TAMPA ELECTRIC COMPANY F.J. GANNON STATION UNIT NUMBER THREE TAMPA, FLORIDA

REQUEST FOR PERMIT AMENDMENT AIR OPERATION PERMIT NO. A029-172179 TIRE DERIVED FUEL TEST BURN

AUGUST 1996

TABLE OF CONTENTS

SECTION TAB

Permit Application Application Information

FDEP Letters of Authorization Attachment A

PSD Applicability Analysis Attachment B

No-Threat Level Guidance Analysis Attachment C

Test Burn Report Attachment D

Supplemental Information Attachment E

FLORIDA DEP LOGO

Department of Environmental Protection

DIVISION OF AIR RESOURCES MANAGEMENT

APPLICATION FOR AIR PERMIT - LONG FORM

See Instructions for Form No. 62-210.900(1)

I. APPLICATION INFORMATION

This section of the Application for Air Permit form identifies the facility and provides general information on the scope and purpose of this application. This section also includes information on the owner or authorized representative of the facility (or the responsible official in the case of a Title V source) and the necessary statements for the applicant and professional engineer, where required, to sign and date for formal submittal of the Application for Air Permit to the Department. If the application form is submitted to the Department using ELSA, this section of the Application for Air Permit must also be submitted in hard-copy.

Identification of Facility Addressed in This Application

Enter the name of the corporation, business, governmental entity, or individual that has ownership or control of the facility; the facility site name, if any; and the facility's physical location. If known, also enter the facility identification number.

1.	Facility Owner/Company Name:				
	Tampa Electric Company	•			
2.	Site Name:				
	F.J. Gannon Station				
3.	Facility Identification Number:			[] Unknown	
	0570040				
4.	Facility Location:				
	Street Address or Other Locator:	Port Sutte	on Road		
	City:	County:		Zip Code:	
	Tampa	Hillsboro	ugh	33619	
5.	Relocatable Facility?		6. Existing Pe	rmitted Facility?	
	[] Yes [X] No		[X] Yes	[] No	

Application Processing Information (DEP Use)

1. Date of Receipt of Application:	_
2. Permit Number:	-
3. PSD Number (if applicable):	-
4. Siting Number (if applicable):	

DEP Form No. 62-210.900(1) - Form

Owner/Authorized Representative or Responsible Official

 Name and Title of Owner/Authorized Representative or Responsible Official: Patrick A. Ho, P.E.
 Manager, Environmental Planning

2. Owner/Authorized Representative or Responsible Official Mailing Address:

Organization/Firm: Tampa Electric Company Street Address: 702 North Franklin Street

City: Tampa State: Florida Zip Code: 33602

3. Owner/Authorized Representative or Responsible Official Telephone Numbers:

Telephone: (813) 228-4844 Fax: (813) 228-4881

4. Owner/Authorized Representative or Responsible Official Statement:

I, the undersigned, am the owner or authorized representative* of the non-Title V source addressed in this Application for Air Permit or the responsible official, as defined in Rule 62-210.200, F.A.C., of the Title V source addressed in this application, whichever is applicable. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof. I understand that a permit, if granted by the Department, cannot be transferred without authorization from the Department, and I will promptly notify the Department upon sale or legal transfer of any permitted emissions unit.

Signature

Date

* Attach letter of authorization if not currently on file.

TO WHOM IT MAY CONCERN:

Please be advised that Patrick A. Ho, Manager, Environmental Planning, is the authorized representative of Tampa Electric Company concerning matters with which this permit application deals.

Very truly yours,

William N. Cantrell

William Contin

Vice President

Energy Supply

WNC\gm\ADMIN\AUTH.LTR

Scope of Application

This Application for Air Permit addresses the following emissions unit(s) at the facility. An Emissions Unit Information Section (a Section III of the form) must be included for each emissions unit listed.

Emissions Unit ID	Description of Emissions Unit	Permit Type
	-	
003	Unit No. 3, Solid Fuel Steam Generator	AC1B

3

Purpose of Application and Category

Check one (except as otherwise indicated):

Category I: All Air Operation Permit Applications Subject to Processing Under Chapter 62-213, F.A.C.

Th	is	Application for Air Permit is submitted to obtain:
[]	Initial air operation permit under Chapter 62-213, F.A.C., for an existing facility which is classified as a Title V source.
]]	Initial air operation permit under Chapter 62-213, F.A.C., for a facility which, upon start up of one or more newly constructed or modified emissions units addressed in this application would become classified as a Title V source.
		Current construction permit number:
[]	Air operation permit renewal under Chapter 62-213, F.A.C., for a Title V source.
		Operation permit to be renewed:
[]	Air operation permit revision for a Title V source to address one or more newly constructed or modified emissions units addressed in this application.
		Current construction permit number:
		Operation permit to be revised:
]]	Air operation permit revision or administrative correction for a Title V source to address one or more proposed new or modified emissions units and to be processed concurrently with the air construction permit application. Also check Category III.
		Operation permit to be revised/corrected:
[}	()	Air operation permit revision for a Title V source for reasons other than construction or modification of an emissions unit. Give reason for the revision; e.g., to comply with a new applicable requirement or to request approval of an "Early Reductions" proposal.
		Operation permit to be revised: A029-172179
		Reason for revision: Amendment to allow combustion of coal/tire-derived
		fuel blend.

4

Category II: All Air Operation Permit Applications Subject to Processing Under Rule 62-210.300(2)(b), F.A.C.

T	his Application for Air Permit is submitted to obtain:
[] Initial air operation permit under Rule 62-210.300(2)(b), F.A.C., for an existing facility seeking classification as a synthetic non-Title V source.
	Current operation/construction permit number(s):
[] Renewal air operation permit under Rule 62-210.300(2)(b), F.A.C., for a synthetic non-Title V source.
	Operation permit to be renewed:
[] Air operation permit revision for a synthetic non-Title V source. Give reason for revision; e.g., to address one or more newly constructed or modified emissions units.
	Operation permit to be revised:
	Reason for revision:
C	ategory III: All Air Construction Permit Applications for All Facilities and Emissions Units
T	his Application for Air Permit is submitted to obtain:
[] Air construction permit to construct or modify one or more emissions units within a facility (including any facility classified as a Title V source).
	Current operation permit number(s), if any:
[] Air construction permit to make federally enforceable an assumed restriction on the potential emissions of one or more existing, permitted emissions units.
	Current operation permit number(s):
[] Air construction permit for one or more existing, but unpermitted, emissions units.

Application Processing Fee

Check one:

01	
[] Attached - Amount: \$ [X] Not Applicable.
<u>C</u>	onstruction/Modification Information
1.	Description of Proposed Project or Alterations:
	Tampa Electric Company (TEC) was authorized by FDEP to conduct a test burn of an 80-percent coal/20-percent tire-derived fuel (TDF) fuel blend for comparison to baseline coal emissions (see Attachment A for a copy of the FDEP test burn letters of authorization). TEC conducted the test burn from February 28 through April 29, 1996.
	The results from the test burn enabled TEC to conduct a screening analysis to determine whether future long-term firing of coal/TDF blends would constitute a modification subject to Prevention of Significant Deterioration (PSD) review pursuant to Chapter 62-212.400, Florida Administrative Code (F.A.C.). The analysis of PSD applicability as shown in Attachment B was conducted by comparing the fuel blend test results with the 100-percent coal baseline emission test data in accordance with the FDEP authorization letter dated March 3, 1996. This comparison shows that PSD review is not applicable to this permit amendment request.

Based on the test burn results, TEC requests the F.J. Gannon Station Unit No. 3 permit be modified to allow for the combustion of coal and TDF blends on a permanent basis as an alternative method of operation to the currently approved use of 100-percent coal. Specifically, approval to combust blends of coal and TDF containing up to 20 weight percent TDF is requested.

As indicated, an analysis of PSD applicability along with the complete test burn report are provided in Attachments B and D, respectively. In addition, a no-threat-level guidance analysis is provided in Attachment C for those metals cited in FDEP's test burn approval.

2. Projected or Actual Date of Commencement of Construction:

N/A

3. Projected Date of Completion of Construction:

N/A

Professional Engineer Certification

1. Professional Engineer Name: Douglas A. Dean

Registration Number:

40094

2. Professional Engineer Mailing Address:

Organization/Firm: Environmental Consulting & Technology, Inc.

Street Address:

3701 Northwest 98th Street

City:

Gainesville

State: Florida

Zip Code: **33606**

3. Professional Engineer Telephone Numbers:

Telephone: (352) 332-0444

Fax: (352) 332-6722

4. Professional Engineer Statement:

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [] if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [] if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [] if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Jourg Cas Dean	08/07/96	
Signature	Date / /	

Attach any exception to certification statement.

DEP Form No. 62-210.900(1) - Form

Application Contact

1. Name and Title of Application Contact:

Janice Taylor

Senior Engineer, Environmental Planning

2. Application Contact Mailing Address:

Organization/Firm: Tampa Electric Company

Street Address:

702 North Franklin Street

City:

Tampa

State: Florida

Zip Code: 33602

3. Application Contact Telephone Numbers:

Telephone: (813) 228-4939

Fax: (813) 228-4881

Application Comment

N/A

8

DEP Form No. 62-210.900(1) - Form Effective: 3-21-96

G-TEC96.2/FJGAPPL.DOC--080796

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1.	Facility UTM Coor	dinates:		
	Zone:	East (km):	: Nort	th (km):
	17	360.0	3,08	7.5
2.	Facility Latitude/Lo	ongitude:		
	Latitude (DD/MM/	SS): Lo	ngitude (DD/MM/SS):	•
	•			
3.	Governmental	4. Facility Status	5. Facility Major	6. Facility SIC(s):
	Facility Code:	Code:	Group SIC Code:	
	·			
	0	A	49	4911
7.	Facility Comment (limit to 500 characters):		
		N	/A	

Facility Contact

1.	Name and Title of F Cindy Barringer	Facility Contact:			
2.	Facility Contact Ma	iling Address:			
	Organization/Firm:	Tampa Electric Co	mpany	7	
	Street Address:	-			
	City:	Tampa	State:	Florida	Zip Code: 33619
	Oitj.		ou		2.p 00 .00 . 000.22
3.	Facility Contact Tel	ephone Numbers:			
	Telephone: (813)	-		Fax: (813)	228-1905
				(5.45)	

Facility Regulatory Classifications

1.	Small Business Stationary So	ource?	
	[] Yes	[X] No	[] Unknown
	333_		
2.	Title V Source?		
	[X] Yes	[] No	
3.	Synthetic Non-Title V Source		
	[] Yes	[X] No	
1	Major Source of Pollutants C	Other than Hazardous Air Pollu	itants (HAPs)?
٦,	[X] Yes	No	
	[74] 103	[] 110	
5.	Synthetic Minor Source of Po	ollutants Other than HAPs?	
	[] Yes	[X] No	
6.	Major Source of Hazardous	Air Pollutants (HAPs)?	
	[X] Yes	[] No	
	<u>.</u>		
7.	Synthetic Minor Source of H		
	[] Yes	[X] No	
8.	One or More Emissions Unit		
	[] Yes	[X] No	
0	One or More Emission Units	Subject to NESHAD2	
Э.	One or More Emission Units [] Yes	[X] No	
	[] Yes		
10.	Title V Source by EPA Desig	enation?	-
	[] Yes	[X] No	
11.	Facility Regulatory Classifica	ations Comment (limit to 200	characters):
		RT/A	
		N/A	

B. FACILITY REGULATIONS

Rule Applicability Analysis (Required for Category II applications and Category III

applications involving non Title-V sources. See	Instructions.)
A complete listing of all fodous and state ann	liaabla waquiyamanta haa baan aybmittad
A complete listing of all federal and state app with the initial F.J. Gannon Station Title V po	

11 .

<u>List of Applicable Regulations</u> (Required for Category I applications and Category III applications involving Title-V sources. See Instructions.)

N/A	
•	
·	
	·
	· ·

C. FACILITY POLLUTANTS

Facility Pollutant Information

1. Pollutant Emitted	2. Pollutant Classification
Provided with the initial F.J. Gannon Station Title V permit application.	
·	

13

D. FACILITY POLLUTANT DETAIL INFORMATION

Facility Pollutant Detail Information: Pollutant ____1 of ___1 1. Pollutant Emitted: SO₂ 2. Requested Emissions Cap: (lb/hour) (tons/year) 21,200 N/A 3. Basis for Emissions Cap Code: FDEP Rule 62-296.405(1)(c)2.a, F.A.C. 4. Facility Pollutant Comment (limit to 400 characters): Hourly emissions cap represents total sulfur dioxide emissions from F.J. Gannon Station Unit No. 1 through Unit No. 6 for a weekly average period. This is an existing requirement per FDEP Rule 62-296.405(1)(c)2.a, F.A.C. Facility Pollutant Detail Information: Pollutant of 1. Pollutant Emitted: (lb/hour) 2. Requested Emissions Cap: (tons/year) 3. Basis for Emissions Cap Code: 4. Facility Pollutant Comment (limit to 400 characters):

14

E. FACILITY SUPPLEMENTAL INFORMATION

Supplemental Requirements for All Applications

1.	Area Map Showing Facility Location:
	[X] Attached, Document ID: II.D.1.1 Not Applicable [] Waiver Requested
	Attachment E
2.	Facility Plot Plan:
	[X] Attached, Document ID: <u>II.D.2.4</u>] Not Applicable [] Waiver Requested
	Attachment E
3.	Process Flow Diagram(s):
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
4.	Precautions to Prevent Emissions of Unconfined Particulate Matter:
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
5.	Fugitive Emissions Identification:
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
6.	Supplemental Information for Construction Permit Application:
	[] Attached, Document ID: [X] Not Applicable
<u>A0</u>	Iditional Supplemental Requirements for Category I Applications Only
7	Liet of December 4 Processes Analysis in
′·	List of Proposed Exempt Activities:
	[] Attached, Document ID: [] Not Applicable
0	List of Equipment/Activities Regulated under Title VI:
0.	List of Equipment/Activities Regulated under Title VI.
	[] Attached, Document ID:
	[] Attachea, Bocament ID
	[] Equipment/Activities On site but Not Required to be Individually Listed
	[1 24m/m
	[] Not Applicable
	r 1
9.	Alternative Methods of Operation:
	Attached, Document ID: Not Applicable
	- · · · · · · · · · · · · · · · · · · ·
10	. Alternative Modes of Operation (Emissions Trading):
10	. Alternative Modes of Operation (Emissions Trading): [] Attached, Document ID: [] Not Applicable

15

11. Identification of Additional Applicable Requirements:
[] Attached, Document ID: [] Not Applicable
12. Compliance Assurance Monitoring Plan:
[] Attached, Document ID: [] Not Applicable
13. Risk Management Plan Verification:
[] Plan Submitted to Implementing Agency - Verification Attached, Document ID:
[] Plan to be Submitted to Implementing Agency by Required Date
[] Not Applicable
14. Compliance Report and Plan:
[] Attached, Document ID: [] Not Applicable
15. Compliance Certification (Hard-copy Required):
[] Attached, Document ID: [] Not Applicable

Emissions	Unit Ir	iformation	Section	1	οf	1
	CHILL II	11V1 111461V11			V.	

III. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through L as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application. Some of the subsections comprising the Emissions Unit Information Section of the form are intended for regulated emissions units only. Others are intended for both regulated and unregulated emissions units. Each subsection is appropriately marked.

A. TYPE OF EMISSIONS UNIT (Regulated and Unregulated Emissions Units)

Type of Emissions Unit Addressed in This Section
1. Regulated or Unregulated Emissions Unit? Check one:
[X] The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.
[] The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.
2. Single Process, Group of Processes, or Fugitive Only? Check one:
[X] This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).
[] This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.
[] This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.

Emissions	Unit	Information	Section	1	οf	1
TOTITIO 2010 112	Omi	liilui manui	Section		UL .	

B. GENERAL EMISSIONS UNIT INFORMATION (Regulated and Unregulated Emissions Units)

Emissions Unit Description and Status

1.	1. Description of Emissions Unit Addressed in This Section (limit to 60 characters):						
	Unit No. 3, Solid Fuel Steam Generator						
2.	Emissions Unit Identification 003	on Number: [] No Correspo	onding ID [] Unknown				
3.	Emissions Unit Status Code:	4. Acid Rain Unit? [X] Yes [] No	5. Emissions Unit Major Group SIC Code:				
	A A	[X] ICS [] NO	49				
6.	Emissions Unit Comment (limit to 500 characters):	1				
		N/A					
En	nissions Unit Control Equi	pment					
A. 1.	Description (limit to 200 ch	naracters):					
	Electrostatic precipitator system						
2.	Control Device or Method	Code:					
	010						

Emissions Unit Information Section ____1__ of ___1 B. 1. Description (limit to 200 characters): N/A 2. Control Device or Method Code: C. 1. Description (limit to 200 characters):

19

2. Control Device or Method Code:

Emissions Unit Information Section	1	of	1
---	---	----	---

C. EMISSIONS UNIT DETAIL INFORMATION (Regulated Emissions Units Only)

Emissions Unit Details

1.	Initial Startup Date:	•		
	N/A			
2.	Long-term Reserve Shutdown Date:			
	N/A			
3.	Package Unit: N/A			
	Manufacturer:		Model Number:	
4.	Generator Nameplate Rating:	180	MW	
5.	Incinerator Information: N/A			
	Dwell Temperature:			°F
	Dwell Time:			seconds
	Incinerator Afterburner Temperature:			°F

Emissions Unit Operating Capacity

1.	Maximum Heat Input Rate:		1,599 mmBtu/hr
2.	Maximum Incineration Rate: N/A	lb/hr	tons/day
3.	Maximum Process or Throughput I	Rate:	
4.	Maximum Production Rate:	-	
5.	Operating Capacity Comment (lime Maximum fuel heat input rate o		
	maximum ruei neat input rate o	1 1,577 MINIDIU/III	is on a monthly average basis.

Emissions Unit Operating Schedule

Requested Maximum Operating Schedule:					
24	hours/day	7	days/week		
52	weeks/year_	8,760	hours/year		

20

DEP Form No. 62-210.900(1) - Form

Emissions Uni	Information Section	1 of	1_
---------------	---------------------	------	----

D. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

Rule Applicability Analysis (Required for Category II applications and Category III applications involving non Title-V sources. See Instructions.)

A complete listing of all federal and state applicable requirements for Unit No. 3 has been submitted with the initial F.J. Gannon Station Title V permit application.

Emissions Unit Information Section	1 0	1	I
------------------------------------	-----	---	---

<u>List of Applicable Regulations</u> (Required for Category I applications and Category III applications involving Title-V sources. See Instructions.)

N/A	
	•
	-
_	
_	

Emissions Unit Information Section	n 1 of	1_
---	--------	----

E. EMISSION POINT (STACK/VENT) INFORMATION (Regulated Emissions Units Only)

Emission Point Description and Type

Identification of	Poin	t on Plot	Plan or	F	low Dia	gram:					
[X] 1	[] 2		[] 3		[] 4			
Descriptions of I	- Imice	sions Poi	ints Cor	nn	rising th	is Emi	esin	ne I Ini	it for	· VF Tracking (limit	-
			inis Coi	пр.	nising u	цэ тиц	3310	113 (11)	101	VL Hacking (inin)	
	•	. ,									
					N/A						
ID Numbers or I	Descr	iptions o	f Emiss	sio	n Units	with th	is E	missio	n Po	int in Common:	
					N/A						
Discharge Type	Code	:		-							
	r			г	lΗ		г	1 D			
[] D	Ĺ] I		L] 11		L] P			
[] D [] R	[X	() V		[j w		l] P			
[] R	[X	-		[_		1 		15	feet	
	[X	-		[_				15	feet	
[] R	[X	-		[_			3	0.6	feet	
Stack Height:		-		[_		· ·	3	_		
	Emission Point 7 [X] 1 Descriptions of I to 100 characters ID Numbers or I	Emission Point Type [X] 1 [Descriptions of Emiss to 100 characters per ID Numbers or Descriptions of Descriptions of Emiss to 100 characters per	Emission Point Type Code: [X] 1	Descriptions of Emissions Points Comprising this Emit to 100 characters per point): N/A ID Numbers or Descriptions of Emission Units with the N/A Discharge Type Code:	Emission Point Type Code: [X] 1						

Emissions Unit Information Section ____1 of ___1

Flow Rate:	537,259	acfm	
or:		%	
ndard Flow Rate:		dscfm	
Point Height:		feet	
W.G. 11			
	NI41- (1)	2.005.5	
East (km): 360.0	North (km):	3,087.5	
nment (limit to 200 characters)):		
	Flow Rate: or: ndard Flow Rate: Point Height: M Coordinates: East (km): 360.0 mment (limit to 200 characters)	or: ndard Flow Rate: Point Height: M Coordinates:	or: % Indard Flow Rate: dscfm Point Height: feet M Coordinates: East (km): 360.0 North (km): 3,087.5

Emissions Unit Information Section	1	of	1
---	---	----	---

F. SEGMENT (PROCESS/FUEL) INFORMATION (Regulated and Unregulated Emissions Units)

Segment Description and Rate:	Segment	1o	f <u>1</u>

1.	Segment Description (Process/Fuel Type are (limit to 500 characters):	nd A	ssociated Operating Method/Mode)
	Coal and coal/TDF	blen	ds in Unit No. 3.
	•		
2.	Source Classification Code (SCC):		
	1-01-002-03		
3.			
	Tons burned (all solid fuels)		
4.	Maximum Hourly Rate:	5.	Maximum Annual Rate:
	65.0		569,400
6.	Estimated Annual Activity Factor:		
7.	Maximum Percent Sulfur:	8.	Maximum Percent Ash:
	1.3		8.2
9.	Million Btu per SCC Unit:		
	25		
10.	. Segment Comment (limit to 200 characters):	
	No. 2 fuel oil used for ignition during sta	rtun	S
	Fluxing agents may be added to fuel.	ւսբ	3.
	Maximum hourly rate (Field 4), maximu	m ai	nual rate (Field 5), and Btu/SCC unit
	(Field 9) based on average heat conte		
	Fuel sulfur content based on 100-percent		
	Ash content based on 80/20 percent coal/	TDF	blend.
	Solid fuel blend may be supplemented w	ith u	p to 48 gal/min used oil combustion,
	.		solids (i.e., oil absorbant, oily soil, etc.).
	Up to 50 gal/min of nonhazardous boiler		
	during firing as a routine maintenand	ce ac	tivity.

G. EMISSIONS UNIT POLLUTANTS (Regulated and Unregulated Emissions Units)

			T 11
1. Pollutant Emitted	2. Primary Control	3. Secondary Control	4. Pollutant
	Device Code	Device Code	Regulatory Code
502			ET
SO2			EL
NOx			NS
1101		-	140
PM	010		EL
- 11/2	010		
PM10	010		NS
CO			NS
VOC			NS
-			
PbPb	010		NS
H106			
HCI			NS
H107			
HF			NS
0.434			270
SAM		, 	NS
<u> </u>		-	•
•			

Emissions Unit Information Section1 of	1	1		of	1	Section	Information	nit l	issions	\mathbf{E}
--	---	---	--	----	---	---------	-------------	-------	---------	--------------

H. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Only - Emissions Limited Pollutants Only)

Pollutant Detail Information:

1.	Pollutant Emitted: SO2				
2.	Total Percent Efficiency of C	Control:		0.0) %
3.	Potential Emissions:	3,837.6	lb/hour	16,808.7	tons/year
	Synthetically Limited? [] Yes [X] No				
5.	Range of Estimated Fugitive. [] 1 [] 2		ssions:] 3	to	tons/year
6.	Emission Factor: N/A Reference:				
7.				[]4	[] 5
	Potential hourly and annua rates.	l emission	rates set equ		
9.	Pollutant Potential/Estimated	EIIIISSIOIIS	Comment (m	init to 200 charact	icis).
			N/A		
			•		

Er	nissions Unit Information Section1 of _	1	
<u>Al</u>	lowable Emissions (Pollutant identified on front	of page)	
A.			
1.	Basis for Allowable Emissions Code: RULE		_
2.	Future Effective Date of Allowable Emissions: N/A		
3.	Requested Allowable Emissions and Units: 2.4 lb/MMBtu		
4.	Equivalent Allowable Emissions:	lb/hour 3,837.6	tons/year 16,808.7
5.	Method of Compliance (limit to 60 characters): Weekly composite fuel sampling and analysis per FDEP Rule 62-296.405(1)(f)1.b, F.A.C.	s or continuou	,
6.	Pollutant Allowable Emissions Comment (Desc (limit to 200 characters):	c. of Related Op	perating Method/Mode)
	Requested allowable emissions represent a w No. 4 of Permit A029-172179 and FDEP Rule	•	
В.			
1.	Basis for Allowable Emissions Code:		
2.	Future Effective Date of Allowable Emissions:		
3.	Requested Allowable Emissions and Units:		
4.	Equivalent Allowable Emissions:	lb/hr	tons/year
5.	Method of Compliance (limit to 60 characters):		
6.	Pollutant Allowable Emissions Comment (Desc (limit to 200 characters):	of Related Op	perating Method/Mode)

28

DEP Form No. 62-210.900(1) - Form

Emissions	Unit	Inform	ation	Section	1	οf	1
TITITION OF THE	$\mathbf{v}_{\mathbf{m}}$	111117111	iauxiii	Section		VI.	

H. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Only - Emissions Limited Pollutants Only)

Pollutant Detail Information:

1.	Pollutant Emitted:		
	PM/PM10		
2.	Total Percent Efficiency of Control:	99.7	%
3.	Potential Emissions: 479.7 lb/hour	875.5	tons/year
	Synthetically Limited? [] Yes [X] No		·
	Range of Estimated Fugitive/Other Emissions: [] 1	to	tons/year
	Emission Factor: N/A Reference:		
7.	[X] 0 [] 1 [] 2 [] 3 []	4	[]5
8.	Calculation of Emissions (limit to 600 characters):		
	Potential hourly and annual emission rates set equal to equivates.	ivalent	allowable emission
9.	Pollutant Potential/Estimated Emissions Comment (limit to 200) charac	eters):

Er	nissions Unit Information Section1_ of1_
	lowable Emissions (Pollutant identified on front of page)
Α.	
1.	Basis for Allowable Emissions Code: RULE
2.	Future Effective Date of Allowable Emissions: N/A
3.	Requested Allowable Emissions and Units: 0.3 lb/MMBtu
4.	Equivalent Allowable Emissions: 479.7 lb/hour 875.5 tons/year
5.	Method of Compliance (limit to 60 characters): Annual testing using EPA Reference Method 5, 5B, or 17. As an option, three soot-blowing test runs will be used to demonstrate compliance with the nonsoot-blowing standard.
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode) (limit to 200 characters): 0.3 lb/MMBtu applicable during soot-blowing (3 hours per day [hr/day]). 0.1 lb/MMBtu applicable during nonsoot-blowing. Per FDEP Rules 62-210.700(3) and 62-296.405(1)(b), F.A.C. Hourly equivalent allowable emissions based on 0.3 lb/MMBtu. Annual equivalent
all	owable emissions based on 3 hr/day at 0.3 lb/MMBtu and 21 hr/day at 0.1 lb/MMBtu.
В.	
1.	Basis for Allowable Emissions Code:
2.	Future Effective Date of Allowable Emissions:
3.	Requested Allowable Emissions and Units:
4.	Equivalent Allowable Emissions: lb/hr tons/year
5.	Method of Compliance (limit to 60 characters):
6.	Pollutant Allowable Emissions Comment (Desc. of Related Operating Method/Mode) (limit to 200 characters):

Emissions	Unit	Informs	ition	Section	1	οf	1
TATTERSTATES	Unit	THILDIANS		Section		V.	

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

<u>Visible Emissions Limitation:</u> Visible Emissions Limitation ____1 of ___5 1. Visible Emissions Subtype: VE20 2. Basis for Allowable Opacity: [X] Rule Other 3. Requested Allowable Opacity: Normal Conditions: % **Exceptional Conditions:** 27 % Maximum Period of Excess Opacity Allowed: min/hour 4. Method of Compliance: Continuous emissions monitoring 5. Visible Emissions Comment (limit to 200 characters): **FDEP Rule 62-296.405(1)(a), F.A.C.** <u>Visible Emissions Limitation:</u> Visible Emissions Limitation ____ 2 of ____ 5 1. Visible Emissions Subtype: **VE60** 2. Basis for Allowable Opacity: [X] Rule 1 Other 3. Requested Allowable Opacity: Normal Conditions: **Exceptional Conditions:** % % 60 Maximum Period of Excess Opacity Allowed: 60 min/hour 4. Method of Compliance: Continuous emissions monitoring 5. Visible Emissions Comment (limit to 200 characters): Maximum period of excess opacity allowed for 3 hours in any 24-hour period during soot blowing and load change. FDEP Rule 62-210.700(3), F.A.C.

Emissions	Unit	Inform	ation	Section	1	οf	1
	O III L		1441011	OCCLIOIL		v	

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

<u>Visible Emissions Limitation:</u> Visible Emissions Limitation <u>3</u> of <u>5</u>

1.	Visible Emissions Subtype:				
	VE100				
2.	Basis for Allowable Opacity:	[X] Rule	[] Other	
3.	Requested Allowable Opacity:	-			-
	Normal Conditions:	% Exceptional Condit	ions:	100	%
	Maximum Period of Excess Opac	ity Allowed:		24	min/hour
4.	Method of Compliance:	•			
	Continuous emissions monitorin	ıg			
5.	Visible Emissions Comment (lim	it to 200 characters):		-	
	Excess emission resulting from	boiler cleaning and load c	hang	e.	
	Maximum period of excess opac	city allowed is four 6-min	ute pe	riods dur	ing a single
	3-hour period.				
	FDEP Rule 62-210.700(3), F.A.C	C.			
<u>Vi</u>	sible Emissions Limitation: Visib	ole Emissions Limitation _	4	_ of <u>5</u>	
<u>Vi</u>		ole Emissions Limitation _	4	_ of <u>5</u>	
	visible Emissions Limitation: Visible Emissions Subtype: VE100	ole Emissions Limitation _	4	of5	
	Visible Emissions Subtype:	ole Emissions Limitation _	[_ of5_	
2.	Visible Emissions Subtype: VE100		[
1.	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity:		[%
1.	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity:	[X] Rule % Exceptional Condit	[] Other	
1. 2. 3.	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity	[X] Rule % Exceptional Condit	[] Other	%
1. 2. 3.	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity: Method of Compliance:	[X] Rule % Exceptional Condit ity Allowed:	[] Other	%
1. 2. 3.	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity	[X] Rule % Exceptional Condit ity Allowed:	[] Other	%
1. 2. 3.	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity: Method of Compliance:	[X] Rule % Exceptional Condit ity Allowed:	[] Other	%
 2. 3. 4. 	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity Method of Compliance: Continuous emissions monitoring Visible Emissions Comment (limit	[X] Rule % Exceptional Conditity Allowed:	ions:] Other	%
 2. 3. 4. 	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity Method of Compliance: Continuous emissions monitoring	[X] Rule % Exceptional Conditity Allowed: to 200 characters): boiler startup and shutdo	ions:] Other	%
 2. 3. 4. 	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity Method of Compliance: Continuous emissions monitoring Visible Emissions Comment (limit	[X] Rule % Exceptional Conditity Allowed: to 200 characters): boiler startup and shutdo	ions:] Other	%
 2. 3. 4. 	Visible Emissions Subtype: VE100 Basis for Allowable Opacity: Requested Allowable Opacity: Normal Conditions: Maximum Period of Excess Opacity Method of Compliance: Continuous emissions monitoring Visible Emissions Comment (limit	[X] Rule % Exceptional Conditity Allowed: to 200 characters): boiler startup and shutdo	ions:] Other	%

Emissions unit information section 1 of	missions Unit Information Section1_ of	1	of	1 of	Section	rmation	Info	ıit	Un	ssions	Lm
---	--	---	----	------	---------	---------	------	-----	----	--------	----

I. VISIBLE EMISSIONS INFORMATION (Regulated Emissions Units Only)

<u>Visible Emissions Limitation:</u> Visible Emissions Limitation ____5_ of ____5 1. Visible Emissions Subtype: **VE100** 2. Basis for Allowable Opacity: [X] Rule] Other 3. Requested Allowable Opacity: Normal Conditions: % **Exceptional Conditions:** 100 Maximum Period of Excess Opacity Allowed: 60 min/hour 4. Method of Compliance: Continuous emissions monitoring 5. Visible Emissions Comment (limit to 200 characters): Excess emission resulting from startup, shutdown, and malfunction. Maximum period of excess opacity allowed is 2 hours during any 24-hour period. FDEP Rule 62-210.700(1), F.A.C. Visible Emissions Limitation: Visible Emissions Limitation _____ of _____ 1. Visible Emissions Subtype: 2. Basis for Allowable Opacity: [] Rule] Other 3. Requested Allowable Opacity: Normal Conditions: % **Exceptional Conditions:** % Maximum Period of Excess Opacity Allowed: min/hour 4. Method of Compliance: 5. Visible Emissions Comment (limit to 200 characters):

	Emissions	Unit Information Section	1	of	1
--	------------------	--------------------------	---	----	---

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Continuous Monitoring System: Continuous Monitor ___1 of ___5 1. Parameter Code: 2. Pollutant(s): VE. N/A 3. CMS Requirement: [X] Rule 1 Other 4. Monitor Information: Manufacturer: Thermo Environmental Corporation Model Number: M400 Serial Number: 400B-3500 5. Installation Date: 10/01/93 6. Performance Specification Test Date: 7. Continuous Monitor Comment (limit to 200 characters): Required by FDEP Rule 62-296.405(1)(f)1.a, F.A.C., and 40 CFR 75. System includes one opacity monitor. Continuous Monitoring System: Continuous Monitor 2 of 5 1. Parameter Code: 2. Pollutant(s): **EM** SO₂ [X] Rule 3. CMS Requirement:] Other 4. Monitor Information: Manufacturer: Thermo Environmental Corporation Serial Number: 43B-48171-279 Model Number: 43B 5. Installation Date: 07/01/94 6. Performance Specification Test Date: 7. Continuous Monitor Comment (limit to 200 characters): Required by FDEP Rule 62-296.405(1)(f)1.b, F.A.C., and 40 CFR 75. System includes one SO₂ monitor with a backup system shared among Emission Unit Nos. 1, 2, and 3.

	Emissions	Unit Information Sec	ction 1	of	1
--	------------------	-----------------------------	---------	----	---

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Continuous Monitoring System: Continuous Monitor 3 of 5

	2. Pollutant(s):				
	NOx				
CMS Requirement:	[X] Rule [] Other				
Monitor Information:					
Manufacturer: Thermo Environmenta	al Corporation				
Model Number: 42D	Serial Number: 42D-47872-279				
Installation Date: 07/01/94					
Performance Specification Test Date:					
Continuous Monitor Comment (limit to	200 characters):				
Required by 40 CFR 75. System includes one NO _x monitor with a backup system shared among Emission Unit Nos. 1, 2, and 3.					
	ous Monitor 4 of 5 2. Pollutant(s):				
FLOW	N/A				
CMS Requirement:	[X] Rule [] Other				
Monitor Information: Manufacturer: USI Model Number: Ultraflow 100	Serial Number: 9401629				
Installation Date: 07/01/94					
Performance Specification Test Date:					
Continuous Monitor Comment (limit to	200 characters):				
Required by 40 CFR 75. System includes one flow monitor.					
	Manufacturer: Thermo Environmenta Model Number: 42D Installation Date: 07/01/94 Performance Specification Test Date: Continuous Monitor Comment (limit to Required by 40 CFR 75. System includes one NO _x monitor with Nos. 1, 2, and 3. Ontinuous Monitoring System: Continuous Monitoring System: Continuous Monitoring System: Unitary Continuous Monitoring System: Continuous Monitor Information: Manufacturer: USI Model Number: Ultraflow 100 Installation Date: 07/01/94 Performance Specification Test Date: Continuous Monitor Comment (limit to Required by 40 CFR 75.				

Emissions	Unit Information	Section	1 of	f 1
------------------	------------------	---------	------	-----

J. CONTINUOUS MONITOR INFORMATION (Regulated Emissions Units Only)

Continuous Monitoring System: Continuous Monitor 5 of 5

1.	Parameter Code:	2. Pollutant(s):
	CO2	N/A
3.	CMS Requirement:	[X] Rule [] Other
4.	Monitor Information:	
	Manufacturer: Siemens	
	odel Number: Ultramat 5E	Serial Number: E3-727
5.	Installation Date: 07/01/94	
6.	Performance Specification Test Date:	
7.	Continuous Monitor Comment (limit to	200 characters):
	Required by 40 CFR 75.	
	-	h a backup system shared among Emission Unit
	Nos. 1, 2, and 3.	•
1	 	
Co	ontinuous Monitoring System: Continuo	ous Monitor of
1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	[] Rule [] Other
4	Monitor Information:	·
ļ	Manufacturer:	•
	Model Number:	Serial Number:
5.		
6.	Performance Specification Test Date:	
7.	Continuous Monitor Comment (limit to	200 characters):
		,

Emissions Unit Information Section1 of
--

K. PREVENTION OF SIGNIFICANT DETERIORATION (PSD) INCREMENT TRACKING INFORMATION

(Regulated and Unregulated Emissions Units)

PSD Increment Consumption Determination

1. Increment Consuming for Particulate Matter or Sulfur Dioxide?

If the emissions unit addressed in this section emits particulate matter or sulfur dioxide, answer the following series of questions to make a preliminary determination as to whether or not the emissions unit consumes PSD increment for particulate matter or sulfur dioxide. Check the first statement, if any, that applies and skip remaining statements.

- [] The emissions unit is undergoing PSD review as part of this application, or has undergone PSD review previously, for particulate matter or sulfur dioxide. If so, emissions unit consumes increment.
- [] The facility addressed in this application is classified as an EPA major source pursuant to paragraph (c) of the definition of "major source of air pollution" in Chapter 62-213, F.A.C., and the emissions unit addressed in this section commenced (or will commence) construction after January 6, 1975. If so, baseline emissions are zero, and emissions unit consumes increment.
- The facility addressed in this application is classified as an EPA major source, and the emissions unit began initial operation after January 6, 1975, but before December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
- [] For any facility, the emissions unit began (or will begin) initial operation after December 27, 1977. If so, baseline emissions are zero, and emissions unit consumes increment.
- [X] None of the above apply. If so, the baseline emissions of the emissions unit are nonzero. In such case, additional analysis, beyond the scope of this application, is needed to determine whether changes in emissions have occurred (or will occur) after the baseline date that may consume or expand increment.

En	Emissions Unit Information Section1	<u> </u>	
2.	2. Increment Consuming for Nitrogen Diox	xide?	
	If the emissions unit addressed in this se series of questions to make a preliminar- unit consumes PSD increment for nitrog and skip remaining statements.	y determination as	to whether or not the emissions
	[] The emissions unit addressed in th application, or has undergone PSD emissions unit consumes incremen	review previously	
	[] The facility addressed in this applit to paragraph (c) of the definition of F.A.C., and the emissions unit add commence) construction after February emissions unit consumes increment	f "major source of ressed in this secti ruary 8, 1988. If s	air pollution" in Chapter 62-213, on commenced (or will
	[] The facility addressed in this appliemissions unit began initial operations. If so, baseline emissions are	ion after February	8, 1988, but before March 28,
	[] For any facility, the emissions unit 28, 1988. If so, baseline emissions	- ,	- · -
	[X] None of the above apply. If so, the nonzero. In such case, additional a needed to determine whether change the baseline date that may consume	analysis, beyond th	ne scope of this application, is ave occurred (or will occur) after
3.	. Increment Consuming/Expanding Code:		
	PM [] C [] E [] Unknown
	SO2 [] C [] E [] Unknown
	NO2 [] C [] E [] Unknown
4.			
		hour	tons/year
		hour	tons/year
	NO2		tons/year
5.	PSD Comment (limit to 200 characters):		

Emission unit is part of baseline PSD emission inventory. Use of coal/TDF blends will result in a net decrease in emissions in comparison to 100-percent baseline coal.

38

Emissions Uni	t Information Sect	ion 1 o	f 1
----------------------	--------------------	---------	-----

L. EMISSIONS UNIT SUPPLEMENTAL INFORMATION (Regulated Emissions Units Only)

Supplemental Requirements for All Applications

1.	Process Flow Diagram
	[X] Attached, Document ID: <u>II.D.3.6</u> [] Not Applicable [] Waiver Requested
	Attachment E
2.	Fuel Analysis or Specification
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
3.	Detailed Description of Control Equipment
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
4.	Description of Stack Sampling Facilities
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
5.	Compliance Test Report
	[] Attached, Document ID:
	[] Previously submitted, Date:
	<u> </u>
 	[X] Not Applicable
6.	Procedures for Startup and Shutdown
	[] Attached, Document ID: [X] Not Applicable
7.	Operation and Maintenance Plan
	[] Attached, Document ID: [X] Not Applicable
8.	Supplemental Information for Construction Permit Application
	Attached, Document ID: [X] Not Applicable
0	
」フ.	Other Information Required by Rule or Statute
7.	Other Information Required by Rule or Statute [] Attached, Document ID: [X] Not Applicable

Additional Supplemental Requirements for Category I Applications Only

10. Alternative Methods of Operation
[] Attached, Document ID: [X] Not Applicable
11. Alternative Modes of Operation (Emissions Trading)
[] Attached, Document ID: [X] Not Applicable
12. Identification of Additional Applicable Requirements
[] Attached, Document ID: [X] Not Applicable
13. Compliance Assurance Monitoring Plan
[] Attached, Document ID: [X] Not Applicable
14. Acid Rain Application (Hard-copy Required)
[] Acid Rain Part - Phase II (Form No. 62-210.900(1)(a))
Attached, Document ID:
[] Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
Attached, Document ID:
[] New Unit Exemption (Form No. 62-210.900(1)(a)2.)
Attached, Document ID:
[] Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)
Attached, Document ID:
[X] Not Applicable

ATTACHMENT A

FDEP TEST BURN AUTHORIZATION LETTER

Department of Environmental Protection

Lawton Chiles Governor Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

Virginia B. Wetherell Secretary

NOTICE OF TDF TEST AUTHORIZATION

Mr. Philip J. Matonte, P.E. Tampa Electric Company P.O. Box 111
Tampa, FL 33601-0111

RECEIVED

14W 7 398

Dear Mr. Matonte:

Ra: Letters dated 10/20/95 & 12/8/95 Reference Permit No. A029-172179

Pursuant to Rule 62-4.210(1)(b)6., F.A.C., the Department authorizes your request to conduct a trial test burn of a coal/tire-derived fuel (TDF) mix containing a maximum of 20% TDF by weight at your Gannon Unit 3 facility as proposed. The authorization is granted with the following stipulations:

- 1. The Tampa Electric Company (TEC) shall notify in writing this office and the Environmental Protection of Commission of Hillsborough County at least 15 days prior to the date on which each formal compliance emission test is to begin of the date, time, and place of each such test, and the test contact person who will be responsible for coordinating and having such test conducted.
- 2. TEC shall notify this office and the EPCHC of the date initial testing of the baseline test, which uses coal only, within 5 days after that date.
- 3. TEC shall notify this office and the EPCHC of the date of first introducing TDF in Unit 3, within 5 days after that date.
- 4. The baseline testing shall be conducted for no less than 7 days and no more than 10 days.
- 6. Trial test burn testing when using TDF shall be conducted for a maximum of 21 days.
- 7. All testing shall be conducted within 60 days after the date TDF is first introduced into Unit 3.

Page 1 of 5

- 8. The maximum total amount of TDF that may be used is 13 tons/hr. and 5,000 tons for up to 60 days from the date of first introducing TDF in Unit 3.
- 9. Only TDF that has a nominal 1 square inch size may be used.
- 10. Coal used for the baseline tests and trial burn test shall be conducted with coal that has the same typical heat content.
- 11. No TDF shall be used after 60 days from the date of first introducing TDF in Unit 3. This limitation is applicable even if all testing has been completed before the end of the 60th day of when TDF was first introduced into Unit 3, provided the emission limitations of permit AO29-172179 are not exceeded.
- 12. Testing during <u>each</u> operating scenario shall be in accordance with the following:
 - A. During each of the baseline and trial burn test periods when stack emission testing is conducted, sulfur dioxide, nitrogen oxides, carbon dioxide, and opacity emissions data shall be reported using continuous emission monitors (CEMS) that are located in the stack. The monitoring systems will be quality assured pursuant to 40 CFR 75, Appendix B. The data assessment report from 40 CFR 60, Appendix F, for the most recent relative accuracy test audit (RATA) and most recent cylinder gas audit (CGA), will be submitted with the test report(s).
 - B. During the baseline test period that only uses coal (steady-state & soot blowing conditions), EPA reference method emission testing shall be performed for particulate matter, visible emissions, and sulfuric acid mist. The EPA Method 17 test for particulates shall include EPA Methods 1, 2, 3, and 4. During these tests Unit 3 shall be operating within 90%-100% of maximum capacity (159 MW output & 65 tons/hr. total fuel input rate).
 - C. During each trial burn test that uses coal and TDF (steady-state & soot blowing conditions), EPA reference method emission testing shall be performed for particulate matter, visible emissions, and sulfuric acid mist. During these tests Unit 3 shall be operating with 90%-100% of maximum capacity (159 MW output & 65 tons/hrtotal fuel input rate).

- D. Particulate testing and visible emissions testing shall be conducted when fly ash collected by the ESP is being re-injected into the boiler.
- E. Sulfuric acid mist emission testing shall be conducted when fly ash collected by the ESP is being re-injected into the boiler.
- F. All fuel testing shall be done on coal alone prior to blending with tires.
- G. Composite weekly coal fuel analysis results shall be supplied for the baseline test and the trial burn test. A single representative TDF fuel analysis results shall be supplied for each time the fuel bunker is charged for use during each CEM/stack tested operating scenario. The fuel analysis shall include the following:

Fuel Analysis

Trace Metal Analysis

Beryllium Sulfur, wt. % Chromium Volatiles, content, wt. % Lead Nitrogen, wt. % Ash, wt. % Mercury Calorific Value, BTU/lb. Nickel Carbon, wt. % Vanadium Moisture, wt. % Zinc TDF square inch size Coal origin (i.e., Eastern Kentucky, Blue Gem, etc.)

- H. Records of the following operating parameters during <u>each</u> CEM/stack tested operating scenario shall be submitted with the associated test report:
 - 1. Fuel input rates (tons/hr.)
 - Fuel ratio(s) on an hourly basis
 - 3. Opacity, CO, NOx, and SO2 CEM data, (The SO2 and NOx CEM data shall be reported in lbs./MMBTU on an hourly average basis)
 - 4. Operating temperatures (degrees F)
 - 5. Operating conditions (soot blowing, load changes, normal operations, fuel additives, etc.)
 - 6. Power output (MW)
 - Air to fuel ratio(s)

- 13. TEC shall comply with the emission limitations of permit AO29-172179 at all times during the CEM/stack tests, operating scenarios, and operating modes approved by this authorization.
- 14. TEC shall notify this office and the EPCHC of the date the last test run is conducted within 5 days of that date.
- 15. All test reports/results shall be submitted to this office and the EPCHC within 45 days of the date of the last test run.
- 16. If at any time during the use of TDF the emission limitations of permit A029-172179 are exceeded, TEC shall immediately cease using TDF. Performance testing or continued operation when using TDF shall not resume until the appropriate measures to correct the problem have been corrected and approved by the Department in writing.
- 17. The trial test burn and other related testing, requested to be conducted, shall be conducted under the supervision of a Florida registered professional engineer. The professional engineer shall sign and seal each copy of the stack test reports and other related information.
- 18. The use of TDF shall not result in the release of objectionable odors.
- 19. This authorization expires on June 30, 1996.
- 20. If additional time is needed to conduct the tests, TEC shall request in writing to this office and the EPCHC an extension of time. The request shall have attached documentation of the progress to date and shall identify what is left to be done to complete the tests.

Any party to this Order (authorization) has the right to seek judicial review of the permit pursuant to Section 120.68, Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date this Notice is filed with the Clerk of the Department.

Executed in Tampa, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

W.C. Thomas, P.E.

District Air Program Administrator

cc: EPCHC

CERTIFICATE OF SERVICE

The undersigned duly designated deputy agency clerk hereby certifies that this NOTICE OF TDF TEST AUTHORIZATION and all copies were mailed before the close of business on 3./5/96 to the listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGEMENT FILED, on this date, pursuant to Section 120.52(11), Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Carol S. Moore 3/5/96
(Clerk) (Date)

Governor

Department of Environmental Protection

Southwest District 3804 Coconut Palm Drive Tampa, Florida 33619

Virginia B. Wetherell Secretary

NOTICE OF AMENDED TDF TEST AUTHORIZATION

Mr. Philip J. Matonte, P.E. Tampa Electric Company P.O. Box 111
Tampa, FL 33601-0111

Dear Mr. Matonte:

Re: Letter dated 05/01/96 Reference Permit No. A029-255208

Pursuant to Rule 62-4.210(1)(b)6., F.A.C., the Department authorizes your request to conduct a trial test burn of a coal/tire-derived fuel (TDF) mix containing a maximum of 20% TDF by weight at your Gannon Unit 4 instead of Gannon Unit 3 facility as proposed. The authorization is granted with the following stipulations:

- 1. The Tampa Electric Company (TEC) shall notify in writing this office and the Environmental Protection of Commission of Hillsborough County at least 15 days prior to the date on which each formal compliance emission test is to begin of the date, time, and place of each such test, and the test contact person who will be responsible for coordinating and having such test conducted.
- TEC shall notify this office and the EPCHC of the date initial testing of the baseline test, which uses coal only, within 5 days after that date.
- 3. TEC shall notify this office and the EPCHC of the date of first introducing TDF in Unit 4, within 5 days after that date.
- 4. The baseline testing shall be conducted for no less than 7 days and no more than 10 days.
- 6. Trial test burn testing when using TDF shall be conducted for a maximum of 21 days.
- 7. All testing shall be conducted within 60 days after the date TDF is first introduced into Unit 4.

Page 1 of 6

"Protect, Conserve and Manage Florida's Environment and Natural Resources"

- 8. The maximum total amount of TDF that may be used is 16 tons/hr. and 5,000 tons for up to 60 days from the date of first introducing TDF in Unit 4.
- 9. Only TDF that has a nominal 1 square inch size may be used.
- 10. Coal used for the baseline tests and trial burn test shall be conducted with coal that has the same typical heat content.
- 11. No TDF shall be used after 60 days from the date of first introducing TDF in Unit 4. This limitation is applicable even if all testing has been completed before the end of the 60th day of when TDF was first introduced into Unit 4, provided the emission limitations of permit AO29-255208 are not exceeded.
- 12. Testing during <u>each</u> operating scenario shall be in accordance with the following:
 - A. During each of the baseline and trial burn test periods when stack emission testing is conducted, sulfur dioxide, nitrogen oxides, carbon dioxide, and opacity emissions data shall be reported using continuous emission monitors (CEMS) that are located in each stack. The monitoring systems will be quality assured pursuant to 40 CFR 75, Appendix B. The data assessment report from 40 CFR 60, Appendix F, for the most recent relative accuracy test audit (RATA) and most recent cylinder gas audit (CGA), will be submitted with the test report(s).
 - B. During the baseline test period that only uses coal (steady-state & soot blowing conditions), EPA reference method emission testing shall be performed for particulate matter, visible emissions, and sulfuric acid mist. The EPA Method 17 test for particulates shall include EPA Methods 1, 2, 3, and 4. During these tests Unit 4 shall be operating within 90%-100% of maximum capacity (187.5 MW output & 80 tons/hr. total fuel input rate corresponds to 1,876 MMBTU/hr. max.).
 - C. During each trial burn test that uses coal and TDF (steady-state & soot blowing conditions), EPA reference method emission testing shall be performed for particulate matter, visible emissions, and sulfuric acid mist. During these tests Unit 4 shall be operating with 90%-100% of maximum capacity (187.5 MW output & 80 tons/hr. total fuel input rate - corresponds to 1,876 MMBTU/hr. max.).

- D. Particulate testing and visible emissions testing shall be conducted when fly ash collected by the ESP is being re-injected into the boiler.
- E. Sulfuric acid mist emission testing shall be conducted when fly ash collected by the ESP is being re-injected into the boiler.
- F. All fuel testing shall be done on coal alone prior to blending with tires.
- G. Composite weekly coal fuel analysis results shall be supplied for the baseline test and the trial burn test. A single representative TDF fuel analysis results shall be supplied for each time the fuel bunker is charged for use during each CEM/stack tested operating scenario. The fuel analysis shall include the following:

Fuel Analysis

Trace Metal Analysis

Sulfur, wt. % Beryllium Volatiles, content, wt. % Chromium Lead Nitrogen, wt. % Ash, wt. % Mercury Calorific Value, BTU/lb. Nickel Carbon, wt. % Vanadium Moisture, wt. % Zinc TDF square inch size Coal origin (i.e., Eastern Kentucky, Blue Gem, etc.)

- H. Records of the following operating parameters during <u>each</u> CEM/stack tested operating scenario shall be submitted with the associated test report:
 - Fuel input rates (tons/hr.)
 - 2. Fuel ratio(s) on an hourly basis
 - 3. Opacity, CO, NOx, and SO2 CEM data, (The SO₂ and NO_x CEM data shall be reported in lbs./MMBTU on an hourly average basis)
 - 4. Operating temperatures (degrees F)
 - Operating conditions (soot blowing, load changes, normal operations, fuel additives, etc.)
 - 6. Power output (MW)
 - Air to fuel ratio(s)

- 13. TEC shall comply with the emission limitations of permit A029-255208 at all times during the CEM/stack tests, operating scenarios, and operating modes approved by this authorization.
- 14. TEC shall notify this office and the EPCHC of the date the last test run is conducted within 5 days of that date.
- 15. All test reports/results shall be submitted to this office and the EPCHC within 45 days of the date of the last test run.
- 16. If at any time during the use of TDF the emission limitations of permit A029-255208 are exceeded, TEC shall immediately cease using TDF. Performance testing or continued operation when using TDF shall not resume until the appropriate measures to correct the problem have been corrected and approved by the Department in writing.
- 17. The trial test burn and other related testing, requested to be conducted, shall be conducted under the supervision of a Florida registered professional engineer. The professional engineer shall sign and seal each copy of the stack test reports and other related information.
- 18. The use of TDF shall not result in the release of objectionable odors.
- 19. This authorization expires on August 30, 1996.
- 20. If additional time is needed to conduct the tests, TEC shall request in writing to this office and the EPCHC an extension of time. The request shall have attached documentation of the progress to date and shall identify what is left to be done to complete the tests.
- 21. The Notice of TDF Test Authorization dated March 5, 1996, regarding Gannon Unit No. 3 is null and void.
- 22. Since the emissions from Cannon No. 4 are exhausted through 2 stacks, both stacks shall be tested simultaneously for emissions.

Persons whose substantial interests are affected by this authorization have a right, pursuant to Section 120.57, Florida Statutes, to petition for an administrative determination (hearing) in the Department's Office of General Counsel, 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000, within fourteen (14)

days of receipt of this notice. Failure to file a petition within the fourteen (14) days constitutes a waiver of any right such person has to an administrative determination (hearing) pursuant to Section 120.57 Florida Statutes. This authorization is final and effective on the date filed with the Clerk of the Department unless a petition is filed in accordance with this paragraph or unless a request for extension of time in which to file a petition is filed within the time specified for filing a petition and conforms to Rule 62-103.70, F.A.C. Upon timely filing of a petition or a request for an extension of time, this authorization will not be effective until further Order of the Department.

When the Order (authorization) is final, any party to the Order has the right to seek judicial review of the Order pursuant to Section 120.68. Florida Statutes, by the filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 3900 Commonwealth Boulevard, Tallahassee, Florida 32399-3000; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 days from the date the Final Order is filed with the Clerk of the Department.

Executed in Tampa, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

W.C. Thomas, P.E.

District Air Program Administrator

cc: EPCHC

CERTIFICATE OF SERVICE

The undersigned duly designated deputy agency clerk hereby certifies that this NOTICE OF AMENDED TDF TEST AUTHORIZATION and all copies were mailed before the close of business on 5/14/96 to the listed persons.

Clerk Stamp

FILING AND ACKNOWLEDGEMENT FILED, on this date, pursuant to Section 120.52(11), Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Carol S. Marce 5/14/96 (Date)

ATTACHMENT B

ANALYSIS OF PSD APPLICABILITY

ATTACHMENT B Baseline and Coal/TDF Blend Test Burn Results Comparison

\$Z_ring}\\	BASELINE COAL TEST BURN DATA						
	Emission		Emission	Annual	Annual		
Pollutant	Rate	Load	Rate	Utilization*	Emission		
	(lb/MMBtu)	(MMBtu/hr)	(lb/hr)	(hr/yr)	(tpy)		
SO2	2.0	1,527.3	3,054.6	5,875	8,972.9		
NOx	1.32	1,527.3	2,016.0	5,875	5,922.1		
PM	0.026	1,527.3	39.7	5,875	116.6		
Pb	2.9E-07	1,527.3	4.4E-04	5,875	1.3E-03		
H2SO4	0.012	1,527.3	18.3	5,875	53.8		

COAL/TDF BLEND TEST BURN DATA					
	Emission		Emission	Annual	Annual
Pollutant	Rate	Load	Rate	Utilization*	Emission
	(lb/MMBtu)	(MMBtu/hr)	(lb/hr)	(hr/yr)	(tpy)
SO ₂	2.0	1,379.4	2,758.8	5,875	8,104.0
NOx	1.16	1,379.4	1,600.1	5,875	4,700.3
PM	0.026	1,379.4	35.9	5,875	105.4
Pb	2.1E-07	1,379.4	2.9E-04	5,875	8.4E-04
H2SO4	0.009	1,379.4	12.4	5,875	36.5

	EMISSION RA (COAL/TDF BLEND TEST 1	ATE CHANGE BUNE - COAL	A (00)	
Pollutant		Emission Rate (lb/hr)	Annual Utilization* (lb/yr)	Annual Emission (tpy)
_				
SO ₂		-295.8	5,875	-868.9
NOx		-415.9	5,875	-1221.8
PM		-3.8	5,875	-11.3
Pb		-1.5E-04	5,875	-4.6E-04
H2SO4		-5.9	5,875	-17.4

^{*}From 1994 Annual Operating Report (AOR).

Source: TEC, 1996.

ATTACHMENT C

NO-THREAT-LEVEL GUIDANCE ANALYSIS

ATTACHMENT C

Coal/TDF Blend Test Burn Metals Emissions Comparison to No-Threat Levels

							Metal			
		PM	PM	Metal	Stack	Stack	Concentration			
	Metal	Emission	Emission	Emission	Gas	Gas	Emission	No-Threat Level		
Metal	Concentration	Rate	Rate	Rate	Flow	Flow	Rate	8-hr	24-hr	Annual
	(μg/g)*	(lb/hr)	(g/hr)	(g/hr)	(dsft³/min)	(dsm³/hr)	(μg/m³)†	(μg/m³)	(μg/m³)	$(\mu g/m^3)$
Beryllium	0.3	35.9	16,284.24	0.005	310,054	527,793	0.01	0.02	0.0048	0.00042
Chromium	6	35.9	16,284.24	0.098	310,054	527,793	0.19	5	1.2	None
Mercury	0.08	35.9	16,284.24	0.001	310,054	527,793	0.002	1	0.24	None
Nickel	6	35.9	16,284.24	0.098	310,054	527,793	0.19	10	2.4	0.0042
Vanadium	19	35.9	16,284.24	0.309	310,054	527,793	0.59	0.5	0.12	20

^{*}Weighed average, coal/TDF blend.

[†]Worst-case scenario.

ATTACHMENT D

TEST BURN REPORT

Tire Derived Fuel Emissions Test
F. J. Gannon Generating Station
Boiler No. 3
February 26, 1996 Thru April 28, 1996
Particulate, Sulfuric Acid Mist
Visible Emissions, Sulfur Dioxide, Opacity
Oxides of Nitrogen and Fuel Analysis

Tampa Electric Company

August 8, 1996

Gregor/M. Nelson, P.3 Florida License No. 440

TABLE OF CONTENTS

<u>SEC</u>	<u>TION</u>		PAGE NO.			
1.0	INTF	INTRODUCTION				
2.0	sou	RCE DESCRIPTION	3			
	SAM	PLING LOCATION DIAGRAM	4			
3.0	TEST	Γ PROCEDURES / SAMPLING TRAIN DIAGRAMS	5			
	PAR	TICULATE SAMPLING TRAIN SCHEMATIC	7			
	SULI	FURIC ACID MIST SAMPLING TRAIN SCHEMATIC	8			
	INTE	GRATED SAMPLING TRAIN SCHEMATIC	9			
	ORS	AT ANALYZER SCHEMATIC	10			
4.0	SUM	MARY OF RESULTS	11			
	4.1	CEM DATA	12			
	4.2	STACK TEST DATA	16			
	4.3	FUEL ANALYSIS DATA	19			
	4.4	UNIT OPERATIONS SUMMARY	24			
<u>APP</u>	<u>ENDIC</u>	<u>ES</u>				
A.	SOU					
	A-1	BASELINE PARTICULATE CALCULATIONS				
	A-2	BASELINE SULFURIC ACID MIST CALCULATIONS	3			
	A-3	FUEL BLEND BURN PARTICULATE CALCULATION	NS			
	A-4	A-4 FUEL BLEND BURN SULFURIC ACID MIST CALCULATIONS				
	A-5	NOMENCLATURE				

TABLE OF CONTENTS (CONT.)

B. <u>LABORATORY ANALYTICAL DATA</u>

- B-1 BASELINE PARTICULATE
- B-2 BASELINE SULFURIC ACID MIST
- B-3 FUEL BLEND BURN PARTICULATE
- B-4 FUEL BLEND BURN SULFURIC ACID MIST

C. BOILER/PRECIPITATOR OPERATION DATA

- C-1 BASELINE OPERATIONAL DATA
- C-2 FUEL BLEND BURN OPERATIONAL DATA

D. CONTINUOUS EMISSION MONITORING DATA

- D-1 BASELINE CEMS STACK TEST LOGS
- D-2 FUEL BLEND BURN CEMS STACK TEST LOGS
- D-3 CONTINOUS EMISSION MONITOR RELATIVE ACCURACY TEST AUDIT RESULTS, 1995
- D-4 CONTINOUS EMISSION MONITOR QUALITY ASSURANCE LINEARITY CHECKS QUARTER 1, 1996

E. FUEL ANALYSIS

- E-1 BASELINE WEEKLY COMPOSITE
- E-2 FUEL BLEND BURN WEEKLY COMPOSITES
- E-3 TIRE DERIVED FUEL ANALYSIS

TABLE OF CONTENTS (CONT.)

F. FIELD DATA SHEETS

- F-1 BASELINE PARTICULATE DATA SHEETS
- F-2 BASELINE SULFURIC ACID DATA SHEETS
- F-3 BASELINE ORSAT DATA SHEETS
- F-4 BASELINE VISIBLE EMISSIONS DATA SHEETS
- F-5 FUEL BLEND BURN PARTICULATE DATA SHEETS
- F-6 FUEL BLEND BURN SULFURIC ACID MIST DATA SHEETS
- F-7 FUEL BLEND BURN ORSAT DATA SHEETS
- F-8 FUEL BLEND BURN VISIBLE EMISSIONS DATA SHEETS

G. SAMPLE EQUIPMENT CALIBRATIONS

- G-1 BASELINE EQUIPMENT CALIBRATIONS
- G-2 FUEL BLEND BURN EQUIPMENT CALIBRATIONS

H. CHAIN OF CUSTODY

- H-1 BASELINE CHAIN OF CUSTODY
- H-2 FUEL BLEND BURN CHAIN OF CUSTODY

I. PROJECT PARTICIPANTS

1.0 INTRODUCTION

Tampa Electric Company's (TEC) Corporate Environmental Services(CES) performed a series of emission tests on Unit No. 3 at the F.J. Gannon Generating Station located in Hillsborough County on Port Sutton Road, in Tampa, Florida. The tests performed were used to determine the effects on emissions of supplementing the normal fuel for the facility (bituminous coal) with tire derived fuel (TDF). The authorized test conditions for this test were:

- 1. Baseline firing with no TDF.
- 2. 20% TDF with 80% normal fuels

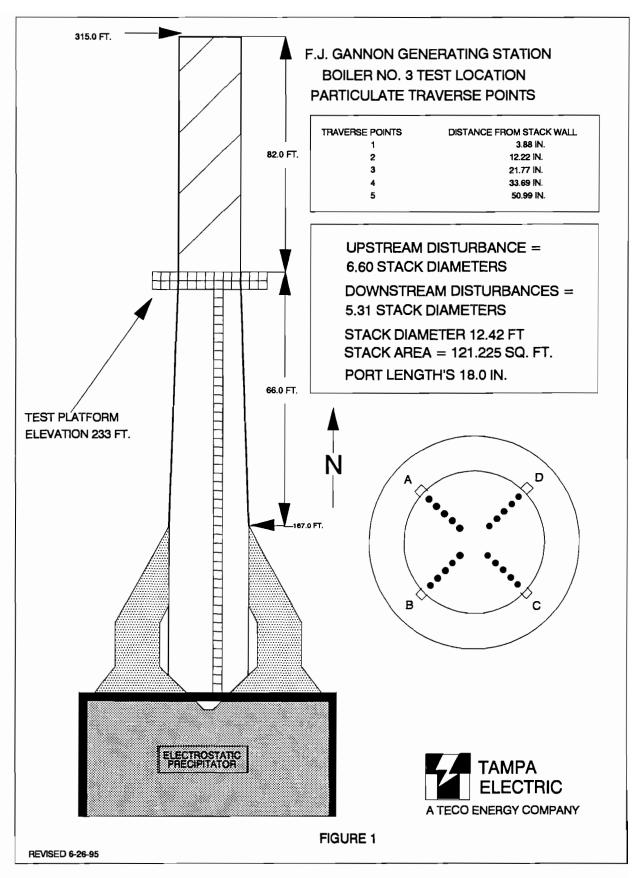
The Florida Department of Environmental Protection issued a letter of authorization to Tampa Electric Company allowing for these tests relating to F. J. Gannon Unit No. 3, operating permit No. AO29-172179. The Baseline testing period began on February 26 and was completed March 3, 1996. The TDF Fuel blend began March 7, 1996 and ended April 28, 1996. TDF was not bunkered continuously during this blend period. Fuel blend stack testing was performed on April 23, 1996.

Unit No. 3 is a steam-generating boiler which is normally fired with coal. Tests for particulate matter, sulfuric acid mist and visible emissions were performed on the boiler during sootblowing conditions. Sulfur dioxide, nitrogen oxides and opacity data were recorded using continuous emission monitors (CEMS) during the baseline and trial burn tests.

All testing was performed following the procedures and quality control guidelines given in 40 CFR 60 Appendix A - Test Methods.

Section 2.0 presents a brief source description and diagram of the sample point locations.

Section 3.0 outlines the procedures and test methods used along with diagrams of sampling trains used.


Section 4.0 presents the test results and comparison tables.

All supporting documentation, field data sheets, laboratory data, sample calculations, calibration data, quality assurance/quality control measures are included in the Appendices to this report.

2.0 SOURCE DESCRIPTION

F.J. Gannon Generating Station is a coal-fired steam electric generating facility located in Hillsborough County on Port Sutton Road, in Tampa, Florida at UTM coordinates East 360.0 North 3087.5. The Unit No. 3 source sampling location consists of four sample ports located 90° apart on the circumference of the 12 ft. diameter circular stack, which is 315 ft in height. Upstream and downstream gas flow disturbances were determined to be 6.60 and 5.31 stack diameters away from the test ports, respectively. Using these criteria, a total of 20 sampling points were chosen for particulate sampling and sulfuric acid mist sampling, as stipulated in the U.S. EPA Method 1 test procedure. A diagram of the stack sampling location is included in Figure 1 along with other pertinent information on the test site.

Unit No. 3 is equipped with an electrostatic precipitator for the control of flyash emissions. Appendix C details the operational parameters of the electrostatic precipitator during the test period.

3.0 TEST PROCEDURES/SAMPLING TRAIN DIAGRAMS

All particulate, sulfuric acid mist, oxygen, and visible emission testing followed the procedures and quality assurance/quality control guidelines given in 40 CFR 60 Appendix A.

Fuel analysis was performed on weekly composite coal samples taken during the baseline test and trial burn test period. Fuel analysis was also performed on a tire derived fuel sample collected during fuel bunkering for trial burn stack tests. Fuel sampling and analysis was performed following ASTM procedures and EPA methods. Fuel analysis of the composite coal samples for concentration of chromium, lead, nickel, beryllium, vanadium and zinc was prepared using ASTM 3683-78 (Re-approved 1989). "Standard Test Method for Trace Elements in Coal and Coke Ash by Atomic Absorption" and performed by EPA Method 200.7 "Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry." Fuel analysis on tire derived fuel for concentration of chromium, lead, nickel, beryllium, vanadium and zinc was performed using ASTM procedure D-3683, "Standard Test Method for Trace Elements in Coal and Coke Ash by Atomic Absorption." Trace metal analysis on all samples for concentration of mercury was prepared and analyzed using ASTM 3684-94 "Total Mercury in Coal by Oxygen Bomb Combustion/Atomic Absorption Method." Appendix E details the results of the coal and TDF analysis.

Particulate matter sampling was performed according to U.S. EPA Method 17, "Determination of Particulate Matter from Stationary Sources." Sampling was performed using the equipment depicted in Figure 2. Particulate matter was collected on a high purity glass micro fiber thimble measuring 19 X 90 mm. Sulfuric acid mist sampling was performed according to U.S. EPA Method 8 "Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources." Sampling was performed using the equipment depicted in Figure 3.

Diluent sampling and analysis was performed according to U.S. EPA Method 3 "Gas Analysis for Determination of Emission Rate Correction Factor, or Excess Air." Sampling was performed using the equipment depicted in Figure 4. Diluent analysis was performed using the equipment depicted in Figure 5.

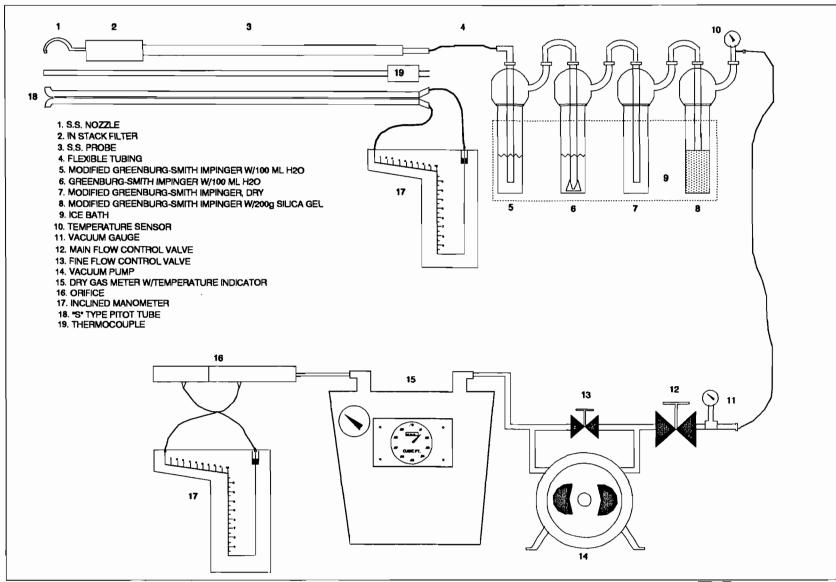


FIGURE 2
PARTICULATE SAMPLING TRAIN
USEPA METHOD 17

7

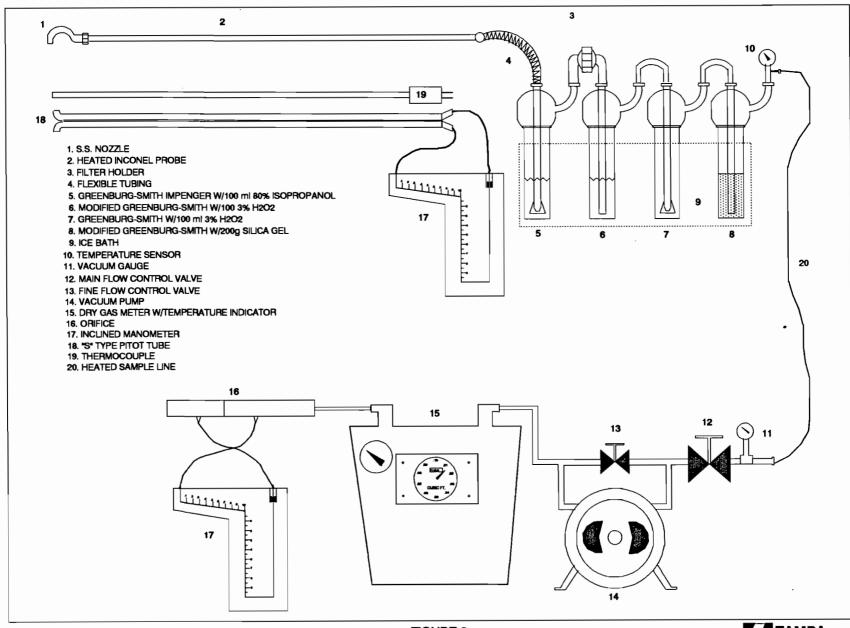


FIGURE 3
SULFURIC ACID MIST SAMPLING TRAIN
USEPA METHOD 8

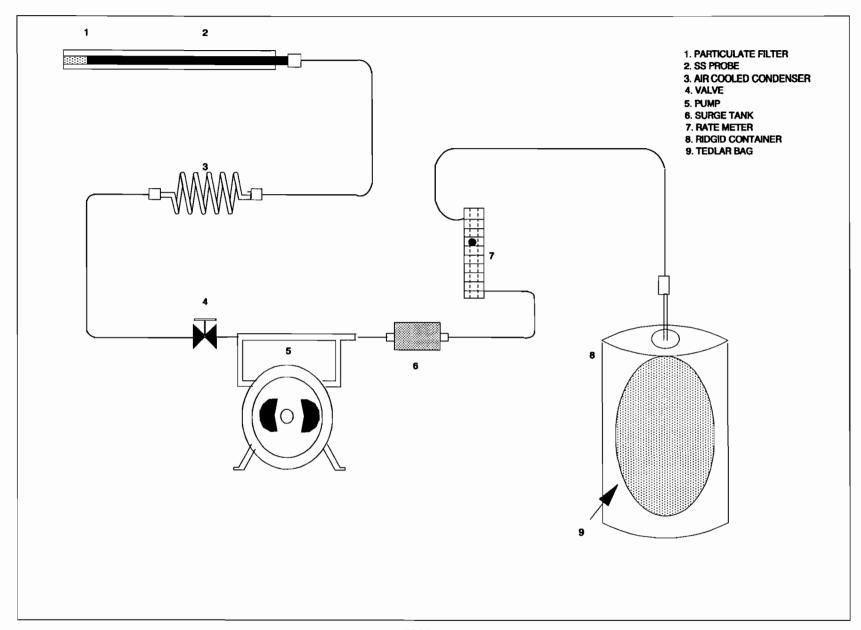


FIGURE 4
INTEGRATED GAS SAMPLING TRAIN
USEPA METHOD 3-B

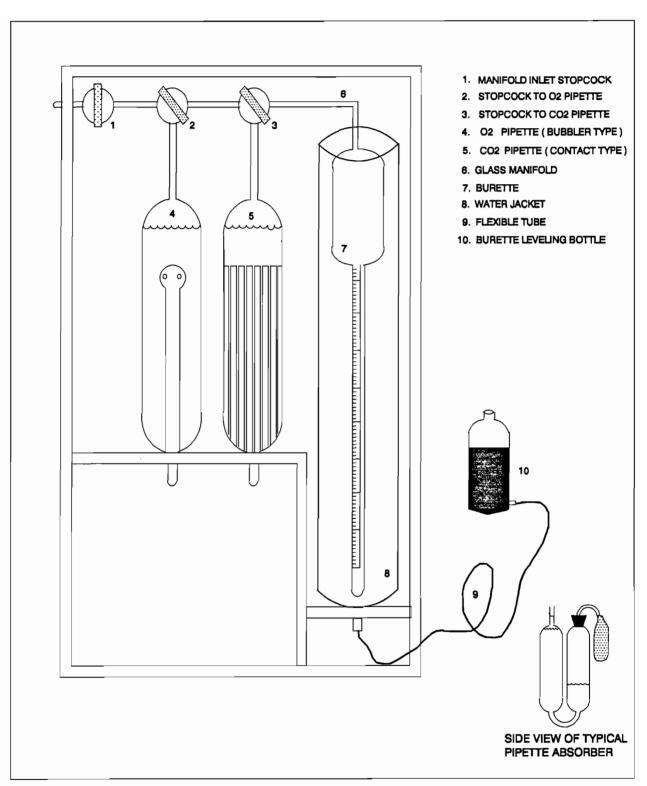


FIGURE 5 ORSAT ANALYZER USEPA METHOD 3B

4.0 SUMMARY OF RESULTS

Section 4.1 presents the Continuous Emission Monitor Data from the baseline stack test and the fuel blend stack test. Data is presented comparing opacity, SO₂, No_x, during baseline and fuel blend burn stack tests. The test data is summarized below.

F.J. GANNON STATION UNIT NO. 3						
CONTINUOUS EMISSION MONITOR DATA						
PARAMETER	BASELINE	TIRE DERIVED FUEL	EMISSION RATE			
Opacity	5	3	(%)			
SO ₂	2.0	2.0	(LB/MMBtu)			
NO _x	1.32	1.16	(LB/MMBtu)			

Section 4.2 presents stack test data from the baseline test and the fuel blend test burn. Data is presented comparing particulate, sulfuric acid mist, and visible emissions test data.

F.J. GANNON STATION UNIT NO. 3						
	STACK TEST DATA					
PARAMETER	BASELINE	TIRE DERIVED FUEL	EMISSION RATE			
Particulate	0.03	0.03	(LB/MMBtu)			
H₂SO₄	0.01	0.01	(LB/MMBtu)			
V.E.	5	0	(%)			

Section 4.3 presents the fuel sampling and analysis of weekly coal composites taken during the baseline and TDF blend test burn. Analysis of TDF samples taken during fuel bunkering for each stack test day is also included.

F.J. GANNON STATION UNIT NO. 3 CONTINUOUS EMISSION MONITOR DATA DURING STACK TESTS* BASELINE TEST BURN FEBRUARY 28, 1996 TIRE DERIVED FUEL BLEND APRIL 23, 1996

SO2 (lb/MMBtu)	BASELINE VS FUI	EL BLEND	
	DATE	TIME	AVG
BASELINE TESTS	02/28/96	0700-1800	2.0
	DATE	TIME	AVG
TIRED DERIVED FUEL BLEND	04/23/96	0800-1700	2.0

^{*} CONTINUOUS EMISSION MONITOR DATA CORRESPONDS TO STACK TEST DAYS AND TIME

F.J. GANNON STATION UNIT NO. 3 CONTINUOUS EMISSION MONITOR DATA DURING STACK TESTS* BASELINE TEST BURN FEBRUARY 28, 1996 TIRE DERIVED FUEL BLEND APRIL 23, 1996

NOx (lb/MMBtu)	BASELINE VS FU	EL BLEND	
	DATE	TIME	AVG
BASELINE TESTS	02/28/96	0700-1800	1,32
	DATE	TIME	AVG
TIRED DERIVED FUEL BLEND	04/23/96	0800-1700	1:16

^{*} CONTINUOUS EMISSION MONITOR DATA CORRESPONDS TO STACK TEST DAYS AND TIME

F.J. GANNON STATION UNIT NO. 3 CONTINUOUS EMISSION MONITOR DATA DURING STACK TESTS* BASELINE TEST BURN FEBRUARY 28, 1996 TIRE DERIVED FUEL BLEND APRIL 23, 1996

OPACITY (%)	BASELINE VS FUEL BLEND			
	DATE	TIME	AVG	
BASELINE TESTS	02/28/96	0700-1800	.5	
	DATE	TIME	AVG	
TIRED DERIVED FUEL BLEND	04/23/96	0800-1700	3	

^{*} CONTINUOUS EMISSION MONITOR DATA CORRESPONDS TO STACK TEST DAYS AND TIME

17

F.J. GANNON STATION UNIT NO. 3 STACK TEST DATA BASELINE TEST BURN FEBRUARY 28, 1996 TIRE DERIVED FUEL BLEND APRIL 23, 1996

PARTICULATE (Lb/MN u.s. EPA METHOD 17	notu)		BASELINE	VS FUEL BLEND	
o.o. El A METHOD II	RUN	1	2	3	AVG.
BASELINE TESTS		0.027	0.026	0.025	0.026
TIRE DERIVED FUEL BLEND		0.023	0.030	0.024	0.026

J.S. EPA METHOD 8					
	RUN	1	2	3	AVG.
ASELINE TESTS		0.015	0.012	0.010	0.012

F.J. GANNON STATION UNIT NO. 3 STACK TEST DATA BASELINE TEST BURN FEBRUARY 28, 1996 TIRE DERIVED FUEL BLEND APRIL 23, 1996

VISIBLE EMISSION U.S. EPA METHOD 9	S (%)		BASELINE VS FUEL BLEND	
60 MINUTE TEST				AVG.
BASELINE TESTS	ş.	38.	· · · · · · · · · · · · · · · · · · ·	- 5
TIRE DERIVED FUEL BLEND				 0

4.3 FUEL ANALYSIS DATA

F. J. GANNON STATULE UNIT NO. 3 TRACE METALS FULL ANALYSIS WEEKLY COMPOSITE BASELINE FEBRUARY 26, 1996 THRU MARCH 3, 1996 WEEKLY COMPOSITE FUEL BLEND APRIL 22, 1996 THRU APRIL 28, 1996 TIRE DERIVED FUEL STACK TEST BUNKERING APRIL 22, 1996

VANADIUM (ug/g) ASTM D 3683-78 (REAPPROVED 1989) EPA 200.7

SAMPLE DESCRIPTION	SAMPLE DATES	RESULTS
BASELINE TESTS PERIOD / WEEKLY COAL COMPOSITE (BLWCC)	02-26-96 THRU 03-03-96	17 ug/g
FUEL BLEND TEST PERIOD / WEEKLY COAL COMPOSITE (FBWCC)	04-22-96 THRU 04-28-96	17 ug/g
TIRE DERIVED FUEL / TDF DURING BUNKERING (TDF)	04-22-96	9 ug/g
CALCULATED FUEL BLEND = ((ug/g) * 80%(FBWCC)) + ((ug/g * 20%(TD	F))	15 ug/g

NICKEL (ug/g) ASTM D 3683-78 (REAPPROVED 1989) EPA 200.7

SAMPLE DESCRIPTION	SAMPLE DATES	RESULTS
BASELINE TESTS PERIOD / WEEKLY COAL COMPOSITE (BLWCC)	02-26-96 THRU 03-03-96	9 ug/g
FUEL BLEND TEST PERIOD / WEEKLY COAL COMPOSITE (FBWCC) TIRE DERIVED FUEL / TDF DURING BUNKERING (TDF)	04-22-96 THRU 04-28-96 04-22-96	9. ug/g 19. ug/g
CALCULATED FUEL BLEND = ((ug/g) * 80%(FBWCC)) + ((ug/g * 20%(TDF))	11 ug/g

(BLWCC)=BASELINE WEEKLY COAL COMPOSITE (FBWCC) = FUEL BLEND WEEKLY COAL COMPOSITE - COAL ONLY (TDF) = TIRE DERIVED FUEL

F. J. GANNON STATE UNIT NO. 3 TRACE METALS FULL ANALYSIS WEEKLY COMPOSITE BASELINE FEBRUARY 26, 1996 THRU MARCH 3, 1996 WEEKLY COMPOSITE FUEL BLEND APRIL 22, 1996 THRU APRIL 28, 1996 TIRE DERIVED FUEL STACK TEST BUNKERING APRIL 22, 1996

BERYLLIUM (ug/g) ASTM D 3683-78 (REAPPROVED 1989) EPA 200.7

SAMPLE DESCRIPTION	SAMPLE DATES	RESULTS
BASELINE TESTS PERIOD / WEEKLY COAL COMPOSITE (BLWCC)	02-26-96 THRU 03-03-96	1 ug/g
FUEL BLEND TEST PERIOD / WEEKLY COAL COMPOSITE (FBWCC)	04-22-96 THRU 04-28-96	1 ug/g
TIRE DERIVED FUEL / TDF DURING BUNKERING (TDF)	04-22-96	3 ug/g
CALCULATED FUEL BLEND = ((ug/g) *80%(FBWCC)) + ((ug/g *20%(TDF	())	1 ug/g

LEAD (ug/g) ASTM D 3683-78 (REAPPROVED 1989) EPA 200.7

SAMPLE DESCRIPTION	SAMPLE DATES	RESULTS
BASELINE TESTS PERIOD / WEEKLY COAL COMPOSITE (BLWCC)	02-26-96 THRU 03-03-96	13 ug/g
FUEL BLEND TEST PERIOD / WEEKLY COAL COMPOSITE (FBWCC)	04-22-96 THRU 04-28-96	6 ug/g
TIRE DERIVED FUEL. / TDF DURING BUNKERING (TDF)	04-22-96	21 ug/g
OAL OLD ATED ELIEL DI END (()(-) + 000(/EDMOO)) + (()(-) + 000(/TDE))		0
CALCULATED FUEL BLEND = $((ug/g) * 80\%(FBWCC)) + ((ug/g * 20\%(TDF))$		9 ug/g

(BLWCC)=BASELINE WEEKLY COAL COMPOSITE (FBWCC) = FUEL BLEND WEEKLY COAL COMPOSITE - COAL ONLY (TDF) = TIRE DERIVED FUEL F. J. GANNON STATUNIT NO. 3
TRACE METALS FULL ANALYSIS
WEEKLY COMPOSITE BASELINE
FEBRUARY 26, 1996 THRU MARCH 3, 1996
WEEKLY COMPOSITE FUEL BLEND
APRIL 22, 1996 THRU APRIL 28, 1996
TIRE DERIVED FUEL STACK TEST BUNKERING
APRIL 22, 1996

MERCURY (ug/g)
ASTM D 3684-94 (REAPPROVED 1994) (COAL)
DOUBLE GOLD AMALGAMATION, COLD VAPOR ATOMIC ABSORPTION (TDF)

SAMPLE DESCRIPTION	SAMPLE DATES	RESULTS
BASELINE TESTS PERIOD / WEEKLY COAL COMPOSITE (BLWCC)	02-26-96 THRU 03-03-96	0.09 ug/g
FUEL BLEND TEST PERIOD / WEEKLY COAL COMPOSITE (FBWCC) TIRE DERIVED FUEL / TDF DURING BUNKERING (TDF)	04-22-96 THRU 04-28-96 04-22-96	0.10 ug/g 0.04 ug/g
CALCULATED FUEL BLEND = ((ug/g) *80%(FBWCC)) + ((ug/g *20%(TDF)))	0.09 ug/g

(BLWCC)=BASELINE WEEKLY COAL COMPOSITE (FBWCC) = FUEL BLEND WEEKLY COAL COMPOSITE - COAL ONLY (TDF) = TIRE DERIVED FUEL

22

F. J. GANNON STATE UNIT NO. 3 TRACE METALS FULL ANALYSIS WEEKLY COMPOSITE BASELINE FEBRUARY 26, 1996 THRU MARCH 3, 1996 WEEKLY COMPOSITE FUEL BLEND APRIL 22, 1996 THRU APRIL 28, 1996 TIRE DERIVED FUEL STACK TEST BUNKERING APRIL 22, 1996

CHROMIUM (ug/g)
ASTM D 3683-78 (REAPPROVED 1989)
EPA 200.7

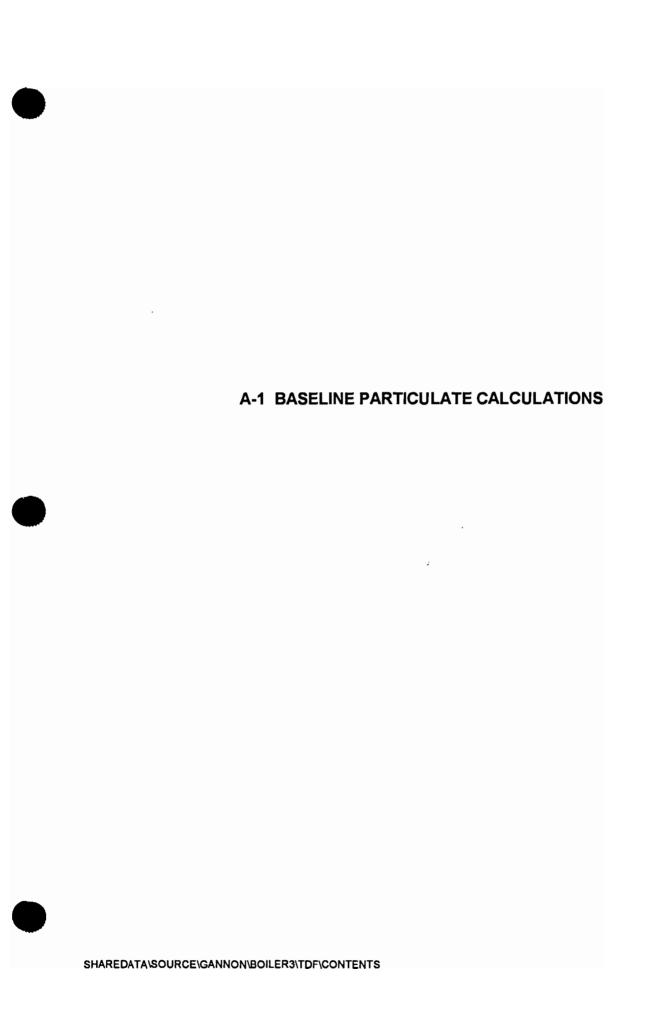
SAMPLE DESCRIPTION	SAMPLE DATES	RESULTS
BASELINE TESTS PERIOD / WEEKLY COAL COMPOSITE (BLWCC)	02-26-96 THRU 03-03-96	8 ug/g
FUEL BLEND TEST PERIOD / WEEKLY COAL COMPOSITE (FBWCC)	04-22-96 THRU 04-28-96	7 ug/g
TIRE DERIVED FUEL: / TDF DURING BUNKERING (TDF)	04-22-96	9 ug/g
CALCULATED FUEL BLEND = ((ug/g) *80%(FBWCC)) + ((ug/g * 20%(TDF	=))	7 ug/g

ZINC (ug/g) ASTM D 3683-78 (REAPPROVED 1989) EPA 200.7

SAMPLE DESCRIPTION	SAMPLE DATES	RESULTS
BASELINE TESTS PERIOD / WEEKLY COAL COMPOSITE (BLWCC)	02-26-96 THRU 03-03-96	25 ug/g
FUEL BLEND TEST PERIOD / WEEKLY COAL COMPOSITE (FBWCC)	04-22-96 THRU 04-28-96	25 ug/g
TIRE DERIVED FUEL / TDF DURING BUNKERING (TDF)	04-22-96	4327 ug/g
CALCULATED FUEL DUEND		000
CALCULATED FUEL BLEND = ((ug/g) * 80%(FBWCC)) + ((ug/g * 20%(TDF)))		886 ug/g

(BLWCC)=BASELINE WEEKLY COAL COMPOSITE (FBWCC) = FUEL BLEND WEEKLY COAL COMPOSITE - COAL ONLY (TDF) = TIRE DERIVED FUEL

4.4 UNIT OPERATIONS SUMMARY


Boiler performance was not noticeably affected by the TDF blend. No measurable differences were observed in overall boiler operation. Extensive daily records exist for the baseline and TDF test burn. The records are available for inspection at the station but are not included because of the quantity of the material. Appendix C - Boiler Precipitator Operation data shows records from all stack tests performed during the test burn. These records include unit load, fuel ratio, and operating conditions.

APPENDIX A

SOURCE TEST CALCULATIONS

Δ-1	RASFI	INF	PARTICUL	ΔTF	CAL	CHI	ATIONS

- A-2 BASELINE SULFURIC ACID MIST CALCULATIONS
- A-3 FUEL BLEND BURN PARTICULATE CALCULATIONS
- A-4 FUEL BLEND BURN SULFURIC ACID MIST CALCULATIONS
- A-5 NOMENCLATURE

U.S. EPA PARTICULATE CALCULATIONS RUN NO. 1

PLANT: F. J. GANNON STATION

DATE: 2-28-96

SAMP. LOCATION: BOILER NO. 3

SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS = LAB ANALYSIS =	29.80 in 121.23 S 0.84 13.8 % 5.0 % 0.0 %	n.Hg n.Hg sq.Ft. 6 CO2 6 O2 6 CO 6 N2	NOZZLE DIA NOZZLE ARE METER ORIF METER TEM STACK TEM! SQ.RT. dP CONDENSA METER Y	EA = FICE = UME = P. = P. =	r	33.249 80.2 279.6 1.007 57.7 1.013	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
Vw(std) = 0.04714 x Vic					=	2.720	scf
Vm(std) = 17.647 x Vm x / (Tm + 460)	Y x (Pb + (dl	H / 13.6)))		=	32.861	scf
Bws = Vw(std) / (Vm(std)	+ Vw(std))				=	0.076	%
FDA = 1.0 - Bws					=	0.924	%
Md =(.44 x %CO2)+(.32 x	c %O2)+[.28 :	x (%N2 +	- %CO)]		=	30.41	lb\lb-mole
Ms = (Md x FDA) + (18.0	x Bws)				=	29.47	lb\lb-mole
vs = 85.49 x CP x (Sq.Rt / (Ms x Ps)]	.dP) x [Sq.Rt	.(Ts+460)		=	66.4	ft/sec
Qs = vs x As x 60					=	482960	acf/min
Qs(std)=Qs x FDA x (528	3/(Ts + 460)) :	x (Ps/29.	92)		=	317325	dscf/min
I =(Ts + 460) x [(0.00267 x 100 / (Time x Ps x An		(std) / 17	7.647)]	****	=	97.9	% ******
cs = 15.432 x grams / Vn	n(std)				=	0.0145	grains/dscf
grains/acf = cs x 17.647	k Ps x FDA /	(Ts + 460	0)		=	0.0095	grains/acf
C = cs / 7000					=	2.07E-06	lbs/dscf
$EM = C \times Qs(std) \times 60$					=	39.4	lbs/hr
E = C x F x (20.9 / 20.9 -	%O2) F-Fac	tor meth	od		=	0.027	lbs/MM Btu

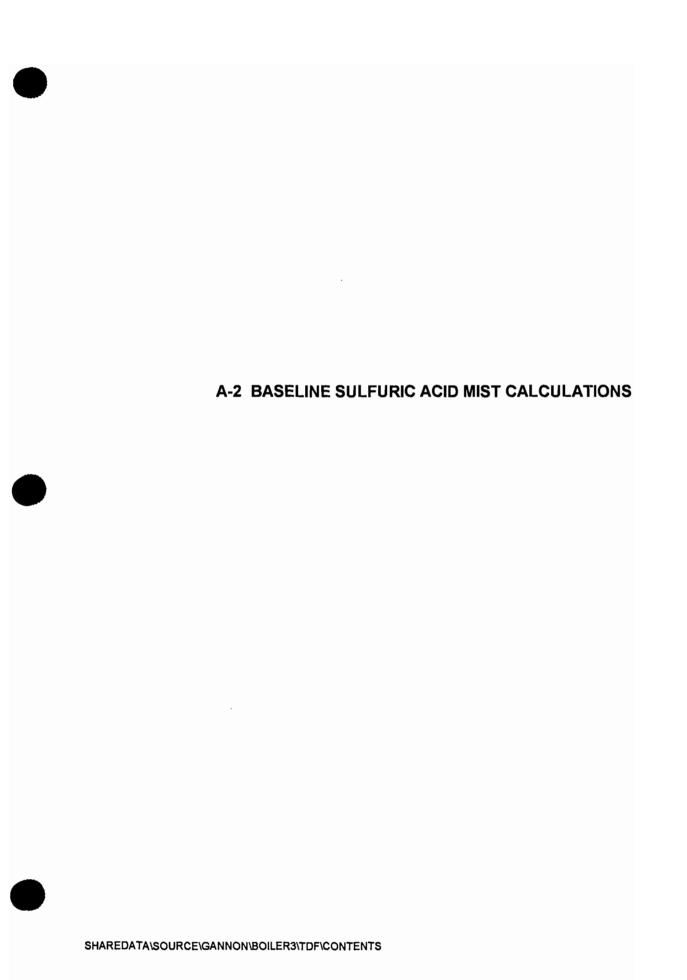
U.S. EPA PARTICULATE CALCULATIONS RUN NO. 2

PLANT: F. J. GANNON STATION

DATE: 2-28-96

SAMP. LOCATION: BOILER NO. 3

SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS = LAB ANALYSIS =	0.84 13.8 % 5.2 % 0.0 % 81.0 %	n.Hg n.Hg q.Ft. 6 CO2 6 O2 6 CO 6 N2 rams	NOZZLE DIA NOZZLE ARE METER ORIF METER VOLI METER TEM STACK TEM SQ.RT. dP CONDENSAT METER Y	EA = FICE = UME = P. = P. =		33.369 81.5 281.3 1.014 67.7 1.013	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
Vw(std) = 0.04714 x Vic					=	3.191	scf
Vm(std) = 17.647 x Vm x	Y x (Pb + (dl	H / 13.6))	1				
/ (Tm + 460)					=	32.902	scf
Bws = Vw(std) / (Vm(std)	+ Vw(std))				=	0.088	%
FDA = 1.0 - Bws					=	0.912	%
Md =(.44 x %CO2)+(.32	x %O2)+[.28)	x (%N2 +	%CO)]		=	30.42	lb\lb-mole
Ms = (Md x FDA) + (18.0	x Bws)				=	29.33	lb\lb-mole
vs = 85.49 x CP x (Sq.Rt / (Ms x Ps)]	.dP) x [Sq.Rt.	.(Ts+460)		=	67.0	ft/sec
Qs = vs x As x 60					=	487325	acf/min
Qs(std)=Qs x FDA x (528	3/(Ts + 460)) :	x (Ps/29.	92)		=	315288	dscf/min
I =(Ts + 460) x [(0.00267 x 100 / (Time x Ps x An		(std) / 17	.647)]	****	=	98.6 *****	% ******
cs = 15.432 x grams / Vn	n(std)				=	0.0140	grains/dscf
grains/acf = cs x 17.647	x Ps x FDA /	(Ts + 460	0)		=	0.0091	grains/acf
C = cs / 7000					=	2.00E-06	lbs/dscf
$EM = C \times Qs(std) \times 60$					=	37.8	lbs/hr
E = C x F x (20.9 / 20.9 -	%O2) F-Fac	tor meth	od		=	0.026	lbs/MM Btu


U.S. EPA PARTICULATE CALCULATIONS RUN NO. 3

PLANT: F. J. GANNON STATION

DATE: 2-28-96

SAMP. LOCATION: BOILER NO. 3

SAMPLE TIME = 60.0 min. BAR. PRESSURE = 29.80 in.Hg STK. PRESSURE = 29.80 in.Hg EFF. STACK AREA = 121.23 Sq.Ft. Cp = 0.84 GAS ANALYSIS = 13.2 % CO2 5.6 % O2 0.0 % CO 81.2 % N2 LAB ANALYSIS = 0.02785 grams	NOZZLE DIA. = NOZZLE AREA = METER ORIFICE = METER VOLUME = METER TEMP. = STACK TEMP. = SQ.RT. dP = CONDENSATE VOL.	=	3 2.980 82. 3 279.7	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
******** ******* ******* ****	F-FACTOR =	**	9780	dscf/MMBtu
$Vw(std) = 0.04714 \times Vic$		=	3.191	scf
Vm(std) = 17.647 x Vm x Y x (Pb + (dH / 13.6 / (Tm + 460)))	=	32.469	scf
Bws = Vw(std) / (Vm(std) + Vw(std))		=	0.089	%
FDA = 1.0 - Bws		=	0.911	%
Md =(.44 x %CO2)+(.32 x %O2)+[.28 x (%N2	=	30.34	lb\ib-mole	
$Ms = (Md \times FDA) + (18.0 \times Bws)$	=	29.24	lb\lb-mole	
vs = 85.49 x CP x (Sq.Rt.dP) x [Sq.Rt.(Ts+46 / (Ms x Ps)]	0)	=	65.4	ft/sec
Qs = vs x As x 60		=	475687	acf/min
Qs(std)=Qs x FDA x (528/(Ts + 460)) x (Ps/29	9.92)	=	308107	dscf/min
I =(Ts + 460) x [(0.00267 x Vic) + (Vm(std) / 1 x 100 / (Time x Ps x An x vs x 60)	7.647)] **** ********* ********	=	99.6 ******	% ******
cs = 15.432 x grams / Vm(std)		=	0.0132	grains/dscf
grains/acf = cs x 17.647 x Ps x FDA / (Ts + 46	50)	=	0.0085	grains/acf
C = cs / 7000		=	1.89E-06	lbs/dscf
$EM = C \times Qs(std) \times 60$		=	34.9	lbs/hr
E = C x F x (20.9 / 20.9 - %O2) F-Factor meth	nod	=	0.025	lbs/MM Btu

U.S. EPA METHOD EIGHT SULFURIC ACID MIST TEST CALCULATIONS RUN NO. 1-S

PLANT: F.J. GANNON STATION

DATE: 2-28-96

SAMP. LOCATION: BOILER NO. 3

SAMPLE TIME =	60.0	min.	NOZZLE DIA.	=		0.198	in.
BAR. PRESSURE =	29.80		NOZZLE ARE			0.00021382	
STK. PRESSURE =	29.80	_	METER ORIF				in. H2O
EFF. STACK AREA =	121.23	Sq.Ft.	METER VOLU			33.416	
Cp =	0.84		METER TEMP				DEG. F
GAS ANALYSIS =			STACK TEMP	P. =			DEG. F
		% O2	SQ.RT. dP	=			in. H2O
		% CO	CONDENSAT	E VOL.=		75.5	ml
		% N2	METER Y	=		1.000	
LAB ANALYSIS =	0.00000	grams	HEAT INPUT	=	*	**	MM Btu/hr
			F-FACTOR	=		9780	dscf/MMBtu
*****	*****	*****	* *** *******	*****		*****	*****
Vw(std) = 0.04714 x Vic					=	3.559	scf
$Vm(std) = 17.647 \times Vm \times V$	Y x (Pb + (dH / 13.6))		=	32.710	scf
/ (1111 + 400)					_	0.926	
Bws = Vw(std) / (Vm(std)	+ / (w/ctd)/				=	0.920	scm %
DWS - VW(Std) / (VIII(Std)	+ vw(stu))				-	0.050	70
FDA = 1.0 - Bws					=	0.902	%
Md =(.44 x %CO2)+(.32 x	%O2)+[.28	3 x (%N2	+ %CO)] =			30.29	lb/lb mole
Ms = (Md x FDA) + (18.0 x	(Bws)				=	29.09	lb/lb mole
vs = 85.49 x CP x (Sq.Rt.d	ID) v IQa D	t (Ts±460	۸.				
/ (Ms x Ps)]	ii) x lod.iv	(131400	,		=	65.6	ft/sec
/ (WIS X 1 S)]					_	00.0	10300
Qs = vs x As x 60					=	477142	acf/min
Qs(std)=Qs x FDA x (528/	(Ts + 460)) x (Ps/29	.92) =			312784	dscf/min
I =(Ts + 460) x [(0.00267)	(Vic) + (Vr	n(std) / 17	7 647)1				
x 100 / (Time x Ps x An x		11(3(4) / 17	.047)]		=	98.8	%
********	******	******	* *** *******	******		******	******
N - NODMALITY OF BOD	la + a⊔a∩				_	0.0103	
N = NORMALITY OF BaB	12 2020				=	0.0103	
Tb = TITRANT BLANK					=	0.0600	milliliters
Vs = VOLUME SOLUTIO	N				=	5.05E+02	milliliters
Va = VOLUME ALIQUOT					=	100.0	milliliters
T = TITRANT					=	6.32	milliliters
110004 (1145 0.0004	004 5 /1	/T T b) as	\(\c\(\alpha\)\\\\			0.00000400	
H2SO4 (lb/dscf) = 0.0001					=	0.00000108	lb/dscf
H2SO4 (g/dscm) = 0.0490)4 X (N X (l	-1D) X VS	/va//vm		=	0.0172	g/dscm
H2SO4 (Ib/MMBtu)						0.0148	lb/MMBtu

U.S. EPA METHOD EIGHT SULFURIC ACID MIST TEST CALCULATIONS RUN NO. 2-S

PLANT: F.J. GANNON STATION

DATE: 2-28-96

SAMP. LOCATION: BOILER NO. 3

SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS =	60.0 min. 29.80 in.Hg 29.80 in.Hg 121.23 Sq.Ft 0.84 13.8 % CC 5.3 % O2 0.0 % CC 80.9 % N2 0.00000 gram	METER ORII METER VOL METER TEM STACK TEM SQ.RT. dP CONDENSA	EA = FICE = UME = IP. = P. = TE VOL = =	33.923 80.5 267.4 0.989 72.3 1.000	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
Vw(std) = 0.04714 x Vic	·		=	3.408	scf
Vm(std) = 17.647 x Vm x Y x / (Tm + 460)		3.6))	=	0.937	scf scm
Bws = Vw(std) / (Vm(std) + V	Vw(std))		=	0.093	%
FDA = 1.0 - Bws	·		=	0.907	%
Md =(.44 x %CO2)+(.32 x %	O2)+[.28 x (%	N2 + %CO)] =		30.42	lb/lb mole
$Ms = (Md \times FDA) + (18.0 \times B)$	Bws)		=	29.26	lb/lb mole
vs = 85.49 x CP x (Sq.Rt.dP) / (Ms x Ps)]) x [Sq.Rt.(Ts+	460)	=	64.9	ft/sec
Qs = vs x As x 60			=	472050	acf/min
Qs(std)=Qs x FDA x (528/(T	s + 460)) x (Ps	s/29.92) =		309536	dscf/min
I =(Ts + 460) x [(0.00267 x \ x 100 / (Time x Ps x An x vs		/ 17.647)]	= ******	101.0	% ******
N = NORMALITY OF BaBI2	* 2H2O		=	0.0103	
Tb = TITRANT BLANK			=	0.0600	milliliters
Vs = VOLUME SOLUTION			=	5.60E+02	milliliters
Va = VOLUME ALIQUOT			=	100.0	milliliters
T = TITRANT			=	4.08	milliliters
H2SO4 (lb/dscf) = 0.000108 H2SO4 (g/dscm) = 0.04904 H2SO4 (lb/MMBtu)			=	0.00000076 0.0121 0.0099	lb/dscf g/dscm lb/MMBtu

U.S. EPA METHOD EIGHT SULFURIC ACID MIST TEST CALCULATIONS RUN NO. 3-S

PLANT: F.J. GANNON STATION

DATE: 2-28-96

SAMP. LOCATION: BOILER NO. 3
OPERATING COND.: BASELINE /SOOTBLOWING

SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS =	5.2 0.0	in.Hg in.Hg Sq.Ft. % CO2 % O2 % CO % N2	NOZZLE DIA NOZZLE ARE METER ORIF METER VOL METER TEM STACK TEM! SQ.RT. dP CONDENSA' METER Y HEAT INPUT F-FACTOR	EA = FICE = UME = P. = P. = TE VOL.=	**	33.756 89.4 267.5 0.991 71.6 1.000	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
******	******	******	* *** *******	******		*****	******
Vw(std) = 0.04714 x Vic					=	3.375	scf
Vm(std) = 17.647 x Vm x \ / (Tm + 460)	′ x (Pb + (d	dH / 13.6))		=	32.379	scf
						0.917	scm
Bws = Vw(std) / (Vm(std) - Vm(std)	+ Vw(std))				=	0.094	%
FDA = 1.0 - Bws					=	0.906	%
Md =(.44 x %CO2)+(.32 x	%O2)+[. 28	x (%N2 -	+ %CO)] =			30.32	lb/lb mole
Ms = (Md x FDA) + (18.0 x)	Bws)				=	29.16	lb/lb mole
vs = 85.49 x CP x (Sq.Rt.d / (Ms x Ps)]	P) x [Sq.R	t.(Ts+460)		=	65.1	ft/sec
Qs = vs x As x 60					=	473505	acf/min
$Qs(std)=Qs \times FDA \times (528/($	Ts + 460))	x (Ps/29.	92) =			310126	dscf/min
I =(Ts + 460) x [(0.00267 x x 100 / (Time x Ps x An x	, ,	n(std) / 17	.647)]	******	=	98.7	%
N = NORMALITY OF BaBi	2 * 2H2O			:	=	0.0103	
Tb = TITRANT BLANK				:	=	0.0600	milliliters
Vs = VOLUME SOLUTION	N			:	=	6.69E+02	milliliters
Va = VOLUME ALIQUOT				:	=	100.0	milliliters
T = TITRANT				:	=	3.25	milliliters
H2SO4 (lb/dscf) = 0.00010 H2SO4 (g/dscm) = 0.04900 H2SO4 (lb/MMBtu)					=	0.00000073 0.0118 0.0096	lb/dscf g/dscm lb/MMBtu

A-3 FUEL BLEND BURN PARTICULATE CALCULATIONS

SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

U.S. EPA PARTICULATE CALCULATIONS RUN NO. 1-S

PLANT: F. J. GANNON DATE: 4-23-96

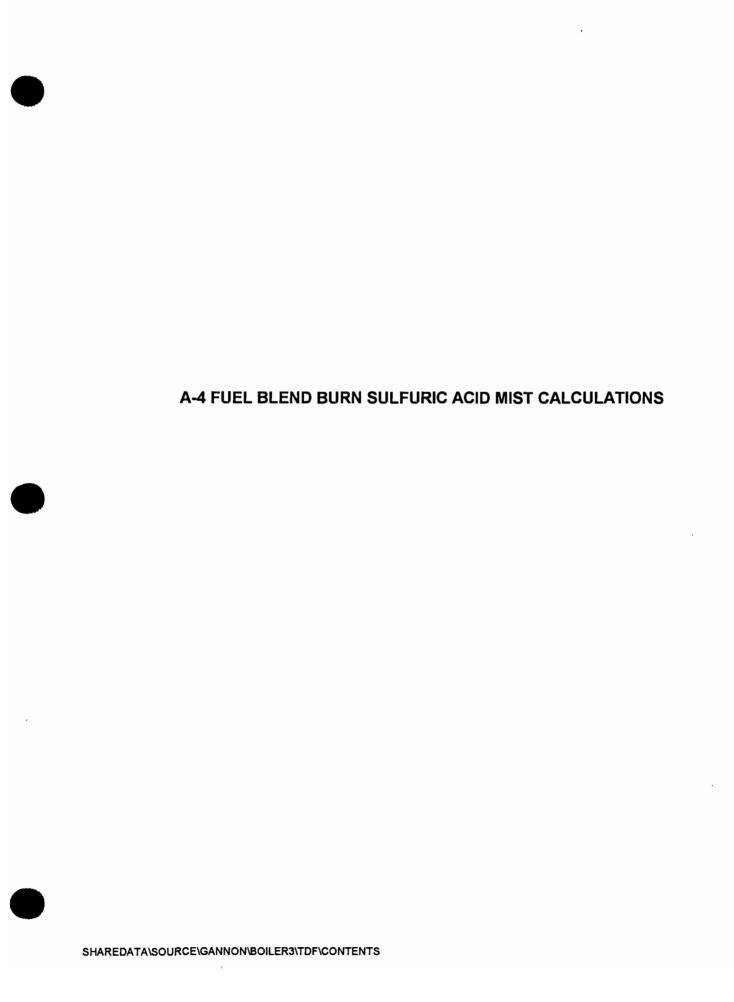
SAMP. LOCATION: BOILER NO. 3

STK. PRESSURE = 3 EFF. STACK AREA = 12 Cp = GAS ANALYSIS = 0.0	30.05 in.Hg 30.05 in.Hg 22.72 Sq.Ft. 0.84 12.6 % CO2 5.9 % O2 0.0 % CO 81.8 % N2 2825 grams	NOZZLE DIA NOZZLE ARE NOZZLE ARE METER ORIF METER TEM STACK TEM SQ.RT. dP CONDENSAT METER Y F-FACTOR	EA = ICE = JME = P. = P. =	38.748 89.3 279.2 0.972 64.2 1.000	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
******* ****** ***	***** ******	***	******	****	*****
$Vw(std) = 0.04714 \times Vic$			=	3.026	scf
Vm(std) = 17.647 x Vm x Y x (/ (Tm + 460)	(Pb + (dH / 13.6)))	=	37.512	scf
Bws = Vw(std) / (Vm(std) + Vv	v(std))		=	0.075	%
FDA = 1.0 - Bws			=	0.925	%
Md =(.44 x %CO2)+(.32 x %O	2)+[.28 x (%N2	+ %CO)]	=	30.34	lb\\b-mole
Ms = (Md x FDA) + (18.0 x Bw	29.41	lb\lb-mole			
vs = 85.49 x CP x (Sq.Rt.dP) : / (Ms x Ps)]	x [Sq.Rt.(Ts+46	0)	=	63.8	ft/sec
Qs = vs x As x 60			=	469765	acf/min
Qs(std)=Qs x FDA x (528/(Ts	+ 460)) x (Ps/29	.92)	=	311750	dscf/min
I =(Ts + 460) x [(0.00267 x Vio x 100 / (Time x Ps x An x vs		7.647)]	= ******	100.4	% ******
cs = 15.432 x grams / Vm(std))		=	0.0116	grains/dscf
grains/acf = $cs \times 17.647 \times Ps$	x FDA / (Ts + 46	60)	=	0.0077	grains/acf
C = cs / 7000			=	1.66E-06	lbs/dscf
$EM = C \times Qs(std) \times 60$			=	31.0	lbs/hr
E = C x F x (20.9 / 20.9 - %O2	?) F-Factor meth	nod	=	0.023	lbs/MM Btu

U.S. EPA PARTICULATE CALCULATIONS RUN NO. 2-S

PLANT: F. J. GANNON DATE: 4-23-96

SAMP. LOCATION: BOILER NO. 3


SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS = LAB ANALYSIS =	29.98 29.98 122.72 0.84 12.3 6.3 0.0	% CO2 % O2 % CO % N2	NOZZLE DIA NOZZLE AR NOZZLE AR METER ORII METER VOL METER TEM STACK TEM SQ.RT. dP CONDENSA METER Y F-FACTOR	EA = FICE = UME = IP. = P. =	38.450 87.2 278.1 0.968 70.2 1.000	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
Vw(std) = 0.04714 x Vio	;			=	3.309	scf
Vm(std) = 17.647 x Vm / (Tm + 460)	x Y x (Pb +	(dH / 13.6))	=	37.278	scf
Bws = Vw(std) / (Vm(std	d) + Vw(std))		=	0.082	%
FDA = 1.0 - Bws				=	0.918	%
Md =(.44 x %CO2)+(.32	=	30.22	lb\lb-mole			
Ms = (Md x FDA) + (18.	=	29.22	lb\lb-mole			
vs = 85.49 x CP x (Sq.F / (Ms x Ps)]	t.dP) x [Sq.I	Rt.(Ts+460	0)	=	63.8	ft/sec
Qs = vs x As x 60				=	469765	acf/min
Qs(std)=Qs x FDA x (52)) x (Ps/29	9.92)	=	309130	dscf/min
I =(Ts + 460) x [(0.0026 x 100 / (Time x Ps x Ar		m(std) / 1	7.647)]	*******	100.6	% ******
cs = 15.432 x grams / V	m(std)			=	0.0149	grains/dscf
grains/acf = cs x 17.647	x Ps x FDA	/ (Ts + 46	60)	=	0.0098	grains/acf
C = cs / 7000				=	2.13E-06	lbs/dscf
$EM = C \times Qs(std) \times 60$				=	39.5	lbs/hr
E = C x F x (20.9 / 20.9	- %O2) F-F	actor meth	nod	=	0.030	lbs/MM Btu

U.S. EPA PARTICULATE CALCULATIONS RUN NO. 3-S

PLANT: F. J. GANNON DATE: 4-23-96

SAMP. LOCATION: BOILER NO. 3

SAMPLE TIME = 60.0 min. BAR. PRESSURE = 30.05 in.Hg STK. PRESSURE = 30.05 in.Hg EFF. STACK AREA = 122.72 Sq.Ft. Cp = 0.84 GAS ANALYSIS = 12.6 % CO2 5.8 % O2 0.0 % CO 81.6 % N2 LAB ANALYSIS = 0.03075 grams	NOZZLE DIA. = NOZZLE AREA METER ORIFICE METER VOLUME METER TEMP. STACK TEMP. SQ.RT. dP = CONDENSATE V METER Y = F-FACTOR =	= = = =	39.301 87.6 278.3 0.967 72.4 1.000	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
在女子在女女女女女 物的女女女女女女 的女女女女女女女	F-FACTOR -	*****	******	******
$Vw(std) = 0.04714 \times Vic$		=	3.413	scf
Vm(std) = 17.647 x Vm x Y x (Pb + (dH / 13.6 / (Tm + 460)	S))	=	38.215	scf
Bws = Vw(std) / (Vm(std) + Vw(std))	=	0.082	%	
FDA = 1.0 - Bws		=	0.918	%
Md =(.44 x %CO2)+(.32 x %O2)+[.28 x (%N2	=	30.25	lb/lb-mole	
$Ms = (Md \times FDA) + (18.0 \times Bws)$	=	29.25	lb/lb-mole	
vs = 85.49 x CP x (Sq.Rt.dP) x [Sq.Rt.(Ts+46 / (Ms x Ps)]	=	63.7	ft/sec	
Qs = vs x As x 60		=	469028	acf/min
Qs(std)=Qs x FDA x (528/(Ts + 460)) x (Ps/2	309282	dscf/min		
I = (Ts + 460) x [(0.00267 x Vic) + (Vm(std) / x 100 / (Time x Ps x An x vs x 60)	17.647)]	=	103.1	% ******
cs = 15.432 x grams / Vm(std)		=	0.0124	grains/dsc f
grains/acf = cs x 17.647 x Ps x FDA / (Ts + 460) =				grains/acf
C = cs / 7000		=	1.77E-06	lbs/dscf
$EM = C \times Qs(std) \times 60$		=	32.9	lbs/hr
$E = C \times F \times (20.9 / 20.9 - \%O2)$ F-Factor met	thod	=	0.024	lbs/MM Btu

U.S. EPA METHOD EIGHT SULFURIC ACID MIST TEST CALCULATIONS RUN NO. 1-S

PLANT: F. J. GANNON DATE: 4-23-96

SAMP. LOCATION: BOILER NO. 3

OPERATING COND.: TDF TEST BLEND/ SOOTBLOWING							
SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS =	30.00 30.00 122.72 0.84 10.4 5.1 0.0	% CO2 % O2 % CO % N2	NOZZLE DIA. NOZZLE ARE NOZZLE ARE METER ORIF METER VOLU METER TEMI STACK TEMF SQ.RT. dP CONDENSAT	EA = FICE = JME = P. = P. =	31.075 81.1 266.9	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O	
*******	*****	******	F-FACTOR	=	9780	dscf/MMBtu	
Vw(std) = 0.04714 x Vic				=	2.376	scf	
Vm(std) = 17.647 x Vm / (Tm + 460)	x Y x (Pb + (dH / 13.6))	=	30.457 0.863	scf scm	
Bws = Vw(std) / (Vm(std	d) + Vw(std))			=	0.072	%	
FDA = 1.0 - Bws				=	0.928	%	
Md = (.44 x %CO2)+(.32	2 x %O2)+[.28	8 x (%N2	+ %CO)] =		29.87	lb/lb mole	
Ms = (Md x FDA) + (18.6	0 x Bws)			=	29.02	lb/lb mole	
vs = 85.49 x CP x (Sq.R / (Ms x Ps)]	t.dP) x [Sq.R	tt.(Ts+460))	=	61.2	ft/sec	
Qs = vs x As x 60				=	450620	acf/min	
Qs(std)=Qs x FDA x (52	8/(Ts + 460)) x (Ps/29	.92) =		304584	dscf/min	
I = (Ts + 460) x [(0.0026 x 100 / (Time x Ps x An		m(std) / 17	7.647)]	=	96.7	% *******	
N = NORMALITY OF Ba	aBl2 * 2H2O			=	0.0102		
Tb = TITRANT BLANK				=	0.0400	milliliters	
Vs = VOLUME SOLUT	ION			=	5.35E+02	milliliters	
Va = VOLUME ALIQUO	т			=	100.0	milliliters	
T ≈ TITRANT				=	4.66	milliliters	
H2SO4 (lb/dscf) = 0.00 H2SO4 (g/dscm) = 0.04 H2SO4 (lb/MMBtu)				=	0.00000089 0.0143 0.0116	lb/dscf g/dscm lb/MMBtu	

U.S. EPA METHOD EIGHT SULFURIC ACID MIST TEST CALCULATIONS RUN NO. 2-S

PLANT: F. J. GANNON DATE: 4-23-96

SAMP. LOCATION: BOILER NO. 3

SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS = LAB ANALYSIS =	30.00	in.Hg Sq.Ft. % CO2 % O2 % CO % N2	NOZZLE DIA. NOZZLE ARE METER ORIF METER VOLU METER TEMF STACK TEMF SQ.RT. dP CONDENSAT METER Y HEAT INPUT	A = ICE = JME = P. = P. =	*	37.130 88.4 270.3 0.940 79.2 1.000	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
Vw(std) = 0.04714 x Vic					=	3.733	scf
Vm(std) = 17.647 x Vm x / (Tm + 460) Bws = Vw(std) / (Vm(std)	·))		==	35.937 1.018 0.094	scf scm %
FDA = 1.0 - Bws					=	0.906	%
Md =(.44 x %CO2)+(.32 x	(%O2)+[.2	8 x (%N2	+ %CO)] =			30.40	lb/lb mole
$Ms = (Md \times FDA) + (18.0)$	x Bws)		2		=	29.23	lb/lb mole
vs = 85.49 x CP x (Sq.Rt. / (Ms x Ps)]	dP) x [Sq.F	Rt.(Ts+460	0)		=	61.6	ft/sec
Qs = vs x As x 60					=	453566	acf/min
Qs(std)=Qs x FDA x (528	/(Ts + 460))) x (Ps/29	0.92) =			297914	dscf/min
I =(Ts + 460) x [(0.00267 x 100 / (Time x Ps x An x		m(std) / 1	7.647)]	*****	=	100.7	% ******
N = NORMALITY OF Bal	312 * 2H2O			=	=	0.0102	
Tb = TITRANT BLANK				:	=	0.0400	milliliters
Vs = VOLUME SOLUTIO	N			:	=	6.40E+02	milliliters
Va = VOLUME ALIQUOT					=	100.0	milliliters
T = TITRANT				:	=	2.66	milliliters
H2SO4 (lb/dscf) = 0.000 H2SO4 (g/dscm) = 0.049 H2SO4 (lb/MMBtu)					=	0.00000051 0.0082 0.0067	lb/dscf g/dscm lb/MMBtu

U.S. EPA METHOD EIGHT SULFURIC ACID MIST TEST CALCULATIONS RUN NO. 3-S

PLANT: F. J. GANNON DATE: 4-23-96

SAMP. LOCATION: BOILER NO. 3
OPERATING COND: TDF TEST BLEND/ SOOTBLOWING

OPERATING COND.: TDF TEST BLEND/ SOOTBLOWING							
SAMPLE TIME = BAR. PRESSURE = STK. PRESSURE = EFF. STACK AREA = Cp = GAS ANALYSIS = LAB ANALYSIS =	30.06 30.06 122.72 0.84 11.7 5.1 0.0	in.Hg Sq.Ft. % CO2 % O2 % CO % N2	NOZZLE DIA. NOZZLE ARE METER ORIF METER VOLU METER TEMF STACK TEMF SQ.RT. dP CONDENSAT METER Y HEAT INPUT	A = ICE = JME = P. = P	**	36.481 90.0 269.2 0.926 74.6 1.000	Sq.Ft. in. H2O Cu.Ft. DEG. F DEG. F in. H2O
$Vw(std) = 0.04714 \times Vic$					=	3.517	scf
Vm(std) = 17.647 x Vm : / (Tm + 460) Bws = Vw(std) / (Vm(std		dH / 13.6))	•		=	35.270 0.999 0.091	scf scm %
FDA = 1.0 - Bws					=	0.909	. %
Md =(.44 x %CO2)+(.32	x %O2)+[.28	3 x (%N2 +	- %CO)] =			30.75	lb/lb mole
Ms = (Md x FDA) + (18.0	x Bws)				=	29.59	lb/lb mole
vs = 85.49 x CP x (Sq.Rt / (Ms x Ps)]	:.dP) x [Sq.R	t.(Ts+460))		=	60.2	ft/sec
$Qs = vs \times As \times 60$					=	443257	acf/min
$Qs(std)=Qs \times FDA \times (528/(Ts + 460)) \times (Ps/29.92) =$						293112	dscf/min
I =(Ts + 460) x [(0.00267 x 100 / (Time x Ps x An		n(std) / 17	.647)]	*****	=	100.4	% ******
N = NORMALITY OF Ba	BI2 * 2H2O			=	=	0.0102	
Tb = TITRANT BLANK				=	=	0.0400	milliliters
Vs = VOLUME SOLUTI	ON			=	=	5.58E+02	milliliters
Va = VOLUME ALIQUO	т			=	=	100.0	milliliters
T = TITRANT				=	=	2.65	milliliters
H2SO4 (lb/dscf) = 0.000 H2SO4 (g/dscm) = 0.049 H2SO4 (lb/MMBtu)				=		0.00000046 0.0073 0.0059	lb/dscf g/dscm lb/MMBtu

A-5 NOMENCLATURE

SOURCE SAMPLING NOMENCLATURE

A = Absorbance of sample.

 A_n = Cross-sectional area of nozzle, m^2 (ft²).

 A_s = Cross-sectional area of stack, m^2 (ft²).

B_{ws} = Water vapor in the gas steam, proportion by volume.

C = Concentration of particulate matter, (lbs/dscf), Method 5,17.

C = Concentration of NO_x, as NQ, basis, corrected to standard conditions, mg/dscm (lbs/dscf), Method 7.

C_a = Concentration of acetone blank residue, mg/g.

CH₂ SO₄ = Sulfuric acid (including SO₃) concentration, g/dscm (lbs/dscf).

C_p = Pitot tube coefficient, dimensionless.

cs = Concentration of stack gas particulates, dry basis corrected to standard conditions, g/dscm (lbs/dscf).

CSO₂ = Sulfur dioxide concentration, mg/dscm (lbs/dscf).

E = Pollutant emissions, lbs/106 Btu.

EM = Particulate emission rate, lbs/hr.

F = Factor ratio of generated flue gases to calorific value of fuel, Method 5,17.

F = Dilution factor (i.e., 25/5, 25/10, etc.) required only if sample dilution was needed to reduce the absorbance to the range of calibration, Method 7.

FDA = Fraction of dry air.

I = Percent of isokinetic sampling, %.

K_c = Spectrophotometer calibration factor.

K_p = Pitot tube constant,

Matric

$$34.97 \text{m/sec} \left[\frac{(g/g-\text{mole}) (\text{mmHg})}{(\circ K) (\text{mmH20})} \right] 1/2$$

English

85.49ft/sec
$$\frac{(1b/1b-mole)("Hg)}{(\circ K) (mmH2O)}$$
 1/2

L_a = Maximum acceptable leakage rate for either a pretest leak check or a leak check following a component change; equal to 0.00057 m³/min (0.02 ft³/min) or 4% of the average sampling rate, whichever is less.

L_i = Individual leakage rate observed during the leak check conducted prior to the "ith" component change (i = 1, 2, 3,...n), m³/min (ft/min).

L_p = Leakage rate observed during the post test leak check, m³/min (ft³/min).

m = Mass of NO_x as NO_2 in gas sample, μg .

m_a = Mass of acetone residue after evaporation, mg.

M_d = Molecular weight of stack gas, dry basis, g/g-mole (lb/lb-mole).

m_f = Filter weight gain, mg.

m_n = Total amount of particulates collected, mg.

 M_s = Molecular weight of stack gas, wet basis, g/g-mole (lb/lb-mole), or $M_d(1 - B_{ws})$ = 18.0 B_{ws} .

 M_w = Molecular weight of water, 18.0 g/g-mole (18.0 lb/lb-mole).

N = Normality of Ba(C10₄)₂ titrant, g-eg/l.

N = Normality of barium perchlorate titrant, meq/rnl.

P_a = Density of acetone, mg/ml (see bottle label).

P_{bar} = Barometric pressure at sampling site, mm Hg (in. Hg).

P_f = Final absolute pressure of flask, mm Hg (in. Hg).

P_g = Stack static pressure, mm Hg (in. Hg).

P_i = Initial absolute pressure of flask, mm Hg (in. Hg).

P_s = Absolute stack pressure, 760 mm Hg (29.92 in. Hg).

 P_w = Density of water, 0.9982 g/ml (0.0022 lb/ml).

Q_s = Volumetric flow rate, actual cubic feet per min, acf/min.

Q_{std} = Dry volumetric stack gas flow rate corrected to standard conditions dsm³/hr (dscf/hr).

R = Ideal gas constant, 0.06236 (mm Hg - m³)/(°K - g - mole) for metric units and 21.85 (in. Hg - ft³)(°R - 1b - mole) for English units.

S.V.P. = Saturated vapor pressure of water at average stack temperature mm Hg (in. Hg).

 T_f = Final absolute temperature of flask, K (°R).

T_i = Initial absolute temperature of flask, K (°R).

T_m = Absolute average dry gas meter temperature, K (°R).

t_s = Stack temperature, °C (°F).

T_s = Absolute stack temperature, K (°R), or 273 + t_s for metric system or 460 + t_s for English system.

T_{std} = Standard absolute temperature, 293K (528°R).

 V_a = Volume of acetone blank, ml, (Method 5,17).

V_a = Volume of sample aliquot titrated, ml, (Method 6).

V_a = Volume of absorbing solution, 25 ml, (Method 7).

V_a = Volume of sample aliquot titrated, 100 ml foը H ֆO and 10ml foը SO (Method 8).

 V_{aw} = Volume of acetone used in wash, ml.

 V_f = Final volume of condenser water, ml.

V_f = Volume of flask and valve, ml.

V_i = Initial volume of condenser water, ml.

V_{ic} = Total volumes of liquid and silica gel collected in impingers, ml.

 V_m = Dry gas volume measured by dry gas meter, scm (dcf).

 $V_{m(std)}$ = Volume of gas sample measured by the dry gas meter and corrected to standard condition, dscm (dscf).

vs = Average stack gas velocity calculated by Method 2, m/sec (ft/sec).

 V_{sc} = Sample volume at standard conditions (dry basis), ml.

V_{soln} = Total volume of solution in which the sulfur dioxide sample is contained, 100 ml, (method 6).

V_{soln} = Total volume of solution in which the H₂SO₄ or SO₂ sample is contained, 250 ml or 1000 ml, respectively, (Method 8).

 V_t = Volume of Ba(C10₄)₂ titrant used for the sample, ml, (Method 8).

V_t = Volume of barium perchlorate titrant used for the sample (average of replicate titrations), ml, (Method 6).

 V_{tb} = Volume of barium perchlorate titrant used for the blank, ml.

 $V_{w(std)}$ = Volume of water vapor in the gas sample, corrected to standard conditions, scm (scf).

 $V_{wc(std)}$ = Volume of condensed water vapor, corrected to standard conditions, sm³(scf).

 $V_{wsg(std)}$ = Volume of water vapor collected in silica gel, corrected to standard conditions, sm³ (scf).

W_a = Weight of acetone wash residue, mg.

W_f = Final weight of silica gel or silica gel plus impinger, g.
 W_i = Initial weight of silica gel or silica gel plus impinger, g.

Y = Dry gas meter calibration factor.

 ΔH = Average pressure differential across the orifice meter, mm (in) H_2O .

 $\Delta H@i = Measurement of pressure differential across the orifice meter, mm (in.) <math>H_2O$.

 Δp = Average velocity head of stack gas, mm (in.) H_2O .

 ΔV_m = Incremental volume measured by dry gas meter at each traverse point, dm³ (dcf).

%CO = Percent CO by volume (dry basis), average of three CO values.

%CO₂ = Percent CO₂ by volume (dry basis), average of three analyses.

%EA = Percent excess air, %.

 $%N_2$ = Percent N_2 by volume (dry basis), average of three N_2 values.

 $%O_2$ = Percent O_2 by volume (dry basis), average of three O_2 values.

0.262 = Ratio of O_2 to N_2 in air, v/v.

2 = 50/25, the aliquot factor, (Method 7).

13.6 = Specific gravity of mercury (Hg).

18.0 = Molecular weight of water, g/g-mole (lb/lb-mole).

32.03 = Equivalent weight of sulfur dioxide.

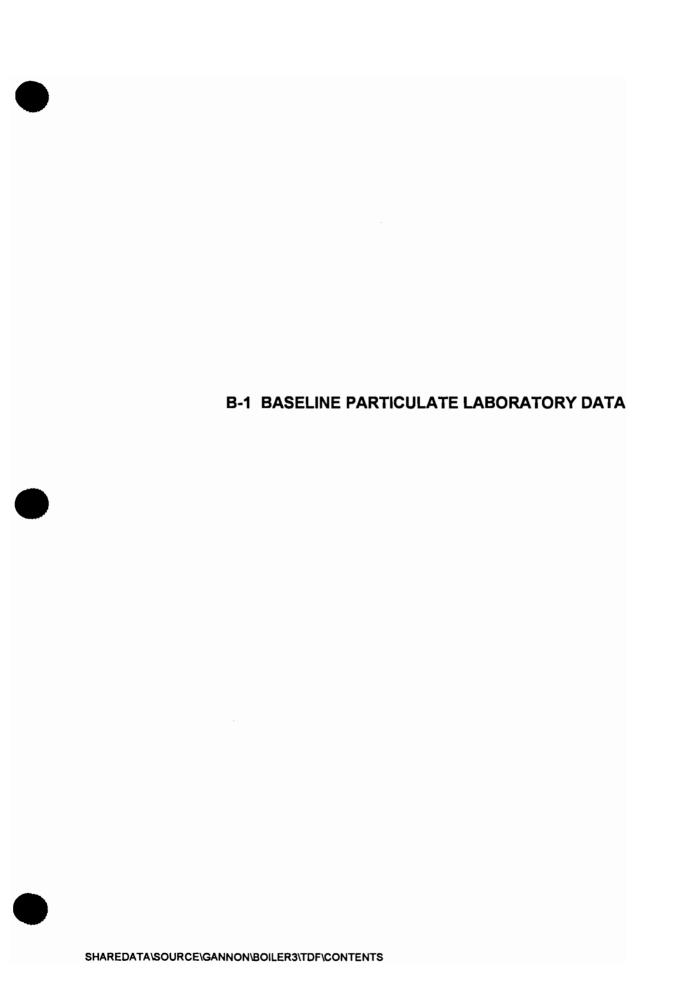
60 = Seconds per minute (sec/min).

100 = Conversion to percent, %.

3600 = Conversion factor, (sec/hr).

 θ = Total sampling time, min.

θ_i = Interval of sampling time from beginning of a run until first component change, min.


 θ_i = Interval of sampling time between two successive component changes, beginning with first and second changes, min.

 θ_p = Interval of sampling time from final (nth) component change until the end of the sampling run, min.

APPENDIX B

LABORATORY ANALYTICAL DATA

- **B-1 BASELINE PARTICULATE LABORATORY DATA**
- B-2 BASELINE SULFURIC ACID MIST LABORATORY DATA
- B-3 FUEL BLEND BURN PARTICULATE LABORATORY
 DATA
- B-4 FUEL BLEND BURN SULFURIC ACID MIST LABORATORY DATA

	HON STATION			
	301LER NO. 3			
Relative numitality	37 %			
Sample Type	Sample Identifiable		evel Marked tainer Seale	d
Acetone Rinse	YES	YE	.S	
Filters	YES	YE	:S	
Acetone rinse con	tainer number	AIR	- 13	
	ume (V _{aw})			
Acetone blank res	idue weight (M _{ab})		0.8	mg
Date and time of	wt 3.5.96 7:00 32% Gr	oss wt1 04	609.3	mg
Date and time of	wt 3.5.96 15:00 37% Gr	oss wto4	-609.3	mg
Date and time of	wt Gro	oss wt		mg
	Average gro	oss wt04	609.3	mg
	T	are wt <u>104</u>	606.2	mg
	Less acetone blank w	E (M _{ab})	0.8	mg
Weight of partic	culate in acetone rinse	e (m _a)	2.3	mg
Filter/Thimble Num	mber	1093		
Date and time of v	vt 3.4.96 7:15 39% Gro	ss wtا <u>ل</u>	66.8	mg
	vt 3.4.96 14:15 35% Gro			
Date and time of v	vt Gro	oss wt		mg
	Average gro	oss wt	66.75	mg
	Та	are wt	38.25	mg
Weight of pa	articulate on filter(s)	(m _f)	28.5	mg
Weight of partic	culate in acetone rinse	(m _a)	2.3	mg
Tota]	l weight of particulate	e (m _n)	30.B	mg
	should a blank residue etone used be subtracte			ıe
Nomarks		-		
Signature of analy	st Alaina	llig		
Signature of review	ewer Malay 3	1/4/20		

Plant F.D. Garde	JON STATION	Run	number z. 2	5
Sample location <u>r</u>	BOILER NO. 3			
Relative humidity	37 %			
Sample	g-wal -	T:-		
Защрте Туре	Sample Identifiable		uid Level Marked or Container Seale	
Acetone Rinse	YES		YES	
Filters	YES		YES	
Acetone rinse con	tainer number		Aug-14	
	ume (V_{aw})			ml
	idue weight (M _{ab})		•	mg
	wt <u>3.5.96 7:00 32%</u> Gr			
Date and time of	vt <u>3.5.96 15:00 37%</u> Gr	oss wt	107542.9	mg
Date and time of	wt Gr	oss wt		mg
	Average gr	oss wt	107542.95	mg
	T	are wt	107540.6	mg
	Less acetone blank w	t (M _{ab})	0,8	mg
Weight of partic	culate in acetone rins	e (m _a)	1.55	mg
Filter/Thimble Nur	nber	1094		
Date and time of v	vt 3.4.96 7:15 39% Gro	oss wt	1759.1	mg
	vt 3.4.96 14:15 352 Gro			mg
Date and time of w	rt Gro	oss wt _ -		<u> </u>
	Average gro	oss wt	1759.15	mg
	Ta	are wt	1730.85	mg
Weight of pa	articulate on filter(s)	(m _f)	28.3	mg
Weight of partic	culate in acetone rinse	e (m _a)	1.55	mg
Tota]	. weight of particulate	e (m _n)	29.85	mg
	should a blank residue etone used be subtracte			he
Remarks				
Signature of analy	st Adviana	Slion		
Signature of review	ewer Sing farb	3/6/14	<i>></i>	

Plant F.D. Ga	IMON STATION	Run	number <u>レッ</u> ル ろ	5
Sample location <u>r</u>	301LER No. 3			
Relative humidity	37 %			
Sample Type	Sample Identifiable		id Level Marked Container Seale	
Acetone Rinse	YES		YES	
Filters	YES		YES	
Acetone rinse con	tainer number		A12-15	
Acetone rinse vol	ume (V_{aw})		150	m1
Acetone blank res	idue weight (M_{ab})		0.8	mg
Date and time of	wt <u>3.5.96 7:00 32%</u> Gro	ss wt	101426.8	mg
Date and time of	wt <u>3.5.96 15:00 37%</u> Gro	ss wt	101426.8	mg
Date and time of	wt Gro	ss wt		mg
	Average gro	ss wt	101426.8	mg
	Ta	re wt	101425.25	mg
i e	Less acetone blank wt	(M _{ab})	0.8	mg
Weight of partic	culate in acetone rinse	(m _a)	0.75	mg
Filter/Thimble Num	mber	1095		
	wt <u>3.4.96 7:15 39%</u> Gro			
Date and time of	wt <u>3.4.96 14:15 35%</u> Gro	ss wt	1714.2	mg
Date and time of v	wt Gro	ss wt		mg
			1714.15	mg
	Ta	re wt	1687.05	mg
Weight of pa	articulate on filter(s)	(m _f)	27.1	mg
	culate in acetone rinse			mg
Total	l weight of particulate	(m _n)	27.85	mg
Note: In no case s weight of ace	should a blank residue : etone used be subtracte	>0.01 mg/g d from the	g or 0.001% of the sample weight.	he
Remarks				
Signature of analy	st Adving	Hioz		
Signature of review	ewer the farly	3/4/9/		
		-		

BLANK ANALYTICAL DATA FORM

Plant F.D. GANNON STATION	
Sample location Bouler No. 3	
Relative humidity 37 %	
Liquid level marked and container sealed	YES A12-16
Blank volume (V _a)	/50 ml
Date and time of wt 3.5.96 7:00 32	<u>%</u> Gross wt <u>109294.4</u> mg
Date and time of wt 3.5.96 15:00 37	7. Gross wt 109294.2 mg
Date and time of wt	Gross wtmg
	Average Gross wt <u>109294.3</u> mg
	Tare wt 109293.5 mg
Weigh	nt of blank (m _{ab})
	-
Note: In no case should a blank residue weight be subtracted from the sample weight	
<u>Filters</u> Filter number	
Date and time of wt 3.4.96 7:15 39%	Gross wt 1495.8 mg
Date and time of wt 3.4.96 14:15 35%	Gross wt 14-95.8 mg
Date and time of wt	Gross wtmg
Avera	age gross wt <u>1495.8</u> mg
	Tare wtmg
Note: Average difference must be less tweight whichever is greater.	than ±5 mg or 2% of total sample
D	
Remarks	<u> </u>
Kemarks	· · · · · · · · · · · · · · · · · · ·
Signature of analyst	

TAMPA ELECTRIC COMPANY

Corporate Environmental Services Laboratory Services

To: Stack Test Coordinator, CES

Laboratory Number: AA28439

Location Description: Gannon Unit #3 - SO3 Testing

Collection Date: 02/28/96 Report Date: 03/05/96 Analysis Date: 03/04/96

Parameter	Result	Units
Normality of BaCl2 * 2H2O	0.0103	
SO3, Volume of Sample Aliquot	100	milliliters
Sample Titration Results	0.06	milliliters
SO3, Avg. of Blank Titrations		
SO3, Run #1, Avg. of Titrations	6.32	milliliters
SO3, Run #2, Avg. of Titrations	4.08	milliliters
SO3, Run #3, Avg. of Titrations	3.25	milliliters

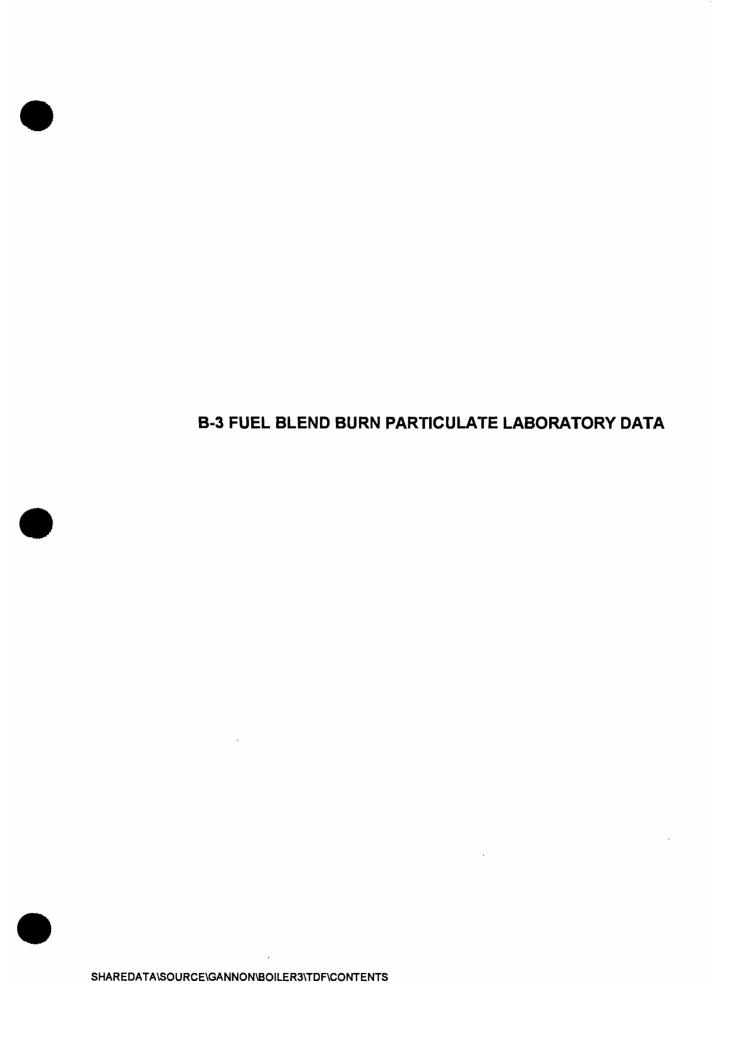
Sample Comments:

Total volume of solution in which the sample is contained.

Run #1 = 505 mls.

Run #2 = 560 mls.

Run #3 = 669 mls.

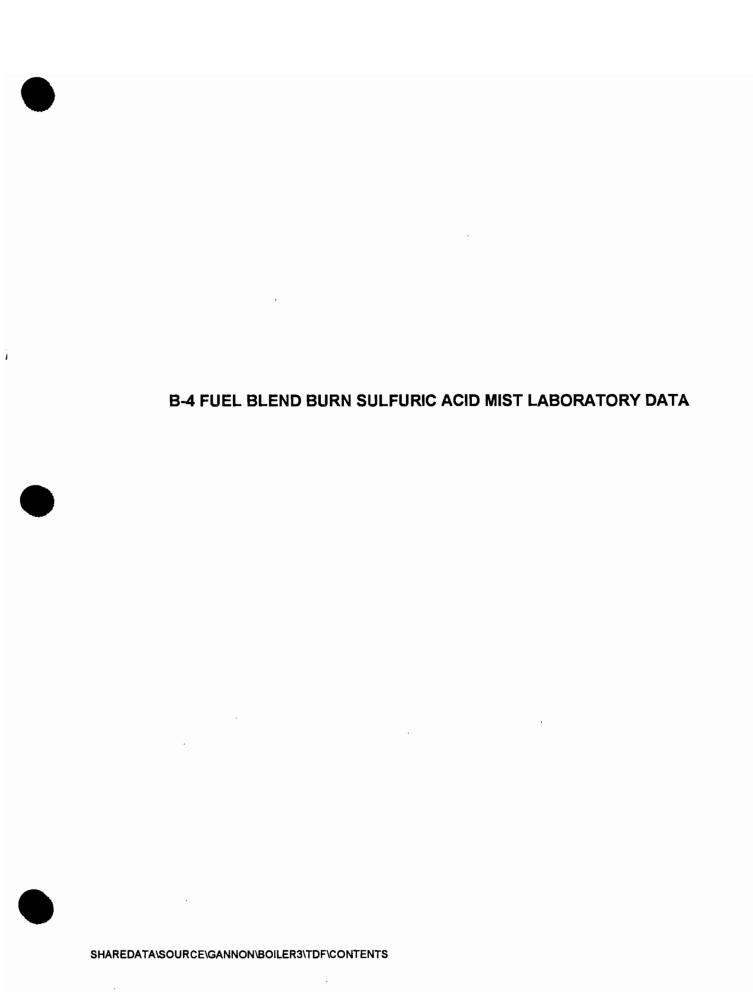

Analyst

Date

3/5/96

Quality Assurance Specialist

Date


	NNON STATION 30ILER NO. 3	Ru	in number 区しん	15
Sample Type	Sample		iquid Level Marke or Container Sea	
Acetone Rinse	YES		YES	
Filters	YES	_	YES	
Acetone rinse volu	tainer number		200	ml
	idue weight (M_{ab})			
Date and time of	wt <u>4.26.96 7:13 37%</u> Gro wt <u>4.26.96 13:24 39%</u> Gro wt Gro	oss wt _	111447.9	mg mg
	. Average gro	oss wt _ are wt _	111447.8	mg
Weight of worth	Less acetone blank wt			mg
	culate in acetone rinsember			mg
	wt <u>4.25.96 14:53 42%</u> Gro	•		mg
	vt 4.26.96 7:13 37% Gro			mg
	wt Gro			mg
	Average gro	oss wt _	1441.7	mg
	Та	are wt _	1416.9	mg
Weight of pa	articulate on filter(s)	(m _f)	24.8	mg
Weight of partic	culate in acetone rinse	e (m _a)	3.45	mg
Tota]	l weight of particulate	e (m _n)	28.25	mg
	should a blank residue etone used be subtracte			
Signature of analy	ewer Kansfall	Alian 4/30	Par	

	BOILER NO. 3	Run	number Zun Z	5
Relative humidity	407.			
Sample Type	Sample Identifiable		uid Level Marked r Container Seale	ed
Acetone Rinse	YE5		YES	
Filters	YES		YES	
Acetone rinse vol	tainer numberume (V _{aw})		200	ml
	idue weight (M_{ab})			mg
Date and time of	wt 4.26.96 7:13 37% Gr	oss wt	108929.4	mg
	wt 4.26.96 13:24 39% Gr			mg
Date and time of	wt Gr	oss wt		<u> </u>
	Average gr	oss wt	108929.65	mg
	T	are wt	108925,75	mg
	Less acetone blank w	t (M _{ab})	0.2	mg
Weight of partic	culate in acetone rins	e (m,)	3.7	mg
	mber			_
	wt 4.25.96 14:53 42% Gr			mg
	wt 4.26.96 7:13 37% Gr			mg
	wt Gro			
Date and time of v				<u></u> mg
			1835.7	mg
			1803.45	mg
	articulate on filter(s)			mg
	culate in acetone rinse			mg
Tota]	l weight of particulate	e (m _n)	35.95	mg
	should a blank residue etone used be subtracte			16
Remarks		_		
Signature of analy	- L () 1	4/30/96	3	

Plant Fo A.	HHON STATION	Run	number D.J 3:	5
	BOILER No. 3		Mumber POR	
	40%	_		
Barrier and Francisco Control		la ha a a a		
Sample Type	Sample Identifiable		nuid Level Marked or Container Seale	đ
Acetone Rinse	YES		YES	
Filters	YES	_	YES	
Acetone rinse con	tainer number		A12-19	
	ume (V _{aw})			ml
	idue weight (M _{ab})			mg
Date and time of	wt 4.26.96 7:13 377 Gr	oss wt	106466.0	maj
Date and time of	wt 4.26.96 13:24 39% Gr	oss wt	106466.4	mg
Date and time of	wt Gre	oss wt		mg
	Average gro	oss wt	106466,2	mg
	T	are wt	106462.3	mg
	Less acetone blank w	t (M _{ab})	0.2	mg
Weight of partic	culate in acetone rinse	e (m _a)	3,7	mg
Filter/Thimble Num	mber	01100		
Date and time of v	vt 4.25.96 14:53 42% Gro	oss wt	1534.9	mg
	vt 4.26.96 7:13 37% Gro			mg
Date and time of v	vt Gro	oss wt <u> </u>		mg
	Average gro	oss wt	1534,95	mg
	Ta	are wt	1507.9	mg
Weight of pa	articulate on filter(s)	(m _f)	27.05	mg
Weight of partic	culate in acetone rinse	e (m _a)	3.7	mg
Total	weight of particulate	e (m _n)	30.75	mg
	should a blank residue etone used be subtracte			ıe
-	tone abou be bubliated	ou IIOm o	ne bampie weight.	
Remarks				
Signature of analy	est Admin	Allo		
Signature of revie	ewer Thy fact	4/30/96	<u> </u>	

BLANK ANALYTICAL DATA FORM

Plant F.D. Gannon	STATION	
Sample location Bouler	Ja. 3	
Relative humidity 40%		
Liquid level marked and conta		
Blank volume (Va)		200 ml
Date and time of wt 4.26.96	<u>า:เร ราฑ.</u> Gr	oss wt <u>109968.5</u> mg
Date and time of wt 4.26.96	13:2 4 39°% Gr	oss wt <u>109968.5</u> mg
Date and time of wt	Gr	oss wtmg
	Average G	ross wt <u>109968.5</u> mg
		Tare wt <u>109968.3</u> mg
	Weight of bla	nk (m _{ab})
Note: In no case should a bla weight be subtracted from the		than 0.001% of the blank
-		001092
<u>Filters</u> Fi	lter number	
Filters Fi Date and time of wt 4.25.96 1	lter number 4:53 42% Gross wt	1015.0 mg
Filters Find Date and time of wt 4.25.96 1	lter number 4:53 42% Gross wt 7:13 37% Gross wt	1015.0 mg
Filters Fi Date and time of wt 4.25.96 1	lter number 4:53 42% Gross wt רוא אינו מרט אינו אינו אינו אינו אינו אינו אינו אינו	1015.0 mg 1015.0 mg mg
Filters Find Date and time of wt 4.25.96 1	lter number 4:53 42% Gross wt 7:13 37% Gross wt Gross wt Average gross	1015.0 mg 1015.0 mg mg wt 1015.0 mg
Filters Find Date and time of wt 4.25.96 1	lter number 4:53 42% Gross wt 7:13 37% Gross wt Gross wt Average gross	1015.0 mg 1015.0 mg mg
Filters Find Date and time of wt 4.25.96 1	lter number	1015.0 mg 1015.0 mg mg mg wt 1015.0 mg wt 1013.8 mg mg mg mg mg mg mg mg
Filters Date and time of wt 4.25.96 1 Date and time of wt 4.26.96 Date and time of wt Note: Average difference must	A:53 42% Gross wt A:53 42% Gross wt Gross wt Average gross Tare	1015.0 mg 1015.0 mg mg mg wt 1015.0 mg wt 1013.8 mg mg mg mg mg mg mg mg
Filters Date and time of wt 4.25.96 1 Date and time of wt 4.26.96 Date and time of wt Note: Average difference must weight whichever is greater.	A:53 42% Gross wt A:53 42% Gross wt Gross wt Average gross Tare	1015.0 mg 1015.0 mg mg mg wt 1015.0 mg wt 1013.8 mg mg mg mg mg mg mg mg
Filters Date and time of wt 4.25.96 1 Date and time of wt 4.26.96 Date and time of wt Note: Average difference must weight whichever is greater.	A:53 42% Gross wt A:53 42% Gross wt Average gross Tare t be less than ±5 m	1015.0 mg 1015.0 mg mg mg wt
Filters Date and time of wt 4.25.96 Date and time of wt 4.26.96 Date and time of wt Note: Average difference must weight whichever is greater. Remarks	A:53 42% Gross wt A:53 42% Gross wt Average gross Tare It be less than ±5 m	1015.0 mg 1015.0 mg mg mg wt 1015.0 mg wt 1013.8 mg mg mg mg mg mg mg mg

TAMPA ELECTRIC COMPANY

Corporate Environmental Services Laboratory Services

To: Stack Test Coordinator, CES

Laboratory Number: AA29423

Location Description: Gannon Unit #3 - SO3 Testing

Collection Date: 04/23/96 Report Date: 04/26/96 Analysis Date: 04/25/96

Parameter	Result	Units
Normality of BaCl2 * 2H2O	0.0102	
SO3, Volume of Sample Aliquot	100	milliliters
Sample Titration Results		
SO3, Avg. of Blank Titrations	0.04	milliliters
SO3, Run #1, Avg. of Titrations	4.66	milliliters
SO3, Run #2, Avg. of Titrations	2.66	milliliters
SO3. Run #3. Avg. of Titrations	2.65	milliliters

4-26-96

Sample Comments:

Total volume of solution in which the sample is contained:

Run #1 = 535 ml Run #2 = 640 ml Run #3 = 558 ml

Analyst Date

Bret a richolas 4/26/96

Quality Assurance Specialist Date

APPENDIX C

BOILER/PRECIPITATOR OPERATION DATA

- C-1 BASELINE OPERATIONAL DATA
- C-2 FUEL BLEND BURN OPERATIONAL DATA

C-1 BASELINE OPERATIONAL DATA SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

F.J. GANNON GENERATING STATION HEAT INPUT CALCULATIONS

F.J. GANNON STATION BOILER NO. 3 BASELINE SULFURIC ACID MIST TEST FEBRUARY 28, 1996				
January Gross Heat Rate =	10.337 x 10 ⁶ Btu/MWH			
BOILER NO. 3 SOURCE TEST HEAT IN	IPUT CALCULATIONS			
Final MWH (746152) - Initial MWH (745428) =	724 MWH			
Time =	4.90 Hrs			
Average MW =724 MWH ÷ 4.90 H =	147.8 MW			
10.337 x 10 ⁶ Btu/MWH x 724 MWH ÷ 4.90 H =	1527.3 x 10 ⁶ Btu/H			

COMPLIANCE TEST DATA F. J. GANNON STATION

BOILER NO. 3 TEST DATE 2/28	196
UNIT LOAD (MN) 145 MW	
BASE LOADED (TIME) 4:30	
TEST DATA	
MEGAWATTS INTEGRATOR	INITIALS
BEGIN MWH 0728 BEGIN SAMPLING 745428	_C.RB
END MWH 1222 END SAMPLING 746152	_CRB

SOOTBLOWING

RUN	BEGIN TIME	END TIME	INITIALS
1 503	9670	083G	C.P.B. I IM.E
2 503	292	1029	COB RAME.
3 503	1114	1939	CB 1 2-M-C,
		•	1//

FLYASH REINJECTION

			
RUN	REINJECTION (Y/N)	% REINJECTION	INITIALS
1 503	1600	100°/0	ceo/LR)
Z 503	Les	100%	CRB LRJ
3 503	400	100%	CRBILRY
			/

MCD\COMPFORM.WP

COMPLIANCE TEST DATA F. J. GANNON STATION

INTEGRATOR DATA

INTEGRATOR DAT			·	
			INTEGRATOR START	
1 503	8650	083 <i>\(\phi\)</i>	745428	745597 •
a 50 3,	1690	1029	745 708	745874
3 503	1114	7 3 22	745986	744152

STACK

- * B suplone tripped & 1040; butween run 2 & 3. Operator into abu to return supplied to Service promptly no MW trep.
- * B cyclone tripped & 1119; Hart of run 3. Operator was able to return cyclone to service promptly NO MU drop.

DATE : <u>a lab | 90</u>

TIME :____ 503_____

RUN NO.: 0735

INITIALS: CRB

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	390	-10	_50	_325
A2	<u>300</u>	_30	_75	475
A3	350		85	550
A4	350	40	70	400
B1	300	44	40	350
B2	_ 290	44	_50	325
В3	_390	44	_50	_325
B4		*		
C1	_330	53	_55	300_
C2	_a90	_50	NE	_ 350
C3	<u>3</u> m	_5a	45	_ 250
C4	_380	50	45	_235
D1	260	44	_ 35	_350
D2	180	_30	_17	_75
D3	_280	-46	45	250
D4	_380	4+	40	_aa5

DATE : a 20 9 4

TIME : 0935

RUN NO.: 2 503

INITIALS: CRB

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1		38	_50	350
A2	<u> </u>	30		475
A3	_350	_a4	80	<u>550</u>
A4	350	40	<u>65</u>	375
B1	<u> 3</u> 00	46		<u>350</u>
B2	_390	44	50	<u> 3a5</u>
В3	290	44	<u> 50</u>	_3 <u>3</u> 5
B4	*			
C1	<u>300</u>	52	_ 55	<u> 325</u>
C2	240	_50	_ 45	
C3	_300	_52		_250
C4	780	_50	45	_225
D1	_240	44	40	<u> 250 </u>
D2	170			75
D3	_280	46	45	250
D4	270		<u> 40 </u>	_250

DATE : alangu

TIME :________

RUN NO.: 3 503

INITIALS: CRB

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	<u>a70</u>	_38	_50	300
A2	320	30	_ <i>6</i> 5	475
A3	350		_85	550
A4	340	40	_ 65	400
В1	300	40	_0	350
B2	<u> </u>	44	_50	325
B3	290	44	50	325
B4			*	
C1	_330	<u>5</u> à	_50	_350
C2	270		_45	
C3	_300	<u>5a</u>	45	_a50
C4	<u>aêc</u>	50	_45	_225
D1	<u>a50</u>	44	40	275
D2	170	30	_17	75
D3	_280	46	_50	<u> 275</u>
D4	_ 280	44	40	_ 250

F.J. GANNON GENERATING STATION HEAT INPUT CALCULATIONS

F.J. GANNON STATION BOILER NO. 3 BASE February 28, 1996	
January Gross Heat Rate =	10.337 x 10 ⁶ Btu/MWH
BOILER NO. 3 SOURCE TEST HEAT IN	IPUT CALCULATIONS
Final MWH (746932) - Initial MWH (746308) =	624 MWH
Time =	4.22 Hrs
Average MW = 624 MWH ÷ 4.22 H =	147.9 MW
10.337 x 10 ⁶ Btu/MWH x 624 MWH ÷ 4.22 H =	1528.5 x 10 ⁶ Btu/H

COMPLIANCE TEST DATA F. J. GANNON STATION

BOILER NO TEST DATE	8/96
UNIT LOAD (MN) 148	
BASE LOADED (TIME) 0430	
TEST DATA	
MEGAWATTS INTEGRATOR	INITIALS
BEGIN MWH 1324 BEGIN SAMPLING 740308	_cer_
END MWH 1737 END SAMPLING 744932	_CPO

SOOTBLOWING

RUN	BEGIN TIME	END TIME	INITIALS
1 particulate	1324	1433	CRB! AME
a particulate	15 10	1615	CRB / EME
3 participati	1433	1737	CRB FMC.
,			1/

FLYASH REINJECTION

RUN	REINJECTION (Y/N)	% REINJECTION	INITIALS
1 particulate	4.00	100 %	CRB LR)
a porticolate	Less	100%	CRB/UK)
3 particolate	yes -	100%	CRB/LRJ
			1

MCD\COMPFORM.WP

COMPLIANCE TEST DATA F. J. GANNON STATION

INTEGRATOR DATA

RUN NUMBER	START	C. L. 医性髓髓髓管理器 1 图 11 图 4 人名英格兰	INTEGRATOR START	
1 particulate	1324	1433	308,44	746479
à particulate	1510	1615	746567	746730
3 particulate	1633	1737	744776	746932
٠.				

STACK

UNIT:

3

DATE:

2/28/910

HOUR	MW	FUEL RATIO	TEMP	AIR/FUEL	OPERATING CONDITIONS
0700	145	100°6	ಎ 90	58% 50%	Soutblowing, reinjection, suddy State
C600	147	100 % Coal	ago	50%	Southlowing, reinjection,
9400	147	100 % Coch	2950	58 %. 50%	succly State
1000	144	100 % Coal	290°	60%	Scotbioling, reinjection,
1100	146	100% Cocal	285°	56%/ 51%	southlowing, reinjection,
13-00	147	100%	<i>ෘ</i> පීර ී	60%/ 55%	Socialisma, renjection,
1300	147	100% Cacal	290°	60%	Scotbiowing, reinjection,
1400	147	100% Cocal	290°	56%	Study State
1500	:47	100% Coal	2400	5690	Scotbioling, reinjection, success state
1600	147	10090 coal	2950	58%	Southward, reinjection,
1100	146	100 % coal	a90°	60%	Soutblowing, reinjection,
• 1 .					

DATE : Z-28-96

TIME : (330

RUN NO.: 1 Particulate

INITIALS: LRJ

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	270	3 9	5 <i>0</i>	300
A2	_330	31	75	500
A3	_350	23	85	575
A4	345	4 (70	400
B1	290	_46	60	<u>350</u>
B2	285	44	45	300
В3	285	45	<u> 50</u>	300
B4	<u></u> ★	_	*	_\
C1	310	_5(60	350
C2	270	49	40	225
C3	300	52	45	750
C4	275	50	45	225
D1	250	_43	40	275
D2 .	160	3 (15	_50
D3	280	46	45	250
D4	270	44	45	250

DATE : 2.28-96

TIME : 1520

RUN NO .: # Z Particulate

INITIALS: LRJ

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	260	38	50	300
A2	3 40	3 (75	500
A3	355	26	85	575
A4	345	41	65	400
B1	300	46	60	325
B2	285	44	45	300_
В3	290	45	50	325
В4	<u> </u>	<i>*</i>	<u>*</u>	
C1	320	_50	65	375
C2	270	49	45	225
СЗ	3 66	5 2	4-5	250
C4	265	50	40	200
D1	260	44	40	250
D2	165	30	15	50
D3	280	45	50	275
D4	275	44	45	275

DATE : $\frac{1645}{1645}$

RUN NO.: 3 Particulate

INITIALS: Lと) -

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	270	39	50	350
A2	330	32	15	500
A3	350		80	575
A4	356	41	70	400
B1	300	47	5 5	325
B2	285	44	50	300
B3	296	16	<u> 50</u>	325
B4	*	<u>*</u>	<u></u>	*
C1	300	_ 5 2	55	300
C2	260	20	40	200
C3	290	52	45	250
C4	260	4-9	40	200
D1	240	44	40	250
D2	170	31	15	60
D3	280_	46	50	250
D4	270	44	40	250

C-2 FUEL BLEND BURN OPERATIONAL DATA

F. J. GANNON GENERATING STATION HEAT INPUT CALCULATIONS

F. J. GANNON STATION BOILER NO. 3 FUEL BLEND H2SO4 TEST APRIL 23, 1996			
March Gross Heat Rate =	10.233 X 10 ⁶ Btu/MWH		
BOILER NO. 3 SOURCE TEST HEAT I	NPUT CALCULATIONS		
Final MWH (873599) - Initial MWH(872956) =	643 MWH		
Time =	4.77 Hours		
Average MW = 643 MWH ÷ 4.77 H =	134.8 MW		
10.233 X 10 ⁶ Btu/MWH X 643 MWH ÷4.77 H =	1379.4 X 10 ⁶ MMBtu/H		

COMPLIANCE TEST DATA

F. J. GANNON STATION

BOILER NO. 3 TDF/Cock Burn TEST DATE 4/2	3/94
UNIT LOAD (MN) 133 MW	
BASE LOADED (TIME) 5:00 0 m	
TEST DATA	
MEGAWATTS INTEGRATOR	INITIALS
BEGIN MWH 0747 BEGIN SAMPLING 872956	_CRB
end mwh 1233 end sampling 813599	_CRO

SOOTBLOWING

RUN	BEGIN TIME	END TIME	INITIALS
1 503	7470	0853	CRB MF
<u> ५ ५०३ </u>	0940	1046	CRO CHAFF
3 503	1129	12.33	coo Att

FLYASH REINJECTION

THIRDI KUIKUBCIIO	_		
RUN	REINJECTION (Y/N)	% REINJECTION	INITIALS
1 503	yea	100%	CRB/FD
1 503 2 903 3 503	مب	100%	CRB/F.D.
3 503	Les ·	100%	CRB/F.D.
	· · · · · · · · · · · · · · · · · · ·		,
	<u> </u>		
	<u> </u>		

MCD\COMPFORM.WP

COMPLIANCE TEST DATA F. J. GANNON STATION

INTEGRATOR DATA

	START		INTEGRATOR START	INTEGRATOR STOP
l Sog	7470	185 <u>3</u>	87295U	873102 .
2 S03	0940	1046	873210	873340
3 503	1129	1233	873454	873,599

STACK

UNIT:

3

DATE:

4/23/910

HOUR	MW	FUEL **	TEMP	AIR/FUEL RATIO	OPERATING CONDITIONS
Oorc	133	:3%	390°	54%	Scottolowing, reinjection Ducky State
ට වීරට	133	18%	3000	54%	Sotboding, reinjection
0900	133	18% trees	300°	54%	southowing, rein jection Ducky State
1000	134	1890 tires	3 000	54%	Southlawing, reinjection
1100	135	18% tires	<i>3</i> 00°	35%	Scottdowing, remection Ducay State
1200	134 _	18% tires	3∞°		soutblowing, reinjection brady Stati
1300	133	18% tures	305°	52%	scottoio Ding, reinjection stati
1400	134	18%	309°	54%	Southlawing, reinjection
1500	133	18%	310°	DH90	Scotbioling, reinjection
1000	134	18% tires	310°	54%	Sootblowing, reinjection
1700	.33	18% tines	305°	55% 50%	soutdown, reinjection

^{*} Based on 4/22/94 bonkering

UNIT 3 TDF / COAL BUNKERING WORKSHEET

1		
BU!	NKER	DATE

4/22/96

BURN DATE

4/23/90

NUMBER OF PAYLOADS OF TIRES

152

TOTAL TONS TIRES

(CONVERSION 3226 LBS TIRES /PAYLOAD)

245

CONVEYOR H1 START CONVEYOR H1 STOP

116289

DIFFERENCE

834

CONVEYOR H2 START

934265

DIFFERENCE

519

TONS MIX

1353

PERCENT TIRES = TONS TIRES / TONS MIX x 100

PERCENT TIRES =

18%

DATE : 4|23|96

TIME : 0751

RUN NO.: 1 503

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	<u>300</u>	_3%	_ 45	375
A2	310		75	450
A3	<u> 330</u>		<u></u>	575
A4	350	40	75	450
B1	290	_ ५५	_100	375
B2	_290	42	55	_350
В3	290	44	<u> 55</u>	_375_
B4	*	¥	\	*
C1	30	_50	55	375
C2	240	<u>48</u>	45	_ <i>2</i> 50
СЗ	_270	_48	45	_250_
C4	<u> 250</u>	_48	45	_225_
D1 ·	240	<u>44</u>	<u> 40 </u>	_215
D2	190	<u> 30</u>		125
D3.	_280	44	_ 55_	_325
D4	_a50	42	_ 45	275

DATE : 4/28/96

TIME : 0945

RUN NO.: <u>a soz</u>

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	290	_38	_60	. 375
A2	310	<u> 3</u> 0	_70	H 75.
A3	_ 330	<u>a</u> û	_	_575_
A4	350	40	_ ጚ5৴	450
B1	_300	410	<u> </u>	375
B2		_ 42	<u> 55. </u>	<u>350</u>
В3	290		_55	_350
B4	*		*	*
C1	310	_ 48	(05)	<u>350</u>
C2	170	<u>4.6</u>	_ <u>వ</u> ం	_250
C3	270	48	45	<u> </u>
C4	270	_48	45	_225
D1	200	44	<u>40</u>	<u> </u>
D2	_260	30	_17	100
D3	280	_ 42	_55	275
D4	200	<u> </u>	<u>45</u>	_a75

DATE : 4 23/90

TIME : 1200

RUN NO.: 3 503

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	280	36	_50	375
A2	310	32	_ 75	<u> 500</u>
A3	_330		<u>85</u>	575
A4	<u>350</u>	40	75	<u>+150</u>
В1	<u> 300</u>	<u>tio</u>	<u> 45</u>	375
B2	290	<u> </u>	_50	325
ВЗ	290	<u>+++</u>	55	_350
B4	*	- *	¥	*
C1	_250	48		<u>೩50</u>
C2	_210	-+10	_45	250
СЗ	270	48	45	<u> 250</u>
C4	770_	410	45	_250
D1	240	42_	<u>_5</u>	_250
D2	OPi	30	17	_125
D3	<u> 280 </u>	44	40	325
D4	<u>a10</u>	40	_50	250

F. J. GANNON GENERATING STATION HEAT INPUT CALCULATIONS

F. J. GANNON STATION BOILER NO. 3 FUEL BLEND PARTICULATE TEST APRIL 23, 1996					
March Gross Heat Rate =	10.233 X 10 ⁶ Btu/MWH				
BOILER NO. 3 SOURCE TEST HEAT I	NPUT CALCULATIONS				
Final MAN/LL (974224) Initial MAN/LL(972724) =	EO2 M/A/H				
Final MWH (874224) - Initial MWH(873721) = Time =	3.75 Hours				
Average MW = 503 MWH ÷ 3.75 H =	134.1 MW				
10.233 X 10 ⁶ Btu/MWH X 503 MWH ÷3.75 H =					

COMPLIANCE TEST DATA F. J. GANNON STATION

BOILER NO. 3 TOF/COCI BUILD TEST DATE HAS	3/96
unit load (mn) 133	
BASE LOADED (TIME) 5.00 a.m	
TEST DATA	
MEGAWATTS INTEGRATOR	INITIALS
BEGIN MWH 1328 BEGIN SAMPLING 873721	<u>CRB</u>
END MWH 1713 END SAMPLING 874224	CRA

SOOTBLOWING

RUN	BEGIN TIME	END TIME	INITIALS
1 particolati	1328	1433	cool AF
2 particulate	1453	1554	CBO SHE
3 particulate	1010	17.13	CROTT
			9

FLYASH REINJECTION

RUN	REINJECTION (Y/N)	% REINJECTION	INITIALS
1 particulate	(Jed)	100%	COBI CR
1 particulate 2 particulate 3 particulate	1000	10090	croble)
3 particulate	yes.	100%	CRBBE
1			, , _

MCD\COMPFORM.WP

COMPLIANCE TEST DATA F. J. GANNON STATION

INTEGRATOR DATA

RUN	and the SWA control of the second	START	STOP		INTEGRATOR
NUMBE	R	TIME	TIME	START	SIOP
1 pa	rticolati	1328	1433	873721	87 3 868 ·
2 fo	rticulati	-453	1554	873912	874052
3 pe	rhcolati	1010	1713	874084	874224

TACK

DATE : 4 23/96

TIME :_________

RUN NO .: 1 particulate

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	_300	30,		<u>450</u>
A2	_320	3 n	75	475
A3	_330	26	95	_575_
A4	350	40	75	450
B1	_300	_ 46	65	3 75
B2	<u> 290 </u>	42	<u> 50</u>	<u> </u>
B3	<u> 290</u>	<u> </u>	_55	350
B4	<u></u>		*	
C1	310		75	475
C2	260	40	45	_275
СЗ	270	_48	45	250
C.4	_ 250	46	50	225
D1	200	42	<u> 25</u>	<u> 250</u>
D2	_190	_30	17	125
D3	380	44	_5∂	_300
D4	_240	44	45	_295

DATE : 4/23/94

TIME : 1500

RUN NO .: 2 Particulati

INITIALS: COB,

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	<u> 300</u>	_38	_ 60	400
A2	320	30	75	475
A3	330	24	_ 85	575
A4	_350	40	75.	450_
B 1.	300	40	65	_375
B2	290	<u> 44 / / </u>	_50	350
В3	290	44	_55	_350
B4	*	_ _		
C1	_300	_48	_75	_475
C2	260	40	_50	_275
C3	270	48	to	_250
C4	_250	_48	45	200
D1 ·	<u>240</u>	_4>	45.	250
D2	190	_ 30	_17	100
D3	280	4+	_50	275
D4	-240	44	<u>40</u>	_250

DATE : + 23/90

RUN NO.: 3 Particolate

T/R	PRIMARY VOLTS	SECONDARY VOLTS (DC)	PRIMARY AMPS	SECONDARY AMPS (DC)
A1	<u> 280 </u>	38	70	400
A2	310	30	75	475.
A3	330	210	_ 85	_575
A4	350		80	450
B1	300	tc	45	375
B2	290	44	<u> 50</u>	350
B3	290	44	_55	350
B4			_	
C1	_3∞	_ 50	_ <u>75</u>	475
C2	260	46	_50	275
С3	260	40	_45	_250
C4	250	40	45/	_225
D1	240_	44	45	250
D2	_ 180			_125
D3	280	44	55	250
D4	270	40	<u>45</u> _	_250_

APPENDIX D

CONTINUOUS EMISSION MONITORING DATA

- D-1 BASELINE CEMS STACK TEST LOGS
- D-2 FUEL BLEND BURN CEMS STACK TEST LOGS
- D-3 CONTINUOUS EMISSION MONITOR RELATIVE
 ACCURACY TEST AUDIT RESULTS 1995
- D-4 CONTINUOUS EMISSION MONITOR QUALITY
 ASSURANCE LINEARITY CHECKS QUARTER 1
 1996

D-1 BASELINE CEMS STACK TESTS LOGS

Gannon Station Unit 3 Tampa

Today's	Date	:	03/04/96		Reporting Period
Time:		13:23:28			Day: 02/28/96
				DAILY EPA CEM SUMMAR	RY
Time	C	002	SO2	NOX	OPACITY
		%	lb/mmBtu	lb/mmBtu	%
	700	12.1	2.1	1.32	5
•	800	12.2	2.1	1.26	5
	900	12.1	2.1	1.27	5
1	000	12.0	2.0	1.30	5
1	100	11.7	2.0	1.31	5
1	200	11.8	2.0	1.34	5
1	300	11.9	2.0	1.37	5
1	400	11.2	1.9	1.36	5
1	500	10.6	1.9	1.35	5
1	600	10.9	1.9	1.33	5
1	700	11.1	2.0	1.30	5
1	800	11.4	2.0	1.31	5
		11.6	2.0	1.32	. 5

D-2 FUEL BLEND BURN CEMS STACK TEST LOGS

SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

Gannon Station Unit 3 Tampa

Today's	s Date	•	04/24/96		Reporting Per	iod
Time:		10:03:52			Day:	04/23/96
				DAILY EPA CEM SUMM	ARY	
Time	C	02	SO2	NOX	0	PACITY
		%	lb/mmBtu	lb/mmBtu		%
	800	10.8	2.1	1.10		4
	900	10.8	2.0	1.13		4
•	1000	11.0	2.0	1.14		4
•	1100	11.2	2.0	1.15		3
•	1200	11.2	2.0	1.16		3
•	1300	11.2	2.0	1.14		3
•	1400	10.3	1.9	1.20		3
•	1500	9.9	1.9	1.20		3
•	1600	10.0	2.0	1.13		3
•	1700	9.5	1.9	1.21		3
		10.6	2.0	1.16		3

D-3 CONTINUOUS EMISSION MONITOR RELATIVE ACCURACY TEST AUDIT RESULTS - 1995

CORPORATE ENVIRONMENTAL SERVICES MEMORANDUM

SUBJECT: Continuous Emissions Monitoring (CEM) Systems

Relative Accuracy Test Audit Results - 1995

F. J. Gannon Station Boiler No.3

DATE:

25, January, 1996

FROM:

Martin Duff

TO:

Cindy Barringer

Corporate Environmental Services, Air Programs group, performed a Relative Accuracy Test Audit (RATA) on Boiler No. 3 (GB03), on October 30 thru November 1, 1995. This audit was conducted in accordance with the system supplier's directions, and meet the requirements of 40 CFR 75, Appendix B.

All results were deemed acceptable, meeting the performance specifications of 40 CFR 75, Appendix A, Performance Specification 3.31,3.32,3.33,3.34.

Attached to this memorandum, you will find data summary sheets for each system tested. All testing was performed under my direction, and the results are certified as true and accurate.

These records should be maintained at your facility for a period of three (3) years to comply with 40 CFR 75, Appendix F, Recordingkeeping Requirements. Corporate Environmental Services will maintain all supporting information for this test for the same time period.

Should you have any questions regarding this information, feel free to contact me at extension 38285.

Martin C. Duff Technician Corporate Environmental Services Air Programs

cc: L.F. Robinson

DATA SUMMARY

PLANT:

F.J. GANNON STATION

DATE: 11/01/95

UNIT: UNIT NO.3

MONITOR: SPECTRUM SYSTEMS PRIMARY

COMPARISON: ppm SO2 (wet basis)

OPERATING LEVEL: HIGH

GROSS SOURCE LOAD:

VALID OR INVALID			RM	CEMS	DIFF
RUN	RUN	TIME	ppm SO2	ppm SO2	ppm SO2
	1	0845-0906	756.9	770.4	 -13.5
V	2	0932-0953	754.9	757.4	-2.5
V	3	1032-1053	751.2	777.4 772.1	-20.9
V	4	1129-1150	738.9	742.6	-20.9
V	5	1220-1241	736.9	739.7	-3. <i>1</i>
V	6	1313-1334	735.9 725.0	732.0	-2.0 -7.0
V	7	1421-1442	725.0 726.7	698.3	28.4
1/	8	1508-1529	727.7	736.1	-8.4
V	9	1615-1636	730.7	738.9	-8.2
l	10	00:00 - 00:00	0.0	0.0	0.0
i	11	00:00 - 00:00	0.0	0.0	0.0
i	12	00:00 - 00:00	0.0	0.0	0.0
i	13	00:00 - 00:00	0.0	0.0	0.0
i	14	00:00 - 00:00	0.0	0.0	0.0
i	15	00:00 - 00:00	0.0	0.0	0.0
REFERENCE!	AE A NI	738.767		MD:	— -4.291
MEAN CEM:	VIEAIN,	743.057		STD DEV:	13.582
MEAN CEM.		743.007			
AU MOED OF F	I INIC.			CC:	10.440
NUMBER OF F	KUNS.	9 2.306			
T-VALUE:		2.300		REL ACCY:	1.99%
BIAS TEST:		PASSED		REL ACCT.	1.99%
	E\				
BIAS ADJ. (BA	r)	1.000			

DATA SUMMARY

PLANT:

F. J. GANNON STATION

DATE: 11/01/95

UNIT: UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS PRIMARY

COMPARISON: Ib NOx/MMBTU

OPERATING LEVEL: HIGH

GROSS SOURCE LOAD:

VALID OR INVALID		<u> </u>	RM lbNOx/	CEMS lbNOx/	DIFF
RUN	RUN	TIME	MMBTU	MMBTU	MMBTU
	1	0845-0906	1.482	1.497	 -0.015
V	2	0932-0953	1.503	1.519	-0.016
V	3	1032-1053	1.443	1.466	-0.023
V	4	1129-1150	1.499	1.509	-0.010
V	5	1220-1241	1.537	1.546	-0.009
V	6	1313-1343	1.626	1.626	0.000
	7	1421-1442	1.653	1.649	0.004
	8	1508-1529	1.648	1.672	-0.024
V	9	1615-1636	1.631	1.657	-0.026
1	10	00:00 - 00:00	0.000	0.000	0.000
1	11	00:00 - 00:00	0.000	0.000	0.000
1	12	00:00 - 00:00	0.000	0.000	0.000
1	13	00:00 - 00:00	0.000	0.000	0.000
1	14	00:00 - 00:00	0.000	0.000	0.000
1	15	00:00 - 00:00	0.000	0.000	0.000
REFERENC	E MEAN:	1.558		 MD:	 -0.013
MEAN CEM:		1.571		STD DEV:	0.011
WILAN OLIVI.		1.011		CC:	0.008
NUMBER OF	F RI INS:	9		00 .	0.000
T-VALUE:	110110.	2.306			
PARCE.		2.000		REL ACCY:	1.37%
BIAS TEST:		PASSED			
BIAS ADJ. (E	BAF)	1.000			
23.2	/				

DATA SUMMARY

PLANT:

F. J. GANNON STATION

DATE: 11/01/95

UNIT: UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS PRIMARY

COMPARISON: Percent CO2 (wet basis)

OPERATING LEVEL: HIGH GROSS SOURCE LOAD:

				 	
VALID OR INVALID			RM	CEMS	DIFF
RUN	RUN	TIME	% CO2	% CO2	% CO2
	1	0845-0906	12.26	12.4	— -0.2
V	2	0932-0953	12.47	12.5	-0.0
V	3	1032-1053	12.28	12.5	-0.2
V	4	1129-1150	12.47	12.5	0.0
V	5	1220-1241	12.52	12.5	0.0
V	6	1313-1334	12.50	12.5	-0.0
Y	7	1421-1442	12.43	12.0	0.4
- /	8	1508-1529	12.46	12.5	-0.1
V	9	1615-1636	12.51	12.5	-0.0
	10	00:00 - 00:00	0.00	0.0	0.0
1	11	00:00 - 00:00	0.00	0.0	0.0
1	12	00:00 - 00:00	0.00	0.0	0.0
1	13	00:00 - 00:00	0.00	0.0	0.0
1	14	00:00 - 00:00	0.00	0.0	- 0.0
I	15	00:00 - 00:00	0.00	0.0	0.0
REFERENCE	E MEAN:	12.433		MD:	-0.008
MEAN CEM:		12.441		STD DEV:	0.190
				CC:	0.146
NUMBER OF	RUNS:	9			
T-VALUE:		2.306			
				REL ACCY:	1.24%
BIAS TEST:		PASSED			
BIAS ADJ. (B	BAF)	1.000			
•					

DATA SUMMARY

PLANT:

F.J.GANNON

DATE: 11/01/95

UNIT:

UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS USI PRIMARY

COMPARISON: STACK FLOW

OPERATING LEVEL: HIGH GROSS SOURCE LOAD: 160

	_				
VALID OR			RM	CEMS	DIFF
INVALID			FLOW	FLOW	FLOW
RUN	RUN	ŢIME 	WSCFH	WSCFH	WSCFH
V	1	0845-0906	394583	370195	24388
V	2	0932-0953	392482	370907	21575
V	3	1032-1053	391217	370679	20538
V	4	1129-1150	390320	367960	22360
V	5	1220-1241	388726	366795	21931
V	6	1313-1334	388913	367109	21804
/	7	1421-1442	386245	363730	22515
V	8	1508-1529	388064	364937	23127
v	9	1615-1636	384020	361965	22055
i	10	00:00 - 00:00	0	0	0
i	11	00:00 - 00:00	0	0	0
i	12	00:00 - 00:00	0	0	0
i	13	00:00 - 00:00	0	0	0
i	14	00:00 - 00:00	0	0	0
i	15	00:00 - 00:00	0	0	0
REFERENCE	AAE A NI:	389397			 22255
MEAN CEM:	IVIEAIV.	367142		STD DEV:	1069
IVICAIN CEIVI.		307 142		CC:	822
NUMBER OF	DI INIC:	9		CC.	022
T-VALUE:	NOIVO.	2.306			
I VALUE.		2.000		REL ACCY:	5.93%
BIAS TEST:		NOT PASSED			0.0076
BIAS ADJ. (BA	۸F)	1.061			
	,				

DATA SUMMARY

PLANT: F.J.GANNON

DATE: 10/30/95

UNIT: UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS USI

COMPARISON: STACK FLOW

GROSS SOURCE LOAD: 125 OPERATING LEVEL: MID

VALID OR			RM	CEMS	DIFF
INVALID			FLOW	FLOW	FLOW
RUN	RUN	TIME	WSCFH	WSCFH	WSCFH
	1	1950-1958	317115	309429	— 7686
V	2	1959-2007	314989	308465	6524
V	3	2008-2016	316068	309476	6592
V I	4	2029-2036	320665	311920	8745
V	5	2037-2045	318395	312024	6371
	6	2046-2053	318454	313300	5154
	7	2102-2110	316741	313788	2953
V	8	2111-2118	316373	313673	2700
V	9	2119-2126	317040	312580	4460
V	10	2136-2143	316816	311307	5509
V	11	2144-2151	316663	310000	6663
Ī	12	2152-2159	319967	310329	9638
1	13	00:00 - 00:00	0	0	0
1	14	00:00 - 00:00	0	0	0
1	15	00:00 - 00:00	0	0	0
REFERENCI	E MEAN!	316838	-	MD:	— 5214
MEAN CEM:		311624		STD DEV:	1547
IVIEAN CEIVI.		311024		CC:	1189
NUMBER OF	RIINS.	9		00.	1103
T-VALUE:	110140.	2.306			
I V/ LOL.		2.500		REL ACCY:	2.02%
BIAS TEST:		NOT PASSED			2.0270
BIAS ADJ. (E	BAF)	1.017			
2.7.07.120. (2	,				

DATA SUMMARY

PLANT:

F.J.GANNON

DATE: 10/31/95

UNIT:

UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS USI PRIMARY

COMPARISON: STACK FLOW

OPERATING LEVEL: LOW

GROSS SOURCE LOAD:

					<u> </u>
VALID OR			RM	CEMS	DIFF
INVALID			FLOW	FLOW	FLOW
RUN	RUN	TIME	WSCFH	WSCFH	WSCFH
1	1	2136-2144	277887	266894	— 10993
V	2	2145-2151	275313	266977	8336
V I	3	2152-2159	280308	269187	11121
V	4	2214-2222	275386	267288	8098
V	5	2223-2231	276380	267365	9015
ľ	6	2232-2238	277878	266269	11609
	7	2245-2252	277287	267027	10260
1	8	2253-2300	277540	268227	9313
V	9	2301-2308	278215	269633	8582
V	10	2315-2324	275919	266247	9672
V	11	2325-2332	275461	265540	9921
V	12	2333-2340	277154	267547	9607
1	13	00:00 - 00:00	0	0	0
1	14	00:00 - 00:00	0	0	0
1	15	00:00 - 00:00	0	0	0
REFERENC	E MEANI.	276517	_	MD:	— 9200
MEAN CEM:		267317		STD DEV:	743
WEAN CEW.		201311		CC:	571
NUMBER OF	F RUNS:	9			
T-VALUE:		2.306			
514.6.7767		NOT DAGGED		REL ACCY:	3.53%
BIAS TEST:	= :	NOT PASSED			
BIAS ADJ. (E	BAF)	1.034			

DATA SUMMARY

PLANT:

F.J. GANNON STATION

DATE: 11/01/95

UNIT: UNIT NO.3

MONITOR: SPECTRUM SYSTEMS BACKUP

COMPARISON: ppm SO2 (wet basis)

OPERATING LEVEL: HIGH

GROSS SOURCE LOAD:

VALID OR				
INVALID		RM	CEMS	DIFF
RUN RUI	N TIME	ppm SO2	ppm SO2	ppm SO2
V 1	0845-0906	756.9	769.4	 -12.5
V 2	0932-0953	754.9	757.6	-2.7
V 3	1032-1053	751.2	772.1	-20.9
V 4	1129-1150	738.9	743.2	-4.3
V 5	1220-1241	736.9	740.2	-3.3
V 6	1313-1334	725.0	733.4	-8.4
7	1421-1442	726.7	698.6	28.1
8	1508-1529	727.7	736.1	-8.4
V 9	1615-1636	730.7	738.3	-7.6
I 10	00:00 - 00:00	0.0	0.0	0.0
I 11	00:00 - 00:00	0.0	0.0	0.0
I 12	00:00 - 00:00	0.0	0.0	0.0
J 13	00:00 - 00:00	0.0	0.0	0.0
I 14	00:00 - 00:00	0.0	0.0	0.0
I 15	00:00 - 00:00	0.0	0.0	0.0
REFERENCE MEAN				
MEAN CEM:	743.224		STD DEV:	13.433
			CC:	10,325
NUMBER OF RUNS	9		• • •	
T-VALUE:	2.306			
			REL ACCY:	2.00%
BIAS TEST:	PASSED			
BIAS ADJ. (BAF)	1.000			
, ,				

DATA SUMMARY

PLANT: F. J. GANNON STATION

DATE: 11/01/95

UNIT: UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS BACKUP

COMPARISON: Ib NOx/MMBTU

OPERATING LEVEL: HIGH GROSS SOURCE LOAD: 160

VALID OR INVALID			RM	CEMS	DIFF
RUN	RUN	TIME	IbNOx/ MMBTU	lbNOx/ MMBTU	IbNOx/ MMBTU
v	1	0845-0906	1.482	1.463	— 0.019
V	2	0932-0953	1.503	1.487	0.016
V	3	1032-1053	1.443	1.433	0.010
V	4	1129-1150	1.499	1.476	0.023
V	5	1220-1241	1.537	1.513	0.024
V	6	1313-1334	1.626	1.590	0.036
	7	1421-1442	1.653	1.606	0.047
	8	1508-1529	1.648	1.637	0.011
V	9	1615-1636	1.631	1.626	0.005
1	10	00:00 - 00:00	0.000	0.000	0.000
1	11	00:00 - 00:00	0.000	0.000	0.000
1	12	00:00 - 00:00	0.000	0.000	0.000
I.	13	00:00 - 00:00	0.000	0.000	0.000
1	14	00:00 - 00:00	0.000	0.000	0.000
1	15	00:00 - 00:00	0.000	0.000	0.000
REFERENCE	: MEAN:	1.558		MD:	— 0.021
MEAN CEM:	. WILAIN.	1.537		STD DEV:	0.021
10127 (14 02101.		1.007		CC:	0.010
NUMBER OF	RUNS:	9		55 .	0.0.0
T-VALUE:		2.306			
				REL ACCY:	2.02%
BIAS TEST:		NOT PASSED	•	==:: ~~ :,	
BIAS ADJ. (B.	AF)	1.014			

DATA SUMMARY

PLANT:

F. J. GANNON STATION

DATE: 11/01/95

UNIT:

UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS BACKUP

COMPARISON: Percent CO2 (wet basis)

OPERATING LEVEL: HIGH **GROSS SOURCE LOAD:** 160

		44			
VALID OR INVALID RUN	RUN	TIME	RM % CO2	CEMS % CO2	— DIFF % CO2
KON	11011	THAIC	70 002	70 002	70 002
V	1	0845-0906	12.26	12.7	-0.4
V	2	0932-0953	12.47	12.7	-0.2
V	3	1032-1053	12.28	12.8	-0.5
V	4	1129-1150	12.47	12.7	-0.2
V	5	1220-1241	12.52	12.7	-0.2
_V	6	1313-1334	12.50	12.7	-0.2
Y	7	1421-1442	12.43	12.2	0.2
V	8	1508-1529	12.46	12.8	-0.3
V	9	1615-1636	12.51	12.7	-0.2
1	10	00:00 - 00:00	0,00	0.0	0.0
1	11	00:00 - 00:00	0.00	0.0	0.0
1	12	00:00 - 00:00	0.00	0.0	0.0
1	13	00:00 - 00:00	0.00	0.0	0.0
1	14	00:00 - 00:00	0.00	0.0	0.0
1	15	00:00 - 00:00	0.00	0.0	0.0
				·	_
REFERENCE	MEAN:	12.433		MD:	-0.240
MEAN CEM:		12.674		STD DEV:	0.194
				CC:	0.149
NUMBER OF	RUNS:	9			
T-VALUE:		2.306			
				REL ACCY:	3.13%
BIAS TEST:		PASSED			
BIAS ADJ. (B.	AF)	1.000			

DATA SUMMARY

PLANT:

F.J.GANNON

DATE: 11/01/95

UNIT:

UNIT NO. 3

BIAS ADJ. (BAF)

MONITOR: SPECTRUM SYSTEMS USI BACKUP

COMPARISON: STACK FLOW

OPERATING LEVEL: HIGH GROSS SOURCE LOAD: 160

VALID OR INVALID			RM FLOW	CEMS FLOW	DIFF FLOW
RUN	RUN	TIME	WSCFH	WSCFH	WSCFH
	1	0845-0906	394583	369491	— 25092
v	2	0932-0953	392482	370216	22266
v	3	1032-1053	391217	369979	21238
v	4	1129-1150	390320	367251	23069
V	5	1220-1241	388726	367251	21475
V	6	1313-1334	388913	366074	22839
	7	1421-1442	386245	362898	23347
- /	8	1508-1529	388064	364095	23969
V	9	1615-1636	384020	361107	22913
1	10	00:00 - 00:00	0	0	0
1	11	00:00 - 00:00	0	0	0
1	12	00:00 - 00:00	0	0	0
1	13	00:00 - 00:00	0	0	0
1	14	00:00 - 00:00	0	0	0
1	15	00:00 - 00:00	0	0	0
REFERENCE	MEAN:	389397		MD:	 22912
MEAN CEM:		366485		STD DEV: CC:	1192 917
NUMBER OF T-VALUE:	RUNS:	9 2.306		33.	0.7
				REL ACCY:	6.12%
BIAS TEST:		NOT PASSED			

1.063

DATA SUMMARY

PLANT: F.J.GANNON

DATE: 10/30/95

UNIT: UNIT NO. 3

MONITOR: SPECTRUM SYSTEMS USI BACKUP

COMPARISON: STACK FLOW

OPERATING LEVEL: MID GROSS SOURCE LOAD: 125

VALID OR INVALID			RM FLOW	CEMS FLOW	DIFF FLOW
RUN	RUN	TIME	WSCFH	WSCFH	WSCFH
	1	1950-1958	317115	308759	— 8356
V	2	1959-2007	314989	307800	7189
V	3	2008-2016	316068	308800	7268
1	4	2029-2036	320665	311233	9432
V	5	2037-2045	318395	. 311365	7030
V	6	2046-2053	318454	312627	5827
	7	2102-2110	316741	313082	3659
	8	2111-2118	316373	313000	3373
V	9	2119-2126	317040	311920	5120
V	10	2136-2143	316816	310620	6196
V	11	2144-2151	316663	309327	7336
1	12	2152-2159	319967	309648	10319
1	13	00:00 - 00:00	0	0	0
1	14	00:00 - 00:00	0	0	0
I	15	00:00 - 00:00	0	0	0
REFERENCE	E MEAN:	316838		MD:	— 5889
MEAN CEM:	_	310949		STD DEV:	1541
WILL WIT OLIVI.		010040		CC:	1184
NUMBER OF	RUNS:	9		• • • • • • • • • • • • • • • • • • • •	
T-VALUE:		2.306			
				REL ACCY:	2.23%
BIAS TEST: BIAS ADJ. (E	BAF)	NOT PASSED 1.019			

DATA SUMMARY

PLANT: F.J.GANNON

DATE: 10/31/95

UNIT: UNIT NO. 3

BIAS ADJ. (BAF)

MONITOR: SPECTRUM SYSTEMS USI BACKUP

COMPARISON: STACK FLOW

OPERATING LEVEL: LOW

GROSS SOURCE LOAD:

85

VALID OR			RM	CEMS	DIFF
INVALID			FLOW	FLOW	FLOW
RUN	RUN	TIME	WSCFH	WSCFH	WSCFH
	1	2136-2144	277887	266253	— 11634
V	2	2145-2151	275313	266277	9036
V I	3	2152-2159	280308	268520	11788
V	4	2214-2222	275386	266635	8751
V	5	2223-2231	276380	266682	9698
Ĭ	6	2232-2238	277878	265600	12278
V	7	2245-2252	277287	266347	10940
v	8	2253-2300	277540	267587	9953
· ·	9	2301-2308	278215	268960	9255
	10	2315-2324	275919	265579	10340
V	11	2325-2332	275461	264847	10614
V	12	2333-2340	277154	267547	9607
1	13	00:00 - 00:00	0	0	0
1	14	00:00 - 00:00	0	0	0
I	15	00:00 - 00:00	0	0	0
REFERENCE	MEAN:	276517		MD:	— 9799
MEAN CEM:		266718		STD DEV:	734
				CC:	564
NUMBER OF	RUNS:	9			, 55.
T-VALUE:		2.306			
				REL ACCY:	3.75%
BIAS TEST:		NOT PASSED			

1.037

D-4 CONTINUOUS EMISSION MONITOR QUALITY ASSURANCE LINEARITY CHECKS - QUARTER 1 1996

CORPORATE ENVIRONMENTAL SERVICES MEMORANDUM

SUBJECT: Continuous Emissions Monitoring (CEM) Systems

Quality Assurance Linearity Checks

Quarter 1, 1996

Gannon Unit 3, Primary and Backup

DATE:

27, March, 1996

FROM:

R. A. Mc Darby

TO:

Cindy Barringer

Corporate Environmental Services, Air Programs group, performed linearity checks on Gannon Unit 3, on March 25, 1996. These checks were conducted in accordance with the system supplier's directions, and meet the requirements of 40 CFR 75, Appendix B, Quality Assurance and Quality Control Procedures.

Linearity checks were performed on the primary and backup systems sequentially. Primary system linearity checks were performed from 13:41 through 15:28. Backup system linearity checks were performed from 16:06 through 17:34. A concerted effort was made to avoid causing any missing data periods during these tests. All final results were deemed acceptable, meeting the performance specifications of 40 CFR 75, Appendix A, section 3.2.

Attached to this memorandum, you will find data summary sheets for each analyzer tested. All testing was performed under my direction, and the results are certified as true and accurate. These records should be maintained at your facility for a period of three (3) years to comply with 40 CFR 75, Appendix F, Recordingkeeping Requirements. Corporate Environmental Services will maintain all supporting information for this test for the same time period.

Should you have any questions regarding this information, feel free to contact me at extension 38306.

Raymond A. Mc Darby

Quality Assurance Specialist

Corporate Environmental Services

Air Programs

40 CFR 75 Appendix B Linearity Check Data

Unit Under	Toot	Connon I	Init 2	•	
Monitor	SO2	Gannon Unit 3 Test Date 03/3		03/25/96	_
Manufacture		Thormo	_ rest bate invironment		-
Serial Numb				aı	-
		43B-4817		- 001	Drotocol
Unit ID#	GB03	Compone		001	Protocol
Monitoring I	-		311		Expiration Dates
Low-level B			ALM - 0545		03/05/98
Mid-level Bo		- •	ALM - 0407		03/05/98
High-level B	ottle Numb	<u>er</u>	ALM - 0223	399	09/11/97
Linearity			}		
Check	Reading	Number	Reference	Monitor	
Point	& Time	of Day	Value (R)	Response	
	#1	13:51		345.0	LE = (R-A /R)*100
Low-level	#2	14:54		353.9	NOTE:
	#3	15:14	347.0	354.9	LE must not exceed 5%, or the
	Average	Monitor Re	esponse (A)	 	absolute difference of R - A
Linearity Error (LE			y Error (LE)	1.2	must be less than or equal to 5
Linearity					ppm for SO ₂ and NO _X
Check	Reading	Number	Reference	Monitor	analyzers. For CO ₂ analyzers,
Point	_	of Day	Value (R)	Response	LE must not exceed 5%, or the
	#1	14:11			absolute difference of R - A
Mid-level	#2	15:01		759.8	must be less than or equal to
	#3	15:20	762.0		0.5% by volume.
	Average	Monitor Re	esponse (A)	769.233	
		Linearit	y Error (LE)	0.9	The analyzers must pass at
Linearity]				all three levels.
Check	Reading	Number	Reference	Monitor	
Point	& Time	of Day	Value (R)	Response	Monitor Summary
	#1	14:19		1222.1	<u>Level</u>
High-level	#2	15:07		1232.5	Low 1.2 %
_	#3	15:28	1234.0	1233.4	Mid0.9_%
	Average	Monitor Re	esponse (A)	1229.333	High 0.4 %
			y Error (LE)	0.4	

Comments:		
c:\123r24\cems\linear.wk1:::page1	Signature:	

40 CFR 75 Appendix B Linearity Check Data

Unit Under	Test	Gannon L	Jnit 3		
Monitor	NOx	Test Date 03/25/96			_
Manufacture	 er	Thermo E	Invironment	al	-
Serial Numb	per	42D-4787			_
Unit ID#	GB03	Compone		003	Protocol
Monitoring F	Plan Syster	- '	313		Expiration Dates
Low-level Be	ottle Numb	er	ALM - 0545	- 552	03/05/98
Mid-level Bo	ttle Numb	er	ALM - 0407	737	03/05/98
High-level B	ottle Numb	per	ALM - 0223	399	09/11/97
Linearity					
Check	Reading	Number	Reference	Monitor	
Point	& Time	of Day	Value (R)	Response	
	#1	13:51		383.8	LE = (R-A /R)*100
Low-level	#2	14:54		384.7	NOTE:
	#3	15:14	368.0	385.3	LE must not exceed 5%, or the
Average Monitor R		esponse (A)	384.600	absolute difference of R - A	
		y Error (LE)	4.5	must be less than or equal to 5	
Linearity					ppm for SO₂ and NOx
Check	Reading	Number	Reference	Monitor	analyzers. For CO2 analyzers,
Point	& Time	of Day	Value (R)	Response	LE must not exceed 5%, or the
	#1	14:11		797.1	absolute difference of R - A
Mid-level	#2	15:01		861.6	must be less than or equal to
	#3	15:20	825.0	854.0	0.5% by volume.
· .	Average	Monitor Re	esponse (A)	837.567	
		<u>Linearit</u>	y Error (LE)	1.5	The analyzers must pass at
Linearity	_				<u>all three levels.</u>
Check	Reading	Number	Reference	Monitor	
Point	<u>& Time</u>	of Day	Value (R)	Response	Monitor Summary
	#1	14:19		1461.5	<u>Level</u>
High-level	#2	15:07	j	1444.8	Low4.5_%
	#3	15:28	1431.0	1445.3	Mid1.5_%
	Average Monitor Respons				High1.4_%
Linearity Error (LE) 1.4					

Comments:		
	<u>.</u>	
c:\123r24\cems\linear.wk1:::page2	Signature:	

40 CFR 75 Appendix B Linearity Check Data

Unit Under	Гest	Gannon L	Jnit 3		_
Monitor	CO2	_	Test Date	03/25/96	_
Manufacture	er	Siemens			_
Serial Numb	er	E3-727		_	
Unit ID#	GB03	Compone	nt ID#	005	Protocol
Monitoring F	Plan Systen	n ID#	315	_	Expiration Dates
Low-level Bo	ottle Numb	er	ALM - 0545	552	03/05/98
Mid-level Bo	ttle Numbe	er	ALM - 0407	' 37	03/05/98
High-level B	ottle Numb	er	ALM - 0223	399	09/11/97
Linearity					
Check	Reading	Number	Reference	Monitor	: .
Point	& Time	of Day	Value (R)	Response	
	#1	13:51		5.1	LE = (R-A /R)*100
Low-level	#2	14:54		5.3	NOTE:
	#3	15:14	5.00	5.3	LE must not exceed 5%, or the
	Average	Monitor Re	esponse (A)	5.233	absolute difference of R - A
Lin	earity Erro	r (LE), per	cent volume	0.2	must be less than or equal to 5
Linearity					ppm for SO₂ and NOx
Check	Reading	Number	Reference	Monitor	analyzers. For CO2 analyzers,
Point	& Time	of Day	Value (R)	Response	LE must not exceed 5%, or the
	#1	14:11		11.4	absolute difference of R - A
Mid-level	#2	15:01		11.1	must be less than or equal to
	#3	15:20	10.90	11.1	0.5% by volume.
	Average		esponse (A)	11.200	
		Linearit	y Error (LE)	2.8	The analyzers must pass at
Linearity					<u>all three levels.</u>
Check	Reading	Number	Reference	Monitor	
Point Point	& Time	of Day	Value (R)	<u>Response</u>	Monitor Summary
	#1	14:19	:	18.1	<u>Level</u>
High-level	#2	15:07		18.1	Low0.2_%
	#3	15:28	17.94	18.1	Mid2.8_%
	Average	Monitor Re	esponse (A)	18.100	High0.9_%
		<u>Linearit</u>	y Error (LE)	0.9	

Comments:		
c:\123r24\cems\linear.wk1;::page3	Signature:	

40 CFR 75 Appendix B Linearity Check Data

Unit Under	Test	Gannon L	Jnit 3 BACK	(UP	_
Monitor	SO2		Test Date	_	
Manufacture	er .	Thermo E	nvironment	ai	_
Serial Numb	er	43B-4795	0-281	_	- -
Unit ID#	GB03	Compone	nt ID#	002	Protocol
Monitoring F	Plan Syster	n ID#	312	_	Expiration Dates
Low-level Bo			ALM - 0545	552	_03/05/98_
Mid-level Bo	ottle Numbe	er	ALM - 0407	' 37	03/05/98
High-level B	ottle Numb	<u>er</u>	ALM - 0223	99	09/11/97
Linearity					
Check	Reading	Number	Reference	Monitor	
Point	& Time	of Day	Value (R)	Response	
	#1	16:13		353.1	LE = (R-A /R)*100
Low-level	#2	17:01		353.9	NOTE:
	#3	17:21	347.0	360.3	LE must not exceed 5%, or the
Average Monitor Re		esponse (A)	355.767	absolute difference of R - A	
		Linearit	y Error (LE)	2.5	must be less than or equal to 5
Linearity					ppm for SO₂ and NOx
Check	Reading	Number	Reference	Monitor	analyzers. For CO₂ analyzers,
Point	& Time	of Day	Value (R)	Response	LE must not exceed 5%, or the
	#1	16:20		766.5	absolute difference of R - A
Mid-level	#2	17:07		765.3	must be less than or equal to
	#3	17:28	762.0	769.1	0.5% by volume.
<u>. </u>	Average		esponse (A)	766.967	
		Linearit	y Error (LE)	0.7	The analyzers must pass at
Linearity		•			<u>all three levels.</u>
Check	Reading	Number	Reference	Monitor	
<u>Point</u>	& Time	of Day	Value (R)	Response	Monitor Summary
ł	#1	16:28		1229.1	<u>Level</u>
_	#2	17:15		1236.4	Low2.5_%
	#3	17:34	1234.0	1235.3	Mid0.7_%
	Average		esponse (A)	1233.600	High0.0_%
		Linearit	<u>y Error (LE)</u>	0.0	

Comments:		
		•
c:\123r24\cems\linear.wk1:::page1	Signature:	

40 CFR 75 Appendix B Linearity Check Data

Unit Under	Test	Gannon L	Jnit 3 BACK	(UP	_
Monitor NOx			Test Date	03/25/96	_
Manufacturer Therr			invironment	al	
Serial Numb	per	42D-4787	1-279		
Unit ID#	GB03	Compone	nt ID#	004	Protocol
Monitoring F	Plan Syster	m ID#	314		Expiration Dates
Low-level B	ottle Numb	er	ALM - 0545	552	03/05/98
Mid-level Bo	ottle Numb	er	ALM - 0407	737	03/05/98
High-level E	ottle Numl	per	ALM - 0223	399	09/11/97
Linearity					
Check	Reading	Number	Reference	Monitor	
Point	& Time	of Day	Value (R)	Response	
	#1	16:13		384.2	LE = (R-A /R)*100
Low-level	#2	17:01		383.6	NOTE:
Ĺ	#3	17:21	368.0	381.8	LE must not exceed 5%, or the
	Average	Monitor Re	esponse (A)		absolute difference of R - A
			y Error (LE)	4.1	must be less than or equal to 5
Linearity					ppm for SO₂ and NOx
Check	Reading	Number	Reference	Monitor	analyzers. For CO2 analyzers,
Point	& Time	of Day	Value (R)	Response	LE must not exceed 5%, or the
-	#1	16:20		857.5	absolute difference of R - A
Mid-level	#2	17:07		855.0	must be less than or equal to
	#3	17:28	825.0	854.0	0.5% by volume.
	Average	Monitor Re	esponse (A)	855.500	
	_	Linearit	y Error (LE)	3.7	The analyzers must pass at
Linearity					all three levels.
Check	Reading	Number	Reference	Monitor	
Point	& Time	of Day	Value (R)	Response	Monitor Summary
	#1	16:28		1441.4	<u>Level</u>
High-level	#2	17:15		1445.5	Low4.1_%
_	#3	17:34	1431.0	1441.7	Mid 3.7 %
	Average	Monitor Re	esponse (A)	1442.867	High0.8 %
		Linearit	y Error (LE)	0.8	
			-		

Comments:		
<u> </u>		<u> </u>
	Cianatura	
c:\123r24\cems\linear.wk1:::page2	Signature:	

40 CFR 75 Appendix B Linearity Check Data

Unit Under		Gannon L	Init 3 BACK	·	-
Monitor CO2			_Test Date	03/25/96	_
Manufacturer		Siemens			_
Serial Numb	er	E2-786		_	
Unit ID#	GB03	$_$ Compone	nt ID#	006	Protocol
Monitoring F	•		316	-	Expiration Dates
Low-level Bo			ALM - 054		03/05/98
Mid-level Bo			ALM - 0407		03/05/98
High-level B	ottle Numb	oer	ALM - 0223	399	09/11/97
Linearity			1		
Check	1	Number	Reference	Monitor	
Point		of Day	Value (R)	Response	i
	#1	<u>16:13</u>		5.2	LE = (R-A /R)*100
Low-level	#2	17:01		5.2	NOTE:
	#3	17:21	5.00		LE must not exceed 5%, or the
Average Monitor R			esponse (A)	5.233	absolute difference of R - A
Linearity Error (LE), per			cent volume	0.2	must be less than or equal to 5
Linearity				1	ppm for SO ₂ and NO _x
Check	Reading	Number	Reference	Monitor	analyzers. For CO2 analyzers,
P <u>oint</u>	& Time	of Day	Value (R)	Response	LE must not exceed 5%, or the
	#1	16:20		11.1	absolute difference of R - A
Mid-level	#2	17:07		11.1	must be less than or equal to
	#3	17:28	10.90	11.1	0.5% by volume.
	Average	Monitor Re	esponse (A)	11.100	
		Linearit	y Error (LE)	1.8	The analyzers must pass at
Linearity					<u>all three levels.</u>
Check	Reading	Number	Reference	Monitor	
Point	<u>& Time</u>	of Day	Value (R)	Response	Monitor Summary
1	#1	16:28	:	17.8	Level
, •	#2	17:15		17.9	Low0.2_%
	#3	17:34	17.94	17.8	Mid1.8_%
	Average		esponse (A)	17.833	High0.6_%
		Linearit	y Error (LE)	0.6	

c:\123r24\cems\linear.wk1:::page3	Signature:	
Comments.		

APPENDIX E

FUEL ANALYSIS

- **E-1 BASELINE WEEKLY COMPOSITE**
- E-2 FUEL BLEND BURN WEEKLY COMPOSITES
- E-3 TIRE DERIVED FUEL ANALYSIS

E-1 BASELINE WEEKLY COMPOSITE

From: Tampa Electric Company

Laboratory Services Department

5012 Causeway Blvd. Tampa, FL

H.R.S. Certification # E54272

D.E.P. Comprehensive QA Plan #910140

May 20, 1996

To: Environmental Coord., Gannon Fuel Data Coord., Envir. Plan.

The following analytical results have been obtained for the indicated sample which was submitted to this laboratory:

Sample I.D. AA28456 Location code: GN-WK-3

Location Description: Gannon, Wkly Coal Comp, Unit 3

Sample collector: GANNON Sample collection date: 03/03/96
Lab submittal date: 03/04/96 Time: 13:37

Sample Matrix: Coal

Coal Identification Information

Gannon sample I.D. number: DER10-3G

Week ending date: 03/03/96

		1	
Parameter	Result	Units	MDL
Total Moisture	11.3	8	0.30
BTU in Coal, as Determined	13141	BTU/Lb.	1
Pounds SO2 / Million BTU, Coal	1.89	Lbs. SO2/MMBTU	
Ash, as Received	6.13	%	0.4
Ash, Dry Basis	6.91	%	0.4
BTU, as Received	12126	BTU/Lb	100
BTU, Dry Basis	13671	BTU/Lb.	100
Sulfur, as Received	1.21	· %	0.08
Sulfur, Dry Basis	1.36	%	0.08
BTU, Moisture-Ash Free, Calc.	14686	BTU/Lb.	100
Sulfur in Coal, as Determined	1.31	%	0.01
Magnesium Oxide, MgO, X-Ray	1.26	%	
Sodium Oxide, Na2O, X-Ray	0.72	ماه ماه ماه ماه ماه ماه ماه	
Titanium Dioxide, TiO2, X-Ray	1.27	%	
Iron Oxide, Fe2O3, X-Ray	21.28	%	
Silicon Dioxide, SiO2, X-Ray	43.37	%	
Sulfur Trioxide, SO3, X-Ray	1.13	8	
Calcium Oxide, CaO, X-Ray	3.28	%	
Potassium Oxide, K2O, X-Ray	2.96	%	
Phosphorus, P2O5, X-Ray	0.41		
Aluminium Oxide, AL203, X-Ray	21.48	%	
Silica Value, Ash Mineral Analy	62.68	%	
T250 from Ash Mineral Analyses	2359 .	Degrees F	
Undetermined, Ash Mineral Analys	2.84	%	
Slagging Index	0.607	0.6-2.0 Medium	
Fouling Index	0.321	0.2-0.5 Medium	
Trace Elements in Coal by ICP	see below		
Mercury in Coal by O2 Bomb/AA	0.09	ug/g (dry)	0.02

Environmental Coord., Gannon Sample I.D. AA28456 (continued)

Page: 2

May 20, 1996

Data for Trace Elements in Coal by ICP:

Trace Metals in Coal and Coke by Inductively Coupled Plasma

Digestion Method: ASTM D-3683

Analysis Method: Inductively Coupled Plasma

 Beryllium by ICP.
 0.96 ug/g

 Chromium by ICP.
 7.53 ug/g

 Nickel by ICP.
 9.32 ug/g

 Lead by ICP.
 12.8 ug/g

 Vanadium by ICP.
 17.2 ug/g

 Zinc by ICP.
 25.4 ug/g

Note: All results reported represent concentrations in coal on a DRY BASIS.

Sample comments:

Trace Metal analysis request added 05/08/96

If there are any questions regarding this data, please call.

Robert L. Dorey Supervisor of Laboratory Services E-2 FUEL BLEND BURN WEEKLY COMPOSITES

SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

From: Tampa Electric Company

Laboratory Services Department

5012 Causeway Blvd. Tampa, FL 33597

H.R.S. Certification # E54272

D.E.P. Comprehensive QA Plan #910140

May 20, 1996

To: Environmental Coord., Gannon

Fuel Data Coord., Envir. Plan.

The following analytical results have been obtained for the indicated sample which was submitted to this laboratory:

Sample I.D. AA29477 Location code: GN-WK-3

Location Description: Gannon, Wkly Coal Comp, Unit 3

Sample collector: GANNON Sample collection date: 04/28/96

Lab submittal date: 04/30/96 Time: 10:48

Sample Matrix: Coal

Coal Identification Information

Gannon sample I.D. number: DER18-3G

Week ending date: 04/28/96

Parameter	Result	Units	MDL
Total Moisture	8.71	%	0.30
BTU in Coal, as Determined	13532	BTU/Lb.	1
Pounds SO2 / Million BTU, Coal	1.88	Lbs. SO2/MMBTU	
Ash, as Received	6.11	%	0.4
Ash, Dry Basis	6.69	%	0.4
BTU, as Received	12643	BTU/Lb	100
BTU, Dry Basis	13849	BTU/Lb.	100
Sulfur, as Received	1.25	%	0.08
Sulfur, Dry Basis	1.37	%	0.08
BTU, Moisture-Ash Free, Calc.	14842	BTU/Lb.	100
Sulfur in Coal, as Determined	1.34	%	0.01
Magnesium Oxide, MgO, X-Ray	1.44	%	
Sodium Oxide, Na2O, X-Ray	0.44	ماه ماه ماه ماه ماه ماه ماه ماه	
Titanium Dioxide, TiO2, X-Ray	1.26	8	
Iron Oxide, Fe2O3, X-Ray	22.19	8	
Silicon Dioxide, SiO2, X-Ray	41.18	8	
Sulfur Trioxide, SO3, X-Ray	1.36	%	
Calcium Oxide, CaO, X-Ray	2.80	%	
Potassium Oxide, K2O, X-Ray	3.22	%	
Phosphorus, P2O5, X-Ray	0.18	%	
Aluminium Oxide, AL203, X-Ray		%	
Silica Value, Ash Mineral Analy	60.91	%	
T250 from Ash Mineral Analyses	2340	Degrees F	
Undetermined, Ash Mineral Analys		%	
Slagging Index	0.637	0.6-2.0 Medium	
Fouling Index	0.205	0.2-0.5 Medium	
Trace Elements in Coal by ICP	see below		-
Mercury in Coal by O2 Bomb/AA	0.10	ug/g (dry)	0.02

Environmental Coord., Gannon Sample I.D. AA29477 (continued)

Page: 2

May 20, 1996

Data for Trace Elements in Coal by ICP:

Trace Metals in Coal and Coke by Inductively Coupled Plasma

Digestion Method: ASTM D-3683

Analysis Method: Inductively Coupled Plasma

Beryllium by ICP	1.22	ug/g
Chromium by ICP	6.97	ug/g
Nickel by ICP	9.45	ug/g
Lead by ICP	5.71	ug/g
Vanadium by ICP	17.4	ug/g
Zinc by ICP	25.3	ug/g

Note: All results reported represent concentrations in coal on a DRY BASIS.

Sample comments:

Trace Metals analysis request added 05/08/96

If there are any questions regarding this data, please call.

Robert L. Dorey Supervisor of Laboratory Services E-3 TIRE DERIVED FUEL ANALYSIS

SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 + TEL: 708-953-9300 FAX: 708-953-9300

Member of the SGS Group (Société Générale de Surveillance)

May 13, 1996

PLEASE ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN RD. SOUTH HOLLAND. IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060

..... 1242

TAMPA ELECTRIC

Corporate Environmental Svcs.

5010 Causeway Blvd. Tampa, FL 33619

Attn: Robert L. Dorey

Sample identification by

Tampa Electric

Kind of sample

reported to us TDF

Sample ID: TDF

Sample taken at

Sample taken by --

Date sampled ---

Date received May 1, 1996

P.O. No. EN35816

REVISED REPORT 5/13/96

Analysis Report No.

71-24828

Page 1 of 3

PROXIMATE ANALYSIS

	As Received	Dry Basis	
% Moisture	5.57	xxxxx	
% Ash	12.54	13.28	
% Volatile	45.31	47.98	
% Fixed Carbon	36.58	38,74	
	100.00	100.00	
Btu/lb	13697	14505	MAF 16726
% Sulfur	1.52	1.61	
% CARBON	57.87	61.28	
% NITROGEN	0.72'	0.76	

METHODS

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF

Moisture: ASTM D 3302; Ash: ASTM D 3174; Volatile: ASTM D 3175; Fixed Carbon: Calculated Value; ASTM D 3172 Btu/lb: ASTM D 3286; Sulfur: ASTM D 4239 (Method C); Carbon & Nitrogen: ASTM D 5375

Respectfully submitted, COMMERCIAL TESTING & ENGINEERING CO.

Manager, South Holland Laboratory

OVER 40 BRANCH LABORATORIES STRATEGICALLY LOCATED IN PRINCIPAL COAL MINING AREAS, TIDEWATER AND GREAT LAKES PORTS, AND RIVER LOADING FACILITIES

F-465/071/65 Oriolnal Watermarked For Your Protection

TERMS AND CONDITIONS ON REVERSE

COMMERCIAL TESTING & ENGINEERING CO.

GENERAL OFFICES: 1919 SOUTH HIGHLAND AVE., SUITE 210-8, LOMBARD, ILLINOIS 60148 * TEL. 708-963-9300 FAX: 708-963-9300

Member of the SGS Group (Société Générale de Surveillance)

PLEASE ADDRESS ALL CORRESPONDENCE TO: 16130 VAN DRUNEN RD. SOUTH HOLLAND. IL 60473 TEL: (708) 331-2900 FAX: (708) 333-3060

May 13, 1996

TAMPA BLECTRIC Corporate Environmental Svcs. 5010 Causeway Blvd.

Tampa, FL 33619

Attn: Robert L. Dorey

Sample identification by

Tampa Electric

Kind of sample

reported to us TDF

Sample ID: TDF

Sample taken at

Sample taken by

Date sampled

P.O. No. 3N35816

Date received May 1, 1996

REVISED REPORT 5/13/96

Analysis Report No. 71-24828 Page 2 of 2

Dry Basis, uq/q

Berylium, Be	3
Chromium, Cr	9
Lead, Pb	21
Nickel, Ni	19
Mercury, Hg	0.04
Vanadium, V	9
Zinc. Zn	4327

THE PROPERTY OF THE PROPERTY O

Mercury: Double Gold Amalgamation, Cold Vapor Atomic Absorption; Remaining Parameters: ASIM D 3683

lespectfully submitted. COMMERCIAL TESTING & ENGINEERING CO.

Manager, South Holland Laboratory

APPENDIX F

FIELD DATA SHEETS

F-1	BASELINE PARTICULATE DATA SHEETS
F-2	BASELINE SULFURIC ACID DATA SHEETS
F-3	BASELINE ORSAT DATA SHEETS
F-4	BASELINE VISIBLE EMISSIONS DATA SHEETS
F-5	FUEL BLEND BURN PARTICULATE DATA SHEETS
F-6	FUEL BLEND BURN SULFURIC ACID MIST DATA
	SHEETS
F-7	FUEL BLEND BURN ORSAT DATA SHEETS
F-8	FUEL BLEND VISIBLE EMISSIONS DATA SHEETS

F-1 BASELINE PARTICULATE DATA SHEETS

PARTICULATE SAMPLING FIELD DATA SHEET

SAMPLING LOCATION: F. J. GAMON SHAKON BIT 3	DRY GAS METER VOLUME
TEST METHOD: USEPA Method 17	FINAL 500 523 FT ³
PERATOR: CONTROL BOX: M. Dui=1=	INITIAL 467. 274 FT3
SAMPLE PROBE: 2. BALTHELETTE	NET 33 249 FT ³
DATE FESCUALY 28, 1996 RUN NO. 1-5 MIN/PT 3	MOISTURE DETERMINATION
TIME: START 1324 END 1432 TOTAL 60 MIN.	IMPINGER 50 ml
	SILICA GEL 77 ml
STACK DUCT DIMENSIONS: 12.4 T.D.	TOTAL <u>57.7</u> ml
STACK AREA: 121.225 FT2, EFF. AREA: 121.225 FT2	
	EQUIPMENT LEAK CHECKS
EQUIPMENT	INITIAL O. CO CFM@ /S "Hg
CONTROL BOX: NO. 4 PYROMETER NO. 5	FINAL 0.00 CFM@ /O "Hg
NOZZLE NO. 16 (198) PITOT TUBE NO. 00.07	
THIMBLE HOLDER NO. A PROBE LENGTH (55) 8 FT	
METER CALIBRATION: (Y) 1.013 (ΔH) 1.80¢	PROBE ASSEMBLY CHECKS
ASSUMED H20 9.0 % PITOT CP C.34	NOZZLE/PITOT I IN. ($\geq 3/4$ IN.)
•	THER./PITOT 2 IN. (≥ 2 IN.)
WEATHER: Clear warm windy	PROBE/PITOT 3 IN. (\geq 3 IN.)
	DAMAGE DURING TEST? NO
COMMENTS:	

	TRAVERSE POINT NO.	CLOCK	METER READING (FT ³)	ΔP (1N:H ₂ O)	ΔH (1N:H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN: HG)
	İ	1324	469.2	1.10	1.10	280	79	64	9
	2	_	470.7	1.00	1.04	281	79	CL	9
	3	_	472.4	1.05	1.10	281	79	57	9
	4		4738	0.85	0.89	275	79	54	8
	5	1339	475.4	0.88	6.93	276	79	53	8
	ŧ	1344	477.0	1.70	1.15	280	79	5 ⁻ 7	8
			478.8	1.05	1.10	282	80	50	9
	3	_	480.4	1.10	1.15	282	81	50	9
	4		५४। .४	0.96	1.01	281	80	50	9
	_ 5	1359	483.6	0.85	०,४५	277	80	_51	8
1		*							

-	TRAVERSE POINT NO.	CLOCK TIME	METER READING (FT°)	ΔΡ (In:H ₂ O)	ΔΗ (1N ₂ H ₂ O)	STACK TEMP. Ts("F)	METER TEMP. Im("F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
	I	1400	485.6	1.15	1.21	283	79	<i>5</i> 3	9
1	2	-	487.4	1.08	1.13	282	80	53	9
	3		488.8	1.08	1.13	282	80	53	10
	4	ļ	491.0	1.03	1.08	281	31	52	9
	5	1415	492.0	D. 37	0.72	271	81	<i>5</i> Z	8
					-				
		1417	493.8	1.10	1.15	283	80	52	10
	2		495.5	1.10	1.15	232	22	51	10
	3		497.1	1.15	1.20	283	§ 2	50	10
	4		499.0	1.08	1.13	281	82	51	10
	5	1432	500.523	0.78	0.81	268	82	52	8
		_					· — —		
								_	
ľ		•							
ľ									
ſ			-						
╽		-*							
\parallel				-					
$\ \cdot\ $				-					
4					-				
1									
L							<u> </u>		

RUN NO. / PAGE 2 OF 2

PARTICULATE SAMPLING FIELD DATA SHEET

TEST METHOD: USEPA Method 17 PERATOR: CONTROL BOX: M. DUEF SAMPLE PROBE: 2 A BANFULLE	DRY GAS METER VOLUME FINAL 534, 148 FT³ INITIAL 500, 779 FT³ NET 33, 36, 9 FT³
DATE FASKUARY 28, 1996 RUN NO. 2-5 MIN/PT 3 TIME: START 15:,09 END 16:15 TOTAL 60 MIN. STACK DUCT DIMENSIONS: 12.4 I,D.	MOISTURE DETERMINATION IMPINGER 60 ml SILICA GEL 7.7 ml TOTAL 67.7 ml
STACK AREA: 121.225 FT2, EFF. AREA: 121.225 FT2 EQUIPMENT CONTROL BOX: NO. 4 PYROMETER NO. 5 NOZZLE NO. 16 (0.198 PITOT TUBE NO. 00107	EQUIPMENT LEAK CHECKS INITIAL O.OO CFM0 /5 "Hg FINAL O.OO CFM0 IO "Hg PITOT O.O 0 6 "H ₂ O
THIMBLE HOLDER NO. β PROBE LENGTH 8 FT METER CALIBRATION: (Y) /. O/3 (ΔH) /. 9 O 6 ASSUMED H20 9. O % PITOT CP 0.84 WEATHER: C C ω.	

TRAVERSE POINT NO.	CLOCK	METER READING (FT ²)	ΔP (1N.H ₂ O)	ΔH (1N:H ₂ O)	STACK TEMP. Ts("F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
1	1509	502.7	1.15	1,21	280	80	62	11
2		504.3	1.10	1.15	283	92	57	9
3_		506,2	1.08	1.13	283	82	56	9
4		507.6	1.08	1.13	283	81	55	8
5	15:24	509,3	1.05	1.10	281	81	55	8
1	15:26	510.8	1.10	1.15	282	80	55	9
2_		512.4	1110	1,15	282	80	54	9
3		513,5	1.10	1.15	281	8।	53	9
.4		515.5	1,00	1.05	281	82	54	9
5	15:42	517,4	0.85	0.89	278	83	55	8

	TRAVERSE POINT NO.	CLOCK TIME	METER READING (FT ³)	ΔΡ (1N.H ₂ O)	AH (1N.H ₂ 0)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
		15:44		1,10	1,15	282	82	55	9
	2		520.7	1,00	1.05	282	83	54	9
	3		522.4	1.05	ido	282	83	54	9
	4		524.1	0.96	1.01	280	83	53	9
	5	15:59	525.7	0.85	0.89	278	82	53	४
		16100	<i>5</i> 27,5	1.10	1.15	<i>2</i> 83	81	53	9
	<u>2</u>		530.1	1.10	1,15	<i>2</i> 83	81	52	9
	3		530.9	1,05	1.10 MB	283	81	52	٩
-	9		<i>5</i> 32,6	0.95	1.00	282	%।	53	9
	_5	16:15	534.148	0,83	0.87	277	81	53	8
$\ $				_		_			
$\ $				-					
ŀ	_								
						<u> </u>			
						_	_		
			_						

RUN NO. Z PAGE Z OF Z

PARTICULATE SAMPLING FIELD DATA SHEET

TEST METHOD: US EPA Mathal 17 PERATOR: CONTROL BOX: M. D. F. SAMPLE PROBE: Z. BANTHRLETTE	DRY GAS METER VOLUME FINAL 567,750 FT³ INITIAL 53.4.770 FT³ NET 32.580 FT³
DATE FEB. 28, 1994 RUN NO. 3 -5 MIN/PT 3	MOISTURE DETERMINATION
TIME: START /633 END 17.37 TOTAL 60 MIN.	
<u> </u>	SILICA GEL 7.7 ml
STACK DUCT DIMENSIONS: 12 4 I.D.	TOTAL 67.7 ml
STACK AREA: $\frac{121.225}{5}$ FT ² , EFF. AREA: $\frac{121.225}{5}$ FT ²	
	EQUIPMENT LEAK CHECKS
<u>EQUIPMENT</u>	INITIALO.OO CFM@ /5 "Hg
CONTROL BOX: NO. 4 PYROMETER NO. 5	FINAL O O CFM@ 10 "Hg
NOZZLE NO. / (0.198) PITOT TUBE NO. 00107	PITOT 0 @ 7 "H ₂ O
THIMBLE HOLDER NO. C PROBE LENGTH FT	
METER CALIBRATION: (Y) / 0/3 (ΔH) / Θ C	PROBE ASSEMBLY CHECKS
ASSUMED H20 90 % PITOT CP 0.84	NOZZLE/PITOT $/$ IN. ($\geq 3/4$ IN.)
WEATHER: (/cue windy Pb 29.80 "Hg Ps 29.80" "Hg TEMPERATURE 78 °F COMMENTS:	THER./PITOT

TRAVERSE POINT NO.	CLOCK TIME	METER READING (FT ³)	AP (1N.H ₂ O)	AH (1N.H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
1	163 3	536.3	1.08	1.13	283	80	59	10
		537.3	0.95	0.99	284	81	56	9
3		540,0	1.00	1.04	284	81	54	9
_ 4		541.6	0.91	0.95	283	73	54	8
_ 5	1648	543.0	0.80	0.84	277	8Z	54	7
_	-							
	1649	544.6	0.98	1.03	281	82	54	7
		546.0	1.05	1-10	282	82	55	9
3		548.1	1.05	1.10	281	82	53	9
4		549.9	0.98	1.03	280	82	53	8
5		551.2	0.82	6.86	274	83	55	7

į	TRAVERSE POINT NO.	CLOCK TIME	METER READING (FT)	AP (1N.H ₂ 0)	ΔH (1N,H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
		1706	553. 2	1.10	1.15	28/	82	53_	9
	2	-	554-6	1.05	1.10	281	83	52	9
			556.4	1.00	1.04	281	83	SZ	9
	4		<i>558.</i> 2	1.00	1.04	281	83	53	9
	5	1721	559.5	0.87	0.91	271	83	55	8.
∦		1722	561.3	1.15	1.21	779	82	55	8
	2		562,8	1.08	1.13	281	83	54	9
	3		564.6	1.05	1,10	281	83	55	9
	4		566,3	1.05	1,10	279	83	55	9
	5	1737	567,750	0.65	0.68	269	82	55	8
$\ $	<u></u>								
							_		
7		<u> </u>							
ŀ									
			_						
1									

RUN NO. 3 PAGE 2 OF 2

F-2 BASELINE SULFURIC ACID DATA SHEETS

PARTICULATE FIELD DATA FORM

Plant F. J. Gannon Station
Location Boiler No. 3
Method US EPA Method 8
Operator MANILDIGE/1903/ RAS
Date FEDRUAL 28 1996
Run Number 0 1
Min./Pt. 3
Stack Area ft ² /2 .225
Sample Box Number WA
Meter Box Number
Meter AH@ 1.706
Meter Calibration (Y) 1.006
Nozzle I.D. No. 16 (0.198)
Nozzle Diameter (0.194)

Pitot Tube (C _E) O. 84
Probe Length P
Probe Liner Material Glass
Probe Heater Setting 250°
Ambient Temperature 65°
Barometric Pressure (P _b) 29.80 in. Hg
Assumed Moisture 9.0%
Static Pressure (P ₂) z in. Hg
Time - Start 0728 End 0836
Total Sample Time 60 Min.
Gas Analysis CO ₂ % O ₂ %
CO ₂ % O ₂ %
Comments

Dry Gas Meter Volume	
Final 637.8/2	Ft ³
Initial <u>604.396</u>	Ft ³
Net 33.4/6	Ft³
	_

Equipment Leak Check	<u>ks</u>
Initial O.OO CFM@	
Final O. CFM@	
Pitot Tube OK	0.00 7" MZ
· · · · · · · · · · · · · · · · · · ·	

Moisture Determi	nation	
Impinger_	58	_m1
Silica Gel	17.5	_gm
Total	75.5	$^{-}$ m 1

,					•.		Unbillial 1			
Traverse Point Number	Clock Time	Gas Sample Volume (Ft³)	ΔP (In. H ₂ O)	ΔΗ (In. H ₂ O)	Stack Temp. Ts(°F)	Meter Temp. Tm(°F)	Sample Box Temp. (°F)	Probe Temp. (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
(0728	6067	1.20	1.13	264	72	255	303	. 58	7
ı		607.8	1.00	0.94	265	74	256	308	55	Ç
3		609.3	0.95 +.+5 W	1.0820	255 HO	75	256 265 AC	307	57	9
d	•	611.0	0.93	0.87	255 ME	76	251	308	59	5
5	0743	612.4	0.83	0.78	263	76	2.50	3.06	61.	5
						•				
			•	,		-		• .		
					·					
		٠.				-,	,			

Tr.			•		_	•	Umbillin	1		
Traverse Point Number	Clock Time	Gas Sample Volume (Ft³)		ΔΗ (In. Η ₂ Ο)	Stack Temp. Ts(°F)	Meter Temp. Tm(°F)	Sample Box Temp.	Probe Temp. (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
	0744	614.5	1.10	1.03	264	77	254	300	61	6
2	·	615.8	0.92	0.86	264	78	251	300	61	6
3	· .	617.5	0.96	0.90	264	79	252	300	61	6
4	·	619.3	0.95	0.90	262	80	250	299	60	6
5	0759	620.6	0.82	0.82	260	80	255	291	62	<u> </u>
		, .								
	0802	622.5	1.20	1.19	260	76	255	3.06	61	7
2		623.6	0.98	0.97	264	80	254	306	59	7
3		625.9	1.05	1.05	264	71	255	306	59	7
4		627.6	1.10	1.09 1-10 Mg	263 1.07	, 81	255	307	60	7
5	0817	629.3	0.90	0.89	262	82	253	308	61	7
	0821	6319	0.97	0.96	265	78	255	308	62	7
. 2		633.0	1.10	1.09	245	80	255	308	58	6
3		635.3	1.10	1.09	265	80	255	308	58	6
4		636.3	1.10	1.09	265	80	251	302	59	4
5	0834	637.812	0.88	0.87	263	81	256	294	59	6
					<u>.</u> .					
				•						

H2564 PARTICULATE FIELD DATA FORM

Plant F. J Common
Location Oc.les No 3
Method Mathe O RPA 8
Operator M Duns /KAB/ 905
Date February 28, 1995 Run Number 2
Run Number 0 Z
Min./Pt
Stack Area ft ² /21.225
Sample Box Number Win
Meter Box Number 6
Meter ΔH@ (.704
Meter Calibration (Y) 1.000
Nozzle I.D. No. /6
Nozzle Diameter (ひょりが)

Pitot Tube (C_) O. 84
Probe Length y'
Probe Liner Material Colors
Probe Heater Setting 300° 250°
Ambient Temperature 70
Barometric Pressure (P _b) 29.80 in. Hg
Assumed Moisture B.0%
Static Pressure (P ₂) 29.80 in. Hg
Time - Start 0921 End 1028
Total Sample Time 60 Min.
Gas Analysis CO_2 % O_2 %
CO ₂ % O ₂ %
Comments

Dry Gas Meter Volume	
Final 679.23C	Ft ³
Initial 645.367	Ft³
Net 33.923	Ft ³
	_
Equipment Leak Checks	
Initial 0.00 CFM@ 15	"Hg
Final ().00 CFM@ 7	"Hg
Pitot Tube OK	_ ``
Moisture Determination	
Impinger 59	m1
Silica Gel /3.3	gm
Total 72.3	
14-	_

Traverse Point Number	Clock Time	Gas Sample Volume (Ft³)	ΔP (In. H ₂ O)	ΔΗ (In. H ₂ O)	Stack Temp. Ts(°F)	Meter Temp. Tm(°F)	Sample Box Temp. (°F)	Probe Temp. (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
1	921	6469	1,10	1.09	266	74	250	281	60	5
۷		649.2	1.05	1.05	268	78	250	27,2	5 Ç	5
3		651.3	1.10	1.09	270	79	250	748	56	5
႕		452.2	1.10	1.09	267	79	251	269	56	5
5	0936	654.1	ts.35	0.85	765	70	252	269	57	5
									:	

Traverse Point Number	Clock Time	Gas Sample Volume (Ft ³)		ΔΗ (In. Η ₂ Ο)	Stack Temp. Ts(°F)	Meter Temp. Tm(°F)	Sample Box Temp. (°F)	Probe Temp. (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
1	04.37	655.8	1.10	1.10	269	79	253	268	58	4
2		657.7	1.10	1.10	268	80	253	268	57	4
3		659.4	1.05	1.05	268	<u> ૯૦</u>	252	267	57	4
4		661.1	1.05	1.05	267	80	252	268	58	4
5	09:52	662.8	0.90	0,90	266	82	253	267	58	4
1	09:54	664.5	1.10	1,10	267	જા	256	265	59	4
2		666.3	1.00	1.00.	267	82	253	264	57	4
3		667.9	0.95	0.95	267	82	256	264	57	4
q		669.5	0.90	0.90	266	83	257	264	58	4
5	10,09	670.8	0.50	0.50	ጋራዛ	82	256	265	59	2
ļ <u>,</u>	1013	(72,9	j. 15	i.14	269	81	256	271	(₆ 0	4
2	70.7.0	674.4	824 mg	0.37	269	50	256	212	60	cf
3		677.1	0.76	0.36	269	82	252	274	59	4
4		6.77.7	0.94	0.94	269	72	252	214	. 59	4
5	1028	677.230	0.84	0.84	267	33	254	273	60	4

H₂ Soc/ -PARTICULATE FIELD DATA FORM

Plant F. J. GAMEA
Location Souler No. 3
Method USBPA 8
Operator M Ovis KAB 005
Date 2/28/56
Run Number 3
Min./Pt. 3
Stack Area ft ² /22./2/.225
Sample Box Number MA
Meter Box Number 6
Meter ΔH@ (, 70)
Meter Calibration (Y) /, c∞
Nozzle I.D. No. //
Nozzle Diameter (0.198)

Probe Length $\frac{p}{g}$ $\frac{p}{g}$ Probe Liner Material $\frac{2}{2}$ Probe Heater Setting $\frac{2}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ Ambient Temperature $\frac{7}{6}$ Barometric Pressure $\frac{p}{g}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ in. Hg Assumed Moisture $\frac{9}{3}$ $\frac{2}{5}$ $\frac{2}{5}$ in. Hg Static Pressure $\frac{p}{g}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ in. Hg Time - Start $\frac{1}{4}$ End $\frac{1}{4}$ $\frac{2}{5}$ $\frac{2}{5}$ $\frac{2}{5}$ Min. Gas Analysis $\frac{2}{5}$	Pitot Tube (C _p) <u>0.84</u>		
Probe Heater Setting 250° Ambient Temperature 76 Barometric Pressure (P_b) 25.85 in. Hg Assumed Moisture 9.0×5 Static Pressure (P_a) 25.85 in. Hg Time - Start $1/4$ End 14.9 12.20 Total Sample Time 10.0 Min. Gas Analysis 10.0 10	Probe Length P	_	
Ambient Temperature 76 Barometric Pressure (P_b) 25.45 in. Hg Assumed Moisture 9.0 25.85 in. Hg Static Pressure (P_b) 25.85 in. Hg Time - Start 1/4 End 449 /220 Total Sample Time 60 \sim Min. Gas Analysis CO_2 \sim	Probe Liner Material (/2,)		
Barometric Pressure (P_b) $\frac{25.45}{9.0}$ in. Hg Assumed Moisture Static Pressure (P_b) $\frac{25.85}{9.0}$ in. Hg Time - Start $\frac{1}{4}$ End $\frac{44.9}{4}$ $\frac{220}{20}$ Total Sample Time $\frac{60}{20}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{20}{20}$ $\frac{20}{20}$	Probe Heater Setting 250° -		
Assumed Moisture 9.0×5 in. Hg Static Pressure $P_1 \times 5 \times 5$ in. Hg Time - Start $P_2 \times 5 \times 5$ in. Hg Total Sample Time $P_3 \times 5 \times 5$ in. Hg Gas Analysis $P_4 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5 \times 5$ in. Hg $P_4 \times 5 \times 5 \times 5 \times 5 \times 5$ in. Hg	Ambient Temperature 76		
Static Pressure (P_1) 25.85 in. Hg Time - Start $1//4$ End 44.9 $/220$ Total Sample Time 20 \sim Min. Gas Analysis CO_2 70_2 7 CO_2 70_2 7	Barometric Pressure (P _b) 25.45	in.	Hg
Time - Start $1/4$ End 449 /220 Total Sample Time 60 \sim Min. Gas Analysis CO_2 $%$ CO_2 CO_2 $%$ CO_2	Assumed Moisture 9.0 %		
Total Sample Time 60 m Min. Gas Analysis CO_2 70	Static Pressure (P ₂) 75.85	in.	Hg
Gas Analysis CO_2	Time - Start 1/14 End 449	1220	2_
CO ₂	Total Sample Time 40 m >	M	in.
· ·	Gas Analysis CO ₂ % O ₂		%
Comments	CO ₂ % O ₂		%
	Comments		

Dry Gas	Meter Volume	
Final _	720, 856	Ft³
Initial	687,100	Ft ³
Net	33,75%	Ft ³
-2-2		

Equipment Leak Checks	
Initial 0.00 CFM@ 15	''Hg
Final 6,00 CFM@ 7	'''Hg
Pitot Tube OR	

Moisture Deter	mination	~
Impinger	:59	m1
Silica Gel	12.6	gm
Total	71.6	$^{}$ m $^{-}$

		r								
Traverse Point Number	Clock Time	Gas Sample Volume (Ft³)	ΔP (In. H ₂ O)	ΔΗ (In. H ₂ O)	Stack Temp. Ts(°F)	Meter Temp. Tm(°F)	Sample Box Temp. (°F)	Probe Temp. (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
1	1114	689.2	1.10	1.09	269	84	255	268	62	5
2		690.2	0.94	0.958	268	85	252	270	, 61	5
\$		6921	1.10	1.09	268	85	251	270	ĢI	5
4		693.8	0.88	6.88	269	87	256	269	61	5
.5	1129	695.4	0.78	0.78	267	88	25%	270	61	5
									•	

							(Mb:11			
Traverse Point Number	Clock Time	Gas Sample Volume (Ft ³)		ΔΗ (In. H ₂ O)	Stack Temp. Ts(°F)	Meter Temp. Tm(°F)	UMbi Sampl e Box Temp. (°F)	Probe Temp. (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
1	1230	697.1	1.05	1.05	268	88	253	265	62	5
2		699.1	1.05	1.05	८८४	88	253	45	62	5
3		701.1	1.08	1.08	265	90	258	265	62	5
4		702.6	0.92	0.92	267	9/	258	ruf	6/	5
5	1245	703.9	0.95	0.95	765	<u>٩/</u>	258	204	62	5
1	1247	705.8	1.03	1.03	268	88	252	268	68 68	5
2		707.7	1.00	1.00	268	90	258	272	59	5
3		709,4	1.08	1.08	268	90	254	269	60	5
4		711:4	1.10	1.10	266	91	255	270	62	6
5	1202	712.5	0.86	0.86	269	91	253	270	63	5
1	1205	714.5	0.99	0.99	268	91	253	264	4.5	5
1		716.9	0.98	0.98	269	92	256	266	63	5
3		718.4	0.94	0-96	268	92	252	266	63	5
4		719.5	0.97	0.97	267	93	252	245	. 65	5
5	1220	720.856	0.83	0.83	264	92	252	244	64	5

F-3 BASELINE ORSAT DATA SHEETS

ORSAT DATA AND CALCULATION SHEET

Source GAMON Shation Location Bo, lea No. 3

Run No.	Date	Gas		Ba (% Vc	lysis, sis olume)		Remarks
			1	2	3	Avg.	
		CO2	13.8	13.8	13.8	13.8	
		02	6.0	5.0	5.0	5.0	
1.5	2-28-56	со	0.0	0.0	0.0	0.0	
		N2	81.2	81.2	81,2	31.2	
	İ						ng
		CO2	138	13.5	13.8	13.8	
		02	5.2	5.2	5 \	5.2	
2-5	2.28-96	со	0.0	0.0	0.0	0.0	
		N2	81.0	81.0	81.0	91.0	
		-		• • •			ک یم
		CO2	13, 2	13.6	13.2	13.2	
		02	5.4	5.4	5.6	5.6	
3-5	2-28-94	со	00	0.0	0.0	0.0	
	W-20 - F	N2	81.2	81.2	81.2	81.2	µ10
				-	-		

ORSAT DATA AND CALCULATION SHEET

Source Oc. les No. 3 Location 6 AMOON SHATION

Run No.	Date	Gas	Ors 1	Ba	lysis, sis olume)	Dry Avg.	Remarks
	-	CO2	128	12.8	12.8	128	Method 8
		02_	6.0	6.0	6.0	4.0	5. Kin Acio M. st
	2/28/94	co	<i>6.0</i>	0.Q	0.0	0.0	
	·	N2	81.2	81. 2	81.2	81.2	l MO
						1	
		CO2	13.8	13 8	13.8	13.8	I of the &
	,	02	5, 4	5. Z	5.3	5.3	Mother 8 Hr Sort
2	2/28/94	co	0.0	0.0	0.0	0.0	A2 007
	7 / /	N2	80.8	810	80.9	80.9	NO
							<u> </u>
		CO2	13.2	13.2	13. Z	132	Mathed 8 Hz Soul
	, ,	02	5,2	5.2	5.2	5, 2	11. 504
3	2/28/74	со	0.0	0.0	0.0	0.0	NI DO /
	/ /	N2	81.6	81.4	81.6	81.6	Ow
			-			, , ,	M

F-4 BASELINE VISIBLE EMISSIONS DATA SHEETS SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

VISIBLE EMISSION OBSERVATION

SOURCE LAYOUT SKETCH DRAW NORTH ARROW SEC	A TECO ENERGY COMPANY							_			R 10/85
## OPPORTUNITY ## OF ACTUMENT CONCESTION ## OF ACTUMENT CONCESTION ## OF ACTUMENT CONCESTION ## OF ACTUMENT CONCESTION ## OPPORTUNITY ## OF ACTUMENT CONCESTION ## OF ACTUMENT C	SOURCE NAME SOURCE LOCATION	OBSERVATION DATE			START TIME			STOP TIME			
COOK STORE BOILET NAME O 15 30 45 NAME O 15 NAME O N	Boiler # 5 GANNON Station	2/23/96			1654			1734			
STATE OF FLORIDA STATE OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DETAILS OF THIS ECHAPTICATE CAPEOR THE ADMINISTRATION OF THIS IS TO CERTIFY THAT GLENN KISSIONE OF CAPEOR OF THE CALLARING OF THE STATE OF FLORIDA DEPARTMENT OF FLORIDA DETAILS OF THE CAPEOR		SEC					SÉC				
STATE OF FLORIDA STATE OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DEPARTMENT OF FLORIDA DETAILS OF THIS ECHAPTICATE CAPEOR THE ADMINISTRATION OF THIS IS TO CERTIFY THAT GLENN KISSIONE OF CAPEOR OF THE CALLARING OF THE STATE OF FLORIDA DEPARTMENT OF FLORIDA DETAILS OF THE CAPEOR	Cook Fired Boiler	MIN	0	15	30	45	MIN	0	15	30	45
SUNCE LAYOUT SKETCH DRAW NORTH ARROW SOURCE LAYOUT SKETCH DRAW NORTH ARROW SUNCE LAYOUT SKETCH SUNCE LAYOUT SKETCH DRAW NORTH ARROW SUNCE LAYOUT SKETCH SUNCE LAYOUT SKET	DISTANCE FROM OBSERVER	1	~			_	31				
SOURCE LAYOUT SKETCH DRAW NORTH ARROW 4	1000 '	1	ے	5	5	_ ک	31	_ ک	ک	<u>ک</u>	3
SOURCE LAYOUT SKETCH DRAW NORTH ARROW 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SKY CONDITIONS/PLUME BACKGROUND	2	سر		_	_	32		سه ا		-
SOURCE LAYOUT SKETCH DRAW NORTH ARROW 4	Partly Cloudy to Rhe Stier		ک	3	<u>.</u>	13	ļ <u></u>	ی	3_	J	S
SOURCE LAYOUT SKETCH DRAW NORTH ARROW 4	14,774 010029 10 25 25 1 3	3	سو	_ر ا	سر	سم ا	33	~	 		~
S	SOURCE LAYOUT SKETCH DRAW NORTH ARROW		7	٦	<u></u>	<u> </u>		0	3	٦	<u>ر</u>
SUNCO WIND SUNCOCATION LINE		4	_	_	_	سی ا	34			-	_
SUN-O WIND— SUN-O CATION LINE SUN-O WIND— SUN-OCATION LINE SUN-OCATION LINE SUN-OCATION LINE SUN-OCATION LINE SUN-OCATION LINE 10 5 5 5 38 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	· (/)		+		-			-	-	٦	
SUN-O WIND	•	5	5	7	ک	5	35	5	5	5	5
OBSERVERS POSITION 1400 SUN TO WIND SUN TO ATTOM LINE SUN TO ATTOM LINE SUN TO ATTOM LINE SUN TO ATTOM LINE 10 5 5 5 7 40 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	X EMISSION POINT				4		200	_			
SUN-O WIND		6	5	3	5	سی ا	36	5	5	5	5
SUN-O WIND	•	7			-		37	سر			_
SUN-O WIND			ડ	حک ا	5	_ ک		<u>ა</u>	3	5	5
SUN-O WIND		8		ر	سر	سع ا	38	۔ر ا	سر ا		
SUN-O WIND	OBSERVERS POSITION		<u>၁</u>	3	<u>د</u>	5		<u> </u>	3	3	ے
SUN-O WIND	1400	9	_		_		39	~			_
SUN-O WIND- VERAGE OPACITY STATE OF FLORIDA DEPARTMENT OF ENHARCHMENTAL REGULATION THIS IS TO CERTIFY CATE OF FLORIDA STATE OF FLORIDA DEPARTMENT OF REMARKANIA VISION ASSEMBLE CHARREN SIGNATURE STATE OF FLORIDA DEPARTMENT OF FLORIDA THIS IS TO CERTIFY THAT GLENN NASLUND THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA DEPARTMENT OF FLORIDA visible emissions evaluation training and is a qualified observed for whelbe among and so a qualified observed for whelbe among as specified parameters of the state of the whole the manner of the department of 19 and 19 a			<u> </u>	_ر	<u> </u>	_ ر		 _ _	<u>s</u>	د ا	<u> </u>
SUN-O WIND	SUNTLOCATION LINE	10	5		5		40	5	1	5	5
12 5 5 5 5	SUN-O- WIND-		<u> </u>		_				, <u>, , , , , , , , , , , , , , , , , , </u>	<u> </u>	
12	AVERAGE OPACITY	_ ՝՝	5	5	5	5	41	5	5	~~	5
WIND DIRECTION (EST.) WIND DIRECTION (EST.) West 13 \$ \$ \$ \$ \$ \$ \$ 43 \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5,0 %	12	سعر	سر		سو	42				_
13 5 5 5 5 5 5 5 5 5		<u> ''-</u>	د	3	ے	3		<u>ა</u>	ے	_ ک	<u>د</u>
SERVER'S NAME (PRINT)		13	_	_	_ر	اسر ا	43	ι τ		~	~
14 5 5 5 5 5 5	RSERVER'S NAME (PRINT)	_	رــ	ے	<u>ی</u> _	ے_		د	<u>၂၁</u>	၁	~
DATE DATE		14	3	1	~		44	5	3	سي	5
Dilinar Plankund Dilinar Dil	BSERVER'S SIGNATURE DATE				_				_	_	_
16 5 5 5 5 5 5 5 5 5	$\mathcal{D}_{\mathcal{C}}$ $\mathcal{D}_{\mathcal{C}}$ $\mathcal{D}_{\mathcal{C}}$ $\mathcal{D}_{\mathcal{C}}$ $\mathcal{D}_{\mathcal{C}}$	15	5	حی ا	5	5	45	3	5	5	7
17 5 5 5 5 5 18 5 5 5 5 5 19 5 5 5 5 5 19 5 5 5 5 19 5 5 5 5 20 5 5 5 5 5 5 5 5 5 5		16	~				46			~	_
17	Soot-Blowing Rus		ک	১	_د_	_ن	.,	<u> </u>	5	<u> </u>	<u> </u>
18 5 5 5 48 5 5 5 19 5 5 5 49 5 5 5 20 5 5 5 5 5 5 5 21 5 5 5 5 5 5 5 5 5 5 21 5 5 5 5 5 5 5 5 5 5 5 5 22 5 5 5 5 5 5	Joer Transpicon	17	~	سع	-	ہے	47	~	ا سع ا	_	~
DPY OF VISIBLE EMISSIONS CERTIFICATION CARD 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			7	د.		~		3	~	7	~_
19 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		18	5	5	5	اسی	48	5	5	5	5
DEPARTMENT OF ENERGY THAT GLENN NASLUND STATE OF FLORIDA has completed the observer of visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES 20		10					40				
DEPARTMENT OF ENABOLUND THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA has completed the observer of visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES THIS CERTIFICATE OFFICER BEARER'S SIGNATURE 21 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		19	5	حی	5	5	49	3	ک	<u>ر</u> ک	<u>ح</u>
DEPARTMENT OF ENABOLUND THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA has completed the observer of visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES THIS CERTIFICATE OFFICER BEARER'S SIGNATURE 21 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		20				سر	50	7	اسر ا	اسر ا	ً سر
STATE OF FLORIDA DEPARTMENT OF ENABRONMENTAL REGULATION THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 ELLING TOTAL REGULATION 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			٥	ک	د	ے	-	0	د	<u> </u>	<u>ر</u>
STATE OF FLORIDA DEPARTMENT OF ENABOLIMENTAL REGULATION THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 ELL. CERTIFICATE OFFICER BEARER'S SIGNATURE 22 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		21	~		ا سر	سے	51	,	~	احرا	~
STATE OF FLORIDA DEPARTMENT OF ENMARQUAMENTAL REGULATION THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 Example 1996 Example 29 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	OPY OF VISIBLE EMISSIONS CERTIFICATION CARD		<u>ں</u>)	<u></u>)			_ ر		<u> </u>
STATE OF FLORIDA DEPARTMENT OF ENMARQUMENTAL REGULATION THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 Example 1996 Example 29 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		22	اسي	5	احح	5	52	استح ا	5	ا سی	5
STATE OF FLORIDA DEPARTMENT OF ENMARQUMENTAL REGULATION THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 ELLIN NASLUND CERTIFICATE OFFICER DEARER'S SIGNATURE 24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	INVIRCAMA						F.0				-
THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES CERTIFICATE OFFICER BEARER'S SIGNATURE 24 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		23	ک	<u>ح</u>	ح	سی	53	5	5	5	<u></u>
THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 ELECTRIFICATE OFFICER BEARER'S SIGNATURE 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	[9] // //> /	24	<u></u>	~	سر		54	_	<i></i>	سر	
THIS IS TO CERTIFY THAT GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 ELLI C. CERTIFICATE OFFICER BEARER'S SIGNATURE 25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		-	٦	J	٦	ی		ى	<u>۔</u>	٤	<u> </u>
GLENN NASLUND STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 ELLI C. T. J.	***************************************	25	7	/		ا بى	5 5			اسر	~
STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 28 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			ے)	ب		ပ	J	٥	
STATE OF FLORIDA visible emissions evaluation training and is a qualified observer of visible emissions as specified by EPA reference method 9. THIS CERTIFICATE EXPIRES Feb 29, 1996 Etwo and the company of the comp	GLENN NASLUND . has completed the	26	5		_	5	56	5	رح	5	5
THIS CERTIFICATE EXPIRES Feb 29, 1996 Elimination State State of State of State Sta	STATE OF FLORIDA visible emissions evaluation training and is a qualified		-			-					_
CERTIFICATE OFFICER BEARER'S SIGNATURE 29 5 5 5 5 5 5	OUSSIVER OF VISIDIE EMISSIONS AS SPECIFIED BY EPA reference method 9. THIS CERTIFICATE EXPIRES	27	5	5	سی	1	57	5	5	اسح	سمح
CERTIFICATE OFFICER BEARER'S SIGNATURE 29 5 5 5 5 5 5	Feb 29, 1996	20					EO		18.		
CERTIFICATE OFFICER BEARER'S SIGNATURE 29 5 5 5 5 5 5	\blacksquare $=$ (a,b) (b)	28	5	5	5	_3_	<u> </u>	ے_	ک	5	_ کــ
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		29	سر	<i>-</i>	7		59	_	<i>_</i> _		~
30 5 5 5 5 5	DEARER S SIGNALURE		<u> </u>	ے ا	د.	<u>o</u>		ی	၂	٦	<u>0</u>
		30		سح	7	اسع	60	3	[~	اسی	,5
)	_ ت	ر	7				_	

F5 FUEL BLEND BURN PARTICULATE DATA SHEETS

SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

PARTICULATE SAMPLING FIELD DATA SHEET

TEST METHOD: USEPA Method 17 PERATOR: CONTROL BOX: DAVID SMITH SAMPLE PROBE: NATE Alcos, Leff Sollars	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DATE 4-23-96 RUN NO. 1-5 MIN/PT 3 TIME: START 1328 END 1433 TOTAL 60 MIN.	IMPINGER 54 ml SILICA GEL 10,2 ml
STACK DUCT DIMENSIONS: /2.5 STACK AREA: /22,7/8 FT², EFF. AREA: /22,7/8 FT²	TOTAL 64.2 ml EQUIPMENT LEAK CHECKS
EQUIPMENT CONTROL BOX: NO. 6 PYROMETER NO. /2 NOZZLE NO. 37 (0,2/2) PITOT TUBE NO. 00//2	INITIAL $O.C$ CFM@ IS "Hg FINAL $O.C$ CFM@ IO "Hg PITOT $O.C$ @ IS "H ₂ O
THIMBLE HOLDER NO. A PROBE LENGTH 12 FT METER CALIBRATION: (Y) 1,000 (AH) 1,661 ASSUMED H20 8.0 % PITOT CP 0.84 WEATHER: Partly Claudy warm	· · · · · · · · · · · · · · · · · · ·
COMMENTS: Sec the wing this RAN TOF Blend test	

TRAVERSE POINT NO:	CLOCK TIME	METER READING (FT ³)	ΔP (IN.H ₂ O)	ΔH (1N.H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
/	1328	680.6	0.99	1,32	282	85	68	7
2	/	682,6	0.96	1.28	282	88	68	7
_ 3		684,5	0.92	1,23	282	89	68	7
4		684.3	0,86	1.15	282	90	67	7
_ 5	i343	687.4	0.68	0.91	277	91	68	5,5
/	1345	689.3	0.98	/.3/	281	9/	62	7
2	(-	691.1	0,93	1.24	280	91	57	7
_3		693.0	0.94	1.26	278	92	56	7
4	}	694.9	0.94	1.26	278	91	55	7
_5	1400	696.8	0.89	1.19	274	91	54	7
	,							

	TRAVERSE POINT NO.	CLOCK TIME	METER READING (FT ³)	ΔP (1N:H ₂ O)	ΔΗ (1N;H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUN (IN. HG)
	_							_	
	/	1402	698.8	0.96	1.28	280	89	63	7.5
		5	700.7	0.99	1.32	281	89	57	8
	3		702.7	0.99	1-32	280	29	63	\mathcal{E}
	<u>.</u>	1	704.7	0.94	1.26	278	ළි 9	63	\mathcal{E}
L	5	1417	706.5	v.89	1.19	274	89	59	7
╽							,		
$\ $		1418	708.6	1.10	1.47	280	88	64	£.5
	2	5	710.6	1.10	1.47	281	88	59	<i>E</i> .5
	3		712.7	1.10	1.47	250	<i>E8</i>	62	9
	4		714.7	0.95	1.27	281	89	62	في
	_ 5	1433	716.6	0.82	1-10	272	<i>88</i>	60	7
	_							_	
								<u> </u>	
-									
-									
\parallel									
$\ $									
\parallel									
-									
L					_				
-					-				
$\ $									
L									
-									
L									
7									

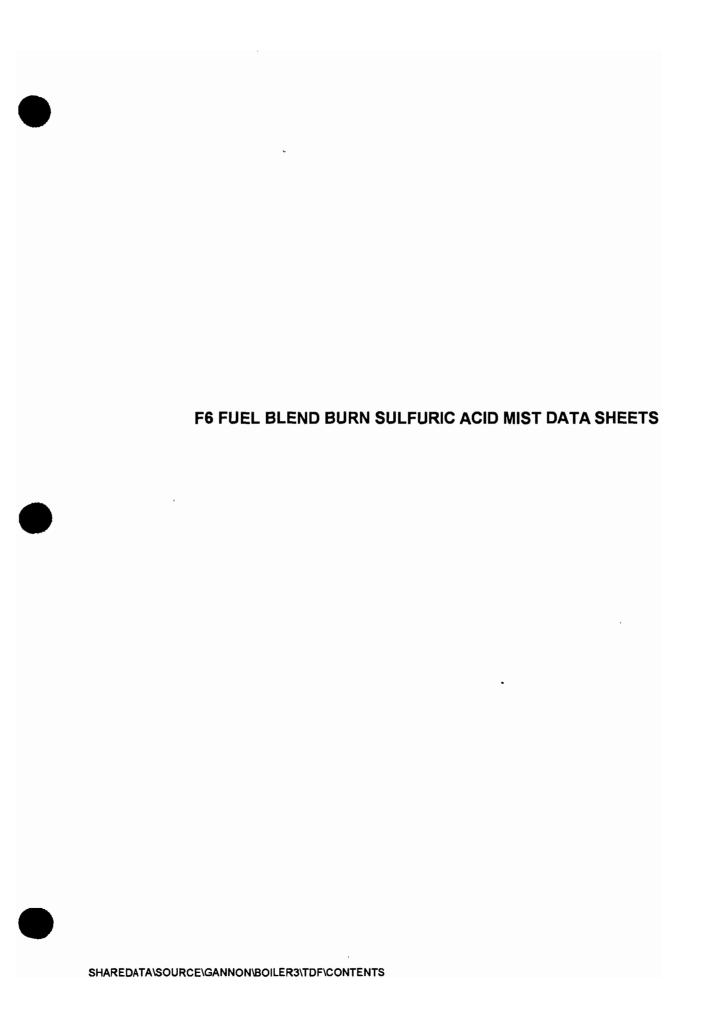
RUN NO. | 1-5 | PAGE | 2 | OF 2 |

PARTICULATE SAMPLING FIELD DATA SHEET

TEST METHOD: USEFA METHOD #17 PERATOR: CONTROL BOX: Joff SELLARS SAMPLE PROBE: NATE ALCOZ, DAVIN SMITH	INITIAL 7/7.159 FT
DATE $4-23-96$ RUN NO. $2-5$ MIN/PT 3	MOISTURE DETERMINATION
TIME: START 14:53 END 15:56 TOTAL 60 MIN.	IMPINGER 6.2 ml
,	SILICA GEL 8.2 ml
stack duct dimensions: 12 5	TOTAL 70, Z ml
STACK AREA: 122.718 FT2, EFF. AREA: 122.718 FT2	
	EQUIPMENT LEAK CHECKS
<u>EQUIPMENT</u>	INITIAL O - O CFM0 // "Hg
control box: No. 6 pyrometer No. 12	$final o \cdot O$ $cfm@ 9$ "Hg
NOZZLE NO. $37 (0.2/2)$ PITOT TUBE NO. $00/2$	PITOT \bigcirc . \bigcirc \bigcirc \bigcirc "H ₂ O
THIMBLE HOLDER NOFT	
METER CALIBRATION: (Y) 1.000 (ΔH) 1.681	PROBE ASSEMBLY CHECKS
ASSUMED H20 &. O % PITOT CP C. 84	NOZZLE/PITOT $$ IN. ($\geq 3/4$ IN.)
WEATHER: PARTLY-Cloudy winny warm Pb 29.98 "Hg Pb 29.98 "Hg TEMPERATURE 84 "F COMMENTS: Scotblewing TOF BLEND TEST"	THER./PITOT

	TRAVERSE POINT NO:	CLOCK	METER READING (FT ³)	ΔP (1N.H ₂ O)	ÅH (1N.H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP: TEMP(°F)	VACUUM (IN. HG)
	1	14:53	7/9.3	1.10	1.47	279	83	68	9
	ż		721.4	1.10	1.47	284	84	66	9
	3		723.5	1.00	1-34	281	86	66	8.5
	<u>4</u> 5		725.5	0.96	1,28	279	86 86	60	<i>E</i> .5
	5	15:08	727.3	0.69	0.922	263	87	62	Ģ
			·	•					
	1	15:09	729.0	0.95	1.27	279	86	61	7
	2		731.0	1.10	1.47	281	<i>8</i> 7	62	7
	3		732.9	0.98	1.31	280	88	59	8
	4	(734.8	0.95	1.27	279	89	59	8
	5	15:24	736.7	0.84	1.12	272	89	59	7
									,
_									
T									

	TRAVERSE POINT NO.	CLOCK TIME	METER READING (FT ³)	ΔP (1N.H₂O)	ΔH (IN:H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
	1	15:25	738.6	1.00	1.34	281	87	59	₽
	2	Ĉ	740.5	0.96	1-28	282	23	58	8
	3		742.5	0.97	1.30	278	<i>8</i> 8	58	8
	4	{	744.4	0.97	1.30	278	88	57	පි
		15:40	746.1	0-75	1.00	271	88	58	6.5
		15:41	748.1	1.00	1.34	280	87	59	<i>8</i>
	2	5	750.0	0.95	1.27	280	88_	58	8
	3		752.0	0.94	1.26	279	88	57	<u> </u>
	4	<u> </u>	753.8	0.89	1:19	280	<i>8</i> 8	57	7
		15:56	755.6	0.72	0.96	275	88	58	6
ŀ			-		,				
╟									
		_			-				
-									
$\ \cdot\ $									
\parallel									
-			-						
╟									
\parallel									
-									
$\ $									
\parallel	_		-						
-									
F								-	
		-							
T			-				_		
L				<u> </u>					


RUN NO. 2-5 PAGE 2 OF 2

PARTICULATE SAMPLING FIELD DATA SHEET

TEST METHOD: USERA METHODIE 17 PPERATOR: CONTROL BOX: Jeff Sellans SAMPLE PROBE: NATE ALCOZ, DAVID SMITH	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
DATE $4-23-96$ RUN NO. $3-5$ MIN/PT 3 TIME: START $16:10$ END $17:13$ TOTAL 60 MIN. STACK DUCT DIMENSIONS: 12.5	
STACK AREA: 122.718 FT ² , EFF. AREA: 122.718 FT ² EQUIPMENT CONTROL BOX: NO. 6 PYROMETER NO. 12 NOZZLE NO. 37 (0.212) PITOT TUBE NO. CO112	EQUIPMENT LEAK CHECKS INITIAL O.O CFM@ // "Hg FINAL O.O CFM@ // "Hg PITOT O.O @ 7.5 "H2O
THIMBLE HOLDER NO. C PROBE LENGTH 10 FT METER CALIBRATION: (Y) 1.000 (AH) 1.681 ASSUMED H20 8.0 % PITOT CP 0.84 WEATHER: PARTLY Cloudy / WINDY / WARM	PROBE ASSEMBLY CHECKS NOZZLE/PITOT / IN.(≥3/4 IN.) THER./PITOT / IN.(≥ 2 IN.) PROBE/PITOT / IN.(≥ 3 IN.)
	DAMAGE DURING TEST? NO

TRAVERSE POINT NO.	CLOCK	METER READING (FT ³)	ΔP (IN.H ₂ O)	ΔH (IN.H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
1	16:10	758.1	1./0	1.47	281	83	66	10
2	5	760.1	1.10	1.47	280	84	66	10.5
3		762-2	1.00	1.34	280	86	58	10
4		764.1	0.85	1.14	280	86	64	8.5
5	16:25		0.80	1.67	277	87	59	8
1	16:26	767.9	1.10	1.47	279	87	63	9.5
2	5	769.8	0.93	1.24	280	88	63	9
3 3		771.8	0.95	1.27	280	80	65	9
4		273.7	0.86	1.15	277	89	62	9
5	16:41	775.6	0.72	0.96	276	89	61	7
			_					

-	TRAVERSE POINT NO.	CLOCK	METER READING (FT ³)	ΔP (IN.H ₂ O)	ΔH (1N.H ₂ O)	STACK TEMP. Ts(°F)	METER TEMP. Tm(°F)	LAST IMP. TEMP(°F)	VACUUM (IN. HG)
	1	16:42	777.3	0.91	1.22	280	89	60	8
	2		779.2	1.00	1.34	280	89	58	8.5
	3		781.2	0.97	1.30	278	89	58	9
	4		783.1	0.92	1.23	278	89	58	9
	5	16:57	785.0	0.80	1.07	27/	89	56	9
					•	•			
	1	16:38	787.1	1.10	1.47	278	88	56	10
	2	5	789-1	1.00	1.34	280	88	58	10
	3		791.1	0.98	1.31	280	88	62	10
	4		793.1	0.93	1.24	278	<i>8e</i> -	55	9.5
	5	17:13	794.8	0.76	1.02	272	88	66	8
					-				
					-				
					,				
L									
Ď									

Sulfuric Acid Mist Field Data Form

Plant S. S. SANNON

Location Boile NO 3

Method WSELA METHODE

Operator DAVID SM, 74

Date 4-23-96

Run No. 1-5

Min. | Pt. 3

Stack Area Ft.2 / 22.7/8

Sample Box No. N/A

Meter Box No. 6

Meter Cal. (Y) 1,000

Nozzle I.D. No. 6

Nozzle Diameter (), (97

Pitot Tube (C _p) 0,84	
Probe Length 10	
Probe Liner Material incone	
Probe Heater Setting 250	
Ambient Temperature 76	
Barometeric Pressure (P.) 30, ขบ	in. Hg
Static Pressure(P) 30.00	in. Hg
Assumed Moisture (%) 8.07.	_
Time - Start 0747 End 0853	
Total Sampling Time 60 MIN	Min.
Comments Sinthlandy this Run	
TDF TEST Blend	

Dry Gaş Meter Volume	
Final 576,94/	Ft.3
Initial 545.866	Ft.3
Net 31,075	Ft.³
Equipment Leak Checks	
Initial 👌, v CFM@ 15	*Hg
Final O,O CFM@ 8	*Hg
Pitot Tube 6.0 6 7.5	*H₂O
Moisture Determination	
Impinger 30	ml
Silica Gel 30,4	gm
Total 50.4	

Traverse Point No.	Clock Time	Gas Sample Volume (Ft ³)	ΔP (In. H ₂ O)	ΔΗ (In. H ₂ O)	Probe Temp. (°F)	Stack Temp. Ts (°F)	Umbilical Temp (°F)	Meter Temp. Tm (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
1	0747	547.2	0.16	0.42	243	245	267	77	68	7
2	·	548.8	0.92	0.88	268	268	257	80	68	6.5
3		550.6	0.92	0. ઈંદ	257	268	256	81	4.8	6.5
4		552,0	0.90	0.87	256	248	255	81	68	6
5	0802	553,4	0.82	0.79	255	265	257	82	68	6
1	0804	555.2	0.99	0.95	253	269	258	81	65	6.5
2		554.7	6.91	0.87	251	268	256	81	65	6
3		358,4	0.95	0.91	248	267	256	82	65	6.5
4		540.0	0.95	0.91	249	266	258	62	65	4.5
5	0819	561.5	0.84	0.81	247	264	257	82_	46	6

Sulfuric Acid Mist Field Data Form (Continued)

Traverse Point No.	Clock Time	Gas Sample Volume (Ft³)	ΔP (In. H ₂ O)	ΔH (In. H ₂ O)	Probe Temp. (°F)	Stack Temp. Ts (°F)	Umbilical Temp (°F)	Meter Temp. Tm (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
	0821	543.1	0.11	0.87	251	265	240	80	64	6
		564.9	0.84	0.81	252	246	262	81	65	8
3	+	564.2	0.84	0.81	253	266	263	81	66	6
4	:	567.7	0.88	0.85	255	266	252	82	68	6
5	0834	569,2	0,58	0,50	252	243	255	81	68	6
	0838	570.8	0.94	0.90	248	248	255	80	68	6.5
2		572,4	0.87	0.84	248	269	250	81	68	6
3		574.0	0.83	0.80	248	247	250	82	66	6.
4		575.5	0.85	0.82	247	269	252	82	63	6
5	0853	576.9	0.74	0.71	248	268	249	BZ	62	5

Run No.) ~ 5 Page 2 Of 2

Sulfuric Acid Mist Field Data Form

Plant F. S. GANNON

Location Boile No 3

Method USER Method 8

Operator Day'd San Ma

Date 4-23-9 &

Run No. 2-5

Min. | Pt. 3

Stack Area Ft. 2 | 22, 7/6

Sample Box No. V/A

Meter Box No. 6

Meter Cal. (Y) /, co3

Nozzle I.D. No. 3 |

Nozzle Diameter 2) 2

Pitot Tube (C _p) <u> 0, 8 </u>	
Probe Length 10	
Probe Liner Material , NCAVE!	
Probe Heater Setting 250	
Ambient Temperature 86	
Barometeric Pressure (P,) 3ວ.ບວ	in. Hg
Static Pressure(P) 30.00	in. Hg
Assumed Moisture (%) 8.0	
Time - Start 094/ End 1046	
Total Sampling Time אין אין	Min.
Comments 54) April 1200 this Run	
Comments Surthlewing this RUN TDI= test BIEND	

Dry Gas Meter Volume	
Final 622.755	Ft.3
Initial 585, 625	— Ft.3
Net 37,130	Ft.³
Equipment Leak Checks	
InitialCFM@	" Hg
Final 0.0 CFM@ 8.5	—_•Hg
Pitot Tube D. O @ 7,5	" H₂O
Moisture Determination	
Impinger じレ	ml
Silica Gel /7. L	gm
Total 79.2	

Traverse Point No.	Clock Time	Gas Sample Volume (Ft³)	ΔP (In. H₂O)	ΔH (In. H₂O)	Probe Temp. (°F)	Stack Temp. Ts (°F)	Umbilical Temp (°F)	Meter Temp. Tm (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
1	0941	<i>5</i> 87,5	0.92	1.23	215	267	248	80	64	6
2		569.4	0.92	1,23	235	272	253	83	61	6
3		571,2	0.89	1.19	249	272	254	85	62	6
4)	593.1	0.85	1.14	250	272	248	86	65	6
5	0756	574,7	0.72	0.90	246	270	249	<i>B</i> 7	66	5
i	0957	396,6	0.87	1.16	246	271	245	87	45	8,5
2		518.3	ე.87	1,16	247	270	246	87	65	7
3		600,2	0.87	1.16	247	270	250	88	67	7
4) _	602,0	0.85	1.14	246	269	251	88	67	7
5	1013	603,8	0.83	1.11	245	268	247	89	65	7

Sulfuric Acid Mist Field Data Form (Continued)

Traverse Point No.	Clock Time	Gas Sample Volume (Ft³)	ΔΡ (In. H ₂ O)	ΔΗ (In. H ₂ O)	Probe Temp. (°F)	Stack Temp. Ts (°F)	Umbilical Temp (°F)	Meter Temp. Tm (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
,	1014	605.8	0.98	1,31	246	271	247	89	65	6,5
Z		407.7	0.94	1.28	248	271	251	90.	65	6
3		601.5	0,90	1,20	248	27]	240	90	65	6
4	,	611.4	0.96	1,28	246	210	252	91	65	6
5	1029	613.4	0.83	1.11	246	268	251	91	66	6
										_
j	1031	615.4	0.71	1.22	250	272	247	90	<i>45</i>	i _v
2	/	617.1	0.92	1,23	254	27/	247	41	64	6
3	5	619.0	0.95	1.27	254	27/	247	91	45	4
4	/	620,9	0.94	1.26	254	27/	250	92	66	6
5	1046	622.7	0.75	1.00	254	268	248	92	48	4
X					_				<u> </u>	
,										
		ļ								

Run No. <u>1-5</u> Page 1 Of 1

Sulfuric Acid Mist Field Data Form

Plant | 5. LANNON |
Location | Bu, | eL NO. 3 |
Method | USEPA Method | B |
Operator | DAVID SMITH |
Date | 4-23-96 |
Run No. | 3-5 |
Min. | Pt. | 3 |
Stack Area Ft. 2 | 122 | 118 |
Sample Box No. | A |
Meter Box No. | A |
Meter Cal. (Y) | 1.000 |
Nozzle I.D. No. | 3.7 |
Nozzle Diameter | 0,212 |

Pitot Tube (C _p) 0,84	
Probe Length 10	
Probe Liner Material incave /	
Probe Heater Setting 250	
Ambient Temperature 80	
Barometeric Pressure (P,) 30.0 4	in. Hg
Static Pressure(P) 35.04	in. Hg
Assumed Moisture (%) 8.0 %	
Time - Start //29 End / 233	
Total Sampling Time 60 WW	Min.
Comments Swift owing this Run	
TDF Test Blend	

rınaı_	<u>668,525</u>	Ft. ³
Initial_	632.044	Ft.3
Net	36,481	Ft.
Equip	nent Leak Checks	
Initial		5 " Ho
Final_	ח.ט CFM@ E	"Hg
Pitot T		"H,0

Traverse Point No.	Clock Time	Gas Sample Volume (Ft³)	ΔP (In. H ₂ O)	ΔΗ (In. H ₂ O)	Probe Temp. (°F)	Stack Temp. Ts (°F)	Umbilical Temp (°F)	Meter Temp. Tm (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
/	1129	634.4	0.98	1.31	220	270	244	83	59	6
2		634.3	0.89	1,19	252	270	249	86	57	6
3		638,1	0.91	1,22	254	270	249	87	59	6
4		640.0	0.91	1.22	251	269	247	89	60	6
5	;144	641.8	0.75	1.00	252	266	248	89	60	5
1	1146	643.3	0.91	1,22	252	269	251	89	62	7
2		645,1	0.89	1,19	252	269	247	90	61	6
3		647,0	0.89	1.19	251	268	252	90	61	6
4	1	648.8	0.84	1.12	249	268	253	90	62	5,5
5	1201	650,5	b.79	1.06	248	266	253	91	63	5
								_		

Sulfuric Acid Mist Field Data Form (Continued)

Traverse Point No.	Clock Time	Gas Sample Volume (Ft³)	ΔP (In. H ₂ O)	ΔΗ (In. H ₂ O)	Probe Temp. (°F)	Stack Temp. Ts (°F)	Umbilical Temp (°F)	Meter Temp. Tm (°F)	Last Imp. Temp. (°F)	Vacuum (In. Hg.)
1	1202	652,4	0.89	1.19	246	269	247	90	43	5.5
2		654,1	0.81	1.08	247	269	252	91	62	4
3		655,1	0.88	1.18	249	269	241	91	62	i
4	(657.8	0.85	1.14	249	268	252	9/	63	6
5	1217	659,6	0.81	1.08	248	268	250	91	63	5,5
j	1218	661.4	0.87	1.16	254	270	250	91	66	5,5
2		663.2	0.85	1.14	260	271	250	92	67	5.5
3		665,0	5.85	1.14	254	272	254	93	67	5.5
4	1	666.8	0.87	1.16	256	272	248	93	68	5.5
5	1233	668.5	0.73	0.98	254	271	252	93	68	5
							 			
	_									
				·						
				<u> </u>						

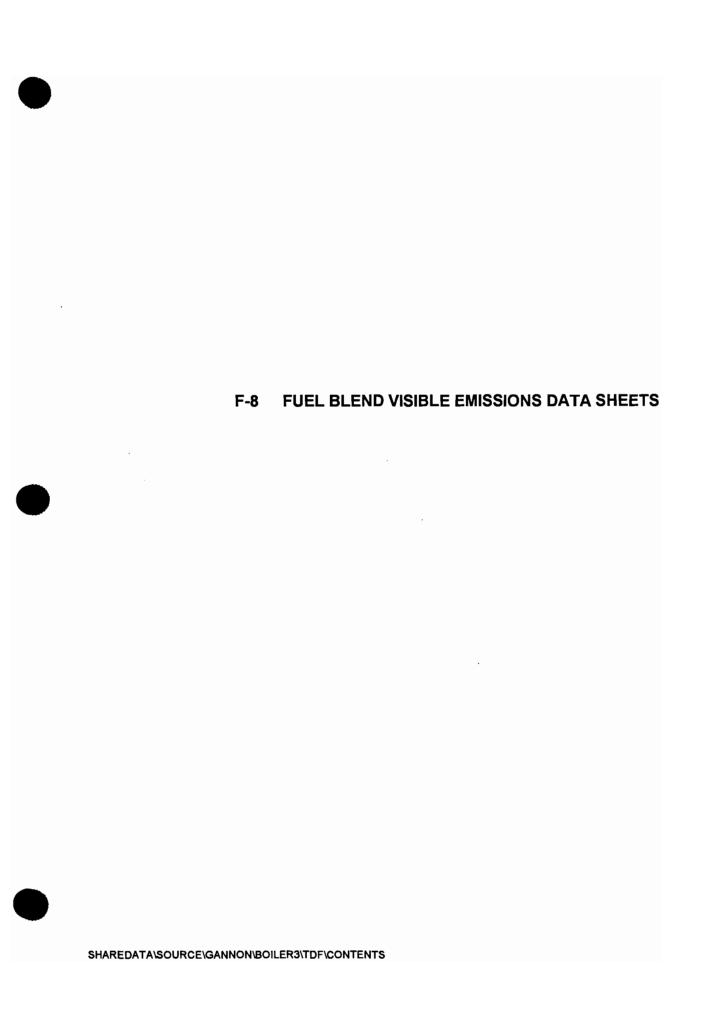
Run No. 3 - 5 Page 2 Of 2

F-7 FUEL BLEND BURN ORSAT DATA SHEETS SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

ORSAT DATA AND CALCULATION SHEET

Source Boiler NO, 3 Location F. J. GANNON

Run No.	Date	Gas	Orsat Analysis, Dry Basis (% Volume)			Remarks	
			1	2	3	Avg.	
	94	CO2	10.4	10,4	10.4	10.4	Method & TDF
1-5	4-23-94 DE	02	6.2	4.4	4.8	5,1	Fo=1.519
	DES	со	0	0	0	0	
		N2	83,4	85.2	84,8	84,5	
					_		
a-5	4-23-96	CO2	11.7	11,4	11.7	11.6	TOF Blood
	4-23-96 DAS	02	4.1	3.4	4.1	3,9	18-1,740
		со	Ù	0	Ö	0	
		N2	84.2	85.2	84,2	84.5	
						_	
		CO2	11.7	11.7	11.7	11.7	TDF BKNd
		02	2.7	2.7	2.7	2.7	Fo = 1.556
3-5	4.23.96	СО	0	0	0	0	
	Allen	N2	<u>β</u> 5.ψ	85.4	85.6	85.6	
	Attion						


Note: Suspect a problem with cresat analyzar on Run 2-5 and 3-5.

245

ORSAT DATA AND CALCULATION SHEET

Source Boiler NO.3 Location F. J. GANNON

Run No.	Date	Gas	Ors	Orsat Analysis, Dry Basis (% Volume)		Dry	Remarks
			1	2	3	Avg.	
	4-23-86 DAG	CO2	12.6	12.6	12.6	12.6	
1-5 PARt.	DE	02	6	5,6	6	5.4	Jue nea 11
PARt.		со	0	0	0	0	1= 1.190
		N2	81.4	81.8	81.4	81,5	
	4-73-96	CO2	12,3	12.3	12.3	12.3	,
2-5	4-23-96 DAS	02	4.3	6,3	4.3	4.3	TOF Blend
2-5 Part		СО	0	0	0	0	TOF Blend Fo = 1.187
PF		N2	81.4	91.4	81.4	91.4	
3-5	4-23-96	CO2	12.6	12.6	12,6	12,6	TOF Blowd
.3-5 Pact.	4-23-96 DAS	02	5.8	5.8	5,8	5,8	15 = 1.198
Paet.		со	0	0	0	0	12 = 1.148
		N2	81.6	81.4	81,6	81.6	

VISIBLE EMISSION OBSERVATION

ATECOENERGYCOMPANY											R 10/8
Source NAME J Gannon Unit "3 Source LOCATION Tampa	EI	OBSE	VATION	DATE 3/90		START	TIME 3:2	9	STOP	TIME	0
THE OF FACILITY		SEC.	1/2	<i>) </i>	, 		SEC				<i>'</i>
Coal Fired boiler	•	MIN	0	15	30	45	MIN	0	15	30	45
DISTANCE FROM OBSERVER	•	1	Ø	Ø	Ø	5	31	Ø	Ø	Ø	Ø
SKY CONDITIONS/PLUME BACKGROUND		2	d	77	5		32	X	Ø	X	0
Scattered / blue			4	9		Ø		Ø	-	9	
SOURCE LAYOUT SKETCH DRAW NORT	H ARROW	3	φ	Ø	Ø	Ø	33	φ	Ø	Ø	φ
		4	5	Ø	Ø	Ø	34	Ø	Ø	0	Ø
C C SEINDSCORPORTY).	5	Ø	Ø	Ø	Ø	35	\emptyset	Ø	Ø	\emptyset
1/7/07/		6	5	Ø	Ø	Ø	36	Ø	Ø	Ø	Ø
		7	Ø	Ø	5	5	37	Ø	Ø	Ø	Ø
OBSERVERS POSITION) N	8	Ø	Ø	0	Ø	38	Ø	Ø	Ø	Ø
140° Carla!		9	0	B	5	Ø	39	05	M	Ø	Ø
SUN POCATION LINE		10	Ø	Ø	<u>a</u>	<i>x</i>	40	Ø	\mathcal{A}	-	,
SUN-O- WIND-		11	Ø	y X	<i>y</i>	φ	41	i	φ	Ø	Ø
AVERAGE OPACITY . Ø. 2 %			φ	φ	Ø	Ø		Ø	Ø	Ø	Ø
WIND SPEED (EST.) WIND DIRECTION (EST.	.)	12	Ø	φ	Ø	$ \emptyset $	42	Ø	Ø	Ø	Ø
15-18 mph WSW		13	\emptyset	Ø	Ø	$ \emptyset $	43	Ø	Ø	Ø	Ø
15-18 mph WSW RVER'S NAME (PRINT) R.A. M. Darby		14	Ø	Ø	Ø	Ø	44	Ø	Ø	Ø	5
OBSERVER & SIGNATURE AUDY DATE 4/23/96		15	Ø	Ø	Ø	Ø	45	Ø	Ø	Ø	Ø
COMMENTS		16	Ø	0	5	Ø	46	0	Ø	Ø	Ø
sight angle 21°		17	d	d	Ø	Ø	47	d	B	Ø	Ø
TOF fest buin		18	d	M	Ø	Ø	48	B	M	α	Ø
		19	X	Ø			49	α	Ø	$\frac{\varphi}{\alpha}$	
		_	Ø	Ø	Ø	Ø		Ø	Ø	Ø	Ø
		20	Ø	9	Ø	φ	50	φ	0	9	Ø
COPY OF VISIBLE EMISSIONS CERTIFICATION CARD	F	21	Ø	Ø	Ø	Ø	51	φ	Ø	Ø	Ø
Service Control of the [_	22	φ	Ø	Ø	Ø	52	Ø	Ø	Ø	Ø	
-		23	Ø	Ø	Ø	Ø	53	Ø	Ø	Ø	Ø
STATE OF FLORIDA DEPARTMENT OF ENMARQUIMENTAL REG	ULATION	24	Ø	Ø	Ø	Ø	54	0	8	Ø	CX
THE CO THE COLUMN THE		25	<u>7</u>	d	8	d	55	<i>d</i>	d	X	X
THIS IS TO CERTIFY THAT		26	4	<u>м</u>	X	4	56	4	X	X	\propto
RAY MCDARBY , has con STATE OF FLORIDA visible emissions evaluation training and is	npleted the	27	\mathcal{L}	$\frac{\varphi}{\alpha}$	φ	<i>y</i>	57	$\frac{\varphi}{\lambda}$	$\frac{\mathcal{Y}}{\mathcal{X}}$	W X	<i>y</i>
observer of visible emissions as specified by EPA reference methods. THIS CERTIFICATE EXPIRE 1996	nod 9.		φ	φ	φ	φ		<u> </u>	φ	<u> </u>	φ
Aug 29, 1996		28	φ	Ø	Ø	Ø	58	φ	\emptyset	Ø	Ø
CERTIFICATE OFFICER BEAVER'S SH	MATURE -	29	5	ϕ	Ø	Ø	59	Ø	Ø	Ø	Ø
	. ,	30	Ø	Ø	Ø	φ	6 0	Ø	\emptyset	Ø	Ø

APPENDIX G

SAMPLE EQUIPMENT CALIBRATIONS

G-1 BASELINE EQUIPMENT CALIBRATIONS
G-2 FUEL BLEND BURN EQUIPMENT CALIBRATIONS

G-1 BASELINE EQUIPMENT CALIBRATIONS

SUMMARY OF EQUIPMENT CALIBRATIONS

EQUIPMENT	CALIBRATION DATE	LOCATION	METHOD	RESULTS
Method 17 Console 4 Initial Test Post Test	1-2-96 3-4-96	CES CES	Wet Test Meter Wet Test Meter	Y = 1.013 Y = 1.019
Nozzle #16 Initial Measurement Post Test	1-2-96 3-5-96	CES CES	3 Measurements w/calipers	DN= 0.198 DN= 0.198
Pyrometer No. 5	1-12-96	CES	Comparison to ASTM Thermometer	Correct to ± 2°F
Pitot Tube 00107	1-4-96	CES	EPA Method	CP = 0.84
Wet Test Meter Serial No. 12-AH-4	1-9-96	CES	Liquid Displacement	CF= 1.007
Barometer SN 00224	1-3-96	CES	Comparison to National Weather Services	Correct to ± 0.04" Hg

INITIAL DRY GAS METER AND ORIFICE CALIBRATION

CONTROL BOX NO. 4 BAROMETRIC PRESS. , 29.90 IN. HG.

DATE

1-2-96 PERFORMED BY

[RUN 1	RUN2	RUN 3	RUN 4
VACUUM ("Hg)	3.0	3.0	3.0	3.0
dHw ("H2O)	0.65	1.10	1.30	2.00
dHd ("H2O)	0.50	1.00	1.50	2.00
INITIAL WTM	0.0000	0.0000	0.0000	0.0000
FINAL WTM	6,0038	8.3573	7.3038	7,6165
INITIAL DGM	810.306	816.907	826.221	834.414
FINAL DGM	816.260	825.338	833.687	842.297
TEMP. WTM (F)	71.5	72.0	72.5	72.5
TEMP. DGM (F)	85.0	88.0	89.0	91.0
TEST TIME (MIN.)	15.0	15.0	11.0	10.0

NET VOLUME WTM	6.0038 8.3573 7.3038 7.6165
NET VOLUME DGM	5.954 8.431 7.466 7.883
Y	1.033 1.019 1.005 0.995
dH@	1.715 1.764 1.863 1.881

AVERAGE Y =

1.013

ACCEPTABLE Y RANGE =

0.993 ΤÖ 1.033

AVERAGE dH@ = 1.806

ACCEPTABLE dH@ RANGE =

ΤO 1.656

1.956

 $Y = (Vw(Pb) \times (Td + 460)) / (Vd(Pb + (dHd/13.6)) \times (Tw + 460)$

 $dH@ = 0.0317 x dHd / (Pb (Td + 460)) x ((Tw + 460) x time) / Vw)^2$

RECHECK OF ORIFICE AND DGM CALIBRATION

CONTROL BOX NO. 4 BAROMETRIC PRESS. 30.40

IN. HG.

DATE

LEAK CHECK OF METER SYSTEM of 7" HG.

PRIOR Y =

1.013

	RUN 1	RUN 2	RUN 3
VACUUM ("Hg)	7.0	7.0	7.0
dHw ("H2O)	1.10	1.10	1.10
dHd ("H2O)	1.00	1.00	1.00
INITIAL WTM	0.0000	8.3770	16.7378
FINAL WTM	8.3770	16.7378	25.0900
INITIAL DGM	593.522	601.924	610.392
FINAL DGM	601.924	610.392	618.883
TEMP. WTM (F)	68.0	68.0	68.5
TEMP. DGM (F)	83.0	86.0	87.0
TEST TIME (MIN.)	15.0	15,0	15.0

NET VOLUME WTM	8.3770	8.3608 8.3522
NET VOLUME DGM	8.402	8.468 8.491
Y	1.023	1.019 1.016
dH@	1.717	1.714 1.717

PRIOR Y =1.013 RECHECK Y = 1.019 % DIFFERENCE = 0.592

AVERAGE dH@ = 1.716

Y = (Vw(Pb) x (Td + 460)) / (Vd(Pb + (dHd/13.6)) x(Tw + 460)

 $dH@ = 0.0317 x dHd / (Pb (Td + 460)) x ((Tw + 460) x time) / Vw)^2$

NOZZLE CALIBRATION DATA FORM

NOZZLE SET NO.

DATE: 1-2-96 CALIBRATED BY:

NOZZLE IDENTIFICATION	NO	ZZLE DIAMET	TER				
IDENTIFICATION	D1	(IN.) D2	D3	ΔD	D avg		
j	,1/1	, 1//	- 111	0.000	0-111		
if	.125	.125	.125	0.000	0-125		
5'	.150	.150	.150	0.000	0-150		
6	1197	.197	.197	0.000	0.197		
9	.276	. 276	.276	0.0000	0.276		
10	-295	.296	-296	0.001	0.296		
12	.388	-388	.388	0.000	0.388		
15	. 164	.164	-164	0.000	0.164		
16	.198	, 198	. 198	0.000	0.198		
19	.274	.274	.274	0.000	0.274		
22	- 365	.364	. 364	0.001	0.364		
30	. 314	. 314	.314	0.000	0.314		
36	. 185	. 185	.185	0.000	0.185		
37	.211	.21/	-212	0.00111	0.211		
38	.244	.244	. 245	0.001	0.244		
46	.192	.192	,192	0.000	0.192		
48	.249	, 249	.249	0.000	0.249		
47	.200	. 200	. 201	0.001	0.2007		
50	. 314	. 314	- 314	0.000	0.3147		
58	.236	. 236	- 236	0.000	0.236		
here: D1,2,3 = three different nozzle diameters,(in); each diameter must be Achanged measured to the nearest 0.001 in. Since last							

maximum difference between any two diameters, (in.) $\Delta D \leq 0.004$ in. ∆D=

 $D \Lambda vg = average of D1, D2, and D3.$

Cal.

PAGE / OF

FINAL NOZZLE CALIBRATION DATA FORM

NOZZLE NO_16_ DATE: 3-5-96 CALIBRATED BY: \$\int_{\text{0}}\text{0}.

NOZZLE IDENTIFICATION	DI (IN.)	ZLE DIAMETI D2 (IN.)	<i>D3</i> (IN.)	ΔD (IN.)	D AVG
#16	_	0.198	S. 48 14 2 2 2 2 1 1 1 1 1	0.000	0.198

where:

D1,2,3= three different nozzle diameters, (in); each diameter must be measured to the nearest 0.001 in.

Δ D= maximum difference between any two diameters, (in.). △ D≤ 0.004 in.

D AVG= average of D1,D2 and D3.

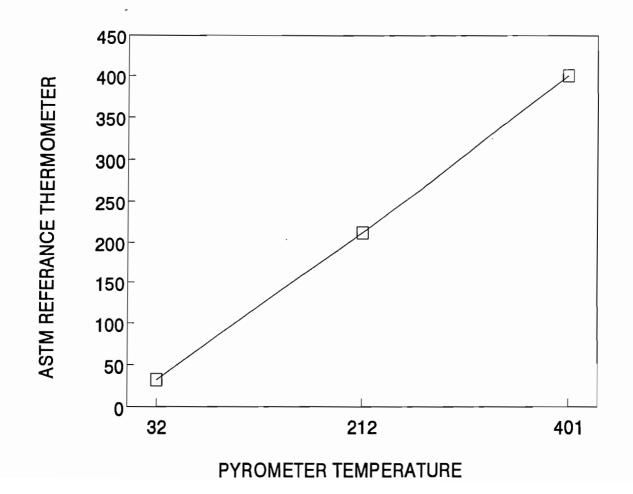
PYROMETER CALIBRATION

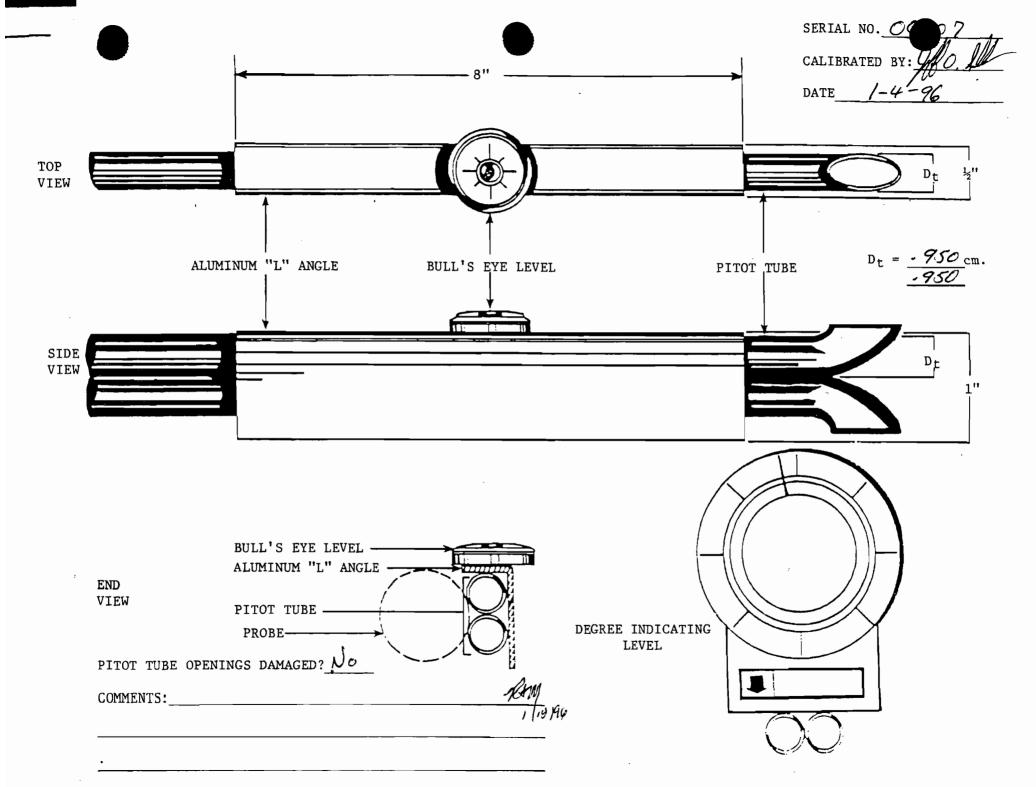
PYROMETER NO.

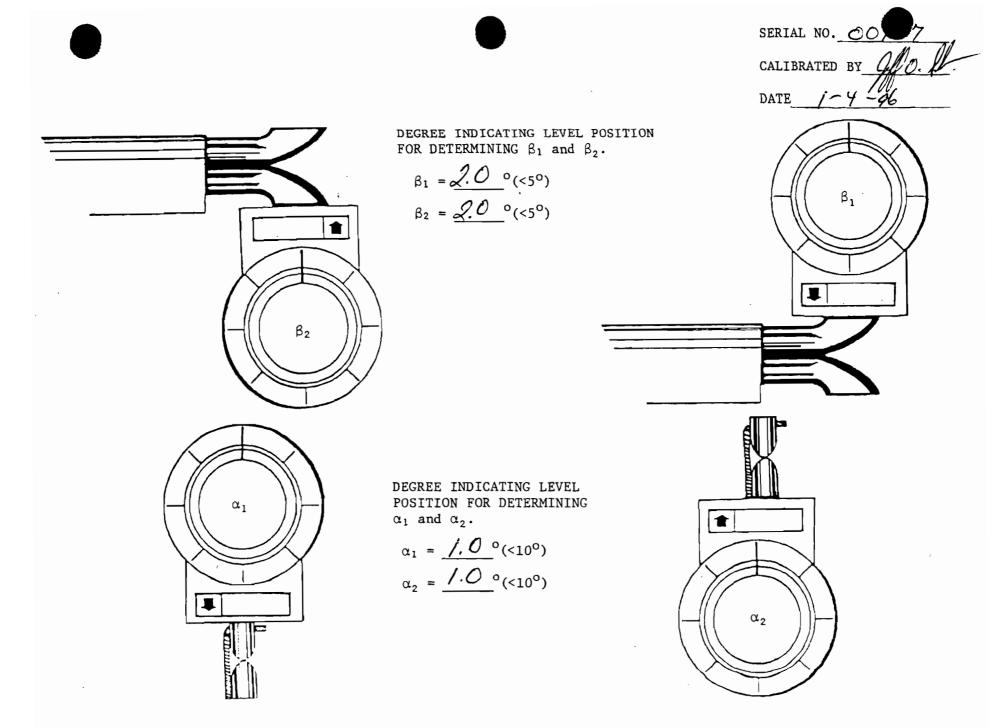
5 REFERENCE THERMOMETER

CTL SERIAL NO.

5 SERIAL NO.

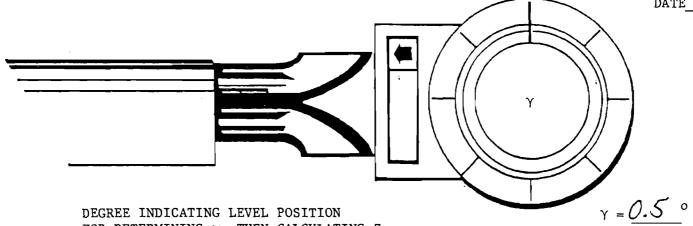

DATE


1-12-96


CALIBRATOR

REFERENCE TEMP. (F) 32 32 212 400 401	
32 212 212	
212 212	
400 401	
\sim .	
71.1	
Unn	
-FAM	
F 1 2 1010	
1/31/94	

PYROMETER TEMPERATURE CALIBRATION



SERIAL NO. 00/07

CALIBRATED BY

DATE

FOR DETERMINING γ , THEN CALCULATING Z.

A = DISTANCE BETWEEN TIPS, $(P_a + P_b)$, cm. = 2.220.

 $Z = A \sin \gamma = 0.02 \text{ cm}; (<0.32 \text{ cm}).$

DEGREE INDICATING LEVEL POSITION FOR DETERMINING Θ , THEN CALCULATING W. 0 = /. O o

 $W = A \sin \Theta =$ $\bigcirc . \bigcirc . \bigcirc . \bigcirc Cm; (<0.08 cm).$

WET TEST METER CALIBRATION DATA SHEET

BAROMETRIC PRESSURE

71.0°F AMBIENT TEMPERATURE

WET TEST METER SERIAL NUMBER 12-AH-4

RUN NO.	VOLUME OF WATER DISPLACED (LITERS) Va	INITIAL METER READING (FT3)	FINAL METER READING (FT3)	NET METER VOLUME (FT3)	NET METER VOLUME W (LITERS) Vm)	ERROR
1	3.360	0.0000	0.1180	0.1180	3.342	-0.00535714
2	3.360	0.1180	0.2355	0.1175	3.328	-0.00952381
3	3.360	0.2355	0.3534	0.1179	3. 339	- 0.00625000
4	3.360	0.3534	0.4712	0.1178	3.336	-0.00714286
CALCULA	TIONS:				AVG. ERROR =	- 0.00 706 846

ERROR = (Vw - Va)/Va

CORRECTION FACTOR = 1/(1 + AVG. ERROR)

*CONVERSION FACTOR, FT3 TO LITERS = 28.32 x FT3

AVG. ERROR =

(1.000 +/- 0.010)

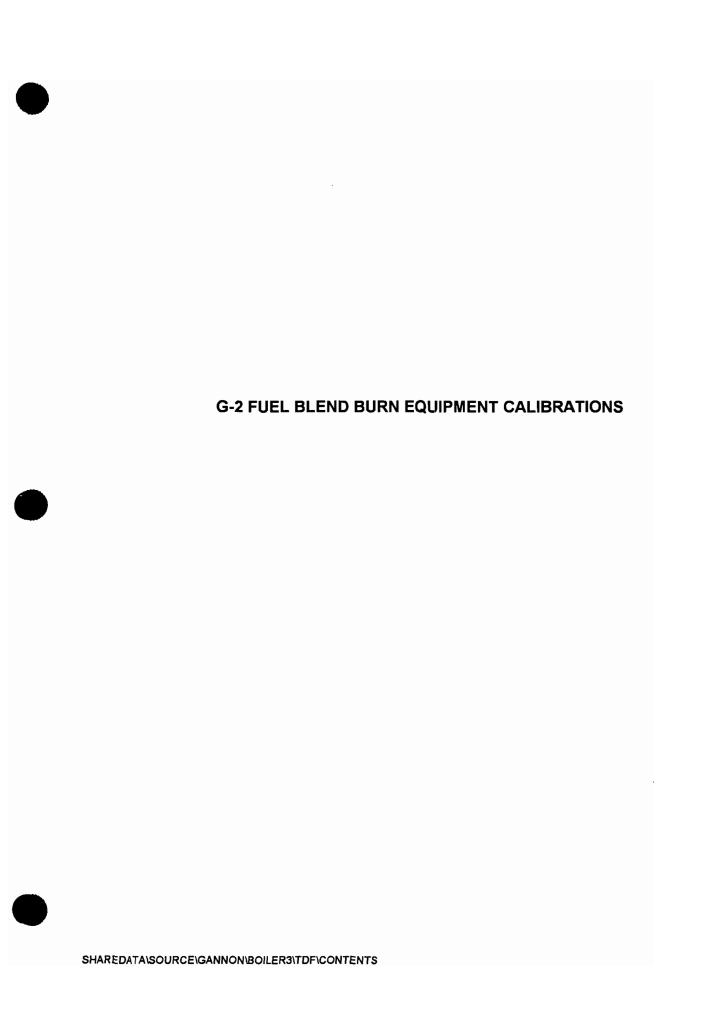
WHEN USING THE WET TEST METER, THE ACTUAL VOLUME OF AIR CAN BE DETERMINED BY THE EQUATION:

Va = Vwx C.F.

WHERE:

Va = ACTUAL VOLUME OF AIR PASSED THROUGH THE WET TEST METER.

Vw = VOLUME OF AIR INDICATED BY THE WET TEST METER.


C. F. = CORRECTION FACTOR FOR THE METER.

BAROMETER CALIBRATION DATA FORM

DATE 1-3-96	CALIBRATO	OR OF O. A	
COMMENTS	#c0224	Bodyness and and due	to verther Service shaldown.

TIME	BAROMETER	REFERENCE STANDARD	DIFFERENCE
	READING	READING	
	(HG")	(HG")	(HG")
1-3-96 2:16 pm 1-9-56	29.85"	29.81"	0.04"
1-9-56 9:15Am	1034 30' 30.30	90+ 34.34" 30.34	0.04"
	•		Anj
,	·		: /10/94

*NOTE: BAROMETRIC READINGS MUST AGREE WITHIN 0.1 INCHES HG OF READINGS OBTAINED FROM THE REFERENCE STANDARD, THE NATIONAL WEATHER SERVICE, RUSKIN FL. TO BE DEEMED ACCEPTABLE.

SUMMARY OF EQUIPMENT CALIBRATIONS

EQUIPMENT	CALIBRATION DATE	LOCATION	METHOD	RESULTS
Method 17 Console #6 Initial Test Post Test	4-19-96 4-25-96	CES CES	Wet Test Meter Wet Test Meter	Y = 1.000 Y = 1.004
Nozzle #37 Initial Measurement Post Test Measurement	4-4-96 4-25-96	CES CES	3 Measurements w/calipers	DN= 0.212 DN= 0.211
Nozzle #16 Initial Measurement Post Test Measurement	4-4-96 4-5-96	CES	3 Measurements w/calipers	DN= 0.197 DN= 0.197
Pyrometer No. 12	4-12-96	CES	Comparison to ASTM Thermometer	Correct to ± 2°F
Pitot Tube 00112	4-12-96	CES	EPA Method	CP = 0.84
Wet Test Meter Serial No. 12-AH-4	4-3-96	CES	Liquid Displacement	CF= 1.004
Barometer SN 00224	4-16-96	CES	Comparison to National Weather Services	Correct to ± 0.03"Hg

INITIAL DRY GAS METER AND ORIFICE CALIBRATION

CONTROL BOX NO. 6 BAROMETRIC PRESS. 30.13 IN. HG.

DATE

4-16-96 PERFORMED BY

	RUN 1	RUN 2	RUN 3	RUN 4
VACUUM ("Hg)	3.0	3.0	3.0	3.0
dHw ("H2O)	0.65	1.10	1.60	2.05
dHd ("H2O)	0.50	1.00	1.50	2.00
INITIAL WTM	0.0000	0.0000	0.0000	0.0000
FINAL WTM	6.1698	8,5264	6.8275	7.8093
INITIAL DGM	513.704	520.238	529.578	537.149
FINAL DGM	519.943	529.027	536.725	545.425
TEMP. WTM (F)	69.5	70.0	69.5	69.5
TEMP. DGM (F)	87.0	91.0	92.0	93.0
TEST TIME (MIN.)	15.0	15.0	10.0	10.0

NET VOLUME WTM	6.1698 8.5264 6.8275 7.8093
NET VOLUME DGM	6.239 8.789 7.147 8.276
Y	1.020 1.006 0.992 0.981
dH@	1.594 1.660 1.720 1.749

AVERAGE Y =

1.000

1.681

ACCEPTABLE Y RANGE =

0.980 TO 1.020

AVERAGE dH@ =

ACCEPTABLE dH@ RANGE =

1.531 TO 1.831

Y = (Vw(Pb) x (Td + 460)) / (Vd(Pb + (dHd/13.6)) x (Tw + 460)

 $dH@ = 0.0317 x dHd / (Pb (Td + 460)) x ((Tw + 460) x time) / Vw)^2$

RECHECK OF ORIFICE AND DGM CALIBRATION

CONTROL BOX NO BAROMETRIC PRESS. 30. 10 IN. HG.

DATE

4.25.96 PERFORMED BY

Alian Alog

LEAK CHECK OF METER SYSTEM PRIOR Y = 1.

	RUN 1	RUN 2	RUN 3
VACUUM ("Hg)	11.0	11.0	٥.۱١
dHw ("H2O)	1.10	1.15	1.15
dHd ("H2O)	1.00	1.00	1.00
INITIAL WTM	6. <i>∞</i> ∞	8.5414	17.0636
FINAL WTM	8.5914	17.0636	25,5678
INITIAL DGM	829.325	838,066	846.824
FINAL DGM	B38.046	846.824	855.610
TEMP. WTM (F)	71.0	71.0	70.5
TEMP. DGM (F)	87.0	89.5	90.5
TEST TIME (MIN.)	15.0	15.0	15.0

NET VOLUME WTA	18.5414	8.5272	8.5042
NET VOLUME DGN	18.741	8.758	8.786
Y	1.004	1.005	1.002
dH@	1.674	1.674	1.675

PRIOR Y = 1.000

RECHECK Y = 1.004

% DIFFERENCE = 0.4%

AVERAGE dH@ = 1.674

Y = (Vw (Pb) x (Td + 460)) / (Vd (Pb + (dHd / 13.6)) x(Tw + 460)

AM 4/30/96

 $dH@ = 0.0317 \ x \ dHd / (Pb \ (Td + 460)) \ x \ ((Tw + 460) \ x \ time) / Vw)^2$

NOZZLE SET NO.

DATE: 4-4-96 CALIBRATED BY: 960.

NOZZĽE	NOZZLE DIAMETER				
IDENTIFICATION	D1	(IN.) D2	D3	ΔD	D avg
1	0.111	0.111	0.111	0.000	0.111
4	0.125	0.125	0.125	0.000	0.125
5	0.149	0.149	0.149	0.000	0.149
6	0.197	0.197	0.197	0.000	0.197
9	0.276	0.276	0.276	0.000	0.276
10	0.289	0.290	0.289	0.001	0.289
12	0.388	0.388	0.388	0.000	0.388
15	0.164	0.164	0.164	0.000	0.164
16	0.198	0.198	0.198	0.000	0.198
19	0.275	0.275	0.275	0.000	0.275
22	0.364	0.364	0.364	0.000	0.364
30	0.314	0.314	0.314	0.000	0.314
36	0.185	0.185	0.185	0.000	0.185
37	0.212	0.213	0.212	0.001	0.212
3 <i>8</i>	0.244	0.245	0.244	0.001	0.244
46	0.192	0.192	0.192	0.000	0.192
47	0.200	0.200	0.200	0.000	0.200
48	0.249	0.249	0.249	0.000	0.249
50	0.314	0.314	0.314	0.000	0.314
58	0. 237	0.237	0.237	0.000	0.237

where:

D1,2,3 = three different nozzle diameters, (in); each diameter must be measured to the nearest 0.001 in.

ΔD= maximum difference between any two diameters, (in.) ΔD ≤ 0.004 in.

 $D \Lambda vg = average of D1, D2, and D3.$

PAGE OF

FINAL NOZZLE CALIBRATION DATA FORM

NOZZLE NO 37

DATE: 4.25.96

CALIBRATED BY:_

NOZZLE	NOZ	ZLE DIAMETI	ANA	10.10	
IDENTIFICATION				Δ <i>D</i>	D
		(IN.)	<i>D3</i> (IN.)	(IN.)	AVG
2 × 52 × 5 × 5 × 5 × 5 × 5 × 5 × 5 × 5 ×	V	· ····································	<u> </u>		the problem is the first
_37	0.212	0.210	0.211	0.002	0.211

where:

D1,2,3= three different nozzle diameters,(in); each diameter must be measured to the nearest 0.001 in.

Δ D= maximum difference between any two diameters,(in.).
Δ D≤ 0.004 in.

D AVG= average of D1,D2 and D3.

FINAL NOZZLE CALIBRATION DATA FORM

NOZZLE NO 6

DATE: 4.25.96

CALIBRATED BY:_

NOZZLE IDENTIFICATION	NOZ. D1 (IN.)	ZLE DIAMETI D2 (IN.)	ER D3 (IN.)	ΔD (IN.)	D AVG
# 6	0.197	0.196	0.197	0.001	0.197
				_	-
				_	_

where:

D1,2,3= three different nozzle diameters,(in); each diameter must be measured to the nearest 0.001 in.

 ΔD = maximum difference between any two diameters,(in.). ΔD ≤ 0.004 in.

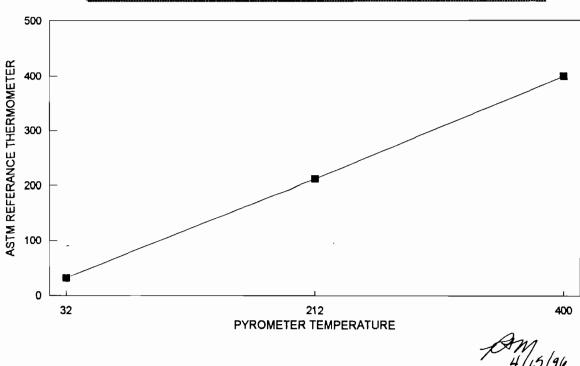
D AVG= average of D1,D2 and D3.

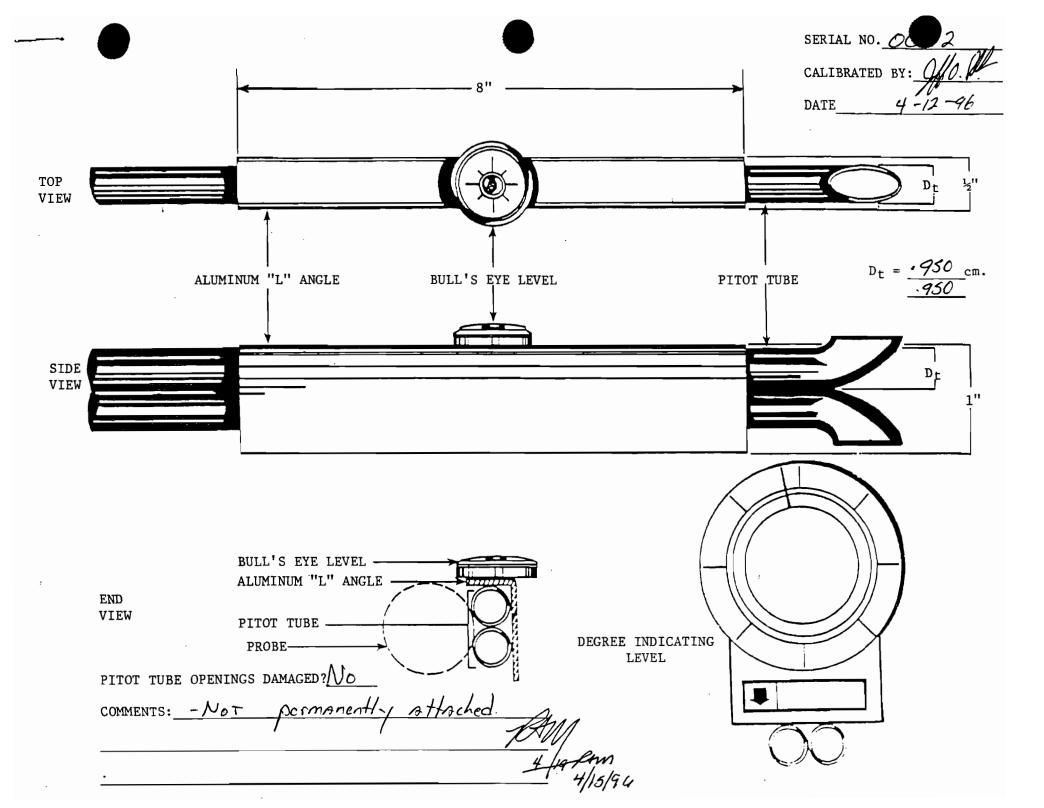
PYROMETER CALIBRATION

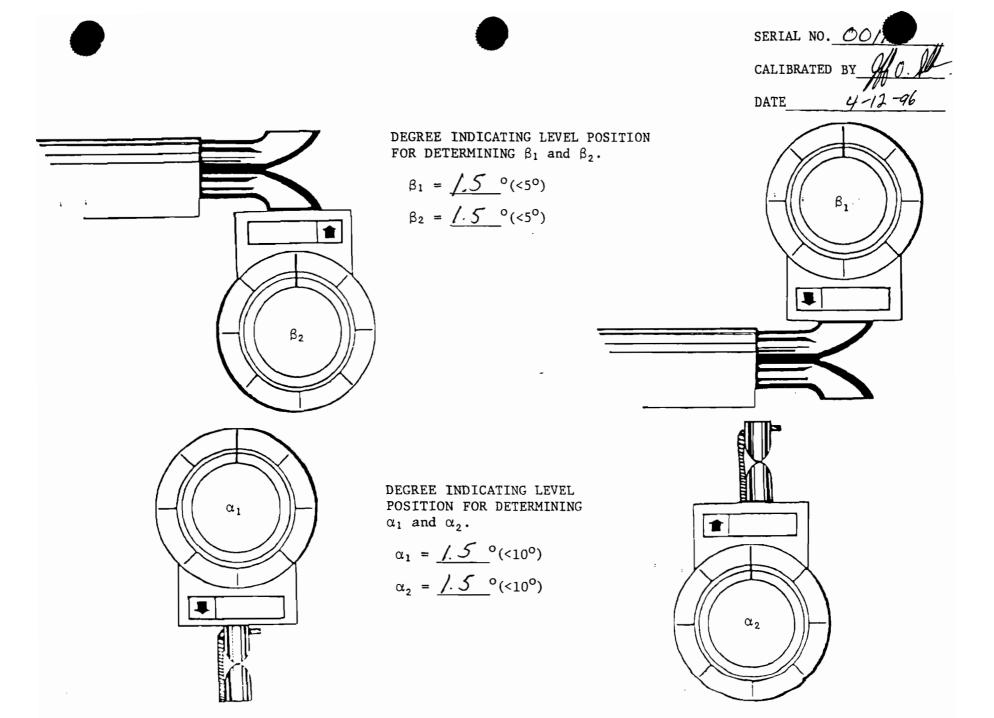
PYROMETER NO.

REFERENCE THERMOMETER 12

CTL SERIAL NO.

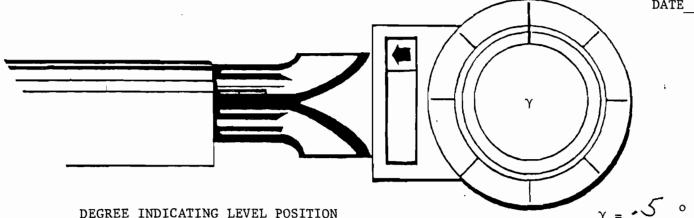

12 SERIAL NO. *1E2735*


DATE


4-12-96

, ,	
	THE RESERVE OF THE PROPERTY OF
REFERENCE TEMP: (F) PYROMETER INDICATION	200 000 000 200 200 000 000 000 000 000
TATALON TANDAMINATION	\$ 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
**************************************	4444444444444444444444444444444
27	464466464666666666666666666666666666666
4	000000000000000000000000000000000000000
	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
470	40,44,50,50,50,60,60,50,50,50,60,60,60,60,60,60,60,60,60,60,60,60,60
414 commence and the co	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	440700000000000000000000000000000000000
400	446444466446666666666666666666666666666
400	\$5 2 8 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 7 7 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
The second secon	ପ୍ରତ୍ୟୁ ପ୍ରତ୍ୟୁ ଅନ୍ତ୍ରମୟ ବ୍ୟବ୍ୟ କ୍ଷ୍ୟୁ କ୍ଷ୍ୟୁ ଅନ୍ତ୍ରୟ ବ୍ୟବ୍ୟ କ୍ଷ୍ୟୁ ଅନ୍ତ୍ରୟ ବ୍ୟବ୍ୟ କ୍ଷ୍ୟୁ ଅନ୍ତ୍ରୟ ବ୍ୟବ୍ୟ କ୍ଷ୍ୟୁ
	000000000000000000000000000000000000000
	222222222222222222222222222222222222222
	900000000000000000000000000000000000000
	\$200 00 00 00 00 00 00 00 00 00 00 00 00
the control of the co	ଷ୍ଟିତ : ଶୁଖ ହିଳ ନିର୍ଦ୍ଦ ଦେଖି ବିଷ୍ଟି ବଳ ପ୍ରସ୍ଥର ବହିଛି । ଏହା
	402240000040924265261055507244
	88888888888888888888888888888888888888
	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
	46,000,000,000,000,000,000,000,000,000,0
The state of the s	ଭୂତ ରହିର ଅବସ୍ଥିତ ଅବସ୍ଥିତ ହେଉଛି । ଏହି ଅବସ୍ଥିତ ହେଉଛି । ଏହି ଅବସ୍ଥିତ ହେଉଛି । ଏହି ଅବସ୍ଥିତ ହେଉଛି । ଏହି ଅବସ୍ଥିତ ହେଉଛି
	868698666888888888888888888888

PYROMETER TEMPERATURE CALIBRATION



SERIAL NO. OOMS

CALIBRATED BY

DATE

DEGREE INDICATING LEVEL POSITION FOR DETERMINING γ , THEN CALCULATING Z.

A = DISTANCE BETWEEN TIPS, $(P_a + P_b)$, cm. = 2.530.

 $Z = A \sin \gamma = 0.02$ cm; (<0.32 cm).

DEGREE INDICATING LEVEL POSITION FOR DETERMINING Θ , THEN CALCULATING W. Θ = 1.0 0

 $W = A \sin \theta = \frac{0.04}{\text{cm}}; (<0.08 \text{ cm}).$

WET TEST METER CALIBRATION DATA SHEET

BAROMETRIC PRESSURE 30. 30

AMBIENT TEMPERATURE

WET TEST METER SERIAL NUMBER 12-AH-4

RUN NO.	VOLUME OF WATER DISPLACED (LITERS) Va	INITIAL METER READING (FT3)	FINAL METER READING (FT3)	NET METER VOLUME (FT3)	NET METER VOLUME (LITERS) Value	ERROR
1	3.360	0.0000	0.1175	0.1175	3.3276	-0.009642857
2	3,360	0.1175	0.2353	0.1178	3.3361	-0.007113095
3	3.360	0.2353	0.3538	0.1185	3.3559	-0.001220238
4	3.360	0.3538	0.4728	0.1190	3.370/	† 0.003005952
CALCULA	TIONS:				AVG. ERROR =	-0.00374256

CALCULATIONS:

ERROR = (Vw - Va)/Va

CORRECTION FACTOR = 1/(1 + AVG. ERROR)

*CONVERSION FACTOR, FT3 TO LITERS = 28.32 x FT3

CF. = 1.0037.56619

(1.000 + / - 0.010)

WHEN USING THE WET TEST METER, THE ACTUAL VOLUME OF AIR CAN BE DETERMINED BY THE EQUATION:

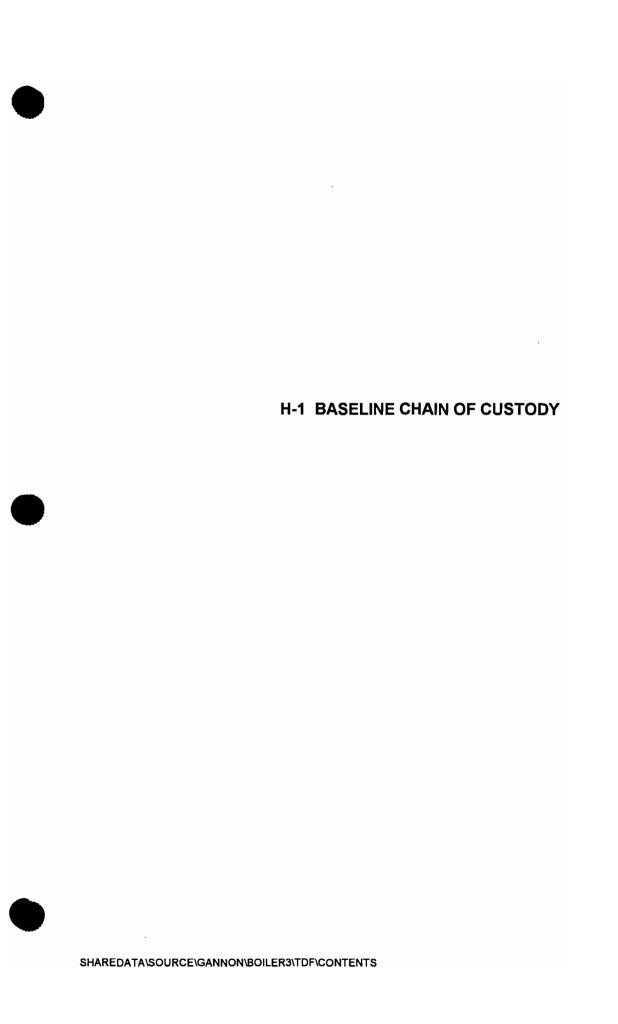
Va = Vwx C.F.

WHERE:

Va = ACTUAL VOLUME OF AIR PASSED THROUGH THE WET TEST METER. Vw = VOLUME OF AIR INDICATED BY THE WET TEST METER. C. F. = CORRECTION FACTOR FOR THE METER.

BAROMETER CALIBRATION DATA FORM

DATE 4-16-96	CALIBRATOR	Alo. Al-	
COMMENTS	00224		


TIME	BAROMETER READING (HG")	REFERENCE STANDARD READING (HG")	DIFFERENCE (HG")
9:05AM	30.18``	30.12"	0.06"
11:10Am	30.20	30.15"	005"
2:15pm	30.17"	30.14 "	0.03"
			AM
		-	4/14/94
			,

*NOTE: BAROMETRIC READINGS MUST AGREE WITHIN 0.1 INCHES HG OF READINGS OBTAINED FROM THE REFERENCE STANDARD, THE NATIONAL WEATHER SERVICE, RUSKIN FL. TO BE DEEMED ACCEPTABLE.

APPENDIX H

CHAIN OF CUSTODY

H-1 BASELINE CHAIN OF CUSTODY
H-2 FUEL BLEND BURN CHAIN OF CUSTODY

TAMPA ELECTRIC COMPANY SAMPLE CHAIN OF CUSTODY

GENERATING STATION	GANNON STATION	
SOURCE IDENTIFICATION &	PILER No. 3	
DATE OF TEST		
	ICULATE (SOOT BLOW	(12.152)
TOUBOTANT OANT ELD_VALL		
		•
	SAMPLE RECOVERY	
LOCATION CENTRAL	TESTING APORATO	27
DATE / TIME FEBRUAR	29,1996@08:00	<u> </u>
SIGNATURE Brue Cost	31/	
TITLE Se. TECHNIC	al Assistant	
<u> </u>	SAMPLE ANALYSIS	
LOCATION CENTRAL	TESTING LABORATORY	
DATES FEBRUARY 2	9-MARCH 5, 1996	
SIGNATURE	May	
TITLE SP. TECHNIC	AL ASSISTANT	
CONTAINER CODE	SAMPLE IDENTIFICATION	ANALYTICAL METHOD
- CODD(NAME)	DENTIFICATION	METHOD
	GLASS MICROPIESE THIMBLE	USEPA_
	RUN S	
•	2UN 25	17
<u>001095</u>	Zun 35	17 StM 3/6/96
∞1097	BLANK	
BEAKER NO. ACET	ONE WASH SAMPLES	
AIR- 3 ACET	ONE WASH - RUN S	
AIR-14 ACET	ONE WASH- PUN ZS	
AIR-15 ACET	ONE WASH- DUN 35	

ACETONE WASH- BLANK

A12-10

SAMPLE RECOVERY AND INTEGRITY DATA

Plant F. J	· GANNON	Sample lo	ocation_ <i>Bo</i>	11ec 100. 5
		Field Data Checks		
Sample re	covery personnel	Robert Barthelette		M 1. > 6.0
Person wit	th direct respons	sibility for recover	red samples	s Martin Vutt
Sample Number	Sample Identification Number	. I ∧	Liquid Level Marked	Stored in refrigerated Container
1	RUN / isuppopersol	2-28-96	N400M6	/
2	Rue / HzOz	2-28-96	~400 ml	V
3	Run 2 isoproponol	2-28-76	~400 me	~
4	Run 2 H202	2-28-96	400 ml	
5	Run 3 isograponol	2-29-96	~500 ml	V
6	Rw 3 H202	2-28-96	V300 Me	~
Diami				
	of field sample	-	Smith	
demarks factorial factoria	of field sample La with direct res vered samples rec	trustee Ward Check boratory Data Check sponsibility for rec	Smith	nples <u>Frank</u> Sarbi
demarks factorial signature state recover the contract of the	of field sample Lan with direct respected samples reconstructions Land Land	trustee Ward Check boratory Data Check sponsibility for received 2-28-96	Smith ss covered sam	
demarks factorial factoria	of field sample Lan with direct respected samples reconstructions Land Land	trustee Ward Check boratory Data Check sponsibility for rec	Smith	
demarks factorial services and person the recover and person the services and services are services as a services are services are services as a services are services as a service are services are services as a service are services are services as a service are services are services as a service are services as a service are services as a service are services are services as a service are services are services as a service are services as a service are services are services as a service are services are services are services as a service are services are services as a service are services are services as a service are services are services as a service are services as a service are services are services as a service are services are services as a service are services are services as a service are services are services are services are services as a service are services are servi	of field sample La with direct res wered samples rec Sample Sample Identification Number	trustee Nacl Check sponsibility for received 2-28-96 Date and Time of	Liquid Level	Stored in refrigerated
emarks factorial semants facto	of field sample Lan with direct respected samples recommend for the sample sam	trustee Ward Check boratory Data Check sponsibility for red ceived 2-28-96 Date and Time of Recovery	Liquid Level Marked	Stored in refrigerated Container
emarks factorial semants facto	of field sample Lan with direct respected samples recommend Sample Identification Number AAA8439	trustee Mars Check boratory Data Check sponsibility for red ceived 2-28-96 Date and Time of Recovery	Liquid Level Marked	Stored in refrigerated Container
emarks factorial semants facto	Sample Identification Number AAA&439 AAA&439	trustee Ward Check sponsibility for received 2-28-96 Date and Time of Recovery 2-28-96 2-28-96	Liquid Level Marked YES	Stored in refrigerated Container YES YES
emarks factories ignature ab person ate recover at a reco	Sample Identification Number AAA&439 AAA&439	trustee Ward Check sponsibility for received 2-28-96 Date and Time of Recovery 2-28-96 2-28-96	Liquid Level Marked YES	Stored in refrigerated Container YES YES
demarks factorial signature state recover analyst Sample Number	Sample Identification Number AAA&439 AAA&439	trustee Ward Check sponsibility for received 2-28-96 Date and Time of Recovery 2-28-96 2-28-96	Liquid Level Marked YES	Stored in refrigerated Container YES YES

Signature of lab sample trustee Frank Sarch

H-2 FUEL BLEND BURN CHAIN OF CUSTODY SHAREDATA\SOURCE\GANNON\BOILER3\TDF\CONTENTS

TAMPA ELECTRIC COMPANY SAMPLE CHAIN OF CUSTODY

GENERATING STATION F.D. GONNON STATION
SOURCE IDENTIFICATION BOILER NO. 3
DATE OF TEST APRIL 23, 1996
POLLUTANT SAMPLED TOF PARTICULATE
POLLUTANT SAMPLED_\ C PAZY ICO E
SAMPLE RECOVERY
LOCATION CENTRAL TESTING LABORATORY
DATE / TIME APRIL 29, 1996 @ 7:30
SIGNATURE Action Alexander
TITLE SE TECHNICAL ASSISTANT
SAMPLE ANALYSIS
LOCATION CENTRAL TESTING LABORATORY
DATES APRIL 24-26, 1996
SIGNATURE ALLOS
TITLE SP. TECHNICAL ASSISTANT
CONTAINER SAMPLE ANALYTICAL IDENTIFICATION METHOD
THIMBLE NO. 19×90mm GLASS MICEOFIBER THIMBLE USEPA
001098 FUN S METHOD
001099 BUN 25
001100 BUN 35
001092 BLANK
BEAKER NO. ACETONE WASH SAMPLES
AIR-17 ACETONE WASH- RUN 15
AIR-18 ACETONE WASH- PUN 25
AIR-19 ACETONE WASH- RUN 35

SAMPLE RECOVERY AND INTEGRITY DATA

Plant 6/	nion	Sample lo	ocation <u><i>BO/</i></u>	LER #3
	<u> </u>	Field Data Checks BRUCE ROURI Sibility for recover	16UEZ	
Sample Number	Sample Identification Number	Date and Time of Recovery	Liquid Level Marked	Stored in refrigerated Container
1	15, 1509ROPANOL	4-23-96 0920	/	V
2	IS PEROXIDE	4-23-96 0930	/	/
3	25 15088084206	4-23-96 1115	/	/
4	25, PEROXIDE	4-23-96 1/25	/	~
5	35 ISOPROPANOL	4-23-96 1300	/	1
6	35 PERIOXIDE	4-23-96 1310	./	/
Blank			1	✓,
31ANH emarks	390 Hz Oz	Y-23-96 1310	-	
ate recov		eived <u>4-23-96</u>		
Sample Number	Sample Identification Number	Date and Time of Recovery	Liquid Level Marked	Stored in refrigerated Container
1	AA29423	4-25-96/0900	YES	A YES
2		//		
3				
4				
5				_
6				
Blank				
emarks		1		
ignature	of lab sample tr	ustee Sand Aug	L	

APPENDIX I

PROJECT PARTICIPANTS

PROJECT PARTICIPANTS

Corporate Environmental Services

Lynn F. Robinson, P.E.

Supervisor- Air Programs

Gregory M. Nelson, P.E.

Environmental Compliance

Coordinator

Martin Duff

Test Project Leader

Senior Environmental Technician

David Smith

Test Team Leader

Environmental Technician

Robert Barthelette

Sr. Technical Assistant

Adriano Alcoz

Sr. Technical Assistant

Ray McDarby

Quality Assurance

Specialist - CES

Frank Sarduy

Technician - CES

Tom Toombs

Technician-CES

Glenn Naslund

Technician - CES

Bruce Rodriguez

Sr. Technical Assistant

Jeff Sellars

Sr. Technical Assistant

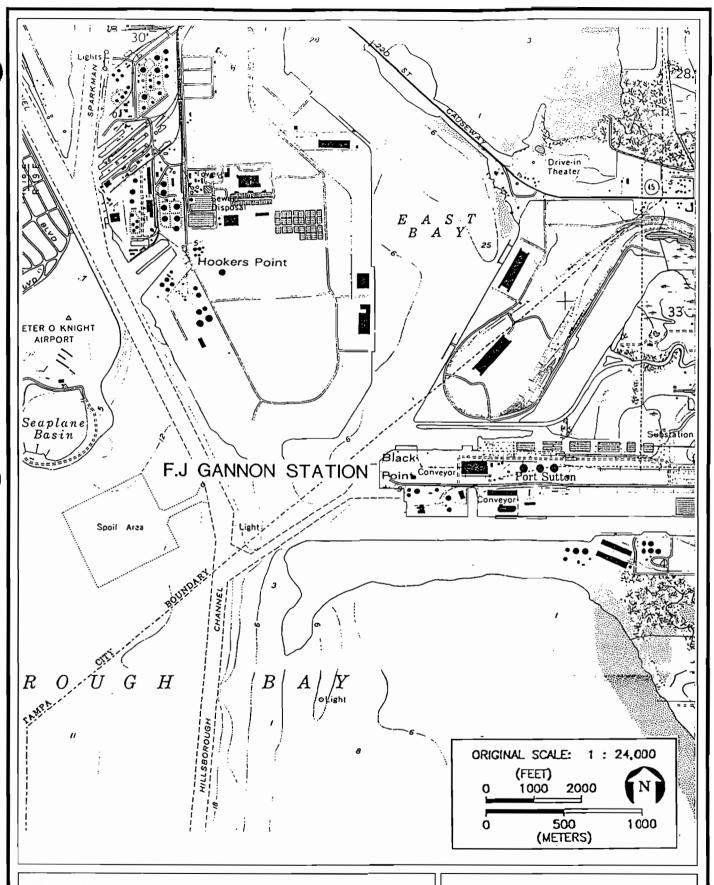
F. J. Gannon Station

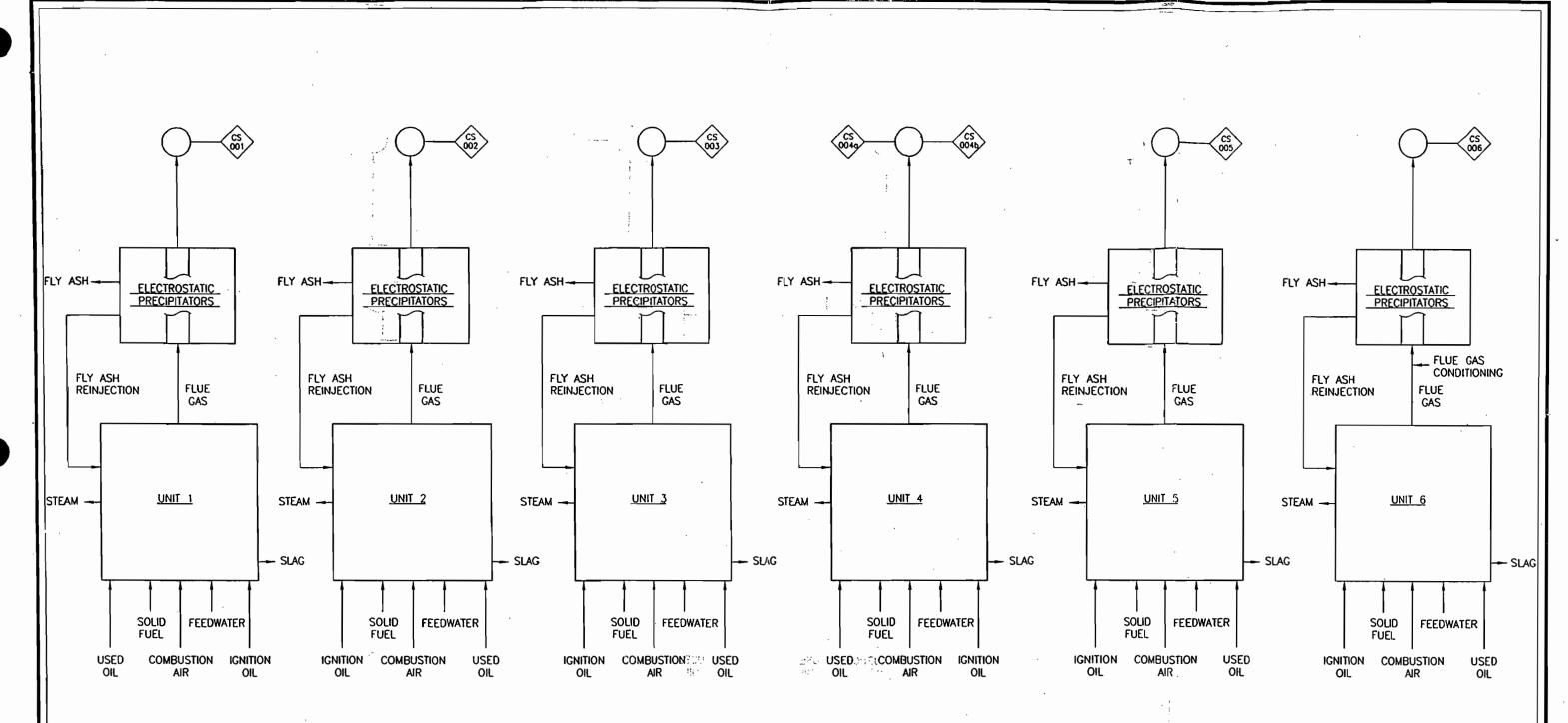
Cindy Barringer

Environmental Specialist

ATTACHMENT E

SUPPLEMENTAL INFORMATION




FIGURE II.D.1.1. F.J. GANNON STATION AREA MAP

Sources: USGS Quad, Tampa, FL 1981.

ECT

Environmental Consulting & Technology, Inc.

Source: TEC; ECT, 1996.

LEGEND

5-00 EMISSION POINT

FIGURE II.D.3.6.

F.J. GANNON STATION
BOILER PROCESS FLOW DIAGRAM

Source: ECT, 1996.

ECT

Environmental Consulting & Technology, Inc.