Golder Associates Inc.

5100 West Lemon Street, Suite 114 Tampa, FL USA 33609 Telephone (813) 287-1717 Fax (813) 287-1716 www.golder.com

JIII 22 2008

July 21, 2008

BUREAU OF AIR REGULATION

Via Federal Express

Jeffery F. Koerner
New Source Review Section
Florida Department of Environmental Protection
Bob Martinez Center
2600 Blair Stone Road
Tallahassee, Florida 32399-2400

Re: Request for Additional Information Regarding the Site Expansion – Addition of Two 170 MW Simple Cycle Combustion Turbines – for the Shady Hills Generating Station; Project No. 1010373-007-AC (PSD-FL-402)

Dear Mr. Koerner:

Shady Hills Power Company, LLC (Shady Hills) is in receipt of the Department's June 11, 2008 request for additional information (RAI) related to the May 13, 2008, air construction permit to construct and install two simple cycle GE 7FA combustion turbines at the existing Shady Hills Generating Station. The following responses are provided to the comments in the order in which they were received.

1. Section 2-3 of the Prevention of Significant Deterioration (PSD) report provided with the application identifies the potential emissions of carbon monoxide (CO) for natural gas and distillate oil from the two simple cycle GE 7FA combustion turbines. The report states that CO for natural gas has the potential to emit 9 ppmvd and distillate oil has the potential to emit 20 ppmvd. These emissions are based on a 59°F turbine inlet air condition and a baseload of 2,390 hours/year for natural gas and 1,000 hours/year for distillate oil. Actual CO emissions data for installed units indicate levels of 1-2 ppmvd @ 15% oxygen for gas and oil firing. Please discuss the rationale for the requested higher CO emission rates. Recent PSD permits issued by the Department for the GE 7FA combustion turbines specify CO standards at 4.1 and 8.0 ppmvd @ 15% oxygen for gas and oil firing, respectively. In addition, General Electric offers a guaranteed CO emission rate of 4.1 ppmvd @ 15% oxygen. At these levels, it may be possible for the project to escape PSD review for CO emissions. Please comment.

<u>Response</u>: Shady Hills has re-evaluated the emission levels for carbon monoxide (CO) for the GE 7FA combustion turbines and at this time is requesting permit limits for CO as follows:

- Natural Gas Combustion, 6.5 ppmvd; and
- Distillate Oil Combustion, 13.5 ppmvd.

Based on these concentrations, the maximum annual CO emissions for the Project are 98 tons per year (TPY) assuming an average of 750 hours per year per CT, rather than the 1,000 hours per year per CT initially requested. This annual emission level is below the PSD review threshold for CO of 100 TPY. Updated emission tables are provided in Attachment A.

2. Please describe the evaporative cooling equipment that will be installed on the simple cycle units. What is the expected maximum temperature reduction from the evaporative cooling equipment?

<u>Response</u>: A number of components make up the evaporative cooling system. The main components are briefly described below:

- Evaporative Media Blocks The media blocks are direct contact, irrigated media utilizing cross-fluted cellulose blocks which are impregnated with insoluble anti-rot salts and rigidifying saturants. These blocks are retained in place by facing plates within the cooler section. Air entering the cooler and passing through the water saturated media is cooled through adiabatic exchange of heat.
- Mist Eliminator Panels Mist eliminator blocks are installed directly downstream of the cooler media blocks. These panels protect the turbine from water droplets that may be pulled from the evaporative media blocks. Water separated out of the air stream by the mist eliminator blocks drains forward by gravity into the bottom of the cooler into a sump.
- Distribution Pads Located on top of the media at each water distribution manifold, these pads ensure that the water is evenly distributed across the top of the media.

The evaporative cooler is used where significant operation of the turbine occurs in the warm months and where low relative humidities are common. The cooler air, being denser, gives the machine a higher mass-flow rate and pressure ratio, resulting in an increase in turbine output and efficiency. In addition to achieving extra power, the use of an evaporative cooler increases water vapor in the inlet air, thereby lowering the amount of nitrogen oxides produced in the combustion process.

The evaporative cooler design specifications are as follows (note that these values are design estimates, provided for informational purposes only):

Component/Condition	Setting
Air Flow	772,027 cfm
Evaporative Cooler Air Pressure Drop	0.28 in. w.g.
Drift Eliminator Media Air Pressure Drop	0.03 in. w.g.
Evaporative Cooler Media Velocity (ISO)	538 fpm
Estimated Saturation Efficiency	88 percent

Component/Condition	Setting	
Relative Humidity	64%	
Entering Conditions		
Dry Bulb Temperature	95 F	
Wet Bulb Temperature	84.3 F	
Water Conditions		
Evaporation Rate	16 gpm	
Maximum Blow Down Rate	16 gpm	
Make up water Rate	32 gpm	

The temperature reduction is not a design requirement for the cooler. Instead the design specification identifies that the cooler has a saturation efficiency of a minimum of 85 percent. Saturation efficiency is defined as follows:

 $SE\% = [(DBE-DBL)/(DBE-WBE)] \times 100$

Mr. Koerner July 21, 2008 Page 3

DBE = Dry Bulb Entering Temperature

DBL = Dry Bulb Leaving Temperature

WBE = Wet Bulb Entering Temperature

Accordingly, the maximum temperature decrease really depends on the condition of the incoming air (the wet and dry bulb temperatures) which is basically the humidity of the incoming air.

3. Please provide a discussion of the expected combustion turbine maintenance schedules and compare natural gas and oil.

Response: Combustion maintenance scheduling is based on independent counts of fired starts and fired hours (whichever occurs first). For a peaking plant, as in our case, combustion maintenance scheduling is "starts-based" and fuel type does not change the planned maintenance interval. A base loaded plant will be "hours-based" and fuel type does have an effect. For a base loaded plant, the distillate fuel type has an hours factor of 1.5 compared to 1.0 for gas fuel.

4. See Table B-4 of the application. This table identifies a cost associated with a "selective catalytic reduction bypass duct and stack". Please explain.

Response: Table B-4 has been updated and the bypass duct and stack have been removed. See Attachment B.

5. Were the acid rain forms provided in the application sent to Region 4 of the Environmental Protection Agency (EPA)?

<u>Response</u>: The Acid Rain application forms were only provided initially to the Department, however, the U.S. EPA has since been provided with copies of these application forms.

- 6. The application requests an average operation of 3,390 hours/year/unit with no single unit operating more than 5,000 hours/year. As requested by EPA Region 4 in the past, please revise the control equipment cost estimates for "5,000" hours/year of operation. In addition, please revise the control equipment estimates for the following items:
- An equipment life of 20 years;
- Zero indirect costs for overhead, property taxes, and insurance (see page 2-48 of EPA's OAQPS manual);
- Exclude the "MW loss and Heat Rate Penalty" cost (the table references EPA, page 6-20, but there is no page 6-20 in EPA's OAQPS cost manual);
- For the oxidation catalyst, assume replacement every 5 years or provide vendor data to support replacement every 3 years for 4,000 hours/year on natural gas or 1,000 hours/year on ultra low sulfur distillate oil; and
- Do not double count catalysts costs (see page 2-33 and 2-46 of EPA's OAQPS cost manual).

Please provide the vendor quote for the selective catalytic reduction (SCR) and oxidation catalyst equipment costs.

Response: The NOx control cost analysis has been updated and is included as Attachment B. The control costs are based on vendor quotes from 2003 and scaled up to 2008 cost based on ENR's

Construction Cost Index included as Attachment B. The following changes have been made for the cost analysis:

- Equipment life of 20 years and associated Capital Recovery Factor of 9.44%;
- Per OAQPS page 2-48, indirect costs for overhead, property taxes, and insurance have all been set equal to zero;
- MW loss and Heat Rate Penalty is from EPA 1993 Alternative Control Techniques Document-NOx Emissions from Stationary Gas Turbines, Page 6-20. These losses are associated with the addition of SCR and have been included and accepted by the State in previous BACT cost analysis for SCR control of combustion turbines. As such no changes have been made other than clarification of reference to the EPA 1993 Alternative Control Techniques Document--NOx Emissions from Stationary Gas Turbines.
- CO oxidation catalyst costs have not been updated since CO is no longer subject to PSD review per RAI response No. 1; and
- To prevent double counting of SCR catalyst in the cost analysis, the cost of the catalyst has been removed from the capital cost of the system.

In addition to the changes noted above, additional cost analyses are provided assuming that a single CT could operate up to 5,000 hrs/yr. A summary of the resulting cost-effectiveness evaluation is as follows:

Scenario	Cost Effectiveness (\$/ton)
2,640 hr/y gas and 750 hr/yr	9,640
oil 4,250 hr/yr gas and 750 hr/yr	8,407
oil	14.000
5,000 hr/yr gas only	14,050

- 7. For the facility, the existing combustion turbines have operated at the following maximum rates over the last seven years:
- Less than 1,500 hours/year/combustion turbine total (2002/2003); and
- Less than 325 hours/year/combustion turbine on oil (2002/2003).

Please explain why the proposed peaking units will operate a maximum of:

- 5,000 hours/year/combustion turbine (total);
- 1,000 hours/year/combustion turbine on oil; and
- An average of 3,390 hours/year/combustion turbine.

Response: GE has revised the permit request for oil combustion to an average of 750 hours/year/CT. However, the total maximum requested hours of operation (i.e., gas and oil-firing combined) of an average of 3,390 hours per year per CT is based on anticipated demand and the parameters of the Power Purchase Agreement (PPA). During 2007, Shady Hills experienced a demand of 2,448 total operating hours for CT1, 2,223 total hours for CT2 and 2,502 total hours for CT3. Of these totals, oil firing ranged from ~ 55 to 75 hours annually per CT. The units continue to be dispatched more frequently in 2008 than in previous years, with January through June operating hours totaling 1,414 for CT1, 1,390 for CT2 and 1,413 for CT3. If these actual operating hours were doubled to estimate operating hours for the full 2008 calendar year, it's evident that an upward trend in demand is continuing.

Therefore, regarding the above-requested operating hours, Shady Hills believes an average of 3,390 total operating hours per CT is justified based on past operating history, the anticipated annual growth in energy demand and the obligations under the PPA which require this type of operating flexibility. The request for up to a maximum of 5,000 hours per year of operation for an individual CT, again, is necessary in the event other CTs are not operational or otherwise unavailable. The total operating hours among the two CTs would not increase, however, the maximum hours on an individual CT could. At the Department's request, the response to Comment 6 above provided a revised cost-effectiveness determination based on the ability of an individual CT to operate up to 5,000 hours per year. Finally, as stated above, Shady Hills has revised the requested oil-firing hours to an average of 750 hours per CT, rather than the 1,000 hours per CT initially requested. Shady Hills requires this operational flexibility in order to comply with power demand obligations in the event of a natural gas curtailment. Further, it's anticipated that a certain amount of the oil-firing may entail the use of biofuels, which would be important in attaining any future renewable portfolio standards.

8. Does the facility have a firm contract for the primary fuel of natural gas?

Response: GE will obtain a contract for primary fuel upon development of a Power Purchase Agreement for the project. However, the parameters of the fuel procurement contract will be reflective of the assumptions provided in other associated responses.

9. The application indicates that the facility will become a major source of hazardous air pollutants (HAP) with the additional units. Therefore, the combustion turbines will be subject to the provisions of National Emissions Standards for Hazardous Air Pollutants (NESHAP) Subpart YYYY. Since this regulation has been stayed, currently the only requirement is to notify the Department that the facility is a major source of HAP and the affected units. Please revise the application pages accordingly.

Response: The application incorrectly indicated that the facility will become a major source of hazardous air pollutants. As indicated on Page 2-5,

"The MACT standard in 40 CFR, Subpart YYYY is potentially applicable to the Project. However, Shady Hills Generating Station will not be a major source of HAP emissions since emissions are projected to be below 10 tons per year (TPY) of a single HAP and less than 25 TPY for all HAPs. "

10. A Level 2 VISCREEN analysis was performed which showed potential impacts over the threshold screening level outside the Chassahowitzka PSD Class I area. In addition, the 4.4 m/s wind speed associated with this analysis seemed high. A lower wind speed may result in impacts over the threshold level inside the Class I area. Please provide further detailed justification for this value in order to evaluate whether a PLUVUE analysis should be required.

Response: The Stability Array (STAR) program that was used to compute the wind speed and stability class frequencies was modified. The original STAR wind speed frequencies of 0-3, 4-6, 7-10, 11-16, 17-21 and GT 21 knots were replaced with the following wind speed categories: 0-2, 3-4, 5-6, 7-8, 9-10 and GT10 knots. The first 5 wind speed categories equate closely to 0-1, 1-2, 2-3, 3-4, and 4-5 m/s. The revised STAR frequencies for the south-southeast (SSE), south (S) and the average of the two wind direction sectors is summarized in Table 7-4 Rev. Based on the revised combined wind direction (WD) sector wind speed frequencies, the realistic meteorological condition for VISCREEN Level 2 was D stability and 4.0 m/s. VISCREEN modeling output for natural gas and oil firing are summarized in Figures 7-19 rev and 7-20 rev. The air modeling results vary slightly from the results in the original application which were based on D stability and a wind speed of 4.4 m/s.

Supplement Information: Individual WD Sector Analyses:

The original Level 2 analysis was based on the average wind frequencies from combining both the SSE and S wind direction sectors and assumed a fixed nearest receptors distance of 28 km. These two assumptions produced very conservative plume impacts. Figure 1 shows that over 95 percent of Chassahowitka NWA lies within the SSE sector. The small section that lies within the S wind direction sector is at a minimum distance from the Shady Hills plant of 35 km and a maximum distance of 36 km from the plant. For the SSE wind direction, the actual wind frequencies are so low that the cumulative frequency never reaches 1.0 (see Table 7-4 rev) through the last listed condition of D stability and 5 m/s. As such, D stability and 6 m/s wind speed were assumed as the realistic Level 2 meteorological conditions for the SSE wind direction sector. Similarly, from Table 7-4 rev, D stability and 3 m/s wind speed were assumed as the realistic Level 2 meteorological conditions for the S wind direction sector.

The results for natural gas and fuel oil-firing for the SSE wind direction sector are shown in Figures 7-21 and 7-22, respectively. The results for natural gas and fuel oil-firing for the S wind direction sector are shown in Figures 7-23 and 7-24, respectively. The revised tables and figures referred to in this response are included as Attachment C.

As these responses are providing additional information of an engineering nature, a State of Florida professional engineering certification has also been provided, in accordance with Rule 62-4.050(3), F.A.C. In addition, the appropriate Responsible Official certification page has been signed and included in this submittal.

Should you have any question regarding these responses or need additional information, please contact the undersigned at (813) 287-1717 or Roy Belden at 203-357-6820.

Sincerely,

GOLDER ASSOCIATES INC.

David Larocca

Senior Project Engineer

Scott Osbourn, P.E. Senior Consultant

Attachments

cc: Mara Nasca, Southwest District Office (Mara.Nasca@dep.state.fl.us)
Roy S. Belden, GE Energy Financial Services
William Stevens, GE Energy Financial Services
Rick Waggoner, Compliance Opportunities Group

ATTACHMENT A

UPDATED FDEP APPLICATION FORMS

UPDATED PSD APPLICATION EMISSION CALCULATIONS

EMISSIONS UNIT INFORMATION

Section [1] of [3] **Simple-Cycle Combustion Turbine**

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	. Maximum Process or Throughput Rate:		
2.	. Maximum Production Rate:		
3.	3. Maximum Heat Input Rate: 1,830 million Btu/hr		
4.	Maximum Incineration Rate:	pounds/hr	
		tons/day	
5.	Requested Maximum Operating		
		24 hours/day	7 days/week

52 weeks/year

5,000 hours/year

6. Operating Capacity/Schedule Comment:

Maximum heat input rates: Natural gas firing - 1,623 MMBtu/CT/hr Distillate fuel oil firing - 1,830 MMBtu/CT/hr

Maximum heat input rates are based on lower heating value of each fuel at ambient conditions of 59 degree F, 60 percent RH, 100 percent load, and 14.7 psi pressure.

Fuel oil firing limited to an average of 750 hours/CT/year. Fuel oil firing limited to an average of 1,000 hr/CT/yr.

Annual operation limited to an average of 3,390 hr/CT/yr. No single CT is permitted to operate more than 5,000 hr/yr.

DEP Form No. 62-210.900(1) - Form

083-89507/SH-EU5-EU6.docx Effective: 3/16/08 16 7/21/2008

EMISSIONS UNIT INFORMATION

Section [1] of [3] Simple-Cycle Combustion Turbine

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 2

1. Se _t	Segment Description (Process/Fuel Type):				
Inte	Internal Combustion Engines; Electric Generation; Natural-Gas Firing				
	urce Classification Code 1-002-01	e (SCC):	3. SCC Units Million cub		natural gas burned
4. Ma	aximum Hourly Rate:	5. Maximum Annual Rate: 5,897.8			stimated Annual Activity actor:
7. Ma	aximum % Sulfur:	8. Maximum	% Ash:	9. M 93	lillion Btu per SCC Unit: 33
10. Seg	gment Comment:				
Based on natural gas lower heating value (LHV) of 933 Btu/ft³. Maximum hourly rate = 1,623 MMBtu/hr /933 MMBtu/MM ft³ = 1.739 MM ft³/CT/hr Maximum annual rate = 1.739 MM ft³/hr x 3,390 hr/yr = 5,897.8 MM ft³/CT/yr					
Segment Description and Rate: Segment 2 of 2					
Segment Description (Process/Fuel Type): Internal Combustion Engines; Electric Generation; Distillate Oil Firing					

1.	Segment Description (Process/Fuel Type): Internal Combustion Engines; Electric Generation; Distillate Oil Firing				
\ /			10. 200 0	CC Units: 000 Gallons burned	
4.	Maximum Hourly Rate: 13.9	5. Maximum Annual Rate: 13,863.610,397.7		6. Estimated Annual Activity Factor:	
7.	Maximum % Sulfur: 0.0015	8. Maximum % Ash:		9. Million Btu per SCC Unit: 132	
Ba Ma <u>Ma</u>	10. Segment Comment: Based on distillate oil LHV of 132 MMBtu/1,000 gal Maximum hourly rate = 1,830 MMBtu/hr /132 MMBtu/1,000 gal = 13,863.6 gal/CT/hr Maximum annual rate = 13,863 gallons/hr x 750 hr/yr = 10,397,700 gallons/yr.Maximum annual rate = 13,863.6 gal/hr x 1,000 hr/yr = 13,863,600 gal/CT/yr				

DEP Form No. 62-210.900(1) - Form Effective: 3/16/08

POLLUTANT DETAIL INFORMATION Page [1] of **Total Particulate Matter - PM**

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions 1. Pollutant Emitted: 2. Total Percent Efficiency of Control: PΜ Synthetically Limited? 3. Potential Emissions: 17.0 lb/hour ⊠ Yes \square No 19.318.3 tons/year 5. Range of Estimated Fugitive Emissions (as applicable): tons/year 6. Emission Factor: 17.0 lb/hr 7. Emissions Method Code: Reference: Vendor Data 8.a. Baseline Actual Emissions (if required): 8.b. Baseline 24-month Period: tons/year From: To: 9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period: ☐ 5 years ☐ 10 years tons/year 10. Calculation of Emissions: Annual emissions based on 750 hrs/yr of distillate oil firing and 2,640 hrs/yr of natural gas firing Annual emissions based on 1,000 hr/yr of distillate oil firing and 2,390 hr/yr of natural gas firing. Annual emissions = $(17.0 \text{ lb/hr} \times 750 \text{ hrs/yr} + 9 \text{ lb/hr} \times 2,640 \text{ hrs/yr}) \times \text{ton/2,000 lb} = 18.255$ TPYAnnual emissions = $(17.0 \text{ lb/hr} \times 1,000 \text{ hr/yr} + 9 \text{ lb/hr} \times 2,390 \text{ hr/yr}) \times \text{ton/2,000 lb} = 19.255$ TPY/CT 11. Potential, Fugitive, and Actual Emissions Comment: Hourly emissions based on distillate oil firing.

DEP Form No. 62-210.900(1) - Form

083-89507/SH-EU5-EU6.docx Effective: 3/16/08 7/21/2008 20

POLLUTANT DETAIL INFORMATION Page [1] of [6] Total Particulate Matter - PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units: 9.0 lb/hr	4.	Equivalent Allowable En	missions: 15.3 tons/year
5.	Method of Compliance: VE Test using EPA Method 9		·	
6.	Allowable Emissions Comment (Description Allowable emissions based on natural gas fire		Operating Method):	
All	lowable Emissions Allowable Emissions 2 o	f 2		
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units: 17.0 lb/hr	4.	Equivalent Allowable En 17.0 lb/hour	missions: 8.5 6.4tons/year
5.	Method of Compliance: VE Test using EPA Method 9	L i.		
6.	Allowable Emissions Comment (Description Allowable emissions based on distillate oil fire		Operating Method):	
Al	Iowable Emissions Allowable Emissions	0	of	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	missions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	
L				

POLLUTANT DETAIL INFORMATION
Page [2] of [6]
Particulate Matter - PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions 1. Pollutant Emitted: 2. Total Percent Efficiency of Control: PM₁₀ 3. Potential Emissions: 4. Synthetically Limited? 17.0 lb/hour ⊠ Yes П No 19.318.3 tons/year 5. Range of Estimated Fugitive Emissions (as applicable): · to tons/year 6. Emission Factor: 17.0 lb/hr 7. Emissions Method Code: Reference: Vendor Data 8.a. Baseline Actual Emissions (if required): 8.b. Baseline 24-month Period: tons/year From: To: 9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period: ☐ 5 years ☐ 10 years tons/year 10. Calculation of Emissions: Annual emissions based on 750 hrs/yr of distillate oil firing and 2,640 hrs/yr of natural gas firing. Annual emissions = $(17.0 \text{ lb/hr} \times 750 \text{ hrs/yr} + 9 \text{ lb/hr} \times 2,640 \text{ hrs/yr}) \times \text{ton/2,000 lb} = 18.255$ TPY/CT Annual emissions based on 1,000 hr/yr of distillate oil firing and 2,390 hr/yr of natural gas firing. Annual emissions = $(17.0 \text{ lb/hr} \times 1,000 \text{ hr/yr} + 9 \text{ lb/hr} \times 2,390 \text{ hr/yr}) \times \text{ton/2,000 lb} = 19,255$ 11. Potential, Fugitive, and Actual Emissions Comment: Hourly emissions based on distillate oil firing.

DEP Form No. 62-210.900(1) – Form Effective: 3/16/08

POLLUTANT DETAIL INFORMATION Page [2] of [6] Particulate Matter - PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Emissions:	of Allowable
3.	Allowable Emissions and Units: 9.0 lb/hr	4.	Equivalent Allowable I 9.0 lb/hour	Emissions: 15.3 tons/year
5.	Method of Compliance: VE Test using EPA Method 9			
6.	Allowable Emissions Comment (Description Allowable emissions based on natural gas fir		Operating Method):	
<u>Al</u>	lowable Emissions Allowable Emissions 2 o	f <u>2</u>		
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Emissions:	f Allowable
3.	Allowable Emissions and Units: 17.0 lb/hr	4.	Equivalent Allowable I 17.0 lb/hour	Emissions: 8.5-6.4tons/year
5.	Method of Compliance: VE Test using EPA Method 9			
6.	Allowable Emissions Comment (Description Allowable emissions based on distillate oil fit			
<u>Al</u>	lowable Emissions Allowable Emissions	(of	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	of Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable I lb/hour	Emissions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of of	Operating Method):	

POLLUTANT DETAIL INFORMATION
Page [3] of [6]
Carbon Monoxide - CO

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline &	Projected Actua	<u>l Emissions</u>	
1. Pollutant Emitted:	2. Total Percent	t Efficiency of Control:	
3. Potential Emissions: 66.244.7 lb/hour 68.645.	1 tons/year	Synthetically Limited? ☑ Yes ☐ No	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		
6. Emission Factor: 20-13.5 ppmvd Reference: Vendor Data		7. Emissions Method Code: 0	
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24 From: To:		
9.a. Projected Actual Emissions (if required): tons/year	•	Ionitoring Period: 10 years	
		·	
10. Calculation of Emissions: Annual emissions based on 750 hrs/yr of distillate oil firing and 2,640 hrs/yr of natural gas firing. Annual emissions based on 1,000 hr/yr of distillate oil firing and 2,390 hr/yr of natural gas firing. Annual emissions = (44.7 lb/hr x 750 hrs/yr + 21.5 lb/hr x 2,640 hrs/yr) x ton/2,000 lb = 45.1 TPYAnnual emissions = (66.2 lb/hr x 1,000 hr/yr + 29.7 lb/hr x 2,390 hr/yr) x ton/2,000 lb = 68.59			
11. Potential, Fugitive, and Actual Emissions Comment: Hourly emissions and ppm concentration based on distillate oil firing.			

POLLUTANT DETAIL INFORMATION

Page [3] of [6]

Carbon Monoxide - CO

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:			
	9- <u>6.5</u> ppmvd	29.721.5 lb/hour 50.336.4 tons/year			
5	Method of Compliance:	tons year			
	Annual testing using using EPA Method 10.				
6.	 Allowable Emissions Comment (Description of Operating Method): Allowable emissions based on natural gas firing. 				
Al	lowable Emissions Allowable Emissions 2 o	f <u>2</u>			
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:			
	13.5 ppmvd20 ppmvd	66.2-44.7 lb/hour 33.116.8 tons/year			
5.	Method of Compliance: Annual testing using using EPA Method 10.				
6.	6. Allowable Emissions Comment (Description of Operating Method): Allowable emissions based on distillate oil firing.				
Al	lowable Emissions Allowable Emissions				
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:				

POLLUTANT DETAIL INFORMATION
Page [4] of [6]
Volatile Organic Compounds - VOC

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions Pollutant Emitted: 2. Total Percent Efficiency of Control: VOC 3. Potential Emissions: 4. Synthetically Limited? Yes **7.5** lb/hour П No 7.346.8 tons/year 5. Range of Estimated Fugitive Emissions (as applicable): tons/year 6. Emission Factor: 4 ppmvd 7. Emissions Method Code: Reference: Vendor Data 8.a. Baseline Actual Emissions (if required): 8.b. Baseline 24-month Period: To: tons/year From: 9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period: tons/year ☐ 5 years ☐ 10 years 10. Calculation of Emissions: Annual emissions based on 750 hrs/yr of distillate oil firing and 2,640 hrs/yr of natural gas firing.Annual emissions based on 1,000 hr/yr of distillate oil firing and 2,390 hr/yr of natural gas Annual emissions = (7.5 lb/hr x 750 hrs/yr + 3.0 lb/hr x 2,640 hrs/yr) x ton/2,000 lb = 6.77 TPYAnnual emissions = $(7.5 \text{ lb/hr} \times 1,000 \text{ hr/yr} + 3.0 \text{ lb/hr} \times 2,390 \text{ hr/yr}) \times \text{ton/2,000 lb} = 7.34$ TPY/CT 11. Potential, Fugitive, and Actual Emissions Comment: Hourly emissions based on distillate oil firing.

DEP Form No. 62-210.900(1) – Form Effective: 3/16/08

POLLUTANT DETAIL INFORMATION Page [4] of [6] Volatile Organic Compounds - VOC

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units: 1.6 ppmvd	4. Equivalent Allowable Emissions: 3.0_lb/hour 5.1 tons/year	
	Method of Compliance:		
	Allowable Emissions Comment (Description Allowable emissions based on natural gas fire	ring.	
All	owable Emissions Allowable Emissions 2 of	of <u>2</u>	
1.	Basis for Allowable Emissions Code: OTHER	Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units: 4.0 ppmvd	4. Equivalent Allowable Emissions: 7.5 lb/hour 3.752.8	
		tons/year	
	Method of Compliance: Allowable Emissions Comment (Description		
	Allowable emissions based on distillate oil fir	··	
	owable Emissions Allowable Emissions		
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/ye.	ar
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	n of Operating Method):	

POLLUTANT DETAIL INFORMATION

Page [5] of [6]

Sulfur Dioxide – SO,

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions 1. Pollutant Emitted: 2. Total Percent Efficiency of Control: SO₂ 3. Potential Emissions: 4. Synthetically Limited? 3.0-1 lb/hour 13.314.9 tons/year \square No 5. Range of Estimated Fugitive Emissions (as applicable): tons/year 6. Emission Factor: 0.0015 % S **Emissions** Method Code: Reference: Vendor Data 8.a. Baseline Actual Emissions (if required): 8.b. Baseline 24-month Period: tons/year From: To: 9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period: ☐ 5 years ☐ 10 years tons/year 10. Calculation of Emissions: Annual emissions based on 750 hrs/yr of distillate oil firing and 2,640 hrs/yr of natural gas firing Annual emissions based on 1,000 hr/yr of distillate oil firing and 2,390 hr/yr of natural gas Annual emissions = (3.1 lb/hr x 750 hrs/yr + 10.4 lb/hr x 2,640 hrs/yr) x ton/2,000 lb = 14.89 TPYAnnual emissions = $(3.0 \text{ lb/hr} \times 1.000 \text{ hr/vr} + 9.9 \text{ lb/hr} \times 2.390 \text{ hr/vr}) \times \text{ton/2.000 lb} = 13.3$ TPY/CT 11. Potential, Fugitive, and Actual Emissions Comment: Hourly emissions based on distillate oil firing.

DEP Form No. 62-210.900(1) - Form Effective: 3/16/08

POLLUTANT DETAIL INFORMATION Page [5] of [6] Sulfur Dioxide – SO₂

2. Future Effective Date of Allowable

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1. Basis for Allowable Emissions Code:

	OTHER		Emissions:		
3.	Allowable Emissions and Units: 2 grains/ 100 cf		Equivalent Allowable Emissions: 9.910.4 lb/hour 16.817.6 ss/year		
5.	. Method of Compliance: Use of pipeline natural gas (sulfur content 2grains/100 ft^3).				
	 Allowable Emissions Comment (Description of Operating Method): Allowable emissions based on natural gas firing. 				
Al	lowable Emissions Allowable Emissions 2 of	t <u>2</u>			
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units: 0.0015 % S	4.	Equivalent Allowable Emissions: 3.0-1 lb/hour 1.5-2 tons/year		
5.	. Method of Compliance: Use of distillate oil with a maximum of 0.0015 percent sulfur. Fuel sampling.				
6.	6. Allowable Emissions Comment (Description of Operating Method): Allowable emissions based on distillate oil firing.				
Al	lowable Emissions Allowable Emissions	c	f		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year		
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description	of (Operating Method):		

POLLUTANT DETAIL INFORMATION

Page [6] of [6]

Nitrogen Oxide - NO.

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions Pollutant Emitted: 2. Total Percent Efficiency of Control: NO_x 3. Potential Emissions: 4. Synthetically Limited? □No 323 lb/hour ⊠ Yes 232-199 tons/year 5. Range of Estimated Fugitive Emissions (as applicable): tons/year 7. Emissions 6. Emission Factor: 42 ppmvd at 15 percent O₂ Method Code: Reference: Vendor Data 8.b. Baseline 24-month Period: 8.a. Baseline Actual Emissions (if required): From: To: tons/year 9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period: tons/year 5 years 10 years 10. Calculation of Emissions: Annual emissions based on 750 hrs/yr of distillate oil firing and 2,640 hrs/yr of natural gas firing. Annual emissions based on 1,000 hr/yr of distillate oil firing and 2,390 hr/yr of natural gas Annual emissions = (323.0 lb/hr x 750 hrs/yr + 59 lb/hr x 2,640 hrs/yr) x ton/2,000 lb = 199.0 TPYAnnual emissions = (323.0 lb/hr x 1,000 hr/yr + 59 lb/hr x 2,390 hr/yr) x ton/2,000 lb = 232.005 11. Potential, Fugitive, and Actual Emissions Comment: Hourly emissions based on distillate oil firing.

DEP Form No. 62-210.900(1) – Form Effective: 3/16/08

POLLUTANT DETAIL INFORMATION

Page [6] of [6]

Nitrogen Oxide – NO_x

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:				
3.	Allowable Emissions and Units: 9 ppmvd at 15 percent O ₂ .	4. Equivalent Allowable Emissions: 59 lb/hour 100 tons/year				
5.	Method of Compliance: CEM Data (24-hour block average)					
	Allowable Emissions Comment (Description Allowable emissions based on natural gas fir	ing.				
	lowable Emissions Allowable Emissions 2 o					
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:				
3.	Allowable Emissions and Units: 42 ppmvd at 15 percent O₂.	4. Equivalent Allowable Emissions: 323 lb/hour 461.5121.1 tons/year				
5.	Method of Compliance: CEM Data (3-hour average)					
6.	Allowable Emissions Comment (Description Allowable emissions based on distillate oil fit					
Al	lowable Emissions Allowable Emissions	of				
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:				
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year				
5.	Method of Compliance:					
6.	Allowable Emissions Comment (Description	of Operating Method):				

DEP Form No. 62-210.900(1) – Form Effective: 3/16/08

TABLE A-1
DESIGN INFORMATION AND STACK PARAMETERS FOR THE SHADY HILLS ENERGY CENTER PROJECT
GE7FA, NATURAL GAS, BASE LOAD

		CT Only	
1		rbine Inlet Temperature 59 °F	95 °F
Parameter	20 °F Case 1	Case 2	Case 3
	Case 1	Cuse B	0.000
Combustion Turbine Performance			
Net power output (MW)	201.803	181.599	161.722
Net heat rate (Btu/kWh, LHV)	9,080	9,385	9,596
(Btu/kWh, HHV)	10,078	10,418	10,652
Heat Input (MMBtu/hr, LHV)	1,832.3	1,704.4	1,551.9
(MMBtu/hr, HHV)	2,033.8	1,891.9	1,722.€
Relative Humidity (%)	80	60	64
Fuel heating value (Btu/lb, LHV)	20,825	20,825	20,825
(Btu/lb, HHV)	23,116	23,116	23,116
(HHV/LHV)	1.110	1.110	1.110
(IIII V/LII V)			
CT Exhaust Flow			
Mass Flow (lb/hr)- provided	3,929,264	3,650,916	3,333,093
- provided	NA	NA	NA
Temperature (°F) - provided	1,074	1,113	1,154
Moisture (% Vol.)	7.55	8.37	9.88
Oxygen (% Vol.)	12.75	12.57	12.34
Molecular Weight	28.48	28.38	28.22
Fuel Usage	(Cool Heat Content, Ptuffh (LV	(V)	
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000,000 Btu/MMBtu	1,832.3	1,704.4	1,551.9
Heat input (MMBtu/hr, LHV)	· ·	20,825	20,825
Heat content (Btu/lb, LHV)	20,825	81,843	74,520
Fuel usage (lb/hr)- calculated	87,985	01,043	74,320
Heat content (Btu/cf, LHV)- assumed	933	933	933
Thur committee the committee of the comm	0.0448	0.0448	0.0448
Fuel usage (cf/hr)- calculated	1,963,009	1,825,979	1,662,60
Stack Stack Height (ft)	75	75	7:
Stack Diameter (ft)	18	18	18
Stack Diameter (11)			
Stack Flow Conditions			
Velocity (ft/sec) = Volume flow (acfm) / $[((diameter)^2/4) \times 3.14159]$			
Mass flow (lb/hr)	3,929,264	3,650,916	3,333,093
	1,074	1,113	1,154
Molecular weight	28.48	28.38	28.23
Volume flow (acfm)	2,575,419	2,462,317	2,320,03
Diameter (ft)	18	18	13
	168.7	161.3	152.0

TABLE A-2 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, NATURAL GAS, BASE LOAD

	AMIN	CT Only	
_		Inlet Tem	
Parameter	20 °F Case 1	59 °F Case 2	95 °F Case 3
Posticulate Matter (Front helf only)			
articulate Matter (Front-half only)			
Particulate from CT- provided	9.0	9.0	9.0
ulfur Dioxide			
Fuel use (cf/hr)	1,963,009	1,825,979	1,662,601
Sulfur content (grains/ 100 cf)	2	2	2
	2	2	2
CT emission rate (lb/hr) - calculated	11.2	10.4	9.5
litrogen Oxides $NOx (lb/hr) = NOx (ppm actual) \times Volume flow (acfm) \times Volume flow (acfm) = NOx (ppm actual) \times Volume flow (acfm) = NOx (ppm actual) = NOx (ppm act$			
. Basis, ppmvd - calculated	10.8	11.0	11.0
	9	-	
Moisture (%)	7.55		
Oxygen (%)	12.75		
Oxygen (%) dry	13.79		
Turbine Flow (acfm)		2,462,317 2,256,221	
Turbine Flow (acfm, dry) Turbine Exhaust Temperature (%F)	1,074		
Turbine Exhaust Temperature (°F) CT emission rate (lb/hr) - calculated	63.6		
CT Emission rate (lb/hr) - provided	63.0		
Çarbon Monoxide			
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x			
Basis, ppmvd - provided	6.5		6.5
Basis, ppmvd @ 15% O2 - calculated	5,4		
Moisture (%)	7.55		
Oxygen (%)	12.75		
Oxygen (%) dry	13 79		
Turbine Flow (acfm)		2,462,317	
Turbine Flow (acfm, dry)		2,256,221	
Turbine Exhaust Temperature (°F)	1,074 23.2		1,154 19.4
CT emission rate (lb/hr) - calculated			

TABLE A-2 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, NATURAL GAS, BASE LOAD

		CT Only		
		Turbine Inlet Temperature		
Parameter	20 °F	59 °F	95 °F	
	Case 1	Case 2	Case 3	
olatile Organic Compounds				
VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x				
Basis, ppmvd - provided	1.6	1.6	1.6	
Basis, ppmvd @ 15% O2 - calculated	1.3	1.3	1.3	
Moisture (%)	7.55	8.37		
Oxygen (%) wet	12.75	12.57	12.34	
Oxygen (%) dry	13.79	13.72	13.69	
Turbine Flow (acfm)			2,320,037	
Turbine Flow (acfm, dry)	2,380,975	2,256,221	2,090,818	
Turbine Exhaust Temperature (°F)	1,074	1,113	1,154	
CT emission rate (lb/hr) - calculated	3.26	3.02	2.72	
CT Emission rate (lb/hr) - provided	3.00	2.80	2.60	
Sulfuric Acid Mist				
Total Sulfuric Acid Mist (SAM) (lb/hr) = SAM Formed in the CT				
	11.2			
	10	10	10	
Stack emission rate (lb/hr)- calculated	1.72	1.60	1.45	
- provided	NA	NA	NA	
<u>_ead_</u>				
Emission Rate Basis	NA	NA	NA	
Emission rate (lb/hr)	NA	NA	NA	

TABLE A-3
DESIGN INFORMATION AND STACK PARAMETERS FOR THE SHADY HILLS ENERGY CENTER PROJECT
GE7FA, NATURAL GAS, 75% LOAD

	CT Only			
	Turbine Inlet Temperature		95 °F	
Parameter	20 °F Case 4	Case 5	Case 6	
	·			
Combustion Turbine Performance	151.348	138.128	121.310	
Net power output (MW)	9,942	10,067	10,589	
Net heat rate (Btu/kWh, LHV)	11,036	11,175	11,753	
(Btu/kWh, HHV)	1,504.7	1,390.6	1,284.:	
Heat Input (MMBtu/hr, LHV)	1,670.2	1,543.5	1,425.	
(MMBtu/hr, HHV)	1,670.2	1,343.3	1,425.	
Relative Humidity (%)		20,825	20,82	
Fuel heating value (Btu/lb, LHV)	20,825	*	23,110	
(Btu/lb, HHV)	23,116	23,116	1,110	
(HHV/LHV)	1.110	1.110	1,119	
CT Exhaust Flow				
Mass flow (lb/hr)- provided	2,956,564	2,941,381	2,762,226	
- provided	NA	NA	N/	
Temperature (°F) - provided	1,200	1,159	1,19	
Moisture (% Vol.)	8.13	8.26	9.8	
Oxygen (% Vol.)	12.11	12.60	12.4	
Molecular Weight	28.44	28.41	28.2	
Fuel Usage				
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000,000 Btu/MMBtu	(Fuel Heat Content, Btu/lb (Ll	H V))		
Heat input (MMBtu/hr, LHV)	1,505	1,391	1,28	
Heat content (Btu/lb, LHV)	20,825	20,825	20,82	
Fuel usage (lb/hr)- calculated	72,254	66,774	61,68	
Heat content (Btu/cf, LHV)- assumed	933	933	93	
Treat contain (Dia ci, Dirir) assume	0.0448	0.0448	0.044	
Fuel usage (cf/hr)- calculated	1,612,040	1,489,784	1,376,15	
Stack				
Stack Height (ft)	75	75	7	
Stack Diameter (ft)	18	18	1	
Stack Flow Conditions				
Velocity (fl/sec) = Volume flow (acfm) / [((diameter) ² /4) x 3.14159]	/ 60 sec/min			
Mass flow (lb/hr)	2,956,564	2,941,381	2,762,22	
	1,200	1,159	1,19	
Molecular weight	28.44	28.41	28.2	
Volume flow (acfm)	2,100,040	2,040,226	1,965,20	
Diameter (ft)	18	18	1	

TABLE A-4 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, NATURAL GAS, 75% LOAD

		Turbine Inlet Temperature	
Parameter	20 °F	59 °F	95 °F
	Case 4	Case 5	Case 6
articulate Matter (Front-half only)			
Particulate from CT- provided	9.0	9.0	9.0
Sulfur Dioxide			
Fuel use (cf/hr)	1,612,040	1,489,784	1,376,156
Sulfur content (grains/ 100 cf)	2	2	2
burial content (grants 100 cr)	2	2	2
CT Stack emission rate (lb/hr)- calculated	9.2	8.5	7.9
Nitrogen Oxides NOx (lb/hr) = NOx (ppm actual) x Volume flow (acfm) x			
Basis, ppmvd - calculated	11.8	10.9	10.9
Maintenant (B/)	9 8.13	9 8.26	9.8
Moisture (%)	12 11	12.60	12.43
Oxygen (%)	13.18	13.73	13.78
Oxygen (%) dry	2,100,040		
Turbine Flow (acfm)		1,871,704	
Turbine Flow (acfm, dry)	1,200	1,159	1,772,012
Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated	51.7	47.8	44.1
CT Emission rate (lb/hr) - provided	51.0	47.0	44,0
<u>Carbon Monoxide</u>			
$CO(lb/hr) = CO(ppm \ actual) \times Volume \ flow(acfm) \times$			
Basis, ppmvd - provided	6.5	6.5	6.5
Basis, ppmvd @ 15% O2 - calculated	5.0	5.4	5.4
Moisture (%)	8.13	8.26	9.8
Oxygen (%)	12.11	12.60	12.43
Oxygen (%) dry	13.18	13.73	13.78
Turbine Flow (acfm)	2,100,040	2,040,226	1,965,203
Turbine Flow (acfm, dry)	1,929,307	1,871,704	1,772,613
Turbine Exhaust Temperature (°F)	1,200	1,159	1,190
	17.4	17.3	16.
CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided	24.0	24.0	22.6

TABLE A-4
MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT
GE7FA, NATURAL GAS, 75% LOAD

	Turbine Inlet Temperature		
Parameter	20 °F	59 °F	95 °F
Olatile Organic Compounds VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x Basis, ppmvd - provided Basis, ppmvd @ 15% O2 - calculated Moisture (%) Oxygen (%) Oxygen (%) dry Furbine Flow (acfm) Furbine Flow (acfm, dry) Furbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated	Case 4	Case 5	Case 6
olatile Organic Compounds			
VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x			
Basis, ppmvd - provided	1.6	1.6	1.6
Basis, ppmvd @ 15% O2 - calculated	1.2	1.3	1.3
Moisture (%)	8.13	8.26	9.8
Oxygen (%)	12.11	12.60	12.43
Oxygen (%) dry	13.18	13.73	13.78
Turbine Flow (acfm)	2,100,040	2,040,226	1,965,203
Turbine Flow (acfm, dry)	1,929,307	1,871,704	1,772,613
Turbine Exhaust Temperature (°F)	1,200	1,159	1,190
CT Emission rate (lb/hr) - calculated	2.44	2.43	2.26
CT Emission rate (lb/hr) - provided	2.40	2.20	2.20
Sulfuric Acid Mist			
Total Sulfuric Acid Mist (SAM) (lb/hr)= SAM Formed in the CT			
	9.2	8.5	7.9
	10	10	10
Stack emission rate (lb/hr)- calculated	1.41	1.30	1.20
- provided	NA	NA	NA
Lead			
Lead (lb/hr) = NA	27.4	314	NI A
Emission Rate Basis	NA	NA NA	NA NA
HRSG Stack emission rate (lb/hr)	NA	NA	IN F

TABLE A-5
DESIGN INFORMATION AND STACK PARAMETERS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, NATURAL GAS, 50% LOAD

	CT Only				
	Turb	 			
Parameter	20 °F	59 °F	95 °F		
	Case 7	Case 8	Case 9		
Combustion Turbine Performance					
Net power output (MW)	100.897	92.126	80.90		
Net heat rate (Btu/kWh, LHV)	11,762	12,083	12,65		
(Btu/kWh, HHV)	13,056	13,412	14,04		
Heat Input (MMBtu/hr, LHV)	1,186.7	1,113.1	1,023.		
(MMBtu/hr, HHV)	1,317.3	1,235.6	1,136.		
Relative Humidity (%)	80	60	6-		
Fuel heating value (Btu/lb, LHV)	20,825	20,825	20,82		
(Btu/lb, HHV)	23,116	23,116	23,110		
(HHV/LHV)	1.110	1.110	1.110		
CT Exhaust Flow					
Mass flow (lb/hr)- provided	2,498,048	2,433,269	2,325,978		
- provided	NA	NA	N/		
Temperature (°F) - provided	1,200	1,200	1,200		
Moisture (% Vol.)	7.54	7.96	9.3		
Oxygen (% Vol.)	. 12.77	12.94	12.93		
Molecular Weight	28.48	28.42	28.2		
Fuel Usage					
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000,0					
Heat input (MMBtu/hr, LHV)	1,187	1,113	1,02		
Heat content (Btu/lb, LHV)	20,825	20,825	20,82		
Fuel usage (lb/hr)- calculated	56,986	53,452	49,16		
Heat content (Btu/cf, LHV)- assumed	933	933	93		
	0.0448	0.0448	0.044		
Fuel usage (cf/hr)- calculated	1,271,405	1,192,548	1,096,88		
Stack			_		
Stack Height (ft)	75	75	7		
Stack Diameter (ft)	18	18	l		
Stack Flow Conditions					
Velocity (ft/sec) = Volume flow (acfm) / [((diameter) ²					
Mass flow (lb/hr)	2,498,048	2,433,269	2,325,97		
	1,200	1,200	1,20		
Molecular weight	28.48	28.42	28.2		
Volume flow (acfm)	1,771,785	1,729,434	1,663,34		
Diameter (ft)	18	18	1		
Velocity (ft/sec)- calculated	116.0	113.3	108.		

TABLE A-6 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, NATURAL GAS, 50% LOAD

	Turbine Inlet Temperature		
Parameter	20 °F	59 °F	95 °F Case 9
Particulate Matter (Front-half only)	CHSU /		
Particulate from CT- provided	9.0	9.0	9.0
Sulfur Dioxide			
Fuel use (cf/hr)	1,271,405	1,192,548	1,096,884
	2	2	2
,	2	2	2
CT Stack emission rate (lb/hr)- calculated	7.3	6.8	6.3
Nitrogen Oxides NOx (lb/hr) = NOx (ppm actual) x Volume flow (acfm) x			
	10.0	10.4	10.
Basis, ppmvd - calculated		10.4	10
Moisture (%)	7.54	7,96	9.31
	12.77	12.94	12.92
	13.81	14.06	14.26
Turbine Flow (acfm)	1,771,785	1,729,434	1,663,34
Turbine Flow (acfm, dry)	1,638,192	1,591,771	1,507,489
Turbine Exhaust Temperature (°F)	1,200	1,200	1,200
### Table 10.8	37.8	34.	
CT Emission rate (lb/hr) - provided	40.0	37.0	34.0
<u>Carbon Monoxide</u>			
$CO(lb/hr) = CO(ppm \ actual) \times Volume \ flow(acfm) \times$			
Basis, ppmvd - provided		6.5	6.
Basis, ppmvd @ 15% O2 - calculated		5.6	5
Moisture (%)		7.96	9.3
Oxygen (%)		12.94	12,9
Oxygen (%) dry		14.06	14.2
			1,663,34 1,507,48
			1,307,483
	1 700		
Turbine Exhaust Temperature (°F)		1,200	13.

TABLE A-6 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, NATURAL GAS, 50% LOAD

	Turbine Inlet Temperature		
Parameter	20 °F	59 °F	95 °F
1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.8 1.8 1.9	Case 9		
Volatile Organic Compounds			
VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x			
Basis, ppmvd - provided			1.6
Basis, ppmvd @ 15% O2 - calculated			1.4
Moisture (%)	7.54		9.37
Oxygen (%)			12.92
Oxygen (%) dry			14.26
Turbine Flow (acfm)	1,771,785		1,663,345
Turbine Flow (acfm, dry)	1,638,192		1,507,489
Turbine Exhaust Temperature (°F)	1,200	1,200	1,200
CT Emission rate (lb/hr) - calculated	2.08	2.02	1.91
CT Emission rate (lb/hr) - provided	2.00	1.80	1.80
Sulfuric Acid Mist			
Total Sulfuric Acid Mist (SAM) (lb/hr) = SAM Formed in the CT			
	· · ·		6.3
	10	10	10
Stack emission rate (lb/hr)- calculated			0.96
- provided	NA	NA	NA
<u>_ead</u>			
Lead (lb/hr) = NA			
Emission Rate Basis	NA	NA	NA
HRSG Stack emission rate (lb/hr)	NA	NA	NA

TABLE A-7
DESIGN INFORMATION AND STACK PARAMETERS FOR THE SHADY HILLS ENERGY CENTER PROJECT
GE7FA, DISTILLATE OIL, BASE LOAD

	CT Only Turbine Inlet Temperature			
<u>_</u>	20 °F	59 °F	95 °F	
Parameter	Case 10	Case 11	Case 12	
Combustion Turbine Performance				
Net power output (MW)	199.791	187.397	164,066	
Net heat rate (Btu/kWh, LHV)	10,050	10,080	10,380	
(Btu/kWh, HHV)	10,653	10,685	11,003	
Heat Input (MMBtu/hr, LHV)	2,007.9	1,888.96	1,703.0	
(MMBtu/hr, HHV)	2,128.4	2,002.3	1,805.2	
Relative Humidity (%)	80	60	64	
Fuel heating value (Btu/lb, LHV)	18,300	18,300	18,300	
(Btu/lb, HHV)	19,398	19,398	19,398	
(HHV/LHV)	1.060	1.060	1,060	
CT Exhaust Flow				
Mass Flow (lb/hr)- provided	4,055,000	3,766,000	3,407,000	
Temperature (°F) - provided	1,053	1,093	1,143	
Moisture (% Vol.)	10.87	11.46	13.07	
Oxygen (% Vol.)	11.24	11,11	10 77	
Molecular Weight	28.36	28,30	28.12	
Fuel Usage	D. 40 (LIND)			
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000,000 Btu/MMBtu (Fuel Heat Content,	Btu/lb (LHV))	1,889.0	1,703.0	
Heat input (MMBtu/hr, LHV)	2,007 9 18,300	18,300	18,300	
Heat content (Btu/lb, LHV)	· ·	103,222	93,061	
Fuel usage (lb/hr)- calculated	109,721	103,222	93,001	
<u>Stack</u>	75	75	75	
Stack Height (ft) Diameter (ft)	18	18	18	
LIDGO Stark (Plant Conditions				
HRSG Stack Flow Conditions Velocity (ft/sec) = Volume flow (acfin) / [((diameter)²/4) x 3.14159] / 60 sec/min				
	4,055,000	3,766,000	3,407,000	
Mass flow (lb/hr) - provided	1,053	1,093	1,143	
Molecular weight	28.36	28.30	28.12	
CT volume flow (acfm)	2,632,958	2,515,327	2,363,790	
CT volume now (actin)	43,883	41,922	39,39	
Diameter (ft)	18	18	. 18	
Velocity (ft/scc)- calculated	172.4	164.7	154.8	

TABLE A-8
MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT
GE7FA, DISTILLATE OIL, BASE LOAD

let Temperatur		
°F	95 °F Case 12	
17.0	17.0	
103,222	93,06	
.0015%	0.0015%	
2	:	
3.1	2.8	
59.5 42	60.4 42	
11.46	13.0	
11.11	10.7	
12.55	12.3	
515,327	2,363,79	
227,070	2,054,84	
1,093	1,14	
322.3 323.0	293 293.	
13.5	13.	
9.5	9.	
11.46	.13.0	
11.11	10.7	
12.55	12.3	
515,327	2,363,79	
235,874	2,109,21	
1,093	1,14 40.	
	40. 59.	
	44.7 66.0	

TABLE A-8
MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, DISTILLATE OIL, BASE LOAD

Parameter	Turbine Inlet Temperature		
	20 °F	59 °F	95 °F
	Case 10	Case 11	Case 12
Volatile Organic Compounds			
VOC (lb/hr) = VOC (ppm actual) x V olume flow (acfm) x			
Basis, ppmvd - provided	4.0	4.0	4.0
Basis, ppmvd @ 15% O2 - calculated	2.8	2.8	2.8
Moisture (%)	10.87	11.46	13.07
Oxygen (%)	11.24	11.11	10.77
Oxygen (%) dry	12.61	12.55	12.39
Turbine Flow (acfm)	2,632,958	2,515,327	2,363,790
Turbine Flow (acfm, dry)	2,346,756	2,227,070	2,054,843
Turbine Exhaust Temperature (°F)	1,053	1,093	1,143
CT emission rate (lb/hr) - calculated	8.2	7.5	6.7
CT Emission rate (lb/hr) - provided	8.0	7.5	7.0
Sulfuric Acid Mist			•
Total Sulfuric Acid Mist (SAM) (lb/hr) = SAM Formed in the CT			
	3.3	3.1	2.8
	10	10	10
Stack emission rate (lb/hr)- calculated	0.50	0.47	0.43
- provided	NA	NA	NA
<u>Lead</u>			
	14	14	14
Stack emission rate (lb/hr)- calculated	0.0281	0.0264	0.0238

TABLE A-9
DESIGN INFORMATION AND STACK PARAMETERS FOR THE SHADY HILLS ENERGY CENTER PROJECT
GE7FA, DISTILLATE OIL, 75% LOAD

		CT Only		
Parameter	Turbine Inlet Temperature			
	20 °F	59 °F	95 °F	
	Case 13	Case 14	Case 15	
Combustion Turbine Performance				
Net power output (MW)	149.812	139.907	123.076	
Net heat rate (Btu/kWh, LHV)	10,970	11,030	11,400	
(Btu/kWh, HHV)	11,628	11,692	12,084	
Heat Input (MMBtu/hr, LHV)	1,643.4	1,543.2	1,403.1	
(MMBtu/hr, HHV)	1,742.0	1,635.8	1,487.3	
Relative Humidity (%)	80	60	64	
Fuel heating value (Btu/lb, LHV)	18,300	18,300	18,300	
(Btu/lb, HHV)	19,398	19,398	19,398	
(HHV/LHV)	1.060	1.060	1.060	
CT Exhaust Flow				
Mass Flow (lb/hr)- with no margin	2,991,000	2,898,000	2,783,000	
- provided	NA	NA	NA	
Temperature (°F) - provided	1,196	1,200	1,200	
Moisture (% Vol.)	11.72	11.85	12.65	
Oxygen (% Vol.)	10.34	10.57	10.86	
Molecular Weight	28.32	28.29	28.16	
Fuel Usage				
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000,000 Btu/MMBtu (Fu		(LHV))		
Heat input (MMBtu/hr, LHV)	1,643.4	1,543.2	1,403.1	
Heat content (Btu/lb, LHV)	18,300	18,300	18,300	
Fuel usage (lb/hr)- calculated	89,805	84,326	76,670	
HRSG Stack				
HRSG - Stack Height (ft)	75	75	75	
Diameter (ft)	18	18	18	
Stack Flow Conditions				
Velocity (ft/sec) = Volume flow (acfm) / [((diameter) 2 /4) x 3.14159] / 60			2 502 000	
Mass flow (lb/hr)	2,991,000	2,898,000	2,783,000	
	1,196	1,200	1,200	
Molecular weight	28.32	28.29	28.16	
CT volume flow (acfm)	2,128,442	2,069,745	1,996,279	
	35,474	34,496	33,271	
Diameter (ft)	18	18	18	
Velocity (ft/sec)- calculated	139.4	135.6	130.7	

TABLE A-10 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE 7FA, DISTILLATE OIL, 75% LOAD

Parameter	Tur <u>bi</u> s	Turbine Inlet Temperature		
	20 °F Case 13	59 °F Case 14	95 °F Case 15	
Particulate Matter (Front-half only)	Case 10	CHIC 14	CHOO 10	
Particulate from CT- provided	17.0	17.0	17.0	
Sulfur Dioxide				
Fuel oil Sulfur Content	0.0015%	0.0015%	0.0015%	
Fuel oil use (lb/hr)	89,805	84,326	76,670	
1b SO2 / lb S (64/32)	2	2	-	
Stack emission rate (lb/hr)- calculated	2.7	2.5	2.3	
Nitrogen Oxides NOx ($1b/hr$) = NOx (ppm actual) x Volume flow ($acfm$) x				
Basis, ppmvd - calculated	65.4	63.4	60.	
	42 11.72	42 11.85	4: 12.6:	
Moisture (%)	10.34	10.57	10.8	
Oxygen (%)	11.71	11.99	12.4.	
Oxygen (%) dry	2,127,478	2,068,807	1,995,37	
Turbine Flow (acfm)	1,878,138	1,823,654	1,742,96	
Turbine Flow (acfm, dry) Turbine Exhaust Temperature (°F)	1,196	1,200	1,20	
CT emission rate (lb/hr) - calculated	280.4	263.3	239.	
CT Emission rate (lb/hr) - provided	280.0	263.0	239.	
<u>Carbon Monoxide</u>				
$CO(lb'hr) = CO(ppm \ actual) \times Volume \ flow \ (acfm) \times Volume \ flow$				
Basis, ppmvd - provided	13,5	13.5	13,	
Basis, ppmvd @ 15% O2 - calculated	8.7	8.9	9.	
Moisture (%)	11.72	11.85	12.6	
Oxygen (%)	10.34	10.57	10.8	
Oxygen (%) dry	11.71	11.99	12.4	
Turbine Flow (acfm)	2,127,478	2,068,807	1,995,37	
Turbine Flow (acfm, dry)	1,878,138	1,823,654	1,742,96	
Turbine Exhaust Temperature (°F)	1,196	1,200	1,20	
CT emission rate (lb/hr) - calculated	35.2	34.L	32. 48.	
CT Emission rate (lb/hr) - provided	52 0	510	48.	

TABLE A-10 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE 7FA, DISTILLATE OIL, 75% LOAD

Parameter	Turbine Inlet Temperature		
	20 °F	59 °F	95 °F
	Case 13	Case 14	Case 15
Volatile Organic Compounds			
VOC (lb/hr) = VOC (ppm actual) x $Volume$ flow (acfm) x		•	
Basis, ppmvd - provided	4.0	4,0	4.0
Basis, ppmvd @ 15% O2 - calculated	2.6	2.6	2.8
Moisture (%)	11.72	11.85	12.65
Oxygen (%)	10.34	10.57	10.86
Oxygen (%) dry	11.71	11.99	12.43
Turbine Flow (acfm)	2,127,478	2,068,807	1,995,375
Turbine Flow (acfm, dry)	1,878,138	1,823,654	1,742,960
Turbine Exhaust Temperature (°F)	1,196	1,200	1,200
CT emission rate (lb/hr) - calculated	6.0	5.8	5.5
CT Emission rate (lb/hr) - provided	6.0	5.5	5.2
Sulfuric Acid Mist			
Total Sulfuric Acid Mist (SAM) (lb/hr)= SAM Formed in the CT			
	2.7	2.5	2
	10	10	10
Stack emission rate (lb/hr)- calculated	0.41	0.39	0.3
- provided	NA	NA	N/
<u>Lead</u>			
	14	14	1
Stack emission rate (lb/hr)- calculated	0.0230	0.0216	0.019

Note: ppmvd= parts per million, volume dry; O2= oxygen.

TABLE A-11 DESIGN INFORMATION AND STACK PARAMETERS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, DISTILLATE OIL, 50% LOAD

	Tunkis	CT Only	100
	20 °F	e Inlet Temperatu 59 °F	95 °F
Parameter	Case 16	Case 17	Case 18
Combustion Turbine Performance			
Net power output (MW)	99.844	93.237	81.983
Net heat rate (Btu/kWh, LHV)	12,730	12,920	13,370
(Btu/kWh, HHV)	13,494	13,695	14,172
Heat Input (MMBtu/hr, LHV)	1,271.0	1,204.6	1,096.1
(MMBtu/hr, HHV)	1,347 3	1,276.9	1,161.9
Relative Humidity (%)	80	60	64
Fuel heating value (Btu/lb, LHV)	18,300	18,300	18,300
(Btu/lb, HHV)	19,398	19,398	19,398
(HHV/LHV)	1.060	1.060	1.060
CT Exhaust Flow			- A-72 004
Mass Flow (lb/hr)- with no margin	2,499,000	2,457,000	2,353,000
- provided	NA	NA	NA.
Temperature (°F) - provided	1,196	1,200	1,200
Moisture (% Vol.)	10.19	10,38	11.3
Oxygen (% Vol.)	11.30	11 54	11.73
Molecular Weight	28.44	28.40	28,26
Fuel Usage	1141//		
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000,000 Btu/MMBtu (Fuel Heat Content, Btu/lb (I	LHV))	1 204 (1,096.
Heat input (MMBtu/hr, LHV)	1,271.0	1,204.6	
Heat content (Btu/lb, LHV)	18,300	18,300	18,300
Fuel usage (lb/hr)- calculated	69,454	65,826	59,89
HRSG Stack	75	75	7.
HRSG - Stack Height (ft)	18	18	1
Diameter (ft)	18	10	
Stack Flow Conditions			
Velocity (ft/sec) = Volume flow (acfm) / [((diameter) ² /4) x 3.14159] / 60 sec/min	2,499,000	2,457,000	2,353,00
Mass flow (lb/hr)	1,196	1,200	1,20
	28.44	28.40	28.2
Molecular weight	1,770,922	1.748,009	1,682,25
CT volume flow (acfm)	29,515	29,133	28,03
	·	· · · · · · · · · · · · · · · · · · ·	20,03 1
Diameter (ft)	18	18	
Velocity (ft/sec)- calculated	116.0	114.5	110.

Source: GE, 2007- CT Performance Data; Goler, 2008

TABLE A-12 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE 7FA, DISTILLATE OIL, 50% LOAD

	Turbin	e Inlet Tempera	ture
Parameter	20 °F	59 °F	95 °F
	Case 16	Case 17	Case 18
Particulate Matter (Front-half only)			
Particulate from CT- provided	17.0	17.0	17.0
Sulfur Dioxide			
Fuel oil Sulfur Content	0.0015%	0.0015%	0.0015%
Fuel oil use (lb/hr)	69,454	65,826	59,897
1b SO2 / lb S (64/32)	2	2	2
Stack emission rate (lb/hr)- calculated	2.1	2.0	1.8
Nitrogen Oxides NOx (lb/hr) = NOx (ppm actual) x Volume flow (acfm) x ,			
Basis, ppmvd - calculated	59.2 42	57.1 42	54.6 42
Maistura (9/)	10.19	10.38	11.37
Moisture (%) Oxygen (%)	11.30	11.54	11.73
Oxygen (%) Oxygen (%) dry	12.58	12.88	13.23
Turbine Flow (acfm)	1,770,120	1,747,217	1,681,491
Turbine Flow (acfm, dry)	1,589,745	1,565,856	1,490,306
Turbine Exhaust Temperature (°F)	1,196	1,200	1,200
CT emission rate (lb/hr) - calculated	214.9	203.6	185.2
CT Emission rate (lb/hr) - provided	215.0	203.0	185.0
<u>Carbon Monoxide</u>			
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x			
Basis, ppmvd - provided	13.5	13.5	13.5
Basis, ppmvd @ 15% O2 - calculated	9.6	9.9	10.4
Moisture (%)	10.19	10.38	11.37
Oxygen (%)	11.30	11.54	11.73
Oxygen (%) dry	12.58	12.88	13.23
Turbine Flow (acfm)	1,770,120	1,747,217	1,681,49
Turbine Flow (acfin, dry)	1,589,745	1,565,856	1,490,306 1,200
Turbine Exhaust Temperature (°F)	1,196	1,200 29.3	27.9
CT Emission rate (lb/hr) - calculated	29.8 44.0	43.0	41.0
CT Emission rate (lb/hr) - provided	V.FF	7.5.0	71.

TABLE A-12 MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE 7FA, DISTILLATE OIL, 50% LOAD

	Turbin	e Inlet Temperat	ture
Parameter	20 °F	59 °F	95 °F
Tarameter	Case 16	Case 17	Case 18
Volatile Organic Compounds			
VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x			
Basis, ppmvd - provided	4.0	4.0	4.0
Basis, ppmvd @ 15% O2 - calculated	2.8	2.9	3.1
Moisture (%)	10.19	10.38	11.37
Oxygen (%)	11.30	11.54	11.73
Oxygen (%) dry	12.58	12.88	13.23
Turbine Flow (acfm)	1,770,120	1,747,217	1,681,491
Turbine Flow (acfm, dry)	1,589,745	1,565,856	1,490,306
Turbine Exhaust Temperature (°F)	1,196	1,200	1,200
CT emission rate (lb/hr) - calculated	5.0	5.0	4.7
CT Emission rate (lb/hr) - provided	5.0	5.0	4.5
Sulfuric Acid Mist			
Total Sulfuric Acid Mist (SAM) (lb/hr)= SAM Formed in the CT			
	2.1	2.0	1.8
	10	10	10
Stack emission rate (lb/hr)- calculated	0.32	0.30	0.28
- provided	NA	NA	NA
<u>Lead</u>			
	14	14	14
Stack emission rate (lb/hr)- calculated	0.0178	0.0169	0.015

Note: ppmvd= parts per million, volume dry; O2= oxygen.

Source: GE, 2007- CT Performance Data; Goler, 2008

TABLE A-13
REGULATED AND HAZARDOUS AIR POLLUTANT EMISSION FACTORS AND EMISSIONS
WHEN FIRING NATURAL GAS, GE7FA CT

Parameter	WHEN FIRING NATURAL GAS, GE7FA CT Emission Rate (lb/hr) firing Natural Gas for Operating Conditions of Base Load (1)	Natural Gas Maximum Annual Emissions (TPY) (2)		
	59 °F	59 °F	59 °F	
HIR (MMBtw/hr):	1,892	l CT	2 CTs	
Sulfuric acid mist	1.60	2.7	5.4	
HAPs (Section 112(b) of Clean Air Act)				
1,3-Butadiene	0.000814	0 001	0.003	
Acetaldehyde	0.0757	0.128	0.257	
Acrolein	0.0121	0.021	0,041	
Benzene	0.0227	0.038	0.077	
Ethylbenzene	0.0605	0.103	0.205	
Formadehyde	0.392	0 664	1 328	
Naphthalene	0.00246	0.004	0.008	
Polycyclic Aromatic Hydrocarbons (PAH) (3)	0.00416	0 007	0 014	
Propylene Oxide	0.0549	0.093	0.186	
Toluene	0.0624	0.106	0.212	
Xylene	0.121	0.205	0,410	
Antimony	0.0	0.0	0.00	
Arsenic	0.0	0.0	0.00	
Beryllium	0,0	0.0	0 00	
Cadmium	0.0	0.0	0.00	
Chromium	0.0	•0.0	0.00	
Lead	0.0	0.0	0.00	
Manganese	0.0	00	0.00	
Mercury	1.89E-06	0.0	6.41E-06	
Nickel	0.0	0.0	0.00	
Selenium	0.0	0.0	0.00	
HAPs (Total)	0.808	1.4	2.7	

(1) Emissions based on the following emission factors and conversion factors for firing natural gas:

Emission Factors		<u>Value</u>	Reference
Sulfuric acid mist		10	
1,3-Butadiene	(a)	0,43	
Acetaldehyde		40	
Acrolein		6.4	
Benzene		12	
Ethylbenzene		32	
Formadehyde		0.091	ppmvd @15% O2 (see Table 9a)
Naphthalene		1.3	
Polycyclic Aromatic Hydrocarbons (PAH)		2.2	
Propylene Oxide	(a)	29	
Toluene		33	
Xylene		64	
Antimony		0.00E+00	
Arsenic		0 00E+00	
Beryllium		0.00E+00	
Cadmium		0.00E+00	
Chromium		0.00E+00	
Lead		0.00E+00	
Manganese		0 00E+00	
Mercury		1.00E-03	
Nickel		0.00E+00	
Selenium		0.00E+00	

(a) Based on 1/2 the detection limit; expected emissions are lower.

3390 CT 0 CT/DB

⁽³⁾ Assumed to be representative of Polycyclic Organic Matter (POM) emissions, a regulated HAP.

TABLE A-13a MAXIMUM FORMALDEHYDE EMISSIONS FOR THE SHADY HILLS ENERGY CENTER PROJECT GE7FA, DRY LOW NOX COMBUSTOR, NATURAL GAS, BASE LOAD

		CT Only	
	Turbing	e Inlet Temperat	ure
Parameter	20 °F	59 °F	95 °F
	Case 1	Case 2	Case 3
Formaldehyde (CH_2O) $MW = 30$			
$CH_2O(lb/hr) = CH_2O(ppm actual) \times V$	olume flow (acfm) x 46 (mole.	wgt NOx) x 2116.	8 lb/ft2 (pressure) /
[1545.7 (gas constant, R) x Actual Temp.			
CH_2O (ppm actual) = CH_2O (ppmd @	=	20.9 - 15)]	
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)			
	(1-1		
Basis, ppmvd - calculated	0.110	0.111	0.111
, []	0.091	0.091	0.091
		0.25	9.88
Moisture (%)	7.55	8.37	9.00
Moisture (%) Oxygen (%)	7.55 12.75	8.37 12.57	12.34
Oxygen (%)			
• •	12.75	12.57	12.34
Oxygen (%) Oxygen (%) dry	12.75 13.79	12.57 13.72	12.34 13.69
Oxygen (%) Oxygen (%) dry Exhaust Flow (acfm)	12.75 13.79 2,575,419	12.57 13.72 2,462,317	12.34 13.69 2,320,037
Oxygen (%) Oxygen (%) dry Exhaust Flow (acfm) Exhaust Flow (acfm, dry)	12.75 13.79 2,575,419 2,380,975	12.57 13.72 2,462,317 2,256,221	12.34 13.69 2,320,037 2,090,818

Note: ppmvd= parts per million, volume dry; O₂= oxygen.

Source: GE, 2007- CT Performance Data; Goler, 2008

TABLE A-14
REGULATED AND HAZARDOUS AIR POLLUTANT EMISSION FACTORS AND EMISSIONS
WHEN FIRING DISTILLATE FUEL OIL, GE 7FA CTS

	Emission Rate (llvhr)			Maximum Annual Emissions (TP)	n
Parameter	Firing Distillate Fuel Oil (1) Base Lond	Distillate F	nel Oil (2)	Natural Gas (4)	Natural Gas and Fuel Oil (5)
	59 °F	Distract F	- (2)		
	37 1	i i	2	2	2
HIR (MMBsu/hr)	2,002	ст	CTs	CTs	CTs
Sulfunc acid must	0.47	0 24	0.5	5.4	53
APs (Section 112(b) of Clean A	ir_Act)				
,3-Butadiene	0 0320	0.0190	0.0320	0.0028	0.034
Acetaldehyde	0.00	0.00	0.00	0 26	0 2
Acrolein	0.00	0.00	0.00	0.041	0 04
Benzene	0,110	0,0551	0 1101	0 077	0.18
ahvibenzene	0.00	0.00	0.00	0 205	U 18
ormadehyde	0.455	0 228	0 4554	1 33	16
laphthalene	0 0701	0.0350	0.0701	0 0083	0 077
olycyclic Aromatic Hy (3)	0.0801	0.0400	0.0801	0.0141	0 09
ropylene Oxide	0.00	0.00	0.00	U 186	U 16
Foluenc .	0.00	0.00	0.00	0.21	0 2
Cylene	0 00	0 00	0.00	0.41	0.4
Antimony	0.00	0.00	0.00	0.00	0,0
Arsenic	0.0220	0.01101	0 02203	0.00	0.022
Bers Ilmm	0 000621	0.000310	0.000621	0.00	0 00062
Cadruum	0 00961	0 00481	0 00961	0.00	0 0096
hromium	0.0220	0.01101	0 02203	0.00	0 022
ead	0.0280	0 01402	0.02803	0.00	0.028
Aanganese	1.58	0 791	1.582	0.00	16
Morcury	0.00240	0.001201	0 002403	0.00	0.0024
lickel	0 00921	0.00461	0.00921	0.00	0 0092
Selenium	0.0501	0 0250	0.0501	0.00	0.050
HAPs (Total)	2 47	1.24	2.47	2.7	4 9

(1) Emissions based on the following emission factors and conversion factors for firing distillate fuel oil.

Emission Factors		Value	Reference
Sulfune acid mist		5	
1,3-Butadiene	(a)	16	
Acetaldehyde		0.0	
Acrolein		0.0	
Веплене		55	
Ethylbenzene		0.0	
Formadehyde		0.09	l ppmvd @15% O2 (see Table 10a)
Naphthalene		35	
Polycyclic Aromatic Hydrocart	ons (40	
Propylene Oxide		0.0	
Toluene		0.0	
Xylene		0.0	
Antimony		0.0	
Arsenic	(a)	П	
Beryllium	(a)	0 31	
Cadmuum		4.8	
Chroman		11	
Lead		14	
Manganese		790	
Mercury		1.2	
Nickel	(a)	4,6	
Sciemum	(a)	25	

(a) Based on 1/2 the detection limit, expected emissions are lower.

1,000 hours

- Assumed to be representatine of Polycyclic Organic Matter (POM) emussions, a regulated HAP.
 Annual emissions based on maximum emissions presented for natural gas-firing
 Maximum total anni 1,000 hours of firing fuel and remaining hours firing natural gas.

TABLE A-14a

MAXIMUM FORMALDEHYDE EMISSIONS

FOR THE SHADY HILLS ENERGY CENTER PROJECT

GE 7FA CT, DRY LOW NOx COMBUSTOR, DISTILLATE OIL, BASE LOAD

		CT Only	 	•
	Turbit	ne Inlet Temperati	ıre	
Parameter	20 °F	59 °F	95 °F	
	Case 10	Case 11	Case 12	
Formaldehyde (CH ₂ O) MW = 30				
CH_2O (lb/hr) = CH_2O (ppm actual) x Volui	ne flow (acfm) x 46 (mole. wgt NO:	x) x 2116.8 lb/ft2 (p	ressure) /	
[1545.7 (gas constant, R) x Actual Temp. (°R)				
CH_2O (ppm actual) = CH_2O (ppmd @ 15%)]		
Oxygen (%, dry)(O $_2$ dry) = Oxygen (%)/(1-N				
211/2011 (1.1) 11. 2/(2. 2 -1.7) 2017 Ben (1. 2). (1. 1.				
Basis, ppmvd - calculated	0.128	0.129	0.131	
, FF	0.091	0.091	0.091	
Moisture (%)	10.87	11.46	13.07	
• • • •	11.04	11.11	10.77	
Oxygen (%)	11.24	11.11	10.77	
Oxygen (%) Oxygen (%) dry	11.24	12.55	12.39	
, ,				
Oxygen (%) dry	12.61	12.55	12.39	
Oxygen (%) dry Exhaust Flow (acfm)	12.61 2,632,958	12.55 2,515,327	12.39 2,363,790	
Oxygen (%) dry Exhaust Flow (acfm) Exhaust Flow (acfm, dry)	12.61 2,632,958 2,346,756	12.55 2,515,327 2,227,070	12.39 2,363,790 2,054,843	

Note: ppmvd= parts per million, volume dry; O2= oxygen.

Source: GE, 2007- CT Performance Data; Goler, 2008

TABLE 2-1 STACK, OPERATING, AND EMISSION DATA FOR THE COMBUSTION TURBINES FOR SIMPLE CYCLE OPERATION - NATURAL GAS COMBUSTION

			ission Data ^a for Am		
			Combustion Turbin	e	
Parameter	'arameter		59 °F	95 °F	
CT Stack Data (ft)					
Height		75	75	75	
Diameter		18.0	18.0	18.0	
100 Percent Load					
		1,074	1,113	1,154	
Velocity (fl/sec)		168.7	161.3	152.0	
Maximum Hourly Em	issions per Unit				
SO ₂	lb/hr	11.2	10.4	9.5	
PM/PM ₁₀	lb/hr	9.0	9.0	9.0	
NO _x	lb/hr	63.6	59.4	53.8	
co	lb/hr	23.2	21.5	19.4	
VOC (as methane)	lb/hr	3.3	3.0	2.7	
Sulfuric Acid Mist	lb/hr	1.7	1.6	1.5	
75 Percent Load					
		1,200	1,159	1,190	
Velocity (ft/sec)		137.5	133.6	128.7	
Maximum Hourly Em	issions per Uni	t .			
SO ₂	lb/hr	9.2	8.5	7.9	
PM/PM ₁₀	lb/hr	9.0	9.0	9.0	
NO _x	lb/hr	51.7	47.8	44.1	
CO	lb/hr	17.4	17.3	16.1	
VOC (as methane)	lb/hr	2.4	2.4	2.3	
Sulfuric Acid Mist	lb/hr	1.41	1.30	1.20	
50 Percent Load					
Velocity (ft/sec)		1,200 116.0	1,200 113.3	1,200 108.9	
Maximum Hourly Em			<i>(</i> 0	6.2	
SO ₂	lb/hr	7.3	6.8	6.3	
PM/PM ₁₀	lb/hr	9.0	9.0	9.0	
NO _x	lb/hr	40.3	37.8	34.8	
CO	lb/hr	14.8	14.3	13.6	
VOC (as methane)	lb/hr	2.1	2.0	1.9	
Sulfuric Acid Mist	lb/hr	1.11	1.04	0.96	

^a Refer to Appendix A for detailed information on basis of pollutant emission rates and operating data. Source: GE, 2007- CT Performance Data; Goler, 2008

TABLE 2-2
STACK, OPERATING, AND EMISSION DATA FOR THE COMBUSTION TURBINES FOR SIMPLE CYCLE OPERATION - ULTRA LOW-SULFUR LIGHT OIL COMBUSTION

			nission Data ^a for Am	
			Combustion Turbin	<u> </u>
Parameter		20 °F	59 °F	95 °F
CT/HRSG Stack Data	(ft)			
Height		75	75 `	75
Diameter		18	18	18
100 Percent Load				
		1,053	1,093	1,143
Velocity (ft/sec)		172.4	164.7	154.8
Maximum Hourly Emi	-			
SO ₂	lb/hr	3.3	3.1	2.8
PM/PM ₁₀	lb/hr	17.0	17.0	17.0
NO _x	lb/hr	345.9	322.3	293,5
co	lb/hr	48.0	44.7	40.9
VOC (as methane)	lb/hr	8.2	7.5	6.7
Lead	lb/hr	0.028	0.026	0.024
Sulfuric Acid Mist	lb/hr	0.50	0.47	0.43
75 Percent Load				
		1,196	1,200	1,200
Velocity (ft/sec)		139.4	135.6	130.7
Maximum Hourly Emi	•			
SO ₂	lb/hr	2.7	2.5	2.3
PM/PM _{t0}	lb/hr	17.0	17.0	17.0
NO_x	lb/hr	280.4	263.3	239.2
CO	lb/hr	35.2	34.1	32.6
VOC (as methane)	lb/hr	6.0	5.8	5.5
Lead	lb/hr	0.023	0.022	0.020
Sulfuric Acid Mist	lb/hr	0.41	0.39	0.35
50 Percent Load		1.107	1.500	1.200
Velocity (ft/sec)		1,196 116.0	1,200 114.5	1,200 110.2
Maximum Hourly Emi	issions nor I lait			
SO ₂	lb/hr	2.1	2.0	1.8
PM/PM ₁₀	lb/hr	17.0	17.0	17.0
NO _x	lb/hr	214.9	203.6	185.2
00	lb/hr	29.8	29.3	27.9
VOC (as methane) Lead	lb/hr	5.0	5.0	4.7
And	lb/hr	0.018	0.017	0.015

^a Refer to Appendix A for detailed information on basis of pollutant emission rates and operating data. Source: GE, 2007- CT Performance Data; Goler, 2008

TABLE 2-3
SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR THE CTS IN SIMPLE CYCLE OPERATIONS

				Maximu	m Emissions (tons/ye:	ar)
	Max	imum Hourly En	nissions (lb/hr)*	Operating		
		Simple Cycle (SC)		<u>Scenario</u>	Operating Hours	
	Fuel:	NG	Oil	SC/ NG 100 % Load	3,390	2,640
	Temp & Load:	59 °F, 100%	59 °F, 100%	SC/ OIL 100 % Load	0	750
Pollutant				TOTAL	3,390	3,390
One Combustion Turbine						
SO ₂		10.4	3.1		17.7	14.9
PM/PM ₁₀		9.0	17.0		15.3	18.3
NO_x		59.4	322.3		100.7	199.2
co¨		21.5	44.7		36.4	45.1
VOC (as methane)		3.0	7.5		5.1	6.8
Sulfuric Acid Mist		1.6	0.5		2.7	2.3
HAPs		0.81	2.47		1.4	2.0
Lead		0.00	0.026		0.0	0.010
Two Combustion Turbines		·				
SO ₂		20.9	6.2		35.4	29.9
PM/PM ₁₀		18.0	34.0		30.5	36.5
NO_x		118.8	644.5		201.3	398.5
co		42.9	89.4		72.7	90.2
VOC (as methane)		6.0	15.1		10.2	13.6
Sulfuric Acid Mist		3.2	0.9		5.4	4.6
HAPs		1.6	4.9		2.7	4.0
Lead		0.0	0.1		0.0	0.020

^a Based on 59 °F ambient inlet air temperature Source: GE, 2007- CT Performance Data; Goler, 2008

TABLE 2-6
SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR THE SHADY HILLS GENERATING STATION PROJECT

		Annual Emissions (tons/year)	<u>.</u>		PSD Review Required?
Pollutant	2 CTs	Emergency Generator	Natural Gas Heater	TOTAL	PSD Significant Emission Rate (tons/year)	
SO ₂	35.4	0.0082	0.24	36	40	No
PM	36.5	0.13	0.08	37	25	Yes
PM_{10}	36.5	0.13	0.08	37	15	Yes
NO_x	398.5	6.65	4.15	409	40	Yes
CO	90.2	4.60	3.49	98	100	No
VOC (as methane)	13.6	1.76	0.23	16	40	No
Sulfuric Acid Mist	5.4	NA	NA	5.42	7	No
Lead	0.020	NA	NA	0.02	0.6	No

Source: Golder, 2008.

ATTACHMENT B

UPDATED BACT CALCULATIONS AND SUPPORTING INFORMATION

Table B-4. Capital Cost for Selective Catalytic Reduction for General Electric Frame 7F Simple Cycle Combustion Turbine Based on 2,640 hr/yr Gas Firing and 750 hr/yr Oil Firing

Cost Component	Costs B	asis of Cost Component
Direct Capital Costs		
SCR Associated Equipment	5,243,333.33	Vendor Estimate; Includes Cooling System
Ammonia Storage Tank	included	Vendor Estimate
Flue Gas Ductwork	included	Vendor Estimate
Instrumentation	included	Vendor Estimate
Emission Monitoring	\$262,167	5% of SCR Associated Equipment
Emission womening		
Freight Total Direct Capital Costs (\$262,167 (TDCC) \$5,767,667	5% of SCR Associated Equipment
Freight Total Direct Capital Costs ((TDCC) \$5,767,667	
Freight Total Direct Capital Costs (Direct Installation Costs	(TDCC) \$5,767,667 \$461,413	8% of TDCC and RCC;OAQPS Cost Control Manual
Freight Total Direct Capital Costs (Direct Installation Costs Foundation and supports	\$5,767,667 \$461,413 \$807,473	8% of TDCC and RCC;OAQPS Cost Control Manual 14% of TDCC and RCC;OAQPS Cost Control Manual
Freight Total Direct Capital Costs (Direct Installation Costs Foundation and supports Handling & Erection	\$5,767,667 \$461,413 \$807,473 \$230,707	8% of TDCC and RCC;OAQPS Cost Control Manual 14% of TDCC and RCC;OAQPS Cost Control Manual 4% of TDCC and RCC;OAQPS Cost Control Manual
Freight Total Direct Capital Costs (Direct Installation Costs Foundation and supports Handling & Erection	\$5,767,667 \$461,413 \$807,473 \$230,707 included	8% of TDCC and RCC;OAQPS Cost Control Manual 14% of TDCC and RCC;OAQPS Cost Control Manual 4% of TDCC and RCC;OAQPS Cost Control Manual Vendor Estimate
Freight Total Direct Capital Costs (Direct Installation Costs Foundation and supports Handling & Erection Electrical	\$5,767,667 \$461,413 \$807,473 \$230,707 included \$57,677	8% of TDCC and RCC;OAQPS Cost Control Manual 14% of TDCC and RCC;OAQPS Cost Control Manual 4% of TDCC and RCC;OAQPS Cost Control Manual Vendor Estimate 1% of TDCC and RCC;OAQPS Cost Control Manual
Freight Total Direct Capital Costs (Direct Installation Costs Foundation and supports Handling & Erection Electrical Piping (Ammonia Injection Grid) Insulation for ductwork Painting	\$5,767,667 \$461,413 \$807,473 \$230,707 included \$57,677 \$57,677	8% of TDCC and RCC;OAQPS Cost Control Manual 14% of TDCC and RCC;OAQPS Cost Control Manual 4% of TDCC and RCC;OAQPS Cost Control Manual Vendor Estimate 1% of TDCC and RCC;OAQPS Cost Control Manual 1% of TDCC and RCC;OAQPS Cost Control Manual
Freight Total Direct Capital Costs (Direct Installation Costs Foundation and supports Handling & Erection Electrical Piping (Ammonia Injection Grid) Insulation for ductwork	\$5,767,667 \$461,413 \$807,473 \$230,707 included \$57,677	8% of TDCC and RCC;OAQPS Cost Control Manual 14% of TDCC and RCC;OAQPS Cost Control Manual 4% of TDCC and RCC;OAQPS Cost Control Manual Vendor Estimate 1% of TDCC and RCC;OAQPS Cost Control Manual

Total Direct Installation Costs (TDIC) \$2,480,097

Total Capital Costs (TCC) \$8,247,763 Sum of TDCC and TDIC

Indirect Costs Engineering	included	Vendor Estimate
PSM/RMP Plan	\$50,000	Engineering Estimate
Construction and Field Expense	\$412,388	5% of Total Capital Costs; OAQPS Cost Control Manual
Contractor Fees	\$824,776	10% of Total Capital Costs; OAQPS Cost Control Manual
Start-up	\$164,955	2% of Total Capital Costs; OAQPS Cost Control Manual
Performance Tests	\$82,478	1% of Total Capital Costs; OAQPS Cost Control Manual
Total Indirect Capital Cost (TInCC)	\$1,534,597	
Total Direct, Indirect and Capital Costs (TDICC)	\$9,782,361	Sum of TCC and TInCC

Table B-5. Annualized Cost for Selective Catalytic Reduction for General Electric Frame 7F Simple Cycle Operation Based on 2,640 hr/yr Gas Firing and 750 hr/yr Oil Firing

Cost Component	Costs	Basis of Cost Component
Direct Annual Costs		
Operating Personnel		10 28 hours/week at \$15/hr
Supervision		76 15% of Operating Personnel;OAQPS Cost Control Manual
Ammonia		15 \$500 per ton for Aqueous NH ₃ , 62 lb/hr, 3,390 hr/year
PSM/RMP Update		00 Engineering Estimate
Inventory Cost	\$9,5	9 Capital Recovery (9.44%) for 1/3 catalyst for SCR
Catalyst Cost	\$75,63	
Contingency	\$5,63	3% of Direct Annual Costs
Total Direct Annual Costs (TDAC)	\$193,43	39
Energy Costs		
Electrical (SCR and Cooling)	\$44,7	18 330kW/h for SCR system @ \$0.04/kWh, 3,390 hr/yr
MW Loss and Heat Rate Penalty	\$117,2	50 0.5% of MW output; EPA, 1993 (Page 6-20) ^a
Total Energy Costs (TEC)	\$162,0	8
Indirect Annual Costs		
Overhead	\$	0 0% of Operating/Supervision Labor and Ammonia
Property Taxes	\$	0 0% of Total Capital Costs
Insurance	\$	0 0% of Total Capital Costs
Annualized Total Direct Capital	\$923,45	9.44% Capital Recovery Factor of 7% over 20 years times sum of TDICC
Total Indirect Annual Costs (TIAC	\$923,45	5
Total Annualized Cost:	s \$1,278,90	2 Sum of TDAC, TEC and TIAC
Incremental Cost Effectiveness(9 to 3 ppmvd	\$9,64	0 NO _x Reduction Only
	\$14,26	4 Net Emission Reduction

^a Alternative Control Techniques Document--NOx Emissions from Stationary Gas Turbines, Page 6-20.

Table B-6. Maximum Potential Incremental Emissions (TPY) with Selective Catalytic Reduction Based on 2,640 hr/yr Gas Firing and 750 hr/yr Oil Firing

	Incremental Emissions (tons/year) of SCR			
Pollutants	Primary	Secondary	Total	
Particulate	5.24	0.14	5.38	
Sulfur Dioxide		0.05	0.05	
Nitrogen Oxides	-132.67	2.62	-130.05	
Carbon Monoxide		1.57	1.57	
Volatile Organic Compounds		0.10	0.10	
Ammonia	33.29			
Total:	-94.14	4.48	-89.66	
Carbon Dioxide (additional from gas firing)		2,484.33	2,484.33	

-	
Hacie,	
Dasis.	

Lost Energy (mmBtu/year) 39,226

Secondary Emissions (lb/mmBtu): Assumes natural gas firing in NO_x controlled steam unit.

Particulate		0.0072
Sulfur Dioxide		0.0027
Nitrogen Oxides w/LNB		0.1333
Carbon Monoxide		0.0800
Volatile Organic Compounds	•	0.0052

Reference: Table 1.4-1 and 1.4-2, AP-42, Version 2/98

Table B-4. Capital Cost for Selective Catalytic Reduction for General Electric Frame 7F Simple Cycle Combustion Turbine Based on 4,250 hr/yr Gas Firing and 750 hr/yr Oil Firing.

Cost Component	Costs	Basis of Cost Component
Direct Capital Costs		
SCR Associated Equipment	5,243,333.33	Vendor Estimate; Includes Cooling System
Ammonia Storage Tank	included	Vendor Estimate
Flue Gas Ductwork	included	Vendor Estimate
Instrumentation	included	Vendor Estimate
Emission Monitoring	\$262,167	5% of SCR Associated Equipment
Freight	\$262,167	5% of SCR Associated Equipment
Total Direct Capital Costs (TDCC)	\$5,767,667	
Direct Installation Costs		
Foundation and supports	\$461,413	8% of TDCC and RCC;OAQPS Cost Control Manual
Handling & Erection	\$807,473	14% of TDCC and RCC;OAQPS Cost Control Manual
Electrical	\$230,707	4% of TDCC and RCC;OAQPS Cost Control Manual
Piping (Ammonia Injection Grid)	included	Vendor Estimate
Insulation for ductwork	\$57,677	1% of TDCC and RCC;OAQPS Cost Control Manual
Painting	\$57,677	1% of TDCC and RCC;OAQPS Cost Control Manual
Site Preparation (General Facilities)	\$288,383	5% of TDCC and RCC;OAQPS Cost Control Manual
Project Contingencies	\$576,767	10% of TDCC and RCC;OAQPS Cost Control Manual
Total Direct Installation Costs (TDIC)	\$2,480,097	
Total Capital Costs (TCC)	\$8,247,763	Sum of TDCC and TDIC
Indirect Costs		
Engineering	included	Vendor Estimate
PSM/RMP Plan	\$50,000	
Construction and Field Expense	\$412,388	
Contractor Fees	\$824,776	
Start-up	\$164,955	
Performance Tests	\$82,478	1% of Total Capital Costs; OAQPS Cost Control Manual
Total Indirect Capital Cost (TInCC)	\$1,534,597	
Total Direct, Indirect and Capital	\$9,782,361	Sum of TCC and TInCC

Costs (TDICC)

Table B-5. Annualized Cost for Selective Catalytic Reduction for General Electric Frame 7F Simple Cycle Operation

Based on 4,250 hr/yr Gas Firing and 750 hr/yr Oil Firing.

Cost Component	Costs	Basis of Cost Component
Direct Annual Costs		
Operating Personnel	\$21,840	28 hours/week at \$15/hr
Supervision	\$3,276	15% of Operating Personnel;OAQPS Cost Control Manual
Ammonia	\$77,500	\$500 per ton for Aqueous NH ₃ ,62 lb/hr, 3,390 hr/year
PSM/RMP Update	\$25,000	Engineering Estimate
Inventory Cost	\$9,519	Capital Recovery (9.44%) for 1/3 catalyst for SCR
Catalyst Cost	\$75,625	4 years catalyst life; Based on Vendor Budget Estimate
Contingency	\$6,383	3% of Direct Annual Costs
Total Direct Annual Costs (TDAC)	\$219,142	
Energy Costs		
Electrical (SCR and Cooling)		330kW/h for SCR system @ \$0.04/kWh, 3,390 hr/yr
MW Loss and Heat Rate Penalty	\$172,950	0.5% of MW output; EPA, 1993 (Page 6-20) ^a
Total Energy Costs (TEC)	\$238,950	
Indirect Annual Costs		
Overhead	\$0	, , ,
Property Taxes	\$0	•
Insurance	\$0	**************************************
Annualized Total Direct Capital	\$923,455	9.44% Capital Recovery Factor of 7% over 20 years times sum of TDICC of TDICC
Total Indirect Annual Costs (TIAC)	\$923,455	
Total Annualized Costs	\$1,381,547	Sum of TDAC, TEC and TIAC
Incremental Cost Effectiveness(9 to 3 ppmvd	\$8,407	NO _x Reduction Only
		Net Emission Reduction

Table B-6. Maximum Potential Incremental Emissions (TPY) with Selective Catalytic Reduction Based on 4,250 hr/yr Gas Firing and 750 hr/yr Oil Firing.

,	Incremental Emissions (tons/year) of SCR			
Pollutants	Primary	Secondary	Total	
Particulate	5.24	0.21	5.45	
Sulfur Dioxide		0.08	0.08	
Nitrogen Oxides	-164.33	3.86	-160.48	
Carbon Monoxide		2.31	2.31	
Volatile Organic Compounds		0.15	0.15	
Ammonia	49.10			
Total:	-110.00	6.61	-103.39	
Carbon Dioxide (additional from gas firing)		3,664.20	3,664.20	

Basis:

Lost Energy (mmBtu/year)

57,856

Secondary Emissions (lb/mmBtu): Assumes natural gas firing in NO_x controlled steam unit.

Particulate	0.0072
Sulfur Dioxide	0.0027
Nitrogen Oxides w/LNB	0.1333
Carbon Monoxide	0.0800
Volatile Organic Compounds	0.0052

Reference: Table 1.4-1 and 1.4-2, AP-42, Version 2/98

Table B-4. Capital Cost for Selective Catalytic Reduction for General Electric Frame 7F Simple Cycle Combustion Turbine Based on 5000 hr/yr gas firing only.

Cost Component	Costs	Basis of Cost Component
Direct Capital Costs	-	
SCR Associated Equipment	5,243,333.33	Vendor Estimate; Includes Cooling System
Ammonia Storage Tank	included	Vendor Estimate
Flue Gas Ductwork	included	Vendor Estimate
Instrumentation	included	Vendor Estimate
Emission Monitoring	\$262,167	5% of SCR Associated Equipment
Freight	\$262,167	5% of SCR Associated Equipment
Total Direct Capital Costs (TDCC)	\$5,767,667	
Direct Installation Costs		
Foundation and supports	\$461,413	8% of TDCC and RCC;OAQPS Cost Control Manual
Handling & Erection	\$807,473	14% of TDCC and RCC;OAQPS Cost Control Manual
Electrical	\$230,707	4% of TDCC and RCC;OAQPS Cost Control Manual
Piping (Ammonia Injection Grid)	included	Vendor Estimate
Insulation for ductwork	\$57,677	
Painting	\$57,677	
Site Preparation (General Facilities)	\$288,383	5% of TDCC and RCC;OAQPS Cost Control Manual
Project Contingencies	\$576,767	10% of TDCC and RCC;OAQPS Cost Control Manual
Total Direct Installation Costs (TDIC) \$2,480,097	
Total Capital Costs (TCC) \$8,247,763	Sum of TDCC and TDIC
Indirect Costs		
Engineering	included	Vendor Estimate
PSM/RMP Plan	\$50,000	
Construction and Field Expense	\$412,388	
Contractor Fees	\$824,776	
Start-up	\$164,955	
Performance Tests	\$82,478	1% of Total Capital Costs; OAQPS Cost Control Manual
Total Indirect Capital Cost (TInCC)	\$1,534,597	
Total Direct, Indirect and Capital	\$9,782,361	Sum of TCC and TInCC

Costs (TDICC)

Table B-5. Annualized Cost for Selective Catalytic Reduction for General Electric Frame 7F Simple Cycle Operation Based on 5000 hr/yr gas firing only.

Cost Component	Costs	Basis of Cost Component
Direct Annual Costs		
Operating Personnel		28 hours/week at \$15/hr
Supervision	\$3,276	5 15% of Operating Personnel;OAQPS Cost Control Manual
Ammonia	\$77,500	\$500 per ton for Aqueous NH ₃ , 62 lb/hr, 3,390 hr/year
PSM/RMP Update	\$25,000	Engineering Estimate
Inventory Cost	\$9,519	Capital Recovery (9.44%) for 1/3 catalyst for SCR
Catalyst Cost	\$75,625	4 years catalyst life; Based on Vendor Budget Estimate
Contingency	\$6,383	3% of Direct Annual Costs
Total Direct Annual Costs (TDAC)	\$219,142	2
Energy Costs		
Electrical (SCR and Cooling)	\$66,000	330kW/h for SCR system @ \$0.04/kWh, 3,390 hr/yr
MW Loss and Heat Rate Penalty	\$172,950	0.5% of MW output; EPA, 1993 (Page 6-20) ^a
Total Energy Costs (TEC)	\$238,950)
Indirect Annual Costs		
Overhead	\$0	• •
Property Taxes	\$0	•
Insurance	\$0	· · · · · · · · · · · · · · · · · · ·
Annualized Total Direct Capital	\$923,455	9.44% Capital Recovery Factor of 7% over 20 years times sum of TDICC
Total Indirect Annual Costs (TIAC)	\$923,455	
Total Annualized Costs	s \$1,381,547	Sum of TDAC, TEC and TIAC
Incremental Cost Effectiveness(9 to 3 ppmvd	\$14,050	NO _x Reduction Only
	\$36,953	Net Emission Reduction

^a Alternative Control Techniques Document--NOx Emissions from Stationary Gas Turbines, Page 6-20.

Table B-6. Maximum Potential Incremental Emissions (TPY) with Selective Catalytic Reduction

Based on 5000 hr/yr gas firing only.

	Incremental Emiss	ions (tons/year) of SCR	
Pollutants	Primary	Secondary	Total
Particulate	5.24	0.21	5.45
Sulfur Dioxide		0.08	0.08
Nitrogen Oxides	-98.33	3.86	-94.48
Carbon Monoxide		2.31	2.31
Volatile Organic Compounds		0.15	0.15
Ammonia	49.10		
Total:	-44.00	6.61	-37.39
Carbon Dioxide (additional from gas firing)		3,664.20	3,664.20

Basis:

Lost Energy (mmBtu/year) 57,856

Secondary Emissions (lb/mmBtu): Assumes natural gas firing in NO_x controlled steam unit.

Particulate	0.0072
Sulfur Dioxide	0.0027
Nitrogen Oxides w/LNB	0.1333
Carbon Monoxide	0.0800
Volatile Organic Compounds	0.0052

Reference: Table 1.4-1 and 1.4-2, AP-42, Version 2/98

E-MAIL COMMUNICATION

CC:	
FROM: PHONE: FAX:	
DATE:	June 10, 2003

TO:

SUBJECT: Frame 7FA SCR Systems

Based on you inquiry we propose to furnish six (6) Simple Cycle SCR systems for use with six (6) GE Frame 7FA combustion gas turbine generators for the budgetary selling price of \$27,500,000.00 FOB point of manufacture. Estimated shipping weight is approximately 10,500,000 lb. total. Based on the availability of material and present shop loading conditions delivery is estimated to be approximately one year after receipt of an order and complete release to purchase materials.

Our scope of supply includes the following components:

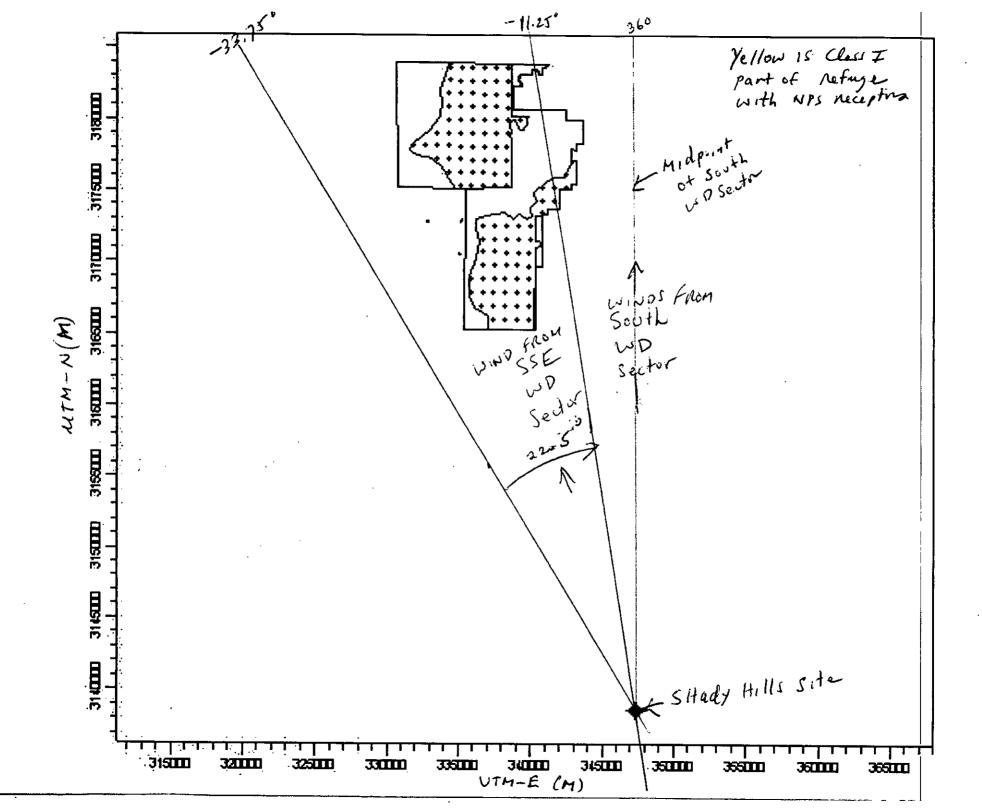
- Ductwork and catalyst housings
- Exhaust stack
- Ammonia injection grid (AIG)
- AIG piping
- · Ammonia/air dilution skid
- SCR catalyst
- Controls
- Walkways and ladders
- Fluid cooling system including:
 - · Exhaust gas cooler
 - Air cooled heat exchanger
 - Redundant circulating pumps
 - Expansion/storage tank
 - Interconnecting piping
 - · Associated trim and trim piping

Warranted SCR catalyst life is three years based on combustion gas turbine operation of less than 3800 hours per year and operation on fuel oil of less than 720 hours per year. Expected catalyst life is four years under the aforementioned operating conditions. Replacement catalyst cost is \$250,000.00 per unit based on current pricing. Ammonia consumption is approximately 325 lb/hr based on 19% aqueous ammonia. Estimated electrical loads for operating the system are listed below.

Ambient Temp - F	20	59	100
Load, SCR Operating (Fuel Oil) – kW	215	330	385
Load, SCR not Operating (Natural Gas) - kW	140	255	310

We request the opportunity to work with you on this project. Please contact us if you need additional information.

Regards, David R. Logeais Sr. Product Manager


	PPPI (Producer Prices Paid Index) 1.	PPRI (Producer Prices Received Index) 1.	PPPI (Producer Prices Paid Index) 1.	PPRI (Producer Prices Received Index) 1.	CCI (ENR's Construction Cost Index) 2.	CPI (Consumer Price Index) 3.	Water Resource Discount Rate 4.	OMB 10Y A-76 Nominal Discount Rate 5.		
YEAR	1977 Index	1977 Index	1990-92 Index	1990-92 Index	1913 Index	!				
1908	i i ————	 	<u> </u>		97.00					
1909					91.00					
1910	<u> </u>	i i			96.00		,		!!	
1911) i	† 	<u> </u>	Πi	93.00	<u> </u>	i —		1	
1912	ii — — —	-i			91.00	i			<u> </u>	
1913		il		1	100.00	9.90				
1914	<u> </u>	-		i	89.00	10.00][
1915		-i		i	93.00	10.10				
1916	!	-i i			130.00	10.90				
1917		11			181.00	12.80	1)[
1918		-			189.00	15.10				
1919	1;	-	<u> </u>		198.00	17.30			[]	
1920		-i1,			251.00	20.00		,](
1921	ìi	111-			202.00	17.90	[1	
1922	11	- r		7	174.00	16.80	 	ò] [
1923	<u> </u>	-1\		\	214.00	17.10		[]	
1924		- \/	i	\/	215.00	17.10		1	! 1	
1925				V	207.00	17.50		Y	}{	
1926	ii —				208.00	17.70	ļ			
1927	<u> </u>		 		206.00	17.40			11	
1928	\ \	- 			207.00	17.10			1	
1929	<u> </u>		 		207.00	17.10				
1930	11	-	<u> </u>		203.00	16.70			1:	i
1931	! 				181.00	15.20		i		i
1932	- <u> </u>			<u></u>	157.00	13.70			7	
1933	<u>, </u>		i 	<u> </u>	170.00	13.00			1	i
1934	i	-	 		198.00	13.40	1			
1934		- 	 		196.00	13.70		i -		
1936			 	<u> </u>	206.00	13.90		<u> </u>	1	i
1937		-i	\ 	 	235.00	14.40		†	- i	i
1937				i	236.00	14.10	i 			i
1939			 	i	236.00	13.90		<u> </u>	71	i
1939	<u> </u>	<u></u>		 	242.00	14.00	; 	 	-;j	i
1940			{}		258.00	14.70	i		-,	
1941		-	<u> </u>	i	276.00	16.30	· ,		-:	i
1942		- 	{ 	i	290.00	17.30		 	~ ;	:
1943	<u>-</u>	- 	 	1	299.00	17.60		 	-	i
1944 1945		-i	<u> </u>	-	308.00	18.00	1			i —
	-		\ <u>-</u>	i	346.00	19.50	1;	 	٦,	:
1946 1947	<u>-</u>		-	·	413.00	22.30	· ——-			:

			 	1	461.00	24.10	· -		11	-
1948		i			477.00	23.80			1	
1949					510.00	24.10	- i		1	-
1950					543.00	26.00			11	-
1951	<u></u>				569.00	26.50			1	-
1952				!	600.00	26.70			1	-
1953		7.00	05.57		628.00	26.90			1	
1954	44.50	54.00	25.57	37.24	660.00	26.80		 -	- 	-
1955	43.50	51.00	25.00	35.17		27.20				
1956	43.50	50.00	25.00	34.48	692.00	28.10	2.500			 -
1957	45.00	51.00	25.86	35.17	724.00	28.90	2.500	.	⊹	- }
1958	46.00	55.00	26.44	37.93	759.00	29.10	2.500		-	_ -
1959	46.50	53.00	26.72	36.55	797.00	29.60	2.500	-	┨├───	
1960	46.00	52,00	26.44	35.86	824.00			· · · · · · · · · · · · · · · · · · ·	11	-
1961	46.50	53.00	26.72	36.55	847.00	29.90	2.625		-{	 -
1962	47.00	53.00	27.01	36.55	872.00	30.20			┨├───	
1963	47.50	53.00	27.30	36.55	901.00	30.60	2.875	· · · · · · · · · · · · · · · · · · ·	-{}	
1964	47.00	52.00	27.01	35.86	936.00	31.00	3.000		-{	
1965	48.00	54.00	27.59	37.24	971.00	31.50	3.125		-{}	
1966	49.50	58.00	28.45	40.00	1019.00	32.40	3.125		- ∤├──	-
1967	50.00	55,00	28.74	37.93	1074.00	33.40	3.125		-{}	_ -
1968	50.00	56.00	28.74	38.62	1155.00	34.80	3.250		-{	
1969	52.00	59.00	29.89	40.69	1269.00	36.70	4.625			
1970	54.00	60.00	31.03	41.38	1381.00	38.80	4.875			
1971	56.50	62.00	32.47	42.76	1581.00	40.50	5.125		-{}	- }
1972	61.00	69.00	35.06	47.59	1753.00	41.80	5.375		- }	_
1973	73.00	98.00	41.95	67.59	1895.00	44.40	5.500		-}	
1974	83.00	105.00	47.70	72.41	2020.00	49.30	5.625			
1975	91.00	101.00	52.30	69.66	2212.00	53.80	5.875		-	
1976	97.00	102.00	55.75	70.34	2401.00	56.90	6.125		-{}	
1977	100.00	100.00	57.47	68.97	2576.00	60.60	6.375			
1978	108.00	115.00	62.07	79.31	2776.00	65.20	6.625		-	ļ
1979	125.00	132.00	71.84	91.03	3003.00	72.60	6.875	9.000		
1980	138.00	134.00	79.31	92.41	3237.00	82.40	7.125	10.600	_{	_
1981	148.00	138.00	85.06	95.17	3535.00	90.90	7.375	12.200	-!	
1982	153.00	133.00	87.93	91.72	3825.00	96.50	7.625	13.300		
1983	152.00	135.00	87.36	93.10	4066.00	99.60	7.875	10.200	_{	_
1984	155.00	142.00	89.08	97.93	4146.00	103.90	8.125	10.300	-}!	
1985	151.00	128.00	86.78	88.28	4195.00	107.60	8.375	11.000	-	
1986	144.00	123.00	82.76	84.83	4295.00	109.60	8.625	8.900	_	
1987	147.00	127.00	84.48	87.59	4406.00	113.60	8.875	6.700	_	
1988	157.00	138.00	90.23	95.17	4519.00	118.30	8.625	8.000	_	_
1989	167.00	147.00	95.98	101.38	4615.00	124.00	8.875	8.300		_
1990	171.00	149.00	99.00	104.00	4732.00	130.70	8.875	7.700	4	
1991	174.00	145.00	100.00	100.00	4835.00	136.20	8.750	7.500	- 	
1992	174.00	140.00	101.00	98.00	4985.00	140.30	8.500	7.000	_	
1993	181.00	143.00	104.00	101.00	5210.00	144.50	8.250	6.700		_
1994	183.40	144.70	106.00	100.00	5408.00	148.20	8.000	5.700	_	_!
1995	201.70	147.60	109.00	102.00	5471.00	152.40	7.750	7.900	<u> </u>	
1996	210.90	162.00	115.00	112.00	5620.00	156.90	7.625	5.600	<u> </u>	

Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1002	1998 210.90 147.54 115.00 102.00 5920.00 163.00 7.125 5.900 1999 210.90 137.41 115.00 95.00 6059.00 166.60 6.875 4.900 1 2000 220.07 138.86 120.00 96.00 6221.00 172.20 6.625 6.100 2001 225.57 147.54 123.00 102.00 6334.00 177.07 6.375 5.400 2002 227.41 141.75 124.00 98.00 6538.00 179.88 6.125 5.100 2003 234.74 154.77 128.00 107.00 6694.64 183.96 5.875 4.200 2004 243.91 160.55 133.00 111.00 7114.89 188.90 5.625 4.600 2005 262.25 164.89 143.00 114.00 7445.98 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Feb.2008 Dec. 2007 As of FY2008 For FY 2008 2.20				_						
1999	1999	1997	216.40	154.77	118.00	107.00	5826.00	160.50	} 7.375 I	6.100	
2000 220.07 138.86 120.00 96.00 6221.00 172.20 6.825 6.100	2000 220.07 138.86 120.00 96.00 6221.00 172.20 6.825 6.100	1998	210.90	147.54	115.00	102.00	5920.00	163.00	7.125	5.900	
2001 225.57 147.54 123.90 102.00 6334.00 177.07 6.375 5.400 2002 227.41 141.75 124.00 98.00 6538.00 179.88 6.125 5.100 2003 234.74 154.77 128.00 107.00 6694.64 183.96 5.875 4.200 2004 243.91 160.55 133.00 111.00 744.59.8 195.30 5.275 4.600 2005 262.25 164.89 143.00 121.00 744.59.8 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 744.59.8 195.30 5.375 4.600 2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates Jan. 2008 Ja	2001 225.57 147.54 123.00 102.00 6334.00 177.07 6.375 5.400 2002 227.41 141.75 124.00 98.00 6538.00 179.88 6.125 5.100 2003 234.74 154.77 128.00 107.00 6694.64 183.96 5.875 4.200 2004 243.91 160.55 133.00 111.00 7445.98 195.30 5.275 4.600 2005 262.25 164.89 143.00 111.00 7445.98 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 7445.98 195.30 5.375 4.600 2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Feb. 2007 As of FY2008 For FY 2008 Data Sources:	1999	210.90	137.41	115.00	95.00	6059.00	166.60	6.875	4.900	1
2002 227.41 141.75 124.00 98.00 6538.00 179.88 6.125 5.100 2003 234.74 154.77 128.00 107.00 6684.64 183.96 5.875 4.200 2004 243.91 160.55 133.00 111.00 7114.89 188.90 5.625 4.600 2005 262.25 164.89 143.00 114.00 7445.98 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 2019 140.00 140.00 140.00 140.00 140.00 140.00 140.00 2019 2020 2	2002 227.41 141.75 124.00 98.00 6538.00 179.88 6.125 5.100 2003 234.74 154.77 128.00 107.00 6694.64 183.96 5.875 4.200 2004 243.91 160.55 133.00 111.00 7114.89 188.90 5.625 4.600 2005 262.25 164.89 143.00 121.00 7845.98 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2006 2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2006 2006 271.42 175.02 148.00 121.00 7845.98 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 7845.98 195.30 5.375 4.600 2006 2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2006 2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2006 2007 289.76 199.61 158.00 150.00 8094.28 210.036 4.875 4.600 1.2091 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 2008 2007 2009 2009 2009 2009 2009 2009 2009	2000	220.07	138.86	120.00	96.00	6221.00	172.20	6.625	6.100	
2003	2003 234.74 154.77 128.00 107.00 6694.64 183.96 587.5 4.200	2001		147.54	123.00	102.00	6334.00	177.07	6.375	5.400	
2004 243.91 160.55 133.00 111.00 7114.89 188.90 5.625 4.600	2004 243.91 160.55 133.00 111.00 7114.89 188.90 5.625 4.600	2002		141.75	124.00	98.00	6538.00	179.88	6.125	5.100	
2005 262.25 164.89 143.00 114.00 7445.98 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Dec. 2007 As of FY2008 For FY 2008 Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University, to the first price in the first pri	2005 262.25 164.89 143.00 114.00 7445.98 195.30 5.375 4.600 2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2007 289.76 199.61 158.00 138.00 3808.94.5 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Dec. 2007 As of FY2008 For FY 2008 Data Sources:	2003		154.77	128.00	107.00	6694.64	183.96	5.875	4.200	
2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000	2006 271.42 175.02 148.00 121.00 7887.62 201.60 5.125 5.000 2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Feb. 2008 Dec. 2007 As of FY2008 For FY 2008 Data Sources: Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. Inter//www.ennib. cornell edu/Mann/Usda/viewDocumentInfo. do?documentID=1002 Engineering Neva Review, Construction Cost Index History 1ttp://www.enr.com/ The ENR website only provides the current month CCI. History of CCI available to members. B. Consumer Price Index-All Urban Consumers 1ttp://mnlation/Consumer Price Index/CurrentCPI.asp 1ttp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html 1ttp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html 1ttp://www.whitehouse.gov/omb/circulars/a094/a094.html 1pdate dates given at the bottom of the column.		,		133.00	111.00	7114.89	188.90	5.625	4.600	
2007 289.76 199.61 158.00 136.00 8089.45 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Dec. 2007 As of FY2008 For FY 2008 Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University, ittp://usda.mannilb.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 Engineering News Review, Construction Cost Index History Ittp://www.enr.com/ The ENR website only provides the current month CCI. History of CCI available to members. Consumer Price Index-All Urban Consumers Intp://inflation/Consumer Price Index/CurrentCPLasp FY Plan Formulation Rate For Federal Water Projects Intp://www.ecnomics.nrcs.usda.gov/cost/priceindexes/rates.html Journal of the Circ. A-94 10-Year Nominal Discount Rate Intp://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of the Circ A-94 10-Year Nominal Discount Rate Intp://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of the Circ A-94 10-Year Nominal Discount Rate Intp://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of the Circ A-94 10-Year Nominal Discount Rate Intp://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of the Circ A-94 10-Year Nominal Discount Rate Intp://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of The Circ A-94 10-Year Nominal Discount Rate Intp://www.whitehouse.gov/omb/circulars/a094/a094.html	2007 289.76 199.61 158.00 138.00 8089.45 207.342 4.875 5.000 2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Dec. 2007 As of FY2008 For FY 2008 Data Sources: Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. Intro//usda mannilb.comell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 E. Engineering News Review, Construction Cost Index History Inter/News enr. com/. Inter ENR website only provides the current month CCI. History of CCI available to members. S. Consumer Price Index-All Urban Consumers Jate//inflation/Consumer Price Index/CurrentCPL asp S. FY Plan Formulation Rate For Federal Water Projects Jate Professional Discount Rate Professional Discount Rate Professional Discount		,			114.00					
2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091 Report Dates	2008 308.10 216.96 168.00 150.00 8094.28 210.036 4.875 4.600 1.2091	2006	271.42	175.02	148.00	121.00	7887.62	201.60	5.125	5.000	
Report Dates	Report Dates Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Jan. 2008 Dec. 2007 As of FY2008 For FY 2008 Data Sources: Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University, and the price index/MannUsda/viewDocumentInfo.do?documentID=1002 Engineering News Review, Construction Cost Index History The ENR website only provides the current month CCI. History of CCI available to members. Consumer Price Index-All Urban Consumers attle //inflationdata.com/inflation/Consumer Price Index/CurrentCPI.asp FY Plan Formulation Rate For Federal Water Projects attle //www.eonomics.mrcs.usda.gov/cost/priceindexes/rates.html Company of the control of the control of the column.	2007	289.76	199.61	158.00	138.00	8089.45	207.342	4.875	5.000	
Data Sources: Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. Ittp://usda.mannilb.comell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 Engineering News Review, Construction Cost Index History Ittp://www.enr.com/ The ENR website only provides the current month CCI. History of CCI available to members. Consumer Price Index-All Urban Consumers Ittp://inflationdata.com/Inflation/Consumer Price Index/CurrentCPI.asp FY Plan Formulation Rate For Federal Water Projects Ittp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html COMB Circ. A-94 10-Year Nominal Discount Rate Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Ipdated since 1997 by David Buland Ipdated dates given at the bottom of the column.	Data Sources: I. Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. Inttp://usda.mannlib.comell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 2. Engineering News Review, Construction Cost Index History Interpolate only provides the current month CCI. History of CCI available to members. 3. Consumer Price Index-All Urban Consumers Interpolation Rate For Federal Water Projects Interpolation Rate For	2008	308.10	216.96	168.00	150.00	8094.28	210.036	4.875	4.600	1.2091
Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 Lengineering News Review, Construction Cost Index History Littp://www.enr.com/.	I. Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. Ittp://usda.mannlib.comell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 I. Engineering News Review, Construction Cost Index History Inter//www.enr.com/ Interest in Engineering News Review, Construction Cost Index History Intersection In	Report Dates	Jan. 2008	Jan. 2008	Jan. 2008	Jan. 2008	Feb.2008	Dec, 2007	As of FY2008	For FY 2008	
Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 Lengineering News Review, Construction Cost Index History Littp://www.enr.com/. http://www.enr.com/. http://www.enr	I. Prices paid and Received by Farmers, ERS/NASS data provided through Cornell University. http://usda.mannlib.comell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 I. Engineering News Review, Construction Cost Index History Inter//www.enr.com/ Interior ENR website only provides the current month CCI. History of CCI available to members. I. Consumer Price Index-All Urban Consumers Inter//inflation/Consumer Price Index/CurrentCPI.asp Interior Int	Data Sources:	_								
he ENR website only provides the current month CCI. History of CCI available to members. Consumer Price Index-All Urban Consumers ittp://inflation/Consumer Price Index/CurrentCPI.asp Fy Plan Formulation Rate For Federal Water Projects ittp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html COMB Circ. A-94 10-Year Nominal Discount Rate ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Indiated dates given at the bottom of the column.	attp://usda mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1002 2. Engineering News Review, Construction Cost Index History Inter//www.enr.com/ Inter//www.enr.co		eceived by Farmer	rs ERS/NASS data r	rovided through	Cornell University			<u> </u> -		
Engineering News Review, Construction Cost Index History Ittp://www.enr.com/. he ENR website only provides the current month CCI. History of CCI available to members. Consumer Price Index-All Urban Consumers Ittp://inflationdata.com/Inflation/Consumer Price Index/CurrentCPI.asp Ittp://inflation Rate For Federal Water Projects Ittp://www.economics.nrcs.usda.gov/cost/priceIndexes/rates.html COMB Circ. A-94 10-Year Nominal Discount Rate Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Ipdated since 1997 by David Buland Ipdated dates given at the bottom of the column.	2. Engineering News Review, Construction Cost Index History Intp://www.enr.com/.						i				
Inter://www.enr.com/.	Inter://www.enr.com/. The ENR website only provides the current month CCI. History of CCI available to members. B. Consumer Price Index-All Urban Consumers Inter://inflation/data.com/Inflation/Consumer Price Index/CurrentCPI.asp B. FY Plan Formulation Rate For Federal Water Projects Inter://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html B. OMB Circ. A-94 10-Year Nominal Discount Rate Inter://www.whitehouse.gov/omb/circulars/a094/a094.html Jodated since 1997/by David Buland Jodated since 1997/by David Buland Jodated dates given at the bottom of the column.						<u>' </u>				
he ENR website only provides the current month CCI. History of CCI available to members. Consumer Price Index-All Urban Consumers Ittp://inflationdata.com/inflation/Consumer Price Index/CurrentCPI.asp FY Plan Formulation Rate For Federal Water Projects Ittp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html COMB Circ. A-94 10-Year Nominal Discount Rate Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of the column.	Inter://www.enr.com/. The ENR website only provides the current month CCI. History of CCI available to members. B. Consumer Price Index-All Urban Consumers Inter://inflation/data.com/Inflation/Consumer Price Index/CurrentCPI.asp B. FY Plan Formulation Rate For Federal Water Projects Inter://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html B. OMB Circ. A-94 10-Year Nominal Discount Rate Inter://www.whitehouse.gov/omb/circulars/a094/a094.html Jpdated since 1997/by David Buland Jpdated since 1997/by David Buland Jpdated dates given at the bottom of the column.	2. Engineering New	s Review, Construc	tion Cost Index Histo	Drv				:i		
D. Consumer Price Index-All Urban Consumers Ittp://inflationdata.com/Inflation/Consumer Price Index/CurrentCPI.asp Ittp://inflationdata.com/Inflation/Consumer Price Index/CurrentCPI.asp Ittp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html Ittp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Ipdated since 1997/by David Buland Ipdate dates given at the bottom of the column.	B. Consumer Price Index-All Urban Consumers http://inflationdata.com/Inflation/Consumer Price Index/CurrentCPL.asp Section Section	http://www.enr.com/			i				<u> </u>	-	
D. Consumer Price Index-All Urban Consumers Ittp://inflationdata.com/Inflation/Consumer Price Index/CurrentCPI.asp Ittp://inflationdata.com/Inflation/Consumer Price Index/CurrentCPI.asp Ittp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html Ittp://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Ipdated since 1997/by David Buland Ipdate dates given at the bottom of the column.	B. Consumer Price Index-All Urban Consumers http://inflationdata.com/Inflation/Consumer Price Index/CurrentCPL.asp Section Section	The ENR website on	ly provides the cur	rent month CCI. His	tory of CCI availa	ble to members.					
http://inflationdata.com/inflation/Consumer Price Index/CurrentCPI.asp In FY Plan Formulation Rate For Federal Water Projects Inter://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html In OMB Circ. A-94 10-Year Nominal Discount Rate Inter://www.whitehouse.gov/omb/circulars/a094/a094.html Indicated since 1997 by David Buland Indicated since 1997 by David Buland Indicated attesting the column.	http://inflationdata.com/Inflation/Consumer Price Index/CurrentCPI.asp J. FY Plan Formulation Rate For Federal Water Projects http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html J. OMB Circ. A-94 10-Year Nominal Discount Rate http://www.whitehouse.gov/omb/circulars/a094/a094.html J. J				\[\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						
FY Plan Formulation Rate For Federal Water Projects http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html http://www.whitehouse.gov/omb/circulars/a094/a094.html http://www.whitehouse.gov/omb/circulars/a094/a094.html http://www.whitehouse.gov/omb/circulars/a094/a094.html http://www.whitehouse.gov/omb/circulars/a094/a094.html http://www.whitehouse.gov/omb/circulars/a094/a094.html http://www.whitehouse.gov/omb/circulars/a094/a094.html	J. FY Plan Formulation Rate For Federal Water Projects http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html J. OMB Circ. A-94 10-Year Nominal Discount Rate http://www.whitehouse.gov/omb/circulars/a094/a094.html J. Dydated since 1997 by David Buland J. Jydate dates given at the bottom of the column.	3. Consumer Price I	ndex-All Urban Co	nsumers)						ĺ
http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html i. OMB Circ. A-94 10-Year Nominal Discount Rate ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Judated since 1997 by David Buland Judated dates given at the bottom of the column.	http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html 5. OMB Circ. A-94 10-Year Nominal Discount Rate http://www.whitehouse.gov/omb/circulars/a094/a094.html Judated since 1997 by David Buland Judated dates given at the bottom of the column.	http://inflationdata.co	m/Inflation/Consur	ner Price Index/Cur	rentCPI asp				į.		
http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html Discount Rate http://www.whitehouse.gov/omb/circulars/a094/a094.html Judated since 1997 by David Buland Judated dates given at the bottom of the column.	http://www.economics.nrcs.usda.gov/cost/priceindexes/rates.html 5. OMB Circ. A-94 10-Year Nominal Discount Rate http://www.whitehouse.gov/omb/circulars/a094/a094.html Judated since 1997 by David Buland Judated dates given at the bottom of the column.		1						1		
Deptated since 1997 by David Buland Judget dates given at the bottom of the column.	S. OMB Circ. A-94 10-Year Nominal Discount Rate Inttp://www.whitehouse.gov/omb/circulars/a094/a094.html Judgated since 1997 by David Buland Judgated dates given at the bottom of the column.	4. FY Plan Formula	tion Rate For Fede	ral Water Projects			· · · · · · · · · · · · · · · · · · ·		1		
Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Ipdated since 1997 by David Buland Ipdate dates given at the bottom of the column.	http://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of the column.	http://www.economic	ś.nrcs.usda.gov/co	ost/priceindexes/rates	s.html						
Ittp://www.whitehouse.gov/omb/circulars/a094/a094.html Jodated since 1997 by David Buland Jodated street given at the bottom of the column.	http://www.whitehouse.gov/omb/circulars/a094/a094.html Journal of the column.										
Updated since 1997 by David Buland Updated since given at the bottom of the column.	Jpdated since 1997 by David Buland				<u> </u>						
pdate dates given at the bottom of the column.	Jpdate dates given at the bottom of the column.	http://www.whitehous	se gov/omb/circula	rs/a094/a094.html			1				
pdate dates given at the bottom of the column.	Jpdate dates given at the bottom of the column.	ļ	*]		<u></u>		
					<u> </u>						
	Format Created by Madalene Ransom, 1996, Updated 2007				 		ļi				
ormat Created by Madalene Ransom, 1996, Opdated 2007	·	Format Created by N	<u>ladalene Ransom,</u>	1996, Updated 2007	<u> </u>	<u> </u>	<u> </u>	<u> </u>	•	<u></u>	

ATTACHMENT C

UPDATED VISCREEN ANALYSIS

Figure 7-19 Level 2 Screening Analysis of Visual Effects due to the Project Firing Natural Gas Predicted at the Chassahowitzka NWA – Average of SSE and S WD Sectors (revised 07/08)

*** User-selected Screening Scenario Results ***
Input Emissions for

Particulates	18.00	LB	/HR
NOx (as NO2)	129.10	$_{ m LB}$	/HR
Primary NO2	.00	$_{ m LB}$	/HR
Soot	.00	LB	/HR
Primary SO4	3.28	LB	/HR

Transport Scenario Specifications:

Background Ozone:	.04 ppm
Background Visual Range:	177.80 km,
Source-Observer Distance:	28.00 km
Min. Source-Class I Distance:	28.00 km
Max. Source-Class I Distance:	46.00 km
Plume-Source-Observer Angle:	11.25 degrees

Stability: 4

Wind Speed: 4.00 m/s

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE NOT Exceeded

			_		Delta E		Con	trast
							=====	
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
======	=====	===	38885255	=====	====	=====	====	====
SKY	10.	152.	46.0	16.	2.00	.319	.05	.003
SKY	140.	152.	46.0	16.	2.00	.219	.05	004

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

					Delta E		Con	trast	
					=====	=====	=====	======	
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume	
=======	=====	===	=======	=====	====	=====	====	=====	
SKY	10.	0.	1.0	168.	2.00	3.102*	.05	.044	
SKY	140.	0.	1.0	168.	2.00	1.443	.05	041	

Figure 7-20 Level 2 Screening Analysis of Visual Effects due to the Project Firing Fuel Oil Predicted at the Chassahowitzka NWA – Average of SSE and S WD Sectors (revised 07/08)

*** User-selected Screening Scenario Results ***
Input Emissions for

s 34.00	LB /HR
693.70	LB /HR
.00	LB /HR
.00	LB /HR
.98	LB /HR
	693.70 .00 .00

Transport Scenario Specifications:

Background Ozone:		ppm
Background Visual Range:	177.80	km
Source-Observer Distance:	28.00	km
Min. Source-Class I Distance:	28.00	km
Max. Source-Class I Distance:	46.00	km
Plume-Source-Observer Angle:	11.25	degrees

Stability: 4

Wind Speed: 4.00 m/s

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE NOT Exceeded

					Delta E		Con	trast	
					=====	=====	=====		:
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume	
======	=====	===	=======	=====	====	=====	====	=====	
SKY	10.	152.	46.0	16.	2.00	1.692	.05	002	
SKY	140.	152.	46.0	16.	2.00	1.059	. 05	012	

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

					Delta E		Contrast		
					=====		=====		
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume	
	=====	===	=======		====	=====	====	=====	
SKY	10.	0.	1.0	168.	2.00	5.246*	.05	.061*	
SKY	140.	0.	1.0	168.	2.00	2.089*	.05	054*	

Note: The results with Theta equal to 10 degrees are unrealistic because the plume is assumed to be between the observer and the sun which is located at an angle of 10 degrees above the horizon in a direction to the southeast or southwest of the observer. In reality, such a sun angle and direction are not likely to occur for any given line of sight from the Class I area to the project. By limiting the southward extent of sun's location to the east-southeast or west-southwest directions and to a 10-degree angle above the horizon, the Delta E for the project is estimated to be less than the criterion of 2.0.

Figure 21. Level 2 Screening Analysis of Visual Effects due to the Project Firing Natural Gas Predicted at the Chassahowitzka NWA – SSE WD Sector Only

*** User-selected Screening Scenario Results ***
Input Emissions for

Particulates	18.00	LB /HR
NOx (as NO2)	129.10	LB /HR
Primary NO2	.00	LB /HR
Soot	.00	LB /HR
Primary SO4	3.28	LB /HR

Transport Scenario Specifications:

Background Ozone:	.04	ppm
Background Visual Range:	177.80	km
Source-Observer Distance:	28.00	km ·
Min. Source-Class I Distance:	28.00	km
Max. Source-Class I Distance:	46.00	km
Plume-Source-Observer Angle:	11.25	degrees

Stability:

Wind Speed: 6.00 m/s

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE NOT Exceeded

					Delta E		Con	trast
					=====	=====	=====	
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
========	=====	===	=======	=====	====	=====	====	=====
SKY	10. 1	152.	46.0	16.	2.00	.213	.05	.002
SKY	140. 1	L52.	46.0	16.	2.00	.146	.05	003

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

					Deļţa E		Deļţa E Contrast			trast
					=====	======	=====			
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume		
=======		===	=======	=====	====	=====	====	=====		
SKY	10.	0.	1.0	168.	2.00	2.380*	.05	.026		
SKY	140.	0.	1.0	168.	2.00	1.286	.05	031		

Figure 22. Level 2 Screening Analysis of Visual Effects due to the Project Firing Fuel Oil Predicted at the Chassahowitzka NWA – SSE WD Sector Only

 $\,$ *** User-selected Screening Scenario Results *** Input Emissions for

Particulates	34.00	LB /HR
NOx (as NO2)	693.70	LB /HR
Primary NO2	.00	LB /HR
Soot	.00	LB /HR
Primary SO4	.98	LB /HR

Transport Scenario Specifications:

Background Ozone:	.04	ppm
Background Visual Range:	177.80	km
Source-Observer Distance:	28.00	km
Min. Source-Class I Distance:	28.00	km
Max. Source-Class I Distance:	46.00	km
Plume-Source-Observer Angle:	11.25	degrees

Stability: 4

Wind Speed: 6.00 m/s

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE NOT Exceeded

					Delta E		Contrast		
					=====	=====	======	=====	
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume	
=======	=====	===	=======	=====	====	=====	====	=====	
SKY	10.	152.	46.0	16.	2.00	1.139	.05	001	
SKY	140.	152.	46.0	16.	2.00	.714	.05	008	

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

		Delta E Contras			Delta E		trast	
					=====		=====	======
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
*****		===	=======	=====	====	=====	====	=====
SKY	10.	0.	1.0	168.	2.00	3.906*	.05	.038
SKY	140.	0.	1.0	168.	2.00	1.744	.05	040

Figure 23. Level 2 Screening Analysis of Visual Effects due to the Project Firing Natural Gas Predicted at the Chassahowitzka NWA - South WD Sector Only

*** User-selected Screening Scenario Results *** Input Emissions for

Particulates	18.00	$_{ m LB}$	/HR
NOx (as NO2)	129.10	$_{ m LB}$	/HR
Primary NO2	.00	LB	/HR
Soot	.00	LB	/HR
Primary SO4	3.28	$_{ m LB}$	/HR

PARTICLE CHARACTERISTICS

		Density	Diameter
		======	=======
Primary	Part.	2.5	6
Soot		2.0	1
Sulfate		1.5	4

Transport Scenario Specifications:

Background Ozone:	.04	ppm
Background Visual Range:	177.80	km
Source-Observer Distance:	35.00	km
Min. Source-Class I Distance:	35.00	km
Max. Source-Class I Distance:	36.00	km
Plume-Source-Observer Angle:	11.25	degrees

Stability: 4
Wind Speed: 3.00 m/s

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE NOT Exceeded

					Delta E		Contrast		
					=====	=====	=====	=	
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume	
=======	=====	===	=======	=====	====	=====	====	=====	
SKY	10.	93.	36.0	76.	2.98	.183	.06	.002	
SKY	140.	93.	36.0	76.	2.00	.170	.06	002	

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

					Delta E		Contrast	
					=====	=====	=====	======
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
=======	=====	===	======	=====	====	=====	====	=====
SKY	10.	0.	1.0	168.	2.00	3.539*	.05	.054*
SKY	140.	Ο.	1.0	168.	2.00	1.263	.05	043

Figure 24. Level 2 Screening Analysis of Visual Effects due to the Project Firing Fuel Oil Predicted at the Chassahowitzka NWA – South WD Sector Only

*** User-selected Screening Scenario Results ***
Input Emissions for

Particulates	34.00	LB /HR
NOx (as NO2)	693.70	LB /HR
Primary NO2	.00	LB /HR
Soot	.00	LB /HR
Primary SO4	. 98	LB /HR

Transport Scenario Specifications:

Background Ozone:	.04	ppm
Background Visual Range:	177.80	km
Source-Observer Distance:	35.00	km
Min. Source-Class I Distance:	35.00	km
Max. Source-Class I Distance:	36.00	km
Plume-Source-Observer Angle:	11.25	degrees

Stability:

Wind Speed: 3.00 m/s

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE NOT Exceeded

					Del	ta E	Contrast		
			•		=====	=====	=====		
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume	
=======	=====	===	=======	=====	====	====	====	=====	
SKY	10.	93.	36.0	76.	2.98	1.245	.06	001	
SKY	140.	93.	36.0	76.	2.00	.825	.06	007	

Maximum Visual Impacts OUTSIDE Class I Area . Screening Criteria ARE Exceeded

					Del	ta E	Contrast		
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume	
=======	====	===			====	=====	====	=====	
SKY	10.	0.	1.0	168.	2.00	5.851*	.05	.072*	
SKY	140.	Ο.	1.0	168.	2.00	1.834	.05	058*	

TABLE 7-4
PLUME VISUAL IMPACT ANALYSIS - SCREENING LEVEL 2 - IDENTIFICATION OF WORSE-CASE METEOROLOGICAL CONDITIONS

		Dispers	ion Conditions	Transport		Frequency of Occ	currence (percent)			
			Dispersio	в Рагалистег	Sigma Y x Sigma Z	Time to		of Dispersion		
	Stability	Wind Speed	Horizontal	Vertical	x Wind Speed	Class I Area	7 a.m. to			o 7 p m
Category Name	Name	(nys)	(sigma Y (m))	(sigma Z (m))	(m³/s)	(hours)*	L _p	cf*	f ^b	cf ^b
ombined :	South-southeast to South W	ind Direction Sector								
F	Moderately Stable	l	673 6	67.3	45,333	7.8	0.00	0.00	0 00	0.00
F	Moderately Stable	2	673 6	67.3	90,667	3.9	0.01	0,01	0.00	0.00
E	Slightly Stable	1	1011.5	124.1	125,473	7.8	0 02	0.03	0 15	0.16
F	Moderately Stable	3	673.6	67.3	136,000	2.6	0.02	0.05	0.08	0.23
E	Slightly Stable	2	1011.5	124.1	250,946	3.9	0.00	0.06	0.06	0.30
Ð	Neutral	ı	13507	241.5	326,253	78	0.00	0.06	0.05	0.28
E	Slightly Stable	3	1011.5	124.1	376,419	2.6	0.00	0.06	0.05	0.33
E	Slightly Stable	4	10115	124.1	501,892	1.9	0 00	0.06	0.05	0.38
E	Slightly Stable	5	1011.5	124.1	627,365	1.6	0 00	0 06	0.17	0.55
D	Neutral	2	1350.7	241,5	652,506	3.9	0.14	0 20	0.08	0.63
D	Neutral	3	1350 7	241.5	978,758	26	0.31	0.51	0.22	0.85
D	Neutral	4	1350 7	241.5	1,305,011	19	0 31	0 82	0.22	1.07
D	Neutral	5	1350.7	241.5	1,631,264	1.6	0.31	1.13	0.22	1.29
	neast Wind Direction Sector		, ·	43.5	45.333	9.0	8.00	0.00	0.00	0.00
F	Moderately Stable	1	673.6	67.3	45,333	7.8				
F	Moderately Stable	2	673.6	67.3	90,667	3.9 7.8	0.03 0.00	0.03 0.03	0.01 0.00	0 0 I
E	Slightly Stable	1	1011.5	124.1	125,473			0.05	0.04	0.05
F	Moderately Stable	3	673.6	67.3 124 1	136,000 250,946	2.6 3.9	0.03 0.01	0.06	0.04	0.08
E	Slightly Stable	2	1011.5			3.9 7.8	000	0.03	0.00	0.01
D E	Neutral	3	1350.7 1011.5	241 5 124.1	326,253 376,419	7.6 2.6	001	0.04	0.11	0.12
E	Slightly Stable	4	1011.5	124.1	501,892	1.9	0.00	0.04	0.00	0.12
E	Slightly Stable	5	1011.5	124.1	627,365	1.6	0.00	0.04	0.00	012
D.	Slightly Stable	2	1350.7	241.5	652,506	3.9	0.10	0.14	0.06	0.18
D	Neutral Neutral	3	1350.7	241.5	978,758	2.6	0.24	0.37	0.10	0.28
D	Neutral	4	1350.7	241.5	1.305.011	1.9	0.24	0.61	0.10	0.38
D	Neutral	5	1350.7	241.5	1,631,264	1.6	0.24	0.85	0.10	0.48
	Direction Sector Only		673.6	67.3	45,333	7.8	0.00	0.00	6 00	0 00
F	Moderately Stable	l 2	673.6	67.3	43,333 90,667	7.8 3.9	0.00	0.00	0.00	0.00
F	Moderately Stable	2 1	673.6 1011.5	67.3 124.1	125,473	7.8	0.04	0.04	0.30	0.30
E F	Slightly Stable	3	673.6	67.3	136,000	2.6	0.02	0.05	0.12	0.42
E	Moderately Stable	3 2	1011.5	124 L	250,946	3.9	0.02	0.05	0.09	0.51
E D	Slightly Stable Neutral	1	1350.7	241.5	326,253	7.8	0,00	0.05	0.09	0.60
E	Slightly Stable	3	1011.5	124.1	376,419	2.6	0.00	0.05	0.00	0.42
E	Slightly Stable	4	1011.5	124.1	501,892	1.9	0.00	0 05	0.09	0.51
E		5	1011.5	124.1	627,365	1.6	0.00	0 05	0.35	0.86
D.	Stightly Stable	2	1350.7	241.5	652,506	3.9	0.00	0.23	0.09	0.80
D	Neutral Neutral	3	1350.7	241.5	978.758	2.6	0.17	0.23 0.61	0.34	1.29
D D		4	1350.7	241.5 241.5	1,305,011	1.9	0,38	0.99	0.34	1.62
D	Neutral	5	1350.7	241.5	1,631,264	1.6	0.38	1.38	0.34	1.96
υ	Neutral	o o	1570.7	241.3	1,031,404	1.0	0.50	1.30	0.54	1,71

^{*} Proposed project location is approximately

^{28 0} km from closest boundary of Class I area.

is f= frequency for given meteorological condition; cf= cumulative frequency up to and including condition.

^{*} Based on surface meteorological data for 2001 to 2005 from the National Weather Service (NWS) station at the Tampa International Airport.

⁴ Approximately 95 percent of the Chassahowitzka NWA is downwind of the proposed project with a south-southeast wind direction