CUSTOM INSTRUMENTATION SERVICES CORPORATION

CERTIFICATION REPORT

UNIT BA
UNIT BB
UNIT BC
CONTINUOUS EMISSION MONITORING SYSTEM
WEST COUNTY ENERGY CENTER
LOXAHATCHEE, FLORIDA

PREPARED FOR: FLORIDA POWER AND LIGHT COMPANY

PREPARED BY: CUSTOM INSTRUMENTATION SERVICES CORPORATION

REV. 0
DATE: April 26, 2011

WEST COUNTY POWER PARTNERS, LLC

11401 Lamar Avenue
Overland Park, Kansas 66211
Tel: (913) 458-2000
Fax: (913) 458-4018 or 2934
Florida Power \& Light Company
West County Energy Center
West County Energy Cent
0

Elizabeth Walker

Florida Dept of Environ Protection
2600 Blairstone Rd \#MS 5500
Div of Air Resource Mgmt
Tallahassee, FL 32399
Phone: 850-921-9505

Enclosed:

RECEIVED

APR 282011
BUREAU OF AIR REGULATION

WEST COUNTY POWER PARTNERS, LLC

11401 Lamar Avenue
Overland Park, Kansas 66211
Tel: (913) 458-2000
Fax: (913) 458-2934
Florida Power \& Light Company
West County Energy Center - Unit 3
Permit No. - PSD-FL-396
DEP File No. -0990646-002-AC
Ms. Elizabeth Walker
Florida Department of Environmental Protection
Division of Air Resource Management
Bureau of Air Regulation
2600 Blair Stone Road, MS 5500
Tallahassee, FL 32399-2400

527 Logwood
San Antonio, TX 78221
Ph: 210-475-8000

WCPP Project 161354
WCPP Files $14.0100 / 32.0440 / 76.0705$
WCPP3-2011-TP-357
RECEIMEFERilitepress Mail
APR 272011
Buriequ of AIR REGULATION

Subject: Emissions Performance Test Reports - West County Energy Center Unit 3
Dear Ms. Walker:
On behalf of Florida Power \& Light Company (FPL) and its Designated Representative, Sheila M. Wilkinson, the West County Power Partners, LLC (WCPP), EPC Contractor for construction of the new combined cycle generating Unit 3 at the FPL West County Energy Center, is submitting the Emissions Performance Test Reports per the requirements of 40 CFR Part 60 and West County's Air Permit, Records and Reports, \#31 (Permit No. PSD-FL-396).

If you have any questions about this notification or the attachment, please contact Terry Apple at (913) 458-7220 or John Rachal at (561) 784-8048.

Very truly yours,
WEST COUNTY POWER PARTNERS, LLC

WS:hs
enclosure: 1 hard copy, 1 CD
cc: w/enclosures as indicated:
Dave McNeal, USEPA Air, Pesticides and Toxics Management, w/1 hard copy, 1 CD Carlos Martinez, USEPA Clean Air Markets Division
Leigh Mel, FDEP Air Resource Management
Lennon Anderson, FDEP Southeast District, w/1 hard copy, 1 CD
Lee Hoefert, FDEP Southeast District
Mike Halpin, FDEP Division of Air Resources Management, Director
Cindy Mulkey, FDEP Siting, Program Administrator
Syed Arif, FDEP, Administrator
Kimberly Ousdahl, ACF/JB
Sheila M. Wilkinson, FPL Designated Representative
Laxmana Tallam, PBC Health Department, w/1 CD
Jim Stormer, PBC Health Department
Tom Tittle, PBC Health Department
Tom Young, FPL Construction Project General Manager
Carine Bullock, FPL Plant General Manager
David Fawcett, FPL West County Environmental Leader, w/1 hard copy, 1 CD
Rachel Godino, FPL Environmental Project Manager
Audrey Rotrock, FPL Environmental Services, w/1 hard copy, 5 CD's
Robert Bennett, FPL Project Engineer
Mike Perkins, WCPP Project Executive
John Rachal, WCPP Senior Project Manger
Greg Hines, WCPP Site Environmental Manager
Terry Apple, WCPP Project Manager/ Project File, w/1 CD
William Stevenson, WCPP Environmental Specialist, w/1 CD

WEST COUNTY POWER PARTNERS, LLC

Subject: CEMS Certification Report - West County Energy Center Unit 3

Dear Mr. McNeal:
On behalf of Florida Power \& Light Company (FPL) and its Designated Representative, Sheila M. Wilkinson, the West County Power Partners, LLC (WCPP), EPC Contractor for construction of the new combined cycle generating Unit 3 at the FPL West County Energy Center, is submitting the CEMS Certification Report per the requirements of 40 CFR Part 75.

If you have any questions about this notification or the attachment, please contact Terry Apple at (913) 458-7220 or John Rachal at (561) 784-8048.

Very truly yours,
WEST COUNTY POWER PARTNERS, LLD

for Mike Perkins
Project Executive
WS:hs
enclosure: 1 hard copy, 1 CD
cc: w/enclosures as indicated:
Elizabeth Walker, FDEP Air Resource Management, w/1 hard copy, 1 CD
Carlos Martinez, USEPA Clean Air Markets Division
Leigh Fell, FDEP Air Resource Management
Lennon Anderson, FDEP Southeast District, w/1 hard copy, 1 CD
Lee Hoefert, FDEP Southeast District
Mike Halpin, FDEP Division of Air Resources Management, Director
Cindy Mulley, FDEP Siting, Program Administrator
Kimberly Ousdahl, ACF/JB
Sheila M. Wilkinson, FPL Designated Representative
Laxmana Tallam, PBC Health Department, w/1 CD

Jim Stormer, PBC Health Department
Tom Tittle, PBC Health Department
Tom Young, FPL Construction Project General Manager
Carine Bullock, FPL Plant General Manager
David Fawcett, FPL West County Environmental Leader, w/1 hard copy, 1 CD
Rachel Godino, FPL Environmental Project Manager
Audrey Rotrock, FPL Environmental Services, w/1 hard copy, 5 CD's
Robert Bennett, FPL Project Engineer
Mike Perkins, WCPP Project Executive
John Rachal, WCPP Senior Project Manger
Greg Hines, WCPP Site Environmental Manager
Terry Apple, WCPP Project Manager/ Project File, w/1 CD
William Stevenson, WCPP Environmental Specialist, w/1 CD

CUSTOM INSTRUMENTATION SERVICES CORPORATION

CERTIFICATION REPORT
UNIT BA CONTINUOUS EMISSION MONITORING SYSTEM
\section*{WEST COUNTY ENERGY CENTER} LOXAHATCHEE, FLORIDA

PREPARED FOR: FLORIDA POWER AND LIGHT COMPANY

PREPARED BY: CUSTOM INSTRUMENTATION SERVICES CORPORATION

REV.
0
COPY NO \qquad
DATE: April 26, 2011

TABLE OF CONTENTS

1. INTRODUCTION 3
2. CEMS CERTIFICATION6
2.1 RELATIVE ACCURACY 6
2.2 BIAS CHECK 7
2.3 CALIBRATION ERROR/CALIBRATION DRIFT 7
2.4 LINEARITY/CGA 7
2.5 CYCLE TIME 7
3. DAHS VERIFICATION 8
4. DISCUSSION OF RESULTS 8
APPENDIX 1. Air Hygiene RATA Test Report
APPENDIX 2. 40CFR75 QA Cert Test Detail Report
APPENDIX 3. CEMS Calibration Drift Reports
APPENDIX 4. Linearity and CGA Summary Tables
APPENDIX 5. Cycle Time Supporting Documentation
APPENDIX 6. EPA protocol Gas Certificates
APPENDIX 7. DAHS Verification Documentation
APPENDIX 8. 40 CFR 75 Monitoring Plan
APPENDIX 9. Gas and Oil Fuel Meter Certification Documentation

1. INTRODUCTION

The West County Energy Center is a nominal 3,750 megawatt (MW) power plant located in Loxahatchee, Florida. Three nominal 1,250 MW gas-fired combined cycle units use ultralow sulfur (ULS) fuel oil as backup fuel. Each combined cycle unit consists of three nominal 250 MW Model 501 G gas turbines with three supplementary-fired heat recovery steam generators (HRSG) and a common 500 MW steam-electric generator. Exhaust gases from each turbine are discharged into the atmosphere through stacks approximately 150 feet above grade. A dedicated CEMS monitors emissions from each unit.

Custom Instrumentation Services Corporation of Centennial, Colorado built the Continuous Emission Monitoring Systems (CEMS). This report provides information on the certification of the CEMS measuring emissions from Unit 3A. Data from the CEMS is recorded and stored on a Data Acquisition System.

The CEMS on the combustion turbines have been designed to meet the monitoring and reporting requirements of Florida Department of Environmental Protection (FDEP) and USEPA as required by 40 CFR 60 and 40 CFR 75 . This report presents the results of testing on the $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and O_{2} analyzers on Unit 3A. The testing was performed to meet the requirements of 40 CFR 60, Appendix B, Performance Specification 4/4a for CO and 40 CFR 75, Appendix A for NO_{x} and O_{2}.

Field certification testing on the CEMS occurred in February and March 2011. The tests conducted on the CEMS included Relative Accuracy, Bias Check, Calibration Error, Linearity, Cylinder Gas Audit and Cycle Time. The results of all tests are summarized in Table 1. A printout of the certification results generated by the EPA Emission Collection and Monitoring Plan System (ECMPS) is included in Appendix 2.

Air Hygiene conducted Relative Accuracy Testing for $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and O_{2}. Ten runs were completed Unit 3A. The results of the RA tests are in the Air Hygiene test report. As shown, the Relative Accuracy calculations on the analyzers were within the EPA and FDEP requirements for all parameters. A detailed description of the RA testing is provided in Section 2.1 and in the Air Hygiene test report in Appendix 1.

A bias check evaluation was made on the $\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}$ relative accuracy results as required in 40 CFR 75 . Unit 3A did exhibit bias and a bias adjustment factor is required. The bias test results are discussed in Section 2.2. Supporting data is provided in the relative accuracy tables in the Air Hygiene test report.

The calibration error and calibration drift tests occurred over seven consecutive operating days. The results of the analyzer drift tests are summarized in Table 1. As shown, the analyzers operated well within the applicable EPA requirements. An explanation of the drift test is provided in Section 2.3 and supporting documentation is provided in Appendix 3.

Linearity tests on the high range of the NO_{x} analyzer and on the O_{2} analyzer are a requirement of 40 CFR 75. Cycle Time tests on the NO_{x} analyzer and the O_{2} analyzer are
also a requirement of 40 CFR 75. The tests took place on March 18, 2011. Cylinder Gas Audits and a cycle time test on the CO analyzer also took place on March 18, 2011. The results of the tests are summarized in Table 1. As shown, the analyzers operated well within EPA requirements for all parameters. An explanation of the linearity and CGA tests is provided in Section 2.4. Summary tables and audit reports for the linearity and CGA tests are provided in Appendix 4. An explanation of the cycle time test is provided in Section 2.5. Supporting documents for the cycle time tests are provided in Appendix 5.

A formula verification was performed on the Data Acquisition and Handling System. The DAHS passed all the tests required by EPA. The DAHS test is described in Section 3 and supporting documents are provided in Appendix 7.

A complete 40 CFR 75 Monitoring Plan is included in Appendix 8 and the gas fuel meter certification documentation is provided in Appendix 9.

In summary, the CEMS on Unit 3A at West County Energy Center provides reliable data and operates within the requirements of the EPA as outlined in 40 CFR 60, Appendix B, Performance Specifications 2, 3, 4/4a and 40 CFR 75, Appendix A and meet the requirements of the FDEP for CEMS.

Table 1 WEST COUNTY ENERGY CENTER UNIT 3A
SUMMARY OF CEMS CERTIFICATION RESULTS

	RESULTS	STANDARD	PASS / FAIL
	RELATIVE ACCURACY		
$\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}$	$0.001 \mathrm{lb} / \mathrm{mmBtu}$	$0.015 \mathrm{lb} / \mathrm{mmBtu}$ *	PASS
CO ppm@15\% ${ }_{2}$	0.1 ppm	5 ppm MD	PASS
$\mathrm{CO} \mathrm{lb} / \mathrm{hr}$	0.1 ppm	5 ppm MD	PASS
	40 CFR 75 BIAS TEST		
Adjustment Factor	1.111	NA	BAF Required
	7-DAY CALIBRATION ERROR NO ${ }_{\text {x }}$ High		
NO_{x} High (Zero)	0.1\% of span	2.5% of span	PASS
NO_{x} High (Span)	0.7\% of span	2.5\% of span	PASS
	7-DAY CALIBRATION ERROR O ${ }_{2}$		
$\mathrm{O}_{2} \%$ (Zero)	0.1 \% O_{2}	0.5\% O_{2}	PASS
$\mathrm{O}_{2} \%$ (Span)	0.1 \% O_{2}	0.5\% O_{2}	PASS
	7-DAY CALIBRATION DRIFT CO Low		
CO Low (Zero)	2.0\% of span	5.0\% of span	PASS
CO Low (Span)	2.0\% of span	5.0\% of span	PASS
	7-DAY CALIBRATION DRIFT CO High		
CO High (Zero)	0.2\% of span	5.0\% of span	PASS
CO High (Span)	2.1\% of span	5.0\% of span	PASS
	LINEARITY		
NO_{x} High Range	2.6\%	5\% LE	PASS
$\mathrm{O}_{2} \%$	0.3\%	5\% LE	PASS
	CYLINDER GAS AUDIT		
CO Low Range	8.0\%	15\% CGA Error	PASS
CO High Range	11.4\%	15\% CGA Error	PASS
	CYCLE TIME		
$\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}$	3 Minutes	15 Minutes	PASS
CO Low Range	87 Seconds	90 Seconds	PASS
ANALYZER SERIAL NUMBERS			
NO_{x}		0934838567	
CO		CM09400112	
O_{2}		01440DIVO2/4246	

[^0]
2. CEMS CERTIFICATION

Field tests and DAHS tests were performed for CEMS certification in accordance with the criteria in 40 CFR 60, Appendix B, 40 CFR 75, Appendix A, and 40 CFR 75.20. The results for all tests were determined from the data collected by the DAHS. The computer printouts for each field test are included in the Appendices.

2.1 RELATIVE ACCURACY

The relative accuracy test audit (RATA) was performed on March 16 and 17, 2011. Each test run was a minimum of 21 minutes in duration and consisted of sampling for $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and O_{2}. The times during which the tests were performed are shown in the Air Hygiene test report in Appendix 1.

The reference methods used by Air Hygiene are outlined below:
CONSTITUENT
O_{2}
CO
NO_{x}

METHOD

EPA METHOD 3A
EPA METHOD 10
EPA METHOD 7E

As shown in the Relative Accuracy (RA) tables in the Air Hygiene test report, relative accuracy is reported as an error and is the sum of the absolute mean value of the differences between the reference method tests and the instrument readings, plus the 95 percent confidence interval of the differences, expressed as a percentage of the mean reference method value. As an alternative, 40 CFR 75 allows low NO_{x} emitters (less than $0.20 \mathrm{lb} / \mathrm{mmBta}$) to express relative accuracy as the difference between the average reference method value and the average CEMS value.

CO results are acceptable if the RA does not exceed 10%, if the average difference between the CEMS and reference method values plus the 2.5 percent confidence coefficient does not exceed 5.0 ppm , or if the alternative relative accuracy (ARA) does not exceed 5\%.

The analyzer response was determined from the average of readings taken every minute for the duration of the time the relative accuracy tests were performed. The raw value reports from the CEMS are included in the Air Hygiene test report.

The NO_{x} and O_{2} analyzers passed the relative accuracy requirements as stated in 40 CFR 75 , Appendix A and the NO_{x} systems $\left(\mathrm{NO}_{\mathrm{x}}\right.$ and O_{2} analyzer) qualify for annual RATA frequency under 40 CFR 75 . The NO_{x} systems had relative accuracy results significantly less than $0.015 \mathrm{lb} / \mathrm{mmBtu}$. The CO analyzers passed the relative accuracy requirements as stated in 40 CFR 60, Appendix B, PS 4/4a.

2.2 BIAS CHECK

The relative accuracy result for $\mathrm{NO}_{\bar{x}}^{-} \mathrm{lb} / \mathrm{mmBtu}$ on Unit 3A was checked for low bias by determining if the mean difference between the test team's values and the CEMS values is greater than the absolute value of the confidence coefficient. The CEMS on Unit 3A did exhibit bias and a bias adjustment factor is required.

2.3 CALIBRATION ERROR/CAĹIBRATION DRIFT

The 7-day calibration error test on both ranges of the CO analyzer and the high ranges of the NO_{x} and O_{2} analyzers occurred on seven consecutive days when the unit was operating at normal load. No adjustments were made to any of the analyzers during the seven day period. The calibration gases used for the calibration error test were US EPA Protocol 1, following the requirements of 40 CFR 75 . The certificates of analysis for the cylinders are included in Appendix 6.

The $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and O_{2} data from calibrations occurring over seven days are provided in Appendix 3. As shown, the calibration error for all analyzers was well within EPA requirements.

2.4 LINEARITY/CGA

The NO_{x} high range and O_{2} linearity tests and the CO Cylinder Gas Audits (CGA) were performed on March 18,2011. To perform the linearity test, the analyzers were challenged three times with each of three levels of calibration gas (low, mid and high). To perform the CGA, both ranges of the CO analyzer were challenged three times with each of two levels of calibration gas (low and mid).

The mean difference between the analyzer response and the calibration gas value, as a percentage of the calibration gas value, must be within 5% for linearity tests and within 15% for CGA. Results are also acceptable if the difference between the mean response and the calibration gas is within 5 ppm for NO_{x} and CO or $0.5 \% \mathrm{O}_{2}$. The linearity results for Unit 3A were within the requirements of 40 CFR 75, Appendix A and the CGA results met requirements of 40 CFR 60, Appendix F.

Summaries of the linearity and CGA test results are provided in tables in Appendix 4. The calibration gases used for the tests were US EPA Protocol 1, following the requirements of 40 CFR 75. The certificates of analysis for the cylinders are included in Appendix 6.

2.5 CYCLE TIME/RESPONSE TIME

The cycle time tests were performed on March 18,2011 . To perform the test, both ranges of the NO_{x} analyzer and the O_{2} analyzer were challenged with a zero gas and high level (80 to 100% of span) calibration gas. Both the upscale and down scale response times were determined. As stated in 40 CFR 75, Appendix A, the response time to reach 95% of
the gas value must be less than 15 minutes. For the NO_{x} system (NO_{x} and O_{2} analyzer), the longer of the two analyzers response times is the response time for the system.

The response time test on the low range of the CO was performed on March 18, 2011. As stated in 40 CFR 60, Appendix B, PS 4a, the three averaged upscale and downscale response times must be less than or equal to 90 seconds. The system response times met this requirement for Unit 3A. Reports that show the analyzers response are provided in Appendix 5.

3. DAHS VERIFICATION

Each of the missing data routines and calculations performed by the DAHS was verified. All variables included in the calculations (bias adjustment factor, fuel inputs) were included. The formula verification and associated printouts are included in Appendix 7.

4. DISCUSSION OF RESULTS

The CEMS and DAHS on Unit 3A at West County Energy Center successfully met all the requirements of the EPA as outlined in 40 CFR 60 and 40 CFR 75 . The certification data has been entered in the format specified by EPA for 40 CFR 75 and a printout of the results generated by ECMPS is included in Appendix 2.

APPENDIX 1

AIR HYGIENE RATA TEST REPORT

Testing Solutions for a Better World

RELATIVE ACCURACY TEST AUDIT

FOR THE

MITSUBISHI, MODEL 501G, UNIT 3A CEMS PREPARED FOR FLORIDA POWER AND LIGHT - AT THE

WEST COUNTY ENERGY CENTER

LOXAHATCHEE, FLORIDA
MARCH 16-17, 2011

Air hyGiene, inc.
Remote Testing Offices
Las Vegas, NV 89156
Ft. Worth, TX 76028
Humble, TX 77338
Shreveport, LA 71115
Miami, FL 33101
Philadelphia, PA 19136

RELATIVE ACCURACY TEST AUDIT FOR THE MITSUBISHI, MODEL 501G, UNIT 3A CEMS PREPARED FOR FLORIDA POWER AND LIGHT AT THE WEST COUNTY ENERGY CENTER LOXAHATCHEE, FLORIDA MARCH 16-17, 2011

Table of Contents

1.0 INTRODUCTION 1
1.1 TEST PURPOSE AND OBJECTIVES 1
1.2 SUMMARY OF TEST PROGRAM 2
1.2.1 Participating Organizations 2
1.2.2 Industry 2
1.2.3 Air Permit and Federal Requirements 2
1.2.4 Plant Location 2
1.2.5 Equipment Tested 2
1.2.6 Emission Points 2
1.2.7 Pollutants Measured 2
1.2.8 Dates of Emission Test 2
1.3 KEY PERSONNEL 2
2.0 SUMMARY OF TEST RESULTS 3
3.0 SOURCE OPERATION 4
3.1 PROCESS DESCRIPTION 4
3.2 SAMPLING LOCATION 4
4.0 SAMPLING AND ANALYTICAL PROCEDURES 4
4.1 TEST METHODS 4
4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS 5
APPENDICES
Appendix A Test Results and Calculations
Appendix B CEMS and Reference Method Data
Appendix C Calibration Gas Certifications
Appendix D Quality Assurance and Quality Control Data
Appendix E Stratification Test Data

Relative Accuracy Test Audit Mitsubishi, Model 501G, Unit 3A CEMS
 Florida Power and Light West County Energy Center Loxahatchee, Florida
 March 16-17, 2011

1.0 INTRODUCTION

Air Hygiene International, Inc. (Air Hygiene) has completed the Relative Accuracy Test Audit (RATA) for nitrogen oxides (NOx), carbon monoxide (CO), and oxygen $\left(\mathrm{O}_{2}\right)$ from the exhaust of the Mitsubishi, Model 501G, Unit 3A for Florida Power and Light at the West County Energy Center near Loxahatchee, Florida. This report details the background, results, process description, and the sampling/analysis methodology of the stack sampling survey conducted on March 16-17, 2011.

1.1 TEST PURPOSE AND OBJECTIVES

The purpose of the test was to perform the initial certification RATA on the CEMS that serves the Mitsubishi, Model 501G, Unit 3A for Florida Power and Light at the West County Energy Center near Loxahatchee, Florida. Reference method (RM) testing followed the Code of Federal Regulations (CFR), Title 40 (40 CFR), Part 60 (40 CFR 60), Appendix A, Methods $1,3 \mathrm{a}, 7 \mathrm{e}, 10$, and 19. RM values are compared with the on-site CEMS to document performance as required in the 40 CFR 60, Appendix B, Performance Specifications (PS) and 40 CFR 75 Appendix A and B. All relative accuracies were established on-site and were governed by the following sets of rules:

In accordance with 40 CFR 75, Appendix A, Section 3.3.2(a) and (b), the NOx RATA results are acceptable if the RA does not exceed 10.0 percent or if during the RATA the average NOx emission rate is less than or equal to 0.2 $\mathrm{lb} / \mathrm{MMBtu}$ and the average difference between the CEMS and RM values does not exceed $0.02 \mathrm{lb} / \mathrm{MMB}$. Passing this set of criteria requires the CEMS to be retested after no more than two operating quarters. Alternatively, in accordance with 40 CFR 75, Appendix B, Section 2.3.1.2(a) and (f), and Appendix B, Figure 2, the NOx RATA results are acceptable if the RA does not exceed 7.5 percent or if during the RATA the average NOx emission rate is less than or equal to $0.2 \mathrm{lb} / \mathrm{MMBtu}$ and the average difference between the CEMS and RM values does not exceed $0.015 \mathrm{lb} / \mathrm{MMBtu}$. Passing this set of criteria allows the CEMS to be retested after four operating quarters or at least within eight calendar quarters.

In accordance with 40 CFR 60, Appendix B, PS 4 and 4A, Sections 13.2 of each, the CO RA test results are acceptable if the RA does not exceed 10.0 percent, if the average difference between the CEMS and RM values plus the 2.5 percent confidence coefficient $(2.5 \% \mathrm{CC})$ does not exceed 5.0 parts per million (ppm), or if the alternative relative accuracy (ARA) does not exceed 5.0 percent. Part 60 further requires that the unit be operating at greater than 50 percent of normal load.

1.2 SUMMARY OF TEST PROGRAM

The following list details pertinent information related to this specific project:
1.2.1 Participating Organizations

- Florida Department of Environmental Protection (FDEP)
- Florida Power and Light
- Black and Veatch
- Custom Instrumentation Services Corporation (CiSCO)
- Air Hygiene
1.2.2 Industry
- Electric Utility / Electric Services
1.2.3 Air Permit and Federal Requirements
- Permit Number: PSD-FL396
- Emission Unit ID: 013
- 40 CFR 60, Appendix B, Performance Specifications (PS)
- 40 CFR 75, Appendix A
- 40 CFR 75, Appendix B
1.2.4 Plant Location
- West County Energy Center near Loxahatchee, Florida
1.2.5 Equipment Tested
- Mitsubishi, Model 501G, Unit 3A
- NOx Analyzer (THERMO, 42i-LS, Serial \#0934838567)
- CO Analyzer (THERMO, 48i, Serial \#CM09400112)
- O_{2} Analyzer (Servomex, 1440D, Serial\#01440DIV02/4246)
1.2.6 Emission Points
- Exhaust from the Mitsubishi, Model 501G, Unit 3A
- For all gases, one sample point in the exhaust duct from the Mitsubishi, Model 501G, Unit 3A, determined after conducting a stratification test (refer to Appendix E)
1.2.7 Pollutants Measured
- NOx
- CO
- O_{2}
1.2.8 Dates of Emission Test
- March 16-17, 2011

1.3 KEY PERSONNEL

Florida Power and Light:
Black and Veatch:
CiSCO:
Air Hygiene:

John Mirino
Bill Stevenson
Justin Hewett
Jake Fahlenkamp

786-242-3895
913-458-8549
936-537-4848
918-307-8865

2.0 SUMMARY OF TEST RESULTS

Results from the sampling conducted on Florida Power and Light's Mitsubishi, Model 501G, Unit 3A located at the West County Energy Center on March 16-17, 2011 are summarized in the following table.

TABLE 2.1
SUMMARY OF MITSUBISHI, 501G, UNIT 3ARATARESULTS

Pollutant	Units	Criteria			Results	Passed/Test Frequency
		CFR	Specification / Section	Standard		
NOX	Ib/MMBtu	Part 75	Appendix A, Section 3.3.2(a),(b) Appendix B, Section 2.3.1.2(a),(f), Figure 2	$\mathrm{RA} \leq 10 \%$, or if $\mathrm{lb} / \mathrm{MMBtu} \leq 0.2$, $\mathrm{d} \leq \pm 0.02 \mathrm{lb} / \mathrm{MMBtu}$ Annual Incentive $R A \leq 7.5 \%$, or if $\mathrm{lb} / \mathrm{MMBtu} \leq 0.2$, $\mathrm{d} \leq \pm 0.015 \mathrm{lb} / \mathrm{MMBtu}$	$\begin{gathered} \mathrm{RA}=17.3 \% \\ \mathrm{RM}=0.01 \mathrm{lb} / \mathrm{MMBtu} \\ \mathrm{~d}=0.001 \mathrm{lb} / \mathrm{MMBtu} \\ \mathrm{BAF}=1.111 \end{gathered}$	YES / ANNUAL
CO	ppm@ $15 \% \mathrm{O}_{2}$	Part 60	Appendix B, Performance Specification 4, 4A, from all Section 13.2	$\begin{gathered} \text { RA } \leq 10 \%, \text { or } \\ d+2.5 \% \text { CC } \\ \leq \pm 5 \text { ppmw, } \\ \text { or ARA } \leq 5 \% \end{gathered}$	$\begin{gathered} \mathrm{RA}=16.7 \% \\ \|\mathrm{~d}\|+2.5 \% \mathrm{CC}=0.1 \mathrm{ppm} \end{gathered}$	YES / ANNUAL
CO	lb/hr	Part 60	Appendix B, Performance Specification 4, 4A Section 13.2	$\begin{gathered} \text { RA } \leq 10 \%, \text { or } \\ d+2.5 \% \text { CC } \\ \leq \pm 5 \text { ppms }, \\ \text { or ARA } \leq 5 \% \end{gathered}$	$\begin{gathered} \mathrm{RA}=16 \% \\ \mid \mathrm{\|d\|}+2.5 \% \mathrm{CC}=0.1 \mathrm{ppm} \end{gathered}$	YES / ANNUAL
Load	MN	Part 60	Appendix B, Performance Specifications	> 50\% max load	393.4	WTTHIN tolerance
Load	MN	Part 75	Appendix A and B	normal load range	393.4	WITHIN tolerance

Notes: $\mathrm{RA}=$ relative accuracy, $A R A=$ alternative relative accuracy, $R M=$ reference method value, $\mathrm{d}=$ difference betw een PM and CEMS value, $\mathrm{CC}=$ confidence coefficient, $\mathrm{v}=$ velocity, $\mathrm{BAF}=$ bias adjustment factor

The RATA passed for all pollutants (NOx and CO) in all units ($\mathrm{ppm} @ 15 \% \mathrm{O}_{2}, \mathrm{lb} / \mathrm{hr}$, and $\mathrm{lb} / \mathrm{MMB}$ u)) under all 40 CFR 60 and 40 CFR 75 criteria.

Specifically, NOx in units of lb/MMBtu passed the 40 CFR 75 alternative annual incentive criteria with an emissions rate of less than $0.2 \mathrm{lb} / \mathrm{MMB}$ a and a difference between the RM and CEMS analyzers of less than $0.015 \mathrm{lb} / \mathrm{MMBtu}$. Also there is a Bias Adjustment Factor of 1.111 required. CO in units of $\mathrm{ppm} @ 15 \% \mathrm{O}_{2}$ and $\mathrm{lb} / \mathrm{hr}$ passed the 40 CFR 60 alternative criteria with a concentration difference between the RM and CEMS analyzers plus the confidence coefficient of less than 5 ppm .

Unit load was within the 40 CFR 60 required criteria of greater than 50 percent of the maximum load and also fell within the normal load criteria as defined by the plants Quality Control and Monitoring Plan which defined the upper and lower boundary on the unit and the normal and alternative normal load ranges.

On March 16, 2011 CT 3A tripped during emission compliance testing at 14:37. The cause of the trip was the improper placement of a jumper while checking the fire protection panel for a ground fault. The fault was tracked
to an enclosure damper solenoid. Once the source of the ground fault was located and isolated; the CT was restarted and returned to base load at 19:40. Compliance testing was resumed at that time.

3.0 SOURCE OPERATION

3.1 PROCESS DESCRIPTION

Florida Power and Light (FPL) owns and operates the West County Energy Center (West County) located at 20505 State Road 80 in Loxahatchee, Florida. West County is a nominal 2,500 megawatt (MW) greenfield power plant and consists of two combined cycle units (Unit 1 and 2). Each combined cycle unit consists of: three nominal 250 MW Mitsubishi Model 501G combustion turbine-electrical generator (CTGs) sets with evaporative inlet cooling systems; three supplementary-fired heat recovery steam generators (HRSGs) with selective catalytic reduction (SCR) reactors; one nominal 428 million British thermal units per hour (MMBtu/hour) based on low heat value (LHV) natural gas-fired duct burner (DB) located within each of the three HRSG's; and a common nominal 500 MW steam turbine-electrical generator (STG). The total nominal generating capacity of each of the " 3 on 1 " combined cycle unit is approximately $1,250 \mathrm{MW}$.

Each CTG has a nominal heat input rate of $2,333 \mathrm{MMBtu} / \mathrm{hr}$ when firing natural gas and $2,117 \mathrm{MMBtu} / \mathrm{hr}$ when firing distillate fuel oil (based on a compressor inlet air temperature of 59 degrees Fahrenheit (${ }^{\circ} \mathrm{F}$), the lower heating value (LHV) of each fuel, and 100 percent load), includes an automated gas turbine control system, and has dual-fuel capability of firing natural gas as the primary fuel or ultra low sulfur distillate (ULSD) fuel oil as a restricted alternate fuel. Each HRSG recovers exhaust, heat energy from each of the CTGs. Each Unit delivers steam to each STG. The efficient combustion of natural gas and restricted firing of ULSD fuel oil minimizes the emissions of carbon monoxide (CO), particulate matter (PM), sulfuric acid mist $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and volatile organic compounds (VOCs). Dry Low-NOX (DLN) combustors for gas firing and water injection for oil firing reduce nitrogen oxides (NOx) emissions. A selective catalyst reduction (SCR) system further reduces NOx emissions.

3.2 SAMPLING LOCATION

The 501G stack is circular and measures 21.9 feet (ft) (263 inches) in diameter at the test ports which are approximately 138 ft above grade level with an exit elevation of approximately 150 ft above grade level. The test ports are located approximately 44.31 ft (531.75 inches) downstream and approximately 12 ft (144 inches) upstream from the nearest disturbances. All exhaust samples for gaseous emissions were continuously drawn from the exhaust system at the sample ports from a single point determined after conducting a stratification test (Appendix E). During the stratification test three points were traversed from each of the four ports. The probe was allowed to remain at a point for two times the system response time.

4.0 SAMPLING AND ANALYTICAL PROCEDURES

4.1 TEST METHODS

The emission test on the Mitsubishi, Model 501G, Unit 3A at the West County Energy Center was performed following United States Environmental Protection Agency (EPA) methods described by the Code of Federal Regulations (CFR). Table 4.1 outlines the specific methods performed on March 16-17, 2011.

TABLE 4.1
SUMMARY OF SAMPLING METHODS

Pollutant or Parameter	Sampling Method	Analysis Method
Sample Point Location	EPA Method 1	Equal Area Method
Oxygen	EPA Method 3a	Paramagnetic Cell
Nitrogen Oxides	EPA Method 7e	Chemiluminescent Analyzer
Carbon Monoxide	EPA Method 10	Nondispersive Infrared Analyzer
Stack Flow Rate	EPA Method 19	Dry Oxygen F Factor

4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS

The sampling and analysis procedures used during these tests conform with the methods outlined in the Code of Federal Regulations (CFR), Title 40, Part 60, Appendix A, Methods 1, 3a, 7e, 10, and 19.

Figure 4.1 depicts the sample system used for the $\mathrm{NOx}, \mathrm{CO}$, and O_{2} tests. A stainless steel probe was inserted into the sample ports of the stack to extract gas measurements from the emission stream at three points located at 16.7,50, and 83.3 percent across the stack diameter / 0.4 (15.7), $1.2(47.2)$, and $2.0(78.7)$ meters (inches) from the wall of the stack. The gas sample was continuously pulled through the probe and transported, via heat-traced Teflon ${ }^{\circledR}$ tubing, to a stainless steel minimum-contact condenser designed to dry the sample. Transportation of the sample, through Teflon ${ }^{\circledR}$ tubing, continued into the sample manifold within the mobile laboratory via a stainless steel/Teflon® diaphragm pump. From the manifold, the sample was partitioned to the $\mathrm{NOx}, \mathrm{CO}$, and O_{2} analyzers through rotameters that controlled the flow rate of the sample.

Figure 4.1 shows that the sample system was also equipped with a separate path through which a calibration gas could be delivered to the probe and back through the entire sampling system. This allowed for convenient performance of system bias checks as required by the testing methods.

All instruments were housed in an air-conditioned, trailer-mounted mobile laboratory. Gaseous calibration standards were provided in aluminum cylinders with the concentrations certified by the vendor. EPA Protocol No. 1 was used to determine the cylinder concentrations where applicable (i.e. NOx calibration gases).

Table 4.2 provides a description of the analyzers used for the instrument portion of the tests. All data from the continuous monitoring instruments were recorded on a Logic Beach Portable Data Logging System Hyperlogger which retrieves calibrated electronic data from each instrument every one second and reports an average of the collected data every 30 seconds. Data records can be found in Appendix A and B of this report.

Six test runs of approximately 60 minutes and four test runs of approximately 21 minutes each were conducted on the Mitsubishi, Model 501 G , Unit 3 A for $\mathrm{NOx}, \mathrm{CO}$, and O_{2}. The unit operation was greater than 50 percent of capacity as required by the 40 CFR 60, Performance Specifications. The unit operation was at the normal load as required by 40 CFR 75 .

The stack gas analysis for O_{2} concentrations was performed in accordance with procedures set forth in EPA Method 3a. The O_{2} analyzer uses a paramagnetic cell.

EPA Method 7e was used to determine concentrations of NOx. A chemiluminescent analyzer was used to determine the nitrogen oxides concentration in the gas stream. A NO Na_{2} in nitrogen certified gas cylinder was used to verify at least a 90 percent NO_{2} conversion on the day of the test.

CO emission concentrations were quantified in accordance with procedures set forth in EPA Method 10. A continuous nondispersive infrared (NDIR) analyzer was used for this purpose.

TABLE 4.2
ANALYTICAL INSTRUMENTATION

Parameter	Model and Manufacturer	Range	Sensitivity	Detection Principle
NOx	THERMO 42i-HL	User may select up to $5,000 \mathrm{ppm}$	0.1 ppm	Thermal reduction of NO_{2} to NO . Chemiluminescence of reaction of NO with O_{3}. Detection by PMT. Inherently linear for listed ranges.
CO	THERMO 48i	User may select up to $10,000 \mathrm{ppm}$	0.1 ppm	Infrared absorption, gas filter correlation detector, microprocessor based linearization.
O_{2}	$\begin{gathered} \hline \text { THERMO } \\ 42 \mathrm{i}-\mathrm{HL} \end{gathered}$	0-25\%	0.1\%	Paramagnetic cell, inherently linear.

APPENDIX A

TEST RESULTS AND CALCULATIONS

TABLE A.1:
EMISSIONS TESTING SCHEDULE

Unit	Load	Test Type	Run	Date	Start	Stop	Time Sync
3A	Base Load	Stratification Test	1	$03 / 16 / 11$	$8: 45: 56$	$9: 28: 26$	DAHS
3A	Base	Gas RATA	1	$03 / 16 / 11$	$9: 47: 26$	$10: 46: 56$	DAHS
3A	Base	Gas RATA	2	$03 / 16 / 11$	$11: 03: 26$	$12: 02: 56$	DAHS
3A	Base	Gas RATA	3	$03 / 16 / 11$	$12: 21: 26$	$13: 20: 56$	DAHS
3A	Base	Gas RATA	4	$03 / 16 / 11$	$18: 31: 07$	$18: 51: 37$	DAHS
3A	Base wDB	Gas RATA	5	$03 / 17 / 11$	$10: 05: 07$	$11: 04: 37$	DAHS
3A	Base wDB	Gas RATA	6	$03 / 17 / 11$	$11: 25: 07$	$12: 24: 37$	DAHS
3A	Base wDB	Gas RATA	7	$03 / 17 / 11$	$12: 43: 07$	$13: 42: 37$	DAHS
3A	Base wDB	Gas RATA	8	$03 / 17 / 11$	$13: 58: 07$	$14: 18: 37$	DAHS
3A	Base wDB	Gas RATA	9	$03 / 17 / 11$	$14: 28: 07$	$14: 48: 37$	DAHS
3A	Base wDB	Gas RATA	10	$03 / 17 / 11$	$14: 58: 07$	$15: 18: 37$	DAHS

Note: DAHS Time (EST minus 1hr)

TEST RESULTS

Florida Power and Light March 16-17, 2011 Mitsubishi, 501G, Unit 3A CO RATA Data Sheet West County Energy Center

RUN \#	RUN TIME	USED	UNIT LOAD	RM	CEMS	RM-CEMS	
			(MW)	(ppm@ 15\% O_{2})	(ppm@ 15\% O_{2})	(diff)	(diff ${ }^{2}$)
1	09:47-10:46	YES	381.3	0.70	0.60	0.1000	0.01
2	11:03-12:02	YES	377.3	0.70	0.60	0.1000	0.01
3	12:21-13:20	YES	376.3	0.50	0.60	-0.1000	0.01
4	18:31-18:51	YES	369.1	0.80	0.70	0.1000	0.01
5	10:05-11:04	YES	413.2	0.50	0.60	-0.1000	0.01
6	11:25-12:24	YES	400.3	0.50	0.50	0.0000	0.00
7	12:43-13:42	YES	403.9	0.50	0.50	0.0000	0.00
8	13:58-14:18	YES	405.0	0.60	0.50	0.1000	0.01
9	14:28-14:48	NO	404.4	0.60	0.50		
10	14:58-15:18	YES	402.8	0.60	0.50	0.1000	0.01
11		NO					
12		NO					
Total Average			$\begin{gathered} 3529.2 \\ 392.1 \\ \hline \end{gathered}$	$\begin{aligned} & 5.40 \\ & 0.60 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.10 \\ & 0.57 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3000 \\ & 0.0333 \\ & \hline \end{aligned}$	0.0700
			umber of Runs dard Deviation T-value ce Coefficient	$\begin{gathered} 9 \\ 0.087 \\ 2.306 \\ 0.0666 \\ \hline \end{gathered}$			
		Relative Accuracy $=$ 16.7% $\mid \mathrm{d}(\mathrm{difference}$ in ppm $) \mid+\mathrm{CC}=$ 0.1					

Part 60, Appendix B, Performance Specification 4,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS having span values of $1,000 \mathrm{ppmv} \mathrm{CO}$.
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA or 5 percent when the applicable emission standard (permit limit) is used to calculate RA.

Part 60, Appendix B, Performance Specification 4A,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS that comply with low emission standards (less than 200 ppmv).
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA, 5 percent when the applicable emission standard (permit limit) is used to calculate RA, or within 5 ppmv when the RA is calculated as the absolute average difference between the RM and CEMS plus the 2.5 percent confidence coefficient.

Florida Power and Light

March 16-17, 2011
Mitsubishi, 501G, Unit 3A
CO RATA Data Sheet
West County Energy Center

Part 60, Appendix B, Performance Specification 4,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS having span values of $1,000 \mathrm{ppmv} \mathrm{CO}$.
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA or 5 percent when the applicable emission standard (permit limit) is used to calculate RA.

Part 60, Appendix B, Performance Specification 4A,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS that comply with low emission standards (less than 200 ppmv).
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA, 5 percent when the applicable emission standard (permit limit) is used to calculate RA, or within 5 ppmv when the RA is calculated as the absolute average difference between the RM and CEMS plus the 2.5 percent confidence coefficient.

Florida Power and Light
March 16-17, 2011
Mitsubishi, 501G, Unit 3A NOx RATA Data Sheet West County Energy Center

RUN \#	RUN TIME		USED	UNIT LOAD	RM	CEMS	RM-CEMS		
			(MW)	(Ib/MMBtu)	(lb/MMBtu)	(diff)	(diff ${ }^{2}$)		
1	09:47	- 10:46		YES	381.3	0.007	0.006	0.0010	0.0000
2	11:03	- 12:02	YES	377.3	0.007	0.006	0.0010	0.0000	
3	12:21	- 13:20	YES	376.3	0.007	0.006	0.0010	0.0000	
4	18:31	- 18:51	YES	369.1	0.007	0.006	0.0010	0.0000	
5	10:05	- 11:04	YES	413.2	0.006	0.005	0.0010	0.0000	
6	11:25	- 12:24	YES	400.3	0.006	0.005	0.0010	0.0000	
7	12:43	- 13:42	NO	403.9	0.007	0.005			
8	13:58	- 14:18	YES	405.0	0.006	0.006	0.0000	0.0000	
9	14:28	- 14:48	YES	404.4	0.006	0.005	0.0010	0.0000	
10	14:58	- 15:18	YES	402.8	0.006	0.006	0.0000	0.0000	
11			NO						
12			NO						
Total				3529.7	0.058	0.051	0.0070	0.0000	
Average				392.2	0.006	0.006	0.0008		
Number of Runs					9				
Standard Deviation					0.000				
T-value					2.306				
Confidence Coefficient					0.0003				

Relative Accuracy $=17.33 \%$

If the mean difference is less than or equal to the absolute value of the confidence coefficient, then the Bias Test passes and the bias adjustment factor is not applicable.

Mean Difference $=$	0.0008
Confidence Coefficient $=$	0.0003

BAF $=1+$ (abs. value mean difference/avg. CEMS reading)	
Average CEMS Reading $=$	0.006
BAF $=$	1.111

Part 75, Appendix A,
3.3.2 Relative Accuracy for NOX-Diluent Continuous Emission Monitoring Systems
(a) The relative accuracy for NOX-diluent continuous emission monitoring systems shall not exceed 10.0 percent.
(b) For affected units where the average of the reference method measurements of NOX emission rate (this means lb/MMBtu) during the relative accuracy test audit is less than or equal to $0.200 \mathrm{lb} / \mathrm{mmB}$ tu, the difference between the mean value of the continuous emission monitoring system measurements and the reference method mean value shall not exceed $\pm 0.020 \mathrm{lb} / \mathrm{mmBtu}$, wherever the relative accuracy specification of 10.0 percent is not achieved.
7.6.5 Bias Adjustment
(b) For single-load RATAs of SO2 pollutant concentration monitors, NOX concentration monitoring systems, and NOX-diluent monitoring systems and for the single-load flow RATAs required or allowed under section 6.5.2 of this appendix and sections 2.3.1.3(b) and 2.3.1.3(c) of Appendix B to this part, the appropriate BAF is determined directly from the RATA results at normal load, using Equation A-12. Notwithstanding, when a NOX concentration CEMS or an SO2 CEMS or a NOX-diluent CEMS installed on a low-emitting affected unit (i.e., average SO2 or NOX concentration during the RATA \&IE; 250 ppm or average NOX emission rate $\& \mathrm{IE} ; 0.200 \mathrm{lb} / \mathrm{mmB}$ (u) meets the normal 10.0 percent relative accuracy specification (as calculated using Equation A-10) or the alternate relative accuracy specification in section 3.3 of this appendix for low-emitters, but fails the bias test, the BAF may either be determined using Equation A-12, or a default BAF of 1.111 may be used.

Part 75, Appendix B,
2.3.1.2 Reduced RATA Frequencies. Relative accuracy test audits of primary and redundant backup SO2 pollutant concentration monitors, CO 2 pollutant concentration monitors (including O2 monitors used to determine CO 2 emissions), CO 2 or O 2 diluent monitors used to determine heat input, moisture monitoring systems, NOX concentration monitoring systems, flow monitors, NOX-diluent monitoring systems or SO2-diluent monitoring systems may be performed annually (i.e., once every four successive QA operating quarters, rather than once every two successive QA operating quarters) if any of the following conditions are met for the specific monitoring system involved:
(a) The relative accuracy during the audit of an SO 2 or CO 2 pollutant concentration monitor (including an O 2 pollutant monitor used to measure CO 2 using the procedures in appendix F to this part), or of a CO 2 or O 2 diluent monitor used to determine heat input, or of a NOX concentration monitoring system, or of a NOX-diluent monitoring system, or of an SO2-diluent continuous emissions monitoring system is \leq 7.5 percent;
(f) For units with low NOX emission rates (average NOX emission rate measured by the reference method during the RATA ≤ 0.200 $\mathrm{lb} / \mathrm{mmB}$ Bu), when a NOX-diluent continuous emission monitoring system fails to achieve a relative accuracy ≤ 7.5 percent, but the monitoring system mean value from the RATA, calculated using Equation A-7 in appendix A to this part, is within $\pm 0.015 \mathrm{lb} / \mathrm{mmBtu}$ of the reference method mean value;

Figure 2 to Appendix B of Part 75_Relative Accuracy Test Frequency Incentive System.

RATA	Semiannual(percent)(1)	Annual(1)
SO2 or NOX(3)	7.5\% < RA $\leq 10.0 \%$ or $\pm 15.0 \mathrm{ppm}(2)$	$\mathrm{RA} \leq 7.5 \%$ or $\pm 12.0 \mathrm{ppm}(2)$
SO2-diluent	$7.5 \%<\mathrm{RA} \leq 10.0 \% \text { or } \pm 0.030$ lb/mmBtu(2)	$\mathrm{RA} \leq 7.5 \% \text { or } \pm 0.025$ $\mathrm{lb} / \mathrm{mmBtu}(2)$
NOX-diluent	$\begin{aligned} & 7.5 \%<R A \leq 10.0 \% \text { or } \pm 0.020 \\ & \text { Ib/mmBtu(2) } \end{aligned}$	$\mathrm{RA} \leq 7.5 \% \text { or } \pm 0.015$ $\mathrm{lb} / \mathrm{mmBtu}(2)$
Flow	7.5\% < RA $\leq 10.0 \%$ or $\pm 2.0 \mathrm{fps}(2)$	$R A \leq 7.5 \%$ or $\pm 1.5 \mathrm{fps}$
CO 2 or O 2	7.5\% < RA $\leq 10.0 \%$ or $\pm 1.0 \% \mathrm{CO} 2 / \mathrm{O} 2(2)$	$\mathrm{RA} \leq 7.5 \%$ or $\pm 0.7 \% \mathrm{CO2/O2}(2)$
Moisture	7.5\% < RA $\leq 10.0 \%$ or $\pm 1.5 \% \mathrm{H} 2 \mathrm{O}(2)$	$\mathrm{RA} \leq 7.5 \%$ or $\pm 1.0 \% \mathrm{H} 2 \mathrm{O}(2)$

(1) The deadline for the next RATA is the end of the second (if semiannual) or fourth (if annual) successive QA operating quarter following the quarter in which the CEMS was last tested. Exclude calendar quarters with fewer than 168 unit operating hours (or, for common stacks and bypass stacks, exclude quarters with fewer than 168 stack operating hours) in determining the RATA deadline. For SO2 monitors, QA operating quarters in which only very low sulfur fuel as defined in $\S 72.2$, is combusted may also be excluded. However, the exclusion of calendar quarters is limited as follows: the deadline for the next RATA shall be no more than 8 calendar quarters after the quarter in which a RATA was last performed.
(2) The difference between monitor and reference method mean values applies to moisture monitors, CO 2 , and O 2 monitors, low emitters, or low flow, only.
(3) A NOX concentration monitoring system used to determine NOX mass emissions under § 75.71.

Relative Accuracy Test Data

CEMS Results (NOx)

Mitsubishi, 501G, Unit 3A

	Parameter: Date of Test: Reference Method: CEMS Analyzer Type: Manufacturer: Model \#: Serial \#:		Oxides of Nitrogen March 16-17, 2011 EPA Method 7e Chemiluminescence Thermo 42i-LS 0934838567			
RUN \#	RUN TIME	UNIT LOAD	CONCENTRATIONS		RATES	
		(MW)	(ppmvd)	(ppm@ 15\% O_{2})	($\mathrm{lb} / \mathrm{hr}$)	(Ib/MMBtu)
1	09:47-10:46	381.3				0.006
2	11:03 - 12:02	377.3				0.006
3	12:21-13:20	376.3				0.006
4	18:31-18:51	369.1				0.006
5	10:05-11:04	413.2				0.005
6	11:25-12:24	400.3				0.005
7	12:43-13:42	403.9				0.005
8	13:58-14:18	405.0				0.006
9	14:28-14:48	404.4				0.005
10	14:58-15:18	402.8				0.006
11						
12						

Relative Accuracy Test Data

CEMS Results (CO)
Mitsubishi, 501G, Unit 3A

	Parameter: Date of Test: Reference Method: CEMS Analyzer Type: Manufacturer: Model \#: Serial \#:		Carbon Monoxide March 16-17, 2011 EPA Method 10 Infrared Absorption Thermo 48i CM09400112			
RUN \#	RUN TIME	UNIT LOAD	CONCENTRATIONS		RATES	
		(MW)	(ppmvd)	(ppm@ 15\% O_{2})	($\mathrm{lb} / \mathrm{hr}$)	(Ib/MMBtu)
1	09:47-10:46	381.3	0.80	0.60	3.50	
2	11:03-12:02	377.3	0.80	0.60	3.30	
3	12:21-13:20	376.3	0.70	0.60	3.20	
4	18:31-18:51	369.1	1.00	0.70	4.20	
5	10:05-11:04	413.2	0.80	0.60	3.20	
6	11:25-12:24	400.3	0.70	0.50	3.20	
7	12:43-13:42	403.9	0.70	0.50	3.00	
8	13:58-14:18	405.0	0.70	0.50	3.10	
9	14:28-14:48	404.4	0.70	0.50	3.00	
10	14:58-15:18	402.8	0.70	0.50	3.00	
11						
12						

Relative Accuracy Test Data

CEMS Results $\left(\mathrm{O}_{2}\right)$
Mitsubishi, 501G, Unit 3A

Parameter:	Oxygen
Date of Test:	March 16-17, 2011
Reference Method:	EPA Method 3a
CEMS Analyzer Type:	Paramagnetic Cell
Manufacturer:	Servomex
Model\#:	1440 D
Serial\#:	$01440 \mathrm{DIV02/4246}$

RUN \#	RUN TIME	UNIT LOAD	CONC.	
		(MW)	$(\%)$	
1	$09: 47-10: 46$	381.3	13.15	
2	$11: 03-12: 02$	377.3	13.18	
3	$12: 21-13: 20$	376.3	13.18	
4	$18: 31-18: 51$	369.1	13.10	
5	$10: 05-11: 04$	413.2	12.33	
6	$11: 25-12: 24$	400.3	12.34	
7	$12: 43-13: 42$	403.9	12.34	
8	$13: 58-14: 18$	405.0	12.32	
9	$14: 28-14: 48$	404.4	12.31	
10	$14: 58-15: 18$	402.8	12.32	
11				
12				

Relative Accuracy Test Data

 Reference Method Results (NOx) Mitsubishi, 501G, Unit 3A| Parameter: | Oxides of Nitrogen |
| :--- | :--- |
| | |
| Date of Test: | March 16-17, 2011 |
| Reference Method: | EPA Method 7e |
| RM Analyzer Type: | Chemiluminescence |
| Manufacturer: | Thermo |
| Model \#: | 42i-HL |
| Serial \#: | INST-N2-0001 |

RUN \#	RUN TIME	UNIT LOAD	CONCENTRATIONS		RATES	
		(MW)	(ppmvd)	$\left(\mathrm{ppm@} @ 15 \% \mathrm{O}_{2}\right)$	$(\mathrm{Ib} / \mathrm{hr})$	(Ib/MMBtu)
1	$09: 47-10: 46$	381.3				0.007
2	$11: 03-12: 02$	377.3				0.007
3	$12: 21-13: 20$	376.3				0.007
4	$18: 31-18: 51$	369.1				0.007
5	$10: 05-11: 04$	413.2				0.006
6	$11: 25-12: 24$	400.3				0.006
7	$12: 43-13: 42$	403.9				0.007
8	$13: 58-14: 18$	405.0				0.006
9	$14: 28-14: 48$	404.4				0.006
10	$14: 58-15: 18$	402.8				
11						
12						

Relative Accuracy Test Data Reference Method Results (CO)

Mitsubishi, 501G, Unit 3A

Relative Accuracy Test Data Reference Method Results $\left(\mathrm{O}_{2}\right)$ Mitsubishi, 501G, Unit 3A

Parameter:	Oxygen
Date of Test:	March 16-17, 2011
Reference Method:	EPA Method 3a
RM Analyzer Type:	Paramagnetic Cell
Manufacturer:	Thermo
Model \#:	42i-HL
Serial \#:	INST-N2-0001

RUN \#	RUN TIME	UNIT LOAD	CONC.	
		(MW)	(\%)	
1	$09: 47-10: 46$	381.3	13.09	
2	$11: 03-12: 02$	377.3	13.10	
3	$12: 21-13: 20$	376.3	13.21	
4	$18: 31-18: 51$	369.1	13.03	
5	$10: 05-11: 04$	413.2	12.47	
6	$11: 25-12: 24$	400.3	12.36	
7	$12: 43-13: 42$	403.9	12.35	
8	$13: 58-14: 18$	405.0	12.29	
9	$14: 28-14: 48$	404.4	12.28	
10	$14: 58-15: 18$	402.8	12.30	
11				
12				

CALCULATIONS

EXAMPLE CALCULATIONS (CALIBRATION)

Analyzer Calibration Error

RM 7E, (12-17-09), 12.2 Analyzer Calibration Error. For non-dilution systems, use Equation 7E-1 to calculate the analyzer calibration error for the low-, mid-, and high-level calibration gases. (calc for NOx analyzer mid gas, if applicable)

EXAMPLE CALCULATIONS (BIAS, DRIFT, AND CORRECTED RAW AVERAGE)

System Bias

RM 7E, (12-17-09), 12.3 System Bias. For non-dilution systems, use Equation 7E-2 to calculate the system bias separately for the low-level and upscale calibration gases. (calc for NOx analyzer upscale gas, Run 1 initial bias, if applicable)
$S B=\left(\frac{C_{S}-C_{D r}}{C S}\right) \times 100 \quad$ Eq. $7 \mathrm{E}-2 \quad \mathrm{SB}=\frac{4.84 \mathrm{ppm}-5.00 \mathrm{ppm}}{12.10 \mathrm{ppm}} \times 100=-1.32 \%$

Drift Assessment

RM 7E, (12-17-09), 12.5 Drift Assessment. Use Equation 7E-4 to separately caiculate the low-level and upscale drift over each test run. (calc for NOx analyzer upscale drift, Run 1 , if applicable)

$$
D=\left|S B_{f: n:}-S B_{i}\right| \quad \text { Eq. } 7 \mathrm{E}-4 \quad \mathrm{D}=|-1.98 \%--1.32 \% \quad|=0.66 \%
$$

Alternative Drift and Bias

RM 7E, (12-17-09), 13.2 / 13.3 System Bias and Drift. Altematively, the results are acceptable if |Cs - Cdir| is $\leq 0.5 \mathrm{ppmv}$ or if $|\mathrm{Cs}-\mathrm{Cv}|$ is $\leq 0.5 \mathrm{ppmv}$ (as applicable). (calc for NOx analyzer initial upscale, Run 1, if applicable)
$S B / D_{\text {Ait }}=\left|C_{S}^{\prime}-C_{D i r}\right| \quad$ Eq. Section 13.2 and $13.3 \quad S B / D_{A t}=|\quad 4.84 \mathrm{ppm}-5.00 \mathrm{ppm}|=\quad 0.16 \mathrm{ppm}$

Bias Adjusted Average

RM 7E, (12-17-09), 12.6 Effluent Gas Concentration. For each test run, calculate Cavg, the arithmetic average of all valid NOx concentration values (e.g., 1-minute averages). Then adjust the value of Cavg for bias, using Equation 7E-5b. (calc for NOx analyzer, Run 1, if applicable)
$C_{G a:}=\left(C_{\text {srb }}-C_{o}\right) \times\left(\frac{C_{1 / 4}}{C_{A}-C_{0}}\right) \quad$ Eq. $7 \mathrm{E}-5 \mathrm{~b} \quad \mathrm{C}_{\text {Gas }}=[2.50 \mathrm{ppm}-0.12 \mathrm{ppm}) \times\left[\frac{4.93 \mathrm{ppm}}{4.80 \mathrm{ppm}-0.12 \mathrm{ppm}}\right]=2.51 \mathrm{ppm}$
Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.

EXAMPLE CALCULATIONS (RUNS)

Stack Exhaust Flow (Q_{s}) - RM19
$Q_{5}=\left(\frac{\text { FFactor } \times Q_{,} \times H H V}{1.000,000}\right) \times\left(\frac{20.9 \%}{\left.20.9 \%-C_{\text {Gar }}\right)}\right)$

$$
\begin{aligned}
Q_{S}= & \frac{8,710.00 \mathrm{SCF}}{M M B t u} \times \frac{2,535,588.62 \mathrm{SCF}}{\mathrm{hr}} \times \frac{1,029.00 \mathrm{Btu}}{\mathrm{SCF}} \\
& \times \frac{\text { MMBtu }}{10^{6} \mathrm{Btu}} \times\left[\frac{20.90 \%}{20.9 \%-13.1 \%}\right]=60,852,968.85 \mathrm{SCFH}
\end{aligned}
$$

Diluent-Corrected Pollutant Concentration, $\mathrm{O}_{\mathbf{2}}$ Based
RM 20, (11-26-02), 7.3.1 Correction of Pollutant Concentration Using O_{2} Concentration. Calculate the O_{2} corrected pollutant concentration, as follows: (calc for NOx gas, Run 1, if applicable)
$C_{a d i}=C_{G a\{\{\arg \mathrm{~g})} \times\left(\frac{20.9 \%-A d j \text { Factor }}{20.9 \%-C_{G a x i O 2 ;}}\right) \quad$ Eq. $20-4 \quad C_{\mathrm{adj}}=2.51 \quad \mathrm{ppmx}\left(\frac{20.9 \%-15.00 \%}{20.9 \%-13.09 \%}\right)=1.90 \quad \mathrm{ppm@} 15 \% \mathrm{O}_{2}$

EXAMPLE CALCULATIONS (RUNS)

Emissions Rate ($\mathrm{lb} / \mathrm{hr}$)

Calculation for pound per hour emission rate. Calculate, as follows: (calc for NOx gas Run 1, if applicable)
$E_{B ;: r}=\frac{C_{G a ;}}{10^{6}} \times \frac{Q_{s} \times M W}{G} \quad E_{\mathrm{bb} / \mathrm{hr}}=\frac{2.51 \mathrm{ppm}}{10^{6} \mathrm{ppm} / \mathrm{part}} \times \frac{60,852,969 \mathrm{SCFH} \times 46.01 \mathrm{ib} / \mathrm{lb}-\mathrm{mol}}{385.23 \mathrm{SCF} / \mathrm{lb}-\mathrm{mol}}=\frac{18.26 \mathrm{ib}}{\mathrm{hr}}$

Emissions Rate ($\mathrm{Ib} / \mathrm{MMBtu}$)

RM 19, (12-17-09), 12.2 Emission Rates of $\mathrm{PM}_{1} \mathrm{SO}_{2}$, and NOx. Select from the following sections the applicable procedure to compute the $P M, \mathrm{SO}_{2}$, or NOx emission rate (E) in ng / J (Ib/million Btu). (calc for NOx gas Run 1 , if applicable)

Oxygen Based
12.2.1 Oxygen-Based F Factor, Dry Basis. When measurements are on a dry basis for both $\mathrm{O}_{2}\left(\% \mathrm{O}_{2} \mathrm{~d}\right)$ and pollutant (Cd) concentrations, use the following equation:

$$
\begin{aligned}
& \mathrm{E}_{\text {IbMMBtu }}=\frac{2.51 \mathrm{ppm} \times 8,710.00 \text { SCF/MMBtu } \times 0.0000001194 \mathrm{lb} / \mathrm{ppm}{ }^{*} \mathrm{ft}^{3} \times 20.9 \%}{20.9 \%-13.09 \%}=\frac{0.007 \mathrm{lb}}{\mathrm{MMBtu}}
\end{aligned}
$$

Conversion Constant
Conve for NOx

$$
\operatorname{Conv}\left(l \mathrm{lb} / \mathrm{ppm} \cdot f t^{3}\right)=\frac{\frac{M W}{G}}{10^{6}} \quad \operatorname{Conv}_{\mathrm{c}}=\frac{\frac{46.01 \mathrm{lb}}{\mathrm{lb} \cdot \mathrm{~mole}} \times \frac{\mathrm{lb} \cdot \mathrm{~mole}}{385.23 \mathrm{SCF}}}{10^{6}}=\frac{0.0000001194 \mathrm{lb}}{\mathrm{ppm}-\mathrm{ft}^{3}}
$$

Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.

EXAMPLE CALCULATIONS (RATA RESULTS)

Difference (d)
40 CFR 75, App A, (12-17-09), 7.3.1 Arithmetic Mean. Calculate the arithmetic mean of the differences, d, of a data set as follows. (calc for NOx $\mathrm{lb} / \mathrm{MMB} t \mathrm{data}$, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

Standard Deviation

40 CFR 75, App A, (12-17-09), 7.3.2 Standard Deviation. Calculate the standard deviation, Sd, of a data set as follows:
(calc for NOx lb/MMBtu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

Eq. A-8

Confidence Coefficient

40 CFR 75, App A, (12-17-09), 7.3.3 Confidence Coefficient. Calculate the confidence coefficient (one-tailed), cc, of a data set as follows. (calc for NOx $\mathrm{lb} / \mathrm{MMB}$ tu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

$$
C C=t_{0.02 \leq} \times \frac{S_{d}}{\sqrt{n 1}} \quad \text { Eq. A-9 } \quad C C=2.306 \times \frac{0.000 \quad \text { bim@日u }}{\sqrt{9}}=0.000 \text { ॥灬мMBu }
$$

T-Values	\mathbf{n}	2	3	4	5	6	7	8	9
	$\mathbf{t}_{0.025}$	12.706	4.303	3.182	2.776	2.571	2.447	2.365	2.306

2.5 percent confidence coefficients

Relative Accuracy

40 CFR 75, App A, (12-17-09), 7.3.4 Relative Accuracy. Calculate the relative accuracy of a data set using the following equation. (calc for NOx $\mathrm{lb} / \mathrm{MMB}$ tu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

$$
R X=\frac{\left|d_{A G}\right|+|C C|}{R M_{A B G}} \times 100 \quad \text { Eq. A-10 } \quad R A=\frac{|0.001| \mathrm{lb} / \mathrm{MMBtu}+|0.000| \mathrm{laMMBu}}{0.006 \operatorname{ldMMBL}} \times 100=17.33 \%
$$

Bias Adjustment Factor (BAF)

40 CFR 75, App A, (12-17-09), 7.6.5 Bias Adjustment. (a) If the monitor or monitoring system fails to meet the bias test requirement, adjust the value obtained from the monitor using the following equation: (calc for NOX Ib/MMBtu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

Note: BAF only applies if the mean difference (d) is greater than the absolute value of the confidence coefficient.

Note: Lack of significant figures may cause rounding arrors between actual calculations and example calculations

RM 7E, (08-15-06\}, 12.1 Nomenclature. The terms used in the equations are defined as follows:
$A C E=$ Analyzer calibration error, percent of calibration span.
$\mathrm{B}_{\text {ws }}=$ Moisture content of sample gas as measured by Method 4 or other approved method, percent/100.
$\mathrm{C}_{\mathrm{Avg}}=$ Average unadjusted gas concentration indicated by data recorder for the test run
$C_{D}=$ Pollutant concentration adjusted to dry conditions.
$\mathrm{C}_{\mathrm{Di}}=$ Measured concentration of a calibration gas (low, mid, or high) when introduced in direct calibration mode
$C_{G a s}=A v e r a g e ~ e f f l u e n t ~ g a s ~ c o n c e n t r a t i o n ~ a d j u s t e d ~ f o r ~ b i a s . ~$
$C_{M}=$ Average of initial and final system calibration bias (or 2-point system calibration error) check responses for the upscale calibration gas
$C_{M A}=$ Actual concentration of the upscale calibration gas, ppmv.
$C_{0}=$ Average of the initial and final system calibration bias (or 2-point system calibration error) check responses from the low-level (or zero) calibration gas
$\mathrm{C}_{\mathrm{s}}=$ Measured concentration of a calibration gas (low, mid, or high) when introduced in system calibration mode.
$\mathrm{C}_{\mathrm{ss}}=$ Concentration of NOX measured in the spiked sample
$\mathrm{C}_{\text {Spko }}=$ Concentration of NOx in the undiluted spike gas.
$\mathrm{C}_{\text {Cak }}=$ Calculated concentration of NOx in the spike gas diluted in the sample.
$\mathrm{C}_{v}=$ Manufacturer certified concentration of a calibration gas (low, mid, or high).
$\mathrm{C}_{\mathrm{w}}=$ Pollutant concentration measured under moist sample conditions, wet basis.
CS = Calibration span.
D = Drift assessment, percent of calibration span.
$\mathrm{E}_{\mathrm{p}}=$ The predicted response for the low-level and mid-level gases based on a linear response line between the zero and high-level response.
$\mathrm{Eff}_{\mathrm{NO}}=\mathrm{NO}_{2}$ to NO converter efficiency, percent.
$\mathrm{H}=\mathrm{High}$ calibration gas, designator.
$\mathrm{L}=$ Low calibration gas, designator.
$\mathrm{M}=$ Mid calibration gas, designator.
NOFinal = The average NO concentration observed with the analyzer in the NO mode during the converter efficiency test in Section 16.2.2.
NOxCorr $=$ The NOx concentration corrected for tha converter efficiency
NOXFinal $=$ The final NOx concentration observed during the converter efficiency test in Section 16.2.2.
NOXPeak $=$ The highest NOX concentration otserved during the converter efficiency test in Section 16.2.2
$\mathrm{Q}_{\text {Spike }}=$ Flow rate of spike gas introduced in system calibration mode, L/min.
$Q_{\text {Total }}=$ Total sample flow rate during the spike test, $L / m i n$.
$R=S p i k e$ recovery, percent.
SB = System bias, percent of calibration span.
$\mathrm{SB}_{1}=$ Pre-run system bias, percent of calibration span.
$\mathrm{SB}_{4}=$ Post-run system bias, percent of calibration span.
SB/ $D_{A B}=$ Altemative absolute difference criteria to pass bias and/or drift checks.
SCE = System calibration error, percent of calibration span
$\mathrm{SCE}_{\mathrm{i}}=$ Pre-run system calibration error, percent of calibration span.
SCE $_{\text {fmal }}=$ Post-run system calibration error, percent of calibration span
$Z=$ Zero calibration gas, designator.

40CFR60.355(b)(1), (09-20-06), Nomenclature. The terms used in the equations are defined as follows:
$\mathrm{P}_{\mathrm{r}}=$ reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure, mm Hg
$P_{0}=$ observed combustor inlet absotute pressure at test, mm Hg
$\mathrm{H}_{4}=$ observed humidity of ambient air, $\mathrm{g} \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$ air
$\mathrm{e}=$ transcendental constant, 2.718
$\mathrm{T}_{\mathrm{g}}=$ ambient temperature. K

RM 19, (07-29-06), 12.1 Nomenclature. The terms used in the equations are defined as follows:

AdjFactor = Percent oxygen or carbon dioxide adjusiment applied to a target pollutant
$\mathrm{B}_{\mathrm{wa}}=$ Moisture fraction of ambient air, percent.
Btu = British thermal unit
$\%_{c}=$ Concentration of carton from an ultimate analysis of fuel, weight percent.
$\%_{\text {cozd }} \%_{c O 2 w}=$ Concentration of carbon dioxide on a dry and wet basis, respectively, percent.
CIP / CDP = Combustor inlet pressure / compressor discharge pressure ($\mathbf{m m ~ H g}$); note, some manufactures reference as PCD.
E = Pollutant emission rate, ng/J (Ib/million Btu).
$\mathrm{E}_{\mathrm{a}}=$ Average pollutant rate for the specified performance test period, ng / J ($\mathrm{lb} / \mathrm{million}$ Btu).
$E_{a 0}, E_{01}=$ Average pollutant rate of the control device, outlet and inlet, respectively, for the periormance test period, ng/J (Ib/million Btu).
$\mathrm{E}_{\mathrm{bt}}=$ Pollutant rate from the steam generating unit, ng/J (lb/million Btu).
$E_{\infty}=$ Pollutant emission rate from the steam generating unit, ng / J ($\mathrm{b} / \mathrm{b} /$ million $\left.B t u\right)$.
$\mathrm{E}_{\mathrm{c}}=$ Pollutant rate in combined effluent, ng/J (Ib/million Btu).
$E_{c o}=$ Pollutant emission rate in combined effluent, ng/J (Ib/million Btu).
$E_{d}=$ Average poilutant rate for each sampling period (e.g. $24-\mathrm{hr}$ Method 6 B sample or $24-\mathrm{hr}$ fuel sample) or for each fuel lot (e.g., amount of fuel bunkered), ng/J (Ib/million Btu).
$\mathrm{E}_{\mathrm{di}}=$ Average inlet SO_{2} rate for each sampling period d, ng / J ($\mathrm{b} / \mathrm{million}$ Btu).
$\mathrm{E}_{\mathrm{g}}=$ Pollutant rate from gas turbine, $\mathrm{ng} / \mathrm{J}(\mathrm{lb} / \mathrm{million}$ Btu).
$\mathrm{E}_{\mathrm{gz}}=$ Daily geometric average pollutant rate, ng/J (lbs/million Btu) or ppm corrected to 7 percent O_{2}.
$\mathrm{E}_{\mathrm{j},}, \mathrm{E}_{16}=$ Matched pair hourty anthmetic average pollutant rate, outlet and inlet, respectively, ng/J (Ib/million Btu) or ppm corrected to 7 percent O_{2}.
$\mathrm{E}_{\mathrm{h}}=$ Hourly average pollutant, ng/J (Ib/million Btu).
$\mathrm{E}_{\mathrm{hj}}=$ Hourly anithmetic average pollutant rate for hour "j." ng/J (lb/million Btu) or ppm corrected to 7 percent O_{2}.
EXP = Natural loganthmic base (2.718) raised to the value enclosed by brackets.
Fc = Ratio of the volume of carbon dioxide produced to the gross calonific value of the fuel from Method 19
$F_{d}, F_{w}, F_{c}=$ Volumes of combustion components per unit of heat content, $s \mathrm{~cm} / \mathrm{J}$ (scc/million Btu).
$\mathrm{ft}^{3}=$ cubic feet
$G=$ ideal gas conversion factor
(385.23 SCFAb-mol at 68 deg F \& 14.696 psia)

GCM = gross Btu per SCF (constant, compound based)
GCV = Gross calonfic value of the fuel consistent with the ultimate analysis, $\mathrm{kJ} / \mathrm{kg}$ (Btu/b).
$\mathrm{GCV}_{p}, G C V_{r}=$ Gross calorific value for the product and raw fuel lots, respectively, dry basis, $\mathrm{kJ} / \mathrm{kg}$ ($\mathrm{Btu} / \mathrm{b}$).
$\%_{H}=$ Concentration of hydrogen from an ultimate analysis of fuel, weight percent.
$H_{b}=$ Heat input rate to the steam generating unit from fuels fired in the steam generating unit, J/hr (million Btu/hr).
$H_{0}=$ Heat input rate to gas turbine from all fuets fired in the gas turbine, J/hr (million Btu/hr).
$\%_{\mathrm{H}_{2 O}}=$ Concentration of water from an ultimate analysis of fuel, weight percent.
$\mathrm{H}_{\mathrm{t}}=$ Total numbers of hours in the performance test period (e.g., 720 hours for 30 -day performance test period).
$K=$ volume of combustion component per pound of component (constant)
$\mathrm{K}=$ Conversion factor, $10^{-5}(\mathrm{~kJ} / \mathrm{J}) /(\%)$ [10 0^{8} Btu/million Btu].
$K_{\mathrm{c}}=(9.57 \mathrm{scm} / \mathrm{kg}) / \%[(1.53 \mathrm{scf} / \mathrm{b}) / \%]$.
$K_{\infty}=(2.0 \mathrm{scm} / \mathrm{kg}) / \%$ [($\left.\left.0.321 \mathrm{sc} / / \mathrm{lb}\right) / \%\right]$.
$K_{\text {ra }}=(22.7 \mathrm{scm} / \mathrm{kg}) / \%[(3.64 \mathrm{sc} / / \mathrm{bb}) / \%]$.
$K_{\mathrm{mw}}=(34.74 \mathrm{scm} / \mathrm{kg}) / \%[(5.57 \mathrm{scf} / \mathrm{b}) / \%]$.
$K_{n}=(0.86 \mathrm{scm} / \mathrm{kg}) \%[(0.14 \mathrm{sc} f / \mathrm{lb}) / \%]$.
$K_{0}=(2.85 \mathrm{scm} / \mathrm{kg}) / \%[(0.46 \mathrm{scf} / \mathrm{b}) / \%]$.
$K_{\Omega}=(3.54 \mathrm{scm} / \mathrm{kg}) / \%[(0.57 \mathrm{scf} / \mathrm{lb}) / \%]$.
$K_{\text {zuffur }}=2 \times 10^{4}$ Btu/wt\%-MMEtu
$K_{\mathrm{w}}=(1.30 \mathrm{scm} / \mathrm{kg}) / \%[(0.21 \mathrm{scf} / \mathrm{lb}) / \%]$.
$\mathrm{lb}=$ pound
In = Natural \log of indicated value.
$L_{P} L_{\text {I }}=$ Weight of the product and raw fuel lots, respectively, metric ton (ton).
$\%_{N}=$ Concentration of nitrogen from an ultimate analysis of fuel, weight percent.
$\mathbf{M}_{\mathbf{4}}=$ mole percent
$\mathrm{mol}=$ mole
$M W=$ molecular weight (lb/b-mol)
$M W_{\text {AIR }}=$ molecular weight of air $(\quad 28.9625 \mathrm{lb} / \mathrm{bb}-m o l e)^{1}$
NCM = net Etu per SCF (constant based on compound)
$\%=$ Concentration of oxygen from an ultimate analysis of fuel, weight percent.
$\%$ \%2d. $\%_{o z w}=$ Concentration of oxygen on a dry and wet basis, respectively, percent.
$P_{B}=$ barometirc pressure, in Hg
$\mathrm{P}_{\mathrm{s}}=$ Potential SO2 emissions, percent.
$\%_{\mathrm{s}}=$ Sulfur content of as-fired fuel lot, dry basis, weight percent.
$\mathrm{S}_{\mathrm{e}}=$ Standard deviation of the hourly average pollutant rates for each performance test period, ng/J (lb/million Btu).
$\%_{\mathrm{st}}=$ Concentration of sulfur from an ultimate analysis of fuel, weight percent.
$\mathrm{S}(\mathrm{w} \%)=$ weight percent of sulfur, per lab analysis by appropriate ASTM standard
$\mathrm{S}_{1}=$ Standard deviation of the hourty average inlet pollutant rates for each performance test period, ng/J (lo/million Btu).
$\mathrm{S}_{\mathrm{o}}=$ Standard deviation of the hourly average emission rates for each performance test period, ng/J ($\mathrm{lb} / \mathrm{million} \mathrm{Btu}$).
$\% S_{\mathbf{p}} \% \mathrm{~S}_{\mathrm{t}}=$ Sulfur content of the product and raw fuel lots respectively, dry basis, weight percent.
SCF $=$ standard cubic feet
$\mathrm{SH}=$ specific humidity, pounds of water per pound of air
$\mathrm{t}_{0.95}=$ Values shown in Table 19-3 for the indicated number of data points n .
$\mathrm{T}_{\text {arrb }}=$ ambient temperature, ${ }^{\circ} \mathrm{F}$
WID Factor $=1.0236=$ conv. at 14.696 psia and
68 deg F (ref. Civil Eng. Ref. Manual, 7th Ed.)
$X_{\mathrm{CO2}}=\mathrm{CO}_{2}$ Correction factor, percent.
$X_{k}=$ Fraction of total heat input from each type of fuel k.

Calculations, Formulas, and Constants

The following information supports the spreadsheets for this testing project.

Given Data:

Ideal Gas Conversion Factor $=385.23$ SCF/lb-mol at 68 deg F \& 14.696 psia
Fuel Heating Value is based upon Air Hygiene's fuel gas calculation sheet. All caiculations are based upon a correction to 68 deg $\mathrm{F} \& 14.696$ psia High Heating Values (HHV) are used for the Fuel Heating Value, F-Factor, and Fuel Flow Data per EPA requirements.

ASTM D 3588

Molecular Weight of $\mathrm{NOX}(\mathrm{lb} / \mathrm{l}-$-mole $)=46.01$ Molecular Weight of $\mathrm{CO}(\mathrm{lb} / \mathrm{lb}$-mole $)=28.00$ Molecular Weight of $\mathrm{SO}_{2}(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=64.00$ Molecular Weight of THC (propane) (Ibillb-mole) $=44.00$ Molecular Weight of VOC (methane) (lb/lb-mole) $=16.00$ Molecular Weigh of NH_{3} ($\mathrm{l} / \mathrm{b} / \mathrm{b}-\mathrm{mole}$) $=17.03$ Molecular Weight of $\mathrm{HCHO}(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=30.03$

Formulas:

1. Corrected Raw Average ($\mathrm{C}_{\text {Ga3 }}$), 40CFR60, App. A, RM 7E, Eq. $7 \mathrm{E}-5(08 / 15 / 06)$

$$
C_{C a}=\left(C_{i x}-C_{0}\right) \times\left(\frac{C_{M A}}{C_{M}-C_{0}}\right)
$$

40CFR60, App. A., RM 19, Table 19-1 Corversion Constant for $\mathrm{NO}=0.0000001194351$ Conversion Constant for $\mathrm{CO}=0.0000000726839$ Corversion Constant for $\mathrm{SO}_{2}=0.0000001661345$ Conversion Constant for $\mathrm{THC}=0.0000001142175$ Conversion Constant for VOC (methane) $=0.0000000415336$ Conversion Constant for $\mathrm{NH}_{3}=0.0000000442074$ Conversion Constant for $\mathrm{HCHO}=0.0000000779534$ NOTE: units are lb/ppm $4 \mathrm{f}^{3}$
5. Emission Rate in b / hr

$$
E_{i b \cdot n r}=\frac{C_{G a s}}{10^{6}} \times \frac{Q_{s} \times M I V}{G}
$$

6. Emission Rate in tons per year

$$
E_{: M ; 3 r}=\frac{E_{b ; i r} \times h r_{y e a r}}{2000}
$$

7. Emission Concentration in $\mathrm{B} / \mathrm{MMBtu}\left(\mathrm{O}_{2}\right.$ based)
8. Emission Concentration in g/hp*hr

$$
E_{3: 4 p y}=\frac{E_{i b} \times 453.6}{m w \times 1314.022} \text { or } \frac{E_{b: h} \times 453.6}{h p}
$$

$$
Q_{s}=\left(\frac{\text { FFoctor } \times Q_{j} \times H H V}{1,000,000}\right) \times\left(\frac{20.9 \%}{20.9 \%-C_{\text {Grrior }}}\right)
$$

RATA SHEET CALCULATIONS

$d=$ Reference Method Data - CEMS Data
$\mathrm{S}_{\mathrm{d}}=$ Standard Deviation
CC = Conficent Coefficient
$n=$ number of runs
$t_{0.025}=2.5$ percent confidence coefficent T-values
RA $=$ relative accuracy
ARA = alternative relative accuracy
BAF $=$ Bias adjustment factor

1. Difference

$$
d=\sum_{t=1}^{n} d_{t}
$$

2. Standard Deviation

3. Confident Coefficient
4. Relative Accuracy

$$
R A=\frac{\left|d d_{A W G}\right| \div|C C|}{R D A_{A F G}} \times 100
$$

5. Alternative Relative Accuracy

$$
A R A=\frac{\left|d_{A C}\right|+|C C|}{A S} \times 100
$$

5. Bias Adjustment Factor

$$
B A F=1+\left(\frac{\left|d_{A G}\right|}{C E M I_{A G}}\right)
$$

$$
C C=t_{\hat{E} B E} \times \frac{S_{i}}{\sqrt{n}}
$$

APPENDIX B

CEMS AND REFERENCE METHOD DATA

Florida Power and Light

Air Permit \#:	PSD-FL-396
Plant Name or Location:	West County Energy Center
Date:	March 16, 2011
Project Number:	cis-10-westcounty.fl-rata11
Manufacturer \& Equipment:	Mitsubishi
Model:	501G
Unit Number:	3A
Test Load:	Base and Base wDB
Tester(s) / Test Unit(s):	JF/127/206

		RUN									
	UNITS	1	2	3	4	5	6	7	8	9	10
Start Time	hh:mm:ss	09:47:26	11:03:26	12:21:26	18:31:07	10:05:07	11:25:07	12:43:07	13:58:07	14:28:07	14:58:07
End Time	themm:ss	10:46:56	12:02:56	13:20:56	18:51:37	11:04:37	12:24:37	13:42:37	14:18:37	14:48:37	15:18:37
Bar. Pressure	in. Hg	30.25	30.24	30.25	30.18	30.27	30.27	30.25	30.24	30.22	30.22
Amb. Temp.	${ }^{\circ} \mathrm{F}$	73	69	77	76	74	81	84	83	84	84
Rel. Humidity	\%	55	57	51	46	56	42	34	38	41	41
Spec. Humidity	lb water//b air	0.009400	0.008494	0.009971	0.008703	0.009899	0.009349	0.008332	0.009030	0.010085	0.010085
Date	mm/dd/y	03/16/11	03/16/11	03/16/11	03/16/11	03/17/11	03/17/11	03/17/11	03/17/11	03/17/11	03/17/11
Load Designator		Base	Base	Base	Base	Base wDB					
Turbine Fuel Flow	$\mathrm{lb} / \mathrm{min}$	1,848	1,830	1,818	1,830	1,830	1,812	1,806	1,806	1,806	1,806
Duct Burner Fuel Flow	$\mathrm{lb} /$ min	0	0	0	0	173	173	173	173	173	259
Total Fuel Flow	SCFH	2,535,589	2,510,891	2,494,426	2,510,891	2,748,420	2,724,066	2,715,376	2,715,010	2,714,804	2,833,534
Power Output	megawatts	381.3	377.3	376.3	369.1	413.2	400.3	403.9	405.0	404.4	402.8
O_{2} CEMS Data	\%	13.15	13.18	13.18	13.10	12.33	12.34	12.34	12.32	12.31	12.32
NOx CEMS Data	1b/MmBtu	0.006	0.006	0.006	0.006	0.005	0.005	0.005	0.006	0.005	0.006
CO CEMS Data	ppmud	0.80	0.80	0.70	1.00	0.80	0.70	0.70	0.70	0.70	0.70
	ppm@15\% O_{2}	0.60	0.60	0.60	0.70	0.60	0.50	0.50	0.50	0.50	0.50
	$\mathrm{lb} / \mathrm{hr}$	3.50	3.30	3.20	4.20	3.20	3.20	3.00	3.10	3.00	3.00

CEMS AND REFERENCE METHOD DATA CEMS Data

Babcock \& Wilcox Power Generation Group NetDAH5
Average Values Report
Version 59

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, Fl. 33470 Source: stack3a

Period Start: 3/16/2011 9:47
Period End: 3/16/2011 10:46
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min Type: Block Avg

Period Start	$\begin{gathered} \text { 3A_CT_GA5 } \\ H / \mathrm{sec} \end{gathered}$	3ANOXMMBTU \#/MBTU	3A_CO ppm	3A_COCORR ppm	$\begin{gathered} \text { 3A_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3A_O2 } \\ \% \end{gathered}$	$\underset{\substack{\text { 3A_MW_TOT } \\ M W}}{\text { STOT }}$
3/16/20119:47	30.9	0.005	0.8	0.6	3.6	13.13	382.9
3/16/2011 9:48	31	0.005	0.8	0.6	3.6	13.13	383.2
3/16/2011 9:49	30.9	0.005	0.8	0.6	3.6	13.14	382.3
3/16/2011 9:50	30.7	0.005	0.8	0.6	3.6	13.14	381.6
3/16/2011 9:51	30.8	0.005	0.8	0.6	3.6	13.14	382.9
3/16/2011 9:52	31	0.005	0.8	0.6	3.6	13.13	383.9
3/16/20119:53	31	0.006	0.8	0.6	3.6	13.13	382.8
3/16/2011 9:54	30.8	0.005	0.8	0.6	3.6	13.14	382.2
3/16/2011 9:55	30.8	0.005	0.8	0.6	3.6	13.13	383.5
3/16/2011 9:56	31.1	0.006	0.8	0.6	3.6	13.13	383.4
3/16/2011 9:57	30.7	0.005	0.8	0.6	3.6	13.14	381.7
3/16/2011 9:58	30.8	0.005	0.8	0.6	3.6	13.15	381.4
3/16/2011 9:59	31	0.005	0.9	0.7	3.8	13.14	383.1
3/16/2011 10:00	30.9	0.006	0.8	0.6	3.6	13.15	383.1
3/16/2011 10:01	30.9	0.006	0.8	0.6	3.6	13.13	383
3/16/2011 10:02	31	0.006	0.8	0.6	3.6	13.12	383.3
3/16/2011 10:03	30.9	0.006	0.8	0.6	3.6	13.14	382.7
3/16/2011 10:04	30.6	0.006	0.8	0.6	3.5	13.14	381.3
3/16/2011 10:05	30.6	0.006	0.8	0.6	3.5	13.13	380.7
3/16/2011 10:06	30.8	0.005	0.8	0.6	3.6	13.15	380.7
3/16/2011 10:07	30.9	0.005	0.8	0.6	3.6	13.14	381.5
3/16/2011 10:08	30.7	0.005	0.9	0.7	3.8	13.15	380.8
3/16/2011 10:09	30.8	0.005	0.9	0.7	3.8	13.15	382
3/16/2011 10:10	31	0.006	0.9	0.7	3.8	13.15	382.4
3/16/2011 10:11	30.9	0.006	0.9	0.7	3.8	13.14	381.9
3/16/2011 10:12	30.8	0.006	0.8	0.6	3.6	13.14	381.7
3/16/2011 10:13	31	0.006	0.8	0.6	3.6	13.14	381.6
3/16/2011 10:14	30.5	0.006	0.8	0.6	3.5	13.15	380.1
3/16/2011 10:15	30.9	0.006	0.8	0.6	3.6	13.15	381.8
3/16/2011 10:16	30.7	0.006	0.8	0.6	3.6	13.14	381
3/16/2011 10:17	30.8	0.006	0.8	0.6	3.6	13.14	381.5
3/16/2011 10:18	30.6	0.006	0.8	0.6	3.5	13.15	380.2
3/16/2011 10:19	30.9	0.005	0.9	0.7	3.8	13.16	381.9
3/16/2011 10:20	30.8	0.005	0.9	0.7	3.8	13.14	380.6
3/16/2011 10:21	30.8	0.006	0.8	0.6	3.6	13.14	381.8
3/16/2011 10:22	30.8	0.006	0.8	0.6	3.6	13.18	381.3
3/16/2011 10:23	30.7	0.005	0.9	0.7	3.8	13.15	380.7
3/16/2011 10:24	30.9	0.006	0.8	0.6	3.6	13.13	381.4
3/16/2011 10:25	30.9	0.006	0.7	0.5	3.1	13.17	380.5
3/16/2011 10:26	30.5	0.006	0.7	0.5	3.0	13.17	379.6
3/16/2011 10:27	30.8	0.006	0.8	0.6	3.6	13.16	381.7
3/16/2011 10:28	30.7	0.006	0.8	0.6	3.6	13.15	381.2
3/16/2011 10:29	30.6	0.006	0.8	0.6	3.5	13.16	379.6
3/16/2011 10:30	30.9	0.006	0.8	0.6	3.6	13.16	380.8
3/16/2011 10:31	30.7	0.006	0.8	0.6	3.6	13.15	380.1
3/16/2011 10:32	30.6	0.006	0.8	0.6	3.5	13.17	379.7
3/16/2011 10:33	30.8	0.005	0.8	0.6	3.6	13.18	380.2
3/16/2011 10:34	30.6	0.006	0.8	0.6	3.5	13.16	380.2
3/16/2011 10:35	30.8	0.006	0.7	0.5	3.1	13.16	380.1
3/16/2011 10:36	30.6	0.006	0.7	0.5	3.0	13.18	379.2
3/16/2011 10:37	30.7	0.005	0.8	0.6	3.6	13.18	380.5
3/16/2011 10:38	30.9	0.005	0.8	0.6	3.6	13.18	380.7
3/16/2011 10:39	30.5	0.005	0.8	0.6	3.5	13.18	379.6
3/16/2011 10:40	30.8	0.006	0.8	0.6	3.6	13.17	381.5
3/16/2011 10:41	30.8	0.006	0.7	0.5	3.1	13.17	380.8
3/16/2011 10:42	30.6	0.006	0.7	0.5	3.0	13.16	380.1
3/16/2011 10:43	30.6	0.006	0.7	0.5	3.0	13.18	380.1
3/16/2011 10:44	30.6	0.006	0.8	0.6	3.5	13.17	380
3/16/2011 10:45	30.7	0.006	0.7	0.5	3.0	13.18	379.7
3/16/2011 10:46	30.5	0.005	0.8	0.6	3.5	13.19	379.6
Final Average*	30.8	0.006	0.8	0.6	3.5	13.15	381.3
Maximum*	31.1	0.006	0.9	0.7	3.8	13.19	383.9
Minimum*	30.5	0.005	0.7	0.5	3.0	13.12	379.2

Company: Florida Power \& Light				Period Start: 3/16/2011 11:03			
Plant: West County Plant				Period End: 3/16/2011 12:02			
City/St: Loxahatchee, FL 33470				Validation Type: $1 / 1 \mathrm{~min}$			
Source: stack3a				Averaging Period: 1 min			
						ck Avg	
	3A_CT_GAS	3ANOXMMBTU	$3 A_{-} \mathrm{CO}$	3A_COCORR	3A_COLBHR	3A_02	3A_MW_TOT
Period Start	\#/sec	\#/MBTU	ppm	ppm	\#/Hr	\%	MW
3/16/2011 11:03	30.4	0.005	0.7	0.5	3.0	13.18	379
3/16/2011 11:04	30.5	0.005	0.8	0.6	3.5	13.18	379.3
3/16/2011 11:05	30.6	0.005	0.8	0.6	3.5	13.18	378.9
3/16/2011 11:06	30.5	0.005	0.8	0.6	3.5	13.18	378.9
3/16/2011 11:07	30.7	0.006	0.7	0.5	3.0	13.17	379.4
3/16/2011 11:08	30.5	0.006	0.7	0.5	3.0	13.17	377.2
3/16/2011 11:09	30.5	0.006	0.7	0.5	3.0	13.18	376.8
3/16/2011 11:10	30.7	0.006	0.8	0.6	3.6	13.17	376.9
3/16/2011 11:11	30.6	0.006	0.7	0.5	3.0	13.16	375.6
3/16/2011 11:12	30.6	0.006	0.7	0.5	3.0	13.17	374.8
3/16/2011 11:13	30.7	0.005	0.7	0.5	3.0	13.19	375.5
3/16/2011 11:14	30.6	0.005	0.8	0.6	3.5	13.17	376
3/16/2011 11:15	30.5	0.006	0.7	0.5	3.0	13.16	375.2
3/16/2011 11:16	30.6	0.005	0.7	0.5	3.0	13.18	376.7
3/16/2011 11:17	30.8	0.005	0.8	0.6	3.6	13.17	377.4
3/16/2011 11:18	30.4	0.006	0.7	0.5	3.0	13.16	376.5
3/16/2011 11:19	30.5	0.006	0.7	0.5	3.0	13.14	376.7
3/16/2011 11:20	30.5	0.006	0.7	0.5	3.0	13.18	376.5
3/16/2011 11:21	30.5	0.005	0.8	0.6	3.5	13.16	376.6
3/16/2011 11:22	30.5	0.006	0.7	0.5	3.0	13.14	375.7
3/16/2011 11:23	30.2	0.005	0.7	0.5	3.0	13.17	375.6
3/16/2011 11:24	30.6	0.005	0.9	0.7	3.8	13.21	377.8
3/16/2011 11:25	30.5	0.005	0.9	0.7	3.8	13.18	378.5
3/16/2011 11:26	30.4	0.006	0.8	0.6	3.5	13.16	377.8
3/16/2011 11:27	30.3	0.006	0.7	0.5	3.0	13.19	376.9
3/16/2011 11:28	30.7	0.005	0.8	0.6	3.6	13.19	378.7
3/16/2011 11:29	30.5	0.005	0.8	0.6	3.5	13.18	378.1
3/16/201111:30	30.5	0.006	0.8	0.6	3.5	13.18	378.7
3/16/2011 11:31	30.7	0.006	0.7	0.5	3.0	13.17	379.3
3/16/2011 11:32	30.5	0.006	0.8	0.6	3.5	13.18	378.6
3/16/2011 11:33	30.4	0.006	0.7	0.5	3.0	13.16	378.3
3/16/2011 11:34	30.5	0.006	0.7	0.5	3.0	13.13	378
3/16/2011 11:35	30.3	0.006	0.7	0.5	3.0	13.16	375.8
3/16/2011 11:36	30.2	0.005	0.8	0.6	3.5	13.20	375.7
3/16/2011 11:37	30.4	0.005	0.9	0.7	3.8	13.18	377.1
3/16/2011 11:38	30.5	0.006	0.8	0.6	3.5	13.19	377
3/16/2011 11:39	30.4	0.005	0.8	0.6	3.5	13.21	376.5
3/16/2011 11:40	30.4	0.006	0.8	0.6	3.5	13.17	377.2
3/16/2011 11:41	30.4	0.006	0.7	0.5	3.0	13.18	376.8
3/16/2011 11:42	30.4	0.006	0.7	0.5	3.0	13.19	375.7
3/16/2011 11:43	30.4	0.005	0.8	0.6	3.5	13.20	376.2
3/16/2011 11:44	30.5	0.005	0.8	0.6	3.5	13.18	377.8
3/16/2011 11:45	30.6	0.006	0.7	0.5	3.0	13.17	378.6
3/16/2011 11:46	30.4	0.006	0.7	0.5	3.0	13.17	377.5
3/16/2011 11:47	30.3	0.006	0.7	0.5	3.0	13.17	376.8
3/16/2011 11:48	30.6	0.006	0.7	0.5	3.0	13.18	378.1
3/16/2011 11:49	30.5	0.006	0.8	0.6	3.5	13.18	377
3/16/2011 11:50	30.4	0.006	0.7	0.5	3.0	13.18	376.9
3/16/2011 11:S1	30.4	0.006	0.7	0.5	3.0	13.20	377
3/16/2011 11:52	30.5	0.005	0.8	0.6	3.5	13.20	377.3
3/16/2011 11:53	30.4	0.006	0.8	0.6	3.5	13.19	377.2
3/16/2011 11:54	30.4	0.006	0.8	0.6	3.5	13.18	377.9
3/16/2011 11:55	30.6	0.006	0.7	0.5	3.0	13.18	378.1
3/16/2011 11:56	30.4	0.006	0.8	0.6	3.5	13.18	377
3/16/2011 11:57	30.5	0.006	0.7	0.5	3.0	13.17	378
3/16/2011 11:58	30.6	0.006	0.7	0.5	3.0	13.18	377.8
3/16/2011 11:59	30.5	0.005	0.8	0.6	3.5	13.19	377.3
3/16/2011 12:00	30.3	0.005	0.8	0.6	3.5	13.14	378.3
3/16/2011 12:01	30.5	0.006	0.7	0.5	3.0	13.14	379
3/16/2011 12:02	30.4	0.005	0.7	0.5	3.0	13.18	377.9
Final Average*	30.5	0.006	0.8	0.6	3.3	13.18	377.3
Maximum*	30.8	0.006	0.9	0.7	3.8	13.21	379.4
Minimum*	30.2	0.005	0.7	0.5	3.0	13.13	374.8

"Does not include Invalid Averaging Periods ("N/A")

Babcock \& Wilcox Power Generation Group NetDAH5
Average Values Report
Version 59

"Does not include Invalid Averaging Periods ("N/A")

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3a

Period Start: 3/16/2011 18:31
Period End: 3/16/2011 18:51
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Period Start	$3 A_{-} C T_{-} G A S$ \#/sec	3ANOXMMBTU \#/MBTU	$\begin{gathered} \text { 3A_CO } \\ \mathrm{ppm} \end{gathered}$	$\underset{\mathrm{ppm}}{3 A_{\perp} \text { COCORR }}$	$\begin{gathered} \text { 3A_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} 3 A_{1} O 2 \\ \% \end{gathered}$	$\begin{gathered} \text { 3A_MW_TOT } \\ M W \end{gathered}$
3/16/2011 18:31	29.6	0.005	2	1.5	8.3	13.21	354.2
3/16/2011 18:32	30.1	0.005	1.8	1.4	7.7	13.21	359.3
3/16/2011 18:33	30.9	0.005	1.7	1.3	7.4	13.14	361.7
3/16/2011 18:34	29.7	0.006	1.3	1.0	5.4	13.15	361.2
3/16/2011 18:35	30.8	0.006	1.3	1.0	5.6	13.13	366.2
3/16/2011 18:36	30.6	0.006	1.1	0.8	4.8	13.10	364.7
3/16/2011 18:37	30	0.007	0.9	0.7	3.7	13.08	365.4
3/16/2011 18:38	30.9	0.007	0.8	0.6	3.6	13.08	371.1
3/16/2011 18:39	30.7	0.007	0.7	0.5	3.0	13.06	369.5
3/16/2011 18:40	30.2	0.007	0.7	0.5	3.0	13.03	371.7
3/16/2011 18:41	31.3	0.007	0.6	0.4	2.6	13.03	374.9
3/16/2011 18:42	30.3	0.007	0.6	0.5	2.5	13.05	370.0
3/16/2011 18:43	30.6	0.006	0.7	0.5	3.0	13.07	372.4
3/16/2011 18:44	31.1	0.006	0.7	0.5	3.1	13.08	374.0
3/16/2011 18:45	30	0.006	0.7	0.5	3.0	13.04	370.2
3/16/2011 18:46	30.9	0.005	0.7	0.5	3.1	13.10	373.7
3/16/2011 18:47	30.3	0.005	0.8	0.6	3.5	13.06	370.9
3/16/2011 18:48	30.5	0.005	0.8	0.6	3.5	13.09	374.8
3/16/2011 18:49	30.9	0.005	0.8	0.6	3.6	13.10	373.9
3/16/2011 18:50	29.9	0.005	0.8	0.6	3.5	13.08	372.8
3/16/2011 18:51	30.9	0.004	0.8	0.6	3.6	13.12	378.0
Final Average*	30.5	0.006	1	0.7	4.2	13.10	369.1
Maximum*	31.3	0.007	2	1.5	8.3	13.21	378.0
Minimum*	29.6	0.004	0.6	0.4	2.5	13.03	354.2

[^1]| Company: Florida Power \& Light Plant: West County Plant
 City/St: Loxahatchee, FL 33470
 Source: stack 3 a | | | Period Start: \#REFI
 Period End: \#REF!
 Validation Type: $1 / 1 \mathrm{~min}$ Averaging Period: 1 min Type: Block Avg | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Period Start | $\underset{H / \mathrm{sec}}{\text { 3A_CT_GAS }}$ | $\underset{\# / H r}{3 A_{1} \text { DB_GA5 }}$ | 3ANOXMMBTU \#/MBTU | $\begin{gathered} \text { 3A_CO } \\ \text { ppm } \end{gathered}$ | $\begin{gathered} \text { 3A_COCORR } \\ \text { ppm } \end{gathered}$ | $\underset{\# / \mathrm{Hr}}{3 A_{2} \mathrm{COLBHR}}$ | $\underset{\%}{3 A_{2} 02}$ | $\begin{gathered} \text { 3A_MW_TOT } \\ \text { MW } \end{gathered}$ |
| 3/17/2011 10:05 | 30.4 | 10214 | 0.004 | 0.8 | 0.6 | 3.3 | 12.35 | 401.8 |
| 3/17/2011 10:06 | 30.5 | 10231 | 0.005 | 0.8 | 0.6 | 3.3 | 12.33 | 402.5 |
| 3/17/2011 10:07 | 31.1 | 10241 | 0.004 | 0.8 | 0.6 | 3.4 | 12.34 | 403.4 |
| 3/17/2011 10:08 | 31.0 | 10243 | 0.004 | 0.8 | 0.6 | 3.4 | 12.32 | 403.5 |
| 3/17/2011 10:09 | 31.0 | 10253 | 0.005 | 0.8 | 0.6 | 3.4 | 12.33 | 403.5 |
| 3/17/2011 10:10 | 30.1 | 10278 | 0.004 | 0.9 | 0.6 | 3.8 | 12.34 | 403.3 |
| 3/17/2011 10:11 | 29.7 | 10306 | 0.005 | 0.8 | 0.5 | 3.2 | 12.31 | 403.2 |
| 3/17/2011 10:12 | 30.2 | 10339 | 0.005 | 0.8 | 0.6 | 3.3 | 12.34 | 403.6 |
| 3/17/2011 10:13 | 31.0 | 10353 | 0.005 | 0.8 | 0.5 | 3.4 | 12.31 | 405.8 |
| 3/17/2011 10:14 | 30.4 | 10372 | 0.005 | 0.8 | 0.6 | 3.3 | 12.33 | 405.4 |
| 3/17/2011 10:15 | 30.1 | 10386 | 0.005 | 0.8 | 0.6 | 3.3 | 12.34 | 404.9 |
| 3/17/2011 10:16 | 30.5 | 10396 | 0.005 | 0.8 | 0.6 | 3.3 | 12.34 | 406.0 |
| 3/17/2011 10:17 | 30.9 | 10400 | 0.005 | 0.8 | 0.6 | 3.4 | 12.32 | 406.7 |
| 3/17/2011 10:18 | 30.5 | 10404 | 0.005 | 0.8 | 0.6 | 3.3 | 12.33 | 404.9 |
| 3/17/2011 10:19 | 30.9 | 10411 | 0.005 | 0.8 | 0.6 | 3.4 | 12.32 | 406.5 |
| 3/17/2011 10:20 | 30.6 | 10414 | 0.005 | 0.8 | 0.6 | 3.3 | 12.32 | 409.7 |
| 3/17/2011 10:21 | 29.5 | 10414 | 0.005 | 0.8 | 0.6 | 3.2 | 12.33 | 409.9 |
| 3/17/2011 10:22 | 30.9 | 10407 | 0.005 | 0.8 | 0.6 | 3.4 | 12.32 | 414.3 |
| 3/17/2011 10:23 | 30.2 | 10400 | 0.005 | 0.8 | 0.6 | 3.3 | 12.32 | 413.7 |
| 3/17/2011 10:24 | 30.5 | 10394 | 0.005 | 0.8 | 0.6 | 3.3 | 12.32 | 414.1 |
| 3/17/2011 10:25 | 30.8 | 10403 | 0.005 | 0.8 | 0.6 | 3.3 | 12.33 | 413.8 |
| 3/17/2011 10:26 | 30.0 | 10401 | 0.005 | 0.8 | 0.6 | 3.3 | 12.32 | 412.9 |
| 3/17/2011 10:27 | 29.9 | 10398 | 0.005 | 0.8 | 0.5 | 3.3 | 12.31 | 412.7 |
| 3/17/2011 10:28 | 30.6 | 10397 | 0.005 | 0.7 | 0.5 | 3.0 | 12.34 | 415.0 |
| 3/17/2011 10:29 | 30.2 | 10398 | 0.005 | 0.8 | 0.6 | 3.3 | 12.33 | 416.8 |
| 3/17/2011 10:30 | 30.7 | 10395 | 0.005 | 0.8 | 0.6 | 3.3 | 12.35 | 419.9 |
| 3/17/2011 10:31 | 30.5 | 10403 | 0.005 | 0.8 | 0.6 | 3.3 | 12.34 | 419.5 |
| 3/17/2011 10:32 | 30.2 | 10402 | 0.005 | 0.7 | 0.5 | 3.0 | 12.33 | 419.5 |
| 3/17/2011 10:33 | 30.6 | 10404 | 0.005 | 0.7 | 0.5 | 3.0 | 12.32 | 420.7 |
| 3/17/2011 10:34 | 30.8 | 10408 | 0.005 | 0.7 | 0.5 | 3.1 | 12.32 | 490.9 |
| 3/17/2011 10:35 | 31.0 | 10406 | 0.005 | 0.7 | 0.5 | 3.1 | 12.32 | 490.6 |
| 3/17/2011 10:36 | 29.1 | 10400 | 0.005 | 0.8 | 0.6 | 3.2 | 12.34 | 488.3 |
| 3/17/2011 10:37 | 30.5 | 10399 | 0.005 | 0.7 | 0.5 | 3.0 | 12.34 | 422.3 |
| 3/17/2011 10:38 | 30.1 | 10409 | 0.005 | 0.7 | 0.5 | 3.0 | 12.31 | 417.1 |
| 3/17/2011 10:39 | 30.6 | 10417 | 0.005 | 0.7 | 0.5 | 3.0 | 12.33 | 411.8 |
| 3/17/2011 10:40 | 30.7 | 10421 | 0.005 | 0.7 | 0.5 | 3.1 | 12.33 | 414.1 |
| 3/17/2011 10:41 | 30.2 | 10425 | 0.005 | 0.7 | 0.5 | 3.0 | 12.33 | 413.7 |
| 3/17/2011 10:42 | 30.3 | 10422 | 0.005 | 0.7 | 0.5 | 3.0 | 12.31 | 408.8 |
| 3/17/2011 10:43 | 30.9 | 10417 | 0.005 | 0.7 | 0.5 | 3.1 | 12.31 | 411.1 |
| 3/17/2011 10:44 | 30.3 | 10424 | 0.005 | 0.8 | 0.6 | 3.3 | 12.33 | 412.0 |
| 3/17/2011 10:45 | 30.2 | 10426 | 0.005 | 0.8 | 0.6 | 3.3 | 12.36 | 412.4 |
| 3/17/2011 10:46 | 30.6 | 10422 | 0.006 | 0.8 | 0.6 | 3.3 | 12.32 | 410.0 |
| 3/17/2011 10:47 | 30.7 | 10421 | 0.006 | 0.7 | 0.5 | 3.1 | 12.32 | 409.2 |
| 3/17/2011 10:48 | 30.5 | 10422 | 0.006 | 0.7 | 0.5 | 3.0 | 12.35 | 409.0 |
| 3/17/2011 10:49 | 30.3 | 10419 | 0.006 | 0.8 | 0.6 | 3.3 | 12.33 | 408.2 |
| 3/17/2011 10:50 | 30.6 | 10419 | 0.006 | 0.7 | 0.5 | 3.0 | 12.32 | 406.4 |
| 3/17/2011 10:51 | 30.8 | 10414 | 0.006 | 0.7 | 0.5 | 3.1 | 12.34 | 405.9 |
| 3/17/2011 10:52 | 30.6 | 10417 | 0.006 | 0.8 | 0.6 | 3.3 | 12.33 | 406.3 |
| 3/17/2011 10:53 | 30.4 | 10413 | 0.006 | 0.7 | 0.5 | 3.0 | 12.35 | 407.1 |
| 3/17/2011 10:54 | 30.4 | 10417 | 0.006 | 0.8 | 0.6 | 3.3 | 12.32 | 405.9 |
| 3/17/2011 10:55 | 30.4 | 10418 | 0.006 | 0.7 | 0.5 | 3.0 | 12.34 | 404.7 |
| 3/17/2011 10:56 | 30.8 | 10411 | 0.006 | 0.8 | 0.6 | 3.3 | 12.35 | 406.8 |
| 3/17/2011 10:57 | 30.3 | 10404 | 0.006 | 0.8 | 0.6 | 3.3 | 12.34 | 409.0 |
| 3/17/2011 10:58 | 30.4 | 10399 | 0.006 | 0.7 | 0.5 | 3.0 | 12.29 | 405.0 |
| 3/17/2011 10:59 | 30.8 | 10403 | 0.006 | 0.7 | 0.5 | 3.1 | 12.32 | 402.5 |
| 3/17/2011 11:00 | 30.8 | 10398 | 0.005 | 0.8 | 0.6 | 3.3 | 12.36 | 405.4 |
| 3/17/2011 11:01 | 30.3 | 10401 | 0.005 | 0.8 | 0.6 | 3.3 | 12.33 | 406.9 |
| 3/17/2011 11:02 | 30.2 | 10402 | 0.006 | 0.7 | 0.5 | 3.0 | 12.31 | 404.5 |
| 3/17/2011 11:03 | 30.5 | 10402 | 0.006 | 0.7 | 0.5 | 3.0 | 12.33 | 403.9 |
| 3/17/2011 11:04 | 30.7 | 10398 | 0.005 | 0.8 | 0.6 | 3.3 | 12.35 | 404.2 |
| Final Average* | 30.5 | 10387 | 0.005 | 0.8 | 0.6 | 3.2 | 12.33 | 413.2 |
| Maximum* | 31.1 | 10426 | 0.006 | 0.9 | 0.6 | 3.8 | 12.36 | 490.9 |
| Minimum* | 29.1 | 10214 | 0.004 | 0.7 | 0.5 | 3.0 | 12.29 | 401.8 |

[^2]Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470 Source: stack3a

Period Start: \#REFI
Period End: \#REFL
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min Type: Block Avg

Period Start	3A_CT_GAS \#/sec	$\begin{gathered} \text { 3A_DB_GAS } \\ H / \mathrm{Hr} \end{gathered}$	3ANOXMMBTU \#/MBTU	3A_CO ppm	$\begin{gathered} \text { 3A_COCORR } \\ \text { ppm } \end{gathered}$	$\begin{gathered} 3 A_{i} \text { COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\underset{\%}{3 A_{i} O 2}$	$\begin{gathered} 3 A_{-} M W_{-} \text {TOT } \\ M W \end{gathered}$
3/17/2011 11:25	30.7	10403	0.006	0.7	0.5	3.1	12.33	397.4
3/17/2011 11:26	30.3	10401	0.006	0.7	0.5	3.0	12.34	393.4
3/17/2011 11:27	30.4	10398	0.006	0.7	0.5	3.0	12.35	392.3
3/17/2011 11:28	30.3	10403	0.006	0.7	0.5	3.0	12.33	390.6
3/17/2011 11:29	30.5	10401	0.006	0.7	0.5	3.0	12.28	388.8
3/17/2011 11:30	30.3	10403	0.006	0.7	0.5	3.0	12.31	387.1
3/17/2011 11:31	30.3	10400	0.005	0.8	0.6	3.3	12.34	388.4
3/17/2011 11:32	30.4	10400	0.005	0.8	0.6	3.3	12.35	394.5
3/17/2011 11:33	30.3	10403	0.005	0.8	0.6	3.3	12.33	397.3
3/17/2011 11:34	30.0	10403	0.005	0.7	0.5	3.0	12.35	397.5
3/17/2011 11:35	30.2	10404	0.005	0.7	0.5	3.0	12.36	399.3
3/17/2011 11:36	30.5	10405	0.006	0.8	0.5	3.3	12.3	400.1
3/17/2011 11:37	30.3	10403	0.006	0.7	0.5	3.0	12.29	398.7
3/17/2011 11:38	30.2	10400	0.005	0.7	0.5	3.0	12.38	399.2
3/17/2011 11:39	30.2	10401	0.005	0.9	0.6	3.8	12.34	400.4
3/17/2011 11:40	30.1	10404	0.005	0.8	0.5	3.3	12.31	400.8
3/17/2011 11:41	30.2	10403	0.005	0.8	0.6	3.3	12.34	399.9
3/17/2011 11:42	30.3	10405	0.005	0.8	0.5	3.3	12.28	398.8
3/17/2011 11:43	30.2	10401	0.005	0.8	0.6	3.3	12.36	398.5
3/17/2011 11:44	30.2	10405	0.005	0.9	0.6	3.8	12.38	398.9
3/17/2011 11:45	30.2	10409	0.005	0.9	0.6	3.8	12.38	400.7
3/17/2011 11:46	30.0	10414	0.005	0.8	0.6	3.3	12.34	400.5
3/17/2011 11:47	30.4	10405	0.006	0.7	0.5	3.0	12.29	400.5
3/17/2011 11:48	30.4	10395	0.006	0.6	0.4	2.5	12.34	399.1
3/17/2011 11:49	30.3	10396	0.005	0.7	0.5	3.0	12.35	400.3
3/17/2011 11:50	30.2	10398	0.005	0.7	0.5	3.0	12.33	400.5
3/17/2011 11:51	30.4	10392	0.005	0.7	0.5	3.0	12.33	401.2
3/17/2011 11:52	30.2	10391	0.005	0.8	0.61	3.3	12.35	401.8
3/17/2011 11:53	30.3	10397	0.005	0.8	0.6	3.3	12.38	403.1
3/17/2011 11:54	30.3	10395	0.005	0.8	0.5	3.3	12.31	403.8
3/17/2011 11:55	30.1	10401	0.005	0.7	0.5	3.0	12.31	401.8
3/17/2011 11:56	30.4	10409	0.005	0.8	0.6	3.3	12.35	402.6
3/17/2011 11:57	30.2	10406	0.005	0.7	0.5	3.0	12.34	402.0
3/17/2011 11:58	30.4	10404	0.005	0.7	0.5	3.0	12.35	403.5
3/17/2011 11:59	29.9	10409	0.005	0.7	0.5	3.0	12.36	402.6
3/17/2011 12:00	30.1	10404	0.005	0.8	0.6	3.3	12.36	403.7
3/17/2011 12:01	30.2	10407	0.006	0.8	0.6	3.3	12.33	403.0
3/17/2011 12:02	30.0	10405	0.006	0.7	0.5	3.0	12.33	402.2
3/17/2011 12:03	30.2	10406	0.006	0.7	0.5	3.0	12.37	402.9
3/17/2011 12:04	30.1	10414	0.006	0.7	0.5	3.0	12.34	403.1
3/17/2011 12:05	30.3	10405	0.006	0.6	0.4	2.5	12.34	403.5
3/17/2011 12:06	30.1	10412	0.006	0.7	0.5	3.0	12.35	403.2
3/17/2011 12:07	30.3	10415	0.006	0.7	0.5	3.0	12.36	403.5
3/17/2011 12:08	30.3	10406	0.006	0.7	0.5	3.0	12.35	403.3
3/17/2011 12:09	30.2	10402	0.006	0.7	0.5	3.0	12.32	403.7
3/17/2011 12:10	30.2	10403	0.006	0.7	0.5	3.0	12.26	402.5
3/17/2011 12:11	30.0	10400	0.005	0.7	0.5	3.0	12.31	401.6
3/17/2011 12:12	30.0	10400	0.005	0.8	0.6	3.3	12.32	401.6
3/17/2011 12:13	29.9	10393	0.005	0.9	0.6	3.8	12.31	402.0
3/17/2011 12:14	30.2	10397	0.005	0.9	0.6	3.8	12.39	402.6
3/17/2011 12:15	30.1	10393	0.005	0.9	0.6	3.8	12.35	403.5
3/17/2011 12:16	30.2	10396	0.006	0.8	0.5	3.3	12.31	403.7
3/17/2011 12:17	30.0	10395	0.006	0.6	0.4	2.4	12.29	401.7
3/17/2011 12:18	29.9	10399	0.005	0.7	0.5	3.0	12.4	401.5
3/17/2011 12:19	30.0	10401	0.005	0.9	0.6	3.8	12.38	402.7
3/17/2011 12:20	30.2	10400	0.005	0.8	0.6	3.3	12.36	403.6
3/17/2011 12:21	30.3	10403	0.006	0.7	0.5	3.0	12.32	404.5
3/17/2011 12:22	30.1	10403	0.006	0.6	0.4	2.5	12.27	402.7
3/17/2011 12:23	30.0	10393	0.005	0.7	0.5	3.0	12.37	401.9
3/17/2011 12:24	30.1	10387	0.005	0.8	0.5	3.3	12.3	403.3
Final Average**	30.2	10402	0.005	0.7	0.5	3.2	12.34	400.3
Maximum*	30.7	10415	0.006	0.9	0.6	3.8	12.4	404.5
Minimum*	29.9	10387	0.005	0.6	0.4	2.4	12.26	387.1

[^3]Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version S9

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3a			Period Start: \#REF! Period End: \#REFI Validation Type: $1 / 1 \mathrm{~min}$ Averaging Period: 1 min Type: Block Avg					
Period Start	$\underset{\mathrm{H} / \mathrm{sec}}{3 \mathrm{~A}_{2} C T_{1} G A S}$	$\begin{gathered} \text { 3A_DB_GAS } \\ \# / \mathrm{Hr} \end{gathered}$	3ANOXMMBTU \#/MBTU	3A_CO ppm	$\begin{gathered} \text { 3A_COCORR } \\ \text { ppm } \end{gathered}$	$\begin{gathered} 3 A_{2} \text { COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\underset{\%}{3 A _O 2}$	$\begin{gathered} \text { 3A_MW_TOT } \\ M W \end{gathered}$
3/17/2011 12:43	30.0	10375	0.006	0.6	0.4	2.4	12.31	401.3
3/17/2011 12:44	30.0	10374	0.005	0.7	0.5	3.0	12.36	402.0
3/17/2011 12:45	30.2	10368	0.005	0.8	0.5	3.3	12.28	403.0
3/17/2011 12:46	29.8	10377	0.005	0.7	0.5	3.0	12.33	401.1
3/17/2011 12:47	30.4	10383	0.005	0.8	0.6	3.3	12.35	403.2
3/17/2011 12:48	30.1	10377	0.005	0.8	0.5	3.3	12.27	403.9
3/17/2011 12:49	29.7	10369	0.005	0.8	0.6	3.2	12.34	402.2
3/17/2011 12:50	30.1	10368	0.005	0.9	0.6	3.8	12.35	403.8
3/17/2011 12:51	30.1	10371	0.005	0.8	0.6	3.3	12.33	404.6
3/17/2011 12:52	30.2	10379	0.006	0.7	0.5	3.0	12.32	405.4
3/17/2011 12:53	30.0	10375	0.006	0.6	0.4	2.4	12.28	403.2
3/17/2011 12:54	30.0	10374	0.005	0.7	0.5	3.0	12.34	403.1
3/17/2011 12:55	30.1	10372	0.005	0.7	0.5	3.0	12.35	402.7
3/17/2011 12:56	30.0	10385	0.005	0.7	0.5	3.0	12.38	403.5
3/17/2011 12:57	30.1	103B3	0.005	0.7	0.5	3.0	12.33	405.1
3/17/2011 12:58	29.9	10378	0.006	0.6	0.4	2.4	12.28	402.8
3/17/2011 12:59	30.1	10375	0.005	0.7	0.5	3.0	12.38	402.6
3/17/2011 13:00	30.0	10374	0.005	0.7	0.5	3.0	12.39	404.2
3/17/2011 13:01	30.0	10375	0.005	0.8	0.6	3.3	12.38	404.6
3/17/2011 13:02	30.2	10380	0.006	0.7	0.5	3.0	12.37	405.7
3/17/2011 13:03	30.2	10383	0.006	0.6	0.4	2.5	12.36	405.4
3/17/2011 13:04	30.2	10387	0.006	0.7	0.5	3.0	12.34	405.2
3/17/2011 13:05	30.0	10385	0.006	0.6	0.4	2.4	12.31	404.0
3/17/2011 13:06	30.0	10381	0.005	0.6	0.4	2.4	12.32	402.7
3/17/2011 13:07	29.9	10385	0.005	0.7	0.5	3.0	12.40	403.2
3/17/2011 13:08	30.0	10385	0.005	0.8	0.6	3.3	12.34	403.2
3/17/2011 13:09	30.1	10385	0.005	0.7	0.5	3.0	12.28	403.3
3/17/2011 13:10	29.7	10383	0.005	0.6	0.4	2.4	12.32	402.2
3/17/2011 13:11	29.9	10375	0.005	0.7	0.5	3.0	12.31	402.5
3/17/2011 13:12	29.9	10380	0.005	0.8	0.6	3.3	12.38	402.7
3/17/2011 13:13	29.9	10383	0.005	0.8	0.6	3.3	12.33	403.5
3/17/2011 13:14	30.1	10385	0.006	0.8	0.5	3.3	12.30	404.3
3/17/2011 13:15	29.9	10382	0.006	0.7	0.5	3.0	12.34	403.4
3/17/2011 13:16	30.0	10383	0.005	0.8	0.6	3.3	12.36	403.8
3/17/2011 13:17	30.2	10388	0.005	0.8	0.6	3.3	12.39	405.0
3/17/2011 13:18	30.3	10385	0.006	0.7	0.5	3.0	12.34	406.2
3/17/2011 13:19	30.2	10383	0.006	0.7	0.5	3.0	12.32	405.9
3/17/2011 13:20	30.0	10385	0.006	0.7	0.5	3.0	12.36	404.9
3/17/2011 13:21	30.2	10387	0.006	0.7	0.5	3.0	12.35	405.3
3/17/2011 13:22	30.2	10388	0.006	0.7	0.5	3.0	12.28	404.7
3/17/2011 13:23	30.0	10385	0.006	0.6	0.4	2.4	12.28	402.7
3/17/2011 13:24	29.9	10383	0.005	0.7	0.5	3.0	12.35	401.7
3/17/2011 13:25	30.0	10385	0.005	0.8	0.6	3.3	12.37	402.6
3/17/2011 13:26	30.0	10383	0.005	0.9	0.6	3.8	12.36	404.4
3/17/2011 13:27	30.1	10386	0.005	0.8	0.6	3.3	12.36	404.9
3/17/2011 13:28	30.3	10383	0.006	0.8	0.6	3.3	12.32	405.4
3/17/2011 13:29	30.0	10385	0.006	0.7	0.5	3.0	12.33	403.2
3/17/2011 13:30	30.0	10384	0.005	0.8	0.6	3.3	12.40	404.1
3/17/2011 13:31	30.3	10385	0.005	0.8	0.6	3.3	12.36	404.9
3/17/2011 13:32	30.2	10386	0.005	0.7	0.5	3.0	12.32	406.0
3/17/2011 13:33	29.9	10385	0.005	0.7	0.5	3.0	12.32	405.1
3/17/2011 13:34	30.0	10383	0.005	0.7	0.5	3.0	12.35	404.6
3/17/2011 13:35	30.0	10383	0.005	0.7	0.5	3.0	12.31	403.6
3/17/2011 13:36	30.1	10382	0.005	0.7	0.5	3.0	12.42	403.0
3/17/2011 13:37	30.2	10386	0.005	0.8	0.6	3.3	12.37	404.4
3/17/2011 13:38	30.2	10388	0.005	0.7	0.5	3.0	12.31	404.7
3/17/2011 13:39	30.2	10386	0.005	0.7	0.5	3.0	12.34	404.7
3/17/2011 13:40	30.1	10385	0.005	0.7	0.5	3.0	12.36	405.5
3/17/2011 13:41	29.9	10386	0.005	0.8	0.6	3.3	12.35	404.4
3/17/2011 13:42	29.9	10391	0.005	0.7	0.5	3.0	12.36	404.9
Final Average*	30.1	10382	0.005	0.7	0.5	3.0	12.34	403.9
Maximum*	30.4	10391	0.006	0.9	0.6	3.8	12.42	406.2
Minimum*	29.7	10368	0.005	0.6	0.4	2.4	12.27	401.1

[^4]
Babcock \& Wilcox Power Generation Group NetDAHS

Average Values Report

Version 59

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3a

Period Start	$\begin{gathered} \text { 3A_CT_GAS } \\ \# / \mathrm{sec} \end{gathered}$	$\underset{\# / \mathrm{Hr}}{\substack{\text { 3A_DB_GAS } \\ \hline \\ \hline}}$	3ANOXMMBTU \#/MBTU	$\begin{gathered} \text { 3A_CO } \\ \text { ppm } \end{gathered}$	$\underset{\substack{\text { ppm_COCORR }}}{ }$	$\underset{\# / \mathrm{Hr}}{3 \mathrm{~A}_{2} \mathrm{COL} \mathrm{BHR}}$	$\begin{gathered} \text { 3A_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3A_MW_TOI } \\ M W \end{gathered}$
3/17/2011 13:58	30	10359	0.005	0.8	0.6	3.30	12.33	405.6
3/17/2011 13:59	30.1	10358	0.006	0.8	0.6	3.30	12.32	405.5
3/17/2011 14:00	30.2	10356	0.006	0.7	0.5	3.00	12.31	405.4
3/17/2011 14:01	30.3	10356	0.006	0.7	0.5	3.00	12.34	406.8
3/17/2011 14:02	30.2	10355	0.006	0.7	0.5	3.00	12.27	405.4
3/17/2011 14:03	30	10356	0.006	0.6	0.4	2.40	12.36	405.0
3/17/2011 14:04	30.1	10354	0.005	0.8	0.6	3.30	12.36	405.4
3/17/2011 14:05	30.2	10363	0.005	0.8	0.6	3.30	12.32	405.9
3/17/2011 14:06	30.1	10361	0.006	0.7	0.5	3.00	12.3	404.8
3/17/2011 14:07	30.3	10364	0.006	0.7	0.5	3.00	12.34	405.0
3/17/2011 14:08	29.9	10368	0.006	0.7	0.5	3.00	12.32	404.3
3/17/2011 14:09	30.2	10371	0.005	0.7	0.5	3.00	12.3	404.8
3/17/2011 14:10	30	10373	0.005	0.7	0.5	3.00	12.29	404.0
3/17/2011 14:11	30	10375	0.005	0.7	0.5	3.00	12.32	404.4
3/17/2011 14:12	30	10378	0.005	0.8	0.6	3.30	12.33	404.5
3/17/2011 14:13	30.1	10385	0.005	0.7	0.5	3.00	12.33	404.7
3/17/2011 14:14	30.2	10379	0.006	0.7	0.5	3.00	12.29	404.6
3/17/2011 14:15	29.9	10370	0.006	0.7	0.5	3.00	12.29	403.9
3/17/2011 14:16	29.9	10374	0.005	0.7	0.5	3.00	12.35	404.9
3/17/2011 14:17	30.3	10370	0.005	0.8	0.6	3.30	12.32	406.2
3/17/2011 14:18	30	10371	0.006	0.7	0.5	3.00	12.27	404.6
Final Average*	30.1	10366	0.006	0.7	0.5	3.10	12.32	405.0
Maximum*	30.3	10385	0.006	0.8	0.6	3.30	12.36	406.8
Minimum*	29.9	10354	0.005	0.6	0.4	2.40	12.27	403.9

[^5]Period Start: 3/17/2011 13:58
Period End: 3/17/2011 14:18
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59

Company: Florida Power \& Light Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3a

Period Start	$\underset{\# / \mathrm{sec}}{3 A_{1} C T_{1} G A S}$	$\underset{\# / H r}{\text { 3A_DB_GAS }}$	3ANOXMMBTU \#/MBTU	3A_CO ppm	$\begin{gathered} \text { 3A_COCORR } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { 3A_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3A_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3A_MW_TOT } \\ \text { MW } \end{gathered}$
3/17/2011 14:28	30.2	10364	0.006	0.7	0.5	3.00	12.31	405.9
3/17/2011 14:29	30.1	10361	0.006	0.7	0.5	3.00	12.26	404.6
3/17/2011 14:30	30.1	10354	0.006	0.7	0.5	3.00	12.31	404.3
3/17/2011 14:31	30.1	10352	0.005	0.7	0.5	3.00	12.34	404.1
3/17/2011 14:32	30.1	10357	0.005	0.8	0.6	3.30	12.38	405.4
3/17/2011 14:33	30.3	10359	0.005	0.8	0.6	3.30	12.35	405.8
3/17/2011 14:34	30.1	10366	0.006	0.7	0.5	3.00	12.31	405.8
3/17/2011 14:35	30.1	10359	0.006	0.7	0.5	3.00	12.24	404.5
3/17/2011 14:36	29.9	10352	0.006	0.6	0.4	2.40	12.29	402.3
3/17/2011 14:37	29.9	10353	0.005	0.8	0.6	3.30	12.35	401.9
3/17/2011 14:38	30.1	10352	0.005	0.9	0.6	3.80	12.33	403.9
3/17/2011 14:39	30.1	10358	0.005	0.8	0.5	3.30	12.3	403.5
3/17/2011 14:40	30	10354	0.006	0.7	0.5	3.00	12.28	403.0
3/17/2011 14:41	30.1	10354	0.005	0.7	0.5	3.00	12.34	403.6
3/17/2011 14:42	29.9	10355	0.005	0.8	0.5	3.30	12.29	403.2
3/17/2011 14:43	30	10359	0.005	0.7	0.5	3.00	12.31	404.3
3/17/2011 14:44	30	10355	0.005	0.7	0.5	3.00	12.32	404.6
3/17/2011 14:45	30.1	10361	0.005	0.7	0.5	3.00	12.35	405.3
3/17/2011 14:46	30.1	10355	0.005	0.7	0.5	3.00	12.31	406.0
3/17/2011 14:47	30.3	10357	0.006	0.6	0.4	2.50	12.29	405.6
3/17/2011 14:48	29.9	10357	0.005	0.6	0.4	2.40	12.31	403.9
Final Average*	30.1	10357	0.005	0.7	0.5	3.00	12.31	404.4
Maximum*	30.3	10366	0.006	0.9	0.6	3.80	12.38	406.0
Minimum*	29.9	10352	0.005	0.6	0.4	2.40	12.24	401.9

*Does not include Invalid Averaging Periods ("N/A")

Babcock \& Wilcox Power Generation Group NetDAHS

Average Values Report
Version 59

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3a

Period Start	$\begin{gathered} \text { 3A_CT_GAS } \\ \# / \mathrm{sec} \end{gathered}$	$\begin{gathered} \text { 3A_DB_GAS } \\ \# / \mathrm{Hr} \end{gathered}$	3ANOXMMBTU \#/MBTU	$\begin{gathered} 3 A_{_} C O \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { 3A_COCORR } \\ \mathrm{ppm} \end{gathered}$	$\begin{gathered} \text { 3A_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3A_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3A_MW_TOT } \\ M W \end{gathered}$
3/17/2011 14:58	30.1	10385	0.006	0.7	0.5	3.00	12.34	403.8
3/17/2011 14:59	30.1	10383	0.006	0.7	0.5	3.00	12.3	402.5
3/17/2011 15:00	30.1	10393	0.006	0.6	0.4	2.50	12.33	401.4
3/17/2011 15:01	30.1	10391	0.006	0.7	0.5	3.00	12.32	401.7
3/17/2011 15:02	29.9	10390	0.006	0.7	0.5	3.00	12.23	400.2
3/17/2011 15:03	29.7	10364	0.005	0.7	0.5	3.00	12.31	398.7
3/17/2011 15:04	30.1	10359	0.005	0.8	0.6	3.30	12.38	400.2
3/17/2011 15:05	30.2	10358	0.005	0.9	0.6	3.80	12.36	401.9
3/17/2011 15:06	29.9	10368	0.005	0.8	0.5	3.30	12.3	402.6
3/17/2011 15:07	30	10364	0.006	0.7	0.5	3.00	12.33	402.5
3/17/2011 15:08	30.2	10362	0.006	0.7	0.5	3.00	12.27	402.3
3/17/2011 15:09	30.1	10361	0.006	0.6	0.4	2.50	12.28	402.8
3/17/2011 15:10	29.8	10364	0.005	0.7	0.5	3.00	12.34	401.3
3/17/2011 15:11	30.7	10363	0.005	0.8	0.6	3.30	12.33	404.5
3/17/2011 15:12	29.5	10353	0.005	0.7	0.5	2.90	12.29	402.8
3/17/2011 15:13	30.7	10355	0.005	0.7	0.5	3.10	12.35	404.7
3/17/2011 15:14	29.8	10355	0.005	0.7	0.5	3.00	12.32	404.1
3/17/2011 15:15	30.3	10357	0.006	0.7	0.5	3.00	12.32	405.4
3/17/2011 15:16	29.6	10353	0.006	0.7	0.5	3.00	12.33	404.9
3/17/2011 15:17	30.4	10350	0.006	0.7	0.5	3.00	12.31	404.4
3/17/2011 15:18	30.1	10353	0.005	0.7	0.5	3.00	12.35	406.2
Final Average*	30.1	10366	0.006	0.7	0.5	3.00	12.32	402.8
Maximum*	30.7	10393	0.006	0.9	0.6	3.80	12.38	406.2
Minimum*	29.5	10350	0.005	0.6	0.4	2.50	12.23	398.7

Period 5tart: 3/17/2011 14:58
Period End: 3/17/2011 15:18
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

[^6]CEMS AND REFERENCE METHOD DATA
Reference Method Data
Fuel Data

Fuel Fo factor	8,710	SCF ext/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,848	$\mathrm{lb} /$ min
Duct Burner Fuel Flow	0	$\mathrm{lb} / \mathrm{min}$
Total Fuel Flow	$2,535,589$	SCFH

Weather Data
Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	55	$\%$
Ambient Temperature	73	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009400	$\mathrm{bb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	381.3	megawatts
Stack Exhaust Flow (M19)	$60,852,969$	SCFH

Date/Time
(mm/dd/yy hh:mm:ss)
$03 / 16 / 11$ 09:47.26
Elapsed Time $\mathrm{O}_{\mathbf{2}} \quad$ NO 03/16/11 09:47:26 03/16/11 09:47:56 03/16/11 09:48:26 03/16/11 09:48:56 03/16/11 09:49:26 03/16/11 09:49:56 03/16/11 09:50:26 03/16/11 09:50:56 03/16/11 09:51:26 03/16/11 09:51:56 03/16/11 09:52:26 03/16/11 09:52:56 $03 / 16 / 11$ 09:53:26
$03 / 16 / 11$ 09:53:56 03/16/11 09:54:26 03/16/11 09:54:56 03/16/11 09:55:26 03/16/11 09:55:56 03/16/11 09:56:26 03/16/11 09:56:56 03/16/11 09:57:26 03/16/11 09:57:56 03/16/11 09:58:26 03/16/11 09:58:56 03/16/11 09:59:26 03/16/11 09:59:56 03/16/11 10:00:26 03/16/11 10:00:56 03/16/11 10:01:26 03/16/11 10:01:56 03/16/11 10:02:26 03/16/11 10:02:56 03/16/11 10:03:26 03/16/11 10:03:56 03/16/11 10:04:26 03/16/11 10:04:56 03/16/11 10:05:26 03/16/11 10:05:56 03/16/11 10:06:26 03/16/11 10:06:56 03/16/11 10:07:26 03/16/11 10:07:56 (seconds)
10980

(\%
13

(\%) 1101 11040 11070 11100 $\begin{array}{ll}11130 & 13.11 \\ 113.10\end{array}$ $\begin{array}{ll}11160 & 13.10 \\ 11190 & 13.11\end{array}$ $\begin{array}{ll}11220 & 13.12 \\ 11250 & 13.11\end{array}$ $\begin{array}{ll}11280 & 13.10 \\ 11310 & 13.11\end{array}$ 11340 $11370 \quad 13.12$ 11400
11430 $\begin{array}{ll}11460 & 13.11 \\ 13.11\end{array}$ (pprnvd) (pprnvd) CO (ppmvd)
0.46 2.84
0.39
0.46
2.82
0.46
0.44
0.39
0.43
0.42
2.79
0.42
2.75
0.40
2.83
0.40
0.36
2.84
0.43
0.47
2.82
0.50
$11490 \quad 13.10$
$11520 \quad 13.10$

11550	13.11
11580	13.12

11610
13.13

11670	13.13
11700	13.12

$11730 \quad 13.12$
$11760 \quad 13.13$
11790
11820

11820	13.11
11850	13.11

Florida Power and Light

March 16, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center

Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	BtwSCF fuel
Turbine Fuel Flow	1,848	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{Ib} / \mathrm{min}$
Total Fuel Flow	$2,535,589$	SCFH

Unit Data

Unit Load	381.3	megawatts
Stack Exhaust Flow (M19)	$60,852,969$	SCFH

Base Load, Run-1
Date/Time
(mm/dd/yy hh:mm:ss) 03/16/11 10:14:56 03/16/11 10:15:26 03/16/11 10:15:56 03/16/11 10:16:26 03/16/11 10:16:56 03/16/11 10:17:26 03/16/11 10:17:56 03/16/11 10:18:26 03/16/11 10:18:56 03/16/11 10:19:26 03/16/11 10:19:56 03/16/11 10:20:26 03/16/11 10:20:56 03/16/11 10:21:26 03/16/11 10:21:56 03/16/11 10:22:26 03/16/11 10:22:56 03/16/11 10:23:26 03/16/11 10:23:56 03/16/11 10:24:26 03/16/11 10:24:56 03/16/11 10:25:26 03/16/11 10:25:56 03/16/11 10:26:26 03/16/11 10:26:56 03/16/11 10:27:26 03/16/11 10:27:56 03/16/11 10:28:26 03/16/11 10:28:56 03/16/11 10:29:26 03/16/11 10:29:56 03/16/11 10:30:26 03/16/11 10:30:56 03/16/11 10:31:26 03/16/11 10:31:56 03/16/11 10:32:26 03/16/11 10:32:56 03/16/11 10:33:26 03/16/11 10:33:56 03/16/11 10:34:26 03/16/11 10:34:56 03/16/11 10:35:26 03/16/11 10:35:56 03/16/11 10:36:26 03/16/11 10:36:56 03/16/11 10:37:26 03/16/11 10:37:56 03/16/11 10:38:26 03/16/11 10:38:56 $03 / 16 / 1110: 39: 26$
$03 / 16 / 1110: 39: 56$
03/16/11 10:40:26 03/16/11 10:40:56 03/16/11 10:41:26 03/16/11 10:41:56

Elapsed Time
(seconds)
lapsed Time O_{2} $\begin{array}{lc}\text { (seconds) } & \text { (\%) } \\ 12630 & 13.15\end{array}$ $\begin{array}{lr}12630 & 13.15\end{array}$ $12660 \quad 13.16$
$12690 \quad 13.16$
$12720 \quad 13.15$
$12750 \quad 13.13$

12780	13.15
12810	13.16

12840
12870

12900
12930

12990

13020	13.15
13.15	

13050	13.18

$13080 \quad 13.21$
$13110 \quad 13.20$

13140	13.17
13170	13.15

13170	13.15
13200	13.16

$13230 \quad 13.17$
$13260 \quad 13.19$

13290
13320
13350
13380

13410	13.18
13.18	

$13440 \quad 13.18$
$13470 \quad 13.18$

13500
13530
13560
13590
13620

13620	13.19
13680	13.19

$13680 \quad 13.20$
.

NOx (ppmvd)	$\stackrel{\mathrm{CO}}{(\mathrm{ppmvd})}$
2.44	0.33
2.45	0.34
2.45	0.30
2.43	0.40
2.44	0.39
2.48	0.28
2.45	0.43
2.44	0.43
2.39	0.46
2.35	0.41
2.35	0.44
2.39	0.41
2.43	0.48
2.47	0.31
2.49	0.31
2.44	0.41
2.39	0.47
2.41	0.38
2.52	0.30
2.63	0.25
2.65	0.22
2.56	0.23
2.47	0.31
2.44	0.37
2.44	0.36
2.43	0.25
2.44	0.18
2.46	0.29
2.31	0.22
2.25	0.37
2.21	0.30
2.20	0.27
2.18	0.28
2.19	0.26
2.20	0.29
2.20	0.32
2.19	0.33
2.15	0.39
2.14	0.28
2.17	0.25
2.18	0.26
2.22	0.21
2.21	0.17
2.19	0.26
2.17	0.31
2.11	0.37
2.09	0.44
2.13	0.32
2.14	0.27
2.16	0.22
2.17	0.30
2.17	0.26
2.23	0.25
2.25	0.25
2.26	0.21

Weather Data
Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	55	$\%$
Ambient Temperature	73	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009400	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Florida Power and Light
March 16, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center

Fuel Data				Weather Data
Fuel Fd factor	8,710	SCF exh/MMAtu		Barom
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel		Re
Turbine Fuel Flow	1,848	lb/min		Ambien
Duct Burner Fuel Flow	0	lb/min		Sp
Total Fuel Flow	2,535,589	SCFH		
Unit Data				
Unit Load	381.3	megawatts		
Stack Exhaust Flow (M19)	60,852,969	SCFH		
Base Load, Run-1				
Date/Time	Elapsed Time (seconds)	$\begin{gathered} \mathrm{O}_{2} \\ (\%) \end{gathered}$	$\begin{gathered} \text { NOx } \\ \text { (ppmvd) } \end{gathered}$	$\begin{gathered} \mathrm{CO} \\ \text { (ppmvd) } \end{gathered}$
03/16/11 10:42:26	14280	13.21	2.27	0.19
03/16/11 10:42:56	14310	13.22	2.25	0.24
03/16/11 10:43:26	14340	13.23	2.22	0.25
03/16/11 10:43:56	14370	13.23	2.18	0.26
03/16/11 10:44:26	14400	13.22	2.16	0.17
03/16/11 10:44:56	14430	13.19	2.16	0.13
03/16/11 10:45:26	14460	13.23	2.22	0.13
03/16/11 10:45:56	14490	13.25	2.20	0.35
03/16/11 10:46:26	14520	13.25	2.16	0.30
03/16/11 10:46:56	14550	13.24	2.12	0.30
RAW AVERAGE		13.16	2.50	0.36
		O_{2}	NOx	CO
	Serial Number:	INST-N2-0001	INST-N2-0001	INST-CO-0015
		(\%)	(ppmvd)	(ppmvd)
	Initial Zero	0.02	0.10	-0.53
	Final Zero	0.16	0.13	-0.65
	Avg. Zero	0.09	0.12	-0.59
	Initial UpScale	12.11	4.84	4.77
	Final UpScale	12.23	4.76	4.56
	Avg. UpScale	12.17	4.80	4.67
Upscale Cal Gas		12.10	4.93	4.92
EMISSIONS DATA		O_{2}	NOx	CO
Corrected Raw Average (ppm/\% dry basis)		13.09	2.51	0.89
Concentration (ppm@ 15\% O_{2})		N/A	1.90	0.67
Emission Rate (lb/hr)		N/A	18.26	3.92
Emission Rate (Ib/MMBtu)		N/A	0.007	0.002

Weather Data

Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,830	Ib/min
Duct Burner Fuel Flow	0	Ib/min
Total Fuel Flow	$2,510,891$	SCFH

Weather Data

Barometric Pressure	30.24	in. Hg
Relative Humidity	57	$\%$
Ambient Temperature	69	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009494	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	377.3	megawatts
Stack Exhaust Flow (M19)	$60,305,631$	SCFH

Base Load, Run - 2 Date/Time
(mm/dd/yy hh:mm:s
$03 / 16 / 11$ 11:03:26
$03 / 16 / 1111: 03: 56$ 03/16/11 11:03:56 03/16/11 11:04:56 03/16/11 11:05:26 03/16/11 11:05:56 03/16/11 11:06:26 03/16/11 11:06:56 03/16/11 11:07:26 03/16/11 11:07:56 03/16/11 11:08:26 03/16/11 11:08:56 03/16/11 11:09:26 03/16/11 11:09:56 03/16/11 11:10:26 03/16/11 11:10:56 03/16/11 11:11:26 03/16/11 11:11:56 03/16/11 11:12:26 03/16/11 11:12:56 03/16/11 11:13:26 03/16/11 11:13:56 03/16/11 11:14:26 03/16/11 11:14:56 03/16/11 11:15:26 03/16/11 11:15:56 03/16/11 11:16:26 03/16/11 11:16:56 03/16/11 11:17:26 03/16/11 11:17:56 03/16/11 11:18:26 03/16/11 11:18:56 03/16/11 11:19:26 03/16/11 11:19:56 03/16/11 11:20:26 03/16/11 11:20:56 03/16/11 11:21:26 03/16/11 11:21:56 03/16/11 11:22:26 03/16/11 11:22:56 03/16/11 11:23:26 03/16/11 11:23:56 03/16/11 11:24:26 03/16/11 11:24:56 03/16/11 11:25:26 03/16/11 11:25:56 03/16/11 11:26:26 03/16/11 11:26:56 03/16/11 11:27:26 03/16/11 11:27:56 03/16/11 11:28:26 03/16/11 11:28:56 03/16/11 11:29:26 03/16/11 11:29:56 03/16/11 11:30:26

Elapsed Time $\quad \mathrm{O}_{2} \quad \mathrm{NO}$ $\begin{array}{lll}\text { (seconds) } & \text { (\%) } & \text { (ppmvd) }\end{array}$ 15540 155 1557 15600
156

156

15780

158
158
15
15
15

1593

159
16
16

161
1

162
16
16
16290
1
16350
163
16
16
16440
16470
16500
16530

16590

1
16
16680
1
16770
16800
16830
16860
16890
16920
16950
16980
17010
17040
17070

17100	13.26
17130	13.26
17160	13.28

(ppm
 2.18

CO (ppmvd)
2.13
0.92
1.05
0.96
1.01
0.96
0.89

$$
\begin{aligned}
& 1.01 \\
& 0.99
\end{aligned}
$$

2.23
2.23

$$
\begin{aligned}
& 0.99 \\
& 0.91
\end{aligned}
$$

0.92
0.90
0.92
0.89
0.99
0.96
0.91
0.97
0.91
0.81
0.99
1.04

$$
\begin{aligned}
& 1.04 \\
& 1.09
\end{aligned}
$$

$$
1.02
$$

$$
\begin{aligned}
& 0.92 \\
& 0.83
\end{aligned}
$$

$$
\begin{aligned}
& 0.83 \\
& 0.94
\end{aligned}
$$

$$
1.01
$$

$$
\begin{aligned}
& 1.01 \\
& 1.02
\end{aligned}
$$

$$
\begin{aligned}
& 1.02 \\
& 0.94
\end{aligned}
$$

$$
0.94
$$

$$
0.92
$$

$$
0.82
$$

$$
\begin{aligned}
& 0.87 \\
& 0.99
\end{aligned}
$$

$$
\begin{aligned}
& 0.99 \\
& 1.00
\end{aligned}
$$

$$
\begin{aligned}
& 1.00 \\
& 0.97
\end{aligned}
$$

$$
\begin{aligned}
& 0.89 \\
& 0.87
\end{aligned}
$$

$$
\begin{aligned}
& 0.87 \\
& 0.97
\end{aligned}
$$

$$
0.97
$$

$$
1.17
$$

$$
1.13
$$

$$
\begin{aligned}
& 1.06 \\
& 106
\end{aligned}
$$

$$
\begin{aligned}
& 1.06 \\
& 0.87
\end{aligned}
$$

$$
0.91
$$

$$
0.88
$$

$$
0.97
$$

$$
1.03
$$

$$
1.05
$$

$$
\begin{aligned}
& 1.01 \\
& 0.87
\end{aligned}
$$

$$
0.86
$$

$$
\begin{aligned}
& 0.86 \\
& 0.93
\end{aligned}
$$

Florida Power and Light
March 16, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF ext/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,830	$\mathrm{tb} / \mathrm{min}$
Duct Bumer Fuel Flow	0	$\mathrm{bb} / \mathrm{min}$
Total Fuel Flow	$2,510,891$	SCFH

Unit Data

Unit Load	377.3	megawatts
Stack Exhaust Flow (M19)	$60,305,631$	SCFH

Weather Data

Weather Data		
Barometric Pressure	30.24	in. Hg
Relative Humidity	57	$\%$
Ambient Temperature	69	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008494	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{Ib}$ air

Base Load, Run - 2

Date/Time (mm/dd/yy hh:mm:ss)	Elapsed Time (seconds)	$\begin{gathered} \mathrm{O}_{2} \\ \text { (\%) } \end{gathered}$	$\begin{gathered} \text { NOx } \\ \text { (ppmvd) } \end{gathered}$	$\begin{gathered} \mathrm{CO} \\ \text { (ppmvd) } \end{gathered}$
03/16/11 11:30:56	17190	13.27	2.44	0.92
03/16/11 11:31:26	17220	13.26	2.42	0.90
03/16/11 11:31:56	17250	13.26	2.43	0.91
03/16/11 11:32:26	17280	13.27	2.46	0.87
03/16/11 11:32:56	17310	13.27	2.45	0.88
03/16/11 11:33:26	17340	13.26	2.46	0.86
03/16/11 11:33:56	17370	13.24	2.47	0.81
03/16/11 11:34:26	17400	13.23	2.52	0.79
03/16/11 11:34:56	17430	13.24	2.57	0.77
03/16/11 11:35:26	17460	13.27	2.51	0.85
03/16/11 11:35:56	17490	13.29	2.37	1.04
03/16/11 11:36:26	17520	13.30	2.29	1.16
03/16/11 11:36:56	17550	13.27	2.25	1.05
03/16/11 11:37:26	17580	13.27	2.32	1.00
03/16/11 11:37:56	17610	13.27	2.42	0.87
03/16/11 11:38:26	17640	13.30	2.45	0.86
03/16/11 11:38:56	17670	13.30	2.44	0.95
03/16/11 11:39:26	17700	13.30	2.39	0.97
03/16/11 11:39:56	17730	13.28	2.37	0.88
03/16/11 11:40:26	17760	13.27	2.44	0.77
03/16/11 11:40:56	17790	13.27	2.53	0.79
03/16/11 11:41:26	17820	13.28	2.56	0.74
03/16/11 11:41:56	17850	13.28	2.52	0.83
03/16/11 11:42:26	17880	13.30	2.46	0.83
03/16/11 11:42:56	17910	13.32	2.39	0.91
03/16/11 11:43:26	17940	13.31	2.31	1.05
03/16/11 11:43:56	17970	13.29	2.29	0.98
03/16/11 11:44:26	18000	13.28	2.37	0.82
03/16/11 11:44:56	18030	13.27	2.46	0.86
03/16/11 11:45:26	18060	13.28	2.47	0.80
03/16/11 11:45:56	18090	13.27	2.48	0.78
03/16/11 11:46:26	18120	13.28	2.49	0.81
03/16/11 11:46:56	18150	13.28	2.70	0.72
03/16/11 11:47:26	18180	13.29	2.86	0.78
03/16/11 11:47:56	18210	13.29	2.85	0.86
03/16/11 11:48:26	18240	13.29	2.80	0.91
03/16/11 11:48:56	18270	13.29	2.81	0.84
03/16/11 11:49:26	18300	13.30	2.83	0.84
03/16/11 11:49:56	18330	13.29	2.82	0.80
03/16/11 11:50:26	18360	13.30	2.83	0.76
03/16/11 11:50:56	18390	13.31	2.84	0.83
03/16/11 11:51:26	18420	13.32	2.81	0.77
03/16/11 11:51:56	18450	13.31	2.74	0.84
03/16/11 11:52:26	18480	13.32	2.75	0.75
03/16/11 11:52:56	18510	13.31	2.77	0.83
03/16/11 11:53:26	18540	13.31	2.78	0.82
03/16/11 11:53:56	18570	13.30	2.77	0.85
03/16/11 11:54:26	18600	13.30	2.82	0.83
03/16/11 11:54:56	18630	13.30	2.81	0.76
03/16/11 11:55:26	18660	13.30	2.79	0.83
03/16/11 11:55:56	18690	13.30	2.79	0.84
03/16/11 11:56:26	18720	13.31	2.79	0.79
03/16/11 11:56:56	18750	13.28	2.80	0.86
03/16/11 11:57:26	18780	13.29	2.80	0.87
03/16/11 11:57:56	18810	13.31	2.86	0.77

Florida Power and Light

March 16, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF ext/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,830	$\mathrm{Ib} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{Ib} / \mathrm{min}$
Total Fuel Flow	$2,510,891$	SCFH

Weather Data

Barometric Pressure	30.24	in. Hg
Relative Humidity	57	$\%$
Ambient Temperature	69	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008494	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	377.3	megawatts
Stack Exhaust Flow (M19)	$60,305,631$	SCFH

Base Load, Run-2				
Date/Time (mm/dd/yy hh:mm:ss)	Elapsed Time (seconds)	$\begin{aligned} & \mathrm{O}_{2} \\ & (\%) \end{aligned}$	NOX (pprnvd)	CO (ppmvd)
03/16/11 11:58:26	18840	13.32	2.84	0.81
03/16/11 11:58:56	18870	13.33	2.77	0.85
03/16/11 11:59:26	18900	13.33	2.72	0.80
03/16/11 11:59:56	18930	13.32	2.73	0.79
03/16/11 12:00:26	18960	13.29	2.77	0.72
03/16/11 12:00:56	18990	13.27	2.85	0.69
03/16/11 12:01:26	19020	13.28	2.88	0.65
03/16/11 12:01:56	19050	13.30	2.82	0.63
03/16/11 12:02:26	19080	13.31	2.78	0.81
03/16/11 12:02:56	19110	13.30	2.76	0.80
RAW AVERAGE		13.27	2.44	0.89
		O_{2}	NOX	CO

	Serial Number:	INST-N2-0001 (\%)	INST-N2-0001 (ppmed)	INST-CO-0015
	Initial Zero	0.16	0.13	0.07
	Final Zero	0.31	0.16	-0.28
	Avg. Zero	0.24	0.15	-0.11
\pm	Initial UpScale	12.23	4.76	4.99
	Final UpScale	12.32	4.71	5.55
	Avg. UpScale	12.28	4.74	5.27
Upscale Cal Gas		12.10	4.93	4.92

EMISSIONS DATA	$\mathbf{O}_{\mathbf{2}}$	$\mathbf{N O x}$	$\mathbf{C O}$
Corrected Raw Average (ppm/\% dry basis)	13.10	2.46	0.91
Concentration (ppm@ 15\%O2)	N / A	1.86	0.69
Emission Rate (lb/hr)	N / A	17.73	4.01
Emission Rate (lb/MMBtu)	N / A	0.007	0.002

Florida Power and Light
March 16, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

\quad Fuel Fd factor	8,710	SCF exh/MMAtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,818	$1 \mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	0	1b/min
Total Fuel Flow	$2,494,426$	SCFH

Unit Data

Unit Load	376.3	megawatts
Stack Exhaust Flow (M19)	$60,724,697$	SCFH

Base Load, Run-3

Date/Time (mm/dd/yy hh:mm:ss)	Elapsed Time (seconds)	$\begin{gathered} \mathrm{O}_{\mathbf{2}} \\ (\%) \end{gathered}$	NOX (ppmvd)	$\begin{gathered} \text { CO } \\ \text { (ppmvd) } \end{gathered}$
03/16/11 12:21:26	20220	13.33	2.88	0.41
03/16/11 12:21:56	20250	13.34	2.90	0.57
03/16/11 12:22:26	20280	13.36	2.87	0.53
03/16/11 12:22:56	20310	13.37	2.79	0.63
03/16/11 12:23:26	20340	13.37	2.76	0.64
03/16/11 12:23:56	20370	13.36	2.69	0.62
03/16/11 12:24:26	20400	13.36	2.74	0.46
03/16/11 12:24:56	20430	13.34	2.79	0.54
03/16/11 12:25:26	20460	13.34	2.85	0.47
03/16/11 12:25:56	20490	13.36	2.89	0.44
03/16/11 12:26:26	20520	13.38	2.88	0.57
03/16/11 12:26:56	20550	13.36	2.81	0.59
03/16/11 12:27:26	20580	13.37	2.80	0.58
03/16/11 12:27:56	20610	13.35	2.83	0.46
03/16/11 12:28:26	20640	13.36	2.85	0.66
03/16/11 12:28:56	20670	13.37	2.86	0.60
03/16/11 12:29:26	20700	13.37	2.83	0.52
03/16/11 12:29:56	20730	13.38	2.81	0.39
03/16/11 12:30:26	20760	13.41	2.80	0.53
03/16/11 12:30:56	20790	13.40	2.68	0.68
03/16/11 12:31:26	20820	13.39	2.65	0.61
03/16/11 12:31:56	20850	13.37	2.73	0.51
03/16/11 12:32:26	20880	13.35	2.87	0.38
03/16/11 12:32:56	20910	13.36	2.98	0.44
03/16/11 12:33:26	20940	13.39	2.97	0.48
03/16/11 12:33:56	20970	13.40	2.87	0.50
03/16/11 12:34:26	21000	13.40	2.71	0.63
03/16/11 12:34:56	21030	13.38	2.65	0.69
03/16/11 12:35:26	21060	13.36	2.75	0.47
03/16/11 12:35:56	21090	13.37	2.89	0.34
03/16/11 12:36:26	21120	13.38	2.94	0.38
03/16/11 12:36:56	21150	13.37	2.89	0.48
03/16/11 12:37:26	21180	13.39	2.83	0.54
03/16/11 12:37:56	21210	13.41	2.78	0.55
03/16/11 12:38:26	21240	13.40	2.70	0.64
03/16/11 12:38:56	21270	13.38	2.70	0.50
03/16/11 12:39:26	21300	13.37	2.84	0.44
03/16/11 12:39:56	21330	13.37	2.93	0.39
03/16/11 12:40:26	21360	13.38	2.95	0.47
03/16/11 12:40:56	21390	13.38	2.90	0.47
03/16/11 12:41:26	21420	13.39	2.86	0.44
03/16/11 12:41:56	21450	13.39	2.85	0.56
03/16/11 12:42:26	21480	13.36	2.77	0.45
03/16/11 12:42:56	21510	13.41	2.78	0.40
03/16/11 12:43:26	21540	13.41	2.70	0.54
03/16/11 12:43:56	21570	13.36	2.67	0.54
03/16/11 12:44:26	21600	13.40	2.80	0.53
03/16/11 12:44:56	21630	13.40	2.83	0.41
03/16/11 12:45:26	21660	13.39	2.54	0.47
03/16/11 12:45:56	21690	13.38	2.45	0.44
03/16/11 12:46:26	21720	13.39	2.49	0.44
03/16/11 12:46:56	21750	13.34	2.46	0.31
03/16/11 12:47:26	21780	13.31	2.53	0.33
03/16/11 12:47:56	21810	13.34	2.56	0.34
03/16/11 12:48:26	21840	13.41	2.40	0.48

Florida Power and Light
March 16, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF ext/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,818	$\mathrm{Ib} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{lb} / \mathrm{min}$
Total Fuel Flow	$2,494,426$	SCFH

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humnidy	51	$\%$
Ambient Temperature	77	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009971	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	376.3	megawatts
Stack Exhaust Flow (M19)	$60,724,697$	SCFH

Base Load, Run-3 Date/Time	Elapsed Time (seconds)	\mathbf{O}_{2} (\%)	NOx (ppmvd)	CO (ppmvd)
03/dd/yy hh:mm:ss)	12:48:56	21870	13.49	2.22

Florida Power and Light
March 16, 2014
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	$\mathbf{8 , 7 1 0}$	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,818	Ib/min
Duct Bumer Fuel Flow	0	Ib/min
Total Fuel Flow	$\mathbf{2 , 4 9 4 , 4 2 6}$	SCFH

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	51	$\%$
Ambient Temperature	77	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009971	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	376.3	megawatts
Stack Exhaust Flow (M19)	$60,724,697$	SCFH

Base Load, Run - 3 Date/Time (mm/dd/yy hh:mm:ss)	Elapsed Time (seconds)	$\mathbf{O}_{\mathbf{2}}$ (\%)	NOx (ppmvd)	CO (ppmvd)
03/16/11 13:16:26	23520	13.43	2.12	0.33
03/16/11 13:16:56	23550	13.42	2.19	0.37
03/16/11 13:17:26 13/11 13:17:56	23580	13.43	2.27	0.30
03/16/11 13:18:26	23610	13.44	2.32	0.29
03/16/11 13:18:56	23640	13.46	2.24	0.30
03/16/11 13:19:26	23670	13.45	2.17	0.41
03/16/11 13:19:56	23700	13.44	2.12	0.43
03/16/11 13:20:26	23760	13.43	2.15	0.27
03/16/11 13:20:56	23790	13.42	2.22	0.22
		13.42	2.25	0.29
RAW AVERAGE		13.40	2.48	0.48
			$\mathbf{O}_{\mathbf{2}}$	NOx
			CO	

Florida Power and Light

March 16, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF ext/MMBtu
Fuei Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,830	Ib/min
Duct Bumer Fuel Flow	0	Ib/min
Total Fuel Flow	$2,510,891$	SCFFH

Weather Data

Barometric Pressure	30.18	in. Hg
Relative Humidity	46	$\%$
Ambient Temperature	76	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008703	$\left[0 \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\right.$ air

Unit Data

Unit Load	369.1	megawatts
Stack Exhaust Fbow (M19)	$59,774,760$	SCFH

Base Load, Run-4 Date/Time
(mm/dd/yy hh:mm:ss) 03/16/11 18:31:07 $03 / 16 / 1118: 31: 37$
$03 / 16 / 11$ 18:32:07 $03 / 16 / 1118: 32: 07$
$03 / 16 / 1118: 32: 37$ 03/16/11 18:33:07 03/16/11 18:33:37 $03 / 16 / 1118: 34: 07$
$03 / 16 / 1118: 34: 37$ $\begin{array}{ll}03 / 16 / 11 & 18: 35: 07 \\ 03 / 16 / 11 & 18: 35: 37\end{array}$ $03 / 16 / 1118: 36: 07$
$03 / 16 / 1118: 36: 37$ $\begin{array}{ll}03 / 16 / 11 & 18: 37: 07 \\ 03 / 16 / 11 & 18: 37: 37\end{array}$ $\begin{array}{ll}03 / 16 / 11 & 18.37: 37 \\ 03 / 16 / 11 & 18: 38: 07\end{array}$ $03 / 16 / 1118: 38: 37$
$03 / 16 / 11$ 18:38:07 $03 / 16 / 1118: 39: 37$
$03 / 16 / 1118: 40: 07$ $03 / 16 / 1118: 40: 07$
$03 / 16 / 1118: 40: 37$ $03 / 16 / 1118: 41: 07$
$03 / 16 / 1118: 41: 37$ $03 / 16 / 1118: 41: 37$
$03 / 16 / 11$ 18:42:07 $03 / 16 / 11$ 18:42:37
$03 / 16 / 11$ 18:43:07 03/16/11 18:43:37 $03 / 16 / 1118: 44: 07$
$03 / 16 / 11$
$18: 44: 37$ 03/16/11 18:45:07 $03 / 16 / 11$ 18:45:37
$03 / 16 / 11$ 18:46:07 $03 / 16 / 1118: 46: 37$
$03 / 16 / 1118: 47: 07$ $03 / 16 / 11$ 18:47:07
$03 / 16 / 11$ 18:47:37 03/16/11 18:48:07 03/16/11 18:48:37 03/16/11 18:49:37 03/16/11 18:50:07 03/16/11 18:50:37 03/16/11 18:51:07 03/16/11 18:51:37

Elapsed Time (seconds)	$\begin{gathered} \mathrm{O}_{2} \\ (\%) \end{gathered}$	NOX (ppmvd)	CO (ppmvd)
5640	12.98	2.01	2.11
5670	12.98	2.02	2.02
5700	12.99	2.02	2.02
5730	12.97	2.04	1.97
5760	12.92	2.09	1.82
5790	12.91	2.18	1.47
5820	12.92	2.28	1.44
5850	12.91	2.34	1.45
5880	12.90	2.37	1.45
5910	12.89	2.45	1.38
5940	12.90	2.52	1.23
5970	12.87	2.61	1.19
6000	12.88	2.70	1.12
6030	12.84	2.75	1.09
6060	12.86	2.83	1.08
6090	12.86	2.88	1.04
6120	12.84	2.91	0.99
6150	12.83	3.00	0.90
6180	12.82	3.00	0.93
6210	12.82	3.03	0.90
6240	12.82	3.01	0.89
6270	12.82	3.02	0.86
6300	12.85	3.00	0.97
6330	12.84	2.87	0.91
6360	12.85	2.73	0.89
6390	12.87	2.61	0.86
6420	12.88	2.48	1.07
6450	12.85	2.33	1.08
6480	12.83	2.29	0.96
6510	12.84	2.28	0.80
6540	12.88	2.26	0.94
6570	12.91	2.15	1.11
6600	12.88	2.04	1.07
6630	12.87	2.05	1.03
6660	12.89	2.07	0.98
6690	12.90	2.01	1.00
6720	12.93	1.97	1.10
6750	12.91	1.93	1.08
6780	12.87	1.95	0.95
6810	12.91	2.02	0.93
6840	12.92	1.99	1.01
6870	12.93	1.93	1.08
	12.88	2.41	1.17
	O_{2}	NOX	CO

Serial Number: INST-N2-0001 [NST-N2-0001 INST-CO-0015

EMISSIONS DATA	O_{2}	NOx	CO
Corrected Raw Average (ppm/\% dry basis)	13.03	2.37	1.08
Concentration (ppm@15\%O	N / A	1.78	0.81
Emission Rate (lb/hr)	N / A	16.92	4.70
Emission Rate (lb/MMBtu)	N / A	0.007	0.002

Florida Power and Light
March 17, 2011
Mitsubishi, 501G, Unit 3A West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,830	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	173	$\mathrm{lb} / \mathrm{min}$
Total Fuel Flow	$2,748,420$	SCFH

Weather Data

Barometric Pressure	30.27	in. Hg
Relative Humidity	56	$\%$
Ambient Temperature	74	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009899	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data
Unit Data

Unit Load	413.2	megawatts
Stack Exhaust Flow (M19)	$61,101,365$	SCFH

Base Wdb Load, Run - 5				
DateTTime	Elapsed Time	O_{2}	NOX	
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/17/11 10:05:07	12150	12.67	2.64	0.86
03/17/11 10:05:37	12180	12.67	2.64	0.77
03/17/11 10:06:07	12210	12.67	2.65	0.90
03/17/11 10:06:37	12240	12.67	2.66	0.79
03/17/11 10:07:07	12270	12.69	2.65	0.79
03/17/11 10:07:37	12300	12.68	2.59	0.82
03/17/11 10:08:07	12330	12.67	2.57	0.83
03/17/11 10:08:37	12360	12.65	2.61	0.76
03/17/11 10:09:07	12390	12.70	2.69	0.84
03/17/11 10:09:37	12420	12.67	2.57	0.92
03/17/11 10:10:07	12450	12.70	2.61	0.89
03/17/11 10:10:37	12480	12.68	2.61	0.83
03/17/11 10:11:07	12510	12.65	2.68	0.86
03/17/11 10:11:37	12540	12.70	2.75	0.73
03/17/11 10:12:07	12570	12.69	2.72	0.87
03/17/11 10:12:37	12600	12.71	2.68	0.87
03/17/11 10:13:07	12630	12.70	2.66	0.81
03/17/11 10:13:37	12660	12.68	2.64	0.81
03/17/11 10:14:07	12690	12.70	2.73	0.69
03/17/11 10:14:37	12720	12.71	2.69	0.81
03/17/11 10:15:07	12750	12.72	2.65	0.89
03/17/11 10:15:37	12780	12.71	2.66	0.91
03/17/11 10:16:07	12810	12.73	2.70	0.90
03/17/11 10:16:37	12840	12.71	2.73	0.85
03/17/11 10:17:07	12870	12.72	2.76	0.84
03/17/11 10:17:37	12900	12.71	2.85	0.82
03/17/11 10:18:07	12930	12.70	2.79	0.75
03/17/11 10:18:37	12960	12.72	2.83	0.79
03/17/11 10:19:07	12990	12.72	2.81	0.72
03/17/11 10:19:37	13020	12.73	2.78	0.82
03/17/11 10:20:07	13050	12.73	2.78	0.74
03/17/11 10:20:37	13080	12.72	2.81	0.81
03/17/11 10:21:07	13110	12.73	2.79	0.73
03/17/11 10:21:37	13140	12.73	2.80	0.79
03/17/11 10:22:07	13170	12.74	2.85	0.79
03/17/11 10:22:37	13200	12.73	2.83	0.77
03/17/11 10:23:07	13230	12.73	2.82	0.72
03/17/11 10:23:37	13260	12.74	2.86	0.79
03/17/11 10:24:07	13290	12.74	2.86	0.85
03/17/11 10:24:37	13320	12.74	2.82	0.80
03/17/11 10:25:07	13350	12.76	2.80	0.77
03/17/11 10:25:37	13380	12.74	2.75	0.88
03/17/11 10:26:07	13410	12.74	2.85	0.68
03/17/11 10:26:37	13440	12.69	2.80	0.73
03/17/11 10:27:07	13470	12.63	2.64	0.75
03/17/11 10:27:37	13500	12.66	2.61	0.77
03/17/11 10:28:07	13530	12.68	2.46	0.84
03/17/11 10:28:37	13560	12.68	2.48	0.84
03/17/11 10:29:07	13590	12.67	2.42	0.80
03/17/11 10:29:37	13620	12.65	2.47	0.83
03/17/11 10:30:07	13650	12.67	2.44	0.76
03/17/11 10:30:37	13680	12.67	2.43	0.85
03/17/11 10:31:07	13710	12.67	2.40	0.81
03/17/11 10:31:37	13740	12.66	2.46	0.80
03/17/11 10:32:07	13770	12.66	2.53	0.75

Florida Power and Light
 March 17, 2011

Mitsubishi, 501G, Unit 3A West County Energy Center
Fuel Data

	8,710	SCF exh/MMBtu
Fuel Fd factor	$8,0 a t i n g ~ V a l u e ~(H H V) ~$	1,029
Stu/SCF fuel		
Turbine Fuel Flow	1,830	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	173	$\mathrm{lb} / \mathrm{min}$
Total Fuel Flow	$2,748,420$	SCFH

Unit Data

	Unit Load	413.2
	megawatts	
Stack Exhaust Flow (M19)	$61,101,365$	SCFH

Weather Data

Barometric Pressure	30.27	in, Hg
Relative Humidity	56	$\%$
Ambient Temperature	74	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009899	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Base Wdb Load, Run - 5
Date/Time
(mm/dd/yy hh:mm:ss) 03/17/11 10:32:37 03/17/11 10:33:07 03/17/11 10:33:37 03/17/11 10:34:07 03/17/11 10:34:37 03/17/11 10:35:07 03/17/11 10:35:37 03/17/11 10:36:07 03/17/111 10:36:37 03/17/11 10:37:07 03/17/11 10:37:37 03/17/11 10:38:07 03/17/11 10:38:37 03/17/11 10:39:07 03/17/11 10:39:37 03/17/11 10:40:07 03/17/11 10:40:37 03/17/11 10:41:07 03/17/11 10:41:37 03/17/11 10:42:07 03/17/11 10:42:37 03/17/11 10:43:07 03/17/11 10:43:37 03/17/11 10:44:07 03/17/11 10:44:37 03/17/11 10:45:07 03/17/11 10:45:37 03/17/11 10:46:07 03/17/11 10:46:37 03/17/11 10:47:07 03/17/11 10:47:37 03/17/11 10:48:07 03/17/11 10:48:37 03/17/11 10:49:07 03/17/11 10:49:37 03/17/11 10:50:07 03/17/11 10:50:37 03/17/11 10:51:07 03/17/11 10:51:37 03/17/11 10:52:07 03/17/11 10:52:37 03/17/11 10:53:07 03/17/11 10:53:37 03/17/11 10:54:07 03/17/11 10:54:37 03/17/11 10:55:07 03/17/11 10:55:37 03/17/11 10:56:07 03/17/11 10:56:37 03/17/11 10:57:07 03/17/11 10:57:37 03/17/11 10:58:07 03/17/11 10:58:37 03/17/11 10:59:07 03/17/11 10:59:37
(seconds)
12.67
$13830 \quad 12.66$
$+12.66$

13890	12.66
13920	12.

$13950 \quad 12.68$
$13980 \quad 12.67$

14010	12.69
14040	12.69

$14070 \quad 12.70$
$14100 \quad 12.69$
14130 12.68
$14160 \quad 12.66$
14190 12.69
14220 12.72

14250	12.71
14280	12.67

14280	12.67
14310	12.68

14310	12.68
	12.70

14340	12.70
14370	12.67

$14400 \quad 12.66$
$14430 \quad 12.66$
$14460 \quad 12.69$
$14490 \quad 12.69$
$14520 \quad 12.72$
$14550 \quad 12.74$
$14580 \quad 12.73$

14610	12.70
14640	12.69

$14670 \quad 12.68$

14700
14730
14760
14790
$14820 \quad 12.72$
$\begin{array}{ll}14850 & 12.71 \\ 1482\end{array}$
$14880 \quad 12.72$
14910
14940
15000
15030
15060
15090
$\begin{array}{ll}15120 & 12.72 \\ 12.71\end{array}$
$15150 \quad 12.72$
$15180 \quad 12.72$
15210
$15240 \quad 12.74$
15270
$15300 \quad 12.73$
15330
$15360 \quad 12.66$
$15390 \quad 12.70$
15420

NOX (ppmvd)	CO (ppmvd)
2.56	0.71
2.57	0.73
2.55	0.79
2.50	0.76
2.48	0.74
2.48	0.82
2.42	0.75
2.42	0.78
2.41	0.83
2.44	0.72
2.45	0.75
2.47	0.70
2.52	0.70
2.54	0.67
2.53	0.72
2.48	0.81
2.45	0.78
2.48	0.75
2.54	0.74
2.52	0.81
2.52	0.69
2.56	0.74
2.55	0.73
2.48	0.83
2.42	0.84
2.45	0.87
2.49	0.88
2.57	0.77
2.50	0.75
2.60	0.67
2.66	0.63
2.60	0.74
2.54	0.78
2.49	0.79
2.49	0.70
2.49	0.70
2.52	0.77
2.53	0.73
2.52	0.72
2.48	0.79
2.51	0.68
2.48	0.64
2.44	0.76
2.44	0.80
2.51	0.72
2.54	0.81
2.47	0.74
2.46	0.78
2.46	0.75
2.44	0.70
2.48	0.65
2.52	0.64
2.57	0.68
2.56	0.66
2.51	0.74

Florida Power and Light
March 17, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value $(\mathrm{HHV}$	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,830	$\mathrm{Ib} / \mathrm{min}$
Duct Burner Fuel Flow	173	Ib/min
Total Fuel Flow	$2,748,420$	SCFH

Weather Data
Weather Data

Barometric Pressure	30.27	in. Hg
Relative Humidity	56	$\%$
Ambient Temperature	74	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009899	Ib H O / Ob air

UnIt Data

Unit Load	413.2	megawatts
Stack Exhaust Flow (M19)	$61,101,365$	SCFH

Base Wdb Load, Run - 5				
Date/Time	Elapsed Time	O_{2}	NOX	CO
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/17/11 11:00:07	15450	12.76	2.43	0.79
03/17/11 11:00:37	15480	12.76	2.36	0.88
03/17/11 11:01:07	15510	12.74	2.34	0.72
03/17/11 11:01:37	15540	12.73	2.41	0.69
03/17/11 11:02:07	15570	12.72	2.54	0.68
03/17/11 11:02:37	15600	12.72	2.63	0.59
03/17/11 11:03:07	15630	12.74	2.63	0.69
03/17/11 11:03:37	15660	12.75	2.59	0.76
03/17/11 11:04:07	15690	12.77	2.50	0.79
03/17/11 11:04:37	15720	12.76	2.40	0.80
RAW AVERAGE		12.70	2.58	0.77
		O_{2}	NOX	CO

Florida Power and Light

March 17, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center

Fuel Data

Fuel Fd factor	$\mathbf{8 , 7 1 0}$	SCF exh/MMBtu
Fuel Heating Value (HHV	$\mathbf{1 , 0 2 9}$	Btu/SCF fuel
Turbine Fuel Flow	1,812	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	$\mathbf{1 7 3}$	$\mathrm{lb} / \mathrm{min}$
Total Fuel Flow	$2,724,066$	SCFH

Weather Data

Barometric Pressure	30.27	in. Hg
Relative Humidity	42	$\%$
Ambient Temperature	81	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009349	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Base Wdb Load, Run-6				
Date/Time	Elapsed Time	O_{2}	NOx	CO
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/17/11 11:25:07	16950	12.75	2.45	0.56
03/17/11 11:25:37	16980	12.74	2.51	0.60
03/17/11 11:26:07	17010	12.76	2.53	0.60
03/17/11 11:26:37	17040	12.77	2.52	0.72
03/17/11 11:27:07	17070	12.77	2.46	0.64
03/17/11 11:27:37	17100	12.76	2.45	0.60
03/17/11 11:28:07	17130	12.77	2.45	0.67
03/17/11 11:28:37	17160	12.75	2.47	0.73
03/17/11 11:29:07	17190	12.73	2.46	0.57
03/17/11 11:29:37	17220	12.68	2.50	0.51
03/17/11 11:30:07	17250	12.74	2.54	0.55
03/17/11 11:30:37	17280	12.76	2.43	0.60
03/17/11 11:31:07	17310	12.78	2.27	0.80
03/17/11 11:31:37	17340	12.76	2.18	0.72
03/17/11 11:32:07	17370	12.80	2.16	0.69
03/17/11 11:32:37	17400	12.78	2.17	0.73
03/17/11 11:33:07	17430	12.76	2.22	0.58
03/17/11 11:33:37	17460	12.77	2.34	0.61
03/17/11 11:34:07	17490	12.78	2.38	0.57
03/17/11 11:34:37	17520	12.80	2.37	0.67
03/17/11 11:35:07	17550	12.82	2.34	0.74
03/17/11 11:35:37	17580	12.79	2.31	0.69
03/17/11 11:36:07	17610	12.76	2.40	0.55
03/17/11 11:36:37	17640	12.73	2.49	0.45
03/17/11 11:37:07	17670	12.73	2.56	0.51
03/17/11 11:37:37	17700	12.75	2.61	0.50
03/17/11 11:38:07	17730	12.83	2.45	0.62
03/17/11 11:38:37	17760	12.82	2.24	0.69
03/17/11 11:39:07	17790	12.80	2.10	0.73
03/17/11 11:39:37	17820	12.78	2.15	0.59
03/17/11 11:40:07	17850	12.78	2.20	0.57
03/17/11 11:40:37	17880	12.76	2.27	0.58
03/17/11 11:41:07	17910	12.82	2.33	0.62
03/17/11 11:41:37	17940	12.78	2.29	0.59
03/17/11 11:42:07	17970	12.73	2.31	0.51
03/17/11 11:42:37	18000	12.74	2.37	0.47
03/17/11 11:43:07	18030	12.82	2.34	0.60
03/17/11 11:43:37	18060	12.84	2.19	0.76
03/17/11 11:44:07	18090	12.83	2.12	0.71
03/17/11 11:44:37	18120	12.87	2.17	0.64
03/17/11 11:45:07	18150	12.87	2.16	0.69
03/17/11 11:45:37	18180	12.85	2.23	0.64
03/17/11 11:46:07	18210	12.84	2.35	0.64
03/17/11 11:46:37	18240	12.82	2.42	0.56
03/17/11 11:47:07	18270	12.79	2.49	0.51
03/17/11 11:47:37	18300	12.78	2.53	0.57
03/17/11 11:48:07	18330	12.79	2.57	0.43
03/17/11 11:48:37	18360	12.83	2.51	0.48
03/17/11 11:49:07	18390	12.85	2.35	0.48
03/17/11 11:49:37	18420	12.82	2.24	0.57
03/17/11 11:50:07	18450	12.84	2.20	0.50
03/17/11 11:50:37	18480	12.80	2.15	0.57
03/17/11 11:51:07	18510	12.82	2.18	0.49
03/17/11 11:51:37	18540	12.83	2.13	0.58
03/17/11 11:52:07	18570	12.85	2.23	0.58

Florida Power and Light
March 17, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exd/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,812	Ib/min
Duct Burner Fuel Flow	173	Ib/min
Total Fuel Flow	$2,724,066$	SCFH

Weather Data
Unit Data

Unit Load	400.3	megawatts
Stack Exhaust Flow (M19)	$59,778,648$	SCFH

Barometric Pressure	30.27	in. Hg
Relative Humidity	42	$\%$
Ambient Temperature	81	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009349	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{Ib}$ air

Base Wdb Load, Run-6				
Date/Time	Elapsed Time	O_{2}	NOx	CO
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/17/11 11:52:37	18600	12.87	2.28	0.54
03/17/11 11:53:07	18630	12.91	2.24	0.60
03/17/11 11:53:37	18660	12.85	2.19	0.67
03/17/11 11:54:07	18690	12.83	2.32	0.59
03/17/11 11:54:37	18720	12.82	2.48	0.52
03/17/11 11:55:07	18750	12.81	2.59	0.42
03/17/11 11:55:37	18780	12.86	2.58	0.53
03/17/11 11:56:07	18810	12.87	2.51	0.50
03/17/11 11:56:37	18840	12.84	2.46	0.50
03/17/11 11:57:07	18870	12.86	2.50	0.46
03/17/11 11:57:37	18900	12.87	2.53	0.41
03/17/11 11:58:07	18930	12.88	2.51	0.37
03/17/11 11:58:37	18960	12.81	2.47	0.61
03/17/11 11:59:07	18990	12.87	2.56	0.47
03/17/11 11:59:37	19020	12.88	2.57	0.49
03/17/11 12:00:07	19050	12.89	2.47	0.64
03/17/11 12:00:37	19080	12.85	2.48	0.58
03/17/11 12:01:07	19110	12.87	2.61	0.50
03/17/11 12:01:37	19140	12.85	2.71	0.48
03/17/11 12:02:07	19170	12.85	2.76	0.45
03/17/11 12:02:37	19200	12.86	2.78	0.42
03/17/11 12:03:07	19230	12.89	2.77	0.44
03/17/11 12:03:37	19260	12.88	2.66	0.47
03/17/11 12:04:07	19290	12.86	2.64	0.45
03/17/11 12:04:37	19320	12.85	2.70	0.49
03/17/11 12:05:07	19350	12.91	2.77	0.47
03/17/11 12:05:37	19380	12.94	3.05	0.47
03/17/11 12:06:07	19410	12.95	3.23	0.38
03/17/11 12:06:37	19440	12.95	3.19	0.41
03/17/11 12:07:07	19470	12.96	3.15	0.37
03/17/11 12:07:37	19500	12.95	3.11	0.29
03/17/11 12:08:07	19530	12.97	3.12	0.34
03/17/11 12:08:37	19560	12.96	3.07	0.46
03/17/11 12:09:07	19590	12.95	3.10	0.34
03/17/11 12:09:37	19620	12.91	3.13	0.36
03/17/11 12:10:07	19650	12.88	3.17	0.40
03/17/11 12:10:37	19680	12.88	3.25	0.23
03/17/11 12:11:07	19710	12.91	3.14	0.33
03/17/11 12:11:37	19740	12.94	2.93	0.40
03/17/11 12:12:07	19770	12.95	2.67	0.56
03/17/11 12:12:37	19800	12.94	2.55	0.56
03/17/11 12:13:07	19830	12.93	2.57	0.57
03/17/11 12:13:37	19860	12.97	2.65	0.41
03/17/11 12:14:07	19890	13.02	2.75	0.53
03/17/11 12:14:37	19920	13.00	2.72	0.64
03/17/11 12:15:07	19950	12.98	2.79	0.60
03/17/11 12:15:37	19980	12.96	2.95	0.42
03/17/11 12:16:07	20010	12.97	3.11	0.44
03/17/11 12:16:37	20040	12.92	3.22	0.39
03/17/11 12:17:07	20070	12.92	3.35	0.26
03/17/11 12:17:37	20100	12.93	3.35	0.28
03/17/11 12:18:07	20130	13.02	3.17	0.33
03/17/11 12:18:37	20160	13.07	2.87	0.62
03/17/11 12:19:07	20190	13.05	2.67	0.75
03/17/11 12:19:37	20220	13.00	2.65	0.50

Florida Power and Light
March 17, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,812	$\mathrm{Ib} / \mathrm{min}$
Duct Burner Fuel Flow	173	Ib/min
Total Fuel Flow	$2,724,066$	SCFH

Weather Data

Barometric Pressure	30.27	in. Hg
Relative Humidity	42	$\%$
Ambient Temperature	81	${ }^{\circ} \mathrm{F}$
Specific Humnidity	0.009349	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	400.3	megawatts
Stack Exhaust Flow (M19)	$59,778,648$	SCFH

Base Wdb Load, Run - 6				
DaterTime	Elapsed Time	O_{2}	NOx	CO
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/17/11 12:20:07	20250	13.00	2.80	0.42
03/17/11 12:20:37	20280	12.97	2.95	0.33
03/17/11 12:21:07	20310	12.95	3.06	0.39
03/17/11 12:21:37	20340	12.93	3.17	0.26
03/17/11 12:22:07	20370	12.88	3.22	0.24
03/17/11 12:22:37	20400	12.91	3.24	0.33
03/17/11 12:23:07	20430	12.99	3.09	0.26
03/17/11 12:23:37	20460	12.99	2.76	0.41
03/17/11 12:24:07	20490	12.93	2.59	0.36
03/17/11 12:24:37	20520	12.91	2.65	0.34
RAW AVERAGE		12.86	2.59	0.52
		O_{2}	NOx	CO
	Serial Number:	INST-N2-0001	INST-N2-0001	INST-CO-0015
		(\%)	(ppmvd)	(ppmvd)
	Initial Zero	0.47	0.18	-0.16
	Final Zero	0.60	0.16	-0.34
	Avg. Zero	0.54	0.17	-0.25
	Initial UpScale	12.54	4.96	5.01
	Final UpScale	12.65	4.92	4.73
	Avg. UpScale	12.60	4.94	4.87
Upscale Cal Gas		12.10	4.93	4.89

EMISSIONS DATA	\mathbf{O}_{2}	$\mathbf{N O x}$	CO
Corrected Raw Average (ppm/\% dry basis)	12.36	2.50	0.73
Concentration (ppm@ 15\%O)	N / A	1.73	0.51
Emission Rate ($\mathrm{lb} / \mathrm{hr})$	N / A	17.88	3.19
Emission Rate (ib/MMBtu)	N / A	0.006	0.001

Florida Power and Light
March 17, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF ext/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,806	Ib/min
Duct Burner Fuel Flow	173	Ib/min
Total Fuel Flow	$2,715,376$	SCFH

Unit Data

Unit Load	403.9	megawatts
Stack Exhaust Flow (M19)	$59,471,244$	SCFH

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	34	$\%$
Ambient Temperature	84	${ }^{\circ} \mathrm{F}$
Specific Hurnidity	0.008332	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Base Wob Load, Run - 7 Date/Time
(mm/dd/yy hh:mm:ss) 03/17/11 12:43:07 03/17/11 12:43:37 03/17/11 12:44:07 03/17/11 12:44:37 03/17/11 12:45:07 03/17/11 12:45:37 03/17/11 12:46:07 03/17/11 12:46:37 03/17/11 12:47:07 03/17/11 12:47:37 03/17/11 12:48:07 03/17/11 12:48:37 03/17/11 12:49:07 03/17/11 12:49:37 03/17/11 12:50:07 03/17/11 12:50:37 03/17/11 12:51:07 03/17/11 12:51:37 03/17/11 12:52:07 03/17/11 12:52:37 03/17/11 12:53:07 03/17/11 12:53:37 03/17/11 12:54:07 03/17/11 12:54:37 03/17/11 12:55:07 03/17/11 12:55:37 03/17/11 12:56:07 03/17/11 12:56:37 03/17/11 12:57:07 03/17/11 12:57:37 03/17/11 12:58:07 03/17/11 12:58:37 03/17/11 12:59:07 03/17/11 12:59:37 03/17/11 13:00:07 03/17/11 13:00:37 03/17/11 13:01:07 03/17/11 13:01:37 03/17/11 13:02:07 03/17/11 13:02:37 03/17/11 13:03:07 03/17/11 13:03:37 03/17/11 13:04:07 03/17/11 13:04:37 03/17/11 13:05:07 03/17/11 13:05:37 03/17/11 13:06:07 03/17/11 13:06:37 03/17/11 13:07:07 03/17/11 13:07:37 03/17/11 13:08:07 03/17/11 13:08:37 03/17/11 13:09:07 03/17/11 13:09:37

Elapsed Time (seconds)
O_{2}
$(\%)$
12.27
12.33
12.37
12.31
12.28
12.25
12.28
12.34
12.35
12.26
12.23
12.22
12.27
12.35
12.33
12.29
12.29
12.29
12.28
12.26
12.22
12.23
12.27
12.30
12.29
12.30
12.31
12.31
12.28
12.22
12.18
12.21
12.29
12.31
12.31
12.30
12.29
12.28
12.27
12.28
12.27
12.24
12.24
12.21
12.20
12.19
12.19
12.22
12.28
12.19
12.15
12.10
12.08
12.04
12.07

NOx (ppmvd)	$\underset{\text { (ppmvd) }}{\mathrm{CO}}$
3.17	0.31
3.18	0.38
2.96	0.51
2.81	0.55
2.87	0.47
2.99	0.47
3.04	0.37
2.94	0.50
2.75	0.57
2.71	0.67
2.78	0.37
2.87	0.55
2.93	0.50
2.90	0.62
2.70	0.70
2.69	0.55
2.80	0.51
2.92	0.49
3.03	0.47
3.09	0.48
3.14	0.43
3.16	0.47
3.09	0.45
2.94	0.52
2.83	0.51
2.83	0.47
2.88	0.51
2.89	0.63
2.93	0.61
3.10	0.55
3.24	0.52
3.36	0.41
3.25	0.48
2.97	0.63
2.75	0.66
2.76	0.67
2.78	0.61
2.86	0.49
2.99	0.61
3.08	0.47
3.10	0.45
3.15	0.56
3.20	0.47
3.23	0.56
3.23	0.45
3.21	0.46
3.09	0.48
2.97	0.52
2.78	0.63
2.63	0.62
2.39	0.67
2.44	0.71
2.57	0.56
2.67	0.58
2.74	0.53

Florida Power and Light

March 17, 2011
Mitsubishi, 501G, Unit 3A West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,806	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	173	$\mathrm{lb} / \mathrm{min}$
Total Fuel Flow	$2,715,376$	SCFH

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	34	$\%$
Ambient Temperature	84	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008332	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	403.9	megawatts
Slack Exhaust Flow (M19)	$59,471,244$	SCFH

Base Wdb Load, Run - 7

Date/Time
(mm/dd/yy hh:mm:ss) 03/17/11 13:10:37 03/17/11 13:11:07 03/17/11 13:11:37 03/17/11 13:12:07 03/17/11 13:12:37 03/17/11 13:13:07 03/17/11 13:13:37 03/17/11 13:14:07 03/17/11 13:14:37 03/17/11 13:15:07 03/17/11 13:15:37 03/17/11 13:16:07 03/17/11 13:16:37 03/17/11 13:17:07 03/17/11 13:17:37 03/17/11 13:18:07 03/17/11 13:18:37 03/17/11 13:19:07 03/17/11 13:19:37 03/17/11 13:20:07 03/17/11 13:20:37 03/17/11 13:21:07 03/17/11 13:21:37 03/17/11 13:22:07 03/17/11 13:22:37 03/17/11 13:23:07 03/17/11 13:23:37 03/17/11 13:24:07 03/17/11 13:24:37 03/17/11 13:25:07 03/17/11 13:25:37 03/17/11 13:26:07 03/17/11 13:26:37 03/17/11 13:27:07 03/17/11 13:27:37 03/17/11 13:28:07 03/17/11 13:28:37 03/17/11 13:29:07 03/17/11 13:29:37 03/17/11 13:30:07 03/17/11 13:30:37 03/17/111 13:31:07 03/17/11 13:31:37 03/17/111 13:32:07 03/17/11 13:32:37 03/17/11 13:33:07 03/17/11 13:33:37 03/17/11 13:34:07 03/17/11 13:34:37 03/17/11 13:35:07 03/17/111 13:35:37 03/17/111 13:36:07 03/17/11 13:36:37 03/17/11 13:37:07 03/17/11 13:37:37

Elapsed Time (seconds) 23280 23310 23340
23370 23400 23430 23460 23490
23520 23550 23580 23610
23640 23670 23700 23730 23760
23790 23820 23850 23880 23940 23970 24000 24030 24060 24090 24150 24180 24210 24240 24270 24330 24360 24420 $\begin{array}{ll}24450 & 12.09 \\ 24.13\end{array}$ $\begin{array}{ll}24480 & 12.09 \\ 24510 & 12.07\end{array}$ $\begin{array}{ll}24510 & 12.07 \\ 24540 & 12.04\end{array}$ 24570 24600 24630 24660 24690 24720 24750 24780 24810 24840 24870 24900
O_{2}
$(\%)$
12.11
12.09

NOx (ppmvd)	CO (ppmvd)
2.70	0.63
2.54	0.72
2.49	0.66

2.49	0.66
2.49	0.67

0.66
0.67
0.73
0.73 0.68 0.66
0.62 0.63 0.68 0.69 0.67 0.79 0.80 0.76 0.74
0.60 0.59 0.65 0.71 0.75 0.68 0.62 0.61
0.53 0.53
0.64 0.78 0.79 0.84 0.84
0.86 0.92 0.91 0.68 0.78 0.71 0.61
0.66 0.66 0.76 0.90
0.89
0.84
0.71
0.72
0.67 0.68 0.74 0.65
0.72
0.75
0.78
0.87
0.99
0.85
0.85
0.84

Florida Power and Light
March 17, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fue! Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turtine Fuel Flow	1,806	$\mathrm{Ib} / \mathrm{min}$
Duct Bumer Fuel Flow	$\mathbf{1 7 3}$	$\mathrm{Ib} / \mathrm{min}$
Total Fuel Flow	$\mathbf{2 , 7 1 5 , 3 7 6}$	SCFH

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	34	$\%$
Ambient Temperature	84	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008332	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	403.9	megawatts
Stack Exhaust Flow (M19)	$59,471,244$	SCFH

Base Wdb Load, Run-7				
Date/Time	Elapsed Time	O_{2}	NOx	
(mm/dd/yy hh:mm:ss)	(seconds)	12.00	(ppmva)	(ppmva)
03/17/11 13:38:37	24960	11.98	2.38	0.74
03/17/11 13:39:07	24990	12.00	2.38	0.77
03/17/11 13:39:37	25020	12.05	2.39	0.73
03/17/11 13:40:07	25050	12.05	2.33	0.76
03/17/11 13:40:37	25080	12.03	2.31	0.81
03/17/11 13:41:07	25110	12.04	2.35	0.79
03/17/11 13:41:37	25140	12.04	2.40	0.72
03/17/11 13:42:07	25170	12.04	2.41	0.72
03/17/11 13:42:37	25200	12.02	2.37	0.80
RAW AVERAGE		12.15	2.70	0.64
		O_{2}	NOx	CO

Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fue!
Turbine Fuel Flow	1,806	$\mathrm{~b} / \mathrm{min}$
Duct Burner Fuel Flow	173	lb/min
Total Fuel Flow	$2,715,010$	SCFH

Weather Data

Barometric Pressure	30.24	$\mathrm{in} . \mathrm{Hg}$
Relative Humidity	38	$\%$
Ambient Temperature	83	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009030	$\mathrm{~b} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	405.0	megawatts
Stack Exhaust Flow (M19)	$\mathbf{5 9 , 0 8 5 , 8 5 9}$	SCFH

Base Wdb Load, Run-8				
Date/Time	Elapsed Time	O_{2}	NOx	CO
(mm/ddlyy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/17/11 13:58:07	26130	11.96	2.24	0.94
03/17/11 13:58:37	26160	11.96	2.35	0.91
03/17/11 13:59:07	26190	11.96	2.42	0.95
03/17/11 13:59:37	26220	11.93	2.48	0.83
03/17/11 14:00:07	26250	11.93	2.59	0.77
03/17/11 14:00:37	26280	11.96	2.63	0.76
03/17/11 14:01:07	26310	11.98	2.61	0.80
03/17/11 14:01:37	26340	11.93	2.56	0.83
03/17/11 14:02:07	26370	11.91	2.62	0.76
03/17/11 14:02:37	26400	11.88	2.71	0.79
03/17/11 14:03:07	26430	11.97	2.73	0.74
03/17/11 14:03:37	26460	12.01	2.54	1.01
03/17/11 14:04:07	26490	12.00	2.35	0.93
03/17/11 14:04:37	26520	11.98	2.33	0.92
03/17/11 14:05:07	26550	11.96	2.37	0.78
03/17/11 14:05:37	26580	11.92	2.46	0.80
03/17/11 14:06:07	26610	11.92	2.56	0.84
03/17/11 14:06:37	26640	11.94	2.60	0.77
03/17/11 14:07:07	26670	11.97	2.57	0.81
03/17/11 14:07:37	26700	11.95	2.48	0.87
03/17/11 14:08:07	26730	11.93	2.48	0.73
03/17/11 14:08:37	26760	11.95	2.49	0.85
03/17/11 14:09:07	26790	11.95	2.50	0.86
03/17/11 14:09:37	26820	11.87	2.43	0.85
03/17/11 14:10:07	26850	11.89	2.46	0.84
03/17/11 14:10:37	26880	11.92	2.48	0.85
03/17/11 14:11:07	26910	11.93	2.34	0.99
03/17/11 14:11:37	26940	11.92	2.28	0.92
03/17/11 14:12:07	26970	11.94	2.29	0.88
03/17/11 14:12:37	27000	11.92	2.33	0.87
03/17/11 14:13:07	27030	11.95	2.41	0.80
03/17/11 14:13:37	27060	11.94	2.40	0.85
03/17/11 14:14:07	27090	11.88	2.42	0.82
03/17/11 14:14:37	27120	11.90	2.55	0.70
03/17/11 14:15:07	27150	11.89	2.54	0.79
03/17/11 14:15:37	27180	11.92	2.54	0.78
03/17/11 14:16:07	27210	11.97	2.44	0.85
03/17/11 14:16:37	27240	11.95	2.33	0.94
03/17/11 14:17:07	27270	11.94	2.34	0.88
03/17/11 14:17:37	27300	11.91	2.40	0.89
03/17/11 14:18:07	27330	11.87	2.46	0.85
03/17/11 14:18:37	27360	11.89	2.54	0.82
RAW AVERAGE		11.93	2.47	0.84
		O_{2}	NOx	CO

Florida Power and Light

March 17, 2011

Mitsubishi, 501G, Unit 3A
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Fbw	1,806	$\mathrm{~b} / \mathrm{min}$
Duct Burner Fuel Fbow	173	$\mathrm{~b} / \mathrm{min}$
Total Fuel Fbow	$2,714,804$	SCFH

Weather Data

Barometric Pressure	30.22	in. Hg
Relative Humidity	41	$\%$
Ambient Temperalure	84	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.010085	$\mathrm{bH} \mathrm{H}_{2} \mathrm{O} / \mathrm{bb}$ air

Unit Data

Unil Load	404.4	megawatts
Stack Exhaust Flow (M19)	$58,974,206$	SCFH

Base Wdb Load, Run - 9
Date/Time
(mm/dd/yy hh:mmiss) 03/17/11 14:28:07 $03 / 17 / 1114: 28: 07$
$03 / 17 / 11$ 14:28:37 03/17/11 14:29:07 03/17/1114:29:37 $03 / 17 / 1114: 30: 07$ 03/17/11 14:30:37 03/17/11 14:31:07 03/17/11 14:31:37 03/17/11 14:32:07 03/17/11 14:32:37 03/17/11 14:33:07 03/17/11 14:33:37 $03 / 17 / 1114: 34: 07$ 03/17/11 14:34:37 03/17/11 14:35:07 03/17/11 14:35:37 03/17/11 14:36:07 03/17/11 14:36:37 03/17/11 14:37:07 03/17/11 14:37:37 03/17/11 14:38:07 03/17/11 14:38:37 03/17/11 14:39:07 03/17/11 14:39:37 03/17/11 14:40:07 03/17/11 14:40:37 03/17/11 14:41:07 03/17/11 14:41:37 03/17/111 14:42:07 03/17/11 14:42:37 03/17/11 14:43:07 $03 / 17 / 1114: 43: 37$ 03/17/11 14:44:07 03/17/11 14:44:37 03/17/11 14:45:07 03/17/11 14:45:37 03/17/11 14:46:07 03/17/11 14:46:37 03/17/11 14:47:07 03/17/11 14:47:37 03/17/11 14:48:07 03/17/11 14:48:37

Elapsed Time	O_{2}
(seconds)	$(\%)$

NOx
(ppmvd)
2.55

Co (seconds) $\quad(\%)$ (ppmvd) (ppmvd)

27930	11.91

2.55
2.61 0.93
27960
27990
28020
28050
28080

28140
28170
28200

Florida Power and Light
March 17, 2011
Mitsubishi, 501G, Unit 3A
West County Energy Center

Base Wdb Load, Run - 10				
Date/Time	Elapsed Time	O_{2}	NOx	CO
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/17/11 14:58:07	29730	12.03	2.61	0.87
03/17/11 14:58:37	29760	12.01	2.57	0.87
03/17/11 14:59:07	29790	11.97	2.60	0.85
03/17/11 14:59:37	29820	11.97	2.70	0.74
03/17/11 15:00:07	29850	12.02	2.66	0.81
03/17/11 15:00:37	29880	12.03	2.59	0.78
03/17/11 15:01:07	29910	12.02	2.49	0.83
03/17/11 15:01:37	29940	12.00	2.46	0.72
03/17/11 15:02:07	29970	11.95	2.50	0.73
03/17/11 15:02:37	30000	11.91	2.56	0.71
03/17/11 15:03:07	30030	12.01	2.57	0.88
03/17/11 15:03:37	30060	12.04	2.37	0.98
03/17/11 15:04:07	30090	12.09	2.18	0.99
03/17/11 15:04:37	30120	12.09	2.08	1.01
03/17/11 15:05:07	30150	12.07	2.09	0.94
03/17/11 15:05:37	30180	12.07	2.23	0.99
03/17/11 15:06:07	30210	12.04	2.32	0.94
03/17/11 15:06:37	30240	12.04	2.39	0.84
03/17/11 15:07:07	30270	12.06	2.41	0.78
03/17/11 15:07:37	30300	12.03	2.41	0.80
03/17/11 15:08:07	30330	12.00	2.47	0.84
03/17/11 15:08:37	30360	11.99	2.52	0.70
03/17/11 15:09:07	30390	12.02	2.53	0.69
03/17/14 15:09:37	30420	12.03	2.47	0.75
03/17/11 15:10:07	30450	12.07	2.36	0.88
03/17/11 15:10:37	30480	12.09	2.23	0.80
03/17/11 15:11:07	30510	12.07	2.14	0.90
03/17/11 15:11:37	30540	12.05	2.21	0.95
03/17/11 15:12:07	30570	12.04	2.30	0.82
03/17/11 15:12:37	30600	12.04	2.43	0.78
03/17/11 15:13:07	30630	12.11	2.45	0.83
03/17/11 15:13:37	30660	12.11	2.40	0.80
03/17/11 15:14:07	30690	12.09	2.39	0.86
03/17/11 15:14:37	30720	12.07	2.43	0.72
03/17/11 15:15:07	30750	12.07	2.52	0.78
03/17/11 15:15:37	30780	12.07	2.55	0.80
03/17/11 15:16:07	30810	12.08	2.55	0.80
03/17/11 15:16:37	30840	12.09	2.51	0.69
03/17/11 15:17:07	30870	12.10	2.46	0.69
03/17/11 15:17:37	30900	12.05	2.43	0.72
03/17/11 15:18:07	30930	12.09	2.49	0.89
03/17/11 15:18:37	30960	12.12	2.40	0.85
RAW AVERAGE		12.05	2.43	0.82

APPENDIX C

CALIBRATION GAS CERTIFICATIONS

RATA CLASS

AIR LIQUIDE Air Liquide America $\begin{gathered}\text { Specialy Gases LLC } \\ \text { SSO } \\ \text { Scott' }\end{gathered}$

Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory
P.O. No.: ALAS-55510

AIR LIOUIDE AMERICA SPECIALTY GASES LLC Project No.: 05-86523-002
1290 COMBERMERE STREET
TROY, MI 48083

```
Customer
AIR LIQUIDE AMERICA L.P.
AIR HYGIENE
1319 NORTH PEORIA AVE
TULSA OK 74106
```

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM019345 Certification Date: 05Apr2010 Exp. Date: 04Apr2013

Cylinder Pressure***: 2000 PSIG

ANALYTICAL

COMPONENT	CERTIFIED CONCENTRATION (Moles)		ACCURACY** TRACEABILITY CARBON DIOXIDE 8.91$\%$	$+/-1 \%$	Direct NIST and VSL
OXYGEN	12.1	$\%$	$+/-1 \%$	Direct NIST and VSL	

NITROGEN
BALANCE
*** Do not use when cylinder pressure is below 150 psig.
*" Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1.997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2300	01Nov2010	10002807	23.04 \%	CARBON DIOXIDE
NTRM 2350	01 Dac 2011	K016398	23.20 \%	OXYGEN
INSTRUMENTATION				
INSTRUMENT/M	E/SERIAL\#		DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
PIR/2000/609015			01Apr2010	NDIR
CAI/110P/V03018			17Mar2010	PARAMAGNETIC

ANALYZER READINGS

First Triad Analysis $\quad(Z=$ Zero	$\mathrm{R}=$ Reference $\mathrm{Gas} \mathrm{T}=$ Test Gas Second Triad Analysis	$\begin{aligned} & \mathrm{r}=\text { Correlation Coefficient) } \\ & \text { Calibration Curve } \end{aligned}$
CARBON DIOXIDE		
Date: 09Apr2010 Responso Unit:MV $\mathrm{Z} 1=0.00000$ $\mathrm{R} 1=100.0000$ $\mathrm{r} 1=56.20000$ $\mathrm{R} 2=100.0000$ $\mathrm{Z} 2=0.00000$ $\mathrm{r} 2=56.16000$ $\mathrm{Z3}=0.00000$ $\mathrm{~T} 3=56.24000$ $\mathrm{R} 3=100.1500$ Avg. Concentration: 8.916 $\%$		$\begin{array}{ll} \text { Concentration }=A+B x+C \times 2+D \times 3+E \times 4 \\ r=0.999989193 & \\ \text { Constants: } & A=-0.00227705 \\ B=0.142642211 & C=-0.0004657 \\ D=0.0000133988 & E=0 \end{array}$
OXYGEN		
Date: O9Apr2010 Response Untt:\% $\mathrm{Z1}=\mathbf{0 . 0 0 0 0 0}$ $\mathrm{R} 1=23.20000$ $\mathrm{~T} 1=12.11000$ $\mathrm{R} 2=23.20000$ $\mathrm{Z} 2=0.00000$ $\mathrm{~T} 2=12.10000$ $\mathrm{Z3}=0.00000$ $\mathrm{~T} 3=12.09000$ $\mathrm{R3}=23.19000$ Avg. Concontration: 12.08 $\%$.	$\begin{array}{ll} \text { Concantration }=A+B \times C \times 2+D \times 3+E \times 4 \\ I=0.9999996862 & \\ \text { Constants: } & A=-0.0380161 \\ B=1.001181055 & C=0 \\ D=0 & E=0 \end{array}$

RATA CLASS

Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory	P.O. No.: ALAS-56936	Customer
AIR LIQUIDE AMERICA SPECIALTY GASES LLC Project No.: $05-88735-006$	AIR LIQUIDE AMERICA L.P.	
1290 HYGIENE		
TROY, MI 48083		1319 NORTH PEORIA AVE
		TULSA OK 74106

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

| Cylinder Number: | ALM004185 | Certification Date: | 21Jun2010 |
| :--- | :--- | :--- | :--- |\quad Exp. Date: 20Jun2013

Cylinder Pressure**: 2000 PSIG

ANALYTICAL

*** Do not use when cylinder pressure is below 150 psig.
** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.
REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2300	01Nov2010	10002807	23.04 \%	CARBON DIOXIDE
NTRM 2350	01 Dec 2011	K016398	23.20 \%	OXYGEN
INSTRUMENTATION				
INSTRUMENT/M	L/SERIAL\#		DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
PIR/2000/609015			07Jun2010	NDIR
CAl/110P/V03018			11 Jun2010	PARAMAGNETIC

ANALYZER READINGS

First Trlad Analysis

$Z=$ Zero Gas	$R=$ Reference Gas $\quad T=$ Test Gas	$r=$ Correlation Coefficient)
Second Triad Analysis	Calibration Curve	

CARBON DIOXIDE

Date: 21 Jun2010	Response		Unit:MV
$Z 1=0.00000$	$R 1=100.0000$	$T 1=\mathbf{9 0 . 4 2 0 0 0}$	
$R 2=100.0000$	$Z 2=0.00000$	$T 2=\mathbf{9 0 . 6 0 0 0 0}$	
$Z 3=\mathbf{0 . 0 0 0 0 0}$	$\mathrm{T3}=\mathbf{9 0 . 5 0 0 0 0}$	$\mathrm{R3}=\mathbf{1 0 0 . 0 0 0 0}$	
Avg. Concentration:	19.07	$\%$	

| Concentration $=A+B x+C \times 2+D \times 3+E \times 4$
 $r=0.999986$
 Constants: $A=-0.00585731$
 $B=0.131065652$ $C=-0.0001375$
 $D=1.12705 E-05$ $E=0$ |
| :--- | :--- |

OXYGEN

Concontration $=A+B x+C \times 2+D \times 3+E \times 4$	
$\mathrm{I}=0.999999$	
Constants:	$A=-0.00484606$
$B=0.999830474$	$C=0$
$D=0$	$E=0$

RATA CLASS

Dual-Analyzed Calibration Standard

Phone: 248-589-2950
Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No.: 11010210

Customer
AIR LIOUIDE AMERICA SPECIALTY GASES LLC P.O. No.: 11010210
1290 COMBERMERE STREET
AIR HYGIENE INTERNATIONAL
MIKE SCOTT
5634 S 122 ND E AVE
TULSA OK 74146
us

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number:	AAL191	Certification Date:	15Feb2011 Exp. Date: 16 Aug2011
Cylinder Pressure**:	1950 PSIG		Ex

Cylider Prossure**:

NITRIC OXIDE

CARBON MONOXIDE
NITROGEN - OXYGEN FREE
TOTAL OXIDES OF NITROGEN

ACCURACY** TRACEABILITY
$+1-1 \%$

+ + 1%
Direct NIST and VSL
Direct NIST and VSL

Reference Value Only
*** Do not use when cyllinder pressure is below 150 psig.
** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD

Special Notes:
AHO7O
APPROVED BY

Air Liquide America Specialty Gases LLC

RATA CLASS
Dual-Analyzed Calibration Standard

Phone: 248-589-2950

CERTIFICATE OF ACCURACY: Interference Free ${ }^{\text {IM }}$ Multi-Component EPA Protocol Gas

Assay Laboratory
P.O. No.: ALASG-55510 $\frac{\text { Customer }}{\text { AIR LIQUIDE AMERICA L.P. }}$
Project No.: 05-86916-005
AIR LIQUIDE AMERICA SPECIALTY GASES LLC 1290 COMBERMERE STREET TROY, MI 48083
AIR HYGIENE
1319 NORTH PEORIA AVE
TULSA OK 74106

P

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: AAL13310 Certification Date: 22Apr2010 Exp. Date: 21 Apr2012
Cylinder Pressure* * : 2015 PSIG

COMPONENT	CERTIFIED CON	CONCENTRATION (Moles)	$\frac{\text { ACCURACY** }}{+-1 \%}$	TRACEABILITY	
CARBON MONOXIDE	12.1	PPM		Direct NIST and	VSL
NITRIC OXIDE	12.1	PPM	+/-1\%	Direct NIST and	VSL
NITROGEN - OXYGEN FREE		BALANC			
TOTAL OXIDES OF NITROGEN	12.1	PPM		Reference Value	e Only

** Do not use when cylinder pressure is below 150 psig.
.--Analytical-"accuracy-is-based-on-the-requirements-of-EPA-Protocol-Procedure-G.1,September. 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE
	$020 \mathrm{ct2010}$
NTRM 2629	01 Jun2010

$\frac{\text { CYLINDER NUMBER }}{\text { KALOO3166 }}$ KAL004325

CONCENTRATION
25.21 PPM
20.36 PPM

COMPONENT CARBON MONOXIDE NITRIC OXIDE

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL\#	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
FTiR//0928621	02Apr2010	FTIR
ECO PHYSICS/CLD 84M/84M0359	19Apr2010	CHEM

ANALYZER READINGS

($Z=$ Zero Gas $\quad R=$ Reference Gas $T=$ Test Gas $\quad r=$ Correlation Coefficient)
First Triad Analysis
Second Triad Analysis
Calibratlon Curve
CARBON MONOXIDE

Date: 14Apr2010 Response Unit:PPM

$Z 1=-0.05307$	$\mathrm{R} 1=25.30663$	$\mathrm{~T} 1=12.10338$
$\mathrm{R} 2=25.31267$	$\mathrm{Z} 2=-0.05306$	$\mathrm{~T} 2=12.12388$
$Z 3=-0.03830$	$\mathrm{~T} 3=12.14423$	$\mathrm{R} 3=25.34334$
Avg. Concentration: 12.09	PPM	

NITRIC. OXIDE
Date: 14Apr2010 Response Unit:MV $\mathrm{Z} 1=0.00000 \quad \mathrm{R} 1=20.33000 \quad \mathrm{~T} 1=12.05000$ $\mathrm{R} 2=20.35000 \quad \mathrm{Z2}=0.00000 \quad \mathrm{~T} 2=12.05000$ $\mathrm{Z3}=0.00000 \quad \mathrm{~T} 3=12.05000 \quad \mathrm{R} 3=20.34000$ Avg. Concentration: 12.11 PFM

Date: 21Apr2010 Response Unit: PPM
$\mathrm{Z} 1=-0.06291 \quad \mathrm{R} 1=25.26965 \quad \mathrm{~T} 1=12.17129$ $R 2=25.30621 \quad Z 2=-0.02751 \quad T 2=12.19590$ $Z 3=0.02191 \quad T 3=12.19939 \quad \mathrm{R} 3=25.34779$ Avg. Concentration: 12.15 PPM

Date: 21Apr2010 Response Unit: MV $\mathrm{Z} 1=0.00000 \quad \mathrm{R} 1=20.29000 \quad \mathrm{~T} 1=11.96000$ $R 2=20.28000 \quad \mathrm{Z2}=0.00000 \quad \mathrm{~T} 2=11.96000$ $\mathrm{Z3}=0.00000 \quad \mathrm{~T} 3=11.96000 \quad \mathrm{R} 3=20.29000$ Avg. Concentration: 12.04 PPM

Concentration $=A+B x+C \times 2+D \times 3+E x 4$ =9.99986E-1
Constants: $\quad A=0.00000 E+0$
$B=8.81389 \mathrm{E}-1 \quad \mathrm{C}=5.84000 \mathrm{E}-4$ $D=1.00000 E-6 \quad E=0.00000 E+0$

Concentration $=\mathrm{A}+\mathrm{Bx}+\mathrm{C} \times 2+\mathrm{Dx} 3+\mathrm{Ex} 4$ $\mathrm{r}=0.999989$
Constants:
$A=0.052499$
$\mathrm{B}=0.998591 \quad \mathrm{C}=0.000000$
$D=0.000000 \quad E=0.000000$

Special Notes: AHO72 Lot Number: 0586916005
APPROVED BY:

Air Liquide America Specialty Gases LLC

COMPLIANCE CLASS

Phone: 248-589-2950
Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory		Customer
	P.O. No.: ALAS-59094	AIR LIQUIDE AMERICA L.P.
AIR LIQUIDE AMERICA SPECIALTY GASES LLC	Project No.:	05-91737-001
1290 COMBERMERE STREET		AIR HYGIENE
TROY. MI 48083		1319 NORTH PEORIA AVE
		TULSA OK 74106

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997. Cylinder Number: \quad ALMO41691 \quad Certification Date: 28 Sep2010 Exp. Date: $29 \mathrm{Mar2011}$
Cylinder Pressure***: 1950 PSIG
$\frac{\text { CERTIFIED CONCENTRATION (Moles) }}{48.2 \quad \text { PPM }}+\frac{\text { ACCURACY * }}{}+\frac{\text { TRACEABILITY }}{}$

NITROGEN DIOXIDE
NITROGEN

ACCURACY** TRACEABILITY
*** Do not use when cylinder pressure is below 150 psig.
** Analytical accuracy is based on the requirements of EPA Protocol procedures , September 1997.

REFERENCE STANDARD
TYPE/SRM NO. EXPIRATION DATE
CYLINDER NUMBER AAL069467

CONCENTRATION

COMPONENT NITROGEN DIOXIDE

INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
AMETEK 921/921 CE NO2/AW-921-S281

DATE LAST CALIBRATED
17 Sep2010

ANALYTICAL PRINCIPLE UV

Special Notes: PART\# AH032 RANGE: 45-50 PPM
APPROVED BY:

APPENDIX D

QA/QC PROGRAM

Air Hygiene ensures the quality and validity of its emission measurement and reporting procedures through a rigorous quality assurance (QA) program. The program is developed and administered by an internal QA tean and encompasses five major areas:

1. QA reviews of reports, laboratory work, and field testing
2. Equipment calibration and maintenance
3. Chain-of-custody
4. Training
5. Knowledge of current test methods

Each of these areas is discussed individually below.

QA Reviews

Air Hygiene's review procedure includes review of each source test report, along with laboratory and fieldwork, by the QA Team. The most important review is the one that takes place before a test program begins. The QA Team works closely with technical division personnel to prepare and review test protocols. Test protocol review includes selection of appropriate test procedures, evaluation of interferences or other restrictions that might preclude use of standard test procedures, and evaluation and/or development of alternate procedures.

Equipment Calibration and Maintenance

The equipment used to c onduct the em ission measurements is m aintained according to the manufacturer's instructions to ensure proper operation. In addition to the maintenance program, calibrations are carried out on each measurement device according to the schedule outlined by the Environmental Protection Agency. Quality control checks are also conducted in the field for each test program.

Chain-of-Custody

Air Hygiene maintains full chain-of-custody documentation on all samples and data sheets. In ad dition to normal documentation of changes between field sample custodians, laboratory personnel, and field test personnel, Air Hygiene documents every individual who handles any test component in the field (e.g., probe wash, impinger loading and recovery, filter loading and rec overy, etc.). Samples are stored in a locked area to which only Air Hygiene personnel have access. Field data sheets are secured at Air Hygiene's offices upon return from the field.

Training

Personnel's training is essential to ensure quality testing. Air Hygiene has formal and informal training programs, which include:

1. Attendance at EPA-sponsored training courses
2. Enrollment in EPA correspondence courses

3 A requirement for all technicians to read and understand Air Hygiene's QA manual
4. In-house training and QA meetings on a regular basis
5. Maintenance of training records

Knowledge of Current Test Methods

With the constant updating of standard test methods and the wide variety of emerging test procedures, it is essential that any qualified source tester keep abreast of ne w developments. Air Hygiene subscribes to services, which provide updates on EPA re ference methods, rules, and regulations. Additionally, source test personnel regularly attend and present papers at testing and emission-related seminars and confere nces. Air Hygie ne personnel maintain membership in the Air and Waste Management Association and the American Industrial Hygiene Association.

COMBUSTION TESTING QUALITY ASSURANCE ACTIVITIES

A number of quality assurance activities were undertaken before, during, and after th is testing project. This section of the report combined with the documentation in Appendix C describes each of those activities.

Each instrument's response was checked and adjusted in the field prior to the collection of data via multi-point calibration. The instrument's linearity was checked by adjusting its zero and span responses to zero nitrogen and an upscale calibration gas in the range of the expected concentrations. The instrument response was then challenged with other calibration gases of known concentration and accepted as being linear if the response of the other calibration gases agreed within plus or minus two percent of the range of predicted values. NO_{2} to NO conversion was checked via direct connect with an EPA Protocol certified concentration of NO_{2} in a balance of nitrogen. Conversion was verified to be between 90 and 110 percent.

After each test run, the analyzers were checked for zero and span drift. This allowed each test run to be bracketed by calibrations and documents the precision of the data just co llected. The criterion for acceptable data is that the instrument drift is no more than three percent of the full-scale response. The quality assurance worksheets in the following pages summarize all multipoint calibration checks and zero to spa n checks performed during the tests. These worksheets (as prepared from the data records of Appendix A) show that no drifts in excess of three percent occurred in the zero to span checks following each test run.

The sampling systems were leak checked by demonstrating that a vacuum greater than 10 in Hg could be held for at least one minute with a decline of less than one inch of Hg . A leak test was conducted after the sample system was set up and before the system was dismantled. This test was con ducted to ensure that ambient air had not diluted the sample. Any leakage detected prior to the tests would be repaired and another leak check conducted before testing commenced. No leaks were found during the pre or post-test leak checks.

The absence of leaks in the sampling system was also verified by a sampling system bias check. The sampling system's integrity was tested by comparing the responses of the analyzers to the calibration gases introduced via two paths. The first path was directly into the analyzer and the second path via the sample system at the sample probe. Any difference in the instrument responses by these two methods was attributed to sampling system bias or leakage. The criterion for acceptance is agreement within five percent of the span of the analyzer.

The control gases used to calibrate the instruments were analyzed and certified by the compressed gas vendors to plus or minus one percent accuracy for all gases. EPA Protocol No. I was used, where applicable to assign the concentration values traceable to the National Institute of Stan dards and Technology (NIST), Stand ard Reference Materials (SRM's). The gas calibration sheets as prepared by the vendor are contained in Appendix C.

Air Hygiene collected and reported the enclosed test data in accordance with the procedures and quality assurance activities described in this test report. Air Hygiene makes no warranty as to the suitability of the test methods. Air Hygiene also assumes no liability relating to the interpretation and use of the test data.

INSTRUMENTAL ANALYSIS QUALITY ASSURANCE DATA

Date:

March 16-17, 2011
Company: Florida Power and Light
Location: Loxahatchee, Florida
Techs:
JRF
Sample System Leak Check

Date	Sample System	Leak Rate (l/min)
March 16-17, 2011	1	0

Calibration Date: March 16, 2011
Client: Florida Power and Light
NOx Span (ppm) $=12.10$

THERMO 42i-HL (NOx Analyzer)					
Certified Concentration (ppm)	Instrument Response (ppm)	Calibration Error $(\%)$	Absolute Conc. (ppm)	Pass or Fail ($\mathbf{2 \%} \%$, s0.5ppm)	
0.00	0.04	0.33	0.04	YES (\%)	
4.93	5.00	0.58	0.07	YES (\%)	
12.10	12.17	0.58	0.07	YES (\%)	

CO Span $(\mathrm{ppm})=12.10$				
THERMO 48i (CO Analyzer)				
Certified Concentration (ppm)	Instrument Response (ppm)	Calibration Error (\%)	Absolute Conc. (ppm)	Pass or Fail ($\mathbf{\pm} 2 \%$, s0.5ppm)
0.00	-0.10	-0.83	0.10	YES (\%)
4.92	5.16	1.98	0.24	YES (\%)
12.10	12.22	0.99	0.12	YES (\%)
Linearity $=0.984$				

NOx Converter Efficiency

Date: March 16, 2011
Analyzer: INST-N2-0001

RM 7E, (12-17-09), Sections 7.1.4; 8.2.4.1; 12.7; and 13.5 Introduce NO_{2} to the analyzer and record the NOx concentration displayed. ... Calculate the converter efficiency using Equation 7E-7. The specification for converter efficiency must be met. ... Air Hygiene also references ALT-0013 for specific NO_{2} concentration ($40-60 \mathrm{ppm}$) and EPA Traceability Protocol requirements ($\pm 2 \%$).

Audit Gas: $\quad \mathrm{NO}_{2}$ Concentration $\left(\mathrm{C}_{\mathrm{v}}\right)$, ppmvd 48.20 Converter Efficiency Calculations:

Analyzer Reading, NO Channel, ppmvd 2.29
Analyzer Reading, NOx Channel, ppmvd 46.76
Analyzer Reading, NO_{2} Channel ($\mathrm{C}_{\text {Dir(NO2) }}$), ppmvd 44.47
Converter Efficiency, \% 92.26

RM 7E, (08-15-06), 13.5 NO2 to NO Conversion Efficiency Test (as applicable). The NO2 to NO conversion efficiency, calculated according to Equation 7E-7 or Equation 7E-9, must be greater than or equal to 90 percent.

$$
E f f_{\mathrm{NO} 2}=\left(\frac{C_{D i r}}{C_{V}}\right) \times 100 \quad \text { Eq. } 7 \mathrm{E}-7=\frac{44.47 \mathrm{ppmvd}}{48.20 \mathrm{ppmvd}} \times 100=92.26 \%
$$

Date/Time	Elapsed Time	NOx	NO
mm/dd/yy hh:mm:ss	Seconds	ppmvd	ppmvd
$03 / 16 / 1107: 01: 26$	1020	9.72	4.66
$03 / 16 / 11$ 07:01:56	1050	34.26	3.23
$03 / 16 / 1107: 02: 26$	1080	43.88	2.78
$03 / 16 / 1107: 02: 56$	1110	45.57	2.52
$03 / 16 / 1107: 03: 26$	1140	46.29	2.36
$03 / 16 / 1107: 03: 56$	1170	46.76	2.29
$03 / 16 / 1107: 04: 26$	1200	38.01	1.89

Calibration Date: March 17, 2011
Client: Florida Power and Light

NOX Span (ppm) $=12.10$

THERMO 42i-HL (NOX Analyzer)						
Certified Concentration (ppm)	Instrument Response (ppm)	Calibration Error (\%)	Absolute Conc. (ppm)	Pass or Fail ($\pm 2 \%, ~$ s0.5ppm)		
0.00	0.04	0.33	0.04	YES (\%)		
4.93	5.02	0.74	0.09	YES (\%)		
12.10	12.25	1.24	0.15	YES (\%)		
Linearity $=0.991$						

CO Span (ppm) $=12.10$

THERMO 48i (CO Analyzer)						
Certified Concentration (ppm)	Instrument Response (ppm)	Calibration Error (\%)	Absolute Conc. (ppm)	Pass or Fail ($\pm 2 \%$, s0.5ppm)		
0.00	0.05	0.41	0.05	YES (\%)		
4.92	5.04	0.99	0.12	YES (\%)		
12.10	12.04	-0.50	0.06	YES (\%)		
Linearity $=1.010$						

O2 Span (\%) = 21.10				
THERMO 42i-HL (O_{2} Analyzer)				
Certified Concentration (\%)	Instrument Response (\%)	Calibration Error (\%)	Absolute Conc. (\%)	Pass or Fail ($\pm 2 \%$, 50.5\%)
0.00	0.01	0.05	0.01	YES (\%)
12.10	12.18	0.38	0.08	YES (\%)
21.10	21.40	1.42	0.30	YES (\%)
Linearity $=0.987$				

NOx Converter Efficiency

Date: March 17, 2011
Analyzer: INST-N2-0001

RM 7E, (12-17-09), Sections 7.1.4; 8.2.4.1; 12.7; and 13.5 Introduce NO_{2} to the analyzer and record the NOx concentration displayed. ... Calculate the converter efficiency using Equation 7E-7. The specification for converter efficiency must be met. ... Air Hygiene also references ALT-0013 for specific NO_{2} concentration (40-60 ppm) and EPA Traceability Protocol requirements ($\pm 2 \%$).
Audit Gas: $\quad \mathrm{NO}_{2}$ Concentration $\left(\mathrm{C}_{\mathrm{v}}\right)$, ppmvd 48.20 Converter Efficiency Calculations:
Analyzer Reading, NO Channel, ppmvd 1.78
Analyzer Reading, NOx Channel, ppmvd 48.74
Analyzer Reading, NO_{2} Channel ($\mathrm{C}_{\text {Dir(NO2) }}$), ppmvd 46.96
Converter Efficiency, \% 97.43

RM 7E, (08-15-06), 13.5 NO2 to NO Conversion Efficiency Test (as applicable). The NO2 to NO conversion efficiency, calculated according to Equation 7E-7 or Equation 7E-9, must be greater than or equal to 90 percent.

$$
E f f f_{N O 2}=\left(\frac{C_{D i r}}{C_{V}}\right) \times 100 \quad \text { Eq. } 7 \mathrm{E}-7=\frac{46.96 \mathrm{ppmvd}}{48.20 \text { ppmvd }} \times 100=97.43 \%
$$

Date/Time	Elapsed Time	NOx	NO
mm/dd/yy hh:mm:ss	Seconds	ppmvd	ppmvd
$03 / 17 / 1107: 06: 07$	1410	24.33	3.36
$03 / 17 / 1107: 06: 37$	1440	44.94	1.98
$03 / 17 / 1107: 07: 07$	1470	47.42	1.93
$03 / 17 / 1107: 07: 37$	1500	47.99	1.89
$03 / 17 / 1107: 08: 07$	1530	48.32	1.87
$03 / 17 / 1107: 08: 37$	1560	48.48	1.84
$03 / 17 / 1107: 09: 07$	1590	48.55	1.81
$03 / 17 / 1107: 09: 37$	1620	48.66	1.80
$03 / 17 / 1107: 10: 07$	1650	48.74	1.78
$03 / 17 / 1107: 10: 37$	1680	39.63	1.45

DRIFT AND BIAS CHECK				
Strat Test Pre and Post QAQC Check	02	CO	NOx	
Initial Zero	0.00	0.11	0.12	
Final Zero	0.02	-0.53	0.10	
Avg. Zero	0.01	-0.21	0.11	
Initial UpScale	12.24	5.00	4.84	
Final UpScale	12.11	4.77	4.84	
Avg. UpScale	12.18	4.89	4.84	
Sys Resp (Zero)	0.01	-0.10	0.04	
Sys Resp (Upscale)	12.39	5.16	5.00	
Upscale Cal Gas	12.10	4.92	4.93	
Initial Zero Bias	-0.05%	1.74%	0.66%	
Final Zero Bias	0.05%	-3.55%	0.50%	
Zero Drift	0.09%	5.29%	0.17%	
Initial Upscale Bias	-0.71%	-1.32%	-1.32%	
Final Upscale Bias	-1.33%	-3.22%	-1.32%	
Upscale Drift	0.62%	1.90%	0.00%	
Initial Zero	0.01	0.21	0.08	
Final Zero	0.01	0.43	0.06	
Initial Upscale	0.15	0.16	0.16	
Final Upscale	0.28	0.39	0.16	
Calibration Span	21.10	12.10	12.10	
3\% of Range (drift)	0.63	0.36	0.36	
5\% of Range (bias)	1.06	0.61	0.61	

DRIFT AND BIAS CHECK			
Base Load, Run - 1	O_{2}	NOX	CO
Raw Average	13.16	2.50	0.36
Corrected Average	13.09	2.51	0.89
Initial Zero	0.02	0.10	-0.53
Final Zero	0.16	0.13	-0.65
Avg. Zero	0.09	0.12	-0.59
Initial UpScale	12.11	4.84	4.77
Final UpScale	12.23	4.76	4.56
Avg. UpScale	12.17	4.80	4.67
Sys Resp (Zero)	0.01	0.04	-0.10
Sys Resp (Upscale)	12.39	5.00	5.16
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	0.05\%	0.50\%	-3.55\%
Final Zero Bias	0.71\%	0.74\%	-4.55\%
Zero Drift	0.66\%	0.25\%	0.99\%
Initial Upscale Bias	-1.33\%	-1.32\%	-3.22\%
Final Upscale Bias	-0.76\%	-1.98\%	-4.96\%
Upscale Drift	0.57\%	0.66\%	1.74\%
¢ ¢ Initial Zero	0.01	0.06	0.43
	0.15	0.09	0.55
	0.28	0.16	0.39
¢ ¢0 \% Final Upscale	0.16	0.24	0.60
Calibration Span	21.10	12.10	12.10
3\% of Cal. Span (drift)	0.63	0.36	0.36
5\% of Cal. Span (bias)	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Load, Run - 2	O_{2}	NOX	CO
Raw Average	13.27	2.44	0.89
Corrected Average	13.10	2.46	0.91
Initial Zero	0.16	0.13	0.07
Final Zero	0.31	0.16	-0.28
Avg. Zero	0.24	0.15	-0.11
Initial UpScale	12.23	4.76	4.99
Final UpScale	12.32	4.71	5.55
Avg. UpScale	12.28	4.74	5.27
Sys Resp (Zero)	0.01	0.04	-0.10
Sys Resp (Upscale)	12.39	5.00	5.16
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	0.71\%	0.74\%	1.40\%
Final Zero Bias	1.42\%	0.99\%	-1.49\%
Zero Drift	0.71\%	0.25\%	2.89\%
Initial Upscale Bias	-0.76\%	-1.98\%	-1.40\%
Final Upscale Bias	-0.33\%	-2.40\%	3.22\%
Upscale Drift	0.43\%	0.41\%	4.63\%
¢ ¢ Initial Zero	0.15	0.09	0.17
	0.30	0.12	0.18
	0.16	0.24	0.17
く ¢0\% Final Upscale	0.07	0.29	0.39
Calibration Span	21.10	12.10	12.10
3\% of Cal. Span (drift)	0.63	0.36	0.36
5\% of Cal. Span (bias)	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Load，Run－ 3	O_{2}	NOx	CO
Raw Average	13.40	2.48	0.48
Corrected Average	13.21	2.51	0.67
Initial Zero	0.31	0.16	－0．28
Final Zero	0.45	0.19	－0．14
Avg．Zero	0.38	0.18	－0．21
Initial UpScale	12.32	4.71	4.96
Final UpScale	12.30	4.68	4.71
Avg．UpScale	12.31	4.70	4.84
Sys Resp（Zero）	0.01	0.04	－0．10
Sys Resp（Upscale）	12.39	5.00	5.16
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	1．42\％	0．99\％	－1．49\％
Final Zero Bias	2．09\％	1．24\％	－0．33\％
Zero Drift	0．66\％	0．25\％	1．16\％
Initial Upscale Bias	－0．33\％	－2．40\％	－1．65\％
Final Upscale Bias	－0．43\％	－2．64\％	－3．72\％
Upscale Drift	0．09\％	0．25\％	2．07\％
\％Initial Zero	0.30	0.12	0.18
动苞言 Final Zero	0.44	0.15	0.04
	0.07	0.29	0.20
	0.09	0.32	0.45
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Load，Run－ 4	O_{2}	NOx	CO
Raw Average	12.88	2.41	1.17
Corrected Average	13.03	2.37	1.08
Initial Zero	0.00	0.01	0.11
Final Zero	－0．08	－0．01	0.03
Avg．Zero	－0．04	0.00	0.07
Initial UpScale	11.96	5.03	5.00
Final UpScale	11.96	4.98	5.08
Avg．UpScale	11.96	5.01	5.04
Sys Resp（Zero）	0.01	0.04	－0．10
Sys Resp（Upscale）	12.39	5.00	5.16
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	－0．05\％	－0．25\％	1．74\％
Final Zero Bias	－0．43\％	－0．41\％	1．07\％
Zero Drift	0．38\％	0．17\％	0．66\％
Initial Upscale Bias	－2．04\％	0．25\％	－1．32\％
Final Upscale Bias	－2．04\％	－0．17\％	－0．66\％
Upscale Drift	0．00\％	0．41\％	0．66\％
¢ ．$\overline{\text { c }}$ Initial Zero	0.01	0.03	0.21
誫亭老 Final Zero	0.09	0.05	0.13
	0.43	0.03	0.16
＜	0.43	0.02	0.08
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Wdb Load，Run－ 5	O_{2}	NOx	CO
Raw Average	12.70	2.58	0.77
Corrected Average	12.47	2.45	0.75
Initial Zero	0.03	0.18	0.13
Final Zero	0.47	0.18	－0．16
Avg．Zero	0.25	0.18	－0．02
Initial UpScale	12.12	5.06	5.28
Final UpScale	12.54	4.96	5.01
Avg．UpScale	12.33	5.01	5.15
Sys Resp（Zero）	0.01	0.04	0.05
Sys Resp（Upscale）	12.18	5.02	5.04
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	0．09\％	1．16\％	0．66\％
Final Zero Bias	2．18\％	1．16\％	－1．74\％
Zero Drift	2．09\％	0．00\％	2．40\％
Initial Upscale Bias	－0．28\％	0．33\％	1．98\％
Final Upscale Bias	1．71\％	－0．50\％	－0．25\％
Upscale Drift	1．99\％	0．83\％	2．23\％
\％\％Initial Zero	0.02	0.14	0.08
完苞言 Final Zero	0.46	0.14	0.21
产	0.06	0.04	0.24
＜${ }_{\text {¢ }}$ ¢ Final Upscale	0.36	0.06	0.03
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61
DRIFT AND BIAS CHECK			
Base Wdb Load，Run－ 6	O_{2}	NOx	CO
Raw Average	12.86	2.59	0.52
Corrected Average	12.36	2.50	0.73
Initial Zero	0.47	0.18	－0．16
Final Zero	0.60	0.16	－0．34
Avg．Zero	0.54	0.17	－0．25
Initial UpScale	12.54	4.96	5.01
Final UpScale	12.65	4.92	4.73
Avg．UpScale	12.60	4.94	4.87
Sys Resp（Zero）	0.01	0.04	0.05
Sys Resp（Upscale）	12.18	5.02	5.04
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	2．18\％	1．16\％	－1．74\％
Final Zero Bias	2．80\％	0．99\％	－3．22\％
Zero Drift	0．62\％	0．17\％	1．49\％
Initial Upscale Bias	1．71\％	－0．50\％	－0．25\％
Final Upscale Bias	2．23\％	－0．83\％	－2．56\％
Upscale Drift	0．52\％	0．33\％	2．31\％
¢ ．	0.46	0.14	0.21
	0.59	0.12	0.39
彦	0.36	0.06	0.03
く边 Final Upscale	0.47	0.10	0.31
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Wdb Load，Run－ 7	O_{2}	NOx	CO
Raw Average	12.15	2.70	0.64
Corrected Average	12.35	2.63	0.80
Initial Zero	0.02	0.16	－0．34
Final Zero	－0．29	0.09	－0．05
Avg．Zero	－0．14	0.13	－0．20
Initial UpScale	12.03	4.92	4.73
Final UpScale	11.78	4.98	5.13
Avg．UpScale	11.91	4.95	4.93
Sys Resp（Zero）	0.01	0.04	0.05
Sys Resp（Upscale）	12.18	5.02	5.04
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	0．05\％	0．99\％	－3．22\％
Final Zero Bias	－1．42\％	0．41\％	－0．83\％
Zero Drift	1．47\％	0．58\％	2．40\％
Initial Upscale Bias	－0．71\％	－0．83\％	－2．56\％
Final Upscale Bias	－1．90\％	－0．33\％	0．74\％
Upscale Drift	1．18\％	0．50\％	3．31\％
¢ ᄃ Initial Zero	0.01	0.12	0.39
记	0.30	0.05	0.10
产	0.15	0.10	0.31
＜${ }_{\text {¢ }}$	0.40	0.04	0.09
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Wdb Load，Run－ 8	O_{2}	NOx	CO
Raw Average	11.93	2.47	0.84
Corrected Average	12.29	2.39	0.84
Initial Zero	－0．29	0.09	－0．05
Final Zero	－0．40	0.10	－0．05
Avg．Zero	－0．35	0.10	－0．05
Initial UpScale	11.78	4.98	5.13
Final UpScale	11.71	4.99	5.17
Avg．UpScale	11.75	4.99	5.15
Sys Resp（Zero）	0.01	0.04	0.05
Sys Resp（Upscale）	12.18	5.02	5.04
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	－1．42\％	0．41\％	－0．83\％
Final Zero Bias	－1．94\％	0．50\％	－0．83\％
Zero Drift	0．52\％	0．08\％	0．00\％
Initial Upscale Bias	－1．90\％	－0．33\％	0．74\％
Final Upscale Bias	－2．23\％	－0．25\％	1．07\％
Upscale Drift	0．33\％	0．08\％	0．33\％
¢ ¢ Initial Zero	0.30	0.05	0.10
苞苞容 Final Zero	0.41	0.06	0.10
	0.40	0.04	0.09
¢ ${ }_{\text {¢ }}$	0.47	0.03	0.13
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Wdb Load，Run－9	O_{2}	NOx	CO
Raw Average	11.94	2.41	0.88
Corrected Average	12.28	2.34	0.88
Initial Zero	－0．40	0.10	－0．05
Final Zero	－0．30	0.08	－0．09
Avg．Zero	－0．35	0.09	－0．07
Initial UpScale	11.71	4.99	5.17
Final UpScale	11.81	4.95	5.28
Avg．UpScale	11.76	4.97	5.23
Sys Resp（Zero）	0.01	0.04	0.05
Sys Resp（Upscale）	12.18	5.02	5.04
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	－1．94\％	0．50\％	－0．83\％
Final Zero Bias	－1．47\％	0．33\％	－1．16\％
Zero Drift	0．47\％	0．17\％	0．33\％
Initial Upscale Bias	－2．23\％	－0．25\％	1．07\％
Final Upscale Bias	－1．75\％	－0．58\％	1．98\％
Upscale Drift	0．47\％	0．33\％	0．91\％
\％¢ Initial Zero	0.41	0.06	0.10
交苞言 Final Zero	0.31	0.04	0.14
产	0.47	0.03	0.13
＜	0.37	0.07	0.24
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

DRIFT AND BIAS CHECK			
Base Wdb Load，Run－ 10	O_{2}	NOx	CO
Raw Average	12.05	2.43	0.82
Corrected Average	12.30	2.38	0.82
Initial Zero	－0．30	0.08	－0．09
Final Zero	－0．18	0.09	－0．03
Avg．Zero	－0．24	0.09	－0．06
Initial UpScale	11.81	4.95	5.28
Final UpScale	11.88	4.92	5.08
Avg．UpScale	11.85	4.94	5.18
Sys Resp（Zero）	0.01	0.04	0.05
Sys Resp（Upscale）	12.18	5.02	5.04
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	－1．47\％	0．33\％	－1．16\％
Final Zero Bias	－0．90\％	0．41\％	－0．66\％
Zero Drift	0．57\％	0．08\％	0．50\％
Initial Upscale Bias	－1．75\％	－0．58\％	1．98\％
Final Upscale Bias	－1．42\％	－0．83\％	0．33\％
Upscale Drift	0．33\％	0．25\％	1．65\％
\％\％Initial Zero	0.31	0.04	0.14
京苞频 Final Zero	0.19	0.05	0.08
	0.37	0.07	0.24
	0.30	0.10	0.04
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

APPENDIX E

STRATIFICATION TEST DATA

Source Information	
Company	Florida Power and Light
Plant Name	West County Energy Center
Equipment	Mitsubishi 501G
Location	Loxahatchee, Florida

| Test Information | |
| ---: | :--- | :--- |
| Date | $03 / 16 / 11$ |
| Project \# | bv-10-westcounty.fl-comp\#2 |
| Unit Number | $3 A$ |
| Load | Base Load |
| Number of Ports Available | 4 |
| Number of Ports Used | 4 |

Stack and Test Type			
0	Isokinetic Traverse (Wet Chemistry Testing)		
0	Velocity Traverse (Flow and Flow RATA Test)		
0	Stratification Traverse (Compliance Test)	\square RM 20	Circular
0	Stratification Traverse (RATA)	\square Part $60 \square$ Part 75	

METHOD 1-STRATIFICATION TEST FOR A CIRCULAR SOURCE			
Company	Florida Power and Light	Date	$03 / 16 / 11$
Plant Name	West County Energy Center	Project \#	bv-10-wesicounty.fl-comp\#2
Equipment	Mitsubishi 501G	\# of Ports Available	4
Location	Loxahatchee, Florida	\# of Ports Used	4

$\|$Circular Stack or Duct Diameter Distance to Far Wall of Stack $\left(\mathrm{L}_{\mathrm{f}}\right)$ 282.38 in. Distance to Near Wall of Stack $\left(\mathrm{L}_{\mathrm{m}}\right)$ 19.00 in. Diameter of Stack (D) 263.38 in. Area of Stack $\left(\mathrm{A}_{s}\right)$ 378.35 ft^{2}
 Distance from Disturbances to Port Distance Upstream (A) 144.00 in. Diameters Upstream $\left(\mathrm{A}_{\mathrm{D}}\right)$ 0.55 diameters Distance Downstream (B) 531.75 in. Diameters Downstream $\left(\mathrm{B}_{\mathrm{D}}\right)$ 2.02 diameters

Number of Traverse Points Required					
Diameters to		Minimum Number of ${ }^{1}$		Minimum Number of	
Flow Disturbance		Traverse Points		Traverse Points	
Down (B_{D})	$\cup \mathrm{p}\left(\mathrm{A}_{\mathrm{p}}\right)$	Particulate	Velocity	Comp Stratification	
Stream	Stream	Points	Points	Criteria	Points
2.00-4.99	0.50-1.24	24	16	R Ras 7E 8.1.2	12 RM1 pts
5.00-5.99	1.25-1.49	20	16	OAR 7E 8.1.2	3 points
6.00-6.99	1.50-1.74	16	12	12 points	
7.00-7.99	1.75-1.99	12	12		
$>=8.00$	>=2.00	8 or 12^{2}	8 or 12^{2}	Minimum Number of	
Upstream Spec		24	16	Traverse Points	
Downstream Spec		24	16	RATA Stratification	
Traverse	ts Required	24	16	Criteria	Points
${ }^{1}$ Check Minimum Number of Points for the Upstream and Downstream conditions, then use the largest. ${ }^{2} 8$ for Circular Stacks 12 to 24 inches 12 for Circular Stacks over 24 inches				OPart75/60	$12 \mathrm{RM1}$ pts
				O75 abrv (a)	3 points
				O75 abrv (b)	6 points

Number of Traverse Points Used				
4	Ports by	3	Pts / port	Stratification Traverse
12	Pts Used	12	Required	(Compliance Test)

Company	Florida Power and Light	Date	03/16/11
Plant Name	West County Energy Center	Project \#	ov-10-westcounty.f.comp\# 2
Equipment	Missubishi 501G	\# of Ports Available	4
Location	Loxahatchee, Florida	\# of Ports Used 4	

Stack Dimensions				Traverse Data			
Diameter or Length of Stack	(D)	263.38	in.	4	Ports by	3	Pts / port
Width of Stack	(W)		in.	12	Pts Used	12	Required
Area of Stack	(A_{s})	378.35	ft^{2}	Run Start	8:45:56	Run End	9:28:26

Traverse Point	Time Per Point	Point Start Time	Point Stop Time (Reading)	O2	Percent Difference	CO	Percent Difference	NOx	Percent Difference
	min.	hh:mm:ss	hh:mm:ss	$\%$	$\%$	ppm	$\%$	ppm	$\%$
D-3	3.00	$8: 45: 56$	$8: 48: 56$	13.31	0.64%	0.59	6.63%	2.16	1.71%
D-2	3.00	$8: 48: 56$	$8: 51: 56$	13.31	0.64%	0.46	16.87%	1.95	11.26%
D-1	3.00	$8: 51: 56$	$8: 54: 56$	13.41	0.11%	0.51	7.83%	1.98	9.90%
C-3	4.50	$8: 54: 56$	$8: 59: 26$	13.35	0.34%	0.53	4.22%	1.97	10.35%
C-2	3.00	$8: 59: 26$	$9: 02: 26$	13.34	0.42%	0.49	11.45%	2.55	16.04%
C-1	3.00	$9: 02: 26$	$9: 05: 26$	13.38	0.12%	0.61	10.24%	1.79	18.54%
B-3	7.00	$9: 05: 26$	$9: 12: 26$	13.41	0.11%	0.61	10.24%	2.45	11.49%
B-2	3.00	$9: 12: 26$	$9: 15: 26$	13.43	0.26%	0.56	1.20%	2.39	8.76%
B-1	3.00	$9: 15: 26$	$9: 18: 26$	13.45	0.40%	0.58	4.82%	2.16	1.71%
A-3	4.00	$9: 18: 26$	$9: 22: 26$	13.45	0.40%	0.57	3.01%	2.52	14.68%
A-2	3.00	$9: 22: 26$	$9: 25: 26$	13.46	0.48%	0.59	6.63%	2.23	1.48%
A-1	3.00	$9: 25: 26$	$9: 28: 26$	13.45	0.40%	0.54	2.41%	2.22	1.02%
	Average		13.40		0.55		2.20		

Company	Florida Power and Light	Date	03/16/11
Plant Name	West County Energy Center	Project \#	bv-10-westcounty.fl-comp\#2
Equipment	Mitsubishi 501G	\# of Ports Available	4
Location	Loxahatchee, Florida	\# of Ports Used	4

Stack Dimensions				Traverse Data			
Diameter or Length of Stack	(D)	263.38	in.	4	Ports by	3	Pts / port
Width of Stack	(W)		in.	12	Pts Used	12	Required
Area of Stack	$\left(\mathrm{A}_{\mathrm{s}}\right)$	378.35	ft^{2}	Run Start	$8: 45: 56$	Run End	$9: 28: 26$

40 CFR 60, Appendix A, Method 7E Criteria											
Stratification Results				Traverse Point Number	Percent of Stack Diameter	Distance from Inside Wall	Distance Including Reference Length				
Maximum Percent Difference		18.54 \% for NOx									
Maximum Pollutant Conc. Diff.		0.41 ppm for NOx									
Maximum Diluent Conc. Diff.		0.09 \% for O2									
Stack Diameter		263.38 in.			\%	in.	in.				
Stratification Conclusions				1	6.0\%	15 6/8	$346 / 8$				
Maximum \% Diff.	Percent Diff. $>10 \%$ Failed Stratification Test			2	17.9\%	$472 / 8$	$662 / 8$				
Maximum Conc. Diff.	Conc. Diff. $\leq 0.5 \%$ Passed 3A 8.1 Three Pt. Criteria			3	29.9\%	$786 / 8$	976/8				
Stack Diameter D > 93.6 in.			 Test \square Moisture, for MW \square Type \square Moisture, for wet-to-dry \square \square Gas 6.5.6(b)(2) alt. points could apply								
Passed Strat. Test Under RM 7E 8.1.2 Three Pt. Criteria Sample from the measurement line exhibiting the highest average concentration											

APPENDIX 2

40CFR75 QA CERT TEST DETAIL REPORT

Facility Name: West County Energy Center

Facility Details	
Facility ID (ORISPL):	56407
State:	FL
County:	Palm Beach

Unit/Stack/Pipe ID: WCCT3A
7-Day Calibration

Additional Information:
No comment.
*Performance Spec: CE $<=2.5 \%$ of Span Altemate Performance Spec: $|R-A|<=5 \mathrm{ppm}$ (Appendix A \&3.1)

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
Unit/Stack/Pipe ID: WCCT3A
7-Day Calibration

Component ID:	A02	Component Type:	O2	Test Completion:	03/03/2011 15:43
Test Number:	7DAY-Q12011-A02-3	Reason for Test:	INITIAL	Reported Test Results:	PASSED
Span Scale Level:	High	Span Value:	25.000	EPA Calculated Result:	PASSED
Evaluation Status:	No Errors			Submission Status:	Not submitted

Injection Date/Hour	Gas Level	Reference Value	Reference Value \% of Span	Measured Value	Reported		Recailculated	
					Results	APS	Results	APS
02/16/2011 15	ZERO	0.000	. 0	-0.050	0.10		0.10	
02/16/2011 15	HIGH	20.900	83.6	21.000	0.10		0.10	
02/21/2011 16	ZERO	0.000	0	-0.030	0.00		0.00	
02/21/2011 16	HIGH	20.900	83.6	20.910	0.00		0.00	
02/22/2011 15	ZERO	0.000	0	-0.050	0.10		0.10	
02/22/2011 15	HIGH	20.900	83.6	20.920	0.00		0.00	
02/25/2011 12	ZERO	0.000	0	-0.030	0.00		0.00	
02/25/2011 12	HIGH	20.900	83.6	20.960	0.10		0.10	
03/01/2011 13	ZERO	0.000	0	-0.040	0.00		0.00	
03/01/2011 14	HIGH	20.900	83.6	20.890	0.00		0.00	
03/02/2011 15	ZERO	0.000	0	-0.040	0.00		0.00	
03/02/2011 15	HIGH	20.900	83.6	20.930	0.00		0.00	
03/03/2011 15	ZERO	0.000	0	-0.030	0.00		0.00	
03/03/2011 15	HIGH	20.900	83.6	21.000	0.10		0.10	

Additional Information:

No comment
*Performance Spec: $\mathrm{CE}<=2.5 \%$ of Span Alternate Performance Spec: $|\mathrm{R}-\mathrm{A}|<=5 \mathrm{ppm}$ (Appendix A \&3.1)

Facility Name:	West County Energy Center
Facility ID (ORISPL):	56407

Unit/Stack/Pipe ID: WCCT3A
7-Day Calibration

Component ID:	A01	Component Type:	NOX
Test Number:	7DAY-Q12011-A01-1	Reason for Test:	INITIAL
Span Scale Level:	High	Span Value:	200.000
Evaluation Status:	No Errors		

Test Completion:	03/03/2011 15:41
Reported Test Results:	PASSED
EPA Calculated Result:	PASSED
Submission Status:	Not submitted
Submission Date/Time:	

Injection Date/Hour	Gas Level	Reference Value	Reference Value \% of Span	Measured Value	Reported		Recalculated	
					Results	APS	Results	APS
02/16/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/16/2011 15	HIGH	176.200	88.1	176.900	0.30		0.40	
02/21/2011 16	ZERO	0.000	0	0.100	0.10		0.10	
02/21/2011 16	HIGH	176.200	88.1	176.500	0.20		0.20	
02/22/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/22/2011 15	HIGH	176.200	88.1	176.000	0.10		0.10	
02/25/2011 12	ZERO	0.000	0	-0.100	0.10		0.10	
02/25/2011 12	HIGH	176.200	88.1	174.900	0.70		0.70	
03/01/2011 13	ZERO	0.000	0	-0.100	0.10		0.10	
03/01/2011 14	HIGH	176.200	88.1	175.800	0.20		0.20	
03/02/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
03/02/2011 15	HIGH	176.200	88.1	176.500	0.20		0.20	
03/03/2011 15	ZERO	0.000	0	-0.200	0.10		0.10	
03/03/2011 15	HIGH	176.200	88.1	176.000	0.10		0.10	

Additional Information:

No comment.
*Performance Spec: $\mathrm{CE}<=\mathbf{2 . 5 \%}$ of Span Alternate Performance Spec: $|\mathrm{R}-\mathrm{A}|<=5 \mathrm{ppm}$ (Appendix A \& 3.1)

Facility Name: West County Energy Center

Unit/Stack/Pipe ID: WCCT3A
Cycle Time Test

Additional information:
No comment.
*Performance Spec: Cycle Time $<=15$ minutes (Appendix A \&3.5)
Unit/Stack/Pipe ID: WCCT3A
Cycle Time Test

Additional Information:
No comment.
*Performance Spec: Cycle Time <= 15 minutes (Appendix A \&3.5)

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
March 28, 2011 07:04 PM

Unit/Stack/Pipe ID: WCCT3A
Cycle Time Test

Additional Information:
No comment.
*Performance Spec: Cycle Time $<=15$ minutes (Appendix A \&3.5)

Facility Name: West County Energy Center
 Facility ID (ORISPL): 56407

QA/Cert Test Detail Report
March 28, 2011 07:04 PM

Unit/Stack/Pipe ID: WCCT3A
Fuel Flowmeter Accuracy Test

Additional Information:
No comment.
Unit/Stack/Pipe ID: WCCT3A
Fuel Flowmeter Accuracy Test

Component ID:	A04	Component Type:	GFFM	Test Completion:	05/11/2010 00:00	
Test Number:	FFAC-Q22010-A04-81			Reported Test Results:	PASSED	
				EPA Calculated Result:	PASSED	
Evaluation Status:	No Errors			Submission Status: Submission Date/Time:	Not submitted	
Accuracy Test Method		High Level Accur		Mid Level Accuracy	Low Level Accuracy	Reinstallation Date/Hour
LCRM		0.1		0.1	0.2	12/26/2010 00

Additional Information:
No comment.

Facility Name:	West County Energy Center
Facility ID (ORISPL):	56407

UnitStack/Pipe ID: WCCT3A
Linearity Check

Component ID:	A01	Component Type:	NOX		Test Completion:	03/18/2011 20:29
Test Number:	LINE-Q12011-A01-10	Reason for Test:	INITIAL		Reported Test Results:	PASSED
Span Scale Level:	High	Span Value:	200.000		EPA Calculated Result:	PASSED
Evaluation Status:	No Errors			17	Submission Status:	Not submitted
Grace period Tested?		-		-	Submission Date/Time:	

Summary Statistics:

	High		Mid		Low	
	Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
Reference Value	176.200	176.200	110.700	110.700	51.100	51.100
Mass CEM Value	176.567	176.567	109.300	109.300	49.767	49.767
Alt. Perf. Indicator						
Results	0.2	0.2	1.3	1.3	2.6	2.6

Injection Statistics:

- Date	Gas Level	Measured Value	Reference Value	Reference Value as \% of Span
03/18/2011 19:52	MID	109.100	110.700	55.4\%
03/18/2011 20:25	MID	109.400	110.700	55.4\%
03/18/2011 20:08	MID	109.400	110.700	55.4\%
03/18/2011 20:22	LOW	49.800	51.100	25.6\%
03/18/2011 20:05	LOW	49.700	51.100	25.6\%
03/18/2011 19:48	LOW	49.800	51.100	25.6\%
03/18/2011 20:12	HIGH	176.600	176.200	88.1\%
03/18/2011 19:55	HIGH	176.400	176.200	88.1\%
03/18/2011 20:29	HIGH	176.700	176.200	88.1\%

Additional Information:

No comment.

*Performance Spec: LE <= 5.0\% of Reference Value; Altemate Performance Spec: $|R-A|<=5 p p m$ (Appendix A \&3.2)

Facility Name: West County Energy Center Facility ID (ORISPL): 56407

Unit/Stack/Pipe ID: WCCT3A
Linearity Check

Component ID:	A02	Component Type:	O2
Test Number:	LINE-Q12011-A02-11	Reason for Test:	INITIAL
Span Scale Level:	High	Span Value:	25.000

Evaluation Status:

No Errors

QA/Cert Test Detail Report
March 28, 2011 07:04 PM

Test Completion:
Reported Test Results: PASSED EPA Calculated Result: PASSED

Submission Status:
Not submitted

Grace period Tested?

Summary Statistics:

Injection Statistics:

Date	Gas Level	Measured Value	Reference Value	Reference Value as \% of Span
03/18/2011 21:01	HIGH	20.930	20.900	83.6\%
03/18/2011 21:26	HIGH	20.930	20.900	83.6\%
03/18/2011 21:42	HIGH	20.900	20.900	83.6\%
03/18/2011 21:18	LOW	6.230	6.240	25.0\%
03/18/2011 21:34	LOW	6.230	6.240	25.0\%
03/18/2011 20:54	LOW	6.230	6.240	25.0\%
03/18/2011 21:38	MID	13.760	13.800	55.2\%
03/18/2011 20:57	MID	13.750	13.800	55.2\%
03/18/2011 21:22	MID	13.750	13.800	55.2\%

Additional Information:

No comment.

*Performance Spec: LE $<=5.0 \%$ of Reference Value: Alternate Performance Spec: $|\mathrm{R}-\mathrm{A}|<=5 \mathrm{ppm}$ (Appendix A \& 3.2)

Facility Name: West County Energy Center

Reitanacak

| System ID: | A01 | System Parameter: | NOX | Test Completion: |
| :--- | :--- | :--- | :--- | :--- | 03/17/201115:18

Operating Level:
Reference Method Used:
Summary Statistics:

	Reported	Recalculated	*	Reported	Recalculated
Mean of Monitoring System	0.006	0.006	Relative Accuracy	17.33	17.33
Mean of Reference Method Values	0.006	0.006	Bias Adjustment Factor	1.111	1.111
Mean of Difference	0.001	0.001	APS Indicator	Y	Y
Standard Deviation of Difference	0.000	0.000	T-Value	2.306	2.306
Confidence Coefficient	0.000	0.000	Gross Unit Load or Velocity	391	392

Run Data:						
Run	Start Date	End Date	Run Status	Monitoring System Value	Reference Method Value	Gross Load or Velocity
1	03/16/2011 09:47	03/16/2011 10:46	RUNUSED	0.006	0.007	381
2	03/16/2011 11:03	03/16/2011 12:02	RUNUSED	0.006	0.007	377
3	03/16/2011 12:21	03/16/2011 13:20	RUNUSED	0.006	0.007	376
4	03/16/2011 18:31	03/16/2011 18:51	RUNUSED	0.006	0.007	369
5	03/17/2011 10:05	03/17/2011 11:04	RUNUSED	0.005	0.006	413
6	03/17/2011 11:25	03/17/2011 12:24	RUNUSED	0.005	0.006	400
7	03/17/2011 12:43	03/17/2011 13:42	NOTUSED	0.005	0.007	404
8	03/17/2011 13:58	03/17/2011 14:18	RUNUSED	0.006	0.006	405
9	03/17/2011 14:28	03/17/2011 14:48	RUNUSED	0.005	0.006	404
10	03/17/2011 14:58	03/17/2011 15:18	RUNUSED	0.006	0.006	403

Page 9 of 10

Facility Name: West County Energy Center Facility ID (ORISPL): 56407

Additional Information
No comment.
*Performance Spec: RA $<=10 \%$ or Mean Difference $<=+/-2.0 f p s$:
Reduced Frequency Spec: RA $<=7.5 \%$ or Mean Difference $+/-1.5 \mathrm{fps}$ (Appendix A \&3.3.4)

Unit/Stack/Pipe ID: WCCT3A
Transmitter Transducer Test

Component ID:	A05	Component Type:	GFFM
Test Number:	FFAT-Q12010-A05-91 Reason for Test:	QA	

Test Completion: 03/03/201000:00
 Reported Test Results: PASSED
 EPA Calculated Result: PASSED
 Submission Status: Not submitted

 Submission Date/Time:| Mid Level Accuracy Specification | Low Level Accuracy | Low Level Accuracy Specification |
| :---: | :---: | :---: |
| AGA3 | 0.5 | AGA3 |

Additional Information:

No comment.
Unit/Stack/Pipe ID: WCCT3A
Primary Element Inspection

System ID:		System Type:	
Component ID:	A05	Component Type:	GFFM
Test Number:	PEI-110219-A05-1	Reason for Test:	INITIAL

Test Number: PEI-110219-A05-1

Reason for Test: INITIAL

Evaluation Status: No Errors
Test Description:
Additional Information:
No comment.

Test Completion:	02/19/2011 00:00
Reported Test Results: PASSED Grace Period Test?	
Submission Status:	Not submitted

APPENDIX 3

CEMS CALIBRATION DRIFT REPORTS

3A_NOXLOW	NOx	0.0	10.0 ppm	3A NOXLOW	NOX	0.0	10.0 ppm
3A_NOXHTGH	NOx	0.0	200.0 ppm	3A_NOXHIGH	Nox	0.0	200.0 ppm
3A_02	O2	0.00	25.00\%	3A_O2	02	0.00	25.00 \%
3A COLOW	CO	0.0	10.0 ppm	$3 \mathrm{~A}_{-} \mathrm{COLOW}$	co	0.0	10.0 ppm
$3 A^{-} \mathrm{COHIGH}$	co	0.0	200.0 ppm	$3 \mathrm{~A}^{-} \mathrm{COHIGH}$	co		200.0

FAIL $=$ Difference Error $>$ Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
RDG = Reading exceeds "Range of Analyzer"
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: 40 CFR75 pass/fail determination is performed after rounding the value of Errort, or Drift, co one decimal place

Part 60 Calibration (Absolute Average DIFF and Calibration \% Error)

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	$\begin{gathered} \text { Error } \\ \frac{y}{c} \end{gathered}$	Diff Units	$\begin{gathered} \text { Error } \\ \% \end{gathered}$
3A_COHIGH	CO	0.9	0.18	24.8	2.18
3A_COLOW	co	0.1	1.0\%	0.1	1.0\%
3A-NOXHIGH	NOx	0.1	0.1%	0.2	0.2\%
3A_NOXLOW	NOx	0.0	0.0\%	0.1	1.5\%
3 A 02	02	0.0	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration : Error)

Channel		----ZERO----		----SPAN-	
		Diff	Error	Diff	Error
		Units	:	Units	$\%$
3A_COHIGH	CO	0.900	- N/A -	24.800	- N/A -
3A_COLOW	co	0.100	- N/A -	0.100	- N/A -
3A_NOXHIGH	NOX	0.100	0.1\%	0.250	0.28
3A_NOXLOW	NOx	0.000	0.0\%	0.150	1.5\%
3A_02	02	0.040	- N/A -	0.075	- N/A -

Channel		PerformancePart 60		Part 75	
		PASS	fail	PASS	fail
3A_COHIGH	CO	< $=20.0$ \%	>20.0\%	- N/A -	- N/A -
3A_COLOW	co	< $=20.0 \%$	>20.0\%	- N/A -	- N/A -
3A_NOXHIGH	NOx	< $=10.0 \%$	>10.0\%	<=5.0\%	>5.0\%
3A_NOXLOW	NOx	< $=10.0 \%$	>10.0\%	$<=5.08$	>5.0\%
3A_02	02	$<=2.0 \%$	>2.0\%	$<=1.0 \%$	>1.0\%

[^7]Daily Stack Calibration Report
Generated: 3/3/2011

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3a
Source: stack3a

3A_NOXLOW	NOX	0.0	10.0 ppm	3A_NOXLOW	NOX	0.0	10.0 ppm
3A_NOXHIGH	NOX	0.0	200.0 ppm	3A_NOXHIGH	NOX	0.0	200.0 ppm
3A_O2	O2	0.00	25.00%	3A_O2	02	0.00	25.00%
3A_COLOW	CO	0.0	10.0 ppm	3A_COLOW	CO	10.0 ppm	
3A_COHIGH	CO	0.0	1200.0 ppm	3A_COHIGH	CO	0.0	0.0

		Channel			Target	Actual	Diff	Part60 Allowable						Part75 Allowable			
Date	Time			Type	Units	Units	Units	Error ${ }^{\text {a }}$	Units			WD	Error ${ }^{\text {\% }}$	Units		A	
03/03/2011	15:30	3A COHIGH	C0	ZERO	0.000	0.600	0.600	0.1	240.0	20.0	PASS	0	- N/A	- N/A		- N/A	- N/A -
03/03/2011	15:30	$3 \mathrm{~A}^{-} \mathrm{COHIGH}$	co	SPAN	1048.000	1073.400	25.400	2.1	240.0	20.0	PASS	0	- N/A	- N/A		- N/A	- N/A -
03/03/2011	15:30	3-_COLOW	co	zero	0.000	-0.200	-0.200	-2.0	2.0	20.0	PASS	0	- N/A	- N/A		- N/A	- N/A
03/03/2011	15:30	$3 \mathrm{~A}_{-}^{-} \mathrm{COLOW}$	co	SPAN	8.500	8.400	-0.100	-1.0	2.0	20.0	PASS	0	- N/A	- N/A		- N/A	- N/A
03/03/2011	15:30	3A_NOXHIGH	NOx	zero	0.000	-0.200	-0. 200	-0.1	20.0	10.0	PASS	0	-0.1	10.000		5.0	PASS
03/03/2011	15:30	3A_NOXHIGH	NOx	SPAN	176.200	176.000	-0.200	-0.1	20.0	10.0	PASS	0	-0.1	10.000		5.	PASS
03/03/2011	15:30	3A_NOXLOW	NOx	ZERO	0.000	-0.100	-0.100	-1.0	1.0	10.0	PASS	0	-1.0	5.000		5.	PASS
03/03/2011	15:30	3A_NOXLOW	NOx	SPAN	8.700	8.500	-0.200	-2.0	1.0	10.0	PASS	0	-2.0	5.000		5.0	PASS
03/03/2011	15:30	3'_02	02	zero	0.000	-0.030	-0.030	- N/A -	2.0	- N/A -	PASS	0	- N/A -	1.000		- N/A -	PASS
03/03/2011	15:30	3 A 02	02	SEAN	20.900	21.000	0.100	- N/A -	2.0	- N/A -	PASS	0	- N/A -	1.000		- N/A -	PASS

EAIL = Difference Error > Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning
Note: 40CFR75 pass/fail determination is performed after rounding the value of Errors, or Drift, to one decimal place

Fart 60 Calibration (Absolute Average DIFF and Calibration \% Error)

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \\ \hline \end{gathered}$	$\underset{\substack{\text { Error } \\ \text { à }}}{ }$	Diff Units	$\begin{gathered} \text { Error } \\ \vdots \\ \hline \end{gathered}$
3A_COHIGH	CO	0.6	0.18	25.4	2.18
3A.COLOW	co	0.2	2.0\%	0.1	1.0\%
3A NOXHIGH	NOX	0.2	0.1\%	0.2	0.18
3A_NOXLOW	NOX	0.1	1.0\%	0.2	2.08
$3 A^{2} 02$	02	0.0	- N/A -	0.1	- $/$ A -

Part 75 Calibration (Absolute Average DIFF and Calibration Error

Channel		---ZERO----		----SPAN----	
		$\begin{aligned} & \text { Diff } \\ & \text { Units } \\ & \hline \end{aligned}$	$\underset{\substack{\text { Error } \\ \mathbf{8} \\ \hline}}{ }$	Diff	Error
				Units	\%
3A_COHIGH	C0	0.600	- N/A -	25.400	N/A -
3A_COLOW	CO	0.200	- N/A -	0.100	- N/A -
3A_NOXHIGH	NOx	0.200	0.1\%	0.200	0.1\%
3A_NOXLOW	nox	0.100	1.0\%	0.200	2.0\%
3A_02	02	0.030	- N/A -	0.100	- N/A -

Channel		Part 60		Part 75	
		PASS	FAIL	PASS	FAIL
3A_COHIGH	CO	<=20.0\%	220.0\%	- N/A -	- N/A
3A_COLOW	CO	< $=20.0 \%$	>20.0\%	- N/A -	- N/A -
3A_NOXHIGH	NOx	< $=10.0 \%$	>10.0\%	< $=5$. 0\%	>5.0\%
3A-NOXLOW	nox	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.0\%
3A_02	02	< $=2.0 \%$	>2.0\%	< $=1.0$ \%	>1.0\%

Perf: [Part60 Daily C0] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
Perf: \quad [Part 60 Daily CO] Zero $=20.0 \%$ Range, $\operatorname{Span}=20.0 \%$ Range
Perf: \quad Part 75 Daily NOx] Zero $=5.0 \%$ Range, Span $=5.0 \%$ Range, [Part 60 Daily NOX] Zero $=10.0 \%$ Range, Span
$=10.0$ \%Range
AltPerf: $[$ Part 75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$) $/ 10 \mathrm{ppm}(50$ ppm $<$ Range $<=200 \mathrm{ppm}$), Span $=5 \mathrm{ppm}$
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$)/10 ppm (50 ppm $<$ Range $<=200 \mathrm{ppm}$), Span $=5 \mathrm{ppm}$
Perf: [Part75 Daily NOx] Zero $=5.0$ \%Range, Span $=5.0$ \%Range, [Part60 Daily NOX] Zero $=10.0$ \%Range, Span $=10.0$ \%Range
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range< $=50 \mathrm{ppm}$)/10 ppm (50 ppm<Range< $=200 \mathrm{ppm}$), Span $=5 \mathrm{ppm}$
(Range $<=50 \mathrm{ppm}$)/10 ppm ($50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$)
Perf:
[Part75 Daily 02] Zero $=1.0 \%$ O2, Span $=1.0 \% 02$, [Part60 Daily 02] Zero $=2.0 \%$ 2, Span $=2.0 \% 02$

Generated: 3/2/2011

Company: Florida Power \& Light lant: West County Plant
ity/St: Loxahatchee, FL 33470
source: stack3a

Period Start: 3/2/2011
Period End: 3/2/2011

FAIL $=$ Difference Error $>$ Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: $40 C F R 75$ pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Part 60 Calibration (Absolute, Average DIFF and Calibratipn \& Error

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	$\begin{gathered} \text { Error } \\ \frac{2}{\circ} \\ \hline \end{gathered}$	$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	$\begin{gathered} \text { Error } \\ \% \end{gathered}$
3A COHIGH	co	0.6	0.1%	18.8	1.6\%
3A_COLOW	co	0.2	2.0\%	0.2	2.0\%
3A_NOXHIGH	NOx	0.0	0.0\%	0.3	0.2%
3A_NOXLOW	Nox	0.0	0.0\%	0.1	1.0\%
3A_02	02	0.0	- N/A -	0.0	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration ${ }^{\circ}$ Error)

Channel		----2ERO----		----SPAN----	
		Diff	Error	Diff	Error
		Units	\%	Units	:
3A_COHIGH	co	0.600	- N/A -	18.800	- N/A -
3A_COLOW	co	0.200	- N/A -	0.200	- N/A -
3A_NOXHIGH	NOx	0.000	0.0%	0.300	0.2%
3A_NOXLOW	NOx	0.000	0.08	0.100	1.0\%
3A_02	02	0.040	- N/A -	0.030	- N/A -

Performance Specification

Channel		Performance Specificatio Part 60		Part 75	
		PASS	EAIL	PASS	FAIL
3A_COHIGH	CO	< $=20.0 \%$	>20.0\%	- N/A -	- N/A -
3A_COLOW	CO	< $=20.0 \%$	>20.0\%	- N/A -	- N/A -
3A_NOXHIGH	NOx	< $=10.0 \%$	>10.0\%	<=5.0\%	>5.0\%
3A_NOXLOW	NOx	< $=10.0$ \%	>10.0\%	< $=5.0$ \%	$>5.0 \%$
3 A _ 02	02	< $=2.08$	>2.0\%	< $=1.0 \%$	>1.0\%

Perf: [Part60 Daily CO] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
Perf: \quad Part 60 Daily co] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
Perf: [Part75 Daily NOx] Zero $=5.0$ \%Range, Span $=5.0$ \%Range, [Part 60 Daily NOX] Zero $=10.0$ \%Range, Span $=10.0$ \%Range
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm (50 ppm $<$ Range $<=200 \mathrm{ppm}$), Span $=5 \mathrm{ppm}$ (Range $=50 \mathrm{ppm}$)/10 150 ppi<Ranes $=200 \mathrm{pmo})$
[Part75 Daily NOx] zero $=5.0$ \&Range, Span $=5.0$ \%Range, [Part 60 Daily NOx] Zero $=10.0$ \%Range, Span
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm ($50 \mathrm{ppm}<$ Range< $=200 \mathrm{ppm}$), Span $=5 \mathrm{ppm}$
Perf: (Range $<=50 \mathrm{ppm}) / 10 \mathrm{ppm}(50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm})$
[Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \% 02,[$ Part60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 02$

Source: stack3a

Span of Analyzers:

3A_NOXLOW	NOX	0.0	10.0 ppm
3A_NOXHIGH	NOX	0.0	200.0 ppm
3A-O2	02	0.00	25.00%
3A-COLOW	CO	0.0	10.0 ppm
3A_COHIGH	CO	0.0	1200.0 ppm

FAIL = Difference Error $>$ Regulations Allow
FAIL $=$ Difference Error > Regulations Allow
WARN $=$ Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG $=$ Invalid Target (not within regulatory specs)
= Reading exceeds "Range of Analyzer"
= Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Ca1. since a Failed Daily or 5 Days in Warning)
Note: $40 C F R 75$ pass/fail determination is performed after rounding the value of Errors, or Drift, to one decimal place

Cion Group NetDaHSe
84.0

Daily Stack Calibration Report

Generated: 3/1/2011

Fart 60 Calibration (Absolute Average DIFF and Calibration \% Error)

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	$\begin{gathered} \text { Error } \\ \% \\ \hline \% \end{gathered}$	Diff Units	Error
3A_COHIGH	CO	0.6	0.1\%	19.1	1.68
3A_COLOW	co	0.1	1.0\%	0.1	1.0\%
3A_NOXHIGH	Nox	0.2	0.1%	0.3	0.2\%
3A_NOXLOW	NOX	0.0	0.0\%	0.1	1.5\%
$3 A^{-} 02$	02	0.0	- N/A -	0.0	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration : Error)

Channel		RO----		AN-	
		Diff	Error	Diff	Error
		Units	\%	Units	\%
3A_COHIGH	Co	0.600	- N/A -	19.100	N/A -
3A_COLOW	CO	0.100	- N/A -	0.100	- N/A -
3A_NOXHIGH	NOX	0.150	0.18	0.350	0.2%
3A_NOXLOW	NOX	0.000	0.0\%	0.150	1.5\%
3A_02	02	0.040	- N/A -	0.005	- N/A -

Channel		Performance Specificatio Part 60		Part 75	
		PASS	FAIL	PASS	FAIL
3A_COHIGH	CO	< $=20.08$	>20.0\%	- N/A -	- N/A -
$3 \mathrm{~A}_{-} \mathrm{COLOW}$	co	$<=20.0$ \%	>20.08	- N/A -	- N/A -
3A_NOXHIGH	NOx	$<=10.0$ \%	>10.0\%	< $=5.0 \%$	>5.0\%
3A_NOXLOW	NOx	< $=10.0$ \%	>10.0\%	$<=5.0$ \%	>5.0\%
$3 A^{-} 02$	02	$<=2.0 \%$	>2.0\%	$<=1.0 \%$	>1.0\%

$\begin{array}{ll}\text { Perf: } & \text { [Part } 60 \text { Daily CO] Zero }=20.0 \% \text { Range, Span }=20.0 \% \text { Range } \\ \text { Perf: } & \text { [Part } 60 \text { Daily Co] Zero }=20.0 \text { \%Range, Span }=20.0 \% \text { Range } \\ \text { Perf: } & \text { [Part75 Daily NOx] Zero }=5.0 \% \text { Range, Span }=5.0 \% \text { Range, }\end{array}$
Perf: [Part75 Daily NOx] Zero $=5.0 \%$ Range, Span $=5.0 \%$ Range, [Part60 Daily NOx] Zero $=10.0$ \%Range, Span $=10.0$ q Range
1tPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span - 5 ppm Ranges=50 ppm)/10 ppm (50 ppm<Range $<=200 \mathrm{ppm}$)
Part75 Daily NOx] Zero $=5.0$ \%Range, Span -5.0 \%Range, [Part60 Daily NOx] Zero $=10.0$ \%Range, Span 10.0 frange

AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm ($50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$), Span $=5 \mathrm{ppm}$
(Range<=50 ppm)/10 ppm ($50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$)
[Part75 Daily 02] Zero = 1.0 \%02, Span $=1.0$ 802, [Part60 Daily 02] Zero $=2.0$ \%02, Span $=2.0 \% 02$

Company: Florida Power \& Light Plant: West County Plant
City/St: Lnxahatchee, FL 33470 Scurce: stack3a

Range of Analyzers:

3A-NOXLOW	NOX	0.0	10.0 ppm
3A-NOXHIGH	NOX	0.0	200.0 ppm
3A_O2	02	0.00	25.00%
3A_COLOW	CO	0.0	10.0 ppm
3A-COHIGH	CO	0.0	1200.0 ppm

Span of Analyzers:

3A_NOXLOW	NOX	0.0	10.0 ppm
3A_NOXHIGH	NOX	0.0	200.0 ppm
3A_O2	02	0.00	25.00%
3A-COLOW	CO	0.0	10.0 ppm
3A-COHIGH	CO	0.0	1200.0 ppm

		Channel			Target	Actual	Diff	Part60 Allowable						Part75 Allowable			
Date	Time			Type	Units	Units	Units	Error \%	Units	\%		WD	Error \%	Units		\div	
02/25/2011	12:17	3A_COHIGH	CO	ZERO	0.000	0.600	0.600	0.1	240.0	20.0	PASS	0	N/A	- N/A -		N/A	- N/A -
02/25/2011	12:17	$3 \mathrm{~A}^{-} \mathrm{COHIGH}$	co	SPAN	1048.000	1059.600	11.600	1.0	240.0	20.0	PASS	0	- N/A	- N/A		N/A	- N/A
02/25/2011	12:17	$3{ }^{\text {a }}$ COLON	co	zero	0.000	0.100	0.100	1.0	2.0	20.0	PASS	0	- N/A -	- N/A -		N/A -	- N/A -
02/25/2011	12:17	3A-COLOW	CO	SPAN	8.500	8.500	0.000	0.0	2.0	20.0	PASS	0	- N/A	- N/A		N/A -	- N/A -
02/25/2011	12:17	3A_NOXHIGH	NOx	zero	0.000	-0.100	-0.100	-0.1	20.0	10.0	PASS	0	-0.1	10.000		5.0	PASS
02/25/2011	12:17	3A_NOXHIGH	NOX	SPAN	176.200	174.900	-1.300	-0.6	20.0	10.0	PASS	0	-0.6	10.000		5.0	PASS
02/25/2011	12:17	3A_NOXLOW	NOX	zero	0.000	0.000	0.000	0.0	1.0	10.0	PASS	0	0.0	5.000		5.0	PASS
02/25/2011	12:17	3A-NOXLOW	NOX	SPAN	8.700	8.700	0.000	0.0	1.0	10.0	PASS	0	0.0	5.000		5.0	PASS
02/25/2011	12:17	3'. 02	02	zero	0.000	-0.030	-0.030	- N/A -	2.0	- N/A -	PASS	0	- N/A -	1.000		- N/A -	PASS
02/25/2011	12:17	$3{ }^{\text {- }} 02$	02	SPAN	20.900	20.960	0.060	- N/A -	2.0	- N/A -	PASS	0	- N/A -	1.000		- $/$ / ${ }^{\text {- }}$	PASS

FAIL = Difference Error $>$ Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
$R D G=$ Reading exceeds "Range of Analyzer"
= Number (
Note: 40CFR75 pass/fail determination is performed after rounding the value of Errort, or Drift, to one decimal place

Part 60 Calibration (Absolute Average DIFE and Calibration : Error)

Channel		$\begin{aligned} & \text { Diff } \\ & \text { Units } \end{aligned}$	$\underset{\substack{\text { Error } \\ \vdots \\ \hline}}{ }$	Diff Units	$\begin{gathered} \text { Error } \\ \text { \% } \end{gathered}$
3A_COHIGH	CO	0.6	0.1%	11.6	1.0%
3A_COLOW	co	0.1	1.0\%	0.0	0.0\%
3A_NOXHIGH	NOx	0.1	0.1\%	1.3	0.68
3A_NOXLOW	NOx	0.0	0.08	0.0	0.0\%
3A_02	02	0.0	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration \& Error)

Channel		ZERO----		PAN---	
		Diff	Error	Diff	Error
		Units	\%	Units	\%
3A COHIGH	co	0.600	- N/A -	11.600	- N/A -
3A_COLOW	co	0.100	- N/A -	0.000	- N/A -
3A_NOXHIGH	NOx	0.100	0.1%	1.300	0.6\%
3A_NOXLOW	NOX	0.000	0.0\%	0.000	0.0\%
3A_02	02	0.030	- N/A -	0.060	- N/A -

Channel		Performance Specificatio Part 60		Part 75	
		PASS	FAIL	PASS	EAIL
3A COHIGH	co	< $=20.0 \%$	$>20.0 \%$	- N/A	N/A
3A_COLOW	co	< $=20.0 \%$	>20.0\%	- N/A -	- N/A -
3A_NOXHIGH	NOX	$<=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.0\%
3A_NOXLOW	NOX	$<=10.0 \%$	>10.0\%	$<=5.0 \%$	>5.0 \%
3A_02	02	$<=2.0 \%$	>2.0\%	$<=1.0$ \%	>1.0\%

Perf: [Part60 Daily C0] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
Perf: [Part60 Daily CO] Zero $=20.0$ \%Range, span $=20.0$ \%Range
[Part75 Daily NOX] Zero = 5 \&Range, span $=5.0$ \%Range, [Part 60 Daily NOX] Zero $=10.0$ \%Range, Span $=10.0 \%$ Range
AltPerf: [Part75 Daily NOx] zero $=5$ ppm (Ranges $=50 \mathrm{ppm}$) / 10 ppm ($50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$), Span $=5 \mathrm{ppm}$
 $=10.0$ \%Range
AltPerf: [Part75 Daily NOX] Zero $=5 \mathrm{ppm}$ (Range< $=50 \mathrm{ppm}$)/10 ppm (50 ppm<Range<=200 ppm), Span $=5$ ppm (Range $<=50 \mathrm{ppm}$)/10 ppm ($50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$)
Perf:
[Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \% 02,[$ Part60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 02$

Daily Stack Calibration Report
Generated: 2/21/2011

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470

		3A_NOXLOW 3A-NOXHIGH $3 \mathrm{~A}-\mathrm{O} 2$ 3A-COLOW $3 A_{-}^{-} \mathrm{COHIGH}$	$\begin{aligned} & \text { NOX } \\ & \text { NOX } \\ & \text { O2 } \\ & \text { CO } \\ & \text { CO } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 0.00 \\ 0.0 \\ 0.0 \end{array}$	$\begin{gathered} 10.0 \mathrm{ppm} \\ 200.0 \mathrm{ppm} \\ 25.00 \mathrm{~g} \\ 10.0 \mathrm{ppm} \\ 1200.0 \mathrm{ypm} \end{gathered}$		3A_NOXLOW 3A_NOXHIGH 3A_02 3A_COLON 3A_COHIGH	$\begin{aligned} & \text { NOX } \\ & \text { NOX } \\ & \text { O2 } \\ & \text { CO } \\ & \text { CO } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 0.00 \\ 0.0 \\ 0.0 \end{array}$	$\begin{gathered} 10.0 \mathrm{ppm} \\ 200.0 \mathrm{ppm} \\ 25.00 \mathrm{\%} \\ 10.0 \mathrm{ppm} \\ 1200.0 \mathrm{ppm} \end{gathered}$		WD	Error $\%$	Units ${ }^{\text {Pa }}$		
					Target	Actual	Diff			60 Allow					Allowa	
Date	Time	Channel		Type	Units	Units	Units	Error \%	Units	\%					,	
02/21/2011	16:00	3A_COHIGH	CO	zero	0.000	1.800	1.800	0.2	240.0	20.0	PASS	0	- N/A		- N/A -	N/A -
02/21/2011	16:00	$3 A^{-} \mathrm{COHIGH}$	co	SPAN	1048.000	1063.200	15.200	1.3	240.0	20.0	PASS	0	- N/A	- N/A	- N / A -	- N/A -
02/21/2011	16:00	3A_COLOW	CO	ZERO	0.000	1.100	1.100	11.0	2.0	20.0	WARN	1	- N/A	- N/A -	- N/A -	- N/A -
02/21/2011	16:00	3A_COLOW	co	SPAN	8.500	9.300	0.800	8.0	2.0	20.0	PASS	0	- N/A -	- N/A -	- N/A -	- N/A -
02/21/2011	16:00	3A_NOXHIGH	NOX	zero	0.000	0.100	0.100	0.1	20.0	10.0	PASS	0	0.1	10.000	5.0	PASS
02/21/2011	16:00	3A_NOXHIGH	NOX	SPAN	176.200	176.500	0.300	0.2	20.0	10.0	PASS	0	0.2	10.000	5.0	PASS
02/21/2011	16:00	3A_NOXLOW	NOx	ZERO	0.000	0.100	0.100	1.0	1.0	10.0	PASS	0	1.0	5.000	5.0	PASS
02/21/2011	16:00	3A_NOXLOW	NOx	SPAN	8.700	8.800	0.100	1.0	1.0	10.0	PASS	0	1.0	5.000	5.0	PASS
02/21/2011	16:00	$3{ }^{\text {A }}$ _ 02	02	ZERO	0.000	-0.030	-0.030	- N/A -	2.0	- N/A -	PASS	0	- N/A -	1.000	- N/A -	PASS
02/21/201	16:00	3 A 02	02	SPAN	20.900	20.910	0.010	- N/A	2.0			0	- N/		N/A	PAS

Range of Analyzers:

		3A_NOXLOW 3A-NOXHIGH $3 \mathrm{~A}-\mathrm{O} 2$ 3A-COLOW $3 A_{-}^{-} \mathrm{COHIGH}$	$\begin{aligned} & \text { NOX } \\ & \text { NOX } \\ & \text { O2 } \\ & \text { CO } \\ & \text { CO } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 0.00 \\ 0.0 \\ 0.0 \end{array}$	$\begin{gathered} 10.0 \mathrm{ppm} \\ 200.0 \mathrm{ppm} \\ 25.00 \mathrm{~g} \\ 10.0 \mathrm{ppm} \\ 1200.0 \mathrm{ypm} \end{gathered}$		3A_NOXLOW 3A_NOXHIGH 3A_02 3A_COLON 3A_COHIGH	$\begin{aligned} & \text { NOX } \\ & \text { NOX } \\ & \text { O2 } \\ & \text { CO } \\ & \text { CO } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0.0 \\ 0.00 \\ 0.0 \\ 0.0 \end{array}$	$\begin{gathered} 10.0 \mathrm{ppm} \\ 200.0 \mathrm{ppm} \\ 25.00 \mathrm{\%} \\ 10.0 \mathrm{ppm} \\ 1200.0 \mathrm{ppm} \end{gathered}$		WD	Error $\%$	Units ${ }^{\text {Pa }}$		
					Target	Actual	Diff			60 Allow					Allowa	
Date	Time	Channel		Type	Units	Units	Units	Error \%	Units	\%					,	
02/21/2011	16:00	3A_COHIGH	CO	zero	0.000	1.800	1.800	0.2	240.0	20.0	PASS	0	- N/A		- N/A -	N/A -
02/21/2011	16:00	$3 A^{-} \mathrm{COHIGH}$	co	SPAN	1048.000	1063.200	15.200	1.3	240.0	20.0	PASS	0	- N/A	- N/A	- N / A -	- N/A -
02/21/2011	16:00	3A_COLOW	CO	ZERO	0.000	1.100	1.100	11.0	2.0	20.0	WARN	1	- N/A	- N/A -	- N/A -	- N/A -
02/21/2011	16:00	3A_COLOW	co	SPAN	8.500	9.300	0.800	8.0	2.0	20.0	PASS	0	- N/A -	- N/A -	- N/A -	- N/A -
02/21/2011	16:00	3A_NOXHIGH	NOX	zero	0.000	0.100	0.100	0.1	20.0	10.0	PASS	0	0.1	10.000	5.0	PASS
02/21/2011	16:00	3A_NOXHIGH	NOX	SPAN	176.200	176.500	0.300	0.2	20.0	10.0	PASS	0	0.2	10.000	5.0	PASS
02/21/2011	16:00	3A_NOXLOW	NOx	ZERO	0.000	0.100	0.100	1.0	1.0	10.0	PASS	0	1.0	5.000	5.0	PASS
02/21/2011	16:00	3A_NOXLOW	NOx	SPAN	8.700	8.800	0.100	1.0	1.0	10.0	PASS	0	1.0	5.000	5.0	PASS
02/21/2011	16:00	$3{ }^{\text {A }}$ _ 02	02	ZERO	0.000	-0.030	-0.030	- N/A -	2.0	- N/A -	PASS	0	- N/A -	1.000	- N/A -	PASS
02/21/201	16:00	3 A 02	02	SPAN	20.900	20.910	0.010	- N/A	2.0			0	- N/		N/A	PAS

Span Of Analyzers:

Period Start: 2/21/2011
Period End: 2/21/2011
Included Calibrations: Daily (40CFR60)/(40CFR75)

FAII = Difference Error $>$ Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: 40CER75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Daily Stack Calibration Repor

Part 60 Calibration (Absolute Average DIFF and Calibration \% Error)

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	$\underset{\substack{\text { Error }}}{ }$	$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	Error $\%$
3A_COHIGH	co	1.8	0.28	15.2	1.38
3A_COLOW	co	1.1	11.0\%	0.8	8.08
3A_NOXHIGH	NOX	0.1	0.1%	0.3	0.2\%
$3 \mathrm{~A}^{-} \mathrm{NOXLOW}$	Nox	0.1	1.0\%	0.1	1.0\%
$3 A^{-} 02$	02	0.0	- N/A -	0.0	- N/A -

Part 75 Calibration (Absolute Average DIFE and Calibration \% Error)

Channel		---2ERO----		----SPAN----	
		Diff	Error	Diff	Error
		Units	\%	Units	\%
3A_COHTGH	CO	1.800	- N/A -	15.200	- N/A -
$3 \mathrm{~A}_{-} \mathrm{COLOW}$	co	1.100	- N/A -	0.800	- N/A -
3A_NOXHIGH	NOx	0.100	0.1\%	0.300	0.2\%
3A_NOXLOW	NOX	0.100	1.0%	0.100	1.0\%
3A_02	02	0.030	- N/A -	0.010	- N/A -

Channel		Performance Specification Part 60		Part 75	
		PASS	fail	PASS	FAIL
3A_COHIGH	CO	< $=20.0 \%$	>20.0\%	- N/A	- N/A -
$3 \mathrm{~A}_{-} \mathrm{COLOW}$	co	< $=20.0$ \%	>20.0\%	- N/A	- N/A -
3A_NOXHIGH	nox	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.08
3A_NOXLOW	NOx	< $=10.0 \%$	>10.0\%	$<=5.0 \%$	>5.0\%
3 A -02	02	< $=2.0 \%$	>2.0\%	< $=1.0 \%$	>1.0\%

Perf: \quad [Part60 Daily C0] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
Perf: $\quad[$ Part60 Daily C0] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
Perf: [Part60 Daily CO] Zero $=20.0$ \%Range, Span $=20.0 \%$ Range
Perf: $\quad[$ Part75 Daily NOx] Zero $=5.0$ \%Range, Span $=5.0 \%$ Range, [Part 60 Daily NOx] Zero $=10.0$ \%Range, Span

erf: [Part75 Daily NOx] Zero = 5.0 \%Range, Span $=5.0$ \%Range, [Part60 Daily NOx] zero $=10.0$ \%Range, Span
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span = 5 ppm (Range $<=50 \mathrm{ppm}$) $/ 10 \mathrm{ppm}$ ($50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$)

Perf:
[Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \%$ O2, [Part60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0802$ ion group NetDahse

Generated: 2/16/2011

Company: Elorida Power \& Ligh
lant: West County Plant
ity/St: Loxahatchee, FL 33470
Source: stack3a

FAIL = Difference Error $>$ Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: $40 C E R 75$ pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3a
Part 60 Calibration (Absolute Average DIFF and Calibration orror)

Channel		----ZERO----		----SPAN-	
		Diff	Error	Diff	Error
		Units	\%	Units	\%
3A COHIGH	CO	0.6	0.1%	2.0	0.28
3A_COLOW	CO	0.0	0.0\%	0.1	1.08
3A_NOXHIGH	NOX	0.0	0.08	0.7	0.3\%
3A_NOXLOW	NOX	0.0	0.0\%	0.0	0.0%
3A_02	02	0.1	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration ${ }^{\text {o }}$ Error

Channel		Diff	Error	Diff Units	Error
3A_COHIGH	co	0.600	N/A	2.000	- N/A -
3A_COLOW	co	0.000	- N/A -	0.100	N/A -
3A_NOXHIGH	NOx	0.000	0.0\%	0.700	0.3%
3A_NOXLOW	NOx	0.000	0.0\%	0.000	0.0\%
3 A - 02	02	0.050	- N/A -	0.100	- N/A -

Channel		Performance Specificatio Part 60		Part 75	
		PASS	fail	PASS	EAIL
3A_COHIGH	CO	< $=20.0 \%$	>20.0\%	- N/A	N/A
3A_COLOW	co	< $=20.0 \%$	>20.0\%	- N/A -	- N/A
3A_NOXHIGH	NOx	< $=10.0 \%$	>10.0\%	<=5.0\%	>5.0\%
$3 \mathrm{~A}^{-} \mathrm{NOXLOW}$	Nox	< $=10.0 \%$	$>10.0 \%$	< $=5.0$ \%	>5.0\%
3 A .02	02	< $=2.0 \%$	>2.0\%	< $=1.0 \%$	>1.0\%

Perf: \quad [Part60 Daily CO] Zero $=20.0 \%$ Range, Span $=20.0 \%$ Range
Perf: $\quad[$ Part 60 Daily CO] Zero $=20.0 \%$ Range, $\operatorname{span~}=20.0 \%$ Range
Par
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range< $=50 \mathrm{ppm}$)/10 ppm (50 ppm $<$ Range $<=200 \mathrm{ppm}$), Span $=5$ ppm
 $=10.0$ sRange
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span = 5 ppm (Range $<=50 \mathrm{ppm}$) $/ 10 \mathrm{ppm}$ ($50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$)
erf:
[Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \% 02,[$ Part 60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 0$

APPENDIX 4

LINEARITY AND CGA SUMMARY TABLES

		Ranae of Analyzers:				Span of Analyzers:								
		3A NOXHIGH 3A_02 3A_COLOW 3A_COHIGH		$\begin{aligned} & \text { NOx } \\ & \text { O2 } \\ & \text { co } \\ & \text { Co } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0.00 \\ 0.0 \\ 0.0 \end{array}$	$\begin{gathered} 200.0 \mathrm{ppm} \\ 25.00 \% \\ 10.0 \mathrm{ppm} \\ 1200.0 \mathrm{ppm} \end{gathered}$		3A_NOXHIGH $3 \mathrm{~A}_{-}^{-} 02$ 3A_COLOW 3A_COHIGH	$\begin{aligned} & \text { NOx } \\ & \text { O2 } \\ & \text { CO } \\ & \text { Co } \end{aligned}$	$\begin{array}{r} 0.0 \\ 0.00 \\ 0.0 \\ 0.0 \end{array}$	$\begin{gathered} 200.0 \mathrm{ppm} \\ 25.00 \mathrm{p} \\ 10.0 \mathrm{ppm} \\ 1200.0 \mathrm{ppm} \end{gathered}$		Bottle ID	
	From		Channel		Type	Target Units	Actual Units	$\begin{gathered} \text { Diff } \\ \text { Units } \\ \hline \end{gathered}$	Error \%	CGA Allowable (40CFR60)				
Cate	Time	3 Pt .								Units	\%			Expire Date
03/18/2011	20:19	*	3A_COHIGH	CO	LOW	301.0	267.1	-33.9	-11.3	45.2	15.0	PASS	ALM025866	10/28/2012
03/18/2011	20:19	*	$3 \mathrm{~A}_{-}^{\text {- }} \mathrm{COHIGH}$	co	MID	662.0	607.2	-54.8	-8.3	99.3	15.0	PASS	ALM063790	1/12/2012
03/18/2011	20:02	*	$3 \mathrm{~A}_{-} \mathrm{COHIGH}$	co	LOW	301.0	266.6	-34.4	-11.4	45.2	15.0	PASS	ALM025866	10/28/2012
03/18/2011	20:02	*	$3 \mathrm{~A}_{-}^{\text {- }} \mathrm{COHIGH}$	co	MID	662.0	605.8	-56.2	-8.5	99.3	15.0	PASS	ALM063790	1/12/2012
03/18/2011	19:46	*	$3 \mathrm{~A}_{-} \mathrm{COHIGH}$	co	LOW	301.0	266.0	-35.0	-11.6	45.2	15.0	PASS	ALM025866	10/28/2012
03/18/2011	19:46	*	3 A COHIGH	co	MID	662.0	605.7	-56.3	-8.5	99.3	15.0	PASS	ALM063790	1/12/2012
03/18/2011	22:39	*	3A_COLON	co	LOW	2.5	2.3	-0.2	-8.0	0.4	15.0	PASS	ALM016434	8/22/2011
03/18/2011	22:39	*	$3 \mathrm{~A}_{-}^{-} \mathrm{COLOW}$	co	MID	5.6	5.3	-0.3	-5.4	0.8	15.0	PASS	ALM059441	8/22/2011
03/18/2011	22:22	*	3A_COLOW	co	Low	2.5	2.3	-0.2	-8.0	0.4	15.0	PASS	ALM016434	8/22/2011.
03/18/2011	22:22	*	3A_COLOW	co	MID	5.6	5.3	-0.3	-5. 4	0.8	15.0	PASS	ALM059441	8/22/2011
03/18/2011	22:06	*	3A_COLOW	co	LOW	2.5	2.3	-0.2	-8.0	0.4	15.0	PASS	ALM016434	8/22/2011
03/18/2011	22:06	*	3A_COLOW	co	MID	5.6	5.4	-0.2	-3.6	0.8	15.0	PASS	ALMOS9441	8/22/2011
03/18/2011	20:19	*	3A_NOXhIGH	NOX	LOW	51.1	49.8	-1.3	-2.5	7.7	15.0	PASS	ALM025866	10/28/2012
03/18/2011	20:19	*	3A_NOXHIGH	NOX	MID	110.7	109.4	-1.3	-1.2	16.6	15.0	PASS	ALM063790	1/12/2012
03/18/2011	20:02	*	3A_NOXHIGH	NOx	LOW	51.1	49.7	-1.4	-2.7	7.7	15.0	PASS	ALM025866	10/28/2012
03/18/2011	20:02	*	3A_NOXHIGH	NOx	MID	110.7	109.4	-1.3	-1.2	16.6	15.0	PASS	ALM063790	1/12/2012
03/18/2011	19:46	*	3A_NOXHIGH	NOX	LOW	51.1	49.8	-1.3	-2.5	7.7	15.0	PASS	ALM025866	10/28/2012
03/18/2011	19:46	*	$3 \mathrm{~A}_{-}^{-} \mathrm{NOXHIGH}$	NOx	MID	110.7	109.1	-1.6	-1.4	16.6	15.0	PASS	ALM063790	1/12/2012
03/18/2011	21:32	*	3A_O2	02	LOW	6.2	6.2	0.0	-0.2	0.9	15.0	PASS	ALM033049	2/17/2014
03/18/2011	21:32	*	3A-02	02	MID	13.8	13.8	0.0	-0.3	2.1	15.0	PASS	ALM032282	2/17/2014
03/18/2011	21:16	*	$3 \mathrm{~A}_{-}^{-} 02$	02	LOW	6.2	6.2	0.0	-0.2	0.9	15.0	PASS	ALM033049	2/17/2014
03/18/2011	21:16	*	3 A -02	02	MID	13.8	13.8	-0.1	-0.4	2.1	15.0	PASS	ALM032282	2/17/2014
03/18/2011	20:51	*	$3 \mathrm{~A}-\mathrm{O2}$	02	LOW	6.2	6.2	0.0	-0.2	0.9	15.0	PASS	ALM033049	2/17/2014
03/18/2011	20:51	*	3 A 02	02	MID	13.8	13.8	-0.1	-0.4	2.1	15.0	PASS	ALM032282	2/17/2014

FAIL $=$ Difference Error $>$ Regulations Allow
TARG = Invalid Target (not within regulatory specs)
RDG = Reading exceeds "Range of Analyzer"
\# Bottle has Expired - Must be Replaced

APPENDIX 5

CYCLE TIME SUPPORTING DOCUMENTATION

Babcock \& wilcox Power Generation Group NetDAHSO Average values Report
version 59.0
Generated: 3/19/2011 00:38

*Does not include Invalid Averaging Periods ("N/A")

CUSTOM INSTRUMENTATION
SERVICES CORPORATION
\qquad

Reference Gas Cylinder: Label Concentration
Nitrogen:
CO / Low \qquad

40 CR 60 CO Response Time Test

DATE $3-19-11$
Performed by \qquad Jus
$\begin{array}{ll}\text { Serial Number } \\ C C-27495 & \text { Expiration Date } \\ \frac{C C 340047}{10 \cdot 21-12}\end{array}$
Nominal Stack Concentrations prior to test:
Oxygen: 13.3
CO: \qquad
Record the following for reference to recorded DAHS data:

APPENDIX 6

EPA PROTOCOL GAS CERTIFICATES

CERTIFICATE OF BATCH ANAS YSIS:

NITROGEN - LEM. vAL ZERO

Expiration Date: Jan 27, 2016

Cylinders in Batch:

 \qquad 82 1, COO 19234 CC31923~ CC: 619288

Notes:
Meets Federal Register specifications Title 40 C.F.R. 72.2

Impurities verified against analytical standards traceable to NiST by weight indoor analysis.
Edward Voruneon
Approved for Release
Page 1 of 21-110228284-2.

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Alrgas Specialty Gases 630 United Drive Durham NC, 27713 (919) 544-3773 hitp:/4ww.zirgas.cam

Part Number:	EO3NI99E15A166B	Reference Number:	122-124238078-3
Cylinder Number:	CC340047	Cylinder Volume:	144 Cu.Ft.
Laboratory:	ASG - Durham - NC	Cylinder Pressure:	2015 PSIG
Analysis Date:	Oct 21, 2010	Valve Outle::	660
	Explration Date:		
	Oct 21, 2012		

Certification parformed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require corredtion for analytical interferences. This cyllider has a total analytical uncertelnty as stated below with a confidence level of 95%. There are no significant impurifies which affect the use of this cellbration mixture. All concentrations are on a voluma/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.l.e. 1 Mega Pascal

Triad Data Available Upon Request

Approved for Release

CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol

Part Number:	E03NI99E15A0011	Reference Number:	$122-124238078-2$
Cylinder Number:	CC326582	Cylinder Volume:	144 Cu.Ft.
Laboratory:	ASG - Durham - NC	Cylinder Pressure:	2015 PSIG
Analysis Date:com	Oct 19, 2010	Valve Outlet:	660
		Expiration Date: Oct 19, 2012	.

Certification performed In accordance with "EPA Traceabilly Protocol (Sept. 1997)" using the assay procedures listed. Analyilcal Methodology does not require correctlon for anatytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of 95%. There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

ANALYTICAL RESULTS				
Component	Requested Concentration	Actual Concentration	Method	Total Relative Uncertainty
NITRIC OXIDE	175.0 PPM	176.2 PPM	G 1	$+/-1 \%$ NIST Traceable
CARBON MONOXIDE	1035 PPM	1048 PPM	G 1	$++-1 \%$ NIST Traceable
NITROGEN	Balance			

Total oxides of nitrogen $176.5 \mathrm{PPM} \quad$ For Reference Only

Type	Lot ID	Cylinder No	CALIBRATION STANDARDS Concentration	Expiration Date
NTRM	090603	CC288058	250.6PPM NITRIC OXIDENITROGEN	Feb 01, 2011
NTRM	020502	SG9142254BAL	1488PPM CARBON MONOXIDE/NITROGEN	May 15, 2012
			ANALYTICAL EQUIPMENT ${ }^{\text {' }}$	
Instrument/Make/Model			Analytical Principle	Last Multipoint Calibration
Nicolet 6700 \# 1 CO			FTIR	Oct 04, 2010
Nicolet 6700 \#1 No			FTIR	Oct 04, 2010

Triad Data Available Upon Request

Approved for Release

Assay Laboratory

air liouide america specialty gases lld 6141 ASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310
P.O. No.:

Document \#: 40533107-001
WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Amended Procedure G-2, August 25, 1999. Cylinder Number: ALM016434 Certification Date: 21Feb2011 Exp. Date: 22Aug2011 Cylinder Pressure**: 2015 PSIG

COMPONENT		
CARBON MONOXIDE	CERTIFIED CONCENTRATION (Moles)	
2.53 PPM	$+-2 \%$	ACCURACY**
TRACEABILITY		
NIST and VSL		

NITROGEN
BALANCE
i. (Do not use when cylinder pressure is below 150 pig.

* Analytical accuracy is based on the requirements of EPA Protocol procedures . September 1997.

REFERENCE STANDARD

TYPE/SRM NO. EXPIRATION DATE

CYLINDER NUMBER
CONCENTRATION
COMPONENT
CARBON MONOXIDE
INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
SIEMENS/ULTRAMAT .6E/R8-236

DATE LAST CALIBRATED 10 Fab 2011

ANALYTICAL PRINCIPLE COICO2 ANALYZER

Special Notes:

Air Liquide America Specialty Gases LLC

Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

Customer

FLORIDA POWER \& LIGHT
Document \# : 40633107-002

WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM059441 Certification Date: 21Feb2011 Exp. Date: 22 Aug2011

COMPONENT CERTIFIED CONCENTRATION (Moles) ACCURACY** TRACEABILITY CARBON MONOXIDE $\quad 5.57 \quad$ PPM $\quad+/ \frac{1 \%}{}$ Direct NIST añd VSL
** Do not use when cylinder pressure is below 150 psig.
-" Analytical accurecy is based on the requirements of EPA Protocol Procedure G1. September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTPM 1677	01Jun2012	KAL004042	9:855 PPM	CARBON MONOXIDE
INSTRUMENTATION				
INSTRUMENT/M	L/SERIAL\#		DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
SIEmENS/ULTRAM	8E/R8-236		10Feb2011	CO/CO2 ANALYZER

ANALYZER READINGS

$$
\text { (} Z=\text { Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation Coefficient) }
$$

First Triad Analysis
CARBON MONOXIDE

Date: 14 Feb2011	Response	Unit:VOLTS
$Z 1=-0.03320$	$R 1=4.84370$	$T 1=2.69370$
$R 2=4.85010$	$Z 2=-0.05020$	$T 2=2.68980$
$Z 3=-0.03980$	$T 3=2.69150$	$R 3=4.84280$
Avg. Concentration:	5.580	PPM

Date: 14Feb2011 Response Unit:VOLTS $=-0.03320$ R1 $=4.84370$ $Z 3=-0.03980 \quad \mathrm{~T} 3=2.69150 \quad \mathrm{R} 3=4.84280$ Avg. Concentration: 5.580 PPM

Second Triad Analysis

Daie: 21Feb2011 Response Unit: VOLTS $\mathrm{Z1}=0.02640 \quad \mathrm{R} 1=4.86920 \quad \mathrm{~T} 1=2.72860$ $R 2=4.87880 \quad \mathrm{Z} 2=0.03380 \quad \mathrm{~T} 2=2.73790$ $Z 3=0.03600 \quad T 3=2.73970 \quad R 3=4.88910$ Avg. Coneentration: 5.560 PPM

Calibration Curve

Concentration $=A+B x+C \times 2+D \times 3+E x 4$ $\mathrm{r}=0.999990739$
Constants: $\quad A=0.0190246$ $B=2.07797 .2083 \quad C=-0.0120773$ $0=$

Special Notes:
APPROVED BY:

RATACLASS
 Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: Interference Free ${ }^{\text {TM }}$ Multi-Component EPA Protocol Gas

Assay Laboratory
AIR LIQUIDE AMERICA SPECIALTY GASES LLC
P.O. No.: CEM-6035

Project No.: 01-35874-002
6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA $18949-0310 \quad 21900$ SW WARFIELD BLVD INDIANTOWN FL 34956

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G. 1; September, 1997.
Cylinder Number: ALMO25866 Certification Date: $290 c t 2010 \quad$ Exp. Date: $280 c t 2012$
Cylinder Pressure***: 1962 PSIG
COMPONENT CERTIFIED CONCENTRATION (Moles) ACCURACY** TRACEABILITY
CARBON MONOXIDE
NITRIC OXIDE
NITROGEN - OXYGEN FREE

BALANCE
TOTAL OXIDES OF NITROGEN
51.4 PPM

Reference Value Only
** Do not uss when cyllinder pressure is below 150 psig.
** Analytical accuracy is based on the requirements of EPA Photocol Procedure G1, September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2636	020at2011	KAL003888	240.8 PPM	CARBON MONOXIDE
ITRM 1983	O1Nov2013	KAL003284	46.90 PPM	NITRIC OXIDE
INSTRUMENTATION				
INSTRUMENT/MODEL/SERIAL\#			DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
FTIR//000928781			$110 \mathrm{ct2010}$	FTIR
FTiR//000928781			290ct2010	FTIR
ANALYZER READINGS				

First Triad Analysis
Second Triad Analysis
Calibration Curve
CARBON MONOXIDE

Date: 220ct2010 Rasponse Unlt:PPM
$21=0.01673 \quad \mathrm{R} 1=239.9048 \quad \mathrm{~T} 1=299.7323$
$\mathrm{R} 2=239.9334 \quad \mathrm{Z2}=0.14016 \quad \mathrm{~T} 2=299.9462$
$\mathrm{Z3}=0.17124 \quad \mathrm{~T} 3=300.3045 \quad \mathrm{RB}=239.9374$
Avg. Concentration: 301.1 PPM
NITRIC OXIDE
Date: 220ct2010 Response Unit:PPM
$21=-0.12887 \quad \mathrm{R} 1=46.84412 \quad \mathrm{~T} 1=51.05194$ $R 2=46.89432 \quad 22=-0.07937 \quad T 2=51.14584$ $23=0.01313 \quad T 3=51.15833 \quad R 3=46.98010$ Avg. Concentration: 51.11 PPM

Date: 290ct2010 Response Unft: PFM
$21=-0.03420 \quad \mathrm{R} 1=240.0633 \quad \mathrm{~T} 1=299.7638$
$R 2=240.1269 \quad 22=0.03466 \quad \mathrm{~T} 2=299.9593$ $23=0.08633 \quad \mathrm{~T}=300: 2578 \quad \mathrm{RG}=240.1329$ Avg. Concentration: 300,9 PPM

Date: 290ct2010 Response Unlt: PPM
$\mathrm{Z} 1=0.07736 \quad \mathrm{R} 1=46.70219 \quad \mathrm{~T} 1=50.89229$
$R 2=46.79544 \quad Z 2=0.12585 \quad T 2=50.91652$
$Z 3=0.14749 \quad T 3=51.04982 \quad R 3=46.83210$
Avg. Concentration: 51.10 PPM

Concentration $=A+B x+C \times 2+D \times 3+E \times 4$ $\mathrm{r}=9.99998 \mathrm{E}$ - 1
Constants: $\quad A=0: 00000 E+0$ $B=8.96123 E-1 \quad C=3.52000 E-4$ $D=0.00000 E+0 \quad E=0.00000 E+0$

Concentration $=A+B x+C \times 2+D x 3+E x 4$ $r=9.99099 E-1$
Constanta
$B=9.82452 \mathrm{E} \cdot 1 \quad \mathrm{C}=1.98000 \mathrm{E} \cdot 4$ $D=0.00000 E+0 \quad E=0.00000 E+0$

Page

CERTIFICATE OF ACCURACY: Interference Free ${ }^{\text {TM }}$ Multi-Component EPA Protocol Gas

Assay Laboratory

P.O. No.: 4500250736

AIR LIOUIDE AMEFICA SPECIALTY GASES LLC Project No.: 01-19426-012
6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310

Customer
FLORIDA POWER \& LIGHT

MARTIN PLANT
$21900 \mathrm{~S}, \mathrm{~W}$. WARFIELD BLVD
INDIANTOWN FL 34956

ANALYTICAL INFORMATION
This certlfcation was performed according to EPA Traceability Protocol For Assay \& Certlication of Gaseous Calibratlon Standards; Proceidure G-1; September, 1997.
Cylinder Number: ALMO63790 Certification Date: 12Jan2010 Exp. Date: 12Jan2012
Cylinder Pressure***: 2002 PSIG

Dual-Analyzed Calibration Standard

COMPONENT	CERTIFIED CONCENTRATION (Moles)		ACCURACY**	TRACEABILITY
CARBON MONOXIDE	662	PPM	+ 1 - 1%	Direct NIST and VSL
NITRIC OXIDE	110.7	PPM	+/-1\%	Direct NIST and VSL
NITROGEN - OXYGEN FREE		BALANCE		
TOTAL OXIDES OF NITROGEN	171.1	PPM		Reference Value Only

** Do not use when cylinder pressure is below 150 psig.

- Analytical accuracy is based on the requirements of EPA Piotocol Procedure G1, September 1997.
REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 1681	$020 \mathrm{ct2010}$	KAL003160	970.1 PPM	CARBON MONOXIDE
ITRM 1684	$150 \mathrm{ct2012}$	KAL004453	95.84 PPM	NITRIC OXIDE
INSTRUMENTATION				
INSTRUMENT/M	ELISERIAL\#		DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
FTIR//000928781			31Dec2009	FTIR
FTIR//000928781			04Jan2010	FTIR

ANALYZER READINGS

($Z=$ Zero Gas $\quad \mathrm{A}=$ Reference Gas $T=$ Test Gas $\quad r=$ Correlation Coefficient $)$
First Triad Analysis
Second Triad Analysis
Calibration Curve

CARBON MONOXIDE

Date: 06JJan2010 Response Unit:PPM $\mathrm{Z} 1=0.00836 \quad \mathrm{R} 1=967.7368 \quad \mathrm{~T} 1=659.8589$ $R 2=967.9701 \quad Z 2=0.17769 \quad$ T2 $=660.2537$ $Z 3=0.60273 \quad T 3=660.5182 \quad \mathrm{R} 3=968.5788$
Avg. Concentration: 661.6 PPM

NITRIC OXIDE

Date: O5Jan2010 Response Unit:PPM
$Z 1=-0.29121 \quad \mathrm{R1}=95.73315 \quad \mathrm{~T} 1=110.4266$
$R 2=95.81615 \quad 22=-0.13602 \quad T 2=110.6344$
$\mathrm{Z3}=-0.12519 \quad \mathrm{~T} 3=110.9319 \quad \mathrm{R} 3=95.98806$
Avg. Concentration: 110.6 PPM

Date: 12 Jan 2010 Response Unlt: PPM $Z 1=-0.06379 \quad \mathrm{R} 1=967.9088 \quad \mathrm{~T} 1=880.3933$ $R 2=968.2288 \quad Z 2=0.29739 \quad$ T2 $=660.7689$ $23=0.40472 \quad \mathrm{~T} 3=660.9539 \quad \mathrm{R} 3=968.3168$ Avg. Concentration: 662.0 PPM

Date: 12Jan 2010 Response Unlt: PPM $\mathrm{Z} 1=-0.07261 \quad \mathrm{R} 1=96.06142 \quad \mathrm{~T} 1=111.0810$ F2 $=96.06672 \quad \mathrm{Z2}=0.05270 \quad \mathrm{~T} 2=111 ; 16 \mathrm{E} 1$ $23=-0.01136 \quad \mathrm{~T} 3=111.2319 \quad \mathrm{R} 3=96.15300$ Avg. Concentration: . 110.9 PPM

Concentration $=A+B x+C \times 2+D x 3+E x 4$ $r=9.99999 \mathrm{E}-1$
Constants:
$\mathrm{B}=2.58680 \mathrm{E}-1$
$D=0.00000 E+0 \quad E=0.00000 E+0$

Concentration=A $\mathrm{Ex}+\mathrm{C} \times 2+\mathrm{Dx} 3+\mathrm{Ex} 4$ $\mathrm{l}=\mathbf{= 9 . 9 9 9 9 8 E - 1}$
Constants: $\quad A=0.00000$ E +0
$B=9.94707 \mathrm{E}-1 \quad \mathrm{C}=5.00000 \mathrm{E}-5$
$D=0.00000 E+0 \quad E=0.00000 E+0$

RATA CLASS
Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2658	01Fab2018	K001907	10.03%	OXYGEN
INSTRUMENTATION				
INSTRUMENT/MODEL/SERIAL\#			DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE
SIEMENS/OXYMAT 61/V1-0407			14Fab2011	PARAMAGNETIC

ANALYZER READINGS

$$
\text { (Z=Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation. Coefficient })
$$

First Triad Analysis

Second Trlad Analysis
Calibration Curve

OXYGEN

Date: 18Feb20	11 Response	Unit:MV	Concentration $=\mathrm{A}+\mathrm{Bx}+\mathrm{Cx} 2+\mathrm{Dx} 3+\mathrm{Ex}^{4}$	
Z1п-0.00190	$\mathrm{R} 1=4.91170$	$T 1=3.05330$	$\mathrm{r}=0.999996776$	
A2 $2=4.91300$	$\mathrm{Z2}=0.00000$	T2-3.05350	Constants:	$A=0.015250224$
$Z 3=-0.00140$	$T 3=3.05260$	R3 $=4.91510$	$B=2.040162442$	$C=$
Avig. Concentra	ation: 6.240	\%	$D=$	E=

Special Notes:

APPROVED BY: \qquad
$\mathbb{R A T A} \mathbb{C L A S S}$
Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory	P.O. No.:		FLORIDA POWER \& LIGHT 004	
AIR LIOUIDE AMERICA SPECIALTY GASES LLC		Document \# : 40533107		
6141 EASTON ROAD, BLDG 1				
PLUMSTEADVILLE, PA 18949-0310				WEST COUNTY ENERGY
			20202 STATE ROAD 80	
			LOXAHATCHEE FL 33	
			us	

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM032282 \quad Certification Date: 18Feb2011 Exp. Date: 17 Feb 2014
Cylinder Pressure***: 2000 PSIG

COMPONENT	CERTIFIED CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
OXYGEN	13.8 \%	+	Direct NIST and VSL
NITROGEN	BALANCE		

*. Do not use when cylinder pressure is below 150 psig.
** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

APPROVED BY:

Air Liquid e America Specialty Gases LLC

RATA CLASS
Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory
AIR LIQUID AMERICA SPECIALTY GASES LC 6141 EASTON ROAD, BLDG 1 PLUMSTEADVILLE, PA 18949-0310

Customer
FLORIDA POWER \& LIGHT
Document \# : 40533107-005
WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US
ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997. Cylinder Number: ALMO08490 Cylinder Pressure***: 2000 SIG

COMPONENT
OXYGEN
NITROGEN
ACCURACY** TRACEABILITY
$+\overparen{-1 \%} \quad$ Direct NIST and VSL
. . D Do not use when cylinder pressure is below 150 prig

* Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD
$\frac{\text { TYPE/SRM NO. }}{\text { NTRM } 2350} \quad \frac{\text { EXPIRATION DATE }}{01 \text { Dec 2011 }} \quad \frac{\text { CYLINDER NUMBER }}{\text { KOLP902 }} \quad \frac{\text { CONCENTRATION }}{.23 .20 \%} \quad \frac{\text { COMPONENT }}{\text { OXYGEN }}$

INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
SIEMENS/OXYMAT-STNT-040\%

K008902
CONCENTRATION OXYGEN

DATE LAST CALiBRATED
17FEb2011

ANALYTICAL PRINCIPLE PARAMAGNETIC

ANALYZER READINGS

$$
\text { TZ = Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation Coefficient }
$$

First Triad Analysis

Second Triad Analysis
Calibration Curve
OXYGEN
Date: 15Feb2011 Response Unit:VOLTS

$Z 1=-0.00240$	$R 1=4.58780$	$T 1=4.46640$
$R 2=4.58950$	$Z 2=-0.00150$	$T 2=4.46570$
$Z 3=-0.00120$	$T 3=4.46700$	$R 3=4.58940$

Concentration $=A+B x+C \times 2+D \times 3+E x 4$	
$r=0.999999418$	2350
Constants:	$A=0.01748296$
$B=5.053895951$	$C=$
$D=$	$E=$

Special Notes:
APPROVED BY:

APPENDIX 7

DAHS VERIFICATION DOCUMENTATION

B\&W PGG, KVB-Enertec, INC.
Formula verification Report
UNIT 3A
Plant Name: WEST COUNTY ENERGY CENTER
ORISPL \#: 056407
Date: March 19, 2011
FORMULAS THAT PASSED VERIFICATION:

DateTime	Param	Code	ID	conc	Dilconc		Fc/F	Rate	HI	GCV	Optime	Computed	Reported
03/12/11 06:00	CO 2	G-4	A01			$1 /$	1040		1601.5			95.2	95.2
03/12/11 22:00	NOX	F-5	A02	28.1	15.7		9004.7					0.121	0.121
03/19/11 21:00	NOXM	F-24A	A03					0.013	1914.6			24.9	24.9
03/12/11 06:00	HI	D-6	A04					15564		102900		1601.5	1601.5
03/12/11 09:00	HI	D-8	A05					29.4		19500		0.6	0.6
03/12/11 06:00	SO2	D-5	A07					0.0006	1601.5			0.9609	0.9609
03/12/11 09:00	SO2	D-2	A08	1				29.4				0.6	0.6
03/12/11 09:00	CO2	G-4	A10				1420		0.6			0	0
03/12/11 08:00	CO2	G-4A	A11				1040/1420				0.97	54.3	54.3

Certified for all Utilities reporting under 40 CFR Part 75 with B\&W PGG KVB/Enertec Products NetDAHS 8.0.150 SP4 release installed

UTILITY NAME:	$\frac{A N Y}{A n y}$
PLANT NAME:	$\frac{A n y}{A n y}$
ORISPL:	
DAHS SOFTWARE:	B\&W Power Generation Group - KVB/Enertec Products NetDAHS DATE PERFORMED: $03 / 02 / 2011$

I certify that the automated Data Acquisition and Handling system (DAHS) component of each CEM System identified in the attached results was tested and that proper computation of the missing data substitution procedures was verified. The results of the verification test for the missing data routine are included.

Hoth200no

March 3, 2011
Signature
Date
John F. Downs
Printed Name

Test Number 1

$$
\text { Availability }>=95 \% \text { and MDP }<=24 \text { hours. }
$$

```
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
```

Test Number 2

```
Availability = 95% and MDP <=24 hours. Boundary test.
```

```
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
```

Test Number 3

```
Availability >= 95% and MDP'> 24 hours. HB/HA value is greater
``` than the 90 th percentile.
```

SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed

```
Test Number 4
Availability \(>=95 \%\) and MDP \(>24\) hours and \(\mathrm{HB} / \mathrm{HA}\) value is less
 than the 90 th percentile.
\begin{tabular}{ll}
SO2 & - Passed \\
NOX & - Passed \\
FLOW & - Passed \\
CO2 & - Passed \\
O2 & - Passed \\
MOISTURE & - Passed
\end{tabular}
Test Number 5
 Availability >= 90\% and < 95\% and MDP <= 8 hours.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO 2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 6
Availability >= \(90 \%\) and \(<95 \%\) and MDP \(>8\) hours and \(\mathrm{HB} / \mathrm{HA}\) value
 is > 95th percentile.
\begin{tabular}{ll}
SO2 & - Passed \\
NOX & - Passed \\
FLOW & - Passed \\
CO2 & - Passed \\
O2 & - Passed \\
MOISTURE & - Passed
\end{tabular}

Test Number 7
```

Availability >= 90% and < 95% and MDP > 8 hours and 95th
percentile > HB/HA value.

```
SO2 - Passed
NOX - Passed
```

FLOW - Passed
O2 - Passed
MOISTURE - Passed
Test Numbex 8
Availability < 90% and MDP > 0 hours.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 9
Maximum potential Initial missing data period. Load Range or
next higher Load Range not available.

```
```

SO2 - Passed

```
SO2 - Passed
NOX - Passed
NOX - Passed
FLOW - Passed
FLOW - Passed
CO2 - Passed
CO2 - Passed
O2 - Passed
O2 - Passed
MOISTURE - Passed
MOISTURE - Passed
Test Number 10
Test Number 10
 Initial missing data period. 720 LookBack Period.
SO2 - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 11
 < 2160 QA hours available. Initial missing data period.
 Next higher Load Range available.
NOX - Passed
FLOW - Passed
```

Test Number 12

```
< 2160 QA hours available. Initial missing data period.
 Load Range available.
```

NOX - Passed
FLOW - Passed

## Test Number 13

NOx, Flow availability > $80 \%$ and $<90 \%$ and MDP > 0.

SO2	- Passed
NOX	- Passed
FLOW	- Passed
CO2	- Passed
MOISTURE	- Passed

Test Number 14
NOx, Flow availability $<80 \%$ and $M D P>0$.

SO2	- Passed
NOX	- Passed
FLOW	- Passed
CO2	- Passed
O2	- Passed
MOISTURE	- Passed

Summary
Number Of Tests Passed: 73
Number Of Tests Failed: 0

Start: $\quad 3 / 2 / 2011$ 2:31:56 PM
End: $\quad 3 / 2 / 2011$ 2:35:00 PM

## APPENDIX 8

40 CFR 75 MONITORING PLAN

Facility Name: West County Energy Center

Facify Deatils			
Facility ID (ORISPL):	56407		
Monitoring Plan Location IDs:	WCCT3A		
State:	FL		
County:	Palm Beach		
Latitude:	26.6986		
Longitude:	-80.3747		
Reporting Frequency			
Monitoring Plan Location IDS	Reporing Frequency	Begin Quarter	End Quarter
WCCT3A	Q - Quarterly	2010 QTR 4	

Monitoring Location Attributes

UnitStackPipe identifier	Duct Indicator	Ground Elevaton	Stack Height	Cross Area Exit	Gross Area Flow	Material Code	Shape Code	Begin Date	End Date
WCCT3A		25	150	359		OTHER	ROUND	12/26/2010	

Unit Operation Information

Unit Identifier	Commence Commercial Operation Date	Commence Operation Date	Boiler/Turbine Type			Max Heat Input		
			Code	Begin Date	End Date	Velue (mmetu)	Begin Date	End Date
WCCT3A	12/29/2010	12/26/2010	CC	12/26/2010		2761.0	12/26/2010	

## Unit Program Information

Unit Identifier	Program Code	Unit Class	Unit Monitor Certification   Begin Date	Unit Monitor Certification   Deadline
WCCT3A	ARP	P2	$12 / 29 / 2010$	$12 / 29 / 2010$

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
Unit Fuel

Unit Identifier	Fuel Type	Fuel Indicator	Demonstration Method for GCV	Demonstration Method for Daily Sulfur	Ozone Season Indicator	Begin Date	End Date
WCCT3A	DSL.	S				12/26/2010	
	PNG	$P$				12/26/2010	

Fuel Type Codes:

Fuel Indicator Codes:
PNG - Pipeline Natural Gas
DSL - Diesel Oil
S-Secondary
P-Primary

Monitoring Plan Printout Report
March 28, 2011 07:10 PM

Unit Controls

Unit Identifier	Parameter	Controí Equipment	Oriģinal Ind.	Seasonal Ind	Installation Date	Optimization Date	Retirement Date
WCCT3A	NOX	DLNB	Y				
	Nox	H2O	Y				
	NOX	$\bigcirc$	Y				
	NOX	SCR	Y				

Control Equipment Descriptions: SCR - Selective Catalytic Reduction
O-Other
H2O - Water Irjection
DLNB - Dry Low NOx Bumers

Facility Name: West County Energy Center Facility ID (ORISPL): 56407

March 28, 2011 07:10 PM

Monitoring Method


Facility Name: West County Energy Center Facility ID (ORISPL): 56407

Monitoring System / Analytical Components


## Monitoring System Fuel Flow

UnitStackPPipe Identifier	System ID	Fuel Code	Max Fuel Flow Rate	Units of Measure	Source Code	Begin Date/Hour	End Date/Hour
WCCT3A	A02	PNG	30667.0	HSCF	URV	12/26/2010 00	
	A03	DSL	126880.0	LBHR	UMX	12/26/2010 00	



Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
March 28, 2011 07:10 PM

Emissions Formulas

UntivtackPpe Identifier	Parameter	Formula ID	Formula Code	Formula	Begin Date/Hour	End Date/Hour
WCCT3A	CO 2	A01	G-4	CO2-gas $=(1040$ * F (A04) * (1/385) * 44.0)/2000	12/26/2010 00	
	NOXR	A02	F-5	$\mathrm{E}=1.194$ * 10 ** $\mathrm{7}^{*} \mathrm{~S} \#(\mathrm{~A} 01-\mathrm{A} 01)$ * F\#(A12) * (20.9/(20.9- S\#(A02-A01)) $)$	12/26/2010 00	
	NOX	A03	F-24A	NOX_mass = F\#(A02)*F\#(A06)	12/26/2010 00	
	HI	A04	D-6	HI_gas $=\left(\mathrm{S} \#(\mathrm{A05-A02}) *\right.$ GCV_gas) / $10{ }^{* *} 6$	12/26/2010 00	
	HI	A05	D-8	HI_oil $=$ S\#(A06-A03) * GCV_oil $/ 10{ }^{* *} 6$	12/26/2010 00	
	HI	A06	D-15A	HI _hr $=(\mathrm{F} \mathrm{\#}(\mathrm{AO4)}$ * T_gas + F\#(A05) * T_oil )/ T_unit	12/26/2010 00	
	SO2	A07	D-5	SO2_glb/hr $=0.0006 * F \#(A 04)$	12/26/2010 00	
	SO2	A08	D-2	SO2_rate-oil $=2.0$ * S\#(A06-A03) * \%S_oil / 100.0	12/26/2010 00	
	SO2	A09	D-12	SO2_TOTAL $=((\mathrm{F} \mathrm{\#}(\mathrm{~A} 08)$ * T_OIL) + (F\#(A07) * T_GAS) $)$	12/26/2010 00	
	CO 2	A10	G-4	W_CO2 = 1420 * F\#(A05) * $1 / 385$ * 44.0 / 2000	12/26/2010 00	
	CO 2	A11	G-4A	CO2_unit $=((\mathrm{F} \#(\mathrm{~A} 01)$ * T_gas) + (F\#(A10) * T_oil) $/$ T_unit	12/26/2010 00	
	FD	A12	F-8	F_c = X_oil * $1420+\mathrm{X}$ _gas * 1040	12/26/2010 00	
	FGAS	A13	N-GAS	Gas_total $=$ S\#(A04-A02) + S\#(A05-A02)	12/26/2010 00	
Parameter Codes Descriptions:		CO2-CO2 Hourly Mass Rate (ton/hr)				
		NOXR - NOx Emission Rate ( $\mathrm{lb} / \mathrm{mmBtu}$ )				
		NOX - NOx Hourly Mass Rate (lb/hr)				
		HI - Heat Input Rate (mmBtu/hr)				
		SO2-SO2 Hourly Mass Rate (lb/hr)				
		FD - F-Factor Dry-basis				
		FGAS - Gas Hourly Flow Rate (hscf)				
Formula Codes Descriptions:		N-GAS - FGAS (net gas flow rate)				
		G-4A - CO 2 (from CO 2 rate for multiple fuels)				
		G-4-CO2 (from HI, Fc)				
		F-8-FD/FC/FW (from multiple fuels)				
		F-5 - NOXR/SO2R (from NOX or SO2 dry, O2 dry, Fd)				
		F-24A - NOX (from NOX rate, HI)				
		$\mathrm{D}-8$ - HI (from oil flow rate, GCV)				
		D-6-HI (from gas flow rate, GCV)				
		D-5-SO2 (from gas SO2 emission rate, HI)				
		D-2-SO2 (from OILM. oil sulfur content) *				
		D-15A - HI (from HI rate for muitiple fuels)				
		D-12-SO2 (from SO2 rate for multiple fuels)				

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407

## Span Values

Uniltstack /Pipe ldentifier	Comp Type	Scale	Method	MPCI MPF	NEC	Span Value	Full-Scale Range	Units of Measure	Scale Transition Point	Def. High Range Value	Flow Full Range (SCFH)	Flow Span Vàlue (STGF)	Begin Date/Hour	End Date/Hour
WCCT3A	NOX	H	TB	200.0	10.0	200.000	200.000	PPM	9.0				12/26/2010 00	
	NOX	L	F		10.0	10.000	10.000	PPM	9.0				12/26/2010 00	
	O2	H				25.000	25.000	PCT					12/26/2010 00	

Component Types Descriptions:
NOX - NOX Concentration
O2-O2 Concentration
Span Method Codes Descriptions: TB - Table Defaults from Part 75
F - Formula
PPM - Parts per Million
PCT - Percentage

Unit/Stack/Pipe Load or Operating Level Information

UnitStack/Pipe Identifier	Maximum Hourly Load	Units of Measure	Upper Bound of Range of Operation	Lower Bound of Range of Opieration	Designated Normal Op: Level	Second Most Frequently Used Op. Level	Second Normal Indicator	Load Analysis Date	Begin Date/Hour	End Date/Hour
WCCT3A	417	MW	417	55	High	Mid	Yes	12/26/2010	12/26/2010 00	

Monitoring Defaults

Unitstagpripe ldentifier	Parameter	Value	Units of Neasure	Purpose Code	Fuel Type	Operating Condtion	Source of Value	Begin Date/Hour	End Date/Hour
WССТ3A	NORX	2.2880	LBMMBTU	MD	NFS	A	TEST	12/26/2010 00	
	O2X	19.0000	PCT	DC	NFS	A	DEF	12/26/2010 00	
Parameter Codes Descriptions:		O2X - Maximum O2 Concentration (pct)							
Units of Measure Descriptions:		PCT - Percentage							
Purpose Codes Descriptions: $\quad$ M		MD - Missing Data (or Unmonitored Bypass Stack or Emergency Fuel) Default							
Fuel Type Codes Descriptions: N		NFS - Non-Fuel Specific							
Operating Conditions Descriptions: A		A - Any Hour		-		-			
Source Codes Descriptions:		TEST - Unit or Stack Testing							

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407

Monitoring Plan Printout Report
March 28, 2011 07:10 PM

## APPENDIX 9

GAS AND OIL FUEL METER CERTIFICATION DOCUMENTATION



## FLOW ELEMENT INSPECTION / CLOSURE REPORT



Remarks

## Certificate of Calibration <br> 

The flow meters for the above referenced purchase order were calibrated at a reputable flow callbratlon laboratory using the standard procedures of the lab. These procedures have been evaluated by the quality assurance department of Triad Measurement \& Equipment, Inc. (Triad). The calibration data has been reviewed by Triad and has been presented in tabular and graphical format for review.

To intitate the test, the flow meters were installed in the laboratory flow line. Careful attention was given to align the flow element with the test line piping, and to assure no gaskets between flanged sections protruded into the flow. Vents were provided at critical locations of the test line to purge the system of air. The test technician verified proper installation of the flow element in the test line prior to introducing water into the system to equalize test line piping and primary element temperature to water temperature. Prior to the test run, the control value was set to produce the desired flow, while the flow was directed to waste. Sufficient time was allowed to stabilze both the flow and the instrument readings, after which the weigh tank discharge valve was closed and the weigh tank scale indicator and the electric timer were both zeroed. To begin the test run, flow was diverted into the weigh tank, which automatically started the timer. At the start of water collection a computer based data acquisition system was activated to read the meter output, such that the meter output was averaged while the weigh tank was filling. At the end of the run, flow was diverted away from the weigh tank and the timer and data acquisition system were stopped to terminate the test run. The weight of water in the tank, elapsed time, water temperature, and average meter output were recorded on a data sheet. The data were entered into the computer to determine the flow and the results were plotted so that each test run was evaluated before the next run began. The control valve was then adjusted to the next flow and the procedure repeated.

The laboratory has reported that the flow measure uncertalnty is within. $3 \%$ of the true value for each test run. Calibrations of the test instrumentation ;tempurature, time, weight and length measurements) are traceable to the National Institute of Standards and Technology (formerly the National Bureau of Standards). Triad certifies that the data included in this report is accurate and has been obtained from original laboratory documents. Based on the perlodic review of lab procedures and review of the applicable lab data, the calibration for the meters listsed in the aitachements has been accepted.

Michael Bibb - President



Figure 2. Discharge coefficient versus pipe Reynolds Number for 6-inch meter SN\# 1000511

## Table 3. Utah Water Research Laboratory Flow Meter Calibration Data



Calibration Performed by: Z. Sharp
Calibration Witnessed by: NA

Run   No.	Flow   (gym)	$\Delta H$   (in. $\mathrm{H}_{2} \mathrm{O}$ )	Inlet   Reynolds   Number	C	Lev from   mean   (\%)	Uncertainty   in $\mathbf{C}$   (\%)
1	2	3	4	5	6	7
1	151.7	10.63	53,674	0.6129	$0.84 \%$	$0.17 \%$
2	260.5	31.63	92,156	0.6100	$0.36 \%$	$0.28 \%$
3	389.8	71.00	137,932	0.6093	$0.25 \%$	$0.26 \%$
4	493.4	114.19	174,584	0.6081	$0.05 \%$	$0.27 \%$
5	612.6	176.25	216,762	0.6078	$-0.01 \%$	$0.26 \%$
6	736.4	255.19	260,573	0.6072	$-0.11 \%$	$0.25 \%$
7	862.1	349.38	305,033	0.6074	$-0.06 \%$	$0.27 \%$
8	979.4	451.88	346,539	0.6068	$-0.17 \%$	$0.26 \%$
9	1087.4	557.50	384,739	0.6065	$-0.21 \%$	$0.26 \%$
10	1198.7	678.75	424,135	0.6060	$-0.30 \%$	$0.26 \%$
11	1327.7	831.88	469,769	0.6063	$-0.26 \%$	$0.25 \%$
12	1436.0	975.00	508,097	0.6057	$-0.35 \%$	$0.25 \%$
$6 R$	722.1	245.00	255,510	0.6076	$-0.03 \%$	$0.29 \%$

Certified by:


[^8]Table 4. Utah Water Research Laboratory Flow Meter Calibration Data


Certified by:


Steven L. Barfuss P.E.
Research Assistant Professor

TRIAD MEASUREMENT \& EQUIPMENT, INC. PO BOX 6237 KINGWOOD, TX 77325 PH 281-359-2300 FAX 281-359-2757			
FE-Sizer for Windows 95/98/Me/NT/2000/XP/2003 Server - Version 3.0, Release 3.43.1. Copyright © 1994-2010 Control-Soft Enterprises All rights reserved. Licensed to: Triad Measurement \& Equipment Inc.			
Service Data			
Tag: 3FGA   Serv: HR   Line No.:	A-FE-2001   G B DUCT BNR FUEL GAS INLET	Client:   Project:   J.O.IP.O. No.:	WCPP LLC   West County Energy Ctr. Unit 3 161354.64.0602
Calculation Method \& Base Conditions			
Sizing Parameter: Atm Press, Patm:	FLOWMETER FLOW 14.696 psia	C-Std:   Tap Loc:	API 2530/AGA 3 (1992) UPSTREAM
Meter/Pipe Data			
Meter Type:   Meter Style:   Nom Pipe Size:   Pipe I.D., D(ref):	ORIFICE PLATE CONCENTRIC 6.00 in 6.069 in	Meter Matl:   Tap Style:   Pipe Matt:   Pipe Sched:	316/316L SS FLANGE TAPS CARBON STEEL STD
Sizing Data			
Orifice Bore, d 60 Maximum Differen Normal Differentia	$\operatorname{deg} F$ ):   al, dPm (ref dP - H2O @ 60.0 deg F   dPm (ref dP - H2O @ 60.0 deg F):		$\begin{aligned} & 3.5480 \text { in } \\ & 250.000 \text { in } W C \\ & 150.000 \text { in } W C \end{aligned}$
Fluid Data			
Fiuid:   State-Units-Equatio   Specific Gravity,   Compressibility ( F   Pressure (Flowing)   Temperature (Flow   Viscosity, U:   Specific Heat Ratio	-Condition:   wing), Zf1: Pf1:   g), Tf1:   (Cp/Cv), k:		GAS   R-MASS-PVT-FLOWING   0.6000   1.0000   44.7000 psia   95.0 deg $F$   0.01500 cPoise   1.4000
Calculated Results			
Sizing Factor, Sm:   Pipe Reynolds Num   Pipe Reynolds Num   Discharge Coeffici   Expansion Factor,   Bore Expansion Fa   Pipe Expansion Fa   Permanent dP Los   Throat Velocity @   Beta, B(68.0 deg   Maximum Flow, W   Normal Flow, Wn:   Orifice Uncertainty   Calc Memo:	ber @ Maximum Flow, RD: ber @ Normal Flow, RD:   t, C   $1:$   tor, Fad:   or, FaD:   ax Flow.   Jo:   4200-01-02 ASME Calibrated		0.211733   1109882   859711   0.605699   0.961024   1.000259   1.000166   64.58 \%   $496.05 \mathrm{ft} / \mathrm{s}$   0.58461   $15999.9 \mathrm{lb} / \mathrm{h}$   $12393.5 \mathrm{lb} / \mathrm{h}$   $0.50 \%$
Sales Order Numb By: Taher Fodeibo	$14200$		Sht: of_Chk: Rev: o Date: 13 Oct 2010



## Calibration Cevificate

## Gas Flow


$\underbrace{\text { Signed on behalf of GL Industrial Servicas UK Ltd }}_{\text {D Shephard }} \quad$ Date of issue

Thls cerdiceste is lssued in accordances with the laboratory acereditation requirements of the United Kargdom Accreditation Saivice. It provides traceability of measurement to recognised natlonal standards, and to unlts of measurement reallsed at the Natlonal Physical Laboratory or other recognised national standards taboratones. This cerlificate may nol be reproduced other than in full, except with the prior wriden approval of the lisuing laboratory.

This cerifitate confrms that the above instrument has been calibrated at the GL Flow Centre. The actual measurement results are stated on page 2 of this corlificate.

Approved Signatories
D Shepherd
A Milne

## GL. Flow Centre

GL. Industrial Services Lid
Chillon Way, Ferryhlit
Co.Durham, DL17 OSE
Tet; +44 (0)] 1388724030
Fact44(0)9389 721884



Test Medium	Natural Gas
pulses per $\mathrm{m}^{3}$	983.099716
Reference meter(s) used	$T 2-31388$
	$T 22-70870$

Test Engineer
P Toole

Traceabllity Statement. All maasurements and measuring equipmont used are traceabla to Nallonal or Intemational standards

The reported expended uncertainty is basad on a standard uncerfainty multipied by a coverage factor $k=2$. providing a leval of confidence of approximately $95 \%$. The uncertainty evalualion has been camied out in accordance with LKAS requiremems.

Ersor = (indicated volurie - Reference volume) / Relírgnce volume $x$ 100\%.
The uncerlainty in the measurements in the flow fange

20	10	$40 \mathrm{~m} 3 / \mathrm{hr}$	$=$	$0.20 \%$
40	10	$400 \mathrm{~m} 3 / \mathrm{hr}$	$=$	$0.20 \%$
400	10	$2500 \mathrm{~m} 3 / \mathrm{hr}$	$=$	$0.19 \%$
2500	10	6500 m 3 hr		$=0.20 \%$
8500	10	$13000 \mathrm{~m} 3 / \mathrm{hr}$		$=0.22 \%$
13000	10	$19500 \mathrm{~m} 3 / \mathrm{hr}$		$=0.23 \%$

## CUSTOM INSTRUMENTATION SERVICES CORPORATION

CERTIFICATION REPORT UNIT 3B CONTINUOUS EMISSION MONITORING SYSTEM WEST COUNTY ENERGY CENTER LOXAHATCHEE, FLORIDA

## PREPARED FOR: FLORIDA POWER AND LIGHT COMPANY

PREPARED BY: CUSTOM INSTRUMENTATION SERVICES CORPORATION

REV. 0

COPY NO $\qquad$
DATE: April 26, 2011

## TABLE OF CONTENTS

1. INTRODUCTION ..... 3
2. CEMS CERTIFICATION ..... 6
2.1 RELATIVE ACCURACY ..... 6
2.2 BIAS CHECK ..... 7
2.3 CALIBRATION ERROR/CALIBRATION DRIFT ..... 7
2.4 LINEARITY/CGA ..... 7
2.5 CYCLE TIME ..... 7
3. DAHS VERIFICATION ..... 8
4. DISCUSSION OF RESULTS ..... 8
APPENDIX 1. Air Hygiene RATA Test Report
APPENDIX 2. 40CFR75 QA Cert Test Detail Report
APPENDIX 3. CEMS Calibration Drift Reports
APPENDIX 4. Linearity and CGA Summary Tables
APPENDIX 5. Cycle Time Supporting Documentation
APPENDIX 6. EPA protocol Gas Certificates
APPENDIX 7. DAHS Verification Documentation
APPENDIX 8. 40 CFR 75 Monitoring Plan
APPENDIX 9. Gas and Oil Fuel Meter Certification Documentation

## 1. INTRODUCTION

The West County Energy Center is a nominal 3,750 megawatt (MW) power plant located in Loxahatchee, Florida. Three nominal 1,250 MW gas-fired combined cycle units use ultralow sulfur (ULS) fuel oil as backup fuel. Each combined cycle unit consists of three nominal 250 MW Model 501G gas turbines with three supplementary-fired heat recovery steam generators (HRSG) and a common 500 MW steam-electric generator. Exhaust gases from each turbine are discharged into the atmosphere through stacks approximately 150 feet above grade. A dedicated CEMS monitors emissions from each unit.

Custom Instrumentation Services Corporation of Centennial, Colorado built the Continuous Emission Monitoring Systems (CEMS). This report provides information on the certification of the CEMS measuring emissions from Unit 3B. Data from the CEMS is recorded and stored on a Data Acquisition System.

The CEMS on the combustion turbines have been designed to meet the monitoring and reporting requirements of Florida Department of Environmental Protection (FDEP) and USEPA as required by 40 CFR 60 and 40 CFR 75 . This report presents the results of testing on the $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and $\mathrm{O}_{2}$ analyzers on Unit 3B. The testing was performed to meet the requirements of 40 CFR 60, Appendix B, Performance Specification 4/4a for CO and 40 CFR 75, Appendix A for $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{O}_{2}$.

Field certification testing on the CEMS occurred in February and March 2011. The tests conducted on the CEMS included Relative Accuracy, Bias Check, Calibration Error, Linearity, Cylinder Gas Audit and Cycle Time. The results of all tests are summarized in Table 1. A printout of the certification results generated by the EPA Emission Collection and Monitoring Plan System (ECMPS) is included in Appendix 2.

Air Hygiene conducted Relative Accuracy Testing for $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and $\mathrm{O}_{2}$. Ten runs were completed Unit 3B. The results of the RA tests are in the Air Hygiene test report. As shown, the Relative Accuracy calculations on the analyzers were within the EPA and FDEP requirements for all parameters. A detailed description of the RA testing is provided in Section 2.1 and in the Air Hygiene test report in Appendix 1.

A bias check evaluation was made on the $\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmB}$ tu relative accuracy results as required in 40 CFR 75 . Unit 3B did not exhibit bias and no bias adjustment factor is required. The bias test results are discussed in Section 2.2. Supporting data is provided in the relative accuracy tables in the Air Hygiene test report.

The calibration error and calibration drift tests occurred over seven consecutive operating days. The results of the analyzer drift tests are summarized in Table l. As shown, the analyzers operated well within the applicable EPA requirements. An explanation of the drift test is provided in Section 2.3 and supporting documentation is provided in Appendix 3.

Linearity tests on the high range of the $\mathrm{NO}_{\mathrm{x}}$ analyzer and on the $\mathrm{O}_{2}$ analyzer are a requirement of 40 CFR 75 . Cycle Time tests on the $\mathrm{NO}_{\mathrm{x}}$ analyzer and the $\mathrm{O}_{2}$ analyzer are
also a requirement of 40 CFR 75. The tests took place on March 18, 2011. Cylinder Gas Audits and a cycle time test on the CO analyzer took place on March 18 and 19, 2011. The results of the tests are summarized in Table 1. As shown, the analyzers operated well within EPA requirements for all parameters. An explanation of the linearity and CGA tests is provided in Section 2.4. Summary tables and audit reports for the linearity and CGA tests are provided in Appendix 4. An explanation of the cycle time test is provided in Section 2.5. Supporting documents for the cycle time tests are provided in Appendix 5.

A formula verification was performed on the Data Acquisition and Handling System. The DAHS passed all the tests required by EPA. The DAHS test is described in Section 3 and supporting documents are provided in Appendix 7.

A complete 40 CFR 75 Monitoring Plan is included in Appendix 8 and the gas fuel meter certification documentation is provided in Appendix 9.

In summary, the CEMS on Unit 3B at West County Energy Center provides reliable data and operates within the requirements of the EPA as outlined in 40 CFR 60, Appendix B, Performance Specifications 2, 3, 4/4a and 40 CFR 75, Appendix A and meet the requirements of the FDEP for CEMS.

Table 1 WEST COUNTY ENERGY CENTER UNIT 3B SUMMARY OF CEMS CERTIFICATION RESULTS

	RESULTS	STANDARD	PASS / FAIL
	RELATIVE ACCURACY		
$\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}$	6.7\% RA	$7.5 \%$ RA*	PASS
COppm@15\% ${ }_{2}$	0.2 ppm	5 ppm MD	PASS
$\mathrm{CO} \mathrm{lb} / \mathrm{hr}$	0.2 ppm	5 ppm MD	PASS
	40 CFR 75 BIAS TEST		
Adjustment Factor	1.000	NA	No BAF Required
	7-DAY CALIBRATION ERROR $\mathrm{NO}_{\mathrm{x}} \mathrm{High}$		
$\mathrm{NO}_{\mathrm{x}}$ High (Zero)	0.1\% of span	$2.5 \%$ of span	PASS
$\mathrm{NO}_{\mathrm{x}}$ High (Span)	0.4\% of span	2.5\% of span	PASS
	7-DAY CALIBRATION ERROR $\mathrm{O}_{2}$		
$\mathrm{O}_{2} \%$ (Zero)	$0.0 \% \mathrm{O}_{2}$	$0.5 \% \mathrm{O}_{2}$	PASS
$\mathrm{O}_{2} \%$ (Span)	$0.2 \% \mathrm{O}_{2}$	0.5\% $\mathrm{O}_{2}$	PASS
	7-DAY CALIBRATION DRIFT CO Low		
CO Low (Zero)	2.0\% of span	5.0\% of span	PASS
CO Low (Span)	2.0\% of span	5.0\% of span	PASS
	7-DAY CALIBRATION DRIFT CO High		
CO High (Zero)	0.1\% of span	$5.0 \%$ of span	PASS
CO High (Span)	1.3\% of span	5.0\% of span	PASS
	LINEARITY		
$\mathrm{NO}_{\mathrm{x}}$ High Range	4.8\%	5\% LE	PASS
$\mathrm{O}_{2} \%$	0.6\%	5\% LE	PASS
	CYLINDER GAS AUDIT		
CO Low Range	7.1\%	15\% CGA Error	PASS
CO High Range	13.1\%	15\% CGA Error	PASS
	CYCLE TIME		
$\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}$	4 Minutes	15 Minutes	PASS
CO Low Range	80 Seconds	90 Seconds	PASS
ANALYZER SERIAL NUMBERS			
$\mathrm{NO}_{\mathrm{x}}$		0934838563	
CO		CM09400113	
$\mathrm{O}_{2}$		01440DIVO2/4248	

WHERE: RA = RELATIVE ACCURACY

* = RATA RESULTS REQUIRED FOR ANNUAL RATA FREQUENCY FOR 40 CFR 75

MD = MEAN DIFFERENCE BETWEEN RM AND CEMS PLUS THE $2.5 \%$ CONFIDENCE COEFFICIENT DRIFT AND LINEARITY RESULTS ARE THE HIGHEST ENCOUNTERED DURING ALL TESTS

## 2. CEMS CERTIFICATION

Field tests and DAHS tests were performed for CEMS certification in accordance with the criteria in 40 CFR 60, Appendix B, 40 CFR 75, Appendix A, and 40 CFR 75.20. The results for all tests were determined from the data collected by the DAHS. The computer printouts for each field test are included in the Appendices.

### 2.1 RELATIVE ACCURACY

The relative accuracy test audit (RATA) was performed on March 19, 2011. Each test run was a minimum of 21 minutes in duration and consisted of sampling for $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and $\mathrm{O}_{2}$. The times during which the tests were performed are shown in the Air Hygiene test report in Appendix 1.

The reference methods used by Air Hygiene are outlined below:
CONSTITUENT
$\mathrm{O}_{2}$
CO
$\mathrm{NO}_{\mathrm{x}}$

## METHOD

EPA METHOD 3B
EPA METHOD 10
EPA METHOD 7E

As shown in the Relative Accuracy (RA) tables in the Air Hygiene test report, relative accuracy is reported as an error and is the sum of the absolute mean value of the differences between the reference method tests and the instrument readings, plus the 95 percent confidence interval of the differences, expressed as a percentage of the mean reference method value. As an alternative, 40 CFR 75 allows low $\mathrm{NO}_{\mathrm{x}}$ emitters (less than $0.20 \mathrm{lb} / \mathrm{mmBtu}$ ) to express relative accuracy as the difference between the average reference method value and the average CEMS value.

CO results are acceptable if the RA does not exceed $10 \%$, if the average difference between the CEMS and reference method values plus the 2.5 percent confidence coefficient does not exceed 5.0 ppm , or if the alternative relative accuracy (ARA) does not exceed 5\%.

The analyzer response was determined from the average of readings taken every minute for the duration of the time the relative accuracy tests were performed. The raw value reports from the CEMS are included in the Air Hygiene test report.

The $\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmB}$ tu measurement passed the relative accuracy requirements as stated in 40 CFR 75, Appendix A and the $\mathrm{NO}_{\mathrm{x}}$ system $\left(\mathrm{NO}_{\mathrm{x}}\right.$ and $\mathrm{O}_{2}$ analyzer) qualifies for annual RATA frequency under 40 CFR 75 . The $\mathrm{NO}_{\mathrm{x}}$ system had a relative accuracy result less than $7.5 \%$. The CO analyzers passed the relative accuracy requirements as stated in 40 CFR 60, Appendix B, PS 4/4a.

### 2.2 BIAS CHECK

The relative accuracy result for $\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}$ on Unit 3B was checked for low bias by determining if the mean difference between the test team's values and the CEMS values is greater than the absolute value of the confidence coefficient. The CEMS on Unit 3B did not exhibit bias and no bias adjustment factor is required.

### 2.3 CALIBRATION ERROR/CALIBRATION DRIFT

The 7-day calibration error test on both ranges of the CO analyzer and the high ranges of the $\mathrm{NO}_{\mathrm{x}}$ and $\mathrm{O}_{2}$ analyzers occurred on seven consecutive days when the unit was operating at normal load. No adjustments were made to any of the analyzers during the seven day period. The calibration gases used for the calibration error test were US EPA Protocol 1, following the requirements of 40 CFR 75. The certificates of analysis for the cylinders are included in Appendix 6.

The $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}$ and $\mathrm{O}_{2}$ data from calibrations occurring over seven days are provided in Appendix 3. As shown, the calibration error for all analyzers was well within EPA requirements.

### 2.4 LINEARITY/CGA

The $\mathrm{NO}_{\mathrm{x}}$ high range and $\mathrm{O}_{2}$ linearity tests and the CO Cylinder Gas Audits (CGA) were performed on March 18 and 19, 2011. To perform the linearity test, the analyzers were challenged three times with each of three levels of calibration gas (low, mid and high). To perform the CGA, both ranges of the CO analyzer were challenged three times with two levels of calibration gas (low and mid).

The mean difference between the analyzer response and the calibration gas value, as a percentage of the calibration gas value, must be within $5 \%$ for linearity tests and within $15 \%$ for CGA. Results are also acceptable if the difference between the mean response and the calibration gas is within 5 ppm for $\mathrm{NO}_{\mathrm{x}}$ and CO or $0.5 \% \mathrm{O}_{2}$. The linearity results for Unit 3B were within the requirements of 40 CFR 75, Appendix A and the CGA results met requirements of 40 CFR 60, Appendix F.

Summaries of the linearity and CGA test results are provided in tables in Appendix 4. The calibration gases used for the tests were US EPA Protocol 1, following the requirements of 40 CFR 75. The certificates of analysis for the cylinders are included in Appendix 6.

### 2.5 CYCLE TIME/RESPONSE TIME

The cycle time tests were performed on March 18, 2011. To perform the test, both ranges of the $\mathrm{NO}_{x}$ analyzer and the $\mathrm{O}_{2}$ analyzer were challenged with a zero gas and high level ( 80 to $100 \%$ of span) calibration gas. Both the upscale and down scale response times were determined. As stated in 40 CFR 75, Appendix A, the response time to reach $95 \%$ of
the gas value must be less than 15 minutes. For the $\mathrm{NO}_{\mathrm{x}}$ system $\left(\mathrm{NO}_{\mathrm{x}}\right.$ and $\mathrm{O}_{2}$ analyzer), the longer of the two analyzers response times is the cycle time for the system.

The response time test on the low range of the CO analyzer was performed on March 18, 2011. As stated in 40 CFR 60, Appendix B, PS 4a, the three averaged upscale and downscale response times must be less than or equal to 90 seconds. The system response times met this requirement for Unit 3B. Reports that show the analyzers response are provided in Appendix 5.

## 3. DAHS VERIFICATION

Each of the missing data routines and calculations performed by the DAHS was verified. All variables included in the calculations (bias adjustment factor, fuel inputs) were included. The formula verification and associated printouts are included in Appendix 7.

## 4. DISCUSSION OF RESULTS

The CEMS and DAHS on Unit 3B at West County Energy Center successfully met all the requirements of the EPA as outlined in 40 CFR 60 and 40 CFR 75. The certification data has been entered in the format specified by EPA for 40 CFR 75 and a printout of the results generated by ECMPS is included in Appendix 2.

## APPENDIX 1

## AIR HYGIENE RATA TEST REPORT

## Testing Solutions for a Better World

## RELATIVE ACCURACY TEST AUDIT FOR THE

## MITSUBISHI, MODEL 501G, UNIT 3B CEMS

 PREPARED FOR FLORIDA POWER AND LIGHT - AT THEWEST COUNTY ENERGY CENTER LOXAHATCHEE, FLORIDA MARCH 19, 2011


Cernorate Headquarters 5634 S. $122^{\text {nd }}$ E. Ave. Suite F Tulsa, OK 74146

Remote Testing Offices
Las Vegas, NV 89156 Ft. Worth, TX 76028 Humble, TX 77338
Shreveport, LA 71115
Miami, FL 33101
Philadelphia, PA 19136

# RELATIVE ACCURACY TEST AUDIT FOR THE <br> MITSUBISHI, MODEL 501G, UNIT BB CEMS PREPARED FOR <br> FLORIDA POWER AND LIGHT <br> AT THE <br> WEST COUNTY ENERGY CENTER <br> LOXAHATCHEE, FLORIDA MARCH 19, 2011 



Paul Little, QSTI, Director of Customer Service


Jake Fahlenkamp, QSTI, Director of Quality Assurance

## Table of Contents

1.0 INTRODUCTION ..... 1
1.1 TEST PURPOSE AND OBJECTIVES ..... 1
1.2 SUMMARY OF TEST PROGRAM ..... 2
1.2.I Participating Organizations ..... 2
1.2.2 Industry ..... 2
1.2.3 Air Permit and Federal Requirements ..... 2
1.2.4 Plant Location ..... 2
1.2.5 Equipment Tested ..... 2
1.2.6 Emission Points ..... 2
1.2.7 Pollutants Measured ..... 2
1.2.8 Date of Emission Test ..... 2
1.3 KEY PERSONNEL ..... 2
2.0 SUMMARY OF TEST RESULTS ..... 3
3.0 SOURCE OPERATION ..... 4
3.1 PROCESS DESCRIPTION ..... 4
3.2 SAMPLING LOCATION ..... 4
4.0 SAMPLING AND ANALYTICAL PROCEDURES ..... 4
4.1 TEST METHODS ..... 4
4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS ..... 5

## APPENDICES

Appendix A Test Results and Calculations
Appendix B CEMS and Reference Method Data
Appendix C Calibration Gas Certifications
Appendix D Quality Assurance and Quality Control Data
Appendix E Stratification Test Data

# Relative Accuracy Test Audit <br> Mitsubishi, Model 501G, Unit 3B CEMS <br> Florida Power and Light <br> West County Energy Center <br> Loxahatchee, Florida <br> March 19, 2011 

### 1.0 INTRODUCTION

Air Hygiene International, Inc. (Air Hygiene) has completed the Relative Accuracy Test Audit (RATA) for nitrogen oxides (NOx), carbon monoxide (CO), and oxygen ( $\mathrm{O}_{2}$ ) from the exhaust of the Mitsubishi, Model 501G, Unit 3B for Florida Power and Light at the West County Energy Center near Loxahatchee, Florida. This report details the background, results, process description, and the sampling/analysis methodology of the stack sampling survey conducted on March 19, 2011.

### 1.1 TEST PURPOSE AND OBJECTIVES

The purpose of the test was to perform the initial certification RATA on the CEMS that serves the Mitsubishi, Model 501G, Unit 3B for Florida Power and Light at the West County Energy Center near Loxahatchee, Florida. Reference method (RM) testing followed the Code of Federal Regulations (CFR), Title 40 ( 40 CFR), Part 60 (40 CFR 60), Appendix A, Methods 1, 3a, 7e, 10, and 19. RM values are compared with the on-site CEMS to document performance as required in the 40 CFR 60, Appendix B, Performance Specifications (PS) and 40 CFR 75 Appendix A and B. All relative accuracies were established on-site and were governed by the following sets of rules:

In accordance with 40 CFR 75, Appendix A, Section 3.3.2(a) and (b), the NOx RATA results are acceptable if the RA does not exceed 10.0 percent or if during the RATA the average NOx emission rate is less than or equal to 0.2 $\mathrm{lb} / \mathrm{MMBtu}$ and the average difference between the CEMS and RM values does not exceed $0.02 \mathrm{lb} / \mathrm{MMBtu}$. Passing this set of criteria requires the CEMS to be retested after no more than two operating quarters.
Alternatively, in accordance with 40 CFR 75, Appendix B, Section 2.3.1.2(a) and (f), and Appendix B, Figure 2, the NOx RATA results are acceptable if the RA does not exceed 7.5 percent or if during the RATA the average NOx emission rate is less than or equal to $0.2 \mathrm{lb} / \mathrm{MMBtu}$ and the average difference between the CEMS and RM values does not exceed $0.015 \mathrm{lb} / \mathrm{MMB}$ tu. Passing this set of criteria allows the CEMS to be retested after four operating quarters or at least within eight calendar quarters.

In accordance with 40 CFR 60, Appendix B, PS 4 and 4 A, Sections 13.2 of each, the CO RA test results are acceptable if the RA does not exceed 10.0 percent, if the average difference between the CEMS and RM values plus the 2.5 percent confidence coefficient $(2.5 \% \mathrm{CC})$ does not exceed 5.0 parts per million (ppm), or if the ARA does not exceed 5.0 percent. Part 60 further requires that the unit be operating at greater than 50 percent of normal load.

### 1.2 SUMMARY OF TEST PROGRAM

The following list details pertinent information related to this specific project:

### 1.2.1 Participating Organizations

- Florida Department of Environmental Protection (FDEP)
- Florida Power and Light
- Black and Veatch
- Custom Instrumentation Services Corporation (CiSCO)
- Air Hygiene
1.2.2 Industry
- Electric Utility / Electric Services
1.2.3 Air Permit and Federal Requirements
- Permit Number: PSD-FL396
- Emission Unit ID: 014
- 40 CFR 60, Appendix B, Performance Specifications (PS)
- 40 CFR 75, Appendix A
- 40 CFR 75, Appendix B
1.2.4 Plant Location
- West County Energy Center near Loxahatchee, Florida
1.2.5 Equipment Tested
- Mitsubishi, Model 501G, Unit 3B
- NOx Analyzer (THERMO, 42i-LS, Serial \#0934838563)
- CO Analyzer (THERMO, 48i-, Serial \#CM09400113)
- $\mathrm{O}_{2}$ Analyzer (Servomex, 1440D, Serial\#01440DIV02/4248)
1.2.6 Emission Points
- Exhaust from the Mitsubishi, Model 501G, Unit 3B
- For all gases, one sample point in the exhaust duct from the Mitsubishi, Model 501G, Unit 3B, determined after conducting a stratification test (refer to Appendix E)
1.2.7 Pollutants Measured
- NOx
- CO
- $\mathrm{O}_{2}$
1.2.8 Date of Emission Test
- March 19, 2011


### 1.3 KEY PERSONNEL

Florida Power and Light:
Black and Veatch:
CiSCO:
Air Hygiene:

John Mirino	$786-242-3895$
Bill Stevenson	$913-458-8549$
Justin Hewett	$936-537-4848$
Jake Fahlenkamp	$918-307-8865$

### 2.0 SUMMARY OF TEST RESULTS

Results from the sampling conducted on Florida Power and Light's Mitsubishi, Model 50IG, Unit 3B located at the West County Energy Center on March 19, 2011 are summarized in the following table.

TABLE 2.1
SUMMARY OF MITSUBISHI, 501G, UNIT 3B RATA RESULTS

Pollutant	Units	Criteria			Results	Passed / Test Frequency
		CFR	Specification / Section	Standard		
NOx	Ib/MMBtu	Part 75	Appendix A , Section 3.3.2(a),(b)   Appendix B, Section 2.3.1.2(a),(f), Figure 2	RA $\leq 10 \%$, or if $\mathrm{Ib} / \mathrm{MMBLu} \leq 0.2$, $d \leq \pm 0.02 \mathrm{lb} / \mathrm{MMBtu}$   Annual Incentive RA $\leq 7.5 \%$, or if $\mathrm{b} / \mathrm{MMBtu} \leq 0.2$, $\mathrm{d} \leq \pm 0.015 \mathrm{lb} / \mathrm{MMBtu}$	$\begin{gathered} \mathrm{RA}=6.7 \% \\ \mathrm{RM}=0.01 \mathrm{lb} / \mathrm{MMBLu} \\ \mathrm{~d}=0 \mathrm{lb} / \mathrm{MMBtu} \\ \mathrm{BAF}=1.000 \end{gathered}$	YES / ANNUAL
CO	$\begin{aligned} & \mathrm{ppm@} @ \\ & 15 \% \mathrm{O}_{2} \end{aligned}$	Part 60	Appendix B, Performance Specification 4, 4A, from all Section 13.2	$\begin{gathered} \text { RA } \leq 10 \%, \text { or } \\ d+2.5 \% \text { CC } \\ \leq \pm 5 \text { pprnv, } \\ \text { or ARA } \leq 5 \% \end{gathered}$	$\begin{gathered} \hline \text { ARA }=3.4 \% \\ \text { RA }=33.7 \% \\ \|\|d\|+2.5 \% C C=0.2 \mathrm{pom} \end{gathered}$	YES / ANNUAL
CO	lb/hr	Part 60	Appendix B, Performance Specification 4, 4A Section 13.2	$\begin{gathered} \hline R A \leq 10 \%, \text { or } \\ d+2.5 \% \text { CC } \\ \leq \pm 5 \text { ppmw }, \\ \text { or ARA } \leq 5 \% \end{gathered}$	$\begin{gathered} \hline \text { ARA }=4.3 \% \\ \text { RA }=39.3 \% \\ \|\|d\|+2.5 \% \mathrm{CC}=0.2 \mathrm{ppm} \end{gathered}$	YES / ANNUAL
Load	MN	Part 60	Appendix B, Performance Specifications	> 50\% max load	280.6	WITHIN tolerance
Load	MN	Part 75	Appendix A and B	normal load range	280.6	WTHIN TOLERANCE

Notes: RA = relative accuracy, ARA = alternative relative accuracy, RM = reference method value, $d=$ difference betw een RM and CEMS value, $\mathrm{CC}=$ confidence coefficient, $\mathrm{v}=$ velocity, $\mathrm{BAF}=$ bias adjustment factor

The RATA passed for all pollutants ( NOx and CO ) in all units ( $\mathrm{ppm} @ 15 \% \mathrm{O}_{2}$, $\mathrm{lb} / \mathrm{hr}$, and $\mathrm{lb} / \mathrm{MMBtu}$ ) under all 40 CFR 60 and 40 CFR 75 criteria.

Specifically, NOx in units of Ib/MMBtu passed the 40 CFR 75 alternative annual incentive criteria with an emissions rate of less than $0.2 \mathrm{lb} / \mathrm{MMB}$ tu and a difference between the RM and CEMS analyzers of less than $0.015 \mathrm{lb} / \mathrm{MMBtu}$. Also there is a Bias Adjustment Factor of 1.000 . CO, in units of $\mathrm{ppm} @ 15 \% \mathrm{O}_{2}$ and $\mathrm{lb} / \mathrm{hr}$, passed the 40 CFR 60 alternative relative accuracy of less than 5 percent criteria using the applicable standard.

Unit load was within the 40 CFR 60 required criteria of greater than 50 percent of the maximum load and also fell within the normal load criteria as defined by the plants Quality Control and Monitoring Plan which defined the upper and lower boundary on the unit and the normal and alternative normal load ranges.

### 3.0 SOURCE OPERATION

### 3.1 PROCESS DESCRIPTION

Florida Power and Light (FPL) owns and operates the West County Energy Center (West County) located at 20505 State Road 80 in Loxahatchee, Florida. West County is a nominal 2,500 megawatt (MW) greenfield power plant and consists of two combined cycle units (Unit 1 and 2). Each combined cycle unit consists of: three nominal 250 MW Mitsubishi Model 501G combustion turbine-electrical generator (CTGs) sets with evaporative inlet cooling systems; three supplementary-fired heat recovery stean generators (HRSGs) with selective catalytic reduction (SCR) reactors; one nominal 428 million British thermal units per hour (MMBtu/hour) based on low heat value (LHV) natural gas-fired duct burner (DB) located within each of the three HRSG's; and a common nominal 500 MW steam turbine-electrical generator (STG). The total nominal generating capacity of each of the "3 on I" combined cycle unit is approximately I,250 MW.

Each CTG has a nominal heat input rate of $2,333 \mathrm{MMBtu} / \mathrm{hr}$ when firing natural gas and $2,117 \mathrm{MMBtu} / \mathrm{hr}$ when firing distillate fuel oil (based on a compressor inlet air temperature of 59 degrees Fahrenheit ( ${ }^{\circ} \mathrm{F}$ ), the lower heating value (LHV) of each fuel, and 100 percent load), includes an automated gas turbine control system, and has dual-fuel capability of firing natural gas as the primary fuel or ultra low sulfur distillate (ULSD) fuel oil as a restricted alternate fuel. Each HRSG recovers exhaust, heat energy from each of the CTGs. Each Unit delivers steam to each STG. The efficient combustion of natural gas and restricted firing of ULSD fuel oil minimizes the emissions of carbon monoxide (CO), particulate matter ( PM ), sulfuric acid mist $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ and volatile organic compounds (VOCs). Dry Low-NOX (DLN) combustors for gas firing and water injection for oil firing reduce nitrogen oxides (NOx) emissions. A selective catalyst reduction (SCR) system further reduces NOx emissions.

### 3.2 SAMPLING LOCATION

The 501 G stack is circular and measures 21.9 feet ( ft ) ( 263 inches) in diameter at the test ports which are approximately 138 ft above grade level with an exit elevation of approximately 150 ft above grade level. The test ports are located approximately 44.31 ft ( 531.75 inches) downstream and approximately 12 ft ( 144 inches) upstream from the nearest disturbances. All exhaust samples for gaseous emissions were continuously drawn from the exhaust system at the sample ports from a single point determined after conducting a stratification test (Appendix E). During the stratification test three points were traversed from each of the four ports. The probe was allowed to remain at a point for two times the system response time.

### 4.0 SAMPLING AND ANALYTICAL PROCEDURES

### 4.1 TEST METHODS

The emission test on the Mitsubishi, Model 501G, Unit 3B at the West County Energy Center was performed following United States Environmental Protection Agency (EPA) methods described by the Code of Federal Regulations (CFR). Table 4.1 outlines the specific methods performed on March 19, 2011.

TABLE 4.1
SUMMARY OF SAMPLING METHODS

Pollutant or Parameter	Sampling   Method	Analysis Method
Sample Point Location	EPA Method 1	Equal Area Method
Oxygen	EPA Method 3a	Paramagnetic Cell
Nitrogen Oxides	EPA Method 7e	Chemiluminescent Analyzer
Carbon Monoxide	EPA Method 10	Nondispersive Infrared   Analyzer
Stack Flow Rate	EPA Method 19	Dry Oxygen F Factor

### 4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS

The sampling and analysis procedures used during these tests conform with the methods outlined in the Code of Federal Regulations (CFR), Title 40, Part 60, Appendix A, Methods 1, 3a, 7e, 10, and 19.

Figure 4.1 depicts the sample system used for the $\mathrm{NOx}, \mathrm{CO}$, and $\mathrm{O}_{2}$ tests. A stainless steel probe was inserted into the sample ports of the stack to extract gas measurements from the emission stream at a single point in the stack determined after passing an initial stratification test. The gas sample was continuously pulled through the probe and transported, via heat-traced Teflon® tubing, to a stainless steel minimum-contact condenser designed to dry the sample. Transportation of the sample, through Teflon® tubing, continued into the sample manifold within the mobile laboratory via a stainless steel/Teflon® diaphragm pump. From the manifold, the sample was partitioned to the $\mathrm{NOx}, \mathrm{CO}$, and $\mathrm{O}_{2}$ analyzers through rotameters that controlled the flow rate of the sample.

Figure 4.1 shows that the sample system was also equipped with a separate path through which a calibration gas could be delivered to the probe and back through the entire sampling system. This allowed for convenient performance of system bias checks as required by the testing methods.

All instruments were housed in an air-conditioned, trailer-mounted mobile laboratory. Gaseous calibration standards were provided in aluminum cylinders with the concentrations certified by the vendor. EPA Protocol No. 1 was used to determine the cylinder concentrations where applicable (i.e. NOx calibration gases).

Table 4.2 provides a description of the analyzers used for the instrument portion of the tests. All data from the continuous monitoring instruments were recorded on a Logic Beach Portable Data Logging System Hyperlogger which retrieves calibrated electronic data from each instrument every one second and reports an average of the collected data every 30 seconds. Data records can be found in Appendix A and B of this report.

Three test runs of approximately 60 minutes and seven test runs of approximately 21 minutes each were conducted on the Mitsubishi, Model 501G, Unit 3B for NOx, CO , and $\mathrm{O}_{2}$. The unit operation was greater than 50 percent of capacity as required by the 40 CFR 60 , Performance Specifications. The unit operation was at the normal load as required by 40 CFR 75 .

The stack gas analysis for $\mathrm{O}_{2}$ concentrations was performed in accordance with procedures set forth in EPA Method 3a. The $\mathrm{O}_{2}$ analyzer uses a paramagnetic cell.

EPA Method 7e was used to determine concentrations of NOx . A chemiluminescent analyzer was used to determine the nitrogen oxides concentration in the gas stream. A $\mathrm{NO}_{2}$ in nitrogen certified gas cylinder was used to verify at least a 90 percent $\mathrm{NO}_{2}$ conversion on the day of the test.

CO emission concentrations were quantified in accordance with procedures set forth in EPA Method 10. A continuous nondispersive infrared (NDIR) analyzer was used for this purpose.

TABLE 4.2
ANALYTICAL INSTRUMENTATION

Parameter	Model and   Manufacturer	Range	Sensitivity	Detection Principle
NOx	THERMO   $42 \mathrm{i}-\mathrm{HL}$	User may   select up to   $5,000 \mathrm{ppm}$	0.1 ppm	Thermal reduction of $\mathrm{NO}_{2}$ to NO.   Chemiluminescence of reaction of   NO with $\mathrm{O}_{3}$. Detection by PMT.   Inherently linear for listed ranges.
CO	THERMO   48 i	User may   select up to   $10,000 \mathrm{ppm}$	0.1 ppm	Infrared absorption, gas filter   correlation detector, microprocessor   based linearization.
$\mathrm{O}_{2}$	THERMO   $42 \mathrm{i}-\mathrm{HL}$	$0-25 \%$	$0.1 \%$	Paramagnetic cell, inherently linear.



APPENDIX A
TEST RESULTS AND CALCULATIONS

TABLE A.1:
EMISSIONS TESTING SCHEDULE

Unit	Load	Test Type	Run	Date	Start	Stop	Time Sync
3B	Base Load	Stratification Test	1	$03 / 19 / 11$	$8: 47: 10$	$9: 26: 40$	DAHS
3B	Base	Gas RATA	1	$03 / 19 / 11$	$9: 32: 10$	$10: 31: 40$	DAHS
3B	Base	Gas RATA	2	$03 / 19 / 11$	$10: 45: 10$	$11: 44: 40$	DAHS
3B	Base	Gas RATA	3	$03 / 19 / 11$	$12: 05: 10$	$13: 04: 40$	DAHS
3B	Base	Gas RATA	4	$03 / 19 / 11$	$13: 17: 10$	$13: 37: 40$	DAHS
3B	Base	Gas RATA	5	$03 / 19 / 11$	$13: 50: 10$	$14: 10: 40$	DAHS
3B	Base	Gas RATA	6	$03 / 19 / 11$	$14: 21: 10$	$14: 41: 40$	DAHS
3B	Base	Gas RATA	7	$03 / 19 / 11$	$14: 51: 10$	$15: 11: 40$	DAHS
3B	Base	Gas RATA	8	$03 / 19 / 11$	$15: 21: 10$	$15: 41: 40$	DAHS
3B	Base	Gas RATA	9	$03 / 19 / 11$	$15: 51: 10$	$16: 11: 40$	DAHS
3B	Base	Gas RATA	10	$03 / 19 / 11$	$16: 21: 10$	$16: 41: 40$	DAHS

Note: DAHS Time (EST minus 1hr)

TEST RESULTS

Florida Power and Light
March 19, 2011
Mitsubishi, 501G, Unit 3B
CO RATA Data Sheet
West County Energy Center

RUN \#	RUN TIME		USED	UNIT LOAD   (MW)	$\begin{array}{\|c\|} \hline \text { RM } \\ \hline \text { (ppm@ 15\%O } \mathrm{O}_{2} \text { ) } \\ \hline \end{array}$	CEMS   (ppm@ 15\%	RM-CEMS		
			(diff)				(diff ${ }^{2}$ )		
1	09:32	- 10:31		YES	301.8	0.40	0.40	0.0000	0.00
2	10:45	- 11:44	YES	287.1	0.40	0.30	0.1000	0.01	
3	12:05	- 13:04	NO	279.6	0.50	0.30			
4	13:17	- 13:37	YES	277.4	0.40	0.30	0.1000	0.01	
5	13:50	- 14:10	YES	277.7	0.40	0.30	0.1000	0.01	
6	14:21	- 14:41	YES	277.0	0.40	0.30	0.1000	0.01	
7	14:51	- 15:11	YES	277.0	0.40	0.30	0.1000	0.01	
8	15:21	- 15:41	YES	276.1	0.40	0.30	0.1000	0.01	
9	15:51	- 16:11	YES	275.9	0.40	0.30	0.1000	0.01	
10	16:21	- 16:41	YES	275.9	0.50	0.30	0.2000	0.04	
11			NO						
12			NO						
Total Average				2525.9	3.70	2.80	0.9000	0.1100	
				280.7	0.41	0.31	0.1000		
Number of Runs					9				
Standard Deviation					0.050				
Confidence Coefficient					2.306				
					0.0384				
Relative Accuracy $=$ $33.7 \%$   Applicable Standard $=$ 4.10   Alternative Relative Accuracy $=$ $3.4 \%$   $\mid \mathrm{d}$ (difference in ppm) $\mid+\mathrm{CC}=$ 0.2									

Part 60, Appendix B, Performance Specification 4,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS having span values of 1,000 ppmv CO .
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA or 5 percent when the applicable emission standard (permit limit) is used to calculate RA.

Part 60, Appendix B, Performance Specification 4A,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS that comply with low emission standards (less than 200 ppmv ).
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA, 5 percent when the applicable emission standard (permit limit) is used to calculate RA, or within 5 ppmv when the RA is calculated as the absolute average difference between the RM and CEMS plus the 2.5 percent confidence coefficient.

Florida Power and Light March 19, 2011
Mitsubishi, 501G, Unit 3B CO RATA Data Sheet West County Energy Center

RUN \#	RUN TIME	USED	UNIT LOAD	RM	CEMS	RM-CEMS	
			(MW)	(lb/hr)	(lb/hr)	(diff)	(diffr ${ }^{\text {2 }}$
1	09:32-10:31	YES	301.8	2.60	2.10	0.5000	0.25
2	10:45-11:44	YES	287.1	2.60	1.60	1.0000	1.00
3	12:05-13:04	NO	279.6	2.80	1.80		
4	13:17-13:37	YES	277.4	2.60	1.70	0.9000	0.81
5	13:50-14:10	YES	277.7	2.50	1.50	1.0000	1.00
6	14:21-14:41	YES	277.0	2.60	1.60	1.0000	1.00
7	14:51-15:11	YES	277.0	2.50	1.50	1.0000	1.00
8	15:21-15:41	YES	276.1	2.50	1.70	0.8000	0.64
9	15:51-16:11	YES	275.9	2.50	1.70	0.8000	0.64
10	16:21-16:41	YES	275.9	2.60	1.70	0.9000	0.81
11		NO					
12		NO					
Total   Average			$\begin{gathered} 2525.9 \\ 280.7 \\ \hline \end{gathered}$	$\begin{gathered} 23.00 \\ 2.56 \\ \hline \end{gathered}$	$\begin{gathered} 15.10 \\ 1.68 \\ \hline \end{gathered}$	$\begin{aligned} & 7.9000 \\ & 0.8778 \end{aligned}$	7.1500
			mber of Runs dard Deviation   T-value ce Coefficient	9 0.164 2.306 0.1262			
			Relati   Applicab   rnative Relati   (difference in	$\begin{aligned} & \text { Accuracy }= \\ & \text { Standard }= \\ & \text { Accuracy }= \\ & \mathrm{m}) \mid+\mathrm{CC}= \end{aligned}$	$\begin{gathered} \hline 39.3 \% \\ 23.20 \\ 4.3 \% \\ 0.2 \\ \hline \end{gathered}$		

Part 60, Appendix B, Performance Specification 4,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS having span values of 1,000 ppmv CO .
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA or 5 percent when the applicable emission standard (permit limit) is used to calculate RA.

Part 60, Appendix B, Performance Specification 4A,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS that comply with low emission standards (less than 200 ppmv ).
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA, 5 percent when the applicable emission standard (permit limit) is used to calculate RA, or within 5 ppmv when the RA is calculated as the absolute average difference between the RM and CEMS plus the 2.5 percent confidence coefficient.

## Florida Power and Light <br> March 19, 2011 <br> Mitsubishi, 501G, Unit 3B NOx RATA Data Sheet West County Energy Center

RUN \#	RUN TIME	USED	$\begin{array}{\|c\|} \hline \text { UNIT LOAD } \\ \hline \text { (MW) } \\ \hline \end{array}$	(Ib/MMBtu)	$\begin{gathered} \hline \text { CEMS } \\ \hline \text { (Ib/MMBtu) } \end{gathered}$	RM-CEMS			
						(diff)	(diff ${ }^{\text {2 }}$ )		
1	09:32-10:31	NO	301.8	0.007	0.006				
2	10:45-11:44	YES	287.1	0.006	0.006	0.0000	0.0000		
3	12:05 - 13:04	YES	279.6	0.006	0.005	0.0010	0.0000		
4	13:17-13:37	YES	277.4	0.006	0.006	0.0000	0.0000		
5	13:50-14:10	YES	277.7	0.006	0.006	0.0000	0.0000		
6	14:21-14:41	YES	277.0	0.005	0.005	0.0000	0.0000		
7	14:51-15:11	YES	277.0	0.006	0.006	0.0000	0.0000		
8	15:21-15:41	YES	276.1	0.006	0.006	0.0000	0.0000		
9	15:51-16:11	YES	275.9	0.005	0.006	-0.0010	0.0000		
10	16:21-16:41	YES	275.9	0.006	0.006	0.0000	0.0000		
11		NO							
12		NO							
Total Average			$\begin{gathered} \hline 2503.7 \\ 278.2 \end{gathered}$	$\begin{aligned} & 0.052 \\ & 0.006 \end{aligned}$	$\begin{aligned} & \hline 0.052 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 0.0000 \\ & 0.0000 \end{aligned}$	0.0000		
Number of Runs				9					
Standard Deviation				0.001					
Confidence Coefficient				2.306					
				0.0004					
Relative Accuracy =					6.65\%				
If the mean difference is less than or equal to the absolute value of the confidence coefficient, then the Bias Test passes and the bias adjustment factor is not applicable.									
		Mean Difference = Confidence Coefficient =			$\begin{aligned} & 0.0000 \\ & 0.0004 \end{aligned}$				
		BAF $=1+$ (abs. value mean differencelavg. CEMS reading)							
			Average CEMS Reading = $\mathrm{BAF}=$		$\begin{aligned} & 0.006 \\ & \mathbf{1 . 0 0 0} \\ & \hline \end{aligned}$				

Part 75, Appendix A,
3.3.2 Relative Accuracy for NOX-Diluent Continuous Emission Monitoring Systems
(a) The relative accuracy for NOX-diluent continuous emission monitoring systems shall not exceed 10.0 percent.
(b) For affected units where the average of the reference method measurements of NOX emission rate (this means lb/MMBtu) during the relative accuracy test audit is less than or equal to $0.200 \mathrm{lb} / \mathrm{mmBtu}$, the difference between the mean value of the continuous emission monitoring system measurements and the reference method mean value shall not exceed $\pm 0.020 \mathrm{lb} / \mathrm{mmBtu}$, wherever the relative accuracy specification of 10.0 percent is not achieved.

### 7.6.5 Bias Adjustment

(b) For single-load RATAs of SO2 pollutant concentration monitors, NOX concentration monitoring systems, and NOX-diluent monitoring systems and for the single-load flow RATAs required or allowed under section 6.5.2 of this appendix and sections 2.3.1.3(b) and 2.3.1.3(c) of Appendix $B$ to this part, the appropriate BAF is determined directly from the RATA results at normal load, using Equation A-12. Notwithstanding, when a NOX concentration CEMS or an SO2 CEMS or a NOX-diluent CEMS installed on a low-emitting affected unit (i.e., average SO2 or NOX concentration during the RATA \&IE; 250 ppm or average NOX emission rate \&IE; $0.200 \mathrm{lb} / \mathrm{mmBtu}$ ) meets the normal 10.0 percent relative accuracy specification (as calculated using Equation A-10) or the alternate relative accuracy specification in section 3.3 of this appendix for low-emitters, but fails the bias test, the BAF may either be determined using Equation A-12, or a default BAF of 1.111 may be used.

Part 75, Appendix B,
2.3.1.2 Reduced RATA Frequencies. Relative accuracy test audits of primary and redundant backup SO2 pollutant concentration monitors, CO 2 pollutant concentration monitors (including O 2 monitors used to determine CO 2 emissions), CO 2 or O 2 diluent monitors used to determine heat input, moisture monitoring systems, NOX concentration monitoring systems, flow monitors, NOX-diluent monitoring systems or SO2-diluent monitoring systems may be performed annually (i.e., once every four successive QA operating quarters, rather than once every two successive QA operating quarters) if any of the following conditions are met for the specific monitoring system involved:
(a) The relative accuracy during the audit of an SO 2 or CO 2 pollutant concentration monitor (including an O 2 pollutant monitor used to measure CO2 using the procedures in appendix F to this part), or of a CO 2 or O 2 diluent monitor used to determine heat input, or of a NOX concentration monitoring system, or of a NOX-diluent monitoring system, or of an SO2-diluent continuous emissions monitoring system is $\leq$ 7.5 percent;
(f) For units with low NOX emission rates (average NOX emission rate measured by the reference method during the RATA $\leq 0.200$ $\mathrm{lb} / \mathrm{mmBtu}$ ), when a NOX-diluent continuous emission monitoring system fails to achieve a relative accuracy $\leq 7.5$ percent, but the monitoring system mean value from the RATA, calculated using Equation $A-7$ in appendix $A$ to this part, is within $\pm 0.015 \mathrm{lb} / \mathrm{mmBtu}$ of the reference method mean value;

Figure 2 to Appendix B of Part 75_Relative Accuracy Test Frequency Incentive System.
RATA Semiannual(percent)(1) Annual(1)

SO 2 or $\operatorname{NOX}(3) \quad 7.5 \%<R A \leq 10.0 \%$ or $\pm 15.0 \mathrm{ppm}(2) \quad R A \leq 7.5 \%$ or $\pm 12.0 \mathrm{ppm}(2)$
SO2-diluent
$7.5 \%<R A \leq 10.0 \%$ or $\pm 0.030$ $\mathrm{lb} / \mathrm{mmBtu}(2)$
NOX-diluent
$7.5 \%<R A \leq 10.0 \%$ or $\pm 0.020$
RA $\leq 7.5 \%$ or $\pm 0.025$
$\mathrm{lb} / \mathrm{mmBtu}(2)$

Flow
CO 2 or O 2 $\mathrm{lb} / \mathrm{mmBtu}(2)$
$7.5 \%<\mathrm{RA} \leq 10.0 \%$ or $\pm 2.0 \mathrm{fps}(2)$
$7.5 \%<\mathrm{RA} \leq 10.0 \%$ or $\pm 1.0 \% \mathrm{CO} 2 / \mathrm{O} 2(2)$
RA $\leq 7.5 \%$ or $\pm 0.015$
$\mathrm{lb} / \mathrm{mmBtu}(2)$

Moisture
$\mathrm{RA} \leq 7.5 \%$ or $\pm 1.5 \mathrm{fps}$
$\mathrm{RA} \leq 7.5 \%$ or $\pm 0.7 \% \mathrm{CO} 2 / \mathrm{O} 2(2)$
$\mathrm{RA} \leq 7.5 \%$ or $\pm 1.0 \% \mathrm{H} 2 \mathrm{O}(2)$
(1) The deadline for the next RATA is the end of the second (if semiannual) or fourth (if annual) successive QA operating quarter following the quarter in which the CEMS was last tested. Exclude calendar quarters with fewer than 168 unit operating hours (or, for common stacks and bypass stacks, exclude quarters with fewer than 168 stack operating hours) in determining the RATA deadline. For SO2 monitors, QA operating quarters in which only very low sulfur fuel as defined in $\S 72.2$, is combusted may also be excluded. However, the exclusion of calendar quarters is limited as follows: the deadine for the next RATA shall be no more than 8 calendar quarters after the quarter in which a RATA was last performed.
(2) The difference between monitor and reference method mean values applies to moisture monitors, CO 2 , and O 2 monitors, low emitters, or low flow, only.
(3) A NOX concentration monitoring system used to determine NOX mass emissions under § 75.71.

## Relative Accuracy Test Data <br> CEMS Results (NOx) <br> Mitsubishi, 501G, Unit 3B

	Parameter:   Date of Test:   Reference Method:   CEMS Analyzer Type:   Manufacturer:   Model \#:   Serial \#:		Oxides of Nitrogen   March 19, 2011   EPA Method 7e   Chemiluminescence   Thermo   42i-LS   0934838563			
RUN \#	RUN TIME	UNIT LOAD	CONCENTRATIONS		RATES	
		(MW)	(ppmvd)	(ppm@ 15\% ${ }^{2}$ )	(lb/hr)	( $\mathrm{lb} / \mathrm{MMBEtu}$ )
1	09:32-10:31	301.8				0.006
2	10:45-11:44	287.1				0.006
3	12:05-13:04	279.6				0.005
4	13:17-13:37	277.4				0.006
5	13:50-14:10	277.7				0.006
6	14:21-14:41	277.0				0.005
7	14:51-15:11	277.0				0.006
8	15:21-15:41	276.1				0.006
9	15:51-16:11	275.9				0.006
10	16:21-16:41	275.9				0.006
11						
12						

# Relative Accuracy Test Data 

CEMS Results (CO)
Mitsubishi, 501G, Unit 3B

Parameter:	Carbon Monoxide
Date of Test:	March 19, 2011
Reference Method:	EPA Method 10
CEMS Analyzer Type:	Infrared Absorption
Manufacturer:	Thermo
Model \#:	48 i
Serial \#:	CM09400113


RUN \#	RUN TIME	UNIT LOAD	CONCENTRATIONS		RATES	
		(MW)	(ppmvd)	(ppm@ 15\%O2)	(Ib/hr)	(Ib/MMBtu)
$\mathbf{1}$	$09: 32-10: 31$	301.8	0.50	0.40	2.10	
2	$10: 45-11: 44$	287.1	0.40	0.30	1.60	
3	$12: 05-13: 04$	279.6	0.40	0.30	1.80	
4	$13: 17-13: 37$	277.4	0.40	0.30	1.70	
5	$13: 50-14: 10$	277.7	0.40	0.30	1.50	
6	$14: 21-14: 41$	277.0	0.40	0.30	1.60	
7	$14: 51-15: 11$	277.0	0.40	0.30	1.50	
8	$15: 21-15: 41$	276.1	0.40	0.30	1.70	
9	$15: 51-16: 11$	275.9	0.40	0.30	1.70	
10	$16: 21-16: 41$	275.9	0.40	0.30	1.70	
11						
12						

Relative Accuracy Test Data CEMS Results $\left(\mathrm{O}_{2}\right)$
Mitsubishi, 501G, Unit 3B

Parameter:	Oxygen
Date of Test:	March 19, 2011
Reference Method:	EPA Method 3a
CEMS Analyzer Type:	Paramagnetic Cell
Manufacturer:	Servomex
Model \#:	1440D
Serial \#:	01440 DIV02/4248


RUN \#	RUN TIME	UNIT LOAD	CONC.
		(MW)	(\%)
1	$09: 32-10: 31$	301.8	13.32
2	$10: 45-11: 44$	287.1	13.18
3	$12: 05-13: 04$	279.6	13.28
4	$13: 17-13: 37$	277.4	13.19
5	$13: 50-14: 10$	277.7	13.15
6	$14: 21-14: 41$	277.0	13.23
7	$14: 51-15: 11$	277.0	13.22
8	$15: 21-15: 41$	276.1	13.21
9	$15: 51-16: 11$	275.9	13.25
10	$16: 21-16: 41$	275.9	13.22
11			
12			

## Relative Accuracy Test Data <br> Reference Method Results (NOx)

Mitsubishi, 501G, Unit 3B

Parameter:	Oxides of Nitrogen
Date of Test:	March 19, 2011
Reference Method:	EPA Method 7e
RM Analyzer Type:	Chemiluminescence
Manufacturer:	Thermo
Model \#:	42i-HL
Serial \#:	INST-N2-0001


RUN \#	RUN TIME	UNIT LOAD	CONCENTRATIONS		RATES	
		(MW)	(ppmvd)	$\left.(\text { (ppm@ 15\%O })^{2}\right)$	(Ib/hr)	(Ib/MMBtu)
1	$09: 32-10: 31$	301.8				0.007
2	$10: 45-11: 44$	287.1				0.006
3	$12: 05-13: 04$	279.6				0.006
4	$13: 17-13: 37$	277.4				0.006
5	$13: 50-14: 10$	277.7				0.006
6	$14: 21-14: 41$	277.0				0.005
7	$14: 51-15: 11$	277.0				0.006
8	$15: 21-15: 41$	276.1				0.005
9	$15: 51-16: 11$	275.9				0.006
10	$16: 21-16: 41$	275.9				
11						
12						

Relative Accuracy Test Data Reference Method Results (CO) Mitsubishi, 501G, Unit 3B

Parameter:			Carbon Monoxide			
	Date of Test:   Reference Meth   RM Analyzer Ty   Manufacturer:   Model \#:   Serial \#:		rch 19, A Metho rared Ab ermo   T-CO-0	tion		
RUN \#	RUN TINIE	UNIT LOAD	CONCENTRATIONS		RATES	
		(MW)	(ppmvd)	(ppm@ 15\% ${ }^{2}$ )	( $\mathrm{lb} / \mathrm{hr}$ )	( $\mathrm{lb} / \mathrm{MMBtu}$ )
1	09:32-10:31	301.8	0.58	0.44	2.59	
2	10:45-11:44	287.1	0.59	0.44	2.58	
3	12:05-13:04	279.6	0.63	0.48	2.75	
4	13:17-13:37	277.4	0.59	0.45	2.57	
5	13:50-14:10	277.7	0.58	0.44	2.49	
6	14:21-14:41	277.0	0.60	0.45	2.57	
7	14:51-15:11	277.0	0.59	0.44	2.54	
8	15:21-15:41	276.1	0.58	0.44	2.50	
9	15:51-16:11	275.9	0.58	0.44	2.50	
10	16:21-16:41	275.9	0.61	0.46	2.62	
11						
12						

Relative Accuracy Test Data Reference Method Results $\left(\mathrm{O}_{2}\right)$

Mitsubishi, 501G, Unit 3B

Parameter:	Oxygen
Date of Test:	March 19, 2011
Reference Method:	EPA Method 3a
RM Analyzer Type:	Paramagnetic Cell
Manufacturer:	Thermo
Model \#:	42i-HL
Serial \#:	INST-N2-0001


RUN \#	RUN TIME	UNIT LOAD	CONC.	
		(\%)		
1	$09: 32-10: 31$	301.8	13.09	
2	$10: 45-11: 44$	287.1	13.09	
3	$12: 05-13: 04$	279.6	13.14	
4	$13: 17-13: 37$	277.4	13.12	
5	$13: 50-14: 10$	277.7	13.09	
6	$14: 21-14: 41$	277.0	13.09	
7	$14: 51-15: 11$	277.0	13.08	
8	$15: 21-15: 41$	276.1	13.10	
9	$15: 51-16: 11$	275.9	13.08	
10	$16: 21-16: 41$	275.9	13.09	
11				
12				

## CALCULATIONS

## EXAMPLE CALCULATIONS (CALIBRATION)

## Analyzer Calibration Error

RM 7E. (12-17-09), 12.2 Analyzer Calibration Error. For non-dilution systems, use Equation 7E-1 to calcuiate the analyzer calibration error for the low-, mid-, and high-level calibration gases. (calc for NOx analyzer mid gas, if applicable)

$$
A C E=\left(\frac{C_{2 \mathrm{p}}-C}{\hdashline S}\right) \times 100 \quad \mathrm{Eq.7E-1} \quad \mathrm{ACE}=\frac{5.00 \mathrm{ppm}-4.93 \mathrm{ppm}}{12.10 \mathrm{ppm}} \times 100=0.58 \%
$$

## EXAMPLE CALCULATIONS (BIAS, DRIFT, AND CORRECTED RAW AVERAGE)

## System Bias

RM 7E, (12-17-09), 12.3 System Bias. For non-dilution systems, use Equation $7 \mathrm{E}-2$ to calculate the system bias separately for the low-level and upscale calibration gases. (calc for NOx analyzer upscale gas, Run 1 initial bias, if applicable)
$S B=\left(\frac{C_{S}-C_{D}}{C S}\right) \times 100$
Eq. 7E-2
$\mathrm{SB}=\frac{4.93 \mathrm{ppm}-5.00 \mathrm{ppm}}{12.10 \mathrm{ppm}} \times 100=-0.58 \%$

## Drift Assessment

RM 7E, (12-17-09), 12.5 Drif Assessment. Use Equation 7E-4 to separately calculate the fow-level and upscale drift over each test run. (calc for NOX analyzer upscale drift. Run 1, if applicable)
$D=\left|S B_{2}-S B_{i}\right| \quad E q .7 E-4 \quad D=|-0.58 \%--0.58 \% \quad|=0.00 \%$

## Alternative Drift and Blas

RM 7E, (12-17-09), 13.2 / 13.3 System Bias and Dritt. Alternatively, the results are acceptable if |Cs - Cdir| is $\leq 0.5 \mathrm{ppmv}$ or if |Cs -Cv ) is $\leq 0.5 \mathrm{ppmv}$ (as applicable). (calc for NOx analyzer initial upscale, Run 1, if applicable)
$S B: D_{\text {dia }}=\left|C_{S}-C_{\text {pir }}\right| \quad$ Eq. Section 13.2 and $13.3 \quad \mathrm{SB} / \mathrm{D}_{\mathrm{Af}}=1 \quad 4.93 \mathrm{ppm}-5.00 \mathrm{ppm} \quad \mid=\quad 0.07 \mathrm{ppm}$

## Bias Adjusted Average

RM 7E, (12-17-09). 12.6 Effluent Gas Concentration. For each test run, calculate Cavg, the arithmetic average of all valid NOX concentration values (e.g., 1 -minute averages). Then adjust the value of Cavg for bias, using Equation 7E-5b. (calc for NOx analyzer, Run 1, if applicable)
$C_{C a z}=\left(C_{i r s}-C_{O}\right) \times\left(\frac{C_{1 a t}}{C_{M}-C_{0}}\right) \quad$ Eq. $7 \mathrm{E}-5 \mathrm{~b} \quad C_{G a s}=[2.45 \mathrm{ppm}-0.08 \mathrm{ppm}) \times\left[\frac{4.93 \mathrm{ppm}}{4.93 \mathrm{ppm}-0.08 \mathrm{ppm}}\right]=2.41 \mathrm{ppm}$
Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.

## EXAMPLE CALCULATIONS (RUNS)

Stack Exhaust Flow $\left(\mathrm{Q}_{\mathrm{S}}\right)$ - RM19

$$
Q_{5}=\left(\frac{\text { FFactor } \times Q_{j} \times H H V}{1.000,000}\right) \times\left(\frac{20.9 \%}{20.9 \%-C_{0 \times 10 \%}}\right) \quad Q_{5}=\frac{8,710.00 \mathrm{SCF}}{M M B t u} \times \frac{2,560,285.91 \text { SCF }}{\mathrm{hr}} \times \frac{1,029.00 \mathrm{Btu}}{\text { SCF }}
$$

Diluent-Corrected Pollutant Concentration, $\mathrm{O}_{2}$ Based
RM 20, (11-26-02), 7.3.1 Correction of Pollutant Concentration Using $\mathrm{O}_{2}$ Concentration. Calculate the $\mathrm{O}_{2}$ corrected pollutant concentration, as follows: (calc for NOx gas, Run 1, if applicable)

## EXAMPLE CALCULATIONS (RUNS)

## Emissions Rate (lb/hr)

Calculation for pound per hour emission rate. Calculate, as follows: (calc for NOx gas Run 1. if applicable)

$$
E_{\mathrm{p}: ;}=\frac{C_{\mathrm{Ez}}}{10^{2}} \times \frac{Q_{5} \times M W}{G} \quad E_{\mathrm{lbhr}}=\frac{2.41 \mathrm{ppm}}{10^{6} \mathrm{ppm} / \mathrm{part}} \times \frac{61,419,787 \mathrm{SCFH} \times 46.01 \mathrm{lb} / \mathrm{bb}-\mathrm{mol}}{385.23 \mathrm{SCF} / \mathrm{b}-\mathrm{mol}}=\frac{17.65 \mathrm{lb}}{\mathrm{hr}}
$$

## Emissions Rate (Ib/MMBtu)

RM 19, (12-17-09), 12.2 Emission Rates of $\mathrm{PM}_{1} \mathrm{SO}_{2}$, and NOx . Select from the following sections the applicable procedure to compute the $\mathrm{PM}, \mathrm{SO}_{2}$, or NOX emission rate (E) in ng/J ( $\mathrm{Ib} /$ million Btu). (calc for NOx gas Run 1, if applicable)

## Oxygen Based

12.2.1 Oxygen-Based F Factor, Dry Basis. When measurements are on a dry basis for both $\mathrm{O}_{2}\left(\mathrm{HO}_{2} \mathrm{~d}\right)$ and pollutant (Cd) concentrations, use the following equation:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{b} \text { DMMBu }}=\frac{2.41 \mathrm{ppm} \times 8,710.00 \mathrm{SCF} / \mathrm{MMBtu} \times 0.0000001194 \mathrm{lb} / \mathrm{ppm}^{*} \mathrm{ft}^{3} \times 20.9 \%}{20.9 \%-13.09 \%}=\frac{0.007 \mathrm{lb}}{\text { MMBtu }}
\end{aligned}
$$

Conversion Constant
Conve for NOX

$$
\operatorname{Comv}_{;}\left(i b: \mathrm{ppm} \cdot f \mathrm{f}^{3}\right)=\frac{\frac{M F F}{G}}{10^{6}} \quad \operatorname{Conv}_{\mathrm{c}}=\frac{\frac{46.01 \mathrm{lb}}{\mathrm{lb} \cdot \mathrm{~mole}} \times \frac{\mathrm{lb} \cdot \mathrm{~mole}}{385.23 \mathrm{SCF}}}{10^{6}}=\frac{0.0000001194 \mathrm{lb}}{\mathrm{ppm}-\mathrm{f}^{3}}
$$

Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.

## EXAMPLE CALCULATIONS (RATA RESULTS)

Difference (d)
40 CFR 75, App A, (12-17-09), 7.3.1 Arithmetic Mean. Calculate the arithmetic mean of the differences, d, of a data set as follows. (calc for NOX Ib/MMBtu data, if applicable. Note: This is an example calculation which may not have any beaning on the actual test requirements.)

$$
d=\sum_{\{\omega 1}^{n} d_{i} \quad \text { Eq. A-7 } \quad d=0.006 \text { lommeru. } 0.006 \text { וыMMEtu }=0.000 \text { b/mMBlu }
$$

## Standard Deviation

40 CFR 75, App A, (12-17-09), 7.3.2 Standard Deviation. Calculate the standard deviation, Sd, of a data set as follows:
(calc for NOx lb/MMBtu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)


## Confidence Coefficient

40 CFR 75, App A, (12-17-09), 7.3.3 Confidence Coefficient. Calculate the confidence coefficient (one-tailed), cc, of a data set as follows. (calc for NOx $\mathrm{lb} / \mathrm{MMB}$ tu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)
$C C=t_{2025} \times \frac{S_{\partial}}{\sqrt{n}}$
Eq. A-9


T-Values	n	2	3	4	5	6	7	8	9
	$\mathrm{t}_{0.025}$	12.706	4.303	3.182	2.776	2.571	2.447	2.365	2.306

## Relative Accuracy

40 CFR 75, App A, (12-17-09), 7.3.4 Relative Accuracy. Calculate the relative accuracy of a data set using the following equation. (calc for NOx Ib/MMBtu data, if applicable. Note: This is an example calculation which may not have any beaning on the actual test requirements.)

## Bias Adjustment Factor (BAF)

40 CFR 75, App A. (12-17-09), 7.6.5 Bias Adjustment. (a) If the monitor or monitoring system fails to meet the bias test requirement, adjust the value obtained from the monitor using the following equation: (calc for NOX Ib/MMBtu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.

RM 7E, (08-15-06), 12.1 Nomenclature. The terms used in the equations are defined as follows:

ACE = Analyzer calibration error, percent of calibration span.
$\mathrm{B}_{\mathrm{ws}}=$ Moisture content of sample gas as measured by Method 4 or other approved method, percent/100.
$\mathrm{C}_{\text {Avg }}=$ Average unadjusted gas concentration indicated by data recorder for the test run.
$C_{D}=$ Pollutant concentration adjusted to dry conditions.
$\mathrm{C}_{\mathrm{ctr}}=$ Measured concentration of a calibration gas (low, mid, or high) when introduced in direct calibration mode.
$\mathrm{C}_{\mathrm{Gus}}=$ Average effluent gas concentration adjusted for bias.
$\mathrm{C}_{\mathrm{M}}=$ Average of initial and final system calibration bias (or 2-point system calibration error) check responses for the upscale calibration gas.
$\mathrm{C}_{\text {MA }}=$ Actual concentration of the upscale calibration gas, ppmv.
$\mathrm{C}_{\mathrm{O}}=$ Average of the initial and final system calibration bias (or 2-point system calibration error) check responses from the low-level (or zero) calibration gas.
$\mathrm{C}_{\mathrm{s}}=$ Measured concentration of a calibration gas (low, mid, or high) when introduced in system calibration mode
$\mathrm{C}_{5 s}=$ Concentration of NOx measured in the spiked sample.
$\mathrm{C}_{\text {Spko }}=$ Concentration of NOx in the undiluted spike gas
$\mathrm{C}_{\text {Cak }}=$ Calculated concentration of NOX in the spike gas diluted in the sample
$C_{V}=$ Manufacturer certified concentration of a calibration gas (low, mid, or high).
$\mathrm{C}_{\mathrm{W}}=$ Pollutant concentration measured under moist sample conditions, wet basis.
CS = Calibration span.
$\mathrm{D}=$ Drift assessment, percent of calibration span.
$E_{p}=$ The predicted response for the low-level and mid-level gases based on a linear response line between the zero and high-level response.
$\mathrm{Eff}_{\mathrm{NO} 2}=\mathrm{NO}_{2}$ to NO converter efficiency, percent.
$\mathrm{H}=\mathrm{High}$ calibration gas, designator
$\mathrm{L}=$ Low calibration gas, designator.
$\mathrm{M}=\mathrm{Mid}$ calibration gas. designator.
NOFinal = The average NO concentration observed with the analyzer in the NO mode during the converter efficiency test in Section 16.2.2.
NOXCorr $=$ The NOX concentration corrected for the converter efficiency.
NOXFinal $=$ The finat NOx concentration observed during the converter efficiency test in Section 16.2.2.
NOXPeak $=$ The highest NOx concentration observed during the converter efficiency test in Section 16.2.2.
$\Theta_{\text {spke }}=$ Flow rate of spike gas introduced in system calibration mode, $\mathrm{L} / \mathrm{min}$.
$\mathrm{Q}_{\text {Tetal }}=$ Total sample fow rate during the spike test, Umin.
$R=$ Spike recovery, percent.
$S B=$ System bias, percent of calibration span.
$\mathrm{SB}_{1}=$ Pre-run system bias, percent of calibration span.
$\mathrm{SB}_{4}=$ Post-run system bias, percent of calibration span.
$5 B / D_{A R}=$ Alternative absolute difference criteria to pass bias and/or drift checks
SCE = System calibration error, percent of calibration span.
$\mathrm{SCE}_{1}=$ Pre-run system calibration error. percent of calibration span.
$S C E_{\text {final }}=$ Post-run system calibration error, percent of calibration span.
$Z=$ Zero calibration gas, designator.

40CFR60.355(b)(1), (09-20-06), Nomenclature. The terms used in the equations are defined as follows:

$P_{0}=$ observed combustor inlet absolute pressure at test, mm Hg
$\mathrm{H}_{0}=$ observed humidity of ambient air, $\mathrm{g} \mathrm{H}_{2} \mathrm{O} / \mathrm{g}$ air
$e=$ transcendental constant, 2.718
$\mathrm{T}_{\mathrm{a}}=$ ambient temperature, K

AdjFactor = Percent oxygen or carbon dioxide adjustment applied to a target pollutant
$B_{m}=$ Moisture fraction of ambient air, percent.
Btu = British thermal unit
$\%_{\mathrm{c}}=$ Concentration of carbon from an ultimate analysis of fuel, weight percent.
$\%_{\text {co2d }} \%_{\text {comw }}=$ Concentration of carbon dioxide on a dry and wet basis, respectively, percent.
CIP / CDP = Combustor inlet pressure / compressor discharge pressure ( mm Hg ); note, some manufactures reference as PCD.
$\mathrm{E}=$ Pollutant emission rate, ng/J ( $\mathrm{lb} /$ million Btu).
$\mathrm{E}_{\mathrm{a}}=$ Average pollutant rate for the specified performance test period, $\mathrm{ng} / \mathrm{J}$ ( $\mathrm{b} / \mathrm{million}$ Btu).
$E_{001} E_{a i}=$ Average pollutant rate of the control device, outlet and inlet, respectively, for the periormance test period, ng/J (ib/million Btu).
$\mathrm{E}_{\mathrm{bl}}=$ Poilutant rate from the steam generating unit, ng/J ( $\mathrm{l} / \mathrm{million} \mathrm{Btu}$ ).
$E_{b 0}=$ Pollutant emission rate from the steam generating unit, ng/J (Ib/million Btu).
$E_{c i}=$ Pollutant rate in combined effluent, ng/J (lb/million Btu).
$E_{c \infty}=$ Pollutant emission rate in combined effluent, ng/J (Ib/million Btu).
$E_{d}=$ Average pollutant rate for each sampling period (e.g.,24-hr Method $6 B$ sample or 24 -hr fuel sample) or for each fuel lot (e.g., amount of fuel bunkered), ng/J (Ib/million Btu).
$\mathrm{E}_{\mathrm{dl}}=$ Average inlet $\mathrm{SO}_{2}$ rate for each sampling period d, ng/J (Ib/million Btu).
$\mathrm{E}_{\mathrm{g}}=$ Pollutant rate from gas turbine, $\mathrm{ng} / \mathrm{J}$ ( $\mathrm{lb} / \mathrm{million}$ Btu).
$\mathrm{E}_{\mathrm{gn}}=$ Daily geometric average pollutant rate, ng/J (Ibs/million Btu) or ppm corrected to 7 percent $\mathrm{O}_{2}$.
$\mathrm{E}_{\mathrm{j} 0}, \mathrm{E}_{\mathrm{ji}}=$ Matched pair hourly arithmetic average pollutant rate, outlet and inlet, respectively, ng/J (lb/million Btu) or ppm corrected to 7 percent $\mathrm{O}_{2}$.
$E_{h}=$ Hourly average pollutant, ng/J (Ib/million Blu).
$E_{h \mid}=$ Hourly arithmetic average pollutant rate for hour "j," ng/J (Ib/million Btu) or ppm corrected to 7 percent $\mathrm{O}_{2}$.
EXP = Natural loganthmic base (2.718) raised to the value enclosed by brackets.
FC = Ratio of the volume of carton dioxide produced to the gross calonific value of the fuel from Method 19
$F_{d}, F_{w}, F_{c}=$ Volumes of combustion components per unit of heat content, $s \mathrm{~cm} / \mathrm{J}$ (scf/million Btu).
$\mathrm{ft}^{3}=$ cubic feet
$G=$ ideal gas conversion factor
( 385.23 SCF/b-mol at 68 deg F \& 14.696 psia )
GCM = gross Btu per SCF (constant, compound based)
$\mathrm{GCV}=\mathrm{Gross}$ caiorific value of the fuel consistent with the ultimate analysis, $\mathrm{kJ} / \mathrm{kg}$ (Btu/b).
$\mathrm{GCV}_{\mathrm{p}}, \mathrm{GCV}_{1}=$ Gross calorific value for the product and raw fuel lots, respectively, dry basis, $\mathrm{kJ} / \mathrm{kg}$ (Btufb).
$\%_{\mu}=$ Concentration of hydrogen from an ultimate analysis of fuel, weight percent.
$H_{b}=$ Heat input rate to the steam generating unit from fuels fired in the steam generating unit, $\mathrm{J} / \mathrm{hr}$ (million Btu/hr).
$\mathrm{H}_{\mathrm{g}}=$ Heat input rate to gas turbine from all fuels fired in the gas turbine, Jhr (million Btu/hr).

$\mathrm{H}_{\mathrm{t}}=$ Total numbers of hours in the performance test period (e.g., 720 hours for 30 -day performance test period).
$K=$ volume of combustion component per pound of component (constant)
$\mathrm{K}=$ Conversion factor, $10^{-5}(\mathrm{~kJ} / \mathrm{J}) /(\%)\left[10^{6}\right.$ Btu/million Btu].
$K_{c}=(9.57 \mathrm{scm} / \mathrm{kg}) / \%[(1.53 \mathrm{sc} / \mathrm{l} / \mathrm{b}) / \%]$.
$K_{c c}=(2.0 \mathrm{scm} / \mathrm{kg}) / \%[(0.321 \mathrm{scf} / \mathrm{lb}) / \%]$.
$K_{\text {rd }}=(22.7 \mathrm{scm} / \mathrm{kg}) / \%[(3.64 \mathrm{sc} / / \mathrm{lb}) / \%]$.
$K_{\text {tww }}=(34.74 \mathrm{scm} / \mathrm{kg}) \%$ [( $\left.\left.5.57 \mathrm{sc} / / \mathrm{b}\right) / \%\right]$.
$K_{n}=(0.86 \mathrm{scm} / \mathrm{kg}) / \%[(0.14 \mathrm{scf} / \mathrm{lb}) / \%]$.
$K_{0}=(2.85 \mathrm{scm} / \mathrm{kg}) / \%[(0.46 \mathrm{sc} / / \mathrm{b}) / \%]$.
$\mathrm{K}_{\mathrm{g}}=(3.54 \mathrm{scm} / \mathrm{kg}) / \%((0.57 \mathrm{sc} f / \mathrm{l}) / \%]$.
$K_{\text {sultua }}=2 \times 10^{4}$ BtuANt \%-MMBtu
$\mathrm{K}_{\mathrm{v}}=(1.30 \mathrm{scm} / \mathrm{kg}) / \%[(0.21 \mathrm{scf} / \mathrm{b}) / \%]$.
$\mathrm{lb}=$ pound
In = Natural $\log$ of indicated value.
$L_{\rho} L_{1}=$ Weight of the product and raw fuel lots, respectively, metric ton (ton).
$\%_{N}=$ Concentration of nitrogen írom an ultimate analysis of fuel, weight percent.
$M_{*}=$ mole percent
$\mathrm{mol}=$ mole
$\mathrm{MW}=$ molecular weight ( $\mathrm{lb} / \mathrm{b}-\mathrm{mol}$ )
$\mathrm{MW}_{\text {ARR }}=$ molecular weight of air $(\quad 28.9625 \mathrm{lb} / \mathrm{b} \text {-mole })^{\prime}$
NCM = net Btu per SCF (constant based on compound)
$\%_{o}=$ Concentration of oxygen from an ultimate analysis of fuel, weight percent.
$\%_{O_{2 d},} \%_{\text {O2w }}=$ Cencentration of oxygen on a dry and wet basis, respectively, percent.
$\mathrm{P}_{\mathrm{B}}=$ barometirc pressure, in Hg
$P_{s}=$ Potential SO2 emissions, percent.
$\%_{\mathrm{s}}=$ Sulfur content of as-fired fuel lot, dry basis, weight percent.
$\mathrm{S}_{\mathrm{s}}=$ Standard deviation of the hourly average pollutant rates for each performance test period, ng/J (lb/million Btu).
$\%_{\mathrm{st}}=$ Concentration of sulfur from an ultimate analysis of fuet, weight percent.
$\mathrm{S}(\mathrm{wt} \%)=$ weight percent of sulfur, per lab analysis by appropriate ASTM standard
$\mathrm{S}_{1}=$ Standard deviation of the hourly average inlet pollutant rates for each performance test period, ng/J (Ib/million Btu).
$\mathrm{S}_{0}=$ Standard deviation of the hourly average emission rates for each performance test period, $\mathrm{ng} / \mathrm{J}$ ( $\mathrm{Ib} /$ million Btu).
$\% \mathrm{~S}_{\mathrm{p},} \% \mathrm{~S}_{\mathrm{t}}=$ Sulfur content of the product and raw fuel lots respectively, dry basis, weight percent.
SCF = standard cubic feet
$\mathrm{SH}=$ specific humidity, pounds of water per pound of air
$\mathrm{t}_{0.95}=$ Values shown in Table 19-3 for the indicated number of data points n .
$\mathrm{T}_{\text {aпв }}=$ ambient temperature. ${ }^{\circ} \mathrm{F}$
W/D Factor $=1.0236=$ conv. at 14.696 psia and
$68 \operatorname{deg}$ F (ref. Civil Eng. Ref. Manual, 7th Ed.)
$X_{\mathrm{COZ}}=\mathrm{CO}_{2}$ Correction factor, percent.
$X_{k}=$ Fraction of total heat input from each type of fuel $k$.

## Calculations, Formulas, and Constants

The following information supports the spreadsheets for this testing project.

## Given Data:

Ideal Gas Conversion Factor $=385.23$ SCF/lb-mol at 68 deg F \& 14.696 psia
Fuel Heating Value is based upon Air Hygiene's fuel gas calculation sheet. All calculations are based upon a correction to 68 deg F \& 14.696 psia High Heating Values (HHV) are used for the Fuel Heating Value, F-Factor, and Fuel Flow Data per EPA requirements.

## ASTM D 3588

Molecular Weight of $\mathrm{NO} \times(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=46.01$ Molecular Weight of $\mathrm{CO}(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=28.00$ Molecular Weight of $\mathrm{SO}_{2}(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=64.00$ Molecular Weight of THC (propane) (lb/lb-mole) $=44.00$ Molecular Weight of VOC (methane) (lb/lb-mole) $=16.00$

Molecular Weight of $\mathrm{NH}_{3}$ ( $\mathrm{l} / \mathrm{l} / \mathrm{b}-\mathrm{mole}$ ) $=17.03$
Molecular Weight of $\mathrm{HCHO}(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=30.03$

Formulas:

1. Corrected Raw Average ( $\mathrm{C}_{\text {Gs }}$ ), 40CFR60, App. A, RM 7E, Eq. $7 \mathrm{E}-5$ (08/15/06)

$$
C_{G E}=\left(C_{A n}-C_{0}\right) \times\left(\frac{C_{3}}{C_{3}-C_{0}}\right)
$$

2. Correction to $\% \mathrm{O}_{2}, 40$ CFR 60 , App. A, RM 20, Eq. $20-5$ (1 1/26/02)

$$
C_{\text {ajt }}=C_{\text {Catisam }\}} \times\left(\frac{20.9 \%-A d j F a c t o r}{20.9 \%-C_{G x\{O 2)}}\right)
$$

3. Correction to $\% \mathrm{O}_{2}$ and ISO Conditions

$$
Q_{S}=\left(\frac{\text { FFactor } \times Q_{f}: \% H H V}{1,000,000}\right) \times\left(\frac{20.9 \%}{20.9 \%-C_{\mathrm{Gar}(023}}\right)
$$

40CFR60, App. A., RM 19, Table 19-1 Conversion Constant for NOX $=0.0000001194351$ Conversion Constant for $\mathrm{CO}=0.0000000726839$ Conversion Constant for $\mathrm{SO}_{2}=0.0000001661345$ Conversion Constant for THC $=0.0000001142175$ Conversion Constant for VOC (methane) $=0.0000000415336$ Conversion Constant for $\mathrm{NH}_{3}=0.0000000442074$ Corversion Constant for $\mathrm{HCHO}=0.0000000779534$ NOTE: units are lb/ppm $\mathrm{ft}^{3}$
5. Emission Rate in lb/hr

$$
E_{F ; i x}=\frac{C_{C a z}}{10^{6}} \times \frac{Q_{s} \times M W}{G}
$$

6. Emission Rate in tons per year

$$
E_{i z ; j ;}=\frac{E_{i z ; z} \times h_{j}=\frac{1 a r r}{}}{2000}
$$

7. Emission Concentration in $\mathrm{ID} / \mathrm{MMBtu}\left(\mathrm{O}_{2}\right.$ based)
8. Emission Concentration in $\mathrm{g} / \mathrm{hp}{ }^{* h r}$

$$
E_{g: 4 y, \text { ir }}=\frac{E_{i t \operatorname{siy}} \times 453.6}{m: \times 1314.022} \text { or } \frac{E_{i n, \text { ir }} \times 453.6}{h p}
$$

RATA SHEET CALCULATIONS
d = Reference Method Data - CEMS Data
$S_{d}=$ Standard Deviation
CC = Confident Coefficient
$\mathrm{n}=$ number of runs
$t_{0.025}=2.5$ percent confidence coefficent T-values
$R A=$ relative accuracy
ARA = alternative relative accuracy
BAF = Bias adjustment factor

1. Difference

$$
d=\sum_{i \times \infty}^{n} d_{i}
$$

2. Standard Deviation

3. Confident Coefficient
4. Relative Accuracy

$$
R A=\frac{\left|d_{A i C}\right|+|C C|}{R M_{A \%}} \times 100
$$

5. Alternative Relative Accuracy

$$
A R 4=\frac{\left|d_{a c}\right|+|C C|}{A S} \times 100
$$

5. Bias Adjustment Factor

$$
B . H F=1+\left(\frac{d_{A C} \mid}{C E M A B}\right)
$$

APPENDIX B
CEMS AND REFERENCE METHOD DATA

## Florida Power and Light

Air Permit \# :	PSD-FL-396
Plant Name or Location:	West County Energy Center
Date:	March 19, 2011
Project Number:	cis-10-westcounty.fl-rata\#1
Manufacturer \& Equipment:	Mitsubishi
Model:	501G
Unit Number:	3B
Test Load:	Base
Tester(s) / Test Unit(s):	JF/127/206


		RUN									
	UNITS	1	2	3	4	5	6	7	8	9	10
Start Time	hh:mm:ss	09:32:10	10:45:10	12:05:10	13:17:10	13:50:10	14:21:10	14:51:10	15:21:10	15:51:10	16:21:10
End Time	hh:mm:ss	10:31:40	11:44:40	13:04:40	13:37:40	14:10:40	14:41:40	15:11:40	15:41:40	16:11:40	16:41:40
Bar. Pressure	in. Hg	30.25	30.23	30.25	30.22	30.22	30.22	30.20	30.18	30.17	30.17
Amb. Temp.	${ }^{\circ} \mathrm{F}$	75	71	81	82	82	82	83	82	80	80
Rel. Humidity	\%	52	58	39	43	42	42	43	43	43	42
Spec. Humidity	lb water/ lb air	0.009505	0.009268	0.008678	0.009913	0.009679	0.009679	0.010251	0.009926	0.009294	0.009075
Turbine Fuel Flow	$\mathrm{lb} / \mathrm{min}$	1,866	1,842	1,812	1,812	1,806	1,806	1,806	1,800	1,806	1,806
Total Fuel Flow	SCFH	2,560,286	2,527,356	2,486,194	2,486,194	2,477,962	2,477,962	2,477,962	2,469,729	2,477,962	2,477,962
Power Output	megawatts	301.8	287.1	279.6	277.4	277.7	277.0	277.0	276.1	275.9	275.9
$\mathrm{O}_{2}$ CEMS Data	\%	13.32	13.18	13.28	13.19	13.15	13.23	13.22	13.21	13.25	13.22
NOx CEMS Data	lb/MmBtu	0.006	0.006	0.005	0.006	0.006	0.005	0.006	0.006	0.006	0.006
CO CEMS Data	ppmvd	0.50	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40
	ppm@15\% $\mathrm{O}_{2}$	0.40	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30	0.30
	$\mathrm{ib} / \mathrm{hr}$	2.10	1.60	1.80	1.70	1.50	1.60	1.50	1.70	1.70	1.70

## CEMS AND REFERENCE METHOD DATA

## CEMS Data

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 5ource: stack3b

Period Start: 3/19/20119:32
Period End: $3 / 19 / 2011$ 10:31
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min Type: Block Avg

Period Start	$\begin{gathered} \text { 3B_CT_GAS } \\ \text { H/sec } \end{gathered}$	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \mathrm{ppm} \end{gathered}$	$\underset{\text { ppm }}{\text { 3B_COCORR }}$	$\begin{gathered} \text { 3B_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3B_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 9:32	31.3	0.006	0.4	0.3	1.80	13.07	312.1
3/19/2011 9:33	31.2	0.006	0.3	0.2	1.30	13.06	311.4
3/19/2011 9:34	31.2	0.006	0.4	0.3	1.80	13.07	311.6
3/19/2011 9:35	31.4	0.007	0.4	0.3	1.80	13.28	311.5
3/19/2011 9:36	31.2	0.007	0.3	0.2	1.50	13.71	311.6
3/19/2011 9:37	31.4	0.008	0.4	0.4	2.10	14.37	310.9
3/19/2011 9:38	31.1	0.006	0.4	0.3	1.80	13.34	311.1
3/19/2011 9:39	31.2	0.006	0.3	0.2	1.30	13.54	310.7
3/19/2011 9:40	31.3	0.007	0.4	0.4	2.10	14.49	305.4
3/19/2011 9:41	31.2	0.006	0.4	0.3	1.80	13.48	304.1
3/19/2011 9:42	31.2	0.005	0.3	0.2	1.30	13.34	303.4
3/19/2011 9:43	31.1	0.005	0.4	0.3	1.80	13.10	303.1
3/19/2011 9:44	31.3	0.006	0.4	0.3	1.80	13.07	302.5
3/19/2011 9:45	31.0	0.006	0.3	0.2	1.30	13.07	302.1
3/19/2011 9:46	31.3	0.006	0.3	0.2	1.30	13.07	301.5
3/19/2011 9:47	31.3	0.006	0.4	0.3	1.80	13.08	300.7
3/19/2011 9:48	31.3	0.006	0.4	0.3	1.80	13.10	301.9
3/19/2011 9:49	31.0	0.006	0.3	0.2	1.30	13.08	302.8
3/19/2011 9:50	31.4	0.006	0.4	0.3	1.80	13.07	302.7
3/19/2011 9:51	31.0	0.006	0.4	0.3	1.80	13.07	302.7
3/19/2011 9:52	31.2	0.006	0.4	0.3	1.80	13.07	302.3
3/19/2011 9:53	31.3	0.006	0.4	0.3	1.80	13.08	301.7
3/19/2011 9:54	31.2	0.006	0.4	0.3	1.80	13.09	302.0
3/19/2011 9:55	31.2	0.006	0.4	0.3	1.80	13.34	302.7
3/19/2011 9:56	31.3	0.007	0.4	0.3	1.80	13.57	302.3
3/19/2011 9:57	31.2	0.007	0.3	0.3	1.50	13.99	301.6
3/19/2011 9:58	31.1	0.006	0.4	0.3	1.80	13.40	302.0
3/19/2011 9:59	31.2	0.005	0.4	0.3	1.80	13.74	302.2
3/19/2011 10:00	31.4	0.005	0.4	0.3	1.80	13.43	302.1
3/19/2011 10:01	31.2	0.005	0.3	0.2	1.30	13.09	301.6
3/19/2011 10:02	30.9	0.005	0.4	0.3	1.80	13.09	301.6
3/19/2011 10:03	31.1	0.006	0.4	0.3	1.80	13.66	301.6
3/19/2011 10:04	31.3	0.006	0.5	0.4	2.30	13.35	300.9
3/19/2011 10:05	31.0	0.005	0.6	0.5	2.80	13.60	299.1
3/19/2011 10:06	30.9	0.005	0.4	0.3	1.80	13.39	297.8
3/19/2011 10:07	31.0	0.004	0.6	0.5	2.80	13.59	299.0
3/19/2011 10:08	30.9	0.005	0.5	0.4	2.00	13.07	300.3
3/19/2011 10:09	31.1	0.006	0.4	0.4	2.10	14.25	300.2
3/19/2011 10:10	30.9	0.005	0.7	0.5	3.10	13.06	298.8
3/19/2011 10:11	30.9	0.004	0.5	0.4	2.00	13.09	298.6
3/19/2011 10:12	30.9	0.004	0.6	0.5	2.60	13.13	300.1
3/19/2011 10:13	31.0	0.005	0.5	0.4	2.10	13.09	300.8
3/19/2011 10:14	31.2	0.006	0.4	0.3	1.80	13.06	300.1
3/19/2011 10:15	31.0	0.006	0.5	0.4	2.10	13.06	298.3
3/19/2011 10:16	30.8	0.006	0.4	0.3	1.80	13.15	298.0
3/19/2011 10:17	30.9	0.006	0.5	0.4	2.30	13.44	298.1
3/19/2011 10:18	30.9	0.005	0.6	0.5	2.60	13.26	299.7
3/19/2011 10:19	31.1	0.006	0.8	0.6	3.60	13.29	299.7
3/19/2011 10:20	30.8	0.006	1.4	1.1	6.10	13.09	297.9
3/19/2011 10:21	31.0	0.005	0.5	0.4	2.10	13.12	297.7
3/19/2011 10:22	31.1	0.005	0.4	0.3	1.80	13.32	299.1
3/19/2011 10:23	31.2	0.005	0.3	0.2	1.30	13.45	300.0
3/19/2011 10:24	31.0	0.006	0.4	0.3	1.80	13.07	298.4
3/19/2011 10:25	30.8	0.006	0.8	0.7	3.80	13.69	296.0
3/19/2011 10:26	30.5	0.006	0.6	0.5	2.80	13.83	295.9
3/19/2011 10:27	30.8	0.005	0.9	0.7	3.80	13.23	297.3
3/19/2011 10:28	30.8	0.004	0.5	0.4	2.00	13.11	298.3
3/19/2011 10:29	31.2	0.005	0.5	0.4	2.10	13.07	298.7
3/19/2011 10:30	30.9	0.005	0.4	0.3	1.80	13.09	296.3
3/19/2011 10:31	30.6	0.005	0.4	0.3	1.80	13.12	296.2
Final Average*	31.1	0.006	0.5	0.4	2.10	13.32	301.8
Maximurn*	31.4	0.008	1.4	1.1	6.10	14.49	312.1
Minimum*	30.5	0.004	0.3	0.2	1.30	13.06	295.9

[^9]Version 59

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 10:45
Period End: 3/19/2011 11:44
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min Type: Block Avg

Period Start	3B_CT_GAS   \#/sec	3BNOXMMBTU H/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	3B_COCORR ppm	$\begin{gathered} \text { 3B_COLBHR } \\ H / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3B_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 10:45	30.9	0.006	0.4	0.3	1.80	13.11	297.3
3/19/2011 10:46	30.9	0.006	0.3	0.2	1.30	13.06	296.8
3/19/2011 10:47	31.3	0.005	0.5	0.4	2.30	13.15	295.3
3/19/2011 10:48	30.2	0.005	0.4	0.3	1.70	13.23	296.5
3/19/2011 10:49	31.3	0.006	0.3	0.2	1.30	13.28	294.0
3/19/2011 10:50	31.3	0.005	0.4	0.3	1.80	13.40	293.8
3/19/2011 10:51	32.2	0.005	0.3	0.2	1.30	13.22	293.3
3/19/2011 10:52	30.6	0.005	0.4	0.3	1.80	13.09	292.9
3/19/2011 10:53	30.7	0.005	0.4	0.3	1.80	13.10	291.7
3/19/2011 10:54	30.7	0.006	0.3	0.2	1.30	13.07	290.1
3/19/2011 10:55	31.1	0.005	0.5	0.4	2.30	13.15	290.4
3/19/2011 10:56	30.4	0.006	0.3	0.2	1.30	13.08	289.4
3/19/2011 10:57	30.7	0.006	0.4	0.3	1.80	13.13	289.1
3/19/2011 10:58	30.2	0.006	0.4	0.3	1.70	13.14	289.2
3/19/2011 10:59	30.8	0.006	0.3	0.2	1.30	13.13	288.7
3/19/2011 11:00	30.7	0.006	0.3	0.2	1.50	13.70	287.5
3/19/2011 11:01	31.0	0.005	0.4	0.3	1.80	13.25	288.4
3/19/2011 11:02	30.6	0.006	0.3	0.2	1.50	13.78	288.5
3/19/2011 11:03	30.7	0.006	0.3	0.2	1.50	13.72	287.0
3/19/2011 11:04	30.6	0.005	0.3	0.2	1.30	13.22	288.1
3/19/2011 11:05	31.2	0.005	0.3	0.2	1.30	13.18	286.9
3/19/2011 11:06	30.7	0.005	0.4	0.3	1.80	13.15	288.2
3/19/2011 11:07	30.1	0.005	0.3	0.2	1.20	13.13	289.1
3/19/2011 11:08	30.8	0.006	0.3	0.2	1.30	13.11	287.6
3/19/2011 11:09	31.3	0.005	0.3	0.2	1.30	13.12	288.5
3/19/2011 11:10	30.5	0.006	0.3	0.2	1.30	13.19	287.6
3/19/2011 11:11	30.8	0.005	0.3	0.2	1.30	13.16	286.4
3/19/2011 11:12	31.2	0.005	0.3	0.2	1.30	13.09	285.2
3/19/2011 11:13	30.4	0.005	0.5	0.4	2.30	13.15	285.5
3/19/2011 11:14	31.3	0.005	0.4	0.3	1.80	13.13	286.6
3/19/2011 11:15	31.1	0.005	0.4	0.3	1.80	13.10	287.1
3/19/2011 11:16	30.5	0.006	0.4	0.3	1.80	13.12	287.9
3/19/2011 11:17	30.4	0.006	0.3	0.2	1.30	13.07	286.1
3/19/2011 11:18	30.9	0.006	0.4	0.3	1.80	13.14	285.2
3/19/2011 11:19	30.5	0.006	0.3	0.2	1.30	13.10	286.2
3/19/2011 11:20	30.7	0.006	0.3	0.2	1.30	13.11	286.3
3/19/2011 11:21	30.2	0.006	0.3	0.2	1.20	13.15	286.6
3/19/2011 11:22	30.7	0.006	0.3	0.2	1.30	13.06	287.4
3/19/2011 11:23	30.6	0.006	0.3	0.2	1.30	13.10	286.2
3/19/2011 11:24	30.8	0.006	0.3	0.2	1.30	13.40	286.8
3/19/2011 11:25	31.4	0.006	0.3	0.2	1.30	13.51	287.6
3/19/2011 11:26	30.8	0.006	0.3	0.2	1.30	13.11	286.3
3/19/2011 11:27	30.5	0.006	0.2	0.2	0.80	13.05	282.9
3/19/2011 11:28	30.3	0.005	0.5	0.4	2.30	13.17	283.1
3/19/2011 11:29	30.2	0.005	0.4	0.3	1.70	13.09	282.9
3/19/2011 11:30	31.1	0.005	0.3	0.2	1.30	13.05	282.9
3/19/2011 11:31	30.9	0.005	0.3	0.2	1.30	13.04	281.0
3/19/2011 11:32	30.3	0.005	0.6	0.5	2.50	13.20	280.7
3/19/2011 11:33	30.0	0.005	0.8	0.6	3.50	13.16	280.9
3/19/2011 11:34	30.3	0.005	0.4	0.3	1.80	13.10	282.3
3/19/2011 11:35	30.5	0.006	0.5	0.4	2.30	13.51	283.2
3/19/2011 11:36	30.1	0.006	0.4	0.3	1.70	13.20	283.4
3/19/2011 11:37	30.5	0.006	0.3	0.2	1.30	13.15	284.4
3/19/2011 11:38	31.2	0.006	0.4	0.3	1.80	13.13	285.8
3/19/2011 11:39	30.6	0.006	0.3	0.2	1.30	13.09	284.9
3/19/2011 11:40	29.7	0.006	0.2	0.1	0.70	13.03	281.6
3/19/2011 11:41	30.3	0.005	0.3	0.2	1.30	13.07	281.0
3/19/2011 11:42	30.6	0.005	0.4	0.3	1.80	13.07	280.9
3/19/2011 11:43	30.4	0.005	0.4	0.3	1.80	13.09	281.3
3/19/2011 11:44	30.6	0.005	0.4	0.3	1.80	13.03	280.7
Final Average*	30.7	0.006	0.4	0.3	1.60	13.18	287.1
Maximum*	32.2	0.006	0.8	0.6	3.50	13.78	297.3
Minimum*	29.7	0.005	0.2	0.1	0.70	13.03	280.7

*Does not include Invalid Averaging Periods ("N/A")

Babcock \& Wilcox Power Generation Group NetDAH5
Average Values Report
Version 59

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 12:05 Period End: 3/19/2011 13:04
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min Type: Block Avg

Period Start	$\begin{gathered} \text { 3B_CT_GAS } \\ H / \mathrm{sec} \end{gathered}$	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{ppm}}{3 \mathrm{~B}_{2} \text { COCORR }}$	$\underset{H / H r}{3 B_{-} \text {COLBHR }}$	$\underset{\%}{\text { 3B_O2 }}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 12:05	30.8	0.005	0.4	0.3	1.80	13.07	282.7
3/19/2011 12:06	30.5	0.005	0.3	0.2	1.30	13.05	282.7
3/19/2011 12:07	30.9	0.005	0.4	0.3	1.80	13.13	282.4
3/19/2011 12:08	30.7	0.005	0.5	0.4	2.30	13.15	283.5
3/19/2011 12:09	30.9	0.006	0.3	0.2	1.30	13.05	282.1
3/19/2011 12:10	30.4	0.006	0.3	0.2	1.50	13.67	281.6
3/19/2011 12:11	30.4	0.005	0.5	0.4	2.30	13.41	282.7
3/19/2011 12:12	30.4	0.006	0.3	0.2	1.30	13.40	283.1
3/19/2011 12:13	29.5	0.006	0.3	0.2	1.50	13.73	282.9
3/19/2011 12:14	30.3	0.006	0.2	0.2	0.80	13.07	281.4
3/19/2011 12:15	30.8	0.005	0.5	0.4	2.30	13.18	282.4
3/19/2011 12:16	30.0	0.005	0.4	0.3	1.70	13.15	282.0
3/19/2011 12:17	30.1	0.005	0.3	0.2	1.20	13.02	280.6
3/19/2011 12:18	29.9	0.005	0.3	0.2	1.20	13.07	277.9
3/19/2011 12:19	30.1	0.005	0.8	0.7	3.70	13.65	278.9
3/19/2011 12:20	30.8	0.005	0.7	0.5	3.10	13.25	280.5
3/19/2011 12:21	29.7	0.006	0.5	0.4	2.20	13.20	279.3
3/19/2011 12:22	30.2	0.006	0.4	0.3	1.70	13.08	279.4
3/19/2011 12:23	31.1	0.005	0.3	0.2	1.30	13.10	282.7
3/19/2011 12:24	29.9	0.005	0.4	0.3	1.70	13.13	281.4
3/19/2011 12:25	30.4	0.006	0.3	0.2	1.30	12.98	279.5
3/19/2011 12:26	30.4	0.006	0.3	0.2	1.30	13.02	277.9
3/19/2011 12:27	29.4	0.005	0.7	0.5	2.90	13.30	278.0
3/19/2011 12:28	31.0	0.005	0.9	0.7	4.10	13.52	277.9
3/19/2011 12:29	30.6	0.007	0.5	0.4	2.30	13.93	278.1
3/19/2011 12:30	29.4	0.006	0.4	0.4	1.90	14.22	279.1
3/19/2011 12:31	29.9	0.005	0.5	0.4	2.20	13.86	278.9
3/19/2011 12:32	30.0	0.005	0.3	0.2	1.50	13.71	280.2
3/19/2011 12:33	30.7	0.005	0.3	0.2	1.30	13.23	279.8
3/19/2011 12:34	29.5	0.004	0.4	0.3	1.70	13.09	279.2
3/19/2011 12:35	29.8	0.005	0.5	0.4	2.20	13.18	279.9
3/19/2011 12:36	30.6	0.005	0.6	0.5	2.50	13.16	280.3
3/19/2011 12:37	30.5	0.005	0.3	0.2	1.30	13.08	280.4
3/19/2011 12:38	29.6	0.006	0.3	0.2	1.20	13.05	280.3
3/19/2011 12:39	30.0	0.006	0.3	0.2	1.20	13.07	278.4
3/19/2011 12:40	29.3	0.005	0.4	0.3	1.70	13.09	278.8
3/19/2011 12:41	30.0	0.005	0.4	0.3	1.70	13.07	279.1
3/19/2011 12:42	29.8	0.005	0.4	0.3	1.70	13.13	278.5
3/19/2011 12:43	29.8	0.005	0.6	0.5	2.50	13.15	279.1
3/19/2011 12:44	30.8	0.005	0.5	0.4	2.30	13.16	280.5
3/19/2011 12:45	30.5	0.006	0.4	0.3	1.80	13.13	280.4
3/19/2011 12:46	30.7	0.006	0.3	0.2	1.30	13.09	280.4
3/19/2011 12:47	29.9	0.007	0.3	0.2	1.20	13.05	278.8
3/19/2011 12:48	29.4	0.007	0.3	0.3	1.50	14.27	276.8
3/19/2011 12:49	29.5	0.006	0.4	0.3	1.70	13.81	276.9
3/19/2011 12:50	29.4	0.005	0.4	0.3	1.70	13.16	276.2
3/19/2011 12:51	30.5	0.005	0.8	0.6	3.50	13.29	277.4
3/19/2011 12:52	29.6	0.006	0.5	0.4	2.20	13.32	276.8
3/19/2011 12:53	30.3	0.006	0.4	0.3	1.80	13.64	277.3
3/19/2011 12:54	29.4	0.005	0.3	0.2	1.20	13.11	277.7
3/19/2011 12:55	30.3	0.005	0.3	0.2	1.30	13.07	279.3
3/19/2011 12:56	29.7	0.005	0.3	0.2	1.20	13.11	279.1
3/19/2011 12:57	30.2	0.006	0.3	0.3	1.50	13.98	278.8
3/19/2011 12:58	30.5	0.005	0.4	0.3	1.80	13.39	277.9
3/19/2011 12:59	29.9	0.005	0.4	0.3	1.70	13.13	277.5
3/19/2011 13:00	30.5	0.005	0.3	0.2	1.30	13.08	278.2
3/19/2011 13:01	30.0	0.005	0.4	0.3	1.70	13.08	278.0
3/19/2011 13:02	30.4	0.005	0.5	0.4	2.30	13.17	279.6
3/19/2011 13:03	30.1	0.006	0.4	0.3	1.70	13.10	278.8
3/19/2011 13:04	30.5	0.006	0.3	0.2	1.30	13.04	278.9
Final Average**	30.2	0.005	0.4	0.3	1.80	13.28	279.6
Maximum*	31.1	0.007	0.9	0.7	4.10	14.27	283.5
Minimum*	29.3	0.004	0.2	0.2	0.80	12.98	276.2

*Does not include Invalid Averaging Periods ("N/A")

## Babcock \& Wilcox Power Generation Group NetDAHS

Average Values Report
Version 59

Company: Florida Power \& Light
Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 13:17
Period End: 3/19/2011 13:37
Validation Type: $1 / 1 \mathrm{~min}$ Averaging Period: 1 min

Type: Block Avg

Period Start	$\begin{gathered} \text { 3B_CT_GAS } \\ \# / \mathrm{sec} \end{gathered}$	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	$\underset{\substack{\text { ppm } \\ \text { 3B_COCORR }}}{ }$	$\underset{\# / \mathrm{Hr}}{3 \mathrm{~B}_{-} \text {COLBHR }}$	$\underset{\%}{3 B_{1} 02}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 13:17	30.5	0.005	0.4	0.3	2.00	13.87	277.5
3/19/2011 13:18	30.8	0.005	0.3	0.2	1.30	13.55	278.1
3/19/2011 13:19	30.7	0.005	0.3	0.2	1.30	13.49	276.6
3/19/2011 13:20	29.6	0.005	0.5	0.4	2.20	13.43	276.8
3/19/2011 13:21	30.1	0.005	0.5	0.4	2.00	13.14	276.7
3/19/2011 13:22	29.7	0.005	0.3	0.2	1.20	13.08	276.6
3/19/2011 13:23	29.7	0.005	0.6	0.5	2.50	13.17	277.2
3/19/2011 13:24	30.2	0.006	0.5	0.4	2.20	13.15	277.3
3/19/2011 13:25	29.9	0.006	0.4	0.3	1.70	13.10	277.7
3/19/2011 13:26	30.1	0.006	0.3	0.2	1.20	13.06	279.4
3/19/2011 13:27	30.0	0.006	0.3	0.2	1.20	13.06	278.7
3/19/2011 13:28	29.8	0.006	0.3	0.2	1.20	13.03	277.5
3/19/2011 13:29	29.9	0.006	0.4	0.3	1.70	13.14	276.4
3/19/2011 13:30	29.8	0.006	0.6	0.5	2.50	13.14	277.0
3/19/2011 13:31	30.0	0.006	0.3	0.2	1.20	13.05	278.0
3/19/2011 13:32	30.5	0.006	0.4	0.3	1.80	13.15	276.8
3/19/2011 13:33	30.7	0.006	0.5	0.4	2.00	13.09	277.7
3/19/2011 13:34	30.1	0.006	0.3	0.2	1.20	13.03	279.0
3/19/2011 13:35	30.1	0.006	0.2	0.2	0.70	13.13	277.1
3/19/2011 13:36	30.6	0.006	0.4	0.3	1.80	13.12	276.0
3/19/2011 13:37	30.7	0.005	0.4	0.3	1.80	13.08	276.7
Final Average*	30.2	0.006	0.4	0.3	1.70	13.19	277.4
Maximum*	30.8	0.006	0.6	0.5	2.50	13.87	279.4
Minimum*	29.6	0.005	0.2	0.2	0.70	13.03	276.0

*Does not include Invalid Averaging Periods ("N/A")

Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59

Company: Florida Power \& Light
Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 13:50
Period End: 3/19/2011 14:10
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Period Start	$\underset{\text { \#/sec }}{3 \mathrm{~B}_{2} \mathrm{CT} G A S}$	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{ppm}}{\text { 3B_COCORR }}$	$\begin{gathered} \text { 3B_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3B_02 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 13:50	30.7	0.005	0.4	0.3	1.80	13.09	278.1
3/19/2011 13:51	30.6	0.006	0.3	0.2	1.30	13.11	278.2
3/19/2011 13:52	30.1	0.006	0.3	0.2	1.20	13.03	277.6
3/19/2011 13:53	29.7	0.005	0.3	0.2	1.20	13.08	276.2
3/19/2011 13:54	29.6	0.005	0.4	0.3	1.70	13.10	276.3
3/19/2011 13:55	29.8	0.005	0.6	0.5	2.50	13.13	277.2
3/19/2011 13:56	29.8	0.005	0.5	0.4	2.20	13.23	278.0
3/19/2011 13:57	29.9	0.006	0.4	0.3	1.70	13.17	278.5
3/19/2011 13:58	30.5	0.006	0.4	0.3	1.80	13.65	278.6
3/19/2011 13:59	31.0	0.006	0.4	0.3	1.80	13.08	278.3
3/19/2011 14:00	30.0	0.006	0.3	0.2	1.20	13.26	277.8
3/19/2011 14:01	30.1	0.006	0.4	0.3	1.70	13.47	278.1
3/19/2011 14:02	30.3	0.006	0.3	0.2	1.30	13.11	278.3
3/19/2011 14:03	30.2	0.005	0.3	0.2	1.20	13.08	277.7
3/19/2011 14:04	30.0	0.005	0.3	0.2	1.20	13.06	277.9
3/19/2011 14:05	29.9	0.006	0.3	0.2	1.20	13.06	277.7
3/19/2011 14:06	30.0	0.006	0.3	0.2	1.20	13.07	277.9
3/19/2011 14:07	30.2	0.006	0.4	0.3	1.70	13.09	277.6
3/19/2011 14:08	29.9	0.005	0.4	0.3	1.70	13.21	278.2
3/19/2011 14:09	29.7	0.006	0.3	0.2	1.20	12.99	276.9
3/19/2011 14:10	29.9	0.005	0.4	0.3	1.70	13.05	277.0
Final Average*	30.1	0.006	0.4	0.3	1.50	13.15	277.7
Maximum*	31.0	0.006	0.6	0.5	2.50	13.65	278.6
Minimum*	29.6	0.005	0.3	0.2	1.20	12.99	276.2

*Does not include invalid Averaging Periods ("N/A")

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 14:21
Period End: 3/19/2011 14:41
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Period Start	$\underset{\# / \mathrm{sec}}{\text { 3B_CT_GAS }}$	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	$\underset{\text { ppm }}{\text { 3B_COCORR }}$	$\begin{gathered} \text { 3B_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3B_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 14:21	30.6	0.005	0.4	0.3	1.80	13.25	278.0
3/19/2011 14:22	30.3	0.005	0.3	0.2	1.30	13.07	277.9
3/19/2011 14:23	30.0	0.005	0.3	0.2	1.20	13.05	276.5
3/19/2011 14:24	29.9	0.005	0.4	0.3	1.70	13.08	276.8
3/19/2011 14:25	30.1	0.005	0.3	0.2	1.20	13.05	278.0
3/19/2011 14:26	30.1	0.005	0.3	0.2	1.20	13.02	277.6
3/19/2011 14:27	30.3	0.006	0.3	0.2	1.30	13.44	276.8
3/19/2011 14:28	29.9	0.005	0.4	0.3	1.70	13.15	276.8
3/19/2011 14:29	30.3	0.005	0.4	0.3	1.80	13.04	276.4
3/19/2011 14:30	29.7	0.005	0.4	0.3	1.70	13.06	276.2
3/19/2011 14:31	30.0	0.006	0.5	0.4	2.20	13.75	276.9
3/19/2011 14:32	30.7	0.006	0.5	0.4	2.30	13.24	277.4
3/19/2011 14:33	29.8	0.006	0.4	0.3	1.70	13.10	278.4
3/19/2011 14:34	30.4	0.007	0.3	0.3	1.50	14.00	278.8
3/19/2011 14:35	29.9	0.007	0.3	0.3	1.50	14.11	278.1
3/19/2011 14:36	30.2	0.005	0.3	0.2	1.20	13.06	277.9
3/19/2011 14:37	30.3	0.005	0.3	0.2	1.30	13.03	276.0
3/19/2011 14:38	29.8	0.005	0.3	0.2	1.20	13.04	276.6
3/19/2011 14:39	30.2	0.005	0.3	0.2	1.20	13.07	276.6
3/19/2011 14:40	29.6	0.005	0.3	0.2	1.20	13.01	275.0
3/19/2011 14:41	29.9	0.005	0.6	0.5	2.50	13.14	275.0
Final Average*	30.1	0.005	0.4	0.3	1.60	13.23	277.0
Maximum*	30.7	0.007	0.6	0.5	2.50	14.11	278.8
Minimum*	29.6	0.005	0.3	0.2	1.20	13.01	275.0

[^10]Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 14:51
Period End: 3/19/2011 15:11
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Period Start	3B_CT_GAS   \#/sec	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	$\underset{\text { ppm }}{\text { 3B_COCORR }}$	$\begin{gathered} \text { 3B_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3B_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 14:51	30.1	0.006	0.3	0.2	1.20	13.02	276.8
3/19/2011 14:52	30.2	0.006	0.3	0.2	1.20	13.00	275.7
3/19/2011 14:53	29.7	0.005	0.5	0.4	2.00	13.07	276.4
3/19/2011 14:54	30.3	0.005	0.4	0.3	1.80	13.04	277.4
3/19/2011 14:55	29.9	0.006	0.4	0.3	1.70	13.04	277.2
3/19/2011 14:56	30.3	0.006	0.5	0.4	2.00	13.09	277.7
3/19/2011 14:57	30.1	0.006	0.3	0.2	1.20	13.00	277.5
3/19/2011 14:58	30.4	0.006	0.3	0.2	1.30	13.02	277.3
3/19/2011 14:59	29.7	0.006	0.3	0.2	1.20	13.02	276.4
3/19/2011 15:00	30.3	0.005	0.5	0.4	2.00	13.06	277.2
3/19/2011 15:01	29.9	0.006	0.4	0.3	1.70	13.05	278.2
3/19/2011 15:02	30.3	0.006	0.3	0.2	1.30	13.07	277.6
3/19/2011 15:03	30.0	0.006	0.4	0.3	1.70	13.10	276.7
3/19/2011 15:04	29.9	0.006	0.4	0.3	1.70	13.61	277.6
3/19/2011 15:05	30.4	0.006	0.3	0.2	1.30	13.50	276.8
3/19/2011 15:06	29.7	0.005	0.4	0.3	1.70	13.07	276.8
3/19/2011 15:07	30.1	0.005	0.4	0.3	1.70	13.67	277.5
3/19/2011 15:08	30.0	0.006	0.3	0.2	1.20	13.45	276.9
3/19/2011 15:09	30.1	0.006	0.3	0.2	1.20	13.59	275.7
3/19/2011 15:10	30.1	0.005	0.4	0.3	1.70	13.65	277.0
3/19/2011 15:11	30.4	0.005	0.3	0.2	1.30	13.55	276.4
Final Average*	30.1	0.006	0.4	0.3	1.50	13.22	277.0
Maximum*	30.4	0.006	0.5	0.4	2.00	13.67	278.2
Minimum*	29.7	0.005	0.3	0.2	1.20	13.00	275.7

[^11]
## Babcock \& Wilcox Power Generation Group NetDAHS

Average Values Report
Version 59

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 15:21
Period End: 3/19/2011 15:41
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Period Start	$\begin{gathered} \text { 3B_CT_GAS } \\ \# / \mathrm{sec} \end{gathered}$	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	$\begin{gathered} \text { 3B_COCORR } \\ \text { ppm } \end{gathered}$	$\underset{\# / \mathrm{Hr}}{\text { 3B_COLBHR }}$	$\begin{gathered} \text { 3B_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ \text { MW } \end{gathered}$
3/19/2011 15:21	30.2	0.006	0.4	0.3	1.70	13.08	276.0
3/19/2011 15:22	30.1	0.006	0.4	0.3	1.70	13.05	276.7
3/19/2011 15:23	30.1	0.006	0.3	0.2	1.20	13.01	276.3
3/19/2011 15:24	30.1	0.006	0.3	0.2	1.20	13.00	275.4
3/19/2011 15:25	29.5	0.006	0.4	0.3	1.70	13.07	273.7
3/19/2011 15:26	29.9	0.005	0.9	0.7	3.70	13.20	273.6
3/19/2011 15:27	29.8	0.006	0.5	0.4	2.00	13.11	274.5
3/19/2011 15:28	29.9	0.006	0.5	0.4	2.00	13.12	274.7
3/19/2011 15:29	30.4	0.006	0.4	0.3	1.80	13.05	275.3
3/19/2011 15:30	30.1	0.006	0.3	0.2	1.20	13.07	276.6
3/19/2011 15:31	30.0	0.006	0.4	0.3	1.70	13.06	277.7
3/19/2011 15:32	30.2	0.006	0.4	0.3	1.70	13.16	278.6
3/19/2011 15:33	30.4	0.006	0.3	0.2	1.30	13.12	279.3
3/19/2011 15:34	30.1	0.007	0.3	0.2	1.20	13.02	278.2
3/19/2011 15:35	29.9	0.006	0.3	0.2	1.20	13.05	276.2
3/19/2011 15:36	30.2	0.006	0.3	0.2	1.20	13.03	276.6
3/19/2011 15:37	29.9	0.006	0.3	0.3	1.50	14.08	275.2
3/19/2011 15:38	29.8	0.005	0.4	0.3	1.70	13.51	275.0
3/19/2011 15:39	30.0	0.005	0.5	0.4	2.20	13.65	275.6
3/19/2011 15:40	30.3	0.005	0.4	0.3	1.80	13.21	276.4
3/19/2011 15:41	29.9	0.005	0.3	0.2	1.50	13.68	276.0
Final Average*	30.0	0.006	0.4	0.3	1.70	13.21	276.1
Maximum*	30.4	0.007	0.9	0.7	3.70	14.08	279.3
Minimum*	29.5	0.005	0.3	0.2	1.20	13.00	273.6

[^12]Babcock \& Wilcox Power Generation Group NetDAHS Average Values Report

Version 59

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 15:51
Period End: 3/19/2011 16:11
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Period Start	3B_CT_GAS   \#/sec	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \mathrm{ppm} \end{gathered}$	$\underset{\text { ppm }}{\text { 3B_COCORR }}$	$\begin{gathered} \text { 3B_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} \text { 3B_O2 } \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 15:51	30.0	0.006	0.3	0.2	1.20	12.97	275.1
3/19/2011 15:52	30.0	0.005	0.5	0.4	2.00	13.10	274.2
3/19/2011 15:53	30.0	0.006	0.5	0.4	2.50	14.06	275.0
3/19/2011 15:54	30.1	0.005	0.5	0.4	2.20	13.46	275.5
3/19/2011 15:55	30.1	0.005	0.4	0.3	1.70	13.64	276.3
3/19/2011 15:56	30.0	0.005	0.3	0.2	1.50	13.66	276.7
3/19/2011 15:57	30.0	0.005	0.4	0.3	1.70	13.08	276.3
3/19/2011 15:58	30.2	0.005	0.4	0.3	1.70	13.08	277.2
3/19/2011 15:59	30.4	0.005	0.3	0.2	1.30	13.02	276.9
3/19/2011 16:00	30.2	0.006	0.4	0.3	1.70	13.01	276.6
3/19/2011 16:01	30.1	0.006	0.3	0.2	1.20	13.07	275.4
3/19/2011 16:02	30.1	0.005	0.4	0.3	1.70	13.06	276.0
3/19/2011 16:03	30.2	0.006	0.3	0.2	1.20	13.00	276.5
3/19/2011 16:04	29.9	0.006	0.4	0.3	1.70	13.03	275.5
3/19/2011 16:05	29.9	0.006	0.4	0.3	1.70	13.06	275.1
3/19/2011 16:06	29.9	0.006	0.4	0.3	1.70	13.01	275.8
3/19/2011 16:07	29.8	0.006	0.3	0.2	1.20	13.00	275.3
3/19/2011 16:08	29.9	0.006	0.4	0.3	1.70	13.08	274.8
3/19/2011 16:09	30.1	0.006	0.5	0.4	2.20	13.73	276.0
3/19/2011 16:10	30.3	0.006	0.4	0.3	1.80	13.71	277.1
3/19/2011 16:11	30.1	0.006	0.3	0.2	1.20	13.41	276.5
Final Average*	30.1	0.006	0.4	0.3	1.70	13.25	275.9
Maximum*	30.4	0.006	0.5	0.4	2.50	14.06	277.2
Minimum*	29.8	0.005	0.3	0.2	1.20	12.97	274.2

[^13]Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3b

Period Start: 3/19/2011 16:21
Period End: 3/19/2011 16:41
Validation Type: $1 / 1 \mathrm{~min}$
Averaging Period: 1 min
Type: Block Avg

Period Start	$\begin{gathered} \text { 3B_CT_GAS } \\ \# / \mathrm{sec} \end{gathered}$	3BNOXMMBTU \#/MBTU	$\begin{gathered} \text { 3B_CO } \\ \text { ppm } \end{gathered}$	$\underset{\mathrm{ppm}}{3 \mathrm{BB}_{2} \text { COCORR }}$	$\begin{gathered} \text { 3B_COLBHR } \\ \# / \mathrm{Hr} \end{gathered}$	$\begin{gathered} 3 \mathrm{BBOO} \\ \% \end{gathered}$	$\begin{gathered} \text { 3B_MW_TOT } \\ M W \end{gathered}$
3/19/2011 16:21	29.9	0.006	0.5	0.4	2.00	13.12	275.2
3/19/2011 16:22	30.0	0.006	0.6	0.5	2.50	13.12	275.8
3/19/2011 16:23	30.1	0.006	0.4	0.3	1.70	13.06	275.8
3/19/2011 16:24	30.1	0.006	0.3	0.2	1.20	13.02	276.7
3/19/2011 16:25	30.3	0.006	0.3	0.2	1.30	12.99	275.8
3/19/2011 16:26	29.9	0.006	0.4	0.3	1.70	13.03	275.7
3/19/2011 16:27	30.1	0.006	0.4	0.3	1.70	13.04	276.5
3/19/2011 16:28	30.1	0.006	0.4	0.3	1.70	13.02	276.6
3/19/2011 16:29	30.0	0.006	0.4	0.3	1.70	13.05	275.7
3/19/2011 16:30	30.2	0.006	0.4	0.3	1.70	13.03	276.5
3/19/2011 16:31	30.1	0.006	0.3	0.2	1.20	13.04	275.1
3/19/2011 16:32	30.1	0.006	0.5	0.4	2.20	13.39	275.6
3/19/2011 16:33	30.2	0.006	0.5	0.4	2.00	13.08	276.6
3/19/2011 16:34	30.2	0.006	0.4	0.3	1.70	13.06	277.3
3/19/2011 16:35	30.1	0.006	0.3	0.2	1.20	13.02	276.3
3/19/2011 16:36	30.1	0.006	0.3	0.2	1.20	13.20	275.6
3/19/2011 16:37	30.1	0.006	0.3	0.2	1.20	13.54	275.4
3/19/2011 16:38	29.9	0.006	0.3	0.3	1.50	13.88	274.5
3/19/2011 16:39	30.1	0.005	0.5	0.4	2.20	13.64	275.7
3/19/2011 16:40	30.1	0.005	0.4	0.3	1.70	13.73	275.7
3/19/2011 16:41	30.1	0.005	0.5	0.4	2.20	13.47	276.7
Final Average*	30.1	0.006	0.4	0.3	1.70	13.22	275.9
Maximum*	30.3	0.006	0.6	0.5	2.50	13.88	277.3
Minimum*	29.9	0.005	0.3	0.2	1.20	12.99	274.5

*Does not include Invalid Averaging Periods ("N/A")

CEMS AND REFERENCE METHOD DATA

## Reference Method Data

Florida Power and Light
March 19, 2011
Mitsubishi, 501G, Unit 3B West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,866	$\mathrm{lb} /$ min
Duct Burner Fuel Flow	0	$\mathrm{lb} / \mathrm{min}$

Weather Data

Baromelric Pressure	30.25	in. Hg
Relative Humidity	52	$\%$
Ambient Temperature	75	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009505	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	301.8	megawatts
Stack Exhaust Fiow (M19)	$61,419,787$	SCFH

Base Load, Run - 1
Date/Time (mm/dd/yy hh:mm:ss) 03/19/11 09:32:10 03/19/11 09:32:40 03/19/11 09:33:10 03/19/11 09:33:40 03/19/11 09:34:10 03/19/11 09:34:40 03/19/11 09:35:10 03/19/11 09:35:40 03/19/11 09:36:10 03/19/11 09:36:40 03/19/11 09:37:10 03/19/11 09:37:40 03/19/11 09:38:10 03/19/11 09:38:40 03/19/11 09:39:10 03/19/11 09:39:40 03/19/11 09:40:10 03/19/11 09:40:40 03/19/11 09:41:10 03/19/11 09:41:40 03/19/11 09:42:10 03/19/11 09:42:40 03/19/11 09:43:10 03/19/11 09:43:40 03/19/11 09:44:10 03/19/11 09:44:40 03/19/11 09:45:10 03/19/11 09:45:40 03/19/11 09:46:10 03/19/11 09:46:40 03/19/11 09:47:10 03/19/11 09:47:40 03/19/11 09:48:10 03/19/11 09:48:40 03/19/11 09:49:10 03/19/11 09:49:40 03/19/11 09:50:10 03/19/11 09:50:40 03/19/11 09:51:10 03/19/11 09:51:40 03/19/11 09:52:10 03/19/11 09:52:40 03/19/11 09:53:10 03/19/11 09:53:40 03/19/11 09:54:10 03/19/11 09:54:40 03/19/11 09:55:10 03/19/11 09:55:40 03/19/11 09:56:10 03/19/11 09:56:40 03/19/11 09:57:10 03/19/11 09:57:40 03/19/11 09:58:10 03/19/11 09:58:40 03/19/11 09:59:10 03/19/11 09:59:40
Elap 9300 9330 9360 9390 9420 9450 9480 9540
9570 9600 9630 9660 9720 9750
9780 9780 9810
9840 9870 9900 9930
9960 9990 10020 10080 10110 10140
10170 10170
10200 10230 10260
10290 10320 10350 10380 10410
10440 10470 10500 10530 10560 10620 10650 10680 10710 10740 10770 10800 10830 10860 10890 10920 10950
$\mathrm{O}_{2} \quad \mathrm{NO}$
$(\%)$
13.16

NOx (pprnvd) 2.93 3.02 3.10 3.28

CO (ppmvd) 0.53 0.45 0.48 0.50 0.51
0.47 0.46 0.44
0.48 0.48
0.43 0.47 0.51 0.49
0.51 0.46 0.49
0.48
0.52
0.47
0.56
0.56
0.47
0.58
0.44
0.48
0.49
0.51
0.52
0.48
0.49
0.44
0.54
0.54
0.47
0.45
0.59
0.54
0.53
0.48
0.54
0.49
0.46
0.49
0.48
0.49
0.49
0.53
0.47
0.54
0.50
0.53
0.49
0.49
0.51
0.49
0.58
0.54

## Florida Power and Light

## March 19, 2011

Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,866	$\mathrm{Ib} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{lb} / \mathrm{min}$

Weather Data

Barometric Pressure	30.25	in, Hg
Relative Humidity	52	$\%$
Ambient Temperature	75	${ }^{\circ} \mathrm{F}$
Specific. Humidity	0.009505	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{b}$ air

Unit Data

Unit Load	301.8	megawatts
Stack Exhaust Flow (M19)	$61,419,787$	SCFH

## Base Load, Run - 1

Date/Time
(mm/dd/yy hh:mm:ss) 03/19/4 hi.mm:s 03/19/11 10:00:40 03/19/11 10:01:10 03/19/11 10:01:40 03/19/11 10:02:10 03/19/11 10:02:40 03/19/11 10:03:10 03/19/11 10:03:40 03/19/11 10:04:10 03/19/11 10:04:40 03/19/11 10:05:10 03/19/11 10:05:40 03/19/11 10:06:10 03/19/11 10:06:40 03/19/11 10:07:10 03/19/11 10:07:40 03/19/11 10:08:10 03/19/11 10:08:40 03/19/11 10:09:10 03/19/11 10:09:40 03/19/11 10:10:10 03/19/11 10:10:40 03/19/11 10:11:10 03/19/11 10:11:40 03/19/11 10:12:10 03/19/11 10:12:40 03/19/11 10:13:10 03/19/11 10:14:10 03/19/11 10:14:40 03/19/11 10:15:10 03/19/11 10:15:40 03/19/11 10:16:10 03/19/11 10:16:40 03/19/11 10:17:10 03/19/11 10:18:10 03/19/11 10:18:40 03/19/11 10:19:10 03/19/11 10:20:10 03/19/11 10:20:40 03/19/11 10:21:10 03/19/11 10:21:40 03/19/11 10:22:40 03/19/11 10:23:10 03/19/11 10:23:40 03/19/11 10:24:10 03/19/11 10:24:40 03/19/11 10:25:40 03/19/11 10:26:10 03/19/11 10:26:40 03/19/11 10:27:40

Elapsed Time
(seconds)
10980
10980 11040 11070 11100 11130 11160 $\begin{array}{ll}11190 & 13.17 \\ 11220 & 13.16\end{array}$ 11250 11280
11310
11340
11370
$\mathbf{O}_{\mathbf{2}}$
(\%)
13.17
13

CO $\begin{array}{cc}\text { (ppmvd) } & \text { (ppmvd) } \\ 2.08 & 0.53\end{array}$ $\begin{array}{ll}2.08 & 0.53 \\ 2.10 & 0.48\end{array}$
0.51
0.56
0.49
0.52

0.57

0.59
0.95
0.60
0.55
0.63
0.81
0.61
0.56
0.510.51
0.890.640.620.64
0.62
0.53

0.69
0.640.54
0.58

0.76
0.700.65



0.67
0.650.520.60
0.551.251.25
0.67 0.45 1.00
1.34 1.34
0.87

Florida Power and Light
March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Blu/SCF fuel
Turbine Fuel Flow	1,866	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{lb} / \mathrm{min}$

Weather Data
Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	52	$\%$
Ambient Temperature	75	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009505	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	301.8	megawatts
Stack Exhaust Flow (M19)	$61,419,787$	SCFH


Base Load, Run - 1				
Date/Time	Elapsed Time	$\mathrm{O}_{2}$	NOx	CO
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/19/11 10:28:10	12660	13.21	1.64	0.66
03/19/11 10:28:40	12690	13.22	1.69	0.60
03/19/11 10:29:10	12720	13.20	1.74	0.59
03/19/11 10:29:40	12750	13.17	1.82	0.68
03/19/11 10:30:10	12780	13.16	1.91	0.56
03/19/11 10:30:40	12810	13.19	1.98	0.57
03/19/11 10:31:10	12840	13.22	1.96	0.55
03/19/11 10:31:40	12870	13.22	1.91	0.59
RAW AVERAGE		13.17	2.45	0.59
		$\mathrm{O}_{2}$	NOX	CO



EMISSIONS DATA	$\mathbf{O}_{2}$	$\mathbf{N O x}$	$\mathbf{C O}$
Corrected Raw Average (ppm/\% dry basis)	13.09	2.41	0.58
Concentration (ppm@ 15\%O2)	$\mathrm{N} / \mathrm{A}$	1.82	0.44
Emission Rate (lb/hr)	$\mathrm{N} / \mathrm{A}$	17.65	2.59
Emission Rate (lb/MMBtu)	$\mathrm{N} / \mathrm{A}$	0.007	0.001

Florida Power and Light March 19, 2011
Mitsubishi, 501G, Unit 3B West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuei Flow	1,842	$\mathrm{IB} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{bb} / \mathrm{min}$

Weather Data

Barometric Pressure	30.23	in. Hg
Reataive Humidity	58	$\%$
Ambient Temperature	71	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009268	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	287.1	megawatts
Stack Exhaust Flow (M19)	$60,636,559$	SCFH

Base Load, Run - 2 Date/Time
(mm/dd/yy hh:mm:ss) 03/19/11 10:45:10 03/19/11 10:45:40 03/19/11 10:46:10 03/19/11 10:46:40 03/19/11 10:47:10 03/19/11 10:47:40 03/19/11 10:48:10 03/19/11 10:48:40 03/19/11 10:49:10 03/19/11 10:49:40 03/19/11 10:50:10 03/19/11 10:50:40 03/19/11 10:51:10 03/19/11 10:51:40 03/19/11 10:52:10 03/19/11 10:52:40 03/19/11 10:53:10 03/19/11 10:53:40 03/19/11 10:54:10 03/19/11 10:54:40 03/19/11 10:55:10 03/19/11 10:55:40 03/19/11 10:56:10 03/19/11 10:56:40 03/19/11 10:57:10 03/19/11 10:57:40 03/19/11 10:58:10 03/19/11 10:58:40 03/19/11 10:59:10 03/19/11 10:59:40 03/19/11 11:00:10 03/19/11 11:00:40 03/19/11 11:01:10 03/19/11 11:01:40 03/19/11 11:02:10 03/19/11 11:02:40 03/19/11 11:03:10 03/19/11 11:03:40 03/19/11 11:04:10 03/19/11 11:04:40 03/19/11 11:05:10 03/19/11 11:05:40 03/19/11 11:06:10 03/19/11 11:06:40 03/19/11 11:07:10 03/19/11 11:07:40 03/19/11 11:08:10 03/19/11 11:08:40 03/19/11 11:09:10 03/19/11 11:09:40 03/19/11 11:10:10 03/19/11 11:10:40 03/19/11 11:11:10 03/19/11 11:11:40 03/19/11 11:12:10 03/19/11 11:12:40
Elaps
(sec
13
137
13
13
sec
13
13
1
1
second
13680
13710
3740
3770 -
$13800 \quad 13.2$
13830
13860
13890
13920

13950	13.20
13.25	

$13980 \quad 13.29$
14010

14040
14070

14100 14130 14190
142201
14340

14370
14400 14430 14460 14490 14520 $\begin{array}{ll}14550 & 13.25 \\ 14.25\end{array}$
$14580 \quad 13.24$
$14610 \quad 13.24$
$14640 \quad 13.27$
$14670 \quad 13.28$
14700
14730

14760 14790 14820
14850
14880
14910
14940
14970
$15000 \quad 13.27$
$15030 \quad 13.25$

15060
15090
15120
15150

15180	13.26
15210	13.22


15210	13.22
15.25	


15240	13.25
15270	13.20


15270	13.20
15300	13.18

15330


$\begin{gathered} \text { NOx } \\ \text { (ppmvd) } \end{gathered}$	CO (ppmvd)
2.10	0.49
2.08	0.57
2.03	0.58
2.11	0.55
2.12	0.59
1.99	0.72
1.90	0.72
1.92	0.54
2.01	0.53
2.02	0.46
1.95	0.62
1.85	0.56
1.86	0.63
1.93	0.59
2.00	0.52
1.97	0.57
1.99	0.47
1.99	0.52
1.98	0.43
2.02	0.53
1.98	0.63
1.91	0.57
1.96	0.47
2.03	0.57
2.08	0.45
2.08	0.52
2.03	0.57
2.03	0.53
2.07	0.54
2.11	0.51
2.12	0.43
2.12	0.49
2.11	0.47
1.99	0.51
1.90	0.60
1.89	0.48
1.95	0.50
1.91	0.53
1.85	0.52
1.75	0.52
1.76	0.46
1.82	0.48
1.79	0.55
1.93	0.52
2.01	0.53
2.06	0.51
2.18	0.43
2.26	0.35
2.30	0.52
2.26	0.48
2.22	0.45
2.25	0.46
2.25	0.55
2.20	0.51
2.26	0.42
2.24	0.50

Florida Power and Light
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,842	ib/min
Duct Burner Fuel Flow	0	bb/min

Weather Data

| Weather Data |
| ---: | :---: | :--- |
| Barometric Pressure 30.23 in. Hg <br> Relative Humidity 58 $\%$ <br> Ambient Temperature 71 ${ }^{\circ} \mathrm{F}$ <br> Specific Humidity 0.009268 $\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air |

Unit Data

Unit Load	287.1	megawatts
Stack Exhaust Flow (M19)	$60,636,559$	SCFH

Base Load, Run - 2
Date/Time (mm/dd/yy hhimmss) 03/19/11 11:13:10 03/19/11 11:13:40 03/19/11 11:14:10 03/19/11 11:14:40 03/19/11 11:15:10 03/19/11 11:15:40 03/19/11 11:16:10 03/19/11 11:16:40 03/19/11 11:17:10 03/19/11 11:17:40 03/19/11 11:18:10 03/19/11 11:18:40 03/19/11 11:19:10 03/19/11 11:19:40 03/19/11 11:20:10 03/19/11 11:20:40 03/19/11 11:21:10 03/19/11 11:21:40 03/19/11 11:22:10 03/19/11 11:22:40 03/19/11 11:23:10 03/19/11 11:23:40 03/19/11 11:24:40 03/19/11 11:25:10 03/19/11 11:25:40 03/19/11 11:26:10 03/19/11 11:26:40 03/19/11 11:27:10 03/19/11 11:27:40 03/19/11 11:28:10 03/19/11 11:28:40 03/19/11 11:29:10 03/19/11 11:29:40 03/19/11 11:30:10 03/19/11 11:30:40 03/19/11 11:31:10 03/19/11 11:31:40 03/19/11 11:32:10 03/19/11 11:32:40 03/19/11 11:33:10 03/19/11 11:33:40 03/19/11 11:34:10 03/19/11 11:34:40 03/19/11 11:35:10 03/19/11 11:35:40 03/19/11 11:36:10 03/19/11 11:36:40 03/19/11 11:37:10 03/19/11 11:37:40 03/19/11 11:38:10 03/19/11 11:38:40 03/19/11 11:39:10 03/19/11 11:39:40 03/19/11 11:40:10 03/19/11 11:40:40

Elapsed Time (seconds) 15360 15390 $\begin{array}{r}13.24 \\ \hline 13.25\end{array}$ $\begin{array}{ll}15450 & 13.25 \\ & 13.29\end{array}$ $\begin{array}{ll}15480 & 13.23\end{array}$ $15510 \quad 13.25$ $\begin{array}{ll}15540 & 13.26 \\ 15570 & 13.27\end{array}$ $15600 \quad 13.22$ $\begin{array}{ll}15630 & 13.21 \\ 15660 & 13.28\end{array}$ $\begin{array}{ll}15660 & 13.28 \\ 15690 & 13.30\end{array}$ $15720 \quad 13.26$ $\begin{array}{ll}15750 & 13.24 \\ 15780 & 13.27\end{array}$ $15810 \quad 13.24$ $\begin{array}{ll}15840 & 13.30 \\ 15870 & 13.29\end{array}$ 15870 15900 13.25 15930 15990 $16020 \quad 13.29$ $16050 \quad 13.28$ $16080 \quad 13.27$ $\begin{array}{ll}16110 & 13.27 \\ 16140 & 13.26\end{array}$ 16140 $\begin{array}{ll}16170 & 13.18 \\ 16200 & 13.15\end{array}$ 1620 16230 16260 16320 13.28 $16380 \quad 13.20$ $16410 \quad 13.21$ $\begin{array}{ll}16440 & 13.17 \\ 16470 & 13.21\end{array}$ 16470 16500 16560 $16590 \quad 13.28$ $16620 \quad 13.23$ $16650 \quad 13.25$ $\begin{array}{ll}16680 & 13.29 \\ 16710 & 13.30\end{array}$ $16740 \quad 13.28$ 16770 16800 16830 16860 16890 16920 $16950 \quad 13.23$ $16980 \quad 13.17$ 17010

NOX (ppmvd) 2.08 1.94 1.97 2.07 2.11 2.19 2.25 2.31 2.34 2.43 2.50
2.35 2.21 2.19
2.27

2.27	0.5
	0.50

2.28
2.25
2.23
2.37
2.41
pmva
(ppmvd)
0.62
0.65
0.46
0.52
0.48
0.56
0.49
0.56
0.53
0.43
0.41
0.49
0.51 0.51 0.50
0.49
0.58 0.52 0.59 0.54 0.46 0.47 0.48 0.50 0.49 0.43 0.45
0.43 0.45 0.37 0.63 0.72 0.56 0.54 0.52 0.50
0.48 0.41 0.60 0.84 1.06 0.73 0.49 0.57 0.55 0.63 0.54
0.47 0.48 0.44 0.53 0.47 0.47 0.44
0.42 0.41

Mitsubishi, 501G, Unit 3B
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,842	1 b/min
Duct Burner Fuel Flow	0	Ib/min

Weather Data

Barometric Pressure	30.23	in. Hg
Relative Humidity	58	$\%$
Ambient Temperature	71	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009268	$1 \mathrm{~b} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	287.1	megawatts
Stack Exhaust Flow (M19)	$60,636,559$	SCFH

Base Load, Run - 2
Datertime
(mm/dd/yy hh:mm:ss)
03/19/11 11:41:10 03/19/11 11:41:40 03/19/11 11:42:10 03/19/11 11:42:40 03/19/11 11:43:10 03/19/11 11:43:40 03/19/11 11:44:10 03/19/11 11:44:40
Elapsed Time
(seconds)
17040
17070
17100
17130
17160
17190
17220
17250
$\mathrm{O}_{2}$
$(\%)$
13.24
13.24
13.24
13.26
13.23
13.28
13.23
13.19

13.25

NOx
CO

## RAW AVERAGE

13.25
2.26
(ppmvd)
3.020 .50
$2.76 \quad 0.51$
$\begin{array}{ll}2.62 & 0.52 \\ 2.56 & 0.49\end{array}$
$2.50 \quad 0.54$

2.55	0.54

$2.50 \quad 0.60$
2.59
0.52
$\mathrm{O}_{2}$
NOX
CO


Florida Power and Light
March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,812	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{lb} / \mathrm{min}$

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	39	$\%$
Ambient Temperature	81	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008678	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Base Load, Run-3
Date/Time
(mm/dd/yy hh:mm:ss) Elapsed Time
(seconds) 03/19/11 12:05:10 03/19/11 12:05:40 03/19/11 12:06:10 03/19/11 12:06:40 03/19/11 12:07:10 03/19/11 12:07:40 03/19/11 12:08:10 03/19/11 12:08:40 03/19/11 12:09:10 03/19/11 12:09:40 03/19/11 12:10:40 03/19/11 12:11:10 $03 / 19 / 11$ 12:11:40
$03 / 19 / 11$ 12:12:10 $03 / 19 / 11$ 12:12:40
$03 / 19 / 1112: 13: 10$ $03 / 19 / 1112: 13: 40$
$03 / 19 / 1112: 14: 10$ $03 / 19 / 11$ 12:14:40
$03 / 19 / 11$ 12:15:10 03/19/11 12:15:40 $03 / 19 / 11$ 12:16:10
$03 / 19 / 11$ 12:16:40 $03 / 19 / 1112: 17: 10$
$03 / 19 / 1112 \cdot 17: 40$ $03 / 19 / 1112: 18: 10$
$03 / 19 / 1112: 18: 40$ 03/19/11 12:19:10 $03 / 19 / 11$ 12:19:40
$03 / 19 / 11$ 12:20:10 03/19/11 12:20:40 03/19/11 12:21:10 03/19/11 12:21:40 03/19/11 12:22:10 03/19/11 12:22:40 03/19/11 12:23:10 03/19/11 12:23:40 03/19/11 12:24:10 03/19/11 12:25:10 03/19/11 12:25:40 03/19/11 12:26:10 03/19/11 12:26:40 03/19/11 12:27:10 03/19/11 12:27:40 03/19/11 12:28:10 03/19/11 12:28:40 03/19/11 12:29:10 03/19/11 12:29:40 03/19/11 12:30:10 03/19/11 12:30:40 03/19/11 12:31:10 03/19/11 12:31:40 03/19/11 12:32:10 03/19/11 12:32:40
18480
18510
NOx

## Florida Power and Light

March 19, 2011
Mitsubishi, 501G, Unit 3B West County Energy Center
Fuel Data

	Fuel Fd factor	8,710
SCF exh/MMBtu		
Fuel	Heating Value (HHV)	1,029
Turbine Fuel Flow	1,812	Btu/SCF fuel
Duct Burner Fuel Flow	0	$\mathrm{Ib} / \mathrm{min}$

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	39	$\%$
Ambieni Temperature	81	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008678	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

	Unit Load	279.6
megawatts		
Stack Exhaust Flow (M19)	$60,016,087$	SCFH

Base Load, Run - 3
Date/Time
(mm/dd/yy hh:mmess) 03/19/11 12:33:10 03/19/11 12:33:40 03/19/11 12:34:10 03/19/11 12:34:40 03/19/11 12:35:10 03/19/11 12:35:40 03/19/11 12:36:10 03/19/11 12:36:40 03/19/11 12:37:10 03/19/11 12:37:40 03/19/11 12:38:10 03/19/11 12:38:40 03/19/11 12:39:10 03/19/11 12:39:40 03/19/11 12:40:10 03/19/11 12:40:40 03/19/11 12:41:10 03/19/11 12:41:40 03/19/11 12:42:10 03/19/11 12:42:40 03/19/11 12:43:10 03/19/11 12:43:40 03/19/11 12:44:10 03/19/11 12:44:40 03/19/11 12:45:10 03/19/11 12:45:40 03/19/11 12:46:10 03/19/11 12:46:40 03/19/11 12:47:10 03/19/11 12:47:40 03/19/11 12:48:10 03/19/11 12:48:40 03/19/11 12:49:10 03/19/11 12:49:40 03/19/11 12:50:10 03/19/11 12:50:40 03/19/11 12:51:10 03/19/11 12:51:40 03/19/11 12:52:10 03/19/11 12:52:40
Elapsed Time
(seconds)
20160

$\begin{gathered} \mathrm{O}_{2} \\ (\%) \end{gathered}$	NOX (ppmvd)	$\begin{gathered} \text { CO } \\ \text { (ppmvd) } \end{gathered}$
13.29	1.95	0.40
13.33	1.93	0.37
13.41	1.87	0.47
13.33	1.73	0.50
13.41	1.79	0.57
13.49	1.78	0.68
13.45	1.75	0.79
13.41	1.88	0.59
13.35	2.00	0.42
13.35	2.10	0.44
13.34	2.18	0.37
13.30	2.22	0.40
13.30	2.30	0.42
13.36	2.31	0.34
13.37	2.17	0.48
13.35	2.08	0.49
13.35	2.06	0.43
13.31	2.05	0.47
13.32	2.09	0.37
13.46	2.12	0.45
13.42	2.03	0.63
13.41	2.09	0.69
13.44	2.14	0.57
13.42	2.18	0.63
13.40	2.25	0.57
13.37	2.36	0.52
13.35	2.40	0.47
13.34	2.35	0.36
13.32	2.30	0.39
13.31	2.36	0.33
13.28	2.34	0.35
13.32	2.26	0.37
13.35	2.13	0.42
13.35	1.91	0.41
13.35	1.75	0.49
13.50	1.69	0.52
13.58	1.62	1.01
13.55	1.70	0.91
13.45	1.89	0.64
13.48	2.06	0.54
13.44	2.12	0.54
13.39	2.11	0.47
13.39	2.08	0.41
13.41	1.95	0.47
13.35	1.87	0.41
13.37	1.89	0.39
13.39	1.92	0.40
13.34	1.93	0.35
13.36	1.97	0.37
13.45	1.96	0.48
13.41	1.83	0.54
13.33	1.79	0.43
13.46	1.82	0.49
13.38	1.69	0.57
13.33	1.72	0.44
13.38	1.78	0.37

## Fiorida Power and Light

March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuet Fd factor	8,710	SCF exh/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,812	$\mathrm{lb} / \mathrm{min}$
Duct Burner Fuel Flow	0	$\mathrm{lb} / \mathrm{min}$

Weather Data

Barometric Pressure	30.25	in. Hg
Relative Humidity	39	$\%$
Ambient Temperature	81	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.008678	$\mathrm{Ib} \mathrm{H} / \mathrm{O} / \mathrm{Ib}$ air

Unit Data

Unit Load	279.6	megawatts
Slack Exhaust Flow (M19)	$60,016,087$	SCFH


Base Load, Run-3   Date/Time   (mm/dd/yy hh:mm:ss)	Elapsed Time   (seconds)	$\mathbf{O}_{\mathbf{2}}$   $(\%)$	NOx   (ppmvd)	CO   (ppmvd)
03/19/11 13:01:10	21840	13.37	1.82	0.49
03/19/11 13:01:40	21870	13.37	1.83	0.44
03/19/11 13:02:10	21900	13.47	1.90	0.40
03/19/11 13:02:40	21930	13.46	1.84	0.56
03/19/11 13:03:10	21960	13.43	1.89	0.50
03/19/11 13:03:40	21990	13.37	2.00	0.47
03/19/11 13:04:10	22020	13.37	2.08	0.34
03/19/11 13:04:40	22050	13.33	2.07	0.32
RAW AVERAGE				
		$\mathbf{O}_{2}$	NOx	CO



Florida Power and Light
March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

$\quad$ Fuel Fd factor	8,710	SCF exd/MMBtu
Fuel Heating Value (HHV)	$\mathbf{1 , 0 2 9}$	Btu/SCF fuel
Turbine Fuel Flow	$\mathbf{1 , 8 1 2}$	blmin
Duct Bumer Fuel Flow	0	Ib/min

Unit Data

Unit Load	277,4	megawats
Stack Exhaust Flow(M19)	$59,870,616$	SCFH

Weather Data

Barometric Pressure	30.22	$\mathrm{in} . \mathrm{Hg}$
Relative Humnidity	43	$\%$
Ambient Temperature	82	${ }^{\circ} \mathrm{F}$
Specific Humidily	0.009913	$\mathrm{lbH}_{2} \mathrm{O} / \mathrm{lb}$ air

Base Load, Run - 4
Date/Time
(mm/dd/yy hh:mm:ss)
Elapsed Time
(seconds) $03 / 19 / 1113: 17: 10$
$03 / 19 / 1113: 17: 40$ 03/19/11 13:17:40 $03 / 19 / 1113: 18: 10$
$03 / 19 / 1113: 18: 40$ $03 / 19 / 1113: 19: 10$
$03 / 19 / 1113: 19: 40$ $03 / 19 / 1113: 19: 40$
$03 / 19 / 1113: 20: 10$ 03/19/11 13:20:40 03/19/11 13:21:10 $03 / 19 / 1113: 21: 40$
$03 / 19 / 1113: 22: 10$ 03/19/11 13:22:40 03/19/11 13:23:10 03/19/11 13:23:40 03/19/11 13:24:10 03/19/11 13:24:40 03/19/11 13:25:10 03/19/11 13:26:10 03/19/11 13:26:40 $03 / 19 / 1113: 27: 10$
$03 / 19 / 1113 \cdot 27: 40$ 03/19/11 13:28:10 03/19/11 13:28:40 03/19/11 13:29:10 03/19/11 13:29:40 03/19/11 13:30:10 03/19/11 13:30:40 $03 / 19 / 1113: 31: 10$
$03 / 19 / 1113: 31: 40$ 03/19/11 13:32:10 03/19/11 13:32:40 03/19/11 13:33:10 $03 / 19 / 1113: 33: 40$ 03/19/11 13:34:10 03/19/11 13:34:40 03/19/11 13:35:10 03/19/11 13:35:40 $03 / 19 / 1113: 36: 10$ 03/19/11 13:36:40 03/19/11 13:37:10 03/19/11 13:37:40 (seconds) 22800 22800 22830
$\mathrm{O}_{2}$
$(\%)$
NOX (ppmvd)

(ppmvd)	(ppmvd)
1.76	0.44
1.69	0.51


2890	13.38	1.71	0.44
	13.35	1.73	0.42

22920
22950
22980

# Florida Power and Light 

March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center

Unit Data

Unit Load	277.7	megawatts
Stack Exhaust Fbw(M19)	$50.443,765$	SCFH


Base Load, Run - 5				
Date/Time	Elapsed Time	$\mathrm{O}_{2}$	NOX	CO
(mm/dd/yy hh:mm:ss)	(5econds)	(\%)	(ppmvd)	(ppmvd)
03/19/11 13:50:10	24780	13.43	1.84	0.51
03/19/11 13:50:40	24810	13.37	1.82	0.49
03/19/11 13:51:10	24840	13.32	1.88	0.38
03/19/11 13:51:40	24870	13.29	1.97	0.35
03/19/11 13:52:10	24900	13.33	2.05	0.30
03/19/11 13:52:40	24930	13.32	2.01	0.46
03/19/11 13:53:10	24960	13.27	1.96	0.45
03/19/11 13:53:40	24990	13.31	1.96	0.40
03/19/11 13:54:10	25020	13.36	1.89	0.39
03/19/11 13:54:40	25050	13.43	1.80	0.53
03/19/11 13:55:10	25080	13.44	1.73	0.61
03/19/11 13:55:40	25110	13.41	1.78	0.59
03/19/11 13:56:10	25140	13.39	1.86	0.53
03/19/11 13:56:40	25170	13.41	1.94	0.52
03/19/11 13:57:10	25200	13.44	1.96	0.51
03/19/11 13:57:40	25230	13.48	2.00	0.51
03/19/11 13:58:10	25260	13.41	2.04	0.50
03/19/11 13:58:40	25290	13.35	2.11	0.35
03/19/11 13:59:10	25320	13.40	2.20	0.34
03/19/11 13:59:40	25350	13.38	2.17	0.50
03/19/11 14:00:10	25380	13.32	2.11	0.44
03/19/11 14:00:40	25410	13.35	2.15	0.37
03/19/11 14:01:10	25440	13.44	2.10	0.40
03/19/11 14:01:40	25470	13.39	1.95	0.60
03/19/11 14:02:10	25500	13.34	1.94	0.43
03/19/11 14:02:40	25530	13.35	1.97	0.31
03/19/11 14:03:10	25560	13.37	1.97	0.40
03/19/11 14:03:40	25590	13.40	1.96	0.44
03/19/11 14:04:10	25620	13.37	1.90	0.46
03/19/11 14:04:40	25650	13.37	1.94	0.35
03/19/11 14:05:10	25680	13.39	1.99	0.34
03/19/11 14:05:40	25710	13.35	1.97	0.43
03/19/11 14:06:10	25740	13.36	1.97	0.40
03/19/11 14:06:40	25770	13.41	1.98	0.45
03/19/11 14:07:10	25800	13.39	1.94	0.47
03/19/11 14:07:40	25830	13.41	1.97	0.41
03/19/11 14:08:10	25860	13.39	1.96	0.46
03/19/11 14:08:40	25890	13.32	1.94	0.40
03/19/11 14:09:10	25920	13.30	2.02	0.32
03/19/11 14:09:40	25950	13.30	2.06	0.35
03/19/11 14:10:10	25980	13.36	2.06	0.40
03/19/11 14:10:40	26010	13.36	1.93	0.41
RAW AVERAGE		13.37	1.97	0.43
		$\mathrm{O}_{1}$	NOx	CO


Serial Number:	INST-N2-0001   (\%)	INST-N2-0001 (ppmvd)	INST-CO-0015 (ppmvd)
Initial Zero	0.28	0.06	-0.13
Final Zero	0.28	0.06	-0.20
Avg. Zero	0.28	0.06	-0.17
¢ Initial UpScale	12.39	4.82	4.97
Final UpScale	12.37	4.81	4.94
Avg. UpScale	12.38	4.82	4.96
Upscale Cal Gas	12.10	4.93	4.92
EMISSIONS DATA	$\mathrm{O}_{2}$	NOX	CO
Corrected Raw Average (ppm/\% dry basis)	13.09	1.98	0.58
Concentration (ppm@ 15\% $\mathrm{O}_{2}$ )	N/A	1.50	0.44
Emission Rate ( $\mathrm{lb} / \mathrm{hr}$ )	N/A	14.07	2.49
Emission Rate (Ib/MMBtu)	N/A	0.006	0.001

Florida Power and Light March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuel Fd ractor	$\mathbf{8 , 7 1 0}$	SCF exdVMMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,806	Ib/min
Duct Burrier Fuel Flow	0	Ib/min

Weather Data

Barometric Pressure	$\mathbf{3 0 . 2 2}$	in. Hg
Relative Humidity	42	$\%$
Ambient Temperature	82	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009679	$\mathrm{bb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	277.0	megawatts
Stack Exhaust Flow(M19)	$59,416,932$	SCFH


Base Load, Run-6				
Date/Time	Elapsed Time	$\mathrm{O}_{2}$	NOX	co
(mm/dd/yy hh:mm:ss)	(seconds)	(\%)	(ppmud)	(ppmvd)
03/19/11 14:21:10	26640	13.37	1.69	0.44
03/19/11 14:21:40	26670	13.36	1.69	0.40
03/19/11 14:22:10	26700	13.35	1.74	0.37
03/19/11 14:22:40	26730	13.38	1.80	0.39
03/19/11 14:23:10	26760	13.34	1.84	0.44
03/19/11 14:23:40	26790	13.36	1.86	0.37
03/19/11 14:24:10	26820	13.44	1.89	0.40
03/19/11 14:24:40	26850	13.33	1.77	0.46
03/19/11 14:25:10	26880	13.34	1.82	0.36
03/19/11 14:25:40	26910	13.36	1.82	0.43
03/19/11 14:26:10	26940	13.34	1.82	0.42
03/19/11 14:26:40	26970	13.32	1.85	0.42
03/19/11 14:27:10	27000	13.34	1.90	0.37
03/19/11 14:27:40	27030	13.32	1.90	0.45
03/19/11 14:28:10	27060	13.33	1.91	0.37
03/19/11 14:28:40	27090	13.35	1.91	0.33
03/19/11 14:29:10	27120	13.34	1.86	0.37
03/19/11 14:29:40	27150	13.33	1.83	0.47
03/19/11 14:30:10	27180	13.34	1.84	0.41
03/19/11 14:30:40	27210	13.37	1.87	0.43
03/19/11 14:31:10	27240	13.39	1.85	0.56
03/19/11 14:31:40	27270	13.46	1.89	0.56
03/19/11 14:32:10	27300	13.45	1.89	0.60
03/19/11 14:32:40	27330	13.41	2.01	0.53
03/19/11 14:33:10	27360	13.38	2.10	0.47
03/19/11 14:33:40	27390	13.36	2.13	0.39
03/19/11 14:34:10	27420	13.38	2.16	0.35
03/19/11 14:34:40	27450	13.35	2.17	0.37
03/19/11 14:35:10	27480	13.32	2.17	0.42
03/19/11 14:35:40	27510	13.32	2.18	0.25
03/19/11 14:36:10	27540	13.34	2.09	0.32
03/19/11 14:36:40	27570	13.28	1.94	0.43
03/19/11 14:37:10	27600	13.30	1.89	0.35
03/19/11 14:37:40	27630	13.33	1.83	0.35
03/19/11 14:38:10	27660	13.35	1.76	0.37
03/19/11 14:38:40	27690	13.30	1.72	0.34
03/19/11 14:39:10	27720	13.33	1.75	0.41
03/19/11 14:39:40	27750	13.30	1.76	0.35
03/19/11 14:40:10	27780	13.25	1.77	0.36
03/19/11 14:40:40	27810	13.35	1.84	0.41
03/19/11 14:41:10	27840	13.46	1.78	0.61
03/19/11 14:41:40	27870	13.40	1.75	0.78
RAW AVERAGE		13.35	1.88	0.42
		$\mathrm{O}_{2}$	NOx	CO



# Fiorida Power and Light 

March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exc/MMBtu
Fuel Heating Value (HHV)	1,029	Btu/SCF fuel
Turbine Fuel Flow	1,806	Ib/min
Duct Burner Fuel Flow	0	Ib/min

Weather Data

Barometric Pressure	30.20	$\mathrm{in} . \mathrm{Hg}$
Relative Humidity	43	$\%$
Ambient Temperature	83	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.010251	$\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{b}$ air

Unit Data

Unit Load	277.0	megawatts
Stack Exhaust Flow (M19)	$59,337,548$	SCFH


Base Load, Run-7				
Date/Time	Elapsed Time	$\mathbf{O}_{\mathbf{2}}$   (mm/dd/yy hh:mm:ss)   (seconds)	(\%)	NOx   (ppmvd)
03/19/11 14:51:10	28440	13.28	2.14	CO
(ppmvd)				


哭		$\mathrm{O}_{2}$	NOX	C
	Serial Number:	$\begin{aligned} & \text { WST-N2-0001 } \\ & (\%) \end{aligned}$	INST-N2-0001 (ppmvd)	INST-CO-0015 (ppmvd)
	Initial Zero	0.25	0.06	-0.20
	Final Zero	0.26	0.06	-0.14
	Avg. Zero	0.26	0.06	-0.17
	Initial UpScale	12.36	4.82	4.93
	Final UpScale	12.34	4.82	5.00
	Avg. UpScale	12.35	4.82	4.97
Upscale Cal Gas		12.10	4.93	4.92
EMISSIONS DATA		$\mathrm{O}_{2}$	NOX	CO
Corrected Raw Average (ppm/\% dry basis)		13.08	2.02	0.59
Concentration (ppm@ 15\%O2)		N/A	1.52	0.44
Emission Rate (Ib/hr)		N/A	14.33	2.54
Emission Rate (Ib/MMBtu)		N/A	0.006	0.001

Florida Power and Light
March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exv/MMBtol
Fuel Heating Value (HHV)	1,029	Bu/SCF fuel
Turbine Fuel Flow	1,800	b/min
Duct Burner Fuel Flow	0	Ib/min

Weather Data

Barometric Pressure	30.18	in. Hg
Relative Humidity	43	$\%$
Ambient Temperature	82	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009926	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	276.1	megawatts
Stack Exhaust Flow(M19)	$59,315,799$	SCFH

Base Load, Run - 8
Date/Time (mm/dd/yy hh:mm:ss) $03 / 19 / 1115: 21: 10$
$03 / 19 / 1115: 21: 40$ 03/19/11 15:22:10 $03 / 19 / 11$ 15:22:40
$03 / 19 / 1115: 23: 10$ $03 / 19 / 1115: 23: 10$
$03 / 19 / 1115: 23: 40$ $03 / 19 / 1115: 24: 10$
$03 / 19 / 1115: 24: 40$ $03 / 19 / 1115: 24: 40$
$03 / 19 / 1115: 25: 10$ $03 / 19 / 1115: 25: 40$
$03 / 19 / 1115: 26: 10$ $03 / 19 / 11$ 15:26:40
$03 / 19 / 11$ 15:27:10 $03 / 19 / 1115: 27: 40$
$03 / 19 / 1115: 28: 10$ $03 / 19 / 1115: 28: 10$
$03 / 19 / 1115: 28: 40$ $03 / 19 / 1115: 29: 10$
$03 / 19 / 1115: 29: 40$ $03 / 19 / 111115: 30: 40$
$03 / 19 / 1115: 30: 40$ $03 / 19 / 1115: 31: 10$
$03 / 19 / 1115 \cdot 31 \cdot 40$ $03 / 19 / 1115: 31: 40$
$03 / 19 / 1115: 32: 10$ $03 / 19 / 1115: 32: 10$
$03 / 19 / 11$ 15:32:40
$03 / 19 / 1115: 33: 10$ $03 / 19 / 1115: 33: 40$
$03 / 19 / 1115: 34: 10$ $03 / 19 / 1115: 34: 10$
$03 / 19 / 1115: 34: 40$ $03 / 19 / 1115: 35: 10$
$03 / 19 / 1115: 35: 40$ $03 / 19 / 1115: 35: 40$
$03 / 19 / 1115: 36: 10$
$03 / 19 / 1115: 36: 40$ $03 / 19 / 1115: 36: 40$
$03 / 19 / 1115: 37: 10$ $03 / 19 / 11$ 15:37:40
$03 / 19 / 1115: 38: 10$ 03/19/11 15:38:40 $03 / 19 / 1115: 39: 10$
$03 / 19 / 1115: 39: 40$ 03/19/11 15:40:10 $03 / 19 / 1115: 40: 40$
$03 / 19 / 1115: 41: 10$
$03 / 19 / 1115: 41: 40$ 03/19/11 15:41:40

Elapsed Time $\quad \mathrm{O}_{2}$

Elapsed Time	$\mathrm{O}_{\mathbf{2}}$
(seconds)	$(\%)$
30240	13.34
30270	13.33


NOx   (ppmvd)	CO   (ppmvd)
2.09	0.43
2.05	0.41

(ppmvd)

30270	13.33
30300	13.34


30330	13.34
30360	13.28
30390	13.31

0.43
0.41
0.41
0.43
0.46
0.46
0.41
0.37
30390
30420
30450
30450
30480
30510

3.28	2.18	0.37
3.29	2.16	0.40
3.30	2.15	0.42
	2.07	0.46


30510	13.30
30540	13.52



# Florida Power and Light 

March 19, 2011
Mitsubishi, 501G, Unit 3B
West County Energy Center
Fuel Data

Fuel Fd factor	8,710	SCF exd/MMBtu
Fuel Heating Value (HHV)	1,029	Bu/SCF fuel
Turbine Fuel Flow	1,806	Ib/min
Duct Burner Fuel Fow	0	Ib/min

Weather Data

Barometric Pressure	30.17	in. Hg
Relative Humidity	43	$\%$
Ambient Temperature	80	${ }^{\circ} \mathrm{F}$
Specific Humidity	0.009294	$\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}$ air

Unit Data

Unit Load	275.9	megawatts
Stack Exhaust Flow(M19)	$59,385,570$	SCFH


Base Load, Run-9				
Date/Time	Elapsed Time	$\mathrm{O}_{2}$	NOx	CO
(mm/dd/yy hh:mm;ss)	(seconds)	(\%)	(ppmvd)	(ppmvd)
03/19/11 15:51:10	32040	13.25	1.83	0.38
03/19/11 15:51:40	32070	13.24	2.03	0.31
03/19/11 15:52:10	32100	13.40	2.01	0.37
03/19/11 15:52:40	32130	13.38	1.86	0.75
03/19/11 15:53:10	32160	13.32	1.83	0.60
03/19/11 15:53:40	32190	13.34	1.89	0.52
03/19/11 15:54:10	32220	13.36	1.89	0.53
03/19/11 15:54:40	32250	13.36	1.87	0.59
03/19/11 15:55:10	32280	13.32	1.82	0.49
03/19/11 15:55:40	32310	13.32	1.83	0.44
03/19/11 15:56:10	32340	13.31	1.83	0.45
03/19/11 15:56:40	32370	13.32	1.87	0.45
03/19/11 15:57:10	32400	13.34	1.89	0.43
03/19/11 15:57:40	32430	13.38	1.82	0.55
03/19/11 15:58:10	32460	13.36	1.75	0.55
03/19/11 15:58:40	32490	13.37	1.79	0.50
03/19/11 15:59:10	32520	13.28	1.84	0.47
03/19/11 15:59:40	32550	13.34	1.95	0.38
03/19/11 16:00:10	32580	13.32	1.97	0.40
03/19/11 16:00:40	32610	13.25	2.00	0.45
03/19/11 16:01:10	32640	13.28	2.10	0.38
03/19/11 16:01:40	32670	13.36	2.07	0.44
03/19/11 16:02:10	32700	13.33	1.94	0.54
03/19/11 16:02:40	32730	13.34	1.91	0.52
03/19/11 16:03:10	32760	13.29	1.92	0.47
03/19/11 16:03:40	32790	13.26	1.96	0.36
03/19/11 16:04:10	32820	13.30	2.06	0.40
03/19/11 16:04:40	32850	13.32	2.04	0.47
03/19/11 16:05:10	32880	13.30	2.02	0.52
03/19/11 16:05:40	32910	13.36	2.03	0.50
03/19/11 16:06:10	32940	13.30	1.96	0.57
03/19/11 16:06:40	32970	13.26	2.00	0.55
03/19/11 16:07:10	33000	13.26	2.07	0.50
03/19/11 16:07:40	33030	13.28	2.10	0.46
03/19/11 16:08:10	33060	13.31	2.09	0.43
03/19/11 16:08:40	33090	13.35	2.05	0.60
03/19/11 16:09:10	33120	13.39	2.01	0.62
03/19/11 16:09:40	33150	13.36	2.01	0.66
03/19/11 16:10:10	33180	13.31	2.08	0.50
03/19/11 16:10:40	33210	13.29	2.07	0.39
03/19/11 16:11:10	33240	13.29	2.08	0.48
03/19/11 16:11:40	33270	13.31	2.10	0.36
RAW AVERAGE		13.32	1.96	0.48
		$\mathrm{O}_{2}$	NOx	CO




## APPENDIX C

## CALIBRATION GAS CERTIFICATIONS

## RATA CLASS

## Dual-Analyzed Calibration Standard

## CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory

P.O. No.: ALAS-55510

Air liquide america specialty gases lld Project No.: 05-86523-002
1290 COMBERMERE STREET
TROY, MI 48083

## Customer

AIR LIQUIDE AMERICA LP.
AIR hygiene
1319 NORTH PEORIA AVE
TULSA OK 74106

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September 1997.
Cylinder Number: ALM019345 Certification Date: 05Apr2010 Exp. Date: 04Apr2013

Cylinder Pressure***: 2000 PSIG

COMPONENT
CARBON DIOXIDE
OXYGEN
NITROGEN

## $\frac{\text { CERTIFIED CONCENTRATION (Moles) }}{8.91 \%}$ <br> 12.1 \%

BALANCE

ANALYTICAL
ACCURACY** TRACEABILITY $+/-1 \% \quad$ Direct NIST and VSL $+/-1 \% \quad$ Direct NIST and VSL
** Do not use when cylinder pressure is below 150 pig.

* Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1.997.


## REFERENCE STANDARD



ANALYZER READINGS
First Triad Analysis
( $Z=$ Zero Gas $R=$ Reference Gas $T=$ Test Gas $\quad r=$ Correlation Coefficient) Second Triad Analysis Calibration Curve
CARBON DIOXIDE

| Date: 09Apr2010 | Response | Unlt:MV |
| :--- | :--- | :--- | :--- |
| $Z 1=0.00000$ | $\mathrm{R} 1=100.0000$ | $\mathrm{~T} 1=56.20000$ |
| $\mathrm{R2}=100.0000$ | $\mathrm{Z} 2=0.00000$ | $\mathrm{TZ}=56.16000$ |
| $\mathrm{Z3}=0.00000$ | $\mathrm{~T} 3=66.24000$ | $\mathrm{R3}=100.1600$ |
| Avg. Concentration: | 8.916 | $\%$ |



Concentration $=A+B x+C \times 2+D \times 3+E \times 4$	
$r=0.999989193$	
Constants:	$A=-0.00227705$
$B=0.142642211$	$C=-0.0004667$
$D=0.0000133988$	$E=0$


$\square$

Concentration $=A+B X+C \times 2+D \times 3+E \times 4$	
$B=0.9999996862$	
Constants:	$A=-0.0380151$
$B=1.001181065$	$C=0$
$D=0$	$E=0$

APPROVED BY:


## RATA CLASS

Dual-Analyzed Calibration Standard

CERTIFICATE OF ACCURACY: EPA Protocol Gas Assay Laboratory

## Customer

AIR LIQUIDE AMERICA L.P.
AIR HYGIENE
1319 NORTH PEORIA AVE
TULSA OK 74106

## ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.

Cylinder Number:	ALM004185 Certification Date: 21 Jun2010	Exp. Date: $20 J u n 2013$
Cylinder Pressure***:	2000 PSIG	

Cylinder Pressure * * : 2000 PSIG
ANALYTICAL

COMIPONENT	CERTIFIED CON	CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
CARBON DIOXIDE	19.1	\%	+/-1\%	Direct NIST and VSL
OXYGEN	21.1	\%	$+/-1 \%$	Direct NIST and VSL
NITROGEN		BALANCE		

*** Do not use when cylinder pressure is below 150 psig
** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

## REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATION DATE	CYLINDER NUMBER	CONCENTRATION	COMPONENT
NTRM 2300	01Nov2010	1 D002807	23.04 \%	CARBON DIOXIDE
NTRM 2350	01 Dec2011	K016398	23.20 \%	OXYGEN

INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
PIR/2000/609015

DATE LAST CALIBRATED
07Jun2010
11Jun2010

ANALYTICAL PRINCIPLE NDIR

PARAMAGNETIC

## ANALYZER READINGS

$$
\begin{array}{ccc}
\mathrm{Z}=\text { Zero Gas } \quad \mathrm{R}=\text { Reference Gas } \mathrm{T}=\text { Test Gas } & \mathrm{r}=\text { Correlation Coefficient) } \\
& \text { Second Triad Analysis } & \text { Calibration Curve }
\end{array}
$$

## CARBON DIOXIDE

Date: 21 Jun2010	Response Unlt:MV	
$Z 1=0.00000$	$\mathrm{R} 1=100.0000$	$\mathrm{~T} 1=90.42000$
$\mathrm{R} 2=100.0000$	$\mathrm{Z2}=0.00000$	$\mathrm{~T} 2=90.50000$
$\mathrm{Z3}=0.00000$	$\mathrm{T3}=90.60000$	$\mathrm{R} 3=100.0000$
Avg. Concentration:	19.07	$\%$



| Concentration $=A+B x+C \times 2+0 \times 3+E \times 4$  <br> $I=0.999986$  <br> Constants: $A=-0.00586731$ <br> $B=0.131065652$ $C=-0.0001375$ <br> $D=1.12705 E-06$ $E=0$ |
| :--- | :--- |

## OXYGEN



Concontration $=A+B \times+C \times 2+D \times 3+E \times 4$	
$P=0.999999$	
Constants:	$A=-0.00484606$
$B=0.999830474$	$C=0$
$D=0$	$E=0$

## RATA CLASS

## Dual-Analyzed Calibration Standard

## CERTIFICATE OF ACCURACY: EPA Protocol Gas

## Assay Laboratory

P.O. No.: 11010210

AIR LIQUIDE AMERICA SPECIALTY GASES LLC Document \#: 40522095-002
1290 COMBERMERE STREET
TROY, MI 48083

## Customer

AIR HYGIENE INTERNATIONAL
MIKE SCOTT
5634 S 122ND E AVE
TULSA OK 74146
US

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards;
Procedure G-1; September، 1997.
Cylinder Number: Certification Date: 15Feb2011 Exp. Date: 16 Aug2011

Cylinder Pressure***: 1950 PSIG

COMPONENT	CERTIFIED ©ONCENTRATION (Moles)		ACCURACY**	TRACEABILITY
NITRIC OXIDE	4.89	PPM	+1-1\%	Direct NIST and VSL
CARBON MONOXIDE	4.92	PPM	+/-1\%	Direct NIST and VSL
NITROGEN - OXYGEN FREE		BALANCE		
TOTAL OXIDES OF NITROGEN	4.93	PPM		Reference Value Only

REFERENCE STANDARD


## ANALYZER READINGS <br> (Z=Zero Gas $\mathrm{R}=$ Reference Gas $\mathrm{T}=$ Test Gas $\mathrm{r}=$ Correlation Coefficient)

First Trlad Analysis
Second Triad Analysis
Calibration Curve

NITRIC OXIDE		
Date: 08Feb2011	Response Unit: MV	
$\mathrm{Z} 1=0.00000 \quad \mathrm{R}$	$\mathrm{R} 1=19.83000$	$\mathrm{T} 1=4.85900$
$\mathrm{R} 2=19.84000 \quad \mathrm{Z}$	$\mathrm{Z2}=0.00000$	$\mathrm{T} 2=4.86000$
$\mathrm{z} 3=0.00000 \quad \mathrm{~T}$	T3 $=4.85700$	$\mathrm{R} 3=19.84000$
Avg. Concentration:	: 4.889	PPM
CARBON MONOXIDE		
Date: 08Feb2011	Response Unit: MV	
$\mathrm{Z} 1=0.00000$	$\mathrm{R1}=\mathbf{2 5 . 4 0 0 0 0}$	$\mathrm{T} 1=4.60000$
$\mathrm{R} 2=25.40000 \quad 2$	Z2 $=0.00000$	$\mathrm{T} 2=4.60000$
$\mathrm{Z} 3=0.00000 \mathrm{~T}$	$\mathrm{T} 3=4.60000$	$83=25.40000$
Avg. Concentration:	: 4.898	PPM


Date: 15Feb2011	Response Unit: MV	
$\mathrm{Z} 1=0.00000$	$\mathrm{R} 1=19.72000$	$\mathrm{T} 1=4.83700$
$\mathrm{R} 2=19.73000$	Z2 $=0.00000$	$\mathrm{T} 2=4.83400$
$\mathrm{Z} 3=0.00000$	$\mathrm{T} 3=4.83100$	$R 3=19.73000$
Avg. Concentration	ก: 4.891	PPM
Date: 15Fab2011	Response	Unit: MV
$\mathrm{Z} .1=0.00000$	$\mathrm{R} 1=25.21000$	$\mathrm{T} 1=4.61000$
$\mathrm{R} 2=25.21000$	$\mathrm{z2}=0.00000$	$\mathrm{T} 2=4.61000$
$\mathrm{Z} 3=0.00000$	$\mathrm{T} 3=4.61000$	$\mathrm{R} 3=25.21000$
Avg. Concentration	n: 4.944	PPM


$\begin{aligned} & \text { Concentration }=A+8 x+C \times 2+D \times 3+E x 4 \\ & r=0.9999 \end{aligned}$	
Constants:	$A=0.036017895$
$\mathrm{B}=0.999152579$	$C=0$
$\mathrm{D}=0$	$E=0$
Concentration $=\mathrm{A}+\mathrm{Bx}+\mathrm{Cx} 2+\mathrm{D} \times 3+\mathrm{Ex} 4$$\mathrm{r}=0.9999$	
Constants:	$A=0.02020944$
$B=1.096985091$	$C=-0.0077427$
$\mathrm{D}=0.000148781$	$E=0$

Speclal Notes: AH070
APPROVED BY:


RATA CLASS
Dual-Analyzed Calibration Standard

## CERTIFICATE OF ACCURACY: Interference Free <br> Multi-Component EPA Protocol Gas

Assay Laboratory		Customer
	P.O. No.: ALASG-55510	AIR LIOUIDE AMERICA L.P.
AIR LIQUIDE AMERICA SPECIALTY GASES LLC	Project No.:	
1290 COMBERMERE STREET		AIR HYGIENE
TROY, MI 48083		1319 NORTH PEORIA AVE TULSA OK 74106

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards: Procedure G-1; September, 1997.
Cylinder Number: AAL13310 2015 PSIG Certification Date: 22 Apr2010 Exp. Date: 21 Apr2012

Cylinder Pressure***: 2015 PSIG

** Do not use when cylinder pressure is below 150 psig.
.andyalical-accuracy-is-based-on-the-requirements-of-EPA-Protocol-Procedure-G. $1_{i}$--September 1997.

REFERENCE STANDARD

TYPE/SRM NO.	EXPIRATIO
	020ct2010
NTRM 2629	01 Jun 2010
INSTRUMENTATION	
INSTRUMENT/MODEL/SERIAL\#	
FTIR//0928621	

CYLINDER NUMBER
KAL.003166
KALO04325
CONCENTRATION
26.21 PPM
20.36 PPM

COMPONENT
CARBON MONOXIDE NITRIC OXIDE

ECO PHYSICS/CLD 84M/84M0359
DATE LAST CALIBRATED
02Apr2010
19 Apr2010

## ANALYZER READINGS

$$
\text { (Z = Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation Coefficient) }
$$

## First Triad Analysis

Second Triad Analysis
Cailbratlon Curve

## CARBON MONOXIDE

Date: 14Apr2010 Response Unit:PPM
$Z 1=-0.05307 \quad R 1=\mathbf{2 5 . 3 0 6 6 3} \quad \mathrm{T} 1=12.10338$
$R 2=25.31267 \quad Z 2=-0.05306 \quad T 2=12.12388$
$Z 3=-0.03830 \quad T 3=12.14423 \quad \mathrm{R} 3=25.34334$
Avg. Concentration: 12.09 PPM
NITRIC. OXIDE
Date: 14Apr2010 Response Unit:MV
$Z 1=0.00000 \quad R 1=20.33000 \quad T 1=12.05000$ $R 2=20.35000 \quad \mathrm{Z2}=0.00000 \quad \mathrm{~T} 2=12.05000$ $Z 3=0.00000 \quad \mathrm{~T} 3=12.05000 \quad \mathrm{R} 3=20.34000$ Avg. Concentration: 12.11 PPM

Date: 21Apr2010 Response Unit: PPM $\mathrm{Z} 1=-0.06291 \quad \mathrm{R} 1=25.26965 \quad \mathrm{~T} 1=12.17129$ $\mathrm{R} 2=25.30621 \quad \mathrm{Z2}=-0.02751 \quad \mathrm{~T} 2=12.19590$ $Z 3=0.02191 \quad \mathrm{~T} 3=12.19939 \quad \mathrm{R} 3=25.34779$ Avg. Concentration: 12.15 PPM

Date: 21Apr2010 Response Unit: MV $\mathrm{Z1}=0.00000 \quad \mathrm{R} 1=20.29000 \quad \mathrm{~T} 1=11.96000$ $\mathrm{R} 2=20.28000 \quad \mathrm{Z} 2=0.00000 \quad \mathrm{~T} 2=11.96000$ $\mathrm{Z3}=0.00000 \quad \mathrm{~T} 3=11.96000 \quad \mathrm{R} 3=20.29000$ Avg. Concentration: 12.04 PPM

Concentration $=A+B x+C \times 2+D \times 3+E \times 4$ $\mathrm{r}=9.99986 \mathrm{E}$ -
Constants:
$\mathrm{B}=8.81389 \mathrm{E}-1 \quad \mathrm{C}=5.84000 \mathrm{E}-4$ $D=1.00000 E-6 \quad E=0.00000 E+0$

Concentration $=\mathrm{A}+\mathrm{Bx}+\mathrm{C} \times 2+\mathrm{D} \times 3+\mathrm{Ex} 4$ $r=0.999989$
Constants: $\quad A=0.052499$
$\mathrm{B}=0.998591 \quad \mathrm{C}=0.000000$
$D=0.000000 \quad E=0.000000$

Special Notes: AH072 Lot Number: 0586916005
APPROVED BY:


# COMPLIANCE CLASS <br> Dual-Analyzed Calibration Standard 

Phone: 248-589-2950

## CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory		Customer
AIR LIQUIDE AMERICA SPECIALTY GASES LLC	P.O. No.: ALAS-59094	Project No.: 05-91737-001
1290 COMBERMERE STREET		AIR HYGIENE
TROY. MI 48083		1319 NORTH PEORIA AVE L.P.

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997. Cylinder Number: ALM041691 Certification Date: 28Sep2010 Exp. Date: $29 \mathrm{Mar2011}$ Cylinder Pressure***: 1950 PSIG

** Do not use when cylinder pressure is below 150 psig.

* Analytical accuracy is based on the requirements of EPA Protocol procedures , September 1997.

REFERENCE STANDARD
TYPE/SRM NO. EXPIRATION DATE

## CYLINDER NUMBER

 AAL069467NITROGEN DIOXIDE

DATE LAST CALIBRATED
17Sep2010

ANALYTICAL PRINCIPLE UV

## APPENDIX D

QUALITY ASSURANCE AND QUALITY CONTROL DATA

## QA/QC PROGRAM

Air Hygiene ensures the quality an validity of its emission measurement and reporting procedures through a rigorous quality assurance (QA) program. The program is developed and administered by an internal QA team and encompasses five major areas:

1. QA reviews of reports, laboratory work, and field testing
2. Equipment calibration and maintenance
3. Chain-of-custody
4. Training
5. Knowledge of current test methods

Each of these areas is discussed individually below.

## QA Reviews

Air Hygiene's review procedure includes review of each source test report, along with laboratory and fieldwork, by the QA Team. The most important review is the one that takes place before a test program begins. The QA Team works closely with technical division personnel to prepare and review test protocols. Test protocol review includes selection of appropriate test procedures, evaluation of interferences or other restrictions that might preclude use of standard test procedures, and evaluation and/or development of alternate procedures.

## Equipment Calibration and Maintenance

The equipment used to c onduct the em ission measurements is $m$ aintained according to the manufacturer's instructions to e nsure proper operation. In addition to the maintenance program, calibrations are carried out on each measurement device according to the schedule outlined by the Environmental Protection Agency. Quality control checks are also conducted in the field for each test program.

## Chain-of-Custody

Air Hygiene maintains full chain-of-custody documentation on all samples and data sheets. In ad dition to normal documentation of changes between field sample custodians, laboratory personnel, and field test personnel, Air Hygiene documents every individual who handles any test component in the field (e.g., probe wash, impinger loading and recovery, filter loading and rec overy, etc.). Samples are stored in a locked area to which only Air Hygiene personnel have access. Field data sheets are secured at Air Hygiene's offices upon return from the field.

## Training

Personnel's training is essential to ensure quality testing. Air Hygiene has formal and informal training programs, which include:

1. Attendance at EPA-sponsored training courses
2. Enrollment in EPA correspondence courses

3 A requirement for all technicians to read and understand Air Hygiene's QA manual
4. In-house training and QA meetings on a regular basis
5. Maintenance of training records

## Knowledge of Current Test Methods

With the constant updating of standard test methods and the wide variety of emerging test procedures, it is essential that any qualified source tester keep abreast of ne w developments. Air Hygiene subscribes to services, which provide updates on EPA re ference methods, rules, and regulations. Additionally, source test personnel regularly attend and present papers at testing and emission-related seminars and confere nces. Air Hygie ne personnel maintain membership in the Air and Waste Management Association and the American Industrial Hygiene Association.

[^14]
## COMBUSTION TESTING QUALITY ASSURANCE ACTIVITIES

A number of quality assurance activities were undertaken before, during, and after this testing project. Th is section of the report combined with the documentation in Appendix C describes each of those activities.

Each instrument's response was checked and adjusted in the field prior to the collection of data via multi-point calibration. The instrument's linearity was checked by adjusting its zero and span responses to zero nitrogen and an upscale calibration gas in the range of the expected concentrations. The instrument response was then challenged with other calibration gases of known concentration and accepted as being linear if the response of the other calibration gases agreed within plus or minus two percent of the range of predicted values. $\mathrm{NO}_{2}$ to NO conversion was checked via direct connect with an EPA Protocol certified concentration of $\mathrm{NO}_{2}$ in a balance of nitrogen. Conversion was verified to be between 90 and 110 percent.

After each test run, the analyzers were checked for zero and span drift. This allowed each test run to be bracketed by calibrations and documents the precision of the data just co llected. The criterion for acceptable data is that the instrument drift is no more than three percent of the full-scale response. The quality assurance worksheets in the following pages summarize all multipoint calibration checks and zero to spa $n$ checks performed during the tests. These worksheets (as prepared from the data records of Appendix A) show that no drifts in excess of three percent occurred in the zero to span checks following each test run.

The sampling systems were leak checked by demonstrating that a vacuum greater than 10 in Hg could be held for at least one minute with a decline of less than one inch of Hg. A leak test was c onducted after the sample system was set up and before the system was dismantled. This test was conducted to ensure that ambient air had not diluted the sample. Any leakage detected prior to the tests would be repaired and another leak check conducted before testing commenced. No leaks were found during the pre or post-test leak checks.

The absence of leaks in the sampling system was also verified by a sampling system bias check. The sampling system's integrity was tested by comparing the responses of the analyzers to the calibration gases introduced via two paths. The first path was directly into the analyzer and the second path via the sample system at the sample probe. Any difference in the instrument responses by these two methods was attributed to sampling system bias or leakage. The criterion for acceptance is agreement within five percent of the span of the analyzer.

The control gases used to calibrate the instruments were analyzed and certified by the compressed gas vendors to plus or minus one percent accuracy for all gases. EPA Protocol No. 1 was used, where applicable to assign the concentration values traceable to the National Institute of Stan dards and Technology (NIST), Stand ard Reference Materials (SRM's). The gas calibration sheets as prepared by the vendor are contained in Appendix C.

Air Hygiene collected and reported the enclosed test data in accordance with the procedures and quality assurance activities described in this test report. Air Hygiene makes no warranty as to the suitability of the test methods. Air Hygiene also assumes no liability relating to the interpretation and use of the test data.

## INSTRUMENTAL ANALYSIS QUALITY ASSURANCE DATA

Date: March 19, 2011
Company: Florida Power and Light
Location: Loxahatchee, Florida
Techs: JRF
Sample System Leak Check

Date	Sample System	Leak Rate   $(1 / \mathrm{min})$
March 19, 2011	1	0

cis-10-westcounty.fl-rata\#1-U3B-rpt

Calibration Date: March 19, 2011
Client: Florida Power and Light
NOx Span (ppm) $=12.10$

THERMO 42i-HL (NOx Analyzer)				
Certified   Concentration   (ppm)	Instrument   Response   (ppm)	Calibration   Error   $(\%)$	Absolute   Conc.   (ppm)	Pass or   Fail $( \pm 2 \%$,   $00.5 p p m)$
0.00	0.03	0.25	0.03	YES $(\%)$
4.93	5.00	0.58	0.07	YES $(\%)$
12.10	12.22	0.99	0.12	YES $(\%)$
Linearity $=0.993$				


CO Span (ppm) = 12.10

THERMO 48i (CO Analyzer)							
Certified   Concentration   (ppm)	Instrument   Response   (ppm)	Calibration   Error   (\%)	Absolute   Conc.   (ppm)	Pass or   Fail (土2\%,   S0.5ppm)			
0.00	0.08	0.66	0.08	YES $(\%)$			
4.92	5.10	1.49	0.18	YES $(\%)$			
12.10	12.11	0.08	0.01	YES $(\%)$			
Linearity $=1.007$							




## NOx Converter Efficiency

## Date: March 19, 2011

Analyzer: INST-N2-0001

RM 7E, (12-17-09), Sections 7.1.4; 8.2.4.1; 12.7; and 13.5 Introduce $\mathrm{NO}_{2}$ to the analyzer and record the NOx concentration displayed. ... Calculate the converter efficiency using Equation 7E-7. The specification for converter efficiency must be met. ... Air Hygiene also references ALT-0013 for specific $\mathrm{NO}_{2}$ concentration (40-60 ppm) and EPA Traceability Protocol requirements ( $\pm 2 \%$ ).

Audit Gas: $\quad \mathrm{NO}_{2}$ Concentration $\left(\mathrm{C}_{\mathrm{v}}\right)$, ppmvd 48.20
Converter Efficiency Calculations:
Analyzer Reading, NO Channel, ppmvd 1.95
Analyzer Reading, NOx Channel, ppmvd 47.95
Analyzer Reading, $\mathrm{NO}_{2}$ Channel ( $\mathrm{C}_{\text {Dir(NO2) }}$ ), ppmvd 46.00
Converter Efficiency, \% 95.44

RM 7E, (08-15-06), 13.5 NO2 to NO Conversion Efficiency Test (as applicable). The NO2 to NO conversion efficiency, calculated according to Equation 7E-7 or Equation 7E-9, must be greater than or equal to 90 percent.

$$
E f f_{\mathrm{NO} 2}=\left(\frac{C_{D i}}{C_{V}}\right) \times 100 \quad \text { Eq. } 7 \mathrm{E}-7=\frac{46.00 \mathrm{ppmvd}}{48.20 \mathrm{ppmvd}} \times 100=95.44 \%
$$

Date/Time	Elapsed Time	NOx	NO
mm/dd/yy hh:mm:ss	Seconds	ppmvd	ppmvd
$03 / 19 / 1107: 19: 40$	1350	12.73	4.42
$03 / 19 / 1107: 20: 10$	1380	39.46	2.55
$03 / 19 / 1107: 20: 40$	1410	46.43	2.20
$03 / 19 / 1107: 21: 10$	1440	47.34	2.09
$03 / 19 / 1107: 21: 40$	1470	47.72	2.00
$03 / 19 / 1107: 22: 10$	1500	47.95	1.95
$03 / 19 / 1107: 22: 40$	1530	45.46	1.79
$03 / 19 / 1107: 23: 10$	1560	15.84	0.54


DRIFT AND BIAS CHECK			
Strat Test Pre and Post QAVQC Check	02	CO	NOx
Initial Zero	0.01	0.02	0.09
Final Zero	0.04	-0.03	0.07
Avg. Zero	0.03	-0.01	0.08
Initial UpScale	12.15	5.06	4.93
Final UpScale	12.20	5.07	4.93
Avg. UpScale	12.18	5.07	4.93
Sys Resp (Zero)	0.03	0.08	0.03
Sys Resp (Upscale)	12.34	5.10	5.00
Upscale Cal Gas	12.10	4.92	4.93
Initial Zero Bias	-0.09\%	-0.50\%	0.50\%
Final Zero Bias	0.05\%	-0.91\%	0.33\%
Zero Drift	0.14\%	0.41\%	0.17\%
Initial Upscale Bias	-0.90\%	-0.33\%	-0.58\%
Final Upscale Bias	-0.66\%	-0.25\%	-0.58\%
Upscale Drift	0.24\%	0.08\%	0.00\%
\% ${ }_{\text {a }}$ t Initial Zero	0.02	0.06	0.06
	0.01	0.11	0.04
	0.19	0.04	0.07
¢ 0 ¢ ${ }^{\circ}$	0.14	0.03	0.07
Calibration Span	21.10	12.10	12.10
3\% of Range (drift)	0.63	0.36	0.36
5\% of Range (bias)	1.06	0.61	0.61



DRIFT AND BIAS CHECK			
Base Load，Run－ 1	$\mathrm{O}_{2}$	NOX	CO
Raw Average	13.17	2.45	0.59
Corrected Average	13.09	2.41	0.58
Initial Zero	0.01	0.09	0.02
Final Zero	0.04	0.07	－0．03
Avg．Zero	0.03	0.08	－0．01
Initial UpScale	12.15	4.93	5.06
Final UpScale	12.20	4.93	5.07
Avg．UpScale	12.18	4.93	5.07
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	－0．09\％	0．50\％	－0．50\％
Final Zero Bias	0．05\％	0．33\％	－0．91\％
Zero Drift	0．14\％	0．17\％	0．41\％
Initial Upscale Bias	－0．90\％	－0．58\％	－0．33\％
Final Upscale Bias	－0．66\％	－0．58\％	－0．25\％
Upscale Drift	0．24\％	0．00\％	0．08\％
¢ ᄃ Initial Zero	0.02	0.06	0.06
	0.01	0.04	0.11
	0.19	0.07	0.04
¢ 0 \％Final Upscale	0.14	0.07	0.03
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 2	$\mathrm{O}_{2}$	NOx	CO
Raw Average	13.25	2.26	0.53
Corrected Average	13.09	2.23	0.59
Initial Zero	0.04	0.07	－0．03
Final Zero	0.13	0.07	－0．15
Avg．Zero	0.09	0.07	－0．09
Initial UpScale	12.20	4.93	5.07
Final UpScale	12.30	4.90	5.08
Avg．UpScale	12.25	4.92	5.08
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	0．05\％	0．33\％	－0．91\％
Final Zero Bias	0．47\％	0．33\％	－1．90\％
Zero Drift	0．43\％	0．00\％	0．99\％
Initial Upscale Bias	－0．66\％	－0．58\％	－0．25\％
Final Upscale Bias	－0．19\％	－0．83\％	－0．17\％
Upscale Drift	0．47\％	0．25\％	0．08\％
\％¢ ¢ Initial Zero	0.01	0.04	0.11
素耍言 Final Zero	0.10	0.04	0.23
或蒙号 Initial Upscale	0.14	0.07	0.03
『边 ${ }_{\text {¢ }}$	0.04	0.10	0.02
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

App．D

DRIFT AND BIAS CHECK			
Base Load，Run－ 3	$\mathrm{O}_{2}$	NOx	CO
Raw Average	13.38	2.30	0.51
Corrected Average	13.14	2.29	0.63
Initial Zero	0.13	0.07	－0．15
Final Zero	0.25	0.06	－0．16
Avg．Zero	0.19	0.07	－0．16
Initial UpScale	12.30	4.90	5.08
Final UpScale	12.37	4.85	4.96
Avg．UpScale	12.34	4.88	5.02
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	0．47\％	0．33\％	－1．90\％
Final Zero Bias	1．04\％	0．25\％	－1．98\％
Zero Drift	0．57\％	0．08\％	0．08\％
Initial Upscale Bias	－0．19\％	－0．83\％	－0．17\％
Final Upscale Bias	0．14\％	－1．24\％	－1．16\％
Upscale Drift	0．33\％	0．41\％	0．99\％
\％ $0^{\circ}$ Initial Zero	0.10	0.04	0.23
易管告 Final Zero	0.22	0.03	0.24
	0.04	0.10	0.02
¢ ${ }_{\text {¢ }}$	0.03	0.15	0.14
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 4	$\mathrm{O}_{2}$	NOX	CO
Raw Average	13.40	1.98	0.47
Corrected Average	13.12	1.98	0.59
Initial Zero	0.25	0.06	－0．16
Final Zero	0.28	0.06	－0．13
Avg．Zero	0.27	0.06	－0．15
Initial UpScale	12.37	4.85	4.96
Final UpScale	12.39	4.82	4.97
Avg．UpScale	12.38	4.84	4.97
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	1．04\％	0．25\％	－1．98\％
Final Zero Bias	1．18\％	0．25\％	－1．74\％
Zero Drift	0．14\％	0．00\％	0．25\％
Initial Upscale Bias	0．14\％	－1．24\％	－1．16\％
Final Upscale Bias	0．24\％	－1．49\％	－1．07\％
Upscale Drift	0．09\％	0．25\％	0．08\％
¢ ¢ ¢ Initial Zero	0.22	0.03	0.24
気苞 Final Zero	0.25	0.03	0.21
寅	0.03	0.15	0.14
¢ ${ }_{\text {in }}$ Final Upscale	0.05	0.18	0.13
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 5	$\mathbf{O}_{3}$	NOx	CO
Raw Average	13.37	1.97	0.43
Corrected Average	13.09	1.98	0.58
Initial Zero	0.28	0.06	－0．13
Final Zero	0.28	0.06	－0．20
Avg．Zero	0.28	0.06	－0．17
Initial UpScale	12.39	4.82	4.97
Final UpScale	12.37	4.81	4.94
Avg．UpScale	12.38	4.82	4.96
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	1．18\％	0．25\％	－1．74\％
Final Zero Bias	1．18\％	0．25\％	－2．31\％
Zero Drift	0．00\％	0．00\％	0．58\％
Initial Upscale Bias	0．24\％	－1．49\％	－1．07\％
Final Upscale Bias	0．14\％	－1．57\％	－1．32\％
Upscale Drift	0．09\％	0．08\％	0．25\％
9．	0.25	0.03	0.21
雩言告 Final Zero	0.25	0.03	0.28
	0.05	0.18	0.13
¢	0.03	0.19	0.16
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 6	$\mathrm{O}_{2}$	NOx	CO
Raw Average	13.35	1.88	0.42
Corrected Average	13.09	1.89	0.60
Initial Zero	0.28	0.06	－0．20
Final Zero	0.25	0.06	－0．20
Avg．Zero	0.27	0.06	－0．20
Initial UpScale	12.37	4.81	4.94
Final UpScale	12.36	4.82	4.93
Avg．UpScale	12.37	4.82	4.94
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	1．18\％	0．25\％	－2．31\％
Final Zero Bias	1．04\％	0．25\％	－2．31\％
Zero Drift	0．14\％	0．00\％	0．00\％
Initial Upscale Bias	0．14\％	－1．57\％	－1．32\％
Final Upscale Bias	0．09\％	－1．49\％	－1．40\％
Upscale Drift	0．05\％	0．08\％	0．08\％
¢ ．	0.25	0.03	0.28
	0.22	0.03	0.28
突	0.03	0.19	0.16
¢	0.02	0.18	0.17
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 7	$\mathrm{O}_{2}$	NOx	CO
Raw Average	13.33	2.01	0.45
Corrected Average	13.08	2.02	0.59
Initial Zero	0.25	0.06	－0．20
Final Zero	0.26	0.06	－0．14
Avg．Zero	0.26	0.06	－0．17
Initial UpScale	12.36	4.82	4.93
Final UpScale	12.34	4.82	5.00
Avg．UpScale	12.35	4.82	4.97
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	1．04\％	0．25\％	－2．31\％
Final Zero Bias	1．09\％	0．25\％	－1．82\％
Zero Drift	0．05\％	0．00\％	0．50\％
Initial Upscale Bias	0．09\％	－1．49\％	－1．40\％
Final Upscale Bias	0．00\％	－1．49\％	－0．83\％
Upscale Drift	0．09\％	0．00\％	0．58\％
\％Initial Zero	0.22	0.03	0.28
	0.23	0.03	0.22
	0.02	0.18	0.17
く边 Final Upscale	0.00	0.18	0.10
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 8	$\mathrm{O}_{2}$	NOx	CO
Raw Average	13.34	2.04	0.49
Corrected Average	13.10	2.05	0.58
Initial Zero	0.26	0.06	－0．14
Final Zero	0.25	0.06	－0．08
Avg．Zero	0.26	0.06	－0．11
Initial UpScale	12.34	4.82	5.00
Final UpScale	12.35	4.81	4.93
Avg．UpScale	12.35	4.82	4.97
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	1．09\％	0．25\％	－1．82\％
Final Zero Bias	1．04\％	0．25\％	－1．32\％
Zero Drift	0．05\％	0．00\％	0．50\％
Initial Upscale Bias	0．00\％	－1．49\％	－0．83\％
Final Upscale Bias	0．05\％	－1．57\％	－1．40\％
Upscale Drift	0．05\％	0．08\％	0．58\％
¢ ¢ Initial Zero	0.23	0.03	0.22
记	0.22	0.03	0.16
糉荷告 Initial Upscale	0.00	0.18	0.10
区	0.01	0.19	0.17
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 9	$\mathrm{O}_{2}$	NOx	CO
Raw Average	13.32	1.96	0.48
Corrected Average	13.08	1.97	0.58
Initial Zero	0.25	0.06	－0．08
Final Zero	0.22	0.06	－0．15
Avg．Zero	0.24	0.06	－0．12
Initial UpScale	12.35	4.81	4.93
Final UpScale	12.32	4.82	5.03
Avg．UpScale	12.34	4.82	4.98
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	1．04\％	0．25\％	－1．32\％
Final Zero Bias	0．90\％	0．25\％	－1．90\％
Zero Drift	0．14\％	0．00\％	0．58\％
Initial Upscale Bias	0．05\％	－1．57\％	－1．40\％
Final Upscale Bias	－0．09\％	－1．49\％	－0．58\％
Upscale Drift	0．14\％	0．08\％	0．83\％
9.	0.22	0.03	0.16
胹第告 Final Zero	0.19	0.03	0.23
두¢	0.01	0.19	0.17
『	0.02	0.18	0.07
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61


DRIFT AND BIAS CHECK			
Base Load，Run－ 10	$\mathrm{O}_{2}$	NOx	CO
Raw Average	13.30	2.04	0.50
Corrected Average	13.09	2.05	0.61
Initial Zero	0.22	0.06	－0．15
Final Zero	0.21	0.07	－0．12
Avg．Zero	0.22	0.07	－0．14
Initial UpScale	12.32	4.82	5.03
Final UpScale	12.31	4.83	5.04
Avg．UpScale	12.32	4.83	5.04
Sys Resp（Zero）	0.03	0.03	0.08
Sys Resp（Upscale）	12.34	5.00	5.10
Upscale Cal Gas	12.10	4.93	4.92
Initial Zero Bias	0．90\％	0．25\％	－1．90\％
Final Zero Bias	0．85\％	0．33\％	－1．65\％
Zero Drift	0．05\％	0．08\％	0．25\％
Initial Upscale Bias	－0．09\％	－1．49\％	－0．58\％
Final Upscale Bias	－0．14\％	－1．40\％	－0．50\％
Upscale Drift	0．05\％	0．08\％	0．08\％
$)^{\circ} \mathrm{C}$ Initial Zero	0.19	0.03	0.23
	0.18	0.04	0.20
浐䔍會 Initial Upscale	0.02	0.18	0.07
＜${ }_{\text {¢ }}^{0}$ ¢ Final Upscale	0.03	0.17	0.06
Calibration Span	21.10	12.10	12.10
3\％of Cal．Span（drift）	0.63	0.36	0.36
5\％of Cal．Span（bias）	1.06	0.61	0.61

## APPENDIX E

Source Information	
Company	Florida Power and Light
Plant Name	West County Energy Center
Equipment	Mitsubishi 501G
Location	Loxahatchee, Florida


Test Information	
Date	03/19/11
Project \#	bv-10-westcounty.fl-comp\#2
Unit Number	3B
Load	Base Load
Number of Ports Available	4
Number of Ports Used	4


Stack and Test Type			
O	Isokinetic Traverse (Wet Chemistry Testing)		
0	Velocity Traverse (Flow and Flow RATA Test)		
0	Stratification Traverse (Compliance Test)	$\square$ RM 20	Circular
(O)	Stratification Traverse (RATA)	$\square$ Part $60 \square$ Part 75	

METHOD 1 - STRATIFICATION TEST FOR A CIRCULAR SOURCE

Company	Florida Power and Light	Date	03/19/11
Plant Name	West County Energy Center	Project \#	bv-10-westcounty.fi-comp\#2
Equipment	Mitsubishi 501G	\# of Ports Available	4
Location	Loxahatchee, Florida	\# of Ports Used	4


Circular Stack or Duct Diameter			
Distance to Far Wall of Stack	( $\mathrm{L}_{\text {s }}$ )	282.38	in.
Distance to Near Wall of Stack	( $\mathrm{L}_{\text {mw }}$ )	19.00	in.
Diameter of Stack	(D)	263.38	in.
Area of Stack	( $A_{5}$ )	378.35	$\mathrm{ft}^{2}$
Distance from Disturbances to Port			
Distance Upstream	(A)	144.00	in.
Diameters Upstream	( $A_{D}$ )	0.55	diameters
Distance Downstream	(B)	531.75	in.
Diameters Downstream	( $\mathrm{B}_{\mathrm{D}}$ )	2.02	diameters


Number of Traverse Points Required					
Diameters to		Minimum Number of ${ }^{1}$		Minimum Number of	
Flow Disturbance		Traverse Points		Traverse Points	
Down ( $\mathrm{B}_{\mathrm{D}}$ )	Up ( $A_{D}$ )	Particulate	Velocity	Comp Stratification	
Stream	Stream	Points	Points	Criteria	Points
2.00-4.99	0.50-1.24	24	16	Ori 7E 8.1.	12 RM1 pts
5.00-5.99	1.25-1.49	20	16	Ofit7e 8.1.2	3 points
6.00-6.99	1.50-1.74	16	12		
7.00-7.99	1.75-1.99	12	12		
$>=8.00$	> $=2.00$	8 or $12^{2}$	8 or $12^{2}$	Minimum	Number of
Upstream Spec		24	16	Traverse Points	
Downstream Spec		24	16	RATA Stratification	
Traverse	ts Required	24	16	Criteria	Points
Check Minimum Number of Points for the Upsiream and Downstream conditions, then use the largest.   ${ }^{2} 8$ for Circular Stacks 12 to 24 inches   12 for Circular Stacks over 24 inches				OP Par75/60	12 RM 1 pts
				O75 abrv (a)	3 points
				O75 abrv (b)	6 points
				12 points	



Traverse Point Locations			
Traverse   Point   Number	Percent of   Stack   Diameter	Distance   from   Inside Wall	Distance   Including   Reference   Length
	$\%$	in.	in.
1	$4.4 \%$	$115 / 8$	$305 / 8$
2	$14.6 \%$	$384 / 8$	$574 / 8$
3	$29.6 \%$	78	97
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			



Company	Florida Power and Light			
Plant Name	West County Energy Center			
Equipment	Mitsubishi 501G			
Location	Loxahatchee, Florida		Project $\#$	bv-10-westcounty.fl-comp\#2


Stack Dimensions				Traverse Data			
Diameter or Length of Stack	(D)	263.38	in.	4	Ports by	3	Pts / port
Width of Stack	(W)		in.	12	Pts Used	12	Required
Area of Stack	( $\mathrm{A}_{s}$ )	378.35	$\mathrm{ft}^{2}$	Run Start	8:47:10	Run End	9:26:40


Traverse   Point	Time Per   Point	Point   Start Time	Point Stop   Time   (Reading)	O2	Percent   Difference	CO	Percent   Difference	NOx	Percent   Difference
	min.	hh:mm:ss	hh:mm:ss	$\%$	$\%$	ppm	$\%$	ppm	\%
D-3	3.00	$8: 47: 10$	$8: 50: 10$	13.09	$0.30 \%$	0.55	$7.84 \%$	2.69	9.91\%
D-2	3.00	$8: 50: 10$	$8: 53: 10$	13.10	$0.23 \%$	0.51	$0.00 \%$	2.58	$5.41 \%$
D-1	3.00	$8: 53: 10$	$8: 56: 10$	13.10	$0.23 \%$	0.55	$7.84 \%$	2.53	$3.37 \%$
C-3	4.50	$8: 56: 10$	$9: 00: 40$	13.09	$0.30 \%$	0.50	$1.96 \%$	2.88	$17.67 \%$
C-2	3.00	$9: 00: 40$	$9: 03: 40$	13.12	$0.08 \%$	0.45	$11.76 \%$	2.46	$0.51 \%$
C-1	3.00	$9: 03: 40$	$9: 06: 40$	13.12	$0.08 \%$	0.51	$0.00 \%$	2.18	$10.93 \%$
B-3	4.00	$9: 06: 40$	$9: 10: 40$	13.15	$0.15 \%$	0.45	$11.76 \%$	2.94	$20.12 \%$
B-2	3.00	$9: 10: 40$	$9: 13: 40$	13.16	$0.23 \%$	0.50	$1.96 \%$	2.19	$10.52 \%$
B-1	3.00	$9: 13: 40$	$9: 16: 40$	13.16	$0.23 \%$	0.52	$1.96 \%$	2.13	$12.97 \%$
A-3	4.00	$9: 16: 40$	$9: 20: 40$	13.15	$0.15 \%$	0.55	$7.84 \%$	2.32	$5.21 \%$
A-2	3.00	$9: 20: 40$	$9: 23: 40$	13.17	$0.30 \%$	0.61	$19.61 \%$	2.22	$9.30 \%$
A-1	3.00	$9: 23: 40$	$9: 26: 40$	13.15	$0.15 \%$	0.42	$17.65 \%$	2.25	$8.07 \%$
	Average								


Company	Florida Power and Light	Date	03/19/11
Plant Name	West County Energy Center	Project \#	bv-10-westcounty.fl-comp\#2
Equipment	Mitsubishi 501G	\# of Ports Available	4
Location	Loxahatchee, Florida	\# of Ports Used	4


Stack Dimensions				Traverse Data			
Diameter or Length of Stack	(D)	263.38	in.	4	Ports by	3	Pts /port
Width of Stack	$(\mathrm{W})$		in.	12	Pts Used	12	Required
Area of Stack	$\left(\mathrm{A}_{\mathrm{s}}\right)$	378.35	$\mathrm{ft}^{2}$	Run Start	$8: 47: 10$	Run End	$9: 26: 40$




## APPENDIX 2

## 40CFR75 QA CERT TEST DETAIL REPORT

Facility Name: West County Energy Center


Additional Information:
No comment.
*Performance Spec: $\mathrm{CE}<=2.5 \%$ of Span Alternate Performance Spec: $|\mathrm{R}-\mathrm{A}|<=5 \mathrm{ppm}$ (Appendix A \&3.1)

Facility Name:	West County Energy Center
Facility ID (ORISPL):	56407

Unit/Stack/Pipe ID: WCCT3B
7-Day Calibration

Component ID:	B01	Component Type:	NOX
Test Number:	7DAY-Q12011-B01-1	Reason for Test:	INITIAL
Span Scale Level:	High	Span Value:	200.000
Evaluation Status:	No Errors		


Test Completion:	02/22/2011 15:45
Reported Test Results:	PASSED
EPA Calculated Result:	PASSED
Submission Status:	Not submitted
Submission Date/Time:	


Injection Date/Hour	Gas Level	Reference Vălue	Reference Value \% of Span	Measured Value	Reported		Recalculated	
					Results	APS	Results	APS
02/16/2011 08	ZERO	0.000	0	-0.100	0.10		0.10	
02/16/2011 08	HIGH	176.200	88.1	176.800	0.30		0.30	
02/17/2011 14	ZERO	0.000	0	0.000	0.00		0.00	
02/17/2011 14	HIGH	176.200	88.1	176.100	0.00		0.10	
02/18/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/18/2011 15	HIGH	176.200	88.1	175.800	0.20		0.20	
02/19/2011 15	ZERO	0.000	0	-0.100	0.10		0.10	
02/19/2011 15	HIGH	176.200	88.1	176.600	0.20		0.20	
02/20/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/20/2011 15	HIGH	176.200	88.1	176.300	0.10		0.10	
02/21/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/21/2011 15	HIGH	176.200	88.1	175.400	0.40		0.40	
02/22/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/22/2011 15	HIGH	176.200	88.1	175.600	0.30		0.30	

## Additional Information:

No comment.
*Performance Spec: $\mathrm{CE}<=2.5 \%$ of Span Alternate Performance Spec: $|\mathrm{R}-\mathrm{A}|<=5 \mathrm{ppm}$ (Appendix A \&3.1)

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407

Unit/Stack/Pipe ID: WCCT3B
7-Day Calibration

Component ID:	B01	Component Type:	NOX	Test Completion:	02/22/2011 15:43
Test Number:	7DAY-Q12011-B01-2	Reason for Test:	INITIAL	Reported Test Results:	PASSED
Span Scale Level:	Low	Span Value:	10.000	EPA Calculated Result:	PASSED
Evaluation Status:	No Errors			Submission Status:	Not submitted


Injection Date/Hour	Gas Level	Refereñce Value	Reference Value \% of Span	Mieasured Value	Reported		Recalculated	
					Results	APS	Results	APS
02/16/2011 08	ZERO	0.000	0	0.000	0.00		0.00	
02/16/2011 08	HIGH	8.700	87	8.700	0.00		0.00	
02/17/2011 14	ZERO	0.000	0	0.100	1.00		1.00	
02/17/2011 14	HIGH	8.700	87	8.700	0.00		0.00	
02/18/2011 15	ZERO	0.000	0	0.100	1.00		1.00	
02/18/2011 15	HIGH	8.700	87	8.700	0.00		0.00	
02/19/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/19/2011 15	HIGH	8.700	87	8.600	1.00		1.00	
02/20/2011 15	ZERO	0.000	0	0.100	1.00		1.00	
02/20/2011 15	HIGH	8.700	87	8.700	0.00		0.00	
02/21/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/21/2011 15	HIGH	8.700	87	8.600	1.00		1.00	
02/22/2011 15	ZERO	0.000	0	0.000	0.00		0.00	
02/22/2011 15	HIGH	8.700	87	8.700	0.00		0.00	

## Additional Information:

No comment.
*Performance Spec: CE $<=2.5 \%$ of Span Alternate Performance Spec: $|R-A|<=5 \mathrm{ppm}$ (Appendix A \& 3.1)

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
Unit/Stack/Pipe ID: WCCT3B
Cycle Time Test


Additional Information:
No comment.
*Performance Spec: Cycle Time <= 15 minutes (Appendix A \&3.5)
Unit/Stack/Pipe ID: WCCT3B
Cycle Time Test


Additional Information:
No comment.
*Performance Spec: Cycle Time $<=15$ minutes (Appendix A \&3.5)

## Facility Name: West County Energy Center

Unit/Stack/Pipe ID: WCCT3B
Cycle Time Test

Component ID:	B01	Component Type:	NOX	Test Completion:	03/18/2011 14:10
Test Number:	CYCL-Q12011-B01-21	Reason for Test:	INITIAL	Reported Test Results:	PASSED
Span Scale Level:	Low	Span Value:	10.000	EPA Calculated Result:	PASSED
Total Cycle Time:	4	Calculated Total Cycle Time:	4		
Evaluation Status:	No Errors			Submission Status: Submission Date/Time:	Not submitted


Date	Start Time	End Time	Gas Level	Reference Gas Value	Stable Values		linection Cycle Time	
					Starting	Ending	Resulis	Recalculatid
2011/03/18	14:01	14:04	ZERO	0.000	1.300	0.000	3	3
2011/03/18	14:08	14:10	HIGH	8.677	1.300	8.600	2	2

Additional Information:
No comment.
*Performance Spec: Cycle Time $<=15$ minutes (Appendix A \&3.5)

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
March 28, 2011 07:04 PM

Unit/Stack/Pipe ID: WCCT3B
Fuel Flowmeter Accuracy Test


## Additional Information:

No comment.
Unit/Stack/Pipe ID: WCCT3B
Fuel Flowmeter Accuracy Test


Additional Information:
No comment.

Facility Name:	West County Energy Center
Faciilty ID (ORISPL):	56407

Unit/Stack/Pipe ID: WCCT3B
Linearity Check

Component ID:	B02	Component Type:	O2	Test Completion:	03/18/2011 23:48
Test Number:	LINE-Q12011-B02-11	Reason for Test:	INITIAL		Reported Test Results:
Span Scale Level:	High	Span Value:	25.000	EPA Calculated Result:	PASSED
Evaluation Status:	No Errors			Submission Status:	
Grace period Tested?			Submission Date/Time:		

Summary Statistics:

	High		Mid		Low	
	Reported	Recaiculated	Reported	Recalculated	Reported	Recalculated
Reference Value	20.900	20.900	13.800	13.800	6.240	6.240
Mass CEM Value	20.900	20.900	13.783	13.783	6.277	6.277
Alt. Perf. Indicator						
Results	0.0	0.0	0.1	0.1	0.6	0.6

Injection Statistics:

Date	Gas Level	Measured Value	Reference Value	Reference Value as \% of Span
03/18/2011 23:23	MID	13.780	13.800	55.2\%
03/18/2011 23:07	MID	13.790	13.800	55.2\%
03/18/2011 23:44	MID	13.780	13.800	55.2\%
03/18/2011 23:10	HIGH	20.900	20.900	83.6\%
03/18/2011 23:48	HIGH	20.900	$20.900^{\circ}$	83.6\%
03/18/2011 23:27	HIGH	20.900	20.900	83.6\%
03/18/2011 23:41	LOW	6.310	6.240	25.0\%
03/18/2011 23:19	LOW	6.250	6.240	25.0\%
03/18/2011 23:03	LOW	6.270	6.240	25.0\%

## Additional Information:

No comment.
*Performance Spec: LE <=5.0\% of Reference Value; Alternate Performance Spec: $|\mathrm{R}-\mathrm{A}|<=5 \mathrm{ppm}$ (Appendix A \&3.2)

Facility Name:	West County Energy Center
Facility ID (ORISPL):	56407

Unit/Stack/Pipe ID: WCCT3B
Linearity Check

Component ID:	B01	Component Type:	NOX	Test Completion:	03/18/2011 17:05
Test Number:	LINE-Q12011-B01-10	Reason for Test:	INITIAL	Reported Test Results:	PASSED
Span Scale Level:	High	Span Value:	200.000	EPA Calculated Result:	PASSED
Evaluation Status:	No Errors				Submission Status:
Grace period Tested?			Submission Date/Time:		

Summary Statistics:

	High		Mid		Low	
	Reported	Recalculated	Reported	Recalculated	Reported	Recaiculated
Reference Value	176.200	176.200	110.700	110.700	51.100	51.100
Mass CEM Value	174.000	174.000	107.367	107.367	48.633	48.633
Alt. Perf. Indicator						
Results	1.2	1.2	3.0	3.0	4.8	4.8


Date	Gas Level	Measured Value	Reference Value	Reference Value as \% of Span
03/18/2011 16:43	MID	107.300	110.700	55.4\%
03/18/2011 17:01	MID	107.300	110.700	55.4\%
03/18/2011 16:24	MID	107.500	110.700	55.4\%
03/18/2011 16:27	High	174.000	176.200	88.1\%
03/18/2011 17:05	HIGH	174.000	176.200	88.1\%
03/18/2011 16:46	HIGH	174.000	176.200	88.1\%
03/18/2011 16:39	LOW	48.600	51.100	25.6\%
03/18/2011 16:20	LOW	48.700	51.100	25.6\%
03/18/2011 16:57	LOW	48.600	51.100	25.6\%

[^15]Facility Name: West County Energy Center
Facility ID (ORISPL): $\quad 56407$

QA/Cert Test Detail Report
March 28, 2011 07:04 PM

## Heitioneckdriaebf:TesiNCCT3B

System ID:	B01	System Parameter:	NOX	Test Completion:	03/19/2011 16:41
Test Number:	RATA-Q12011-B01-	Reason for Test:	INITIAL	Reported Test Results:	PASSED
\# of Op. Levels:	$\overline{1}$	Grace Period Test?		EPA Calculated Result:	PASSED
Evaluation Status:	No Errors			Reported BAF:	1.000
Submission Status:	Not submited			EPA Calculated BAF:	1.000
Submission Date:				RATA Frequency:	4QTRS

Operating Level:
Reference Method Used:
Summary Statistics:

	Reported	Recalculated		Reporied	Recalculated
Mean of Monitoring System	0.006	0.006	Relative Accuracy	6.65	6.65
Mean of Reference Method Values	0.006	0.006	Bias Adjustment Factor	1.000	1.000
Mean of Difference	0.000	0.000	APS Indicator		
Standard Deviation of Difference	0.001	0.001	T-Value	2.306	2.306
Confidence Coefficient	0.000	0.000	Gross Unit Load or Velocity	278	278

Run Data:

Run	Start Date.	End Date	Run Status	Monitoring System Value	Reference Method Value	Gross Load or Velocity
1	03/19/2011 09:32	03/19/2011 10:31	NOTUSED	0.006	0.007	302
2	03/19/2011 10:45	03/19/2011 11:44	RUNUSED	0.006	0.006	287
3	03/19/2011 12:05	03/19/2011 13:04	RUNUSED	0.005	0.006	280
4	03/19/2011 13:17	03/19/2011 13:37	RUNUSED	0.006	0.006	277
5	03/19/2011 13:50	03/19/2011 14:10	RUNUSED	0.006	0.006	278
6	03/19/2011 14:21	03/19/2011 14:41	RUNUSED	0.005	0.005	277
7	03/19/2011 14:51	03/19/2011 15:11	RUNUSED	0.006	0.006	277
8	03/19/2011 15:21	03/19/2011 15:41	RUNUSED	0.006	0.006	276
9	03/19/2011 15:51	03/19/2011 16:11	RUNUSED	0.006	0.005	276
10	03/19/2011 16:21	03/19/2011 16:41	RUNUSED	0.006	0.006	276

Page 9 of 10

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
Additional Information:
No comment.
*Performance Spec: RA <= 10\% or Mean Difference <=+/-2.0fps:
Reduced Frequency Spec: $\mathrm{RA}<=7.5 \%$ or Mean Difference $+/-1.5 \mathrm{fps}$ (Appendix A \&3.3.4)
Unit/Stack/Pipe ID: WCCT3B
Transmitter Transducer Test

Component ID: Test Number:	B05 Component Type:   FFAT-Q12010-B05-92 Reason for Test:	GFFM QA	$\begin{array}{ll}\text { Test Completion: } & 03 / 03 / 201000: 00 \\ \text { Reported Test Results: } & \text { PASSED } \\ \text { EPA Calculated Result: } & \text { PASSED }\end{array}$		
Evaluation Status:	No Errors		Submission Status:   Not submitte Submission Date/Time:	Not submitted	
High Level Accuracy	High Level Accuracy Specification	Mid Level Accuracy	Mid Level Accuracy Specification	Low Level Accuracy	Low Level Accuracy Specification
0.5	AGA3	0.5	AGA3	0.5	AGA3

## Additional Information:

No comment
Unit/Stack/Pipe ID: WCCT3B
Primary Element Inspection

System ID:		System Type:	
Component ID:	B05	Component Type:	GFFM
Test Number:	PEI-110218-B05-2	Reason for Test:	INITIAL

Test Number. PEl-110218-B05-2
Reason for Test: NITIAL

Evaluation Status: No Errors
Test Description:
Additional Information:
No comment.

Test Completion:	02/18/2011 00:00
Reported Test Results: PASSED   Grace Period Test?	
Submission Status:	Not submitted

## APPENDIX 3

## CEMS CALIBRATION DRIFT REPORTS

Company: Florida Power \& Light
Plant: West County Plant
City/St: Lnxahatchee, FL 33470
Source: stack3b

	Period Start: $2 / 22 / 2011$
Period End: $2 / 22 / 2011$	
Included Calibrations:	
Daily (40cFR60)/(40CFR75)	

Range of Analyzers:
Span of Analyzers:




WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
targ $=$ Invalid Target (not within regulatory specs)
$\begin{aligned} & \text { RDG }=\text { Reading exceeds "Range of Analyzer } \\ & \text { WD }=\text { Number of Consecutive Days in Warning - ('?' Not Available) - ('00C' No Passed Cal. since a Failed Daily or } 5 \text { Days in Warning) }\end{aligned}$
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3b
Part 60 Calibration (Absolute Average DIFF and Calibration : Error)

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \\ \hline \end{gathered}$	$\begin{gathered} \text { Error } \\ \vdots \\ \hline \end{gathered}$	Diff   Units	$\underset{\text { Error }}{\substack{\text { en }}}$
3B_COHIGH	Co	0.5	0.0\%	12.1	1.08
3B_COLOW	co	0.1	1.0\%	0.2	$2.0 \%$
3B_NOXHIGH	NOX	0.0	0.0\%	0.6	0.38
3B_NOXLOW	NOX	0.0	0.0\%	0.0	0.0\%
3B_02	02	0.0	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFE and Calibration \& Error)

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	$\begin{gathered} \text { Error } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} \text { Diff } \\ \text { Units } \\ \hline \end{gathered}$	$\begin{gathered} \text { Error } \\ \% \end{gathered}$
3B_COHIGH	CO	0.500	- N/A	12.100	N/A -
3B_COLOW	CO	0.100	- N/A -	0.200	- N/A -
3B_NOXHIGH	NOX	0.000	0.0\%	0.600	$0.3 \%$
3B_NOXLOW	NOx	0.000	0.0\%	0.000	0.0\%
3B_02	02	0.000	- N/A -	0.150	- N/A


Channel		Performance Specificatio Part 60		Part 75	
		PASS	FAIL	PASS	FAIL
3B_COHIGH	CO	< $=20.0 \%$	>20.0\%	- N/A -	- N/A
3B_COLOW	CO	< $=20.0 \%$	>20.0\%	- N/A -	- N/A -
38_NOXHIGH	NOx	< $=10.0 \%$	>10.0\%	< $=5.0$ \%	>5.0\%
3B_NOXLOW	NOx	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	$>5.0 \%$
3B_02	02	$<=2.0 \%$	>2.0\%	$<=1.0 \%$	>1.0\%

Perf: $\quad[$ Part 60 Daily CO] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
Perf: [Part60 Daily C0] Zero $=20.0$ \%Range, Span $=20.0 \%$ Range
[Part75 Dail
AltPexf: [Part75 Daily NOX] zero $=5$ ppm (Range $<=50 \mathrm{ppm}$ )/10 ppm ( 50 ppm $<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$

[Part75 Daily
$=10.0$ \&Range
AltPerf: [Part75 Daily NOX] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ )/10 ppm ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )
Perf:
[Part75 Daily 02] Zero $=1.0 \%$, Span $=1.0 \% 02,[$ Part 60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 02$

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3b

Period Start: 2/21/2011
Period End: 2/21/2011
Included Calibrations: Daily (40CFR60)/(40CFR75)


FAIL = Difference Error > Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
RDG = Reading exceeds "Range of Analyzer
Hote: = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: $40 C E R 75$ pass/fail determination is performed after rounding the value of Error\%, or Drift, $i o$ one decimal place

Perf: [Part60 Daily CO] Zero $=20.0$ : Range, $\operatorname{Span}=20.0$ \%Range
Perf: (Part75 Daily NOx] Zero $=5.0 \%$ Range, Span $=5.0 \%$ Range, [Part60 Daily NOX] Zero $=10.0 \%$ Range, Span
AltPerf: [Part75 Daily NOX] Zero $=5 \mathrm{ppm}$ (Range< $=50 \mathrm{ppm}$ )/10 ppm ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$
Range $=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range< $=200 \mathrm{PPm}$ )
Perf: [Part75 Daily NOx] Zero = 5.0 \%Range, Span $=5.0$ \%Range, [Part 60 Daily NOX] Zero $=10.0$ \&Range, Span
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )
Perf:
[Part75 Daily 02] Zero = 1.0 \%02, Span $=1.0$ \%02, [Part60 Daily 02] Zero $=2.0$ \%02, Span $=2.0 \% 02$

Generated: 2/20/2011

Company: Florida Power \& Light
Plant: West County Plant
City/St: Lnxahatchee, FL 33470
Source: stack3b


FAIL = Difference Error $>$ Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
RDG $=$ Reading exceeds "Range of Analyzer" $=$ Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

## Daily Stack Calibration Report

Generated: 2/20/2011

Part 60 Calibratio		(Absolute Average DIFF a ---ZERO----		Calibration \% Error---SPAN----	
		$\begin{aligned} & \text { Diff } \\ & \text { Units } \end{aligned}$	$\begin{gathered} \text { Error } \\ \vdots \end{gathered}$	Diff   Units	$\begin{gathered} \text { Error } \\ \% \end{gathered}$
3B_COHIGH	CO	0.6	0.1\%	15.2	1.38
3B_COLOW	CO	0.2	$2.0 \%$	0.2	$2.0 \%$
3B_NOXHIGH	Nox	0.0	$0.0 \%$	0.1	0.18
3B_NOXLOW	NOx	0.1	1.0\%	0.0	0.0\%
3B_02	02	0.0	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration ${ }^{\text {o }}$ Error)

Channe1		----ZERO----		----SPAN----	
		Diff	Error	Diff	Error
		Units	$\stackrel{\square}{8}$	Units	\%
3B_COHIGH	CO	0.600	- N/A	15.200	- N/A
3B_COLOW	co	0.200	- N/A -	0.200	- N/A -
3B_NOXHIGH	Nox	0.000	$0.0 \%$	0.100	0.1\%
38_NOXLOW	NOX	0.100	1.0\%	0.000	$0.0 \%$
38_02	02	0.000	- N/A -	0.090	- N/A -


Channel		Performance Specification Part 60		Part 75	
		PASS	FAIL	PASS	FAIL
3B_COHIGH	CO	<=20.0\%	>20.0\%	- N/A -	- N/A -
3 B COLOW	CO	< $=20.08$	>20.0\%	- N/A -	- N/A -
3B_NOXHIGH	NOx	< $=10.0$ \%	>10.0\%	< $=5.0$ \%	>5.0\%
38_NOXLOW	NOx	<-10.0\%	>10.0\%	$<=5.0$ \%	>5.0\%
$3 \mathrm{~B}_{-} 02$	02	$<=2.08$	>2.0\%	$<=1.0 \%$	>1.0\%

Perf: [Part60 Daily CO] Zero $=20.0$ \%Range, Span $\approx 20.0$ \% Range
Perf: [Part60 Daily C0] Zero $=20.0$ \&Range, $\mathrm{Span}=20.0 \%$ Range
Perf: [Part75 Daily NOx] Zero $=5.0$ \&Range, Span $=5.0$ \&Range, [Part 60 Daily NOx] Zero $=10.0 \%$ Range, Span
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ )/10 ppm ( 50 ppm $<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$
Perf: [Rart75 Daily NOx] Zero $=5.0$ \&Range, Span $=5.0$ gRange, [Part 60 Daily NOX] Zero $=10.0$ \%Range, Span

$($ Range $<=50 \mathrm{ppm}) / 10$
ppm $(50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )
Perf:
[Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \% 02$, [Part60 Daily 02] Zero $=2.0802$, Span $=2.0 \% 02$

Company: Florida Power \& Light
Plant: West County Plant
City/St: Lnxahatchee, FL 33470
Source: stack3b

Span_of Analvzers:-

3B_NOXHIGH	NOX	0.0	200.0 ppm
3B_NOXLOW	NOX	0.0	10.0 ppm
3B_O2	O2	0.00	$25.00 \%$
3B_COLOW	CO	0.0	10.0 ppm
3B_COHIGH	CO		

3B_COLOW CO
Co
3B_COHIG

3B_NOXHIGH	NOX	0.0
3B_NOXLOW	NOX	0.0
3B_O2	O2	0.00
3B_COLOW	CO	0.0
3B_COHIGH	CO	0.0

$$
\begin{gathered}
200.0 \mathrm{ppm} \\
10.0 \mathrm{ppm} \\
25.00 \frac{\mathrm{pm}}{8} \\
10.0 \mathrm{ppm} \\
1200.0 \mathrm{ppm}
\end{gathered}
$$

$\qquad$

					Target	Actual	Diff	Part 60 Allowable						Part75 Allowable			
Date	Time	Channel		Type	Units	Units	Units	Error \%	Units	:		0	Error ${ }^{\text {\% }}$	Units	\%		
02/19/2011	15:35	3B_COHIGH	CO	2ERO	0.000	0.500	0.500	0.0	240.0	20.0	PASS	0	N/A	- N/A -		N/A -	- N/A
02/19/2011	15:35	3B ${ }^{-} \mathrm{COHIGH}$	co	SPAN	1048.000	1057.800	9.800	0.8	240.0	$20^{\circ} .0$	pass	0	- N/A -	- N/A -		N/A -	- N/A -
02/19/2011	15:35	3- COLOW	co	ZERO	0.000	0.000	0.000	0.0	2.0	20.0	PASs	0	- N/A -	- N/A -		N/A -	- N/A
02/19/2011	15:35	3 B COLOW	co	SPAN	8.500	8.600	0.100	1.0	2.0	20.0	PASS	0	- N/A -	- N/A		N/A	- N/A -
02/19/2011	15:35	3B_NOXHIGH	Nox	zero	0.000	-0.100	-0.100	-0.1	20.0	10.0	PASS	0	-0.1	10.000		5.0	PASS
02/19/2011	15:35	3B_NOXHIGH	Nox	SPAN	176.200	176.600	0.400	0.2	20.0	10.0	PASS	0	0.2	10.000		5.0	PASS
02/19/2011	15:35	3B NOXLOW	NOx	zero	0.000	0.000	0.000	0.0	1.0	10.0	PASS	0	0.0	5.000		5.0	PASS
02/19/2011	15:35	3B_NOXLOW	Nox	SPAN	8.700	8.600	-0.100	-1.0	1.0	10.0	PASS	0	-1.0	5.000		5.0	PASS
02/19/2011	15:35	3 B _02	02	2ero	0.000	0.000	0.000	- N/A -	2.0	- N/A -	PASS	0	- N/A.	1.000		N/A -	PASS

FAIL = Difference Error > Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: 40 CFR75 pass/fail determination is performed after rounding the talue of Errort, or Drift, to one decimal place

Daily Stack Calibration Report
Generated: 2/20/2011

Part 60 Calibratio		(Absolute Average DIFF and ----ZERO---		$\begin{gathered} \text { Calibration \& Error) } \\ \text {----SPAN---- } \end{gathered}$	
		Diff	Error	Diff	Error
3B_COHIGH	CO	0.5	0.08	9.8	0.88
3B_COLOW	co	0.0	0.0\%	0.1	1.0\%
3B_NOXHIGH	NOx	0.1	$0.1 \%$	0.4	0.2\%
3B_NOXLOW	NOX	0.0	$0.0 \%$	0.1	1.08
3B_02	02	0.0	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration \% Error)

Channel		---ZERO----		----SPAN----	
		Diff	Error	Diff	Error
		Units	\%	Units	\%
3B_COHIGH	CO	0.500	N/A	9.800	- N/A
3B_COLOW	CO	0.000	- N/A -	0.100	- N/A -
3B_NOXHIGH	NOX	0.100	$0.1 \%$	0.400	0.2\%
3B_NOXLOW	NOx	0.000	0.0\%	0.100	1.0\%
3 B - 02	02	0.000	- N/A -	0.120	- N/A -


Channel		Performance Specification Part 60		Part 75	
		PASS	EAIL	PASS	EAIL
3 BCOHIGH	CO	< $=20.08$	>20.0\%	- N/A -	N/A -
3B_COLOW	Co	< $=20.0 \%$	>20.0\%	- N/A -	- N/A -
3B_NOXHIGH	nox	< $=10.0$ \%	>10.0\%	< $=5.0 \%$	>5.0\%
3B_NOXLOW	NOX	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.0\%
3 B -02	02	< $=2.0 \%$	>2.0\%	< $=1.0 \%$	>1.0\%

$\begin{array}{llll}\text { Perf: } & \text { [Part60 Daily CO] Zero }=20.0 \% \text { Range, } & \text { Span }=20.0 \% \text { Range } \\ \text { Perf: } & \text { [Part } 60 \text { Daily C0] Zero }=20.0 \% \text { Range, Span }=20.0 \% \text { Range } \\ \text { Perf: } & \text { [Part75 Daily Nox] Zero }=5.0 \text { \%Range, Span }=5.0 \% \text { Range, }\end{array}$
Part75 Daily NOx] Zero = 5.0 \&Range, $\mathrm{Span}=5.0$ \%Range, [Part60 Dajly NOX] Zero $=10.0 \%$ Range, Span $=10.0$ \%Range
ultPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$
Perf: $\quad \begin{aligned} & \text { (Range }<=50 \mathrm{ppm}) / 10 \mathrm{ppm}(50 \mathrm{ppm}<\text { Range }<=200 \mathrm{ppm}) \\ & \text { [Part75 Daily NOx] Zero }=5.0 \% \text { Range, } \mathrm{Span}=5.0 \% \text { Range, }[\text { Part } 60 \text { Daily NOx] Zero }=10.0 \text { \%Range, Span }\end{aligned}$
ItPerf: $\quad=10.0$ \&Range (Range $<=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )

## erf:

[Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \% 02$, [Part60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 02$

Company: Floridà Power \& Light Plant: West County Plant
City/St: Lnxahatchee, FL 33470
Source: stack3b

3B_NOXHIGH	NOX	0.0
3B_NOXLOW	NOX	0.0
3B_O2	O2	0.00
3B_COLOW	CO	0.0
3B_COHIGH	CO	0.0

200.0 ppm
10.0 ppm
$25.00 \%$
10.0 ppm
1200.0 ppm

Span of Analyzers:
3B_NOXHIGH NO

NOx	0.0	200.0 ppm
NOx	0.0	10.0 ppm
O2	0.00	$25.00 \%$
CO	0.0	10.0 ppm


3B_NOXLOW	NOX	0.0	10.0 ppm
3B_O2	O2	0.00	$25.00 \%$
3B_COLOW	CO	0.0	10.0 ppm
3B_COHIGH	CO	0.0	

1200.0 ppm

		Channe1			Target	Actual	Diff	Part60 Allowable						Part75 Allowable		
Date	Time			Type	Units	Units	Units	Error ${ }^{\text {a }}$	Units	9		0	Error \%	Units	\%	
02/18/2011	15:35	3B_COHIGH	CO	ZERO	0.000	0.500 1053500	5. 500	0.0	240.0	20.0	PASS	0	- N/A -	- N/A -	- N/A -	- N/A -
$02 / 18 / 2011$ $02 / 18 / 2011$	15:35	3 BCOHIGH	co	SPAN ZERO	1048.000 0.000	1053.500 0.100	5. 500 0.100	0.5 1.0	240.0 2.0	20.0 20.0	PASS	0	$-N / A$ $-N / A$	- N/A -	$-N / A$ $-N / A$	- N/A - $-\mathrm{N} / \mathrm{A}$
$02 / 18 / 2011$ $02 / 18 / 2011$	$15: 35$ $15: 35$	$3 \mathrm{3B}$ COLON	CO	ZERO SPAN	0.000 8.500	0.100 8.600	0.100 0.100	1.0 1.0	2.0 2.0	20.0 20.0	PASS	0	- N/A   $-\mathrm{N} / \mathrm{A}-$	- N/A - - N/A -	- N/A -	- N/A -   $-\mathrm{N} / \mathrm{A}-$
02/18/2011	15:35	3B_NOXHIGH	NOX	zero	0.000	0.000	0.000	0.0	20.0	10.0	PASS	0	0.0	10.000	5.0	PASS
02/18/2011	15:35	3B_NOXHIGH	NOx	SPAN	176.200	175.800	-0.400	-0.2	20.0	10.0	PASS	0	-0.2	10.000	5.0	PASS
02/18/2011	15:35	3B_NOXLOW	NOX	ZERO	0.000	0.100	0.100	1.0	1.0	10.0	PASS	0	1.0	5.000	5.0	PASS
02/18/2011	15:35	3B-NOXLOW	NOX	SPAN	8.700	8.700	0.000	0.0	1.0	10.0	PASS	0	0.0	5.000	5.0	PASS
02/18/2011	15:35	3B_02	02	zero	0.000	0.000	0.000	- N/A	2.0	- N/A -	PASS	0	- N/A -	1.000	- N/A -	pass
02/18/2011	15:35	$3 \mathrm{~B}^{-} 02$	02	SPAN	20.900	20.840	-0.060	- N/A	.	,	PASS	0	- N/A	1.000	- $\mathrm{N} / \mathrm{A}$	pass

FAIL = Difference Error > Regulations Allow
WARN $=$ Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: $40 C F R 75$ pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Part 60 Calibration (Absolute Average DIFF and Calibration \% Error

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \end{gathered}$	Error	Diff Units	Error
3B_COHIGH	CO	0.5	0.0\%	5.5	0.58
3B_COLOW	Co	0.1	1.08	0.1	1.0\%
3B_NOXHIGH	- NOx	0.0	0.0\%	0.4	$0.2 \%$
3B_NOXLOW	NOx	0.1	1.0\%	0.0	0.08
3B_02	O2	0.0	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration \% Error)

Channel		----ZERO----		----SPAN---	
		Diff	Error	Diff	Error
		Units	$\stackrel{1}{6}$	Units	\%
3B_COHIGH	Co	0.500	- N/A -	5.500	N/A
3B_COLOW	Co	0.100	- N/A -	0.100	- N/A -
3B_NOXHIGH	nox	0.000	0.0\%	0.400	$0.2 \%$
3B_NOXLOW	nox	0.100	1.0\%	0.000	0.08
3B_02	02	0.000	- N/A -	0.060	- N/A -
		Performance specification Part 60		Part 75	
Channel		PASS	FAIL	PASS	fail
3B_COHIGH	CO	<=20.0\%	>20.0\%	- N/A -	- N/A -
3B_COLOW	co	<=20.0\%	>20.0\%	- N/A -	- N/A -
3B_NOXHIGH	nox	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.0\%
38_NOXLOW	NOx	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.0\%
3B_02	02	$<=2.0 \%$	>2.0\%	$<=1.0 \%$	>1.0\%

erf: $\quad$ PPart 60 Daily Co] zero $=20.0$ \%Range, Span $=20.0$ \&Range
Perf: [Part60 Daily CO] Zero $=20.0 \%$ Range, Span $=20.0 \%$ Range
[Part75 Daily NOX] Zero $=5.0$ \&Range, Span $=5.0$ \&Range, [ Part 60 Daily NOx] Zero $=10.0$ \%Range, Span $=10.0$ \%Range
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ ) / 10 ppr ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$ erf: (Range<=50 ppm)/10 ppm ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )

Part75 Daily NOx] Zero $=5.0$ \&Range, Span $=5.0$ \%Range, [Part 60 Daily NOx] Zero $=10.0$ \%Range, Span
[Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )
Perf:
$[$ Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \% 02$, [Part60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 02$

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Scurce: stack3b


FAIL = Difference Error $>$ Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
WARN $=$ Error < Daily Allowed but > 5 Consecutive Day
TARG $=$ Invalid Target (not within regulatory specs)
$\begin{aligned} \text { TARG } & =\text { Invalid Target (not within regulator } \\ \text { RDG } & =\text { Reading exceeds "Range of Analyzer" }\end{aligned}$
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning
Note: 40 CFR75 pass/fail determination is performed after rounding the value of Errort, or Drift, to one decimal place

Company: Florida Power \& Light Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3b
Part 60 Calibration (Absolute Average DIFE and Calibration Error)

Channel		$\begin{gathered} \text { Diff } \\ \text { Units } \\ \hline \end{gathered}$	Error	Diff Units	Error
3B_COHIGH	CO	0.6	0.1\%	8.9	0.88
3B_COLOW	co	0.2	1.5\%	0.2	1.5\%
38_NOXHIGH	Nox	0.0	0.0\%	0.2	0.2\%
38_NOXLOW	Nox	0.1	0.5\%	0.0	0.0\%
3 B - 22	02	0.0	- N/A -	0.1	- N/A -

Part 75 Calibration (Absolute Average DIFF and Calibration 8 Error)

Channel		----ZERO----		SPAN	
		Diff	Error	Diff	Error
		Units	\%	Units	\%
3B_COHIGH	Co	0.550	- N/A	8.900	- N/R -
3B_COLOW	CO	0.150	- N/A -	0.150	- N/A -
3B_NOXHIGH	NOX	0.000	0.0\%	0.250	0.28
3B_NOXLOW	NOX	0.050	0.5\%	0.000	0.0\%
3B_02	02	0.000	- N/A -	0.060	- N/A -


Channel		Performance Specification Part 60		Part 75	
		PASS	FAIL	PASS	fail
3B_COHIGH	CO	<=20.0\%	>20.0\%	- N/A	- N/A
$3 \mathrm{~B}_{-} \mathrm{COLOW}$	CO	< $=20.0$ \%	>20.0\%	- N/A	- N/A
3B NOXHIGH	NOx	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.0\%
3B-NOXLOW	NOx	< $=10.0 \%$	>10.0\%	< $=5.0 \%$	>5.0\%
3B_O2	02	< $=2.0 \%$	>2.0\%	< $=1.0 \%$	>1.0\%

Perf: [Part60 Daily CO] Zero $=20.0$ \%Range, Span $=20.0 \%$ Range
Perf: [Part 60 Daily CO] Zero $=20.0$ \%Range, Span $=20.0$ \%Range
= Part75 Daily
AltPerf: [Part 75 Daily NOX] Zero $=5 \mathrm{ppm}$ (Range $=50 \mathrm{ppm}$ )/10 ppm ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$
Perf: [Part75 Daily NOx] Zero $=5.0 \%$ Range, Span $=5.0 \%$ Range, [Part60 Daily NOx] Zero $=10.0$ \%Range, Span
AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ )/10 ppm ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}) / 10 \mathrm{ppm}(50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm})$
Perf:
[Part75 Daily 02] zero $=1.0$ z02, Span $=1.0 \% 02,[$ Part 60 Daily 02] zero $=2.0 \% 02$, Span $=2.0 \% 02$

Daily Stack Calibration Report
Generated: 2/16/2011

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3b
Source: stack3b

Range of Analyzers:
3B_NOXHIGH 38-NOXLOW 3 B -NOXLO $3 \mathrm{~B}^{-} \mathrm{O}$ 3 B COLOW

NOX	0.0
NO $x$	0.0
O2	0.00
CO	0.0
CO	0.0

200.0 ppm 10.0 ppm 25.00 : 10.0 ppm
1200.0 ppm

Span of Analyzers:
3B_nOXhIGH 3B_NOXLOW $3 \mathrm{BB}_{-} \mathrm{NOX}$
$3 \mathrm{~B}-\mathrm{O} 2$ 3B_COLOW 3B_COLON
$3 \mathrm{~B}_{-} \mathrm{COHIGH}$

0.0	200.0 ppm
0.0	10.0 ppm
0.00	$25.00 \%$
0.0	10.0 ppm
0.0	1200.0 ppm



FAIL = Difference Error > Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Generated: 2/16/2011

[^16]
## APPENDIX 4

## LINEARITY AND CGA SUMMARY TABLES

CGA Calibration Report
Generated: 3/19/2011

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, EL 33470
Source: stack3b

Period Start: 3/18/201
Period End: 3/19/201
Included Calibrations: CGA (40CFR60)


CGA Calibration Report
Generated: 3/19/2011
Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3b

Date $\quad$ Time $\begin{gathered}\text { From } \\ 3 \mathrm{Pt} . \quad \text { Channe } 1\end{gathered}$					$\begin{array}{cc}\text { Target } \\ \text { Type } & \text { Units }\end{array}$		Actual	$\begin{aligned} & \text { Diff } \\ & \text { Units } \end{aligned}$	Error \% Units Allowable (40CFR60)				Bottle ID	Expire Date		
					Units											
03/18/2011	23:38	*	38_02	02			LOW	6.2	6.3	0.1	1.1	0.9	15.0	PASS	ALM033049	2/17/2014
03/18/2011	23:38	*	33-02	02	MID	13.8	13.8	0.0	-0.1	2.1	15.0	PASS	ALM032282	2/17/2014		
03/18/2011	23:17	*	33-02	02	LOW	6.2	6.3	0.0	0.2	0.9	15.0	PASS	ALM033049	2/17/2014		
03/18/2011	23:17	*	38_02	02	MID	13.8	13.8	0.0	-0.1	2.1	15.0	PASS	ALM032282	2/17/2014		
03/18/2011	23:00	*	$33^{-02}$	02	I.OW	6.2	6.3	0.0	0.5	0.9	15.0	pass	ALM033049	2/17/2014		
03/18/2011	23:00	*	3802	02	MID	13.8	13.8	0.0	-0.1	2.1	15.0	PASS	ALM032282	2/17/2014		

FAIL = Difference Error > Regulations Allow
TARG = Invalid Target (not within regulatory specs)
RDG = Reading exceeds "Range of Analyzer"
© Bottle is within 7 days of expiration
\# Bottle has Expired - Must be Replaced

Absolute Average DIFF and Absolute(Target - Average Reading)/Target) * 100


Performance			
Specification   Channel			$<=15.0 \%$
3B_COHIGH	CO	$>15.0 \%$	
3B_COLOW	Co	$<=15.0 \%$	$>15.0 \%$
3B_NOXHIGH	NOx	$<=15.0 \%$	$>15.0 \%$
3B_O2	O2	$<=15.0 \%$	$>15.0 \%$



## APPENDIX 5

## CYCLE TIME SUPPORTING DOCUMENTATION

> Babcock \& wilcox Power Generation Group NetDAHs© Average Values Report
> Version 59.0
> Generated: $3 / 18 / 201117: 50$

*Does not include Invalid Averaging Periods ("N/A")

CUSTOM INSTRUMENTATION
SERVICES CORPORATION
$\qquad$

Reference Gas Cylinder: Label Concentration
Nitrogen:
CO / Low $\qquad$

40 CTR 60 CO Response Time Test

DATE $3-18-11$
Performed by Justin HENETT
Serial Number Expiration Date
Cㄴ․1192
cc 343655
$\qquad$
$10 \cdot 21-12$

Nominal Stack Concentrations prior to test:
Oxygen: $\quad 13,2$

$$
\mathrm{CO}: \quad 0.483
$$

Record the following for reference to recorded DAHS data:


## APPENDIX 6

## EPA PROTOCOL GAS CERTIFICATES



ANALYTICAL RESULTS

Component	Requested   Purity	Certified   Concentration
NitrogenCEM	$99.9995 \%$	$99.9995 \%$
CARBON DIOXIDE	$<1 \mathrm{PPM}$	$<1.00 \mathrm{PPM}$
Moisture	$<1 \mathrm{PPM}$	0.26 PPM
NOx	$<0.1 \mathrm{PPM}$	$<0.10 \mathrm{PPM}$
SO2	$<0.1 \mathrm{PPM}$	$<0.10 \mathrm{PPM}$
THC	$<0.1 \mathrm{PPM}$	$<0.10 \mathrm{PPM}$
CARBON MONOXIDE	$<0.5 \mathrm{PPM}$	$<0.50 \mathrm{PPM}$
Oxygen	$<0.5 \mathrm{PPM}$	0.23 PPM

Notes:
Meets Federal Register specifications Title 40 .C.F.R. 72.2

Impurities verified against analytical standards traceable to NIST by weight and/or analysis.


Approved for Release <br> \section*{\title{
CERTIFICATE OF ANALYSIS <br> \section*{\title{
CERTIFICATE OF ANALYSIS <br> <br> <br> Grade of Product: EPA Protocol
}} <br> <br> <br> Grade of Product: EPA Protocol
}}

Part Number:	E03NI99E15A1668	Reference Number:	$122-124238078-3$
Cylinder Number:	CC343655	Cylinder Volume:	$144 \mathrm{Cu} . \mathrm{Ft}$.
Laboratory:	ASG - Durham - NC	Cylinder Pressure:	2015 SIG
Analysis Date:	Oct 21,2010	Valve Outlet:	660

Expiration Date: Oct 21, 2012

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1897)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of $95 \%$. There are no significant impurities which. affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psigi.e. 1 Mega Pascal


Triad Data Available Upon Request
Notes:


Approved for Release

# CERTIFICATE OF ANALYSIS <br> Grade of Product: EPA Protocol 

## Airgas Specialty Gases

630 United Drive
Durham, NC 27713
Phone (919) 544-3773
Fax (919) 544-3774
ww\%.alrgas.com

Part Number:	E03NI99E15A0011	Reference Number:	122-124238078-2
Cylinder Number:	CC166907	Cylinder Volume:	144 Cu.Ft.
Laboratory:	ASG - Durham - NC	Cylinder Pressure:	2015 PSIG
Analysis Date:	Oct 19,2010	Valve Outlet:	660

Expiration Date: Oct 19, 2012

Certification performed in accordance with "EPA Traceabilily Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not requre corection for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of $95 \%$. There are no significant impuriles which affect fie use of this callbration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

Component	ANALYTICAL RESULTS			Total Relative Uncertainty
	Requested Concentration	Actual   Concentration	Protocal   Method	
NITRIC OXIDE	175.0 PPM	176.2 PPM	G1	+/-1\% NIST Traceable
CARBON MONOXIDE	1035 PPM	1048 PPM	G1	+/-1\% NIST Traceable
NITROGEN.	Balance			

Total oxides of nitrogen $176.8 \mathrm{PPM} \quad$ For Reference Only

CALIBRATION STANDARDS				
NTRM	090603	CC288058	250,6PPM NITRIC OXID	Feb 01.2011
NTRM	020502	SGgif 42254 BAL	1488PPM CARBON MON	$=$ May 15, 2012
ANALYTICAL EQUIPMENT				
Instrument/Make/Model			Analytical Principle	Last Multipoint Calibration
Nicolet 6700\#1 CO			FTIR	Oct 04, 2010
Nicolet 6700 \#1 NO			FTIR	Oct 04, 2010

Triad Data Available Upon Request
Notes:


[^17]Dual-Analyzed Calibration Standard

## CERTIFICATE OF ACCURACY: EPA Protocol Gas

## Assay Laboratory

AIR LIQUIDE AMERICA SPECIALTY GASES LLC 6141 EASTON ROAD, BLDG 1 PLUMSTEADVILLE, PA 18949-0310

## Customer

FLORIDA POWER \& LIGHT
Document \# : 40533107-001
WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US
ANALYTICAL INFORMATION
This certification was performed according to EPA. Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Amended Procedure G-2, August 25, 1999.
Cylinder Number:
ALM016434
Certification Date: 21 Feb2011
Exp. Date: 22Aug2011

Cylinder Pressure***: 2015 PSIG

COMPONENT
CARBON MONOXIDE
NITROGEN

$\therefore$ Do not use when cylinder pressure is below 150 psig.

* Analytical accuracy is based on tha requirements of EPA Protocol procedures . September 1997.

REFERENCE STANDARD
TYPE/SRM NO. EXPIRATION DATE

CYLINDER NUMBER KALOO4042

CONCENTRATION
9.855 PPM

COMPONENT CARBON MONOXIDE

INSTRUMENTATION INSTRUMENT/MODEL/SERIAL\# SIEMENSIULTRAMAT GE/R8-236

DATE LAST CALIBRATED 10Feb2011

ANALYTICAL PRINCIPLE COICO2"ANALYZER

Special Notes:
APPROVED BY:


## CERTIFICATE OF ACCURACY: EPA Protocol Gas

Assay Laboratory
AIR LIQUIDE AMERICA SPECIALTY GASES LLC 6141 EASTON ROAD, BLDG PLUMSTEADVILLE, PA 18949-0310

Customer
FLORIDA POWER \& LIGHT
Document \# : 40633107-002
WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US
ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM059441 Certification Date: 21 Feb2011 Exp. Date: 22 Aug2011

Cylinder Pressure***: 2015 PSIG
COMPONENT
CARBON MÓNOXIDE
NITROGEN
** Do not use when cylinder pressure is below 150 psig
-* Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD
$\frac{\text { TYPE/SRMM NO. }}{\text { NTRM } 1677} \frac{\text { EXPIRATION DATE }}{01 \text { IUR2012 }}$

## CYLINDER NUMBER

$\frac{\text { CONCENTRATION }}{9.855 ~ P P M}$
COMPONENT
CARBON MONOXIDE
INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
DATE LAST CALIBRATED
ANALYTICAL PRINCIPLE SIEMENS/ULTRAMAT 6E/R8-236

10Feb2011
COICOZ ANALYZER

## ANALYZER READINGS

$$
\text { ( } Z=\text { Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation Coefficient) }
$$

## First Triad Analysis

CARBON MIONOXIDE
Date: 14Feb2011 Response Unlt:VOLTS
$Z 1=-0.03320 \quad$ R1 $=4.84370 \quad \mathrm{~T} 1=2.69370$
$R 2=4.85010 \quad Z 2=-0.05020 \quad T 2=2.68980$
$Z 3=-0.03980 \quad \mathrm{~T} 3=2.69150 \quad \mathrm{R} 3=4.84280$
Avg. Concentration: 5.580 PPM

Second Triad Analysis

Daie: 21Feb2011 Response Unit: VOLTS $\mathrm{Z} 1=0.02640 \quad \mathrm{R} 1=4.88920 \quad \mathrm{~T} 1=2.72860$ $\mathrm{R} 2=4.87880 \quad \mathrm{Z2}=0.03380 \quad \mathrm{~T} 2=2.73790$ $\mathrm{Z3}=0.03600 \quad \mathrm{~T} 3=2.73970 \quad \mathrm{R} 3=4.88910$ Avg. Concentration: 5:580 PPM

Calibration Curve

Concentration $=A+B x+C \times 2+D \times 3+E \times 4$	
$r=0.999990739$	
Constants:	$A=0.0190246$
$B=2.077972083$	$C=-0.0120773$
$D=$	$E=$

Special Notes:
APPROVED BY:


## CERTIFICATE OF ACCURACY: Interference Free ${ }^{\text {Tm }}$ Multi-Component EPA Protocol Gas

## Assay Laboratory

## Customer

P.O. No.: CEM-6035

FLORIDA P\&L-MARTIN PLTT-POH-CEM ONL.Y
AIR LIOUIDE AMERICA SPECTALTY GASES LLC
Project No.: 01-35874-002
6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310 21900 SW WARFIELD BLVD INDIANTOWN FL 34956

```
ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certificatlon of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: \({ }^{* * *}\) ALMO25866 Certification Date: 290 ct2010 Exp. Date: 280 Ct 2012
Cylinder Pressure***: 1962 PSIG
COMPONENT
CARBON MONOXIDE
NITRIC OXIDE
NITROGEN - OXYGEN FREE
```



```
TOTAL OXIDES OF NITROGEN 51.4 PPM Reference Value Only
** Do not use when cylinder pressure is below 150 psig.
** Analytioal accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.
```



ANALYZER READINGS
( $Z=$ Zero Gas $\quad R=$ Reference Gas $T=$ Test Gas $\quad r=$ Correlation Coefficient $)$
First Triad Analysis
Second Triad Analysis
Calibration Curve
CARBON MONOXIDE

Date: 220ct2010 Responsa Unit:PPM
$\mathrm{Z1}=0.01673 \quad \mathrm{R1}=239.9048 \quad \mathrm{~T} 1=299.7323$
R2 $2=239.9334 \quad \mathrm{Z2}=0.14016 \quad \mathrm{~T} 2=299.9462$
$Z 3=0.17124 \quad \mathrm{~T} 3=300.3045 \quad \mathrm{R} 3=238.9374$
Avg. Concentration: 301.1 :PPM
NITRIC OXIDE
Date: 220ct2010 Response Unit:PPM
$\mathrm{Z} 1=-0.12887 \mathrm{R} 1=48.84412 \quad \mathrm{~T} 1=61.06194$ $R 2=46.89432 \quad \mathrm{Z2}=-0.07937 \quad \mathrm{~T} 2=51.14584$ $Z 3=0.01313 \quad T 3=51.15833 \quad R 3=46.98010$ Avg. Concentration: 51.11 PPM

Date: 290ct2010 Response Unit: PPM $\mathrm{Z1}=-0.03420 \quad \mathrm{Ri}=240.0633 \quad \mathrm{~T} 1=299.7638$ R $2=240,1269 \quad 22=0.03466 \quad T 2=299.9593$ $Z 3=0: 08533 \quad T 3=300.2578 \quad R 3=240: 1329$ Avg. Concentration: 300,9 PPM

Date: 290ct2010 Response Unit: PPM $\mathrm{Z} 1=0.07736 \quad \mathrm{R} 1=46.70219 \quad \mathrm{~T} 1=50.89229$ $R 2=46.79544 \quad 22=0.12585 \quad T 2=50.91652$ $23=0.14749 \quad T 3=51.04982 \quad R 3=46.83210$ Avg. Concentration: 51:10 PPM

Concentration $=A+B x+C \times 2+D \times 3+E x 4$ $r=9.99998 \mathrm{E} \cdot 1$
Constants: $\quad A=0.00000 \varepsilon+0$ $\mathrm{B}=8.96123 \mathrm{E} \cdot 1 \quad \mathrm{C}=3.52000 \mathrm{E}-4$ $D=0.00000 E+0 \quad E=0.00000 E+0$

Concentration $=A+B x+C \times 2+D \times 3+E x 4$ $\mathrm{r}=9.99 \mathrm{gase}-1$
Constants:
$A=0.00000 E+0$
$B=9.82452 \mathrm{E} \cdot 1 \quad \mathrm{C}=1.98000 \mathrm{E} \cdot 4$ $D=0.00000 \varepsilon+0 \quad E=0.00000 E+0$

Page

Air Liquide America Specialty Gases LLC

SCOTT

## RATA CLASS

Dual-Analyzed Calibration Standard

## CERTIFICATE OF ACCURACY: Interference Free ${ }^{\text {TM }}$ Multi-Component EPA Protocol Gas


** Do not use when cylinder pressure is below 160 psig.

* Analytical accuracy is based on the requirements of EPA Piotocol Procedure G1, Saptember 1997.


APPROVED BY:

Air Liquide America Specielly Gases LLC

RATA CLASS
Dual-Analyzed Calibration Standard

## CERTIFICATE OF ACCURACY: EPA Protocol Gas

## Assay Laboratory

P.O. No.:

AIR LIOUIDE AMERICA SPECIALTY GASES LLC 6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310
WEST COUNTY ENERGY
20202 STATE ROAD 80 LOXAHATCHEE FL 33470

US

This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM033049 Cylinder Pressure***

2000 PSIG
COMPONENT
OXYGEN
NITROGEN

ACCURACY** TRACEABILITY $+\overparen{-1 \%} \quad$ Direct NIST and VSL
*: Do not use when cylinder pressure is below 160 psig.

* Analytical accuracy is based on the raquirements of EPA Protocol Procedure G1, September 1997.



## CERTIFICATE OF ACCURACY: EPA Protocol Gas

## Assay Laboratory

## P.O. No.

Customer
FLORIDA POWER \& LIGHT
AIR LIQUIDE AMERICA SPECIALTY GASES LLC 6141 EASTON ROAD, BLDG 1 PLUMSTEADVILLE, PA 18949-0310

WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US
ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM032282 Certification Date: 18Feb2011 Exp. Date: 17 Feb2014
Cylinder Pressure***: 2000 PSIG

COMPONENT	CERTIFIED	CONCENTRATION (Moles)	ACCURACY**	TRACEABILITY
OXYGEN		13.8 \%	+ 1 \%	Direct NIST and VSL

NITROGEN
BALANCE
":" Do not use when cylinder pressure is balow 150 psig.
** Analvtical accuracy is based on the requirements of EPA Protocol Procedure G1. September 1997.

## REFERENCE STANDARD



## ANALYZER READINGS $-(Z=$ Zero Gas $R=$ Reference Gas $T=$ Test Gas $r=$ Correlation Coefficient

First Triad Analysis
Second Triad Analysis
Callibration Curve

## OXYGEN

Date: 18Feb2011 Response Unit:VOLTS

$Z 1=-0.00160$	$R 1=4.58880$	$T 1=2.72560$
$R 2=4.58540$	$Z 2=-0.00110$	$T 2=2.72480$
$Z 3=-0.00210$	$T 3=2.72550$	$R 3=4.58360$
Avg. Concentration: $\quad 13.80$	$\%$	

Avg. Concentration: 13.80 \% Air Liquida America
Specialty Gases LLC

Scott"
Dual-Analyzed Calibration Standard

## CERTIFICATE OF ACCURACY: EPA Protocol Gas

## Assay Laboratory

Customer
FLORIDA POWER \& LIGHT
Document \# : 40533107-005 6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310

WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM008490 Certification Date: 15 Feb2011 Exp. Date: 14 Feb2014
2000 PSIG Certication Date. 15Feb2011

*. Do not use when cullinder pressure is below 150 psig.

* Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.


## REFERENCE STANDARD

$\begin{array}{llll}\text { REFERENCE STANDARD } \\ \text { TYPE/SRMM NO. } \\ \text { NTRM } 2350 & \frac{\text { EXPIRATION DATE }}{01 D e c 2011} & \frac{\text { CYLINDER NUMBER }}{\text { KOOB902 }} \quad \frac{\text { CONCENTRATION }}{1.23 .20 \%} & \text { COMPONENT } \\ \text { OXYGEN }\end{array}$
$\frac{\text { DATE LAST CALBRATED }}{174 \mathrm{~F}_{6} 2011}$
ANALYTICAL PRINCIPLE
INSTRUMENT/MODEL/SERIAL\#
SIEMENSIOXYMAT S1N:1-0407.

$$
\overline{\mathrm{KOOBPO2}}
$$

## ANALYZER READINGS

$$
Z=\text { Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation Coefficient })
$$

First Triad Analysis
OXYGEN
Date: 15 Fab 2011 Respionse UnIt:VOLTS
$Z 1=-0.00240 \quad$ R $1=4.58780 \quad$ T1 $=4.46640$
$R 2=4.58950 \quad Z 2=0.00150 \quad T 2=4.46570$
$23=-0.00120 \quad T 3=4.46700 \quad R 3=4.58940$
Avg. Concentration: $22.60 \%$

Second Triad Analysis
Calibration Curve

Concentration $=A+B x+C \times 2+D \times 3+E x 4$	
$r=0.999999418$	2350
Constants:	$\cdot A=0.01748296$
$B=6.053896951$	$C=$
$D=$	$E=$

Special Notes:
APPROVED BY:


## APPENDIX 7

## DAHS VERIFICATION DOCUMENTATION

B\&W PGG, KVB-Enertec, INC.
Formula verification Report
UNIT 3B
Plant Name: WEST COUNTY ENERGY CENTER
ORISPL \#: 056407
Date: March 19, 2011
FORMULAS THAT PASSED VERIFICATION:


Certified for all Utilities reporting under 40 CFR Part 75 with B\&W PGG KVB/Enertec Products NetDAHS 8.0.150 SP4 release installed

UTILITY NAME:	$\underline{\text { ANY }}$
PLANT NAME:	$\frac{A n y}{A n y}$
ORISPL:	
DAHS SOFTWARE:	$\frac{\text { B } \& W}{}$ Power Generation Group - KVB/Enertec Products NetDAHS
DATE PERFORMED:	$03 / 02 / 2011$

I certify that the automated Data Acquisition and Handling system (DAHS) component of each CEM System identified in the attached results was tested and that proper computation of the missing data substitution procedures was verified. The results of the verification test for the missing data routine are included.
ofndown
March 3, 2011
Signature Date

John F. Downs
Printed Name

Test Number 1
Availability $>=95 \%$ and MDP $<=24$ hours.

SO2 - Passed
NOX - Passed
FLOW - Passed
CO 2 - Passed
02 - Passed
MOISTURE - Passed
Test Number 2
Availability $=95 \%$ and MDP $<=24$ hours. Boundary test.

```
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
```

Test Number 3

```
Availability >= 95% and MDP > 24 hours. HB/HA value is greater than the 90th percentile.
```

```
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
```

Test Number 4

```
Availability >= 95% and MDP > 24 hours and HB/HA value is less
 than the 90th percentile.
```

SO2	- Passed
NOX	- Passed
FLOW	- Passed
CO2	- Passed
O2	- Passed
MOISTURE	- Passed

Test Number 5

$$
\text { Availability }>=90 \% \text { and }<95 \% \text { and MDP }<=8 \text { hours. }
$$

SO2	- Passed
NOX	- Passed
FLOW	- Passed
CO2	- Passed
O2	- Passed
MOISTURE	- Passed

Test Number 6

```
Availability >= 90% and < 95% and MDP > 8 hours and HB/HA value
 is > 95th percentile.
```

```
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
```

Test Number 7

```
Availability }>=90%\mathrm{ and < 95% and MDP > 8 hours and 95th
 percentile > HB/HA value.
```

SO2 - Passed
NOX - Passed

```
\begin{tabular}{ll}
FLOW & - Passed \\
CO 2 & - Passed \\
O 2 & - \\
MOISTURE & - Passed \\
MOssed
\end{tabular}
Test Number 8
```

```
Availability < 90% and MDP > 0 hours.
```

Availability < 90% and MDP > 0 hours.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 9
Maximum potential Initial missing data period. Load Range or
next higher Load Range not available.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 10
Initial missing data period. 720 LookBack Period.
SO2 - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 11
< 2160 QA hours available. Initial missing data period.
Next higher Load Range available.
NOX - Passed
FLOW - Passed

```

Test Number 12
< 2160 QA hours available. Initial missing data period. Load Range available.
```

NOX - Passed
FLOW - Passed
Test Number 13
NOx, Flow availability > 80% and < 90% and MDP > 0.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
MOISTURE - Passed
Test Number 14
NOx, Flow availability < 80% and MDP > 0.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Summary
Number Of Tests Passed: 73
Number Of Tests Failed: 0
Start: 3/2/2011 2:31:56 PM
End: 3/2/2011 2:35:00 PM

```

\section*{APPENDIX 8}

40 CFR 75 MONITORING PLAN

Facility Name: West County Energy Center

\section*{Facility Details}
\begin{tabular}{ll}
Facility ID (ORISPL): & 56407 \\
Monitoring Plan Location IDs: & WCCT3B \\
State: & FL \\
County: & Palm Beach \\
Latitude: & 26.6986 \\
Longitude: & -80.3747
\end{tabular}

Reporting Frequency
\begin{tabular}{|c|c|c|c|}
\hline Monitoring Plan Locätion IDs & Reporting Frequency & Begin Quarter & End Quarier \\
\hline WCCT3B & Q-Quarterly & 2010 QTR 4 & \\
\hline
\end{tabular}

Monitoring Location Attributes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Unitstackipipe Identifer & Duct findicator & Ground Sevation & Stack Height & Cross Area Exit & Cross Area Flow & Material Code & Shape Code & Begin Date & End Date \\
\hline WCCT3B & & 25 & 150 & 359 & & OTHER & ROUND & 12/01/2010 & \\
\hline
\end{tabular}

Unit Operation Information
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Unit identifier} & \multirow[t]{2}{*}{Commence Commercial Operation Date} & \multirow[t]{2}{*}{Commence Operation Däte} & \multicolumn{3}{|c|}{Bofler/Turbine Type} & \multicolumn{3}{|c|}{Max Heat Input} \\
\hline & & & Cobde & Begin Date & End Date & & Begin Date & Eid Date \\
\hline WCCT3B & 12/03/2010 & 12/01/2010 & cc & 12/01/2010 & & 2761.0 & 12/01/2010 & \\
\hline
\end{tabular}

Unit Program Information
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{ Unit Identifer } & Program Code & Unit Class & \begin{tabular}{c}
Unit Monitor Certification \\
Begin Date
\end{tabular} & \begin{tabular}{c}
Unit Monitor Certification \\
Deadline
\end{tabular} \\
\hline WCCT3B & ARP & P2 & \(12 / 03 / 2010\) & \\
\cline { 2 - 5 } & CAIRNOX & A & \(12 / 03 / 2010\) & \\
\cline { 2 - 5 } & CAIROS & A & \(12 / 03 / 2010\) & \\
\cline { 2 - 5 } & CAIRSO2 & A & \(12 / 03 / 2010\) & \\
\hline
\end{tabular}

\section*{Facility Name: West County Energy Center}

Facility ID (ORISPL): 56407
Monitoring Plan Printout Report

Unit Fuel

Unit Controls

Facility Name: West County Energy Center Facility ID (ORISPL): 56407

Monitoring System / Analytical Components
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline UnitStack & \multicolumn{5}{|c|}{System} & \multicolumn{9}{|c|}{Component} \\
\hline Identifier: & I'D. & Type. & Des & Begin Date/Hour & End Date/Hour & ID & Type & STAM & BAS & Manufacturer & Model or Version & Serial Number & Begin Date/Hour & End DateiHour \\
\hline \multirow[t]{9}{*}{WCCT3B} & \multirow[t]{4}{*}{B01} & \multirow[t]{4}{*}{NOX} & \multirow[t]{4}{*}{P} & \multirow[t]{4}{*}{12/01/2010 00} & \multirow[t]{4}{*}{} & 900 & DAHS & & & BABCOCK \& WILCOX PGG & 8.0.150_SP4 & WC3B & 12/01/2010 00 & \\
\hline & & & & & & B01 & NOX & EXT & D & TECO & 42I-LS & 0934838563 & 12/01/2010 00 & \\
\hline & & & & & & B02 & O2 & EXT & D & SERVOMEX & 1440D & \[
\begin{gathered}
\hline \text { 01440D1V } \\
\text { 02/4248 }
\end{gathered}
\] & 12/01/2010 00 & \\
\hline & & & & & & B03 & PRB & EXT & & CISCO & EP750 & 10008100-8 & 12/01/2010 00 & \\
\hline & \multirow[t]{3}{*}{B02} & \multirow[t]{3}{*}{GAS} & \multirow[t]{3}{*}{P} & \multirow[t]{3}{*}{12/01/2010 00} & \multirow[t]{3}{*}{} & 900 & DAHS & & & BABCOCK \& WILCOX PGG & 8.0 .150 SP4 & WC3B & 12/01/2010 00 & \\
\hline & & & & & & B04 & GFFM & TUR & & THERMO & 6500 & 6000297822-102 & 12/01/2010 00 & \\
\hline & & & & & & B05 & GFFM & ORF & & ROSEMONT & 305AC9 & 1000510 & 12/01/2010 00 & \\
\hline & \multirow[t]{2}{*}{B03} & \multirow[t]{2}{*}{OILM} & \multirow[t]{2}{*}{P} & \multirow[t]{2}{*}{12/01/2010 00} & \multirow[t]{2}{*}{} & 900 & DAHS & & & BABCOCK \& WILCOX PGG & 8.0.150_SP4 & WC3B & 12/01/2010 00 & \\
\hline & & & & & & B06 & OFFM & COR & & MICRO MOTION & CMF300M & 14147591 & 12/01/2010 00 & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{3}{*}{System Types Descriptions:}} & \multicolumn{3}{|c|}{NOX - NOx Emission Rale} & & & & & & & & \\
\hline & & & & \multicolumn{3}{|c|}{GAS - Gas Fuel Flow} & & & & & & & & \\
\hline & & & & \multicolumn{3}{|c|}{OILM - Mass of Oil Fuel Flow} & & & & & & & & \\
\hline \multicolumn{4}{|l|}{System Designations Descriptions:} & \multicolumn{2}{|r|}{P-Primary} & & & & & & & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{4}{*}{Sample Acquisition Method (SAM):}} & \multicolumn{2}{|c|}{TUR - Turbine} & & & & & & & & & \\
\hline & & & & \multicolumn{2}{|c|}{ORF - Orifice} & & & & & & & & & \\
\hline & & & & \multicolumn{2}{|r|}{EXT - Dry Extractive} & & & & & & & & & \\
\hline & & & & \multicolumn{2}{|c|}{COR - Coriolis} & & & & & & & & & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{Component Types Descriptions:}} & \multicolumn{4}{|r|}{DAHS - Data Acquisition and Handling System} & & & & & & & \\
\hline & & & & \multicolumn{2}{|r|}{NOX - NOx Concentration} & & & & & & & & & \\
\hline & & & & \multicolumn{2}{|r|}{O2-O2 Concentration} & & & & & & & & & \\
\hline & & & & \multicolumn{2}{|r|}{PRB - Probe} & & & & & & & & & \\
\hline & & & & \multicolumn{2}{|r|}{GFFM - Gas Fuel Flowmeter} & & - & & & - & & & & \\
\hline & & & & \multicolumn{2}{|r|}{OFFM - Oil Fuel Flowmeter} & & & & & & & & & \\
\hline
\end{tabular}

\section*{Monitoring System Fuel Flow}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline UnitStackPipe Identifier & Systern ID. & Fual Code & Max Fuel Flow Rate & Units of Measure & Source Code & Begin Date/Hour & End Date/Hour \\
\hline \multirow[t]{2}{*}{WCCT3B} & B02 & PNG & 30667.0 & HSCF & URV & 12/01/2010 00 & \\
\hline & B03 & DSL & 126880.0 & LBHR & UMX & 12/01/2010 00 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Facility Name: West County Energy Center} & & & \multicolumn{2}{|l|}{\begin{tabular}{l}
Monitoring Plan Printout Report \\
March 28, 2011 07:10 PM
\end{tabular}} \\
\hline \multirow[t]{2}{*}{System Fuel Codes Descriptions:} & \multicolumn{2}{|l|}{PNG - Pipeline Natural Gas} & & & & \\
\hline & DSL - Diesel Oil & & & & & \\
\hline \multirow[t]{2}{*}{Units of Measure Descriptions:} & \multicolumn{2}{|l|}{LBHR - Pounds / Hour} & & & & \\
\hline & HSCF - Hundred Sta & bic Feet/ / \(/\) our & & & & \\
\hline \multirow[t]{2}{*}{Source Codes Descriptions:} & \multicolumn{2}{|l|}{URV - Upper Range Value} & & & & \\
\hline & \multicolumn{2}{|l|}{UMX - Unit Maximum Rate} & & & & \\
\hline Analyzer Range Data & \multicolumn{2}{|l|}{} & & & & \\
\hline Unitistackipipe Identifer & Component Type & Component ID & Range Code & Dual Range Indicator & Begin Date/Hour & End Date/Hour \\
\hline \multirow[t]{2}{*}{wССТзв} & NOX & 801 & Auto Ranging & Y & 12/01/2010 00 & \\
\hline & 02 & B02 & High Range & & 12/01/2010 00 & \\
\hline Component Typas Descriptions: & OX - NOx Concentratio & & & & & \\
\hline
\end{tabular}

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407

Emissions Formulas
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline UniustackRipe Identifier & Parameter & Formula ID & Formula Code & Formula & Begin Date/Hour & End Date/Hour \\
\hline \multirow[t]{13}{*}{WCCT3B} & CO2 & B01 & G-4 & CO2-gas \(=(1040\) * F\#(B04) * (1/385) * 44.0) / 2000 & 12/01/2010 00 & \\
\hline & NOXR & B02 & F-5 & \(\mathrm{E}=1.194^{*} 10^{* *}-7\) * S\#(B01-B01) * F\#(B12) * (20.9/(20.9-S\#(B02-B01)) & 12/01/2010 00 & \\
\hline & NOX & B03 & F-24A & NOX_mass = F\#(B02)* \({ }^{\text {F }}\) (\({ }^{\text {(B06) }}\) & 12/01/2010 00 & \\
\hline & HI & B04 & D-6 & HI_gas \(=\left(\mathrm{S} \#(\mathrm{B05-B02}){ }^{*}\right.\) GCV_gas)/ \(10{ }^{* *} 6\) & 12/01/2010 00 & \\
\hline & HI & B05 & D-8 & HI_oil = S\#(B06-B03) * GCV_oil \(10{ }^{* *} 6\) & 12/01/2010 00 & \\
\hline & HI & B06 & D-15A & & 12/01/2010 00 & \\
\hline & SO2 & B07 & D-5 & SO2_glb/hr \(=0.0006^{*}\) F\#(B04) & 12/01/2010 00 & \\
\hline & SO2 & B08 & D-2 & SO2_rate-oil \(=2.0\) * S\#(B06-B03) * \%S_oil \(/ 100.0\) & 12/01/2010 00 & \\
\hline & SO2 & B09 & D-12 & SO2_TOTAL \(=\) ((F\#(B08) * T_OIL) + (F\#(B07) * T_GAS)) & 12/01/2010 00 & \\
\hline & CO 2 & B10 & G-4 & W_CO2 = 1420 * F\#(B05) * 1/385 * 44.0 / 2000 & 12/01/2010 00 & \\
\hline & CO 2 & B11 & G-4A & CO2_unit =(\(\left(\mathrm{F} \#(\mathrm{BO} 1)^{*}\right.\) T_gas) + (F\#(B10) * T_oil) \(/ \mathrm{T}\) _unit & 12/01/2010 00 & \\
\hline & FD & B12 & F-8 & F_c = X_oil * 1420 + X_gas * 1040 & 12/01/2010 00 & * \\
\hline & FGAS & B13 & N -GAS & GAS_TOTAL \(=\) S\#(B04-B02) + S\#(B05-B02) & 12/01/2010 00 & \\
\hline
\end{tabular}

Parameter Codes Descriptions: \(\quad \mathrm{CO} 2-\mathrm{CO} 2\) Hourly Mass Rate (ton/hr)
NOXR - NOX Emission Rate (\(\mathrm{Ib} / \mathrm{mmBtu}\))
NOX - NOx Hourly Mass Rate (Ib/hr)
HI - Heat Input Rate (mmBtu/hr)
SO2-SO2 Hourly Mass Rate (lb/hr)
FD - F-Factor Dry-basis
FGAS - Gas Hourly Flow Rate (hscf)
Formula Codes Descriptions:
N-GAS - FGAS (net gas flow rate)
G-4A - CO2 (from CO2 rate for multiple fuels)
G-4-CO2 (from HI, Fc)
F-8 - FD/FC/FW (from multiple fuels)
F-5 - NOXR/SO2R (from NOX or SO2 dry, O2 dry. Fd)
F-24A - NOX (from NOX rate, HI)
D-8-HI (from oil flow rate, GCV)
D-6 - HI (from gas flow rate, GCV)
D-5 - SO2 (from gas SO2 emission rate, HI)
D-2 - SO2 (from OILM, oil sulfur content)
D-15A - HI (from HI rate for multiple fuels)
D-12 - SO2 (from SO2 rate for multiple fuels)
\begin{tabular}{cl}
Facility Name: & West County Energy Center \\
Facility ID (ORISPL): & 56407
\end{tabular}

\section*{Span Values}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Unitistack IPipe Identifier & \[
\begin{aligned}
& \text { Comp } \\
& \text { Type }
\end{aligned}
\] & Scale & Method & MPCI MPE & MEC & Span Value & Full-Scalè Range & Units of Measure & Scale
Transition
Point & Def. High Range Valué & Fiow Full Range (SCFH) & Flow Span Valué (SCFH) & Begin Date/Hour & End Date/Hour \\
\hline \multirow[t]{3}{*}{WCCT3B} & NOX & H & TB & 200.0 & 10.0 & 200.000 & 200.000 & PPM & 9.0 & & & & 12/01/2010 00 & \\
\hline & NOX & L & F & & 10.0 & 10.000 & 10.000 & PPM & 9.0 & & & & 12/01/2010 00 & \\
\hline & 02 & H & & & & 25.000 & 25.000 & PCT & & & & & 12/01/2010 00 & \\
\hline
\end{tabular}

Component Types Descriptions:
NOX - NOX Concentration
O2-O2 Concentration
Span Method Codes Descriptions:
TB - Table Defaults from Part 75
F - Formula
PPM - Parts per Million
PCT - Percentage

Unit/Stack/Pipe Load or Operating Level Information
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Unit/Stack/Pipe Identifier & Waximum Hourly Load & Units of Measure & Upper Bound of Range of Operation & Lower Bound of Range of Operation & Designated Normal Op. Level & Second Most Frequently Used Op. Level & \begin{tabular}{l}
Second \\
Normal \\
Indicator
\end{tabular} & Load Analysis Date & Begin Date/Hour & End Date/Hour \\
\hline WCCT3B & 417 & MW & 417 & 55 & High & Mid & Yes & 12/01/2010 & 12/01/2010 00 & \\
\hline
\end{tabular}

\section*{Monitoring Defaults}

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407

Monitoring Plan Printout Report
March 28, 2011 07:10 PM

\section*{APPENDIX 9}

\section*{GAS AND OIL FUEL METER CERTIFICATION DOCUMENTATION}

\section*{FLOW ELEMENT INSPECTION / CLOSURE REPORT}

Remarks

Figure 1. Discharge coefficient verṣus pipe Reynolds Namber for 6-inch meter SN\# 1000510

Table 1. Utah Water Research Laboratory Flow Meter Calibration Data
\begin{tabular}{llrr}
Manufacturer: & Triad Measurement \& Equipment & Throat Diameter (in.) \(=\) & 3.5480 \\
Calibration Date: & \(3 / 3 / 2010\) & Beta Ratio (dID) \(=\) & 0.5850 \\
Calibration Location: & 12 -inch south supply line & Inlet Diameter (in.) \(=\) & 6.065 \\
End User: & WOP LLD & Nominal Pipe dial. \(=\) & 6 -inch \\
Serial Number: & 1000510 & Pipe Diameter (in.) \(=\) & 6.065 \\
Meter / Tag Number: & 3FGA-FE-1001 \(/ 3\) FGA-FE-1001 & & \\
Meter Description: & 6-Inch Orifice Flange Meter Tube & Water Temp. \((\mathrm{F})=\) & 43.5 \\
& Tap Set A & Unit Weight \((\mathrm{pcf})=\) & 62.42 \\
& & Kin. Wisc. \(\left(\mathrm{ft}^{\wedge} 2 / \mathrm{s}\right)=\) & \(1.58 \mathrm{E}-05\)
\end{tabular}

Calibration Performed by: Z. Sharp
Calibration Witnessed by: NA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Run \\
No.
\end{tabular} & \begin{tabular}{c}
Flow \\
(gpo)
\end{tabular} & \begin{tabular}{c}
\(\Delta H\) \\
(in. \(\mathrm{H}_{2} \mathrm{O}\))
\end{tabular} & \begin{tabular}{c}
Inlet \\
Reynolds \\
Number
\end{tabular} & \(\mathbf{C}\) & \begin{tabular}{c}
Lev from \\
mean \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
UncertaInty \\
in \(\mathbf{C}\) \\
\((\%)\)
\end{tabular} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & 150.5 & 10.48 & 53,620 & 0.6119 & \(0.73 \%\) & \(0.27 \%\) \\
2 & 272.5 & 34.56 & 97,113 & 0.6104 & \(0.48 \%\) & \(0.27 \%\) \\
3 & 387.1 & 69.94 & 137,926 & 0.6095 & \(0.32 \%\) & \(0.30 \%\) \\
4 & 507.9 & 121.31 & 180,977 & 0.6072 & \(-0.05 \%\) & \(0.27 \%\) \\
5 & 623.8 & 182.81 & 222,289 & 0.6075 & \(0.00 \%\) & \(0.26 \%\) \\
6 & 726.9 & 247.69 & 259,041 & 0.6082 & \(0.12 \%\) & \(0.25 \%\) \\
7 & 851.4 & 341.25 & 303,389 & 0.6069 & \(-0.10 \%\) & \(0.27 \%\) \\
8 & 970.2 & 443.75 & 345,734 & 0.6065 & \(-0.17 \%\) & \(0.26 \%\) \\
9 & 1090.0 & 561.88 & 388,422 & 0.6055 & \(-0.32 \%\) & \(0.26 \%\) \\
10 & 1207.6 & 690.00 & 430,337 & 0.6054 & \(-0.35 \%\) & \(0.26 \%\) \\
11 & 1318.7 & 822.50 & 469,910 & 0.6055 & \(-0.33 \%\) & \(0.25 \%\) \\
12 & 1434.8 & 973.75 & 511,282 & 0.6055 & \(-0.34 \%\) & \(0.25 \%\)
\end{tabular}.

Average coefficient for all data : 0.6075

Certified by:

Steven L. Barfuss P.E.
Research Assistant Professor

Table 2. Utah Water Research Laboratory Flow Meter Calibration Data

Certified by:

Steven L. Barfuss P.E.
Research Assistant Professor
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{TRIAD MEASUREMENT \& EQUIPMENT, INC. PO BOX 6237 KINGWOOD, TX 77325 PH 281-359-2300 FAX 281-359-2757} \\
\hline \multicolumn{4}{|r|}{FE-Sizer for Windows 95/98/Me/NT/2000/XP/2003 Server - Version 3.0, Release 3.43.1. Copyright © 1994-2010 Control-Soft Enterprises All rights reserved. Licensed to: Triad Measurement \& Equipment Inc.} \\
\hline \multicolumn{4}{|c|}{Service Data} \\
\hline Tag: Serv: Line No.: & \begin{tabular}{l}
A-FE-1001 \\
G A DUCT BNR FUEL GAS INLET
\end{tabular} & \begin{tabular}{l}
Client: \\
Project: \\
J.O.IP.O. No.
\end{tabular} & \begin{tabular}{l}
WCPP LLC \\
West County Energy Ctr. Unit 3
\[
161354.64 .0602
\]
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Calculation Method \& Base Conditions} \\
\hline Sizing Parameter: Atm Press, Patm: & FLOWMETER FLOW 14.696 psia & \begin{tabular}{l}
C-Std: \\
Tap Loc:
\end{tabular} & API 2530/AGA 3 (1992) UPSTREAM \\
\hline \multicolumn{4}{|c|}{Meter/Pipe Data} \\
\hline \begin{tabular}{l}
Meter Type: \\
Meter Style: \\
Nom Pipe Size: \\
Pipe I.D., D(ref):
\end{tabular} & ORIFICE PLATE CONCENTRIC 6.00 in
\[
6.065 \text { in }
\] & \begin{tabular}{l}
Meter MatI: \\
Tap Style: \\
Pipe Matl: \\
Pipe Sched:
\end{tabular} & 316/316L SS FLANGE TAPS CARBON STEEL STD \\
\hline \multicolumn{4}{|c|}{Sizing Data} \\
\hline Orifice Bore, d (60 Maximum Differen Normal Differentlal & \begin{tabular}{l}
\(\operatorname{deg} F\)): \\
al, dPm (ref dP - H2O @ 60.0 deg F) \\
dPm (ref dP - H2O @ 60.0 deg F):
\end{tabular} & & 3.5480 in 250.000 in WC 150.000 in WC \\
\hline \multicolumn{4}{|c|}{Fluld Data} \\
\hline \begin{tabular}{l}
Fluid: \\
State-Units-Equatio \\
Specific Gravity, G \\
Compressibility (Fl \\
Pressure (Flowing) \\
Temperature (Flow \\
Viscosity, U: \\
Specific Heat Ratio
\end{tabular} & \begin{tabular}{l}
-Condition: \\
wing), Zf1: \\
Pf1: \\
g), Tf1: \\
(cp/Cv), \(k\) :
\end{tabular} & & \begin{tabular}{l}
GAS \\
R-MASS-PVT-FLOWING \\
0.6000 \\
1.0000 \\
44.7000 psia \\
95.0 deg F \\
0.01500 cPoise \\
1.4000
\end{tabular} \\
\hline \multicolumn{4}{|c|}{Calculated Results} \\
\hline \begin{tabular}{l}
Sizing Factor, Sm: \\
Pipe Reynolds Nu \\
Pipe Reynolds Num \\
Discharge Cooffici \\
Expansion Factor, \\
Bore Expansion Fa \\
Pipe Expansion Fa \\
Permanent dP Los \\
Throat Velocity @ \\
Beta, B (68.0 deg \\
Maximum Flow, W \\
Normal Flow, Wn: \\
Orifice Uncertainty \\
Calc Memo:
\end{tabular} & \begin{tabular}{l}
ber @ Maximum Flow, RD: ber @ Normal Fow, RD: \\
t. C: \\
\(1:\) \\
For, Fad: \\
or, FaD: \\
ax Flow: \\
Jo: \\
4200-01-01 ASME Calibrated
\end{tabular} & & \begin{tabular}{l}
0.212049 \\
1110809 \\
860429 \\
0.605705 \\
0.961015 \\
1.000259 \\
1.000166 \\
64.54 \% \\
\(496.13 \mathrm{ft} / \mathrm{s}\) \\
0.58500 \\
\(16002.7 \mathrm{lb} / \mathrm{h}\) \\
\(12395.7 \mathrm{lb} / \mathrm{h}\) \\
\(0.50 \%\)
\end{tabular} \\
\hline Sales Order Numb By: Taher Fodeibo & \[
14200
\] & & Sht:_of_Chk:
Rev: 0 Date: 13 Oct 2010 \\
\hline
\end{tabular}

Traceable to Intexnational Standards. Details at www.microantion.com.

\section*{CUSTOM INSTRUMENTATION SERVICES CORPORATION}

\section*{CERTIFICATION REPORT \\ UNIT SC \\ CONTINUOUS EMISSION MONITORING SYSTEM \\ WEST COUNTY ENERGY CENTER \\ LOXAHATCHEE, FLORIDA}

PREPARED FOR: FLORIDA POWER AND LIGHT COMPANY
PREPARED BY: CUSTOM INSTRUMENTATION SERVICES CORPORATION

REV. \(\qquad\) 0
COPY NO \(\qquad\)
DATE: April 26, 2011

TABLE OF CONTENTS
1. INTRODUCTION 3
2. CEMS CERTIFICATION 6
2.1 RELATIVE ACCURACY 6
2.2 BIAS CHECK 7
2.3 CALIBRATION ERROR/CALIBRATION DRIFT 7
2.4 LINEARITY/CGA 7
2.5 CYCLE TIME 7
3. DAHS VERIFICATION 8
4. DISCUSSION OF RESULTS 8
APPENDIX 1. Air Hygiene RATA Test Report
APPENDIX 2. 40CFR75 QA Cert Test Detail Report
APPENDIX 3. CEMS Calibration Drift Reports
APPENDIX 4. Linearity and CGA Summary Tables
APPENDIX 5. Cycle Time Supporting Documentation
APPENDIX 6. EPA protocol Gas Certificates
APPENDIX 7. DAHS Verification Documentation
APPENDIX 8. 40 CFR 75 Monitoring Plan
APPENDIX 9. Gas and Oil Fuel Meter Certification Documentation

\section*{1. INTRODUCTION}

The West County Energy Center is a nominal 3,750 megawatt (MW) power plant located in Loxahatchee, Florida. Three nominal \(1,250 \mathrm{MW}\) gas-fired combined cycle units use ultralow sulfur (ULS) fuel oil as backup fuel. Each combined cycle unit consists of three nominal 250 MW Model 501G gas turbines with three supplementary-fired heat recovery steam generators (HRSG) and a common 500 MW steam-electric generator. Exhaust gases from each turbine are discharged into the atmosphere through stacks approximately 150 feet above grade. A dedicated CEMS monitors emissions from each unit.

Custom Instrumentation Services Corporation of Centennial, Colorado built the Continuous Emission Monitoring Systems (CEMS). This report provides information on the certification of the CEMS measuring emissions from Unit 3C. Data from the CEMS is recorded and stored on a Data Acquisition System.

The CEMS on the combustion turbines have been designed to meet the monitoring and reporting requirements of Florida Department of Environmental Protection (FDEP) and USEPA as required by 40 CFR 60 and 40 CFR 75 . This report presents the results of testing on the \(\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}\) and \(\mathrm{O}_{2}\) analyzers on Unit 3C. The testing was performed to meet the requirements of 40 CFR 60, Appendix B, Performance Specification 4/4a for CO and 40 CFR 75, Appendix A for \(\mathrm{NO}_{\mathrm{x}}\) and \(\mathrm{O}_{2}\).

Field certification testing on the CEMS occurred in February and March 2011. The tests conducted on the CEMS included Relative Accuracy, Bias Check, Calibration Error, Linearity, Cylinder Gas Audit and Cycle Time. The results of all tests are summarized in Table 1. A printout of the certification results generated by the EPA Emission Collection and Monitoring Plan System (ECMPS) is included in Appendix 2.

Air Hygiene conducted Relative Accuracy Testing for \(\mathrm{NO}_{x}, \mathrm{CO}\) and \(\mathrm{O}_{2}\). Ten runs were completed Unit 3C. The results of the RA tests are in the Air Hygiene test report. As shown, the Relative Accuracy calculations on the analyzers were within the EPA and FDEP requirements for all parameters. A detailed description of the RA testing is provided in Section 2.1 and in the Air Hygiene test report in Appendix 1.

A bias check evaluation was made on the \(\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}\) relative accuracy results as required in 40 CFR 75 . Unit 3C did exhibit bias and a bias adjustment factor is required. The bias test results are discussed in Section 2.2. Supporting data is provided in the relative accuracy tables in the Air Hygiene test report.

The calibration error and calibration drift tests occurred over seven consecutive operating days. The results of the analyzer drift tests are summarized in Table 1. As shown, the analyzers operated well within the applicable EPA requirements. An explanation of the drift test is provided in Section 2.3 and supporting documentation is provided in Appendix 3.

Linearity tests on the high range of the \(\mathrm{NO}_{\mathrm{x}}\) analyzer and on the \(\mathrm{O}_{2}\) analyzer are a requirement of 40 CFR 75. Cycle Time tests on the \(\mathrm{NO}_{x}\) analyzer and the \(\mathrm{O}_{2}\) analyzer are
also a requirement of 40 CFR 75. The tests took place on March 14, 2011. Cylinder Gas Audits and a cycle time test on the CO analyzer also took place on March 14, 2011. The results of the tests are summarized in Table 1. As shown, the analyzers operated well within EPA requirements for all parameters. An explanation of the linearity and CGA tests is provided in Section 2.4. Summary tables and audit reports for the linearity and CGA tests are provided in Appendix 4. An explanation of the cycle time test is provided in Section 2.5. Supporting documents for the cycle time tests are provided in Appendix 5.

A formula verification was performed on the Data Acquisition and Handling System. The DAHS passed all the tests required by EPA. The DAHS test is described in Section 3 and supporting documents are provided in Appendix 7.

A complete 40 CFR 75 Monitoring Plan is included in Appendix 8 and the gas fuel meter certification documentation is provided in Appendix 9.

In summary, the CEMS on Unit 3C at West County Energy Center provides reliable data and operates within the requirements of the EPA as outlined in 40 CFR 60, Appendix B, Performance Specifications 2, 3, 4/4a and 40 CFR 75, Appendix A and meet the requirements of the FDEP for CEMS.

Table 1 WEST COUNTY ENERGY CENTER UNIT 3C
SUMMARY OF CEMS CERTIFICATION RESULTS
\begin{tabular}{|c|c|c|c|}
\hline & RESULTS & STANDARD & PASS / FAIL \\
\hline & \multicolumn{3}{|c|}{RELATIVE ACCURACY} \\
\hline \(\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}\) & \(0.001 \mathrm{lb} / \mathrm{mmBtu}\) & \(0.015 \mathrm{lb} / \mathrm{mmBtu} \mathrm{MD}^{*}\) & PASS \\
\hline CO ppm@15\% \({ }_{2}\) & 2 ppm & 5 ppm MD & PASS \\
\hline \multirow[t]{2}{*}{CO lb/hr} & 2 ppm & 5 ppm MD & PASS \\
\hline & \multicolumn{3}{|c|}{40 CFR 75 BIAS TEST} \\
\hline \multirow[t]{2}{*}{Adjustment Factor} & 1.104 & NA & BAF Required \\
\hline & \multicolumn{3}{|l|}{7-DAY CALIBRATION ERROR \(\mathrm{NO}_{\mathrm{x}}\) High} \\
\hline \(\mathrm{NO}_{\mathrm{x}}\) High (Zero) & \(0.1 \%\) of span & 2.5\% of span & PASS \\
\hline \multirow[t]{2}{*}{\(\mathrm{NO}_{\mathrm{x}}\) High (Span)} & 2.0\% of span & 2.5\% of span & PASS \\
\hline & \multicolumn{3}{|c|}{7-DAY CALIBRATION ERROR \(\mathrm{O}_{2}\)} \\
\hline \(\mathrm{O}_{2} \%\) (Zero) & 0.0 \% \(\mathrm{O}_{2}\) & 0.5\% \(\mathrm{O}_{2}\) & PASS \\
\hline \multirow[t]{2}{*}{\(\mathrm{O}_{2} \%\) (Span)} & \(0.1 \% \mathrm{O}_{2}\) & 0.5\% \(\mathrm{O}_{2}\) & PASS \\
\hline & \multicolumn{3}{|c|}{7-DAY CALIBRATION DRIFT CO Low} \\
\hline CO Low (Zero) & 4.0\% of span & 5.0\% of span & PASS \\
\hline \multirow[t]{2}{*}{CO Low (Span)} & 5.0\% of span & 5.0\% of span & PASS \\
\hline & \multicolumn{3}{|c|}{7-DAY CALIBRATION DRIFT CO High} \\
\hline CO High (Zero) & 0.1\% of span & 5.0\% of span & PASS \\
\hline \multirow[t]{2}{*}{CO High (Span)} & 4.9\% of span & 5.0\% of span & PASS \\
\hline & \multicolumn{3}{|c|}{LINEARITY} \\
\hline \(\mathrm{NO}_{\mathrm{x}}\) High Range & 3.0\% & 5\% LE & PASS \\
\hline \multirow[t]{2}{*}{\(\mathrm{O}_{2} \%\)} & 1.1\% & 5\% LE & PASS \\
\hline & \multicolumn{3}{|c|}{CYLINDER GAS AUDIT} \\
\hline CO Low Range & 6.7\% & 15\% CGA Error & PASS \\
\hline \multirow[t]{2}{*}{CO High Range} & 4.5\% & 15\% CGA Error & PASS \\
\hline & \multicolumn{3}{|c|}{CYCLE TIME} \\
\hline \(\mathrm{NO}_{\mathrm{x}} 1 \mathrm{lb} / \mathrm{mmBtu}\) & 3 Minutes & 15 Minutes & PASS \\
\hline CO Low Range & 76 Seconds & 90 Seconds & PASS \\
\hline \multicolumn{4}{|c|}{ANALYZER SERIAL NUMBERS} \\
\hline \multicolumn{2}{|c|}{\(\mathrm{NO}_{\mathrm{x}}\)} & \multicolumn{2}{|l|}{0934939234} \\
\hline \multicolumn{2}{|c|}{CO} & \multicolumn{2}{|l|}{CM09400114} \\
\hline \multicolumn{2}{|c|}{\(\mathrm{O}_{2}\)} & \multicolumn{2}{|l|}{01440DIVO2/4249} \\
\hline
\end{tabular}

WHERE: RA = RELATIVE ACCURACY
* = RATA RESULTS REQUIRED FOR ANNUAL RATA FREQUENCY FOR 40 CFR 75

MD = MEAN DIFFERENCE BETWEEN RM AND CEMS PLUS THE 2.5 \% CONFIDENCE COEFFICIENT DRIFT AND LINEARITY RESULTS ARE THE HIGHEST ENCOUNTERED DURING ALL TESTS

\section*{2. CEMS CERTIFICATION}

Field tests and DAHS tests were performed for CEMS certification in accordance with the criteria in 40 CFR 60, Appendix B, 40 CFR 75, Appendix A, and 40 CFR 75.20. The results for all tests were determined from the data collected by the DAHS. The computer printouts for each field test are included in the Appendices.

\subsection*{2.1 RELATIVE ACCURACY}

The relative accuracy test audit (RATA) was performed on March 12 and 13, 2011. Each test run was a minimum of 21 minutes in duration and consisted of sampling for \(\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}\) and \(\mathrm{O}_{2}\). The times during which the tests were performed are shown in the Air Hygiene test report in Appendix 1.

The reference methods used by Air Hygiene are outlined below:
CONSTITUENT
\(\mathrm{O}_{2}\)
CO
\(\mathrm{NO}_{x}\)

\author{
METHOD \\ EPA METHOD 3A \\ EPA METHOD 10 \\ EPA METHOD 7E
}

As shown in the Relative Accuracy (RA) tables in the Air Hygiene test report, relative accuracy is reported as an error and is the sum of the absolute mean value of the differences between the reference method tests and the instrument readings, plus the 95 percent confidence interval of the differences, expressed as a percentage of the mean reference method value. As an alternative, 40 CFR 75 allows low \(\mathrm{NO}_{\mathrm{x}}\) emitters (less than \(0.20 \mathrm{lb} / \mathrm{mmBtu}\)) to express relative accuracy as the difference between the average reference method value and the average CEMS value.

CO results are acceptable if the RA does not exceed \(10 \%\), if the average difference between the CEMS and reference method values plus the 2.5 percent confidence coefficient does not exceed 5.0 ppm , or if the alternative relative accuracy (ARA) does not exceed 5\%.

The analyzer response was determined from the average of readings taken every minute for the duration of the time the relative accuracy tests were performed. The raw value reports from the CEMS are included in the Air Hygiene test report.

The \(\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}\) measurement passed the relative accuracy requirements as stated in 40 CFR 75, Appendix A and the \(\mathrm{NO}_{x}\) system \(\left(\mathrm{NO}_{x}\right.\) and \(\mathrm{O}_{2}\) analyzer) qualifies for annual RATA frequency under 40 CFR 75. The \(\mathrm{NO}_{\mathrm{x}}\) system had a relative accuracy result less than \(7.5 \%\). The CO analyzers passed the relative accuracy requirements as stated in 40 CFR 60, Appendix B, PS 4/4a.

\subsection*{2.2 BIAS CHECK}

The relative accuracy result for \(\mathrm{NO}_{\mathrm{x}} \mathrm{lb} / \mathrm{mmBtu}\) on Unit 3 C was checked for low bias by determining if the mean difference between the test team's values and the CEMS values is greater than the absolute value of the confidence coefficient. The CEMS on Unit 3C did exhibit bias and a bias adjustment factor is required.

\subsection*{2.3 CALIBRATION ERROR/CALIBRATION DRIFT}

The 7-day calibration error test on both ranges of the CO analyzer and the high ranges of the \(\mathrm{NO}_{\mathrm{x}}\) and \(\mathrm{O}_{2}\) analyzers occurred on seven consecutive days when the unit was operating at normal load. No adjustments were made to any of the analyzers during the seven day period. The calibration gases used for the calibration error test were US EPA Protocol 1 , following the requirements of 40 CFR 75 . The certificates of analysis for the cylinders are included in Appendix 6.

The \(\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}\) and \(\mathrm{O}_{2}\) data from calibrations occurring over seven days are provided in Appendix 3. As shown, the calibration error for all analyzers was well within EPA requirements.

\subsection*{2.4 LINEARITY/CGA}

The \(\mathrm{NO}_{\mathrm{x}}\) high range and \(\mathrm{O}_{2}\) linearity tests and the CO Cylinder Gas Audits (CGA) were performed on March 14, 2011. To perform the linearity test, the analyzers were challenged three times with each of three levels of calibration gas (low, mid and high). To perform the CGA, both ranges of the CO analyzer were challenged three times with two levels of calibration gas (low and mid).

The mean difference between the analyzer response and the calibration gas value, as a percentage of the calibration gas value, must be within \(5 \%\) for linearity tests and within \(15 \%\) for CGA. Results are also acceptable if the difference between the mean response and the calibration gas is within 5 ppm for \(\mathrm{NO}_{\mathrm{x}}\) and CO or \(0.5 \% \mathrm{O}_{2}\). The linearity results for Unit 3C were within the requirements of 40 CFR 75, Appendix A and the CGA results met requirements of 40 CFR 60 , Appendix F.

Summaries of the linearity and CGA test results are provided in tables in Appendix 4. The calibration gases used for the tests were US EPA Protocol 1, following the requirements of 40 CFR 75. The certificates of analysis for the cylinders are included in Appendix 6.

\subsection*{2.5 CYCLE TIME/RESPONSE TIME}

The cycle time tests were performed on March 14, 2011. To perform the test, both ranges of the \(\mathrm{NO}_{\mathrm{x}}\) analyzer and the \(\mathrm{O}_{2}\) analyzer were challenged with a zero gas and high level (80 to \(100 \%\) of span) calibration gas. Both the upscale and down scale response times were determined. As stated in 40 CFR 75, Appendix A, the response time to reach \(95 \%\) of
the gas value must be less than 15 minutes. For the \(\mathrm{NO}_{\mathrm{x}}\) system \(\left(\mathrm{NO}_{\mathrm{x}}\right.\) and \(\mathrm{O}_{2}\) analyzer), the longer of the two analyzers response times is the cycle time for the system.

The response time test on the low range of the CO analyzer was performed on March 14, 2011. As stated in 40 CFR 60, Appendix B, PS 4a, the three averaged upscale and downscale response times must be less than or equal to 90 seconds. The system response times met this requirement for Unit 3C. Reports that show the analyzers response are provided in Appendix 5.

\section*{3. DAHS VERIFICATION}

Each of the missing data routines and calculations performed by the DAHS was verified. All variables included in the calculations (bias adjustment factor, fuel inputs) were included. The formula verification and associated printouts are included in Appendix 7.

\section*{4. DISCUSSION OF RESULTS}

The CEMS and DAHS on Unit 3C at West County Energy Center successfully met all the requirements of the EPA as outlined in 40 CFR 60 and 40 CFR 75. The certification data has been entered in the format specified by EPA for 40 CFR 75 and a printout of the results generated by ECMPS is included in Appendix 2.

\section*{APPENDIX 1}

\section*{AIR HYGIENE RATA TEST REPORT}

\section*{Testing Solutions for a Better World}

\section*{RELATIVE ACCURACY TEST AUDIT FOR THE}

\author{
MMITSUBISHI, MODEL 501G, UNIT 3C CEMS PREPARED FOR FLORIDA POWER AND LIGHT
} AT THE

WEST COUNTY ENERGY CENTER LOXAHATCHEE, FLORIDA MARCH 12-13, 2011

Corporate Headquarters 5634 S. \(122^{\text {nd }}\) E. Ave. Suite F Tulsa, OK 74146
(918) 307-8865 or (888) 461-8778 www.airhygiene.com

Remote Testing Offices Las Vegas, NV 89156 Ft. Worth, TX 76028 Humble, TX 77338
Shreveport, LA 71115
Miami, FL 33101
Philadelphia, PA 19136

\title{
RELATIVE ACCURACY TEST AUDIT FOR THE \\ MITSUBISHI, MODEL 501G, UNIT SC CEMS PREPARED FOR \\ FLORIDA POWER AND LIGHT \\ AT THE \\ WEST COUNTY ENERGY CENTER LOXAHATCHEE, FLORIDA MARCH 12-13, 2011
}

\section*{Table of Contents}
1.0 INTRODUCTION 1
1.1 TEST PURPOSE AND OBJECTIVES 1
1.2 SUMMARY OF TEST PROGRAM 2
1.2.1 Participating Organizations 2
1.2.2 Industry 2
1.2.3 Air Permit and Federal Requirements 2
1.2.4 Plant Location 2
1.2.5 Equipment Tested 2
1.2.6 Emission Points 2
1.2.7 Pollutants Measured 2
1.2.8 Dates of Emission Test 2
1.3 KEY PERSONNEL 2
2.0 SUMMARY OF TEST RESULTS 3
3.0 SOURCE OPERATION 4
3.1 PROCESS DESCRIPTION 4
3.2 SAMPLING LOCATION 4
4.0 SAMPLING AND ANALYTICAL PROCEDURES 4
4.1 TEST METHODS 4
4.2 INSTRUMENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS 5
APPENDICES
Appendix A Test Results and Calculations
Appendix B CEMS and Reference Method Data
Appendix C Calibration Gas Certifications
Appendix D Quality Assurance and Quality Control Data
Appendix E Stratification Test Data

\title{
Relative Accuracy Test Audit \\ Mitsubishi, Model 501G, Unit 3C CEMS \\ Florida Power and Light \\ West County Energy Center \\ Loxahatchee, Florida \\ March 12-13, 2011
}

\subsection*{1.0 INTRODUCTION}

Air Hygiene International, Inc. (Air Hygiene) has completed the Relative Accuracy Test Audit (RATA) for nitrogen oxides (NOx), carbon monoxide (CO), and oxygen \(\left(\mathrm{O}_{2}\right)\) from the exhaust of the Mitsubishi, Model 501G, Unit 3C for Florida Power and Light at the West County Energy Center near Loxahatchee, Florida. This report details the background, results, process description, and the sampling/analysis methodology of the stack sampling survey conducted on March 12-13, 2011.

\subsection*{1.1 TEST PURPOSE AND OBJECTIVES}

The purpose of the test was to perform the initial certification RATA on the CEMS that serves the Mitsubishi, Model 501 G , Unit 3C for Florida Power and Light at the West County Energy Center near Loxahatchee, Florida. Reference method (RM) testing followed the Code of Federal Regulations (CFR), Title 40 (40 CFR), Part 60 (40 CFR 60), Appendix A, Methods 1, 3a, 7e, 10, and 19. RM values are compared with the on-site CEMS to document performance as required in the 40 CFR 60, Appendix B, Performance Specifications (PS) and 40 CFR 75 Appendix A and B. All relative accuracies were established on-site and were governed by the following sets of rules:

In accordance with 40 CFR 75, Appendix A, Section 3.3.2(a) and (b), the NOx RATA results are acceptable if the RA does not exceed 10.0 percent or if during the RATA the average NOx emission rate is less than or equal to 0.2 \(\mathrm{lb} / \mathrm{MMBtu}\) and the average difference between the CEMS and RM values does not exceed \(0.02 \mathrm{lb} / \mathrm{MMBtu}\). Passing this set of criteria requires the CEMS to be retested after no more than two operating quarters. Alternatively, in accordance with 40 CFR 75, Appendix B, Section 2.3.1.2(a) and (f), and Appendix B, Figure 2, the NOx RATA results are acceptable if the RA does not exceed 7.5 percent or if during the RATA the average NOx emission rate is less than or equal to \(0.2 \mathrm{lb} / \mathrm{MMBtu}\) and the average difference between the CEMS and RM values does not exceed \(0.015 \mathrm{lb} / \mathrm{MMBtu}\). Passing this set of criteria allows the CEMS to be retested after four operating quarters or at least within eight calendar quarters.

In accordance with 40 CFR 60, Appendix B, PS 4 and 4A, Sections 13.2 of each, the CO RA test results are acceptable if the RA does not exceed 10.0 percent, if the average difference between the CEMS and RM values plus the 2.5 percent confidence coefficient \((2.5 \% \mathrm{CC})\) does not exceed 5.0 parts per million (ppm), or if the alternative relative accuracy (ARA) does not exceed 5.0 percent. Part 60 further requires that the unit be operating at greater than 50 percent of normal load.

\subsection*{1.2 SUMMARY OF TEST PROGRAM}

The following list details pertinent information related to this specific project:
1.2.1 Participating Organizations
- Florida Department of Environmental Protection (FDEP)
- Florida Power and Light
- Black and Veatch
- Custom Instrumentation Services Corporation (CiSCO)
- Air Hygiene
1.2.2 Industry
- Electric Utility / Electric Services
1.2.3 Air Permit and Federal Requirements
- Permit Number: PSD-FL396
- Emission Unit ID: 0I5
- 40 CFR 60, Appendix B, Performance Specifications (PS)
- 40 CFR 75, Appendix A
- 40 CFR 75, Appendix B
1.2.4 Plant Location
- West County Energy Center near Loxahatchee, Florida
1.2.5 Equipment Tested
- Mitsubishi, Model 501G, Unit 3C
- NOx Analyzer (THERMO, 42i-LS, Serial \#0934939234)
- CO Analyzer (THERMO, 48i, Serial \#CM09400114)
- \(\mathrm{O}_{2}\) Analyzer (Servomex, 1440D, Serial\#01440DIV02/4249)
1.2.6 Emission Points
- Exhaust from the Mitsubishi, Model 501G, Unit 3C
- For all gases, one sample point in the exhaust duct from the Mitsubishi, Model 501G, Unit 3C, determined after conducting a stratification test (refer to Appendix E)
1.2.7 Pollutants Measured
- NOx
- CO
- \(\mathrm{O}_{2}\)
1.2.8 Dates of Emission Test
- March 12-13, 2011

\subsection*{1.3 KEY PERSONNEL}

Florida Power and Light:
Black and Veatch:
CiSCO:
Air Hygiene:

John Mirino
786-242-3895
Bill Stevenson 913-458-8549
Justin Hewett
936-537-4848
Jake Fahlenkamp 918-307-8865

\subsection*{2.0 SUMMARY OF TEST RESULTS}

Results from the sampling conducted on Florida Power and Light's Mitsubishi, Model 501G, Unit 3C located at the West County Energy Center on March 12-13, 2011 are summarized in the following table.

\section*{TABLE 2.1}

SUMMMARY OF MITSUBISHI, 501G, UNIT 3C RATARESULTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Pollutant} & \multirow{2}{*}{Units} & \multicolumn{3}{|c|}{Criteria} & \multirow{2}{*}{Results} & \multirow[t]{2}{*}{Passed/Test Frequency} \\
\hline & & CFR & Specification / Section & Standard & & \\
\hline NOx & Ib/MMBtu & Part 75 & \begin{tabular}{l}
Appendix A, Section 3.3.2(a),(b) \\
Appendix B, Section 2.3.1.2(a),(f), Figure 2
\end{tabular} & \begin{tabular}{l}
RA \(\leq 10 \%\), or if \(\mathrm{Ib} / \mathrm{MMB}\) tu \(\leq 0.2\), \(\mathrm{d} \leq \pm 0.02 \mathrm{lb} / \mathrm{MMBtu}\) \\
Annual Incentive RA \(\leq 7.5 \%\), or if lb/MMBtu \(\leq 0.2\), \(\mathrm{d} \leq \pm 0.015 \mathrm{lb} / \mathrm{MMBtu}\)
\end{tabular} & \[
\begin{gathered}
R A=16.3 \% \\
R M=0.01 \mathrm{lb} / \mathrm{MMBtu} \\
\mathrm{~d}=0.001 \mathrm{lb} / \mathrm{MMBtu} \\
\mathrm{BAF}=1.104
\end{gathered}
\] & YES / ANNUAL \\
\hline CO & \[
\begin{aligned}
& \mathrm{ppm@} \\
& 15 \% \mathrm{O}_{2}
\end{aligned}
\] & Part 60 & Appendix B, Performance Specification 4, 4A, from all Section 13.2 & \[
\begin{aligned}
& \text { RA } \leq 10 \% \text { or } \\
& d+2.5 \% \text { CC } \\
& \leq \pm 5 \text { pprnv, } \\
& \text { or ARA } \leq 5 \%
\end{aligned}
\] & \[
\begin{gathered}
\text { ARA }=34.4 \% \\
\text { RA }=208.3 \% \\
|d|+2.5 \% \mathrm{CC}=2 \mathrm{ppm}
\end{gathered}
\] & YES / ANNUAL \\
\hline CO & lb/hr & Part 60 & Appendix B, Performance Specification 4, 4A Section 13.2 & \[
\begin{gathered}
\hline R A \leq 10 \%, \text { or } \\
d+2.5 \% \text { CC } \\
\leq \pm 5 \text { ppmn } \\
\text { or ARA } \leq 5 \%
\end{gathered}
\] & \[
\begin{gathered}
\text { ARA }=37.4 \% \\
\text { RA }=201.8 \% \\
|d|+2.5 \% \mathrm{cc}=2 \mathrm{ppm}
\end{gathered}
\] & YES / ANNUAL \\
\hline Load & MN & Part 60 & Appendix B, Performance Specifications & > 50\% max load & 336.2 & WTTHIN tolerance \\
\hline Load & MW & Part 75 & Appendix A and B & normal load range & 336.2 & WTHIN tolerance \\
\hline
\end{tabular}

Notes: RA = relative accuracy, ARA = alternative relative accuracy, RM = reference method value, \(d\) = difference betw een RM and CEMS value, \(\mathrm{CC}=\) confidence coefficient, \(\mathrm{v}=\) velocity, \(\mathrm{BAF}=\) bias adjustment factor

The RATA passed for all pollutants (NOx and CO) in all units (\(\mathrm{ppm} @ 15 \% \mathrm{O}_{2}\), \(\mathrm{lb} / \mathrm{hr}\), and \(\mathrm{lb} / \mathrm{MMBtu}\)) under all 40 CFR 60 and 40 CFR 75 criteria.

Specifically, NOx in units of \(\mathrm{lb} / \mathrm{MMB} t \mathrm{p}\) passed the 40 CFR 75 alternative annual incentive criteria with an emissions rate of less than \(0.2 \mathrm{lb} / \mathrm{MMBtu}\) and a difference between the RM and CEMS analyzers of less than \(0.015 \mathrm{lb} / \mathrm{MMBtu}\). Also there is a Bias Adjustment Factor of 1.104 required. CO in units of \(\mathrm{ppm} @ 15 \% \mathrm{O}_{2}\) and \(\mathrm{lb} / \mathrm{hr}\) passed the 40 CFR 60 alternative criteria with a concentration difference between the RM and CEMS analyzers plus the confidence coefficient of less than 5 ppm .

Unit load was within the 40 CFR 60 required criteria of greater than 50 percent of the maximum load and also fell within the normal load criteria as defined by the plants Quality Control and Monitoring Plan which defined the upper and lower boundary on the unit and the normal and alternative normal load ranges.

\subsection*{3.0 SOURCE OPERATION}

\subsection*{3.1 PROCESS DESCRIPTION}

Florida Power and Light (FPL) owns and operates the West County Energy Center (West County) located at 20505 State Road 80 in Loxahatchee, Florida. West County is a nominal 2,500 megawatt (MW) greenfield power plant and consists of two combined cycle units (Unit 1 and 2). Each combined cycle unit consists of: three nominal 250 MW Mitsubishi Model 501 G combustion turbine-electrical generator (CTGs) sets with evaporative inlet cooling systems; three supplementary-fired heat recovery steam generators (HRSGs) with selective catalytic reduction (SCR) reactors; one nominal 428 million British thermal units per hour (MMBtu/hour) based on low heat value (LHV) natural gas-fired duct burner (DB) located within each of the three HRSG's; and a common nominal 500 MW steam turbine-electrical generator (STG). The total nominal generating capacity of each of the "3 on 1" combined cycle unit is approximately \(1,250 \mathrm{MW}\).

Each CTG has a nominal heat input rate of \(2,333 \mathrm{MMBtu} / \mathrm{hr}\) when firing natural gas and \(2,117 \mathrm{MMB}\) tu \(/ \mathrm{hr}\) when firing distillate fuel oil (based on a compressor inlet air temperature of 59 degrees Fahrenheit (\({ }^{\circ} \mathrm{F}\)), the lower heating value (LHV) of each fuel, and 100 percent load), includes an automated gas turbine control system, and has dual-fuel capability of firing natural gas as the primary fuel or ultra low sulfur distillate (ULSD) fuel oil as a restricted alternate fuel. Each HRSG recovers exhaust, heat energy from each of the CTGs. Each Unit delivers steam to each STG. The efficient combustion of natural gas and restricted firing of ULSD fuel oil minimizes the emissions of carbon monoxide (CO), particulate matter (PM), sulfuric acid mist \(\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)\), sulfur dioxide (\(\mathrm{SO}_{2}\)) and volatile organic compounds (VOCs). Dry Low-NOX (DLN) combustors for gas firing and water injection for oil firing reduce nitrogen oxides (NOx) emissions. A selective catalyst reduction (SCR) system further reduces NOx emissions.

\subsection*{3.2 SAMPLING LOCATION}

The 501 G stack is circular and measures 21.9 feet (ft) (263 inches) in diameter at the test ports which are approximately 138 ft above grade level with an exit elevation of approximately 150 ft above grade level. The test ports are located approximately 44.31 ft (531.75 inches) downstream and approximately 12 ft (144 inches) upstream from the nearest disturbances. All exhaust samples for gaseous emissions were continuously drawn from the exhaust system at the sample ports from a single point determined after conducting a stratification test (Appendix E). During the stratification test three points were traversed from each of the four ports. The probe was allowed to remain at a point for two times the system response time.

\subsection*{4.0 SAMPLING AND ANALYTICAL PROCEDURES}

\subsection*{4.1 TEST METHODS}

The emission test on the Mitsubishi, Model 501G, Unit 3C at the West County Energy Center was performed following United States Environmental Protection Agency (EPA) methods described by the Code of Federal Regulations (CFR). Table 4.1 outlines the specific methods performed on March 12-13, 2011.

TABLE 4.1
SUMMARY OF SAMPLING METHODS
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Pollutant or Parameter } & \multicolumn{1}{|c|}{\begin{tabular}{c}
Sampling \\
Method
\end{tabular}} & \multicolumn{1}{c|}{ Analysis Method } \\
\hline Sample Point Location & EPA Method 1 & Equal Area Method \\
\hline Oxygen & EPA Method 3a & Paramagnetic Cell \\
\hline Nitrogen Oxides & EPA Method 7e & Chemiluminescent Analyzer \\
\hline Carbon Monoxide & EPA Method 10 & \begin{tabular}{l}
Nondispersive Infrared \\
Analyzer
\end{tabular} \\
\hline Stack Flow Rate & EPA Method 19 & Dry Oxygen F Factor \\
\hline
\end{tabular}

\subsection*{4.2 INSTRUNIENT CONFIGURATION AND OPERATIONS FOR GAS ANALYSIS}

The sampling and analysis procedures used during these tests conform with the methods outlined in the Code of Federal Regulations (CFR), Title 40, Part 60, Appendix A, Methods 1, 3a, 7e, 10, and 19.

Figure 4.1 depicts the sample system used for the \(\mathrm{NOx}, \mathrm{CO}\), and \(\mathrm{O}_{2}\) tests. A stainless steel probe was inserted into the sample port of the stack to extract gas measurements from the emission stream at a single point in the stack determined after passing an initial stratification test. The gas sample was continuously pulled through the probe and transported, via heat-traced Teflon® tubing, to a stainless steel minimum-contact condenser designed to dry the sample. Transportation of the sample, through Teflon® tubing, continued into the sample manifold within the mobile laboratory via a stainless steel/Teflon® diaphragm pump. From the manifold, the sample was partitioned to the \(\mathrm{NOx}, \mathrm{CO}\), and \(\mathrm{O}_{2}\) analyzers through rotameters that controlled the flow rate of the sample.

Figure 4.1 shows that the sample system was also equipped with a separate path through which a calibration gas could be delivered to the probe and back through the entire sampling system. This allowed for convenient performance of system bias checks as required by the testing methods.

All instruments were housed in an air-conditioned, trailer-mounted mobile laboratory. Gaseous calibration standards were provided in aluminum cylinders with the concentrations certified by the vendor. EPA Protocol No. 1 was used to determine the cylinder concentrations where applicable (i.e. NOx calibration gases).

Table 4.2 provides a description of the analyzers used for the instrument portion of the tests. All data from the continuous monitoring instruments were recorded on a Logic Beach Portable Data Logging System Hyperlogger which retrieves calibrated electronic data from each instrument every one second and reports an average of the collected data every 30 seconds. Data records can be found in Appendix A and B of this report.

Three test runs of approxinnately 60 minutes and seven test runs of approximately 21 minutes each were conducted on the Mitsubishi, Model 501G, Unit 3C for NOx, CO , and \(\mathrm{O}_{2}\). The unit operation was greater than 50 percent of capacity as required by the 40 CFR 60 , Performance Specifications. The unit operation was at the normal load as required by 40 CFR 75 .

The stack gas analysis for \(\mathrm{O}_{2}\) concentrations was performed in accordance with procedures set forth in EPA Method 3a. The \(\mathrm{O}_{2}\) analyzer uses a paramagnetic cell.

EPA Method 7 e was used to determine concentrations of NOx. A chemiluminescent analyzer was used to determine the nitrogen oxides concentration in the gas stream. A \(\mathrm{NO}_{2}\) in nitrogen certified gas cylinder was used to verify at least a 90 percent \(\mathrm{NO}_{2}\) conversion on the day of the test.

CO emission concentrations were quantified in accordance with procedures set forth in EPA Method 10. A continuous nondispersive infrared (NDIR) analyzer was used for this purpose.

TABLE 4.2
ANALYTICAL INSTRUMENTATION
\begin{tabular}{|c|c|c|c|l|}
\hline Parameter & \begin{tabular}{c}
Model and \\
Manufacturer
\end{tabular} & Range & Sensitivity & \multicolumn{1}{c|}{ Detection Principle } \\
\hline NOx & \begin{tabular}{c}
THERMO \\
\(42 \mathrm{i}-\mathrm{HL}\)
\end{tabular} & \begin{tabular}{c}
User may \\
select up to \\
\(5,000 \mathrm{ppm}\)
\end{tabular} & 0.1 ppm & \begin{tabular}{l}
Thermal reduction of \(\mathrm{NO}_{2}\) to NO. \\
Chemiluminescence of reaction of \\
NO with \(\mathrm{O}_{3}\). Detection by PMT. \\
Inherently linear for Iisted ranges.
\end{tabular} \\
\hline CO & \begin{tabular}{c}
THERMO \\
48 i
\end{tabular} & \begin{tabular}{c}
User may \\
select up to \\
\(10,000 \mathrm{ppm}\)
\end{tabular} & 0.1 ppm & \begin{tabular}{l}
Infrared absorption, gas filter \\
correlation detector, microprocessor \\
based linearization.
\end{tabular} \\
\hline \(\mathrm{O}_{2}\) & \begin{tabular}{c}
THERMO \\
\(42 \mathrm{i}-\mathrm{HL}\)
\end{tabular} & \(0-25 \%\) & \(0.1 \%\) & Paramagnetic cell, inherently linear. \\
\hline
\end{tabular}

\section*{APPENDIX A}

TEST RESULTS AND CALCULATIONS

TABLE A.1:
EMISSIONS TESTING SCHEDULE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Unit & Load & Test Type & Run & Date & Start & Stop & Time Sync \\
\hline 3C & Base Load & Stratification Test & 1 & \(03 / 12 / 11\) & \(9: 19: 07\) & \(9: 59: 37\) & EST \\
\hline 3C & Base W/Db & Gas RATA & 1 & \(03 / 13 / 11\) & \(9: 56: 01\) & \(10: 55: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 2 & \(03 / 13 / 11\) & \(11: 12: 01\) & \(12: 11: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 3 & \(03 / 13 / 11\) & \(12: 27: 01\) & \(13: 26: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 4 & \(03 / 13 / 11\) & \(13: 39: 01\) & \(13: 59: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 5 & \(03 / 13 / 11\) & \(14: 11: 01\) & \(14: 31: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 6 & \(03 / 13 / 11\) & \(14: 41: 01\) & \(15: 01: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 7 & \(03 / 13 / 11\) & \(15: 11: 01\) & \(15: 31: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 8 & \(03 / 13 / 11\) & \(15: 41: 01\) & \(16: 01: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 9 & \(03 / 13 / 11\) & \(16: 59: 01\) & \(17: 19: 31\) & DAHS \\
\hline 3C & Base W/Db & Gas RATA & 10 & \(03 / 13 / 11\) & \(17: 29: 01\) & \(17: 49: 31\) & DAHS \\
\hline
\end{tabular}

Note: DAHS Time (EST minus 1 hr)

TEST RESULTS

\section*{Florida Power and Light}

March 13, 2011
Mitsubishi, 501G, Unit 3C
CO RATA Data Sheet
West County Energy Center
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{RUN \#} & \multirow[b]{2}{*}{RUN TIME} & \multirow[b]{2}{*}{USED} & UNIT LOAD & \multirow[t]{2}{*}{RM
(ppm@ 15\% \(\mathrm{O}_{2}\))} & \multirow[t]{2}{*}{CEMS} & \multicolumn{2}{|c|}{RM-CEMS} \\
\hline & & & (MW) & & & (diff) & (diff \({ }^{2}\)) \\
\hline 1 & 09:56-10:55 & NO & 343.4 & 0.80 & 2.10 & & \\
\hline 2 & 11:12-12:11 & YES & 345.2 & 0.70 & 2.00 & -1.3000 & 1.69 \\
\hline 3 & 12:27-13:26 & YES & 336.8 & 0.70 & 2.00 & -1.3000 & 1.69 \\
\hline 4 & 13:39 - 13:59 & YES & 330.3 & 0.70 & 1.90 & -1.2000 & 1.44 \\
\hline 5 & 14:11-14:31 & YES & 329.6 & 0.60 & 1.90 & -1.3000 & 1.69 \\
\hline 6 & 14:41-15:01 & YES & 329.0 & 0.70 & 1.90 & -1.2000 & 1.44 \\
\hline 7 & 15:11-15:31 & YES & 329.5 & 0.70 & 1.90 & -1.2000 & 1.44 \\
\hline 8 & 15:41-16:01 & YES & 329.3 & 0.60 & 1.90 & -1.3000 & 1.69 \\
\hline 9 & 16:59-17:19 & YES & 343.1 & 0.70 & 0.60 & 0.1000 & 0.01 \\
\hline 10 & 17:29-17:49 & YES & 346.2 & 0.70 & 0.70 & 0.0000 & 0.00 \\
\hline 11 & & NO & & & & & \\
\hline 12 & & NO & & & & & \\
\hline \multicolumn{3}{|c|}{Total} & 3019.0 & 6.10 & 14.80 & -8.7000 & 11.0900 \\
\hline \multicolumn{3}{|r|}{Average} & 335.4 & 0.68 & 1.64 & -0.9667 & \\
\hline & & N
Stan

Confiden & damber of Runs
deviation
T-value
ceefficient & 9
0.579
2.306
0.4449 & & & \\
\hline
\end{tabular}
\begin{tabular}{rrc|}
\hline Relative Accuracy & \(=\) & \(208.3 \%\) \\
Applicable Standard & \(=\) & 4.10 \\
Alternative Relative Accuracy & \(=\) & \(34.4 \%\) \\
\(\mid\) d (difference in ppm) +Cc & \(=\) & 2.0 \\
\hline
\end{tabular}

Part 60, Appendix B, Performance Specification 4,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS having span values of \(1,000 \mathrm{ppmv} \mathrm{CO}\).
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA or 5 percent when the applicable emission standard (permit limit) is used to calculate RA.

Part 60, Appendix B, Performance Specification 4A,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS that comply with low emission standards (less than 200 ppmv).
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA, 5 percent when the applicable emission standard (permit limit) is used to calculate RA, or within 5 ppmv when the RA is calculated as the absolute average difference between the RM and CEMS plus the 2.5 percent confidence coefficient.

\section*{Florida Power and Light March 13, 2011 Mitsubishi, 501G, Unit 3C CO RATA Data Sheet West County Energy Center}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{RUN \#} & \multirow[b]{2}{*}{RUN TIME} & \multirow[b]{2}{*}{USED} & UNIT LOAD & RM & CEMS & \multicolumn{2}{|c|}{RM-CEMS} \\
\hline & & & (MW) & (lb/hr) & (lb/hr) & (diff) & (diff \({ }^{\text {2 }}\)) \\
\hline 1 & 09:56-10:55 & NO & 343.4 & 4.90 & 13.40 & & \\
\hline 2 & 11:12-12:11 & YES & 345.2 & 4.50 & 12.40 & -7.9000 & 62.41 \\
\hline 3 & 12:27-13:26 & YES & 336.8 & 4.30 & 12.30 & -8.0000 & 64.00 \\
\hline 4 & 13:39 - 13:59 & YES & 330.3 & 4.20 & 12.10 & -7.9000 & 62.41 \\
\hline 5 & 14:11-14:31 & YES & 329.6 & 4.10 & 12.00 & -7.9000 & 62.41 \\
\hline 6 & 14:41-15:01 & YES & 329.0 & 4.40 & 11.80 & -7.4000 & 54.76 \\
\hline 7 & 15:11-15:31 & YES & 329.5 & 4.20 & 11.70 & -7.5000 & 56.25 \\
\hline 8 & 15:41-16:01 & YES & 329.3 & 4.10 & 11.60 & -7.5000 & 56.25 \\
\hline 9 & 16:59-17:19 & YES & 343.1 & 4.40 & 4.00 & 0.4000 & 0.16 \\
\hline 10 & 17:29-17:49 & YES & 346.2 & 4.50 & 4.20 & 0.3000 & 0.09 \\
\hline 11 & & NO & & & & & \\
\hline 12 & & NO & & & & & \\
\hline \multicolumn{3}{|r|}{Total Average} & \[
\begin{gathered}
3019.0 \\
335.4
\end{gathered}
\] & \[
\begin{gathered}
38.70 \\
4.30
\end{gathered}
\] & \[
\begin{aligned}
& 92.10 \\
& 10.23
\end{aligned}
\] & \[
\begin{gathered}
-53.4000 \\
-5.9333
\end{gathered}
\] & 418.7400 \\
\hline & & Nu
Stan

Onfiden & \begin{tabular}{l}
umber of Runs dard Deviation \\
T-value ce Coefficient
\end{tabular} & \[
\begin{gathered}
9 \\
3.569 \\
2.306 \\
2.7433
\end{gathered}
\] & & & \\
\hline & & & \begin{tabular}{l}
Relativ \\
Applicab rnative Relativ (difference in
\end{tabular} & \begin{tabular}{l}
ccuracy = \\
tandard = \\
ccuracy = \\
m) \(\mid+C C=\)
\end{tabular} & \[
\begin{gathered}
\hline 201.8 \% \\
23.20 \\
37.4 \% \\
2.0 \\
\hline
\end{gathered}
\] & & \\
\hline
\end{tabular}

Part 60, Appendix B, Performance Specification 4,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS having span values of 1,000 ppmv CO.
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA or 5 percent when the applicable emission standard (permit limit) is used to calculate RA.

Part 60, Appendix B, Performance Specification 4A,
1.2.1 This specification is for evaluating the acceptability of carbon monoxide (CO) continuous emission monitoring systems (CEMS) at the time of installation or soon after and whenever specified in an applicable subpart of the regulations. This specification was developed primarily for CEMS that comply with low emission standards (less than 200 ppmv).
13.2 Relative Accuracy. The RA of the CEMS must be no greater than 10 percent when the average RM value is used to calculate RA, 5 percent when the applicable emission standard (permit limit) is used to calculate RA, or within 5 ppmv when the RA is calculated as the absolute average difference between the RM and CEMS plus the 2.5 percent confidence coefficient.

\section*{Florida Power and Light} March 13, 2011
Mitsubishi, 501G, Unit 3C
NOx RATA Data Sheet West County Energy Center
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{RUN \#} & \multirow[b]{2}{*}{RUN TIME} & \multirow[b]{2}{*}{USED} & UNIT LOAD & \multirow[t]{2}{*}{(Ib/MMBtu)} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { CEMS } \\
\hline \text { (Ib/MMBtu) }
\end{gathered}
\]} & \multicolumn{2}{|c|}{RM-CEMS} \\
\hline & & & (MW) & & & (diff) & (diff \({ }^{2}\)) \\
\hline 1 & 09:56-10:55 & YES & 343.4 & 0.006 & 0.005 & 0.0010 & 0.0000 \\
\hline 2 & 11:12-12:11 & YES & 345.2 & 0.006 & 0.005 & 0.0010 & 0.0000 \\
\hline 3 & 12:27-13:26 & NO & 336.8 & 0.007 & 0.005 & & \\
\hline 4 & 13:39-13:59 & YES & 330.3 & 0.006 & 0.005 & 0.0010 & 0.0000 \\
\hline 5 & 14:11-14:31 & YES & 329.6 & 0.005 & 0.005 & 0.0000 & 0.0000 \\
\hline 6 & 14:41-15:01 & YES & 329.0 & 0.006 & 0.006 & 0.0000 & 0.0000 \\
\hline 7 & 15:11-15:31 & YES & 329.5 & 0.006 & 0.006 & 0.0000 & 0.0000 \\
\hline 8 & 15:41-16:01 & YES & 329.3 & 0.006 & 0.005 & 0.0010 & 0.0000 \\
\hline 9 & 16:59-17:19 & YES & 343.1 & 0.006 & 0.005 & 0.0010 & 0.0000 \\
\hline 10 & 17:29-17:49 & YES & 346.2 & 0.006 & 0.006 & 0.0000 & 0.0000 \\
\hline 11 & & NO & & & & & \\
\hline 12 & & NO & & & & & \\
\hline \multicolumn{3}{|c|}{Total} & 3025.6 & 0.053 & 0.048 & 0.0050 & 0.0000 \\
\hline \multicolumn{3}{|r|}{Average} & 336.2 & 0.006 & 0.005 & 0.0006 & \\
\hline \multicolumn{4}{|r|}{Number of Runs} & 9 & & & \\
\hline \multicolumn{4}{|r|}{Standard Deviation} & 0.001 & & & \\
\hline \multicolumn{4}{|r|}{T-value} & 2.306 & & & \\
\hline \multicolumn{4}{|r|}{Confidence Coefficient} & 0.0004 & & & \\
\hline
\end{tabular}

\section*{Relative Accuracy = \(16.31 \%\)}

If the mean difference is less than or equal to the absolute value of the confidence coefficient, then the Bias Test passes and the bias adjustment factor is not applicable.
\begin{tabular}{rrr|}
\hline Mean Difference \(=\) & 0.0006 \\
Confidence Coefficient \(=\) & 0.0004 \\
\hline
\end{tabular}
\begin{tabular}{|rc|}
\multicolumn{1}{l}{ BAF \(=1+\) (abs. value mean difference/avg. CEMS reading) } \\
\hline Average CEMS Reading \(=\) & 0.005 \\
BAF \(=\) & 1.104 \\
\hline
\end{tabular}

Part 75, Appendix A,
3.3.2 Relative Accuracy for NOX-Diluent Continuous Emission Monitoring Systems
(a) The relative accuracy for NOX-diluent continuous emission monitoring systems shall not exceed 10.0 percent.
(b) For affected units where the average of the reference method measurements of NOX emission rate (this means lb/MMBtu) during the relative accuracy test audit is less than or equal to \(0.200 \mathrm{lb} / \mathrm{mmBtu}\), the difference between the mean value of the continuous emission monitoring system measurements and the reference method mean value shall not exceed \(\pm 0.020 \mathrm{lb} / \mathrm{mmBtu}\), wherever the relative accuracy specification of 10.0 percent is not achieved.
7.6.5 Bias Adjustment
(b) For single-load RATAs of SO2 pollutant concentration monitors, NOX concentration monitoring systems, and NOX-diluent monitoring systems and for the single-load flow RATAs required or allowed under section 6.5.2 of this appendix and sections 2.3.1.3(b) and 2.3.1.3(c) of Appendix \(B\) to this part, the appropriate BAF is determined directly from the RATA results at normal load, using Equation A-12. Notwithstanding, when a NOX concentration CEMS or an SO2 CEMS or a NOX-diluent CEMS installed on a low-emitting affected unit (i.e., average SO2 or NOX concentration during the RATA \&IE; 250 ppm or average NOX emission rate \&IE; \(0.200 \mathrm{lb} / \mathrm{mmBtu}\)) meets the normal 10.0 percent relative accuracy specification (as calculated using Equation \(A-10\)) or the alternate relative accuracy specification in section 3.3 of this appendix for low-emitters, but fails the bias test, the BAF may either be determined using Equation A-12, or a default BAF of 1.111 may be used.

Part 75, Appendix B,
2.3.1.2 Reduced RATA Frequencies. Relative accuracy test audits of primary and redundant backup SO2 pollutant concentration monitors, CO 2 pollutant concentration monitors (including O 2 monitors used to determine CO 2 emissions), CO 2 or O 2 diluent monitors used to determine heat input, moisture monitoring systems, NOX concentration monitoring systems, flow monitors, NOX-diluent monitoring systems or SO2-diluent monitoring systems may be performed annually (i.e., once every four successive QA operating quarters, rather than once every two successive QA operating quarters) if any of the following conditions are met for the specific monitoring system involved:
(a) The relative accuracy during the audit of an SO 2 or CO 2 pollutant concentration monitor (including an O 2 pollutant monitor used to measure CO2 using the procedures in appendix F to this part), or of a CO 2 or O 2 diluent monitor used to determine heat input, or of a NOX concentration monitoring system, or of a NOX-diluent monitoring system, or of an SO 2 -diluent continuous emissions monitoring system is \(\leq\) 7.5 percent;
(f) For units with low NOX emission rates (average NOX emission rate measured by the reference method during the RATA \(\leq 0.200\) \(\mathrm{lb} / \mathrm{mmBtu}\)), when a NOX-diluent continuous emission monitoring system fails to achieve a relative accuracy \(\leq 7.5\) percent, but the monitoring system mean value from the RATA, calculated using Equation A-7 in appendix \(A\) to this part, is within \(\pm 0.015 \mathrm{lb} / \mathrm{mmBtu}\) of the reference method mean value;

Figure 2 to Appendix B of Part 75_Relative Accuracy Test Frequency Incentive System.
\begin{tabular}{lll}
\multicolumn{1}{c}{ RATA } & \multicolumn{1}{c}{ Semiannual(percent)(1) } & \multicolumn{1}{c}{ Annual(1) } \\
SO2 or NOX(3) & \(7.5 \%<\mathrm{RA} \leq 10.0 \%\) or \(\pm 15.0 \mathrm{ppm}(2)\) & \(\mathrm{RA} \leq 7.5 \%\) or \(\pm 12.0 \mathrm{ppm}(2)\) \\
SO2-diluent & \(7.5 \%<\mathrm{RA} \leq 10.0 \%\) or \(\pm 0.030\) & \(\mathrm{RA} \leq 7.5 \%\) or \(\pm 0.025\) \\
& \(\mathrm{Ib} / \mathrm{mmBtu}(2)\) & \(\mathrm{lb} / \mathrm{mmBtu}(2)\) \\
NOX-diluent & \(7.5 \%<\mathrm{RA} \leq 10.0 \%\) or \(\pm 0.020\) & \(\mathrm{RA} \leq 7.5 \%\) or \(\pm 0.015\) \\
& \(\mathrm{lb} / \mathrm{mmBtu}(2)\) & \(\mathrm{lb} / \mathrm{mmBtu}(2)\) \\
Flow & \(7.5 \%<\mathrm{RA} \leq 10.0 \%\) or \(\pm 2.0 \mathrm{fps}(2)\) & \(\mathrm{RA} \leq 7.5 \%\) or \(\pm 1.5 \mathrm{fps}\) \\
CO2 or O 2 & \(7.5 \%<\mathrm{RA} \leq 10.0 \%\) or \(\pm 1.0 \% \mathrm{CO} 2 / \mathrm{O} 2(2)\) & \(\mathrm{RA} \leq 7.5 \%\) or \(\pm 0.7 \% \mathrm{CO2/O2(2)}\) \\
Moisture & \(7.5 \%<\mathrm{RA} \leq 10.0 \%\) or \(\pm 1.5 \% \mathrm{H} 2 \mathrm{O}(2)\) & \(\mathrm{RA} \leq 7.5 \%\) or \(\pm 1.0 \% \mathrm{H} 2 \mathrm{O}(2)\)
\end{tabular}
(1) The deadline for the next RATA is the end of the second (if semiannual) or fourth (if annual) successive QA operating quarter following the quarter in which the CEMS was last tested. Exclude calendar quarters with fewer than 168 unit operating hours (or, for common stacks and bypass stacks, exclude quarters with fewer than 168 stack operating hours) in determining the RATA deadline. For SO2 monitors, QA operating quarters in which only very low sulfur fuel as defined in \(\S 72.2\), is combusted may also be excluded. However, the exclusion of calendar quarters is limited as follows: the deadline for the next RATA shall be no more than 8 calendar quarters after the quarter in which a RATA was last performed.
(2) The difference between monitor and reference method mean values applies to moisture monitors, CO 2 , and O 2 monitors, low emitters, or low flow, only.
(3) A NOX concentration monitoring system used to determine NOX mass emissions under § 75.71.

\title{
Relative Accuracy Test Data \\ CEMS Results (NOx) \\ Mitsubishi, 501G, Unit 3C
}
\begin{tabular}{|ll|}
\hline Parameter: & Oxides of Nitrogen \\
& \\
Date of Test: & March 13, 2011 \\
Reference Method: & EPA Method 7e \\
CEMS Analyzer Type: & Chemiluminescence \\
Manufacturer: & Thermo \\
Model\#: & 42 i -LS \\
Serial \#: & 0934939234 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ RUN \# } & \multirow{2}{*}{ RUN TIME } & UNIT LOAD & \multicolumn{2}{c|}{ CONCENTRATIONS } & \multicolumn{2}{c|}{ RATES } \\
\cline { 2 - 7 } & & \((\) MW) & (ppmvd) & \((\) (ppm@ 15\%O \()\) & (Ib/hr) & (Ib/MMBtu) \\
\hline 1 & \(09: 56-10: 55\) & 343.4 & & & & 0.005 \\
\hline 2 & \(11: 12-12: 11\) & 345.2 & & & & 0.005 \\
\hline 3 & \(12: 27-13: 26\) & 336.8 & & & & 0.005 \\
\hline 4 & \(13: 39-13: 59\) & 330.3 & & & & 0.005 \\
\hline 5 & \(14: 11-14: 31\) & 329.6 & & & & 0.005 \\
\hline 6 & \(14: 41-15: 01\) & 329.0 & & & & 0.006 \\
\hline 7 & \(15: 11-15: 31\) & 329.5 & & & & 0.006 \\
\hline 8 & \(15: 41-16: 01\) & 329.3 & & & & 0.005 \\
\hline 9 & \(16: 59-17: 19\) & 343.1 & & & & 0.006 \\
\hline 10 & \(17: 29-17: 49\) & 346.2 & & & & \\
\hline 11 & & & & & & \\
\hline 12 & & & & & & \\
\hline
\end{tabular}

\section*{Relative Accuracy Test Data}

CEMS Results (CO)
Mitsubishi, 501G, Unit 3C
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Parameter: \\
Date of Test: \\
Reference Method: \\
CEMS Analyzer Type: \\
Manufacturer: \\
Model \#: \\
Serial \#:
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Carbon Monoxide \\
March 13, 2011 \\
EPA Method 10 \\
Infrared Absorption \\
Thermo \\
48i \\
CM09400114
\end{tabular}} \\
\hline \multirow{2}{*}{RUN \#} & \multirow{2}{*}{RUN TIME} & UNIT LOAD & \multicolumn{2}{|l|}{CONCENTRATIONS} & \multicolumn{2}{|c|}{RATES} \\
\hline & & (MW) & (ppmvd) & (ppm@ 15\% \({ }_{2}\)) & (\(\mathrm{lb} / \mathrm{hr}\)) & (\(\mathrm{l} / \mathrm{MMBEtu}\)) \\
\hline 1 & 09:56-10:55 & 343.4 & 3.10 & 2.10 & 13.40 & \\
\hline 2 & 11:12-12:11 & 345.2 & 2.90 & 2.00 & 12.40 & \\
\hline 3 & 12:27-13:26 & 336.8 & 2.80 & 2.00 & 12.30 & \\
\hline 4 & 13:39-13:59 & 330.3 & 2.80 & 1.90 & 12.10 & \\
\hline 5 & 14:11-14:31 & 329.6 & 2.80 & 1.90 & 12.00 & \\
\hline 6 & 14:41-15:01 & 329.0 & 2.80 & 1.90 & 11.80 & \\
\hline 7 & 15:11-15:31 & 329.5 & 2.70 & 1.90 & 11.70 & \\
\hline 8 & 15:41-16:01 & 329.3 & 2.70 & 1.90 & 11.60 & \\
\hline 9 & 16:59-17:19 & 343.1 & 0.90 & 0.60 & 4.00 & \\
\hline 10 & 17:29 - 17:49 & 346.2 & 1.00 & 0.70 & 4.20 & \\
\hline 11 & & & & & & \\
\hline 12 & & & & & & \\
\hline
\end{tabular}

\section*{Relative Accuracy Test Data}

CEMS Results (\(\mathrm{O}_{2}\))
Mitsubishi, 501G, Unit 3C
\begin{tabular}{|ll|}
\hline Parameter: & Oxygen \\
& \\
Date of Test: & March 13, 2011 \\
Reference Method: & EPA Method 3a \\
CEMS Analyzer Type: & Paramagnetic Cell \\
Manufacturer: & Servomex \\
Model \#: & 1440 \\
Serial \#: & 01440 DIV02/4249 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ RUN \# } & \multirow{2}{*}{ RUN TIME } & UNIT LOAD & CONC. \\
\cline { 3 - 4 } & (MW) & \((\%)\) \\
\hline 1 & \(09: 56-10: 55\) & 343.4 & 12.41 \\
\hline 2 & \(11: 12-12: 11\) & 345.2 & 12.43 \\
\hline 3 & \(12: 27-13: 26\) & 336.8 & 12.41 \\
\hline 4 & \(13: 39-13: 59\) & 330.3 & 12.41 \\
\hline 5 & \(14: 11-14: 31\) & 329.6 & 12.41 \\
\hline 6 & \(14: 41-15: 01\) & 329.0 & 12.41 \\
\hline 7 & \(15: 11-15: 31\) & 329.5 & 12.41 \\
\hline 8 & \(15: 41-16: 01\) & 329.3 & 12.41 \\
\hline 9 & \(16: 59-17: 19\) & 343.1 & 12.43 \\
\hline 10 & \(17: 29-17: 49\) & 346.2 & 12.43 \\
\hline 11 & & & \\
\hline 12 & \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

Relative Accuracy Test Data Reference Method Results (NOx) Mitsubishi, 501G, Unit 3C
\begin{tabular}{|ll|}
\hline Parameter: & Oxides of Nitrogen \\
& \\
Date of Test: & March 13, 2011 \\
Reference Method: & EPA Method 7e \\
RM Analyzer Type: & Chemiluminescence \\
Manufacturer: & Thermo \\
Model \#: & 42i-HL \\
Serial \#: & INST-N2-0001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ RUN \# } & \multirow{2}{*}{ RUN TIME } & UNIT LOAD & \multicolumn{2}{c|}{ CONCENTRATIONS } & \multicolumn{2}{c|}{ RATES } \\
\cline { 3 - 7 } & & \((\) MW \()\) & (ppmvd) & (ppm@ 15\%O \()\) & (Ib/hr) & (Ib/MMBtu) \\
\hline 1 & \(09: 56-10: 55\) & 343.4 & & & & 0.006 \\
\hline 2 & \(11: 12-12: 11\) & 345.2 & & & & 0.006 \\
\hline 3 & \(12: 27-13: 26\) & 336.8 & & & & 0.007 \\
\hline 4 & \(13: 39-13: 59\) & 330.3 & & & & 0.006 \\
\hline 5 & \(14: 11-14: 31\) & 329.6 & & & & 0.005 \\
\hline 6 & \(14: 41-15: 01\) & 329.0 & & & & 0.006 \\
\hline 7 & \(15: 11-15: 31\) & 329.5 & & & & 0.006 \\
\hline 8 & \(15: 41-16: 01\) & 329.3 & & & & 0.006 \\
\hline 9 & \(16: 59-17: 19\) & 343.1 & & & & 0.006 \\
\hline 10 & \(17: 29-17: 49\) & 346.2 & & & & \\
\hline 11 & & & & & & \\
\hline 12 & & & & & & \\
\hline
\end{tabular}

Relative Accuracy Test Data
Reference Method Results (CO) Mitsubishi, 501G, Unit 3C
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Parameter: \\
Date of Test: \\
Reference Method: \\
RM Analyzer Type: \\
Manufacturer: \\
Model \#: \\
Serial \#:
\end{tabular}} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Carbon Monoxide \\
March 13, 2011 \\
EPA Method 10 \\
Infrared Absorption \\
Thermo \\
48i \\
INST-CO-0015
\end{tabular}} \\
\hline \multirow{2}{*}{RUN \#} & \multirow{2}{*}{RUN TIME} & UNIT LOAD & \multicolumn{2}{|l|}{CONCENTRATIONS} & \multicolumn{2}{|c|}{RATES} \\
\hline & & (MW) & (ppmvd) & (ppm@ 15\% \({ }^{2}\)) & (\(\mathrm{b} / \mathrm{hr}\)) & (\(\mathrm{lb} / \mathrm{MMBEtu}\)) \\
\hline 1 & 09:56-10:55 & 343.4 & 1.09 & 0.76 & 4.86 & \\
\hline 2 & 11:12 - 12:11 & 345.2 & 1.00 & 0.70 & 4.46 & \\
\hline 3 & 12:27-13:26 & 336.8 & 0.96 & 0.67 & 4.26 & \\
\hline 4 & 13:39-13:59 & 330.3 & 0.95 & 0.66 & 4.17 & \\
\hline 5 & 14:11-14:31 & 329.6 & 0.93 & 0.64 & 4.06 & \\
\hline 6 & 14:41-15:01 & 329.0 & 0.99 & 0.69 & 4.35 & \\
\hline 7 & 15:11-15:31 & 329.5 & 0.95 & 0.66 & 4.17 & \\
\hline 8 & 15:41-16:01 & 329.3 & 0.92 & 0.64 & 4.06 & \\
\hline 9 & 16:59-17:19 & 343.1 & 1.02 & 0.70 & 4.44 & \\
\hline 10 & 17:29 - 17:49 & 346.2 & 1.01 & 0.70 & 4.46 & \\
\hline 11 & & & & & & \\
\hline 12 & & & & & & \\
\hline
\end{tabular}

Relative Accuracy Test Data Reference Method Results \(\left(\mathrm{O}_{2}\right)\)

Mitsubishi, 501G, Unit 3C
\begin{tabular}{|ll|}
\hline Parameter: & Oxygen \\
& \\
Date of Test: & March 13, 2011 \\
Reference Method: & EPA Method 3a \\
RM Analyzer Type: & Paramagnetic Cell \\
Manufacturer: & Thermo \\
Model \#: & 42i-HL \\
Serial \#: & INST-N2-0001 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{ RUN \# } & \multirow{2}{*}{ RUN TIME } & UNIT LOAD & CONC. \\
\cline { 3 - 4 } & & (MW) & (\%) \\
\hline 1 & \(09: 56-10: 55\) & 343.4 & 12.41 \\
\hline 2 & \(11: 12-12: 11\) & 345.2 & 12.42 \\
\hline 3 & \(12: 27-13: 26\) & 336.8 & 12.45 \\
\hline 4 & \(13: 39-13: 59\) & 330.3 & 12.38 \\
\hline 5 & \(14: 11-14: 31\) & 329.6 & 12.37 \\
\hline 6 & \(14: 41-15: 01\) & 329.0 & 12.38 \\
\hline 7 & \(15: 11-15: 31\) & 329.5 & 12.40 \\
\hline 8 & \(15: 41-16: 01\) & 329.3 & 12.40 \\
\hline 9 & \(16: 59-17: 19\) & 343.1 & 12.33 \\
\hline 10 & \(17: 29-17: 49\) & 346.2 & 12.37 \\
\hline 11 & & & \\
\hline 12 & \multicolumn{4}{|l|}{} \\
\hline
\end{tabular}

\section*{CALCULATIONS}

\section*{EXAMPLE CALCULATIONS (CALIBRATION)}

\section*{Analyzer Calibration Error}

RM 7E, (12-17-09), 12.2 Analyzer Calibration Error. For non-dilution systems, use Equation 7E-1 to calculate the analyzer calibration error for the low-mid-, and high-leve! calibration gases. (calc for NOx analyzer mid gas, if applicable)
\[
A C E=\left(\frac{C_{D r}-C_{\mathrm{F}}}{C S}\right) \times 100 \quad \mathrm{Eq.} 7 \mathrm{E}-1 \quad \mathrm{ACE}=\frac{4.99 \mathrm{ppm}-4.93 \mathrm{ppm}}{12.10 \mathrm{ppm}} \times 100=0.50 \%
\]

\section*{EXAMPLE CALCULATIONS (BIAS, DRIFT, AND CORRECTED RAW AVERAGE)}

\section*{System Bias}

RM 7E, (12-17-09), 12.3 System Bias. For non-dilution systems, use Equation \(7 \mathrm{E}-2\) to calculate the system bias separately for the low-level and upscale calibration gases. (calc for NOx analyzer upscale gas, Run 1 initial bias, if applicable)
\[
S B=\left(\frac{C_{s}-C_{D i r}}{C S}\right) \times 100 \quad \text { Eq. } 7 \mathrm{E}-2 \quad \mathrm{SB}=\frac{4.99 \mathrm{ppm}-4.99 \mathrm{ppm}}{12.10 \mathrm{ppm}} \times 100=0.00 \%
\]

\section*{Drift Assessment}

RM 7E, (12-17-09), 12.5 Drift Assessment. Use Equation 7E-4 to separately calculate the low-level and upscale drift over each test run. (calc for NOx analyzer upscale drift, Run 1, if applicable)
\(D=\left|S B_{f(12 ;)}-S B_{i}\right| \quad\) Eq. 7E-4 \(\quad \mathrm{D}=1-0.99 \%-0.00 \% \quad 1=0.99 \%\)

\section*{Alternative Drift and Bias}

RM 7E, (12-17-09), 13.2 / 13.3 System Bias and Drift. Alternatively, the results are acceptable if |Cs - Cdir| is \(\leq 0.5 \mathrm{ppmv}\) or if \(|\mathrm{Cs}-\mathrm{Cv}|\) is \(\leq 0.5 \mathrm{ppmv}\) (as applicable). (calc for NOx analyzer initial upscale, Run 1, if applicable)
\[
S B / D_{A i}=\left|C_{S}^{\prime}-C_{D r}^{\prime}\right| \quad \text { Eq. Section } 13.2 \text { and } 13.3 \quad S B / D_{A t t}=|\quad 4.99 \mathrm{ppm}-4.99 \mathrm{ppm} \quad|=0.00 \mathrm{ppm}
\]

\section*{Bias Adjusted Average}

RM 7E, (12-17-09), 12.6 Effluent Gas Concentration. For each test run, calculate Cavg, the arithmetic average of all valid NOx concentration values (e.g., 1-minute averages). Then adjust the value of Cavg for bias, using Equation 7E-5b. (calc for NOx analyzer, Run 1, if applicable)
\[
C_{\mathrm{Gaz}}=\left(C_{.18}-C_{O}\right) \times\left(\frac{C_{15}}{C_{A}-C_{O}}\right) \quad \text { Eq. } 7 \mathrm{E}-5 \mathrm{~b} \quad C_{\mathrm{Gas}}=(2.22 \mathrm{ppm}--0.08 \mathrm{ppm}) \times\left(\frac{4.93 \mathrm{ppm}}{4.93 \mathrm{ppm}--0.08 \mathrm{ppm}}\right)=2.26 \mathrm{ppm}
\]

\section*{EXAMPLE CALCULATIONS (RUNS)}

\section*{Stack Exhaust Flow \(\left(Q_{s}\right)\) - RM19}
\[
\left.\begin{array}{rl}
Q_{s}=\left(\frac{\text { FFactor } \times Q_{;} \times H H V}{1,000,000}\right) \times\left(\frac{20.9 \%}{20.9 \%-C_{G a i O 2}}\right)
\end{array}\right) \quad Q_{\mathrm{S}}=\frac{8,710.00 \mathrm{SCF}}{\text { MMBtu }} \times \frac{2,787,226.58 \mathrm{SCF}}{\mathrm{hr}} \times \frac{1,029.00 \mathrm{Btu}}{\text { SCF }}
\]

\section*{Diluent-Corrected Pollutant Concentration, \(\mathrm{O}_{2}\) Based}

RM 20, (11-26-02), 7.3.1 Correction of Pollutant Concentration Using \(\mathrm{O}_{2}\) Concentration. Calculate the \(\mathrm{O}_{2}\) corrected poilutant concentration, as foilows: (calc for NOx gas, Run 1, if applicable)

\section*{EXAMPLE CALCULATIONS (RUNS)}

\section*{Emissions Rate (lb/hr)}

Calculation for pound per hour emission rate. Calculate, as follows: (calc for NOx gas Run 1, if applicable)
\[
E_{\text {z;i/ }}=\frac{C_{G z}}{10^{6}} \times \frac{Q_{s} \times 1 / W H}{G} \quad E_{\mathrm{bb} / \mathrm{hr}}=\frac{2.26 \mathrm{ppm}}{10^{6} \mathrm{ppm} / \mathrm{part}} \times \frac{61,486,652 \mathrm{SCFH} \times 46.01 \mathrm{lb} / \mathrm{lb}-\mathrm{mol}}{385.23 \mathrm{SCF} / \mathrm{lb}-\mathrm{mol}}=\frac{16.59 \mathrm{lb}}{\mathrm{hr}}
\]

\section*{Emissions Rate (Ib/MMBtu)}

RM 19, (12-17-09), 12.2 Emission Rates of \(\mathrm{PM}_{1} \mathrm{SO}_{2}\), and NOx. Select from the following sections the applicable procedure to compute the \(\mathrm{PM}, \mathrm{SO}_{2}\), or NOx emission rate (E) in ng/J (lb/million Btu). (calc for NOx gas Run 1, if applicable)

Oxygen Based
12.2.1 Oxygen-Based F Factor, Dry Basis. When measurements are on a dry basis for both \(\mathrm{O}_{2}\left(\mathrm{HO}_{2} \mathrm{~d}\right)\) and pollutant (Cd) concentrations, use the following equation:
\[
\begin{aligned}
& \mathrm{E}_{\mathrm{IDMMBH}}=\frac{2.26 \mathrm{ppm} \times 8,710.00 \mathrm{SCF} / \mathrm{MMBtu} \times 0.0000001194 \mathrm{lb} / \mathrm{ppm}^{*} \mathrm{ft}^{3} \times 20.9 \%}{20.9 \%-12.41 \%}=\frac{0.006 \mathrm{lb}}{\mathrm{MMBtu}}
\end{aligned}
\]

\section*{Conversion Constant}

Conve for NOX

Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.

\section*{EXAMPLE CALCULATIONS (RATA RESULTS)}

\section*{Difference (d)}

40 CFR 75, App A, (12-17-09), 7.3.1 Arithmetic Mean. Calculate the arithmetic mean of the differences, \(d\), of a data set as follows. (calc for NOx \(\mathrm{lb} / \mathrm{MMBtu}\) data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)
\(d=\sum_{i=1}^{n} d\)
Eq. A-7

\section*{Standard Deviation}

40 CFR 75, App A, (12-17-09), 7.3.2 Standard Deviation. Calculate the standard deviation, Sd, of a data set as follows:
(calc for NOx lb/MMBtu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

\section*{Confidence Coefficient}

40 CFR 75, App A, (12-17-09), 7.3.3 Confidence Coefficient. Calculate the confidence coefficient (one-tailed), cc, of a data set as follows. (calc for NOX \(\mathrm{tb} / \mathrm{MMB}\) tu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)
\[
C C=r_{0,3,5} \times \frac{S_{a}}{\sqrt{n}}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ T-Values } & \(\mathbf{n}\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\cline { 2 - 10 } & \(\mathbf{t}_{0.025}\) & 12.706 & 4.303 & 3.182 & 2.776 & 2.571 & 2.447 & 2.365 & 2.306 \\
\hline
\end{tabular}

\section*{Relative Accuracy}

40 CFR 75, App A, (12-17-09), 7.3.4 Relative Accuracy. Calculate the relative accuracy of a data set using the following equation. (calc for NOx \(\mathrm{lb} / \mathrm{MMB} t u\) data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)
\[
R t=\frac{\left|d_{A G G}\right|+|C C|}{R M M} \times 100 \quad \quad \text { Eq. A-10 } \quad R A=\frac{|0.001| \text { IbMMMBtu }+|0.000| \text { IbMMBu }}{0.006 \operatorname{ldMMBL}} \times 100=16.31 \quad \%
\]

\section*{Bias Adjustment Factor (BAF)}

40 CFR 75, App A, (12-17-09), 7.6.5 Bias Adjustment. (a) If the monitor or monitoring system fails to meet the bias test requirement, adjust the value obtained from the monitor using the following equation: (calc for NOX Ib/MMBtu data, if applicable. Note: This is an example calculation which may not have any bearing on the actual test requirements.)

Note: BAF only applies if the mean difference (d) is greater than the absolute value of the confidence coefficient.

Note: Lack of significant figures may cause rounding errors between actual calculations and example calculations.

RM 7E, (08-15-06), 12.1 Nomenclature. The terms used in the equations are defined as follows:
\(A C E=\) Analyzer calibration error, percent of calibration span.
\(B_{\text {ws }}=\) Moisture content of sample gas as measured by Method 4 or other approved method, percen \(\$ / 100\)
\(C_{\text {Avg }}=\) Average unadjusted gas concentration indicated by data recorder for the test run.
\(C_{D}=\) Pollutant concentration adjusted to dry conditions
\(C_{\mathrm{Dr}}=\) Measured concentration of a calibration gas (low, mid, or high) when introduced in direct calibration mode
\(C_{G a s}=\) Average effluent gas concentration adjusted for bias.
\(C_{M}=\) Average of initial and final system calibration bias (or 2-point system calibration error) check responses for the upscale calibration gas.
\(C_{M A}=\) Actual concentration of the upscale calibration gas, ppmv.
\(c_{\mathrm{O}}=\) Average of the initial and final system calibration bias (or 2-point system calibration error) check responses from the low-level (or zero) calibration gas. \(C_{s}=\) Measured concentration of a calibration gas (low, mid, or high) when introduced in system calibration mode.
\(C_{s s}=\) Concentration of NOx measured in the spiked sample.
\(\mathrm{C}_{\mathrm{s}_{\text {piko }}}=\) Concentration of NOx in the undiluted spike gas.
\(C_{C_{a k}}=\) Calculated concentration of NOx in the spike gas diluted in the sample.
\(C_{v}=\) Manufacturer certified concentration of a calibration gas (low, mid, or high)
\(\mathrm{C}_{\mathrm{w}}=\) Pollutant concentration measured under moist sample conditions, wet basis.
CS = Calibration span.
[] = Drift assessment, percent of calibration span.
\(E_{\mathrm{p}}=\) The predicted response for the low-level and mid-level gases based on a linear response line between the zero and high-level response
\(\mathrm{E}: \mathrm{ff}_{\mathrm{NO} 2}=\mathrm{NO}_{2}\) to NO converter efficiency, percent.
\(H=\) High calibration gas, designator.
\(\mathrm{L}=\) Low calibration gas, designator.
\(M=\) Mid calibration gas, designator.
NOFinal = The average NO concentration observed with the analyzer in the NO mode during the converter efficiency test in Section 16.2.2
NOXCorr \(=\) The NOx concentration corrected for the converter efficiency.
NOXFinal \(=\) The final NOx concentration observed during the converter efficiency test in Section 16.2.2.
NOXPeak \(=\) The highest NOx concentration observed during the converter efficiency test in Section 16.2.2
\(Q_{\text {Spiko }}=\) Flow rate of spike gas introduced in system calibration mode, \(L / m i n\).
\(Q_{\text {Tetal }}=\) Total sample flow rate during the spike test, L/min.
\(R=\) Spike recovery, percent.
\(\mathrm{SB}=\) System bias, percent of calibration span.
\(\mathrm{SB}_{1}=\) Pre-run system bias, percent of calibration span.
\(\mathrm{SB}_{1}=\) Post-run system bias, percent of cailibration span
\(\mathrm{SB} / \mathrm{D}_{\mathrm{AI}}=\) Alternative absolute difference criteria to pass bias and/or drift checks.
SCE = System calibration error, percent of calibration span.
SCE \(_{1}=\) Pre-run system calibration error, percent of calibration span.
\(\varsigma C E_{\text {tral }}=\) Post-run system calibration error, percent of calibration span.
\(z=\) Zero calibration gas, designator.

40CFR60.355(b)(1), (09-20-06), Nomenclature. The terms used In the equations are defined as follows:
\(\mathrm{P}_{\mathrm{r}}=\) reference combustor inlet absolute pressure at 101.3 kilopascals ambient pressure, mm Hg
\(\mathrm{P}_{\mathrm{o}}=\) observed combustor inlet absolute pressure at test, mm Hg
\(\mathrm{H}_{0}=\) observed humidity of ambient air, \(\mathrm{g} \mathrm{H}_{2} \mathrm{O} / \mathrm{g}\) air
\(e=\) transcendental constant. 2.718
\(\mathrm{T}_{\mathrm{a}}=\) ambient temperature, K

\section*{RM 19, (07-29-06), 12.1 Nomenclature. The terms used In the equations are defined as follows:}

AdjFactor \(=\) Percent oxygen or carbon dioxide adjustment applied to a target pollutant
\(B_{w a}=\) Moisture fraction of ambient air, percent.
Btu = British thermal unit
\(\%_{c}=\) Concentration of carbon from an ultimate analysis of fuel, weight percent.
\(\%_{c o n d} \%_{c o n v}=\) Concentration of carbon dioxide on a dry and wet basis, respectively, percent.
CIP / CDP = Combustor inlet pressure / compressor discharge pressure (mm Hg); note, some manufactures reference as PCD
\(\mathrm{E}=\) Pollutant emission rate, \(\mathrm{ng} / \mathrm{J}(\mathrm{Ib} /\) million Btu).
\(E_{0}=\) Average pollutant rate for the specified performance test period, \(\mathrm{ng} / \mathrm{J}\) (\(\mathrm{b} / \mathrm{million} \mathrm{Btu}\))
\(\mathrm{E}_{80}, \mathrm{E}_{\mathrm{pl}}=\) Average pollutant rate of the control device, outlet and inlet, respectively, for the performance test period, ng/J (Ib/million Btu).
\(\mathrm{E}_{\mathrm{bl}}=\) Pollutant rate from the steam generating unit, ng/J (lb/million Btu).
\(\mathrm{E}_{\mathrm{bo}}=\) Pollutant emission rate from the steam generating unit, \(\mathrm{ng} / \mathrm{J}\) (Ib/million Btu).
\(\mathrm{E}_{\mathrm{cl}}=\) Pollutant rate in combined effluent, ng/J (\(\mathrm{lb} /\) million Btu)
\(E_{\infty}=\) Pollutant emission rate in combined effluent, ng/J (lb/million Btu).
\(\mathrm{E}_{\mathrm{d}}=\) Average pollutant rate for each sampling period (e.g. 24 -hr Method 6 B sample or 24 -hr fuel sample) or for each fuel lot (e.g., amount of fuel bunkered), ng/J (lb/million Btu).
\(\mathrm{E}_{\mathrm{di}}=\) Average inlet \(\mathrm{SO}_{2}\) rate for each sampling period \(\mathrm{d}, \mathrm{ng} / \mathrm{J}(\mathrm{lb} /\) million Btu\()\).
\(\mathrm{E}_{\mathrm{g}}=\) Pollutant rate from gas turtine, \(\mathrm{ng} / \mathrm{J}\) (\(\mathrm{lb} /\) million Btu).
\(\mathrm{E}_{\mathfrak{p}}=\) Daily geometric average pollutant rate, \(\mathrm{ng} / \mathrm{J}(\mathrm{lbs} /\) million Blu\()\) or ppm corrected to 7 percent \(\mathrm{O}_{2}\)
\(\mathrm{E}_{\mathrm{lop}_{1}} \mathrm{E}_{\mathrm{p}}=\) Matched pair hourly arithmetic average pollutant rate, outlet and inlet, respectively, ng/J (Ib/million Btu) or ppm corrected to 7 percent \(\mathrm{O}_{2}\).
\(\mathrm{E}_{\mathrm{h}}=\) Hourly average pollutant, \(\mathrm{ng} / \mathrm{J}\) (\(\mathrm{b} /\) million Btu).
\(\mathrm{E}_{\mathrm{h}}=\) Hourly arithmetic average pollutant rate for hour " j ," \(\mathrm{ng} / \mathrm{J}\) (\(\mathrm{lb} / \mathrm{million}\) Btu) or ppm corrected to 7 percent \(\mathrm{O}_{2}\).
EXP \(=\) Natural loganthmic base (2.718) raised to the value enclosed by brackets.
Fc = Ratio of the volume of carbon dioxide produced to the gross calorific value of the fuel from Method 19
\(F_{d}, F_{w}, F_{c}=\) Volumes of combustion components per unit of heat content, \(\mathrm{scm} / \mathrm{J}\) (scf/million Btu).
\(\mathrm{tt}^{3}=\) cubic feet
\(G=\) ideal gas conversion factor
(385.23 SCF \(/ \mathrm{b}-\mathrm{mol}\) at 68 deg F \& 14.696 psia)
GCM = gross Btu per SCF (constant, compound based)
\(G C V=\) Gross calorific value of the fuel consistent with the ultimate analysis, \(\mathrm{kJ} / \mathrm{kg}\) (Btu/b)
\(\mathrm{GCV}_{p}, G C V,=\) Gross calorific value for the product and raw fuel lots, respectively, dry basis, \(\mathrm{kJ} / \mathrm{kg}\) (Btu/b).
\(\%_{\mathrm{H}}=\) Concentration of hydrogen from an ultimate analysis of fuel, weight percent.
\(H_{b}=\) Heat input rate to the steam generating unit from fuels fired in the steam generating unit, J/hr (million Btu/hr).
\(H_{0}=\) Heat input rate to gas turbine from all fuels fired in the gas turtine, \(\mathrm{J} / \mathrm{hr}\) (million Btu/hr).
\(\%_{\mathrm{H}_{2} \mathrm{O}}=\) Concentration of water from an ultimate analysis of fuel, weight percent.
\(H_{1}=\) Total numbers of hours in the performance test peniod (e.g., 720 hours for 30 -day performance test period)
\(\mathrm{K}=\) volume of combustion component per pound of component (constant)
\(\mathrm{K}=\) Conversion factor, \(10^{-5}(\mathrm{~kJ} / \mathrm{J}) /(\%)\) [\(10^{6}\) Btu/million Btu].
\(K_{\mathrm{c}}=(9.57 \mathrm{scm} / \mathrm{kg}) / \%[(1.53 \mathrm{sc} / / \mathrm{b}) / \%]\)
\(K_{\mathrm{cc}}=(2.0 \mathrm{scm} / \mathrm{kg}) / \%\) [(0.321 scf/lb)/\%].
\(K_{\text {rdd }}=(22.7 \mathrm{scm} / \mathrm{kg}) / \%\) [(3.64 scf/lb)/\%].
\(K_{\mathrm{tmv}}=(34.74 \mathrm{scm} / \mathrm{kg}) \%[(5.57 \mathrm{sc} / n \mathrm{~b}) / \%]\)
\(K_{n}=(0.86 \mathrm{scm} / \mathrm{kg}) / \%[(0.14 \mathrm{sc} / / \mathrm{b}) / \%]\).
\(K_{0}=(2.85 \mathrm{scm} / \mathrm{kg}) / \%[(0.46 \mathrm{sc} / / \mathrm{l}) / \%]\)
\(K_{\mathrm{s}}=(3.54 \mathrm{scm} / \mathrm{kg}) / \%[(0.57 \mathrm{scf} / \mathrm{l}) / \%]\).
\(K_{\text {sultur }}=2 \times 10^{4}\) Btufwt\%-MMBtu
\(\mathrm{K}_{\mathrm{w}}=(1.30 \mathrm{scm} / \mathrm{kg}) / \%[(0.21 \mathrm{scf} / \mathrm{b}) / \%]\)
lb = pound
In = Natural log of indicated value.
\(L_{p,} L_{1}=\) Weight of the product and raw fuel lots, respectively, metric ton (ton).
\(\%_{\mathrm{N}}=\) Concentration of nitrogen from an ultimate analysis of fuel, weight percent
\(M_{2}=\) mole percent
\(\mathrm{mol}=\) mole
MW = molecular weight (Ib/b-moi)
\(\mathrm{MW}_{\text {AIR }}=\) molecular weight of air \((\quad 28.9625 \mathrm{lb} / \mathrm{b}-\mathrm{mole})^{1}\)
NCM = net Btu per SCF (constant based on compound)
\(\%_{o}=\) Concentration of oxygen from an ultimate analysis of fuel, weight percent.
\(\%_{02 \mathrm{a}}, \%_{02 w}=\) Concentration of oxygen on a dry and wet basis, respectively, percent.
\(P_{B}=\) barometirc pressure, in Hg
\(P_{s}=\) Potential SO 2 emissions, percent.
\(\%_{s}=\) Sulfur content of as-fired fuel lot, dry basis, weight percent.
\(\mathrm{S}_{\mathrm{e}}=\) Standard deviation of the hourly average pollutant rates for each performance test period, ng/J (lb/million Btu)
\(\%_{s t}=\) Concentration of sulfur from an ultimate analysis of fuel, weight percent.
\(S(w t \%)=\) weight percent of sulfur, per lab analysis by appropriate ASTM standard
\(\mathrm{S}_{\mathrm{i}}=\) Standard deviation of the hourly average inlet pollutant rates for each performance test period, \(\mathrm{ng} / \mathrm{J}(\mathrm{lb} / \mathrm{mil} / \mathrm{ion} \mathrm{Btu})\).
\(\mathrm{S}_{\mathrm{o}}=\) Standard deviation of the hourly average emission rates for each performance test period, \(\mathrm{ng} / \mathrm{J}(\mathrm{Ib} / \mathrm{million}\) Biu).
\(\% \mathrm{~S}_{\mathrm{p}} \% \mathrm{~S}_{\mathrm{t}}=\) Sulfur content of the product and raw fuel lots respectively, dry basis, weight percent.
SCF = standard cubic feet
\(\mathrm{SH}=\) specific humidity, pounds of water per pound of air
\(\mathrm{t}_{0.85}=\) Values shown in Table 19-3 for the indicated number of data points n .
\(\mathrm{T}_{\text {amb }}=\) ambient temperature, \({ }^{\circ} \mathrm{F}\)
W/D Factor \(=1.0236=\) conv. at 14.696 psia and
\(68 \operatorname{deg} F\) (ref. Civil Eng. Ref. Manual, 7th Ed.)
\(X_{\mathrm{CO}_{2}}=\mathrm{CO}_{2}\) Correction factor, percent.
\(X_{k}=\) Fraction of total heat input from each type of fuel \(k\).

\section*{Calculations, Formulas, and Constants}

The following information supports the spreadsheets for this testing project.

\section*{Given Data:}

Ideal Gas Conversion Factor \(=385.23\) SCF/lb-mol at 68 deg F \& 14.696 psia
Fuel Heating Value is based upon Air Hygiene's fuel gas calculation sheet. All calculations are based upon a correction to 68 deg \(F \& 14.696\) psia High Heating Values (HHV) are used for the Fuel Heating Value, F-Factor, and Fuel Flow Data per EPA requirements.

\section*{ASTM D 3588}

Molecular Weight of NOX (lb/lb-mole) \(=46.01\) Molecular Weight of \(\mathrm{CO}(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=28.00\) Molecular Weight of \(\mathrm{SO}_{2}(\mathrm{lb} / \mathrm{lb}-\mathrm{mole})=64,00\) Molecular Weight of THC (propane) \((\mathrm{lb} / \mathrm{b}-\)-mole \()=44.00\) Molecular Weight of VOC (methane) \((\mathrm{lb} / \mathrm{lb}\)-mole \()=16.00\) Molecular Weight of \(\mathrm{NH}_{3}(\mathrm{l} / \mathrm{lb}-\mathrm{mole})=17.03\) Molecular Weight of HCHO (Ib/lb-mole) \(=30.03\)

\section*{Formulas:}
1. Corrected Raw Average (\(\mathrm{C}_{\mathrm{Gas}}\)), 40CFR60, App. A, RM 7E, Eq. \(7 \mathrm{E}-5\) (08/15/06)
\[
c_{6 i z}=\left(C_{A, ~}-C_{0}\right) \times\left(\frac{C_{M i}}{C_{M}-C_{0}}\right)
\]
2. Correction \(10 \% \mathrm{O}_{2}, 40 \mathrm{CFR} 60\), App. A, RM 20, Eq. \(20-5\) (11/26/02)
\[
C_{a d y}=C_{G x(T \text { aze: })} \times\left(\frac{20.9 \%-A d j F a c t o r}{20.9 \%-C_{G a t(0)}^{\prime}}\right)
\]
3. Correction to \(\% \mathrm{O}_{2}\) and ISO Conditions
4. Meihod 19 stack exhaust flow (scfh)
\[
Q_{s}=\left(\frac{\text { FFactor } \times Q_{j} \times H H V}{1,000,000}\right) \times\left(\frac{20.9 \%}{\left.20.9 \%-C_{6 a x} 02\right)}\right)
\]

40CFR60, App. A., RM 19, Table 19-1
Conversion Constant for NOx \(=0.0000001194351\) Conversion Constant for \(\mathrm{CO}=0.0000000726839\) Conversion Constant for \(\mathrm{SO}_{2}=0.0000001661345\) Conversion Constant for THC \(=0.0000001142175\) Conversion Constant for VOC (methane) \(=0.0000000415336\) Conversion Constant for \(\mathrm{NH}_{3}=0.0000000442074\) Conversion Constant for \(\mathrm{HCHO}=0.0000000779534\) NOTE: units are lb/ppm fi \(^{3}\)

\section*{5. Emission Rate in lb/hr}
\[
E_{a ; i r}=\frac{C_{G a r}}{10^{d}} \times \frac{Q_{s} \times \Delta H W}{G}
\]
6. Emission Rate in tons per year
\[
E_{: ;:=1 \times}=\frac{E_{0 ; j} \times h r_{3 a r}}{2000}
\]
7. Emission Concentration in \(\mathrm{Ib} / \mathrm{MMBLu}\left(\mathrm{O}_{2}\right.\) based)
8. Emission Concentration in g/hp*hr
\[
E_{3 \text { 4yw }}=\frac{E_{33} \times 453.6}{m m \times 131+.022} \text { or } \frac{E_{6: 3} \times+53.6}{h p}
\]

\section*{RATA SHEET CALCULATIONS}
d = Reference Method Data - CEMS Data
\(S_{d}=\) Standard Deviation
CC = Confident Coefficient
\(\mathrm{n}=\) number of runs
\(t_{0.025}=2.5\) percent confidence coefficent \(T\)-values \(R A=\) relative accuracy
\(A R A=\) alternative relative accuracy
BAF = Bias adjustment factor
1. Difference
\[
d=\sum_{i=1}^{n} d_{i}
\]
2. Standard Deviation
3. Confident Coefficient
\begin{tabular}{cccccc}
\(\mathbf{n}\) & \(\mathbf{t}\) & \(\mathbf{n}\) & \(\mathbf{t}\) & \(\mathbf{n}\) & \(\mathbf{t}\) \\
\hline \(\mathbf{2}\) & \(\mathbf{1 2 . 7 0 6}\) & 7 & 2.447 & 12 & 2.201 \\
3 & 4.303 & 8 & 2.365 & 13 & 2.179 \\
4 & 3.182 & 9 & 2.306 & 14 & 2.160 \\
5 & 2.776 & 10 & 2.262 & 15 & 2.145 \\
6 & 2.571 & 11 & 2.228 & 16 & 2.131 \\
\hline
\end{tabular}

4. Relative Accuracy
\[
R A=\frac{\mid d]_{A G G}|\div|C C|}{R M M_{A N G}} \times 100
\]
5. Alternative Relative Accuracy
\[
A R A=\frac{\left|d_{A C}\right|+|C C|}{A S} \times 100
\]
5. Bias Adjustment Factor
\[
B . A F=1+\left(\frac{\left|d_{A H G}\right|}{C E M M_{-H} \mid}\right)
\]
\[
C C=t_{602} \times \frac{S_{j}}{\sqrt{n}}
\]

\section*{APPENDIX B}

CEMS AND REFERENCE METHOD DATA
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|c|}{ Florida Power and Light } \\
\hline Air Permit \# : & PSD-FL-396 \\
\hline Plant Name or Location: & West County Energy Center \\
\hline Date: & March 13, 2011 \\
\hline Project Number: & cis-10-westcounty.fl-rata\#1 \\
\hline Manufacturer \& Equipment: & Mitsubishi \\
\hline Model: & 501G \\
\hline Unit Number: & 3C \\
\hline Test Load: & Base w/DB \\
\hline Tester(s)/Test Unit(s): & JF/AS/RW/TG/127/206 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{10}{|c|}{RUN} \\
\hline & UNITS & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline Start Time & hh:mm:ss & 09:56:01 & 11:12:01 & 12:27:01 & 13:39:01 & 14:11:01 & 14:41:01 & 15:11:01 & 15:41:01 & 16:59:01 & 17:29:01 \\
\hline End Time & hh:mm:ss & 10:55:31 & 12:11:31 & 13:26:31 & 13:59:31 & 14:31:31 & 15:01:31 & 15:31:31 & 16:01:31 & 17:19:31 & 17:49:31 \\
\hline Bar. Pressure & in. Hg & 30.28 & 30.30 & 30.30 & 30.26 & 30.26 & 30.23 & 30.22 & 30.22 & 30.22 & 30.22 \\
\hline Amb. Temp. & \({ }^{\circ} \mathrm{F}\) & 72 & 74 & 74 & 76 & 77 & 77 & 77 & 76 & 75 & 74 \\
\hline Rel. Humidity & \% & 42 & 36 & 36 & 42 & 42 & 43 & 43 & 44 & 44 & 43 \\
\hline Spec. Humidity & lb water / /b air & 0.006905 & 0.006321 & 0.006321 & 0.007915 & 0.008186 & 0.008392 & 0.008394 & 0.008308 & 0.008032 & 0.007586 \\
\hline Turbine Fuel Flow & \(\mathrm{lb} / \mathrm{min}\) & 1,872 & 1,860 & 1,848 & 1,842 & 1,842 & 1,842 & 1,842 & 1,842 & 1,848 & 1,854 \\
\hline Duct Burner Fuel Flow & \(\mathrm{lb} / \mathrm{min}\) & 159 & 159 & 159 & 159 & 159 & 159 & 159 & 159 & 159 & 159 \\
\hline Total Fuel Flow & SCFH & 2,787,227 & 2,770,510 & 2,753,885 & 2,745,378 & 2,745,424 & 2,745,493 & 2,745,836 & 2,745,950 & 2,753,748 & 2,762,072 \\
\hline Power Output & megawatts & 343.4 & 345.2 & 336.8 & 330.3 & 329.6 & 329.0 & 329.5 & 329.3 & 343.1 & 346.2 \\
\hline \(\mathrm{O}_{2}\) CEMS Data & \% & 12.41 & 12.43 & 12.41 & 12.41 & 12.41 & 12.41 & 12.41 & 12.41 & 12.43 & 12.43 \\
\hline NOx CEMS Data & 1b/MMBtu & 0.005 & 0.005 & 0.005 & 0.005 & 0.005 & 0.006 & 0.006 & 0.005 & 0.005 & 0.006 \\
\hline \multirow{3}{*}{CO CEMS Data} & ppmvd & 3.10 & 2.90 & 2.80 & 2.80 & 2.80 & 2.80 & 2.70 & 2.70 & 0.90 & 1.00 \\
\hline & ppm@15\% \(\mathrm{O}_{2}\) & 2.10 & 2.00 & 2.00 & 1.90 & 1.90 & 1.90 & 1.90 & 1.90 & 0.60 & 0.70 \\
\hline & \(\mathrm{lb} / \mathrm{hr}\) & 13.40 & 12.40 & 12.30 & 12.10 & 12.00 & 11.80 & 11.70 & 11.60 & 4.00 & 4.20 \\
\hline
\end{tabular}

CEMS AND REFERENCE METHOD DATA
CEMS Data

Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59
Generated 3/13/2011 15:30

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3c
\begin{tabular}{rl}
Period Start: & \(3 / 13 / 20119: 56\) \\
Period End: & \(3 / 13 / 201110: 55\) \\
Validation Type: & \(1 / 1 \mathrm{~min}\) \\
Averaging Period: 1 min \\
Type: Block Avg
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \[
\begin{gathered}
\text { 3C_CT_GAS } \\
H / \mathrm{sec}
\end{gathered}
\] & \[
\underset{H / \mathrm{Hr}}{\text { 3C_DB_GAS }}
\] & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
\text { 3C_co } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COCORR } \\
\mathrm{ppm}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\underset{\%}{3 C_{2} 02}
\] & \[
\frac{3 C_{2} S T _M W}{M W}
\] \\
\hline 3/13/2011 9:56 & 31.2 & 9515 & 0.005 & 3.1 & 2.2 & 13.4 & 12.42 & 341 \\
\hline 3/13/2011 9:57 & 31.3 & 9539 & 0.005 & 3.1 & 2.2 & 13.5 & 12.42 & 342.7 \\
\hline 3/13/2011 9:58 & 31.3 & 9551 & 0.005 & 3.1 & 2.2 & 13.5 & 12.38 & 343.5 \\
\hline 3/13/2011 9:59 & 31.1 & 9554 & 0.005 & 3.1 & 2.2 & 13.4 & 12.37 & 343.9 \\
\hline 3/13/2011 10:00 & 31.4 & 9558 & 0.005 & 3.1 & 2.2 & 13.5 & 12.41 & 344.3 \\
\hline 3/13/2011 10:01 & 31.2 & 9557 & 0.005 & 3.2 & 2.2 & 14.0 & 12.36 & 345.3 \\
\hline 3/13/2011 10:02 & 30.9 & 9567 & 0.005 & 3.2 & 2.2 & 13.9 & 12.39 & 343.9 \\
\hline 3/13/2011 10:03 & 31.4 & 9566 & 0.005 & 3.3 & 2.3 & 14.4 & 12.44 & 344.8 \\
\hline 3/13/2011 10:04 & 31.3 & 9567 & 0.005 & 3.3 & 2.3 & 14.3 & 12.4 & 345 \\
\hline 3/13/2011 10:05 & 31.3 & 9568 & 0.005 & 3.1 & 2.2 & 13.5 & 12.39 & 345.2 \\
\hline 3/13/2011 10:06 & 31.4 & 9574 & 0.005 & 3.0 & 2.1 & 13.2 & 12.37 & 345 \\
\hline 3/13/2011 10:07 & 31.1 & 9570 & 0.005 & 3.0 & 2.1 & 13.1 & 12.38 & 343.1 \\
\hline 3/13/2011 10:08 & 31.3 & 9572 & 0.005 & 3.1 & 2.2 & 13.8 & 12.45 & 343.5 \\
\hline 3/13/2011 10:09 & 31.3 & 9571 & 0.005 & 3.0 & 2.1 & 13.2 & 12.43 & 344.4 \\
\hline 3/13/2011 10:10 & 31.3 & 9570 & 0.005 & 3.1 & 2.2 & 13.5 & 12.42 & 344.8 \\
\hline 3/13/2011 10:11 & 31.5 & 9571 & 0.006 & 3.1 & 2.2 & 13.6 & 12.38 & 345.5 \\
\hline 3/13/2011 10:12 & 31.2 & 9567 & 0.006 & 3.1 & 2.2 & 13.4 & 12.41 & 343.8 \\
\hline 3/13/2011 10:13 & 31.3 & 9570 & 0.005 & 3.1 & 2.2 & 13.5 & 12.43 & 342.6 \\
\hline 3/13/2011 10:14 & 31.3 & 9571 & 0.005 & 3.1 & 2.2 & 13.5 & 12.4 & 341.3 \\
\hline 3/13/2011 10:15 & 31.2 & 9575 & 0.005 & 3.1 & 2.2 & 13.4 & 12.4 & 340.5 \\
\hline 3/13/2011 10:16 & 31.3 & 9576 & 0.005 & 3.2 & 2.2 & 13.8 & 12.34 & 339.7 \\
\hline 3/13/2011 10:17 & 30.8 & 9574 & 0.005 & 3.2 & 2.2 & 13.8 & 12.37 & 338.6 \\
\hline 3/13/2011 10:18 & 31 & 9571 & 0.005 & 3.4 & 2.4 & 14.8 & 12.43 & 340.5 \\
\hline 3/13/2011 10:19 & 31.2 & 9571 & 0.005 & 3.3 & 2.3 & 14.3 & 12.43 & 342.2 \\
\hline 3/13/2011 10:20 & 31.3 & 9566 & 0.005 & 3.2 & 2.2 & 14.0 & 12.45 & 343.3 \\
\hline 3/13/2011 10:21 & 31.4 & 9568 & 0.005 & 3.1 & 2.2 & 13.5 & 12.42 & 344.7 \\
\hline 3/13/2011 10:22 & 31.4 & 9560 & 0.006 & 3.0 & 2.1 & 13.2 & 12.39 & 346.1 \\
\hline 3/13/2011 10:23 & 31.3 & 9563 & 0.006 & 3.0 & 2.1 & 13.2 & 12.37 & 345.9 \\
\hline 3/13/2011 10:24 & 31.3 & 9563 & 0.005 & 3.1 & 2.2 & 13.5 & 12.44 & 345.2 \\
\hline 3/13/2011 10:25 & 31.3 & 9559 & 0.005 & 3.2 & 2.2 & 14.0 & 12.44 & 346.3 \\
\hline 3/13/2011 10:26 & 31.3 & 9559 & 0.005 & 3.2 & 2.2 & 14.0 & 12.38 & 345.5 \\
\hline 3/13/2011 10:27 & 31.2 & 9553 & 0.006 & 3.1 & 2.2 & 13.4 & 12.42 & 344.3 \\
\hline 3/13/2011 10:28 & 31.3 & 9559 & 0.005 & 3.1 & 2.2 & 13.5 & 12.43 & 344.8 \\
\hline 3/13/2011 10:29 & 31.3 & 9559 & 0.005 & 3.1 & 2.2 & 13.5 & 12.4 & 344.5 \\
\hline 3/13/2011 10:30 & 31.1 & 9553 & 0.005 & 3.1 & 2.2 & 13.4 & 12.44 & 343.8 \\
\hline 3/13/2011 10:31 & 31.2 & 9562 & 0.005 & 3.0 & 2.1 & 13.2 & 12.44 & 344.9 \\
\hline 3/13/2011 10:32 & 31.5 & 9571 & 0.005 & 2.9 & 2.0 & 12.7 & 12.42 & 344.6 \\
\hline 3/13/2011 10:33 & 31.2 & 9571 & 0.005 & 2.9 & 2.0 & 12.6 & 12.4 & 342 \\
\hline 3/13/2011 10:34 & 31.3 & 9571 & 0.005 & 3.0 & 2.1 & 13.2 & 12.43 & 341.8 \\
\hline 3/13/2011 10:35 & 31.2 & 9571 & 0.005 & 3.0 & 2.1 & 13.2 & 12.44 & 343.2 \\
\hline 3/13/2011 10:36 & 31.3 & 9571 & 0.005 & 3.0 & 2.1 & 13.2 & 12.42 & 343.3 \\
\hline 3/13/2011 10:37 & 31.1 & 9570 & 0.005 & 3.0 & 2.1 & 13.1 & 12.43 & 342.7 \\
\hline 3/13/2011 10:38 & 31.1 & 9570 & 0.005 & 3.0 & 2.1 & 13.1 & 12.41 & 340.7 \\
\hline 3/13/2011 10:39 & 31 & 9571 & 0.005 & 3.0 & 2.1 & 13.1 & 12.42 & 340.1 \\
\hline 3/13/2011 10:40 & 31 & 9569 & 0.005 & 3.0 & 2.1 & 13.1 & 12.44 & 341.1 \\
\hline 3/13/2011 10:41 & 31.2 & 9567 & 0.005 & 3.0 & 2.1 & 13.2 & 12.45 & 342.1 \\
\hline 3/13/2011 10:42 & 31.1 & 9567 & 0.005 & 2.9 & 2.0 & 12.6 & 12.41 & 342.1 \\
\hline 3/13/2011 10:43 & 31.1 & 9563 & 0.005 & 3.0 & 2.1 & 13.1 & 12.42 & 341.5 \\
\hline 3/13/2011 10:44 & 31.2 & 9567 & 0.005 & 2.9 & 2.0 & 12.6 & 12.44 & 342.7 \\
\hline 3/13/2011 10:45 & 31.1 & 9570 & 0.005 & 2.8 & 1.9 & 12.3 & 12.37 & 342.6 \\
\hline 3/13/2011 10:46 & 31 & 9565 & 0.005 & 2.9 & 2.0 & 12.5 & 12.41 & 341.3 \\
\hline 3/13/2011 10:47 & 31 & 9567 & 0.005 & 3.0 & 2.1 & 13.1 & 12.46 & 341.7 \\
\hline 3/13/2011 10:48 & 31.1 & 9568 & 0.005 & 3.1 & 2.2 & 13.7 & 12.46 & 342.4 \\
\hline 3/13/2011 10:49 & 31.4 & 9563 & 0.005 & 3.1 & 2.2 & 13.5 & 12.42 & 343.2 \\
\hline 3/13/2011 10:50 & 31.1 & 9565 & 0.006 & 3.0 & 2.1 & 13.1 & 12.43 & 344.5 \\
\hline 3/13/2011 10:51 & 31.2 & 9565 & 0.006 & 3.0 & 2.1 & 13.2 & 12.41 & 344.5 \\
\hline 3/13/2011 10:52 & 31.2 & 9560 & 0.006 & 3.0 & 2.1 & 13.2 & 12.44 & 344.5 \\
\hline 3/13/2011 10:53 & 31.3 & 9555 & 0.006 & 3.0 & 2.1 & 13.2 & 12.44 & 345 \\
\hline 3/13/2011 10:54 & 31.3 & 9556 & 0.006 & 3.0 & 2.1 & 13.2 & 12.43 & 345.1 \\
\hline 3/13/2011 10:55 & 31.2 & 9559 & 0.006 & 2.9 & 2.0 & 12.6 & 12.41 & 344.8 \\
\hline Final Average** & 31.2 & 9564 & 0.005 & 3.1 & 2.1 & 13.4 & 12.41 & 343.4 \\
\hline Maximum* & 31.5 & 9576 & 0.006 & 3.4 & 2.4 & 14.8 & 12.46 & 346.3 \\
\hline Minimum* & 30.8 & 9515 & 0.005 & 2.8 & 1.9 & 12.3 & 12.34 & 338.6 \\
\hline
\end{tabular}

\footnotetext{
*Does not include Invalid Averaging Periods ("N/A")
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Company: Florida P Plant: West County City/St: Loxahatche 5ource: stack3c & \begin{tabular}{l}
wer \& Light \\
lant \\
FL 33470
\end{tabular} & & & & \begin{tabular}{l}
Period 5tart: Period End: alidation Type: eraging Period: \\
Type:
\end{tabular} & \[
\begin{aligned}
& 13 / 2011 \text { 11:12 } \\
& 13 / 2011 \text { 12:11 } \\
& 1 \text { min } \\
& \text { min } \\
& \text { lock Avg }
\end{aligned}
\] & & \\
\hline Period 5tart & \[
\begin{gathered}
3 C_{\#} C T_{1} G A 5 \\
\# / \mathrm{sec}
\end{gathered}
\] & \[
\underset{H / \mathrm{Hr}}{3 \mathrm{~S}_{2} \text { DB_GA5 }}
\] & 3CNOXMMETU \#/MBTU & \[
\begin{gathered}
\text { 3C_CO } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COCORR } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COLBHR } \\
H / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_O2 } \\
\%
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_ST_MW } \\
\text { MW }
\end{gathered}
\] \\
\hline 3/13/2011 11:12 & 31.4 & 9552 & 0.006 & 2.9 & 2.0 & 12.7 & 12.42 & 346.2 \\
\hline 3/13/2011 11:13 & 31 & 9553 & 0.006 & 3.0 & 2.1 & 13.1 & 12.41 & 345.4 \\
\hline 3/13/2011 11:14 & 30.8 & 9550 & 0.006 & 3.0 & 2.1 & 13.0 & 12.44 & 343.6 \\
\hline 3/13/2011 11:15 & 31 & 9552 & 0.005 & 3.0 & 2.1 & 13.1 & 12.48 & 344.7 \\
\hline 3/13/2011 11:16 & 31.1 & 9548 & 0.005 & 3.0 & 2.1 & 13.1 & 12.44 & 345.3 \\
\hline 3/13/2011 11:17 & 31.1 & 9549 & 0.006 & 2.9 & 2.0 & 12.6 & 12.43 & 345.7 \\
\hline 3/13/2011 11:18 & 31.2 & 9550 & 0.006 & 2.9 & 2.0 & 12.6 & 12.43 & 345.7 \\
\hline 3/13/2011 11:19 & 31 & 9552 & 0.006 & 2.8 & 1.9 & 12.2 & 12.44 & 345.4 \\
\hline 3/13/2011 11:20 & 31 & 9549 & 0.005 & 2.9 & 2.0 & 12.8 & 12.45 & 345.7 \\
\hline 3/13/2011 11:21 & 31.1 & 9547 & 0.005 & 2.9 & 2.0 & 12.6 & 12.44 & 346.3 \\
\hline 3/13/2011 11:22 & 30.9 & 9549 & 0.006 & 2.9 & 2.0 & 12.5 & 12.43 & 346.1 \\
\hline 3/13/2011 11:23 & 31.1 & 9547 & 0.006 & 2.9 & 2.0 & 12.6 & 12.43 & 346.4 \\
\hline 3/13/2011 11:24 & 31.1 & 9550 & 0.006 & 2.9 & 2.0 & 12.6 & 12.43 & 346.3 \\
\hline 3/13/2011 11:25 & 31.1 & 9549 & 0.005 & 2.7 & 1.9 & 11.7 & 12.43 & 346.2 \\
\hline 3/13/2011 11:26 & 31.1 & 9547 & 0.005 & 2.7 & 1.9 & 11.7 & 12.43 & 346.3 \\
\hline 3/13/2011 11:27 & 31.1 & 9544 & 0.005 & 2.8 & 1.9 & 12.3 & 12.43 & 346.5 \\
\hline 3/13/2011 11:28 & 31.4 & 9543 & 0.005 & 2.8 & 1.9 & 12.4 & 12.43 & 346.9 \\
\hline 3/13/2011 11:29 & 31.1 & 9541 & 0.006 & 2.8 & 1.9 & 12.3 & 12.41 & 346.4 \\
\hline 3/13/2011 11:30 & 31 & 9544 & 0.006 & 2.8 & 1.9 & 12.2 & 12.43 & 345.7 \\
\hline 3/13/2011 11:31 & 31.2 & 9545 & 0.005 & 2.9 & 2.0 & 12.9 & 12.45 & 346.1 \\
\hline 3/13/2011 11:32 & 30.9 & 9544 & 0.005 & 2.9 & 2.0 & 12.5 & 12.44 & 346.3 \\
\hline 3/13/2011 11:33 & 31.3 & 9544 & 0.005 & 2.9 & 2.0 & 12.6 & 12.43 & 346.6 \\
\hline 3/13/2011 11:34 & 30.9 & 9540 & 0.006 & 2.9 & 2.0 & 12.5 & 12.43 & 346.3 \\
\hline 3/13/2011 11:35 & 31.1 & 9544 & 0.006 & 2.9 & 2.0 & 12.6 & 12.44 & 346.2 \\
\hline 3/13/2011 11:36 & 31.2 & 9546 & 0.006 & 2.8 & 1.9 & 12.3 & 12.41 & 346.3 \\
\hline 3/13/2011 11:37 & 30.9 & 9547 & 0.006 & 2.8 & 1.9 & 12.2 & 12.43 & 345.2 \\
\hline 3/13/2011 11:38 & 31 & 9542 & 0.005 & 2.9 & 2.0 & 12.8 & 12.45 & 345.5 \\
\hline 3/13/2011 11:39 & 31.1 & 9549 & 0.005 & 2.9 & 2.0 & 12.6 & 12.44 & 346.4 \\
\hline 3/13/2011 11:40 & 31.1 & 9549 & 0.006 & 2.9 & 2.0 & 12.6 & 12.43 & 346.3 \\
\hline 3/13/2011 11:41 & 31.2 & 9549 & 0.006 & 2.8 & 1.9 & 12.3 & 12.41 & 346 \\
\hline 3/13/2011 11:42 & 30.9 & 9549 & 0.005 & 2.6 & 1.8 & 11.1 & 12.38 & 345.1 \\
\hline 3/13/2011 11:43 & 30.8 & 9555 & 0.005 & 2.8 & 2.0 & 12.2 & 12.45 & 344.1 \\
\hline 3/13/2011 11:44 & 31.1 & 9550 & 0.005 & 2.8 & 2.0 & 12.3 & 12.45 & 345.3 \\
\hline 3/13/2011 11:45 & 31 & 9550 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 345.5 \\
\hline 3/13/2011 11:46 & 31.1 & 9552 & 0.005 & 2.9 & 2.0 & 12.6 & 12.42 & 345 \\
\hline 3/13/2011 11:47 & 30.9 & 9552 & 0.005 & 2.9 & 2.0 & 12.5 & 12.42 & 344.8 \\
\hline 3/13/2011 11:48 & 30.8 & 9551 & 0.005 & 2.9 & 2.0 & 12.4 & 12.43 & 344.1 \\
\hline 3/13/2011 11:49 & 31.1 & 9554 & 0.005 & 2.9 & 2.0 & 12.8 & 12.47 & 345.2 \\
\hline 3/13/2011 11:50 & 30.9 & 9549 & 0.005 & 2.9 & 2.0 & 12.5 & 12.43 & 345.5 \\
\hline 3/13/2011 11:51 & 30.9 & 9555 & 0.006 & 2.8 & 1.9 & 12.2 & 12.41 & 345.2 \\
\hline 3/13/2011 11:52 & 31 & 9552 & 0.006 & 2.8 & 1.9 & 12.2 & 12.43 & 344.2 \\
\hline 3/13/2011 11:53 & 30.8 & 9552 & 0.005 & 2.9 & 2.0 & 12.7 & 12.47 & 344.8 \\
\hline 3/13/2011 11:54 & 31.1 & 9555 & 0.005 & 2.9 & 2.0 & 12.6 & 12.42 & 345.4 \\
\hline 3/13/2011 11:55 & 30.9 & 9559 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 344.8 \\
\hline 3/13/2011 11:56 & 30.9 & 9563 & 0.005 & 2.8 & 1.9 & 12.2 & 12.44 & 344.3 \\
\hline 3/13/2011 11:57 & 30.9 & 9563 & 0.005 & 2.7 & 1.9 & 11.9 & 12.45 & 344.7 \\
\hline 3/13/2011 11:58 & 30.9 & 9563 & 0.005 & 2.7 & 1.9 & 11.7 & 12.44 & 344.9 \\
\hline 3/13/2011 11:59 & 30.9 & 9568 & 0.005 & 2.7 & 1.9 & 11.7 & 12.42 & 344.6 \\
\hline 3/13/2011 12:00 & 30.9 & 9568 & 0.005 & 2.8 & 1.9 & 12.2 & 12.43 & 344.3 \\
\hline 3/13/2011 12:01 & 31.1 & 9564 & 0.005 & 2.8 & 1.9 & 12.3 & 12.42 & 344.7 \\
\hline 3/13/2011 12:02 & 30.8 & 9568 & 0.005 & 2.9 & 2.0 & 12.4 & 12.43 & 344.3 \\
\hline 3/13/2011 12:03 & 30.9 & 9570 & 0.005 & 2.9 & 2.0 & 12.5 & 12.42 & 344 \\
\hline 3/13/2011 12:04 & 30.9 & 9563 & 0.005 & 2.9 & 2.0 & 12.5 & 12.44 & 344.4 \\
\hline 3/13/2011 12:05 & 30.9 & 9558 & 0.005 & 2.8 & 1.9 & 12.2 & 12.38 & 343.7 \\
\hline 3/13/2011 12:06 & 30.7 & 9561 & 0.006 & 2.9 & 2.0 & 12.4 & 12.4 & 342 \\
\hline 3/13/2011 12:07 & 30.7 & 9563 & 0.005 & 3.0 & 2.1 & 13.0 & 12.48 & 342.9 \\
\hline 3/13/2011 12:08 & 31 & 9563 & 0.005 & 3.0 & 2.1 & 13.1 & 12.44 & 343.9 \\
\hline 3/13/2011 12:09 & 30.9 & 9557 & 0.005 & 2.9 & 2.0 & 12.5 & 12.43 & 344.4 \\
\hline 3/13/2011 12:10 & 31 & 9555 & 0.006 & 2.9 & 2.0 & 12.5 & 12.42 & 345.1 \\
\hline 3/13/2011 12:11 & 31 & 9553 & 0.006 & 2.8 & 1.9 & 12.2 & 12.39 & 345.7 \\
\hline Final Average** & 31 & 9553 & 0.005 & 2.9 & 2.0 & 12.4 & 12.43 & 345.2 \\
\hline Maximum* & 31.4 & 9570 & 0.006 & 3.0 & 2.1 & 13.1 & 12.48 & 346.9 \\
\hline Minimum* & 30.7 & 9540 & 0.005 & 2.6 & 1.8 & 11.1 & 12.38 & 342 \\
\hline
\end{tabular}
*Does not include Invalid Averaging Periods ("N/A")
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Company: Florida Power \& Light Plant: West County Plant \\
City/St: Loxahatchee, FL 33470 \\
Source: stack \(3 c\)
\end{tabular}} & & \multicolumn{6}{|c|}{\begin{tabular}{l}
Period Start: 3/13/2011 12:27 \\
Period End: 3/13/2011 13:26 \\
Validation Type: \(1 / 1 \mathrm{~min}\) \\
Averaging Period: 1 min \\
Type: Block Avg
\end{tabular}} \\
\hline Period Start & \[
\underset{\# / \mathrm{sec}}{3 C_{_} C T_{_} G A 5}
\] & \[
\underset{\# / \mathrm{Hr}}{\text { 3C_DB_GAS }}
\] & 3CNOXMMBTU \#/MBTu & \[
\begin{gathered}
\text { 3C_CO } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COCORR } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-} 02 \\
\%
\end{gathered}
\] & \[
\underset{\text { 3C_ST_MW }}{\text { MW }}
\] \\
\hline 3/13/2011 12:27 & 31.1 & 9549 & 0.006 & 2.7 & 1.9 & 11.7 & 12.4 & 344.9 \\
\hline 3/13/2011 12:28 & 30.8 & 9546 & 0.005 & 2.7 & 1.9 & 11.6 & 12.42 & 344.1 \\
\hline 3/13/2011 12:29 & 31 & 9547 & 0.005 & 2.8 & 1.9 & 12.2 & 12.42 & 344.1 \\
\hline 3/13/2011 12:30 & 30.7 & 9541 & 0.005 & 2.9 & 2.0 & 12.4 & 12.44 & 343.8 \\
\hline 3/13/2011 12:31 & 31.1 & 9536 & 0.005 & 2.9 & 2.0 & 12.6 & 12.42 & 345.2 \\
\hline 3/13/2011 12:32 & 30.9 & 9544 & 0.005 & 2.8 & 1.9 & 12.2 & 12.39 & 344.5 \\
\hline 3/13/2011 12:33 & 30.9 & 9545 & 0.005 & 2.9 & 2.0 & 12.5 & 12.42 & 343.4 \\
\hline 3/13/2011 12:34 & 30.9 & 9547 & 0.005 & 3.0 & 2.1 & 13.0 & 12.44 & 344.3 \\
\hline 3/13/2011 12:35 & 31 & 9547 & 0.005 & 2.9 & 2.0 & 12.5 & 12.43 & 345.3 \\
\hline 3/13/2011 12:36 & 31.1 & 9549 & 0.005 & 2.9 & 2.0 & 12.6 & 12.39 & 345.3 \\
\hline 3/13/2011 12:37 & 30.9 & 9549 & 0.006 & 2.8 & 1.9 & 12.2 & 12.38 & 344.5 \\
\hline 3/13/2011 12:38 & 30.8 & 9546 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 342.2 \\
\hline 3/13/2011 12:39 & 30.8 & 9546 & 0.005 & 2.9 & 2.0 & 12.7 & 12.47 & 341.8 \\
\hline 3/13/2011 12:40 & 30.8 & 9537 & 0.005 & 2.9 & 2.0 & 12.4 & 12.44 & 340.9 \\
\hline 3/13/2011 12:41 & 31.2 & 9540 & 0.005 & 2.9 & 2.0 & 12.6 & 12.4 & 340.3 \\
\hline 3/13/2011 12:42 & 30.8 & 9545 & 0.006 & 2.7 & 1.9 & 11.6 & 12.38 & 337.9 \\
\hline 3/13/2011 12:43 & 30.9 & 9542 & 0.006 & 2.7 & 1.9 & 11.7 & 12.41 & 335.7 \\
\hline 3/13/2011 12:44 & 30.6 & 9549 & 0.005 & 2.7 & 1.9 & 11.5 & 12.39 & 335.1 \\
\hline 3/13/2011 12:45 & 30.8 & 9543 & 0.005 & 2.8 & 1.9 & 12.2 & 12.42 & 334.4 \\
\hline 3/13/2011 12:46 & 30.8 & 9546 & 0.005 & 2.8 & 1.9 & 12.2 & 12.44 & 335.4 \\
\hline 3/13/2011 12:47 & 30.8 & 9545 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 335.4 \\
\hline 3/13/2011 12:48 & 30.9 & 9544 & 0.005 & 2.9 & 2.0 & 12.5 & 12.4 & 336.1 \\
\hline 3/13/2011 12:49 & 30.8 & 9543 & 0.006 & 2.9 & 2.0 & 12.4 & 12.4 & 335 \\
\hline 3/13/2011 12:50 & 30.9 & 9541 & 0.006 & 2.9 & 2.0 & 12.5 & 12.44 & 335.3 \\
\hline 3/13/2011 12:51 & 30.9 & 9542 & 0.006 & 2.9 & 2.0 & 12.5 & 12.39 & 335.4 \\
\hline 3/13/2011 12:52 & 30.8 & 9542 & 0.006 & 2.8 & 1.9 & 12.2 & 12.38 & 334 \\
\hline 3/13/2011 12:53 & 30.7 & 9547 & 0.006 & 2.8 & 1.9 & 12.1 & 12.39 & 333.2 \\
\hline 3/13/2011 12:54 & 30.8 & 9550 & 0.005 & 3.0 & 2.1 & 13.0 & 12.42 & 333.5 \\
\hline 3/13/2011 12:55 & 30.6 & 9552 & 0.005 & 3.0 & 2.1 & 12.9 & 12.37 & 333.9 \\
\hline 3/13/2011 12:56 & 30.8 & 9549 & 0.005 & 2.9 & 2.0 & 12.4 & 12.4 & 333.6 \\
\hline 3/13/2011 12:57 & 30.8 & 9547 & 0.005 & 3.0 & 2.1 & 13.0 & 12.44 & 334.6 \\
\hline 3/13/2011 12:58 & 31 & 9545 & 0.006 & 2.9 & 2.0 & 12.5 & 12.43 & 335.3 \\
\hline 3/13/2011 12:59 & 30.9 & 9544 & 0.006 & 2.9 & 2.0 & 12.5 & 12.41 & 336 \\
\hline 3/13/2011 13:00 & 31 & 9542 & 0.006 & 2.7 & 1.9 & 11.7 & 12.38 & 335.9 \\
\hline 3/13/2011 13:01 & 30.8 & 9544 & 0.006 & 2.7 & 1.9 & 11.6 & 12.43 & 334.6 \\
\hline 3/13/2011 13:02 & 30.9 & 9542 & 0.005 & 2.8 & 1.9 & 12.2 & 12.42 & 335.2 \\
\hline 3/13/2011 13:03 & 30.8 & 9547 & 0.006 & 2.7 & 1.9 & 11.6 & 12.36 & 334.3 \\
\hline 3/13/2011 13:04 & 30.7 & 9552 & 0.006 & 2.7 & 1.9 & 11.6 & 12.42 & 333.2 \\
\hline 3/13/2011 13:05 & 30.8 & 9550 & 0.005 & 3.0 & 2.1 & 13.0 & 12.46 & 334 \\
\hline 3/13/2011 13:06 & 30.7 & 9552 & 0.005 & 2.9 & 2.0 & 12.4 & 12.43 & 334.5 \\
\hline 3/13/2011 13:07 & 31 & 9550 & 0.006 & 2.8 & 1.9 & 12.2 & 12.4 & 335.5 \\
\hline 3/13/2011 13:08 & 30.9 & 9552 & 0.006 & 2.8 & 1.9 & 12.2 & 12.41 & 335.1 \\
\hline 3/13/2011 13:09 & 30.9 & 9552 & 0.005 & 2.8 & 1.9 & 12.2 & 12.43 & 335 \\
\hline 3/13/2011 13:10 & 30.9 & 9555 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 335.4 \\
\hline 3/13/2011 13:11 & 30.8 & 9552 & 0.005 & 2.8 & 1.9 & 12.2 & 12.36 & 334.4 \\
\hline 3/13/2011 13:12 & 30.8 & 9550 & 0.005 & 2.9 & 2.0 & 12.4 & 12.42 & 333.8 \\
\hline 3/13/2011 13:13 & 30.8 & 9550 & 0.005 & 2.9 & 2.0 & 12.4 & 12.36 & 334 \\
\hline 3/13/2011 13:14 & 30.6 & 9552 & 0.005 & 2.9 & 2.0 & 12.4 & 12.38 & 332.7 \\
\hline 3/13/2011 13:15 & 30.6 & 9549 & 0.005 & 2.8 & 1.9 & 12.1 & 12.41 & 333.4 \\
\hline 3/13/2011 13:16 & 30.8 & 9546 & 0.005 & 2.8 & 1.9 & 12.2 & 12.42 & 334.2 \\
\hline 3/13/2011 13:17 & 30.8 & 9541 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 334.9 \\
\hline 3/13/2011 13:18 & 31 & 9543 & 0.005 & 2.7 & 1.9 & 11.7 & 12.38 & 333.6 \\
\hline 3/13/2011 13:19 & 30.5 & 9547 & 0.006 & 2.8 & 1.9 & 12.1 & 12.39 & 332.1 \\
\hline 3/13/2011 13:20 & 30.9 & 9543 & 0.005 & 3.0 & 2.1 & 13.0 & 12.45 & 333.5 \\
\hline 3/13/2011 13:21 & 30.7 & 9547 & 0.005 & 2.9 & 2.0 & 12.4 & 12.42 & 334.4 \\
\hline 3/13/2011 13:22 & 31 & 9547 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 335.6 \\
\hline 3/13/2011 13:23 & 30.8 & 9549 & 0.006 & 2.8 & 1.9 & 12.2 & 12.36 & 334.5 \\
\hline 3/13/2011 13:24 & 30.6 & 9545 & 0.006 & 2.8 & 1.9 & 12.1 & 12.4 & 332.6 \\
\hline 3/13/2011 13:25 & 30.8 & 9545 & 0.005 & 2.9 & 2.0 & 12.4 & 12.42 & 332.7 \\
\hline 3/13/2011 13:26 & 30.7 & 9545 & 0.005 & 2.8 & 1.9 & 12.1 & 12.4 & 333.1 \\
\hline Final Average* & 30.8 & 9546 & 0.005 & 2.8 & 2.0 & 12.3 & 12.41 & 336.8 \\
\hline Maximum* & 31.2 & 9555 & 0.006 & 3.0 & 2.1 & 13.0 & 12.47 & 345.3 \\
\hline Minimum* & 30.5 & 9536 & 0.005 & 2.7 & 1.9 & 11.5 & 12.36 & 332.1 \\
\hline
\end{tabular}

\footnotetext{
*Does not include Invalid Averaging Periods ("N/A")
}

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3c

Period Start: 3/13/2011 13:39
Period End: 3/13/2011 13:59
Validation Type: \(1 / 1 \mathrm{~min}\)
Averaging Period: 1 min
Type: Block Avg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \[
\begin{gathered}
3 C_{2} C T_{1} G A S \\
\# / \mathrm{sec}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_DB_GAS } \\
\# / \mathrm{Hr}
\end{gathered}
\] & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
\text { 3C_CO } \\
\text { ppm }
\end{gathered}
\] & \[
\underset{\text { ppm }}{\text { 3C_COCORR }}
\] & \[
\begin{gathered}
3 C_{2} \text { COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
3 C _02 \\
\%
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-} S T_{-} M W \\
M W
\end{gathered}
\] \\
\hline 3/13/2011 13:39 & 30.8 & 9535 & 0.005 & 2.9 & 2 & 12.4 & 12.41 & 331.8 \\
\hline 3/13/2011 13:40 & 30.8 & 9535 & 0.005 & 2.8 & 1.9 & 12.2 & 12.37 & 330.6 \\
\hline 3/13/2011 13:41 & 30.6 & 9533 & 0.005 & 2.8 & 1.9 & 12.1 & 12.41 & 329.7 \\
\hline 3/13/2011 13:42 & 30.7 & 9534 & 0.005 & 2.8 & 1.9 & 12.1 & 12.4 & 330.3 \\
\hline 3/13/2011 13:43 & 30.7 & 9531 & 0.005 & 2.8 & 1.9 & 12.1 & 12.39 & 329.6 \\
\hline 3/13/2011 13:44 & 30.6 & 9533 & 0.005 & 2.9 & 2 & 12.4 & 12.43 & 329.8 \\
\hline 3/13/2011 13:45 & 30.8 & 9531 & 0.005 & 2.9 & 2 & 12.4 & 12.44 & 330.7 \\
\hline 3/13/2011 13:46 & 30.9 & 9533 & 0.005 & 2.7 & 1.9 & 11.7 & 12.39 & 331.5 \\
\hline 3/13/2011 13:47 & 30.7 & 9535 & 0.006 & 2.7 & 1.9 & 11.6 & 12.39 & 330.6 \\
\hline 3/13/2011 13:48 & 30.8 & 9533 & 0.006 & 2.7 & 1.9 & 11.6 & 12.42 & 330.2 \\
\hline 3/13/2011 13:49 & 30.6 & 9533 & 0.005 & 2.8 & 1.9 & 12.1 & 12.43 & 330.3 \\
\hline 3/13/2011 13:50 & 30.9 & 9535 & 0.005 & 2.8 & 1.9 & 12.2 & 12.42 & 331.1 \\
\hline 3/13/2011 13:51 & 30.7 & 9536 & 0.006 & 2.9 & 2 & 12.4 & 12.42 & 331 \\
\hline 3/13/2011 13:52 & 30.8 & 9534 & 0.006 & 2.9 & 2 & 12.4 & 12.41 & 330.7 \\
\hline 3/13/2011 13:53 & 30.8 & 9535 & 0.006 & 2.8 & 1.9 & 12.2 & 12.4 & 330 \\
\hline 3/13/2011 13:54 & 30.6 & 9535 & 0.006 & 2.8 & 1.9 & 12.1 & 12.39 & 328.9 \\
\hline 3/13/2011 13:55 & 30.8 & 9536 & 0.005 & 2.9 & 2 & 12.4 & 12.44 & 329.3 \\
\hline 3/13/2011 13:56 & 30.7 & 9534 & 0.005 & 2.8 & 1.9 & 12.1 & 12.42 & 330.2 \\
\hline 3/13/2011 13:57 & 30.8 & 9535 & 0.006 & 2.7 & 1.9 & 11.6 & 12.4 & 330.2 \\
\hline 3/13/2011 13:58 & 30.5 & 9537 & 0.006 & 2.8 & 1.9 & 12.1 & 12.41 & 329.4 \\
\hline 3/13/2011 13:59 & 30.7 & 9538 & 0.005 & 2.8 & 1.9 & 12.1 & 12.43 & 330.3 \\
\hline Final Average* & 30.7 & 9534 & 0.005 & 2.8 & 1.9 & 12.1 & 12.41 & 330.3 \\
\hline Maximum* & 30.9 & 9538 & 0.006 & 2.9 & 2 & 12.4 & 12.44 & 331.8 \\
\hline Minimum* & 30.5 & 9531 & 0.005 & 2.7 & 1.9 & 11.6 & 12.37 & 328.9 \\
\hline
\end{tabular}
*Does not include Invalid Averaging Periods ("N/A")

Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59
Generated 3/13/2011 15:30

Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Source: stack3c

Period Start: 3/13/2011 14:11
Period End: 3/13/2011 14:31
Validation Type: \(1 / 1 \mathrm{~min}\)
Averaging Period: 1 min
Type: Block Avg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \[
\begin{gathered}
3 C_{2} C T_{1} G A S \\
\# / \mathrm{sec}
\end{gathered}
\] & \(3 C_{2}\) DB_GAS
\(\# / \mathrm{Hr}\) & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
3 C_{-} \mathrm{CO} \\
\mathrm{ppm}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COCORR } \\
\mathrm{ppm}
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-} \text {COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_O2 } \\
\%
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-} S T _M W \\
M W
\end{gathered}
\] \\
\hline 3/13/2011 14:11 & 30.6 & 9535 & 0.005 & 2.8 & 1.9 & 12.1 & 12.42 & 329.7 \\
\hline 3/13/2011 14:12 & 30.8 & 9534 & 0.005 & 2.8 & 1.9 & 12.2 & 12.42 & 330.4 \\
\hline 3/13/2011 14:13 & 30.9 & 9534 & 0.005 & 2.7 & 1.9 & 11.7 & 12.42 & 330 \\
\hline 3/13/2011 14:14 & 30.8 & 9534 & 0.006 & 2.8 & 1.9 & 12.2 & 12.41 & 328.8 \\
\hline 3/13/2011 14:15 & 30.8 & 9535 & 0.005 & 2.7 & 1.9 & 11.6 & 12.41 & 328 \\
\hline 3/13/2011 14:16 & 30.8 & 9549 & 0.005 & 2.7 & 1.9 & 11.6 & 12.39 & 326.8 \\
\hline 3/13/2011 14:17 & 30.7 & 9547 & 0.005 & 2.7 & 1.9 & 11.6 & 12.43 & 327.6 \\
\hline 3/13/2011 14:18 & 30.8 & 9545 & 0.005 & 2.7 & 1.9 & 11.6 & 12.41 & 329.6 \\
\hline 3/13/2011 14:19 & 30.9 & 9538 & 0.005 & 2.7 & 1.9 & 11.7 & 12.4 & 330 \\
\hline 3/13/2011 14:20 & 30.7 & 9533 & 0.005 & 2.8 & 1.9 & 12.1 & 12.4 & 330.2 \\
\hline 3/13/2011 14:21 & 30.9 & 9533 & 0.005 & 2.8 & 1.9 & 12.2 & 12.41 & 331 \\
\hline 3/13/2011 14:22 & 30.8 & 9535 & 0.005 & 2.8 & 1.9 & 12.2 & 12.4 & 331.1 \\
\hline 3/13/2011 14:23 & 30.6 & 9533 & 0.005 & 2.9 & 2 & 12.4 & 12.42 & 330.5 \\
\hline 3/13/2011 14:24 & 30.9 & 9535 & 0.005 & 2.9 & 2 & 12.5 & 12.43 & 331.3 \\
\hline 3/13/201114:25 & 30.7 & 9536 & 0.005 & 2.8 & 1.9 & 12.1 & 12.36 & 330.7 \\
\hline 3/13/2011 14:26 & 30.6 & 9534 & 0.005 & 2.9 & 2 & 12.4 & 12.41 & 329.1 \\
\hline 3/13/2011 14:27 & 30.6 & 9536 & 0.005 & 2.8 & 1.9 & 12.1 & 12.43 & 329.3 \\
\hline 3/13/2011 14:28 & 30.7 & 9533 & 0.005 & 2.8 & 1.9 & 12.1 & 12.42 & 330 \\
\hline 3/13/2011 14:29 & 30.7 & 9534 & 0.005 & 2.7 & 1.9 & 11.6 & 12.35 & 329.2 \\
\hline 3/13/2011 14:30 & 30.5 & 9535 & 0.005 & 2.8 & 2 & 12.1 & 12.46 & 328.6 \\
\hline 3/13/2011 14:31 & 30.6 & 9533 & 0.005 & 2.9 & 2 & 12.4 & 12.44 & 329.3 \\
\hline Final Average* & 30.7 & 9536 & 0.005 & 2.8 & 1.9 & 12.0 & 12.41 & 329.6 \\
\hline Maximum* & 30.9 & 9549 & 0.006 & 2.9 & 2 & 12.5 & 12.46 & 331.3 \\
\hline Minimum* & 30.5 & 9533 & 0.005 & 2.7 & 1.9 & 11.6 & 12.35 & 326.8 \\
\hline
\end{tabular}

\footnotetext{
*Does not include Invalid Averaging Periods ("N/A")
}

\section*{Babcock \& Wilcox Power Generation Group NetDAHS}

Average Values Report
Version 59
Generated 3/13/2011 15:30

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3c

Period Start: 3/13/2011 14:41
Period End: 3/13/2011 15:01
Validation Type: \(1 / 1 \mathrm{~min}\)
Averaging Period: 1 min
Type: Block Avg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \[
\begin{gathered}
\text { 3C_CT_GAS } \\
H / \mathrm{sec}
\end{gathered}
\] & \[
\underset{\# / \mathrm{Hr}}{3 C_{2} \text { DB_GAS }}
\] & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
\text { 3C_CO } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COCORR } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
3 C_{2} \text { COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-O 2} \\
\%
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-} S T_{-} M W \\
M W
\end{gathered}
\] \\
\hline 3/13/2011 14:41 & 30.4 & 9535 & 0.005 & 2.8 & 1.9 & 12.0 & 12.4 & 327.6 \\
\hline 3/13/2011 14:42 & 30.6 & 9537 & 0.005 & 2.9 & 2 & 12.4 & 12.42 & 328.3 \\
\hline 3/13/2011 14:43 & 30.9 & 9540 & 0.005 & 2.8 & 1.9 & 12.2 & 12.41 & 328.4 \\
\hline 3/13/2011 14:44 & 30.5 & 9541 & 0.005 & 2.8 & 1.9 & 12.1 & 12.41 & 327.2 \\
\hline 3/13/2011 14:45 & 30.6 & 9545 & 0.006 & 2.7 & 1.9 & 11.5 & 12.39 & 326 \\
\hline 3/13/2011 14:46 & 30.5 & 9539 & 0.006 & 2.8 & 1.9 & 12.1 & 12.44 & 325.7 \\
\hline 3/13/2011 14:47 & 30.8 & 9543 & 0.005 & 2.8 & 1.9 & 12.2 & 12.41 & 327.2 \\
\hline 3/13/2011 14:48 & 30.5 & 9541 & 0.006 & 2.7 & 1.9 & 11.5 & 12.42 & 327.7 \\
\hline 3/13/2011 14:49 & 30.8 & 9539 & 0.006 & 2.8 & 1.9 & 12.2 & 12.43 & 329.1 \\
\hline 3/13/2011 14:50 & 30.5 & 9542 & 0.006 & 2.7 & 1.9 & 11.5 & 12.41 & 329.6 \\
\hline 3/13/2011 14:51 & 30.8 & 9539 & 0.006 & 2.6 & 1.8 & 11.1 & 12.41 & 330 \\
\hline 3/13/2011 14:52 & 30.8 & 9542 & 0.005 & 2.6 & 1.8 & 11.1 & 12.43 & 330.9 \\
\hline 3/13/2011 14:53 & 30.7 & 9537 & 0.006 & 2.6 & 1.8 & 11.0 & 12.42 & 331 \\
\hline 3/13/2011 14:54 & 30.9 & 9535 & 0.006 & 2.6 & 1.8 & 11.1 & 12.4 & 330.7 \\
\hline 3/13/2011 14:55 & 30.5 & 9531 & 0.006 & 2.7 & 1.9 & 11.5 & 12.38 & 329.7 \\
\hline 3/13/2011 14:56 & 30.7 & 9536 & 0.006 & 2.8 & 1.9 & 12.1 & 12.41 & 329.4 \\
\hline 3/13/2011 14:57 & 30.7 & 9532 & 0.005 & 2.8 & 1.9 & 12.1 & 12.42 & 329.6 \\
\hline 3/13/2011 14:58 & 30.7 & 9533 & 0.005 & 2.9 & 2 & 12.4 & 12.41 & 330.5 \\
\hline 3/13/2011 14:59 & 30.9 & 9533 & 0.006 & 2.8 & 1.9 & 12.2 & 12.4 & 330.9 \\
\hline 3/13/2011 15:00 & 30.6 & 9549 & 0.006 & 2.8 & 1.9 & 12.1 & 12.4 & 330 \\
\hline 3/13/2011 15:01 & 30.6 & 9551 & 0.006 & 2.8 & 1.9 & 12.1 & 12.44 & 330.3 \\
\hline Final Average* & 30.7 & 9539 & 0.006 & 2.8 & 1.9 & 11.8 & 12.41 & 329 \\
\hline Maximum* & 30.9 & 9551 & 0.006 & 2.9 & 2 & 12.4 & 12.44 & 331 \\
\hline Minimum* & 30.4 & 9531 & 0.005 & 2.6 & 1.8 & 11.0 & 12.38 & 325.7 \\
\hline
\end{tabular}

\footnotetext{
*Does not include Invalid Averaging Periods ("N/A")
}

\title{
Babcock \& Wilcox Power Generation Group NetDAHS
}

Average Values Report
Version 59
Generated 3/13/2011 15:30

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3c

Period Start: 3/13/2011 15:11
Period End: 3/13/2011 15:31
Validation Type: \(1 / 1 \mathrm{~min}\)
Averaging Period: 1 min
Type: Block Avg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \[
\begin{gathered}
\text { 3C_CT_GAS } \\
\# / \mathrm{sec}
\end{gathered}
\] & & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
\text { 3C_CO } \\
\mathrm{ppm}
\end{gathered}
\] & \[
\underset{\mathrm{ppm}}{\text { 3C_COCORR }}
\] & \[
\begin{gathered}
3 C_{\#} \text { COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-O 2} \\
\%
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-} S T_{-} M W \\
M W
\end{gathered}
\] \\
\hline 3/13/2011 15:11 & 30.9 & 9551 & 0.006 & 2.7 & 1.9 & 11.7 & 12.42 & 330.7 \\
\hline 3/13/2011 15:12 & 30.8 & 9555 & 0.006 & 2.7 & 1.9 & 11.6 & 12.4 & 329.8 \\
\hline 3/13/2011 15:13 & 30.7 & 9558 & 0.006 & 2.7 & 1.9 & 11.6 & 12.4 & 327.9 \\
\hline 3/13/2011 15:14 & 30.7 & 9556 & 0.006 & 2.8 & 1.9 & 12.1 & 12.43 & 326.6 \\
\hline 3/13/2011 15:15 & 30.5 & 9556 & 0.005 & 2.7 & 1.9 & 11.5 & 12.44 & 327 \\
\hline 3/13/2011 15:16 & 30.7 & 9555 & 0.005 & 2.8 & 1.9 & 12.1 & 12.43 & 328.5 \\
\hline 3/13/2011 15:17 & 30.8 & 9556 & 0.006 & 2.7 & 1.9 & 11.6 & 12.4 & 329.7 \\
\hline 3/13/2011 15:18 & 30.7 & 9555 & 0.006 & 2.7 & 1.9 & 11.6 & 12.4 & 329.6 \\
\hline 3/13/2011 15:19 & 30.7 & 9553 & 0.006 & 2.7 & 1.9 & 11.6 & 12.41 & 329.9 \\
\hline 3/13/2011 15:20 & 30.6 & 9556 & 0.005 & 2.7 & 1.9 & 11.5 & 12.41 & 330.8 \\
\hline 3/13/2011 15:21 & 30.9 & 9554 & 0.006 & 2.7 & 1.9 & 11.7 & 12.4 & 331.2 \\
\hline 3/13/2011 15:22 & 30.6 & 9555 & 0.005 & 2.7 & 1.9 & 11.5 & 12.38 & 330.4 \\
\hline 3/13/2011 15:23 & 30.6 & 9555 & 0.005 & 2.7 & 1.9 & 11.5 & 12.36 & 329.1 \\
\hline 3/13/2011 15:24 & 30.6 & 9561 & 0.005 & 2.7 & 1.9 & 11.5 & 12.4 & 328.9 \\
\hline 3/13/2011 15:25 & 30.5 & 9552 & 0.005 & 2.8 & 1.9 & 12.1 & 12.43 & 329.7 \\
\hline 3/13/2011 15:26 & 30.8 & 9554 & 0.005 & 2.7 & 1.9 & 11.6 & 12.39 & 330.8 \\
\hline 3/13/2011 15:27 & 30.6 & 9552 & 0.006 & 2.6 & 1.8 & 11.0 & 12.39 & 330.3 \\
\hline 3/13/2011 15:28 & 30.7 & 9554 & 0.006 & 2.7 & 1.9 & 11.6 & 12.4 & 329.5 \\
\hline 3/13/2011 15:29 & 30.6 & 9550 & 0.006 & 2.8 & 1.9 & 12.1 & 12.42 & 329.1 \\
\hline 3/13/2011 15:30 & 30.7 & 9550 & 0.005 & 2.8 & 1.9 & 12.1 & 12.43 & 329.8 \\
\hline 3/13/2011 15:31 & 30.7 & 9554 & 0.006 & 2.8 & 1.9 & 12.1 & 12.41 & 330.2 \\
\hline Final Average* & 30.7 & 9554 & 0.006 & 2.7 & 1.9 & 11.7 & 12.41 & 329.5 \\
\hline Maximum* & 30.9 & 9561 & 0.006 & 2.8 & 1.9 & 12.1 & 12.44 & 331.2 \\
\hline Minimum* & 30.5 & 9550 & 0.005 & 2.6 & 1.8 & 11.0 & 12.36 & 326.6 \\
\hline
\end{tabular}

\footnotetext{
*Does not include Invalid Averaging Periods ("N/A")
}

Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59
Generated 3/13/2011 15:30

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3c

Period Start: 3/13/2011 15:41
Period End: \(3 / 13 / 2011\) 16:01
Validation Type: \(1 / 1 \mathrm{~min}\)
Averaging Period: \(\mathbf{1} \mathrm{min}\)
Type: Block Avg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \begin{tabular}{l}
3C_CT_GAS \\
\#/sec
\end{tabular} & \[
\underset{\# / \mathrm{Hr}}{\text { 3C_DB_GAS }}
\] & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
\text { 3C_CO } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COCORR } \\
\mathrm{ppm}
\end{gathered}
\] & \[
\begin{gathered}
3 C_{-} \text {COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_O2 } \\
\%
\end{gathered}
\] & \begin{tabular}{l}
3C_ST_MW \\
MW
\end{tabular} \\
\hline 3/13/2011 15:41 & 30.7 & 9544 & 0.006 & 2.6 & 1.8 & 11.0 & 12.39 & 326.3 \\
\hline 3/13/2011 15:42 & 30.6 & 9545 & 0.005 & 2.6 & 1.8 & 11.0 & 12.41 & 325.7 \\
\hline 3/13/2011 15:43 & 30.7 & 9550 & 0.005 & 2.6 & 1.8 & 11.0 & 12.38 & 327 \\
\hline 3/13/2011 15:44 & 30.7 & 9554 & 0.006 & 2.6 & 1.8 & 11.0 & 12.41 & 327.6 \\
\hline 3/13/2011 15:45 & 30.6 & 9553 & 0.006 & 2.7 & 1.9 & 11.5 & 12.41 & 328.3 \\
\hline 3/13/2011 15:46 & 30.7 & 9558 & 0.006 & 2.8 & 1.9 & 12.1 & 12.43 & 328.9 \\
\hline 3/13/2011 15:47 & 30.7 & 9560 & 0.006 & 2.8 & 1.9 & 12.1 & 12.43 & 329.9 \\
\hline 3/13/2011 15:48 & 30.8 & 9562 & 0.006 & 2.8 & 1.9 & 12.2 & 12.41 & 331 \\
\hline 3/13/2011 15:49 & 30.7 & 9559 & 0.006 & 2.7 & 1.9 & 11.6 & 12.36 & 330.3 \\
\hline 3/13/2011 15:50 & 30.5 & 9567 & 0.006 & 2.8 & 1.9 & 12.1 & 12.43 & 329.2 \\
\hline 3/13/2011 15:51 & 30.8 & 9562 & 0.005 & 2.9 & 2 & 12.7 & 12.46 & 330.4 \\
\hline 3/13/2011 15:52 & 30.6 & 9559 & 0.005 & 2.8 & 1.9 & 12.1 & 12.42 & 330.1 \\
\hline 3/13/2011 15:53 & 30.9 & 9567 & 0.005 & 2.8 & 1.9 & 12.2 & 12.41 & 331.1 \\
\hline 3/13/2011 15:54 & 30.8 & 9565 & 0.006 & 2.7 & 1.9 & 11.6 & 12.39 & 331.7 \\
\hline 3/13/2011 15:55 & 30.7 & 9570 & 0.006 & 2.7 & 1.9 & 11.6 & 12.39 & 330.6 \\
\hline 3/13/2011 15:56 & 30.6 & 9566 & 0.005 & 2.6 & 1.8 & 11.0 & 12.4 & 329.3 \\
\hline 3/13/2011 15:57 & 30.5 & 9563 & 0.005 & 2.7 & 1.9 & 11.5 & 12.39 & 328.7 \\
\hline 3/13/2011 15:58 & 30.6 & 9559 & 0.005 & 2.7 & 1.9 & 11.5 & 12.39 & 328.5 \\
\hline 3/13/2011 15:59 & 30.4 & 9561 & 0.005 & 2.6 & 1.8 & 10.9 & 12.43 & 328.6 \\
\hline 3/13/2011 16:00 & 30.8 & 9556 & 0.005 & 2.7 & 1.9 & 11.6 & 12.43 & 330.5 \\
\hline 3/13/2011 16:01 & 30.7 & 9549 & 0.005 & 2.7 & 1.9 & 11.6 & 12.42 & 330.7 \\
\hline Final Average* & 30.7 & 9559 & 0.005 & 2.7 & 1.9 & 11.6 & 12.41 & 329.3 \\
\hline Maximum* & 30.9 & 9570 & 0.006 & 2.9 & 2 & 12.7 & 12.46 & 331.7 \\
\hline Minimum* & 30.4 & 9544 & 0.005 & 2.6 & 1.8 & 10.9 & 12.36 & 325.7 \\
\hline
\end{tabular}
*Does not include Invalid Averaging Periods ("N/A")

Babcock \& Wilcox Power Generation Group NetDAHS
Average Values Report
Version 59
Generated 3/13/2011 15:30

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3c

Period Start: 3/13/2011 16:59
Period End: 3/13/2011 17:19
Validation Type: \(1 / 1 \mathrm{~min}\) Averaging Period: 1 min
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \[
\underset{\# / \mathrm{sec}}{3 C_{2} \mathrm{CT} \text { GAS }}
\] & \[
\underset{\# / \mathrm{Hr}}{3 C_{-} \text {DB_GAS }}
\] & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
3 C_{-} \mathrm{CO} \\
\text { ppm }
\end{gathered}
\] & \[
\underset{\text { ppm }}{\text { 3C_COCORR }}
\] & \[
\underset{\# / \mathrm{Hr}}{3 C_{2} \text { COLBHR }}
\] & \[
\underset{\%}{3 C_{1} 02}
\] & \[
\underset{\text { MW }}{\text { 3C_ST_MW }}
\] \\
\hline 3/13/2011 16:59 & 30.8 & 9538 & 0.006 & 0.9 & 0.6 & 3.9 & 12.44 & 344.6 \\
\hline 3/13/2011 17:00 & 30.8 & 9542 & 0.006 & 1.0 & 0.7 & 4.4 & 12.44 & 343.8 \\
\hline 3/13/2011 17:01 & 30.9 & 9535 & 0.006 & 0.9 & 0.6 & 3.9 & 12.44 & 343.7 \\
\hline 3/13/2011 17:02 & 30.7 & 9534 & 0.006 & 0.8 & 0.6 & 3.3 & 12.43 & 343.2 \\
\hline 3/13/2011 17:03 & 30.9 & 9544 & 0.006 & 0.9 & 0.6 & 3.9 & 12.44 & 343.5 \\
\hline 3/13/2011 17:04 & 30.6 & 9545 & 0.006 & 0.9 & 0.6 & 3.8 & 12.43 & 343 \\
\hline 3/13/2011 17:05 & 30.8 & 9546 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 342.9 \\
\hline 3/13/2011 17:06 & 30.9 & 9547 & 0.005 & 0.9 & 0.6 & 3.9 & 12.42 & 343 \\
\hline 3/13/2011 17:07 & 30.6 & 9540 & 0.005 & 0.8 & 0.6 & 3.3 & 12.4 & 342.2 \\
\hline 3/13/2011 17:08 & 30.7 & 9539 & 0.005 & 0.9 & 0.6 & 3.9 & 12.41 & 341.7 \\
\hline 3/13/2011 17:09 & 30.7 & 9539 & 0.005 & 0.9 & 0.6 & 3.9 & 12.43 & 342 \\
\hline 3/13/2011 17:10 & 31 & 9539 & 0.005 & 1.0 & 0.7 & 4.5 & 12.44 & 343.7 \\
\hline 3/13/2011 17:11 & 30.7 & 9535 & 0.005 & 0.9 & 0.6 & 3.9 & 12.42 & 343.2 \\
\hline 3/13/2011 17:12 & 30.9 & 9538 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 343.2 \\
\hline 3/13/2011 17:13 & 30.8 & 9539 & 0.005 & 0.9 & 0.6 & 3.9 & 12.43 & 343.1 \\
\hline 3/13/2011 17:14 & 30.8 & 9537 & 0.005 & 1.0 & 0.7 & 4.4 & 12.43 & 343 \\
\hline 3/13/2011 17:15 & 30.8 & 9539 & 0.005 & 1.0 & 0.7 & 4.4 & 12.43 & 343 \\
\hline 3/13/2011 17:16 & 30.8 & 9540 & 0.005 & 0.9 & 0.6 & 3.9 & 12.43 & 343.4 \\
\hline 3/13/2011 17:17 & 30.9 & 9541 & 0.005 & 1.0 & 0.7 & 4.4 & 12.42 & 343.5 \\
\hline 3/13/2011 17:18 & 30.8 & 9542 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 343.1 \\
\hline 3/13/2011 17:19 & 30.8 & 9541 & 0.005 & 0.9 & 0.6 & 3.9 & 12.45 & 343.2 \\
\hline Final Average* & 30.8 & 9540 & 0.005 & 0.9 & 0.6 & 4.0 & 12.43 & 343.1 \\
\hline Maximum* & 31 & 9547 & 0.006 & 1.0 & 0.7 & 4.5 & 12.45 & 344.6 \\
\hline Minimum* & 30.6 & 9534 & 0.005 & 0.8 & 0.6 & 3.3 & 12.4 & 341.7 \\
\hline
\end{tabular}
*Does not include Invalid Averaging Periods ("N/A")

\section*{Babcock \& Wilcox Power Generation Group NetDAHS}

Average Values Report
Version 59
Generated 3/13/2011 15:30

Company: Florida Power \& Light Plant: West County Plant City/St: Loxahatchee, FL 33470 Source: stack3c

Period Start: 3/13/2011 17:29
Period End: 3/13/2011 17:49
Validation Type: \(1 / 1 \mathrm{~min}\)
Averaging Period: 1 min
Type: Block Avg
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Period Start & \[
\underset{\# / \mathrm{sec}}{3 C_{2} \mathrm{CT} \text { GAS }}
\] & \[
\begin{gathered}
\text { 3C_DB_GAS } \\
\# / H r
\end{gathered}
\] & 3CNOXMMBTU \#/MBTU & \[
\begin{gathered}
3 C_{2} \mathrm{CO} \\
\mathrm{ppm}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_COCORR } \\
\text { ppm }
\end{gathered}
\] & \[
\begin{gathered}
3 C_{2} \text { COLBHR } \\
\# / \mathrm{Hr}
\end{gathered}
\] & \[
\begin{gathered}
\text { 3C_O2 } \\
\%
\end{gathered}
\] & \begin{tabular}{l}
3C_ST_MW \\
MW
\end{tabular} \\
\hline 3/13/2011 17:29 & 30.8 & 9544 & 0.005 & 1.0 & 0.7 & 4.4 & 12.43 & 347 \\
\hline 3/13/2011 17:30 & 31 & 9542 & 0.005 & 1.0 & 0.7 & 4.5 & 12.44 & 349.1 \\
\hline 3/13/20111 17:31 & 30.9 & 9543 & 0.005 & 0.9 & 0.6 & 3.9 & 12.44 & 350.3 \\
\hline 3/13/2011 17:32 & 30.9 & 9542 & 0.006 & 0.9 & 0.6 & 3.9 & 12.42 & 349.3 \\
\hline 3/13/2011 17:33 & 31 & 9541 & 0.006 & 1.0 & 0.7 & 4.5 & 12.42 & 348.3 \\
\hline 3/13/2011 17:34 & 30.8 & 9545 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 348.4 \\
\hline 3/13/2011 17:35 & 30.7 & 9544 & 0.006 & 1.0 & 0.7 & 4.4 & 12.43 & 347.5 \\
\hline 3/13/2011 17:36 & 30.8 & 9542 & 0.005 & 1.0 & 0.7 & 4.4 & 12.43 & 347.1 \\
\hline 3/13/2011 17:37 & 30.9 & 9545 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 346.8 \\
\hline 3/13/2011 17:38 & 30.8 & 9545 & 0.006 & 0.9 & 0.6 & 3.9 & 12.42 & 346.1 \\
\hline 3/13/2011 17:39 & 30.7 & 9546 & 0.006 & 1.0 & 0.7 & 4.4 & 12.42 & 345.1 \\
\hline 3/13/2011 17:40 & 30.9 & 9549 & 0.005 & 0.9 & 0.6 & 3.9 & 12.42 & 344.9 \\
\hline 3/13/2011 17:41 & 30.8 & 9542 & 0.005 & 1.0 & 0.7 & 4.4 & 12.42 & 344.6 \\
\hline 3/13/2011 17:42 & 30.9 & 9544 & 0.005 & 1.0 & 0.7 & 4.4 & 12.43 & 344.2 \\
\hline 3/13/2011 17:43 & 30.9 & 9543 & 0.005 & 1.0 & 0.7 & 4.4 & 12.43 & 344.6 \\
\hline 3/13/2011 17:44 & 30.9 & 9540 & 0.005 & 1.0 & 0.7 & 4.4 & 12.42 & 344.9 \\
\hline 3/13/2011 17:45 & 30.9 & 9541 & 0.006 & 1.0 & 0.7 & 4.4 & 12.42 & 344.6 \\
\hline 3/13/2011 17:46 & 31 & 9546 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 344.8 \\
\hline 3/13/2011 17:47 & 31 & 9545 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 344.8 \\
\hline 3/13/2011 17:48 & 30.8 & 9545 & 0.006 & 0.9 & 0.6 & 3.9 & 12.43 & 344.2 \\
\hline 3/13/2011 17:49 & 31 & 9546 & 0.006 & 1.0 & 0.7 & 4.5 & 12.44 & 344.4 \\
\hline Final Average* & 30.9 & 9544 & 0.006 & 1.0 & 0.7 & 4.2 & 12.43 & 346.2 \\
\hline Maximum* & 31 & 9549 & 0.006 & 1.0 & 0.7 & 4.5 & 12.44 & 350.3 \\
\hline Minimum* & 30.7 & 9540 & 0.005 & 0.9 & 0.6 & 3.9 & 12.42 & 344.2 \\
\hline
\end{tabular}

\footnotetext{
*Does not include Invalid Averaging Periods ("N/A")
}

CEMS AND REFERENCE METHOD DATA

> Reference Method Data

Florida Power and Light
March 13, 2011
Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline \multicolumn{4}{|c|}{ Fuel Fd factor } & 8,710 & SCF ext/MMBlu \\
\hline Fuel Heating Value (HHV & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,872 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Duct Burner Fuel Flow & 159 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Total Fuel Flow & \(2,787,227\) & SCFH \\
\hline
\end{tabular}

Unit Data
Unit Data
\begin{tabular}{|r|c|l|}
\hline & Unit Load & 343.4 \\
megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,486,652\) & SCFH \\
\hline
\end{tabular}

Base W/Db Load, Run - 1
Date/Time
(mm/dd/yy hh:mm:ss) 03/13/11 09:56:01 03/13/11 09:56:31 03/13/11 09:57:01 03/13/11 09:57:31 03/13/11 09:58:01 03/13/11 09:58:31 03/13/11 09:59:01 03/13/11 09:59:31 03/13/11 10:00:01 03/13/11 10:00:31 03/13/11 10:01:01 03/13/11 10:01:31 03/13/11 10:02:01 03/13/11 10:02:31 03/13/11 10:03:01 03/13/11 10:03:31 03/13/11 10:04:01 03/13/11 10:04:31 03/43/11 10:05:01 03/13/11 10:05:31 03/13/11 10:06:01 03/13/11 10:06:31 03/13/11 10:07:01 03/13/11 10:07:31 03/13/11 10:08:01 03/13/11 10:08:31 03/13/11 10:09:01 03/13/11 10:09:3 03/13/11 10:10:01 03/13/11 10:10:3 03/13/11 10:11:01 03/13/11 10:11:31 03/13/11 10:12:01 03/13/11 10:12:31 03/13/11 10:13:01 03/13/11 10:13:31 03/13/11 10:14:0 03/13/11 10:14:31 03/13/11 10:15:01 03/13/11 10:15:31 03/13/11 10:16:01 03/13/11 10:16:31 03/13/11 10:17:01 03/13/11 10:17:31 03/13/11 10:18:01 03/13/11 10:18:31 03/13/11 10:19:01 03/13/11 10:19:31 03/13/11 10:20:01 03/13/11 10:20:31 03/13/11 10:21:01 03/13/11 10:21:31 03/13/11 10:22:01 03/13/11 10:22:31 03/13/11 10:23:0

Elapsed Time (seconds) 11880 11910 11940 11970 \(12000 \quad 12.44\) \(\begin{array}{ll}12030 & 12.45 \\ 12060 & 12.44\end{array}\) \(12090 \quad 12.44\) \(12120 \quad 12.46\) \(\begin{array}{ll}12150 & 12.50 \\ 12180 & 12.46\end{array}\) \(12210 \quad 12.42\) \(\begin{array}{ll}12240 & 12.42 \\ 12270 & 12.48\end{array}\) \(12300 \quad 12.52\)
\begin{tabular}{ll}
12330 & 12.52 \\
12360 & 12.50
\end{tabular}
\(12390 \quad 12.45\)
\begin{tabular}{ll}
12420 & 12.45 \\
12450 & 12.47
\end{tabular}
\begin{tabular}{ll}
12450 & 12.47 \\
12480 & 12.46
\end{tabular}
\(12510 \quad 12.44\)
\(12540 \quad 12.43\) 12570 12.46 \(\begin{array}{ll}12600 & 12.52 \\ 12630 & 12.54\end{array}\) \(12660 \quad 12.50\) \(\begin{array}{ll}12690 & 12.52 \\ 12720 & 12.50\end{array}\) \(12750 \quad 12.49\) 12780 12.45 \(\begin{array}{ll}12810 & 12.45 \\ 12840 & 12.46\end{array}\) \(\begin{array}{ll}12840 & 12.46 \\ 12870 & 12.49\end{array}\) \(12900 \quad 12.51\)
\(12930 \quad 12.50\)
\begin{tabular}{ll}
12960 & 12.45 \\
12990 & 12.48
\end{tabular}
\(13020 \quad 12.48\)
\(13050 \quad 12.47\)
\(13080 \quad 12.43\)
\(13110 \quad 12.42\)
\(13140 \quad 12.42\)
\(13170 \quad 12.47\)
\(13200 \quad 12.51\)
13230 12.52
\(13260 \quad 12.49\)
\begin{tabular}{ll}
13290 & 12.51 \\
13320 & 12.46
\end{tabular}
\begin{tabular}{ll}
13320 & 12.46 \\
13350 & 12.44
\end{tabular} 13380 \(13410 \quad 12.41\) \(13440 \quad 12.38\) \(\begin{array}{ll}13470 & 12.37 \\ 13500 & 12.38\end{array}\)

NOx (ppmvd) 2.52
2.43 2.37 2.38

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.28 & in. Hg \\
\hline Relative Humidity & 42 & \(\%\) \\
\hline Ambient Temperature & 72 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006905 & \(\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{Ib}\) air \\
\hline
\end{tabular}

Co
(ppmvd)
1.14
1.04
1.06
1.13
1.03
0.99
2.55
1.06
0.96
\begin{tabular}{ll}
2.64 & 0.96 \\
2.60 & 1.07
\end{tabular}
\(2.50 \quad 1.14\)
2.37
1.07
1.08
\(2.48 \quad 0.98\)
\(\begin{array}{ll}2.51 & 1.12 \\ 2.39 & 1.17\end{array}\)
\(2.28 \quad 1.23\)
\(\begin{array}{ll}2.29 & 1.15 \\ 2.37 & 1.02\end{array}\)
2.37
1.02
\(\begin{array}{ll}2.37 & 1.08 \\ 2.60 & 1.07\end{array}\)
2.66
1.01
2.70
2.78
1.04
0.99
\(\begin{array}{ll}2.71 & 0.95 \\ 2.56 & 1.08\end{array}\)
\(\begin{array}{ll}2.37 & 1.17\end{array}\)
2.2
1.11
\(\begin{array}{ll}2.26 & 1.18 \\ 2.33 & 1.05\end{array}\)
2.40
1.05
0.96
\(\begin{array}{ll}2.64 & 1.04 \\ 2.72 & 0.99\end{array}\)
\(\begin{array}{ll}2.79 & 0.99 \\ 2.70 & 0.99\end{array}\)
2.79
2.70
0.99
1.05
\(2.62 \quad 1.12\)
2.56
2.56
1.03
1.04
\(\begin{array}{ll}2.56 & 1.04 \\ 2.65 & 1.05 \\ 2.68 & 1.13\end{array}\)
2.68
1.13
\(\begin{array}{ll}2.69 & 1.06 \\ 2.64 & 1.13\end{array}\)
\(2.68 \quad 1.11\)
\(\begin{array}{ll}2.72 & 1.06 \\ 2.67 & 1.09\end{array}\)
2.46
1.18
\(2.25 \quad 1.27\)
2.19
1.23
1.13
\(\begin{array}{ll}2.21 & 1.19 \\ 2.29 & 1.22\end{array}\)
2.05
1.22
1.32
2.39
1.37
\(\begin{array}{ll}2.59 & 1.33 \\ 2.54 & 1.13 \\ 2.47 & 1.08\end{array}\)
2.471 .08

\section*{Florida Power and Light}

March 13, 2011
Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF ext/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,872 & Ib/min \\
\hline Duct Burner Fuel Flow & 159 & \(\mathrm{Ib} / \mathrm{min}\) \\
\hline Total Fuel Flow & \(2,787,227\) & SCFH \\
\hline
\end{tabular}

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.28 & in. Hg \\
\hline Relative Humidity & 42 & \(\%\) \\
\hline Ambent Temperature & 72 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006905 & Ib \(\mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 343.4 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,486,652\) & SCFH \\
\hline
\end{tabular}

Base W/Db Load, Run - 1
\begin{tabular}{|c|c|c|c|c|}
\hline Date/Time & Elapsed Time & \(\mathrm{O}_{2}\) & NOx & \\
\hline (mm/dd/yy hh:mm:ss) & (seconds) & (\%) & (ppmvd) & (ppmvd) \\
\hline 03/13/11 10:23:31 & 13530 & 12.37 & 2.42 & 1.12 \\
\hline 03/13/11 10:24:01 & 13560 & 12.43 & 2.41 & 1.10 \\
\hline 03/13/11 10:24:31 & 13590 & 12.48 & 2.25 & 1.22 \\
\hline 03/13/11 10:25:01 & 13620 & 12.47 & 2.06 & 1.19 \\
\hline 03/13/11 10:25:31 & 13650 & 12.44 & 1.98 & 1.18 \\
\hline 03/13/11 10:26:01 & 13680 & 12.41 & 2.04 & 1.10 \\
\hline 03/13/11 10:26:31 & 13710 & 12.39 & 2.14 & 1.09 \\
\hline 03/13/11 10:27:01 & 13740 & 12.40 & 2.21 & 1.13 \\
\hline 03/13/11 10:27:31 & 13770 & 12.44 & 2.18 & 1.08 \\
\hline 03/13/11 10:28:01 & 13800 & 12.45 & 2.09 & 1.03 \\
\hline 03/13/11 10:28:31 & 13830 & 12.44 & 1.98 & 1.08 \\
\hline 03/13/11 10:29:01 & 13860 & 12.41 & 1.95 & 1.15 \\
\hline 03/13/11 10:29:31 & 13890 & 12.41 & 2.01 & 1.10 \\
\hline 03/13/11 10:30:01 & 13920 & 12.43 & 2.03 & 1.09 \\
\hline 03/13/11 10:30:31 & 13950 & 12.46 & 2.00 & 1.21 \\
\hline 03/13/11 10:31:01 & 13980 & 12.47 & 1.91 & 1.16 \\
\hline 03/13/11 10:31:31 & 14010 & 12.45 & 1.89 & 1.17 \\
\hline 03/13/11 10:32:01 & 14040 & 12.44 & 1.89 & 1.16 \\
\hline 03/13/11 10:32:31 & 14070 & 12.43 & 1.95 & 1.17 \\
\hline 03/13/11 10:33:01 & 14100 & 12.42 & 2.03 & 1.17 \\
\hline 03/13/11 10:33:31 & 14130 & 12.43 & 2.05 & 1.14 \\
\hline 03/13/11 10:34:01 & 14160 & 12.42 & 2.07 & 1.08 \\
\hline 03/13/11 10:34:31 & 14190 & 12.45 & 2.06 & 1.10 \\
\hline 03/13/11 10:35:01 & 14220 & 12.46 & 1.97 & 1.13 \\
\hline 03/13/11 10:35:31 & 14250 & 12.44 & 1.90 & 1.12 \\
\hline 03/13/11 10:36:01 & 14280 & 12.43 & 1.89 & 1.08 \\
\hline 03/13/11 10:36:31 & 14310 & 12.43 & 1.98 & 1.12 \\
\hline 03/13/11 10:37:01 & 14340 & 12.42 & 2.03 & 1.04 \\
\hline 03/13/11 10:37:31 & 14370 & 12.44 & 2.06 & 1.08 \\
\hline 03/13/11 10:38:01 & 14400 & 12.44 & 1.98 & 1.00 \\
\hline 03/13/11 10:38:31 & 14430 & 12.43 & 1.88 & 1.10 \\
\hline 03/13/11 10:39:01 & 14460 & 12.41 & 1.87 & 1.03 \\
\hline 03/13/11 10:39:31 & 14490 & 12.45 & 1.91 & 0.98 \\
\hline 03/13/11 10:40:01 & 14520 & 12.46 & 1.83 & 1.07 \\
\hline 03/13/11 10:40:31 & 14550 & 12.44 & 1.74 & 1.06 \\
\hline 03/13/11 10:41:01 & 14580 & 12.45 & 1.76 & 1.08 \\
\hline 03/13/11 10:41:31 & 14610 & 12.45 & 1.78 & 1.05 \\
\hline 03/13/11 10:42:01 & 14640 & 12.44 & 1.80 & 1.11 \\
\hline 03/13/11 10:42:31 & 14670 & 12.41 & 1.81 & 1.06 \\
\hline 03/13/11 10:43:01 & 14700 & 12.42 & 1.87 & 1.05 \\
\hline 03/13/11 10:43:31 & 14730 & 12.42 & 1.88 & 1.06 \\
\hline 03/13/11 10:44:01 & 14760 & 12.46 & 1.85 & 1.06 \\
\hline 03/13/11 10:44:31 & 14790 & 12.45 & 1.79 & 1.11 \\
\hline 03/13/11 10:45:01 & 14820 & 12.41 & 1.79 & 0.99 \\
\hline 03/13/11 10:45:31 & 14850 & 12.36 & 1.86 & 1.02 \\
\hline 03/13/11 10:46:01 & 14880 & 12.38 & 1.92 & 1.02 \\
\hline 03/13/11 10:46:31 & 14910 & 12.42 & 1.97 & 1.12 \\
\hline 03/13/11 10:47:01 & 14940 & 12.42 & 1.87 & 1.02 \\
\hline 03/13/11 10:47:31 & 14970 & 12.47 & 1.81 & 1.11 \\
\hline 03/13/11 10:48:01 & 15000 & 12.47 & 1.73 & 1.07 \\
\hline 03/13/11 10:48:31 & 15030 & 12.47 & 1.71 & 1.13 \\
\hline 03/13/11 10:49:01 & 15060 & 12.43 & 1.79 & 1.10 \\
\hline 03/13/11 10:49:31 & 15090 & 12.42 & 1.90 & 1.04 \\
\hline 03/13/11 10:50:01 & 15120 & 12.42 & 1.98 & 1.07 \\
\hline 03/13/11 10:50:31 & 15150 & 12.44 & 2.07 & 1.00 \\
\hline
\end{tabular}
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,872 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Duc! Burner Fuel Flow & 159 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Total Fuel Flow & \(2,787,227\) & SCFH \\
\hline
\end{tabular}

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.28 & in. Hg \\
\hline Relative Humidity & 42 & \(\%\) \\
\hline Ambient Temperature & 72 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006905 & \(\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 343.4 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,486,652\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{ccccc}
\begin{tabular}{c}
Base W/Db Load, Run - \\
Date/Time
\end{tabular} & \begin{tabular}{c}
Elapsed Time \\
(sm/dd/yy hh:mm:ss) \\
(seconds)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{O}_{\mathbf{2}}\) \\
\((\%)\)
\end{tabular} & \begin{tabular}{c}
NOx \\
(ppmvd)
\end{tabular} & \begin{tabular}{c}
CO \\
(ppmvd)
\end{tabular} \\
03/13/11 10:51:01 & 15180 & 12.41 & 2.10 & 0.96 \\
03/13/11 10:51:31 & 15210 & 12.43 & 2.16 & 1.01 \\
03/13/11 10:52:01 & 15240 & 12.43 & 2.19 & 0.99 \\
03/13/11 10:52:31 & 15270 & 12.44 & 2.14 & 1.00 \\
03/13/11 10:53:01 & 15300 & 12.45 & 2.10 & 1.04 \\
03/13/11 10:53:31 & 15330 & 12.46 & 2.06 & 1.00 \\
03/13/11 10:54:01 & 15360 & 12.44 & 2.08 & 1.04 \\
03/13/11 10:54:31 & 15390 & 12.43 & 2.12 & 1.00 \\
03/13/11 10:55:01 & 15420 & 12.42 & 2.18 & 0.97 \\
03/13/11 10:55:31 & 15450 & 12.44 & \(\mathbf{2 . 1 4}\) & 0.95 \\
& & & & \\
RAW AVERAGE & & \(\mathbf{1 2 . 4 5}\) & \(\mathbf{2 . 2 2}\) & \(\mathbf{1 . 0 9}\) \\
& & \(\mathbf{O}_{\mathbf{2}}\) & NOx & CO
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Serial Number: & \begin{tabular}{l}
INST-N2-0001 \\
(\%)
\end{tabular} & INST-N2-0001 (ppmvd) & INST-CO-0015 (ppmvd) \\
\hline & Initial Zero & 0.00 & -0.01 & 0.03 \\
\hline & Final Zero & 0.09 & -0.14 & -0.11 \\
\hline & Avg. Zero & 0.05 & -0.08 & -0.04 \\
\hline \% & Initial UpScale & 12.11 & 4.99 & 5.07 \\
\hline & Final UpScale & 12.17 & 4.87 & 5.06 \\
\hline & Avg. UpScale & 12.14 & 4.93 & 5.07 \\
\hline Upscale Cal Gas & & 12.10 & 4.93 & 4.92 \\
\hline \multicolumn{2}{|l|}{EMISSIONS DATA} & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline \multicolumn{2}{|l|}{Corrected Raw Average (ppm/\% dry basis)} & 12.41 & 2.26 & 1.09 \\
\hline \multicolumn{2}{|l|}{Concentration (ppm@ 15\% \(\mathrm{O}_{2}\))} & N/A & 1.57 & 0.76 \\
\hline \multicolumn{2}{|r|}{Emission Rate (\(\mathrm{lb} / \mathrm{hr}\))} & N/A & 16.59 & 4.86 \\
\hline \multicolumn{2}{|r|}{Emission Rate (lb/MMBtu)} & N/A & 0.006 & 0.002 \\
\hline
\end{tabular}

\section*{Florida Power and Light}

March 13, 2011
Mitsubishi, 501G, Unit 3C West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline \multicolumn{4}{|c|}{ Fuel Fd factor } & \(\mathbf{8 , 7 1 0}\) & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,860 & Ib/min \\
\hline Duct Burner Fuel Flow & 159 & Ib/min \\
\hline Total Fuel Flow & \(2,770,510\) & SCFH \\
\hline
\end{tabular}

Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 345.2 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,174,737\) & SCFH \\
\hline
\end{tabular}

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.30 & in. Hg \\
\hline Relative Humidity & 36 & \(\%\) \\
\hline Ambient Temperature & 74 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006321 & \(\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}

Base W/Db Load, Run - 2
Date/Time Elapsed Time \(\quad \mathrm{O}_{\mathbf{2}} \quad\) NO (mm/dd/yy hh:mm:ss) 03/13/11 11:12:01 03/13/11 11:12:31 03/13/11 11:13:01 03/13/11 11:13:31 03/13/11 11:14:01 03/13/11 11:14:31 03/13/11 11:15:01 03/13/11 11:15:31 03/13/11 11:16:01 03/13/11 11:16:31 03/13/11 11:17:01 03/13/11 11:17:31 03/13/11 11:18:01 03/13/11 11:18:31 03/13/11 11:19:01 03/13/11 11:19:31 03/13/11 11:20:01 03/13/11 11:20:31 03/13/11 11:21:01 03/13/11 11:21:31 03/13/11 11:22:01 03/13/11 11:22:31 03/13/11 11:23:01 03/13/11 11:23:31 03/13/11 11:24:01 03/13/11 11:24:31 03/13/11 11:25:01 03/13/11 11:25:31 03/13/11 11:26:01 03/13/11 11:26:31 03/13/11 11:27:01 03/13/11 11:27:31 03/13/11 11:28:01 03/13/11 11:28:31 03/13/11 11:29:01 03/13/11 11:29:31 03/13/11 11:30:01 03/13/11 11:30:31 03/13/11 11:31:01 03/13/11 11:31:31 03/13/11 11:32:01 03/13/11 11:32:31 03/13/11 11:33:01 03/13/11 11:33:31 03/13/11 11:34:01 03/13/11 11:34:31 03/13/11 11:35:01 03/13/11 11:35:31 03/13/11 11:36:01 03/13/11 11:36:31 03/13/11 11:37:01 03/13/11 11:37:31 03/13/11 11:38:01 03/13/11 11:38:31 03/13/11 11:39:01
(seconds) 16440 \(16470 \quad 12.44\)
\begin{tabular}{ll}
16500 & 12.43 \\
12.41
\end{tabular} 1.94 1.94 (ppmvd)
1.00
1.00 2.02 2.07
2.11
2.11 1.06
1.06
1
\begin{tabular}{ll}
16560 & 12.43 \\
& 12.43
\end{tabular}
16
16
16
16
1
16
1
16
16
16
1
16
1
. 16950
1
17
1
1
1
1
17
17
17
17
-173

17
1
1
1
1
1
1
117
17
17
1
17
1
1
1
17
17
1
1
17850
17880
17910
17940 12.46
17970 18000
\begin{tabular}{|c|c|}
\hline \[
\begin{gathered}
\mathrm{O}_{2} \\
(\%)
\end{gathered}
\] & \\
\hline 12.44 & 1.94 \\
\hline 12.43 & 2.02 \\
\hline 12.41 & 2.07 \\
\hline 12.43 & 2.11 \\
\hline 12.43 & 2.11 \\
\hline 12.46 & 2.02 \\
\hline 12.51 & 1.92 \\
\hline 12.49 & 1.78 \\
\hline 12.47 & 1.80 \\
\hline 12.46 & 1.85 \\
\hline 12.44 & 1.92 \\
\hline 12.45 & 2.00 \\
\hline 12.45 & 2.06 \\
\hline 12.45 & 2.10 \\
\hline 12.46 & 2.11 \\
\hline 12.47 & 2.07 \\
\hline 12.48 & 1.99 \\
\hline 12.48 & 1.91 \\
\hline 12.46 & 1.89 \\
\hline 12.46 & 1.91 \\
\hline 12.45 & 1.94 \\
\hline 12.47 & 1.95 \\
\hline 12.45 & 1.96 \\
\hline 12.47 & 2.00 \\
\hline 12.47 & 2.00 \\
\hline 12.47 & 1.99 \\
\hline 12.47 & 2.02 \\
\hline 12.47 & 2.03 \\
\hline 12.47 & 1.95 \\
\hline 12.49 & 1.94 \\
\hline 12.49 & 1.93 \\
\hline 12.49 & 1.94 \\
\hline 12.48 & 1.93 \\
\hline 12.46 & 1.93 \\
\hline 12.45 & 1.98 \\
\hline 12.46 & 2.03 \\
\hline 12.47 & 2.02 \\
\hline 12.48 & 2.01 \\
\hline 12.49 & 1.98 \\
\hline 12.51 & 1.94 \\
\hline 12.49 & 1.92 \\
\hline 12.48 & 1.90 \\
\hline 12.49 & 1.92 \\
\hline 12.49 & 1.94 \\
\hline 12.47 & 1.94 \\
\hline 12.47 & 1.98 \\
\hline 12.49 & 2.00 \\
\hline 12.50 & 2.03 \\
\hline 12.48 & 2.17 \\
\hline 12.46 & 2.20 \\
\hline 12.46 & 2.25 \\
\hline 12.49 & 2.29 \\
\hline 12.51 & 2.20 \\
\hline 12.50 & 2.13 \\
\hline 12.51 & 2.12 \\
\hline
\end{tabular}
0.930.92
0.961.00
\begin{tabular}{llll}
6650 & 12.49 & 1.78 & 1.05 \\
6680 & 12.47 & 1.80 & 1.01
\end{tabular}
\begin{tabular}{llll}
6710 & 12.46 & 1.85 & 1.01 \\
6740 & 12.44 & 1.92 & 0.99
\end{tabular}
\begin{tabular}{llll}
16770 & 12.45 & 2.00 & 1.01 \\
& 12.45 & 2.06 & 0.88
\end{tabular}
\begin{tabular}{llll}
12.450 & 2.06 & 0.88 \\
6860 & 12.45 & 2.10 & 0.94 \\
& 12.46 & 2.11 & 0.88
\end{tabular}
\begin{tabular}{llll}
12.46 & 2.11 & 0.88 \\
12.47 & 2.07 & 0.96 \\
& 12.48 & 1.99 & 0.95
\end{tabular}
\begin{tabular}{llll}
16950 & 12.48 & 1.91 & 0.95 \\
16980 & 12.46 & 1.89 & 0.96
\end{tabular}
7010
0.96
0.97
0.96
0.96
0.96
0.87
0.97
0.92
0.93
0.92
0.96
0.99
0.88
0.93
0.94
0.94
1.01
0.92
0.98
0.95
0.91
0.96
0.96
0.94
0.94
1.01
0.93
0.99
0.92
0.99
0.97
0.87
0.92
0.93
0.93
0.96
0.95
0.97
1.00
1.00
0.92

Florida Power and Light
March 13, 2011
Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF ext/MMBtu \\
\hline Fuel Heating Value (HHM) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,860 & \(\mathrm{Ib} / \mathrm{min}\) \\
\hline Duct Burner Fuel Flow & 159 & \(\mathrm{Ib} / \mathrm{min}\) \\
\hline Total Fuel Flow & \(2,770,510\) & SCFH \\
\hline
\end{tabular}

Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 345.2 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,174,737\) & SCFH \\
\hline
\end{tabular}

Base W/Db Load, Run - 2 Date/Time
(\(\mathrm{mm} / \mathrm{dd} / \mathrm{yy}\) hh:mm:ss) 03/13/11 11:39:31 03/13/11 11:40:01 03/13/11 11:40:31 03/13/11 11:41:01 03/13/11 11:41:31 03/13/11 11:42:01 03/13/11 11:42:31 03/13/11 11:43:01 03/13/11 11:43:31 03/13/11 11:44:01 03/13/11 11:44:31 03/13/11 11:45:01 03/13/11 11:45:31 03/13/11 11:46:01 03/13/11 11:46:31 03/13/11 11:47:01 03/13/11 11:47:31 03/13/11 11:48:01 03/13/11 11:48:31 03/13/11 11:49:01 03/13/11 11:49:31 03/13/11 11:50:01 03/13/11 11:50:31 03/13/11 11:51:01 03/13/11 11:51:31 03/13/11 11:52:01 03/13/11 11:52:31 03/13/11 11:53:01 03/13/11 11:53:31 03/13/11 11:54:01 03/13/11 11:54:31 03/13/11 11:55:01 03/13/11 11:55:31 03/13/11 11:56:01 03/13/11 11:56:31 03/13/11 11:57:01 03/13/11 11:57:31 03/13/11 11:58:01 03/13/11 11:58:31 03/13/11 11:59:01 03/13/11 11:59:31 03/13/11 12:00:01 03/13/11 12:00:31 03/13/11 12:01:01 03/13/11 12:01:31 03/13/11 12:02:01 03/13/11 12:02:31 03/13/11 12:03:01 03/13/11 12:03:31 03/13/11 12:04:01 03/13/11 12:04:31 03/13/11 12:05:01 03/13/11 12:05:31 03/13/11 12:06:01 03/13/11 12:06:31

Elap
(se
sec
18
18
18
1

18270
18300
18330
18330
18360

-
1
-

1
-
-
-
1
-
1

1

1
1
1
1
19
19
19

19260

-
1
1

19
1956
19590
19620
. 19650
19680
19710

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.30 & in, Hg \\
\hline Relative Humidity & 36 & \(\%\) \\
\hline Ambient Temperature & 74 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006321 & \(\mathrm{lb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
\begin{tabular}{cc}
NOx & CO \\
(ppmvd) & (ppmvd)
\end{tabular}
\(2.12 \quad 0.92\)
0.92
0.87
0.87
0.92
0.87
0.90
0.90
0.93
0.90
1.01
1.01
0.91
0.94
0.90
0.92
0.95
1.00
0.96
0.98
0.91
0.93
0.88
0.83
0.80
0.88
0.94
0.96
1.06
0.88
0.88
0.91
0.89
0.86
0.87
0.91
0.88
0.86
0.79
0.89
0.91
0.89
0.86
0.73
0.85
0.86
0.91
0.88
0.94
0.89

Florida Power and Light
March 13, 2011
Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF ext/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fue! \\
\hline Turbine Fuel Flow & 1,860 & 1 b/min \\
\hline Duct Burner Fuel Flow & 159 & 1 b/min \\
\hline Total Fuel Flow & \(2,770,510\) & SCFH \\
\hline
\end{tabular}

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.30 & in. Hg \\
\hline Relative Humidity & 36 & \(\%\) \\
\hline Ambient Temperature & 74 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006321 & \(\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|r|l|}
\hline Unit Load & 345.2 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,174,737\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run - 2} \\
\hline Date/Time & Elapsed Time & \(\mathrm{O}_{2}\) & \[
\mathrm{NOx}
\] & CO \\
\hline (mm/dd/yy hh:mm:ss) & (seconds) & (\%) & (ppmvd) & (ppmvd) \\
\hline 03/13/11 12:07:01 & 19740 & 12.59 & 2.62 & 0.89 \\
\hline 03/13/11 12:07:31 & 19770 & 12.61 & 2.40 & 1.03 \\
\hline 03/13/11 12:08:01 & 19800 & 12.57 & 2.36 & 1.02 \\
\hline 03/13/11 12:08:31 & 19830 & 12.57 & 2.45 & 0.90 \\
\hline 03/13/11 12:09:01 & 19860 & 12.56 & 2.57 & 0.92 \\
\hline 03/13/11 12:09:31 & 19890 & 12.55 & 2.68 & 0.89 \\
\hline 03/13/11 12:10:01 & 19920 & 12.55 & 2.76 & 0.80 \\
\hline 03/13/11 12:10:31 & 19950 & 12.54 & 2.87 & 0.80 \\
\hline 03/13/11 12:11:01 & 19980 & 12.52 & 2.96 & 0.85 \\
\hline 03/13/11 12:11:31 & 20010 & 12.50 & 2.96 & 0.84 \\
\hline \multirow[t]{2}{*}{RAW AVERAGE} & & 12.50 & 2.22 & 0.93 \\
\hline & & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline
\end{tabular}

Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,848 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Duct Burner Fuel Flow & 159 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Total Fuel Flow & \(2,753,885\) & SCFH \\
\hline
\end{tabular}

Unit Data
Unit Data
\begin{tabular}{|r|c|l|}
\hline & Unit Load & 336.8 \\
megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,070,395\) & SCFH \\
\hline
\end{tabular}

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.30 & in. Hg \\
\hline Relative Humidity & 36 & \(\%\) \\
\hline Ambient Temperature & 74 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006321 & \(\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run - 3} \\
\hline ```
 Date/Time
(mm/dd/yy hh:mm:ss)
``` & Elapsed Time (seconds) & \[
\begin{gathered}
\mathrm{O}_{2} \\
(\%)
\end{gathered}
\] & NOx (ppmvd) & \[
\begin{gathered}
\mathrm{CO} \\
\text { (ppmvd) }
\end{gathered}
\] \\
\hline 03/13/11 12:27:01 & 20940 & 12.52 & 2.86 & 0.81 \\
\hline 03/13/11 12:27:31 & 20970 & 12.55 & 2.82 & 0.76 \\
\hline 03/13/11 12:28:01 & 21000 & 12.57 & 2.77 & 0.83 \\
\hline 03/13/11 12:28:31 & 21030 & 12.56 & 2.66 & 0.85 \\
\hline 03/13/11 12:29:01 & 21060 & 12.56 & 2.62 & 0.85 \\
\hline 03/13/11 12:29:31 & 21090 & 12.57 & 2.58 & 0.81 \\
\hline 03/13/11 12:30:01 & 21120 & 12.57 & 2.60 & 0.82 \\
\hline 03/13/11 12:30:31 & 21150 & 12.59 & 2.56 & 0.89 \\
\hline 03/13/11 12:31:01 & 21180 & 12.58 & 2.49 & 0.89 \\
\hline 03/13/11 12:31:31 & 21210 & 12.56 & 2.53 & 0.79 \\
\hline 03/13/11 12:32:01 & 21240 & 12.54 & 2.64 & 0.75 \\
\hline 03/13/11 12:32:31 & 21270 & 12.55 & 2.76 & 0.74 \\
\hline 03/13/11 12:33:01 & 21300 & 12.55 & 2.80 & 0.84 \\
\hline 03/13/11 12:33:31 & 21330 & 12.57 & 2.73 & 0.87 \\
\hline 03/13/11 12:34:01 & 21360 & 12.58 & 2.59 & 0.84 \\
\hline 03/13/19 12:34:31 & 21390 & 12.59 & 2.47 & 0.90 \\
\hline 03/13/11 12:35:01 & 21420 & 12.58 & 2.47 & 0.80 \\
\hline 03/13/11 12:35:31 & 21450 & 12.57 & 2.49 & 0.79 \\
\hline 03/13/11 12:36:01 & 21480 & 12.55 & 2.56 & 0.76 \\
\hline 03/13/11 12:36:31 & 21510 & 12.54 & 2.66 & 0.78 \\
\hline 03/13/11 12:37:01 & 21540 & 12.52 & 2.78 & 0.72 \\
\hline 03/13/11 12:37:31 & 21570 & 12.52 & 2.87 & 0.82 \\
\hline 03/13/11 12:38:01 & 21600 & 12.55 & 2.81 & 0.83 \\
\hline 03/13/11 12:38:31 & 21630 & 12.55 & 2.73 & 0.87 \\
\hline 03/13/11 12:39:01 & 21660 & 12.61 & 2.58 & 0.82 \\
\hline 03/13/11 12:39:31 & 21690 & 12.62 & 2.42 & 0.86 \\
\hline 03/13/11 12:40:01 & 21720 & 12.60 & 2.37 & 0.90 \\
\hline 03/13/11 12:40:31 & 21750 & 12.58 & 2.49 & 0.88 \\
\hline 03/13/11 12:41:01 & 21780 & 12.57 & 2.60 & 0.86 \\
\hline 03/13/11 12:41:31 & 21810 & 12.54 & 2.77 & 0.85 \\
\hline 03/13/11 12:42:01 & 21840 & 12.53 & 2.84 & 0.83 \\
\hline 03/13/11 12:42:31 & 21870 & 12.53 & 2.90 & 0.82 \\
\hline 03/13/11 12:43:01 & 21900 & 12.55 & 2.99 & 0.78 \\
\hline 03/13/11 12:43:31 & 21930 & 12.57 & 2.84 & 0.80 \\
\hline 03/13/11 12:44:01 & 21960 & 12.56 & 2.69 & 0.83 \\
\hline 03/13/11 12:44:31 & 21990 & 12.54 & 2.60 & 0.85 \\
\hline 03/13/11 12:45:01 & 22020 & 12.54 & 2.64 & 0.80 \\
\hline 03/13/11 12:45:31 & 22050 & 12.59 & 2.60 & 0.93 \\
\hline 03/13/11 12:46:01 & 22080 & 12.60 & 2.48 & 0.97 \\
\hline 03/13/11 12:46:31 & 22110 & 12.58 & 2.37 & 0.95 \\
\hline 03/13/11 12:47:01 & 22140 & 12.57 & 2.46 & 0.89 \\
\hline 03/13/11 12:47:31 & 22170 & 12.56 & 2.53 & 0.95 \\
\hline 03/13/11 12:48:01 & 22200 & 12.54 & 2.67 & 0.84 \\
\hline 03/13/11 12:48:31 & 22230 & 12.55 & 2.72 & 0.85 \\
\hline 03/13/11 12:49:01 & 22260 & 12.54 & 2.78 & 0.79 \\
\hline 03/13/11 12:49:31 & 22290 & 12.56 & 2.90 & 0.70 \\
\hline 03/13/11 12:50:01 & 22320 & 12.60 & 2.87 & 0.78 \\
\hline 03/13/11 12:50:31 & 22350 & 12.59 & 2.74 & 0.85 \\
\hline 03/13/11 12:51:01 & 22380 & 12.55 & 2.66 & 0.91 \\
\hline 03/13/11 12:51:31 & 22410 & 12.54 & 2.72 & 0.74 \\
\hline 03/13/11 12:52:01 & 22440 & 12.52 & 2.86 & 0.80 \\
\hline 03/13/11 12:52:31 & 22470 & 12.54 & 2.91 & 0.75 \\
\hline 03/13/11 12:53:01 & 22500 & 12.55 & 2.88 & 0.80 \\
\hline 03/13/11 12:53:31 & 22530 & 12.55 & 2.73 & 0.83 \\
\hline 03/13/11 12:54:01 & 22560 & 12.60 & 2.64 & 0.82 \\
\hline
\end{tabular}

Florida Power and Light
March 13, 2011
Mitsubishì, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF ext/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,848 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Duct Burner Fuel Flow & 159 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Total Fuel Flow & \(2,753,885\) & SCFH \\
\hline
\end{tabular}

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.30 & in. Hg \\
\hline Relative Humidity & 36 & \(\%\) \\
\hline Ambient Temperature & 74 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006321 & \(\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 336.8 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,070,395\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run-3} \\
\hline Date/Time (mm/dd/yy hh:mm:ss) & Elapsed Time (seconds) & \[
\begin{aligned}
& \mathrm{O}_{2} \\
& (\%)
\end{aligned}
\] & NOX (ppmvd) & \[
\begin{gathered}
\mathrm{CO} \\
\text { (ppmvd) }
\end{gathered}
\] \\
\hline 03/13/11 12:54:31 & 22590 & 12.58 & 2.48 & 0.87 \\
\hline 03/13/11 12:55:01 & 22620 & 12.53 & 2.44 & 0.87 \\
\hline 03/13/11 12:55:31 & 22650 & 12.53 & 2.54 & 0.79 \\
\hline 03/13/11 12:56:01 & 22680 & 12.53 & 2.62 & 0.90 \\
\hline 03/13/11 12:56:31 & 22710 & 12.58 & 2.66 & 0.88 \\
\hline 03/13/11 12:57:01 & 22740 & 12.62 & 2.63 & 0.90 \\
\hline 03/13/11 12:57:31 & 22770 & 12.60 & 2.51 & 0.88 \\
\hline 03/13/11 12:58:01 & 22800 & 12.59 & 2.60 & 0.92 \\
\hline 03/13/11 12:58:31 & 22830 & 12.60 & 2.73 & 0.86 \\
\hline 03/13/11 12:59:01 & 22860 & 12.58 & 2.83 & 0.81 \\
\hline 03/13/11 12:59:31 & 22890 & 12.57 & 2.89 & 0.82 \\
\hline 03/13/11 13:00:01 & 22920 & 12.56 & 2.97 & 0.87 \\
\hline 03/13/11 13:00:31 & 22950 & 12.55 & 3.08 & 0.72 \\
\hline 03/13/11 13:01:01 & 22980 & 12.58 & 3.07 & 0.68 \\
\hline 03/13/11 13:01:31 & 23010 & 12.61 & 2.92 & 0.78 \\
\hline 03/13/11 13:02:01 & 23040 & 12.60 & 2.72 & 0.79 \\
\hline 03/13/11 13:02:31 & 23070 & 12.60 & 2.64 & 0.78 \\
\hline 03/13/11 13:03:01 & 23100 & 12.56 & 2.62 & 0.84 \\
\hline 03/13/11 13:03:31 & 23130 & 12.53 & 2.78 & 0.72 \\
\hline 03/13/11 13:04:01 & 23160 & 12.54 & 2.92 & 0.73 \\
\hline 03/13/11 13:04:31 & 23190 & 12.62 & 2.85 & 0.83 \\
\hline 03/13/11 13:05:01 & 23220 & 12.64 & 2.64 & 0.92 \\
\hline 03/13/11 13:05:31 & 23250 & 12.64 & 2.49 & 0.98 \\
\hline 03/13/11 13:06:01 & 23280 & 12.61 & 2.46 & 0.91 \\
\hline 03/13/11 13:06:31 & 23310 & 12.59 & 2.50 & 0.85 \\
\hline 03/13/11 13:07:01 & 23340 & 12.54 & 2.64 & 0.77 \\
\hline 03/13/11 13:07:31 & 23370 & 12.50 & 2.72 & 0.86 \\
\hline 03/13/11 13:08:01 & 23400 & 12.49 & 2.43 & 0.88 \\
\hline 03/13/11 13:08:31 & 23430 & 12.50 & 2.39 & 0.87 \\
\hline 03/13/11 13:09:01 & 23460 & 12.51 & 2.33 & 0.84 \\
\hline 03/13/11 13:09:31 & 23490 & 12.52 & 2.18 & 0.83 \\
\hline 03/13/11 13:10:01 & 23520 & 12.52 & 2.10 & 0.96 \\
\hline 03/13/11 13:10:31 & 23550 & 12.50 & 2.11 & 0.83 \\
\hline 03/13/11 13:11:01 & 23580 & 12.46 & 2.13 & 0.90 \\
\hline 03/13/11 13:11:31 & 23610 & 12.47 & 2.21 & 0.87 \\
\hline 03/13/11 13:12:01 & 23640 & 12.51 & 2.21 & 0.88 \\
\hline 03/13/11 13:12:31 & 23670 & 12.52 & 2.09 & 0.87 \\
\hline 03/13/11 13:13:01 & 23700 & 12.46 & 1.95 & 0.96 \\
\hline 03/13/11 13:13:31 & 23730 & 12.45 & 2.01 & 0.88 \\
\hline 03/13/11 13:14:01 & 23760 & 12.45 & 2.09 & 0.85 \\
\hline 03/13/11 13:14:31 & 23790 & 12.49 & 2.06 & 0.91 \\
\hline 03/13/11 13:15:01 & 23820 & 12.51 & 2.00 & 0.91 \\
\hline 03/13/11 13:15:31 & 23850 & 12.50 & 1.97 & 0.91 \\
\hline 03/13/11 13:16:01 & 23880 & 12.52 & 1.95 & 0.94 \\
\hline 03/13/11 13:16:31 & 23910 & 12.53 & 2.02 & 0.94 \\
\hline 03/13/11 13:17:01 & 23940 & 12.50 & 2.07 & 0.89 \\
\hline 03/13/11 13:17:31 & 23970 & 12.49 & 2.14 & 0.86 \\
\hline 03/13/11 13:18:01 & 24000 & 12.49 & 2.17 & 0.86 \\
\hline 03/13/11 13:18:31 & 24030 & 12.47 & 2.22 & 0.89 \\
\hline 03/13/11 13:19:01 & 24060 & 12.43 & 2.25 & 0.83 \\
\hline 03/13/11 13:19:31 & 24090 & 12.49 & 2.27 & 0.85 \\
\hline 03/13/11 13:20:01 & 24120 & 12.54 & 2.15 & 0.94 \\
\hline 03/13/11 13:20:31 & 24150 & 12.54 & 1.99 & 0.99 \\
\hline 03/13/11 13:21:01 & 24180 & 12.51 & 1.93 & 0.92 \\
\hline 03/13/11 13:21:31 & 24210 & 12.51 & 1.99 & 0.83 \\
\hline
\end{tabular}

\title{
Florida Power and Light
}

March 13, 2011
Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,848 & Ib/min \\
\hline Duct Burner Fuel Flow & 159 & lb/min \\
\hline Total Fuel Flow & \(2,753,885\) & SCFH \\
\hline
\end{tabular}
Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.30 & in. Hg \\
\hline Relative Humidity & 36 & \(\%\) \\
\hline Ambient Temperature & 74 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.006321 & \(\mathrm{Ib} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 336.8 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(61,070,395\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run - 3} \\
\hline Date/Time & Elapsed Time & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline (mm/dd/sy hh:mm:ss) & (seconds) & (\%) & (ppmvd) & (ppmvd) \\
\hline 03/13/11 13:22:01 & 24240 & 12.49 & 2.09 & 0.78 \\
\hline 03/13/11 13:22:31 & 24270 & 12.47 & 2.20 & 0.88 \\
\hline 03/13/11 13:23:01 & 24300 & 12.45 & 2.28 & 0.89 \\
\hline 03/13/11 13:23:31 & 24330 & 12.44 & 2.36 & 0.89 \\
\hline 03/13/11 13:24:01 & 24360 & 12.45 & 2.41 & 0.91 \\
\hline 03/13/11 13:24:31 & 24390 & 12.50 & 2.33 & 0.93 \\
\hline 03/13/11 13:25:01 & 24420 & 12.50 & 2.14 & 0.92 \\
\hline 03/13/11 13:25:31 & 24450 & 12.50 & 2.03 & 0.92 \\
\hline 03/13/11 13:26:01 & 24480 & 12.47 & 1.97 & 1.02 \\
\hline 03/13/11 13:26:31 & 24510 & 12.47 & 1.97 & 0.96 \\
\hline RAW AVERAGE & & 12.54 & 2.51 & 0.85 \\
\hline & & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline & Serial Number: & \begin{tabular}{l}
INST-N2-0001 \\
(\%)
\end{tabular} & INST-N2-0001 (ppmvd) & INST-CO-0015 (ppmvd) \\
\hline & Initial Zero & 0.11 & -0.10 & -0.16 \\
\hline & Final Zero & 0.11 & -0.14 & -0.19 \\
\hline & Avg. Zero & 0.11 & -0.12 & -0.18 \\
\hline & Initial UpScale & 12.19 & 4.86 & 5.09 \\
\hline & Final UpScale & 12.19 & 4.87 & 5.07 \\
\hline & Avg. UpScale & 12.19 & 4.87 & 5.08 \\
\hline Upscale Cal Gas & & 12.10 & 4.93 & 4.92 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|}
\hline EMISSIONS DATA & \(\mathbf{O}_{2}\) & NOx & CO \\
\hline Corrected Raw Average (ppm/\% dry basis) & 12.45 & 2.60 & 0.96 \\
\hline Concentration \(\left(\mathbf{p p m @} @ 15 \mathrm{O}_{2}\right)\) & \(\mathrm{N} / \mathrm{A}\) & 1.82 & 0.67 \\
\hline Emission Rate \((\mathrm{Ib} / \mathrm{hr})\) & \(\mathrm{N} / \mathrm{A}\) & 18.98 & 4.26 \\
\hline Emission Rate \((\mathrm{lb} / \mathrm{MMBLu})\) & \(\mathrm{N} / \mathrm{A}\) & 0.007 & 0.002 \\
\hline
\end{tabular}
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & \(\mathbf{8 , 7 1 0}\) & SCF extiMMEtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/5CF fuel \\
\hline Turbine Fuel Flow & 1,842 & \(\mathrm{Ib} / \mathrm{min}\) \\
\hline Duct Burner Fuel Flow & 159 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Total Fuel Fbw & \(2,745,378\) & SCFH \\
\hline
\end{tabular}
Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.26 & in. Hg \\
\hline Relalive Humidity & 42 & \(\%\) \\
\hline Ambien Temperature & 76 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.007915 & \(\mathrm{~b} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 330.3 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(60,374,788\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run-4} \\
\hline Date/Time & Elapsed Time & \(\mathrm{O}_{2}\) & NOX & CO \\
\hline (mm/dd/yy hh:mm:ss) & (seconds) & (\%) & (ppmvd) & (ppmvd) \\
\hline 03/13/11 13:39:01 & 25260 & 12.47 & 2.08 & 0.83 \\
\hline 03/13/11 13:39:31 & 25290 & 12.47 & 2.09 & 0.84 \\
\hline 03/13/11 13:40:01 & 25320 & 12.45 & 2.10 & 0.84 \\
\hline 03/13/11 13:40:31 & 25350 & 12.44 & 2.14 & 0.85 \\
\hline 03/13/11 13:41:01 & 25380 & 12.44 & 2.18 & 0.81 \\
\hline 03/13/11 13:41:31 & 25410 & 12.51 & 2.17 & 0.88 \\
\hline 03/13/11 13:42:01 & 25440 & 12.50 & 2.03 & 0.89 \\
\hline 03/13/11 13:42:31 & 25470 & 12.46 & 1.95 & 0.91 \\
\hline 03/13/11 13:43:01 & 25500 & 12.44 & 1.98 & 0.91 \\
\hline 03/13/11 13:43:31 & 25530 & 12.45 & 2.06 & 0.86 \\
\hline 03/13/11 13:44:01 & 25560 & 12.48 & 2.04 & 0.97 \\
\hline 03/13/11 13:44:31 & 25590 & 12.51 & 1.96 & 0.91 \\
\hline 03/13/11 13:45:01 & 25620 & 12.53 & 1.91 & 1.02 \\
\hline 03/13/11 13:45:31 & 25650 & 12.51 & 1.93 & 0.99 \\
\hline 03/13/11 13:46:01 & 25680 & 12.47 & 2.01 & 0.84 \\
\hline 03/13/11 13:46:31 & 25710 & 12.47 & 2.19 & 0.80 \\
\hline 03/13/11 13:47:01 & 25740 & 12.46 & 2.31 & 0.88 \\
\hline 03/13/11 13:47:31 & 25770 & 12.44 & 2.36 & 0.92 \\
\hline 03/13/11 13:48:01 & 25800 & 12.47 & 2.35 & 0.86 \\
\hline 03/13/11 13:48:31 & 25830 & 12.49 & 2.31 & 0.82 \\
\hline 03/13/11 13:49:01 & 25860 & 12.48 & 2.21 & 0.82 \\
\hline 03/13/11 13:49:31 & 25890 & 12.48 & 2.19 & 0.84 \\
\hline 03/13/11 13:50:01 & 25920 & 12.47 & 2.18 & 0.80 \\
\hline 03/13/11 13:50:31 & 25950 & 12.48 & 2.20 & 0.87 \\
\hline 03/13/11 13:51:01 & 25980 & 12.48 & 2.22 & 0.81 \\
\hline 03/13/11 13:51:31 & 26010 & 12.47 & 2.22 & 0.79 \\
\hline 03/13/11 13:52:01 & 26040 & 12.47 & 2.24 & 0.83 \\
\hline 03/13/11 13:52:31 & 26070 & 12.46 & 2.25 & 0.90 \\
\hline 03/13/11 13:53:01 & 26100 & 12.46 & 2.25 & 0.85 \\
\hline 03/13/11 13:53:31 & 26130 & 12.44 & 2.26 & 0.78 \\
\hline 03/13/11 13:54:01 & 26160 & 12.45 & 2.29 & 0.83 \\
\hline 03/13/11 13:54:31 & 26190 & 12.47 & 2.08 & 0.83 \\
\hline 03/13/11 13:55:01 & 26220 & 12.46 & 2.25 & 0.82 \\
\hline 03/13/11 13:55:31 & 26250 & 12.45 & 2.26 & 0.85 \\
\hline 03/13/11 13:56:01 & 26280 & 12.45 & 2.27 & 0.92 \\
\hline 03/13/11 13:56:31 & 26310 & 12.44 & 2.27 & 0.75 \\
\hline 03/13/11 13:57:01 & 26340 & 12.44 & 2.25 & 0.67 \\
\hline 03/13/11 13:57:31 & 26370 & 12.44 & 2.25 & 0.75 \\
\hline 03/13/11 13:58:01 & 26400 & 12.44 & 2.28 & 0.84 \\
\hline 03/13/11 13:58:31 & 26430 & 12.47 & 2.29 & 0.87 \\
\hline 03/13/11 13:59:01 & 26460 & 12.49 & 2.20 & 0.89 \\
\hline 03/13/11 13:59:31 & 26490 & 12.48 & 2.10 & 0.90 \\
\hline RAW AVERAGE & & 12.47 & 2.17 & 0.85 \\
\hline & & \(\mathrm{O}_{2}\) & NOX & CO \\
\hline
\end{tabular}
Serial Number: INST-N2-0001 INST-N2-0001 INST-CO-0015

\begin{tabular}{|r|c|c|c|}
\hline EMISSIONS DATA & \(\mathbf{O}_{\mathbf{2}}\) & \(\mathbf{N O x}\) & \(\mathbf{C O}\) \\
\hline Corrected Raw Average (ppm/\% dry basis) & 12.38 & 2.28 & 0.95 \\
\hline Concentration (ppm@ 15\%O2) & N/A & 1.58 & 0.66 \\
\hline Emission Rate (Ib/hr) & N/A & 16.44 & 4.17 \\
\hline Emission Rate (Ib/MMBtu) & \(\mathrm{N} / \mathrm{A}\) & 0.006 & 0.001 \\
\hline
\end{tabular}
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8.710 & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Blu/SCF fuel \\
\hline Turbine Fuel Flow & 1,842 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Duct Burner Fuel Flow & 159 & \(\mathrm{lb} / \mathrm{min}\) \\
\hline Total Fuel Flow & \(2,745.424\) & SCFH \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 329.6 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(60,289,970\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run - 5} \\
\hline Date/Time & Elapsed Time & \(\mathrm{O}_{2}\) & NOx & \\
\hline (mm/dd/yy hh:mm:ss) & (seconds) & (\%) & (ppmvd) & (ppmvd) \\
\hline 03/13/11 14:11:01 & 27180 & 12.42 & 2.07 & 0.90 \\
\hline 03/13/11 14:11:31 & 27210 & 12.46 & 2.22 & 0.91 \\
\hline 03/13/11 14:12:01 & 27240 & 12.45 & 2.23 & 0.87 \\
\hline 03/13/11 14:12:31 & 27270 & 12.46 & 2.16 & 0.88 \\
\hline 03/13/11 14:13:01 & 27300 & 12.47 & 2.13 & 0.87 \\
\hline 03/13/11 14:13:31 & 27330 & 12.45 & 2.11 & 0.92 \\
\hline 03/13/11 14:14:01 & 27360 & 12.44 & 2.13 & 0.81 \\
\hline 03/13/11 14:14:31 & 27390 & 12.44 & 2.18 & 0.83 \\
\hline 03/13/11 14:15:01 & 27420 & 12.44 & 2.15 & 0.81 \\
\hline 03/13/11 14:15:31 & 27450 & 12.43 & 2.10 & 0.82 \\
\hline 03/13/11 14:16:01 & 27480 & 12.39 & 2.05 & 0.82 \\
\hline 03/13/11 14:16:31 & 27510 & 12.44 & 2.05 & 0.84 \\
\hline 03/13/11 14:17:01 & 27540 & 12.45 & 2.00 & 0.88 \\
\hline 03/13/11 14:17:31 & 27570 & 12.46 & 1.91 & 0.95 \\
\hline 03/13/11 14:18:01 & 27600 & 12.46 & 1.88 & 0.90 \\
\hline 03/13/11 14:18:31 & 27630 & 12.42 & 1.85 & 0.82 \\
\hline 03/13/11 14:19:01 & 27660 & 12.40 & 1.92 & 0.84 \\
\hline 03/13/11 14:19:31 & 27690 & 12.43 & 1.99 & 0.79 \\
\hline 03/13/11 14:20:01 & 27720 & 12.44 & 1.97 & 0.83 \\
\hline 03/13/11 14:20:31 & 27750 & 12.43 & 1.97 & 0.84 \\
\hline 03/13/11 14:21:01 & 27780 & 12.44 & 1.94 & 0.90 \\
\hline 03/13/11 14:21:31 & 27810 & 12.43 & 1.95 & 0.81 \\
\hline 03/13/11 14:22:01 & 27840 & 12.42 & 1.99 & 0.84 \\
\hline 03/13/11 14:22:31 & 27870 & 12.42 & 2.02 & 0.78 \\
\hline 03/13/11 14:23:01 & 27900 & 12.44 & 2.01 & 0.82 \\
\hline 03/13/11 14:23:31 & 27930 & 12.45 & 1.97 & 0.88 \\
\hline 03/13/11 14:24:01 & 27960 & 12.45 & 1.96 & 0.88 \\
\hline 03/13/11 14:24:31 & 27990 & 12.46 & 1.90 & 0.92 \\
\hline 03/13/11 14:25:01 & 28020 & 12.42 & 1.89 & 0.87 \\
\hline 03/13/11 14:25:31 & 28050 & 12.36 & 1.96 & 0.87 \\
\hline 03/13/11 14:26:01 & 28080 & 12.39 & 2.08 & 0.83 \\
\hline 03/13/11 14:26:31 & 28110 & 12.43 & 2.03 & 0.90 \\
\hline 03/13/11 14:27:01 & 28140 & 12.45 & 1.91 & 0.90 \\
\hline 03/13/11 14:27:31 & 28170 & 12.46 & 1.79 & 0.96 \\
\hline 03/13/11 14:28:01 & 28200 & 12.44 & 1.75 & 0.84 \\
\hline 03/13/11 14:28:31 & 28230 & 12.42 & 1.80 & 0.89 \\
\hline 03/13/11 14:29:01 & 28260 & 12.37 & 1.86 & 0.89 \\
\hline 03/13/11 14:29:31 & 28290 & 12.37 & 1.94 & 0.88 \\
\hline 03/13/11 14:30:01 & 28320 & 12.43 & 1.99 & 0.91 \\
\hline 03/13/11 14:30:31 & 28350 & 12.49 & 1.85 & 0.93 \\
\hline 03/13/11 14:31:01 & 28380 & 12.48 & 1.71 & 1.07 \\
\hline 03/13/11 14:31:31 & 28410 & 12.45 & 1.71 & 1.01 \\
\hline RAW AVERAGE & & 12.43 & 1.98 & 0.87 \\
\hline & & \(\mathrm{O}_{2}\) & NOX & CO \\
\hline
\end{tabular}

Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,842 & lb/min \\
\hline Duct Burner Fuel Fbow & 159 & lb/min \\
\hline Total Fuel Flow & \(2,745.493\) & SCFH \\
\hline
\end{tabular}

Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & \(\mathbf{3 0 . 2 3}\) & in. Hg \\
\hline Relative Humidity & 43 & \(\%\) \\
\hline Ambient Temperature & 77 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.008392 & \(\mathrm{bb} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 329.0 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(60,359,188\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run -6} \\
\hline Date/Time & Elapsed Time & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline (mm/dd/yy hh:mm:ss) & (seconds) & (\%) & (ppmvd) & (ppmvd) \\
\hline 03/13/11 14:41:01 & 28980 & 12.40 & 1.98 & 0.83 \\
\hline 03/13/11 14:41:31 & 29010 & 12.43 & 1.98 & 0.97 \\
\hline 03/13/11 14:42:01 & 29040 & 12.44 & 1.96 & 0.94 \\
\hline 03/13/11 14:42:31 & 29070 & 12.45 & 1.87 & 0.98 \\
\hline 03/13/11 14:43:01 & 29100 & 12.46 & 1.86 & 0.95 \\
\hline 03/13/11 14:43:31 & 29130 & 12.43 & 1.93 & 0.97 \\
\hline 03/13/11 14:44:01 & 29160 & 12.43 & 2.04 & 0.87 \\
\hline 03/13/11 14:44:31 & 29190 & 12.42 & 2.09 & 0.95 \\
\hline 03/13/11 14:45:01 & 29220 & 12.41 & 2.17 & 0.78 \\
\hline 03/13/11 14:45:31 & 29250 & 12.42 & 2.23 & 0.87 \\
\hline 03/13/11 14:46:01 & 29280 & 12.43 & 2.24 & 0.89 \\
\hline 03/13/11 14:46:31 & 29310 & 12.45 & 2.18 & 0.93 \\
\hline 03/13/11 14:47:01 & 29340 & 12.44 & 2.08 & 0.94 \\
\hline 03/13/11 14:47:31 & 29370 & 12.42 & 2.05 & 0.99 \\
\hline 03/13/11 14:48:01 & 29400 & 12.42 & 2.09 & 0.92 \\
\hline 03/13/11 14:48:31 & 29430 & 12.44 & 2.17 & 0.98 \\
\hline 03/13/11 14:49:01 & 29460 & 12.44 & 2.20 & 0.83 \\
\hline 03/13/11 14:49:31 & 29490 & 12.44 & 2.22 & 0.88 \\
\hline 03/13/11 14:50:01 & 29520 & 12.43 & 2.21 & 0.80 \\
\hline 03/13/11 14:50:31 & 29550 & 12.43 & 2.19 & 0.83 \\
\hline 03/13/11 14:51:01 & 29580 & 12.41 & 2.25 & 0.91 \\
\hline 03/13/11 14:51:31 & 29610 & 12.43 & 2.29 & 0.93 \\
\hline 03/13/11 14:52:01 & 29640 & 12.44 & 2.21 & 0.88 \\
\hline 03/13/11 14:52:31 & 29670 & 12.43 & 2.14 & 0.91 \\
\hline 03/13/11 14:53:01 & 29700 & 12.43 & 2.16 & 0.86 \\
\hline 03/13/11 14:53:31 & 29730 & 12.42 & 2.18 & 0.79 \\
\hline 03/13/11 14:54:01 & 29760 & 12.42 & 2.19 & 0.76 \\
\hline 03/13/11 14:54:31 & 29790 & 12.41 & 2.24 & 0.95 \\
\hline 03/13/11 14:55:01 & 29820 & 12.40 & 2.26 & 0.90 \\
\hline 03/13/11 14:55:31 & 29850 & 12.39 & 2.25 & 0.94 \\
\hline 03/13/11 14:56:01 & 29880 & 12.42 & 2.25 & 0.93 \\
\hline 03/13/11 14:56:31 & 29910 & 12.42 & 2.19 & 0.94 \\
\hline 03/13/11 14:57:01 & 29940 & 12.40 & 2.09 & 0.99 \\
\hline 03/13/11 14:57:31 & 29970 & 12.44 & 2.04 & 0.91 \\
\hline 03/13/11 14:58:01 & 30000 & 12.45 & 2.04 & 0.99 \\
\hline 03/13/11 14:58:31 & 30030 & 12.41 & 2.02 & 0.96 \\
\hline 03/13/11 14:59:01 & 30060 & 12.41 & 2.11 & 0.94 \\
\hline 03/13/11 14:59:31 & 30090 & 12.40 & 2.19 & 0.94 \\
\hline 03/13/11 15:00:01 & 30120 & 12.40 & 2.28 & 0.89 \\
\hline 03/13/11 15:00:31 & 30150 & 12.41 & 2.32 & 0.81 \\
\hline 03/13/11 15:01:01 & 30180 & 12.43 & 2.31 & 0.86 \\
\hline 03/13/11 15:01:31 & 30210 & 12.43 & 2.23 & 0.81 \\
\hline RAW AVERAGE & & 12.42 & 2.14 & 0.90 \\
\hline & & \(\mathrm{O}_{2}\) & NOX & CO \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & & \(\mathrm{O}_{2}\) & NOX & CO \\
\hline & Serial Number: & INST-N2-0001 (\%) & \[
\begin{aligned}
& \text { INST-N2-0001 } \\
& \text { (ppmvd) }
\end{aligned}
\] & INST-CO-0015 (ppmvd) \\
\hline \multirow{6}{*}{-} & Initial Zero & 0.08 & -0.17 & -0.08 \\
\hline & Final Zero & 0.07 & -0.17 & -0.21 \\
\hline & Avg. Zero & 0.08 & -0.17 & -0.15 \\
\hline & Initial UpScale & 12.15 & 4.84 & 5.07 \\
\hline & Final UpScale & 12.14 & 4.81 & 5.03 \\
\hline & Avg. UpScale & 12.15 & 4.83 & 5.05 \\
\hline Upscale Cal Gas & & 12.10 & 4.93 & 4.92 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|}
\hline EMISSIONS DATA & \(\mathrm{O}_{\mathbf{2}}\) & NOx & \(\mathbf{C O}\) \\
\hline Corrected Raw Average (ppm/\% dry basis) & 12.38 & 2.28 & 0.99 \\
\hline Concentration (ppm@ 15\%O2) & \(\mathrm{N} / \mathrm{A}\) & 1.58 & 0.69 \\
\hline Emission Rate ([b/hr) & \(\mathrm{N} / \mathrm{A}\) & 16.46 & 4.35 \\
\hline Emission Rate (Ib/MMBtu) & \(\mathrm{N} / \mathrm{A}\) & 0.006 & 0.002 \\
\hline
\end{tabular}

Florida Power and Light

\section*{March 13, 2011}

Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & 8,710 & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHY) & \(\mathbf{1 , 0 2 9}\) & Bu/SCF fuel \\
\hline Turbine Fuel Flow & \(\mathbf{1 , 8 4 2}\) & lb/min \\
\hline Duct Burner Fuel Fbow & 159 & lb/min \\
\hline Total Fuel Flow & \(\mathbf{2 , 7 4 5 , 8 3 6}\) & SCFH \\
\hline
\end{tabular}

Weather Data
Weather Data
\begin{tabular}{|r|c|l|}
\hline Earometric Pressure & 30.22 & in. Hg \\
\hline Relative Humidity & 43 & \(\%\) \\
\hline Ambient Temperature & 77 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.008394 & \(10 \mathrm{H}_{2} \mathrm{O} / \mathrm{bb}\) air \\
\hline
\end{tabular}

Unit Data
\begin{tabular}{|r|c|l|}
\hline Unil Load & 329.5 & megawatls \\
\hline Stack Exhaust Flow(M19) & \(60,476,303\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run - 7} \\
\hline Date/Time
(mm/dd/yy hh:mm:ss) & Elapsed Time (seconds) & \[
\begin{gathered}
\mathrm{O}_{2} \\
(\%)
\end{gathered}
\] & \[
\begin{gathered}
\text { NOx } \\
\text { (ppmvd) }
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{CO} \\
\text { (ppmvd) }
\end{gathered}
\] \\
\hline 03/13/11 15:11:01 & 30780 & 12.43 & 2.14 & 0.92 \\
\hline
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 11\) & \(15: 11: 01\) & 30780 & 12.43 & 2.14 \\
\(03 / 13 / 1115: 11: 31\) & 30810 & 12.43 & 2.24 & 0.92 \\
0.90
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 12: 01\) & 30840 & 12.42 & 2.24 & 0.98 \\
03 & 308 & 0.95
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 12: 31\) & 30870 & 12.40 & 2.33 & 0.90 \\
\(03 / 13 / 1115: 13: 01\) & 30900 & 12.40 & 2.40 & 0.76 \\
\(03 / 13 / 1115: 13: 31\) & 30930 & 12.41 & 2.46 & 0.82
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 13: 31\) & 30930 & 12.41 & 2.46 & 0.82 \\
\(03 / 13 / 1115: 44: 01\) & 30960 & 12.43 & 2.41 & 0.77 \\
\(03 / 13 / 1115: 14: 31\) & 30990 & 12.45 & 2.35 & 0.85 \\
\(03 / 13 / 1115: 15: 01\) & 31020 & 12.45 & 2.24 & 0.89
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 15: 01\) & 31020 & 12.45 & 2.24 & 0.89 \\
\(03 / 13 / 1115: 15: 31\) & 31050 & 12.46 & 2.19 & 0.82 \\
\(03 / 13 / 1115: 16: 01\) & 31080 & 12.45 & 2.17 & 0.78
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 16: 01\) & 31080 & 12.45 & 2.17 & 0.78 \\
\(03 / 13 / 1115: 16: 31\) & 31110 & 12.45 & 2.13 & 0.85 \\
\(03 / 13 / 1115: 17: 01\) & 31140 & 12.43 & 2.17 & 0.79
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 17: 31\) & 31170 & 12.41 & 2.23 & 0.82 \\
\(03 / 13 / 1115: 18: 01\) & 31200 & 12.42 & 2.29 & 0.81 \\
\(03 / 13 / 1115: 18: 31\) & 31230 & 12.43 & 2.27 & 0.84
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 19: 01\) & 31260 & 12.44 & 2.23 & 0.79 \\
\(03 / 13 / 1115: 19: 31\) & 31290 & 12.45 & 2.15 & 0.78
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 20: 01\) & 31320 & 12.44 & 2.11 & 0.91 \\
\(03 / 13 / 1115: 20: 31\) & 31350 & 12.44 & 2.12 & 0.86
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 21: 01\) & 31380 & 12.43 & 2.13 & 0.93 \\
\(03 / 13 / 1115: 21: 31\) & 31410 & 12.43 & 2.18 & 0.80 \\
\(03 / 13 / 1115: 22: 01\) & 31440 & 12.44 & 2.17 & 0.85
\end{tabular}
\begin{tabular}{lllll}
\(03 / 13 / 1115: 22: 01\) & 31440 & 12.44 & 2.17 & 0.85 \\
\(03 / 13 / 1115: 22: 31\) & 31470 & 12.41 & 2.15 & 0.76 \\
\(03 / 13 / 1115: 23: 01\) & 31500 & 12.30 & 2.14 & 0.86
\end{tabular}

03/13/11 15:23.31
03/13/11 15:24:01
03/13/11 15:24:31
03/13/11 15:25:01
03/13/11 15:25:31
03/13/11 15:26:01
03/13/11 15:27:01
03/13/11 15:27:31
03/13/11 15:28:01
03/13/11 15:28:31
03/13/11 15:29:01
03/13/11 15:29:31
03/13/11 15:30:01
03/13/11 15:30:31
03/13/11 15:31:01
\begin{tabular}{lll}
\(03 / 13 / 1115: 31: 31\) & 31980 & 12.43 \\
& 32010 & 12.44 \\
& & 12.43
\end{tabular}

Florida Power and Light
March 13, 2011
Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fd factor & \(\mathbf{8 , 7 1 0}\) & SCF exh/MMBtu \\
\hline Fuel Heating Value (HHV) & \(\mathbf{1 , 0 2 9}\) & Blu/SCF fuel \\
\hline Turbine Fuel Flow & \(\mathbf{1 , 8 4 2}\) & lb/min \\
\hline Duct Burner Fuel Flow & 159 & lb/min \\
\hline Total Fuel Flow & \(2,745,950\) & SCFH \\
\hline
\end{tabular}
Weather Data
\begin{tabular}{|r|c|l|}
\hline Barometric Pressure & 30.22 & in. Hg \\
\hline Relative Humidity & 44 & \(\%\) \\
\hline Ambient Temperature & 76 & \({ }^{\circ} \mathrm{F}\) \\
\hline Specific Humidity & 0.008308 & \(\mathrm{~b} \mathrm{H}_{2} \mathrm{O} / \mathrm{lb}\) air \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unit Load & 329.3 & megawatts \\
\hline Stack Exhaus! Flow (M19) & \(60,483,243\) & SCFH \\
\hline
\end{tabular}
Base W/Db Load, Run-8
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Date/Time \\
(mm/dd/yy hh:mm:ss)
\end{tabular} & Elapsed Time (seconds) & \[
\begin{gathered}
\mathrm{O}_{2} \\
(\%)
\end{gathered}
\] & \begin{tabular}{l}
NOX \\
(ppmvd)
\end{tabular} & \[
\begin{gathered}
\mathrm{CO} \\
\text { (ppmvd) }
\end{gathered}
\] \\
\hline 03/13/11 15:41:01 & 32580 & 12.41 & 2.19 & 0.89 \\
\hline 03/13/11 15:41:31 & 32610 & 12.42 & 2.21 & 0.80 \\
\hline 03/13/11 15:42:01 & 32640 & 12.44 & 2.17 & 0.91 \\
\hline 03/13/11 15:42:31 & 32670 & 12.44 & 2.11 & 0.82 \\
\hline 03/13/11 15:43:01 & 32700 & 12.44 & 2.11 & 0.92 \\
\hline 03/13/11 15:43:31 & 32730 & 12.41 & 2.14 & 0.86 \\
\hline 03/13/11 15:44:01 & 32760 & 12.42 & 2.21 & 0.87 \\
\hline 03/13/11 15:44:31 & 32790 & 12.45 & 2.25 & 0.84 \\
\hline 03/13/11 15:45:01 & 32820 & 12.44 & 2.21 & 0.89 \\
\hline 03/13/11 15:45:31 & 32850 & 12.44 & 2.21 & 0.86 \\
\hline 03/13/11 15:46:01 & 32880 & 12.44 & 2.25 & 0.87 \\
\hline 03/13/11 15:46:31 & 32910 & 12.46 & 2.26 & 0.85 \\
\hline 03/13/11 15:47:01 & 32940 & 12.46 & 2.24 & 0.85 \\
\hline 03/13/11 15:47:31 & 32970 & 12.45 & 2.24 & 0.88 \\
\hline 03/13/11 15:48:01 & 33000 & 12.46 & 2.27 & 0.91 \\
\hline 03/13/11 15:48:31 & 33030 & 12.44 & 2.25 & 0.87 \\
\hline 03/13/11 15:49:01 & 33060 & 12.42 & 2.28 & 0.86 \\
\hline 03/13/11 15:49:31 & 33090 & 12.38 & 2.30 & 0.84 \\
\hline 03/13/11 15:50:01 & 33120 & 12.41 & 2.34 & 0.82 \\
\hline 03/13/11 15:50:31 & 33150 & 12.47 & 2.27 & 0.89 \\
\hline 03/13/11 15:51:01 & 33180 & 12.50 & 2.08 & 0.93 \\
\hline 03/13/11 15:51:31 & 33210 & 12.49 & 1.97 & 0.90 \\
\hline 03/13/11 15:52:01 & 33240 & 12.47 & 1.96 & 0.91 \\
\hline 03/13/11 15:52:31 & 33270 & 12.44 & 1.98 & 0.96 \\
\hline 03/13/11 15:53:01 & 33300 & 12.45 & 2.04 & 0.85 \\
\hline 03/13/11 15:53:31 & 33330 & 12.45 & 2.08 & 0.82 \\
\hline 03/13/11 15:54:01 & 33360 & 12.43 & 2.14 & 0.90 \\
\hline 03/13/11 15:54:31 & 33390 & 12.41 & 2.16 & 0.78 \\
\hline 03/13/11 15:55:01 & 33420 & 12.41 & 2.24 & 0.79 \\
\hline 03/13/11 15:55:31 & 33450 & 12.42 & 2.26 & 0.74 \\
\hline 03/13/11 15:56:01 & 33480 & 12.44 & 2.18 & 0.79 \\
\hline 03/13/11 15:56:31 & 33510 & 12.44 & 2.12 & 0.82 \\
\hline 03/13/11 15:57:01 & 33540 & 12.41 & 2.02 & 0.92 \\
\hline 03/13/11 15:57:31 & 33570 & 12.43 & 1.96 & 0.84 \\
\hline 03/13/11 15:58:01 & 33600 & 12.44 & 1.95 & 0.91 \\
\hline 03/13/11 15:58:31 & 33630 & 12.42 & 1.89 & 0.89 \\
\hline 03/13/11 15:59:01 & 33660 & 12.46 & 1.87 & 0.89 \\
\hline 03/13/11 15:59:31 & 33690 & 12.45 & 1.83 & 0.96 \\
\hline 03/13/11 16:00:01 & 33720 & 12.46 & 1.85 & 0.84 \\
\hline 03/13/11 16:00:31 & 33750 & 12.46 & 1.88 & 0.94 \\
\hline 03/13/11 16:01:01 & 33780 & 12.46 & 1.92 & 0.82 \\
\hline 03/13/11 16:01:31 & 33810 & 12.45 & 2.03 & 0.90 \\
\hline RAW AVERAGE & & 12.44 & 2.12 & 0.87 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Serial Number: & INST-N2-0001 (\%) & INST-N2-0001 (ppmvd) & INST-CO-0015 (ppmvd) \\
\hline Initial Zero & 0.06 & -0.16 & -0.08 \\
\hline Final Zero & 0.07 & -0.08 & -0.10 \\
\hline Avg. Zero & 0.07 & -0.12 & -0.09 \\
\hline Initial UpScale & 12.13 & 4.84 & 5.03 \\
\hline Final UpScale & 12.16 & 4.87 & 4.98 \\
\hline Avg. UpScale & 12.15 & 4.86 & 5.01 \\
\hline & 12.10 & 4.93 & 4.92 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|}
\hline EMISSIONS DATA & \(\mathrm{O}_{3}\) & NOX & \(\mathbf{C O}\) \\
\hline Corrected Raw Average (ppm/\% dry basis) & 12.40 & 2.22 & 0.92 \\
\hline Concentration (ppm@ \(\left.15 \% \mathrm{O}_{\mathbf{3}}\right)\) & N/A & 1.54 & 0.64 \\
\hline Emission Rate (lb/hr) & N/A & 16.02 & 4.06 \\
\hline Emission Rate (lb/MMBtu) & N/A & 0.006 & 0.001 \\
\hline
\end{tabular}

Florida Power and Light
Mitsubishi, 501G, Unit 3C West County Energy Center

Unit Data
\begin{tabular}{|r|c|l|}
\hline & 343.1 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(60,167,116\) & SCFH \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Base W/Db Load, Run-9} \\
\hline Date/Time & Elapsed Time & \(\mathrm{O}_{2}\) & NOx & co \\
\hline (mm/dd/yy hh:mm:ss) & (seconds) & (\%) & (ppmvd) & (ppmvd) \\
\hline 03/13/11 16:59:01 & 37260 & 12.36 & 2.86 & 0.97 \\
\hline 03/13/11 16:59:31 & 37290 & 12.37 & 2.75 & 0.94 \\
\hline 03/13/11 17:00:01 & 37320 & 12.38 & 2.65 & 0.93 \\
\hline 03/13/11 17:00:31 & 37350 & 12.37 & 2.58 & 0.95 \\
\hline 03/13/11 17:01:01 & 37380 & 12.37 & 2.56 & 1.01 \\
\hline 03/13/11 17:01:31 & 37410 & 12.37 & 2.56 & 0.92 \\
\hline 03/13/11 17:02:01 & 37440 & 12.37 & 2.58 & 0.92 \\
\hline 03/13/11 17:02:31 & 37470 & 12.35 & 2.62 & 0.81 \\
\hline 03/13/11 17:03:01 & 37500 & 12.36 & 2.59 & 0.97 \\
\hline 03/13/11 17:03:31 & 37530 & 12.37 & 2.53 & 0.88 \\
\hline 03/13/11 17:04:01 & 37560 & 12.37 & 2.47 & 0.90 \\
\hline 03/13/11 17:04:31 & 37590 & 12.36 & 2.43 & 0.90 \\
\hline 03/13/11 17:05:01 & 37620 & 12.37 & 2.41 & 0.97 \\
\hline 03/13/11 17:05:31 & 37650 & 12.35 & 2.39 & 0.92 \\
\hline 03/13/11 17:06:01 & 37680 & 12.35 & 2.36 & 0.97 \\
\hline 03/13/11 17:06:31 & 37710 & 12.36 & 2.31 & 0.93 \\
\hline 03/13/11 17:07:01 & 37740 & 12.34 & 2.32 & 0.93 \\
\hline 03/13/11 17:07:31 & 37770 & 12.35 & 2.33 & 0.90 \\
\hline 03/13/11 17:08:01 & 37800 & 12.33 & 2.32 & 0.94 \\
\hline 03/13/11 17:08:31 & 37830 & 12.35 & 2.24 & 0.98 \\
\hline 03/13/11 17:09:01 & 37860 & 12.35 & 2.16 & 0.98 \\
\hline 03/13/11 17:09:31 & 37890 & 12.36 & 2.11 & 0.96 \\
\hline 03/13/11 17:10:01 & 37920 & 12.39 & 2.09 & 1.05 \\
\hline 03/13/11 17:10:31 & 37950 & 12.37 & 2.08 & 1.08 \\
\hline 03/13/11 17:11:01 & 37980 & 12.35 & 2.15 & 0.95 \\
\hline 03/13/11 17:11:31 & 38010 & 12.34 & 2.27 & 0.98 \\
\hline 03/13/11 17:12:01 & 38040 & 12.35 & 2.37 & 0.94 \\
\hline 03/13/11 17:12:31 & 38070 & 12.37 & 2.40 & 0.93 \\
\hline 03/13/11 17:13:01 & 38100 & 12.36 & 2.39 & 0.93 \\
\hline 03/13/11 17:13:31 & 38130 & 12.36 & 2.31 & 0.98 \\
\hline 03/13/11 17:14:01 & 38160 & 12.35 & 2.26 & 1.01 \\
\hline 03/13/11 17:14:31 & 38190 & 12.34 & 2.27 & 0.94 \\
\hline 03/13/11 17:15:01 & 38220 & 12.35 & 2.31 & 0.92 \\
\hline 03/13/11 17:15:31 & 38250 & 12.35 & 2.30 & 1.04 \\
\hline 03/13/11 17:16:01 & 38280 & 12.35 & 2.32 & 0.98 \\
\hline 03/13/11 17:16:31 & 38310 & 12.35 & 2.33 & 0.98 \\
\hline 03/13/11 17:17:01 & 38340 & 12.34 & 2.35 & 0.95 \\
\hline 03/13/11 17:17:31 & 38370 & 12.34 & 2.36 & 0.96 \\
\hline 03/13/11 17:18:01 & 38400 & 12.33 & 2.41 & 0.95 \\
\hline 03/13/11 17:18:31 & 38430 & 12.34 & 2.40 & 0.86 \\
\hline 03/13/11 17:19:01 & 38460 & 12.36 & 2.39 & 0.96 \\
\hline 03/13/11 17:19:31 & 38490 & 12.36 & 2.34 & 0.98 \\
\hline RAW AVERAGE & & 12.36 & 2.39 & 0.95 \\
\hline & & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline
\end{tabular}

\begin{tabular}{|r|c|c|c|}
\hline EMISSIONS DATA & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Corrected Raw Average (ppm/\% dry basis) & 12.33 & 2.49 & 1.02 \\
\hline Concentration (ppm@15\%O\()\) & \(\mathrm{N} / \mathrm{A}\) & 1.71 & 0.70 \\
\hline Emission Rate (Ib/hr) & \(\mathrm{N} / \mathrm{A}\) & 17.88 & 4.44 \\
\hline Emission Rate (Ib/MMBtu) & \(\mathrm{N} / \mathrm{A}\) & 0.006 & 0.002 \\
\hline
\end{tabular}

Florida Power and Light
March 13, 2011
Mitsubishi, 501G, Unit 3C
West County Energy Center
Fuel Data
\begin{tabular}{|r|c|l|}
\hline Fuel Fo factor & 8,710 & SCF exh/MMBtu \\
\hline Fue! Heating Value (HHV) & 1,029 & Btu/SCF fuel \\
\hline Turbine Fuel Flow & 1,854 & Ib/min \\
\hline Duct Burner Fuel Flow & 159 & lb/min \\
\hline Total Fuel Flow & \(2,762,072\) & SCFH \\
\hline
\end{tabular}
Unit Data
\begin{tabular}{|r|c|l|}
\hline Unil Load & 346.2 & megawatts \\
\hline Stack Exhaust Flow (M19) & \(60,627,137\) & SCFH \\
\hline
\end{tabular}


Serial Number: INST-N2-0001 INST-N2-0001 INST-CO-0015

\begin{tabular}{|r|c|c|c|}
\hline EMISSIONS DATA & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Corrected Raw Average (ppm/\% dry basis) & 12.37 & 2.52 & 1.01 \\
\hline Concentration (ppm@ 15\%O & \(\mathrm{N} / \mathrm{A}\) & 1.74 & 0.70 \\
\hline Emission Rate (lb/hr) & \(\mathrm{N} / \mathrm{A}\) & 18.21 & 4.46 \\
\hline Emission Rate (lb/MMBtu) & \(\mathrm{N} / \mathrm{A}\) & 0.006 & 0.002 \\
\hline
\end{tabular}

\section*{APPENDIX C}

CALIBRATION GAS CERTIFICATIONS

\section*{Dual-Analyzed Calibration Standard}

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}


\section*{ANALYZER READINGS}
( \(\mathrm{Z}=\) Zero Gas \(\quad \mathrm{R}=\) Reference Gas \(\quad \mathrm{T}=\) Test Gas \(\quad \mathrm{r}=\) Correlation Coefficient)
First Triad Analysis
Second Triad Analysis
Calibration Curve

\section*{CARBON DIOXIDE}

\(\square\)
\begin{tabular}{|ll|}
\hline Concentration \(=A+B \times+C \times 2+D \times 3+E \times 4\) \\
\(r=0.999989193\) & \\
Constants: & \(A=-0.0022770 E\) \\
\(B=0.142642214\) & \(C=-0.0004657\) \\
\(D=0.0000133988\) & \(E=0\) \\
\hline
\end{tabular}

\section*{OXYGEN}
\begin{tabular}{|lll|}
\hline Date: 09Apr2010 & \multicolumn{2}{c|}{ Response Unit:\% } \\
\(Z 1=0.00000\) & \(\mathrm{R} 1=23.20000\) & \(\mathrm{~T} 1=12.11000\) \\
\(\mathrm{R2}=23.20000\) & \(\mathrm{Z2}=0.00000\) & \(\mathrm{~T} 2=12.10000\) \\
\(\mathrm{Z} 2=0.00000\) & \(\mathrm{~T} 3=12.09000\) & \(\mathrm{R} 3=23.19000\) \\
Avg. Concentration: & 12.08 & \(\%\) \\
\hline
\end{tabular}
\(\square\)
\begin{tabular}{ll|}
\begin{tabular}{ll} 
Concentration \(=A+B X+C \times 2+D \times 3+E x 4\) \\
\(I=0.9999996862\)
\end{tabular} & \\
Constants: & \(A=-0.0380151\) \\
\(B=1.001181065\) & \(C=0\) \\
\(D=0\) & \(E=0\)
\end{tabular}

APPROVED BY:


Fax: 248-589-2134

CERTIFICATE OF ACCURACY: EPA Protocol Gas
\begin{tabular}{lll} 
Assay Laboratory & & \\
\hline & P.O. No.: ALAS-56936 & Customer \\
AIR LIQUIDE AMERICA SPECIALTY GASES LLC & Project No.: 05-88735-006 & AIR HYGIENE AMERICA L.P. \\
1290 COMBERMERE STREET & & 1319 NORTH PEORIA AVE \\
TROY, MI 48083 & TULSA OK 74106
\end{tabular}

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM004185 Certification Date: 21 Jun2010 Exp. Date: \(20 J u n 2013\)

Cylinder Pressure***: 2000 PSIG

\section*{ANALYTICAL}

** Do not use when cylinder pressure is below 150 psig.
** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

REFERENCE STANDARD
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE/SRM NO. & EXPIRATION DATE & CYLINDER NUMBER & CONCENTRATION & COMPONENT \\
\hline NTRM 2300 & 01Nov2010 & 1 D002807 & 23.04 \% & CARBON DIOXIDE \\
\hline NTRM 2350 & 01Dec2011 & K016398 & 23.20 \% & OXYGEN \\
\hline
\end{tabular}

INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#

DATE LAST CALIBRATED
07Jun2010
11 Jun2010

ANALYTICAL PRINCIPLE NDIR

PARAMAGNETIC

ANALYZER READINGS
\(\left\langle Z=\right.\) Zero Gas \(\begin{array}{rrr}R=\text { Reference Gas } \quad T=\text { Test Gas } & r=\text { Correlation Coefficient }) \\ \text { Second Triad Analysis } & \text { Calibration Curve }\end{array}\)
\begin{tabular}{|c|c|c|}
\hline Date: 29 Jun2010 & \multicolumn{2}{|l|}{0 Response Untt:MV} \\
\hline \(\mathbf{z 1}=0.00000\) & \(\mathrm{R1}=100.0000\) & \(\mathrm{T} 1=90.42000\) \\
\hline \(\mathrm{R} 2=100.0000\) & z2=0.00000 & T2 \(=90.50000\) \\
\hline \(z 3=0.00000\) & T3 \(=90.50000\) & \(\mathrm{R} 3=100.0000\) \\
\hline Avg. Concentration & : 19.07 & \% \\
\hline
\end{tabular}
\begin{tabular}{ll|}
\hline Concentration \(=\mathrm{A}+\mathrm{Bx}+\mathrm{C} \times 2+\mathrm{D} \times 3+\mathrm{E} \times 4\) \\
\(\mathrm{I}=0.999986\) & \\
Constants: & \(\mathrm{A}=-0.00585731\) \\
\(\mathrm{~B}=0.131066652\) & \(\mathrm{C}=-0.0001375\) \\
\(\mathrm{D}=1.12705 \mathrm{E}-06\) & \(\mathrm{E}=0\) \\
\hline
\end{tabular}

\begin{tabular}{ll|}
\hline Concontration \(=A+B \times\) \\
\(r=0.999999\) & \\
Constants: & \(A=0.00484606\) \\
\(B=0.999830474\) & \(G=0\) \\
\(D=0\) & \(E=0\) \\
\hline
\end{tabular}
\(\square\)

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}

Assay Laboratory
P.O. No.: 11010210

AIR LIQUIDE AMERICA SPECIALTY GASES LLC Document \# : 40522095-002 1290 COMBERMERE STREET
TROY, MI 48083

Customer
AIR HYGIENE INTERNATIONAL

MIKE SCOTT
5634 S 122 ND E AVE
TULSA OK 74146
US

\section*{ANALYTICAL INFORMATION}

This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards;
Procedure G-1; September, 1997.
Cylinder Number: AAL191 Certification Date: 15Feb2011 Exp. Date: 16 Aug2011

Cylinder Pressure***: 1950 PSIG

" " * Do not use when cylinder pressure is below 150 psig.
* Analytical accuracy ls based on the requirements of EPA Protocol Procedure G1, September 1997.

\section*{REFERENCE STANDARD}


\section*{ANALYZER READINGS}
(Z = Zero Gas \(\mathbf{R}=\) Reference Gas \(T=\) Test Gas \(\mathbf{r}=\) Correlation Coefficient)

First Triad Analysis
Second Triad Analysis
\begin{tabular}{lll}
\hline Data: 15Feb2011 & \multicolumn{2}{c}{ Responsa Unit: MV} \\
\(\mathrm{Z1}=0.00000\) & \(\mathrm{R} 1=19.72000\) & \(\mathrm{~T} 1=4.83700\) \\
\(\mathrm{R} 2=19.73000\) & \(\mathrm{Z2}=0.00000\) & \(\mathrm{~T} 2=4.83400\) \\
\(Z 3=0.00000\) & \(\mathrm{~T} 3=4.83100\) & \(\mathrm{R} 3=19.73000\) \\
Avg. Concentration: & \multicolumn{2}{c}{4.891} \\
\hline
\end{tabular}
\begin{tabular}{llcc} 
Date: 15Feb2011 & \multicolumn{2}{c}{ Response Unit: MV } \\
\(Z 1=0.00000\) & \(\mathrm{R} 1=25.21000\) & \(\mathrm{~T} 1=4.61000\) \\
\(\mathrm{R} 2=25.21000\) & \(Z 2=0.00000\) & \(\mathrm{~T} 2=4.61000\) \\
\(Z 3=0.00000\) & \(\mathrm{~T} 3=4.61000\) & \(\mathrm{R} 3=25.21000\) \\
Avg. Concentration: & 4.944 & PPM \\
\hline
\end{tabular}

Calibration Curve
\begin{tabular}{ll}
\begin{tabular}{l} 
Concentration \(=\mathrm{A}+\mathrm{Bx}+\mathrm{C} \times 2+\mathrm{D} \times 3+\mathrm{E} \times 4\) \\
\(\mathrm{r}=0.9999\) \\
Constants:
\end{tabular} & \(\mathrm{A}=0.036017895\) \\
\(\mathrm{~B}=0.999152579\) & \(\mathrm{C}=0\) \\
\(\mathrm{D}=0\) & \(\mathrm{E}=0\) \\
\\
& \\
Concentration \(=\mathrm{A}+\mathrm{Bx}+\mathrm{C} \times 2+\mathrm{D} \times 3+\mathrm{E} \times 4\) \\
\(\mathrm{r}=0.9999\) & \\
Constants: & \(\mathrm{A}=0.02020944\) \\
\(\mathrm{~B}=1.096985091\) & \(\mathrm{C}=-0.0077427\) \\
\(\mathrm{D}=0.000148781\) & \(\mathrm{E}=0\) \\
\hline
\end{tabular}


Dual-Analyzed Calibration Standard

Phone: 248-589-2950
Fax: 248-589-2134

\section*{CERTIFICATE OF ACCURACY: Interference Free Multi-Component EPA Protocol Gas}
\begin{tabular}{|c|c|c|}
\hline Assay Laboratory & & Customer \\
\hline Assay Laboratary & P.O. No.: ALASG-55510 & Alr lioúlde america l.p. \\
\hline AIR LIQUIDE AMERICA SPECIALTY GASES LLC & Project No.: & \\
\hline 1290 COMBERMERE STREET & & AIR HYGIENE \\
\hline TROY, MI 48083 & & 1319 NORTH PEORIA AVE \\
\hline
\end{tabular}

P
ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards: Procedure G-1; September, 1997.
Cylinder Number: AAL13310 Certification Date: 22Apr2010 Exp. Date: 21 Apr2012
Cyllnder Pressure **: 2015 PSIG

** Do not use when cylinder pressure is below 150 psig.
**-Analytical-accuracy-is-based-on-the-requirements-of-EPA-Protocol-Procedure-G.1,-September 1997

REFERENCE STANDARD
\begin{tabular}{ll}
\hline\(\overline{\text { TYPE/SRM NO. }}\) & \(\frac{\text { EXPIRATION DATE }}{}\) \\
NTRM 2629 & O2Oct2010 \\
& 01Jun2010
\end{tabular}
\begin{tabular}{l} 
CYLINDER NUMBER \\
\hline KALOO3166 \\
KALO04325
\end{tabular}
\begin{tabular}{r} 
CONCENTRATION \\
\hline 25.21 PPM \\
20.36 PPM
\end{tabular}

COMPONENT
CARBON MONOXIDE
NITRIC OXIDE

INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
FTIR//0928621
ECO PHYSICS/CLD 84M/84M0359

ANALYTICAL PRINCIPLE
FTIR CHEMI

\section*{ANALYZER READINGS}
\[
\text { (Z=Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation Coefficient })
\]

First Trlad Analysls

\section*{CARBON MONOXIDE}

Date: 14Apr2010 Response Unit:PPM \(Z 1=-0.05307 \quad R 1=25.30663 \quad T 1=12.10338\) \(R 2=25.31267 \quad \mathrm{Z2}=-0.05306 \quad \mathrm{~T} 2=12.12388\) \(\mathrm{Z} 3=-0.03830 \quad \mathrm{~T} 3=12.14423 \quad \mathrm{R} 3=25.34334\) Avg. Concentration: 12.09 PPM

\section*{NITRIC. OXIDE}

Date: 14Apr2010 Response Unit:MV
\(\mathrm{Z} 1=0.00000 \quad \mathrm{R} 1=20.33000 \quad \mathrm{~T} 1=12.05000\)
\(\mathrm{R} 2=20.35000 \quad \mathrm{Z2}=0.00000 \quad \mathrm{~T} 2=12.05000\) \(Z 3=0.00000 \quad \mathrm{~T} 3=12.05000 \quad \mathrm{R} 3=20.34000\) Avg. Concentration: 12.11 PPM

Second Triad Analysis
Calibration Curve

Date: 21Apr 2010 Response Unit: PPM \(\mathrm{Z} 1=-0.06291 \quad \mathrm{R} 1=25.26965 \quad \mathrm{~T} 1=12.17129\) \(R 2=25.30621 \quad Z 2=-0.02751 \quad\) T2 \(=12.19590\) \(\mathrm{Z3}=0.02191 \quad \mathrm{~T} 3=12.19939 \quad \mathrm{R} 3=25.34779\) Avg. Concentration: 12.15 PPM
Date: 21Apr2010 Response Unit: MV
\(Z 1=0.00000 \quad \mathrm{R} 1=20.29000 \quad \mathrm{~T} 1=11.96000\)
\(\mathrm{R} 2=20.28000 \quad \mathrm{Z2}=0.00000 \quad \mathrm{~T} 2=11.96000\)
\(Z 3=0.00000 \quad \mathrm{~T} 3=11.96000\)
\(\mathrm{R} 3=20.29000\)
Avg. Concentration: \(\quad 12.04 \quad \mathrm{PPM}\)

Concentration \(=A+B x+C \times 2+D \times 3+E \times 4\) \(=9.99986 \mathrm{E}\) -
Constants: \(\quad A=0.00000 E+0\)
\(\mathrm{B}=8.81389 \mathrm{E}-1 \quad \mathrm{C}=5.84000 \mathrm{E}-4\)
\(D=1.00000 E-6 \quad E=0.00000 E+0\)

Concentration \(=\mathrm{A}+\mathrm{Bx}+\mathrm{C} \times 2+\mathrm{Dx} 3+E \times 4\)
\(\mathrm{r}=0.999989\)
Constants:
\(\mathrm{B}=0.998591 \quad \mathrm{C}=0.000000\)
\(D=0.000000 \quad E=0.000000\)

Special Notes: AHO72 Lot Number: 0586916005
APPROVED BY: \(\qquad\)

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}


ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997. Cylinder Number: ALMO41691 Certification Date: 28Sep2010 Exp. Date: 29 Mar 2011 Cylinder Pressure***: 1950 PSIG
\(\frac{\text { CERTIFIED CONCENTRATION (Moles) }}{48.2 \quad \text { PPM }}+\frac{\text { ACCURACY }}{}{ }^{*-2 \%} \quad \frac{\text { TRACEABILITY }}{\text { NIST and VSL }}\)

NITROGEN DIOXIDE
NITROGEN

\section*{\(48.2 \quad \begin{array}{ll}\text { PPM } \\ & \text { BALANCE }\end{array}\)}
*** Do not use when cylinder pressure is below 150 psig.
** Analytical accuracy is based on the requirements of EPA Protocol procedures . September 1997.

REFERENCE STANDARD
TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER

INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
AMETEK 921/921 CE NO2/AW-921-S281

AAL069467

\section*{CONCENTRATION}
487.0 PPM

COMPONENT NITROGEN DIOXIDE

DATE LAST CALIBRATED
17 Sep 2010 UV ANALYTICAL PRINCIPLE
\(\begin{array}{ll}\text { Special Notes: } & \text { PART\# AH032 RANGE: } 45-50 \mathrm{PPM}\end{array}\)
APPROVED BY: LOT \# 0591737001

HILARY THATEH

\section*{APPENDIX D}

QUALITY ASSURANCE AND QUALITY CONTROL DATA

\section*{QA/QC PROGRAM}

Air Hygiene ensures the quality and validity of its emissio \(n\) measurement and reporting procedures through a rigorous quality assurance (QA) program. The program is developed and administered by an internal QA team and encompasses five major areas:
1. QA reviews of reports, laboratory work, and field testing
2. Equipment calibration and maintenance
3. Chain-of-custody
4. Training
5. Knowledge of current test methods

Each of these areas is discussed individually below.

\section*{QA Reviews}

Air Hygiene's review procedure includes review of each source test report, along with laboratory and fieldwork, by the QA Team. The most important review is the one that takes place before a test program begins. The QA Team works closely with technical division personnel to prepare and review test protocols. Test protocol review includes selection of appropriate test procedures, evaluation of interferences or other restrictions that might preclude use of standard test procedures, and evaluation and/or development of alternate procedures.

\section*{Equipment Calibration and Maintenance}

The equipment used to c onduct the em ission measurements is maintained according to the manufacturer's instructions to ensure proper operation. In addition to the maintenance program, calibrations are carried out on each measurement device according to the schedule outlined by the Environmental Protection Agency. Quality control checks are also conducted in the field for each test program.

\section*{Chain-of-Custody}

Air Hygiene maintains full chain-of-custody documentation on all samples and data sheets. In ad dition to normal documentation of changes between field sample custodians, laboratory personnel, and field test personnel, Air Hygiene documents every individual who handles any test component in the field (e.g., probe wash, impinger loading and recovery, filter loading and recovery, etc.). Samples are stored in a locked area to which only Air Hygiene personnel have access. Field data sheets are secured at Air Hygiene's offices upon return from the field.

\section*{Training}

Personnel's training is essential to ensure quality testing. Air Hygiene has formal and informal training programs, which include:
1. Attendance at EPA-sponsored training courses
2. Enrollment in EPA correspondence courses

3 A requirement for all technicians to read and understand Air Hygiene's QA manual
4. In-house training and QA meetings on a regular basis
5. Maintenance of training records

\section*{Knowledge of Current Test Methods}

With the constant updating of standard test methods and the wide variety of emerging test procedures, it is essential that any qualified source tester keep abreast of ne w developments. Air Hygiene subscribes to services, which provide updates on EPA re ference methods, rules, and regulations. Additionally, source test personnel regularly attend and present papers at testing and emission-related seminars and conferences. Air Hygie ne personnel maintain membership in the Air and Waste Management Association and the American Industrial Hygiene Association.

\section*{COMBUSTION TESTING QUALITY ASSURANCE ACTIVITIES}

A number of quality assurance activities were undertaken before, during, and after th is testing project. This section of the report combined with the docunrentation in Appendix C describes each of those activities.

Each instrument's response was checked and adjusted in the field prior to the collection of data via multi-point calibration. The instrument's linearity was checked by adjusting its zero and span responses to zero nitrogen and an upscale calibration gas in the range of the expected concentrations. The instrument response was then challenged with other calibration gases of known concentration and accepted as being linear if the response of the other calibration gases agreed within plus or minus two percent of the range of predicted values. \(\mathrm{NO}_{2}\) to NO conversion was checked via direct connect with an EPA Protocol certified concentration of \(\mathrm{NO}_{2}\) in a balance of nitrogen. Conversion was verified to be between 90 and 110 percent.

After each test run, the analyzers were checked for zero and span drift. This allowed each test run to be bracketed by calibrations and documents the precision of the data just co llected. The criterion for acceptable data is that the instrument drift is no more than three percent of the full-scale response. The quality assurance worksheets in the following pages summarize all multipoint calibration checks and zero to spa \(n\) checks performed during the tests. These worksheets (as prepared from the data records of Appendix A) show that no drifts in excess of three percent occurred in the zero to span checks following each test run.

The sampling systems were leak checked by demonstrating that a vacuum greater than 10 in Hg could be held for at least one minute with a decline of less than one inch of Hg . A leak test was conducted after the sample system was set up and before the system was dismantled. This test was con ducted to ensure that ambient air had not diluted the sample. Any leakage detected prior to the tests would be repaired and another leak check conducted before testing commenced. No leaks were found during the pre or post-test leak checks.

The absence of leaks in the sampling system was also verified by a sampling system bias check. The sampling system's integrity was tested by comparing the responses of the analyzers to the calibration gases introduced via two paths. The first path was directly into the analyzer and the second path via the sample system at the sample probe. Any difference in the instrument responses by these two methods was attributed to sampling system bias or leakage. The criterion for acceptance is agreement within five percent of the span of the analyzer.

The control gases used to calibrate the instruments were analyzed and certified by the compressed gas vendors to plus or minus one percent accuracy for all gases. EPA Protocol No. 1 was used, where applicable to assign the concentration values traceable to the National Institute of Stan dards and Technology (NIST), Stand ard Reference Materials (SRM's). The gas calibration sheets as prepared by the vendor are contained in Appendix C.

Air Hygiene collected and reported the enclosed test data in accordance with the procedures and quality assurance activities described in this test report. Air Hygiene makes no warranty as to the suitability of the test methods. Air Hygiene also assumes no liability relating to the interpretation and use of the test data.

\section*{INSTRUMENTAL ANALYSIS \\ QUALITY ASSURANCE DATA}
\begin{tabular}{ll} 
Date: & March 12-13, 2011 \\
Company: & Florida Power and Light \\
Location: & Loxahatchee, Florida \\
Techs: & JRF
\end{tabular}

Sample System Leak Check
\begin{tabular}{|c|c|c|}
\hline Date & Sample System & \begin{tabular}{c} 
Leak Rate \\
(I/min)
\end{tabular} \\
\hline March 12-13, 2011 & 1 & 0 \\
\hline
\end{tabular}
cis-10-westcounty.fl-rata\#1-U3C-rpt

Calibration Date: March 13, 2011
Client: Florida Power and Light
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{THERMO 42i-HL (NOx Analyzer)} \\
\hline \(\qquad\) & Instrument Response (ppm) & Calibration Error (\%) & Absolute Conc. (ppm) & \begin{tabular}{l}
Pass or \\
Fail ( \(\pm 2 \%\), \\
s0.5ppm)
\end{tabular} \\
\hline 0.00 & -0.05 & -0.41 & 0.05 & YES (\%) \\
\hline 4.93 & 4.99 & 0.50 & 0.06 & YES (\%) \\
\hline 12.10 & 12.22 & 0.99 & 0.12 & YES (\%) \\
\hline \multicolumn{2}{|r|}{Linearity \(=0.987\)} & & & \\
\hline
\end{tabular}




\section*{NOx Converter Efficiency}

Date: March 13, 2011
Analyzer: INST-N2-0001

RM 7E, (12-17-09), Sections 7.1.4; 8.2.4.1; 12.7; and 13.5 Introduce \(\mathrm{NO}_{2}\) to the analyzer and record the NOX concentration displayed. ... Calculate the converter efficiency using Equation 7E-7. The specification for converter efficiency must be met. ... Air Hygiene also references ALT-0013 for specific \(\mathrm{NO}_{2}\) concentration (40-60 ppm) and EPA Traceability Protocol requirements ( \(\pm 2 \%\) ).

Audit Gas: \(\quad \mathrm{NO}_{2}\) Concentration \(\left(\mathrm{C}_{\mathrm{v}}\right)\), ppmvd 48.20
Converter Efficiency Calculations:
Analyzer Reading, NO Channel, ppmvd 1.83
Analyzer Reading, NOx Channel, ppmvd 48.48
Analyzer Reading, \(\mathrm{NO}_{2}\) Channel ( \(\mathrm{C}_{\text {Dir(NO2) }}\) ), ppmvd 46.65
Converter Efficiency, \% 96.78

RM 7E, (08-15-06), 13.5 NO2 to NO Conversion Efficiency Test (as applicable). The NO2 to NO conversion efficiency, calculated according to Equation 7E-7 or Equation 7E-9, must be greater than or equal to 90 percent.
\[
E f f_{\mathrm{MO}}=\left(\frac{C_{D i r}}{C_{i}}\right) \times 100 \quad \text { Eq. } 7 \mathrm{E}-7=\frac{46.65 \mathrm{ppmvd}}{48.20 \mathrm{ppmvd}} \times 100=96.78 \%
\]
\begin{tabular}{cccc|}
\hline Date/Time & Elapsed Time & NOx & NO \\
mm/dd/yy hh:mm:ss & Seconds & ppmvd & ppmvd \\
\(03 / 13 / 1106: 58: 01\) & 1200 & 36.93 & 2.46 \\
\(03 / 13 / 1106: 58: 31\) & 1230 & 45.61 & 2.01 \\
\(03 / 13 / 1106: 59: 01\) & 1260 & 47.04 & 1.95 \\
\(03 / 13 / 1106: 59: 31\) & 1290 & 47.70 & 1.91 \\
\(03 / 13 / 1107: 00: 01\) & 1320 & 48.14 & 1.86 \\
\hline \(03 / 13 / 1107: 00: 31\) & 1350 & 48.48 & 1.83 \\
\hline \(03 / 13 / 1107: 01: 01\) & 1380 & 48.70 & 1.81 \\
\(03 / 13 / 1107: 01: 31\) & 1410 & 37.23 & 1.72 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Strat Test Pre and Post QAVQC Check & O2 & CO & NOx \\
\hline Initial Zero & 0.01 & 0.08 & -0.10 \\
\hline Final Zero & 0.15 & 0.07 & -0.25 \\
\hline Avg. Zero & 0.08 & 0.08 & -0.18 \\
\hline Initial UpScale & 12.11 & 4.84 & 4.99 \\
\hline Final UpScale & 12.28 & 4.79 & 4.87 \\
\hline Avg. UpScale & 12.20 & 4.82 & 4.93 \\
\hline Sys Resp (Zero) & 0.05 & 0.04 & 0.05 \\
\hline Sys Resp (Upscale) & 12.29 & 5.01 & 5.03 \\
\hline Upscale Cal Gas & 12.10 & 4.92 & 4.93 \\
\hline Initial Zero Bias & -0.19\% & 0.33\% & -1.24\% \\
\hline Final Zero Bias & 0.47\% & 0.25\% & -2.48\% \\
\hline Zero Drift & 0.66\% & 0.08\% & 1.24\% \\
\hline Initial Upscale Bias & -0.85\% & -1.40\% & -0.33\% \\
\hline Final Upscale Bias & -0.05\% & -1.82\% & -1.32\% \\
\hline Upscale Drift & 0.81\% & 0.41\% & 0.99\% \\
\hline ¢ & 0.04 & 0.04 & 0.15 \\
\hline  & 0.10 & 0.03 & 0.30 \\
\hline 爱 & 0.18 & 0.17 & 0.04 \\
\hline < io Final Upscale & 0.01 & 0.22 & 0.16 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\% of Range (drift) & 0.63 & 0.36 & 0.36 \\
\hline 5\% of Range (bias) & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Respone Time (min) & & 0.7 & & & 1.3 & & & 1.3 & & \multirow[t]{2}{*}{\[
\begin{array}{|c}
\frac{0}{2} \\
0 \\
0
\end{array}
\]} \\
\hline Sys. Response (min) & \multicolumn{9}{|c|}{1.3} & \\
\hline Date/Time mm/dd/yy ht:mm:ss & z & \[
\begin{aligned}
& \mathrm{O} 2 \\
& \%
\end{aligned}
\] & 5 & Z & \[
\begin{aligned}
& \mathrm{CO} \\
& \mathrm{ppm}
\end{aligned}
\] & S & z & NOx ppm & S & - \\
\hline 03/12/11 09:10:07 & & 13.05 & & & 0.57 & & & 3.17 & & X \\
\hline 03/12/11 09:10:17 & & 13.04 & & & 0.55 & & & 3.16 & & \\
\hline 03/12/11 09:10:27 & & 11.98 & & & 0.60 & & & 3.18 & & \\
\hline 03/12/11 09:10:37 & & 8.13 & & & 0.58 & & & 3.17 & & \\
\hline 03/12/11 09:10:47 & & 11.91 & x & & 0.45 & & & 3.12 & & \\
\hline 03/12/11 09:10:57 & & 12.07 & & x & 0.16 & & & 2.84 & & \\
\hline 03/12/11 09:11:07 & & 12.09 & & & 0.07 & & & 1.35 & & \\
\hline 03/12/11 09:11:17 & & 12.10 & & & 0.01 & & x & 0.05 & & \\
\hline 03/12/11 09:11:27 & & 12.11 & & & 0.01 & & & -0.11 & & \\
\hline 03/12/11 09:11:37 & & 12.09 & & & -0.03 & & & -0.23 & & \\
\hline 03/12/11 09:11:47 & & 12.10 & & & 0.02 & & & -0.25 & & \\
\hline 03/12/11 09:11:57 & & 12.10 & & & -0.01 & & & -0.26 & & \\
\hline 03/12/11 09:12:07 & & 12.11 & & & -0.02 & & & -0.26 & & \\
\hline 03/12/11 09:12:17 & & 12.08 & & & -0.09 & & & -0.25 & & \\
\hline 03/12/11 09:12:27 & & 12.10 & & & -0.01 & & & -0.28 & & \\
\hline 03/12/11 09:12:37 & & 12.10 & & & 0.16 & & & -0.27 & & \\
\hline 03/12/11 09:12:47 & & 12.11 & & & 0.07 & & & -0.27 & & \\
\hline 03/12/11 09:12:57 & & 12.09 & & & 0.08 & & & -0.27 & & \(x\) \\
\hline 03/12/11 09:13:07 & & 12.10 & & & 0.05 & & & -0.26 & & \\
\hline 03/12/11 09:13:17 & & 11.63 & & & 0.07 & & & -0.29 & & \\
\hline 03/12/11 09:13:27 & & 2.16 & & & 0.24 & & & -0.29 & & \\
\hline 03/12/11 09:13:37 & \(x\) & 0.07 & & & 1.19 & & & 0.10 & & \\
\hline 03/12/11 09:13:47 & & 0.01 & & & 2.61 & & & 2.12 & & \\
\hline 03/12/11 09:13:57 & & -0.02 & & & 3.79 & & & 3.76 & & \\
\hline 03/12/11 09:14:07 & & -0.02 & & & 4.46 & & & 4.30 & & \\
\hline 03/12/11 09:14:17 & & -0.03 & & & 4.69 & x & & 4.83 & \(x\) & \\
\hline 03/12/11 09:14:27 & & -0.03 & & & 4.79 & & & 4.86 & & \\
\hline 03/12/11 09:14:37 & & -0.03 & & & 4.80 & & & 4.89 & & \\
\hline 03/12/11 09:14:47 & & -0.03 & & & 4.80 & & & 4.90 & & \\
\hline 03/12/11 09:14:57 & & -0.05 & & & 4.83 & & & 4.92 & & \\
\hline 03/12/11 09:15:07 & & -0.04 & & & 4.74 & & & 4.92 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W/Db Load, Run - 1 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.45 & 2.22 & 1.09 \\
\hline Corrected Average & 12.41 & 2.26 & 1.09 \\
\hline Initial Zero & 0.00 & -0.01 & 0.03 \\
\hline Final Zero & 0.09 & -0.14 & -0.11 \\
\hline Avg. Zero & 0.05 & -0.08 & -0.04 \\
\hline Initial UpScale & 12.11 & 4.99 & 5.07 \\
\hline Final UpScale & 12.17 & 4.87 & 5.06 \\
\hline Avg. UpScale & 12.14 & 4.93 & 5.07 \\
\hline Sys Resp (Zero) & 0.10 & -0.05 & 0.16 \\
\hline Sys Resp (Upscale) & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & -0.47\% & 0.33\% & -1.07\% \\
\hline Final Zero Bias & -0.05\% & -0.74\% & -2.23\% \\
\hline Zero Drift & 0.43\% & 1.07\% & 1.16\% \\
\hline Initial Upscale Bias & 0.33\% & 0.00\% & -0.08\% \\
\hline Final Upscale Bias & 0.62\% & -0.99\% & -0.17\% \\
\hline Upscale Drift & 0.28\% & 0.99\% & 0.08\% \\
\hline \% . & 0.10 & 0.04 & 0.13 \\
\hline  & 0.01 & 0.09 & 0.27 \\
\hline  & 0.07 & 0.00 & 0.01 \\
\hline <<<< Final Upscale & 0.13 & 0.12 & 0.02 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\% of Cal. Span (drift) & 0.63 & 0.36 & 0.36 \\
\hline 5\% of Cal. Span (bias) & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W/Db Load, Run - 2 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.50 & 2.22 & 0.93 \\
\hline Corrected Average & 12.42 & 2.32 & 1.00 \\
\hline Initial Zero & 0.09 & -0.14 & -0.11 \\
\hline Final Zero & 0.11 & -0.10 & -0.16 \\
\hline Avg. Zero & 0.10 & -0.12 & -0.14 \\
\hline Initial UpScale & 12.17 & 4.87 & 5.06 \\
\hline Final UpScale & 12.19 & 4.86 & 5.09 \\
\hline Avg. UpScale & 12.18 & 4.87 & 5.08 \\
\hline Sys Resp (Zero) & 0.10 & -0.05 & 0.16 \\
\hline Sys Resp (Upscale) & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & -0.05\% & -0.74\% & -2.23\% \\
\hline Final Zero Bias & 0.05\% & -0.41\% & -2.64\% \\
\hline Zero Drift & 0.09\% & 0.33\% & 0.41\% \\
\hline Initial Upscale Bias & 0.62\% & -0.99\% & -0.17\% \\
\hline Final Upscale Bias & 0.71\% & -1.07\% & 0.08\% \\
\hline Upscale Drift & 0.09\% & 0.08\% & 0.25\% \\
\hline 9 . Initial Zero & 0.01 & 0.09 & 0.27 \\
\hline  & 0.01 & 0.05 & 0.32 \\
\hline  & 0.13 & 0.12 & 0.02 \\
\hline く运 Final Upscale & 0.15 & 0.13 & 0.01 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\% of Cal. Span (drift) & 0.63 & 0.36 & 0.36 \\
\hline 5\% of Cal. Span (bias) & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－3 & \(\mathrm{O}_{2}\) & NOX & CO \\
\hline Raw Average & 12.54 & 2.51 & 0.85 \\
\hline Corrected Average & 12.45 & 2.60 & 0.96 \\
\hline Initial Zero & 0.11 & －0．10 & －0．16 \\
\hline Final Zero & 0.11 & －0．14 & －0．19 \\
\hline Avg．Zero & 0.11 & －0．12 & －0．18 \\
\hline Initial UpScale & 12.19 & 4.86 & 5.09 \\
\hline Final UpScale & 12.19 & 4.87 & 5.07 \\
\hline Avg．UpScale & 12.19 & 4.87 & 5.08 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & 0．05\％ & －0．41\％ & －2．64\％ \\
\hline Final Zero Bias & 0．05\％ & －0．74\％ & －2．89\％ \\
\hline Zero Drift & 0．00\％ & 0．33\％ & 0．25\％ \\
\hline Initial Upscale Bias & 0．71\％ & －1．07\％ & 0．08\％ \\
\hline Final Upscale Bias & 0．71\％ & －0．99\％ & －0．08\％ \\
\hline Upscale Drift & 0．00\％ & 0．08\％ & 0．17\％ \\
\hline ¢ ¢ Initial Zero & 0.01 & 0.05 & 0.32 \\
\hline  & 0.01 & 0.09 & 0.35 \\
\hline  & 0.15 & 0.13 & 0.01 \\
\hline ＜\({ }_{\text {on }}\) & 0.15 & 0.12 & 0.01 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－ 4 & \(\mathrm{O}_{2}\) & NOX & CO \\
\hline Raw Average & 12.47 & 2.17 & 0.85 \\
\hline Corrected Average & 12.38 & 2.28 & 0.95 \\
\hline Initial Zero & 0.11 & －0．14 & －0．19 \\
\hline Final Zero & 0.08 & －0．17 & －0．12 \\
\hline Avg．Zero & 0.10 & －0．16 & －0．16 \\
\hline Initial UpScale & 12.19 & 4.87 & 5.07 \\
\hline Final UpScale & 12.18 & 4.88 & 5.07 \\
\hline Avg．UpScale & 12.19 & 4.88 & 5.07 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & 0．05\％ & －0．74\％ & －2．89\％ \\
\hline Final Zero Bias & －0．09\％ & －0．99\％ & －2．31\％ \\
\hline Zero Drift & 0．14\％ & 0．25\％ & 0．58\％ \\
\hline Initial Upscale Bias & 0．71\％ & －0．99\％ & －0．08\％ \\
\hline Final Upscale Bias & 0．66\％ & －0．91\％ & －0．08\％ \\
\hline Upscale Drift & 0．05\％ & 0．08\％ & 0．00\％ \\
\hline \％Initial Zero & 0.01 & 0.09 & 0.35 \\
\hline 荋彦言 Final Zero & 0.02 & 0.12 & 0.28 \\
\hline  & 0.15 & 0.12 & 0.01 \\
\hline ¢只 Final Upscale & 0.14 & 0.11 & 0.01 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－ 5 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.43 & 1.98 & 0.87 \\
\hline Corrected Average & 12.37 & 2.11 & 0.93 \\
\hline Initial Zero & 0.08 & －0．17 & －0．12 \\
\hline Final Zero & 0.08 & －0．17 & －0．08 \\
\hline Avg．Zero & 0.08 & －0．17 & －0．10 \\
\hline Initial UpScale & 12.18 & 4.88 & 5.07 \\
\hline Final UpScale & 12.15 & 4.84 & 5.07 \\
\hline Avg．UpScale & 12.17 & 4.86 & 5.07 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & －0．09\％ & －0．99\％ & －2．31\％ \\
\hline Final Zero Bias & －0．09\％ & －0．99\％ & －1．98\％ \\
\hline Zero Drift & 0．00\％ & 0．00\％ & 0．33\％ \\
\hline Initial Upscale Bias & 0．66\％ & －0．91\％ & －0．08\％ \\
\hline Final Upscale Bias & 0．52\％ & －1．24\％ & －0．08\％ \\
\hline Upscale Drift & 0．14\％ & 0．33\％ & 0．00\％ \\
\hline \％¢ Initial Zero & 0.02 & 0.12 & 0.28 \\
\hline 㐫产言 Final Zero & 0.02 & 0.12 & 0.24 \\
\hline  & 0.14 & 0.11 & 0.01 \\
\hline ＜ & 0.11 & 0.15 & 0.01 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－ 6 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.42 & 2.14 & 0.90 \\
\hline Corrected Average & 12.38 & 2.28 & 0.99 \\
\hline Initial Zero & 0.08 & －0．17 & －0．08 \\
\hline Final Zero & 0.07 & －0．17 & －0．21 \\
\hline Avg．Zero & 0.08 & －0．17 & －0．15 \\
\hline Initial UpScale & 12.15 & 4.84 & 5.07 \\
\hline Final UpScale & 12.14 & 4.81 & 5.03 \\
\hline Avg．UpScale & 12.15 & 4.83 & 5.05 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & －0．09\％ & －0．99\％ & －1．98\％ \\
\hline Final Zero Bias & －0．14\％ & －0．99\％ & －3．06\％ \\
\hline Zero Drift & 0．05\％ & 0．00\％ & 1．07\％ \\
\hline Initial Upscale Bias & 0．52\％ & －1．24\％ & －0．08\％ \\
\hline Final Upscale Bias & 0．47\％ & －1．49\％ & －0．41\％ \\
\hline Upscale Drift & 0．05\％ & 0．25\％ & 0．33\％ \\
\hline 2 ᄃ Initial Zero & 0.02 & 0.12 & 0.24 \\
\hline 言䛌告 Final Zero & 0.03 & 0.12 & 0.37 \\
\hline  & 0.11 & 0.15 & 0.01 \\
\hline  & 0.10 & 0.18 & 0.05 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－ 7 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.43 & 2.17 & 0.85 \\
\hline Corrected Average & 12.40 & 2.31 & 0.95 \\
\hline Initial Zero & 0.07 & －0．17 & －0．21 \\
\hline Final Zero & 0.06 & －0．16 & －0．08 \\
\hline Avg．Zero & 0.07 & －0．17 & －0．15 \\
\hline Initial UpScale & 12.14 & 4.81 & 5.03 \\
\hline Final UpScale & 12.13 & 4.84 & 5.03 \\
\hline Avg．UpScale & 12.14 & 4.83 & 5.03 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & －0．14\％ & －0．99\％ & －3．06\％ \\
\hline Final Zero Bias & －0．19\％ & －0．91\％ & －1．98\％ \\
\hline Zero Drift & 0．05\％ & 0．08\％ & 1．07\％ \\
\hline Initial Upscale Bias & 0．47\％ & －1．49\％ & －0．41\％ \\
\hline Final Upscale Bias & 0．43\％ & －1．24\％ & －0．41\％ \\
\hline Upscale Drift & 0．05\％ & 0．25\％ & 0．00\％ \\
\hline ¢ ㄷ．Initial Zero & 0.03 & 0.12 & 0.37 \\
\hline 胹 言言 Final Zero & 0.04 & 0.11 & 0.24 \\
\hline  & 0.10 & 0.18 & 0.05 \\
\hline く边 Final Upscale & 0.09 & 0.15 & 0.05 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－ 8 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.44 & 2.12 & 0.87 \\
\hline Corrected Average & 12.40 & 2.22 & 0.92 \\
\hline Initial Zero & 0.06 & －0．16 & －0．08 \\
\hline Final Zero & 0.07 & －0．08 & －0．10 \\
\hline Avg．Zero & 0.07 & －0．12 & －0．09 \\
\hline Initial UpScale & 12.13 & 4.84 & ． 5.03 \\
\hline Final UpScale & 12.16 & 4.87 & 4.98 \\
\hline Avg．UpScale & 12.15 & 4.86 & 5.01 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & －0．19\％ & －0．91\％ & －1．98\％ \\
\hline Final Zero Bias & －0．14\％ & －0．25\％ & －2．15\％ \\
\hline Zero Drift & 0．05\％ & 0．66\％ & 0．17\％ \\
\hline Initial Upscale Bias & 0．43\％ & －1．24\％ & －0．41\％ \\
\hline Final Upscale Bias & 0．57\％ & －0．99\％ & －0．83\％ \\
\hline Upscale Drift & 0．14\％ & 0．25\％ & 0．41\％ \\
\hline ¢ ㄷ．Initial Zero & 0.04 & 0.11 & 0.24 \\
\hline 雩忥言 Final Zero & 0.03 & 0.03 & 0.26 \\
\hline  & 0.09 & 0.15 & 0.05 \\
\hline く边 Final Upscale & 0.12 & 0.12 & 0.10 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－9 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.36 & 2.39 & 0.95 \\
\hline Corrected Average & 12.33 & 2.49 & 1.02 \\
\hline Initial Zero & 0.07 & －0．08 & －0．10 \\
\hline Final Zero & 0.00 & －0．16 & －0．12 \\
\hline Avg．Zero & 0.04 & －0．12 & －0．11 \\
\hline Initial UpScale & 12.16 & 4.87 & 4.98 \\
\hline Final UpScale & 12.10 & 4.82 & 5.07 \\
\hline Avg．UpScale & 12.13 & 4.85 & 5.03 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & －0．14\％ & －0．25\％ & －2．15\％ \\
\hline Final Zero Bias & －0．47\％ & －0．91\％ & －2．31\％ \\
\hline Zero Drift & 0．33\％ & 0．66\％ & 0．17\％ \\
\hline Initial Upscale Bias & 0．57\％ & －0．99\％ & －0．83\％ \\
\hline Final Upscale Bias & 0．28\％ & －1．40\％ & －0．08\％ \\
\hline Upscale Drift & 0．28\％ & 0．41\％ & 0．74\％ \\
\hline \％Initial Zero & 0.03 & 0.03 & 0.26 \\
\hline 管苞业 Final Zero & 0.10 & 0.11 & 0.28 \\
\hline  & 0.12 & 0.12 & 0.10 \\
\hline 区会边 Final Upscale & 0.06 & 0.17 & 0.01 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{DRIFT AND BIAS CHECK} \\
\hline Base W／Db Load，Run－ 10 & \(\mathrm{O}_{2}\) & NOx & CO \\
\hline Raw Average & 12.33 & 2.40 & 0.98 \\
\hline Corrected Average & 12.37 & 2.52 & 1.01 \\
\hline Initial Zero & 0.00 & －0．16 & －0．12 \\
\hline Final Zero & －0．04 & －0．12 & －0．03 \\
\hline Avg．Zero & －0．02 & －0．14 & －0．08 \\
\hline Initial UpScale & 12.10 & 4.82 & 5.07 \\
\hline Final UpScale & 12.03 & 4.84 & 5.03 \\
\hline Avg．UpScale & 12.07 & 4.83 & 5.05 \\
\hline Sys Resp（Zero） & 0.10 & －0．05 & 0.16 \\
\hline Sys Resp（Upscale） & 12.04 & 4.99 & 5.08 \\
\hline Upscale Cal Gas & 12.10 & 4.93 & 4.92 \\
\hline Initial Zero Bias & －0．47\％ & －0．91\％ & －2．31\％ \\
\hline Final Zero Bias & －0．66\％ & －0．58\％ & －1．57\％ \\
\hline Zero Drift & 0．19\％ & 0．33\％ & 0．74\％ \\
\hline Initial Upscale Bias & 0．28\％ & －1．40\％ & －0．08\％ \\
\hline Final Upscale Bias & －0．05\％ & －1．24\％ & －0．41\％ \\
\hline Upscale Drift & 0．33\％ & 0．17\％ & 0．33\％ \\
\hline \％Initial Zero & 0.10 & 0.11 & 0.28 \\
\hline 完寅言 Final Zero & 0.14 & 0.07 & 0.19 \\
\hline  & 0.06 & 0.17 & 0.01 \\
\hline ¢ & 0.01 & 0.15 & 0.05 \\
\hline Calibration Span & 21.10 & 12.10 & 12.10 \\
\hline 3\％of Cal．Span（drift） & 0.63 & 0.36 & 0.36 \\
\hline 5\％of Cal．Span（bias） & 1.06 & 0.61 & 0.61 \\
\hline
\end{tabular}

\section*{APPENDIX E}

\section*{STRATIFICATION TEST DATA}

\begin{tabular}{l} 
METHOD 1 - STRATIFICATION TEST FOR A CIRCULAR SOURCE \\
\hline \multicolumn{3}{|c|}{\begin{tabular}{|r|l|l|l|}
\hline Company & Florida Power and Light & Date & \(03 / 12 / 11\) \\
\hline Plant Name & West County Energy Center & Project \# & cis-10-westcounty.fl-rata\#1 \\
\hline Equipment & Mitsubishi 501G & \# of Ports Available & 4 \\
\hline Location & Loxahatchee, Florida & \# of Ports Used & 4 \\
\hline
\end{tabular}}
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Circular Stack or Duct Diameter} \\
\hline Distance to Far Wall of Stack & ( \(\mathrm{L}_{\text {tw }}\) ) & 282.38 & in. \\
\hline Distance to Near Wall of Stack & ( \(L_{\text {rw }}\) ) & 19.00 & in. \\
\hline Diameter of Stack & (D) & 263.38 & in. \\
\hline Area of Stack & ( \(A_{5}\) ) & 378.35 & \(\mathrm{ft}^{2}\) \\
\hline \multicolumn{4}{|l|}{Distance from Disturbances to Port} \\
\hline Distance Upstream & (A) & 144.00 & in. \\
\hline Diameters Upstream & ( \(\mathrm{A}_{\mathrm{D}}\) ) & 0.55 & diameters \\
\hline Distance Downstream & (B) & 531.75 & in. \\
\hline Diameters Downstream & ( \(\mathrm{B}_{0}\) ) & 2.02 & diameters \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Number of Traverse Points Required} \\
\hline \multicolumn{2}{|r|}{Diameters to} & \multicolumn{2}{|l|}{Minimum Number of \({ }^{1}\)} & \multicolumn{2}{|l|}{Minimum Number of} \\
\hline \multicolumn{2}{|l|}{Flow Disturbance} & \multicolumn{2}{|l|}{Traverse Points} & \multicolumn{2}{|l|}{Traverse Points} \\
\hline Down ( \(\mathrm{B}_{\mathrm{D}}\) ) & Up ( \(\mathrm{A}_{\text {d }}\) ) & Particulate & Velocity & \multicolumn{2}{|l|}{Comp Stratification} \\
\hline Stream & Stream & Points & Points & Criteria & Points \\
\hline 2.00-4.99 & 0.50-1.24 & 24 & 16 & Oras 788.1 .2 & \(12 \mathrm{RM1} 1 \mathrm{pts}\) \\
\hline 5.00-5.99 & 1.25-1.49 & 20 & 16 & OAlt 7E 8.1.2 & 3 points \\
\hline 6.00-6.99 & 1.50-1.74 & 16 & 12 & & \\
\hline 7.00-7.99 & 1.75-1.99 & 12 & 12 & & \\
\hline > \(=8.00\) & \(>=2.00\) & 8 or \(12^{2}\) & 8 or \(12^{2}\) & Minimum & Number of \\
\hline \multicolumn{2}{|r|}{Upstream Spec} & 24 & 16 & \multicolumn{2}{|l|}{Traverse Points} \\
\hline \multicolumn{2}{|r|}{Downstream Spec} & 24 & 16 & \multicolumn{2}{|l|}{RATA Stratification} \\
\hline Traverse P & ts Required & 24 & 16 & Criteria & Points \\
\hline \multicolumn{4}{|l|}{\multirow[t]{4}{*}{```
\({ }^{1}\) Check Minimum Number of Points for the Upstream
    and Downstream conditions, then use the largest.
\({ }^{2} 8\) for Circular Stacks 12 to 24 inches
    12 for Circular Stacks over 24 inches
```}} & 6) Part75/60 & 12 RM1 pts \\
\hline & & & & O75 abrv (a) & 3 points \\
\hline & & & & O75 abrv (b) & 6 points \\
\hline & & & & \multicolumn{2}{|r|}{12 points} \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Traverse Point Locations } \\
\hline \begin{tabular}{c}
Traverse \\
Point \\
Number
\end{tabular} & \begin{tabular}{c}
Percent of \\
Stack \\
Diameter
\end{tabular} & \begin{tabular}{c}
Distance \\
(nsom \\
Inside Wall
\end{tabular} & \begin{tabular}{c}
Distance \\
Including \\
Reference \\
Length
\end{tabular} \\
\hline & \(\%\) & in. & in. \\
\hline 1 & \(4.4 \%\) & \(115 / 8\) & \(305 / 8\) \\
\hline 2 & \(14.6 \%\) & \(384 / 8\) & \(574 / 8\) \\
\hline 3 & \(29.6 \%\) & 78 & 97 \\
\hline 4 & & & \\
\hline 5 & & & \\
\hline 6 & & & \\
\hline 7 & & & \\
\hline 8 & & & \\
\hline 9 & & & \\
\hline 10 & & & \\
\hline 11 & & & \\
\hline 12 & & & \\
\hline 13 & & & \\
\hline 14 & & & \\
\hline 15 & & & \\
\hline 16 & & & \\
\hline 17 & & & \\
\hline 18 & & & \\
\hline 19 & & & \\
\hline 20 & & & \\
\hline 21 & & & \\
\hline 22 & & & \\
\hline 23 & & & \\
\hline 24 & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Company & Florida Power and Light & Date & 03/12/11 \\
\hline Plant Name & West County Energy Center & Project \# & cis-10-westcounty.fl-rata\#1 \\
\hline Equipment & Mitsubishi 501G & \# of Ports Available & 4 \\
\hline Location & Loxahatchee, Florida & \# of Ports Used & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Stack Dimensions} & \multicolumn{4}{|c|}{Traverse Data} \\
\hline Diameter or Length of Stack & (D) & 263.38 & in. & 4 & Ports by & 3 & Pts / port \\
\hline Width of Stack & (W) & & in. & 12 & Pts Used & 12 & Required \\
\hline Area of Stack & (\(\mathrm{A}_{\mathrm{s}}\)) & 378.35 & \(\mathrm{ft}^{2}\) & Run Start & 9:19:07 & Run End & 9:59:37 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Traverse \\
Point
\end{tabular} & \begin{tabular}{c}
Time Per \\
Point
\end{tabular} & \begin{tabular}{c}
Point \\
Start Time
\end{tabular} & \begin{tabular}{c}
Point Stop \\
Time \\
(Reading)
\end{tabular} & O2 & \begin{tabular}{c}
Percent \\
Difference
\end{tabular} & CO & \begin{tabular}{c}
Percent \\
Difference
\end{tabular} & NOx & \begin{tabular}{c}
Percent \\
Difference
\end{tabular} \\
\hline & min. & hh:mm:ss & hh:mm:ss & \(\%\) & \(\%\) & ppm & \(\%\) & ppm & \% \\
\hline D-3 & 3.00 & \(9: 19: 07\) & \(9: 22: 07\) & 13.11 & \(0.46 \%\) & 0.55 & \(0.30 \%\) & 3.14 & \(8.37 \%\) \\
\hline D-2 & 3.00 & \(9: 22: 07\) & \(9: 25: 07\) & 13.10 & \(0.53 \%\) & 0.56 & \(2.13 \%\) & 2.88 & \(0.60 \%\) \\
\hline D-1 & 3.00 & \(9: 25: 07\) & \(9: 28: 07\) & 13.12 & \(0.38 \%\) & 0.60 & \(9.42 \%\) & 2.96 & \(2.16 \%\) \\
\hline C-3 & 4.50 & \(9: 28: 07\) & \(9: 32: 37\) & 13.15 & \(0.15 \%\) & 0.58 & \(5.78 \%\) & 3.14 & \(8.37 \%\) \\
\hline C-2 & 3.00 & \(9: 32: 37\) & \(9: 35: 37\) & 13.15 & \(0.15 \%\) & 0.65 & \(18.54 \%\) & 2.69 & \(7.16 \%\) \\
\hline C-1 & 3.00 & \(9: 35: 37\) & \(9: 38: 37\) & 13.14 & \(0.23 \%\) & 0.57 & \(3.95 \%\) & 2.84 & \(1.98 \%\) \\
\hline B-3 & 5.00 & \(9: 38: 37\) & \(9: 43: 37\) & 13.18 & \(0.08 \%\) & 0.55 & \(0.30 \%\) & 3.37 & \(16.31 \%\) \\
\hline B-2 & 3.00 & \(9: 43: 37\) & \(9: 46: 37\) & 13.19 & \(0.15 \%\) & 0.54 & \(1.52 \%\) & 2.76 & \(4.75 \%\) \\
\hline B-1 & 3.00 & \(9: 46: 37\) & \(9: 49: 37\) & 13.19 & \(0.15 \%\) & 0.50 & \(8.81 \%\) & 2.47 & \(14.75 \%\) \\
\hline A-3 & 4.00 & \(9: 49: 37\) & \(9: 53: 37\) & 13.22 & \(0.38 \%\) & 0.50 & \(8.81 \%\) & 3.36 & \(15.96 \%\) \\
\hline A-2 & 3.00 & \(9: 53: 37\) & \(9: 56: 37\) & 13.24 & \(0.53 \%\) & 0.50 & \(8.81 \%\) & 2.67 & \(7.85 \%\) \\
\hline A-1 & 3.00 & \(9: 56: 37\) & \(9: 59: 37\) & 13.25 & \(0.61 \%\) & 0.48 & \(12.46 \%\) & 2.49 & \(14.06 \%\) \\
\hline & \multicolumn{9}{|c|}{ Average }
\end{tabular}

RATA SAMPLE POINTS FOR CIRCULAR STACK
\begin{tabular}{|r|l|r|r|}
\hline Company & Florida Power and Light & Date & 03/12/11 \\
\hline Plant Name & West County Energy Center & Project \# & cis-10-westcounty.fl-rata\#1 \\
\hline Equipment & Mitsubishi 501G & \# of Ports Available & 4 \\
\hline Location & Loxahatchee, Florida & \# of Ports Used & 4 \\
\hline
\end{tabular}
\begin{tabular}{|r|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{ Stack Dimensions } & \multicolumn{4}{c|}{ Traverse Data } \\
\hline Diameter or Length of Stack & (D) & 263.38 & in. & 4 & Ports by & 3 & Pts / port \\
\hline Width of Stack & \((\mathrm{W})\) & & in. & 12 & Pts Used & 12 & Required \\
\hline Area of Stack & \(\left(\mathrm{A}_{\mathrm{s}}\right)\) & 378.35 & \(\mathrm{ft}^{2}\) & Run Start & \(9: 19: 07\) & Run End & \(9: 59: 37\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{40 CFR 75 Criteria} \\
\hline \multicolumn{4}{|c|}{Stratification Results} & \multirow{4}{*}{\begin{tabular}{l}
Traverse \\
Point \\
Number
\end{tabular}} & \multirow{4}{*}{Percent of Stack Diameter} & \multirow[t]{4}{*}{Distance from Inside Wall} & \multirow[t]{4}{*}{Distance Including Reference Length} \\
\hline \multicolumn{2}{|l|}{Maximum Percent Difference} & \multicolumn{2}{|l|}{18.54 \% for CO} & & & & \\
\hline \multicolumn{2}{|l|}{Maximum Pollutant Conc. Diff.} & 0.47 ppm & & & & & \\
\hline Maximum Diluent Con & c. Diff. & 0.08 \% f & & & & & \\
\hline \multicolumn{2}{|l|}{Stack Diameter} & 263.38 in. & & & \% & in. & in. \\
\hline \multicolumn{4}{|c|}{Stratification Conclusions} & 1 & >14.95\% & >39.37 & >58.37 \\
\hline Maximum \% Diff. & \multicolumn{3}{|l|}{Percent Diff. >10\% Failed Stratification Test} & 2 & & & \\
\hline Maximum Conc. Diff. & Conc. D & \% Passed 6 & Conc. Diff. \(\leq 0.3 \%\) Passed 6.5.6.3(b) Criteria & 3 & & & \\
\hline Stack Diameter & D > 93.6 & & & & & & \\
\hline \multicolumn{3}{|l|}{Passed Strat. Test Under 6.5.6.3(b) Criteria} & \[
\begin{aligned}
& \text { Test } \\
& \text { Type }
\end{aligned}
\] & Moisture,
Moisture,
Gas & \begin{tabular}{l}
MW \\
or wet-to-dry
\end{tabular} & \[
\begin{aligned}
& \square \text { Use } 6.5 . \\
& \square \text { 6.5.6(b) } \\
& \text { culd ar }
\end{aligned}
\] & \begin{tabular}{l}
.3(a) points? \\
2) alt. points ply
\end{tabular} \\
\hline
\end{tabular}

\section*{APPENDIX 2 \\ 40CFR75 QA CERT TEST DETAIL REPORT}

Facility Name: West County Energy Center

\section*{Additional Information:}

No comment.

\footnotetext{
*Performance Spec: \(\mathrm{CE}<=2.5 \%\) of Span Alternate Performance Spec: \(|R-A|<=5 \mathrm{ppm}\) (Appendix A \&3.1)
}

Facility Name:
West County Energy Center
56407

QA/Cert Test Detail Report
March 28, 2011 07:05 PM

Unit/Stack/Pipe ID: WCCT3C
7-Day Calibration
\begin{tabular}{llllll}
Component ID: & C01 & Component Type: & NOX & Test Completion: & 02/24/2011 \(15: 38\) \\
Test Number: & 7DAY-Q12011-C01-2 & Reason for Test: & INITIAL & Reported Test Results: & PASSAPS \\
Span Scale Level: & Low & Span Value: & 10.000 & EPA Calculated Result: & PASSAPS \\
Evaluation Status: & No Errors & & & Submission Status: & Not submitted
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Injection Däte/Hour} & \multirow[b]{2}{*}{Gas Leve!} & \multirow[b]{2}{*}{Reference Value} & \multirow[b]{2}{*}{Reference Vaiue \% of Span} & \multirow[b]{2}{*}{Measured Value} & \multicolumn{2}{|c|}{Reported} & \multicolumn{2}{|c|}{Recaiculated} \\
\hline & & & & & Results & APS & Results & APS \\
\hline 02/18/2011 06 & ZERO & 0.000 & 0 & 0.000 & 0.00 & & 0.00 & \\
\hline 02/18/2011 06 & HIGH & 8.600 & 86 & 8.400 & 2.00 & & 2.00 & \\
\hline 02/19/2011 15 & ZERO & 0.000 & 0 & 0.000 & 0.00 & & 0.00 & \\
\hline 02/19/2011 15 & HIGH & 8.600 & 86 & 8.300 & 0.30 & Y & 0.00 & Y \\
\hline 02/20/2011 15 & ZERO & 0.000 & 0 & -0.100 & 1.00 & & 1.00 & \\
\hline 02/20/2011 15 & HIGH & 8.600 & 86 & 8.300 & 0.30 & Y & 0.00 & Y \\
\hline 02/21/2011 15 & ZERO & 0.000 & 0 & 0.000 & 0.00 & & 0.00 & \\
\hline 02/21/2011 15 & HIGH & 8.600 & 86 & 8.400 & 2.00 & & 2.00 & \\
\hline 02/22/2011 15 & ZERO & 0.000 & 0 & -0.100 & 1.00 & & 1.00 & \\
\hline 02/22/2011 15 & HIGH & 8.600 & 86 & 8.300 & 0.30 & Y & 0.00 & \(Y\) \\
\hline 02/23/2011 15 & ZERO & 0.000 & 0 & -0.100 & 1.00 & & 1.00 & \\
\hline 02/23/2011 15 & HIGH & 8.600 & 86 & 8.200 & 0.40 & Y & 0.00 & Y \\
\hline 02/24/2011 15 & ZERO & 0.000 & 0 & -0.100 & 1.00 & & 1.00 & \\
\hline 02/24/2011 15 & HIGH & 8.600 & 86 & 8.200 & 0.40 & Y & 0.00 & Y \\
\hline
\end{tabular}

Additional Information:
No comment.
*Performance Spec: CE < \(<2.5 \%\) of Span Alternate Performance Spec: \(\mid\) R-A| \(<=5 \mathrm{ppm}\) (Appendix A \&3.1)

Facility Name: West County Energy Center

Unit/Stack/Pipe ID: WCCT3C
7-Day Calibration
\(\begin{array}{llll}\text { Component ID: } & \text { C02 } & \text { Component Type: } & \text { O2 } \\ \text { Test Number: } & \text { 7DAY-Q12011-C02-3 } & \text { Reason for Test: } & \text { INIT }\end{array}\)
\(\begin{array}{llll}\text { Test Number: } & \text { 7DAY-Q12011-C02-3 } & \text { Reason for Test: } & \text { INITIAL } \\ \text { Span Scale Level: } & \text { High } & \text { Span Value: } & 25.000\end{array}\)
Evaluation Status: No Errors

Test Completion: 02/23/2011 15:43
Reported Test Results: PASSED
EPA Calculated Result: PASSED
Submission Status: Not submitted
Submission Date/Time:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Injection Date/Hour} & \multirow[b]{2}{*}{Gas Level} & \multirow[b]{2}{*}{Reference Value} & \multirow[b]{2}{*}{Reference Value \% of Span} & \multirow[b]{2}{*}{Measured Value} & \multicolumn{2}{|c|}{Reported} & \multicolumn{2}{|l|}{Recaiculated} \\
\hline & & & & & Results & APS & Results & APS \\
\hline 02/16/2011 10 & ZERO & 0.000 & 0 & 0.000 & 0.00 & & 0.00 & \\
\hline 02/16/2011 10 & HIGH & 20.900 & 83.6 & 20.970 & 0.10 & & 0.10 & \\
\hline 02/18/2011 06 & ZERO & 0.000 & 0 & 0.000 & 0.00 & & 0.00 & \\
\hline 02/18/2011 06 & HIGH & 20.900 & 83.6 & 20.930 & 0.00 & & 0.00 & \\
\hline 02/19/2011 15 & ZERO & 0.000 & 0 & 0.000 & 0.00 & & 0.00 & \\
\hline 02/19/2011 15 & HIGH & 20.900 & 83.6 & 20.870 & 0.00 & & 0.00 & \\
\hline 02/20/2011 15 & ZERO & 0.000 & 0 & 0.010 & 0.00 & & 0.00 & \\
\hline 02/20/2011 15 & HIGH & 20.900 & 83.6 & 20.890 & 0.00 & & 0.00 & \\
\hline 02/21/2011 15 & ZERO & 0.000 & 0 & 0.010 & 0.00 & & 0.00 & \\
\hline 02/21/2011 15 & HIGH & 20.900 & 83.6 & 20.820 & 0.10 & & 0.10 & \\
\hline 02/22/2011 15 & ZERO & 0.000 & 0 & 0.020 & 0.00 & & 0.00 & \\
\hline 02/22/2011 15 & HIGH & 20.900 & 83.6 & 20.840 & 0.10 & & 0.10 & \\
\hline 02/23/2011 15 & ZERO & 0.000 & 0 & 0.010 & 0.00 & & 0.00 & \\
\hline 02/23/2011 15 & HIGH & 20.900 & 83.6 & 20.870 & 0.00 & & 0.00 & \\
\hline
\end{tabular}

\section*{Additional Information:}

No comment.
\({ }^{*}\) Performance Spec: \(\mathrm{CE}<=2.5 \%\) of Span Alternate Performance Spec: \(|\mathrm{R}-\mathrm{A}|<=5 \mathrm{ppm}\) (Appendix A \&3.1)

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
QA/Cert Test Detail Report
March 28, 2011 07:05 PM

Unit/Stack/Pipe ID: WCCT3C
Cycle Time Test

Additional Information:
No comment.
*Performance Spec: Cycle Time \(<=15\) minutes (Appendix A \&3.5)
Unit/Stack/Pipe ID: WCCT3C
Cycle Time Test

Additional Information:
No comment.
*Performance Spec: Cycle Time \(<=15\) minutes (Appendix A \&3.5)

\title{
Facility Name: West County Energy Center
}

Facility ID (ORISPL): 56407
Unit/Stack/Pipe ID: WCCT3C
Cycle Time Test

Additional Information:
No comment.
*Performance Spec: Cycle Time <= 15 minutes (Appendix A \&3.5)
\begin{tabular}{ll}
Facility Name: & West County Energy Center \\
Facility ID (ORISPL): & 56407
\end{tabular}

Unit/Stack/Pipe ID: WCCT3C
Fuel Flowmeter Accuracy Test
\begin{tabular}{lll}
Component ID: & C04 Component Type: GFFM \\
Test Number: & FFAC-Q22010-C04-83 \\
& \\
Evaluation Status: & No Errors
\end{tabular}

\section*{Test Completion: 05/13/2010 09:00 \\ Reported Test Results: PASSED}

EPA Calculated Result: PASSED
Submission Status: Not submitted Submission Date/Time:
\begin{tabular}{|c|c|c|c|c|}
\hline Accuracy Test Method & High Level Accuracy & Mid Level Accuracy & Low Levei Accuracy & Reinstallation Date/Hour \\
\hline LCRM & 0.2 & 0.2 & 0.2 & 12/16/2010 00 \\
\hline
\end{tabular}

Additional Information:
No comment.
Unit/Stack/Pipe ID: WCCT3C
Fuel Flowmeter Accuracy Test
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Component ID: & C06 & Component Type: & OFFM & Test Completion: & \multicolumn{2}{|l|}{08/28/2009 10:54} \\
\hline Test Number: & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{FFAC-Q32009-C06-95}} & Reported Test Results: & PASSED & \\
\hline & & & & EPA Calculated Result: & PASSED & \\
\hline Evaluation Status: & \multicolumn{3}{|l|}{No Errors} & Submission Status: Submission Date/Time: & \multicolumn{2}{|l|}{Not submitted} \\
\hline \multicolumn{2}{|l|}{Agcuracy Test Method} & High Level Accur & & Mid Level Accuracy & Low Level Accuracy & Reinstallation Date/Hour \\
\hline \multicolumn{2}{|l|}{LCRM} & 0.0 & & 0.0 & 0.0 & 12/16/2010 00 \\
\hline
\end{tabular}

Additional Information:
No comment.
\begin{tabular}{cl}
Facility Name: & West County Energy Center \\
Facility ID (ORISPL): & 56407
\end{tabular}

Unit/Stack/Pipe ID: WCCT3C
Linearity Check

Component ID:
Test Number:
Span Scale Level:
Evaluation Status:
Grace period Tested?
\begin{tabular}{lll}
C02 & Component Type: & O2 \\
LINE-Q12011-C02-12 & Reason for Test: & QA
\end{tabular}
High Span Value: 25.000

No Ertors
\begin{tabular}{ll}
Test Completion: & 03/14/2011 16:25 \\
Reported Test Results: & PASSED \\
EPA Calculated Result: & PASSED \\
Submission Status: & Not submitted \\
Submission Date/Time: &
\end{tabular}

Summary Statistics:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{High} & \multicolumn{2}{|c|}{Mid} & \multicolumn{2}{|c|}{Low} \\
\hline & Reported & Recalculated & Reported & Recalculated & Reported & Recalculated \\
\hline Reference Value & 22.600 & 22.600 & 13.800 & 13.800 & 6.240 & 6.240 \\
\hline Mass CEM Value & 22.473 & 22.473 & 13.723 & 13.723 & 6.310 & 6.310 \\
\hline Alt. Perf. Indicator & & & & & & \\
\hline Results & 0.6 & 0.6 & 0.6 & 0.6 & 1.1 & 1.1 \\
\hline
\end{tabular}

Injection Statistics
\begin{tabular}{|c|c|c|c|c|}
\hline - , Date & Gas Level & Measured Value & Reference Value & Reference Value as \% of Span \\
\hline 03/14/2011 16:02 & HIGH & 22.440 & 22.600 & 90.4\% \\
\hline 03/14/2011 16:14 & HIGH & 22.500 & 22.600 & 90.4\% \\
\hline 03/14/2011 16:25 & HIGH & 22.480 & 22.600 & 90.4\% \\
\hline 03/14/2011 15:55 & LOW & 6.180 & 6.240 & 25.0\% \\
\hline 03/14/2011 16:18 & LOW & 6.380 & 6.240 & 25.0\% \\
\hline 03/14/2011 16:07 & LOW & 6.370 & 6.240 & 25.0\% \\
\hline 03/14/2011 15:59 & MID & 13.700 & 13.800 & 55.2\% \\
\hline 03/14/2011 16:11 & MID & . 13.710 & 13.800 & 55.2\% \\
\hline 03/14/2011 16:22 & MID & 13.760 & 13.800 & 55.2\% \\
\hline
\end{tabular}

\section*{Additional Information:}

No comment.
*Performance Spec: LE <= 5.0\% of Reference Value: Alternate Performance Spec: \(|\mathrm{R}-\mathrm{A}|<=5 p p m\) (Appendix A \&3.2)
\begin{tabular}{cl}
Facility Name: & West County Energy Center \\
Facility ID (ORISPL): & 56407
\end{tabular}

Linearity Check
\begin{tabular}{llllll}
Component ID: & Co1 & Component Type: & NOX & Test Completion: & 03/14/2011 15:50 \\
Test Number: & LINE-Q12011-C01-10 Reason for Test: & QA & Reported Test Results: & PASSED \\
Span Scale Level: & High & Span Value: & 200.000 & EPA Calculated Result: & PASSED \\
Evaluation Status: & No Errors & & & Submission Status: & Not submitted \\
Grace period Tested? & & & Submission Date/Time: &
\end{tabular}

Summary Statistics:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multicolumn{2}{|c|}{High} & \multicolumn{2}{|c|}{Mid} & \multicolumn{2}{|c|}{Low} \\
\hline & Reported & Recalculated & Reported & Recalculated & Reported & Recalculated \\
\hline Reference Value & 176.200 & 176.200 & 110.700 & 110.700 & 51.100 & 51.100 \\
\hline Mass CEM Value & 173.433 & 173.433 & 107.367 & 107.367 & 50.200 & 50.200 \\
\hline Alt. Perf. Indicator & & & & & & \\
\hline Results & 1.6 & 1.6 & 3.0 & 3.0 & 1.8 & 1.8 \\
\hline
\end{tabular}

Injection Statistics:
\begin{tabular}{|c|c|c|c|c|}
\hline Date & Gas Level & Measured Value & Reference Value & Reference Value as \% of Span \\
\hline 03/14/2011 15:43 & LOW & 49.900 & 51.100 & 25.6\% \\
\hline 03/14/2011 15:31 & LOW & 49.900 & 51.100 & 25.6\% \\
\hline 03/14/2011 15:19 & LOW & 50.800 & 51.100 & 25.6\% \\
\hline 03/14/2011 15:47 & MID & 107.200 & 110.700 & 55.4\% \\
\hline 03/14/2011 15:23 & MID & 107.700 & 110.700 & 55.4\% \\
\hline 03/14/2011 15:35 & MID & 107.200 & 110.700 & 55.4\% \\
\hline 03/14/2011 15:50 & HIGH & 173.000 & 176.200 & 88.1\% \\
\hline 03/14/2011 15:26 & HIGH & 173.700 & 176.200 & 88.1\% \\
\hline 03/14/2011 15:38 & HIGH & 173.600 & 176.200 & 88.1\% \\
\hline
\end{tabular}

Additional Information:
No comment.
*Performance Spec: LE <= \(5.0 \%\) of Reference Value; Alternate Performance Spec: \(\mid\) R-A \(\mid<=5 p p m\) (Appendix A \&3.2)

Facility Name: West County Energy Center Facility ID (ORISPL): 56407

\begin{tabular}{|c|c|c|c|c|c|}
\hline System ID: & C01 & System Parameter: & NOX & Test Completion: & 03/13/2011 17:49 \\
\hline Test Number: & RATA-Q12011-C01- & Reason for Test: & INITIAL & Reported Test Results: & PASSAPS \\
\hline \# of Op. Levels: & \(\overline{1}\) & Grace Period Test? & & EPA Calculated Result: & PASSAPS \\
\hline Evaluation Status: & No Errors & & & Reported BAF: & 1.104 \\
\hline Submission Status: & Not submitted & & & EPA Calculated BAF: & 1.104 \\
\hline Submission Date: & & & & RATA Frequency: & 4QTRS \\
\hline
\end{tabular}

Operating Level
Reference Method Used:
Summary Statistics:
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Reported & Recalculated & & Reported & Recalculated \\
\hline Mean of Monitoring System & 0.005 & 0.005 & Relative Accuracy & 16.31 & 16.31 \\
\hline Mean of Reference Method Values & 0.006 & 0.006 & Bias Adjustment Factor & 1.104 & 1.104 \\
\hline Mean of Difference & 0.001 & 0.001 & APS Indicator & Y & Y \\
\hline Standard Deviation of Difference & 0.001 & 0.001 & T-Value & 2.306 & 2.306 \\
\hline Confidence Coefficient & 0.000 & 0.000 & Gross Unit Load or Velocity & 336 & 336 \\
\hline
\end{tabular}

7E,3A: NOX RM 7E and CO2/O2 RM 3A
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Run & Start Date & End Date & Run Status & Monitoring System Value & Reference Method Value & Gross Load or Velocity \\
\hline 1 & 03/13/2011 09:56 & 03/13/2011 10:55 & RUNUSED & 0.005 & 0.006 & 343 \\
\hline 2 & 03/13/2011 11:12 & 03/13/2011 12:11 & RUNUSED & 0.005 & 0.006 & 345 \\
\hline 3 & 03/13/2011 12:27 & 03/13/2011 13:26 & NOTUSED & 0.005 & 0.007 & 337 \\
\hline 4 & 03/13/2011 13:39 & 03/13/2011 13:59 & RUNUSED & 0.005 & 0.006 & 330 \\
\hline 5 & 03/13/2011 14:11 & 03/13/2011 14:31 & RUNUSED & 0.005 & 0.005 & 330 \\
\hline 6 & 03/13/2011 14:41 & 03/13/2011 15:01 & RUNUSED & 0.006 & 0.006 & 329 \\
\hline 7 & 03/13/2011 15:11 & 03/13/2011 15:31 & RUNUSED & 0.006 & 0.006 & 330 \\
\hline 8 & 03/13/2011 15:41 & 03/13/2011 16:01 & RUNUSED & 0.005 & 0.006 & 329 \\
\hline 9 & 03/13/2011 16:59 & 03/13/2011 17:19 & RUNUSED & 0.005 & 0.006 & 343 \\
\hline 10 & 03/13/2011 17:29 & 03/13/2011 17:49 & RUNUSED & 0.006 & 0.006 & 346 \\
\hline
\end{tabular}

Page 9 of 10
\begin{tabular}{ll}
Facility Name: & West County Energy Center \\
Facility ID (ORISPL): & 56407
\end{tabular}

Additional Information:
No comment.
*Performance Spec: RA <= 10\% or Mean Difference <=+/- 2.0fps:
Reduced Frequency Spec: RA <= 7.5\% or Mean Difference \(+/-1.5 \mathrm{fps}\) (Appendix A \&3.3.4)
Unit/Stack/Pipe ID: WCCT3C
Transmitter Transducer Test
\begin{tabular}{lllll}
Component ID: & C05 & Component Type: & GFFM & Test Completion:
\end{tabular} 03/03/2010 12:00
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline High Level Accuracy & High Level Accuracy Specification & Mid Level Accuracy & Midd Level Accuracy Specification & Low Level Accuracy & Low Level Accuracy Specification \\
\hline 0.5 & AGA3 & 0.5 & AGA3 & 0.5 & AGA3 \\
\hline
\end{tabular}

Additional Information:
No comment
Unit/Stack/Pipe ID: WCCT3C
Primary Element inspection
\begin{tabular}{lllll}
System ID: & & System Type: & & \begin{tabular}{l}
Test Completion:
\end{tabular} \\
\begin{tabular}{llll}
Component ID: & C05 & Component Type: & GFFM \\
Test Number: & PEl-110219-C05-3 & Reason for Test: & INITIAL
\end{tabular} & \begin{tabular}{l}
Reported Test Results: \\
Grace Period Test?
\end{tabular} \\
Evaluation Status: & No Errors & & & Submission Status:
\end{tabular}

Test Description:
Additional Information:
No comment

\section*{APPENDIX 3}

\section*{CEMS CALIBRATION DRIFT REPORTS}
84.0

Daily Stack Calibration Report
Generated: 2/24/2011

Company: Florida Power \& Light lant: West County Plant
ity/St: Lnxahatchee, FL 33470
Source: stack3c
\begin{tabular}{llr}
& & \\
3C_NOXLOW & NOX & 0.0 \\
3_-NOXHIGH & NOX & 0.0 \\
3C_O2 & 02 & 0.00 \\
3C_COLOW & CO & 0.0 \\
3C_COHIGH & CO & 0.0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multirow[t]{2}{*}{Channel} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Type}} & Target & Actual & Diff & \multicolumn{6}{|c|}{Part60 Allowa} & \multicolumn{4}{|c|}{Part75 Allowable} \\
\hline Date & Time & & & & Units & Units & Units & Error : & Units & : 20.0 & & 0 & Error \% & Units & & N/A & \\
\hline 02/24/2011 & 15:30 & 3 C _COHIGH & CO & ZERO & 0.000 & 0.600 & 0.500 & 0.1 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A & & N/A - & - N/A \\
\hline 02/24/2011 & 15:30 & \(3 C_{C}^{-} \mathrm{COHIGH}\) & co & SPAN & 1048.000 & 1106.800 & 58.800 & 4.9 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & N/A - & - N/A - \\
\hline 02/24/2011 & 15:30 & 3C_COLOW & CO & zero & 0.000 & 0.400 & 0.400 & 4.0 & 2.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - \\
\hline 02/24/2011 & 15:30 & 3C-COLOW & co & SPAN & 8.600 & 9.100 & 0.500 & 5.0 & 2.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - \\
\hline 02/24/2011 & 15:30 & 3c_NOXHIGH & NOX & ZERO & 0.000 & -0.200 & -0. 200 & -0. 1 & 20.0 & 10.0 & pass & 0 & -0.1 & 10.000 & & 5.0 & PASS \\
\hline 02/24/2011 & 15:30 & 3C_NOXHIGH & NOX & Span & 176.200 & 171.800 & -4.400 & -2.2 & 20.0 & 10.0 & PASS & 0 & -2.2 & 10.000 & & 5.0 & PASS \\
\hline 02/24/2011 & 15:30 & 3 C NOXLOW & NOx & zERO & 0.000 & -0.100 & -0.100 & -1.0 & 1.0 & 10.0 & PASS & 0 & -1.0 & 5.000 & & 5.0 & PASS \\
\hline 02/24/2011 & 15:30 & 3 C NOXLOW & NOX & SPAN & 8.600 & 8.200 & -0.400 & -4.0 & 1.0 & 10.0 & PASS & 0 & -4.0 & 5.000 & & 5.0 & PASS \\
\hline 02/24/2011 & 15:30 & 3'c_02 & 02 & zero & 0.000 & 0.010 & 0.010 & - N/A - & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & - N/A - & PASS \\
\hline 02/24/2011 & 15:30 & \(3 C^{-} 02\) & 02 & SPAN & 20.900 & 20.870 & -0.030 & - N/A - & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & - \(/\) / \({ }^{\text {- }}\) & PASS \\
\hline
\end{tabular}

FAIL = Difference Error > Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
RDG \(=\) Reading exceeds "Range of Analyzer"
(
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Daily Stack Calibration Report
Generated: 2/24/2011
Company: Florida Power \& Light
Plant: West County Plant
City/St: Loxahatchee, FL 33470
Part 60 Calibration (Absolute Average DIFF and Calibration \% Error)

Part 75 Calibration (Absolute Average DIFF and Calibration \(\%\) Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Channel} & & \multicolumn{2}{|c|}{-ZERO--} & \multicolumn{2}{|l|}{----SPAN----} \\
\hline & & Diff & Error & Diff & Error \\
\hline & & Units & \(\%\) & Units & \% \\
\hline 3C_COHIGH & C0 & 0.600 & - N/A - & 58.800 & - N/A - \\
\hline 3 CCOLOW & CO & 0.400 & - N/A - & 0.500 & - N/A - \\
\hline 3C_NOXHIGH & NOx & 0.200 & \(0.1 \%\) & 4.400 & 2.2\% \\
\hline 3C-NOXiOW & NOX & 0.100 & 1.0\% & 0.400 & 4.0\% \\
\hline 3C_O2 & 02 & 0.010 & - N/A - & 0.030 & - N/A - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channe1} & & \multicolumn{2}{|l|}{Performance Specification Part 60} & \multicolumn{2}{|c|}{Part 75} \\
\hline & & PASS & fail & PASS & FAIL \\
\hline 3C_COHIGH & CO & < \(=20.0 \%\) & >20.0\% & - N/A & - N/A - \\
\hline 3c_COLOW & CO & < \(=20.0\) \% & >20.0\% & - N/A - & - N/A - \\
\hline 3C_NOXHIGH & NOx & < \(=10.0 \%\) & >10.0\% & < \(=5.0 \%\) & >5.0\% \\
\hline 3c_NOXLOW & NOx & < \(=10.0 \%\) & >10.0\% & < \(=5.0 \%\) & >5.0\% \\
\hline 3 C -02 & 02 & < \(=2.08\) & >2.0\% & < \(=1.0 \%\) & >1.0\% \\
\hline
\end{tabular}
\(\begin{array}{lll}\text { Perf: } & \text { [Part60 Daily C0] Zero }=20.0 \% \text { Range, } & \text { Span }=20.0 \% \text { Range } \\ \text { Perf: } & \text { [Part } 60 \text { Daily C0] Zero }=20.0 \% \text { Range, } & \text { Span }=20.0 \% \text { Range } \\ \text { Perf: } & \text { [Part75 Daily Nox] Zero }=5.0 \% \text { Range, Span }=5.0 \% \text { Range, }\end{array}\)
Part75 Daily NOx] Zero \(=5.0\) \%Range, Span \(=5.0\) \%Range, [Part 60 Daily Nox] Zero \(=10.0\) \%Range, Span
AltPerf: [Part75 Daily NOx] Zero \(=5 \mathrm{ppm}\) (Range<=50 ppm)/10 ppm (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\)
Perf: \(\quad\) (Range \(<=50 \mathrm{ppm}) / 10\) ppm (\(50 \mathrm{ppm}<\mathrm{Range}<=200 \mathrm{ppm})\) Daily Nox] Zero \(=5.0\) \%Range, Span \(=5.0\) \%Range, [Part60 Daily NOx] Zero \(=10.0\) \%Range, Span
AltPerf: [Part75 Daily NOx] Zero \(=5 \mathrm{ppm}\) (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span = 5 ppm (Range \(<=50 \mathrm{ppm}\)) \(/ 10 \mathrm{ppm}\) (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\))
Perf:
[Part75 Daily 02] Zero \(=1.0 \% 02\), Span \(=1.0 \% 02,[\) Part60 Daily 02] Zero \(=2.0 \% 02\), Span \(=2.0 \% 02\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{6}{*}{} & \multicolumn{4}{|r|}{Ranae of Analyzers:} & \multicolumn{13}{|c|}{Span of Analyzers:} \\
\hline & \multicolumn{2}{|r|}{\multirow[t]{5}{*}{\begin{tabular}{l}
3C_NOXLOW \\
3C-NOXHIGH \\
\(3 \mathrm{C}^{-} 02\) \\
3c_COLOW \\
3C_COHIGH
\end{tabular}}} & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { NOX } \\
& \text { NOX } \\
& \text { O2 } \\
& \text { CO } \\
& \text { CO }
\end{aligned}
\]} & \multirow[t]{5}{*}{\[
\begin{array}{r}
0.0 \\
0.0 \\
0.00 \\
0.0 \\
0.0
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{\[
\begin{gathered}
10.0 \mathrm{ppm} \\
200.0 \mathrm{ppm} \\
25.00 \% \\
10.0 \mathrm{ppm} \\
1200.0 \mathrm{ppm}
\end{gathered}
\]}} & \multirow[t]{5}{*}{\begin{tabular}{l}
3c_NOXLOW \\
3C_NOXHIGH \\
3C_02 \\
3C_COLOW \\
3c_cohigh
\end{tabular}} & \multirow[t]{5}{*}{\begin{tabular}{l}
Nox \\
NOX \\
02 \\
CO \\
Co
\end{tabular}} & \multirow[t]{5}{*}{\[
\begin{array}{r}
0.0 \\
0.0 \\
0.00 \\
0.0 \\
0.0
\end{array}
\]} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\[
\begin{aligned}
& 10.0 \mathrm{ppm} \\
& 200.0 \mathrm{ppm} \\
& 25.00 \mathrm{o} \\
& 10.0 \mathrm{ppm}
\end{aligned}
\]}} & \multicolumn{6}{|l|}{} \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & & & & & & & & \\
\hline & & & & & & & & & & \[
1200.0
\] & & & & & & & \\
\hline & & & & \multirow[b]{2}{*}{Type} & Target & \multirow[t]{2}{*}{Actual Units} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Diff } \\
& \text { Units }
\end{aligned}
\]} & \multirow[b]{2}{*}{Error \%} & \multirow[t]{2}{*}{Units \({ }^{\text {P }}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Part60 Allowable}} & \multirow[b]{2}{*}{0} & \multirow[b]{2}{*}{Error \%} & \multirow[t]{2}{*}{Units \({ }^{\text {Pa }}\)} & \multicolumn{3}{|l|}{Part 75 Allowable} \\
\hline Date & Time & Channel & & & Units & & & & & & & & & & & . & \\
\hline 02/23/2011 & 15:30 & 3 C COHIGH & CO & ZERO & 0.000 & 0.600 & 0.600 & 0.1 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & - & N/A - & - N/A - \\
\hline 02/23/2011 & 15:30 & \(3 \mathrm{C}_{-}^{-} \mathrm{COHIGH}\) & co & SPAN & 1048.000 & 1104.600 & 56.600 & 4.7 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & - & N/A - & - N/A - \\
\hline 02/23/2011 & 15:30 & 3C_COLOW & co & zero & 0.000 & 0.400 & 0.400 & 4.0 & 2.0 & 20.0 & pass & 0 & - N/A - & - N/A - & - & N/A & - N/A - \\
\hline 02/23/2011 & 15:30 & 3C_COLOW & co & SPAN & 8.600 & 9.100 & 0.500 & 5.0 & 2.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & N/A - & - N/A - \\
\hline 02/23/2011 & 15:30 & 3C_NOXHIGH & nox & zero & 0.000 & -0.200 & -0.200 & -0.1 & 20.0 & 10.0 & PASS & 0 & -0.1 & 10.000 & & 5.0 & PASS \\
\hline 02/23/2011 & 15:30 & \(3 C_{-}^{-}\)NOXHIGH & NO* & SPAN & 176.200 & 172.200 & -4.000 & -2.0 & 20.0 & 10.0 & PASS & 0 & -2.0 & 10.000 & & 5.0 & PASS \\
\hline 02/23/2011 & 15:30 & 3C_NOXLOW & NOx & zero & 0.000 & -0.100 & -0.100 & -1.0 & 1.0 & 10.0 & PASS & 0 & -1.0 & 5.000 & & 5.0 & PASS \\
\hline 02/23/2011 & 15:30 & \(33^{-}\)NOXLOW & NOx & SPAN & 8.600 & 8.200 & -0.400 & -4.0 & 1.0 & 10.0 & PASS & 0 & -4.0 & 5.000 & & 5.0 & pass \\
\hline 02/23/2011 & 15:30 & \(3{ }^{3} \mathrm{C} 02\) & 02 & ZERO & 0.000 & 0.010 & 0.010 & - N/A - & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & N/A - & PASS \\
\hline 02/23/2011 & 15:30 & \(3 C^{-} 02\) & 02 & SPAN & 20.900 & 20.870 & -0.030 & - N/A - & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & \(\mathrm{N} / \mathrm{A}-\) & PASS \\
\hline
\end{tabular}

FAIL \(=\) Difference Error \(>\) Regulations Allow
WARN \(=\) Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG \(=\) Invalid Target (not within regulatory specs)
RDG = Reading exceeds "Range of Analyzer"
= Number of Consecutive Days in Warning - ('? Not Available) - ('OoC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: 40 CFR 75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Part 60 Calibration (Absolute Average DIFF and Calibration \% Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Channel & & \begin{tabular}{l}
Diff \\
Units
\end{tabular} & Error & Diff
Units & \[
\begin{gathered}
\text { Error } \\
\%
\end{gathered}
\] \\
\hline 3C_COHIGH & co & 0.6 & 0.18 & 56.6 & 4.7\% \\
\hline 3C_COLOW & co & 0.4 & 4.0\% & 0.5 & 5.0\% \\
\hline 3C_NOXHIGH & NOx & 0.2 & 0.18 & 4.0 & \(2.0 \%\) \\
\hline 3C_NOXLOW & NOX & 0.1 & 1.08 & 0.4 & 4.0\% \\
\hline 3 C _02 & 02 & 0.0 & - N/A - & 0.0 & - N/A - \\
\hline
\end{tabular}

Part 75 Calibration (Absolute Average DIFF and Calibration \% Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Channel} & & \multicolumn{2}{|l|}{----ZERO----} & \multicolumn{2}{|l|}{----SPAN----} \\
\hline & & Diff & Error & Diff & Error \\
\hline & & Units & \% & Units & \% \\
\hline 3C_COHIGH & CO & 0.600 & - N/A & 56.600 & - N/A - \\
\hline 3 C colow & co & 0.400 & - N/A & 0.500 & - N/A - \\
\hline 3C NOXHIGH & NOX & 0.200 & 0.1\% & 4.000 & 2.0\% \\
\hline 3C_NOXLOW & NOX & 0.100 & 1.0\% & 0.400 & \(4.0 \%\) \\
\hline 3 C 02 & 02 & 0.010 & - N/A - & 0.030 & - N/A - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|l|}{Performance Specificatio Part 60} & \multicolumn{2}{|l|}{Part 75} \\
\hline & & PASS & FAIL & PASS & EAIL \\
\hline 3C_COHIGH & CO & < \(=20.0\) \% & >20.0\% & - N/A - & - N/A - \\
\hline 3 CCOLOW & co & < \(=20.0 \%\) & >20.0\% & - N/A - & - N/A - \\
\hline 3c_NOXHIGH & NOX & < \(=10.0 \%\) & >10.0\% & \(<=5.0 \%\) & >5.0\% \\
\hline 3C NOXLOW & NOx & < \(=10.0 \%\) & >10.0\% & < \(=5.0 \%\) & >5.0\% \\
\hline \(3 \mathrm{C}-\mathrm{O}\) & 02 & <=2.0\% & >2.0\% & < \(=1.0{ }^{\text {a }}\)) & >1.0\% \\
\hline
\end{tabular}

Perf: [Part60 Daily CO] Zero \(=20.0\) \%Range, Span \(=20.0 \%\) Range

10.0 :Rang

AltPerf: [Part75 Daily NOx] Zero \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\)) \(/ 10 \mathrm{ppm}\) (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\)
 \(=10.0\) \%Range
AltPerf: [Part75 Daily Nox] zero \(=5 \mathrm{ppm}\) (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\)) \(/ 10 \mathrm{ppm}\) (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\))
Perf:
[Part75 Daily 02] Zero = 1.0 \%02, Span = 1.0 \%02, [Part60 Daily 02] Zero \(=2.0\) \%02, Span \(=2.0 \% 02\)

Company: Florida Power \& Light
Plant: West County Plant
Cicy/St: Loxahatchee, FL 33470
Source: stack3c

\author{
Period Scart: 2/22/2011 \\ Period End: 2/22/2011 \\ Included Calibrations: Daily (40CFR50)/(40CFR75)
}

FAIL = Difference Error > Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
targ \(=\) Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Part 60 Calibration}} & \multicolumn{2}{|l|}{(Absolute Average ----ZERO---} & \multicolumn{2}{|l|}{Calibration \& Error:} \\
\hline & & Diff & Error & Diff & Error \\
\hline Channel & & Units & \% & Units & \% \\
\hline 3 CCOHIGH & CO & 0.6 & 0.18 & 47.7 & 4.08 \\
\hline 3C_COLOW & CO & 0.4 & 4.08 & 0.4 & 4.0\% \\
\hline 3C_NOXHIGH & NOx & 0.1 & 0.1\% & 3.6 & 1.8\% \\
\hline 3c_NOXLOW & Nox & 0.1 & \(1.0 \%\) & 0.3 & 3.0\% \\
\hline 3 C -02 & O2 & 0.0 & - N/A - & 0.1 & - N/A - \\
\hline
\end{tabular}

Part 75 Calibration (Absolute Average DIFF and Calibration \(\%\) Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Channel} & & \multicolumn{2}{|c|}{---ZERO---} & \multicolumn{2}{|l|}{----SPAN----} \\
\hline & & Diff & Error & Diff & Error \\
\hline & & Units & \% & Units & \(\%\) \\
\hline 3C_COHIGH & CO & 0.600 & - \(\mathrm{N} / \mathrm{A}\) & 47.700 & N/A \\
\hline 3C_COLOW & co & 0.400 & - N/A - & 0.400 & - N/A - \\
\hline 3C NOXHIGH & NOx & 0.100 & \(0.1 \%\) & 3.600 & 1.8\% \\
\hline 3CNOXLOW & NOX & 0.100 & 1.0\% & 0.300 & 3.0\% \\
\hline 3 C -02 & 02 & 0.020 & - N/A - & 0.060 & - N/A - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|l|}{Performance Specificatio Parc 60} & \multicolumn{2}{|c|}{Part 75} \\
\hline & & PASS & FAIL & PASS & FAIL \\
\hline 3C_COHIGH & Co & < \(=20.0 \%\) & >20.0\% & - N/A & - N/A \\
\hline 3C_COLOW & CO & < \(=20.0 \%\) & >20.0\% & - N/A - & - N/A - \\
\hline 3C_NOXHIGH & NOx & < \(=10.0 \%\) & >10.0\% & < \(=5.0 \%\) & >5.0\% \\
\hline 3C_NOXLOW & NOx & < \(=10.0\) \% & >10.0\% & < \(=5.0 \%\) & >5.0\% \\
\hline 3 C 02 & 02 & \(<=2.0{ }^{\text {c }}\) & >2.0\% & < \(=1.0 \%\) & >1.0\% \\
\hline
\end{tabular}

Perf: [Part60 Daily CO] Zero \(=20.0\) \%Range, Span \(=20.0 \%\) Range
Perf: \(\quad[\) Parc60 Daily C0] Zero \(=20.0\) \%Range, Span \(=20.0\) \%Range
Perf: [Part75 Daily NOx] Zero \(=5.0 \%\) Range, Span \(=5.0 \%\) Range, [Part60 Daily NOx] Zero \(=10.0\) \&Range, Span 10.0 \%Range

AltPerf: [Part75 Daily NOx] Zero \(=5\) ppm (Range \(<=50 \mathrm{ppm}\))/10 ppm (50 ppm \(<\) Range \(<=200 \mathrm{ppm}\)), span \(=5\) ppm
Perf: [Part75 Daily NOx] zero \(=5.0 \%\) Range, Span \(=5.0\) \%Range, [Part 60 Daily NOx] zero \(=10.0 \%\) Range, Span
AltPerf: [Part 75 Daily NOx] Zero \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\))/10 ppm (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\))/10 ppm (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\))
Perf:
[Part75 Daily 02] Zero \(=1.0\) \%02, Span = 1.0 \% 02 , [Part60 Daily 02] Zero \(=2.0\) 202, Span \(=2.0 \% 02\)

Daily Stack Calibration Report
Generated: 2/21/2011

Company: Florida Power \& Light
Plant: West County Plant
City/St: Lnxahatchee, FL 33470
source: stack3c
Range of Analyzers: Span of Analyzers:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3 C NOXIOW & NOx & 0.0 & 10.0 ppm & 3 C NOXLOW & NOx & 0.0 & 10.0 ppm \\
\hline 3C-NOXHIGH & NOx & 0.0 & 200.0 ppm & \(3 \mathrm{C}_{-}^{-} \mathrm{NOXHIGH}\) & NOX & 0.0 & 200.0 ppm \\
\hline 3 C - 02 & 02 & 0.00 & 25.00 \% & 3 c _-2 & 02 & 0.00 & 25.00 \% \\
\hline \(3 c_{\text {_colow }}\) & co & 0.0 & 10.0 ppm & 3C_COLOW & co & 0.0 & 10.0 ppm \\
\hline \(3 \mathrm{C}^{-} \mathrm{COHIGH}\) & co & 0.0 & 1200.0 ppm & 3 C - COHIGH & co & 0.0 & 1200.0 ppm \\
\hline
\end{tabular}

FAIL = Difference Error > Regulations Allow
WARN = Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Fart 60 Calibration (Absolute Average DIFF and Calibration \% Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Channel & & Diff Units & Error & Diff Units & Error \\
\hline 3C_COHIGH & CO & 0.6 & 0.18 & 43.7 & 3.68 \\
\hline 3C_COLOW & co & 0.3 & 3.0\% & 0.4 & 4.0\% \\
\hline 3C_NOXHIGH & NOx & 0.1 & 0.18 & 2.2 & 1.1\% \\
\hline 3C_NOXLOW & Nox & 0.0 & \(0.0 \%\) & 0.2 & 2.0\% \\
\hline 3C_02 & 02 & 0.0 & - N/A - & 0.1 & - N/A - \\
\hline
\end{tabular}

Part 75 Calibration (Absolute Average DIEF and Calibration 8 Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Channel} & & \multicolumn{2}{|l|}{----2ERO----} & \multicolumn{2}{|l|}{----SPAN----} \\
\hline & & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Diff } \\
\text { Units } \\
\hline
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\underset{\substack{\text { Error } \\ \mathfrak{y} \\ \hline}}{ }
\]} & Diff & Error \\
\hline & & & & Units & \% \\
\hline 3C_COHIGH & co & 0.600 & - N/A - & 43.700 & - N/A - \\
\hline \(3 \mathrm{c}_{-}^{\text {colow }}\) & co & 0.300 & - N/A - & 0.400 & - N/A - \\
\hline 3C_NOXHIGH & NOx & 0.100 & \(0.1 \%\) & 2.200 & 1.18 \\
\hline 3C_NOXLOW & NOX & 0.000 & 0.0\% & 0.200 & 2.08 \\
\hline 3 C -02 & 02 & 0.010 & - N/A - & 0.080 & - N/A - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|l|}{Performance Specificatio Part 60} & \multicolumn{2}{|c|}{Part 75} \\
\hline & & PASS & EAIL & PASS & FAIL \\
\hline 3C_COHIGH & co & < \(=20.0 \%\) & >20.0\% & - N/A - & - N/A - \\
\hline 3C_COLOW & CO & < \(=20.0\) \% & >20.0\% & - N/A - & - N/A - \\
\hline 3C_NOXHIGH & NOx & < \(=10.07\) & >10.0\% & < \(=5.0\) \% & >5.0\% \\
\hline 3C_NOXLOW & NOx & < \(=10.0 \%\) & >10.0\% & < \(=5.0\) \% & >5.0\% \\
\hline 3 C -02 & 02 & < \(=2.0 \%\) & >2.0\% & < \(=1.0 \%\) & >1.0\% \\
\hline
\end{tabular}

Perf: [Part60 Daily CO] Zero \(=20.0\) \%Range, Span \(=20.0 \%\) Range
Perf: [Part60 Daily C0] Zero \(=20.0\) \&Range, Span \(=20.0\) \&Range
Perf:
Part 75 Daily NOx] Zero \(=5.0\) \&Range, Span \(=5.0\) \%Range, [Part 60 Daily NOx] zero \(=10.0 \%\) Range, 5 pan \(=10.0\) \& Range
AltPerf: [Part75 Daily NOx] Zero \(=5\) ppm (Range \(<=50 \mathrm{ppm}\))/10 ppm (50 ppm<Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\)
Perf: [Part75 Daily NOx] Zero \(=5.0 \%\) Range, \(\quad\) Span \(=5.0 \%\) Range, [Part60 Daily NOx] Zero \(=10.0 \%\) Range, Span

[Part75 Daily NOx] Zero \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\))/10 ppm (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\)) \(/ 10 \mathrm{ppm}\) (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\))
Perf:

ion group netdahse
Daily Stack Calibration Report
Generated: 2/20/2011

Company: Florida Power \& Ligh Plant: West County Plant
City/St: Lnxahatchee, FL 33470
Source: stack3c

Range of Analyzers:- Span of Analyzers:
\begin{tabular}{llrr}
3C_NOXLOW & NOX & 0.0 & 10.0 ppm \\
3C_NOXHIGH & NOX & 0.0 & 200.0 ppm \\
3C_O2 & 02 & 0.00 & 25.00 g \\
3C-COLOW & CO & 0.0 & 10.0 ppm \\
3C COHIGH & CO & 0.0 & 1200.0 ppm
\end{tabular}
\begin{tabular}{llrr}
3C_NOXLOW & NOX & 0.0 & 10.0 ppm \\
3C-NOXHIGH & NOX & 0.0 & 200.0 ppm \\
3C-O2 & O2 & 0.00 & \(25.00 \frac{\square}{6}\) \\
3C_COLOW & CO & 0.0 & 10.0 ppm
\end{tabular}
\(0.0 \quad 1200.0 \mathrm{ppm}\)

FAII = Difference Error > Regulations Allow
WARN \(=\) Error < Daily Allowed but > 5 Consecutive Days Allowed
taRG = Invalid Target (not within regulatory specs)
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Part 60 Calibration (Absolute Average DIFF and Calibration \% Error
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|c|}{-ZERO----} & \multicolumn{2}{|c|}{SPAN-} \\
\hline & & Diff Units & Error & Diff Units & Error \\
\hline 3 COHIGH & Co & 0.6 & 0.18 & 24.9 & 2.18 \\
\hline \(3 \mathrm{C}^{\text {COLOW }}\) & CO & 0.2 & \(2.0 \%\) & 0.2 & 2.08 \\
\hline 3C_NOXHIGH & NOx & 0.1 & 0.1\% & 2.1 & 1.1\% \\
\hline 3c_NOXLOW & NOx & 0.0 & 0.0\% & 0.3 & 3.0\% \\
\hline 3 C _02 & 02 & 0.0 & N/A & 0.0 & - N/A \\
\hline
\end{tabular}

Part 75 Calibration (Absolute Average DIFF and Calibration \% Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Channel & & \begin{tabular}{l}
Diff \\
Units
\end{tabular} & \[
\begin{gathered}
\text { Error } \\
\%
\end{gathered}
\] & Diff Units & \[
\underset{\substack{\text { Error } \\ \text { 号 }}}{ }
\] \\
\hline 3 C COHIGH. & CO & 0.600 & - N/A - & 24.900 & - N/A - \\
\hline \(3 \mathrm{C}^{-} \mathrm{COLOW}\) & co & 0.200 & - N/A - & 0.200 & - N/A - \\
\hline \(3 \mathrm{C}_{-} \mathrm{NOXHIGH}\) & NOx & - 0.100 & \(0.1 \%\) & 2.100 & 1.1\% \\
\hline 3C-NOXLOW & NOX & 0.000 & \(0.0 \%\) & 0.300 & 3.0\% \\
\hline 3 C -02 & 02 & 0.000 & - N/A & 0.030 & - N/A \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|l|}{Performance Specification
Part 60} & \multicolumn{2}{|c|}{Part 75} \\
\hline & & PASS & FAIL & PASS & FAIL \\
\hline 3C_COHIGH & C0 & < \(=20.0 \%\) & >20.0\% & - N/A - & - N/A - \\
\hline 3C_COLOW & co & < \(=20.0\) \% & >20.0\% & - N/A & - N/A - \\
\hline 3C_NOXHIGH & NOX & < \(=10.0 \%\) & >10.0\% & <=5.09 & >5.0\% \\
\hline \(3 C^{\text {c }}\) NOXLOW & NOx & < \(=10.0 \%\) & >10.0\% & \(<=5.0\) \% & >5.08 \\
\hline \(3 C_{-} 02\) & 02 & < \(=2.0 \%\) & >2.0\% & \(<=1.0 \%\) & >1.0\% \\
\hline
\end{tabular}

Perf: [Part60 Daily CO] Zero \(=20.0\) \%Range, Span \(=20.0\) \#Range
Perf: [Part60 Daily CO] Zero \(=20.0\) \%Range, \(\operatorname{Span}=20.0\) \%Range
Perf: [Part75 Daily NOx] Zero \(=5.0\) \%Range, Span \(=5.0\) \%Range, [Parc60 Daily NOx] Zero \(=10.0 \%\) Range, Span \(=10.0\) \% Range
AltPerf: [Part75 Daily NOx] zero \(=5 \mathrm{ppm}\) (Range< \(=50 \mathrm{ppm}\)) \(/ 10 \mathrm{ppm}\) (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\)

Perf: [Part75 Daily NOX] Zero \(=5.0 \%\) Range, Span \(=5.0\) \%Range, [Part 60 Daily NOX] Zero \(=10.0\) \%Range, Span \(=10.0\) stange
AltPerf: [Part75 Daily NOX] Zero \(=5 \mathrm{ppm}\) (Range<=50 ppm) /10 ppm (50 ppm<Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\)) \(/ 10 \mathrm{ppm}\) (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\))
Perf:
\([\) Part75 Daily 02] Zero \(=1.0 \%\), Span \(=1.0\) \% \(02,[\) Part 60 Daily 02] Zero \(=2.0 \% 02, \operatorname{Span}=2.0 \% 02\)
\begin{tabular}{llrr}
& \multicolumn{2}{l}{ Span of Analyzers: } & \\
\cline { 2 - 2 } & & \\
3C_NOXLOW & NOx & 0.0 & 10.0 ppm \\
3C-NOXHIGH & NOX & 0.0 & 200.0 ppm \\
3C-O2 & O2 & 0.00 & \(25.00 \%\) \\
3C-COLOW & CO & 0.0 & 10.0 ppm \\
3C-COHIGH & CO & 0.0 & 1200.0 ppm
\end{tabular}
\begin{tabular}{llr}
& & \\
3C_NOXLOW & NOx & 0.0 \\
3C_NOXHIGH & NOx & 0.0 \\
3C_O2 & O2 & 0.00 \\
3C_COLOW & CO & 0.0 \\
3C COHIGH & CO & 0.0
\end{tabular}
10.0 ppm
200.0 ppm
\(25.00 \%\)
10.0 ppm
1200.0 ppm
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Target & Actual & Diff & \multicolumn{6}{|c|}{Part60 Allowable} & \multicolumn{5}{|c|}{Part 75 Allowable} \\
\hline Date & Time & Channel & & Type & Units & Units & Units & Error \% & Units & \% & & 0 & Error \({ }^{\text {\% }}\) & Units & & , & & \\
\hline 02/18/2011 & 15:40 & 3C_COHIGH & C0 & ZERO & 0.000 & 0.000 & 0.000 & 0.0 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - & - \\
\hline 02/18/2011 & 15:40 & 3C_COHIGH & co & SPAN & 1048.000 & 1067.800 & 19.800 & 1.7 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - & - \\
\hline 02/18/2011 & 06:17 & \(3 \mathrm{C}_{-}^{-} \mathrm{COHIGH}\) & co & zero & 0.000 & 0.600 & 0.600 & 0.1 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - & - \\
\hline 02/18/2011 & 06:17 & \(3 \mathrm{C}_{\text {_ }} \mathrm{COHIGH}\) & co & SPAN & 1048.000 & 1071.700 & 23.700 & 2.0 & 240.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - & - \\
\hline 02/18/2011 & 15:40 & \(3 \mathrm{C}_{-} \mathrm{COLOW}\) & co & zero & 0.000 & 0.100 & 0.100 & 1.0 & 2.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - & \\
\hline 02/18/2011 & 15:40 & \(3 \mathrm{C}_{\text {- }} \mathrm{COLOW}\) & co & SPAN & 8.600 & 8.700 & 0.100 & 1.0 & 2.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - & \\
\hline 02/18/2011 & 06:17 & \(3 C^{-}\)COLOW & co & zero & 0.000 & 0.300 & 0.300 & 3.0 & 2.0 & 20.0 & PASS & 0 & \(\bigcirc \mathrm{N} / \mathrm{A}-\) & - N/A - & & - N/A - & - N/A - & - \\
\hline 02/18/2011 & 06:17 & \(3 C^{-}\)COLOW & co & SPAN & 8.600 & 8.800 & 0.200 & 2.0 & 2.0 & 20.0 & PASS & 0 & - N/A - & - N/A - & & - N/A - & - N/A - & - \\
\hline 02/18/2011 & 15:40 & 3C-Noxilg & NOx & zero & 0.000 & -0.100 & -0.100 & -0.1 & 20.0 & 10.0 & PASS & 0 & -0.1 & 10.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 15:40 & 3C_Noxhigh & NOX & SPAN & 176.200 & 173.700 & -2.500 & -1.3 & 20.0 & 10.0 & PASS & 0 & -1.3 & 10.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 06:17 & 3C_NOXHIGH & nox & zERO & 0.000 & 0.000 & 0.000 & 0.0 & 20.0 & 10.0 & PASS & 0 & 0.0 & 10.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 06:17 & 3C_NOXHIGH & nox & SPAN & 176.200 & 175.800 & -0.400 & -0.2 & 20.0 & 10.0 & PASS & 0 & -0.2 & 10.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 15:40 & 3C_NOXLOW & Nox & zero & 0.000 & -0.100 & -0.100 & -1.0 & 1.0 & 10.0 & PASS & 0 & -1.0 & 5.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 15:40 & \(3 C^{-}\)NOXLOW & NOx & SPAN & 8.600 & 8.400 & -0.200 & -2.0 & 1.0 & 10.0 & PASS & 0 & -2.0 & 5.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 06:17 & 3C-NOXLOW & NOx & zero & 0.000 & 0.000 & 0.000 & 0.0 & 1.0 & 10.0 & PASS & 0 & 0.0 & 5.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 06:17 & \(3 \mathrm{C}^{-}\)NOXIOW & NOX & SPAN & 8.600 & 8.400 & -0.200 & -2.0 & 1.0 & 10.0 & PASS & 0 & -2.0 & 5.000 & & 5.0 & PASS & \\
\hline 02/18/2011 & 15:40 & 3'c_02 & -2̇ & zero & 0.000 & 0.000 & 0.000 & - N/A - & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & - N/A - & pass & \\
\hline 02/18/2011 & 15:40 & \(3 C^{-} 02\) & 02 & SPAN & 20.900 & 20.930 & 0.030 & - N/A - & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & - N/A - & PASS & \\
\hline 02/18/2011 & 06:17 & \(3 \mathrm{C}_{-}^{-} \mathrm{O} 2\) & 02 & ZERO & 0.000 & 0.000 & 0.000 & - \(\mathrm{N} / \mathrm{A}-\) & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & - N/A - & PASS & \\
\hline 02/18/2011 & 06:17 & \(3 \mathrm{C}^{-} 02\) & 02 & SPAN & 20.900 & 20.930 & 0.030 & - N/A - & 2.0 & - N/A - & PASS & 0 & - N/A - & 1.000 & & - N/A - & PASS & \\
\hline
\end{tabular}

EAIL \(=\) Difference Error \(>\) Regulations Allow
WARN \(=\) Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
= Reading exceeds "Range of Analyzer
= Number of Consecutive Days in Warning - ('3' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning
Note : \(40 C F R 75\) pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Part 60 Calibrati}} & \multicolumn{2}{|l|}{(Absolute Average DIFF a ----ZERO----} & \multicolumn{2}{|l|}{Calibration \& Error) ----SPAN----} \\
\hline & & Diff Units & Error & Diff
Units & \[
\begin{gathered}
\text { Error } \\
\%
\end{gathered}
\] \\
\hline 3C_COHIGH & CO & 0.3 & \(0.1 \%\) & 21.8 & 1.9\% \\
\hline 3C_COLOW & co & 0.2 & 2.0\% & 0.1 & 1.5\% \\
\hline 3C_NOXHIGH & NOx & 0.1 & 0.1\% & 1.4 & 0.8\% \\
\hline 3C_NOXLOW & NOx & 0.1 & 0.5\% & 0.2 & 2.0\% \\
\hline 3C-02 & 02 & 0.0 & - N/A - & 0.0 & - N/A - \\
\hline
\end{tabular}

Part 75 Calibration (Absolute Average DIFF and Calibration \% Error)

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|l|}{Performance Specification Part 60} & \multicolumn{2}{|l|}{Part 75} \\
\hline & & PASS & FAIL & PASS & FAIL \\
\hline \(3 \mathrm{C}_{-} \mathrm{COHIGH}\) & CO & <=20.0\% & \(>20.08\) & - N/A - & - N/A - \\
\hline 3C_COLOW & CO & < \(=20.0 \%\) & >20.0\% & - N/A - & - N/A - \\
\hline 3C_NOXHIGH & nox & < \(=10.0 \%\) & >10.0\% & < \(=5.0\) \% & >5.0\% \\
\hline 3C-NOXLOW & NOX & < \(=10.0\) \% & >10.0\% & < \(=5.0\) \% & >5.0\% \\
\hline 3C_O2 & 02 & < \(=2.0 \%\) & >2.0\% & < \(=1.0\) \% & >1.0\% \\
\hline
\end{tabular}

Perf: \(\quad\) [Part 60 Daily CO] Zero \(=20.0 \%\) Range, \(\quad\) Span \(=20.0 \%\) Range
Perf: \(\quad[\) Part 60 Daily CO] Zero \(=20.0 \%\) Range, \(\operatorname{Span}=20.0 \%\) Range
Perf: [Part 60 Daily CO] Zero \(=20.0\) \%Range, Span \(=20.0\) \%Range
Perf: \(\quad\) [Part75 Daily NOx] Zero \(=5.0\) \%Range, Span \(=5.0\) \%Range, [Part 60 Daily NOX] Zero \(=10.0\) \%Range, Span [Part75 Daily
AltPerf: [Part75 Daily NOX] zero \(=5 \mathrm{ppm}\) (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span \(=5\) ppm
Perf: (Range<=50 ppm)/10 ppm (50 ppm<Range \(=200 \mathrm{ppm}\)) .0 \%Range, [Part60 Daily NOx] Zero \(=10.0\) \% Range, Span

AltPerf: [Part75 Daily NOx] Zero \(=5 \mathrm{ppm}\) (Range<=50 ppm)/10 ppm (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\)), span \(=5 \mathrm{ppm}\) (Range<=50 ppm)/10 ppm (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\))
Perf:
[Part75 Daily 02] zero \(=1.0 \% 02\), Span \(=1.0 \% 02\), [Part60 Daily 02] Zero \(=2.0 \% 02\), Span \(=2.0 \% 02\)

\title{
Span of Analyzers:
}
\begin{tabular}{llrr}
3C_NOXLOW & NOX & 0.0 & 10.0 ppm \\
3C_NOXHIGH & NOX & 0.0 & 200.0 ppm \\
3C_O2 & 02 & 0.00 & \(25.00 \%\) \\
3C_COLOW & CO & 0.0 & 10.0 ppm \\
3C_COHIGH & Co & 0.0 & 1200.0 ppm
\end{tabular}
\begin{tabular}{llrr}
3C_NOXLOW & NOX & 0.0 & 10.0 ppm \\
3C_NOXHIGH & NOX & 0.0 & 200.0 ppm \\
3C_O2 & 02 & 0.00 & \(25.00 \%\) \\
3C_COLOW & CO & 0.0 & 10.0 ppm \\
3C_COHIGH & CO & 0.0 & 1200.0 ppm
\end{tabular}

FAIL \(=\) Difference Error \(>\) Regulations Allow
WARN \(=\) Error < Daily Allowed but > 5 Consecutive Days Allowed
TARG = Invalid Target (not within regulatory specs)
RDG = Reading exceeds "Range of Analyzer"
WD = Number of Consecutive Days in Warning - ('?' Not Available) - ('OOC' No Passed Cal. since a Failed Daily or 5 Days in Warning)
Note: 40CFR75 pass/fail determination is performed after rounding the value of Error\%, or Drift, to one decimal place

Generated: 2/16/2011

Part 60 Calibration (Absolute Average DIFF and Calibration \% Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Channel & & \[
\begin{gathered}
\text { Diff } \\
\text { Units } \\
\hline
\end{gathered}
\] & \[
\underset{\substack{\text { Error } \\ \vdots \\ \hline}}{ }
\] & Diff
Units & \[
\begin{gathered}
\text { Error } \\
\%
\end{gathered}
\] \\
\hline 3 C COHIGH & CO & 0.3 & 0.18 & 13.9 & 1.2\% \\
\hline 3C_COLOW & co & 0.1 & 1.0\% & 0.0 & \(0.5 \%\) \\
\hline 3C_NOXHIGH & NOx & 0.0 & 0.08 & 0.8 & \(0.4 \%\) \\
\hline 3c_NOXLOW & NOX & 0.0 & 0.08 & 0.1 & 1.0\% \\
\hline \(3 C_{-} 02\) & 02 & 0.0 & - N/A - & 0.0 & - N/A - \\
\hline
\end{tabular}

Part 75 Calibration (Absolute Average DIFF and Calibration \% Error)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|l|}{---ZERO----} & \multicolumn{2}{|l|}{----SPAN----} \\
\hline & & \[
\begin{gathered}
\text { Diff } \\
\text { Units }
\end{gathered}
\] & \[
\begin{gathered}
\text { Error } \\
\%
\end{gathered}
\] & Diff Units & Error
\% \\
\hline \(\overline{3 C+C O H I G H}\) & co & 0.300 & - N/A & 13.900 & - N/A - \\
\hline \(3 \mathrm{C}^{\text {COLOW }}\) & co & 0.100 & - N/A - & 0.050 & - N/A - \\
\hline 3C_NOXHIGH & NOx & 0.000 & \(0.0 \%\) & 0.800 & \(0.4 \%\) \\
\hline 3C_NOXLOW & NOx & 0.000 & 0.0\% & \(0.100^{\circ} /\) & 1.07 \\
\hline 3 C - 02 & 02 & 0.000 & - N/A - & 0.040 & - N/A - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Channel} & & \multicolumn{2}{|l|}{Performance Specificatio Part 60} & \multicolumn{2}{|c|}{Part 75} \\
\hline & , & PASS & FAIL & PASS & EAIL \\
\hline 3C_COHIGH & CO & < \(=20.0\) \% & >20.0\% & - N/A & - N/A - \\
\hline \(3 \mathrm{C}_{-}^{\text {COLOW }}\) & co & < \(=20.0\) \% & >20.0\% & - N/A - & - N/A - \\
\hline 3C_NOXHIGH & NOx & < \(=10.0 \%\) & >10.0\% & \(<=5.0 \frac{8}{}\) & >5.08 \\
\hline 3c_NOXLOW & NOx & < \(=10.0 \%\) & >10.0\% & \(<=5.0 \%\) & >5.0\% \\
\hline \(3 \mathrm{C}-02\) & 02 & < \(=2.0 \%\) & >2.0\% & < \(=1.0 \%\) & >1.0\% \\
\hline
\end{tabular}

Perf: \(\quad[\) Part 60 Daily CO] Zero \(=20.0 \%\) Range, \(\quad\) Span \(=20.0\) \%Range
Perf: \(\quad[\) Part 60 Daily CO] Zero \(=20.0\) \%Range, \(\operatorname{Span}=20.0\) \%Range
Perf: [Part60 Daily CO] Zero \(=20.0\) \%Range, Span \(=20.0\) \%Range
Perf: \(\quad[\) Part 75 Daily NOx] Zero \(=5.0\) \%Range, Span \(=5.0 \%\) Range, [Part 60 Daily NOx] Zero \(=10.0 \%\) Range, Span
\(=10.0\) \%Range
llferf: [Part75 Daily NOx] Zero \(=5 \mathrm{ppm}\) (Range \(<=50 \mathrm{ppm}\))/10 ppm (\(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\)), Span \(=5 \mathrm{ppm}\)
Perf: [Part75 Daily NOx] Zero \(=5.0\) \&Range, Span \(=5.0 \%\) Range, [Part 60 Daily NOx] Zero \(=10.0\) \%Range, Span

(Range \(<=50 \mathrm{ppm}) / 10 \mathrm{ppm}(50 \mathrm{ppm}<\) Range \(<=200 \mathrm{ppm}\))
[Part75 Daily 02] Zero \(=1.0 \% 02\), Span \(=1.0 \% 02\), [Part60 Daily 02] Zero \(=2.0 \% 02\), Span \(=2.0 \% 02\)

\section*{APPENDIX 4}

LINEARITY AND CGA SUMMARY TABLES

FLORIDA POWER \& LIGHT CONTINUOUS EMISSION MONITORS LINEARITY CHECK WORKSHEET
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{array}{lr}
\text { Plant } \\
\text { Unit }
\end{array} \begin{array}{r}
\text { West } \\
\end{array}
\]} & \multirow{6}{*}{Low} & \multirow[b]{3}{*}{\[
\begin{aligned}
& \text { Time } \\
& \text { (EST) } \\
& \hline
\end{aligned}
\]} & \multirow[b]{3}{*}{Reference Value} & \multirow[t]{3}{*}{\begin{tabular}{l}
Date Technician \\
Monitor Value
\end{tabular}} & 03/14/11 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multirow[b]{4}{*}{Pass/Fail
\[
<0 r=5 \mathrm{ppm}
\]} \\
\hline & & & & & J.R.Schwartz / J. Hewett & & & \\
\hline & & & & & PPM Difference & Linearity Error & \multirow[t]{2}{*}{\begin{tabular}{l}
PROTOCOL 1 \\
TANK SERIAL\#
\end{tabular}} & \\
\hline & & 1517 & 51.10 & 50.80 & -0.30 & \multirow[t]{3}{*}{\begin{tabular}{l}
<or= \(5 \%\) \\
1.76
\end{tabular}} & & \\
\hline ANALYZER & & 1529 & 51.10 & 49.90 & -1.20 & & ALM025866 & \\
\hline Manufacturer Thermo & & 1541 & 51.10 & 49.90 & -1.20 & & & PASS \\
\hline Serial \#0934939234 & & 1521 & 110.70 & 107.70 & -3.00 & \multirow[b]{3}{*}{3.01} & & \\
\hline Span Seting 0-200 ppm & Mid & 1533 & 110.70 & 107.20 & -3.50 & & ALM063790 & \\
\hline ComponentID A01 & & 1545 & 110.70 & 107.20 & -3.50 & & & PASS \\
\hline Monitoring Sys. ID A01 & \multirow{3}{*}{High} & 1525 & 176.20 & 173.70 & -2.50 & \multirow[b]{3}{*}{1.57} & & \\
\hline Unit/Stack ID PWC3C & & 1537 & 176.20 & 173.60 & -2.60 & & CC21072 & \\
\hline & & 1549 & 176.20 & 173.00 & -3.20 & & & PASS \\
\hline & \multirow{4}{*}{Low} & Time (EST) & Reference Value & Monitor Value & PPM Difference & Linearity Error & \begin{tabular}{l}
PROTOCOL 1 \\
TANK SERIAL\#
\end{tabular} & \multirow[t]{2}{*}{Pass /Fail} \\
\hline CO & & 1517 & 301.00 & 300.00 & -1.00 & & TANK SERIAL & \\
\hline analyzer & & 1529 & 301.00 & 297.70 & -3.30 & \multirow[b]{2}{*}{0.76} & ALM025866 & \\
\hline Manufacturer Thermo & & 1541 & 301.00 & 298.40 & -2.60 & & & PASS \\
\hline Serial\# CM09400114 & \multirow{3}{*}{Mid} & 1521 & 662.00 & 652.70 & -9.30 & \multirow[b]{3}{*}{1.54} & & \\
\hline Span Setting 0-1200 ppm & & 1533 & 662.00 & 651.60 & -10.40 & & ALM063790 & \\
\hline ComponentID A02 & & 1545 & 662.00 & 651.10 & -10.90 & & & PASS \\
\hline \multirow[t]{3}{*}{Monitoring Sys. ID A02 Unit/Stack ID PWC3C} & \multirow{3}{*}{High} & 1525 & 1048.00 & 1094.20 & 46.20 & \multirow[b]{3}{*}{4.52} & & \\
\hline & & 1537 & 1048.00 & 1094.90 & 46.90 & & CC21072 & \\
\hline & & 1549 & 1048.00 & 1097.00 & 49.00 & & & PASS \\
\hline & \multirow{4}{*}{Low} & \[
\begin{aligned}
& \text { Time } \\
& \text { (EST) } \\
& \hline
\end{aligned}
\] & Reference Value & Monitor Value & PPM Difference & Linearity Error & \begin{tabular}{l}
PROTOCOL 1 \\
TANK SERIAL
\end{tabular} & Pass/Fail \\
\hline CO & & 1627 & 2.53 & 2.70 & 0.17 & \multirow[t]{3}{*}{\[
\begin{gathered}
\hline<0 r=15 \% \\
6.72 \\
\hline \hline
\end{gathered}
\]} & & \\
\hline ANALYZER & & 1639 & 2.53 & 2.70 & 0.17 & & ALM016434 & \\
\hline Manufacturer Thermo & & 1651 & 2.53 & 2.70 & 0.17 & & & PASS \\
\hline Serial \# CM09400114 & \multirow{3}{*}{Mid} & 1631 & 5.57 & 5.60 & 0.03 & \multirow[b]{3}{*}{1.14} & & \\
\hline Span Setting 0-10 ppm & & 1643 & 5.57 & 5.90 & 0.33 & & ALM059441 & \\
\hline Component ID A01 & & 1655 & 5.57 & 5.40 & -0.17 & & & PASS \\
\hline Monitoring Sys. ID A02 & \multirow{3}{*}{High} & 1635 & 8.56 & 8.10 & -0.46 & \multirow[b]{3}{*}{2.26} & & \\
\hline \multirow[t]{2}{*}{Unit/Stack ID PWC3C} & & 1647 & 8.56 & 8.60 & 0.04 & & CC343664 & \\
\hline & & 1659 & 8.56 & 8.40 & -0.16 & & & PASS \\
\hline & \multirow{4}{*}{Low} & Time (EST) & Reference Value & Monitor Value & PPM Difference & Linearity Error & PROTOCOL 1 TANK SERIAL \# & Pass /Fail \\
\hline 02 & & 1552 & 6.24 & 6.18 & -0.06 & <or= 5 \% & & <ore . 5 \\
\hline ANALYZER & & 1604 & 6.24 & 6.37 & 0.13 & & ALM016434 & \\
\hline Manufacturer Servomex & & 1616 & 6.24 & 6.38 & 0.14 & 1.12 & & PASS \\
\hline Serial \# 01440DIV02/4249 & \multirow{3}{*}{Mid} & 1556 & 13.80 & 13.70 & -0.10 & \multirow[b]{3}{*}{0.56} & & \\
\hline Span Setting 0-25\% & & 1608 & 13.80 & 13.71 & -0.09 & & ALM032282 & \\
\hline Component ID A02 & & 1620 & 13.80 & 13.76 & -0.04 & & & PASS \\
\hline Monitoring Sys. ID A01 & \multirow{3}{*}{High} & 1600 & 22.60 & 22.44 & -0.16 & \multirow[b]{3}{*}{0.56} & & \\
\hline Unit/Stack ID PWC3C & & 1612 & 22.60 & 22.50 & -0.10 & & ALM008490 & \\
\hline & & 1624 & 22.60 & 22.48 & -0.12 & & & PASS \\
\hline
\end{tabular}

\section*{APPENDIX 5}

\section*{CYCLE TIME SUPPORTING DOCUMENTATION}

Babcock \& Wilcox Power Generation Group NetDAHS(Average values Report

Version 59.0
Generated: 3/23/2011 16:09

*Does not include Invalid Averaging Periods ("N/A")

Page 1

CUSTOM INSTRUMENTATION
SERVICES CORPORATION
\(\qquad\)
\(\qquad\)
Reference Gas Cylinder: Label Concentration
Nitrogen:
CO/Low
\(\underline{ }\)
\[
8.563 \mathrm{ppM}
\]

40 CR \(60 \mathbb{C O}\) Response Time Test
DATE \(3 / 14 / 11\)
Performed by JUSTINHEWETT
Serial Number
Expiration Date
ALMめ25794
cc 343664
\(\qquad\)
\(10-21-12\)
Nominal Stack Concentrations prior to test:
Oxygen: 13.12\% CO: 0.714 ppm.
Record the following for reference to recorded DAHS data:

\section*{APPENDIX 6}

\section*{EPA PROTOCOL GAS CERTIFICATES}

\title{
CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol
}
\begin{tabular}{llll}
Part Number: & E03NI99E15A1668 & Reference Number: & 122-124238078-3 \\
Cylinder Number: & CC343664 & Cylinder Volume: & 144 Cu.Ft. \\
Laboratory: & ASG - Durham - NC & Cylinder Pressure: & 2015 PSIG \\
Analysis Date: & Oct 21, 2010 & Valve Outlet: & 660 \\
& \multicolumn{3}{c}{ Expiration Date: Oct 21, 2012 }
\end{tabular}

Cetification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of \(95 \%\). There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted.

Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal

Triad Data Available.Upon Request
Notes:
Signature on file

\section*{Approved for Release}

\title{
CERTIFICATE OF ANALYSIS Grade of Product: EPA Protocol
}
\begin{tabular}{llll}
Part Number: & E03NI99E15A0011 & Reference Number: & 122-124238078-2 \\
Cylinder Number: & CC21072 & Cylinder Volume: & 144 Cu.Ft. \\
Laboratory: & ASG - Durham - NC & Cylinder Pressure: & 2015 PSIG \\
Analysis Date: & Oct 19, 2010 & Valve Outlet: & 660 \\
& \multicolumn{4}{l}{ Expiration Date: Oct 19, 2012 } & \\
\hline
\end{tabular}

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences. This cylinder has a total analytical uncertainty as stated below with a confidence level of \(95 \%\). There are no significant impurities which affect the use of this calibration mixture. All concentrations are on a volume/volume basis unless otherwise noted. Do Not Use This Cylinder below 150 psig.i.e. 1 Mega Pascal
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{ANALYTICAL RESULTS} \\
\hline Component & \begin{tabular}{l}
Requested \\
Concentration
\end{tabular} & \begin{tabular}{l}
Actual' \\
Concentration
\end{tabular} & Protocol Method & Tota
Unc & \\
\hline NITRIC OXIDE & 175.0 PPM & 176:2 PPM & G1 & + & \\
\hline CARBON MONOXIDE & 1035 PPM & 1048 PPM & G1 & +/-1\% & \\
\hline Nitrógen & Balance & & & & \\
\hline Total oxides of nitrogen & & \multicolumn{2}{|l|}{177.2 PPM} & \multicolumn{2}{|l|}{For Reference Only} \\
\hline \multicolumn{6}{|c|}{CALIBRATION STANDARDS} \\
\hline NTRM 090603 & CC288058 & \multicolumn{3}{|l|}{250.6PPM NITRIC OXIDE/NITROGEN} & Feb 01, 2011 \\
\hline NTRM 020502 & SG9142254BAL & \multicolumn{3}{|l|}{1488PPM CARBON MONOXIDE/NITROGEN} & May 15, 2012 \\
\hline Instrument/Make/Model & & \multicolumn{2}{|l|}{Analytical Principle} & \multicolumn{2}{|l|}{Last Multipoint Calibration} \\
\hline Nicolet 6700 \#1 CO & & \multicolumn{2}{|l|}{FTIR} & \multicolumn{2}{|l|}{Oct 04, 2010} \\
\hline Nicolet 6700 \#1 NO & & \multicolumn{2}{|l|}{FTIR} & \multicolumn{2}{|l|}{Oct 04, 2010} \\
\hline
\end{tabular}

Triad Data Available Upon Request
Notes:
Signature on file

Approved for Release

2330 HAMILTON BOULEVARD
Shipped SOUTH PLAINFIELD NJ 07080
From:
Phone: 908-754-7700
Fax: 908-754-7303
CERTIFICATE OE ANAIYSIS

AIR LIQUIDE AMERICA SPECIALTY GASES
3301 COUNTY RD 630 W
FORT MEADE

PROJECT \#: 07-97166-002 PO\#: STOCK ORDER ITEM \#: 0701841 AI DATE: 25Sep2009

CYLINDER \#: ALMO25794 FILL PRESSURE: 02000 PSIG

PURE MATERIAL: NITROGEN
CAS\# 7727-37-9
GRADE: ACID RAIN CEM 0
PURITY: 99.9995\%
\begin{tabular}{|c|}
\hline IMPURITY \\
\hline SO2 \\
\hline NOX. \\
\hline CO \\
\hline \(\mathrm{CO}_{2} \mathrm{q}\) \\
\hline THC' \\
\hline H 2 O \\
\hline 02 \\
\hline
\end{tabular}

MAXIMUM CONCENTRATIONS
0.1 PPM
0.1 PPM
0.5 PPM

1 PPM
0.1 PPM

2 PPM
0.5 PPM

ACTUAI
CONCENTRATIONS
\(<0.1\) PPM
\(<0.1 \mathrm{PPM}\)
\(<0.5 \mathrm{PPM}\)
\(<1\) PPM
\(<0.1 \mathrm{PPM}\)
\(<2 \mathrm{PPM}\)
\(<0.5 \mathrm{PP} M\)

\section*{COMPIIIANCE CLASS}

Dual-Analyzed Calibration Standard

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}

\section*{REFERENCE STANOARD}

\section*{NTRM 1677 \\ INSTRUMENT/MODEL/SERIAL\# \\ SIEMENS/ULTRAMAT 6E/R8-233}

CYLINDER NUMBER
\(\frac{\text { DATE LAST CALIBRATED }}{10 \mathrm{Feb} 2011}\)

Fax: 215-766-7226

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}

\section*{Assay Laboratory}

Customer
FLORIDA POWER \& LIGHT
Document \# : 40533107-002

WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470 US

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: \(\quad\) ALMO59441
Cylinder Pressure***: 2015 PSIG

*. Do not use when cylinder pressure is below 150 psig.
*" Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

Special Notes:
APPROVED BY:

\section*{CERTIFICATE OF ACCURACY: Interference Free \({ }^{\text {TM }}\) Multi-Component EPA Protocol Gas}

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM025866 Certification Date: 290 et2010 Date: \(280 c t 2012\)
Cylinder Pressure***: 1962 PSIG

**. Do not use when cylinder pressure is betow 160 psig.
** Analytical accuracy is bosed on the requirements of EPA Protocol Procedure G1, September 1997.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{REFERENCE STANDARD} \\
\hline TYPE/SRM NO. & EXPIRATION & DATE & CYLINDEP & NUMBER & CONCENTRATION & COMPONENT & \\
\hline NTRM 2636 & 020ct2011 & & KAL003888 & & 240.8 PPM & CAREON MONO & OXIDE \\
\hline TTRM 1683 & \(01 \mathrm{Nov2013}\) & & KAL.00328 & & 46.90 PPM & NITRIC OXIDE & \\
\hline \multicolumn{8}{|l|}{INSTRUMENTATION} \\
\hline \multicolumn{5}{|l|}{MSTRUMENT/MODEL/SERIAL\#} & DATE LAST, CALIE & & ANALYTICAL PRINCIPLE \\
\hline \multicolumn{5}{|l|}{FTRR//000928781} & 110ct2010 & & FTIR \\
\hline \multicolumn{5}{|l|}{FTIR//OOO928781} & \(290 \operatorname{ct2010}\) & & FTIR \\
\hline
\end{tabular}

ANALYZER READINGS
(\(Z=\) Zero Gas \(R=\) Reference Gas \(T=\) Test Gas \(r=\) Correlation Coefficient \()\)

First Triad Analysis
CARBON MONOXIDE
Date: 220ct2010 Respionse Unlt:PPM
\(\mathrm{Z1}=0.01673 \quad \mathrm{R} 1=239.9048 \quad \mathrm{~T} 1=299: 7323\)
\(\mathrm{R} 2=239.9334 \quad \mathrm{Z} 2=0.14015 \quad \mathrm{~T} 2=298.9462\)
\(Z 3=0.17124 \quad \mathrm{~T} 3=300.3045 \quad \mathrm{R} 3=239.9374\)
Avg. Concentration: 301.1 PPM
NITRIC OXIDE
Date: 220ct2010 Response Unit:PPM
\(21=-0.12887 \quad \mathrm{R} 1=46.84412 \quad \mathrm{~T} 1=51.05194\) \(R 2=46.89432 \quad Z 2=-0.07937 \quad\) T2 \(2=51.14584\) \(\mathrm{Z3}=0.01313 \quad \mathrm{~T} 3=51.15833 \quad \mathrm{R} 3=46.98010\) Avg. Concentration: 51.11 PPM

Date: 290ct2010 Response Unit: PPM \(\mathrm{Z} 1=-0.03420 \quad \mathrm{R} 1=240.0633 \quad \mathrm{~T} 1=299.763 \mathrm{~B}\) \(R 2=240,1269 \quad Z 2=0.03466 \quad \mathrm{~T} 2=299.9593\) \(23=0.08533 \quad T 3=300.2578 \quad R 3=240,1329\) Avg. Concentration: 300.9 PPM

Date: 290ct2010 Response Unlt: PPM \(\mathrm{Z} 1=0.07736 \quad \mathrm{RT}=46.70219 \mathrm{~T} 1=50.89229\) \(R 2=46.79544 \quad 22=0.12585 \quad\) T2 \(=50.91652\) \(Z 3=0.14749 \quad \mathrm{~T} 3=51.04982 \quad \mathrm{R} 3=46.83210\) Avg. Concentration: 51.10 PPM

Calibration Curve

Concentration \(=A+B x+C \times 2+D \times 3+E \times A\) \(\mathrm{r}=9.99998 \mathrm{E} .1\)
Constants: \(\quad A=0.00000 E+0\) \(B=8.96123 E-1 \quad C=3.52000 E-4\) \(D=0.00000 E+0 \quad E=0.00000 E+0\)

Concentration \(=A+B x+C \dot{x} 2+D \times 3+E x 4\) \(r=9.99999 E-1\)
Constants: \(\quad A=0.00000 E+0\)
\(B=9.82452 \mathrm{E} \cdot 1 \quad \mathrm{C}=1.98000 \mathrm{E} \cdot 4\)
\(D=0.00000 E+0 \quad E=0.00000 E+0\)

APPROVED BY:

PMB Noxico High/aid

\title{
RATA CLASS
}

Dual-Analyzed Calibration Standard
```

Assay Laboratory
P.O. No.: 4500250736
AIR LIQUIDE AMERICA SPECIALTY GASES LLC Projoct No.: 01-19426-012
6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310

```

21900 S.W. WARFIELD BLVD
INDIANTOWN FL 34956
ANALYTICAL INFORMATION
This certifloation was performed according to EPA Traceabillity Protocol For Assay \& Certification of Gaseous Calibratlon Standards;
Procedure G-1; September, 1997.
Cylinder Number: \(\quad\) ALMO63790 \(\quad\) Certification Date: 12 Jan2010 Exp. Date: 12 Jan2012
Cylinder Prèssure***: 2002 PSIG
\(\frac{\text { CERTIFIED CONCENTRATION (Moles }}{662}\)
COMPONENT
CARBON MONOXIDE
NITRIC OXIDE
NITROGEN - OXYGEN FREE
\begin{tabular}{ll}
662 & PPM \\
110.7 & PPM \\
& BALANCE
\end{tabular}
111.1 PPM

\section*{ACCURACY** TRACEABILITY \\ \(+1-1 \%\) \\ Direct NIST and VSL \\ Direct NIST and VSL}

TOTAL OXIDES OF NITROGEN
Reference Value Only
** Do not use whan cyllnder pressure is below 150 pslg.
.* Analytical accuracy ts based on the requirements of EPA Protocol Procedure G1, September 1997.
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE/SRM NO. & EXPIRATION DATE & CYLINDER NUMBER & CONCENTRATION & COMPONENT \\
\hline NTRM 1681 & \(020 \mathrm{ct2010}\) & KAL003160 & 970.1 PPM & CAREON MONOXIDE \\
\hline JTRM 1684 & 150 ct 2012 & KAL004463 & 95.84 PPM & NITRIC OXIDE \\
\hline
\end{tabular}

INSTRUMENTATION
\begin{tabular}{lcc}
\hline INSTRUMENT/MODEL/SERIAL\#\# & DATE LAST CALIBRATED & \(31 D e c 2009\)
\end{tabular}

\section*{ANALYZER READINGS}
\[
\text { ZZ = Zero Gas } R=\text { Reference Gas }
\]
\(T=\) T.est Gas
\(r=\) Correlation Coefficient
First Triad Analysis
Second Triad Analysis
Calibration Curve

\section*{CARBON MONOXIDE}

Date: 05 J an2010 Response Unlt:PPM \(Z 1=0.00836 \quad \mathrm{R} 1=967.7358 \quad \mathrm{~T} 1=659.8689\) \(R 2=987.9701 \quad Z 2=0.17769 \quad T 2=660.2537\) \(\mathrm{Z3} \doteq 0.50273 \quad \mathrm{~T} 3=660.5182 \quad \mathrm{R} 3=968.5788\) Avg. Concentration: 661.5 PPM

\section*{NITRIC OXIDE}

Date: 05Jan2010 Response Unit:PPM
\(Z 1=-0.29121 \quad R 1=95.73315 \quad T_{1}=110.4266\)
\(\mathbf{R 2}=96.81815 \quad 22=-0.13602 \quad\) T2 \(=110.6344\)
\(Z 3=-0.125 .19 \quad \mathrm{~T} 3=110.9319 \quad \mathrm{R} 3=95.98806\)
Avg. Concentration: 110.6 PPM

Date: 12 Jan 2010 Response Unit: PPM \(21=-0.06378 \quad R 1=967: 9088 \quad \mathrm{~T} 1=660.3933\) R2 \(2=968.2288 \quad 22=0.29739 \quad\) T2 \(=660.7589\) \(\mathrm{Z3}=0.40472 \quad \mathrm{~T} 3=660.9639 \quad \mathrm{R3}=968.3168\) Avg, Concentration: 662.0 PPM

Date: 12 Jan2010 Response Unit: PPM
\(Z 1=0.07261 \quad \mathrm{R} 1=96.06142 \quad \mathrm{~T} 1=111.0910\)
R2=96.06672 \(22=-0.05270 \quad\) T2=111:1651
\(23=-0.01136 \quad \mathrm{~T} 3=111.2319\) R3 \(=96.15300\) Ave. Concentratlon: . 110.9 PPM

Concentratlon \(=A+8 x+C \times 2+D \times 3+E x 4\) r=9.99999E-1
Constants: \(\quad A=0.00000 E+0\)
\(B=2.58580 \mathrm{E}-1 \quad \mathrm{C}=1.15000 \mathrm{E}-4\)
\(D=0.00000 E+0 \quad E=0: 00000 E+0\)

Concentration \(=A+B x+C \times 2+D \times 3+E x 4\)
\(=9.09898 \mathrm{E}-1\)
Constants: \(\quad A=0.000005+0\)
\(\mathrm{B}=9.94707 \mathrm{E}-1 \quad \mathrm{C}=6.00000 \mathrm{E}-5\)
\(D=0.00000 E+0 \quad E=0.00000 E+O\)

APPROVED BY:

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}
```

Assay Laboratory
P.O. No.:

```

Customer
FLORIDA POWER \& LIGHT
Document \#: 40533107-003
AIR LIQUIDE AMERICA SPECIALTY GASES LLC 6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310
```

$$
\begin{aligned}
& \text { WEST COUNTY ENERGY } \\
& 20202 \text { STATE ROAD } 80 \\
& \text { LOXAHATCHEE FL } 33470 \\
& \text { US }
\end{aligned}
$$

```

\section*{ANALYTICAL INFORMATION}
```

This certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALNO33049 Certification Date: 18Feb2011 Exp. Date: $17 F \mathrm{Feb} 2014$
Cylinder Pressure***
2000 PSIG

```

```

*** Do not use when cylinder pressure is below 150 pslg.
** Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

```

\section*{REFERENCE STANDARD}
\begin{tabular}{|c|c|c|c|c|}
\hline TYPEISRM NO. & EXPIRATION DATE & CYLINDER NUMBER & CONCENTRATION & COMPONENT \\
\hline NTRM 2658 & 01F6b2016 & K0011907 & 10.03 \% & OXYGEN \\
\hline
\end{tabular}

INSTRUMENTATION
INSTRUMENT/MODEL/SERIAL\#
SIEMENS/OXYMAT 61/V1-0407
DATE LAST CALIBRATED
ANALYTICAL PRINCIPLE PARAMAGNETIC

\section*{ANALYZER READINGS}
\[
\text { (Z=Zero Gas } R=\text { Reference Gas } T=\text { Test Gas } r=\text { Correlation Coefficient })
\]
First Triad Analysis Second Triad Analysis Calibration Curve

\section*{OXYGEN}

Date: 18Feb2011 Response Unit:MV
\(\mathrm{Z} 1=0.00190 \quad \mathrm{R} 1=4.91170 \quad \mathrm{~T} 1=3.05330\)
\(A 2=4.91300 \quad Z 2=0.00000 \quad T 2=3.05350\)
\(23=-0.00140 \quad T 3=3.05260 \quad R 3=4.91610\)
Avg. Concentration: 6.240 \%
\begin{tabular}{l}
Concentration \(=A+B x+C \times 2+D \times 3+E \times 4\) \\
\(r=0.999996776\) \\
Constants:
\end{tabular}\(\quad A=0.015250224\)
.

Special Notes:
APPROVED BY:

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}

\section*{Assay Laboratory}
P.O. No.:

AIR LIOUIDE AMERICA SPECIALTY GASES LLD 6141 EASTON ROAD, BLDG 1
PLUMSTEADVILLE, PA 18949-0310

Customer
FLORIDA POWER \& LIGHT
Document \#: 40533107-004
WEST COUNTY ENERGY
20202 STATE ROAD 80
LOXAHATCHEE FL 33470
US

ANALYTICAL INFORMATION
This. certification was performed according to EPA Traceability Protocol For Assay \& Certification of Gaseous Calibration Standards; Procedure G-1; September, 1997.
Cylinder Number: ALM032282 Certification Date: 18Feb2011 Exp. Date: 17 Feb 2014
Cylinder Pressure***: 2000 PSI

.. Do not use when cylinder pressure is below 160 psig.
- Analytical accuracy is based on the requirements of EPA Protocol Procedure G1, September 1997.

\section*{REFERENCE STANDARD}

\section*{ANALYZER READINGS}

Z \(Z=\) Zero Gas
First Triad Analysis
Second Triad Analysis
Calibration Curve

\section*{OXYGEN}

Date: . 18Feb2011 Response Unit:VOLTS
\begin{tabular}{lll}
\(\mathrm{Z} 1=-0.00160\) & \(\mathrm{R} 1=4.58680\) & \(\mathrm{~T} 1=2.72560\) \\
\(\mathrm{R} 2=4.58640\) & \(\mathrm{Z} 2=-0.00110\) & \(\mathrm{~T} 2=2.72480\) \\
\(\mathrm{Z} 3=-0.00210\) & \(\mathrm{~T} 3=2.72550\) & \(\mathrm{R} 3=4.58360\) \\
Avg. Concentration: \(\quad 13.80\) & \(\%\)
\end{tabular}

Concentration \(=A+B x+C \times 2+D \times 3+E \times 4\)
\(\mathrm{r}=0.999998418 \quad 2350\)
Constants:. \(\quad A=0.01748296\)
\(B=5.053895951 \quad C=\)
\(\mathrm{D}=\quad \mathrm{E}=\)

\section*{CERTIFICATE OF ACCURACY: EPA Protocol Gas}

REFERENCE STANDARD
\begin{tabular}{|c|c|c|c|c|}
\hline TYPE/SRM NO. & EXPIRATION DATE & CYLINDER NUMBER & CONCENTRȦTION & COMPONENT \\
\hline NTRM 2350 & 01 Dec2011 & K008902 & 23.20 \% & OXYGEN \\
\hline \multicolumn{5}{|l|}{INSTRUMENTATION} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\frac{\text { INSTRUMENT/MODEL/SERIAL }}{\text { I }}\)}} & & DATE LAST CALBRATED & ANALYTICAL PRINCIPLE \\
\hline & & & 14Féb 2011 & PARAMAGNETIC \\
\hline
\end{tabular}

\section*{ANALYZER READINGS}
(Z = Zero Gas \(R=\) Reference Gás \(T=\) Test Gas \(r=\) Correlation Coefficient

\section*{First Triad Analysis}

\section*{OXYGEN}

Date: T5Feb2011 Response Unit:VOLTS
\(\mathrm{Z1}=-0.00240 \quad \mathrm{R} 1=4.58780 \quad \mathrm{~T} 1=4.46640\)
\(R 2=4.58950 \quad Z 2=-0.00150 \quad T 2=4.46570\)
\(Z 3=-0.00120 \quad T 3=4.46700 \quad R 3=4.58940\)
Avg. Concentration: \(22.60 \%\)

Second Triad Analysls Calibration CurveConcentretlon \(=\mathrm{A}+\mathrm{Bx}+\mathrm{Cx} 2+\mathrm{Dx} 3+E \times 4\)\(r=0.999999418 \quad 2350\)Constants: \(\quad A=0.01748296\)\(B=5.053895951\)
\(D=\)

\section*{APPENDIX 7}

\section*{DAHS VERIFICATION DOCUMENTATION}

B\&W PGG, KVB-Enertec, INC.
Formula verification Report
UNIT 3C
Plant Name: WEST COUNTY ENERGY C
ORISPL \#: 056407
Date: March 14, 2011
FORMULAS THAT PASSED VERIFICATION:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Datetime & Param & Code & ID & Conc & Dilconc & FC/F & Rate & HI & GCV & Optime & Computed & Reported \\
\hline 03/01/11 20:00 & CO2 & G-4 & C01 & & & 1040 & & 2551.2 & & & 151.6 & 151.6 \\
\hline 03/01/11 06:00 & NOX & F-5 & C02 & 26.1 & 15 & 8892.1 & & & & & 0.098 & 0.098 \\
\hline 03/01/11 06:00 & NOXM & F-24A & C03 & & & & 0.098 & 822.2 & & & 80.57 & 80.6 \\
\hline 03/01/11 20:00 & HI & D-6 & C04 & & & & 24792.9 & & 102900 & & 2551.2 & 2551.2 \\
\hline 03/01/11 06:00 & HI & D-8 & C05 & & & & 18.7 & & 19500 & & 0.4 & 0.4 \\
\hline 03/14/11 10:00 & HI & D-15A & C06 & & & & & 0.4 & & & 2560.7 & 2560.7 \\
\hline 03/01/11 20:00 & SO2 & D-5 & C07 & & & & 0.0006 & 2551.2 & & & 1.53072 & 1.53072 \\
\hline 03/01/11 08:00 & SO2 & D-2 & C08 & 1 & & & 22.7 & & & & 0.5 & 0.5 \\
\hline 03/01/11 07:00 & CO2 & G-4 & C10 & & & 1420 & & 0.4 & & & 0 & \\
\hline 03/01/11 06:00 & \(\mathrm{CO2}\) & G-4A & C11 & & & 1040/1420 & & & & 0.97 & 50.4 & 50.4 \\
\hline
\end{tabular}

Certified for all Utilities reporting under 40 CFR Part 75 with B\&W PGG KVB/Enertec Products NetDAHS 8.0.150 SP4 release installed
```

UTILITY NAME: ANY
PLANT NAME: Any
ORISPL: Any
DAHS SOFTWARE: B\&W Power Generation Group - KVB/Enertec Products NetDAHS
DATE PERFORMED: 03/02/2011

```

I certify that the automated Data Acquisition and Handling system (DAHS) component of each CEM System identified in the attached results was tested and that proper computation of the missing data substitution procedures was verified. The results of the verification test for the missing data routine are included.

March 3, 2011
Signature
Date
John F. Downs
Printed Name

Test Number 1
Availability >= 95\% and MDP <=24 hours.
```

SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 2
Availability = 95% and MDP <=24 hours. Boundary test.

```
SO2 - Passed
NOX - Passed
FLOW - Passed
CO 2 - Passed
O2 - Passed
MOISTURE - Passed
```

SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 4
Availability >= 95% and MDP > 24 hours and HB/HA value is less
than the 90th percentile.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 5
Availability >= 90% and < 95% and MDP <= 8 hours.
SO2 - Passed
NOX - Passed
FLOW - Passed
CÔ2 - - Passed
O2 - Passed
MOISTURE - Passed
Test Number 6
Availability >= 90% and < 95% and MDP > 8 hours and HB/HA value
is > 95th percentile.
SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 7
Availability >= 90% and < 95% and MDP > 8 hours and 95th
percentile > HB/HA value.
SO2 - Passed
NOX - Passed

```
\begin{tabular}{lr}
FLOW & - Passed \\
CO2 & - Passed \\
O 2 & - \\
MOISTURE & \(-\quad\) Passed
\end{tabular}

Test Number 8 Availability < 90\% and MDP > 0 hours.
```

SO2 - Passed
NOX - Passed
FLOW - Passed
CO2 - Passed
O2 - Passed
MOISTURE - Passed

```
Test Number 9
 Maximum potential Initial missing data period. Load Range or
 next higher Load Range not available.
\begin{tabular}{|c|c|}
\hline SO2 - & - Passed \\
\hline NOX - & - Passed \\
\hline FLOW - & - Passed \\
\hline CO 2 - & - Passed \\
\hline O2 - & - Passed \\
\hline MOISTURE & E - Passed \\
\hline Test Numb & mber 10 \\
\hline
\end{tabular}
 Initial missing data period. 720 LookBack Period.
SO2 - Passed
CO 2 - Passed
O2 - Passed
MOISTURE - Passed
Test Number 11
< 2160 QA hours available. Initial missing data period.
 Next higher Load Range available.
NOX - Passed
FLOW - Passed

Test Number 12
< 2160 QA hours available. Initial missing data period. Load Range available.
NOX - Passed
FLOW - Passed

Test Number 13
```

        NOx, Flow availability > 80% and < 90% and MDP > 0.
    ```
\begin{tabular}{ll}
SO2 & - Passed \\
NOX & \(-P a s s e d\) \\
FLOW & - Passed \\
CO2 & - Passed \\
MOISTURE & - Passed
\end{tabular}

Test Number 14
NOx, Flow availability \(<80 \%\) and MDP \(>0\).
\begin{tabular}{ll}
SO2 & - Passed \\
NOX & - Passed \\
FLOW & - Passed \\
CO2 & - Passed \\
O2 & - Passed \\
MOISTURE & - Passed
\end{tabular}

Summary
Number Of Tests Passed: 73
Number of Tests Failed: 0
```

Start: 3/2/2011 2:31:56 PM

```
End: 3/2/2011 2:35:00 PM

\section*{APPENDIX 8}

40 CFR 75 MONITORING PLAN

Facility Name: West County Energy Center
Facility Details

Facility ID (ORISPL):
Monitoring Plan Location IDs:
State:
County:
Latitude:
Longitude:

56407
WCCT3C
FL
Palm Beach
26.6986
\(-80.3747\)

Reporting Frequency
\begin{tabular}{|c|c|c|c|}
\hline Monfoting plan Location IDs & Repporting Frequency & Begin Quarter & End Quarter \\
\hline wсст3С & Q - Quarterly & 2010 QTR 4 & \\
\hline
\end{tabular}

Monitoring Location Attributes
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Unititackipe fotentier & Duct Indicator & Ground Elevation & Stack Height & Cross Area Exit & Cross Area flow & Material Code & Shape Code & Begin Date & End Date \\
\hline WCCT3C & & 25 & 150 & 359 & & OTHER & ROUND & 12/16/2010 & \\
\hline
\end{tabular}

Unit Operation Information
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Unit Identifier} & \multirow[t]{2}{*}{Commence Commerciál Operation Date} & \multirow[t]{2}{*}{Gommence Operation Date} & \multicolumn{3}{|c|}{Boiler/Turbine Type} & \multicolumn{3}{|c|}{Max Heat Input} \\
\hline & & & Code & Begin Date & End Date & Valự (mimbtư) & Begin Datt & End Date \\
\hline WCCT3C & 12/18/2010 & 12/16/2010 & CC & 12/16/2010 & & 2761.0 & 12/16/2010 & \\
\hline
\end{tabular}

Unit Program Information
\begin{tabular}{|c|c|c|c|c|}
\hline Unit Identifier & Program Gode & Unit Class & \begin{tabular}{c}
Unit Monitor Certification \\
Begin Date
\end{tabular} & \begin{tabular}{c}
Unit Monitor Certification \\
Deadfine
\end{tabular} \\
\hline \multirow{5}{*}{ WCCT3C } & ARP & P2 & \(12 / 18 / 2010\) & \\
\cline { 2 - 5 } & CAIRNOX & A & \(12 / 18 / 2010\) & \\
\hline & CAIROS & A & \(12 / 18 / 2010\) & \\
\hline & CAIRSO2 & A & \(12 / 18 / 2010\) & \\
\hline
\end{tabular}

\section*{Facility Name: West County Energy Center Facility ID (ORISPL): 56407 \\ Monitoring Method}

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
March 28, 2011 07:11 PM

Monitoring System / Analytical Components

Monitoring System Fuel Flow
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & System ID & Fuel Code & Max Fuel Flow Rate & Units of Measure & Source Code & Begin Date/Hour & End Date/Hour \\
\hline \multirow[t]{2}{*}{wcct3c} & C02 & PNG & 30667.0 & HSCF & URV & 12/16/2010 00 & \\
\hline & C03 & DSL & 126880.0 & LBHR & UMX & 12/16/2010 00 & \\
\hline
\end{tabular}

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
\begin{tabular}{ll}
System Fuel Codes Descriptions: & PNG - Pipeline Natural Gas \\
& DSL - Diesel Oil \\
Unlts of Measure Descriptlons: & LBHR - Pounds / Hour \\
& HSCF - Hundred Standard Cubic Feet / Hour \\
Source Codes Descriptions: & URV - Upper Range Value \\
& UMX - Unit Maximum Rate
\end{tabular}

Analyzer Range Data
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Unitistack/Pipe Identrier & Component Type & Component ID & Range Code & Dual Range Indicator & Begin Date/Hour & End Date/Hour \\
\hline \multirow[t]{2}{*}{WCCT3C} & NOX & C01 & Auto Ranging & Y & 12/16/2010 00 & \\
\hline & 02 & C02 & High Range & & 12/16/2010 00 & \\
\hline
\end{tabular}

Facility Name: West County Energy Center
Facility ID (ORISPL): 56407
Emissions Formulas
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Unitstackipipe Identifier & Parameter & Formula ID & Formula Code & Formula & Begin Date/hour & End Date/Hour \\
\hline \multirow[t]{13}{*}{WCCT3C} & CO 2 & C01 & G-4 & CO2-gas \(=(1040\) * \(\mathrm{FH}(\mathrm{C04}) *(1 / 385) * 44.0) / 2000\) & 12/16/2010 00 & \\
\hline & NOXR & C02 & F-5 & & 12/16/2010 00 & \\
\hline & NOX & C 03 & F-24A & NOX_mass = F\#(C02)*F\#(C06) & 12/16/2010 00 & \\
\hline & HI & C04 & D-6 & HI_gas \(=(\mathrm{S} \#(\mathrm{C05-C02}) *\) GCV_gas \() / 10{ }^{* *} 6\) & 12/16/2010 00 & \\
\hline & HI & C 05 & D-8 & HI_oil = S\#(C06-C03) * GCV_oil / 10 ** 6 & 12/16/2010 , 00 & \\
\hline & HI & C06 & D-15A & HI_hr = (F\#(C04) * T_gas + F\#(C05) * T_oil)/ T_unit & 12/16/2010 00 & \\
\hline & SO2 & C 07 & D-5 & SO2_glb/hr = 0.0006*F\#(C04) & 12/16/2010 00 & \\
\hline & SO2 & C08 & D-2 & SO2_rate-oil \(=2.0\) * S\#(C06-C03) * \%S_oil / 100.0 & 12/16/2010 00 & \\
\hline & SO2 & C09 & D-12 & SO2_TOTAL \(=\left(\left(\mathrm{F} \mathrm{\#}(\mathrm{CO8}){ }^{*}\right.\right.\) T_OIL) + (F\#(C07) * T_GAS) \()\) & 12/16/2010 00 & \\
\hline & CO 2 & C10 & G-4 & W_CO2 = 1420 * F (C05) * \(1 / 385\) * 44.0 / 2000 & 12/16/2010 00 & \\
\hline & CO 2 & C11 & G-4A & CO2_unit =((F\#(C01) * T_gas) + (F\#(C10) * T_oil)) / T_unit & 12/16/2010 00 & \\
\hline & FD & C12 & F-8 & F_c = X_oil * 1420 + X_gas * 1040 & 12/16/2010 00 & \\
\hline & FGAS & C13 & N-GAS & GAS_TOTAL = S\#(C04-C02) + S\#(C05-C02) & 12/16/2010 00 & \\
\hline
\end{tabular}

Parameter Codes Descriptions: \(\quad \mathrm{CO} 2-\mathrm{CO} 2\) Hourly Mass Rate (ton/hr)
NOXR - NOX Emission Rate (\(\mathrm{lb} / \mathrm{mmBtu}\))
NOX - NOx Hourly Mass Rate (Ib/hr)
HI - Heat Input Rate (mmBtu/hr)
SO2-SO2 Hourly Mass Rate (lb/hr)
FD - F-Factor Dry-basis
FGAS - Gas Hourly Flow Rate (hscf)
Formula Codes Descriptions:

March 28, 2011 07:11 PM

FGAS - Gas Hourly Flow Rate (hs
N-GAS - FGAS (net gas flow rate)

G-4A - CO2 (from CO 2 rate for multiple fuels)
G-4 - CO2 (from HI, Fc)
F-8-FD/FC/FW (from multiple fuels)
F-5 - NOXR/SO2R (from NOX or SO2 dry, O2 dry, Fd)
F-24A - NOX (from NOX rate, HI)
D-8 - HI (from oil flow rate, GCV)
D-6-HI (from gas flow rate, GCV)
D-5 - SO2 (from gas SO2 emission rate, HI)
D-2 - SO2 (from OILM. oil sulfur content)
\(\mathrm{D}-15 \mathrm{~A}-\mathrm{HI}\) (from HI rate for multiple fuels)
D-12 - SO2 (from SO2 rate for multiple fuets)

\section*{Facility Name: West County Energy Center \\ Facility ID (ORISPL): 56407}

Monitoring Plan Printout Report
March 28, 2011 07:11 PM

Span Values
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Unitistack IPipe Idenitifier & Comp Туре & Scale & Method & MPC \(/\) MPF & MEC & Span Value & Full-Scale Range & Units of Measure & Scale Transition Point & Def. High Range Value & Fiow Full Range (SGFH) & Flow Span Value (SCFH) & Begin Date/Hour & Eind Date/Hour \\
\hline \multirow[t]{3}{*}{wСст3C} & NOX & H & TB & 200.0 & 10.0 & 200.000 & 200.000 & PPM & 9.0 & & & & 1216/2010 00 & \\
\hline & NOX & L & F & & 10.0 & 10.000 & 10.000 & PPM & 9.0 & & & & 12/16/2010 00 & \\
\hline & 02 & H & & & & 25.000 & 25.000 & PCT & & & & & 12/16/2010 00 & \\
\hline
\end{tabular}

Component Types Descriptions:
NOX NOX Concentration
O2-O2 Concentration
Span Method Codes Descriptions: TB - Table Defaults from Part 75
F - Formula
PPM - Parts per Million
PCT - Percentage

Unit/Stack/Pipe Load or Operating Level Information
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline UnitStackPipe Identifier & Maximum Hourly Load & Units of Measure & Upper Bound of Range of Operation & Lowe' Bound of Range of Operation & Designated Normal Op. Level & Second Most Frequently Used Op. Leve| & Second Normal Indicator & Load Analysis Date & Begin Date/Hout & End DatelHour \\
\hline WCCT3C & 417 & MW & 417 & 55 & High & Mid & Yes & 12/16/2010 & 12/16/2010 00 & \\
\hline
\end{tabular}

Units of Measure Descriptions: MW - Megawatt

\section*{Monitoring Defaults}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline UniUStackrpeldentifer & Parameter & Value & Units of Measure & Purpose Code & Fuel Type & Operating Condition & Stource of Value & Begin Date/Hour & End Date/Hour \\
\hline \multirow[t]{2}{*}{WССТ3C} & NORX & 2.2880 & LBMMBTU & MD & NFS & A & TEST & 12/16/2010 00 & \\
\hline & O2X & 19.0000 & PCT & DC & NFS & A & DEF & 12/16/2010 00 & \\
\hline
\end{tabular}

Parameter Codes Descriptions:
O2X - Maximum O2 Concentration (pct)
NORX - Maximum NOx Emission Rate (\((\mathrm{b} / \mathrm{mmBtu}\))
Units of Measure Descriptions:
PCT - Percentage
LBMMBTU - Pounds / mmBtu
Purpose Codes Descriptions: MD - Missing Data (or Unmonitored Bypass Stack or Emergency Fuel) Default
DC - Diluent Cap
Fuel Type Codes Descriptions: Operating Conditions Descriptions:
Source Codes Descriptions:

NFS - Non-Fuel Specific
A - Алу Hour
TEST - Unit or Stack Testing
DEF - Default Value from Part 75

\section*{Facility Name: West County Energy Center}

Facility ID (ORISPL): 56407

\section*{APPENDIX 9}

\section*{GAS AND OIL FUEL METER CERTIFICATION DOCUMENTATION}

\section*{FLOW ELEMENT INSPECTION / CLOSURE REPORT}
\begin{tabular}{l}
WEST COUNTY POWER PARTNERS, LLC. \\
WEST COUNTY ENERGY CENTER - UNIT 3 \\
FLORIDA POWER \& LIGHT \\
\begin{tabular}{l}
Tag Number \\
Service Description \\
P\&ID \\
AREA \\
\hline 3FGA-M2381 \\
All shipping, storage materials, removed from FLOW ELEMENT. (ie; braces, packing material, \\
plugs, caps, dessicant, etc.
\end{tabular} \\
\hline All Mechanical internals installed per installation instructions, and fastened correctly. (If \\
Applicable)
\end{tabular}

Remarks

\section*{Certificate of Calibration}
\begin{tabular}{lr|}
\hline PO Number & FPLWC 64.0602 \\
Tag Number & 3FGA-FE-3001 \\
\hline
\end{tabular}

The flow meters for the above referenced purchase order were calibrated at a reputable flow calibration laboratory using the standard procedures of the lab. These procedures have been evaluated by the quality assurance department of Triad Measurement \& Equipment, Inc. (Triad). The callbration data has been reviewed by Triad and has been presented in tabular and graphical format for review.

To intitate the test, the flow meters were installed in the laboratory flow line. Careful attention was given to align the flow element with the test line piping, and to assure no gaskets between flanged sectlons protruded into the flow. Vents were provided at critical locatlons of the test line to purge the system of air. The test technician verified proper installation of the flow element in the test line prior to intraducing water into the system to equalize test line plping and primary element temperature to water temperature. Prior to the test run, the control valve was set to produce the desired flow, while the flow was directed to waste. Sufficient time was allowed to stablize both the flow and the instrument readings, after which the weigh tank discharge valve was closed and the weigh tank scale indicator and the electric timer were both zeroed. To begin the test run, flow was diverted into the weigh tank, which automatically started the timer. At the start of water collection a computer based data acqulsition system was activated to read the meter output, such that the meter output was averaged while the weigh tank was filling. At the end of the run, flow was diverted away from the weigh tank and the timer and data acquisition system were stopped to terminate the test run. The welght of water in the tank, elapsed time, water temperature, and average meter output were recorded on a data sheet. The data were entered into the computer to determine the flow and the results were plotted so that each test run was evaluated before the next run began. The control valve was then adjusted to the next flow and the procedure repeated.

The laboratory has reported that the flow measure uncertainty is within. \(3 \%\) of the true value for each test run. Callbrations of the test instrumentation (tempurature, time, weight and length measurements) are traceable to the National Institute of Standards and Technology (formeriy the National Bureau of Standards). Triad certifies that the data included in this report is accurate and has been obtalned from original laboratory documents. Based on the periodic review of lab procedures and review of the applicable lab data, the calibration for the meters listsed in the attachements has been accepted.

Michael Bibb - President

Figure 3. Discharge coefficient versus pipe Reynolds Number for 6-inch meter SN\# 1000512

Table 5. Utah Water Research Laboratory Flow Meter Calibration Data

Calibration Performed by: Z. Sharp
Calibration Witnessed by: NA
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c}
Run \\
No.
\end{tabular} & \begin{tabular}{c}
Flow \\
(gym)
\end{tabular} & \begin{tabular}{c}
\(\Delta H\) \\
(in. \(H_{2} \mathrm{O}\))
\end{tabular} & \begin{tabular}{c}
Inlet \\
Reynolds \\
Number
\end{tabular} & C & \begin{tabular}{c}
Nev from \\
mean \\
(\%)
\end{tabular} & \begin{tabular}{c}
Uncertainty \\
in C \\
(\%)
\end{tabular} \\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline 1 & 146.6 & 9.94 & 52,046 & 0.6124 & \(0.86 \%\) & \(0.27 \%\) \\
2 & 264.6 & 32.63 & 93,924 & 0.6100 & \(0.46 \%\) & \(0.28 \%\) \\
3 & 377.8 & 66.88 & 134,122 & 0.6084 & \(0.20 \%\) & \(0.26 \%\) \\
4 & 516.1 & 124.88 & 183,214 & 0.6082 & \(0.16 \%\) & \(0.27 \%\) \\
5 & 618.6 & 180.00 & 219,609 & 0.6072 & \(0.00 \%\) & \(0.26 \%\) \\
6 & 742.5 & 260.06 & 263,588 & 0.6063 & \(-0.14 \%\) & \(0.25 \%\) \\
7 & 851.4 & 341.88 & 302,264 & 0.6064 & \(-0.13 \%\) & \(0.27 \%\) \\
8 & 978.4 & 452.50 & 347,367 & 0.6058 & \(-0.24 \%\) & \(0.26 \%\) \\
9 & 1083.3 & 555.00 & 384,581 & 0.6056 & \(-0.27 \%\) & \(0.26 \%\) \\
10 & 1216.3 & 699.38 & 431,828 & 0.6057 & \(-0.24 \%\) & \(0.26 \%\) \\
11 & 1327.4 & 834.38 & 471,271 & 0.6052 & \(-0.33 \%\) & \(0.25 \%\) \\
12 & 1438.4 & 980.00 & 510,672 & 0.6051 & \(-0.34 \%\) & \(0.25 \%\) \\
& & & & \\
\end{tabular}

Certified by:

Steven L. Barfuss P.E.
Research Assistant Professor

Table 6. Utah Water Research Laboratory Flow Meter Calibration Data

Certified by:

Steven L. Barfuss P.E.
Research Assistant Professor

Traceable to International Standards. Details at www.micromotion.com.

\section*{CiSCO}

Custom Instrumentation Services

Rev. 0
4/26/11

Sarah Gray 303/790-1000

CEMS Certification Report Unit 3A
Unit 3B
Unit 3C
West County Energy Center
Loxahatchee, Florida
```


[^0]:    WHERE: RA = RELATIVE ACCURACY RESULTS BASED ON DIFFERENCE FROM MEAN REFERENCE METHOD VALUE

    * = RATA RESULTS REQUIRED FOR ANNUAL RATA FREQUENCY FOR 40 CFR 75

    MD = MEAN DIFFERENCE BETWEEN RM AND CEMS PLUS THE $2.5 \%$ CONFIDENCE COEFFICIENT
    DRIFT AND LINEARITY RESULTS ARE THE HIGHEST ENCOUNTERED DURING ALL TESTS

[^1]:    *Does not include Invalid Averaging Periods ("N/A")

[^2]:    *Does not include Invalid Averaging Periods ("N/A")

[^3]:    "Does not include Invalid Averaging Periods ("N/A")

[^4]:    *Does not include Invalid Averaging Periods ("N/A")

[^5]:    *Does not include Invalid Averaging Periods ("N/A")

[^6]:    *Does not include Invalid Averaging Periods ("N/A")

[^7]:    Perf: [Part60 Daily C0] Zero $=20.0$ \%Range, Span $=20.0 \%$ Range
    [Part60 Daily C0] Zero $=20.0$ \%Range, Span $=20.0 \%$ Range
    Perf:
    NO] Zero = 5.0 \%Range, Span = 5.0 \%Range, [Part60 Daily NOx] zero = 10.0 \%Range, Spa $=10.0$ \%Range
    AltPerf: [Part75 Daily NOx] zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ ) / 10 ppm ( 50 ppm $<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$
    (Range<=50 ppm)/10 ppm ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ) 0 \%Range, [Part60 Daily NOx] zero $=10.0$ \%Range, Spa 10.0 \%Range

    AltPerf: [Part75 Daily NOx] Zero $=5$ ppm (Range<=50 ppm)/10 ppm (50 ppm<Range<-200 ppm), Span = 5 ppm (Range $<=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )
    Perf:
    [Part75 Daily 02] Zero $=1.0 \% 02$, Span $=1.0 \% 02$, [Part60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 02$

[^8]:    Steven L. Barfuss P.E.
    Research Assistant Professor

[^9]:    *Does not include fnvalid Averaging Periods ("N/A")

[^10]:    *Does not include Invalid Averaging Periods ("N/A")

[^11]:    *Does not include Invalid Averaging Periods ("N/A")

[^12]:    *Does not include Invalid Averaging Periods ("N/A")

[^13]:    *Does not include Invalid Averaging Periods ("N/A")

[^14]:    cis-10-westcounty.fl-rata\#1-U3B-rpt

[^15]:    Additional Information:
    No comment.
    *Performance Spec: LE <= 5.0\% of Reference Value: Alternate Performance Spec: $\mid$ R-A $\mid<=5 \mathrm{ppm}$ (Appendix A \&3.2)

[^16]:    Perf: [Part60 Daily Co] Zero $=20.0$ \%Range, Span $=20.0 \%$ Range
    Perf: [Part60 Daily CO] Zero $=20.0 \%$ Range, Span $=20.0$ \%Range
    [Part75 Daily NOx] Zero $=5.0$ \%Range, Span $=5.0$ RRange, [ Part 60 Daily NOx] Zero $=10.0 \%$ Range, Span
    AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range<=50 ppm)/10 ppm (50 ppm<Range<=200 ppm), Span $=5 \mathrm{ppm}$
    (Range<=50 ppm $/ / 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )
    Perf: [Part75 Daily NOx] Zero = 5.0 \%Range, Span $=5.0$ 8Range, [Part60 Daily NOx] Zero $=10.0$ \%Range, Span
    AltPerf: [Part75 Daily NOx] Zero $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ )/10 ppm ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ ), Span $=5 \mathrm{ppm}$ (Range $<=50 \mathrm{ppm}$ ) $/ 10 \mathrm{ppm}$ ( $50 \mathrm{ppm}<$ Range $<=200 \mathrm{ppm}$ )
    Perf:
    [Part75 Daily 02] Zero = 1.0 \%02, Span = $1.0 \%$ 2, [Part60 Daily 02] Zero $=2.0 \% 02$, Span $=2.0 \% 02$

[^17]:    Approved for Release

