

Georgia-Pacific Corporation

133 Peachtree Street NE (30303) P.O. Box 105605 Atlanta, Georgia 30348-5605 Telephone (404) 652-4000

July 28, 2000

RECEIVED

AUG 03 2000

Mr. Joseph Kahn, P.E. Florida Department of Environmental Protection New Source Review Section Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400

BUREAU OF AIR REGULATION

RE:

Proposed Georgia-Pacific Hosford Facility - Additional Information per July 28, 2000

Conference Call

Dear Mr. Kahn:

The purpose of this letter is to summarize our discussions from earlier today.

You first asked for information regarding the elapsed times needed for both bake-outs and wash-outs in the regenerative thermal oxidizers (RTOs). For the dryer RTOs, the times needed to complete the activities are 12 and 72 hours for bake-outs and wash-outs, respectively. Wash-outs will not be required for the RTO serving the press, but bake-outs may be needed on occasion, although the frequency would be less than what will be needed for the dryer RTOs.

As we discussed, Georgia-Pacific is willing to lower the emission estimates for volatile organic compounds (VOCs), nitrogen oxides (NOx), and particulate matter from the dryer RTOs. We are also willing to commit to a lower level of VOC emissions for the press RTO. During our last telephone conversation, yourself, and others on the call (e.g., USEPA Region IV, Fish and Wildlife Service, and the National Park Service) requested that we accept control efficiencies of 95% for VOCs exiting both the dryer and press RTOs. Although our dryer vendor has not changed their guarantee of 90%, we are willing to accept the efficiency of 95%. As was the case with Louisiana-Pacific, Hanceville, we still think it is more appropriate to have our limit expressed in terms of mass (lbs/hour) as opposed to 95%, primarily due to the uncertainties surrounding the moisture content of the furnish.

With regard to NOx from the dryer RTOs, we are now proposing a final emission rate of 60 pounds per hour (lbs/hour). This represents a decrease of approximately 20% over our original proposal. We recognize the fact that the memorandum from Ellen Porter to Kirsten King, dated February 2, 2000, states that the BACT limit should be 40 lbs/hour. However, as we discussed today and in our recent correspondence, while this level of emissions may represent BACT for

NOx from the dryers at Brookneal, we do not feel that it represents BACT for Hosford. Due to the unique design of Brookneal (Wellons Energy System), we were able to install urea injection for NOx controls. The Wellons System operates at temperatures that are conducive to the use of urea injection. This technology is infeasible for Hosford, given the design of that facility and the different operating temperatures.

It should also be noted that our proposed emission rate is well within the range that has been established for other, similar facilities in the RACT/BACT/LAER Clearinghouse. While some of the hourly mass emission rates listed in the Clearinghouse are lower than what is proposed for Hosford, those rates have been established for smaller facilities. G-P believes that the most appropriate, common terms to compare dryer emissions among facilities is per a dried furnish rate or finished production rate, not a heat input rate. Viewing NOx emissions in terms of both dried furnish (oven dried tons (ODT)), the limits in the Clearinghouse range from 0.66 to 1.75 lbs NOx per ODT (dried furnish) – our proposed rate of 60 lbs/hour corresponds to an emission factor of approximately 0.96 lbs NOx per ODT. On a finished product basis, the factors range from 0.32 to 1.70 (at two Louisiana-Pacific facilities) lbs per thousand square feet (msf). For Hosford, we are now proposing a value of 1.1 lbs per msf of finished production. It is also worth mentioning that, due to the higher moisture content expected for our furnish, the dryer vendor has estimated that our emissions will be approximately 32 percent higher than a comparably sized facility with a lower furnish moisture content. For all of these reasons, we feel that this represents a very realistic estimate of our NOx emissions from the dryer RTOs.

For particulate matter, we are proposing to lower our original estimate by more than 50% to 33.8 lbs/hour. We derived this value based on testing conducted for a similar facility that we operate in Skippers, Virginia. The highest test run for the RTO at this facility yielded an emission value of 0.37 lb/ODT. Given the fact that particulate matter emissions are strongly impacted by the moisture content of the furnish, we have adjusted this value accordingly. Our dryer vendor has estimated that particulate matter emissions will increase by approximately 46% for the higher moisture content furnished. As such, we calculate an emission factor for Hosford of 0.54 lb/ODT. This compared to a Clearinghouse range of 0.43 to 1.19 lb/ODT. This is also equivalent to 0.62 lb/msf, with the values in the Clearinghouse ranging from 0.15 to 1.37 lb/msf. Again, given the higher moisture content of furnish anticipated for this facility, we feel that this represents BACT for the Hosford dryers.

The following table summarizes the revisions:

Summary of Proposed Emission Rate Revisions for G-P Hosford Facility				
Pollutant/Source	January 2000 Application	Proposed Values		
PM10 – Dryers after controls	74.5 lbs/hour total for 5 dryers	33.8 lbs/hour total for 5 dryers		
NOx – Dryers after controls	73.3 lbs/hour for 5 dryers	60.0 lbs/hr total for 5 dryers		
VOC - Press after controls	90% control	95% control		
VOC – Dryers after controls	90% control	95% control		

We appreciate your assistance in helping us move forward with this very important project.

Sincerely,

Mr. Ronnie L. Paul

Executive Vice President, Wood Products

and Distribution

Mr. Mark J. Aguilar, P.E.

Senior Environmental Engineer

P.J. Vasquez cc:

GA030-17

M.M. Vest

FL165 (Palatka)

T.R. Wyles

GA030

John Bunyak, National Park Service

Ed Middleswart, FDEP Pensacola

Gregg Worley, USEPA Region IV

Georgia-Pacific

133 Peachtree St., N.E. 9th Floor P.O. Box 105605 Atlanta, GA 30348-5605 (404) 652-4293 (404) 654-4706 - Fax Number

FAX COVER SHEET

CONTRACTOR STATE	
July 21, 2000	0
	3

Mr. Joe Kahn	850	922-6979	Tri se
ulificant (e. n. 1. 1886 universités de la 1882).			Ng. U.

Mark Aguilar (404) 652-4293

ALVERTICATE LA MATRICIA DE MATRICIPA DE LA MATRICIPA DEL MATRICIPA DEL MATRICIPA DE LA MATRICIPA DEL MATRICIPA DE LA MATRICIPA DEL MATRI	HETORY
G-P Atlanta	9

Regarding Proposed Hosford OSB: Test report information from Dryer Vendor for Hanceville test.

M-E-C COMPANY TELEFAX TRANSMITTAL

	DATE: <u>July</u>	18, 2000 PAGE: <u>1</u> OF 2
TO:	MARK AGUILAR	FAX NO: <u>404-654-4706</u>
COMPANY:	Georgia-Pacific Corp.	TELEFAX CC TO:
STREET/P.O.BOX:	133 Peachtree St NE	FAX: PAUL VASOUEZ G-P, ATLANTA 404-588-3975
CITY,STATE,ZIP:	Altanta, GA 30348-5605	ALLEN DEES
COUNTRY:	USA	G-P. ATLANTA #11
SUBJECT:	G-P OSB Plant, Hosford, FL	D-0014-9-0

Attached is a page from the Hanceville June 17, 1994 Emission Test Report. It has been faxed and copied several times; so I added some notes if you are not able to read the shaded areas.

Not only does it say four dryers were operated, but based on the dscfm in and out, it's obvious that only 4 dryers were operating during the test. I trust this is sufficient proof for the State of Florida.

M-E-C does not have the <u>complete</u> emission test report, only summaries and our own internal report. However, if we can be of further help, please let me know.

Regards,

copy: DMP/BCB/EAD

Mike Hudson

Nihe Hudge

M-E-C COMPANY P.O. BOX 330 NEODESHA, KANSAS 66767 U.S.A. TELEPHONE
316-325-2673
TELEFAX
316-325-2678
httmsuscrtmscorrestlaxtdwbcbflax.doc

Email
mec@m-e-c.com
WEBSITE
http://www.m-e-c.com

AVERAGE OF TWO URYERS TESTED

1.3 Totals, Averages and Efficiency/Summaries:

PROJECTED TOTAL JOF FOUR DRYERS

1.3.1 Dryer Multiclone Inlets

NAME OF THE PARTY		Average of	727018 44 44 44
PARTICULATE LOADING	#/br	25.92	103.67
VOC LOADING (as C)	#/br	65.91	263.64
DOI LOADING	#/101	4,14	16.54
CO LOADING	#/bz	6.03	24.12
FORMALDEHYDE LOADING	#/tur	1.38	5.52
volumetric flowrate	dsefm	27508	110030

Four dryer total is presented here. Attempts to operate all five dryers at maximum load were not successful. Therefore four of the dryers were operated at maximum furnish rates.

AVBRAGE OF BOTH RIV'S

BOTH BIOS

REMOVAL-EFFICIERCY -

1.3.2 Dryer East and West RTO Outlets

	DINIE X			
PARTICULATE LOADING	#/hr	5.24	10.48	90.4
VOC LOADING (M C)	#/br	0.94	1.87	99.3
NOx LOADING	#/hr	13,87	27.73	- 67-7
CO LOADING	#/hr	5.02	10.04	58.4
FORMALDEHYDE LOADING	#/hr	0.126	0.251	95.4
VOLUMETRIC FLOWRATE	decim	66456	132912	

JOE

INTEROFFICE MEMORANDUM

Date: 21-Jul-2000 05:56pm

From: Kisseli.Mary

Kissell.Mary@epamail.epa.gov

Dept: Tel No:

Subject: Plywood and Composite Wood Products MACT

Attached are table 2 from the draft proposal preamble and the definitions from the draft rule. Also attached is a set of slides I prepared in April for the Composite Panel Association. A couple of the slide pages need caveats if you plan to depend on them for decision-making -- concentration options and restriction on emissions averaging. Also, when we say THC, we mean THC, as carbon, minus methane.

The rule is undergoing review now within EPA. I hope to get it to OMB in August. If you have any questions, please call me at (919) 541-4516.

(See attached file: P&CWP_preambletable2_ruledefns.wpd) (See attached file: cpa_april00.PRZ)

TABLE 2. PROCESS UNITS SUBJECT TO THE PROPOSED EMISSION LIMITS

For the following process units	Does today's proposed rule include emission limits for		
	Existing affected sources?	New affected sources?	
Softwood veneer dryers; primary tube dryers; secondary tube dryers; strand dryers; green rotary dryers; hardboard ovens; reconstituted wood product presses; and pressurized refiners	Yes	Yes	
Press predryers; fiberboard mat dryers; board coolers; and stand alone digesters	No	Yes	
Dry rotary dryers; veneer redryers; plywood presses; engineered wood products presses; hardwood veneer dryers; humidifiers; atmospheric refiners; formers; blenders; rotary agricultural fiber dryers; agricultural fiber board presses; sanders; saws; fiber washers; chippers; log vats; lumber kilns; storage tanks; wastewater operations; and miscellaneous coating operations	No	No	

Terms used in this subpart are defined in the Act, in 40 CFR 63.2, the General Provisions, and in this section as follows:

Affected source means the collection of dryers, blenders, formers, presses, board coolers, and other process units associated with the manufacturing of plywood and composite wood products at a plant site. The affected source includes, but is not limited to, green end operations, drying operations, blending and forming operations, pressing and board cooling operations, and miscellaneous finishing operations (such as sanding, sawing, patching, edge sealing, and other finishing operations not subject to other NESHAP). The affected source also includes onsite storage of raw materials used in the manufacture of plywood and/or composite wood products, such as resins; onsite wastewater treatment operations specifically associated with plywood and composite wood products manufacturing; and miscellaneous coating operations (defined elsewhere in this section).

Biofilter means an enclosed control system such as a tank or series of tanks with a fixed roof that are filled with media (such as bark) and use microbiological activity to transform organic pollutants in a process exhaust stream to innocuous compounds such as carbon dioxide, water, and inorganic salts. Wastewater treatment systems such as aeration lagoons or activated sludge systems are not considered to be biofilters.

Capture device means a hood, enclosure, or other means of

collecting emissions into a duct so that the emissions can be directed to a pollution control device.

Capture efficiency means the fraction (expressed as a percentage) of the pollutants from an emission source that is delivered to an add-on air pollution control device.

<u>Catalytic oxidizer</u> means a control system that combusts or oxidizes, in the presence of a catalyst, exhaust gas from a process unit. Catalytic oxidizers include regenerative catalytic oxidizers and thermal catalytic oxidizers.

Control device means any equipment that reduces the quantity of a hazardous air pollutant that is emitted to the air. The device may destroy the hazardous air pollutant or secure the hazardous air pollutant for subsequent recovery. Control devices include, but are not limited to, thermal or catalytic oxidizers, combustion units that incinerate process exhausts, biofilters, and condensers.

<u>Control system</u> means the combination of capture and control devices used to reduce hazardous air pollutant emissions to the atmosphere.

<u>Deviation</u> means any instance in which an affected source subject to this subpart, or an owner or operator of such a source:

(1) fails to meet any requirement or obligation established by this subpart, including but not limited to any emission limitation (including any operating limit), or work practice

standard;

- (2) fails to meet any term or condition that is adopted to implement an applicable requirement in this subpart and that is included in the operating permit for any affected source required to obtain such a permit; or
- (3) fails to meet any emission limitation, (including any operating limit), or work practice standard in this subpart during startup, shutdown, or malfunction, regardless or whether or not such failure is permitted by this subpart.

<u>Digester</u> means a piece of equipment operated at elevated temperature and pressure and used for preheating (usually by steaming) wood material prior to refining.

Dryer heated zones means the zones of a softwood veneer dryer or fiberboard mat dryer that are equipped with heating and hot air circulation units. The cooling zone(s) of the dryer through which ambient air is blown are not part of the dryer heated zones.

Dry rotary dryer means a rotary dryer that dries wood particles or fibers with a maximum inlet moisture content of less than or equal to 30 percent (by weight, dry basis) AND operates with a maximum inlet temperature of less than or equal to 600 degrees Fahrenheit. A dry rotary dryer is a process unit.

<u>Dry forming</u> means the process of making a mat of resinated fiber to be compressed into a reconstituted wood product such as particleboard, OSB, MDF, or hardboard.

Emission limitation means any emission limit, opacity limit, operating limit, or visible emission limit.

Fiber means the slender threadlike elements of wood or similar cellulosic material, which are separated by chemical and/or mechanical means, as in pulping, that can be formed into boards.

<u>Fiberboard</u> means a composite panel composed of cellulosic fibers (usually wood or agricultural material) made by wet forming and compacting a mat of fibers. Fiberboard density is less than 0.50 grams per cubic centimeter (31.5 pounds per cubic foot).

Fiberboard mat dryer means a dryer used to reduce the moisture of wet-formed wood fiber mats by operation at elevated temperature. A fiberboard mat dryer is a process unit.

<u>Furnish</u> means the fibers, particles, or strands used for making boards.

Glue-laminated beam means a structural wood beam made by bonding lumber together along its faces with resin.

Green rotary dryer means a rotary dryer that dries wood particles or fibers with an inlet moisture content of greater than 30 percent (by weight, dry basis) at any dryer inlet temperature OR operates with an inlet temperature of greater than 600 degrees Fahrenheit with any inlet moisture content. A green rotary dryer is a process unit.

<u>Hardboard</u> means a composite panel composed of cellulosic

fibers made by dry or wet forming and pressing of a resinated fiber mat. Hardboard has a density of 0.50 to 1.20 grams per cubic centimeter (31.5 to 75 pounds per cubic foot).

<u>Hardboard oven</u> means an oven used to heat treat or temper hardboard after hot pressing. Humidification chambers are not considered as part of hardboard ovens. A hardboard oven is a process unit.

<u>Hardwood</u> means the wood of a broad-leafed tree, either deciduous or evergreen. Examples of hardwoods include (but are not limited to) aspen, birch, and oak.

Hardwood veneer dryer means a dryer that removes excess moisture from veneer by conveying the veneer through a heated medium on rollers, belts, cables, or wire mesh. Hardwood veneer dryers are used to dry veneer with less than 50 percent softwood species on an annual volume basis. Veneer kilns that operate as batch units; veneer dryers heated by radio frequency or microwaves that are used to redry veneer; and veneer redryers (defined elsewhere) that are heated by conventional means are not considered to be hardwood veneer dryers. A hardwood veneer dryer is a process unit.

Laminated strand lumber (LSL) means a composite product formed into a billet made of thin wood strands cut from whole logs, resinated, and pressed together with the grain of each strand oriented parallel to the length of the finished product.

Laminated veneer <u>lumber (LVL)</u> means a composite product

formed into a billet made from layers of resinated wood veneer sheets or pieces pressed together with the grain of each veneer aligned primarily along the length of the finished product.

Laminated veneer lumber includes parallel strand lumber (PSL).

Medium density fiberboard (MDF) means a composite panel composed of cellulosic fibers (usually wood) made by dry forming and pressing of a resinated fiber mat.

Method detection limit means the minimum concentration of an analyte that can be determined with 99 percent confidence that the true value is greater than zero.

Miscellaneous coating operations means application of any of the following to plywood or composite wood products: edge seals, moisture sealants, anti-skid coatings, company logos, trademark or grade stamps, nail lines, synthetic patches, wood patches, wood putty, concrete forming oils, glues for veneer composing, and shelving edge fillers. Miscellaneous coating operations also include the application of primer to OSB siding that occurs at the same site as OSB manufacture.

MSE means thousand square feet (92.9 square meters). Square footage of panels is usually measured on a thickness basis, such as 3/8-inch, to define the total volume of panels. Equation 3 in \$63.2262(j) shows how to convert from one thickness basis to another.

Nondetect data means, for the purposes of this subpart, any value that is below the method detection limit.

Oriented strandboard (OSB) means a composite panel produced from thin wood strands cut from whole logs, formed into resinated layers (with the grain of strands in one layer oriented perpendicular to the strands in adjacent layers), and pressed.

Oven dried ton(s) (ODT) means tons of wood dried until all of the moisture in the wood is removed. One oven-dried ton equals 907 oven-dried kilograms.

Particle means a distinct fraction of wood or other cellulosic material produced mechanically and used as the aggregate for a particleboard. Particles are larger in size than fibers.

Particleboard means a composite panel composed of cellulosic materials (usually wood or agricultural fiber) in the form of discrete pieces or particles, as distinguished from fibers, which are pressed together with resin.

Permanent total enclosure (PTE) means a permanently installed containment that meets the criteria of Method 204 (40 CFR part 51, Appendix M).

Plant site means all contiguous or adjoining property that is under common control, including properties that are separated only by a road or other public right-of-way. Common control includes properties that are owned, leased, or operated by the same entity, parent entity, subsidiary, or any combination thereof.

Plywood and composite wood products (PCWP) manufacturing

facility means a plant site that manufactures plywood and/or composite wood products by bonding wood material (fibers, particles, strands, veneers, etc.) or agricultural fiber with resin, generally under heat and pressure, to form a structural panel or engineered wood product. Plywood and composite wood products include (but are not limited to) plywood, veneer, particleboard, oriented strand board, hardboard, fiberboard, medium density fiberboard, laminated strand lumber, laminated veneer lumber, wood I-joists, and glue-laminated beams.

<u>Plywood</u> means a panel product consisting of layers of wood veneers hot pressed together with resin. Plywood includes panel products made by hot pressing (with resin) veneers to a substrate such as particleboard, MDF, or lumber.

<u>Press predryer</u> means a dryer used to reduce the moisture and elevate the temperature of a wet-formed fiber mat before the mat enters a hot press. A press predryer is a process unit.

Pressurized refiner means a piece of equipment operated under pressure for preheating (usually by steaming) wood material and refining (rubbing or grinding) the wood material into fibers. Pressurized refiners are operated with continuous infeed and outfeed of wood material and maintain elevated internal pressures (i.e., there is no pressure release) throughout the preheating and refining process. A pressurized refiner is a process unit.

<u>Primary tube dryer</u> means a single-stage tube dryer or the first stage of a multi-stage tube dryer. Tube dryer stages are

separated by vents for removal of moist gases between stages (for example, a product cyclone at the end of a single-stage dryer or between the first and second stages of a multi-stage tube dryer). The first stage of a multi-stage tube dryer is used to remove the majority of the moisture from the wood furnish (compared to the moisture reduction in subsequent stages of the tube dryer). A primary tube dryer is a process unit.

<u>Process unit</u> means equipment classified according to its function such as a blender, dryer, press, former, or board cooler.

Reconstituted wood product board cooler means a piece of equipment designed to reduce the temperature of a board by means of forced air or convection within a controlled time period after the board exits the reconstituted wood product press unloader. Board coolers include wicket and star type coolers commonly found at MDF and particleboard plants. Board coolers do not include cooling sections of dryers (e.g., veneer dryers or fiberboard mat dryers) or coolers integrated into or following hardboard bake ovens or humidifiers. A reconstituted wood product board cooler is a process unit.

Reconstituted wood product press means a press that presses a resinated mat of wood fibers, particles, or strands between hot platens or hot rollers to compact and set the mat into a panel by simultaneous application of heat and pressure. Reconstituted wood product presses are used in the manufacture of hardboard,

medium density fiberboard, particleboard, and oriented strandboard. Extruders are not considered to be reconstituted wood product presses. A reconstituted wood product press is a process unit.

Representative operating conditions means operation of a process unit during performance testing under the conditions that the process unit will typically be operating in the future, including use of a representative range of materials (e.g., wood material of a typical species mix and moisture content or typical resin formulation) and representative operating temperature.

Resin means the synthetic adhesive (including glue) or natural binder, including additives, used to bond wood or other cellulosic materials together to produce plywood and composite wood products.

Responsible official means responsible official as defined in 40 CFR 70.2 and 40 CFR 71.2.

Secondary tube dryer means the second stage and subsequent stages following the primary stage of a multi-stage tube dryer. Secondary tube dryers, also referred to as relay dryers, operate at lower temperatures than the primary tube dryer they follow. Secondary tube dryers are used to remove only a small amount of the furnish moisture compared to the furnish moisture reduction across the primary tube dryer. A secondary tube dryer is a process unit.

Softwood means the wood of a coniferous tree. Examples of

softwoods include (but are not limited to) Southern yellow pine, Douglas fir, and White spruce.

Softwood veneer dryer means a dryer that removes excess moisture from veneer by conveying the veneer through a heated medium on rollers, belts, cables, or wire mesh. Softwood veneer dryers are used to dry veneer with greater than or equal to 50 percent softwood species on an annual volume basis. Veneer kilns that operate as batch units; veneer dryers heated by radio frequency or microwaves that are used to redry veneer; and veneer redryers (defined elsewhere) that are heated by conventional means are not considered to be softwood veneer dryers. A softwood veneer dryer is a process unit.

Startup means bringing equipment online and starting the production process.

Startup, initial means the first time equipment is put into operation. Initial startup does not include operation solely for testing equipment. Initial startup does not include subsequent startups (as defined in this section) following malfunction or shutdowns or following changes in product or between batch operations. Initial startup does not include startup of equipment that occurred when the source was an areas source.

Startup, shutdown, and malfunction plan (SSMP) means a plan developed according to the provisions of \$63.6(e)(3).

Strand means a long (with respect to thickness and width), flat wood piece specially cut from a log for use in oriented

strandboard, laminated strand lumber, or other wood strand-based product.

Strand dryer means a dryer operated at elevated temperature and used to reduce the moisture of wood strands used in the manufacture of OSB, LSL, or other wood strand-based products. A strand dryer is a process unit.

Thermal oxidizer means a control system that combusts or oxidizes exhaust gas from a process unit. Thermal oxidizers include regenerative thermal oxidizers and burners or combustion units through which process exhausts are routed.

Total hazardous air pollutant (HAP) emissions means, for purposes of this rulemaking, the sum of the emissions of the following six compounds: acetaldehyde, acrolein, formaldehyde, methanol, phenol, and propionaldehyde.

Tube dryer means a single- or multi-stage dryer operated at elevated temperature and used to reduce the moisture of wood fibers or particles as they are conveyed (usually pneumatically) through the dryer. Resin may or may not be applied to the wood material before it enters the tube dryer. A tube dryer is a process unit.

<u>Veneer</u> means thin sheets of wood peeled or sliced from logs for use in the manufacture of wood products such as plywood, laminated veneer lumber, or other products.

<u>Veneer redryer</u> means a dryer heated by conventional means, such as direct wood-fired, direct-gas-fired, or steam heated,

that is used to redry veneer that has been previously dried.

Because the veneer dried in a veneer redryer has been previously dried, the inlet moisture content of the veneer entering the redryer is less than 25 percent (by weight, dry basis). A veneer redryer is a process unit.

Wet forming means the process of making a slurry of water, fiber, and additives into a mat of fibers to be compressed into a fiberboard or hardboard product.

<u>Wood I-joists</u> means a structural wood beam with an I-shaped cross section formed by bonding (with resin) wood or laminated veneer lumber flanges onto a web cut from a panel such as plywood or oriented strandboard.

Work practice standard means any design, equipment, work practice, or operational standard, or combination thereof, that is promulgated pursuant to section 112(h) of the Clean Air Act.

§§63.2293-63.2299 [Reserved]

PRESENTATION to CPA

APRIL 16, 2000

PLYWOOD AND COMPOSITE WOOD PRODUCTS MACT

Click here to add clip art

Purpose of Presentation

- introduce EPA lead on MACT
- familiarize attendees with EPA regulatory approach
- share some basics of P&CWP MACT proposal
- share anticipated schedule

Mary Tom Kissell (919) 541-4516 kissell.mary@epa.gov U. S. EPA (MD-13) Research Triangle Park, NC 27711

Terms

- **NESHAP**
- MACT
- source category
- existing source & new source
- affected source
- emission point
- MACT floor

- section 112(d) of the Clean Air Act
- technology based
 - existing sources
 - average emission limitation achieved by best performing 12% (>30 sources)
 - average achieved by best performing five sources (
 - new sources best controlled similar source

Regulatory Approach - Gathering Information

- Literature
- Site visits
- Regional, State, and local agencies
- Other rules, such as NSPS and SIP
- Vendors
- Trade associations

Regulatory Approach - Costs and Emission Reductions

- engineering costs
- emission reductions
- economic impacts
- small business
- environmental and energy impacts

- particleboard
- oriented strandboard
- plywood and veneer
- hardboard
- fiberboard
- medium density fiberboard
- engineered wood products such as laminated veneer lumber and I-joists

- Acetaldehyde
- Methanol
- Formaldehyde
- Phenol
- Also: acrolein, propionaldehyde, toluene, benzene, xylenes, etc.

- wood dryers includes tube, rotary, and conveyer dryers; excludes dry dryers
- softwood veneer dryers
- reconstituted wood presses
- bake/tempering ovens
- continuous digesters/refiners

- all emission points requiring control for existing, plus:
 - board coolers
 - press predryers

- 90% reduction across control device of:
 - VOC, measured as total hydrocarbon
 - methanol
 - formaldehyde
- outlet concentration of 1 ppmv methanol or formaldehyde, or 20 ppmv THC
- emissions averaging
- Ib/unit of production emission rate for inherently low-emitting emission points

- system of debits and credits
 - emission points not required to be controlled by MACT or other rule can be controlled, generating credits
 - emission points requiring control by MACT may be uncontrolled or under controlled, generating debits
- only emission points within the source category can average emissions

- 10% discount factor
- mass basis
- States can opt out
- more MRR
- new sources excluded
- no banking across compliance periods
- compliance period probably a year

Draft MACT Proposal - Emission Averaging Overview (continued)

- interpollutant trading allowed if no increased risk
 - demonstrate no increased risk if trading among different pollutants
 - assume same pollutant trading results in no increased risk
- HAP for emissions averaging: acetaldehyde, acrolein, formaldehyde, methanol, phenol, propionaldehyde

Draft MACT Proposal - Engineering Costs

- total capital investment > \$450 million
- total annual cost > \$100 million
- cost effectiveness between \$10,000/ton and \$20,000/ton HAP
- note: these are nationwide costs to the industry

Schedule

- OMB package -- end of August
- proposal package signed -- December
- public comment period -- 60 days
- promulgation package signed ---February 2002
- compliance date three years after final rule published in <u>Federal Register</u>

Resources - Air Docket

Air and Radiation Docket and Information Center (6102) (Docket Number A-98-44) Room M-1500 U.S. EPA 401 M Street SW Washington, DC 20460

- webpage
 - http://www.epa.gov/ttn/uatw/plypart/plypart.html
- signed rule
 - http://www.epa.gov/ttn/oarpg/new.html
 - TTN HELP line at (919) 541-5384
- AP-42
 - http://www.epa.gov/ttn/chief/ap42c10.html
 - have plans to add emission factors

Georgia-Pacific Corporation

133 Peachtree Street NE (30303) P.O. Box 105605 Atlanta, Georgia 30348-5605 Telephone (404) 652-4000

July 14, 2000

Mr. Joseph Kahn, P.E. Florida Department of Environmental Protection New Source Review Section Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400 RECEIVED

BUREAU OF AIR REGULATION

RE:

March 21, 2000 Modeling Comment Letter for the Proposed Georgia-Pacific Oriented

Strandboard (OSB) Facility in Hosford, FL

Dear Mr. Kahn:

Georgia-Pacific Corporation (G-P) is pleased to provide the following additional modeling information to complete the January PSD air permit application. Each one of your comments is addressed in the following pages with individual responses and attachments (as noted). Please contact me (404/652-4293) or Paul Vasquez (application contact at 404/652-7327) with any additional questions. Thank you for your help on this important project.

Sincerely,

Mah J. Aguilar, P.E.

Senior Environmental Engineer Georgia-Pacific Corporation

P.E. Number 52248

SEAL

Enclosures: Responses to Modeling Comments

cc: P.J. Vasquez

. Vasquez GA030-17

M.M. Vest FL165 (Palatka)

T.R. Wyles GA030

Gregg Worley EPA Region IV
John Bunyak National Park Service

Ed Middleswart Florida DEP

From your letter of February 18.2000 Comment 1:

The application information states that fugitive sources are not required for evaluating PSD applicability. Rule 62-212.400(2)(b), F.A.C., provides for exemption of fugitive emissions from the determination of whether this facility is major for PSD, but Rule 62-212.400(2)(f), F.A.C., requires emissions be included in determining which pollutants equal or exceed the significant emission rate. The facility is major because of VOC potential emissions, and is significant for PM and PM10, CO and NOx. Please address the PSD requirements of Rule 62-212.400, F.A.C., for PM10 and VOC. Include an analysis of BACT for PM and PM10 visible emissions, and VOC and an air quality analysis, that take into account all quantifiable fugitive emissions from the proposed facility.

Response:

Georgia-Pacific (G-P) has revised the modeling analysis to include fugitives. Attachment 2 presents tables for inputs and results of the revised modeling analysis.

Also note, that to include the predicted impacts of fugitive emissions, G-P made the following changes to the point source modeling data:

- 1. Repositioned the fence. Attachment 1 shows the position of the new fence.
- 2. Increased the stack heights for several stacks
- 3. Reduced the maximum 24-hour emission rate for EP_10 as follows:

2.25 hours/day on sanderdust firing @ 8 lbs./hr 21.75 hours/day on natural gas firing @ 0.61 lbs./hr 24-hour emissions = 31.2 lbs./day 31.2 / 24 = 1.3 lbs./hr

Enclosed in the package is a pair of diskettes with the computer files for the revised analysis

From your letter of March 21, 2000 Comment 1:

"Please provide information that shows that the site boundary used in the impact modeling will be land owned or controlled by Georgia-Pacific with a physical barrier to public access."

Response:

Attachment 1 presents a map of the Georgia-Pacific (G-P) property with proposed sources, buildings and fenceline. A physical fence will be installed along the fenceline path on this drawing. If the fenceline path enters a submerged area (i.e., wetland, or slough), then G-P will instead restrict access in these areas by using monitored security cameras and/or posted signs.

On February 18, 2000, FDEP requested G-P revise its modeling analysis to include fugitive emission sources. As a result, the position of the fence presented in the original application (shown in Figure 3-2) has been changed. Attachment 1 presents the fenceline position that corresponds the modeling analysis with fugitive sources.

Comment 2:

Please reevaluate the emission inventory for competing NO_x and PM₁₀ sources to examine the possibility of including sources that are located more than 50 km from the Significant Impact Area (SIA). The current emission inventory disregards sources beyond this distance without examining the magnitude of their emissions. The 20D Rule may be used to prove the insignificance of these sources if they are not located in a close proximity to one another.

Response:

G-P included all sources within 100 km of the facility in consideration of competing sources. G-P analyzed competing sources for the NAAQS analysis with the 20D method. Attachment 2 presents revised table for competing sources.

Comment 3:

Please combine the Englehard emission sources into 5 to 10 representative sources, instead of combining them into one single source. This should be done by considering the similarity of source parameters such as location, stack height, exit temperature, and diameter.

Response:

G-P merged the Englehard sources into 20 discrete modeling sources. Attachment 2 presents the merge calculations.

Comment 4:

Please update and provide the emission inventory used for the Class I PSD cumulative assessment. Because emission sources around the Class I areas are of concern in this assessment, the class I emission inventory may include additional sources not contained in the Class II PSD assessment.

Response:

G-P has reviewed the Class I PSD cumulative assessment for PM10. During the week of July 10, 2000, FDEP and G-P discussed the data and determined that the inventory is complete.

Comment 5:

Please reevaluate 24-hour PM_{10} impacts by using the current compliance standard. The current 24-hour PM_{10} compliance standard is the highest 6^{th} highest 24-hour value at any receptor when a 5-year data record is used.

Response:

G-P assessed the National Ambient Air Quality Analysis (NAAQS) using the highest of the individual high-second-high results for each of 5 years. While this approach is more conservative than using the highest 6th highest, G-P has completed the revised NAAQS (to include fugitives) with this methodology. G-P continues to use the highest of the individual high-second-high results for each of 5 years for assessment of PSD Class II increments. Attachment 2 presents these result tables.

Comment 6:

Please evaluate visibility impairment in the SIA. The assessment of visibility impairment (coherent plume) is not limited to Class 1 areas. This assessment should be performed in the impact area with particular emphasis at locations of sensitive receptors e.g., scenic vistas, nearby airports, etc.

Response:

G-P's revised analysis predicted the significant impact distances are 0, 7, and 13 km for CO, NOx, and PM10, respectively. G-P has reviewed maps of these areas and found no occurrences of state parks, public areas along waterways, or airports. Because there are not sensitive receptors within the significant impact distances, G-P did not perform a plume blight analysis.

Comment 7:

The assessment of visibility at St. Marks NWA used the high second-highest modeled concentration. The proper value to use for this assessment is the highest modeled concentration. Please use the highest modeled concentration when you conduct the refined regional haze analysis for the St. marks NWA. The second-highest modeled concentration may be used in PSD and NAAQS analyses only.

Response:

G-P has prepared a revised Class I Area visibility analysis. The demonstration of compliance is based on the maximum concentrations. The refined visibility analysis and results was sent to FDEP on July 12, 2000.

Comment 8:

Although the PSD Class II increment consuming sources (Table 9) are a subset of the complete NAAQS emission inventory (Tables 5 and 8), differences are noted in some of the emission rates and stack parameters for the PSD emission sources. Please provide the reason for these differences.

Response:

Tables 9, 5, and 8 of the January 2000 application contain modeling data using FDEP information verbatim. In 1999, Mr. Cleave Holladay sent G-P ISCST3 input files for NOx and PM10 including both short-term and long-term average emission rates and modeling parameters. G-P has no additional information beyond this dataset provided by FDEP. G-P does recognize that the competing sources, while there are differences in emission rates and stack parameters for long and short-term averaging times, are verbatim to analyses accepted by FDEP recently.

Comment 9:

Please utilize a grid that has a 100-meter resolution around the maximum predicted concentration for all SIA, PSD increment, and NAAQS modeling.

Response:

The revised analysis applied a 100-meter resolution grid for the maximum impact, PSD Class II Increment, and NAAQS modeling analyses. The PSD Class I Area receptors are spaced at 100 meters for the analysis.

Attachment 1 G-P Hosford OSB Plant Fence Location Map Attachment 2 Revised Report Tables

					Stack Paramet	ters	
			irce on (m) ^a	Stack Height	Stack Exit Temp	Stack Exit Velocity	Stack Diamete
Model ID	Description	X	y	(ft)	F	(m/s)	(in)
EP-1A	Dryer RTO Stack A	-98.3	-84.3	130	259.0	15.31	102
EP-1B	Dryer RTO Stack B	0	0	130	259.0	15.31	102
EP-2	Press Vent RTO Stack	-167	0.4	100	154.0	18.46	86
EP-3	Screen Fines/Saw Trim Baghouse CP-003	-36.1	8.8	132	70.0	15.97	28
EP-4	Saw Trim/Finishing Line Baghouse CP-001	-272.7	-109.1	100	70.0	15.09	44
EP-5	Mat Reject/Flying Saw Baghouse CP-005	-90.8	-39.7	120	70.0	18.48	48
EP-6	Specialty Saw/Sander Baghouse 1 CP-006-1	-269.7	-106.5	90	70.0	15.05	40
EP-7	Fuel Handling System Baghouse CP-006-2	-43.9	5.7	75	70.0	0.01 ^b	10
EP-8	Forming Bins Baghouse CP-002	-93.9	-55.3	105	70.0	22.91	30
EP-9	Hammermill/Dry Fuel System Baghouse	-34	10.3	132	70.0	15.22	30
EP-10	Thermal Oil Heating System ESP	-129.5	16.5	138	700.0	6.35	66
PDBARKI	Debarker #1 ^e	34.3	36.9	28	-459.67 °	0.001 °	3.97e-2
PDBARK2	Debarker #2 °	40.3	43.3	28	-459.67 °	0.001 ^c	3.97e-2
PDBARK3	Debarker #3°	46.4	48.9	28	-459.67 °	0.001 ^c	3.97e-2
PSB1	Paint Spray Booth Stack 1	-268	-145.6	35	70	0.01 b	8.5
PSB2	Paint Spray Booth Stack 2	-266	-144.3	35	70	0.01 b	8.5
PSB3	Paint Spray Booth Stack 3	-264.3	-142.5	35	70	0.01 b	8.5

Notes:

^a Source Locations are with respect to the Dryer RTO Stack B in a true north coordinate system.

^b Source has a raincap, exit velocity set equal to 0.01 m/s.

^c Source is a "virtual" point source. Temperature is set to 0 K so that the model will not perform thermal plume calculations. Velocity is set to 0.001 m/s so that the model will calculate momentum bouyancy to the plume. Stack diameter is set to 0.001m.

Table 1b. V	Table 1b. Volume Source Parameters for Emission Sources at Proposed G-P Plant, Hosford Stack Parameters													
		Source Lo	cation (m) a	Release	Initial Lateral	Initial Vertical								
				Height	Dimension	Dimension								
Model ID	Description	X	y	(m)	(m)	(m)								
BARKPILE	Bark Pile	30.5	121.9	2.286	7.0884	1.0633								
BARKHOG	Bark Hog	24.4	100.6	3.9116	0.2835	0.4726								
TPI	Transfer Point 1	25.6	46	4.8768	0.2127	0.2127								
TP2	Transfer Point 2	30.5	51.8	4.8768	0.2127	0.2127								
TP3	Transfer Point 3	37	57	4.8768	0.2127	0.2127								
TP4	Transfer Point 4	54.9	73.2	7.62	0.2127	0.2127								
TP5	Transfer Point 5	24.4	100.6	7.62	0.2127	0.2127								
TP6	Transfer Point 6	12.2	118.9	7.62	0.2127	0.2127								
TP7	Transfer Point 7	30.5	121.9	7.62	0.2127	0.2127								
ROAD2	Road Segment	-275.7	-442	3.66	18.34	1.7								
ROAD4	Road Segment	-292.2	-406.1	3.66	18.34	1.7								
ROAD5	Road Segment	-307.7	-370.6	3.66	18.34	1.7								
ROAD7	Road Segment	-318.8	-336.4	3.66	18.34	1.7								
ROAD9	Road Segment	-289.7	-329.4	3.66	18.34	1.7								
ROAD10	Road Segment	-279.1	-286.2	3.66	18.34	1.7								
ROAD12	Road Segment	-269.2	-250.4	3.66	18.34	1.7								
ROAD13	Road Segment	-239.1	-223.5	3.66	18.34	1.7								
ROAD14	Road Segment	-210.6	-197	3.66	18.34	1.7								
ROAD16	Road Segment	-179.4	-171.9	3.66	18.34	1.7								
ROAD17	Road Segment	-150.2	-144.5	3.66	18.34	1.7								
ROAD18	Road Segment	-120.4	-117.8	3.66	18.34	1.7								
ROAD21	Road Segment	-83.8	-103.3	3.66	18.34	1.7								
ROAD23	Road Segment	-46.2	-91	3.66	18.34	1.7								
ROAD24	Road Segment	-11.8	-71.2	3.66	18.34	1.7								
ROAD25	Road Segment	20.24	-48.21	3.66	18.34	1.7								
ROAD26	Road Segment	54.9	-64.7	3.66	18.34	1.7								
ROAD28	Road Segment	93.4	-60.5	3.66	18.34	1.7								
ROAD29	Road Segment	122.5	-33	3.66	18.34	1.7								
ROAD32	Road Segment	126.3	6.5	3.66	18.34	1.7								
ROAD34	Road Segment	112.4	45	3.66	18.34	1.7								
ROAD35	Road Segment	91.5	78	3.66	18.34	1.7								
ROAD36	Road Segment	76	115.1	3.66	18.34	1.7								
ROAD38	Road Segment	50.1	146.1	3.66	18.34	1.7								
ROAD39	Road Segment	15.2	146.3	3.66	18.34	1.7								

ROAD41	Road Segment	-15.3	124	3.66	18.34	1.7
ROAD42	Road Segment	-47.5	98.3	3.66	18.34	1.7
ROAD43	Road Segment	-76.1	72.3	3.66	18.34	1.7
ROAD45	Road Segment	-115.6	57	3.66	18.34	1.7
ROAD47	Road Segment	-153.1	44.3	3.66	18.34	1.7
ROAD49	Road Segment	-182.6	16.3	3.66	18.34	1.7
ROAD50	Road Segment	-205.53	-14.03	3.66	18.34	1.7
ROAD52	Road Segment	-233.6	-41.5	3.66	18.34	1.7
ROAD54	Road Segment	-263	-71.3	3.66	18.34	1.7
ROAD56	Road Segment	-286.6	-100.7	3.66	18.34	1.7
ROAD57	Road Segment	-312.7	-128.7	3.66	18.34	1.7
ROAD53	Road Segment	-344.9	-155.9	3.66	18.34	1.7
ROAD62	Road Segment	-371.9	-230.1	3.66	18.34	1.7
ROAD64	Road Segment	-371.3	-190.9	3.66	18.34	1.7
ROAD69	Road Segment	-354.6	-265.9	3.66	18.34	1.7
ROAD70	Road Segment	-336.5	-301	3.66	18.34	1.7
ROAD72	Road Segment	-258.5	-479	3.66	18.34	1.7
	<u> </u>	<u> </u>				

Notes:

<sup>a Source Locations are with respect to the Dryer RTO Stack B in a true north coordinate system.
b Source has a raincap, exit velocity set equal to 0.01 m/s.
c Source is a "virtual" point source. Temperature is set to 0 K so that the model will not perform thermal plume calculations. Velocity is set to 0.001 m/s so that the model will calculate momentum bouyancy to the plume. Stack</sup> diameter is set to 0.001m.

Table 2. En	nission Rates for Sources at Proposed G-P Pla		d Facility-Wide Er	miceione
				ı
Model ID	Description	PM ₁₀ (g/s)	CO (g/s)	$NO_x (g/s)$
EP-1A	Dryer RTO Stack A	4.69	2.12	4.62
EP-1B	Dryer RTO Stack B	4.69	2.12	4.62
EP-2	Press Vent RTO Stack	0.36	0.91	1.35
EP-3	Screen Fines/Saw Trim Baghouse CP-003	0.26		
EP-4	Saw Trim/Finishing Line Baghouse CP-001	0.166		
EP-5	Mat Reject/Flying Saw Baghouse CP-005	0.246		
EP-6	Specialty Saw/Sander Baghouse 1 CP-006-1	0.27		
EP-7	Fuel System Baghouse 2 CP-006-2	0.043		
EP-8	Forming Bins Baghouse CP-002	0.239		
EP-9	Hammermill/Dry Fuel System Baghouse	0.26		
EP-10	Thermal Oil Heating System ESP	0.163	1.57	2.02
PDBARK1	Debarker #1	0.047		
PDBARK2	Debarker #2	0		
PDBARK3	Debarker #3	0.047		
PSB1	Paint Spray Booth Stack 1	0.00176		
PSB2	Paint Spray Booth Stack 2	0.00176		
PSB3	Paint Spray Booth Stack 3	0.00176		
BARKPILE	1	0.0189		
BARKHOG	Bark Hog .	0.00189		
TP1	Transfer Point 1	2.268E-6	ļ	
TP2	Transfer Point 2	2.268E-6	l	
TP3	Transfer Point 3	2.268E-6		
TP4	Transfer Point 4	6.93E-6		
TP5	Transfer Point 5	6.93E-6		
TP6	Transfer Point 6	6.93E-6]
TP7	Transfer Point 7	6.93E-6		
ROADS	Total Plant Road Emissions	0.2199		

Facility		UTM	1 Coordinale	s Lacation Re	lative to G-P I	tosiord	Facility Wid	la Dura	include Modelin Analysi
ID Number	Facility Name	East (km)	North (km)	X	Y (m)	Dist.	Emission Rate (tpy)	Threshold "O"	Analysi
390029	Station 14	719 9	3377.4	6400	7900	10.2	1.9	-57	Yes
	Timber Energy Resources	709.4	3358.1	-4100	-11400	12.1	48.4	-18	Yes
	C. W. Roberts Contracting Inc.	726.5	33714	13000	1900	13.1	2.1	3	No
	Florida Rock Industries, Inc.	728.4	3385.4	14900	15900	21.8	28.4	176	No
	Florida Rock Industries, Inc.	728 4	3385.4	14900	15900	21.8	28.4	176	No
	Harborlite Corporation	729.8	3385.2	16300	15700	22.6	27.9	193	No
	Higdon Furniture Co	729.7	3386.5	16200	17000	23.5	- 11	210	No
	Pat Higdon Industries	729.9	3386.5	16400	17000	23.6	5	212	No
	·	730.6	3385.8	17100	16300	23.6	13.3	212	No
	Mactavish Furniture Industries	732.6	3386.1	19100	16600	25.3	2.6	246	No
	Sasser Morgan-Mcciellan Funeral Home		3358.88	-23960	-10620	26.2	83.3	264	No
	North Florida Lumber	689.54						265	
	Engelhard Corporation	732 6	3387.5	19100	18000	26.2	301	1	Ye
	Scholz Plant	702.4	3395.8	-11100	26300	28.5	707	311	Ye
	Byrd Landfill	737.6	3385.6	24100	16100	29.0	47.5	320	No
130007	Blountstown Concrete Plant	684.43	3370.28	-29070	780	29.1	0.9	322	No
390004	Florida State Hospital - Chattahoochee	707.6	3399.2	-5900	29700	30.3	5.7	346	No
390034	Chattahoochee Sand And Gravel	703.08	3398.09	-10420	28590	30.4	15	349	No
630044	Apalachee Correctional Institution	703.04	3399.32	-10460	29820	31.6	1.4	372	No
730003	Arvah B.Hopkins Generating Station	749.53	3371.7	36030	2200	36.1	1767.3	162	Ye
730040	Mitchell Brothers, Inc.	752	3370.9	38500	1400	38.5	55.8	511	No
7770014	Peavy And Son Construction Company	742.4	3395.2	28900	25700	38.7	22.2	513	No
730056	General Dynamics	754	3374.4	40500	4900	40.8	10	556	Ne
730068	Fairchild Cremation Services, Inc.	754.2	3373.5	40700	4000	40.9	0.3	558	No
730012	Sonas Systems	754.5	3370.4	41000	900	41.0	79.8	560	No
390009	Havana Mills	747.1	3394.3	33600	24800	41.8	260	575	No
730052	Terminal Service Company	755.2	3373.1	41700	3600	41.9	0.2	577	Ne
730072	U.S. Marine	754.98	3379.1	41480	9600	42.6	14.4	592	No
630028	Marianna Sawmill	683.3	3400.1	-30200	30600	43.0	115.2	600	No
	Talla - Comm Industries Inc.	756.6	3367.3	43100	-2200	43.2	10	603	No
730065		759	3368.3	45500	-1200	45.5	1.9	650	No
	Florida Rock Industry	759 1	3367.9	45600	-1600	45.6	0.8	653	No
	Dolorure Inc.	673.92	3392.93	-39580	23430	46.0	0.3	660	.No
	Fl. Mining & Materials Concrete	759.6	3369.9	46100	400	46.1	0.4	662	No
	Southern Concrete And Construction	759.68	3363.26	46180	-6240	46.6	0.7	672	No
	Physical Plant	760.5	3368.9	47000	-600	47.0	49.5	680	No
•	Department Of Management Services	760.9	<u> </u>	47400	700	47.4	0.2	688	No.
	F1 Mining & Materials Concrete	760.8	3366.1	47300	-3400	47.4	10	688	No.
	Moneill Company Inc.	761.7	3364.6	48200	-4900	48.4	39.3	709	No
	Sikes Industries, Inc.	762.4	3369.6	48900	100	48.9	4.4	718	No.
	Woodville Plant	762.4	3361.6	49300	-7900	49.9	30.9	739	No.
	Plant #2	677	3404.5	-36500	35000	50.6	40.1	751	No.
		693.9	3322.4	-19600	-47100	51.0	59	760	No.
	North Florida Lumber				3000	51.8	0.4	776	Ne
	Culley & Sons Funeral Home	765.2	3372.5	51700			l. —	780	Ne
	Concrete Plant #2	672.31	3401.25	-41190	31750	52.0	19		
	Anderson Columbia	672.12		-41380	31690	52.1	8	782	No.
	Anderson Columbia Co., Inc	672.1	3401.2	-41400	31700	52.1	8.6	783	No.
	Mitchell Brothers, Inc.	766.2	3372.1	52700	2600	52.8	14.8	795	Ne
730059	Fl. Mining & Materials Concrete	766.6	3372.2	53100	2700	53.2	10	803	No
13-087-0002	Ime Agribusiness Inc.	729.1	3421	15600	51500	53.8	219	816	N
13-087-0006	Floyd Bros. Asphalt Co.	726.3	3424 2	12800	54700	56.2	30	864	N
630024	Marianna Concrete Plant	670	3406	-43500	36500	56.8	1.1	876	N
450008	Engle Recycling, Inc.	669.14	3333.88	-44360	-35620	56.9	16.8	878	N.
					1	1		- Lorentz - Control	

1290007	L. B. Brooks	749.5	3322.6	36000	-46900	59.1	10	922	No
	Baxter Asphalt & Concrete	666.7	3406.9	-46800	37400	59.9	43	938	No
	Primex Fechnologies	767.6	3342.2	54100	-27300	60.6	62.1	952	No
	Golden Peanut Company	675 2	3416.9	-38300	47400	60.9	40.2	959	No
	St Marks Refinery.Inc.	769	3340.1	55500	-29400	62.8	56.7	996	No
	Tallahassee City Purdom Station	769.5	3339 97	56000	-29530	63.3	689	1006	No
	Clover Leaf Gin, Incorporated	670 3	34163	-43200	46800	63.7	49.3	1014	No
	St. Marks Terminal	769.3	3338.4	55800	-31100	63.9	5 6	1018	No
	WHITE CONSTRUCTION COMPANY	654.2	3403.5	-59300	34000	68 4	100	1107	No
		656.1	3407.9	-57400	38400	69. L	0	1121	No
	Register Meat Co	!			38200	69.8	100	1136	No
	GOLDEN PEANUT COMPANY	655.1	3407.7	-58400			3	1174	No
	Georgia Dept. Of Trans.	717.4	3441.1	3900	71600	71.7		1	
	FLORIDA ROCK INDUSTRIES, INC.	785.5	3376	72000	6500	72.3	100	1186	No
	Bay Energy	644.0	3348.9	-69500	-20600	72.5	59	1190	No
	WHITE CONSTRUCTION COMPANY, INC.	657.8	3417.2	-55700	47700	73.3	100	1207	No
7775029	ANDERSON COLUMBIA CO., INC.	656.12	3418.74	-57380	49240	75.6	100	1252	No
0050038	Triangle Construction	638.8	3347.0	-74700	-22500	78.0	12	1300	No
0450001	Premier Services Corporation	664.7	3302.8	-48800	-66700	82.6	345	1393	No
630045	Waste Management Inc. Of Florida	650.5	3423 1	-63000	53600	82.7	98.6	1394	No
0050008	Gulf Asphalt	634.9	3343.7	-78600	-25800	82.7	44	1395	No
630023	Gold Kist	653.2	3426.6	-60300	57100	83.0	18.1	1401	No
10PCY030046	Argus Service	634.8	3341.2	-78700	-28300	83.6	2	1413	No
0450002	Sylvachem	663.4	3299.6	-50100	-69900	86.0	71	1460	No
0450005	Florida Coast Paper, Port St. joe	662.8	3299.0	-50700	-70500	86.8	1,879	1477	Yes
	GP Cedar Springs	681.2	3450.2	-32300	80700	86 9	2,000	1478	Yes
0050001	Arizona chemical	633.1	3335.4	-80400	-34100	87.3	153	1487	No
13-099-0008	Peridot Chemical	681.4	3451	-32100	81500	87.6	1.9	1492	No
	Stone Container Panama City	632.8	3335.1	-80695	-34408.97	87.7	1,924	1494	Yes
0050005	Florida Asphalt Paving	631.4	3338.3	-82100	-31200	87.8	23	1497	No
10PCY030051	Humane Society of Bay County	630.7	3338 8	-82800	-30700	88.3	3	1506	No
10PCY030040	Allied-Signal	627.5	3346.4	-86000	-23100	89.0	132	1521	No
0050014	Gulf Power	625.2	3349.1	-88300	-20400	90.6	1.814	1553	Yes
630011	U.S. Forest Industries, Inc.	641	3425.9	-72500	56400	91.9	0	1577	No
10PCY230003	Florida Power Corporation	664.4	3291.1	-49100	-78400	92.5	6	1590	No
1330002	Florida Asphalt Paving Company	624.4	3399.8	-89100	30300	94	14	1622	No
		1	l	l			<u> </u>		

Notes:
Sources within GP's Significant Impact Area are automatically included in the modeling analysis.

* Facilities greater than 100 km from GP were removed from the analysis.

	5. Summary of Modeling Parameter		PM ₁₀ Emission Rate			E . 1/1	Stack Diameter
	Facility Name/ Stack Description Englehard	Model 1D 0390005A	g/s 5.00E-03	Stack Height (m) 27.13	Exit Temperature (F) 30.01	Exit Velocity (m/s) 6.21	(inches) 5.91
	Englehard	0390005B	0.03	21.34	30.01	0.01	9.45
0390005	Englehard	0390005C	0.03	26.82	80.01	7.07	9.45
	Englehard	0390005D	2.10E-02	27.13	30.01	6.14	11.81
0390005	Englehard	0390005E	4.50E-02	10 36	80.01	1 62	24.02
	Englehard	0390005F	0.126	21 64	80.01	11.82	9.45
	•		5.00E-02	18.29	80.01	11.32	11.81
	Englehard	0390005G				0.01	9.45
0390005	Englehard	0390005H	0.048	20.73	80.01		
0390005	Englehard	03900051	0.113	16.15	80.01	13.48	14.57
0390005	Englehard	0390005J	0.078	17.68	10.08	0.01	15.75
0390005	Englehard	0390005K	0 476	16.15	80.01	15.72	14.57
0390005	Englehard	0390005L	0 412	15.24	80 01	33.24	14.57
0390005	Englehard	0390005M	1.318	12.19	80 01	15.01	29.92
0390005	Englehard	0390005N	0.794	24,99	80.01	32.27	25.20
0390005	Englehard	0390005O	0.882	18.59	70.00	10 20	61.02
0390005	Englehard	0390005P	0.504	25.60	80.01	19.16	53.94
0390005	Englehard	0390005Q	0.554	30 48	132.01	17.16	45.67
0390005	Englehard	0390005R	0.529	30.48	132.01	20.18	29.92
0390005	Engiehard	0390005\$	1.763999	18.59	199.99	10.20	61.02
0390005	Englehard	0390005T	1.184	28.96	225.00	18.06	77.95
0390029	Station 14	0390029A	1.01E-02	15.24	550.00	52.39	16.80
0390029	Station 14	0390029B	4.41E-02	8.60	600.53	36.60	17.32
0390032	CW Roberts	0390032A	3.78E-02	12.50	250.00	17.37	50.39
0390032	CW Roberts	0390032B	1.94E-02	4.30	500.09	4.60	7.87
0930014	Scholz	0630014A	7.396076	45.72	330.01	12.19	162.00
0930014	Scholz	0630014B	7.396076	45.72	330.01	12.19	162.00
0730003	Hopkins	0730003A	11.37761	67.06	260.01	11.95	132.00
0730003	Hopkins	0730003B	0 3502741	8.84	802.00	34.87	110.40
0730003	Hopkins	0730003C	0.5720304	9.14	874 00	21.15	176.40
0730003	Hopkins	0730003D	31.49947	76.20	219.99	21.00	168.00
0770009	Timber Energy Resources	0770009A	1,448976	24.69	370.00	12.19	86.04
129001	Purdom	UNIT7	0.25	54 90	299.93	14 44	107.87
			0.23	11.60	879.53	25.56	120.08
	Purdom	GT2		<u> </u>	1	·	
129001	Purdom	UNIT8	1.14	60.97	200.93	24.24	196.85
129001	Purdom	COOLT	0.3	13.40	89.33	7.09	396.85
129001	Purdom	AUXBOIL	6.75E-03	9.20	350.33	6.47	24.02
	G-P Cedar Springs, GA - Lime Kiln W - Survey	L601	2.519944	24.99	178.61	9.67	72.05
	G-P Cedar Springs, GA - Lime Kiln East -Survey	1.600	2.519944	24.99	178.61	9.67	72.05
	G-P Cedar Springs, GA - Lune Silo Stack	L6367	1.474167	14.57	68.00	4.57	31.89
	G-P Cedar Springs, GA - NSSC Blow Tank	S200	7.56E-03	28.50	68.00	6.28	53.94
	G-P Cedar Springs, GA - Recovery Botler 1.2 Stack	RB12	8.895403	61.00	374.00	27.60	144.09
	G-P Cedar Springs, GA - REJECTS CHIPPER #1 CYCLONE	W136	2.77E-03	10.67	68.00	0.01	35.83
	G-P Cedar Springs, GA - REJECTS CHIPPER #2 CYCLONE	W137	2.77E-03	9.14	68.00	0.01	35.83
	G-P Cedar Springs, GA - #1 CTS SYSTEM ADS	W007	1.26E-03	2.44	68.00	0.01	29.53
	G-P Cedar Springs, GA - #2 CTS SYSTEM ADS	W008	1.26E-03	2.44	68.00	0.01	29.53
	G-P Cedar Springs, GA - HW RECHIPPER CYCLONE	W009	1.26E-03	4 57	68.00	0.01	53.94
	G-P Cedar Springs, GA - NSSC CHIP SILO CYCLONE	W003	5.54E-03	27.89	68.00	0.01	53.94

	G-P Cedar Springs, GA - CTS CONVEYING CYCLONE	W002	7.31E-03	16.50	68.00	100	98.43
		1 - 1					
	G-P Cedar Springs, GA - RAIL CAR CHIP LOADOUT CYCLONE	WG19	1.54E-02	19.81	68 00	0.01	24.02
	G-P Cedar Springs, GA - SMELT DISSOLVING TANK	R404	0.7937824	58.22	153 41	7.79	59.84
	G-P Cedar Springs, GA - SMELT DISSOLVING TANK	R406	4 573698	75.60	145.31	7 03	72.05
	G-P Cedar Springs, GA - SMELT DISSOLVING TANK	R405	0 7937824	58.22	158.63	7.86	59.84
	G-P Cedar Springs, GA - RECOVERY BOILER 3 N	R402N	2 960935	75.30	110 00	13.64	107 87
	G-P Cedar Springs, GA - RECOVERY BOILER #3 S	R402S	2.960935	75.30	421.00	13.64	107.87
	G-P Cedar Springs, GA - Power Boiler 2 Future	US00F	28.65177	106.68	146.39	9.56	168.11
	G-P Cedar Springs, GA - Power Boiler 2 Future	U501F	28.65177	106.68	155.39	8 72	168.11
	Stone, Panama City	LKILN	3.690001	18.60	166.73	11.84	96.06
	Stone, Panarria City	RBI	11	71.00	285.71	28.60	77.95
	Stone, Panarma City	SDTI	3.35	71.00	165.65	5.25	72.05
	Stone, Panarna City	RB2	11	71.00	309.65	28.50	77.95
	Stone, Panarra City	SDT2	3.21	71.00	165.65	156	72.05
	Stone, Panama City	BB3	12.32	64.90	149.09	23.50	93.70
	Stone, Panama City	B84	10 27	64.90	143.33	27.32	93.70
	Stone, Panama City	LSKR	0.4999999	17.10	199.67	13.08	34 65
050014	Gulf Power	GULFPW12	48.00999	60.70	334.13	31.30	216.14
050014	Gulf Power	GULFPWPK	4.16	10.10	1199.93	36.90	164 57
450005	Smarfit, Port St. Joe	FCPLKSDT	14.29	30.50	202.01	2.25	93.70
450005	Smarfit, Port St. Joe	FCPRB567	28.64	38.10	250.07	9.10	100.79
450005	Smarfit, Port St. Joe	FCPPB9	11.11	51.80	157.91	10.33	168.11

acility ID	Facility Name		Stack ID	PM ₁₀ Emission Rate (g/s)	Stack Height (m)	Stack Diameter (m)	Exit Temp (K)	Exit Velocity (m/s)	Computed M Factor
	ENGELHARD CORPORATION	A	416	0.005	27.13	0.15	299.82	6.21	100203
200004						27/	200.02	0.00	13
	ENGELHARD CORPORATION		48	0.014	19.81	0.24	299 82		
390005	ENGELHARD CORPORATION		53	0 016	21.34	0.24	299.82	0.00	11
		В	53	0.030	21.34	0.24	299.82	0 00	
390005	ENGELHARD CORPORATION		41c	0.015	26.82	0 24	299.82	7.07	3762
390005	ENGELHARD CORPORATION		4le	0.015	27.43	0.24	299.82	7.07	3848
		Ċ	41c	0.030	26.82	0.24	299.82	7.07	
390005	ENGELHARD CORPORATION	D	41a	0.021	27.13	0 30	299.82	614	2333
			-	0.021		-			
390005	ENGELHARD CORPORATION		42	0.023	10.36	0 61	299.82	1.62	221
390005	ENGELHARD CORPORATION		43	0.023	14 33	0.24	299.82	10.11	1913
		E	42	0.045	10.36	0.61	299.82	1.62	
390005	ENGELHARD CORPORATION		44	0.025	21.64	0.24	299.82	11.82	3044
390005	ENGELHARD CORPORATION		+0	0.025	28.04	0.24	299.82	11.82	3944
390005	ENGELHARD CORPORATION	-	22	0.025	30.48	0.24	299.82	14.15	5130
390005	ENGELHARD CORPORATION		23	0.025	30.48	0 24	299.82	14.15	5130
390005	ENGELHARD CORPORATION	-	24	0 025	30.48	0 24	302.59	14.15	5178
		F	-14	0.126	21.64	0.24	299.82	11.82	
390005	ENGELHARD CORPORATION	G	27	0.050	18.29	0 30	299.82	11.32	123
390005	ENGELHARD CORPORATION	Н	38	0 048	20.73	0.24	299.82	0.00	
		<u> </u>							
390005	ENGELHARD CORPORATION		41d	0 050	27.43	0.30	299.82	15.20	2480
390005	ENGELHARD CORPORATION		21	0.063	16.15	0.37	299.82	13 48	103:
		1	21	0.113	16.15	0.37	299.82	13.48	
390005	ENGELHARD CORPORATION	j	37	0 078	17.68	0.40	299.82	0.00	
390005	ENGELHARD CORPORATION		26	0.063	14 63	0.37	399.82	15.72	109-
390005	ENGELHARD CORPORATION		17	0.063	27.43	0 37	299 82	15.72	2052
390005	ENGELHARD CORPORATION		20	0.088	16.15	0.37	299 82	15.72	86
390005	ENGELHARD CORPORATION	ĺ	19	0 087	31.09	0 30	299 82	25.87	277

390005	ENGELHARD CORPORATION		16	0.088	19.31	0.40	299 82	15.31	1031021
		К	20	0.476	16.15	0.37	299.82	15.72	
						.			
390005	ENGELHARD CORPORATION		32	0.126	28 96	0.46	299.82	17.25	1188430
390005	ENGELHARD CORPORATION		46	0.147	28.04	0.21	299.82	92.40	526969
390005	ENGELHARD CORPORATION		13	0.139	15.24	0 37	299.82	33.24	109579
		L	13	0.412	15.24	0 37	299.82	33.24	
							1		
390005	ENGELHARD CORPORATION		31	0.088	27.43	0.55	299.82	19.96	1861570
390005	ENGELHARD CORPORATION		25	0.214	14 63	0 67	299.82	16.04	32840
390005	ENGELHARD CORPORATION		39	0 260	34 44	0.46	299 82	34.50	137243
390005	ENGELHARD CORPORATION		28	0.302	19 81	0.76	299.82	12.94	25410:
390005	ENGELHARD CORPORATION		11	0.328	12.19	0.76	299.82	15.01	16743
390005	ENGELHARD CORPORATION		36	0.126	21.34	0.67	299.82	20 05	101771
	• • • • • • • • • • • • • • • • • • • •	М	11	1.318	12.19	0.76	299.82	15 01	
390005	ENGELHARD CORPORATION		18	0 491	24.99	0.64	299.82	32.27	49205
	ENGELHARD CORPORATION	-	35	0.302	30.48	0.91	299 82	21.56	65155
370003	ENGLISHE CON ONNION	N	18	0.794	24.99	0.64	299.82	32.27	
								+	
390005	ENGELHARD CORPORATION	0	19	0.882	18.59	1.55	294.26	10.20	6324
		_			 				
390005	ENGELHARD CORPORATION	P	33	0.504	25 60	1.37	299.82	19.16	29189.
200006	ENGELHARD CORPORATION		15	0.554	30.48	1.16	328.71	17.16	31003
390003	ENGELHARD CORPORATION	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	13	U.334	30.46	1.10	326.71	17.10	71005
390005	ENGELHARD CORPORATION	R	14	0.529	30.48	0.76	328.71	20.18	38206
390005	ENGELHARD CORPORATION	ļ	2	0.882	18.59	1.55	366.48	10.20	7876
	ENGELHARD CORPORATION	ļ	8	0.882	18.59	1.55	366.48	10 20	7876
	ENGLEMAND COM ONATION	S	2	1.764	18.59	1.55	366.48	10.20	
390005	ENGELHARD CORPORATION		29	0 592	28.96	1.98	380.37	18 06	33598
390005	ENGELHARD CORPORATION		30	0 592	28.96	1.98	380.37	18.06	33598
		T	29	1.184	28.96	1 98	380.37	18.06	

					Relative to	G-P Hos		Total	
		UTM Co	ordinates	1000	Hosford	•	Emissions	Emission	Include b
acility		East	North	Х	Y	Dist.	Threshold	Rate	Modeling
Number	Facility Name	(km)	(km)	(m)	(m)	(km)*	"O.,	(tpy)	Analysis
		. ,		6400	7900	10.2	1185.2	63	Yes
390029	Florida Gas Transmission Co	719.9	3377.4	-4100	11400		140	102	Yes
770009	Timber Energy Resources	709.4	3358.1		1900	12.1	11.9	102	No
390032	C. W. Roberts Contracting Inc.	726.5	3371.4	13000		22.6	91	312	No.
390030	Harboriite Corporation	729.8	3385.2	16300	15700		1.8		No
390006	Higdon Furniture Co	729.7	3386.5	16200	17000	23.5		330	No
390007	Pat Higdon Industries	729.9	3386.5	16400	17000	23.6	03	332	
390020	Mactavish Furniture Ind.	730.6	3385.8	17100	16300	23.6 25.3	4.7	332	No No
390033	Sasser Morgan-Mcclellan	732.6	3386.1	19100	16600		*	366	
390005	Engelhard Corporation	732.6	3387.5	19100	18000	26.2	124	384	No
770007	North Florida Lumber	689.54	3358.88	-23960	-10620	26.2	73.9	384	No
630014	Gulf Power Co	702.4	3395.8	-11100	26300	28.5	1264.9	430 •	Yes
390022	City Of Quincy	737.6	3385.6	24100	16100	29	97.4	140	No
390004	Dept. Of Children + Families	707.6	3399.2	-5900	29700	30.3	62.1	466	No
630044	Apalachee Correctional	703.04	3399.32	-10460	29820	31.6	14	492	No
730003	City Of Tallahassee Hopkins	749.53	3371.7	36030	2200	36.1	3055 1	582	Yes
730040	Mitchell Brothers, Inc.	752	3370.9	38500	1400	38.5	99	630	No
7770014	Peavy And Son Construction	742.4	3395.2	28900	25700	38.7	53.1	634	No
730068	Fairchild Cremation Services.	754 2	3373.5	40700	4000	40.9	0.2	678	No
730012	Sonas Systems Of Florida	754 5	3370.4	11000	900	41	57.5	680	No
390009	Coastal Lumber Co	747.1	3394.3	33600	24800	41.8	62	696	No
630028	Louisiana Pacific Corp	683.3	3400.1	-30200	30600	43	10.3	720	No
730065	National Linen Service	759	3368.3	45500	-1200	45.5	5 4	770	No
730009	Florida A&M University	760.5	3368.9	47000	-600	47	98.1	800	No
730062	Department Of Mgmt Services	760.9	3370.2	47400	700	47.4	2.9	808	No
7770064	Peavy & Son Construction Co	762.8	3361.6	49300	-7900	49.9	83.4	858	Nο
630035	Anderson Columbia Company,	677	3404.5	-36500	35000	50.6	5.6	872	No
7770059	Anderson Columbia Co., Inc.	672.1	3401.2	-41400	31700	52.1	9.16	903	No
730034	Mitchell Brothers, Inc.	766.2	3372.1	52700	2600	52.8	26	916	No
13-087-0002	Imc Agribusiness Inc.	729.1	3421	15600	51500	53.8	657	936	No
13-087-0006	Floyd Bros. Asphait Co.	726.3	3424.2	12800	54700	56.2	100	984	No
450008	Eagle Recycling, Inc.	669.14	3333.88	-44360	-35620	56.9	2.5	998	No
630012	Lehigh Furniture	670.5	3406.9	43000	37400	57.0	0	1000	.No
630002	Baxter Asphalt & Concrete	666.7	3406.9	-46800	37400	59.9	0	1058	No
630041	Golden Peanut Company	675.2	3416.9	38300	47400	60.9	0.14	1079	No
1290001	Tallahassee City Purdom	769.5	3339.97	56000	29530	63.3	2719.3	1126	Yes
0630031	WHITE CONSTRUCTION COMPANY	654.2	3403.5	-59300	34000	68.4	83	1227	No
630010	Register Meat Co	656.1	3407.9	-57400	38400	69.1	34.78	1241	No
630040	Golden Peanut Company	655.1	3407.7	-58400	38200	69.8	0	1256	No
			3407.7	-58400	38200	69.8	0.14	1256	No
0630040 13-087-0014	GOLDEN PEANUT COMPANY	655.1 717.4	3441.1	3900	71600	71.7	100	1294	No
	Georgia Dept. Of Trans.		3376	72000	6500	72.3	10	1306	No
0650004	FLORIDA ROCK INDUSTRIES, INC.	785.5 644.0	3348.9	69500	-20600	72.5	236	1310	No.
0050031	Bay County Energy Systems				47700	73.3	83	1327	No
7770049	WHITE CONSTRUCTION COMPANY, INC.	657.8	3417.2	-55700		75 6	10	1372	No.
7775029	ANDERSON COLUMBIA CO., INC.	656.12	3418.74	-57380	49240			1514	No
630045	Waste Management Inc. Of Florida	650 5	3423.1	-63000	53600	82.7	16.3		
0050008	G.A.C. Contractors	634.9	3343.7	-78600	25800	82.7	13	1515	No
630023	Gold Kist	653.2	3426.6	-60300	57100	83.0	0	1521	No.
NA	Georgia Tubing	684.9	3447.5	-28600	78000	83.1	0.03	1522	No
10PCY030046	Argus Service	634.8	3341.2	-78700	-28300	83.6	1	1533	No
0450002	Sylvachem	663.4	3299.6	-50100	-69900	86.0	201	1580	No
0450005	Smurfit, Port St. joe	662.8	3299.0	-50700	-70500	86.8	3,888	1597	Yes
	GP Cedar Springs	681.2	3450.2	-32300	80700	86.9	2.000	1598	Yes
0050001	Arizona chemical	633.1	3335.4	-80400	-34100	87.3	460	1607	No
	Stone Container Panama City	632.8	3335.1	-80 69 5	-34408.97	87.7	2,361	1614	Yes
0050024	US Air Force - Tyndall	635.6	3326.8	-77900	-42700	88.8	19	1637	No
0050014	Gulf Power	625.2	3349.1	-88300	-20400	90.6	10,626	1673	Yes
0050014	Guirowei	025.2	3347.1	00500					

Notes:
Sources within GP's Significant Impact Area are automatically included in the modeling analysis.
Facilities greater than 100 km from GP were removed from the analysis.

Facility ID	Facility Name/ Stack Description	Model ID	NO ₂ Emission Rate g/s	Stack Height (m)	Exit Temperature (F)	Exit Velocity (mVs)	Stack Diameter (inches)
0390029	Florida Gas	0390029A	1 34	15.24	550 00	52 39	16.8
0390029	Florida Gas	0390029B	32.75999	3 60	600.53	36 60	17.1
0630014	Gulf Power	0630014A	58.95	45.72	330.00	12.19	162.0
0630014	Gulf Power	0630014B	58.95	45 72	330.00	12.19	162.
0730003	Hopkins	0730003A	50.01	67.06	260.00	11.95	132.
0730003	Hopkins	0730003B	6.46	8 84	802.00	34.87	110.
0730003	Hopkins	0730003C	10.53	9.14	874 00	21.15	176.
0730003	Hopkins	0730003D	94 5	76 20	220 00	21.00	168
0770009	Tunber Energy	0770009A	42	24.69	370.00	12.19	86.0
1290001	PURDOM BLR 7	UNIT7	13.18	54.90	299.93	14.44	107.
1290001	PURDOM GAS TURBINES	GT2	0.2100001	11.60	879.53	25.56	120
1290001	PURDOM AUX BOILER	AUXBOIL	0 00299	9.20	350.33	6 47	24
	G-P Cedar Springs, GA - Lime Kiln W - Survey	L601	8.101665	24 99	178.61	9 67	72.
	G-P Cedar Springs, GA - Lime Kiln East -Survey	L600	8.101665	24 99	178.61	9.67	72
	G-P Cedar Springs, GA - Recovery Boiler 1,2 Stack	RB12	31.52467	61.00	374.00	27 60	144.
	G-P Cedar Springs, GA - SMELT DISSOLVING TANK	R404	0.2141964	58 22	153.41	7.79	59.
	G-P Cedar Springs, GA - SMELT DISSOLVING TANK	R406	0.2141964	75 60	145.31	7.03	72.
	G-P Cedar Springs, GA - SMELT DISSOLVING TANK	R405	0.2645956	58.22	158.63	7.86	59.
	G-P Cedar Springs, GA - RECOVERY BOILER 3N	R402N	24.39949	75.30	410 00	13.64	107.
	G-P Cedar Springs, GA - RECOVERY BOILER #3 S	R402S	24.39949	75.30	421.00	13 64	107.
	G-P Cedar Springs, GA - Power Boiler 2 Future	U500F	87.16534	106.68	146.39	9.56	168.
	G-P Cedar Springs, GA - Power Boiler 2 Future	U501F	87.16534	106.68	155.39	8 72	168.
	Stone Container, Panama City	LKILN	5.63	18.60	166.73	11.84	96.
	Stone Container, Panama City	RB1	9.08	71 00	285.71	28.60	78.
	Stone Container, Panama City	SDTI	0 2600001	71 00	165.65	5.25	72.
	Stone Container, Panama City	RB2	9 08	71.00	309.65	28.50	78
	Stone Container, Panama City	SDT2	0.2600001	71.00	165.65	4 56	72.
	Stone Container, Panama City	BB3	19.79	64.90	149.09	23.50	93.
	Stone Container, Panarna City	BB4	23.83001	64.90	143.33	27.32	93.
0050014	Gulf Power	GULFPW12	257.9999	60.70	334.13	31.30	216.
0050015	Gulf Power	GULFPWPK	47.67	10.10	1199.93	36.90	164
0450005	Smurfit, Port St. Joe	FCPLKSDT	23.28	30.50	202.01	2.25	93
0450005	Smurfit, Port St. Joe	FCPRB567	55.23	38.10	250.07	9.10	100
0450005	Smarfit, Port St. Joe	FСРРВ9	33.34	51.80	157.91	10 33	168

		Modeled	Receptor	Location 4	Period Ending	Modeling Significance	Monitoring Significance	Maximum Distance to
Averaging		Concentration	Distance X (m)	Distance Y (m)	(YYMMDDHH)	Level	Level	Significant
Period	Year	$(\mu g/m^3)$				$(\mu g/m^3)$	$(\mu g/m^3)$	Impact (km)
		<u> </u>		Screening Anal	ysis			
24-hour	1986	24.18	0.00	-592.00	86120324	5	10	12
	1987	27.43	-222.00	-542.60	87011224	5	10	8
	1988	25.31	-177.37	-552.50	88010824	5	10	13
	1989	31.65	536.80	309.70	89060924	5	10	8
	1990	23.21	-227.40	-567.20	90122424	5	10	7
Annual	1986	6.62	-222.00	-542.60		1		5
	1987	10.24	-222.00	-542.60		1		7
	1988	8.76	-222.00	-542.60		1		6
	1989	6.54	-222.00	-542.60		1		4
	1990	5.26	-222.00	-542.60		l		3.5
				Refined Analy	/sis			
24-hour	1989	31.65	536.80	309.70	89060924	5	10	
Annual	1987	10.24	-222.00	-542.60		1		

Note: YY= year, MM = Month, DD = Day, HH = Hour.

a Relative to Dryer RTO Stack B

Averaging		Modeled Concentration b	Receptor	Location a	Modeling Significance Level	Monitoring Significance Level	Maximum Distance to Significant Impact
Period	Year	$(\mu g/m^3)$	Distance X (m)	Distance Y (m)	$(\mu g/m^3)$	(μg/m³)	(km)
			Sc	reening Analysis			
_	1986	1.61	-297.57	-1143.10	1	14	4
Annual	1987	2.85	-297.57	-1143.10	l	14	7
	1988	2.48	-297.57	-1143.10	1	14	6
	1989	1.44	-138.92	787.85	1	14	3
	1990	1.43	-143.20	757.30	1	14	3
			R	efined Analysis		,	
Annual	1987	2.85	-297.57	-1143.10	ŀ	14	

^a Relative to Dryer RTO Stack B ^b Assumes full conversion of NO_x to NO₂.

Table 12 Sig			T	· · · ·		Modeling	Monitoring
		Modeled	Receptor Location a			Significance	Significance
Averaging		Concentration			Period Ending	Level	Level
Period	Year	$(\mu g/m^3)$	Distance X (m)	Distance Y (m)	(YYMMDDHH)	(μg/m ³)	$(\mu g/m^3)$
		• • • • • • • • • • • • • • • • • • •	Scree	ening Analysis			
1-hour	1986	36.55	-487.00	0.00	86091023	2000	
	1987	38.50	-477.70	16.51	87032301	2000	
	1988	37.55	-477.70	16.51	88060923	2000	
	1989	44.56	-368.93	213.00	89053124	2000	
	1990	39.73	-477.70	16.51	90052522	2000	
8-hour	1986	18.13	-385.67	459.63	86120916	500	575
	1987	17.38	-779.42	450.00	87111708	500	575
	1988	18.29	-779.42	450.00	88050916	500	575
	1989	16.95	677.21	430.91	89061416	500	575
	1990	15.93	-206.31	506.81	90102216	500	575

Note: YY= year, MM = Month, DD = Day, HH = Hour.

a Relative to Dryer RTO Stack B

Table 13. NAA	AQS Mod	deling Results, PM	110			
Averaging Period	Year	Modeled Concentration (µg/m³)	Receptor Distance X (m)	Location ^a Distance Y (m)	Period Ending (YYMMDDHH)	NAAQS (μg/m³)
	•	· · · · · · · · · · · · · · · · · · ·	Screening Ana	lysis		
24-hour H6H		22.64	-222.00	-542.60	90122524	150
Annual	1986	6.94	-222.00	-542.60		50
	1987	10.55	-222.00	-542.60		50
	1988	9.11	-222.00	-542.60		50
	1989	6.93	-222.00	-542.60		50
	1990	5.62	-222.00	-542.60		50
			Refined Analy	ysis		
24-hour H6H		22.64	-222.00	-542.60	90122524	150
Annual	1987	10.55	-222.00	-542.60		50

Note: YY= year, MM = Month, DD = Day, HH = Hour, H6H = High, Sixth Highest ^a Relative to Dryer RTO Stack B

Table 14. To	Table 14. Total NAAQS Results (Modeled + Background), PM ₁₀						
Averaging Period	Modeled Concentration (µg/m³)	Background Concentration (µg/m³)	Total Concentration (µg/m³)	NAAQS (μg/m³)			
24-hour H6H	22.64	54	76.64	150			
Annual	10.55	27	37.55	50			

Note: H6H= High, Sixth Highest

Table 15. N.	AAQS Mo	deling Results, NO	\mathcal{D}_2		
		Modeled			
Averaging		Concentration	Receptor	Location a	NAAQS
Period	Year	$(\mu g/m^3)$	Distance X (m)	Distance Y (m)	$(\mu g/m^3)$
		Screer	ning Analysis		
	1986	9.52	5362.31	4499.51	100
	1987	14.62	6062.18	3500	100
Annual	1988	13.96	6062.18	3500	100
	1989	8.53	6062.18	3500	100
	1990	6.59	6062.18	3500	100
	•	Refir	ned Analysis		
Annual	1987	21.58	5862	5000	100
	1988	15.81	6062.18	4000	100
	Į		l	<u> </u>	

Note: YY= year, MM = Month, DD = Day, HH = Hour.

^a Relative to Dryer RTO Stack B

Table 16. Total NAAQS Results (Modeled & Background), NO ₂						
	Modeled	Background	Total			
Averaging	Concentration	Concentration	Concentration	NAAQS		
Period	$(\mu g/m^3)$	(μg/m³)	(μg/m³)	$(\mu g/m^3)$		
Annual	21.58	16	37.58	100		
				1		

Table 17. PS	SD Class II	Increment Analys	sis, PM ₁₀			
		Modeled				PSD
Averaging		Concentration	Receptor	Location a	Period Ending	Increment
Period	Year	$(\mu g/m^3)$	Distance X (m)	Distance Y (m)	(YYMMDDHH)	$(\mu g/m^3)$
		, , , , , , , , , , , , , , , , , , , ,	Screening A	nalysis		
24-hour	1986	20.62	-177.37	-552.50	86111324	30
HSH	1987	24.33	-222.00	-542.60	87103024	30
	1988	23.00	-177.37	-552.50	88011024	30
	1989	29.41	468.49	236.66	89060924	30
	1990	20.33	-222.00	-542.60	90102424	30
Annual	1986	6.63	-222.00	-542.60		17
	1987	10.24	-222.00	-542.60		17
	1988	8.76	-222.00	-542.60		17
	1989	6.55	-222.00	-542.60		17
	1990	5.26	-222.00	-542.60		17
	·	<u> </u>	Refined An	alysis		
24-hour	1987	24.33	-222.00	-542.60	87103024	30
HSH	1989	29.41	468.49	236.66	89060924	30
Annual	1987	10.24	-222.00	-542.60		17
	1989	6.55	-222.00	-542.60		17

Note: YY= year, MM = Month, DD = Day, HH = Hour, HSH = High, Second Highest

^a Relative to RTO Stack B

Table 18. PS	D Class II	Increment Analysis	s. NO ₂		_		
		Modeled		-	PSD		
Averaging	Averaging Concentration b		Receptor	Location 4	Increment		
Period	Year	$(\mu g/m^3)$	Distance X (m)	Distance Y (m)	$(\mu g/m^3)$		
	Screening Analysis						
Annual	1986	1.71	-297.57	-1143.10	25		
	1987	2.94	-297.57	-1143.10	25		
	1988	2.56	-297.57	-1143.10	25		
	1989	1.51	-138.92	787.85	25		
	1990	1.53	-143.20	757.30	25		
	_	Refi	ned Analysis				
Annual	1987	2.94	-297.57	-1143.10	25		

^a Relative to RTO Stack B

^b Assumes full conversion of NO_x to NO₂.

Table 19. Class I Increment Significant Impact Analysis, PM ₁₀ and NO ₂						
			Modeled		Screening	
	Averaging	i	Concentration	Period Ending	Level ^a	
Pollutant	Period	Year	$(\mu g/m^3)$	(YYMMDDHH)	$(\mu g/m^3)$	
		1986	0.045		0.1	
		1987	0.032		0.1	
NO_2	Annual	1988	0.035		0.1	
		1989	0.063		0.1	
		1990	0.053		0.1	

Note: YY= year, MM = Month, DD = Day, HH = Hour.

^a US EPA proposed screening levels for Class I areas.

Table 20. C	Class I Increme	nt Analys	sis, PM ₁₀	<u> </u>	
			Modeled	, ,	PSD Class I
	Averaging		Concentration	Period Ending	Increment
Pollutant	Period	Year	$(\mu g/m^3)$	(YYMMDDHH)	$(\mu g/m^3)$
		1986	1.12	86113024	8
	24 have	1987	1.33	87090424	8
PM_{10}	24-hour	1988	1.07	88010224	8
	HSH	1989	0.97	89011124	8
		1990	0.86	90041624	8
		1986	0.090		4
		1987	0.140		4
	Annual	1988	0.104		4
		1989	0.103		4
		1990	0.072		4

Note: YY= year, MM = Month, DD = Day, HH = Hour.

^a US EPA proposed screening levels for Class I areas.

Georgia Pacific Corporation

133 Peachtree Street NE (30303-1847) P.O. Box 105605 Atlanta, Georgia 30348-5605 Telephone (404) 652-4000

July 12, 2000

RECEIVED

Mr. Joseph Kahn, P.E. Florida Department of Environmental Protection New Source Review Section Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400

JUL 1 3 2000

BUREAU OF AIR REGULATION

RE:

Revised Regional Haze Analysis for the Proposed Georgia-Pacific Oriented Strandboard

(OSB) Facility in Hosford, FL

Dear Mr. Kahn:

Georgia-Pacific Corporation (G-P) is pleased to provide the following additional information to complete the January PSD air permit application. The enclosure presents a revised regional haze analysis performed by Golder Associates. Please contact me (404/652-4293) or Steve Marks (regional haze modeling contact at 352/336-5600) with any additional modeling questions. Thank you for your help on this important project.

Sincerely,

Mark J. Aguilar, P.E.

Senior Environmental Engineer Georgia-Pacific Corporation

Mark A. aguit

P.E. Number 52248

SEAL

Enclosures: Regional Haze Modeling Report by Golder Associates

cc: P.J. Vasquez

M.M. Vest FL165 (Palatka)

T.R. Wyles GA030 (without attachment)

GA030-17

Gregg Worley EPA Region IV

John Bunyak National Park Service

Ed Middleswart Florida DEP

Golder Associates Inc.

6241 NW 23rd Street, Suite 500 Gainesville, FL 32653-1500 Telephone (352) 336-5600 Fax (352) 336-6603

	TRANSMITTAL LETTER							
To: Mr. Joseph FDEP - New Tallahassed	Kahn, P.E. v Source Review Section		Date: 7/12/2000 Project No.: 0037506-0100					
Sent by:	☐ Mail ☐ Air Freight ☐ Hand Carried		UPS Federal Express					
Per:								
Quantity	Item		Description					
1	Report		Georgia-Pacific Hosford Facility Revised Regional Haze Analysis					

cc:

P.J. Vasquez, G-P Atlanta, GA
T.R. Wyles, G-P Atlanta, GA
G. Worley, EPA Atlanta, GA
M. Aguilar, G-P Atlanta, GA
M.M. Vest, G-P Palatka, FL
J. Bunyak, NPS Lakewood, CO
E. Middleswart, FDEP Pensacola, FL
S. Marks, Golder

REFINED REGIONAL HAZE ANALYSES FOR THE PROPOSED GEORGIA-PACIFIC ORIENTED STRANDBOARD FACILITY IN HOSFORD, FLORIDA

Prepared For:

Georgia-Pacific Corporation 133 Peachtree Street NE Atlanta, Georgia 30303-1847

Prepared By:

Golder Associates Inc. 6241 NW 23rd Street, Suite 500 Gainesville, Florida 32653-1500

> July 2000 0037506B/R1

DISTRIBUTION:

7 Copies - G-P 2 Copies - Golder

TABLE OF CONTENTS

SECT	<u>ECTION</u>			
1.0		RODUCTION		
2.0	METHODOLOGY AND MODEL INPUTS			
	2.1	VISIBILITY NOMENCLATURE	4	
	2.2	2.2 INTERAGENCY WORKGROUP ON AIR QUALITY MODELING (IWAQM) GUIDELINES		
	2.3	MODEL SELECTION	6	
	2.4	CALPUFF MODEL SETTINGS	6	
	2.5	BUILDING WAKE EFFECTS	6	
	2.6	RECEPTOR LOCATIONS	7	
	2.7	BACKGROUND VISUAL RANGES AND RELATIVE HUMIDITY FACTORS		
	2.8	METEOROLOGICAL DATA PROCESSING	7	
		2.8.1 CALMET SETTINGS	8	
		2.8.2 MODELING DOMAIN	8	
		2.8.3 MESOSCALE MODEL – GENERATION 4 (MM4) DATA	8	
		2.8.4 SURFACE DATA STATIONS AND PROCESSING	9	
		2.8.5 UPPER AIR DATA STATIONS AND PROCESSING	10	
		2.8.6 PRECIPITATION DATA STATIONS AND PROCESSING	10	
		2.8.7 GEOPHYSICAL DATA PROCESSING	10	
	2.9	FACILITY EMISSIONS	11	
3.0	RESU	JLTS	12	
LIST	OF TAI	<u>BLES</u>		
2-1	Outline of IWAQM Level II Refined Modeling Analyses			
	Recommendations		13	
2-2	CALI	LPUFF Model Settings		
2-3		Summary of Receptors Used For The Regional Haze Modeling Analysis		
2-4	CALMET Settings		16	
2-5	Surfa	Surface, Overwater, and Upper Air Stations Used in the Refined Modeling Analysis17		
2-6		Hourly Precipitation Stations Used in the Refined Modeling Analysis		

LIST OF APPENDICES

Appendix A PARAMETER SETTINGS FOR CALPUFF AND CALMET

1.0 INTRODUCTION

The Georgia-Pacific Corporation (G-P) is proposing to construct an oriented strandboard facility near Hosford in the Florida panhandle. As part of the air impact evaluation for the proposed facility, the Florida Department of Environmental Projection (FDEP) has requested that an analysis of the proposed plant's affect on visibility be performed for the St. Marks National Wildlife Refuge (SMNWR). The SMNWR is a Prevention of Significant Deterioration (PSD) Class I area located in the eastern Florida panhandle located approximately 57 km southwest of the proposed facility site. Class I areas are afforded special environmental protection through the use of Air Quality Related Values (AQRVs). The AQRV of interest in this report is regional haze.

The regional haze analysis calculated a percent change in light extinction in accordance with the Interagency Workgroup on Air Quality Models (IWAQM) guidelines. The guidelines apply air dispersion model results for predicted maximum 24-hour sulfate (SO_4), nitrate (NO_3), and fine particulate matter (PM_{10}) concentrations and the use of conservative chemical equations for estimating ammonium sulfate (NH_4)₂ SO_4) and ammonium nitrate (NH_4 NO₃) concentrations. The analysis then applies existing data from the FLM to calculate the visibility change.

This report is divided into three sections, including this introduction. Section 2.0 of this report discusses the analysis methodology and model inputs. Section 3.0 of this report presents the analysis results.

2.0 METHODOLOGY AND MODEL INPUTS

2.1 <u>VISIBILITY NOMENCLATURE</u>

Visibility is an AQRV for the SMNWR. Visibility can take the form of plume blight for nearby areas, or regional haze for long distances (e.g., distances beyond 50 km). Because all of the SMNWR lies beyond 50 km from the proposed G-P facility, the change in visibility is analyzed as regional haze at the SMNWR. Current regional haze guidelines characterize a change in visibility by either of the following methods:

- 1. Change in the visual range, defined as the greatest distance that a large dark object can be seen, or
- 2. Change in the light-extinction coefficient (b_{ext}).

The b_{ext} is the attenuation of light per unit distance due to the scattering and absorption by gases and particles in the atmosphere. A change in the extinction coefficient produces a perceived visual change that is measured by a visibility index called the deciview. The deciview (dv) is defined as:

$$dv = 10 \ln \left(1 + b_{\text{exts}} / b_{\text{extb}}\right)$$

where:

 b_{exts} is the extinction coefficient calculated for the source, and

b_{extb} is the background extinction coefficient

A more common index that simple quantifies the percent change in visibility due to the operation of a source is calculated as:

$$\Delta\% = (\text{bexts} / b_{\text{extsb}}) \times 100$$

2.2 <u>INTERAGENCY WORKGROUP ON AIR QUALITY MODELING (IWAQM)</u> <u>GUIDELINES</u>

The CALPUFF air modeling analysis followed the recommendations contained in the IWAQM Phase II Summary Report and Recommendations for Modeling Long Range Transport Impacts, (EPA, 12/98). Table 2-1 summarizes the IWAQM Phase II recommendations.

*Je *

0037506B/R1

Refined impacts are calculated as follows:

Obtain maximum 24-hour SO₄, NO₃, and PM₁₀ impacts, in units of

Should USP

- micrograms per cubic meter (μg/m³).
- 2. Convert the SO₄ impact to (NH₄)₂SO₄ by the following formula: $(NH_4)_2SO_4 (\mu g/m^3) = SO_4 (\mu g/m^3) \times \text{molecular weight (NH₄)}_2SO_4 / \\ \text{molecular weight SO}_4$ $(NH_4)_2SO_4 (\mu g/m^3) = SO_4 (\mu g/m^3) \times 132/96 = SO_4 (\mu g/m^3) \times 1.375$

- 5 -

- 3. Convert the NO₃ impact to NH4NO3 by the following formula: $NH_4NO_3 \, (\mu g/m^3) = NO_3 \, (\mu g/m^3) \, x \, \text{molecular weight NH}_4NO_3 \, / \\ \text{molecular weight NO}_3 \\ NH_4NO_3 \, (\mu g/m^3) = NO_3 \, (\mu g/m^3) \, x \, 80/62 = NO_3 \, (\mu g/m^3) \, x \, 1.29$
- 4. Compute bexts (extinction coefficient calculated for the source) with the following formula:

$$b_{exts} = 3 \times NH_4NO_3 \times f(RH) + 3 \times (NH_4)2SO_4 \times f(RH) + 3 \times PM_{10}$$

- Compute bextb (background extinction coefficient) using the background visual range (km) from the FLM with the following formula:
 b_{extb} = 3.912 / Visual range (km)
- 6. Compute the percent change in extinction coefficient in terms of a percent change of visibility:

$$\Delta\% = (b_{\text{exts}}/b_{\text{extsb}}) \times 100$$

Based on the predicted SO_4 , NO_3 , and PM_{10} concentrations, the proposed plant's emissions are compared to a 5 percent change in light extinction of the background levels.

2.3 MODEL SELECTION

The California Puff (CALPUFF, Version 5.2) air model was used to model the proposed facility and assess visibility at the SMNWR. CALPUFF is a non-steady state Lagrangian Gaussian puff long-range transport (LRT) model that includes algorithms for building downwash effects as well as chemical transformations (important for visibility controlling pollutants), and wet/dry deposition. The CALMET model, a preprocessor to CALPUFF, is a diagnostic meteorological model that produces a three-dimensional field of wind and temperature and a two-dimensional field of other meteorological parameters. Simply, CALMET was designed to process raw meteorological, terrain, and land-use databases to be used in the air modeling analysis. The CALPUFF modeling system uses a number of preprocessor programs that extract data from large databases and converts the data into formats suitable for input to CALMET. The processed data produced from CALMET was input to CALPUFF to assess the pollutant specific impact. Both CALMET and CALPUFF were used in a manner that is recommended by the IWAQM Phase 2 Report.

2.4 CALPUFF MODEL SETTINGS

The CALPUFF settings contained in Table 2-2 were used for the Level II refined modeling analysis. A detailed listing of parameter values used are presented in Table A-1, Appendix A.

2.5 BUILDING WAKE EFFECTS

The CALPUFF analysis included the direction-specific building heights and projected widths to account for the effects of building-induced downwash on the proposed plant's 17 emission point sources. The building dimensions used in the CALPUFF model are identical to those processed for the Industrial Source Complex Short-Term (ISCST) model using the Building Profile Input Program (BPIP), Version 95086. The building data from the ISCST model were converted to CALPUFF model input format using the utility program ISC2PUF.

2.6 RECEPTOR LOCATIONS

The CALPUFF analysis used an array of receptors of sufficient density and extent to adequately predict the pattern of pollutant impacts at the SMNWR. Specifically, the array consisted of 125 receptors located along the boundary and within the Wilderness Area portion of SMNWR. Receptors were generally located within the area with a spacing of 1 km. The Wilderness Area at the SMNWR is located at two separate areas. To predict pollutant impacts at the larger eastern portion, 108 receptors were used along the boundary for the modeling analysis. The western portion of the Wilderness Area, which consists entirely of Thoms Island, was represented by 17 receptors. Table 2-3 includes the receptors used for the analysis. Because the SMNWR is flat and at sea level, all receptors were assigned an elevation of zero.

The St. Marks Wilderness Area receptor locations are shown in Figure 2-1 relative to the proposed G-P plant site location.

2.7 BACKGROUND VISUAL RANGES AND RELATIVE HUMIDITY FACTORS

The background visual range is based on data representative of the top 20-percentile air quality days. The background visual range for the SMNWR is 65 km and was provided by the FLM.

An average daily relative humidity factor was determined for each day that CALPUFF predicted a maximum 24-hour impact for each species: SO₄, NO₃, and PM₁₀. The daily average factor was computed by summing each hour's relative humidity factor for the 24-hour period, and dividing by 24. The hourly relative humidity factors used to determine each daily average were obtained from the document entitled Federal Land Managers' Air Quality Related Values Workgroup (FLAG), <u>Draft Phase 1 Report (October, 1999)</u>.

2.8 METEOROLOGICAL DATA PROCESSING

The California Puff meteorological and geophysical data preprocessor (CALMET, Version 5) was used to develop the gridded parameter fields required for the refined regional haze modeling analysis. The follow sections discuss the specific data used and processed in the CALMET model.

2.8.1 CALMET SETTINGS

The CALMET settings contained in Table 2-4 were used for the refined modeling analysis. A summary of parameter values used is presented in Table A-2, Appendix A.

2.8.2 Modeling Domain

The modeling domain defines the boundary of plume simulation area. The modeling domain used for the analysis is in the shape of a rectangle extending approximately 475 km in the east-west (x) direction and 300 km in the north-south (y) direction. The southwest corner of the rectangle is the origin of the modeling domain and is located at 29.25 N degrees latitude and 81.5 W degrees longitude.

For the processing of meteorological and geophysical data, 95 grid cells were used in the x-direction and 60 grid cells were used in the y-direction. A grid resolution of 5 km was used. The air modeling analysis was performed with the UTM coordinate system. The modeling domain is outlined by the dashed orange rectangle in Figure 2-2.

2.8.3 Mesoscale Model - Generation 4 (MM4) Data

Pennsylvania State University in conjunction with the NCAR Assessment Laboratory developed the MM4 data, a prognostic wind field or "guess" field, for the United States (U.S.). The hourly meteorological variables used to create this data set (wind, temperature, dew point depression, and geopotential height for eight standard levels and up to 15 significant levels) are extensive and only allow for one data base set for the year 1990. The analysis used the MM4 data to initialize the CALMET wind field. The MM4 data have a horizontal spacing of 80 km and are used to simulate atmospheric variables within the modeling domain.

To apply the MM4 dataset to a regional modeling domain, such as the area that will incorporate G-P's proposed facility and the SMNWA, a sub-set domain was developed

based on the MM4 data local coordinate system. In this coordinate system, the subset domain consisted of a 8 x 6- cell rectangle, spaced at 80 km, extending from MM4 coordinates (45,13) to (52,18). These data were processed to create a MM4.Dat file, which was input to the CALMET model. The location of the MM4 data grid is presented relative to the location of modeling domain area in Figure 2-2. The MM4 grid nodes are represented as green dots.

The MM4 data set used in the CALMET, although advanced, lacks the fine detail of specific temporal and spatial meteorological variables and geophysical data. These variables were processed into the appropriate format and introduced into the CALMET model through the additional data files obtained from the following sources.

2.8.4 Surface Data Stations and processing

The processed surface data includes the following eight primary weather stations that are located either within or just beyond the modeling domain. The seven surface stations include Jacksonville, Gainesville, Tallahassee, and Tampa in Florida, Columbus and Macon in Georgia, and Mobile and Montgomery in Alabama. The parameters included for these stations are wind speed, wind direction, cloud ceiling height, opaque cloud cover, dry bulb temperature, relative humidity, station pressure and a precipitation code that is based on current weather conditions. The weather station data for all stations but Gainesville was extracted for the year 1990 from the National Climatic Data Center's (NCDC) Solar and Meteorological Surface Observational Network (SAMSON) CD. The surface data from Gainesville was processed from NCDC CD-144 All data was processed with the CALMET preprocessor utility program, format. SMERGE, to create the SURF.DAT file for input to CALMET. Because the air modeling domain extends into the Gulf of Mexico, surface observations from the Cape San Blas C-MAN station were included in the analysis. The data from Cape San Blas were converted into an overwater surface station format (i.e., SEA) for input to CALMET.

2.8.5 Upper Air Data Stations and Processing

Upper air data was processed from three weather stations including Apalachicola and Tampa Bay/Ruskin, in Florida and Waycross in Georgia. The upper air data were extracted from the NCDC Radiosonde Data CD and processed into the NCDC Tape Deck (TD) 6201 format by the CALMET preprocessor utility program, READ62, to create an upper air file for each station.

A summary of the surface, over-water, and upper air stations used in the air modeling analysis is presented in Table 2-5. The locations of the these weather stations are shown in Figure 2-2.

2.8.6 Precipitation Data stations and Processing

Hourly precipitation data were developed for 57 primary and secondary NWS precipitation stations located in southern Alabama, southern Georgia and northern Florida. The stations were selected so as to provide detailed coverage in all areas within and around the CALMET modeling domain. The hourly precipitation data were extracted from data obtained by the NCDC and organized by EarthInfo on CD. These CD data were extracted into Tape Deck (TD) 3240 format. Once in TD3240 format, the hourly precipitation data for each of the 57 stations were extracted and then re-merged into CALMET input format (PRECIP.DAT) using the utility programs PXTRACT and PMERGE, respectively.

A listing of the precipitation stations used for air modeling analysis is presented in Table 2-6. Precipitation station locations are shown relative to the modeling domain in Figure 2-3.

2.8.7 Geophysical Data Processing

Terrain elevations for each grid cell of the modeling domain were obtained from 1-degree Digital Elevation Model (DEM) files obtained from US Geographical Survey (USGS) internet website. The DEM data for the modeling domain grid was processed using the utility program TERREL. One-degree land-use data was also obtained from

the USGS website. The land-use parameters for the air modeling domain were developed using the CALMET preprocessor utility programs CTGCOMP and GTGPROC. Other processed parameters extracted with the land use data are surface roughness, surface albedo, Bowen ratio, soil heat flux, and leaf index field. The processed land-use parameters were combined with the processed terrain elevation data to create the GEO.DAT file that was input to CALMET.

2.9 FACILITY EMISSIONS

Maximum emission rates and stack parameter data for the proposed G-P plant are summarized in Tables 2-7 and 2-8. The data for point sources are summarized in Table 2-7, while the volume source data are presented in Table 2-8. The emission rates are the same as those used for the ISCST modeling analysis. For the CALPUFF analysis, volume sources that have identical stack parameter were combined into one source with the emissions totaled for each group. Hourly emission factors were used for the road traffic source.

3.0 RESULTS

Table 3-1 summarizes the species' maximum impacts and predicted worst days for the refined visibility analysis. The predicted worst days (24-hour periods) for NO₃, PM₁₀, and SO₄ are 1/9 (Julian 9), 10/14 (Julian 287), and 10/15 (Julian 288), respectively. For each worst day, the hourly relative humidity and hourly relative humidity factors [f(RH)] and are presented in Table 3-2. The daily average f(RH)s for 1/9, 10/14, and 10/15 are 7.00, 5.58, and 5.18, respectively. The maximum predicted change due to the proposed facility operation for each worst day is summarized in Table 3-3. The maximum predicted change is 2.71 percent and occurs on 1/9. Because the maximum visibility change is below the criteria of 5 percent change, the operation of the proposed plant is not expected to adversely impact existing regional haze levels at the SMNWR.

Table 2-1. Outline of IWAQM Level II Refined Modeling Analyses Recommendations*

	•
Meteorology	Use CALMET (minimum 6 to 10 layers in the vertical; top layer must extend above the maximum mixing depth expected); horizontal domain extends 50 to 80 km beyond outer receptors and sources being modeled; terrain elevation and land-use data is resolved for the situation.
	terrain elevation and land-use data is resolved for the situation.
Receptors	Within Class I area(s) of concern; obtain regulatory concurrence on
	coverage.
5	
Dispersion	CALPUFF with default dispersion settings.
	Use MESOPUFF II chemistry with wet and dry deposition
	3. Define background values for ozone and ammonia for area
Processing	Use highest predicted 24-hr SO ₄ , PM10 and NO ₃ values; compute a day-average relative humidity factor (f(RH)) for the worst day for each predicted species, calculate extinction coefficients and compute percent change in extinction using the FLM supplied background extinction.

^{*}IWAQM Phase II Summary Report and Recommendations for Modeling Long Range Transport Impacts (EPA, 12/98)

Table 2-2. CALPUFF Model Settings

Parameter	Setting					
Pollutant Species	SO ₂ , SO ₄ , NO _x , HNO ₃ , and NO ₃ , and PM10					
Chemical Transformation	MESOPUFF II scheme					
Deposition	Include both dry and wet deposition, plume depletion					
Meteorological/Land Use Input	CALMET					
Plume Rise	Transitional, Stack-tip downwash, Partial plume penetration					
Dispersion	Puff plume element, PG /MP coefficients, rural					
Terrain Effects	mode, ISC building downwash scheme Partial plume path adjustment					
Output	Create binary concentration file including output species for SO ₄ , NO ₃ and PM10					
Model Processing	Highest predicted 24-hour SO ₄ , NO ₃ and PM10 concentrations for year					
Background Values	Ozone: 80 ppb; Ammonia: 10 ppb					

Table 2-3. Summary of Receptors Used for the Regional Haze Modeling Analysis

Number Easting Northing St. Marks Wilderness Aria (eastern protion) 64 794368 3324845 1 769660 3334380 65 778372 3332268 5 778972 3332268 5 778972 3332268 5 778972 3332268 5 778972 3332268 5 778972 333226 5 779661 2 3332572 6 779661 2 3332572 6 779661 2 3332572 6 779661 2 3332572 6 779661 2 333257 6 779661 2 333257 7 779661 2 333226 5 771850 3332210 6 9 780742 8 3332263 7 7 781819 2 3332463 7 7 781868 1 333257 7 772360 3332140 71 781868 1 333257 7 772360 333140 72 782335 4 333247 6 7 771250 333150 73 782984 3 333471 6 7 77450 3332610 75 783961 3 333485 7 7 7 7 7 7 7 7 7	Receptor	UTM Coordi	nate (m)	Receptor	UTM Coordin	uate (m)
St. Marks Wilderness Area (eastern portion)						
1 769660 3343480 65 778372 3332265.7 2 77000 333280 66 77882.5 332190.7 2 332265.7 2 332265.7 2 332265.7 2 332265.7 2 332265.7 2 332265.7 2 332265.7 2 332265.7 2 332265.7 2 332265.7 2 332266 6 772100 3322710 69 78074.2 332265.7 7 771280 3332110 69 78074.2 332265.7 7 771280 3332160 71 781868.1 332295.2 4 8 772230 3331440 72 782335.4 333295.2 4 8 772230 3331650 73 782964.3 333271.0 10 771450 3330530 74 783192 33333471.6 10 771450 3330530 74 783192 33333471.6 11 771700 3330220 75 78396.1 3333488.9 12 777420 3329610 76 784585 3333627.3 13 773590 3329670 77 785173.4 3333262.3 13 773590 3329670 77 785173.4 3333263.7 14 774000 3330230 78 785979 3333748.3 15 774270 3331020 79 786159.4 333348.1 16 774100 3330040 80 787000 3337378.3 15 774270 3331020 79 786159.4 3333578.1 17 774740 3330480 81 788000 3333218.5 18 779370 3339010 82 782000 3333590.2 4 785900 3333590.2 4 786199.4 3333240.0 85 789000 3333590.2 4 770370 3332500 85 789000 3333590.2 4 770370 3332500 85 789000 3333590.2 4 770370 3332500 85 789000 3333590.2 4 770370 3332500 85 789000 33353500 2 2 776440 3333000 99 792098 3329070 2 2 776440 3333000 99 792098 332902 2 2 776440 3333000 99 792098 332902 2 2 776440 3333000 99 792098 332902 2 2 776440 3333000 99 792098 332902 2 2 776400 333800 99 792098 332902 2 2 776400 333800 99 792098 332902 2 2 776000 3338000 99 792098 332903 2 2 770200 3338000 99 792098 332903 2 2 770200 3338000 99 780000 333591 2 2 2 77600 333000 99 78000 3335112 3 770200 3333000 99 78000 3336415 3 76900 3335900 4 76900 3335000 99 78000 3336415 3 76900 333600 100 78000 3336415 3 76900 333600 100 78000 3336415 3 76900 333600 100 78000 3336415 3 76900 3336000 100 78000 3336415 3 76900 3336000 100 78000 3336415 3 76900 3336000 100 78000 3336415 3 76900 3336000 110 78000 3336415 3 76900 3336000 110 78000 333600 110 78000 3336415 3 76900 3336000 110 78000 333600 110 78000 333600 110 78000 333600 110 78000 333600 110 78000 333600 110 78000 333600 110 78000 3336000 110 78000 3336000 110 78000 3336000 110 78000 3336000 110 78000 3336000 110 78000 3336000						
3 770420 3332920 67 77964.12 3332675.2 68 780388.1 333259.0 1 5 771850 3332110 69 780742.8 333259.0 1 6 772100 3332710 70 781219.2 3332424.5 7772380 3332160 71 781868.1 3332952.4 88 772230 3331440 72 782335.4 3332952.4 88 772230 3331440 72 782335.4 3332952.4 89 771570 3331050 73 782964.3 3332471.6 10 771450 3330530 74 783192 33333471.6 11 771700 3330220 75 783936.1 3333488.9 12 772420 3329810 76 784856 3333227.3 13 773560 33329870 77 785173.4 33333293.1 14 774000 3330230 78 785979 3333748.3 15 774270 3331060 80 787000 333748.3 16 774100 3330040 80 787000 3333748.3 16 774100 3330040 80 787000 3333256.2 9 786195.4 3333590.1 77 774740 333140 81 788000 3333256.2 9 786195.4 3333556.2 9 786195.4 3333550.2 4 785000 3335350.2 4 785000 3335350.2 4 785000 3335350.2 4 785000 3335350.2 4 785000 3335350.2 4 785000 3335350.2 4 785000 3335350.2 4 785000 3333590.0 82 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 333550.2 4 785000 3335000 85 789000 333550.2 2 785000 3335000 88 78000 333550.2 2 785000 3335000 88 78000 333550.2 2 785000 3335000 88 78000 333550.2 2 785000 3335000 90 79298 332966.2 7 775000 3335000 90 79298 332966.2 7 775000 3335000 90 79298 332966.2 7 775000 3335000 90 79298 332966.2 7 775000 3335000 90 79298 332966.2 7 775000 3335000 90 79298 332966.3 333600 90 79298 332966.3 333600 90 79298 332966.3 333600 90 79298 332966.3 333600 90 79298 332966.4 775000 3335000 90 79298 332966.3 333600 90 79298 332966.3 333600 90 793098 3329183 335000 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 3329606 333600 90 79298 333600 333600 90 792998 33329606 90 79298 333600 90 79298 3329606 90 79298 3329606 90 79298 3329606 90 792	1	769660	3334380	6 5	778372	3332268.5
4 771060 3332250 68 780388.1 3322363.7 5 771850 3332110 69 780742.8 3332363.7 6 772100 3332110 70 781219.2 3332424.5 7 772380 3332160 71 781868.1 33329267 8 772230 3331440 72 782335.4 33333781 10 771450 333050 74 783192 3333471.6 10 771450 333050 74 783192 3333488.9 12 77420 33307810 76 74858 3333273 12 77420 3331020 75 785956.1 3333488.9 13 773530 3329810 76 748557.4 3333430.3 14 774000 3330400 80 780597 3333748.3 15 774270 3331240 80 78000 3333216.7 17 77440 3331240 82 78200 3335		770000	3333480	66	778882.5	3332190.7
5 771850 3332110 69 7807428 3332243.5 6 772100 3332710 70 781219.2 3332244.5 7 772380 3332160 71 781868.1 3332952.4 8 772230 3331440 72 782325.4 3332952.4 10 771450 3330150 73 782984.3 3332471.6 11 771700 3330220 75 783192 33333471.6 11 771700 3330220 75 783192 3333348.9 11 771700 3330230 76 784585 333348.9 11 771700 3330230 78 785973.4 3333329.3 13 773350 33329870 77 785173.4 3333320.3 14 774000 3330230 78 785979 3333748.3 15 774270 3331020 79 786159.4 333348.9 16 774100 3330040 80 787000 333748.3 17 774740 3330480 81 788000 3333374.5 18 775370 3331240 83 781000 333526.29 20 776220 3331880 84 780000 3333512.7 22 776440 3332400 85 799560 3331512 22 776440 3332400 85 799560 3331512 22 776440 3332000 88 794098 330947 24 770000 3338000 88 794098 3329872 25 770000 3338000 88 794098 3329183 26 772000 3333000 99 792098 3329183 26 772000 3333000 99 792098 332966 27 775000 3333000 99 792098 332966 27 77000 3333000 99 792098 332966 28 775000 3333000 99 792098 332966 29 775000 3333000 99 792098 332966 29 775000 3333000 99 786000 33337152 20 77600 3333000 99 792098 332966 27 77000 3333000 99 780000 33333647 28 77000 3333000 99 792098 332966 29 775000 3333000 99 792098 332966 3329600 3335000 99 782000 3333647 34 770200 3333000 99 786000 3337152 33 770200 3333000 99 786000 3337152 33 770200 3333000 99 786000 3333647 34 770200 3333000 99 786000 3333647 34 770200 3333000 99 786000 3336476 34 770200 3333000 99 786000 3336476 34 770200 3333000 99 786000 3336476 34 770200 333800 100 784000 3336476 34 770200 3338000 99 786000 3336476 34 770200 3338000 100 784000 333699 9 785000 3337192 35 774400 333600 100 784000 3336476 36 775000 3333000 100 784000 3336476 36 775000 3333000 100 784000 3336476 37 766900 3336000 100 784000 3336476 38 769100 3336000 110 785000 3336476 39 766000 3336000 111 746500 332099 9 785000 3336000 112 746000 332099 9 785000 3336000 111 746500 332099 9 785000 3336000 111 746500 332099 9 785000 3336000 111 746500 332099 9 785000 3336000 112 746000 332099 9 785000 3336000 112 746000 332099 9 785000 3336000 112 7			3332920	67	779661.2	3332675.2
6 77,100 3332710 70 781219.2 3332424.5 7 772380 3332160 71 781868.1 333295.4 8 772230 3331440 72 782325.4 3332897 9 771570 3331050 73 782984.3 3333359.1 11 771700 3330530 74 78319.2 3333359.1 11 771700 3330220 75 783936.1 333348.0 12 772420 3329810 76 784585 3333627.3 13 773350 3329870 77 785173.4 33320.3 14 774000 3330230 78 785597 3333748.3 15 774270 3331020 79 786159.4 3333464.4 16 774100 333040 80 787000 3333218.75 17 774740 3330480 81 788000 3333218.75 18 775370 3331910 82 782000 3333218.75 18 775370 3331840 83 781000 3335268.29 19 776140 333040 85 789500 3333218.75 20 776220 3331880 84 780000 333526.2 20 776220 3331880 84 78000 333526.2 21 776490 3332400 85 789500 333151.2 22 776440 3333000 85 789500 333151.2 23 777370 3332250 87 790098 3330937 24 77000 3336000 89 793098 3329927 24 77000 3336000 89 793098 332992 25 777000 3336000 99 79298 3329606 27 772000 3333000 91 791244 3330549 28 772000 3333000 91 791244 3330549 28 772000 3333000 91 791244 3330549 28 772000 3333000 99 79298 3329606 29 775000 3333000 99 780915 3333004 30 775000 3333000 99 780915 3333004 31 777000 3333000 99 78090 3337192 31 777000 3333000 99 78090 3337193 31 777000 3333000 99 78090 3337193 31 777000 3333000 99 78090 3337193 31 777000 3333000 99 78090 3337193 31 777000 3333000 99 78000 3337193 32 76090 3333000 99 78000 3337194 34 770200 3333000 99 78000 3337194 35 774400 333600 99 78000 3336476 34 770200 3338000 99 78000 3337194 34 770200 3338000 99 78000 3336115 35 774400 333600 100 784000 3336183 37 76890 3338000 100 784000 3336183 37 76900 333600 100 784000 3336180 37 76900 3336000 110 784000 333690 31 777000 333000 110 784000 332696 44 76939 3338000 100 791400 3326906 45 76900 3336000 110 784000 3326906 46 77000 3336000 110 784000 3326906 50 771000 3336000 110 784000 3326906 50 771000 3336000 110 784000 3326909 51 776000 3336000 110 784000 3326909 51 776000 3336000 110 784000 3326909 51 776000 3336000 110 784000 3326909 52 774000 3336000 110 784000 3326909 53 776000 3336000 110 784000 3326900 53 776000 3336000 110 784000 3326900 52						
7 77280 3332160 71 781868.1 3332952.4 8 772230 3331410 72 782335.4 3332987 9 771570 3331060 73 782984.3 3333451.1 10 771450 3330220 75 78396.1 33333459.1 11 771700 3330220 75 78396.1 33333459.1 12 772420 3329810 76 784585 3333627.3 13 773350 3329870 77 785173.4 333302.3 14 774000 3330230 78 785597 3333748.3 15 774270 3330200 79 786159.4 333344.4 16 774000 3330200 79 786159.4 333344.4 16 774400 3330200 79 786159.4 333344.4 16 774470 3330200 80 780000 3333790.1 77 774740 3330400 80 787000 333359.2 17 774740 3330480 81 788000 333359.2 19 776140 3331240 83 781000 3335258.2 20 776220 3331880 84 780000 3335258.2 20 776220 3331880 84 780000 3335258.2 20 776220 3333800 85 789500 3333512.2 2 776440 333100 86 791088 3330375 23 777370 3332200 85 789500 3333512.2 2 776440 3333000 88 791088 333047 24 770000 3338000 88 794098 3329274 25 770000 3338000 89 793098 3329183 266 772000 3333000 90 792098 3329462 28 772000 3333000 90 792098 332966 27 777000 3333000 91 791244 333759 28 775000 3333000 91 791244 333759 28 775000 3333000 92 791305 3333366 29 775000 3333000 94 791342 333759 3333000 95 789000 3337518 28 772000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333000 97 780000 3333100 99 785000 3337182 33 770200 3333000 99 785000 3337182 33 770200 3333000 99 785000 3336476 333640 100 784000 3336464 40 769300 3338400 100 784000 3336165 44 769300 3338400 100 784000 3336165 44 769309 3338000 100 784000 3336165 44 769309 3338000 100 784000 3336165 55 774000 3333000 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 333600 110 784000 3336000 110 784000 333600 110 784000 3336000 110 784000 3336000 110 784000 3336000 110 784000 3336000 110 784000 33318000 55 774000 3336000 110 784000 33318000 55 774000 3336000 111 784000 3319999 55 774000 3336000						
8						
9						
10						
11 771700 333020 75 783936.1 333348.9 12 777420 3329810 76 784585 3333627.3 13 773350 3329870 77 785173.4 333302.3 14 774000 3330200 78 785579 3333748.3 15 774270 3331020 79 786159.4 3333748.3 15 774270 3331020 79 786159.4 3333748.3 16 774100 3330040 80 787000 333378.3 17 774740 333040 81 788000 333378.1 17 774740 333040 81 788000 3333528.7 18 775370 330910 82 782000 33335390.2 19 776140 3331240 83 781000 333528.2 20 776220 3331800 84 780000 333599.9 17 776140 3332400 85 789500 3333999 21 776420 3333400 85 789500 3333999 22 776440 3333010 86 791098 3330975 22 776440 3333000 88 794098 3330975 23 777370 3336000 89 792098 3329183 226 772000 3336000 89 792098 3329183 226 772000 3336000 90 792098 3329183 226 772000 3336000 90 792098 3329183 226 772000 3330000 91 791244 3330549 28 772000 3333000 91 791244 3330549 28 772000 3333000 92 791305 3333366 29 775000 3333000 94 791342 3337159 333 777000 3333000 95 788000 3337182 33 776800 33331000 94 791342 3337159 33 777000 3333000 97 7809015 3333360 30 775000 3333000 97 7809015 3333366 33 770200 3333000 97 7809015 3333360 30 775000 3333000 97 780000 3336476 3333700 98 786000 3337182 33 770200 3339000 96 786000 3337182 33 770200 3339000 96 786000 3336476 34 770200 3339000 96 786000 3336476 34 770200 3339000 97 785000 3336476 33 774400 3335000 100 784000 333613 37 768900 3337600 101 783000 3336244 40 769300 3338600 102 791646 3336585 39 768800 33337600 101 783000 3336244 40 769300 3338600 102 791646 3336585 39 768800 3333600 100 784000 3336294 40 769300 3338600 100 784000 3336294 40 769300 333600 100 784000 3336294 40 769300 333600 100 784000 3336294 40 769300 333600 101 785000 333600 101 785000 333699 97 785000 333699 97 785000 3336900 101 785000 333699 97 785000 333699 97 785000 3336900 101 785000 333699 97 785000 333699 97 785000 3336900 101 785000 333699 97 785000 3336900 101 785000 333699 97 785000 3336900 101 785000 333699 97 785000 3336900 101 785000 333699 97 785000 3336000 111 785000 3336000 111 785000 3336000 111 785000 3336000 111 785000 3336000 111 785000 3336000						
12 777420 3329810 76 784585 3333627.3 13 77350 3329870 77 785173.4 3333203.3 14 774000 3330220 78 785597 3333748.3 15 774200 3331020 79 786159.4 3333441.4 16 774100 3330480 81 788000 333528.7 18 775370 3330910 82 782000 3335390.24 19 776140 3331240 83 781000 3335390.24 20 776220 333180 84 780000 3335393.22 21 776440 3332400 85 789500 3331512 22 776440 3332250 87 79098 332974 24 770000 3338000 88 794098 3329274 24 770000 3336000 89 793098 3329606 27 772000 3333000 9 792098 3329606 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
13 773350 3329870 77 785173.4 333320.3 14 774000 3330230 78 785597 3333748.3 15 774270 3331020 79 786159.4 333344.3 16 774100 3330040 80 787000 3333780.1 17 774740 333040 81 788000 3333590.24 18 775370 3330910 82 782000 333590.24 19 776140 3331240 83 781000 333592.24 20 776220 333180 84 780000 3330315 21 776490 3332400 85 789500 3331512 22 776440 3333010 86 791098 3330847 24 770000 3338000 88 794098 3329274 25 77000 3336000 89 793098 3329183 26 772000 3333000 90 791095 3333500						
14 774000 3330220 78 785597 3333748.3 15 774270 3331020 79 786159.4 3333644.4 16 774100 333040 80 787000 3333218.75 17 774740 3330480 81 788000 3335380.24 18 775370 333040 83 781000 3335390.24 19 776140 3331240 83 781000 3333590.24 20 776220 3333400 85 789500 33331512 21 776440 3333210 86 791098 3330975 23 777370 3332250 87 79098 3329274 24 770000 3336000 89 794098 3329274 24 770000 3336000 90 792098 3329606 27 772000 3333000 91 791244 330549 28 772000 3333000 92 791305 3333500 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
15 774270 3331020 79 786159.4 3333644.4 16 774100 3330400 80 787000 3333751 17 774740 3330480 81 788000 3335290.24 18 775370 3331240 83 781000 3335268.29 20 776220 3331880 84 780000 3333999 21 776440 3333400 85 789500 3331512 22 776440 3333010 86 791098 3330847 24 770000 3338000 88 794098 3329274 24 770000 3336000 89 793098 3329606 27 772000 3335000 91 791244 3330640 28 772000 3333000 91 791244 3330640 29 775000 3333000 93 790915 3335000 30 775000 3333000 93 790915 3335000						
16 774100 3330040 80 787000 3333750 17 774740 3330480 81 788000 3333218.72 18 775370 3330910 82 782000 3333580 24 19 776140 333180 84 780000 3333590 21 776490 3333400 85 789500 3331512 22 776440 3333010 86 791098 3330375 23 777700 3338000 88 794098 3329183 24 770000 3336000 89 793098 3329183 26 772000 3336000 90 792098 3329606 27 772000 3333000 91 791036 33330649 28 772000 3333000 92 791305 3333306 29 775000 3333000 93 79915 333506 30 775000 3333000 96 788000 33371						
17 774740 3330480 81 788000 333218.75 18 775370 3330910 82 782000 3335390.24 19 776140 3331240 83 781000 3335390.24 20 776220 3331880 84 780000 3333939 21 776490 3332400 85 789500 3331512 22 776440 3333000 86 791098 333047 24 770000 3338000 88 794098 3329274 24 770000 3333000 90 792098 3329606 27 772000 3333000 91 791244 330649 28 772000 3333000 91 791244 330549 28 772000 3333000 93 790915 333500 30 775000 3333000 93 790915 333500 31 770200 3333000 96 788000 337182						
18 775370 3330910 82 782000 333590.24 19 776140 3331240 83 781000 3335268.29 20 776220 333180 84 780000 333399 21 776490 3332400 85 789500 33331512 22 776440 3333010 86 791098 333087 24 770000 3336000 89 793098 3329183 26 772000 3336000 89 793098 3329183 26 772000 3333000 91 791244 330549 28 772000 3333000 92 791305 33335600 29 775000 3333000 92 791305 33335600 30 775000 3333000 92 791305 33335600 30 775000 3333000 95 789000 3337192 31 777000 3333000 96 789000 33374182 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
20 776220 3331880 84 780000 3333939 21 776490 3332400 85 789500 3331512 22 776440 3333010 86 791098 3330975 23 777370 333250 87 790098 3330047 24 770000 3338000 88 794098 3329274 25 770000 3336000 90 792098 3329506 27 772000 3333000 91 791244 3330649 28 772000 3331000 92 791305 3333506 29 775000 3331000 94 791342 3337159 31 777000 3333000 95 789000 3337182 33 777000 3333000 95 789000 3337182 33 770200 3339000 96 788000 3337182 33 770200 3339000 97 787000 3336415	18		3330910		782000	3335390.24
20 776220 3331880 84 780000 3333939 21 776490 3332400 85 789500 3331512 22 776440 3333010 86 791098 3330975 23 777370 333250 87 790098 3330047 24 770000 3338000 88 794098 3329274 25 770000 3336000 90 792098 3329506 27 772000 3333000 91 791244 3330649 28 772000 3331000 92 791305 3333506 29 775000 3331000 94 791342 3337159 31 777000 3333000 95 789000 3337182 33 777000 3333000 95 789000 3337182 33 770200 3339000 96 788000 3337182 33 770200 3339000 97 787000 3336415	19			83		3335268.29
22 776440 3333010 86 791098 3330375 23 777370 3332250 87 790098 3330075 24 770000 3336000 89 793098 3329274 25 770000 3336000 90 792098 3329606 26 772000 3336000 90 792098 3329606 27 772000 3331000 92 791305 3333506 29 775000 3331000 93 790915 3335000 30 775000 3331000 94 791312 3337194 32 770200 3339000 96 788000 3337182 33 770200 3338000 97 787000 3336415 34 770200 3337200 98 786000 3336415 35 774400 333600 97 787000 3336415 36 770400 3333600 100 784000 3336171	20	776220	3331880	84	780000	3333939
23 777370 3332250 87 790098 3330847 24 770000 3338000 88 79498 3329183 25 770000 3336000 90 792098 3329606 27 772000 3333000 91 791244 333649 28 772000 3331000 92 791305 3335000 30 775000 3331000 94 791342 3337159 31 777000 3333000 95 789000 3337182 32 770200 3339000 96 788000 3337182 33 770200 3339000 96 788000 3337182 33 770200 3337200 98 786000 3336415 35 774400 3336100 99 785000 3336113 37 76890 3337600 101 78300 3336171 38 769100 3336800 102 791646 3336581 <		776490	3332400	85	789500	3331512
24 770000 3336000 88 794098 3329274 25 770000 3336000 89 793098 3329183 26 772000 3336000 90 792098 3329606 27 772000 3331000 91 791244 3330549 28 772000 3331000 92 791305 3333500 30 775000 3331000 94 791342 3337159 31 777000 3333000 95 789000 3337182 32 770200 3339000 96 788000 3337182 33 770200 3338000 97 787000 3336415 34 770200 3337200 98 786000 3336115 35 774400 3336100 99 785000 3336183 37 768900 3337600 101 783000 3336183 37 768900 33338400 102 791646 3336585		776440	3333010	86	791098	3330375
25 770000 3336000 89 793098 3329183 26 772000 3336000 90 792098 3329606 27 772000 3333000 91 791244 333549 28 772000 3331000 92 791305 333500 30 775000 3331000 94 791342 3337159 31 777000 3333000 95 789000 3337182 32 770200 3338000 96 788000 3337182 33 770200 333700 98 786000 3336476 34 770200 333700 98 786000 3336476 34 770200 333700 98 786000 3336183 37 768900 3337600 100 784000 3336183 37 768900 3337800 101 78000 3336171 38 769100 3336800 102 791646 3336585 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
26 772000 3336000 90 792098 3329606 27 772000 3333000 91 791244 3330549 28 772000 3331000 92 791305 333366 29 775000 3333000 93 79915 3335000 30 775000 3333000 94 791342 3337159 31 777000 3333000 95 789000 3337914 32 770200 3338000 97 787000 3336182 33 770200 333700 98 786000 333615 34 770200 333700 98 786000 333615 35 774400 3336100 99 785000 333618 37 768900 3337600 101 783000 333618 37 768900 3337600 101 78300 333618 37 768900 3338400 102 791646 3336585						
27 772000 3333000 91 791244 3330549 28 772000 3331000 92 791305 33333366 29 775000 3331000 93 79915 3335000 30 775000 3331000 94 791342 3337159 31 770200 3339000 95 789000 3337182 32 770200 3338000 97 787000 336476 34 770200 333700 98 786000 3336476 34 770200 3337600 99 785000 3336183 35 774400 3336100 99 785000 3336183 37 76890 3337600 101 783000 3336171 38 769100 3338400 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338411 106 791300 3331468.6						
28 772000 3331000 92 791305 3333366 29 775000 3333000 93 790915 3335000 30 775000 3331000 94 791342 3337159 31 777000 3333000 95 788000 3337914 32 770200 3338000 97 787000 3346476 34 770200 3337200 98 786000 3336415 35 774400 3337200 98 786000 333615 36 770400 3333000 100 784000 3336183 37 768900 3337600 101 783000 3336181 37 768900 3336800 102 791646 3338244 40 769300 3338400 103 791439 3338244 40 769300 3338411 106 791300 333259.3 42 768755 3338411 106 791300 3335786.3 <						
29 775000 3333000 93 79915 3335000 30 775000 3331000 94 791342 3337159 31 777000 3333000 95 789000 3337914 32 770200 3339000 96 788000 3337182 33 770200 3337200 98 786000 3336415 34 770200 3337200 98 786000 3336244 36 770400 3336100 99 785000 3336244 36 770400 3337600 100 784000 3336183 37 768900 3337600 101 783000 3336171 38 769100 3336800 102 791646 3338244 40 769300 3338400 104 789431 3338244 41 769800 333811 106 791300 3331468.6 43 769785 3338411 106 791300 3331468.6 <						
30 775000 3331000 94 791342 3337159 31 777000 3333000 95 789000 3337914 32 770200 3338000 96 786000 333740 34 770200 3337200 98 786000 3336415 35 774400 3336100 99 785000 3336244 36 770400 3333000 100 784000 3336183 37 768900 3337600 101 783000 3336183 37 768900 3336800 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338800 104 789431 3338305 41 769800 333811 106 791300 3332259.3 42 768755 3338411 106 791300 3332259.3 45 769717 3339105 15 791300 3332500						
31 777000 3333000 95 789000 3337914 32 770200 3339000 96 788000 3337182 33 770200 3338000 97 787000 3336476 34 770200 3337200 98 786000 3336415 35 774400 3333000 100 784000 3336183 36 770400 3333000 100 784000 3336183 37 768900 3337600 101 783000 3336171 38 769100 3338400 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338400 105 791300 3332259.3 42 768755 3338411 106 791300 333466.6 43 769098 3338713 107 790443 3338292 44 769399 3338902 108 791257.6 3335786.3 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
32 770200 3339000 96 788000 3337182 33 770200 3338000 97 787000 3336476 34 770200 3337200 98 786000 3336415 35 774400 3336100 99 785000 3336183 36 770400 3333000 100 784000 3336183 37 768900 3337600 101 783000 3336171 38 769100 3336800 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338800 104 789431 333835 41 769800 3339100 105 791300 3331468.6 43 76998 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3332786.3 45 769717 3339105 \$E. Marks WA (Thoms Island)						
33 770200 3338000 97 787000 3336476 34 770200 3337200 98 786000 3336415 35 774400 3336100 99 785000 3336183 36 770400 33337600 100 784000 3336183 37 768900 3337600 101 783000 3336585 39 76800 3338400 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338411 106 791300 3331468.6 43 769080 3338713 106 791300 3331468.6 43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3321399.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
34 770200 3337200 98 786000 3336415 35 774400 3336100 99 785000 3336244 36 770400 3333000 100 784000 3336183 37 768900 3337600 101 783000 3336171 38 769100 3338400 103 791439 3338244 40 769300 3338400 104 789431 3338254 41 769800 3339100 105 791300 3332259.3 42 768755 3338411 106 791300 3332299.2 44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 331890						
36 770400 3333000 100 784000 3336183 37 768900 3337600 101 783000 3336171 38 769100 3336800 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338800 104 789431 3338305 41 769800 3339100 105 791300 3332259.3 42 768755 3338411 106 791300 3331468.6 43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3321399.9 48 769700 3334000 110 745400 3321399.9 49 770000 3334000 112 747100 3320500						
37 768900 3337600 101 783000 3336171 38 769100 3336800 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338800 104 789431 3338305 41 769300 3338100 105 791300 3331259.3 42 768755 3338411 106 791300 3331468.6 43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3338786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3321399.9 48 769700 3335000 110 745400 3321399.9 48 769700 3334000 112 747100 3320500 50 771000 3330500 113 746400 3318800	35	774400	3336100	99	785000	3336244
38 769100 3336800 102 791646 3336585 39 768800 3338400 103 791439 3338244 40 769300 3338800 104 789431 3338305 41 769800 3339100 105 791300 3331686.6 43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 79157.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3330500 114 746200 3318800 52 774000 3336000 115 745600 33199.9	36	770400	3333000	100	784000	3336183
39 768800 3338400 103 791439 3338244 40 769300 3338800 104 789431 3338305 41 769800 3339100 105 791300 3332259.3 42 768755 3338411 106 791300 3331468.6 43 769098 3338713 107 790443 3338786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 77000 3334000 112 747100 3320500 50 771000 3335000 114 746200 3318800 52 774000 3336000 115 745600 3319200 53 771000 3336000 116 745200 3319200 <t< td=""><td>37</td><td>768900</td><td>3337600</td><td>101</td><td>783000</td><td>3336171</td></t<>	37	768900	3337600	101	783000	3336171
40 769300 3338800 104 789431 3338305 41 769800 3339100 105 791300 3332259.3 42 768755 3338411 106 791300 3331468.6 43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3330500 114 746200 3318800 52 774000 3336000 115 745600 3318000 53 771000 3336000 116 745200 332099.9		769100	3336800	102	791646	3336585
41 769800 3339100 105 791300 3332259.3 42 768755 3338411 106 791300 3331468.6 43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3330500 114 746200 3318800 51 773000 3336000 115 745600 3318000 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 117 745200 3321000 <		768800	3338400	103		
42 768755 3338411 106 791300 3331468.6 43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3330500 114 746200 3318800 51 773000 3336500 115 745600 3318000 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 117 745200 332099.9 55 775000 3336000 118 744100 3321500 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
43 769098 3338713 107 790443 3338299.2 44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3330500 114 746200 3318800 51 773000 3336500 115 745600 3318000 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 117 745200 3321500 55 775000 3336000 118 744100 3321500						
44 769399 3338902 108 791257.6 3335786.3 45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3332000 113 746400 3318800 52 774000 3336000 115 745600 3318000 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3333000 120 744700 3321000 <	-					
45 769717 3339105 St. Marks WA (Thoms Island) 46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3332000 113 746400 3318800 51 773000 3330500 114 746200 3318000 52 774000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 117 745200 3321500 56 775000 3335000 119 744700 3321700 57 775000 3333000 120 744700 3321700 58 775000 3333000 121 745400 3321000						
46 770257 3339219 109 744700 3322400 47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3332000 113 746400 3319899.9 51 773000 3330500 114 746200 3318000 52 774000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 117 745200 3321500 56 775000 3335000 118 744100 3321500 57 775000 3333000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 33220						3335786.3
47 769200 3336000 110 745400 3321399.9 48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3332000 113 746400 3319899.9 51 773000 3330500 114 746200 3318000 52 774000 3336000 115 745600 3319200 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321700 57 775000 3333000 120 744700 3321000 59 776000 3333000 121 745400 3322000 60 776000 3333500 122 745400 33220						2222400
48 769700 3335000 111 746500 3321399.9 49 770000 3334000 112 747100 3320500 50 771000 3332000 113 746400 3319899.9 51 773000 3330500 114 746200 3318800 52 774000 3336000 115 745600 3319200 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3333000 120 744700 3321000 59 776000 3333000 121 745400 3322000 60 776000 3333500 122 745400 3319500 61 778000 3333500 124 746000 3320500						
49 770000 3334000 112 747100 3320500 50 771000 3332000 113 746400 3319899.9 51 773000 3330500 114 746200 3318800 52 774000 3336000 115 745600 3319200 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3333000 120 744700 3321000 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3333500 123 746000 3319500 61 778000 3333500 124 746000 3320500 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
50 771000 3332000 113 746400 3319899.9 51 773000 3330500 114 746200 3318800 52 774000 3330500 115 745600 3318000 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3333000 120 744700 3321000 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
51 773000 3330500 114 746200 3318800 52 774000 3330500 115 745600 3318000 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3334000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200						
52 774000 3330500 115 745600 3318000 53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3334000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200						
53 771000 3336000 116 745200 3319200 54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3334000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200						
54 773000 3336000 117 745200 3320399.9 55 774000 3336000 118 744100 3321500 56 775000 3335000 119 744700 3321000 57 775000 3334000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200						
56 775000 3335000 119 744700 3321000 57 775000 3334000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200					745200	
56 775000 3335000 119 744700 3321000 57 775000 3334000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200	55	774000	3336000	118		3321500
57 775000 3334000 120 744700 3321700 58 775000 3333000 121 745400 3321000 59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200	56	775000	3335000		744700	3321000
59 776000 3333000 122 745400 3322000 60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200	57	775000	3334000	120		3321700
60 776000 3331000 123 746000 3319500 61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200					745400	3321000
61 778000 3333500 124 746000 3320500 62 779000 3334000 125 746000 3321200						
62 779000 3334000 125 746000 3321200						
63 789000 3333000				125	746000	3321200
	63	789000	3333000			

Table 2-4. CALMET Settings

Parameter	Setting
Horizontal Grid Dimensions	475 by 300 km, 5 km grid resolution
Vertical Grid	8 layers
Weather Station Data Inputs	9 surface, 3 upper air, 57 precipitation stations
Wind model options	Diagnostic wind model, no kinematic effects
Prognostic wind field model	MM4 data, 80 km resolution, 8 x 6 grid, used for wind field initialization
Output	Binary hourly gridded meteorological data file for CALPUFF input

Table 2-5 Surface, Overwater, and Upper Air Stations Used in the Refined Modeling Analysis

Station	Station	WBAN	UTN	1 Coordinate		Anemometer	Time
Name	Symbol	Number	Easting (km)	Northing (km)	Zone	Height (m)	Zone ^b
Cools Clatian-	-						
Surface Stations							
Jacksonville, FL	JAX	13889	1012.82ª	3374.19	17	6.1	5
Tallahassee, FL	TLH	93805	753.04°	3363.99	16	7.6	5
Tampa, FL	TPA	12842	929.17	3094.25	17	6.7	5
Columbus, GA	CSG	93842	692.57	3599.35	16	9.1	5
Macon, GA	MCN	3813	831.58ª	3620.93	17	7.0	5
Mobile, AL	MOB	13894	380.26	3394.97	16	10.1	6
Montgomery, AL	MGM	13895	556.50	3573.65	16	7.0	6
Gainesville, FL	GNV	12816	957.43°	3284.16	17	6.7	5
Overwater Stations							
Cape San Blas, FL	CSBF1	-	659.04	3283.32	16	9.8	6
Upper Air Stations							
Ruskin, FL	TBW	12842	941.95ª	3064.55	17	NA	5
Waycross, GA	AYS	13861	946.68ª	3457.95	17	NA	5
Apalachicola, FL	AQQ	12832	690.22a	3290.65	17	NA	5

a. Equivalent UTM Coordinate for Zone 16

b. Eastern = 5, Central = 6

Table 2-6. Hourly Precipitation Stations Used in the Refined Modeling Analysis

Chatian Maria	Station		1 Coordinate	Zone	
Station Name	Station Number	Easting (km)	Northing (km)	Zone	
	rumber	(REIL)	(2011)		
<u>lorida</u>					
Apalachicola WSO Arpt	80211	691.061	3289.921	16	
Blackman	80765	533.424	3427.601	16	
Branford	80975	895.606	3315.955	17	
Bristol	81020	693.715	3366.473	16	
Cross City 2 WNW	82008	870.268°	3281.754	17	
Dowling Park 1 W	82391	863.505*	3348.418	17	
Gainesville 11 WNW	83322	935.411	3284.205	17	
Graceville 1 SW	83538	641.703	3424.797	16	
nglis 3 E	84273	922.631	3211.652	17	
acksonville WSO AP	84358	1013.427	3373.634	17	
ynne	85237	989.255*	3230.295	17	
Monticello 3 W	85879	800.168ª	3381.291	17	
Viceville	86240	548.745	3377.572	16	
Panacea 3 S	86828	752.453	3319.607	16	
anama City 5 NE	86842	634.754	3343.414	16	
Caiford State Prison	87440	965.02"	3326.686	17	
Callahassee WSO AP	88758	754.292	3365.100	16	
Wausau	89415	635.756	3391.462	16	
Woodruff Dam	89795	704.292	3399.935	16	
	<i>57173</i>	/ 02.272	5577.753	10	
Georgia					
Abbeville 4 S	90010	861.839	3535.687	17	
Americus Exp Stn Nurser	90258	757.935	3554.581	16	
lainbridge Intl Paper Co	90586	724.846	3409.588	16	
Brunswick	91340	1032.132	3448.130	17	
Claxton	91973	995.054	3559.185	17	
Columbus Metro Ap	92166	693.300	3599.307	16	
Coolidge	92238	806.336	3434.765	17	
Doles	92728	806.73ª	3510.587	17	
Oublin 2	92844	901.605	3603.714	17	
Edison	93028	715.132	3494.426	16	
	93312	930,278	3396.112	17	
argo Folkston 3 SW		982.591°			
Hamilton 4 W	93460		3407.519	17	
	94033	693.630	3625.258	16	
lazlehurst	94204	930.478	3528.882	17	
esup	94671	996.541	3497.124	17	
izella	95249	815.936	3633.385	17	
umpkin 2 SE	95394	710.020	3545.778	16	
Macon Middle GA Regional	95443	831.127°	3619.583	17	
earson	96879	904.643*	3463.307	17	
iylvania 2 SSE	98517	1022.108	3621.570	17	
he Rock	98657	757.814	3650.455	16	
/aldosta 4 NW	98974	856.902°	3416.946	17	
Vest Point	99291	669.434	3638.065	16	
<u>Mabama</u>	10000	(10.000	2405 225	1/	
Abbeville 1 NNW	10008	662.902	3495.325	16	
Alberta	10140	459.798	3566.793	16	
andalusia 3 W	10252	545.472	3463.482	16	
tmore State Nursery	10402	458.171	3448.658	16	
uburn Agronomy Farm	10430	640.773	3607.735	16	
Padeville 2	12124	617.060	3633.087	16	
Othan	12377	652.449	3452.663	16	
interprise 5 NNW	12675	604.606	3472.403	16	
Greenville	13519	533.119	3523.197	16	
Marion 7 NE	15112	474.872	3618.169	16	
Midway	15397	639.828	3549.782	16	
Nontgomery Dannelly Field	15550	555.790	3573.610	16	
Peterman	16370	474.564	3494.634	16	
horsby Exp Station	18209	530.782	3642.236	16	
Ггоу	18323	597.296	3519.354	16	

a. Equivalent UTM Easting Coordinate for Zone 16

Table 2-7. G-P Hosford Source Point Source Inventory Used for the Regional Haze Analysis

Source	Maximu	m Emission Rate	es (g/s)	Height	Temperature	Velocity	Diameter
ID Number	SO ₂	NO _x	PM ₁₀	(m)	(K)	(m/s)	(m)
EP_1A	0.105	4.62	4.69	39.6	399.3	15.31	2.59
EP_1B	0.105	4.62	4.69	39.6	399.3	15.31	2.59
EP_2		1.35	0.36	30.48	340.9	18.46	2.18
EP_3			0.260	33.53	294.3	15.97	0.71
EP_4			0.166	30.48	294.3	15.09	1.12
EP_5			0.246	36.58	294.3	18.48	1,22
EP_6			0.270	27.43	294.3	15.05	1.02
EP_7			0.043	22.86	294.3	0.01	0.25
EP_8			0.239	32	294.3	22.91	0.76
EP_9			0.260	33.53	294.3	15.22	0.76
EP_10	0.239	2.02	0.163	42	644.3	6.35	1.68
PDBARK1			0.047	8.53	273.0	0.001	0.001
PDBARK2			0	8.53	273.0	0.001	0.001
PDBARK3	~~~		0.047	8.53	273.0	0.001	0.001
PSB2			1.76E-03	10.67	294.3	0.01	0.22
PSB1			1.76E-03	10.67	294.3	0.01	0.22
PSB3			1.76E-03	10.67	294.3	0.01	0.22

Table 2-8. G-P Hosford Volume Source Inventory Used for the Regional Haze Analysis

Source ID Number	Maximum PM ₁₀ Emission Rate (g/s)	Release Height (m)	Initial Sy (m)	Initial Sz (m)	Emission Rate Scalar
BARKPIL	0.0189	2.29	7.09	1.06	
BARKHOG	0.00189	3.91	0.28	0.47	
TP1_3	6.80E-06	4.88	0.21	0.21	
TP4_7	9.01E-05	7.62	0.21	0.21	
ROADS	0.22	3.66	18.34	1.7	HROFDY

Sy = Horizontal Dispersion

Sz = Vertical Dispersion

0.19398

0.09713

Table 3-1. Highest Predicted Species Concentrations and Julian Days, 1990

Species			
Predicted	Concentration ^a	Julian	
	(ug/m³)	Day	
SO ₄	0.00060	288	
NO ₃	0.04052	9	
PM_{10}	0.19398	287	
	Species Concentratio	ns on Worst Days	
Species	9 (1/9)	287 (10/14)	288 (10/15)
SO ₄	0.00024	0.00027	0.00060
NO_3	0.04052	0.03095	0.01007

a. Predicted with CALPUFF model and CALMET 1990 wind field for St. Marks NWR domain

0.18427

 $PM_{10} \\$

Table 3-2. Computed Daily Average RH Factors for Predicted Worst Days

Hour	9 (1	/9)	287 (1	10/14)	288 (1	10/15)	
Ending	RH(%)	f(RH)	RH(%)	f(RH)	RH(%)	f(RH)	
0	90	4.7	90	4.7	90	4.7	
1	90	4.7	90	4.7	90	4.7	
2	96	12.4	93	7.0	90	4.7	1 x 11 4 110 F1 1 611
3	100	21.4	97	15.1	97	15.1	yo Not use Flag at all
4	96	12.4	97	15.1	97	15.1	
5	96	12.4	97	15.1	97	15.1	No Phose I
6	96	12.4	97	15.1	96	12.4	No Dhuse
7	96	12.4	97	15.1	96	12.4	100 100001
8	89	4.4	97	15.1	90	4.7	
9	83	3.1	71	2.0	73	2.1	
10	<i>7</i> 7	2.4	56	1.3	52	1.3	
11	72	2	49	1.2	43	1.1	TOOK AH Values from Flag. is
12	64	1.6	43	1.1	39	1.1	TOOK HIT Values From Flag. B
13	60	1.4	35	1.0	36	1.0	,
14	52	1.3	36	1.0	34	1.0	
15	50	1.2	40	1.1	29	1.0	
16	50	1.2	40	1.1	29	1.0	
1 <i>7</i>	54	1.3	40	1.1	· 29	1.0	
18	65	1.7	60	1.4	53	1.3	
19	86	3.6	76	2.3	69	1.9	
2 0	86	3.6	<i>7</i> 9	2.6	81	2.8	
21	96	12.4	81	2.8	90	4.7	
22	96	12.4	84	3.2	93	7.0	
23	100	21.4	87	3.8	93	7.0	
Average		6.992		5.583		5.175	

Note: Hourly relative humidity data from Tallahassee, Florida; 1990.

Table 3-3. Refined Regional Haze Analyses Results, G-P Hosford Facility

Item	Units	P	Predicted Worst Days			
		9 (1/9)	287 (10/14)	288 (10/15)		
Maximum Predicted Concentration	ug/m³					
SO ₄	-8	0.000240	0.000269	0.000599		
NO ₃		0.040521	0.030950	0.010070		
PM10		0.184270	0.193980	0.097133		
Computed Concentrations	ug/m³					
(NH ₄) ₂ SO ₄	_	0.000329	0.000370	0.000824		
NH4NO3		0.0523	0.0399	0.0130		
Average Relative Humidity Factor(a)		6.9917	5.5833	5.1750		
Background Visual Range(b), Vr		65	65	65		
Background Extinction Coeff.(bext)	km ⁻¹	0.0602	0.0602	0.0602		
Source Extinction Coeff (bexts)	km ⁻¹					
(NH ₄) ₂ SO ₄		0.000007	0.000006	0.000013		
NH ₄ NO ₃		0.001096	0.000669	0.000202		
PM10		0.000553	0.000582	0.000291		
Total bexts	km ^{·1}	0.001656	0.001257	0.000506		
Deciview Change		0.271	0.207	0.084		
Percent Change (%)		2.71	2.07	0.84		
Allowable Criteria (%)		5.0	5.0	5.0		

Note: Computed from Tallahassee RH data, 1990. Provided by U.S. Fish and Wildlife Service.

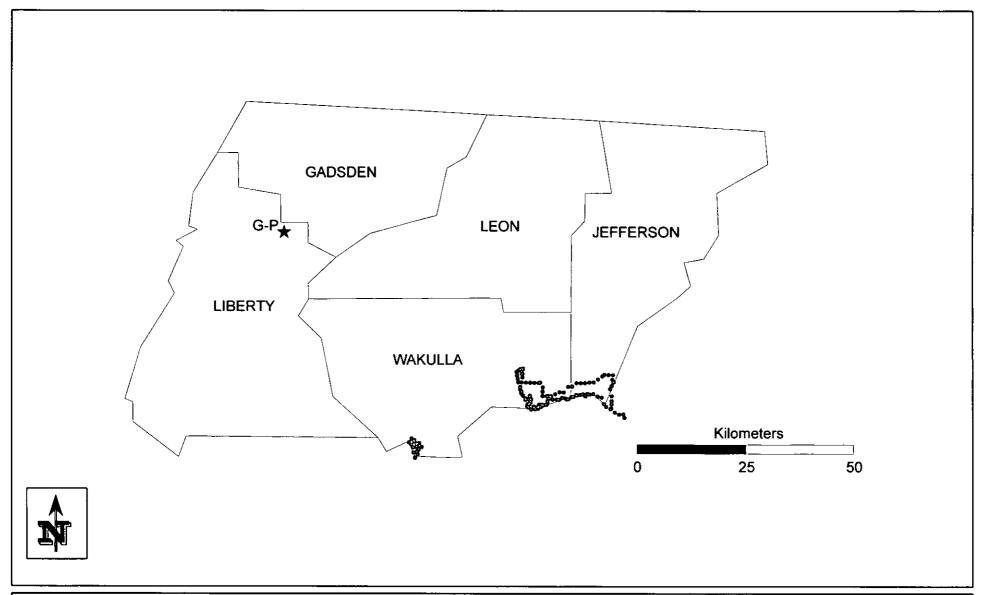


Figure 2-1. Location of St. Marks Wilderness Area Air Modeling Receptors

Source: Golder Associates Inc., 2000

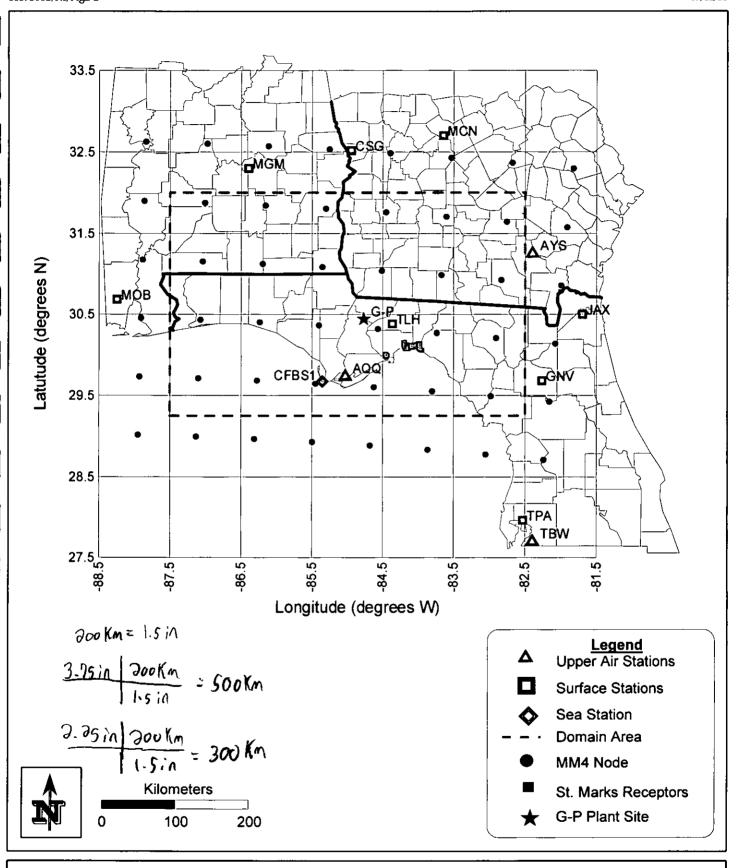


Figure 2-2. Location of G-P Site, Meterological Stations, Receptors and MM4 Grid Points within CALMET Modeling Domain

Source: Golder Associates Inc., 2000

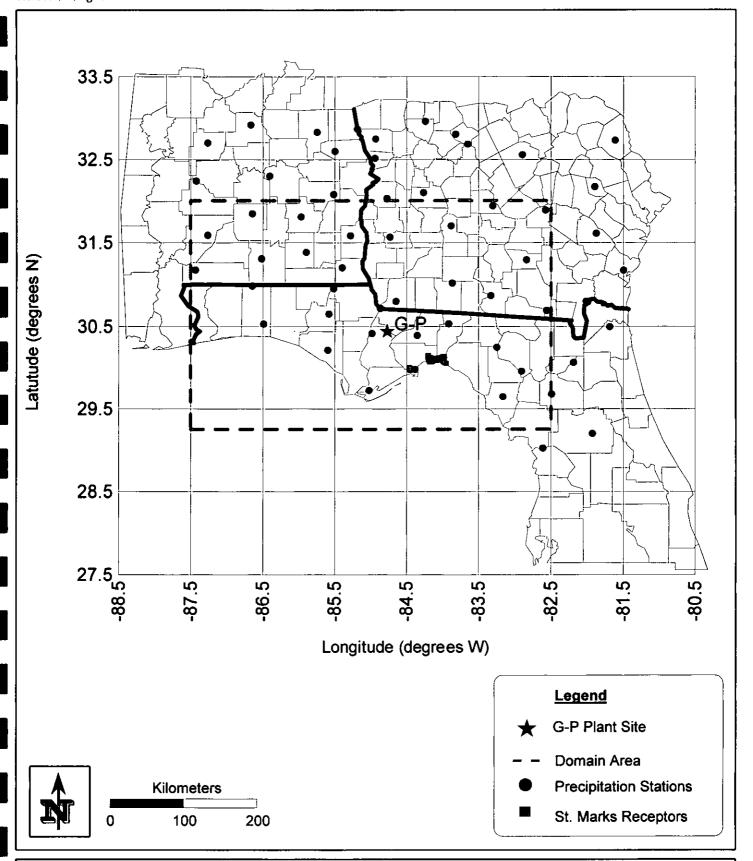


Figure 2-3. Location of Precipitation Stations within CALMET Modeling Domain

Source: Golder Associates Inc., 2000

APPENDIX A

PARAMETER SETTINGS FOR CALPUFF AND CALMET

	Inguit Course	1				11 1 1
lumber	Input Group Description	Variable		Description	6.4.1134.1	Modeled
1	Run Control	NMETDAT	Seq	Description Number of CALMET data files for run	Default Value	Value
1	Run Control	METRUN			1	4
1		IBYR		Do we run all periods (1) or a subset (0)?	0	0
1	·	1		Beginning year	User Defined	90
1		IBMO		Beginning month	User Defined	1
		IBDY		Beginning day	User Defined	6
1		IBHR		Beginning hour	User Defined	0
1		IRLG		Length of run (hours)	User Defined	Quarter
1		NSPEC		Number of species modeled (for MESOPUFF II chemistry)	5	6
1		NSE		Number of species emitted	3	3
1		ITEST	9		2	2
1		MRESTART		Restart options (0 = no restart) allows splitting runs into smaller segments	0	0
1		NRESPD	11		0	0
1		METFM		Format of input meteorology (1 = CALMET, 2 = ISC)	1	1
1		AVET	13	Averaging time lateral dispersion parameters (minutes)	60	60
1		PGTIME	14	PG Averaging Time (minutes)	60	60
2	Tech Options	MGAUSS	1	Near-field vertical distribution (1 = Gaussian)	1	1
2		MCTADJ	2	Terrain adjustments to plume path (3 = Plume path)	3	3
2		MCTSG	3	Do we have subgrid hills? (0 = No) allows CTDM-like treatment for subgrid scale hills	0	0
2		MSLUG	4	Near-field puff treatment (0 = No slugs)	0	0
2		MTRANS	5	Model transitional plume rise? (1 = Yes)	1	1
2		MTIP	6	Treat stack tip downwash? (1 = Yes)	1	1
2		MSHEAR	7	Treat vertical wind shear? (0 = No)	0	0
2		MSPLIT	8	Allow puffs to split? (0 = No)	0	0
2		MCHEM		MESOPUFF-II Chemistry? (1 = Yes)	1	1
2		MWET		Model wet deposition? (1 = Yes)	1	1
2		MDRY		Model dry deposition? (1 = Yes)	1	1
2		MDISP		Method for dispersion coefficients (3 = PG & MP)	3	4
2		MTURBVW		Turbulence characterization? (Only if MDISP = 1 or 5)	3	0
2		MDISP2		Backup coefficients (Only if MDISP = 1 or 5)	3	4
2		MROUGH		Adjust PG for surface roughness? (0 = No)	0	0
2		MPARTL		Model partial plume penetration? (0 = No)	1	1
2		MTINV		Elevated inversion strength (0 = compute from data)	0	
2	_	MPDF		Use PDF for convective dispersion? (0 = No)	0	0
2		MSGTIBL		Use TIBL module? (0 = No) allows treatment of subgrid scale coastal areas		
2	 -	MREG		Regulatory default checks? (1 = Yes)	0	0
_		MINEG	20	regulatory default checks? (1 = 168)	1	0
3	Species List	CSPECn	1	Names of species modeled (for MESOPUFF II must be SO2-SO4-NOX-HNO3-NO3, PM10	User Defined	ALL 6
3		Specie Groups		Grouping of species if any	User Defined	NA
3		Specie Names		Manner species will be modeled	.User Defined	
4	Grid Control	NX		Number of east-west grids of input meteorology	User Defined	95

0037506B/R1 Page 1 of 4

	Input Group					Modeled
umber	Description	Variable	Seq	Description	Default Value	Value
4		NY	2	Number of north-south grids of input meteorology	User Defined	60
4		NZ	3	Number of vertical layers of input meteorology	User Defined	9
4		DGRIDKM	4	Meteorology grid spacing (km)	User Defined	5
4		ZFACE	5	Vertical cell face heights of input meteorology	User Defined	9 values
4		XORIGKM	6	Southwest corner (east-west) of input User	efined meteorolog	452
4		YORIGIM	7	Southwest corner (north-south) of input User	efined meteorolog	3236
4		IUTMZN	8	UTM zone	User Defined	17
4		XLAT	9	Latitude of center of meteorology domain	User Defined	30.5
4		XLONG	10	Longitude of center of meteorology domain	User Defined	85
4	<u> </u>	XTZ	11	Base time zone of input meteorology	User Defined	5
4		IBCOMP	12	Southwest X-index of computational domain	User Defined	1
4		JBCOMP	13	Southwest Y-index of computational domain	User Defined	1
4		IECOMP	14	Northeast X-index of computational domain	User Defined	95
4		JECOMP	1 .	Northeast Y-index of computational domain	User Defined	60
4		LSAMP	16	Use gridded receptors? (T = Yes)	F	F
4		IBSAMP		Southwest X-index of receptor grid	User Defined	0
4		JBSAMP	18	Southwest Y-index of receptor grid	User Defined	0
4		IESAMP	19	Northeast X-index of receptor grid	User Defined	95
4		JESAMP	20	Northeast Y-index of receptor grid	User Defined	60
4		MESHDN	21	Gridded recpetor spacing = DGRIDKM/MESHDN	1	1
5	Output Options	ICON		Output concentrations? (1 = Yes)	1	1
5		IDRY	2	Output dry deposition flux? (1 = Yes)	1	0
5	•	IWET		Output west deposition flux? (1 = Yes)	1	0
5	:	IVIS	4	Output RH for visibility calculations (1 = Yes)	1	0
5		LCOMPRS	5	Use compression option in output? (T = Yes)	T	T
5		ICPRT	6	Print concentrations? (0 = No)	0	0
5		IDPRT	7	Print dry deposition fluxes (0 = No)	0	0
5		IWPRT	8	Print wet deposition fluxes (0 = No)	0	0
5		ICFRQ	9	Concentration print interval (1 = hourty)	1	24
5		IDFRQ	10	Dry deposition flux print interval (1 = hourly)	1	1
5		IWFRQ	11	West deposition flux print interval (1 = hourly)	1	1
5		IPRTU	12	Print output units (1 = g/m**3; g/m**2/s; 3 = ug/m3, ug/m2/s)	1	3
5		IMESG	13	Status messages to screen? (1 = Yes)	1	1
5		LDEBUG	14	Turn on debug tracking? (F = No)	F	F
5		NPFDEB		(Number of puffs to track)	(1)	1
5	· · · · · · · · · · · · · · · · · · ·	NN1		(Met. Period to start output)	(1)	<u> </u>
5		NN2		(Met. Period to end output)	(10)	10
7	Dry Dep Chem	Dry Gas Dep		Chemical parameters of gaseous deposition species	User Defined	NOX,HNC
						SO2
8	Dry Den Size	Dry Part. Dep	_	Chemical parameters of particulate deposition species	User Defined	SO4,NO3

0037506B/R1 Page 2 of 4

9 9 9 9 9 9 9	Input Group Description Dry Dep Misc Wet Dep	Variable RCUTR RGR REACTR NINT IVEG	3	Reference cuticle resistance (s/cm) Reference ground resistance (s/cm) Reference reactivity	Default Value 30 10	PM10 30
9 9 9 9	Dry Dep Misc	RGR REACTR NINT IVEG	1 2 3	Reference cuticle resistance (s/cm) Reference ground resistance (s/cm)	10	30
9 9 9 9		RGR REACTR NINT IVEG	3	Reference ground resistance (s/cm)	10	
9 9 9 10	Wet Dep	REACTR NINT IVEG	3			46
9 9 10	Wet Dep	NINT IVEG	4	Deference reactivity		10
9	Wet Dep	IVEG		Indication to acclivity	8	8
10	Wet Dep		5	Number of particle-size intervals	9	9
	Wet Dep	_	- 	Vegetative state (1 = active and unstressed)	1	1
11		Wet Dep		Wet deposition parameters	User Defined	Var
	Chemistry	MOZ	1	Ozone background? (0 = constant background value; 1 = read from ozone.dat)	1	0
11		ВСКО3	2	Ozone default (ppb) (Use only for missing data)	80	80
11		BCKNH3	3	Ammonia background (ppb)	10	10
11		RNITE1		Nighttime SO2 loss rate (%/hr)	0.2	0.2
11		RNITE2	5	Nighttime NOx loss rate (%/hr)	2	2
11		RNITE3	6	Nighttime HNO3 loss rate (%/hr)	2	2
12	Dispersion	SYTDEP	1	Horizontal size (m) to switch to time dependence	550	550
12		MHFTSZ		Use Heffter for vertical dispersion? (0 = No)	0	0
12		JSUP		PG Stability class above mixed layer	5	5
12		CONK1		Stable dispersion constant (Eq 2.7-3)	0.01	0.01
12		CONK2		Neutral dispersion constant (Eq 2.7-4)	0.1	0.1
12		TBD		Transition for downwash algorithms (0.5 = ISC)	0.5	0.5
12		IURB1		Beginning urban landuse type	10	10
12		IURB2		Ending urban landuse type	19	19
12		ILANDUIN		Land use type (20 = Unirrigated agricultural land)	(20)	20
12		ZOIN		Roughness length (m)	(0.25)	0.25
12		XLAIIN		Leaf area index	(3)	3
12		ELEVIN		Met. Station elevation (m above MSL)	(0)	0
12		XLATIN		Met. Station North latitude (degrees)	(-999)	-999
12		XLONIN		Met. Station West longitude (degrees)	(-999)	-999
12		ANEMHT		Anemometer height of ISC meteorological data (m)	(10)	NA NA
12		ISIGMAV		Lateral turbulence (Not used with ISC meteorology)	(1)	NA
12		IMIXCTDM		Mixing heights (Not used with ISC meteorology)	(1)	NA
12		XMXLEN		Maximum slug length in units of DGRIDKM	1	1
12		XSAMLEN		Maximum puff travel distance per sampling step (units of DGRIDKM)	1	1
12		MXNEW		Maximum number of puffs per hour	99	99
12		MXSAM		Maximum sampling steps per hour	99	99
12		NCOUNT		Iterations when computing Transport Wind (Calmet & Profile Winds)	(2)	2
12		SYMIN		Minimum lateral dispersion of new puff (m)	1	1
12		SZMIN		Minimum vertical dispersion of new puff (m)	1	1
12		SVMIN		Array of minimum lateral turbulence (m/s) Array of minimum vertical turbulence (m/s)	6 ° 0.50 .12,0.08,0.06,0.03	6*0.50 SAME

0037506B/R1 Page 3 of 4

			+			
1	Input Group	Variable			5-6-4114	Modeled
lumber	Description		Seq	1	Default Value	Value
12		CDIV (1), (2)		Divergence criterion for dw/dz (1/s)	0.01 (0.0,0.0)	0.0,0.0
12		WSCALM	.1	Minimum non-calm wind speed (m/s)	0.5	0.5
12		XMAXZI		Maximum mixing height (m)	3000	3000
12		XMINZI		Minimum mixing height (m)	50	50
12		WSCAT		Upper bounds 1st 5 wind speed classes (m/s)	4,3.09,5.14,8. 23,1	SAME
12		PLX0		Wind speed power-law exponents	0.07,0.10,0.15,0.3	SAME
12		PTGO		Potential temperature gradients PG E and F (deg/km)	0.020,0.035	SAME
12		PPC		Plume path coefficients (only if MCTADJ = 3)	,0.5,0.5,0.5,0.35,0	SAME
12		SL2PF		Maximum Sy/puff length	10	10
12		NSPLIT		Number of puffs when puffs split	3	3
12		IRESPLIT		Hours when puff are eligible to split	User Defined	HR 17=1
12		ZISPLIT		Previous hour's mixing height(minimum)(m)	100	100
12		ROLDMAX		Previous Max mix ht/current mix ht ratio must be less then this value for puff to split	0.25	0.25
12		EPSSLUG		Convergence criterion for slug sampling integration	1.00E-04	1.0E-04
12		EPSAREA	41	Convergence criterion for area source integration	1.00E-06	1.0E-06
13	Point Source	NPT1	1	Number of point sources	User Defined	17
13		IPTU		Units of emission rates (1 = g/s)	1	1
13		NSPT1	3	Number of point source-species combinations	0	0
13		NPT2	4	Number of point sources with fully variable emission rates	0	0
13		Point Sources		Point sources characteristics	User Defined	VAR
14	Area Source	Area Sources		Area sources characteristics	User Defined	NA _
15	Line Source	Line Sources		Buoyant lines source characteristics	User Defined	NA
16	Volume Source	NVL1		Number of volume sources	User Defined	5
		IVLU		Units for volume source (1= g/s)	User Defined	1
		NSVL1		Number of volume sources with emission scaling factors	0	1
17	Receptors	NREC	-	Number of user defined receptors	User Defined	125
17		Receptor Data	1	Location and elevation (MSL) of receptors	User Defined	VAR
gend						
	DEPOS.	With Deposition	T			
	DEFAULT	Uses defaults				
	VAR	Variable Input	\dagger			
	NA NA	Not Applicable	1-		-	
	SAME	Same as recomme	nded		 	

0037506B/R1 Page 4 of 4

		<u>.</u>	
		Default	Modeled
Variable	Description	Value	Value
GEO.DAT	Name of Geophysical data file	GEO.DAT	GEO.DAT
SURF.DAT	Name of Surface data file	SURF.DAT	SURF.DAT
PRECIP.DAT	Name of Precipitation data file	PRECIP.DAT	PRECIP.DAT
NUSTA	Number of upper air data sites	User Defined	3
Upn.DAT	Names of NUSTA upper air data files	Upn.DAT	UP1UP5.DA
NOWSTA	Number of Overwater met stations	User Defines	0
IBYR	Beginning year	User Defines	90
IBMO	Beginning month	User Defines	1
IBDY	Beginning day	User Defines	6
IBHR	Beginning hour	User Defines	0
IBTZ	Base time zone	User Defines	5
IRLG	Number of hours to simulate	User Defines	quarterly
IRTYPE	Output file type to create (must be 1 for CALPUFF)	1	1
LCALGRD	Are w-components and temperature needed?	T	T
NX	Number of east-west grid cells	User Defines	95
NY	Number of north-south grid cells	User Defines	60
DGRIDKM	Grid spacing	User Defines	5
XORIGKM	Southwest grid cell X coordinate	User Defines	452
YORIGKM	Southwest grid cell Y coordinate	User Defines	3236
XLAT0	Southwest grid cell latitude	User Defines	29.25
YLON0	Southwest grid cell longitude	User Defines	87.50
IUTMZN	UTM Zone	User Defines	16
	When using Lambert Conformal map coordinates,		
LLCONF	roate winds from true north to map north?	F	F
XLAT1	Latitude of 1st standard parallel	30	30
XLAT2	Latitude of 2nd standard parallel	60	60
RLON0	Longitude used if LLCONF = T	90	NA
RLAT0	Latitude used in LLCONF = T	40	NA
NZ	Number of vertical layers	User Defines	8
ZFACE	Vertical cell face heights (NZ+1 values)	User Defines	9
LSAVE	Save met.data fields in an unformatted file?	T	Т
INFORMO	Format of unformatted file (1 for CALPUFF)	1	1
NSSTA	Number of stations in SURF.DAT file	User Defines	8
NPSTA	Number of stations in PRECIP.DAT	User Defines	57
ICLOUD	Is cloud data to be input as gridded fields? (0 = No)	0	0
IFORMS	Format of surface data (2 = formatted)	2	2
IFORMP	Format of surface data (2 = formatted) Format of precipitation data (2 = formatted)	2	2
IFORMC	Format of cloud data (2 = formatted)	2	0
IWFCOD	Generate winds by diagnostic wind module? (1 = Yes)	1	1
IFRADJ	Adjust winds using Froude number effects? (1 = Yes)	1	1
IKINE	Adjust winds using kinematic effects? (1 = Yes)	0	0

		Default	Modeled
Variable	Description	Value	Value
IOBR	Use O'Brien procedure for vertical winds? (0 = No)	0	. 0
ISLOPE	Compute slope flows? (1 = Yes)	1	1
	Extrapolate surface winds to upper layers? (-4 = use		
	similarity theory and ignore layer 1 of upper air		
IEXTRP	station data)	-4	-4
ICALLA.	Estado eleta conforma calma ta como al laccara 2 (0 — No)		٥
ICALM DYAG	Extrapolate surface calms to upper layers? (0 = No)	0 NZ*0	0
BIAS	Surface/upper-air weighting factors (NZ values)		8*0
IPROG	Using prognostic or MM-FDDA data? (0 = No)	4	4
LVARY	Use varying radius to develop surface winds?	F	F
RMAX1	Max surface over-land extrapoolation radius (km)	User Defines	40
RMAX2	Max aloft over-land extrapolation radius (km)	User Defines	100
RMAX3	Maximum over-water extrapolation radius (km)	User Defines	100
RMIN	Minimum extrapolation radius (km)	0.1	0.1
	Distance (km) around an upper air site where veritcal		
RMIN2	extrapolation is excluded (Set to -1 if IEXTRP = +/-4)	4	4
TERRAD	Radius of influence of terrain features (km)	User Defines	10
R1	Relative weight at surface of Step 1 field and obs	User Defines	60
R2	Relative weight aloft of Step 1 field and obs	User Defines	100
DIVLIM	Maximum acceptable divergence	5.00E-06	5.00E-06
NITER	Max number of passes in divergence minimization	50	50
NSMTH	Number of passes in smoothing (NZ values)	2,4*(NZ-1)	2,4*(NZ-1
14014111	Trumber of pusses in smoothing (142 vinces)	2,1 (112 1)	
NINTR2	Max number of stations for interpolations (NZ values)	99	99
CRITFN	Critical Froude number	1	1
ALPHA	Empirical factor triggering kinematic effects	0.1	0.1
IDIOPT1	Compute temperatures from observations (0 = True)	0	. 0
	Surface station to use for surface temperature		
ISURFT	(between 1 and NSSTA)	User Defines	2
IDIOPT2	Compute domain-average lapse rates? (0 = True)	0	0
IUPT	Station for lapse rates (between 1 and NUSTA)	User Defines	3
ZUPT	Depth of domain-average lapse rate (m)	200	200
IDIOPT3	Compute internally initial guess winds? (0 = True)	0	0
	Upper air station for domain winds $(-1 = 1/r^{**}2)$		
IUPWND	interpolation of all stations)	-1	-1
ZUPWND	Bottom and top of layer for 1st guess winds (m)	1, 1000	1, 5000
IDIOPT4	Read surface winds from SURF.DAT? (0 = True)	0	0
IDIOPT5	Read aloft winds from UPn.DAT? (0 = True)	0	0
CONSTB	Neutral mixing height B constant	1.41	1.41
CONSTE	Convective mixing height E constant	0.15	0.15
CONSTN	Stable mixing height N constant	2400	2400
CONSTW	Over-water mixing height W constant	0.16	0.16
FCORIOL	Absolute value of Coriolis parameter	1.00E-04	1.00E-04

•		Default	Modeled
Variable	Description	Value	Value
IAVEXZI	Spatial averaging of mixing heights? (1 = True)	1	1
MNMDAV	Max averaging radius (number of grid cells)	1	3
HAFANG	Half-angle for looking upwind (degrees)	30	30
ILEVZI	Layer to use in upwind averaging (between 1 and NZ)	1	1
DPTMIN	Minimum capping potential temperature lapse rate	0.001	0.001
DZZI	Depth for comuting capping lapse rate (m)	200	200
ZIMIN	Minimum over-land mixing height (m)	50	50
ZIMAX	Maximum over-land mixing height (m)	3000	3000
ZIMINW	Minimum over-water mixing height (m)	50	50
ZIMAXW	Maximum over-water mixing height (m)	3000	3000
IRAD	Form of temperature interpolation $(1 = 1/r)$	1	1
TRADKM	Radius of temperature interpolation (km)	500	500
NUMTS	max number of station in temperature interpolations	5	5
IAVET	Conduct spatial averaging of temperature? $(1 = True)$	1	1
TGDEFB	Default over-water mixed layer lapse rate (K/m)	-0.0098	-0.0098
TGDEFA	Default over-water capping lapse rate (K/m)	-0.0045	-0.0045
JWAT1	Beginning landuse type defining water	999	50
JWAT2	Ending landuse type defining water	999	50
NFLAGP	Method for precipitation interpolation $(2 = 1/r^{**}2)$	2	2
SIGMAP	Precip radius for interpolations (km)	100	100
CUTP	Minimum cut off precip rate (mm/hr)	0.01	0.01
SSn	NSSTA input records for surface stations	User Defines	8
USn	NUSTA input records for upper-air stations	User Defines	3
PSn	NPSTA input records for precipation stations	User Defines	57
Legend			
DEFAULT	Uses defaults		
VAR	Variable Input		
NA	Not Applicable		
SAME	Same as recommended		

Georgia Pacific Corporation

133 Peachtree Street NE (30303) P.O. Box 105605 Atlanta, Georgia 30348-5605 Telephone (404) 652-4000

July 11, 2000

RECEIVED

Mr. Joseph Kahn, P.E. Florida Department of Environmental Protection New Source Review Section Twin Towers Office Building 2600 Blair Stone Road Tallahassee. FL 32399-2400 JUL 1 2 2000

BUREAU OF AIR REGULATION

RE:

February 18, 2000 Comment Letter for the Proposed Georgia-Pacific Oriented

Strandboard (OSB) Facility in Hosford, FL

Dear Mr. Kahn:

Georgia-Pacific Corporation (G-P) is pleased to provide the following additional information to complete the January PSD air permit application. Each one of your fourteen comments is addressed in the following pages with individual responses and attachments (as noted). Please contact me (404/652-4293) or Paul Vasquez (application contact at 404/652-7327) with any additional questions. Thank you for your help on this important project.

Sincerely

Mark J. Aguilar, P.E.

Senior Environmental Engineer Georgia-Pacific Corporation

Markel, agrilan

P.E. Number 52248

SEAL

Enclosures: 8 Attachments (as noted in the attached document)

cc:

P.J. Vasquez

GA030-17

M.M. Vest

FL165 (Palatka)

T.R. Wyles

GA030

Gregg Worley

EPA Region IV

John Bunyak

National Park Service

Ed Middleswart

Florida DEP

Georgia-Pacific Corporation

133 Peachtree Street NE (30303) P.O. Box 105605 Atlanta, Georgia 30348-5605 Telephone (404) 652-4000

RECEIVED

JUL 1 4 2000

BUREAU OF AIR REGULATION

July 6, 2000

Ms. Cindy L. Phillips, P.E.
Florida Department of Environmental Protection
Air Toxics Unit
Twin Towers Office Building
2600 Blair Stone Road
Tallahassee. FL 32399-2400

Certified Mail Number 454 700 498

RE: February 18, 2000 Comment

February 18, 2000 Comment Letter for the Proposed Georgia-Pacific Oriented Strandboard Facility in Hosford, FL – Case-by-Case MACT Information

Dear Ms. Phillips:

Georgia-Pacific Corporation (G-P) is pleased to provide the following additional information to complete the January PSD air permit application. Each one of your five comments is addressed in the following pages with individual responses and attachments (as noted). Please contact me (404/652-4293) or Paul Vasquez (application contact at 404/652-7327) with any additional questions. Thank you for your help on this important project.

Sincerely.

Mark J. Aguilar, P.E.

P.E. License no. 52248

Mark J. agrila

Senior Environmental Engineer

Georgia-Pacific Corporation

Enclosures: Attachment 1, Supplemental HAP Emissions Estimates

cc: Mr. Joseph Kahn

FDEP 7

P.J. Vasquez

GA030-17

M.M. Vest

FL165 (Palatka)

T.R. Wyles

GA030-09

1. The application states that "The proposed BACT for the dryers and press (see Section 8), regenerative thermal oxidation, satisfies the 112(g) MACT requirement for formaldehyde from these sources." Since a MACT must be proposed by the applicant in accordance with 40 CFR 63.43(e), see attachment, it is assumed that what this statement means is that the applicant wants the proposed BACT to also be considered as the proposed MACT.

Response:

Georgia-Pacific does indeed propose that the BACT specified in the PSD permit application for the dryers and press also be considered as the proposed MACT for this facility. An updated hazardous air pollutant (HAP) list is provided in Attachment 1. Following development and subsequent submittal of the application, some updated information has become available and is reflected in this Attachment. Although HAP emissions are presented for the thermal oil heater, the annual values represent expected controlled emissions from the dryer regenerative thermal oxidizers (RTOs) – under normal operations, the exhaust from the thermal oil system will pass through the dryer RTOs before exiting to atmosphere. Based on the calculations, the proposed oriented strandboard (OSB) plant would only be considered a major HAP source if the thermal oil system exhaust bypassed the dryer RTOs for more than 500 hours per year. As such, it is questionable whether 112(g) is applicable for this facility. However, in order to avoid future operating restrictions, Georgia-Pacific is willing to follow the necessary application procedures in making the 112(g) demonstration.

The following should address the information that may be missing from the PSD permit application with respect to the proposed 112(g) MACT. The points noted correspond to FDEP's document, titled "What Information is Needed from the Applicant for a Case-by-Case MACT Determination":

- (2)(i) Name and address see Attachment A to the PSD permit application
- (2)(ii) Brief description see Section 3.2 and Attachment A to the PSD permit application; source category is "Plywood and Composite Wood MACT"
- (2)(iii) Expected commencement date August 2000 or upon issuance of the PSD permit, whichever is earlier
- (2)(iv) Expected completion date March 2001
- (2)(v) Expected start-up date March 2001
- (2)(vi) HAP quantities see Attachment 1 to this letter
- (2)(vii) Federally enforceable emission limitations the is a new source, limits only as established in the PSD permit (yet to be issued)
- (2)(viii) Expected capacity/utilization is near 100 percent; controlled emission rates presented in Attachment 1 assume 90% control on VOC HAPs and 85% control on particulate matter HAPs
- (2)(ix) Expected capacity/utilization is near 100 percent; controlled emission rates are presented in Attachment 1 to this letter and in Attachment B of the PSD permit application
- (2)(x) Recommended emission limitations are as listed in Attachment 1 to this letter and in Attachment B of the PSD permit application, but only to the extent that limits are needed to address otherwise applicable requirements
- (2)(xi) Selected control technology is regenerative thermal oxidation on both the dryers and press; exhaust from the thermal oil system will normally exit through the dryer RTOs; technical information is provided in Attachment G to the PSD permit application
- (2)(xii) Supporting documents of alternatives are same as included in Attachment G to the PSD permit application; same controls will address HAPs as evaluated for volatile organic compounds
- (2)(xiii) No additional information requested

2. In addition to formaldehyde, what other hazardous air pollutants (HAPs) will be emitted from the facility? What will be the potential plantwide emissions of total hazardous air pollutants per vear?

Response:

The estimated emissions are provided in Attachment 1.

3. What events will require the use of the emergency exhausts shown in Figure 3-4a, Process Flow Diagram? How often are these events expected to occur, and of what duration are these expected to be?

Response:

There are basically three types of dryer RTO bypass. First, a bypass can occur as a result of a systematic electrical or mechanical problem, unrelated to preventive maintenance. Based on our extensive experience operating RTOs, we have found that these units tend to experience some downtime due to systematic problems which normally last for a short period of time. As a safety feature of the RTO system, most of these systematic malfunctions result in temporary shutdown of the system. Restart of the system normally takes between 25 and 35 minutes to complete. These systematic malfunctions are difficult to anticipate and to quantify in terms of frequency.

The second type of bypass is related to necessary and previously scheduled maintenance activities involving bakeouts and washouts. While these activities will normally be scheduled to be conducted during periods when the rest of the plant is down for maintenance, there will be instances where, due to increasing pressure across the RTO, an unscheduled bakeout and/or washout may be necessary to restore normal operating conditions. This may take 8 (bakeout) to 72 hours (washout) to complete.

Finally, another possible instance of bypass can occur during plant start-up, when the RTO system does not respond accordingly. We understand that the proposed MACT for the Wood Products Manufacturing sector (Plywood and Composite Wood MACT), like most MACT standards, will include a section that will address start-up, shutdown, and malfunction (SSM) periods, accordingly.

4. In which document did you find SCC 30701001, Flake Dryer, and SCC 30701053, Press Operations?

Response:

The SCC codes were found on EPA's CHIEF air emissions database at the internet address, www.epa.gov/ttn/chief/scccodes.html.

5. A quick scan of EPA data shows possible VOC removal efficiency of 95% for waferboard dryer (SCC 30700704), and 99% for particleboard drying (SCC 30700703). Please explain why these would not be the best controlled similar sources for MACT purposes.

Response:

The VOC control technologies listed in EPAs RACT/BACT/LAER Clearinghouse include both RTO and regenerative catalytic oxidation (RCO) technology. The control efficiencies documented in the Clearinghouse vary greatly for the use of these technologies. It should also be noted that the control efficiencies for some HAPs are likely to be higher than what is estimated for total VOCs, while the control efficiencies for other HAPs may be lower. As such, the control efficiency ascribed to the selected technology should be designated based on what is consistently achievable by that technology in the given application. Accordingly, as noted on Page G-15 of Attachment G of the PSD permit application,

"It should be noted that information in the RBLC...indicates that...facilities can achieve VOC removal efficiencies in excess of 90% using RTOs. Georgia-Pacific believes that similar efficiencies may be achieved in practice by the RTOs proposed for Hosford. However, for permitting purposes, Georgia-Pacific is proposing a removal efficiency of 90%, consistent with at least three entries in the RBLC"

In addition, 40 CFR 63.43(d)(4), Principles of MACT Determination, states:

"If the Administrator has either proposed a relevant emission standard pursuant to section 112(d) or section 112(h) of the Act or adopted a presumptive MACT determination which includes the constructed or reconstructed major source, then the MACT requirements applied to the constructed or reconstructed major source shall have considered those MACT emission limitations and requirements of the proposed standard or presumptive MACT determination."

Rulemaking activity on the Plywood and Composite Wood MACT has been well underway for some time and EPA staff and its contractor are in the final stages of drafting the proposed rule, which is slated for presentation to the Office of Management and Budget (OMB) in September 2000 and for formal proposal in the Federal Register in November 2000. EPA has reviewed the relevant technologies and has openly shared, with industry and others, their intent to propose a standard for OSB dryers and presses based on RTOs/RCOs at a 90% HAP reduction level. As such, EPA has, in effect, adopted a presumptive MACT determination for this source category. The EPA project manager for this source category is Ms. Mary Tom Kissell. Ms. Kissell can be reached by phone at (919/541-4516) or via e-mail at kissell.mary@epa.gov. We understand that both EPA and its contract staff have already confirmed these details to several state agencies in conjunction with other projects.

Ms. Cindy L. Phillips - Page 4 Response to Comments, Georgia-Pacific Corporation, Proposed OSB Facility

ATTACHMENT 1 Supplemental HAP Emissions Estimates

Additional controlled HAP emissions from the dryer and press RTOs (NCASI Technical Bulletin 772)

RTO-controlled Dryer Emissions (Oven-dried tons = 25,124 OD lbs/hour/dryer x 5 dryers x 8760 hours/year x ton/2000 lbs = 550,216 ODT/year):

Formaldehyde (from vendor, see Attachment B of application)	8.1 tpy
Acetaldehyde (NCASI TB 772, Mill 410, 1.5E-2 lb/ODT)	4.1 tpy
Methanol (NCASI TB 772, Mill 410, 8.9E-3 lb/ODT)	2.4 tpy
Phenol (NCASI TB 772, Mill 410, 1.7E-2 lb/ODT (average Mill 145	4.6 tpy
0.026 lb/ODT and Mill 410 0.0073 lb/ODT)	

RTO-controlled Press Emissions:

Formaldehyde (from vendor, see Attachment B of application)	1.1 tpy
Phenol (NCASI TB 772, Mill 145, 5.4E-3 lb/MSF)	1.3 tpy

Blend House (from Attachment B of application):

0.4 tpy

Finished Product Storage (from Attachment B of application):

Formaldehyde	0.2 tr	ΣÝ

Thermal Oil System (attached):

ontrolled HAPs	1.5 tp
ontrolled HAPs	1

Total formaldehyde (w/thermal oil system exhaust exiting via dryer RTO) = 8.1 (dryer RTO, including thermal oil exhaust) + 1.1 tpy (press RTO) + 0.4 tpy (blend house) + 0.2 tpy (storage) = 9.8 tpy

All other individual HAPs are much less than 10 tpy total (less than 10 tpy)

Total HAPs (w/thermal oil system exhaust exiting via dryer RTO) = 19.2 tpy (dryer RTO, including formaldehyde from thermal oil system) + 2.4 tpy (press RTO) + 0.4 tpy (blend house) + 0.2 tpy (storage) + 1.5 tpy (thermal oil system) = 23.7 tpy (less than 25 tpy)

If thermal oil system operated in bypass mode more than about 500 hours per year, then the individual HAP threshold of 10 tpy would be exceeded for formaldehyde; if the system operated in bypass mode more than about 3300 hours per year, then the total HAP threshold of 25 tpy would be exceeded.

Summary of Emissions from Hot Oil Heater, G-P Hosford OSB (revised July 2000)						
				mission Rates (a	a)	
	Uncontrolled (b)		Uncontrolled Co		ntrolled	
Substance	Emi	ssion Factor		(lb/hr)	(lb/hr) (c)	(tpy)
						(included in
Particulate Matter (PM/PM10)	1.0E-01	lb/MMBtu	(1)		8.0	Dryer RTO
						calcs)
]		(included in
Nitrogen Oxides	2.0E-01	lb/MMBtu	(2)	16.0	16.0	Dryer RTO
						calcs)
Sulfur Dioxide	2.4E-02	lb/MMBtu	(2)	1.9	1.9	8.4
						(included in
Carbon Monoxide	1.6E-01	lb/MMBtu	(2)	12.44	12.4	Dryer RTO
						calcs)
<u>HAPs</u>				l		
2,3,7,8-Tetrachlorodibenzo-p-dioxins	7.9E-12	lb/MMBtu	(2)	6.32E-10	6.32E-11	2.77E-10
2,3,7,8-Tetrachlorodibenzo-p-furans	1.1E-10	lb/MMBtu	(2)	8.80E-09	8.80E-10	3.85E-09
2,4,6-Trichlorophenol	2.2E-07	lb/MMBtu	(2)	1.76E-05	1.76E-06	7.71E-06
2,4-Dinitotoluene	9.4E-07	lb/MMBtu	(2)	7.52E-05	7.52E-06	3.29E-05
2,4-Dinitrophenol	4.8E-07	lb/MMBtu	(2)	3.84E-05	3.84E-06	1.68E-05
2-Butanone (MEK)	1.3E-05	lb/MMBtu	(2)	1.04E-03	1.04E-04	4.56E-04
4-Nitrophenol	3.3E-07	lb/MMBtu	(2)	2.64E-05	2.64E-06	1.16E-05
Acetaldehyde	8.5E-03	lb/MMBtu	(2)	6.80E-01	6.80E-02	2.98E-01
Acetophenone	3.2E-09	lb/MMBtu	(2)	2.56E-07	2.56E-08	1.12E-07
Acrolein	3.0E-03	lb/MMBtu	(2)	2.40E-01	2.40E-02	1.05E-01
Arsenic	2.0E-05	lb/MMBtu	(2)	1.60E-03	2.40E-04	1.05E-03
Benzene	3.9E-03	lb/MMBtu	(2)	3.12E-01	3.12E-02	1.37E-01
Beryllium	1.5E-06	lb/MMBtu	(2)	1.20E-04	1.80E-05	7.88E-05
Cadmium	3.7E-06	lb/MMBtu	(2)	2.96E-04	4.44E-05	1.94E-04
Carbon tetrachloride	2.8E-05	lb/MMBtu	(2)	2.24E-03	2.24E-04	9.81E-04
Chlorine	6.0E-04	lb/MMBtu	(2)	4.80E-02	4.80E-03	2.10E-02
Chlorobenzene	1.7E-05	lb/MMBtu	(2)	1.36E-03	1.36E-04	5.96E-04
Chloroform	2.7E-05	lb/MMBtu	(2)	2.16E-03	2.16E-04	9.46E-04
Chromium, hexavalent	9.3E-04	lb/MMBtu	(2)	7.44E-02	1.12E-02	4.89E-02
Chromium, total	2.1E-05	lb/MMBtu	(2)	1.68E-03	2.52E-04	1.10E-03
Cobalt	6.6E-06	lb/MMBtu	(2)	5.28E-04	7.92E-05	3.47E-04
Dichlorobenzene	3.4E-07	lb/MMBtu	(2)	2.72E-05	2.72E-06	1.19E-05
Dichloromethane	2.9E-04		(2)	2.32E-02	2.32E-03	1.02E-02
Ethylbenzene	3.1E-05	lb/MMBtu	(2)	2.48E-03	2.48E-04	1.09E-03
						(included in
Formaldehyde	9.6E-03	lb/MMBtu	(2)	7.68E-01	7.68E-02	Dryer RTO
						calcs)
Hexachlorobenzene	5.2E-07	lb/MMBtu	(2)	4.16E-05	4.16E-06	1.82E-05
Hydrogen chloride	2.0E-02	lb/MMBtu	(2)	1.60E+00	1.60E-01	7.01E-01
Lead	4.8E-05	lb/MMBtu	(2)	3.84E-03	5.76E-04	2.52E-03
Manganese	1.4E-03		(2)	1.12E-01	1.68E-02	7.36E-02
Mercury	4.5E-06		(2)	3.60E-04	5.40E-05	2.37E-04
Naphthalene	1.3E-04		(2)	1.04E-02	1.04E-03	4.56E-03
Nickel	3.0E-05		(2)	2.40E-03	3.60E-04	1.58E-03
Pentachlorophenol	2.4E-07		(2)	1.92E-05	1.92E-06	8.41E-06
Phenol	2.8E-04	lb/MMBtu	(2)	2.24E-02	2.24E-03	9.81E-03

Summary of Emissions from Hot Oil Heater, G-P Hosford OSB (revised July 2000)					
		Emission Rates (a)		1)	
	Uncontrolled (b)		Uncontrolled	Conti	olled
Substance	Emission Factor		(lb/hr)	(lb/hr) (c)	(tpy)
Phosphorus	2.7E-05 lb/MMBtu	(2)	2.16E-03	3.24E-04	1.42E-03
Selenium	5.4E-06 lb/MMBtu	(2)	4.32E-04	6.48E-05	2.84E-04
Styrene	1.9E-03 lb/MMBtu	(2)	1.52E-01	1.52 E-02	6.66E-02
Tetrachlorodibenzo-p-dioxins	3.5E-10 lb/MMBtu	(2)	2.80E-08	2.80E-09	1.23E-08
Toluene	6.5E-04 lb/MMBtu	(2)	5.20E-02	5.20E-03	2.28E-02
Trichlorobenzene	3.2E-07 lb/MMBtu	(2)	2.56E-05	2.56E-06	1.12E-05
Trichloroethene	3.2E-05 lb/MMBtu	(2)	2.56E-03	2.56E-04	1.12E-03
Trichlorophenols	2.7E-07 lb/MMBtu	(2)	2.16E-05	2.16E-06	9.46E-06
Vinyl Chloride	1.3E-05 lb/MMBtu	(2)	1.04E-03	1.04E-04	4.56E-04
o-Xylene	2.2E-05 lb/MMBtu	(2)	1.76E-03	1.76E-04	7.71E-04
m,p-Xylene	1.8E-05 lb/MMBtu	(2)	1.44E-03	1.44E-04	6.31E-04
Total HAPs			1.39	0.42	1.51

Notes

- (a) Short Term Emission rates reflect maximum hourly design on 80 MMBtu/hr on bark Annual Emissions reflect hourly bark rates for 8,760 hours / yr.
- (b) Emission Factors do not reflect the use of the ESP, or RTO.
- (c) Controlled emissions reflect a 90% control on volatile organic compounds from RTO, and 85% control on particulates from RTO or ESP. The calculation for SO2 assumes no control.

References:

- (1) ESP Manufacturer guarantee
- (2) 1999 Draft Compilation of Emission Factors, AP-42 (EPA, 1999). Section 1.6

INTEROFFICE MEMORANDUM

Date: 16-May-2000 05:27pm

From: Aguilar, Mark J.
MJAGUILA@GAPAC.com

Dept: Tel No:

To: 'joseph.kahn@dep.state.fl.us' (joseph.kahn@dep.state.fl.us)

CC: Vasquez, Paul J. (PJVASQUE@GAPAC.com)

Subject: Letter from Georgia-Pacific

A signed original will be sent via mail to you.

<<Doc3.doc>>
Mark Aguilar P.E.
Senior Environmental Engineer
Georgia-Pacific Corporation
Environmental Affairs-Technical Support Group
Atlanta, GA
(404) 652-4293

Page May 16, 2000

Georgia-Pacific 📤

133 Peachtree Street Atlanta, GA 30303 May 16, 2000

Mr. Joseph Kahn, P.E. Twin Towers Office Building 2600 Blair Stone Road Tallahassee, FL 32399-2400

Re: Proposed Hosford OSB Plant DEP File No. 0770010-001-AC(PSD-FL-282)

Dear Mr. Kahn:

Georgia-Pacific Corporation (G-P) thanks you for your cooperation to date on this project. G-P is preparing a submittal to address all of the concerns identified in letters from you and Ms. Cindy Phillips. However, at this time, G-P is still reviewing additional data from the equipment vendors. As you and I have discussed over the telephone, G-P requests an additional 60 days to respond to the FDEP requests. We desire to submit the information by July 18, 2000.

Please feel free to contact me on this request at (404) 652-4293 or FAX (404) 654-4706. Thank you for your cooperation on this important project.

Sincerely,

Mark J. Aguilar P.E. Senior Environmental Engineer

Georgia-Pacific Corporation

Cc: Mr. Paul Vasquez, G-P

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION 4
ATLANTA FEDERAL CENTER
61 FORSYTH STREET
ATLANTA, GEORGIA 30303-8960

BUREAU OF AIR REGULATION

MAR 3 1 2000

RECEIVED

4 APT-ARB

Mr. A. A. Linero, P.E. Administrator New Source Review Section Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399-2400

SUBJ: PSD Permit Application for Georgia-Pacific Corporation Oriented Strandboard (OSB)
Plant located near Hosford (Liberty County), Florida
PSD-FL-282

Dear Mr. Linero:

Thank you for sending the permit application dated January 24, 2000, for the above referenced facility. The proposed project involves the construction and operation of an OSB facility near Hosford, Florida in northeastern Liberty County. The new facility will consist primarily of five dryers, a press, a thermal oil heating system, and associated materials handling equipment. It will have the capacity to produce 475 million square feet per year of OSB (on a 3/8-inch basis). Total emissions of particulate matter, both total and that less than 10 microns in diameter (PM₁₀), volatile organic compounds (VOC), carbon monoxide, and oxides of nitrogen (NO_x) from the proposed project are above the respective significance thresholds requiring Prevention of Significant Deterioration (PSD) review.

Provided below are two sets of comments; the first set covers topics other than the air impact assessment whereas the second set pertains specifically to the air impact assessment. Based on a review of the permit application, the U.S. Environmental Protection Agency (EPA) has the following comments:

1. In the Best Available Control Technology (BACT) analyses section of the permit application (Section G.5.2 of Attachment G), several control options have been eliminated on the basis of being too "costly" without any justification. For example, dryer exhaust recycle was eliminated as a potential control of organic emissions (i.e., VOC) in part because "the high temperature heat exchanger...requires costly materials of construction." Also, "sacrificial bed" pre-filters were eliminated in part because "the required maintenance is costly" for a similar application at another Georgia-

Pacific (GP) facility located in Monticello, Georgia. For a control option to be eliminated on the basis of being cost prohibitive, there must be accompanying cost analyses (including average cost effectiveness) which justify such a claim.

- 2. It appears that the "top down" approach was not used with regard to the selection of BACT for the control of NO_x emissions from the press. The BACT analysis (Section G.6.4 of Attachment G) simply states that low-NO_x burner design in combination with fuel enhancement will comprise BACT for the press without any discussions or rankings of other potential control options [e.g., selective catalytic reduction (SCR) and selective non-catalytic reduction (SNCR)]. Do the designs/layouts of the press and thermal oil heater create the same problems as those detailed for the dryers (Section G.5.2 of Attachment G) with respect to SCR or SNCR?
- 3. In the portion of the permit application which details the methodologies used to quantify emissions (Section 4, Emission Rates), it is stated that combustion emissions were estimated using AP-42 emission factors for wood firing because "in all cases, the emission factors for wood firing are higher than for natural gas firing." While verifying this claim with respect to NO_x emissions, EPA noted that the emission factor that was used (0.167 lb/MMBtu, converted from 1.5 lb/ton) was taken from a section of AP-42 dated 2/99 (Chapter 1, Section 1.6, Wood Waste Combustion In Boilers, Table 1.6-2). There is also a revised draft version of this section dated 9/99 which shows the NO_x emission factor for "bark and wet wood-fired boilers" to be 0.20 lb/MMBtu. It should be noted that this revised factor has a more reliable rating of "B" (versus "C" for the older factor). Consequently, this newer factor would increase the potential emissions of NO_x (related to wood combustion) by approximately 17 percent. This difference in emission rates may also have an impact on modeling and the air quality analysis. Therefore, EPA strongly recommends that all emissions be re-evaluated using the latest emission factors available, particularly those related to wood combustion.

Regarding the air quality impact assessment provided in support of the GP permit application, EPA has the following comments. Each of these issues has been discussed with the Florida Department of Environmental Protection.

- Site Boundary The site boundary used in the impact modeling should be land owned or controlled by GP with physical barrier to public access. The criteria used to define the modeled site boundary should be provided.
- 2. Emission Inventory The following are comments concerning the inventory of other emission sources used in the cumulative PSD increment and National Ambient Air Quality Standards (NAAQS) compliance modeling.

- Although 50 kilometers (km) is the guideline distance beyond the significant impact area (SIA) for source inclusion in an emission inventory, very large sources just outside this range with a significant impact in the SIA should also be included. All emission sources more than 50 km from the SIA have been removed from the inventories (Tables 4 and 7) without impact consideration.
- The 43 Englehard emission sources provided in Table 6 were combined into one representative source for the cumulative impact modeling. A review of the emission characteristics of the Englehard sources indicates they would be better represented by merging into five to ten sources. This is especially true considering the relatively small number of other NAAQS and PSD sources in the modeled emission inventory (Table 5).
- Fugitive emissions were neither addressed nor included in the impact modeling.
- Although the PSD Class II increment consuming sources (Table 9) are a subset of the NAAQS emission inventory (Tables 5 and 8), different emission rates and exit variables exist for some of the PSD sources. The bases for these differences should be provide.
- The emission inventory for the Class I PSD cumulative assessment was not provided. Because emission sources about the Class I area are of concern in this assessment, the Class I emission inventory may include additional sources not included in the Class II PSD assessment.
- 3. PM₁₀ NAAQS Compliance Standard Although the highest second-highest value used for the 24-hour compliance assessment provides conservatively larger concentrations, the current PM₁₀ NAAQS compliance standard when a 5-year data record is used is the sixth-highest 24-hour value at any receptor.
- 4. Visibility Impairment The assessment of visibility impairment is not limited to Class I areas. This assessment should be performed in the impact area with particular emphasis at locations of sensitive receptors (e.g., scenic vistas, nearby airports, etc.).
- Class I Area Visibility The assessment of visibility at St. Marks National Wildlife
 Area used the highest second-highest modeled concentration. The largest modeled
 concentration should be used for this assessment.
- 6. Receptor Grid Resolution The selected modeling grids for the determination of PSD increment and NAAQS compliance were not to 100-meters resolution.

Thank you for the opportunity to comment on the GP permit application. If you have any questions regarding these comments, please direct them to either Art Hofmeister at (404) 562-9115 or Jim Little at (404) 562-9118.

Sincerely, Daylas Mully

R. Douglas Neeley, Chief

Air and Radiation Technology Branch

Air, Pesticides and Toxics Management Division

C: J. Kahn NWD NPS

C. Holladay
R. Paul, GA-Pacific

Department of Environmental Protection

Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

David B. Struhs Secretary

March 21, 2000

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. Ronald L. Paul Exec. V. P., Wood Products and Distribution Georgia-Pacific Corporation 133 Peachtree St. Atlanta, Georgia 30303

Re: Request for Additional Information – EPA Comments DEP File No. 0770010-001-AC (PSD-FL-282) Proposed Hosford OSB Plant

Dear Mr. Paul;

On February 18, 2000 the Department advised you that your application for an air construction/PSD permit for a proposed new OSB plant near Hosford, Florida was incomplete and we requested additional information. We recently received comments from the U.S. Environmental Protection Agency related to the modeling performed in support of the application. In order to complete our review we request that you respond to EPA's comments which are summarized below. Should your response to any of the below items require new calculations, please submit the new calculations, assumptions, reference material and appropriate revised pages of the application form.

- Please provide information that shows that the site boundary used in the impact modeling will be land owned or controlled by Georgia Pacific with a physical barrier to public access.
- 2. Please reevaluate the emission inventory for competing NO_x and PM₁₀ sources to examine the possibility of including sources that are located more than 50 km from the Significant Impact Area (SIA). The current emission inventory disregards sources beyond this distance without examining the magnitude of their emissions. The 20D Rule may be used to prove the insignificance of these sources if they are not located in a close proximity to one another.
- 3. Please combine the Englehard emission sources into 5 to 10 representative sources, instead of combining them into one single source. This should be done by considering the similarity of source parameters such as location, stack height, exit temperature, and diameter.
- 4. Please update and provide the emission inventory used for the Class I PSD cumulative assessment. Because emission sources around the Class I areas are of concern in this assessment, the Class I emission inventory may include additional sources not contained in the Class II PSD assessment.
- 5. Please reevaluate 24-hour PM₁₀ impacts by using the current compliance standard. The current 24-hour PM₁₀ compliance standard is the highest 6th highest 24-hour value at any receptor when a 5-year data record is used.
- 6. Please evaluate visibility impairment in the SIA. The assessment of visibility impairment (coherent plume) is not limited to Class I areas. This assessment should be performed in the impact area with particular emphasis at locations of sensitive receptors e.g., scenic vistas, nearby airports, etc.
- 7. The assessment of visibility at St. Marks NWA used the high second-highest modeled concentration. The proper value to use for this assessment is the highest modeled concentration. Please use the highest modeled concentration when you conduct the refined regional haze analysis for the St. Marks NWA. The second-highest modeled concentration may be used in PSD and NAAQS analyses only.

"More Protection, Less Process"

Mr. Ronald L. Paul Georgia-Pacific Corporation Page 2 of 2 March 21, 2000

- 8. Although the PSD Class II increment consuming sources (Table 9) are a subset of the complete NAAQS emission inventory (Tables 5 and 8), differences are noted in some of the emission rates and stack parameters for the PSD emission sources. Please provide the reason for these differences.
- 9. Please utilize a grid that has a 100-meter resolution around the maximum predicted concentration for all SIA, PSD increment, and NAAQS modeling.

The Department will complete its review after receipt of the requested information. Rule 62-4.050(3), F.A.C. requires that all applications for a Department permit must be certified by a professional engineer registered in the State of Florida. This requirement also applies to responses to Department requests for additional information of an engineering nature. Material changes to the application should also be accompanied by a new certification statement by the authorized representative or responsible official. If there are any questions, please call me at 850/921-9519. Matters regarding modeling issues should be directed to Chris Carlson (meteorologist) at 850/921-9537.

Sincerely

Joseph Kahn, P.E.

New Source Review Section

/jk

cc: Mr. Gregg Worley, EPA Mr. John Bunyak, NPS

Mr. Ed Middleswart, NWD

Mr. Mark Aguilar, P.E., Georgia-Pacific Corp.

Z 031 391 886

	US Postal Service				
	Receipt for Certified Mail				
	No insurance Coverage				
	Do not use for Internation	nal Mail (See reverse)			
	Sent to	e Paul			
	Street & Number	fic			
	Post Office, State, & ZIP Cod	e GA			
	Postage	\$			
	Certified Fee				
	Special Delivery Fee				
ıo	Restricted Delivery Fee				
199	Return Receipt Showing to Whom & Date Delivered				
PS Form 3800 , April 1995	Return Receipt Showing to Whom, Date, & Addressee's Address				
800	TOTAL Postage & Fees	\$			
33	Postmark or Date	3-22-00			
orn	0770010-001-AC JAG-100 POO-F1-282				
S.	P30-F1-293	۱ ا			
ď					

SENDER: Complete items 1 and/or 2 for additional services. Complete items 3, 4a, and 4b. Print your name and address on the reverse of this form so that we card to you. Attach this form to the front of the mailpiece, or on the back if space permit. Write "Retum Receipt Requested" on the mailpiece below the afticle. The Retum Receipt will show to whom the article was delivered and delivered.	does not e number.	I also wish to rect following service extra fee): 1. Address: 2. Restricte Consult postmas	s (for an ee's Address ed Delivery	ipt Service.
3. Article Addressed to: Mr. Ronald L. Paul Ma-factie Corp 133 Peachtre St. Atlanta, GA 30303	4a. Article N 2 03 4b. Service Register Express Return Re 7. Date of D	139/ 8 Type ed Mail ceipt for Merchandise	SSC Certified Insured COD	ou for using Return Rece
5. Received By: (Print Name) 6. Signature: (Addressee or Agent) PS Form 3811, December 1994	8. Addresse and fee is	e's Address (Only paid) Domestic Retu		Thank yo

and the same of th

Golder Associates Inc.

6241 NW 23rd Street, Suite 500 Gainesville, FL 32653-1500 Telephone (352) 336-5600 Fax (352) 336-6603

RECEIVED

FEB 23 2000

BUREAU OF AIR REGULATION

February 18, 2000

0037506A/1

Mr. Cleve Holladay Bureau of Air Quality Management Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, FL 32399-2400

RE: AIR MODELING PROTOCOL TO CONDUCT A REFINED REGIONAL HAZE ANALYSES FOR THE PROPOSED G-P HOSFORD PLANT

Dear Cleve:

On behalf of Georgia-Pacific Corporation (G-P), Golder Associates Inc. (Golder) is providing this air modeling protocol to the Florida Department of Environmental Protection (FDEP) for performing a refined regional haze analysis, requested by the FDEP for the proposed G-P Hosford Plant. The purpose of the protocol is to ensure that the analyses is performed in a manner conforming to FDEP and U.S. Fish and Wildlife Service (USFWS) requirements.

The analysis will assess the potential effect on the existing regional haze levels at the St. Marks National Wilderness Area (SMNWA). The SMNWA is a Prevention of Significant Deterioration (PSD) Class I area located approximately 57 km southeast of the proposed facility site. Based on previous telephone communications between G-P, Golder, and FDEP, this refined analysis is to assess the regional haze impacts at the SMNWA exclusively.

The refined modeling analysis will follow those procedures recommended in the Interagency Workgroup on Air Quality Modeling (IWAQM) Phase II report dated December 1998 and in the Federal Land Managers' Air Quality Related Values Workgroup (FLAG) Draft Phase I report dated October 1999, in coordination with the FDEP. This protocol includes a discussion of the databases to be used in the analysis, the preparation of the modeling databases for introduction into the modeling system, the air modeling methodology, and the presentation of the air modeling results. The proposed model parameter settings are discussed below.

Model Selection

The California Puff (CALPUFF, version 5.0) air modeling system will be used to model G-P's proposed facility and assess potential visibility impairment at the SMNWA. CALPUFF is a non-steady state Lagrangian Gaussian puff long-range transport model that includes algorithms for building downwash effects as well as chemical transformations (important for pollutants affecting visibility), and wet/dry deposition. The CALMET model, a preprocessor to CALPUFF, is a diagnostic meteorological model that produces a three-dimensional field of

wind and temperature and a two-dimensional field of other meteorological parameters. Simply, CALMET was designed to process raw meteorological, terrain, and land-use databases to be used in the air modeling analysis. The CALPUFF modeling system uses a number of FORTRAN preprocessor programs that extract data from large databases and converts the data into formats suitable for input to CALMET.. The processed data produced from CALMET will be input to CALPUFF to assess the pollutant specific impact. Both CALMET and CALPUFF will be used in a manner that is recommended by the IWAQM Phase 2 Report. The proposed analysis will also be based on experience obtained with other recently completed CALPUFF refined modeling analyses in Oregon (Golder, July 1999).

Source Parameters and Emission Rates

The stack parameter and emission rates from the proposed facility are presented in G-P's Prevention of Significant Deterioration Air Permit Application for G-P Hosford, submitted to FDEP in January 2000 (hereinafter referred to as the PSD Application). The proposed facility's emissions of sulfur dioxide (SO_2), nitrogen oxides (NO_x), and particulate matter (PM_{10}) will be included in the refined modeling analysis. The modeling analysis will conservatively assume 100% conversion of NO_x emissions to NO_2 .

Building Wake Effects

The air modeling analysis will address the potential for building-induced downwash to occur at the proposed facility. Dimensions for all significant building structures, as determined by the Building Profile Input Program (BPIP, version 95086), will be included in CALPUFF model. These building dimensions are the same as those provided in the PSD Application.

Modeling Methodology

The analysis for regional haze will be performed using the refined procedure that is outlined in the IWAQM Phase 2 report. The maximum predicted 24-hour concentrations from the proposed facility will be applied to calculate the maximum change in light extinction. The calculated values will be compared to a threshold of five percent change in light extinction over the background level. Based on prior discussions with the USFWS, the background extinction coefficient for the SMNWR is 60.18 Mm⁻¹, and is equivalent to a conservative visual range of 65 km.

The CALPUFF model will be used to predict 24-hour concentrations of nitrates (NO₃), sulfates (SO₄) and PM₁₀ for each day of the year. Based on the procedures provided in the IWAQM Phase II summary report, concentrations of NH₄ NO₃ and (NH₄)₂SO₄ will be determined by multiplying the maximum predicted NO₃ and SO₄ concentrations by factors of 1.29 and 1.375, respectively (i.e., based on the ratio of the molecular weights). Daily source extinction coefficients will be determined by multiplying the daily calculated concentrations of NH₄ NO₃ and (NH₄)₂SO₄ by calculated daily average relative humidity factors. The relative humidity factor represents the average relative humidity factor corresponding to each hour from the 24 hour period in which a maximum species pollutant

impact occurred. The daily PM_{10} concentrations, because it does not chemically transform into another pollutant species and it is a non-hygroscopic pollutant, will then be added to the daily sums for the other pollutants. The maximum daily source extinction coefficient will be used directly to determine whether the proposed facility's emissions will exceed a 5 percent change in light extinction of the background levels.

Receptor Locations

The CALPUFF refined analysis will use an array of discrete Cartesian receptors at appropriate distances to ensure sufficient density and aerial extent to adequately characterize the pattern of pollutant impacts in the SMNWA. Specifically, the array will consist of receptor spacing of 2 km at the boundary and inside the PSD Class I area. Because the terrain elevation at the G-P Hosford site of 185 feet is significant higher than the elevation at the SMNWA, the actual G-P site elevation will be used in the analysis. A receptor elevation of zero will be assigned to each of the SMNWA receptors.

Modeling Domain

The modeling domain defines the boundary of plume simulation area. The modeling domain to be used for the analysis will be in the shape of a rectangle extending approximately 475 km in the east-west (x) direction and 300 km in the north-south (y) direction. The southwest corner of the rectangle will be the origin of the modeling domain and is located at 29.25 N degrees latitude and 81.5 W degrees longitude.

For the processing of meteorological and geophysical data, 95 grid cells will be used in the x-direction and 60 grid cells will be used in the y-direction. A 5-km grid spacing will be used. The air modeling analysis will be performed with the UTM coordinate system.

Mesoscale Model - Generation 4 (MM4) Data

Pennsylvania State University in conjunction with the NCAR Assessment Laboratory developed the MM4 data, a prognostic wind field or "guess" field, for the United States (U.S.). The hourly meteorological variables used to create this data set (wind, temperature, dew point depression, and geopotential height for eight standard levels and up to 15 significant levels) are extensive and only allow for one data base set for the year 1990. The analysis will use the MM4 data to initialize the CALMET wind field. The MM4 data have a horizontal spacing of 80 km and are used to simulate atmospheric variables within the modeling domain.

To apply the MM4 dataset to a regional modeling domain, such as the area that will incorporate G-P's proposed facility and the SMNWA, a sub-set domain will be developed based on the MM4 data local coordinate system. In this coordinate system, the subset domain will consist of a 8 x 6- cell rectangle, spaced at 80 km, extending from MM4 coordinates (45,13) to (52,18). These data will be processed to create a MM4.Dat file, which will be input to the CALMET model.

Composite Receptor Array and CALMET Domain

Figure 1 illustrates the relationship between CALPUFF modeling domain, the MM4 prognostic wind field domain and the approximate source and receptor locations.

Additional Data

The MM4 data set used in the CALMET, although advanced, lacks the fine detail of specific temporal and spatial meteorological variables and geophysical data. These variables will be processed into the appropriate format and introduced into the CALMET model through the additional data files. Additional meteorological data will include surface, upper air, and precipitation observations. Geophysical data will include topography and land use.

Surface Data Stations

The surface data processing will include the following seven primary weather stations that exist within or surround the modeling domain. These stations include Jacksonville, Gainesville, Tallahassee, and Tampa in Florida; Columbus and Macon in Georgia; and Mobile and Montgomery in Alabama. The parameters to be included for these stations are wind speed, wind direction, cloud ceiling height, opaque cloud cover, dry bulb temperature, relative humidity, station pressure and precipitation code that is based on current weather conditions. The weather station data for all stations but Gainesville will be downloaded for the year 1990 from the National Climatic Data Center's (NCDC) Solar and Meteorological Surface Observational Network (SAMSON) CD-ROM set. The surface data from Gainesville will be processed from NCDC CD-144 format. The data will be processed with the CALMET preprocessor utility program, SMERGE, to create one surface file. SURF.DAT. Because the air modeling domain extends of the Gulf of Mexico, surface observations from the Cape San Blas C-MAN station will be included in the analysis. The data will be converted into overwater surface station format for input to CALMET.

Upper Air Data Processing

Upper air data will be processed from four to three weather stations. The three stations that will be included are Apalachicola and Tampa Bay/Ruskin in Florida; and Waycross in Georgia. The upper air data will be obtained from the NCDC Radiosonde Data CD and processed into the NCDC Tape Deck (TD) 6201 format by the CALMET preprocessor utility program, READ62, to create an upper air file for each station.

Precipitation Data Processing

Precipitation data will be processed from a network of 32 hourly precipitation data files collected from primary and secondary NWS precipitation recording stations located in southern Alabama, southern Georgia and northern Florida. The stations will be selected so as to provide detailed coverage in all areas in and around the modeling domain. The data will be extracted from hourly data records obtained by the NCDC and organized by EarthInfo. These data will be extracted and processed into Tape Deck (TD) 3240 format. The CALPUFF preprocessor utility programs PXTRACT and PMERGE will be used to extract and merge, respectively, the hourly precipitation data into CALMET input format.

Geophysical Data Processing

Terrain elevations for each grid cell of the modeling domain will be obtained from 1-degree Digital Elevation Model (DEM) files obtained from US Geographical Survey (USGS). The DEM data for the modeling domain grid will be processed using the utility program TERREL. One-degree land-use data will also be obtained from the USGS. Land-use parameters for the modeling domain will be processed using the CALMET preprocessor utility programs CTGComp and GTGPROC. Other parameters to be processed include surface roughness, surface albedo, Bowen ratio, soil heat flux, and leaf index field. All of the processed land-use parameters will be combined with the terrain information and input to CALMET.

CALPUFF Settings

The following CALPUFF settings/values as defined in IWAQM Phase II are to be used for the refined modeling analysis:

Parameter	Setting
Six Pollutant Species	SO ₂ , SO ₄ , NO _x , HNO ₃ , NO ₃ , and PM ₁₀
Chemical Transformation	MESOPUFF II scheme with CALPUFF
Deposition	Use dry and wet deposition, plume
Meteorological/Land Use	CALMET
Plume Rise	Transitional, Stack-tip downwash, Partial
Dispersion	Puff plume element, PG/MP coefficients,
Terrain Effects	Partial plume path adjustment
Output	Create binary file: output species SO ₄ , PM ₁₀ ,
Model Processing	Highest concentrations predicted for year
Default Background	Ozone: 80 ppb; Ammonia: 10 ppb

Should you have any questions or comments on the protocol, please contact me. Golder greatly appreciates the cooperation of the FDEP staff on this project.

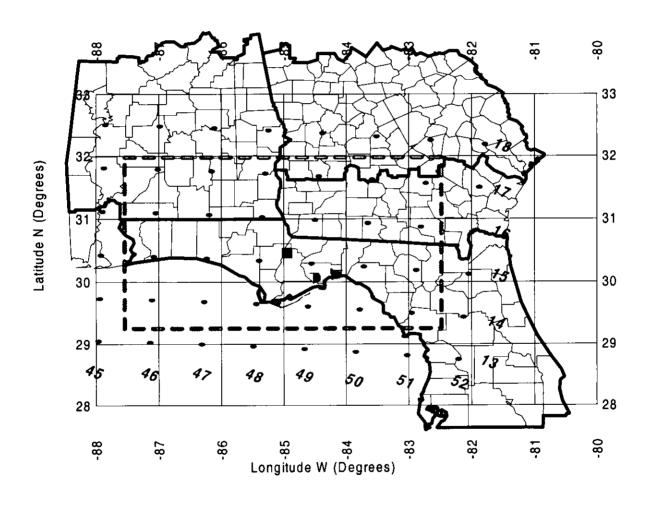
Sincerely yours,

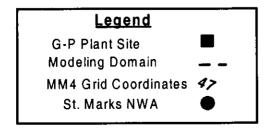
Steven R. Marks, CCM

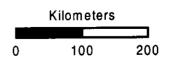
Senior Scientist

M.J. Aguilar, G-P Atlanta

A. Meng, FDEP


B. Rolofson, USFWS - e marked by DEP per applicants reguest


E. Porter, USFWS - e marked by DEP per applicants reguest


P:\Projects\2000\0037\0037506A\01\#01-ltr.doc

C. Carlson

Figure 1. Map of Modeling Domain Refined Regional Haze Analysis St. Marks National Wilderness Area

Department of Environmental Protection

Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

David B. Struhs Secretary

February 18, 2000

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. Ronald L. Paul Exec. V. P., Wood Products and Distribution Georgia-Pacific Corporation 133 Peachtree St. Atlanta, Georgia 30303

Re: Request for Additional Information DEP File No. 0770010-001-AC (PSD-FL-282) Proposed Hosford OSB Plant

Dear Mr. Paul:

On January 21, 2000 the Department received your application and complete fee for an air construction/PSD permit for a proposed new OSB plant near Hosford, Florida. We are processing your application, but it is incomplete. In order to complete our review we will need the additional information requested below. Should your response to any of the below items require new calculations, please submit the new calculations, assumptions, reference material and appropriate revised pages of the application form.

- 1. The application information states that fugitive sources are not required for evaluating PSD applicability. Rule 62-212.400(2)(b), F.A.C., provides for exemption of fugitive emissions from the determination of whether this facility is major for PSD, but Rule 62-212.400(2)(f), F.A.C., requires fugitive emissions be included in determining which pollutants equal or exceed the significant emission rate. The facility is major because of VOC potential emissions, and is significant for PM and PM₁₀, CO and NOx. Please address the PSD requirements of Rule 62-212.400, F.A.C., for PM and PM₁₀ and VOC. Include an analysis of BACT for PM and PM₁₀, visible emissions, and VOC, and an air quality analysis, that take into account all quantifiable fugitive emissions from the proposed facility.
- The Class I Significant Impact and Increment analyses do not include receptors in the western portion of the St.
 Marks National Wildlife Refuge. Please submit Class I Significant Impact and Increment analyses that utilize
 these receptors.
- 3. Please submit a report that describes the procedures utilized in the CALPUFF analysis that was conducted for the Bradwell Bay and St. Marks Class I Areas.
- 4. The application information states that during normal operations exhaust gases from the thermal oil system will be routed through the dryer system and the associated multiclones and RTOs. Under what conditions will these exhaust gases bypass this route and be emitted through EP-10, and what is the expected duration of these conditions?
- 5. What is the fuel consumption rate for the regenerative thermal oxidizers?
- 6. The SCC numbers for emissions unit 010 are for the electric generation industry. SCC numbers such as 1-03-009-02 and 1-03-006-02 for commercial/institutional external combustion sources may be appropriate. Please confirm these codes are appropriate or suggest other codes.
- 7. Please provide a copy of any available NCASI information that may be used to estimate emissions, either controlled or uncontrolled, from the drying and press operations.

"More Protection, Less Process"

Mr. Ronald L. Paul Georgia-Pacific Corporation Page 2 of 2 February 18, 2000

- 8. Please provide a copy of the BACT determinations and construction permits for the G-P facilities in Arkansas and Virginia, and, if possible, the Louisiana Pacific facility in Alabama.
- 9. Please provide information to support the emission factors used by the vendor to estimate uncontrolled and controlled emissions from the dryers. Interestingly, for particulate matter, VOC and NOx, emission factors from EPA's AP-42 section 10.6.1 result in much lower estimated emissions than estimated by the dryer vendor. Please address this as part of your response.
- 10. Emission factors from EPA's AP-42 section 10.6.1 result in much lower estimated emissions for VOC emissions from the press than estimated by the stack test data. Please comment and provide supporting information for the stack test used by the vendor, and provide additional stack test data from the same or other facilities. Please provide a description of the equipment and processes used by this plant, and confirm whether this is or is not the Louisiana Pacific facility in Alabama listed in the RBLC database.
- 11. Information in the RBLC database suggests that other facilities achieve much lower hourly emissions than you have proposed as BACT, particularly for PM₁₀, VOC and NOx from the dryers, and VOC from the press. Please address this and reevaluate the level of emissions proposed for these sources and pollutants.
- 12. For emissions units 003 through 009, the emission limits you proposed as BACT are higher than recent BACT determinations of the Department. The Department is likely to impose more stringent limits regardless of the vendor's guarantees. For example, the Department recently determined that the BACT emission limit for a planermill controlled by a cyclone and baghouse combination was 0.004 grains per dscf. Please reevaluate the level of emissions proposed for these sources.
- 13. Enclosed are the preliminary comments from the U.S. Fish and Wildlife Service. We have similar concerns, some of which are reviewed above. Please respond to these comments, particularly the evaluation of acceptable BACT/limits and the economic analysis.
- 14. Additional comments related to the case-by-case MACT determination required for this project will be sent to you by separate letter. Please respond to those comments with your response to the above.

The Department will complete its review after receipt of the requested information. Rule 62-4.050(3), F.A.C. requires that all applications for a Department permit must be certified by a professional engineer registered in the State of Florida. This requirement also applies to responses to Department requests for additional information of an engineering nature. Material changes to the application should also be accompanied by a new certification statement by the authorized representative or responsible official. Permit applicants are advised that Rule 62-4.055(1), F.A.C. now requires applicants to respond to requests for information within 90 days. If there are any questions, please call me at 850/921-9519. Matters regarding modeling issues should be directed to Chris Carlson (meteorologist) at 850/921-9537.

Sincerely,

√oseph Kahn, P.E.

New Source Review Section

/jk

cc: Mr. Gregg Worley, EPA Mr. Ed Middleswart, NWD

Mr. John Bunyak, NPS

Mr. Mark Aguilar, P.E., Georgia-Pacific Corp.

Z 031 391 866

	Z 037 341	. 866				
Ì	US Postal Service Receipt for Certified Mail No Insurance Coverage Provided.					
Ċ	Do not use for Internation	al Mail (See reverse)				
ſ	Sent to Smal d	Paul				
	Street & Number	itie				
	Posr Office, State, & ZIR Cod	GA				
	Postage	\$				
	Certified Fee					
	Special Delivery Fee					
	Restricted Delivery Fee					
1995	Return Receipt Showing to Whom & Date Delivered					
April	Return Receipt Showing to Whom, Date, & Addressee's Address					
800	TOTAL Postage & Fees	\$				
رن س	Postmark or Date	2-18-00				
PS Form 3800 , April 1995	0770010-001 p50-F1-	782				

Janil 15 b	
SENDER: Complete items 1 and/or 2 for additional services. Complete items 3, 4a, and 4b. Print your name and address on the reverse of this form so that we card to you. Attach this form to the front of the mailpiece, or on the back if space of permit. Write "Return Receipt Requested" on the mailpiece below the article the Return Receipt will show to whom the article was delivered and it delivered.	number. 2. Restricted Delivery
3. Article Addressed to: Mr. Ronald faul, Ex. V.P. Mr. Ronald faul, Ex. V.P. Wood Products & Distribution Ma-Pacific Corp 133 Peachtrel 3t. Atlanta, GA 30303	4b. Service Type Registered Express Mail Return Receipt for Merchandise 7. Date of Delivery
5. Received By: (Print Name) 6. Signature: (Addressee or Agent) X	8. Addressee's Address (Only if requested and fee is paid)
PS Form 3811 , December 1994	595-98-8-0229 Domestic Return Receipt

Memorandum

To:

Ellen Porter

From:

Kirsten King

Re:

Georgia Pacific Oriented Strandboard

Date:

2 February 2000

Background

Georgia Pacific proposes to construct an oriented strandboard facility near Hosford Florida. The facility will be comprised of five dryers equipped with TherMec Burners, a board press with two thermal oil heaters each containing one wood fired burner and one natural gas fired burner and a materials handling facility

Proposed Controls

Dryer and Board Press:

We agree with the emissions control equipment choices provided in the BACT analysis, however, the emissions limits provided are, in some cases, significantly higher than acceptable BACT. Table 1 shows the limits proposed by Georgia Pacific.

Table 1: Proposed limits

Equipment	Emissions limit (tpy)	Proposed Emissions Limit (lb/hr)	Emissions limit (lb./MMBTU)
Dryer (200MMBTU/hr max)			
PM/PM10	326.1	74.45	0.37
VOC	553	126.26	0.63
CO	147.15	33.60	0.16
NO _x	321.05	73.3	0.37
Press (80MMBTU/hr max)			
PM/PM10	12.4	2.83	0.035
VOC	87.82	20.05	0.25
CO	31.76	7.25	0.091
NO _x	47	10.73	0.13

¹ The permit does not state the size of the two wood fuel suspension burners used in this process. 40 MMBTU each was assumed.

Table 2: Acceptable BACT limits

Equipment	BACT Emissions	BACT Emissions	
	Limit	Limit	
	(lb./MMBTU)	(lb./hr)	
Dryer (200 MMBTU)			
PM/PM10	0.07	14.0	
voc	0.17	34	
cò	0.2	40.0	
NO _x	0.2	40.0	
Press (80 MMBTU)			
PM/PM10	0.030	2.4	
VÖC	0.081	6.48	
CÓ	0.379	30.32	
NO _x	0.2	16.0	

We believe that the limits for the press and the dryer should follow those listed in Table 2. These limits were taken from the RACT/BACT/LAER clearinghouse and a Virginia Georgia Pacific facility for similar technology. Because BACT is an emission limit based standard we propose that the permit reflect BACT emission limits in addition to BACT control technologies.

Economic Analysis:

Though we agree with the selection of BACT technologies made by Georgia Pacific, an economic analysis should have been done to establish the cost of control and support the rejection of SCR as a control technology.

Materials Handling:

For the material handling operations we agree that bagfilters are a BACT control technology, but again we disagree with the proposed emissions limit. The RACT/BACT/LAER clearinghouse indicates that for materials handling at OSB plants using bagfilters the PM limit should be 0.005 gr/dscf rather than 0.01 gr/dscf.

Other issues:

We contacted Steve Proctor from the North Carolina Division of Air Quality regarding the use of SCR on the Wierhauser particle board facility. Because of severe problems in keeping the catalyst clean they have just submitted a new PSD permit removing SCR from the facility.

Conclusions

The overall selection of BACT technology is acceptable in this situation, but the emission limits in some cases are higher than BACT. The Georgia Pacific facility should be able to meet the emissions limits provided above.

Department of Environmental Protection

Jeb Bush Governor .Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

David B. Struhs Secretary

February 18, 2000

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. Ronald L. Paul Exec. V. P., Wood Products and Distribution Georgia-Pacific Corporation 133 Peachtree St. Atlanta, Georgia 30303

Re: Request for Additional Information – Case-by-case MACT Information DEP File No. 0770010-001-AC (PSD-FL-282) Proposed Hosford OSB Plant

Dear Mr. Paul:

On January 21, 2000 the Department received your application and complete fee for an air construction/PSD permit for a proposed new OSB plant near Hosford, Florida. We are processing your application, but it is incomplete. In order to continue our review, in addition to the information requested by Joseph Kahn of the New Source Review Section, we will need the following information related to the case-by-case MACT determination. Should your response to any of the below items require new calculations, please submit the new calculations, assumptions, reference material and appropriate revised pages of the application form.

- 1. The application states that "The proposed BACT for the dryers and press (see Section 8), regenerative thermal oxidation, satisfies the 112(g) MACT requirement for formaldehyde from these sources." Since a MACT must be proposed by the applicant in accordance with 40 CFR 63.43(e), see attachment, it is assumed that what this statement means is that the applicant wants the proposed BACT to also be considered as the proposed MACT.
 - Please review the attachment, "What Information is Needed from the Applicant for a Case-by-Case MACT Determination?" and supply the missing information.
- 2. In addition to formaldehyde, what other hazardous air pollutants (HAPs) will be emitted from the facility? What will be the potential plantwide emissions of total hazardous air pollutants per year?
- 3. What events will require the use of the emergency exhausts shown in Figure 3-4a, Process Flow Diagram? How often are these events expected to occur, and of what duration are these events expected to be?
- 4. In which document did you find SCC 30701001, Flake Dryer, and SCC 30701053, Press Operation?
- 5. A quick scan of EPA data shows possible VOC removal efficiency of 95% for waferboard dryer (SCC 30700704), and 99% for particleboard drying (SCC 30700703). Please explain why these would not be the best controlled similar sources for MACT purposes.

The Department will continue its review after receipt of the requested information. Rule 62-4.050(3), F.A.C. requires that all applications for a Department permit must be certified by a professional engineer registered in the State of Florida. This requirement also applies to responses to Department requests for additional information of an engineering nature. Material changes to the application should also be accompanied by a new certification statement by the authorized representative or responsible official. Permit applicants are advised that Rule 62-4.055(1), F.A.C. now requires applicants to respond to requests for information within 90 days.

"More Protection, Less Process"

Mr. Ronald L. Paul Georgia-Pacific Corporation Page 2 of 2 February 18, 2000

If there are any questions, please call me at 850/921-9534 or send email to Cindy.Phillips@dep.state.fl.us .

Sincerely,

Cindy L. Phillips, P.E.

Air Toxics Unit

Bureau of Air Regulation

attachment

cc: Mr. Gregg Worley, EPA Mr. Ed Middleswart, NWD

Mr. John Bunyak, NPS

Mr. Mark Aguilar, P.E., Georgia-Pacific Corp.

What Information is Needed from the Applicant for a Case-by-Case MACT Determination?

{REFERENCE: Federal Register / Vol. 61, No. 250 / Friday, December 27, 1996 / Rules and Regulations}

- 63.43 (d) <u>Principles of MACT determinations</u>. The following general principles shall govern preparation by the owner or operator of each permit application or other application requiring a case-by-case MACT determination concerning construction or reconstruction of a major source, and all subsequent review of and actions taken concerning such an application by the permitting authority:
- (1) The MACT emission limitation or MACT requirements recommended by the applicant and approved by the permitting authority shall not be less stringent than the emission control which is achieved in practice by the best controlled similar source, as determined by the permitting authority.
- (2) Based upon available information, as defined in this subpart, the MACT emission limitation and control technology (including any requirements under paragraph (d)(3) of this section) recommended by the applicant and approved by the permitting authority shall achieve the maximum degree of reduction in emissions of HAP which can be achieved by utilizing those control technologies that can be identified from the available information, taking into consideration the costs of achieving such emission reduction and any non-air quality health and environmental impacts and energy requirements associated with the emission reduction.
- (3) The applicant may recommend a specific design, equipment, work practice, or operational standard, or a combination thereof, and the permitting authority may approve such a standard if the permitting authority specifically determines that it is not feasible to prescribe or enforce an emission limitation under the criteria set forth in section 112(h)(2) of the Act.
- (4) If the Administrator has either proposed a relevant emission standard pursuant to section 112(d) or section 112(h) of the Act or adopted a presumptive MACT determination for the source category which includes the constructed or reconstructed major source, then the MACT requirements applied to the constructed or reconstructed major source shall have considered those MACT emission limitations and requirements of the proposed standard or presumptive MACT determination.

(e) Application requirements for a case-by-case MACT determination.

- (1) An application for a MACT determination (whether a permit application under title V of the Act, an application for a Notice of MACT Approval, or other document specified by the permitting authority under paragraph (c)(2)(ii) of this section) shall specify a control technology selected by the owner or operator that, if properly operated and maintained, will meet the MACT emission limitation or standard as determined according to the principles set forth in paragraph (d) of this section.
- (2) In each instance where a constructed or reconstructed major source would require additional control technology or a change in control technology, the application for a MACT determination shall contain the following information:
- (i) The name and address (physical location) of the major source to be constructed or reconstructed;
- (ii) A brief description of the major source to be constructed or reconstructed and identification of any listed source category or categories in which it is included;
- (iii) The expected commencement date for the construction or reconstruction of the major source;

- (iv) The expected completion date for construction or reconstruction of the major source;
- (v) the anticipated date of start-up for the constructed or reconstructed major source;
- (vi) The HAP emitted by the constructed or reconstructed major source, and the estimated emission rate for each such HAP, to the extent this information is needed by the permitting authority to determine MACT;
- (vii) Any federally enforceable emission limitations applicable to the constructed or reconstructed major source;
- (viii) The maximum and expected utilization of capacity of the constructed or reconstructed major source, and the associated uncontrolled emission rates for that source, to the extent this information is needed by the permitting authority to determine MACT;
- (ix) The controlled emissions for the constructed or reconstructed major source in tons/yr at expected and maximum utilization of capacity, to the extent this information is needed by the permitting authority to determine MACT;
- (x) A recommended emission limitation for the constructed or reconstructed major source consistent with the principles set forth in paragraph (d) of this section;
- (xi) The selected control technology to meet the recommended MACT emission limitation, including technical information on the design, operation, size, estimated control efficiency of the control technology (and the manufacturer's name, address, telephone number, and relevant specifications and drawings, if requested by the permitting authority);
- (xii) Supporting documentation including identification of alternative control technologies considered by the applicant to meet the emission limitation, and analysis of cost and non-air quality health environmental impacts or energy requirements for the selected control technology; and
 - (xiii) Any other relevant information required pursuant to subpart A.
- (3) In each instance where the owner or operator contends that a constructed or reconstructed major source will be in compliance, upon startup, with case-by-case MACT under this subpart without a change in control technology, the application for a MACT determination shall contain the following information:
- (i) The information described in paragraphs (e)(2)(i) through (e)(2)(x) of this section; and
 - (ii) Documentation of the control technology in place.

INTEROFFICE MEMORANDUM

Date: 16-Feb-2000 01:42pm From: Joseph Kahn TAL

KAHN J

Dept: Air Resources Management

Tel No: 850/921-9519

To: Ellen Porter (Ellen Porter@nps.gov)

Subject: Re: attached comments on GP-Hosford

Ellen,

I finally got the chance to review your comments about GP Hosford and I have a couple of comments. First, it appears that the Table 1 lb/mmBtu emissions limits for the dryers were calculated using 80 mmBtu/hr as the heat input, but the total heat input for the five dryers is 200 mmBtu/hr (40 mmBtu/hr each). This part of the table should be revised using the 200 mmBtu/hr rate. Second, although I agree generally that the applicant's proposed BACT emissions limits appear to be high, the limits of Table 2 seem too low to me. It looks like the limits of Table 2 are the lowest limits from the RBLC database, but they do not appear to have been adjusted for the size (processing/heat input capacity) of the GP Hosford emissions sources. Can you confirm for me whether the Table 2 limits consider the size of the sources?

I plan on including your comments with our request for additional information which we will mail to the applicant by Friday morning. Please get back with me about the above before then if possible. Thanks.

-Joe

INTEROFFICE MEMORANDUM

Date: 16-Feb-2000 08:50pm

From: Kirsten_King

Kirsten_King@nps.gov

Dept: Tel No:

Subject: Comments on GP-Hosford

Dear Mr. Kahn

You are correct about the 80 MMBTU/hr. I have corrected the lb./hr levels for the dryers. The values for the BACT level emission limit recommendations were in MMBTU/hr from the RACT/BACT/LAER clearinghouse and the Virginia permit, so these should be correct.

Thank you for your help on this. Please let me know if I can help clarify anything else or provide you with additional information.

Kirsten King
kirsten_king@nps.gov
(303)969.2153

I will be out of the office on 2/17 and 2/18, but would be happy to return a phone call.

Memorandum

To:

Ellen Porter

From:

Kirsten King

Re:

Georgia Pacific Oriented Strandboard

Date:

2 February 2000

Background

Georgia Pacific proposes to construct an oriented strandboard facility near Hosford Florida. The facility will be comprised of five dryers equipped with TherMec Burners, a board press with two thermal oil heaters each containing one wood fired burner and one natural gas fired burner and a materials handling facility

Proposed Controls

Dryer and Board Press:

We agree with the emissions control equipment choices provided in the BACT analysis, however, the emissions limits provided are, in some cases, significantly higher than acceptable BACT. Table 1 shows the limits proposed by Georgia Pacific.

Table 1: Proposed limits

Equipment	Emissions limit	Proposed	Emissions limit
	(tpy)	Emissions Limit	(lb./MMBTU)
		(lb/hr)	
Dryer (200MMBTU/hr max)			
PM/PM10	326.1	74.45	0.37
VOC	553	126.26	0.63
СО	147.15	33.60	0.16
NO _x	321.05	73.3	0.37
Press (80MMBTU/hr max)			
PM/PM10	12.4	2.83	0.035
VOC	87.82	20.05	0.25
СО	31.76	7.25	0.091
NO _x	47	10.73	0.13

Table 2:Acceptable BACT limits

The permit does not state the size of the two wood fuel suspension burners used in this process. 40 MMBTU each was assumed.

Equipment	BACT Emissions	BACT Emissions
	Limit	Limit
	(lb./MMBTU)	(lb./hr)
Dryer (200 MMBTU)		
PM/PM10	0.07	14.0
VOC	0.17	34
со	0.2	40.0
NO _x	0.2	40.0
Press (80 MMBTU)		
PM/PM10	0.030	2.4
VOC	0.081	6.48
CO	0.379	30.32
NO _x	0.2	16.0

We believe that the limits for the press and the dryer should follow those listed in Table 2. These limits were taken from the RACT/BACT/LAER clearinghouse and a Virginia Georgia Pacific facility for similar technology. Because BACT is an emission limit based standard we propose that the permit reflect BACT emission limits in addition to BACT control technologies.

Economic Analysis:

Though we agree with the selection of BACT technologies made by Georgia Pacific, an economic analysis should have been done to establish the cost of control and support the rejection of SCR as a control technology.

Materials Handling:

For the material handling operations we agree that bagfilters are a BACT control technology, but again we disagree with the proposed emissions limit. The RACT/BACT/LAER clearinghouse indicates that for materials handling at OSB plants using bagfilters the PM limit should be 0.005 gr/dscf rather than 0.01 gr/dscf.

Other issues:

We contacted Steve Proctor from the North Carolina Division of Air Quality regarding the use of SCR on the Wierhauser particle board facility. Because of severe problems in keeping the catalyst clean they have just submitted a new PSD permit removing SCR from the facility.

Conclusions

The overall selection of BACT technology is acceptable in this situation, but the emission limits in some cases are higher than BACT. The Georgia Pacific facility should be able to meet the emissions limits provided above.

U.S.FISH&WILDLIFE SERVICE AIR QUALITY BRANCH

P.O. BOX 25287, Denver, CO 80225-0287

FACSIMILE COVER SHEET

Late February 9, 2000

Telephone: (303) 969-2617

Fax: (303) 969-2822

To: Joe Kohn

From: Ellen Porter

Subject: GP Hosford

Number of Pages: \$4 (Including this cover sheet)

Preliminary Review of Prevention of Significant Deterioration Permit Application for Georgia-Pacific's Oriented Strandboard Facility Hosford, Florida

by

Air Quality Branch, U. S. Fish and Wildlife Service – Denver February 2, 2000

Background

Georgia Pacific (GP) proposes to construct an oriented strandboard facility (OSF) near Hosford, Florida, 45 km northwest of St. Marks Wilderness, a Class I air quality area administered by the U.S. Fish and Wildlife Service. The facility will be comprised of five dryers equipped with TherMec Burners, a board press with two thermal oil heaters each containing one wood-fired and one natural gas-fired burner, and a materials handling facility

Proposed Controls

Dryer and Board Press:

We agree with the emissions control equipment choices provided in the BACT analysis, however, the emissions limits provided are significantly higher than acceptable BACT. Table 1 shows the limits proposed by Georgia Pacific.

Table 1: Proposed limits

Equipment	Emissions limit (tpy)	Proposed Emissions Limit (lb/hr)	Emissions limit (lb./MMBTU)
Dryer (80MMBTU/hr max)			
PM/PM10	326.1	74.45	0.93
voc	553	126.26	1.58
l co	147.15	33.60	0.4199
NO _x	321,05	73.3	0.916
Tress (80MMBTU/hr max)			
PM/PM10	12.4	2.83	0.035
VOC	87.82	20.05	0.25
СО	31.76	7.25	0.091
NO _x	47	10.73	0.13

Equipment	BACT Emissions Limit (lb/hr)
Dryer (80MMBTU/hr max)	
PM/PM10	6.42
voc	3.669
CO	8.93
NO _x	18.38
Press (80MMBTU/hr max)	
PM/PM10	0.65
voc	1.73
co	8.19
NOx	8.01

We believe that the limits for the press and the dryer should follow those listed in Table 2. These limits were taken from the RACT/BACT/LAER clearinghouse for similar technology. Because BACT is an emission limit based standard we propose that the permit reflect BACT emission limits in addition to BACT control technologies.

Materials Handling:

For the material handling operations we agree that bagfilters are a BACT control technology, but again we disagree with the proposed emissions limit. The RACT/BACT/LAER clearinghouse indicates that for materials handling at OSB plants using bagfilters the PM limit should be 0.005 gr/dscf rather than 0.01 gr/dscf.

Conclusions

The overall selection of BACT technology is acceptable in this situation, but the emission limits are far less than BACT. Because BACT is an emission limit based standard, this BACT analysis is not reasonable. The Georgia Pacific facility should be able to meet the emissions limits provided above with the technology they have proposed.

Air Quality Related Values Analysis

GP's haze analysis assumed a distance of 64 km (maximum of 81 km) from the facility to St. Marks. However, Section 6 of the application gives the distance as 45 km. Our measurements agree with the 45 km estimate. GP should verify the distance and re-do, if necessary, the haze analysis (assuming that some receptor in St. Marks will be greater than 50 km from the facility). In addition, GP should do a VISCREEN analysis for receptors in St. Marks less than 50 km from the facility

Our comments are preliminary and will be followed by a more detailed review of the proposed project.

Department of Environmental Protection

Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

David B. Struhs Secretary

January 24, 2000

Mr. John Bunyak, Chief Policy, Planning & Permit Review Branch NPS - Air Quality Division Post Office Box 25287 Denver, Colorado 80225

Re: Georgia-Pacific Corporation, Hosford OSB Plant

PSD-FL-282

Dear Mr. Bunyak:

Enclosed is a copy of a PSD permit application for an oriented strandboard manufacturing plant to be constructed and operated by Georgia-Pacific Corporation near Hosford in Liberty County. The application includes the applicant's PSD analyses including a BACT analysis. This is a new facility. The emissions units include five flake dryers, a panel press, sawing and sanding operations, and a thermal oil system heated with wood. The applicant has proposed to use RTOs to control emissions from the flake dryers and panel press.

Please provide your comments as soon as possible. Our rules require us to determine whether an application is complete within 30 days of receipt and to make a Preliminary Determination within 60 days (given that the application is complete). This project is not subject to the Florida Power Plant Siting Act and review by the Governor and Cabinet. If you have any questions regarding this matter, please call me at 850/921-9519.

Sincerely,

Joseph Kahn, P.E.

New Source Review Section

/jk

Enclosure

Department of Environmental Protection

Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

David B. Struhs Secretary

January 24, 2000

Mr. Gregg Worley, Section Chief Air, Radiation Technology Branch Preconstruction/HAP Section US EPA Region IV 61 Forsyth Street Atlanta, Georgia 30303

Re: Georgia-Pacific Corporation, Hosford OSB Plant PSD-FL-282

Dear Mr. Worley:

Enclosed is a copy of a PSD permit application for an oriented strandboard manufacturing plant to be constructed and operated by Georgia-Pacific Corporation near Hosford in Liberty County. The application includes the applicant's PSD analyses including a BACT analysis. This is a new facility. The emissions units include five flake dryers, a panel press, sawing and sanding operations, and a thermal oil system heated with wood. The applicant has proposed to use RTOs to control emissions from the flake dryers and panel press.

Please provide your comments as soon as possible. Our rules require us to determine whether an application is complete within 30 days of receipt and to make a Preliminary Determination within 60 days (given that the application is complete). This project is not subject to the Florida Power Plant Siting Act and review by the Governor and Cabinet. If you have any questions regarding this matter, please call me at 850/921-9519.

Sincerely,

Joseph Kahn, P.E.

New Source Review Section

/ik

Enclosure