

RECEIVED

JAN 25 2012

DIVISION OF AIR
RESOURCE MANAGEMENT

January 23, 2012

Jeff Koerner, P.E.
Department of Environmental Protection
Bureau of Air Regulation
111 South Magnolia Street
Tallahassee, FL 32399

Project No: 0990042-007-AC

Re:

Florida Power & Light Company Riviera Beach Energy Center Project DEP File No. 0990042-006-AC

Request for Revising the Process Heaters' Maximum Heat Input; Revising Emergency Generators' Hours of Operation; and Revising Gas Turbines' Conditions for Visible and Excess Emissions

Mr. Koerner:

Florida Power & Light Company (FPL) is requesting a revision to the existing air construction permit for the Riviera Beach Energy Center (RBEC) (Permit No. 0990042-006-AC), issued by the Department on June 10, 2009, to lower the maximum heat input of the fuel gas heaters, adjust the hours of operation requirement for the emergency generators, and revise permit language for the gas turbines to reflect conditions which were identified and incorporated into revisions for the West County Energy Center Air Construction Permit (Permit No. 0990646-002-AC) and Cape Canaveral Energy Center Air Construction Permit (Permit No. 0090006-005-AC).

For the fuel gas heaters (EU 011), FPL intends to install two 9.9 MMBtu/hr heaters in place of the 10 MMBtu/hr heaters originally permitted for the site. The 9.9 MMBtu/hr heaters are not regulated sources under either 40 CFR Part 60 or Part 63 and do not have applicable emission specifications. FPL believes that emission limits for each process heater could be removed from the permit.

For the emergency generators (EU 013), FPL proposes that the hours of operation requirement be adjusted for the diesel generators to conform with 40 CFR 63, Subpart ZZZZ and 40 CFR 60, Subpart IIII, with a limit on operation for testing and maintenance checks not to exceed 100 hours. FPL proposes unlimited hours of operation for emergency use (Subpart ZZZZ [63.6640(f)]).

For the gas turbines (EU 007-009), FPL proposes to modify the following conditions:

- A.12 To include allowable visible emissions for fuel switches;
- □ A.15 For excess emissions of NO_X and CO resulting from startup, shutdown, or malfunction;
- A.17- To include Full Speed No Load (FSNL) Trip Tests that are manufacturer required for allowable exclusions of emission data for CEMS data exclusions. FPL must perform the FSNL test following routine replacement of major combustion turbine components to retain manufacturer warranties;
- A.23 To modify the CO monitoring provisions to allow the use of Part 75 monitoring requirements; and
- A.30 To clarify excess emission reporting under BACT requirements and the applicable emission specification for these units under 40 CFR part 60 Subpart KKKK.

Attachment 1 includes the suggested changes to the permit that FPL proposes. Attachment 2 includes revisions to the air construction permit applications for the process heaters and emergency generators.

These proposed modifications do not affect the previous emission netting analysis and PSD applicability determination project and will not trigger PSD review.

Thank you for your consideration of this request for the RBEC. If you have any comments or questions regarding the attached, please feel free to contact either Ken Kosky at (352) 336-5600 or me at (561) 691-7518.

Sincerely,

Florida Power & Light Company

Barbara P. Linkiewicz

Director of Environmental Licensing

cc: Cindy Mulkey, DEP Siting Office

Dianne Hughes, DEP Southeast District

Ken Kosky, Golder Associates

Department of Environmental Protection RECEIVED

Division of Air Resource Management

JAN 25 2012

APPLICATION FOR AIR PERMIT - LONG FORM DIVISION OF AIR RESOURCE MANAGEMENT

I. APPLICATION INFORMATION

Air Construction Permit – Use this form to apply for an air construction permit:

- For any required purpose at a facility operating under a federally enforceable state air operation permit (FESOP) or Title V air operation permit;
- For a proposed project subject to prevention of significant deterioration (PSD) review, nonattainment new source review, or maximum achievable control technology (MACT);
- To assume a restriction on the potential emissions of one or more pollutants to escape a requirement such as PSD review, nonattainment new source review, MACT, or Title V; or
- To establish, revise, or renew a plantwide applicability limit (PAL).

Air Operation Permit – Use this form to apply for:

- An initial federally enforceable state air operation permit (FESOP); or
- An initial, revised, or renewal Title V air operation permit.

To ensure accuracy, please see form instructions.

Iu	entification of Facility					
1.	Facility Owner/Company Name:	Florida Po	wer	& Light Comp	any	
2.	Site Name: Riviera Beach Energ	y Center (R	BEC)		
3.	Facility Identification Number:	0990042			· ·	
4.	Facility Location Street Address or Other Locator:	200 - 300 E	Broa	dway		
	City: Riviera Beach	County: F	Palm	Beach	Zip Code: 33404	
5.	Relocatable Facility?		6.	Existing Title ⊠ Yes	V Permitted Facility? ☐ No	

Application Contact

Identification of Facility

1 1	Spirentian Contact				
1.	Application Contact Name: B	arbara Linkiewicz	, Director of E	invironmental Licensing	
2.	Application Contact Mailing	Address		•	
	Organization/Firm: Florida Po	ower & Light Com	pany		
	Street Address: 700 Unive	rse Blvd.			
	City: Juno Beac	ch State:	Florida	Zip Code: 33408	
3.	Application Contact Telephon	e Numbers			
	Telephone: (561) 691-7518	ext.	Fax: (561) 69	91-7070	
4.	Application Contact E-mail A	ddress: Barbara.	P.Linkiewicz@	FPL.com	

Application Processing Information (DEP Use)

1. Date of Receipt of Application: 1-25-12	
2. Project Number(s): 090042 - 067 - AC	4. Siting Number (if applicable):

Purpose of Application

This application for air permit is being submitted to obtain: (Check one)
Air Construction Permit
☐ Air construction permit to establish, revise, or renew a plantwide applicability limit (PAL).
Air construction permit to establish, revise, or renew a plantwide applicability limit (PAL), and separate air construction permit to authorize construction or modification of one or more emissions units covered by the PAL.
Air Operation Permit
☐ Initial Title V air operation permit.
☐ Title V air operation permit revision.
☐ Title V air operation permit renewal.
Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is required.
☐ Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is not required.
Air Construction Permit and Revised/Renewal Title V Air Operation Permit (Concurrent Processing)
☐ Air construction permit and Title V permit revision, incorporating the proposed project.
☐ Air construction permit and Title V permit renewal, incorporating the proposed project.
Note: By checking one of the above two boxes, you, the applicant, are requesting concurrent processing pursuant to Rule 62-213.405, F.A.C. In such case, you must also check the following box:
☐ I hereby request that the department waive the processing time requirements of the air construction permit to accommodate the processing time frames of the Title V air operation permit.

Application Comment

This application is for a revision to the existing air construction permit (Permit No. 0990042-006-AC) to request the maximum heat input for the process heater be revised from 10 MMBtu/hr to 9.9 MMBtu/hr, and the annual operating hours for the emergency generators will be revised from 160 hr/yr to 100 hr/yr.

As shown in revised Table 2-9B, these proposed modifications do not affect the previous emission netting analysis and PSD applicability determination project and will not trigger PSD review.

Scope of Application

Emissions Unit ID Number	Description of Emissions Unit	Air Permit Type	Air Permit Processing Fee
11	Fuel Gas Heater	AC1A	
13	Emergency Diesel Generator	AC1A	
			·
		·	

Application 1	Processing Fee	÷			
Check one:	Attached - Amount: \$	·	⊠ No	t Applicable	

Owner/Authorized Representative Statement

Complete if applying for an air construction permit or an initial FESOP.

Owner/Authorized Representative Name:

Randall R. LaBauve, Vice President

2. Owner/Authorized Representative Mailing Address...

Organization/Firm: Florida Power & Light Company

Street Address: 700 Universe Blvd.

City: Juno Beach

State: FL

Zip Code: 33408

17/2017

3. Owner/Authorized Representative Telephone Numbers...

Telephone: (561) 691-7001

ext.

Fax:

(561) 691-7070

4. Owner/Authorized Representative E-mail Address: Randall.R.LaBauve@FPL.com

5. Owner/Authorized Representative Statement:

I, the undersigned, am the owner or authorized representative of the corporation, partnership, or other legal entity submitting this air permit application. To the best of my knowledge, the statements made in this application are true, accurate and complete, and any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department.

Signature

Application Responsible Official Certification

Complete if applying for an initial, revised, or renewal Title V air operation permit or concurrent processing of an air construction permit and revised or renewal Title V air operation permit. If there are multiple responsible officials, the "application responsible official" need not be the "primary responsible official."

oriental head not be the primary, responsible organization					
1. Application Responsible Official Name: Randall R. LaBaure					
2. Application Responsible Official Qualification (Check one or more of the following options, as applicable):					
For a corporation, the president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213, F.A.C.					
 For a partnership or sole proprietorship, a general partner or the proprietor, respectively. For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official. 					
☐ The designated representative at an Acid Rain source or CAIR source.					
3. Application Responsible Official Mailing Address Organization/Firm: Florida Power & Light Company Street Address: 700 Universe Blvd. JES/JB					
City: Juno Beach State: FL Zip Code: 33408					
4. Application Responsible Official Telephone Numbers Telephone: (561)691-701 ext. Fax: (561)691-7070					
5. Application Responsible Official E-mail Address: Randall. R. La Bauve afpl. com					
6. Application Responsible Official Certification:					
I, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so a to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof and all other applicable requirements identified in this application to which the Title V source is subject. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit. Finally, certify that the facility and each emissions unit are in compliance with all applicable requirements to which they are subject, except as identified in compliance plan(s) submitted with this application.					
Signature Date					

Professional Engineer Certification

_	Ti C : 1D : 1T : 1
1.	Professional Engineer Name: Ken Kosky
	Registration Number: 14996
2.	Professional Engineer Mailing Address
	Organization/Firm: Golder Associates Inc.**
	Street Address: 6026 NW 1st Place
	City: Gainesville State: FL Zip Code: 32607
3.	Professional Engineer Telephone Numbers
	Telephone: (352) 336-5600 ext. Fax: (352) 336-6603
4.	Professional Engineer E-mail Address: kkosky@golder.com
5.	Professional Engineer Statement:
	I, the undersigned, hereby certify, except as particularly noted herein*, that:
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
	(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.
	(3) If the purpose of this application is to obtain a Title V air operation permit (check here \sum , if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.
	(4) If the purpose of this application is to obtain an air construction permit (check here \boxtimes , if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here \square , if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.
	(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units (check here , if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit. Signature

* Attach any exception to certification statement.

**Board of Professional Engineers Certificate of Authorization #00001670. 0.900((i))= FOTTTIC:\DDIRProjects\FPLight\FPL Repowering SCA June2008\Project Data\PRV\AirPermitDraft\2011 ModBasedOnCCEC\draft\Final_18Jan2012\RBEC_FP

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1.		dinates (km) 594.2 h (km) 2960.6	2.	Facility Latitude/Lo Latitude (DD/MM/ Longitude (DD/MM)	SS) 26/45/55
3.	Governmental Facility Code: O	4. Facility Status Code:	5.	Facility Major Group SIC Code: 49	6. Facility SIC(s): 4911
7.	Facility Comment :		,		

Facility Contact

1.	Facility Contact Name:					_
	Mark Lemasney, Plant General Ma	nager				
2.	Facility Contact Mailing Address	•••				
	Organization/Firm: Florida Powe	r & Ligi	ht Company			
	Street Address: 200 - 300 Broad	adway				
	City: Riviera Beach)	State: FL		Zip Code: 33404	
3.	Facility Contact Telephone Numb	ers:				
	Telephone: (321) 433-6257	ext.		Fax: ()		
4.	Facility Contact E-mail Address:	Mark.L	.emasney@f	pl.com		

Facility Primary Responsible Official

Complete if an "application responsible official" is identified in Section I that is not the facility "primary responsible official."

	<u></u>							
1.	Facility Primary Responsible Office	cial Name:						
	Randall R. LaBauve							
2.	Facility Primary Responsible Office	cial Mailing	Address					
	Organization/Firm: Florida Power & Light Company							
	Street Address: 700 Universe Blvd. JES/JB							
	City: Juno Beach	State:	FL	Zip Code: 33408				
3.	Facility Primary Responsible Office	cial Telephor	ne Number	S				
	Telephone: (561) 691-7001	ext.	Fax:	(561) 691-7070				
4.	Facility Primary Responsible Office	cial E-mail A	ddress: R	andall.R.LaBauve@fpl.com				

Facility Regulatory Classifications

Check all that would apply *following* completion of all projects and implementation of all other changes proposed in this application for air permit. Refer to instructions to distinguish between a "major source" and a "synthetic minor source."

1. Small Business Stationar			
1	y Source	☐ Unknown	
2. Synthetic Non-Title V So	urce		•
3. Title V Source			,
4. Major Source of Air Poll	utants, Other than Hazardo	us Air Pollutants (HAI	Ps)
5. Synthetic Minor Source of	of Air Pollutants, Other tha	n HAPs	
6. Major Source of Hazardo	us Air Pollutants (HAPs)		
7. Synthetic Minor Source of	of HAPs		
8. One or More Emissions U	Units Subject to NSPS (40	CFR Part 60)	
9. One or More Emissions U	Units Subject to Emission	Guidelines (40 CFR Pa	rt 60)
10. One or More Emissions U	Jnits Subject to NESHAP	(40 CFR Part 61 or Par	t 63)
11. Title V Source Solely by	EPA Designation (40 CFF	R 70.3(a)(5))	
12. Facility Regulatory Classific	ations Comment:		
The proposed project is not s	ubject to PSD for any pollu	itant.	·
	·	•	
	· · ·		
	· · ·		
	· · · ·		

List of Pollutants Emitted by Facility

1. Pollutant Emitted	2. Pollutant Classification	3. Emissions Cap [Y or N]?
PM	A	N
PM10	Α	N
Voc	A	N
SO2	Α .	N
NOx	A	N .
СО	A	N
<u> </u>		
		<u> </u>
<u> </u>		
-		•

B. EMISSIONS CAPS

Facility-Wide or Multi-Unit Emissions Caps

Pollutant Subject to Emissions Cap	2. Facility- Wide Cap [Y or N]? (all units)	3. Emissions Unit ID's Under Cap (if not all units)	4. Hourly Cap (lb/hr)	5. Annual Cap (ton/yr)	6. Basis for Emissions Cap
<u>. </u>					
<u> </u>					
		•			
· .					
. raciiiy-wi	ae or Multi-Onit I	Emissions Cap Con	iment.		
	•				
•					
				•	
			•		•
	•	•			

C. FACILITY ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Facility Plot Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date: 2/13/09
2.	Process Flow Diagram(s): (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date: 2/13/09
3.	Precautions to Prevent Emissions of Unconfined Particulate Matter: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought)
	☐ Attached, Document ID: ☐ ☐ Previously Submitted, Date: 2/13/09
Ac	Iditional Requirements for Air Construction Permit Applications
1.	Area Map Showing Facility Location: Attached, Document ID: 2/13/09 application Not Applicable (quities required facility)
	Not Applicable (existing permitted facility)
2.	Description of Proposed Construction, Modification, or Plantwide Applicability Limit (PAL):
3.	Rule Applicability Analysis:
4.	List of Exempt Emissions Units: Attached, Document ID: Not Applicable (no exempt units at facility)
	Fugitive Emissions Identification: ☐ Attached, Document ID: ☐ Not Applicable
	Air Quality Analysis (Rule 62-212.400(7), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
7.	Source Impact Analysis (Rule 62-212.400(5), F.A.C.): Attached, Document ID: Not Applicable
8.	Air Quality Impact since 1977 (Rule 62-212.400(4)(e), F.A.C.): ☐ Attached, Document ID: ⊠ Not Applicable
9.	Additional Impact Analyses (Rules 62-212.400(8) and 62-212.500(4)(e), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable
10.	Alternative Analysis Requirement (Rule 62-212.500(4)(g), F.A.C.): ☐ Attached, Document ID: ☐ Not Applicable

C. FACILITY ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for FESOP Applications

1.	List of Exempt Emissions Units:							
	☐ Attached, Document ID: ☐ Not Applicable (no exempt units at facility)							
Ac	Additional Requirements for Title V Air Operation Permit Applications							
1.	List of Insignificant Activities: (Required for initial/renewal applications only) Attached, Document ID: Not Applicable (revision application)							
2.	Identification of Applicable Requirements: (Required for initial/renewal applications, and for revision applications if this information would be changed as a result of the revision being sought) Attached, Document ID:							
	☐ Not Applicable (revision application with no change in applicable requirements)							
3.	Compliance Report and Plan: (Required for all initial/revision/renewal applications) Attached, Document ID:							
	Note: A compliance plan must be submitted for each emissions unit that is not in compliance with all applicable requirements at the time of application and/or at any time during application processing. The department must be notified of any changes in compliance status during application processing.							
4.	List of Equipment/Activities Regulated under Title VI: (If applicable, required for initial/renewal applications only) Attached, Document ID:							
	 □ Equipment/Activities Onsite but Not Required to be Individually Listed □ Not Applicable 							
5.	Verification of Risk Management Plan Submission to EPA: (If applicable, required for initial/renewal applications only) ☐ Attached, Document ID: ☐ Not Applicable							
6.	Requested Changes to Current Title V Air Operation Permit: Attached, Document ID: Not Applicable							

C. FACILITY ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Facilities Subject to Acid Rain, CAIR, or Hg Budget Program

1.	Acid Rain Program Forms:
	Acid Rain Part Application (DEP Form No. 62-210.900(1)(a)): Attached, Document ID: Previously Submitted, Date: 6/10/08 Not Applicable (not an Acid Rain source)
	Phase II NO _X Averaging Plan (DEP Form No. 62-210.900(1)(a)1.): ☐ Attached, Document ID: ☐ Previously Submitted, Date: ☐ Not Applicable
	New Unit Exemption (DEP Form No. 62-210.900(1)(a)2.): ☐ Attached, Document ID: ☐ Previously Submitted, Date: ☐ Not Applicable
2.	CAIR Part (DEP Form No. 62-210.900(1)(b)): ☐ Attached, Document ID: ☐ Not Applicable (not a CAIR source) Previously Submitted, Date: 1/20/09
Ad	ditional Requirements Comment
	Although the "facility" is subject to these additional requirements, the fuel gas heater and emergency generator are not.

Section [1] Fuel Gas Heater

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for an initial, revised or renewal Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for an air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised or renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes, and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this application that is subject to air construction permitting and for each such emissions unit that is a regulated or unregulated unit for purposes of Title V permitting. (An emissions unit may be exempt from air construction permitting but still be classified as an unregulated unit for Title V purposes.) Emissions units classified as insignificant for Title V purposes are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) Y:\Projects\2008\08387633 FPL CCEC-RBEC Conv SCAs\Reports\SCAs\RivBch\Air Pmt Mod 01-2012\RBEC_FPL_1_EU11_Gas\HtrA.docx Effective: 03/11/2010 14 11/2011

Section [1] Fuel Gas Heater

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)						
	The emissions unit addressed in this Emissions Unit Information Section is a regulated						
	emissions unit. The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.						
<u>En</u>	nissions Unit Desci	ription and Status					
1.	Type of Emissions	Unit Addressed in this	Sec	tion: (Check one)			
	process or proc	s Unit Information Secti luction unit, or activity, ast one definable emissi	whi	ch produces one or	-		
•	of process or p		vitie	s which has at least	e emissions unit, a group t one definable emission		
					e emissions unit, one or fugitive emissions only.		
2.	Description of Em Natural Gas Fuel H	issions Unit Addressed i eater(s)	in th	is Section:			
3.	Emissions Unit Ide	entification Number: 3					
4.	Emissions Unit	5. Commence	6.	Initial Startup	7. Emissions Unit		
	Status Code:	Construction		Date:	Major Group		
	С	Date: 2011		2013	SIC Code:		
8.		applicability: (Check all	l tha				
	☐ Acid Rain Unit	• • • •		FF-3)			
	☐ CAIR Unit						
9.	Package Unit: Manufacturer: Har	nover Compression Com	pan	y or equivalent M	lodel Number:		
10.	. Generator Namepla	ate Rating: MW					
11.	Emissions Unit Co See Air Permit repo MMBtu/hr to 9.9 MN	rt with 2/13/09 application	n. R	evising maximum h	eat input rate from 10		

Section [1] Fuel Gas Heater

Emissions Unit Control Equipment/Method: Control 1 of 1

	Control Equipment/Method Description:				
1.					
	Good combustion practices - natural gas-fired	• •	•	-	
	•				
				•	•
2.	Control Device or Method Code: N/A	•			
			<u> </u>		
<u>En</u>	nissions Unit Control Equipment/Method: (Control	_ of	_	
1	Control Equipment/Method Description:			-	
1.	Control Equipment Metrica Description.				
	•				
		•		<u> </u>	
2.	Control Device or Method Code:				
	<u></u>				
En	nissions Unit Control Equipment/Method: (Control	of		
	uissions enit control Equipment/victuou.		<u> </u>		-
1.			_ 01		-
1.	Control Equipment/Method Description:	Zonitoi	_ 01	_ .	
1.			01	_ .	
1.			01	 <u>.</u>	
1.		Lonuoi	01	<u> </u>	
1.	Control Equipment/Method Description:		01	<u> </u>	
1.		Londor	01	<u> </u>	
2.	Control Equipment/Method Description: Control Device or Method Code:			·	
2.	Control Equipment/Method Description:		_ of	· .	
1. 2. En	Control Equipment/Method Description: Control Device or Method Code: nissions Unit Control Equipment/Method:				
1. 2. En	Control Equipment/Method Description: Control Device or Method Code:			· · · · · · · · · · · · · · · · · · ·	
1. 2. En	Control Equipment/Method Description: Control Device or Method Code: nissions Unit Control Equipment/Method:				
1. 2. En	Control Equipment/Method Description: Control Device or Method Code: nissions Unit Control Equipment/Method:				
1. 2. En	Control Equipment/Method Description: Control Device or Method Code: nissions Unit Control Equipment/Method:			·	
1. 2. En	Control Equipment/Method Description: Control Device or Method Code: nissions Unit Control Equipment/Method:				

Section [1] Fuel Gas Heater

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Throughput	t Rate:		
2.	Maximum Production Rate:	· ·		
3.	Maximum Heat Input Rate: 9.9 n	nillion Btu/hr		
4.	Maximum Incineration Rate:	pounds/hr		-
		tons/day		·
5.	Requested Maximum Operating S		•	
		24 hours/day		7 days/week
		52 weeks/year		8,760 hours/year
6.	Operating Capacity/Schedule Cor Revised from 10 MMBtu/hr.	nment:		

Section [1] Fuel Gas Heater

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

Identification of Point on Flow Diagram:	Plot Plan or	2. Emission Point 7	Гуре Code:
3. Descriptions of Emission4. ID Numbers or Description			
5. Discharge Type Code:	6. Stack Height	t:	7. Exit Diameter: 1.4 feet
8. Exit Temperature: 500°F	9. Actual Volumetric Flow Rate: 4,901 acfm		10. Water Vapor:
11. Maximum Dry Standard F dscfm	low Rate:	12. Nonstack Emissi feet	on Point Height:
13. Emission Point UTM Coo Zone: East (km): North (km)		14. Emission Point I Latitude (DD/Ml Longitude (DD/N	•
15. Emission Point Comment: See revised Table 2-6.	:		

Section [1] Fuel Gas Heater

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 1

Segment Description (Pro- Natural gas	cess/Fuel Type):			·.
2. Source Classification Cod	e (SCC):	3. SCC Units: MMscf		
4. Maximum Hourly Rate: 0.0094	5. Maximum 82.2	Annual Rate:	6.	Estimated Annual Activity Factor:
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit: 1,055
10. Segment Comment:		,		· -
				<u> </u>
Segment Description and Ra	te: Segment	of		
1. Segment Description (Prod	cess/Fuel Type):			
2. Source Classification Code	e (SCC):	3. SCC Units:		
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:
10. Segment Comment:	_			
·				

Section [1] Fuel Gas Heater

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1.	Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
PM Fuel quality		_		
	PM10	Fuel quality		
	SO2	Fuel quality		
	NOx	Fuel quality		
	CO	Good combustion		
	VOC	Good combustion		
-	· · · · · · · · · · · · · · · · · · ·		`	
	•			
		· .		
		·		

POLLUTANT DETAIL INFORMATION Page [1] of [6] Particulate Matter Total - PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Pollutant Emitted: Particulate Matter Total - PM	2. Total Percent Efficiency of Control:					
3. Potential Emissions:		4. Synth	netically Limited?			
0.02 lb/hour 0.0	8 tons/year	⊠ Y	es 🗌 No			
5. Range of Estimated Fugitive Emissions (as applicable):						
to tons/year						
6. Emission Factor: 0.002 lb/MMBtu			7. Emissions			
Deferences Emissions based on AD 42			Method Code:			
Reference: Emissions based on AP-42	Ta. B. 11	04 1				
8.a. Baseline Actual Emissions (if required):	8.b. Baseline					
tons/year	From:	T	o:			
9.a. Projected Actual Emissions (if required):	9.b. Projected	d Monitori	ng Period:			
tons/year	☐ 5 year	5 years 10 years				
10. Calculation of Emissions: 0.002 lb/MMBtu x 9.9 MMBtu/hr = 0.02 lb/hr 0.02 lb/hr x 8,760 hr / 2,000 lb = 0.08 TPY 11. Potential, Fugitive, and Actual Emissions Company of the company	omment:					

POLLUTANT DETAIL INFORMATION Page [1] of [6] Particulate Matter Total - PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u>Al</u>	Iowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
.	7 movacio Emissions and Omes.	lb/hour tons/year
5.	Method of Compliance:	,
		· .
6.	Allowable Emissions Comment (Description	n of Operating Method):
	·	
	·	
Al	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable
		Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
		lb/hour tons/year
5.	Method of Compliance:	
_	Allowable Fasicaione Comment (Description	of Operating Mathed).
6.	Allowable Emissions Comment (Description	1 of Operating Method).
	·	•
		<u> </u>
Al	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable
		Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	·	lb/hour tons/year
5.	Method of Compliance:	
	The state of the s	,
_		
6.	Allowable Emissions Comment (Description	of Operating Method):

POLLUTANT DETAIL INFORMATION
Page [2] of [6]
Particulate Matter Total - PM10

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

rotential, Estimated rugitive, and baseline o	t Tojecieu Ac	ctual Emissions
Pollutant Emitted: Particulate Matter Total - PM10	2. Total Perc	cent Efficiency of Control:
3. Potential Emissions: 0.02 lb/hour 0.03	3 tons/year	4. Synthetically Limited? ⊠ Yes □ No
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):	
6. Emission Factor: 0.002 lb/MMBtu Reference: Emissions based on AP-42		7. Emissions Method Code:
8.a. Baseline Actual Emissions (if required):	0 h Dagalina	24-month Period:
` _ ′		
tons/year	From:	To:
9.a. Projected Actual Emissions (if required):	9.b. Projected	d Monitoring Period:
tons/year	☐ 5 yea	-
10. Calculation of Emissions: 0.002 lb/MMBtu x 9.9 MMBtu/hr = 0.02 lb/hr 0.02 lb/hr x 8,760 hr / 2,000 lb = 0.08 TPY		
11. Potential, Fugitive, and Actual Emissions Co	omment:	

POLLUTANT DETAIL INFORMATION Page [2] of [6] Particulate Matter Total - PM10

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u>AI</u>	lowable Emissions Allowable Emissions	of		
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
	The waste Emissions and Omes.	lb/hour tons/year		
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of Operating Method):		
Al	lowable Emissions Allowable Emissions	of		
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year		
5.	Method of Compliance:	·		
6.	6. Allowable Emissions Comment (Description of Operating Method):			
Al	lowable Emissions Allowable Emissions	of		
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year		
.5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of Operating Method):		

POLLUTANT DETAIL INFORMATION
Page [3] of [6]
Sulfur Dioxide - SO2

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1. Pollutant Emitted: Sulfur Dioxide - SO2	2. Total Percent Efficiency of	Control:
3. Potential Emissions: 0.054 lb/hour 0.25	4. Synthetically ☐ Yes ☐	Limited? No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor: 2 grains S/100 scf gas		nissions ethod Code:
Reference: Emissions based on AP-42		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:	
tons/year	From: To:	
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitoring Perio	od:
tons/year	☐ 5 years ☐ 10 years	
10. Calculation of Emissions: 2 gr S/100 scf x 64/32 (MW SO2/S) x 1 lb/7,000 0.054 lb/hr x 8,760 hr / 2,000 lb = 0.23 TPY 11. Potential, Fugitive, and Actual Emissions Co		954 lb/hr

POLLUTANT DETAIL INFORMATION Page [3] of [6] Sulfur Dioxide - SO2

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Al	iowable Emissions Allowable Emissions	— °	OI
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3	Allowable Emissions and Units:	1	Equivalent Allowable Emissions:
5.	Anowable Emissions and Omits.	٦٠.	lb/hour tons/year
-	Method of Compliance:		
3.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):
	, -		
			· ·
Al	lowable Emissions Allowable Emissions	0	of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable
			Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:
	·		lb/hour tons/year
5.	Method of Compliance:		•
"	and the complication.		
_			
6.	Allowable Emissions Comment (Description	of (Operating Method):
All	lowable Emissions Allowable Emissions	0	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable
		l	Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:
		"	lb/hour tons/year
5	Method of Compliance:	<u> </u>	
٥,	Method of Comphance.		
6.	Allowable Emissions Comment (Description	of (Operating Method):

POLLUTANT DETAIL INFORMATION
Page [4] of [6]
Nitrogen Oxides - NOx

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Pollutant Emitted: Nitrogen Oxides - NOx	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions: 0.94 lb/hour 4.	1 tons/year		netically Limited? es 🛛 No
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):		
6. Emission Factor: 0.095 lb/MMBtu Reference: Emissions based on AP-42			7. Emissions Method Code:
	01	24 41-	Da.:!- 1.
8.a. Baseline Actual Emissions (if required):	8.b. Baseline		
tons/year	From:	•	0:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:
tons/year	☐ 5 yea	rs. 🗌 10	0 years
10. Calculation of Emissions: 0.095 lb/MMBtu x 9.9 MMBtu/hr = 0.94 lb/hr 0.94 lb/hr x 8,760 hr / 2,000 lb = 4.1 TPY 11. Potential, Fugitive, and Actual Emissions C	omment:		
111. Potential, Fugitive, and Actual Emissions C	omment:		

POLLUTANT DETAIL INFORMATION Page [4] of [6] Nitrogen Oxides - NOx

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

A	Iowable Emissions Allowable Emissions	— (or	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowa	ıble
			Emissions:	
-	Allowable Emissions and Units:	1	<u> </u>	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions	
	·		lb/hour t	tons/year
5.	Method of Compliance:			
	·			
	Allowable Foreignians Comment (Description	- 6		
0.	Allowable Emissions Comment (Description	OI	Operating Method):	
	•			
			·	
<u>Al</u>	lowable Emissions Allowable Emissions		of	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowa	ble
			Emissions:	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions	n•
١٠.	Allowable Limssions and Omis.	٦٠.	_	
			1D/nour t	ons/year
5.	Method of Compliance:			
6	Allowable Emissions Comment (Description	of (Operating Method):	
"		OI V	sperating interior).	
Al	lowable Emissions Allowable Emissions	C	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowa	ble
			Emissions:	
3.	Allowable Emissions and Units:	1	Equivalent Allowable Emissions	·
].	Anowable Emissions and Omits.	٦٠.	-	
			1D/nour	ons/year
5.	Method of Compliance:			
	·			
_	Allowable Emissions Comment (Description		2	
6.	Allowable Emissions Comment (Description	OI (operating Method):	
	•			

POLLUTANT DETAIL INFORMATION Page [5] of [6] Carbon Monoxide - CO

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

2 Otonian Estimated 1 agrero, and Daseine C			· · · · · · · · · · · · · · · · · · ·
Pollutant Emitted: Carbon Monoxide - CO	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions:			netically Limited?
0.79 lb/hour 3. 5	5 tons/year	│ □ Y	es 🛛 No
5. Range of Estimated Fugitive Emissions (as	s applicable):		
to tons/year			
6. Emission Factor: 0.08 lb/MMBtu			7. Emissions
Reference: Emissions based on AP-42			Method Code:
8.a. Baseline Actual Emissions (if required):	8.b. Baseline		
tons/year	From:		o:
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:
tons/year	☐ 5 yea	rs 🗌 10	0 years
10. Calculation of Emissions: 0.08 lb/MMBtu x 9.9 MMBtu/hr = 0.79 lb/hr 0.79 lb/hr x 8,760 hr / 2,000 lb = 3.5 TPY 11. Potential, Fugitive, and Actual Emissions Co	omment:		

POLLUTANT DETAIL INFORMATION Page [5] of [6] Carbon Monoxide - CO

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

A	iowable Emissions Allowable Emissions	<u> </u>	OI
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
	Allowable Emissions Comment (Description		
<u>Al</u>	lowable Emissions Allowable Emissions	c	of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
	Method of Compliance: Allowable Emissions Comment (Description	of (Operating Method):
<u> </u>			
AJ	lowable Emissions Allowable Emissions	°	of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):

POLLUTANT DETAIL INFORMATION Page [6] of [6] Volatile Organic Compounds - VOC

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Ottomai, Estimated Tugitive, and Dascine of	r rojecteu Ac	tuai Dillis	310113		
Pollutant Emitted: Volatile Organic Compounds - VOC	2. Total Perc	ent Efficie	ency of Control:		
3. Potential Emissions: 0.052 lb/hour 0.23	3 tons/year	4. Synth ⊠ Y	netically Limited?		
5. Range of Estimated Fugitive Emissions (as to tons/year	-				
6. Emission Factor: 0.005 lb/MMBtu Reference: Emissions based on AP-42			7. Emissions Method Code:		
	0.1 D. 11	0.4	<u> </u>		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:		
tons/year	From:	T	o:		
9.a. Projected Actual Emissions (if required):	9.b. Projected	1 Monitori	ng Period:		
tons/year			ŭ		
tons/year					
11. Potential, Fugitive, and Actual Emissions Co	omment:				

POLLUTANT DETAIL INFORMATION Page [6] of [6] Volatile Organic Compounds - VOC

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

AI	Allowable Emissions	<u> </u>	DI
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of	Operating Method):
Al	lowable Emissions Allowable Emissions	0	of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):
<u>Al</u>	lowable Emissions Allowable Emissions	(of
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	•	
6.	Allowable Emissions Comment (Description	of (Operating Method):

Section [1] Fuel Gas Heater

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1. Visible Emissions Subtype: VE20	Basis for Allowable Opacity: ⊠ Rule				
3. Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity Allowers	acceptional Conditions: 100 % 60 min/hour				
4. Method of Compliance: EPA Method 9					
5. Visible Emissions Comment: FDEP Rule 62 Excess emissions provided by Rule 62-210.7	2-296.320(4)(b)1, F.A.C., requires 20% opacity. 700(1), F.A.C.				
Visible Emissions Limitation: Visible Emissions Limitation of					
1. Visible Emissions Subtype:	2. Basis for Allowable Opacity: ☐ Rule ☐ Other				
3. Allowable Opacity: Normal Conditions: % Ex Maximum Period of Excess Opacity Allower	cceptional Conditions: % ed: min/hour				
4. Method of Compliance:					
5. Visible Emissions Comment:					
	•				

Section [1] Fuel Gas Heater

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitor of				
1.	Parameter Code:		2.	Pollutant(s):
3.	CMS Requirement:			Rule
4.	Monitor Information Manufacturer:	-		
	Model Number:			Serial Number:
5.	Installation Date:		6.	Performance Specification Test Date:
7.	Continuous Monitor Comment:			
Continuous Monitoring System: Continuous Monitor of				
<u>Co</u>	ntinuous Monitoring System: C	ontinuous	Mon	itor of
_	Parameter Code:	ontinuous		itor of Pollutant(s):
_		ontinuous	2.	<u> </u>
1.	Parameter Code:	ontinuous	2.	Pollutant(s):
1. 3.	Parameter Code: CMS Requirement: Monitor Information	ontinuous	2.	Pollutant(s):
1. 3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	ontinuous	2.	Pollutant(s): Rule
3. 4.	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	ontinuous	2.	Pollutant(s): Rule

Section [1] Fuel Gas Heater

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date 2/13/09
2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date 2/13/09
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
4.	Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
6.	Compliance Demonstration Reports/Records: Attached, Document ID:
	Test Date(s)/Pollutant(s) Tested:
	☐ Previously Submitted, Date:
	Test Date(s)/Pollutant(s) Tested:
	☐ To be Submitted, Date (if known):
	Test Date(s)/Pollutant(s) Tested:
	Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute: ☑ Attached, Document ID: 2/13/09 application ☐ Not Applicable

Section [1] Fuel Gas Heater

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.	. Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7), F.A.C.; 40 CFR 63.43(d) and (e)):			
	∴ Attached, Document ID: <u>2/13/09 applica</u>	ntion ☐ Not Applicable		
2.	Good Engineering Practice Stack Height Ar 212.500(4)(f), F.A.C.):	nalysis (Rules 62-212.400(4)(d) and 62-		
	Attached, Document ID:	Not Applicable		
3.	Description of Stack Sampling Facilities: (I only)	Required for proposed new stack sampling facilities		
	Attached, Document ID:	⊠ Not Applicable		
<u>A</u>	lditional Requirements for Title V Air Ope	eration Permit Applications		
1.	Identification of Applicable Requirements: ☐ Attached, Document ID:			
2.	Compliance Assurance Monitoring: Attached, Document ID:	☐ Not Applicable		
3.	Alternative Methods of Operation: Attached, Document ID:	☐ Not Applicable		
4.	Alternative Modes of Operation (Emissions ☐ Attached, Document ID:	Trading): ☐ Not Applicable		
Ac	Iditional Requirements Comment			
		·		

Section [2] Emergency Diesel Generator

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for an initial, revised or renewal Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for an air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised or renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes, and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this application that is subject to air construction permitting and for each such emissions unit that is a regulated or unregulated unit for purposes of Title V permitting. (An emissions unit may be exempt from air construction permitting but still be classified as an unregulated unit for Title V purposes.) Emissions units classified as insignificant for Title V purposes are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) Y:\Projects\2008\08387633 FPL CCEC-RBEC Conv SCAs\Reports\SCAs\RivBch\Air Pmt Mod 01-2012\RBEC_FPL_2_EU12_EmerGenA.docx Effective: 03/11/2010 14 11/2011

Section [2]

Emergency Diesel Generator

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)				
	☐ The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.				
	☐ The emissions unregulated en	unit addressed in this Entissions unit.	miss	sions Unit Informat	ion Section is an
En	nissions Unit Descr	ription and Status			
1.	Type of Emissions	Unit Addressed in this	Sec	tion: (Check one)	
					e emissions unit, a single
		luction unit, or activity,		-	
		ast one definable emissi	-	` `	
					e emissions unit, a group t one definable emission
		vent) but may also prod			
	☐ This Emissions	S Unit Information Section	on a	ddresses, as a singl	e emissions unit, one or
	more process o	or production units and a	ctiv	ities which produce	fugitive emissions only.
2.		issions Unit Addressed	in th	is Section:	
	Emergency Diesel	Generator			
	Y				
3.		entification Number: 4		T ::: 10:	To make the
4.	Emissions Unit Status Code:	5. Commence Construction	6.	Initial Startup Date:	7. Emissions Unit Major Group
	Status Code.	Date:		Date.	SIC Code:
	C	2011		2013	49
8.	Federal Program A	pplicability: (Check all	tha	t apply)	
	☐ Acid Rain Unit	t .			
	☐ CAIR Unit				
9.	Package Unit:				
	Manufacturer: Caterpillar Model Number:				
		ate Rating: 2.25 MW			
11.		ort with 2/13/09 application			
	equivalent). Inform	ation based on Caterpill	ar, 2	2,250-kW Diesel Ger	erator Set.

Section [2]

Emergency Diesel Generator

Emissions Unit Control Equipment/Method: Control 1 of 1

Control Equipment/Method Description: Good combustion practices - No. 2 fuel oil-fired.
Total Company Products Trong Products
2. Control Device or Method Code: N/A
Emissions Unit Control Equipment/Method: Control of
1. Control Equipment/Method Description:
2. Control Device or Method Code:
Emissions Unit Control Equipment/Method: Control of
1. Control Equipment/Method Description:
2. Control Device or Method Code:
Emissions Unit Control Equipment/Method: Control of
1. Control Equipment/Method Description:
2. Control Device or Method Code:

Section [2]

Emergency Diesel Generator

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Process or Throughp	ut Rate:	•
2.	Maximum Production Rate:		
3.	Maximum Heat Input Rate: 21.0	01 million Btu/hr	
4.	Maximum Incineration Rate:	pounds/hr	
		tons/day	
5.	Requested Maximum Operating	Schedule:	
	·	24 hours/day	7 days/week
		52 weeks/year	100 hours/year
6.	Operating Capacity/Schedule Co The emergency generators will and maintenance. The emergen Subpart IIII.	normally be operated 1 to 2	
6.	The emergency generators will and maintenance. The emergen	normally be operated 1 to 2	
6.	The emergency generators will and maintenance. The emergen	normally be operated 1 to 2	
6.	The emergency generators will and maintenance. The emergen	normally be operated 1 to 2	
6.	The emergency generators will and maintenance. The emergen	normally be operated 1 to 2	

Section [2]

Emergency Diesel Generator

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

Identification of Point on Flow Diagram:			Type Code:
3. Descriptions of Emission	. Descriptions of Emission Points Comprising		for VE Tracking:
4. ID Numbers or Descriptio	ns of Emission Ui	nits with this Emission	n Point in Common:
5. Discharge Type Code: v	6. Stack Height 30 feet	:	7. Exit Diameter: 1 feet
8. Exit Temperature: 916°F	9. Actual Volum 17,463 acfm	metric Flow Rate:	10. Water Vapor: %
11. Maximum Dry Standard F dscfm	low Rate:	12. Nonstack Emiss feet	ion Point Height:
13. Emission Point UTM Coo Zone: East (km):		Latitude (DD/M	· ·
North (km) 15. Emission Point Comments See revised Table 2-5.		Longitude (DD/I	MM/SS)

EMISSIONS UNIT INFORMATION Section [2]

Section [2] Emergency Diesel Generator

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 1

	Segment Description (Process/Fuel Type): Diesel fuel combustion				
2. Source	e Classification Cod	e (SCC):	3. SCC Units: 1,000 gallor		
4. Maxin	num Hourly Rate:	5. Maximum 15.6	Annual Rate:	6.	Estimated Annual Activity Factor:
7. Maxir	num % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit: 135.1
10. Segme	ent Comment:				
				•	
Segment 1	Description and Ra	ite: Segment	of		
1. Segme	ent Description (Prod	cess/Fuel Type):			
		•	1		
2. Source	e Classification Code	e (SCC):	3. SCC Units:		
4. Maxin	num Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:
7. Maxin	num % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:
10. Segme	ent Comment:	<u> </u>		·	
				_	

Section [2]

Emergency Diesel Generator

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Poll	utant Emitted	2. Primary Control	3. Secondary Control	4. Pollutant
		Device Code	Device Code	Regulatory Code
PM		Fuel quality		EL
PM1	0 .	Fuel quality		EL
SO2		Fuel quality		EL
NOx		Fuel quality	-	EL _.
CO	· · · · · · · · · · · · · · · · · · ·	Good combustion		EL
Voc		Good combustion		EL
				•
	· · · · · · · · · · · · · · · · · · ·			
			·	
<u> </u>				

POLLUTANT DETAIL INFORMATION
Page [1] of [6]
Particulate Matter Total - PM

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

	A	00 . 1		
Pollutant Emitted: Particulate Matter Total - PM	2. Total Percent Effic	ency of Control:		
3. Potential Emissions:	4. Syn	hetically Limited?		
2.8 lb/hour 0.14	tons/year	Yes □ No		
5. Range of Estimated Fugitive Emissions (as	applicable):			
to tons/year	·.			
6. Emission Factor: 0.4 grams per horsepower	-hour (g/hp-hr)	7. Emissions Method Code:		
Reference: Manufacturer certificat	ion	2		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-mont	h Period:		
tons/year	From:	Го:		
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitor	ing Period:		
tons/year	☐ 5 years ☐	0 years		
10. Calculation of Emissions: Emissions are for one generator. See revise	d Table 2-5.			
••				
11. Potential, Fugitive, and Actual Emissions Comment:				
	•			

POLLUTANT DETAIL INFORMATION
Page [1] of [6]
Particulate Matter Total - PM

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable		
	<u></u>		Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:		
	0.4 g/hp-hr		2.8 lb/hour 0.14 tons/year		
5.	Method of Compliance: Manufacturer certification of Subpart IIII				
6.	Allowable Emissions Comment (Description	of	Operating Method):		
All	owable Emissions Allowable Emissions	(of		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:		
. 3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:		
			lb/hour tons/yea	ar	
5.	Method of Compliance:				
6.	6. Allowable Emissions Comment (Description of Operating Method):				
<u>All</u>	owable Emissions Allowable Emissions	c	of		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions:		
			lb/hour tons/yea	ır	
5.	Method of Compliance:				
6.	6. Allowable Emissions Comment (Description of Operating Method):				

POLLUTANT DETAIL INFORMATION Page [2] of [6] Particulate Matter Total - PM10

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Pollutant Emitted: Particulate Matter Total - PM10	2. Total Percent Efficiency of Control:
3. Potential Emissions: 2.8 lb/hour 0.14	4. Synthetically Limited? ✓ Yes ☐ No
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):
6. Emission Factor: 0.4 grams per horsepower Reference: Manufacturer certificat	Method Code:
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:
tons/year	From: To:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitoring Period: ☐ 5 years ☐ 10 years
10. Calculation of Emissions: Emissions are for one generator. See revised	
,	
·	
11. Potential, Fugitive, and Actual Emissions Co	omment:

POLLUTANT DETAIL INFORMATION
Page [2] of [6]
Particulate Matter Total - PM10

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units: 0.4 g/hp-hr	4. Equivalent Allowable Emissions: 2.8 lb/hour 0.14 tons/year			
5.	Method of Compliance: Manufacturer certification of Subpart IIII				
6.	. Allowable Emissions Comment (Description of Operating Method):				
<u>Al</u>	lowable Emissions Allowable Emissions	of			
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:			
		lb/hour tons/year			
5.	Method of Compliance:				
6.	Allowable Emissions Comment (Description of Operating Method):				
=	owable Emissions Allowable Emissions				
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:				
6.	6. Allowable Emissions Comment (Description of Operating Method):				

POLLUTANT DETAIL INFORMATION Page [3] of [6] Sulfur Dioxide - SO2

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

	2 2 2 3 0 0 0 0 0 1 2 0 0 0 0 0 0	
1. Pollutant Emitted: Sulfur Dioxide - SO2	2. Total Percent I	Efficiency of Control:
3. Potential Emissions:	4.	Synthetically Limited?
	2 tons/year	⊠ Yes □ No
5. Range of Estimated Fugitive Emissions (as	applicable):	
to tons/year		
6. Emission Factor: 0.0015% S fuel oil		7. Emissions
		Method Code:
Reference: FPL, 2008.		2
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-n	nonth Period:
tons/year	From:	To:
9.a. Projected Actual Emissions (if required):	9.b. Projected Mo	nitoring Period:
tons/year	☐ 5 years	☐ 10 years
10.0.1.1.4. CP : :	<u> </u>	•
10. Calculation of Emissions:		
Emissions are for one generator. See revise	d Table 2-5.	
11. Potential, Fugitive, and Actual Emissions Comment:		
,		
I .		

POLLUTANT DETAIL INFORMATION Page [3] of [6] Sulfur Dioxide - SO2

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units: 0.0015% S fuel oil	4.	Equivalent Allowable En 0.03 lb/hour	nissions: 0.002 tons/year
5.	Method of Compliance: Fuel vendor information			
6.	Allowable Emissions Comment (Description	of (Operating Method):	
. <u>Al</u>	lowable Emissions Allowable Emissions	c	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable En lb/hour	nissions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	
Al	lowable Emissions Allowable Emissions	0	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable En lb/hour	nissions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

POLLUTANT DETAIL INFORMATION
Page [4] of [6]
Nitrogen Oxides - NOx

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1 Otential, Estimated Tugitive, and Baseline C		the Line	
1. Pollutant Emitted:	2. Total Perce	ent Efficie	ency of Control:
Nitrogen Oxides - NOx			
3. Potential Emissions:		-	etically Limited?
48.7 lb/hour 2.4 3	tons/year	$\boxtimes Y$	es 🗌 No
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: 6.9 grams per horsepower	-hour (g/hp-hr)		7. Emissions
			Method Code:
Reference: Manufacturer certific	ation		2
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	T	0:
9.a. Projected Actual Emissions (if required):	9.b. Projected	Monitori	ng Period:
tons/year	☐ 5 year	rs 🗌 10) years
10. Calculation of Emissions:			
Emissions are for one generator. See revise	d Table 2.5		
Limbsions are for one generator. See revised	u Table 2-J.		
	• .		
·			
·			
11. Potential, Fugitive, and Actual Emissions Comment:			
			•

POLLUTANT DETAIL INFORMATION Page [4] of [6] Nitrogen Oxides - NOx

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

	Allowable Emissions	Allowable	Emissions	10	of.	1
--	----------------------------	-----------	------------------	----	-----	---

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of Emissions:	of Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable I	
	6.9 g/hp-hr		48.7 lb/hour	2.43 tons/year
5.	Method of Compliance: Manufacturer certification of Subpart IIII			
6.	Allowable Emissions Comment (Description	of	Operating Method):	
	· .			
<u>A</u> 1	lowable Emissions Allowable Emissions			
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	of Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable I	Emissions:
			lb/hour	tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	
<u>Al</u>	lowable Emissions Allowable Emissions		f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	f Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable I lb/hour	Emissions: tons/year
5.	Method of Compliance:	•		
6.	Allowable Emissions Comment (Description	of (Operating Method):	

POLLUTANT DETAIL INFORMATION
Page [5] of [6]
Carbon Monoxide - CO

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Pollutant Emitted: Carbon Monoxide - CO	2. Total Perc	ent Efficie	ency of Control:
3. Potential Emissions: 60.0 lb/hour 3.0	tons/year	4. Synth ✓ Y	netically Limited? es
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):		
6. Emission Factor: 8.5 grams per horsepower Reference: Manufacturer certific			7. Emissions Method Code: 2
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:
tons/year	From:	T	
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitori	ng Period:
tons/year	☐ 5 yea) years
10. Calculation of Emissions: Emissions are for one generator. See revised 11. Potential, Fugitive, and Actual Emissions Co	d Table 2-5.		
11. Potential, Fugitive, and Actual Emissions Co	omment:		

POLLUTANT DETAIL INFORMATION Page [5] of [6] Carbon Monoxide - CO

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 1

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 8.5 g/hp-hr	4. Equivalent Allowable Emissions: 60.0 lb/hour 3.0 tons/year
5. Method of Compliance: Manufacturer certification of Subpart IIII	
6. Allowable Emissions Comment (Description	n of Operating Method):
Allowable Emissions Allowable Emissions	of
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	n of Operating Method):
Allowable Emissions Allowable Emissions	of
Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Descriptio	n of Operating Method):

POLLUTANT DETAIL INFORMATION
Page [6] of [6]
Volatile Organic Compounds - VOC

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

Pollutant Emitted: Volatile Organic Compounds - VOC	2. Total Percent Efficient	ency of Control:
3. Potential Emissions: 7.1 lb/hour 0.39	4. Syntl	netically Limited? Tes No
5. Range of Estimated Fugitive Emissions (as to tons/year	s applicable):	
6. Emission Factor: 1.0 gram per horsepower-l Reference: Manufacturer certifi		7. Emissions Method Code: 2
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month	Period:
tons/year	From: T	o:
9.a. Projected Actual Emissions (if required):	9.b. Projected Monitori	ng Period:
tons/year	☐ 5 years ☐ 1	0 years
10. Calculation of Emissions: Emissions are for one generator. See revise 11. Potential Engitive and Actual Emissions Company Compan		
11. Potential, Fugitive, and Actual Emissions Co	omment:	
	·	

Section [2] Emergency Diesel Generator

POLLUTANT DETAIL INFORMATION Page [6] of [6] Volatile Organic Compounds - VOC

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 1.0 g/hp-hr	4. Equivalent Allowable Emissions: 7.1 lb/hour 0.35 tons/year
5.	Method of Compliance: Manufacturer certification of Subpart IIII	
6.	Allowable Emissions Comment (Description	of Operating Method):
Al	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	of Operating Method):
Al	lowable Emissions Allowable Emissions	of
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:	
6.	Allowable Emissions Comment (Description	of Operating Method):

Section [2]

Emergency Diesel Generator

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 2

1.	Visible Emissions Subtype: VE20	2. Basis for Allowable ⊠ Rule	Opacity:
3.	Allowable Opacity: Normal Conditions: 20 % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions:	100 % 60 min/hour
4.	Method of Compliance: EPA Method 9		
5.	Visible Emissions Comment: FDEP Rule 62 Excess emissions provided by Rule 62-210.7		quires 20% opacity.
Vi	sible Emissions Limitation: Visible Emissi	ons Limitation <u>2</u> of <u>2</u>	
1.	Visible Emissions Subtype: VE10	2. Basis for Allowable ☐ Rule	Opacity: ☑ Other
3.	Allowable Opacity: Normal Conditions: 10 % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions:	% min/hour
4.	Method of Compliance: EPA Method 9		
5.	Visible Emissions Comment: Proposed as	emission limit for PM/PM1	

Section [2]

Emergency Diesel Generator

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

\overline{c}	ontinuous Monitoring System: Continuous	
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	☐ Rule ☐ Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	
	·	
<u>Co</u>	ontinuous Monitoring System: Continuous	Monitor of
	Parameter Code:	Monitor of 2. Pollutant(s):
	· · · · · · · · · · · · · · · · · · ·	·
1.	Parameter Code: CMS Requirement: Monitor Information	2. Pollutant(s):
3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. Pollutant(s): Rule Other
3.	Parameter Code: CMS Requirement: Monitor Information	2. Pollutant(s): □ Rule □ Other Serial Number:
1. 3. 4.	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other
1. 3. 4.	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:
 3. 4. 5. 	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	2. Pollutant(s): Rule Other Serial Number:

Section [2]

Emergency Diesel Generator

I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
2.	Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
4.	Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
_	Not Applicable (construction application)
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
6.	Compliance Demonstration Reports/Records:
l	Attached, Document ID:
	Test Date(s)/Pollutant(s) Tested:
	☐ Previously Submitted, Date:
	Test Date(s)/Pollutant(s) Tested:
	☐ To be Submitted, Date (if known):
	Test Date(s)/Pollutant(s) Tested:
	Not Applicable Not Applicable
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute:

Section [2]

Emergency Diesel Generator

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (F.A.C.; 40 CFR 63.43(d) and (e)):	Rules 62-212.400(10)	and 62-212.500(7),
	∴ Attached, Document ID: 2/13/09 applica	ation	☐ Not Applicable
2.	Good Engineering Practice Stack Height At 212.500(4)(f), F.A.C.): Attached, Document ID:		400(4)(d) and 62-
3.	Description of Stack Sampling Facilities: (only)		ew stack sampling facilities
	Attached, Document ID:		
Ac	lditional Requirements for Title V Air Op	eration Permit Appli	cations
1.	Identification of Applicable Requirements: ☐ Attached, Document ID:		
2.	Compliance Assurance Monitoring: Attached, Document ID:	☐ Not Applicable	
3.	Alternative Methods of Operation: Attached, Document ID:	☐ Not Applicable	
4.	Alternative Modes of Operation (Emissions Attached, Document ID:	Trading): Not Applicable	
Ad	Iditional Requirements Comment		
			·
		•	

ATTACHMENT 1

FPL Comments for AC Permit Modification Riviera Beach Energy Center Project DEP File No. 0990042-006-AC

Emission Unit Description (page 2 of 24)

FPL suggests the facility description be modified as follows:

ID Emission Unit Description

007	Unit 5A – one nominal 265 MW CTG with supplementary-fired HRSG
800	Unit 5B – one nominal 265 MW CTG with supplementary-fired HRSG
009	Unit 5C – one nominal 265 MW CTG with supplementary-fired HRSG
010	One nominal 85,000 pounds per hour (lb/hr) auxiliary boiler (99.8 mmBtu/hr)
011	Two nominal 40 9.9 mmBtu/hr natural gas-fired process heaters (one is a spare)
012	Seven nominal 1,340 horsepower (hp) natural gas compressors
013	Two nominal 2,250 kilowatts (kW) liquid fueled emergency generators
014	One nominal 300-hp emergency diesel fire pump engine and 500 gallon fuel oil storage tank
015	One temporary 110 mmBtu/hr natural gas-fueled boiler to be used only during construction
016	One nominal 6.3 million gallon distillate fuel oil storage tank

Emission Unit 007 – 009 (Gas Turbines 5A, 5B, 5C) Excess Emissions

A.12 Alternate Visible Emission Standard

FPL proposes to modify condition 12 to include allowable visible emissions for fuel switches as follows:

12. Alternate Visible Emissions Standard: Visible emissions due to startups, shutdowns, <u>fuel switches</u> and malfunctions shall not exceed 10% opacity except for up to ten, 6-minute averaging periods during a calendar day, which shall not exceed 20% opacity. [Applicant Request and Rule 62-4.070(3), F.A.C.]

A.15 Excess Emission Allowed

FPL proposes to modify condition 15 in a manner consistent with its WCEC Air Construction permit as follows:

15. Excess Emissions Allowed: As specified in this condition, excess emissions resulting from startup, shutdown, fuel switching and documented malfunctions are allowed provided that operators employ the best operational practices to minimize the amount and duration of emissions during such incidents. For each CTG/HRSG system, NOX and CO emission data exclusions resulting from startup, shutdown, or documented malfunctions shall not exceed two hours in any 24 hour period except for the specific cases listed below. For each gas turbine/HRSG System, excess emissions of NOx and CO resulting from startup, shutdown, or malfunction shall be excluded from CEMS data in any 24-hour period ("any 24-hour period" means a calendar day, midnight to midnight) for the following conditions (These conditions are considered separate events and each event may occur independently within any 24 hour period): A "documented malfunction" means a malfunction that is documented within one working day of detection by contacting the Compliance Authority by telephone, facsimile transmittal, or electronic mail.

a. <u>STG/HRSG System Cold Startup:</u> Steam Turbine Cold Startup: For cold startup of the steam turbine system, NOX and CO emission data exclusions for any CTG/HRSG system shall not exceed eight (8) hours in any 24 hour period. A cold "startup of the steam turbine system" is defined as startup of the 3-on 1 combined cycle system following a shutdown of the steam turbine lasting at least 48 hours. For cold startup of the steam turbine, excluded emissions from any gas turbine/HRSG system shall not exceed eight hours in any 24-hour period. A cold "startup of the steam turbine" is defined as startup of the 3-on-1 combined cycle system following a shutdown of the steam turbine lasting at least 48 hours.

{Permitting note: During a cold startup of the STG system steam turbine, each CTG-gas turbine/HRSG system is sequentially brought on line at low load to gradually increase the temperature of the STG steam-electrical turbine and prevent thermal metal fatigue. Note that shutdowns and documented malfunctions are separately regulated in accordance with the requirements of this condition.}

- b. Shutdown Steam Turbine System Shutdown Combined Cycle Operation: For shutdown of steam turbine system, NOX and CO emission data exclusions for any CTG/HRSG system shall not exceed three (3) hours in any 24 hour period. For shutdown of the combined cycle operation, excluded emissions from any gas turbine/HRSG system shall not exceed three hours in any 24-hour period.
- c. CTG/HRSG System Cold Startup Gas Turbine/HRSG System Cold Startup. For cold startup of a CTG-gas turbine/HRSG system, NOx and CO emission data exclusions excluded emissions shall not exceed four (4) hours in any 24-hour period. "Cold startup of a CTG/HRSG gas turbine/HRSG system" is defined as a startup after the pressure in the high-pressure (HP) steam drum falls below 450 pounds per square inch gauge (psig) for at least a one-hour period.
- d. Fuel Switching: For fuel switching, NOX and CO emission data exclusions shall not exceed two (2) hours in any 24 hour period. For fuel switching, excluded emissions shall not exceed 2 hours in any 24-hour period for each fuel switch and no more than four hours in any 24-hour period for any gas turbine/HRSG system.
- e. <u>Gas Turbine/HRSG System Warm Startup</u>. For warm startup of a gas turbine/HRSG system, excluded emissions shall not exceed two hours in any 24-hour period. "Warm startup of a gas turbine/HRSG system" is defined as a startup after the pressure in the high-pressure (HP) steam drum is above 450 psig.
- f. <u>Gas Turbine/HRSG System Shutdown</u>. For shutdown of the gas turbine/HRSG operation, excluded emissions from any gas turbine/HRSG system shall not exceed two hours in any 24-hour period.
- g. Documented Malfunction. For the gas turbine/HRSG system, excess emissions of NOx and CO resulting from documented malfunctions shall not exceed two hours in any 24-hour period. A "documented malfunction" means a malfunction that is documented within one working day of detection by contacting the Compliance Authority by telephone, facsimile transmittal, or electronic mail.

A.17 DLN Tuning

FPL proposes to amend condition 17 to include Full Speed No Load Trip Tests that are manufacturer required for allowable exclusions of emission data for CEMS data exclusions. FPL must perform the FSNL test following routine replacement of major combustion turbine components to retain manufacturer warranties. FPL suggests that the current language of the first part of the condition be modified as follows:

17. DLN Tuning: CEMS data collected during initial or other major DLN tuning sessions <u>and during</u> <u>manufacturer required Full Speed No Load (FSNL) trip tests</u> may be excluded by the permittee from the CEMS compliance demonstration provided the tuning session is performed in accordance with the manufacturer's specifications. A "major tuning session" may occur after completion of initial construction, a major repair, or

other similar circumstances. Prior to performing any major tuning session, where the intent is to exclude data from the CEMS compliance demonstration, the permittee shall provide the Compliance Authority with an advance notice of at least 7 days one working (business) day that details the activity and proposed tuning schedule. The notice may be by telephone, facsimile transmittal, or electronic mail.

[Design; Rule 62-4.070(3), F.A.C.]

A.23 Continuous Emission Monitoring Systems (CEMS).

FPL requests modification to the CO monitoring provisions to allow the use of Part 75 monitoring requirements. FPL proposes to modify the existing requirement as follows:

a. CO Monitors: CO Monitors: The CO monitors shall be certified pursuant to 40 CFR 60, Appendix B, Performance Specification 4 or 4A within 60 calendar days of achieving permitted capacity as defined in Rule 62-297.310(2), F.A.C., but no later than 180 calendar days after initial startup. Quality assurance procedures shall conform to the requirements of 40 CFR 60, Appendix F, or 40 CFR Part 75, and the Data Assessment Report in Section 7 shall be made each calendar quarter, and reported semiannually to the Compliance Authority. The RATA tests required for the CO monitor shall be performed using EPA Method 10 in Appendix A of 40 CFR 60 and shall be based on a continuous sampling train. The CO monitor span values shall be set appropriately considering the allowable methods of operation and corresponding emission standards.

A.30 Excess Emission Reporting

FPL proposes to clarify excess emission reporting under BACT requirements and the applicable emission specification for these units under 40 CFR part 60 Subpart KKKK by modifying the section as follows:

- a. Malfunction Notification: If emissions in excess of a standard (subject to the specified averaging period) occur due to malfunction, the permittee shall notify the Compliance Authority within (1) working day of: the nature, extent, and duration of the excess emissions; the cause of the excess emissions; and the actions taken to correct the problem. In addition, the Department may request a written summary report of the incident.
- b. SIP Quarterly Permit Limits Excess Emissions Report: Within 30 days following the end of each calendar-quarter, the permittee shall submit a report to the Compliance Authority summarizing periods of CO and NOX emissions in excess of the <u>BACT</u> permit emission standards, and the amounts of authorized data excluded following the <u>NSPS</u>-format in <u>Figure XSE</u> attached to this permit. 40 CFR 60.7(e), Subpart A. Periods of startup, shutdown, and malfunction, <u>fuel switching and tuning</u> shall be monitored, recorded and recorded at all times reported as excess emissions when emission levels exceed the standards specified in this permit. In addition, the report shall summarize the CEMS systems monitor availability for the previous quarter.
- c. NSPS Semi-Annual Excess Emissions Reports: For purposes of reporting emissions in excess of NSPS Subpart KKKK, excess emissions from the CTG are defined as: a specified averaging period over which either the NOX emissions are higher than the applicable emission limit in 40 CFR 60.4320 greater than 15 ppm at 15% O₂ on a 30-day rolling average while firing natural gas and greater than 42 ppm at 15% O₂ on a 30-day rolling average while firing ultra low sulfur distillate; or the total sulfur content of the fuel being combusted in the affected facility exceeds the limit specified in 60.4330. Within thirty (30) days following each calendar semi-annual period, the permittee shall submit a report on any periods of excess emissions that occurred during the previous semi-annual period to the Compliance Authority.

Emission Unit 011 (Process Heaters)

FPL believes that emission limits for each process heater could be removed from the permit. FPL intends to install two 9.9 MMBtu/Hr heaters in place of the 10 mmBtu/hr heaters originally permitted for the site. The 9.9 mmBtu/hr heaters are not regulated sources under either 40 CFR Part 60 or Part 63 and do not have applicable emission specifications. FPL understands that the department may impose BACT limits on major sources, or major modifications, under the PSD requirements of 62-212.400 but recommends the Department remove the condition from the permit. FPL suggests the department modify the permit as follows:

ID	Emission Unit Description
011	Two nominal 10 9.9 mmBtu/hr natural gas-fired process heaters (one is a spare)

- 3. NSPS Subpart Dc Applicability: Each process heater is subject to all applicable requirements of 40 CFR 60, Subpart Dc which applies to Small Industrial, Commercial, or Institutional Boiler. Specifically, each emission unit shall comply with 40 CFR60.48c Reporting and Recordkeeping Requirements. [40 CFR 60, NSPS-Subpart Dc Standards of Performance for Small Industrial Commercial Institutional Steam Generating Units, attached as Appendix Dc]
- 4. Emission Limits: Each natural gas fired process heater shall comply with the following emission limits.

NOx	CO .	VOC, SO ₂ , PM/PM ₁₀
0.095 lb/mmBtu	0.08 lb/mmBtu	2 gr S/100 SCF natural gas spec and 10% Opacity

[Applicant request; Rule 62 4.070(3), F.A.C.]

{Permitting note: There are no Subpart Dc emission standards for gas-fired process heaters fueled by natural gas.}

5. Testing Requirements: Each unit shall be stack tested to demonstrate initial compliance with the emission standards for CO, NOX and visible emissions. The tests shall be conducted within 60 days after achieving the maximum production rate at which the unit will be operated, but not later than 180 days after the initial startup. As an alternative, a Manufacturer certification of emissions characteristics of the purchased model that are at least as stringent as the emission limits values can be used to fulfill this requirement. [Rule 62-297.310(7)(a)1, F.A.C.]

Test Methods: Any required tests shall be performed in accordance with the following reference methods.

Method	Description of Method and Comments
7E	Determination of Nitrogen Oxide Emissions from Stationary Sources
9	Visual Determination of the Opacity of Emissions from Stationary Sources
10	Determination of Carbon Monoxide Emissions from Stationary Sources

6. Notification, Recordkeeping and Reporting Requirements: The permittee shall maintain records of the amount of natural gas used in the process heaters. and shall comply with the notification, recordkeeping and reporting requirements pursuant to 40 CFR 60.48c and 40 CFR 60.7. These records shall be submitted to the Compliance Authority on an annual basis or upon request. [Rule 62-4.070(3), F.A.C.; 40 CFR 60, Subparts A and De]

Emission Unit 013 (Emergency Generators)

Two nominal 2,250 kilowatts (kW) liquid fueled emergency generators

FPL proposes that the hours of operation requirement for the diesel generators conform to 40 CFR 63, Subpart ZZZZ and 40 CFR 60, Subpart IIII with a limit on operation for testing and maintenance checks not to exceed 100 hours and unlimited operation for the emergency use.FPL suggests the requirement be reworded as follows:

2. <u>Hours of Operation and Fuel Specifications:</u> The hours of operation shall not exceed 160 hours per year per generator. 100 hours per year for each engine for the purpose of maintenance checks and readiness testing with unlimited operation for emergency use.

FIGURE XSE

QUARTERLY EXCESS EMISSIONS AND MONITORING REPORT FOR SIP-ONLY STANDARDS FPL

Company:	Plant Name:
Address:	·
Emissions Unit ID No Description:	
Pollutant (check one): CO NOx Emission Limitation: _	·
Reporting period: Q1 (Jan March) Q2 (April - June) _	Q3 (July - Sept.) Q4 (Oct Dec.)
Year:	
Monitor Manufacturer:	
Model No.:	<u> </u>
Date of Latest CEMS Certification or Audit:	
Total emissions unit operating time in reporting period1:	hours
Excluded Emission Data Summary ¹	CEMS Performance Summary ^{1, 5}
1. Duration of excluded emissions due to:	1. CEMS downtime due to:
a. ST Cold Startup ²	a. Monitor equipment malfunctions
b. GT/HRSG Cold Startup ²	b. Non-Monitor equipment malfunctions
c. GT/HRSG Warm Startup ²	c. Quality assurance calibration
d. Shutdown	d. Other known causes
e. Fuel Switching	e. Unknown causes
f. Documented Malfunction	2. Total CEMS Downtime
g. Tuning	3. Total CEMS Downtime x (100%) / [Total source
h. Total Authorized Data Excluded	operating time]
2. Total duration of excluded emissions x (100%) / [Total	
source operating time]%	
3. Number of Compliance Averages > Limit ³	
	ermit, identify the number of non-compliant averages for the quarter. In average and describe the circumstances causing the exceedance ing time, the permittee shall also submit a report identifying the and the corrective actions planned for the next quarter. equipment or control equipment since the last quarterly report.
Name:	
Title:	
Signature:	Date:

TABLE 2-5 (REVISED JANUARY 2012) PERFORMANCE AND EMISSION DATA FOR THE EMERGENCY GENERATORS

Paramet	er '	Emergency Generator
Perform	ance	
	r of Units	2
Rating		2,250
Rating		3,200
Fuel	,	Diesel
Fuel He	eat content (Btu/lb) (HHV)	19,300
Fuel de	nsity (lb/gal)	7.0
Heat in	put (MMBtu/hr) (HHV)	21.01
Fuel us	age (gallons/hr)	155.5
Maximu	ım operation (hours)	100
Maximu	ım fuel usage (gallons/yr)	15,550
	arameters (typical)	
Diamete	* *	1.0
Height		30
-	rature (°F)	916
Flow (a	cfm)	17,463
<u>Emissio</u>		
SO ₂ -	Basis (%S)	0.0015%
	Conversion of S to SO ₂	100
	Molecular weight SO ₂ / S (64/32)	2
	Emission rate (lb/hr)	0.03
	(tpy)- one unit	0.002
	(tpy)- total units	0.003
NO _x -	Basis (g/hp-hr)	6.9
	Emission rate (lb/hr)	48.7
	(tpy)- one unit	2.43
	(tpy)- total units	4.87
CO -	Basis (g/hp-hr)	8.5
	Emission rate (lb/hr)	60.0
	(tpy)- one unit	3.00
	(tpy)- total units	6.00
VOC -	Basis (g/hp-hr)	1.0
	Emission rate (lb/hr)	7.1
	(tpy)- one unit	0.35
	(tpy)- total units	0.71
PM/PM ₁₀	_o - Basis (g/hp-hr)	0.4
	Emission rate (lb/hr)	2.8
	(tpy)- one unit	0.14
	(tpy)- total units	0.28

Sources: FPL, 2012; Golder; 2012.

TABLE 2-6 (REVISED JANUARY 2012) PERFORMANCE, STACK PARAMETERS, AND EMISSIONS FOR THE NATURAL GAS FUEL HEATER

Parameter	Natural Gas Heater				
Performance ^a					
Fuel Usage (scf/hr-gas)	9,384				
Heat Input (MMBtu/hr-HHV)	9.9				
Hours per Year	8,760				
Maximum Fuel Usage (MMscf/yr)	82.2				
Number of Units	1				
Stack Parameters (typical)					
Diameter (ft)	1.42				
Height (ft)	30				
Temperature (⁰F)	500				
Velocity (ft/sec)	51.6				
Flow (acfm)	4,901				
<u>Emissions</u>					
SO ₂ -Basis (grains S/100 scf-gas) ^b	2				
(lb/hr)	0.054				
(lb/MMBtu)	0.0054				
(tpy) - one unit	0.23				
(tpy) - total units	0.23				
NO _x - (lb/MMscf) ^c	100				
(lb/hr)	0.94				
(lb/MMBtu)	0.095				
(tpy) - one unit	4.1				
(tpy) - total units	4.1				
CO - (lb/MMscf) ^c	84				
(lb/hr)	0.79				
(lb/MMBtu)	0.080				
(tpy) - one unit	3.45				
(tpy) - total units	3.45				
VOC - (lb/MMscf) ^c	5.5				
(lb/hr)	0.052				
(lb/MMBtu)	0.005				
(tpy) - one unit	0.23				
(tpy) - total units	0.23				
PM/PM10 - (lb/MMscf) ^d	1.9				
(lb/hr)	0.02				
(lb/MMBtu)	0.002				
(tpy) - one unit	0.08				
(tpy) - total units	0.08				

Note: Project will also have spare heater.

^a Based on 10 MMBtu/hr (HHV) indirect gas heaters from Hanover Compression Company or equivalent.

^b Typical maximum for natural gas.

^c EPA, AP-42 Table 1.4-1 using small boilers < 100 MMBtu.hr and Table 1.4-2.

^d EPA, AP-42 Table 1.4-2 Filterable PM.

TABLE 2-9B (REVISED JANUARY 2012)
SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR THE RBEC CONVERSION PROJECT, SIEMENS H CTS

		RBEC Conve um Potential A	Netting Calculat							
Pollutant	3 CTs/HRSGs with Duct Burners	2 Emergency Generators	1 Natural Gas Heater	7 Gas Compressors	Fuel Oil Storage Tank	Fire Pump Engine	TOTAL	Maximum 2-Year Average from Existing Units ^a (TPY)	Change (TPY)	PSD Significant Emission Rate (TPY)
SO ₂	201	0.003	0.23	1.74	NA	0.00014	203	10,999	-10,796	40
ΡM	185	0.28	0.08	3.10	NA	0.011	189	889	-700	25
PM ₁₀	185	0.28	0.08	3.10	NA	0.011	189	889	-700	15
NO _x	358	4.9	4.11	135.9	NA	0.18	503	3,752	-3,250	40
co	511	6.0	3.45	8.6	NA	0.069	529	560	-30.4	100
VOC (as methane)	77.1	0.71 -	0.23	14.0	2.80	0.026	94.9	59.4	35.6	40
Sulfuric Acid Mist	40.9	Neg.	Neg.	Neg.	NA	Neg.	40.9	489	-448	7
Lead	0.050	Neg.	Neg.	Neg.	NA	Neg.	0.050	0.12	-0.066	0.6

^a Based on actual emissions from Annual Operating Reports from 2003-2007.

1,000 hours per CT/HRSG.

Note: Neg.= negligible; NA= not applicable

Source: Golder, 2012.

^b Based on oil-firing for:

TABLE A-1-SH
DESIGN INFORMATION AND STACK PARAMETERS FOR THE CONVERSION PROJECT
SIEMENS H CT, DRY LOW NO, COMBUSTOR, NATURAL GAS, BASE LOAD

			Only		CT with Duct Burner					
.		Turbine Inle			Turbine Inlet Temperature 35 °F w/DB 59 °F w/DB 75 °F w/DB 95 °F w/DB					
Parameter	35 °F	. 59 °F	75 °F	95 °F	35 °F w/DB	59 °F W/DB	75 °F W/DB	95 °F W/DB		
Combustion Turbine Performance										
Heat Input (MMBtu/hr, LHV)	2,421	2,320	2,230	2,137	2,421	2,320	2,230	2,137		
(MMBtu/hr, HHV)	2,689	2,577	2,477	2,374	2,689	2,577	2,477	2,374		
Evaporative Cooler	Off	On	On	On	Off	On	On	On		
Relative Humidity (%)	60	60	60	50	60	60	60	50		
Fuel heating value (Btu/lb, LHV)	21,511	21,511	21,511	21,511	21,511	21,511	21,511	21,511		
(Btu/lb, HHV)	23,893	23,893	23,893	23,893	23,893	23,893	23,893	23,893		
(HHV/LHV)	1.111	1.111	1.111	1.111	1.111	1.111	1.111	1.111		
Steam Flow (lb/hr)	NA	NA	NA	NA	NA	NA	NA	NA		
Duct Burner (DB)										
Heat input (MMBtu/hr, HHV)	0	0	0	0	475	475	475	475		
(MMBtu/hr, LHV)	Ŏ	ő	Ö	Ŏ	427.6	427.6	427.6	427.6		
CT/DB Exhaust Flow										
Mass Flow (lb/hr)- provided	4,969,000	4,769,000	4,595,000	4,403,000	4,989,629.2	4,789,629	4,615,629	4,423,630		
Temperature (°F) - provided	1120.8	1138.7	1151.4	1168.0	1,121	1,139	1,151	1,168		
Moisture (% Vol.)	8.36	9.14	9.88	11.03	9.70	10.52	11.31	12.50		
Oxygen (% Vol.)	12.05	11.92	11.80	11.59	10.55	10.36	10.19	9.92		
Molecular Weight	28.41	28.32	28.23	28.11	28.32	28.23	28.15	28.02		
Volume flow (acfm) - calculated	3,371,551	3,282,606	3,197,670	3,109,381	3,395,582	3,306,909	3,221,846	3,134,129		
()	-,,	-,,	-,,	-,,	-,,-	,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		
Fuel Usage										
Fuel usage (lb/hr) = Heat Input (MMBtu/h	r) x 1,000,000 l	Btu/MMBtu [Fuel Heat Co	ntent, Btu/lb (I	LHV)]					
Heat input (MMBtu/hr, LHV)	2,421	2,320	2,230	2,137	2,421	2,320	2,230	2,137		
Heat content (Btu/lb, LHV)	21,511	21,511	21,511	21,511	21,511	21,511	21,511	21,511		
Fuel usage (lb/hr)- provided	112,537	107,877	103,660	99,362	112,537	107,877	103,660	99,362		
- calculated	112,543	107,856	103,671	99,360	112,543	107,856	103,671	99,360		
Heat content (Btu/cf, LHV)- assumed	918	918	918	918	918	918	918	918		
Fuel density (lb/ft ³)	0.0427	0.0427	0:0427	0.0427	0.0427	0.0427	0.0427	0.0427		
Fuel usage (cf/hr)- calculated	2,637,019	2,527,824	2,429,009	2,328,296	2,637,019	2,527,824	2,429,009	2,328,296		
Tuoi douge (Onii) Calculated	2,057,017	2,527,024	2,427,007	2,520,270	2,037,017	2,027,021	2,127,007	2,520,250		
Fuel Usage - Duct Burner Only										
Fuel usage (lb/hr)- calculated	0	0	0	0	19,880	19,880	19,880	19,880		
Fuel usage (cf/hr)- calculated	0	0	0	0 .	465,844	465,844	465,844	465,844		
LIDEC Start										
HRSG Stack HRSG - Stack Height (feet)	140	140	140	140	140	140	140	140		
, 5 ,	149	149	149	149	149	149	149	149		
Diameter (feet)	22	22	22	22	22	22	22	22		
HRSG Stack Flow Conditions										
Velocity (ft/sec) = Volume flow (acfm) /	((diameter) ² /4) x 3.14159]/	60 sec/min							
Mass flow (lb/hr)	4,969,000	4,769,000	4,595,000	4,403,000	4,989,629	4,789,629	4,615,629	4,423,630		
HRSG Stack Temperature (°F)	196	195	195	195	186	185	185	184		
Molecular weight	28.41	28.32	28.23	28.11	28.32	28.23	28.15	28.02		
Volume flow (acfm)	1,399,125	1,344,704	1,299,388	1,251,392	1,387,188	1,333,147	1,288,818	1,239,598		
Diameter (feet)	22	22	22	22	22	22	22	22		
Velocity (ft/sec)- calculated	61.3	59.0	57.0	54.9	60.8	58.5	56.5	54.3		
. o.oonj (10 seo j. calculated	01.5	33.0	37.0	54.5	00.0	50.5	50.5	. 54.5		

Note: Universal gas constant = 1,545.4 ft-lb(force)/ $^{\circ}$ R; atmospheric pressure = 2,112.5 lb(force)/ft² (@14.67 psia). Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE A-2-SH MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO, COMBUSTOR, NATURAL GAS, BASE LOAD

Parameter	35 °F		Only t Temperature 75°F	95 °F	35 °F w/DR		Temperature 75 °F w/DB	
Particulate from CT, DB, and HRSG							,00	D.
Total $PM_{10} = PM_{10}$ (front half) + PM_{10} [(NH ₄) ₂ SO ₄] in HRS	G only (back-h	alf)						
a. PM ₁₀ (front half) (lb/hr) CT- provided	9.4	9.0	8.6	8.2	9.4	9.0	8.6	8.2
DB (lb/hr) - calculated	0.0	0.0	0.0	0.0	2.4	2.4	2.4	2.4
Total CT/DB emission rate (lb/hr)	9.4	9.0	8.6	8.2	11.8	11.4	11.0	10,6
b. PM ₁₀ [(NH ₄) ₂ SO ₄] from HRSG only (back half) = Sulfur	trioxide from	conversion of	SO ₂ converts	to ammonium	sulfate (= PM ₁	o)		
Particulate from conversion of $SO_2 = SO_2$ emissions (conversion of S	lb/hr) x conve O , to (NH) .	rsion of SO 2 SO . x lh (Ni	to SO 3 in CT	and in SCR x	lb SO ₃/lb SO ₂	x		
CT SO ₂ emission rate (lb/hr)- calculated	15.1	14.4	13.9	13.3	15.1	14.4	13.9	13.3
Conversion (%) from SO ₂ to SO ₃ in CT	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
DB SO ₂ emission rate (lb/hr)- calculated Conversion (%) from SO ₂ to SO ₃ in DB		-			2.7 20.0	2.7 20.0	2.7 20.0	2,7 20.0
Remaining SO ₂ (lb/hr) after conversion - calculated	13.6	13.0	12.5	12.0	15.7	15.1	14.6	14.1
Conversion (%) from SO ₂ to SO ₃ in SCR	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
MW SO ₃ / SO ₂ (80/64) Conversion (%) from SO ₃ to (NH ₄) ₂ (SO ₄)	1.3 100	1.3 100	1.3 100	1.3 100	1.3 100	· 1.3	1.3 100	1.3 100
MW (NH ₄) ₂ SO ₄ / SO ₃ (132/80)	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
HRSG Particulate as (NH ₄) ₂ (SO ₄) (lb/hr)- calculated	3.95	3.78	3.64	3.48	5.18	5.01	4.87	4.71
Total HRSG stack emission rate (lb/hr) [a + b] - provided	13.0	13.0	12.0	11.0				
-calculated - maximum	13.3 13.3	12.8 13.0	12.2 12.2	11.7 11.7	17.0 17.0	16.4 16.4	15.8 15.8	15.3 15.3
(lb/mmBtu, HHV)	NA	NA	NA	NA	NA	NA	NA	NA
ulfur Dioxide								
SO 2 (lb/hr)= Natural gas (scf/hr) x sulfur content(gr/100								
Fuel use (cf/hr) Sulfur content (grains/ 100 cf)	2,637,019 2	2,527,824 2	2,429,009 2	2,328,296 2	3,102,863 2	2,993,668 2	2,894,853 2	2,79 <u>4,</u> 14 2
lb SO ₂ /lb S (64/32)	2	2	2	2	2	2	2	2
HRSG stack emission rate (lb/hr) - calculated	15.1	14.4	13.9	13.3	17.7	17.1	16.5	16.0
, ,								
itrogen Oxides								
Oxygen (%, dry) (O 2 dry) = Oxygen (%)/[1-Moisure (%)]	•	1613	16.	1003				
NO_x (ppmv actual) = NO_x (ppmd @ 15%O ₂) x [(20.9 -				-				
NO_x (lb/hr) = NO_x (ppm actual) x Volume flow (acfm) x	-		•				•	
Basis, ppm actual- calculated	30.1	30.0	29.8	29.7	34.0	34.0	34.0	34.0
CT/DB, ppmvd @15% O ₂ - provided	25	25	25	25	24.1	24.1	24.0	24.0
Moisture (%)	8.36	9.14	9.88	11.03	9.70	10.52	11.31	12.50
Oxygen (%)	12.05	11.92	11.8	11.59	10.55	10.36	10.19	9.92
Oxygen (%) dry Furbine Flow (acfm)	13.15 3,371,551	13.12 3,282,606	13.09 3,197,670	13.03 3,109,381	11.68 3,395,582	11.58 3,306,909	11.49 3,221,846	11.34 3,134,12
Furbine Flow (acfm), dry	3,089,689	2,982,576	2,881,740	2,766,416	3,393,382	2,958,861	2,857,517	2,742,26
Turbine Exhaust Temperature (°F)	1,121	1,139	1,151	1,168	1,121	1,139	1,151	1,168
CT/DB emission rate (lb/hr) - calculated CT/DB Emission rate (lb/hr) - provided	242.2 250.0	232.1 239.0	223.2 230.0	213.9 220.0	275.4 283.3	265.3 272.3	256.4 263.3	247.1 253.3
HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG stack emission rate (lb/hr) - calculated	2.0 20.0	2.0 19.1	2.0 18.4	2.0 17.6	2.0 23.5	2.0 22.6	2.0 21.9	2.0 21.1
Max. CT/DB calculated/provided)					•			
arbon Monoxide								
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)	1							
CO (ppmv wet or actual) = CO (ppmvd @ $15\%O_2$) x [(2)								
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 Basis, ppm actual- calculated	(mole. wgt CC 6.02	7) x 2112.5 lb 5.99	/ft ² (pressure 5.96	e) / [1545.4 (g 5.94				
Basis, ppmvd @ 15% O ₂ - provided	5.00	5.00	5.00	5.00	9.8 7.0	9.9 7.0	10.1 7.1	10.2 7.2
Moisture (%)	8.36	9.14	9.88	11.03	9.70	10.52	11.31	12.50
Oxygen (%) Oxygen (%) dry	12.05 13.15	11.92 13.12	11.80 13.09	11.59 13.03	10.55 11.68	10.36 11.58	10.19 11.49	9.92 11.34
Turbine Flow (acfm)	3,371,551	3,282,606	3,197,670	3,109,381	3,395,582	3,306,909	3,221,846	3,134,12
Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F)	3,089,689 1,121	2,982,576 1,139	2,881,740 1,151	2,766,416 1,168	3,066,240 1,121	2,958,861 1,139	2,857,517 1,151	2,742,26 1,168
CT/DB emission rate (lb/hr) - calculated	29.5	28.3	27.2	26.0	48.5	47.3	46.2	45.0
CT/DB Emission rate (lb/hr) - provided	30.0	29.0	28.0	27,0	49 _. 0	48.0 -	47.0	46.0
-IRSG Stack emission rate, ppmvd @ 15% O ₂ - provided	5.0	5.0	5.0	5.0	7.0	7.0	7.1	7.2
IRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided)	30.0	29.0	28.0	27.0	49.0	48.0	47.0	46.0
wax. C1755 calculated provided)								
' <u>olatile Organic Compounds</u> Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)	7							
VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x		יע/(20.9 - 15)] x []- Moisti	ure(%)/1001				
$VOC(lb/hr) = VOC(ppm actual) \times Volume flow (acfm) \times$					i.4 (gas constan	t, R) x Actual T	emp. (°R)] x 60	min/hr
						,	•	
Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided	1.81 1.50	1.80 1.50	1, 7 9 _. 1, 5 0	1.78 1.50	2.6 1.9	2.7 1.9	2.7 1.9	2.7 1.9
Moisture (%)	8.36	9.14	9.88	11.Q3	9.70	10.52	11.31	12.50
Oxygen (%) wet Oxygen (%) dry	12.05 13.15	11.92 13.12	11.80 13.09	11.59 13.03	10.55 11.68	10.36 11.58	10.19 1.1.49	9.92 11.34
Turbine Flow (acfm)	3,371,551	3,282,606	3,197,670	3,109,381	3,395,582	3,306,909	3,221,846	3,134,12
Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F)	3,089,689 1,121	2,982,576 1,139	2,881,740 1,151	2,766,416 1,168	3,066,240 1,121	2,958,861 1,139	2,857,517 1,151	2,742,26 1,168
CT/DB emission rate (lb/hr) - calculated	5.05	4.84	4.66	4.46	7.43	7.22	7.03	6.84
CT/DB Emission rate (lb/hr) - provided not use	0.00 d 7.00	0.00 6.70	0.00 6.50	0.00 6.20	2.38	2.38	2.38	2.38
HRSG Stack emission rate, ppmvd @ 15% O ₂ - provided	1.5	1.5	1.5	1.5	1.9	1.9	1.9	1.9
HRSG Stack emission rate (lb/hr)- calculated	5.1	4.84	4.7	4.5	7.4	7.2	7.0	6.8
Max. CT/DB calculated/provided)								
ulfuric Acid Mist	- 4- 77 0		100					
Sulfuric Acid Mist (lb/hr)= SO ₂ emission (lb/hr) x Conversic CT SO ₂ emission rate (lb/hr) - calculated	on to H ₂ SO ₄ (% 15.1	6 by weight)/1 14.4	100 1 3 .9	13.3	15.1	14.4	13.9	13.3
C1 SO ₂ emission rate (10/nr) - calculated CT Conversion to H ₂ SO ₄ (% by weight) - provided	15.1	14.4	13.9	13.3	15.1	14.4 10	13.9	13.3
DB SO ₂ emission rate (lb/hr) - provided	0	0	. 0	0	2.7	2.7	2.7	2.7
DB Conversion to H ₂ SO ₄ (%) - provided	20	20	20	20	20	20	20	20
SCR SO ₂ (lb/hr)(remaining SO ₂ after conversion) - calc	13.6	13.0	12.5 3	12.0 3	15.7 3	15.1 `	14.6 3	}4.1 3
- · · · · · · · · · · · · · · · · · · ·	2			•	2			3
SCR Conversion to H ₂ SO ₄ (% by weight) - provided	3	. 3					-	
SCR Conversion to H ₂ SO ₄ (% by weight) - provided HRSG Stack emission rate (lb/hr)	3 2.93	2.81	2.70	2.59	3.84	3.72	3.61	3.50
SCR Conversion to H ₂ SO ₄ (% by weight) - provided HRSG Stack emission rate (lb/hr) ead		•			3.84	3.72		3.50
SCR Conversion to H ₂ SO ₄ (% by weight) - provided HRSG Stack emission rate (lb/hr)		•			3.84 NA	3.72 NA		3.50 NA

TABLE A-3-SH
DESIGN INFORMATION AND STACK PARAMETERS
FOR THE CONVERSION PROJECT
SIEMENS H CT, DRY LOW NO, COMBUSTOR, NATURAL GAS, 75% LOAD

	Turbine Inlet Temperature						
Parameter	35 °F	59 °F	75 °F	95 °F			
Combustion Turbine Performance							
Heat Input (MMBtu/hr, LHV)	1,946	1,828	1,745	1,640			
(MMBtu/hr, HHV)	2,161	2,030	1,938	1,822			
Relative Humidity (%)	60	60	60	50			
Fuel heating value (Btu/lb, LHV)	21,511	21,511	21,511	21,511			
(Btu/lb, HHV)	23,893	23,893	23,893	23,893			
(HHV/LHV)	1.111	1.111	1.111	1.111			
CT Exhaust Flow							
Mass flow (lb/hr)- provided	4,067,000	3,887,500	3,753,000	3,575,000			
Temperature (°F) - provided	1,149.1	1,160.6	1,168.5	1,180.7			
Moisture (% Vol.)	8.22	8.65	9.27	10.13			
Oxygen (% Vol.)	12.21	12.25	12.21	12.15			
Molecular Weight	28.42	28.36	28.29	28.19			
Volume flow (acfm) - calculated	2,807,747	2,708,602	2,634,236	2,536,737			
<u>Fuel Usage</u>				•			
Fuel usage (lb/hr) = Heat Input (MMBtu/h		u/MMBtu [Fuel]					
Heat input (MMBtu/hr, LHV)	1,946	1,828	1,745	1,640			
Heat content (Btu/lb, LHV)	21,511	21,511	21,511	21,511			
Fuel usage (lb/hr)- provided	90,449	84,967	81,126	76,250			
- calculated	90,445	84,962	81,112	76,257			
Heat content (Btu/cf, LHV)- assumed	918	918	918	918			
Fuel density (lb/ft ³)	0.0427	0.0427	0.0427	0.0427			
Fuel usage (cf/hr)- calculated	2,119,443	1,990,986	1,900,982	1,786,725			
HRSG Stack		_					
HRSG - Stack Height (feet)	149	149	149	149			
Diameter (feet)	22	22	22	22			
HRSG Stack Flow Conditions							
Velocity (ft/sec) = Volume flow (acfm) / [((diameter) ² /4) x	3.141591 / 60 sec	e/min				
Mass flow (lb/hr)	4,067,000	3,887,500	3,753,000	3,575,000			
HRSG Stack Temperature (°F)	184	185	186	187			
Molecular weight	28.42	28.36	28.29	28.19			
Volume flow (acfm)	1,123,727	1,078,059	1,044,959	1,000,347			
Diameter (feet)	22	22	22	22			
Velocity (ft/sec)- calculated	49.3	47.3	45.8	43.9			
				·			

Note: Universal gas constant = 1,545.4 ft-lb(force)/°R; atmospheric pressure = 2,112.5 lb(force)/ft² (@14.67 psia). Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE A-4-SH MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO $_{\!x}$ COMBUSTOR, NATURAL GAS, 75% LOAD

	35 °F	59 °F	75 °F	95 °F
Particulate from CT and HRSG				
Total $PM_{10} = PM_{10}$ (front half) + PM_{10} [(NH ₄) ₂ SO ₄] in HRSG only (back-half) a. PM_{10} (front half) (lb/hr)				
Particulate from CT- provided	7.7	7.4	7.1	6.7
b. PM ₁₀ [(NH ₄) ₂ SO ₄] from HRSG only (back half) = Sulfur trioxide from conversion of SO ₂ co	nverts to ammo	onium sulfate (= PM	110)	
Particulate from conversion of SO $_2$ = SO $_2$ emissions (lb/hr) x conversion of SO $_2$ to SO $_3$	in CT and in S	SCR x lb SO 3/lb SC) 2 x	
conversion of SO $_3$ to (NH $_4$) $_2$ SO $_4$ x lb (NH $_4$) $_2$ S				10.0
SO ₂ emission rate (lb/hr)- calculated Conversion (%) from SO ₂ to SO ₃	12.1 10.0	11.4 10.0	10.9 10.0	10.2 10.0
Remaining SO ₂ (lb/hr) in CT after conversion - calculated	10.9	10.2	9.8	9.2
Conversion (%) from SO ₂ to SO ₃ in SCR	3.0	3.0	3.0	3.0
MW SO ₃ / SO ₂ (80/64)	1.3	1.3	1.3	1.3
Conversion (%) from SO_3 to $(NH_4)_2(SO_4)$ MW $(NH_4)_2 SO_4/SO_3 (132/80)$	100 1.7	100 1.7	100 1.7	100 1.7
HRSG Particulate as (NH ₄) ₂ (SO ₄) (lb/hr)- çalculated	3.17	2.98	2.85	2.67
Total HRSG stack emission rate (lb/hr) [a + b] - provided	11	11	9.8	9.3
-calculated	10.9	10.3	9.9	9.4
- maximum (lb/mmBtu, HHV)	11.0 NA	11.0 NA	9.9 NA	9.4 NA
	INA	INA	INA	INA
with Dioxide $SO_2 (lb/hr) = Natural \ gas \ (scf/hr) \ x \ sulfur \ content \ (gr/100 \ scf) \ x \ 1 \ lb/7000 \ gr \ x \ (lb \ SO_2 / lb \ SO_3 / l$	2) /100 ·			
Fuel use (cf/hr) = Natural gas (scj/hr) x sulfur content($gr/100 \text{ scj}$) x 1 lb//000 gr x (lb SO $_2$ /lb S	2,119,443	1,990,986	1,900,982	1,786,725
Sulfur content (grains/ 100 cf)	2	2	2	2
lb SO ₂ /lb S (64/32) HRSG Stack emission rate (lb/hr)- calculated	2 12.1	2 11.4	2 10.9	2 10.2
	··		- 712	
$\frac{\text{litrogen Oxides}}{\text{Oxygen (\%, dry)}(O_2 \text{ dry}) = \text{Oxygen (\%)/[1-Moisure (\%)]}}$				
NO _x (ppm actual) = NO _x (ppmd @ $15\%O_2$) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1- Moisture	e(%)/100]			
NO_x (lb/hr) = NO_x (ppm actual) x Volume flow (acfm) x 46 (mole. wgt NO_x) x 2112.5 lb/ft	² (pressure) /			
Basis, ppm actual- calculated	29.5	29.0	28.6	28.1
CT / DB, ppmvd @15% O ₂ - provided Moisture (%)	25 8.22	25 8.65	25 9.27	25 10.13
Oxygen (%)	12.21	12.25	12.21 .13.46	12.15
Oxygen (%) dry Turbine Flow (acfm)	13.30 2,807,747	13.41 2,708,602	2,634,236	13.52 2,536,737
Turbine Flow (acfm), dry	2,576,950	2,474,308	2,390,042	2,279,766
Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated	1,149 194.5	1,161 182.8	1,169 174.6	-1,181 163.9
CT Emission rate (lb/hr) - provided	201.0	188.0	180.0	169.0
HRSG Stack emission rate, ppmvd @ 15% O ₂	2.0	2.0	2.0	2.0
HRSG Stack emission rate (lb/hr) - calculated [Max. CT/DB calculated/provided)	16.1	15.0	14.4	13.5
CO (ppmv wet or actual) = CO (ppmvd @ $15\%O_2$) x [(20.9 - O_2 dry)/(20.9 - 15)] x [1- Mc				
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft 2 (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O_2 - provided Moisture (%) Oxygen (%).			R) x Actual Temp. (°1 11.4 10 9.27 12.21 13.46	R)] x 60 min/hr 11.2 10 10.13 12.15 13.52
CO (lb/hr) = CO (ppm actual) x Volume flow ($acfm$) x 28 ($mole.$ wgt CO) x 2112.5 lb/ft^2 ($p.$ Basis, ppm actual- calculated Basis, $ppmvd$ @ 15% O ₂ - $provided$ Moisture (%) Oxygen (%). Oxygen (%) dry Turbine Flow ($acfm$)	ressure) / [154 11.8 : 10 8.22 12.21 13.30 2,807,747	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602	11.4 10 9.27 12.21 13.46 2,634,236	11.2 10 10.13 12.15 13.52 2,536,737
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft 2 (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O_2 - provided Moisture (%) Oxygen (%). Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry	ressure) / [154 11.8] 10 8.22 12.21 13.30 2,807,747 2,576,950	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602 2,474,308	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft 2 (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O_2 - provided Moisture (%) Oxygen (%). Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F)	ressure) / [154 11.8 . 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187
CO (lb/hr) = CO (ppm actual) x Volume flow ($acfm$) x 28 ($mole.$ wgt CO) x 2112.5 lb/ft^2 ($p.$ Basis, ppm actual- calculated Basis, ppmvd @ 15% O_2 - provided Moisture (%) Oxygen (%). Oxygen (%) dry Turbine Flow ($acfm$) Turbine Flow ($acfm$) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated	ressure) / [154 11.8 . 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%). Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided	ressure) / [154 11.8 . 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0	11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0
$CO\ (lb/hr) = CO\ (ppm\ actual)\ x\ Volume\ flow\ (acfm)\ x\ 28\ (mole.\ wgt\ CO)\ x\ 2112.5\ lb/ft\ ^2\ (pm\ actual)\ calculated$ Basis, ppm actual- calculated Basis, ppmvd @ 15% O_2 - provided Moisture (%) Oxygen (%). Oxygen (%). Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) trubine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F)	ressure) / [154 11.8 . 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds	ressure) / [154 11.8 . 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)]	ressure) / [154 11.8 . 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0	11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft 2 (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%). Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated	ressure) / [154 11.8] 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 **Moisture(%)//** **Pressure) / 1.77	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O ₂ - provided	ressure) / [154 11.8] 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 **Moisture(%)//** **Pressure) / 1.77 1.5	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm d@ 15% O ₂ - provided Moisture (%) Oxygen (%). Oxygen (%). Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%)	ressure) / [154 11.8] 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 **Moisture(%)// **Pressure) / 1.77 1.5 8.22 12.21	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm de (lasse) O ₂ - provided Moisture (%) Oxygen (%)	ressure) / [154 11.8] 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 **Moisture(%)// **(pressure) / 1.77 1.5 8.22 12.21 13.30	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 100] [1545.4 (gas constant)]	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0
CO (1b/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm detual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided) **Olatile Organic Compounds* Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (1b/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm)	ressure) / [154 11.8] 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)//** 2' (pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 109 [1545.4 (gas constant) 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Basis, ppmvd @ 15% O₂ - provided Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O₂ HRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided) **Olatile Organic Compounds Oxygen (%, dry)(O₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O₂) x [(20.9 - O₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O₂ - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F)	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)//** **Pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149	5.4 (gas constant, F 11.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 100] [1545.4 (gas constant) 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm d@ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/fi Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 100] [1545.4 (gas constant), 10 46.0 100] [174 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 44.0 20 1.72 1.5 9.27 12.21 13.46 2,634,236 2,390,042 1,169 1,169 1,84 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0
CO (1b/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%). Oxygen (%). Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 10 46.0 10 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82 0.00	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 2,5 44.0 10 44.0	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 1.5 10.13 12.15 13.52 2,536,737 2,279,766 1,181 184 3,42 0,00
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm), dry Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided) Colatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Motsure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/fi Basis, ppmvd - calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided not used (at 2 ppmvd)	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 100] [1545.4 (gas constant), 10 46.0 100] [174 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 44.0 20 1.72 1.5 9.27 12.21 13.46 2,634,236 2,390,042 1,169 1,169 1,84 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Dxygen	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// **2 (pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 10 46.0 10 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82 0.00 0.00	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 20 1.72 1.5 9.27 12.21 13.46 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 10.13 12.15 13.52 2,536,737 2,279,766 1,181 184 3,42 0,00 4,80
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// **2 (pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 10 46.0 10 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82 0.00 0.00 1.5	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 2,634,236 2,390,042 1,169 13.46 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10 1.5	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 1.5 10.13 12.15 13.52 2,536,737 2,279,766 1,181 184 3,42 0,00 4,80 1.5
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (pBasis, ppm actual- calculated Basis, ppmvd @ 15% O2 - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O2 HRSG Stack emission rate, ppmvd @ 15% O2 Oxygen (%, dry)(O2 dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O2) x [(20.9 - O2 dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH4) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O2 - provided Moisture (%) Oxygen (%)	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// **2 (pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 10 46.0 10 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82 0.00 0.00 1.5	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 2,634,236 2,390,042 1,169 13.46 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10 1.5	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 1.5 10.13 12.15 13.52 2,536,737 2,279,766 1,181 184 3,42 0,00 4,80 1.5
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (p. Basis, ppm actual- calculated Basis, ppm d@ 15% O2 - provided Moisture (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided) **Colatile Organic Compounds** Oxygen (%, dry)(O2 dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O2) x [(20.9 - O2 dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH4) x 2112.5 lb/fi Basis, ppmvd - calculated Basis, ppmvd a [15% O2 - provided Moisture (%) Oxygen (ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// **(pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5 4.06	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 1.85 44.5 46.0 10 46.0 100] [1545.4 (gas constant, Final Plane	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10 1.5 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Basis, ppm (acfm) 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr)- calculated Max. CT/DB calculated/provided) folatile Organic Compounds Oxygen (% dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd (als%) 2) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd (als%) O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided not used (at 2 ppmvd) HRSG Stack emission rate, (ppmvd (als%) O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) sulfuric Acid Mist Sulfuric Acid Mist Sulfuric Acid Mist Sulfuric Acid Mist (lb/hr) - calculated	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 49.0 49.0 49.0 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0,00 5.60 1.5 4.06	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 100] [1545.4 (gas constant, Final Plane	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 2,634,236 2,390,042 1,169 184 3,64 0,00 5.10 1.5 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (p. Basis, ppm actual- calculated Basis, ppm de (acfm) (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (p. Basis, ppm actual- calculated Basis, ppm de (b) (acfm) (acf	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// **(pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5 4.06	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 1.85 44.5 46.0 10 46.0 100] [1545.4 (gas constant, Final Plane	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10 1.5 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
CO (lb/lnr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm de (l5% O ₂ - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm), dry Turbine Flow (acfm), dry Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr) - calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15% O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd = calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) HRSG Stack emission rate (lb/hr) - calculated CT Conversion to H ₂ SO ₄ (% by weight) - provided DB SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided DB Conversion to H ₂ SO ₄ (% by weight) - provided DB Conversion to H ₂ SO ₄ (% by reprovided)	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// **2 (pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5 4.06 1.5 4.06 1.5 4.06 1.5 4.06 1.5 4.06	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 10 46.0 10 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82 0.00 0.00 1.5 3.82 11.4 10 0 20	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 20 20 1.169 1.72 1.5 9.27 12.21 13.46 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10 1.5 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
CO (lb/lnr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm de (l5% O ₂ - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr)- calculated (Max. CT/DB calculated/provided) **Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] **VOC (ppmv wet or actual) = VOC (ppmvd @ 15% O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd = Calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Grygen (%) Grygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - calculated MRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated (Max. CT/DB calculated/provided) **Sulfuric Acid Mist (lb/hr) = SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by weight)/100 CT SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided DB CO_emission rate (lb/hr) - provided DB Conversion to H ₂ SO ₄ (%) - provided	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 ** Moisture(%)// ** (pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5 4.06;	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 10 46.0 10 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82 0.00 0.00 1.5 3.82 11.4 10 0	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10 1.5 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
CO (lb/lnr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Moisture (%) Oxygen (%) Turbine Flow (acfm), dry Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Molsure (%)] VOC (lb/lnr) = VOC (ppm actual) = VOC (ppmvd @ 15% O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 **Moisture(%)// **2 (pressure) / 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5 4.06 1.5 4.06 1.5 4.06 1.5 4.06 1.5 4.06	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 10 46.0 10 1.74 1.5 8.65 12.25 13.41 2,708,602 2,474,308 1,161 184 3.82 0.00 0.00 1.5 3.82 11.4 10 0 20	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 20 20 1.169 1.72 1.5 9.27 12.21 13.46 2,634,236 2,390,042 1,169 184 3.64 0.00 5.10 1.5 3.64	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0 41.0
CO (lb/lnr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/lnr) - calculated CT Emission rate (lb/lnr) - provided HRSG Stack emission rate (lb/lnr) - calculated (Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O2 dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O2) x [(20.9 - O2 dry)/(20.9 - 15)] x [1-VOC (pb/lnr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH4) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd = calculated Basis, ppmvd @ 15% O2 - provided Moisture (%) Oxygen (%) Oxygen (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/lnr) - calculated CT Conversion to H ₂ SO ₄ (% by weight) - provided DB SO ₂ emission rate (lb/lnr) - calculated CT Conversion to H ₂ SO ₄ (% by weight) - provided DB Conversion to H ₂ SO ₄ (% by weight) - provided DB Conversion rate (lb/lnr) - calculated (remaining SO ₂ after conversion) HRSG Stack emission rate (lb/lnr) - calculated (remaining SO ₂ after conversion)	ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 49.0 49.0 49.0 49.0 49.0 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5 4.06 1.5 4.06 1.5 4.06 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 100] [1545.4 (gas constant, Final Plane	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 20 9.8	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.
CO (lb/lnr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 lb/ft ² (p. Basis, ppm actual- calculated Basis, ppm actual- calculated Moisture (%) Oxygen (%) Turbine Flow (acfm), dry Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) HRSG Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - calculated CT Emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) Volatile Organic Compounds Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Molsure (%)] VOC (lb/lnr) = VOC (ppm actual) = VOC (ppmvd @ 15% O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 2112.5 lb/ft Basis, ppmvd - calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) dry Turbine Flow (acfm) Turbine Flow (ressure) / [154 11.8 10 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 47.4 49.0 10 49.0 49.0 49.0 49.0 49.0 49.0 49.0 1.77 1.5 8.22 12.21 13.30 2,807,747 2,576,950 1,149 184 4.06 0.00 5.60 1.5 4.06 1.5 4.06 1.5 4.06 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	10.6 10 8.65 12.25 13.41 2,708,602 2,474,308 1,161 185 44.5 46.0 10 46.0 100] [1545.4 (gas constant, Final Plane	11.4 10 9.27 12.21 13.46 2,634,236 2,390,042 1,169 186 42.5 44.0 10 44.0 10 44.0 20 9.8	11.2 10 10.13 12.15 13.52 2,536,737 2,279,766 1,181 187 39.9 41.0 10 41.

January 2009 0838-7633 RBEC

TABLE A-5-SH
DESIGN INFORMATION AND STACK PARAMETERS
FOR THE CONVERSION PROJECT
SIEMENS H CT, DRY LOW NO_x COMBUSTOR, DISTILLATE OIL, BASE LOAD

	Turbine Inlet Temperature						
Parameter	35 °F	59 °F	75 °F	95 °F			
Combustion Turbine Performance							
Heat Input (MMBtu/hr, LHV)	2,420	2,268	2,162	2,028			
(MMBtu/hr, HHV)	2,565	2,404	2,292	2,150			
Relative Humidity (%)	60	60	60	5 0			
Fuel heating value (Btu/lb, LHV)	18,387	18,387	18,387	18,387			
(Btu/lb, HHV)	19,490	19,490	19,490	19,490			
(HHV/LHV)	1.060	1.060	1.060	1.060			
CT Exhaust Flow							
Mass Flow (lb/hr)- provided	5,090,824	4,814,396	4,613,552	4,350,270			
Temperature (°F) - provided	1,071.0	1,092.0	1,106.0	1,127.0			
Moisture (% Vol.)	7.97	8.46	9.12	10.02			
Oxygen (% Vol.)	11.91	11.88	11.80	11.68			
Molecular Weight	28.66	28.59	28.52	28.42			
Volume flow (acfm) - calculated	3,315,909	3,186,273	3,088,451	2,962,342			
Fuel Usage							
Fuel usage (lb/hr) = Heat Input (MMBt	u/hr) x 1,000,000 Bt		eat Content, Btu/	b (LHV))			
Heat input (MMBtu/hr, LHV)	2,420	2,268	2,162	2,028			
Heat content (Btu/lb, LHV)	18,387	18,387	18,387	18,387			
Fuel usage (lb/hr)- provided	131,600	123,371	117,608	110,306			
- calculated	131,615	123,348	117,583	110,295			
HRSG Stack							
HRSG - Stack Height (feet)	149	149	149	149			
Diameter (feet)	22	22	22	22			
HRSG Stack Flow Conditions							
Velocity (ft/sec) = Volume flow (acfm)			min e				
Mass flow (lb/hr) - provided	5,090,824	4,814,396	4,613,552	4,350,270			
HRSG Stack Temperature (°F)	359	357	355	354			
Molecular weight	28.66	28.59	28.52	28.42			
Volume flow (acfm)	1,773,827	1,677,310	1,607,335	1,519,437			
Diameter (feet)	22	22	22	22			
Velocity (ft/sec)- calculated	77.8	73.5	70.5	66.6			

Note: Universal gas constant = 1,545.4 ft-lb(force)/°R; atmospheric pressure = 2,112.5 lb(force)/ft² (@14.67 psia). Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE A-6-SH MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO, COMBUSTOR, DISTILLATE OIL, BASE LOAD

· · · · · · · · · · · · · · · · · · ·	35 °F	Turbine Inlet 59 °F	75 °F	95 °F
Particulate from CTand SCR Total $PM_{10} = PM_{10}$ (front half) + PM_{10} [(NH ₄) ₂ SO ₄] in HRSG only (back-half)				
a. PM ₁₀ (front half) (lb/hr) Particulate from CT- provided	not avail	not avail	not avail.	not avail.
b. PM_{10} ((NH ₄) ₂ SO ₄) from HRSG only (back half) = Sulfur trioxide from conversion of	f SO. converte to	monium sulfata (- Pi	4)	
Particulate from conversion of $SO_2 = SO_2$ emissions (lb/hr) x conversion of SO_2 conversion of SO_3 to $(NH_4)_2SO_4$ x lb (to SO3 in CT and in	SCR x lb SO 3/lb SC		
SO ₂ emission rate (lb/hr)- calculated	3.9	3.7	3.5	3.3
Conversion (%) from SO ₂ to SO ₃ Remaining SO ₂ (lb/hr) in CT after conversion - calculated	10.0 3.6	10.0 3.3	10.0 3.2	10.0 3.0
Conversion (%) from SO ₂ to SO ₃ in SCR	3.0	3.0	3.0	3.0
MW SO ₃ / SO ₂ (80/64)	1.3	1.3	1.3	1.3
Conversion (%) from SO ₃ to (NH ₄) ₂ (SO ₄)	100	100	100	100
MW (NH ₄) ₂ SO ₄ / SO ₃ (132/80)	1.7	1.7	1.7	1.7
HRSG Particulate as (NH ₄) ₂ (SO ₄) (lb/hr)- calculated Total HRSG stack emission rate (lb/hr) [a + b] - provided	1.03 30.0	0.97 30.0	0.92 30.0	0.87 30.0
-calculated - maximum (lb/mmBtu, HHV)	NA	NA.	NA	NA
ulfur Dioxide				
SO ₂ (lb/hr)= Fuel oil (lb/hr) x sulfur content(% weight) x (lb SO ₂ /lb S) /l00 Fuel oil Sulfur Content	0.0015%	0.0015%	0.0015%	0.0015%
Fuel oil use (lb/hr)	131,600	123,371	117,608	110,306
lb SO₂ / lb S (64/32) HRSG Stack emission rate (lb/hr)- calculated	2 3.9	2 3.7	2 3.5	2 3.3
litrogen Oxides	3.9	3.7	3.3	3.3
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] NO _x (ppm actual) = NO _x (ppmd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15)] x [1-1]	_			
NO_x (lb/hr) = NO_x (ppm actual) x Volume flow (acfm) x 46 (mole. wgt NO_x) x 211. Basis, ppm actual- calculated	2.5 lb/ft² (pressure) 52.1	/ [1545.4 (gas const 51.6	ant, R) x Actual Temp 51.2	o. (°R)] x 60 min/l 50.7
CT/DB, ppmvd @15% O ₂	42	42	42	42
Moisture (%)	7.97	8.46	9.12	10.02
Oxygen (%) Oxygen (%) dry	11.91 12.94	11.88 12.98	11.80 12.98	11.68 12.98
Furbine Flow (acfm)	3,315,909	3,186,273	3,088,451	2,962,342
Furbine Flow (acfm), dry	3,051,631	2,916,714	2,806,784	2,665,515
Furbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated	1,071 426.0	1,092 399.9	1,106 381.0	1,127 357.2
CT emission rate (lb/hr) - provided	448.0	420.0	400.0	375.0
HRSG Stack emission rate, ppmvd @ 15% O ₂ - provided HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided)	8 85.3	8 80.0	8 76.2	8 71.4
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 2112.5 h Basis, ppm actual- calculated Basis, ppmvd @ 15% O_2 - provided	12.4 10	12.3 10	12.2 10	12.1 10
Moisture (%) Oxygen (%)	7.97 11.91	8.46 11.88	9.12 11.80	10.02 11.68
Oxygen (%) dry	12.94	12.98	12.98	12.98
Turbine Flow (acfm)	3,315,909	3,186,273	3,088,451	2,962,342
Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F)	3,0 5 1,631 1,071	2,916,714 1,092	2,806,784 1,106	2,665,515 1,127
HRSG Exhaust Temperature (°F)	359	357	355	354
CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided	61.7 65.0	58.0 61.0	55.2 58.0	51.8 54.0
HRSG Stack emission rate, ppmvd @ 15% O ₂	10.0	10.0	10.0	10.0
HRSG Stack emission rate (lb/hr) - calculated [Max. CT/DB calculated/provided)	65.0	61.0	58.0	54.0
Volatile Organic Compounds				
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)]				
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ $15\%O_2$) x [(20.9 - O_2 dry)/(20.9 - $15\%O_2$) x				(DD) 7 (C)
Oxygen (%, dry)(O $_2$ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O $_2$) x [(20.9 - O $_2$ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH $_4$) x 211	12.5 lb/ft² (pressure)	/ [1545.4 (gas consi		
Oxygen (%, dry)(O $_2$ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O $_2$) x [(20.9 - O $_2$ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH $_4$) x 211 Basis, ppm actual- calculated			ant, R) x Actual Temp 2.4 2.0	p. (°R)] x 60 min 2.4 2.0
Oxygen (%, dry)(O $_2$ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O $_2$) x [(20.9 - O $_2$ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH $_4$) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O $_2$ - provided Moisture (%)	12.5 lb/ft ² (pressure) 2.5	/ [1545.4 (gas const 2.5 2.0 8.46	2.4 2.0 9.12	2.4 2.0 10.02
Oxygen (%, dry)(O $_2$ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O $_2$) x [(20.9 - O $_2$ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH $_4$) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O $_2$ - provided Moisture (%) Oxygen (%)	12.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91	/ [1545.4 (gas const 2.5 2.0 8.46 11.88	2.4 2.0 9.12 11.80	2.4 2.0 10.02 11.68
Oxygen (%, $dry/(O_2 dry) = Oxygen$ (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%dry) Turbine Flow (acfm)	12.5 lb/ft ² (pressure) 2.5 2.0 7.97	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273	2.4 2.0 9.12	2.4 2.0 10.02 11.68 12.98 2,962,342
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ $15\%O_2$) x [(20.9 - O_2 dry)/(20.9 - 15 VOC ($1b/hr$) = VOC (ppm actual) x Volume flow ($acfm$) x 16 ($mole.$ wgt CH_4) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O_2 - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow ($acfm$) Turbine Flow ($acfm$), dry	12.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631	/[1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515
Oxygen (%, dry)(O_2 dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ $15\%O_2$) x [(20.9 - O_2 dry)/(20.9 - 15 VOC ($1b/hr$) = VOC (ppm actual) x Volume flow ($acfm$) x 16 ($mole$. wgt CH_4) x 211 Basis, ppmvd @ 15% O_2 - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow ($acfm$) Turbine Flow ($acfm$), dry Turbine Exhaust Temperature (°F)	12.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273	2.4 2.0 9.12 11.80 12.98 3,088,451	2.4 2.0 10.02 11.68 12.98 2,962,342
Oxygen (%, dry)(O $_2$ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O $_2$) x [(20.9 - O $_2$ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH $_4$) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O $_2$ - provided Moisture (%) Oxygen (%) Oxygen (%-dry)	12.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071	/[1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ $15\%O_2$) x [(20.9 - O_2 dry)/(20.9 - 15 VOC ($1b/hr$) = VOC (ppm actual) x Volume flow ($acfm$) x 16 ($mole$. wgt CH_4) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow ($acfm$) Turbine Flow ($acfm$) Turbine Exhaust Temperature (°F) CT Emission rate ($1b/hr$) - calculated CT emission rate ($1b/hr$) - provided	12.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1	/[1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppmvd @ 15% O ₂ - provided Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated	12.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided)	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate (lb/hr) - calculated (Max. CT/DB calculated/provided)	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) sulfuric Acid Mist Sulfuric Acid Mist (lb/hr)= SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - calculated	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 15 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr) = SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - calculated CT Conversion to H ₂ SO ₄ (% by weight) - provided	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 eight)/100 3.9 10	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr) = SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 eight)/100 3.9 10 0	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr) = SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided DB Conversion to H ₂ SO ₄ (%) - provided	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 2.0 7.4 2.0 10 0 20	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr) = SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided DB Conversion to H ₂ SO ₄ (%) - provided SCR SO ₂ emission rate (lb/hr) - calculated (remaining SO ₂ after conversion)	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 eight)/100 3.9 10 0	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr)= SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided DB Conversion to H ₂ SO ₄ (% by weight) - provided SCR SO ₂ emission rate (lb/hr) - calculated (remaining SO ₂ after conversion) SCR Conversion to H ₂ SO ₄ (% by weight) - provided HRSG Stack emission rate (lb/hr) - calculated (remaining SO ₂ after conversion)	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 2.0 7.4 eight)/100 3.9 10 0 20 3.6	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6 3.5 10 0 20 3.2	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd@ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd@ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd@ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr) = SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided DB Conversion to H ₂ SO ₄ (% by weight) - provided SCR SO ₂ emission rate (lb/hr) - calculated (remaining SO ₂ after conversion) SCR Conversion to H ₂ SO ₄ (% by weight) - provided HRSG Stack emission rate (lb/hr) - calculated (remaining SO ₂ after conversion) SCR Conversion to H ₂ SO ₄ (% by weight) - provided	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 2.0 7.4 eight)/100 3.9 10 0 20 3.6 3	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0 3.7 10 0 20 3.3 3	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6 3.5 10 0 20 3.2 3	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2 3.3 10 0 20 3.0 3
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O ₂) x [(20.9 - O ₂ dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH ₄) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O ₂ - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O ₂ HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr)= SO ₂ emission (lb/hr) x Conversion to H ₂ SO ₄ (% by we CT SO ₂ emission rate (lb/hr) - provided DB SO ₂ emission rate (lb/hr) - provided DB Conversion to H ₂ SO ₄ (% by weight) - provided SCR SO ₂ emission rate (lb/hr) - calculated (remaining SO ₂ after conversion) SCR Conversion to H ₂ SO ₄ (% by weight) - provided HRSG Stack emission rate (lb/hr) - calculated (remaining SO ₂ after conversion)	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 2.0 7.4 2.0 3.6 3 0.77	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0 3.7 10 0 20 3.3 3	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6 3.5 10 0 20 3.2 3	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2 3.3 10 0 20 3.0 3
Oxygen (%, dry)(O 2 dry) = Oxygen (%)/[1-Moisure (%)] VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O 2) x [(20.9 - O 2 dry)/(20.9 - 13 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole. wgt CH 4) x 211 Basis, ppm actual- calculated Basis, ppmvd @ 15% O2 - provided Moisture (%) Oxygen (%) Oxygen (%-dry) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) CT Emission rate (lb/hr) - calculated CT emission rate (lb/hr) - provided HRSG Stack emission rate, ppmvd @ 15% O2 HRSG Stack emission rate (lb/hr) - calculated Max. CT/DB calculated/provided) ulfuric Acid Mist Sulfuric Acid Mist (lb/hr) = SO 2 emission (lb/hr) x Conversion to H 2SO 4 (% by we CT SO2 emission rate (lb/hr) - provided DB SO2 emission rate (lb/hr) - provided DB Conversion to H2SO4 (%) - provided DB Conversion to H2SO4 (%) - provided SCR SO2 emission rate (lb/hr) - calculated (remaining SO2 after conversion) SCR Conversion to H2SO4 (% by weight) - provided HRSG Stack emission rate (lb/hr) - calculated (remaining SO2 after conversion) SCR Conversion to H2SO4 (% by weight) - provided HRSG Stack emission rate (lb/hr) - calculated (remaining SO2 after conversion)	2.5 lb/ft ² (pressure) 2.5 2.0 7.97 11.91 12.94 3,315,909 3,051,631 1,071 7.1 7.4 2.0 7.4 2.0 7.4 2.0 3.6 3 0.77	/ [1545.4 (gas const 2.5 2.0 8.46 11.88 12.98 3,186,273 2,916,714 1,092 6.6 7.0 2.0 7.0 3.7 10 0 20 3.3 3	2.4 2.0 9.12 11.80 12.98 3,088,451 2,806,784 1,106 6.3 6.6 2.0 6.6 3.5 10 0 20 3.2 3	2.4 2.0 10.02 11.68 12.98 2,962,342 2,665,515 1,127 5.9 6.2 2.0 6.2 3.3 10 0 20 3.0 3

Note: ppmvd= parts per million, volume dry; O₂= oxygen. Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE A-7-SH DESIGN INFORMATION AND STACK PARAMETERS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO, COMBUSTOR, DISTILLATE OIL, 75% LOAD

	Turbine Inlet Temperature						
Parameter	35 °F	59 °F	75 °F	95 °F			
Combustion Turbine Performance							
Heat Input (MMBtu/hr, LHV)	1,979	1,857	1,772	1,664			
(MMBtu/hr, HHV)	2,098	1,968	1,878	1,764			
Relative Humidity (%)	60	60	60	50			
Fuel heating value (Btu/lb, LHV)	18,387	18,387	18,387	18,387			
(Btu/lb, HHV)	19,490	19,490	19,490	19,490			
(HHV/LHV)	1.060	1.060	1.060	1.060			
CT Exhaust Flow							
Mass Flow (lb/hr)- provided	4,102,785	3,920,619	3,786,372	3,606,773			
Temperature (°F) - provided	1,126	1,136	1,143	1,154			
Moisture (% Vol.)	7.78	8.2	8.81	9.66			
Oxygen (%·Vol.)	11.93	11.99	11.97	11.92			
Molecular Weight	28.68	28.62	28.54	28.44			
Volume flow (acfm) - calculated	2,766,557	2,666,078	2,592,584	2,495,524			
Fuel Usage							
Fuel usage (lb/hr) = Heat Input (MMB	Stu/hr) x 1,000,000 I	Btu/MMBtu [Fuel H	leat Content, Btu/lb	(LHV)]			
Heat input (MMBtu/hr, LHV)	1,979	1,857	1,772	1,664			
Heat content (Btu/lb, LHV)	18,387	18,387	18,387	18,387			
Fuel usage (lb/hr)- provided	107,635	100,987	96,398	90,522			
- calculated	107,630	100,995	96,372	90,499			
HRSG Stack							
HRSG - Stack Height (feet)	149	149	149	149			
Diameter (feet)	22	22	22	22			
HRSG Stack Flow Conditions	•	•					
Velocity (ft/sec) = Volume flow (acfm	$\frac{1}{2} / \frac{1}{2} $ ((diameter) ² /4)	x 3.14159] / 60 sec/	min e				
Mass flow (lb/hr)	4,102,785	3,920,619	3,786,372	3,606,773			
HRSG Stack Temperature (°F)	350	348	346	345			
Molecular weight	28.68	28.62	28.54	28.44			
Volume flow (acfm)	1,412,933	1,349,744	1,303,570	1,244,669			
Diameter (feet)	22	22	22	22			
Velocity (ft/sec)- calculated	61.9	59.2	57.2	54.6			
Velocity (ft/sec)- provided	55	53	52	50			

Note: Universal gas constant = 1,545.4 ft-lb(force)/°R; atmospheric pressure = 2,112.5 lb(force)/ft² (@14.67 psia). Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE A-8-SH MAXIMUM EMISSIONS FOR CRITERIA POLLUTANTS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO, COMBUSTOR, DISTILLATE OIL, 75% LOAD

Parameter —	35 °F	Turbine Inlet 59 °F	Temperature 75 °F	95 °F
Particulate from CTand SCR				
Total $PM_{10} = PM_{10}$ (front half) + PM_{10} [(NH ₄) ₂ SO ₄] in HRSG only (back-half) a. PM_{10} (front half) (lb/hr)				
Particulate from CT- provided	0.0	0.0	0.0	0.0
b. PM ₁₀ [(NH ₄) ₂ SO ₄] from HRSG only (back half) = Sulfur trioxide from conver	rsion of SO ₂ converts	to ammonium sulfate (= PM ₁₀)	
Particulate from conversion of SO 2 = SO 2 emissions (lb/hr) x conversion of	of SO 2 to SO 3 in CT	and in SCR x lb SO 3/1		
conversion of SO $_3$ to (NH $_4$) $_2$ SO $_4$. SO $_2$ emission rate (lb/hr)- calculated	x_lb (NH ₄) ₂ SO ₄ / lb 3.2	<i>SO</i> ₃ 3.0	2.9	2.7
Conversion (%) from SO ₂ to SO ₃ in CT	10.0	10.0	10.0	10.0
Remaining SO ₂ (lb/hr) in CT after conversion - calculated	2.9	2.7	2.6	2.4
Conversion (%) from SO ₂ to SO ₃ in SCR	3.0	3.0	3.0	3.0
MW SO_3/SO_2 (80/64) Conversion (%) from SO_3 to (NH ₄) ₂ (SO_4)	1.3 100	1.3	1.3	1.3 100
MW (NH ₄) ₂ SO ₄ / SO ₃ (132/80)	1.7	1.7	1.7	1.7
HRSG Particulate as (NH ₄) ₂ (SO ₄) (lb/hr)- calculated	0.85	0.79	0.76	0.71
Total HRSG stack emission rate (lb/hr) [a + b] - provided	30.0	30.0	30.0	30.0
-calculated - maximum	0.8 30.0	0.8 30.0	0.8 30.0	0.7 30.0
(lb/mmBtu, HHV)	NA NA	NA	NA	NA NA
ulfur Dioxide				
SO ₂ (lb/hr) = Fuel oil (lb/hr) x sulfur content(% weight) x (lb SO ₂ /lb S) /100				
Fuel oil Sulfur Content Fuel oil use (lb/hr)	0.0015% 107,635	0.0015% 100,987	0.0015% 96,398	0.0015% 90,522
b SO ₂ / lb S (64/32)	2	2	2	2
HRSG Stack emission rate (lb/hr)- calculated	3.2	3.0	2.9	2.7
itrogen Oxides				
Oxygen (%, dry) (O ₂ dry) = Oxygen (%)/[1-Moisure (%)] NO ₂ (npm actual) = NO ₃ (npmd @ $15\%0$ -) x ((20.9 - O - dry)/(20.9 - 15)]	v []. Mointain (9/1)	001		
NO_x (ppm actual) = NO_x (ppmd @ $15\%O_2$) x [(20.9 - O_2 dry)/(20.9 - 15)] NO_x (lb/hr) = NO_x (ppm actual) x Volume flow (acfm) x 46 (mole. wgt NO_x)			onstant. R) x Actual Tax	np. (°R)1 x 60 min/
Basis, ppm actual- calculated	52.3	51.2	50.5	49.6
CT/DB, ppmvd @15% O ₂	42 7.78	42 8.2	42 8 8 1	42 9.66
Moisture (%) Oxygen (%)	7.78 11.93	8.2 11.99	8.81 11.97	9.66 11.92
Oxygen (%) dry Furbine Flow (acfin)	12.94 2,766,557	13.06 2;666,078	13.13 2,592,584	13.19
Furbine Flow (actin) Furbine Flow (actin), dry	2,766,337 2,551,319	2,447,460	2,392,384 2,364,178	2,495,524 2,254,456
Furbine Exhaust Temperature (°F) CT emission rate (Ib/hr)	1,126 344.1	1,136 322.9	1,143 307.9	1,154 289.1
CT emission rate (lb/hr)(provided)	363.0	340.0	325.0	305.0
HRSG Stack, ppmvd @ 15% O₂ - provided	8.0	8.0	8.0	8.0
IRSG Stack emission rate (lb/hr)- calculated	69.1	64.8	61.9	58.1
Max. CT/DB calculated/provided)				
Carbon Monoxide Oxygen (%, dry)(O $_2$ dry) = Oxygen (%)/[1-Moisure (%)]				
CO (ppmv wet or actual) = CO (ppmvd @ $15\%O_2$) x [(20.9 - O_2 dry)/(20.9				
CO (lb/hr) = CO (ppm actual) x Volume flow (acfm) x 28 (mole. wgt CO) x 21 Basis, ppm actual- calculated	l 12.5 lb/ft ² (pressure 12.4	e) / [1545.4 (gas consta 12.2	nt, R) x Actual Temp. (12.0	°R)] x 60 min/hr 11.8
Basis, ppmvd @ 15% O ₂ - provided	10	10	10	10
Moisture (%)	7.78	8.2	8.81	9.66
Oxygen (%) Oxygen (%) dry	11.93 12.94	11.99 13.06	11.97 13.13	11.92 13.19
Turbine Flow (acfm)	2,766,557	2,666,078	2,592,584	2,495,524
Turbine Flow (acfm), dry Turbine Exhaust Temperature (°F)	2,551,319 1,126	2,447,460 1,136	2,364,178 1,143	2,254,456 1,154
HRSG Exhaust Temperature (°F)	350	348	346	345
CT emission rate (lb/hr) CT emission rate (lb/hr)(provided)	49.9 53.0	46.8 49.0	44.6 47.0	41.9 44.0
UDSC Steels married @ 150/ O	10.0	10.0	10.0	10.0
HRSG Stack, ppmvd @ 15% O₂ - provided HRSG Stack emission rate (lb/hr)- calculated	10.0 53.0	10.0 49.0	10.0 47.0	10.0 44.0
Max. CT/DB calculated/provided)				
olatile Organic Compounds				
Oxygen (%, dry)(O ₂ dry) = Oxygen (%)/[1-Moisure (%)]				
VOC (ppmv wet or actual) = VOC (ppmvd @ 15%O 2) x [(20.9 - O 2 dry)/(20 VOC (lb/hr) = VOC (ppm actual) x Volume flow (acfm) x 16 (mole, wgt CH 4,	,		onstant P) × Actual Tax	mn (OD) 1 × 60 min/
Basis, ppm actual- calculated	2.5	2.4	2.4	2.4
Basis, ppmvd @ 15% O ₂ - provided	2.0	2.0	2.0	2.0
Moisture (%) Oxygen (%)	7.78 11.93	8.20 11.99	8.81 11.97	9.66 11.92
Oxygen (%) dry	12.94	13.06	13.13	13.19
Turbine Flow (acfm) Turbine Flow (acfm), dry	2,766,557 2,551,319	2,666,078 2,447,460	2,592,584 2,364,178	2,495,524 2,254,456
Turbine Exhaust Temperature (°F)	1,126	. 1,136	1,143	1,154
HRSG Exhaust Temperature (°F) CT emission rate (lb/hr) (calculated)	350 5.7	348 5.3	346 5.1	345 4.8
CT emission rate (lb/hr)(provided)	6.0	5.6	5.4	5.1
HRSG Stack, ppmvd @ 15% O₂ - provided	2.0	2.0	2.0	2.0
HRSG Stack emission rate (lb/hr)- calculated	6.00	5.60	5.40	5.10
Max. CT/DB calculated/provided)				
ulfuric Acid Mist		:		
Sulfuric Acid Mist (lb/hr) = SO_2 emission (lb/hr) x Conversion to H_2SO_4 (% CT SO_2 emission rate (lb/hr) - provided	6 by weight)/100 3.2	3.0	2.9	2.7
CT Conversion to H ₂ SO ₄ (% by weight) - provided	3.2 10	3.0 10	2.9 10	10
DB SO ₂ emission rate (lb/hr) - provided	0	0 .	0	0
DB Conversion to H ₂ SO ₄ (%) - provided	20	20	20	20
SCR SO ₂ emission rate (lb/hr) - calculated (remaining SO ₂ after conversion) SCR Conversion to H ₂ SO ₄ (% by weight) - provided	2.9 3	2.7 3	2.6 3	2.4 3
e A G F	-		-	
Imag and a state of the state o		0.59	0.56	0.53
HRSG Stack emission rate (lb/hr)- calculated	0.63	0.07		
ead .		0.07		
ead_ Lead (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MMBtu/hr) / 1,000,000 MM	Btu/10 ¹² Btu			
HRSG Stack emission rate (lb/hr)- calculated Lead (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MMBtu/hr) / 1,000,000 MM. Emission Rate Basis (lb/10 ¹² Btu) Heat Input (MMBtu/hr, HHV)		14 1,968	14 1,878	14 1,764

Note: ppmvd= parts per million, volume dry; O₂= oxygen. Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE A-9-SH REGULATED AND HAZARDOUS AIR POLLUTANT EMISSION FACTORS AND EMISSIONS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO, COMBUSTOR, NATURAL GAS, BASE LOAD

Parameter	Emission Rate (lb/ for Operating Con	Natural Gas Maximum Annual Gas		
Ambient Temperature (°F):	59 °F	59 °F w/DB	Compressors	59 °F
HIR (MMBtu/hr):	2,577	3,052	l CT/HRSG	3 CTs/HRSGs
Sulfuric acid mist	2.10	3.72	11.5	34.6
HAPs (Section 112(b) of Clean Air Act)				
1,3-Butadiene	0.001108	0.001312	0.005	0.015
Acetaldehyde	0.1031	0.1221	0.479	1.437
Acrolein	0.0165	. 0.0195	0.077	0.230
Benzene	0.0309	0.0366	0.144	0.431
Ethylbenzene	0.0825	0.0977	0.383	1.149
Formadehyde	0.551	0.654	2.562	7.686
Naphthalene	0.00335	0.00397	0.016	0.047
Polycyclic Aromatic Hydrocarbons (PAH) (3)	0.00567	0.00671	0.026	0.079
Propylene Oxide	0.0747	0.0885	0.347	1.041
Toluene	0.0850	0.1007	0.395	1.185
Xylene	0.165	0.195	0.766	2.298
Antimony	0.0	0.0	0.0	0.00
Arsenic ,	0.0	0.0	0.0	0.00
Beryllium	0.0	0.0	0.0	0.00
Cadmium	0.0	0.0	0.0	0.00
Chromium	0.0	0.0	0.0	0.00
Lead	0.0	0.0	0.0	0.00
Manganese	0.0	0.0	, 0.0	0.00
Mercury	0.0	0.0	0.0	3.59E-05
Nickel	0.0	0.0	0.0	0.00,
Selenium	0.0	0.0	0.0	0.00
HAPs (Total)	1.119	1.327	5.20	15.6

(1) Emissions based on the following emission factors and conversion factors for firing natural gas:

Emission Factors		Value Reference
Sulfuric acid mist		10 %; Conversion of SO ₂ to SO ₃ in gas turbine
1,3-Butadiene	(a)	0.43 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Acetaldehyde		40 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Acrolein ·		6.4 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Benzene		12 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Ethylbenzene		32 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Formadehyde		0.091 ppmvd @15% O ₂ (see Table 9a)
Naphthalene		1.3 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Polycyclic Aromatic Hydrocarbons (PAH)		2.2 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Propylene Oxide	(a)	29 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000
Toluene		33 lb/10 ¹² Btu; AP-42, Table 3.1-3. EPA 2000. Database
Xylene		64 lb/10 ¹² Btu; AP-42,Table 3.1-3, EPA 2000
Antimony		0.00E+00
Arsenic		0.00E+00
Beryllium		0.00E+00
Cadmium		0.00E+00
Chromium		0.00E+00
Lead		0.00E+00
Manganese		0.00E+00
Mercury		1.00E-03
Nickel		0.00E+00
Selenium		0.00E+00

- (a) Based on 1/2 the detection limit; expected emissions are lower.
- (2) Annual emissions based on ambient temperature of 59 °F firing natural gas for following hours:

5880 CT 2880 CT/DB

TABLE A-9a-SH MAXIMUM FORMALDEHYDE EMISSIONS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO, COMBUSTOR, NATURAL GAS, BASE LOAD

	CT Only						
	Turbine Inlet Temperature						
Parameter	35 °F	59 °F	59 °F w/DB	, 95 °F			
-		•		Gas			
Formaldehyde (CH_2O) $MW = 30$				Compressors			
$CH_2O(lb/hr) = CH_2O(ppm actual) \times Volume flow$	(acfm) x 30 (mol	e. wgt CH 2O) s	c 2116.8 lb/ft ² (p	ressure) /			
· · · · · · · · · · · · · · · · · · ·				$(^{\circ}R)$] x 60 min/hr			
CH_2O (ppm actual) = CH_2O (ppmd @ 15% O_2) x [(20.9 - 0 2 dry)/	(20.9 - 15)] x [1- Moisture(%)/.	100]			
Oxygen (%, dry)(O_2 dry) = Oxygen (%)/[1-Moisure	(%)]						
Basis, ppm actual- calculated	0.110	0.109	0.129	0.108			
CT, ppmvd @15% O ₂	0.091	0.091	0.091	0.091			
Moisture (%)	8.36	9.14	10.52	11.03			
Oxygen (%)	12.05	11.92	10.36	11.59			
Oxygen (%) dry	13.15	13.12	11.58	13.03			
Exhaust Flow (acfin)	1,399,125	1,344,704	1,333,147	1,251,392			
Exhaust Temperature (°F)	196	195	185	195			
CT Emission rate (lb/hr)	0.575	0.551	0.654	0.508			
CT Emission rate (lb/10 ¹² Btu) (HHV)	213.8	213.8	254.0	213.9			

Note: ppmvd= parts per million, volume dry; O2= oxygen. Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE A-10-SH REGULATED AND HAZARDOUS AIR POLLUTANT EMISSION FACTORS AND EMISSIONS FOR THE CONVERSION PROJECT, SIEMENS H CT

Parameter	Emission Rate (lb/hr) Distillate Fuel Oil (1) Base Load	Maximu	Maximum Annual Emissions (TPY) Gas			Emission Rate (lb/hr) Natural Gas (4) Base Load		Maximum Annual Emissions (TPY) Natural Gas and Fuel Oil (5)		
Ambient Temperature (°F):	59 °F	Compressors 3 CT/HRSGs	3 CT/HRSGs	3 CT/HRSGs	1 CT/HR\$Gs	1 CT/HRSGs	3 CT/HRSGs	3 CT/HRSGs	3 CT/HRSGs	
HIR (MMBtu/hr):	2,404	(500 hrs on oil)	(1,000 hrs on oil)	(1,500 hrs on oil)	(CT Only)	(CT + DB)	(500 hrs on oil)	(1,000 hrs on oil)	1,500 hrs on o	
Sulfuric acid mist	0.72	0.54	1.08	1.62	2.10	3.72	33.6	32.5	31.5	
IAPs (Section 112(b) of Clean Air Act)										
.3-Butadiene	0.0385	0.029	0.058	0.087	0.001	100.0	0.043	0.071	0.099	
Acetaldehyde	0.00	0.00	0.00	0.00	0.103	0.122	1.359	1.282	1.205	
Acrolein	0.00	0.00	0.00	0.00	0.016	0.020	0.217	0.205	0.193	
Senzene	0.132	0.099	0.198	0.298	0.031	0.037	0.507	0.583	0.659	
thylbenzene	0.00	0.00	0.00	0.00	0.082	0.098	1.087	1.026	0.964	
ormadehyde	0.565	0.424	0.848	1.271	0.551	0.654	7.697	7.707	7,718	
aphthalene	0.0841	0.063	0.126	0.189	0.003	0.004	0.107	0.168	0.228	
olycyclic Aromatic Hydrocarbons (PAH) (3)	0.0962	0.072	0.144	0.216	0.006	0.007	0.147	0.215	0.283	
ropylene Oxide	0.00	0.00	0.00	0.00	0.075	0.089	0.985	0.929	0.873	
oluene	0.00	0.00	0.00	0.00	0.085	0.101	1.121	1.058	0.994	
Kylene	0.00	0.00	0.00	0.00	0.165	0.195	2.175	2.051	1.927	
antimony	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ursenic	0.0264	0.020	0.040	0.060	0.00	0.00	0.020	.0.040	0.060	
eryllium	0.000745	0.0006	0.001	0.002	0.00	0.00	0.00	0.00	0.00	
admium	0.01154	0.0087	0.017	0.026	0.00	0.00	0.009	0.017	0.026	
Chromium	0.0264	0.020	0.040	0.060	0.00	0.00	0.020	0.040	0.060	
ead	0.0337	0.025	0.050	0.076	0.00	0.00	0.025	0.050	0.076	
fanganese	1.90	1.424	2.849	4.273	0.00	0.00	1.42	2.85	4.27	
Mercury	0.00288	0.0022	0.004	0.006	0.00	0.00	0.00	0.00	0.01	
Rickel Rickel	0.01106	0.0083	0.017	0.025	0.00	0.00	0.008	0.017	0.025	
Selenium	0.0601	0.045	0.090	0.135	0.00	0.00	0.045	0.090	0.135	
HAPs (Total)	2.99	2.24	4.48	6.72	1.1	1.3	17.0	18.4	19.8	

(1) Emissions based on the following emission factors and conversion factors for firing distillate fuel oil:

	<u>Value</u>	Reference	
	5		
(a)	16	lb/10 ¹² Btu; AP-42,Table 3.1-4. EPA 2000	
		lb/10 ¹² Btu; AP-42,Table 3.1-4. EPA 2000	
		named @159/ O. (see Table 10a)	
		lb/10" Btu; AP-42, Table 3.1-4. EPA 2000	
	0.0		
	0.0		
(a)	11	lb/10 ¹² Btu; AP-42,Table 3.1-5. EPA 2000	
(a)	0.31	lb/10 ¹² Btu; AP-42, Table 3.1-5. EPA 2000	
	4.8	lb/10 ¹² Btu, AP-42, Table 3.1-5. EPA 2000	
	11	lb/10 ¹² Btu; AP-42,Table 3.1-5. EPA 2000	
	14	lb/10 ¹² Btu; AP-42, Table 3.1-5. EPA 2000	
	790	lb/10 ¹² Btu; AP-42, Table 3.1-5. EPA 2000	
	1.2	lb/10 ¹² Btu; AP-42, Table 3.1-5, EPA 2000	
(a)	4.6		
(a)	25	lb/10 ¹² Btu; AP-42, Table 3.1-5, EPA 2000	
	(a) (a)	5 (a) 16 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.0 (0.	5 %; Conversion of SO ₂ to SO ₃ in gas turbine (a) 16 lb/10 ¹² Btu; AP-42,Table 3.1-4. EPA 2000 0.0 0.0 55 lb/10 ¹² Btu; AP-42,Table 3.1-4. EPA 2000 0.0 0.091 ppmvd @15% O ₂ (see Table 10a) 35 lb/10 ¹² Btu; AP-42,Table 3.1-4. EPA 2000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1,500 hours 1,000 hours 1,000 hours 4,880 hours 2,880 hours 1,500 hours 4,380 hours 2,880 hours 500 hours 5,380 hours 2,880 hours Natural gas at base load for:

Natural gas with duct firing at base load for :

TABLE A-10a-SH MAXIMUM FORMALDEHYDE EMISSIONS FOR THE CONVERSION PROJECT SIEMENS H CT, DRY LOW NO, COMBUSTOR, DISTILLATE OIL, BASE LOAD

 			CT	Only			
•		Turbine Inlet Temperature					
Parameter		35 °F	59 °F	75 °F	95 °F		
					Gas		
Formaldehyde (\underline{CH}_2O) $\underline{MW} =$	30				Compressors		
$CH_2O(lb/hr) = CH_2O(ppm \ actual) x$	Volume flo	w (acfm) x 30 (m	ole. wgt CH 2O)	x 2116.8 lb/ft2 ((pressure) /		
		[1545.7	(gas constant, F	R) x Actual Temp.	(°R)] x 60 min/h		
CH_2O (ppm actual) = CH_2O (ppmd @	15%O ₂).	$x [(20.9 - O_2 dr)]$	(20.9 - 15) x	[1- Moisture(%)/	/100]		
Oxygen (%, dry)(O_2 dry) = Oxygen (%)	/[I-Moisu	re (%)]					
Basis, ppmvw - calculated		0.113	0.112	0.111	0.110		
CT, ppmvd @15% O ₂		0.091	0.091	0.091	0.091		
Moisture (%)	•	7.97	8.46	9.12	10.02		
Oxygen (%)		11.91	11.88	11.80	11.68		
Oxygen (%) dry		12.94	12.98	12.98	12.98		
Exhaust Flow (acfm)		1,773,827	1,677,310	1,607,335	1,519,437		
Exhaust Temperature (°F)		359	357	355	354		
CT Emission rate (lb/hr)		0.602	0.565	0.538	0.505		
CT Emission rate (lb/10 ¹² Btu) (HHV)		234.7	235.0	234.9	234.8		

Note: ppmvd= parts per million, volume dry; O2= oxygen.

TABLE 2-1B STACK, OPERATING, AND EMISSION DATA FOR THE COMBUSTION TURBINES/HRSGS AND DUCT BURNERS -NATURAL GAS COMBUSTION, SIEMENS H CT

			Oper	ating and	Emission 1	Data ^a for Am	bient Temp	erature	
		Con	ıbustion T					/ HRSG/ Di	ict Burner
Parameter		35 °F	59 °F	75 °F	95 °F	35 °F	59 °F	75 °F	95 °F
CT/HRSG Stack Data (feet)								
Height		149	149	149	149	149	149	149	149
Diameter		22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
100 Percent Load									
Temperature (°F)		196	195	195	195	186	185	185	184
Velocity (ft/sec)		61.3	59.0	57.0	54.9	60.8	58.5	56.5	54.3
Maximum Hourly Emis	sions per C	CT							
SO_2	lb/hr	15.1	14.4	13.9	13.3	17.7	17.1	16.5	16.0
PM/PM ₁₀	lb/hr	13.3	13.0	12.2	11.7	17.0	16.4	15.8	15.3
NO _x	lb/hr	20.0	19.1	18.4	17.6	23.5	22.6	21.9	21.1
co	lb/hr	30.0	29.0	28.0	27.0	49.0	48.0	47.0	46.0
VOC (as methane)	lb/hr	5.1	4.8	4.7	4.5	7.4	7.2	7.0	6.8
Sulfuric Acid Mist	lb/hr	2.9	2.8	2.7	2.6	3.8	3.7	. 3.6	3.5
75 Percent Load									
Temperature (°F)		184	185	186	187	NA ·	NA	NA	NA
Velocity (ft/sec)		49.3	47.3	45.8	43.9	NA	NA	NA	NA ·
Maximum Hourly Emis	sions per C	CT							
SO ₂	lb/hr	12.1	11.4	10.9	10.2	NA	NA	NA ·	NA'
PM/PM ₁₀	lb/hr	11.0	11.0	9.9	9.4	NA	. NA	NA	NA
NO _x	lb/hr	16.1	15.0	14.4	13.5	NA	NA	NA	NA
co	lb/hr	49.0	46.0	44.0	41.0	NA	NA	· NA	NA
VOC (as methane)	lb/hr	4.1	3.8	3.6	3.4	NA	NA	NA	NA
Sulfuric Acid Mist	· lb/hr	2.36	2.21	2.11	1.99	NA	NA .	NA	NA

Refer to Appendix A for detailed information on basis of pollutant emission rates and operating data. Duct firing is assumed for 100% operating load. No duct firing is assumed for loads less than 100%.

TABLE 2-2B
STACK, OPERATING, AND EMISSION DATA FOR
THE COMBUSTION TURBINES/HRSGS ULTRA LOW-SULFUR LIGHT OIL COMBUSTION, SIEMENS H CT

-		Operating a		nta ^a for Ambier	
			Combustion	Turbine/ HRSC	3
Parameter		35 °F	59 °F	75 ° F	95 °F
CT/HRSG Stack Data (feet)					
Height		149	149	149	149
Diameter		22	22	22	22
100 Percent Load					
Temperature (°F)		359	357	355	354
Velocity (ft/sec)		77.8	73.5	70.5	66.6
Maximum Hourly Emissions per CT					,
SO_2	lb/hr	3.9	3.7	3.5	3.3
PM/PM ₁₀	lb/hr	0.0	0.0	0.0	0.0
NO _x	lb/hr	85.3	80.0	76.2	71.4
CO	lb/hr	65.0	61.0	58.0	54.0
VOC (as methane)	lb/hr	7.4	7.0	6.6	6.2
Lead	lb/hr	0.036	0.034	0.032	0.030
Sulfuric Acid Mist	lb/hr	0.77	0.72	0.69	0.64
75 Percent Load					
Temperature (°F)		350	348	346	345
Velocity (ft/sec)		61.9	59.2	57.2	54.6
Maximum Hourly Emissions per CT					
SO_2	lb/hr	3.2	3.0	2.9	2.7
PM/PM ₁₀	lb/hr	30.0	30.0	30.0	30.0
NO _x	lb/hr	69.1	64.8	61.9	58.1
CO	lb/hr	53.0	49.0	47.0	44.0
VOC (as methane)	lb/hr	6.0	5.6	5.4	5.1
Lead	lb/hr	0.029	0.028	0.026	0.025
Sulfuric Acid Mist	lb/hr	0.63	0.59	0.56	0.53

^a Refer to Appendix A for detailed information on basis of pollutant emission rates and operating data. Source: Siemens, 2008; CT Performance Data; Golder, 2008.

TABLE 2-3B SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR THE CTS/HRSG, SIEMENS H CTS

				Maximum Emissions (TPY)						
		Hourly Emissic		Operating						
	Cor	nbined Cycle (CC)	Scenario	Operating Hours					
Fuel:	NG	NG	Oil	CC/ NG 100 % Load CC/ DB /NG100 % Load	8, 7 60 0	7,760 1,000	5,880 2,880	4,880 2,880	5,280 2,480	
Temp & Load:	59 °F, 100%	59 °F, 100% w/DB	59 °F, 100%	CC/ OIL 100 % Load b	0	0	0	1,000	1,000	
Pollutant				TOTAL	8,760	8,760	8,760	8,760	8,760	
One Combustion Turbine						_				
SO ₂	14.4	17.1	3.7		63.3	64.6	67.1	61.7	61.2	
PM/PM ₁₀	13.0	16.4	0.0		56.9	58.6	61.8	55.3	54.6	
NO _x	19.1	22.6	80.0		83.7	85.5	88.8	119.2	118.5	
co	29.0	48.0	61.0	· ·	127.0	136.5	154.4	170.4	166.6	
VOC (as methane)	4.8	7.2	7.0		21.2	22.4	24.6	25.7	25.2	
Sulfuric Acid Mist	2.8	3.7	0.7		12.3	12.8	13.6	12.6	12.4	
HAPs	1.12	1.33	2.99		4.9	5.0	5.2	6.1	6.1	
Lead	0.00	0.00	0.034		0.0	0.0	0.0	0.017	0.017	
Three Combustion Turbines										
SO ₂	43.3	51.3	11		190	194	201	185	184	
PM/PM ₁₀	39.0	49.2	0	•	170.8	175.9	185.5	166	164	
NO _x	57.4	67.9	240		251	257	266	358	356	
CO	87.0	144	183		381	410	463	511	500	
VOC (as methane)	14.5	21.7	21.0		63.6	67.2	73.9	77.1	75.7	
Sulfuric Acid Mist	8.4	11.2	2.2		36.9	38.3	40.9	37.7	37.2	
HAPs	3.36	3.98	8.96		14.70	15.01	15.60	18.4	18.3	
Lead	0.00	0.00	0.101		0.000	0.000	0.000	0.050	0.050	

^a Based on 59 °F ambient inlet air temperature .

1,000 hours (maximum).

Sources: Siemens, 2008; Golder, 2008.

^b Based on oil-firing up to

TABLE 2-7
SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR THE CONVERSIONS PROJECT

1,000 HR OIL

SIEMENS H CT

	Max	Maximum Potential Annual Emissions (tons/year)						PCC			
Pollutant	3 CTs/HRSGs with Duct Burners	Auxiliary Boiler ^a	2 Emergency Generators	1 Natural Gas Heater	TOTAL	Maximum 2-Year Average (tons/year)	3 Compressor Engine(s) (tons/year)	Change (tons/year)	Maximum 2-Year Average (tons/year)	Change (tons/year)	PSD Significant Emission Rate (tons/year)
SO ₂	201	0.14	0.003	0.23	202	11,140	1.17	-10,937	10,999	-10,797	40
PM	185	0.17	0.28	0.08	186	918	0.032	-732	889	-703	25
PM_{10}	. 185	0.17	0.28	0.08	186	918	0.032	-732	889	-703	15
NO _x	358	1.25	4.87	4.11	368	7,725	96.0	-7,261	3,752	-3,384	40
co	511	2.00	6.00	3.45	523	703	68.6	-112	560	-37	100
VOC (as methane)	77.1	0.13	0.71	0.23	78.2	68.4	24.8	34.6	59.4	18.8	40
Sulfuric Acid Mist	40.9	0	NA	NA	40.9						7
Lead	0.050	0	NA	NA	0.05	0.113	0.0	-0.062	0.12	-0.07	0.6

Source: Golder, 2008.

a An auxiliary boiler is only required to supply steam to the CTs during startup.

TABLE 2-7
SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR THE CONVERSIONS PROJECT

1,500 HR OIL

SIEMENS H CT

	Max	<u>imum Potent</u>	ial Annual Emi	ssions (tons/year	r)		PCC	<u> </u>	PRV			
Pollutant	3 CTs/HRSGs with Duct Burners	Auxiliary Boiler ^a	2 Emergency Generators	1 Natural Gas Heater	TOTAL	Maximum 2-Year Average (tons/year)	3 Compressor Engine(s) (tons/year)	Change (tons/year)	Maximum 2-Year Average (tons/year)	Change (tons/year)	PSD Significant Emission Rate (tons/year)	
SO ₂	201	0.14	0.003	0.23	202	11,140	1.17	-10,937	10,999	-10,797	40	
PM	185	0.17	0.28	0.08	186	918	0.032	-732	889	-703	25	
PM_{10}	185	0.17	0.28	0.08	186	918	0.032	-732	889	-703	15	
NO_x	403	1.25	4.87	4.11	414	7,725	96.0	-7,216	3,752	-3,339	40	
co.	535	2.00	6.00	3.45	547	703	68.6	-88	560	-13	100	
VOC (as methane)	79	0.13	0.71	0.23	79.8	68.4	24.8	36.2	59.4	20.5	40	
Sulfuric Acid Mist	40.9	0	NA	NA	40.9						7	
Lead	0.076	0 .	NA	NA	0.08	0.113	•	-0.037	0.12	-0.04	0.6	

Source: Golder, 2008.

a An auxiliary boiler is only required to supply steam to the CTs during startup.

TABLE 4.4.1-1B
STACK, OPERATING, AND EMISSION DATA FOR
THE COMBUSTION TURBINES/HRSGS AND DUCT BURNERS
FOR RBEC OPERATION - NATURAL GAS COMBUSTION, SIEMENS H CT

			Оре	rating and	Emission	Data ^a for Am	bient Tempe	rature	
		Con	nbustion T			Combustio	n Turbine/	HRSG/ Duc	t Burner
Parameter		35 °F	59 °F	75 °F	95 °F	35 °F	59 °F	75 °F	95°F
CT/HRSG Stack Data (for	eet)				٠.				
Height		149	149	149	149	149	149	149	149
Diameter		22.0	22.0	22.0	22.0	22.0	22.0	22.0	22.0
100 Percent Load									
Temperature (°F)		196	195	195	195	186	185	185	184
Velocity (ft/sec)		61.3	59.0	57.0	54.9	60.8	58.5	56.5	54.3
Maximum Hourly Emiss	ions per Unit								
SO ₂	lb/hr	15.1	14.4	13.9	13.3	17.7	17.1	16.5	16.0
PM/PM ₁₀	lb/hr	13.3	13.0	12.2	11.7	17.0	16.4	15.8	15.3
NO _x	lb/hr	20.0	19.1	18.4	17.6	23.5	22.6	21.9	21.1
co	lb/hr	30.0	29.0	28.0	27.0	49.0	48.0	47.0	46.0
VOC (as methane)	ib/hr	5.1	4.8	4.7	4.5	7.4	7.2	7.0	6.8
Sulfuric Acid Mist	lb/hr	2.9	2.8	2.7	2.6	3.8	3.7	3.6	3.5
75 Percent Load									
Temperature (°F)		184	185	186	187	NA	NA	NA	NA:
Velocity (ft/sec)		49.3	47.3	45.8	43.9	NA	NA	NA	NA
Maximum Hourly Emiss	ions per Unit								,
SO ₂	lb/hr	12.1	11.4	10.9	10.2	NA	NA	NA	NA
PM/PM ₁₀	lb/hr	11.0	11.0	9.9	9.4	NA	NA	NA	NA
NO _x	lb/hr	16.1	15.0	14.4	13.5	NA	NA	NA	NA
co	lb/hr	49.0	46.0	44.0	41.0	NA	NA	NA	NA
VOC (as methane)	lb/hr	4.1	3.8	3.6	3.4	NA	NA	NA	NA
Sulfuric Acid Mist	lb/hr	2.36	2.21	2.11	1.99	NA	NA	NA	NA

^a Refer to Appendix 10.2.5, Subappendix A for detailed information on basis of pollutant emission rates and operating data. Duct firing is assumed for 100% operating load. No duct firing is assumed for loads less than 100%.

TABLE 4.4.1-2B
STACK, OPERATING, AND EMISSION DATA FOR
THE COMBUSTION TURBINES/HRSGS FOR RBEC OPERATION ULTRA LOW SULFUR LIGHT OIL COMBUSTION, SIEMENS H CT

		Operating a	nd Emission D Combustion	ata ^a for Ambien Turbine/ HRSC	it Temperature G
Parameter		35 °F	59 °F	75 °F	95 °F
CT/HRSG Stack Data (feet)				•	
Height		149	149	149	149
Diameter		22	22	22	22
100 Percent Load					
Temperature (°F)	•	359	357	355	354
Velocity (ft/sec)		77.8	73.5.	70.5	66.6
Maximum Hourly Emissions per Unit			•		
SO_2	lb/hr	3.9	3.7	3.5	3.3
PM/PM ₁₀	lb/hr	0.0	0.0	0.0	0.0
NO _x	lb/hr	85.3	80.0	76.2	71.4
co	lb/hr	65.0	61.0	58.0	54.0
VOC (as methane)	lb/hr	7.4	7.0	6.6	6.2
Lead	lb/hr	0.036	0.034	0.032	0.030
Sulfuric Acid Mist	lb/hr	0.77	0.72	0.69	0.64
75 Percent Load					
Temperature (°F)		350	348	346	` 345
Velocity (ft/sec)		61.9	59.2	57.2	54.6
Maximum Hourly Emissions per Unit					
SO_2	lb/hr	3.2	3.0	2.9	2.7
PM/PM ₁₀	lb/hr	30.0	30.0	30.0	30.0
NO _x	lb/hr	69.1	64.8	61.9	58.1
CO	lb/hr	53.0	49.0	47.0	44.0
VOC (as methane)	lb/hr	6.0	5.6	5.4	5.1
Lead	lb/hr	0.029	0.028	0.026	0.025
Sulfuric Acid Mist	lb/hr	0.63	0.59	0.56	0.53

^a Refer to Appendix 10.2.5, Subappendix A for detailed information on basis of pollutant emission rates and operating data.

TABLE 4.4.1-3B
SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR RBEC OPERATION, SIEMENS H CT

_		Maxim	RBEC Conve		Netting Calculat					
Pollutant	3 CTs/HRSGs with Duct Burners b	2 Emergency Generators	1 Natural Gas Heater	7 Gas Compressors	•	Fire Pump Engine	TOTAL	Maximum 2-Year Average from Existing Units ^a (TPY)	Change (TPY)	PSD Significant Emission Rate (TPY)
SO ₂	201	0.003	0.23	1.74	NA	0.00014	203	10,999	-10,796	40
PM	185	0.28	0.08	3.10	NA	0.011	189	889	-700	25
PM_{10}	185	0.28	0.08	3.10	NA	0.011	189	889	-700	15
NO_x	358	4.9	4.11	135.9	NA	0.18	503	3,752	-3,250	40
co	511	6.0	3,45	8. 6	NA	0.069	529	560	-30.4	100
VOC (as methane)	77.1	0.71	0.23	14.0	2.80	0.026	94.9	59.4	35.6	40
Sulfuric Acid Mist	40.9	Neg.	Neg.	Neg.	NA	Neg.	40.9	489	-448	7
Lead	0.050	Neg.	Neg.	Neg.	NA	Neg.	0.050	0.12	-0.066	0.6

Source: Golder, 2008.

1,000 hours.

Note: Neg.= negligible; NA= not applicable

^a Based on actual emissions from Annual Operating Reports from 2003-2007.

^b Based on oil-firing for

TABLE 2-5 (REVISED JANUARY 2012) PERFORMANCE AND EMISSION DATA FOR THE EMERGENCY GENERATORS

Parame	ter	Emergency Generator
Perform	ance	
	r of Units	2
Rating	(kW)	2,250
Rating	(hp)	3,200
Fuel		Diesel
Fuel He	eat content (Btu/lb) (HHV)	19,300
	ensity (lb/gal)	7.0
	put (MMBtu/hr) (HHV)	21.01
	sage (gallons/hr)	155.5
	um operation (hours)	100
Maximi	um fuel usage (gallons/yr)	15,550
	arameters (typical)	
Diamet	` '	1.0
Height		30
	rature (°F)	916
Flow (a	icfm)	17,463
<u>Emis</u> sio	<u>ns</u>	
SO ₂ -	Basis (%S)	0.0015%
	Conversion of S to SO ₂	100
	Molecular weight SO ₂ / S (64/32)	2
	Emission rate (lb/hr)	0.03
	(tpy)- one unit	0.002
	(tpy)- total units	0.003
NO _x -	Basis (g/hp-hr)	6.9
	Emission rate (lb/hr)	48.7
	(tpy)- one unit	2.43
	(tpy)- total units	4.87
CO -	Basis (g/hp-hr)	8.5
	Emission rate (lb/hr)	60.0
	(tpy)- one unit	3.00
	(tpy)- total units	6.00
VOC -	Basis (g/hp-hr)	1.0
	Emission rate (lb/hr)	7.1
	(tpy)- one unit	0.35
	(tpy)- total units	0.71
DM/DAA	_o - Basis (g/hp-hr)	
1 141/1 TVI11		0.4
	Emission rate (lb/hr)	2.8
	(tpy)- one unit	0.14
	(tpy)- total units	0.28

Sources: FPL, 2012; Golder, 2012. SiemensH2 ConversionProjects rcm3A RBEC_20Jan2012.xlsx

TABLE 2-6 (REVISED JANUARY 2012) PERFORMANCE, STACK PARAMETERS, AND EMISSIONS FOR THE NATURAL GAS FUEL HEATER

Parameter	Natural Gas Heater
Performance ^a	
Fuel Usage (scf/hr-gas)	9,384
Heat Input (MMBtu/hr-HHV)	9.9
Hours per Year	8,760
Maximum Fuel Usage (MMscf/yr)	82.2
Number of Units	1
Stack Parameters (typical)	•
Diameter (ft)	1.42
Height (ft)	30
Temperature (°F)	500
Velocity (ft/sec)	51.6
Flow (acfm)	4,901
<u>Emissions</u>	
SO ₂ -Basis (grains S/100 scf-gas) ^b	2
(lb/hr)	0.054
(lb/MMBtu)	0.0054
(tpy) - one unit	0.23
(tpy) - total units	0.23
NO _x - (lb/MMscf) ^c	100
(lb/hr)	0.94
(lb/MMBtu)	0.095
(tpy) - one unit	4.1
(tpy) - total units	4.1
CO - (lb/MMscf) ^c	84
(lb/hr)	0.79
(lb/MMBtu)	0.080
(tpy) - one unit	3.45
(tpy) - total units	3.45
VOC - (lb/MMscf) ^c	5.5
(lb/hr)	0.052
(lb/MMBtu)	0.005
(tpy) - one unit	0.23
(tpy) - total units	0.23
PM/PM10 - (lb/MMscf) ^d	1.9
(lb/hr)	0.02
(lb/MMBtu)	0.002
(tpy) - one unit	0.08
(tpy) - total units	0.08

Note: Project will also have spare heater.

^a Based on 10 MMBtu/hr (HHV) indirect gas heaters from Hanover Compression Company or equivalent.

^b Typical maximum for natural gas.

^c EPA, AP-42 Table 1.4-1 using small boilers < 100 MMBtu.hr and Table 1.4-2.

^d EPA, AP-42 Table 1.4-2 Filterable PM.

TABLE 2-9B (REVISED JANUARY 2012) SUMMARY OF MAXIMUM POTENTIAL ANNUAL EMISSIONS FOR THE RBEC CONVERSION PROJECT, SIEMENS H CTS

		Maxim	RBEC Convolum Potential A	Netting Calculat						
Pollutant	3 CTs/HRSGs with Duct Burners	2 Emergency Generators	1 Natural Gas Heater	7 Gas Compressors	Fuel Oil Storage Tank	Fire Pump Engine	TOTAL	Maximum 2-Year Average from Existing Units ^a (TPY)	Change (TPY)	PSD Significant Emission Rate (TPY)
SO₂	201	0.003	0.23	1.74	NA	0.00014	203	10,999	-10,796	40
PM	185	0.28	0.08	3.10	NA	0.011	189	889	-700	25
PM ₁₀	185	0.28	0.08	3.10	NA	0.011	189	889	-700	15
NO _x	358	4.9	4.11	135.9	NA	0.18	503	3,752	-3,250	40
CO	511	6.0	3.45	8.6	NA	0.069	529	560	-30.4	100
VOC (as methane)	77.1	0.71	0.23	14.0	2.80	0.026	94.9	59.4	35.6	40
Sulfuric Acid Mist	40.9	Neg.	Neg.	Neg.	NA	Neg.	40.9	489	-448	7
Lead	0.050	Neg.	Neg.	Neg.	NA	Neg.	0.050	0.12	-0.066	0.6

 ^a Based on actual emissions from Annual Operating Reports from 2003-2007.
 ^b Based on oil-firing for: 1,000 hours per CT/HRSG.

Note: Neg.= negligible; NA= not applicable

Source: Golder, 2012.