

Certified Mail 7099 3400 0005 0929 1619 Return Receipt Requested

November 9, 2000

RECEIVED Mr. W. C. Thomas, P. E. MAR 12 2001 Florida Department of **Environmental Protection** BUREAU OF AIR REGULATION Southwest District

RE:

Multifos "A" and "B" Kilns Dryer & Blending Operation

Permit ID No. 1050059-014-AV

Unit ID No. 036 New Wales Plant

3804 Coconut Palm Drive Tampa, Florida 33619-8318

Dear Mr. Thomas:

Enclosed are the results of the compliance test for the above-referenced permit.

IMC Phosphates requests that the use of dried feed for the kilns be considered confidential pursuant to Section 403.111, Florida Statues.

If you have any questions, please contact me at 863-428-7106.

Sincerely,

P. A. Steadham, Manager **Environmental Services**

Concentrates - Florida

PAS:oan

Enclosures

A. A. Linero (FDEP – Tallahassee) cc:

a:\t 1100

Report of Compliance Sampling

IMC-Phosphates Company

Project: Multifos A & B Production Facility: New Wales Operations Point ID: 36

AIRS: 1050059

Permit Number: 1050059 - 014 - AV Test Date: November 2, 2000

To the best of my knowledge, all applicable field and analytical procedures comply with Florida Department of Environmental Protection requirements and all test data and plant operating data are true and correct.

Signature, Owner or Authorized Representative
Michael A. Daigle, General Manager, New Wales

IMC-Phosphates Company

P.O. Box 2000 Mulberry, FL 33860

(863) 428-2500

Company ID#: 1100

Introduction:

This report details the compliance sampling results for the following source:

Project: Multifos A & B Production Facility: New Wales Operations

Point ID: 36 AIRS: 1050059

Permit Number: 1050059 - 014 - AV Test Date: November 2, 2000

Summary of Results

The source was found to be in compliance with the permits and regulations of the Florida Department of Environmental Protection. The process data and emissions testing results are summarized below:

Process Data:

Kilns P2O5 Food Rate

4.60 TPH

Wet Rock Dryer Feed Rate

40 TPH

Fuel Firing Information

Fuel: Natural Gas

Oil Firing since Last Test:

NO

Dryer Fuel Rate

2.4 MMBtu/hr

A Kiln Fuel Rate

5.3 MMBtu/hr

B Kiln Fuel Rate

49.8 MMBtu/hr

Emissions:

Allowables by Permit Condition Number P7, P.12

	:	Actual	Allowable
Fluorides:	lb/hr	1.52	1.7 based on P2O5 feed rate
	lbrion P2O5	0.331	0.37
Particulates:	lb/hr	10.88	29.83
Visible Emissions:	%	12.1	20

Emissions Testing Methods:

Methods in accordance with Specific Condition Number P15

Fluorides: Method 5 & 13B Combined with modifications as allowed

by Department for analysis.

Particulate: Method 5 & 13B Combined.

Visible Emissions: Method 9

IMC-Agrico Company

Process Information

Project: Multifos A & B Production Facility: New Wales Operations

Point ID: 36 AIRS: 1050059

Permit Number: 1050059 - 014 - AV Test Date:November 2, 2000

Test Time: 937-1333

Page 1 of 2

Process Rate Data & Calculations

Kiln Feed Rate	Kil	n l	ree	d I	Rate
----------------	-----	-----	-----	-----	------

	12111 1 cca 1cm	••					
Date	Time	Kiln	Kiln Feed Rate	Kiln Feed Moisture	% P	/.43646 %P2O5/%P	P2O5 TPH
11/02/2000	0937-1040	B Kiln	12.75	1.64	16	0.43646 Total P2O5 TPH	4.60 4.60
11/02/2000	1108-1214	B Kiln	12.75	1.64	16	0.43646 Total P2O5 TPH	4.60 4.60
11/02/2000	1229-1333	B Kiln	12.75	1.64	16	0.43646 Total P2O5 TPH	4.60 4.60
Average B	Kiln Feed Rat	e:	12.75		A	verage P2O5 TPH	4.60

A Kiln Dryer Feed Rate

			Kiln Feed
Date	Time	Kiln	Rate
11/02/2000	0937-1040	A Kiln	25
11/02/2000	1108-1214	A Kiln	25
11/02/2000	1229-1333	A Kiln	25

Rock Dryer Feed Rate

Average A Kiln Feed Rate:

		Rock Feed		
е	Time	Rate TPH		
2000 0	937-1040	40		
2000 1	108-1214	40	Average Rock Feed Rate	40.0
2000 1	229-1333	40		

25

IMC-Agrico Company

Process Information

Project: Multifos A & B Production Facility: New Wales Operations

Point ID: 36 AIRS: 1050059

Permit Number: 1050059 - 014 - AV Test Date:Novermber 2, 2000 Test Time: 937-1333

Page 2 of 2

Process Rate Data & Calculations

Fuel Usage Information

Date	Time	Fuel Type	Rock Dryer Fuel Rate mmBTU/hr	A Kiln Fuel Rate mmBTU/hr	B Kiln Fuel Rate mmBTU/hr
11/02/2000	937-1040	Natural Gas	2.4	5.3	49.8
11/02/2000	1108-1214	Natural Gas	2.4	5.3	49.8
11/02/2000	1229-1333	Natural Gas	2.4	5.3	49.8
A	verage Fue	l Firing Rates	2.4	5.3	49.8

Oil Fired Since Last Test?

NO

Last Test 02/02/1999

Scrubber Data

2010001 2	-	A Scru	ıbber	B Scr	ubber	Equipment Scrubber		
Date	Time	Flow GPM	Delta P	Flow GPM	Delta P	Flow GPM	Delta P	
11/02/2000	9:00	2258	3.4	3847	3.5	2594	2.40	
	10:00	1821	3.5	3896	3.5	2649	2.50	
	11:00	2207	3.4	3804	3.5	2598	2.50	
	12:00	2263	3.4	3787	3.5	2579	2.40	
	13:00	2257	3.4	3791	3.5	2576	2.40	
Averages		2161.2	3.4	3825	3.50	2599.2	2.44	

Process Statement:

I certify that the above statements are true and correct to the best of my knowledge.

Title: Ponda Lina Sana auto Danz

Date: 11/6/2000

VISIBLE EMISSION OBSERVATION FORM

											·
SOURCE NAME			VATION			START	TIME · 25		STOP T	1ME 25	
IMC PHUSPHA	753	SEC	- 				SECT			<u> </u>	
ADDRESS 3095 C.R. 66	40 W.	MIN	0	15	30	45	MIN	0	15	30	45
NEW WALES		1	15	15	15	15	31	10	15	15	15
	CTATE TOD	2	15	15	15	15	32	15	15	15	15
MUCBERNY	STATE ZIP 37 SGO	3	15	15	15	15	33	15	15	15	15
PHONE -247	SOURCE ID NUMBER		15	15	15	15	34	15	15	15	15
PHONE 863-428-7383	1050059-014-AV-036]	15	15	15	15	35	15	15	15	15
PROCESS EQUIPMENT	OPERATING MODE	1 6	15	13	15	15	36	15	15	10	10
MULTIFOS PRODUC		 		-	<u> </u>		-	10	 		15
CONTROL EQUIPMENT WET SCAUBBET	2 OPERATING MODE	7	15	15	15	10	37	1	10	10	
		1 8 1 —	10	10	15	15	38	15	15	15	15
START CINC. SMCK	STOP	9	15	15	15	15	39	15	15	15	15
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER	10	15	15	15	15	40	15	15	15	15
START = 170 STOP L	START = 170 STOP	11	15	15	15	15	41	15	15	15	15
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER	12	15	15	15	15	42	15	15	15	15
START = 500 STOP	START NW STOP NW	13	15	15	15	15	43	15	1/5	15	10
DESCRIBE EMISSIONS	<u> </u>	1	15	15	15	15	44	10	1/5	1/5	1/5
START LOFTING Pum	PLUME TYPE CONTINUOUS IL	┨┝┷╾	+-	+	+	15	45	15	15	15	15
START WHITE STOP	FUGITIVE II INTERMITTENT	1	15	15	15	1/3	 	1/5	1/3	1/3	15
WATER DROPLETS PRESENT	IS WATER DROPLET PLUME	16	15	 	10	<u> 1 </u>	46	+	+ -	 	
NO % YES !!	ATTACHED HA DETACHED	17	15	15	15	15	47	15	15	15	15
POINT IN THE PLUME AT WHICH OPAC START /C' AROUE EXIT		18	15	15	15	15	48	15	15	15	15
	SIOT -	19	15	15	15	15	49	15	15	15	15
START 5/4 T	STOP L	20	15	15	15	15	50	15	15	15	15
BACKGROUND COLOR	SKY CONDITIONS	21	1/5	15	15	115	51	15	15	1/5	15
START BLUE STOP	START CLCAN STOP	22	1/3	1/5	15	1/5	52	+	10	10	1/5
WIND SPEED	WIND DIRECTION		+				53	+	15	15	115
START 3-5 STOP	START A C STOP WET BULB TEMP RH, percent	23	10	10	10	1/5		+			
START 6 STOP	WET BULB TEMP HAT, percently	24	15	15			54		15		 -
		25	15	15	15		55	 ``	15	15	15
SOURCE LAYOUT SKETCH A	Draw North Arrow	26	15	15	15	15	56		15	15	15
	Emission Point	27	13	15	15	15	57	15	/0	10	15
	<i>'\T</i> \	28	15	15	15	15	56	15	15	15	15
	TAIR	29	13		15	15	59	15	15	15	15
1	846	30	15	1/5	10		9 60	+	1/5	75	15
Sun & Wind							1		READIN		
Plume and	Observer's Position	HIG	RAGE O HEST PE	PACITY I	/	5%	INUI	A O	HEADIN	03 ABU	76
Stack	140°	PAN	GE OF (PACITY	READIN		_1				
SCRAF	PYARA	11		MINIMU		0		MAXIM	JM . /	15	.
Sun Loc	cation Line	OBS	ERVER	S NAME	(PRINT)		7				
				Ene		J. /	EN	17		1 1	
COMMENTS		ОВ	ERVER	SISIGNA	TURE	λ <i>//:</i>	F		DATE	10-10	O
		┧┝┈	SANIZAT	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		770	<u> </u>				
	<u> </u>		TMC	PH	05PH	490	3			٠	,
I HAVE RECEIVED A COPY OF THESE	OPACITY OBSERVATIONS	CEF	TIFIED	BY	OSPH TMP	11.			DATE	1.11	
SIGNATURE	<u> </u>	Ŀ	774	T	+MP				\rightarrow	124/	00
TITLE		VEF	WFIED B	Υ					DATE	•	
i	DATE								ı		

ource Sampling Summary	Sheet				
	NEW WALES				
Plant:	MULTIFOS A &	B KILN			
Company ID:	1100				
FDEP AIRS & Pt. ID:	10500059-036				
Test Team:	DA, FB				
					 !
Parameter	Unit	Run 1	Run 2	Run 3	Average
Date:		11/2/2000	11/2/2000	11/2/2000	
Time Start:	 	937	1108	1229	
Time Start:		1040	1214	1333	
Barometric Pressure:	Inch Ha	30.29	30.29	30.29	<u> </u>
Static Pressure:	 	0.42	0.42	0.42	
Staric Pressure: Stack Pressure:		30.321	30.321	30.321	
,		1.016	1.023	1.009	
Average Sqrt Delta P:					
Average Delta H:		1.150	1.183	1.183	
Maximum Run Vacuum:		7.0	7.0	7.0	
Meter Box Number:		3187	3187	3187	
Average Meter Temp:		77.8	83.4	87.2	
Average Stack Temp:		105.8	107.9	108.1	
Metered Sample Volume:		37.31	37.71	37.52	
Standard Meter Volume:		37.06	37.07	36.63	
Moisture Measured:		0.0473	0.0434	0.0511	
Moisture Saturation:		0.0758	0.0806	0.0810	·
Moisture Used for Calculations:		0.0473	0.0434	0.0511	<u> </u>
Pitot Coefficient:	└	0.84	0.84	0.84	
Nozzle Diameter:	Inch	0.19	0.19	0.19	
Stack Area:	Square Feet	15.90	15.90	15.90	
Traverse Points:	Unity	12	12	12	
Sampling Time:	Minutes	60	60	60	
Stack Gas Molecular Weight:	lb/lb-mol	28.450	28.493	28.408	
Actual Stack Velocity:	Feet/sec	59.116	59.588	58.857	59.1
Actual Stack Gas Flow:	ACFM	56383	56833	56137	564
Dry Standard Stack Gas Flow:	DSCFM	50793	51222	50171	507
Isokinetic Rate:	*****	98.26	97.46	98.33	
	 			·	
Fluoride Emission:	lb/day	42.19	32.08	37.35	37.
Fluoride Emission:		1.76	1.34	1.56	
Particulate Emission:		206.94	103.88	213.72	
Particulate Emission:		8.62	4.33	8.91	

Test Participants

Conducted the Field Testing

- 1 D.Carroll
- 2 F. Barnes
- 3 R. Sellers

Performed the Laboratory Analysis

- 1 D.Carroll
- 2 F. Barnes
- 3 R. Sellers

Provided the Process Data

I P. Green

Prepared the Test Report

1 F. Barnes

Field Data

&

Run Calculations

Run 1 Calculations and Results

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Company ID: 1100

FDEP AIRS & Pt. ID: 10500059-036

Test Team: DA, FB

Date: 11/02/00

Start Time: 937 End Time: 1040

Standard Meter Volume Vms: 37.06 dscf

Average Stack Velocity: 59.12 fps

Stack Gas Volume: 56383 ACFM

Stack Gas Dry Volume: 50793 DSCFM

Isokinetic Variation: 98.26 %

Isokinetics Adjusted For Bws>Saturation: NA %

Vlc calculated for Saturated Conditions: NA ml H2O

Emission Calculations

Particulate Total mg: 47.6 mg

8.62 lb/hr

206.94 lb/day

Fluoride Total mg: 9.70 mg

1.76 lb/hr

42.19 lb/day

Run 1 Data

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Company ID: 1100

FDEP AIRS & Pt. ID: 10500059-036

Test Team: DA, FB

Date: 11/02/00

Start Time: 937 End Time: 1040

Number of Traverse Points: 12

> Dwell Time/Point: 5 min.

Total Test Time: 60 min.

Stack Diameter: 54 inches

> Stack Area: 15.90 sq. ft.

Molecular Weight Dry Md:

28.969

Volume of Water Vapor Condensed: 32 ml

Weight of Water Collected in Silica Gel: 7.1 gram

Moisture Volume Fraction Bwo:

0.0473

Moisture Volume Saturated Bwo:

0.0758

Moisture Percent Saturation:

62

Moisture Used for Calculations:

0.0473

Stack Molecular Weight Ms:

28.450

Barometric Pressure Pb:

30.29 in Hg

Stack Static Pressure Pv:

0.42 in H2O

Stack Pressure Ps:

30.321 in Hg

Average Meter Delta H: Meter Pressure Pm:

1.150 in H2O

30.375 in Hg

Console Number:

3187

Meter Delta Ha:

1.742

Meter Correction Factor:

0.9969

Average Meter Temperature:

77.8 deg. F

Average Stack Temperature:

105.8 deg. F

41.0 deg C

Average Square Root Delta P:

1.016

Meter Volume Vm:

37.31 cu. ft.

Probe Length/Liner: 5' SS

0.84

Nozzle Ident.:

Cp:

0.190

Nozzle Diameter Dn:

0.190 in.

Impinger Set Number:

P-1 1.1350

Average Computer K:

Run 1 Data Sheet

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Date

Dwell Time

Traverse Points

11/2/2000

5 min.

12

1040

Time End

Team (CB/PR): DA, FB

Company ID:

Meter Box Number

Meter Delta Ha (in. H2O)

Meter Correction Factor

1100

Pitot Check

pos

4.8 in H2O

FDEP AIRS & Pt. ID: 10500059-036

3187 1.742

0.9969

Pitot Check

pos

neg Leak Check cfm

vac

Min Value

1.1 in H2O

1.1 in H2O

7 in Hg

<0.020 cfm

5.0

4.7

0.000

		Stacl	k Diameter	54	inches		Nozz	le Ident.:	0.19	neg	4.8 i	n H2O
		Est %	Saturation	95	%	No	zzle Dian	neter Dn:	0.190	Leak C	heck	
		Stack Stat	ic Pressure	0.42	in H2O	lm	pinger Set	Number:	P-1	cfm	0.000	cfm
			ic Pressure	30.29	in Hg		Probe lens	gth/Liner:	5' SS	vac	15	in Hg
	Ь		lar Weight	28.969				t Number	1	l.		·
	υ	i y Molecu	ilai Weight	20.707			1 ittel De	· Mainooi				
			Time Start	937								
		Meter	_	Calc'd	Actual	Stack	Probe	Hot Box	Meter In	Meter Out	Impinger	Pump
Point	Time	Volume	Delta P	Delta H	Delta H	Temp	Temp	Temp.	Temp	Temp	Temp	Vac
1	0.0	150.013	1.1	1.241	1.2	105	242	260	71	71	67	4
2	5.0	153.17	1.1	1.241	1.2	106	239	242	74	71	49	5
3	10.0	156.32	1.1	1.238	1.2	107	236	227	77	71	50	5
4	15.0	159.45	1.1	1.234	1.2	107	242	265	81	72	52	6
5	20.0	162.62	0.98	1.105	1.1	106	241	251	83	73	52	6
6	25.0	165.69	0.87	0.989	1	104	245	240	84	74	54	5
7	30.0	168.549	1	1.151	1.1	105	244	239	83	74	53	6
8	35.0	171.61	1.1	1.259	1.3	107	242	235	85	75	52	7
9	40.0	174.83	1.1	1.248	1.2	107	234	243	85	75	- 54	7
10	45.0	178.05	1.1	1.248	1.2	107	235	252	86	76	57	7
11	50.0	181.26	1	1.137	1.1	105	239	251	86	76	58	7
12	55.0	184.38	0.87	1.000	1	104	241	248	87	77	60	6
13	60.0	187.323										
End				Average		105.8			77.8		54.8	
			1.1	Max			245	265			67	7
				Min			234	227			49	
				Range			223-273	223-273			32-68	

774.4	: .:			0%	
∃1e	:€:	⊸ ⊹ Σ	12	. C 1	とこし

Facility: New Wales

Plant: MultiFus AEB Kilon Company ID:

Test Team:

FDEP AIRS & Pt. ID: 100059-03 6

Run Number:

Date ///02/2000 Traverse Points 12 Stack Diameter inches min. Dwell Time Est % Saturation 95 Stack Static Pressure ,42 in H2O Barometric Pressure 30.29 in Hg Dry Molecular Weight 28.969

Meter Box Number 3187 Meter Delta Ha (in. H2O) 742 Meter Correction Factor 9969 Nozzle Identification: 190 Nozzle Diameter Dn: 190 Impinger Set Number: Probe length/Liner: Filter Set Number:

Pitot Check in H2O pos neg in H2O Leak Check cfm 00 in Hg

ダヌフ Time Start

ime Volume 0 /50.0/3 5 /53./7 10 /56.32 15 /59.45 10 /62.62 15 /65.69	Delta P /, / /, / /, / /, / /, / /, /	Delta H /. 2 /. 2- /	Temp /05 /06 /07 /07	Temp 2 4 2 2 3 6 2 3 6	Temp. 260 242 227	71 74	Temp つ/ フ/	49	Vac 4
5 153.17 10 156.32 15 159.45 10 162.62 15 165.69	1.1 1.1 1.1 .98	1.2	106	239	242	74	71		
15 156.32 15 159.45 10 162.62 15 165.69	1.1 1.1 .48	1.2	107					49	5
15 156.32 15 159.45 10 162.62 15 165.69	1.1	1.2		236	777				
15 159.45 20 162.62 25 165.69	. 48		107		461	77_	7/	50	5
15 165.69		11		242	265	81	72	52	6
		7.1	106	241	251	83	73	5Z	6
	. 27	1.0	104	245	240	84	74	54	_ک
20 168.549	1.0	1.1	105	244	239	83	74	53	6
25 171.61	1.1	1.3	107	242	235	85	75	ح کی	2
40 174.83	1.1	1.2	107	234	243	25	75	54	>
45 178.05	1.1	1.2	107	235	,252	86	メ	۷>	>
50 181.26	1.0	1.1	105	239	251	86	76	32	>
	,87	1.0	104	241	248	87	77	60	6
					<u> </u>				
					l				
						•			
							Ţ-	T	T
	i	-			1.				Ţ
	 				1				
					†	1			1
	 		 		1	†	1	1	1
	 			1		 		 	1
		 		 	1	1	 	 	-
	 		 	<u> </u>	 	 	+	 	1
	26	165.69 .27 20 168.549 1.0 25 171.61 1.1 40 174.83 1.1 45 178.05 1.1 50 181.26 1.0 55 184.38 .87	15 165.69 .27 1.0 20 168.549 1.0 1.1 25 171.61 1.1 1.3 40 174.83 1.1 1.2 45 178.05 1.1 1.2 50 181.26 1.0 1.1 55 184.38 1.87 1.0	15 165.69 .27 1.0 104 20 168.549 1.0 1.1 105 25 171.61 1.1 1.3 107 40 174.83 1.1 1.2 107 45 178.05 1.1 1.2 107 50 181.26 1.0 1.1 105 55 184.38 .87 1.0 104	15 165.69 .27 1.0 104 245 20 168.549 1.0 1.1 105 244 25 171.61 1.1 1.3 107 242 40 174.83 1.1 1.2 107 234 45 178.05 1.1 1.2 107 235 50 181.26 1.0 1.1 105 239 55 184.38 .87 1.0 104 241	15 165.69 .27 1.0 104 245 240 20 168.549 1.0 1.1 105 244 239 25 171.61 1.1 1.3 107 242 235 40 174.83 i.1 1.2 107 234 243 45 178.05 1.1 1.2 107 235 252 50 181.26 1.0 1.1 105 239 251 55 184.38 .87 1.0 104 241 248	15 165.69 .27 1.0 104 245 240 84 20 168.549 1.0 1.1 105 244 239 83 25 171.61 1.1 1.3 107 242 235 85 40 174.83 1.1 1.2 107 234 243 85 45 178.05 1.1 1.2 107 235 252 86 50 181.26 1.0 1.1 105 239 251 86 55 184.38 .87 1.0 104 241 248 37	15 165.69 .27 1.0 104 245 240 84 74 26 168.549 1.0 1.1 105 244 239 83 74 35 171.61 1.1 1.3 107 242 235 85 75 40 174.83 1.1 1.2 107 234 243 85 75 45 178.05 1.1 1.2 107 235 252 86 76 50 181.26 1.0 1.1 105 239 251 86 76 35 184.38 187 1.0 104 241 248 37 77	15 165.69 .27 1.0 104 245 240 84 74 54 26 168.549 1.0 1.1 105 244 239 83 74 53 35 171.61 1.1 1.3 107 242 235 85 75 52 40 174.83 1.1 1.2 107 234 243 85 75 54 45 178.05 1.1 1.2 107 235 252 86 76 57 50 181.26 1.0 1.1 105 239 251 36 76 58 55 184.38 .87 1.0 104 241 248 37 77 60

Time End 1040 Pitot Check in H2O lin H20 Leak Check ,00 lin He

Calculations and Results Run 2

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Company ID:

1100

FDEP AIRS & Pt. ID: 10500059-036

Test Team: DA, FB

Date: 11/02/00

Start Time:

1108

End Time:

1214

Standard Meter Volume Vms:

37.07 dscf

Average Stack Velocity:

Stack Gas Volume:

59.59 fps 56833 ACFM

Stack Gas Dry Volume:

51222 DSCFM

Isokinetic Variation:

97.46 %

Isokinetics Adjusted For Bws>Saturation:

NA %

VIc calculated for Saturated Conditions:

NA ml H2O

Emission Calculations

Particulate

Total mg: 23.7 mg

4.33 lb/hr

103.88 lb/day

Fluoride

Total mg:

7.32 mg

1.34 lb/hr

32.08 lb/day

Run 2 Data

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Company ID: 1100

FDEP AIRS & Pt. ID: 10500059-036

Test Team: DA, FB

Date: 11/02/00

Start Time: 1108 End Time: 1214

Number of Traverse Points: 12

Dwell Time/Point: 5 min.

Total Test Time: 60 min.

Stack Diameter: 54 inches

Stack Area: 15.90 sq. ft.

Molecular Weight Dry Md: 28.969
Volume of Water Vapor Condensed: 28 ml

Weight of Water Collected in Silica Gel: 7.7 gram

Moisture Volume Fraction Bwo: 0.0434

Moisture Volume Saturated Bwo: 0.0806

Moisture Percent Saturation: 54

Moisture Used for Calculations: 0.0434

Stack Molecular Weight Ms: 28.493

Barometric Pressure Pb: 30.29 in Hg
Stack Static Pressure Pv: 0.42 in H2O
Stack Pressure Ps: 30.321 in Hg
Average Meter Delta H: 1.183 in H2O

Meter Pressure Pm: 30.377 in Hg
Console Number: 3187
Meter Delta Ha: 1.742

Meter Correction Factor: 0.9969

Average Meter Temperature: 83.4 deg. F

Average Stack Temperature: 107.9 deg. F 42.2 deg C

Average Square Root Delta P: 1.023

Meter Volume Vm: 37.71 cu. ft.

Probe Length/Liner: 5' SS

Cp: 0.84

Nozzle Ident.: 0.190 Nozzle Diameter Dn: 0.190 in.

Impinger Set Number: F-2 Average Computer K: 1.1359

Run 2 Data Sheet

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Team (CB/PR): DA, FB

Company ID:

1100

FDEP AIRS & Pt. ID: 10500059-036

	= • •			11/02/2000			Meter Bo	x Number	3187				
		D	well Time	5 r	nin.	Meter	Delta Ha	(in. H2O)	1.742	Pitot C	heck		
		Trav	erse Points	12		Me	ter Correct	ion Factor	0.9969	pos	4.1	in H2O	
			k Diameter		inches	*	Nos	zle Ident.:	0.190	neg		in H2O	
			Saturation	95 9				meter Dn:	0.190	Leak C		111120	
			=										
			ic Pressure		in H2O	Ir			F-2	cfm			
	Barometric Pressure			30.29 i	in Hg			gth/Liner:		vac	15	in Hg	
	Dry Molecular Weight			28.969			Filter S	et Number	2				
	m. a.			1100									
			Time Start	1108	Actual	Stack	Probe	Hot Box	Meter In	Meter Out	Impinaer	Pump	
Point	Т:	Meter Volume	Delta P	Calc'd Delta H	Actual Delta H	Temp	Temp	Temp.	Temp	Temp	Temp	rump Vac	
Point 1	0.0	187.718	1.05	1.200	1.2	104	244	243	75	75	67	4	
2	5.0	190.95	1.05	1.200	1.2	108	235	. 247	79	75	51	4	
3	10.0	194.12	1.1	1.234	1.2	109	237	240	85	76	52	4	
4	15.0	197.21	1.1	1.235	1.2	109	237	242	89	76		5	
5	20.0	200.25	1.1	1.240	1.2	109	237	245	91	77	54	5	
6	25.0	203.41	1	1.130	1.1	107	239	242	93	78	56	6	
7	30.0	206.557	0.96	1.101	1.1	107	239	251	89	78	61	6	j
. 8	35.0	209.62	1.1	1.256	1.3	108	237	249	92	79	59	7	,
9	40.0	212.86	1.1	1.254	1.3	109	238	250	93	80	. 60	7	,
10	45.0	216.08	1.1	1.249	1.3	109	236	253	93	80	60	7	7
11	50.0	219.32	1	1.135	1.1	108	237	249	93	81	61	6)
12	55.0	222.41	0.92	1.052	1	108	238	251	94	81	61	6)
End	60.0	225.425											
				Average		107.9			83.4		58.1	_	_
			1.1	Max			244	253			67	7	7
				Min			235	240			51		
				Range			223-273	223-273	•••	a	32-68		
				1014						Check	Min Valu		
			Time End	1214					pos			in H2O in H2O	
									neg		1.1	III HZQ	
									Leak		-0.020	o from	
									cfm				
									vac	10	4 7	in Hg	

Run Number: 2

Facility: New Wales

Plant: Multifor A & B Kill

Company ID:

1100

Test Team:

RS IDA IFB

FDEP AIRS & Pt. ID:

1050059-036

Traverse Points /2

Stack Diameter 54 inches

Dwell Time 5 min.

Est % Saturation 95 %

Stack Static Pressure , 42 in H20

Barometric Pressure 70.29 in Hg

Dry Molecular Weight 28.969

Meter Box Number 3/87

Meter Delta Ha (in. H2O) 1.742

Meter Correction Factor , 946 9

Nozzle Identification: .140

Nozzle Diameter Dn: .190

Impinger Set Number: F-2

Probe length/Liner: 5'55

Filter Set Number: 2

Pitot Check

pos 4.1 in H2O

neg 4.5 in H2O

Leak Check

cfm 00

vac 15 in Hg

Time Start //08

		Meter		Actual	Stack	Probe	Hot Box	Meter In	Meter Out	Impinger	Pump
Point	Time	Volume	Delta P	Delta H	Temp ·	Temp	Temp.	Temp	Temp	Temp	Vac
1	0	187.718	1.05	1.2	104	244	243	75	75	67	4
2	5	190.95	1.05	1.2	108	235	247	79	75	51	4
3	10	194.12	1.1	1, 2	109	237	240	85	76	52	4
4	15	197. 21	1.1	1.2	109	237	242	89	76	55	5
5	20	200.25	1.1	1.2	109	237	245	91	77	58	7
6	25	203.41	1.0	1.1	107	239	242	93	78	58	6
, 7	30	206.557	. 96	1.1	107	239	251	89	78	61	6
2 8	35	209.62	1.1	1.3	108	237	249	92	75	59	>
3 9	40	2/2.86	1.1	1.3	109	238	250	93	80	60	7
y <u>10</u>	45	216.08	1.1	1.3	109	236	253	93	80	60	>
5 11	50	219.32	1.0	1.1	108	237	249	93	81	61	6
4 12	55	122.41	,92	1.0	108	238	251	94	81	61	6
13	60	225.425	-				<u> </u>				
14					<u> </u>	<u> </u>		1			ļ
15		<u> </u>		<u> </u>							
16	,					<u> </u>	<u> </u>				<u> </u>
17											
18]	<u> </u>	<u> </u>		<u> </u>	
19)							<u> </u>			
20)						<u> </u>				<u> </u>
21											
22							1				
23				1	<u> </u>						
24											
25	+			1			1				
End						1	1	1	 		

Time End /2/4

Pitot Check

pos 4.2 in H2O

neg 4.7 in H2O

cfm .000 in Hg

Run 3 Calculations and Results

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Company ID: 1100

FDEP AIRS & Pt. ID: 10500059-036

Test Team: DA, FB

Date: 11/02/00

Start Time: 1229 End Time: 1333

Standard Meter Volume Vms: 36.63 dscf

Average Stack Velocity: 58.86 fps

Stack Gas Volume: 56137 ACFM

Stack Gas Dry Volume: 50171 DSCFM

Isokinetic Variation: 98.33 %

Isokinetics Adjusted For Bws>Saturation: NA %

Vlc calculated for Saturated Conditions: NA ml H2O

Emission Calculations

Particulate Total mg: 49.2 mg

8.91 lb/hr

213.72 lb/day

Fluoride Total mg: 8.60 mg

1.56 lb/hr

37.35 lb/day

Run 3 Data

Facility: NEW WALES

Plant: MULTIFOS A & B KILN

Company ID: 1100 FDEP AIRS & Pt. ID: 10500059-036

Test Team: DA, FB

11/02/00 Date:

Start Time: 1229 End Time: 1333

Number of Traverse Points: 12

> Dwell Time/Point: 5 min. **Total Test Time:** 60 min.

54 inches Stack Diameter:

Stack Area: 15.90 sq. ft.

Molecular Weight Dry Md: 28.969 Volume of Water Vapor Condensed:

34 ml Weight of Water Collected in Silica Gel: 7.9 gram

Moisture Volume Fraction Bwo: 0.0511 Moisture Volume Saturated Bwo: 0.0810 Moisture Percent Saturation: 63

Moisture Used for Calculations: 0.0511 Stack Molecular Weight Ms: 28.408

> Barometric Pressure Pb: 30.29 in Hg Stack Static Pressure Pv: 0.42 in H2O

Stack Pressure Ps: 30.321 in Hg Average Meter Delta H: 1.183 in H2O Meter Pressure Pm: 30.377 in Hg Console Number: 3187

Meter Delta Ha: 1.742 Meter Correction Factor: 0.9969

Average Meter Temperature: 87.2 deg. F

108.1 deg. F 42.3 deg C Average Stack Temperature:

0.190

Average Square Root Delta P: 1.009

37.52 cu. ft. Meter Volume Vm:

Probe Length/Liner: 5' SS

Cp: 0.84

Nozzle Ident .: Nozzle Diameter Dn: 0.190 in.

Impinger Set Number: F-3

Average Computer K: 1.1412

Run 3 **Data Sheet**

Facility: NEW WALES

Dry Molecular Weight

Plant: MULTIFOS A & B KILN

Team (CB/PR): DA, FB

Company ID:

1100

FDEP AIRS & Pt. ID: 10500059-036

Meter Box Number	3187
Meter Delta Ha (in. H2O)	1.742

Dwell Time 5 min. **Traverse Points** 12 Stack Diameter 54 inches 95 % Est % Saturation Stack Static Pressure 0.42 in H2O **Barometric Pressure** 30.29 in Hg

28.969

Date 11/02/2000

0.9969 Meter Correction Factor Nozzle Ident.: 0.190 Nozzle Diameter Dn: Impinger Set Number:

0.190 Leak Check F-3

Probe length/Liner: 5' SS Filter Set Number

3

0.000 cfm cfm 15 in Hg vac

4.5 in H2O

4.5 in H2O

Pitot Check

pos

neg

			Time Start	1229								
		Meter		Calc'd	Actual	Stack	Probe	Hot Box	Meter In	Meter Out 1	Impinger	Pump
Point	Time	Volume	Delta P	Delta H,	Delta H	Temp	Temp	Temp.	Temp	Temp	Temp	Vac
1	0.0	226.141	1	1.130	1.1	108	237	239	81	81	65	4
2	5.0	229.21	1.1	1.244	1.3	108	235	251	87	81	49	5
3	10.0	232.42	1.1	1.250	1.3	108	236	241	89	81	49	5
4	15.0	235.64	1.1	1.253	1.3	108	235	252	92	82	51	5
5	20.0	238.79	0.94	1.074	1.1	108	234	247	93	82	54	5
6	25.0	241.91	0.89	1.018	1	107	236	245	94	83	54	5
7	30.0	244.841	1	1.153	1.2	108	237	243	88	83	60	5
8	35.0	247.94	1	1.140	1.1	108	235	244	93	83	56	5
9	40.0	251.05	1.1	1.260	1.3	108	236	247	94	84	57	6
10	45.0	254.29	1.1	1.262	1.3	109	235	249	95	86	58	7
11	50.0	257.55	1	1.144	1.2	109	238	248	94	86	60	7
12	55.0	260.73	0.91	1.040	1	108	237	241	94	86	61	6
End	60.0	263.664										
			1	Average		108.1			87.2		56.2	
			1.1	Max			238	252			65	7
				Min			234	239			49	
				Range			223-273	223-273	•		32-68	
									Pitot C	heck	Min Valu	е
			Time End	1333					pos	4.2	1.1	in H2O

pos 1.1 in H2O 4.8 neg

Leak Check

<0.020 cfm

cfm 0.000 7 in Hg vac 11

—·	* -	 	C - 000
41F		 7.5	Sheet

Plant: MultiFos AEB kla Company ID: 1100

Test Team: DC FA FDEP AIRS & Pt. ID: 1050059-036

Traverse Points /2 Meter

Stack Diameter 54 inches Me

Dwell Time 5 min.

Est % Saturation 95 %

Stack Static Pressure ,42 in H20 Ir

Barometric Pressure Jo.29 in Hg

Dry Molecular Weight 28.969

Meter Box Number

3/87

Meter Delta Ha (in. H2O) / 792

Meter Correction Factor , 9969

Nozzle Identification: ,/90

Nozzle Diameter Dn: ,/90

Impinger Set Number: F-3

Probe length/Liner: 555

Filter Set Number: 3

Pitot Check

pos 4.5 in H2O

neg 4.5 in H2O

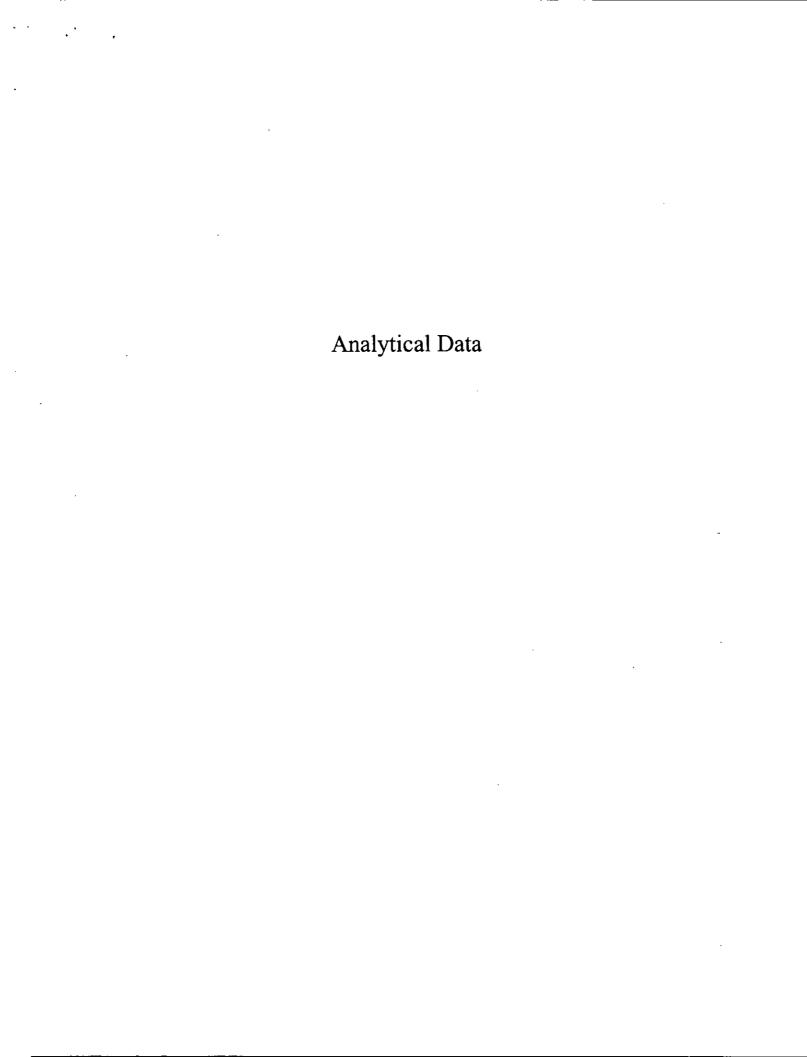
Leak Check

cfm 000

vac /5 in Hg

Time Start /229

	T -	Meter		Actual	Stack	Probe	Hot Box	Meter ln	Meter Out	lmpinger	Pump
Point	Time	Volume	Delta P	Delta H	Temp	Temp	Temp.	Temp	Temp	Temp	Vac
	10	226,141	1.0	1.1	108	237	239	81	81	65	4
	2 5	229.2/	1.1	1.3	108	235	251	87	81	49	-ي
	3 10	232.42	1.1	1.3	108	236	241	89	81	49	5
	4 15	235.64	1.1	1.3	108	235	252	92	82	5/	کـ
	5 10	238.79	,94	1.1	108	234	247	93	82	54	5
	6 25	241.91	,89	1.0	107	236	245	94	83	54	2
1	7 J:	244.841	1,0	1.2	108	237	243	88	83	60	7
2	8 35	147.94	1.0	1.1	108	235	244	93	83	56	ي
3	9 40	251.05	1.1	1.3	108	236	247	94	84	57	6
4 1	0 45	154,29	1.1	1.3	109	235	249	25	86	28	7
5 . 1	1 50	257.55	1.6	1.2	109	238	243	94	86	60	<u> </u>
6 1	2 35	260.73	,9/	1.0	108	237	241	94	86	61	5
1	3 60	263.64				ļ	ļ	 		<u> </u>	 -
	4	<u> </u>				<u> </u>	<u> </u>	ļ	<u> </u>		
!	5				<u> </u>	ļ		·	-	 	
;	6			ļ	ļ	ļ	ļ			<u> </u>	
• 1	17				<u> </u>	ļ	<u> </u>		<u> </u>		
	18						<u> </u>	_	<u> </u>		
	9			ļ	<u> </u>	<u> </u>	ļ		 		
	20	<u> </u>		<u> </u>			<u> </u>		<u> </u>		
	21	1	<u> </u>		<u> </u>		<u> </u>	_			
	22		<u> </u>						<u> </u>		
	23										
	24						<u> </u>				
	25						<u> </u>	<u> </u>			
E	nd							<u> </u>			


Time End /333

Pitot Check

pos 42 in H2O

nee 45 in H2O

cfm .coc in Hg

Particulate and Moisture Data Sheet Method 5 & 13B Combined

Facility NEW WALES			Date	: 11/02/00				
Plant MULTIFOS A & B KI	LN	Run 1						
Impinger Se	et Number: P-1							
Impinger Number:	1	2	3	4				
Final (grams/mls):	130	102	0	. 343.5				
Initial (grams/mls):	100	100	0	336.4				
Difference (grams/mls):	30	2	0	7.1				
Total Moisture Collected:	;		32 mls	7.1 gram				
Filter S	et Number:	1		·				
Filter Analysis		Probe Wash Analysis						
Filter Number:	4	Beaker Number:	М					
Final Weight	0.7519	Final Weight:	144.294	45				
Initial Weight:	0.7129	Initial Weight:	144.28:	59				
Difference:	0.0390	Difference:	0.008	86				
luoride	Fluoride an	d Particulate Calculatio	ns					
i uoriae Probe Wash F	luoride mg	2.46						
Impinger F		0.24						
	luoride mg:	7.00						
articulate	Total Fluoride	mg: 9.70						
Probe Wash Pa	ticulate mg	8.6						
	iculate mg:	39.0						

47.6

Total Particulate mg:

Particulate and Moisture Data Sheet Method 5 & 13B Combined

Facility NEW WALES	<u> </u>		Date:	11/02/00
Plant MULTIFOS A & B KII	LN		Run 2	
Impinger S	et Number: F-2			
Impinger Number:	1	2	3	4
Final (grams/mls):	126	102	0	333.1
Initial (grams/mls):	100	100	0	325.4
Difference (grams/mls):	26	2	0	7.7
Total Moisture Collected:	1		28 mls	7.7 gram
Filter S	et Number: 2			
Filter Analysis	P	Probe Wash Analysis	3	
Filter Number:	5	Beaker Number:	8	
Final Weight	0.6805	Final Weight:	157.2183	
Initial Weight:	0.6635	Initial Weight:	157.2116	
Difference:	0.0170	Difference:	0.0067	
	Fluoride and Part	ticulate Calculatio	ns	
Fluoride		2.02		
Probe Wash	Fluoride mg Fluoride mg:	2.03 0.29		
	Fluoride mg:	5.00		
r nter i	Total Fluoride mg:	7.32		
Particulate	Tom Thomas ing.	·		
Probe Wash Pa	rticulate me	6.7		
	rticulate mg:	17.0		
		22.7		

Total Particulate mg:

23.7

Particulate and Moisture Data Sheet Method 5 & 13B Combined

Facility NEW WALES	<u> </u>		Date	: 11/02/00
Plant MULTIFOS A & B KIL	.N		Run	3
Impinger Se	et Number: F-3			
Impinger Number:	1	2	3	4
Final (grams/mls):	132	102	0	324.9
Initial (grams/mls):	100	100	0	317.0
Difference (grams/mls):	32	2	0	7.9
Total Moisture Collected:	•		34 mls	7.9 gram
Filter So	et Number: 3			
Filter Analysis	·	Probe Wash Analysis	ī	
Filter Number:	6	Beaker Number:	:	31
Final Weight	0.7340	Final Weight:	124.33	04
Initial Weight:	0.6942	Initial Weight:	124.32	10
Difference:	0.0398	Difference:	0.00	94
	Fluoride and Par	ticulate Calculation	ns	
Fluoride		0.66		
Probe Wash F Impinger F		2.55 0.75		
	luoride mg:	5.30		
11101	Total Fluoride mg:	8.60		
Particulate				
Probe Wash Par	ticulate mg	9.4		
	ticulate mg:	39.8		
	Total Particulate mg:	49.2		

Calibrations

Post Test Dry Gas Meter Calibration Form

Facility: New Wales

Plant: Multifos A & B Kiln

Meter Box Number:

3187

Date:

11/6/00

Barometric Pressure, Pb:

30.08

Standard Test Meter Number:

693497

		Gas Vo	lume			Temperat	ure, F			-	1 !
Delta H	Standard	Meter	Dry Gas Meter		Standard Meter		Dry Gas Meter		Time	Yi	Delta H@
	Initial	Final	Initial	Final	Inlet	Outlet	Inlet	Outlet	min.		
1.1	237.29	246.3	267.91	277.12	76	76	84	77	15	0.9839	1.7078
1.1	246.3	255.25	277.12	286.16	76	76	91	79	15	1.0040	1.7165
1.1	255.25	264.07	286.16	295.09	78	78	94	81	15	1.0024	1.7726
Delta I	H to be at in	termediate s	etting from	test.					Tolerance Deviation	+/- 0.02 0.0129	+/- 0.15 0.0403
Test l	Performed a	t Vacuum:	7	in Hg					Average	0.997	1.732

Percentage Difference in Yi Pretest vs Post Test.

0.02 %

Pretest Yi Value

0.9969

Percentage Difference cannot exceed 5%

Person Performing Calibration:

Flint Barnes

Dry Gas Meter Calibration Form

Meter Box Number: 3187

Date:

02/08/00

Barometric Pressure, Pb:

30.25

Standard Test Meter Number:

693497

		Gas Vo	olume			Tempera				37:	Delta H@
Delta H	Standard	Meter	Dry Gas	1	Standard		Dry Gas	Meter Outlet	Time min.	Yi	Desia n@
1	Initial	Final	Initial	<u>Final</u>	Inlet	Outlet	Inlet	Outlet			
0.5	60.271	65.638	43.039	48.515	70	71	75	74	14	0.9863	1.8772
1	65.969	71.027	48.852	53.982	70	71	75	74	9	0.9910	1.7470
1.5	71.662	77.16	54.624	60.198	70	71	80	74	8	0.9948	1.7442
1.5		83.385	60.736	66.395	70	71	81	74	7	0.9964	1.7196
	77.793				70	71	81	74	6	1.0142	1.6604
3	84.125	90.099	67.238	73.163						0.9987	1.7043
4	91.448	97.122	74.617	80.318	70	71	80	75	J:	0.9307	1,7043
									Tolerance	+/- 0.02	+/- 0.15
									Deviation	0.0173	0.135
									Average	0.9969	1.742

Person Performing Calibration:

Flint Barnes

IMC-PHOSPHATES COMPANY

Environmental Department

Nozzle Size Calibration

Facility:	New	ukfe	8		
	multin		Plan-	<i></i>	
Date:	11/2/00				

Nozzie ID	Run Number	D-1	D-2	D-3	Delta	Average
. 190	1,23	.190	.190	. 190	.000	190

D-1, D-2, D-3

Measurement of Diameter at Three locations

Three Decimal Places required.

Delta

Maximum Difference in a D-1, D-2, D-3.

Value not to exceed 0.004.

Average

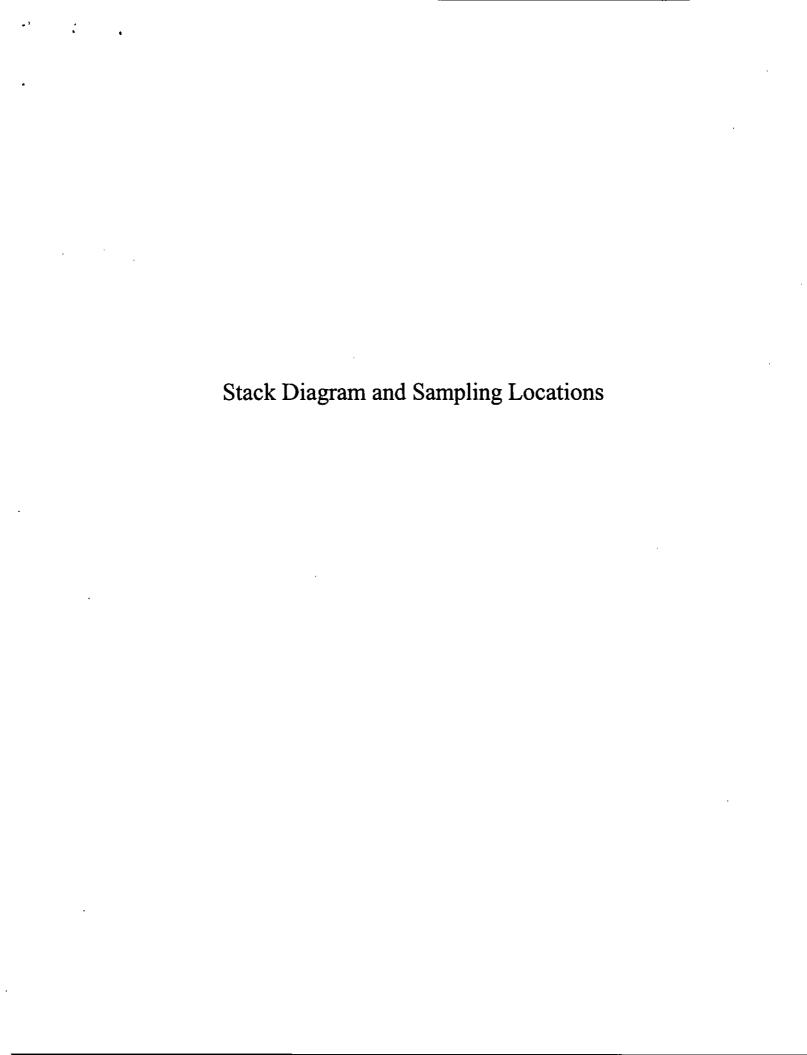
Average of D-1. D-2. D-3.

Three Decimal Places required.

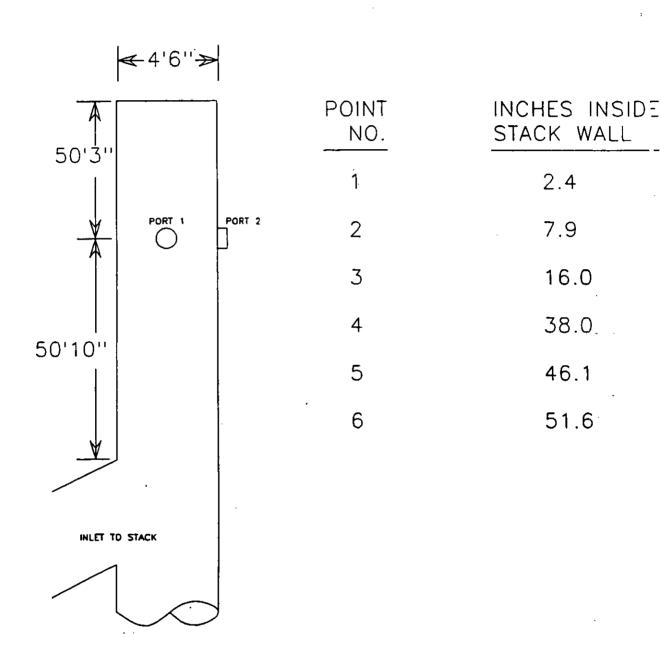
Person Performing Calibration:

Hul Backs

ENVIRONMENTAL Department


7.3.

THERMOMETER CALIBRATIONS


Calibrated BY

FLINT BARNES

	.]				ICE BATH		TE	PID WATE	R	BOILING	WATER	
DATE	ID NÖ.	TYPE	RANGE	STD THERM	TEMP	% or o	STD THERM	TEMP	% or o DIFF	STD THERM	TEMP	
6/26/00	OM1	Them	Dig	38	38	0	62	62	0	210	210	
6/26/00	OM2	Thomas	Dig	38	38	١ .	62	62	0	210	210	C
6/26/00 6/26/00	UMZ	Them				<u> </u>		62	o	210	210	
6/26/00 6/26/00	OM3	Them	Dig	38	38	0	62	- 62			_	
6/26/00	OM4	Them	Dig	34	34	0	82	62	0	210	210	
6/26/00	PS3	т/т	Dig	34	34	0	72	72	0	212	212	
6/26/00				24	34	0	68	68	١ 。	210	210	(
6/26/00 6/26/00	PSA (5)	₹/Т	Dig	34	-					2.0	240	
6/26/00	PSB (5)	<u>T/T</u>	Dlg	34	34	0	70	69	 - 1 -	210	210	
6/26/00	PSC (5)	т/т	Dig	34	34	0_	70	70	0	210	210	
6/26/00			Die	34	34	0	72	72	۰ ا	210	210	
6/26/00	PS8-OLD	1/1	Dig	 ~					0	212	212	
6/26/00	PS6.5	<u>T/T</u>	Dig	34	34	0	68	68				
6/26/00	PG3	T/T	Dig	34	34	0_	72	72	-	210	210	
6/26/00	DOE	T/T	Dłg	34	34	0	70	70	0	212	212	
6/26/00	PG5					0	68	68		0		
6/26/00 6/26/00	E1	1/1	Dig	34	34	 						-
6/26/00	E2	т/т	Dig	34	34	0	68	68	0			
6/26/00 6/26/00	E3	17/1	Dło	34	34	0	70	70	0	0		
6/26/00		7.77	Dig	34	34		68	68		0		
6/26/00	E4	<u> </u>	l Dig	1			70	70	0	212	212	
6/26/00	HB1	1/1	Dig	- 0	- 0	-0	1 70	1	1		212	
6/26/00	HB2	<u> </u>	Dig	0		0_	70	70	 _ 0	210	210	
6/26/00	нвз	1/1	Dig	0	0	0	72	72	0	212	212	
6/26/00	_ np3	†——	\top	1	0	0	70	70	0	210	210 _	L
6/26/00	HB4	<u> </u>	Dig		┨				1	210	210	
6/26/00	PS 8 NE	<u> </u>	Dig .	34	34	0	68	68_		210		
	<u> </u>	 	 -	-	 	-	 	-	STEEL	PROBE		
	<u> </u>	-	<u> </u>		 	 		PS	SIELL			
		l	<u></u>		<u> </u>	 	+-	PG	GLASS	PROBE	 	
				<u> </u>				E	EXIT	ADAPTOR	<u>:</u>	
		1					<u>_</u>	нв	нот	вох		<u> </u>
		 	 	+	1			Them	Digital	Thermome	l ater	
	1	.L			+		+	 	, 		1	1

SAMPLE PORT LOCATION IMC NEW WALES OPERATIONS MULTIFOS PLANT

DATE:		LOCATION: NEW WALES	PILE:
PREPARED:	TITLE: TRAVERSE POINT LOCATION		

Method 1 Sample and Velocity Traverse Selection

Facility: New Wales
Plant: Multifos Plant

Company ID: 1100

FDEP AIRS & Pt. ID: 1050059 & 036

Points for Circular Stacks

Stack Diameter Distance Upstream of Disturbance Upstream Diameters Distance Downstream of Disturbance	54 inches 50.25 feet 11.17 50.83 feet				
Downstream Diameters					
Downstream/Upstream Ratio	11.30 11.17				
]	Particulate	Traverses	
		> 7/1.75	> 6/1.5	> 5/1.25	< 5/1.25
Number of Traverse Points	12 pts	12	16	20	24
Number of Ports	2	No	on Particula	ite Traverse:	S
_	6	>6/1.5	< 6/1.5		
Number of Points per Port Number of Points on Diameter	6	12	16		
Traverse Distance Offset	0 inches				

Point Number	Distanc	e (inches)	Distance w/offset	Distance %
	1	2.35	2.35	4.36
	2	7.91		14.64
	3	15.98	. 5.5 8	29.59
	4	38.02	38.02	70.41
	5	46.09	46.09	85.36
	6	51.65	51.65	95.64
	7	0.00	0.00	0.00
	8	0.00	0.00	0.00
•	9	0.00	0.00	0.00
		0.00	0.00	0.00
	10	0.00	0.00	0.00
	11 12	0.00	0.00	0.00

Department of Environmental Protection

Jeb Bush Governor Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

David B. Struhs Secretary

NOTICE OF AUTHORIZATION

VIA CERTIFIED MAIL

Mr. M.A. Daigle General Manager New Wales Plant IMC Phosphates Company P.O. Box 2000 Mulberry, FL 33860-1100

RECEIVED

OCT 18 2000

BUREAU OF AIR REGULATION

Re:

Request for Test Authorization Dated October 2, 2000

New Wales Plant

Emissions Units 036, 074, 075, 076

Permits: 1050059-024-AC/PSD-FL-244 and 1050059-014-AV

Dear Mr. Daigle:

On October 3, 2000, the Department received your request for an authorization to perform a test project involving A, B, and C Kilns. Specifically, you requested to be able to operate either A or B Kiln as a dryer. The dried material from either A or B Kiln (dryer) would be fed to both C Kiln and A or B Kiln (not being used as the dryer). IMC indicated that the purpose of this test project was to improve and stabilize the operation of C Kiln.

IMC described that this test project will require that A or B Kiln (dryer) process 30-40 TPH as a dryer rather than the maximum permitted throughput rate of 15 TPH. IMC also indicated that the A or B Kiln (dryer) will be operated at a lower temperature of 190°F. C Kiln and A or B Kiln (not being used as the dryer) will operate within the permitted rates of 25 TPH and 15 TPH, respectively. Therefore, resulting in a net emissions decrease for all three kilns.

Based upon the information provided by IMC, the Department hereby grants your request for a test authorization with the following stipulations. Note that this authorization is only applicable to this plant and test project. Also, this authorization does not allow the permittee to circumvent any air pollution control device, or allow the emission of air pollutants without the applicable air pollution control device operating properly [Rule 62-210.650, F.A.C.].

- 1. The length of this test project shall be no longer than 60 days after the receipt of this authorization. IMC shall notify the Department in writing of the start date of this test project.
- 2. IMC shall maintain records of material throughput for A, B, and C Kilns, mixed feed preparation section, and product handling operations. IMC shall record and maintain records of the operating temperature of A, B, and C Kilns.
- 3. IMC shall not exceed the permitted total annual production rate of A and B Kilns nor the annual input rate to C Kiln.
- 4. IMC shall perform compliance testing of A, B, and C Kilns for the following pollutants after the Kiln has reached stable operating conditions, but no later than 21 days after first operation in this mode.
 - a. A and B Kilns: Particulate Matter (PM), Fluorides, Visible Emissions (VE);
 - b. C Kiln: Particulate Matter (PM), Fluorides, Sulfur Dioxide (SO2), Visible Emissions (VE).
- 5. IMC shall notify the Department, prior to the date that the compliance test will begin, of the date, time, and place of each compliance test and test contact person who will be responsible for coordinating the compliance test.
- 6. IMC shall perform this compliance test in accordance with the test methods indicated in permits 1050059-024-AC/PSD-FL-244 and 1050059-014-AV.
- 7. IMC shall file a report with the Department on the results of such test.
 - a. The required test report shall be filed with the Department as soon as practical but no later than 10 calendar days after the last sampling run of each test is completed.
 - b. The report shall provide sufficient detail on the emissions unit tested (at a minimum, the "Project", "Facility ID" and "Emissions Unit ID"), the test procedures used to allow the Department to determine if the test report was properly conducted and the test results properly computed. Testing procedures shall be consistent with the requirements of Rule 62-297.310(7), F.A.C.
- 8. Failure to submit the rates and actual operating conditions in the test report may invalidate the test and fail to provide reasonable assurance of compliance. [Rules 62-297.310(8) and 62-4.070(3), F.A.C.]
- 9. IMC may not operate this facility under the conditions of this test project beyond the 60 days indicated in item 1. If IMC decides to operate under such conditions, IMC must apply for a permit modification to all applicable permits including 1050059-024-AC/PSD-FL-244 and 1050059-014-AV.

A person whose substantial interests are affected by this authorization may petition for an administrative proceeding (hearing) under Sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed (received) in the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida, 32399-3000. Petitions filed by the permit applicant or any of the parties listed below

must be filed within 21 days of receipt of this notice. A petitioner shall mail a copy of the petition to the applicant at the address indicated above at the time of filing. The failure of any person to file a petition within the appropriate time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under Sections 120.569 and 120.57, F.S., or to intervene in this proceeding and participate as a party to it. Any subsequent intervention will be only at the approval of the presiding officer upon the filing of a motion in compliance with Rule 28-106.205, F.A.C.

A petition that disputes the material facts on which the Department's action is based must contain the following information:

- (a) The name and address of each agency affected and each agency's file or identification number, if known;
- (b) The name, address, and telephone number of the petitioner, the name, address, and telephone number of the petitioner's representative, if any, which shall be the address for service purposes during the course of the proceeding; and an explanation of how the petitioner's substantial interests will be affected by the agency determination;
- (c) A statement of how and when petitioner received notice of the agency action or proposed action;
- (d) A statement of all disputed issues of material fact. If there are none, the petition must so indicate:
- (e) A concise statement of the ultimate facts alleged, including the specific facts the petitioner contends warrant reversal or modification of the agency's action; and
- (f) A statement of specific rules or statutes the petitioner contends require reversal or modification of the agency's proposed action; and
- (g) A statement of the relief sought by the petitioner, stating precisely the action petitioner wishes the agency to take with respect to the agency's proposed action.

A petition that does not dispute the material facts upon which the Department's action is based shall state that no such facts are in dispute and otherwise shall contain the same information as set forth above, as required by Rule 28-106.301, F.A.C.

Because the administrative hearing process is designed to formulate final agency action, the filing of a petition means that the Department's final action may be different from the position taken by it in this authorization. Persons whose substantial interests will be affected by any such final decision of the Department on the application have the right to petition to become a party to the proceeding, in accordance with the requirements set forth above.

Mediation is not available in this proceeding.

In addition to the above, a person subject to regulation has a right to apply for a variance from or waiver of the requirements of particular rules, on certain conditions, under Section 120.542, F.S. The relief provided by this state statute applies only to state rules, not statutes, and not to any federal regulatory requirements. Applying for a variance or waiver does not substitute or extend the time for filing a petition for an administrative hearing or exercising any other right that a person may have in relation to the action proposed in this notice.

The application for a variance or waiver is made by filing a petition with the Office of General Counsel of the Department, 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida 32399-3000. The petition must specify the following information:

- (a) The name, address, and telephone number of the petitioner;
- (b) The name, address, and telephone number of the attorney or qualified representative of the petitioner, if any;
- (c) Each rule or portion of a rule from which a variance or waiver is requested;
- (d) The citation to the statute underlying (implemented by) the rule identified in (c) above;
- (e) The type of action requested;
- (f) The specific facts that would justify a variance or waiver for the petitioner;
- (g) The reason why the variance or waiver would serve the purposes of the underlying statute (implemented by the rule); and
- (h) A statement whether the variance or waiver is permanent or temporary and, if temporary, a statement of the dates showing the duration of the variance or waiver requested.

The Department will grant a variance or waiver when the petition demonstrates both that the application of the rule would create a substantial hardship or violate principles of fairness, as each of those terms is defined in Section 120.542(2), F.S., and that the purpose of the underlying statute will be or has been achieved by other means by the petitioner.

Persons subject to regulation pursuant to any federally delegated or approved air program should be aware that Florida is specifically not authorized to issue variances or waivers from any requirements of any such federally delegated or approved program. The requirements of the program remain fully enforceable by the Administrator of EPA and by the person under the Clean Air Act unless and until Administrator separately approves any variance or waiver in accordance with the procedures of the federal program.

This "Authorization" is final and effective on the date filed with the Clerk of the Department unless a timely petition for an administrative hearing is filed pursuant to Sections 120.569 and 120.57, F.S. or unless a request for an extension of time in which to file a petition is filed within the time specified for filing a petition. Upon timely filing of a petition or a request for an

extension of time to file the petition, this authorization will not be effective until further Order of the Department.

Any party to the Order (Authorization) has the right to seek judicial review of the Order pursuant to Section 120.68, F.S., by the filing of a Notice of Appeal under Rule 9.110 of the Florida rules of Appellate Procedure, with the clerk of the Department of Environmental Protection in the Office of General Counsel, Douglas Building, Mail Station 35, 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days after this Order is filed with the Clerk of the Department.

If you have any questions, please call Ann Quillian, P.E. of my staff at (813)744-6100 x 117.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

W.C. Thomas, P.E.

District Air Program Administrator

Southwest District

CERTIFICATE OF SERVICE

This is to certify that this NOTICE OF AUTHORIZATION was sent to the addressee by certified mail and all copies were sent by regular mail before the close of business on OCT 1.3 2000 to the listed persons, unless otherwise noted.

Clerk Stamp

FILING AND ACKNOWLEDGEMENT FILED, on this date, pursuant to Section 120.52(7), Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledge.

Saturia Auchold OCT 1 3 2000 (Date)

cc: Al Linero, FDEP, NSR John Reynolder, NSC