Memorandum

Florida Department of Environmental Protection

TO:

Trina Vielhauer, Chief, Bureau of Air Regulation

THROUGH:

Jeff Koerner, New Source Review Section

FROM:

Bruce Mitchell, New Source Review Section

DATE:

February 4, 2009

SUBJECT:

Project No. 0890004-023-AC

Rayonier Performance Fibers – Fernandina Beach Mill

Revised No. 6 Power Boiler Project

Expiration Date Extension of Air Construction Permit No. 0890004-021-AC

We received a request on January 12, 2009, for the extension of the expiration date of air construction permit, No. 0890004-021-AC. Extending the expiration date will allow sufficient time to install the bleach plant scrubber that was authorized in this permit and allow additional time to complete the testing of the No. 6 Power Boiler while burning wastewater treatment sludge. The permit expires on March 1, 2009. Also, certain projects are being cancelled by the applicant that were identified in specific condition D-3 in permit No. 0890004-021-AC.

Attachments

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400

February 5, 2009

Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

Sent by Electronic Mail – Received Receipt Requested

Mr. F. J. Perrett General Manager Rayonier Performance Fibers LLC Fernandina Beach Mill 10 Gum Street Fernandina Beach, Florida 32035

Re: Extension of the Expiration Date of Air Construction Permit No. 0890004-021-AC

Rayonier Performance Fibers LLC, Fernandina Beach Mill

Project No. 0890004-023-AC

Revision to No. 6 Power Boiler Project

Dear Mr. Perrett:

We received a request on January 12, 2009, for the extension of the expiration date of air construction permit, No. 0890004-021-AC. Extending the expiration date will allow sufficient time to install the bleach plant scrubber that was authorized in this permit and allow additional time to complete the testing of the No. 6 Power Boiler while burning wastewater treatment sludge. The permit expires on March 1, 2009. Due to market conditions, certain projects are being cancelled by the applicant that were identified in specific condition D-3 in permit No. 0890004-021-AC.

The following construction projects have been cancelled:

- install a new HCE blow heat recovery system;
- install a new HCE cell;
- install a new HCE washer;
- install a new post HCE washer;
- install a new Red Stock Washer Press Roll; and
- make improvements to the pulp machine (Pocket Ventilation piping and headbox).

The first trial tests have been completed while burning the wastewater treatment sludge in the No. 6 Power Boiler. Additional time is needed to complete the trial test burns, which are scheduled for March/April 2009. Also, additional time is needed for the installation of the bleach plant scrubber and/or other equipment needed to comply with the provisions on 40 CFR 63.445, complete shakedown of installed equipment, perform the required tests and submit a timely Title V operation permit revision application.

Based on the circumstances and information provided, the Department of Environmental Protection (Department) approves the request to extend the expiration date.

Determination: The expiration date of air construction permit No. 0890004-021-AC is hereby extended from **March 1, 2009** to **September 1, 2010**, to provide the necessary time to: (1) install the bleach plant scrubber and/or other equipment needed to comply with the provisions on 40 CFR 63.445, complete shakedown of installed equipment, perform the required tests and submit a timely Title V operation permit revision application; and (2) complete the trial tests on the No. 6 Power Boiler while burning wastewater treatment sludge in accordance with the specific conditions in Section G of the permit. Based on the circumstances and information

EXTENSION OF AIR CONSTRUCTION PERMIT EXPIRATION DATE

provided, the Department approves this request. A copy of this letter shall be filed with the referenced permits and shall become part of the permits. This permitting decision is issued pursuant to Chapter 403, Florida Statutes (F.S.).

Permitting Authority: Applications for air construction permits are subject to review in accordance with the provisions of Chapter 403, F.S., and Chapters 62-4, 62-210 and 62-212 of the Florida Administrative Code (F.A.C.). The Permitting Authority responsible for making a permit determination for this project is the Bureau of Air Regulation in the Department's Division of Air Resource Management. The Permitting Authority's physical address is: 111 South Magnolia Drive, Suite #4, Tallahassee, Florida. The Permitting Authority's mailing address is: 2600 Blair Stone Road, MS #5505, Tallahassee, Florida 32399-2400. The Permitting Authority's telephone number is 850/488-0114.

Petitions: A person whose substantial interests are affected by the proposed permitting decision may petition for an administrative hearing in accordance with Sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed with (received by) the Department's Agency Clerk in the Office of General Counsel of the Department of Environmental Protection, 3900 Commonwealth Boulevard, Mail Station #35, Tallahassee, Florida 32399-3000 (Telephone: 850/245-2241). Petitions must be filed within 14 days of receipt of these permit extensions. A petitioner shall mail a copy of the petition to the applicant at the address indicated above, at the time of filing. The failure of any person to file a petition within the appropriate time period shall constitute a waiver of that person's right to request an administrative determination (hearing) under Sections 120.569 and 120.57, F.S., or to intervene in this proceeding and participate as a party to it. Any subsequent intervention (in a proceeding initiated by another party) will be only at the approval of the presiding officer upon the filing of a motion in compliance with Rule 28-106.205, F.A.C.

A petition that disputes the material facts on which the Permitting Authority's action is based must contain the following information: (a) The name and address of each agency affected and each agency's file or identification number, if known; (b) The name, address, and telephone number of the petitioner; the name, address and telephone number of the petitioner's representative, if any, which shall be the address for service purposes during the course of the proceeding; and an explanation of how the petitioner's substantial interests will be affected by the agency determination; (c) A statement of when and how each petitioner received notice of the agency action or proposed decision; (d) A statement of all disputed issues of material fact; (e) A concise statement of the ultimate facts alleged, including the specific facts the petitioner contends warrant reversal or modification of the agency's proposed action; (f) A statement of the specific rules or statutes the petitioner contends require reversal or modification of the agency's proposed action including an explanation of how the alleged facts relate to the specific rules or statutes; and, (g) A statement of the relief sought by the petitioner, stating precisely the action the petitioner wishes the agency to take with respect to the agency's proposed action. A petition that does not dispute the material facts upon which the Permitting Authority's action is based shall state that no such facts are in dispute and otherwise shall contain the same information as set forth above, as required by Rule 28-106.301, F.A.C.

Because the administrative hearing process is designed to formulate final agency action, the filing of a petition means that the Permitting Authority's final action may be different from the position taken by it in this written notice. Persons whose substantial interests will be affected by any such final decision of the Permitting Authority on the application have the right to petition to become a party to the proceeding, in accordance with the requirements set forth above.

Mediation: Mediation is not available in this proceeding.

Effective Date: This permitting decision is final and effective on the date filed with the clerk of the Department unless a petition is filed in accordance with the above paragraphs or unless a request for extension of time in which to file a petition is filed within the time specified for filing a petition pursuant to Rule 62-110.106, F.A.C., and the petition conforms to the content requirements of Rules 28-106.201 and 28-106.301, F.A.C. Upon timely

EXTENSION OF AIR CONSTRUCTION PERMIT EXPIRATION DATE

filing of a petition or a request for extension of time, this action will not be effective until further order of the Department.

Judicial Review: Any party to this permitting decision (order) has the right to seek judicial review of it under Section 120.68, F.S., by filing a notice of appeal under Rule 9.110 of the Florida Rules of Appellate Procedure with the clerk of the Department in the Office of General Counsel, Mail Station #35, 3900 Commonwealth Boulevard, Tallahassee, Florida, 32399-3000, and by filing a copy of the notice of appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The notice must be filed within 30 days after this order is filed with the clerk of the Department.

Executed in Tallahassee, Florida.

Trina Vielhauer, Chief Bureau of Air Regulation

TLV/jfk/bm

CERTIFICATE OF SERVICE

The undersigned duly designated deputy agency clerk hereby certifies that this Notice of Extension of Air Construction Permit Expiration Date was sent by electronic mail (or a link to these documents made available electronically on a publicly accessible server) with received receipt requested before the close of business on to the persons listed below.

Mr. Fred J. Perrett, General Manager, Rayonier Performance Fibers LLC (jack.perrett@rayonier.com)

Mr. David Rogers, Rayonier Performance Fibers LLC (david.rogers@rayonier.com)

Ms. Debra Lane, Rayonier Performance Fibers LLC (debra.lane@rayonier.com)

Mr. Christopher Kirts, Air Permitting Administrator, Northeast District (Christopher.Kirts@dep.state.fl.us)

Ms. Vickie Gibson, BAR Reading File (Victoria.Gibson@dep.state.fl.us)

Clerk Stamp

FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to Section 120.52(7), Florida Statutes, with the designated agency clerk, receipt of which is hereby acknowledged.

TECHNICAL EVALUATION AND PRELIMINARY DETERMINATION

Applicant

Rayonier Performance Fibers LLC Fernandina Beach Dissolving Sulfite Pulp Mill Facility ID No. 0890004

County

Nassau County, Florida

Project

Project No. 0890004-023-AC Expiration Date Extension of Project No. 0890004-021-AC

Permitting Authority

Florida Department of Environmental Protection
Division of Air Resource Management
Bureau of Air Regulation – New Source Review Section
2600 Blair Stone Road, Mail Station #5505
Tallahassee, Florida 32399-2400
Telephone: 850/488-0114

Fax: 850/921-9533

1. APPLICATION INFORMATION

Facility Location

Rayonier Performance Fibers LLC operates an existing dissolving sulfite pulp mill located at 10 Gum Street in Fernandina Beach, Nassau County, Florida 32035. The UTM coordinates are Zone 17, 454.7 km East, and 3392.2 km North. This site is in an area that is in attainment (or designated as unclassifiable) for all air pollutants subject to a National Ambient Air Quality Standard (NAAQS).

Facility Classification

The facility belongs to Major Group No. 26 (Paper and Allied Products), Group No. 261 (Pulp Mills), and Industry No. 2611 (Pulp Mills). The North American Industry Classification System (NAICS) Code is No. 322110 (Pulp Mills). The facility is regulated according to the following categories.

<u>Title III</u>: The plant is a major source of hazardous air pollutants (HAP).

<u>Title IV</u>: The plant has no units subject to the acid rain provisions of the Clean Air Act.

<u>Title V</u>: The plant is a Title V major source of air pollution in accordance with Chapter 213, Florida Administrative Code (F.A.C.).

<u>PSD</u>: The plant is a major facility in accordance with Rule 62-212.400, F.A.C. for the Prevention of Significant Deterioration (PSD) of Air Quality.

NSPS: The plant operates units are subject to the New Source Performance Standards (NSPS) in Title 40 of the Code of Federal Regulations, Part 60 (40 CFR 60).

<u>NESHAP</u>: The plant operates units subject to the National Emissions Standards for Hazardous Air Pollutants (NESHAP) in 40 CFR 63.

Project Description

We received a request on January 12, 2009, for the extension of the expiration date of air construction permit, No. 0890004-021-AC. Extending the expiration date will allow sufficient time to install the bleach plant scrubber that was authorized in this permit and allow additional time to complete the testing of the No. 6 Power Boiler while burning wastewater treatment sludge. The permit expires on March 1, 2009. Also, certain projects are being cancelled by the applicant that were identified in specific condition D-3 in permit No. 0890004-021-AC as follows:

- Add red stock washer press roll;
- Begin second improvements to the pulp machine (pocket ventilation piping and headbox);
- Add a new HCE cell;
- Install a new HCE washer;
- Install a new post HCE washer; and
- Install a new HCE blow heat recovery system to control all HCE cells.

The following tentative schedule is proposed to install the bleach plant scrubber:

Project	Date
Washer hood installation/modification and equipment tie-ins	February 2009
Install collecting ductwork, scrubber tower and associated equipment	3 rd Quarter 2009
Scrubber startup	4 th Quarter 2009
Compliance testing	January 2010

TECHNICAL EVALUATION AND PRELIMINARY DETERMINATION

In addition, the permittee is withdrawing the request to increase the red liquor firing rate in the recovery boiler.

The applicant stated that the additional trial tests on the No. 6 Power Boiler while burning wastewater treatment sludge are tentatively scheduled for March/April 2009.

Therefore, in order to provide sufficient time for installation and testing of the bleach plant scrubber and completion of the trial tests while burning wastewater treatment sludge in the No. 6 Power Boiler, the applicant requested an expiration date of September 1, 2010.

2. REVIEW OF THE PREVIOUS AC PERMITS FOR PROGRESS OF AUTHORIZED WORK

As required in specific conditions D.3. through D.6. of AC permit No. 0890004-021-AC, the permittee is required to report to the Department the progress of the authorized work, which has been done and is current. Also and as authorized in AC permit No. 0890004-021-AC, the permittee has completed the first round of trial tests on the No. 6 Power Boiler while burning wastewater treatment sludge and the test results were submitted to the Department on November 25, 2008. Therefore, the expiration date will be revised from March 1, 2009 to September 1, 2010.

3. CONCLUSION

The Department makes a preliminary determination that the proposed project will comply with all applicable state and federal air pollution regulations as conditioned by the permit. This determination is based on a technical review of the complete application, reasonable assurances provided by the applicant, and the conditions specified in the permit. Bruce Mitchell is the project engineer responsible for reviewing the application and drafting the permit changes. Additional details of this analysis may be obtained by contacting the project engineer at the Department's Bureau of Air Regulation at Mail Station #5505, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400.

From: Livingston, Sylvia

Sent: Thursday, February 05, 2009 1:18 PM

To: 'jack.perrett@rayonier.com'

Cc: 'david.rogers@rayonier.com'; 'debra.lane@rayonier.com'; Kirts, Christopher; Gibson, Victoria;

Mitchell, Bruce; Walker, Elizabeth (AIR)

Subject: RAYONIER FERNANDINA SULFITE MILL; 0890004-023-AC - Extension

Attachments: 0890004-023-AC.pdf

Dear Sir/ Madam:

Attached is the official **Notice of Final Permit** for the project referenced below. Click on the link displayed below to access the permit project documents and send a "reply" message verifying receipt of the document(s) provided in the link; this may be done by selecting "Reply" on the menu bar of your e-mail software, noting that you can view the documents, and then selecting "Send". **We must receive verification that you are able to access the documents.** Your immediate reply will preclude subsequent e-mail transmissions to verify accessibility of the document(s).

Click on the following link to access the permit project documents:

http://ARM-PERMIT2K.dep.state.fl.us/adh/prod/pdf_permit_zip_files/0890004.023.AC.F_pdf.zip

Owner/Company Name: RAYONIER PERFORMANCE FIBERS LLC

Facility Name: RAYONIER FERNANDINA SULFITE MILL

Project Number: 0890004-023-AC

Permit Status: FINAL

Permit Activity: CONSTRUCTION/ NO. 6 BOILER REVISION EXT.

Facility County: NASSAU Processor: Bruce Mitchell

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Access these documents by clicking on the link provided above, or search for other project documents using the "Air Permit Documents Search" website at http://www.dcp.state.fl.us/air/eproducts/apds/default.asp.

Permit project documents are addressed in this email may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible, and verify that they are accessible. Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record. If you have any problems opening the documents or would like further information, please contact the Florida Department of Environmental Protection, Bureau of Air Regulation at (850)488-0114.

Sylvia Livingston
Bureau of Air Regulation
Division of Air Resource Management (DARM)
850/921-9506
sylvia.livingston@dep.state.fl.us

Note: The attached document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site: http://www.adobe.com/products/acrobat/readstep.html>.

From:

Sent:

To:

David.Rogers@rayonier.com
Thursday, February 05, 2009 1:39 PM
Livingston, Sylvia
Re: RAYONIER FERNANDINA SULFITE MILL; 0890004-023-AC - Extension Subject:

Documents have been received, thank you.

David Rogers

From: Jack.Perrett@rayonier.com

Sent: Thursday, February 12, 2009 8:00 AM

To: Livingston, Sylvia

Subject: Re: FW: RAYONIER FERNANDINA SULFITE MILL; 0890004-023-AC - Extension

Attachments: 0890004-023-AC.pdf

Ms. Livingston,

Yes, we were able to access the documents. Sorry for not replying. I assumed my Environmental Manager had replied.

Thank you,

Jack Perrett General Manager Fernandina Mill

> "Livingston, Sylvia" <Sylvia.Livingsto n@dep.state.fl.us

To "jack.perrett@rayonier.com" < 'jack.perrett@rayonier.com'>

CC

02/11/2009 05:36

PM

Subject

FW: RAYONIER FERNANDINA SULFITE MILL; 0890004-023-AC - Extension

Mr. Perrett,

We have not received confirmation that you were able to access the documents attached to this February 5th e-mail, as well as the documents provided in the link (http://ARM-PERMIT2K.dep.state.fl.us/adh/prod/pdf_permit_zip_files/0890004.023.AC.F_pdf.zip

) referenced in the email. Please confirm receipt by opening the attachment and clicking on the link to the permit documents, and sending a reply to me.

The Division of Air Resource Management is sending electronic versions of these documents rather than sending them Return Receipt Requested via the US Postal service. Your "receipt confirmation" reply serves the same purpose as tracking the receipt of the signed "Return Receipt" card from the US Postal Service. Please let me know if you have any questions. Thanks,

Sylvia Livingston Bureau of Air Regulation Division of Air Resource Management (DARM) The Department of Environmental Protection values your feedback as a customer. DEP Secretary Michael W. Sole is committed to continuously assessing and improving the level and quality of services provided to you.

Please take a few minutes to comment on the quality of service you received. Simply click on this link to the DEP Customer Survey. Thank you in advance for completing the survey.

From: Livingston, Sylvia

Sent: Thursday, February 05, 2009 1:18 PM

To: 'jack.perrett@rayonier.com'

Cc: 'david.rogers@rayonier.com'; 'debra.lane@rayonier.com'; Kirts, Christopher; Gibson,

Victoria; Mitchell, Bruce; Walker, Elizabeth (AIR)

Subject: RAYONIER FERNANDINA SULFITE MILL; 0890004-023-AC - Extension

Dear Sir/ Madam:

Attached is the official Notice of Final Permit for the project referenced below. Click on the link displayed below to access the permit project documents and send a "reply" message verifying receipt of the document(s) provided in the link; this may be done by selecting "Reply" on the menu bar of your e-mail software, noting that you can view the documents, and then selecting "Send". We must receive verification that you are able to access the documents. Your immediate reply will preclude subsequent e-mail transmissions to verify accessibility of the document(s).

Click on the following link to access the permit project documents:

http://ARM-PERMIT2K.dep.state.fl.us/adh/prod/pdf_permit_zip_files/0890004.023.AC.F_pdf.zip

Owner/Company Name: RAYONIER PERFORMANCE FIBERS LLC Facility Name: RAYONIER FERNANDINA SULFITE MILL Project Number: 0890004-023-AC Permit Status: FINAL Permit Activity:

CONSTRUCTION/ NO. 6 BOILER REVISION EXT.

Facility County: NASSAU Processor: Bruce Mitchell

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Access these documents by clicking on the link provided above, or search for other project documents using the "Air Permit Documents Search" website at http://www.dep.state.fl.us/air/eproducts/apds/default.asp

Permit project documents are addressed in this email may require immediate action within a specified time frame. Please open and review the

document(s) as soon as possible, and verify that they are accessible.

Please advise this office of any changes to your e-mail address or that of the Engineer-of-Record. If you have any problems opening the documents or would like further information, please contact the Florida Department of Environmental Protection, Bureau of Air Regulation at (850)488-0114.

Sylvia Livingston
Bureau of Air Regulation
Division of Air Resource Management (DARM)
850/921-9506
sylvia.livingston@dep.state.fl.us

Rayonier

Performance Fibers

Fernandina Mill

September 19, 2008

RECEIVED

SEP 22 2008

EUREAU OF AIR REGULATION

Certified Mail, Return Receipt Requested

Mr. Jeffery F. Koerner, P. E. Bureau of Air Regulation Division of Air Resources Management 2600 Blair Stone Road, MS 5505 Tallahassee, FL 32399-2400

RE:

Request to Modify Air Construction Permit 0890004-018-AC and

Air Construction_Permit 0890004-022-AV troject No.: 0890004-023-AC

Dear Mr. Koerner:

Air Construction Permit 0890004-018AC

Rayonier Performance Fiber LLC ("Rayonier") is requesting that Air Construction Permit 0890004-018 be renewed as described below. The permit was issued on February 20, 2006 to Rayonier for the purpose of approving the construction of No. 6 boiler and a two phase production increase at its Fernandina Beach dissolving sulfite pulp mill. The permit includes an expiration date of March 1, 2009. Rayonier is requesting that this deadline be extended to allow for the completion of construction.

The construction authorized by the permit is more than half completed. The No. 6 boiler is operational, the new evaporators are installed and operational and the revised digester operating rate instituted, but due to other operational problems the phase 1 annual production has not yet been achieved.

There are two remaining projects authorized by this Air Construction Permit. The phase two production increase to 175,000 ADMT/day is approved at Condition D.1.b: "Upon successful installation and submittal of the engineering report of the HCE blow heat recovery system to control VOC emissions from all the HCE cells, the facility's production shall not exceed 175,000 ADMT per consecutive 12-months, rolling total." Construction of the HCE blow heat recovery system has been delayed by market conditions and is now on the budget for 2013. This system is comparable to an LVHC system on a Kraft mill and may take as long as a year to complete. Rayonier is asking for an expiration date 10 years from the date of issuance, or until 2016. The actual annual production rate has not been increased above the previously permitted rate of 162,000 ADMT/day.

Registered to ISO 9001:2000

Certificate No. A2072

Mr. Jeffery F. Koerner, P. E. Air Construction Permit Modification September 8, 2008 Page 2 of 2

The second remaining project is the bleach plant scrubber and/or other equipment installation needed to comply with 40 CFR 63.445. This project is being engineered now and will be completed by the deadline of March 2010 required by Condition F1 of the permit. This deadline is after the permit expiration.

It is clear from the Part 403.087 FS there is no limit on the term of an air construction permit, though there is for a water permit (10 years). From Department rules 62-210.300 Air Construction Permit shall be issued for a period of time sufficient to allow the construction and operation while the owner/operator is conducting testing or otherwise demonstrating initial compliance. Rayonier is hereby advising that additional time is necessary to allow for completion of construction and subsequent compliance demonstrations.

Rayonier requests the expiration date for this permit be extended to February 2016 or 10 years from the date of issuance.

Air Construction Permit 0890004-001-AC

This application also requests Air Construction Permit 0890004-001-AC be modified to increase the limit on red liquor solids firing rate for 70,000 to 73,000 pounds per hour. Attached is a stack test conducted May 14, 2008 by STACS demonstrating that the boiler is now capable of firing red liquor solids at a rate of 73,000 pounds per hour while still complying with its existing permit limits. No change to the emission limit is requested. Actual emission increases will not exceed the PSD Significance Levels in part because the annual rate will not increase above that permitted from the production increase. This appears to be a minor modification.

If you have questions regarding this application please contact David Rogers at (904)277-1346, email: david.rogers@rayonier.com or David Tudor at (904)557-8332, email: david.tudor@rayonier.com .

Sincerely,

F. J. Perrett General Manager

cc: Bruce Mitchell Corrine Brown

> Christopher Kirts Terry Cole, FPPA-EA

Rita Felton-Smith

SOURCE TESTING AND CONSULTING SERVICES, INC. 1100 Purple Glory Drive

Apex, NC 27502

PH: (919) 367-2200/FAX: (919) 367-2222

www.stacsinc.com

September 8, 2008

David Rogers
Rayonier Environmental
Rayonier Performance Fibers, LLC.
Foot of Gum Street
Fernandina Beach, Florida 32034

RE: Sulfite Recovery Boiler Engineering Tests

Dear Mr. Rogers:

Source Testing And Consulting Services, Inc. (STACS) conducted a series of elevated load engineering tests at the Rayonier Performance Fibers, LLC facility in Fernandina Beach, Florida. Testing was conducted at the Sulfite Recovery Boiler using EPA Methods 1-4 for volumetric flow-rate determination and EPA Method 5 for particulate matter. Three one-hour test runs were conducted.

The results of these tests are summarized in the attached Table 1. We have also provided the analytical data and the field data sheets used in sampling, as well as the pre-test and post-test dry gas meter calibration data and facility process data.

If you have any questions concerning this information or if I may be of service in any other way, please do not hesitate to contact me at (919) 367-2200 or by e-mail at billmayhew@stacsinc.com. Thank you and best regards.

Sincerely,

SOURCE TESTING AND CONSULTING SERVICES, INC.

Bill Mayhew

Bill Mayhew Principal Engineer

Table 1. Summary of Emissions Testing Data - Total Solid Particulate Matter Rayonier
SRB Stack

Parameter	Units	Run # Date: Start Time: Stop Time:	1 14-May - 08 16:10 17:12	2 16-May-08 8:20 9:21	3 16-May-08 12:40 13:42	AVERAGE
Sampling Train & Analytical Parameters	:					
Total Solid Particulate Matter:	g		0.0410	0.0482	0.0500	0.0464
Metered Volume:	dscf		34.837	35.371	37.961	36.056
Gas Stream Volumetric Flowrate:	dscfm		130,858	134,438	141,930	135,742
Oxygen:	%V, dry		7.2	6.0	8.0	7.1
Carbon Dioxide:	%V, dry		12.0	13.0	12.0	12.3
Total Solid Particulate (TSP) Matter Emi	issions:					
TSP Concentration:	gr/dscf		0.01816	0.02103	0.02033	0.01984
TSP Mass Emission Rate:	lb/hr		20.372	24.233	24.728	23.111
TSP Mass Emission Rate:	grams/dscm		0.0416	0.0481	0.0465	0.0454
TSP Mass Emission Rate @ 8% O2:	grams/dscm		0.0391	0.0417	0.0465	0.0424

SUMMARY OF EMISSIONS SAMPLING DATA

Plant: Rayonier Location: SRB Stack Condition: Normal Unit: SRB Stack Method: Method 5	k	Run # Date: Start Time:	1 14-May-08	2 16-May-08	3 16-May-08	AVERAGE
Parameter Method: Method 5	Units	Start Time: Stop Time:	16:10 17:12	8:20 9:21	12:40 13:42	
Sampling Time	min.	Stop Time.	60	60	60	6
AMBIENT DATA:						
Ambient Temperature	deg. F		69	70	70	69.67
Location Height above Pbar reading	feet		214	214	214	214
Barometric Pressure	in. Hg		30.06	29.98	29.98	30.01
Corrected Barometric Pressure (to location)	in. Hg		29.85	29.77	29.77	29.79
GAS METER DATA:						
Dry Gas Meter Correction Factor (gamma)	Dimensionles	s	0.9754	0.9754	0.9754	0.9754
Average Meter Differential Pressure	in. H2O		1.1983	1.2833	2.5583	1.6800
Absolute Meter Pressure	in, Hg		29.93	29.86	29.95	29.92
Average Meter Temperature	degrees F		75.7	76.0	78.9	76.9
Metered Dry Sample Gas Volume	dcf		36.220	36.889	39.678	37.596
Average Sampling Rate	dscfm		0.581	0.590	0.633	0.60
Standard Metered Volume	dscf		34.837	35.371	37.961	36.056
Standard Metered Volume MOISTURE DATA:	dscm	44-	0.9866	1.0017	1.0751	1.0211
Moisture Determination Technique:			Gravimetric	Gravimetric	Gravimotrio	
Relative Humidity:	%RH		#N/A	#N/A	#N/A	#N/A
Saturated Vapor Pressure of Water:	inches Hg		2.4313	2.6079	2.9178	2.6523
Vapor Phase Moisture Content at Saturation:	% Volume		8.16	8.78	9.82	8.92
Tapor Francisco Comon de Calcianon.	70 VOIGITIE		0.10	0.70	0.02	0.02
Total Condensate Collected	grams H20		78.1	81.2	99.6	86.30
Standard Volume of Water Vapor	scf		3.682	3.829	4.696	4.069
Measured Moisture Content	mole fraction		0.0956	0.0977	0.1101	0.1011
Measured Moisture Content	% Volume		9.56	9.77	11.01	10.11
Gas Stream Vapor Phase Moisture (Bs):	% Volume		8.16	8.78	9.82	8.92
FIXED GAS DATA:						
Oxygen Concentration, Dry Basis	% Volume		7.2	6.0	8.0	7.1
Carbon Dioxide Concentration, Dry Basis	% Volume		12.0	13.0	12.0	12.3
Carbon Monoxide Concentration, Dry Basis	% Volume		0.0	0.0	0.0	0.0
Other Primary Gas Constituent, Dry Basis	% Volume		#N/A	#N/A	#N/A	#N/A
Nitrogen Concentration, Dry Basis (gas balance)	% Volume		80.8	81.0	80.0	80.6
Gas Molecular Weight, Dry Basis	lb/lb-mole		30.208	30,320	30,240	30.256
Gas Molecular Weight, Wet Basis	lb/lb-mole		29.212	29,239	29.038	29.163
Cas Wolcosiai Weight, Wet Basis	ib/ib-mole		20.212	25.255	25.030	23.103
Fo Calculated:	Dimensionles		1.142	1.146	1.075	1.121
Excess Air;	%	-	50.89	38.96	60.90	50.25
Ultimate CO2	%V,d		18.31	18.23	19.44	18.66
DUCT CONFIGURATION:	70 T G			10.20		10.00
Duct Geometry (C = Circular, R = Rectangular)			С	С	С	
Duct Dimensions (Diameter)	inches		88	88	88	88
Effective Duct Diameter (De)	inches		88	88	88	88
Stack Cross-Sectional Area	ft2		42.24	42.24	42.24	42.24
DUCT GAS CONDITIONS:						
Static Pressure of Gas Stream	in. H2O		-0.510	-0.640	-0.570	-0.573
Absolute Duct Gas Pressure	in. Hg		29.809	29,719	29.724	29.751
Gas Stream Temperature	degrees F		107.75	110.17	114.08	110.67
Gas Stream Wet Bulb Temperature:	degrees F		0	0	0	0
VELOCITY DATA:		• • •	••			
Pitot Tube Coefficient	Dimensionles	5	0.84	0.84	0.84	0.84
Avg. Square Root of Velocity Head	(in. H2O)^0.5		1.0465	1.0868	1.1605	1.0979
Gas Stream Velocity	ft/sec		60.681	63.221	67.966	63.956
Gas Stream Velocity	ft/min		3640.86	3793.26	4077.98	3837.37
			1100 70	1156.19	1242.97	1169.63
Gas Stream Velocity	meters/min		1109.73			40.000
Gas Stream Velocity Gas Stream Velocity	meters/min mi/hr		41.376	43.108	46.343	43.609
•				43.108	46.343	43.609
Gas Stream Velocity				43.108 160215.9	46.343 _ 172241.7	
Gas Stream Velocity FLOWRATE/ENGLISH UNITS	mi/hr		41.376 153778.9 142479.4		172241.7 157378.1	162078.8 149075.9
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis	mi/hr acfm		41.376 153778.9	160215.9	172241.7	162078.8 149075.9
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis	mi/hr acfm scfm dscfm		41.376 153778.9 142479.4 130858.3	160215.9 147370.1 134437.9	172241.7 157378.1 141929.6	162078.8 149075.9 135741.9
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis	mi/hr acfm scfm dscfm kscfh		41.376 153778.9 142479.4 130858.3 8548.76	160215.9 147370.1 134437.9 8842.21	172241.7 157378.1 141929.6 9442.68	162078.8 149075.9 135741.9 8944.55
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis	mi/hr acfm scfm dscfm kscfh kdscfh		41.376 153778.9 142479.4 130858.3 8548.76 7851.50	160215.9 147370.1 134437.9 8842.21 8066.27	172241.7 157378.1 141929.6 9442.68 8515.77	162078.8 149075.9 135741.9 8944.55 8144.51
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet)	mi/hr acfm scfm dscfm kscfh		41.376 153778.9 142479.4 130858.3 8548.76	160215.9 147370.1 134437.9 8842.21	172241.7 157378.1 141929.6 9442.68	162078.8 149075.9 135741.9 8944.55 8144.51
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS	mi/hr acfm scfm dscfm kscfh kdscfh kpph		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14	160215.9 147370.1 134437.9 8842.21 8066.27 671.00	172241.7 157378.1 141929.6 9442.68 8515.77 711.68	162078.8 149075.9 135741.9 8944.55 8144.51 676.93
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis	mi/hr acfm scfm dscfm kscfh kdscfh kpph		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14	160215.9 147370.1 134437.9 8842.21 8066.27 671.00	172241.7 157378.1 141929.6 9442.68 8515.77 711.66	162078.8 149075.9 135741.9 8944.55 8144.51 676.93
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Ust Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02	160215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Ust Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis	mi/hr acfm scfm dscfm kscfh kdscfh kpph		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14	160215.9 147370.1 134437.9 8842.21 8066.27 671.00	172241.7 157378.1 141929.6 9442.68 8515.77 711.66	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91 0.189 1.948E-04	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28 0.189 1.948E-04	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44 0.189 1.948E-04	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Ury Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle: Isokinetic Sampling Rate:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle. Isokinetic Sampling Rate: PARTICULATE MATTER:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm inches ft^2 %I		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91 0.189 1.948E-04 96.2	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28 0.189 1.948E-04 95.1	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44 0.189 1.948E-04 96,7	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle: Isokinetic Sampling Rate: PARTICULATE MATTER: Particulate Matter Collected:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm inches ff^2 %1		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91 0.189 1.948E-04 96.2	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28 0.189 1.948E-04 95.1	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44 0.189 1.948E-04 96.7	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04 96.0
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle: Isokinetic Sampling Rate: PARTICULATE MATTER: Particulate Matter Collected: Particulate Matter Concentration:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm inches ft^2 %I grams grams/dscm		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91 0.189 1.948E-04 96.2	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28 0.189 1.948E-04 95.1 0.0482 0.04812	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44 0.189 1.948E-04 96.7 0.0500 0.04651	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04 96.0
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle: ISOKINETIC SAMPLING DATA: PARTICULATE MATTER: Particulate Matter Collected: Particulate Matter Concentration: Particulate Matter Concentration: Particulate Matter Mass Emission Rate:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm inches ft^2 %I grams grams/dscm grams/sec		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91 0.189 1.948E-04 96.2	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28 0.189 1.948E-04 95.1 0.0482 0.04812 3.053	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44 0.189 1.948E-04 96.7 0.0500 0.04651 3.116	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04 96.0 0.0464 0.04539 2.912
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle: ISOKINETIC SAMPLING DATA: PARTICULATE MATTER: Particulate Matter Collected: Particulate Matter Concentration: Particulate Matter Concentration: Particulate Matter Mass Emission Rate: Particulate Matter Concentration:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm inches ff^2 %I grams grams/dscm grams/sec lb/dscf		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91 0.189 1.948E-04 96.2 0.04106 0.04156 2.567 2.59E-06	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28 0.189 1.948E-04 95.1 0.0482 0.04812 3.053 3.00E-08	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44 0.189 1.948E-04 96.7 0.0500 0.04651 3.116 2.90E-06	162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04 96.0 0.0463 0.04539 2.912 2.83E-06
Gas Stream Velocity FLOWRATE/ENGLISH UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Standard Volumetric Flow Rate, Dry Basis Total Mass Flow Rate (wet) FLOWRATE/METRIC UNITS Actual Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Wet Basis Standard Volumetric Flow Rate, Dry Basis ISOKINETIC SAMPLING DATA: Nozzle Diameter: Area of Nozzle: ISOKINETIC SAMPLING DATA: PARTICULATE MATTER: Particulate Matter Collected: Particulate Matter Concentration: Particulate Matter Concentration: Particulate Matter Mass Emission Rate:	mi/hr acfm scfm dscfm kscfh kdscfh kpph acmm scmm dscmm inches ft^2 %I grams grams/dscm grams/sec		41.376 153778.9 142479.4 130858.3 8548.76 7851.50 648.14 4355.02 4035.02 3705.91 0.189 1.948E-04 96.2	180215.9 147370.1 134437.9 8842.21 8066.27 671.00 4537.31 4173.52 3807.28 0.189 1.948E-04 95.1 0.0482 0.04812 3.053	172241.7 157378.1 141929.6 9442.68 8515.77 711.66 4877.89 4456.95 4019.44 0.189 1.948E-04 96.7 0.0500 0.04651 3.116	43.609 162078.8 149075.9 135741.9 8944.55 8144.51 676.93 4590.07 4221.83 3844.21 0.189 1.948E-04 0.04539 2.912 2.83E-06 0.01984 23.111

STACS ISOKINETIC SAMPLING FIELD DATA SHEET

Facility:	Kuyo	wier		Meter #:	A-	4	Baro. Pre	ss:	30,01	Page #:	l
Unit:	٤	RB		DH@:	1,9	,	Ambient 1		69	Pitot LC:	
Location:				DGM Factor	0,9	754	Nozzle Di			89	
Test Type:	MS			Pitot #:	<u> </u>	<u> </u>	Static P:	<u>. </u>			
Run #:	Engl			Pitot Coef:	0,8	7 4	Stack Dim			15/	
Condition:					1 011		Stack Hei		1	88 M	
Operator(s):				K-Factor:	1,1				0.0-	2 4 -	
Date:	5/14	108		Filter#:	72		Init. Leak		0.000	cfm@ /	<u>'S "H</u>
Traverse		Gas Meter	Velocity	KALL THE STATE OF	0.000 1.00533	V 10000 1 1111	Final Leak	1 C. Y. MOST C 1000000-05	0,00		/0 "H
Point	Time	Reading	Head	Press.	Stack	Probe	Filter	Impinger	Dry Ga	s Meter	Vacuum
Number		Vm(ft3)		l lesa	Temp	Temp	Temp	Temp		mp.	
		1	("1 12O)	("H2O)	(F)	/e\	, <u>_</u> ,		Inlet	Outlet	
B-1	1610/0	678.326	1.3	1,4		(F) 236	(F)	(F)	(F)	(F)	(°Hg)
Z	5		1,2	43	107		258	65	73	23	4
3	10		1,2	1,3	107	252	528	57	25	72	4
4	15		1.1	1,2	108	550	228	25	36	7.2	۲,
5	20	690,84	0,39	1,1	108	523	2/1		78	23	4
6	25	693, 72	10	11/	186		261	28	79 79	23	٤
A -1		696589	0,80	0.88		251	246	- T T		73	14
2	35	699,2	1.1	1.2	+	243	256	58	79	73	4'
3	40	702, 35	111	1,2	107	251	248	50	79	73	4
4	45	705,40	42	113		247	252	28	80	23	ç
3	50	108,52	1,2	1,3	108	243	235	3	80	73	Ý
6	55	711,67	1.0	1,1	108	230 232	250	5 3	81	74	4
	1712/60	714,546		<u> </u>	706	-)(234	60	81	>5	_ 4
			_			_	-				
										-	
		-								-	
						_					
											_
		-						_			
											
											
		_									
$\overline{}$											
							,				
/g/Tot.											
pinger		2	(0.5 to 1.5) A		72 - 30000 - 121	T-11-1		12000	S.1117.112.2 Million		
panger nat	1//	!:, \	3	7.60	5		raverse Po				ma Tibili
	165			209).6) (70. <u>4) (</u> 85.4			
tial	100	100		1999				17,7)(25, <u>0)(35</u> .6			
otal	65	- 4	0000,0000000000000000000000000000000000	- 4./	L-000000-0000, 000000		-	disturbance			
3-1303-1-1003	1	2	3	4		-		stream distur	bance must	t be at least	8 diameter
2	7,2					away to use	6 points pe	r traverse.			
)2	120		1					15./1			

19.9 lbs/hr

STACS ISOKINETIC SAMPLING FIELD DATA SHEET

Facility:	Royan	161		Meter #:	A-	4	Baro. Pres	ss:	29.98	Page #:	
Unit:	SRB			DH@:	1,9	1	Ambient T		70	Pitot LC:	
_ocation:	Fernand	in Beach	FL	DGM Factor:	1.97	54	Nozzle Dia:		0.18		•
Test Type:	M5			Pitot #:	1 5/1/		Static P:		-0.69		
Run #:	Eng	2		Pitot Coef:	380	4	Stack Dim	ensions.	- U	21./	
Condition:				1 1101 0001.	076	1	Stack Heig		 	,	
Operator(s):	KK			K-Factor:	1,			_	0 001	ofm@	1 - 111
Date:	5/16	1/10		Filter#:	201	,	Init. Leak (0,004		15 "H
81 (47 000, 40000	ه <i>۲ ر</i> و	CONTRACTOR CONTRACTOR	1.100.00	1000 HOUSE BUILDING	>~D-	• <i> </i> 	Final Leak	16. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 to 10 t	cfm@	"H
Traverse Point		Gas Meter	Velocity	3.55A	Stack	Probe	Filter	Impinger		s Meter	Vacuum
Number	Time	Reading	Head	Press.	Temp	Temp	Temp	Temp		mp	
Number	^	Vm(ft3)	##. IO.O.						inlet	Outlet	
A i	0820/0	070.00	("H2O)	("H2O)	(F)	(F)	(F)	(F)	(F)	(F)	(*Hg) 3
		828.679	1.2	13/13	109	760	257	66	24	23	
2		831, 87	1,2	1,3	110	261	262	50	74	70	3
7	<i>J</i> O	834.51	1,3	44	// 0	259	257	53	76	71	34
4	15	0411 10	1,2	1, 3	110	260	261	22	29	72	 \\ \\ \
	25 25	844, 17 844, 26	117		1/0	255	250	56	8/	71	
<u>5</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	847,094	1.2	1,1	110	256	250	57	80	73	3
2 2	35	850,35	1,3	1,4	109	256	243	56	<u> </u>	73	ر
3		853,48	1.3	44	109	542	243	58	83	23	3
4		856,65	1.2	1.3	109	246		58	81	135	7
. 5		859,72	1.1	1,2	114	242	255	58	8/	74	3
6		862,65	110	1.1	lil	747	200	C 8	8,1	794	3
		765,5/8		,,,,	"	167/	-	3 6	" '	1.7	
	710.760	260,00				1	-		<u> </u>		†
									 	†	
				1-	 					1	
									 		
			 	+		1		 	 		
				+		+	+	 	-		_
		_		-	 	+			_	-	
			 	-	+			+		-	· ·
					 	 	 	+	+	+	
							 	 	+	-	-
	_				 	+	 	+			
			<u> </u>	 	 			 			
				+	 	+		 	1		
								1		1	
					1	1					
			-	+		+					
			-	+	 	-		 	-		
					+	+	+		 		1
			-	 	 	+	+-	-	+		
					+		_	 	 	 	
					+		-			+	
					-	_	+			 	_
						-			 -	 	
	-				+				+	+	+
					 				-	+	
				<u> </u>					+		1
Avg/Tot.											
				3	4	5 Total	Traverse	Point %'s			
Impinger	1 1/2	/10	2		7			(29.6) (70.4)	(85.4) (95.6)		
Final	162		 .	207.5		12 Poir	of (2.1)(6.7)(11	1.8)(17.7)(25.0)	(35.6)(64.4)(75	5.0)(82.3)(88.	2)(93.3)(97.9)
Initial	100	100	, <u>, , , , , , , , , , , , , , , , , , </u>	17817	' 	Moto: No	arest unetro	am disturba	nce or exit n	nust be 2 d	uct diameter
Total	62	10	00 (0000000000000000000000000000000000	7 n.e. 2 \$0.88 0.8.0270	ST 4 M (M (Note: Ne	alest upsile	ownstream d	isturbance r	nust be at I	east 8 diame
general property and the control of the											
ORSAT/CEM	6,0	2,0000,0000,0000,000	2	3	4			per traverse		1001 00 01	

STACS ISOKINETIC SAMPLING FIELD DATA SHEET

Facility:	Rayou	rier		Meter #:	A-	4	Baro. Pres		T	Page #:	
Unit:	1 2 K B			DH@:	119		Ambient T		20	Page #: Pitot LC:	-
Location:	Fernan	dina Boca	ch Fl	DGM Factor:	0.97	154	Nozzle Dia				
Test Type:	M5			Pitot #:	011	<u> </u>		<u> </u>	0.18		
Run#:	Eng	3		Pitot Coef:	0,8	· C/	Static P:		-0	57	
Condition:	7			i not ober.	0 10	7	Stack Dim		· .		
Operator(s)	KK			K-Factor:	1. 1	, —	Stack Heig				
Date:	5/16/6	8		Filter#:			Init. Leak (0,002		/5 "H
Traverse		Gas Meter		5 707 5 00 a 1 6 00 c	SRB.	 21 ************************************	Final Leak	3 4 1 3 2 4 1 1 1 1 1 1	0,001		7 "H
Point	Time	Reading	Velocity	Orifice	Stack	Probe	Filter	Impinger	Dry Ga	s Meter	Vacuum
Number	1	Vm(ft3)	Head	Press.	Temp	Temp	Temp	Temp	Te	mp.	
	62 (60), 2888 (19,08) (4	vin(na)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	l					Inlet	Outlet	
A-1	1240/0	878,487	("H2O)	("H2O)	(F)	(F)	_(F)	(F)	(F)	(F)	("Hg)
7		882.15		1.54	112	256	254	22	73	23	4
3	- 3 W	885165	114	1.54	112	522	257	250	74	13	C.
4	10	889.00	44	1,54	114	253	253	56	27_	73	14
5	2)	892,37	1,4	1,54	1/5	752	257	LS .	28	73	٠ <u></u>
6	25	295,56	1.3	1.4	113	255	251	52	79	74	7
B-1	13/2/21	898,524	1.3	1.54	114	752	255	28	80	74	14
2	35	901,92	1.4		115	240	257	63	82	75	4
3	40	965,44	115	1.65	115	250	262	57	84	28	Ý
4	45	908,86	1.5	1.65	114	255	256	57	88	10	4
5			1.3	1.4	114	248	257	58	87	81	. 4
- 6	63	912,09		1, 4	116	245	250	5-9	87	81	4
	1342/W	418165	110	1/1	115	240	255	60	88	82	4
	12/20	7/ 8/163									
	_										
		_	_								
										-	
								_			
									_		

]				
lvg/Tot.											
***************************************		***************************************	(())	2.303.000000000000000000000000000000000	**********				2011000000 - SOOO	000000000000000000000000000000000000000	5000 Table Commission
npinger		2	3	4	5		Traverse Po				
inal	190	100	0	220.3			(4.4) (14.6) (2			_	
nitial	100	100	0	210,7			(2.1)(6.7)(11 <u>.8)</u>				
otal	90	0.0000000000000000000000000000000000000	17 17 CANAGE		0.0000111111111111111111111111111111111		est upstream				
RSAT/CEM	- 1	2	3	4		•	nearest dowr		irbance mu	st be at leas	t 8 diameter
)2	2,0					away to use	e 6 points pe	r traverse.			
:02	12,0										

SRB Engineering tests

Source Testing and Consulting Services Inc. Gravimetric Analysis Data Sheet

Date		F	1		1			1	
Time			·						-
Beaker/	Sample	Volume	Tare			Einal	Weights(g)		<u> </u>
Filter#	ID		(9)	1st wt.	2nd wt.	3rd wt.	4th wt.	Final wt.	Net wt. Gein
69	5RR-1-A	150	68.4342	_	.4884		10.11.	4384	,0042
722	588-1-F	1	,3658	.4026		<u> </u>		,4026	.0368
38	SRB-2-A	150	61.1226	1346	1346	 		1346	,0120
SPRI	SPB-2-F		,3830	.4192	.4192	-	1.	14/92	.0362
321	5RB-3-A	150	60,3858		,3986			398	0128
SRB3				, 4380	, 4380			14880	
-					/			1.000	10015
			,					1	
					<u> </u>	 	 		
•						 		 	1
			 			 			
			<u> </u>	-					
					<u> </u>				ļ
									
	 		<u></u>			 			ļ
						ļ		-	ļ
									ļ
							J		
				h-,					
									:

		Calibrati	on	 		
Date						
Time						
	 					İ
0.1g wt. 0.5g wt. 1g wt.						<u> </u>
1p wt.					<u> </u>	
50g wt. 100g wt.						
100g wt.						İİ

Source Testing And Consulting Services

Meter Box Calibration Calibration Date: 1-15-08 Orifice ID Y Calibration Delta H @ Cal. Vac Meter Box: A-4 pass pass pass Technician: MLH 48 pass pass pass 55 63 pass pass pass pass pass

PART 1: Orifice Calibration Orifice Set: Barometric Pressure (in. Hg): 29.690 Collected Data
Calibration Onfice Set: Barometric Pressure (in. Hg): 29.690
Delta H
Collected Data Coll
Orifice ID Run ID Delta H Operator ID Initial Meter Volume (volume (volume (volume)) Final Meter Volume (volume) Init Meter Volume (volume) Init Meter Temp Temp Temp (F) Init Temp Temp Temp Temp Temp (F) Run Time Temp Temp (F) K Factor Meter Temp Temp (F) K Factor Temp Temp Temp (F) K Factor Temp Temp Temp (F) K Factor Temp Temp Temp Temp (F) K Factor Temp Temp Temp Temp (F) K Factor Temp Temp Temp Temp (F) K Factor Temp Temp Temp Temp Temp Temp Temp Temp
Orifice ID # Delta H Meter Volume (out ft) Meter Temp Temp (F) Amb Temp Temp (F) Amb Temp Temp (F) K min sec min sec Vac 40 1 0.30 988.931 991.937 63.00 62.00 60.00 61.00 20 12 0.2361 26 48 1 0.66 938.492 945.335 950.883 61.00 62.00 61.00 63.00 12 12 0.3431 25 55 1 1.20 967.473 974.207 63.00 64.00 62.00 61.00 63.00 12 12 0.3431 25 55 1 1.20 967.473 974.207 979.914 63.00 64.00 62.00 61.00 11 12 0.3431 25 63 1 2.00 961.728 961.728 967.024 63.00 63.00 62.00 61.00 11 12 0.35875<
Meter Meter Armb Armb Time Factor Factor Volume (volume Cu ft) Cu ft (F) (F
Volume Cu ft Cu
40 1 0.30 986.931 991.937 61.00 62.00 61.00 61.00 62.00 12 0.2361 26 48 1 0.66 938.492 945.335 60.00 61.00 62.00 61.00 63.00 15 0 0.3431 25 48 2 0.66 945.335 950.883 61.00 62.00 61.00 63.00 12 12 0.3431 25 55 1 1.20 967.473 974.207 63.00 64.00 62.00 61.00 11 12 0.453 23 55 2 1.20 974.207 979.914 63.00 64.00 62.00 61.00 11 12 0.453 23 63 1 2.00 953.728 961.728 62.00 63.00 62.00 61.00 9 30 0.453 23 63 1 2.00 961.728 967.024 63.00 63.00 62.00 62.00 10 18 0.5875 22 73 1 3.70 992.705 999.101 62.00 63.00 62.00 62.00 6 48 0.5875 22 73 1 3.70 999.101 1005.515 63.00 64.00 63.00
40 2 0.30 986.931 991.937 61.00 62.00 61.00 63.00 16 0 0.2361 26 48 1 0.66 938.492 945.335 60.00 61.00 62.00 61.00 62.00 61.00 15 0 0.3431 25 55 1 1.20 967.473 974.207 63.00 64.00 62.00 61.00 9 30 0.453 23 55 2 1.20 974.207 979.914 63.00 64.00 62.00 61.00 9 30 0.453 23 63 1 2.00 953.728 961.728 62.00 63.00 62.00 61.00 9 30 0.453 23 63 2 2.00 961.728 967.024 63.00 63.00 62.00 62.00 6 48 0.5875 22 73 1 3.70 999.705 999.101 1005.515 63.00
48
48 2 0.66 945.335 950.883 61.00 62.00 61.00 63.00 12 12 0.3431 25 55 1 1.20 967.473 974.207 63.00 64.00 62.00 61.00 11 12 0.453 23 55 2 1.20 974.207 979.914 63.00 64.00 62.00 61.00 9 30 0.453 23 63 1 2.00 953.728 961.728 962.00 63.00 62.00 60.00 10 18 0.5875 22 73 1 3.70 992.705 999.101 62.00 63.00 63.00 63.00 60.00 6 48 0.5875 22 73 2 3.70 999.101 1005.515 63.00 63.00 63.00 63.00 60.00 0 0.8106 19 Calculated Data Meter Volume (cu ft) Volume (std cu ft) Ave Meter Ave
55 1 1.20 967.473 974.207 63.00 64.00 62.00 61.00 11 12 0.453 23 55 2 1.20 974.207 979.914 63.00 64.00 62.00 61.00 9 30 0.453 23 63 1 2.00 953.728 961.728 62.00 63.00 63.00 62.00 10 18 0.5875 22 63 2 2.00 961.728 967.024 63.00 63.00 62.00 62.00 62.00 6 48 0.5875 22 73 1 3.70 992.705 999.101 62.00 63.00 63.00 63.00 63.00 60.00 6 0 0.8106 19 73 2 3.70 999.101 1005.515 63.00 64.00 63.00 63.00 6 0 0.8106 19 999.101 1005.515 63.00 64.00 63.00 63.00 6 0 0.8106 19 19 1005.515 63.00 64.00 63.00 63.00 63.00 6 0 0.8106 19 19 1005.515 63.00 64.00 63.0
55 2 1.20 974.207 979.914 63.00 64.00 62.00 61.00 9 30 0.453 23 63 1 2.00 953.728 961.728 62.00 63.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 62.00 63.00 63.00 62.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 63.00 60.00 0.8106 19 Calculated Data Weter Volume (cu ft) Weter Volume (std cu ft) Ave Meter Ave Amb Temp (F) Y Delta H 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 </td
63 1 2.00 953.728 961.728 62.00 63.00 62.00 10 18 0.5875 22 63 2 2.00 961.728 967.024 63.00 63.00 62.00 6 48 0.5875 22 73 1 3.70 992.705 999.101 62.00 63.00 63.00 63.00 6 0 0 0.8106 19 73 2 3.70 999.101 1005.515 63.00 64.00 63.00 63.00 6 0 0 0.8106 19 19 Calculated Data Calculated Data
63 2 2.00 961.728 967.024 63.00 63.00 62.00 62.00 6 48 0.5875 22 73 1 3.70 992.705 999.101 62.00 63.00 63.00 63.00 6 0 0.8106 19 73 2 3.70 999.101 1005.515 63.00 64.00 63.00 63.00 6 0 0.8106 19 Calculated Data Meter Volume (cu ft) (volume (std cu ft)) ## Volume (std cu ft) 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
73 1 3.70 992.705 999.101 62.00 63.00 63.00 6 0 0.8106 19 73 2 3.70 999.101 1005.515 63.00 64.00 63.00 63.00 6 0 0.8106 19 Calculated Data Orifice Run / Volume (cu ft) (volume (std cu ft)) ## Volume (std cu ft) 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
73 2 3.70 999.101 1005.515 63.00 64.00 63.00 63.00 6 0 0.8106 19 Calculated Data Meter Volume (cu ft) (volume (std cu ft)) 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
Calculated Data Orifice Run Meter Volume Volume Cuft) (std cu ft) (std cu ft) 40
Orifice ID Run ID Meter Volume (cu ft) Meter Volume (std cu ft) Corrected Meter Volume (std cu ft) Ave Meter Temp (F) Ave Amb Temp (F) Y Delta H @ 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
Orifice ID Run ID Meter Volume (cu ft) Meter Volume (std cu ft) Corrected Meter Volume (std cu ft) Ave Meter Temp (F) Ave Amb Temp (F) Y Delta H 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
Orifice ID Run ID Meter Volume (cu ft) Meter Volume (std cu ft) Meter Volume (std cu ft) Ave Meter Temp (F) Ave Amb Temp (F) Y Delta H 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
Orifice ID Run ID Meter Volume (cu ft) Meter Volume (std cu ft) Meter Volume (std cu ft) Ave Meter Temp (F) Ave Amb Temp (F) Y Delta H 40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
Temp(F) Temp
(cuff) (std cuff) (std cuff) 40
40 1 6.631 6.65157 6.51376 62.5 60.5 0.9793 1.7951 40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
40 2 5.006 5.03116 4.90898 61.5 62 0.9757 1.8037 AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
AVE 0.9775 1.7994 48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
48 1 6.843 6.89674 6.69106 60.5 61.5 0.9702 1.8842
48 2 5.548 5.58085 5.43946 61.5 62 0.9747 1.8824
AVE 0.9724 1.8833
55 1 6.734 6.75700 6.59628 63.5 61.5 0.9762 1.9592
55 2 5.707 5.72649 5.59506 63.5 61.5 0.9770 1.9592
AVE 0.9766 1.9592
63 1 8 8.05858 7.85981 62.5 62.5 0.9753 1.9565
63 2 5.296 5.32968 5.19149 63 62 0.9741 1.9528
AVE 0.9747 1.9546
73 1 6.396 6.46982 6.31418 62.5 63 0.9759 1.9191
73 2 6.414 6.47564 6.31418 63.5 63 0.9751 1.9155
AVE 0.9755 1.9173
Average for All Runs 0.9754 1.9028

Source Testing And Consulting Services Meter Box Calibration

Calibration Date: 1-15-08 Meter Box: A-4 Technician: MLH

PART 2: Thermocouple Calibration T/C Calibrator Make:

T/C Calibrator Make: Tegam T/C Calibrator Model: 840A

Calibrator Output (F)	Meter Reading (F)	Error F)	(Allowable Error (F)	Result
25.0	24	-1		9.24	pass
68.0	66	-2		9.88	pass
222.0	222	0		10.64	pass
406.0	405	-1		11.24	pass
799.0	800	1		13.24	pass
1194.0	1205	11		19.24	pass
1585.0	1592	7		33.24	pass
1981.0	1960	-21		49.24	pass

POST TEST METER CALIBRATION DATA - EMC APPROVED ALTERNATIVE METHOD (ALT - 009)

Plant:	Rayonier	Location:	SRB Stack		Run #	1	2	3 A	VERAGE
Condition:	: Normal	Meter #:	A-4		Date:	5/14/08	5/14/08	5/14/08	
Unit:	SRB Stack	Method:	Method 5		Start Time:	9:30	11:45	13:15	
Parameter	•			Units	Stop Time:	10:32	12:48	14:17	
Sampling T	Гime			min.	•	60.00	60.00	60.00	60.0
GAS METE	ER DATA:			<u> </u>					
Average M	eter Differential P	ressure		in. H2O		1.26	1.40	1.22	1.29
Absolute M	leter Pressure			in. Hg		29.95	29.96	29.95	29.95
Average M	eter Temperature			degrees F		76.75	76.75	79.83	77.78
Metered Di	ry Sample Gas Vo	lume		dcf		36.236	35.24	35.951	35.81
Gas Molec	ular Weight, Dry E	Basis		lb/lb-mole		30.41	30.36	30.20	30.32
Pre Test C	alibration Factor	S							
DeltaH@				in, H2O		1.9	1.9	1.9	1.900
Dry Gas M	eter Correction Fa	ictor (gamma)		Dimensionles	ss	0.9754	0.9754	0.9754	0.9754
Post Test	Data								
	Meter Correction	Factor (Yqa)		Dimensionle	ss	0.9941	1.0798	0.9938	1.0226
Difference	(Post Test and Pr	etest Y - Maximum Av	verage Allowed 5%)	%		1.91%	10.70%	1.89%	4.83%

Recovery Boiler Compliance Test

14-May-08 Date: From SRB gas sampling worksheets Run: # Eng 1 Start of Test End of Test hour min hour min Difference %of hour 16 07 17 11 0.9375 Time "B" Liquor Flow, gallons 106684.4 119132.1 12447.7 | 11669.72 | gph 195 196.5 11790 gph Liquor Flow, gpm meter 198 Liquor Temperature, deg F 197 197 197 Liquor Hydrometer Reading 1.25 1.25 1.25 59.8 59.3 59.55 Liguor solids, % OD 10 10 10 No. of Liquor guns No. of oil guns 0 0 0 Q) 0 0 No. of oil guns @ pressure Steam load, lbs/hr chart x 1000 395 394 394.5 4065.1 421600 395250 lb/hr Steam Flow Integrator x 1000, lb 3643.5 869 868 868.5 Steam Temperature, deg F Steam Pressure, psi 1006 999 1002.5 258 250.3715 242 SO2, ppm Brinks By-pass Position Closed Closed Methanol System In Operation In Operation

Liquor Flow Calculation	(gph)(8.345)(sp.gr.)(%OD)	73237.23	lb/hr	
	TSP Mass Emission Rate results:	19.9	lb/hr	20.37
Average PM readout	on the Recovery CAM Particulate Monitor:	17.4	mg/m3	41.6
* BETA GUARD	PARTICULATE MONITOR. MANUFATURER F., MEG	CHANICAL SY	STEMS INC.	STACS
(End of test value - Start of test value)	(60 min./hr / Test time, min.) = Units/hr			TEST
				DATA

Recovery Boiler Compliance Test

						16-May-08		
From SRB gas sampling workshee	ts		Run:	#	Eng 2			
	Start of Test		End o	f Test				
	hour	min	hour		min	Difference	%of hour	
Time	8	19		9	21	62	0.967742	
"B" Liquor Flow, gallons	20205.9		3:	2434.2		12228.3	11833.84	gph
Liquor Flow, gpm meter	198			202		200	12000	gph
Liquor Temperature, deg F	196			196		196		
Liquor Hydrometer Reading	1.25			1.25		1.25		
Liquor solids, % OD	58.6			58.6		58.6		
No. of Liquor guns	10			10		10		
No. of oil guns	0			0		0		
No. of oil guns @ pressure	0			0		0		
Steam load, lbs/hr chart x 1000	383			402		392.5		
Steam Flow Integrator x 1000, lb	657.9			1061.5		403600	390580.6	lb/hr
Steam Temperature, deg F	862			866		864		
Steam Pressure, psi	995			1001		998		
SO2, ppm	315	_		249		282		
Brinks By-pass Position	Closed			Closed				
Methanol System	In Operation		In Ope	ration				

Liquor Flow Calculation	(gph)(8.345)(sp.gr.)(%OD)	73352.5	5 lb/hr	<u></u>
	TSP Mass Emission Rate results:	24.3	lb/hr	24.23
Average PM readou	ut on the Recovery CAM Particulate Monitor:	17.8	mg/m3	48.1
* BETA GUAF	D PARTICULATE MONITOR. MANUFATURER F., MEC	CHANICAL S	SYSTEMS INC.	STAC
(End of test value - Start of test value	e)(60 min./hr / Test time, min.) = Units/hr			TEST
				DATA

Recovery Boiler Compliance Test

 Date:
 16-May-08

 Run:
 # Eng 3

	hour	min	hour	min	Difference	%of hour	
Time	12	40	13	42	62	0.967742	
"B" Liquor Flow, gallons	67772.9		79625.9		11853	11470.65	gph
Liquor Flow, gpm meter	192		190		191	11460	gph
Liquor Temperature, deg F	197		197		197		
Liquor Hydrometer Reading	1.25		1.25		1.25		
Liquor solids, % OD	60.4		60.8		60.6		
No. of Liquor guns	10		10		10		
No. of oil guns	0		0		0		
No. of oil guns @ pressure	0		0		0		
Steam load, lbs/hr chart x 1000	384		373		378.5		
Steam Flow Integrator x 1000, lb	2265		2658.1		393100	380419.4	lb/hr
Steam Temperature, deg F	865		876		870.5		
Steam Pressure, psi	991		988		989.5		
SO2, ppm	101		127		114]
Brinks By-pass Position	Closed		Closed				
Methanol System	In Operation		In Operation				

Liquor Flow Calculation	(gph)(8.345)(sp.gr.)(%OD)	72509.82	lb/hr	
	TSP Mass Emission Rate results:	24.6	lb/hr	24.73
Average PM readou	ut on the Recovery CAM Particulate Monitor:	15.5	mg/m3	46.5
* BETA GUAR	D PARTICULATE MONITOR. MANUFATURER F., MEG	CHANICAL S'	YSTEMS INC.	STAC
(End of test value - Start of test valu	e)(60 min./hr / Test time, min.) = Units/hr			TEST
				DATA

Sulfite Recovery Boiler Scrubber Stack Test Analysis

for 14-May-08

Steam Output from the Sulfite Recovery Boiler

Run Steam Production [1000 lb./hr. of 1000 BTU/lb. Steam]

 Number
 Sulfite Recovery Boiler

 Eng 1
 395

 Eng 2
 391

 Eng 3
 380

Average 389

Oil Input	to Boiler				Liquor Input	to Boiler	Test Result	
	Sulfite Re	ecovery Boil	er				Particulate	Particulate
Run	Gal. Oil	Test Min.	BTU/gal	MMBTU/hr	Gal.	Liquor Flow	(per Stack test)	CAM PM Monitor
Number				from Oil	Liquor	lbs/hr.	lbs/hr.	mg/m3
Eng 1	0	64	154,335	0	11670	73,237	19.9	17.4
Eng 2	0	62	154,335	0	11834	73,353	24.3	17.8
Eng 3	0	62	154,335	0	11471	72,510	24.6	15.5
Average	0	63	154,335	0	11.658	73.033	22.9	

Permit Maximum [lbs/hr. SSL] 70,000

Recovery Boiler Actual Total % of Capacity = 104%

Permit Maximum (particulate) 43.18 lbs/hr.

From:

Livingston, Sylvia

Sent: To:

Tuesday, September 30, 2008 9:54 AM

'Forney.Kathleen@epamail.epa.gov'

Cc:

Felton-Smith, Rita; 'forney.kathleen@epa.gov'; 'dee_morse@nps.gov';

'catherine collins@fws.gov'; Walker, Elizabeth (AIR); Mitchell, Bruce

Subject:

Rayonier Performance Fibers, LLC -0890004-023-AC

A new Permit Application has been received in Florida and is currently under review.

Link to Permit Application Documents:

http://arm-permit2k.dep.state.fl.us/psd/0890004/00003113.pdf

ARMS PA Project ID:	0890004-023-AC
Facility Name:	Rayonier Performance Fibers, LLC
Florida County:	Nassau
Project Description:	NO. 6 BOILER REVISION EXTENSION
Permit Application Processor:	Bruce Mitchell
Processor Phone:	(850)413-9198
Processor Email Address:	Bruce.Mitchell@dep.state.fl.us

Or, Search for other Air Permit Documents on Florida's Air Permit Documents Search.

Please direct any questions regarding this permit application to the permit application processor. If you have any problems accessing these documents please let me know.

Thanks,

Sylvia Livingston Bureau of Air Regulation Division of Air Resource Management (DARM) 850/921-0771

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

October 16, 2008

Electronically Sent - Received Receipt Requested

Mr. F. J. Perrett Environmental Manager Rayonier Performance Fibers LLC Fernandina Beach Mill The Foot of Gum Street P.O. Box 2002 Fernandina Beach, Florida 32035

RE: Request for Permit Expiration Date Extension and Modification to the Sulfite Recovery Boiler Project No. 0890004-023-AC

Dear Mr. Perrett:

On September 22, 2008, the Department's Bureau of Air Regulation received a request for a permit expiration date extension and for an increase in the red liquor solids firing rate to the sulfite recovery boiler at the existing sulfite mill located in Fernandina Beach, Nassau County, Florida. Based on our review of the proposed project, we have determined that the application is incomplete and the following additional information is needed in order to continue processing this application package. Please provide all assumptions, calculations, and reference material(s), that are used or reflected in any of your responses to the following issues:

1. The following changes and schedule were authorized in Subsection D. in air construction (AC) permit No. 0890004-018-AC, with an expiration date of March 1, 2009:

D. Facility.

D.1. Capacity.

- a. Except as provided below, the facility's production shall not exceed 162,000 air dried metric tons (ADMT) per consecutive 12-months, rolling total.
- b. Upon successful installation and submittal of the engineering report of the HCE blow heat recovery system to control VOC emissions from all of the HCE cells, the facility's production shall not exceed 175,000 ADMT per consecutive 12-months, rolling total.
- **D.2.** The application indicates the following preliminary schedule for commencing construction:

Date	Activity
February 2006	Add a new HCE washer press roll
Fohmumu 2007	Begin first improvements to pulp machine (drying and head-box)
February 2007	Add a new HCE evaporator train
	Install a new HCE blow heat recovery system to control all HCE cells
	Add a new HCE cell
February 2008	Install a new HCE washer
	Begin second improvements to pulp machine (drying and speed increase)
	Install a new post-HCE washer

^{*} It is noted that some of the later changes are contingent on the success of the earlier stages.

Mr. F. J. Perrett

Request for Permit Expiration Date Extension and Modification to the Sulfite Recovery Boiler Project No. 0890004-023-AC Page 2 of 3

- **D.3.** The permittee is authorized to perform the following construction and work:
 - a. add a new HCE washer press roll;
 - b. begin first improvements to pulp machine (drying and head-box);
 - c. add a new HCE evaporator train; install a new HCE blow heat recovery system to control all HCE cells;
 - d. add a new HCE cell:
 - e. install a new HCE washer; begin second improvements to pulp machine (drying and speed increase); and,
 - f. install a new post-HCE washer.

The permittee shall obtain prior written approval for any substantial changes to the work described above and in the application for this project.

- **D.4.** Within fourteen (14) days of completing each of the above stages of work, the permittee shall provide a written notice of the following:
 - a. type of work;
 - b. date completed;
 - c. deviations form original proposal; and,
 - d. a discussion of any emissions impacts.
- **D.5.** Attached to each required Annual Operating Report, the permittee shall provide a summary of the following to the compliance authority:
 - a. a summary of work performed to date;
 - b. a summary of work remaining;
 - c. a preliminary schedule for completing any remaining work; and,
 - d. the current production capacity of the mill (ADMT per year).

D.6. Performance tests.

a. Prior to increasing plant production beyond 162,000 ADMT per year, the permittee shall install a new HCE blow heat recovery system designed to reduce VOC emissions by 60% from all HCE cells. Upon successful completion of this system, the permittee shall conduct an engineering study to determine the effectiveness of this system in capturing and reducing VOC emissions to achieve designed efficiency. A test protocol shall be submitted to the Department for review and approval prior to commencing the engineering study. Within 60 days of completing the engineering study, the permittee shall submit a report summarizing: the final installed design, material flow rates, emissions, emissions capture, emissions control, and any necessary adjustments.

In regards to the authorized work and testing, as detailed above, please provide the following information:

- a. a detailed description of work and testing performed to date;
- b. a detailed description of work and testing remaining;
- c. a preliminary schedule for completing any remaining work; and,
- d. the current production capacity of the mill (ADMT per year).

Mr. F. J. Perrett Request for Permit Expiration Date Extension and Modification to the Sulfite Recovery Boiler Project No. 0890004-023-AC Page 3 of 3

- 2. Explain in detail how the sulfite recovery boiler is now able to increase the red liquor solids firing rate. Describe in detail the physical changes that have been made to the sulfite recovery boiler to facilitate an increase in the red liquor solids firing rate. What is the manufacturer's design/name plate capacity of the sulfite recovery boiler's red liquor solids firing rate (provide documentation)?
- 3. What authorization did you have to test the sulfite recovery boiler at greater than its maximum permitted processing rate limit of 70,000 lbs/hr of red liquor solids? Please identify the permit project number authorizing the increase in firing rate and provide a copy of the authorizing document.
- 4. Any increase in actual emissions due to a modification are required to be evaluated in accordance with the Prevention of Significant Deterioration (PSD) regulations at Rule 62-212.400, Florida Administrative Code (F.A.C.), prior to making any change to the emissions unit. Please submit the actual emissions increase of pollutants due to the production request to increase the red liquor solids firing rate in the sulfite recovery boiler. Since the pollutant emissions are contemporaneous to permit project No. 0890004-018-AC, provide a PSD netting analysis that includes permit project No. 0890004-018-AC and all subsequent projects to date. Also, complete and submit the appropriate application and signature/seal pages for the modification request, which should include the R.O. signature and the seal and signature from a Professional Engineer (P.E.) registered in the State of Florida. If the emissions netting analysis requested reflects that the proposed facility's modification is equal to or greater than the significant emission rate for any pollutant pursuant to Rule 62-210.200(Definitions Significant Emissions Rate), F.A.C., then a processing fee is required pursuant to Rule 62-4.050, F.A.C., and the requirements of Rule 62-212.400, F.A.C., must be addressed and provided.
- 5. The Department's Northeast District office is responsible for making all changes to your existing Title V Air Operation Permit. In regards to the Revision to the Title V Air Operation Permit, project No. 0890004-022-AV, you need to submit the appropriate application and signature/seal pages to the Department's Northeast District office for processing any changes to your existing Title V Air Operation Permit.

The Department will resume processing this application after receipt of the requested information. If you have any questions regarding this matter, please call Bruce Mitchell at (850)413-9198.

Sincerely,

New Source Review Section Bureau of Air Regulation

SA/rbm

cc: Fred .J. Perrett, General Manager, Rayonier Performance Fibers LLC (jack.perrett@rayonier.com)
Chris Kirts, Air Permitting Administrator, Northeast District (Christopher.Kirts@dep.state.fl.us)
David Rogers, Rayonier Performance Fibers LLC (david.rogers@rayonier.com)
David Tudor, Rayonier Performance Fibers LLC (david.tudor@rayonier.com)

From: Livingston, Sylvia

Sent: Thursday, October 16, 2008 4:12 PM

Lack.perrett@rayonier.com", Lavid.rogers@rayonier.com", 'David.tudor@rayonier.com' To: Wirts, Christopher, Wif. Sved. Walker, Elizabeth (AIR); Gibson, Victoria, Mitchell, Bruce Cc: RAI -0890004-023-AC (Rayonier Performance Fibers LLC - Fernandina Beach Mill) Subject:

Attachments: 0890004-023-AC.pdf

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software, noting that you can view the documents, and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be downloaded for free at the following internet site: http://www.adobe.com/products/acrobat/readstep.html>.

The Bureau of Air Regulation is issuing electronic documents for permits, notices and other correspondence in lieu of hard copies through the United States Postal System, to provide greater service to the applicant and the engineering community. Please advise this office of any changes to your e-mail address or that of the Engineerof-Record.

Thank you,

Sylvia Livingston Bureau of Air Regulation Division of Air Resource Management (DARM) 850/921-0771 sylvia.livingston@dep.state.fl.us

Delivery Read Recipient Tracking:

> ✓Jack.perrett@rayonier.com/ ✓ David.rogers@rayonier.com¹

David.tudor@rayonier.com

Kirts, Christopher Arif, Sved

Walker, Elizabeth (AIR)

Sibson, Victoria Mitchell, Bruce

Delivered: 10/16/2008 4:12 PM Delivered: 10/16/2008 4:12 PM Delivered: 10/16/2008 4:12 PM

Delivered: 10/16/2008 4:12 PM

Read: 10/16/2008 4:13 PM

Debra Lane for David Tudor

Delivered: 10/16/2008 4:12 PM

From:

David.Rogers@rayonier.com

Sent: Friday, October 17, 2008 7:54 AM

To: Livingston, Sylvia

Subject: Re: RAI -0890004-023-AC (Rayonier Performance Fibers LLC - Fernandina Beach Mill)

Attachments: 0890004-023-AC.pdf

We have received the transmission, thank you.

David Rogers

"Livingston, Sylvia" <Sylvia.Livingsto n@dep.state.fl.us >

10/16/2008 04:12

<Jack.perrett@rayonier.com>,
<David.rogers@rayonier.com>,
<David.tudor@rayonier.com>

To

"Kirts, Christopher"

<Christopher.Kirts@dep.state.fl.us>
, "Arif, Syed"

<Syed.Arif@dep.state.fl.us>,
"Walker, Elizabeth \(AIR\)"
<Elizabeth.Walker@dep.state.fl.us>,

"Gibson, Victoria" <Victoria.Gibson@dep.state.fl.us>,

"Mitchell, Bruce"
<Bruce.Mitchell@dep.state.fl.us>
Subject

RAI -0890004-023-AC (Rayonier

Performance Fibers LLC - Fernandina

Beach Mill)

Dear Sir/Madam:

Please send a "reply" message verifying receipt of the attached document(s); this may be done by selecting "Reply" on the menu bar of your e-mail software, noting that you can view the documents, and then selecting "Send". We must receive verification of receipt and your reply will preclude subsequent e-mail transmissions to verify receipt of the document(s).

The document(s) may require immediate action within a specified time frame. Please open and review the document(s) as soon as possible.

The document is in Adobe Portable Document Format (pdf). Adobe Acrobat Reader can be

From: Debra.Lane@rayonier.com on behalf of davidtudor@hughes.ne

Sent: Friday, October 24, 2008 4:40 PM

To: Livingston, Sylvia

Cc: Mitchell, Bruce; Kirts, Christopher; Walker, Elizabeth (AIR); Arif, Syed; Gibson, Victoria

Subject: Re: RAI -0890004-023-AC (Rayonier Performance Fibers LLC - Fernandina Beach Mill)

Dear Ms. Livingston:

David Tudor has retired from Rayonier, effective September 30, 2008. I have recently joined the company as part of the corporate environmental team, and will be assuming Dave's responsibilities.

Please add me to your contact lists for the Rayonier Performance Fibers mill in Fernandina Beach, and remove David Tudor. My contact information is provided below.

I look forward to working with the Florida DEP on this and future projects.

Sincerely,

Debra D. Lane Environmental Manager, Manufacturing Corporate Environmental Ravonier

Marketing and Research Center P.O. Box 1280 Jesup, GA 31598

office: (912) 588-8117 cell: (904) 710-6243 fax: (912) 588-1476 debra.lane@rayonier.com

"Livingston, Sylvia" <Sylvia Livingston@dep.state.fl.us>

10/16/2008 04:12 PM

To <Jack.perrett@rayonier.com>, <David.rogers@rayonier.com>, <David.tudor@rayonier.com>

cc "Kirts, Christopher" «Christopher.Kirts@dep.state.fl.u»>, "Arif, Syed"
«Syed.Arif@dep.state.fl.u», "Walker, Elizabeth (AIRt)"
«Elizabeth.Walker@dep.state.fl.u»>, "Gibson, Victoria" <Victoria. Gibson@dep.state.fl.us>,

"Mitchell, Bruce" < Bruce Mitchell@dep state fl.us>

Subject RAI -0890004-023-AC (Rayonier Performance Fibers LLC - Fernandina Beach Mill)

Dear Sir/Madam

Rayonier

Performance Fibers

Fernandina Mill

January 8, 2009

RECEIVED

JAN 12 2009

BUREAU OF AIR REGULATION

Certified Mail, Return Receipt Requested

Mr. Syed Arif, P.E. New Source Review Section Bureau of Air Regulation Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400

RE: Request for Permit Expiration Date Extension and Approval to Increase the Red Liquor Solids Firing Rate for the Sulfite Recovery Boiler Project No. 0890004-023-AC

Dear Mr. Arif:

This letter is in response to your October 16, 2008 request for additional information regarding Rayonier's request for extension of the expiration date for construction permit No. 08900004-018-AC, and approval to increase the red liquor solids firing rate for the existing sulfite recovery boiler. For ease of reference, our responses are numbered in the same order as your questions.

- 1. Regarding subsection D of the construction permit, you requested that we submit the following information:
 - a. a detailed description of work and testing performed to date;
 - b. a detailed description of work and testing remaining;
 - c. a preliminary schedule for completing any remaining work; and,
 - d. the current production capacity of the mill (ADMT per year).

This information was submitted on February 26, 2008 with the facility's AOR as required by condition D.5. A copy of that submittal is attached. The production capacity of the mill is still 162,000 ADMT/year.

Table 1, below, provides an updated project schedule. Because the schedule for several of the planned projects remains indefinite, it is our understanding that the Department will require us to obtain a new permit for those projects rather than granting a multi-year permit extension. Therefore, those projects are noted as "cancelled" in Table 1.

ĮŲ<u>L</u>

Certificate No. A2072

Registered to ISO 9001:2000

Ms. Rita Felton-Smith File No. 0890004-022-AV RAI 3 January 8, 2009 Page 2 of 3

Table 1

Project	Date	
Upgrade dryer cans (machine speed increase)	Completed	
Continue first improvements to pulp machine	Completed	
(replace lump breaker arms)	,	
Add Red Stock Washer Press Roll	Cancelled	
Begin second improvements to pulp machine	Cancelled	
(Pocket Ventilation piping and headbox)		
Add an new HCE cell	Cancelled	
Install a new HCE washer	Cancelled	
Install a new post HCE washer	Cancelled	
Install new HCE blow heat recovery system to	First Half 2010	
control all HCE cells		

In addition to authorizing the above projects, the construction permit imposed a requirement to install bleach plant emission controls by February 20, 2010 to meet the requirements of 40 CFR 63.445 (MACT Subpart S). Although this date is well before the deadline imposed by Subpart S, Rayonier accepted this permit condition and plans to install a bleach plant scrubber. Our tentative construction schedule is shown in Table 2.

Table 2

Project	Date	
Washer hood installation/	February 2009	
modification and equipment tie-ins	-	
Install collecting ductwork,	Third Quarter 2009	
scrubber tower, and associated	-	
equipment		
Scrubber start-up	Fourth Quarter 2009	
Compliance testing	January 2010	

In order to provide sufficient time for installation and testing of this emissions control equipment and time for incorporation of the scrubber into the Title V permit, we are requesting extension of the construction permit until September 1, 2010.

Finally, the construction permit authorized burning wastewater treatment sludge on a trial basis. We completed the first set of sludge burn trials and submitted the results on November 25, 2008. The extension of the permit expiration date will enable us to complete the sludge burning trials. We anticipate conducting the remaining sludge burning in March/April 2009, and will not exceed the limit of 500 ODT total sludge burned that was established in the construction permit.

Ms. Rita Felton-Smith File No. 0890004-022-AV RAI 3 January 8, 2009 Page 3 of 3

- 2. You requested an explanation of changes made to the recovery boiler to allow an increase in the red liquor solids firing rate. Rayonier has not made any modifications to the boiler. The rated capacity of the boiler is 653.1 MM Btu/hour heat input, as stated in the existing Title V permit. Attached is the original recovery furnace specification sheet that outlined predicted capacity of the boiler. As with most industrial units, the boiler can operate at somewhat higher rates on a short-term basis but would not be expected to do so on a sustained basis, and would average less than the rated capacity on a rolling twelve-month basis. The heat content of the red liquor solids can also vary, so the boiler could actually require a greater volume of red liquor solids to achieve the rated heat input.
- 3. Testing of the recovery boiler was conducted in a way that ensured the processing rate of 70,000 lbs/hr of red liquor solids was not exceeded for any consecutive three-hour average. Rayonier believed this was compliant with the conditions of the Title V permit, but has since been engaged in discussions around a consent order with the Northeast District office regarding the appropriate averaging time for this limit, and we are currently controlling the liquor processing rate on a one-hour average basis.
- 4. Because the recovery boiler can operate at a slightly higher liquor firing rate without a physical change or change in the method of operation, the requested increase in liquor firing rate should not be considered a "modification" under the Prevention of Significant Deterioration (PSD) regulations. In order to facilitate completion of the construction permit extension; however, Rayonier is withdrawing the request to increase the liquor firing rate and will submit a separate request for that permit revision at a later time.
- 5. An application has been submitted to the Northeast District office to incorporate the new No. 6 power boiler and the production increase into the Title V permit. Should we decide to pursue a permit change for the recovery boiler red liquor solids firing rate, we will submit a separate application at that time.

As required by Rule 62-212.420, F.A.C. and Rule 62-4.050(3), F.A.C., Responsible Official (R.O.) Certification and Professional Engineer (P.E.) Certification Statements from DEP Form No. 62-210.900(1) are enclosed with this submittal.

If you have additional questions regarding this information, please contact David Rogers at (904) 277-1346, email: david.rogers@rayonier.com or Debra Lane at (912) 588-8117, email: debra.lane@rayonier.com.

Sincerely,

Jack Perrett

General Manager

APPLICATION INFORMATION

Professional Engineer Certification

	Messional Engineer Certification							
1.	Professional Engineer Name: David A. Buff							
	Registration Number: 19011							
2.	Professional Engineer Mailing Address							
	Organization/Firm: Golder Associates Inc.**							
	Street Address: 6241 NW 23rd Street, Suite 500							
	City: Gainesville State: FL Zip Code: 32653							
3.	Professional Engineer Telephone Numbers							
	Telephone: (352) 336-5600 ext. Fax: (352) 336-6603							
4.	Professional Engineer E-mail Address: dbuff@golder.com							
5.	Professional Engineer Statement:							
	I, the undersigned, hereby certify, except as particularly noted herein*, that:							
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and							
	(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.							
	(3) If the purpose of this application is to obtain a Title V air operation permit (check here , if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.							
	(4) If the purpose of this application is to obtain an air construction permit (check here , if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here , if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.							
06	(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units (check here , if so), I further certify that, with the exception of any changes detailed as part of this application, each, such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.							
150.70	Signature Date							
**************************************	Affach and exception to certification statement. Board of Professional Engineers Certificate of Authorization #00001670.							

DEP Form No. 62-210.900(1) - Form Effective: 3/16/08

APPLICATION INFORMATION

Application Responsible Official Certification

Complete if applying for an initial, revised, or renewal Title V air operation permit or concurrent processing of an air construction permit and revised or renewal Title V air operation permit. If there are multiple responsible officials, the "application responsible official" need not be the "primary responsible official."

1. Application Responsible Official Name:						
Application Responsible Official Qualification (Check one or more of the following options, as applicable):						
☐ For a corporation, the president, secretary, treasurer, or vice-president of the corporation in						
charge of a principal business function, or any other person who performs similar policy or						
decision-making functions for the corporation, or a duly authorized representative of such						
person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under						
Chapter 62-213, F.A.C.						
For a partnership or sole proprietorship, a general partner or the proprietor, respectively.						
For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official.						
☐ The designated representative at an Acid Rain source, CAIR source, or Hg Budget source.						
3. Application Responsible Official Mailing Address						
Organization/Firm:						
Street Address:						
City: State: Zip Code:						
4. Application Responsible Official Telephone Numbers						
Telephone: () ext. Fax: ()						
5. Application Responsible Official E-mail Address:						
6. Application Responsible Official Certification:						
I, the undersigned, am a responsible official of the Title V source addressed in this air permit						
application. I hereby certify, based on information and belief formed after reasonable inquiry,						
that the statements made in this application are true, accurate and complete and that, to the best						
of my knowledge, any estimates of emissions reported in this application are based upon						
reasonable techniques for calculating emissions. The air pollutant emissions units and air						
pollution control equipment described in this application will be operated and maintained so as						
to comply with all applicable standards for control of air pollutant emissions found in the						
statutes of the State of Florida and rules of the Department of Environmental Protection and						
revisions thereof and all other applicable requirements identified in this application to which						
he Title V source is subject. I understand that a permit, if granted by the department, cannot						
be transferred without authorization from the department, and I will promptly notify the						
department upon sale or legal transfer of the facility or any permitted emissions unit. Finally, least in that the facility and each emissions with all amplicable						
certify that the facility and each emissions unit are in compliance with all applicable requirements to which they are subject, except as identified in compliance plan(s) submitted						
with this application.						
γ^{*}						
1-8-09						
Signature \ Date						

Rayonier

February 26, 2008

Performance Fibers

Fernandina Mill

Certified Mail, Return Receipt Requested

7007 0710 0005 5955 2601

Department of Environmental Protection Division of Air Resources Management, MS5500 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Re:

Permit 0890004

Construction Permit Condition D.5 and E.1 Submittal, Project No. 0890004-018-AC

Please find enclosed pages 1 and 2 of our 2007 EAOR. We have filed the AOR electronically.

Condition D.5. of the Construction Permit Project 30890004-018-AC requires an annual report of construction progress be submitted to the FDEP along with the Annual Operating Report. This correspondence is that report. It should be noted that this construction permit was a non-PSD permit and therefore the elapsed time restrictions on construction do not apply. Nevertheless construction was commenced within 18 months of issuance and will continue at regular intervals.

- a. Thus far, the #6 power boiler has been installed and is operational (December 2006), the HCE Evaporator line has been installed and is operational (June 2007), and a portion of the machine speed improvements project (Machine Dandy roll) has been installed and is operational (May 2007).
- b/c. The current projects and estimated schedule for those listed on the permit are:

Project	Date
Upgrade dryer cans (machine speed	February 2008
increase)	
Continue first improvements to pulp	2008
machine (replace lump breaker arms)	
Add Red Stock Washer Press Roll	February 2009
Begin second improvements to pulp	2009
machine (Pocket Ventilation piping and	
headbox)	
Add a new HCE cell	2013
Install a new HCE washer	2013
Install a new post HCE washer	2013
Install new HCE blow heat recovery	TBD
system to control all HCE cells	

^{*} It continues to be noted that this schedule is preliminary and subject to the success of the earlier projects.

 $Registered\ to\ ISO\ 9001:2000$

Certificate No. A2072

d. The present production capacity of the mill is 162,000 ADMT/year.

Condition E.1, of the above referenced Construction Permit also requires an annual report of Demand Growth Emissions submitted in conjunction with the Annual Operating Report. Demand Growth emissions are associated with the production increase portion of the Construction Permit. The application demonstrated that the existing power boilers and recovery boiler could maintain the 175,000 ADMT production rate. The Power boiler baseline used in the application is presented in the table below along with the reported emissions in the 2007 AOR. The difference is taken as Demand Growth Emissions. However, as there is yet to be any realized production increase above our previously permitted limits, there is yet to be any true demand growth emissions.

Power Boiler Demand Growth Emissions Accounting:

Pollutant	Baseline Emissions from No. 1,2 & 3 boilers ton/yr	Reported Emissions No.6 boiler 2007 AOR ton/yr	Demand Growth Emissions from Boiler ton/yr		
PM	276.06	21.59	-254.47		
PM10	242.48	21.59	-220.89		
SO ₂	181.96	146.1	-35.86		
NOx	340.95	270.1	-70.85		
CO	690.75	158.8	-531.95		
VOC	52.40	0.93	-51.47		

Likewise the application demonstrated that the existing recovery boiler was capable of burning 70,000 lbs/hour of red liquor solids. Its baseline was not provided in the application, but the baseline below is based on the 2003-2004 Annual Operating Report.

The emissions from the current 2007 Annual Operating Report are compared to determine Demand Growth Emissions. However, this overstates these emissions by that portion of the Significance Level applied to the Recovery Boiler, which has not been calculated as it makes the determination unnecessarily complicated.

Recovery Boiler Demand Growth Emissions Accounting

Pollutant	Baseline Emissions from Recovery Boiler ton/yr	Reported Emission from Recovery Boiler 2007 AOR ton/yr	Demand Growth Emissions from Recovery Boiler ton/yr		
PM	61.88	72.5	10.62		
PM10	55.26	64.76	12.5		
SO_2	821.25	486.4	-334.85		
*NOx	1997.96	1940.1	-57.86		
СО	344.84	623.32	-278.48		
VOC	31.26	22.99	-8.27		

^{*}The Nox emission factor from the 2003 AOR was recalculated in 2004. For this demand growth discussion the 2003 NOx emissions were recalculated using the 2004 emission factor in order to develop an accurate baseline.

Due to the fact that pulp production and steam production in the first full year of power boiler #6 operation in 2007 was less than the prior two-year average, it is reasonable to state that all pulp produced in 2007 could have been accommodated by the previous boilers and thus qualify as emissions due to demand growth.

Designated Representative Certification

I, the undersigned, am authorized to make this submission on behalf of the owners and operators of the Acid Rain source or Acid Rain units for which the submission is made. I certify under penalty of law that I have personally examined, and am familiar with, the statements and information submitted in this document and all its attachments. Based on my inquiry of those individuals with primary responsibility for obtaining the information, I certify that the statements and information are to the best of my knowledge and belief true, accurate and complete. I am aware that there are significant penalties for submitting false statements and information or omitting required statements and information, including the possibility of fine or imprisonment.

If you have any questions, please contact David Rogers at (904) 277-1346 or david.rogers@rayonier.com.

Sincerely,

General Manager

BEST AVAILABLE COPY

VENTUMMANUE SUPMAND.

USED FOR FURNISHING INFORMATION TO OTHERS, OR FOR TRIPOSE DETRIMENTAL TO TO TO BE RETURNED UPON REQUEST.

AB4	<u> </u>	FUELTH COLUMN TO			B PREDICTED I	PERFORMANCE	3 H 25 3	1	C	EQUIPMENT PEN ALT
		SPECIFIED BY TO PURCHASER				Z-4392	.4.	- 2		TYPE THE DECIDENT DESIGN PRESSURE 1790
: 1	rii.	The State of the S	erva.		A STATE OF THE STA		_	3	1 .:	
	•	TYPE ALEMINTA LIQUICA		٠. پېرو	LIQUOR SOLIDS N LB/DAY	1600	* * *		⋠ ∶	95 - 50/48 MAX SOLIDS IN STEAM 2000 PDD MAX SOLIDS IN STEAM
- 1		The ten of the ten of			EXCESS AIR LVG. BOILE?	12	30.20-	1	۳ ا	The state of the s
	200				BAW STU-TONS/DAY			E - E - E - E - E - E - E - E - E - E -	1 = 1	the state of the s
5	3	S BY WEIGHT, DRY SOLIDS	-1		SAW SIU-IORS/UAT	1.40		7	1 2	
	E	C1 0.2	-	1.	TOTAL HEAT INPUT MKB/HR	669		-	1	AND TYPE TE SECONDARY JCRUBBERS
Ĺ	15			1	MEAT AVAILABLE TO FURNACE MANAHR	599	7.	9	34.	
		s 5.0	+	_	LIQUOR TO BURNIERS	125.8	17	- 10	12	H. S. SQ FT. 17772 NO. OF STEAM PASSES OFTE
1		н 5.8	-1	• • •		1130,7		11	₹	1110
- I.	151	<u>c</u> 51.7	┩,	- 🚾	SALT CAKE MAKEUP	15.8			₹ ₩	TUBES, OD, IN. 21 NO. LOOPS O 36 ROWS AT 4 IN. 20 WIDE AT TOJA.
	19	0 34.7	-1 :		STEAM TO STEAM COIL AH			12	1 2	
1	131	INERTS 0.7	-13	<u> </u>	STEAM TO LIQUOR HEATERS	·		13	Sep	
1:		N 1.7	-1.5		FLUE GAS LYG. ECONOMIZER	647.0		14		
18	الم	TOTAL 100.0	_	. 1	AIR TO AH	496.5	h1	15	[2	H S, SQ FF 9274 TUBE LENGTH, FT 201-2"
:						<u>;'</u>	· ,	16	3	TURES, OD. IN. 2.0 28 ROWS AT 3,5 IN. 31 WIDE AT 4
	; L	GROSS HEATING VALUE, BOF	ᆚᅩ		STEAM AT SUPERIEATER OUTLET	900		17	ğ	DESIGN PRESSURE. LB/SQ.IN. 1150
	Ł	9500 STU/LE DRY SOLIDS	w	∝{	DROP, DRUM TO SH OUTLIT	1 9 <u>8</u>	. : -	18	읦	
- 17	'[م	32	DROP THRU ECONOMIZER	1.5		19	ļų.	FURNACE VOLUME :40100 6 CU FT. FURNACE WIOTH 20'-8" FURNACE DEPTH 241-9"
		% BY WEIGHT, AS DELIVERED	<u>. </u>		SUPERHEATED STEAM	87.5		20	Ìĕ∣	FURN. HS. 11250* SQ FT.
,		SOLIOS 53.0] :					21] S	p INCLUDES 11300 CU.FT. IN SMCOUDARY FURNACE
- 7	. F	WATER 47.0			LEAVING BOILER	850		22		* INCLUDED 5780 SQ.FT. IN SHOOMMARY FURNACE
	r	TOTAL 100.0		2	LEAVING ECONOMIZER	450	. :	23	. A. I	TYPE TUBULAR - 2" O.D. 11 GAGE - H.S. = 63615 SQ.FT.
- 1] □	3	LEAVING AUBULAR' ALP. HEATER	555	¥* .	24	. A. I	TYPE SCAN PROUTER SATURATED STEAM AT 60 FOTO
	_	SPECIFIED BY PURCHASER].	3		:	* 5.	25		TYPE MOTIFE MAKE NO JUNET
ĺ			7 %	~ [7.4	26	EVAP-	DIAM FT. WIDTH FT.
Ι΄	.ㅏ	TYPE: BUNKER "C" FUEL OIL	1 5					27	3	Y Y
	· -		75	풉	TO ECONOMIZER	.700		- 28	i we	
		et a second	75		TO BOILER	340		29		LIQUER SPRAY OSCILLATOR NO/UNIT
	\ <u></u>	· · · · · · · · · · · · · · · · · · ·	- -	<u>~ </u>	TO AIR HEATER (SCAN/TUN A.H.)	80/200		30		TYPE CTROULAR - CL 1/2"
<i>4</i> ,	· -	:	-		LEAVING AIR HEATER	700		31	AR.Y	LOCATION: SETTINGWATLES 6 EACH WALL A SALE
1.	┢	7.	1 1		TO EVAPORATOR	· .		32	A I	RMARWALL 2 (LIQUOR COLY)
	∶├─		1 1		TO BURMERS	100	- :	33	1 XA	That I A
	·├	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	12		TO EVAPORATOR			34	, OA	TIX (6) ARE COMBINAUTON LIQUOR AND ON.
- 1	⊢		121	7.1	LELULING EVADORATOR			35		STEAM CAPACITY, AUXILIARY BURNERS (APPROX) 50 3
	-		131	នុៃ	TO BURNERS	534		36	<u> </u>	OTEM CONSTITUTE CONTENT CONTENT CONTENT TATTROXY
1	\vdash		╂═┼	_				37		SOTATALETTO ANTES 34Y 5
.	 -		┪~ │	_	FURNACE DRAFT	<u>0.7</u>	1,	38	AP.	TYPE STAY ATTEMPTATOR LOCATION INTERSTAGE
بر ا	.		1 ≝1	-	BOILER & SUPERHEATER	7 15		- 39	STI	2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
: <u> </u>	\vdash		131		ECONOMIZER	2.5		40		
. ≥	 -		[6]	_	UBULAR ATR HEATER			41	F.0.	TEST BLOCK SPECS 595,500 LB/HR AT 16.6 IN- H20 AND 105 F 99 99 "HG"
.≊	I —				UST COLLECTOR	3.0		42		
1 =	-	· · · · · · · · · · · · · · · · · · ·	[호]		ECONDARY SYSTEM (SPECIFIED)	25.0		43	SEC.	V TENT STATE OF THE STATE OF TH
N X	-		{-	_	DAMPERS & FLUES	1.6		44		
	-	<u> </u>	핗	_	TANDRO V. ANT. BURNINGS	34.9			- 62	TEST BLOCK SPECS 768,000 LB/HR AT 37.4 IN. H20 AND 475 F 20 02 THG
	 		3		INDBGX AND BUPNERS	5.2		45	<u>-u</u>	
	J —		2 3		AR HEATER (SCAH/TUB A.H.)	1.5/4.1		46	٠, ١:	NO TEST BLOCK MARGIN TO INCLUDED FOR THE SECONDARY SYSTEM.
.∵ ·	-		ES	_	DUCTS & DAMPERS	2.5		47		
	-	<u> </u>			ET RESISTANCE	17.3		43	·	
	<u> </u>				RY '.GAS .	10.8		49 50		
1		DICTED PERF. IS BASED ON COMBUSTION AIR			ATER EVAP IN FURNACE	10.8	ray.		1,	NO. DESCRIPTION BY DATE
٠, '		ERING UNIT AT 80 F. 0:013LB HOISTURE/LB	*		ATER EVAP IN EVAPORATOR	r 2		51	ŀ	
٠.	_	AIR. 29.92 IN HG. BAROHETRIC PRESSURE ON	Ţ		YDROGEN IN SOLIDS	.6.3	21 -	52	2 -	1 MURMACE HG MUB 2-13-74
		DITIONS & EQUIPMENT GIVEN ON SUMMARY	2		OISTURE IN AIR	0.2		53	S -	
	SH	ET & ON ARRANGEMENT SHOWN ON DRAWING.	× ×	_	ADIATION LOSS	0.5		54	` -	
		P12-6014-2L0	200		NACC, FOR & MERS, MARGIN	2.5		55	E.	
BY	MF)	B DATE 1-3-74 APPD.	5		WATER TROM ATOMISTIC STEAM	13		56	- -	
	TU	E BABCOCK & WILCOX COMPANY	Ž.		EAT OF REACTION CORRECTION	17.9		57	ㅗ	
				RE	DUCTION OF SULPHUR IN LIQUOR		- ig 1 1 1	58	• • • •	I.T.T. MAYONIER FERNANDIHA BEACH
P		014-21-0-130		\$1	ream	1.68.7		59		FTRNANDINA BEACH
<u> </u>	2-0			<u> </u>		· · · · · · · · · · · · · · · · · · ·		60		
										·