Low	1.7%	0.2%	-1.8%	-0.8%	1.0%
Mid	N/A	N/A	N/A	N/A	N/A
High	0.2%	0.3%	0.2%	0.0%	0.2%
Calibration Error	r Status				
Zero	ок	ок	OK	ок	ок
Low	ок	ок	OK	OK	ок
Mid	N/A	N/A	N/A	N/A	N/A
High	OK	ОК	OK	OK	ОК
940716 121110					
07:19:57	0.013	0.022	-0.801	0.065	-0.036
07:19:57	0.013	0.022	-0.801	0.065	-0.036
07:20:12	0.016	0.020	-0.781	0.073	-0.085
07:20:27	0.012	0.017	-0.778	0.041	-0.108
07:20:42	0.013	0.018	-0.736	0.033 _	-0.018
07:20:57	0.017	0.018	-0.220	0.041	0.112
07:21:12	0.012	0.017	-0.091	0.057	0.174
07:21:27	0.013	0.014	-0.101	0.033 _	0.151
07:21:42	0.014	0.012	-0.112	0.049	0.114

Date:	March 16	6, 2010
	Start Time	7:19
	Stop Time	9:22
CALI	BRATION ERROR	

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

	CO2	O2	SO2	Channel 4	Channels
	COZ	U2	302	NOX	co
	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2
	%dv	%dv	ppmdv	ppmdv	ppmdv
07:21:57	0.053	0.261	-0.125	0.081	0.412
07:22:12	0.023	0.040	-0.078	0.049	6.597
07:22:27	0.016	0.013	-0.049	0.098	29.555
07:22:42	0.017	0.013	-0.108	0.122	67.681
07:22:57	0.021	0.018	-0.082	0.155	90.209
07:23:12	0.019	0.017	-0.085	0.163	97.752
07:23:27	0.018	0.017	-0.072	0.163	98.561
07:23:42	0.021	0.012	-0.111	0.187	98.754
07:23:57	0.018	0.014	-0.057	0.187	98.719
07:24:12	0.018	0.013	-0.051	0.195	98.865
07:24:27	0.021	0.012	-0.098	0.146 _	98.888
07:24:42	0.016	0.012	-0.096	0.187	98.689
07:24:57	0.019	0.013	-0.103	0.187	98.665
07:25:12	0.020	0.012	-0.054	0.163 [98.644
07:25:27	0.087	0.363	-0.021	0.163	98.548
07:25:42	0.035	0.072	-0.027	0.138	94.826
07:25:57	0.019	0.016	-0.056	0.122	82.738
07:26:12	0.017	0.012	-0.046	0.122	65.664
07:26:27	0.018	0.012	-0.049	0.122	54.818
07:26:42	0.014	0.012	-0.049	0.122	50.095
07:26:57	0.015	0.012	-0.069	0.122	49.278
07:27:12	0.018	0.012	-0.078	0.122	49.180
07:27:27	0.013	0.012	-0.098	0.122	49.174
07:27:42	0.014	0.012	-0.106	0.122	49.156
07:27:57	0.015	0.012	-0.083	0.122	49.141
07:28:12	0.012	0.041	-0.062	0.122	49.154
07:28:27 07:28:42	5.604 9.654	0.273	16.640 60.026	0.122	48.467
07:28:42	9.890	0.019 0.005	80.964	0.122 0.122	41.939
07:28:57	9.908	0.003	85.257		28.391
07:29:12	9.901	0.002	86.489	0.114 0.114	14.136 5.638
07:29:42	9.917	0.000	87.070	0.114	1.420
07:29:57	9.924	0.000	87.469	0.122	0.200
07:30:12	9.925	0.001	87.720	0.114	-0.218
07:30:27	9.928	0.001	87.943	0.114	-0.257
07:30:42	9.925	0.002	88.109	0.122	-0.261
07:30:57	9.927	-0.001	88.350	0.122	-0.266
07:31:12	9.930	0.000	89.029	0.122	-0.259
07:31:27	9.927	0.001	89.971	0.106	-0.264
07:31:42	9.927	0.001	90.092	0.122	-0.269
07:31:57	9.931	0.000	90.185	0.114	-0.269
07:32:12	9.479	0.226	77.636	0.106	-0.269
07:32:27	9.733	0.093	34.857	0.106	-0.170
07:32:42	10.014	0.000	38.629	0.114	0.082
07:32:57	10.029	-0.007	41.682	0.114	0.121
07:33:12	10.039	-0.008	42.613	0.114	-0.096
07:33:27	10.041	-0.009	42.994	0.114	-0.238
07:33:42	10.038	-0.009	43.167	0.122	-0.293
07:33:57	10.040	-0.012	43.254	0.122	-0.324
07:34:12	10.045	-0.013	43.341	0.114	-0.339
07:34:27	10.029	-0.006	43.434	0.122	-0.334
07:34:42	8.681	5.806	33.452	0.114	-0.340

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

Date:	March 1	6, 2010
	Start Time	7:19
	Stop Time	9:22
CALI	BRATION ERROR	₹

	Channel 1 CQ2	Channe) 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2
	%dv	%dv	ppmdv	ppmdv	ppmdv
07:34:57	6.187	13.509	6.764	0.122	-0.279
07:35:12	5.949	14.121	1.358	0.122	-0.095
07:35:27	5.934	14.157	0.414	0.122	0.129
07:35:42	5.928	14.163	0.148	0.122	0.171
07:35:57	5.929	13.727	0.119	0.114	0.171
07:36:12	11.050	7.501	0.186	0.122	0.171
07:36:27	13.473	6.106	0.055	0.122	0.171
07:36:42	13.588	6.047	0.073	0.122	0.150
07:36:57	13.596	6.044	0.027	0.122	-0.021
07:37:12	13.602	6.043	0.021	0.122	-0.080
07:37:27	13.621	6.041	0.005	0.122	-0.080
07:37:42	13.866	6.042	-0.019	0.122	-0.076
07:37:57 07:38:12	13.933 13.934	6.039 6.040	-0.014 -0.006	0.122 0.114	-0.106 -0.101
07:38:27	13.934	6.039	-0.008	0.114	-0.101
07:38:42	13.143	7.494	-0.013	0.122	-0.108
07:38:57	7.312	13.316	0.025	0.122	-0.105
07:39:12	6.180	14.115	0.073	0.114	-0.005
07:39:27	6.137	14.159	-0.029	0.112	0.148
07:39:42	6.130	14.163	-0.044	0.122	0.171
07:39:57	5.449	11.677	-0.042	0.122	0.171
07:40:12	0.941	1.551	-0.044	0.122	0.171
07:40:27	0.104	0.095	-0.002	0.122	0.171
07:40:42	0.044	0.026	-0.013	0.122	0.151
07:40:57	0.037	0.020	-0.027	0.114	0.086
07:41:12	0.035	0.018	-0.016	0.122	0.076
09:10:58	0.055	20.973	-0.124	-0.106	0.215
09:11:13	0.052	20.975	-0.124	-0.211	0.207
09:11:28	0.053	20.975	-0.134	-0.195	0.205
09:11:43	0.056	20.978	-0.104	-0.203	0.215
09:11:58	0.053	20.978	-0.083	0.049	0.197
09:12:13	0.054	20.981	-0.114	0.122	0.195
09:12:28	0.056	20.981	-0.116	0.122	0.200
09:12:43	0.052	20.983	-0.145 [0.122	0.212
09:12:58	0.055	20.979	-0.129	0.122	0.220
09:13:13	0.055	20.977	-0.139	3.769	0.205
09:13:28	0.050	20.980	-0.148	113.960	0.195
09:13:43	0.055	20.980	-0.158	384.298	0.195
09:13:58 09:14:13	0.053 0.050	20.975 20.977	-0.147 -0.165	429.401	0.195 0.210
09:14:28	0.055	20.977	-0.160	436.687 437.623	0.210
09:14:43	0.053	20.979	-0.157	438.062	0.203
09:14:58	0.052	20.976	-0.157	438.119	0.220
09:15:13	0.055	20.976	-0.142	436.915	0.220
09:15:28	0.055	20.977	-0.144	434.831	0.220
09:15:43	0.055	20.976	-0.163	450.623	0.220
09:15:58	0.057	20.977	-0.171	453.155	0.213
09:16:13	0.051	20.975	-0.173	453.114	0.195
09:16:28	0.055	20.975	-0.155	453.106	0.195
09:16:43	0.055	20.975	-0.140	453.187	0.210
09:16:58	0.051	20.975	-0.132	452.723	0.220
09:17:13	0.055	20.975	-0.171	307.733	0.220

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date_

Date:	March	16, 2010
	Start Time	7:19
	Stop Time	9:22
CALI	BRATION ERRO	OR

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
09:17:28	0.055	20.975	-0.155	181.425	0.220
09:17:43	0.031	20.916	-0.181	184.705	0.225
09:17:58	0.056	20.974	-0.150	203.826	0.259
09:18:13	0.051	20.974	-0.122	214.668	0.277
09:18:28	0.053	20.974	-0.112	218.771	0.293
09:18:43	0.057	20.975	-0.130	220.171	0.269
09:18:58	0.053	20.975	-0.135	220.716	0.223
09:19:13	0.053	20.975	-0.129	221.148	0.220
09:19:28	0.057	20.979	-0.125	221.653	0.220
09:19:43	0.053	20.975	-0.127	204.770	0.220
09:19:58	0.051	20.970	-0.134	88.368	0.193
09:20:13	0.057	20.975	-0.124	38.543	0.195
09:20:28	0.050	20.974	-0.093	32.006	0.195
09:20:43	0.055	20.977	-0.076	36.117	0.195
09:20:58	0.056	20.975	-0.073	38.201	0.212
09:21:13	0.051	20.975	-0.086	39.292	0.195
09:21:28	0.055	20.974	-0.098	39.707	0.195
09:21:43	0.056	20.975	-0.145	40.049	0.195
09:21:58	0.051	20.975	-0.173	40.301	0.195
09:22:13	0.055	20.973	-0.148	40.456	0.195
09:22:28	0.042	20.943	-0.186	40.651	0.195

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004s

Copyright © 2004 Clean Air Engineering Inc.

March 16, 2010
Start Time 9:26
Stop Time 9:43
CALIBRATION BIAS 00

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
				FF Outlet 2		
		%dv	%dv	ppmdv	ppmdv	ppmdv
Sy	stem Response to	Calibration G	asses (C _s)			
C,	r Zero gas	0.018	0.084	1.460	0.532	-0.237
C,	Upscale gas	6.021	14.028	41.143	221.761	48.481
Ar	nalyzer Calibration	Error Repons	es (C _{Dir})			
C _o	ce Zero gas	0.014	0.016	-0.137	0.122	0.146
· · · · · · · · · · · · · · · · · · ·	nce Upscale gas	6.149	14.147	43.254	221.172	49.151
Ac	tual Upscale Gas \	/alue (C _{MA})				
C _n	na Upscale gas	5.910	14.100	44.900	225.000	48.200
Ca	alibration Span Valu	ue (CS)				
	•	13.900	14.100	89.900	453.000	98.500
Sy	stem Bias as Perce	ent of Calibra	tion Span Va	lue (SB) (5%)	
·	Zero gas	0.0%	0.5%	1.8%	0.1%	-0.4%
	Upscale gas	-0.9%	-0.8%	-2.3%	0.1%	-0.7%
Sv	stem Bias Status					
•	Zero gas	OK	OK	OK	ok	OK
	Upscale gas	ок	ок	OK	ок	OK
Pr	evious System Res	ponse to Cal	ibration Gase	es (C _s)		
C _o	_	N/A	N/A	N/A	N/A	N/A
C	· - .	N/A	N/A	N/A	N/A	N/A
	ift Assessment as	Percent of Ca	libration Spa	n Value (D) (3%)	
	Zero gas	N/A	N/A	N/A	N/A	N/A
	Upscale gas	N/A	N/A	N/A	N/A	N/A
Dr	ift Assessment Sta	tus				
	Zero gas	N/A	N/A	N/A	N/A	N/A
	Upscale gas	N/A	N/A	· N/A	N/A	N/A
						•
040719 092956	00:26:21	0.019	0.094	-0.130	0.366	48.462
	09:26:31 09:26:46		0.089	-0.130	0.374	48.474
	09:27:01	0.014	0.083	-0.062	0.546	48.507
	09:27:16		0.079	-0.050	0.668	48.480
	09:27:31	0.017	0.075	-0.037	0.757	48.474
	09:27:46	0.013	0.073	-0.065	0.977	48.474
	09:28:01	0.019	0.073	-0.065	0.977	48.490
	09:28:16	0.017	0.069	-0.072	0.879	48.474
	09:28:31	2.779	0.063	-0.086	0.733	48.248
	09:28:46		0.047	-0.158	37.860	43.259
	09:29:01	9.926	0.044	2.618	162.564	29.348
	09:29:16		0.042	19.201	209.084	14.427
	09:29:31	10.060	0.041	29.529 33.447	220.106 221.620	4.708
	09:29:46 09:30:01	10.079 10.089	0.039 0.039	35.383	221.840	1.084 -0.019
	09:30:16	10.097	0.037	36.575	221.823	-0.223
	09:30:31	10.111	0.036	37.413	221.840	-0.244
	09:30:46	10.122	0.035	38.042	221.856	-0.244
	09:31:01	10.013	1.044	38.598	221.856	-0.244
	09:31:16	7.427	10.651	37.558	221.734	-0.239
	09:31:31	6.181	13.727	24.500	142.507	-0.138
•	09:31:46	6.076	13.977	12.944	19.373	0.065
	09:32:01		14.014	7.748	5.405	0.182
	09:32:16	6.019	14.030	5.314	1.832	0.195

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

March 16, 2010
Start Time 9:26
Stop Time 9:43
CALIBRATION BIAS 00

	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
	CO2	02	SO2	NOX	co
	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2	FF Outlet 2
	%dv	%dv	ppmdv	ppmdv	ppmdv
09:32:31	6.014	14.041	3.984	1.319	0.195
09:32:46	5.959	14.032	3.092	0.977	0.169
09:33:01	5.948	14.001	2.432	0.888	0.150
09:33:16	6.002	14.058	2.001	0.733	0.217
09:33:31	5.998	14.060	1.680	0.578	0.195
09:33:46	5.997	14.066	1.444	0.513	0.195
09:34:01	5.998	14.069	1.255	0.504	0.207
09:39:24	9.938	0.751	7.875	139.731	15.880
09:39:39	10.145	0.120	21.219	194.961	9.060
09:39:54	10.171	0.069	31.337	218.697	3.998
09:40:09	10.180	0.055	35.375	223.134	0.694
09:40:24	10.179	0.049	37.097	222.955	-0.081
09:40:39	10.182	0.043	38.349	222.947	-0.293
09:40:54	10.180	0.037	39.038	222.581	-0.287
09:41:09	10.183	0.030	39.557	222.564	-0.317
09:41:24	10.168	0.015	39.951	222.735	-0.320
09:41:39	10.177	0.023	40.265	222.515	-0.329
09:41:54	10.17 9	0.024	40.534	222.646	-0.342
09:42:09	10.183	0.023	40.781	222.825	-0.342
09:42:24	10.184	0.022	40.969	222.678	-0.342
09:42:39	10.186	0.022	41.135	222.898	-0.342
09:42:54	10.183	0.088	41.327	222.776	-0.340
09:43:09	10.005	6.157	44.438	222.377	-0.181

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright @ 2004 Clean Air Engineering Inc.

March 16, 2010 Start Time 9:48 Stop time 10:15 REFERENCE METHOD RUN 1

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
Calil	bration Checks					
Coi	Initial zero	0.018	0.084	1.460	0.532	-0.237
Cui	Initial upscale	6,021	14.028	41.143	221.761	48.481
C _{of}	Final zero	0.090	0.037	0.544	0.879	-0.255
C _{uf}	Final upscale	6.026	14.005	41.180	225.999	48.570
	Actual gas value	5.910	14.100	44.900	225.000	48.200
				44.000	220,000	40.200
	yzer Averages (c		s)			
C_{Avg}	Average conc.	10.011	9.431	10.517	160.682	12.658
C _{Gas}	Bias adjusted	9.858	9.467	10.638	161.285	12.753
Clock Time (at end	of sample period)	-71				
092956		2.55	2.004		155.010	
	09:49	9.855	9.621	8.267	155.946	9.754
	09:50	9.737	9.721	7.240	148.586	9.158
	09:51 09:52	10.072 9.734	9.372 9.776	6.525 7.439	158.629 157.837	14.147 19.106
	09:53	10.010	9.447	7.808	162.837	22.772
	09:54	9.682	9.854	6.285	154.046	19.797
	09:55	9.735	9.766	7.128	160.041	18.740
	09:56	9.794	9.691	8.632	160.789	14.442
	09:57	9.805	9.708	9.936	167.296	13.370
	09:58	9.912	9.555	9.899	165,722	13.841
	09:59	9.830	9.630	8.131	162.485	13.385
	10:00	10.269	9.044	8.462	161.817	10.447
	10:01	10.395	8.898	9.201	168.197	11.045
	10:02	9.847	9.654	9.283	163.889	9.693
	10:03	9.618	9.907	9.832	156.223	10.383
	10:04	10.295	9.106	11.346	163.718	13.631
	10:05	9.754	9.787	10.618	151.703	10.429
	10:06	10.157	9.286	11.918	150.012	11.935
	10:07	9.982	9.527	12.492	155.961	11.195
	10:08	10.315	9.103	13.698	158.435	12.503
	10:09	9.930	9.580	13.720	155.641	11.745
	10:10	10.656	8.609	16.131	162.346	12.065
	10:11	10.452	8.775	15.282	172.182	10.305
	10:12	9.903	9.582	13.987	168.281	8.575
	10:13	9.955	9.488	13.956	160.623	10.151
	10:14	10.311	9.092	13.742	169.504	10.376
	10:15	10.302	9.066	12.997	165.671	8.770

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a Copyright © 2004 Clean Air Engineering Inc.

March 16, 2010 Start Time 10:16 Stop Time 10:24 CALIBRATION BIAS 01

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
Svs	tem Response to	Calibration G	asses (C _c)			
Cof	Zero gas	0.090	0.037	0.544	0.879	-0.255
Cuf	Upscale gas	6.026	14.005	41.180	225.999	48.570
	lyzer Calibration					
	Zero gas	0.014	0.016	-0.137	0.122	0.146
	Upscale gas	6.149	14.147	43.254	221.172	49.151
	ual Upscale Gas \	/alue (C _{MA})				
	Upscale gas	5.910	14.100	44.900	225.000	48.200
··· -	bration Span Valu	ue (CS)				
		13.900	14.100	89.900	453.000	98.500
Svs	tem Bias as Perce	ent of Calibrat				
_	Zero gas	0.5%	0.1%	0.8%	0.2%	-0.4%
	Upscale gas	-0.9%	-1.0%	-2.3%	1.1%	-0.6%
Sys	tem Bias Status			-	. •	
•	Zero gas	ОК	ок	ОК	ok	ОК
	Upscale gas	ок	ОK	OK	OK	OK
Pres	vious System Res	ponse to Calil	bration Gase	s (C _s)		
C_{ol}	Zero gas	0.018	0.084	1.460	0.532	-0.237
C _{ui}	Upscale gas	6.021	14.028	41.143	221.761	48.481
	Assessment as F	Percent of Cal	ibration Spa	n Value (D) (3%)	
	Zero gas	0.5%	-0.3%	-1.0%	0.1%	0.0%
	Upscale gas	0.0%	-0.2%	0.0%	0.9%	0.1%
Drift	Assessment Stat	tus				
	Zero gas	OK	ок	ОК	OK	OK
	Upscale gas	OK	OK	OK	OK	OK
040710 092956						
040710 092936	10:16:26	10.129	4.937	19.337	171,893	11.777
	10:16:41	3.439	0.547	19.658	172,291	11.344
	10:16:56	0.436	0.087	10.543	92.324	15.059
	10:17:11	0.200	0.058	4.456	35.328	25.472
	10:17:26	0.150	0.049	2.351	3.834	36.778
	10:17:41	0.130	0.044	1.457	2.532	44.510
	10:17:56	0.116	0.043	0.987	1.929	47.733
	10:18:11	0.102	0.039	0.668	1.514	48.569
	10:18:26 10:18:41	0.098 0.090	0.037 0.037	0.498 0.369	1.205 1.091	48.571 48.571
	10:18:56	0.083	0.037	0.369	0.814	48.586
	10:19:11	5.169	0.028	0.988	0.733	48.028
	10:19:26	9.703	0.017	18.356	42.393	41.459
	10:19:41	10.054	0.016	32.930	181.693	26.652
	10:19:56	10.102	0.015	36.842	219.732	12.479
	10:20:11	10.114	0.014	38.391	224.656	3.919
	10:20:26	10.130	0.012	39.240	225.145	0.850
	10:20:41	10.137	0.012	39.772	225.576	-0.036
	10:20:56	10.140	0.012	40.187	225.625	-0.200
	10:21:11	10.148	0.012	40.524	225.747	-0.236
	10:21:26	10.155	0.012	40.814	225.983	-0.274
•	10:21:41	10.155	0.012	41.016	225.966	-0.269
	10:21:56 10:22:11	10.159 9.984	0.010 1.571	41.203 41.321	226.023 226.007	-0.259 -0.256
	10.22.11	5.904	1.371	41.321	220.001	-0.236

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

March 16, 2010
Start Time 10:16
Stop Time 10:24
CALIBRATION BIAS 01

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdy
10:22:26	7.109	11.663	29.589	201.205	-0.251
10:22:41	6.158	13.834	9.983	116.402	-0.163
10:22:56	6.069	13.982	4.430	34.139	0.059
10:23:11	6.040	13.993	2.732	3.223	0.242
10:23:26	6.030	14.001	1.958	1.400	0.241
10:23:41	6.026	14.005	1.470	1.058	0.244
10:23:56	6.023	14.009	1.221	0.855	0.251
10:24:11	6.026	14.016	1.042	0.766	0.254
10:24:26	6.013	14.009	0.863	0.627	0.236
10:24:41	6.019	13 944	0.724	0.513	0 244

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright © 2004 Clean Air Engineering Inc.

040710 092956

March 16, 2010 Start Time 10:31 Stop time 10:58 **REFERENCE METHOD RUN 2**

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
	Calil	bration Checks					
	C_{oi}	Initial zero	0.090	0.037	0.544	0.879	-0.255
	Cui	Initial upscale	6.026	14.005	41.180	225.999	48.570
	Cof	Final zero	0.069	0.035	0.102	0.371	-0.162
	Cuf	Final upscale	6.024	14.014	40.951	226.189	48.634
	C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
		-			7 1.000	220.000	10.200
		yzer Averages (c		s)			
		Average conc.	9.920	9.544	13.336	154.403	12.888
	C_{Gas}	Bias adjusted	9.781	9.594	14.341	153.458	12.932
	end	of sample period)	***				
092956 -							
		10:32	9.552	10.015	12.494	131.427	14.582
		10:33	9.724	9.860	13.950	129.078	19.946
		10:34	9.852	9.648	13.512	131.534	17.804
		10:35	9.498	10.113	11.977	134.902	17.360
		10:36	9.676	9.866	10.288	136.170	16.307
		10:37	9.544	10.038	9.820	142.727	15.091
		10:38	10.046	9.399	10.988	149.699	16.067
		10:39	9.842	9.680	10.962	155.653	13.145
		10:40 10:41	9.378 9.897	10.252 9.625	9.684 10.116	145.672	11.581
		10:42	9.588	9.998	9.312	152.068 153.002	16.218 17.111
		10:42	10.220	9.158	10.384	159.583	14.394
		10:44	9.800	9.727	10.777	164.438	14.629
		10:45	9.850	9.627	13.191	154.400	14.475
		10:46	9.546	10.021	12.978	156.488	15.376
		10:47	10.372	8.911	13.648	163.140	14.793
		10:48	10.548	8.680	12.963	181.024	11.517
		10:49	10.532	8.727	13.899	177.411	9.103
		10:50	9.811	9.705	16.518	173.311	9.493
		10:51	9.078	10.547	13.440	155.372	9.111
		10:52	9.913	9.513	13.029	161.423	9.978
		10:53	10.275	9.023	15.232	154.269	8.761
		40.54	40.004	0.004	40 700	400.004	0.000

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004s

10:54

10:55

10:56

10:57

10:58

10.891

10.513

9.882

9.709

10.309

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC Date_

8.304

8.780

9.608

9.818

9.041

18.766

16.727

17.300

18.376

19.747

166.264

164.668

161.534

152.147

161.469

9.820

7.508

7.499

7.250

9.055

March 16, 2010
Start Time 11:02
Stop Time 11:07
CALIBRATION BIAS 02

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
System Response t	o Calibration G	Gasses (C _s)			
C _{of} Zero gas	0.069	0.035	0.102	0.371	-0.162
C _{uf} Upscale gas	6.024	14.014	40.951	226.189	48.634
Analyzer Calibration	n Error Repons	ses (C _{Dir})			_
C _{oce} Zero gas	0.014	0.016	-0.137	0.122	0.146
C _{mce} Upscale gas	6.149	14.147	43.254	221.172	49.151
Actual Upscale Gas	Value (C _{MA})				
C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
Calibration Span Va	ilue (CS)				
	13.900	14.100	89.900	453.000	98.500
System Bias as Per		•		•	0.004
Zero gas	0.4%	0.1%	0.3%	0.1%	-0.3%
Upscale gas	-0.9%	-0.9%	-2.6%	1.1%	-0.5%
System Bias Status		ΟK	OK	OK	OK
Zero gas Upscale gas	OK OK	OK OK	OK OK	OK OK	OK OK
Previous System Re				OK	OK
C _{oi} Zero gas	0.090	0.037	0.544	0.879	-0.255
C _{ui} Upscale gas	6.026	14.005	41.180	225.999	48.570
Drift Assessment as					10.010
Zero gas	-0.2%	0.0%	-0,5%	-0.1%	0.1%
Upscale gas	0.0%	0.1%	-0.3%	0.0%	0.1%
Drift Assessment St				-1-1-	
Zero gas	ОК	ок	ок	ок	ок
Upscale gas	ок	ОK	ок	OK	ОK
212712 22272					
040710 092956	3 0.075	0.037	0.137	0.399	48.661
11:02:3		0.035	0.116	0.374	48.597
11:02:5	1	0.036	0.103	0.366	48.645
11:03:0	8 0.067	0.034	0.086	0.374	48.597
11:03:2		0.037	0.028	0.358	48.707
11:03:3		0.023	6.616	0.244	46.655
11:03:5		0.018	28.026 36.060	107.969	37.473
11:04:0 11:04:2		0.014 0.012	38.396	207.904 223.166	20.956 9.140
11:04:3		0.012	39,445	225.486	2.523
11:04:5		0.013	40.073	225.950	0.479
11:05:0		0.012	40.519	226.064	-0.117
11:05:2		0.012	40.762	226.203	-0.179
11:05:3		0.012	40.954	226.129	0.189
11:05:5		0.198	41.136	226.236	-0.218
11:06:0		9.446	33.664	222.345	-0.231 0.170
11:06:23 11:06:3		13.666 13.966	11.712 4.304	192.536 57.004	-0.170 0.085
11:06:5		13.988	2.423	5.446	0.220
11:07:0		14.001	1.651	1.424	0.233
11:07:2		14.007	1.232	1.050	0.266
11:07:3		14.015	0.985	0.855	0.285
11:07:5	3 6.027	14.019	0.835	0.741	0.259

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date

March 16, 2010 11:15 11:42 Start Time Stop time **REFERENCE METHOD RUN 3**

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO					
	FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv					
Calibration Checks										
C _{oi} Initial zero	0.069	0.035	0.102	0.371	-0.162					
Cui Initial upscale	6.024	14.014	40.951	226.189	48.634					
C _{of} Final zero	0.098	0.032	0.709	0.833	0.213					
C _{uf} Final upscale	5.962	14.008	41.387	226.388	48.467					
C _{ma} Actual gas valu	e 5.910	14.100	44.900	225.000	48.200					
Analyzer Averages (concentrations)										
C _{Avg} Average conc.	9.869	9.638	14.187	149.966	12.775					
C _{Gas} Bias adjusted	9.786	9.689	15.181	148.909	12.664					

Clock Time (at end of sample period)					
040710 092956					1
11:16	10.497	8.814	11.019	172.310	9.458
11:17	9.810	9.713	10.108	166.016	8.113
11:18	9.469	10.127	12.029	149.746	8.158
11:19	9.454	10.146	14.299	150.944	11.656
11:20	10.046	9.385	14.188	150.720	13.700
11:21	10.084	9.361	11.277	162.995	15.815
11:22	10.035	9.444	10.732	157.336	13.259
11:23	9.730	9.810	14.105	158.242	13.046
11:24	10.389	8.966	23.486	159.005	13.110
11:25	10.096	9.398	20.942	159.054	14.661
11:26	9.745	9.791	16.136	142.507	12.067
11:27	10.186	9.242	13.860	158.347	14.276
11:28	9.975	9.523	10.931	152.931	14.739
11:29	10.146	9.289	13.157	151.095	10.536
11:30	9.808	9.729	13.595	143.749	10.617
11:31	10.127	9.302	16.902	145.501	10.747
11:32	10.033	9.429	18.596	161.658	9.052
11:33	9.864	9.630	16.046	149.784	7.634
11:34	10.073	9.381	10.274	149.420	9.351
11:35	9.694	9.889	9.296	148.958	10.765
11:36	9.990	9.481	9.682	147.361	14.682
11:37	9.839	9.687	13.140	147.857	14.576
11:38	9.551	10.022	14.918	134.377	13.071
11:39	9.489	10.111	14.838	134.591	15.596
11:40	9.853	9.695	15.682	142.761	19.900
11:41	9.105	10.603	17.062	128.397	19.053
11:42	9.385	10.253	16.758	123.417	17.287

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering inc.

QA/QC_ Date_

March 16, 2010
Start Time 11:53
Stop Time 11:59
CALIBRATION BIAS 03

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
	System Response to	Calibration G	asses (C _s)			
	C _{of} Zero gas	0.098	0.032	0.709	0.833	0.213
	Cuf Upscale gas	5.962	14.008	41.387	226.388	48.467
	Analyzer Calibration	Error Repons	es (C _{Dir})	•	•	
	C _{oce} Zero gas	0.014	0.016	-0.137	0.122	0.146
(C _{mce} Upscale gas	6.149	14.147	43.254	221.172	49.151
	Actual Upscale Gas V	alue (C _{MA})				
	C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
(Calibration Span Valu	ie (CS)				
	•	13.900	14.100	89.900	453.000	98.500
9	System Bias as Perce	ent of Calibra	tion Span Va	lue (SB) (5%)	
	Zero gas	0.6%	0.1%	0.9%	0.2%	0.1%
	Upscale gas	-1.3%	-1.0%	-2.1%	1.2%	-0.7%
9	System Bias Status					
	Zero gas	ок	ок	ок	ок	ок
	Upscale gas	OK	OK	OK	OK	OK
F	Previous System Res	ponse to Cal	bration Gase	es (Ca)		
	C _{ol} Zero gas	0.069	0.035	0.102	0.371	-0.162
	C _{ui} Upscale gas	6.024	14.014	40.951	226.189	48.634
	Orift Assessment as I	Percent of Ca		ın Value (D) (3%)	
_	Zero gas	0.2%	0.0%	0.7%	0.1%	0.4%
	Upscale gas	-0.4%	0.0%	0.5%	0.0%	-0.2%
Γ	Orlft Assessment Star					
_	Zero gas	ок	ок	ок	ок	ок
	Upscale gas	OK	OK	ОK	ОK	ok
040710 092956	11:53:29	10.150	0.028	38,492	220,407	6.932
	11:53:44	10.148	0.020	39.583	225.852	2.953
	11:53:59	10.157	0.011	40.391	226.129	0.412
	11:54:14	10.153	0.012	40.860	226.276	-0.112
	11:54:29	10.157	0.023	41.213	226.309	-0.236
	11:54:44	10.156	0.022	41.486	226.285	-0.272
	11:54:59	9.486	0.020 [41.460	226.569	-0.251
	11:55:14 11:55:29	2.157	0.032	26.028	223.590	1.163 10.463
	11:55:29 11:55:44	0.353 0.190	0.036 0.036	8.228 3.632	158.600 17.583	24.711
	11:55:59	0.157	0.036	2.230	3.859	40.015
	11:56:14	0.132	0.033	1.517	1.473	46.058
	11:56:29	0.117	0.033	1.156	1.026	48.392
	11:56:44	0.108	0.032	0.902	0.944	48.500
	11:56:59	0.097	0.032	0.676	0.814	48.510
	11:57:14	0.089	0.032	0.550	0.741	48.599
	11:57:29	0.764	2.990	0.470	0.619	48.659
	11:57:44	4.972	12.508	0.410	0.537	46.535
	11:57:59	5.835	13.891	0.365	0.521	33.444
	11:58:14	5.925	13.972	0.330	0.472	18.898
	11:58:29	5.949	13.995	0.235	0.366	6.462
	11:58:44 11:58:59	5.958 5.962	14.004 14.009	0.223	0.366 0.366	2.157 0.534
	11:58:59	5.962 5.967	14.009	0.213 0.220	0.333	0.350
	11:59:14[3.901	14.011	0.220	0.333	0.330

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

March 16, 2010
Start Time 12:02
Stop time 12:29
REFERENCE METHOD RUN 4

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
	Call	bration Checks					
	C_{oi}	Initial zero	0.098	0.032	0.709	0.833	0.213
	Cui	Initial upscale	5.962	14.008	41.387	226.388	48.467
	Cof	Final zero	0.087	0.042	0.152	0.524	-0.218
	Cuf	Final upscale	6.018	13.953	41.257	226.067	48.525
		•					
	C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
	Anal	lyzer Averages (c	oncentrations	s)			
	CAva	Average conc.	10.013	9.422	13.618	153.313	9.421
	_	Bias adjusted	9.941	9.490	14.481	152.263	9.366
		•					
Clock Time (a	at end	of sample period)					
040710 092956				3		20	-
		12:03	9.920	9.575	14.477	150.102	9.887
		12:04	10.402	8.878	14.000	147.951	11.374
		12:05	10.389	8.997	12.199	165.224	12.639
		12:06	9.518	10.086	10.747	145.840	10.364
		12:07	10.132	9.269	12.676	140.773	12.155
		12:08	9.906	9.592	15.279	142.232	11.398
		12:09	10.120	9.324	16.064	137.336	12.377
		12:10	9.940	9.554	15.902	135.969	12.998
		12:11	10.130	9.273	15.479	145.745	11.474
		12:12	10.566	8.754	16.144	155.490	10.794
		12:13	9.658	9.899	14.377	148.686	7.698
		12:14	9.899	9.524	13.031	147.668	9.033
		12:15	10.434	8.888	14.433	162.578	10.690
		12:16	10.120	9.296	11.319	160.281	8.115
		12:17	9.728	9.761	10.859	147.601	8.899
		12:18 12:19	10.605 10.179	8.642 9.254	13.849 12.541	153.510 160.047	13.171 10.750
		12:19	9.466	10.132	10.873	149.359	7.288
		12:21	10.047	9.350		152.688	8.737
		12:22	10.047	9.397	11.943 11.874	160.399	6.737 7.737
		12:23	10.019	9.092	11.887	164.383	5.858
		12:24	9.880	9.595	13.636	164.261	6.202
		12:25	9.279	10.326	13.604	157.680	6.569
		12:26	9.628	9.843	14.735	157.228	8.061
		12:27	10.214	9.143	15.736	167.322	7.708
		12:28	10.146	9.246	14.704	164.723	6.474
		40.00	0.700	0.004	45.004	454.070	5.000

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a 12:29

9.786

9.694

15.331

154.379

5.933

Copyright © 2004 Clean Air Engineering Inc.

March 16, 2010 Start Time 12:31 Stop Time 12:36 CALIBRATION BIAS 04

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
	Syst	tem Response to	Calibration G	iasses (C _s)			
	Cof	Zero gas	0.087	0.042	0.152	0.524	-0.218
	Cuf	Upscale gas	6.018	13.953	41.257	226.067	48.525
	Ana	lyzer Callbration	Error Repons	ses (C _{Dir})			
	C_{oce}	Zero gas	0.014	0.016	-0.137	0.122	0.146
	C_{mce}	Upscale gas	6.149	14.147	43.254	221.172	49.151
	Actu	ıal Upscale Gas V	/alue (C _{MA})				
	C_{ma}	Upscale gas	5.910	14.100	44.900	225.000	48.200
	Cali	bration Span Valu	ıe (CS)				
			13.900	14.100	89.900	453.000	98.500
	Syst	tem Bias as Perce					
		Zero gas	0.5%	0.2%	0.3%	0.1%	-0.4%
		Upscale gas	-0.9%	-1.4%	-2.2%	1.1%	-0.6%
	Syst	tem Blas Status					
		Zero gas	ок	OK	ОК	ОК	ок
		Upscale gas	ок	ок	OK	OK	ок
		vious System Res			•		
	C₀i	Zero gas	0.098	0.032	0.709	0.833	0.213
	Cul	Upscale gas	5.962	14.008	41.387	226.388	48.467
	Drift	Assessment as I		=			
		Zero gas	-0.1%	0.1%	-0.6%	-0.1%	-0.4%
		Upscale gas	0.4%	-0.4%	-0.1%	-0.1%	0.1%
	Drift	: Assessment Stat					
		Zero gas	OK	OK	OK	OK	OK
		Upscale gas	OK	OK	OK	OK	OK
040710 092956							
		12:31:18	0.137	0.061	1.075	1.905	38.704
		12:31:33	0.117	0.056	0.682	1.058	45.361
		12:31:48	0.107	0.051	0.459	0.871	48.143
		12:32:03	0.099	0.045	0.335	0.741	48.523
		12:32:18 12:32:33	0.090 0.089	0.043 0.041	0.215 0.138	0.602 0.537	48.525 48.526
		12:32:48	0.083	0.041	0.103	0.431	48.520
		12:33:03	4.965	0.034	2.994	7.269	48.254
		12:33:18	9.680	0.020	24.513	41.791	41.416
		12:33:33	10.022	0.018	36.122	152.706	27.531
		12:33:48	10.067	0.018	39.121	221.318	11.702
		12:34:03	10.086	0.018	40.143	224.925	3.956
		12:34:18	10.091	0.016	40.702	225.576	0.704
		12:34:33 12:34:48	10.098 10.102	0.018 0.017	41.050 41.271	225.836 226.080	-0.015 -0.199
		12:35:03	10.102	0.017	41.451	226.284	-0.199
		12:35:18	10.108	0.075	41.617	226.390	-0.238
		12:35:33	8.075	8.777	33.727	226.529	-0.177
		12:35:48	6.202	13.612	11.302	167.318	-0.112
		12:36:03	6.048	13.935	3.985	32.047	0.104
		12:36:18	6.007	13.959	2.136	7.831	0.216
		12:36:33	6.000	13.965	1.431	1.595	0.262
		12:36:48	5.995	13.968	1.050	1.026	0.254

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 05-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date_

March 16, 2010 Start Time 12:40 Stop time 13:07 REFERENCE METHOD RUN 5

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
Ca	Ilbration Checks					
C _o	Initial zero	0.087	0.042	0.152	0.524	-0.218
Cui		6.018	13.953	41.257	226.067	48.525
C _o		0.131	0.044	0.153	0.619	-0.136
C _u	•	6.009	13.958	41.274	226.444	48.649
C _m		5.910	14.100	44.900	225.000	48.200
O _m	a Actual yas value	0.510	14.100	44.500	225.000	40.200
An	alyzer Averages (co	oncentration	s)			
C _A	vg Average conc.	9.772	9.699	12.764	145.730	10.615
C _G	as Bias adjusted	9.671	9.786	13.773	144.718	10.667
	nd of sample period)					
040710 092956						3 4 7
	12:41	9.943	9.532	13.752	147.206	13.059
	12:42	9.522	10.057	12.954	133.252	11.485
	12:43	9.741	9.818	15.386	139.320	13.081
	12:44	9.408	10.181	13.519	134.037	11.771
	12:45 12:46	9.998 9.797	9.472 9.732	12.207 10.437	143.864 140.218	14.431 9.496
	12:47	9.339	10.264	8.875	131.616	9.263
	12:48	9.436	10.168	9.704	133.168	11.760
	12:49	9.852	9.606	10.461	136.968	10.703
	12:50	9.887	9.614	14.022	148.527	10.324
	12:51	9.451	10.090	12.894	138.828	8.314
	12:52	9.893	9.531	13.672	151.561	12.111
	12:53	9.303	10.261	13.885	142.721	8.284
	12:54	9.859	9.555	11.719	143.598	7.501
	12:55	9.983	9.412	11.605	153.781	7.536
	12:56	9.689	9.807	10.895	150.584	7.084
	12:57	9.447	10.058	14.719	141.174	8.156
	12:58	10.108	9.248	10.415	150.195	11.735
	12:59	9.562	9.969	6.897	150.855	9.958
	13:00	9.445	10.069	15.340	146.078	10.418
	13:01	9.607	9.897	13.963	147.306	14.688
	13:02	9.934	9.413	7.881	145.983	10.869
	13:03	10.494	8.751	7.669	166.846	11.082
	13:04	9.793	9.686	15.471	155.741	9.817
	13:05 13:06	9.611 10.009	9.855 9.419	14.034 18.923	142.692	9.488 13.123
	13:06	10.009	9,419	10.923	158.112	13.123

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a 13:07

10.724

SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____ Date_____

8.411

23.338

160.468

11.072

March 16, 2010
Start Time 13:08
Stop Time 13:13
CALIBRATION BIAS 05

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO	
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	
System Response to Calibration Gasses (C _s)							
C _{of} Z∈	ero gas	0.131	0.044	0.153	0.619	-0.136	
	scale gas	6.009	13.958	. 41.274	226.444	48.649	
Analyze	er Calibration	Error Repons	es (C _{Oir})	_			
C _{oce} Ze	ro gas	0.014	0.016	-0.137	0.122	0.146	
C _{mce} Ur	scale gas	6.149	14.147	43.254	221.172	49.151	
Actual I	Jpscale Gas V	/alue (C _{MA})					
C _{ma} Աբ	scale gas	5.910	14.100	44.900	225.000	48.200	
Calibrat	tion Span Valu	ıe (CS)					
		13.900	14.100	89.900	453.000	98.500	
System	Bias as Perce	ent of Callbra	tion Span Va	lue (SB) (5%))		
Ze	ro gas	0.8%	0.2%	0.3%	0.1%	-0.3%	
Սբ	scale gas	-1.0%	-1.3%	-2.2%	1.2%	-0.5%	
System	Blas Status						
Ze	ro gas	ОК	OK	ОК	OK	ок	
Up	scale gas	OK	ок	OK	OK	ok	
Previou	s System Res	ponse to Cali	bration Gase	es (C _s)			
C _{oi} Ze	ro gas	0.087	0.042	0.152	0.524	-0.218	
C _{ui} Up	scale gas	6.018	13.953	41.257	226.067	48.525	
Drift As	sessment as l	Percent of Ca	libration Spa	ın Value (D) (3%)		
Ze	ro gas	0.3%	0.0%	0.0%	0.0%	0.1%	
Up	scale gas	-0.1%	0.0%	0.0%	0.1%	0.1%	
Drift As	sessment Stat	tus					
Ze	ro gas	ок	ок	OK	ок	OK	
Up	scale gas	OK	ок	ок	ок	ок	
040710 092956							
040710 092900	13:08:40	0.167	0.054	1.595	13.390	32.545	
	13:08:55	0.136	0.053	0.850	1.832	41.758	
	13:09:10	0.122	0.049	0.497	1.091	47.095	
	13:09:25	0.110	0.045	0.348	0.839	48.438	
	13:09:40	0.099	0.044	0.218	0.725	48.757	
	13:09:55	0.096	0.043	0.145	0.578	48.752	
	13:10:10	0.198	0.044	0.096	0.554	48.723	
	13:10:25	6.902	0.031	7.644 30.064	16.833	47.731	
	13:10:40 13:10:55	9.825 10.015	0.021 0.020	30.064 37.815	73.357 180.041	38.992 23.933	
	13:11:10	10.013	0.020	39.858	223.468	9.245	
	13:11:25	10.067	0.017	40.625	225,909	2.953	
	13:11:40	10.079	0.015	41.039	226.317	0.402	
	13:11:55	10.090	0.015	41.298	226.374	-0.070	
	13:12:10	10.099	0.014	41.486	226.642	-0.165	
	13:12:25	10.091	0.292	41.622	226.813	-0.173	
	13:12:40	7.707	9.933	31.007	221.653	-0.173	
	13:12:55	6.163	13.695	9.426	120.236	-0.083	
	13:13:10	6.029	13.943	3.363	46.349	0.161	
	13:13:25	6.011	13.960	1.779	3.345	0.225	
	13:13:40 13:13:55	5.988 5.988	13.970 13.973	1.179 0.856	1.604 1.099	0.293 0.293	
	13, 13,33	5.500	10.313	0.050	1.039	0.253	

Propared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 16, 2010
Start Time 13:15
Stop time 13:42
REFERENCE METHOD RUN 6

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
	Calib	oration Checks					
	C_{oi}	Initial zero	0.131	0.044	0.153	0.619	-0.136
	Cui	Initial upscale	6.009	13.958	41.274	226.444	48.649
	Cof	Final zero	0.095	0.041	0.067	0.567	-0.155
	Cuf	Final upscale	5.981	13.960	41.285	226.555	48.771
	C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
	Δnal	yzer Averages (co	oncentrations	s)			
		Average conc.	9.805	9.664	12.611	150.927	9.532
		Bias adjusted	9.737	9.749	13.633	149.731	9.547
	Jus	,					
Clock Time (a	t end	of sample period)					
040710 092956		3.5				6.2.1	
<u> </u>		13:16	9.763	9.711	12.180	161.125	7.086
		13:17	9.535	9.982	11.219	156.927	5.931
		13:18	10.327	8.986	12.333	158.403	7.810
		13:19	10.052	9.361	12.733	147.247	6.899
		13:20	9.944	9.460	13.030	134.395	6.617
		13:21	10.554	8.723	15.178	148.020	9.427
		13:22	9.726	9.813	14.831	147.352	8.943
		13:23	9.388	10.178	16.459	137.363	9.174
		13:24	9.463	10.101	16.319	138.000	9.813
		13:25	9.801	9.715	18.484	141.612	10.605
		13:26	9.227	10.427	15.109	138.531	12.675
		13:27	9.591	9.996	13.124	135.395	15.521
		13:28	9.406	10.200	11.539	138.266	13.707
		13:29	9.467	10.150	11.913	145.143	13.864
		13:30	9.574	9.961	11.060	146.600	9.989
		13:31	9.358	10.233	11.061	151.313	10.812
		13:32	9.453 9.869	10.102 9.585	8.611	154.439	12.180
		13:33 13:34	10.052	9.342	13.445 12.958	155.090 155.218	11.632 10.007
		13:35	10.052	9.255	10.020	162.226	10.761
		13:36	9.597	9.255	8.525		8.238
		13:35	9.804	9.661	8.525 11.362	158.740 164.809	8.057
		13:38	10.234	9.042	11.980	163.901	7.531
		13:39	10.234	8.904	11.355	164.933	7.866
		13:40	9.812	9.642	11.554	156.461	6.624
		13:41	10.078	9.251	13.363	152.171	7.829
		13:42	10.128	9.238	10.745	161.363	7.759

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

QA/QC_____

March 16, 2010
Start Time 13:44
Stop Time 13:49
CALIBRATION BIAS 06

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
				ppinav	ppinda	ppiliuv
	System Response to					
	C _{of} Zero gas	0.095	0.041	0.067	0.567	-0.155
	C _{uf} Upscale gas	5.981	13.960	41.285	226.555	48.771
	Analyzer Calibration					
	Coce Zero gas	0.014	0.016	-0.137	0.122	0.146
	C _{mce} Upscale gas	6.149	14.147	43.254	221.172	49.151
	Actual Upscale Gas \					
	C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
	Calibration Span Valu					
		13.900	14.100	89.900	453.000	98.500
	System Bias as Perce		tion Span Va	lue (SB) (5%)	
	Zero gas	0.6%	0.2%	0.2%	0.1%	-0.3%
	Upscale gas	-1.2%	-1.3%	-2.2%	1.2%	-0.4%
	System Bias Status					
	Zero gas	OK	OK	OK	OK	OK
	Upscale gas	ок	OK	OK	OK	ок
	Previous System Res	ponse to Cal	Ibration Gase	es (C _s)		
	C _{oi} Zero gas	0.131	0.044	0.153	0.619	-0.136
	C _{ui} Upscale gas	6.009	13.958	41.274	226.444	48.649
	Drift Assessment as I	Percent of Ca	libration Spa	ın Value (D) (3%)	
	Zero gas	-0.3%	0.0%	-0.1%	0.0%	0.0%
	Upscale gas	-0.2%	0.0%	0.0%	0.0%	0.1%
	Drift Assessment Sta	tus				
	Zero gas	OK	OK	OK	OK	OK
	Upscale gas	OK	OK	OK	OK	OK
040710 092956						
	13:44:12	0.177	0.075	1.649	22.605	24.093
	13:44:27	0.145	0.061	0.821	2.075	37.550
	13:44:42	0.124	0.053	0.453	1.058	44.905
	13:44:57	0.110 0.105	0.047	0.249	0.953	48.065
	13:45:12 13:45:27	0.103	0.043 0.042	0.132 0.067	0.717 0.504	48.654 48.819
	13:45:42	0.086	0.042	0.007	0.480	48.840
	13:45:57	0.860	0.039	0.218	0.366	48.716
	13:46:12	8.228	0.026	15.228	8.970	46.935
	13:46:27	9.888	0.022	34.141	70.208	34.704
	13:46:42	10.029	0.016	38.618	205.080	19.359
	13:46:57	10.045	0.016	40.070	223.728	6.968
	13:47:12	10.056	0.014	40.708	225.958	1.919
	13:47:27	10.055	0.014	41.101	226.268	0.192
	13:47:42	10.067	0.014	41.348	226.675	-0.126
	13:47:57	10.045	0.582	41.407	226.724	-0.168
	13:48:12	7.446 6.115	10.593	26.621	226.732	-0.173
	13:48:27 13:48:42	6.115 5.997	13.727 13.944	7.546 2.767	170.818 29.434	-0.113 0.140
	13:48:57	5.979	13.965	1.514	5.454	0.140
	13:49:12	5.968	13.971	1.058	1.441	0.293
	10. 10. 12	0.000	10.011	1.000		0.200

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

March 16, 2010 Start Time 13:51 Stop time 14:18 REFERENCE METHOD RUN 7

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
Calil	oration Checks					
Col	Initial zero	0.095	0.041	0.067	0.567	-0.155
Cut	Initial upscale	5.981	13.960	41.285	226.555	48.771
C _{of}	Final zero	0.093	0.043	0.032	0.526	-0.143
C _{uf}	Final upscale	5.984	13.951	41.350	225.552	48.472
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
				44.000	220.000	40.200
	yzer Averages (c		-			
	Average conc.	9.899	9.570	14.370	154.761	12.214
C_{Gas}	Bias adjusted	9.840	9.656	15.580	153.868	12.219
Clock Time (at end	of sample period)			14. Kirin	1, 25	(F) 1 W
040710 092956	12.52	9.738	9.722		150.608	11.912
	13:52 13:53	9.757	9.722	12.035 10.097	151.720	12.561
	13:54	10.023	9.383	12.584	151.720	13.015
	13:55	9.935	9.497	13.938	153.582	14.133
	13:56	9.990	9.448	13.572	154.050	16.582
	13:57	9.754	9.734	13.330	139.035	15.214
	13:58	9.559	9.990	12.751	141.799	16.049
	13:59	9.894	9.567	16.563	142.886	15.407
	14:00	9.724	9.782	15.130	142.967	15.192
	14:01	9.906	9.585	13.819	147.853	15.540
	14:02	9.954	9.477	13.588	147.977	13.928
	14:03	10.167	9.269	14.684	158.451	12.916
	14:04	9.733	9.784	15.362	149.833	9.882
	14:05	9.851	9.652	14.056	155.665	11.423
	14:06	10.112	9.295	13.542	162.383	9.893
	14:07	10.308	9.084	13.367	173.285	10.812
	14:08	9.855	9.673	13.598	166.111	8.686
	14:09	9.922	9.543	15.619	154.156	9.103
	14:10	9.646	9.931	14.750	163.832	10.116
	14:11	9.820	9.679	14.680	160.466	9.017
	14:12	9.710	9.797	15.381	166.644	9.221
	14:13	10.162	9.253	16.073	167.234	9.543
	14:14	9.936	9.543	13.978	163.752	8.145
	14:15	9.763	9.785	17.757	. 158.264	11.503
	14:16	9.566 9.917	10.001 9.514	18.146	147,554	14.963
	14:17	10.574	9.514 8.696	14.658 14.931	148.744 158.004	13.850 11.180
	14:18	10.574	0.050	14.501	130.004	11.100

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 16, 2010 Start Time 14:19 Stop Time
CALIBRATION BIAS 07 14:24

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 2 %dv	FF Outlet 2 %dv			
			ppmdv	ppmdv	ppmdv
System Response to					
C _{of} Zero gas	0.093	0.043	0.032	0.526	-0.143
C _{uf} Upscale gas	5.984	13.951	41.350	225.552	48.472
Analyzer Calibration					
C _{oce} Zero gas	0.014	0.016	-0.137	0.122	0.146
C _{mce} Upscale gas	6.149	14.147	43.254	221.172	49.151
Actual Upscale Gas					
C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
Calibration Span Va	lue (CS)				
	13.900	14.100	89.900	453.000	98.500
System Bias as Pere	cent of Calibra	tion Span Va	lue (SB) (5%)	
Zero gas	0.6%	0.2%	0.2%	0.1%	-0.3%
Upscale gas	-1.2%	-1.4%	-2.1%	1.0%	-0.7%
System Bias Status					
Zero gas	ОК	OK	OK	OK	OK
Upscale gas	ОК	OK	OK	OK	OK
Previous System Re	sponse to Cal	ibration Gase	es (C _s)		
C₀ Zero gas	0.095	0.041	0.067	0.567	-0.155
C _{ui} Upscale gas	5.981	13.960	41.285	226.555	48.771
Drift Assessment as	Percent of Ca	libration Spa	ın Value (D) ((3%)	
Zero gas	0.0%	0.0%	0.0%	0.0%	0.0%
Upscale gas	0.0%	-0.1%	0.1%	-0.2%	-0.3%
Drift Assessment St	atus				
Zero gas	ОК	ОК	ОК	ок	ок
Upscale gas	OK	OK,	ОК	ок	OK
040710 092956					
14:19:0	0.175	0.075	1.324	11.673	28.046
14:19:23	3 0.140	0.058	0.658	2.426	39.346
14:19:38		0.053	0.342	1.075	46.274
. 14:19:5		0.049	0.168	0.920	48.277
14:20:0		0.044	0.073	0.602	48.534
14:20:23	I	0.043	0.042	0.529	48.606
14:20:36 14:20:5		0.041 0.038	0.018 1.788	0.448	48.715 48.643
14:21:08		0.038	24.055	42.816	43.920
14:21:23		0.023	36.851	155.580	30.872
14:21:38		0.018	39.497	208.384	13.483
14:21:53		0.016	40.428	224.347	4,472
14:22:08		0.016	41.047	225.364	0.694
14:22:23		0.014	41.385	225.495	-0.060
14:22:38		0.016	41.617	225.796	-0.184
14:22:53		3.096	39.813	225.974	-0.185
14:23:08		12.649	16.684	193.659	-0.171
14:23:23		13.867	4.677	103.012	-0.021
14:23:38		13.940	2.046	27.864	0.180
14:23:53		13.953	1.162	2.686	0.239
14:24:08	5.977	13.958	0.764	1.156	0.291

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC_ Date___

March 16, 2010 Start Time 14:26 14:53 Stop time **REFERENCE METHOD RUN 8**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
Cali	bration Checks					
C_{oi}	Initial zero	0.093	0.043	0.032	0.526	-0.143
C _{ui}	Initial upscale	5.984	13.951	41.350	225.552	48.472
C _{of}	Final zero	0.092	0.040	-0.078	0.439	-0.169
C _{uf}	Final upscale	5.992	13.976	41.527	226.819	48.679
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
-ma	Actour guo vuido	0.010	14.100	44.000	220.000	40.200
Ana	lyzer Averages (c	oncentration	s)			
C_{Avg}	Average conc.	9.964	9.494	15.519	150.151	11.421
C_{Gas}	Bias adjusted	9.896	9.574	16.831	149.202	11.451
Clock Time (at end	of sample period)		,			
0407:10 092956						
	14:27	9.757	9.738	10.064	146.142	11.592
	14:28	9.911	9.541	11.907	149.760	11.495
	14:29	10.529	8.769	11.677	156.455	9.974
	14:30	9.968	9.512	10.217	160.834	8.136
	14:31	9.627	9.909	11.955	153.323	6.951
	14:32	9.928	9.556	15.525	160.838	10.497
	14:33 14:34	10.119 9.678	9.306 9.847	20.752 17.507	162.627 159.613	9.519 9.211
	14:34	10.119	9.047	15.743	162.051	10.733
	14:36	9.666	9.871	14.032	159.100	9.154
	14:37	10.144	9.262	16.764	151.400	12.293
	14:38	10.039	9.410	19.571	146.589	10.933
	14:39	9.890	9.561	17.851	136.406	8.767
	14:40	10.206	9.206	17.377	147.307	11.075
	14:41	9.506	10.107	13.336	141.455	9.141
	14:42	9.439	10.154	10.547	138.445	10.079
	14:43	9.774	9.774	9.563	149.182	12.455
	14:44	10.100	9.289	13.169	145.505	12.359
	14:45	10.542	8.765	19.847	151.563	13.510
	14:46	9.832	9.682	21.119	142.403	10.780
	14:47	9.528	10.014	23.580	139.864	12.907
	14:48	9.514	10.078	17.237	142.499	14.629
	14:49	10.039	9.378	17.148	141.394	14.288
	14:50	9.991	9.486	13.664	145.342	14.434
	14:51	9.930	9.503	11.694	139.557	12.569
	14:52	11.014	8.172	16.836	160.289	17.807
	14:53	10.251	9.160	20.327	164.127	13.088

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date_

March 16, 2010
Start Time 14:54
Stop Time 14:59
CALIBRATION BIAS 08

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
				FF Outlet 2		
		%dv	%dv	ppmdv	ppmdv	ppmdv
	System Response to	Calibration G	asses (C _s)			
	C _{of} Zero gas	0.092	0.040	-0.078	0:439	-0.169
	C _{uf} Upscale gas	5.992	13.976	41.527	226.819	48.679
	Analyzer Calibration					
	Coce Zero gas	0.014	0.016	-0.137	0.122	0.146
	C _{mce} Upscale gas	6.149	14.147	43.254	221.172	49,151
	Actual Upscale Gas V					
	C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
	Calibration Span Valu					
		13.900	14.100	89.900	453.000	98.500
	System Bias as Perce				-	
	Zero gas	0.6%	0.2%	0.1%	0.1%	-0.3%
	Upscale gas	-1.1%	-1.2%	-1.9%	1.2%	-0.5%
	System Bias Status					
	Zero gas	OK	OK	OK	OK	OK
	Upscale gas	OK	OK	OK	OK	OK
	Previous System Res	-			0.500	0.440
	C _{oi} Zero gas	0.093	0.043	0.032	0.526	-0.143
	C _{ui} Upscale gas	5.984	13.951	41.350	225.552	48.472
	Drift Assessment as I		•		•	0.00/
	Zero gas	0.0%	0.0% 0.2%	-0.1%	0.0%	0.0%
	Upscale gas	0.1%	0.2%	0.2%	0.3%	0.2%
	Drift Assessment Sta Zero gas		ОК	ок	ок	OK
	Upscale gas	OK OK	OK OK	OK OK	OK	OK OK
	Upscale gas	OK	OK	OK	OK	
040710 092956						
	14:54:38	0.157	0.061	0.855	8.865	35.593
	14:54:53	0.129	0.053	0.396	1.376	44.119 47.053
	14:55:08 14:55:23	0.118 0.108	0.048 0.044	0.150 0.021	0.961 0.692	47.953 48.616
	14:55:38	0.096	0.041	-0.010	0.496	48.669
	14:55:53	0.093	0.040	-0.076	0.455	48.751
	14:56:08	0.088	0.037	-0.147	0.366	48.812
	14:56:23	2.281	0.038	1.493	0.529	48.829
	14:56:38	9.155	0.019	23.842	1.262	44.396
	14:56:53	9.967	0.018	37.133	128.718	31.551
	14:57:08	10.029	0.018	39.827	217.330	14.050
	14:57:23	10.055	0.017	40.801	225.739	4.729
	14:57:38 14:57:53	10.067 10.073	0.017 0.016	41.276 41.574	226.407 226.903	-0.768 -0.042
	14:58:08	10.073	0.014	41.729	227.147	-0.226
	14:58:23	9.738	2.285	40.804	227.236	-0.239
	14:58:38	6.756	12.323	18.628	227.326	-0.181
	14:58:53	6.079	13.880	4.821	104.754	0.091
	14:59:08	6.003	13.964	1.976	16.841	0.231
	14:59:23	5.988	13.976	1.003	2.646	0.283
	14:59:38	5.985	13.987	0.563	1.294	0.271

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

March 16, 2010 15:02 Start Time Stop time 15:29 **REFERENCE METHOD RUN 9**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
Calil	bration Checks					
C_{oi}	Initial zero	0.092	0.040	-0.078	0.439	-0.169
C_{ui}	Initial upscale	5.992	13.976	41.527	226.819	48.679
C_{of}	Final zero	0.092	0.044	-0.092	0.651	-0.185
C_{uf}	Final upscale	5.976	13.971	41.355	226.675	48.678
C_{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
Anal	yzer Averages (c	oncentration	s)			
C_{Avg}	Average conc.	9.865	9.583	13.674	150.194	12.669
C_{Gas}	Bias adjusted	9.803	9.656	14.877	148.853	12.673

Clock Time (at end of sample period)				
040710 092956				in a programment of the second	
15:03	3 10.096	9.269	10.420	147.568	14.168
15:04	9.713	9.799	13.208	150.263	13.419
15:05	10.036	9.355	18.339	142.066	13.394
15:06	9.793	9.704	17.438	152.155	13.723
15:07	10.025	9.366	17.483	147.798	12.761
15:08	9.836	9.653	17.129	151.361	14.227
15:09	9.809	9.648	18.116	141.459	11.763
15:10	9.316	10.269	16.643	143.688	13.837
15:11	9.876	9.552	13.201	147.002	13.335
15:12	9.709	9.762	11.894	150.653	12.633
15:13	10.153	9.220	12.045	152.161	12.679
15:14	9.793	9.695	10.891	149.804	10.663
15:15	9.930	9.505	13.050	141.571	12.733
15:16	9.425	10.151	13.332	138.510	14.232
15:17	9.635	9.863	12.269	137.051	14.017
15:18	9.779	9.679	10.534	143.443	14.599
15:19	10.168	9.221	12.858	149.927	14.543
15:20	9.719	9.778	11.851	150.468	11.713
15:21	10.110	9.247	11.116	151.801	12.015
15:22	9.918	9.521	10.639	154.628	12.760
15:23	9.949	9.445	14.095	154.174	10.598
15:24	10.111	9.283	15.821	159.992	11.162
15:25	9.933	9.459	15.670	154.168	10.627
15:26	10.474	8.817	15.226	169.178	13.255
15:27	9.597	9.945	11.628	160.649	10.669
15:28	9.824	9.629	12.033	156.553	11.240
15:29	9.618	9.903	12.269	157.135	11.290

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date

March 16, 2010 Start Time 15:30 15:35 Stop Time **CALIBRATION BIAS 09**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
S	System Response to	Calibration G	asses (C _s)			
C	C _{of} Zero gas	0.092	0.044	-0.092	0.651	-0.185
C	C _{uf} Upscale gas	5.976	. 13.971	41.355	226.675	48.678
	Analyzer Calibration	Error Repons	es (C _{Dir})			
(C _{oce} Zero gas	0.014	0.016	-0.137	0.122	0.146
C	C _{mce} Upscale gas	6.149	14.147	43.254	221.172	49.151
A	Actual Upscale Gas V	alue (C _{MA})				
C	C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
C	Calibration Span Valu	ıe (CS)				
	·	13.900	14.100	89.900	453.000	98.500
S	System Blas as Perce	ent of Calibra	tion Span Va	lue (SB) (5%)	
	Zero gas	0.6%	0.2%	0.1%	0.1%	-0.3%
	Upscale gas	-1.2%	-1.2%	-2.1%	1.2%	-0.5%
S	ystem Bias Status					
	Zero gas	ок	OK	OK	OK	ок
	Upscale gas	OK	OK	OK	OK	OK
P	revious System Res	ponse to Cali	ibration Gase	es (C _s)		
C	Col Zero gas	0.092	0.040	-0.078	0.439	-0.169
C	C _{ui} Upscale gas	5.992	13.976	41.527	226.819	48.679
מ	rift Assessment as I	Percent of Ca	libration Spa	n Value (D) (3%)	
	Zero gas	0.0%	0.0%	0.0%	0.0%	0.0%
	Upscale gas	-0.1%	0.0%	-0.2%	0.0%	0.0%
D	rift Assessment Stat	tus				
	Zero gas	ОК	OK	ok	OK	OK
	Upscale gas	ОК	OK	ОК	ОК	OK
040710 092956	15.00.00	0.005	0.000	0.470	40.050	07.440
	15:30:36	0.205	0.090	2.178	48.352 5.633	27.119
	15:30:51 15:31:06	0.147 0.126	0.064 0.057	0.897 0.306	1.294	37.529 45.299
	15:31:21	0.110	0.027	0.047	1.001	48.029
	15:31:36	0.099	0.047	-0.034	0.855	48.516
	15:31:51	0.093	0.043	-0.089	0.562	48.706
	15:32:06	0.085	0.042	-0.152	0.537	48.744
	15:32:21	2.427	0.038	1.931	1.042	48.585
	15:32:36	9.196	0.020	24.269	7.407	44.085
	15:32:51	9.951	0.018	37.027	106.992	29.989
	15:33:06	10.013	0.016	39.762	219.658	13.369
	15:33:21	10.036	0.017 0.014	40.663	225.039	4.081 0.687
	15:33:36 15:33:51	10.048 10.062	0.014	41.133 41.355	226.537 L 226.716	-0.085
	15:34:06	10.062	0.013	41.578	226.773	-0.210
	15:34:21	9.753	2.222	40.581	226.919	-0.259
	15:34:36	6.767	12.309	18.854	226.862	-0.207
	15:34:51	6.065	13.876	4.887	129.450	-0.047
	15:35:06	5.989	13.961	1.900	14.440	0.177
	15:35:21	5.976	13.970	0.988	3.460	0.212
	15:35:36	5.962	13.981	0.576	1.294	0.254

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC Date_

March 16, 2010
Start Time 15:37
Stop time 16:04
REFERENCE METHOD RUN 10

Channel 2 Channel 3 Channel 4

Channel 5

		CO2	02	SO2	NOX	CO
		FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
Cali	bration Checks					
C_{oi}	Initial zero	0.092	0.044	-0.092	0.651	-0.185
Cui	Initial upscale	5.976	13.971	41.355	226.675	48.678
C _{of}	Final zero	0.098	0.041	-0.172	0.526	-0.173
C _{uf}	Final upscale	5.991	13.957	41.144	226.805	48.840
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
	*					10.200
	lyzer Averages (c					
	Average conc.	9.984	9.426	12.911	157.651	8.398
C _{Gas}	Bias adjusted	9.925	9.504	14.151	156.262	8.447
Ol -1 = (-1 1						
Clock Time (at end	of sample period)		140 ST 40	tyt trans	12	
040710 092930	15:38	10.436	8.851	20.165	159.119	12.006
	15:39	9.614	9.879	16.420	154.933	9.021
	15:40	10.225	9.083	15.280	158.962	10.793
	15:41	10.179	9.184	13.634	161.583	9.854
	15:42	9.745	9.690	11.721	154.147	7.676
	15:43	10.290	9.041	13.959	159.691	8.530
	15:44	9.515	10.020	13.711	154.084	6.923
	15:45	10.061	9.290	13.404	154.723	7.101
	15:46	9.943	9.499	9.855	165.700	8.437
	15:47	9.842	9.579	8.282	158.453	6.235
	15:48	10.212	9.138	9.149	164.174	8.556
	15:49	9.782	9.695	10.617	157.656	7.012
	15:50	9.997	9.385	11.517	154.837	7.740
	15:51	10.190	9.180	13.438	162.837	10.041
	15:52	9.709	9.787	10.744	164.302	7.295
	15:53	10.098	9.248	12.951	162.814	6.808
	15:54	10.415	8.901	11.298	169.670	8.775
	15:55	9.791	9.713	11.315	162.139	6.669
	15:56	9.602	9.910	20.028	154.064	9.221
	15:57	10.654	8.562	21.306	152.908	10.736
	15:58	10.368	8.969	16.870	162.019	9.207
	15:59	9.397	10.198	9.753	164.123	8.284
	16:00	8.919	10.722	6.212	153.496	6.667
	16:01	9.767	9.681	7.940	149.729	7.869
	16:02	10.528	8.758	12.624	150.559	9.225
	16:03	10.205	9.184	12.733	145.963	7.633

Channel 1

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a Copyright © 2004 Clean Air Engineering Inc. 16:04

10.082

9.346

13.657

143.883

8.422

March 16, 2010 16:06 Start Time Stop Time 16:13 **CALIBRATION BIAS 10**

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
	Syst	em Response to	Callbration G	asses (C _s)			
	C_{of}	Zero gas	0.098	0.041	:-0.172	0.526	-0.173
	Cuf	Upscale gas	5.991	13.957	41.144	226.805	48.840
	Anal	yzer Calibration	Error Repons	ses (C _{Dir})			
		Zero gas	0.014	0.016	-0.137	0.122	0.146
		Upscale gas	6.149	14.147	43.254	221.172	49.151
		al Upscale Gas V					
		Upscale gas	5.910	14.100	44.900	225.000	48.200
	Calil	oration Span Valu		44.400		450.000	
			13.900	14.100	89.900	453.000	98.500
	Syst	em Bias as Perce		-		•	0.0%
		Zero gas	0.6% -1.1%	0.2% -1.3%	0.0%	0.1% 1.2%	-0.3%
	C	Upscale gas	-1.170	-1.3%	-2.3%	1.270	-0.3%
	Syst	em Bias Status	ок	ок	OK	ОК	OK
		Zero gas Upscale gas	OK	OK OK	OK OK	OK	OK OK
	Prov	lous System Res				OK	OK
	Coi	Zero gas	0.092	0.044	-0.092	0.651	-0.185
	Cui	Upscale gas	5.976	13.971	41.355	226.675	48.678
		Assessment as I					
		Zero gas	0.0%	0.0%	-0.1%	0.0%	0.0%
		Upscale gas	0.1%	-0.1%	-0.2%	0.0%	0.2%
	Drift	Assessment Sta					
		Zero gas	ОК	ок	ок	ок	ок
		Upscale gas	OK	OK	ok	OK	ok
0.107.10 000050							
040710 092956		16:06:02	0.297	0.167	3.246	70.306	14.268
		16:06:17	0.171	0.073	1.133	19.886	28.094
		16:06:32	0.136	0.060	0.425	1.978	40.233
		16:06:47	0.118	0.052	0.083	0.977 _	46.670
		16:07:02	0.109	0.046	-0.045	0.790	48.645
		16:07:17	0.098	0.043	-0.130	0.619	48.946
		16:07:32	0.090 0.106	0.041 0.039	-0.176 -0.210	0.521 <u> </u>	48.930 48.898
		16:07:47 16:08:02	6.063	0.031	9.146	8.099	48.067
		16:08:17	9.762	0.022	31.878	85.258	39.332
		16:08:32	10.000	0.019	38.462	166.040	22,901
		16:08:47	10.043	0.017 _	40.179	224.160	8.723
		16:09:02	10.048	0.013	40.855	226.390	2.219
		16:09:17	10.051	0.015	41.182	226.870	0.268
		16:09:32 16:09:47	10.055 9.579	0.017 <u> </u>	41.395 39.837	227.155 227.538	-0.117 -0.205
		16:09:47	9.579 6.613	12.665	39.837 17.138	214.554	-0.205
		16:10:17	6.028	13.911	4.479	86.431	-0.026
		16:10:32	5.982	13.976	1.771	20.033	0.171
		16:10:47	5.962	13.983	0.965	2.116	0.210
		16:11:02	5.957	13.993	0.568	1.205	0.269
		16:11:17	5.951	13.827	0.373	0.920	0.269
		16:11:32	2.120	4.642	0.220	3.598	0.282
		16:11:47	0.188	1.202	0.228	11.535	0.288

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

QA/QC Date____

March 16, 2010
Start Time 16:06
Stop Time 16:13
CALIBRATION BIAS 10

	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
	CO2	O2	SO2	NOX	СО
	FF Outlet 2 %dv	FF Outlet 2 %dv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv	FF Outlet 2 ppmdv
16:12:02	0.058	1.032	0.340	26.064	0.235
16:12:17	0.043	1.021	0.449	37.257	0.179
16:12:32	0.039	1.019	0.495	42.141	0.077
16:12:47	0.038	1.013	0.501	43.867	0.036
16:13:02	0.036	1.013	0.531	44.648	0.047
16:13:17	0.037	1.012	0.521	45.088	0.041
16:13:32	0.037	1.012	0.560	45.413	0.033
16:13:47	0.031	1.013	0.549	45.600	0.032

NOX Conversion Efficiency NO2 = 49.7 ppm Efficiency = 91.3%

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright © 2004 Clean Air Engineering Inc.

Channel 2 Channel 3 Channel 4

Channel 5

	Coanner 1	O2	SO2	NOX	Channers
	COZ	02	302	NOX	CO
	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
	%dv	%dv	ppmdv	ppmdv	ppmdv
Instrument Infor	rmation				
Manufacturer:	Servomex	Servomex	Rsrch	T.E.J.	T.E.I.
Model:		1420C	921NMP	42i-HL	48C
Detection:		Paramagn.	UV Photo.	Chemilumi.	GFC/NDIR
Asset or Serial No:	204217	205832	205184	205956	205194
Calibration Spar	n Value (CS)				
	13.900	14.100	89.900	453.000	98.500
System Respon					
,	45	45	45	45	45
Manufacturer Ce	ertified Cylin	der Value (C	<i>(</i>)		
Zero	0.000	0.000	0.000	0.000	0.000
Low	5.910	6.010	44.900	225.000	48.200
Mid					
High	13.900	14.100	89.900	453.000	98.500
Actual gas to be	e used for bi	as checks			
Notae: gao to at	5.910	14.100	44 000	225.000	49 200
	5.910	14.100	44.900	225.000	48.200
Cylinder ID					
Zero	AAL14589	AAL14589	AAL14589	AAL14589	AAL14589
Low	ALM033730	ALM046255	ALM010885	ALM010885	EB0011451
Mid					
High	ALM046255	ALM033730	CC124384	CC124384	ALM054744
Analyzer Calibra	ation Respon	se (C ₁₁₋)			
Zero	0.011	0.012	-0.008	0.114	0.002
Low	6.036	6.059	43.404	225.690	49.146
Mid		/ .			
High	13.957	14.165	90.011	453.643	98.890
Analyzer Calibra	tion Error (A	CE\ (Limit =	2% Method	254 limit = 59	% of age val
Zero	0.1%	0.1%	0.0%	0.0%	0.0%
Low	0.1%	0.1%	-1.7%	0.2%	1.0%
Mid	N/A	N/A	N/A	N/A	N/A
High	0.4%	0.5%	0.1%	0.1%	0.4%
-					
Calibration Error		014	014	014	01/
Zero	OK	OK	OK	OK	OK
Low	OK N/A	OK N/A	OK N/A	OK N/A	OK N/A
Mid High	N/A OK	N/A OK	N/A OK	N/A OK	OK
040710 121348			-		
06:19:56	-0.079	0.788	-0.368	0.521	0.174
06:19:56	-0.079	0.788	-0.368	0.521	0.174
06:20:11	-0.081	0.077	-0.358	0.130	0.181
06:20:26	-0.078 -0.078	0.019 0.012	-0.369	0.114	0.185
06:20:41 06:20:56	-0.078 -0.081		-0.366	0.089 0.122	0.098
06:20:56 06:21:11	-0.081	0.012 0.013	-0.361 -0.114	0.122	0.007 0.015
06:21:11	-0.080 -0.079	0.013	-0.114	0.114	0.006
06:21:41	-0.081	0.012	-0.025	0.114	-0.010
VO.E 1.71	3.00.	2.0.2	2,000		5.0.0

Channel 1

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_____

Date: March 17, 2010 6:19 Start Time Stop Time 6:45 **CALIBRATION ERROR**

Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 CO₂ 02 SO2 NOX CO

	FF Outlet 3				
	%dv	%dv	ppmdv	ppmdv	ppmdv
06:21:56	-0.074	0.012	0.010	0.114	0.008
06:22:11	-0.077	0.723	0.031	0.114	-0.002
06:22:26	0.228	11.400	0.021	0.122	-0.003
06:22:41	0.499	14.005	-0.005	0.195	-0.008
06:22:56	0.510	14.153	-0.003	0.122	0.065
06:23:11	0.507	14.168	0.000	0.114	0.150
06:23:26	0.505	14.173	-0.014	0.122	0.174
06:23:41	0.586	12.054	0.002	0.130	0.171
06:23:56	1.780	6.675	-0.070	0.244	0.171
06:24:11	1.810	6.082	-0.023	0.244	0.176
06:24:26	1.767	6.049	0.008	0.195	0.090
06:24:41	1.764	6.046	0.013	0.122	-0.057
06:24:56	1.757	6.043	0.016	0.098	-0.114
06:25:11	1.245	2.945	18.396	0.122	-0.140
06:25:26	0.960	0.203	69.481	82.214	-0.163
06:25:41	0.927	0.018	85.351	357.940	-0.226
06:25:56	0.910	0.008	88.221	447.880	-0.280
06:26:11	0.908	0.005	88.894	464.599	-0.329
06:26:26	0.916	0.002	89.140	466.137	-0.360
06:26:41	1.005	0.001 Г	89.815	462.914	-0.366
06:26:56	0.956	0.000	90.053	453.423	-0.405
06:27:11	0.969	-0.001	90.165	453.618	-0.415
06:27:26	0.973	-0.002	90.256	453.887	-0.415
06:27:41	0.908	0.210	71.694	453.447	-0.392
06:27:56	0.956	0.021	35.795	441.026	-0.343
06:28:11	0.983	-0.009	40.461	351.551	-0.342
06:28:26	0.985	-0.012	42.292	225.828	-0.365
06:28:41	0.996	-0.012	42.997	225.649	-0.391
06:28:56	0.985	-0.012	43.257	225.592	-0.415
06:29:11	0.951	-0.014	43.359	225.454	-0.420
06:29:26	0.960	-0.013	43.392	225.283	-0.415
06:29:41	0.969	-0.014	43.460	225.275	-0.415
06:29:56	0.934	0.024	43.476	225.226	-0.420
06:30:11	0.273	0.206	23.573	225.267	0.814
06:30:26	-0.056	0.020	3.963	183.549	10.761
06:30:41	-0.071	0.007	0.835	42.947	36.392
06:30:56	-0.063	0.008	0.405	5.568	65.747
06:31:11	-0.065	0.008	0.241	1.180	86.981
06:31:26	-0.070	0.008	0.189	0.855	95.142
06:31:41	-0.063	0.007	0.177	0.855	97.537
06:31:56	-0.066	0.006	0.142	0.831	98.221
06:32:11	-0.070	0.008	0.151	0.839	98.763
06:32:26	-0.062	0.008	0.117	0.676	98.917
06:32:41	-0.067	0.007	0.122	0.529	98.989
06:32:56	-0.069	0.113	0.164	0.537	98.883
06:33:11	-0.062	0.078	0.202	0.790	96.902
06:33:26	-0.071	0.012	0.182	0.928	87.160
06:33:41	-0.069	0.009	0.171	0.529	70.794
06:33:56	-0.066	0.008	0.121	0.244	58.141
06:34:11	-0.072	0.007	0.124	0.244	51.282
06:34:26	-0.067	0.005	0.101	0.244	49.394
06:34:41	-0.068	0.007	0.085	0.244	49.125
,.				··	

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date

Date: March 17, 2010 6:19 Start Time Stop Time 6:45 **CALIBRATION ERROR**

	Channel 1	Channel 2	Channel 3	Channel 4	Channel 5
	CO2	02	SO2	NOX	со
	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
	%dv	%dv	ppmdv	ppmdv	ppmdv
06:34:56	-0.072	0.007	0.103	0.187	49.166
06:35:11	-0.062	0.006	0.122	0.122	49.148
06:35:26	-0.020	0.800	0.117	0.122	49.042
06:35:41	1.483	5.300	0.101	0.122	47.217
06:35:56	2.013	5.869	0.090	0.122	37.407
06:36:11	3.814	1.553	0.208	0.106	22.014
06:36:26	0.468	0.074	0.225	0.057	10.537
06:36:41	0.139	-0.003	0.140	0.171	3.888
06:36:56	0.021	-0.001	0.111	0.065	1.128
06:37:11	0.015	-0.002	0.098	0.049	0.138
06:37:26	0.013	-0.003	0.096	0.081	-0.016
06:37:41	0.004	-0.009	0.109	0.033	-0.091
06:37:56	0.033	0.148	0.120	0.089	-0.050
06:38:11	10.213	4.630	0.114	0.089	-0.055
06:38:26	15.209	5.947	0.083	0.081	-0.163
06:38:41	15.290	5.998	0.050	0.049	-0.270
06:38:56	14.255	6.013	0.104	0.089	-0.231
06:39:11	13.952	6.030	0.103	0.081	-0.215
06:39:26	13.957	6.032	0.100	0.122	-0.194
06:39:41	13.962	6.032	0.106	0.106	-0.202
06:39:56	12.729	7.865	0.135	0.114	-0.213
06:40:11	6.936	13.464	0.233	0.220	-0.107
06:40:26	6.085	14.132	0.205	0.317	0.116
06:40:41	6.021	14.164	0.157	0.146	0.182
06:40:56	6.002	14.156	0.148	0.065	0.187
06:41:11	5.492	12.079	0.132	0.114	0.171
06:41:26	0.978	2.567	0.280	0.887	0.169
06:41:41	0.101	1.103	0.661	4.412	0.142
06:41:56	0.031	1.024	0.913	24.623	0.026
06:42:11	0.020	1.004	0.983	36.874	-0.028
06:42:26	0.016	1.011	1.011	42.165	-0.075
06:42:41	0.006	0.983	1.056	43.460	-0.091
06:42:56	0.013	1.004	1.063	44.054	-0.072
06:43:11	0.004	0.996	1.089	44.306	-0.057
06:43:26	0.006	1.000	1.105	44.542	-0.046
06:43:41	0.000	0.994	1.153	44.738	-0.026
06:43:56	0.004	1.005	1.167	44.844	-0.036
06:44:11	0.003	0.999	1.164	45.031	-0.034
06:44:26	0.006	1.003	1.145	45.185	-0.031
06:44:41	0.004	1.005	1.137	45.307	-0.041
06:44:56	0.006	1.003	1.175	45.356	-0.044
06:45:11	0.006	1.003	1.174	45.478	-0.050
06:45:26	0.002	1.005	1.184	45.519	-0.072
06:45:41	0.006	1.004	1.199	<u>45</u> .616	-0.052

NOX Conversion Efficienc NO2 = 49.7 ppmEfficiency = 91.6%

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

QA/QC_ Date_

March 17, 2010
Start Time 6:50
Stop Time 6:55
CALIBRATION BIAS 00

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
				FF Outlet 3	_	
		%dv	%dv	ppmdv	ppmdv	ppmdv
S	System Response to	Calibration G	asses (C _s)			
C	C _{of} Zero gas		0.045	0.023	0.244	-0.270.
	C _{uf} Upscale gas	5.932	13.995	41.765	221.848	49.055
•	Analyzer Calibration	Error Repons	es (C_{Oir})			
	C₀ce Zero gas	0.011	0.012	-0.008	0.114	0.002
	C _{moe} Upscale gas	6.036	14.165	43.404	225.690	49.146
	Actual Upscale Gas V	/alue (C _{MA})				
	c _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
C	alibration Span Valu	ıe (CS)				
		13.900	14.100	89.900	453.000	98.500
S	ystem Bias as Perce	ent of Callbrat	ion Span Va	lue (SB) (5%))	
	Zero gas	0.0%	0.2%	0.0%	0.0%	-0.3%
	Upscale gas	-0.7%	-1.2%	-1.8%	-0.8%	-0.1%
S	ystem Bias Status					
	Zero gas	ok	OK	OK	OK	OK
	Upscale gas	ok	ок	ок	OK	OK
P	revious System Res	ponse to Cali	bration Gase	es (C _s)		
С	oi Zero gas	N/A	N/A	N/A	N/A	N/A
С		N/A	N/A	N/A	N/A	N/A
D	rift Assessment as F	Percent of Cal	libration Spa	n Value (D) (3%)	
	Zero gas	N/A	N/A	N/A	N/A	N/A
	Upscale gas	N/A	N/A	N/A	N/A	N/A
D	rift Assessment Stat	us				
	Zero gas	N/A	N/A	N/A	N/A	N/A
	Upscale gas	N/A	N/A	N/A	N/A	N/A
0 090741				4 2 4 4		
7 0307-11	06:50:23	0.007	0.054	0.013	0.244	49.060
	06:50:38	0.005	0.047	0.014	0.244	49.063
	06:50:53	0.004	0.046	0.031	0.244	49.042
	06:51:08	0.006	0.042	0.024	0.244	49.066
	06:51:23	0.006	0.042	0.008	0.244	49.055
	06:51:38	2.919	0.039	3.007	0.244	48.708
	06:51:53	9.195	0.020	25.249	54.343	44.402
	06:52:08	9.809	0.018	36.861	129.752	30.326
	06:52:23	9.872	0.017	39.531	209.711	15.496
	06:52:38 06:52:53	9.891 9.901	0.013 0.007	40.560	220.513	5.147 1.229
	06:53:08	9.901	0.007	41.187 41.530	221.563 221.775	-0.023
	06:53:23	9.917	0.003	41.783	221.773	-0.252
	06:53:38	9.915	0.001	41.981	222.011	-0.280
	06:53:53	9.653	2.090	40.993	221.986	-0.279
	06:54:08	6.770	12.135	18.728	195.857	-0.259
	06:54:23_	6.016	13.871	5.083	127.977	-0.116
	06:54:38	5.936	13.972	2.343	36.215	0.150
	06:54:53	5.932	14.000	1.535	3.166	0.181
	06:55:08	5.928	14.012	1.060	1.164	0.218
	06:55:23	5.928	14.018	0.816	0.871	0.249

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

040710

March 17, 2010 Start Time 7:10 Stop time 7:37 REFERENCE METHOD RUN 1

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Cali	bration Checks					
C_{oi}	Initial zero	0.005	0.045	0.023	0.244	-0.270
C _{ut}	Initial upscale	5.932	13.995	41.765	221.848	49.055
C _{of}	Final zero	0.369	0.037	0.369	0.529	-0.167
C _{uf}	Final upscale	5.958	13.995	41.744	220.838	48.919
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
Oma	Actual gas value	3.910	14.100	44.900	225.000	40.200
Ana	lyzer Averages (c	oncentration	s)			
C_{Avg}	Average conc.	10.791	8.361	9.978	163.258	13.767
C _{Gas}	Bias adjusted	10.884	8.407	10.568	165.852	13.700
Clock Time (at end	of sample period)			_	•	
040710 090741	07:11	10.383	8.803	5,862	172,127	20.904
	07:11	11.005	8.133	5.620	172.127	20.826
	07:12	10.502	8.683	5.363	176.459	16.651
	07:14	11.272	7.812	6.777	172.218	14.731
	07:15	10.766	8.374	7.039	171.583	13.492
	07:16	10.727	8.401	6.676	161.249	12.198
	07:17	11.169	7.949	8.304	169.369	14.465
	07:18	10.767	8.395	8.530	164.318	13.800
	07:19	11.088	7.983	8.859	157.033	16.328
	07:20	10.886	8.296	8.359	168.390	15.080
	07:21	10.728	8.384	8.702	159.801	10.785
	07:22	11.211	7.901	15.474	172,542	13.390
	07:23	10.924	8.198	8.288	173.663	9.350
	07:24	10.975	8.102	9.358	163.028	9.309
	07:25	10.863	8.278	13.352	168.360	9.176
	07:26	10.728	8.410	12.705	167.302	8.735
	07:27	10.663	8.476	11,284	167.363	11.310
	07:28	10.774	8.369	12.630	163.858	10.410
	07:29	10.770	8.391	13.566	164.626	10.374
	07:30	10.6 4 3	8.510	11.563	155.664	11.268
	07:31	10.615	8.570	11.044	151.551	14.505
	07:32 07:33	10.647	8.548	10.944	150.501	18.674
	07:33 07:34	10.559 10.579	8.625 8.674	10.347	154.512 155.617	15.823 15.821
	07:34 07:35	10.579 10.720	8.674 8.471	14.118 11.870	155.617 149.434	15.821 12.735
	07:36	10.720	8.543	11.754	153.443	15.853
	07:37	10.719	8.468	11.009	153.685	15.722
	01.07	. 5.7 10	0.700	11.000	100.000	10.122

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 17, 2010 Start Time 7:38 Stop Time 7:43 **CALIBRATION BIAS 01**

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
						FF Outlet 3	
			%dv	%dv	ppmdv	ppmdv	ppmdv
	Syste	em Response to	Calibration G	asses (C _s)			
	C_{of}	Zero gas	0.369	0.037	0.369	0.529	-0.167
		Upscale gas	5:958	13.995	41.744	220.838	48.919
	Analy	zer Calibration	Error Repons	es (C _{Oir})			
	C_{oce}	Zero gas	0.011	0.012	-0.008	0.114	0.002
		Upscale gas	6.036	14.165	43.404	225.690	49.146
	Actua	al Upscale Gas V	/alue (C _{MA})				
	C_{ma}	Upscale gas	5.910	14.100	44.900	225.000	48.200
	Calib	ration Span Valu	ıe (CS)				
			13.900	14.100	89.900	453.000	98.500
	Syste	m Blas as Perce	nt of Calibrat	ion Span Va	lue (SB) (5%))	
		Zero gas	2.6%	0.2%	0.4%	0.1%	-0.2%
		Upscale gas	-0.6%	-1.2%	-1.8%	-1.1%	-0.2%
		m Bias Status					
		Zero gas	ок	ок	OK	ок	ок
		Upscale gas	ОK	ок	ок	ОK	óк
		ous System Res		bration Gase			
		Zero gas	0.005	0.045	0.023	0.244	-0.270
	•	Upscale gas	5.932	13.995	41.765	221.848	49.055
		Assessment as F					
		Zero gas	2.6%	-0.1%	0.4%	0.1%	0.1%
		Upscale gas	0.2%	0.0%	0.0%	-0.2%	-0.1%
		Assessment Stat		0.070	0.070	0.270	0.170
		Zero gas	OK	ОК	ок	ок	ОК
		Upscale gas	OK	OK	OK	OK	OK
		opadale gas	OK .	OIX .	ÇI.	OI C	<u> </u>
040710 090741							
		07:38:37	0.569	0.388	3.495	86.748	16.376
		07:38:52	0.175	0.080	1.520	34.481	24.892
		07:39:07	0.123	0.055	0.816	3.712	37.302
		07:39:22 07:39:37	0.099 0.086	0.046 0.040	0.490 0.358	1.400 0.847	45.054 48.098
		07:39:52	0.038	0.040	0.330	0.806	48.869
		07:40:07	0.066	0.033	0.238	0.545	48.925
		07:40:22	0.062	0.031	0.198	0.570	48.962
		07:40:37	0.980	0.045	0.672	0.472	48.987
		07:40:52	8.505	0.020	20.220	9.793	46.862
		07:41:07	9.821	0.011	36.931	65.625	34.608
		07:41:22	9.908	0.010 _	40.357	195.157	17.353
		07:41:37	9.936	0.007	41.346	218.820	5.903
		07:41:52	9.955	0.007	41.742	220.627	1.221
		07:42:07	9.965	0.007	42.142	220.887	-0.028
		07:42:22	9.273	3.947	39.235	221.001	-0.254
		07:42:37	6.423	13.074	13.639	220.033	-0.220
		07:42:52	6.014	13.936	3.691	123.452	-0.034
		07:43:07	5.971	13.985	1.701	10.696	0.145
		07:43:22 07:43:37	5.958 5.045	13.997 14.003	1.076 0.777	2.816 1.107	0.181 0.223
		07.43.37	5.945	14.003	0.777	1.107	0.223

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC Date

March 17, 2010 Start Time 7:45 Stop time 8:12 REFERENCE METHOD RUN 2

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Cali	bration Checks					
C_{oi}	Initial zero	0.369	0.037	0.369	0.529	-0.167
Cui	Initial upscale	5.958	13.995	41.744	220.838	48.919
C _{of}	Final zero	0.070	0.030	0.210	0.714	-0.268
Cuf	Final upscale	5.977	13.974	42.363	220.285	48.841
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
Ana	ilyzer Averages (c	oncentration	s)			
C_{Avg}	Average conc.	10.808	8.380	13.503	163.727	13.315
C_{Gas}	, Bias adjusted	10.887	8.436	14.205	166.858	13.286
Clock Time (at end	of sample period)					
040710 090741	07:46	10.599	8.617	10.551	168.616	12.818
	07:47	10.805	8.386	10.713	159.327	15.742
	07:48	10.513	8.741	11.496	162.646	17.557
	07:49	10.739	8.463	13.712	164.422	19.680
	07:50	10.557	8.653	15.243	165.584	17.796
	07:51	10.762	8.474	14.130	169.807	17.781
	07:52	10.451	8.779	11.239	171.251	17.174
	07:53	10.690	8.509	9.320	165.745	17.293
	07:54	10.810	8.415	10.661	168.091	15.784
	07:55	10.771	8.399	14.954	164.780	13.080
	07:56 07:57	10.229	9.012	11.455	163.030	12.046
	07:58	10.613 10.846	8.543 8.276	8.956 7.958	160.820 164.778	12.097 10.163
	07:59	11.032	8.134	11.308	166.695	10.103
	08:00	10.821	8.285	10.087	157.770	10.214
	08:01	11.233	7.944	10.039	160.553	11.956
	08:02	10.574	8.551	10.775	162.135	9.610
	08:03	11.362	7.765	17.631	161.791	14.710
	08:04	10.867	8.341	19.118	155.590	12.713
	08:05	11.266	7.881	24.144	149.585	12.541
	08:06	11.028	8.185	23.217	157.491	12.539
	08:07	10.864	8.328	18.392	160.110	10.864
	08:08	10.892	8.337	15.005	167.452	12.255
	08:09	11.172	7.998	13.271	167.572	10.861
	08:10	10.772	8.411	13.521	171.355	9.934
	08:11 08:12	10.862 10.678	8.348 8.494	13.306 14.368	166.475 167.153	11.753
	00.12	10.078	0.434	14.368	167.153	10.420

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 17, 2010 8:13 Start Time Stop Time
CALIBRATION BIAS 02 8:18

Channel 3 Channel 4

Channel 5

		CO2	02	SO2	NOX	CO
		FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
		%dv	%dv	ppmdv	ppmdv	ppmdv
Svet	em Response to	Calibration G	asses (C _e)			• •
C _{of}	-	0.070	0.030	0.210	0.714	-0.268
C _{uf}	Upscale gas	5.977	13.974	42.363	220.285	48.841
	lyzer Calibration			12.000		.0.5
	Zero gas	0.011	0.012	-0.008	0.114	0.002
	Upscale gas	6.036	14.165	43.404	225.690	49.146
	ıal Upscale Gas V		1 1.100	10.401	220.000	-10.1-10
	Upscale gas	5.910	14.100	44.900	225.000	48.200
	opscale gas bration Span Valu		14.100	44.500	225.000	40.200
Calli	oration Span valu	13.900	14.100	89.900	453.000	00 500
Sound	Dian an Davas					98.500
Syst	em Blas as Perce		-			0.004
	Zero gas	0.4%	0.1%	0.2%	0.1%	-0.3%
	Upscale gas	-0.4%	-1.4%	-1.2%	-1.2%	-0.3%
Syste	em Bias Status					
	Zero gas	ОК	OK	ОК	OK	OK
	Upscale gas	OK	OK	OK	OK	OK
	ious System Res	-				
C_{oi}	Zero gas	0.369	0.037	0.369	0.529	-0.167
C _{ui}	Upscale gas	5.958	13.995	41.744	220.838	48.919
Drift	Assessment as F	Percent of Cal	ibration Spa	n Value (D) (3%)	
	Zero gas	-2.2%	0.0%	-0.2%	0.0%	-0.1%
	Upscale gas	0.1%	-0.1%	0.7%	-0.1%	-0.1%
Drift	Assessment Stat	us				
	Zero gas	OK	OK	OK	OK	OK
	Upscale gas	OK	OK	OK	OK	OK
040710 090741						
040710 090741	08:13:11	0.372	0.221	3.261	100.211	17.135
	08:13:26	0.161	0.067	1.267	13.464	27.593
	08:13:41	0.118	0.051	0.679	3.215	39.189
	08:13:56	0.102	0.044	0.445	1.237	45.701
	08:14:11	0.089	0.038	0.311	0.863	48.388
	08:14:26	0.077	0.036	0.239	0.733	48.884
	08:14:41	0.071	0.033	0.200	0.733	48.861
	08:14:56	0.062	0.022	0.190	0.676	48.850
	08:15:11	1.759	0.030	1.836	0.717	48.812
	08:15:26	8.859	0.006	24.822	38.796	45.110
	08:15:41	9.828	0.007	38.227	146.715	32.129
	08:15:56	9.905	0.005	40.908	203.622	15.976
	08:16:11	9.943	0.003	41.799	218.950	5.128
	08:16:26	9.951	0.004	42.180	219.967	1.109
	08:16:41	9.965	0.002	42.379	220.163	-0.075
	08:16:56	9.967	0.018	42.530	220.285	-0.294
	08:17:11 08:17:26	8.170 6.181	8.212 13.604	31.994 <u> </u>	220.407 174.400	-0.303 -0.208
	08:17:26	5.998	13.947	6.055 2.558	43.118	0.013
	08:17:56	5.971	13.980	1.359	7.725	0.013
	08:18:11	5.961	13.995	0.938	1.644	0.153
	55.15.11		. 5.555	2.000		500

Channel 1 Channel 2

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date

March 17, 2010
Start Time 8:20
Stop time 8:47
REFERENCE METHOD RUN 3

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Calil	bration Checks					
C _{ol}	Initial zero	0.070	0.030	0.210	0.714	-0.268
C _{ui}	Initial upscale	5.977	13.974	42.363	220.285	48.841
C _{of}	Final zero	0.070	0.031	0.186	0.690	-0.338
C _{uf}	Final upscale	5.997	13,970	42.419	219.506	48.629
C _{ma}	Actual gas value	5.910	14,100	44.900	225.000	48.200
Anai	yzer Averages (co	oncentration	s)			
	Average conc.	10.803	8.363	10.952	166.855	10:325
	Bias adjusted	10.721	8.428	11.444	170.554	10.446
	-					
Clock Time (at end	of sample period)					
040710 090741_						
	08:21	10.254	8.932	13.790	158.812	11.066
	08:22	9.965	9.294	13.497	145.194	12.293
	08:23	10.697	8.394	13.722	147.352	12.175
	08:24	11.000	8.126	13.524	154.219	11.108
	08:25	10.752	8.353	11.326	159.127	9.691
	08:26	10.411	8.758	9.281	167.137	10.465
	08:27	10.567	8.540	9.655	162.583	10.734
	08:28 08:29	10.930	8.226 7.812	10.639 10.334	166.455 169.214	11.031
	08:30	11.284 10.543	8.606	9.710	170.067	9.917 7.569
	08:31	10.660	8.545	10.540	163.702	9,456
	08:32	10.615	8.539	9.038	162.202	10.882
	08:33	10.968	8.167	8.718	170.220	10.837
	08:34	10.860	8.281	8.411	173.040	8.900
	08:35	10.820	8.345	8.831	169.766	7.791
	08:36	10.612	8.526	8.576	173.016	7.392
	08:37	11.462	7.674	8.674	176.601	9.442
	08:38	10.766	8.410	7.446	171.260	7.662
	08:39	11.047	8,157	13.607	167.782	10,419
	08:40	10.725	8.453	8.033	171.184	9,463
	08:41	10.976	8.222	6.407	176.762	9.813
	08:42	10.645	8.549	9.596	177.485	10.493
	08:43	10.625	8.593	11.976	174.027	11.242
	08:44	10.912	8.278	13.871	170.480	13.431
	08:45	11.403	7.765	14.724	166.260	13.483
	08:46	11.101	8.127	15.146	170.598	11.210
	08:47	11.075	8.139	16.637	170.533	10.801

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 17, 2010
Start Time 8:48
Stop Time 8:53
CALIBRATION BIAS 03

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
	%dv	%dv	ppmdv	ppmdv	ppmdv
System Response	to Calibration G	asses (C _c)			
C _{of} Zero gas	0.070	0.031	0.186	0.690	-0.338
C _{uf} Upscale gas	5.997	13.970	42.419	219.506	48,629
Analyzer Calibrati	on Error Repons	es (C _{Dir})	•	•	
C _{oce} Zero gas	0.011	0.012	-0.008	0.114	0.002
C _{mce} Upscale gas	6.036	14.165	43.404	225.690	49.146
Actual Upscale Ga	as Value (C _{MA})				
C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
Calibration Span \	/alue (CS)				
	13.900	14.100	89.900	453.000	98.500
System Bias as Pe	ercent of Calibrat	ion Span Va	lue (SB) (5%))	
Zero gas	0.4%	0.1%	0.2%	0.1%	-0.3%
Upscale gas	-0.3%	-1.4%	-1.1%	-1.4%	-0.5%
System Blas Statu	ıs				
Zero gas	ОК	ОК	ОК	OK	ok
Upscale gas	ОК	ок	ок	ок	OK
Previous System F	Response to Cali	bration Gase	s (C _s)		
C _{ol} Zero gas	0.070	0.030	0.210	0.714	-0.268
C _{ul} Upscale gas	5.977	13.974	42.363	220.285	48.841
Drift Assessment		-		-	
Zero gas	0.0%	0.0%	0.0%	0.0%	-0.1%
Upscale gas	0.1%	0.0%	0.1%	-0.2%	-0.2%
Drift Assessment					
Zero gas	OK	OK	OK	OK	OK
Upscale gas	ок	OK	ОК	OK	OK
040710 090741					
08:48:		0.047	0.645	2.792	39.320
08:48:		0.041	0.384	1.050	45.682
08:49:		0.035	0.264	0.879	48.210
08:49: 08:49:		0.031 0.032	0.194 0.203	0.733 0.717	48.648 48.617
08:49:		0.029	0.160	0.619	48.713
08:50:		0.027	3.432	1.238	48.557
08:50:	16 9.156	0.007	28.365	13.854	44.355
08:50:	31 9.852	0.006	39.044	106.097	29.885
08:50:		0.005	41.049	213.513	14.168
08:51:		0.004	41.675	218.039	4.223
08:51:		-0.021	42.046	219.007	0.721
08:51: 08:51:		0.000	42.305 42.426	219.292 <u> </u>	-0.186 -0.327
08:52:0		-0.003	42.426 42.525	219.609	-0.327 -0.344
08:52:		5.358	36.985	219.829	-0.342
08:52:		13.261	11.046	165.600	-0.311
08:52:4		13.934	3.028	79.276	-0.135
08:53:0	I	13.979	1.480	14.099	0.081
08:53:	16 <u>5.973</u>	13.998	1.022	2.336	0.142

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 17, 2010
Start Time 8:54
Stop time 9:21
REFERENCE METHOD RUN 4

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
	Calib	ration Checks					
	Coi	Initial zero	0.070	0.031	0.186	0.690	-0.338
	Cui	Initial upscale	5.997	13.970	42.419	219.506	48.629
	Cof	Final zero	0.070	0.031	0.000	0.728	-0.228
	Cuf	Final upscale	5.983	13.960	41.854	219,153	48.790
		Actual gas value	5.910	14.100	44.900	225.000	48.200
		•					
		yzer Averages (c			0.525	472.500	0.070
		Average conc.	11.033	8.154	9.535	173.560	8.673
	CGas	Blas adjusted	10.945	8.220	10.083	177.895	8.811
Clock Time (a	t end	of sample period)					
040710 090741	t Cild	or sumple period)					
		08:55	10.930	8.251	13.042	169.955	8.300
		08:56	11.530	7.620	13.031	169.988	8.902
		08:57	10.581	8.631	10.516	172.471	7.508
		08:58	10.545	8.702	14.353	169.849	8.894
		08:59	11.088	8.113	14.815	166.148	8.768
		09:00	10.669	8.532	11.468	165.733	8.965
		09:01	10.856	8.367	12.567	171.475	10.428
		09:02	10.499	8.704	10.729	174.229	9.930
		09:03	10.628	8.571	9.002	174.446	10.278
		09:04	11.072	8.103	9.282	172.971	10.982
		09:05	10.613	8.586	10.142	173.291	10.339
		09:06	10.552	8.665	9.558	170.429	9.723
		09:07	10.761	8.438	10.119	174.552	9.410
		09:08	11.121	8.083	14.538	180.635	8.514
		09:09	10.706	8.535	10.004	178.043	8.466
		09:10	10.964	8.253	7.902	176.447	8.287
		09:11	11.514	7.591 7.071	7.713	186.434	8.715
		09:12	12.026	7.071	7.269	190.425	8.067
		09:13	11.212	7.952	5.203	178.758	6.252
		09:14 09:15	11.198 11.375	7.933 7.808	4.554 4.347	171.701	6.428
		09:16	10.976	8.222	4.347 4.056	176.097 166.945	7.505 7.357
		09:17	11.751	7.393	8.709	172.782	9.586
		09:18	11.731	8.127	10.373	174.782	6.978
		09:19	11.765	7.355	9.325	169.011	8.320
		09:20	10.793	8.436	7.649	170.814	8.540
		09:21	11.084	8.120	7.169	167.709	8.724
						,	

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

March 17, 2010
Start Time 9:22
Stop Time 9:27

CALIBRATION BIAS 04

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
			%dv	%dv	ppmdv	ppmdv	ppmdv
	Svs	tem Response to	Calibration G	asses (C _c)			
	Cof	Zero gas	0.070	0.031	0.000	0.728	-0.228
	Cut	Upscale gas	5.983	13.960	41.854	219.153	48.790
		lyzer Callbration	Error Repons		<u>'</u>	•	
		Zero gas	0.011	0.012	-0.008	0.114	0.002
		Upscale gas	6.036	14.165	43.404	225.690	49.146
		ual Upscale Gas \	/alue (C _{MA})				
	C_{ma}	Upscale gas	5.910	14.100	44.900	225.000	48.200
	Cali	bration Span Valu	ue (CS)				
		•	13.900	14.100	89.900	453.000	98.500
	Syst	tem Blas as Perce	3				
		Zero gas	0.4%	0.1%	0.0%	0.1%	-0.2%
		Upscale gas	-0.4%	-1.5%	-1.7%	-1.4%	-0.4%
	Syst	tem Bias Status					
		Zero gas	ок	OK	OK	OK	OK
		Upscale gas	OK	ok	ok	OK	OK
	Prev	rious System Res	ponse to Call	bration Gase	ıs (C _s)		
	C_{oi}	Zero gas	0.070	0.031	0.186	0.690	-0.338
	C_{ul}	Upscale gas	5.997	13.970	42.419	219.506	48.629
	Drift	Assessment as I	Percent of Cal	ibration Spa	n Value (D) (3%)	
		Zero gas	0.0%	0.0%	-0.2%	0.0%	0.1%
		Upscale gas	-0.1%	-0.1%	-0.6%	-0.1%	0.2%
	Drift	Assessment Stat					
		Zero gas	OK	OK	OK	OK	· OK
		Upscale gas	OK	OK	ok	OK	OK
040710 090741	•						
		09:22:54	0.146	0.054	0.596	11.380	31.271
		09:23:09	0.116	0.043	0.282	1.831	42.302
		09:23:24	0.098	0.037	0.109	1.018	47.053
		09:23:39 09:23:54	0.089 0.071	0.033	0.055 0.029	0.904 0.741	48.586 48.824
		09:24:09	0.067	0.022	0.029	0.741	48.830
		09:24:24	0.072	0.054	-0.036	0.733	48.840
		09:24:39	2.294	0.209	1.968	0.733	48.698
		09:24:54	9.050	0.019	26.190	21.343	45.338
		09:25:09	9.852	0.006	38.357	88.547	31.062
		09:25:24	9.923	0.003	40.681	207.945	15.342
		09:25:39	9.940	-0.004	41.539	218.014	4.483
		09:25:54	9.963	0.002	41.910	219.593	0.826
		09:26:09	9.968	0.000 _	42.115	219.853	-0.194
		09:26:24	9.282	3.922	39.363	219.935	-0.301
		09:26:39 09:26:54	6.442 6.020	13.025	13.931 3.350	220.032 99.227	-0.280 -0.103
		09:27:09	5.973	13.969	1.469	13.585	0.136
		09:27:24	5.957	13.985	0.941	2.410	0.155
		00.221	0.00.	. 0.000			

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 17, 2010 Start Time 9:28 Stop time 9:55 **REFERENCE METHOD RUN 5**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Cali	bration Checks					
Col	Initial zero	0.070	0.031	0.000	0.728	-0.228
C _{ui}	Initial upscale	5.983	13.960	41.854	219,153	48.790
C _{of}	Final zero	0.072	0.032	0.011	0.768	-0.315
C _{uf}	Final upscale	5.989	13.958	41.890	219.213	48.660
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
∪ ma	Actual gas value	3.510	14.100	44.500	223.000	40.200
Ana	lyzer Averages (co	oncentration	s)			
CAVB	Average conc.	10.629	8.605	5.651	167.019	12.286
C _{Gas}	Bias adjusted	10.549	8.680	6.055	171.268	12.354
Clock Time (at end	of sample period)					
040710 090741						
	09:29	10.736	8.508	7.429	174.477	11.169
	09:30	10.622	8.619	8.221	169.701	12.269
	09:31	10.740	8.519	8.490	172.882	14.572
	09:32	10.323	8.985	7.555	178.638	14.230
	09:33	10.647	8.609	7.389	169.921	14.156
	09:34	10.803	8.456	7.250	179.937	14.488
	09:35	10.764	8.492	6.431	171.085	11.946
	09:36	10.404	8.841	5.937	161.042	11.549
	09:37	10.530	8.715	6.989	164.072	14.485
	09:38	10.538	8.686	7.793	166.854	15.416
	09:39	10.309	8.960	6.576	164.949	14.221
	09:40	10.317	8.958	5.615	167.249	15.268
	09:41	10.727	8.498	5.432	169.992	13.559
	09:42	10.879	8.344	5.410	169.701	12.519
	09:43	11.218	7.969	5.110	168.350	11.032
	09:44	10.383	8.824	4.206	167.381	10.979
	09:45	10.779	8.466	4.257	169.241	11.159
	09:46	10.567	8.626	4.483	165.865	11.107
	09:47	10.683	8.540	4.754	162.959	11.434
	09:48	10.810	8.393	4.549	169.113	10.385
	09:49	10.664	8.542	4.327	167.611	10.564
	09:50	10.622	8.565	4.100	160.759	10.007
	09:51	10.407	8.846	4.001	163.492	10.568
	09:52	10.845	8.364	4.052	162.932	11.077
	09:53	10.810	8.414	4.225	165.562	10.205
	09:54	10.461	8.768	3.978	153.604	10.852
	09:55	10.403	8.834	4.018	152.151	12.513

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date_

March 17, 2010
Start Time 9:56
Stop Time 10:01
CALIBRATION BIAS 05

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
	%dv	%dv	ppmdv	ppmdv	ppmdv
System Response to	o Calibration G	asses (C _c)			
C _{of} Zero gas	0.072	0.032	0.011	0.768	-0.315
C _{uf} Upscale gas	5.989	13,958	41.890	219.213	48.660
Analyzer Calibration					
C _{oce} Zero gas	0.011	0.012	-0.008	0.114	0.002
C _{mce} Upscale gas	6.036	14.165	43.404	225.690	49.146
Actual Upscale Gas					
C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
Calibration Span Va					
	13.900	14.100	89.900	453.000	98.500
System Bias as Perc	ent of Calibrat	ion Span Va	lue (SB) (5%))	
Zero gas	0.4%	0.1%	0.0%	0.1%	-0.3%
Upscale gas	-0.3%	-1.5%	-1.7%	-1.4%	-0.5%
System Blas Status					
Zero gas	ОК	OK	OK	OK	OK
Upscale gas	OK	ok	OK	OK	OK
Previous System Re	sponse to Cali	bration Gase	es (C _s)		
C _{ol} Zero gas	0.070	0.031	0.000	0.728	-0.228
C _{ui} Upscale gas	5.983	13.960	41.854	219.153	48.790
Drift Assessment as	Percent of Cal	libration Spa	n Value (D) (3%)	
Zero gas	0.0%	0.0%	0.0%	0.0%	-0.1%
Upscale gas	0.0%	0.0%	0.0%	0.0%	-0.1%
Drift Assessment Sta	atus				
Zero gas	ok	OK	OK	OK	OK
Upscale gas	ок	ок	OK	ок	oK
046710 090741					
09:56:53	0.160	0.065	0.655	24.314	27.600
09:57:08	0.118	0.049	0.262	2.475	39.337
09:57:23	0.095	0.043	0.104	1.205	45.587
09:57:38		0.035	0.016	0.912	48.168
09:57:53		0.031	0.005	0.733	48.567
09:58:08		0.030	0.011	0.660	48.690
09:58:23 09:58:38		0.031 0.014	0.148 17.604	0.611 <u> </u>	48.725 46.813
09.56.55 09:58:53		0.014	36.383	101.929	37.400
09:59:08		0.006	40.029	197.818	19.380
09:59:23		0.003	40.951	216,231	7.509
09:59:38		0.003	41.556	218.844	1.563
09:59:53		0.001	41.952	219.300	0.002
10:00:08	9.963	0.000	42.162	219.495	-0.311
10:00:23		3.021	40.205	219.723	-0.342
10:00:38	6.583	12.674	15.241	219.902	-0.293
10:00:53		13.906	3.731	112.829	-0.187
10:01:08		13.975	1.742	14.547	0.044
10:01:23	5.962	13.992	1.120	3.069	0.147

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004s

March 17, 2010
Start Time 10:02
Stop time 10:29
REFERENCE METHOD RUN 6

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Calib	ration Checks					
Coi	Initial zero	0.072	0.032	0.011	0.768	-0.315
•	Initial upscale	5.989	13.958	41.890	219,213	48.660
	Final zero	0.066	0.017	0.279	0.782	0.056
	Final upscale	6.002	14.023	41.750	219.018	48.558
	Actual gas value	5.910	14.100	44.900	225,000	48.200
	zer Averages (c		e)			
-	• •		•	2 062	171 247	12 106
	Average conc.	10.680	8.514 8.574	3.963	171.247	12.106
Gas	Bias adjusted	10.581	8.571	4.113	175.671	12.100
Clock Time (at end of	of sample period)					
040710 090741	7					
	10:03	11.411	7.729	7.697	177.949	15.040
	10:04	10.657	8.554	5.267	176.911	11.849
	10:05	10.765	8.471	4.441	171.799	12.819
	10:06	10.531	8.668	4.141	167.875	11.815
	10:07	10.929	8.271	4.932	174.518	12.727
	10:08	10.856	8.362	5.213	176.261	12.208
	10:09	10.606	8.587	4.380	167.703	11.934
	10:10	10.447	8.737	4.029	168.002	12.800
	10:11	10.968	8.213	4.377	173.917	13.274
	10:12	10.765	8.396	5:559	165.181	10.679
	10:13	10.752	8.404	4.612	167.359	11.168
	10:14	10.704	8.472	3.856	159.805	11.077
	10:15	10.607	8.605	3.651	158.763	11.235
	10:16 10:17	10.201 10.518	9.061 8.697	3.567	154.784	11.066 12.963
	10:17	10.516	8.429	4.011 4.023	158.494 162.379	15.040
	10:19	10.782	8.808	4.023	171.048	14.862
	10:19	10.437	8.210	3.994	173.126	14.068
	10:21	10.699	8.446	3.416	177,458	12.836
	10:22	10.417	8.746	2.886	163,307	11.225
	10:23	10.293	8.917	2.542	165,716	10.871
	10:24	10.361	8.822	2.459	165.232	10.863
	10:25	11.042	8.150	2.917	180.342	11.382
	10:26	10.784	8.437	3.032	188.710	10.218
	10:27	10.330	8.880	2.691	183.694	10.174
	10:28	10.714	8.458	2.618	184.764	11.856
	10:29	10.845	8.357	2.521	188.561	10.802

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 17, 2010
Start Time 10:30
Stop Time 10:35
CALIBRATION BIAS 06

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
System Respons	e to Calibration G	iasses (C _s)			
C _{of} Zero gas	0.066	0.017	0.279	0.782	0.056
C _{uf} Upscale gas	6.002	14.023	41.750	219.018	48.558
Analyzer Calibrat	ion Error Repons	es (C _{DIr})			
C _{oce} Zero gas	0.011	0.012	-0.008	0.114	0.002
C _{mce} Upscale gas	6.036	14.165	43.404	225.690	49.146
Actual Upscale G	ias Value (C _{MA})				
C _{ma} Upscale gas	5.910	14.100	44.900	225,000	48.200
Calibration Span	Value (CS)				
	13.900	14.100	89.900	453.000	98.500
System Bias as P	ercent of Callbra	tion Span Va	lue (SB) (5%)	
Zero gas	0.4%	0.0%	0.3%	0.1%	0.1%
Upscale gas	-0.2%	-1.0%	-1.8%	-1.5%	-0.6%
System Bias Stat	us				
Zero gas	ОК	OK	ок	ок	OK
Upscale gas	ок	OK	OK	OK	OK
Previous System	Response to Cali	bration Gase	es (C _s)		
C₀i Zero gas	0.072	0.032	0.011	0.768	-0.315
C _{ul} Upscale gas	5.989	13.958	41.890	219.213	48.660
Drift Assessment	as Percent of Ca	libration Spa	n Value (D) (3%)	
Zero gas	0.0%	-0.1%	0.3%	0.0%	0.4%
Upscale gas	0.1%	0.5%	-0.2%	0.0%	-0.1%
Drift Assessment	Status				
Zero gas	ок	OK	ок	ok	ОК
Upscale gas	ОК	ok	OK	ок	ОК
040710 090741):35 6.027	14.015	0.482	44.843	5.004
10:30 10:30		14.015 14.025	0.462	4.493	2.059
10:31		14.029	-0.005	1.188	0.684
10:31		14.029	-0.047	1.001	0.204
10:31		12.491	0.040	0.806	0.169
10:31	:50 9.225	1.930	17.174	10.273	0.147
10:32	:05 9.934	0.133	36.036	61.978	0.127
10:32		0.042	39.710	180.643	-0.107
10:32		0.027	40.931	216.443	-0.270
10:32		0.024	41.473	218.592	-0.353
10:33		0.018	41.783	219.081	-0.366
10:33		0.014 <u> </u>	41.993	219.381 219.585	-0.366 -0.317
10:33 10:33		0.020	40.300 15.842	190.061	1.965
10:34		0.025	3.795	117.843	10.874
10:34		0.023	1.693	23.777	28.554
10:34		0.022	1.005	2.572	40.777
10:34		0.021	0.680	1.294	47.085
10:35	:050.083	0.020	0.495	0.977	48.379
10:35		0.018	0.353	0.879	48.655
10:35		0.016	0.264	0.733	48.642
10:35	:50 0.057	0.016	0.220	0.733	48.653

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

March 17, 2010
Start Time 10:37
Stop time 11:04
REFERENCE METHOD RUN 7

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Cali	bration Checks					
C_{ol}	Initial zero	0.066	0.017	0.279	0.782	0.056
Cui	Initial upscale	6.002	14.023	41.750	219.018	48.558
C _{of}	Final zero	0.063	0.018	-0.040	0.700	-0.362
C _{uf}	Final upscale	5.969	14.005	42.116	218.991	48.609
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	48.200
	lyzer Averages (c		s)			
	Average conc.	11.067	8.069	2.276	169.202	11.891
•	Blas adjusted	10,982	8.111	2.315	173.661	11.911
- 543						
Clock Time (at end	of sample period)					
040710 090741						
	10:38	10.730	8.369	1.909	165.708	16.955
	10:39	11.049	8.066	1.994	171.223	14.617
	10:40	11.114	8.064	2.055	174.593	13.652
	10:41	10.927	8.193	1.945	167.680	12.678
	10:42	11.011	8.155	2.069	173.974	12.062
	10:43	11,123	7.995	1.959	171.595	11.282
	10:44	11.007	8.190	1.889	162.829	10.189
	10:45	10.980	8.164	1.892	157.829	10.463
	10:46 10:47	11.088	7.999 8.260	1.959	160.464	11.254
	10:48	10.889 11.548	7.515	2.012 2.013	162.688 168.598	11.268 13.046
	10:49	11.492	7.574	1.882	179.186	12.735
	10:50	10.898	8.215	1.580	173.750	11.302
	10:51	11,221	7.885	1.569	166.762	13.065
	10:52	11,105	8.022	1.719	159.076	12.216
	10:53	11.051	8.130	1.885	162,947	12.433
	10:54	11.061	8.079	1.935	158.779	13.286
	10:55	11,170	7.965	1.982	163.795	13.374
	10:56	11.394	7.739	2.190	173.801	11.837
	10:57	10.809	8.363	2.479	171.023	11.038
	10:58	10.944	8.227	2.812	173.044	12.537
	10:59	11.099	8.016	2.906	172.574	9.863
	11:00	11.506	7.608	3.367	186.011	9.673
	11:01	11.174	7.996	3.413	181.783	8.993
	11:02	10.976	8.244	3.202	173.714	10.483
	11:03	10.527	8.639	3.228	170.285	10.074
	11:04	10.922	8.190	3.601	165.751	10.673

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

Copyright @ 2004 Clean Air Engineering Inc.

March 17, 2010 11:05 Start Time Stop Time 11:11 **CALIBRATION BIAS 07**

System Response to Calibration Gasses (Cs)			an t	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
Cor Zero gas								
Cor Zero gas		Svs	tem Response to	Calibration G	asses (C _s)			
Cur			•			-0.040	0.700	-0.362
Analyzer Calibration Error Reponses (C _{Or}) Cose Zero gas 0.011 0.012 -0.008 0.114 0.002 Cmec Upscale gas 6.036 14.165 43.404 225.690 49.146 Actual Upscale Gas Value (C _{Nu}) Cm Upscale gas 5.910 14.100 44.900 225.000 48.200 Calibration Span Value (CS) 13.900 14.100 89.900 453.000 98.500 System Bias as Percent of Calibration Span Value (SB) (5%) Zero gas 0.4% 0.0% 0.0% 0.1% -0.4% Upscale gas -0.5% -1.1% -1.4% -1.5% -0.5% System Bias Status Zero gas 0.6		_ •.	•					
Company Com		Ana		Error Repons				
Compact Com						-0.008	0.114	0.002
Cma		C _{mce}	Upscale gas	6.036	14.165	43.404	225.690	49.146
Calibration Span Value (CS) 13.900		Acti	ual Upscale Gas \	/alue (C _{MA})				
13.90		C_{ma}	Upscale gas	5.910	14.100	44.900	225.000	48.200
13.90		Cali	bration Span Valu	ue (CS)				
Zero gas			•		14.100	89.900	453.000	98.500
Zero gas		Sys	tem Bias as Perce	ent of Calibra	tion Span Va	lue (SB) (5%)	
Upscale gas		-						-0.4%
System Bias Status Zero gas OK OK OK OK OK OK OK O			•	-0.5%	-1.1%	-1.4%	-1.5%	-0.5%
Upscale gas		Syst						
Previous System Response to Calibration Gases (C _S) C ₀₁		_	Zero gas	ок	oĸ	ок	ок	ок
Co			Upscale gas	ОК	OK	OK	OK	OK
Cult Upscale gas		Prev	ious System Res	ponse to Cali	bration Gase	es (C _s)		
Drift Assessment as Percent of Calibration Span Value (D) (3%) Zero gas 0.0% 0.0% -0.4% 0.0% 0.1% Upscale gas -0.2% -0.1% 0.4% 0.0% 0.1% Drift Assessment Status Zero gas OK OK OK OK OK OK Upscale gas OK OK OK OK OK OK Upscale gas OK OK OK OK OK OK Upscale gas OK OK OK OK OK OK Odo		C_{ol}	Zero gas	0.066	0.017	0.279	0.782	0.056
Zero gas		Cui	Upscale gas	6.002	14.023	41.750	219.018	48.558
Upscale gas		Drift	Assessment as I	Percent of Ca	libration Spa	n Value (D) (3%)	
Drift Assessment Status Zero gas OK OK OK OK OK OK OK O			Zero gas	0.0%	0.0%	-0.4%	0.0%	-0.4%
Zero gas			Upscale gas	-0.2%	-0.1%	0.4%	0.0%	0.1%
Upscale gas OK OK OK OK OK OK OK O		Drift	Assessment Stat	tus				
11:05:23			Zero gas	OK	OK	OK	OK	OK
11:05:23 0.157 0.045 0.716 31.095 27.064 11:05:38 0.106 0.028 0.308 6.537 39.065 11:05:53 0.090 0.024 0.103 1.302 45.327 11:06:08 0.078 0.021 0.005 0.912 48.114 11:06:23 0.067 0.018 -0.029 0.749 48.547 11:06:38 0.063 0.018 -0.046 0.733 48.629 11:06:53 0.058 0.018 -0.044 0.619 48.651 11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.786 218.770 0.331 11:08:23 9.961 -0.006			Upscale gas	OK	OK	OK	OK	OK
11:05:23 0.157 0.045 0.716 31.095 27.064 11:05:38 0.106 0.028 0.308 6.537 39.065 11:05:53 0.090 0.024 0.103 1.302 45.327 11:06:08 0.078 0.021 0.005 0.912 48.114 11:06:23 0.067 0.018 -0.029 0.749 48.547 11:06:38 0.063 0.018 -0.046 0.733 48.629 11:06:53 0.058 0.018 -0.044 0.619 48.651 11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.786 218.770 0.331 11:08:23 9.961 -0.006	040710 090741							
11:05:38 0.106 0.028 0.308 6.537 39.065 11:05:53 0.090 0.024 0.103 1.302 45.327 11:06:08 0.078 0.021 0.005 0.912 48.114 11:06:23 0.067 0.018 -0.029 0.749 48.547 11:06:38 0.063 0.018 -0.046 0.733 48.629 11:06:53 0.058 0.018 -0.044 0.619 48.651 11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:35 9.971 -0.006 42.233 219.015 -0.352 11:09:08 9.973 -0.006 <th>040710 030741</th> <th></th> <th>11:05:23</th> <th></th> <th>0.045</th> <th>0.716</th> <th>31.095</th> <th>27.064</th>	040710 030741		11:05:23		0.045	0.716	31.095	27.064
11:06:08 0.078 0.021 0.005 0.912 48.114 11:06:23 0.067 0.018 -0.029 0.749 48.547 11:06:38 0.063 0.018 -0.046 0.733 48.629 11:06:53 0.058 0.018 -0.044 0.619 48.651 11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.770 0.331 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.971 -0.006 42.133 219.015 -0.352 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400			11:05:38	0.106	0.028	0.308	6.537	39.065
11:06:23 0.067 0.018 -0.029 0.749 48.547 11:06:38 0.063 0.018 -0.046 0.733 48.629 11:06:53 0.058 0.018 -0.044 0.619 48.651 11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:09:08 9.973 -0.006 42.133 219.015 -0.332 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988			11:05:53	0.090	0.024	0.103	1.302	45.327
11:06:38 0.063 0.018 -0.046 0.733 48.629 11:06:53 0.058 0.018 -0.044 0.619 48.651 11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:09:08 9.973 -0.006 42.133 219.015 -0.332 11:09:02 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:47 5.967 14.006								
11:06:53 0.058 0.018 -0.044 0.619 48.651 11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:09:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:47 5.967 14.006 <th></th> <th></th> <th>_</th> <th></th> <th></th> <th></th> <th></th> <th></th>			_					
11:07:08 5.288 0.015 8.057 0.904 47.868 11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:08:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:07:23 9.639 -0.002 32.363 27.017 41.320 11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:08:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:07:38 9.895 -0.005 39.038 165.934 24.420 11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:08:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:07:53 9.941 -0.005 40.679 214.025 10.564 11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:08:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:08:08 9.957 -0.006 41.436 218.315 2.628 11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:08:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:08:23 9.961 -0.006 41.786 218.770 0.331 11:08:38 9.964 -0.007 41.980 218.819 -0.251 11:08:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:08:53 9.971 -0.006 42.133 219.015 -0.332 11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122				9.961	-0.006	41.786	218.770	0.331
11:09:08 9.973 -0.006 42.235 219.137 -0.371 11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122							218.819	
11:09:23 8.654 6.400 36.044 217.534 -0.384 11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:10:17 5.985 13.988 1.164 3.638 0.119 11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:10:32 5.975 14.000 0.840 1.367 0.122 11:10:47 5.967 14.006 0.602 1.034 0.122								
11:10:47 5.967 14.006 0.602 1.034 0.122			_					
11.11.02 0.001 1.1011 0.112 0.011 0.122			11:11:02	5.964	14.011	0.472	0.871	0.122

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 05-2004a

QA/QC Date___

March 17, 2010 Start Time 11:13 Stop time 11:40 **REFERENCE METHOD RUN 8**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
,		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Calibration	on Checks					
C _{oi} Initia	al zero	0.063	0.018	-0.040	0.700	-0.362
C _{ut} Initi	al upscale	5.969	14.005	42.116	218.991	48.609
	al zero	0.066	0.020	-0.111	0.673	-0.051
	al upscale	5.987	13.975	41.827	219.756	48.671
	ual gas value	5.910	14.100	44.900	225.000	48.200
Analyzer	Averages (co	ncentration	s)			
	rage conc.	11.183	7.908	3.201	168.401	7.745
	s adjusted	11.112	7.962	3.499	172.556	7.846
Clock Time (at end of sa	imple period)					
040710 090741		<u> </u>				
	11:14	11.215	7.883	3.127	172.717	10.499
	11:15	11.168	7.918	2.832	173.374	9.216
	11:16	11.142	7.956	2.635	171.251	8.352
	11:17 11:18	10.926 11.694	8.150 7.331	2.382 2.442	168.276 181.838	6.881 6.058
	11:19	11.094	7.803	2. 44 2 2.462	177,466	5.676
	11:20	11.188	7.854	2.495	164.786	6.502
	11:21	11.163	7.937	2.722	162,135	6.985
	11:22	11.227	7.829	3.127	160.881	6.776
	11:23	11.370	7.705	2,764	173.154	7.615
	11:24	11,001	8.084	2.031	174.542	6.305
	11:25	11.972	7.023	2.760	171.158	14.951
	11:26	11,296	7.782	2.863	176.184	7.989
	11:27	10.896	8.152	2.580	169.467	5.475
	11:28	11.619	7.405	2.881	173.539	6.591
	11:29	11.105	8.027	2.920	169.287	5.869
	11:30	10.983	8.089	2.840	161.144	5.919
	11:31	11.715	7.347	3.588	167.916	7.567
	11:32	11.097	8.020	3.272	161.174	6.028
	11:33	10.828	8.262	3.112	152.243	7.116
	11:34	11.549	7.546	3.838	162.442	9.358
	11:35	10.750	8.415	3.822	164.416	8.574
	11:36	11.701	7.347	4.497	166.264	10.118
	11:37	11.088	8.072	4.559	175.336	9.040
	11:38	10.242	8.952	4.113	164.654	6.857
	11:39	10.987	8.181	4.873	164.515	8.585
	11:40	10.747	8.454	4.899	166.673	8.207

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright @ 2004 Clean Air Engineering Inc.

QA/QC_ Date

March 17, 2010
Start Time 11:41
Stop Time 11:46
CALIBRATION BIAS 08

	Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3	FF Outlet 3
	%dv	%dv	ppmdv	ppmdv	ppmdv
System Response to	Calibration G	accos (C.)		• • •	• • •
C _{of} Zero gas	0.066	0.020	-0.111	0.673	-0.051
C _{uf} Upscale gas	5.987	13.975	41.827	219.756	48.671
Analyzer Calibration			41.027	218.700	40.071
C _{oce} Zero gas	0.011	0.012	-0.008	0.114	0.002
C _{mce} Upscale gas	6.036	14.165	43.404	225.690	49.146
Actual Upscale Gas \		14.100	40.404	220.000	43.140
C _{ma} Upscale gas	5.910	14.100	44.900	225.000	48.200
Calibration Span Value		14.100	44.900	223.000	40.200
Cambration Span Van	13.900	14,100	89.900	453.000	98.500
System Bias as Perce					30.300
Zero gas	0.4%	0.1%	-0.1%	0.1%	-0.1%
Upscale gas	-0.4%	-1.3%	-1.8%	-1.3%	-0.5%
System Bias Status		,.		,	5.575
Zero gas	ок	ок	ок	ок	ок
Upscale gas	OK	OK	OK	ok	ОK
Previous System Res					
C _{oi} Zero gas	0.063	0.018	-0.040	0.700	-0.362
C _{ut} Upscale gas	5.969	14.005	42.116	218.991	48.609
Drift Assessment as I					10.000
Zero gas	0.0%	0.0%	-0.1%	0.0%	0.3%
Upscale gas	0.1%	-0.2%	-0.3%	0.2%	0.1%
Drift Assessment Sta		0.270	0.070	0.270	0.170
Zero gas	OK	ОК	ОК	ОК	ок
Upscale gas	OK OK	OK	OK	OK	OK OK
		0.1	0.1		-
040710 090741 11:41:43	0.113	0.041	0.101	1 505	20.200
11:41:58	0.113	0.041	0.101 -0.013	1.595 1.026	39.280 46.302
11:42:13	0.084	0.037	-0.013	0.831	48.228
11:42:28	0.072	0.022	-0.095	0.733	48.584
11:42:43	0.068	0.019	-0.112	0.668	48.677
11:42:58	0.059	0.018	-0.125	0.619	48.799
11:43:13	4.866	0.019	6.437	0.709	48.536
11:43:28	9.602	0.006	31.057	57.013	41.621
11:43:43	9.897	0.002	38.890	185.926	27.000
11:43:58	9.944	0.001	40.511	212.202	10.944
11:44:13	9.961	0.000	41.226	218.893	3.378
11:44:28	9.968	0.000	41.591	219.487	0.366
11:44:43	9.976	0.000	41.851	219.878	-0.217
11:44:58 11:45:13	9.981 8.265	0.001 <u> </u>	42.040	219.902	-0.303
11:45:13	6.186	13.648	33.854 9.348	220.057 165.373	-0.309 -0.272
11:45:43	6.009	13.954	2.966	38.950	-0.272 -0.125
11:45:58	5.979	13.979	1.605	9.499	0.095
11:46:13	5.973	13.991	1.083	1.726	0.158

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC____

March 17, 2010 Start Time 11:48 12:15 Stop time **REFERENCE METHOD RUN 9**

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Calib	ration Checks					
C _{oi}	Initial zero	0.066	0.020	-0.111	0.673	-0.051
	Initial upscale	5.987	13.975	41.827	219.756	48.671
	Final zero	0.061	0.018	-0.152	0.649	-0.325
	Final upscale	6.005	13.957	41.573	218.969	48.622
	Actual gas value	5.910	14.100	44.900	225.000	48.200
				11.000	220.000	10.200
•	zer Averages (co		•			
	Average conc.	11.094	8.080	4.327	177.326	8.795
C_{Gas}	Bias adjusted	10.989	8.150	4.786	181.753	8.867
Clock Time (at end of	of sample period)					
040710 090741	11.40	10.760	8.383	4 4 4 2	169.359	11.278
	11:49 11:50	10.762 10.480	8.661	4.142 3.978	172.479	9.365
	11:51	11.187	7.940	4.127	180.128	10.303
	11:52	10.873	8.309	3.890	185.293	8.586
	11:53	11.300	7.793	3.743	182.338	8.611
	11:54	11.453	7.657	3.858	192.253	7.291
	11:55	10.896	8.281	3.413	188.675	6,440
	11:56	11.077	8.042	3.397	179.184	8.937
	11:57	10.668	8.542	3.884	175.411	10.691
	11:58	10.876	8.294	4.170	172.104	11.028
	11:59	10.831	8.398	5.079	181.189	10.985
	12:00	11.165	7.997	5.231	178.315	10.543
	12:01	11.072	8.165	4.894	173.258	10.819
	12:02	11.174	7.991	4.390	170.179	9.103
	12:03	11.301	7.893	4.821	177.932	10.536
	12:04	11.255	7.942	4.549	171.762	10.108
	12:05	10.588	8.647	4.674	169.316	9.565
	12:06	10.988	8.279	5.781	172.601	11.218
	12:07	11.491	7.650	5.576	168.486	9.796
	12:08	11.613	7.558	5.171	175.146	9.996
	12:09	10.969	8.230	4.089	170.210	7.245
	12:10	11.772	7.339	4.259	175.883	7.459
	12:11	11.377	7.781	4.179	186.638	6.364
	12:12	10.947	8.261	3.782	179.898	5.637
	12:13	11.434	7.730	4.034	182.092	5.851
	12:14	11.146	8.052	3.950	182.509	4.825
	12:15	10.854	8.348	3.780	175.157	4.901

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

QA/QC_ Date

March 17, 2010
Start Time 12:18
Stop Time 12:23
CALIBRATION BIAS 09

			Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
			FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
	Syst	tem Response to	Calibration G	asses (C _c)			
	Cof	Zero gas	0.061	0.018	-0.152	0.649	-0.325
	Cuf	Upscale gas	6.005	13.957	41.573	218.969	48.622
		lyzer Calibration					
		Zero gas	0.011	0.012	-0.008	0.114	0.002
		Upscale gas	6.036	14.165	43.404	225.690	49,146
		ual Upscale Gas V	/alue (C _{MA})				
		Upscale gas	5.910	14,100	44.900	225.000	48,200
		bration Span Valu	ie (CS)				
			13,900	14.100	89.900	453.000	98.500
•	Svst	tem Bias as Perce					
	-,-	Zero gas	0.4%	0.0%	-0.2%	0.1%	-0.3%
		Upscale gas	-0.2%	-1.5%	-2.0%	-1.5%	-0.5%
	Svst	tem Bias Status					
	•,••	Zero gas	ок	ок	ок	ок	ок
		Upscale gas	OK	OK	OK	OK	ok
	Prev	lous System Res	ponse to Cali	bration Gase	es (C _e)		
	Coi	Zero gas	0.066	0.020	-0.111	0.673	-0.051
	Cui	Upscale gas	5.987	13.975	41.827	219.756	48.671
	•	Assessment as F					
		Zero gas	0.0%	0.0%	0.0%	0.0%	-0.3%
		Upscale gas	0.1%	-0.1%	-0.3%	-0.2%	0.0%
	Drift	Assessment Stat		51176	2.2.7	0.270	5.07,0
	2	Zero gas	ok	OK	ок	ок	ок
		Upscale gas	ок	ok	OK	ok	ОK
_		o postaro garo					
040710 090741		40,40,56	0.001	0.001	0.024	4 400	46 202
		12:18:56 12:19:11	0.091 0.079	0.021 0.022	0.034 -0.077	1.123 0.879	46.292 48.296
		12:19:26	0.079	0.022	-0.077	0.725	48.576
		12:19:41	0.069	0.019	-0.144	0.725	48.601
		12:19:56	0.058	0.018	-0.149	0.611	48.635
		12:20:11	0.055	0.018	-0.165	0.611	48.597
		12:20:26	0.697	0.018	0.140	0.586	48.633
		12:20:41	8.219	0.003	18.878	6.642	46.764
		12:20:56	9.812	0.000	36.428	127.798	35.357
		12:21:11	9.926	-0.002	39.834	196.199	18.250
		12:21:26	9.948	-0.002	40.791	217.704	6.633
		12:21:41	9.956	-0.004	41.350	218.526	1.307
		12:21:56	9.963	-0.003	41.636	218.828	-0.026
		12:22:11 12:22:26	9.967 9.716	-0.006 1.991	41.830 41.252	218.934 219.146	-0.305 -0.339
		12:22:41	6.741	12.340	19.380	213.155	-0.339
		12:22:56	6.055	13.900	4.552	92.845	-0.234
		12:23:11	5.992	13.977	1.874	24.241	0.013
		12:23:26	5.969	13.995	1.135	2.198	0.119

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

March 17, 2010
Start Time 12:25
Stop time 12:52
REFERENCE METHOD RUN 10

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Cal	Ibration Checks					
Col	Initial zero	0.061	0.018	-0.152	0.649	-0.325
Cui	Initial upscale	6.005	13.957	41.573	218.969	48.622
C _{of}	Final zero	0.070	0.028	-0.103	0.722	-0.292
C _{uf}	Final upscale	5.965	14.002	41.840	219.278	48.732
	•	5.910	14.100	44.900	225.000	48.200
C _{ma}	Actual gas value	5.910	14.100	44.900	225.000	46.200
Ana	alyzer Averages (c	oncentration	s)			
CAM	Average conc.	10.271	9.021	7.374	159.541	10.626
C _{Ga}	, Blas adjusted	10.189	9.090	8.051	163.627	10.759
Clock Time (at end	d of sample period)					
040710 090741						
	12:26	11.282	7.928	5.464	175.126	9.985
	12:27	10.632	8.628	5.046	177.545	7.737
	12:28	10.620	8.598	4.335	159.457	7.707
,	12:29	10.867	8.395	4.701	157.735	8.370
	12:30	10.105	9.235	4.930	152.326	6.541
	12:31	10.237	9.092	5.330	146.133	9.268
	12:32	10.132	9.201	5.565	146.545	9.606
	12:33	10. 4 80	8.810	6.501	152.428	12.037
	12:34	10.594	8.654	6.952	151.128	10.610
	12:35	10.176	9.152	6.816	151.463	10.856
	12:36	10.872	8.384	7.619	151.838	12.670
	12:37	10.097	9.232	6.808	155.110	10.831
	12:38	10.542	8.691	7.295	161.154	10.692
	12:39	10.124	9.203	8.410	160.556	9.278
	12:40	10.101	9.221	9.205	160.020	9.797
	12:41	9.887	9.520	8,551	157.098	9.472
	12:42	10.074	9.253	8.621	160.366	9.851
	12:43	10.143	9.163	10,000	167.674	10.154
	12:44	10.116	9.175	11.762	166.292	10.254
	12:45	10.078	9.217	10.323	169.111	11.031
	12:46	9.902	9.435	9.182	169.593	13.116
	12:47 12:48	9.980 10.099	9.317	7.746	166.488	11.155
	12:49		9.143 9.207	6.366 6.330	158.750	11.946 12.680
	12:49	10.044 10.034	9.266	6.330 7.178	162.880 161.416	13.622
	12:51	10.057	9.200	7.176 9.296	161.416 155.653	13.622
	12:52	10.057	9.212	9.290 8.755	153.720	13.990
	12.32	10.055	3.223	0,733	100.720	13.550

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 08-2004a

SS CEM Version 08-2004a

Copyright © 2004 Clean Air Engineering Inc.

March 17, 2010
Start Time 12:53
Stop Time 12:58
CALIBRATION BIAS 10

		Channel 1 CO2	Channel 2 O2	Channel 3 SO2	Channel 4 NOX	Channel 5 CO
		FF Outlet 3 %dv	FF Outlet 3 %dv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv	FF Outlet 3 ppmdv
Syst	em Response to	Calibration G	asses (C _s)			
Cof	Zero gas	0.070	0.028	-0.103	0.722	-0.292
Cuf	Upscale gas	5.965	14.002	41.840	219.278	48.732
	yzer Calibration	Error Repons	es (C _{Oir})			
	Zero gas	0.011	0.012	-0.008	0.114	0.002
	Upscale gas	6.036	14.165	43.404	225.690	49.146
	al Upscale Gas V	alue (C _{MA})				
C _{ma}	Upscale gas	5.910	14.100	44.900	225.000	48.200
	ration Span Valu	ie (CS)				
	•	13.900	14.100	89.900	453.000	98.500
Svst	em Bias as Perce		ion Span Va			
7,5.	Zero gas	0.4%	0.1%	-0.1%	0.1%	-0.3%
	Upscale gas	-0.5%	-1.2%	-1.7%	-1.4%	-0.4%
Svste	em Bias Status					
5,5	Zero gas	ок	ОК	ок	ок	ок
	Upscale gas	OK	OK	OK	OK	OK
Previ	ious System Res				0	•
Cni	Zero gas	0.061	0.018	-0.152	0.649	-0.325
C''i	Upscale gas	6.005	13.957	41.573	218.969	48.622
-	Assessment as F					
	Zero gas	0.1%	0.1%	0.1%	0.0%	0.0%
	Upscale gas	-0.3%	0.3%	0.3%	0.1%	0.1%
Drift	Assessment Stat		0.070	0.070	0.170	00
Dille	Zero gas	ОК	OK	ОК	ОК	ок
	Upscale gas	ok	OK	OK OK	OK	OK
	Operato gas		0.0	OK .	OK	
040710 090741	10.50.00	0.117	0.045			00.057
	12:53:20	0.117	0.045	0.353	3.484	38.957
	12:53:35 12:53:50	0.097 0.085	0.039 0.034	0.093 -0.026	1.180	45.304 48.156
	12:54:05	0.003	0.034	-0.020	0.879	48.702
	12:54:20	0.067	0.027	-0.112	0.735	48.804
	12:54:35	0.065	0.024	-0.129	0.709	48.791
	12:54:50	2.784	0.021	2.046	0.733	48.601
	12:55:05	9.289	0.003	25.836	37.518	44.777
	12:55:20	9.871	0.000	37.924	161.13 1	30.015
	12:55:35	9.934	0.000	40.176	207.920	14.771
	12:55:50	9.956	0.000 _	41.167	218.299	4.238
	12:56:05	9.965	0.000	41.656	219.072	0.830
	12:56:20	9.968	-0.002	41.885	219.268	-0.179
	12:56:35	9.893	0.980	41.978	219.495	-0.303
	12:56:50	7.089	11.558	24.931	216.362	-0.327
	12:57:05	6.075	13.861	5.893	171.315	-0.247
	12:57:20 12:57:35	5.989 5.977	13.973	2.214 1.231	36.736 4.086	0.011 0.144
	12:57:50	5.961	14.003	0.863	1.310	0.144
	12:58:05	5.956	14.008	0.619	0.977	0.171
				2.0.0	2.0.	

Prepared by Clean Air Engineering Proprietary Software SS CEM Version 06-2004a

SS CEM Version 06-2004a

Copyright © 2004 Clean Air Engineering Inc.

This Page Intention	nally Left Blank

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-1

CEM MONITOR AND PROCESS DATA

F

This Page Intentionally Left Blank

Plant Name: NBWD General Average Report Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1 Data Averaging Type: 1m Time of Report: 03/18/10 07:48
Rolling Average Interval: 1

(GG 20D DM 1	NOXRPT_1	CORPT 1	020UT_1	S020UT_1	NOXPPM 1	COPPM 1	STMRPT 1	
	- 4	SOZORPT1 (PPMDC)	(PPMDC)	(PPMDC)	_	(PPMD)	(PPMD)	(PPMD)	_	
Date 03/18/10	Time 07:13	15.1	211.9	25.2	10.6	11.2	157.0	18.7	186.6	
03/18/10	07:13	15.2	217.6	21.7	9.6	12.4	177.4	17.7	188.3	
	07:15	13.8	209.5	19.6	8.8	12.1	183.0	17.2	180.7	
	07:16	11.0	218.4	15.9	10.0	8.6	171.0	12.5	179.2	
	07:17	8.2	219.2	15.4	10.6	6.1	163.1	11.5	183.6	
	07:18	8.7	211.4	19.1	9.6	7.0	171.2	14.7	184.6	
	07:19	12.9	206.8	17.6	9.3	10.8	172.9	14.7	185.2	
	07:20	15.5	204.4	18.5	9.5	12.8	169.3	15.2	185.0	
	07:21	16.7	202.9	18.2	9.5	13.7	166.8	15.0	183.9	
	07:22	15.3	205.4	16.2	9.6	12.5	167.1	13.2	192.1	
	07:23	12.9	201.1	17.7	10.0	10.1	158.4	13.9	184.5	
	07:24	13.0	187.8	16.9	9.7	10.5	151.5	13.6	196.1	
	07:25	13.0	182.2	13.4	9.3	10.9	152.7	11.2	184.3	
	07:26	14.3	182.0	13.8	9.5	11.7	149.4	11.3	184.2	
	07:27	14.9	177.3	14.3	9.7	12.0	142.8	11.5	183.2	
	07:28	16.0	176.3	12.1	9.9	12.7	139.9	9.6	182.6	
	07:29	17.8	175.1	14.4	9.9	14.0	138.3	11.4	181.0	
	07:30	18.6	172.2	15.3	10.0	14.6	135.0	12.0	183.3	
	07:31	19.7	177.8	15.0	9.7	15.8	142.6	12.0	184.6	
	07:32	20.6	178.8	13.7	9.4	17.0	148.1	11.4	192.4	
	07:33	19.4	178.5	17.1	9.8	15.5		13.7	182.6	
	07:34	17.5	188.9	23.7	10.2	13.5	145.7	18.3	192.6	
	07:35	13.9	195.5	20.8	10.0	10.9	153.5	16.4	185.2	
	07:36	12.6	214.0	17.0	9.7	10.2	172.7	13.7	196.3	
r	07:37	12.9	217.8	18.5	9.3	10.8	182.1	15.4	184.8	
	07:38	11.6	218.5	19.0	9.6	9.5	178.0	15.5	182.8	
	07:39	11.9	214.1	19.6	9.9	9.4	169.8	15.6	184.3	
				17.4	9.7	11.7	159.3	14.0	183.9	
	erage =	14.6	198.0	17.4	9.7	11.4	158.6	13.8	183.8	
Geometric	-	14.2	197.3	17.1	10.6	17.0	183.0	18.7	188.3	
	ximum =	20.6	219.2	25.2	8.8	6.1	135.0	9.6	179.2	
	nimum =	8.2	172.2	12.1 27	27	27	27	27	27	
Possible V		27	27 27	27	27	27	27	27	27	
Included V		27		469.8	262.3	316.4	4300.8	376.7	4964.0	
	fotal =	393.0	5345.4	200.8	202.3	525.4				

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Page: 1

Plant Name: NBWD

General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1
Data Averaging Type: 1m

Time of Report: 03/18/10 08:22
Rolling Average Interval: 1

(SO2ORPT1	NOXRPT 1	CORPT 1	02001_1	S020UT_1	NOXPPM 1	COPPM 1	STMRPT_1	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/18/10	07:47	16.4	197.9	19.2	9.6	13.3	160.8	15.6	183.3	
,,	07:48	16.4	188.0	17.4	9.5	13.4	153.6	14.2	183.2	
	07:49	20.7	193.2	12.6	9.3	17.3	161.4	10.5	184.9	
	. 07:50	23.4	200.7	12.3	8.9	20.1	173.0	10.6	185.3	
	07:51	20.0	190.8	13.0	8.9	17.3	164.8	11.3	183.6	
	07:52	16.6	180.6	14.9	9.3	13.8	150.8	12.4	181.7	
	07:53	14.1	179.8	19.3	9.8	11.3	144.0	15.5	181.9	
	07:54	12.1	185.8	20.4	9.8	9.7	148.6	16.3	185.3	
	07:55	11.6	189.5	19.0	9.1	9.8	160.5	16.1	185.3	
	07:56	12.1	191.8	17.4	8.9	10.5	165.8	15.0	185.0	
	07:57	12.9	201.9	14.8	9.6	10.5	164.1	12.0	182.8	
	07:58	11.9	207.3	13.1	9.9	9.4	163.9	10.3	182.8	
	07:59	10.7	204.3	14.8	9.9	8.5	161.2	11.7	183.8	
	08:00	11.6	201.5	15.5	9.4	9.6	166.9	12.9	185.9	
	08:01	13.7	204.7	15.3	8.8	11.9	177.5	13.3	184.8	
	08:02	15.4	214.4	11.4	8.9	13.2	184.5	9.8	185.0	
	08:03	17.3	226.8	10.0	9.5	14.1	185.7	8.2	183.7	
	08:04	17.1	232.8	13.6	9.9	13.5	184.0	10.8	182.3	
	08:05	14.7	233.7	19.6	10.1	11.4	181.7	15.2	183.6	
	08:06	12.2	236.8	22.3	9.7	9.8	190.0	17.9	186.5	
	08:07	10.3	233.5	20.8	9.1	8.8	198.4	17.7	184.8	
	08:08	9.3	237.3	19.2	9.3	7.8	198.1	16.0	184.0	
	08:09	9.5	233.3	15.3	9.5	7.8	192.0	12.6	181.8	
	08:10	11.2	233.6	14.5	9.9	8.9	185.1	11.5	185.9	,
(08:11	13.2	226.3	16.5	9.1	11.2	191.5	13.9	185.0	
ζ.	08:12	16.2	233.5	13.8	9.3	13.6	195.2	11.5	184.1	
	08:13	14.9	240.5	12.0	9.7	11.9	193.1	9.6	186.7	
Av	erage =	14.3	211.1	15.9	9.4	11.8	173.9	13.1	184.2	
Geometric	_	13.9	210.2	15.5	9.4	11.5	173.2	12.8	184.2	
	ximum =	23.4	240.5	22.3	10.1	20.1	198.4	17.9	186.7	
	nimum =	9.3	179.8	10.0	8.8	7.8	144.0	8.2	181.7	
Possible V		27	27	27	27	27	27	27	27	
Included V		27	. 27	27	27	27	27	27	27	
	Total =	385.7	5700.4	428.0	254.9	318.6	4696.1	352.5	4973.3	

⁻ excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

S - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1 Data Averaging Type: 1m Time of Report: 03/18/10 08:57 Rolling Average Interval: 1

(G00000 1	WATER 1	GODDY 1	STMRPT_1	
		BO2ORPT1	NOKRPT_1	CORPT_1	_		NOXPPM_1	_	_	
Date	Time	(PPMDC)				(PPMD)		(PPMD)	185.4	
03/18/10	08:21	10.6	223.6	16.8	8.2	9.7	205.1	15.4	183.3	
	08:22	11.1	233.7	17.1	9.4	9.2	192.8		184.5	
	08:23	11.3	218.2	13.4		9.1				
	08:24	13.1	214.7	11.6				9.3 9.7		
	08:25	16.2	213.0				179.8			
	08:26	18.0	215.9	11.8		16.4				
	08:27	17.5	234.7			14.6			184.9	
	08:28	14.8	216.9	11.0		12.4			186.6	
	08:29	16.2	219.4	9.6		13.6			183.8	
	08:30	17.9	212.2	13.0					185.1	
	08:31	17.4	202.0	17.0	9.3					
	08:32	15.8	187.5	15.6						
	08:33	14.1	168.3	14.3						
	08:34	13.7	168.2	13.2						
	08:35	16.1	178.4	11.1						
	08:36	18.5	185.3	7.4					181.5	
	08:37	20.3	192.5	9.4			155.4		181.5	
	08:38	22.6	191.7	12.7			155.8		182.4	
	08:39	22.9	198.2	15.0					183.7	
	08:40	19.9	196.0	15.8					182.6	
	08:41	14.3	191.7	15.6					183.6	
	08:42	9.5	191.3	15.8					183.8	
	08:43	8.7	192.7	16.0					184.3	
	08:44	10.2	186.9	15.0						
	08:45	12.7	177.5	12.3			151.0			
	08:46	14.3	184.9	11.5						
	08:47	13.7	193.1	11.2	9.5			9.2		
Ave	rage =	15.2	199.6	13.3						
Geometria	Avg. =	14.8	198.8	13.0		12.4			184.5	
Мах	:imum =	22.9	234.7	17.1					188.8	
Min	imum =	8.7	168.2	7.4					181.5	
Possible Va	lues =	27	27	27					27	
Included Va	lues =	27	27	27					27	
1	otal =	411.5	5388.5	359.1	249.9	344.7	4515.3	301.0	4980.4	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

r - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Run 4 Unit 1 North

Plant Name: NBWD

General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1
Data Averaging Type: lm

Time of Report: 03/18/10 09:31 Rolling Average Interval: 1

(
		SOZORPT1	NOXRPT_1	CORPT_1	020UT_1	8020UT_1	NOXPPM_1	COPPM_1	STMRPT_1	
Date	Time	(PPMDC)	(PPMDC)	-	(PERCENTD)	(PPMD) 12.9	(PPMD) 176.2	(PPMD) 14.3	(KLB/HR) 184.6	
03/18/10	08:56	14.1	192.6	15.6	8.2 8.9	8.6		10.4	182.2	
	08:57	9.9	187.4	12.0	9.7	6.9	161.7	12.6	182.9	
	08:58	8.5	167.9	15.6			135.1		183.4	
	08:59	9.5	159.2	20.8	9.6	7.7	128.9	16.9	182.7	
	09:00	13.8	182.3	19.9	9.3	11.5	152.0	16.6		
	09:01	18.4	188.1	13.7	9.3	15.4	157.1	11.5	184.3 184.8	
	09:02	20.6	187.0	10.7	9.5	16.9	153.4	8.8		
	09:03	19.4	188.7	13.0	9.5	15.9	155.3	10.7	183.6	
	09:04	18.4	195.1	15.9	9.7	14.9	157.8	12.9	182.9	
	09:05	15.9	193.1	16.2	9.7	12.9	155.9	13.0	183.7	
	09:06	14.9	190.0	17.3	9.8	11.9	151.2	13.8	184.1	
	09:07	16.0	191.7	14.8	9.8	12.7	153.0	11.8	183.1 182.3	
	09:08	17.9	202.2	12.9	9.8	14.3	161.6			
	09:09	20.1	203.6	15.3	9.9	15.9	160.9	12.1	185.0	
	09:10	21.7	196.3	15.2	9.5	17.9	161.6	12.5	189.3	
	09:11	19.9	188.9	15.0	8.5	17.7	168.6	13.4	186.0	
	09:12	15.1	188.7	16.0	9.0	12.9	161.1	13.7	183.5	
	09:13	9.9	180.2	18.3	9.8	7.9	144.0	14.6	182.1	
	09:14	8.9	174.8	18.2	9.9	7.1	138.9	14.5	183.0	
	09:15	10.3	192.3	19.3	9.6	8.4	148.3	15.7	186.1	
	09:16	12.2	186.2	18.6	9.1	10.4	158.8	15.8	184.9	
	09:17	13.4	185.0	15.1	9.0	11.5	158.8	13.0	182.9	
	09:18	15.4	198.5	12.5	9.4	12.7	164.5	10.4	183.3	
(09:19	16.7	216.0	11.4	9.5	13.8	177.7	9.4	185.2	
(09:20	16.4	219.4	10.8	9.0	14.0	187.6	9.3	186.2	
	09:21	15.8	216.4	11.4	8.7	13.9	190.4	10.1	188.7	
	09:22	14.5	211.0	13.4	8.3	13.2	191.4	12.2	184.4	
Ave	rage =	15.1	191.6	15.2	9.3	12.6	159.7	12.6	184.3	
Geometric A	Avg. =	14.6	191.1	14.9	9.3	12.1	159.0	12.4	184.3	
	imum =	21.7	219.4	20.8	9.9	17.9	191.4	16.9	189.3	
Min	imum =	8.5	159.2	10.7	8.2	6.9	128.9	8.8	182.1	
Possible Va	lues =	27	27	27	27	27	27	27	27	
Included Val	lues =	27	27	27	27	27	27	27	27	
To	otal =	407.6	5172.3	409.3	251.7	339.6	4311.8	340.1	4975.0	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

-999 - missing value

Plant Name: NBWD General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1 Data Averaging Type: 1m Time of Report: 03/18/10 10:05 Rolling Average Interval: 1

(
(SO2ORPT1	NOXRPT_1	CORPT_1	020UT_1	SO2OUT_1	NOXPPM_1	COPPM_1	STMRPT_1	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	•	(KLB/HR)	
03/18/10	09:30	13.5	206.2	15.8	8.8	11.8	179.9	13.8	184.0	
	09:31	13.1	200.8	15.8	9.0	11.2	172.1	13.5	183.2	
	09:32	12.9	194.5	12.0	9.3	10.7	161.9	9.9	183.6	
	09:33	11.5	187.0	10.8	9.4	9.5	154.3	8.9	187.5	
	09:34	11.5	189.7	12.4	8.9	9.9	164.0	10.7	183.9	
	09:35	10.1	191.1	13.5	8.9	8.7	164.6	11.7	182.6	
	09:36	8.6	194.2	15.2	9.6	7.0	158.0	12.4	185.8	
	09:37	8.8	194.1	15.6	9.2	7.4	162.7	13.1	188.6	
	09:38	10.1	193.3	14.0	8.5	9.0	172.4	12.5	186.1	
	09:39	10.2	198.9	11.1	9.0	8.8	170.9	9.6	186.4	
	09:40	8.6	200.6	10.1	9.3	7.2	168.1	8.4	183.3	
	09:41	7.1	198.2	13.3	9.5	5.8	162.2	10.8	193.0	
	09:42	6.1	199.5	14.7	9.7	4.9	161.1	11.8	183.1	
	09:43	6.5	204.6	13.6	9.6	5.2	165.7	11.0	183.4	
	09:44	7.6	193.5	13.1	9.5	6.2	158.3	10.7	183.2	
	09:45	7.1	184.1	11.7	9.6	5.8	149.9	9.5	183.5	
	09:46	7.9	190.9	10.8	9.6	6.4	155.0	8.7	184.5	
	09:47	7.9	190.9	11.8	9.6	6.4	155.8	9.6	185.7	
	09:48	7.3	191.4	12.2	9.5	6.0	157.3	10.1	186.6	
	09:49	5.8	191.1	12.0	9.5	4.8	156.7	9.9	190.5	
	09:50	4.9	183.0	11.4	8.7	4.3	160.6	10.0	186.1	
	09:51	4.6	182.4	14.3	9.0	4.0	156.3	12.2	195.2	
	09:52	4.2	174.0	15.0	9.7	3.4	139.8	12.0	183.8	
_	09:53	4.6	170.7	14.9	9.7	3.7	137.6	12.0	194.6	
·	09:54	5.8	179.5	17.2	9.6	4.7	145.5	13.9	184.6	
	09:55	6.5	183.9	19.5	9.5	5.3	151.5	16.1	183.5	
	09:56	7.5	186.0	17.8	9.4	6.2	154.3	14.7	182.7	
	 erage =	8.2	190.9	13.7	9.3	6.8	159.1	11.4	184.8	
Geometric	-	7.7	190.7	13.5	9.3	6.5	158.8	11.2	194.8	
	ximum =	13.5	206.2	19.5	9.7	11.9	179.9	16.1	190.5	
	nimum =	4.2	170.7	10.1	8.5	3.4	137.6	8.4	182.6	
		27	27	27	27	27	27	27	27	
Possible V		27	27	27	27	27	27	27	27	
Included V		220.4	5154.0	369.4	251.6	194.5	4296.4	307.7	4989.0	
	Total =	220.4	3134.0	309.4		22,000				

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1

Data Averaging Type: 1m

Time of Report: 03/18/10 10:40 Rolling Average Interval: 1

Date 03/18/10	Time	SOZORPT1 (PPMDC)	NOXRPT_1	CORPT_1	020UT_1	SOZOUT 1	NOXPPM_1	COPPM 1	STMRPT_1
		(PPMDC)				_		_	_
03/18/10	10 04	,	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)	(KLB/HR)
	10:04	9.3	207.0	13.8	9.5	7.6	169.5	11.3	184.5
	10:05	9.6	214.7	18.8	9.5	7.9	176.4	15.5	186.8
	10:06	9.6	207.7	14.6	9.2	8.1	174.9	12.3	183.4
	10:07	10.8	207.0	10.9	9.2	9.0	173.6	9.1	183.3
	10:08	11.3	210.9	13.4	9.7	9.1	170.2	10.8	183.4
	10:09	11.0	203.6	14.6	9.5	9.0	166.5	11.9	185.2
	10:10	10.8	195.0	12.5	9.1	9.2	165.3	10.6	184.6
	10:11	10.9	189.5	13.8	9.3	9.1	158.1	11.5	184.1
	10:12	10.0	176.6	16.9	9.4	8.2	145.7	14.0	182.5
	10:13	10.2	174.4	17.4	9.7	8.3	140.8	14.0	182.2
	10:14	11.5	181.0	17.0	9.9	9.1	143.4	13.5	182.2
	10:15	13.0	181.6	16.4	9.7	10.5	146.3	13.2	184.0
	10:16	15.0	175.4	15.0	9.6	12.2	142.1	12.2	182.7
	10:17	17.5	180.3	15.6	9.7	14.2	145.7	12.6	181.3
	10:18	17.9	189.9	16.1	9.7	14.4	152.7	13.0	180.8
	10:19	18.1	191.8	16.5	9.8	14.5	153.4	13.2	182.1
	10:20	15.8	188.0	17.9	9.5	12.9	153.8	14.7	183.8
	10:21	13.0	186.9	15.7	9.2	10.9	157.6	13.2	182.5
	10:22	11.2	196.2	15.6	9.5	9.2	161.2	12.8	182.0
	10:23	8.8	205.2	15.8	9.6	7.1	166.5	12.8	184.2
	10:24	7.2	213.6	12.2	9.3	6.0	177.7	10.1	183.6
	10:25	7.6	213.4	9.9	9.3	6.3	177.5	8.3	186.4
	10:26	8.9	208.1	10.8	9.1	7.5	176.7	9.2	184.0
	10:27	8.9	201.8	14.3	9.2	7.4	169.2	11.9	184.9
,	10:28	8.3	202.3	17.2	9.6	6.8	164.8	14.0	183.0
٠.	10:29	7.9	203.5	18.0	9.5	6.5	166.1	14.7	183.7
	10:30	8.7	210.3	13.5	9.6	7.1	171.5	11.0	183.5
Av	erage =	11.2	196.9	15.0	9.5	9.2	161.7	12.3	183.5
Geometric	Avg. =	10.8	196.5	14.8	9.5	8.9	161.3	12.1	183.5
Ma:	ximum =	18.1	214.7	19.8	9.9	14.5	177.7	15.5	196.8
Mi:	nimum =	7.2	174.4	9.9	9.1	6.0	140.8	9.3	180.8
ossible V	alues =	27	27	27	27	27	27	27	27
ncluded V	alues -	27	27	27	27	27	27	27	27
	Total =	302.8	5315.6	404.2	256.1	248.1	4367.2	331.4	4954.6

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

⁻ exceedance

F - stack not operating

β - invalid (PADER)

^{0 -} missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Fite Name: UNIT1 Data Averaging Type: 1m Time of Report: 03/18/10 11:20 Rolling Average Interval: 1

		SO2ORPT1	NOXRPT 1	CORPT_1	020UT_1	S020UT_1	noxppm_1	COPPM_1	STMRPT_1	
Date	Time	(PPMDC)	_	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/18/10	10:39	8.5	183.0	14.6	9.5	6.9	149.5	12.0	184.5	
00,20,=0	10:40	8.3	184.4	15.0	9.4	6.9	153.1	12.4	183.0	
	10:41	7.0	179.4	17.5	9.4	5.8	148.9	14.6	182.8	
	10:42	7.8	182.7	18.8	9.6	6.3	149.0	15.3	183.4	
	10:43	8.3	190.8	19.1	9.4	6.8	158.0	15.8	182.8	
	10:44	9.4	196.4	15.2	9.5	7.7	161.1	12.5	180.9	
	10:45	10.0	194.7	8.8	9.6	8.2	158.5	7.2	181.6	
	10:46	11.3	197.7	12.9	9.6	9.2	161.2	10.5	182.2	
	10:47	13.0	201.4	22.7	9.6	10.6	164.1	18.5	182.1	
	10:48	13.0	200.1	23.7	9.6	10.6	163.1	19.3	182.8	
	10:49	11.3	204.0	23.6	9.5	9.3	167.8	19.4	182.6	
	10:50	10.9	221.4	22.0	9.4	8.9	182.4	19.2	186.5	
	10:51	10.3	223.6	19.1	8.8	9.0	194.8	16.7	186.1	
	10:52	9.9	218.8	15.1	8.6	8.7	192.9	13.3	183.1	
	10:53	7.9	211.1	13.4	9.4	6.5	174.0	11.1	182.5	
	10:54	6.9	201.5	13.4	9.5	5.6	165.4	11.0	182.8	
	10:55	6.6	199.3	12.4	9.4	5.5	164.2	10.2	183.6	
	10:56	7.3	198.5	9.2	9.1	6.2	168.7	7.8	184.1	
	10:57	7.7	200.1	10.5	9.0	6.6	171.9	9.0	185.8	
	10:58	8.4	197.1	14.6	9.1	7.2	167.7		183.1	
	10:59	9.1	187.3	16.7	9.3	7.6	156.5	14.0	181.9	
	11:00	9.1	186.6	16.1	9.6	7.4	152.1	13.1	181.7	
	11:01	9.9	184.8	17.9	9.5	8.1	152.2	14.8	181.6	
	11:02	10.8	191.6	17.6	9.5	8.9	157.1		183.5	
	11:03	10.7	198.9	14.0	9.3	8.9	166.2	11.7		
	11:04	10.5	199.9	15.0	8.9	9.0	172.5	13.0	183.4	
	11:05	9.6	203.3	17.5	9.4	8.0	168.7	14.5	182.9	
Aug	 erage =	9.4	197.7	16.2	9.3	7.8	164.5	13.4	183.2	
Geometric	•	9.2	197.4	15.7		7.7	164.1	13.0	183.2	
	Avg. = ximum =	13.0	223.6	23.7		10.6	194.8	19.4	186.5	
	nimum =	6.6	179.4	8.8	8.6	5.5	148.9	7.2	180.9	
Possible V		27	27	27	27	27	27	27	27	
Included V		27	27	27		27	27	27	27	
	Total =	253.2	5338.4	436.7		210.4	4441.9	362.7	4945.3	
	TOLAT -	200.2		••••						

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

r - invalid

s - suspect

H - exceedance

r - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1

Data Averaging Type: 1m

Time of Report: 03/18/10 11:51 Rolling Average Interval: 1

			SO2ORPT1	NOXRPT_1	CORPT_1	020UT_1	SOZOUT_1	NOXPPM_1	COPPM_1	STMRPT_1	
	Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)		
(03/18/10	11:14	8.2	193,5	25.1	9.4	6.8	159.5	20.7	184.4	
		11:15	8.1	187.0	21.8	8.9	6.9	161.4	18.8	181.8	
		11:16	8.3	188.9	23.0	9.6	6.8	153.2	18.7	181.0	
		11:17	7.7	184.7	21.2	9.8	6.1	147.5	17.0	182.7	
		11:18	8.9	190.3	17.6	9.5	7.3	155.6	14.4	183.1	
		11:19	9.9	191.0	17.8	9.4	8.2	157.7	14.7	182.8	
		11:20	9.6	186.9	17.8	9.6	7.8	152.6	14.6	181.7	
		11:21	9.0	184.0	18.6	9.6	7.3	149.5	15.1	180.2	
		11:22	9.3	195.3	17.6	9.7	7.5	158.0	14.2	181.9	
		11:23	9.8	202.7	18.8	9.5	8.1	166.4	15.4	182.6	
		11:24	10.8	204.3	19.7	9.4	9.0	168.9	16.3	183.4	
		11:25	10.5	195.4	21.8	9.4	8.7	161.6	19.0	183.3	
		11:26	10.7	190.6	24.3	9.6	8.7	154.8	19.7	181.1	
		11:27	10.0	191,4	21.8	10.0	7.8	150.6	17.1	180.8	
		11:28	9.0	194.8	22.8	10.2	6.9	149.8	17.5	182.6	
		11:29	8.4	196.3	25.7	9.9	6.6	154.7	20.3	185.0	
		11:30	9.0	202.8	22.0	9.2	7.5	170.1	18.5	183.9	
		11:31	9.8	215.5	22.2	9.5	8.0	177.0	18.3	186.0	
		11:32	9.1	198.6	24.2	9.1	7.7	167.9	20.4	182.0	
		11:33	9.8	195.1	25.9	9.6	8.0	158.0	21.0	191.2	
		11:34	10.3	187.3	25.1	10.2	8.0	144.8	19.4	181.8	
		11:35	11.7	187.7	19.0	10.2	9.0	145.1	14.7	181.7	
		11:36	12.8	197.9	18.8	10.0	10.0	154.9	14.7	182.9	
1		11:37	13.7	201,2	17.1	9.7	11.0	161.9	13.7	181.5	
(11:38	14.3	205.1	16.3	10.0	11.2	161.2	12.8	182.9	
•		11:39	11.8	204.1	20.8	10.0	9.2	159.8	16.3	189.5	
		11:40	10.3	190.3	16.0	8.7	9.0	166.8	14.0	184.7	
-								150 1	16.0	202.0	
		erage =	10.0	194.9	20.8	9.6	8.1	158.1	16.9 16.7	182.8 182.8	
(Geometric	-	9.9	194.8	20.6	9.6	8.0	157.9			
		cimum =	14.3	215.5	25.9	10.2	11.2	177.0	21.0	189.5	
		nimum =	7.7	184.0	16.0	8.7	6.1	144.8	12.8	180.2	
	ossible Va		27	27	27	27	27	27	27	27	
I	ncluded Va		27	27	27	27	27	27	27	27	
	7	rotal =	270.8	5262.5	562.8	259.8	219.3	4269.2	456.3	4936.5	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

S - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

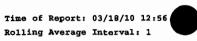
U - missing data substituted

-999 - missing value

Plant Name: NBWD General Average Report Reporting Period: 03/18/2010 to 03/18/2010

ite Name: UNIT1 pata Averaging Type: lm Time of Report: 03/18/10 12:23
Rolling Average Interval: 1

(SO2ORPT1	NOXRPT 1	CORPT_1	02001_1	S020TT_1	NOXPPM_1	COPPM_1	STMRPT_1	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PRRCENTD)	(PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/18/10	11:48	8.2	185.4	21.2	9.5	6.7	151.7	17.3	182.6	
,,	11:49	8.2	186.1	19.2	9.8	6.6	148.7	15.4	184.7	
	11:50	9.3	187.7	14.9	9.7	7.4	150.7	11.9	183.1	
	11:51	11.2	190.0	15.6	9.7	9.0	153.5	12.6	183.8	
	11:52	12.3	193.0	16.6	9.7	9.8	155.1	13.3	181.8	
	11:53	13.4	198.2	19.7	9.9	10.6	157.1	15.6	182.2	
	11:54	12.2	178.9	22.0	9.9	9.7	141.3	17.4	185.6	
	11:55	13.3	170.1	20.3	9.5	10.9	140.1	16.7		
	11:56	13.9	170.8	17.5	8.6	12.3	151.2	15.5	186.9	
	11:57	13.3	175.9	15.5	8.9	11.5	151.9	13.4	180.6	
	11:58	12.3	184.2	12.3	10.1	9.6	143.3	9.6	180.2	
	11:59	11.8	181.2	12.8	10.4	8.9	136.9	9.7	181.6	
	12:00	12.3	177.9	13.9	9.8	9.8	141.9	11.1	183.2	
	12:01	13.7	180.8	16.7	9.6	11.2	147.2	13.6	183.4	
	12:02	13.5	173.1	17.6	9.6	10.9	140.5		180.6	
	12:03	12.7	168.2	18.5	10.2	9.8			180.3	
	12:04	11.7	164.9	25.5	10.6	8.7			182.6	
	12:05	12.6	174.3	29.2	10.3	9.6		22.3	180.9	
	12:06	14.1	184.9	28.7	10.5	10.6		21.6	178.7	
	12:07	15.4	193.8	26.2	10.9	11.1		18.9	180.2	
	12:08	15.4	189.0	28.0	10.7	11.2		20.5	182.4	
	12:09	16.4	185.8	27.8	10.3	12.6	142.1		181.6	
	12:10	15.7	193.5	25.1	10.4	11.9			179.0	
	12:11	14.3	197.9	24.6	10.9	10.3			178.6	
	12:12	13.0	203.2	23.1	11.1	9.2			181.9	
	12:13	12.8	206.3	23.4	10.4	9.6	155.3	17.6	182.9	
	12:14	12.3	198.3	25.4	10.1	9.6	153.9	19.7	179.9	
									100.0	
Ave	rage =	12.8	184.9	20.8		10.0			182.2 182.2	
Geometric	Avg. =	12.6	184.6	20.1		9.8	144.1			
Max	:imum =	16.4	206.3	29.2	11.1	12.6	157.1		189.3	
Min	imum =	8.2		12.3		6.6			178.6 27	
Possible Va	lues =	27		27		27			27	
Included Va	1ues =	27		27		27	27		4918.8	
T	otal =	345.1	4993.4	561.1	271.0	269.0	3896.3	435.2	4710,8	


- excluded values (missing, OOC, invalid, suspect)
- < missing
- T. out-of-control
- I invalid
- s suspect
- H exceedance
- F stack not operating
- B invalid (PADER)
- U missing data substituted
- -999 missing value
- -888 value could not be calculated

General Average Report

Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT1
Data Averaging Type: 1m

Time of Report: 03/18/10 12:56

(donnie 1	
	-1	SO2ORPT1 (PPMDC)	NOXRPT_1 (PPMDC)	CORPT_1 (PPMDC)	O2OUT_1 (PERCENTD)	SO2OUT_1 (PPMD)	NOXPPM_1 (PPMD)	COPPM_1 (PPMD)	STMRPT_1 (KLB/HR)
Date	Time		183.8	15.5	9.8	7.6	146.4	12.4	179.6
03/18/10	12:22	9.5 9.8	183.8	21.7	10.3	7.5	144.5	16.6	179.9
	12:23		187.0	26.6	10.2	8.4	143.8	20.5	181.8
	12:24	10.9		26.0	9.7	10.5	148.4	20.5	184.0
	12:25	13.0	183.4	20.0	9.4	12.0	160.3	18.4	184.3
	12:26	14.4	193.4		9.4		165.5	18.6	183.4
•	12:27	12.3	200.8	22.6		10.1		16.0	181.1
	12:28	10.1	195.5	19.1	9.3	8.5	163.6		181.3
	12:29	9.2	205.4	17.4	9.8	7.4	164.6	13.9	
	12:30	7.7	208.2	19.7	9.9	6.1	165.3	15.7	184.6
	12:31	7.4	197.9	24.1	9.4	6.1	163.4	19.9	183.4
	12:32	7.1	195.7	28.5	9.7	5.7	157.5	22.9	183.1
	12:33	6.7	198.6	26.2	9.9	5.3	156.5 153.7	20.6 17.7	183.8 183.2
	12:34	6.4	193.6	22.3	9.9	5.1			184.3
	12:35	7.1	189.5	20.1	9.8	5.7	151.8	16.1	
	12:36	7.6	193.1	16.1	9.7	6.1	155.9	13.0	184.0
	12:37	8.1	199.3	15.2	9.7	6.6	161.0	12.3	184.1
	12:38	8.2	194.4	15.2	9.6	6.6	158.2	12.4	184.6
	12:39	7.7	193.6	17.6	9.5	6.3	158.8	14.5	185.9
	12:40	7.7	200.4	20.3	9.2	6.5	169.2	17.1	184.1
	12:41	8.2	212.5	21.7	9.5	6.7	174.3	17.8	185.1
	12:42	7.5	201.6	21.5	9.4	6.2	167.5	17.8	186.3
	12:43	7.4	200.3	21.0	9.2	6.2	168.4	17.7	185.2
	12:44	7.5	198.5	22.5	9.1	6.4	169.1	19.2	184.2
(12:45	8.1	201.4	19.7	9.6	6.6	164.3	16.1	183.5
	12:46	8.3	201.0	15.8	9.5	6.8	164.7	12.9	185.2
	12:47	9.1	200.2	16.7	9.3	7.6	166.7	13.9	183.9
	12:48	9.8	196.0	19.4	9.5	8.1	160.9	15.9	184.3
Ave	erage =	8.8	196.8	20.5	9.6	7.1	160.2	16.7	103.6
Geometric	•	8.6	196.7	20.2	9.6	7.0	160.0	16.4	183.6
	ximum =	14.4	212.5	28.5	10.3	12.0	174.3	22.9	186.3
	nimum =	6.4	183.4	15.2	9.1	5.1	143.8	12.3	179.6
Possible V		27	27	27	27	27	27	27	27
Included V		27	27	27	27	27	27	27	27
	Total =	237.0	5313.6	554.7	259.0	192.8	4324.3	450.9	4958.2

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

S - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

-999 - missing value

age: 1

Plant Name: NBWD General Average Report Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2 Dr.+a Averaging Type: 1m Time of Report: 03/16/10 10:29
Rolling Average Interval: 1

(/							WOLDDA 3	CODDW 3	GTMDDT 2	
		SO2ORPT2	NOXRPT_2	CORPT_2	020UT_2	8020UT_2	NOXPPM_2	COPPM_2	STMRPT_2 (KLB/HR)	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)			(PPMD)	(PPMD)	183.3	
03/16/10	09:49	13.2	201.2	13.9	9.8	10.5	160.2	11.1	182.8	
	09:50	11.8	197.0	17.8	9.5	9.7	161.0	14.5	183.9	
	09:51	11.3	202.4	25.1	9.6	9.2	164.3	20.3		
	09:52	12.2	206.7	29.5	9.7	9.9	167.2	23.9	182.7	
	09:53	11.8	206.2	28.2	9.7	9.5	166.5	22.8	182.3	
	09:54	11.1	208.3	26.0	9.9	8.8	165.1	20.6	181.1	
	09:55	12.4	212.3	22.3	9.9	9.8	168.2	17.7	191.8	
	09:56	14.3	214.9	19.1	9.6	11.6	174.1	15.5	181.3	
	09:57	15.4	217.7	20.3	9.8	12.3	174.6	16.3	182.5	
	09:58	14.7	212.8	18.9	9.5	12.0	174.9	15.6	182.8	
	09:59	14.1	215.3	15.6	9.6	11.4	174.8	12.6	185.3	
	10:00	13.3	203.7	13.3	9.0	11.4	174.8	11.4	186.0	
	10:01	13.7	208.4	13.0	9.2	11.6	176.0	10.9	183.4	
	10:02	15.1	217.9	14.1	9.9	11.9	171.9	11.1	184.6	
	10:03	15.9	206.4	16.3	9.5	13.0	168.6	13.3	182.8	
	10:04	16.3	202.5	16.4	9.4	13.4	166.9	13.5	182.0	
	10:05	16.7	199.3	16.7	9.7	13.5	161.2	13.5	182.6	
	10:06	17.7	193.2	17.2	9.4	14.6	160.0	14.3	183.2	
	10:07	18.8	197.8	17.3	9.4	15.5	163.8	14.3	183.2	
	10:08	19.7	197.2	17.4	9.3	16.5	165.2	14.6	183.6	
	10:09	21.7	198.7	16.5	9.3	18.2	166.1	13.8	186.3	
	10:10	22.1	197.1	13.8	8.7	19.4	172.9	12.1	184.8	
	10:11	22,1	208.4	12.4	9.1	18.7	176.6	10.5	182.8	
	10:12	21.7	214.5	13.6	9.7	17.4	172.5	10.9	183.0	
`	10:13	20.7	207.8	14.5	9.3	17.3	173.5	12.1	182.1	
**	10:14	19.9	208.0	14.8	9.2	16.7	174.9	12.4	185.4	
	10:15	20.9	199.2	14.7	8.8	18.3	173.8	12.9	186.9	
Ave	 erage =	16.2	205.7	17.7	9.5	13.4	169.2	14.5	183.4	
Geometric	-	15.8	205.6	17.2	9.5	13.0	169.2	14.2	183.4	
	ximum =	22.1	217.9	29.5	9.9	19.4	176.6	23.9	186.9	
	nimum =	11.1	193.2	12.4	8.7	8.8	160.0	10.5	181.1	
Possible Va		27	27	27	27	27	27	27	27	
Included Va		27		27	27	27	27	27	27	
	rotal =	438.6	5554.6	478.6	255.4	362.3	4569.4	392.5	4952.9	
	LUCAL -									

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

g - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2
Data Averaging Type: 1m

Time of Report: 03/16/10 11:00 Rolling Average Interval: 1

		SO2ORPT2	NOXRPT_2	CORPT_2	020UT_2	SOZOUT 2	NOXPPM_2	COPPM 2	STMRPT 2	
Date	Time	(PPMDC)	_		(PERCENTD)	_		_	_	
03/16/10	10:32	20.7	176.0	24.8	10.0	16.3	138.6	19.5	181.3	
	10:33	21.0	174.1	26.0	10.0	16.5	136.6	20.4	182.7	
	10:34	19.8	176.7	22.8	9.7	15.9	142.0	18.3	181.8	
	10:35	18.2	185.9	22.1	10.1	14.1	143.8	17.1	181.9	
	10:36	15.4	185.3	21.3	10.0	12.1	145.6	16.7	183.4	
	10:37	15.5	191.4	21.8	9.9	12.3	151.9	17.3	185.0	
	10:38	15.9	192.4	20.1	9.5	13.0	157.6	16.5	183.9	
	10:39	15.8	200.5	18.1	9.9	12.5	158.0	14.2	183.2	
	10:40	15.1	201.6	20.7	10.1	11.7	156.8	16.1	182.9	
	10:41	14.6	199.5	23.4	9.8	11.7	159.7	18.7	182.8	
	10:42	14.6	202.7	21.6	9.8	11.7	162.3	17.3	183.2	
	10:43	15.0	200.4	18.9	9.3	12.5	167.3	15.8	182.5	
	10:44	17.8	211.6	21.1	9.9	14.1	167.8	16.7	182.8	
	10:45	19.5	203.9	22.9	9.7	15.7	164.1	18.4	182.0	
	10:46	20.1	206.7	22.4	9.8	16.1	165.2	17.9	185.7	
	10:47	18.6	202.8	16.3	8.8	16.1	176.1	14.1	187.6	
	10:48	18.9	213.8	13.5	8.8	16.5	186.6	11.8	189.1	
	10:49	21.3	215.0	14.1	9.0	18.3	184.5	12.1	184.3	
	10:50	23.8	226.6	14.9	10.2	19.4	175.1	11.5	181.9	
	10:51	21.6	218.1	14.2	10.2	16.5	167.2	10.9	181.4	
	10:52	19.9	201.7	12.8	9.5	16.2	164.9	10.5	184.6	
	10:53	21.6	190.9	11.4	8.7	18.9	167.1	10.0	187.2	
	10:54	22.9	191.3	10.3	8.5	20.5	170.6	9.2	186.0	_
1	10:55	23.4	199.7	10.3	9.1	19.8	169.7	8.8	184.2	
(10:56	25.6	205.5	11.9	9.8	20.5	164.2	9.5	183.5	
•	10:57	26.6	200.3	12.7	9.6	21.6	162.2	10.3		
	10:58	26.4	196.8	13.2	9.1	22.4	166.8	11.2	184.2	
	erage =	19.6	198.9	17.9	9.6	16.0	161.9	14.5	183.8	
Geometric	-	19.3	198.5	17.2	9.6	15.7	161.5	14.0	193.8	
	ximum =	26.6	226.6	26.0	10.2	22.4	186.6	20.4	189.1	
	nimum =	14.6	174.1	10.3	8.5	11.7	136.6	9.8	181.3	
Possible V		27	27	27	27	27	27	27	27	
Included V		27		27	27		27	27	27	
	Total =	529.4	5370.9	483.7	258.8	431.7	4372.3	391.0	4963.7	
		5-5.4								

- excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

missing data substituted

-999 - missing value

Run 3 Unit Z North

Plant Name: NBWD General Average Report Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2 Onta Averaging Type: 1m Time of Report: 03/16/10 11:46
Rolling Average Interval: 1

					0200- 2	#020*** 2	MOABUR 3	COPPM 2	STMRPT 2
		SO2ORPT2	NOXRPT_2	CORPT_2	02001_2	8020UT_2	NOXPPM_2	_	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)		(PPMD)	(PPMD)	(PPMD) 11.3	184.2
03/16/10	11:16	15.5	203.7	13.0	8.9	13.5	176.6		181.7
	11:17	14.1	211.4	11.2	9.6	11.4	171.2	9.0	
	11:18	16.2	207.8	13.1	10.1	12.5	161.0	10.2	179.9
	11:19	19.0	201.5	17.8	10.1	14.7	156.0	13.8	181.6
	11:20	18.4	195.6	20.8	9.6	15.0	159.4	17.0	182.2
	11:21	16.0	198.6	21.2	9.4	13.2	164.2	17.5	183.4
	11:22	14.5	200.4	19.0	9.5	11.9	164.4	15.6	182.8
	11:23	18.9	203.8	18.5	9.8	15.1	162.5	14.8	184.7
	11:24	25.1	194.5	18.2	9.2	21.2	164.1	15.3	183.7
	11:25	28.4	196.7	18.6	9.4	23.5	162.7	15.4	181.4
	11:26	25.2	197.2	19.2	9.8	20.1	157.1	15.3	183.3
	11:27	19.7	193.4	20.3	9.4	16.3	160.3	16.8	183.0
	11:28	17.0	197.6	19.0	9.5	13.9	161.7	15.5	184.2
	11:29	17.2	191.4	15.0	9.4	14.2	158.2	12.4	183.0
	11:30	20.2	190.3	14.4	9.7	16.2	152.9	11.6	184.0
	11:31	22.0	187.0	12.8	9.5	18.1	154.0	10.6	183.1
	11:32	25.2	197.7	10.5	9.5	20.7	162.5	8.7	182.3
	11:33	23.5	197.5	10.9	9.7	19.0	159.8	8.9	182.6
	11:34	17.0	189.1	13.1	9.5	14.0	155.2	10.8	182.0
	11:35	13.7	194.1	17.0	9.9	10.8	153.7	13.5	182.5
	11:36	13.9	190.0	20.1	9.6	11.3	154.0	16.3	183.4
	11:37	17.0	187.4	20.0	9.7	13.7	151.3	16.1	183.4
	11:38	20.2	185.3	20.3	10.0	15.8	144.7	15.8	183.1
	11:39	21.0	183.2	24.2	10.1	16.3	142.1	19.8	184.2
	11:40	21.2	183.0	27.5	9.8	16.9	145.8	21.9	180.8
	11:41	24.0	185.1	28.5	10.5	18.0	138.3	21.3	179.9
	11:42	24.9	171.4	25.0	10.4	18.9	130.0	19.0	180.9
Ave	rage =	19.6	193.9	18.1	9.7	15.8	156.4	14.6	182.6
Geometric	Avg. =	19.2	193.7	17.5	9.7	15.5	156.1	14.1	182.6
	rimum =	28.4	211.4	28.5	10.5	23.5	176.6	21.9	184.7
	imum =	13.7	171.4	10.5	8.9	10.8	130.0	8.7	179.9
Possible Va		27	27	27	27	27	27	27	. 27
Included Va		27	27	27	27	27	27	27	27
	rotal =	529.0	5234.7	489.4	261.6	426.1	4223.7	393.1	4931.5

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

^{1 -} invalid

^{8 -} suspect

H - exceedance

p - stack not operating

B - invalid (PADER)

missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2
Deta Averaging Type: 1m

Time of Report: 03/16/10 12:33 Rolling Average Interval: 1

		SO2ORPT2	NOXRPT_2	CORPT_2	020UT_2	8020UT_2	NOXPPM_2	COPPM_2	STMRPT_2
Date	Time	(PPMDC)	(PPMDC)		(PERCENTD)		(PPMD)		(KLB/HR)
03/16/10	12:03	21.3	191.8	15.8	9.6	17.3	155.7	12.8	185.6
	12:04	17.9	183.9	15.6	8.8	15.6	159.7	13.5	184.4
	12:05	16.7	193.9	16.0	9.3	14.0	162.2	13.4	182.1
	12:06	16.5	193.3	17.4	10.0	12.9	151.3	13.6	182.4
	12:07	17.7	177.1	16.9	9.3	14.7	147.3	14.0	182.4
	12:08	21.0	180.9	18.3	9.6	17.0	146.8	14.8	182.4
	12:09	21.8	176.2	18.7	9.5	17.9	144.8	15.4	182.6
	12:10	21.7	181.8	17.5	9.6	17.7	148.3	14.3	184.3
	12:11	20.7	181.6	14.3	9.1	17.6	154.0	12.2	184.5
	12:12	20.5	185.4	11.3	9.1	17.4	157.3	9.6	182.2
	12:13	20.5	198.3	12.0	10.0	16.0	155.0	9.4	184.0
	12:14	18.9	191.8	13.9	9.3	15.7	160.1	11.6	184.7
	12:15	18.1	194.1	12.9	9.0	15.5	166.5	11.1	183.7
	12:16	16.5	198.8	12.1	9.5	13.6	163.3	9.9	184.1
	12:17	16.4	192.3	16.6	9.6	13.4	157.0	13.5	186.7
	12:18	16.9	183.8	16.5	8.8	14.8	160.7	14.4	184.5
	12:19	17.3	197.2	12.2	9.4	14.2	162.6	10.0	182.4
	12:20	16.5	202.1	11.5	10.1	12.9	157.5	8.9	183.5
	12:21	15.8	196.7	11.4	9.4	13.1	162.4	9.4	185.6
	12:22	16.1	204.4	9.9	9.4	13.3	169.4	8.2	186.7
	12:23	16.3	201.2	9.2	9.2	13.7	169.5	7.7	184.9
	12:24	18.7	209.4	10.5	9.8	15.0	167.4	8.4	183.3
	12:25	20.5	217.5	11.6	10.4	15.5	164.8	8.8	184.3
	12:26	20.7	206.7	10.3	9.6	16.7	167.4	8.4	184.7
(12:27	20.6	203.9	9.1	9.2	17.4	171.8	7.7	185.2
`	12:28	20.3	204.9	9.3	9.4	16.8	169.6	7.7	184.6
	12:29	21.5	202.7	9.9		17.2	161.9	7.9	183.3
Αv	erage =	18.8					159.8		184.0
Geometric	Avg. =	18.7	194.2	13.0	9.5	15.3	159.6	10.7	184.0
Ma	ximum =	21.8	217.5	18.7	10.4	17.9	171.8	15.4	186.7
Mi	nimum =	15.8	176.2	9.1	8.8	12.9	144.8	7.7	182.1
Possible V	alues =	27	27	27	27	27	27	27	27
Included V	alues =	27	27	27	27	27	27	27	27
	Total =	507.3	5251.8	360.6	255.7	416.8	4314.3	296.7	4969.2

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report Reporting Period: 03/16/2010 to 03/16/2010

Bite Name: UNIT2 Data Averaging Type: 1m Time of Report: 03/16/10 13:18 Rolling Average Interval: 1

Page: 1

(G02077#2	NOVERE 2	CORPT 2	020UT 2	SO2OUT_2	NOXPPM 2	COPPM 2	STMRPT 2	
	m1	SO2ORPT2 (PPMDC)	NOXRPT_2 (PPMDC)	_	(PERCENTD)	_		(PPMD)	_	
Date 03/16/10	Time 12:41	18.7	185.0	16.2	9.9	14.8	146.2	12.8	182.2	
03/16/10	12:42	19.4	179.5	18.4	9.9	15.3	141.6	14.5	180.8	
	12:43	20.6	184.2	20.4	10.2	15.8	141.2	15.6	183.1	
	12:44	18.1	180.1	18.2	9.8	14.5		14.5	184.1	
	12:45	15.9	181.4	15.3	9.6	12.9		12.4	182.4	
	12:46	14.0	184.9	14.2	10.1	10.9	143.4	11.0	181.6	
	12:47	13.3	180.4	14.8	10.2	10.2	139.2	11.4	181.2	
	12:48	13.8	183.1	15.3	10.1	10.7	141.8	11.8	183.4	
	12:49	15.3	181.1	13.6	9.5	12.6	148.8	11.1	182.7	
	12:50	18.6	191.6	12.7	10.0	14.6	150.0	9.9	184.1	
	12:51	18.1	186.7	13.5	9.7	14.6	150.7	10.9	183.1	
	12:52	19.1	194.7	13.8	10.0	15.0	152.6	10.8	182.5	
	12:53	18.7	193.1	12.2	10.0	14.6	151.0	9.6	184.5	
	12:54	15.9	190.4	10.8	9.5	13.1	156.1	8.8	185.2	
	12:55	15.2	192.8	10.6	9.5	12.4	157.4	8.6	183.4	
	12:56	17.6	195.5	13.4	10.1	13.7	151.7	10.4	185.6	
	12:57	17.1	186.6	15.1	9.6	13.9	151.6	12.3	184.9	
	12:58	12.4	191.3	14.8	9.6	10.1	155.6	12.0	182.5	
	12:59	14.2	202.7	16.1	10.3	10.9	155.0	12.3	183.3	
	13:00	18.8	192.4	18.9	9.9	14.9	152.5	15.0	181.8	
	13:01	16.3	193.9	17.6	9.9	12.9	153.5	13.9	185.7	
	13:02	10.3	187.5	14.0	8.9	8.9		12.1	184.7	
	13:03	13.4	197.5	13.7	9.3	11.2		11.5	181.7	
	13:04	19.5	199.4	14.9	10.1	15.2		11.5	181.4	
	13:05	21.0	188.9	15.6	9.4	17.3		12.8	183.9	
•	13:06	25.3	194.2	16.5	9.1	21.4		13.9	188.4	
,	13:07	23.7	189.0	13.6	8.3	21.5	171.9	12.4	187.6	
Ave	erage =	17.2	189.2	15.0	9.7	13.8	152.0	12.0	183.5	
Geometric	-	16.9	189.1	14.8	9.7	13.5	151.8	11.9	183.5	
	ximum =	25.3	202.7	20.4	10.3	21.5	171.9	15.6	188.4	
	nimum =	10.3	179.5	10.6	8.3	8.9	139.2	8.6	180.8	
Possible Va		27	27	27	27	27	27	27	27	
Included Va		27	27	27	27	27	27	27	27	
1	Total =	464.3	5108.0	404.1	262.7	373.6	4104.5	324.2	4955.8	

⁻ excluded values (missing, OOC, invalid, suspect)

⁻ missing

⁻ out-of-control

invalid

⁻ suspect

⁻ exceedance

⁻ stack not operating

⁻ invalid (PADER)

⁻ missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2 Data Averaging Type: 1m Time of Report: 03/16/10 13:52 Rolling Average Interval: 1

`,		SO2ORPT2	NOXRPT 2	CORPT 2	020UT 2	SOZOUT_2	NOXPPM 2	COPPM 2	STMRPT 2	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	802001_2 (PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/16/10	13:16	17.9	196.1	9.4	9.0	15.3	167.4	8.0	183.2	
03/16/10	13:17	18.1	209.8	10.9	9.9	14.3	165.7	8.6	184.7	
	13:17	16.4	199.2	11.2	9.8	13.1	159.4	9.0	183.2	
	13:19	15.6	185.1	10.4	9.6	12.8	151.0	8.5	183.4	
	13:19	16.9	178.4	11.4	9.6	13.7	144.6	9.2	186.0	
	13:21	17.3	170.5	13.2	8.9	15.0	147.6	11.4	183.4	
	13:22	19.8	189.2	14.0	9.7	15.9	151.8	11.2	180.4	
	13:23	22.2	193.1	14.4	10.3	17.0	147.6	11.0	179.6	
	13:24	23.4	187.6	13.9	10.1	18.2	145.5	10.8	192.0	
	13:25	24.0	183.3	15.7	9.8	19.2	146.4	12.5	181.3	
	13:26	23.8	188.8	21.6	10.4	18.1	143.1	16.4	181.6	
	13:27	19.9	182.4	21.4	10.1	15.4	141.9	16.6	180.8	
	13:28	17.9	189.9	21.6	10.2	13.7	145.5	16.5	180.7	
	13:29	16.6	193.5	19.3	10.1	12.8	149.7	14.9	180.4	
	13:30	16.1	197.7	17.1	10.1	12.5	153.8	13.3	179.8	
	13:31	15.7	204.6	16.3	10.2	12.1	157.6	12.6	179.8	
	13:32	13.9	205.0	15.8	10.1	10.8	158.9	12.2	180.9	
	13:33	15.6	199.5	15.6	9.7	12.5	160.5	12.6	183.0	
	13:34	17.0	197.9	15.4	9.5	14.0	162.9	12.7	184.0	
	13:35	14.5	198.4	13.5	9.2	12.2	166.4	11.3	181.8	
	13:36	13.0	211.6	12.3	9.9	10.3	167.5	9.7	181.4	
	13:37	14.1	209.5	11.6	9.7	11.3	168.4	9.3	183.4	
	13:38	15.4	203.8	11.7	9.3	12.9	170.2	9.8	185.5	
,	13:39	14.7	196.8	10.4	8.9	12.7	169.7	8.9	183.1	4
(13:40	15.6	202.2	9.0	9.6	12.7	164.7	7.3	184.0	
`	13:41	16.7	194.4	10.2	9.5	13.7	160.0	8.4	183.5	
	13:42	15.4	193.7	10.3	9.2	12.9	162.5	8.6	182.3	
)	rage =	17.3	194.9	14.0	9.7	13.9	156.7	11.2	182.3	
Geometric	-	17.1	194.6	13.5	9.7	13.7	156.4	10.9	182.3	
	imum =	24.0	211.6	21.6	10.4	19.2	170.2	16.6	186.0	
	imum =	13.0	170.5	9.0	8.9	10.3	141.9	7.3	179.6	
rossible Va		27	27	27	27	27	27	27	27	
Included Va		27	27	27	27	27	27	27	27	
T					262.5		4230.3	301.4	4923.2	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2 Data Averaging Type: 1m Time of Report: 03/16/10 14:27 Rolling Average Interval: 1

(000000 0	GAZAHT Z	NOXPPM 2	COPPM 2	STMRPT 2
		SO2ORPT2	NOXRPT_2	CORPT_2	020UT_2	_	(PPMD)	(PPMD)	_
Date	Time	(PPMDC)			(PERCENTD)	12.3	157.4	14.9	182.2
03/16/10	13:52	15.2	195.3	18.5	9.7	12.5	157.3	15.5	182.1
	13:53	15.2	192.4	19.0	9.5	14.4	158.9	17.3	183.3
	13:54	17.7	195.0	21.3	9.6		158.8	17.3	181.4
	13:55	18.3	192.7	21.0	9.4	15.1		18.0	181.4
	13:56	18.4	190.3	22.6	9.8	14.6	151.8	17.8	180.9
	13:57	18.1	184.9	22.5	9.9	14.3	146.7	17.2	182.1
	13:58	19.8	186.2	21.5	9.8	15.8	148.8		182.5
	13:59	21.0	186.9	21.3	9.8	16.8	149.4	17.0	182.3
	14:00	19.7	186.3	19.8	9.7	15.9		16.1	
	14:01	18.5	190.6	19.9	9.7	15.0	153.9	16.1	183.6
	14:02	18.4	190.1	16.8	9.2	15.5	159.8	14.1	182.7
	14:03	20.8	198.5	15.5	9.8	16.7	159.1	12.4	182.6
	14:04	20.3	194.3	14.9	9.6	16.5	157.7	12.1	183.0
	14:05	18.7	204.3	15.2	9.6	15.2	166.0	12.3	185.0
	14:06	17.1	205.0	14.3	9.1	14.5		12.1	184.4
	14:07	17.8	210.8	13.3	9.5	14.6	172.6	10.9	183.9
	14:08	19.5	207.0	13.6	9.8	15.6	165.7	10.9	182.7
	14:09	20.9	207.5	13.8	9.7	16.8	166.8	11.1	181.9
	14:10	20.7	216.5	13.8	10.0	16.3	170.5	10.9	181.2
	14:11	20.5	216.0	13.4	9.9	16.3	171.5	10.7	184.2
	14:12	20.7	209.6	12.6	9.4	17.1	173.1	10.4	183.6
	14:13	20.4	211.5	12.7	9.6	16.7	172.7	10.4	183.8
	14:14	21.2	207.1	15.5	9.7	17.1	167.0	12.5	183.1
	14:15	23.9	204.3	. 21.1	10.1	18.5	158.1	16.3	182.4
	14:16	22.5	195.0	20.4	9.9	17.9	154.6	16.2	185.7
٠.	14:17	18.7	186.8	16.3	9.0	16.0	159.8	13.9	185.4
	14:18	17.4	190.7	13.7	9.2	14.7	160.9	11.6	183.4
Ave	erage =	19.3	198.4	17.2	9.6	15.7	160.9	13.9	183.0
Geometric	•	19.2	198.1	16.9	9.6	15.6	160.7	13.7	183.0
	rimum =	23.9	216.5	22.6	10.1	18.5	173.8	18.0	185.7
	nimum =	15.2	184.9	12.6	9.0	12.3	146.7	10.4	180.9
Possible V		27	27	27	27	27	27	27	27
Included Va		27	27	27	27	27	27	27	27
	rotal =	521.6	5355.7	464.3	259.9	422.6	4343.3	376.0	4940.8
	TOTAL 3	221.0							

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

p - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2 Data Averaging Type: 1m Tim

Time of	Reporti	03/16/10	15:04	
Rolling a	Average	Interval:	1	

(
		BO2ORPT2	NOXRPT_2	CORPT_2	02001_2	8020UT_2	NOXPPM_2	COPPM_2	STMRPT_2	
Date	Time	(PPMDC)	(PPMDC)		(PERCENTD)	(PPMD)	(PPMD)	(PPMD)		
03/16/10	14:27	14.1	191.4	16.1	9.7	11.4	154.3	13.0	185.1	
	14:28	14.3	188.1	13.8	9.2	12.1	159.0	11.6	185.7	
	14:29	13.7	195.3	12.7	9.2	11.5	164.4	10.7	183.8	
	14:30	14.3	208.3	12.3	10.0	11.2	163.4	9.6	184.2	
	14:31	16.2	201.0	12.3	9.7	13.0	162.0	9.9	184.7	
	14:32	20.8	201.1	13.1	9.5	17.0	164.7	10.7	183.9	
	14:33	23.0	202.3	13.3	9.7	18.6	163.4	10.7	184.4	
	14:34	20.9	202.1	13.9	9.6	17.0	164.4	11.3	183.6	
	14:35	18.7	205.5	14.8	9.7	15.1	165.8	12.0	183.3	
	14:36	19.2	197.8	15.5	9.6	15.6	160.2	12.5	184.1	
	14:37	22.4	185.1	13.9	9.4	18.6	153.7	11.6	183.8	
	14:38	24.8	182.9	13.6	9.7	20.1	148.0	11.0	186.4	
	14:39	22.9	177.0	14.3	9.2	19.2	148.3	12.0	185.5	
	14:40	21.2	188.7	14.1	9.8	16.9	150.2	11.2	183.3	
	14:41	17.4	194.0	15.7	10.3	13.2	147.5	11.9	182.6	
	14:42	13.8	189.5	16.9	9.9	10.9	150.4	13.4	183.0	
	14:43	14.5	191.4	19.4	9.8	11.6	152.8	15.5	187.4	
	14:44	18.8	178.4	18.2	8.9	16.3	154.1	15.8	186.7	
	14:45	25.1	182.3	15.8	9.3	20.9	151.8	13.1	183.0	
	14:46	30.6	189.5	18.3	10.1	23.8	147.3	14.2	182.0	
	14:47	28.8	187.3	20.3	10.0	22.7	147.2	16.0	182.0	
	14:48	24.7	187.2	21.8	9.9	19.5	147.6	17.2	183.8	
	14:49	20.3	181.6	20.3	9.4	16.8	150.4	16.8	183.1	
(14:50	17.8	189.4	20.5	9.8	14.2	151.3	16.4	188.0	4
(14:51	17.0	177.5	20.3	8.7	14.9	156.0	17.8	189.0	
	14:52	21.0	187.0	18.3	8.6	18.5	165.2	16.1	185.3	
	14:53	23.4	209.5	14.4	9.8	18.6	166.6	11.5	181.8	
Av	erage =	20.0	191.5	16.1	9.6	16.3	155.9	13.1	184.4	
Geometric	Avg. =	19.5	191.3	15.8	9.6	15.9	155.8	12.9	184.4	
Ma	ximum =	30.6	209.5	21.8	10.3	23.8	166.6	17.8	189.0	
Mi	nimum =	13.7	177.0	12.3	8.6	10.9	147.2	9.6	181.8	
Possible V	alues =	27	27	27	27	27	27	27	27	
Included V	alues =	27	27	27	27	27	27	27	27	
	Total =	539.7	5171.1	433.8	258.5	439.2	4210.1	353.5	4979.6	

⁻ excluded values (missing, OOC, invalid, suspect)

⁻ missing

⁻ out-of-control

⁻ invalid

⁻ suspect

⁻ exceedance

⁻ stack not operating

⁻ invalid (PADER)

⁻ missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/16/2010 to 03/16/2010

ite Name: UNIT2 Deta Averaging Type: lm Time of Report: 03/16/10 15:39 Rolling Average Interval: 1

***		SOZORPT2	NOXRPT_2	CORPT_2	020UT_2	S020UT_2	NOXPPM_2	COPPM_2	STMRPT_2	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)			(PPMD)	(PPMD)		
03/16/10	15:03	16.3	187.8	19.7	9.4	13.5	155.7	16.4	181.8	
	15:04	17.6	192.8	19.7	9.9	14.0	153.2	15.6	183.2	
	15:05	21.3	185.2	18.4	9.4	17.6	153.0	15.2	182.1	
	15:06	22.8	195.1	19.6	9.8	18.2	155.3	15.6	183.0	
	15:07	21.8	189.8	17.7	9.4	18.0	156.0	14.7	182.0	
	15:08	23.5	190.2	18.1	9.7	18.9	152.9	14.5	182.5	
	15:09	25.2	183.8	18.9	9.7	20.4	148.7	15.3	181.5	
	15:10	25.1	191.4	20.8	10.2	19.4	147.7	16.1	192.3	
	15:11	20.3	189.5	19.0	9.7	16.4	153.0	15.4	183.3	
	15:12	18.1	194.2	18.2	9.7	14.7	156.8	14.7	184.5	
	15:13	16.8	188.8	15.9	9.3	14.0	157.1	13.2	183.1	
	15:14	17.2	190.8	16.5	9.7	13.9	153.6	13.3	184.4	
	15:15	18.7	182.1	17.9	9.6	15.1	147.5	14.5	181.1	
	15:16	20.6	105.5	19.3	10.2	15.8	142.8	14.9	181.0	
	15:17	17.9	183.0	19.2	9.9	14.2	144.9	15.2	181.5	
	15:18	16.5	186.4	19.6	9.6	13.4	151.4	15.9	183.8	
	15:19	16.9	187.7	18.1	9.4	14.0	155.5	15.0	182.9	
	15:20	17.0	196.6	17.8	9.8	13.6	156.9	14.2	185.1	
	15:21	15.4	189.5	17.5	9.3	12.8	157.8	14.6	182.9	
	15:22	16.3	196.7	16.4	9.6	13.2	159.5	13.3	184.9	
	15:23	18.9	196.5	14.5	9.4	15.7	162.7	12.0	183.4	
	15:24	21.2	199.0	15.2	9.5	17.4	163.9	12.5	185.2	
	15:25	21.4	199.3	16.9	9.3	17.8	166.3	14.1	185.8	
··	15:26	19.7	199.3	16.2	9.0	16.8	170.0	13.8	182.4	
	15:27	18.0	211.5	15.9	10.0	14.1	166.5	12.5	182.2	
•	15:28	16.6	203.0	15.8	9.7	13.4	164.1	12.8	180.7	
	15:29	18.9	205.6	18.5	9.8	15.1	163.9	14.7	181.3	
Ave	erage =	19.3	192.6	17.8	9.6	15.6	156.2	14.4	182.9	
Geometric	-	19.1	192.5	17.8	9.6	15.5	156.0	14.4	182.9	
	cimum =	25.2	211.5	20.8	10.2	20.4	170.0	16.4	185.8	
	nimum =	15.4	182.1	14.5	9.0	12.8	142.8	12.0	180.7	
Possible V		27	27	27	27	27	27	27	27	
Included V		27	27	27	27	27	27	27	27	
	rotal =	520.1	5199.7	481.3	260.0	421.4	4216.4	389.9	4937.7	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

P - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT2

Y Averaging Type: 1m

Time of Report: 03/16/10 16:17 Rolling Average Interval: 1

		S020RPT2	NOXRPT_2	CORPT_2	02007_2	S020UT_2	NOXPPM_2	COPPM_2	STMRPT_2	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/16/10	15:38	24.8	197.0	14.6	8.9	21.3	160.8	12.5	182.8	
	15:39	26.7	200.0	13.2	9.6	21.6	162.0	10.7	184.3	
	15:40	23.1	197.3	12.7	9.4	19.1	163.4	10.5	184.2	
	15:41	20.2	197.4	12.0	9.2	17.0	166.8	10.2	183.4	
	15:42	18.8	202.8	11.3	9.7	15.1	163.1	9.1	195.6	
	15:43	18.1	190.5	10.7	9.1	15.3	161.5	9.1	183.2	
	15:44	20.4	200.3	11.2	9.8	16.3	159.9	8.9	184.5	
	15:45	19.3	197.1	11.0	9.6	15.7	160.0	8.9	184.7	
	15:46	16.1	198.5	10.2	9.4	13.4	164.8	8.5	183.4	
	15:47	13.7	208.8	10.7	9.8	11.0	167.0	9.6	185.1	
	15:48	12.5	197.6	10.6	9.2	10.5	166.4	8.9	183.6	
	15:49	14.3	203.1	10.2	9.6	11.7	165.8	8.3	194.0	
	15:50	16.4	202.7	12.2	9.7	13.2	163.6	9.8	185.2	
	15:51	17.3	195.4	12.8	9.2	14.6	165.0	10.8	184.2	
	15:52	17.1	206.4	11.3	9.6	13.9	167.5	9.2	184.5	
	15:53	17.0	208.7	11.8	9.6	13.7	169.1	9.6	185.9	
	15:54	16.2	198.5	11.7	8.9	14.0	171.8	10.1	185.0	
	15:55	16.2	209.4	10.1	9.6	13.2	170.9	8.2	184.3	
	15:56	22.2	207.7	11.5	10.0	17.3	162.4	9.0	189.3	
	15:57	25.8	185.7	12.9	8.9	22.3	159.9	11.1	191.0	
	15:58	24.1	189.2	11.7	8.8	21.0	164.6	10.2	186.7	
	15:59	18.4	211.2	10.6	9.8	14.7	168.4	8.4	180.4	
	16:00	12.6	225.6	10.8	10.8	9.2	163.7	7.8	180.0	
1 1	16:01	10.6	202.1	11.9	10.1	9.2	156.7	9.2	184.3	
(16:02	13.6	181.5	12.0	9.0	11.7	155.6	10.3	184.8	
	16:03	16.5	180.9	10.9	9.1	14.0	153.8	9.2	185.6	
	16:04	17.7	182.3	11.2	9.3		151.7			
A	verage =	19.1			9.5	15.0	163.2	9.5		
Geometri	Avg. =	17.7	198.5	11.5	9.5	14.5	163.1	9.5	194.6	
M	aximum =	26.7	225.6	14.6	10.8	22.3	171.8	12.5	191.0	
	inimum =	10.6	180.9	10.1	8.8	8.2	151.7	7.8	180.0	
Possible '		27	27	27	27	27	27	27	27	
Included	Values =	27	27	27	27	27	27	27	27	
	Total =	489.8	5367.4	311.9	255.7	403.9	4406.0	256.7	4983.4	

- excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

- invalid

s - suspect

- exceedance

stack not operating

B - invalid (PADER)

7 - missing data substituted

-999 - missing value

Plant Name: NBWD

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

ite Name: UNIT3

Averaging Type: 1m

Time of Report: 03/17/10 07:46
Rolling Average Interval: 1

`								_		
		SO2ORPT3	NOXRPT_3	CORPT_3	020UT_3	8020UT_3	NOXPPM_3	COPPM_3	STMRPT_3	
Date	Time	(PPMDC)			(PERCENTD)			(PPMD)		
03/17/10	07:11	8.9	197.7	23.6	8.5	7.9	175.9	21.0	185.6	
	07:12	9.2	200.7	20.5	8.3	7.4	182.1	18.6	184.8	
	07:13	7.9	198.1	16.2		7.2			187.0	
	07:14	9.2	194.4	16.3		8.6			185.7	
	07:15	9.4	195.5	13.0					185.4	
	07:16	8.9	188.7	16.3						
	07:17	9.9	187.3	15.1		9.2			185.6	
	07:18	10.0	180.5	16.9		9.3			197.0	
	07:19	10.0	183.1	17.8	8.1	9.2				
	07:20	9.2	181.7			8.7	171.6			
	07:21	10.4	187.8	14.6		9.4	170.3		185.9	
	07:22	15.6	192.0	11.5		14.7				
	07:23	10.5	187.8	10.3	7.9	9.8	175.7	9.6	186.9	
	07:24	10.3	184.8	10.9	8.0	9.6	171.2	10.1	185.6	
	07:25	13.9	186.7	9.0	7.9	12.9	174.0	8.4	185.0	
	07:26	14.1	191.3	12.5	8.3	12.8	173.9	11.4	184.4	
	07:27	12.8	188.5	11.7	8.2	11.7	171.9	10.7	185.0	
	07:28	13.7	187.4	10.9	8.2	12.4	170.7	10.0	184.9	
	07:29	14.3	183.1	12.1	8.1	13.1	167.9	11.1	183.3	
	07:30	13.0	177.2	15.0	8.3	11.8	160.7	13.6	183.2	
	07:31	12.2	172.9	18.4	8.4	11.0	156.0	16.6	184.1	
	07:32	11.9	176.9	18.2	8.3	10.7	160.0	16.5	183.8	
	07:33	12.0	179.8	17.4	8.4	10.8	161.4	15.6	182.9	
	07:34	14.6	177.0	14.9	8.4	13.2	159.6	13.5	183.7	
	07:35	13.5	175.3	16.7	8.5	12.0	156.4	14.9	183.8	
	07:36	12.6	176.3	17.3	8.3	11.4	160.3	15.7	183.6	
	07:37	12.1	178.0	16.2		10.9		14.6	184.4	
Ave	erage =	11.4	185.2			10.5			184.9	
Geometric	-	11.2	185.1	14.7	8.2	10.3	169.4	13.4	184.9	
	ximum =	15.6	200.7	23.6	8.5	14.7	182.1	21.0	187.0	
	aimum =	7.9	172.9	9.0	7.8	7.2	156.0	8.4	182.9	
Possible V		27	27	27	27	27	27	27	27	
Included V		27	27	27	27	27	27	27	27	
	Tota1 =	308.9	5000.3	405.7	220.6	282.8	4579.8	370.7	4993.3	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

P - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

Site Name: UNIT3

P Averaging Type: 1m

Time of Report: 03/17/10 08:21 Rolling Average Interval: 1

		SOZORPT3	NOXRPT_3	CORPT_3	020UT_3	S020UT_3	NOXPPM_3	COPPM_3	STMRPT_3	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/17/10	07:46	11.7	188.5	17.4	8.4	10.5	170.1	15.7	184.8	
	07:47	12.3	185.2	19.6	8.3	11.2	167.9	17.8	183.1	
	07:48	13.0	190.5	21.5	8.5	11.6	170.6	19.3	183.5	
	07:49	15.6	190.7	20.1	8.4	14.1	171.6	18.1	183.4	
	07:50	16.4	195.8	19.6	8.4	14.7	175.7	17.6	183.4	
	07:51	15.0	197.8	19.0	8.4	13.5	178.3	17.1	181.9	
	07:52	12.0	196.9	19.7	8.6	10.6	174.2	17.5	184.1	
	07:53	10.6	192.5	17.5	8.4	9.5	173.4	15.8	184.3	
	07:54	12.8	189.5	14.4	8.2	11.7	172.7	13.2	185.3	
	07:55	15.4	189.0	13.4	8.3	14.0	171.3	12.1	183.2	
	07:56	12.3	192.4	14.1	8.7	10.8	168.8	12.3	183.5	
	07:57	9.9	191.1	12.0	8.5	8.9	170.8	10.7	185.2	
	07:58	9.6	187.5	11.2	8.1	8.9	172.5	10.3	184.8	
	07:59	11.6	181.7	11.1	8.0	10.7	168.9	10.3	185.8	
	00:80	10.8	179.9	12.8	8.1	10.0	166.2	11.8	184.4	
	08:01	10.6	179.9	10.5	7.8	9.9	168.9	9.9	184.4	
	08:02	13.5	184.6	16.1	8.2	12.3	168.6	14.7	185.5	
	08:03	18.7	174.0	13.6	7.7	17.7	164.7	12.9	184.1	
	08:04	22.1	171.3	13.5	8.1	20.4	158.4	12.5	186.7	
	08:05	25.9	172.6	13.5	7.8	24.5	162.9	12.7	183.8	
	08:06	23.9	178.0	11.9	8.0	22.3	165.7	11.1	184.4	
	08:07	19.4	187.9	13.1	8.1	17.8	172.3	12.0	184.0	
	80:80	15.7	188.4	12.0	8.1	14.5	174.0	11.1	184.1	
(08109	14.3	192.4	11.0	7.9	13.4	179.5	10.3	184.2	4
(08:10		189.6		8.1	13.2	174.2	11.8	182.9	
	08:11	14.4	190.8	12.0	8.2	13.2	174.1	10.9	182.5	
	08:12	16.2				14.7				
Ave	erage =	14.7	187.2			13.5				
Geometric	Avg. =	14.2	187.1	14.3		13.0		13.1	184.1	
Ma:	ximum =	25.9	197.8	21.5	8.7	24.5	179.5	19.3		
Mi	nimum =	9.6	171.3	10.5	7.7	8.9	158.4	9.9	181.9	
Possible V	alues =	27	27	27	27	27	27	27	27	
Included V		27		27	27		27	27	27	
	Total =	397.9	5055.5	396.2	221.5	364.3	4614.9	360.9	4970.0	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

-999 - missing value

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

ite Name: UNIT3

Averaging Type: 1m

Time of Report: 03/17/10 08:56 Rolling Average Interval: 1

(
		SO2ORPT3	NOXRPT_3	CORPT_3	02001_3	\$020UT_3	NOXPPM_3	COPPM_3	STMRPT_3	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	-		
03/17/10	08:21	15.9	177.2	14.2	8.8	13.8	154.3	12.4	181.2	
	08:22	15.2	179.6	14.7	9.0	13.0	154.0	12.6	184.0	
	08:23	14.4	175.9	11.8	8.2	13.1	160.3	10.7	183.2	
	08:24	12.7	190.0	10.7	8.1	11.7	166.0	9.9	183.2	
	08:25	10.6	199.1	11.4	8.2	9.7	172.0	10.4	191.1	
	08:26	9.7	191.3	12.2	8.5	8.6	170.5	10.9	181.9	
	08:27	10.0	191.5	12.2	8.3	9.0	173.0	11.0	194.2	
	08:28	10.0	190.7	10.1	8.0	9.3	177.3	9.4	183.4	
	08:29	9.4	188.6	8.3	7.8	8.8	177.7	7.9	182.8	
	08:30	9.7	190.5	10.8	8.3	8.8	172.8	9.8	181.6	
	08:31	10.0	190.3	12.6	8.4	9.0	170.6	11.3	182.6	
	08:32	9.3	195.1	11.9	8.3	8.4	176.5	10.7	184.0	
	08:33	9.8	193.4	9.4	8.0	8.2	179.9	8.7	183.7	
	08:34	8.6	192.9	8.6	8.1	8.0	178.1	7.9	182.6	
	08:35	8.9	199.5	8.9	8.3	8.1	180.0	8.1	184.8	
	08:36	8.7	199.2	9.9	8.1	8.0	183.7	9.1	184.3	
	08:37	7.7	189.9	8.5	7.7	7.3	180.5	8.1	184.3	
	08:38	9.3	190.3	11.5	8.1	8.6	175.8	10.6	184.1	
	08:39	11.0	193.4	10.5	8.1	10.2	178.7	9.7	183.6	
	08:40	7.2	201.5	11.0	8.2	6.6	183.9	10.0	183.8	
	08:41	7.6	201.9	11.6	8.1	7.0	185.8	10.7	182.1	
	08:42	11.5	203.6	13.5	8.4	10.3	183.1	12.2	181.9	
	08:43	13.5	198.4	15.5	8.4	12.2	178.6	13.9	183.1	
	08:44	14.8	187.3	14.4	7.9	13.8	174.5	13.4	184.3	
l.	08:45	15.2	185.9	11.4	7.6	14.5	177.5	10.9	183.9,	
	08:46	16.0	191.7	12.2	8.0	14.9	179.5	11.4	183.3	
	08:47	18.4	188.3	14.0	8.1	17.0	173.4	12.8	182.6	
Ave	rage =	11.3	190.9	11.5	8.2	10.3	174.7	10.5	183.2	
Geometric	Avg. =	10.9	190.8	11.4	8.2	10.0	174.5	10.4	183.2	
Маз	cimum =	18.4	203.6	15.5	9.0	17.0	185.8	13.9	184.8	
Mir	- mumi	7.2	175.9	8.3	7.6	6.6	154.0	7.9	181.1	
Possible Va	alues =	27	27	27	27	27	27	27	27	
Included Va	lues =	27	27	27	27	27	27	27	27	
1	otal =	304.1	5155.0	311.8	220.9	277.9	4717.0	284.7	4945.5	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

S - suspect

E - exceedance

F - stack not operating

B - invalid (PADER)

missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

Site Name: UNIT3

Time of Report: 03/17/10 09:30

174.2

4900.6

27

27

3.4

27

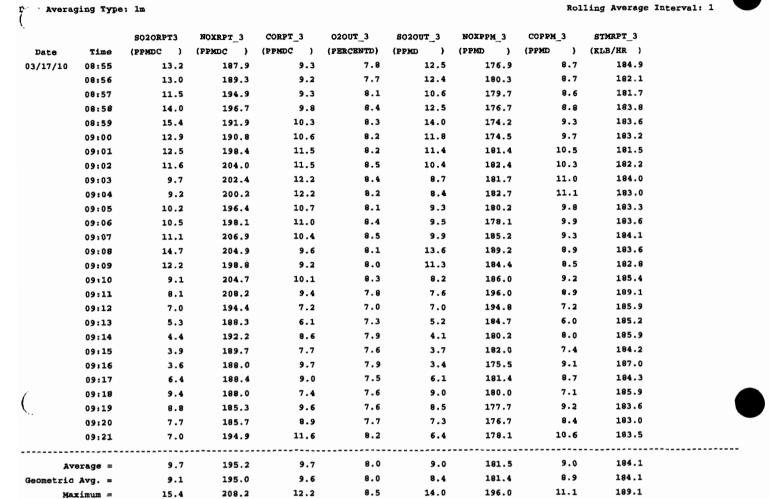
27

242.8

6.0

27

27


242.7

181.5

4970.3

27

27

excluded values (missing, OOC, invalid, suspect)

3.6

27

27

262.2

185.3

27

27

5269.3

6.1

27

261.8

27

7.0

27

27

215.0

< - missing

T - out-of-control

Minimum =

Total =

Possible Values =

Included Values =

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

missing data substituted

-999 - missing walue

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

Bite Name: UNIT3 D - Averaging Type: 1m Time of Report: 03/17/10 10:04 Rolling Average Interval: 1

ſ										
		SOZORPT3	NOXRPT_3	CORPT_3	020UT_3	8020UT_3	NOXPPM_3	COPPM_3	STMRPT_3	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)		(PPMD)	(PPMD)	(PPMD)		
03/17/10	09:29	7.7	199.5	12.9	8.3	7.0	180.4	11.7	181.7	
	09:30	8.6	197.7	15.3	8.4	7.7	177.2	13.8	182.9	
	09:31	8.7	204.2	16.5	8.4	7.9	183.5	14.9	181.2	
	09:32	8.0	207.0	15.3	8.6	7.1	182.7	13.5	182.2	
	09:33	7.5	205.8	17.4	8.6	6.6	181.5	15.3	183.7	
	09:34	7.2	204.9	13.3	8.3	6.5	186.0	12.1	183.4	
	09:35	6.5	193.5	12.9	8.3	5.9	175.2	11.7	182.4	
	09:36	6.0	190.8	15.0	8.6	5.4	168.8	13.2	182.0	
	09:37	6.9	193.7	17.7	8.6	6.1	171.9	15.7	182.5	
	09:38	7.5	195.0	16.7	8.5	6.7	173.6	14.9	181.9	
	09:39	6.8	194.8	17.0	8.6	6.0	171.7	15.0	181.2	
	09:40	5.8	203.0	16.3	8.8	5.0	176.6	14.2	182.6	
	09:41	5.5	201.4	15.0	8.6	4.9	178.5	13.3	183.9	
	09:42	5.2	191.8	11.9	8.1	4.8	176.1	11.0	185.0	
	09:43	4.7	190.4	12.3	7.9	4.3	177.5	11.4	183.0	
	09:44	3.9	192.4	12.1	8.3	3.5	174.3	11.0	183.1	
	09:45	3.8	196.5	12.5	9.4	3.4	177.2	11.3	192.3	
	09:46	4.0	191.7	12.8	8.4	3.6	172.0	11.5	182.3	
	09:47	4.0	192.5	11.6	8.4	3.6	173.4	10.5	183.0	
	09:48	3.8	198.0	12.2	8.4	3.5	178.1	11.0	183.5	
	09:49	3.6	189.4	11.7	8.3	3.3	172.0	10.6	183.8	
	09:50	3.4	188.6	11.7	8.4	3.0	169.6	10.6	182.6	
	09:51	3.3	190.0	12.6	8.5	2.9	169.4	11.2	183.6	
	09:52	3.3	194.3	12.2	8.5	3.0	173.2	10.8	184.1	
t.	09:53	3.4	184.2	11.6	8.2	3.1	168.8	10.6	182.4	
	09:54	3.3	180.3	13.9	8.5	2.9	160.9	12.4	182.4	
	09:55	3.4	180.2	14.6	8.6	3.0	159.0	12.9	184.0	
Ave	er a ge =	5.4	194.5	13.9	8.4	4.8	174.4	12.4	182.8	
Geometric	Avg. =	5.1	194.4	13.8	8.4	4.6	174.3	12.3	192.8	
	ximum =	8.7	207.0	17.7	8.8	7.9	186.0	15.7	185.0	
	nimum =	3.3	180.2	11.6	7.9	2.9	159.0	10.5	181.2	
Possible V		27	27	27	27	27	27	27	27	
Included V		27	27	27	27	27	27	27	27	
	Total =	145.9	5251.4	375.3	227.7	130.7	4709.0	336.1	4936.6	

⁻ excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

site Name: UNIT3
Data Averaging Type: lm

Time of Report: 03/17/10 10:38
Rolling Average Interval: 1

Ĺ		SO2ORPT3	NOXRPT_3	CORPT_3	O2OUT_3	8020UT_3	NOXPPM_3	COPPM_3	STMRPT_3	
Date	Time	(PPMDC)	(PPMOC)	(PPMDC)		(PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/17/10	10:03	6.6	200.4	14.2	7.9	6.1	187.5	13.2	184.3	
	10:04	5.2	195.6	12.9	8.0	4.8	180.9	12.0	184.4	
	10:05	3.9	197.7	13.9	8.3	3.6	179.1	12.6	182.6	
	10:06	3.6	200.6	14.1	8.6	3.2	178.1	12.5	183.8	
	10:07	4.1	199.1	13.6	8.1	3.7	182.6	12.4	184.4	
	10:08	4.3	196.3	13.3	8.1	3.9	180.6	12.2	183.6	
	10:09	3.8	196.8	14.6	8.4	3.4	176.4	13.1	183.1	
	10:10	3.5	197.1	14.8	8.5	3.2	175.8	13.2	184.1	
	10:11	3.8	194.0	12.9	8.1	3.5	178.4	11.9	184.6	
	10:12	4.8	190.4	12.5	8.2	4.3	173.3	11.4	183.9	
	10:13	4.1	188.2	11.9	8.2	3.8	172.1	10.9	183.3	
	10:14	3.4	181.6	12.5	8.2	3.1	165.7	11.4	182.3	
	10:15	3.2	183.8	12.2	8.3	2.9	165.9	11.1	180.1	
	10:16	3.1	185.9	14.5	8.8	2.8	162.3	12.6	180.2	
	10:17	3.4	189.5	16.6	8.7	3.0	166.6	14.6	181.9	
	10:18	3.5	193.4	16.9	8.4	3.2	173.9	15.2	182.7	
	10:19	3.6	198.0	15.5	8.4	3.2	177.8	13.9	185.0	
	10:20	3.4	204.1	15.1	8.3	3.1	184.4	13.6	184.8	
	10:21	2.9	196.8	12.5	8.2	2.6	180.4	11.5	183.1	
	10:22	2.3	190.9	12.3	8.4	2.0	171.3	11.1	181.5	
	10:23	1.9	197.0	12.5	8.7	1.6	173.2	11.0	181.0	
	10:24	1.6	202.5	13.2	8.8	1.4	176.7	11.5	183.8	
	10:25	1.9	210.8	11.7	8.2	1.8	192.6	10.7	184.0	
,	10:26	2.0	212.7	11.2	8.2	1.8	194.7	10.2	182.7	4
(10:27	1.7	216.4	12.9	8.6	1.5	192.2	11.5	183.7	
	10:28	1.6	217.2	12.7	8.4	1.4	195.0	11.4	184.4	
	10:29	1.4	214.2	11.3	8.2	1.3	195.6	10.3	183.2	
Ave	rage =	3.3	198.2	13.4	8,3	3.0	179.0	12.1	183.2	
Geometric	Avg. =	3.1	198.0	13.3	8.3	2.8	178.8	12.1	183.2	
Max	cimum =	6.6	217.2	16.9	8.8	6.1	195.6	15.2	185.0	
Mir	aimum =	1.4	181.6	11.2	7.9	1.3	162.3	10.2	180.1	
Possible Va	lues =	27	27	27	27	27	. 27	27	27	
Included Va	lues =	27	27	27	27	27	27	27	27	
1	rotal =	88.7	5351.0	362.4	225.3	80.4	4833.1	327.0	4946.2	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

S - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-988 -} value could not be calculated

Plant Name: NBWD

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

Fite Name: UNIT3
Data Averaging Type: lm

Time of Report: 03/17/10 11:15 Rolling Average Interval: 1

(
`		BO2ORPT3	NOXRPT_3	CORPT_3	020UT_3		NOXPPM_3	COPPM_3		
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)		(PPMD)		
03/17/10	10:38	0.8	194.3	16.3	8.2	0.8	177.8	14.9	185.5	
	10:39	1.0	195.1	14.7	7.9	0.9	182.1	13.7	184.9	
	10:40	1.0	189.1	13.5	7.8	0.9	177.5	12.7	185.1	
	10:41	0.9	194.2	13.2	8.0	0.8	180.1	12.2	185.1	
	10:42	0.9	193.0	12.4	7.9	0.8	180.0	11.6	185.1	
	10:43	0.8	187.1	11.0	7.9	0.7	175.4	10.3	184.8	
	10:44	0.8	176.0	11.2	7.9	0.8	164.2	10.5	183.7	
	10:45	0.8	180.4	12.4	8.0	0.8	167.8	11.5	184.5	
	10:46	0.8	181.9	12.2	7.9	0.8	170.2	11.4	184.9	
	10:47	0.8	184.3	14.0	7.9	0.8	172.2	13.1	186.8	
	10:48	0.8	192.3	13.4	7.5	0.8	185.9	12.9	186.4	
	10:49	0.6	188.9	11.7	7.4	0.6	183.9	11.4	184.8	
	10:50	0.4	188.7	13.8	7.8	0.4	177.1	13.0	183.7	
	10:51	0.4	181.5	13.5	7.8	0.4	170.8	12.7	185.0	
	10:52	0.6	179.9	13.3	7.8	0.5	169.2	12.6	185.0	
	10:53	0.7	178.0	14.2	7.9	0.6	166.7	13.3	184.5	
	10:54	0.7	183.9	14.5	8.0	0.6	170.9	13.5	184.9	
	10:55	0.8	186.6	12.7	7.8	0.8	176.6	12.0	184.9	
	10:56	0.9	189.6	11.7	7.6	0.8	181.6	11.2	184.3	
	10:57	1.3	194.9	13.5	8.1	1.2	179.8	12.5	183.5	
	10:58	1.5	197.5	11.3	8.1	1.4	181.7	10.4	184.1	
	10:59	1.7	202.0	10.6	7.9	1.6	189.0	9.9	185.6	
	11:00	2.1	199.5	9.4	7.5	2.0	192.8	9.1	184.8	
	11:01	2.1	195.1	10.8	7.7	2.0	184.9	10.2	183.4	
Ĭ	11:02	2.0	196.5	11.4	8.1	1.9	181.0	10.5	181.8	
۸.	11:03	2.2	194.0	12.1	8.4	2.0	174.3	10.9	184.2	
	11:04	2.7	191.3	10.8	8.1	2.5	176.6	10.0	185.0	
Ave	rage =	1.1	189.5	12.6	7.9	1.0	177.4		184.7	
Geometric	Avg. =	1.0	189.3	12.5	7.9	0.9	177.3		184.7	
Max	cimum ⇒	2.7	202.0	16.3	8.4	2.5	192.8		186.8	
Mir	nimum =	0.4	176.0	9.4	7.4	0.4			181.8	
Possible Va	lues =	27	27	27	27	27	27	27	27	
Included Va	lues =	27	27	27	27	27	27	27	27	1
1	otal =	30.0	5115.5	339.7	212.9	28.0	4790.0	317.9	4986.1	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

^{8 -} suspect

H - exceedance

P - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

Site Name: UNIT3

Data Averaging Type: 1m

Time of Report: 03/17/10 11:49
Rolling Average Interval: 1

		SO2ORPT3	NOXRPT 3	CORPT 3	O2OUT 3	SOZOUT 3	NOXPPM_3	COPPM 3	STMRPT 3
Date	Time	(PPMDC)	(PPMDC)	-	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)	_
	11:14	2.2	191.1	9.6	7.7	2.1	181.7	9.1	185.5
	11:15	1.9	190.3	9.0	7.7	1.8	180.2	8.6	184.5
	11:16	1.5	189.3	7.9	7.8	1.5	178.4	7.4	184.8
	11:17	1.4	195.3	6.8	7.9	1.3	183.3	6.3	185.7
	11:18	1.3	193.8	6.3	7.3	1.3	190.1	6.1	185.1
	11:19	1.4	185.6	7.2	7.5	1.3	178.3	6.9	186.0
	11:20	1.5	180.2	7.6	7.7	1.4	171.5	7.2	184.6
	11:21	1.6	179.1	7.2	7.7	1.5	169.8	6.8	186.2
	11:22	1.9	184.8	8.2	7.7	1.8	175.9	7.8	185.1
	11:23	1.4	190.5	7.3	7.5	1.3	183.2	7.0	186.3
	11:24	1.1	190.4	14.3	7.8	1.1	179.6	13.5	187.4
	11:25	1.7	183.8	9.6	7.1	1.7	183.2	9.6	184.9
	11:26	1.9	187.5	6.3	7.5	1.8	180.6	6.1	185.4
	11:27	1.8	191.9	7.2	7.9	1.6	179.6	6.8	186.8
	11:28	1.9	184.9	6.5	7.4	1.8	180.1	6.3	185.0
	11:29	2.0	182.1	6.6	7.8	1.9	171.8	6.2	187.4
	11:30	2.1	183.8	8.5	7.9	2.0	172.3	8.0	198.1
	11:31	2.4	175.7	6.8	7.3	2.3	172.1	6.6	185.1
	11:32	2.3	172.3	7.5	7.7	2.2	163.1	7.1	185.6
	11:33	2.4	175.3	10.2	8.0	2.2	162.9	9.4	185.0
	11:34	2.9	179.9	9.1	7.5	2.7	173.1	8.7	184.6
	11:35	3.2	185.2	10.8	8.0	2.9	171.2	10.0	187.6
	11:36	3.6	185.7	9.6	7.4	3.5	180.5	9.3	183.5
,	11:37	3.6	187.0	7.4	7.8	3.4	176.7	7.0	181.0
	11:38	3.7	192.5	9.4	8.6	3.2	170.4	8.4	180.5
•	11:39	4.1	191.7	9.4	8.2	3.7	174.6	8.6	181.3
	11:40	4.3	188.7	11.1	8.2	4.0	171.8	10.1	181.8
Aver	age =	2.3	185.9	8.4	7.7	2.1	176.2	8.0	185.0
Geometric A	lvg. =	2.1	185.8	8.2	7.7	2.0	176.0	7.8	185.0
Maxi	mum =	4.3	195.3	14.3	8.6	4.0	190.1	13.5	188.1
Mini	inum =	1.1	172.3	6.3	7.1	1.1	162.9	6.1	180.5
ossible Val	ues =	27	27	27	27	27	27	27	27
ncluded Val	lues =	27	27	27	27	27	27	27	27
To	otal =	61.2	5018.4	227.3	208.6	57.7	4756.1	215.0	4994.8

- excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

-999 - missing value

Plant Name: NBWD

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

Fite Name: UNIT3 Data Averaging Type: 1m Time of Report: 03/17/10 12:26 Rolling Average Interval: 1

(SO2ORPT3	NOXRPT 3	CORPT 3	020UT_3	8020UT_3	NOXPPM 3	COPPM_3	STMRPT 3	
Date	Time	(PPMDC)	(PPMDC)	(PPMDC)	(PERCENTD)	(PPMD)	(PPMD)	(PPMD)	(KLB/HR)	
03/17/10	11:49	3.8	201.1	11.1	8.3	3.4	181.6	10.1	181.2	
	11:50	3.7	205.5	11.4	8.3	3.3	185.8	10.3	182.4	
	11:51	3.5	205.4	9.4	7.8	3.3	193.0	8.8	182.1	
	11:52	3.3	207.5	9.9	8.1	3.0	191.7	9.1	184.5	
	11:53	3.0	206.6	7.8	7.6	2.9	197.9	7.5	183.5	
	11:54	3.0	207.2	7.3	7.5	2.8	199.0	7.0	181.8	
	11:55	2.7	206.5	10.5	8.1	2.5	190.3	9.7	181.7	
	11:56	2.8	196.5	11.0	7.9	2.6	183.8	10.3	179.9	
	11:57	3.3	198.7	12.6	8.3	3.0	180.0	11.4	181.2	
	11:58	3.9	204.8	12.0	8.2	3.5	187.9	11.0	181.0	
	11:59	4.8	205.6	12.1	8.2	4.4	187.8	11.1	182.6	
	12:00	4.7	194.2	11.3	7.8	4.4	182.7	10.6	180.9	
	12:01	4.3	192.6	10.4	8.0	4.0	178.8	9.7	181.8	
	12:02	4.3	197.1	11.2	7.8	4.0	185.5	10.5	182.2	
	12:03	4.4	190.4	10.9	7.7	4.2	181.1	10.4	180.4	
	12:04	4.3	192.8	10.9	8.0	4.0	179.2	10.2	181.1	
	12:05	5.0	197.8	12.0	8.3	4.5	179.1	10.9	181.1	
	12:06	5.3	192.8	11.1	8.1	4.9	177.8	10.3	184.2	
	12:07	5.1	189.3	10.2	7.5	4.9	182.7	9.8	181.9	
	12:08	4.3	187.0	7.7	7.5	4.1	190.6	7.4	183.4	
	12:09	3.0	193.1	9.1	7.9	3.5	181.2	7.6	184.8	
	12:10	3.6	198.1	6.6	7.3	3.6	194.1	6.5	182.4	
	12:11	3.5	198.6	6.4	7.6	3.3	189.7	6.1	183.1	
	12:12	3.3	203.6	6.4	8.0	3.1	189.6	6.0	183.7	
	12:13	3.3	200.6	5.2	7.6	3.2	191.4	5.0	182.7	
	12:14	3.2	198.2	6.0	7.9	3.0	185.4	5.6	182.3	
	12:15	3.2	202.3	7.0	8.1	2.9	186.0	6.4	183.0	
λv	 erage =	3.8	199.0	9.5	7.9	3.6	186.1	8.9	182.3	
Geometric	_	3.8	198.9	9.2	7.9	3.5	186.0	8.6	182.2	
	ximum =	5.3	207.5	12.6	8.3	4.9	199.0	11.4	184.8	
	nimum =	2.7	187.0	5.2	7.3	2.5	177.8	5.0	179.9	
Possible V		27	27	27	27	27	27	27	27	
Included V	alues =	27	27	27	27	27	27	27	27	
	Total =	103.1	5373.9	256.6	213.4	96.4	5023.6	239.2	4920.8	

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

S - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated

General Average Report

Reporting Period: 03/17/2010 to 03/17/2010

Site Name: UNIT3

Time Ro1 Data Averaging Type: 1m

e of	Report:	03/17/10	13:00	
ling	Average	Interval:	1	

Date Time (PPMDC) (PPMDC) (PPMDC) (PPMDC) (PPMDC) (PPMD) (PPMD) (PPMD) (PPMD) (RLB/HR O3/17/10 12:26 4.9 197.0 8.2 8.0 4.5 183.0 7.7 183 12:27 4.5 188.3 10.1 8.6 4.0 167.2 9.0 184 12:28 4.4 180.4 8.3 8.2 4.0 166.8 7.6 182 12:29 4.7 179.7 8.9 8.6 4.1 158.9 7.8 182 12:29 4.7 179.7 8.9 8.6 4.1 158.9 7.8 182 12:30 5.2 179.0 11.7 9.0 4.5 153.4 10.0 181 12:31 5.8 183.3 13.5 9.1 4.9 155.3 11.4 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:33 6.9 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 183 12:39 9.4 193.6 10.5 8.8 8.2 168.5 9.2 13.0 180 12:39 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 167.2 10.0 180 12:44 12:4 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:44 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:44 12:47 7.9 198.2 15.0 9.1 10.4 9.1 10.8 176.9 11.9 182 12:44 12:47 7.9 198.2 15.0 9.1 10.8 176.9 11.9 182 12:49 7.6 195.5 15.3 9.2 9.9 176.7 12.9 182 12:49 7.6 195.5 15.3 9.2 9.9 176.7 12.9 182 12:49 7.6 195.5 15.3 9.2 9.9 176.7 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.1 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.0 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 170.6 11.0 182 12:50 9.5 193.6 17.2 9.3 10.8 160.9 13.3 182 12:50 9.5 193.6 17.2 9.3 10.8 160.9 13.3 182 12:50 9.5 193.6 17.2 9.3 10.8 160.9 13.3										
03/17/10 12:26			SOZORPT3	NOXRPT_3	CORPT_3	020UT_3	8020UT_3	NOXPPM_3	COPPM_3	STMRPT_3
12:27 4.5 188.3 10.1 8.6 4.0 167.2 9.0 184 12:28 4.4 180.4 8.3 8.2 4.0 164.8 7.6 182 12:29 4.7 179.7 8.9 8.6 4.1 158.9 7.8 182 12:30 5.2 179.0 11.7 9.0 4.5 153.4 10.0 181 12:31 5.8 183.3 13.5 9.1 4.9 155.3 11.4 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:33 7.7 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:38 9.4 193.6 10.5 8.8 6.9 168.2 10.6 181 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.9 182 12:49 7.6 155.5 15.3 9.2 9.9 176.7 12.9 182 12:49 7.6 155.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 155.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 155.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 155.5 15.3 8.9 6.5 168.2 13.2 181 12:52 9.4 187.4 17.0 9.0 8.1 160.8 161.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 00ssible Values = 27 27 27 27 27 27 27 27 27 27 28			-		-					
12:28 4.4 180.4 8.3 8.2 4.0 164.8 7.6 182 12:29 4.7 179.7 8.9 8.6 4.1 158.9 7.8 182 12:30 5.2 179.0 11.7 9.0 4.5 153.4 10.0 181 12:31 5.8 183.3 13.5 9.1 4.9 155.3 11.4 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:33 6.9 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 183 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 174.3 10.8 181 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.3 192 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.3 192 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.3 192 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.3 182 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 166.0 11.0 182 Average 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average 8.3 192.2 12.8 8.9 6.8 165.9 10.9 182 Maximum 12.7 209.6 17.2 9.3 10.8 165.9 10.9 182 Maximum 24.4 179.0 8.2 8.0 4.0 153.4 7.6 180 Gossible Values 27 27 27 27 27 27 27 77 77 77 77 77 78	03/17/10									183.6
12:29 4.7 179.7 8.9 8.6 4.1 158.9 7.8 182 12:30 5.2 179.0 11.7 9.0 4.5 153.4 10.0 181 12:31 5.8 183.3 13.5 9.1 4.9 155.3 11.4 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:33 6.9 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:39 9.4 193.6 10.5 8.8 8.2 168.2 10.6 181 12:39 9.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 7.1 200.7 15.2 9.1 10.8 176.9 11.9 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 166.0 170.4 12.9 182 12:52 9.4 187.4 17.0 9.0 8.1 166.0 170.4 12.9 182 12:52 9.4 187.4 17.0 9.0 8.1 166.0 11.0 182 Average 8 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average 8 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average 8 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average 8 8.3 192.2 12.8 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.2 8.0 4.0 163.5 14.5 181. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.0 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.0 185										184.6
12:30 5.2 179.0 11.7 9.0 4.5 153.4 10.0 181 12:31 5.8 183.3 13.5 9.1 4.9 155.3 11.4 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:33 6.9 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.3 10.8 189.0 14.6 181 Average 8 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average 8 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.5 180 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.5 180										182.9
12:31 5.8 183.3 13.5 9.1 4.9 155.3 11.4 183 12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:33 6.9 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 208.1 14.0 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:52 9.4 187.4 17.0 9.0 8.1 160.9 13.3 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 189.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 ossible Values = 27 27 27 27 27 27 27 27 27 27 27 27		12:29	4.7	179.7						182.8
12:32 6.5 182.5 13.0 8.8 5.6 159.4 11.3 183 12:33 6.9 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 180.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:52 9.4 187.4 17.0 9.0 8.1 160.9 13.3 182 Average 8.3 192.2 12.8 8.9 7.1 166.0 17.4 12.9 182 Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 Ossible Values = 27 27 27 27 27 27 27 27 27 27 27		12:30	5.2	179.0						181.7
12:33 6.9 180.8 12.6 8.7 6.1 159.0 11.0 183 12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:43 12.7 205.0 12.7 9.1 10.8 174.0 9.8 181 12:44 12.7 208.1 14.0 9.1 10.8 174.3 10.8 181 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.9 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:52 9.4 187.4 17.0 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.9 160.9 13.3 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 6.8 165.9 10.9 13.3 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Billion		12:31	5.8	183.3						183.1
12:34 7.4 179.6 12.4 8.7 6.5 157.9 10.9 185 12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.9 166.9 13.3 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 184 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 184 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 184 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 184 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 184		12:32	6.5	182.5		8.8	5.6			183.8
12:35 7.7 180.8 15.1 8.7 6.8 159.2 13.3 182 12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:52 9.4 187.4 17.0 9.0 8.1 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.9 13.3 182 Average 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 osssible Values = 27 27 27 27 27 27 27 27 27		12:33	6.9	180.8	12.6	8.7	6.1	159.0	11.0	183.2
12:36 7.9 183.0 11.9 8.6 7.0 162.4 10.6 183 12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181. 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182. 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182. 12:47 7.9 198.2 15.0 9.1 6.0 170.4 12.9 182. 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182. 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.00ssible Values = 27 27 27 27 27 27 27 27 27 27 27 27 27		12:34	7.4	179.6	12.4	8.7	6.5	157.9	10.9	185.5
12:37 7.9 193.7 12.2 8.8 6.9 168.2 10.6 181 12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:48 7.1 200.7 15.2 9.1 6.7 167.8 12.7 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181 Average = 8.3 192.2 12.8 8.9 7.1 166.0 17.0 182 Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 cossible Values = 27 27 27 27 27 27 27 27 27 27		12:35	7.7	180.8	15.1	8.7	6.8	159.2	13.3	182.9
12:38 9.4 193.6 10.5 8.8 8.2 168.5 9.2 180 12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:48 7.1 200.7 15.2 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 cossible Values = 27 27 27 27 27 27 27 27 27 27 27		12:36	7.9	183.0	11.9	8.6	7.0	162.4	10.6	183.2
12:39 10.4 196.6 11.8 9.1 8.8 167.2 10.0 180 12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:52 9.4 187.4 17.0 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Recometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 ossible Values = 27 27 27 27 27 27 27 27 27 27 27		12:37	7.9	193.7	12.2	8.8	6.9	168.2	10.6	181.9
12:40 10.4 196.3 11.3 9.2 8.8 164.9 9.5 180 12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 ossible Values = 27 27 27 27 27 27 27 27 27 27 27		12:38	9.4	193.6	10.5	8.8	8.2	168.5	9.2	180.9
12:41 10.2 202.2 12.6 9.3 8.5 168.8 10.5 181. 12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181. 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181. 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182. 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182. 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182. 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182. 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182. 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. Ossible Values = 27 27 27 27 27 27 27 27 27 27 27		12:39	10.4	196.6	11.8	9.1	8.8	167.2	10.0	180.3
12:42 10.6 203.6 11.5 9.0 9.1 174.0 9.8 181. 12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181. 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182. 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182. 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182. 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182. 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182. 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. Ossible Values = 27 27 27 27 27 27 27 27 27 27 27 27 27		12:40	10.4	196.3	11.3	9.2	. 8.8	164.9	9.5	180.2
12:43 12.7 205.0 12.7 9.1 10.8 174.3 10.8 181. 12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182. 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182. 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182. 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182. 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182. 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.00 181.00 182.		12:41	10.2	202.2	12.6	9.3	8.5	168.8	10.5	181.7
12:44 12.7 208.1 14.0 9.1 10.8 176.9 11.9 182 12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 162. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 162. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.00ssible Values = 27 27 27 27 27 27 27 27 27		12:42	10.6	203.6	11.5	9.0	9.1	174.0	9.8	181.3
12:45 11.8 209.6 15.3 9.2 9.9 176.7 12.9 182. 12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182. 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182. 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182. 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.0 10.0 10.0 10.0 10.0 10.0 10.0 10.		12:43	12.7	205.0	12.7	9.1	10.8	174.3	10.8	181.9
12:46 9.7 203.3 13.1 9.2 8.2 171.6 11.1 182. 12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182. 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182. 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.00000000000000000000000000000000000		12:44	12.7	208.1	14.0	9.1	10.8	176.9	11.9	182.4
12:47 7.9 198.2 15.0 9.1 6.7 167.8 12.7 182. 12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182. 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Average = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.0 1938ible Values = 27 27 27 27 27 27 27 27 27 27		12:45	11.8	209.6	15.3	9.2	9.9	176.7	12.9	182.5
12:48 7.1 200.7 15.2 9.1 6.0 170.4 12.9 182 12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Beometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185 Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180 Dessible Values = 27 27 27 27 27 27 27 27 27		12:46	9.7	203.3	13.1	9.2	8.2	171.6	11.1	182.6
12:49 7.6 195.5 15.3 8.9 6.5 168.2 13.2 181. 12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. Opsible Values = 27 27 27 27 27 27 27 27 27 27		12:47	7.9	198.2	15.0	9.1	6.7	167.8	12.7	182.1
12:50 9.5 193.6 17.2 9.2 8.0 163.5 14.5 181. 12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182. 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. Opsible Values = 27 27 27 27 27 27 27 27 27 27		12:48	7.1	200.7	15.2	9.1	6.0	170.4	12.9	182.3
12:51 10.4 188.7 15.6 9.0 8.9 160.9 13.3 182 12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181 Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182 Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182 Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180.0 068ible Values = 27 27 27 27 27 27 27 27 27		12:49	7.6	195.5	15.3	8.9	6.5	168.2	13.2	181.5
12:52 9.4 187.4 17.0 9.0 8.1 160.8 14.6 181. Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. Opsible Values = 27 27 27 27 27 27 27 27 27 27 27	, -	12:50	9.5	193.6	17.2	9.2	8.0	163.5	14.5	181.8
Average = 8.3 192.2 12.8 8.9 7.1 166.0 11.0 182. Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. Ossible Values = 27 27 27 27 27 27 27 27 27 27		12:51	10.4	188.7	15.6	9.0	8.9	160.9	13.3	182.5
Geometric Avg. = 7.9 192.0 12.6 8.9 6.8 165.9 10.9 182. Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. Ossible Values = 27 27 27 27 27 27 27 27 27 27		12:52	9.4	187.4	17.0	9.0	8.1	160.8	14.5	181.9
Maximum = 12.7 209.6 17.2 9.3 10.8 183.0 14.6 185. Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. ossible Values = 27 27 27 27 27 27 27 27 27	Av.	 erage =	8.3	192.2	12.8	8.9	7.1	166.0	11.0	182.4
Minimum = 4.4 179.0 8.2 8.0 4.0 153.4 7.6 180. ossible Values = 27 27 27 27 27 27 27 27	Geometric	Avg. =	7.9	192.0	12.6	8.9	6.8	165.9	10.9	182.4
Ossible Values = 27 27 27 27 27 27 27 27	Ma:	ximum =	12.7	209.6	17.2	9.3	10.8	183.0	14.6	185.5
	Mi	nimum =	4.4	179.0	8.2	8.0	4.0	153.4	7.6	180.2
27 27 27 27 27 27 27 27 27	ossible V	alues =	27	27	27	27	27	27	27	27
ncluded Values = 27 27 27 27 27 27 27 27 27	ncluded V	alues =	27	27	27	27	27	27	27	27
Total = 223.3 5190.3 345.8 239.9 192.0 4483.1 298.0 4925.		Total =	223.3	5190.3	345.8	239.9	192.0	4483.1	298.0	4925.2

⁻ excluded values (missing, OOC, invalid, suspect)

⁻ missing

⁻ out-of-control

⁻ invalid

⁻ suspect

⁻ exceedance

⁻ stack not operating

⁻ invalid (PADER)

⁻ missing data substituted

^{-999 -} missing value

^{-888 -} value could not be calculated