P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

December 5, 2005

RECEIVED

DEC 12 2005

n BUREAU OF AIR REGULATION

Mr. Syed Arif Permitting Engineer, Bureau of Air Regulation Department of Air Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Re: Extension Request/DEP File No. 0570005-019-AC (PSD-FL-339) Plant City Phosphate Complex

Dear Mr. Arif:

÷

CF Industries, Inc., (CF), provides this letter in response to your request for information dated October 26, 2005. CF, through its consultant, Golder Associates, Inc., had requested an extension of Construction Permit No. 0570005-019-AC, and a minor permit modification to authorize an upgrade of the plants' blowers to allow the achievement of the permitted production rates.

Please review the attached information and call (813)364-5608 if there are additional questions.

Sincerely,

homes & Edwards

Thomas A. Edwards Superintendent Environmental Affairs

Attachments

cc: Mara Nasca, DEP-SWD Alice Harmon, HCEPC David Buff, Golder Associates, Inc.

CF RESPONSES TO FDEP OCTOBER 26, 2005, INFORMATION REQUEST

The FDEP information requests are repeated below in bold type, followed by the CF responses.

1. Please submit the compliance tests for both "C" and "D" SAPs.

CF Response 1: Copies of the requested compliance tests are enclosed in Attachment 1.

2. Please submit the Second Quarter 2005 SO₂ CEM/Production Data as required by Specific Condition No. 22 of the construction permit.

CF Response 2: Copies of the requested report and the Third Quarter 2005 report are enclosed in Attachment 2.

3. Specific Condition 10 of the construction permit required CF to install approximately 165,000 liters of cesium promoted vanadium catalyst in the 4th converter pass of the "C" and "D" SAPs. Please provide documentation (work orders, purchases requisitions, etc.) to show that the condition was complied with.

CF Response 3: The requested documentation is enclosed in Attachment 3.

 Please provide the specifications of the existing blowers as well as the specifications for the replacement blowers. Indicate how much increase in production will take place due to the replacement blowers.

CF Response 4: Copies of the existing and proposed blower performance charts are enclosed in Attachment 4, Figures 1 and 2. Figure 3 shows that the achievable production rate is expected to increase from 2,632 tons H_2SO_4 per day to 2,750 tons per day in each plant. The total increase in production for both plants will be 236 tons per day.

5. The request indicated that D-SAP blower will be replaced by December 2006 and the C-SAP blower by May 2007. Please explain the excessive length of time required for replacing the "C" and "D" SAP blowers.

CF Response 5: The requested permit extension to June, 2007, is based on the one-year delivery time for new blowers and the economic need to schedule the blower installations during scheduled maintenance turnarounds. The installation of the blowers during scheduled turnarounds avoids costly production down-time.

6. The Department in November 2004 issued an authorization letter to CF based on their request for replacing mist eliminators in the Interpass Tower of the D-SAP. This change was to result in a reduction in the plant pressure drop and help CF in achieving the maximum permitted operating rate of 2,750 TPD. Please explain the reasons for not being able to achieve the stated purpose of the request.

CF Response 6: The expected increase in production to 2,750 TPD for C & D Sulfuric Acid Plants utilized a design that incorporated reduced pressure drop for increased air flow, and cesium catalyst to reduce SO_2 emissions. Installation of the new mist eliminators successfully reduced system pressure drop. However, the existing main blower turbine system has reached the limit of available horsepower. The options are to replace the turbine to increase horsepower or to install a more efficient main blower to better utilize the existing turbine horsepower. Process analysis indicates that replacing the main blower is the preferred alternative. ATTACHMENT 1 - COMPLIANCE TEST REPORTS

1

ī

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

7

х

March 4, 2005

Mr. Joel Smolen
Florida Department of
 Environmental Protection
3804 Coconut Palm Drive
Tampa, Florida 33619-8318

Subject: CF Industries, Inc. Plant City Phosphate Complex Permit No. 0570005-019-AC(PSD-FL-339) "C" Sulfuric Acid Unit CEMS Certifications and Compliance Test Report

Dear Mr. Smolen:

In accordance with Permit No. 0570005-019-AC(PSD-FL-339) (i.e., Section III. Emissions Units Specific Conditions 13, 14, and 15) enclosed are copies of the Sulfur Dioxide and Oxygen CEMS Certifications Test Reports for the testing conducted on our "C" Sulfuric Acid Unit on January 25 & 26, 2005. Also, enclosed is the Calibration Drift Report.

If there are any questions concerning the results, please give Michael Messina a call at (813) 364-5639.

Sincerely,

Thomas A. Edwards

Superintendent, Environmental Affairs

TAE/JMM/gem u:\envrpt\167063a.doc

CC: Trina L. Vielhauer/Chief Bureau of Air Regulation FDEP Diana Lee/HCEPC J. M. Messina/Envir. Files Frank Dlugos PERMIT NO. 0570005-019-AC (PSD-FL-339)

. •

· _

1111

a¥. 5a¥ p

٠,

′,

 \leq

Emission Unit 007

RELATIVE ACCURACY TESTING

CF INDUSTRIES, INC.

PLANT CITY PHOSPHATE COMPLEX

"C" SULFURIC ACID PLANT

PLANT CITY, FLORIDA

JANUARY 25 & 26, 2005

TEST CONDUCTED BY:

ENVIRONMENTAL LABORATORY CF Industries, Inc. Plant City Phosphate Complex Plant City, Florida 33564

Table of Contents

٢,

\$;

΄.

;,

ر • Sent,

5 L

·, .

	Page
1.0 INTRODUCTION	1
2.0 CONTINUOUS EMISSION MONITOR DESCRIPTION	1
3.0 TEST RESULTS	1
4.0 TEST PROCEDURES	2
 4.1 Methods 4.2 Test Locations 4.3 Sampling Train 4.4 Sample Collection 4.5 Sample Recovery 	2 2 3 3
5.0 ANALYTICAL PROCEDURE	3
5.1 Pretest Preparation 5.2 Analysis Table 1 Table 2	3 3 4 5
APPENDIX	
Project Participants Emissions Test Summaries Process Operational Data Laboratory Data Field Data Sheets Gas Analysis Forms Calibration Data Source Sampling Nomenclature Sheet Calculations	7 8 11 16 25 40 42 51 52

ħ

1.0 INTRODUCTION

5 5 55

41.98

۲.

The Environmental Control Laboratory of CF Industries, Inc., Plant City Phosphate Complex, conducted relative accuracy (RA) at the "C" Unit Sulfuric Acid Plant in Plant City, Florida on January 25 & 26, 2005. Testing was performed to determine conformance with EPA Performance Specification 2 and 4.

2.0 CONTINUOUS EMISSION MONITOR DESCRIPTION

÷

The "C" Unit Sulfuric Acid Plant is equipped with a continuous emission monitoring system (CEMS) utilizing an Ametek 4000 Photometric SO₂ analyzer. This is an extractive sampler with a range of 0 to 1000 ppm. The analyzer is equipped with an automatic zero adjustment and adjusts the zero point at one hour intervals. The plant is also equipped with a Yokogawa continuous oxygen monitoring system. This is an extractive sampler with a range of 0 to 24 percent O₂. Gas concentrations are recorded by a data acquisition system in the control room. The SO₂ and O₂ data are utilized to determine the source SO₂ emission in pound of SO₂ per ton of 100 percent sulfuric acid produced.

3,

3.0 TEST RESULTS

Results of the SO₂ relative accuracy tests are summarized in Table 1. In order to be in conformance with Performance Specification 2, the relative accuracy of the SO₂ CEMS must be no greater than 20 percent of the mean value of the reference method test data in terms of the units of the emission standard or 10 percent of the applicable standard, whichever is greater. The relative accuracy is the absolute mean difference between the emission rate determined by the CEMS and the value determined by the reference method plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the reference tests or the applicable emission limit. The relative accuracy of this plant, based upon the mean value of the reference method test data was 6.93 percent. The relative accuracy of the "C" Unit Sulfuric Acid Plant was therefore within the allowable limits.

Results of the O_2 relative accuracy tests are summarized in Table 2. The average difference between the reference method and the CEMS data of the nine data sets constitute the relative accuracy. In order to be in conformance with Performance Specification 3, the relative accuracy of the O_2 CEMS must be no greater than 1.0 percent O_2 . The relative accuracy of the O_2 CEMS, based upon the above definition, was 0.19 percent. The relative accuracy was therefore within the allowable limits.

4.0 TEST PROCEDURES

4..1 Methods

1

The SO₂ relative accuracy test was conducted in accordance with Performance Specification 2 – Specifications and Test Procedures for SO₂ and NO₂ Continuous Emission Monitoring Systems in Stationary Sources, 40 CFR 60, Appendix B. The relative accuracy test procedures require that a minimum of nine sets of reference method tests be conducted. Nine sets of data were collected concurrently with the CEMS. Relative accuracy testing was performed in conjunction with a compliance test. Therefore, three runs were performed for a period of 60 minutes per run and six runs were performed for a period of 21 minutes per run. Reference method samples were collected and analyzed in accordance with EPA Method 8 – Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources, 40 CFR 60, Appendix A.

The O_2 relative accuracy test was conducted in accordance with Performance Specification 3 – Specifications and Test Procedures for O_2 and CO_2 Continuous Emission Monitoring Systems, 40 CFR 60, Appendix B. The relative accuracy test procedures require that a minimum of nine sets of reference method tests be conducted. Nine sets of data were collected concurrently with the O_2 CEMS. Oxygen sampling was performed simultaneously with SO₂ sampling in accordance with EPA Method 3B – Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air, 40 CFR 60, Appendix A.

2

4.2 Test Locations

During the three runs utilized for the EPA Method 8 compliance test, twenty four sample points were utilized. During the six runs utilized for relative accuracy only, three sample points were utilized for collecting the reference method sulfur dioxide and oxygen samples. The points were located along a measurement line that passed through the centroidal area of the stack. The three sample points were located on the line at 16.7, 50.0, and 83.3 percent of the stack diameter. Velocity traverses were performed at twenty four points during each of these runs for determination of flow rate. The locations of the sampling ports are shown in Figure 1.

4.3 Sampling Train

The sulfur dioxide sampling train consisted of a stainless steel nozzle, a Napp Corporation heated borosilicate glass-lined probe, a glass filter bypass tube, a glass fiber filter, and four impingers arranged as shown in Figure 2. The first impinger was charged with 100 milliliters of 80 percent isopropanol. The second and third impingers were each charged with 100 milliliters of 3 percent hydrogen peroxide and the fourth impinger charged with indicating silica gel desiccant. The impingers were cooled in an ice and water bath during sampling. A Lear Siegler control console was used to monitor the gas flow rates and stack conditions during sampling. The oxygen sampling train consisted of a stainless steel probe, sample line, pump, and tedlar sampling bas as shown in Figure 3.

4.4 Sample Collection

* `

Prior to sulfur dioxide sampling, the pitot tubes were checked for leaks and the manometers were zeroed. A pretest leak check of the sample line was conducted by sealing the nozzle and applying a 15" vacuum. A leak rate of less than 0.02 cubic feet per minute)CFM) was considered acceptable.

4.5 Sample Recovery

A post test leak check of the sulfur dioxide sampling train was performed at the completion of the run by sealing the nozzle and applying a vacuum equal to or greater than the maximum value reached during the sample run. A leak rate of less than 0.02 CFM or 4 percent of the average sampling rate (whichever is less) was considered acceptable. The probe was then disconnected, the ice bath drained, and the remaining part of the sample train was purged by drawing air through the system for fifteen minutes at the average flow rate used during sampling. The second and third impingers, associated connecting glassware, and back half of the filter holder were rinsed with distilled, deionized water into a 500 milliliter volumetric flask.

z

5.0 Analytical Procedure

5.1 Pretest Preparation

The 3 percent hydrogen peroxide solution was prepared from 30 percent reagent grade hydrogen peroxide and deionized water on the morning of the test. The 80 percent isopropanol solution was prepared from 100 percent reagent grade isopropanol and deionized water. The impingers were charged as described in section 4.3.

5.2 Analysis

After recovery, the samples were analyzed using procedures outline in EPA Method 8 – Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources, 40 CFR 60, Appendix A. Duplicate results were obtained in milliliters of barium perchlorate titrant. The average of these titration values were used to compute the sulfur dioxide concentrations.

Table 1. SULFUR DIOXIDE RELATIVE ACCURACY TEST RESULTS

Company: CF Industries, Inc., Plant City Phosphate Complex Source: "C" Sulfuric Acid Plant Date: 1/25-26/05

۰,

Run No.	Date	Time	Reference Method (PPM SO2)	CEM (PPM SO2)	Difference (PPM SO2)
1	1/25/05	10:07-10:28	348	365	17
2	1/25/05	11:12-12:31	330	360	30
3	1/25/05	12:58-14:21	337	357	20
4	1/25/05	14:50-16:10	334	356	· 22
5	1/25/05	16:28-17:15	341	358	17
6	1/26/05	13:44-14:05	335	350	. 15
7	1/26/05	14:34-14:55	335	352	17
8	1/26/05	15:33-15:54	327	350	23
9	1/26/05	16:24-16:45	336	350	14
		Average	336	355	19.4

Std. Dev. 4.978

2.5% Error Confidence Coefficient (CC)= t0.975*Sd/sq.rt. N CC = 3.816 n = 9 t _{0.975} =2.3 for n = 9

Relative Accuracy (RA) = (mean of difference) + CC)/Avg RM RA = 6.93 %

In order to be in conformance with Performance Specification 2, the relative accuracy of the SO2 CEMS must be no greater than 20 percent of the mean value of the reference method test data in terms of the units of the emission standard or 10 percent of the applicable standard, whichever is greater.

The relative accuracy of this plant based upon the mean value of the reference method test data was 6.93%. The relative accuracy of C SAP was therefore within the allowable limits.

Table 2. OXYGEN RELATIVE ACCURACY TEST RESULTS

Company: CF Industries, Inc., Plant City Phosphate Complex Source: "C" Sulfuric Acid Plant Date: 1/25-26/2005

Run No.	Date	Time	Reference Method (%O2)	CEM (%O2)	Difference (%O2)
1	1/25/05	10:07-10:28	3.4	3.26	-0.14
2	1/25/05	11:12-12:31	3.5	3.26	-0.24
3	1/25/05	12:58-14:21	3.6	3.25	-0.35
4	1/25/05	14:50-16:10	3.6	3.25	-0.35
5	1/25/05	16:28-17:15	3.6	3.26	-0.34
6	1/26/05	13:44-14:05	3.3	3.27	-0.03
7	1/26/05	14:34-14:55	3.3	3.27	-0.03
8	1/26/05	15:33-15:54	3.4	3.30	-0.10
9	1/26/05	16:24-16:45	3.4	3.29	-0.11
		Average	3.46	3.27	-0.19

In order to be in conformance with Performance Specification 3, the relative accuracy of the O2 CEMS must be no greater than 1.0 percent O2. The relative accuracy of the O2 CEMS, based upon the above definition was 0.19 percent O2. The relative accuracy was therefore within the allowable limits.

<u>Appendix</u>

•

Project Participants

Emissions Test Summaries

':

6

Γ,

Process Operational Data

Laboratory Data

Field Data Sheets

Gas Analysis Forms

Calibration Data

Source Sampling Nomenclature Sheet

Calculations

PROJECT PARTICIPANTS CF INDUSTRIES, INC. PLANT CITY PHOSPHATE COMPLEX

× !

· · · ·

H.E.	Morris	General Manager
R.C.	May	Manager of Engineering
T.A.	Edwards	Supt., Environmental Affairs
J.M.	Messina	Chief of Environmental Affairs
J.H.	Falls	Chief Chemist, Laboratory
F.J.	Dlugos	Environmental Supervisor
E. Kr	retschmar	Analyst II
L. Ca	amp	"A" Class Technician
W. Cł	herry .	"A" Class Technician

ħ

C SAP

1

- , • ..

٩.,

۰.

*,

۰,

÷ .

,

PERMIT NO. 0570005-007-AV EMISSION UNIT 007

·,

ħ

RUN NUMBER	1	5	6
DATE	25-Jan-05	25-Jan-05	26-Jan-05
TIME START	10:07	16:28	13:44
TIME END	10:28	17:15	14:05
BP, INCHES Hg	30.21	30.21	30.21
STACK PRESSURE, INCHES Hg	30.22	30.22	30.22
AVG.SQ.ROOT(VEL. HEAD) IN Hg	0.529	0.5259	0.5176
ORIFICE PRESS. OF METER, IN WATER	1.400	1.390	1.343
AVG STACK TEMP. ,F	155.00	154.67	156.46
STACK, DRY BULB	155.00	154.67	156.46
METER TEMPERATURE, F	82.17	94.50	89.17
VOL. OF GAS, DM CONDITIONS, FT3	14.957	15.149	14.734
VOL. GAS, STP, DRY COND. FT3	14.905	14.760	14.494
STACK GAS MOISTURE, % VOLUME	0	0	0
MW OF STACK GAS, DRY COND.	28.4	28.4	28.4
MW OF STACK GAS, STACK COND.	28.4	28.4	28.4
PITOT CORRECTION FACTOR	0.84	0.84	0.84
STACK GAS VELOCITY, STACK COND. FT3/SEC	32.15	31.96	31.5
STACK AREA, FT2	67.2	67.2	67.2
EFFECTIVE STACK AREA, FT2	67.2	67.2	67.2
STACK GAS FLOW-RATE AT STP, SCFMD	112420	111791	109867
NET TIME OF TEST, MINUTES	21	21	21
SAMPLE NOZZLE AREA, FT2	0.000418	0.000418	0.000418
PERCENT ISOKINETIC	101.5	101.1	101.0
SULFURIC ACID MIST(INCLUDES SO3), MG			
SULFURIC ACID MIST, LBS/HR.			
SULFURIC ACID MIST, LBS/DAY			
SULFUR DIOXIDE, MG	390.88	379.15	365.75
SULFUR DIOXIDE, LBS/HR.	389.16	379.05	365.97
SULFUR DIOXIDE, LBS/DAY	9339.90	9097.24	8783.30
SULFURIC ACID MIST, LBS/TON OF H2SO4 PROD.		۰.	
SULFURIC ACID MIST, LBS/TON LIMIT	0.10	0.10	0.10
	0.10	0.10	0.10
SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD.	3.50	3.41	3.33
SULFUR DIOXIDE, LBS/TON LIMIT	3.50	3.50	3.50
SULFUR DIOXIDE, LBS/TON OF H2SO4 (METER IN PLANT)	3.20	3.20	3.20
		007	0010
PRODUCTION RATE TPD	2671	2671	2640
PRODUCTION RATE, TPD LIMIT	2750	2750	2750
REFERENCE METHOD SO2 (ppm)	348	341	335

',

C SAP

1

.

.

.

•

PERMIT NO. 0570005-007-AV EMISSION UNIT 007

ħ

	2	3	4
DATE	25-Jan-05	25-Jan-05	25-Jan-05
TIME START	11:12	12:58	14:50
TIME END	12:31	14:21	16:10
BP, INCHES Hg	30.21	30.21	30.21
STACK PRESSURE, INCHES Hg	30.22	30.22	30.22
AVG.SQ.ROOT(VEL. HEAD) IN Hg	0.5262	0.5204	0.5292
ORIFICE PRESS. OF METER, IN WATER	1.325	1.2971	1.3642
AVG STACK TEMP.,F	153.29	153.33	153.04
STACK, DRY BULB	153.29	153.33	153.04
METER TEMPERATURE, F	89.46	97.23	97.9
VOL. OF GAS, DM CONDITIONS, FT3	50.434	50.554	51.465
VOL. GAS, STP, DRY COND. FT3	49.583	49.004	49.836
STACK GAS MOISTURE, % VOLUME	0	0	0
MW OF STACK GAS, DRY COND.	28.4	28.4	28.4
MW OF STACK GAS, STACK COND.	28.4	28.4	28.4
PITOT CORRECTION FACTOR	0.84	0.84	0.84
STACK GAS VELOCITY, STACK COND. FT3/SEC	31.94	31.59	32.1 1
STACK AREA, FT2	67.2	67.2	67.2
EFFECTIVE STACK AREA, FT2	67.2	67.2	67.2
STACK GAS FLOW-RATE AT STP, SCFMD	111981	110743	112642
NET TIME OF TEST, MINUTES	72	72	72
SAMPLE NOZZLE AREA, FT2	0.000418	0.000418	0.000418
PERCENT ISOKINETIC	98.9	98.8	98.8
SULFURIC ACID MIST(INCLUDES SO3), MG	7.70	9.49	9.13
SULFURIC ACID MIST, LBS/HR.	2.3	2.83	2.72
SULFURIC ACID MIST, LBS/DAY	55.09	67.94	65.38
	1000 00	1045 60	10 64 76
	1232.98 367.57	1245.60 371.55	12.54.76
SULFUR DIOXIDE, LBS/HR. SULFUR DIOXIDE, LBS/DAY	8821.70	8917.20	374.36 8984.80
SULFUR DIOXIDE, LBS/DAT	0021.70	0917.20	0904.00
SULFURIC ACID MIST, LBS/TON OF H2SO4 PROD.	0.02	0.03	0.02
SULFURIC ACID MIST, LBS/TON LIMIT	0.10	0.10	0.10
SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD.	3.30	3.34	3.36
SULFUR DIOXIDE, LBS/TON LIMIT	3.50	3.50	3.50
	0.00	0.00	0.00
SULFUR DIOXIDE, LBS/TON OF H2SO4 (METER IN PLANT)	3.14	3.12	3 .1 1
PRODUCTION RATE TPD	2671	2671	2671
PRODUCTION RATE, TPD LIMIT	2750	2750	2750
VISIBLE EMISSION			0%
VISIBLE EMISSION LIMIT			10%

, ,

C SAP

e

ц**е**.

....

1

PERMIT NO. 0570005-007-AV EMISSION UNIT 007

3

RUN NUMBER	7	8	- 9
DATE	26-Jan-05	26-Jan-05	26-Jan-05
TIME START	14:34	15:33	16:24
TIME END	14:55	15:54	16:45
BP, INCHES Hg	30.21	30.21	30.21
STACK PRESSURE, INCHES Hg	30.22	30.22	30.22
AVG.SQ.ROOT(VEL. HEAD) IN Hg	0.5188	0.5170	0.5134
ORIFICE PRESS. OF METER, IN WATER	1.4270	1.3433	1.4267
AVG STACK TEMP. ,F	157.50	158.25	157.25
STACK, DRY BULB	157.50	158.25	157.25
METER TEMPERATURE, F	96.5	97.5	97.5
VOL. OF GAS, DM CONDITIONS, FT3	15.252	14.809	15.225
VOL. GAS, STP, DRY COND. FT3	14.809	14.35	14.756
STACK GAS MOISTURE, % VOLUME	0	0	. 0
MW OF STACK GAS, DRY COND.	28.4	28.4	28.4
MW OF STACK GAS, STACK COND.	28.4	28.4	28.4
PITOT CORRECTION FACTOR	0.84	0.84	0.84
STACK GAS VELOCITY, STACK COND. FT3/SEC	31.60	31.51	31.26
STACK AREA, FT2	67.2	67.2	67.2
EFFECTIVE STACK AREA, FT2	67.2	67.2	67.2
STACK GAS FLOW-RATE AT STP, SCFMD	110029	109580	108906
NET TIME OF TEST, MINUTES	21	21	21
SAMPLE NOZZLE AREA, FT2	0.000418	0.000418	0.000418
PERCENT ISOKINETIC	103.1	100.3	103.7
SULFURIC ACID MIST(INCLUDES SO3), MG			,
SULFURIC ACID MIST, LBS/HR.			
SULFURIC ACID MIST, LBS/DAY			
SULFUR DIOXIDE, MG	374.12	354.01	374.12
SULFUR DIOXIDE, LBS/HR.	366.93	356.85	364.48
SULFUR DIOXIDE, LBS/DAY	8806.20	8564.30	8747.50
SULFURIC ACID MIST, LBS/TON OF H2SO4 PROD.			
SULFURIC ACID MIST, LBS/TON LIMIT	0.10	0.10	0.10
SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD.	3.34	3.24	3.31
SULFUR DIOXIDE, LBS/TON LIMIT	3.50	3.50	3.50
SULFUR DIOXIDE, LBS/TON OF H2SO4 (METER IN PLANT)	3.20	3.20	3.20
PRODUCTION RATE TPD	2640	2640	2640
PRODUCTION RATE, TPD LIMIT	2750	2750	2750
REFERENCE METHOD SO2 (ppm)	335	327	336

.

CEMS SO2 Data - SO2 PPM

.

, Run No. 1	Date 01/25/05	Time of RATA Run (PPM SO2) 10:07-10:28	Time 1000 1015	CEMS (PPM SO2) 365 365	Avg
2	01/25/05	11:12-12:31	1030 1100 1115 1130 1145	365 365 360 360 360	365
	01/25/05	12:58-14:21	1200 1215 1230 1300	360 360 355 355	360
· ·			1315 1330 1345 1400	360 355 355 360	
4	01/25/05	14:50-16:10	1415 1445 1500 1515 1530	355 355 355 355 355	357
5	01/25/05	16:28-17:15	1545 1600 1630 1645	355 360 360 355	356
6	01/26/05	13:44-14:05	1700 1715 1345 1400	355 360 350 350	358 350
7	01/26/05	14:34-14:55	1430 1445 1500	350 355 350	352
8	01/26/05	15:33-15:54	1530 1545 1600	350 350 350	350
9	01/26/05	16:24-16:45	1630 1645	350 350 350	350

ħ

1 1 1

O2 Data - CEMS %

. . د - ب -

١.

:,

۰,

. . .

Run No.	Date	Time of RATA Run (%O2)	Time	CEMS %O2	Avg
1		10:07-10:28	1000	3.26	-
·	•		1015	3.23	
			1030	3.28	3.26
2	01/25/05	11:12-12:31	1100	3.24	
			1115	3.28	
			1130	3.28	
			1145	3.25	
			1200	3.26	
			1215	3.23	
			1230	3.25	3.26
3	01/25/05	12:58-14:21	1300	3.28	
			1315	3.23	
			1330	3.26	
			1345	3.24	
			1400	3.23	
			1415	3.25	3.25
4	01/25/05	14:50-16:10	1445	3.25	
			1500	3.24	
			1515	3.25	
			1530	3.26	
			1545	3.27	0.05
			1600	3.23	3.25
5	01/25/05	16:28-17:15	1630	3.25	
			1645	3.26	
			1700	3.27	2.26
_		10 11 11 05	1715	3.27	3.26
6	01/26/05	13:44-14:05	1345	3.27	2 27
_			1400	3.27	3.27
7	01/26/05	14:34-14:55	1430	3.26 3.26	
			1445	3.20	3.27
· ·	04/00/05	45.00 45.54	1500	3.35	5.27
8	01/26/05	15:33-15:54	1530 1545	3.35	
			1600	3.29	3.30
•	04/00/05	16.01 16.15	1630	3.27	0.00
9	01/20/05	16:24-16:45	1630	3.29	3.29
			1045	5.23	5.25

ъ

۰,

"C" Sulfuric Acid Plant Process Operation Data

Test Date: 1/25 & 26/2005

. .

 ϵ_{i}

Run No.	1	<u>`</u> 2	. 3	4	5	6	7	8	9
Start Time	1007	1112	1258	1450	1628	1344	1434	1533	1624
Stop Time	1028	1231	1421	1610	1715	1405	1455	1554	1645
Production	2671	2671	2671	2671	2671	2640	2640	2640	2640
tons/day						•			
Period									
Average									
Values									
from									- 25-
Aspen									
Avg lbs	3.19	3.16	3.12	3.11	3.11	3.08	3.08	3.06	3.07
SO2/ton									
for period									
Avg % O2	3.26	3.26	3.25	3.25	3.26	3.27	3.27	3.3	3.29
for period									
Avg SO2	365	360	357	356	358	350	352	350	350
ppm for						ľ			
period									

13

*1

PLANT C

SO2 MONIT	ORING	LOG
-----------	-------	-----

DATE: 1-25-05

SO2 Chart Readings								
Time		:00	:15	:30	:45 i	AVG		
6:00 AN	1	380 1	375	37	375	376.25		
7:00 A	4	375 1	375	SPAN (maint	Prov/ mont	375		
8:00 A	N 51	PAN/an.1+	Samy manit	SPANU/maint	370	370		
9:00 A	<u>M</u>	370	345	345	345	340.15 I		
10:00 A	M	345	345	345	345	345		
11:00 A	M.	345	1340	340	130	1341.26		
12:00 P	м	340	340	355	340	358.75		
1:00 P	м	355	:10	355	35	356.25		
2:00 P	M	.340	315	30	30	1 256.25		
3:00 E	M	355	1 355	305	1355	35 1		
4:00 1	M	340	1 317	360	311	35750		
5:00 1	PM	355	360	1 360	1 360	358.75		
, 6:00	PM	360	360	360	360	360		
7:00	PM	360	360	360	360	1 360		
8:00	PM	365	360	365	365	363.75		
9:00	PM	370	370	365	365	1367.50		
10:00	PM	365	360	365	360	362.50		
11:00	PM	365	365	370	370	367.50		
12:00	AM	360	1 365	1 370	365	1 365		
1:00	AM	345	365	365	370	366.25		
2:00	AM	370	1 370	370	1 370	370		
3:00	ĀM	365	345	365	370	366.25		
4:00	AM	370	370	375	370	371.25		
5:00	AM	270	075	345	370	24.75		

O2 Chart Readings						
Time	. :00	:15	:30	:45	AVG	
6:00 AM		3.20	3.15	3.27	3.21	
7:00 AM	7.21	3.20	Spans/main -	SPAN DAint	3.205	
8:00 AM	SPAN/mp.nl	SPAN/mit	SPAN)/mint.	3. 2y	3.21	
9:00 AM		3.19	3.25	3.25	3,22	
10:00 AM	3.26	3.23	3.28	3.23	3.75	
11:00 AM		3.78	3.28	13.25	3.2425	
12:00 PM	1 3.26	3.23	325	3.26	3.25	
1:00 PM	1 3.28	3.23	3.74	324	3,2525	
2:00 PM	1 3.23	3.25	3.24	12.25	3,2425	
3:00 PN	1 3.24	3.25	13.20	3.27	3,255	
4:00 Ph	1 323	3.24	325	3.70	3.25	
5:00 PM		5.27	3.25	3.24	3.2575	
6:00 P	N 3.26	3.27	3.25	3.26	3.2600	
7:00 PI	M 3.33	3.24	3.29	3.26		
8:00 PI	M 3.25	3.25	3, 22	3.26	3.2450	
9:00 P	M 32/	3.23	3. 22	3,30	3.2400	
10:00 P	M 3.23	3.24	3.27	3.28	3.2600	
11:00 P	M 3.20	3.24	3.20	3.23	3.2.425	
12:00 A	M 3.24		3.28	3.27	3.2625	
1:00 A			3.24	3.23	3.2400	
2:00 A			3 3.2	3 3.2	5 32300	
3:00 /	M 3.2	6 3,26	3 3.25	3.2	3. 3.2550	
4:00	LM 3.2	4 32			3.2250	
5:00 /	AM 3.24	3.23	יד ,3	3, 24,	1 3,2375	

.

0	
05	· · · · · · · · · · · · · · · · · · ·
	Lts SO2/ ton H2SO4
AVG .	Time AVG.
121	6:00 AM
,205	7:00 AM
3.21	8:00 AM
3,22	9:00 AM 3. 1969
3.75	10:00 AM
3.24.25	11:00 AM
3.25	12:00 PM
3,2525	1:00 PM
3,2425	2:00 PM · 3.113
3,255	3:00 PM
3.25	4:00 PM
3.2575	5:00 PM
3.2600	6:00 PM
3.2850	7:00 PM
3.2450	8:00 PM 3.1798
3.2400	9:00 PM
3.2600	10:00 PM
3.2.425	11:00 PM
3.2625	12:00 AM
3.2400	1:00 AM
32300	2:00 AM 3.23 14
3.2550	3:00 AM
3.2250	4:00 AM
3,2375	5:00 AM
	1944
Lbs SO2/ton H	SO4ppm SO2 X .001959
	0 365 (D136 X % D2

EXIT REIGH TEST				
SHIFT TIME %SO2				
7:00 AM				
7:00 AM				
7:00 PM				
7:00 PM		1		

REMARKS. 07.25-08:30 Maint 4
REMARKS: 07:25-08:30 maint 4 - Spantest MAD
A ACAL C
Day Shift Operator: Unit for the forthe
Night Shirt Operator. And Anter of

14

:		0.265 - (.0126 X % O2
	ate Lbs/ Ton:	
1) Multiply	y the hourly average pp	m SO2 (from the log sheet) by .001959
2) Multiply	y the hourly average %	O2 (from the log sheet) by :0126(b)
3) Subtrac	t the number calculated	in step two (b) from .265 (c)
4) Divide	the numbercalculated i	n step one (a) by the number calculated in
step thre		•
This will	give Lbs Ton H2SO4	
,7126		
.0409	,01 07	
.2241	. 22.43	

PLANT	\mathcal{C}

SOI Chart Reading

	SO2 Chart Readings						
Tim	e	:00	:15	:30	:45 i	AVG	
6:00	AM	345	345	745 1	360	363.75	
7:00	AM	345	345	365	260	343.75	
8:00	AM	340 1	360	345	360 :	361.75	
9:00	AM	345	345	370	SPAN.	366.66	
10:00	AM	SPAN	370	370	370	370	
11:00	AM	370	370	350 1	340	357,50	
12:00	PM	340	340	1 315	355	338.50	
1:00	PM	355	355	3,00	3,00	352.50	
2:00	D PM	350	300	350	31	351.25	
3:00	0 PM	350	350	3.00	J20 -	330	
4:0	0 PM	350	350	30	356	350	
5:0	0 PM	350	50	1.555	355	352.50	
_	0 PM 0 PM		350 30			\$52.50 \$53,75	
, 6:0		300	350	. 555	355		
. <u>6:0</u> 7:0	0 PM	350	350 300	. 555 355 350	355 KO	\$55,75	
. <u>6:0</u> 7:0 8:0	0 PM 0 PM	310 350 355	50 30 355	. 155 155 350 395	355 160 360	\$53,75 \$52.50	
. <u>6:0</u> 7:0 8:0 9:0	0 PM 0 PM 0 PM	310 350 355 355	50 20 355 355	. 555 355 350	355 260 360 355	\$53.75 \$52.50 \$5	
.6:0 7:0 8:0 9:0	0 PM 0 PM 0 PM 0 PM	310 50 311 355 360 370	350 360 355 355 360	355 355 350 395 395 340	355 160 360 355 355	953,75 352.50 957 \$59.75	
. 6:0 7:0 8:0 9:0 10:0	0 PM 0 PM 00 PM 00 PM 00 PM	310 350 355 355 360 370 380	350 300 355 <i>355</i> <i>360</i> <i>345</i>	555 355 355 395 395 360 575	355 360 360 355 355 375	\$53.75 \$52.50 \$5 \$50.75 \$71.24 372.75	
. 6:0 7:0 8:0 9:0 10:0 11:0	0 PM 0 PM 00 PM 00 PM 00 PM 00 PM	310 50 355 355 360 370 360 360 360 360	350 300 355 355 360 365 365 - 340	. 555 355 355 375 375 575 380	355 260 565 555 355 375 375 375	\$53.75 \$52.50 \$57 \$58.75 \$71.26	
6:0 7:0 8:0 9:0 10:0 11:0 12:0	0 PM 0 PM 0 PM 00 PM 00 PM 00 PM 00 PM	310 50 355 355 360 370 360 360 360 360	350 300 355 355 355 360 345 340 345	. 555 355 355 395 395 390 575 380 380	355 360 565 555 375 375 375 375	\$53,75 \$52.50 \$52.50 \$50.75 371.84 378.75 381.75	
6:0 7:0 8:0 9:0 10:0 11:1 12:0 1:0	0 PM 0 PM 0 PM 00 PM 00 PM 00 PM 00 AM	310 50 355 355 360 370 380 380 380	50 20 355 355 360 345 340 385 380 385 380	555 355 355 375 375 360 380 380 540	355 260 565 575 375 375 375 375 375 375	\$53,75 \$52.50 \$52.50 \$50.75 \$71.24 372.75 \$20/.25 \$200 \$200	
6:0 7:0 8:0 9:0 10:0 11:0 12:0 12:0 1:0 12:0 1:0 12:0 1:0 1:0 12:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1:0 1	0 PM 0 PM 00 PM 00 PM 00 PM 00 PM 00 AM 00 AM	310 50 355 360 370 370 370 380 380 380 380 375	50 20 355 355 360 345 340 345 340 345 340 590	555 395 395 395 395 390 575 300 300 300 900 970	355 260 355 355 375 375 375 375 375 375 375 375	953,75 953,75 952.50 957 9580.75 371.24 378.75 381.25 280 378,75	

	302	MONTOR				1 1 -
					DATE: //.	24/05
			O2 Chart]	Readings	/	7
Ti	ne	:00	:15	:30	:45	AVG
6:00	MA	3.20	3.24	3,24	3.26	3.255
7:0	MA	3.26	3.8	3,27	3.74	3.28
8:0	0 AM	3.76	3.25	3.23	3.34	3,27
9:0	0 AM	3,11	3.27	3.26	Span	3,213
10:0	MA 0	SPAN	3.20	3.24	3.2	3,24/
11:0	0 AM	3.24	13.24	3.35	13.36	3.2971
12:0	DO PM	3.37	3.36	348	3.33	3,315
1:	00 PM	3.24	325	3.29	3,27	3,2625-
2:	00 PM	3,27	3.29	3.24	3,74	3,27
3:	00 PM	3.30	3.26	3.35	3.29	3.30
4:	00 PM	7,27	3.20	3.29		3,7475
5:	00 PM	3.22	3.30	3.24	3.25	3,2775
6	00 PM	3,29	3.36	3.28	3.24	3.2925
7	:00 PM	3.29	3.29	3.27	5.27	3.2800
8	:00 PM	3.26	3.26	5.26	3.25	32575
9	:00 PM	8.35	3,27	5.24	5.29	3.2875
10	:00 PM	3.24	5.02	8 3.16	3.19	9.2025
11	:00 PM	3,18	3.0	5.17		
12	:00 AN	1 3.14	3.16	3.18	8.17	3.1425
	:00 AN	A 3.17	3,16	3.0	3.17	3,1575
	L:00 AN	1 3.0	3.B	3.26	3.2	3. AB QO
	1:00 AN	1 3.17	3.20	8.13	3.16	
	4:00 A1	M 3,13	3.17	3.17	3.15	3.155
	5:00 AJ		3.24	3.12		3.175
			·····	·····		

-	
	Lbs SO2/ ton H2SO4
Time	AVG.
6:00 AM	•
7:00 AM	
8:00 AM	3,1622
9:00 AM	
10:00 AM	•
11:00 AM	
12:00 PM	
1:00 PM	
2:00 PM	1 3.0746
3:00 PM	
4:00 PM	1
5:00 PM	si
6:00 PM	<u>.</u>
7:00 PM	A
8:00 PM	1 3.1045
9:00 P	A
. 10:00 Pl	N
11:00 P	M
12:00 A	M
1:00 A	M
2:00 A	
3:00 A	

EXIT REIGH TEST			
SHIFT	TIME	%SO2	
7:00 AM			
7:00 AM			
7:00 PM		-	
7:00 PM			

REMARKS: Span Test 09:41-10:07 Am Y.Q Day Shift Operator: ________ Night Shift Operator: _______ ۰S

Lbs SO2/ton H2SO4 - ppm SO2 X .001939 0.265 - (.0126 X % O2

4:00 AM

5:00 AM

.

· ·	0103+1.0110 X 74 04
To Calculate Lbs/ Ton:	
1) Multiply the hourly average ppm So	02 (from the log sheet) by .001959
2) Multiply the hourly average % O2 ((from the log sheet) by :0126(b)
3) Subtract the number calculated in s	tep two (b) from .265 (c)
4) Divide the numbercalculated in ste	p one (a) by the number calculated in
step three (c).	
This will give Lbs Ton H2SO4	
.6954 .7420	
.0410 .0401 .2240 .2249	
. 2240 . 2249	
	4

SO2 MONITORING LOG

J.

ہ ڊ

A.).

243 206

14

1.6

		DATE TIME STACK RUN	25-Jan-05 10:07 AM C SAP #1	то _	10:28 AM
SAMPLE SOLUTION ANALYSIS					
-	Acid Mist, SO 3		SO 2		
Volume of Sample, ml.	500		500 100	-	
Aliquot, ml.	50		20 20		
Normality (of Barium Perchlorate	0.010464		0.010464		
Mls. of Barium Per- chlorate Titrated	1.20		9.48	·	7
Blank, ml.	0.15	-	0.15		
Conversion to Milligrams	5.39	_	390,88		

Analyst William 4. Chury S

٠.

\$ 1. 7.

۲,

1

जाः ८३

Ξ.

•		DATE TIME STACK RUN	25-Jan-05 11:12 AM C SAP #2	то	12:31 P	<u>M</u>
SAMPLE SOLUTION ANALYSIS						
	Acid Mist, SO 3		SO 2			
Volume of Sample, ml.	500		500 100			
Aliquot, ml.	50		20 20			
Normality (of Barium Perchlorate	0.010464		0.010464		7	
Mls. of Barium Per- chlorate Titrated	1.65		29.58			
Blank, ml.	0.15		0.15			
3. Conversion to Milligrams	7.70		1232.98			

Analyst William F. Chung

• •		DATE TIME STACK RUN	25-Jan-05 12:58 PM C SAP #3	то	2:21 PM
SAMPLE SOLUTION ANALYSIS					
	Acid Mist, SO 3	2	3(SO 2		
Volume of Sample, ml.	500		500 100		
Aliquot, ml.	50		20 20		
Normality of Barium Perchlorate	0.010464		0.010464		7
Mls. of Barium Per- chlorate Titrated	2.00		29.88		
Blank, ml.	0.15		0.15		
Conversion to Milligrams	9.49		1245.55		

Analyst

William Y. Chung L

-

,

<u>.</u>

4

5

.

4

			DATE TIME STACK RUN	25-Jan-05 2:50 PM C SAP #4	то	4:10 PM
SAMPLE SOLUTION ANALYSIS						
	Acid Mist, SO	3		SO 2		
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
Normalit of Barium Perchlorate	0.010464		-	0.010464		Σ.
Mls. of Barium Per- chlorate Titrated	1.93			30.10		
Blank, ml.	0.15			0.15		
Conversion to Milligrams	9.13			1254.76		

Analyst

19

William J. Chury S

1

ŗ

.

....

, ,

			DATE TIME STACK RUN	25-Jan-05 4:28 PM C SAP #5	TO	5:15 PM
SAMPLE SOLUTION ANALYSIS						
×	Acid Mist, SO	3		so 2		
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
Normalitof Barium Perchlorate	0.010464	2		0.010464		7
Mls. of Barium Per- chlorate Titrated				9.20		
Blank, ml.	0.15			0.15		
Conversion to Milligrams				379.15		

Analyst

William 4. Chung S

ç

: ;

ζ,

· .			DATE TIME STACK RUN	26-Jan-05 1:44 PM C SAP #6	то	2:05 PM
SAMPLE SOLUTION ANALYSIS						
:	Acid Mist, SO	3		so 2		
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
Normalit of Barium Perchlorate	0.010464			0.010464		2
Mls. of Barium Per- chlorate Titrated				8.88		
Blank, ml.	0.15			0.15		
Conversion to Milligrams				365.75		

Analyst

Willian F. Chry &

•

			DATE TIME STACK RUN	26-Jan-05 2:34 PM C SAP #7	то	2:55 PM
SAMPLE SOLUTION ANALYSIS						
	Acid Mist, SO	3		SO 2		
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
Normalit of Barium Perchlorate	0.010464			0.010464		7
				0.010404		
Mls. of Barium Per- chlorate Titrated				9.08		
Blank, ml.	0.15			0.15		
Conversion to Milligrams				374.12		

Analyst William F. Chury &

cso4titr.xls

i.;

۰.

۶,

٠,

			DATE TIME STACK RUN	26-Jan-05 3:33 PM C SAP #8	TO	3:54 PM
SAMPLE SOLUTION ANALYSIS						
· .	Acid Mist, SO	3		SO 2		
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
Normalit:of Barium Perchlorate	0.010464			0.010464		7
Mls. of Barium Per- chlorate Titrated				8.60		
Blank, ml.	0.15			0.15		
Conversion to Milligrams				354.01		

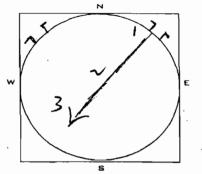
Analyst William Y. Chury S.

cso4titr.xls

·. ·.

<u>.</u>

14.) V.1


		DATE TIME	26-Jan-05 4:24 PM	TO	4:45 PM
		STACK	C SAP		
		RUN	#9		
SAMPLE SOLUTION ANALYSIS	ч.				
	Acid Mist, SO		SO		
	3		2		
Volume of Sample, ml.	500		500 100		
-					
Aliquot, ml.	50		20 20		
Normality (of Barium					
Perchlorate	0.010464		0.010464		
Mls. of Barium Per-					7,
chlorate Titrated			9.08		
· · ·					
Blank, ml.	0.15	×	0.15		
Conversion to Milligrams			374.12		

Analyst William F. Chung G

24

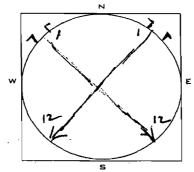
CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

PLANT	C SULFURIC
RUN NUMBER	CIEM-1
LOCATION	CF, INDUSTRIES, PLANT CITY
DATE	1/23/05
OPERATOR	ZANTEST KARTSCHMAR
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

		, *	
AMBIENT AIR TEMPERATURE		DEGREES F	_
BAROMETRIC PRESSURE		INCHES HG	
ASSUMED MOISTURE	0	%	
HEATER BOX SETTING	MV	DEGREES F	_
PROBE TIP DIAMETER	0.277	INCHES	
PROBE LENGTH	10.5	FEET	
PROBE HEATER SETTING	NA		
	·····		•

. •

. •


J	10 centra	A 15" (Run Struck		OF STACK CROS	S SECTION	ı	10La	Kat ish.	(FELD FAUN)	EO
POINT	(TIME)	(CUBIC FEET)	DELTA P (INCHES) (OF WATER)	DELTA H (INCHES) (DF WATER)	TEMPER (DEGRE INLET	ATURE ES FI	PUMP VACUUM (INCHES HG) GUAGE	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1	10:07AM	741.907	0,30	1.4.3	78°	760	4,5		63°	157°
2	W:14	747,0	0.30	1.43	910	770	4.5		66'	154°
23	10:21	741.907 747.0 752.0 756.864-	0.30	1.43	91° 91°	780	4.0		660	154° 154°
STOP	10:28 AM	756.864								AY6.
			AV6- 54 Rt. 0.5415	Are.	AV	<u> </u>	-			AY6 155°
		14.957	0.5415	1.40		82.17				
		······	· ·	· · ·						
					· · ·			· · ·		
			· · · · · ·							
						···· -				
							····-			
			· · · · · · · · · · · · · · · · · · ·							
			······································				· · · ·	†		
		· · · · · · · · · · · · · · · · · · ·			· · ·					
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					<u> </u>	
			.,		· · ·					
						1				
						· · · · -		· · · · · ·		
								· · · · · · · · · · · · · · · · · · ·		<u> </u>
						· · ·	· · · · · · · · · · · · · · · · · · ·		-	
								1		
<u> </u>				· · · · · · · · · · · · · · · · · · ·		24				
			· · · · · · · · · · · · · · · · · · ·							
	·				·	ETADKE		EST FIELD SHEE	T VI 5	

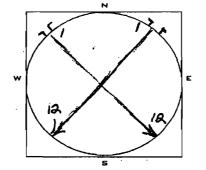
STACKS/COMPLIANCE TEST FIELD SHEET.XLS

25

OF INDUSTRIES COMPLIANCE TEST FIELD SHEET

PLANT	C SULFURIC					
	CIEM-1 /FLOW					
LOCATION	CF INDUSTRIES, PLANT CITY					
DATE	1/25/05					
OPERATOR	TERNEST KATERCIMAN					
SAMPLE UNIT S/N	S-311A					
CONTROL UNIT S/N	C-254					

	• [•	
PROBE HEATER SETTING	NIA	
PROBE LENGTH	10.5	FEET
PROBE TIP DIAMETER	0.277	INCHES ·
HEATER BOX SETTING	MA	DEGREES F
ASSUMED MOISTURE	0	%
BAROMETRIC PRESSURE		INCHES HG
AMBIENT AIR TEMPERATURE		DEGREES F


. ·

SCHEMATIC OF STACK CROSS SECTION

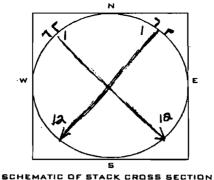
CLOCK	DRY GAS METER	PITOT	DRIFICE	DRY GAS	PUMP	BOX	IMPINGER	STACK
(TIME)	(CUBIC FEET)	DELTA P	DELTA H	TEMPERATURE	VACUUM	TEMPERATURE	TEMPERATURE	TEMPERATURE
						(DEGREES F)	(DEGREES F)	OEGREES F
GISUM	· · · · · · · · · · · · · · · · · · ·	022	OF WATER		GUAGE		·	153°
1						1		1530
<u></u>		0105	_					
		0.28				-		1530
		20 0,200.28						1530
		0.23						154°
		0,30			·			1-540
		0.30						153
		0.28						15A°
		0.22						153° 154° 154°
		0.23	· · · ·					154
		1772	· · · · · · · · · · · · · · · · · · ·					14
	·	A 2.5					-	154' 154'
7/2:00 AM					· · · · · · · · · · · · · · · · · · ·	1		
					- <u> </u>	+		
10:40AM	·	0.83		· · · · · · · · · · · · · · · · · · ·				1540
1		0.02	······					1560
<u> </u> +		1, 12		· · · · · · · · · · · · · · · · · · ·				1540
<u> </u>				······································			· ·	1540
├── <u></u> ┠───┼								- 157
		0.50				<u> </u>		15.50
		0.30						- <u>155°</u> -
								<u> </u>
		0.30						135
		0.32						156°
		().32						135° 135° 135° 136°
1		180.307	8					156'
		0.22						156
				24		· .		1 1 1
		0.5290						
	CLOCK (TIME) G:SUM (U:00MM) (U:00MM) (U:00MM)		$\begin{array}{c c} (TIME) & (CUBIC FEET) & DELTA P \\ (INCHES) & (DF WATER) \\ \hline 0.23 \\ \hline 0.30 \\$	$\begin{array}{c c} (TIME) & (CUBIC FEET) & DELTA H \\ (INCHEB) & (INCHEB) \\ (IICHEB) & (IICHEB) \\ ($	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(TIME) (CUBIC FEET) OELTA PE (INCRES) DELTA PE (INCRES) TEMPERATURE (INCRES) VACUUM (INCRES) $G: SUMM$ $O.23$ INTET DUTET INTET DUTET $O.23$ $O.23$ INTET DUTET INTET I	(TIME) (CUBIC FEET) DELTA P (INDRES) OCLTA P (INDRES) TEMPERATURE (DEGREES F) VACUUM (INDRES) TEMPERATURE (DEGREES F) 9:50% 0.33 -	ITIME: ICUBIC FEET DELTA P (INCHES) DECAMP DECAMP <thdecamp< th=""> <thdecamp< th=""> <thdecam< td=""></thdecam<></thdecamp<></thdecamp<>

CE INDÚSTRIES COMPLIANCE ALOT MELO MALT

PLANT	C SULFURIC				
RUN NUMBER 2	1				
LOCATION	CF INDUSTRIES, PLANT CITY				
DATE	1/25/05				
OPERATOR	BRINGET KRASSCHIMAR				
SAMPLE UNIT S/N	S-311A				
CONTROL UNIT S/N	C-254				

11

i nere

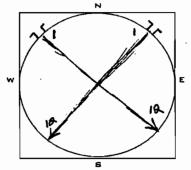

AMBIENT AIR TEMPERATURE	58	DEGREES F
BAROMETRIC PRESSURE	30.21	INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	- NIA-	DEGREES F
PROBE TIP DIAMETER	0.277	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	NA	

	No Lap	E of 15" (Run St DRY GAS METER	nf) go BCHEMATI	C OF STACK CROS	SE SECTION			Vo Looko	LIS" (TEND A	= Pur) ED
TRAVERSE POINT	ITIME)	DRY GAS METER (CUBIC FEET)	PITOT DELTA P (INCHES) (OF WATER)	ORIFICE DELTA H (INCHES) (OF WATER)	DRY GAS TEMPERATU (DEGREES I INLET DUT	RE	PUMP VACUUM (INCHES HG) GUAGE	BOX TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)
1	11:12AM	758.409	0.23	1.10	80° 7	92	6.0		68	145°
2	11:15	760.3	0,25	1.19		80	10.2		670	152-
3	11:18	762.3	0.25	1.19		30	6.2		. 670.	1540
3 4	11:21	764,3	0,88	1.34	720 7	8	69		66°	1540
S	11:24	766.4	0,28	1.34	93° 7	90	6.9		66° 64°	154"
6	11:27	768,5	0,30	143	94° 7	90	7,2		64'	155°
7	U22	770,6	0,20	1,43	94° 8	00	7.2		65	(54° (55° 154°
В	11:32	772.8	0.30	1,43	95° 8	11	7.2		670	154°
9	11:36	774.9	0.30	1,43	260 8	20	7.2		67°	1540
Ŵ	11:29	777,2	0.30	1,43	78 8	52.	7.2		68	154°
1	11:42	779,4	0,8-8	1.34	98 8	83°	6.9		67.	1.54°
12	11:45	781.5	0.23	1.10		s30	6.0		66	154°
STOP	11:48AM	783A67								
···· —					-					
	11:55AM	783.467	0,23	1,10	86 80	60	6.0		68	147°
2	11:58	785,4	0.25	7.19	57° 18		6.2		670	149°
2	p :01	787,3	0,88	1.34	98 8	S	6.8		670	į 54°
4	12:04	729.4	0.23	1.34		¥	6.8		660	(55°
ß	12:07	791.5	0.2.2	1.34	950 8 190 8	53	6.8		670	154° 154°
6	12:10	793.6	0.28	1.34	1002 8	5	6.8		67"	154"
7	12:13	795,7	0.30	1.43	100 8	36%	7.2		67°	155
· 8	12:16	795,7 778,0	0.33	1.57	p1° x	No.	7.4		66	155
9	12:19	800.2	0.30	1.43	100- 5	360	7.2		(08°	آهي ا
10	12:22	802.5	0.30	1.43	1010 8	373	7.2		670	155
n	12:05	804.7	0.28	1:34-		220	6.8		66	154°
12	12:28	206.9	0.25	1.19		884	6.2		660	154° 154°
STOP	12:31	808.843								
···			AVE. So Rt.	A46.	AV6					153.29
		50.434	0.5262	1.3246	89.44 STA	CKS/C	OMPLIANCE T	EST FIELD SHEET	.XLS	

F

27.

PLANT	C SULFURIC
RUN NUMBER	3 2
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/05/05
OPERATOR	BRUBST KNYSCHMAR
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254



AMBIENT AIR TEMPERATURE	68	DEGREES F
BAROMETRIC PRESSURE	30.21	INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	MA	DEGREES F
PROBE TIP DIAMETER	0.277	INCHES
PROBE LENGTH	10.5	FEET .
PROBE HEATER SETTING	NA	

	b Lahat	15 (CW START) DRY GAS METER	45 SCHEMATI	C OF STACK CROS	SS SECTION	N		NoLey	Listis (revoil	= Rew) Et
POINT	TLDCK (TIME)	ORY GAS METER (CUBIC FEET)	PITOT DELTA P (INCHES) (OF WATER)	DRIFICE DELTA H (INCHES) (OF WATER)	TEMPER (DEGRE		PUMP VACUUM (INCHES HG) Guage	BDX TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)	STÀCK TEMPERATURE IDEGREES FI
1	12:58PM	811.611	0,23	1.10	850	88°	3.0		63°	1420
2	1:02	813.6	Q23	419	99"	86°	315	,	670	152
3	1:05	815.6	0,28	1.34	1010	.87"	3.8		670	154"
4	1:08	817.7	0.30	1.43	1020	873	4,0		67°	(55°
5):11	\$19.9	0.33	1.57	103°	87°	4.2		66°	155
6	1:14	822.8	0.25	1.34	103"	87.	3.8		66°	155
7	1.17	824.3	0.30	1.43	104	శశ	4.0		65°	155
<u> </u>	t: 20	726.5	().30	1.43	105'	880	4,0		66°	155°
9	1:23	82.8.7	0,30	1.43	1060	89.	4.0		64°	154'
W	1:26	<u>330, 9</u>	0,23	1.34	106°	90°	3.8		63	154°
<u> </u>	1:29	833, 105	0.88	1.34	1060	900	3.8		6.4"	1544
a	1:32	8345.2	0.23	1.10	106°	90"	3.0		66°	153
STOP	1:35PM	837,156								-
	1:45PM	837.156	0.23	LW		910	3,0		68°	149°
2	1:48	839.1	0.23	1.12	105°	920	3,0	1	67°	1510
3	1:51	841,0	0,45	1.19	1060		3,5		66°	154
4	1:54	843.0	0.25	1,19	107"		3,5		65°	155°
Ś	1:57	845.0	0.28	1.34	1080	920	3.8		65°	15A
6	2:00	847.2	0.28	1.34	108°	910	- 318		64°	154
7	0:03	\$49.4	0.23	1.34	1.08	920	3,3		64"	155°
8	2:06	85 5	0.30	143	1080	920	4.0		640	154°
5	2:09	253.8	0.30	1.43	1080	93°	4.0		65°	155°
Ŵ	2:12	856,0	0.28	L 34	108	93″	3.8		_65°	154° 154°
11	2:15	858.2	0,83	1.34	108°	93"	3.8		660	<u>(54°</u>
IQ.	2:18	860.3	0.80	0.95	108°	92°	क्षेत्र		670	153°
_STOP	2:21PM	862.165								
			AVG. Sq. Rt.	AV6.	ρve	97.23				AV6 -
		50.554	0.5204	1.2971		STACKS/	COMPLIANCE T	EST FIELD SHEET	r.xls	<i> 53.3</i> 3

28

PLANT	C SULFURIC
RUN NUMBER 4	3
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/85/05
OPERATOR	ERWEST KRITSLUMAR
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

64	DEGREES F
10.21	INCHES HG
	0'%
NVT	DEGREES F
. 0.27	7 INCHES
10	5 FEET
MP	
	70.21 N/1 0.27

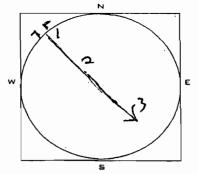
٨

. `

;

:

. '


POINT	CLOCK (TIME)	DRY GAS METER (CUBIC FEET)	STHAT) STHAT) PITOT DELTA P (INCHES) (DF WATER)	ORIFICE DELTA H (INCHES) (DF WATER)	DRY TEMPER (DEGRE INLET	GAS ATURE	PUMP VACUUM (INCHES HG) GUAGE	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE IDEGREES FI
1	2:50PM	864.107	023	112	90°	90°	4,0		68°	1400
2	2:53	866.1	0.25	1,21	1000	87°	4.2		670	153
3	a:56	868.1	D.QS	48.1	102°	88	4.2		670	154
4	2:59 2	26-8701	OIRS	1.36	103°	83	4,5		66°	1550
5	3:02	872.2	0,2.7	1.30	103"	88	45	-	66°	155
6	3:05	874.4	0.28	1,36	104°	89"	4.5		65	1.55°
7	3:08	876.5	0.30	1.46	105	89"	4.8		630	154
8	3:11	878.7	0.33	1.60	พรื	ĩơ	5.0		630	154°
9	3:14	881.1	0.33	1.60	106°	910	50		(A°	154°
W	3:17	883.3	0.30	1,46	1070	910	4.8		63"	154°
ท	3:20	885.6	0.30	146	1070	รเข	4,8		63"	154°
18.	3:23	387,8	0.83	1.12	ידטן	72°	.4.0	_	65°	153°
STOP	3:26PM	889.785								
1	3:34PM	889.785.	0,25	1.21	94"	98°	4.2		66°	147°
٩	3:37	891,8	0.25	1.21	105°	କର୍ଷ	4.2		65°	152°
3	3:40	893,8	0,28	1.36	1070	920	4.5		65°	154"
4	3:43	895.9	0.28	1.36	107°	92.	4.5		64°	154°
5	3:46	8981	6,08	1.36	1070	92°	4.5		63°	154°
6	3:49	900,0	0.30	146	108°	72.	4.8		62°	/s4°
7	3:52	902.5	0.30	1.46	W28°	92"	4.8		62.	155°
۲ ۲	3:55	904,7	0.33	60	108°	920	15,0		63"	154°
9	3:58	907.0	0,30	1.46	680	52°	4.8		62°	154°
<i>ω</i>	4:01	909.2	0.30	1.46	108	93°	4.8		61°	154°
n	4:04	911.5	0,23	1,36	1090	93"	4.5		61°	153°
12	4:07	913.6	0.22	1.12	1080	930	4.0		620	/53°
STOP	4:10 PM	915,572								
			AV6.59 R.t.	AY6.	AVE.	47.90	COMPLIANCE T			AV6. 153.04

29

CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

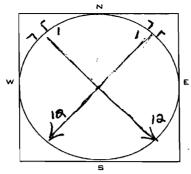
.

PLANÎ	C SULFURIC
RUN NUMBER 5	CRM-2
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/25/05
OPERATOR	BRNDET KOTTSCHMAL
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

		~ `	
AMBIENT AIR TEMPERATURE		DEGREES F	
BAROMETRIC PRESSURE		INCHES HG	
ASSUMED MOISTURE	0	%	
HEATER BOX SETTING	Nut	DEGREES F	
PROBE TIP DIAMETER	0.277	INCHES	
PROBE LENGTH	10.5	FEET	
PROBE HEATER SETTING	NIR		
		-	< * *

TRAVERSE POINT		DRY GAS METER	PITOT DELTA P (INCHES)	DE DE STACK CROS ORIFICE DELTA H (INCHES)		GAS	ND Lent	BOX TEMPERATURE (DEGREES F)	DERWE	STACK TEMPERATURE (DEGREES F)
			(DE WATER)	OF WATER)	INLET	OUTLET	GUAGE	(DEGREES IT		
	4:36Pm	916.609 921.6 926.6 931.758	0.28 0.28 0.30	1.36	92°	920	7.0		67°	155° 155°
2 3 570p	4:43 4:50 4:57pm	921.6	Dia8	1.36	102°	89"	7.0 7.5		66°	155°
3	4:50	926.6	0.30	146	103	89.	7.5	· ,	65	154
SJOP	4:57 pm	931.758								
				1.39		94,50				154.67
		15.149								
•						1				-
					1			·····		
									-	
			1							
					1					-
						†				
						1	<u> </u>			
							<u> </u>			
	-					<u> </u>				-
			· · · · · · · · · · · · · · · · · · ·		<u> </u>					
	<u> </u>					· · ·				
		- · · · ·				1	· · · ·	+		-
				· · · · · · · · · · · · · · · · · · ·			·	····		
	· · · · ·			· · ·			· · · · · ·			
						3	· · · · ·			
·		· · · ·		1				EST FIELD SHEE		

30


STACKS/COMPLIANCE TEST FIELD SHEET.XLS

÷

:

OF INDUSTRIES COMPLIANCE TEST FIELD SHEET

PLANT	
	CTM-2/PLON
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/25/05
OPERATOR	ERNES KRESCHMAL
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

	<i>i</i> .	
	DEGREES F	· .
	INCHES HG	
0	%	
	DEGREES F	
0.277	INCHES	
, 10.5	FEET	
NP -		
	0 M(r× 0.277	INCHES HG

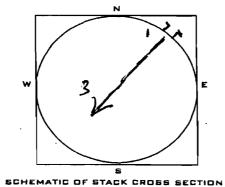
e.,

SCHEMATIC OF STACK CROSS SECTION

TRAVERSE	стоск	DRY GAS METER	PITOT	ORIFICE	DRY GAS	PUMP	BOX	IMPINGER	STACK
POINT	(TIME)	(CUBIC FEET)	DELTA P	DELTA H	TEMPERATURE	VACUUM	TEMPERATURE	TEMPERATURE	TEMPERATURE
			(INCHES) (OF WATER)	(INCHES) (OF WATER)	IDEGREES FI	(INCHESHG)	(DEGREES F)	(DEGREES F)	(DEGREES F)
	4:23PM		0,23						1520
2	1		0.25				·		154°
3		······································	0.28	····-,		-			1540
4			0.28						154°
4 5			0.28						154° 154° 155°
6			0,88 0,30 0,33						156
7			0.30						
8			().33						156
9			0.30			•			956
[A]			0.30						156
			0.28						
12			0.23						155
2006	4:35								
									1-11-
	DIDAM		0.25		•				15180
2	1		0.25					•	153 154° 155°
3			0.58						1'SA°
4			0.28						153
5			<i>0.3</i> 0		,				1
6			0.30						155
フ			0.23						156°
75			0,28						156"
9	'		0.28						156°
N			0.30 0.30 0.23 0.23 0.23						157°
h	<u>الا</u>		0.28		· · ·				156°
19	V		0,25						156° 156° 156° 156° 156° 156° 156° 155°
STOP	SUSPM								
1 .			AY6. 50 Rt.			1			1

31

. 5259


STACKS/COMPLIANCE TEST FIELD SHEET.XLS

154.94

. *

TTATEST FILE OPINDUSTRIES COMPLIANCE TEST FIELD SHEET

PLANT	C SULFURIC
	CRM-3
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/26/05
OPERATOR	BRUNST KARTSCHMAD
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

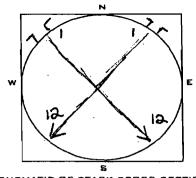
		·
AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	NIA-	DEGREES F
PROBE TIP DIAMETER	0.277	INCHES .
PROBE LENGTH	, 10.5	FEET
PROBE HEATER SETTING	MA	

ı

1

ł

, ·


	in aftis	IN (Run Start) 68			S SECTIO		NOL	ent at 15" (BUD Prun)	40
POINT	(TIME)	(CUBIC FEET)	PITOT DELTA P (INCHEB) (DF WATER)	ORIFICE DELTA H (INCHEB) (OF WATER)	TEMPER		VACUUM	BOX TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1	1:44Pm	948,209 952.9 957.8 962.943	0,25	1.21	86°	790	6.2		<u>63</u> ° 63°	159°
	1:51	952.9	0,88	1.36	36° 990	8au	7.0		63°	138°
3	1158	957.8	0.30	1.46	604D	85	73		640	157°
STOP	aiosen	762.943		AV6						
				1.3433		89.17				
		14,734				· · ·				*···;;;;
			_							
			,					1		
							•			
		_								
							,			
						1				
		_				1				
T				· · · ·		1		,		
					·			•		
· · ·	······				Н		· · · · · · · · · · · · · · · · · · ·			
		 						1		

STACKS/COMPLIANCE TEST FIELD SHEET.XLS

CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

.

PLANT	C SULFURIC
RUN NUMBER 6	CPM 3/PLOW
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/26/05
OPERATOR	PERUPET KNETSLUMM
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

AMBIENT AIR TEMPERATURE		DEGREES F	Ċ
BAROMETRIC PRESSURE		INCHES HG	
ASSUMED MOISTURE	0	%	
HEATER BOX SETTING	MA	DEGREES F	
PROBE TIP DIAMETER	0.277	INCHES	,
PROBE LENGTH	10.5	FEET	
PROBE HEATER SETTING	Mit		

, ·

SCHEMATIC	DF	STACK	CROSS	SECTION

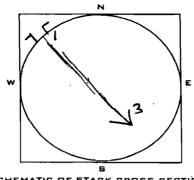
POINT	CLOCK (TIME)	DRY GAS METER (CUBIC FEET)	PITOT DELTA P (INCHES) (DF WATER)	ORIFICE DELTA H (INCHES) (DF WATER)	DRY TEMPER (DEGRE	ATURE	PUMP VACUUM (INCHES HG) GUAGE	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1	1:35 pm		0.20							151
2	·		023					<u> </u>		152
3	t		0.25	F						153
4		· · · · · · · · · · · · · · · · · · ·	Cha5	<u>+</u> − -					· · · ·	154-
5			(7,8%							1550
6		······	(),&% 0,&%							133 136 156
7			0.23							156
8		· · · · ·	0 30				· .			150
9	N		0,33 0,30 0,30				· · · · · · · · · · · · · · · · · · ·			156
10			0.30	· · ·						156° 156° 155°
11			0.30							156°
12	1:40Pm		0,23							1.550
STOP							<u> </u>			
		· · · · · · · · · · · · · · · · · · ·			· · · · ·					
1	2:08PM		0,25				[الحله"
.2			0,25	а. /				· · · ·		157°
3			0,25		- (* ;					158°
4			12:25							(58"
5			0, २२ 0, २४ 0, २४							1580
6]	_	0,28							1590
7			0,28							(58°
8	-	· · · · · · · · · · · · · · · · · · ·	12,28							1590
9			0,28 0,30							158
10	t		0,20	-						159°
11			0,28							1590
12	V		0,85							1590
STOP	2:15 PM									
			AV6. Sq Rt.					EST FIELD SHEE		156.46

STACKS/COMPLIANCE TEST FIELD SHEET.XLS

,

.

Control Tollerer CAMBERS


CF INDUSTRIES COMPEIANCE TEST FIELD SHEET

1. S. 12. S.

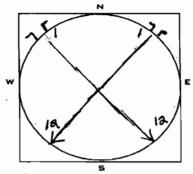
PLANT	C SULFURIC			
RUN NUMBER 7	CRM 4			
LOCATION	CF INDUSTRIES, PLANT CITY			
DATE	1/25/05			
OPERATOR	BRATEST KROISCHMAN			
SAMPLE UNIT S/N	S-311A			
CONTROL UNIT S/N	C-254			

..

÷

		· · · ·
AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/4	DEGREES F
PROBE TIP DIAMETER	0.277	INCHES
PROBE LENGTH	10.5	FEET .
PROBE HEATER SETTING	NA	

POINT	(TIME)	DRY GAB METER	PITOT DELTA P (INCHES) (DF WATER)	DRIFICE DELTA H (INCHEB) (DF WATER)	TEMPER (DEGR)	ATURE	PUMP VACUUM (INCHEB HG) GUAGE	A 15" (RLP of BOX TEMPERATURE (DEGREES F)		STACK TEMPERATURE (DEGREES F
1	2:34-PM	968,810	O.QZ	1.36	910	920	49 52		(Ű 65°	1280° 42 160° (58 102 158° 158°
23	2:41	973,8	0,30	1.40	1060	90°	3.2		65°	40 133°
3	2:48	179.0	0.30	1.46	108°	98.	5.2		65°	158
STOP	2:55 PM	968,810 973,8 979,0 984.062								
		15.252		1.4267		96.50				1580
			-							
							·			
	·									
			-	<u></u>			· · ·			
		· · · · · · · · · · · · · · · · · · ·								
						-		· · · ·		
									_	
		·						· · · · · · · · · · · · · · · · · · · ·		
<u> </u>					#					


STACKS/COMPLIANCE TEST FIELD BHEET.XLS

. '

*** ** Cremeroustries Compliance test field sheet

PLANT	C SULFURIC
RUN NUMBER 7	CEM 4/FLOW
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/2605
OPERATOR	BRNEST KRATSCHMAN_
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

400

AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC: PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	NA	DEGREES F
PROBE TIP DIAMETER	0.277	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	NA	· · · ·

1 1

;

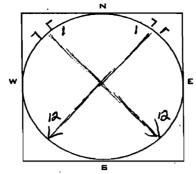
SCHEMATIC OF STACK CROSS SECTION

POINT	CLOCK (TIME)	CUBIC FEET	PITOT DELTA P (INCHES) (OF WATER)	ORIFICE DELTA H (INCHES) (DF WATER)	DRY TEMPER (DEGRE INLET	ATURE	PUMP Vacuum (Inches Hg) Guage	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1	2:28PM		DIRA							150"
2			0.23							153°
3			0,23 0,25							1520
4			0,28							155° 157°
5			0.27							1570
6			0.28							-758°
7			0,28							1580
8			0.28							159°
9			(2,30)							1590
10			0.30							160°
11			0.08				· · · ·			1.59°
12	2:35 PM		0,23							(590
STOP										
1	2:58PM		0.25							157°
2			0,25							15.70
3			0.28							157°
4			0.28			·.				158°
5			0,25							158°
6			0,28		•					1520
7			17.08				-			159°
8			0,30							1590
. 9			0.30				1			1540
10			0:38							
11			0.28				• •			1590
12	3:05		0,25							1590
STOP					57					
			AVG. Sg Rt.					EST FIELD SHEE		157.50

0.5188

35

..


CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

ويصوره معترو

PLANT	C SULFURIC
RUN NUMBER	8 CEM S/FLOW
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/26/05
OPERATOR	BOWTEST KARSSOUMA
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

11.8.

.

AMBIENT AIR TEMPERATURE		DEGREES F	• •	-;
BAROMETRIC PRESSURE		INCHES HG		
ASSUMED MOISTURE	0	%		
HEATER BOX SETTING	A / M	DEGREES F		
PROBE TIP DIAMETER	0.277	INCHES		
PROBE LENGTH	, 10.5	FEET		
PROBE HEATER SETTING	MA			
		-	· •	

• •

í

:

. '

SCHEMATIC OF STACK CROSS SECTION

1

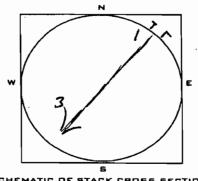
POINT	CLOCK (TIME)	DRY GAS METER (CUBIC FEET)	PITOT DELTA P (INCHES) (DF WATER)	ORIFICE DELTA H (INCHES) (DF WATER)	DRY GAS TEMPERATUI (DEGREES F INLET OUT) (INCHES HO)	BDX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1	3:26Pm		0,23						1530
2			0.23						153°
3		-	0.25						154°
4			0,85						1570
5			0.28			•			158"
6			0.23		_				· 159°
7		· · · · · · · · · · · · · · · · · · ·	0,28 0,28 0,30						160°
8			0,28						1600
9			0.30						1600
10			0,30						1010
11			0.30	_ · · · · · · · · · · · · · · · · · · ·		-			160"
12	3:32PM		0.23						1600
бтор									
1	3:57		0.23			:			156
2	† I		0, 23						57°
3			0,25	· · ·					1580
4		·	0,28						158°
5			0.28						158°
6			0.28						1590
7	,		0.08						1520
8			0,30			-			159° 152° 160°
9									1600
10			0.30						160° 159°
11			0,83						1590
12	4:05PM		0,83						1550
STOP									
						CKS/COMPLIANCE			158.25

36

0.5170

CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

The second second second second


۰.

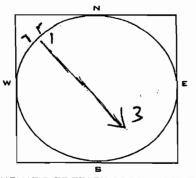
:

.

. .

PLANT	C SULFURIC
RUN NUMBER 8	CEMS
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/26/05
OPERATOR	EPNAST KRASTSCHMM
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE	~	INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	NA	DEGREES F
PROBE TIP DIAMETER	0.277	INCHES
PROBE LENGTH	10.5	FEET .
PROBE HEATER SETTING	MIN	


	No Cale	A 15" (PUW STEAST)	SCHEMATI	C OF STACK CROS	56 SECTIO	2	NO.	entis" (BO FRON) OC	>
POINT	(TIME)	(CUBIC FEET)	PITOT DELTA P (INCHES) (DF WATER)	DRIFICE DELTA H (INCHES) (DF WATER)	TEMPER		PUMP VACUUM (INCHES HG)	BOX TEMPERATURE	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1 .	3:33PM	985,901	0.25	121	920	920	3.0		620	160:15820
2	3:40PM	985,901 690:990.6 10 995:6	0.28	1.36	1070	920	3,3		64"	(58° 158°
3	3:47PM	995.6	0,20	1,46	110°	920	3,5		630	158°
STOP	3: SAPM	1000, 710	_							
	_							_		
		14 809		1.3433		97.50				Company of the second s
		,								
		·								
	-		•		•					
						·				
					•					
					벙					
				1		STACKS	COMPLIANCE 1	TEST FIELD SHEE	TIXLS	

STACKS/COMPLIANCE TEST FIELD SHEET.XLS

CF INDOSTRIES COMPLIANCE TEST FIELD SHEET

PLANT	C SULFURIC
RUN NUMBER 9	CEMG
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/26/05
OPERATOR	BRINE KREET KREETSCHMAN
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

۲.

			·	^~	· .	ũ.
AMBIENT AIR TEMPERATURE				DEGREES	E	
BAROMETRIC PRESSURE			м. 1	INCHES H	G	
ASSUMED MOISTURE			0	%		
HEATER BOX SETTING	٦.	112		DEGREES	F	
PROBE TIP DIAMETER			0.277	INCHES		
PROBE LENGTH			10.5	FEET		
PROBE HEATER SETTING	N	IA			.*	
· · · · · · · · · · · · · · · · · · ·		1		-	۰.	

· .

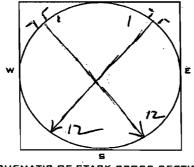
¥.

ï

ì

	NoLe	DRY GAS METER) 45 SCHEMATIC	COF STACK CROS	S SECTIO	Ν		No Louk	IMPINGER	-RWN) EX
POINT	(TIME)	DRY GAS METER (CUBIC FEET)	DELTA P (INCHES) (DF WATER)	ORIFICE DELTA H (INCHES) (OF WATER)	TEMPER (DEGRE INLET		PUMP VACUUM (INCHES HG) Guage	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1	4:24 PM	003,707	0,28	1.36	94°	93°	6.8		61	158
2	4:31	008.6	0,30	1.46	1050	920	7.0		59°	158"
3	4:38	013,8	0.30	1,40	108°	93°	7.0		600	1380
STOP	4:45PM9	018,932						· · ·		
				1,4267		97.50				-
		15.225	•							
			_					-		
			· · · · · · · · · · · · · · · · · · ·					1		
							· ·			
					3					
			·		·	· ·	· · · · ·			· · · ·
						1				
							·			
	1				· · · ·					
				· · ·	1	1				
		'	· · · · · · · · · · · · · · · · · · ·		1	·				
					s					
				· · ·		· · · · · · · · · · · · · · · · · · ·		1		
	1	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	· · · · · · -		
				:	· · · ·					
	-		,		· · · · · · · · · ·					
		· · · ·	· · · · ·		,					
							· · · · ·			
			· · ·		· · ·	· · · · ·				-
			· ·				1			-
		· · · ·				-				
				J .		STACKS	COMPLIANCE 1	EST FIELD SHEE	T.XLS	

38


INDUSTRIES COMPLIANCE TEST FIELD SHEET

N

PLANT	CSULFURIC
RUN NUMBER 9	CTEM 6 /FLOW
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/26/05
OPERATOR	ERMAST KREASCHMAN
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

--

.

AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE	*	INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	MB	DEGREES F
PROBE TIP DIAMETER	0.277	INCHES
PROBE LENGTH	. 10.5	FEET
PROBE HEATER SETTING	Mn	

SCHEMATIC	OF	STACK	CROSE	SECTION

TRAVERSE POINT	CLOCK (TIME)	DRY GAB METER	PITOT DELTA P (INCHES)	DRIFICE Delta H (Incheb)	TEMPE (DEGR		PUMP VACUUM (INCHES HG)	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
	4:15PM		(OF WATER)	(OF WATER)	INLET	OUTLET	GUAGE			1480,
2	7.13(1-1		0.23			· · · ·				1490
3					-			1		1520
4		<u></u>								154°
			0.25 0.25 0.25		· · ·				· · ·	1.55°
6			0.28		-	·				1570
7			1) 98		· ·					158
8			0,28 0,30 0,98			· · ·				1580
9			0.98		•	<u> </u>	•		· · · ·	160'
10		· · · · ·	(), 28		-	· · · ·	· · · ·			159
11	/	· · · · · · · · · · · · · · · · · · ·	(7)28				· · · · · · · · · · · · · · · · · · ·			1590
12	<u> </u>		0.23		-					1590
STOP	4:22 pm						· · · · · · · · · · · · · · · · · · ·			
1	4:47		0, 83							1560
2			0.23							1=38°
3			0. 85 0. 25					1		15580
4			0.25							1590
5	-		0.05							1590
6			0,08							1540
7			0,30							15%°
8		•	0.30							1600
9			0.28							160°
10			0,30							1510
11	V		0.23							1590
12	4:57pm		0.85	L						1590
STOP			A16.59 Rt.		. 5				·	
			2.5134					FRT FIFLD SHEF		157.25

STACKS/COMPLIANCE TEST FIELD SHEET.XLS

39

O2 Testing by Orsat

-

Tedlar Bags Orsat Leak Leak

. .

. ::

•4

;

÷

2

, 14

í i.

			Chec	:ked	Chec	ked	Time	Time				. 11
Date		Plant	Yes	No	Yes	No	Collected		CO2	02*	Analyst	AJG . 3.3
1/26/05	1	CSAP	~		1	<u> </u>	1405	1500	0.0	3.2	Sit	3.3
	2	·							0.0	3.4		
	3								0.0	3.3		
1/24	1	CSAP					1455	1540	0.0	3.4		3.3
	2								0.0	3.3	- 0	
	3								D,D	3.3		
1/26	1	CSAP					1554	1630	0.0	34	40	3.4
	2								0,0	3.3		r
	3							:	0.0	3.4		
1/26	1	CSAL					1645	1720	0,0	3.4	SP-	3.4
	2								0.0	3.3	4	- •
	3							· ·	0.0	35		
	1									· .		
	2				· ·							
	3									. **		
	1									·.		
	2				ŀ							
	3											
	1											
	2											
	3		T									۰.
	1		Γ									
	2											
	3		[
	1	74	T									4
	2		-									
	3		1							-	1	
	1		—		1							
	2											
	3			-								
	1		†									
	2				1		<u> </u>					
	3		<u> </u>			·						
	1		†				<u> </u>					
	2		†								<u> </u>	
	3		+								<u></u>	
100 i	ب		L	L		L	L		L	L	L]

7

*O2 is actual O2 reading minus actual CO2 reading

O2 Testing by Orsat

•

Tedlar Bags Orsat Leak Leak

· ·.

۰.

4

۰,

2

Checked Checked Time Time

ŀ

... **.**.. .

and an and a second

7,

					Chec		Time	Time				A 10
Date		Plant		No	Yes	No	Collected		CO2	02*	Analyst	AVG
105/05	1	CSAP	1		4		1028	1130	0.0	3.5	TP	3.4
'	2								0,0	3.4		
	3								0.0	3.1		
1/25	1				•		1231	1340	0.0	3.5	44	3.5
	2		· .				·		0,0	3.4		•
	3		· .				· 1		0.0	35		
1/25	1						1421	1530	0.0	35	$\leq d$	3.6
	2						1		O,D	3.4	0	
	3							:	0.0	3.6		
1/25	1						1610	1715	0.0	3.6	ĒΚ	3.6
	2						.]		0.0	3.6 3.6 3.55 3.6		
	3	-						ŕ	O.D	3.6		
1/25	1						1715	1810	0.0	3.6	EK	3.6
	2						1		0.0	3.4 3.4		
	3								0.0	3.6		
	1		·	,								
	2		1						,			
	3	~										
	1		· · ·									
	2											
	3											
	1	-	· ·									
	2		1									
	3		1					;				
	1		1								<u> </u>	
	2											
	3	······			t							
	1		1		<u> </u>							
	2		1						· · · · · · · · · · · · · · · · · · ·			
	2											
			<u> </u>	·								
	1										·	
	2				┨							
	3		<u> </u>		÷							
	1					;					:	
	2											
	3											

*O2 is actual O2 reading minus actual CO2 reading

Southern Environmental Sciences, Inc.

1204 North Wheeler Street D Plant City, Florida 33563-2354 D (813) 752-5014, Fax (813) 752-2475

February 21, 2004

۰,

Mr. Mike Messina CF INDUSTRIES, INC. Plant City Phosphate Complex P. O. Drawer L Plant City, Florida 33564

Re: Meter Box Calibration & Dry Gas Meter Calibration

Dear Mike:

The attached calibrations were performed on the Lear Seigler control box (serial # C254) and Rockwell dry gas meter (serial # JA631105). All calibrations were performed using a wet test meter that is checked annually using a liquid displacement method as described in "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III, Stationary Source Specific Methods". A copy of the calibration check is enclosed.

42

Please let me know if we can be of any further assistance.

Very truly yours,

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

Mark S. Gierke Source Testing Manager

MSG/mg

letters\cf

DRY GAS METER CALIBRATION

. -

	Śeigler Barometric Pressure: 254 Wet Test Meter No.: 1/2004 Calibrated By:	30.02 P-576 MG
--	--	----------------------

۰.

							د .
0.50	5.000	5.245	64.0	88.75	11.95	0.997	1.509
1.00	6.00Ö	6.278	64.5	91.3	10.23	1.002	1.532
1.50	10.400	10.795	65.0	93.0	14.55	1.011	1.545
2.00	10.000	10,321	65.0	94.5	12.15	1.018	1.550
3.00	10.000	10.285	65.0	96.0	9.80	1.02Ż	1.508
4.00	10.000	10.255	63.0	87.5	8. 5 7	1.011	1.550
						1.010	1.532

Delta H@ Acceptable Range 1.732 to Yi Acceptable Range 1.030 to

Yi = Vw Pb (Td + 460) Vd (Pb+DeltaH/13.6) (Tw + 460)

2 Delta H@ _____0317 (DeltaH) [(Tw + 460) (Theta)/Vw] Pb (Td + 460)

Where:

Vw = Gas Volume passing through the wet test meter, ft.^3.

Vd = Gas Volume passing through the dry gas meter, ft.^3.

Tw = Temperature of the gas in the wet test meter, deg F.

Td = Average temperature of the gas in the dry gas meter, deg F.

- Delta H = Pressure differential across orifice. in. H20.
 - Yi = Ratio of accuracy of wet test meter to dry gas meter for each run.
 - Y = Average ratio of accuracy of wet test meter to dry gas meter
 - Pb = Barometric pressure, in. Hg

Theta = Time of calibration run, min.

1.332

0.990

2

43

SOUTHERN ENVIRONMENTAL SCIENCES, INC. WET TEST METER CALIBRATION CHECK

Wet Test Meter #: P-576 Manufacturer: American Meter Date: 01/05/2004 Barometric Pressure: 30.02 Calibration Factor: 1.00 Checked by: MG

				1. 1946 já – ¹ 1. 1946 já – ¹
1.198	1.202	65.0	67.0	1.000
1.198	1.204	65.0	67.0	0.999
1.195	1.204	65.0	68.0	0.998
1.197	1.204	65.0	68.0	1.000
1.199	1.202	65.0	68.0	1.003
1.199	1.204	65.0	67.0	1.000
				1.000

Yi = Vw Pb (Tw + 460) Vd (Pb+DeltaH/13.6) (Ta + 460)

Where:

Vw = Gas Volume passing through the wet test meter, ft.^3.

Vd = Gas Volume passing through the dry gas meter, ft.^3.

- Tw = Temperature of the gas in the wet test meter, deg F.
- Ta = Ambient temperature, deg F.
- Yi = Accuracy of wet test meter to displaced liquid.
- Y = Average accuracy of wet test meter.

Pb = Barometric pressure, in. Hg

GAS METER MANUF.	ROCKWELL	PERFORMED FOR	C. F. Indust	tries - Plant	t City
MODEL #	175-S	DATE	02/21/2004	•	
SERIAL #	JA 631105	BAROMETRIC PRESSURE	30.02		
WET TEST METER #	P-576	LEAK CHECK	0.00	CFM @	15" Hg

.

STANDARD DRY GAS METER CALIBRATION

	Gas	Volume	Tem	perature					
pproximate Flowrate (CFM)	Wet Test Meter (Ww) ft.^3	Dry Gas Meter (Vd) ft.^3	Wet Test Meter (Tw) Deg F	Dry Gas Meter (Td) Deg F	-Dry Gas Meter Delta P (*H2O)	s Time (THETA) Min.	Flowrate (CFM)	Dry Gas Meter Coeff (Yds)	Avg. Gas Meter Coeff. (Yds)
0.40	5.000	4.960	68.5	77.0	0.12	10.15	0.494	1.024	
0.40	5.000	4.975	69.5	79 .0	0.12	10.97	0.456	1.023	1.024
0.40	5,000	4.965	70.0	79.5	0.12	10.95	0.456	1.025	
0.60	5.000	5.057	70.0	80.0	0.38	8,10	0.617	1.006	
0.60	6.000	6.115	70.0	80.0	0.38	9.68	0.620	0.999	1.004
0.60	5.000	5.048	70.0	80.0	0.38	8.12	0.615	1.008	
0.80	7.000	7.197	69.0	79.5	0.75	8.03	0.873	0.990	
0.80	6.000	6.168	69.0	79.0	0.75	6.87	0.875	0.989	0.988
0.80	5.000	5.151	70.0	79.0	0.75	5.95	0.840	0.985	
1.00	5.000	5,168	69.0	80.0	1.35	4.65	1.077	0.984	
1.00	5.000	5.175	69.0	80.0	1.35	4.72	1.061	0.983	0.985
1.00	5.000	5.152	69.0	80.0	1.35	4.70	1.065	0.987	
1.20	5.000	5.241	69.0	80.0	1.50	3.92	1.277	0.970	
1.20	5.000	5.185	70.0	80.0	1.50	4.05	1.234	0.979	0.975
1.20	5.000	5.198	70.0	80.0	1.50	4.08	1.225	0.976	

 $Q = \frac{Pb \times Vw \times 528}{(Tw + 460) \times Theta \times 29.92}$

Yds = <u>Vw</u> x (Td +460) x <u>Pb</u> Vd (Tw + 460) [Pb + (Delta P/13.6)]

Where:

Vw = Gas Volume passing through the wet test meter, ft.^3.

Vd = Gas Volume passing through the dry gas meter, ft.^3.

Tw = Temperature of the gas in the wet test meter, deg F.

Td = Average temperature of the gas in the dry gas meter, deg F.

Delta P = Dry gas meter pressure differential, in. H20.

Yds = Dry gas meter Coefficient

Pb = Barometric pressure, in. Hg

Theta = Time of calibration run, min.

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014 Fax (813) 752-2475

2

STANDARD METER CALIBRATION CURVE

GAS METER MANUF.	ROCKWELL	PERFORMED FOR	C. F. Industries - Plant City
MODEL #	175-S	DATE	02/21/2004
SERIAL #	JA 631105		

FLOWRATE	DRY GAS METER COEFF.
(CFM)	(Yds)
0.469	1.024
0.617	1.004
0.863	0.988
1.068	0.985
1.245	0.975

Regression Output:					
Constant	1.0344084				
Std Err of Y Est	0.0022086				
R Squared	0.9494629				
No. of Observations	5				
Degrees of Freedom	3				

X Coefficient(s)		-0.025997
Std Err of Coef.	: •	0.0034628

FLOW	CORRECTION
(CFM)	FACTOR
0.40	1.024
0.45	1.023
0.50	1.021
0.55	1.020
0.60	1.019
0.65	1.018
0.70	1.016
0.75	1.015
0.80	1.014
0.85	1.012
0.90	1.011
0.95	1.010
1.00	1.008
1.05	1.007
1.10	1.006
1.15	1.005
1.20	1.003

ħ

46

TYPE S PITOT TUBE INSPECTION DATA
Date: August 6, 2004 Pitot Number: 8-6-04-4
Pitot tube assembly level? <u>syes</u> <u>x</u> no
Pitot tube opening damage? yes no x If yes explain below.
$\alpha 1 1 (< 10^{\circ});$ $\alpha 2 0 (< 10^{\circ})$
$\beta 1 = 0 (<5^{\circ}) \qquad \beta 2 1 (<5^{\circ})$
$\gamma = 2^{\circ}$ $\theta = 0^{\circ}$ $A = 0.997$ cm (in)
$Z = A SINE \gamma = 0.035$ cm (in) Where Z is <0.32 cm (<1/8 in)
$W = A SINE \theta = 0.000 cm (in)$ Where W is <0.08 cm (<1/32 in)
Pa = 0.499 cm, in $Pb = 0.499$ cm, in
P = Pa + Pb / = 0.499 cm, in
$Dt = 0.375$ cm, in $P/Dt = 1.329$ Where $P/Dp \ge 1.05$ and ≤ 1.50
Comments: Client: CF Industries

۰,

i ;

7

2

Ţ,

Type of Probe and Effective 31-674X-B1

27

Cp = 0.84

ANNUAL LSI STACKBOX (C254) THERMOCOUPLE CALIBRATIONS

Date: 10/15/04

FOR TEMPERATURES 0 TO 110 DEGREES C NIST Traceable Thermometer # J96-258

FOR TEMPERATURES 110 TO 200 DEGREES C NIST Traceable Thermometer # 90B-2024

::

-7 . e

Time: 940-1550

.

4 Initial *:*1•

Display	ltem	Ice Water Point			Ambiont Water Point			Hot Water Point			Hot Oil Point		
		Thermocouple or RTD	NIST F Actual	Reading Con-	Thermocouple or RTD	NIST R	eading Con-	Thermocouple or RTD	NIST R Actual	eading Con-	Thermocouple or RTD	NIST Re Actual	eading Con-
		Reading		version	Reading		version	Reading		version	Reading		version
		(Degrees F)		to	(Degrees F)	Lo Degrees		(Degrees F)	to		(Degrees F)	lo Degreès	
1			C	grees F		C	F	1	C	F	-	C	rees F
				<u>г</u>									F
[1] Stack	Probe 4.0ft. #2405	33.6	2.2	36.0	73	23.4	74.1	153	65.3	149.5	N/A	N/A	N/A
	Probe 6.0ft.	34.1	2.2	36.0	74	23.4	74.1	152	65.3	149.5	N/A	N/A	N/A
	#1009 Probe 10.5ft.	35.3	2.2	36.0		23.4	74.1	153	65.3	149.5	N/A	N/A	N/A
[2] Probe	#2329 Probe 4.0ft.	38	2.2	36.0	74	23.4	74.1	149	65.3	149.5	227	109.2	228.6
(Probe Liner	#2405		£.£	. 30.0		20,4		143	. 00.0	148.5		109.2	220.0
Heater)	Probe 6.0ft. #1009	38	2.2	36.0	73	23.4	74.1	148	65.3	149.5	226	109.2	228.6
	Probe 10.5ft. #2329	35	2.2	36.0	73	23.4	74.1	148	65.3	.149.5	.226	109.2	228.6
[3] Hot Box	Thermocouple	38	2.2	36.0	73	23.4	74.1	150	65.3	149.5	225	109.2	228.6
	External Sensor	OUT OF RANGE			75	23.4	74.1	. 150					228.6
[4] Umbilical		35	2.2	36.0	72	23.4	74.1	148	65.3			N/A	N/A
(Coldbox Exit)						_	-			-			
[5] DGM Inlet	-	34	2.2	36.0	71	23.4	74.1	147	65.3	149.5	N/A	N/A	N/A
[6] DGM Exit		34	2.2	36.0	71	23.4	74.1	147	65.3	149.5	N/A	N/A	N/A
								•.					

48

LSI-TCUPL-04.XLS

		ts)	lish uni	M (Eng	DATA FOR	NULLAN	CALIBI	S METER	EST DRY GA	POSTT	
	C SULFURIC	Plant (54	Ca	ox number	Neter 1	105	ale 1/28	D	numbers	Test
	Y <u>1.010</u>	Pretest	3613	·r 46	eter numb	ry gas #	Hg D	30,24 in.	ure, $P_b = \frac{1}{2}$	etric press	Baron
	Ý _i						emperat	· · · · · · · · · · · · · · · · · · ·		Gas v	Orifice
460)	$V_{\omega} P_{\beta} (\iota_d + 4)$				Average	Outlet	Inlet	meter	meter	meter	setting,
	$\frac{V_{d}}{d} = \frac{P_{b}}{b} + \frac{\Delta H}{13.6} = \frac{L}{W}$	Υ _i	Vacuum setting, in. Hg	Time (0), min	(t _d)," "F	(t _d), d _o °F	(t), (t), eF	(t _w),. %	(V _d), 1t ³	$\left[\begin{array}{c} \left(V_{w}\right), \\ w_{3} \\ t \end{array}\right]$	(ΔΠ), in: Π ₂ 0
	(10,173)(30,24) 54 (10,482)(20,339) 53	0.9849	7,5	15,0	83.25	81° 74°	980	75° 72°	039,664	277.686	1.35
	(10,128) 30.24) (55 (10,585) (30,139) (53	0.9857	7.5	IS.D	94,00	89	106	730	039.664	237,814-277.686	1.35
<u>7.00)</u> 5.00)	(10,801)(30,2+)(557. (10,713) (30,335)(535.	0.9881	7.5	15,0	97.00	92	48	73° 77°	060,962	293,015 287,814	1.35
	63	Y = 0,98									
	thin ±0.05y	under t W 1/23	emperature	d the t	r, ft ³ .	est mete	e wet te	through the	ly one therm we passing t me passing t	= Gas volum	v _w
		•			, °F.	st meter	wet tes	as in the	ire of the g	= Temperati	L _w
t_{d_i} = Temperature of the inlet gas of the dry gas meter, °F.							^t d _i				
				F.	meter, ^o	dry gas	of the	utlet gas	ire of the o	= Temperatu	۲do
•	t_{d_i} and t_{d_o} , °F.	verage o	d by the a	obtained							••
	13.6 (10,173)(30,24)(54 (10,188)(30,24)(55 (10,188)(30,24)(55 (10,285)(30,23)(57 (10,20)(30,23)(57 (10,20)(30,23)(55 (10,713)(55 (10,713)(55)(55)(55)(55)(55)(55)(55)(55)(55)(5	0,9849 0,9857 0.988 1 Y = 0.98 under t W 1/23	in. Hg 7.5 7.5 7.5	min [5,0 [5,0]5,0 d the t	Average (L _d), "F 83.25 94.00 97.00 Ler, recor r, ft ³ r, ft ³ , °F. meter, °F meter, °F	ry gas m Outlet (td), oF 3/0 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 870 740 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910910 910 910 910910 910	the dry gr wet tes of the d of the	Dry Lest meter (tw), 72° 72° 72° 72° 72° 72° 72° 72° 72° 72°	Dry gas meter (V _d), 11 039.664 029.181 030.249 030.664 050.349 050.349 050.349 19 one therm me passing t are of the g are of the i are of the o	Dry Lest meter (V_{u}) , V_{u} , 11 277,686 267,513 287,814 277,686 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 298,015 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 287,814 14 14 14 14 14 287,814 1	manometer setting, (ΔII) , in. II_2O $I.3 \le$ $I.3 \le$

. •

τ

- $Y_i = Ratio of accuracy of wet test meter to dry gas meter for each run.$
- Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y ±0.05Y

P_b = Barometric pressure, in. Hg.

 θ = Time of calibration run, min.

Dry test meter number Rockwell-JA631105 .: Quality Assurance Handbook M5-2.4A

49

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

1000

CF INDUSTICES, INC. Plant City Phosphate Complex

PROBE NOZZLE CALIBRATION DATA

Nozzle Identification Number: 1334 Calibrated by: $\boxed{320075}$ $\boxed{0.276''}$ 0.276''' 0.276''' 0.276''' 0.276''' 0.276''' 0.276''' 0.277''0.277''

Instructions:

Measure to nearest 0.001"

Tolerance:

0.001" for mean of at least three readings. Maximum deviation between readings \leq 0.004".

Nozzle diameter, D_n : 0.277 In. Nozzle area A_n : 0.000 4 1 3 ft²

$$A_n = \frac{7\Gamma}{144} \left(\frac{D_n}{2}\right)^2$$

CF INDUSTRIES, INC. PLANT CITY PHOSPHATE COMPLEX

٦.

ې ډېرې موا مديني کې

۰.

٩,

. ¹.

SOURCE SAMPLING NOMENCLATURE SHEET

pb	×	Barometric pressure, in Hg
Ps	=	Stack pressure, in Hg
As	=	Stack area, square feet
As'	=	Effective area of positive stack gas flow, square feet
Ts	=	Stack temperature, °R
Tm	=	Meter temperature, °R
√ ∆ Pave	=	Average square root of velocity head, in. H_2O
Cp	=	S-type pitot tube correction factor
Kp	=	85.48 ft/sec (1b mole - °R) 1/2
Ms	3	Molecular weight of gas at stack conditions
Md	=	Molecular weight of gas at dry conditions
Bwo		Proportion by volume of water vapor in gas stream
Vwstd	=	Volume of water vapor in gas sample *
v	=	Total volume of liquid collected in impinger and silica ge
P H ₂ O	=	Density of water, 1 gm/ml
M H ₂ O	=	Molecular weight of water, 18 lb/lb mole
R	#	Ideal gas constant, 28.83 inches Hg-cu ft/lb-mole °R
T std	=	Absolute temperature at standard conditions, 528 °R
P std	=	Absolute pressure at standard conditions, 29.92 in. Hg
Vm std	=	Volume of gas sample through dry gas meter
		(standard conditions) ft ³
Vm	. =	Volume of gas sample through the dry gas meter
		(meter condition)
ΔН	÷	Orifice pressure of sampling meter
S.T.P.	=	Standard condition, dry, 528 °R, 29.92 inches Hg
An	=	Sampling nozzle area, square feet
Vs	=	Velocity of stack gas, feet per sec.
Qs	=	Volumetric flow rate, dry basis, standard condition, CFM
C mist	=	Concentration of mist in stack gas, grs/SCF
C S02	=	Concentration of SO ₂ in stack gas, grs/SCF
C NH3	=	Concentration of NH; in stack gas, grs/SCF
I	=	Percent isokinetic volume sampled
Ø	=	Sampling time (minutes)

$$\nabla w std = 0.04707 \operatorname{cuft/ml} (\nabla_1)$$

$$\nabla m std = \nabla m \left(\frac{Tstd}{Tm}\right) \left(\frac{Pbar + \frac{\Delta H}{13.6}}{Pstd}\right)$$

$$Bwo = \frac{\nabla w std}{\nabla w std + \nabla m std}$$

$$Hs = Hd (1 - Bwo) + 18 (Bwo)$$

$$\nabla s (avg) = Kp Cp \sqrt{P(avg)} \sqrt{\frac{460 + Ts}{Hs Ps}}$$

$$Qs = 60 (1 - Bwo) \nabla s \Lambda s \left(\frac{Tstd}{Ts}\right) \left(\frac{Ps}{Pstd}\right)$$

$$\frac{PERCENT ISOKINETIC}{I} = \frac{Ts (1.667) \left[(0.00267) \nabla_1 + \left(\frac{Tstd}{Tm}\right) Pbar + \frac{13.6}{13.6} \right]}{0 \nabla s Ps \Lambda n}$$

$$Cs = 0.0154 \operatorname{grs/mg} \frac{Hf \operatorname{or} Hn}{\nabla m std}$$

$$lbs/hr = (Cs x Qs x 60) / 7000$$

$$lbs/day = lbs/hr x 24 hrs/day$$

ì

•

5 . Q1

•

•

۲,

•

ł,

2

١

...

52

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

t,

1.11

•

٠,

7

ľ,

CALIBRATION DRIFT EVALUATION

Sulfuric Acid Plant C

Continuous Emissions Monitoring System

January 23, 2005 through January 29, 2005

FDEP Facility ID No. 0570005 E.U. ID NO. 007

CALIBRATION DRIFT EVALUATION

h ij

•

2

٢,

· . .

The CF Industries, Inc., Instrument Shop tests the calibration of the SO2 and O2 Continuous Emissions Monitoring Systems (CEMS) against certified reference gases daily. Tables 1 and 2 show calibration drift test results for Sulfuric Acid Plant C for the period, January 23 through January 29, 2005. Both the SO2 and O2 calibration drift results are within the rule specification ranges.

Attachment 1 provides the CEMS Calibration Test Log for the month of January 2005. Attachment 2 provided zero point drift data for the SO2 and O2 CEMS.

T.A. Edwards 3/4/2005

7.

Table 1

.

, *i*i

4

ł,

Calibration Drift Determination - "C" Sulfuric Acid Plant January 23 - January 29, 2005 - SO2 CEMS

ς.

Reference Value		CEMS Response	Calibration Drift	Calibration Drift, %
Date	ppm (a)	ppm	ppm	of span value (b)
23-Jan-05	904	897.0	7	0.77
24-Jan-05	904	910.0	6	0.66
25-Jan-05	904	900.0	4	0.44
26-Jan-05	904	896.0	8	0.88
27-Jan-05	904	893.0	11	1.22
28-Jan-05	904	899.0	5	0.55
29-Jan-05	904	898.0	6	0.66

(a) The zero point is checked daily against the certified SO2 reference gas (0 ppm SO2).

(b) The maximum calibration drift performance specification for the SO2 CEMS is 2.5% of the span value (40 CFR 60, Appendix B, P.S.2,13.1). The span value is 1000 ppm as specified at 40 CFR 60.84(a).

î,

Table 2

ŝ,

رَ

·...

Calibration Drift Determination - "C" Sulfuric Acid Plant January 23 - January 29, 2005 - O2 CEMS

•

١.

	Reference Value	CEMS Response	Calibration Drift
Date	% O2 (a)	% O2	% O2 (b)
23-Jan-05	15.1	15.0	0.1
24-Jan-05	15.1	15.1	0.0
25-Jan-05	15.1	15.1	0.0
26-Jan-05	15.1	15.1	0.0
27-Jan-05	15.1	15.1	0.0
28-Jan-05	15.1	15.3	0.2
29-Jan-05	15.1	15.2	0.1

- (a) The zero point is checked daily against the certified O2 reference gas (0% O2). The CEMS reading is also checked daily against clean instrument air at 20.9% O2.
- (b) The maximum calibration drift performance specification for the O2 CEMS is 0.5% O2 (40CFR60, Appendix B, P.S.3,13.1).

7,

ATTACHMENT 1 - CEMS CALIBRATION TEST

ŝ

\$

¢

53

LOG – January 2005

ī,

INSTRUMENT MAINTENANCE PROCEDURE C & D SULFURIC ACID

2

39560-0

PAGE 3

15:17

39580-	-()					P.	AGE 3
				AILY SO2 I			
PLANT			MONTH Jan		2009		
DAY	TECH	02	ZERO REF.	SPAN	\$ERROR	DATE OF NEW	LOG SPAN TIME
			COUNTS			BOTTLE	
1	Vilo	14.7	-2612	908	+ 44		710 Am - 7.45 Am
2	v Tu	14.7	-2624	913	+,99		115 Am - 742 Am
3	Vito	14.7	-2636	904	+.44		715 Am 742 Am
	BVO	14.7	-2638	907	+.33		7:10 - 7:45 AM
5	BVD	14.7	-2640	905	4.1		7:08-7:45 AM
6	BVO	14.7	-2643	898	66		7:08-7:45 AM
7	VID	14.7	-2650	901	- 36	·· .	7:15 Am 747 Am
8	11.70	14.7 8	-2659	905	-12.7		7: C9 2m = 7.89 2m
9	Vilo	14.7	-2667	905	10 - 1 LE (0) /		7:15 an - 745 an
10	DANTE		-2ldet	903	-D.1		7:15mm - 245mm
11	DNUT		-2674	903	-0-1		7:10 AM. 7:40 Am
12	24	14.7	-2678	902	-0.22		8:05Am-8:45A
13	40	14.7	-2689	902	-0.22	<u></u> _	07:14 um-07:41 A
14	1,0	14.7	-2684	897	77		07:12am -01:40 Am
15	7.12	14.7	-2694	904	· 0		7:05A - 7:33 Am
16	Y.R	14.8	-2696	901	-36		9:52A -10:01 An
17	VITO	149	-2713	907	+.33		7:10- 7:40 A.
18	VATO	14.8	-2703	904	4.44		7:10 Am - 7:46 Am
19	7.0	14.8	-2706	902	-0.22		7:27AM-7:54 AM
20	YR	14.8	-2718	901	36		7:25 Am - 7:53 Am
21	7. Q	14.9	-2726	898	6		7:05Ar - 7:35An
22		14,9	-2735	898	- 6		7. USA - 735AM
23	VITO	15.0	-2744	497	77		7:00 738 Am
24	Y. Q.	15.1	-2729	910	+.66		7:11A - 7:57 Am
25	MAD	15.1	-2747	900	44		03:02-03:30
26	T.Q	15.1	-2759	896	- ,55		09;11-10:07 Am
27	Till	15.1	-2764	893	-1.2		07111-07:58 Am
28	BVD	15.3	-2775	899	~.5		07:16-07:46 AM
29	BVO	15.2	-2781	898	1		07:16-07:46 AM
30	Bro			895	6		07:04-07:35 AM
31	1. (0	15.2	-2777	-		· · · · · · · · · · · · · · · · · · ·	
	Y, Q.	15.3	-2786 B	597 OTTLE #2	77		07:13-07:40 An
	TTLE #1	17	a Qal a				

 SER#
 CC /52 567
 PFM
 904
 BOTTLE #2

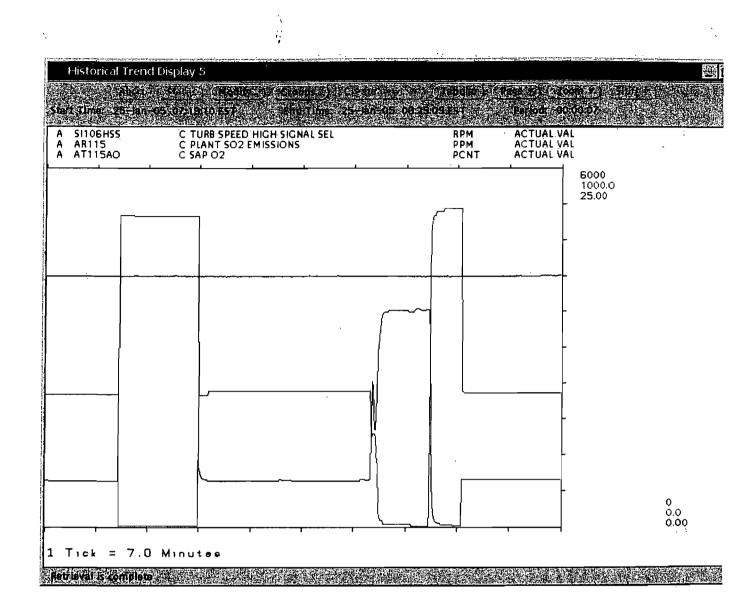
 SER#
 CC 55058
 PFM /5.1
 BOTTLE #2

 SER#
 CC 55058
 PFM /5.1
 SERIAL #

 PPM

PPM 15.1 12/1/04

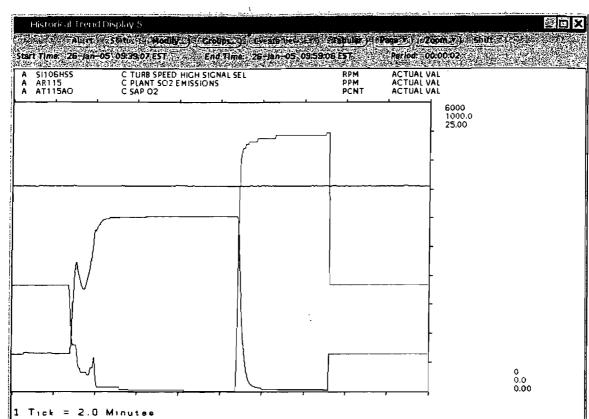
ATTACHMENT 2 – CEMS SO2 and O2


A G

٠, ,

Zero Point Graphs from Aspen – January 25-26, 2005

٠,


7,

3 C 65

۰,

۰.

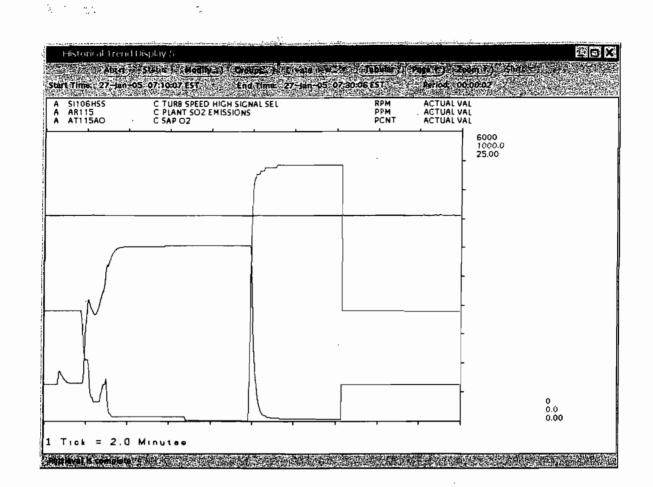
-

٠.

٠,

Bertegif freiheine

ć.


e,

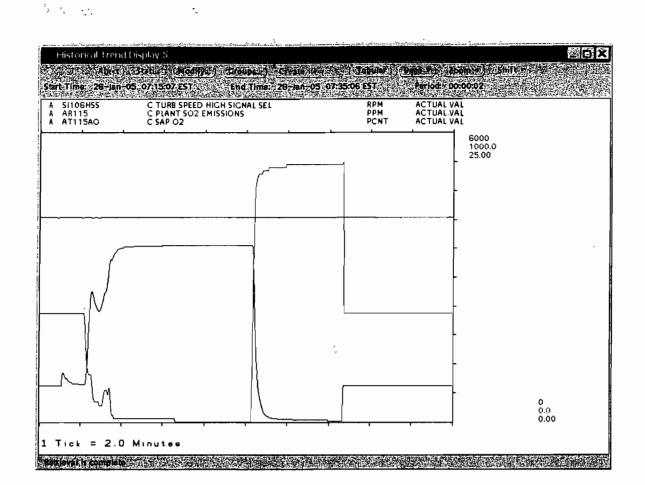
۰ د •

٠,

3 1 A.

.

....

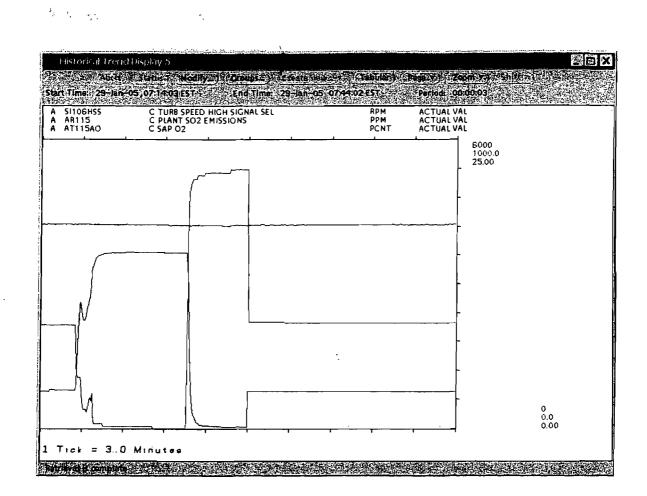

۰.

٠

ن چ. بر ج

٢,

٢,



.

۰,

7

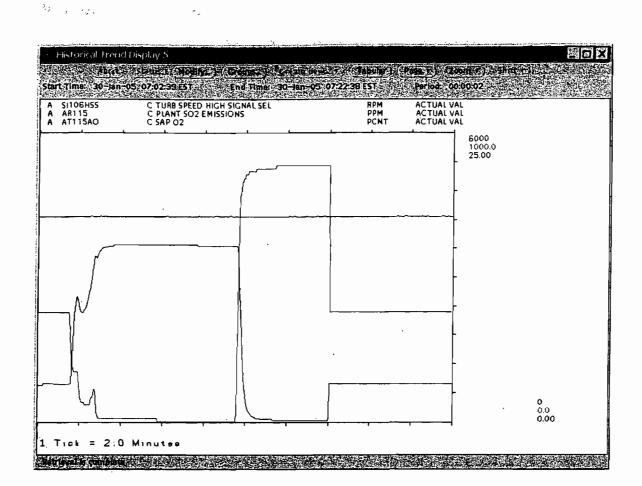
۰,

۰.

, **•** ,

72

·',


.

u (

n .,

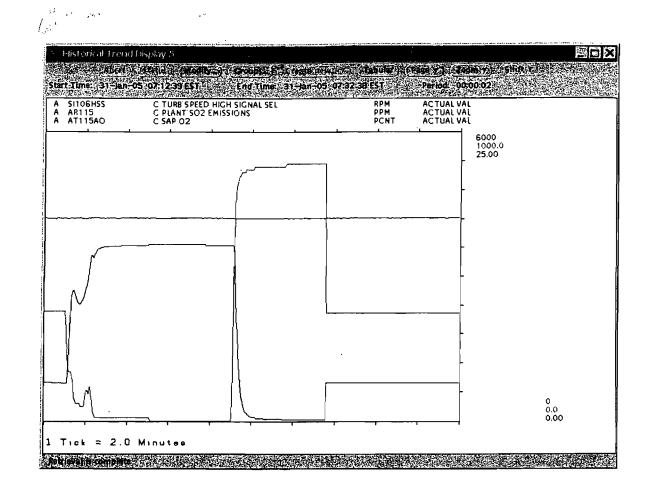
₹,

Į

s + +2; ♠ -4

ŗ, ۰.

 i_{β}


۰,

.

14

-

٢ı

."

. ·

, ·

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

February 28, 2005

Mr. Joel Smolen
Florida Department of
Environmental Protection
3804 Coconut Palm Drive
Tampa, Florida 33619-8318

SUBJECT:

"C" SAP Plant-Compliance Test Permit No. 0570005-007-AV Emission Unit 007

Dear Mr. Smolen:

Enclosed are duplicate copies of the recent Stack Test run at CF Industries, Inc., Plant City Phosphate Complex, on our "C" Sulfuric Acid Plant. Also, enclosed is a copy of the report for nitrogen oxides emissions testing. Southern Environmental Sciences, Inc. was contracted to perform this testing.

If there are any questions concerning the results, please give Michael Messina a call at 813-364-5639.

Sincerely,

Homas L. Edwards

Thomas A. Edwards, Superintendent, Environmental Affairs

TAE/JHF/gm u:\envrpt\167063.doc

Enclosures cc: Diana Lee/HCEPC R.C. May J.M. Messina F.J. Dlugos PERMIT NO. 0570005-007-AV

3

, ,

.

Emission Unit 007

CF INDUSTRIES, INC.

PLANT CITY PHOSPHATE COMPLEX

"C" SULFURIC ACID PLANT

PLANT CITY, FLORIDA

JANUARY 25 & 26, 2005

TEST CONDUCTED BY:

.

ENVIRONMENTAL LABORATORY CF Industries, Inc. Plant City Phosphate Complex Plant City, Florida 33564

TABLE OF CONTENTS

÷,

1

	PAGE
INTRODUCTION	1
PROCESS DESCRIPTION	1
LOCATION OF SAMPLING POINTS	2
DESCRIPTION OF SAMPLE POINTS	3
SAMPLING AND ANALYTICAL PROCEDURES	4

APPENDIX:			PAGES
		Emission Calculation	5-15
	and Results APPENDIX "B"	Field Data	16-32
	APPENDIX "C"	Project Participants	33-34

5

INTRODUCTION:

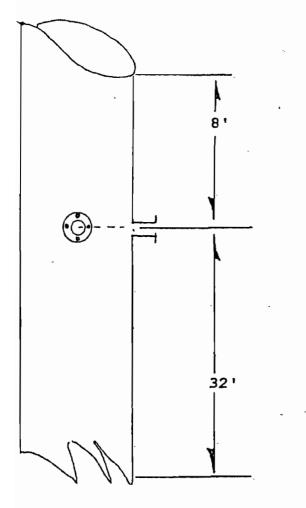
The Environmental Control Laboratory of CF Industries, Inc., Plant City Phosphate Complex, conducted emission tests at "C" Unit Sulfuric Acid Plant in Plant City, Florida, on January 25 and 26, 2005. Three 72-minute test runs were performed. The purpose of the test was to obtain emission data demonstrating compliance with Hillsborough County and State of Florida DEP Performance Standards. The measurements were made for sulfuric acid mist (including SO₃) and sulfur dioxide at the stack outlet to the atmosphere. The results were within the permitted limits.

Complete results are given in Appendix A.

PROCESS DESCRIPTION:

Sulfuric acid is produced by burning molten sulfur with dry air in a combustion chamber. The SO_2 gas stream is passed through a catalyst bed of vanadium where the SO_2 gas is converted to SO_3 . The SO_3 gas is then absorbed with 98% H_2SO_4 to produce more H_2SO_4 .

The principal reaction takes place as follows:


1.	$2S + 2 O_2$	>	2 SO ₂
		Catalyst	
2.	$2 SO_2 + O_2$	>	2 SO3
		H_2SO_4	
3.	$SO_3 + H_2O$	>	H_2SO_4

LOCATION OF SAMPLING POINTS

The sampling sites and number of traverse points were selected as per Figure 1-2 EPA Method 1 specified in 40 CFR 60, Appendix A.

2.

194 2

Traverse Point	Distance					
Number	inside wall					
1	2.33"					
2	7.44"					
3	13.10"					
4	19.65"					
5	27.75"					
6	39.52"					
7	71.48"					
8	83.25"					
· . 9	91.35"					
10	97.90"					
11	103.56"					
12	108.67"					

111" I.D. FIGURE 1 SAMPLE POINT DESCRIPTION "C" SAP PRODUCTION

....

3.

SAMPLING AND ANALYTICAL PROCEDURES

The methods described in EPA Methods 1, 2, 3, 8 & 9 contained in 40 CFR 60, Appendix A and adopted by reference in Chapter 62-297.401 F.A.C. are used when testing during compliance by CF Industries, Inc.

APPENDIX "A"

3.

EMISSION CALCULATIONS AND RESULTS

SOURCE SAMPLING NOMENCLATURE SHEET

÷

pb .	=	Barometric pressure, in Hg
Ps	=	Stack pressure, in Hg
As	=	Stack area, square feet
As'	~	Effective area of positive stack gas flow, square feet
Ts	H.	Stack temperature, °R
Tm	=	Meter temperature, "R
√ ∆ Pave		Average square root of velocity head, in. H_2O
Cp	=	S-type pitot tube correction factor
Kp	=	85.48 ft/sec (1b mole - °R) 1/2
Ms		Molecular weight of gas at stack conditions
Md	=	Molecular weight of gas at dry conditions
Bwo	, =	Proportion by volume of water vapor in gas stream
Vwstd	=	Volume of water vapor in gas sample
v	=	Total volume of liquid collected in impinger and silica gel
P H ₂ O	=	Density of water, 1 gm/ml
M H ₂ O	=	Molecular weight of water, 18 1b/lb mole
R	=	Ideal gas constant, 28.83 inches Hg-cu ft/lb-mole °R
T std	=	Absolute temperature at standard conditions, 528 °R
P std	=	Absolute pressure at standard conditions, 29.92 in. Hg
Vm std	=	Volume of gas sample through dry gas meter
		(standard conditions) ft ³
Vm	=	Volume of gas sample through the dry gas meter
		(meter condition)
ΔН	=	Orifice pressure of sampling meter
S.T.P.	-	Standard condition, dry, 528 °R, 29.92 inches Hg
An	-	Sampling nozzle area, square feet
Vs	=	Velocity of stack gas, feet per sec.
Qs	=	Volumetric flow rate, dry basis, standard condition, CFM
C mist	÷	Concentration of mist in stack gas, grs/SCF
C SO₂	=	Concentration of SO ₂ in stack gas, grs/SCF
C NH3	=	Concentration of NH; in stack gas, grs/SCF
I ·	=	"Percent isokinetic volume sampled
ø	=	Sampling time (minutes)

6.

$$Vwstd = 0.04707 \operatorname{cuft/ml} (V_1) \qquad \qquad \Delta H \\ \overline{U} = Vm \left(\frac{Tstd}{Tm} \right) \left(\frac{Pbar + \frac{\Delta H}{13.6}}{Pstd} \right)$$

$$Bwo = \frac{Vwstd}{\overline{Vwstd + Vmstd}}$$

$$Hs = Md (1 - Bwo) + 18 (Bwo)$$

$$Vs (avg) = Kp Cp \sqrt{P(avg)} \sqrt{\frac{460 + Ts}{Ms Ps}}$$

$$Qs = 60 (1 - Bwo) Vs As \left(\frac{Tstd}{Ts} \right) \left(\frac{Ps}{Pstd} \right)$$

$$PERCENT ISOKINETIC$$

$$I = \frac{Ts (1.667) \left[(0.00267) V_1 + \left(\frac{Tstd}{Tm} \right) Pbar + \frac{13}{13} \right]}{0 Vs Ps An}$$

$$Cs = 0.0154 \operatorname{grs/mg} \frac{Mf \text{ or } Mn}{Vmstd}$$

б

 $lbs/hr = (Cs \times Qs \times 60) / 7000$ $lbs/day = lbs/hr \times 24 hrs/day$

J. H. Falls 3/15/93

۰.

3

Ń

7,

C SAP

.

PERMIT NO. 0570005-007-AV EMISSION UNIT 007

RUN NUMBER	1	2	3
DATE	25-Jan-05	25-Jan-05	25-Jan-05
TIME START	11:12	12:58	14:50
TIME END	12:31	14:21	16:10
BP, INCHES Hg	30.21	30.21	30.21
STACK PRESSURE, INCHES Hg	30.22	30.22	30.22
AVG.SQ.ROOT(VEL. HEAD) IN Hg	0.5262	0.5204	0.5292
ORIFICE PRESS. OF METER, IN WATER	1.325	1.2971	1.3642
AVG STACK TEMP. ,F	153.29	153.33	153.04
STACK, DRY BULB	153.29	153.33	153.04
METER TEMPERATURE, F	89.46	97.23	97.9
VOL. OF GAS, DM CONDITIONS, FT3	50.434	50.554	51.465
VOL. GAS, STP, DRY COND. FT3	49.583	49.004	49.836
STACK GAS MOISTURE, % VOLUME	0	0	0
MW OF STACK GAS, DRY COND.	28.4	28.4	28.4
MW OF STACK GAS, STACK COND.	28.4	28.4	28.4
PITOT CORRECTION FACTOR	0.84	0.84	0.84
STACK GAS VELOCITY, STACK COND. FT3/SEC	31.94	31.59	32.11
STACK AREA, FT2	67.2	67.2	67.2
EFFECTIVE STACK AREA, FT2	67.2	67.2	67.2
STACK GAS FLOW-RATE AT STP, SCFMD	111981	110743	112642
NET TIME OF TEST, MINUTES	72	72	72
SAMPLE NOZZLE AREA, FT2	0.000418	0.000418	0.000418
PERCENT ISOKINETIC	98.9	. 98.8	. 98.8
SULFURIC ACID MIST(INCLUDES SO3), MG	7,70	9.49	9.13
SULFURIC ACID MIST, LBS/HR.	2.3	2.83	2.72
SULFURIC ACID MIST, LBS/DAY	55.09	67.94	65.38
	-		
SULFUR DIOXIDE, MG	1232.98	1245.60	12.54.76
SULFUR DIOXIDE, LBS/HR.	367.57	371.55	374.36
SULFUR DIOXIDE, LBS/DAY	8821.70	8917.20	8984.80
SULFURIC ACID MIST, LBS/TON OF H2SO4 PROD.	0.02	0.03	0.02
SULFURIC ACID MIST, LBS/TON LIMIT	0.10	0.10	0.10
SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD.	3.30	3.34	3.36
SULFUR DIOXIDE, LBS/TON OF H2S04 PROD.	3.50 3.50	3.50	3.50
SULFOR DIOXIDE, LB3/10N LIMIT	3,50	0.00	0.00
SULFUR DIOXIDE, LBS/TON OF H2SO4 (METER IN PLANT)	3.14	3.12	3 .11
		oo=4	0074
PRODUCTION RATE TPD	2671	2671	2671
PRODUCTION RATE, TPD LIMIT	2750	2750	2750
VISIBLE EMISSION			0%
VISIBLE EMISSION LIMIT			10%
· · · · ·			

P.

EMISSION CALCULATIONS

Date: January 25, 2005	Unit: C SẠP	Run #3
Vwstd = ().04707 Cuft/mi x (v1)	
=	0.04707 Cuft/ml x 0 ml	
≓	0.000 Cuft.	
Vmstd = Vm	Tstd] [Pbar + (^ H / 13.6)] Tm + 460] [Pstd]	Yi
= 51.4	65 Cuft x [528] x [(30.21 + (1 [460 + 97.9] [1.3642 / 13.6))] x 1.01
	·	29.92
=	49.836 Cuft.	
Bwo = V	Vwstd vstd + Vmstd	
(0.000 x 100) + 51.464	
	0.00 %	
Ms = Mo	l (1 - Bwo) + 18 (Bwo)	
= 28	4 x (1 - 0.0) + 18 x 0.0	
=	28.40	

Vs (avg) = Kp Cp P(avg sq rt) (460 + Ts) / (Ms Ps)

= 85.48 x 0.84 x 0.5292 x (460 + 153) / (28.4 x 30.22)

= 32.11 ft/sec

Qs = 60 (1 - Bwo) VsAs (Tstd / Ts) (Ps / Pstd)

= 60 (1 - 0.0) x 32.11 x 67.2 x (528 / (460 + 153.04) x (30.22 / 29.92)

= 112,642 scfm

Cs = 0.0154 grs/mg x (total mg of sample) / Vmstd

9,

= 0.0154 grs/mg x 1254.76 mg / 49.836 cuft

0.3877 grs/cuft

- lbs/hr = (Cs x Qs x 60 min/hr) / 7000 grs/lb
 - = (0..3877 x 112642 x 60) / 7000
 - = 374.36 lbs/hr SO2

lbs/day = lbs/hr x 24 hrs/day

. .

=

- = 374.36 x 24
- = 8984.76 lbs/day SO2
- Cs = 0.0154 grs/mg x (total mg of sample) / Vmstd
 - = 0.0154 grs/mg x 9.13 mg / 49.836 cuft
 - = 0.0028 grs/cuft

lbs/hr = (Cs x Qs x 60 min/hr) / 7000 grs/lb

- = (0.0028 x 112642 x 60) / 7000
- = 2.72 lbs/hr SO3 + Acid Mist

Ibs/day = Ibs/hr x 24 hrs/day

- = 2.72 x 24
- = 65.38 lbs/day SO3 + Acid Mist

Percent Isokinetics:

=

- $I = \frac{Ts (1.667) ((0.00267) V1) + (VmYi / Tm) ((Pbar + (^H / 13.6)))}{0 Vs Ps An}$
 - $= (460 + 153.04) (1.667) ((0.00267 \times 0) + (51.465 / (460 + 97.9) \times ((30.21 + (1.3642 / 13.6))))$ $72 \times 32.11 \times 30.22 \times 0.000418$

10.

98.8 %

RUN NO. 1 11:12 AM TO 12:31 PM (1/25/05)

TIME	SO2 MONITOR READING (ppm)	O2 Monitor (%)	SO2 (#/TON)	
	<u>MERBING (pping</u>			
11:15 AM	360	3.28	3.15	
11:30 AM	360	3.28	3.15	
11:45 AM	360	3.25	3.15	
12:00 PM	360	3.26	3.15	
12:15 PM	360	3.23	3.14	
12:30 PM	355	3.25	3.10	
			AVERAGE	3.14

RUN NO. 2

12:58 PM TO 2:21 PM (1/25/05)

	SO2 MONITOR		SO2	
TIME	READING (ppm)	O2 Monitor (%)	(#/TON)	
1:00 PM	355	3.28	3.11	
1:15 PM	360	3.23	3.14	
1:30 PM	355	3.26	3.11	
1:45 PM	. 355	3.24	3.10	
2:00 PM	360	3.23	3.14	
2:15 PM	355	3.25	3.10	
			AVERAGE	3.12

RUN NO. 3 2:50 AM TO 4:10 AM (1/25/05)

	SO2 MONITOR		SO2	
TIME	READING (ppm)	O2 Monitor (%)	(#/TON)	
2:45 PM	355	3.25	3.10	
3:00 PM	355	3.24	3.10	
3:15 PM	355	3.25	3.10	
3:30 PM	355	3.26	3.11	
3:45 PM	355	3.27	3.11	
4:00 PM	360	3.23	3.14	
4:15 PM	355	3.26	3.11	
			AVERAGE	3.11

Es = (CsS) / [0.265 - (0.0126%O2)]

where:

Es = emission rate of SO2, (lb/ton of 100% H2SO4 produced) Cs = concentration of SO2, (lb/dscf)

S = acid production rate factor, (11,800 dscf/ton of 100% H2SO4 produced) %O2 = oxygen concentration, percent dry basis

1 2

7:00 AM 3	<u>ا کر</u>	370	Prov minint	Priv/maint.	375			7.21	3.20	spans/mpint	SPAN DAint	3,205	7:00 AM
8:00 AM 57	W/mn.nt.15	SAMY MANIT	SPAN/maint	370 :	370		8:00 AM	PAN/mp.nt	SPAN/mit		3. 2Y	3.24	8:00 AM
	0	Jur 1	345	345 1	Her K		9:00 AM	3, 5	3.19	3.25	3.25	3,22	9:00 AM 3. 1969
	ster 1	345	345	365 1	345		10:00 AM	3.26	3.23	3.28	3.23	3.25	10:00 AM
	345 1	360	340 1	340 1	341.25		11:00 AM	3.24	3.78	3.28	3.7	3,2425	11:00 AM
12:00 PM	240	340	355 1	340	358.75		12:00 PM	3.26	3.23	3,25	3,26	3.25	12:00 PM
1:00 PM	355	360	355	37	356.25		1:00 PM	3.28	3,23	3.74	324	312525	1:00 PM
2:00 PM	340	315	30	30	356.25		2:00 PM	3.23	3.25	3,24	3,25	3,2425	2:00 PM 3, 113
3:00 PM	357	35	3051	315	355		3:00 PM	3.24	3.25	3.26	3.27	3,255	3:00 PM
4:00 PM	340	315	360	315	35750		4:00 PM	323	3.24	3.25	3,26	3.25	4:00 PM
5:00 PM	355	360	1 360	360	358.75	1	5:00 PM	3.27	3 27	3.25	3.24	3.2575	5:00 PM
, 6:00 PM	360	360	360	360	360		6:00 PM	3.26	3.27	3.25	3.26	3.2600	6:00 PM
7:00 PM	360	360	360	360	360]	7:00 PM		3.26	3.29	3.26	3.2850	7:00 PM
8:00 PM	365	360	365	365	363.75]	8:00 PM		3.25	3.22	3.26	3.2450	8:00 PM 3.1798
9:00 PM	370	370	365	365	367.50	j	9:00 PM		3.23	3.22	3.30	3.2400	
10:00 PM	365	360	365	360	362.50		10:00 PM	3.23	3.26	3.27	3.28	3.2600	. 10:00 PM
11:00 PM	365	365	370	370	367.50	1	11:00 PM		3:24	3.24	3.23	3.2.425	
12:00 AM	360	365	1 370	365	365	1	12:00 AM	3.24	-3.26	3.28	3.27	3.2625	12:00 AM
1:00 AM	365	365	365	370	366.25	<u>]</u> .	1:00 AM	3.25	3.24	3.24	3.23	3,2400	1:00 AM
2:00 AM	370	370	1 370	1 370	370		2:00 AM		- 3.23	5.23	3.25	- 3.2300	2:00 AM 3.23/4
: 3:00 AM	365	365	365	370	346.25		3:00 AM	1 3:26	3,28	3.25	3.23	3.2550	
4:00 AM	370	370	375	370	371.25		4:00 AN	1 3.24	3.2	3.20	3.23	3.2250	
5:00 AM	27.0	1:370	345	370	38.75		5:00 AM	1 3,24	3,23	א, איז	3,24	3,2375	5:00 AM
		1				or of		. 1	-)			Lbs SO2	/ton H2SO4 = ppm SO2 X .001959
EX	IT REIGH	TEST		REMAR	<u>ks: 07</u>	<2-0	0.30 r	rbint	4				0.265 - (.0126 X % O2
SHIFT	TIME	%SO	2	<u>· S</u>	Dant.	st m	8:30 n AO				culate Lbs/		
7:00 AM					`					1) Mult	iply the hou	rly average p	opm SO2 (from the log sheet) by .001959
7:00 AM					;					2) Mul	tiply the hou	rly average ?	% O2 (from the log sheet) by :0126 (b)
7:00 PM	1									3) Subi	ract the nun	nber calculate	ed in step two (b) from .265 (c)

SO2 MONITORING LOG

:00

3,18

Time

6:00 AM

O2 Chart Readings

:30

3.15

:15

3.20

` C' PLANT

:00

380

Time

6:00 AM

SO2 Chart Readings

:30

37/

:45

375

AYG

376.25

:15

370

DATE: 1-25-05

AVG

3,71

:45

3,27

.7245 .0407 .2243 . 2241

Lbs SO2/ ton H2SO4

AVG.

• Time

6:00 AM

EXIT REIGH TEST						
SHIFT	TIME	%SO2				
7:00 AM						
7:00 AM						
_7:00 PM						
7:00 PM						

Day Shift Operator: Night Shift Operator: ĩ. 12,

4) Divide the numbercalculated in step one (a) by the number calculated in step three (c). This will give Lbs/ Ton H2SO4 .0409

..

Production Rate

ч ч				
DATE: January 25, 2005	SAMPLING TIME FROM:	11:12 AM	то	4:10 PM
STATEMENT OF PROCESS WEIGHT:	•			
COMPANY NAME: MAILING ADDRESS: SOURCE IDENTIFICATION: SOURCE LOCATION:	CF INDUSTRIES, INC. PLANT CITY PHO P.O. DRAWER L PLANT CITY, FL 33564 "C" SAP PRODUCTION FACILITY "C" SAP PRODUCTION STACK	OSPHATE COI	MPLEX	
PERMIT SOURCE: 0570005-007-AV Emission Unit 007				
DATA ON OPERATING CYCLE TIME:	1/25/2005	1/25/2005	1/25/2005	
	RUN #1	RUN #2	RUN#3	
START OF OPERATION, TIME	11:12 AM	12:58 PM	2:50 PM	
END OF OPERATION, TIME	12:31 PM	2:21 PM	4:10 PM	
ELAPSED TIME	72 <u>MIN</u>	72 MIN	72 MIN	
IDLE TIME DURING CYCLE	0	<u> </u>	0	
PROCESS WEIGHT RATE (INPUT) 37.42 DATA ON ACTUAL PROCESS RATE DURING OPERA		PRODUCT (C	DUTPUT) //	4.58 _{ТРН}
		DUN #0	<u></u>	
MATERIAL: SULFUR, TPH	<u>RUN #1</u> 36,34	RUN #2 36 34	RUN #3 36 34	
MATERIAL:				
MATERIAL				
	·		.	
TOTAL PROCESS WEIGHT RATE:	RUN #1	RUN #2	RUN #3	
PRODUCT: SULFURIC ACID, TPD	2671	2671.0	2671.0	
I certify that the above statement is true to the best of my	knowledge and belief:			

Signature:

13,

Tim Famell Prod. Supt.

Title:

c&dsaprate,xls

 11

VISIBLE EMISSION OBSERVATION FORM

-

ين. دو چ

•

, د

.....

No.

COMPANY NAME CF Inclustries, Inc. F STREET ADDRESS	lant City, Complex	-	NATION			START 1	пме 47	END TIME	· · · · · · · · · · · · · · · · · · ·
STREET ADDRESS 10608 Paul Buchman 1-		SEC	0	15	30	45	са С	MMENTS	
	5	1	0	0	0	0			·
10 miles North of Plan		2.	0	0	0	0			
Plant City PHONE (KEY CONTACT)	FL 33564 SOURCE ID NUMBER	3	0	0	0	0			
(813)782-1591 (x 290)		4	O	0	0	0			
PROCESS EQUIPMENT "C"	OPERATING MODE	5	0	0	0.	0			
Sulfuric Acid Product CONTROL EQUIPMENT	OPERATING MODE	6	0	0	0	0			
Double Absorption Tower	- Normal	7	0	0	0	0			
DESCRIBE EMISSION POINT	~ ~ 1	8	0	0	0	0			
Circular Stack Open	ing 8 teet	9	0	0	0	0			
in diameter HEIGHT ABOVE GROUND LEVEL	-	10	0	0	0	Ó			
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE TO OBSERVER Sian ~ 180' End ~ 180'	11	0	Ð	0	0			
DISTANCE FROM OBSERVER	DIRECTION FROM OBSERVER	12	0	0	0	0			
	Stan ENE End ENE	13	0	0	0	0			
DESCRIBE EMISSIONS Stan None	End None	14	0	0	0	0			
EMISSION COLOR	IF WATER DROPLET PLUME	15	0	0	0	0			•
SUAR NA END NA POINT IN THE PLUME AT WHICH OPAC	Attached Detached Detached D	16	0	0	0	0			
	g End ~ 4' From Stack Openin	a 17	0	0	0	0	,		
DESCRIBE PLUME BACKGROUND		18	0	0	0	10	+		
SIAN Blue SKY BACKGROUND COLOR	End Blue SKY SKY CONDITIONS	19	0	0	0	0			
Stan Blue End Blue	Star Sunny End Sunny WIND DIRECTION	20	0	0	0	0			
WIND SPEED		1 21	Ó	0		0	1	3	
AMBIENT TEMP	Start and of NW End Out of NU WET BULB TEMP RH, percent	22	0	0	0	0			
Sian 64° End 65°	39		0	0	0	0		· •	
with Q	YOUT SKETCH Draw North Arrow	w 24	0		-				
Plume Sun 🗢		25	0	0	0	0			
Wind	9	26			0	-			
	X Emission Point	27	10	0	0	0		<u>_</u>	
		28		0	0		- <u> </u>		
	,	29				0			<u> </u>
				0	0	0			· · ·
		30	1.0			0			
	Observer's Provide-		SERVER	S NAME	(PRINT) 1erry	Te			
	Observer's Position	98		s signa		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Plant C: isociates	DATE	lar
	***		GANIZAT	<u>u 4.</u> 10N	Ü	myb)	1/25	105
Sun Lo	cation Line		FIn	dust	ries,	Ínc.	Plant C:	ty, Con	plex
ADDITIONAL INFORMATION			RTIFIED			1 1-	sonialar		2004
			<u>ister</u>	<u> </u>	hnica	<u> /+5</u>	www.mes		
		00		0 0 VE	O FORM	NUMBER	۱ 	2	
	14								

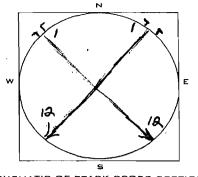
VISIBLE EMISSION OBSERVATION FORM

- ≤ 1

No. 2

COMPANY NAME			OBSER	VATION	DATE		START 1	IME	END TIME	 _
CF Industries, Inc.	Plant City, (Complex	-	1/25/	05		15	18	1548	ŀ
		,	SEC	0	15	30	45		COMMENTS	
10608 Paul Buchman	Highway			<u> </u>						
	5		1	0	0	0	0			
10 miles North of	STATE	ZIP	2							
				0	0	0	0			
Plant City PHONE (KEY CONTACT)	SOURCE ID NUMBER	<u>-00567</u> A	3	0	0	0	0			
(BI3)782-1591 (x290)			4	0	0	0	0		•	
PROCESS EQUIPMENT "C"		ATING MODE	5				i – – –			<u> </u>
				0	0	0	0			
Sulfuric Acid Production CONTROL EQUIPMENT	OPER	Dr MG	6	0	0	0	0			
Double Absorption Towe	r No	ormal	7	0	0	0	0			
DESCRIBE EMISSION POINT			8		-	1		· · · · · · · · ·		
Circular Stuck Openin	O Era	1		0.	0	0	0	_		<u> </u>
- i chini stude Openin	y <u>o ree</u>	•	9	0	0	0	0			
in Diameter			10	0	0	0	0			
HEIGHT ABOVE GROUND LEVEL	HEIGHT RELATIVE		1		1		1		· · · · · ·	
~199.5'	$sian \sim 180'$	End~180'	11	0	0	0	0		···	
DISTANCE FROM OBSERVER	DIRECTION FROM C		12	0	0	0	0	1		
Start ~ 400' End ~ 400'	Stan ENE	End ENE	13			1				·
DESCRIBE EMISSIONS			1┝	0	0	0				
stan None	End None		14	0	0	0	0:			
	IF WATER DROPLE		1 15	0	0	0	0	1		1
Start N/A End N/A POINT IN THE PLUME AT WHICH OPAC	Attached 🖸	Detached 2	16				-	†		
				0	0	0	0	1		
Istan ~ 4' From Stack opening	gend ~ 4' From s	Stack opening	17	0	0	0	0			
DESCRIBE PLUME BACKGROUND	_		18		0	0				
SIAN BLUE SKY BACKGROUND COLOR	End Blue SKY SKY CONDITIONS	t		0	1	$+ \underline{o}$	0	-	_	
	-		19	0	0	10	0			
STAR Blue End Blue	Sian Sunny	End SUNNY	20	0	0	0	0			
WIND SPEED	WIND DIRECTION		21	1					4	
SIAN 5-10mpH End 5-10mpH AMBIENT TEMP	Stan () WET BULB TEMP	End RH, percent	┥┝──	0	0	-0-	0			
Start (05° End 65°			22	0	0	0	0			
	·	.39	23	0	0	0	0]
Slack SOURCE LA	YOUT SKETCH	Draw North Arrow		10-	+	- <u>-</u>	+			
Plume			24	0	0	0				
Sun 🔶		\mathcal{U}	25	0	O	0	0		•	
Wind			26				_			
			1	10	10	0				
	X Emission Point		27	0	0	0	0			
	1		28	0	0	0	0			
			29							
			29	-0	0	_0	0			·
			30	0	0	0	0			
			OB	SERVER'	S NAME	(PRINT)				
	Observer's Posit		11.7	lling	Ē	Cher	ru J	R.		
			OB	SERVER	S SIGNA		1		DATE	
	niko.			Min	, ¥.	Chi	ny b.		1/25/03	5
			OR	GANIZAT	ION	,	1	~		
Sun Lo				FI.	ndus	fr, e	s, In	c. Plant	City Con DATE B/11/200	plex
ADDITIONAL INFORMATION			CE	RTIFIED	BY			sociates	DATE	,
			Eu	steri	Tec	horca	L As	sociates	8/11/200	54
	· · · · · · · · · · · · · · · · · · ·					0.5000				
				NHNUEL			NUMBER			
			-							

APPENDIX "B"


FIELD_DATA

CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

PLANT .	C SULFURIC
RUN NUMBER	
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/25/05
OPERATOR	BRITEST KREESCHMAR
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

.

÷,

AMBIENT AIR TEMPERATURE	58	DEGREES F	,
BAROMETRIC PRESSURE	30.21	INCHES HG	
ASSUMED MOISTURE		0 %	
HEATER BOX SETTING	NA	DEGREES F	
PROBE TIP DIAMETER	0.2	77 INCHES	·-
PROBELENGTH	10	.5 FEET	
PROBE HEATER SETTING	MA		

1

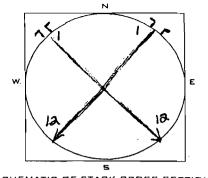
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					s					,	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		No Last	e at 15" Crun st	nt) gs	C OF STACK CROS	S SECTION	J		No Look of	- 15" (TELD A	=pm)ED
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	POINT	GLOCK C	ORY GAS METER	DELTA P (INCHES)	DELTA H	TEMPER (DEGRE	ATURE	VACUUM (INCHES HG)	BOX TEMPERATURE	IMPINGER TEMPERATURE	STACK TEMPERATURE
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 -	11:12AM	758.409							68	145°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	11:15					-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		11:18	762.3	0.25	1.19	910	730			670	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	11:21	764,3		1.34	Ja"	78	69		66°	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	11:24	766.4	0,28		<u> </u>		6.9		66°	(54"
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			768,5	0,30					·	64	155°
9 11:36 774.9 0.30 1.43 96° 82° 7.2 $67°$ 1.54° 10 11:36 777.2 0.30 1.43 97° 82° 7.3 63° 154° 11 11:42 777.4 0.93 1.24 98° 83° 6.7 67° 1.54° 12 11:45 781.5 0.93 1.10 98' 83° 6.0 66° 154° 12 11:42 771.4 0.93 1.10 98' 83° 6.0 66° 154° 12 11:42 771.4 0.93 1.10 98' 83° 6.0 66° 154° 12 11:43 783.467 0.25 1.16 77' 78' 6.0 68° 147° 2 10:0 783.467 0.25 1.16 77' 78' 6.0 67° 147° 2 10:0 783.467 0.25 1.14 97' 85' 6.8 67° 154° 4 13:07 791.5 0.93		11:30									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>		3-2.3		1.43			7.2			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	and the second sec		774.9								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ιυ						_				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			779,4					6.9		67°	154°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				0.23	1.10	98	830	6.0	.	660	154°
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	STOP	11:48AM	783467		, <u> </u>						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	·	<u> </u>									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											149
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			78713								154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			789.4			<u> </u>		6.8			(55
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			791.5						· · · · · · · · · · · · · · · · · · ·	670	154
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			795,7							6/	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									·	60	152
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u> </u>		800.00							68	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			802.5					<u> 7.a</u>			155
STOP 12.31 308.843			×04, /	0.22			82		· · · · · · · · · · · · · · · · · · ·		1540
$0 \times 5 R + 0 \times 6 $			506.7	<u> </u>	1.17	1020	88	6.2		660	<u> [S4*</u>
HY6, 20 KT HL6. H+0. 100.07	SIUP	12.31	C75.508	04 5. 84		01/4					,62 70
	L		50.434	PYG, Se RAT.	1 324/0	0 #H	STACKS	COMPLIANCE T	EST FIELD SHEE	T.XL5	1.5.07

30.434

. .

0.526R

1.3246 89.44 17,


CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

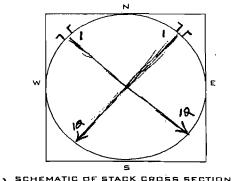
PLANT	C SULFURIC
RUN NUMBER	2
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/85/05
OPERATOR	BRUBST KANSCHMAR
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

.

.....

4

AMBIENT AIR TEMPERATURE	68	DEGREES F
BAROMETRIC PRESSURE	30.21	INCHES HG
ASSUMED MOISTURE		D %
HEATER BOX SETTING	MA	DEGREES F
PROBE TIP DIAMETER	0.27	7 INCHES
PROBE LENGTH	10.	5 FEET
PROBE HEATER SETTING	MA	


 \dot{a}

N	" Lahot	15" (RW START		OF STACK CROS	SS SECTION	4		Nala	Latis (FENDI	FRIM St
TRAVERSE PUINT	ULOCK CLOCK (TIME)	ORY GAS METER (CUBIC FEET)	DELTA P (INCHES) (OF WATER)	ORIFICE OELTA H (INCHES) (OF WATER)	DRY TEMPER (DEGRE INLET	ATURE	PUMP Vacuum (Inches Hg) Guage	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STÀCK TEMPERATURE (DEGREES F)
1	12:58PM	811.611	0,23	1.10	880	88°	3.0		68°	1420
2	1:02	813.6	Q25	419	990	86°	3.0 3.5		67°	152
3	1:05	815.6	0,28	1.34	LOVO	87°	3.8		.670	154°
4	1:08	817.7	0.30	1.43	102°	87°	4.0		67°	155°
5	1:11	319.9	0.33	1.57	103°	87"	. 4.2		66"	155
6	1:14	822.2	0.28	1.34	103°	87.	3:8		65	155° 155°
7	1:17	8243	0.30	1.43	104.	88	4.0		65°	135°
শ	1:20	326.5	(),30	1.43	105°	88.	4.0		660	155"
9	1:23	828.7	0.30	1.43	106°	890	4.0		64°	154
l0	1:26	330.9	0,28	1.34	106°	90°	3.8		63°	154°
11	1:29	833,100	0.88	7.34	2060	จึง	3.8		6.4"	154° 153
12	1:32	833, 1,5 8345, 2	0.23	1.10	106°	90°	3.0		66	153
5000	1:35PM	837,156								
1	1:45PM	837,156	0.23	L.W	?4°	910	3.0		68°	1490
ີ 2	1:48	839.1	0.23	1.10	105°	920	3,0		670	1510
3	[15]	841,0	0,25	419	1060	910	3,5		66°	154
4	1:54	843.0	0.25	1,19	107°	920	3.5		65°	1550
5	1:57	845.0	0,28	1.34	1080	920	3.8		65°	154
6	2:00	847, 2	0.28	1.34	108°	90	= 318		64°	154
7	9:03	849.4	0,28	1.34	1083	920	3,8		64.	(55°
8	2:06	85 5	().30	143	1080	92.0	4.0		640	154°
<u></u>	2:09	253.8	0.30	1,43	1080	93°	4.0		65°	155°
Ŵ	2:12	85610	0.28	h.34	1080	93"	3.8		65°	154°
11	2:15	858.2	0,85	1.34	108°		3.8		66°	15 4°
12	2.18	860.3	0,80	0.95	108°	920	2.3		670	153°
STOP	2:21PM	862.165								
			AY6-Sq Rt.	AV6	AVE	97.2	3			AV6.
		50.554	0.5204	1.2971	-	STACKS	COMPLIANCE 1	EST FIELD SHEE	T.XLS	/53.33

18,

CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

PLANT :	C SULFURIC
RUN NUMBER	3
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	1/25/05
OPERATOR	EQUIEST KROTSCHMAR
SAMPLE UNIT S/M	S-311A
CONTROL UNIT S/N	C-254

AMBIENT AIR TEMPERATURE	64	DEGREES F	
BAROMETRIC PRESSURE	10.21	INCHES HG	
ASSUMED MOISTURE		0 %	
HEATER BOX SETTING	NAT	DEGREES F	
PROBE TIP DIAMETER	0.2	77 INCHÉS	ι.
PROBE LENGTH	. 10	.5 FEET	
PROBE HEATER SETTING	- MR-		

	No Le	about 15" (pur	STHAT) SCHEMATI	S C OF STACK CROS	SS SECTION		Na	Leul not	5"(ren of Ru	N) 40
POINT	CLOCK (TIME)	DRY GAS METER (CUBIC FEET)	PITOT DELTA P (INCHES) (OF WATER)	DRIFICE DELTA H (INCHES) (DF WATER)	TEMPERA (DEGRES	TURE	PUMP VACUUM (INCHES HG) GUAGE	BOX TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	STACK TEMPERATURE (DEGREES F)
1	2:50PM	864.107	0,23	112	70°	900	4.0		680	1400
2	a:53	866.1	0.25	1,21	100°	87°	4.2		670	153"
3	2:56	8681	Dias	1.2.1	102°	88	4.2		670	154
4	2:59 8	26-870il	Dias	1.36	103°	88°	.4,5		660	1550
5	3:02	872,2	0123	1.30	103"	88	45	-	66°	155
6	3:05	874.4	0.28	1.36	104°	89"	4.5		65	155
7	3:08	876.5	0.30	1.46	105	890	4.8		63°	154"
8	3:11	\$78.7	0:33	1.60	พรี	°0°	5.0		63"	154°
- 9	3:14	281.1	0.33	1.60	106°	910	50		(A°	154°
W	3:17	883.3	0.30	1.46	1070	710	4.8		63°	154°
ท	3:20	885.6	0.30	1,46	(07°	ริเ"	4,8		63"	154°
1a	3:23	387,8	0.23	1.12	1070	72°	4.0		65°	153°
STOP	3:26PM	889.785								
1	3:34pm	889.785.	0,25	1.21	940	92°	4,2	l	660	147°
_ ລ	3:37	871,8	0.25	1,21	105°	ADo	4.2		65°	152°
3	3:40	893.8	0.28	1.36	1070	920	4.5		65°	154"
4	3:43	893.9	0,28	1.36	107°	920	4.5		64°	154°
5	3:46	89811	6,08	1.36	1070	923	4.5		63°	154°
6	3:49	400,2	0.30	146	1082	920	4.8		62°	/34°
7	3:52	902.5	0.30	1.46	WS°	920	4.8		62°	/55°
8	3155	904.7	0.33	1.60	108°	920	15,0		63"	154°
9	3:58	907.0	0.30	1.46	108°	12°	4.8		62°	154°
w	4:01	909,2	0.30	1.46	108	93°	4.8		610	154°
11	4:04	911.5	0,28	1.36	1090	93°	4.5		61°	153°
12	4:07	913.6	0.23	hia	1080	930	4.0	· ·	620	153°
STOP	4:WPM	915,572							_	
			AV6. Sg Rt.	AY6.	AX6.	97.90				AVG.
·	<u></u>	51.465	0.5292	1.3642		STACKS	COMPLIANCE T	EST FIELD SHEE	r.xLs	153.04

2

19,

5.6

SAMPLE CHAIN OF CUSTODY

Plant Name <u>C</u>	F INDUSTRIES, INC. P	LANT CITY PHOSPH	ATE COMP	LEX				
Source Identification	ation							
Date Sampled:	25-Jan-05	Samplin	g Time:	<u>11:12 AM</u>	4:10 PM			
Test for <u>N</u>	IOISTURE, SO3 & ACI	D MIST, SO2, AND V	SIBLE EMI	SSION				
• •	SAMP		~	_				
Sample Run	· · · ·		:	Descripti	on			
1				#1 COLD BOX	ASSEMBLY			
2				#2 COLD BOX	ASSEMBLY			
3				#3 COLD BOX	ASSEMBLY			
_								
Person engaged in	sample recoveries:			,				
Signature	Hoyd H	S. Camp	Tin Sart	dp				
Title <u>"A</u>	CLASS TECHNICIAN	I, ANALYST II		<u> </u>				
Location at whic	h recovery was made	C SAP STACK						
Laboratory person r	eceiving samples:							
Signature	William Y. Cl	in f						
Title "A	" CLASS TECHNICIAN							
		ANALYSIS		-				
Constituent	Method	1	Date	Time	Signature(s)			
SO3 & ACID MIST	EPA METH		1/25/05	12:30 - 18:30	Willeau & ans			
SO2	EPA METH		1/2 <u>5/05</u>	12:30 - 18:30	William J. Ching &			
VISIBLE EMISSION	EPA METH	IOD 9	1/25/05	14:47 - 15:48	Wallian I Uny S			
				netter futboot attabioster tit manyage og severare				

custody.xis

		DATE TIME STACK RUN	25-Jan-05 2:50 PM C SAP #3	то _	4:10 P	<u>M</u>
SAMPLE SOLUTION ANALYSIS						
	Acid Mist, SO 3		SO 2			
Volume of Sample, ml.	500	-	500 100			
Aliquot, ml.	50	-	20 20			
Normality (of Barium Perchlorate	0.010464	-	0.010464			
Mls. of Barium Per- chlorate Titrated	1.93		30.10			
Blank, ml.	0.15	_	0.15			
Conversion to Milligrams	9.13	-	1254.76			

Analyst William F. Chungs

cso4titr.xls

21.

 $\mathbf{\hat{c}}$

٤.,

ъ.

		DATE TIME STACK RUN	25-Jan-05 12:58 PM C SAP #2	то	2:21 PM
SAMPLE SOLUTION ANALYSIS					· .
	Acid Mist, SO 3		SO 2		
Volume of Sample, ml.	500		500 100		
Aliquot, ml.	50		20 20		
Normality (of Barium Perchlorate	0.010464		0.010464		
Mls. of Barium Per- chlorate Titrated	2.00		29.88		
Blank, ml.	0.15		0.15		
Conversion to Milligrams	9.49		1245.55		

Analyst William J. Chrung

cso4titr.xls

77.

13日 - 人 - 私会 - 研究

. • •

		DATE TIME STACK RUN	25-Jan-05 11:12 AM C SAP #1	TO	12:31 PM
SAMPLE SOLUTION ANALYSIS					
	Acid Mist, SO 3		SO 2		
Volume of Sample, ml.	500		500 100		
Aliquot, ml.	50		20 20		-
Normality (of Barium Perchlorate	0.010464		0.010464		
Mls. of Barium Per- chlorate Titrated	1.65		29.58		
Blank, ml.	0.15		0.15		
Conversion to Milligrams	7.70	۰.	1232.98		

Analyst William F. Chruzo

cso4titr.xls

ī

ĺ

50

,

Date: August 6, 2004	Pitot Number: 8-6-04-4
Pitot tube assembly level?	syes <u>x</u> no
Pitot tube opening damage? If yes explain below.	yes no x
α1 <u>1</u> (<10 °	°): $\alpha 2 _ 0 _ (< 10^{\circ})$
$\beta 1 = 0 (< 5^{\circ})$) $\beta 2 1 (< 5^{\circ})$
$\gamma = \underline{2}^{\circ}$	$\theta = 0^{\circ}$ A = 0.997 cm (in)
$Z = A SINE \gamma = 0.03$	25 cm (in) Where Z is <0.32 cm (<1/8 in)
W = A SINE θ =0.00	00_cm (in) Where W is <0.08 cm (<1/32 in)
Pa = <u>0.499</u> cm, in	Pb = 0.499 cm, in
P = Pa	a + Pb / = 0.499 cm, in
Dt = 0.375 cm, in	P/Dt <u>1.329</u> Where P / Dp \ge 1.05 and \le 1.50
Comments: Client: CF Industries	
Type of Probe and Effect	tive 31-674X-B1

TYPE S PITOT TUBE INSPECTION DATA

<u>_</u>

24,

Cp

Ξ

0.84

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

CF INDUSTRIES, Int. Plant City Phosphate Complex

PROBE NOZZLE CALIBRATION DATA

Nozzle Identif:	ication Number: 1334-	<i>(</i> ,
Calibrated by:	Bruns Knessumm	Date: 1/25/05
1	0.276	
	0.278"	
	0.976"	
	"ארב,0	
	0.27"	
	ירדב,ס	

Instructions:

Measure to nearest 0.001"

Tolerance:

0.001" for mean of at least three readings. Maximum deviation between readings \leq 0.004".

Nozzle diameter, $D_n: \underline{0.277}$ In. Nozzle area $A_n: \underline{0.0004}$ $\underline{4}$ $\underline{4}$ $\underline{8}$ ft² $A_n = \frac{77}{144} \left(\frac{D_n}{2}\right)^2$

ANNUAL LSI STACKBOX (C254) THERMOCOUPLE CALIBRATIONS

Date: 10/15/04

FOR TEMPERATURES 0 TO 110 DEGREES C NIST Traceable Thermometer # J96-258 FOR TEMPERATURES 110 TO 200 DEGREES C NIST Traceable Thermometer # 90B-2024

Time: 940-1550

Initial

Display	ltem	Ice Water Point			Ambiont Water F	Point		Hot Water Point			Hot Oil Point		
				Reading	Thermocouple	NIST R		Thermocouple	NIST R		Thermocouple	NIST R	
		or RTD	Actual	Con-	or RTD	Actual	Con-	or RTD	Actual	Con-	or RTD	Actual	Con-
		Reading		version	Reading		version	Reading	[version	Reading		version
		(Degrees F)		to	(Degrees F)		to	(Degrees F)		tò	(Degrees F)		to
			De	grees		Deg	rees		Deg	rees		Deg	rees
			Ĉ	F.		С	۰F		C	F		С	F
[1] Stack	Probe 4.0ft.	33.6	2.2	36.0	73	23.4	. 74.1	153	65.3	149.5	N/A	N/A	N/A
	#2405												
	Probe 6.0ft.	34.1	2.2	36.0	74	23.4	74.1	152	65.3	149.5	·N/A	N/A	N/A
	#1009												
	Probe 10.5ft.	35.3	2.2	36.0	74	23.4	74.1	153	65.3	149.5	N/A	N/A	N/A
	#2329												
[2] Probe	Probe 4.0ft.	38	2.2	36.0	74	23.4	74.1	149	65.3	149.5	227	109.2	228.6
(Probe Liner	#2405												
Heater)	Probe 6.0ft.	38	2.2	36.0	73	23.4	74.1	148	65.3	149.5	226	109.2	228.6
	#1009												
	Probe 10.5ft.	35	2.2	36.0	73	23.4	. 74.1	148	65.3	149.5	226	109.2	228.6
	#2329												
[3] Hot Box	Thermocouple	38	2.2	36.0	73	23.4	74.1	150	65.3	149.5	225	109.2	228.6
·····	External Sensor	OUT OF RANGE			75	23.4	74.1	150	65.3	149.5	230	109.2	228.6
[4] Umbilical		35	2.2	36.0	72	23.4	74.1	148	65.3	149.5	N/A	N/A	N/A
(Coldbox Exit)	ภ												
151 DGM Inlet		34	2.2	36.0	71	23.4	74.1	147	65.3	149.5	N/A	N/A	N/A
	1							1					T
[6] DGM Exit		34	2.2	36.0	71	23.4	74.1	147	65.3	149.5	N/A	N/A	N/A
	-								· · · · ·				+

26.

2

LSI-TCUPL-04.XLS

Southern Environmental Sciences, Inc.

1204 North Wheeler Street D Plant City, Florida 33563-2354 D (813) 752-5014, Fax (813) 752-2475

February 21, 2004

Mr. Mike Messina CF INDUSTRIES, INC. Plant City Phosphate Complex P. O. Drawer L Plant City, Florida 33564

Re: Meter Box Calibration & Dry Gas Meter Calibration

Dear Mike:

The attached calibrations were performed on the Lear Seigler control box (serial # C254) and Rockwell dry gas meter (serial # JA631105). All calibrations were performed using a wet test meter that is checked annually using a liquid displacement method as described in "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III, Stationary Source Specific Methods". A copy of the calibration check is enclosed.

Please let me know if we can be of any further assistance.

Very truly yours,

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

Mark S. Gierke Source Testing Manager

MSG/mg

letters\cf

DRY GAS METER CALIBRATION

Meter Box Number:	Lear Seigler	Barometric Pressure:	30.02
Serial No:	C254	Wet Test Meter No.:	P-576
Date:	02/21/2004	Calibrated By:	MG

. : .				:			
<u></u>							
0.50	5.000	5.245	64.0	88.75	11.95	0.997	1.509
1.00	6.000	6.278	64.5	91.3	10.23	1.002	1.532
1.50	10.400	10.795	65.0	93.0	14.55	1.011.	1.545
2.00	10.000	10.321	65.0	94.5	12.15	1.018	1.550
3.00	10.000	10.285	65.0	96.0	9.80	1.022	1.508
4.00	10.000	10.255	63.0	87.5	8.57	1.011	1.550
+						1.010	1.532
		Delta	H@ Acceptat		1.732 1.030	to to	1.332 0.990

2 Delta H@ ____0317 (DeltaH) ___ [(Tw + 460) (Theta)/Vw] Pb (Td + 460)

Where:

 $Vw = Gas Volume passing through the wet test meter, ft.^3.$

Vd = Gas Volume passing through the dry gas meter, ft.³.

Tw = Temperature of the gas in the wet test meter, deg F.

Td = Average temperature of the gas in the dry gas meter, deg F.

Delta H = Pressure differential across orifice. in. H20.

Yi = Ratio of accuracy of wet test meter to dry gas meter for each run.

Y = Average ratio of accuracy of wet test meter to dry gas meter

Pb = Barometric pressure, in. Hg

Theta = Time of calibration run, min.

28.

SOUTHERN ENVIRONMENTAL SCIENCES, INC. WET TEST METER CALIBRATION CHECK

Wet Test Meter #:	P-576	Barometric Pressure:	30.02
Manufacturer:	American Meter	Calibration Factor	1.00
Date:	01/05/2004	Checked by:	MG

	n de la constante de la constan Esta de la constante de la const Esta de la constante de la const		e a sectoriala Sectorial	arista Africana Santa
1.198	1.202	65.0	67.0	1.000
1.198	1.204	65.0	67.0	0.999
1.195	1.204	65.0	68.0	0.998
1.197	1.204	65.0	68.0	1.000
1.199	1.202	65.0	68.0	1.003
1.199	1.204	65.0	67.0	1.000
				1.000

Where:

Vw = Gas Volume passing through the wet test meter, ft.^3.

 $Vd = Gas Volume passing through the dry gas meter, ft.^3.$

- Tw = Temperature of the gas in the wet test meter, deg F.
- Ta = Ambient temperature, deg F.
- Yi = Accuracy of wet test meter to displaced liquid.

Y = Average accuracy of wet test meter.

Pb = Barometric pressure, in. Hg

GAS METER MANUF.	ROCKWELL	PERFORMED FOR	C. F. Indust	ries - Plan	t City
MODEL #	175-S	DATE	02/21/2004	•	
SERIAL #	JA 631105	BAROMETRIC PRESSURE	30.02		_
WET TEST METER #	P-576	LEAK CHECK	0.00	CFM @	15" Hg

STANDARD DRY GAS METER CALIBRATION

	Gas Volume		Temperature						
	Wet Test	Dry Gas	Wet Test	Dry Gas	Dry			Dry Gas	Avg. Gas
pproximate	Meter	Meter	Meter	Meter	Gas Meter	Time 3		Meter	Meter
Flowrate	(\\)	(Vđ)-	(Tw)	(Tđ)	Delta P	(THETA)	Flowrate	Coeff.	Coeff.
(CFM)	ft.^3	ft.^3	Deg F	Deg F	("H2O)	Min.	(CFM)	(Yds)	(Yds)
0.40	5.000	4.960	68.5	77.0	0.12	10.15	0.494	1.024	
0.40	5.000	4.975	69.5	79.0	0.12	10.97	0.456	1.023	1.024
0.40	5.000	4.965	70.0	79.5	0.12	10.95	0.456	1.025	
0.60	5.000	5.057	70.0	80.0	0.38	8,10	0.617	1.006	
0.60	6.000	6.115	70.0	80.0	0.38	9.68	0.620	0.999	1.004
0.60	5.000	5.048	70.0	80.0	0.38	8.12	0.615	1.008	
0.80	7.000	7.197	69 .0	79.5	0.75	8.03	0.873	0.990	
0.80	6.000	6.168	69.0	79.0	0.75	6.87	0.875	0.989	0.988
0.80	5.000	5.151	70.0	79.0	0.75	5.95	0.840	0.985	
1.00	5.000	5.168	69.0	80.0	1.35	4.65	1.077	0.984	
1.00	5.000	5.175	69.0	80.0	1.35	4.72	1.061	0.983	0.985
1.00	5.000	5.152	69.0	80.0	1.35	4.70	1.065	0.987	
1.20	5.000	5.241	69.0	80.0	1.50	3.92	1.277	0.970	
1.20	5.000	5.185	70.0	80.0	1.50	4.05	1.234	0.979	0.975
1.20	5.000	5.198	70.0	80.0	1.50	4.08	1.225	0.976	

Q = Pb x Vw x 528 (Tw + 460) x Theta x 29.92

Yds =	Vw	x	(Td +460)	x	РЬ
	Vd		(Tw + 460)		[Pb + (Delta P/13.6)]

Where:

Vw = Gas Volume passing through the wet test meter, ft.*3.

Vd = Gas Volume passing through the dry gas meter, ft.^3.

Tw = Temperature of the gas in the wet test meter, deg F.

Td = Average temperature of the gas in the dry gas meter, deg F.

Delta P = Dry gas meter pressure differential, in. H20.

Yds = Dry gas meter Coefficient

Pb = Barometric pressure, in. Hg

Theta = Time of calibration run, min.

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014 Fax (813) 752-2475

STANDARD METER CALIBRATION CURVE

Std Err of Coef.

GAS METER MANUF.	ROCKWELL	6	PERFORMED FOR	C. F. Industries - Plant City
MODEL #	175-S		DATE	02/21/2004
SERIAL #	JA 631105		•	

FLOWRATE	DRY GAS METER COEFF.
(CFM)	(Yds)
0.469	1.024
0.617	1.004
0.863	0.988
1.068	0.985
1.245	0.975

Regression Output:							
Constant	1.0344084						
Std Err of Y Est	0.0022086						
R Squared	0.9494629						
No. of Observations	5						
Degrees of Freedom	3						
X Coefficient(s)	-0.025997						

.

0.0034628

FLOW	CORRECTION
(CFM)	FACTOR
0.40	1.024
0.45	1.023
0.50	1.021
0.55	1.020
0.60	1.019
0.65	1.018
0.70	1.016
0.75	1.015
0.80	1.014
0.85	1.012
0.90	1.011
0.95	1.010
1.00	1.008
1.05	1.007
1.10	1.006
1.15	1.005
1.20	1.003

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014 Fax (813) 752-2475

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

	numbers etric press		128/05 Meter box number <u>CQ54</u> in. Ilg Dry gas meter number <u>463613</u>				Plant <u>C Surruric</u> Pretest Y <u>1.010</u>			
Orifice manometer setting, (AH), in. H ₂ 0	Gas ve Dry test meter (V _w), ft ³	Dry gas meter (V _d), ft ³	Te Dry test meter (t _w), °F		r <u>y gas m</u> Outlet		Time (Θ), min'	Vacuum setting, in. Hg	Y _i	$\frac{V_{i}}{V_{w}P_{b}(t_{d} + 460)}$ $\frac{V_{w}P_{b}(t_{d} + 460)}{V_{d}P_{b} + \frac{\Delta H}{13.6}t_{w} + 460}$
1.35 1.35 1.35	277,686 267,513 287,814 277,686 298,015 287,814	039.664 029.181 030.249 039.664 060.962 050.249	75° 72° 75° 75° 73°	98° 80° 106 93° 107°	81° 74° 89° 91°	83.25 94.00 97.00	5,0 5.0 15,0	7.5 7.5 7.5	0,9849 0,9857 0,988 1	$\frac{(10,173)(30,24)(543,25)}{(10,173)(30,24)(533,25)}$ $\frac{(10,183)(30,337)(533,20)}{(10,128)(30,24)(554,00)}$ $\frac{(10,2535)(30,327)(535,00)}{(10,201)(30,24)(557,00)}$
				_					Y = 0,98	363

 $^{\rm a}$ If there is only one thermometer on the dry gas meter, record the temperature under ${
m t_a}$

- $V_w = Gas$ volume passing through the wet test meter, ft³. $V_d = Gas$ volume passing through the dry gas meter, ft³. $t_s = Temperature of the gas in the wet test meter, °F.$
- t_{d_i} = Temperature of the inlet gas of the dry gas meter, °F.
- t_{d_o} = Temperature of the outlet gas of the dry gas meter, °F.
 - t_d = Average temperature of the gas in the dry gas meter, obtained by the average of t_d and t_d , °F. ΔH = Pressure differential across orifice, in H_2O .
 - Y_{i} = Ratio of accuracy of wet test meter to dry gas meter for each run.
 - Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y +0.05Y
 - P_{b} = Barometric pressure, in. Hg.
 - θ = Time of calibration run, min.

Dry test meter number Rockwell-3A631105 Quality Assurance Handbook M5-2.4A

32

APPENDIX "C"

ę.,

S.

ł.

PROJECT PARTICIPANTS

PROJECT PARTICIPANTS CF INDUSTRIES, INC. PLANT CITY PHOSPHATE COMPLEX

•

4

H.E. Morris

R.C. May

T.A. Edwards

J.M. Messina

J.H. Falls

- F.J. Dlugos
- E. Kretschmar
- L. Camp
- W. Cherry

General Manager

Manager of Engineering

Supt., Environmental Affairs

Chief of Environmental Affairs

¢

Chief Chemist, Laboratory

Environmental Supervisor

Analyst II

"A" Class Technician

"A" Class Technician

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

CF Industries

May 25, 2005

Mr. Joel Smolen
Florida Department of
Environmental Protection
3804 Coconut Palm Drive
Tampa, Florida 33619-8318

Subject: CF Industries, Inc. Plant City Phosphate Complex Permit No. 0570005-019-AC(PSD-FL-339) "D" Sulfuric Acid Unit CEMS Certifications and Compliance Test Report

Dear Mr. Smolen:

In accordance with Permit No. 0570005-019-AC(PSD-FL-339) (i.e., Section III. Emissions Units Specific Conditions 13, 14, and 15) enclosed are copies of the Sulfur Dioxide and Oxygen CEMS Certifications Test Reports for the testing conducted on our "D" Sulfuric Acid Unit on April 19, 20 & 21, 2005. Also, enclosed is the Calibration Drift Report.

If there are any questions concerning the results, please give Michael Messina a call at (813) 364-5639.

Sincerely,

Juarda

Thomas A. Edwards Superintendent, Environmental Affairs

TAE/JMM/gem U:\ENVRPT\167063a.doc

CC: Trina L. Vielhauer/Chief Bureau of Air Regulation FDEP Diana Lee/HCEPC J. M. Messina/Envir. Files Frank Dlugos

PERMIT NO. 0570005-019-AC(PSD-FL-339)

Emission Unit 008

RELATIVE ACCURACY TESTING

CF INDUSTRIES, INC.

PLANT CITY PHOSPHATE COMPLEX

"D" SULFURIC ACID PLANT

PLANT CITY, FLORIDA

April 19, 20 & 21, 2005

TEST CONDUCTED BY:

ENVIRONMENTAL LABORATORY CF Industries, Inc. Plant City Phosphate Complex Plant City, Florida 33564

Table of Contents

-	Page
1.0 INTRODUCTION	1
2.0 CONTINUOUS EMISSION MONITOR DESCRIPTION	1
3.0 TEST RESULTS	· 1
4.0 TEST PROCEDURES	2
 4.1 Methods 4.2 Test Locations 4.3 Sampling Train 4.4 Sample Collection 4.5 Sample Recovery 	2 2 3 3
5.0 ANALYTICAL PROCEDURE	3
5.1 Pretest Preparation5.2 AnalysisTable 1Table 2	3 3 4 5
APPENDIX	
Project Participants Emissions Test Summaries Process Operational Data Laboratory Data Field Data Sheets Gas Analysis Forms Calibration Data Source Sampling Nomenclature Sheet Calculations Calibration Drift Evaluation	7 8 10 16 25 34 35 44 45 46

1.0 INTRODUCTION

The Environmental Laboratory of CF Industries, Inc., Plant City Phosphate Complex, conducted relative accuracy (RA) at the "D" Unit Sulfuric Acid Plant in Plant City, Florida on April 19, 20 & 21, 2005. Testing was performed to determine conformance with EPA Performance Specification 2 and 4.

2.0 CONTINUOUS EMISSION MONITOR DESCRIPTION

The "D" Unit Sulfuric Acid Plant is equipped with a continuous emission monitoring system (CEMS) utilizing an Ametek 4000 Photometric SO_2 analyzer. This is an extractive sampler with a range of 0 to 1000 ppm. The analyzer is equipped with an automatic zero adjustment and adjusts the zero point at one hour intervals. The plant is also equipped with a Yokogawa continuous oxygen monitoring system. This is an extractive sampler with a range of 0 to 24 percent O_2 . Gas concentrations are recorded by a data acquisition system in the control room. The SO_2 and O_2 data are utilized to determine the source SO_2 emission in pound of SO_2 per ton of 100 percent sulfuric acid produced.

3.0 TEST RESULTS

Results of the SO₂ relative accuracy tests are summarized in Table 1. In order to be in conformance with Performance Specification 2, the relative accuracy of the SO₂ CEMS must be no greater than 20 percent of the mean value of the reference method test data in terms of the units of the emission standard or 10 percent of the applicable standard, whichever is greater. The relative accuracy is the absolute mean difference between the emission rate determined by the CEMS and the value determined by the reference method plus the 2.5 percent error confidence coefficient of a series of tests divided by the mean of the reference tests or the applicable emission limit. The relative accuracy of this plant, based upon the mean value of the reference method test data was 4.03 percent. The relative accuracy was therefore within the allowable limits.

Results of the O_2 relative accuracy tests are summarized in Table 2. The average difference between the reference method and the CEMS data of the nine data sets constitute the relative accuracy. In order to be in conformance with Performance Specification 3, the relative accuracy of the O_2 CEMS must be no greater than 1.0 percent O_2 . The relative accuracy of the O_2 CEMS, based upon the above definition, was 0.15 percent. The relative accuracy was therefore within the allowable limits.

4.0 TEST PROCEDURES

4..1 Methods

The SO₂ relative accuracy test was conducted in accordance with Performance Specification 2 – Specifications and Test Procedures for SO₂ and NO₂ Continuous Emission Monitoring Systems in Stationary Sources, 40 CFR 60, Appendix B. The relative accuracy test procedures require that a minimum of nine sets of reference method tests be conducted. Nine sets of data were collected concurrently with the CEMS. Relative accuracy testing was performed in conjunction with a compliance test. Therefore, three runs were performed for a period of 60 minutes per run and six runs were performed for a period of 21 minutes per run. Reference method samples were collected and analyzed in accordance with EPA Method 8 – Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources, 40 CFR 60, Appendix A.

The O_2 relative accuracy test was conducted in accordance with Performance Specification 3 – Specifications and Test Procedures for O_2 and CO_2 Continuous Emission Monitoring Systems, 40 CFR 60, Appendix B. The relative accuracy test procedures require that a minimum of nine sets of reference method tests be conducted. Nine sets of data were collected concurrently with the O_2 CEMS. Oxygen sampling was performed simultaneously with SO₂ sampling in accordance with EPA Method 3B – Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air, 40 CFR 60, Appendix A.

4.2 Test Locations

During the three runs utilized for the EPA Method 8 compliance test, twenty four sample points were utilized. During the six runs utilized for relative accuracy only, three sample points were utilized for collecting the reference method sulfur dioxide and oxygen samples. The points were located along a measurement line that passed through the centroidal area of the stack. The three sample points were located on the line at 16.7, 50.0, and 83.3 percent of the stack diameter. Velocity traverses were performed at twenty four points during each of these runs for determination of flow rate. The locations of the sampling ports are shown in Figure 1.

4.3 Sampling Train

The sulfur dioxide sampling train consisted of a stainless steel nozzle, a Napp Corporation heated borosilicate glass-lined probe, a glass filter bypass tube, a glass fiber filter, and four impingers arranged as shown in Figure 2. The first impinger was charged with 100 milliliters of 80 percent isopropanol. The second and third impingers were each charged with 100 milliliters of 3 percent hydrogen peroxide and the fourth impinger charged with indicating silica gel desiccant. The impingers were cooled in an ice and water bath during sampling. A Lear Siegler control console was used to monitor the gas flow rates and stack conditions during sampling.

Ĺ

The oxygen sampling train consisted of a stainless steel probe, sample line, pump, and Tedlar sampling bag as shown in Figure 3.

4.4 Sample Collection

Prior to sulfur dioxide sampling, the pitot tubes were checked for leaks and the manometers were zeroed. A pretest leak check of the sample line was conducted by sealing the nozzle and applying a 15" vacuum. A leak rate of less than 0.02 cubic feet per minute (CFM) was considered acceptable.

4.5 Sample Recovery

A post test leak check of the sulfur dioxide sampling train was performed at the completion of the run by sealing the nozzle and applying a vacuum equal to or greater than the maximum value reached during the sample run. A leak rate of less than 0.02 CFM or 4 percent of the average sampling rate (whichever is less) was considered acceptable. The probe was then disconnected, the ice bath drained, and the remaining part of the sample train was purged by drawing air through the system for fifteen minutes at the average flow rate used during sampling. The second and third impingers, associated connecting glassware, and back half of the filter holder were rinsed with distilled, deionized water into a 500 milliliter volumetric flask.

5.0 Analytical Procedure

5.1 Pretest Preparation

The 3 percent hydrogen peroxide solution was prepared from 30 percent reagent grade hydrogen peroxide and deionized water on the morning of the test. The 80 percent isopropanol solution was prepared from 100 percent reagent grade isopropanol and deionized water. The impingers were charged as described in section 4.3.

5.2 Analysis

After recovery, the samples were analyzed using procedures outline in EPA Method 8 – Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources, 40 CFR 60, Appendix A. Duplicate results were obtained in milliliters of barium perchlorate titrant. The average of these titration values were used to compute the sulfur dioxide concentrations.

Table 1. SULFUR DIOXIDE RELATIVE ACCURACY TEST RESULTS

Company: CF Industries, Inc., Plant City Phosphate Complex Source: "D" Sulfuric Acid Plant Date: 4/19-21/05

			Reference Method	CEM	Difference
Run No.	Date	Time	(PPM SO2)	(PPM SO2)	(PPM SO2)
1	4/19/05	16:55-17:16	309	325	16
2	4/20/05	15:30-16:56	318	325	7
3	4/20/05	17:27-17:48	318	323	5
4	4/21/05	09:28-09:49	329	338	9
5	4/21/05	10:20-11:46	335	344	9
6	4/21/05	12:03-13:26	343	352	9
7	4/21/05	13:45-14:06	323	335	12
8	4/21/05	14:40-15:01	324	340	16
9	4/21/05	15:35-15:56	326	335	9
		Average	325	335	10.2

DH2	Dev.	3	768
Slu.	Dev.	J.	.700

3

2.5% Error Confider	nce Coefficien	it (CC)=	t _{0.975}	*Sd/sq.rt. N
CC =	٠.	2.888		
n = 9				
t _{0.975}	=2.3	for n = 9		

Relative Accuracy (RA) = (mean of difference) + CC)/Avg RM RA = 4.03 %

In order to be in conformance with Performance Specification 2, the relative accuracy of the SO2 CEMS must be no greater than 20 percent of the mean value of the reference method test data in terms of the units of the emission standard or 10 percent of the applicable standard, whichever is greater.

The relative accuracy of the continuous monitoring system for this plant, based upon the mean value of the reference method, was 4.03%. This value is within the allowable limits

Table 2. OXYGEN RELATIVE ACCURACY TEST RESULTS

Company: CF Industries, Inc., Plant City Phosphate Complex Source: "D" Sulfuric Acid Plant Date: 4/20-21/2005

			Reference Method	CEM	Difference
Run No.	Date	Time	(%O2)	(%O2)	(%02)
1	4/20/05	15:30-16:56	3.27	3.30	0.03
2	4/20/05	17:27-17:48	3.43	3.21	-0.22
3	4/21/05	09:28-09:49	3.50	3.30	-0.20
4	4/21/05	10:20-11:46	3.43	3.25	-0.18
5	4/21/05	12:03-13:26	3.37	3.21	-0.16
6	4/21/05	13:45-14:06	3.37	3.22	-0.15
7	4/21/05	14:40-15:01	3.47	3.27	-0.20
8	4/21/05	15:35-15:56	3.37	3.27	-0.10
9	4/21/05	16:00-16:21	3.43	3.29	-0.14
 		Average	3.40	3.26	-0.15
			<i>e</i>	2	

In order to be in conformance with Performance Specification 3, the relative accuracy of the O2 CEMS must be no greater than 1.0 percent O2. The relative accuracy of the O2 CEMS, based upon the above definition was 0.15 percent O2. The relative accuracy was therefore within the allowable limits.

<u>Appendix</u>

Project Participants

Emissions Test Summaries

Process Operational Data

Laboratory Data

Field Data Sheets

Gas Analysis Forms

Calibration Data

Source Sampling Nomenclature Sheet

、^、

6

3

Calculations

PROJECT PARTICIPANTS CF INDUSTRIES, INC. PLANT CITY PHOSPHATE COMPLEX

H.E. Morris	General Manager
R.C. May	Manager of Engineering
T.A. Edwards	Supt., Environmental Affairs
J.M. Messina	Chief of Environmental Affairs
J.H. Falls	Chief Chemist, Laboratory
F.J. Dlugos	Environmental Supervisor
E. Kretschmar	Analyst ÍI
L. Camp	"A" Class Technician
W. Cherry	"A" Class Technician
•	

7

. *3*7

8

2

D SAP

PERMIT NO. 0570005-007-AV EMISSION UNIT 008

	D SAP	PERMIT N EMISSION		5-007-AV
	STACK BOX RUN NUMBER DATE TIME START TIME END BP, INCHES Hg STACK PRESSURE, INCHES Hg AVG.SQ.ROOT(VEL. HEAD) IN Hg	1 19-Apr-05 4:55 PM 5:16 PM 30.10 30.12 0.5103	4:56 PM 30.06 30.08	3 20-Apr-05 5:27 PM 5:48 PM 30.05 30.06 0.5152
	ORIFICE PRESS. OF METER, IN WATER AVG STACK TEMP., F STACK, DRY BULB METER TEMPERATURE, F VOL. OF GAS, DM CONDITIONS, FT3 VOL. GAS, STP, DRY COND. FT3 STACK GAS MOISTURE, % VOLUME MW OF STACK GAS, DRY COND. MW OF STACK GAS, STACK COND. PITOT CORRECTION FACTOR STACK GAS VELOCITY, STACK COND. FT3/SEC STACK AREA, FT2 EFFECTIVE STACK AREA, FT2 STACK GAS FLOW-RATE AT STP, SCFMD NET TIME OF TEST, MINUTES SAMPLE NOZZLE AREA, FT2 PERCENT ISOKINETIC	$\begin{array}{c} 1.340\\ 163.7\\ 163.7\\ 100.2\\ 15.071\\ 14.309\\ 0\\ 28.4\\ 28.4\\ 0.84\\ 31.29\\ 67.2\\ 67.2\\ 107493\\ 21\\ 0.000407\\ 104.7\\ \end{array}$	1.299 163.1 163.1 104.5	1.310 165.0 105.83 14.783 13.871 0 28.4 28.4 0.84
	SULFURIC ACID MIST(INCLUDES SO3), MG SULFURIC ACID MIST, LBS/HR. SULFURIC ACID MIST, LBS/DAY		11.93 3.62 86.82	
·	SULFUR DIOXIDE, MG SULFUR DIOXIDE, LBS/HR. SULFUR DIOXIDE, LBS/DAY	332.82 330.03 7920.7	1124.89 341.08 8186.0	332.8 343.07 8233.6
	SULFURIC ACID MIST, LBS/TON OF H2SO4 PROD. SULFURIC ACID MIST, LBS/TON LIMIT		0.03 0.10	
	SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD. SULFUR DIOXIDE, LBS/TON LIMIT	3.03 3.50	3.16 3.50	3.18 3.50
	SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD. (METER IN PLANT)	3.02	2.94	2.95
	PRODUCTION RATE, TPD PRODUCTION RATE, TPD LIMIT '	2607 2750	2593 2750	2593 2750

D SAP

OT LOK DON

۰.

۰.

PERMIT NO. 0570005-007-AV EMISSION UNIT 008

STACK BOX						
RUN NUMBER	4	5	6	7	8	9
DATE	21-Apr-05	21-Apr-05	21-Apr-05	21-Apr-05	21-Apr-05	21-Apr-05
TIME START	9:28 AM	10:20 AM	12:03 PM	1:45 PM	2:40 PM	3:35 PM
TIME END	9:49 AM	11:46 AM	1:26 PM	2:06 PM	3:01 PM	3:56 PM
BP, INCHES Hg	30.06	30.06	30.02	30.02	29.99	29.97
STACK PRESSURE, INCHES Hg	30.08	30.08	30.03	30.04	30.01	29.99
AVG.SQ.ROOT(VEL. HEAD) IN Hg	0.5121	0.5132	0.5071	0.5119	0.509	0.5068
ORIFICE PRESS. OF METER, IN WATER	1.267	1.303	1.286	1.257	1.290	1.290
AVG STACK TEMP., F	163.0	161.8	158.7	161.7	162.7	162.7
STACK, DRY BULB	163.0	161.8	158.7	161.7	162.7	162.7
METER TEMPERATURE, F	96.17	114.2	113.3	112.0	108.0	107.2
VOL. OF GAS, DM CONDITIONS, FT3	14.127	50.487	49.891	14.547	14.762	14.708
VOL. GAS, STP, DRY COND. FT3	13.489	46.695	46.156	13.487	13.770	13.731
STACK GAS MOISTURE, % VOLUME	0	0	0	0	0	0
MW OF STACK GAS, DRY COND.	28.4	28.4	28.4	28.4	28.4	28.4
	28.4	28.4	28.4	28.4	28.4	28.4
PITOT CORRECTION FACTOR	0.84	0.84	0.84	0.84	0.84	0.84
STACK GAS VELOCITY, STACK COND. FT3/SEC	31.41	31.44	31.01	31.38	31.24	31.12
STACK AREA, FT2	67.2	67.2	67.2	67.2	67.2	67.2
EFFECTIVE STACK AREA, FT2	67.2	67.2	67.2	67.2	67.2	67.2
STACK GAS FLOW-RATE AT STP, SCFMD	107859	108192	107104	107860	107109	106611
NET TIME OF TEST, MINUTES	21	72	72	21	21	21
SAMPLE NOZZLE AREA, FT2	0.000407	0.000407	0.000407	0.000407	0.000407	0.000407
PERCENT ISOKINETIC	98.3	99.0	98.8	98.3	101.1	101.3
	00.0	00.0	00.0	00.0	101.1	101.0
SULFURIC ACID MIST(INCLUDES SO3), MG		10.56	9.30			
SULFURIC ACID MIST, LBS/HR.		3.23	2.85			
SULFURIC ACID MIST, LBS/DAY		77.51	68.37			
		11.01	00.07	-		
SULFUR DIOXIDE, MG	335.05	1180.29	1194.13	328,35	336.39	337.29
SULFUR DIOXIDE, LBS/HR.	353.64	360.99	365.77	346.61	345.38	345.68
SULFUR DIOXIDE, LBS/DAY	8787.3	8663.7	8778.4	8318.7	8289.1	8296.4
······································						
SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD.	3.28	3.35	3.39	3.21	3.20	3.20
SULFUR DIOXIDE, LBS/TON LIMIT	3.50	3,50	3.50	3.50	3.50	3,50
SULFUR DIOXIDE, LBS/TON OF H2SO4 PROD.	3.03	3.11	3.18	3.03	3.07	3.01
(METER IN PLANT)						
METHOD 8 MEASURED SO2 CONC. (PPM)	329	335	343	323	324	326
CONTINUOUS MONITOR SO2 CONC. (PPM)	338	344	352	335	340	335
PRODUCTION RATE, TPD	2590	2590	2590	2590	2590	2590
PRODUCTION RATE, TPD LIMIT	2750	2750	2750	2750	2750	2750

.

.*5*

CEMS SO2 Data - SO2 PPM

1. 1. 1.

		Time of RATA Run		CEMS	
Run No.	Date	(PPM SO2)	Time	(PPM SO2)	Avg
1	04/19/05	16:55-17:16	1700	325	
			1715	325	325
2	04/20/05	15:30-16:56	1530	325	
			1545	325	
			1600	330	
			1615	325	
			1630	320	
			1645	325	
			1700	325	325
· 3	04/20/05	17:27-17:48	1730	320	
			1745	325	323 -
4	04/21/05	09:28-09:49	0930	335	
	1		0945	Span test	
			1000	340	338
5	04/21/05	10:20-11:46	1015	340	
		,	1030	335	
		5.ª\$	1045	340	
			1100	340	
		· ·	1115	345	
			1130	350	
			1145	355	, 344 ·
6	04/21/05	12:03-13:26	1200	360	
			1215	360	
			1230	. 355	
			1245	350	
			1300	355	
			1315	340	
			1330	345	352
7	04/21/05	13:45-14:06	1345	335	
			1400	335	.335
8	04/21/05	14:40-15:01	1445	340	
			1500	340	340
9	04/21/05	15:35-15:56	1530	335	
			1545	335	335

10

 $^{\circ}$

tag	time	21m avg
ai515ao	4/21/2005 16:00:00	3.29
tag	time	21m max
ai515ao	4/21/2005 16:00:00	3.31
tag	time	21m min
ai515ao	4/21/2005 16:00:00	3.27

~4

4 - -

:4

41----

tag	time	21m avg
ar515	4/21/2005 16:00:00	331.84
tag	time	21m max
ar515	4/21/2005 16:00:00	.334.41
tag	time	21m min
ar515	4/21/2005 16:00:00	329.22

	•	Run	Average	Max	Min	Average	Max	Min
Date /	Time	Time	02	02	02	SO2	SO2	SO2
19-Apr	1655-1716	21 min	3.30	3.34	3.26	320	326	315
20-Apr	1530-1656	1hr 26 min	3.30	3.31	3.25	328.	333	323
20-Apr /	1727-1748	21 min	3.21	3.23	3.20	349	353	340
21-Apr	0928-0949	21 min	-3.24	3.26	3.24	292	656	-1
21-Apr	1020-1146	1hr 26 min	3.25	3.36	3.17	343	354	334

.

ŀ

Span Test on ppm SO2 from approximately 9:43 a.m. to 9:58 a.m.

Date	Time	Run Time	Average 02	Max O2	Min O2	Average SO2	Max SO2	Min SO2
21-Apr	0928-0943	15 min	3.30	3.34	3.26	339	340	336

Excludes Span test data

1/

Date	Time	Run Time	Average O2	Max O2	Min O2	Average SO2	Max SO2	Min SO2
21-Apr	1203-1326	1hr 23min	3.21	3.28	3.18	352	360	339
21-Apr	1345-1406	21 min	3.22	3.23	3.21	336	338	329
21-Apr	1440-1501	21 min	3.27	3.28	3.24	339	341	334
21-Apr	1535-1556	21 min	3.27	3.29	3.25	335	336	332
21-Apr	1600-1621	21 min	3.29	3.31	3.27	332	334	329

,

"D" Sulfuric Acid Plant Process Operation Data

.

ł

Test Date: 4/19, 20 & 21/2005

Run No.	• 1	2	3	4	5	6	7	8	9	10
Date	4/19/05	4/20/05	4/20/05	4/21/05	4/21/05	4/21/05	4/21/05	4/21/05	4/21/05	4/21/05
Start Time	1655	1530	1727	0928	1020	1203	1345	1440	1535	1600
Stop Time	1716	1656	1748	0949	1146	1326	1406	1501	1556	1621
Production tons/day	2610	2593	2593	2590	2590	2590	2590	2590	2590	2590
Period										
Average										
Values								2		
from										
Aspen										
Avg lbs	3.03	3.16	3.18	3.03	3.11	3.18	3.03	3.07	3.01	
SO2/ton										
for period										
Avg %.02		3.30	3.21	3.30	3.25	3.21	3.22	3.27	3.27	3.29
for period										
Avg SO2	325	325	323	338	344	352	335	340	335	
ppm for										
period					-					

SO2 READINGS								
PLANT ()	MONITO	R - PPM SC)2				
TIME	:00:	:15	:30	:45	AVG.			
6:00 am	370	370	- 37.0	370	370			
7:00 am	375	SPON TEST	SPAN TEST	375	375			
8:00 am	375	175	380	370	375"			
9:00 am	370	370	2.4	370	368.75			
10:00 am	365	365	365	365	365			
11:00 am	365	370	320	375	370			
12:00 pm	370	370	375	37.0	371,25			
1:00 pm	375.	370	375	370	372.5			
2:00 pm	375	375-	370	SPAN TEST	373.33			
-3:00 pm	SPAN TOST		375	370	373.33			
4:00 pm	370	345	215	31.0.	335			
5:00 pm	325	325	325	325	325			
6:00 pm	325	330	330	330	328.7			
7:00 pm	335	'345	340	330	337.50			
8:00 pm	325	325	320	320	322.50			
9:00 pm_	325	3.25	330	330	327,50			
10:00 pm	335	330	325	3:35	328.75			
11:00 pm	330	. 3.30	330	335	331.25			
12:00 am	335	335	34)	335	336.25			
1:00 am-	335	335	335	335	333.7			
2:00 am	325	. 335	335	335	331.25			
3:00 am	335	335	345	35	335.75			
4:00 am	340	335	335	335	335			
5:00 am	335	235	349	325	336.25			

DATE 4119105

EXIT REICH TEST							
SHIFT	TIME	% SO2					
7:00am							
7:00am							
7:00pm							
7.00pm							

CF = Conversion Factor 0.1306 <u>1.000 - 0.015</u> R - S -lbs. SO2/tons H2SO4 per PPM SO2

Where : R = Inlet % SO2 S = Monitor % SO2 (PPM SO2/1000)

INLET GAS SO2

SHIFT	TIME	BURNER TEMP.	% SO2	C F #	SO2/TON	SIGNATURE
7am-7pm	A AA	2042	11.9	,007044	3,39.15	D. Cell .
7am-7pm	1 11 7 21	2052	11.7	,019233	3.462275	W. Cell
7pm-7am	Sten.	2015	11.8	.009134	2.70355	TON CENT
7pm-7am	Sinn		•	.009130	2,76355	Den Corres-

REMARKS

7:07 - 7:33 Aun 4. 4 RINTE 3: 05 MAD 2011+2 3

.

13

PLANT L	•	SO2 READINGS MONTTOR - PPM SO2					
TIME	:00	:15	:30	:45	AYG.		
6:00 am	340	330	345	340	338.76		
7:00 am	355	350	SPAN TEST	363	35/160		
8:00 am	330	JO	335.	336	332.5 .		
9:00 am	330	330	340	336	333.75		
10:00 am	340	Ľ	330	330	333.75		
11:00 am	330	336	330	330	31,25		
12:00 pm	_ 330	330	330	336	331.25		
1:00 pm	336	<u> </u>	330	.330	327.5		
2:00 pm	330	340	390	330	332.5		
3:00 pm	325	330	325	326	2de. X		
4:00 pm	330	. 325	320		325		
5:00 pm	325	326	320	325	323.75		
6:00.pm	330	330	335	330	331.25		
7:00 pm	335	: 345	358	350	345		
8:00 pm	340	340	340	345	341.25		
9:00 pm	.345	345	345	340	343.25		
(10:00 pm	340	365	345	345	343,75		
11:00 pm	345	. 340	340	340	341.25		
12:00 am	340	345	340	340	341.25		
1:00 am	340	340	340	345	341.25		
2:00 am	3-10	340	345	340	341.25		
3:00 am	345	350	350	340	346,25		
4:00 am	.345	340	-340	345	342.50		
5:00 am	340	345	340	345	342.5		

DATE 4 120 105

EXIT REICH TEST							
SHIFT	TIME	% SO2					
7:00am	, <u> </u>						
7:00am							
7:00pm							
7:00pm							

CF = Conversion Factor 0.1306 <u>1.000 - 0.015</u> R - S -lbs. SO2/tons H2SO4 per PPM SO2

. Where : R = Inlet % SO2 S = Monitor % SO2 (PPM SO2/1000)

INLET GAS SO2

· · · · ·			<u> </u>	000002	_	
SHIFT	TIME	BURNER TEMP.	% SO2	CF#	SO2/TON	SIGNATURE
7am-7pm	8.Am	2040	11.8	0.009184	3.0/422	Jim PARKER .
7am-7pm	2:pm	2038	11.8	0,009134	3.01422	JIM PANKER
7pm-7am	8:0m	2042	11.9	,009042	3.07428	Dow GEACH
7pm-7am	2:Am	2040	11.9	,009042	3.07428	DON LEACH

REMARKS

14

Spantest 07:17-07: 42 Au Y. Q.

.

PLANT T		MONTTO	R - PPM SC	SO2 REA	ADINGS
TIME	:00	:15		:45	AVG.
6:00 am	345	346	:30 : 345	346	345
7:00 am	346	JANN TEST	SPAN	346	345
8:00 am	340	336	340	340	336.75
9:00 am	335	. 33ර	335	SANUTEST	336
10:00 am	340	340	335	340	338.75
11:00 am	340_	346	350	355	347.6
12:00 pm	30	360	355	35	356.26
1:00 pm	355	340	346	335	343.75
2:00 pm	376	36	340	340	338.75
3:00 pm	340	335	336	335	336.25
4:00 pm	.332	335	330	336 .	632.6
5:00 pm	335	335	340	335	336.25
6:00 pm	335	235	335	340	336,25
7:00 pm	340	'340	345	345	342.50
8:00 pm	345	345	345	345	345
9:00 pm	345	350.	340	345	345
10:00 pm	345	345	345	340	343,7
11:00 pm	345	. 335	340	340	338.75
12:00 am	340	335	335	335	32.25
1:00 am	335	340	_335	335	336.25
2:00 am	340	340	340	335	338,75
3:00 am	340	345	340	345	341.25
4:00 am	345	345	.350	340	345
5:00 am	340	340	345	345	342.5

DATE +121105

EXIT REICH TEST SHIFT TIME % SO2 7:00am 7:00am 7:00pm 7:00pm

CF = Conversion Factor 0.1306 <u>1.000 - 0.015</u> R - S -lbs. SO2/tons H2SO4 per PPM SO2

Where : R = Inlet % SO2 S = Monitor % SO2 (PPM SO2/1000)

1.1.1

INLET GAS SO2

SHIFT	TIME	BURNER TEMP.	% SO2	CF#	SO2/TON	SIGNATURE
7am-7pm	8:Am	2007	11,9	0.0000/2	3.07428	Jim PARKER .
7am-7pm	2:Am	2039	M.9	0,009041	3.028736	Jim PARKER
7pm-7am	8: em	2037	11.9	.009048	3.11949	DON GALA
7pm-7am	2:Am	2037	11.9	.009042	3.07428	DON (ZACH

REMARKS

15

Spuntest 17.13-07:41 4.Q. Spunter 09:32-09:55 4.Q

• :

		DATE	19-Apr-05		
		TIME	4:55 PM	TO	5:16 PM
		STACK	D SAP		
١	۰.	RUN	#1		
SAMPLE SOLUTION ANALYSIS					
	Acid Mist, SO		SO		
		3	2		
I.					
Volume of Sample, ml.	500		500 100		
Aliquot, ml.	50		20 20		
Normality of Barium					
Perchlorate	0.011158		0.011158		
· · · · · · · · · · · · · · · · · · ·					•
Mls. of Barium Per-					
chlorate-Titrated			7.60		
Blank, ml.	0.15	-	0.15		
Conversion to Milligrams			332.82		
			332.02		

16

Analyst William J. Chury &

dso4titr.xls

٠,

	s.	-	DATE TIME STACK RUN	20-Apr-05 3:30 PM D SAP #2	то	4:56 PM
SAMPLE SOLUTION ANALYSIS						
. ,	Acid Mist, SO	3		SO 2		
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
Normality of Barium Perchlorate	0.011158			0.011158		
Mls. of Barium Per- chlorate Titrated				25.33		
Blank, ml.	0.15			0.15		
Conversion to Milligrams				1124.89		

Analyst William J. Ching S.

dso4titr.xls

TIME $5:27 \text{ PM}$ STACKTO $5:48 \text{ PM}$ STACKDD $5:48 \text{ PM}$ STACKDSAMPLE SOLUTION ANALYSISAcid Mist, SOSO3 2 Volume of Sample, ml. 500 500 100 Aliquot, ml. 500 20 20 Normality of Barium Perchlorate 0.011158 0.011158 Mls. of Barium Per- chlorate-Fitrated $7.60Blank, ml.0.150.150.15$			DATE	20-Apr-05		
RUN #3 SAMPLE SOLUTION ANALYSIS Acid Mist, SO SO 3 2 Volume of Sample, ml. 500 500 Aliquot, ml. 50 20 Normality of Barium 0.011158 0.011158 Mls. of Barium Per- chlorate—Witrated 7.60 Blank, ml. 0.15 0.15			TIME	5:27 PM	TO	5:48 PM
SAMPLE SOLUTION ANALYSIS Acid Mist, SO SO 3 2 Volume of Sample, ml. 500 500 100 Aliquot, ml. 50 20 20 Normality of Barium 0.011158 0.011158 Mls. of Barium Per- 0.011158 7.60 Blank, ml. 0.15 0.15			STACK	D SAP		
Acid Mist, SO SO 2 3 2 Volume of Sample, ml. 500 500 100 Aliquot, ml. 50 20 20 Normality of Barium 0.011158 0.011158 Mls. of Barium Per- chlorate 0.011158 0.011158 Blank, ml. 0.15 0.15		·.	RUN	#3		
Acid Mist, SO SO 2 3 2 Volume of Sample, ml. 500 500 100 Aliquot, ml. 50 20 20 Normality of Barium 0.011158 0.011158 Mls. of Barium Per- chlorate 0.011158 0.011158 Blank, ml. 0.15 0.15						
3 2 Volume of Sample, ml. 500 500 100 Aliquot, ml. 50 20 20 Normality of Barium 50 0.011158 0.011158 Mls. of Barium Per- 0.011158 7.60 Blank, ml. 0.15 0.15	SAMPLE SOLUTION ANALYSIS	3				
3 2 Volume of Sample, ml. 500 500 100 Aliquot, ml. 50 20 20 Normality of Barium 0.011158 0.011158 Perchlorate 0.011158 0.011158 Mls. of Barium Per- chlorate Titrated 7.60 Blank, ml. 0.15 0.15		Acid Mist, SO		SO		
Volume of Sample, ml. 500 500 100 Aliquot, ml. 50 20 20 Normality of Barium 0.011158 0.011158 Mls. of Barium Per- 0.011158 7.60 Blank, ml. 0.15 0.15				2		
Volume of Sample, ml. 500 500 100 Aliquot, ml. 50 20 20 Normality of Barium 0.011158 0.011158 Mls. of Barium Per- 0.011158 7.60 Blank, ml. 0.15 0.15					-	
Aliquot, ml.502020Normality of Barium Perchlorate0.0111580.011158Mls. of Barium Per- chlorate-Titrated7.60Blank, ml.0.150.15	,					
Normality of Barium Perchlorate0.011158Mls. of Barium Per- chlorate-Witrated0.011158Blank, ml.0.150.150.15	Volume of Sample, ml.	500		500 100		
Normality of Barium Perchlorate0.011158Mls. of Barium Per- chlorate-Witrated0.011158Blank, ml.0.150.150.15	Aliquot. ml.	50		20 20		
Normality of Barium Perchlorate0.0111580.011158Mls. of Barium Per- chlorate-Ditrated7.60Blank, ml.0.150.15						
Mls. of Barium Per- chlorate-Titrated 7.60 Blank, ml. 0.15 0.15		· · ·				
chlorate-Witrated 7.60 Blank, ml. 0.15	Perchlorate	0.011158		0.011158		
chlorate-Witrated 7.60 Blank, ml. 0.15						
Blank, ml. 0.15 0.15						
	chlorate-Titrated	-		7.60		
	Blank ml	0.15		0.15		
Conversion to Milligrams 332.82						
	Conversion to Milligrams			332.82		

Analyst William 4. Chury L

dso4titr.xls

 \mathbf{X}

SAMPLE SOLUTION ANALYSIS	r. 3		DATE TIME STACK RUN	21-Apr-05 9:28 AM D SAP #4	ТО	9:49	AM
	Acid Mist,	so 3		so . 2			
Volume of Sample, ml.	500			500 100			
Aliquot, ml.	50	-	:	20 20			
Normality of Barium Perchlorate	0.011158	-		0.011158			
Mls. of Barium Per- chlorate Titrated		~		7.65			
Blank, ml.	0.15	-		0.15			
Conversion to Milligrams		-		335.05			

Analyst Willian J. Chruz S.

dso4titr.xls

SAMPLE SOLUTION ANALYSIS	•.		DATE TIME STACK RUN	21-Apr-05 10:20 AM D SAP #5	то	11:46 AM
	Acid Mist, SC	3		s0 2	,	
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
Normality of Barium Perchlorate	0.011158			0.011158		
Mls. of Barium Per- chlorate_Titrated				26.57		
Blank, ml.	0.15			0.15		
Conversion to Milligrams				1180.28		

Analyst William J. Chury L

dso4titr.xls

÷,

~		DATE	21-Apr-05			
		TIME	12:03 PM	TO	1:26 PM	
		STACK	D SAP			
,	·.	RUN	#6			
SAMPLE SOLUTION ANALYSIS	3			~		
	Acid Mist, SO		SO			
	3		2			
1						
Volume of Sample, ml.	500		500 100			
Aliquot, ml.	50		20 20			
Normality of Barium	•					
Perchlorate	0.011158		0.011158			
-		•				
Mls. of Barium Per-						
chlorate-Titrated			26.88		-	
Blank, ml.	0.15		0.15			
Conversion to Milligrams			1194.13			

Analyst William J. Chury

dso4titr.xls

ŀ

			DATE	21-Apr-05		
			TIME	1:45 PM	TO	2:06 PM
			STACK	D SAP		
	۰.		RUN	#7		
SAMPLE SOLUTION ANALYSIS						
	Acid Mist, SO			SO		
		3		22.		
	500					
Volume of Sample, ml.	500			500 100		
Aliquot, ml.	50			20 20		
				20 20		
Normality of Barium						
Perchlorate	0.011158			0.011158		•
Mls. of Barium Per-						
chlogate Fitrated				7.50		•
Blank, ml.	0.15			0.15		2
,,						
Conversion to Milligrams				328.35		

Analyst Wulliam J. Chry

dso4titr.xls

÷

	· ·		DATE TIME STACK RÜN	21-Apr-05 2:40 PM D SAP #8	то	3:01 PM
SAMPLE SOLUTION ANALYSIS	S					
`	Acid Mist,	SO 3		SO 22		
Volume of Sample, ml.	500	_		500 100		
Aliquot, ml.	50	_		20 20		
Normality of Barium Perchlorate	0.011158	_		0.011158		
Mls. of Barium Per- chlorate Titrated		_		7.68		
Blank, ml.	0.15	_		0.15		
Conversion to Milligrams	·	_		336.39		

Analyst William J. Ching L

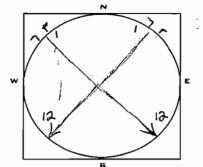
dso4titr.xls

ŀ

			DATE	21-Apr-05		
			TIME	3:35 PM	TO	3:56 PM
			STACK	D SAP		
	·.		RUN	#9		
SAMPLE SOLUTION ANALYSIS	I					
	Acid Mist, SO			so		
~		3		2		
,						
Volume of Sample, ml.	500			500 100		
- ;				(
Aliquot, ml.	50			20 20		
Normality of Barium						
Perchlorate	0.011158			0.011158		
Mls. of Barium Per-						
chlorate-Titrated				7.70		
Blank, ml.	0.15			0.15		
,						
Conversion to Milligrams				337.29		

Analyst William J. Chury &

dso4titr.xls


24

--

PLANT	D SULFURIC
RUNNUMBER	PATA (3)
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	4/19/05
OPERATOR	ERNEST KRITTCHMPL
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

......

تتغنه

÷

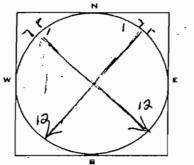
AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

• • •

λ.	1	1	S (/ SCHEMATIC		58 6ECTIO	м		1	1 11	- Not
ļv		at 15" (num 500	19) 28				L	1) Leula	+ 15' (TENT	FPUN)
TRAVERSE	CLOCK (TIME)	ORY GAS METER (CUBIC FEET)	DELTA P DADA (INCHES) (OF WATER)	ORIFICE DELTA H (INCHES) (OF WATER)	TEMPER (DEGRI INLET	EES F)	VACUUM (INCHEB HG) Guage	TEMPERATURE (DEGREEB F)	TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)
1	4:55 PM	875,011	0,25 0,33	1,64	990	SQ	8.0	NIM-	62°	163°
2	5:08	880,5	0.28 0.23	1.14	1080	94°	4.3		62° 62°	163° 164°
3		890.082	0.23 0.25	1.24	112.0	96°	6.2		63°	1.64"
570 17	5:16	890.082	0,33							
5			0.33					•		
6			0.30					<u>`</u>		
7			0,20							
8			0,23 40,25,23 0,28 0,30							
9			40,23,23							
10			0128							
11			0,30							·
12			0.33							
STOP										
1			0,15							
2			0,15							
3			0.18							
4			0.18							
5										
6			0,18	· · ·						
7			0,30				•			
8			0.33							
9			0.33 0.35 0.35 0.33							
10			0.35				~: ,			
11			0.35					· · · · · · · · · · · · · · · · · · ·		
12			0.33							
STOP			,							
		15.071	0.5103	1.34		100.17		ST FIELD SHEET		163.67

25

. -----


PLANT .	D SULFURIC
RUN NUMBER	COMP -1
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	4/20/05
OPERATOR	BAUGST KARETSCHMAN
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

• • •

.

..

. .

.

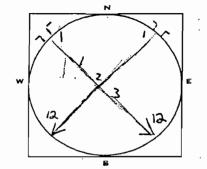
AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

RAVERSE		+ 1.5" (PLUN STANT)	PITOT	ORIFICE	DRY GAE	PUMP	-eul-at 1-5	IMPINGER	W) E.K
POINT	(TIME)	(CUBIC FEET)	DELTA P (INCHEB) (DF WATER)	DELTA H (INCHES) (OF WATER)	TEMPERATURE (DEGREES F) INLET DUTLET	VACUUM (INCHES HG) GUAGE	TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)	TEMPERATURI IDEGREES F
	13:30pm	934,411	0.15	0.74	40 940	3,5	NA	63'	155°
2	2 3:33PM	536.0	0,18	0.39	1020 930	4.0		[bla"	161
3	3:36	9377	0,18	0,39	103° 92°	4.0		64°	165"
	1 3:39	939,5	0,20	0,974	104 920	4,0		63"	166°
· 5		941.3	0.18	0.57.89	106" 92"	4.0		63°	1650
		942.9	0.18	0,89	108 930	4.0		63°	165°
7	3:48	944.8	· 0133	1.61	1090 930	4035		64°	164°
	3:51	9469	0.33	461	112 950	55	L\ /	<u>64°</u>	163
	3:54	949.2	0,35	1,70	112° 965	5,6	V	65	164°
10		451.6	0.35	1,70	113" 97"	5,6		65°	16:30
11	4100	953.9	0.35	1.70	114° 98°	5.6		6.5°	163
	4:03	9563	0,33	1.61	114' 99'	10		64	163"
ГОР	4:06PM	958,657							
1	4:20pm	758,657	0,23	112	102° 59°	4,5		66"	157°
2	4:23	260,6	0.25	1.22	113" 101"	4.8		620	161"
3	4:26	962.7	0.33	1.61	114° 100°	52		61°	163"
4	4:21	965.0	0.30	146	114° 101° 115° 101°	5,0		620	1632
5	4:32	766.9	0.30	1.46	115' 101'	5,0		610	164
6	4:35	969,5	0,28	1,36	115° 102°	4,8		63"	1643
7	4:38	97h7	0.25	1,22	115' 1010	4,5		64°	164°
8		973.8	0,23 _	1.12	116 102'	4,2		<u> </u>	164°
9		975,8	17.23	1.12	116" 102"	4.2		65'	164
10		(<i>17.7</i>	0,25	1.22	117' 1020	4.5		66"	1(A*)
	4:50	97918	0,30	1.46	118° 103°	5.0		65	164"
	4:53	982.0	0.33	1.61	120° 104°	.5,0		(25°	165
OP	4:50pm	934.327	·						
		(49,914)	AVG Sq Rt.	AV6. 1,299.2	104.54		T FIELD SHEET.		AVG. 163.08

277.2 1 26

1.000

خاز


PLANT	D SULFURIC
RUN NUMBER	RMA-2
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	4/20/05
OPERATOR	BONDST KONTSCHMAN
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

-,-,-. --

ar and a provide a sur-

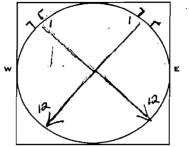
.

فغزز

AMBIENT AIR TEMPERATURE	-	DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

-111	~~ ·		BCHEMATIC	OF	STACK	CROSS	SECTION
/\$"((an	>1144	100				

POINT	CLOCK (TIME)	CUL AT 15" (RU DRY GAS METER ICUBIC FEET)	PITOT DELTA P	DRIFICE DELTA H		GAS		No Leule	IMPINGER	BTACK
PUINT	(TIME)	• •	(INCHES) (OF WATER)	INCHES (INCHES) (OF WATER)	(DEGRE	ES FI	(INCHES HO)	TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)
1	5:27PM	985,608	0.18 0.20	0.97	ws°	ws°	4,0	MA	63	22 165° 165° 165°
2	5:34	939,9	0.18 0.28	1.36	112°	1000	5.0		63°	165°
3	5:41	994.9	0.20 0.33	1.61	113°	100°	5.2	:	(e.3°	165
570° 4	5:48	939,9 994.9 1000,391	0,20							
5	<u> </u>	-	0,20							
6		-	0.20							
7			0.30							
. 8			0.30 0.33 0.35							
9		_	0.35	·						
10			0.35		•.					
11		-	0,35					·		
12			0,35 0,35 0,35							
ТОР				•			r		ļ	
1			0.23							
2			0,25				· .			
3			0.30							
4			0,33							
5			0.30							
6			0.28		· ·		:		-	
7			0,20							
8			0,23							
9			0.23 0.25 0.28							
ʻ 10			0128							
11			0130							
12			0,33							
TOP			•							
		14.783	5/52	1.31		105183				165,0


27

STACKE/COMPLIANCE TEST FIELD SHEET.XLS

PLANT	D SULFURIC				
RUN NUMBER	[ZANGA 3				
LOCATION	CF INDUSTRIES, PLANT CITY				
DATE	4/21/05				
OPERATOR	ERNEST KRITTSHOAR				
SAMPLE UNIT S/N	S-311A				
CONTROL UNIT S/N	C-254				

. . .

..

AMBIENT AIR TEMPERATURE	23°	DEGREES F
BAROMETRIC PRESSURE	30.06	INCHES HG
ASSUMED MOISTURE		%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING		

8 SCHEMATIC OF STACK CROSS SECTION -154 (run 59 15" (pun somer) 45 Vo Lewk ORIFICE TRAVERSE DRY GAS METER PITOT DRY GAS PUMP BOX DELTA P DELTA H TEMPERATURE VACUUM TEMPERATURE TEMPERATURE POINT (TIME) ICUBIC FEETI TEMPERATURE INCHESI ANT (INCHES) (DEGREES F) (INCHES HG) (DEGREES F) (DEGREES F) (DEGREES F) OF WATER INLET DUTLET GUAGE 12.18 0,20 <u>58</u>° 56° NA 163° 0.97 9:23AM 92° 84° 12.111 40 1 163° 1.22 108 87° 2 9:35 16.3 0.13 0.25 45 21.0 OB 200 58° 163° 9:42 114° 5.0 0.23 1.6 3 9:49 AM STOP 4 26.238 1.20 DilB 5 . OIR 6 0.33 7 0.33 8 . 9 0.33 10 11 0.33 12 STOP 0.23 1 17.28 2 0.30 3 0.33 4 0.30 5 0.28 6 0,23 7 0.23 8 0.23 9 0,85 · 10 0,30 11

STOP

لمنان

12

14.127

1.23

AVG. SARt

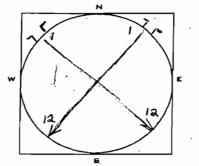
0.5121-

.

AVG

STACKS/COMPLIANCE TEST FIELD SHEET.XLS 1,2667 10

AKG.


96.17

AYG. 163°

	·				
PLANT	D SULFURIC				
RUN NUMBER	COMP(4)				
LOCATION	CF INDUSTRIES, PLANT CITY				
DATE	4/21/05				
OPERATOR	BIRNIEST KOBETS-HMAR				
SAMPLE UNIT S/N	S-311A				
CONTROL UNIT SIN	C-254				

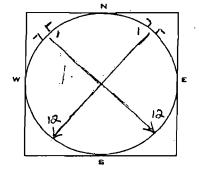
• • • •

..

AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

.

No	La	b + 15"	RIN STRAT) 4	BCHEMATI	C OF STACK CRO	SS BECTIC	IN		Dolar	4 A 15" (B	D FRWER
POIN	REE NT	CUQCK (TIME)	DRY BAS METER ICUBIC FEETI	PITOT DELTA P (INCHES) (OF WATER)	ORIFICE DELTA H (INCHES) (DF WATER)	TEMPE (DEGR	GAS RATURE EES F) OUTLET	PUMP VACUUM (INCHES HQ) GUAGE	TEMPERATURE (DEGREES F)	IMPINGER TEMPERATURE (DEGREES F)	TEMPERATURE (DEGREES F)
	1	10:20 AM	42,702	0.15	0.73	07°	104°	3,0	NA	68	155"
	2	10:23	44.3	0.18	0.88	115°	104°	3.0		GA"	160°
	3	10:26	46.0	0,18	0.88	1170	10.3"	3.0		62°	162°
	4	10:29	47.8	0120	0,97	118°	103°	3,2		61°	163°
	5	10:32	49.6	0,18	0,88	118°	W43	3,0		620	163°
	6	10:35		Ju8	0.88	119"	104'	3.0	$ \vee$	64"	1640
	7	10:38	53,1	0,33	1.6	1220	105°	3.5	· · · · ·	6A°	164°
	8	10:41	55,4	0:33	1.61	1220	ws	3,5		64.	163°
	9		57,8	0.35	1.70	1020	2070	3,6		643	163.
	10		60,1	0.35	1.70	123°	108'	3.6		63°	163"
	11	W:50	62,6	0.35	1.70	124"	102°	3,6		63°	163"
	12	10:53	63,0	0,33	1.61	124°	1020	3,5		64°	162°
STOP		10:56	67.323								
	1	11:10 PM	67.323	0.83	1.12	112°	108°	3.0		68"	157°
	2	_11:13	69.3	0.28	1.36	122°	1080	3,2		65°	162°
	3	11:16	71,5	0:30	1,46	1230	10.70	3.2		63°	162°
	4	11:19	73,7	0.33	j.61	1230	W8°	3.2		62°	163°
	5	11:22	76.0	0.30	146	1230	108°	3,2		63"	1630
	6	11:25	7813	0.23	1.36	124"	108°	3,0		63'	163'
	7	11:28	30.8	0.20	0,97	124°	108°	3,0		63°	1630
	8	11:31	82,4	0,23	h12	125	109.	3'0		64"	1620
	9	11:34	84.3	6,25	1,20	125'	110	3.0		(.24	1620
	10	11:37	864	0.28	1.36	1260	111°	10253.0		65	1610
	11	11:40	88,6	. 0,30	1,46	120	111°	3.3		64°	161°
	12	11:43	90,2	0.33	161	128°	118"	3.3		64°	160°
STOP		11:46AM	43,189	•			AUG.				
				Sq RTAYG.	AY6.		114.23				AV6.
			50.487	0.5132	1,303	29	STACKS/C	OMPLIANCE TEI	BT FIELD SHEET.	18	161.83


. زند

PLANT	D SULFURIC
RUN NUMBER	Comp(s)
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	4/21/05
OPERATOR	BERNTEST KERTSHMAR
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

• . •

• ·

..

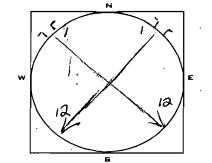
• ÷

Ł

AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

#

1-


POINT	Ē	CLOCK (TIME)	DRY GAS METER	PITOT DELTA P (INCHEB)	DRIFICE DELTA H (INCHES)	TEMPER	EES F}	PUMP VACUUM (INCHEB HG)	BOX TEMPERATURE (DEGREES F)	(F2ND & FUM IMPINGER TEMPERATURE IDEGREES F)	STACK TEMPERATURE (DEGREES F
	1	12:03PM	14.307	OUS	DI LOS	INLET	LO90	J.O.	NA	68'	156°
	_	12:06	95,9	0:15	0.73	 115°	108°	3.0	- <u>1711</u>	63	161"
		12:09	47.4	0.17	0.38	1170	108	3.0	⊧ <u> </u>	68	162°
		12:12	98.9	0,20	0.97	117'	W7°	3.0		68	1620
		12:15	100.2	0,18	0188	118°	106"	3,0		670	162°
		12:18	102.6	0,18	0,88	1/90	1060	3.0	-17	660	162
		12:21	104.3	0.30	1,46	1150	i06"	2233,3		67'	1610
	8	12:24	106.2	0.33	1.61	1210	106°	3,5		64'	1600
	9	12:27	108.5	0,35	1.70	1210	107'		···	64°	159"
	10	12:30	110,9	0.35	L70	1210	107"	3.5	-	620	1.58°
	11	12:33	113.4	0.35	1.70	1210	1070	3.5		610	158"
	12	12:36	115,8	0,33	1.61	(20°	1080			62"	157°
OP		12:39PM	118.136						*		
	1	12:50PM	113,136	0.23	<u> </u>	108°	i08°	3.0		(06°	147°
	2	12:53	120,2	0,25	1.24	120°	1080	· 3.0	_	62°	155°
	3	12:56	122.3	0,30	1.49	1210	1070	33		.59°	24,55 15
	4	12:59	1246	0.30	1,49	1200	103	33		. 60°	1580
	5	1:02	126.8	0,30	1,49	120°	1070	3,3		60	158°
	6	1:05	129,1	0.28	1.39	120'	1070	3.0		62°	1590
	7	1:08	131.3	0,20	0,97	120°	107"	3,0		iA°	159°
	8	1:11	133.2	0,23	h 14-	121"	1.070	3.0		64	159°
	9	1:14	135,2	0,25	1,24-	1220	1070	3,0		<u> </u>	451391
. 1	0	1117	137.4	0.28	1.39	120°	1080	3,0		103	160°
1	1	1:20	139,5	0,30	<u>(</u> 49	123'	1080	3,2		62°	160°
1	2	1:23	14118	0.33	1.64	123'	i08°	3,5		62°	1600
DP		1:26PM	144,198	•			AY6.		·		
				Sq Rt. AVG.	AYE.		113.29		T FIELD SHEET.		AVG.

34

PLANT	D SULFURIC
RUN NUMBER	RATA (6)
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	4/21/05
OPERATOR	BRNIEST KNEWSCHMAN_
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

.

1 · · ·

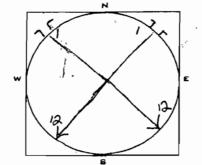
AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

SCHEMATIC OF STACK CROSS SECTION

NO Low Kint 15" (New STANT) ES BCHEMATIC OF STACK CROSS SECTION NO Low Kat FRANS OF New 15 TRAVERSE CLOCK DRY GAS METER PITOT ORIFICE DRY GAS PUMP BOX IMPINGER								P num 15"	1 Coto	
TRAVERSE POINT	CLOCK (TIME)	(CUBIC FEET)	DELTA P (INCHEB) (DF WATER)	DRIFICE DELTA H (INCHES) (DF WATER)	TEMPER (DEGRI INLET	EES FI	(INCHES HG) Guage	DEGREES F	(DEGREES F)	TEMPERATURE (DEGREEB F)
1	1:45PM	160,202	0.13 0.18	0.39	1120	109° 108'	52	N/A1	68	162°
2	1:52	164,3	0.18 0.25	1,24	1180	108	10,5	[[[]	68°	161°
	1159	169.2	0.18 0.33	1.64	118°	1070	7.8		64°	162°
5TOP 4	2:06PM	174.749	0.18			· ·		<u> </u>		
5			CU13							
6			2118						· · · · · · · · · · · · · · · · · · ·	
7			0.33		·				· · · · ·	
8	·		0.35			· .	·			
9			0,35							
10			0.35							
11			0.33					-		
12			0.33							
STOP										
1			0.20						<u> </u>	
2			0,28				•			
3			(),30	· · · · · · · · · · · · · · · · · · ·						
4			0.33		_					
5			0,30		_			····		
6			0.30							
7			0,20							
8	-		0.23							
9			0.25							
. 10			0.20 0.23 0.25 0.25 0.25 0.20 0.30 0.33							
11			0.30							
12			0.33					_		
STOP			5, Rt. Art. 0.5119 .	AV6.		AV6.				AVG.
		14.547	0.5119 .	AV6. 1.2567		1120				161.670

31

STACKS/COMPLIANCE TEST FIELD SHEET.XLS


--

3¢

CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

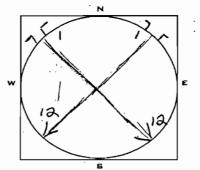
PLANT	D SULFURIC
RUN NUMBER	PATA-7
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	4/21/05
OPERATOR	TERNEST KREISCHMAR
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

. . . .

AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

	NO L	PUL AT 15" (P	W STAR) SCHEM	ATIC OF STACK CROS	56 SECTIO	Ν	Noc	ack at 13	S' (BUD PRIM	1) 85
TRAVERSE POINT	CLOCK (TIME)	(CUBIC FEET)	PITOT DELTA P (INCHES) (DF WATER)	DRIFICE DELTA H (INCHES) (DF WATER)	TEMPER (DEGR	RATURE	VACUUM (INCHES HG) Guage	BOX TEMPERATURE (DEGREES F)	DEGREES F	(DEGREES F)
1	2:40PM	180.209 184.5 189.4 194.971	0.18 0.2	0 0,99	105°	106°	4,0	NA	68°	164° 162° 162°
2	Q:47	184.5	0,18 0,0	5, 1:24	115°	1030	4.8		62°	162"
3	2:54	189,4	0.18 0.3	1.64	1150	104°	5.0		620	1620
STOP 4	3:01 Pm	194,971	0,13 0.	33						
5			0,13 0.					U -		
6			0,18 0,30							
7			0,30							
8			0.33				-			
9			0.33 0.35 0.33					·		
10			0.35					-		
11			0.33							
12		· · · · ·	0.33							
STOP		···						····	·	
		· · · · · · · · · · · · · · · · · · ·	0,20							
2			0:25							
3			0.25							
4			0.33						·	
5			0,30							
6			0,23							
7			0,20							
8			(),25							
9			0.25							
. 10										
11			0,30							
12			0.35							
STOP				•						
		14.762	Are sy Rt.	1.290		108		ST FIELD SHEET.		162.67

32.


. 5090

CF INDUSTRIES COMPLIANCE TEST FIELD SHEET

....

PLANT	D SULFURIC
RUN NUMBER	RATEA - 8
LOCATION	CF INDUSTRIES, PLANT CITY
DATE	4/21/05
OPERATOR	ELNES KOUSCHMAL
SAMPLE UNIT S/N	S-311A
CONTROL UNIT S/N	C-254

.

.

AMBIENT AIR TEMPERATURE		DEGREES F
BAROMETRIC PRESSURE		INCHES HG
ASSUMED MOISTURE	0	%
HEATER BOX SETTING	N/A	DEGREES F
PROBE TIP DIAMETER	0.273	INCHES
PROBE LENGTH	10.5	FEET
PROBE HEATER SETTING	N/A	

PDINT	(TIME)	h at 15" (NW ST DRY GAS METER ICUBIC FEETI	PITOT DELTA (INCHE (OF WATI	P DELTA H 6) (INCHES)	A TEMPER	ATURE	PUMP Vacuum (Inches Hg) Guage	TEMPERATURE (DEGREES F)	IS " (DUD D IMPINGER TEMPERATURE (DEGREES F)	TEMPERATURI
1	3:35PM	196,404	a1510	,20 D,99	1040	105°	3,0	NAT	680	164°
2		200,7	0,18 0	,25 1,24)14°	1020	3,2		63"	162°
3	3:49	205,10		133 1.64	116	102°	3.5		64°	162°
STOP 4	3:49 3:56 PM	211,112	0,18	-						
5			0.18							
6			0.18.							
7	· .		0,28							
8			0.33					,		
· 9			0.33							
10			0,35							
11			0,35							
12			0.33							
TOP										
1		_	0,20							
2			0.25							
3			0,30							
4			0,30							
5			0,30 0,28							
6			0.28							
7			0,20							
8			0.25							
9			0.25	,				_	,	
10			0,30							
11			0.30							
12			0.33							· ·
TOP										
		14.708	0.5068	1.29		107.12		ST FIELD SHEET		162.67

O2 Testing by Orsat

				Tedia Bags Leak	5	Orsat Leak							
	Date		Plant			Chec Yes		Time Collected	Time Analvzed	CO2	02*	Analyst	
	4/20/05	1				$\overline{\mathbf{X}}$			6:35PM	X	31	45	le
1	1	2	DSAD						<u> </u>		33	10	3,27
	$\square I \square$	3		· -				. `			3.4-	48	1-1-1
2	4/20/05	_	DSAD						7:15Pm	Q	3.4	46	5
	1	2	RATPA 2								3,4-	48	53+B
		3									3,>	45	
3	4/21/05	1	DRAP	1		i			10-10		3.5	TG)	12-
		2	RATA 3						1		3,5	40	\$ 3.50
		3	1						-7	• .	3.5	$\overline{4}$	V
4	4/4/05	1	COAP 2						1200		3.4	10 10)
		2	1	-					1		3,5	419	\$ 3.43
	<u> </u>	3									3.4	$\underline{59}$)
5		1	COMP 3						1.340		3.4	519)
		2							1		3:3	-10	>3.37
		3							1		3,4	518)
6		1	RATA4						1500		3.3	49	
		2									3.4	SF)	\$3.37
		3							1		3,4	SP.	L .
.7		ĩ	74TAS						1615		3.4	Sil.	\$ 3.47
		2		ļ						. <u>.</u>	3.5	SPEL	> 3.7 (
0		3									3.5	<u> 4</u>	
F	ļ <u>[</u>	1	LATA 6						1675		3,4	TIP	3.37
		2								 	3,3	YIZ	ا د.د کا
	l 	3		ļ							3.4	52	
ร			RATA 7						1645		3.4	TID.	7 3.43
		2	<u> </u>								3.5	212	
		3									3.4	Y J J	٧
		1				i							
		2											
		3											
		1				 							
	ļ	2	-				-		,				
	·····	3											
		1									<u>-</u>		
		2											
		3											

34

*O2 is actual O2 reading minus actual CO2 reading

٠,

Southern Environmental Sciences, Inc.

1204 North Wheeler Street 🗆 Plant City, Florida 33563 🗆 (813) 752-5014, Fax: (813) 752-2475

February 18, 2005

Mr. Frank Dlugos CF INDUSTRIES, INC. P.O. Drawer L Plant City, Florida 33564

Re: Meter Box Calibration & Dry Gas Meter Calibration

Dear Frank:

The attached calibrations were performed on the Lear Seigler meter box (serial # C254) and the Rockwell dry gas meter (serial # JA631105). All calibrations were performed using a wet test meter that is checked annually using a liquid displacement method as described in "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III, Stationary Source Specific Methods". A copy of the calibration check is enclosed.

Please let me know if we can be of any further assistance.

Very truly yours,

SOUTHERN ENVIRONMENTAL

SCIENGES, INC.

Mark S. Gierke Source Testing Manager

MSG/mg

Enclosures

DRY GAS METER CALIBRATION

Meter Box Number:	Lear Seigler	Barometric Pressure:	30.06
Serial No:	C254	Wet Test Meter No.:	P-576
Date:	02/16/2005	Calibrated By:	DW

Orifice	Gas	Volume	Temp	erature 👾		нP	
Manometer Setting	Wet Test. Meter		1. H. P. S. P. P. Bunner 91.9. Ser an - 38.	Dry Gas. Meter i	na dinie i	Yest.	Delfa Fl@i
(Delta H) in H2O	(Vw) ft^3	(Vd). 5 ft ^3	(Tw)	n (ild) ⇔Deg Fa	(THETA) Min		in.#20
0.50	5.000	5.361	73.0	105.50	12.1	0.988	1.551
1.00	5.000	5.318	72.0	105.0	8.57	0.996	1.552
1.50	10.000	10.644	72.0	106.0	14.23	0.996	1.602
2.00	10.000	10.575	71.0	105.5	12.33	1.002	1.599
3.00	10.000	10.568	72.0	108.0	10.13	1.003	1.618
4.00	10.000	10.501	71.5	106.5	8.83	1.005	1.640
ţ						0.998	1.594

Delta H@ Acceptable Range	1.794	to	1.394
Yi Acceptable Range	1.018	to	0.978

$$Y_{i} = \frac{V_{w} Pb (Td + 460)}{Vd (Pb+DeltaH/13.6) (Tw + 460)}$$

2 Delta H@ = ____0317 (DeltaH) ____ [(Tw + 460) (Theta)/Vw] Pb (Td + 460)

Where:

 $Vw = Gas Volume passing through the wet test meter, ft.^3.$

Vd = Gas Volume passing through the dry gas meter, ft.^3.

Tw = Temperature of the gas in the wet test meter, deg F.

Td = Average temperature of the gas in the dry gas meter, deg F.

Delta H = Pressure differential across orifice. in. H20.

Yi = Ratio of accuracy of wet test meter to dry gas meter for each run.

Y = Average ratio of accuracy of wet test meter to dry gas meter

Pb = Barometric pressure, in. Hg

Theta = Time of calibration run, min.

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014 Fax (813) 752-2475 ţ.

SOUTHERN ENVIRONMENTAL SCIENCES, INC. WET TEST METER CALIBRATION CHECK

Wet Test Meter #:	P-576	Barometric
Manufacturer:	American Meter	Calibrat
Date:	01/05/2005	С

Barometric Pressure: 30.08 Calibration Factor: 1.00 Checked by: MG

Gas	Volume	Tem	perature	
Liquid Displaced	Wet Test	Amplent	WeitTess Minicia	
(Ld) 一 代 43 一 十	(VW) thes	((Ta)) Degli <u>E</u> 2	Deg Dit	
1.198	1.202	71.0	72.0	0.999
1.198	1.204	70.0	72.0	0.999
1.195	1.204	70.0	74.0	1.000
1.197	1.204	71.0	74.0	1.000
1.199	1.202	71.0	73.0	1.001
1.199	1.204	72.0	74.0	1.000
				1.000

.....

Yi = <u>Vw Pb (Tw + 460)</u> Vd (Pb+DeltaH/13.6) (Ta + 460)

Where: Vw = Gas Volume passing through the wet test meter, ft.^3.

 $Vd = Gas Volume passing through the dry gas meter, ft.^3.$

Tw = Temperature of the gas in the wet test meter, deg F.

Ta = Ambient temperature, deg F.

- Yi = Accuracy of wet test meter to displaced liquid.
- Y = Average accuracy of wet test meter.
- Pb = Barometric pressure, in. Hg

٦,

STANDARD DRY GAS METER CALIBRATION

GAS METER MANUF.	ROCKWELL	PERFORMED FOR	C. F. Indus	tries - Plan	t City
MODEL #	175-S	DATE	02/18/2005	I	
SERIAL #	JA 631105	BAROMETRIC PRESSURE	30.22		
WET TEST METER #	P-576	LEAK CHECK	0.00	CFM @	15" Hg

	Gas	√olume	Temperature						
1	Wet Test	Dry Gas	Wet Test	Dry Gas	Dry			Dry Gas	Avg. Gas
Approximate	Meter	Meter	Meter	Meter	Gas Meter	Time		Meter	Meter
Flowrate	(∨w)	(∨d)	(Tw)	(bT)	Delta P	(THETA)	Flowrate	Coeff.	Coeff.
(CFM)	ft.^3	ft.^3	Deg F	Deg F	("H2O)	Min.	(CFM)	(Yds)	(Yds)
0.40	5.000	4.982	74.5	78.0	0.10	10.85	0.460	1.010	
0.40	5.000	4.975	74.5	78.0	0.10	10.93	0.456	1.011	1.009
0.40	5.000	4.996	74.5	78.0	0.10	10.97	0.455	1.007	
0.60	5.000	5.033	74.0	77.0	0.35	7.23	0.691	0.998	
0.60	5.000	5.025	74.0	76.0	0.35	8.10	0.616	0.998	0.998
0.60	6.000	6.033	74.0	76.0	0.35	8.68	0.690	0.997	
0.80	5.000	5.047	73.0	75.0	0.73	5.58	0.897	0.993	
0.80	6.000	6.074	73.5	75.5	0.73	6.77	0.886	0.990	0.991
0.80	5.000	5.056	72.5	74.5	0.73	5.63	0.889	0.991	_
1.00	5.000	5.055	72.0	74.0	1.31	4.62	1.085	0.990	
1.00	5.000	5.069	72.0	74.0	1.31	4.58	1.094	0.987	0.989
1.00	5.000	5.045	71.5	73.0	1.31	4.67	1.074	0.991	
1.20	5.000	5.075	70.0	72.0	1.48	4.05	1.242	0.985	
1.20	5.000	5.077	69.5	71.0	1.48	4.00	1.259	0.984	0.983
1.20	5.000	5.085	68.0	<u>6</u> 8.5	1.48	3.82	1.322	0.981	

------ ------

 $Q = \frac{Pb \times Vw \times 528}{(Tw + 460) \times Theta \times 29.92}$

 Yds =
 Vw
 x
 (Td +460)
 x
 Pb

 Vd
 (Tw + 460)
 [Pb + (Delta P/13.6)]

Where:

Vw = Gas Volume passing through the wet test meter, ft.³.Vd = Gas Volume passing through the dry gas meter, ft.³.

Tw = Temperature of the gas in the wet test meter, deg F.

Td = Average temperature of the gas in the dry gas meter, deg F.

Delta P = Dry gas meter pressure differential, in. H20.

Yds = Dry gas meter Coefficient

Pb = Barometric pressure, in. Hg

Theta = Time of calibration run, min.

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014 Fax (813) 752-2475 þ

STANDARD METER CALIBRATION CURVE

GAS METER MANUF.	ROCKWELL	PERFORMED FOR	C. F. Industries - Plant City
MODEL #	175-S	DATE	02/18/2005
SERIAL #	JA 631105		· · · · · · · · · · · · · · · · · · ·

	DRY GAS	
	METER	
FLOWRATE	COEFF.	•
(CFM)	(Yds)	
0.457	1.009	
0.666	0.998	
0.891	0.991	
1.085	0.989	
1.274	0.983	

Regression Outpu	ıt:
Constant	1.0344084
Std Err of Y Est	0.0022086
R Squared	0.9494629
No. of Observations	5
Degrees of Freedom	3

X Coefficient(s)	-	-0.025997
Std Err of Coef.		0.0034628

FLOW	CORRECTION
(CFM)	FACTOR
0.40	1.024
0.45	1.023
0.50	1.021
0.55	1.020
0.60	1.019
0.65	1.018
0.70	1.016
0.75	1.015
0.80	1.014
0.85	1.012
0.90	1.011
0.95	1.010
1.00	1.008
1.05	1.007
1.10	_1.006
1.15	1.005
1.20	1.003

39

ł.

Date: August 6, 2004 Pitot Number: 8-6-04-4 Pitot tube assembly level? syes x no Pitot tube opening damage? yes no х If yes explain below. $\alpha 1 = 1 (<10^{\circ})_{\pm}$ $\alpha 2 = 0 \quad (<10^{\circ})$ $\beta 1 = 0 \quad (<5^{\circ})$. $\beta 2 \quad 1 \quad (<5^{\circ})$ A = 0.997 cm (in) $\theta = 0$ ° γ = 0.035 cm (in) Where Z is <0.32 cm (<1/8 in) Z = A SINE $\gamma =$., e: Where W is < 0.08 cm (< 1/32 in)W = A SINE $\theta =$ 0.000 cm (in) Pa = 0.499 cm, in Pb = 0.499 cm, in P = Pa + Pb / = 0.499 cm, in P/Dt = 1.329 Where $P/Dp \ge 1.05$ and ≤ 1.50 Dt = 0.375 cm, in Comments: Client: CF Industries

TYPE S PITOT TUBE INSPECTION DATA

÷.

Type of Probe and Effective 31-674X-B1

0.84 Ср =

ANNUAL LSI STACKBOX (C254) THERMOCOUPLE CALIBRATIONS

Date: 10/15/04

FOR TEMPERATURES 0, TO 110 DEGREES C FOR TEMPERATURES 110 TO 200 DEGREES C NIST Traceable Thermometer # J96-258

NIST Traceable Thermometer # 90B-2024

Time: 940-1550

Initial

Display	ltem	Ice Water Point			Ambiont Water F	Point		Hot Water Point			Hot Oil Point		
				Reading	Thermocouple NIST Reading			Thermocouple NIST Reading			Thermocouple	NIST R	
		or RTD	Actual	Con-	or RTD	Actual	Con-	or RTD	Actual	Con-	or RTD	Actual	Con-
		Reading		version	Reading		version	Reading		version	Reading		version
		(Degrees F)		to	(Degrees F)		to	(Degrees F)		to	(Degrees F)		to
			De	grees		Deg	reeŝ		Deg	rees		Deg	rees
			С	F		С	F			F	1	С	F
[1] Stack	Probe 4.0ft.	33.6	2.2	36.0	73	23.4	74.1	153	65.3	149.5	N/A	N/A	N/A
	#2405												
	Probe 6.0ft.	34.1	2.2	36.0	74	23.4	74.1	152	65.3	149.5	N/A	N/A	N/A
	#1009										· · · · · · · · · · · · · · · · · · ·	1	
	Probe 10.5ft.	35.3	2.2	36.0	74	23.4	74.1	153	65.3	149.5	N/A	N/A	N/A
	#2329						_						
[2] Probe	Probe 4.0ft.	38	2.2	. 36.0	74	23.4	74.1	149	65.3	149.5	227	109.2	228.6
(Probe Liner	#2405					÷							
Heater)	Probe 6.0ft.	38	2.2	36.0	73	23.4	74.1	148	65.3	149.5	226	109.2	228.6
	#1009		-										
	Probe 10.5ft.	35	2.2	36.0	73	23.4	74.1	148	65.3	149.5	226	109.2	228.6
	#2329												
[3] Hot Box	Thermocouple	38	2.2	36.0	73	23.4			65. 3	149.5	. 225	109.2	228.6
	External Sensor	OUT OF RANGE	_		75	23.4	74.1	150	65.3	149.5	230	109.2	228.6
[4] Umbilical		35	2.2	36.0	. 72	23.4	74.1	148	65.3	149.5	N/A	N/A	N/A
(Coldbox Exit)													
[5] DGM Inlet		34	2.2	36.0	71	23.4	74.1	147	65.3	149.5	N/A	N/A	N/A
	1												
[6] DGM Exit		34	2.2	36.0	71	23.4	74.1	147	65.3	149.5	N/A	N/A	N/A
i	-												

. -

LSI-TCUPL-04.XLS

POSTTEST DRY GAS METER CALIBRATION DATA FORM (English units)

					ate $\frac{4}{25} \frac{5}{65}$ Meter box number C2: 30.00 in. Ilg Dry gas meter number 46						
Orifi manomo settin (All) in. II,	eter ng,	$\frac{Gas vo}{Dry test}$ meter $(V_w),$ ft ³	Dry gas meter (V _d), ft ³	Dry Lest meter (t _w), °F	Inlet	ure rygasm Outlet (t_), o °F	eter Average (t _d), % or	Time (Θ), min	Vacuum setting, in. Hg	Y _i	$\frac{V_{i}}{V_{w}P_{b}(t_{d} + 460)}$ $\frac{V_{d}P_{b} + \Delta H}{13.6} t_{w} + 460$
<u> </u>	0	695.032 685.043 705.125 695.082 715.127 715.127 715.127	231.872 221.602 242.240 231.372 852.780 242.210	74° 72° 73° 74° 76° 73°	48° 77° 1033 40° 106° 53°	82" 73" 83" 91" 87"	82.5° 90.75° 94.25°	15:0 15:0 15:0		0.9775 0.9920 0.9856 Y =0,98	$\frac{(10,035)(30.00)(542.5)}{(10,270)(30.00)(542.5)}$ $\frac{(10,043)(30.00)(533.0)}{(10,043)(30.00)(533.5)}$ $\frac{(10,418)(30.056)(533.5)}{(10,418)(30.056)(533.5)}$ $\frac{(10,002)(30.00)(554.25)}{(10.450)(20.056)(534.5)}$

If there is only one thermometer on the dry gas meter, record the temperature under t_d . Within $\pm 0.05\gamma$ $V_d = Gas$ volume passing through the wet test meter, ft³. 3:15PM, 4/25/05

- V_w = Gas volume passing through the wet test meter, ft³. V_d = Gas volume passing through the dry gas meter, ft³.
- t = Temperature of the gas in the wet test meter, °F.
- t_{d.} = Temperature of the inlet gas of the dry gas meter, °F.
- $t_d = Temperature of the outlet gas of the dry gas meter, °F.$

 t_d = Average temperature of the gas in the dry gas meter, obtained by the average of t_d and t_d , °F. ΔH = Pressure differential across orifice, in H_00 .

- Y_i = Ratio of accuracy of wet test meter to dry gas meter for each run.
- Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y ±0.05Y

 P_{h} = Barometric pressure, in. Hg.

 θ = Time of calibration run, min.

Dry test meter number Rockwell-JA631105

Quality Assurance Handbook M5-2.4A

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

4/12/05

 \mathbf{N}

PROBE NOZZLE CALIBRATION DATA

CF Industries. Inc.

Plant City Phosphate Complex

Nozzle Identifi	cation Nu	umber: 4452	
Calibrated by:		Date:	
1		0.274	
• •		0,273	
		0,273"	
		0,274"	
		0.272"	
	\mathbf{X}	0,274"	·

Instructions:

Measure to nearest 0.001"

Tolerance:

7

0.001" for mean of at least three readings. Maximum deviation between readings \leq 0.004".

Nozzle diameter, D_n : 0.273 In. Nozzle area A_n : 0.000 <u>4</u> <u>0</u> <u>7</u> ft² $A_n = \frac{7T}{144} \left(\frac{D_n}{2}\right)^2$

CF INDUSTRIES, INC. PLANT CITY PHOSPHATE COMPLEX

ζ,

÷

SOURCE SAMPLING NOMENCLATURE SHEET

pb	=	Barometric pressure, in Hg
Ps	=	Stack pressure, in Hg
As	=	Stack area, square feet
As '	=	Effective area of positive stack gas flow, square feet
Ts	=	Stack temperature, °R
Tm	`=	Meter temperature, °R
√ ∆ Pave	=	Average square root of velocity head, in. H_2O
Cp	=	S-type pitot tube correction factor
Kp	=	85.48 ft/sec (lb mole - °R) 1/2
Ms	æ	Molecular weight of gas at stack conditions
Md	Ξ	Molecular weight of gas at dry conditions
Bwo	_ =	Proportion by volume of water vapor in gas stream
Vwstd	=	Volume of water vapor in gas sample
v	=	Total volume of liquid collected in impinger and silica gel
P H ₂ O	=	Density of water, l gm/ml
M H ₂ O	=	Molecular weight of water, 18 lb/lb mole
R	÷	Ideal gas constant, 28.83 inches Hg-cu ft/lb-mole °R
T std	=	Absolute temperature at standard conditions, 528 'R
P std	=	Absolute pressure at standard conditions, 29.92 in. Hg
Vm std	=	Volume of gas sample through dry gas meter
		(standard conditions) ft ³
Vm	=	Volume of gas sample through the dry gas meter
		(meter condition)
Δн	=	Orifice pressure of sampling meter
S.T.P.	=	Standard condition, dry, 528 °R, 29.92 inches Hg
An	=	Sampling nozzle area, square feet
Vs	=	Velocity of stack gas, feet per sec.
Qs	=	Volumetric flow rate, dry basis, standard condition, CFM
C mist	=	Concentration of mist in stack gas, grs/SCF
C SO₂	=	Concentration of SO $_2$ in stack gas, grs/SCF
C NH ₃	=	Concentration of NH $_3$ in stack gas, grs/SCF
I	=	Percent isokinetic volume sampled
Ø	=	Sampling time (minutes)

44

= 0.04707 cuft/ml (V_1) **Vwstd** $\left(\begin{array}{c} \texttt{Tstd} \\ \hline \texttt{Tm} \end{array}\right), \left(\begin{array}{c} \texttt{Pbar} + \frac{\Delta \texttt{H}}{\texttt{13.6}} \\ \hline \\ \hline \texttt{Pstd} \end{array}\right)$ Vm = Vmstd Wwstd Bwo = Vwstd + Vmstd Мз = Md (1 - Bwo) + 18 (Bwo) $xp Cp \quad \sqrt{P(avg)} \quad \sqrt{\frac{460 + Ts}{Ms Ps}}$ = Vs(avg) $= 60 (1 - Bwo) \forall s As \left(\frac{Tstd}{Ts} \right) \left(\frac{Ps}{Pstd} \right)$ Qs PERCENT ISOKINETIC Tstd (1.667) $\left[(0.00267) \ \nabla_1 + \left(\begin{array}{c} Tstd \\ \hline Tm \end{array} \right) \ Pbar + \frac{13.6}{13.6} \right] \right]$ Ts I 0 Vs Ps An Mf or Mn 0.0154 grs/mg Сз = Vmstd lbs/hr (Csx Qsx 60) / 7000 = lbs/day lbs/hr x 24 hrs/day =

J. H. Falls 3/15/93

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

CALIBRATION DRIFT EVALUATION

Sulfuric Acid Plant D

Continuous Emissions Monitoring System

April 18, 2005 through April 24, 2005

FDEP Facility ID No. 0570005 E.U. ID NO. 007

CALIBRATION DRIFT EVALUATION

The CF Industries, Inc., Instrument Shop tests the calibration of the SO2 and O2 Continuous Emissions Monitoring Systems (CEMS) against certified reference gases daily. Tables 1 and 2 show calibration drift test results for Sulfuric Acid Plant D for the period, April 18 through April 24, 2005. Both the SO2 and O2 calibration drift results are within the rule specification ranges.

Attachment 1 provides the CEMS Calibration Test Log for the month of April 2005. Attachment 2 provided zero point drift data for the SO2 and O2 CEMS.

> T.A. Edwards 5/13/2005

Table 1 Calibration Drift Determination - "D" Sulfuric Acid Plant April 18 - April 24, 2005 - SO2 CEMS

	Reference Value	CEMS Response	Calibration Drift	Calibration Drift, %
Date	ppm (a)	ppm	ppm	of span value (b)
18-Apr-05	904	897.0	7	0.70
19-Apr-05	904	892.0	12	1.20
20-Apr-05	904	889.0	15	1.50
21-Apr-05	904	.888.0	16	1.60
22-Apr-05	904	884.0	20	2.00
23-Apr-05	904	885.0	19	1.90
24-Apr-05	904	885.0	19	1.90

(a) The zero point is checked daily against the certified SO2 reference gas (0 ppm SO2).

(b) The maximum calibration drift performance specification for the SO2 CEMS is 2.5% of the span value (40 CFR 60, Appendix B, P.S.2,13.1). The span value is 1000 ppm as specified at 40 CFR 60.84(a).

48

Table 2Calibration Drift Determination - "D" Sulfuric Acid PlantApril 18 - April 24, 2005 - O2 CEMS

ج,

1

Date 18-Apr-05 19-Apr-05 20-Apr-05 21-Apr-05	15.0 15.0 15.0	CEMS Response % O2 15.10 15.10 15.10 15.10	Calibration Drift % O2 (b) 0.10 0.10 0.10 0.10 0.10
21-Apr-03 22-Apr-05 23-Apr-05 24-Apr-05	15.0	15.08 15.00 15.05	0.10 0.08 0.00 0.05

- (a) The zero point is checked daily against the certified O2 reference gas (0% O2). The CEMS reading is also checked daily against clean instrument air at 20.9% O2.
- (b) The maximum calibration drift performance specification for the O2 CEMS is 0.5% O2 (40CFR60, Appendix B, P.S.3,13.1).

÷.\

2.

ATTACHMENT 1 – CEMS CALIBRATION TEST

LOG – April 2005

50

3

١

. •

INSTRUMENT MAINTENANCE PROCEDURE C & D SULFURIC ACID

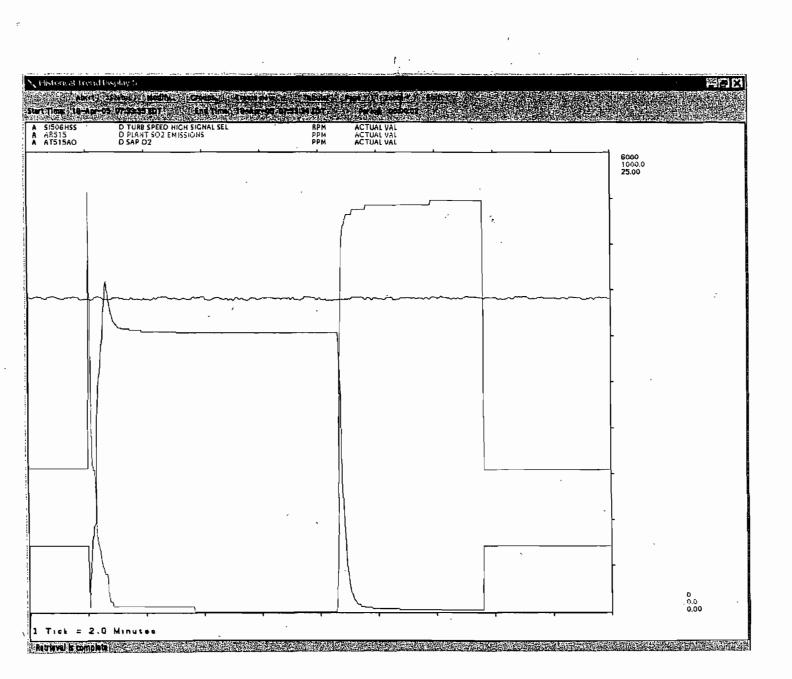
 $\mathbb{A}_{i}^{(2)}$

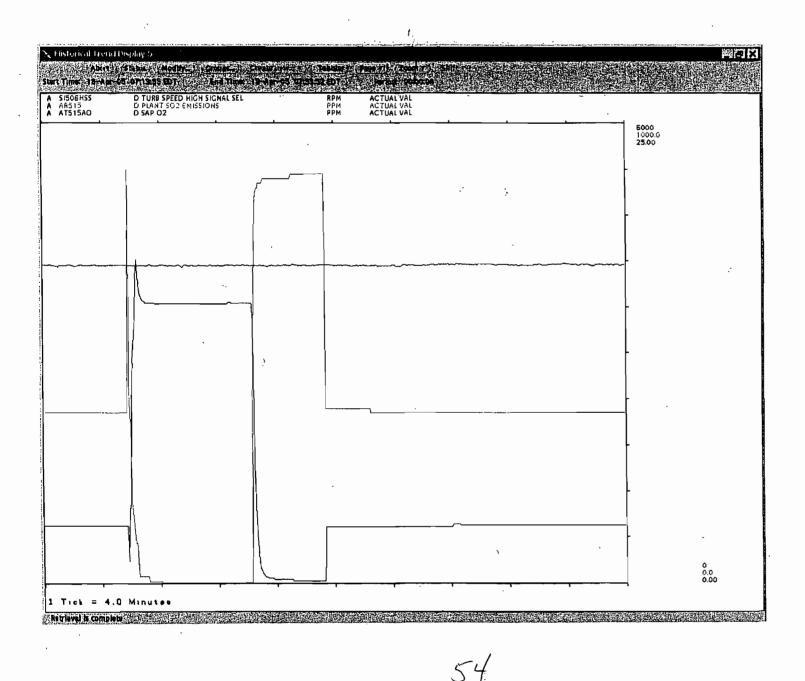
......

ð,

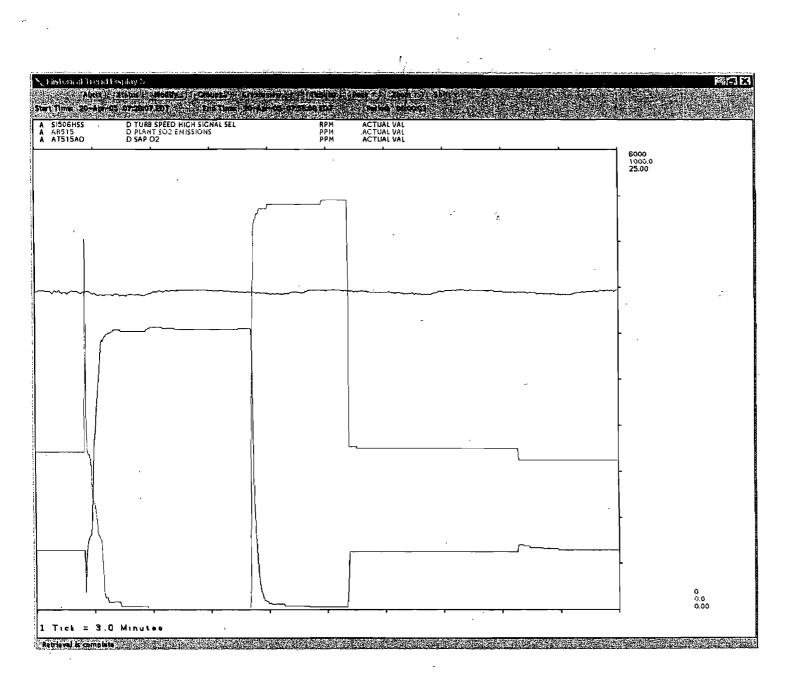
6 m

PAGE 4

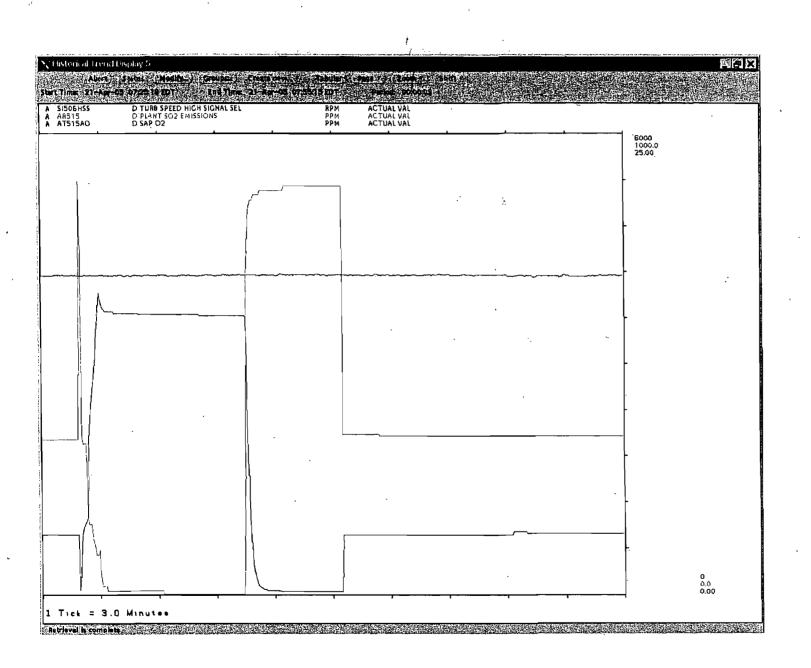

39560-0

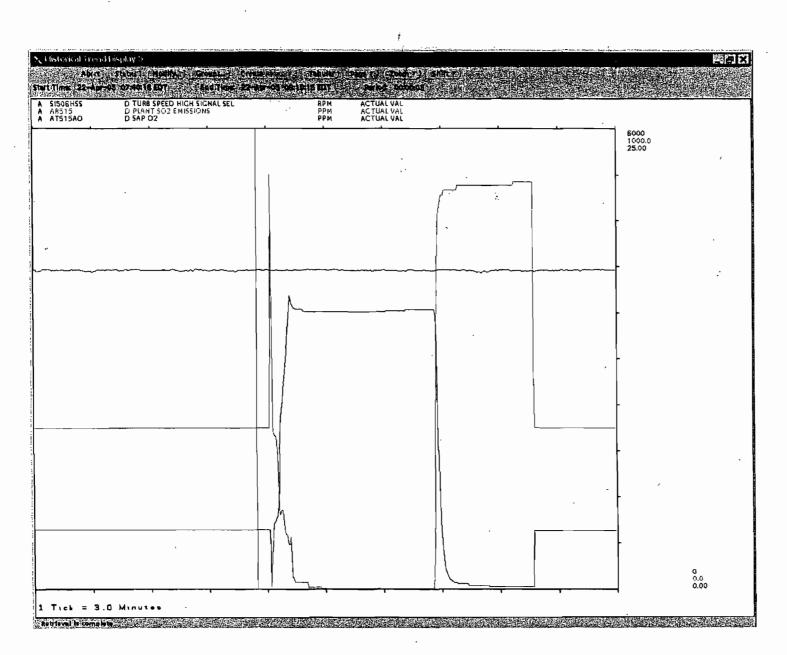

PLANT		<u> </u>	MONTH ARA	111 502 L	5		
DAY	TECH	Oz	ZERO REF.	SPAN	%ERROR	DATE OF NEW	LOG SPAN TIME
	<u> </u>		COUNTS			BOTTLE	
1	lek.	15.2	-3129	892	-1.32		07:17-07:4
2 (EB	15.3	-3138	883	+2.32		07110-07:30
З,	VITO	15.4	-3136	\$96	-088		7: 34ar - 750 A
	<u>Bvo</u>	15.3	-3140	898	66		07:12 - 07:40 AL
	<u>Bvo</u>	15.3	-3150	896	- ,88		07:10 - 07:40 A
6	BVO	15.3	-3155	895	-1.00		07:25-07:55 AI
7	7.Q.	15.4	-3161	889	-1.65		07:13 -01:40 AL
8	7. Q	15.4	-3172	882	-2.43		07:18-07:45 AM
9	T.Q	15.3	-3170	882	-2,43	· .	07:11-07:58 Au
10	BVO	15.3	-3168	887	-2.0	·····	07:05-07:35 A
11	BUD	15.2	-3178	889	1.66		07:15-07:42 AM
12	BVO	15.2	-3180	884	-2.21		07:20-01:47 AI
13	4.Q	15.1-	-3190	881	-2.54		07:05-07:54 M
14	Till	15.3	-3194	883	2.32		07:15-07:44 AU
15	Y. 0	15.2	-3196	88-9	-1.66		07:16 -07:37 AA
16	BUD	15.2	- 3192	894	-/.//		01:03-07:31 A
17	BVO	15.1	-3205	898	66		07:07 -07:34 A
18	BVO	15.1	-3210	891	77	,	07:21-07:50A
19	Y.C	15.1	-3223	892	-1.32		07:07-07:33 A
20	7.0	1511	-3236	859	-1.66		07.17 -07, 42 AM
21	1.a	15.1	-3240	855	-1.76		09:32-09:58 AM
22	map	15.08	-324O	884	-2.26		07:37-0810 ar
23	BUD	15.0	-3244	885	-2-10		07:03-07:312
24	BUO	15.05		885	-2.10		07:07 - 07:34 an
25	Y.a	15.3	-3252	856	-1,99		07:11 - 07:39 AM
26	7. C	15.0	-3268	552	-2.43		10:30 - 10:55 Au
27	Y.Q.	14.9	-3275	5-5-6-	-1994		Olig- Diff AN
28	BUD	15.1	-3265	891	-1.44		07:24-07:51 AN
29	BVO	15.0	-3278	881	-2-54		07:01-07:36 an
30	BVO	15.0	-3280	886	-1.99		01:03-07:31 an
31	$\mathbf{\times}$				<u> </u>		i.
SO2 B	OTTLE #1	<u>י</u>	a a t	BOTTLE #2			
SER# <u>(</u> 02 BO	<u>C1527</u> TTLE #1	<u>jų</u> ppr		ERIAL # BOTTLE #2		PPM	i
SER#	CIBITC	PP1		ERIAL #		PPM	

51

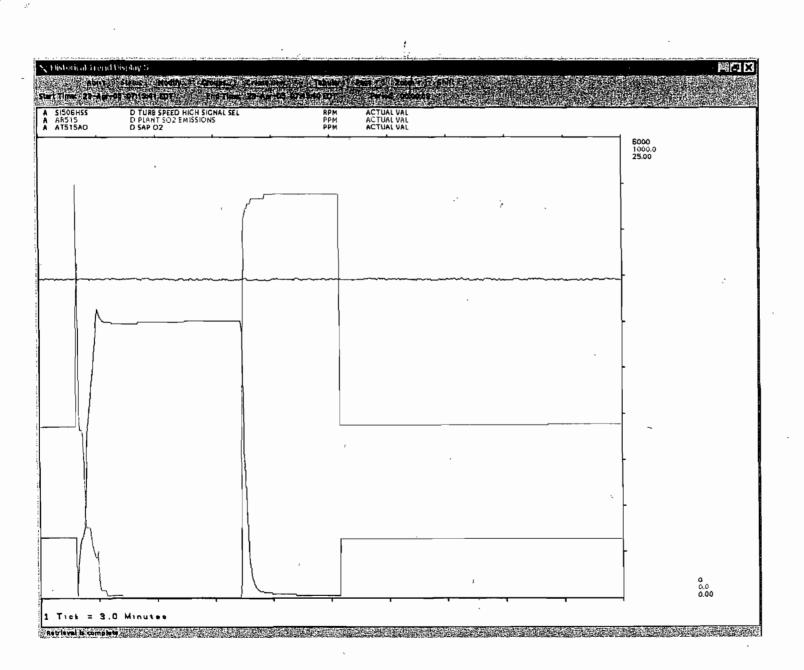

ATTACHMENT 2 – CEMS SO2 and O2

Zero Point Graphs from DCS-WPF – April 18-24, 2005


فلاز

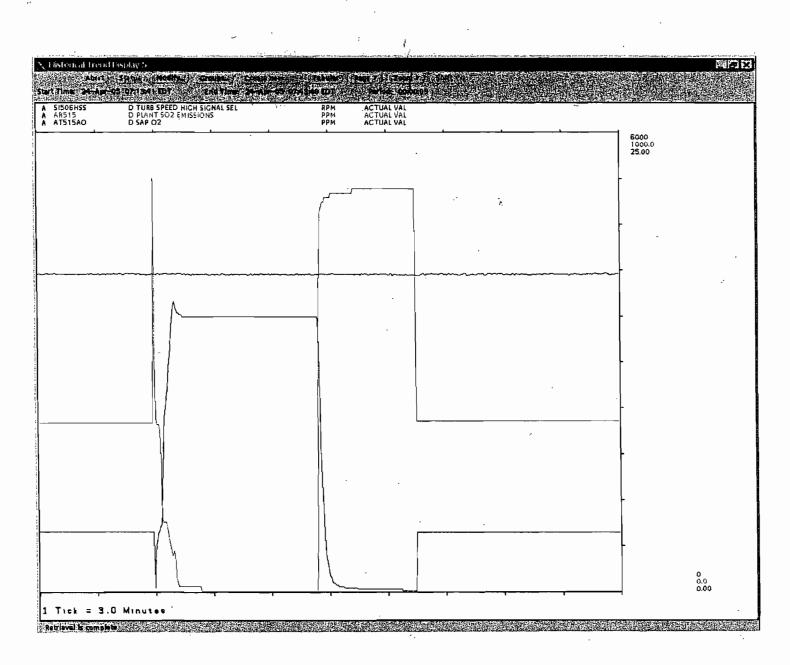


ذ ز

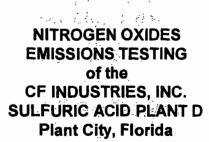


.2

===?



a desire survey


بريا المحجج والمعدان

.-____

at an international and

خت

... رد

4

٢.

April 22, 2005

AIRS No. 0570005 E.U. ID No. 008 SES Reference No. 05S105

Conducted by:

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014, Fax (813) 752-2475

Project Participants

Mark S. Gierke Dale A. Wingler Terry L. Wilson

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1.0 INTRODUCTION

·

Southern Environmental Sciences, Inc. conducted nitrogen oxides emissions testing of the CF Industries, Inc. Sulfuric Acid Plant D on April 22, 2005. This plant is located on State Road 39 in Plant City, Florida. Testing was performed to determine if the plant was operating in compliance with requirements of the Florida Department of Environmental Protection (FDEP) and the Environmental Protection Commission of Hillsborough County (EPCHC).

11

2.0 SUMMARY OF RESULTS

The plant was found to be in compliance with all applicable emission limiting standards. Results of the emissions test are summarized in Table 1. Allowable nitrogen oxides emissions from this source are limited to a maximum of 0.12 pounds per ton of 100% sulfuric acid produced. The average measured nitrogen oxides emission rate was 0.10 pounds per ton of 100% sulfuric acid produced.

3.0 PROCESS DESCRIPTION

Sulfuric Acid Plant D is a 2750 TPD (approximately) sulfur-burning, double-conversion, double-absorption plant of Leonard-Monsanto design. Sulfur is burned with dried atmospheric oxygen to produce sulfur dioxide (S0₂). The sulfur dioxide is catalytically oxidized to sulfur trioxide (S0₃) over a vanadium pentoxide catalyst bed. The sulfur trioxide so produced is absorbed in 98% sulfuric acid. The acid flows from each absorbing tower are combined to provide product acid. By the use of an intermediate absorbing tower, the

-1-

TABLE 1. EMISSIONS TEST SUMMARY

Company: CF INDUSTRIES, INC. Source: SULFURIC ACID PLANT D

4

۰.

17

, د

وارد و و و

۰.

	Run 1	Run 2	Run 3		
Date of Run	4/22/05	4/22/05	4/22/05		
Process Rate (TPH)	107.6	107.6	107.6		
Start Time (24-hr. clock)	0945	1107	1230		
End Time (24-hr. clock)	1045	1207	1330		
Barometric Pressure at Barom. (in. Hg.)	29.97	29.97	29.97		
Elev. Diff. Manom. to Barom. (ft.)	0	0	0		
Moisture in Stack Gas (% Vol.)	0.0	0.0	0.0		
Molecular Weight Dry Stack Gas	28.00	28.00	28.00		
Molecular Weight Wet Stack Gas	28.00	28.00	28,00		
Stack Gas Static Press. (in. H2O gauge)	-0.24	-0.24	-0.24		
Stack Gas Static Press. (in. Hg. abs.)	29.95	29.95	29.95		
Average Square Root Velocity Head	0.512	0.539	0.545		
Average Stack Gas Temperature (Deg F)	158.9	157.5	154.3		
Pitot Tube Coefficient	0.84	0.84	0.84		
Stack Gas Vel. Stack Cond. (ft./sec.)	31.56	33.19	33.51		
Effective Stack Area (sq. ft.)	67.20	67.20	67.20		
Stack Gas Flow Rate Std. Cond. (DSCFM)	108,672	114,544	116,259		
Stack Gas Flow Rate Stack Cond. (ACFM)	127,246	133,824	135,122		
NOx Emissions (PPM)	13.3	14.0	14.0	13.8	
NOx Emissions (lb./hr.)	10.32	11.49	11.66	11.15	
NOx Emissions (lbs/ton of 100% acid)	0.096	0.107	0.108	0.10	
Allowable NOx Emissions (Ibs./ton of 100% acid)					

Note: Standard conditions 68° F, 29.92 in. Hg

-2-

partial pressure of sulfur dioxide in the final converter is increased to drive the conversion reaction to a greater degree of completion, thus providing greater efficiency and cleaner atmospheric emissions.

The permitted process rate for this source is 2750 TPD based upon 100 percent H_2SO_4 . Process rates during the test period were determined by plant personnel. Process operational data are included in the appendix.

4.0 SAMPLING PROCEDURES

4.1 Methods

\$

°, °, °,

All sampling was performed using methods currently acceptable to the FDEP. Nitrogen oxides sampling was conducted in accordance with EPA Method 7E - Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure), 40 CFR 60, Appendix A-4. Stack gas flow rates were determined in accordance with EPA Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube), 40 CFR 60 Appendix A-1. The effluent gas stream was considered to be dry and the water vapor volume and moisture content were assumed to be zero percent as described in section 6.4 of EPA Method 8.

4.2 Sampling Locations

Locations of the sample ports and stack dimensions are shown in Figure 1. Nitrogen oxides sampling was performed from the same sampling ports as the those used for

-3-

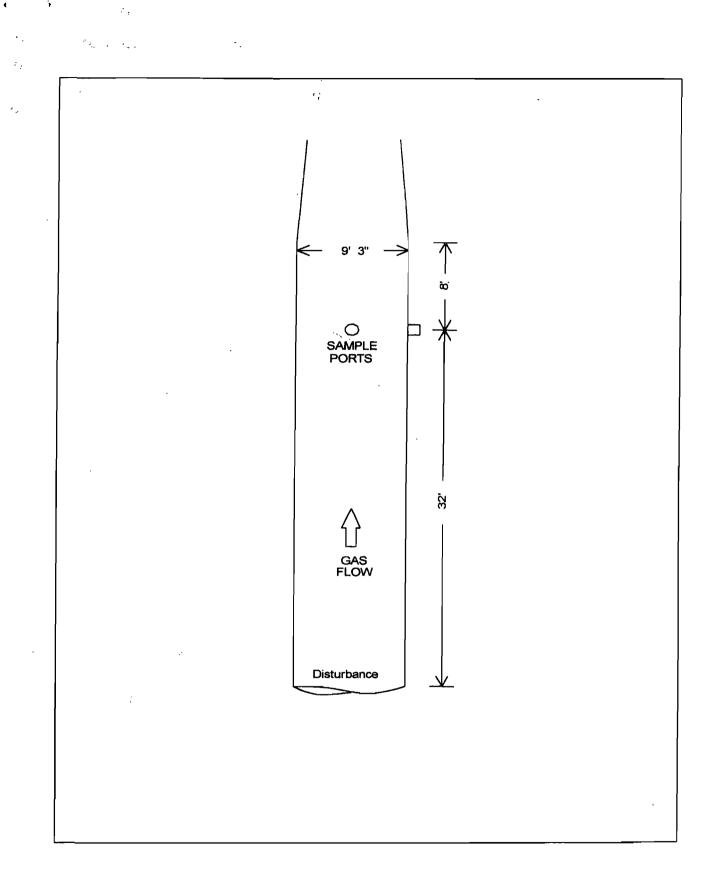


Figure 1. Stack Dimensions and Sample Port Locations, CF Industries, Inc., Sulfuric Acid Plant D, Plant City, Florida.

determination of stack gas flow rate. Twenty four sample points were chosen in accordance with EPA Method 1 - Sample and Velocity Traverses for Stationary Sources, 40 CFR 60, Appendix A.

4.3 Sampling Train

The sampling train consisted of a stainless steel probe, calibration valve, heated teflon sample line, condenser and a Thermo Environmental Instruments, Inc. Model 10S Chemiluminiscent NO/NO_x Analyzer as shown in Figure 2.

4.4 Sample Collection

The analyzer was calibrated immediately prior to the beginning of the test by introducing known gases into the instrument through the sampling system. Zero and a mid-range calibration gas were introduced after each run to check for instrument drift.

5.0 ANALYTICAL PROCEDURE

5.1 Analysis

1

The average nitrogen oxides concentration was determined for each one-hour test run. Based on the stack flow rate determinations, the concentrations were then converted to pound per hour and pound per ton emissions rates.

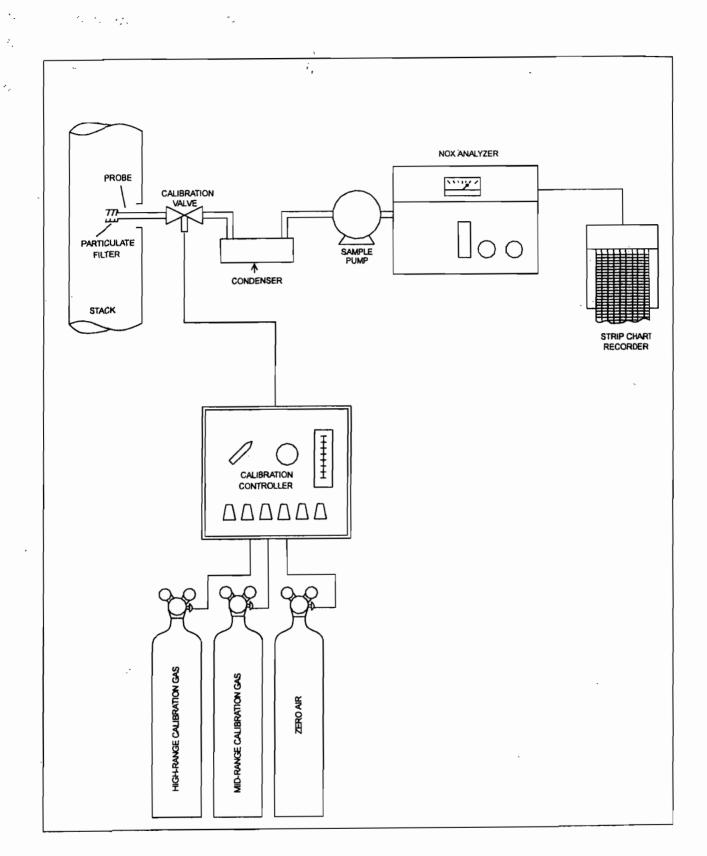


Figure 3. EPA Method 7E Sampling Train.

APPENDIX

`` ',

I

e. – Andre Konsta

.

Project Participants

Certification

Process Operational Data

Field Data Sheets

Analyzer Strip Charts

Calibration Data

Calculations and Symbols

PROJECT PARTICIPANTS AND CERTIFICATION CF INDUSTRIES, INC. SULFURIC ACID PLANT D Plant City, Florida

April 22, 2005

Project Participants:

Mark S. Gierke Dale A. Wingler Terry L. Wilson

· · · · .

7.

Frank Dlugos (CF Industries)

Kenneth M. Roberts

Kenneth M. Roberts

Conducted the field testing.

Provided process rates.

Computed test results.

Prepared the final test report.

Certification:

I certify that to my knowledge all data submitted in this report is true and correct.

Kenneth M. Roberts, QEP

CF INDUSTRIES, INC. SULFURIC ACID PLANT D PROCESS OPERATIONAL DATA

۰.

.

٠,

Test Date: 4/22/05

·.

• • • • • •

۰,

 (\mathbb{R})

3

() - C

Start Time	0945	1007	1029	1051	1114	1137	1200	1224	1246
Stop Time	1006	1028	1050	1112	1135	1158	1221	1245	1307
1									
Production (tons/day)	2583	2583	2583	2583	2583	2583	2583	2583	2583
Production (lbs/hr)	107.6	107.6	107.6	107.6	107.6	107.6	107.6	107.6	107.6
Average Oxygen (%)	3.19	3.22	3.24	3.28	3.28	3.28	3.31	3.31	3.27

SUMMARY OF FLOW DATA

.

Company: CF INDUSTRIES Source: "D" SAP

• 1

٠.

1

з,

2

÷. .

.

	Run 1	Run 2	Run 3
Date of Run	4/22/05	4/22/05	4/22/05
Process Rate (TPH)	107.9	107.9	107.9
Start Time (24-hr. clock)	945	1107	1230
End Time (24-hr. clock)	1045	1207	1330
Barometric Pressure at Barom. (in. Hg.)	29.97	29.97	29.97
Elev. Diff. Manom. to Barom. (ft.)	0	0	0
Moisture in Stack Gas (% Vol.)	0.0	. 0.0	0.0
Molecular Weight Dry Stack Gas	28.00	28.00	28.00
Molecular Weight Wet Stack Gas	28.00	28.00	28.00
Stack Gas Static Press. (in. H2O gauge)	-0.24	-0.24	-0.24
Stack Gas Static Press. (in. Hg. abs.)	29.95	29.95	29.95
Average Square Root Velocity Head	0.512	0.539	0.545
Average Stack Gas Temperature (Deg F)	158.9	157.5	154.3
Pitot Tube Coefficient	0.84	0.84	0.84
Stack Gas Vel. Stack Cond. (ft./sec.)	31.56	33.19	33.51
Effective Stack Area (sq. ft.)	67.20	67.20	67.20
Stack Gas Flow Rate Std. Cond. (DSCFM)	108,672	114,544	116,259
Stack Gas Flow Rate Stack Cond. (ACFM)	127,246	133,824	135,122

Note: Standard conditions 68 Deg F, 29.92 in. Hg

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. Wheeler St., Plant City, Florida 33566 (813) 752-5014

۰.

٠,

۷,

VELOCITY TRAVERSE

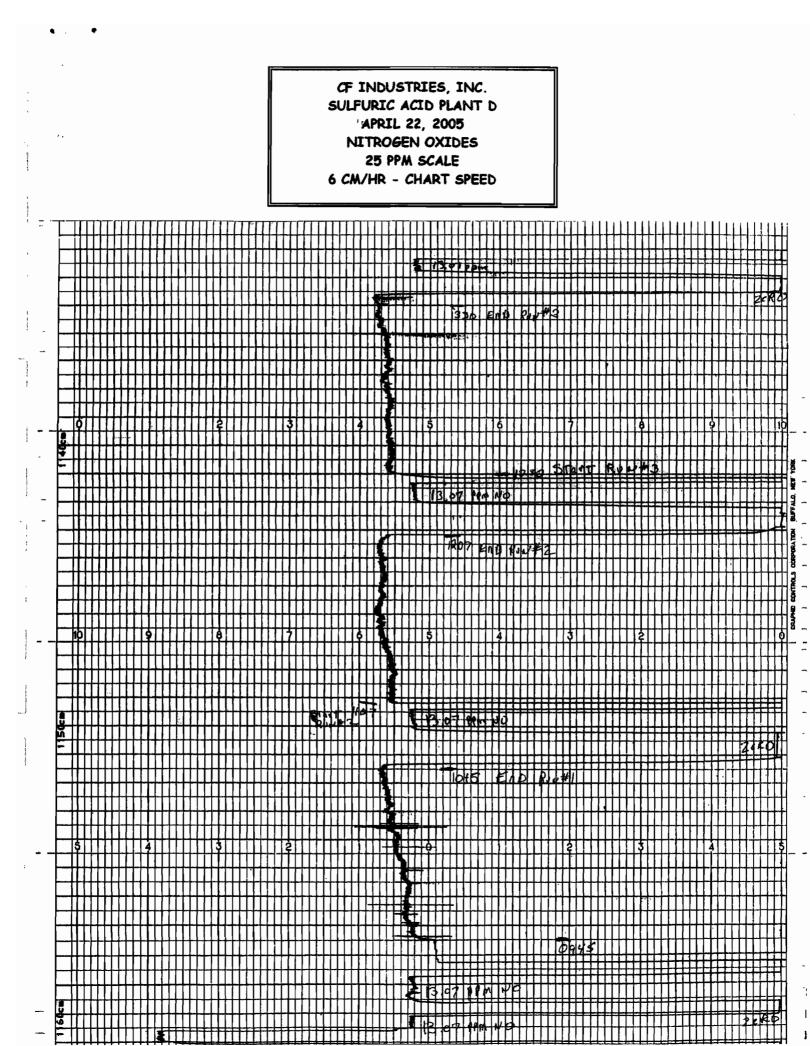
Company	: CF Indu	stries		Stac	k Diameter:	111 "
Unit Tested				BP, (in. Hg):		29,97
Date					Time:	0138
Run #		Ср: .54		Operator:		De Tu
	7-22-05		Sta Pres	atic isure (2O)	Operator: Stack Temp. (°F) 153 156 157 157 157 160 161 162 162 162 162 162 162 162	
10		,25			161	
		,23			161 160 158	
17					100	

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. Wheeler St., Plant City, Florida 33566 (813) 752-5014

VELOCITY TRAVERSE

.

Unit Tested: $54P "D^{15}$ BP, (in. Hg): 349.77 Date: $4-22.05$ Time: 1109 Run #: 2 Cp: , 84 Operator: h_2 /TC Point Dist. from Velocity Static Stack Temp. No. (Inches) ("H2O) ("H2O) ("F) $1/97$ J .38 /49 .37 151 157 J .38 /49 .37 157 J .38 /59 .35 159 J .35 159 .35 159 J .35 159 .35 160 J .35 159 .35 162 J .35 162 J .35 162 J .35 162 J .35 161 J .35 161	Company:	C.F. Industi	nies .		Stack Dia	meter:	(1) "
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Unit Tested:				BP, (ir	n. Hg):	
Run #: 2 Cp: 84 Operator: $90/76$ Point Dist. from Velocity Static Pressure Temp. No. (Inches) ("H2O) ("H2O) ("H2O) ("F) i .38 /49 . . . j .38 /51 . . . j .38	Date:					Time:	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Run #:				Ope	erator:	AW/TW
8 .34 161 9 .29 162 10 .35 162	$ \begin{array}{c} Point \\ No. \\ \hline \\ \hline$	Dist. from Duct Wall	Velociti Head ("H20) , 38 , 38 , 38 , 38 , 38 , 38 , 38 , 38	y Sta Pres ("H	atic S sure Tr 20) (/ // // // // // // // // // // // //	$1^{(1)}$	
11 .31 161			<u>·31</u>		/	2/	
12 .37 161	12		.22		/6		


SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. Wheeler St., Plant City, Florida 33566 (813) 752-5014

۶,

• *

VELOCITY TRAVERSE

Company	CF Industr	irs		Stac	k Diameter:	111 "
Unit Tested				BP, (in. Hg):	29.97	
Date				Time:	1228	
Run #	1 1	· 1	84	Operator:		DUATW
	1-20-05	· 1	Sta	atic isure 20)		
\$ 9		, 34			160	
		, 34			160	
10 11		.32			160	
()		131 134			160 160	:
V		· ·				

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 North Wheeler St. Plant City, Florida 33566 (813) 752-5014

٠,

NITROGEN OXIDES ANALYZER CALIBRATION DATA

EPA METHOD 7E

COMPANY	CF INDUSTRIES
SOURCE	SAP D
OPERATOR	MG
DATE	04/22/05
RUN #'S	3
INSTRU. SPAN RANGE	25 PPM

		Analyzer		
	Cylinder	calibration	Absolute	
1	value	responses	difference	Difference
	(PPM)	(PPM)	(PPM)	(% of Span)
Zero	0	0	0	0.0
Mid-range	13.07	13	0.07	0.3
High-range	22.29	22	0.29	1.2

SYSTEM CALIBRATION BIAS AND DRIFT DATA

			Initial	Values	Final V	alues	
		Analyzer calibration response (PPM)	System calibration response (PPM)	System calibration bias (% of span)	System calibration response (PPM)	System calibration bias (% of span)	Drift (% of span)
Run 1	Zero	0	0	0	0.13	0.52	0.52
	Upscale	13.0	13.05	0.2	13.13	0.52	0.32
Run 2	Zero	0	0.13	0.52	0	0	-0.52
	Upscale	13.0	13.13	0.52	13.05	0.2	-0.32
Run 3	Zero	0	0	0	0	0	0
	Upscale	13.0	13.05	0.2	13	0	-0.2

System Calibration Bias = <u>System Cal. Response - Analyzer Cal.</u> x 100 Span

SOUTHERN ENVIRONMENTAL SCIENCES, INC. PITOT TUBE CALIBRATION

Pitot Tube ID:	10A
Date:	12/13/04
Calibrated By:	TJ, MJ
Cp of Standard Pitot:	0.99

'r

A" SIELECALIBRATION										
Run No.	Delta P std (in. H2O)	Delta P(s) (in. H2O)	Cp(s)	Deviation Cp(s) - Cp(A)						
1	0.54	0.74	0.85	0.00						
2	0.54	0.75	0.84	0.00						
3	0.54	0.75	0.84	0.00						
	Average 🔸	Cp (SIDE A)	0.84	0.00						

BE SIDE CALIBRATION										
Run No.	Delta P std (in. H2O)	Delta P(s) (in. H2O)	Cp(s)	Deviation Cp(s) - Cp(B)						
1	0.55	0.75	0.85	0.00						
2	0.55	0.75	0.85	0.00						
3	0.54	0.75	0.84	0.01						
	Average 🔸	Cp (SIDE B)	0.85	0.00						

Cp(s) = Cp(std) x (Delta Pstd/Delta Ps)^1/2

Average Deviation = Sum (Cp(s)-Cp(A or B)) Must be ≤ 0.01 3 |Cp(SIDEA) - Cp(SIDE B)| Must be ≤ 0.01

SOUTHERN ENVIRONMENTAL SCIENCES, INC. THERMOMETER CALIBRATIONS ALL TEMPERATURES ARE DEGREES RANKIN

i.

.

۰.

÷

£

<u>ل</u>

ات.

Calibrated By/Date: Terry L. Wilson 3/16/05

					TEPID WAT	TEPID WATER		BOILING WATER			HOT OIL			
ID No.	Туре	Range	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff
T1	PT	2000° F	500	505	1.00%	538	536	0.37%	622	623	0.16%	828	830	0.24%
T2	РТ	2000° F	500	504	0.80%	538	536	0,37%	627	628	0.16%	816	818	0.25%
Т3	РТ	2000° F	500	501	0.20 %	538	535	0.56%	630	633	<u>0.</u> 48%	818	822	0.50%
T4	PT	2000° F	500	502	0.40 %	538	536	0.37%	634	636	0.32%	820	824	0,49%
T5	РТ	2000° F	500	503	0.60%	538	535	0.56%	640	639 [.]	0,16%	820	818	0.24%
T6	PT	2000° F	500	504	0.80%	538	535	0.56%	644	644	0.00%	824	820	0,49%
T7	PT	2000° F	500	503	0.60%	538	535	0.56%	646	645	.015%	824	820	0.49%
<u></u>	РТ	2000° F	500	501	0.20%	538	536	0.37%	648	648	0.00%	816	820	0.49%
T9	РТ	2000° F	500	502	0.40%	538	535	0.56%	650	651	0.15%	818	821	0.37%
SS110	вм	220° F	498	500	2°	538	535	3 °	672	674	2 °	-		
SS300	РТ	2000 °F	498	498	0.00%	538	535	0.56%	672	674	0.30%	830	832	0.24%
<u>SS301</u>	PT	2000° F	498	499	0.20%	538	535	0.56%	672	672	0.00%	830	834	0.48%
SS306	РТ	2000° F	498	500	0.40%	538	535	0.56%	. 672	674	0,30%	830	830	0.00%
2.5'PA	PT	2000° F	494	494	0.00%	524	523	0.19%	650	649	0.15%	754	754	0.00%
2.5'P8	PT	2000 ° F	498	500	0,40%	538	538	0.00%	661	662	0.15%	828	832	0.48%
3'P	PT	2000 ⁵ F	496	497	0.20%	538	537	0.19%	662	664	· 0.30%	828	830	0.24%
3'INC	PT	2000° F	497	497	0.00%	538	538	0.00%	660	659	Q.15%	835	836	0.12%
5'PA	PT	2000° F	497	.496	0.20%	538	539	.019%	662	660	0,30%	832	831	0,12%
5'PB	PT	2000° F	497	497	0.00%	538	540	0.37%	652	662	0.00%	832	834	0.24%
5'PC	РТ	2000° F	497	497	0.00%	538	539	0.19%	664	664	0.00%	832	834	.024%
5'PD	PT	2000° F	497	498	0.20%	538	539	0.19%	664	664	0.00%	830	831	0.12%
5'PE	PT	2000° F	497	499	0.40%	538	538	0.00%	666	664	0.00%	830	832	0.24%
5'VP	PT	2000° F	497	495	0.40%	538	538	0.00%	662	664	0.30%	832	831	0.12%
5'INC	ет	2000° F	497	497	0.00%	538	537	0.19%	. 660	662	0.30%	836	835	0.12%
8'PA	РТ	2000° F	496	498	0.40%	538	538	0.00%	668	668	0.00%	834	833	0.12%
8'PB	РТ	2000° F	496	498	0.40%	538	539	0,19%	<u>.</u> 689	670	0.15%	834	834	0.00%
8'PC	PT .	-2000° F	496	497	0.20%	538	539	0,19%	670	671	0.15%	834	833	0.12%
8'PD	PT	2000° F	496	496	0.00%	538	539	0.19%	670	672	0.30%	834	832	0.24%
10'PA	PT	2000° F	498	501	0.60%	538	540	0.37%	656	658	.30%	840	842	0.24%
10'PB	PT	2000° F	498	500	0.40%	538	540	0.37%	656	657	0.15%	840	838	0,24%
10'PB					· ·									

Airgas Specialty Gases 12722 South Wentworth Avenue Chicago, IL 60628 773.785.3000 Fax: 773.785.1928 www.airgas.com

Certificate of Analysis EPA Protocol Gas Mixture

٠,

Cylinder No:
Cylinder Pressure:
Certification Date:

SG9140417BAL 2,013 psig 10/03/2003 Reference Number: Expiration Date: Laboratory: 54-58557500-001 10/03/2005 ASG - Chicago - IL

Certified Concentrations

Component			Concentration	Accuracy Analytical Principle Procedure
Nitric Oxide			13.07 PPM	+/- 1% CHEMIL G1
Nitrogen			Balance	
	<u> </u>	· · · ·		

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences.

Notes: SG9140417BAL NOX=13.23ppm

Do not use cylinder below 150 psig.

S. Ba

Approved for Release

Reference Standard Information

Туре	Component
GMIS	Nitric Oxide

CC1322202

Concentration 20.97 PPM

Analytical Results

nar	yucai r	(627	11.2		•		
1 st	Compo	nent	NI	tric	Öxidə	ilia e S	
1st .	Analysis D	ate:	0	9/26/	2003		
R	8.060	S	5.070	Z	0.0000	Conc	13.14 PPM
S	5.050	Z	0.0000	R	8.110	Conc	13.16 PPM
Z	0.0000	R	8.080	S	5.060	Conc	13.08 PPM
						AVG:	13.13 PPM
2nd	Analysis [Date:	1	0/03/	2003		
R	7.710	S	4.720	Z	0.0000	Conc	13.03 PPM
S	4.790	Z	0.0000.0	R	7.660	Conc	12.89 PPM
Z	0.0000	R	7.680	S	4.780	Conc	13.09 PPM
						AVG:	13.00 PPM

Airgas Specialty Gases 12722 South Wentworth Avenue Chicago, IL 60628 773.785.3000 Fax: 773.785.1928 www.airgas.com

Certificate of Analysis EPA Protocol Gas Mixture

4

Cylinder No:
Cylinder Pressure:
Certification Date:

SG9151491BAL 2,013 psig 10/03/2003 Reference Number: Expiration Date: Laboratory: 54-ST9758-000 10/03/2005 ASG - Chicago - IL

Concentration

20.97 PPM

Certified Concentrations

Component	Concentration Accuracy Analytical Principle Procedure
Nitric Oxide	22.29 PPM +/- 1% CHEMIL Gt
Nitrogen	Belance

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences.

Notes: SG9151491BAL NOX=22.48ppm

Do not use cylinder below 150 psig.

Approved for Release

Cyl. Number

CC1322202

Reference Standard Information

Туре	<u>Component</u>
GMIS	Nitric Oxide

Analytical Results

1s	t Compo	nen	t Ni	triç	Dxide		
1st	Analysis D	ate:	0	9/26/	2003		
R	8.070	S	8.570	Z	0.0000	Солс	22.17 PPM
S	8.530	z	0.0000	R	8.080	Conc	22.35 PPM
Z	0.0000	R	8.040	S	8.590	Conc	22.29 PPM
						AVG:	22.27 PPM

						AVQ.	~~ . ~ / FFM
2nd	Analysis D	ate:	1	0/03/	2003		
R	7.710	S	8.190	Z	0.0000	Conc	22.22 PPM
S	8.170	Z	0.0000	R	7.660	Conc	22.36 PPM
Z	0.0000	R	7.680	S	8.160	Conc	22.34 PPM
						AVG	22 31 PPM

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 North Wheeler St. Plant City, Florida 33566 (813) 752-5014

ŝ

NOX EMISSIONS TEST CALCULATIONS

COMPANY: CF INDUSTRIES SOURCE: SAP D TEST DATE: 04/22/05 DATA ANALYST: MG

5 A

٩.

	AVERAGE CONC.	STACK PRESS	STACK FLOWRATE								
RUN NO.	(PPM)	(in. Hg)	(dscfm)	(mg/m3)	(lbs/ft3)	(lbs/hr)					
1	13.3	29.95	108,672	25.34	1.58E-06	10.32					
. 2	14.0	29.95	114,544	26.77	1.67E-06	11.49					
3	14.0	29.95	116,259	26.77	1.67E-06	11.66					
AVERAGE	13.8	29.95	113,158	26.29	1.64E-06	11.15					

FORMULAS: mg/m3 = ppm x .041573 x molecular wt.

lb/ft3 = mg/m3 35.31 ft3/m3 x 1000 mg/g x 453.59 g/lb

lb/hr = lb/ft3 x flowrate x 60 min/hr

where:

Pstd =	29.92 "Hg
Tstd =	528 deg R
Molecular Wt. of NOx =	46

Southern Environmental Sciences, Inc.

1204 North Wheeler Street D Plant City, Florida 33566-2354 (813) 752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS

- $A_n = Cross-sectional area of nozzle, ft²$
- $A_s = Cross-sectional area of stack, ft^2$
- $B_{ws} = Water vapor in gas stream, proportion by volume$
- C_{p} = Pitot coefficient
- C_s = Pollutant concentration, gr/DSCF

$$F_d$$
 = Ratio of gas generated to heat value of fuel, DSCF/mm BTU

$$\triangle H$$
 = Average pressure differential across orifice, in. H₂O

 M_n = Total amount of pollutant collected, mg

 $\sqrt{\Delta P_{avg}}$ = Average of the square roots of the velocity heads

 P_{bar} = Barometric pressure at the sampling site, in. Hg

$$P_a =$$
Stack gas static pressure, in. H_2O

 P_m = Absolute pressure at the dry gas meter, in. Hg

$$P_s$$
 = Absolute stack pressure, in. Hg

PMR = Pollutant mass rate, lb/hr

$$P_{std}$$
 = Standard absolute pressure, 29.92 in. Hg

 θ = Total sampling time, minutes

ATTACHMENT 2 - CEMS/PRODUCTION DATA REPORTS

.

1

~

۰ ۱

,

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

Ms. Trina Vielhauer Chief, Bureau of Air Regulations Department of Air Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Subject: CF Industries, Inc. Plant City Phosphate Complex "C" & "D" Sulfuric Acid Plant Second Quarter 2005 SO2 CEM/Production Data

Dear Ms. Vielhauer:

In accordance with Specific Condition 22 of Permit No. PSD-FL-339, enclosed is the Second Quarter 2005, SO₂ and production data from the "C" & "D" Sulfuric Acid Plants.

If you have any questions concerning this submittal please contact Michael Messina at (813) 364-5639.

Sincerely,

Superintendent, Environmental Affairs

U:\2005C&DSecondQCEMProduction.doc TAE/JMM/gem

CC: Joel Smolen/FDEP Diana Lee/HCEPC J. M. Messina

C-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄

April 1, 2005 6:00 AM

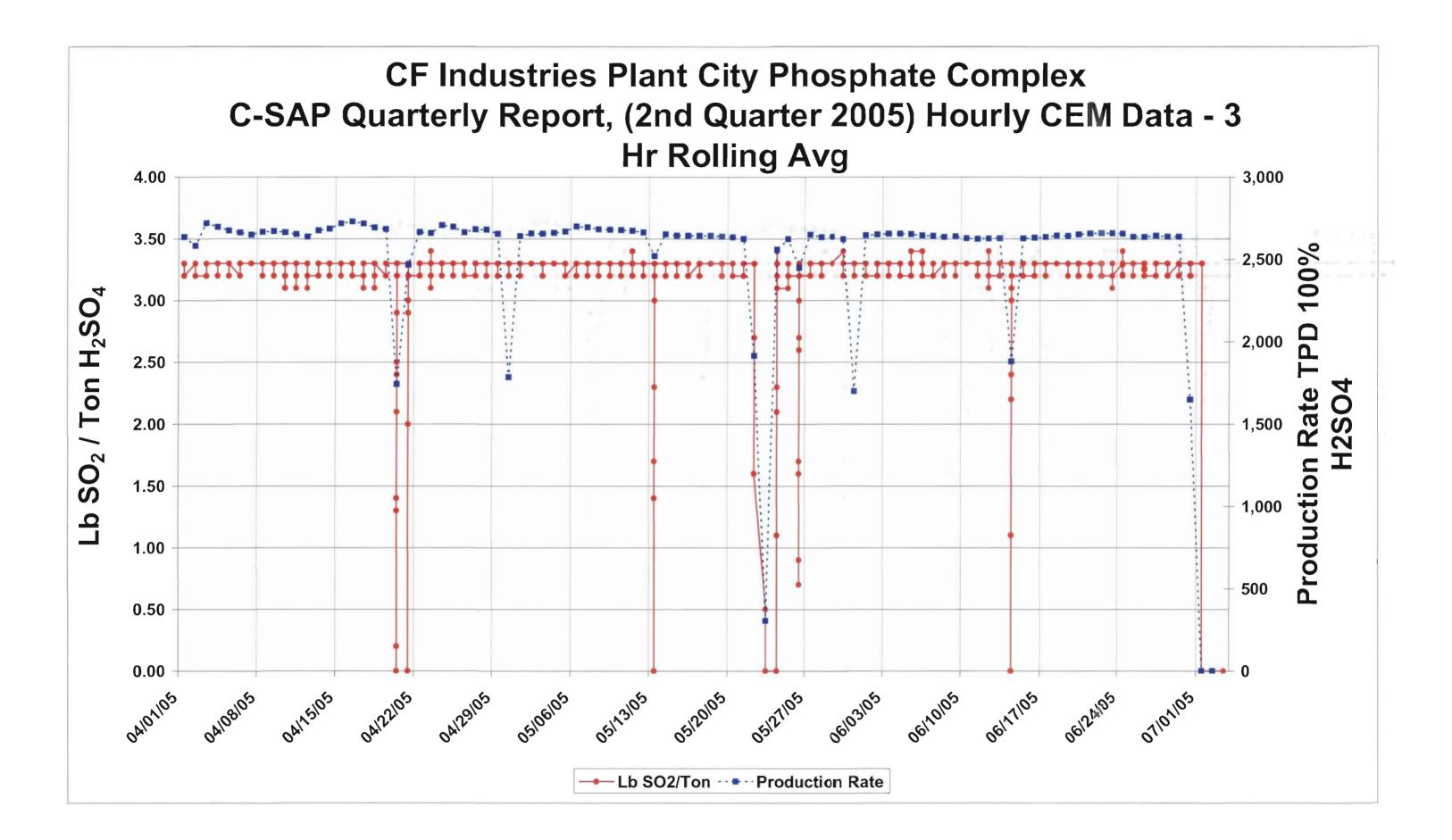
Through

July 1, 2005 6:00 AM

3-Hr Rolling Average Period (Previous 2hrs & Indicated Hr)

		-		-			-	<u> </u>		<u> </u>	-	<u> </u>	_												
	Daily																								
	Prod.	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	10:00 PM	11:00 PM	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM
	Tons																[
4/1/2005	H2SO4 2,636	3.2	3.3	3.3	2.2		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	22	2.2	2.0	• • •					<u> </u> '	
4/1/2003 A/2/2005	2,583	3.2	3.2	3.2	3.3 3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3 3.2	<u>3.3</u> 3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.3
4/3/2005	2,565	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2 3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3
4/4/2005	2,697	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3 3.3	3.3	3.3 3.3	3.3 3.3	<u>3.2</u> <u>3.3</u>	3.2 3.3	3.3
4/5/2005	2,675	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3
4/6/2005	2,663	3.3	3.3	3.2	3.2	··· 3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3
4/7/2005	2,649	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/8/2005	2,667	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/9/2005	2,672	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/10/2005	2,665	3.3	3.3	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/11/2005	2,654	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/12/2005	2,638	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
4/13/2005	2,676	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/14/2005	2,686	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/15/2005	2,719	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/16/2005	2,730	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3
4/17/2005	2,718	3.3	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/18/2005	2,693	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3
4/19/2005	2,684	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/20/2005	1,742	2.4	1.3	0.2	0.0	0.0	0.0	0.0	0.0	startup	startup	startup	1.4	2.1	2.5	2.9	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3
4/21/2005	2,467	3.3	3.3	3.3	3.3	3.0	2.0	startup	startup	startup	2.9	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.2	3.2	3.2
4/22/2005	2,666	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/23/2005	2,660	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.4	3.4	3.2	3.1	3.1	3.1	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2
4/24/2005	2,707	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3
4/25/2005	2,698	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/26/2005	2,664	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3
4/27/2005	2,682	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/28/2005	2,681	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/29/2005	2,655	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/30/2005	1,784	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.2	3.3	3.3	3.2
5/1/2005	2,642	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/2/2005	2,658	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/3/2005	2,656 2.661	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/4/2005	2,669	3.3 3.2	<u>3.3</u> 3.3	<u>3.3</u> 3.2	3.3 3.2	3.3 3.2	<u>3.3</u> <u>3.2</u>	<u>3.3</u> 3.2	3.3 3.2	3.3 3.2	3.3 3.2	3.3 3.3	3.3	3.3 3.2	<u> </u>	<u>3.3</u> <u>3.2</u>	3.3 3.2	3.3 3.2	<u>3.3</u> 3.2	3.3	3.3	3.2	3.2	3.2	3.2
5/6/2005	2,009	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.2	<u> </u>	3.2	3.3	3.2	3.3	3.2	<u>3.3</u> 3.3	<u>3.3</u> 3.3	3.3	3.3 3.3	3.3 3.3
5/7/2005	2,700	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.2	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	<u>3.3</u> 3.3	3.3	3.3
5/8/2005	2,683	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/9/2005	2,680	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/10/2005	2,679	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3
	2,674	3.3	3.4	3.4	3.4	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3
5/12/2005	2,664	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/13/2005	2,521	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	startup	startup	startup	1.4	1.4	1.7	2.3	3.0	3.3	3.3	3.3	3.3	3.3	3.3
5/14/2005	2,653	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
	2,645	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
	2,644	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
5/17/2005	2,644	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/18/2005	2,644	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/19/2005	2,639	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
	2,635	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2
0.20.2000		0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			5.2	J. <u>Z</u>	<u> </u>	

C-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄


April 1, 2005 6:00 AM

July 1, 2005 6:00 AM

3-Hr Rolling Average Period (Previous 2hrs & Indicated Hr)

Through

		-	,		r —	1				3 -	r- · ·	· · ·				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·								
	Daily										ł	[
	Prod.																								
	Tons	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	10:00 PM	11:00 PM	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM
	H2SO4																								
5/21/2005	2,625	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/22/2005	1.914	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.7	1.6	0.5	0.0	0.0	0.0	0.0
5/23/2005	305	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	startup	startup	startup	1.1
5/24/2005	2,561	2.1	2.3	3.1	3.3	3.3	3.3	3.4	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.2	3.2
5/25/2005	2,624	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3
5/26/2005	2,449	3.3	3.3	3.3	3.3	3.3	2.7	1.7	0.7	0.9	1.6	2.6	3.0	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3
																							+ - +		
5/27/2005	2,649	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/28/2005	2,635	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/29/2005	2,637	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.4	3.4	3.4	3.3	3.3
5/30/2005	2,623	3.3	3.3	3.3	3.2	3,2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3			3.3	3.3	3.3
													+ - +								3.3	3.3			
5/31/2005	1,700	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2
6/1/2005	2,647	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3
6/2/2005	2,652	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/3/2005			3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3:3	3.3	3.3	3.3	3.3	3.3									
	2,656	3.2															3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/4/2005	2,656	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3 .	3.3	3.2
6/5/2005	2,654	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.4	3.4	3.3	3.3	3.3	3.3
6/6/2005	2,646	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2
								-																	
6/7/2005	2,643	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2
6/8/2005	<u>2,636</u>	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/9/2005	2,640	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/10/2005	2,629	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/11/2005	2,625	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.4	3.4	3.4	3.4
6/12/2005	2,627	3.4	3.3	3.3	3.3	<u>3.3</u>	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
6/13/2005	2,628	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/14/2005	1,879	3.3	3.3	2.2	1.1	0.0	0.0	0.0	0.0	startup	startup	startup	2.4	3.0	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2
6/15/2005	2,628	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3
6/16/2005	2,632	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
																						-			
6/17/2005	2,636	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/18/2005	<u>2,6</u> 45	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3
6/19/2005	2,643	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/20/2005	2,652	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2
6/21/2005	2,657	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	3.3	3.3		3.3		3.3
																	3.3			_		3.3		3.3	
6/22/2005	2,660	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
6/23/2005	<u>2,659</u>	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.3	3.2	3.2	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
6/24/2005	2,656	3.4	3.4	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/25/2005	2,637	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3
													·												
6/26/2005	2,636	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3
6/27/2005	2,644	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/28/2005	2,638	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
6/29/2005	2,638	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/30/2005	1,649	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
																				T					
LL																			I						

D-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄

April 1, 2005 6:00 AM Through

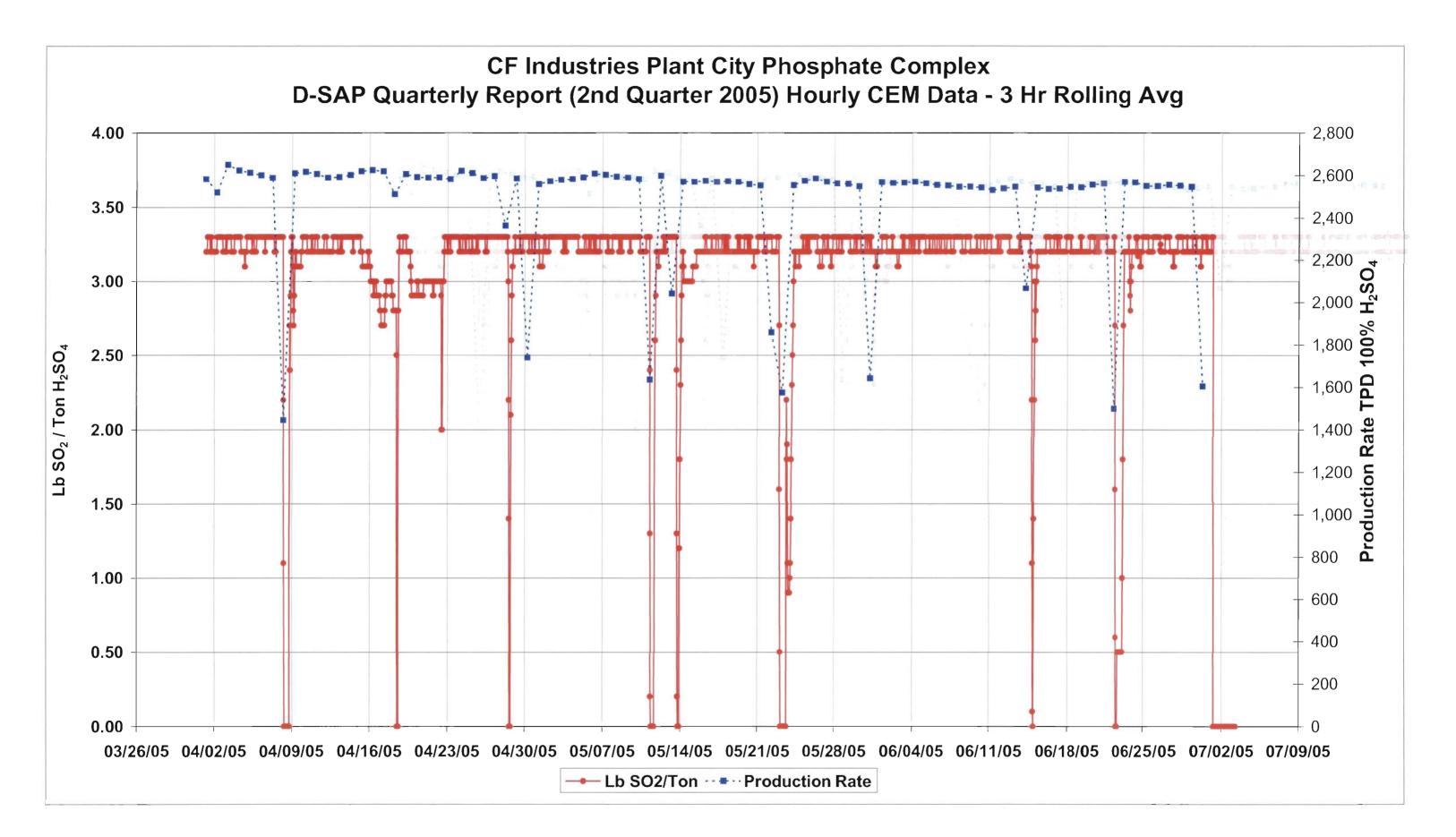
July 1, 2005 6:00 AM

3-Hr Rolling Average Period (Previous 2hrs & Indicated Hr)

	-					<u> </u>		<u></u>		uge i		<u> </u>			<u>113 G</u>		<u>cuici</u>	<u> </u>					_		
	Daily Prod.												1												
	Tons	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	10:00 PM	11:00 PM	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM
	H2SO4																								.
4/1/2005		3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
4/2/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.3	3.3
4/3/2005		3.3	3.3	3.3	3.3		3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3				3.3	3.3	3.3	3.3
						3.3													3.3	3.3	3.3				
4/4/2005		3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/5/2005		3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/6/2005		3.3	3.3	3.3	3.3	3.3	3.3	<u>3</u> .3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/7/2005	2,589	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	. 3.3	3.3	3.3	3.3	3.3	3.3
4/8/2005	1,445	2.2	1.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	startup	startup	startup	2.7	2.4	2.9	3.2	3.3	3.3	3.3	3.1	2.8	2.7	2.9
4/9/2005		3.1	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/10/2005		3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3
4/11/2005		3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2
4/12/2005		3.2	3.2	3.2	3.2			3.2	3.2			3.2	3.3	3.3	3.3	3.3	3.3			3.3	3.3	3.3	3.2	3.2	3.2
						3.2	3.2			3.2	3.2							3.3	3.3						
4/13/2005		3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/14/2005		3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2
4/15/2005	2,621	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.1	3.1	3.0	3.0	3.0	3.0
4/16/2005	2,626	3.0	3.0	2.9	2.9	2.9	3.0	3.0	3.0	3.0	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.8	2.8	2.8	2.7	2.7	2.7	2.7	2.7
4/17/2005	2,621	2.7	2.7	2.7	2.8	2.9	2.9	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.9	2.9	2.9	2.8	2.8	2.8
4/18/2005	2,512	2.8	2.8	2.8	2.8	2.5	startup	startup	startup	2.8	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3
4/19/2005	2,607	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.0	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9
4/20/2005	2,593	3.0	3.0	3.0	3.0	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	2.9	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
															3.0		3.0			3.0			3.0	3.0	
4/21/2005		3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.9	2.9	2.9		3.0		3.0	3.0		3.0	3.0			3.0
4/22/2005		3.0	3.0	3.0	3.0	2.9	2.0	2.0	2.0	3.0	3.0	3.0	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3
4/23/2005		3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.2	3.2
4/24/2005	2,623	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3
4/25/2005	2,612	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/26/2005	2,588	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/27/2005	2,598	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/28/2005	2,363	3.3	3.3	3.3	3.3	3.3	3.2	3.0	2.2	1.4	startup	startup	startup	2.1	2.6	2.9	3.1	3.1	3.2	3.2	3.2	3.2	3.3	3.2	3.2
4/29/2005		3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
4/30/2005	1,739	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/1/2005	2,559														3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3
		3.3	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.3	3.3											
5/2/2005	· · · ·	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/3/2005	2,580	3.3	3.3	3.3	3.3	3.2	3.3	3.2	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/4/2005	2,583	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
5/5/2005	2,591	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2
5/6/2005	2,609	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	. 3.3	3.3	3.3	3.3	3.3	3.3
5/7/2005	2,604	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/8/2005	2,595	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/9/2005	2,590	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/10/2005	2,583	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/11/2005		2.4	1.3	0.2	0.0	0.0	0.0	0.0	0.0	startup	startup	startup	2.6	2.6	2.9	3.2	3.2	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2
																			3.3						3.3
5/12/2005		3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	3.3	3.3	3.3	
5/13/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	2.4	1.3	0.2	startup	startup	startup	1.2	1.2	1.8	2.3	2.6	2.9	3.1	3.2
5/14/2005		3.2	3.1	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.1	3.1	3.1
5/15/2005		3.1	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3
5/16/2005	2,575	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3
5/17/2005	2,570	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.2	3.2	3.2	3.3	3.3	3.2
5/18/2005		3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3
5/19/2005		3.3	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3
5/20/2005		3.3	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
5/21/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/22/2005		3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	2.7	1.6	0.5	0.0	0.0	0.0	0.0
5/23/2005		0.0	0.0	0.0	0.0	0.0	0.0	startup	startup	startup	2.2	1.8	1.9	1.1	0.9	0.9	0.9	0.9	1.0	1.1	1.4	1.8	2.3	2.5	2.7
5/24/2005		3.0	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2
5/25/2005		3.2	3.2	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
	·		-		-			-							ч. — П	·				_,h					

D-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄

April 1, 2005 6:00 AM


Through •

July 1, 2005 6:00 AM

. . ..

3-Hr Rolling Average Period (Previous 2hrs & Indicated Hr)

								<u></u>		<u> </u>		<u> (</u>													
	Daily Prod.																								
	Tons	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	10:00 PM	11:00 PM	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM
	H2SO4												_												
5/26/2005		3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2
<u>5/27/2005</u>	2,571	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/28/2005	2,562	3.2	3.2	3.2	3.2	<u>3</u> .2	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
5/29/2005	2,560	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3
3/1/2005		3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.2	3.2
5/31/2005		3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
6/1/2005		3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3
6/2/2005	· · · · · · · · · · · · · · · · · · ·	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.3
6/3/2005		3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	<u>3.2</u>	3.2	3.2
6/4/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2
6/5/2005		3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2
6/6/2005	,	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3
6/7/2005	<u> </u>	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/8/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/9/2005		3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3
6/10/2005	<u> </u>	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2
6/11/2005	<u> </u>	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
6/12/2005	· · · · · · · · · · · · · · · · · · ·	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
6/13/2005		3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/14/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.1	3.1	2.2	1.1	0.1	0.0	1.4	2.2	3.0	2.6	2.8	3.0	3.1
6/15/2005		3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
6/16/2005		3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	. 3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3
6/17/2005		3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/18/2005		3.3	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3
6/19/2005		3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
6/20/2005		3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/21/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
6/22/2005		3.3	3.3	2.7	1.6	0.6	0.0	startup	startup	startup	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0:5	1.0	1.8	2.7	3.2
6/23/2005	<i>,</i>	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.0	2.9	2.8	3.0	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
6/24/2005		3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/25/2005		3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/26/2005		3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
6/27/2005		3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
6/28/2005		3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
6/29/2005	2,547	3.2	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.2	3.3	3.2
6/30/2005	1,604	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
		 																							
											_]						

\$

.

P.O. Drawer L. Plant City, Florida 33564-9007 Telephone: 813/782-1591

Ms. Trina Vielhauer Chief, Bureau of Air Regulations Department of Air Regulation 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Subject: CF Industries, Inc. Plant City Phosphate Complex "C" & "D" Sulfuric Acid Plant Third Quarter 2005 SO2 CEM/Production Data

Dear Ms. Vielhauer:

In accordance with Specific Condition 22 of Permit No. PSD-FL-339, enclosed is the Second Quarter 2005, SO₂ and production data from the "C" & "D" Sulfuric Acid Plants.

If you have any questions concerning this submittal please contact Michael Messina at (813) 364-5639.

Sincerely,

Romas a Edwards Thomas A. Edwards

Superintendent, Environmental Affairs

U:\2005C&DThridQCEMProduction.doc TAE/JMM/gem CC: Joel Smolen/FDEP Diana Lee/HCEPC J. M. Messina

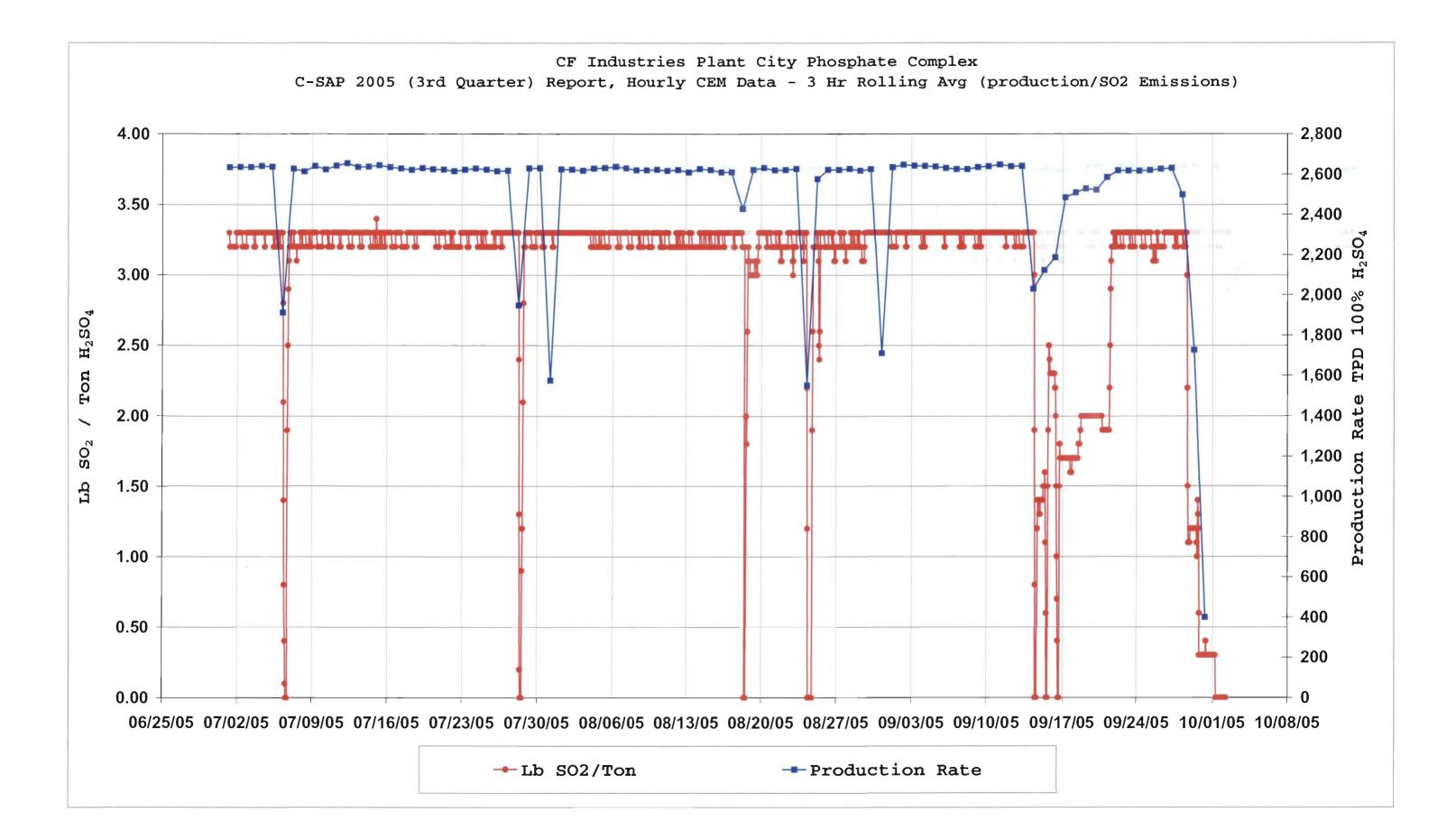
CF Industries, Inc. Plant City Phosphate Complex C-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄

July 1, 2005 6:00 AM

AM Through

3-Hr Rolling Average Period (Previous 2hrs & Indicated Hr)

mm mm<										· .																
Test Court Court <thc< th=""><th></th><th>Daily</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thc<>		Daily																								
Test Court Court <thc< th=""><th></th><th>Prod.</th><th>0.00 444</th><th>7.00 444</th><th>0.00 414</th><th>0.00 444</th><th>40.00 414</th><th>11.00 414</th><th>40.00 014</th><th>1.00 DM</th><th>2.00 014</th><th>2.00 DM</th><th></th><th></th><th>S:00 PM</th><th>7:00 044</th><th>8.00 PM</th><th></th><th>10:00 PM</th><th>11:00 DM</th><th>12:00 444</th><th>1.00 AM</th><th>2:00 444</th><th>2:00 AM</th><th>4:00 444</th><th>5:00 ANA</th></thc<>		Prod.	0.00 444	7.00 444	0.00 414	0.00 444	40.00 414	11.00 414	40.00 014	1.00 DM	2.00 014	2.00 DM			S:00 PM	7:00 044	8.00 PM		10:00 PM	11:00 DM	12:00 444	1.00 AM	2:00 444	2:00 AM	4:00 444	5:00 ANA
correction 288 33			6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5.00 PW	0.00 Pivi		0.00 FW	9.00 FW	10.00 FM		12.00 AW	1.00 AW	2.00 Alvi	3.00 AIVI	4.00 AM	5.00 AW
correction 288 33	1 1	H2SO4					1						1													
TYTEME 210 31 33 <t< th=""><th>7/1/2005</th><th></th><th>3.3</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.2</th><th>3.3</th><th>3.3</th><th>3.3</th><th>3.3</th><th>3.3</th><th>3.3</th><th>3.3</th><th>3.3</th></t<>	7/1/2005		3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
170000 160 130 33 <	21 mil 17 mil 18 mil																	3.3								
memory 244 3.3<																										
matrix matrix<																										
meteor i.i. <																										
TTTBOR 1/2<																										
marked 2.46 3.3 3.3 3.3 3.2 3.2 3.3																										
massed 1.4. 3.4. 3.5. 3.5. 3.7. <			3.2	3.3	3.2				3.2											-	-					
Integeod 2.68 3.3 3		2,615	3.3	3.3	3.3	3.3	.3.2	3.2	3.2	3.2	3.2	3.2											3.3	3.3		
Intrase Intrase <t< td=""><th>7/9/2005</th><td>2,642</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td></t<>	7/9/2005	2,642	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
rht2pool 2,66 3.3 3	7/10/2005	2,625	3.3	3.3	3.3	3.3	- 3.3	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
rht2pool 2,66 3.3 3	7/11/2005	2,643	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
rht2006 2.67 3.3 3.	7/12/2005	2,655	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2		3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
PHY2006 2.689 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3.4 3.3 3					-																					
THEORE Edd 3.2 3.3<																										
Primos Egge 1.3 3.3																										
Introde 2.690 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3				_								-														
THEWOOD 2623 3.																										
Trigeode 2.642 3.3																										
TYZUPODE Zesz 3.3 3																										
T/21/2006 2.426 1.3 3.3 1.3 1.2																										
TY22006 2 617 5.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3			3.3	3.3	3.3	3.3	3.3	3.3	3.2																	
7722000 2624 3.3	7/21/2005		3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2		3.2	3.2	3.2	3.2		3.2					3.3	3.3	3.3	3.3	3.2
Trikeroode C 33 3.3 3.3 3.3 3.3 3.2 3.3 <th< td=""><th>7/22/2005</th><td>2,617</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td></th<>	7/22/2005	2,617	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
Tr424005 2.680 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3	7/23/2005	2,624	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
Trigemode 2.625 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3 <th< td=""><th>7/24/2005</th><td>2.630</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.2</td><td>3.2</td><td>3.2</td><td></td><td></td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.3</td><td>3.3</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.2</td></th<>	7/24/2005	2.630	3.3	3.3	3.3	3.3	3.2	3.2	3.2			3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2
Trigrood Left 3.3 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.3 3													3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3			3.3	
17/27/2006 2 620 3.3												_														
77822006 1,949 3.3 2.4 1.3 0.2 0.0 Startup 0.9 1.2 2.1 2.8 3.2 3.2 3.3																										
7792006 2.631 3.3																										
77902005 2,832 3.3																										
7/70/2006 1,676 3.3 <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
<i>B</i> (12006 2,626 3.3 <th< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
6/12/2005 2,625 3.3																						·				
8/3/2005 2,620 3.3							3.3	3.3																		
8/4/2006 2,630 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3								3.3																		
8/5/2005 2,633 3.2 3.2 3.2 3.2 3.2 3.2 3.3	8/3/2005	2,620	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3									3.2	3.2	3.2	3.2	3.3
8/8/2005 2,639 3.3	8/4/2005	2,630	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3		3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
8/8/2005 2,639 3.3	8/5/2005	2,633	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
8/7/2005 2,632 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3												3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		
8/8/2006 2,622 3.3 3.3 3.3 3.2 3.2 3.3												_														
8/9/2005 2,622 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3																										
8/10/2005 2,625 3.3 3.3 3.3 3.3 3.3 3.3 3.2																										
8/11/2005 2,619 3.3 3.3 3.3 3.2																										
8/12/2005 2,623 3.2 3.3 3.3 3.2		·····																								
8/13/2005 2,611 3.2 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.2 3.3 3.3		<u> </u>																								
8/14/2005 2,628 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.3																										
8/15/2005 2,623 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3							3.3	3.3																		
8/16/2005 2,612 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3	8/14/2005	2,628	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3		3.3							3.3		3.2	3.3	3.3
8/16/2005 2,612 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3	8/15/2005	2,623	3.3		3.2	3.2	3.2	3.2		3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
8/17/2005 2,612 3.3 3.3 3.3 3.2 3.2 3.2 3.2 3.3													3.3		3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3			
8/18/2005 2,429 3.2 3.2 3.2 3.2 3.2 3.2 Startup Startup Startup 2.0 1.8 2.6 3.1 3.2 3.1 3.1 3.1 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0																3.3	3.3									
	0/ 19/2003	2,024	3.0	5.0	3.1	3.1	3.1	J.1	3.0	3.0	3.0	3.1	3.2	J.Z	0.0	0.0	0.0	- 0.0		0.0	0.0		5.5	5.5	3.3	5.5


Data - Lb $SO_2/Ton H_2SO_4$ October 1, 2005 6:00 AM

CF Industries, Inc. Plant City Phosphate Complex C-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄ Through October 1, 2005 6:00 AM

July 1, 2005 6:00 AM

3-Hr Rolling Average Period (Previous 2hrs & Indicated Hr)

										<u> </u>		<u> </u>													
	Daily						1														1)			
	Prod.	0.00 414	7 00 000						4.00 514	0.00 04	0.00 014	4:00 DM	E-00 DM	6.00 DM	7.00 044	0.00 DM	0.00 04	10.00 DA	44.00 044	10.00 444	4.00 444	0.00 444	0.00.444		
	Tons	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	10:00 PM	11:00 PM	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM
	H2SO4																								
8/20/2005	2,633	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
										3.2	3.3	3.3	3.3	3.2	3.1	3.1	3.1	3.2	3.2	3.2	3.2				
8/21/2005	2,622	3.2	3.2	3.3	3.2	3.2	3.2	3.2	3.2								+					3.2	3.2	3.2	3.2
8/22/2005	2,623	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.1	3.0	3.1	3.2	3.2	3.2	3.2	3.2	3.2
8/23/2005	2,628	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.1	3.2	3.3	3.3	3.3	3.3	3.3	3.3
8/24/2005	1,552	2.2	1.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Startup	Startup_	Startup	1.9	2.6	3.2	3.2	3.2	3.2	3.2	3.2	3:2	3.2	3.3	3.3
8/25/2005	2,578	3.3	3.3	3.1	2.5	2.4	2.6	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
8/26/2005	2,624	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.2	3.1	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
8/27/2005	2,623	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.2	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
8/28/2005	2,628	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.3	3.3	3.3	3.2	3.2
8/29/2005	2,620	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
8/30/2005	2,626	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
8/31/2005	1,711	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2
9/1/2005	2,636	3.2	3.3	3.2	3.2	3.2	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
			-									3.3	3.3	3.3	3.3	3.3	3.3								
9/2/2005	2,648	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3		3.3					3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/3/2005	2,643	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3		3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2
9/4/2005	2,642	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/5/2005	2,639	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	. 3.3	3.3
9/6/2005	2,632	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/7/2005	2,626	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/8/2005	2,626	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2
9/9/2005	2,636	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/10/2005	2,640	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/11/2005	2,649	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/12/2005	2,640	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2
9/13/2005	2,642	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/14/2005	2,030	3.3	3.3	3.0		-	0.0	Startup	Startup	Startup	1.2	1.4	1.4	1.4	1.4	1.3	1.3	1.4	1.4	1.4	1.4	1.4	<u> </u>	<u> </u>	
					1.9	0.8					1.2	2.5	2.5	2.4	2.3	2.3	2.3	2.3	-						1.5
9/15/2005	2,124	1.5	1.5	1.6	1.1	0.6	Stratup	Stratup	Startup	1.5									2.3	2.3	2.3	2.3	2.3	2.3	2.3
9/16/2005	2,188	2.2	2.2	2.0	1.5	1.0	0.7	0.4	Startup	Startup	Startup	1.5	1.8	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
9/17/2005	2,488	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.6	1.6	1.6	1.6	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
9/18/2005	2,512	1.7	1.7	1.7	1.7	1.7	1.7	1.8	1.8	1.8	1.8	1.9	1.9	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
9/19/2005	2,531	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
9/20/2005	2,525	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.9 👈	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9	1.9
9/21/2005	2,587	1.9	1.9	1.9	1.9	1.9	2.2	2.5	2.9	3.1	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.3	3.2	3.2	3.3	3.3	3.3
9/22/2005	2,620	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/23/2005	2,619	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/24/2005	2,618	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/25/2005	2,622	3.3	3.3	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.2	3.1	3.1	3.1	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2
9/26/2005	2,628	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/27/2005	2,620									3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3				
		3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2													3.3	3.3	3.3	3.3
9/28/2005	2,502	3.2	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.0	2.2	1.5	1.1	1.1	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
9/29/2005	1,727	1.2	1.2	1.2	1.2	1.2	1.2	1.1	1.0	1.4	1.3	1.2	0.6	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
9/30/2005	399	0.3	0.3	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0,3
					_																				

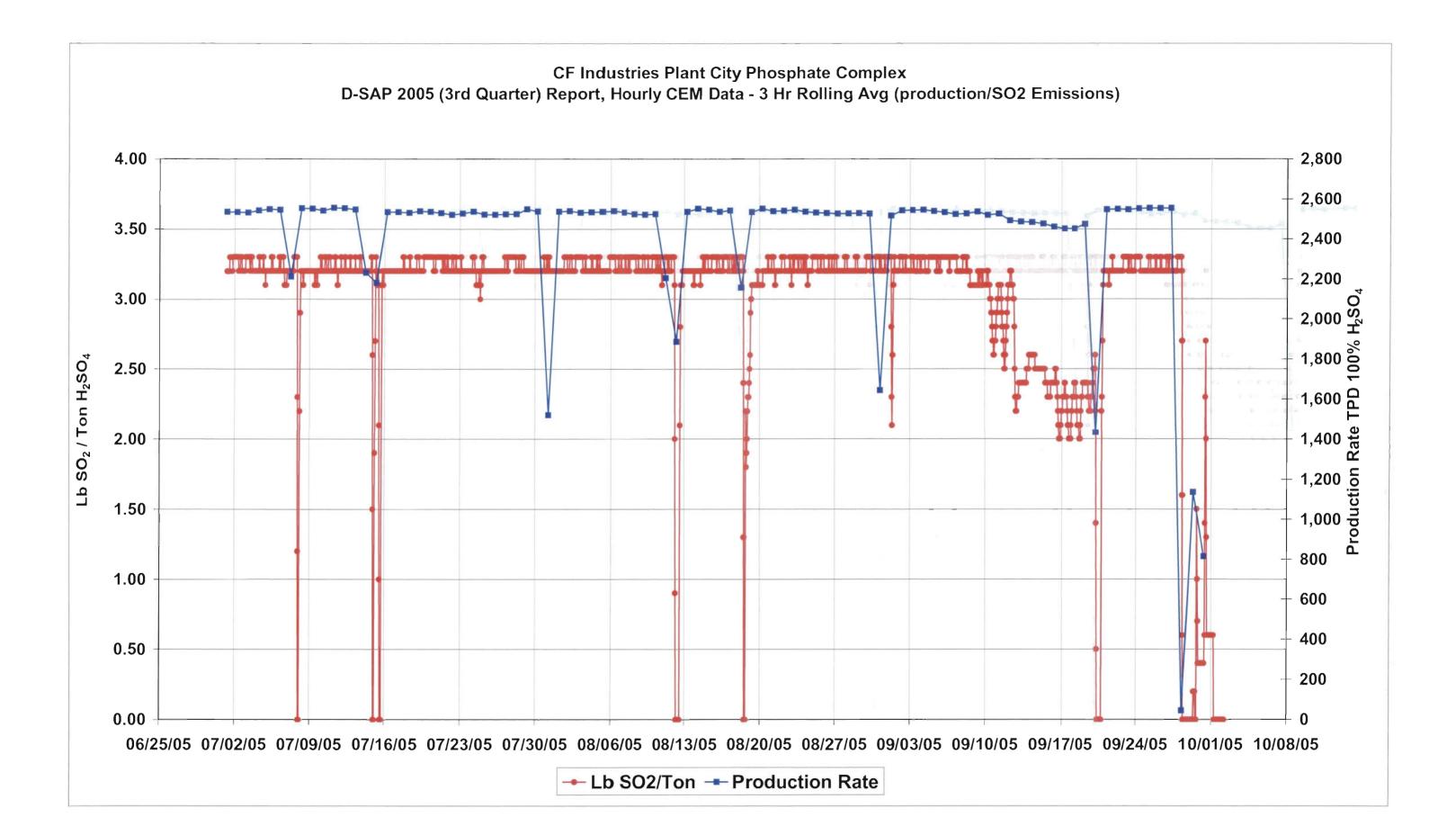
CF Industries, Inc. Plant City Phosphate Complex D-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄

July 1, 2005 6:00 AM

• • • •

Through October 1, 2005 6:00 AM

Number line							July	1, 20									·		0.007							
Tree (Edge) Norm									3.	Hr Rolli	ing Ave	rage Per	iod (Pre	vious 2	nrs & Ind	licated	Hr)									
TOBME Like Like <thlike< th=""> Like Like <th< td=""><td></td><td>Daily Prod. Tons H2SO4</td><td>6:00 AM</td><td>7:00 AM</td><td>8:00 AM</td><td>9:00 AM</td><td>10:00 AM</td><td>11:00 AM</td><td>12:00 PM</td><td>1:00 PM</td><td>2:00 PM</td><td>3:00 PM</td><td>4:00 PM</td><td>5:00 PM</td><td>6:00 PM</td><td>7:00 PM</td><td>8:00 PM</td><td>9:00 PM</td><td>10:00 PM</td><td>11:00 PM</td><td>12:00 AM</td><td>1:00 AM</td><td>2:00 AM</td><td>3:00 AM</td><td>4:00 AM</td><td>5:00 AM</td></th<></thlike<>		Daily Prod. Tons H2SO4	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 PM	7:00 PM	8:00 PM	9:00 PM	10:00 PM	11:00 PM	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM
TOBBE LAB LAB <thlab< th=""> <thlab< td="" th<=""><td>7/1/2005</td><td>2,536</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.2</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.2</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td><td>3.3</td></thlab<></thlab<>	7/1/2005	2,536	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
Presses EAA 132 133 133 132 132 132 132 132 133	7/2/2005	2,534		3.3	3.3			3.2	3.2	3.3	3.3		3.3													
THEORY Fibe 13 <									-																	
Pressor Fide 32 33																										
mboxi jin ji ji< ji ji </td <td></td>																										
mbcoli f.sk4 12																										
masses constant <					_															<u> </u>						
TYTEQ06 5.442 13 33 13																										
TPT22006 2.564 3.3 3.3 3.4 3.4 3.2			3.2						3.3	3.3	3.2	3.2	3.2	3.2											3.2	3.2
77470206 2.546 33 3.2																										
778/2000 2,241 32 31 32 32 33 3.2 3.3 3.4 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
Triffecols 111 12 131 132 131 132 131 131 132 131 131 132 133 1																										
methods 2iss 12 12 13																										
Trificols j.is j.js																										
TH82006 L559 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.																										
778/2006 2658 3.3 3									3.2		3.2	3.2	3.2											3.3	3.3	
7772006 2650 3.3 3.																										
TP22006 2651 3.3 3.3 3.3 3.3 3.2 3.3 3.																										
TP22005 26.28 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3.3 3.3 718/2005 2,537 3.2 <td></td>																										
TPR2006 2.537 3.3 3.3 3.2																										
TPSPOOD 2.63 3.2 3.3																										
TYRIZODE 2.52 3.3 3.3																3.2										
TYRR2006 2625 3.2											3.2	3.2	3.2											3.2		
TPSP2006 2.649 3.2																										
TY002006 2.538 3.2																										
79/12005 1,21 3.3 3.3 3.2																										
bit2005 2,537 3.2 3.2 3.2 3.2 3.2 3.2 3.3 3																										
bit2/2006 2.640 3.3 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
8/2/2005 2,552 3.3 3.3 3.3 3.3 3.2																3.3					3.3					
bis/2005 2,536 3.2 3.3												3.2	3.3			3.2				3.2	3.2		3.2	3.2		
86/2005 2,540 3.3			3.3		3.3		3.2	3.2																		
87/2005 2,533 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3																										
8/8/2005 2,524 3.3 3.3 3.3 3.2																										
8/9/2005 2,522 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3																										
Bill Bill <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																										
8/1/2005 2,205 3.3 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.3		,		+																						
8/12/2005 1,886 0.0 0.0 0.0 0.0 Startup Startup 2.1 2.8 3.1 3.1 3.1 3.2<		·								3.3	3.2	3.2													0.9	
8/14/2005 2,552 3.2 3.2 3.2 3.1 3.2 3.2 3.3					0.0		0.0																			
8/15/2005 2,547 3.2 3.2 3.2 3.2 3.2 3.3																										
8/16/2005 2,536 3.2 3.2 3.2 3.3 3.2 3.3																										
bit of 2 bit bi																										
8/18/2005 2,157 3.3 3.3 3.3 3.2 2.4 1.3 Startup Startup 2.2 1.8 1.9 2.0 2.2 2.3 2.3 2.4 2.5 2.6 2.9 3.0 3.0 8/19/2005 2,535 3.1																										
8/19/2005 2,535 3.1																										
8/20/2005 2,552 3.1 3.2 3.3 3.3 3.2 3.2 3.2 3.3 3.3 3.2 3.2 3.2 3.2 3.3 3.3 3.2														3.1	3.1	3.2	3.2		3.1	3.1	3.1	3.1				
	8/20/2005				3.2	3.2		3.2																		
8/22/2005 2,541 3.3 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2																										
	8/22/2005	2,541	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.1	3.2	3.2	3.3	3.3	3.3	3.2


CF Industries, Inc. Plant City Phosphate Complex D-SAP Quarterly Report, Hourly Stack CEM Data - Lb SO₂/Ton H₂SO₄ Through October 1, 2005 6:00 AM

July 1, 2005 6:00 AM

• • • •

3-Hr Rolling Average Period (Previous 2hrs & Indicated Hr)

								<u></u>	-Mr Rolli	ng Aver	age Per	<u>100 (Pre</u>	evious z	nrs & inc	alcated	<u>Hr)</u>	·	<u> </u>							
	Daily Prod. Tons H2SO4	6:00 AM	7:00 AM	8:00 AM	9:00 AM	10:00 AM	11:00 AM	12:00 PM	1:00 PM	2:00 PM	3:00 PM	4:00 PM	5:00 PM	6:00 P M	7:00 PM	8:00 PM	9:00 PM	10:00 PM	11:00 PM	12:00 AM	1:00 AM	2:00 AM	3:00 AM	4:00 AM	5:00 AM
8/23/2005	2,546	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2
8/24/2005	2,536	3.3	3.3	3.3	3.2	3.2	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3:3	3.3	3.3	3.3	3.3	3.3	3.3
8/25/2005	2,532	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2
8/26/2005	2,530	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2
8/27/2005	2,527	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2
8/28/2005	2,528	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2
3/1/2005	2,529	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3
8/30/2005	2,527	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2
8/31/2005	1,644	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/1/2005	2,517	3.3	2.8	2.3	2.1	2.6	3.1	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3
9/2/2005	2,543	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3
9/3/2005	2,544	3.3	3.2	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3
9/4/2005	2,546	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/5/2005	2,540	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/6/2005	2,534	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/7/2005	2,525	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2
9/8/2005	2,528	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1
9/9/2005	2,537	3.1	3.2	3.2	3.2	3.1	3.1	3.2	3.2	3.2	3.2	3.1	3.1	3.2	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.2	3.2
9/10/2005	2,520	3.2	3.2	3.1	3.1	3.1	3.0	3.0	3.0	2.9	2.9	2.8	2.7	2.7	2.6	2.6	2.7	2.7	2.7	2.8	2.9	2.9	3.0	3.0	3.1
9/11/2005	2,526	3.1	3.1	3.1	3.1	3.1	3.0	2.9	2.8	2.8	2.8	2.7	2.6	2.5	2.5	2.6	2.7	2.8	2.8	2.9	3.0	3.1	3.1	3.1	3.1
9/12/2005	2,493	3.2	3.2	3.2	3.2	3.1	3.1	3.1	3.0	3.0	3.0	2:8	2.5	2.3	2.2	2.2	2.2	2.3	2.3	2.3	2.3	2.4	2.4	2.4	2.4
9/13/2005	2,487	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.5	2.5	2.5	2.5	2.5	2.6	2.6	2.6	2.6	2.6	2.6
9/14/2005	2,484	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
9/15/2005	2,477	2.5	2.5	2.5	2.5	2.5	2.4	2.4	2.4	2.4	2.4	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.4	2.4	2.4	2.4	2.4	2.4	2.4
9/16/2005	2,461	2.4	2.4	2.4	2.5	2.5	2.5	2.4	2.4	2.3	2.2	2.1	2.0	2.0	2.0	2.0	2.1	2.1	2.2	2.2	2.2	2.3	2.3	2.3	2.3
9/17/2005	2,452	2.4	2.4	2.4	2.3	2.3	2.3	2.3	2.2	2.1	2.1	2.0	2.0	2.0	2.0	2.0	2.0	2.1	2.2	2.2	2.3	2.3	2.3	2.3	2.4
9/18/2005	2,452	2.4	2.4	2.4	2.4	2.3	2.3	2.2	2.1	2.1	2.1	2.1	2.0	2.0	2.0	2.0	2.1	2.2	2.3	2.3	2.3	2.4	2.4	2.4	2.4
9/19/2005	2,475	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.3	2.3	2.2	2.2	2.2	2.2	2.3	2.3	2.3	2.4	2.4	2.5	2.5	2.5	2.5	2.6
9/20/2005	1,433	2.2	1.4	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Startup	Startup	Startup	2.2	2.3	2.7	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.2
9/21/2005	2,548	3.2	3.2	3.2	3.2	3.1	3.1	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
9/22/2005	2,550	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/23/2005	2,548	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
9/24/2005	2,553	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3
9/25/2005	2,555	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2
9/26/2005	2,554	3.3	3.3	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.2	3.2	3.2	3.3	3.3	3.3	3.3
9/27/2005	2,555	3.3	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.2	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.2
9/28/2005	45	2.7	1.6	0.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
9/29/2005	1,135	0.0	0.2	0.2	0.2	0.2	Startup	Startup	Startup	1.5	1.0	0.7	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
9/30/2005	814	0.4	0.4	0.6	1.4	2.3	2.7	2.0	1.3	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
				_																					

. . . .

ATTACHMENT 3 - DOCUMENTATION OF CESIUM CATALYST INSTALLATION

:

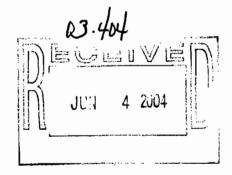
* *:

..i

HALDOR TOPSOE, INC.

GÉNERAL OFFICES • 17629 EL CAMINO REAL, 3RD FLOOR • HOUSTON, TEXAS 77058 PHÓNE: (281) 228-5000 • FAX: (281) 228-5019 • WWW.HALDORTOPSOE.COM MANUFACTURING FACILITY • PHONE: (281) 228-5201 • FAX: (281) 228-5209

CF Industries, Inc. Attn: Department 510 PO Box 1480 Bartow FL 33831-1480


Invoice	
Repeat pri	
Invoice No.: (90009910
Date: (May. 31, 2004
Your ref. No.:	AFE65370P
Your ref. No.: Sales order No.:	AFE66370P 3071

Ship-to address: CF Industries, Inc. 10608 Paul Buchman Hwy. N E R E Plant City FL 33565 JUN 2004 18 Terms of payment: Net cash 30 days from invoice Terms of delivery: FCA Port of Miami ins by HTI ppd HTI to handle customs clearance at Port 12 of Miami, risk transfer will occur at port Price Quantity Unit Description Per unit Value USD 21,000.0 L VK69, Topsoe Sulphuric Acid 5.50 USD 1 L 115,500.00 Catalyst 12 mm Daisy

42,000.0 L VK69, Topsoe Sulphuric Acid Catalyst 12 mm Daisy

FO CHARGE

APPROVAL RETURN TO ACCOUNTS MAYABLE CF INDUSTRIES, INC.

5.50 USD

Ð,

1 L

231,000.00

HALDOR TOPSOE, INC. GENERAL OFFICES • 17629 EL CAMINO REAL, 3RD FLOOR • HOUSTON, TEXAS 77058 PHONE: (281) 228-5000 • FAX: (281) 228-5019 • WWW.HALDORTOPSOE.COM MANUFACTURING FACILITY • PHONE: (281) 228-5201 • FAX: (281) 228-5209

Invoice	
Repeat	printout
Invoice No.:	90009910
Page:	2 / 2

Quantity Unit	Description	Price	Per unit	Value USD
102,000.0 L	VK69, Topsoe Sulphuric Acid Catalyst 12 mm Daisy	5.50 USD	1 L	561,000.00
Total items	Éroight			907,500.00

Total amount

Freight

5,193.00 912,693.00

If paying by check, please pay to: Haldor Topsoe, Inc. P.O. Box 200322 Houston, TX 77216-0322

If paying by bank wire, please pay to: JP Morgan Chase Bank S.W.I.F.T. Code: TCBK US44 ABA 1130 00609. For Account of: Haldor Topsoe, Inc., No. 00100891705

Inc. Haldor Topsoe.

MATERIAL SAFETY DATA SHEET VK69

1.1 IDENTIFICATION OF PRODUCT.

Designation: VK69. Sulphuric acid catalyst.

1.2 COMPANY.

Haldor Topsoe, Inc.	Phone:	(281) 228-5000
17629 El Camino Real	Fax:	(281) 228-5209
Houston, TX 77058, USA	Emergency	
	Phone:	(281) 228-5000

2 HAZARDOUS AND OTHER INGREDIENTS.

Exposure limits may vary. It is recommended that information about locally applicable exposure limits be obtained.

%w/w	Compound		CAS No M	AAK mg/m ³ (Germany)	TLV mg/m ³ (ACGIH)	PEL mg/m ³ (OSHA)
5-9	Vanadium pentoxide	V_2O_5	1314-62-1	0.05 (rcsp)	0.05 resp	0.05 (resp)
10-20	Potassium sulphate	K ₂ SO ₄	7778-80-5	-	•	-
5-15	Cesium sulphate	Cs_2SO_4	10294-54-9	-	-	-
1-8	Sodium sulphate	Na_2SO_4	7757-82-6	-	-	-
55-70	Silica, diatomaceous earth	SiO ₂	61790-53-2	4	10	6
	- calcined		68855-54-9	0.3 (resp)	-	-
1-5 5	Silica, crystalline	SiO ₂		· • /		
	Cristobalite	-	14464-46-1	0.15 (resp)	0.05 (resp)	0.05 (resp)
	Quartz.		14808-60-7	0.15 (resp)	0.1 (resp)	0.1 (resp)
	Tridymite		15468-32-3	0.15 (resp)	0.05 (resp)	0.05 (resp)

3 PHYSICAL DATA.

State: Appearance and odour: pH: Boiling point or range: Melting point or range: Vapour pressure: Vapour density: Density relative to water: Solubility in water: Partition coefficient	Solid Greenish yellow.Extruded pellets.Odourless. Not applicable. Silica above 1600 °C / 2910 °F ; alkalisulphates above approx 400 °C / 750 °F. Not applicable. Not applicable. Above 1. Alkalisulphates soluble. Vanadium compounds partly soluble.
	Not applicable.

En P.O. B	viro-C	t. Louis, MO 6	Systems, In 3178 • Phone: (314)275-	I C. 5700 • Fax: (314)27	5-5701		, Cu	NVOICI ustomer Orig	inal
SHIPF	PER'S NBR 5585CA	BO# 0	DATE ENTERED	CUSTOMER'S	ORDER NB	7		CE DATE 1/2005	INVOICE NUMBER 19658
	S T 30 DAYS		•	,	PROJECT	NBF	DATE		OREIGN SHIPPER NBR
PREPA	AID OR COLI		Э					MCB	#
	EPAID ERY F.O.B			RANGER - FLA TAX EXEMPT NBF		ER			*
		ION		39-00-135828-6	3				
	ED FROM			WHSE CODE CA-1986	PROD.C	RP	SLS T		
<u> </u>	F Industries			0.11000				L	
О Р.	O. Drawer "I	-							.
				00504 0007				PAYMEN AKE CHECKS F	
-	ant City hited States		FL	335649007			PLEASE M		PATABLE TO:
0					1	Мо	nsanto E	nviro-Chem	
S CF	F Industries		•		1		. Box 945		_
	608 Paul Bu	chman Highway	/			Atla	nta, GA	30394-5520	6
			- 1	00505 0007					NUCLOS
	ant City nited States		FL	335659007				E REFERENCE WITH YOUR RE	
0									· · · · · · · · · · · · · · · · · · ·
ITEM			DESCRIPTION		B/C QT		SHIP QTY	UNIT COST	AMOUNT
					· ·		<u> </u>		
1	LTR SCX-2000/		200 LITER BAGS			0	164,400	\$5.3	5 \$879,540.00
2	LTR SCX-2000/		200 LTR DRUM			0	600	\$5.3	5 \$3,210.00
	** N	O TAX APPLIE	D **					** SUBTOTAL	** 882,750.00
								** TOTAL **	882,750.00
	SHIP ON F	LAT BED TRA	LERS (SIDE LOADED						
	SHIP 2/DA TO ARRIVI	Y E BETWEEN 7/	AM - 12 NOON						
	SHIP XLP-	220 FIRST (FF	ROM P.O. 62207P0						
									1
					F	R	TE	RE	
		仰星	CEIVER				FEB 2	3 2005	
		$\int \frac{1}{1} + FE$	B 18 2000	<u>})/</u> .					
			· · · · · · · · · · · · · · · · · · ·	//			rax 1		
2	1997-1996). Fra	CCX COLO II 13	CHELLOUNW /			9	<i>6</i> .Ж	Sec. A.	a nginjinin a
	RAN MARTI	200				1	х. Т.	• 2	n 1990
Page:	1		Subject to 0	.05% per day late pa	ayment charge			A	R.DIN.CA (REV. 12/95)

AR.DIN.CA (REV. 12/95)

•

_

Page: 1

۰.

MONSANTO Company

Material Safety Data

1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME:	SULFURIC ACID CATALYST TYPE SCX-2000	DATE: January 17, 2002
CHEMICAL NAME:	Mixture of complex inorganic salts (oxosulfato vanadates) vanadium salts on amorphous silica support	containing cesium, potassium and
SYNONYMS:	None	

MONSANTO COMPANY, 800 N. LINDBERGH BLVD., ST. LOUIS, MO 63167

FOR CHEMICAL EMERGENCY, SPILL LEAK, FIRE, EXPOSURE, OR ACCIDENT Call CHEMTREC - Day or Night - 1-800-424-9300 Toll free in the continental U.S., Hawaii, Puerto Rico, Canada, Alaska, or Virgin Islands. For calls originating elsewhere: 703-527-3887 (collect calls accepted)

For additional non-emergency information, call: 314-694-6661

2. COMPOSITION/INFORMATION ON INGREDIENTS

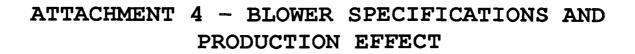
COMPONENT	CAS NO.	% BY WEIGHT
Vanadium/cesium/potassium salt complex *	not available	40 - 49
Diatomaceous earth (amorphous silica)	68855-54-9	51 - 60

* Hazardous chemical(s) under the criteria of the OSHA Hazard Communication Standard (29 CFR 1910.1200). # National Toxicology Program (NTP) and International Agency for Research on Cancer (IARC) listed carcinogen.

3. HAZARDS IDENTIFICATION

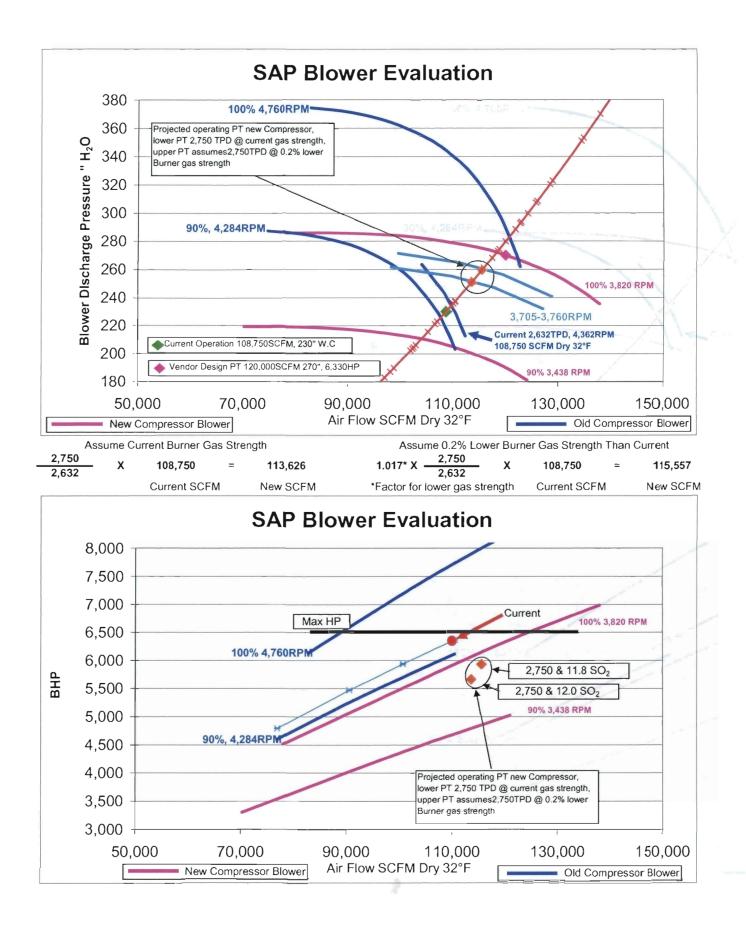
EMERGENCY OVERVIEW

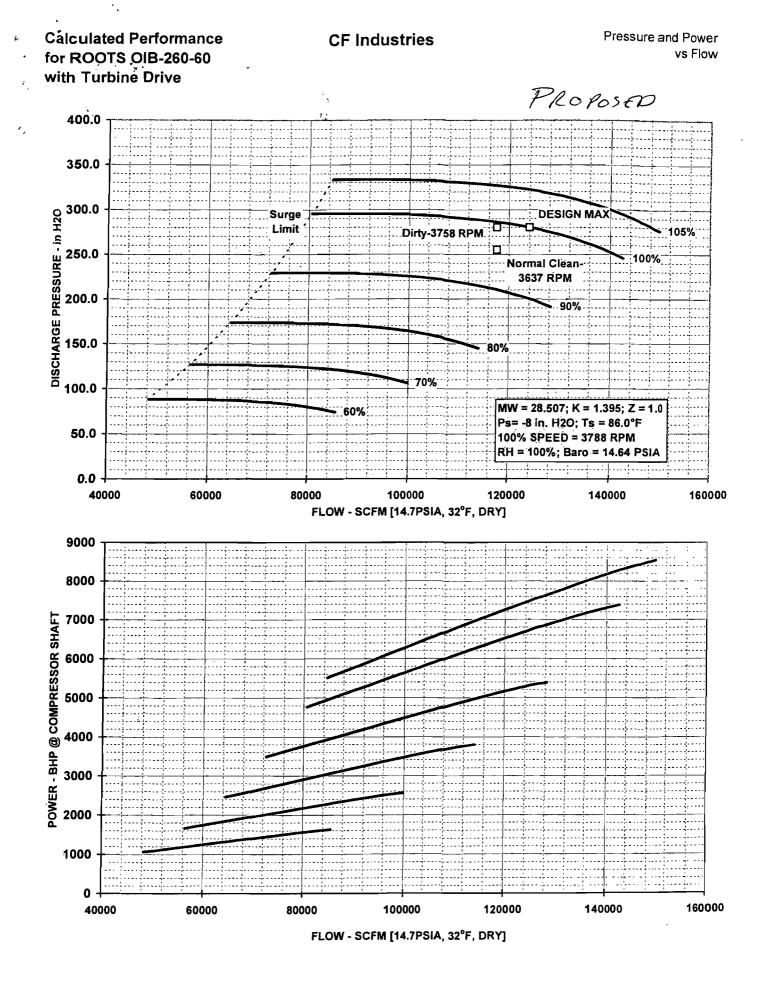
WARNING! CAUSES EYE, SKIN AND RESPIRATORY TRACT IRRITATION MAY BE HARMFUL IF SWALLOWED

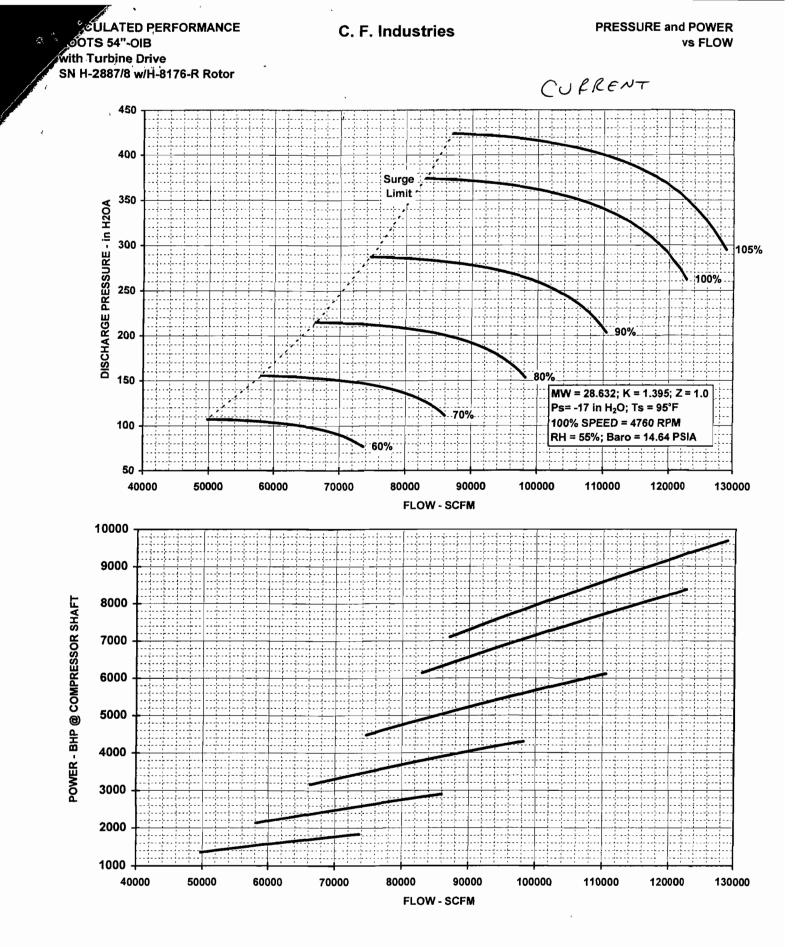

APPEARANCE AND ODOR: yellow to light green pellets or rings

POTENTIAL HEALTH EFFECTS

LIKELY ROUTES OF EXPOSURE: skin contact and inhalation


EYE CONTACT: causes pain, redness and tearing based on toxicity studies on the components. Dust may cause eye irritation as would any foreign material.


SKIN CONTACT: no more than slightly toxic or irritating based on toxicity studies. Dust grittiness may cause slight irritation.


. بریانی ا

.

Dresser ROOTS DRESSER, INC. CONNERSVILLE, INDIANA

