CleanAir.

CleanAir Engineering 500 W. Wood Street Palatine, IL 60067-4975 800-627-0033 www.cleanair.com

Wheelabrator North Broward, Inc. 2600 NW 48th Street Pompano Beach, FL 33073

RECEIVED

APR 27 2010 BUREAU OF AIR REGULATION

REPORT ON COMPLIANCE TESTING

Performed for: WHEELABRATOR NORTH BROWARD, INC. ASH HANDLING SYSTEM, LIME SILO VENTS, UNITS 1, 2 AND 3 SDA INLETS, FF OUTLETS AND STACKS POMPANO BEACH, FL VOLUME I OF II

> CleanAir Project No: 10955-2 Revision 0: April 23, 2010

To the best of our knowledge, the data presented in this report are accurate, complete, error free, legible and representative of the actual emissions during the test program.

Submitted by,

Scott Brown Project Manager sbrown@cleanair.com (800) 627-0033 ext. 4544 Reviewed by,

Kevin O'Halloren, P.E. Project Manager kohalloren@cleanair.com (800) 627-0033 ext. 4661

/2010

1.58

(1967) (L

S / 1

ς.

Wheelabrator North Broward Inc.

A Waste Management Company

2600 Wiles Road Pompano Beach, FL 33073 (954) 971-8701 Tel (954) 971-8703 Fax

April 27, 2010

UPS# 1Z26X1500394865542

Mr. Lennon Anderson Air Program Administrator Florida Department of Environmental Protection Southeast District 400 North Congress Ave., Suite 200 West Palm Beach, FL 33401 APR 27 2010 BUREAU OF AIR REGULATION

Re: Wheelabrator North Broward 2010 Annual Compliance Stack Test and RATA Reports

Dear Mr. Anderson:

Please find enclosed a copy of the final compliance stack test report and the continuous emissions monitoring system certification RATA report for testing conducted on March 16-18 of this year by Clean Air Engineering, Inc.

1, the undersigned, am a responsible official, as defined in Rule 62-210.200, F.A.C., of the Title V source addressed in this submittal. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements and information in this document are true, accurate and complete.

If there are any questions, please contact this office at (954) 971-8701.

Sincerely,

Scott McIlvaine Plant Manager

Ð

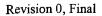
cc: USEPA, Region IV, Pesticides and Toxics Management Division, Air & EPCRA Enforcement Branch, Air Enforcement Section (with) UPS# 1Z26X1500390744304
 FDEP, Tallahassee, Bureau of Air Regulation, New Source Review Section, (with) UPS# 1Z26X1500394730124
 Broward County Department of Planning and Environmental Protection, Air Quality Division (with) UPS# 1Z26X1500393811511

Chuck Faller (with) Ram Tewari – BCWRS (without) Tim Porter (without) Rob French – MPI (with) UPS# 1Z26X1500392976131

Client Reference No: CleanAir Project No: 10955-2

REVISION HISTORY

İİ


REPORT ON COMPLIANCE TESTING

DRAFT REPORT REVISION HISTORY

	Revision:	Date	Pages	Comments
	D0a	04/15/10	All	Draft version of original document.
ſ	_			
Ţ				

FINAL REPORT REVISION HISTORY

Revision:	Date	Pages	Comments
0	04/23/10	All	Final version of original document.

Client Reference No: CleanAir Project No: 10955-2

iii

CO	INTENTS
1	PROJECT OVERVIEW
	INTRODUCTION 1-1
	Key Project Participants 1-1
	Test Program Parameters 1-2
	TEST PROGRAM SYNOPSIS 1-3
	Test Schedule 1-3
	Table 1-1: Schedule of Activities
	Results Summary
	Table 1-2: Summary of Test Results1-4
	Table 1-3: Subpart Cb-required Operating Data 1-5
	Table 1-4: Opacity and Fugitive Emission Test Results 1-5
	Discussion of Test Program1-5
2	RESULTS
	Table 2-1: Unit 1 FF Outlet – Particulate, Metals and Mercury
	Table 2-2: Unit 1 FF Outlet - Fluorides 2-2
	Table 2-3: Unit 1 FF Outlet and SDA Inlet - Hydrogen Chloride
	Table 2-4: Unit 2 FF Outlet – Particulate, Metals and Mercury
	Table 2-5: Unit 2 FF Outlet - Fluorides 2-5
	Table 2-6: Unit 2 FF Outlet - PCDDs/PCDFs 2-6
	Table 2-7: Unit 2 FF Outlet and SDA Inlet - Hydrogen Chloride
	Table 2-8: Unit 3 FF Outlet – Particulate, Metals and Mercury
	Table 2-9: Unit 3 FF Outlet - Fluorides 2-9
	Table 2-10: Unit 3 FF Outlet and SDA Inlet - Hydrogen Chloride
	Table 2-11: Units 1, 2 and 3 FF Outlets – Opacity by COMS 2-11
	Table 2-12: Ash Handling System - Fugitive Emissions
	Table 2-13: Lime Silo Fabric Filter Outlet - Visible Emissions
	Table 2-14: Air Flow Summary 2-13
	Table 2-15: Quality Control and Quality Assurance PCDD/PCDF - Extraction Standard
	Percent Recoveries
	Table 2-16: Quality Control and Quality Assurance PCDD/PCDF – CS/SS Percent
	Recoveries
	Table 2-17: Quality Control and Quality Assurance - Metals 2-15
	Table 2-19: Quality Control and Quality Assurance - Method and Field Blanks 2-17
	Table 2-20: Quality Control and Quality Assurance - Miscellaneous 2-18
3	DESCRIPTION OF INSTALLATION
	Figure 3-1: General Process Schematic 3-1
	Figure 3-2: Process Schematic 3-2
	Table 3-1: Unit 1 Compliance Test Process Data 3-3
	Table 3-2: Unit 2 Compliance Test Process Data 3-4
	Table 3-3: Unit 3 Compliance Test Process Data 3-5

Client Reference No: CleanAir Project No: 10955-2

iv

.CO	NTENTS	
	DESCRIPTION OF SAMPLING LOCATIONS	
	Table 3-4: Sampling Points 3-6	
	Figure 3-3: SDA Inlets - Sampling Point Determination (HCI Sampling) (Units 1, 2 and 3 are	
	identical)	
	Figure 3-4: FF Outlets - Sampling Point Determination (Units 1, 2 and 3 are identical) 3-8	
4	METHODOLOGY	
	Table 4-1: Summary of Sampling Procedures4-1	
5	APPENDIX	
	TEST METHOD SPECIFICATIONS A	
	SAMPLE CALCULATIONSB	
	PLANT DATAC	
	PARAMETERSD	
	QA/QC DATAE	
	ASTM D 6866-08 AND 7459-08 CO2 SAMPLING/ANALYSIS RESULTS F	
	FIELD DATAG	
	FIELD DATA PRINTOUTS	
	LABORATORY DATAI	
	PERTINENT CERTIFICATIONSJ	
	CORRESPONDENCE AND CLARIFICATIONS	

PROJECT OVERVIEW

INTRODUCTION

Wheelabrator North Broward, Inc. operates a Refuse-to-Energy facility, located in Pompano Beach, Florida. The facility's emission levels are regulated by the Florida Department of Environmental Protection (FDEP). Wheelabrator North Broward, Inc. contracted Clean Air Engineering (CleanAir) to perform a compliance test program. The lime silo fabric filter vent was observed for visual emissions (VEs) and the ash handling system was observed for fugitive emissions.

The VEs were determined by the facility's continuous opacity monitor system (COMS) data, as allowed under Title V Conditions A.36 (6), A.53 and A.54. The lime silo fabric filter vent was observed for VEs and the ash handling system was observed for fugitive emissions. Testing was conducted in accordance with the Wheelabrator North and South Broward Protocol on Compliance, dated February 8, 2010, 40 CFR 60 Subpart Cb, and applicable sections of the facility's Title V Permit number 0112120-009-AV.

All testing was conducted in accordance with the regulations set-forth by the United States Environmental Protection Agency (EPA) and the Florida Department of Environmental Protection (FDEP).

Key Project Participants

Individuals responsible for coordinating and conducting the test program were:

C. Faller – Wheelabrator North Broward S. Brown - CleanAir

Lee Hoefert of the FDEP was present for portions of the test program.

The CleanAir test crew consisted of the following individuals:

B. Wiltse R. Vicere P. Bihun N. Hitchins A. Obuchowski B. Arnold

Client Reference No: CleanAir Project No: 10955-2

Client Reference No: CleanAir Project No: 10955-2

1-2

Test Program Parameters

PROJECT OVERVIEW

The sampling was conducted at the Units 1, 2 and 3 Spray Dry Absorption (SDA) Inlet, Fabric Filter (FF) Outlets, Ash Handling System and Lime Silo FF Outlet from March 16 through 18, 2010, and included the following emissions measurements:

- beryllium (Be);
- cadmium (Cd);
- lead (Pb);
- mercury (Hg);
- polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/PCDF); Unit 2 only;
- total suspended particulate (TSP);
- hydrogen chloride (HCl);
- total fluoride;
- fugitive emissions (FE);
- visual emissions (VE).

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS

Test Schedule

The on-site schedule followed during the test program is outlined in Table 1-1.

Table 1-1:							
		Schedule of A	ctivities				
Run Number	nber Location Method Analyte Date						
1	Unit 3 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/16/10	07:17	08:17	
1	Unit 1 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/16/10	07:21	09:32	
1	Unit 2 FF Outlet	USEPA Method 23	PCDD/F	03/16/10	08:44	13:36	
2	Unit 3 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/16/10	09:04	10:04	
2	Unit 1 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/16/10	10:00	12:14	
3	Unit 3 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/16/10	10:32	11:32	
1	Unit 3 FF Outlet	USEPA Method 13B	Total Fluorides	03/16/10	11:49	13:07	
3	Unit 1 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/16/10	12:36	14:47	
3 2 3	Unit 3 FF Outlet	USEPA Method 13B	Total Fluorides	03/16/10	13:33	14:44	
3	Unit 3 FF Outlet	USEPA Method 13B	Total Fluorides	03/16/10	15:07	16:16	
1	Unit 3 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/17/10	06:50	09:03	
1	Unit 2 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/17/10	06:54	07:54	
2	Unit 2 FF Outlet	USEPA Method 23	PCDD/F	03/17/10	06:54	12:19	
2	Unit 2 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/17/10	09:02	10:02	
2	Unit 3 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/17/10	09:26	11:38	
3	Unit 2 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/17/10	10:25	11:25	
1	Lime Silo	USEPA Method 9	Opacity	03/17/10	10:26	11:45	
1	Unit 1 FF Outlet	USEPA Method 13B	Total Fluorides	03/17/10	11:46	12:56	
3	Unit 3 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/17/10	11:59	14:11	
3 3 2	Unit 2 FF Outlet	USEPA Method 23	PCDD/F	03/17/10	12:53	17:26	
2	Unit 1 FF Outlet	USEPA Method 13B	Total Fluorides	03/17/10	13:15	14:27	
3	Unit 1 FF Outlet	USEPA Method 13B	Total Fluorides	03/17/10	14:45	15:53	
1	Unit 1 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/18/10	07:02	08:02	
1	Unit 2 FF Outlet	USEPA Method 13B	Total Fluorides	03/18/10	07:09	08:24	
1	Unit 2 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/18/10	07:09	09:22	
· 1	Ash Handling System	USEPA Method 22	Fugitive Emissions	03/18/10	07:22	12:20	
2	Unit 2 FF Outlet	USEPA Method 13B	Total Fluorides	03/18/10	08:56	10:10	
2	Unit 1 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/18/10	09:26	10:37	
2	Unit 2 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/18/10	09:49	12:02	
2 3	Unit 2 FF Outlet	USEPA Method 13B	Total Fluorides	03/18/10	10:45	12:05	
3	Unit 1 SDA Inlet/FF Outlet	USEPA Method 26A	HCI	03/18/10	11:49	12:49	
3	Unit 2 FF Outlet	USEPA Method 5/29	Particulate/Metals	03/18/10	12:27	14:39	

Client Reference No: CleanAir Project No: 10955-2

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS (CONTINUED)

Results Summary

Table 1-2 summarizes the results of the test program. A more detailed presentation of the test conditions and results of analysis are shown in Tables 2-1 through 2-20 on pages 2-1 through 2-18. Subpart Cb-required operating data is summarized in Table 1-3, and opacity and fugitive emission results are presented in Table 1-4, both on page 1-5.

Table 1-2: Summary of Test Results						
Source	Average Unit 1	Average Unit 2	Average Unit 3	Permit Limit ¹		
Constituent						
Particulate (mg/dscm @7% O₂)	<0.54	1.6	0.84	25		
Visual Emissions (%, by COMS) ²	2	0	2	10		
Fluoride (lb/MMBtu as HF) ³	<0.000036	<0.000038	<0.000038	0.0040		
Total PCCD/PCDF (ng/dscm @ 7% O₂)	NA	0.41	NA	30		
Hydrogen Chloride (ppmdv @ 7% O₂) <u>or</u>	20	18	18	29		
Hydrogen Chloride Removal (%) ^⁴	97%	96%	97%	>95		
Beryllium (mg/dscm @ 7% O₂)	<0.00003	<0.00003	<0.00003	0.001		
Cadmium (mg/dscm @ 7% O₂)	<0.00011	<0.00016	<0.00011	0.035		
Lead (mg/dscm @ 7% O ₂)	0.00062	<0.00051	0.00016	0.40		
Mercury (µg/dscm @ 7% O₂)	4.7	5.2	4.6	50		
Average Steam Flow (Klbs/hr)⁵	183.8	184.0	184.1	186		
Average FF Inlet Temperature (^o F) ⁵	318	320	312	NA		

¹ Limits obtained from facilities Title V Permit 0112119-009-AV.

²Visual Emissions (opacity) was obtained from the facilities COMS data as allowed under Title V Conditions B.53(6), B.76 and B.81. ³Ib/MMBtu calculations used Fd of 9,570 for MSW as per Method 19.

⁴ Removal for hydrogen chloride calculated in the unit of its standard (ppmdv @ 7% O₂). The hydrogen chloride limit is

29 ppmd v @ 7% O2 or 95% removal, which ever is less stringent.

⁵ From all compliance test runs.

Client Reference No: CleanAir Project No: 10955-2

Client Reference No: CleanAir Project No: 10955-2

	Tał Subpart Cb-requ	ole 1-3: lired Operati	ng Data		
Proc	ess Condition				
Unit	1 Maximum Demonstrated Combustor	·Load (Klbs/h	r) ¹	184.5 ²	
Unit 2	2 Maximum Demonstrated Combustor	·Load (Klbs/h	r) ¹	184.3	
Unit 3	3 Maximum Demonstrated Combustor	Load (Klbs/h	r) ¹	184.1 ³	
Unit '	1 Maximum Particulate Control Device	Inlet Tempe	rature (°F) ⁴	322 ²	
Unit 2 Maximum Particulate Control Device Inlet Temperature (°F) ⁴ 321					
Unit 2	2 Maximum Particulate Control Device	iniet i empei	rature (***)	321	
Unit 3 ¹ From ² From ³ From	2 Maximum Particulate Control Device 3 Maximum Particulate Control Device 40CFR60.58b (i) (8) the maximum demonstrat CleanAir Cb test report dated April 22, 2009 (F CleanAir Cb test report dated April 30, 2008 (F 40CFR60.58b (i) (9) the highest four hour aver	ed load during P Project 10735). Project 10455).	CDD/PCDF test	325 ³	-
Unit 3 ¹ From ² From ³ From	3 Maximum Particulate Control Device 40CFR60.58b (i) (8) the maximum demonstrat CleanAir Cb test report dated April 22, 2009 (F CleanAir Cb test report dated April 30, 2008 (F 40CFR60.58b (i) (9) the highest four hour aver Tab	Inlet Temper ed load during P Project 10735). Project 10455). rage during PCD	CDD/PCDF test	325 ³	-
Unit 3 ¹ From ² From ³ From	3 Maximum Particulate Control Device 40CFR60.58b (i) (8) the maximum demonstrat CleanAir Cb test report dated April 22, 2009 (F CleanAir Cb test report dated April 30, 2008 (F 40CFR60.58b (i) (9) the highest four hour aver	Inlet Temper ed load during P Project 10735). Project 10455). rage during PCD	CDD/PCDF test	325 ³	
Unit : ¹ From ² From ³ From ⁴ From <u>urce</u>	3 Maximum Particulate Control Device 40CFR60.58b (i) (8) the maximum demonstrat CleanAir Cb test report dated April 22, 2009 (F CleanAir Cb test report dated April 30, 2008 (F 40CFR60.58b (i) (9) the highest four hour aver Tab Opacity and Fugitive	Inlet Temper ed load during P Project 10735). Project 10455). rage during PCD Ile 1-4: Emission Te Sampling	CDD/PCDF test D/PCDF testing.	325 ³ ing, four hour average. Permit	
Unit : ¹ From ² From ³ From ⁴ From <u>urce</u>	3 Maximum Particulate Control Device 40CFR60.58b (i) (8) the maximum demonstrat CleanAir Cb test report dated April 22, 2009 (F CleanAir Cb test report dated April 30, 2008 (F 40CFR60.58b (i) (9) the highest four hour aver Tab Opacity and Fugitive Constituent ing System ² Fugitive Emissions (% of obseravtion time)	Inlet Temper ed load during P Project 10735). Project 10455). rage during PCD Ile 1-4: Emission Te Sampling	rature (°F) ⁴ CDD/PCDF test D/PCDF testing. est Results Results 0	325 ³ ing, four hour average. Permit Limit ³ 5%	
Unit : ¹ From ² From ³ From ⁴ From <u>urce</u>	3 Maximum Particulate Control Device 40CFR60.58b (i) (8) the maximum demonstrat CleanAir Cb test report dated April 22, 2009 (F CleanAir Cb test report dated April 30, 2008 (F 40CFR60.58b (i) (9) the highest four hour aver Tab Opacity and Fugitive Constituent ing System ²	Inlet Temper ed load during P Project 10735). Project 10455). age during PCD Ile 1-4: Emission Tr Sampling Method	rature (°F) ⁴ CDD/PCDF test D/PCDF testing. est Results Results	325 ³ ing, four hour average. Permit Limit ¹	

³ The Lime Silo was observed for one complete truck unloading.

Discussion of Test Program

All test methods were done in triplicate. All data that is reported in the units of lb/MMBTU utilized the Fd of 9,570 as per EPA Method 19.

All equipment utilized for compliance testing was manufactured by Clean Air Engineering, except for the Servomex O_2/CO_2 analyzer utilized for all of the integrated gas sample bag analysis.

Client Reference No: CleanAir Project No: 10955-2

1-6

PROJECT OVERVIEW TEST PROGRAM SYNOPSIS (CONTINUED)

During the compliance testing, all three (3) boilers were operated within 10% of the 186,000 lb/hr maximum steam flow rating. The result tables present each boiler's steam output for every test run.

Raina Vicere performed the fugitive emission readings (per EPA Method 22) on the Ash Handling System and conducted the VE readings (per EPA Method 9) on the Lime Silo during one (1) entire truck unloading. Ms. Vicere's VE evaluation certificate is presented in Appendix J.

Any fractions of the mercury analysis that were reported as not detected were summed as zero if there was at least one (1) fraction detected in that run. The beryllium, cadmium and lead front- and back-half fractions were combined proportionately for analysis, per EPA Method 29, Section 5.4.

Field blanks were collected for the Method 23 and 29 testing by assembling a used set of glassware, taking the complete train to the outlet location and performing a leakcheck. These samples were treated exactly as the other samples. The results for the Method and Field Blanks are presented in Table 2-19 on page 2-17, as well as Appendix I. The results of the Method 29 reagent blank analysis were used to correct any data, as outlined in Method 29.

All Method 23 samples were analyzed with the DB-5S column with modified calibration and additional quality assurance procedures as a direct substitute for the DB-5 and DB-225 columns. Confirmation of the 2,3,7,8 TCDF and TCDD 2,3,7,8 isomers was performed on the DB-5S column. The DB-5S column and modified calibration procedures meet the column separation requirement and can be used as a direct substitute for the DB-5 and DB-225 columns, in accordance with Method 23 as approved by the EPA. All QA/QC data (spikes and recoveries) for Method 23, as well as the EPA Audit Sample results, are presented in Appendix I.

The Method 23 results for all three (3) runs contained at least one (1) estimated maximum possible concentration (EMPC) value. EMPC results do not meet all the identification criteria required by Method 23 to be positively identified as a dioxin or furan. Specifically, the integrated ion abundance ratios were not within 15% of the theoretical value limits specified in Method 23, Section 5.3.2.5, Table 4. The laboratory reports EMPC results as zero and, for this reason, all EMPC results are enclosed in brackets and are considered zero when calculating total dioxin/furans.

Chuck Faller of Wheelabrator North Broward, Inc. provided the process (operating) data. This data is presented in its entirety in Appendix C. All process data and CleanAir run times are based on facility CEM and Bailey Computer Time, which is 70 minutes earlier than actual Eastern Standard Time (EST). The Lime Silo opacity start and stop times are based on CEM time; however, the initial and final truck weights were recorded using EST.

Client Reference No: CleanAir Project No: 10955-2

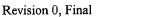
1-7

PROJECT OVERVIEW

TEST PROGRAM SYNOPSIS (CONTINUED)

Integrated gas samples (IGS) were collected in a vinyl sample bag from every sample train. The contents of the bag were then analyzed for oxygen (O_2) and carbon dioxide (CO_2) concentrations using an O_2/CO_2 continuous monitoring analyzer calibrated with EPA Protocol gases. A linearity and bias check was performed on the analyzers before each set of bags was analyzed, and then a post bias check was performed after each set of bags was analyzed. All data was recorded using CleanAir's data acquisition system. The results of the IGS bag analyses are presented in Appendix G.

Metals and particulate matter sampling were combined during this test program, per the Method 29, Section 1.2 principle, "This method may be used to determine particulate emissions in addition to the metals emissions if the prescribed procedures and precautions are followed".


Sixty-minute Method 26A sample trains at the SDA Inlets and FF Outlets were utilized to exhibit compliance with each unit's HCl limit(s). The Method 26A was modified to a single-point constant sampling rate at all test locations.

The FDEP supplied audit samples for PCDD/PCDF, metals and HCl to CleanAir. The analytical results of these samples are presented in Appendix I, along with each respective lab report.

The initial reporting of the high HCl audit sample was not within the required 5% of actual concentration. The lab reanalyzed all of the samples, including the audits after concluding that erroneously contaminated glassware created the high audit result. The results of the reanalysis are presented in this report and an explanation of the failed audit is presented, along with the laboratory report, in Appendix I. The reanalyzed audit was within 5% of the audit samples value.

At the request of Wheelabrator North Broward, Inc., the Unit 2 Method 23 Run 2 was paused for 42 minutes in order to accommodate a soot blow. During the delay, the probe was removed from the FF Outlet and the XAD trap was kept cold. Once the soot blow was complete, the probe was placed back in the duct and the test run was resumed.

End of Section 1 – Project Overview

Client Reference No: CleanAir Project No: 10955-2

RES	ULTS	e 2-1:			
	Unit 1 FF Outlet – Particu		and Mercu	rv	
Run N		1	2	3	Average
Date (2	2010)	Mar 16	Mar 16	Mar 16	
Start T	ime (approx.)	07:21	10:00	12:36	
Stop T	ime (approx.)	09:32	12:14	14:47	
	ss Conditions				
R _P	Steam Production Rate (Klbs/hr)	183.9	184.4	183.4	183.9
P ₁	Fabric Filter Inlet Temperature (°F)	310	313	320	314
		0.5	0.5	0.7	• •
O₂ CO₂	Oxygen (dry volume %) Carbon dioxide (dry volume %)	9.5 9.9	9.5 9.9	9.7 9.8	9.6 9.9
T _s	Sample temperature (°F)	293	295	301	296
Bw	Actual water vapor in gas (% by volume)	20.1	20.0	19.7	20.0
Gas Fle	ow Rate				
Qa	Volumetric flow rate, actual (acfm)	191,586	191,421	193,814	192,274
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscfm)	105,082	104,870	105,806	105,252
Sampli	ng Data				
V_{mstd}	Volume metered, standard (dscf)	80.55	81.15	81.55	81.09
%I	Isokinetic sampling (%)	98.8	99.7	99.3	99.3
	tory Data	-			
m"	Net matter collected (g)	0.00049	0.00218	<0.00020	
	ble Particulate Results				
C _{sd}	Particulate Concentration (mg/dscm)	0.22	0.95	<0.087	<0.42
C _{sd7}	Particulate Concentration @7% O ₂ (mg/dscm)	0.26	1.2	<0.11	<0.51
	y Laboratory Data	7 7000	0.0454	0 75 40	
mn	Total matter corrected for allowable blanks (µg)	7.7629	8.8151	9.7549	
- '	y Results - Total	2.4	2.0	4.0	3.8
C _{sd} C _{sd7}	Concentration (µg/dscm) Concentration @7% O₂ (µg/dscm)	3.4 4.2	3.8 4.7	4.2 5.3	3.8 4.7
	m Laboratory Data			0.0	
m _n	Total matter corrected for allowable blanks (µg)	<0.0500	<0.0500	<0.0500	
	m Results - Total			0.0000	
	Concentration (mg/dscm)	<0.00002	<0.00002	<0.00002	<0.00002
	Concentration @7% O ₂ (mg/dscm)	< 0.00003	< 0.00003	< 0.00003	<0.00003
	m Laboratory Data				
mn	Total matter corrected for allowable blanks (µg)	<0.2000	0.2093	<0.2000	
Cadmiu	m Results - Total				
C _{sd}	Concentration (mg/dscm)	<0.000088	0.000091	<0.000087	<0.00088
C_{sd7}	Concentration @7% O_2 (mg/dscm)	<0.00011	0.00011	<0.00011	<0.00011
Lead La	boratory Data				
m"	Total matter corrected for allowable blanks (µg)	1.0847	1.1424	1.2738	
Lead Re	esults - Total				
C_{sd}	Concentration (mg/dscm)	0.00048	0.00050	0.00055	0.00051
C_{sd7}	Concentration @7% O_2 (mg/dscm)	0.00058	0.00060	0.00069	0.00062

Client Reference No: CleanAir Project No: 10955-2

2-2

RESULTS Table 2-2: Unit 1 FF Outlet - Fluorides 2 Run No. 3 Average 1 Mar 17 Mar 17 Mar 17 Date (2010) 11:46 13:15 14:45 Start Time (approx.) 12:56 14:27 15:53 Stop Time (approx.) **Process Conditions** 184.0 184.0 184.1 184.0 R_P Steam Production Rate (Klbs/hr) 320 P₁ Fabric Filter Inlet Temperature (°F) 320 320 320 Gas Conditions Oxygen (dry volume %) 10.6 10.1 10.0 10.2 O2 CO2. 9.1 9.6 9.8 9.5 Carbon dioxide (dry volume %) 303 302 302 T, Sample temperature (°F) 303 В" Actual water vapor in gas (% by volume) 19.9 20.5 21.0 20.5 Gas Flow Rate 207,433 205,926 198,952 204,104 Volumetric flow rate, actual (acfm) Qa Qstd Volumetric flow rate, dry standard (dscfm) 111,627 111,678 106,345 109,883 Sampling Data 42.7316 42.4517 41.1525 42.1120 V_{mstd} Volume metered, standard (dscf) 100.2534 100.1239 99.4233 101.2130 %I Isokinetic sampling (%) Laboratory Data < 0.03681 < 0.03385 < 0.03889 Total HF collected (mg) m Hydrogen Fluoride (HF) Results < 0.034 < 0.037 <0.040 < 0.037 C_{sd} HF Concentration (ppmdv) C_{sd7} HF Concentration @7% O₂ (ppmdv) <0.049 < 0.044 <0.051 <0.048 <0.030 < 0.028 < 0.033 <0.031 HF Concentration (mg/dscm) C_{sd} HF Concentration @7% O2 (mg/dscm) < 0.041 < 0.036 < 0.042 <0.040 C_{sd7} Elb/hr HF Rate (lb/hr) < 0.013 < 0.012 <0.013 <0.013 E_{Fď} HF Rate - Fd-based (lb/MMBtu) < 0.000037 < 0.000033 < 0.000038 < 0.000036

Client Reference No: CleanAir Project No: 10955-2

RES	JLTS				
		le 2-3:			
·	Unit 1 FF Outlet and SDA	Inlet - Hydrog	en Chloride	<u> </u>	
Run N	D.	1	2	3	Average
Date (2	2010)	Mar 18	Mar 18	Mar 18	
Start Ti	me (approx.)	07:02	09:26	11:49	
Stop Ti	me (approx.)	08:02	10:37 [°]	12:49	
Proces	s Conditions				
R _P	Steam Production Rate (Klbs/hr)	183.5	1 8 4.1	182.8	183.5
P ₁	Fabric Filter Inlet Temperature (°F)	320	320	320	320
SDA In	let Gas Conditions				
O ₂	Oxygen (dry volume %)	9.1	9.0	9.7	9.3
CO2	Carbon dioxide (dry volume %)	10.2	10.4	9.8	10.1
Τs	Sample temperature (°F)	489	489	497	492
B _w	Actual water vapor in gas (% by volume)	17.5	16.9	16.6	17.0
SDA In	let Sampling Data				
V _{mstd}	Volume metered, standard (dscf)	38.19	36.42	35.65	36.76
SDA In	let Laboratory Data				
m	Total HCI collected (mg)	789.381	879.513	662.680	
SDA In	let Hydrogen Chloride (HCI) Results				
\mathbf{C}_{sd}	HCI Concentration (ppmdv)	482	563	433	493
C_{sd7}	HCI Concentration @7% O ₂ (ppmdv)	568	658	538	588
FF Outl	et Gas Conditions				
O ₂	Oxygen (dry volume %)	9.9	9.7	10.1	9.9
CO2	Carbon dioxide (dry volume %)	9.5	9.7	9.4	9.5
Тs	Sample temperature (°F)	308	309	310	309
Bw	Actual water vapor in gas (% by volume)	19.9	21.4	19.6	20.3
FF Outl	et Sampling Data				
V _{mstd}	Volume metered, standard (dscf)	41.10	40.79	40.64	40.85
FF Outl	et Laboratory Data				
m	Total HCI collected (mg)	30.484	25.143	26.450	
FF Outb	et Hydrogen Chloride (HCI) Results				
C _{sd}	HCl Concentration (ppmdv)	17	14	15	16
C _{sd7}	HCI Concentration @7% O ₂ (ppmdv)	22	18	19	20
RE	Reduction Efficiency (% Removal)	96%	97%	96%	97%

Client Reference No: CleanAir Project No: 10955-2

2-4

RESI	JLTS				
	Table Unit 2 FF Outlet – Particul		and Mercur	TV.	
Run No		1 1	2	3	Average
Date (2	010)	Mar 18	Mar 18	Mar 18	
	me (approx.)	07:09	09:49	12:27	
	me (approx.)	09:22	12:02	14:39	
	s Conditions	192.0	192.0	1920	400.0
R _P P₁	Steam Production Rate (Klbs/hr) Fabric Filter Inlet Temperature (°F)	183.9 320	182.9 320	183.9 321	183.6 320
	nditions	020	520	021	ULU
02	Oxygen (dry volume %)	10.1	9.8	9.9	9.9
CO₂	Carbon dioxide (dry volume %)	9.3	9.6	9.6	9.5
T _s	Sample temperature (°F)	307	308	308	308
Bw	Actual water vapor in gas (% by volume)	20.4	20.5	21.0	20.6
Gas Flo	ow Rate				
Qa	Volumetric flow rate, actual (acfm)	201,928	193,105	199,217	198,083
Q_{std}	Volumetric flow rate, dry standard (dscfm)	108,134	103,333	105,868	105,778
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	84.18	79.34	82.11	81.88
%1	Isokinetic sampling (%)	100.3	98.9	99.9	99.7
	tory Data	0.00404	0.00004	0.00050	
m,	Net matter collected (g)	0.00404	0.00231	0.00252	
_	ole Particulate Results	4 7	4.0		
C _{sd}	Particulate Concentration (mg/dscm) Particulate Concentration @7% O₂ (mg/dscm)	1.7 2.2	1.0 1.3	1.1 1.4	1.3 1.6
C _{sd7}		۷.۷	1.5	1.4	1.0
m _n	y Laboratory Data Total matter corrected for allowable blanks (µg)	9.1977	9.2740	10.1318	
		5.1577	5.2140	10.1318	
Wercur C _{sd}	y Results - Total Concentration (µg/dscm)	3.9	4.1	4.4	4.1
C _{sd}	Concentration ($\mu g/dscm$) Concentration ($\pi g/dscm$)	5.0	5.1	5.5	5.2
	Im Laboratory Data				
m _n	Total matter corrected for allowable blanks (µg)	< 0.0500	<0.0500	< 0.0500	
	Im Results - Total				
C _{sd}	Concentration (mg/dscm)	< 0.00002	< 0.00002	< 0.00002	<0.00002
C _{sd7}	Concentration @7% O2 (mg/dscm)	< 0.00 003	< 0.00003	< 0.00003	<0.00003
Cadmiu	Im Laboratory Data				
m"	Total matter corrected for allowable blanks (µg)	0.4679	<0.2000	<0.2000	
Cadmiu	um Results - Total				
C_{sd}	Concentration (mg/dscm)	0.00020	<0.000089	<0.000086	<0.00012
C_{sd7}	Concentration @7% O2 (mg/dscm)	0.00025	<0.00011	<0.00011	<0.00016
Lead La	aboratory Data				
mn	Total matter corrected for allowable blanks (μg)	2.4408	<0.2000	<0.2000	
Lead R	esults - Total				
C _{sd}	Concentration (mg/dscm)	0.0010	< 0.000089	<0.000086	<0.00040
C _{sd7}	Concentration @7% O ₂ (mg/dscm)	0.0013	<0.00011	<0.00011	<0.00051

Client Reference No: CleanAir Project No: 10955-2

RES	ULTS				
		ole 2-5:	an san ang kanang ka		In the second second second second second second second second second second second second second second second
		utlet - Fluoride	·		
Run N	0.	1	2	3	Average
Date (2	2010)	Mar 18	Mar 18	Mar 18	
Start Ti	me (approx.)	07:09	08:56	10:45	
Stop Ti	me (approx.)	08:24	10:10	12:05	
Proces	s Conditions				
RP	Steam Production Rate (Klbs/hr)	183.9	184.2	183.0	183.7
Ρı	Fabric Filter Inlet Temperature (°F)	321	320	320	320
Gas Co	onditions				
O ₂	Oxygen (dry volume %)	10.0	9.6	10.2	9.9
CO2	Carbon dioxide (dry volume %)	9.3	9.6	9.1	9.3
Τs	Sample temperature (°F)	306	305	306	306
B,	Actual water vapor in gas (% by volume)	20.7	21.1	20.3	20.7
Gas Flo	ow Rate				
Qa	Volumetric flow rate, actual (acfm)	190,226	182,805	185,088	186,040
Q_{std}	Volumetric flow rate, dry standard (dscfm)	101,644	9 7 ,309	99,545	99,499
Sampli	ng Data				
V _{mstd}	Volume metered, standard (dscf)	38.2069	36.8944	37.3103	37.4705
%1	Isokinetic sampling (%)	98.3144	99.1667	98.0324	98.5045
Labora	tory Data				
mn	Total HF collected (mg)	<0.03601	< 0.03449	<0.03537	
Hydrog	en Fluoride (HF) Results				
C _{sd}	HF Concentration (ppmdv)	<0.040	<0.040	<0.040	<0.040
C_{sd7}	HF Concentration @7% O ₂ (ppmdv)	<0.051	<0.049	<0.052	<0.051
C_{sd}	HF Concentration (mg/dscm)	<0.033	<0.033	<0.033	<0.033
C_{sd7}	HF Concentration @7% O ₂ (mg/dscm)	<0.043	<0.041	<0.043	<0.042
Elb/hr	HF Rate (lb/hr)	<0.013	<0.012	<0.012	<0.012
EFd	HF Rate - Fd-based (lb/MMBtu)	<0.000038	< 0.000037	< 0.000039	<0.00038

Client Reference No: CleanAir Project No: 10955-2

RESU	LTS				
	Table 2-6 Unit 2 FF Outlet - PC		5		
Run No.		1	2	3	Average
Date (201	0)	Mar 16	Mar 17	Mar 17	
Start Time		08:44	06:54	12:53	
Stop Time	(approx.)	13:36	12:19	17:26	
Process (Conditions				
R _P	Steam Production Rate (Klbs/hr)	184.1	184.3	183.9	184.1
P ₁	Fabric Filter Inlet Temperature (°F)	314	321	320	319
Gas Cond	litions				
O₂	Oxygen (dry volume %)	9.7	9.7	10.3	9.9
CO₂	Carbon dioxide (dry volume %)	9.7	9.8	9.5	9.7
Ts	Sample temperature (°F)	301	307	308	305
B _w	Actual water vapor in gas (% by volume)	20.1	20.8	20.5	20.5
Gas Flow					
Q,	Volumetric flow rate, actual (acfm)	198,967	214,211	203,730	205,636
Q _{std}	Volumetric flow rate, dry standard (dscfm)	107,335	113,400	108,891	109,875
Sampling					
V _{mstd}	Volume metered, standard (dscf)	156.06	168.82	164.13	163.00
%1	Is okinetic sampling (%)	98.0	100.3	101.6	100.0
<u>Results (N</u>	ID and EMPC = 0)				
Laborator	y Data from USEPA Method 23				
m'n	Total PCDDs & PCDFs (ng)	1.2600	1.5100	1.6700	
m _{n_teq}	Total TEQ PCDDs & PCDFs (ng)	0.0168	0.0227	0.0270	
	D/F Results (TEF=1)				
C _{sd}	PCDD/F Concentration (ng/dscm)	0.29	0.32	0.36	0.32
C _{sd7}	PCDD/F Concentration @7% O ₂ (ng/dscm)	0.35	0.39	0.47	0.41
	PCDD/F Rate (lb/hr)	1.15E-07	1.34E-07	1.47E-07	1.32E-07
E _{Fd}	PCDD/F Rate - F _d based (Ib/MMBtu)	3.17E-10	3.53E-10	4.24E-10	3.65E-10
	D/F TEQ Results (using USEPA/INTL 1989 TEFs)	0.0030	0.0047	0.0050	
C _{sdTEQ}	TEQ Concentration (ng/dscm)	0.0038	0.0047	0.0058	0.0048
Csd7TEQ Elb/hrTEQ	TEQ Concentration @7% O ₂ (ng/dscm) TEQ Rate (lb/hr)	0.0047 1.53E-09	0.0059 2.02E-09	0.0076 2.37E-09	0.0061 1.97E-09
E _{FdTEQ}	TEQ Rate - F _d -based (lb/MMBtu)	4.23E-12	5.31E-12	6.85E-12	5.47E-12
	ID and EMPC = actual value)	_			
	y Data from USEPA Method 23, including NDs and EMPCs	i			
mn	Total PCDDs & PCDFs (ng)	1.3600	1.7700	1.8600	
m _{n_TEQ}	Total TEQ PCDDs & PCDFs (ng)	0.0211	0.0275	0.0305	
_	D/F Results (TEF=1)				
C _{sd}	PCDD/F Concentration (ng/dscm)	0.31	0.37	0.40	0.36
C _{sd7}	PCDD/F Concentration @7% O ₂ (ng/dscm)	0.38	0.46	0.53	0.46
E _{lb/hr}	PCDD/F Rate (lb/hr)	1.24E-07	1.57E-0 7	1.63 E -07	1.48E-07
EFd	PCDD/F Rate - Fd-based (Ib/MMBtu)	3.43E-10	4.14E-10	4.72E-10	4.10E-10
Total PCD	D/F TEQ Results (using USEPA/INTL 1989 TEFs)				
C_{sdTEQ}	TEQ Concentration (ng/dscm)	0.0048	0.0058	0.0066	0.0057
C_{sd7TEQ}	TEQ Concentration @7% O_2 (ng/dscm)	0.0059	0.0072	0.0086	0.0072
	TEQ Rate (lb/hr)	1.92E-09	2.44E-09	2.68E-09	2.35E-09
EFUTEQ	TEQ Rate - F _d -based (lb/MMBtu)	5.31E-12	6.44E-12	7.74E-12	6.50E-12

Client Reference No: CleanAir Project No: 10955-2

RES	ULTS	a an an an an an an an an an an an an an			
		le 2-7:			
	Unit 2 FF Outlet and SD	<u> A Inlet - Hydrog</u>			
Run N	0.	1	2	3	Average
Date (2	2010)	Mar 17	Mar 17	Mar 17	
Start Ti	ime (approx.)	06:54	09:02	10:25	
Stop Ti	me (approx.)	07:54	10:02	11:25	
Proces	ss Conditions				
R _P	Steam Production Rate (Klbs/hr)	184.7	184.2	184.9	1 84.6
P1	Fabric Filter Inlet Temperature (°F)	323	320	319	321
SDA In	let Gas Conditions				
O ₂	Oxygen (dry volume %)	8.4	9.3	8.7	8.8
CO₂	Carbon dioxide (dry volume %)	10.9	10.2	10.7	10.6
Τs	Sample temperature (°F)	510	504	502	505
B,	Actual water vapor in gas (% by volume)	17.5	16.3	17.6	17.1
SDA In	let Sampling Data				
V _{mstd}	Volume metered, standard (dscf)	35.88	36.43	36.20	36.17
SDA In	let Laboratory Data				
m'n	Total HCI collected (mg)	680.971	649.597	646.92 7	
SDA In	let Hydrogen Chloride (HCI) Results				
C_{sd}	HCI Concentration (ppmdv)	442	416	417	425
C_{sd7}	HCI Concentration @7% O ₂ (ppmdv)	492	498	474	488
FF Out	let Gas Conditions				
O ₂	Oxygen (dry volume %)	9.7	10.4	9.5	9.9
CO₂	Carbon dioxide (dry volume %)	9.7	9.1	10.0	9.6
Τs	Sample temperature (°F)	309	308	307	308
Bw	Actual water vapor in gas (% by volume)	21.1	20.3	21.5	21.0
FF Out	et Sampling Data				
V _{mstd}	Volume metered, standard (dscf)	41.24	41.01	40.73	40.99
FF Out	et Laboratory Data				
m _n	Total HCI collected (mg)	29.747	21.278	23.228	
FF Out	et Hydrogen Chloride (HCI) Results				
C _{sd}	HCI Concentration (ppmdv)	17	12	13	14
C _{sd7}	HCI Concentration @7% O ₂ (ppmdv)	21	16	16	18
RE	Reduction Efficiency (% Removal)	96%	97%	97%	96%

MALER CONTRACTOR OF STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, STREET, ST

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

Client Reference No: CleanAir Project No: 10955-2

2

RESULTS				
Table Unit 3 FF Outlet – Particu		and Mercu	rv.	
Run No.	1 1	2 2	3	Average
Date (2010)	Mar 17	Mar 17	Mar 17	
Start Time (approx.)	06:50	09:26	11:59	
Stop Time (approx.)	09:03	11:38	14:11	
Process Conditions				
R _P Steam Production Rate (Klbs/hr) P1 Fabric Filter Inlet Temperature (°F)	184.2	184.2	183.5	184.0
· · · · · · · · · · · · · · · · · · ·	315	315	315	315
Gas Conditions O ₂ Oxygen (dry volume %)	8.7	8.3	8.7	8.6
CO_2 Carbon dioxide (dry volume %)	10.5	0.3 10.9	0.7 10.8	10.7
T_s Sample temperature (°F)	303	304	304	304
B _w Actual water vapor in gas (% by volume)	22.7	22.9	22.6	22.7
Gas Flow Rate				
Q _a Volumetric flow rate, actual (acfm)	174,264	186,885	184,323	181,824
Q _{std} Volumetric flow rate, dry standard (dscfm)	90,897	97,143	96,346	94,795
Sampling Data				
V _{mstd} Volume metered, standard (dscf)	70.86	75.80	74.78	73.81
%I Isokinetic sampling (%)	100.4	100.5	100.0	100.3
Laboratory Data				
m _n Net matter collected (g)	0.00115	0.00130	0.00223	
Filterable Particulate Results	0.67	0.00		
C_{sd} Particulate Concentration (mg/dscm) C_{sd7} Particulate Concentration @7% O ₂ (mg/dscm)	0.57 0.65	0.60 0.67	1.1 1.2	0.74 0.84
	0.05	0.07	1.2	0.04
Mercury Laboratory Data m n Total matter corrected for allowable blanks (µg)	8.8257	8.9307	7.6261	
	0.0207	0.5507	7.0201	
Mercury Results - Total C₅d Concentration (µg/dscm)	4.4	4.2	3.6	4.1
C_{sd7} Concentration @7% O ₂ (µg/dscm)	5.0	4.6	4.1	4.6
Beryllium Laboratory Data				
m_n Total matter corrected for allowable blanks (µg)	<0.0500	<0.0500	<0.0500	
Beryllium Results - Total				
C _{sd} Concentration (mg/dscm)	<0.00002	<0.00002	<0.00002	<0.00002
C_{sd7} Concentration @7% O ₂ (mg/dscm)	<0.00003	<0.00003	<0.00003	<0.00003
Cadmium Laboratory Data				
m _n Total matter corrected for allowable blanks (µg)	<0.2000	<0.2000	<0.2000	
Cadmium Results - Total				
C _{sd} Concentration (mg/dscm)	<0.00010	< 0.000093	< 0.000094	<0.000096
C _{sd7} Concentration @7% O ₂ (mg/dscm)	<0.00011	<0.00010	<0.00011	<0.00011
Lead Laboratory Data				
m _n Total matter corrected for allowable blanks (µg)	0.2760	0.2230	0.3748	
Lead Results - Total				
C_{sd} Concentration (mg/dscm)	0.00014	0.00010	0.00018	0.00014
C_{sd7} Concentration @7% O_2 (mg/dscm)	0.00016	0.00011	0.00020	0.00016

Client Reference No: CleanAir Project No: 10955-2

RESULTS Table 2-9: **Unit 3 FF Outlet - Fluorides** 2 Run No. 3 Average 1 Date (2010) Mar 16 Mar 16 Mar 16 Start Time (approx.) 11:49 13:33 15:07 Stop Time (approx.) 13:07 14:44 16:16 **Process** Conditions RP Steam Production Rate (Klbs/hr) 183.7 183.9 184.2 183.9 P₁ Fabric Filter Inlet Temperature (°F) 310 310 310 310 **Gas Conditions** 9.9 9.5 Oxygen (dry volume %) 9.7 9.7 02 CO Carbon dioxide (dry volume %) 9.7 10.0 10.0 9.9 Т, Sample temperature (°F) 298 299 299 299 Actual water vapor in gas (% by volume) B, 20.9 21.4 21.6 21.3 Gas Flow Rate Qa Volumetric flow rate, actual (acfm) 173,798 179,576 173,781 175,718 Q_{std} Volumetric flow rate, dry standard (dscfm) 93.705 96,031 92,736 94,158 Sampling Data Volume metered, standard (dscf) 36.4042 36.9891 35.7340 36.3758 V_{mstd} %I Isokinetic sampling (%) 101.6122 100.7446 100.7835 101.0467 Laboratory Data < 0.03589 Total HF collected (mg) < 0.03481 < 0.03261 m'n Hydrogen Fluoride (HF) Results < 0.042 C_{sd} HF Concentration (ppmdv) < 0.040 < 0.039 <0.040 HF Concentration @7% O₂ (ppmdv) < 0.053 C_{sd7} < 0.049 <0.048 <0.050 C_{sd} HF Concentration (mg/dscm) < 0.035 < 0.033 < 0.032 <0.033 C_{sd7} HF Concentration @7% O2 (mg/dscm) <0.044 < 0.041 < 0.040 <0.042 HF Rate (lb/hr) < 0.012 < 0.012 < 0.011 <0.012 E_{lb/hr} HF Rate - Fd-based (lb/MMBtu) < 0.000040 < 0.000037 < 0.000036 < 0.000037 E_{Ed}

Client Reference No: CleanAir Project No: 10955-2

27402 OF 26472

		e 2-10:			
	Unit 3 FF Outlet and SDA	A Inlet - Hydrog	en Chloride		
Run No	0.	1	2	3	Averag
Date (2	010)	Mar 16	Mar 16	Mar 16	
Start Ti	me(approx.)	07:17	09:04	10:32	
Stop Ti	me (approx.)	08:17	10:04	11:32	
roces	s Conditions				
R _P	Steam Production Rate (Klbs/hr)	184.6	184.1	184.3	184.
P1	Fabric Filter Inlet Temperature (°F)	310	310	310	31
DA In	let Gas Conditions				
O2	Oxygen (dry volume %)	8.6	8.2	8.1	8.
CO2	Carbon dioxide (dry volume %)	10.7	11.1	11.2	11.
Ts	Sample temperature (°F)	503	510	508	50
В"	Actual water vapor in gas (% by volume)	17.5	17.5	16.7	17.:
SDA In	let Sampling Data				
V _{mstd}	Volume metered, standard (dscf)	35.39	35.83	34.78	35.33
SDA In	let Laboratory Data				
m'n	Total HCI collected (mg)	860.248	813.798	910.786	
SDA In	let Hydrogen Chloride (HCI) Results				
C _{ad}	HCI Concentration (ppmdv)	567	529	611	56
C_{sd7}	HCI Concentration @7% O ₂ (ppmdv)	640	580	661	627
F Out	let Gas Conditions				
O ₂	Oxygen (dry volume %)	9.0	9.1	8.9	9.0
CO₂	Carbon dioxide (dry volume %)	10.3	10.2	10.4	10.3
T,	Sample temperature (°F)	299	300	299	300
Bw	Actual water vapor in gas (% by volume)	20.8	21.3	21.8	21.3
F Out	let Sampling Data				
Vrnstd	Volume metered, standard (dscf)	42.13	41.78	41.67	41.86
F Out	let Laboratory Data				
m _n	Total HCl collected (mg)	26.091	32.864	23.884	
	let Hydrogen Chloride (HCI) Results				
C _{sd}	HCI Concentration (ppmdv)	14	18	13	15
C _{sd}	HCI Concentration $@7\% O_2$ (ppmdv)	17	22	16	18
RE	Reduction Efficiency (% Removal)	97%	96%	98%	97%

Client Reference No: CleanAir Project No: 10955-2

2-11

RESULTS				
Units 1.2 a	Table 2-11: nd 3 FF Outlets – O	pacity by CO	MS	
Run No.	1	2	3	Average
<u>Unit 1</u>				•
Date (2010)	Mar 16	Mar 16	Mar 16	
Start Time (approx.)	07:18	10:00	12:36	
Stop Time (approx.)	09:30	12:06	14:42	
Visible Emissions (%) ¹				
Average Opacity	2	2	2	2
Maximum Reading	2	2	2	2
Minimum Reading	2	2	2	2
Unit 2				
Date (2010)	Mar 18	Mar 18	Mar 18	
Start Time (approx.)	07:06	09:48	12:24	
Stop Time (approx.)	09:18	12:00	14:36	
Visible Emissions (%) ¹				
Average Opacity	0	0	0	0
Maximum Reading	0	0	0	0
Minimum Reading	0	0	0	0
Unit 3				
Date (2010)	Mar 17	Mar 17	Mar 17	
Start Time (approx.)	06:48	09:24	11:54	
Stop Time (approx.)	09:00	11:36	14:06	
/isible Emissions (%) ¹				
Average Opacity	1	1	3	2
Maximum Reading	2	2	4	3
Minimum Reading	0	0.	3	1

¹ Reading obtained from facility's continuous opacity monitoring system (COMS) as provided under 40 CFR 60.11(e) and Title V Conditions A.36(6), A.53 and A.54 and coincide with Method 5/29 test run Manager Courses and Stratter Strat

COLUMN STATES

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

Client Reference No: CleanAir Project No: 10955-2

				e 2-12:		
				n - Fugitive		
<u>Source</u> Constituent	Date (2009)		Stop Time (approx.)	Observation Duration (minutes)	Accumulated Emission Duration (seconds)	
Ash Conveyor/Doors to Visual Opacity (%)	Baghouse March 12	7:22	8:32	60	0	
Ash Unloading/Convey Visual Opacity (%)	<u>or</u> March 12	8:43	9:54	60	0	
Rolling Door/Door to Ba Visual Opacity (%)	aghouse March 12	11:10	12:20	60	0	Permit Limit
`			Tot	al (% of observa	tion time) = 0	- < 5% of observation Time
				Total (minute	es) = 0	< 9 minutes
				e 2-13:		
	Lime	Silo Fabr			ole Emissions	-
	Lime S Run No				ole Emissions 1	-
						-
	Run No. Date (20		ic Filter (1	-
	Run No. Date (20 Start Tin	910)	ic Filter (x.)		1 Mar 17	-
	Run No. Date (20 Start Tin Stop Tin <u>Process</u>	10) ne (appro ne (appro Conditior	<u>ic Filter (</u> x.) x.) <u>1s</u>	<u>Dutlet - Visik</u>	1 Mar 17 10:26 11:45	-
	Run No. Date (20 Start Tin Stop Tin <u>Process</u>	10) ne (appro ne (appro Conditior	<u>ic Filter (</u> x.) x.)	<u>Dutlet - Visik</u>	1 Mar 17 10:26	-
	Run No. Date (20 Start Tin Stop Tin <u>Process</u> To	10) ne (appro ne (appro <u>Conditior</u> tal lime u	<u>ic Filter (</u> x.) x.) <u>1s</u>	<u>Outlet - Visik</u> ons)	1 Mar 17 10:26 11:45	-
	Run No. Date (20 Start Tin Stop Tin <u>Process</u> To Ra <u>Visible E</u>	110) ne (appro ne (appro <u>Conditior</u> tal lime un tal lime un te of unlo	<u>ic Filter (</u> x.) x.) nloaded (t ading (tor	<u>Outlet - Visik</u> ons) ns/hr)	1 Mar 17 10:26 11:45 25.36	-
	Run No. Date (20 Start Tin Stop Tin <u>Process</u> To Ra <u>Visible E</u>	110) ne (appro ne (appro <u>Conditior</u> tal lime un tal lime un te of unlo	<u>ic Filter (</u> x.) x.) nloaded (t	<u>Outlet - Visik</u> ons) ns/hr)	1 Mar 17 10:26 11:45 25.36	_

Client Reference No: CleanAir Project No: 10955-2

2-13

				Ta	ble 2-14	l:					
				Air Flo	ow Sum	mary					
Run Number	Run Date	Run Time	Steam Flow Klbs/hour	Flue Gas Temp Deg F	Air Flow ACFM	O ₂ %	CO ₂ %	CO ₂ Sample Rate	Stack Flow 2RSD	Air Flow, DSCFM	Air Flow, DSCFM@ 7%O ₂
			Ribarriour	Dog.				(ipm) ¹	(%)		17002
1-0-M5/29-1	3/16/2010	07:21-09:32	183.9	293	191,586	9.5	9,9	0.2	11.6%	105.082	85.956
1-O-M5/29-2	3/16/2010	10:00-12:14	184.4	295	191,421	9.5	9.9	0.2	12.2%	104,870	86,310
1-O-M5/29-3	3/16/2010	12:36-14:47	183.4	301	193,814	9.7	9.8	0.2	15.3%	105,806	84,949
1-0-M13B-1	3/17/2010	11:46-12:56	184.0	303	205,926	10.6	9.1	0.4	12.1%	111,627	83,118
1-0-M13B-2	3/17/2010	13:15-14:27	1 <u>84</u> .0	302	207,433	10.1	9.6	0.4	12.9%	111.678	86,530
1-O-M13B-3	3/17/2010	14:45-15:53	184.1	303	198,952	10.0	9.8	0.4	11.0%	106,345	83,699
		Average		299	_ 198,189]	9.9	97	NA <	12.5%	107.568	85.094
2-O-M5/29-1	3/18/2010	07:09-09:22	183.9	307	201,928	10.1	9.3	0.2	13.9%	108,134	84.251
2-O-M5/29-2	3/18/2010	9:49-12:02	182.9	308	193,105	9.8	9.6	0.2	10.0%	103.333	82,890
2-O-M5/29-3	3/18/2010	12:27-14:39	183.9	308	199,217	9.9	9.6	0.2	16.8%	105,806	83,856
2-0-M13B-1	3/18/2010	07:09-08:24	183.9	306	190,226	10.0	9.3	0.4	14.3%	101.644	79,560
2-0-M13B-2	3/18/2010	08:56-10:10	184.2	305	182,805	9.6	9.6	0.4	10.0%	97,309	78,827
2-O-M13B-3	3/18/2010	10:45-12:05	183.0	306	185,088	10.2	9.1	0.4	13.4%	99,545	76,986
2-O-M23-1	3/16/2010	0B:44-13:36	184.1	301	198,967	9.7	9.7	0.1	8.7%	107,335	86,640
2-O-M23-2	3/17/2010	06:54-12:19	184.3	307	214,211	9.7	9.8	0.1	7.0%	113,400	91,046
2-O-M23-3		12:53-17:26	183.9	308	203,730	10.3	9.5	0.1	8.8%	108.891	82,961
		Average	183.8	306	196,586	9.9	9.5		11.4%	_105,044	83.002
3-0-M5/29-1		06:50-09:03	184.2	303	174,264	8.7	10.5	0.2	16.1%	90,897	79,715
3-O-M5/29-2		09:26-11:38	184.2	304	186,885	8.3	10.9	0.2	9.4%	97,143	88.057
3-O-M5/29-3		11:59-14:11	183.5	304	184.323	8.7	10.8	0.2	12.1%	105,806	84,424
3-O-M13B-1		11:49-13:07	183.7	298	173,798	9.9	9.7	0.4	8.5%	101,644	74,155
3-O-M13B-2		13:33-14:44	183.9	299	179,576	9.5	10.0	0.4	11.4%	96.031	78,552
3-O-M13B-3		15:07-16:16	184.2	299	173,781	9.7	10.0	0.4	11.0%	92,736	74,589
<u></u>	0.10.2010	Average	184.0	301	178.771	9.1	10.3	NA	11.4%	97,376	79,915

 1 COz gas sample flow rate was within 10% of initial flow rate throughout all test runs.

Client Reference No: CleanAir Project No: 10955-2

Table 2-15:								
Q	uality C	ontrol a	nd Qual	ity Assu	Irance			
PCDD/PC	DF - Ext	raction	Standar	d Perce	nt Reco	veries		
		Extrac	tion Stand	ard Perce	nt Recove	ries, %		
Sample Number	¹³ C-	¹³ C-	¹³ C-	¹³ C-	¹³ C-	¹³ C-	¹³ C-	
	TCDD	PeCDD	HxCDD	HxCDD	HxCDD	HpCDD	OCDD	
0_7679_MB001	88.6	88.9	91.1	92.8	94.1	91.2	89.2	
Field Blank	86.3	89.5	90.9	96.6	94.6	92.4	91.7	
Unit 2 FF Outlet Run 1	83.1	88.6	82.5	86.2	82.9	85.3	84.7	
Unit 2 FF Outlet Run 2	86.3	82.9	82.1	84.3	84.4	84.1	82.8	
Unit 2 FF Outlet Run 3	85.6	82.5	80	85.5	86	82.8	81.9	
Reagent Blank	94.3	97.8	97.3	98.7	100	96.9	92.6	
Average	87	88	87	91	90	89	87	
SD	4	6	7	6	7	6	5	
Min	83.1	82.5	80	84.3	82.9	82.8	81.9	
Max	94.3	97.8	97.3	98.7	100	96.9	92.6	
Within M23 QC	TRUE							

			E	xtraction S	Standard P	ercent Re	coveries, '			
Sample Number		-0°C-	'°C-	-1°C-	-3°'	"°C-	-3°'	-3°C-	-3°-	
	TCDF	PeCDF	PeCDF	HxCDF	HxCDF	HxCDF	HxCDF	HpCDF	HpCDF	OCDF
0_7679_MB001	89.1	91.1	91.7	95.6	94.2	92.9	83.4	89.9	86.2	86.9
Field Blank	88.6	92.4	93.6	94.2	92.7	91.2	83.1	91.2	88.6	89.9
Unit 2 FF Outlet Run 1	84.6	89.3	92.7	86.9	84.3	82.6	78.4	82.9	82.6	84.2
Unit 2 FF Outlet Run 2	88.6	85.4	85.2	84.3	82.7	84.9	77.9	79.7	81.6	80.2
Unit 2 FF Outlet Run 3	87.7	87.3	85.3	81.6	81.9	83.6	77.3	79.1	80	79.4
Reagent Blank	95.4	97.3	97.3	99.9	98	98.2	91.1	95.9	92.7	91
Average	89	90	91	90	89	89	82	86	85	85
SD	4	4	5	7	7	6	5	7	5	5
Min	84.6	85.4	85.2	81.6	81.9	82.6	77.3	79.1	80	79.4
Max	95.4	97.3	97.3	99.9	98	98.2	91.1	95.9	92.7	91
Within M23 QC	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE

Table 2-16: Quality Control and Quality Assurance PCDD/PCDF – CS/SS Percent Recoveries

				Overica	
		CS/SS Pe	rœnt Rea	ovenies,%	
Sample Number	³⁷ Cl-	¹³ C-	¹³ C-	¹³ C-	¹³ C-
	TCDD	PeCDD	PeCDF	HxCDF	HpCDF
0_7679_MB001	98.5	101	94.8	98.9	100
Field Blank	98.1	97.9	90.9	97.6	98
Unit 2 FF Outlet Run 1	98.1	98.3	97.8	101	103
Unit 2 FF Outlet Run 2	98.4	101	100	101	98.7
Unit 2 FF Outlet Run 3	96.1	99.1	93	100	102
Reagent Blank					
Average	98	99	95	100	100
SD	30	35	95	100	2
Min	96.1	97.9	90.9	97.6	2 98
win	90.1	97.9	90.9	97.0	90

101

TRUE

100

98.5

TRUE

103

TRUE

101

TRUE TRUE

2-1	4

Max

Min within M23 QC

Client Reference No: CleanAir Project No: 10955-2

Table 2-17: Quality Control and Quality Assurance - Metals								
	Quality Col	RPD RES		wethis				
Mercury	FH	BH	Α	В	с			
•			Empty					
Run Number	Front Half	H₂O₂/HNO₄	Impinger	KMnO₄	НСІ			
U1 FF Outlet R1	NA	 0.8%	 NA	 NA	NA			
U1 FF Outlet R2	NA	2.5%	NA	NA	NA			
U1 FF Outlet R3	NA	0.3%	NA	· NA	NA			
U2 FF Outlet R1	NA	1.2%	NA	NA	NA			
U2 FF Outlet R2	NA	0.1%	NA	NA	NA			
U2 FF Outlet R3	NA	0.6%	NA	NA	NA			
U3 FF Outlet R1	NA	0.6%	NA	NA	NA			
U3 FF Outlet R2	NA	0.8%	NA	NA	NA			
U3 FF Outlet R3	NA	0.5%	NA	NA	NA			
Field Blank	NA	NA	NA	NA	NA			
Reagent Blank	NA	NA	NA	NA	NA			
3/17 Reagent Blank	NA	NA	NA	NA	NA			
3/18 Reagent Blank	NA	NA	NA	NA	NA			
		U1-FF-O-R2	U2-FF-O-R2	U3-FF-O-R2				
	Element	RPD	RPD	RPD				
	Beryllium	NA	NA	NA				
	Cadmium	1.3%	NA	NA				
	Lead	0.1%	3.1%	6.8%				

Client Reference No: CleanAir Project No: 10955-2

2-16

		Sample	Spike and Re	ecoverv		
Mercury		FH	BH	A	В	С
				Empty		
Run Number		Front half	H_2O_2/HNO_4	Impinger	KMnO₄	HCI
U1 FF Outlet R3	 #1	 102%	98%	93%	106%	102%
	#2	102%	96%	94%	106%	102%
U2 FF Outlet R3	#1	102%	99%	103%	88%	101%
	#2	102%	98%	102%	86%	99%
U3 FF Outlet R3	#1	103%	94%	103%	89%	96%
	#2	103%	92%	96%	91%	95%
			U1-FF-O-R3	U2-FF-O-R3	U3-FF-O-R3	
		Element	Recovery	Recovery	Recovery	
		Beryllium	85%	85%	87%	
		Cadmium	86%	87%	88%	
		Lead	97%	100%	102%	
		Second Sour	ce Calibration	Verification		
Element		.25 ppb	1 ppb	50 ppb	100 ppb	250 ppb
		QC Std 8	QC Std 2	QC Std 5	QC Std 4	QC Std 3
Beryllium		98%	97%	98%	101%	97%
Cadmium			97%	95%	99%	94%

92%

97%

100%

94%

Lead

Client Reference No: CleanAir Project No: 10955-2

				e 2-19:			
يوا	uanty	Control and	Guanty Ass	Urance - IVI BH		I Field Blanks	
Method 29		Average Total Catch ug	Front half	H ₂ O ₂ /HNO ₄	A Empty Impinger	B KMnO₄	C HCI
Field Blank	#1	< 0.5	< 0.1	< 0.3	< 0.2	< 0.5	< 0.4
	#2		< 0.1	< 0.3	< 0.2	< 0.5	< 0.4
Reagent Blank	#1	< 0.5	< 0.1	< 0.2	< 0.2	< 0.5	< 0.4
	#2		< 0.1	< 0.2	< 0.2	< 0.5	< 0.4
3/17 Reagent Blan		< 0.5	NA	NA	NA	< 0.5	NA
3/18 Reagent Blan	#2 k #1	< 0.5	NA NA	NA NA	NA NA	< 0.5	NA
of to Reagent Dian	* #1 #2	< 0.5	NA	NA	NA	< 0.5 < 0.5	NA NA
			Element	Field Blank Total µg	Reagent Bla Total µg	ınk	
				14211-10	14211-11	-	
			Beryllium	< 0.05	< 0.05		
			Cadmium	< 0.2	< 0.2		
			Lead	0.290	0.454		
Me	thod 2	3		0_7679	9_MB001	Field Blank	
					pg	pg	
2.2	7,8-TCD	D		(1	.46)	(1.39)	
	3,7,8-Pe				.79)	(1.82)	
	3,4,7,8-H						
				· · ·	2.66)	(1.83)	
	8,6,7,8-H				.48)	(1.93)	
J	3,7,8,9-H				79)	(2.08) 4.71	
1,2,0 OCE		-HpCDD			4.1	4.71	
		_					
	,8-TCDI				.07)	(0.973)	
	,7,8-Pe				.09)	(1.07)	
	,7,8-Pe				.03)	(1.02)	
	,4,7,8-H				.78)	(1.44)	
1	6,7,8-H				.66)	(1.36)	
	,6,7,8-H				.78)	(1.44)	
1	,7,8,9-H				.42)	(1.93)	
	,4,6,7,8-	-			.69)	3.19	
	,4,7,8,9- -	HPCDF		· ·	.53)	(2.05)	
					.41)	6.16	
	•	D=0; EMPC=0))141	0.0999	
•	•	D=0; EMPC=EMF	,	J	0141	0.0999	
	•	D=DL/2; EMPC=0			.34	2.19	
[ITEF	TEQ (N	D=DL/2; EMPC=E	EMPC)	2.	.34	2.19	
		D=DL; EMPC=EN	(PC)	4	67	4.28	

Client Reference No: CleanAir Project No: 10955-2

2-18

RESULTS			
	Quality Control and Quality	e 2-20: V Assurance	- Miscellaneous
	Blanks	Result	misochanebus
	Acetone (g)	0.0008	
	HCI DI H ₂ O (mg/l)	<0.077	
	HCI 0.1 N H ₂ SO ₄ (mg/l)	<0.077	
	HF DI H ₂ O (mg/l)	<0.038	
	Meters - Post Cal	Result	Limit
	61-6	-0.6%	≤ ± 5%
	61-8	-0.4%	≤ ± 5%
	61-11	-0.6%	≤ ± 5%
	66-6	-0.4%	≤ ± 5%
	66-14	0.3%	≤±5%
	66-24	-0.4%	≤ ± 5%
	85-2	1.2%	≤ ± 5%
	85-4	-0.2%	≤ ± 5%

End of Section 2 – Results

DESCRIPTION OF INSTALLATION

PROCESS DESCRIPTION

The North Broward Resource Recovery facility operates three (3) 750-tons-per-day municipal refuse-fired, water-wall boiler trains. The trains were manufactured by Babcock and Wilcox to produce electricity for sale to a local utility company. The boilers are rated at a maximum steam flow of 186,000 lbs/hr. Each boiler is equipped with an SDA for acid gas removal, followed by an FF baghouse for the control of particulate emissions and selective non-catalytic reduction for nitrogen oxide (NO_X) control. The control equipment is manufactured by Wheelabrator Air Pollution Control, Inc. Each FF baghouse is followed by an induced draft fan that directs the flue gas to a dedicated flue in a common stack.

Figure 3-1 shows a general schematic of the facility. The general sampling locations for the Units 1, 2 and 3 SDA Inlets and FF Outlets are shown in Figure 3-2 on page 3-2.

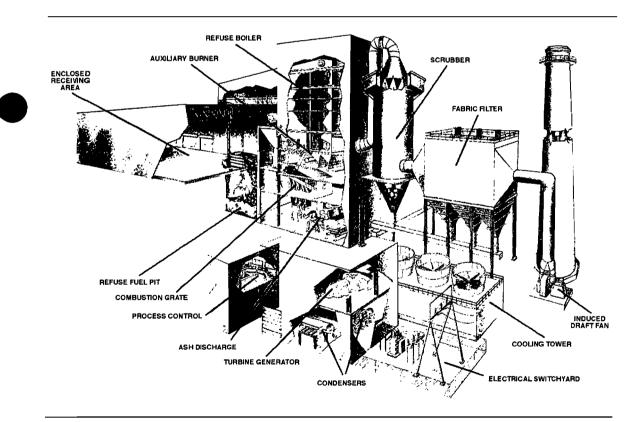
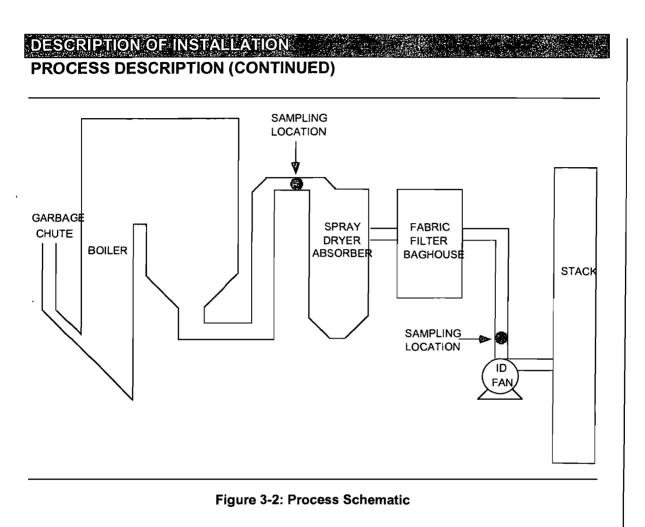



Figure 3-1: General Process Schematic

Clean Air Project No: 10955-2

Clean Air Project No: 10955-2

3-2

Revision 0, Final

DESCRIPTION OF INSTALLATION

PROCESS DESCRIPTION (CONTINUED)

4

									Table 3		-						
PLANT NA								Complia ta from DC			ocess		ulated	1.1-	ne Feed Ra	-4-	1
2010	WE: NO		KU WARD					Fabric	SDA	Total	Diluton	Calci	llated	L)r	Slurry	ite	
					_	Steam	FF Inlet	Filter	inlet	SDA	H2O	Slurry	Slurry	Slurry	CaO	CaO	
	Unit	Run		Ti	me	Flow	Temp	Delta	Temp	Flow	flow	Flow	Conc.	Specific	Density	Flow	
Test	No.	No.	Date	Start	Stop	klbs/hr	deg F	In. H2O	deg F	gpm	gpm	gpm	%	Gravity	lb/gal	lbs/hr	Test Run Comments
M-26A	1	1	3/18/2010	07:02	08:02	183.5	320.2	6.6	510.8	38.0	30.1	7.9	13.5	1.129	1.357	641.6	
нсі	1	2	3/18/2010	09:26	10:37	184.1	320.4	5.3	510.8	37.8	28.5	9.4	15.2	1.129	1.363	765.5	All times based on
		3	3/18/2010	11:49	12:49	182.8	320.1	6.4	520.1	40.7	29.9	10.8	14.2	1.129	1.357	880.2	CEMS time
					Avg	183.4	320.2	6.1	513.9	38.8	29.5	9.4	14.3	1.129	1.359	762.4	
											_						
M-29/5	1	1	3/16/2010	07:21	09:32	183.9	310.4	6.3	521.3	39.2	29.5	9.8	14.9	1.104	1.095	640.6	
Metals		2	3/16/2010	10:00	12:11	184.4	312.5	6.1	524.0	39.3	28.8	10.5	15.1	1.101	1.061	671.0	All times based on
РМ		3	3/16/2010	12:36	14:47	183.4	320.2	6.3	529.0	40.0	32.9	7.2	14.5	1.104	1.091	468.0	CEMS time
					Avg	183.9	314.4	6.2	524.8	39.5	30.4	9.1	14.8	1.103	1.082	593.2	
M-13B	1	1	3/17/2010	11:46	12:56	184.0	320.1	6.4	543.7	47.4	42.5	4.9	11.2	1.117	1.232	362.2	
HF		2	3/17/2010	13:15	14:27	184.0	319.9	6.4	541.6	46.7	41.0	5.7	11.3	1.116	1.228	416.3	All times based on
l	\	3	3/17/2010	14:45	15:53	184.1	319.8	6.3	539.4	45.2	39.4	5.8	11.7	1.117	1.230	425.1	CEMS time
					Avg	184.0	319.9	6.4	541.6	46.4	41.0	5.4	11.4	1.117	1.230	401.2]

DESCRIPTION OF INSTALLATION

PROCESS DESCRIPTION (CONTINUED)

							Unit 2	Compl	Table		ncess	Data					
PLANT NAM	NE: NO	RTH BR	ROWARD					ta From D			00033		lated	Lin	ne Feed R	ate	
2010								Fabric	SDA	Total	Diluton				Slurry		
						Steam	FF inlet	Filter	Inlet	SDA	H2O	Slurry	Slurry	Slurry	CaO	CaO	
	Unit	Run		Tì	me	Flow	Temp	Delta	Temp	Flow	flow	Flow	Conc.	Specific	Density	Flow	
Test	No.	No.	Date	Start	Stop	klbs/hr	deg F	In. H2O	deg F	gpm	gpm	gpm	%	Grav ity	lb/gai	lbs/hr	Test Run Comments
M-26A	2	1	3/17/2010	06:54	07:54	184.7	323.0	6.1	518.1	38.0	31.0	7.0	14.9	1.109	1.136	474.4	
HCI		2	3/17/2010	09:02	10:02	184.2	319.5	6.2	512.2	41.2	35.7	5.5	13.6	1.113	1.184	388.6	All times based on
		3	3/17/2010	10:25	11:25	184.9	319.4	6.1	509.6	38.2	34.8	3.4	14.1	1.117	1.229	249.2	CEMS time
					Avg	184.6	320.6	6.1	513.3	39.1	33.9	5.3	14.2	1.1 13	1.183	370.7	
M-29/5	2	1	3/18/2010	07:09	09:22	183.9	320.0	5.2	515.0	39.3	33.2	6.1	12.3	1.128	1.354	493.1	
Metals		2	3/18/2010	09:49	12:02	182.9	320.2	5.4	515.2	38.6	32.8	5.9	12.4	1.129	1.361	481.0	All times based on
PM		3	3/18/2010	12:27	14:39	183.9	320.6	6.3	520.2	41.4	34.3	7.1	11.7	1.128	1.354	579.2	CEMS time
					Avg	183.6	320.3	5.6	516.8	39.8	33.4	6.4	12.1	1.128	1.356	517.8	
M-23	2	1	3/16/2010	08:44	13:36	184.1	314.2	6.1	505.6	37.6	30.0	7.6	15.8	1.101	1.063	487.3	
dioxins		2	3/17/2010	06:54	12:19	184.3	321.2	6.1	513.8	39.3	34.0	5.4	14.3	1.113	1.184	380.1	All times based on
		3	3/17/2010	12:53	17:26	183.9	320.3	6.1	523.4	43.1	39.3	3.9	12.3	1.117	1.231	285.1	CEMS time
					Avg	184.1	318.6	6.1	514.2	40.0	34.4	5.6	14.2	1.110	1.159	384.1	1
							-										
M-13B	2	1	3/18/2010	07:09	08:24	183.9	320.6	5.9	514.0	39.3	32.8	6.5	12.3	1.1 29	1.357	530.0	
HF		2	3/18/2010	08:56	10:10	184.2	319.6	3.4	512.5	37.4	31.9	5.5	12.8	1.129	1.359	448.5	All times based on
		3	3/18/2010	10:45	12:05	183.0	319.9	6.0	514.7	38.4	32.1	6.3	12.5	1.129	1.360	512.4	CEMS time
					Avg	183.7	320.0	5.1	513.8	38.3	32.2	6.1	12.5	1.129	1.359	497.0	1

1

CleanAir Project No: 10955-2

CleanAir

DESCRIPTION OF INSTALLATION

PROCESS DESCRIPTION (CONTINUED)

<u> </u>							Unit 3	Complia	ance T	est Pr	ocess	Data					
PLANT NAME: NORTH BROWARD						Data From DCS Printouts					Calcu	lated	Lime Feed Rate				
2010						Steam	FF Inlet	Fabric Filter	SDA Iniet	Total SDA	Diluton H2O	Siurry	Slurry	Slurry	Slurry CaO	CaO	
	Unit	Run		Ti	me	Flow	Temp	Deita	Temp	Flow	flow	Flow	Conc.	Specific	Density	Flow	
Test	No.	No.	Date	Start	Stop	klbs/hr	deg F	In. H2O	deg F	gpm	gpm	gpm	%	Gravity	lb/gal	lbs/hr	Test Run Comments
M-26A	3	1	3/16/2010	07:17	08:17	184.6	309.9	6.3	507.3	35.8	26.2	9.7	16.1	1.113	1.183	685.0	
HCI	1	2	3/16/2010	09:04	10:04	184.1	310.1	6.3	514.4	37.4	24.2	13.3	19.1	1.100	1.051	837.4	All times based on
		3	3/16/2010	10:32	11:32	184.3	309.9	6.4	513.4	37.5	27.0	10.5	18.6	1.101	1.059	667.2	CEMS time
					Avg	184.3	310.0	6.3	511.7	36.9	25.8	11.1	17.9	1.105	1.098	729.9	
											_						
M-29/5	3	1	3/17/2010	06:50	09:03	184.2	315.0	6.4	518. 9	37.8	33.4	4.5	14.8	1.109	1.142	304,9	
Metals		2	3/17/2010	09:26	11:38	184.2	314.9	6.4	518.1	37.8	33.6	4.2	14.4	1.115	1.214	303.7	All times based on
PM		3	3/17/2010	11:59	14:11	183.5	315.2	6.4	521.6	38.7	34.7	4.0	13.7	1.117	1.230	295.2	CEMS time
					Avg	184.0	315.0	6.4	519.5	38.1	33.9	4.2	14.3	1.114	1.195	301.3	
									_					_			
M-13B	3	1	3/16/2010	11:49	13:07	183.7	310.2	6.5	517.3	38.8	28.2	10.6	15.1	1.102	1.074	684.4	
HF		2	3/16/2010	13:33	14:44	183.9	309.6	6.4	523.8	41.3	36.1	5.2	14.0	1.105	1.098	339.3	All times based on
		3	3/16/2010	15:07	16:16	184.2	309.8	6.3	518.2	38.9	34.5	4.4	14.7	1.106	1.113	293.8	CEMS time
					Avg	184.0	309.9	6.4	519.7	39.7	32.9	6.7	14.6	1.104	1.095	439.2]

3-5

CleanAir Project No: 10955-2

Client Reference No: CleanAir Project No: 10955-2

3-6

DESCRIPTION OF INSTALLATION

DESCRIPTION OF SAMPLING LOCATIONS

Sampling point locations were determined according to EPA Method 1.

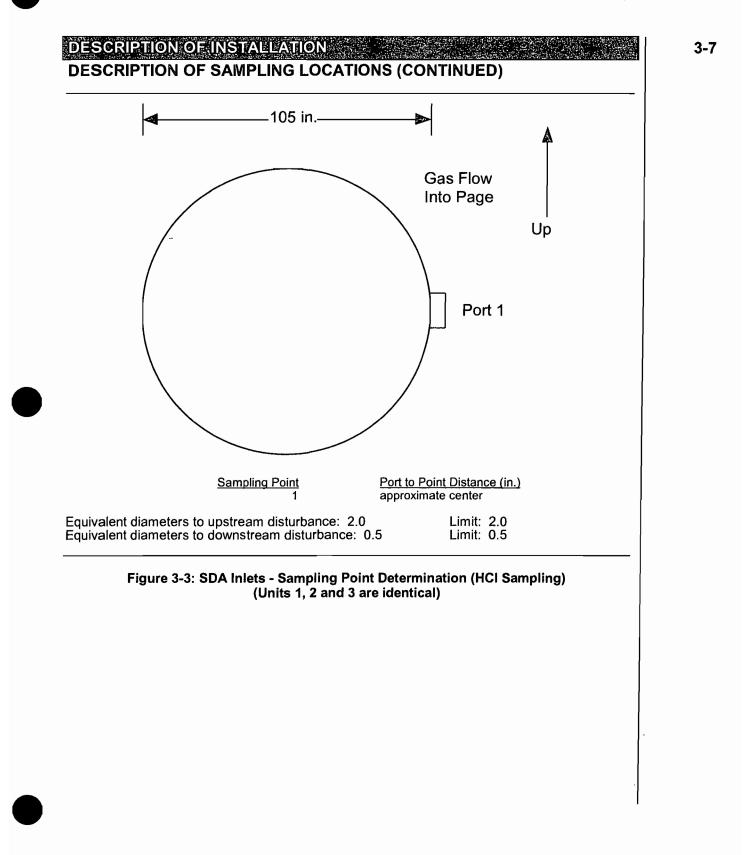
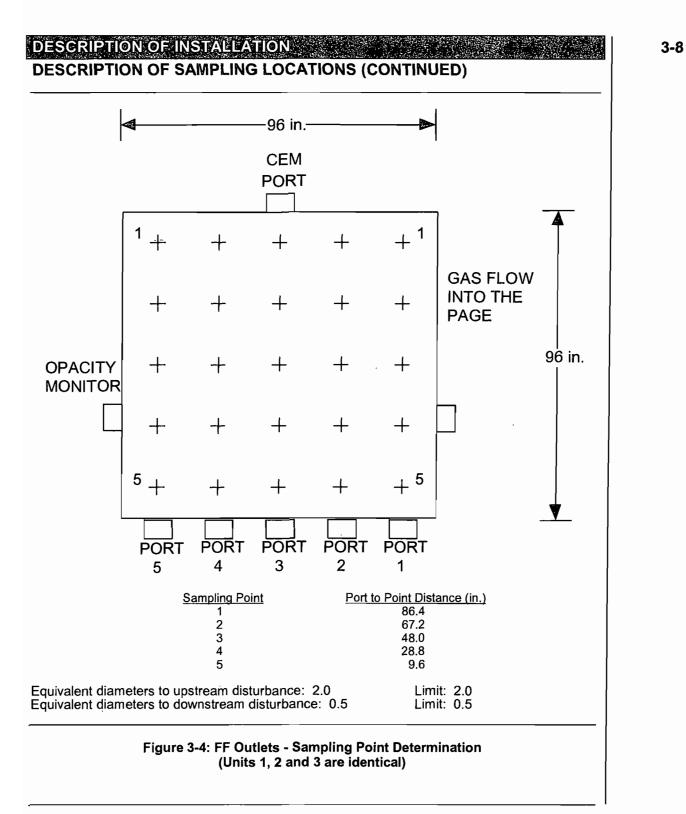

Table 3-4 outlines the sampling point configurations. Figures 3-3 and 3-4 (on pages 3-7 and 3-8) illustrate the sampling points and orientation of sampling ports for each of the sources that were tested in the program.

	Table 3-4: Sampling Points											
Location Constituent	Method	Run No.	Ports	.Points. per Port	Minutes	Total Minutes	Figure					
Units 1,2 and 3 SDA Inlets							-					
Hydrogen Chloride	26A ¹	1-3	1	1	60	60	3-3					
Units 1,2 and 3 FF Outlets												
Particulate, Be, Cd, Pb and Hg	5/29 ²	1-3	5	5	5	125	3-4					
Hydrogen Chloride	26A ¹	1-3	1	1	60	60	NA					
Fluorides	13B	1-3	5	5	2.5	62.5	3-4					
PCDDs/PCDFs (Unit 2 only)	23	1-3	5	5	10	250	3-4					


¹ Hydrogen chloride inlet testing utilized a modification of EPA Method 26A (single point constant sampling rate).

² Metals testing was done in conjunction with EPA Method 5 particulate sampling.

Client Reference No: CleanAir Project No: 10955-2

Client Reference No: CleanAir Project No: 10955-2

End of Section 3 - Description of Installation

4-1

methods and the	
monious una inc	ir respective sources.
	Table 4-1:
	Summary of Sampling Procedures
Title 40 CFR Part 6	0 Appendix A
Method 1	"Sample and Velocity Traverses for Stationary Sources"
Method 2	"Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube)"
Method 3	"Gas Analysis for the Determination of Dry Molecular Weight"
Method 3A	"Determination of Oxygen and Carbon Dioxide Concentrations in Emissions from Stationary Sources (Instrumental Analyzer Procedure)"
Method 3B	"Gas Analysis for the Determination of Emission Rate Correction Factor or Excess Air"
Method 5	"Determination of Particulate Matter Emissions from Stationary Sources"
Method 9	"Visual Determination of the Opacity of Emissions from Stationary Sources"
Method 13B	"Determination of Total Fluoride Emissions from Stationary Sources (Specific Ion Electrode Method)"
Method 23	"Determination of Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans from Municipal Waste Conductors"
Method 22	"Visual Determination of Fugitive Emissions from Material Sources and Smoke Emissions from Flares"
Mod.Method 26A ¹	"Determination of Hydrogen Halide and Halogen Emissions from Stationary Sources Isokinetic Method"
Method 29	"Determination of Metals Emissions from Stationary Sources"

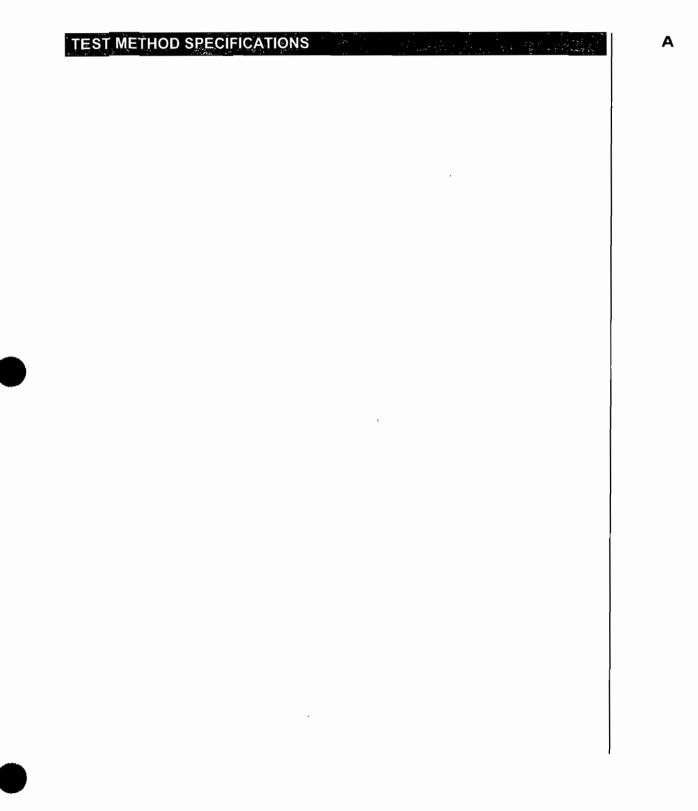
¹ Hydrogen chloride testing utilized a modification of EPA Method 26A (single point constant sampling rate) at the inlet and outlet sampling locations.

These methods appear in detail in Title 40 of the Code of Federal Regulations (CFR) and on the World Wide Web at http://www.cleanair.com.

Diagrams of the sampling apparatus and major specifications of the sampling, recovery and analytical procedures are summarized for each method in Appendix A.

CleanAir followed specific quality assurance and quality control (QA/QC) procedures as outlined in the individual methods and in EPA "Quality Assurance Handbook for Air Pollution Measurement Systems: Volume III Stationary Source-Specific Methods", EPA/600/R-94/038C. Additional QA/QC methods, as prescribed in CleanAir's internal Quality Manual, were also followed. Results of all QA/QC activities performed by CleanAir are summarized in Appendix E.

End of Section 4 – Methodology



Client Reference No: CleanAir Project No: 10955-2

5-1

APPENDIX	
TEST METHOD SPECIFICATIONS	A
SAMPLE CALCULATIONS	B
PLANT DATA	C
PARAMETERS	D
QA/QC DATA	E
ASTM D 6866-08 AND 7459-08 CO2 SAMPLING/ANALYSIS RESULTS	F
FIELD DATA	G
FIELD DATA PRINTOUTS	H
LABORATORY DATA	1
PERTINENT CERTIFICATIONS	J
CORRESPONDENCE AND CLARIFICATIONS	K

CleanAir Project No: 10955-2

This Page Intentionally Left Blank

EPA Method 5/29

Source Location Name(s) Pollutant(s) to be Determined Other Parameters to be Determined from Train Gas Density, Moisture, Flow Rate

Pollutant Sampling Information

Duration of Run No. of Sample Traverse Points Sample Time per Point Sampling Rate

Sampling Probe

Nozzie Material Nozzle Design Probe Liner Material Effective Probe Length Probe Temperature Set-Point

Velocity Measuring Equipment

Pitot Tube Design Pitot Tube Coefficient Pitot Tube Calibration by

Pitot Tube Attachment

Metering System Console

Meter Type Meter Accuracy Meter Resolution Meter Size Meter Calibrated Against Pump Type **Temperature Measurements Temperature Resolution** ∆P Differential Pressure Gauge ∆H Differential Pressure Gauge Barometer

Filter Description

Filter Location Filter Holder Material Filter Support Material Cyclone Material Filter Heater Set-Point Filter Material

Other Components

Description Location **Operating Temperature** Units 1, 2 and 3 FF Outlets Particulate Matter (PM) and Trace Metals (including Mercury)

Standard Method Specification

N/A N/A N/A Isokinetic (90-110%)

Borosilicate or Quartz Glass Button-Hook or Elbow Borosilicate or Quartz Glass N/A 248'F±25'F

Type S N/A Geometric or Wind Tunnel Attached to Probe

Dry Gas Meter ±2% N/A N/A Wet Test Meter or Standard DGM N/A N/A 5.4'F Inclined Manometer or Equivalent Inclined Manometer or Equivalent Mercury or Aneroid

After Probe **Borosilicate Glass** Teflon (or other non-metallic material) N/A 248°F±25°F Quartz or Fiberglass Fiber

N/A N/A N/A

125 minutes 25 5 minutes Isokinetic (90-110%)

Actual Specification Used

Borosilicate Glass Button-Hook Borosilicate Glass 8 feet 248'F±25'F

Type S 0.805 Wind-Tunnel Attached to Probe

Dry Gas Meter ±1% 0.01 cubic feet 0.1 dcf/revolution Wet Test Meter Rotary Vane Type K Thermocouple/Pyrometer 1.0°F Inclined Manometer Inclined Manometer Digital Barometer calibrated w/Mercury Aneroid

Exit of Probe **Borosilicate Glass** Teflon None 248'F±25'F Quartz Fiber

N/A N/A N/A

Impinger Train Description

Type of Glassware Connections Connection to Probe or Filter by Number of Impingers Impinger Stem Types Impinger 1 Impinger 2 Impinger 3 Impinger 3 Impinger 4 Impinger 5 Impinger 6 Impinger 7 Impinger 8

Gas Density Determination

Sample Collection Sample Collection Medium Sample Analysis

Sample Recovery Information

Probe Brush Matenal Probe Rinse Reagent Probe Rinse Wash Bottle Matenal Probe Rinse Storage Container Filter Recovered? Filter Storage Container Impinger Contents Recovered? Impinger Rinse Reagent Impinger Wash Bottle Impinger Storage Container

Analytical Information

Method 4 H₂O Determination by Filter Preparation Conditions Front-Half Rinse Preparation Back-Half Analysis Additional Analysis

EPA Method 5/29

Standard Method Specification

Ground Glass or Equivalent Direct Glass Connection 7

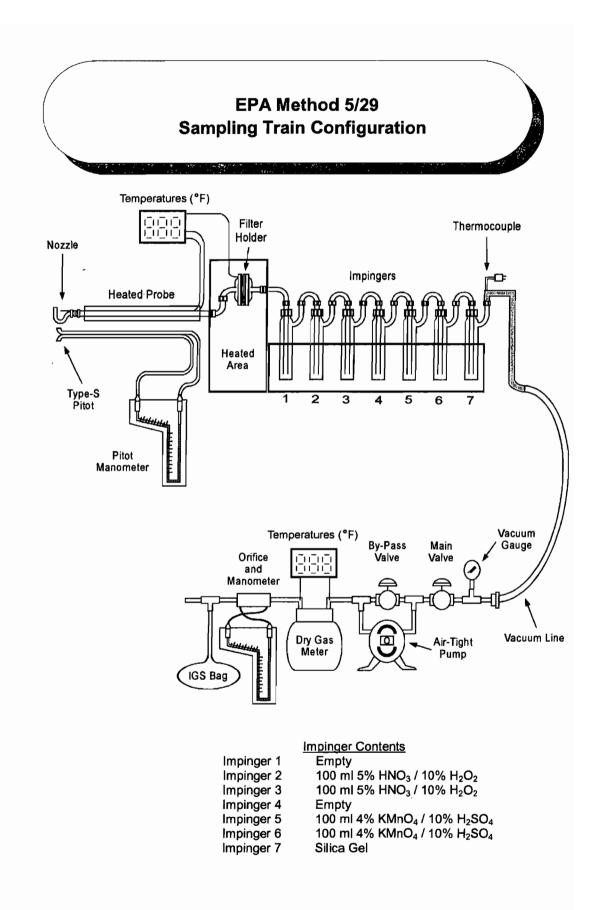
Modified Greenburg-Smith Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith

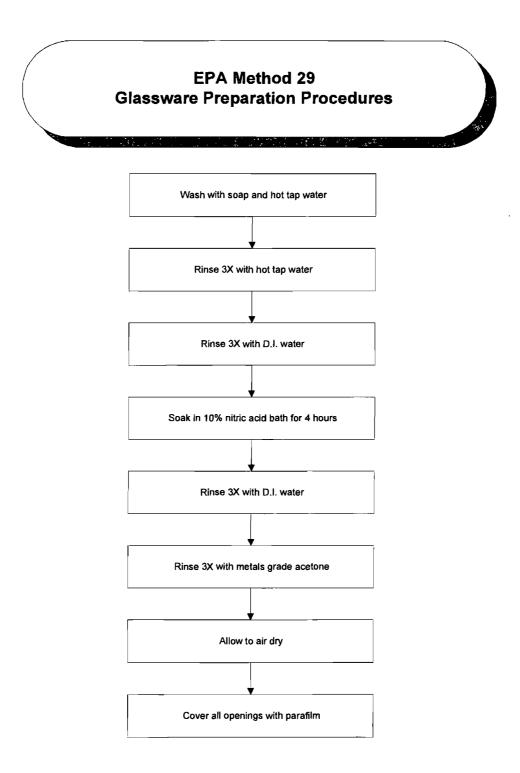
Multi-point integrated Flexible Gas Bag Orsat or Fyrite Analyzer

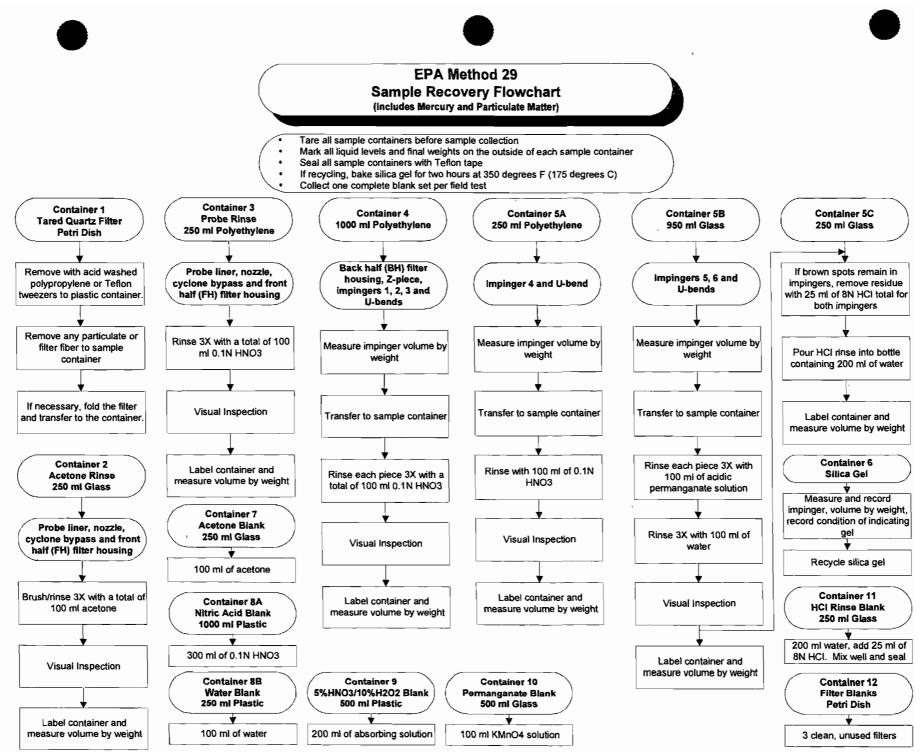
Non-metallic swab or bristle Acetone/0.1N Nitric Acid Glass or Teflon See Method 29 Recovery Flow Chart Yes Petri Dish - Glass or Polystyrene Yes See Method 29 Recovery Flow Chart Glass or Teflon See Recovery Flow Chart

Volumetric or Gravimetric See Method 29 Analytical Flow Chart See Method 29 Analytical Flow Chart See Method 29 Analytical Flow Chart Gravimetric (EPA Method 5)

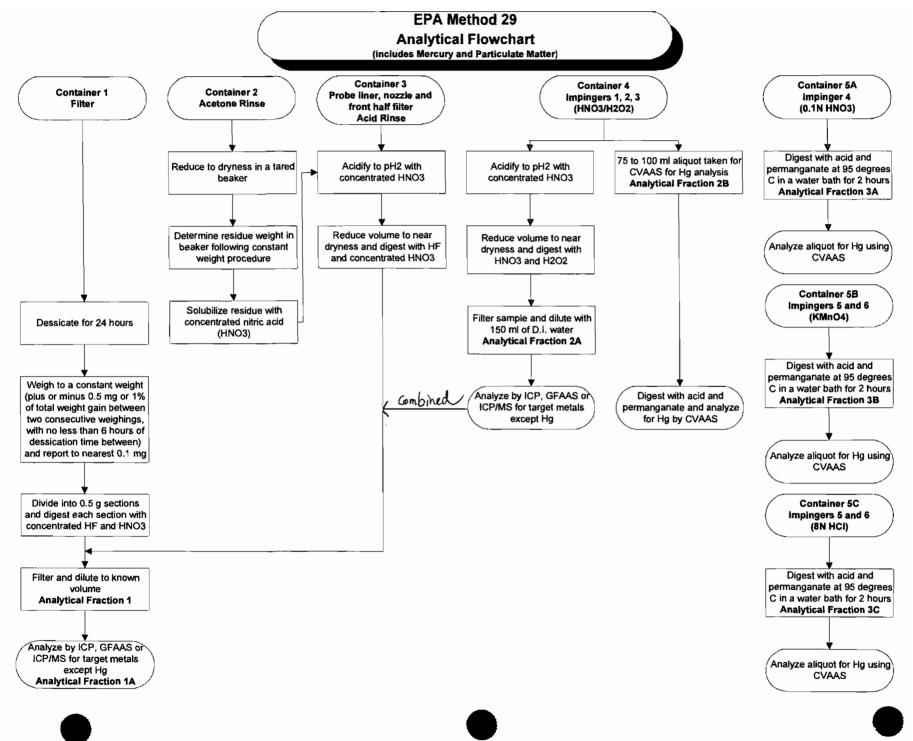
Actual Specification Used


Screw Joint with Silicone Gasket Direct Glass Connection 7


Modified Greenburg-Smith Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith


Multi-Point Integrated Vinyl Bag CEM

Teflon Mat Acetone/0.1N. Nitric Acid Teflon See Recovery Flow Chart Yes Glass Yes See Recovery Flow Chart Teflon See Recovery Flow Chart


Gravimetric and Volumetric For Metals Analysis See Analytical Flow Chart See Analytical Flow Chart Gravimetric (EPA Method 5)

A - 7

EPA Method 13B

Standard Method Specification

Isokinetic (90-110%) 1 cfm maximum

Units 1,2 and 3 FF Outlets Source Location Name(s) Pollutant(s) to be Determined Total Fluoride (F) Other Parameters to be Determined from Trai Gas Density, Moisture, Flow Rate

N/A

N/A

N/A

Pollutant Sampling Information

Duration of Run No. of Sample Traverse Points Sample Time per Point Sampling Rate

Sampling Probe

Nozzle Material Nozzle Design Probe Liner Material Effective Probe Length Probe Temperature Set-Point

Velocity Measuring Equipment

Pitot Tube Design **Pitot Tube Coefficient** Pitot Tube Calibration by Pitot Tube Attachment

Metering System Console

Meter Type Meter Accuracy Meter Resolution Meter Size Meter Calibrated Against Pump Type **Temperature Measurements** Temperature Resolution ∆P Differential Pressure Gauge ∆H Differential Pressure Gauge Barometer

Filter Description

Filter Location Filter Holder Material

Filter Support Material Cyclone Material Filter Heater Set-Point

Filter Material

Other Components

Description Location **Operating Temperature**

Stainless Steel or Glass Button-Hook or Elbow Stainless Steel or Glass N/A 248'F±25'F (optional)

Type S N/A Geometric or Wind Tunnel Attached to Probe

Dry Gas Meter ±2% N/A N/A Wet Test Meter or Standard DGM N/A N/A 5.4'F Inclined Manometer or Equivalent Inclined Manometer or Equivalent Mercury or Aneroid

Exit of Probe or Between 3rd and 4th impingers Borosilicate Glass or Stainless Steel Stainless Steel if filter at probe exit; Glass Frit if filter after 3rd impinger

No. 1 if after 3rd impinger N/A N/A

N/A

N/A

N/A 248'F±25'F if after probe, unheated if after 3rd imp. Low F Quartz or Fiberglass if after probe, Whatman

Wet Test Meter Rotary Vane 1.0°F

25 2.5 minutes Isokinetic (90-110%) 1 cfm maximum

Actual Specification Used

Borosilicate Glass Button-Hook Borosilicate Glass 8 feet 248'F±25'F

62.5 minutes

Type S 0.812 Wind-Tunnel Attached to Probe

Dry Gas Meter ±1% 0.01 cubic feet 0.1 dcf/revolution Type K Thermocouple/Pyrometer Inclined Manometer Inclined Manometer Digital Barometer calibrated w/Mercury Aneroid

Exit of Probe **Borosilicate Glass**

Teflon None 248°F±25°F

N/A

N/A

Whatman No. 1 (Ashless)

A - 9

Impinger Train Description

Type of Glassware Connections Connection to Probe or Filter by Number of Impingers Impinger Stem Types Impinger 1

- Impinger 2
- Impinger 3
- Impinger 4 Impinger 5
- Impinger 6
- Impinger 7
- Impinger 8

Gas Density Determination

Sample Collection Sample Collection Medium Sample Analysis

Sample Recovery Information

Probe Brush Material Probe Rinse Reagent Probe Rinse Wash Bottle Material Probe Rinse Storage Container Filter Recovered? Filter Storage Container Impinger Contents Recovered? Impinger Rinse Reagent Impinger Wash Bottle Impinger Storage Container

Analytical Information

Method 4 H₂O Determination by Filter Preparation Conditions Front-Half Rinse Preparation Back-Half Analysis Additional Analysis

EPA Method 13B

Standard Method Specification

Ground Glass or Equivalent Direct Glass Connection 4

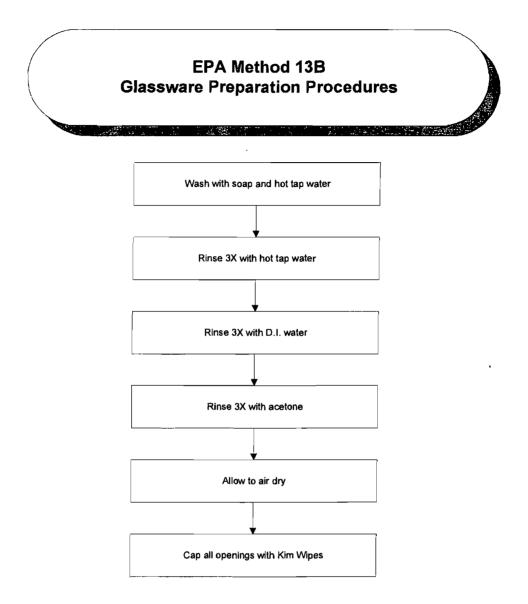
Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith

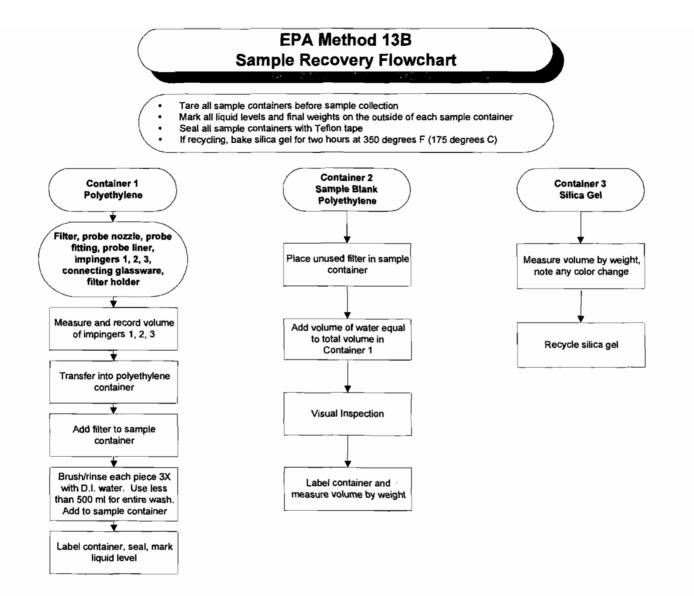
Multi-point integrated Flexible Gas Bag Orsat or Fyrite Analyzer

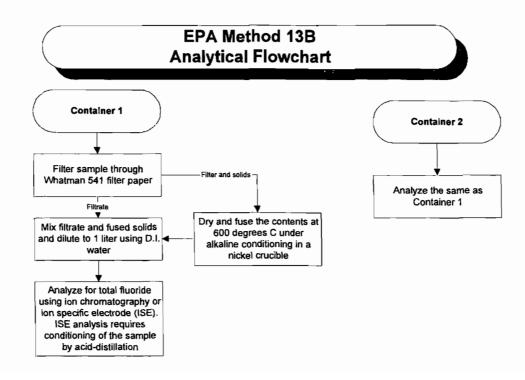
Nylon Bristle Deionized distilled water Glass or Polyethylene Polyethylene Yes Deionized Distilled Water Glass or Polyethylene Polyethylene

Volumetric or Gravimetric See analytical flow chart See analytical flow chart Ion Specific Electrode N/A

Actual Specification Used


Screw Joint with Silicone Gasket Direct Glass Connection 4


Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith


Multi-Point Integrated Vinyl Bag CEM

Nylon Bristle Deionized Distilled Water Teflon Polyethylene Yes Deionized Distilled Water Teflon Polyethylene

Gravimetric and Volumetric See Analytical Flow Chart See Analytical Flow Chart Ion Chromatography None

EPA Method 23

 Source Location Name(s)
 Unit 2 FF Outlet

 Pollutant(s) to be Determined
 Polychlorinated Dibenzo-p-Dioxins

 Other Parameters to be Determined from Train
 Gas Density, Moisture, Flow Rate

Unit 2 FF Outlet Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans (PCDD/PCDF) Gas Density, Moisture, Flow Rate

Pollutant Sampling Information

Duration of Run No. of Sample Traverse Points Sample Time per Point Sampling Rate

Sampling Probe

Nozzle Material Nozzle Design Probe Liner Material Effective Probe Length Probe Temperature Set-Point

Velocity Measuring Equipment

Pitot Tube Design Pitot Tube Coefficient Pitot Tube Calibration by Pitot Tube Attachment

Metering System Console

 Meter Type

 Meter Accuracy

 Meter Resolution

 Meter Size

 Meter Calibrated Against

 Pump Type

 Temperature Measurements

 Temperature Resolution

 ΔP Differential Pressure Gauge

 ΔH Differential Pressure Gauge

 Barometer

Filter Description

Filter Location Filter Holder Material Filter Support Material Cyclone Material Filter Heater Set-Point Filter Material

Other Components

Adsorbent Module Location Operating Temperature N/A N/A N/A Isokinetic (90-110%)

Standard Method Specification

Nickel, Quartz, Stainless Steel or Glass Button-Hook or Elbow Borosilicate or Quartz Glass N/A 248'F±25'F

Type S N/A Geometric or Wind Tunnel Attached to Probe

Dry Gas Meter ±2% N/A N/A Wet Test Meter or Standard DGM N/A N/A 5.4°F Inclined Manometer or Equivalent Inclined Manometer or Equivalent Mercury or Aneroid

After Probe Borosilicate Glass Glass Frit N/A 248'F±25'F Glass Fiber - Toluene Extracted

XAD-2 Trap After filter and condenser < 68°F 250 minutes 25 10 minutes Isokinetic (90-110%)

Actual Specification Used

Borosilicate Glass Button-Hook Borosilicate Glass 8 feet 248'F±25'F

Type S 0.834 Wind-Tunnel Attached to Probe

Dry Gas Meter ±1% 0.01 cubic feet 0.1 dcf/revolution Wet Test Meter Rotary Vane Type K Thermocouple/Pyrometer 1.0°F Inclined Manometer Inclined Manometer Digital Barometer calibrated w/Mercury Aneroid

Exit of Probe Borosilicate Glass Tefion None 248'F±25'F Glass Fiber - Toluene Extracted

XAD-II Adsorbent Trap After filter and condenser <68°F

Impinger Train Description Type of Glassware Connections

Connection to Probe or Filter by Number of Impingers Impinger Stem Types Impinger 1 Impinger 2 Impinger 3 Impinger 4 Impinger 5 Impinger 6 Impinger 7

Impinger 8

Gas Density Determination

Sample Collection Sample Collection Medium Sample Analysis

Sample Recovery Information

Probe Brush Material Probe Rinse Reagent Probe Rinse Wash Bottle Material Probe Rinse Storage Container Filter Recovered? Filter Storage Container Impinger Contents Recovered? Impinger Rinse Reagent Impinger Wash Bottle Impinger Storage Container

Analytical Information

Method 4 H₂O Determination by Filter Preparation Conditions Front-Half Rinse Preparation Back-Half Analysis Additional Analysis

EPA Method 23

Standard Method Specification

Ground Glass or Equivalent Direct Glass Connection 5

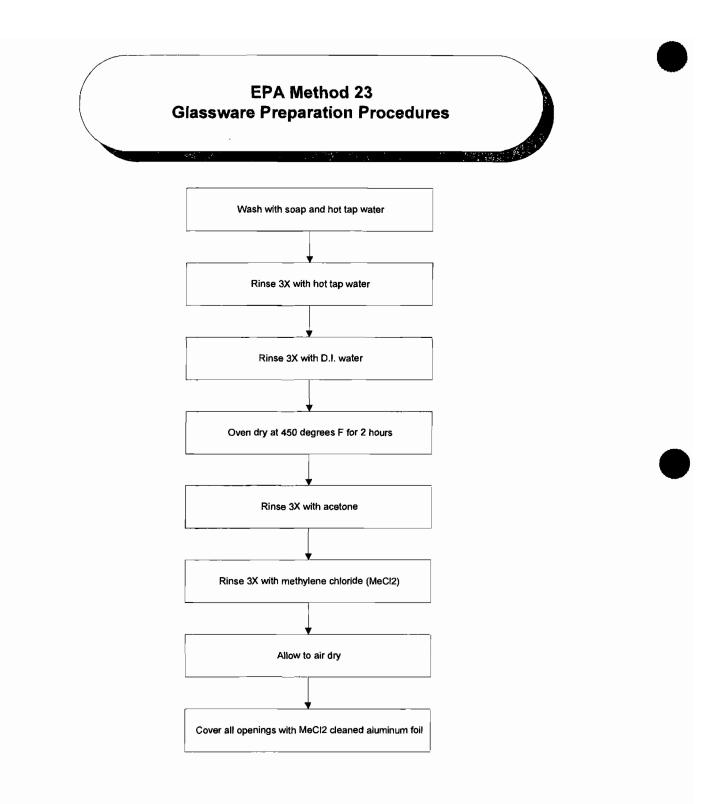
Modified Greenburg-Smith Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith

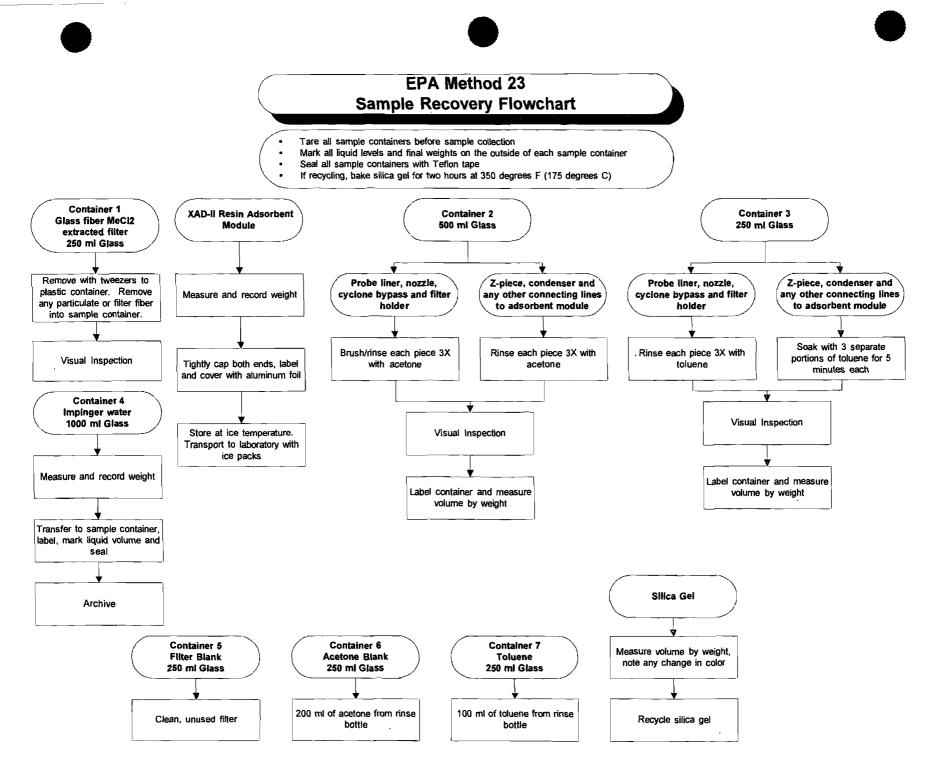
Multi-point integrated Flexible Gas Bag Orsat or Fyrite Analyzer

Inert Bristle Acetone/Methylene Chloride/Toluene Glass or Teflon Glass Yes Petri Dish - Glass or Polystyrene No N/A N/A N/A

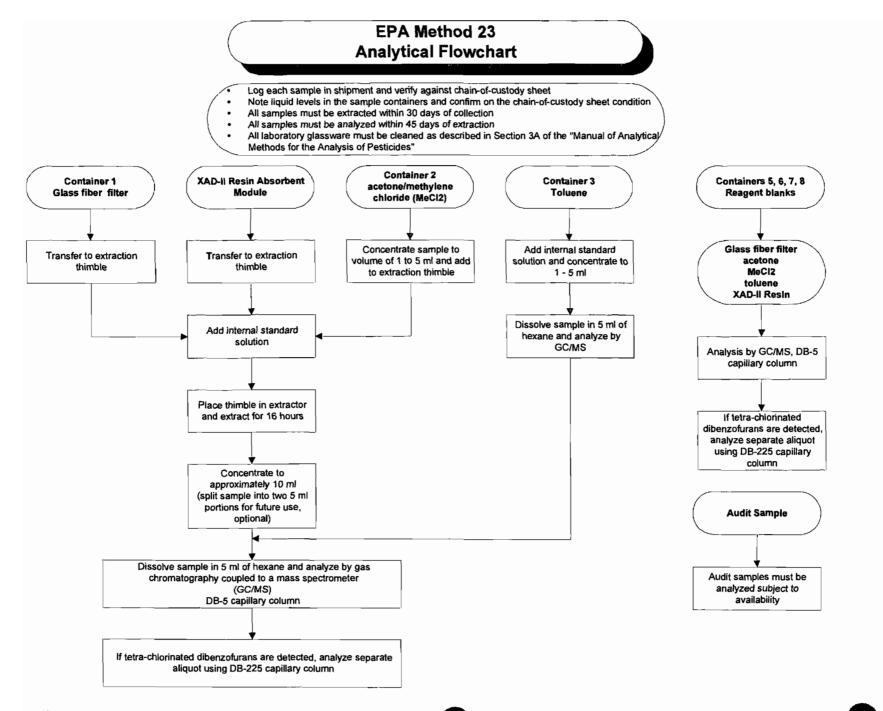
Volumetric or Gravimetric See Method 23 Analytical Flow Chart See Method 23 Analytical Flow Chart N/A None

Actual Specification Used


Screw Joint with Silicone Gasket Direct Glass Connection 5


Shortened Stem (open tip) Modified Greenburg-Smith Greenburg-Smith Modified Greenburg-Smith Modified Greenburg-Smith

Multi-Point Integrated Vinyl Bag CEM


Teflon Mat Acetone/Toluene (see Appendix J) Teflon Glass Yes Glass Archived HPLC Water Teflon Polyethylene

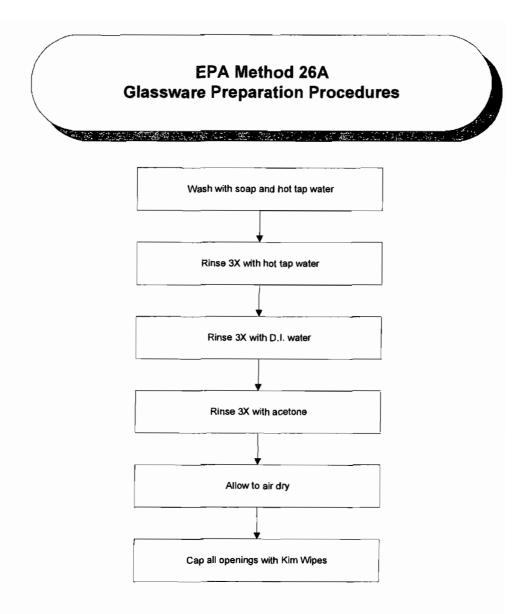
Gravimetric For Organic Analysis Organic Analysis Archive None

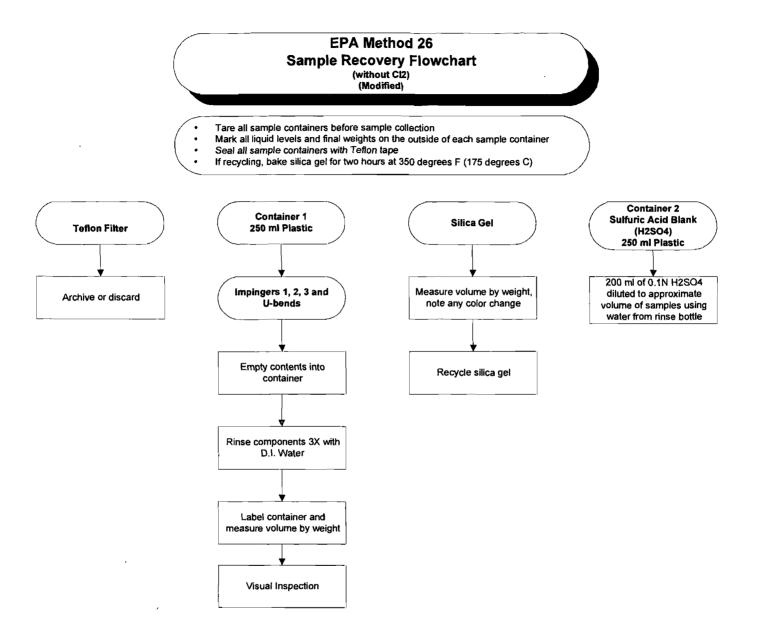
A - 17

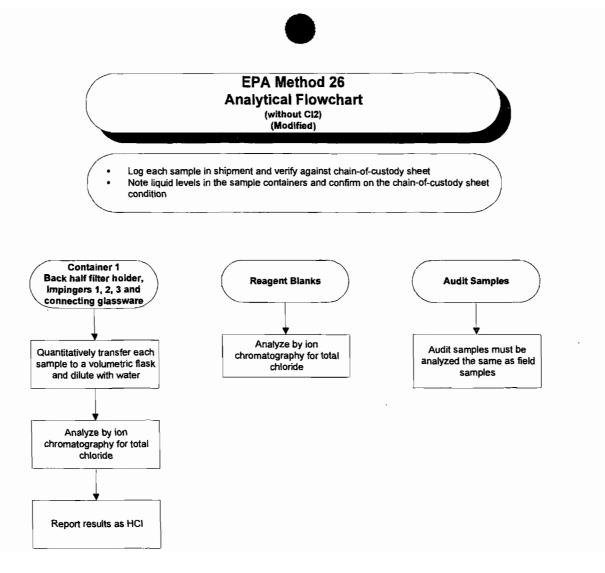
Source Location Name(s)

Pollutant(s) to be Determined

EPA Method 26A (modified)


Units 1-3 SDA Inlets and Units 1-3 FF Outlets Hydrogen Chloride (HCI) Other Parameters to be Determined from Train Gas Density, Moisture


Note: Modification includes the use of full-size impingers instead of midget impingers.


	Standard Method Specification	Actual Specification Used
Pollutant Sampling Information		
Duration of Run	N/A	60 minutes
No. of Sample Traverse Points	N/A	1
Sample Time per Point	N/A	60 minutes
Sampling Rate	Constant Rate (±10%)	Constant Rate (±10%)
Sampling Probe		
Nozzle Material	N/A	None
Nozzle Design	N/A	N/A
Probe Liner Material	Borosilicate Glass	Borosilicate Glass
Effective Probe Length	N/A	4 feet
Probe Temperature Set-Point	>248°F	350°F @ inlet, Stack Temp @ FF Outlet
Velocity Measuring Equipment		
Pitot Tube Design	None	None
Pitot Tube Coefficient	N/A	N/A
Pitot Tube Calibration by	N/A	N/A
Pitot Tube Attachment	N/A	N/A
Metering System Console		
Meter Type	Dry Gas Meter or Critical Orifice	Dry Gas Meter
Meter Accuracy	±2%	±1%
Meter Resolution	N/A	0.01 cubic feet
Meter Size	2 liters/minute	0.1 dcf/revolution
Meter Calibrated Against	Wet Test Meter	Wet Test Meter
Pump Type	Diaphragm or equivalent	Rotary Vane
Temperature Measurements	Dial Thermometer or equivalent	Type K Thermocouple/Pyrometer
Temperature Resolution	2°F-5.4°F	1.0°F
∆P Differential Pressure Gauge	N/A	N/A
∆H Differential Pressure Gauge	N/A	Inclined Manometer
Barometer	Mercury, aneroid or other.	Digital Barometer calibrated w/Mercury Aneroid
Filter Description		
Filter Location	After Probe	Exit of Probe
Filter Holder Material	Teflon or Quartz	Borosilicate Glass
Filter Support Material	Teflon Frit	Teflon
Cyclone Material	N/A	None
Filter Heater Set-Point	>248°F	350'F @ Inlet, Stack Temp @ FF Outlet
Filter Material	Teflor/Glass Mat (Quartz, Optional High Temp>410F)	Quartz Fiber @ Inlet, Teflon on Glass @ Outlet
Other Components		
Description	N/A	N/A
Location	N/A	N/A
Operating Temperature	N/A	N/A

EPA Method 26A (modified)

Sample Collection MediumN/AVinyl BagSample AnalysisN/ACEMSample Recovery InformationN/AN/AProbe Brush MaterialN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AIlter Recovered?NoNoFilter Storage ContainerN/AN/AImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Storage ContainerPolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneAnalytical InformationN/ASravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	•	•	
Type of Glassware ConnectionsGround Glass or EquivalentScrew Joint with Silicone GasketConnection to Probe or Filter byDirect Glass ConnectionDirect Glass ConnectionNumber of Impingers5 or 8 (Midget Impingers)5impinger 1Midget Shortened StemShortened Stem (open tip)Impinger 1Midget BubblerGreenburg-SmithImpinger 3Midget BubblerGreenburg-SmithImpinger 4Midget BubblerModified Greenburg-SmithImpinger 5Midget BubblerModified Greenburg-SmithImpinger 6Mae WestModified Greenburg-SmithImpinger 7Midget BubblerModified Greenburg-SmithImpinger 8N/ASingle Point IntegratedSample CollectionN/AVinyl BagSample Collection MediumN/AVinyl BagSample Collection MediumN/AVinyl BagSample Collection MediumN/AN/AProbe Rinse MaterialN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AImpinger ContainerYesYesImpinger Rinse ReagentDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled Water <tr<< th=""><th></th><th>Standard Method Specification</th><th>Actual Specification Used</th></tr<<>		Standard Method Specification	Actual Specification Used
Connection to Probe or Filter by Direct Glass Connection Direct Glass Connection Number of (mpingers) 5 or 6 (Midget Impingers) 5 impinger 1 Midget Shortened Stem Shortened Stem (open tip) Impinger 1 Midget Bubbler Greenburg-Smith Greenburg-Smith Midget Bubbler Greenburg-Smith Midget Bubbler Modified Greenburg-Smith Impinger 3 Midget Bubbler Modified Greenburg-Smith Impinger 5 Midget Bubbler Modified Greenburg-Smith Impinger 6 Mae West Impinger 7 Impinger 8 Sector 2000 Stratege Contents Nov 2000 Strate	Impinger Train Description		
Number of Impingers5 or 8 (Midget Impingers)5Impinger Stem Typesimpinger 1Midget Shortened StemShortened Stem (open tip)Impinger 1Midget BubblerGreenburg-SmithImpinger 2Midget BubblerGreenburg-SmithImpinger 3Midget BubblerModified Greenburg-SmithImpinger 4Midget BubblerModified Greenburg-SmithImpinger 5Midget BubblerModified Greenburg-SmithImpinger 6Mae WestMidget BubblerImpinger 7impinger 8Sample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/A <t< td=""><td>Type of Glassware Connections</td><td>Ground Glass or Equivalent</td><td>Screw Joint with Silicone Gasket</td></t<>	Type of Glassware Connections	Ground Glass or Equivalent	Screw Joint with Silicone Gasket
Impinger Stem TypesImpinger 1Midget Shortened StemImpinger 2Midget BubblerImpinger 3Midget BubblerImpinger 3Midget BubblerImpinger 4Midget BubblerImpinger 5Midget BubblerImpinger 6Mae WestImpinger 7Midget BubblerImpinger 8Madified Greenburg-SmithGas Density DeterminationSample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ACEMSample Collection MediumN/AVinyl BagSample CollectionNo <td< td=""><td>Connection to Probe or Filter by</td><td>Direct Glass Connection</td><td>Direct Glass Connection</td></td<>	Connection to Probe or Filter by	Direct Glass Connection	Direct Glass Connection
Impinger 1Midget Shortened StemShortened Stem (open tip)Impinger 2Midget BubblerGreenburg-SmithImpinger 3Midget BubblerGreenburg-SmithImpinger 4Midget BubblerModified Greenburg-SmithImpinger 5Midget BubblerModified Greenburg-SmithImpinger 6Mae WestForenburg-SmithImpinger 7Forenburg-SmithImpinger 8Mae WestSample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Recovery InformationN/AProbe Brush MaterialN/AProbe Brush MaterialN/AProbe Rinse ReagentN/AN/AN/AProbe Rinse Storage ContainerN/AFilter Recovered?YesMinginger ContainerN/AImpinger ContainerN/AImpinger ContainerPolyethylene or glassImpinger Rinse ReagentDelonized Distilled WaterDelonized Distilled WaterDelonized Distilled WaterImpinger ContainerPolyethylene or glassPolyethylenePolyethylene or glassPolyethylenePolyethyleneImpinger Rinse ReagentN/AMethod 414_0 Determination byN/AMethod 414_0 Determination byN/AMethod 414_0 Determination byN/AMaterial Filter Preparation ConditionsN/AMaterial Filter Preparation ConditionsN/AMethod 414_0 Determination byN/AMethod 414_0 AlaysisIon	Number of Impingers	5 or 6 (Midget Impingers)	5
Impinger 2Midget BubblerGreenburg-SmithImpinger 3Midget BubblerGreenburg-SmithImpinger 4Midget BubblerModified Greenburg-SmithImpinger 5Midget BubblerModified Greenburg-SmithImpinger 6Mae WestModified Greenburg-SmithImpinger 7Impinger 7Impinger 8NAColspan="2">Single Point IntegratedSample CollectionN/ASample Collection MidumN/ASample Collection MidumN/ASample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Recover InformationProbe Brush MaterialN/A <td>Impinger Stem Types</td> <td></td> <td></td>	Impinger Stem Types		
Impinger 3Midget BubblerGreenburg-SmithImpinger 4Midget BubblerModified Greenburg-SmithImpinger 5Midget BubblerModified Greenburg-SmithImpinger 6Mae WestImpinger 7Maes WestImpinger 8N/ASingle Point IntegratedSample Collection MediumN/ASample Collection MediumN/ASample Recovery InformationProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/A<	Impinger 1	Midget Shortened Stem	Shortened Stem (open tip)
Impinger 4Midget BubblerModified Greenburg-SmithImpinger 5Midget BubblerModified Greenburg-SmithImpinger 6Mae WestMain of Greenburg-SmithImpinger 7Impinger 7Impinger 8Mae WestSample CollectionN/ASample Collection MediumN/ASample Collection MediumN/AProbe Brush MaterialN/AProbe Rinse ReagentN/AN/AN/AProbe Rinse ReagentN/AN/AN/AProbe Rinse Storage ContainerN/AIlter Storage ContainerN/AImpinger Contents Recovered?YesImpinger Rinse ReagentDelonized Distilled WaterImpinger Rinse ReagentDelonized Distilled WaterImpinger Storage ContainerPolyethylene or glassImpinger Storage ContainerPolyethylene or glassImpinger Storage ContainerN/AImpinger Storage ContainerN/AImpinger Storage ContainerN/AImpinger Storage ContainerN/A <td>Impinger 2</td> <td>Midget Bubbler</td> <td>Greenburg-Smith</td>	Impinger 2	Midget Bubbler	Greenburg-Smith
Impinger 5Midget BubblerModified Greenburg-SmithImpinger 6Mae WestImpinger 7Impinger 7Impinger 8Impinger 7Sample CollectionN/ASample CollectionN/ASample Collection MediumN/ASample Collection MediumN/ASample Collection MediumN/ASample Recovery InformationProbe Brush MaterialN/AProbe Brush MaterialN/AProbe Rinse ReagentN/AProbe Rinse ReagentN/AProbe Rinse Storage ContainerN/AFilter Recovered?NoNoN/AFilter Storage ContainerN/AImpinger Ninse ReagentDeionized Distilled WaterImpinger Rinse ReagentPolyethylene or glassPolyethylenePolyethyleneImpinger Storage ContainerN/AMaterialPolyethylene or glassPolyethylenePolyethyleneImpinger Wash BottlePolyethylene or glassPolyethylenePolyethyleneImpinger Storage ContainerN/AMethod 4 H ₂ O Determination byN/AFilter Preparation ConditionsN/AFilter Preparation ConditionsN/AFilter Preparation ConditionsN/AFinter Preparation ConditionsN/AFinter Preparation ConditionsN/AFinter Preparation ConditionsN/AFinter Preparation ConditionsN/AFinter Preparation ConditionsN/AFinter Preparation ConditionsN/A	Impinger 3	Midget Bubbler	Greenburg-Smith
Implinger 6 Implinger 7 Implinger 8Mae WestGas Density DeterminationKasSample CollectionN/ASingle Point IntegratedSample Collection MediumN/AVinyl BagSample AnalysisN/ACEMSample Recovery InformationN/AN/AProbe Brush MaterialN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AFilter Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Storage ContainerPolyethylene or glassPolyethyleneMethod 4 H ₂ O Determination byN/AMAMaMethod 4 H ₂ O Determination byN/AMAMaFront-Half Rinse PreparationN/AMAMaBack-Half AnalysisIon ChromatographyIon ChromatographyIon Chromatography	Impinger 4	Midget Bubbler	Modified Greenburg-Smith
Impinger 7 Impinger 8 Gas Density Determination Sample Collection N/A Single Point Integrated Sample Collection Medium N/A Vinyl Bag Sample Collection Medium N/A CEM Sample Collection Medium N/A CEM Sample Collection Medium N/A CEM Sample Collection Medium N/A Sample Recovery Information Probe Brush Material N/A N/A Probe Brush Material N/A N/A Probe Rinse Reagent N/A N/A Probe Rinse Storage Container N/A N/A Probe Rinse Storage Container N/A N/A Impinger Contents Recovered? No No Filter Storage Container N/A N/A Impinger Kinse Reagent Deionized Distilled Water Deionized Distilled Water Impinger Storage Container Polyethylene or glass Polyethylene Impinger Storage Container Polyethylene Deionized Distilled Water Impinger Storage Container N/A Material Iter Preparation Conditions <td< td=""><td>Impinger 5</td><td>Midget Bubbler</td><td>Modified Greenburg-Smith</td></td<>	Impinger 5	Midget Bubbler	Modified Greenburg-Smith
Impiger 8 Gas Density Determination Sample Collection N/A Single Point Integrated Sample Collection Medium N/A Vinyl Bag Sample Collection Medium N/A CEM Sample Collection Medium N/A CEM Sample Analysis N/A CEM Sample Recovery Information N/A N/A Probe Brush Material N/A N/A Probe Rinse Reagent N/A N/A Probe Rinse Reagent N/A N/A Probe Rinse Storage Container N/A N/A Filter Scorage Container N/A N/A Filter Scorage Container N/A N/A Impinger Rinse Reagent N/A N/A Impinger Contents Recovered? Yes Yes Impinger Rinse Reagent Deionized Distilled Water Deionized Distilled Water Impinger Storage Container Polyethylene or glass Polyethylene Impinger Storage Container Polyethylene or glass Polyethylene Impinger Storage Container N/A MA Kathelf Anglysis N/A	Impinger 6	Mae West	
Gas Density Determination N/A Single Point Integrated Sample Collection N/A Vinyl Bag Sample Collection Medium N/A Vinyl Bag Sample Analysis N/A CEM Sample Recovery Information V/A V/A Probe Brush Material N/A N/A Probe Rinse Reagent N/A N/A Probe Rinse Vash Bottle Material N/A N/A Probe Rinse Vash Bottle Material N/A N/A Probe Rinse Vash Bottle Material N/A N/A Probe Rinse Storage Container N/A N/A Filter Storage Container N/A N/A Impinger Contents Recovered? Yes Yes Impinger Rinse Reagent Deionized Distilled Water Deionized Distilled Water Impinger Storage Container Polyethylene or glass Polyethylene Impinger Storage Container N/A Matort	Impinger 7		
Sample CollectionN/ASingle Point IntegratedSample Collection MediumN/AVinyl BagSample AnalysisN/ACEMSample Recovery InformationN/AN/AProbe Brush MaterialN/AN/AProbe Brush MaterialN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AFilter Storage ContainerN/AN/AFilter Storage ContainerN/AN/AImpinger Contents Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Storage ContainerPolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethyleneSample Distilled WaterImpinger Storage ContainerN/AMAImpinger Storage ContainerN/AMAImpinger Storage ContainerPolyethylene or glassPolyethyleneImpinger Storage ContainerN/AMAImpinger Storage Container	Impinger 8		
Sample Collection MediumN/AVinyl BagSample AnalysisN/ACEMSample Recovery InformationN/AN/AProbe Brush MaterialN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AIlter Recovered?NoNoFilter Storage ContainerN/AN/AImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Storage ContainerPolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneAnalytical InformationN/ASravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Gas Density Determination		
Sample AnalysisN/ACEMSample Recovery InformationProbe Brush MaterialN/AProbe Brush MaterialN/AProbe Rinse ReagentN/AN/AN/AProbe Rinse Storage ContainerN/AN/AN/AProbe Rinse Storage ContainerN/AN/AN/AProbe Rinse Storage ContainerN/AN/AN/AProbe Rinse Storage ContainerN/AN/AN/AImpinger Contents Recovered?YesYesYesImpinger Rinse ReagentDeionized Distilled WaterImpinger Rinse ReagentPolyethylene or glassImpinger Storage ContainerPolyethylenePolyethylenePolyethyleneImpinger Storage ContainerN/AMethod 4 H ₂ O Determination byN/AFilter Preparation ConditionsN/AFilter Preparation ConditionsN/AFront-Half Rinse PreparationN/ABack-Half AnalysisIon Chromatography	Sample Collection	N/A	Single Point Integrated
Sample Recovery InformationVIAProbe Brush MaterialN/AProbe Rinse ReagentN/AProbe Rinse ReagentN/AProbe Rinse Wash Bottle MaterialN/AProbe Rinse Storage ContainerN/AProbe Rinse Storage ContainerN/AProbe Rinse Storage ContainerN/AProbe Rinse Storage ContainerN/AProbe Rinse Storage ContainerN/AFilter Recovered?NoNoN/AImpinger Contents Recovered?YesImpinger Contents Recovered?YesImpinger Rinse ReagentDeionized Distilled WaterImpinger Storage ContainerPolyethylene or glassImpinger Storage ContainerPolyethyleneImpinger Storage ContainerPolyethyleneMethod 4 H ₂ O Determination byN/AMichtod 4 H ₂ O Determination byN/AFilter Preparation ConditionsN/AFront-Half Rinse PreparationN/ABack-Half AnalysisIon Chromatography	Sample Collection Medium	N/A	Vinyl Bag
Probe Brush MaterialN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse ReagentN/AN/AProbe Rinse Wash Bottle MaterialN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AFilter Recovered?NoNoFilter Storage ContainerN/AN/AImpinger Contents Recovered?YesYesImpinger Contents Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Storage ContainerPolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneMethod 4 H2O Determination byN/AGravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Sample Analysis	N/A	CEM
Probe Rinse ReagentN/AN/AProbe Rinse Wash Bottle MaterialN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AFilter Recovered?NoNoFilter Storage ContainerN/AN/AImpinger Contents Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Storage ContainerPolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneImpinger Storage ContainerN/AGravimetricFilter Preparation ConditionsN/AN/AFinter Preparation ConditionsN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Sample Recovery Information		
Probe Rinse Wash Bottle MaterialN/AN/AProbe Rinse Storage ContainerN/AN/AProbe Rinse Storage ContainerN/AN/AFilter Recovered?NoNoFilter Storage ContainerN/AN/AImpinger Contents Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Rinse ReagentPolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneImpinger Storage ContainerPolyethyleneScavimetricAnalytical InformationN/AGravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Probe Brush Material	N/A	N/A
Probe Rinse Storage ContainerN/AFilter Recovered?NoNoFilter Recovered?NoNoFilter Storage ContainerN/AN/AImpinger Contents Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Wash BottlePolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneImpinger Storage ContainerPolyethyleneScavimetricAnalytical InformationN/AGravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Probe Rinse Reagent	N/A	N/A
Filter Recovered?NoNoFilter Storage ContainerN/AN/AImpinger Contents Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Wash BottlePolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneAnalytical InformationN/ASravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Probe Rinse Wash Bottle Material	N/A	N/A
Filter Storage ContainerN/AN/AImpinger Contents Recovered?YesYesImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Wash BottlePolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneAnalytical InformationN/AGravimetricMethod 4 H2O Determination byN/AGravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Probe Rinse Storage Container	N/A	N/A
Impinger Contents Recovered?YesYesImpinger Contents Recovered?YesDeionized Distilled WaterDeionized Distilled WaterImpinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Wash BottlePolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneAnalytical InformationN/AGravimetricMethod 4 H2O Determination byN/AN/AFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Filter Recovered?	No	No
Impinger Rinse ReagentDeionized Distilled WaterDeionized Distilled WaterImpinger Wash BottlePolyethylene or glassPolyethyleneImpinger Storage ContainerPolyethylenePolyethyleneAnalytical InformationPolyethylenePolyethyleneMethod 4 H2O Determination byN/AGravimetricFilter Preparation ConditionsN/AN/AFront-Half Rinse PreparationN/AN/ABack-Half AnalysisIon ChromatographyIon Chromatography	Filter Storage Container	N/A	N/A
Impinger Wash Bottle Polyethylene or glass Polyethylene Impinger Storage Container Polyethylene Polyethylene Analytical Information Polyethylene Polyethylene Method 4 H ₂ O Determination by N/A Gravimetric Filter Preparation Conditions N/A N/A Front-Half Rinse Preparation N/A N/A Back-Half Analysis Ion Chromatography Ion Chromatography	Impinger Contents Recovered?	Yes	Yes
Impinger Storage Container Polyethylene Polyethylene Analytical Information Filter Preparation Conditions N/A Gravimetric Filter Preparation Conditions N/A N/A Front-Half Rinse Preparation N/A N/A Back-Half Analysis Ion Chromatography Ion Chromatography	Impinger Rinse Reagent	Deionized Distilled Water	Deionized Distilled Water
Analytical Information Method 4 H ₂ O Determination by N/A Filter Preparation Conditions N/A Front-Half Rinse Preparation N/A Back-Half Analysis Ion Chromatography	Impinger Wash Bottle	Polyethylene or glass	Polyethylene
Method 4 H2O Determination by N/A Gravimetric Filter Preparation Conditions N/A N/A Front-Half Rinse Preparation N/A N/A Back-Half Analysis Ion Chromatography Ion Chromatography	Impinger Storage Container	Polyethylene	Polyethylene
Filter Preparation Conditions N/A N/A Front-Half Rinse Preparation N/A N/A Back-Half Analysis Ion Chromatography Ion Chromatography	Analytical Information		
Front-Half Rinse Preparation N/A N/A Back-Half Analysis Ion Chromatography Ion Chromatography	Method 4 H ₂ O Determination by	N/A	Gravimetric
Back-Half Analysis Ion Chromatography Ion Chromatography	Filter Preparation Conditions	N/A	N/A
	Front-Half Rinse Preparation	N/A	N/A
Additional Analysis None None	Back-Half Analysis	Ion Chromatography	Ion Chromatography
	Additional Analysis	None	None

This Page Intentionally Left Blank

CleanAir Project No: 10955-2

SAMPLE CALCULATIONS	В

This Page Intentionally Left Blank

EPA Method 1-4 Calculations

041210135959 K

USEPA Method 5/29 (Particulate/Metals) Sampling, Velocity and Moisture Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

$$= (0.04706)(V_{lc})$$

V_{wstd} Where:

vhere: V _{ic} 0.04706	= total volume of liquid collected in impingers and silica gel (ml)		459.4 0.04706	ml ft ³ /ml
V _{wstd}	= volume of water vapor collected at standard conditions (ft ³)	=	21.62	ft ³

2. Volume of gas metered, standard conditions (dscf)

$$=\frac{(17.64)(V_m)\left(P_{bar}+\frac{\Delta H}{13.6}\right)(Y_d)}{(460+T_m)}$$

Where:

V_{msid}

P_{bar}		=	30.05	in. Hg
Tm	= average dry gas meter temperature (°F)	=	69.90	°F
V _m	 volume of gas sample through the dry gas meter at meter conditions (dcf) 	=	84.67	dcf
Yd	= gas meter correction factor (dimensionless)	=	0.9904	
ΔH	= average pressure drop across meter box orifice (in. H ₂ O)	=	1.46	in. H₂O
17.64	= standard temperature to pressure ratio (°R/in. Hg)	=	17.64	°R/in. Hg
13.6	= conversion factor (in. H ₂ O/in. Hg)	=	13.6	in.H ₂ 0/in. Hg
460	= °F to °R conversion constant	=	460	
V _{mstd}	 volume of gas sampled through the dry gas meter at standard conditions (dscf) 	=	84.183	dscf

3. Sample gas pressure (in. Hg)

$$= P_{bar} + \left(\frac{P_g}{13.6}\right)$$

Where:

 P_{s}

P _{bar}	= barometric pressure (in. Hg)	=	30.05	in. Hg
Pg	= sample gas static pressure (in. H₂O)	=	-10.60	in. H₂O
13.6	= conversion factor (in. H₂O/in. Hg)	=	13.6	in. H₂O/in. Hg
Ps		=	29.27	in. Hg

4. Actual water vapor pressure at sample gas temperature less than 212°F (in. Hg)

 $\left(18.3036 - \frac{3816.44}{\frac{5}{9}(T_s - 32) + 273.15 - 46.13}\right)$

 P_{ν}

-	e	
-		25.4

W

Vhere:				
Τ _s	= average sample gas temperature (°F)	=	307.48	°F
18.3036	= Antoine coefficient	=	18.3036	°κ
3816.44	= Antoine coefficient	=	3816.44	°K
273.15	= temperature conversion factor	=	273.15	°К
46.13	= Antoine coefficient	=	46.13	°K
25.4	= conversion factor	=	25.4	mm Hg/in. Hg
5/9	= Fahrenheit to Celsius conversion factor	=	5/9	°C/°F
32	= temperature conversion (°F)	=	32	°F
Pv	= vapor pressure, actual (in. Hg)	=	29.27	in. Hg

5. Water vapor pressure at gas temperature greater than 212°F (in. Hg)

P,	$= P_s$			
Where: P _s	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
Pv	= water vapor pressure, actual (in. Hg)	=	29.27	in. Hg

6. Moisture measured in sample (% by volume)

$$B_{wo} = \frac{V_{wsid}}{\left(V_{msid} + V_{wsid}\right)}$$

Wh

Where:				
V _{mstd}	 volume of gas sampled through the dry gas meter at standard conditions (dscf) 	=	84.183	dscf
V _{wstd}	= volume of water collected at standard conditions (scf)	=	21.62	scf
Bwo	= proportion of water measured in the gas stream by volume	=	0.2043	
		=	20.43	%

7. Saturated moisture content (% by volume)

 $B_{ws} = \frac{P_v}{P_s}$ Wh

Where:				
Ps	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
P _v	= water vapor pressure, actual (in. Hg)	=	29.27	in. Hg
B _{ws}	= proportion of water vapor in the gas stream by volume at saturated conditions	=	1.0000 100.00	%

8. Actual water vapor in gas (% by volume)

$$B_{w} = MINIMUM \left[B_{wo}, B_{ws}\right]$$

Where:

B _{ws}	 proportion of water vapor in the gas stream by volume at saturated conditions 	=	1.0000	
B _{wo}	= proportion of water measured in the gas stream by volume	=	0.2043	
B _w	= actual water vapor in gas	=	0.2043	
		=	20.43	%

9. Nitrogen (plus carbon monoxide) in gas stream (% by volume, dry)

$$N_2 + CO = 100 - CO_2 - O_2$$

Where:

CO ₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.3	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	10.1	%
100	= conversion factor (%)	=	100	%

N ₂ +CO = proportion of nitrogen and CO in the gas stream by volume	(%)	=	80.68	%
--	-----	---	-------	---

10. Molecular weight of dry gas stream (lb/lb·mole)

M_d	$= \left(M_{CO_2}\right) \frac{(CO_2)}{(100)} + \left(M_{O_2}\right) \frac{(O_2)}{(100)} + \left(M_{N_2+CO}\right) \frac{(N_2+CO)}{(100)}$			
Where:				
M _{CO2}	= molecular weight of carbon dioxide (lb/lb mole)	=	44.00	lb/lb·mole
M _{O2}	= molecular weight of oxygen (lb/lb·mole)	=	32.00	lb/lb·mole
M _{N2+CO}	= molecular weight of nitrogen and carbon monoxide (lb/lb·mole)	=	28.00	lb/lb mole
CO ₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.3	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	10.1	%
N ₂ +CO	= proportion of nitrogen and CO in the gas stream by volume (%)	=	80.7	%
100	= conversion factor (%)	=	100	%
Md	= dry molecular weight of sample gas (Ib/Ib·mole)	=	29.88	lb/lb·mole

11. Molecular weight of sample gas (lb/lb·mole)

$$M_{s} = (M_{d})(1 - B_{w}) + (M_{H_{2}O})(B_{w})$$

Where:

.

B _w M _d M _{H2O}	 proportion of water vapor in the gas stream by volume dry molecular weight of sample gas (lb/lb·mole) molecular weight of water (lb/lb·mole) 	=	0.2043 29.88 18.00	lb/lb∙mole lb/lb∙mole
Ms	= molecular weight of sample gas, wet basis (lb/lb·mole)	=	27.45	lb/lb·mole

EPA Method 1-4 Calculations

QA/QC	
Date	

12. Velocity of sample gas (ft/sec)

$$V_{s} = (K_{p})(C_{p})\left(\sqrt{\Delta P}\right)\left(\sqrt{\frac{(\overline{T_{s}} + 460)}{(M_{s})(P_{s})}}\right)$$

Where:

۷	VIICIC.				
	К _р	= velocity pressure constant	=	85.49	
	Cp	= pitot tube coefficient	=	0.81	
	Ms	= wet molecular weight of sample gas, wet basis (lb/lb·mole)	=	27.45	lb/lb·mole
	Ps	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
	Τ _s	= average sample gas temperature (°F)	=	307.48	°F
	V∆P	\Rightarrow average square roots of velocity heads of sample gas (in. H ₂ O)	=	0.782	√in. H₂O
	460	= °F to °R conversion constant	=	460	
	Vs	≈ sample gas velocity (ft/sec)	=	52.59	ft/sec

13. Volumetric flow rate of sample gas at actual gas conditions (acfm)

$$Q_a = (60)(A_s)(V_s)$$

Wh

where:				
As	= cross sectional area of sampling location (ft ²)	=	64.00	ft ²
Vs	= sample gas velocity (ft/sec)	=	52.59	ft/sec
60	conversion factor (sec/min)	=	60	sec/min
Q _a	= volumetric flow rate at actual conditions (acfm)	=	201,928	acfm

14. Total flow of sample gas (scfm)

 $= (Q_a) \left(\frac{P_s}{29.92} \right) \left(\frac{68 + 460}{T_s + 460} \right)$ Q_s

Where:

Qa	= volumetric flow rate at actual conditions (acfm)	=	201,928	acfm
Ps	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
29.92	= standard pressure (in. Hg)	=	29.92	in. Hg
Ts	= average sample gas temperature (°F)	=	307.5	°F
68		=	68	°F
460	= °F to °R conversion constant	=	460	
$\mathbf{Q}_{\mathbf{s}}$	⇒ volumetric flow rate at standard conditions, wet basis (scfm)	=	135,904	scfm

15. Dry flow of sample gas (dscfm)

 $= (\mathcal{Q}_s)(1 - B_w)$ Q_{std}

Where:

B _w Q _s	 proportion of water vapor in the gas stream by volume volumetric flow rate at standard conditions, wet basis (scfm) 	=	0.2043 135,904	scfm
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm

16. Dry flow of sample gas corrected to 7%O₂ (dscfm)

$$Q_{std7} = (Q_{std}) \left(\frac{20.9 - O_2}{20.9 - 7} \right)$$
Where:
 $Q_{std} = volumetric flow rate at standard conditions, dry basis (dscfm) = 108,134$
 $O_2 = proportion of oxygen in the gas stream by volume (%) = 10.1$
 $^120.9 = oxygen content of ambient air (%) = 20.9$
 $7 = oxygen content of corrected gas (%) = 7.0$
 $Q_{std7} = volumetric flow rate at STP and 7%O_2, dry basis (dscfm) = 84,251$

17. Hourly time basis conversion of volumetric flow rate (Q_{std} example)

$$Q_{std-hr} = (Q_{std-min})(60)$$

Where

Q _{std-min} 60	 volumetric flow rate, english units (ft³/min) conversion factor (min/hr) 	=	108,134 60	dscfm min/hr
Q _{std-hr}	= volumetric flow rate, hourly basis (dscf/hr)	=	6,488,019	dscf/hr

18. Metric Conversion of Gas Volumes (Q_{std} example)

 $= \left(Q_{std-english} \right) \left(\frac{60}{35.31} \right)$ $Q_{std-metric}$ Where: Q_{std-english}

dscfm = volumetric flow rate, english units (ft³/min) 108,134 35.31 = conversion factor (ft³/m³) 35.31 ft³/m³ 60 = conversion factor (min/hr) 60 min/hr =

 $Q_{\text{std-metric}}$ = volumetric flow rate, metric units (m³/hr) 183,745 dry std m3/hr =

19. Standard to Normal Conversion of Gas Volumes (Qstd example)

$$Q_{Normal} = \left(Q_{sd-metric}\right) \left(\frac{32+460}{68+460}\right)$$

M(horo)

Q _{Normal}	= volumetric flow rate, metric units (dry Nm³/hr)	=	171,216	dry Nm³/hr	
460	= standard temperature in Rankine (68°F)	=	460		
68	standard temperature (°F)	=	68	°F	
32	= normal temperature (°F)	=	32	°F	
Q _{std-metric}	= volumetric flow rate, metric units (dry std m ³ /hr)	=	183,745	dry std m³/hr	

EPA Method 1-4 Calculations

dscfm % % %

dscfm

20. Percent isokinetic (%)

_ (0	(0.0945	$(\overline{T_s} +$	460	(V _{mstd})
-	$(P_s)(V_s)$	$\frac{(D_n)^2(\pi)}{(144)(4)}$	<u>(</u> ()()	$\overline{1-B_w}$

Where:

I

Dn	= diameter of nozzle (in)	=	0.270	in.
Bw	= proportion of water vapor in the gas stream by volume	=	0.2043	
Ps	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
Ts	= average sample gas temperature (°F)	=	307.5	°F
V _{mstd}	 volume of gas sample through the dry gas meter at standard conditions (dscf) 	Ξ	84.183	dscf
Vs	= sample gas velocity (ft/sec)	=	52.59	ft/sec
θ	= total sampling time (min)	=	125	min
0.0945	= conversion constant	=	0.0945	
460	= °F to °R conversion constant	=	460	
1	= percent of isokinetic sampling (%)	=	100.31	%

21. Alternative Method 5 Post-Test Meter Calibration Factor

Y_{qa} Where:	$= \frac{\Theta}{V_m} \sqrt{\frac{(0.0319)(T_m + 460)(28.96)}{(\Delta H_{@})(P_{bar} + \frac{\Delta H}{13.6})(M_d)}} (\sqrt{\Delta H})_{avg}$			
θ	= total sampling time (min)	=	125	min
Vm	= volume of gas sample through the dry gas meter at meter conditions (dcf)	×	84.67	dcf
Tm	= average dry gas meter temperature (°F)	=	69.90	۴F
∆H _@	= dry gas meter orifice coefficient	=	1.7516	
Pbar	= barometric pressure (in. Hg)	=	30.05	in. Hg
ΔH	= average pressure drop across meter box orifice (in. H ₂ O)	=	1.460	in. H ₂ O
Md	= dry molecular weight of sample gas (lb/lb·mole)	=	29.88	lb/lb·mole
√∆H _{avg}	= average of square root of pressure drop across meter orifice	=	1.204	√in. H₂O
0.0319	= conversion constant	=	0.0319	-
28.96	= molecular weight of ambient air (lb/lb-mole)	=	28.96	lb/lb-mole
13.6	= conversion factor (in. H_2O/in . Hg)	=	13.6	in.H ₂ O/in. Hg
460	\approx °F to °R conversion constant	=	460	_
Y _{qa}	= alternative Method 5 post-test meter calibration factor	=	0.9897	

USEPA Method 5/29 Filterable Particulate Gravimetric Analysis Calculations

Sample data taken from Run 1

041210 135852

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Total residue from gravimetric analysis of filters (g)

 $=\sum_{i=1}^n m_{fi}$

Where:

r_{si}

m _{ft}	= residual mass of filter "1" from gravimetric analysis (g)	=	0.00180	g
m _{f2}	= residual mass of filter "2" from gravimetric analysis (g)	=	0.00000	g
m _{r3}	= residual mass of filter "3" from gravimetric analysis (g)	=	0.00000	g
m _{f4}	= residual mass of filter "4" from gravimetric analysis (g)	=	0.00000	g
m _{fr}	= total filter residue from gravimetric analysis (g)	=	0.00180	g

2. Total particulate collected on filters (g)

m_{filter}	$= m_{fr}$ if $m_{fr} \ge 0$			
m _{filter}	$= 0$ if $m_{fr} < 0$			
Where: m _{fr}	= total filter residue from gravimetric analysis (g)	=	0.00180	g
m _{filter}	= total particulate collected on filters (g)	=	0.00180	g

3. Solvent rinse - sample residue mass (g)

$$= \left(r_{ai}\right) \left(\frac{v_{si}}{v_{ai}}\right)$$

Where:			Acetone		
r _{ai}	= aliquot residue mass for solvent "i" (g)	=	0.00280	g	
Vsł	= sample liquid volume for solvent rinse "i" (ml)	=	98.0	ml	
Vai	= aliquot liquid volume for solvent rinse "i" (ml)	=	98.0	mi	
r _{si}	= solvent rinse "i" - sample residue mass (g)	=	0.00280	g	

4. Solvent ririse - blank residue (g)

m _{i-blank}	$= r_{ai-blank}$ if $r_{ai-blank} \ge 0$				
m _{i-blank}	$= 0$ if $r_{ai-blank} < 0$				
Where: r _{al-blank}	= blank residue for solvent "i" from gravimetric analysis (g)	=	Acetone 0.00080	g	
m _{l-blank}	≓ solvent rinse - blank residue (g)	=	0.00080	g	

Prepared by Clean Air Engineering Proprietary Software SS EPA 5-1 Version 2006-08b

Copyright © 2006 Clean Air Engineering Inc.

5. Solvent rinse - maximum allowable blank correction (g)

m_{bi} Where

Nhere:			Acetone		
m _{i-blank}	= solvent rinse - blank residue (g)	=	0.00080	g	
Vsi	= sample liquid volume for solvent rinse "i" (ml)	=	98.0	៣	
Val-blank	= blank liquid volume for solvent rinse "i" (ml)	=	139.0	ml	
0.00001	= EPA M5 fraction of total rinse that can be subtracted (g)	=	0.00001	g	
ρ	= density of solvent rinse "i" (g/ml)	=	0.7845	g/mł	
Г _{SI}	= solvent rinse "i" - sample residue mass (g)	=	0.00280	g	
			0 00050		
ты	= solvent rinse "i" - maximum allowable blank correction (g)	=	0.00056	g	

6. Solvent rinse - net residue (g)

 $m_i = (r_{si} - m_{bi}) \text{ if } r_{si} \ge m_{bi}$ $m_i = 0 \quad \text{ if } r_{si} < m_{bi}$

Where:

Where: r _{si} m _{bi}	= solvent rinse "i" - sample residue mass (g) = solvent rinse "i" - maximum allowable blank correction (g)		Acetone 0.00280 0.00056	0
m,	= solvent rinse "i" - net residue (g)	=	0.00224	g

7. Total solvent residue - (g)

 $=\sum_{i=1}^{n}m_{i}$

Where:

ms

r	n ₁ n ₂ n ₃	= solvent rinse "1" - net residue (g) = solvent rinse "2" - net residue (g) = solvent rinse "3" - net residue (g)	= = =	0.00224 N/A N/A	g g g	
٢	ns	= total solvent residue (g)	=	0.00224	g	

8. Total gravimetric result (g)

m_T	$= m_{filter} + m_s$				
Where:					
m _{fliter}	= total particulate collected on filters (g)	2	0.00180	g	
m _s	= total solvent residue (g)	=	0.00224	g	
mτ	= total gravimetric result (g)	=	0.00404	g	

9. Total gravimetric detection limit (g)

$$m_D = (MDL_{filter})(n_f) + (MDL_{rinse})(n_r)$$

Where:

MDL _{filter}	 minimum detection limit for single filter analysis (g) number of filters in analysis 	=	0.00050	g
MDL _{rinse} n _r	 number of meta in analysis minimum detection limit for single rinse analysis (g) number of rinses in analysis 	=	0.00050 1	g
m _D	= total gravimetric detection limit (g)	=	0.00020	g

10. Total particulate matter (g)

m _n	$= MAXIMUM[m_{T} or < m_{D}]$			
Where:				
mτ	= total gravimetric result (g)	=	0.00404	g
mp	= total gravimetric detection limit (g)	=	0.00020	g
				-
m	= total particulate matter (g)	=	0.00404	g

Prepared by Clean Air Engineering Proprietary Software SS EPA 5-1 Version 2006-08b

Copyright © 2008 Clean Air Engineering Inc.

USEPA Method 5/29 Filterable Particulate Sample Calculations

USEPA Method 5/29 Filterable Particulate Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Particulate concentration (lb/dscf)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) \left(2.205 \times 10^{-3}\right)$$

Where:

m _n V _{mstd} 2.205 x 10 ⁻³	= total particulate matter (g) = volume metered, standard (dscf) = conversion factor (lb/g)	11 11	84.1826	g dscf Ib/g
C _{sd}	= particulate concentration (lb/dscf)	=	1.0571E-07	lb/dscf

2. Particulate concentration (gr/dscf)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) (15.43)$$

Where

m _n	= total particulate matter (g)	=	0.00404	g
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
15.43	= conversion factor (gr/g)	=	15.43	gr/g
C _{sd}	= particulate concentration (gr/dscf)	=	0.00074	gr/dscf

3. Particulate concentration (mg/dscm)

$$C_{sd} = \left(\frac{m_n}{V_{msid}}\right) (1000) (35.31)$$

Where: 0.00404 = total particulate matter (g) = m g V_{mstd} = volume metered, standard (dscf) = 84.1826 dscf 1.000 1,000 = conversion factor (mg/g) = mg/g 35.31 = conversion factor (dscf/dscm) 35.31 dscf/dscm = C_{sd} = particulate concentration (mg/dscm) 1.69287 mg/dscm =

041210 135959 к_к

4. Particulate concentration (mg/Nm³ dry)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) (1000) (35.31) \left(\frac{68+460}{32+460}\right)$$
(here:

W

mn	= total particulate matter (g)	=	0.00404	g
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
1,000	= conversion factor (mg/g)	=	1,000	mg/g
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm
68	= standard temperature (°F)	=	68	°F
32	= normal temperature (°F)	=	32	°F
460	= °F to °R conversion constant	=	460	

 C_{sd} 1.81674 = particulate concentration (mg/Nm³ dry) = mg/Nm³ dry

5. Particulate concentration corrected to x% O2 (gr/dscf example)

$$C_{sdx} = C_{sd} \left(\frac{20.9 - x}{20.9 - O_2} \right)$$

Where:					
Csd	= particulate concentration (gr/dscf)	=	0.00074	gr/dscf	
x	= oxygen content of corrected gas (%)	=	7.0	%	
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	10.1	%	
20.9	= oxygen content of ambient air (%)	=	20.9	%	

= particulate concentration corrected to x%O2 (gr/dscf) gr/dscf @ x%O2 Csdx = 0.00095

6. Particulate concentration corrected to y% CO2 (gr/dscf example)

$$C_{sdy} = C_{sd} \left(\frac{y}{CO_2} \right)$$

w

Where:				
C _{sd}	= particulate concentration (gr/dscf)	=	0.00074	gr/dscf
у	= carbon dioxide content of corrected gas (%)	=	12.0	%
CO₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.3	%
C _{sdy}	= particulate concentration corrected to y%CO2 (gr/dscf)	=	0.00096	gr/dscf @ y%CO ₂

7. Particulate concentration at actual gas conditions (gr/acf example)

$$C_a = C_{sd} \left(\frac{\mathcal{Q}_{std}}{\mathcal{Q}_a} \right)$$

C _{sd} Q _{std} Q _a	 particulate concentration (gr/dscf) volumetric flow rate at standard conditions, dry basis (dscfm) volumetric flow rate at actual conditions (acfm) 	= = =	0.00074 108,134 201,928	gr/dscf dscfm acfm	
Ca	= particulate concentration at actual gas conditions (gr/acf)	=	0.00040	gr/acf	

USEPA Method 5/29 Filterable Particulate Sample Calculations

0.6859

=

lb/hr

8. Particulate rate (lb/hr)

$$E_{lb/hr} = \left(\frac{m_n}{V_{mstd}}\right) (2.205 \times 10^{-3}) (Q_{std}) (60)$$

Where:

mn	≈ total particulate matter (g)	=	0.00404	g
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr

E_{lb/hr}

9. Particulate rate (kg/hr) $= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{(Q_{std})(60)}{1000}\right)$

= particulate rate (lb/hr)

Where:

 $E_{kg/hr}$

WINGIG.				
m _n	= total particulate matter (9)	=	0.00404	g
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr
1,000	= conversion factor (g/kg)	=	1,000	g/kg
E _{kg/hr}	= particulate rate (kg/hr)	=	0.3111	kg/hr

10. Particulate rate (Ton/yr)

$$E_{T/yr} = \left(\frac{m_n}{V_{mstd}}\right) (2.205 \times 10^{-3}) (\mathcal{Q}_{std}) (60) \left(\frac{Cap}{2000}\right)$$

Where:

WINCIC.					
mn	= total particulate matter (g)	=	0.00404	g	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm	
60	= conversion factor (min/hr)	=	60	min/hr	
Сар	= capacity factor for process (hours operated/year)	=	8,760	hours/yr	
2,000	= conversion factor (lb/Ton)	=	2,000	lb/Ton	
E⊺/yr	= particulate rate (Ton/yr)	=	3.0041	Ton/yr	
-				-	

Prepared by Clean Air Engineer SS EPA 5-1 Version 2006-08b ing Proprietary Software

Copyright @ 2006 Clean Air Engineering Inc.

11. Particulate rate - F_d-based (lb/MMBtu)

~

$$E_{Fd} = \left(\frac{m_n}{V_{mstd}}\right) \left(2.205 \times 10^{-3}\right) \left(F_d\right) \left(\frac{20.9}{20.9 - O_2}\right)$$
Where:
m_n = total particulate matter (g) = 0.00404 g
V_{mstd} = volume metered, standard (dscf) = 84.1826 dscf
2.205 x 10^3 = conversion factor (lb/g) = 2.205E-03 lb/g
F_d = ratio of gas volume to heat content of fuel (dscf/MMBtu) = 9,570 dscf/MMBtu
O_2 = proportion of oxygen in the gas stream by volume (%) = 10.1 %
20.9 = oxygen content of ambient air (%) = 20.9 %
E_{Fd} = particulate rate - F_d - based (lb/MMBtu) = 0.00195 lb/MMBtu
mticulate rate - F_c-based (lb/MMBtu)

12. Pa

$$E_{Fc} = \left(\frac{m_n}{V_{mstd}}\right) (2.205 \times 10^{-3}) (F_c) \left(\frac{100}{CO_2}\right)$$

Where:

m _n	= total particulate matter (g)	=	0.00404	g	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
2.205 x 10	³ = conversion factor (lb/g)	=	2.205E-03	lb/g	
Fc	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	1,820	dscf/MMBtu	
CO ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.3	%	
100	= conversion factor	=	100		
EFc	= particulate rate - F _c - based (lb/MMBtu)	=	0.00208	lb/MMBtu	

Prepared by Clean Air Engineering Proprietary Software SS EPA 5-1 Version 2008-08b

.

LOGIC FOR TREATING DETECTION LIMITS

(mercury only)

1. Logic for Determining Total Blank (mTotal-B) from 5 Fractions

	CASE 1 All 5 fractions are D.	CASE 2 1 to 4 fractions are ND	CASE 3 All 5 fractions are ND
Rule ND ≈ 0	m _{Total-B} = Sum D, 1-5	m _{Tota⊩B} = Sum D	m _{Total-B} = < Sum ND
	m _{Total-B} = Sum D, 1-5	m _{TotaFB} = Sum D	m _{Total-B} = < Sum ND
ND≓0.5x	m _{Total-B} = Sum D, 1-5	m _{⊤otal-B} = Sum D	m _{Total-B} = < 0.5 Sum ND

2. Logic for Determining Total Sample (m_{Total-S}) from 5 Fractions

	CASE 1	CASE 2	CASE 3
	All 5 fractions are D.	1 to 4 fractions are ND	All 5 fractions are ND
Rule	m - Sum D 1.5		m _{Total-S} = < Sum ND
ND ≠ 0	m _{Total-S} = Sum D, 1-5	m _{Total-S} = Sum D	
ND=1x	m _{Total-S} = Sum D, 1-5	m _{Total-S} = < [Sum D + Sum ND	
ND=0.5x	m _{Total-S} = Sum D, 1-5	m _{Total-S} = < [SumD+0.5 SumN	$D_{m_{Total-S}} = < 0.5 \text{ Sum ND}$

3. Logic for Determining Maximum Allowable Blank Correction (m_{T-B-allow})

	CASE 1 All 5 fractions are D. m _{Total-B} = D	CASE 2 1 to 4 sample fractions are ND m _{Total-B} = D		CASE 4 Any type of fractions m _{Total-B} = ND
Rule				
ND = 0	m _{T-B-allow} = M29 Rule	m _{T-B-allow} = M29 Rule	$m_{T-B-allow} = 0$	m _{T-B-allow} ≈ 0
ND=1x	m _{T-B-allow} = M29 Rule		m _{T-B-allow} = 0	$m_{T-B-allow} = 0$
	m _{T-B-allow} = M29 Rule		$m_{T-B-allow} = 0$	$m_{T-B-allow} = 0$

* M29 rule using only detected sample quantities for logical comparisons.

4. Logic for Determining Blank-Corrected Sample Amount (mn)

	CASE 1 All 5 fractions are D. $m_{Total-S} \sim m_{T-B-allow} \ge MIN(MDL)$	$\begin{array}{l} \textbf{CASE 2} \\ \textbf{1 to 4 sample fractions are ND} \\ \textbf{m}_{\text{Total-S}} \text{ - } \textbf{m}_{\text{T-B-ellow}} \geq MIN(MDL) \end{array}$		CASE 4 Any type of fractions m _{Total-S} - m _{T-B-allow} < MIN(MDL)
Rule				
ND = 0	$m_n = m_{Total-S} - m_{T-B-allow}$	$m_n = m_{Total-S} - m_{T-B-allow}$	m _n = < m _{Total-S}	$m_n = \langle MIN[MDL]$
ND=1x	$m_n = m_{Total-S} - m_{T-B-allow}$	$m_n = \langle [m_{Total-S} - m_{T-B-allow}]$	$m_n = < m_{Total-S}$	m _n = < MIN[MDL]
ND=0.5x	$m_n = m_{Total-S} - m_{T-B-allow}$	$m_n = < [m_{Total-S} - m_{T-B-allow}]$	m _n = < m _{Total-S}	m _n = < MIN[MDL]
Laborator	y Data			
	m _n	Net matter collected (g)		
Filterable	Particulate Results			
	C _{sd}	Particulate Concentration (mg/dscn	n)	
	C _{sd7}	Particulate Concentration @7% O2	(mg/dscm)	

Definitions and Notes

The term "Rule" refers to the rule being implemented for handling non-detectable quantities in summations. MDL = minimum detection limit.

D = Detectable quantity reported as D.

ND = Non-Detectable quantity reported at a value of ND.

MIN[MDL] = lowest quantity of all detection limits for 5 fractions.

041210 140125

USEPA Method 5/29 Mercury Analyte Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

Note: Please see the preceding page concerning treatment of minimum detection limits and mathematical operations on values that are below minimum detection limits.

1. Total blank amount (µg)

 $m_{total-B}$

 $=\sum_{i=1}^n m_{i-B}$

Where:					
m _{1b-B}	= mercury amount in blank for Fraction 1b	=	<0.1000	μg	
m _{2b-B}	= mercury amount in blank for Fraction 2b	=	<0.2000	μg	
m _{3a-B}	= mercury amount in blank for Fraction 3a	=	<0.2000	μg	
m _{зь-В}	= mercury amount in blank for Fraction 3b	=	<0.5000	μg	
т _{зс-В}	= mercury amount in blank for Fraction 3c	=	<0.4000	þð	
m _{total-B}	= total amount of mercury in blank	=	<1.4000	μg	

2. Total sample amount (µg)

$$= \sum_{i=1}^{n} m_{i-s}$$

Where:

m_{total - S}

Where:					
m _{1b-S}	= mercury amount in sample for Fraction 1b	=	<0.1000	μg	
m _{2b-S}	= mercury amount in sample for Fraction 2b	=	9.1977	μg	
m _{3a-S}	= mercury amount in sample for Fraction 3a	=	<0.2000	μg	
m _{3b-S}	= mercury amount in sample for Fraction 3b	=	<0.5000	μg	
m _{3c-S}	= mercury amount in sample for Fraction 3c	=	<0.4000	μg	
m _{total-S}	= total amount of mercury in sample	=	9.1977	μg	

3. Allowable blank correction (µg)

 $m_{T-B-allow}$

 $= m_{iolal-B} \text{ if } m_{iolal-B} \le 0.6$

$$m_{T-B-allow} = MAX \left[0.6, MIN \left(m_{ioial-B}, 0.05 \times m_{ioial-S}\right)\right] \text{ if } m_{ioial-B} > 0.6$$

Laboratory Data

m Net matter collected (g)

Filterable Particulate Results

C Particulate Concentration (mg/dscm)

C Particulate Concentration @7% O2 (mg/dscm)

Where:

m _{total-8}	= total amount of mercury in blank	Ξ	<1.4000	μg	
m _{total-S}	= total amount of mercury in sample	=	9.1977	μġ	
0.05 x m _{total-S}	= 5% of m _{total-S}	=	0.4599	μg	
MAX	= arithmetic operator that returns the maximum of two values				
MIN	= arithmetic operator that retums the minimum of two values				
m _{T-B-allow}	= total allowable blank correction	=	0.0000	μg	

NOTE: In this case, the second criteria applies.

4. Sample corrected for allowable blank - Total (µg)

m _n	$= m_{total-S} - m_{T-B-allow}$		
Where:			
m _{total-S}	= total amount of mercury in sample	=	9.1977
m _{T-B-allow}	= total allowable blank correction	=	0.0000
m _n	= total mercury in sample corrected for allowable blank	=	9.1977

5. Sample corrected for allowable blank - Prorated for each fraction (µg)

 (m_n)

$$m_{n-i} = \left(\frac{m_{i-S}}{m_{total-S}}\right)$$

Where:

Where:				
mn	total mercury in sample corrected for allowable blank	=	9.1977	μg
m _{1b-S}	= mercury amount in sample for Fraction 1b	=	<0.1000	μg
m _{2b-S}	= mercury amount in sample for Fraction 2b	=	9.1977	μg
m _{3a-S}	= mercury amount in sample for Fraction 3a	=	<0.2000	μg
m _{3b-S}	= mercury amount in sample for Fraction 3b	=	<0.5000	μg
m _{3c-S}	= mercury amount in sample for Fraction 3c	=	<0.4000	μg
m _{total-S}	= total amount of mercury in sample	=	9.1977	μg
m _{n-1b}	= mercury corrected for blank - prorated for Fraction 1b	=	<0.1000	μg
m _{n-2b}	= mercury corrected for blank - prorated for Fraction 2b	=	9.1977	μg
m _{n-3a}	= mercury corrected for blank - prorated for Fraction 3a	=	<0.2000	μg
m _{n-3b}	= mercury corrected for blank - prorated for Fraction 3b	=	<0.5000	μg
m _{n-3c}	= mercury corrected for blank - prorated for Fraction 3c	=	<0.4000	μg

hð hð

μg

USEPA Method 5/29 Mercury Sample Calculations

USEPA Method 5/29 Mercury Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Mercury concentra	ation (lb/dscf)				041210 140248 K_K
C_{sd}	$= \left(\frac{m_n}{V_{msid}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right)$				
Where:					
m _n	= mercury collected in sample (total µg)	=	9.1977	hð	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g	
Ċsd	= mercury concentration (lb/dscf)	=	2.4092E-10	lb/dscf	
2. Mercury concentra	ation (µg/dscm)				
	$\left(\frac{m_n}{V_{mstd}}\right)(35.31)$				
Where: m _n	= mercury collected in sample (total µg)	*	9.1977		
V _{mstd}	= volume metered, standard (dscf)	-		µg dscf	
35.31		-	84.1826		
30.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm	
C _{sd}	= mercury concentration (µg/dscm)	=	3.8579E+00	µg/dscm	
3. Mercury concentra	tion (mg/dscm)				
$C_{sd} = ($	$\left(\frac{m_n}{V_{myd}}\right)\left(\frac{35.31}{1000}\right)$				
Where:					
m _n	= mercury collected in sample (total µg)	=	9.1977	hð	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
Laboratory Data m Net matter collecte	d (g)				
Filterable Particulate Res	sults				
C Particulate Concen					
	tration @7% O ₂ (mg/dscm)				
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm	
1000	= conversion factor (µg/mg)	=		µg/mg	
C _{sd}	= mercury concentration (mg/dscm)	=	3.8579E-03	mg/dscm	

B - 19

4. Mercury concentration (µg/Nm3 dry) $=\left(\frac{m_n}{V_{11}}\right)(35.31)\left(\frac{68+460}{32+460}\right)$ C_{sd} Where: = mercury collected in sample (total µg) 9.1977 = μq mn = volume metered, standard (dscf) 84.1826 dscf V_{mstd} = 35.31 dscf/dscm 35.31 = conversion factor (dscf/dscm) = = standard temperature (°F) 68 °F 68 32 ≈ normal temperature (°F) 32 °F 460 = °F to °R conversion constant 460 C_{sd} = mercury concentration (µg/Nm3 dry) 4.1402E+00 µg/Nm³ dry = 5. Mercury concentration corrected to x% oxygen (lb/dscf example) $= C_{sd} \left(\frac{20.9 - x}{20.9 - O_2} \right)$ C_{sdx} Where: = mercury concentration (lb/dscf) 2.4092E-10 lb/dscf C_{sd} = oxygen content of corrected gas (%) 7.0 % x 02 = proportion of oxygen in the gas stream by volume (%) 10.1 % % 20.9 = oxygen content of ambient air (%) 20.9 3.0921E-10 lb/dscf @ x%O2 Csdx = mercury concentration corrected to x% oxygen (lb/dscf) = 6. Mercury concentration corrected to y% carbon dioxide (lb/dscf example) $=C_{sd}\left(\frac{y}{CO_2}\right)$ C_{sdy} Where: = mercury concentration (lb/dscf) 2.4092E-10 lb/dscf C_{sd} = carbon dioxide content of corrected gas (%) 12.0 % = proportion of carbon dioxide in the gas stream by volume (%) 9.3 % CO_2 = Csdy 3.1254E-10 lb/dscf @ y%CO2 = mercury conc. corrected to y% carbon dioxide (lb/dscf) = 7. Mercury concentration at actual gas conditions (lb/acf example) $= C_{sd} \left(\frac{Q_{std}}{Q_a} \right)$ С, Where: = mercury concentration (lb/dscf) 2.4092E-10 lb/dscf C_{sd} = volumetric flow rate at standard conditions, dry basis (dscfm) 108,134 dscfm Q_{std} = volumetric flow rate at actual conditions (acfm) 201,928 acfm Q, =

C_a = mercury concentration at actual gas conditions (lb/acf) = 1.2901E-10 lb/acf

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2006-12a

8. Mercury emission rate (lb/hr)

$$E_{lb/hr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (Q_{std}) (60)$$

Where:

m _n	= mercury collected in sample (total µg)	=	9.1977	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	Ξ	1.0E+06	µg/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr

E_{lb/hr} = mercury

= mercury emission rate (lb/hr) = 1.5631E-03 lb/hr

9. Mercury emission rate (g/s)

$$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{Q_{std}}{(10^6)(60)}\right)$$

Where

 $E_{g/s}$

Where:				
mn	= mercury collected in sample (total µg)	=	9.1977	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
10 ⁶	= conversion factor (µg/g)	=	1.0E+06	µg/g
60	= conversion factor (sec/min)	=	60	sec/min
E				
E _{g/s}	= mercury emission rate (g/s)	=	1.9691E-04	g/s

10. Mercury emission rate (Ton/yr)

$$E_{T/yr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (Q_{std}) (60) \left(\frac{Cap}{2000}\right)$$

m _n	= mercury collected in sample (total µg)	=	9.1977	þg
V _{mstd}	volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (µg/g)	=	1.0E+06	hð\ð
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr
Cap	= capacity factor for process (hours operated/year)	=	8,760	hours/yr
2000	= conversion factor (lb/Ton)	=	2000	lb/Ton
E _{T/yr}	= mercury emission rate (Ton/yr)	=	6.8462E-03	Ton/yr

= 4.4493E-06 lb/MMBtu

11. Mercury emission rate - Fd-based (lb/MMBtu)

$$E_{Fd} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) \left(F_d\right) \left(\frac{20.9}{20.9 - O_2}\right)$$

Where:

where:				
mn	≍ mercury collected in sample (total µg)	=	9.1977	hð
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	ib/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Fd	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	9,570	dscf/MMBtu
Oz	= proportion of oxygen in the gas stream by volume (%)	=	10.1	%
20.9	= oxygen content of ambient air (%)	=	20.9	%

 E_{Fd}

12. Mercury emission rate - Fc-based (Ib/MMBtu)

$$E_{Fc} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) \left(F_c\right) \left(\frac{100}{CO_2}\right)$$

= mercury emission rate - Fd-based (lb/MMBtu)

where:				
mn	= mercury collected in sample (total µg)	=	9.1977	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Fc	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	1,820	dscf/MMBtu
CO2	= proportion of oxygen in the gas stream by volume (%)	=	9.3	%
100	= conversion factor	=	100	
E _{Fc}	≈ mercury emission rate - Fc-based (lb/MMBtu)	2	4.7402E-06	lb/MMBtu
-rc			1.1 1022 00	10/14/11/10 CG

LOGIC FOR TREATING DETECTION LIMITS

(all metals except mercury)

1. Logic for Determining Maximum Allowable Front-Half Blank Correction (mFB-allow)

	CASE 1	CASE 2
	m _{FB} = D	m _{FB} = ND
Rule		
ND = 0	m _{FB-allow} = M29 Rule	m _{FB-allow} = 0
ND=1x	m _{FB-allow} = M29 Rule	m _{FB-allow} = 0
ND=0.5x	m _{FB-ellow} = M29 Rule	m _{FB-allow} = 0

2. Logic for Determining Blank-Corrected Front-Half Sample Amount (m_F)

	CASE 1	CASE 2
	m _{FS} - m _{FB-allow} ≥ MDL	m _{FS} - m _{FB-allow} < MDL
Rule		
ND = 0	$m_F = m_{FS} - m_{FB-allow}$	$m_F = < MDL$
ND=1x	$m_F = m_{FS} - m_{FB-allow}$	m _F = < MDL
ND=0.5x	m _F = m _{FS} - m _{FB-allow}	m _F = < MDL

3. Logic for Determining Maximum Allowable Back-Half Blank Correction (m_{BB-allow})

	CASE 1	CASE 2
	m _{ee} = D	m _{ee} = ND
Rule		
ND = 0	m _{BB-allow} = M29 Rule	m _{BB-allow} = 0
ND=1x	m _{BB-allow} = M29 Rule	m _{BB-allow} = 0
N D= 0.5x	m _{BB-allow} = M29 Rule	$m_{BB-allow} = 0$

4. Logic for Determining Blank-Corrected Back-Half Sample Amount (m₈)

	CASE 1 m _{BS} - m _{BB-allow} ≥ MDL	CASE 2 m _{BS} - m _{BB-allow} < MDL
Rule		
ND = 0	$m_B = m_{BS} - m_{BB-allow}$	m ₈ = < MDL
ND=1x	$m_B = m_{BS} - m_{BB-allow}$	m _B = < MDL
ND=0.5x	$m_B = m_{BS} - m_{BB-allow}$	m _B = < MDL

5. Logic for Adding Front and Back-Half Corrected Samples (mn)

Laborator	y Data				
	mn	Net matter collected (g)			
Filterable	Particulate Results	۰. ۲			
	C _{sd}	Particulate Concentration (mg/dscr	n)		
	C _{sd7}	Particulate Concentration @7% O2 (mg/dscm)			
	CASE 1	CASE 2	CASE 3		
	Both are D	One is D, other is ND	Both are ND		
Rule					
ND = 0	m _n = m _F + m _B	m _n = D	m _n = < Sum ND		
ND=1x	m _n = m _F + m _B	m _n = < [D + ND]	m _n = < Sum ND		
ND=0.5x	$m_n = m_F + m_B$	m _n = <[D + 0.5ND]	m _n = < 0.5 Sum ND		

Definitions and Notes

The term "Rule" refers to the rule being implemented for hanMDLing non-detectable quantities in summation: MDL = minimum detection limit.

D = Detectable quantity reported as D.

ND = Non-Detectable quantity reported at a value of ND.

If Front and Back-Half fractions are combined, then only Items 1 and 2 are used.

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2008-12a

Copyright @ 2006 Clean Air Engineering Inc.

USEPA Method 5/29 Beryllium Analyte Calculations

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 FF Outlet

USEPA Method 5/29 Beryllium Analyte Calculations

Sample data taken from Run 1

041210 140248

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

Note: Please see the preceding page concerning treatment of minimum detection limits and mathematical operations on values that are below minimum detection limits.

1. Maximum front-half blank correction criteria (µg)

$$A = (1.4) \left(\frac{3.141593}{4}\right) \left(\frac{D}{2.54}\right)^2$$

Where:

1

viiele.				
D	= diameter of filter used in sample apparatus	=	8.2	cm
1.4	= allowable blank per square inch of filter area	=	1.4	µg/in²
2.54	= conversion constant	=	2.54	cm/in
4	= conversion constant	=	4	
3.141593	= conversion constant (pi)	2	3.141593	
A	= maximum front-half blank correction criteria	=	12.46	μg

2. Allowable blank correction - combined front and back-half sample fractions (µg)

m _{FB} - allow	$= m_{FB}$ if $m_{FB} \leq A + 1$			
m _{FB -allow}	$= MAX \left[A + 1, MIN \left(m_{FB}, 0.05\right)\right]$	$5 \times m_{\mu}$	_{rs})]ifm _r	$T_B > A + 1$
Where:				
m _{FB}	= beryllium amount in combined front- and back-half blank	=	<0.0500	μg
m _{FS}	= beryllium amount in combined front- and back-half sample	=	<0.0500	μg
A+1	= max combined front- & back-half blank correction criteria	=	12.46	рд
0.05 x m _{FS}	= 5% of combined front- and back-half sample amount	=	<0.0025	нg

m _{FB-allow}	= allowable combined Beryllium blank correction	=	0.0000	μg
NOTE: In this	case, the first criteria applies.			

= arithmetic operator that returns the maximum of two values

= arithmetic operator that returns the minimum of two values

3. Combined front- and back-half sample corrected for allowable blank (µg)

Laboratory Data

MAX

MIN

m Net matter collected (g)

Filterable Particulate Results

C Particulate Concentration (mg/dscm)

C Particulate Concentration @7% O2 (mg/dscm)

$$m_n = m_{FS} - m_{FB-allow}$$

M _{FS} M _{FB-allow}	 = beryllium amount in combined front- and back-half sample = allowable combined beryllium blank correction 		<0.0500 0.0000	hð hð
m _n	= blank-corrected beryllium in combined sample	=	<0.0500	μg

USEPA Method 5/29 Beryllium Sample Calculations

USEPA Method 5/29 Beryllium Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

throughout. The final t	able is formatted to an appropriate number of significant figures.				
					041210 140337
 Beryllium concent 	tration (lb/dscf)				K_N
C_{sd}	$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right)$				
Where:					
m	≠ beryllium collected in sample (total µg)	=	<0.0500	μg	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
2.205 x 10 ⁻³	= conversion factor (Ib/g)	=	2.205E-03	lb/g	
10 ⁶	= conversion factor ($\mu g/g$)	=	1.0E+06	µg/g	
10		-	1.02.00	P3/3	
C _{sd}	= beryllium concentration (lb/dscf)	=	<1.3097E-12	lb/dscf	
2. Beryllium concenti	ration (ug/dscm)				
C _{sd}	$= \left(\frac{m_n}{V_{msid}}\right) (35.31)$				
Where:					
m	= beryllium collected in sample (total µg)	=	<0.0500	μg	
Vmstd	≃ volume metered, standard (dscf)	=	84.1826	dscf	
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm	
C _{sd}	= beryllium concentration (µg/dscm)	=	<2.0972E-02	µg/dscm	
3. Beryllium concentr	ation (ma/dscm)				
C_{sd}	$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{35.31}{1000}\right)$				
Where:					
mn	= beryllium collected in sample (total µg)	~	<0.0500	μg	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm	
1000	= conversion factor (μg/mg)	=	1000	µg/mg	
				-33	
C _{sd}	= beryllium concentration (mg/dscm)	=	<2.0972E-05	mg/dscm	

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2008-12a

4. Bervilium concentration (un/Nm3 dou)

4. Beryllium concentration (µg/Nm3 dry)					
C _{sd}	$= \left(\frac{m_n}{V_{mstd}}\right) (35.31) \left(\frac{68+460}{32+460}\right)$				
Where:					
m _n	⇒ beryllium collected in sample (total µg)	=	<0.0500	μg	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm	
68	= standard temperature (°F)	=	68	۴F	
32	= normal temperature (°F)	=	32	۴F	
460	= °F to °R conversion constant	=	460		
C _{sd}	= beryllium concentration (µg/Nm3 dry)	=	<2.2507E-02	µg/Nm ³ dry	
5. Beryllium concent	ration corrected to x% oxygen (lb/dscf example)				
C _{sdx}	$= C_{sd} \left(\frac{20.9 - x}{20.9 - O_2} \right)$				
Where:					
C _{sd}	= beryllium concentration (lb/dscf)	≈	<1.3097E-12	lb/dscf	
x	= oxygen content of corrected gas (%)	=	7.0	%	
0 ₂	= proportion of oxygen in the gas stream by volume (%)	=	10.1	%	
20.9	= oxygen content of ambient air (%)	=	20.9	%	
C _{sdx}	= beryllium concentration corrected to x% oxygen (lb/dscf)	=	<1.6809E-12	lb/dscf @ x%O ₂	
6. Beryllium concent	ration corrected to y% carbon dioxide (lb/dscf example)				
C_{sdy}	$= C_{sd} \left(\frac{y}{CO_2} \right)$				
Where:					
C _{sd}	= beryllium concentration (lb/dscf)	=	<1.3097E-12	lb/dscf	
У	= carbon dioxide content of corrected gas (%)	=	12.0	%	
CO ₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.3	%	
C _{sdy}	= beryllium conc. corrected to y% carbon dioxide (lb/dscf)	=	<1.6990E-12	lb/dscf @ y%CO₂	
7. Beryllium concentr	ration at actual gas conditions (lb/acf example)				
C _a	$= C_{sd} \left(\frac{Q_{std}}{Q_a} \right)$				
Where:					
C _{sd}	= beryllium concentration (lb/dscf)	=	<1.3097E-12	lb/dscf	
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm	
Qa	= volumetric flow rate at actual conditions (acfm)	=	201,928	acfm	
Ca	= beryllium concentration at actual gas conditions (lb/acf)	=	<7.0133E-13	lb/acf	

B - 26

USEPA Method 5/29 Beryllium Sample Calculations

= <8.4971E-06 lb/hr

.

8. Beryllium emission rate (lb/hr)

yllium emission rate (lb/hr)

$$E_{lb/hr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (Q_{std}) (60)$$

Where:

m _n	= beryllium collected in sample (total µg)	=	<0.0500	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr

.

E_{lb/hr}

9. Beryllium emission rate (g/s)

$$E_{g/s} = \left(\frac{m_n}{V_{nustd}}\right) \left(\frac{Q_{std}}{(10^6)(60)}\right)$$

= beryllium emission rate (lb/hr)

Where:

 $E_{g/s}$

WINCIC.				
m"		=	<0.0500	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
Q _{std}	≠ volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
60	= conversion factor (sec/min)	=	60	sec/min
E _{g/s}	= beryllium emission rate (g/s)	=	<1.0704E-06	g/s

= beryllium emission rate (g/s)

10. Beryllium emission rate (Ton/yr)

$$E_{T/yr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) \left(\mathcal{Q}_{std}\right) (60) \left(\frac{Cap}{2000}\right)$$

Where:

mn	= beryllium collected in sample (total µg)	=	<0.0500	μg
V _{mstd}	volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr
Сар	= capacity factor for process (hours operated/year)	=	8,760	hours/yr
2000	= conversion factor (lb/Ton)	=	2000	lb/Ton
E _{Ton/yr}	= beryllium emission rate (Ton/yr)	=	<3.7217E-05	Ton/yr

USEPA Method 5/29 Beryllium Sample Calculations

= <2.4187E-08 lb/MMBtu

11. Beryllium emission rate - Fd-based (Ib/MMBtu)

$$E_{Fd} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) \left(F_d\right) \left(\frac{20.9}{20.9 - O_2}\right)$$
Where:

$$m_n = \text{berylllum collected in sample (total µg)} = <0.0500 \text{ µg}$$

$$V_{mstd} = \text{volume metered, standard (dscf)} = 84.1826 \text{ dscf}$$

$$2.205 \times 10^{-3} = \text{conversion factor (lb/g)} = 2.205E-03 \text{ ib/g}$$

$$10^6 = \text{conversion factor (µg/g)} = 1.0E+06 \text{ µg/g}$$

$$F_d = \text{ratio of gas volume to heat content of fuel (dscf/MMBtu)} = 9,570 \text{ dscf/MMBtu}$$

$$O_2 = \text{proportion of oxygen in the gas stream by volume (%)} = 10.1 \%$$

12. Beryllium emission rate - Fc-based (Ib/MMBtu)

$$E_{Fc} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (F_c) \left(\frac{100}{CO_2}\right)$$

= beryllium emission rate - Fd-based (lb/MMBtu)

Where:

E_{Fd}

٧	vnere:				
	m,	= beryllium collected in sample (total µg)	=	<0.0500	рq
	V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
	2.205 x 10 ⁻³	= conversion factor (lb/g)	Ħ	2.205E-03	lb/g
	10 ⁶	= conversion factor (µg/g)	=	1.0E+06	hð\ð
	Fc	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	1,820	dscf/MMBtu
	CO2	= proportion of oxygen in the gas stream by volume (%)	=	9.3	%
	100	= conversion factor	2	100	
	E _{Fc}	= beryllium emission rate - Fc-based (lb/MMBtu)	=	<2.5768E-08	lb/MMBtu

QA/QC _____ Date _____

041210 140523

N

USEPA Method 5/29 Cadmium Analyte Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

Note: Please see the preceding page concerning treatment of minimum detection limits and mathematical operations on values that are below minimum detection limits.

1. Maximum front-half blank correction criteria (µg)

$$A = (1.4) \left(\frac{3.141593}{4}\right) \left(\frac{D}{2.54}\right)^2$$

Where:

D		=	8.2	cm
1.4	= allowable blank per square inch of filter area	=	1.4	µg/in²
2.54	= conversion constant	=	2.54	cm/in
4	= conversion constant	=	4	
3.141593	= conversion constant (pi)	=	3.141593	
A	= maximum front-half blank correction criteria	=	12.46	μg

2. Allowable blank correction - combined front and back-half sample fractions (µg)

M _{FB} - allow	$= m_{FB}$ if $m_{FB} \leq A + 1$			
m _{FB - allow}	$= MAX [A + 1, MIN (m_{FB}, 0.05)]$	$\times m_{\mu}$	_{~s})]ifm,	$T_B > A + 1$
Where:				
m _{FB}	= cadmium amount in combined front- and back-half blank	=	<0.2000	μg
m _{FS}	= cadmium amount in combined front- and back-half sample	=	0.4679	μg
A+1	= max combined front- & back-half blank correction criteria	=	12.46	μg
0.05 x m _{FS}	= 5% of combined front- and back-half sample amount	=	0.0234	hð
MAX	= arithmetic operator that returns the maximum of two values			
MIN	= arithmetic operator that returns the minimum of two values			
m _{FB-allow}	= allowable combined Cadmium blank correction	=	0.0000	49

NOTE: In this case, the first criteria applies.

3. Combined front- and back-half sample corrected for allowable blank (µg)

Laboratory Data

m Net matter collected (g)

Filterable Particulate Results

C Particulate Concentration (mg/dscm)

C Particulate Concentration @7% O2 (mg/dscm)

$$m_n = m_{FS} - m_{FB-allow}$$

Where:

m _{FS} m _{FB-allow}	 = cadmium amount in combined front- and back-half sample = allowable combined cadmium blank correction 	=	0.4679 0.0000	hð hð
m _n	= blank-corrected cadmium in combined sample	=	0.4679	μg

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2006-12a

Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 5/29 Cadmium Sample Calculations

041210 140541 K_N

USEPA Method 5/29 Cadmium Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Cadmium concentration (lb/dscf)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right)$$

Where:

m _n	= cadmium collected in sample (total μg)	=	0.4679	μg
V _{mstd} 2.205 x 10 ⁻³	= volume metered, standard (dscf) = conversion factor (lb/g)	=	84.1826 2.205E-03	dscf lb/g
10 ⁶	= conversion factor (µg/g)	=	1.0E+06	hð\ð
C _{sd}	= cadmium concentration (lb/dscf)	=	1.2255E-11	lb/dscf

2. Cadmium concentration (µg/dscm)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) (35.31)$$

Where:

m _n V _{mstd} 35.31	 = cadmium collected in sample (total µg) = volume metered, standard (dscf) = conversion factor (dscf/dscm) 	= =	0.4679 84.1826 35.31	µg dscf dscf/dscm
C _{sd}		=	1.9624E-01	µg/dscm

3. Cadmium concentration (mg/dscm)

 $= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{35.31}{1000}\right)$

Where:

 C_{sd}

mn	= cadmium collected in sample (total µg)	=	0.4679	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf

35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm
1000	= conversion factor (μg/mg)	=	1000	µg/mg
C_{sd}	= cadmium concentration (mg/dscm)	=	1.9624E-04	mg/dscm

4. Cadmium concentration (uo/Nm3 drv)

$$C_{xd} = \left(\frac{m_{x}}{|V_{wad}}\right)(35.31)\left(\frac{68 + 460}{32 + 460}\right)$$
Where:

$$m_{n} = \text{cadmium collected in sample (total µg)} = 0.4679 µg$$

$$V_{mad} = \text{volume metered, standard (dscf)} = 35.31 \text{ dscfd scm}$$

$$88.1828 \text{ dscf}$$

$$35.31 = \text{conversion factor (dscfdscm)} = 38.1828 \text{ dscf}$$

$$35.31 = \text{conversion factor (dscfdscm)} = 68 \text{ F}$$

$$32 = \text{normal temperature (F)} = 32 \text{ F}$$

$$460 = \text{F to 'R conversion constant} = 460$$

$$C_{xd} = \text{cadmium concentration (µg/Nm3 dry)} = 2.1060E-01 µg/Nm^3 dry$$
5. Cadmium concentration corrected to x% oxygen (b/dscf example)

$$C_{xd} = \text{cadmium concentration (b/dscf)} = 1.2255E-11 \text{ b/dscf}$$

$$x = 0xygen content of corrected gas (%) = 7.0 \%$$

$$20.9 = \text{oxygen content of corrected gas (%) = 20.9 \%$$

$$C_{xdx} = \text{cadmium concentration corrected to x% oxygen (b/dscf) = 1.5729E-11 \text{ b/dscf} @ x%O_2$$
6. Cadmium concentration corrected to y% carbon dioxide (b/dscf) = 1.2255E-11 \text{ b/dscf} @ x%O_2
6. Cadmium concentration corrected to y% carbon dioxide (b/dscf) = 1.5729E-11 \text{ b/dscf} @ x%O_2
6. Cadmium concentration corrected to y% carbon dioxide (b/dscf) = 1.2255E-11 \text{ b/dscf} @ x%O_2
6. Cadmium concentration corrected to y% carbon dioxide (b/dscf) = 1.2255E-11 \text{ b/dscf} @ x%O_2
6. Cadmium concentration (b/dscf) = 1.2255E-11 \text{ b/dscf} @ x%O_2
7. Cadmium concentration (b/dscf) = 1.2255E-11 \text{ b/dscf} @ x%O_2
7. Cadmium concentration dioxide (b/dscf) = 1.529E-11 \text{ b/dscf} @ y%CO_2
7. Cadmium concentration dioxide (b/dscf) = 1.5898E-11 \text{ b/dscf} @ y%CO_2
7. Cadmium concentration at actual gas conditions (b/dscf) = 1.2255E-11 \text{ b/dscf} @ y%CO_2
7. Cadmium concentration at actual gas conditions (b/dscf) = 1.2255E-11 \text{ b/dscf} @ y%CO_2
7. Cadmium concentration (b/dscf) = 1.2255E-11 \text{ b/dscf} @ y%CO_2
7. Cadmium concentration at actual gas conditions (difform) = 10.8,134 dscfm = 0.4, ($\frac{Q_{xf}}{Q_{xf}} = \text{ cdmium concentration (b/dscf)} = 1.2255E-11 b/dscf @ y%CO_2$
7. Cadmium concentration (b/dscf) = 1.2255E-11 b/dscf @ y%CO_2 = 0.0, (($\frac{Q_{xf}}{Q_{xf}}$

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2008-12a

USEPA Method 5/29 Cadmium Sample Calculations

7.9509E-05 lb/hr

=

8. Cadmium emission rate (lb/hr)

$$E_{lb/hr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (\mathcal{Q}_{std}) (60)$$

= cadmium emission rate (lb/hr)

Where:

m _n	= cadmium collected in sample (total µg)	=	0.4679	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr

Élb/hr

9. Cadmium emission rate (g/s)

$$E_{g/s} = \left(\frac{m_n}{V_{nstd}}\right) \left(\frac{Q_{std}}{(10^6)(60)}\right)$$

W

 $E_{g/s}$

Where:				
mn	= cadmium collected in sample (total µg)	=	0.4679	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
10 ⁸	= conversion factor (µg/g)	=	1.0E+06	µg/g
60	= conversion factor (sec/min)	=	60	sec/min
E _{g/s}	= cadmium emission rate (g/s)	=	1.0016E-05	g/s

10. Cadmium emission rate (Ton/yr)

$$E_{T/yr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (\mathcal{Q}_{std}) (60) \left(\frac{Cap}{2000}\right)$$

mn	= cadmium collected in sample (total µg)	×	0.4679	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	÷	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr
Сар	= capacity factor for process (hours operated/year)	=	8,760	hours/yr
2000	= conversion factor (lb/Ton)	=	2000	lb/Ton
E _{Ton/yr}	= cadmium emission rate (Ton/yr)	=	3.4825E-04	Ton/yr

11. Cadmium emission rate - Fd-based (lb/MMBtu)

$$E_{Fd} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (F_d) \left(\frac{20.9}{20.9 - O_2}\right)$$

Where:

where:				
m'n	= cadmium collected in sample (total µg)	=	0.4679	hð
Vmstd	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	hð\ð
Fd	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	9,570	dscf/MMBtu
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	10.1	%
20.9	= oxygen content of ambient air (%)	=	20.9	%

12. Cadmium emission rate - Fc-based (lb/MMBtu)

E_{Fd}

$$E_{Fc} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (F_c) \left(\frac{100}{CO_2}\right)$$

Where:
$$m_n = \text{cadmium collected in sample (total µg)}$$
$$V_{mstd} = \text{volume metered, standard (dscf)}$$
$$2.205 \times 10^3 = \text{conversion factor (lb/a)}$$

= cadmium emission rate - Fd-based (lb/MMBtu)

lb/g 2.205E-03 = 2.205 x 10 conversion factor (ID/g) 10⁶ = conversion factor (µg/g) 1.0E+06 = µg/g Fc = ratio of gas volume to heat content of fuel (dscf/MMBtu) dscf/MMBtu = 1,820 CO_2 = proportion of oxygen in the gas stream by volume (%) = 9.3 % 100 = conversion factor 100 . =

E_{Fc} = cadmium emission rate - Fc-based (lb/MMBtu) = 2.4112E-07 lb/MMBtu

USEPA Method 5/29 Cadmium Sample Calculations

=

=

0.4679

84.1826

= 2.2632E-07 lb/MMBtu

μg

dscf

041210 140659

USEPA Method 5/29 Lead Analyte Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

Note: Please see the preceding page concerning treatment of minimum detection limits and mathematical operations on values that are below minimum detection limits.

1. Maximum front-half blank correction criteria (µg)

$$A = (1.4) \left(\frac{3.141593}{4}\right) \left(\frac{D}{2.54}\right)^2$$

Where:

vilere.					
D	= diameter of filter used in sample apparatus	=	8.2	cm	
1.4	= allowable blank per square inch of filter area	=	1.4	µg/in²	
2.54	= conversion constant	=	2.54	cm/in	
4	= conversion constant	=	4		
3.141593	= conversion constant (pi)	=	3.141593		
Α	= maximum front-half blank correction criteria	=	12.46	μg	

2. Allowable blank correction - combined front and back-half sample fractions (µg)

m _{FB} - allow	$= m_{FB}$ if $m_{FB} \leq A + 1$			
m _{FB} - allow	$= MAX \left[A + 1, MIN \left(m_{FB}, 0.05\right)\right]$	$\times m_F$	_s)]if m	$_{FB} > A + 1$
Where:				
m _{FB}	= lead amount in combined front- and back-half blank	=	0.4541	рg
m _{FS}	= lead amount in combined front- and back-half sample	=	2.8948	hð
A+1	= max combined front- & back-half blank correction criteria	=	12.46	нg
0.05 x m _{FS}	= 5% of combined front- and back-half sample amount	=	0.1447	hð
MAX	= arithmetic operator that returns the maximum of two values			
MIN	= arithmetic operator that returns the minimum of two values			
m _{FB-allow}	= allowable combined Lead blank correction	=	0.4541	hð

3. Combined front- and back-half sample corrected for allowable blank (µg)

Laboratory Data

m Net matter collected (g)

Filterable Particulate Results

C Particulate Concentration (mg/dscm)

C Particulate Concentration @7% O2 (mg/dscm)

NOTE: In this case, the first criteria applies.

$$m_n = m_{FS} - m_{FB-allow}$$

m _{FS} m _{FB-allow}	 lead amount in combined front- and back-half sample allowable combined lead blank correction 	=	2.8948 0.4541	hð hð
m'n	= blank-corrected lead in combined sample	=	2.4408	μg

041210 140607

K_N

USEPA Method 5/29 Lead Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Lead concentration (lb/dscf)

$$C_{sd} = \left(\frac{m_n}{V_{msid}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right)$$

Where:

mn	= lead collected in sample (total μg)	=	2.4408	hð	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g	
C _{sd}	≈ lead concentration (lb/dscf)	=	6.3931E-11	lb/dscf	

2. Lead concentration (µg/dscm)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) (35.31)$$

Where:

m _n	= lead collected in sample (total μg)	=	2.4408	hð
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm
C _{sd}	.= lead concentration (µg/dscm)	=	1.0238E+00	µg/dscm

3. Lead concentration (mg/dscm)

$$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{35.31}{1000}\right)$$

Where:

 C_{sd}

35.31	≈ conversion factor (dscf/dscm) = conversion factor (µg/mg)	=	35.31	dscf/dscm
1000		=	1000	µg/mg
C _{sd}	= lead concentration (mg/dscm)	=	1.0238E-03	mg/dscm

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2008-12a

4. Lead concentration (µg/Nm3 dry)

 $=\left(\frac{m_n}{V_{max}}\right)(35.31)\left(\frac{68+460}{32+460}\right)$ C ... Where: = lead collected in sample (total µg) 2.4408 m = μg = volume metered, standard (dscf) 84.1826 V_{mstd} dscf = = conversion factor (dscf/dscm) 35.31 35.31 dscf/dscm = = standard temperature (°F) ٩F 68 68 = ٩F = normal temperature (°F) 32 32 = = °F to °R conversion constant 460 460 = Csd ≈ lead concentration (µg/Nm3 dry) = 1.0987E+00 µg/Nm³ dry 5. Lead concentration corrected to x% oxygen (lb/dscf example) $= C_{sd} \left(\frac{20.9 - x}{20.9 - O_2} \right)$ C_{sdx} Where: = lead concentration (lb/dscf) 6.3931E-11 lb/dscf C_{sd} = = oxygen content of corrected gas (%) 7.0 % х = **O**₂ = proportion of oxygen in the gas stream by volume (%) 10.1 % _ = oxygen content of ambient air (%) 20.9 % 20.9 8.2054E-11 lb/dscf @ x%O2 Csdx = lead concentration corrected to x% oxygen (lb/dscf) = 6. Lead concentration corrected to y% carbon dioxide (lb/dscf example) $=C_{sd}\left(\frac{y}{CO_{2}}\right)$ Csdv Where: C_{sd} = lead concentration (lb/dscf) 6.3931E-11 lb/dscf = = carbon dioxide content of corrected gas (%) 12.0 % = v CO_2 = proportion of carbon dioxide in the gas stream by volume (%) 9.3 % C_{sdy} = lead conc. corrected to y% carbon dioxide (lb/dscf) 8.2937E-11 lb/dscf @ y%CO2 = 7. Lead concentration at actual gas conditions (lb/acf example) $= C_{sd} \left(\frac{Q_{std}}{Q_a} \right)$ C_a Where: = lead concentration (lb/dscf) 6.3931E-11 lb/dscf = volumetric flow rate at standard conditions, dry basis (dscfm) 108,134 Q_{std} = dscfm Q_a = volumetric flow rate at actual conditions (acfm) = 201.928 acfm C_a = lead concentration at actual gas conditions (lb/acf) 3.4235E-11 lb/acf =

= 4.1479E-04 lb/hr

8. Lead emission rate (lb/hr)

$$E_{lb/hr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (Q_{std}) (60)$$

Where:

mn	= lead collected in sample (total µg)	=	2.4408	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	ib/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Q _{std}	volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (min/hr)	=	60	min/hr

E_{lb/hr}

$$= \left(\frac{m_n}{V_{nstd}}\right) \left(\frac{Q_{std}}{(10^6)(60)}\right)$$

= lead emission rate (lb/hr)

Where:

 $E_{g/s}$

84.1826 108.134	dscf dscfm
1.0E+06	µg/g
60	sec/min
5.2253E-05	g/s
;	1.0E+06 60

E_{g/s}

10. Lead emission rate (Ton/yr)

$$E_{T/yr} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (Q_{std}) (60) \left(\frac{Cap}{2000}\right)$$

winere.	-			
mn	= lead collected in sample (total µg)	=	2.4408	μg
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
10 ⁶	= conversion factor (μg/g)	=	1.0E+06	µg/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	108,134	dscfm
60	= conversion factor (mln/hr)	=	60	min/hr
Сар	= capacity factor for process (hours operated/year)	=	8,760	hours/yr
2000	= conversion factor (lb/Ton)	=	2000	lb/Ton
E _{Ton/yr}	= lead emission rate (Ton/yr)	=	1.8168E-03	Ton/yr

11. Lead emission rate - Fd-based (lb/MMBtu)

$$\begin{split} E_{Fd} &= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) \left(F_d\right) \left(\frac{20.9}{20.9 - O_2}\right) \\ \text{Where:} \\ &m_n &= \text{lead collected in sample (total µg)} &= 2.4408 \quad \mu\text{g} \\ &V_{mstd} &= \text{volume metered, standard (dscf)} &= 84.1826 \quad \text{dscf} \\ &2.205 \times 10^3 &= \text{conversion factor (lb/g)} &= 2.205E-03 \quad \text{lb/g} \\ &10^6 &= \text{conversion factor (µg/g)} &= 1.0E+06 \quad \mu\text{g/g} \\ &F_d &= \text{ratio of gas volume to heat content of fuel (dscf/MMBtu)} &= 9,570 \quad \text{dscf/MMBtu} \\ &O_2 &= \text{proportion of oxygen in the gas stream by volume (\%)} &= 10.1 \quad \% \\ &20.9 &= \text{oxygen content of ambient air (\%)} &= 20.9 \quad \% \end{split}$$

12. Lead emission rate - Fc-based (lb/MMBtu)

$$E_{Fc} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^6}\right) (F_c) \left(\frac{100}{CO_2}\right)$$

Where:

vvnere:					
mn	= lead collected in sample (total µg)	=	2.4408	μg	
V _{mstd}	= volume metered, standard (dscf)	=	84.1826	dscf	
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	
10 ⁶	= conversion factor (µg/g)	=	1.0E+06	µg/g	
Fc	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	1,820	dscf/MMBtu	
CO ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.3	%	
100	= conversion factor	=	100		
E _{Fc}	= lead emission rate - Fc-based (lb/MMBtu)	=	1.2579E-06	lb/MMBtu	

USEPA Method 5/29 Lead Sample Calculations

= 1.1807E-06 lb/MMBtu

EPA Method 1-4 Calculations

041210 144446 N

USEPA Method 13B (Total Fluorides) Sampling, Velocity and Moisture Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

$$V_{wstd} = (0.04706)(V_{lc})$$

Where:

V _{lc}	 = total volume of liquid collected in impingers and silica gel (ml) = ideal gas conversion factor (ft³ water vapor/ml or gm) 	=	212.4	mi
0.04706		=	0.04706	ft ³ /ml
V _{wstd}	= volume of water vapor collected at standard conditions (ft ³)	=	10.00	ft ³

2. Volume of gas metered, standard conditions (dscf)

$$=\frac{(17.64)(V_m)\left(P_{bar}+\frac{\Delta H}{13.6}\right)(Y_d)}{(460+T_m)}$$

Where:

V_{mstd}

wnere:				
P _{bar}	= barometric pressure (in. Hg)	=	30.05	in. Hg
T _m	= average dry gas meter temperature (°F)	=	64.54	°F
V _m	 volume of gas sample through the dry gas meter at meter conditions (dcf) 	=	38.08	dcf
Y _d	 gas meter correction factor (dimensionless) 	=	0.9898	
ΔH	= average pressure drop across meter box orifice (in. H ₂ O)	=	1.26	in. H₂O
17. 6 4	= standard temperature to pressure ratio (°R/in. Hg)	=	17.64	°R/in. Hg
13.6	= conversion factor (in. H ₂ O/in. Hg)	=	13.6	in.H₂O/in. Hg
460	= °F to °R conversion constant	=	460	
V _{mstd}	 volume of gas sampled through the dry gas meter at standard conditions (dscf) 	=	38.207	dscf

3. Sample gas pressure (in. Hg)

$$= P_{bar} + \left(\frac{P_g}{13.6}\right)$$

Where:

 P_s

P _{bar}	= barometric pressure (in. Hg)	=	30.05	in. Hg
Pg	= sample gas static pressure (in. H ₂ O)	=	-10.60	in. H₂O
13.6	= conversion factor (in, H_2O/in . Hg)	=	13.6	in. H ₂ O/in. Hg
Ps	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg

EPA Method 1-4 Calculations

4. Actual water vapor pressure at sample gas temperature less than 212°F (in. Hg)

 P_{ν}

$$=\frac{e^{\left(18.3036-\frac{3816.44}{\frac{5}{9}(7_{s}-32)+273.15-46.13}\right)}}{25.4}$$

Where:

vvnere.				
Τ _s	= average sample gas temperature (°F)	=	306.24	۴
18.3036	= Antoine coefficient	=	18.3036	°K
3816.44	= Antoine coefficient	3	3816.44	°K
273.15	= temperature conversion factor	=	273.15	۴K
46.13	= Antoine coefficient	=	46.13	°K
25.4	= conversion factor	=	25.4	mm Hg/in. Hg
5/9	= Fahrenheit to Celsius conversion factor	=	5/9	°C/°F
32	= temperature conversion (°F)	=	32	۴F
Pv	= vapor pressure, actual (in. Hg)	=	29.27	in. Hg

5. Water vapor pressure at gas temperature greater than 212°F (in. Hg)

P_{ν}	$= P_s$			
Where: P _s	≂ absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
Pv	≈ water vapor pressure, actual (in. Hg)	=	29.27	in. Hg

6. Moisture measured in sample (% by volume)

$$B_{wo} = \frac{V_{wstd}}{(V_{mstd} + V_{wstd})}$$

Wł

Where:				
V _{mstd}	= volume of gas sampled through the dry gas meter at standard conditions (dscf)	=	38.207	dscf
V _{wstd}	= volume of water collected at standard conditions (scf)	=	10.00	scf
Bwo	= proportion of water measured in the gas stream by volume	=	0.2074	
		=	20.74	%

7. Saturated moisture content (% by volume)

 $B_{ws} = \frac{P_v}{P_s}$

= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg	
= water vapor pressure, actual (in. Hg)	=	29.27	in. Hg	
= proportion of water vapor in the gas stream by volume at saturated conditions	=	1.0000 100.00	%	
	= water vapor pressure, actual (in. Hg)= proportion of water vapor in the gas stream by volume at	 = water vapor pressure, actual (in. Hg) = proportion of water vapor in the gas stream by volume at 	= water vapor pressure, actual (in. Hg)=29.27= proportion of water vapor in the gas stream by volume at1.0000	= water vapor pressure, actual (in. Hg)=29.27in. Hg= proportion of water vapor in the gas stream by volume at1.0000

8. Actual water vapor in gas (% by volume)

$$B_{w} = MINIMUM \left[B_{wo}, B_{ws}\right]$$

Where:

B _{ws}	 proportion of water vapor in the gas stream by volume at saturated conditions 	=	1.0000	
B _{wo}	= proportion of water measured in the gas stream by volume	=	0.2074	
B _w	= actual water vapor in gas	=	0.2074 20.74	%
		-	20.74	70

9. Nitrogen (plus carbon monoxide) in gas stream (% by volume, dry)

 $N_2 + CO = 100 - CO_2 - O_2$

Where:

CO ₂	 proportion of carbon dioxide in the gas stream by volume (%) proportion of oxygen in the gas stream by volume (%) conversion factor (%) 	=	9.3	%
O ₂		=	10.0	%
100		=	100	%
N ₂ +CO	= proportion of nitrogen and CO in the gas stream by volume (%)	=	80.69	%

10. Molecular weight of dry gas stream (lb/lb mole)

M_d	$= \left(M_{CO_2}\right) \frac{(CO_2)}{(100)} + \left(M_{O_2}\right) \frac{(O_2)}{(100)} + \left(M_{N_2+CO}\right) \frac{(N_2+CO)}{(100)}$			
Where:				
M _{CO2}	= molecular weight of carbon dioxide (lb/lb·mole)	=	44.00	lb/lb·mole
M _{O2}	= molecular weight of oxygen (lb/lb·mole)	=	32.00	lb/lb·mole
MN2+CD	= molecular weight of nitrogen and carbon monoxide (lb/lb·mole)	=	28.00	lb/lb·mole
CO2	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.3	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	10.0	%
N ₂ +CO	= proportion of nitrogen and CO in the gas stream by volume (%)	=	80.7	%
100	= conversion factor (%)	=	100	%
M _d	= dry molecular weight of sample gas (Ib/Ib·mole)	=	29.89	lb/lb·mole

11. Molecular weight of sample gas (lb/lb·mole)

$$M_{s} = (M_{d})(1-B_{w}) + (M_{H_{2}O})(B_{w})$$

Where:

B _w M _d M _{H2O}	 proportion of water vapor in the gas stream by volume dry molecular weight of sample gas (lb/lb·mole) molecular weight of water (lb/lb·mole) 	= = =	0.2074 29.89 18.00	lb/lb∙mole lb/lb∙mole
Ms	= molecular weight of sample gas, wet basis (lb/lb·mole)	·=	27.42	ib/ìb·mole

EPA Method 1-4 Calculations

12. Velocity of sample gas (ft/sec)

$$V_{s} = (K_{p})(C_{p})\left(\sqrt{\Delta P}\right)\left(\sqrt{\frac{(\overline{T}_{s} + 460)}{(M_{s})(P_{s})}}\right)$$

Where:

where.				
Κ _ρ	= velocity pressure constant	=	85.49	
Cp	= pitot tube coefficient	=	0.81	
Ms	= wet molecular weight of sample gas, wet basis (lb/lb·mole)	=	27.42	lb/lb·mole
Ps	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
Τ _s	= average sample gas temperature (°F)	=	306.24	۴F
√∆P	= average square roots of velocity heads of sample gas (in. H ₂ O)	=	0.730	√in. H₂O
460	= °F to °R conversion constant	=	460	
Vs	= sample gas velocity (ft/sec)	=	49.54	ft/sec

13. Volumetric flow rate of sample gas at actual gas conditions (acfm)

$$Q_a = (60)(A_s)(V_s)$$

۷

Where:				
As	= cross sectional area of sampling location (ft ²)	=	64.00	ft ²
Vs	= sample gas velocity (ft/sec)	=	49.54	ft/sec
60	conversion factor (sec/min)	=	60	sec/min

Qa	= volumetric flow rate at actual conditions (acfm)	=	190,226	acfm
-				

14. Total flow of sample gas (scfm)

0	$-(\alpha)\left(\begin{array}{c}P_{s}\end{array}\right)$	(68+460)
Q_s	$= (Q_a) \left(\frac{P_s}{29.92} \right)$	$\left(\frac{T_s + 460}{T_s + 460}\right)$

Where:

withere.				
Qa	volumetric flow rate at actual conditions (acfm)	=	190,226	acfm
Ps	= absolute sample gas pressure (in. Hg)	=	29:27	in. Hg
29.92	= standard pressure (in. Hg)	=	29.92	in. Hg
Τ _s	= average sample gas temperature (°F)	=	306.2	°F
68	= standard temperature (°F)	=	68	°F
460	= °F to °R conversion constant	-	460	
Qs	= volumetric flow rate at standard conditions, wet basis (scfm)	=	128,236	scfm

15. Dry flow of sample gas (dscfm)

Where:

B _w Q _s	 proportion of water vapor in the gas stream by volume volumetric flow rate at standard conditions, wet basis (scfm) 	=	0.2074 128,236	scfm
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	101,644	dscfm

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

16. Dry flow of sample gas corrected to 7%O₂ (dscfm)

$$\begin{aligned} \mathcal{Q}_{std 7} &= \left(\mathcal{Q}_{std}\right) \left(\frac{20.9 - O_2}{20.9 - 7}\right) \\ \end{aligned}$$
Where:

$$\begin{aligned} & \mathsf{Q}_{std} &= \mathsf{volumetric flow rate at standard conditions, dry basis (dscfm) &= 101,644 & dscfm \\ & \mathsf{O}_2 &= \mathsf{proportion of oxygen in the gas stream by volume (\%) &= 10.0 & \% \\ & 20.9 &= \mathsf{oxygen content of ambient air (\%)} &= 20.9 & \% \\ & 7 &= \mathsf{oxygen content of corrected gas (\%)} &= 7.0 & \% \\ & \mathsf{Q}_{std7} &= \mathsf{volumetric flow rate at STP and 7\%O_2, dry basis (dscfm)} &= 79,560 & dscfm \end{aligned}$$

Q_{std7} = volumetric flow rate at STP and 7%O₂, dry basis (dscfm) 79,560 =

17. Hourly time basis conversion of volumetric flow rate (Q_{std} example)

$$Q_{std-hr} = (Q_{std-min})(60)$$

Where

Q _{std-min} 60	 volumetric flow rate, english units (ft³/min) conversion factor (min/hr) 	=	101,644 60	dscfm min/hr
Q _{std-hr}	= volumetric flow rate, hourly basis (dscf/hr)	=	6,098,652	dscf/hr

18. Metric Conversion of Gas Volumes (Q_{std} example)

 $Q_{std-metric} = \left(Q_{std-english}\right)\left(\frac{60}{35,31}\right)$

	(35.51)				
Where:					
Q _{std-english}	= volumetric flow rate, english units (ft ³ /min)	=	101,644	dscfm	
35.31	= conversion factor (ft ³ /m ³)	=	35.31	ft ³ /m ³	
60	= conversion factor (min/hr)	=	60	min/hr	

Q_{std-metric} = volumetric flow rate, metric units (m³/hr) = 172,717 dry std m³/hr

19. Standard to Normal Conversion of Gas Volumes (Qstd example)

$$Q_{Normal} = \left(Q_{std-metric}\right) \left(\frac{32+460}{68+460}\right)$$

Where[.]

Q _{Normal}	= volumetric flow rate, metric units (dry Nm ³ /hr)	=	160,941	dry Nm³/hr	
460	= standard temperature in Rankine (68°F)	=	460		
68	standard temperature (°F)	=	68	°F	
32	= normal temperature (°F)	=	32	۴F	
Q _{std-metric}	= volumetric flow rate, metric units (dry std m³/hr)	=	172,717	dry std m³/hr	

20. Percent isokinetic (%)

$(0.09450)(\overline{T_s} +$	$460 (V_{msid})$
$= \frac{(0.09450)(\overline{T_s} + (P_s)(V_s)(\overline{(D_n)^2(\pi)}))}{(144)(4)}$	$(\Theta)(1-B_w)$

I

D _n	a diameter of nozzle (in)	=	0.268	in.
Bw	= proportion of water vapor in the gas stream by volume	=	0.2074	
Ps	= absolute sample gas pressure (in. Hg)	=	29.27	in. Hg
Τ _s	= average sample gas temperature (°F)	=	306.2	۴F
V _{mstd}	volume of gas sample through the dry gas meter at standard conditions (dscf)	=	38.207	dscf
Vs	= sample gas velocity (ft/sec)	=	49.54	ft/sec
θ	= total sampling time (min)	=	63	min
0.0945	= conversion constant	=	0.0945	
460	= °F to °R conversion constant	=	460	
I	= percent of isokinetic sampling (%)	=	98.31	%

21. Alternative Method 5 Post-Test Meter Calibration Factor

EPA Method 1-4 Calculations

USEPA Method 13B HF Analyte Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

				041210 144446
. Fluoride to HF	conversion factor			L
K_{HF}	$= \frac{MW_{HF}}{n \times MW_{FF}}$			
Where:	F			
MWHE	= molecular weight of HF (mg/mg-mole)	=	20.006	mg/mg-mole
MW _{F-}	= molecular weight of fluoride ion (mg/mg-mole)	=	18.998	mg/mg-mole
n	= molar ratio of fluoride to HF	=	1.0	mole F/mole HF
K _{HF}	= conversion factor to convert mass F to mass HF	=	1.053	
Total HF collec	sted (mg)			
m _{HF}	$=K_{HF} \times \frac{(S_{F-1}v_1 + S_{F-2}v_2)}{1000}$			
Where:				
K _{HF}	= conversion factor to convert mass F to mass HF	=	1.053	
S _{F-1}	= fluoride concentration of sample fraction 1 (mg/liter)	=	<0.0380	mg/liter
V ₁	= liquid volume of sample fraction 1 (ml)	=	900.0	mi
S _{F-2}	= fluonde concentration of sample fraction 2 (mg/liter)	=	0.0000	mg/liter
V ₂	= liquid volume of sample fraction 2 (ml)	=	0.0	m
1000	= conversion factor (ml/liter)	=	1000	ml/liter
m _{HF}	= total HF collected in sample (mg)	=	<0.0360	mg
	Note: Non-detects are treated as zero in summations.			

DEFINITION

Fraction 1 = entire sample except last impinger containing applicable absorbing reagent.

.

Fraction 2 = last impinger containing applicable absorbing reagent, analyzed separately to evaluate collection efficiency. If entire sample is analyzed as a single fraction, then data is included as Fraction 1 (Fraction 2 = 0).

`

3. Allowable blank subtraction (mg)

<i>m</i> _b	$= K_{HF} \times B_{F} \times \frac{(v_{1} + v_{2})}{1000}$			
<i>m</i> _b	$= 0$ if $B_F < MDL$			
Where:				
KHF	= conversion factor to convert mass F to mass HF	=	1.053	
B _F	= fluoride concentration of blank (mg/liter)	=	<0.0380	mg/liter
V1	= liquid volume of sample fraction 1 (ml)	=	900.0	ml
V ₂	= liquid volume of sample fraction 2 (ml)	=	0.0	mi
1000	= conversion factor (ml/liter)	=	1000	ml/liter
m _b	= allowable blank subtraction (mg)	=	0.0000	mg

4. Total HF collected, corrected for blank (mg)

$$m_{nb} = m_{HF} - m_b$$

Where:

m _{HF} m _b	 = total HF collected in sample (mg) = allowable blank subtraction (mg) 	=	<0.0360 0.0000	mg mg	
m _{nb}	= total HF collected, corrected for blank (mg)	=	<0.0360	mg	

5. Minimum detectable HF (mg)

$$m_{MDL} = K_{HF} \times MDL \times \frac{(v_1 + v_2)}{1000}$$

Where:

vynere.					
K _{HF}	= conversion factor to convert mass F to mass HF	=	1.053		
MDL	= minimum detectable fluoride concentration	=	0.008	mg/liter	
V1	= liquid volume of sample fraction 1 (ml)	=	900.0	mi	
V ₂	= liquid volume of sample fraction 2 (ml)	=	0.0	ml	
1000	= conversion factor (ml/liter)	2	1000	ml/liter	
-	- minimum datastable UE (ma)	_	0.0076		
MMDL	= minimum detectable HF (mg)	=	0.0076	mg	

6. Total HF value used in emission calculations (mg)

USEPA Method 13B HF Analyte Calculations

USEPA Method 13B HF Sample Calculations

041210 144501

N_L

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 FF Outlet

USEPA Method 13B HF Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. HF concentration (lb/dscf)

$$C_{sd} = \left(\frac{m_n}{V}\right) \left(\frac{2.205 \times 10^{-10}}{100}\right)$$

 $= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right)$

m _n V _{mstd}	= total HF collected, corrected for applicable blank (mg) = volume metered, standard (dscf)	=	<0.0360 38.2069	mg dscf
2.205 x 10 ⁻³ 1000	= conversion factor (lb/g) = conversion factor (mg/g)	=	2.205E-03 1.000	lb/g mg/g
			.,	00
C _{sd}	= HF concentration (lb/dscf)	= <	<2.0784E-09	iD/dscf

2. HF concentration (ppmdv)

Where:

 C_{sd}

 $= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{0.850}{1000}\right) \left(\frac{10^6}{MW}\right)$

(<0.0360 mg 38.2069 dscf
(
= 3	28 2060 deaf
	30.2008 USCI
=	20.006 g/g-mole
=	0.850 dscf/g-mole
=	1,000 mg/g
=	10 ⁶ ppm
= <	<0.0400 ppmdv
	и п п и

 $= C_{sd} \left(1 - \frac{B_w}{100} \right)$

C_w Where:

Where:				
C _{sd}	= HF concentration (ppmdv)	=	<0.0400	ppmdv
Bw	= actual water vapor in gas (% v/v)	=	20.7366	% v/v
100	= conversion factor (%)	=	100	%
C"	= HF concentration (ppmwv)	=	<0.0317	ppmwv

4. HF concentration (mg/dscm)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) (35.31)$$

Where:

:

m _n V _{mstd} 35.31	 total HF collected, corrected for applicable blank (mg) volume metered, standard (dscf) conversion factor (dscf/dscm) 	= =	<0.0360 38.2069 35.31	mg dscf dscf/dscm	
C _{sd}	= HF concentration (mg/dscm)	=	<0.0333	mg/dscm	

5. HF concentration (mg/Nm³ dry)

$$= \left(\frac{m_n}{V_{nstd}}\right) (35.31) \left(\frac{68+460}{32+460}\right)$$

Where:

 C_{sd}

= total HF collected, corrected for applicable blank (mg)	=	<0.0360	mg
= volume metered, standard (dscf)	=	38.2069	dscf
= conversion factor (dscf/dscm)	=	35.31	dscf/dscm
= standard temperature (°F)	=	68	°F
= normal temperature (°F)	=	32	°F
= °F to °R conversion constant	=	460	
= HF concentration (mg/Nm ³ dry)	=	<0.0357	mg/Nm ³ dry
	 volume metered, standard (dscf) conversion factor (dscf/dscm) standard temperature (°F) normal temperature (°F) °F to °R conversion constant 	= volume metered, standard (dscf)== conversion factor (dscf/dscm)== standard temperature (°F)== normal temperature (°F)== °F to °R conversion constant=	= volume metered, standard (dscf)= 38.2069= conversion factor (dscf/dscm)= 35.31= standard temperature (°F)= 68= normal temperature (°F)= 32= °F to °R conversion constant= 460

6. HF concentration corrected to x% O₂ (ppmdv example)

$$C_{sdx} = C_{sd} \left(\frac{20.9 - x}{20.9 - O_2} \right)$$

Where:

vvilere.				
C_{sd}	= HF concentration (ppmdv)	=	<0.0400	ppmdv
x	= oxygen content of corrected gas (%)	=	7.0	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	z	10.0	%
20.9	= oxygen content of ambient air (%)	=	20.9	%
Csdx	= HF concentration corrected to x %O ₂ (ppmdv)	=	<0.0512	ppmdv @ x%O ₂
- 502			10.0012	FF

7. HF concentration corrected to y% CO₂ (ppmdv example)

 $\frac{y}{CO_2}$

$$C_{sdy} = C_{sd}$$

Where:

Where:					
C_{sd}	= HF concentration (ppmdv)	=	<0.0400	ppmdv	
у	= carbon dioxide content of corrected gas (%)	=	12.0	%	
CO2	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.3	%	
C _{sdy}	= HF concentration corrected to y%CO ₂ (ppmdv)	=	<0.0517	ppmdv @ y%CO2	

USEPA Method 13B HF Sample Calculations

8. HF concentration at actual gas conditions (lb/acf example)

 $=C_{sd}\left(\frac{Q_{std}}{Q_a}\right)$

 C_a Wh

Where:				
C _{sd}	= HF concentration (lb/dscf)	=	<2.0784E-09	lb/dscf
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	101,644	dscfm
Qa	= volumetric flow rate at actual conditions (acfm)	=	190,226	acfm
Ca	= HF concentration at actual gas conditions (ib/acf)	=	<1.1105E-09	lb/acf
9. HF rate (lb/hr)				
$E_{lb/hr}$	$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right) (\mathcal{Q}_{std}) (60)$			
Where:				
mn	= total HF collected, corrected for applicable blank (mg)	=	<0.0360	mg
V _{mstd}	= volume metered, standard (dscf)	=	38.2069	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	ib/g
1000	= conversion factor (mg/g)	=	1,000	mg/g
Q _{std}	volumetric flow rate at standard conditions, dry basis (dscfm)	=	101,644	dscfm
60	≈ conversion factor (min/hr)	=	60	min/hr
E _{ib/hr}	≈ HF rate (lb/hr)	=	<0.0127	ib/hr

10. HF rate (kg/hr)

Where: m'n

60

 $E_{kg/hr}$

 $= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{(Q_{std})(60)}{10^6}\right)$

= total HF collected, corrected for applicable blank (mg) = < 0.0360 mg V_{mstd} = volume metered, standard (dscf) = 38.2069 dscf $\mathbf{Q}_{\mathsf{std}}$ = volumetric flow rate at standard conditions, dry basis (dscfm) dscfm = 101,644 = conversion factor (min/hr) min/hr 60 = 10⁶ = conversion factor (mg/kg) g/kg = 10⁶ E_{kg/hr} = HF rate (kg/hr) = <0.0057 kg/hr

 (α)

11. HF rate (Ton/yr)

$$E_{T/yr}$$

$$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right) (Q_{std}) (60) \left(\frac{Cap}{2000}\right)$$

Where:

mn	= total HF collected, corrected for applicable blank (mg)	=	<0.0360	mg
V _{mstd}	= volume metered, standard (dscf)	=	38.2069	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
1000	= conversion factor (mg/g)	=	1,000	mg/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	≒	101,644	dscfm
60	= conversion factor (min/hr)	=	60	min/hr
Cap	= capacity factor for process (hours operated/year)	=	8,760	hours/yr
2000	= conversion factor (lb/Ton)	=	2,000	ib/Ton
E _{T/yr}	= HF rate (Ton/yr)	=	<0.0555	Ton/yr

12. HF rate - F_d-based (lb/MMBtu)

$$E_{Fd} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right) \left(F_d\right) \left(\frac{20.9}{20.9 - O_2}\right)$$
Where:

$$m_n = \text{total HF collected, corrected for applicable blank (mg)} = <0.0360 \text{ mg}$$

$$V_{mstd} = \text{volume metered, standard (dscf)} = 38.2069 \text{ dscf}$$

$$2.205 \times 10^{-3} = \text{conversion factor (lb/g)} = 2.205E-03 \text{ lb/g}$$

$$1000 = \text{conversion factor (mg/g)} = 1,000 \text{ mg/g}$$

$$F_d = \text{ratio of gas volume to heat content of fuel (dscf/MMBtu)} = 9,570 \text{ dscf/MMBtu}$$

$$O_2 = \text{proportion of oxygen in the gas stream by volume (%)} = 10.0 \%$$

$$E_{Fd} = \text{HF rate (lb/MMBtu)} = 4.2000 \text{ mg/g}$$

13. HF rate - Fc-based (lb/MMBtu)

$$E_{F_c} = \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right) (F_c) \left(\frac{100}{CO_2}\right)$$

Where:

m'n = total HF collected, corrected for applicable blank (mg) = < 0.0360 mg V_{mstd} = volume metered, standard (dscf) 38.2069 dscf = 2.205 x 10⁻³ = conversion factor (lb/g) 2.205E-03 = lb/g 1000 = conversion factor (mg/g) = 1,000 mg/g Fc = ratio of gas volume to heat content of fuel (dscf/MMBtu) = 1,820 dscf/MMBtu CO₂ = proportion of oxygen in the gas stream by volume (%) = 9.3 % 100 = conversion factor Ξ 100 \mathbf{E}_{Fc} = HF rate (lb/MMBtu) = <4.0717E-05 lb/MMBtu

QA/QC Date

USEPA Method 13B HF Sample Calculations

EPA Method 1-4 Calculations

USEPA Method 23 (PCDD/F) Sampling, Velocity and Moisture Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

041310 085030

ρ

1. Volume of water collected (wscf)

$$V_{wstd} = (0.04706)(V_{k})$$

Where:

V _{ic} 0.04706	= total volume of liquid collected in impingers and silica gel (ml) □ ideal gas conversion factor (ft ³ water vapor/ml or gm)	=	836.5 0.04706	ml ft ³ /ml
V _{wstd}	= volume of water vapor collected at standard conditions (ft ³)	=	39.37	ft ³

2. Volume of gas metered, standard conditions (dscf)

$$=\frac{(17.64)(V_m)\left(P_{bar}+\frac{\Delta H}{13.6}\right)(Y_d)}{(460+T_m)}$$

W

V_{mstd}

Where:				
Pbar	= barometric pressure (in. Hg)	=	30.00	in. Hg
T _m	= average dry gas meter temperature (°F)	=	80.05	°F
V _m	 volume of gas sample through the dry gas meter at meter conditions (dcf) 	=	160.35	dcf
Yd	= gas meter correction factor (dimensionless)	=	0.9901	
ΔH	= average pressure drop across meter box orifice (in. H ₂ O)	=	1.29	in. H₂O
17.64	= standard temperature to pressure ratio (°R/in. Hg)	=	17.64	°R/in, Hg
13.6	= conversion factor (in. H_2O/in . Hg)	=	13.6	in.H ₂ O/in. Hg
460	= °F to °R conversion constant	=	460	
V _{mstd}	 volume of gas sampled through the dry gas meter at standard conditions (dscf) 	=	156.061	dscf

3. Sample gas pressure (in. Hg)

$$= P_{bar} + \left(\frac{P_g}{13.6}\right)$$

M/horo

Ρ,

Willici C.					
P _{bar}	= barometric pressure (in. Hg)	=	30.00	in. Hg	
Pg	= sample gas static pressure (in. H ₂ O)	=	-12.00	in. H ₂ O	
13.6	= conversion factor (in. $H_2O/in. Hg$)	=	13.6	in. H ₂ O/in. Hg	
Ps	= absolute sample gas pressure (in. Hg)	=	29.12	in. Hg	

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

4. Actual water vapor pressure at sample gas temperature less than 212°F (in. Hg)

 P_{v}

$$=\frac{e^{\left(18.3036-\frac{3816.44}{\frac{1}{9}(7,-32)+273.15-46.13}\right)}}{25.4}$$

Where:

where:				
Ts	= average sample gas temperature (°F)	=	300.64	°F
18.3036	= Antoine coefficient	=	18.3036	°K
3816.44	= Antoine coefficient	=	3816.44	°K
273.15	= temperature conversion factor	=	273.15	۳κ
46.13	= Antoine coefficient	=	46.13	°K
25.4	= conversion factor	=	25.4	mm Hg/in. Hg
5/9	= Fahrenheit to Celsius conversion factor	=	5/9	°C/°F
32	= temperature conversion (°F)	=	32	°F
Pv	= vapor pressure, actual (in. Hg)	=	29.12	in. Hg

5. Water vapor pressure at gas temperature greater than 212°F (in. Hg)

P_{v}	$= P_s$			
Where: P _s	= absolute sample gas pressure (in. Hg)	=	29.12	in. Hg
Pv	= water vapor pressure, actual (in. Hg)	z	29.12	in. Hg

6. Moisture measured in sample (% by volume)

$$B_{wo} = \frac{V_{wstd}}{\left(V_{mstd} + V_{wstd}\right)}$$

W

Nhere:				
V _{mstd}	 volume of gas sampled through the dry gas meter at standard conditions (dscf) 	=	156.061	dscf
V _{wstd}	= volume of water collected at standard conditions (scf)	=	39.37	scf
B _{wo}	= proportion of water measured in the gas stream by volume	=	0.2014	
		=	20.14	%

7. Saturated moisture content (% by volume)

 $B_{ws} = \frac{P_v}{P_s}$

Where:

P _s	= absolute sample gas pressure (in. Hg)	=	29.12	in. Hg	
P _v	= water vapor pressure, actual (in. Hg)	=	29.12	in. Hg	
B _{ws}	= proportion of water vapor in the gas stream by volume at saturated conditions	=	1.0000 100.00	%	

8. Actual water vapor in gas (% by volume)

$$B_{w} = MINIMUM [B_{wo}, B_{ws}]$$

Where:

B _{ws}	 proportion of water vapor in the gas stream by volume at saturated conditions 	=	1.0000	
B _{wo}	= proportion of water measured in the gas stream by volume	=	0.2014	
B _w	= actual water vapor in gas	=	0.2014	
		=	20.14	%

9. Nitrogen (plus carbon monoxide) in gas stream (% by volume, dry)

$$N_2 + CO = 100 - CO_2 - O_2$$

Where:

CO ₂ ·	 proportion of carbon dioxide in the gas stream by volume (%) proportion of oxygen in the gas stream by volume (%) conversion factor (%) 	=	9.7	%
O ₂		=	9.7	%
100		=	100	%
N ₂ +CO	= proportion of nitrogen and CO in the gas stream by volume (%)	=	80.58	%

= proportion of nitrogen and CO in the gas stream by volume (%) = N₂+CO 80.58

10. Molecular weight of dry gas stream (Ib/Ib-mole)

M_d	$= \left(M_{CO_2}\right) \frac{(CO_2)}{(100)} + \left(M_{O_2}\right) \frac{(O_2)}{(100)} + \left(M_{N_2+CO}\right) \frac{(N_2+CO)}{(100)}$			
Where:				
M _{CO2}	= molecular weight of carbon dioxide (lb/lb·mole)	=	44.00	lb/lb mole
M _{O2}	= molecular weight of oxygen (lb/lb·mole)	=	32.00	lb/łb·mole
M _{N2+CO}	= molecular weight of nitrogen and carbon monoxide (lb/lb·mole)	=	28.00	lb/lb·mole
CO2	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.7	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.7	%
N ₂ +CO	= proportion of nitrogen and CO in the gas stream by volume (%)	=	80.6	%
100	= conversion factor (%)	=	100	%
Md	= dry molecular weight of sample gas (lb/lb·mole)	=	29.95	lb/lb·mole

11. Molecular weight of sample gas (Ib/Ib·mole)

$$M_{s} = (M_{d})(1-B_{w}) + (M_{H_{2}O})(B_{w})$$

Where:

B _w M _d M _{H2O}	 proportion of water vapor in the gas stream by volume dry molecular weight of sample gas (lb/lb·mole) molecular weight of water (lb/lb·mole) 		0.2014 29.95 18.00	lb/lb∙mole lb/lb∙mole
Ms	= molecular weight of sample gas, wet basis (lb/lb·mole)	=	27.54	lb/lb·mole

EPA Method 1-4 Calculations

12. Velocity of sample gas (ft/sec)

$$V_{s} = (K_{p})(C_{p})(\sqrt{\Delta P})\left(\sqrt{\frac{(\overline{T_{s}} + 460)}{(M_{s})(P_{s})}}\right)$$

Where:

VVIICIC.				
К _р	= velocity pressure constant	=	85.49	
Cp	= pitot tube coefficient	=	0.83	
Ms	= wet molecular weight of sample gas, wet basis (lb/lb·mole)	=	27.54	lb/lb·mole
Ps	= absolute sample gas pressure (in. Hg)	=	29.12	in. Hg
Τ _s	= average sample gas temperature (°F)	=	300.64	°F
√∆P	= average square roots of velocity heads of sample gas (in. H ₂ O)	=	0.746	√in. H₂O
460	= °F to °R conversion constant	=	460	
Vs	= sample gas velocity (ft/sec)	=	51.81	ft/sec
- 5			01.01	10300

13. Volumetric flow rate of sample gas at actual gas conditions (acfm)

$$Q_a = (60)(A_s)(V_s)$$

۱

Where:				
As	= cross sectional area of sampling location (ft ²)	=	64.00	ft ²
Vs	= sample gas velocity (ft/sec)	=	51.81	ft/sec
60	conversion factor (sec/min)	=	60	sec/min
Qa	= volumetric flow rate at actual conditions (acfm)	=	198,967	acfm

14. Total flow of sample gas (scfm)

 $= (Q_a) \left(\frac{P_s}{29.92} \right) \left(\frac{68 + 460}{T_s + 460} \right)$ Q_s

Where:	
Qa	= volumetric flow rate at ac
D	≂ obsoluto somolo ass pro

Qa	= volumetric flow rate at actual conditions (acfm)	=	198,967	acfm
Ps	≈ absolute sample gas pressure (in. Hg)	=	29.12	in. Hg
29.92	= standard pressure (in. Hg)	=	29.92	in. Hg
Τs	= average sample gas temperature (°F)	=	300.6	°F
68	= standard temperature (°F)	=	68	°F
460	= °F to °R conversion constant	=	460	
Qs	= volumetric flow rate at standard conditions, wet basis (scfm)	~	134,410	scfm

15. Dry flow of sample gas (dscfm)

 $= (Q_s)(1 - B_w)$ Q std

Where:

B _w Q _s	 proportion of water vapor in the gas stream by volume volumetric flow rate at standard conditions, wet basis (scfm) 	=	0.2014 134,410	scfm
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	107,335	dscfm

16. Dry flow of sample gas corrected to 7%O₂ (dscfm)

$$Q_{std 7} = (Q_{std}) \left(\frac{20.9 - O_2}{20.9 - 7} \right)$$

Where:

Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	107,335	dscfm	
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.7	%	
20.9	= oxygen content of ambient air (%)	=	20.9	%	
7	= oxygen content of corrected gas (%)	=	7.0	%	

Q _{std7}	= volumetric flow rate at STP and 7%O ₂ , dry basis (dscfm)	=	86,640	dscfm
Std7		-	00,040	U 301

17. Hourly time basis conversion of volumetric flow rate (Q_{std} example)

$$Q_{std - hr} = (Q_{std - min})(60)$$

Where

Q _{std-min}	 volumetric flow rate, english units (ft³/min) conversion factor (min/hr) 	н	107,335	dscfm
60		П	60	min/hr
Q _{std-hr}	≍ volumetric flow rate, hourly basis (dscf/hr)	=	6,440,103	dscf/hr

18. Metric Conversion of Gas Volumes (Q_{std} example)

$$Q_{std-metric} = (Q_{std-english}) \left(\frac{60}{35.31}\right)$$

Where:

vnere:
$$Q_{std-english}$$
= volumetric flow rate, english units (ft³/min)= 107,335dscfm35.31= conversion factor (ft³/m³)= 35.31ft³/m³60= conversion factor (min/hr)= 60min/hr

$$Q_{std-metric}$$
 = 182,388 dry std m³/hr) = 182,388 dry std m³/hr

19. Standard to Normal Conversion of Gas Volumes (Q_{std} example)

$$Q_{Normal} = (Q_{std-metric}) \left(\frac{32+460}{68+460} \right)$$

Where:

Q _{Normal}	= volumetric flow rate, metric units (dry Nm ³ /hr)	=	169,952	dry Nm³/hr	
460	= standard temperature in Rankine (68°F)	=	460		
68	standard temperature (°F)	5	68	°F	
32	= normal temperature (°F)	=	32	°F	
Q _{std-metric}	= volumetric flow rate, metric units (dry std m ^o /hr)	=	182,388	dry std m³/hr	

20. Percent isokinetic (%)

I

Where:

$$=\frac{(0.09450)(\overline{T_s}+460)(V_{mstd})}{(P_s)(V_s)((\overline{D_s})^2(\pi))(\Theta)(1-B_w)}$$

D _n	= diameter of nozzle (in)	=	0.264	in.
Bw	= proportion of water vapor in the gas stream by volume	=	0.2014	
Ps	= absolute sample gas pressure (in. Hg)	=	29.12	in. Hg
Τs	= average sample gas temperature (°F)	=	300.6	°F
V _{mstd}	 volume of gas sample through the dry gas meter at standard conditions (dscf) 	=	156.061	dscf
Vs	= sample gas velocity (ft/sec)	=	51.81	ft/sec
θ	= total sampling time (min)	=	250	min
0.0945	= conversion constant	=	0.0945	
460	= °F to °R conversion constant	=	460	
I	= percent of isokinetic sampling (%)	=	97.97	%

21. Alternative Method 5 Post-Test Meter Calibration Factor

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d EPA Method 1-4 Calculations

USEPA Method 23 PCDD/PCDF Emissions Calculations

USEPA Method 23 PCDD/PCDF Emissions Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

Note: PCDD/F results may be presented in two formats - normally expected levels and the maximum possible levels. In the normal case, data classified as ND (non-detect) or EMPC (estimated maximum possible concentration) are not counted. In the maximum possible emissions case, NDs and EMPCs are fully counted.

1. TEQ concentra	ation (ng/dscm)		Normal Case (ND & EMPC = 0		Maximum Cas (ND & EMPC fully co	•
C_{sd}	$= \left(\frac{m_{n_{-}TEQ}}{V_{mstd}}\right) \times 35.31$					
Where:						
m _{n_TEQ}	= total TEQ mass for PCDDs and PCDFs (ng)	=	1.6800E-02	ng	2.1100E-02	ng
Vmstd	= volume metered, standard (dscf)	=	156.0614	dscf	156.0614	dscf
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm	35.31	dscf/dscm
C _{sd}	= PCDD/F TEQ concentration (ng/dscm)	=	3.8011E-03	ng/dscm	4.7740E-03	ng/dscm
2. TEQ concentra	tion (ng/Nm3 dry)					
C _{sd}	$= \left(\frac{m_{n_TEQ}}{V_{mstd}}\right) (35.31) \left(\frac{68+460}{32+460}\right)$					
Where:						
m _{n_TEQ}	= total TEQ mass for PCDDs and PCDFs (ng)	=	1.6800E-02	ng	2.1100E-02	ng
V _{mstd}	= volume metered, standard (dscf)	=	156.0614	dscf	156.0614	dscf
35.31	= conversion factor (dscf/dscm)	=	35.31	dscf/dscm	35.31	dscf/dscm
68 .	= standard temperature (°F)	=	68	°F	68	۴F
32	= normal temperature (°F)	=	32	°F	32	۴F
460	= °F to °R conversion constant	=	460		460	
C _{sd}	= PCDD/F TEQ concentration (ng/Nm3 dry)	=	4.0792E-03	ng/Nm ³ dry	5.1233E-03	ng/Nm ³ dry
3. TEQ concentra	tion at actual gas conditions (ng/acm example)					
C _a	$= C_{sd} \left(\frac{Q_{std}}{Q_a} \right)$					
Where:						
C _{sd}	= PCDD/F TEQ concentration (ng/dscm)	=	3.8011E-03	ng/dscm	4.7740E-03	ng/dscm
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscm/h)	=	182,388	dry std m ³ /h	r 182,388	dry std m ³ /hr

C _{sd} Q _{std} Q _a	 PCDD/F TEQ concentration (ng/oscm) volumetric flow rate at standard conditions, dry basis (dscm/h) volumetric flow rate at actual conditions (acm/h) 	-	3.8011E-03 182,388 338,092	ng/dscm dry std m ³ /hr actual m ³ /hr	4.7740E-03 182,388 338,092	ng/dscm dry std m ³ /hr actual m ³ /hr
Ca	= PCDD/F TEQ concentration at actual gas conditions (ng/acm)	=	2.0506E-03	ng/acm	2.5754E-03	ng/acm

USEPA Method 23 PCDD/PCDF Emissions Calculations

4. TEQ concentration corrected to x% O2 (ng/dscm example)

$$C_{sdx} = C_{sd} \left(\frac{20.9 - x}{20.9 - O_2} \right)$$

Wh

where.							
C _{ad}	PCDD/F TEQ concentration (ng/dscm)	=	3.8011E-03	ng/dscm	4.7740E-03	ng/dscm	
x	= oxygen content of corrected gas (%)	=	7.0	%	7.0	%	
O ₂	proportion of oxygen in the gas stream by volume (%)	=	9.7	%	9.7	%	
20.9	= oxygen content of ambient air (%)	=	20.9	%	20.9	%	
<u> </u>	- PCDD/E TEO concentration (inc/decm corrected to $v% O$)	_	4 7001E 02	naldaam @	E 0142E 02	naldeen @	

Csda DD/F TEQ concentration (ng/dscm corrected to x% O₂) 4.7091E-03 ng/dscm @ 5.9143E-03 ng/dscm @ x% O₂ x% O₂

5. TEQ concentration corrected to y% CO2 (ng/dscm example)

$$= C_{sd} \left(\frac{y}{CO_2} \right)$$

Where:

 C_{sdy}

= PCDD/F TEQ concentration (ng/dscm) 3.8011E-03 ng/dscm 4.7740E-03 C_{sd} = ng/dscm v = carbon dioxide content of corrected gas (%) = 12.0 % 12.0 % CO2 = proportion of carbon dioxide in the gas stream by volume (%) = 9.7 % % 9.7 = PCDD/F TEQ concentration (ng/dscm corrected to y% CO₂) = 4.6831E-03 5.8818E-03 ng/dscm @ Csdy ng/dscm @ y% CO₂ y% CO₂

6. TEQ Emission rate (lb/hr)

$$E_{lb/hr} = \left(\frac{m_{n_TEQ}}{V_{mstd}}\right) (2.205 \times 10^{-3}) (Q_{std}) \frac{(60)}{(10^{9})}$$

wн

۱	/vnere:						
	mn_TEQ	= total TEQ mass for PCDDs and PCDFs (ng)	=	1.6800E-02	ng	2.1100E-02	ng
	V _{mstd}	= volume metered, standard (dscf)	=	156.0614	dscf	156.0614	dscf
	2.205 x 10 ⁻³	= conversion factor (lb/g)	×	2.205E-03	lb/g	2.205E-03	lb/g
	Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	z	107,335	dscfm	107,335	dscfm
	60	= conversion factor (min/hr)	=	60	min/hr	60	min/hr
	10 ⁹	= conversion factor to convert from ng to grams	=	1.0E+09	ng/g	1.0E+09	ng/g
	Elbyhr	= PCDDF TEQ Emission rate (lb/hr)	Ξ	1.5287E-09	lb/hr	1.9199E-09	lb/hr

7. TEQ Emission rate (g/sec)

 $E_{g/sec}$

$$= \left(\frac{m_{n_{-}TEQ}}{V_{mstd}}\right) \left(\frac{Q_{std}}{60 \times 10^{9}}\right)$$

Where: = total TEQ mass for PCDDs and PCDFs (ng) = 1.6800E-02 ng 2.1100E-02 ng m_{n_TEQ} V_{msid} = volume metered, standard (dscf) 156.0614 dscf 156.0614 dscf 107,335 Q_{std} = volumetric flow rate at standard conditions, dry basis (dscfm) = dscfm 107,335 dscfm 60 = conversion factor (sec/min) 60 sec/min = 60 sec/min 10⁹ = conversion factor to convert from ng to grams = 1.0E+09 1.0E+09 ng/g ng/g E_{g/sec} = PCDDF TEQ Emission rate (g/sec) = 1.9258E-10 2.4187E-10 g/sec a/sec

.__

8. TEQ emission rate (Ton/yr)

$$E_{T/yr} = \left(\frac{m_{n_TEQ}}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^9}\right) (Q_{std}) (60) \left(\frac{Cap}{2000}\right)$$

Where:

incle.						
m _{n_TEQ}	= total TEQ mass for PCDDs and PCDFs (ng)	=	1.6800E-02	ng	2.1100E-02	ng
V _{mstd}	= volume metered, standard (dscf)	=	156.0614	dscf	156.0614	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	2.205E-03	lb/g
Q _{std}	= volumetric flow rate at standard conditions, dry basis (dscfm)	=	107,335	dscfm	107,335	dscfm
60	= conversion factor (min/hr)	=	60	min/hr	60	min/hr
Сар	= capacity factor for process (hours operated/year)	=	8,760	hours/yr	8,760	hours/yr
2000	= conversion factor (lb/Ton)	=	2,000	lb/Ton	2,000	lb/Ton
10 ⁹	= conversion factor to convert from ng to grams	=	1.0E+09	ng/g	1.0E+09	ng/g
E _{T/yr}	= PCDDF TEQ Emission rate (Ton/yr)	=	6.6956E-09	Ton/yr	8.4094E-09	Ton/yr

9. TEQ emission rate - Fd-based (lb/MMBtu)

$$E_{Fd} = \left(\frac{m_{n_{-}TEQ}}{V_{mxtd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^9}\right) \left(F_d\right) \left(\frac{20.9}{20.9 - O_2}\right)$$

Where:						
m _{n_TEQ}	= total TEQ mass for PCDDs and PCDFs (ng)	=	1.6800E-02	ng	2.1100E-02	ng
V _{mstd}	= volume metered, standard (dscf)	=	156.0614	dscf	156.0614	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	2.205E-03	lb/g
Fa	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	9,570	dscf/MMBtu	9,570	dscf/MMBtu
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.7	%	9.7	%
20.9	= oxygen content of ambient air (%)	=	20.9	%	20.9	%
10 ⁹	= conversion factor to convert from ng to grams	=	1.0E+09	ng/g	1.0E+09	ng/g
E _{Fd}	= PCDDF TEQ Emission rate (lb/MMBtu)	=	4.2314E-12	lb/MMBtu	5.3145E-12	lb/MMBtu

10. TEQ emission rate - Fc-based (lb/MMBtu)

$$E_{Fc} = \left(\frac{m_{n_TEQ}}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{10^9}\right) \left(F_c\right) \left(\frac{100}{CO_2}\right)$$

,

v

Where:						
m _{n_TEQ}	= total TEQ mass for PCDDs and PCDFs (ng)	=	1.6800E-02	ng	2.1100E-02	ng
V _{mstd}	= volume metered, standard (dscf)	=	156.0614	dscf	156.0614	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	2.205E-03	lb/g
Fe	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	1,820	dscf/MMBtu	1,820	dscf/MMBtu
CO2	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.7	%	9.7	%
100	= conversion factor	=	100		100	
10 ^e	= conversion factor to convert from ng to grams	=	1.0E+09	ng/g	1.0E+09	ng/g
EFc	= PCDDF TEQ Emission rate (lb/MMBtu)	=	4.4354E-12	lb/MMBtu	5.5707E-12	lb/MMBtu

١

EPA Method 1-4 Calculations

042210 101340 O

USEPA Method 26A (HCI) Sampling, Velocity and Moisture Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

1. Volume of water collected (wscf)

$$V_{wstd} = (0.04706)(V_{lc})$$

Where:

V _{lc}	 = total volume of liquid collected in impingers and silica gel (ml) = ideal gas conversion factor (fl³ water vapor/ml or gm) 	=	234.7	ml
0.04706		≈	0.04706	ft ³ /ml
V _{wstd}	= volume of water vapor collected at standard conditions (ft ³)	=	11.04	ft ³

2. Volume of gas metered, standard conditions (dscf)

$$=\frac{(17.64)(V_m)\left(P_{bar}+\frac{\Delta H}{13.6}\right)(Y_d)}{(460+T_m)}$$

Where:

V_{mstd}

vvnere.				
Pbar	≈ barometric pressure (in. Hg)	=	30.00	in. Hg
Tm	= average dry gas meter temperature (°F)	=	75.13	°F
Vm	 volume of gas sample through the dry gas meter at meter conditions (dcf) 	=	41.95	dcf
Yd	= gas meter correction factor (dimensionless)	=	0.9904	
ΔH	= average pressure drop across meter box orifice (in. H ₂ O)	=	1.50	in. H ₂ O
17.64	standard temperature to pressure ratio (°R/in. Hg)	=	17.64	°R/in. Hg
13.6	= conversion factor (in. H ₂ O/in. Hg)	=	13.6	in.H ₂ O/in. Hg
460	= °F to °R conversion constant	=	460	
V _{mstd}	 volume of gas sampled through the dry gas meter at standard conditions (dscf) 	=	41.238	dscf

3. Sample gas pressure (in. Hg)

$$= P_{bar} + \left(\frac{P_g}{13.6}\right)$$

Where:

 P_{s}

P _{bar}	= barometric pressure (in. Hg)	=	30.00	in. Hg
Pg	= sample gas static pressure (in. H ₂ O)	=	-12.50	in. H ₂ O
13.6	= conversion factor (in. H ₂ O/in. Hg)	=	13.6	in. H ₂ O/in. Hg
Ps	= absolute sample gas pressure (in. Hg)	=	29.08	in. Hg

=

.

4. Actual water vapor pressure at sample gas temperature less than 212°F (in. Hg)

P,

$$\frac{e^{\left(18.3036-\frac{3816.44}{\frac{4}{9}(T_{*}-32)+273.15-46.13}\right)}}{25.4}$$

Where:

= average sample gas temperature (°F)	=	309.42	°F
= Antoine coefficient	=	18.3036	°К
= Antoine coefficient	=	3816.44	۴К
= temperature conversion factor	=	273.15	°K
= Antoine coefficient	=	46.13	°K
= conversion factor	=	25.4	mm Hg/in. Hg
= Fahrenheit to Celsius conversion factor	=	5/9	°C/°F
= temperature conversion (°F)	=	32	۴F
= vapor pressure, actual (in. Hg)	=	29.08	in. Hg
	 Antoine coefficient Antoine coefficient temperature conversion factor Antoine coefficient conversion factor Fahrenheit to Celsius conversion factor temperature conversion (°F) 	 Antoine coefficient Antoine coefficient temperature conversion factor Antoine coefficient Antoine coefficient conversion factor Fahrenheit to Celsius conversion factor temperature conversion (°F) 	= Antoine coefficient=18.3036= Antoine coefficient=3816.44= temperature conversion factor=273.15= Antoine coefficient=46.13= conversion factor=25.4= Fahrenheit to Celsius conversion factor=5/9= temperature conversion (°F)=32

5. Water vapor pressure at gas temperature greater than 212°F (in. Hg)

Pv	$= P_s$			
Where: P _s	= absolute sample gas pressure (in. Hg)	=	2 9 .08	in. Hg
Pv	= water vapor pressure, actual (in. Hg)	=	29.08	in. Hg

6. Moisture measured in sample (% by volume)

$$=\frac{V_{wstd}}{\left(V_{mstd}+V_{wstd}\right)}$$

Where:

Bwo

Where:				
V _{mstd}	 volume of gas sampled through the dry gas meter at standard conditions (dscf) 	=	41.238	dscf
V _{wstd}	= volume of water collected at standard conditions (scf)	=	11.04	scf
B _{wo}	= proportion of water measured in the gas stream by volume	=	0.2113	
		=	21.13	%

7. Saturated moisture content (% by volume)

 $B_{ws} = \frac{P_v}{P_s}$

Where:					
Ps	= absolute sample gas pressure (in. Hg)	=	29.08	in. Hg	
Pv	= water vapor pressure, actual (in. Hg)	=	29.08	in. Hg	
B _{ws}	= proportion of water vapor in the gas stream by volume at		1.0000		
	saturated conditions	=	100.00	%	

,

8. Actual water vapor in gas (% by volume)

$$B_{w} = MINIMUM \left[B_{wo}, B_{ws}\right]$$

Where:

B _{ws}	= proportion of water vapor in the gas stream by volume at saturated conditions	=	1.0000	
B _{wo}	= proportion of water measured in the gas stream by volume	=	0.2113	
B _w	= actual water vapor in gas	=	0.2113	
		=	21.13	%

9. Nitrogen (plus carbon monoxide) in gas stream (% by volume, dry)

. .

$$N_2 + CO = 100 - CO_2 - O_2$$

Where:

CO ₂	 = proportion of carbon dioxide in the gas stream by volume (%) = proportion of oxygen in the gas stream by volume (%) = conversion factor (%) 	=	9.7	%
O ₂		=	9.7	%
100		=	100	%
N ₂ +CO	= proportion of nitrogen and CO in the gas stream by volume (%)	=	80.70	%

10. Molecular weight of dry gas stream (lb/lb mole)

M_{d}	$= \left(M_{CO_2}\right) \frac{(CO_2)}{(100)} + \left(M_{O_2}\right) \frac{(O_2)}{(100)} + \left(M_{N_2+CO}\right) \frac{(N_2+CO)}{(100)}$			
Where:				
M _{CO2}	= molecular weight of carbon dioxide (lb/lb·mole)	=	44.00	lb/lb·mole
M _{O2}	= molecular weight of oxygen (lb/lb·mole)	=	32.00	lb/lb·mole
M _{N2+CO}	= molecular weight of nitrogen and carbon monoxide (lb/lb·mole)	=	28.00	lb/lb-mole
CO2	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.7	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.7	%
N ₂ +CO	= proportion of nitrogen and CO in the gas stream by volume (%)	=	80.7	%
100	= conversion factor (%)	=	100	%
Md	= dry molecular weight of sample gas (Ib/Ib·mole)	=	29.93	ib/lb·mole

11. Molecular weight of sample gas (lb/lb·mole)

$$M_{s} = (M_{d})(1-B_{w}) + (M_{H_{2}O})(B_{w})$$

Where:

B _w M _d M _{H2O}	 proportion of water vapor in the gas stream by volume dry molecular weight of sample gas (lb/lb·mole) molecular weight of water (lb/lb·mole) 	= = =	0.2113 29.93 18.00	lb/ib∙mole lb/ib∙mole
Ms	= molecular weight of sample gas, wet basis (lb/lb·mole)	=	27.41	lb/lb·mole

EPA Method 1-4 Calculations

1. Chloride to HCl conversion factor

USEPA Method 26A HCI Analyte Calculations

USEPA Method 26A HCI Analyte Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

042210 101340

@

 $= \frac{MW_{IICI}}{n \times MW_{CI}}$ K HCI Where: MWHCI = molecular weight of HCI (mg/mg-mole) 36.461 mg/mg-mole = MW_{CF} = molecular weight of chloride ion (mg/mg-mole) = 35.453 mg/mg-mole = molar ratio of chloride to HCI mole Cl/mole HCI n = 1.0 **K_{HCI}** = conversion factor to convert mass CI to mass HCI = 1.028 2. Total HCl collected (mg) $=K_{HCl} \times \frac{(S_{CL1}v_1 + S_{CL2}v_2)}{1000}$ m_{HCI} Where: K_{HCI} = conversion factor to convert mass CI to mass HCI = 1.028 = chloride concentration of sample fraction 1 (mg/liter) 32.2600 S_{CI-1} ma/liter = liquid volume of sample fraction 1 (ml) 897.0 ml \mathbf{v}_1 = S_{CI-2} = chloride concentration of sample fraction 2 (mg/liter) 0.0000 mg/liter = = liquid volume of sample fraction 2 (ml) = 0.0 V₂ ml 1000 = conversion factor (ml/liter) 1000 ml/liter = m_{HCI} = total HCl collected in sample (mg) 29.7475 mg Note: Non-detects are treated as zero in summations. DEFINITION

Fraction 1 = entire sample except last impinger containing applicable absorbing reagent.

Fraction 2 = last impinger containing applicable absorbing reagent, analyzed separately to evaluate collection efficiency. If entire sample is analyzed as a single fraction, then data is included as Fraction 1 (Fraction 2 = 0).

3. Allowable blank subtraction (mg)

$$m_b = K_{HCl} \times B_{Cl} \times \frac{(v_1 + v_2)}{1000}$$
$$m_b = 0 \quad \text{if } B_{Cl} < MDL$$

Where:

K _{HCI}	= conversion factor to convert mass CF to mass HCI	=	1.0280	
B _{CI}	= chloride concentration of blank (mg/liter)	=	<0.1	mg/liter
v ₁	= liquid volume of sample fraction 1 (ml)	=	897.0	ml
V ₂	= liquid volume of sample fraction 2 (ml)	=	0	ml
1000	= conversion factor (ml/liter)	=	1000.0000	ml/liter
m _b	= allowable blank subtraction (mg)	=	0.0000	mg

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2006-10a (CI)

Copyright © 2006 Clean Air Engineering Inc.

4. Total HCl collected, corrected for blank (mg)

$$m_{nb} = m_{HCl} - m_b$$

Where:

m _{∺Ci} m _b	 total HCl collected in sample (mg) allowable blank subtraction (mg) 	=	29.7475 0.0000	mg mg
m _{nb}	= total HCl collected, corrected for blank (mg)	=	29.74746216	3 mg

5. Minimum detectable HCI (mg)

$$\begin{split} m_{MDL} &= K_{HCl} \times MDL \times \frac{(v_1 + v_2)}{1000} \\ \text{Where:} \\ K_{HCl} &= \text{conversion factor to convert mass Cl' to mass HCl} &= 1.028 \\ \text{MDL} &= \text{minimum detectable chloride concentration} &= 0.0 mg/liter \\ v_1 &= \text{liquid volume of sample fraction 1 (ml)} &= 897.0 ml \\ v_2 &= \text{liquid volume of sample fraction 2 (ml)} &= 0 ml \\ 1000 &= \text{conversion factor (ml/liter)} &= 1000 ml/liter \\ m_{MDL} &= \text{minimum detectable HCl (mg)} &= 0.01383174 mg \end{split}$$

6. Total HCl value used in emission calculations (mg)

 $(v_1 + v_2)$

-

m_n	$= MAXIMUM \left[m_{nb} or < m_{MDL} \right]$			
Where:				
m _{nb}	= total HCl collected, corrected for blank (mg)	=	29.7475	mg
m _{MDL}	= minimum detectable HCI (mg)	=	0.01383174	mg
m	= total HCI value used in emission calculations (mg)	=	29.74746216	ma

Copyright @ 2006 Clean Air Engineering Inc.

QA/QC Date

USEPA Method 26A HCI Analyte Calculations

USEPA Method 26A HCI Sample Calculations

USEPA Method 26A HCI Sample Calculations

Sample data taken from Run 1

Note: The tables presenting the results are generated electronically from raw data. It may not be possible to exactly duplicate these results using a calculator. The reference method data, results, and all calculations are carried to sixteen decimal places throughout. The final table is formatted to an appropriate number of significant figures.

				042210 101340	
1. HCI concentration	(lb/dscf)			0_@	
C_{sd}	$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right)$				
Where:					
m _n	= total HCl collected, corrected for applicable blank (mg)	=	29.7475	mg	
V _{mstd}	= volume metered, standard (dscf)	=	41.2383	dscf	
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g	
1000	= conversion factor (mg/g)	=	1,000	mg/g	
C _{sd}	= HCl concentration (lb/dscf)	=	1.5906E-06	lb/dscf	
2. HCl concentration	(ppmdv)				
C_{sd}	$= \left(\frac{m_n}{V_{mstd}}\right) \left(\frac{0.850}{1000}\right) \left(\frac{10^6}{MW}\right)$				
Where:					
m _n	total HCl collected, corrected for applicable blank (mg)	=	29.7475	mg	
V _{mstd}	= volume metered, standard (dscf)	=	41.2383	dscf	
MW	= molecular weight of HCI (g/g-mole)	=	36.461	g/g-mole	
0.850	= conversion factor (dscf/g-mole)	=	0.850	dscf/g-mole	
1000	= conversion factor (mg/g)	=	1,000	mg/g	
10 ⁶	= conversion factor (ppm)	=	10 ⁶	ppm	
C _{sd}	= HCl concentration (ppmdv)	=	16.8166	ppmdv	
3. HCI concentration	(ppmwv)				
C,	$= C_{sd} \left(1 - \frac{B_w}{100} \right)$				
Where:					
C _{sd}	= HCI concentration (ppmdv)	=	16.8166	ppmdv	
Bw	= actual water vapor in gas (% v/v)	=	21.1253	% v/v	
100	= conversion factor (%)	=	100	%	
C _w	= HCl concentration (ppmwv)	=	13.2641	ppmwv	

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2006-10a (Cl)

Copyright © 2006 Clean Air Engineering Inc.

4. HCI concentration (mg/dscm)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) (35.31)$$

Where:

m _n V _{mstd} 35.31	 = total HCl collected, corrected for applicable blank (mg) = volume metered, standard (dscf) = conversion factor (dscf/dscm) 	= a =	29.7475 41.2383 35.31	mg dscf dscf/dscm	
C _{sd}	= HCl concentration (mg/dscm)	z	25.4710	mg/dscm	

5. HCl concentration (mg/Nm³ dry)

$$C_{sd} = \left(\frac{m_n}{V_{mstd}}\right) (35.31) \left(\frac{68+460}{32+460}\right)$$

Where:

		~~	
= total HCI collected, corrected for applicable blank (mg)	3	29.7475	mg
= volume metered, standard (dscf)	=	41.2383	dscf
= conversion factor (dscf/dscm)	=	35.31	dscf/dscm
= standard temperature (°F)	=	68	°F
= normal temperature (°F)	=	32	°F
= °F to °R conversion constant	=	460	
= HCl concentration (mg/Nm ³ dry)	=	27.3348	mg/Nm ³ dry
	= conversion factor (dscf/dscm) = standard temperature (°F) = normal temperature (°F) = °F to °R conversion constant	= volume metered, standard (dscf)== conversion factor (dscf/dscm)== standard temperature (°F)== normal temperature (°F)== °F to °R conversion constant=	= volume metered, standard (dscf)=41.2383= conversion factor (dscf/dscm)=35.31= standard temperature (°F)=68= normal temperature (°F)=32= °F to °R conversion constant=460

6. HCl concentration corrected to x% O2 (ppmdv example)

$$= C_{sd} \left(\frac{20.9 - x}{20.9 - O_2} \right) \quad .$$

Where:

 C_{sdx}

TTTCIC.				
C _{sd}	= HCI concentration (ppmdv)	=	16.8166	ppmdv
x	= oxygen content of corrected gas (%)	=	7.0	%
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.7	%
20.9	= oxygen content of ambient air (%)	=	20.9	%
C _{sdx}	= HCl concentration corrected to x%O ₂ (ppmdv)	=	20.7779	ppmdv @ x%O ₂

7. HCl concentration corrected to y% CO2 (ppmdv example)

$$=C_{sd}\left(\frac{y}{CO_2}\right)$$

Wł

 C_{sdy}

where:					
C _{sd}	= HCI concentration (ppmdv)	=	16.8166	ppmdv	
у	= carbon dioxide content of corrected gas (%)	=	12.0	%	
CO ₂	= proportion of carbon dioxide in the gas stream by volume (%)	=	9.7	%	
C _{sdy}	= HCl concentration corrected to y%CO2 (ppmdv)	=	20.9119	ppmdv @ y%CO₂	

= 2.8279E-02 lb/MMBtu

8. HCl rate - Fd-based (lb/MMBtu)

$$E_{Fd} = \left(\frac{m_n}{V_{msid}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right) \left(F_d\right) \left(\frac{20.9}{20.9 - O_2}\right)$$

Where:

mn	= total HCl collected, corrected for applicable blank (mg)	=	29.7475	mg
V _{mstd}	= volume metered, standard (dscf)	=	41.2383	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
1000	= conversion factor (mg/g)	=	1,000	mg/g
Fa	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	9,570	dscf/MMBtu
O ₂	= proportion of oxygen in the gas stream by volume (%)	=	9.7	%
20.9	= oxygen content of ambient air (%)	=	20.9	%

E_{Fd} = HCl rate (lb/MMBtu)

9. HCI rate - Fc-based (Ib/MMBtu)

$$E_{F_{c}} = \left(\frac{m_{n}}{V_{mstd}}\right) \left(\frac{2.205 \times 10^{-3}}{1000}\right) (F_{c}) \left(\frac{100}{CO_{2}}\right)$$

· Where:

mn	= total HCI collected, corrected for applicable blank (mg)	=	29.7475	mg
Vmstd	= volume metered, standard (dscf)	=	41.2383	dscf
2.205 x 10 ⁻³	= conversion factor (lb/g)	=	2.205E-03	lb/g
1000	= conversion factor (mg/g)	=	1,000	mg/g
Fc	= ratio of gas volume to heat content of fuel (dscf/MMBtu)	=	1,820	dscf/MMBtu
CO2	= proportion of oxygen in the gas stream by volume (%)	=	9.7	%
100	= conversion factor	=	100	
E _{Fc}	= HCl rate (lb/MMBtu)	=	2.9999E-02	lb/MMBtu

Prepared by Clean Air Engineering Proprietary Software SS EPA28-1 Version 2006-10a (CI)

Copyright © 2006 Clean Air Engineering Inc.

QA/QC _____ Date _____

This Page Intentionally Left Blank

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-2

PLANT DATA		No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	С

This Page Intentionally Left Blank

WHEELABRATOR NORTH BROWARD TONS OF REFUSE PROCESSED PER STACK TEST RUN LOG (2010)

UNIT #1						
Date	The second second	Weltine #	8. Nor (* 18	Steering (15, 10)	Rectaur congristr (http://di	a finerandPrenegation ((Ciris))
3/18/2010	HCI	26A	1	183.5	1.00	34.0
3/18/2010	HCI	26A	2	184.1	1.02	34.8
3/18/2010	HCI	26A	3	182.8	1.00	33.9
3/16/2010	Particulate/Metals	5/29	1	183.9	2.18	74.2
3/16/2010	Particulate/Metals	5/29	2	184.4	2.18	74.4
3/16/2010	Particulate/Metals	5/29	3	183.4	2.18	74.0
3/17/2010	Fluorides	13B	1	184.0	1.17	39.9
3/17/2010	Fluorides	13B	2	184.0	1.20	40.9
3/17/2010	Fluorides	13B	3	184.1	1.13	38.5
n/a	Dioxins/Furans	23	1	n/a	n/a	n/a
n/a	Dioxins/Furans	23	2	n/a	n/a	n/a
n/a	Dioxins/Furans	23	3	n/a	n/a	n/a
UNIT #2						
					Sentar Programa	Diefs Promessing Altonia
3/17/2010	HCI	26A	1	184.7	1.00	34.2
3/17/2010	HCI	26A	2	184.2	1.00	34.1
3/17/2010	HCI	26A	3	184.9	1.00	34.2
3/18/2010	Particulate/Metals	5/29	1	183.9	2.22	75.6
3/18/2010	Particulate/Metals	5/29	2	182.9	2.22	75.2
3/18/2010	Particulate/Metals	5/29	3	183.9	2.20	74.9
		13B				and the second sec
3/18/2010	Fluorides Fluorides	13B	1	<u>183.9</u> 184.2	1.25	42.6
3/18/2010 3/18/2010	Fluorides	13B	3	183.0	1.23	42.0
λ						All and the second second second second second second second second second second second second second second s
3/16/2010	Dioxins/Furans	23	1	184.1	4.87	166.0
3/17/2010	Dioxins/Furans	23 23	2	184.3	5.42	184.9
3/17/2010	Dioxins/Furans	23	3	183.9	4.55	154.9
UNIT #3						
		Mistisler 4	S CIAN	SGERIE MAN	BOIL SHOOL TO AND	ELEMPROPHOLOGIA
3/16/2010	HCI	26A	1	184.6	1.00	34.2
3/16/2010	HCI	26A	2	184.1	1.00	34.1
3/16/2010	HCI	26A	3	184.2	1.00	34.1
3/17/2010	Particulate/Metals	5/29	1	184.2	2.22	75.7
3/17/2010	Particulate/Metals	5/29	2	184.2	2.20	75.1
3/17/2010	Particulate/Metals	5/29	3	183.5	2.20	74.8
3/16/2010	Fluorides	13B	1	183.7	1.30	44.2
3/16/2010	Fluorides	13B	2	183.9	1.18	40.2
3/16/2010	Fluorides	13B	3	184.2	1.15	39.2
n/a	Dioxins/Furans	23	1	n/a	n/a	n/a
n/a n/a	Dioxins/Furans	23	2	n/a	n/a	n/a
n/a	Dioxins/Furans	23	3	n/a	n/a	
1.74	Dioxino/Futurio		·	1.0	104	

Metals: Cd (cadmium) Hg (mercury) Be (beryllium) Pb (lead)

Stack Test Process Data

PLANT NA	ME: NO	RTH BI	ROWARD				Dat	ta from DC	S Printou	ts		Calcu	ulated	Lit	me Feed R	ate	
2010								Fabric	SDA	Total	Diluton				Slurry		
						Steam	FF inlet	Filter	Inlet	SDA	H2O	Slurry	Slurry	Slurry	CaO	CaO	
	Unit	Run		Ti	me	Flow	Temp	Deita	Temp	Flow	flow	Flow	Conc.	Specific	Density	Flow	
Test	No.	No.	Date	Start	Stop	klbs/hr	deg F	In. H2O	deg F	gpm	gpm	gpm	%	Gravity	lb/gal	lbs/hr	Test Run Comments
M-26A	1	1	3/18/2010	07:02	08:02	183.5	320.2	6.6	510.8	38.0	30.1	7.9	13.5	1.129	1.357	641.6	
нсі		2	3/18/2010	09:26	10:37	184.1	320.4	5.3	510.8	37.8	28.5	9.4	15.2	1.129	1.363	765.5	All times based on
		3	3/18/2010	11:49	12:49	182.8	320.1	6.4	520.1	40.7	29.9	10.8	14.2	1.129	1.357	880.2	CEMS time
					Avg	183.4	320.2	6.1	513.9	38.8	29.5	9.4	14.3	1.129	1.359	762.4	
M-29/5	1	1	3/16/2010	07:21	09:32	183.9	310.4	6.3	521.3	39.2	29.5	9.8	14.9	1.104	1.095	640.6	
Metals		2	3/16/2010	10:00	12:11	184.4	312.5	6.1	524.0	39.3	28.8	10.5	15.1	1.101	1.061	671.0	All times based on
PM		3	3/16/2010	12:36	14:47	183.4	320.2	6.3	529.0	40.0	32.9	7.2	14.5	1.104	1.091	468.0	CEMS time
					Avg	183.9	314.4	6.2	524.8	39.5	30.4	9.1	14.8	1.103	1.082	593.2	
M-13B	1	1	3/17/2010	11:46	12:56	184.0	320.1	6.4	543.7	47.4	42.5	4.9	11.2	1.117	1.232	362.2	
HF		2	3/17/2010	13:15	14:27	184.0	319.9	6.4	541.6	46.7	41.0	5.7	11.3	1.116	1.228	416.3	All times based on
		3	3/17/2010	14:45	15:53	184.1	319.8	6.3	539.4	45.2	39.4	5.8	11.7	1.117	1.230	425.1	CEMS time
					Avg	184.0	319.9	6.4	541.6	46.4	41.0	5.4	11.4	1.117	1.230	401.2	

C - 4

Stack Test Data Sheet Mar 10

.

Stack Test Process Data

PLANT NA	ME: NO	RTH BI	ROWARD				Da	ta From D	CS Printo	uts		Calcu	lated	Lir	ne Feed Ra	ate	
2010								Fabric	SDA	Total	Diluton				Siurry		1
		-				Steam	FF Inlet	Filter	Inlet	SDA	H2O	Slurry	Slurry	Slurry	CaO	CaO	
	Unit	Run		Tir	me	Flow	Temp	Delta	Temp	Flow	flow	Flow	Conc.	Specific	Density	Flow	
Test	No.	No.	Date	Start	Stop	kibs/hr	deg F	In. H2O	deg F	gpm	gpm	gpm	%	Gravity	ib/gal	lbs/hr	Test Run Comments
M-26A	2	1	3/17/2010	06:54	07:54	184.7	323.0	6.1	518.1	38.0	31.0	7.0	14.9	1.109	1.136	474.4	
нсі		2	3/17/2010	09:02	10:02	184.2	319.5	6.2	512.2	41.2	35.7	5.5	13.6	1.113	1.184	388.6	All times based on
		3	3/17/2010	10:25	11:25	184.9	319.4	6.1	509.6	38.2	34.8	3.4	14.1	1.117	1.229	249.2	CEMS time
					Avg	184.6	320.6	6.1	513.3	39.1	33.9	5.3	14.2	1.113	1.183	370.7	
			-	-	_												
M-29/5	2	1	3/18/2010	07:09	09:22	183.9	320.0	5.2	515.0	39.3	33.2	6.1	12.3	1.128	1.354	493.1	
Metals		2	3/18/2010	09:49	12:02	182.9	320.2	5.4	515.2	38.6	32.8	5.9	12.4	1.129	1.361	481.0	All times based on
PM		3	3/18/2010	12:27	14:39	183.9	320.6	6.3	520.2	41.4	34.3	7.1	11.7	1.128	1.354	579.2	CEMS time
					Avg	183.6	320.3	5.6	516.8	39.8	33.4	6.4	12.1	1.128	1.356	517.8	
					_		_										
M-23	2	1	3/16/2010	08:44	13:36	184.1	314.2	6.1	505.6	37.6	30.0	7.6	15.8	1.101	1.063	487.3	
dioxins		2	3/17/2010	06:54	12:19	184.3	321.2	6.1	513.8	39.3	34.0	5.4	14.3	1.113	1.184	380.1	All times based on
		3	3/17/2010	12:53	17:26	183.9	320.3	6.1	523.4	_ 43.1	39.3	3.9	12.3	1.117	1.231	285.1	CEMS time
				-	Avg	184.1	318.6	. 6.1	514.2	40.0	34.4	5.6	14.2	1.110	1.159	384.1	
M-13B	2	1	3/18/2010	07:09	08:24	183.9	320.6	5.9	514.0	39.3	32.8	6.5	12.3	1.129	1.357	530.0	
HF		2	3/18/2010	08:56	10:10	184.2	319.6	3.4	512.5	37.4	31.9	5.5	12.8	1.129	1.359	448.5	All times based on
		3	3/18/2010	10:45	12:05	183.0	319.9	6.0	514.7	38.4	32.1	6.3	12.5	1.129	1.360	512.4	CEMS time
					Avg	183.7	320.0	5.1	513.8	38.3	32.2	6.1	12.5	1.129	1.359	497.0	1

Stack Test Data Sheet Mar 10

Stack Test Process Data

PLANT NA	ME: NO	RTH BF	ROWARD				Dat	a From DC	S Printou	ts		Calcu	lated	Lir	ne Feed Ra	ate	
2010	<u> </u>	_				Steam	FF inlet	Fabric Filter	SDA Inlet	Total SDA	Diluton H2O	Shumer	Slurry	Slurry	Slurry CaO	CaO	
	Unit	Run		Tiı	me	Flow	Temp	Delta	Temp	Flow	flow	Slurry Flow	Conc.	Specific	Density	Flow	
Test	No.	No.	Date	Start	Stop	klbs/hr	deg F	In. H2O	deg F	gpm	gpm	gpm	%	Gravity	ib/gal	lbs/hr	Test Run Comments
M-26A	3	1	3/16/2010	07:17	08:17	184.6	309.9	6.3	507.3	35.8	26.2	9.7	16.1	1.113	1.183	685.0	
HCI		2	3/16/2010	09:04	10:04	184.1	310.1	6.3	514.4	37.4	24.2	13.3	19.1	1.100	1.051	837.4	All times based on
		3	3/16/2010	10:32	11:32	184.3	309.9	6.4	513.4	37.5	27.0	10.5	18.6	1.101	1.059	667.2	CEMS time
					Avg	184.3	310.0	6.3	<u>511.7</u>	36.9	25.8	11.1	17.9	1.105	1.098	729.9	
M-29/5	3	1	3/17/2010	06:50	09:03	184.2	315.0	6.4	518.9	37.8	33.4	4.5	14.8	1.109	1.142	304.9	
Metals		2	3/17/2010	09:26	11:38	184.2	314.9	6.4	518.1	37.8	33.6	4.2	14.4	1.115	1.214	303.7	All times based on
PM		3	3/17/2010	11:59	14:11	183.5	315.2	6.4	521.6	38.7	34.7	4.0	13.7	1.117	1.230	295.2	CEMS time
					Avg	184.0	315.0	6.4	519.5	38.1	33.9	4.2	14.3	1.114	1.195	301.3	
M-13B	3	1	3/16/2010	11:49	13:07	183.7	310.2	6.5	517.3	38.8	28.2	10.6	15.1	1.102	1.074	684.4	
HF		2	3/16/2010	13:33	14:44	183.9	309.6	6.4	523.8	41.3	36.1	5.2	14.0	1.105	1.098	339.3	All times based on
		3	3/16/2010	15:07	16:16	184.2	309.8	6.3	518.2	38.9	34.5	4.4	14.7	1.106	1.113	293.8	CEMS time
					Avg	184.0	309.9	6.4	519.7	39.7	32.9	6.7	14.6	1.104	1.095	439.2	

Pompano	48th Street Seach, FL 33073 971-8701 Fax: (954) 971-8703		In	17/2010 10:55: 11 12:47:	55AM 52PM
Account	623030	Price/1	on	0.00	
Customer	Chemical Lime	Fees		0.00	
	Chemical Lime	Other		0.00	
1	PO Box 7247-8945 Philadelphia. PA	Total		0.00	
Decal #	LIME1		Pounds	Tons	
Vehicle #	LIME1	Gross	78220	39.11	
Auto ID	0	Tare		13.75	
Other		Net	50720	25.36	
Product	9020 Lime				
Qty	25.36 Ton				
Origin	Wheelabrator No				
Operator	Luisa Paredes				

2600 N. Pompar	Habrator - N. Broward W. 48th Street no Beach, FL 33073 4) 971-8701 Fax: (954) 971-8703				362462 :55AM :52PM
Account	623030	Price	Ton	0.00	
Customer	Chemical Lime Chemical Lime PO Box 7247-8945 Philadelphia. PA	Fees Other Total		0.00 0.00 0.00	
Decal #	LIME1		Pounds	Tons	
Vehicle #	LIME1	Gross	78220	39.11	
Auto ID	0	Tare	27500	13.75	
Other Product	105949666 9020 25.36 Ton	Net	50720	25.36	
Qty Origin	Wheelabrator No				
Operator	Luisa Paredes				

Date: Start Time: End Time:	03/18/10 7:02:00 8:02:00		SDAVOUNLENT TEMP	SEURRY/FIL	DIEWATER	TOTAL	LIME	TEMP	DP	IDINLET PRESS	SPECIFIC 22: GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	26A run 1	510.76	320.18	37.95	30.07	7.88	13.47	302.94	6.61	-10.39	1.129
Unit 2		512.00	320.64	38.53	31.76	6.76	12.48	296.62	5.99	-10.30	1.129
Unit 3		507.30	314.96	34.59	30.80	3.79	13.84	302,13	6.31	-8.02	1.129
C - 8		ELOW	SHOUT	FINALISTME	IOTAIR FLOW	EURNACE DRAFT	ECONO OUT-TEMP	SH ROLLS	SNCR CHEM FLOW	STEAM	
Unit 1		KLBs/hr 191.84	DEG F 885.94	DEG F 831.12	KSCFM 82.00	<u>" H2O</u> -0.10	DEG F 274.45	DEG F 1112.44	GPH 4.79	KLBs/hr 183.45	1.357
Unit 2		186.41	900.62	830.71	80.27	-0.05	271.41	1209.02	3.58	184.03	1.357
Unit 3		189.87	903.30	823.06	79.10	-0.16	280.70	1163.22	4.78	184.47	1.357

Page

End Time: 10	-										
	_	DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
	A run 2	510.81	320.37	37.84	28.48	9.36	15.24	304.06	5.33	-8.96	1.1
in the second second second second second second second second second second second second second second second	· · · · · · · · · · · · · · · · · · ·					Aller herging management & aller					
Jnit 2		513.74	320.26	38.04	32.58	5.46	12.59	296.16	4.11	-8.28	1.1
الله المركزية المركزية المركزية المركزية المركزية المركزية المركزية المركزية المركزية المركزية المركزية المركز مركزة المركزية المركز	the state and	en manage					مربعة بين المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المر مستحكمتهم المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربع			مسیومی او او مرتب از این از این از این از این از این از این از این از این از این از این از این از این از این ا این این این این این این این این این این	
			245 201	26 1 5 1	21 791	4.37	13.20	302.72	6.43	-8,19	1.1
Jnit 3	l	510.56	315.30	36.15	31.78						
Jnit 3		FEED H20		FINAL STM		EURNACE	ECONO	SHROLL	SNCR		
Jnit 3		FEED H20	SH OUT	FINAL STM	TOT AIR	-EURNACE	ECONO OUT TEMP	SH-ROLL	SNCR HEM ÉLOW	STEAM	
	[FEED H2O FLOW	SHOUT STM PRESS	FINAL STM	FLOW KSCFM	EURNACE	DEG F	SH ROLL	SNCR HEM ÊLOW GPH	STEAM ELOW KLBs/hr	AVAILABI
Jnit 1		FEED H2O FLOW	SH OUT	FINAL STM	FOT AIR FLOW KSCFM 81.31	-EURNACE	DEG F 274.60	SH-ROLL	SNCR HEM ÊLOW GPH 7.36	STEAM	AVAILAB

Page 1

.

Date: Start Time		SDA INLET TEMP	SDA OUTLET TEMP	TOTAL SLURRY FL	DIL WATER FLOW	TOTAL LIME	LIME	FF OUT	FF DP	ID INLET PRESS	SPECIFIC GRAVITY
End Time:	12:49:00										
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	26A run 3	520.05	320.07	40.70	29.89	10.81	14.19	304.70	6.42	-10.26	1.129
									· · · · ·		
Unit 2		514.98	320.02	38.86	30.53	8.33	12.32	295.38	6.22	-10.35	1.129
								· • •			
Unit 3		514.47	314.97	37.48	31.17	6.30	12.85	302.37	6.39	-8.11	<u>1.</u> 129
C - 10		FEED H20	SH OUT STM PRESS	FINAL STM			ECONO OUT TEMP	SH ROLL	SNCR CHEM FLOW	STEAM	
1			SH OUT STM PRESS DEG F	FINAL STM TEMP DEG F		FURNAGE DRAFT	ECONO OUT TEMP DEG F			STEAM	
1		FLOW	STM PRESS	TEMP	FLOW	DRAFT	OUT TEMP	Âvg	CHEM FLOW	FLOW	
- 10		FLOW KLBs/hr 190.84	STM PRESS	DEG F	FLOW	" H2O -0.09	DEG F	DEG F	CHEM FLOW	KLBs/hr 182.82	CaO
Unit 1 Unit 2		FLOW KLBs/hr 190.84	STM PRESS DEG F 883.32 899.91	DEG F 824.80	KSCFM 85.05	" H2O -0.09	DEG F 274.03		<u>CHEM FLOW</u> GPH 4.01	KLBs/hr 182.82	CaO
Unit 1		FLOW KLBs/hr 190.84	DEG F 883.32 899.91	DEG F 824.80	FLOW KSCFM 85.05	" H2O -0.09	DEG F 274.03	DEG F 1116.84	GPH 4.01	KLBs/hr 182.82	∴CaO 1.357

Date: Start Time: End Time:	03/16/10 7:21:00 9:32:00	SDAINUET S TEMP		LOTAL	DILWATER HELOW			HEFOULD IN DEMIP	DP.	IDINGET	SPECIFIC GRAVIN
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	5/29 run 1	521.31	310.41	39.22	29.47	9.75	14.89	293.56	6.29	-9.58	1.104
Unit 2		503.87	309.92	39.36	25.13	14.23	15.18	287.89	6.17	0.00	1.104
Unit 3		509.95	310.16	36.61	25.48	11.13	17.69	297.89	6.37	-8.36	1.104
C - 11		FEED H20	SHOUT A	FINAL STM	TOLAIR FLOW	FURNACE DRAFT		SHIROLL		STEAM S	AVAILABILE: CaO
Unit 1		KLBs/hr 192.49	DEG F 885.25	DEG F 828.88	KSCFM 80.00	" H2O -0.10	DEG F 274.46	DEG F 1164.32	GPH 8.17	KLBs/hr 183.87	1.095
Unit 2		187.42	901.26	834.65	80.36	-0.10	271.35	1124.31	6.52	184.65	1.095
Unit 3		191.24	903.31	835.06	80.89	-0.25	280.72	1146.30	6.40	184.32	1.095

-

Date: Start Time: End Time:	03/16/10 10:00:00 12:11:00	SDAVINLET S	SDA OUTLEIT	TOTAL	DIEWATER FLOW	LIME	LIME		F F DP	ID INLET	SPECIFIC
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	5/29 run 2	524.01	312.53	39.30	28.76	10.54	15.09	294.96	6.24	-9.55	1.101
Unit 2		504.44	313.21	37.48	27.01	10.47	15.75	289.83	6.09	-0.35	1.101
Unit 3	and All and All and All and All and All and All and All and All and All and All and All and All and All and Al All and All and All and All and All and All and	514.03	309.93	37.81	27.42	10.39	17.56	298.21	6.40	-8.34	1.101
:- 12		FEED H201	SH'OUT	FINALISTME TEMP	FLOW	DRAFT		SH ROLL	SNCR CHEMIFLOW	ELOW	AVAILABLE Cao
					_						
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	-
Unit 1		193.41	885.00	832.09	79.86	-0.10	274.60	1158.93	10.33	184.37	1.061
Unit 2		186.98	900.95	834.63	80.57	-0.10	271.51	1129.20	8.65	183.97	1.061
Unit 3		191.07	902.88	833.00	81.15	-0.25	280.85	1159.86	6.39	184.17	1.061

Date: Start Time:	03/16/10 12:36:00	SDAINEET IS	SDAVOUITEEL -TIEMP	IOIAL SLURRY EL	DIE WATER ELOW					EIDINIET. PRESS	SPECIFIC CRAVIII
End Time:	14:47:00	DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	5/29 run 3	528.96	320.15	40.01	32.86	7.15	14.47	299.89	6.30	-9.68	1.104
Unit 2		510.02	319.33	37.13	32.36	4.77	15.60	295.73	6.02	-6.02	1.104
Unit 3		522.97	310.00	40.90	34.57	6.32	14.17	298.77	6.45	-8.59	1.104
0											
- 13		FEEDH20	SHOUT		TOT AIR FLOW	FURNACE DRAFT	ECONO OUT-TEMP	AVG	SNCR SHEMIELOW	FLOW	AVAILABLE <u>Ca</u> O
1 100 16 1		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	1 001
Unit 1		192.65	883.77	830.04	82.02	-0.10	274.21	1158.27	4.40	183.37	1.091
Unit 2		186.25	899.37	827.33	82.06	-0.09	271,12	1137.52	5.47	183.77	1.091
Unit 3		189.65	901.33	826.98	86.21	-0.25	280.52	1157.95	4.26	183.42	1.091

Date: Start Time: End Time:	03/17/10 11:46:00 12:56:00	SDAVINIET -		SLURRY FL	DILWATER FLOW	TOTAL-	CONC		DP	DINLET PRESS	SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" <u>H2O</u>
Unit 1	13B run 1	543.69	320.13	47.41	42.51	4.90	11.18	301.67	6.44	-10.51	1.117
Unit 2		508.83	320.28	37.75	34.56	3.19	13.98	296.67	6.16	-10.42	1.117
Unit 3		517.47	315.64	37.34	33.35	4.00	14.15	303.49	6.37	-8.13	1.117
0											
- 14		FEED H20	STMPRESS		ELOUAR C	FURNACE		SHIROLL	SNOR HEMIELOW	SUEAM ELOW	
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		192.13	885.22	827.80	90.17	-0.11	274.07	1180.68	3.97	183.97	1.232
Unit 2		187.20	899.07	830.60	83.77	-0.04	271.06	1189.49	<u>.</u> 6.41	184.11	1.232
Unit 3		188.46	901.48	824.60	81.19	-0.15	280.40	1201.87	3.92	182.84	1.232

Date: Start Time: End Time:	03/17/10 13:15:00 14:27:00	SDAINLET S TEMP		TOTAL SEURRYAP	DILWATER Z				EF DP	IDINIET PRESS	SPECIEIC GRAVITY
Unit 1	13B run 2	DEG F	DEG F 319.91	GPM 46.69	GPM 41.04	GPM 5.65	%	DEG F 300.84	" H2O 6.39	" H2O -10,35	" H2O 1,116
		541.00		40.09	41.04	5.05 2.05	11.34				
Unit 2		520.32	320.04	41.74	38.53	3.21	12.67	296.91	6.18	-10.80	1.116
Unit 3	and the second state of the second	523.92	314.91	39.46	35.44	4.02	13.43	303.75	6.40	-8.32	1.116
О			Service and the service of the servi					CUIDAR		Money Names (189	
- 15		FLOW	STM PRESS	TEMP	FLOW	DRAFI		AVG	CHEMIFLOW	FLOW	<u>C:0</u>
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1	MC XX MITTIN ADDR	192.62	885.70	831.95	89.16	-0.08	273.84	1186.69	4.26	184.02	1.228
Unit 2		185.93	899.02	826.15	87.56	-0.05	270.76	1208.10	3.47	183.68	1.228
Unit 3		189.66	902.08	825.01	83.42	-0.14	280.14	1188.10	3.06	183.92	1.228

Date: Start Time: End Time:	03/17/10 14:45:00 15:53:00	SDAVINUET S	IDAVOUITEETE TEMP	SEURRY FL	DIL WATER	TOTAL E	CONC	EFOUT TIEMP	EF DR	PRESS	SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	<u>" H2O</u>
Unit 1	13B run 3	539.44	319.77	45.18	39.42	5.75	11.73	301.90	6.30	-10.15	1.117
Unit 2		524.93	320.26	43.88	39.65	4.23	12.08	296.82	6.09	-10.78	1.117
Unit 3	ini tahun karangan	524.99	<u>315</u> .19	39.61	35.62	3.99	13.36	304.00	6.45	-8.34	1.117
0							<u></u>				
- - - -		EEED H20 FLOW	SHOUT	FINAL STM	TOT AIR FLOW	DRAFT	ECONO OUT-TEMP	SH:ROLL	SNCR HEM FLOW	STEAM FLOW	AVAILABLE CaO
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		193.20	885.11	834.55	87.28	-0.09	274.08	1185.17	3.91	184.10	1.230
Unit 2		186.47	899.02	827.51	88.63	-0.04	271.00	1223.99	3.28	183.70	1.230
Unit 3		189.03	901.99	822.61	83.28	-0.14	280.34	<u>1</u> 182.88	4.43	183.81	1.230

Date: Start Time: End Time:	03/17/10 6:54:00 7:54:00	SDAINLET: S	DATOUNEER THEMP	SLURRYHT	DILWATER		CONC	FEOUR TIEMP	EE DP	DINIET -	SRECIEIC EGRAVINY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		535.88	317.13	45.14	37.65	7.49	12.44	298.63	6.37	-10.19	1.109
	26A run 1	518.13	322.96	37.99	31.03	6.97	14.90	297.57	6.10	-10.30]	1.109
Unit 3		521.02	315.21	38.56	34.38	4.18	14.55	303.91	6.35	-8.29	1.109
C - 17		FEEDTH20	SH OUT	FINALSTM TEMP	TOT AIR FLOW	TFURNACE		SHROUES	SNCR-	STEAM FLOW	
Unit 1		KLBs/hr 191.66	DEG F 884.81	DEG F 822.80	KSCFM 80.70	" H2O -0.10	DEG F 274.50	DEG F 1202.73	GPH 5.44	KLBs/hr 184.13	1.136
Unit 2		186.49	899.80	826.57	80.89	-0.09	271.45	1183.47	6.05	184.66	1.136
Unit 3		191.00	902.02	826.23	79.81	-0.20	280.81	1186.47	4.01	184.63	1.136

.

Date: Start Time:	L. L.	SDA INLET S TEMP	DA OUTLET TEMP	TOTAL	DIL WATER FLOW	-total .^lime	CONC	FF OUT	FF DP	ID INLET PRESS	SPECIFIC GRAVITY
End Time:	10:02:00	DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1]	534.03	320.11	42.63	36.54	6.09	13.01	301.14	6.30	-9.94	1.113
			wert .	· · · · · · · · · · · · · · · · · · ·		- Th-		A. Sures			- 11
Unit 2	26A run 2	512.17	319.50	41.18	35.71	5.47	13.58	297.17	6.16	-10.63	1.113
1			and the state of the state of the	And a second secon			and a second and a second and a second and a second and a second and a second and a second and a second and a s	1	يوني . يەربىي دىرىي		1
	ĺ	518.41	315.12	37.93	33.70	4.23	14.59	303.64	6.40	-8.17	1.113
Unit 3	L		·								
ບກແ 3		FEED H20	SH QUT	The second second second second second second second		FURNACE	EÇONO OUTL-TEMP	SH ROEL	SNCR SHEM FLOW	STEAM FLOW	AVAILABLE CaO
ר '		for any second second second second	SHOUT DEG F	FINAL STM TEMP			ECONO OUIL-TEMP DEG F				AVAILABEE
C ∞ Unit 1		FLOW	DEG F 884.80	DEG F 831.67	KSCFM 84.47	DRAFT	DEG F 273.89	DEG F 1188.83	GPH 3.00	FLOW KLBs/hr 183.98	CaO
0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		KLBs/hr 192.53	DEG F 884.80	DEG F	KSCFM 84.47	DRAFT	DEG F	DEG F	<u>GPH 3.00</u>	KLBs/hr	<u>CaO</u>
Unit 1	·	KLBs/hr 192.53	DEG F 884.80	DEG F 831.67 830.47	KSCFM 84.47	DRAFT " H2O -0.10	DEG F 273.89 270.73	DEG F 1188.83	<u>GPH 3.00</u>	KLBs/hr 183.98	CaO 1.184 1.184
Unit 1		KLBs/hr 192.53	DEG F 884.80	DEG F 831.67 830.47	KSCFM 84.47	DRAFI " H2O -0.10	DEG F 273.89	DEG F 1188.83	GPH 3.00	KLBs/hr 183.98	CaO 1.184 1.184

:

Date: Start Time: End Time:	03/17/10 10:25:00 11:25:00		DAYOUTLET	SEURRY E	DIEWAHER	TOTAL			EE DP	DINUET	SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		542.08	320.74	46.84	42.97	3.87	11.51	301.82	6.43	-10.43	1,117
Unit 2	26A run 3	509.60	<u>319.41</u>	38.21	34.83	3.38	14.13	296.25	6.06	-10.26	1.117
Unit 3		517.88	314.59	37.63	33.56	4.07	14.32	303.35	6.36	-8.01	1.117
0											
- 19		FEEDIH2O	STM PRESS			EURNAGE DRAFT	ECONO OUT TEMP		SNGR CHEMIELOW	STEAM FLOW	AVAILABLE Cao
											_
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		191.05	884.66	827.58	89.75		274.33	1179.78	3.84	183.08	1.229
Unit 2		188.03	899.89	833.74	82.10	-0.05	271.22	1191.69	5.26	184.88	1.229
Unit 3		191.54	902.09	829.31	80.09	-0.15	280.63	1186.79	4.16	184.83	1.229

Date: Start Time:	03/18/10 7:09:00	SDA INLET TEMP	SDA OUTLET	TOTAL SLURRY FL	DIL WATER	TOTAL LIME	CONC	FF OUT	∵EF -~DP	PRESS	SPECIFIC GRAVITY
End Time:	9:22:00										
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		509.05	319.93	36.79	29.37	7.42	14.08	302.39	5.46		1.128
· _ · _ ·	· · ·	بيائلان.			1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39	an alla i	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		<u>d</u>	ف،
Unit 2	5/29 run 1	515.00	320.03	39.29	33.22	6.07	12.25	296.06	5.18		1.128
		41						ing ing			
Unit 3		507.70	<u>314.</u> 95	34.65	30.39	4.26	13.84	301.49	5.87	-7.55	1.128
Offic 9				_							
Olm 5		FEED.H20 FLOW	SH OUT STM PRESS	FINAL STM			EGONO OUT. TEMP		SNCR HEM FLOW		AVAILABLE CaO
		FLOW	STM PRESS	TEMP	FLOW	DRAFT	<u>QUT, TEMP</u>	AVG	CHEM FLOW	FLOW	
Unit 1			STM PRESS		KSCFM	DRAFT	DEG F	AVG C	GPH	KLBs/hr	<u>CaO</u> -
Unit 1	· · · ·	ELOW KLBs/hr	DEG F 885.92	DEG F	KSCFM 80.02	DRAFT	<u>QUT, TEMP</u>	AVG	CHEM FLOW	KLBs/hr	<u>CaO</u> 1.354
Unit 1 Unit 2	۰	KLBs/hr	DEG F 885.92	DEG F 832.20	KSCFM 80.02	DRAFT " H2O -0.11	DEG F	DEG F 1106.97	GPH 5.48	KLBs/hr 184.14	CaO 1.354
Unit 1		KLBs/hr [193.02]	DEG F 885.92 900.86	DEG F 832.20	KSCFM 80.02	" H2O -0.11	DEG F 274.53	DEG F 1106.97	GPH 5.48	KLBs/hr 184.14	1.354

.

•

Date: Start Time: End Time:	03/18/10 9:49:00 12:02:00	SDAINLET S		SLURRY FL	DIL WATER	IOTAL EME	LIME CONC	TEMP	DP	IDIN ET	SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	and the second second second second	514.15	320.16	38.65	29.82	8.84	14.94	304.42	6.13	-9.82	1.129
Unit 2	5/29 run 2	515.23	320.23	38.64	32.75	5.89	12.40	295.98	5.37	-9.57	1.129
Unit 3	N	513.45	315.11	37.19	32.55	4.64	12.91	302.74	6.44	-8.24	1.129
с - 21		FEEDIH2OM	STMIPRESS	FINAL STM	TOT AIR	EURNACE	OUTTEMP	SH ROLL	SNCR CHEMIELOW	STEAM //	AVAILABLE CaO
Unit 1		KLBs/hr 192.07	DEG F 883.96	DEG F 826.50	KSCFM 82.05	" H2O -0.09]	DEG F 274.39	DEG F	GPH 6.24	KLBs/hr 183.42	1.361
										103.42	
Unit 2		185.14	900.29	827.81	84.87	-0.09	271.37	1227.88	5.09	182.93	1.361
Unit 3		189.39	902.46	825.87	81.36	-0.14	280.61	1168.99	6.50	183.68	1.361

Date: Start Time: End Time:	03/18/10 12:27:00 14:39:00	SDAINLET	SDAXOUIILEIN TEMP	SLURRY FL	DIL WATER	TOTAL	CONC	FFOUT	DP	ID NUET	SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		508.26	319.44	35.25	27.72	7.53	14.86	303.24	6.29	-9.69	1.128
Unit 2	5/29 run 3	520.15	320.60	41.44	34.31	7.13	11.67	296.01	6.26	-10.60	1.128
Unit 3		512.88	317.77	36.36	29.39	6.97	13.26	304.35	6.42	-8.11	1.128
ר י		FEEDH2Q FLOW	SHIOUT	FINAL STM	TOTAIR		ECONO	SHROL	SNCR	STEAM	AVAILABLE.
3		PLOW	SIMPRESS	TEMP	ELOW	DRAI	OUNATEMPA	AVG care	CHEMELOW	FLOW	CaO
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		170.05	877.67	827.72	79.85	-0.09	272.46	1071.96	4.29	160.11	1.354
	and the second se										
Unit 2		186.31	898.06	827.61	86.45	-0.09	269.33	1213.56	6.30	183.88	1.354
Unit 3		190.78	900.35	829.24	80.90	-0.15	278.64	1172.09	4.00	184.17	1.354

Page

.

.

.

Date: Start Time: End Time:	03/18/10 7:09:00 8:24:00	TEMP	DA OUTLER TEMP	SLURRY FL	DIEWATER FLOW		CONC	HEROUICA MEMP	EF DP		SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	and street its state	510.38	319.89	37.54	29.91	7.63	13.58	302.69	6.30	-10.04	1.129
Unit 2	13B run 1	514.02	320.58	39.26	32.75	6.51	12.25	296.75	5.91	-10.27	1.129
Unit 3		507.08	314.85	34.31	30.54	3.76	13.95	301.90	6.21	-7.90	1.129
0											
- 23		FEEDIH2O	SHOUT	FINAL STM	FLOW	FURNACE DRAFT	ECONO OUTTEMP		SNCR CHEM FLOW	STEAM FLOW	
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		192.79	886.09	833.76	80.97	-0.11	274.46	1111.03	3.56	184.03	1.357
Unit 2		185.73	900.53	827.22	80.47	-0.04	271.46	1210.14	2.53	183.90	1.357
Unit 3		189.92	903.17	822.15	78.90	-0.16	280.74	1165.19	3.32	184.43	1.357

Date: Start Time: End Time:	03/18/10 8:56:00 10:10:00	SDA IN DET		ELOTAL SLURRY-EL	DIEWATER FLOW	Total Lime	CONG	TEMP	FE DP	DINEET	SRECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		509.22	320.29	36.89	28.24	8.66	15.32	303.42	4.70	-8.29	1.129
					24.04						4.400
Unit 2	13B run 2	512.53	319.63	<u> </u>	31.91	5.50	12.84	295.23	3.36	-7.47	1.129
Unit 3		509.21	315.01	35.52	30.69	4.82	13.50	302.07	6.15	-7.83	1.129
C - 24		FEED H201	SHIQUIT STIMIPRESS	FINALISTM TEMP		EURNAGE	ECONO OUIMIEMP	SHROUL-	SNCR CHEMIELOW	ASTEAM FLOW	AVAILABLE: CaO
Unit 1		KLBs/hr	DEG F 885.22	DEG F 829.71	KSCFM 79.99	<u>" H2O</u> -0.10	DEG F 274.69	DEG F 1096.14	<u></u>	KLBs/hr 184.35	1.359
	an an an an an an an an an an an an an a										
Unit 2		186.57	901.15	827.25	81.84	-0.06	271.72	1238.36	6.29	184.23	1.359
Unit 3		190.29	903.19	828.86	79.76	-0.13	280.90	1164.70	7.14	183.96	1.359

-

-

.

Date: Start Time:	03/18/10 10:45:00	SDA INLET	SDA OUTLET	TOTAL	DIL WATER	LIME	LIME	TEMP	DP	ID INLET	SPECIFIC GRAVITY
End Time:	12:05:00										
		DEG F	DEG_F	<u>GPM</u>	GPM	GPM	%	_DEG F	" H2O	" H2O	<u>" H2O</u>
Unit 1		515.91	320.26	39.20	30.38	8.82	14.75	304.56	6.41	-10.15	1.12
n - en tatman Sinta ang sinta ang s				States and the second sec	And the second sec		-يروند. موجوع			به هذها الملحة في مقوله المانية .	<u> </u>
Unit 2	13B run 3	514.74	319.91	38.36	32.08	6.27	12.51	295.62	5.95	-10.10	1.129
			ang war an an an an an an an an an an an an an	م معدد من مطلب جانب، ۲۰ م موالب جانب، ۲۰ م			and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and I and	ಸೆಯನ್ನು ಇದು ನಿರ್ವಾ ಕರ್ಷನ್ರಮ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂಗಾಣ ಸಂ		with the second se	
		515.33	315.17	37.92	32.88	5.04	12.69	302.68	6.42	-8.24	1.129
Unit 3		313.33									
Unit 3		FEED H203	SHOUT	FINAL STM	FOT AIR FLOW			SH ROLL			VAILABLE
Unit 3		FEED H20	SHOUT	FINAL STM	FLOW	FURNACE	ECONO OUT TEMP	SHROLL ; XVG ; C	SNCR HEM FLOW	STEAM 2	VAILABLE CaQ2
Unit 3		FEED H203	SHOUT	FINAL STM		FURNACE DRAFE		SH ROLL C	SNCR HEM FLOW	STEAM FLOW KLBs/hr	VAILABLE CaO
Unit 1		KLBs/hr	SH QUT	FINAL STM	KSCFM 82.66	DRAFT	OUT TEMP		GPH 5.85	KLBs/hr 183.13	1.36
Unit 1		KLBs/hr	SH OUT STM PRESS	FINAL STM	FLOW KSCFM		DEG F 274.29	DEG F	GPH 5.85	KLBs/hr 183.13	
Unit 1		FEED H20 ELOW KLBs/hr 191.73 185.35	SH OUT STN PRESS DEG F 883.74	FINAL STM	KSCFM 82.66	" H2O -0.09 -0.10	DEG F 274.29 271.23	DEG F 1118.22	GPH 5.85	KLBs/hr 183.13] 183.04	1.36
Unit 1		FEED H20 ELOW KLBs/hr 191.73 185.35	SH OUT STM PRESS DEG F 883.74	FINAL STM TEMP. DEG F 826.78 829.43	KSCFM 82.66 84.72	" H2O -0.09	DEG F 274.29 271.23	DEG F 1118.22	GPH 5.85 5.10	KLBs/hr 183.13]	1.360

Page 1

.

.

•

Date: Start Time:	03/16/10 8:44:00	SDA INLET	SDA OUTLET	TOTAL SLURBY FL	DIL WATER FLOW	TOTAL Lime	LIME CONC	FF OUT TEMP	FF DP	ID INLET	SPECIFIC GRAVITY
End Time:	13:36:00										
-		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		525.17	314.21	39.66	29.53	10.14	14.93	296.10	6.26	-9.60	1.101
			1977, 994,	یکه ۲۰۰۱ برور در برور افغ مصاحف میتیکنیمیس از ۲۰	internet and the second second	2466.5	ند . منازع:	∴¥996 _4	1927 a cara	1.200 - 1.200	
Unit 2	23 run 1	505.56	314.21	37.60	26.96	10.64	15.84	291.01	6.06	-0.38	1.101
·	100 100 100 100 100 100 100 100 100 100	200 B	·	COLUMN ACTA SHE SHE	a. 94 20, 9920042) 	الد چستالي التركيسية -		عني⊤ ميور ليدم ويتيشت			and the second sec
Unit 3		515.85	310.20	38.53	28.18	10.35	17.08	298.31	6.40	-8.42	1.101
C - 26		FEED H20	SH OUT	FINAL STM	TOT AIR FLOW	FURNACE DRAFT	ECONO OUT.TEMP		SNCR CHEM FLOW	STEAM FLOW	AVAILABLE CaO
- 26		KLBs/hr	DEG F	DEG F	KSCFM	" H20	DEG F	DEG F	GPH	FLOW KLBs/hr	CaO
i	^	KLBs/hr	STM PRESS	DEG F 831.87	KSCFM 80.69	<u> </u>	DEG F 274.50	DEG F 1161.83	GPH 8.54	FLQW KLBs/hr 183.93	CaO
Unit 1		KLBs/hr 192.95	DEG F 884.72	DEG F 831.87	KSCFM 80.69	" H2O -0.10	DEG F 274.50	DEG F 1161.83	GPH 8.54	FLQW/ KLBs/hr 183.93	CaO
Unit 1 Unit 2		KLBs/hr 192.95 186.84	DEG F 884.72 900.56	DEG F 831.87	KSCFM 80.69 81.06	" H2O -0.10 -0.09	DEG F 274.50 271.41	DEG F 1161.83 1130.51	GPH 8.54 7.09	FLQW/ KLBs/hr 183.93 184.07	CaO
Unit 1 Unit 2		KLBs/hr 192.95	DEG F 884.72 900.56	DEG F 831.87 830.83	KSCFM 80.69	" H2O -0.10 -0.09	DEG F 274.50	DEG F 1161.83	<u>GPH</u> 8.54 7.09	FLOW KLBs/hr 183.93 184.07	CaO

Date: Start Time:		SDA INLET	DA OUTLET	TOTAL	DIL WATER FLOW		LIME	EF OUT	FF DP	ID INLET	SPECIFIC GRAVITY
End Time:	12:19:00										
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		537.55	319.46	44.75	39.24	5.51	12.31	300.57	6.38	-10.20	1.11
		دور روز مرد مستعمله الشيعيد مدينة و	1. 2. Frank 17				n the second	4	ينين الإشار وي	2	
Unit 2	23 run 2	513.76	321.23	39.31	33.96	5.34	14.34	297.57	6.14	-10.46	1.1
• • •		in de la contraction br>La contraction de la c	میں سے جنوب ہے۔ میں اور میں ان اور ان اور اور ان اور اور اور اور اور اور اور اور اور اور		^{ار} بیروه . ۲۰ - میدن میداند	And the second s		,249,	64		. Y
Unit 3		517.78	314.97	37.53	33.27	4.26	14.63	303.48	6.36	-8.10	1.1
Shito						_					
		FEED H20	SH OUT		TOLAIR	EURNACE	ECONO		SNCR	STEAM	
Sinco		FLOW	STM PRESS	TEMP			ECONO		<u> CHEM FLOW</u>	FLOW	
		FLOW	STM PRESS	DEG F	KSCFM	" H2O	DEG F	DEG F	<u>CHEM FLOW</u>	FLOW	<u>Ca</u> Õ
Unit 1		FLOW KLBs/hr 192.02	DEG F 884.65		KSCFM 86.08	" H2O -0.10	DEG F 274.09		<u>CĤEM FLOW</u> GPH 3.74	FLOW	<u>CaŎ</u>
Unit 1		FLOW KLBs/hr 192.02	DEG F 884.65	DEG F 828.14	KSCFM 86.08	" H2O -0.10	DEG F 274.09	DEG F 1186.61	GPH 3.74	KLBs/hr 183.69	CaO
Unit 1 Unit 2		KLBs/hr 192.02	DEG F 884.65 899.37	DEG F 828.14 831.64	KSCFM 86.08 83.35	" H2O -0.10	DEG F 274.09	DEG F 1186.61	GPH 3.74 4.90	KLBs/hr 183.69 184.25	
Unit 1 Unit 2		KLBs/hr 192.02	DEG F 884.65	DEG F 828.14 831.64	KSCFM 86.08	" H2O -0.10	DEG F 274.09	DEG F 1186.61	GPH 3.74	KLBs/hr 183.69 184.25	CaO

Date: Start Time	03/17/10 : 12:53:00		SDA QUTEET TEMP		DIL WATER	TOTAL LIME		FF OUT TEMP	FF. DP	A 19	SPECIFIC GRAVITY
End Time:	17:26:00										
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		540.04	319.73	45.57	39.94	5.63	11.61	301.42	6.31	-10.19	1.117
· · · · · · · · · · · · · · · · · · ·			م میں اور اور اور اور اور اور اور اور اور اور		، (۲۵) میلید د میلید و در از از از از از از از از از از از از از	الم المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع ال المراجع المراجع ا					1777 ·····
Unit 2	23 run 3	523.35	320.26	43.11	39.25	3.85	12.27	296.85	6.10	-10.77	1.117
	2 8.5 45			the designation of the big			ΞĒ.			الله به مراجع بر هو. مراجع محمد به معهد المع	
Unit 3		525.77	315.08		35.98	4.01	13.23	304.01	6.41	-8.35	1.117
о		FEED H20	SHOUT	FINAL STM	TOTAIR	EURNACE	ECONO	SHROEL	SNCR	STEAM	AVAILABLE
28		FLOW	STM PRESS	TEMP	FLOW	DRAFT	OUT TEMP	AVG	CHEM FLOW	FLOW	GaO 3
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		192.65	885.16	830.70	87.67	-0.09		1185.54	4.34	183.90	1.231
			and the second s			-	من من من من من من من من من من من من من م	يون در محمد المراجع	Ţ Ŵ	Marche - 6	· · · · · · · · · · ·
Unit 2		186.18	898.94	826.74	88.04	-0.05		1220.36	3.31	183.85	1.231
1945	ار بار می از بر مربع می از بر مربع می از می این می می ورود می می این از می		-	مر الأورية بيلوث أريبية. الإليان مستخلف	12 9 22 - Li		موجود می اور د مراجع می اور د	· /4 - 7.7		577782 2 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
Unit 3		189,26	901.76	822.33	84.26	-0.15	280.25	1185.92	3.41	183.82	1.231

Page

.

Date: Start Time: End Time:	03/16/10 7:17:00 8:17:00	ESDAINLEIE S TEMPS	SDAYOUTIGET	TOTAL SLURRY FL	DIEWAHER FLOW	TOTAL SE		TEMP	FF DP	DINEET PRESS	SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		518.33	310.44	37.88	29.54	8.35	14.46	293.63	6.20	-9.44	1.113
Unit 2		502.44	309.96	39.18	28.80	10.38	14.08	287.71	6.06	0.00	1.113
Unit 3	26A run 1	507.32	309.94	35.80	26.15	9.64	16.07	297.73	6.29	-8.21	1.113
		·						L			
c								ta - a faire and a faire and a faire and a faire and a faire and a faire and a faire and a faire and a faire a			
- 29		FEEDH2O FLOW	SH OUT	EINAL SIM		EURNAGE DRAFT		SH ROLL	CHEMILOW		
								·····			
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		192.35	885.37	827.64	78.35	-0.10	274.23	1163.29	7.06	184.15	1.183
Unit 2		187.30	901.20	836.77	80.06	-0.08	271.11	1138.53	5.37	184.38	1.183
Unit 3		191.60	903.26	835.02	79.72	-0.24	280.47	1143.29	4.76	184.60	1.183

Date: Start Time:	03/16/10 9:04:00	SDA INLET	SDA OUTLET		DIL WATER			FF OUT TEMP	FF DP	ID INLET	SPECIFIC GRAVITY
End Time:	10:04:00										
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		525.95	310.19	40.99	31.86	9.13	14.65	293.31	6.31	-9.71	1.10
		ـــــــــــــــــــــــــــــــــــــ		و و ¹¹¹ . ب_ ه در مسر بنمی	ا در کار در	(a)			रहाकर अस्त्र के कि		
Unit 2		501.87	309.30	37.44	24.16	13.28	16.28	287.41	6.01	-0.23	1.10
		بر مسترد		545 - 5 - 5	ا ^{بر} الشیبینی و و و	ميسند. م ديد 194		уч	د . رو ، تعیور	n - unita de la California. En la cal	and the second se
Unit 3	26A run 2	514.35	310.13	38.08	28.30	9.78	19.05	298.22	6.28	-8.36	1.10
Offic 9											
		FEED H20	SH OUT	FINAL STM	TOT AIR FLOW		ECONO OUT TEMP	SH ROLL	SNCR CHEM FLOW	STEAM FLOW	
					TOT AIR FLOW	FURNACE	OUT TEMR			1.4.17 L	AVAILABLE CaO
,			DEG F		KSCFM	FURNACE DRAFT	DEG F			1.4.17 L	CaO
Unit 1		KLBs/hr 193.09	DEG F 885.09	TEMP	<u>FLOW</u>	<u>DRAFT</u>	DEG F 274.51	DEG F 1163.90	CHEMIFLOW	FLOW KLBs/hr 183.83	CaO
Unit 1		KLBs/hr 193.09	DEG F	DEG F 830.98	KSCFM	<u>" H2O</u>	DEG F	DEG F 1163.90	GPH	KLBs/hr 183.83	CaO
Unit 1	A Vices	KLBs/hr 193.09	DEG F 885.09	DEG F 830.98 828.35	KSCFM 81.31 80.42	" H2O -0.10	DEG F 274.51	DEG F 1163.90 1125.45	GPH 8.81 5.76	KLBs/hr 183.83	ÇaO
Unit 1		KLBs/hr [193.09]	DEG F 885.09	DEG F 830.98	KSCFM 81.31	" H2O -0.10	DEG F 274.51	DEG F 1163.90 1125.45	GPH 8.81	KLBs/hr 183.83	1.05

Date: Start Time: End Time:	03/16/10 10:32:00 11:32:00	SDA INLET TEMP	SDA OUTLET	TOTAL SLÙRRY FL	DIL WATER F <u>LOW</u>	LINE	LIME	FF OUT.	DP -	ID INLET	SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		523.86	310.23	39.31	28.74	10.57	15.07	293.75	6.18	-9.45	1.101
	يوريون ورو		4.10- 13823 1	Haland Cont on all states	State of the state		1.486 1.4	124	(*************************************	معد به اور در همیدهدان. معرف به در میشوانید م	
Unit 2		503.24	311.09	37.65	26.39	11.26	15.69	288.53	6.08	-0.35	1.101
·	· · · · · · · · · · · · · · · · · · ·		ار معلوظتی مید. مدر م او هشته است معاط از از ا								[ها ا: مکر
Unit 3	26A run 3	513.38	309.94	37.45	26.95	10.49	18.57	298.15	6.43	-8.35	1.101
) - 2		FEED H20 FLOW	STM PRESS	FINAL STM	TOLAIR -	FURNAGE	ECONO OUT TEMP	SH ROPL	CHEM-FLOW	STEAM ELOW	
Unit 1		KLBs/hr	DEG F 885.14	DEG F 834.99	KSCFM 79.61	H2O	DEG_F274.59	DEG_F1163.54	GPH 10.29	KLBs/hr 184,51	1.059
				August 2 Street House (1997 19 76 77 - 7					10.20		
Unit 2		186.43	900.78	829.96	80.32	-0.08	271.53	1132.18	9.15	184.21	1.059
			ALC: 1			: A		10 See	· 14 · · · · · · · · · · · · · · · · · ·		
Unit 3	· · · · · · · · · · · · · · · · · · ·	190.76	902.66	829.05	80.58	-0.25	280.84	1163.19	5.38	184.30	1.059

Page 1

Date: Start Time:	03/17/10 6:50:00	SDA INLET	SDA OUTLET		DIL WATER FLOW	TOTAL LIME		FF OUT	DP	ID INLET PRESS	SPECIFIC GRAVITY
End Time:	9:03:00										
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		534.58	318.05	43.74	36.83	6.91	12.81	299.11	6.34	-10.06	1.109
					en de la comprese de la comprese de la comprese de la comprese de la comprese de la comprese de la comprese de	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	د <u>م</u> لم م م	ilana data data data data data data data d	ارو ایرانده او ایرانده او ایراندا به مطلقه	RAN NAME	
Unit 2		518.71	323.35	39.44	32.03	7.41	15.08	298.76	6.17	-10.51	1.109
		<u> </u>	S. C. C. R. Barrer, B.	Lange and the second		- T		and the second second			_775.76
Unit 3	5/29 run 1	518.91	315.03	37.81	33.36	4.45	14.79	303.64	6.36	-8.17	1.109
3		FEED H20	SH OUT		TOTAR	FURNACE	ECONO	SHROLL	SNCR	STEAM	AVAILABLE
					FLOW	DRAFT	OUTTEMP	AVĞ	CHEM FLOW	FLOW	CaO
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	CaO
Unit 1		192.27	884.55	DEG_F 827.85	KSCFM 82.80	" H2O 0.10	<u> </u>	DEG F 1191.48	GPH 4.22	KLBs/hr 183.87	1.142
		192.27	884.55	DEG F 827.85	KSCFM 82.80	" H2O 10	DEG F 274.04	DEG F 1191.48	GPH 4.22	KLBs/hr 183.87	1.142
Unit 2		192.27	884.55 899.39	DEG F 827.85 832.88	KSCFM 82.80 83.43	" H2O -0.10 -0.10	DEG F 274.04 270.92	DEG F 1191.48	GPH 4.22 4.44	KLBs/hr 183.87 183.94	1.142 1.142
	·····	192.27	884.55	DEG F 827.85 832.88	KSCFM 82.80 83.43	" H2O -0.10 -0.10	DEG F 274.04 270.92	DEG F 1191.48	GPH 4.22 4.44	KLBs/hr 183.87	1.142 1.142

.

Page

Date: Start Time: End Time:	03/17/10 9:26:00 11:38:00	SDANNEET S	DA OUTLET	SLURRY PL	DIL WATER				DP-		SPECIFIC GRAVITY
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		538.98	320.38	45.10	40.75	4.35	12.10	301.55	6.36	-10.22	1.115
Unit 2		510.42	319.55	39.10	35.25	3.85	13.93	296.48	6.09	-10.37	1.115
Unit 3	5/29 run 2	518.06	314.86	37.78	33.61	4.17	14.42	303.42	6.42	-8.13	1.115
۲ پ		FEED'H2O'	SHOUTA	FINALSTMI	TOTAIR	FURNACE		SHIROUL	SNCR	STEAM	
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		192.25	884.64	829.15	87.64	-0.10	274.34	1186.25	3.50	183.60	1.214
Unit 2		187.04	899.30	828.44	83.26	-0.05	271.24	1194.99	4.18	184.42	1.214
Unit 3		190.81	901.62	827.89	80.87	-0.15	280.64	1191.68	3.95	184.22	1.214

.

Page 1

.

Date: Start Time: End Time:	03/17/10 11:59:00 14:11:00	SDA INLET TEMP	SDA OUTLET	SLURRY FL	DIL WATER FLOW	total Lime	LIME Conc	FF OUT-	FE DP	id inlet Press	SPECIFIC GRAVITY
Unit 1		DEG F 542.45	DEG F 319.87	GPM 46.92	GPM 41.66	GPM 5.26	<u>%</u> 11.28	DEG F 301.15	" H2O 6.37	<u></u>	" H2O 1.117
Unit 2	میں میں میں میں میں اور اور اور اور اور اور اور اور اور اور	· · · · · · · · · · · · · · · · · · ·	319.87		36.91	3.15	13.21	296.88	States and	-10.39	1.117
Unit 3	5/29 run 3	521.57	315.24		34.73	4.00	13.66		6.39	-8.28	1.117
C - 34		FEED H2O	SHOUT STM PRESS		TOT AIR-			SFIROLL	SNGR	STEAM FLOW	
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1	-	192.41	885.44	828.19	89.54	-0.10	273.89	1187.27	3.95	184.20	1.230
	•			827.40				1205.01		103 50	اند به کمد: میک معمود در میک 1 020
		186.00	898.90	827.40	86.13	-0.04	270.84	1205.01	4.28	183.58	1.230
Unit 3	en en l'ann	189.20	901.75	824.28	82.65	-0.15	280.21	1195.13	3.52	183.50	1.230

Date: Start Time:	03/16/10 11:49:00	SDA INLET	SDA OUTLET TEMP	TOTAL SLURRY FL	DIL WATER		LIME Cong	FF OUT	FF DP	ID INLET PRESS	SPECIFIC GRAVITY
End Time:	13:07:00								_		
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		523.69	319.94	38.04	26.97	11.06	15.40	299.79	6.28	-9.57	1.102
Limit O		509.43	319.81	37.28	29.08	8.20	45.70		<u> </u>	0.25	1.102
Unit 2		509.43		31.20 			15.72	295.29	5.95	-0.35	1.102 3.46%
	400	517.27	310.20	38.84	28.22	10.62	15.08	298.31	6.45	-8.43	1.102
Unit 3	13B run 1			CIMAL CTR	TOT NR	-EUDNAGE I	FRONDA	<u>eurooi 1</u>	SHOP	CTEARA	
Unit 3	13B run 1										
Unit 3		FEED H20	SH OUT STM PRESS	FINAL STM	TOT AIR ELOW	FURNACE DRAFT	ECONO ⁴¹ OUT TEMP	SH ROLL AVĞ	SNGR CHEM FLOW	STEAM	L 11/2
Unit 3		FEED H20	SHOUT					* 1 San *			L 0.0
Unit 3		FEED H20	SHOUT					* 1 San *			AVAILABLE; ČaO
Unit 3		FEED H2O FLOW	SH OUT SIM PRESS DEG F 884.15	TEMP	<u>FLOW</u>	DRAFT	OUT TEMP	AVG DEG F 1160.56	<u>СНЕМ FLOW</u> <u>GPH</u> 7.44	FLOW KLBs/hr 183.80	ČaO
Unit 1		FEED H2O FLOW KLBs/hr 192.55	SH OUT STM PRESS DEG F 884.15	TEMP, DEG F 829.65	KSCFM 80.35	" H2O -0.10	DEG F 274.54	AVG DEG F 1160.56	<u>СНЕМ FLOW</u> GPH 7.44	FLOW KLBs/hr 183.80	CaO
Unit 1		FEED H2O FLOW KLBs/hr	SH OUT SIM PRESS DEG F 884.15	TEMP DEG F 829.65 829.77	KSCFM 80.35 81.31	" H2O -0.10	DEG F 274.54	AVG DEG F 1160.56	<u>СНЕМ FLOW</u> GPH 	FLOW KLBs/hr 183.80	ČaO

.

.

Date: Start Time:	03/16/10 13:33:00	SDATINILET S			DIL WATERS	EIME			DP	DINLET PRESS	SPECIFIC GRAVITY
End Time:	14:44:00										
		DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1	······	530.14	319.82	40.37	34.51	5.86	14.28	299.53	6.31	-9.70	1.105
COLORIS IN THE PROPERTY IN											
Unit 2		510.14	319.00	37.06	33.48	3.58	15.57	295.41	5.98	-10.38	1.105
Unit 3	13B run 2	523.75	309.60	41.25	36.10	5.14	12.00	298.87		-8.54	1.105
Unit S	130 101 2	523.75		41.25	30.10	5.14	13.99	290.07	6.40	~0.54	1.105
_											
Ç '		BREEDH201	SHOUT	FINAL STME	TOTAIR	FURNACE	ECONO	SHROLLE	SNCR	STEAM	VALABLE
36		FEEDH201	STIMPRESS:	TEMP	FLOW	DRAFT	ECONO OUT-TEMP	SHIROLLSE AVG	HEMELOW	STEAM	CaO
•											
		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1		192.75	883.72	827.98	82.23	-0.09	274.23	1155.16	3.55	183.42	1.098
Unit 2		186.36	899.41	829.43	81.67	-0.10	271.14	1135.01	5.53	183.91	1.098
Unit 3		190.74		828.59	ec 201		200 52	4400.00	4.70		
Unit 3		190.74	901.41	020.59	86.28	-0.25	280.52	1160.26	4.76	183.92	1.098

.

7

Date: Start Time:	03/16/10 15:07:00	SDA IN ET	SDA OUTLET	SLURRY FL	DILWATER		CONC	HEMP	DP	PRESS	SPECIFIC GRAVITY
End Time:	16:16:00	DEG F	DEG F	GPM	GPM	GPM	%	DEG F	" H2O	" H2O	" H2O
Unit 1		527.22	320.05	39.23	31.94 31.94	7.29	14.69_	298.23	<u>6.26</u>	-9.48	1.106
Unit 2		511.31	314.91	38.17	33.82	4.35	14.94	292.16	5.97	-10.03	1.106
Unit 3	13B run 3	518.15	309.80	38.87	34.47	4.40	14.68	298.86	6.34	-8.26	1.106
0		REEDH20	SHOUT	CINATECTAR	ATATA D				SNOD	STEAM	
- 37		FLOW	STM PRESS		TOT AIR A	DRAET			HEMIFLOW	ELOW-F	
•		KLBs/hr	DEG F	DEG F	KSCFM	" H2O	DEG F	DEG F	GPH	KLBs/hr	
Unit 1	· · · · · · · · · · · · · · · · · · ·	193.35	883.40	826.50	80.32	-0.10	274.66	1156.16	5.75	184.19	1.113
Unit 2		186.33	898.06	824.13	81.28	-0.09	271.54	1172.85	4.37	184.17	1.113
Unit 3		190.60	900.56	827.40	82.97	-0.25	280.97	1167.53	6.07	184.24	1.113

٦

-

Plant Name: NBWD General Average Report Reporting Period: 03/16/2010 to 03/16/2010

.

Page: 1

Site Name: UNIT1 Data Averaging Type: 6m Time of Report: 03/18/10 13:21 Rolling Average Interval: 1

		OPACITY1	
Date	Time	(PERCENT)	
03/16/10	07:18	2	
	07:24	2	
	07:30	2	
	07:36	2	
	07:42	2	
	07:48	2	
	07:54	2	
	08:00	2	
	08:06	2	
	08:12	2	
	08:19	2	
	08:24	2	
	08:30	2	
	08:36	2	
	08:42	2	
	08:48	2	
	08:54	2	
	09:00	2	
	09:06	2	
	09:12	2	
	09:18	2	
	09:24	2	
	09:30	2	
Av	erage =	2	
Geometric	Avg. =	2	
Ma	ximum =	2	
Mi	nimum -	2	
Possible V	alues =	23	
Included V		23	
	Total 🛥	43	

- excluded values (missing, OOC, invalid, suspect) ٠

- missing <
- out-of-control т
- invalid Ι
- 8 - suspect
- Ħ exceedance
- F stack not operating
- invalid (PADER) в
- missing data substituted σ

-999 - missing value

Plant Name: NBWD General Average Report Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT1 Data Averaging Typ

Data Averaging Type: 6m

Time of Report: 03/18/10 13:21 Rolling Average Interval: 1

		OPACITY:	1
Date	Time	(PERCENT)
03/16/10	10:00		2
	10:06		2
	10:12		2
	10:18		2
	10:24		2
	10:30		2
	10:36		2
	10:42		2
	10:48		2
	10:54		2
	11:00		2
	11:06		2
	11:12		2
	11:18		2
	11:24		2
	11:30		2
	11:36		2
	11:42		2
	11:48		2
	11:54		2
	12:00		2
	12:06		2

Average	=	2
Geometric Avg.	=	2
Maximum	=	2
Minimum	=	2
Possible Values	=	22
Included Values	•	22
Total	=	40

excluded values (missing, OOC, invalid, suspect)

- < missing
- T Out-of-control
- I invalid
- S Suspect
- H exceedance
- F stack not operating
- B invalid (PADER)

U - missing data substituted

-999 - missing value

Plant Name: NBWD General Average Report Reporting Period: 03/16/2010 to 03/16/2010

Site Name: UNIT1 Data Averaging Type: 6m Time of Report: 03/18/10 13:22 Rolling Average Interval: 1

		OPACITY1	
Date	Time	(PERCENT)
03/16/10	12:36		2
	12:42		2
	12:48		2
	12:54		2
	13:00		2
	13:06		2
	13:12		2
	13:18		2
	13:24		2
	13:30		2
	13:36		2
	13:42		2
	13:48		2
	13:54		2
	14:00		2
	14:06		2
	14:12		2
	14:18		2
	14:24		2
	14:30		2
	14:36		2
	14:42		2
	arage =		2
Geometric	-		2
	cimum =		2
	nimum =		2
Possible Va		2	
Included Va		2	
1	Cotal =	4	2

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

s - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

-999 - missing value

Page: 1

Plant Name: NBWD General Average Report Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT2 Data Averaging Type: 6m Time of Report: 03/18/10 13:23 Rolling Average Interval: 1

		OPACITY2
Date	Time	(PERCENT)
03/18/10	07:06	0
	07:12	0
	07:18	0
	07:24	0
	07:30	0
	07:36	0
	07:42	0
	07:48	0
	07:54	0
	08:00	0
	08:06	0
	08:12	0
	08:18	0
	08:24	0
	08:30	0
	08:36	0
	08:42	0
	08:48	0
	08:54	0
	09:00	0
	09:06	0
	09:12	0
	09:18	0
_		

Average	-	0
Geometric Avg.	•	
Maximum	-	0
Minimum	-	0
Possible Values	-	23
Included Values	=	23
Total	=	0

- excluded values (missing, OOC, invalid, suspect)
- < missing
- T out-of-control
- I invalid
- S suspect
- H exceedance
- F stack not operating
- B invalid (PADER)
- U missing data substituted
- -999 missing value
- -888 value could not be calculated

١

Plant Name: NBWD General Average Report Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT2 Data Averaging Type: 6m Time of Report: 03/18/10 13:24 Rolling Average Interval: 1

			OPACITY2	
··•	Date	Time	(PERCENT)	
	03/18/10	09:48	0	
		09:54	0	
		10:00	0	
		10:06	0	
		10:12	0	
		10:19	0	
		10:24	0	
		10:30	0	
		10:36	0	
		10:42	0	
		10:48	O	
		10:54	0	
		11:00	0	
		11:06	O	
		11:12	o	
		11:19	0	
		11:24	0	·
		11:30	0	
		11:36	D	
		11:42	0	
		11:48	0	
		11:54	O	
		12:00	0	
-				
	Ave	erage =	0	
	Geometric	λ vg. =		
	Max	cimum =	0	
	Mir	1mum =	D	
P	ossible Va	alues =	23	
1	ncluded Va	lues -	23	

excluded values (missing, OOC, invalid, suspect)

0

< - missing

T - out-of-control

I - invalid

8 - suspect

H - exceedance

F - stack not operating

Total =

B - invalid (PADER)

U - missing data substituted

-999 - missing value

Plant Name: NBWD General Average Report Reporting Period: 03/18/2010 to 03/18/2010

Site Name: UNIT2 Data Averaging Type: 6m

Time of Report: 03/18/10 14:42 Rolling Average Interval: 1

		UTACITI	
Date	Time	(PERCENT)
03/18/10	12:24		0
	12:30		0
	12:36		0
	12:42		0
	12:48		0
	12:54		0
	13:00		0
	13:06		0
	13:12		0
	13:18		0
	13:24		0
	13:30		0
	13:36		0
	13:42		0
	13:48		0
	13:54		0
	14:00		0
	14:06		0
	14:12		0
	14:18		0
	14:24		0
	14:30		0
	14:36		0
Ave	rage =		0
Geometric	Avg. =		
Max	imum =		0
Min	imum =		0

OPACITY2

Maximum	-	0
Minimum	=	0
Possible Values	=	23
Included Values	=	23
Total	=	0

excluded values (missing, OOC, invalid, suspect)

- < missing
- T out-of-control
- I invalid
- S suspect
- H exceedance
- F stack not operating
- B invalid (PADER)
- U missing data substituted
- -999 missing value
- -988 value could not be calculated

C - 43

Plant Name: NBWD General Average Report Reporting Period: 03/17/2010 to 03/17/2010

Site Name: UNIT3 Data Averaging Type: 6m Time of Report: 03/18/10 13:22 Rolling Average Interval: 1

		OPACITY:	3
Date	Time	e (PERCENT)
03/17/10	06:48	1	0
	06:54	ł	0
	07:00)	1
	07:06	5	1
	07:12	8	2
	07:18	1	2
	07:24		1
	07:30)	1
	07:36	;	1
	07:42	2	1
	07:46	3	1
	07:54	6	1
	08:00)	1
	08:06	5	1
	08:12	2	2
	08:18	1	2
	08:24	1	2
	08:30)	2
	08:36	5	2
	08:42	2	2
	08:48	1	1
	08:54	ł	1
	09:00)	2
L L	Average =	•	1
Gøometri	ic Avg. =	•	1
3	faximum =		2
3	(inimum =		0
Possible		-	3
Included	Values =	. 1	3
	Total =	. 2	9

excluded values (missing, OOC, invalid, suspect)

< - missing

T - out-of-control

I - invalid

S - suspect

H - exceedance

F - stack not operating

B - invalid (PADER)

U - missing data substituted

-999 - missing value

Page: 1

Plant Name: NBWD General Average Report Reporting Period: 03/17/2010 to 03/17/2010

Site	Name :	UNIT	:3
Data	Averaç	ging	Type:

6m

OPACITY3

Time of Report: 03/18/10 13:23 Rolling Average Interval: 1

		OFACILLD	
Date	Time	(PERCENT	
03/17/10	09:24	:	2
	09:30	:	2
	09:36	:	2
	09:42	:	2
	09:48	:	1
	09:54	:	1
	10:00	1	0
	10:06		
	10:12		D
	10:18	1	D
	10:24		
	10:30	:	L
	10:36	:	1
	10:42	:	1
	10:48	:	L
	10:54	:	L
	11:00		D
	11:06		D
	11:12		0
	11:18		D
	11:24	:	1
	11:30	:	1
	11:36		1
Ave	rage =	:	1
Geometric		:	1
	imum =	:	2
	imum =		

Minimum	=	0
Possible Values	-	23
Included Values	=	23
Total	-	18

excluded values (missing, OOC, invalid, suspect)

- < missing
- T out-of-control
- I invalid
- s suspect
- H exceedance
- F stack not operating
- B invalid (PADER)
- U missing data substituted
- -999 missing value
- -888 value could not be calculated

Plant Name: NBWD General Average Report Reporting Period: 03/17/2010 to 03/17/2010

Site Name: UNIT3 Data Averaging Type: 6m Time of Report: 03/18/10 13:23 Rolling Average Interval: 1

1

		OPACITY3	
Date	Tine	(PERCENT)	
03/17/10	11:54	3	
	12:00	3	
	12:06	3	
	12:12	3	
	12:18	3	
	12:24	3	
	12:30	3	
	12:36	4	
	12:42	4	
	12:48	4	
	12:54	4	
	13:00	4	
	13:06	4	
	13:12	4	
	13:18	4	
	13:24	4	
	13:30	4	
	13:36	4	
	13:42	3	
	13:48	4	
	13:54	4	
	14:00	3	
	14:06	3	
	erage =	3	
Geometric	Avg. =	3	
Mas	cimum =	4	
, Mir	1mum =	3	
Possible Va	lues =	23	
Included Va	lues =	23	

excluded values (missing, OOC, invalid, suspect)

80

< - missing

T - out-of-control

- I invalid
- S suspect
- H exceedance
- F stack not operating

Total =

- B invalid (PADER)
- U missing data substituted
- -999 missing value
- -888 value could not be calculated

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-2

PARAMETERS			
			Í

This Page Intentionally Left Blank

.

USEPA Method 5/29 (Particulate/Metals) Sampling, Velocity and Moisture Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 16	Mar 16	Mar 16	
Start Tin	ne (approx.)	07:21	10:00	12:36	
Stop Tin	ne (approx.)	09:32	12:14	14:47	
Samplin	g Conditions				
Yd	Dry gas meter correction factor	0.9900	0.9900	0.9900	
C,	Pitot tube coefficient	0.8050	0.8050	0.8050	
P,	Static pressure (in. H ₂ O)	-10.0000	-10.0000	-10.1000	
Å	Sample location area (ft ²)	64.0000	64.0000	64.0000	
Pbar	Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
Dn	Nozzle diameter (in.)	0.2700	0.2700	0.2700	
O ₂	Oxygen (dry volume %)	9.5300	9.4600	9.7400	9.5767
CO ₂	Carbon dioxide (dry volume %)	9.8800	9.9300	9.8300	9.8800
N ₂ +CC	Nitrogen plus carbon monoxide (dry volume %)	80.5900	80.6100	80.4300	80.5433
VIc	Total Liquid collected (ml)	431.50	432.20	425.00	
Vm	Volume metered, meter conditions (ft ³)	80.2420	81.5000	82.9000	
Tm	Dry gas meter temperature (°F)	64.3800	68.7000	75.1800	
T,	Sample temperature (°F)	293.2800	295.0400	300.8000	296.3733
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.2680	1.3032	1.3268	
θ	Total sampling time (min)	125.0	125.0	125.0	
Flow Re	sults				
V _{wstd}	Volume of water collected (fl ³)	20.3064	20.3393	20.0005	20.2154
V _{mstd}	Volume metered, standard (dscf)	80.5525	81.1539	81.5531	81.0865
P.	Sample gas pressure, absolute (in. Hg)	29.3147	29.3147	29.3074	29.3123
Pv	Vapor pressure, actual (in. Hg)	29.3147	29.3147	29.3074	29.3123
Bwo	Moisture measured in sample (% by volume)	20.1335	20.0401	19.6945	19.9560
B _{wa}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	20.1335	20.0401	19.6945	19.9560
V∆P	Velocity head (√in. H₂O)	0.7507	0.7494	0.7563	0.7521
Mď	MW of sample gas, dry (lb/lb-mole)	29.9620	29.9672	29.9624	29.9639
Ms	MW of sample gas, wet (lb/lb-mole)	27.5536	27.5690	27.6065	27.5764
Vs	Velocity of sample (ft/sec)	49.8922	49.8492	50.4724	50.0712
%1	Isokinetic sampling (%)	98.7688	99.7081	99.3122	99.2630
Qa	Volumetric flow rate, actual (acfm)	191,586	191,421	193,814	192,274
Q,	Volumetric flow rate, standard (scfm)	131,572	131,153	131,754	131,493
Q _{std}	Volumetric flow rate, dry standard (dscfm)	105,082	104,870	105,806	105,252
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	85,956	86,310	84,949	85,738
Q,	Volumetric flow rate, actual (acf/hr)	11,495,154	11,485,251	11,628,832	11,536,412
Q,	Volumetric flow rate, standard (scf/hr)	7,894,347	7,869,160	7,905,230	7,889,579
Q _{atd}	Volumetric flow rate, dry standard (dscf/hr)	6,304,942	6,292,173	6,348,333	6,315,149
Q	Volumetric flow rate, actual (m ³ /hr)	325,550	325,269	329,335	326,718
Q,	Volumetric flow rate, standard (m ³ /hr)	223,573	222,859	223,881	223,438
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	178,560	178,198	179,789	178,849
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	146,059	146,661	144,348	145,689
Q,	Volumetric flow rate, normal (Nm ³ /hr)	208,329	207,664	208,616	208,203
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	166,385	166,048	167,530	166,655
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	136,101	136,661	134,506	135,756

Comments:

Average includes 3 runs.

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright © 2006 Clean Air Engineering Inc.

QA/QC

041310 090118 JMC @

Date _____

USEPA Method 5/29 **Filterable Particulate Parameters**

Run No		1	2	3	Average
Date (20)10)	Mar 16	Mar 16	Mar 16	
•	ne (approx.)	07:21	10:00	12:36	
	ne (approx.)	09:32	12:14	14:47	
-	s Conditions				
Rp	Steam Production Rate (Klbs/hour)	183.9	184.4	183.4	183.9
Pí	Fabric Filter Inlet Temperature (°F)	310	313	320	314
Fa	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F,	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
		, .			
	nditions Oxygen (dry volume %)	9.5300	9.4600	9.7400	9.5767
O2 CO2	Carbon dioxide (dry volume %)	9.8800	9.9300	9.8300	9.8800
T _s	Sample temperature (°F)	293.2800	295.0400	300.8000	296.3733
B _w	Actual water vapor in gas (% by volume)	20.1335	20.0401	19.6945	19.9560
		20.1303	20.0401	19.0040	13.5500
Gas Flo		404 500	104 104	400.044	402.074
Q, ′	Volumetric flow rate, actual (acfm)	191,586	191,421	193,814	192,274
Q₅	Volumetric flow rate, standard (scfm)	131,572	131,153	131,754	131,493
Q _{std}	Volumetric flow rate, dry standard (dscfm)	105,082	104,870	105,806	105,252
Q _{std7}	Volumetric flow rate, dry std@ $7\%O_2$ (dscfm)	85,956	86,310	84,949	85,738
Q,	Volumetric flow rate, actual (acf/hr)	11,495,154	11,485,251	11,628,832	11,536,412
Q,	Volumetric flow rate, standard (scf/hr)	7,894,347	7,869,160	7,905,230	7,889,579
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,304,942	6,292,173 325,269	6,348,333	6,315,149
Q,	Volumetric flow rate, actual (m ³ /hr)	325,550		329,335	326,718
Q,	Volumetric flow rate, standard (m ³ /hr)	223,573	222,859	223,881	223,438
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	178,560	178,198 146,661	179,789	178,849 145,689
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	146,059 208,329	207,664	144,348 208,616	208,203
Q, Q.	Volumetric flow rate, normal (Nm ³ /hr)	166,385	166,048	167,530	166,655
Q _{std} Q _{std7}	Volumetric flow rate, dry normal (Nm ³ /hr) Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	136,101	136,661	134,506	135,756
		100,101	100,001	134,000	100,700
Samplin	-	00 5505	04 4520	04 5504	04 0065
V _{mstd}	Volume metered, standard (dscf)	80.5525	81.1539	81.5531	81.0865
%I	Isokinetic sampling (%)	98.7688	99.7081	99.3122	99.2630
Laborate	ory Data				
m _{filter}	Matter collected on filter(s) (g)	0.00010	0.00010	0.00010	
m,	Matter collected in solvent rinse(s) (g)	0.00049	0.00218	0.00001	
mn	Total particulate matter collected (g)	0.00049	0.00218	<0.00020	
Filterabl	e Particulate Results				
C_{sd}	Particulate Concentration (lb/dscf)	1.3509E-08	5.9287E-08	<5.4075E-09	<2.6068E-08
C _{sd7}	Particulate Concentration @7% O ₂ (lb/dscf)	1.6516E-08	7.2035E-08	<6.7352E-09	<3.1762E-08
C _{sd12}	Particulate Concentration @12% CO ₂ (lb/dscf)	1.6408E-08	7.1646E-08	<6.6012E-09	<3.1552E-08
Ca	Particulate Concentration (lb/acf)	7.4098E-09	3.2480E-08	<2.9520E-09	<1.4281E-08
C _{sd}	Particulate Concentration (gr/dscf)	0.00009	0.00041	<0.00004	<0.00018
C _{sd7}	Particulate Concentration @7% O ₂ (gr/dscf)	0.00012	0.00050	<0.00005	<0.00022
C _{sd12}	Particulate Concentration @12% CO ₂ (gr/dscf)	0.00011	0.00050	< 0.00005	< 0.00022
Ca	Particulate Concentration (gr/acf)	0.00005	0.00023	<0.00002	< 0.00010
Csd	Particulate Concentration (mg/dscm)	0.2163	0.9494	<0.0866	<0.4174
C _{sd7}	Particulate Concentration @7% O ₂ (mg/dscm)	0.2645	1.1535	<0.1079	<0.5086
C _{ad12}	Particulate Concentration @12% CO ₂ (mg/dscm)	0.2628	1.1473	< 0.1057	< 0.5053
C,	Particulate Concentration (mg/m ³ (actual,wet))	0.1187	0.5201	< 0.0473	<0.2287
C _{sd}	Particulate Concentration (mg/Nm ³ dry)	0.2322	1.0189	<0.0929	<0.4480
C _{ad7}	Particulate Concentration @7% O_2 (mg/Nm ³ dry)	0.2838	1.2380	<0.1157	<0.5458
C _{ad12}	Particulate Concentration @12% CO ₂ (mg/Nm ³ dry)	0.2820	1.2313	<0.1134	<0.5422
E _{lb/hr}	Particulate Rate (lb/hr)	0.0852	0.3730	< 0.0343	<0.1642
E _{kg/hr}	Particulate Rate (kg/hr)	0.0386	0.1692	< 0.0156	<0.0745
EThyr	Particulate Rate (Ton/yr)	0.3731	1.6339	<0.1504	<0.7191
E _{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.00024	0.0010	<0.00010	< 0.00046
EFc	Particulate Rate - F _c -based (lb/MMBtu)	0.00025	0.0011	<0.00010	<0.00048
Commer					041410 124302 JM/C@C_P
Averag	je includes 3 runs.				1 H C W_F

Prepared by Clean Air Engineering Proprietary Software SS EPA 5-1 Version 2008-08b

Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 5/29 Mercury (Hg) Emission Parameters

Run No	D.	1	2	3	Average
Date (2	010)	Mar 16	Mar 16	Mar 16	
	ime (approx.)	07:21	10:00	12:36	
Stop Ti	me (approx.)	09:32	12:14	14:47	
Proces	s Conditions				
RP	Steam Production Rate (Klbs/hour)	183.9	184.4	183.4	183.9
P1	Fabric Filter Inlet Temperature (°F)	310	313	320	314
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F,	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	anditions				
O ₂	Oxygen (dry volume %)	9.5300	9.4600	9,7400	9.5767
CO2	Carbon dioxide (dry volume %)	9.8800	9.9300	9.8300	9.8800
Тs	Sample temperature (°F)	293.2800	295.0400	300.8000	296.3733
B _w	Actual water vapor in gas (% by volume)	20.1335	20.0401	19.6945	19.9560
Gas Flo	ow Rate				
Qa	Volumetric flow rate, actual (acfm)	191,586	191,421	193,814	1 92 ,274
Q,	Volumetric flow rate, standard (scfm)	131,572	131,153	131,754	131,493
Q _{std}	Volumetric flow rate, dry standard (dscfm)	105,082	104,870	105,806	105,252
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dscfm)	85,956	86,310	84,949	85,738
Q,	Volumetric flow rate, actual (acf/hr)	11,495,154	11,485,251	11,628,832	11,536,412
Q,	Volumetric flow rate, standard (scf/hr)	7,894,347	7,869,160	7,905,230	7,889,579
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,304,942	6,292,173	6,348,333	6,315,149
Qa	Volumetric flow rate, actual (m ³ /hr)	325,550	325,269	329,335	326,718
Q,	Volumetric flow rate, standard (m ³ /hr)	223,573	222,859	223,881	223,438
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	178,560	178,198	179, 78 9	178,849
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dry m3/hr)	146,059	146,661	144,348	145,689
Q,	Volumetric flow rate, normal (Nm ³ /hr)	208,329	207,664	208,616	208,203
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	166,385	166,048	167,530	166,655
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	136,101	136,661	134,506	135,7 56
Samplir	-				
V _{mstd}	Volume metered, standard (dscf)	80.5525	81.1539	81.5531	81.0865
%!	Isokinetic sampling (%)	98.7688	99.7081	99.3122	99.2630
Laborat	ory Data				
m _{n-1b}	Fraction 1B (µg)	<0.1000	<0.1000	<0.1000	
m _{n-2b}	Fraction 2B (µg)	7.7629	8.8151	9.7549	
m _{n-3a}	Fraction 3A (µg)	<0.2000	<0.2000	<0.2000	
m _{n-3b}	Fraction 3B (µg)	< 0.5000	<0.5000	<0.5000	
m _{n-3c}	Fraction 3C (µg)	<0.4000	<0.4000	<0.4000	
m'n	Total matter corrected for allowable blanks (µg)	7.7629	8.8151	9.7549	
	Results - Total				
C _{sd}	Concentration (Ib/dscf)	2.1250E-10	2.3951E-10	2.6375E-10	2.3859E-10
C _{sd7}	Concentration @7% O ₂ (lb/dscf)	2.5978E-10	2.9101E-10	3.2850E-10	2.9310E-10
C _{sd12}	Concentration @12% CO ₂ (lb/dscf)	2.5810E-10	2.8944E-10	3.2197E-10	2.8984E-10
Ca	Concentration (Ib/acf)	1.1655E-10	1.3122E-10	1.4398E-10	1.3058E-10
C _{sd}	Concentration (µg/dscm)	3.4029E+00	3.8354E+00	4.2236E+00	3.8206E+00
C _{sd7}	Concentration @7% O ₂ (µg/dscm)	4.1601E+00	4.6602E+00	5.2605E+00	4.6936E+00
C _{sd12}	Concentration @12% CO ₂ (µg/dscm)	4.1330E+00	4.6350E+00	5.1559E+00	4.6413E+00
C _{sd}	Concentration (mg/dscm)	3.4029E-03	3.8354E-03	4.2236E-03	3.8206E-03
C _{sd7}	Concentration @7% O2 (mg/dscm)	4.1601E-03	4.6602E-03	5.2605E-03	4.6936E-03
C _{sd12}	Concentration @12% CO ₂ (mg/dscm)	4.1330E-03	4.6350E-03	5.1559E-03	4.6413E-03
Ca	Concentration (µg/m ³ (actual,wet))	1.8664E+00	2.1012E+00	2.3057E+00	2.0911E+00
Csd	Concentration (µg/Nm ³ dry)	3.6519E+00	4.1161E+00	4.5326E+00	4.1002E+00
C _{sd7}	Concentration @7% O ₂ (µg/Nm ³ dry)	4.4644E+00	5.0012E+00	5.6454E+00	5.0370E+00
C _{sd12}	Concentration @12% CO ₂ (µg/Nm ³ dry)	4.4354E+00	4.9741E+00	5.5332E+00	4.9809E+00
Elp/hr	Rate (lb/hr)	1.3398E-03	1.5070E-03	1.6744E-03	1.5071E-03
E _{g/s}	Rate (g/s)	1.6878E-04	1.8985E-04	2.1093E-04	1.8985E-04
E _{T/yr}	Rate (Ton/yr)	5.8683E-03	6.6009E-03	7.3337E-03	6.6009E-03
EFd	Rate - Fd-based (lb/MMBtu)	3.7381E-06	4.1875E-06	4.7270E-06	4.2175E-06
E _{F c} Prepared by Cle	Rate - Fc-based (Ib/MMBtu) an Ar Engineering Proprietary Software	3.9144E-06	4.3898E-06	4.8832E-06	4.3958E-06
55 Metals-1 Ver					

Copyright © 2008 Clean Air Engineering Inc.

USEPA Method 5/29 Beryllium (Be) Emission Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 16	Mar 16	Mar 16	
-	ne (approx.)	07:21	10:00	12:36	
	e (approx.)	09:32	12:14	14:47	
	• • • •				
	Conditions	192.0	104.4	192.4	402.0
R _P	Steam Production Rate (Klbs/hour)	183.9	184.4	183.4	183.9
P ₁	Fabric Filter Inlet Temperature (°F)	310	313	320	314
F₄	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F.	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8.760	8,760	8,760	8,760
Gas Cor	nditions				
Oz	Oxygen (dry volume %)	9.5300	9.4600	9,7400	9.5767
CO ₂	Carbon dioxide (dry volume %)	9.8800	9.9300	9.8300	9.8800
Τs	Sample temperature (°F)	293.2800	295.0400	300.8000	296.3733
B,	Actual water vapor in gas (% by volume)	20.1335	20.0401	19.6945	19.9560
Gas Flov	w Pate				
Q,	Volumetric flow rate, actual (acfm)	191,586	191,421	193,814	192,274
Q,	Volumetric flow rate, standard (scfm)	131,572	131,153	131,754	131,493
Q _{sto}	Volumetric flow rate, dry standard (dscfm)	105,082	104.870	105,806	105,252
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	85,956	86,310	84,949	85,738
Q _a	Volumetric flow rate, actual (acf/hr)	11,495,154	11,485,251	11,628,832	11,536,412
Q,	Volumetric flow rate, standard (scf/hr)	7,894,347	7,869,160	7,905,230	7,889,579
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,304,942	6,292,173	6,348,333	6,315,149
Qa	Volumetric flow rate, actual (m ³ /hr)	325,550	325,269	329,335	326,718
Q,	Volumetric flow rate, standard (m ³ /hr)	223,573	222,859	223,881	223,438
-	, , ,	178,560	178,198	179,789	178,849
Q _{std}	Volumetric flow rate, dry standard (dry m³/hr) Volumetric flow rate, dry std@7%O₂ (dry m³/hr)	146,059	146,661	144,348	145,689
Q _{std7}		208,329	207,664	208,616	208,203
Q,	Volumetric flow rate, normal (Nm ³ /hr)	166,385	166,048	167,530	166,655
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	136,101	136,661	134,506	135,756
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	100,107	150,007	734,000	100,700
Samplin	g Data				
V _{mstd}	Volume metered, standard (dscf)	80.5525	81.1539	81.5531	81.0865
%!	IsokInetic sampling (%)	98.7688	99.7081	99.3122	99.2630
Laborato	ory Data				
m	Total matter corrected for allowable blanks (µg)	<0.0500	< 0.0500	< 0.0500	
	- Results Total				
	m Results - Total	<1.3687E-12	<1.3585E-12	<1.3519E-12	<1.3597E-12
C _{sd}	Concentration (lb/dscf) Concentration @7% O_2 (lb/dscf)	<1.6732E-12	<1.6507E-12	<1.6838E-12	
C _{sd7}		<1.6624E-12		<1.6503E-12	<1.6515E-12
C _{ad12}	Concentration @12% CO ₂ (lb/dscf) Concentration (lb/acf)	<7.5070E-13		<7.3801E-13	
C,	Concentration (µg/dscm)	<2.1917E-02	<2.1755E-02	<2.1648E-02	
C _{sd}	Concentration @7% O ₂ (µg/dscm)	<2.6794E-02	<2.6433E-02	<2.6964E-02	<2.6730E-02
C _{sd7}	Concentration @12% CO ₂ (µg/dscm)	<2.6620E-02	<2.6455E-02	<2.6427E-02	<2.6446E-02
C _{sd12}		<2.1917E-05	<2.0250E-02	<2.1648E-05	<2.1774E-05
C _{sd}	Concentration (mg/dscm)	<2.6794E-05	<2.6433E-05	<2.6964E-05	<2.6730E-05
C _{sd7}	Concentration @7% O ₂ (mg/dscm) Concentration @12% CO ₂ (mg/dscm)	<2.6620E-05		<2.6427E-05	<2.6446E-05
C _{sd12}			<2.6290E-05		
C _a	Concentration (µg/m ³ (actual,wet))	<1.2021E-02	<1.1918E-02	<1.1818E-02	<1.1919E-02
C _{sd}	Concentration (μ g/Nm ³ dry)	<2.3521E-02	<2.3347E-02	<2.3233E-02 <2.8937E-02	<2.3367E-02
C _{sd7}	Concentration @7% O_2 (µg/Nm ³ dry)	<2.8755E-02	<2.8367E-02		<2.8686E-02
C _{sd12}	Concentration @12% CO ₂ (µg/Nm ³ dry)	<2.8568E-02	<2.8214E-02	<2.8361E-02	<2.8381E-02
Elb/hr	Rate (lb/hr)	<8.6294E-06	<8.5481E-06	<8.5822E-06	<8.5866E-06
E _{g/s}	Rate (g/s)	<1.0871E-06	<1.0769E-06	<1.0812E-06	<1.0817E-06
Ettyr	Rate (Ton/yr)	<3.7797E-05	<3.7441E-05	<3.7590E-05	<3.7609E-05
Efd	Rate - Fd-based (Ib/MMBtu)	<2.4077E-08	<2.3752E-08	<2.4229E-08	<2.4019E-08
E _{Fe}	Rate - Fc-based (lb/MMBtu)	<2.5212E-08	<2.4900E-08	<2.5030E-08	<2.5047E-08

041410 124302 JMO@_M

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Vorsion 2008-12a

Copyright @ 2006 Clown Air Engineering Inc.

USEPA Method 5/29 Cadmium (Cd) Emission Parameters

e.

Run N	0.	1	2	3	Average
Date (2	2010)	Mar 16	Mar 16	Mar 16	i
Start Ti	ime (approx.)	07:21	10:00	12:36	i
Stop TI	me (approx.)	09:32	12:14	14:47	
Proces	s Conditions				
RP	Steam Production Rate (Klbs/hour)	183.9	184.4	183.4	183.9
P ₁	Fabric Filter Inlet Temperature (°F)	310	313	320	314
Fa	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F.	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	
Gas Co	onditions				
O2	Oxygen (dry volume %)	9.5300	9.4600	9.7400	9.5767
CO₂	Carbon dioxide (dry volume %)	9.8800	9.9300	9.8300	9.8800
Т	Sample temperature (°F)	293.2800	295.0400	300.8000	296.3733
B _w	Actual water vapor in gas (% by volume)	20.1335	20.0401	19.6945	19.9560
Gas Flo	ow Rate				
Q,	Volumetric flow rate, actual (acfm)	191,586	191,421	193,814	192,274
Q,	Volumetric flow rate, standard (scfm)	131,572	131,153	131,754	131,493
Q _{std}	Volumetric flow rate, dry standard (dscfm)	105,082	104,870	105,806	105,252
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	85,956	86,310	84,949	85,738
Q _a	Volumetric flow rate, actual (acf/hr)	11,495,154	11,485,251	11,628,832	11,536,412
Q,	Volumetric flow rate, standard (scf/hr)	7,894,347	7,869,160	7,905,230	7,889,579
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,304,942	6,292,173	6,348,333	6,315,149
Q _a	Volumetric flow rate, actual (m ³ /hr)	325,550	325,269	329,335	326,718
Q _s	Volumetric flow rate, actual (m /m) Volumetric flow rate, standard (m ³ /hr)	223,573	222,859	223,881	223,438
-		178,560	178,198	179,789	223,438 178,849
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)				
Q _{std7} Qa	Volumetric flow rate, dry std@7% O_2 (dry m ³ /hr)	146,059	146,661 207,664	144,348	145,689
	Volumetric flow rate, normal (Nm ³ /hr)	208,329		208,616	208,203
Q _{std} Q _{std7}	Volumetric flow rate, dry normal (Nm ³ /hr) Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	166,385 136,101	166,048 136,661	167,530 134,506	166,655 135,756
	,	100,101	100,001	104,000	100,700
-	ng Data	00 5505	04 4520	04 6534	01 0005
V _{mstd}	Volume metered, standard (dscf)	80.5525	81.1539	81.5531	81.0865
%	Isokinetic sampling (%)	98.7688	99.7081	99.3122	99.2630
	ory Data				
m'n	Total matter corrected for allowable blanks (µg)	<0.2000	0.2093	<0.2000	
	m Results - Total				
C _{sd}	Concentration (lb/dscf)	<5.4747E-12	5.6863E-12	<5.4075E-12	<5.5228E-12
C _{ad7}	Concentration @7% O_2 (lb/dscf)	<6.6929E-12	6.9090E-12	<6.7352E-12	<6.7790E-12
C _{sd12}	Concentration @12% CO ₂ (lb/dscf)	<6.6494E-12	6.8717E-12	<6.6012E-12	<6.7074E-12
Ca	Concentration (lb/acf)	<3.0028E-12	3.1152E-12	<2.9520E-12	<3.0234E-12
Csd	Concentration (µg/dscm)	<8.7669E-02	9.1058E-02	<8.6594E-02	<8.8440E-02
C _{sd7}	Concentration @7% O ₂ (µg/dscm)	<1.0718E-01	1.1064E-01	<1.0785E-01	<1.0856E-01
C _{sd12}	Concentration @12% CO ₂ (µg/dscm)	<1.0648E-01	1.1004E-01	<1.0571E-01	<1.0741E-01
C _{sd}	Concentration (mg/dscm)	<8.7669E-05	9.1058E-05	<8.6594E-05	<8.8440E-05
C _{sd7}	Concentration @7% O ₂ (mg/dscm)	<1.0718E-04	1.1064E-04	<1.0785E-04	<1.0856E-04
		<1.0648E-04	1.1004E-04	<1.0571E-04	<1.0741E-04
Csd12	Concentration @12% CO ₂ (mg/dscm)	<1.0040E-04	1.10046-04		
	Concentration @12% CO ₂ (mg/dscm) Concentration (µg/m ³ (actual,wet))	<4.8086E-02	4.9886E-02	<4.7273E-02	<4.8415E-02
C _{sd12}					<4.8415E-02 <9.4912E-02
C _{sd12} C _a C _{sd}	Concentration (µg/m ³ (actual,wet))	<4.8086E-02	4.9886E-02 9.7721E-02	<4.7273E-02	
C _{sd12} C _a C _{sd} C _{sd7}	Concentration (µg/m ³ (actual,wet)) Concentration (µg/Nm ³ dry)	<4.8086E-02 <9.4084E-02	4.9886E-02	<4.7273E-02 <9.2930E-02	<9.4912E-02
C _{sd12} C _a C _{sd} C _{sd7} C _{sd12}	Concentration (μ g/m ³ (actual,wet)) Concentration (μ g/Nm ³ dry) Concentration @7% O ₂ (μ g/Nm ³ dry) Concentration @12% CO ₂ (μ g/Nm ³ dry)	<4.8086E-02 <9.4084E-02 <1.1502E-01	4.9886E-02 9.7721E-02 1.1873E-01 1.1809E-01	<4.7273E-02 <9.2930E-02 <1.1575E-01 <1.1344E-01	<9.4912E-02 <1.1650E-01 <1.1527E-01
C _{sd12} C _a C _{sd} C _{sd7} C _{sd12} E _{lb/hr}	Concentration (μ g/m ³ (actual,wet)) Concentration (μ g/Nm ³ dry) Concentration @7% O ₂ (μ g/Nm ³ dry) Concentration @12% CO ₂ (μ g/Nm ³ dry) Rate (lb/hr)	<4.8086E-02 <9.4084E-02 <1.1502E-01 <1.1427E-01 <3.4518E-05	4.9886E-02 9.7721E-02 1.1873E-01 1.1809E-01 3.5779E-05	<4.7273E-02 <9.2930E-02 <1.1575E-01	<9.4912E-02 <1.1650E-01 <1.1527E-01 <3.4875E-05
C _{sd12} C _a C _{sd} C _{sd7} C _{sd12} E _{lb/hr} E _{g/s}	Concentration (μ g/m ³ (actual,wet)) Concentration (μ g/Nm ³ dry) Concentration @7% O ₂ (μ g/Nm ³ dry) Concentration @12% CO ₂ (μ g/Nm ³ dry) Rate (lb/hr) Rate (g/s)	<4.8086E-02 <9.4084E-02 <1.1502E-01 <1.1427E-01 <3.4518E-05 <4.3484E-06	4.9886E-02 9.7721E-02 1.1873E-01 1.1809E-01 3.5779E-05 4.5073E-06	<4.7273E-02 <9.2930E-02 <1.1575E-01 <1.1344E-01 <3.4329E-05 <4.3246E-06	<9.4912E-02 <1.1650E-01 <1.1527E-01 <3.4875E-05 <4.3934E-06
C _{sd12} C _a C _{sd} C _{sd7} C _{sd12} E _{lb/hr}	Concentration (μ g/m ³ (actual,wet)) Concentration (μ g/Nm ³ dry) Concentration @7% O ₂ (μ g/Nm ³ dry) Concentration @12% CO ₂ (μ g/Nm ³ dry) Rate (lb/hr)	<4.8086E-02 <9.4084E-02 <1.1502E-01 <1.1427E-01 <3.4518E-05	4.9886E-02 9.7721E-02 1.1873E-01 1.1809E-01 3.5779E-05	<4.7273E-02 <9.2930E-02 <1.1575E-01 <1.1344E-01 <3.4329E-05	<9.4912E-02 <1.1650E-01 <1.1527E-01 <3.4875E-05

041410 124302 ЈМ D @_M

Prepared by Clean Air Engineering Proprietary Software SS Motals-1 Version 2006-12# Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 5/29 Lead (Pb) Emission Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 16	Mar 16	Mar 16	
•	ne (approx.)	07:21	10:00	12:36	
	ne (approx.)	09:32	12:14	14:47	
-					
	Conditions Steam Production Rate (Klbs/hour)	183.9	184.4	183.4	183.9
R _P P1	Fabric Filter Inlet Temperature (°F)	310	313	320	314
-		9,570	9,570	9,570	9,570
Fa	Oxygan-based F-factor (dscf/MMBtu) Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
F _e	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Сар	Capacity lactor (nours year)	0,100	0,700	0,700	0,700
Gas Cor		0 5300	0.4500	0 7/00	0.5707
O₂	Oxygen (dry volume %)	9.5300	9.4600	9.7400	9.5767
CO₂	Carbon dioxide (dry volume %)	9.8800	9.9300	9.8300	9.8800
T,	Sample temperature (°F)	293.2800	295.0400	300.8000	296.3733
B,	Actual water vapor in gas (% by volume)	20.1335	20.0401	19.6945	19.9560
Gas Flo	w Rate				
Q,	Volumetric flow rate, actual (acfm)	191,586	191,421	193,814	192,274
Q,	Volumetric flow rate, standard (scfm)	131,572	131,153	131,754	131,493
Q _{std}	Volumetric flow rate, dry standard (dscfm)	105,082	104,870	105,806	105,252
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	85,956	86,310	84,949	85,738
Q,	Volumetric flow rate, actual (acf/hr)	11,495,154	11,485,251	11,628,832	11,536,412
Q,	Volumetric flow rate, standard (scf/hr)	7,894,347	7,869,160	7,905,230	7,889,579
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,304,942	6,292,173	6,348,333	6,315,149
Q,	Volumetric flow rate, actual (m ³ /hr)	325,550	325,269	329,335	326,718
Q,	Volumetric flow rate, standard (m ³ /hr)	223,573	222,859	223,881	223,438
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	178,560	178,19 8	179,789	178,849
Q _{sto7}	Volumetric flow rate, dry std@7%O2 (dry m3/hr)	146,059	146,66 1	144,348	145,689
Q,	Volumetric flow rate, normal (Nm ³ /hr)	208,329	207,664	208,616	208,203
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	166,385	166,048	167,530	166,655
Q _{std7}	Volumetric flow rate, dry normal @7%O2 (Nm3/hr)	136,101	136,661	134,506	135,756
Samplin	n Data				
V _{mstd}	Volume metered, standard (dscf)	80.5525	81.1539	81.5531	81.0865
%1	Isokinetic sampling (%)	98.7688	99.7081	99.3122	99.2630
	ory Data Total matter corrected for allowable blanks (µg)	1.0847	1.1424	1.2738	
m _n	I Dial matter confected for allowable blanks (pg)	1.0047	1.1727	1.2750	
	sults - Total				
C₅⊲	Concentration (lb/dscf)	2.9693E-11	3.1040E-11	3.4441E-11	3.1725E-11
	Concentration @7% O ₂ (lb/dscf)	3.6300E-11	3.7714E-11	4.2897E-11	3.8971E-11
C _{sd12}	Concentration @12% CO ₂ (lb/dscf)	3.6064E-11	3.7510E-11	4.2044E-11	3.8540E-11
C,	Concentration (lb/acf)	1.6286E-11	1.7005E-11	1.8802E-11	1.7364E-11
C _{sd}	Concentration (µg/dscm)	4.7549E-01	4.9706E-01	5.5153E-01	5.0803E-01
C _{sd7}	Concentration @7% O ₂ (µg/dscm)	5.8130E-01	6.0394E-01	6.8694E-01	6.2406E-01
C _{sd12}	Concentration @12% CO ₂ (µg/dscm)	5.7752E-01	6.0068E-01	6.7328E-01	6.1716E-01
Csd	Concentration (mg/dscm)	4.7549E-04	4.9706E-04	5.5153E-04	5.0803E-04
C _{sd7}	Concentration @7% O ₂ (mg/dscm)	5.8130E-04	6.0394E-04	6.8694E-04	6.2406E-04
C _{ad12}	Concentration @12% CO ₂ (mg/dscm)	5.7752E-04	6.0068E-04	6.7328E-04	6.1718E-04
C,	Concentration (µg/m ³ (actual,wet))	2.6080E-01	2.7231E-01	3.0109E-01	2.7807E-01
C ^{sd}	Concentration (µg/Nm ³ dry)	5.1028E-01	5.3343E-01	5.9189E-01	5.4520E-01
C _{sd7}	Concentration @7% O ₂ (µg/Nm ³ dry)	6.2383E-01	6.4814E-01	7.3721E-01	6.6972E-01
C _{sd12}	Concentration @12% CO ₂ (µg/Nm ³ dry)	6.1978E-01	6.4463E-01	7.2255E-01	6.6232E-01
Elotv	Rate (lb/hr)	1.8721E-04	1.9531E-04	2.1865E-04	2.0039E-04
E _{g/s}	Rate (g/s)	2.3584E-05	2.4604E-05	2.7544E-05	2.5244E-05
ET/yr	Rate (Ton/yr)	8.1999E-04	8.5545E-04	9.5767E-04	8.7770E-04
E _{Fd}	Rate - Fd-based (lb/MMBtu)	5.2234E-07	5.4269E-07	6.1727E-07	5.6077E-07
EFe	Rate - Fc-based (lb/MMBtu)	5.4698E-07	5.6891E-07	6.3767E-07	5.8452E-07

041410 124302 JMO@_M

USEPA Method 13B (Total Fluorides) Sampling, Velocity and Moisture Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 17	Mar 17	Mar 17	
Start Tin	ne (approx.)	11:46	13:15	14:45	
Stop Tin	ne (approx.)	12:56	14:27	15:53	
Samplin	ig Conditions				
Y _d	Dry gas meter correction factor	0.9900	0.9900	0.9900	
C,	Pitot tube coefficient	0.8120	0.8120	0.8120	
Pg	Static pressure (in. H ₂ O)	-10.3000	-10.4000	-10.4000	
A,	Sample location area (ft ²)	64.0000	64.0000	64.0000	
Phar	Barometric pressure (in. Hg)	30.00	30.00	30.00	30.0000
D _n	Nozzle diameter (in.)	0.2680	0.2680	0.2680	•
O2	Oxygen (dry volume %)	10.5500	10.1300	9,9600	10.2133
CO ₂	Carbon dioxide (dry volume %)	9.1100	9.6200	9.8000	9.5100
N₂+CO	Nitrogen plus carbon monoxide (dry volume %)	80.3400	80.2500	80.2400	80.2767
Vic	Total Liquid collected (ml)	225.50	232.30	232.30	
Vm	Volume metered, meter conditions (ft ³)	42.9350	42.9200	41.4700	
Tm	Dry gas meter temperature (°F)	68.2800	71.6000	69.7000	
T,	Sample temperature (°F)	302.6000	302.0400	302.6000	302.4133
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.4560	1.4736	1.3528	
θ	Total sampling time (min)	62.5	62.5	62.5	
Flow Res	sults				
V _{wstd}	Volume of water collected (ft ³)	10.6120	10.9320	10.9320	10.8254
Vmstd	Volume metered, standard (dscf)	42.7316	42.4517	41.1525	42.1120
P.	Sample gas pressure, absolute (in. Hg)	29.2426	29.2353	29.2353	29.2377
Pv	Vapor pressure, actual (in. Hg)	29.2426	29.2353	29.2353	29.2377
Bwo	Moisture measured in sample (% by volume)	19.8937	20.4782	20.9890	20.4536
B _{wa}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	19.8937	20.4782	20.9890	20.4536
√∆P	Velocity head (√in. H₂O)	0.7935	0.7993	0.7657	0.7862
Md	MW of sample gas, dry (lb/lb-mole)	29.8796	29.9444	29.9664	29.9301
Ma	MW of sample gas, wet (lb/lb-mole)	27.5163	27.4984	27.4548	27.4898
Vs	Velocity of sample (ft/sec)	53.6266	54.0190	51.8104	53.1520
%I	Isokinetic sampling (%)	100.1239	99.4233	101.2130	100.2534
Q,	Volumetric flow rate, actual (acfm)	205,926	207,433	198,952	204,104
Q,	Volumetric flow rate, standard (scfm)	139,349	140,436	134,596	138,127
Q _{std}	Volumetric flow rate, dry standard (dscfm)	111,627	111,678	106,345	109,883
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	83,118	86,530	83,699	84,449
Q _a	Volumetric flow rate, actual (acf/hr)	12,355,565	12,445,974	11,937,120	12,246,220
Qa	Volumetric flow rate, standard (scf/hr)	8,360,935	8,426,184	8,075,745	8,287,621
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,697,635	6,700,653	6,380,726	6,593,005
Qa	Volumetric flow rate, actual (m ³ /hr)	349,917	352,477	338,066	346,820
Q,	Volumetric flow rate, standard (m ³ /hr)	236,787	238,634	228,710	234,710
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	189,681	189,766	180,706	186,718
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	141,237	147,035	142,225	143,499
Q _s	Volumetric flow rate, normal (Nm ³ /hr)	220,642	222,364	213,116	218,707
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	176,748	176,828	168,385	173,987
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	131,607	137,010	132,528	133,715

Average includes 3 runs.

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright © 2008 Clean Air Engineering Inc.

QA/QC _____ Date _____

041310 091121 PNL@

D - 9

USEPA Method 13B HF Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 17	Mar 17	Mar 17	
	ie (approx.)	11:46	13:15	14:45	
	ie (approx.)	12:56	14:27	15:53	
	Conditions	184.0	184.0	184.1	184.0
R _P	Steam Production Rate (Klbs/hour)	320	320	320	320
P ₁	Fabric Filter Inlet Temperature (°F)	9,570	9,570	9,570	9,570
Fa	Oxygen-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
F _c	Carbon dioxide-based F-factor (dscf/MMBtu) Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Сар	Capacity factor (nours/year)	0,700	0,700	0,700	0,700
Gas Cor					
Oz	Oxygen (dry volume %)	10.5500	10.1300	9.9600	10.2133
CO2	Carbon dioxide (dry volume %)	9.1100	9.6200	9.8000	9.5100
T,	Sample temperature (°F)	302.6000	302.0400	302.6000	302.4133
Bw	Actual water vapor in gas (% by volume)	19.8937	20.4782	20.9890	20.4536
Gas Flor	w Rate				
Qa	Volumetric flow rate, actual (acfm)	205,926	207,433	198,952	204,104
Q,	Volumetric flow rate, standard (scfm)	139,349	140,436	134,596	138,127
Q _{atd}	Volumetric flow rate, dry standard (dscfm)	111,627	111,678	106,345	109,883
Q _{std7}	Volumetric flow rate, dry std@7%O 2 (dscfm)	83,118	86,530	83,699	84,449
Q,	Volumetric flow rate, actual (acf/hr)	12,355,565	12,445,974	11,937,120	12,246,220
Q,	Volumetric flow rate, standard (scf/hr)	8,360,935	8,426,184	8,075,745	8,287,621
Q _{etd}	Volumetric flow rate, dry standard (dscf/hr)	6,697,635	6,700,653	6,380,726	6,593,005
Q,	Volumetric flow rate, actual (m ³ /hr)	349,917	352,477	338,066	346,820
Q,	Volumetric flow rate, standard (m ³ /hr)	236,787	238,634	228,710	234,710
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	189,681	189,766	180,706	186,718
Q _{std7}	Volumetric flow rate, dry std@7%O 2 (dry m ³ /hr)	141,237	147,035	142,225	143,499
Q,	Volumetric flow rate, normal (Nm ³ /hr)	220,642	222,364	213,116	218,707
Q _{std}	Volumetric flow rate, dry normal (Nm 3/hr)	176,748	176,828	168,385	173,987
Q _{atd7}	Volumetric flow rate, dry normal @7%O 2 (Nm ³ /hr)	131,607	137,010	132,528	133,715
Samplin	g Data				
Vmald	Volume metered, standard (dscf)	42.7316	42.4517	41.1525	42.1120
%1	Isokinetic sampling (%)	100.1239	99.4233	101.2130	100.2534
Laborate	ory Data				
mn	Total HF collected (mg)	<0.0368	<0.0339	<0.0389	
Hydroge C _{sd}	n Fluoride (HF) Results HF Concentration (lb/dscf)	<1.8996E-09	<1.7583E-09	<2.0840E-09	<1.9140E-09
C _{ad} C _{ad7}	HF Concentration @7% O $_2$ (lb/dscf)	<2.5511E-09	<2.2693E-09	<2.6478E-09	<2.4894E-09
	HF Concentration @12% CO 2 (lb/dscf)	<2.5022E-09	<2.1933E-09	<2.5518E-09	<2.4158E-09
C _{ed12} C _a	HF Concentration (b/acf)	<1.0297E-09	<9.4664E-10	<1.1139E-09	<1.0301E-09
C _{ad}	HF Concentration (ppmdv)	<0.0366	< 0.0339	<0.0402	< 0.0369
	HF Concentration @7% O 2 (ppmdv)	<0.0492	<0.0437	< 0.0510	<0.0480
C _{sd12}	HF Concentration @12% CO 2 (ppmdv)	<0.0482	<0.0423	<0.0492	<0.0465
C _w	HF Concentration (ppmwv)	<0.0293	<0.0269	< 0.0317	<0.0293
C _{ad}	HF Concentration (mg/dscm)	< 0.0304	<0.0282	<0.0334	<0.0306
C _{ed7}	HF Concentration @7% O 2 (mg/dscm)	< 0.0409	< 0.0363	<0.0424	< 0.0399
C _{sd12}	HF Concentration @12% CO 2 (mg/dscm)	<0.0401	< 0.0351	< 0.0409	<0.0387
Ca	HF Concentration (mg/m ³ (actual,wet))	< 0.0165	<0.0152	<0.0178	<0.0165
C _{sd}	HF Concentration (mg/Nm ³ dry)	<0.0326	< 0.0302	<0.0358	<0.0329
C _{sd7}	HF Concentration @7% O $_2$ (mg/Nm ³ dry)	<0.0438	<0.0390	<0.0455	<0.0428
C _{sd12}	HF Concentration @12% CO 2 (mg/Nm ³ dry)	<0.0430	<0.0377	<0.0439	<0.0415
Eliphr	HF Rate (lb/hr)	<0.0127	<0.0118	<0.0133	<0.0126
E _{kg/h}	HF Rate (kg/hr)	<0.0058	<0.0053	<0.0060	<0.0057
E _{T/yr}	HF Rate (Ton/yr)	<0.0557	<0.0516	<0.0582	<0.0552
EFd	HF Rate - Fd-based (lb/MMBtu)	<0.000037	<0.000033	<0.000038	<0.000036
Efc	HF Rate - Fc-based (lb/MMBtu)	<0.000038	<0.000033	<0.000039	<0.000037

Prepared by Clean Air Englineering Proprietary Software SS EPA26-1 Version 2006-10a (F)

Copyright @ 2006 Clean Air Engineering Inc.

041310 091121 PNL@_N

USEPA Method 26A (HCI) Sampling, Velocity and Moisture Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 18	Mar 18	Mar 18	
Start Tim	ne (approx.)	07:02	09:26	11:49	
Stop Tim	ne (approx.)	08:02	10:37	12:49	
Samplin	g Conditions				
Yd	Dry gas meter correction factor	1.0085	1.0085	1.0085	
C _p	Pitot tube coefficient	0.8400	0.8400	0.8400	
Pg	Static pressure (in. H ₂ O)	-1.9000	-1.7000	-1.7000	
As	Sample location area (ft ²)	60.1320	60.1320	60.1320	
P_{bar}	Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
O ₂	Oxygen (dry volume %)	9.1100	9.0100	9.7000	9.2733
CO2	Carbon dioxide (dry volume %)	10.2300	10.3500	9.8200	10.1333
N₂+CO	Nitrogen plus carbon monoxide (dry volume %)	80.6600	80.6400	80.4800	80.5933
V _{lc}	Total Liquid collected (ml)	1 7 2.30	157.10	150.30	
Vm	Volume metered, meter conditions (ft ³)	37.0500	35.7400	35.6000	
Tm	Dry gas meter temperature (°F)	60.1250	66.0833	75.3750	
Τs	Sample temperature (°F)	488.8333	489.0833	496.916 7	491.6111
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.1917	1.2000	1.2000	
θ	Total sampling time (min)	60.0	60.0	60.0	
Flow Res	sults				
V_{wstd}	Volume of water collected (ft ³)	8.1084	7.3931	7.0731	7.5249
V_{mstd}	Volume metered, standard (dscf)	38.1913	36.4244	35.6520	36.7559
Ps	Sample gas pressure, absolute (in. Hg)	29.9103	29.9250	29.9250	29. 9 201
Pv	Vapor pressure, actual (in. Hg)	29.9103	29.9250	29.9250	29.9 201
Bwo	Moisture measured in sample (% by volume)	17.5129	16.8725	16.5549	16.9801
B _{ws}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000.	100.0000
Bw	Actual water vapor in gas (% by volume)	17.5129	16.8725	16.5549	16.9801
Md	MW of sample gas, dry (lb/lb-mole)	30.0012	30.0164	29.9592	29.9923
Ms	MW of sample gas, wet (lb/lb-mole)	27.8994	27.9889	27.9794	27.9559

Comments:

Average includes 3 runs.

041310 093350 INK@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright © 2006 Clean Alr Engineering Inc.

USEPA Method 26A HCI Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 18	Mar 18	Mar 18	
-	ne (approx.)	07:02	09:26	11:49	
Stop Tim	ne (approx.)	08:02	10:37	12:49	
Process	Conditions				
R _P	Steam Production Rate (Klbs/hour)	183.5	184.1	182.8	183.5
P ₁	Fabric Filter Inlet Temperature (°F)	320	320	320	320
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F。	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co					
	Oxygen (dry volume %)	9.1100	9.0100	9.7000	9.2733
	Carbon dioxide (dry volume %)	10.2300	10.3500	9.8200	10.1333
T _s	Sample temperature (°F)	488.8333	489.0833	496.9167	491.6111
Bw	Actual water vapor in gas (% by volume)	17.5129	16.8725	16.5549	16.9801
		•			
Samplin	-	38.1913	36.4244	35.6520	36.7559
V _{mstd}	Volume metered, standard (dscf)	36.1913	30.4244	35.6520	30.7559
Laborat	ory Data				
m _n	Total HCI collected (mg)	789.3812	879.5132	662.6796	
Hydroge	en Chioride (HCI) Results				
C_{sd}	HCI Concentration (lb/dscf)	4.5575E-05	5.3243E-05	4.0985E-05	4.6601E-05
C_{sd7}	HCI Concentration @7% O ₂ (lb/dscf)	5.3732E-05	6.2243E-05	5.0866E-05	5.5614E-05
C_{sd12}	HCI Concentration @12% CO ₂ (lb/dscf)	5.3461E-05	6.1730E-05	5.0084E-05	5.5092E-05
C_{sd}	HCI Concentration (ppmdv)	481.8514	562.9118	433.3210	492.6948
C_{sd7}	HCl Concentration @7% O_2 (ppmdv)	568.0861	658.0719	537.7823	587.9801
C _{sd12}	HCI Concentration @12% CO ₂ (ppmdv)	565.2216	652.6514	529.5165	582.4632
Cw	HCI Concentration (ppmwv)	397.4651	467.9344	361.5850	408.9948
C _{sd}	HCI Concentration (mg/dscm)	729.8280	852.6048	656.3223	746.2517
C_{sd7}	HCl Concentration @7% O ₂ (mg/dscm)	860.4419	996.7373	814.5428	890.5740
C_{sd12}	HCl Concentration @12% CO ₂ (mg/dscm)	856.1033	988.5273	802.0231	882.2179
C_{sd}	HCI Concentration (mg/Nm ³ dry)	783.2301	914.9905	704.3458	800.8555
C_{sd7}	HCI Concentration @7% O2 (mg/Nm ³ dry)	923.4010	1069.6693	874.1435	955.7379
C_{sd12}	HCl Concentration @12% CO ₂ (mg/Nm ³ dry)	918.7450	1060.8585	860.7077	946.7704
E _{Fd}	HCI Rate - Fd-based (lb/MMBtu)	0.7732	0.8956	0.7319	0.8002
Efc	HCI Rate - Fc-based (lb/MMBtu)	0.8108	0.9362	0.7596	0.8356

042210 100532 INK@_@

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2006-108 (CI)

USEPA Method 26A (HCI) Sampling, Velocity and Moisture Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 18	Mar 18	Mar 18	
Start Tim	ne (approx.)	07:02	09:26	11:49	
Stop Tim	e (approx.)	08:02	10:37	12:49	
Samplin	g Conditions				
Yd	Dry gas meter correction factor	1.0066	1.0066	1.0066	
C _p	Pitot tube coefficient	0.8400	0.8400	0.8400	
Pg	Static pressure (in. H ₂ O)	-11.1000	-10.9000	-11.0000	
As	Sample location area (ft ²)	64.0000	64.0000	64.0000	
P _{bar}	Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
O ₂	Oxygen (dry volume %)	9.8800	9.6900	10.0500	9.8733
CO2	Carbon dioxide (dry volume %)	9.5000	9.6700	9.4200	9.5300
N₂+CO	Nitrogen plus carbon monoxide (dry volume %)	80.6200	80.6400	80.5300	80.5967
Vic	Total Liquid collected (ml)	217.40	236.20	211.10	
Vm	Volume metered, meter conditions (ft ³)	40.1050	39.9000	40.1550	
Tm	Dry gas meter temperature (°F)	62.6250	63.7917	69.0833	
Τs	Sample temperature (°F)	307.6667	309.0833	309.9167	308.8889
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.5000	1.5000	1.5000	
θ	Total sampling time (min)	60.0	60.0	60.0	
Flow Res	Bults				
V _{wstd}	Volume of water collected (ft ³)	10.2308	11.1156	9.9344	10.4269
V _{mstd}	Volume metered, standard (dscf)	41.0960	40.7949	40.6450	40.8453
Ps	Sample gas pressure, absolute (in. Hg)	29.2338	29.2485	29.2412	29.2412
Pv	Vapor pressure, actual (in. Hg)	29.2338	29.2485	29.2412	29.2412
Bwo	Moisture measured in sample (% by volume)	19.9327	21.4130	19.6412	20.3290
B _{ws}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	19.9327	21.4130	19.6412	20.3290
M _d	MW of sample gas, dry (lb/lb-mole)	29.9152	29.9348	29.9092	29.9 197
Ms	MW of sample gas, wet (lb/lb-mole)	27.5402	27.3792	27.5701	27.4965

Comments:

Average includes 3 runs.

041310 093407 NLK@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright @ 200,8 Clean Air Engineering Inc.

USEPA Method 26A HCI Parameters

Run No		1	2	3	Average
Date (20	110)	Mar 18	Mar 18	Mar 18	
-	ne (approx.)	07:02	09:26	11:49	
	ne (approx.)	08:02	10:37	12:49	
Process	s Conditions				
R _P	Steam Production Rate (Klbs/hour)	183.5	184.1	182.8	183.5
P ₁	Fabric Filter Inlet Temperature (°F)	320	320	320	320
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
Fc	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
	· · · · · ·				•
	nditions Oxygen (dry volume %)	9.8800	9.6900	10.0500	9.8733
	Carbon dioxide (dry volume %)	9.5000	9.6700	9.4200	9.5300
T _s	Sample temperature (°F)	307.6667	309.0833	309.9167	308.8889
ь В _w	Actual water vapor in gas (% by volume)	19.9327	21.4130	19.6412	20.3290
		10.0021	21.4100	10.0412	20.5250
Samplin	-				
V _{mstd}	Volume metered, standard (dscf)	41.0960	40.7949	40.6450	40.8453
Laborat	ory Data				
mn	Total HCI collected (mg)	30.4838	25.1430	26.4504	
Hydrog	en Chloride (HCI) Results				
C _{sd}	HCI Concentration (lb/dscf)	1.6356E-06	1.3590E-06	1.4349E-06	1.4765E-06
C _{sd7}	HCI Concentration @7% O ₂ (lb/dscf)	2.0631E-06	1.6851E-06	1.8383E-06	1.8622E-06
C _{sd12}	HCI Concentration @12% CO ₂ (lb/dscf)	2.0660E-06	1.6865E-06	1.8279E-06	1.8601E-06
C _{sd}	HCI Concentration (ppmdv)	17.2926	14.3682	15.1710	15.6106
C _{sd7}	HCI Concentration @7% O2 (ppmdv)	21.8119	17.8160	19.4357	19.6879
C _{sd12}	HCI Concentration @12% CO ₂ (ppmdv)	21.8432	17.8302	19.3262	19.6665
C _w	HCI Concentration (ppmwv)	13.8457	11.2915	12.1913	12.4428
C _{sd}	HCI Concentration (mg/dscm)	26.1919	21.7625	22.9786	23.6443
C _{sd7}	HCI Concentration @7% O ₂ (mg/dscm)	33.0370	26.9848	29.4380	29.8199
C _{sd12}	HCI Concentration @12% CO ₂ (mg/dscm)	33.0845	27.0062	29.2721	29.7876
C _{sd}	HCI Concentration (mg/Nm ³ dry)	28.1084	23.3549	24.6599	25.3744
C _{sd7}	HCI Concentration @7% O ₂ (mg/Nm ³ dry)	35.4543	28.9592	31.5920	32.0018
C _{sd12}	HCI Concentration @12% CO2 (mg/Nm3 dry)	35.5053	28.9823	31.4139	31.9672
E _{Fd}	HCI Rate - Fd-based (lb/MMBtu)	0.0297	0.0242	0.0265	0.0268
EFc	HCI Rate - Fc-based (lb/MMBtu)	0.0313	0.0256	0.0277	0.0282

042210 100501 NLK@_@

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2006-10a (CI)

USEPA Method 5/29 (Particulate/Metals) Sampling, Velocity and Moisture Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 18	Mar 18	Mar 18	
Start Tir	ne (approx.)	07:09	09:49	12:27	
Stop Tin	ne (approx.)	09:22	12:02	14:39	
Samplin	ng Conditions				
Yd	Dry gas meter correction factor	0.9904	0.9904	0.9904	
C,	Pitot tube coefficient	0.8050	0.8050	0.8050	
P,	Static pressure (in. H ₂ O)	-10.6000	-10.6000	-10.7000	
Å,	Sample location area (ft ²)	64.0000	64.0000	64.0000	
P _{bar}	Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
D	Nozzle diameter (in.)	0.2700	0.2700	0.2700	
O ₂	Oxygen (dry volume %)	10.0700	9.7500	9.8900	9.9033
CO2	Carbon dioxide (dry volume %)	9.2500	9.6000	9.5800	9.4767
N₂+CC	Nitrogen plus carbon monoxide (dry volume %)	80.6800	80.6500	80.5300	80.6200
Vic	Total Liquid collected (ml)	459.40	434.20	463.60	
Vm	Volume metered, meter conditions (ft ³)	84.6670	81.6300	85.1700	
Tm	Dry gas meter temperature (°F)	69.9000	81.9000	86.4800	
Тв	Sample temperature (°F)	307.4800	307.6000	307.7600	307.6133
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.4596	1.3336	1.4432	
θ	Total sampling time (min)	125.0	125.0	125.0	
Flow Re	sults				
V _{wstd}	Volume of water collected (ft ³)	21.6194	20.4335	21.8170	21.2899
Vmstd	Volume metered, standard (dscf)	84.1826	79.3413	82.1102	81.8780
P۵	Sample gas pressure, absolute (in. Hg)	29.2706	29.2706	29.2632	29.2681
P,	Vapor pressure, actual (in. Hg)	29.2706	29.2706	29.2632	29.2681
Bwo	Moisture measured in sample (% by volume)	20.4338	20.4796	20.9926	20.6353
B _{ws}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	20.4338	20.4796	20.9926	20.6353
√∆P	Velocity head (√in. H₂O)	0.7819	0.7481	0.7707	0.7669
Md	MW of sample gas, dry (lb/lb-mole)	29.8828	29.9260	29.9284	29.9124
M _s	MW of sample gas, wet (lb/lb-mole)	27.4547	27.4836	27.4243	27.4542
Vs	Velocity of sample (ft/sec)	52.5853	50.2877	51.8795	51.5842
%	Isokinetic sampling (%)	100.3071	98.9302	99.9317	99.7230
Qa	Volumetric flow rate, actual (acfm)	201,928	193,105	199,217	198,083
Q,	Volumetric flow rate, standard (scfm)	135,904	129,946	133,997	133,282
Q _{std}	Volumetric flow rate, dry standard (dscfm)	108,134	103,333	105,868	105,778
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	84,251	82,890	83,856	83,666
Q,	Volumetric flow rate, actual (acf/hr)	12,115,652	11,586,291	11,953,037	11,884,993
Q,	Volumetric flow rate, standard (scf/hr)	8,154,240	7,796,743	8,039,841	7,996,941
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,468,019	6,200,003	6,352,070	6,346,697
Q,	Volumetric flow rate, actual (m ³ /hr)	343,122	328,131	338,517	336,590
Q,	Volumetric flow rate, standard (m ³ /hr)	230,933	220,808	227,693	226,478
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	183,745	175,588	179,894	179,742
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	143,162	140,849	142,492	142,168
Q,	Volumetric flow rate, normal (Nm ³ /hr)	215,187	205,753	212,169	211,036
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	171,216	163,616	167,629	167,487
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	133,401	131,246	132,777	132,474

Comments:

,

Average includes 3 runs.

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright © 2006 Clean Air Engineering Inc.

QA/QC _____ Date _____

041310 093438 KLNQ

USEPA Method 5/29 Filterable Particulate Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 18	Mar 18	Mar 18	
	ne (approx.)	07:09	09:49	12:27	
	ne (approx.)	09:22	12:02	14:39	
	Conditions				
R _P	Steam Production Rate (Klbs/hour)	183.9	182.9	183.9	183.6
P ₁	Fabric Filter Inlet Temperature (°F)	320	320	321	320
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F _c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Cor	differe				
	Oxygen (dry volume %)	10.0700	9.7500	9.8900	9.9033
	Carbon dioxide (dry volume %)	9.2500	9.6000	9.5800	9.4767
т <u>,</u>	Sample temperature (°F)	307.4800	307.6000	307.7600	307.6133
B _w	Actual water vapor in gas (% by volume)	20.4338	20.4796	20.9926	20.6353
Gas Flo	W Rate Volumetric flow rate, actual (acfm)	201,928	193,105	199,217	198,083
Q,	Volumetric flow rate, standard (scfm)	135,904	129,946	133,997	133,282
Q,	Volumetric flow rate, dry standard (dscfm)	108,134	103,333	105,868	105,778
Q _{std}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	84,251	82,890	83,856	83,666
Q _{std7} Q _a	Volumetric flow rate, actual (acf/hr)	12,115,652	11,586,291	11,953,037	11,884,993
Q,	Volumetric flow rate, standard (scf/hr)	8,154,240	7,796,743	8,039,841	7,996,941
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,488,019	6,200,003	6,352,070	6,346,697
Q,	Volumetric flow rate, actual (m^3/hr)	343,122	328,131	338,517	336,590
Q,	Volumetric flow rate, standard (m ³ /hr)	230,933	~ 220,808	227,693	226,478
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	183,745	175,588	179,894	179,742
Q _{std7}	Volumetric flow rate, dry std@7% O_2 (dry m ³ /hr)	143,162	140,849	142,492	142,168
Q,	Volumetric flow rate, normal (Nm ³ /hr)	215,187	205,753	212,169	211,036
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	171,216	163,616	167,629	167,487
Q _{std7}	Volumetric flow rate, dry normal @7%O2 (Nm3/hr)	133,401	131,246	132, 777	132,474
Samplin					
Vmstd	Volume metered, standard (dscf)	84.1826	79.3413	82.1102	81.8780
%1	Isokinetic sampling (%)	100.3071	98.9302	99.9317	99.7230
Laborat	ory Data				
m _{filter}	Matter collected on filter(s) (g)	0.00180	0.00100	0.00090	
ms	Matter collected in solvent rinse(s) (g)	0.00224	0.00131	0.00162	
m	Total particulate matter collected (g)	0.00404	0.00231	0.00252	
	e Particulate Results				
C _{sd}	Particulate Concentration (lb/dscf)	1.0571E-07	6.4320E-08	6.7580E-08	7.9205E-08
C _{sd7}	Particulate Concentration @7% O ₂ (lb/dscf)	1.3568E-07	8.0184E-08	8.5319E-08	1.0039E-07
C _{sd12}	Particulate Concentration @12% CO2 (lb/dscf)	1.3714E-07	8.0400E-08	8.4651E-08	1.0073E-07
C _a	Particulate Concentration (Ib/acf)	5.6611E-08	3.4419E-08	3.5913E-08	4.2314E-08
C _{sd}	Particulate Concentration (gr/dscf)	0.0007	0.0005	0.0005	0.0006
C _{ad7}	Particulate Concentration @7% O2 (gr/dscf)	0.0009	0.0006	0.0006	0.0007
C _{sd12}	Particulate Concentration @12% CO ₂ (gr/dscf)	0.0010	0.0006	0.0006	0.0007
Ca	Particulate Concentration (gr/acf)	0.0004	0.0002	0.0003	0.0003
Csd	Particulate Concentration (mg/dscm)	1.6929	1.0300	1.0822	1.2684
Cad7	Particulate Concentration @7% O ₂ (mg/dscm)	2.1728	1.2840	1.3663	1.6077
C _{ad12}	Particulate Concentration @12% CO ₂ (mg/dscm)	2.1962	1.2875	1.3556	1. 6131
Ca	Particulate Concentration (mg/m ³ (actual,wet))	0.9065	0.5512	0.5751	0.6776
Cad	Particulate Concentration (mg/Nm ³ dry)	1.8167	1.1054	1.1614	1.3612
C _{ad7}	Particulate Concentration @7% O ₂ (mg/Nm ³ dry)	2.3317	1.3780	1.4662	1.7253
C _{sd12}	Particulate Concentration @12% CO ₂ (mg/Nm ³ dry)	2.3568	1.3817	1.4548	1.7311
E _{ib/hr}	Particulate Rate (lb/hr)	0.6859	0.3988	0.4293	0.5046
Ekg/hr	Particulate Rate (kg/hr)	0.3111	0.1809	0.1947	0.2289
E _{T/yr}	Particulate Rate (Ton/yr)	3.0041	1.7467	1.8802	2.2103
EFd	Particulate Rate - Fd-based (lb/MMBtu)	0.0020	0.0012	0.0012	0.0014
E _{Fc}	Particulate Rate - F _c -based (Ib/MMBtu)	0.0021	0.0012	0.0013	0.0015
Commer					041310 093438 K i N Ø_K
Averag	ge includes 3 runs.				

Average includes 3 runs. Prepared by Clain Air Engineering Proprietary Software SS EPA 5-1 Version 2008-08b

QA/QC Date

Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 5/29 Mercury (Hg) Emission Parameters

Run No	.	1	2	3	Average
Date (20	010)	Mar 18	Mar 18	Mar 18	
Start Tir	me (approx.)	07:09	09:49	12:27	
Stop Tin	ne (approx.)	09:22	12:02	14:39	
Process	s Conditions				
R _P	Steam Production Rate (Klbs/hour)	183.9	182.9	183.9	183.6
P1	Fabric Filter Inlet Temperature (*F)	320	320	321	320.3
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F。	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O ₂	Oxygen (dry volume %)	10.0700	9.7500	9.8900	9.9033
CO2	Carbon dloxide (dry volume %)	9.2500	9.6000	9.5800	9.4767
Тs	Sample temperature (°F)	307.4800	307.6000	307.7600	307.6133
B,	Actual water vapor in gas (% by volume)	20.4338	20.4796	20.9926	20.6353
Gas Flo	w Rate				
Q	Volumetric flow rate, actual (acfm)	201,928	193,105	199,217	198,083
Q,	Volumetric flow rate, standard (scfm)	135,904	129,946	133,997	133,282
Q _{std}	Volumetric flow rate, dry standard (dscfm)	108,134	103,333	105,868	105,778
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	84,251	82,890	83,856	83,666
Q,	Volumetric flow rate, actual (acf/hr)	12,115,652	11,586,291	11,953,037	11,884,993
Q,	Volumetric flow rate, standard (scf/hr)	8,154,240	7,796,743	8,039,841	7,996,941
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,488,019	6,200,003	6,352,070	6,346,697
Q	Volumetric flow rate, actual (m ³ /hr)	343,122	328,131	338,517	336,590
Q,	Volumetric flow rate, standard (m ³ /hr)	230,933	220,808	227,693	226,478
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	183,745	175,588	179,894	179,742
Q _{std7}	Volumetric flow rate, dry std@7% O_2 (dry m ³ /hr)	143,162	140,849	142,492	142,168
Q _s	Volumetric flow rate, normal (Nm ³ /hr)	215,187	205,753	212,169	211,036
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	171,216	163,616	167,629	167,487
Q _{std7}	Volumetric flow rate, dry normal $(0.7\%)^{3/hr}$	133,401	131,246	132,777	132,474
			,	,	
Samplin	g Data Volume metered, standard (dscf)	84.1826	79.3413	82.1102	81.8780
V _{mstd} %l	Isokinetic sampling (%)	100.3071	98.9302	99.9317	99.7230
		100.3071	30.3302	33.3317	55.7250
	bry Data				
m _{n-1b}	Fraction 1B (µg)	<0.1000	<0.1000	<0.1000	
m _{n-2b}	Fraction 2B (µg)	9.1977	9.2740	10.1318	
m _{n-3a}	Fraction 3A (µg)	<0.2000	<0.2000	<0.2000	
m _{n-3b}	Fraction 3B (µg)	<0.5000	<0.5000	<0.5000	
m _{n-3c}	Fraction 3C (µg)	<0.4000	<0.4000	<0.4000	
m'n	Total matter corrected for allowable blanks (µg)	9.1977	9.2740	10.1318	
Aercury	Results - Total				
C _{sd}	Concentration (lb/dscf)	2.4092E-10	2.5774E-10	2.7208E-10	2.5691E-10
C _{sd7}	Concentration @7% O ₂ (lb/dscf)	3.0921E-10	3.2131E-10	3.4350E-10	3.2467E-10
C_{sd12}	Concentration @12% CO ₂ (lb/dscf)	3.1254E-10	3.2217E-10	3.4081E-10	3.2517E-10
Ca	Concentration (lb/acf)	1.2901E-10	1.3792E-10	1.4459E-10	1.3717E-10
<u>^</u>	Concentration (µg/dscm)	3.8579E+00	4.1273E+00	4.3570E+00	4.1141E+00
C _{sd}	Concentration @7% O ₂ (µg/dscm)	4.9515E+00	5.1453E+00	5.5007E+00	5.1992E+00
C _{sd} C _{sd7}	Concentration (B) / CO2 (pg/dscin)	4.93132100			
	Concentration @12% CO_2 (µg/dscm)	4.9313E+00 5.0049E+00	5.1591E+00	5.4576E+00	5.2072E+00
C _{sd7}				5.4576E+00 4.3570E-03	5.2072E+00 4.1141E-03
C _{sd7} C _{sd12}	Concentration @12% CO ₂ (µg/dscm)	5.0049E+00	5.1591E+00		
C _{sd7} C _{sd12} C _{sd}	Concentration @12% CO_2 (μ g/dscm) Concentration (mg/dscm)	5.0049E+00 3.8579E-03	5.1591E+00 4.1273E-03	4.3570E-03	4.1141E-03
C _{sd7} C _{sd12} C _{sd} C _{sd7}	Concentration @12% CO_2 (µg/dscm) Concentration (mg/dscm) Concentration @7% O_2 (mg/dscm)	5.0049E+00 3.8579E-03 4.9515E-03	5.1591E+00 4.1273E-03 5.1453E-03	4.3570E-03 5.5007E-03	4.1141E-03 5.1992E-03
C _{sd7} C _{sd12} C _{sd} C _{sd7} C _{sd12}	Concentration @12% CO_2 (µg/dscm) Concentration (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm)	5.0049E+00 3.8579E-03 4.9515E-03 5.0049E-03	5.1591E+00 4.1273E-03 5.1453E-03 5.1591E-03	4.3570E-03 5.5007E-03 5.4576E-03	4.1141E-03 5.1992E-03 5.2072E-03
C _{sd7} C _{sd12} C _{sd} C _{sd7} C _{sd12} C _a	Concentration @12% CO_2 (µg/dscm) Concentration (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration (µg/m ³ (actual,wet))	5.0049E+00 3.8579E-03 4.9515E-03 5.0049E-03 2.0659E+00	5.1591E+00 4.1273E-03 5.1453E-03 5.1591E-03 2.2086E+00	4.3570E-03 5.5007E-03 5.4576E-03 2.3154E+00	4.1141E-03 5.1992E-03 5.2072E-03 2.1966E+00
C _{sd7} C _{sd12} C _{sd} C _{sd7} C _{sd12} C _a C _{sd} C _{sd}	Concentration @12% CO_2 (µg/dscm) Concentration (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration (µg/m ³ (actual,wet)) Concentration (µg/Nm ³ dry)	5.0049E+00 3.8579E-03 4.9515E-03 5.0049E-03 2.0659E+00 4.1402E+00	5.1591E+00 4.1273E-03 5.1453E-03 5.1591E-03 2.2086E+00 4.4293E+00	4.3570E-03 5.5007E-03 5.4576E-03 2.3154E+00 4.6758E+00	4.1141E-03 5.1992E-03 5.2072E-03 2.1966E+00 4.4151E+00
$\begin{array}{c} C_{sd7} \\ C_{sd12} \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \\ C_a \\ C_a \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \end{array}$	Concentration @12% CO_2 (µg/dscm) Concentration (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration (µg/m ³ (actual,wet)) Concentration (µg/Nm ³ dry) Concentration @7% O_2 (µg/Nm ³ dry)	5.0049E+00 3.8579E-03 4.9515E-03 5.0049E-03 2.0659E+00 4.1402E+00 5.3138E+00	5.1591E+00 4.1273E-03 5.1453E-03 5.1591E-03 2.2086E+00 4.4293E+00 5.5217E+00	4.3570E-03 5.5007E-03 5.4576E-03 2.3154E+00 4.6758E+00 5.9032E+00	4.1141E-03 5.1992E-03 5.2072E-03 2.1966E+00 4.4151E+00 5.5796E+00
$\begin{array}{c} C_{sd7} \\ C_{sd12} \\ C_{sd} \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \\ C_{a} \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \\ E_{lb/hr} \\ \end{array}$	Concentration @12% CO_2 (µg/dscm) Concentration (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration (µg/m ³ (actual,wet)) Concentration (µg/Nm ³ dry) Concentration @7% O_2 (µg/Nm ³ dry) Concentration @12% CO_2 (µg/Nm ³ dry)	5.0049E+00 3.8579E-03 4.9515E-03 5.0049E-03 2.0659E+00 4.1402E+00 5.3138E+00 5.3711E+00	5.1591E+00 4.1273E-03 5.1453E-03 5.1591E-03 2.2086E+00 4.4293E+00 5.5217E+00 5.5366E+00	4.3570E-03 5.5007E-03 5.4576E-03 2.3154E+00 4.6758E+00 5.9032E+00 5.8570E+00	4.1141E-03 5.1992E-03 5.2072E-03 2.1966E+00 4.4151E+00 5.5796E+00 5.5882E+00
$\begin{array}{c} C_{sd7} \\ C_{sd12} \\ C_{sd} \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \\ C_{a} \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \\ E_{lb/hr} \\ E_{g/s} \end{array}$	Concentration @12% CO ₂ (μ g/dscm) Concentration (mg/dscm) Concentration @7% O ₂ (mg/dscm) Concentration @12% CO ₂ (mg/dscm) Concentration (μ g/m ³ (actual,wet)) Concentration (μ g/Nm ³ dry) Concentration @7% O ₂ (μ g/Nm ³ dry) Concentration @12% CO ₂ (μ g/Nm ³ dry) Rate (lb/hr) Rate (g/s)	5.0049E+00 3.8579E-03 4.9515E-03 5.0049E-03 2.0659E+00 4.1402E+00 5.3138E+00 5.3711E+00 1.5631E-03	5.1591E+00 4.1273E-03 5.1453E-03 5.1591E-03 2.2086E+00 4.4293E+00 5.5217E+00 5.5366E+00 1.5980E-03	4.3570E-03 5.5007E-03 5.4576E-03 2.3154E+00 4.6758E+00 5.9032E+00 5.8570E+00 1.7283E-03	4.1141E-03 5.1992E-03 5.2072E-03 2.1966E+00 4.4151E+00 5.5796E+00 5.5882E+00 1.6298E-03 2.0531E-04
$\begin{array}{c} C_{sd7} \\ C_{sd12} \\ C_{sd} \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \\ C_{a} \\ C_{sd} \\ C_{sd7} \\ C_{sd12} \\ E_{lb/hr} \\ \end{array}$	Concentration @12% CO_2 (µg/dscm) Concentration (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration (µg/m ³ (actual,wet)) Concentration (µg/Nm ³ dry) Concentration @7% O_2 (µg/Nm ³ dry) Concentration @12% CO_2 (µg/Nm ³ dry) Rate (lb/hr)	5.0049E+00 3.8579E-03 4.9515E-03 5.0049E-03 2.0659E+00 4.1402E+00 5.3138E+00 5.3711E+00 1.5631E-03 1.9691E-04	5.1591E+00 4.1273E-03 5.1453E-03 5.1591E-03 2.2086E+00 4.4293E+00 5.5217E+00 5.5366E+00 1.5980E-03 2.0131E-04	4.3570E-03 5.5007E-03 5.4576E-03 2.3154E+00 4.6758E+00 5.9032E+00 5.8570E+00 1.7283E-03 2.1772E-04	4.1141E-03 5.1992E-03 5.2072E-03 2.1966E+00 4.4151E+00 5.5796E+00 5.5882E+00 1.6298E-03

Copyright © 2008 Clean Air Engineering Inc.

Date_

USEPA Method 5/29 Beryllium (Be) Emission Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 18	Mar 18	Mar 18	
	ne (approx.)	07:09	09:49	12:27	
	ne (approx.)	09:22	12:02	14:39	
	Conditions				
R _P	Steam Production Rate (Klbs/hour)	183.9	182.9	183.9	183.6
P ₁	Fabric Filter Inlet Temperature (°F)	320	320	321	320.3
Fa	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F _e	Carbon dloxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Cor	Oxygen (dry volume %)	10.0700	9.7500	9.8900	9.9033
02 CO2	Carbon dioxide (dry volume %)	9.2500	9.6000	9.5800	9.4767
τ _s	Sample temperature (°F)	307.4800	307.6000	307.7600	307.6133
's Bw	Actual water vapor in gas (% by volume)	20.4338	20.4796	20.9926	20.6353
		20.4000	20.4700	LOUGED	20/0000
Gas Flo		004 008	102 105	100 017	409 093
Q,	Volumetric flow rate, actual (acfm)	201,928	193,105	199,217	198,083
Q,	Volumetric flow rate, standard (scfm)	135,904	129,946	133,997 105.868	133,282
Q _{std}	Volumetric flow rate, dry standard (dscfm)	108,134	103,333		105,778
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	84,251	82,890	83,856	83,666
Q,	Volumetric flow rate, actual (acf/hr)	12,115,652	11,586,291 7,796,743	11,953,037	11,884,993
Q,	Volumetric flow rate, standard (scf/hr)	8,154,240 6,488,019		8,039,841	7,996,941
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)		6,200,003	6,352,070 338,517	6,346,697
Q,	Volumetric flow rate, actual (m ³ /hr)	343,122	328,131 220,808	227,693	336,590 226,478
Q,	Volumetric flow rate, standard (m ³ /hr)	230,933 183,745	175,588	179,894	179,742
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	143,162	140,849	179,894	142,168
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	215,187	205,753	212,169	211,036
Q,	Volumetric flow rate, normal (Nm ³ /hr)	171,216	163,616	167,629	1 67,48 7
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr) Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	133,401	131,246	132,777	132,474
Q _{std7}	Volumetric now rate, dry normal @7%02 (Nm /m)	155,401	101,240	102,771	102,414
Samplin	•				
V _{metd}	Volume metered, standard (dscf)	84.1826	79.3413	82.1102	81.8780
%I	Isokinetic sampling (%)	100.3071	98.9302	99.9317	99.7230
Laborate					
mn	Total matter corrected for allowable blanks (µg)	<0.0500	<0.0500	<0.0500	
Berviliu	m Results - Total				
C _{sd}	Concentration (lb/dscf)	<1.3097E-12	<1.3896E-12	<1.3427E-12	<1.3473E-12
C _{sd7}	Concentration @7% O2 (lb/dscf)	<1.6809E-12	<1.7323E-12	<1.6952E-12	<1.7028E-12
C _{sd12}	Concentration @12% CO2 (lb/dscf)	<1.6990E-12	<1.7370E-12	<1.6819E-12	<1.7060E-12
C _a	Concentration (lb/acf)	<7.0133E-13	<7.4358E-13	<7.1354E-13	<7.1948E-13
C _{sd}	Concentration (µg/dscm)	<2.0972E-02	<2.2252E-02	<2.1502E-02	<2.1575E-02
C _{sd7}	Concentration @7% O ₂ (µg/dscm)	<2.6917E-02	<2.7740E-02	<2.7146E-02	<2.7268E-02
Csd12	Concentration @12% CO ₂ (µg/dscm)	<2.7207E-02	<2.7815E-02	<2.6933E-02	<2.7318E-02
C _{sd}	Concentration (mg/dscm)	<2.0972E-05	<2.2252E-05	<2.1502E-05	<2.1575E-05
Csd7	Concentration @7% O ₂ (mg/dscm)	<2.6917E-05	<2.7740E-05	<2.7146E-05	<2.7268E-05
Csd12	Concentration @12% CO2 (mg/dscm)	<2.7207E-05	<2.7815E-05	<2.6933E-05	<2.7318E-05
C,	Concentration (µg/m ³ (actual,wet))	<1.1231E-02	<1.1907E-02	<1.1426E-02	<1.1522E-02
C_{sd}	Concentration (µg/Nm ³ dry)	<2.2507E-02	<2.3880E-02	<2.3075E-02	<2.3154E-02
C _{sd7}	Concentration @7% O ₂ (µg/Nm ³ dry)	<2.8887E-02	<2.9770E-02	<2.9132E-02	<2.9263E-02
C _{sd12}	Concentration @12% CO2 (µg/Nm3 dry)	<2.9198E-02	<2.9850E-02	<2.8904E-02	<2.9317E-02
Elio/hr	Rate (lb/hr)	<8.4971E-06	<8.6153E-06	<8.5290E-06	<8.5471E-06
E _{g/s}	Rate (g/s)	<1.0704E-06	<1.0853E-06	<1.0744E-06	<1.0767E-06
E _{T/yr}	Rate (Ton/yr)	<3.7217E-05	<3.7735E-05	<3.7357E-05	<3.7436E-05
EFd	Rate - Fd-based (Ib/MMBtu)	<2.4187E-08	<2.4927E-08	<2.4392E-08	<2.4502E-08
Erc	Rate - Fc-based (ib/MMBtu)	<2.5768E-08	<2.6344E-08	<2.5509E-08	<2.5874E-08
					•

041310 094116 KLN@_N

Prepared by Clean Air Englineering Proprietary Software SS Metals-1 Vention 2008-12a

Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 5/29 Cadmium (Cd) Emission Parameters

Run Na).	1	2	3	Average
Date (2	010)	Mar 18	Mar 18	Mar 18	
	me (approx.)	07:09			
	me (approx.)	09:22			
•	s Conditions		-		
R _P	Steam Production Rate (Klbs/hour)	183.9	182.9	183.9	183.6
P ₁	Fabric Filter Inlet Temperature (°F)	320		321	320.3
Fa	Oxygen-based F-factor (dscf/MMBtu)	9,570		9,570	9,570
Fc	Carbon dioxide-based F-factor (dsc//MMBtu)	1,820		9,570 1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
•	nditions	6,700	6,700	0,700	8,700
025 C0 O2	Oxygen (dry volume %)	10.0700	9.7500	9.8900	9.9033
CO ₂	Carbon dioxide (dry volume %)	9.2500	9.6000	9.5800	9.4767
τ,	Sample temperature (°F)	307.4800	307.6000	307.7600	307.6133
B _w	Actual water vapor in gas (% by volume)	20.4338	20.4796	20.9926	20.6353
		20.4000	20.4750	20.0020	20.0000
Gas Flo		204 000	100 105	100 017	400 000
Q,	Volumetric flow rate, actual (acfm)	201,928	193,105	199,217	198,083
Q,	Volumetric flow rate, standard (scfm)	135,904	129,946	133,997	133,282
Q _{std}	Volumetric flow rate, dry standard (dscfm)	108,134	103,333	105,868	105,778
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	84,251	82,890	83,856	83,666
Q,	Volumetric flow rate, actual (acf/hr)	12,115,652	11,586,291	11,953,037	11,884,993
Q,	Volumetric flow rate, standard (scf/hr)	8,154,240	7,796,743	8,039,841	7,996,941
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,488,019	6,200,003	6,352,070	6,346,697
Q,	Volumetric flow rate, actual (m ³ /hr)	343,122	328,131	338,517	336,590
Q,	Volumetric flow rate, standard (m ³ /hr)	230,933	220,808	227,693	226,478
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	183,745	175,588	179,894	179,742
	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	143,162	140,849	142,492	142,168
Q,	Volumetric flow rate, normal (Nm ³ /hr)	215,187	205,753	212,169	211,036
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	171,216	163,616	167,629	167,487
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	133,401	131,246	132,777	132,474
Samplin	-				
V _{mate}	Volume metered, standard (dscf)	84.1826	79.3413	82.1102	81.8780
%1	Isokinetic sampling (%)	100.3071	98.9302	99.9317	99.7230
Laborate	ory Data				
m"	Total matter corrected for allowable blanks (µg)	0.4679	<0.2000	<0.2000	
Cadmiu	m Results - Total				
Csd	Concentration (Ib/dscf)	1.2255E-11	<5.5583E-12	<5.3708E-12	<7.7279E-12
C _{sd7}	Concentration @7% O_2 (lb/dscf)	1.5729E-11	<6.9291E-12	<6.7806E-12	<9.8128E-12
C _{sd12}	Concentration @12% CO ₂ (lb/dscf)	1.5898E-11	<6.9478E-12	<6.7276E-12	<9.8578E-12
Ca	Concentration (lb/acf)	6.5625E-12	<2.9743E-12	<2.8542E-12	<4.1303E-12
C _{sd}	Concentration (µg/dscm)	1.9624E-01	<8.9008E-02	<8.6006E-02	<1.2375E-01
C _{sd7}	Concentration @7% O_2 (µg/dscm)	2.5187E-01	<1.1096E-01	<1.0858E-01	<1.5714E-01
C _{sd12}	Concentration @12% CO ₂ (µg/dscm)	2.5458E-01	<1.1126E-01	<1.0773E-01	<1.5786E-01
C_{sd}	Concentration (mg/dscm)	1.9624E-04	<8.9008E-05	<8.6006E-05	<1.2375E-04
C _{sd7}	Concentration @7% O ₂ (mg/dscm)	2.5187E-04	<1.1096E-04	<1.0858E-04	<1.5714E-04
C _{sd12}	Concentration @12% CO ₂ (mg/dscm)	2.5458E-04	<1.1126E-04	<1.0 7 73 E -04	<1.5786E-04
Ca	Concentration (µg/m ³ (actual,wet))	1.0509E-01	<4.7629E-02	<4.5705E-02	<6.6141E-02
C _{sd}	Concentration (µg/Nm ³ dry)	2.1060E-01	<9.5521E-02	<9.2300E-02	<1.3281E-01
C _{sd7}	Concentration @7% O_2 (µg/Nm ³ dry)	2.7030E-01	<1.1908E-01	<1.1653E-01	<1.6864E-01
C _{sd12}	Concentration @12% CO ₂ (µg/Nm ³ dry)	2.7321E-01	<1.1940E-01	<1.1562E-01	<1.6941E-01
Elb/hr	Rate (lb/hr)	7.9509E-05	<3.4461E-05	<3.4116E-05	<4.9362E-05
E _{g/s}	Rate (g/s)	1.0016E-05	<4.3413E-06	<4.2978E-06	<6.2184E-06
E _{T/yr}	Rate (Ton/yr)	3.4825E-04	<1.5094E-04	<1.4943E-04	<2.1621E-04
EFd	Rate - Fd-based (lb/MMBtu)	2.2632E-07	<9.9706E-08	<9.7569E-08	<1.4120E-07
E _{Fe}	Rate - Fc-based (lb/MMBtu)	2.4112E-07	<1.0538E-07	<1.0203E-07	<1.4951E-07

041310 094129 KLN@_N

Prepared by Clean Air Engineering Proprietary Software SS Metzle-1 Version 2006-12a Copyright © 2008 Clean Air Engineering Inc.

USEPA Method 5/29 Lead (Pb) Emission Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 18	Mar 18	Mar 18	
-	ne (approx.)	07:09	09:49	12:27	
	ne (approx.)	09:22	12:02	14:39	
	Conditions	102.0	197.0	192.0	192 C
RP	Steam Production Rate (Klbs/hour)	183.9 320	182.9	183.9 321	183.6
P1	Fabric Filter Inlet Temperature (°F)		320		320.3
F₀	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
Fc	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O2	Oxygen (dry volume %)	10.0700	9.7500	9.8900	9.9033
CO₂	Carbon dioxide (dry volume %)	9.2500	9.6000	9.5800	9.4767
Τs	Sample temperature (°F)	307.4800	307.6000	307.7600	307.6133
Bw	Actual water vapor in gas (% by volume)	20.4338	20.4796	20.9926	20.6353
Gas Flo	w Rate				
Q,	Volumetric flow rate, actual (acfm)	201,928	193,105	199,217	198,083
Qs	Volumetric flow rate, standard (scfm)	135,904	129,946	133,997	133,282
Q _{std}	Volumetric flow rate, dry standard (dscfm)	108,134	103,333	105,868	105,778
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dscfm)	84,251	82,890	83,856	83,666
Q	Volumetric flow rate, actual (acf/hr)	12,115,652	11,586,291	11,953,037	11,884,993
Q,	Volumetric flow rate, standard (scf/hr)	8,154,240	7,796,743	8,039,841	7,996,941
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,488,019	6,200,003	6,352,070	6,346,697
Q,	Volumetric flow rate, actual (m ³ /hr)	343,122	328,131	338,517	336, 590
Q,	Volumetric flow rate, standard (m ³ /hr)	230,933	220,808	227,693	226,478
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	183,745	175,588	179,894	179,742
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dry m3/hr)	143,162	140,849	142,492	142,168
Qø	Volumetric flow rate, normal (Nm3/hr)	215,187	205,753	212,169	211,036
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	171,216	163,616	167,629	167,487
Q _{std7}	Volumetric flow rate, dry normal @7%O2 (Nm3/hr)	133,401	131,246	132,777	132,474
Samplin					
V _{mstd}	Volume metered, standard (dscf)	84,1826	79.3413	82,1102	81.8780
* msta %l	Isokinetic sampling (%)	100.3071	98.9302	99.9317	99.7230
Laborate		0.4400	-0.0000	-0.0000	
ma	Total matter corrected for allowable blanks (µg)	2.4408	<0.2000	<0.2000	
Lead Re	sults - Total				
Csd	Concentration (lb/dscf)	6.3931E-11	<5.5583E-12	<5.3708E-12	<2.4953E-11
C _{sd7}	Concentration @7% O ₂ (lb/dscf)	8.2054E-11	<6.9291E-12	<6.7806E-12	<3.1921E-11
C _{sd12}	Concentration @12% CO ₂ (lb/dscf)	8.2937E-11	<6.9478E-12	<6.7276E-12	<3.2204E-11
Ca	Concentration (Ib/acf)	3.4235E-11	<2.9743E-12	<2.8542E-12	<1.3355E-11
C _{sd}	Concentration (µg/dscm)	1.0238E+00	<8.9008E-02	<8.6006E-02	<3.9959E-01
C _{sd7}	Concentration @7% O ₂ (µg/dscm)	1.3140E+00	<1.1096E-01	<1.0858E-01	<5.1117E-01
C _{sd12}	Concentration @12% CO ₂ (µg/dscm)	1.3281E+00	<1.1126E-01	<1.0773E-01	<5.1571E-01
C _{sd}	Concentration (mg/dscm)	1.0238E-03	<8.9008E-05	<8.6006E-05	<3.9959E-04
C _{sd7}	Concentration @7% O ₂ (mg/dscm)	1.3140E-03	<1.1096E-04	<1.0858E-04	<5.1117E-04
C _{sd 12}	Concentration @12% CO ₂ (mg/dscm)	1.3281E-03	<1.1126E-04	<1.0773E-04	<5.1571E-04
Ca	Concentration (µg/m ³ (actual,wet))	5.4823E-01	<4.7629E-02	<4.5705E-02	<2.1386E-01
C _{sd}	Concentration (µg/Nm ³ dry)	1.0987E+00	<9.5521E-02	<9.2300E-02	<4.2883E-01
C _{sd7}	Concentration @7% O ₂ (µg/Nm ³ dry)	1.4101E+00	<1.1908E-01	<1.1653E-01	<5.4857E-01
C _{sd12}	Concentration @12% CO2 (µg/Nm ³ dry)	1.4253E+00	<1.1940E-01	<1.1562E-01	<5.5344E-01
Elp/hr	Rate (lb/hr)	4.1479E-04	<3.4461E-05	<3.4116E-05	<1.6112E-04
E _{g/s}	Rate (g/s)	5.2253E-05	<4.3413E-06	<4.2978E-06	<2.0297E-05
ET/yr	Rate (Tor/yr)	1.8168E-03	<1.5094E-04	<1.4943E-04	<7.0571E-04
EFd	Rate - Fd-based (Ib/MMBtu)	1.1807E-06	<9.9706E-08	<9.7569E-08	<4.5933E-07
EFc	Rate - Fc-based (lb/MMBtu)	1.2579E-06	<1.0538E-07	<1.0203E-07	<4.8843E-07

041310 094140 KLN@_N

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2008-12a

Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 13B (Total Fluorides) Sampling, Velocity and Moisture Parameters

.

Run No		1	2	3	Average
Date (20	010)	Mar 18	Mar 18	Mar 18	
Start Tin	ne (approx.)	07:09	08:56	10:45	
Stop Tin	ne (approx.)	08:24	10:10	12:05	
Samolin	g Conditions				
Y _d	Dry gas meter correction factor	0.9898	0.9898	0.9898	
C,	Pitot tube coefficient	0.8120	0.8120	0.8120	
P	Static pressure (in. H ₂ O)	-10.6000	-10.6000	-10.6000	
Å	Sample location area (ft ²)	64.0000	64.0000	64.0000	
P _{bar}	Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
D,	Nozzle diameter (in.)	0.2680	0.2680	0.2680	
O ₂	Oxygen (dry volume %)	10.0200	9.6400	10.1500	9.9367
CO₂	Carbon dioxide (dry volume %)	9.2900	9.5800	9.1300	9.3333
N ₂ +CC		80.6900	80.7800	80.7200	80.7300
Vic	Total Liquid collected (ml)	212.40	209.90	201.60	
Vm	Volume metered, meter conditions (ft ³)	38.0800	37.3850	38.3650	
Tm	Dry gas meter temperature (°F)	64.5400	73.1600	81.1000	
T,	Sample temperature (°F)	306.2400	305.4400	305.7200	305.8000
ΔH	Meter box orifice pressure drop (in. H_2O)	1.2560	1.1592	1.2068	
θ	Total sampling time (min)	62.5	62.5	62.5	
Flow Re	sults				
V _{wstd}	Volume of water collected (ft ³)	9.9955	9.8779	9.4873	9.7869
V _{mstd}	Volume metered, standard (dscf)	38.2069	36.8944	37.3103	37.4705
Ps	Sample gas pressure, absolute (in. Hg)	29.2706	29.2706	29.2706	29.2706
Pv	Vapor pressure, actual (in. Hg)	29.2706	29.2706	29.2706	29.2706
Bwo	Moisture measured in sample (% by volume)	20.7366	21.1191	20.2730	20.7096
Bws	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
B,	Actual water vapor in gas (% by volume)	20.7366	21.1191	20.2730	20.7096
V∆P	Velocity head (√in. H₂O)	0.7304	0.7020	0.7114	0.7146
M _d	MW of sample gas, dry (lb/lb-mole)	29.8872	29.9184	29.8668	29.8908
Me	MW of sample gas, wet (lb/lb-mole)	27.4222	27.4013	27.4610	27.4282
V _s	Velocity of sample (ft/sec)	49.5381	47.6055	48.2000	48.4479
%I	Isokinetic sampling (%)	98.3144	99.1667	98.0324	98.5045
Qa	Volumetric flow rate, actual (acfm)	190,226	182,805	185,088	186,040
Q,	Volumetric flow rate, standard (scfm)	128,236	123,362	124,857	125,485
Q _{std}	Volumetric flow rate, dry standard (dscfm)	101,644	97,309	99,545	99,499
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	79,560	78,827	76,986	78,458
Qa	Volumetric flow rate, actual (acf/hr)	11,413,588	10,968,309	11,105,290	11,162,396
Q_s	Volumetric flow rate, standard (scf/hr)	7,694,159	7,401,714	7,491,412	7,529,095
\mathbf{Q}_{std}	Volumetric flow rate, dry standard (dscf/hr)	6,098,652	5,838,538	5,972,675	5,969,955
Qa	Volumetric flow rate, actual (m ³ /hr)	323,240	310,629	314,508	316,126
Q,	Volumetric flow rate, standard (m ³ /hr)	217,903	209,621	212,161	213,228
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	172,717	165,351	169,150	169,073
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	135,192	133,946	130,817	133,318
Q,	Volumetric flow rate, normal (Nm ³ /hr)	203,046	195,329	197,696	198,690
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	160,941	154,077	157, 617	157,545
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	125,974	124,813	121,898	124,228

Comments:

Average includes 3 runs.

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright @ 2006 Clean Air Engineering Inc.

QA/QC _____ Date _____

,

041310 094227 N O N @

USEPA Method 13B HF Parameters

Run No		1	2	3	Average
Date (20	10)	Mar 18	Mar 18	Mar 18	_
	ne (approx.)	07:09	08:56	10:45	
	ne (approx.)	08:24	10:10	12:05	
-		00.24	10.10	12.00	
	Conditions	192.0	1010	400.0	
R _P	Steam Production Rate (Klbs/hour)	183.9	184.2	183.0	183.7
P ₁	Fabric Filter Inlet Temperature (°F)	321	320	320	320
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F。	Carbon dioxide-based F-factor (dscf/MMBtu) Capacity factor (hours/year)	1,820 8, 7 60	1,820	1,820	1,820
Сар		5,760	8,760	8,760	8,760
	nditions				
0 ₂	Oxygen (dry volume %)	10.0200	9.6400	10.1500	9.9367
CO₂	Carbon dioxide (dry volume %)	9.2900	9.5800	9.1300	9.3333
T,	Sample temperature ("F)	306.2400	305.4400	305.7200	305.8000
B _w	Actual water vapor in gas (% by volume)	20.7366	21.1191	20.2730	20.7096
Gas Flo	w Rate				
Q,	Volumetric flow rate, actual (acfm)	190,226	182,805	185,088	186,040
Q,	Volumetric flow rate, standard (scfm)	128,236	123,362	124,857	125,485
Q _{std}	Volumetric flow rate, dry standard (dscfm)	101,644	97,309	99,545	99,499
Q _{std7}	Volumetric flow rate, dry std@7%O 2 (dscfm)	79,560	78,827	76,986	78,458
Qa	Volumetric flow rate, actual (acf/hr)	11,413,588	10,968,309	11,105,290	11,162,396
Q,	Volumetric flow rate, standard (scf/hr)	7,694,159	7,401,714	7,491,412	7,529,095
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,098,652	5,838,538	5,972,675	5,969,955
Qa	Volumetric flow rate, actual (m ³ /hr)	323,240	310,629	314,508	316,126
Q,	Volumetric flow rate, standard (m ³ /hr)	217,903	209,621	212,161	213,228
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	172,717	165,351	169,150	169,073
Q _{std7}	Volumetric flow rate, dry std@7%O 2 (dry m ³ /hr)	135,192	133,946	130,817	133,318
Q,	Volumetric flow rate, normal (Nm ³ /hr)	203,046	195,329	197,696	198,690
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	160,941	154,077	157,617	157,545
Q _{std7}	Volumetric flow rate, dry normal @7%O $_2$ (Nm ³ /hr)	125,974	124,813	121,898	124,228
Samplin	g Data				
V _{mstd}	Volume metered, standard (dscf)	38.2069	36.8944	37.3103	37.4705
%!	Isokinetic sampling (%)	98.3144	99.1667	98.0324	98.5045
Laborate	prv Data				
m _n	Total HF collected (mg)	< 0.0360	<0.0345	<0.0354	
			••••		
	In Fluoride (HF) Results	<2 0784E.00	<2 0614E 00	<2 0005E 00	<2 0769E 00
C _{ed} C _{sd7}	HF Concentration (lb/dscf) HF Concentration @7% O $_{2}$ (lb/dscf)	<2.0784E-09	<2.0614E-09	<2.0905E-09	<2.0768E-09
-	HF Concentration @12% CO $_2$ (lb/dscf)	<2.6553E-09 <2.6846E-09	<2.5447 E -09	<2.7030E-09	<2.6343E-09
C _{sd12} C _a	HF Concentration (Ib/acf)	<1.1105E-09	<2.5822E-09 <1.0973E-09	<2.7476E-09 <1.1243E-09	<2.6715E-09 <1.1107E-09
C _{sd}	HF Concentration (ppmdv)	<0.0400	< 0.0397	<0.0403	<0.0400
C _{sd} C _{ad7}	HF Concentration (07% O ₂ (ppmdv)	<0.0512	< 0.0391	<0.0403	<0.0508
C _{sd12}	HF Concentration @12% CO ₂ (ppmdv)	< 0.0517	<0.0498	<0.0529	<0.0515
C _w	HF Concentration (ppmwv)	< 0.0317	< 0.0313	<0.0321	<0.0317
C _{sd}	HF Concentration (mg/dscm)	< 0.0333	< 0.0330	< 0.0335	<0.0333
C _{sd} 7	HF Concentration @7% O ₂ (mg/dscm)	< 0.0425	<0.0408	<0.0433	<0.0422
C _{sd12}	HF Concentration @12% CO 2 (mg/dscm)	< 0.0430	< 0.0413	<0.0440	<0.0428
Ca	HF Concentration (mg/m ³ (actual,wet))	< 0.0178	< 0.0176	< 0.0180	<0.0178
C _{ed}	HF Concentration (mg/Nm ³ dry)	< 0.0357	< 0.0354	< 0.0359	<0.0357
C _{sd7}	HF Concentration (mg/Nm ³ dry)	< 0.0456	< 0.0437	<0.0465	<0.0453
C _{ed12}	HF Concentration @12% CO 2 (mg/Nm ³ dry)	< 0.0461	< 0.0444	<0.0472	<0.0459
Elp/hr	HF Rate (lb/hr)	< 0.0127	<0.0120	<0.0125	<0.0124
E _{kg/hr}	HF Rate (kg/hr)	< 0.0057	< 0.0055	<0.0057	<0.0056
E _{T/yr}	HF Rate (Ton/yr)	< 0.0555	<0.0527	<0.0547	<0.0543
=,,,, E _{Fd}	HF Rate - Fd-based (lb/MMBtu)	<0.000038	< 0.000037	<0.000039	<0.000038
EFC	HF Rate - Fc-based (lb/MMBtu)	< 0.000041	< 0.000039	< 0.000042	<0.000041

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2006-10a (F)

Copyright © 2006 Clean Air Engineering Inc.

041310 094227 NON@_L

USEPA Method 23 (PCDD/F) Sampling, Velocity and Moisture Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 16	Mar 17	Mar 17	
Start Tir	me (approx.)	08:44	06:54	12:53	
Stop Tir	ne (approx.)	13:36	12:19	17:26	
Samoli	ng Conditions				
Yd	Dry gas meter correction factor	` 0.9901	0.9901	0.9904	
C,	Pitot tube coefficient	0.8340	0.8340	0.8340	
P _g	Static pressure (in. H ₂ O)	-12.0000	-12.5000	-10.4000	
As	Sample location area (ft ²)	64.0000	64.0000	64.0000	
P _{bar}	Barometric pressure (in. Hg)	30.00	30.00	30.00	30.0000
Dn	Nozzle diameter (in.)	0.2640	0.2640	0.2640	
0 ₂	Oxygen (dry volume %)	9.6800	9.7400	10.3100	9.9100
CO₂	Carbon dioxide (dry volume %)	9.7400	9.8400	9.4700	9.6833
N₂+CC	Nitrogen plus carbon monoxide (dry volume %)	80.5800	80.4200	80.2200	80.4067
V _{ic}	Total Liquid collected (ml)	836.50	943.90	896.70	
Vm	Volume metered, meter conditions (ft ³)	160.3450	171.6150	166.1550	
Tm	Dry gas meter temperature (°F)	80.0500	74.6100	72.3700	
Т	Sample temperature (°F)	300.6400	307.4800	307.8400	305.3200
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.2940	1.5220	1.3680	
θ	Total sampling time (min)	250.0	250.0	250.0	
Flow Re	sults				
V _{wstd}	Volume of water collected (ft ³)	39.3657	44.4199	42.1987	41.9948
V _{mstd}	Volume metered, standard (dscf)	156.0614	168.8240	164.1285	163.0046
Ps	Sample gas pressure, absolute (in. Hg)	29.1176	29.0809	29.2353	29.1446
P,	Vapor pressure, actual (in. Hg)	29.1176	29.0809	29.2353	29.1446
Bwo	Moisture measured in sample (% by volume)	20.1434	20.8306	20.4523	20.4754
Bws	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	20.1434	20.8306	20.4523	20.4754
√∆P	Velocity head (√in. H₂O)	0.7462	0.7983	0.7613	0.7686
Md	MW of sample gas, dry (lb/lb-mole)	29.9456	29.9640	29.9276	29.9457
Мs	MW of sample gas, wet (lb/lb-mole)	27.5393	27.4718	27.4881	27.4998
Vs	Velocity of sample (fl/sec)	51.8144	55.7840	53.0548	53.5511
%I	Isokinetic sampling (%)	97.9747	100.3189	101.5668	99.9535
Qa	Volumetric flow rate, actual (acfm)	198,967	214,211	203,730	205,636
Q_s	Volumetric flow rate, standard (scfm)	134,410	143,237	136,888	138,178
Q_{std}	Volumetric flow rate, dry standard (dscfm)	107,335	113,400	108,891	109,875
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	86,640	91,046	82,961	86,882
Q _a	Volumetric flow rate, actual (acf/hr)	11,938,029	12,852,643	12,223,823	12,338,165
Qs	Volumetric flow rate, standard (scf/hr)	8,064,586	8,594,197	8,213,270	8,290,684
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,440,103	6,803,976	6,533,466	6,592,515
Qa	Volumetric flow rate, actual (m ³ /hr)	338,092	363,994	346,186	349,424
Q,	Volumetric flow rate, standard (m ³ /hr)	228,394	243,393	232,605	234,797
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	182,388	192,693	185,032	186,704
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	147,222	154,709	140,970	147,634
Q,	Volumetric flow rate, normal (Nm ³ /hr)	212,822	226,798	216,745	218,788
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	169,952	179,554	172,416	173,974
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	137,184	144,160	131,359	137,568

Comments:

Average includes 3 runs.

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Varsion 2006-13d Copyright @ 2006 Clean Air Engineering Inc.

.

041310 094304 PMG @

QA/QC Date _

USEPA Method 23 Parameters (NDs & EMPCs counted as Zero) Total Tetra- through Octa-PCDD/F Results (using USEPA/INTL 1989 TEFs)

Run No.		1	2	3	Average
					Attenuge
Date (201	•	Mar 16	Mar 17	Mar 17	
	e (approx.)	08:44	06:54	12:53	
•	a (approx.)	13:36	12:19	17:26	
	Conditions				
Rp	Steam Production Rate (Klbs/hour)	184.1	184.3	183.9	184.1
P,	Fabric Filter Inlet Temperature (°F)	314	321	320	319
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F.	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Con					
O ₂	Oxygen (dry volume %)	9.6800	9.7400	10.3100	9.9100
CO2	Carbon dioxide (dry volume %)	9.7400	9.8400	9.4700	9.6833
т,	Sample temperature (°F)	300.6	307.5	307.8	305.3
B,	Actual water vapor in gas (% by volume)	20.1434	20.8306	20.4523	20.4754
Gas Flow	Rate				
Q,	Volumetric flow rate, actual (acfm)	198,967	214,211	203,730	205,636
Q,	Volumetric flow rate, standard (scfm)	134,410	143,237	136,888	138,178
Q_{std}	Volumetric flow rate, dry standard (dscfm)	107,335	113,400	108,891	109,875
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	86,640	91,046	82,961	86,882
Q,	Volumetric flow rate, actual (acf/hr)	11,938,029	12,852,643	12,223,823	12,338,165
Q,	Volumetric flow rate, standard (scf/hr)	8,064,586	8,594,197	8,213,270	8,290,684
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,440,103	6,803,976	6,533,466	6,592,515
Q,	Volumetric flow rate, actual (m ³ /hr)	338,092	363,994	346,186	349,424
Q,	Volumetric flow rate, standard (m ³ /hr)	228,394	243,393	232,605	234,797
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	182,388	192,693	185,032	186,704
	Volumetric flow rate, dry std@7%O2 (dry m³/hr)	147,222	154,709	140,970	147,634
Q,	Volumetric flow rate, normal (Nm ³ /hr)	212,822	226,798	216,745	218,788
Q _{atd}	Volumetric flow rate, dry normal (Nm ³ /hr)	169,952	179,554	172,416	173,974
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	137,184	144,160	131,359	137,568
Sampling	Data	•			
Vmaxd	Volume metered, standard (dscf)	156.0614	168.8240	164.1285	163.0048
%1	Isokinetic sampling (%)	97.9747	100.3189	101.5668	99.9535
Laborato	ry Data from USEPA Method 23				
	Total PCDDs (ng)	0.41220	0.56920	0.59770	
	Total PCDFs (ng)	0.85458	0.95310	1.07610	
m	Total PCDDs & PCDFs (ng)	1.26000	1.51000	1.67000	
m _{n_TEQ}	Total TEQ PCDDs & PCDFs (ng)	0.01660	0.02270	0.02700	
Total PCI	DD/F Results (TEF=1)				
Cad	PCDD/F Concentration (ng/dscm)	2.8508E-01	3.1582E-01	3.5928E-01	3.2006E-01
C _{ad7}	PCDD/F Concentration @7% O ₂ (ng/dscm)	3.5318E-01	3.9336E-01	4.7157E-01	4.0604E-01
C _{ed12}	PCDD/F Concentration @12% CO2 (ng/dscm)	3.5123E-01	3.8515E-01	4.5526E-01	3.9721E-01
C _{sd}	PCDD/F Concentration (ng/Nm ³ dry)	3.0594E-01	3.3893E-01	3.8557E-01	3.4348E-01
C _{ad7}	PCDD/F Concentration @7% O2 (ng/Nm ³ dry)	3.7902E-01	4.2214E-01	5.0608E-01	4.3575E-01
C _{sd12}	PCDD/F Concentration @12% CO2 (ng/Nm ³ dry)	3.7693E-01	4.1333E-01	4.8857E-01	4.2628E-01
Ether	PCDD/F Rate (lb/hr)	1.1465E-07	1.3419E-07	1.4658E-07	1.3181E-07
E _{p's}	PCDD/F Rate (g/s)	1.4443E-08	1.6905E-08	1.8466E-08	1.6605E-08
E _{T/yr}	PCDD/F Rate (Ton/yr)	5.0217E-07	5.8774E-07	6.4204E-07	5.7732E-07
EFd	PCDD/F Rate - F _d -based (lb/MMBtu) ⁻	3.1736E-10	3.5346E-10	4.2374E-10	3.6486E-10
EFc	PCDD/F Rate - F _c -based (lb/MMBtu)	3.3266E-10	3.6478E-10	4.3118E-10	3.7621E-10
Total PCI	DD/F TEQ Results (using USEPA/INTL 1989 TEFs)				
CsdTEQ	TEQ Concentration (ng/dscm)	3.8011E-03	4.7478E-03	5.8087E-03	4.7859E-03
Cad7TEQ	TEQ Concentration @7% O2 (ng/dscm)	4.7091E-03	5.9134E-03	7.6242E-03	6.0822E-03
Csd 12TEO	TEQ Concentration @12% CO ₂ (ng/dscm)	4.6831E-03	5.7900E-03	7.3605E-03	5.9445E-03
Cadifeo	TEQ Concentration (ng/Nm ³ dry)	4.0792E-03	5.0952E-03	6.2337E-03	5.1360E-03
Csd7TEQ	TEQ Concentration @7% O2 (ng/Nm3 dry)	5.0536E-03	6.3461E-03	8.1821E-03	6.5273E-03
Csd12TEQ	TEQ Concentration @12% CO2 (ng/Nm ³ dry)	5.0258E-03	6.2136E-03	7.8991E-03	6.3795E-03
EID/hrteo	TEQ Rate (lb/hr)	1.5287E-09	2.0173E-09	2.3699E-09	1.9720E-09
E _{g/steo}	TEQ Rate (g/sec)	1.9258E-10	2.5413E-10	2.9855E-10	2.4842E-10
ET/yr/TEQ	TEQ Rate (Ton/yr)	6.6956E-09	8.8356E-09	1.0380E-08	8.6371E-09
EFdTED	TEQ Rate - F _d -based (lb/MMBtu)	4.2314E-12	5.3137E-12	6.8509E-12	5.4653E-12
EFGTEQ	TEQ Rate - F _c -based (lb/MMBtu)	4.4354E-12	5.4837E-12	6.9712E-12	5.6301E-12

Copyright © 2007 Clean Air Engineering Inc.

041310 094304 PMG@2_O

> QA/QC _____ Date _____

D - 24

USEPA Method 23 Maximum Emissions Parameters (NDs & EMPCs included) Total Tetra- through Octa-PCDD/F Results (TEQ based on USEPA/INTL 1989 TEFs)

Run No.		1	2	3	Average
Date (20)10)	Mar 16	Mar 17	Mar 17	
	ne (approx.)	08:44		12:53	
	ne (approx.)	13:36	12:19	17:26	
Process	Conditions				
Rp	Production rate - (units/hour)	184.1	184.3	183.9	184.1
P ₁	Process data - (units)	314	321	320	319
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F.	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Cor	nditions				
O ₂	Oxygen (dry volume %)	9.6800	9.7400	10.3100	9.9100
CO ₂	Carbon dioxide (dry volume %)	9.7400	9.8400	9.4700	9.6833
T _s	Sample temperature (°F)	300.6	307.5	307.8	305.3
Bw	Actual water vapor in gas (% by volume)	20.1434	20.8306	20.4523	20.4754
Gas Flov	w Rate				
Q,	Volumetric flow rate, actual (acfm)	198,967	214,211	203,730	205,636
Q,	Volumetric flow rate, standard (scfm)	134,410	143,237	136,888	138,178
Q _{std}	Volumetric flow rate, dry standard (dscfm)	107,335	113,400	108,891	109,875
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dscfm)	86,640	91,046	82,961	86,882
Q,	Volumetric flow rate, actual (acf/hr)	11,938,029	12,852,643	12,223,823	12,338,165
Q,	Volumetric flow rate, standard (scf/hr)	8,064,586	8,594,197	8,213,270	8,290,684
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	6,440,103	6,803,976	6,533,466	6,592,515
Q,	Volumetric flow rate, actual (m ³ /hr)	338,092	363,994	346,186	349,424
Q,	Volumetric flow rate, standard (m ³ /hr)	228,394	243,393	232,605	234,797
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	182,388	192,693	185,032	186,704
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dry m3/hr)	147,222	154,709	140,970	147,634
Qs	Volumetric flow rate, normal (Nm ³ /hr)	212,822	226,798	216,745	218,788
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	169,952	179,554	172,416	173,974
Q _{atd7}	Volumetric flow rate, dry normal @7%O2 (Nm3/hr)	137,184	144,160	131,359	137,568
Sampling	g Data				
Vmstd	Volume metered, standard (dscf)	156.0614	168.8240	164.1285	163.0046
%	Isokinetic sampling (%)	97.9747	100.3189	101.5668	99.9535
Laborato	ry Data from USEPA Method 23, including NDs and EMPCs				
m _n	Total PCDDs & PCDFs (ng)	1.36000	1.77000	1.86000	
m _{n_TEQ}		0.02110	0.02750	0.03050	
			0.02700	0.00000	
C _{ad}	DD/F Results (TEF=1) PCDD/F Concentration (ng/dscm)	3.0771E-01	3.7020E-01	4.0015E-01	3.5935E-01
C _{ad7}	PCDD/F Concentration @7% O ₂ (ng/dscm)	3.8121E-01	4.6109E-01	5.2523E-01	4.5584E-01
C _{sd12}	PCDD/F Concentration @12% CO ₂ (ng/dscm)	3.7911E-01	4.5146E-01	5.0706E-01	4.4588E-01
C _{sd}	PCDD/F Concentration (ng/Nm ³ dry)	3.3022E-01	3.9729E-01	4.2943E-01	3.8565E-01
C _{ad7}	PCDD/F Concentration @7% O ₂ (ng/Nm ³ dry)	4.0910E-01	4.9483E-01	5.6366E-01	4.8920E-01
C _{sd12}	PCDD/F Concentration @12% CO ₂ (ng/Nm ³ dry)	4.0685E-01	4.8450E-01	5.4416E-01	4.7850E-01
Eib/hr	PCDD/F Rate (Ib/hr)	1.2375E-07	1.5729E-07	1.6326E-07	1.4810E-07
E _{g/s}	PCDD/F Rate (g/s)	1.5590E-08	1.9815E-08	2.0567E-08	1.8657E-08
E _{T/yr}	PCDD/F Rate (Ton/yr)	5.4202E-07	6.8895E-07	7.1508E-07	6.4868E-07
E _{Fd}	PCDD/F - F _d -based (lb/MMBtu)	3.4254E-10	4.1433E-10	4.7195E-10	4.0961E-10
EFG	PCDD/F Rate - Fe-based (lb/MMBtu)	3.5906E-10	4.2759E-10	4.8024E-10	4.2229E-10
	DD/F TEQ Results (using USEPA/INTL 1989 TEFs)				
C _{sdTEQ}	TEQ Concentration (ng/dscm)	4.7740E-03	5.7517E-03	6.5617E-03	5.6958E-03
	TEQ Concentration @7% O ₂ (ng/dscm)	5.9143E-03	7.1639E-03	8.6126E-03	7.2303E-03
Caltore	TEQ Concentration @12% CO ₂ (ng/dscm)	5.8818E-03	7.0143E-03	8.3147E-03	7.0702E-03
	TEQ Concentration (ng/Nm ³ dry)	5.1233E-03	6.1726E-03	7.0418E-03	6.1126E-03
C _{sd7teq}	TEQ Concentration (ng/tim dry) TEQ Concentration @7% O₂ (ng/Nm ³ dry)	6.3471E-03	7.6880E-03	9.2427E-03	7.7593E-03
	TEQ Concentration @12% CO ₂ (ng/Nm ³ dry)	6.3121E-03	7.5275E-03	8.9231E-03	7.5876E-03
	TEQ Rate (lb/hr)	1.9199E-09	2.4438E-09	2.6771E-09	2.3470E-09
	TEQ Rate (g/sec)	2.4187E-10	3.0786E-10	3.3725E-10	2.9566E-10
Султео Ет/уптео	TEQ Rate (Ton/yr)	8.4094E-09	1.0704E-08	1.1726E-08	1.0280E-08
EFdTEQ	TEQ Rate - F _d -based (lb/MMBtu)	5.3145E-12	6.4373E-12	7.7390E-12	6.4969E-12
EFCTEQ	TEQ Rate - Fc-based (lb/MMBtu)	5.5707E-12	6.6433E-12	7.8749E-12	6.6963E-12
10124	,				

Prepared by Clean Air Engineering Proprietary Software SS PCDD-F v2007-01a

Copyright © 2007 Clean Air Engineering inc.

QA/QC _____ Date _____

041310 004341 PMG @_O

USEPA Method 26A (HCI) Sampling, Velocity and Moisture Parameters

Run No.		1	2	3	Average
Date (201	10)	Mar 17	Mar 17	Mar 17	
Start Tim	e (approx.)	06:54	09:02	10:25	
Stop Tim	e (approx.)	07:54	10:02	11:25	
Sampling	g Conditions				
Yd	Dry gas meter correction factor	0.9916	0.9916	0.9916	
Cp	Pitot tube coefficient	0.8400	0.8400	0.8400	
Pg	Static pressure (in. H ₂ O)	-1.7000	-1.9000	-1.9000	
As	Sample location area (ft ²)	60.1320	60.1320	60.1320	
Pbar	Barometric pressure (in. Hg)	30.00	30.00	30.00	30.0000
O ₂	Oxygen (dry volume %)	8.4100	9.2900	8.6800	8.7933
CO₂	Carbon dioxide (dry volume %)	10.8600	10.1900	10.7400	10.5967
N ₂ +CO	Nitrogen plus carbon monoxide (dry volume %)	80.7300	80.5200	80.5800	80.6100
VIc	Total Liquid collected (ml)	161.80	151.20	164.00	
Vm	Volume metered, meter conditions (ft ³)	36.3250	36.4700	36.2450	
Τm	Dry gas meter temperature (°F)	72.7917	66.8333	67.0000	
Τs	Sample temperature (°F)	509.5000	503.5000	501.5833	504.8611
ΔН	Meter box orifice pressure drop (in. H ₂ O)	1.1917	1.2000	1.1917	
θ	Total sampling time (min)	60.0	60.0	60.0	
Flow Res	sults				
V _{wstd}	Volume of water collected (ft ³)	7.6143	7.1155	7.7178	7.4825
V _{mstd}	Volume metered, standard (dscf)	35.8815	36.4329	36.1960	36.1702
Ps	Sample gas pressure, absolute (in. Hg)	29.8750	29.8603	29.8603	29.8652
Pv	Vapor pressure, actual (in. Hg)	29.8750	29.8603	29.8603	29.8652
B _{wo}	Moisture measured in sample (% by volume)	17.5058	16.3392	17.5750	17.1400
B _{ws}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	17.5058	16.3392	17.5750	17.1400
M _d	MW of sample gas, dry (lb/lb-mole)	30.0740	30.0020	30.0656	30.0472
Ms	MW of sample gas, wet (lb/lb-mole)	27.9603	28.0410	27.9451	27.9821

Comments:

Average includes 3 runs.

041310 094403 КQК@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright @ 2006 Clean Air Engineering Inc.

USEPA Method 26A HCI Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 17	Mar 17	Mar 17	
•	ne (approx.)	06:54	09:02	10:25	
	ne (approx.)	07:54	10:02	11:25	
Process	s Conditions				
R _P	Steam Production Rate (Klbs/hour)	184.7	184.2	184.9	184.6
P ₁	Fabric Filter Inlet Temperature (°F)	323	320	319	321
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F。	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co					
Oas Co	Oxygen (dry volume %)	8.4100	9.2900	8.6800	8.7933
	Carbon dioxide (dry volume %)	10.8600	10.1900	10.7400	10.5967
T _s	Sample temperature (°F)	509.5000	503.5000	501.5833	504.8611
B _w	Actual water vapor in gas (% by volume)	17.5058	16.3392	17.5750	17.1400
Samplin	-	35.8815	36.4329	36,1960	36.1702
V_{mstd}	Volume metered, standard (dscf)	33.0013	30.4323	30.1300	50.1702
	ory Data		040 5050	0.40.0007	
m'n	Total HCI collected (mg)	680.9708	649.5973	646.9267	
Hydroge	en Chloride (HCI) Results				
C_{sd}	HCI Concentration (lb/dscf)	4.1847E-05	3.9315E-05	3.9410E-05	4.0191E-05
C_{sd7}	HCI Concentration @7% O ₂ (lb/dscf)	4.6571E-05	4.7070E-05	4.4828E-05	4.6156E-05
C _{sd12}	HCI Concentration @12% CO ₂ (lb/dscf)	4.6240E-05	4.6298E-05	4.4033E-05	4.5524E-05
\mathbf{C}_{sd}	HCI Concentration (ppmdv)	442.4332	415.6619	416.6630	424.9194
C_{sd7}	HCI Concentration @7% O_2 (ppmdv)	492.3796	497.6486	473. 94 56	487.9913
C_{sd12}	HCI Concentration @12% CO ₂ (ppmdv)	488.8764	489.493 9	465.5453	481.3052
C,	HCI Concentration (ppmwv)	364.9816	347.7460	343.4346	352.0541
C_{sd}	HCI Concentration (mg/dscm)	670.1238	629.5752	631.0915	643.5968
C_{sd7}	HCI Concentration @7% O ₂ (mg/dscm)	745.7 7 43	753.7550	717.8536	739.1276
C_{sd12}	HCI Concentration @12% CO ₂ (mg/dscm)	740.4683	741.4036	705.1301	729.0007
\mathbf{C}_{sd}	HCI Concentration (mg/Nm ³ dry)	719.1573	675.6417	677.2689	690.6893
C_{sd7}	HCI Concentration @7% O ₂ (mg/Nm ³ dry)	800.3431	808.9078	770.3795	793.2101
C_{sd12}	HCI Concentration @12% CO ₂ (mg/Nm ³ dry)	794.6489	795.6526	756.7250	782.3422
E _{Fd}	HCI Rate - Fd-based (lb/MMBtu)	0.6701	0.6773	0.6450	0.6642
E _{Fc}	HCI Rate - Fc-based (lb/MMBtu)	0.7013	0.7022	0.6678	0.6904

042210 100723 KOK@_@

D - 27

USEPA Method 26A (HCI) Sampling, Velocity and Moisture Parameters

Run No.		1	2	3	Average
Date (20	10)	Mar 17	Mar 17	Mar 17	
Start Tim	e (approx.)	06:54	09:02	10:25	
Stop Tim	e (approx.)	07:54	10:02	11:25	
Samplin	g Conditions				
Yd	Dry gas meter correction factor	0.9904	0.9904	0.9904	
Cp	Pitot tube coefficient	0.8400	0.8400	0.8400	
Pg	Static pressure (in. H ₂ O)	-12.5000	-12.5000	-10.4000	
As	Sample location area (ft ²)	64.0000	64.0000	64.0000	
P _{bar}	Barometric pressure (in. Hg)	30.00	30.00	30.00	30.0000
O ₂	Oxygen (dry volume %)	9.6500	10.3900	9.5300	9.8567
CO ₂	Carbon dioxide (dry volume %)	9.6500	9.1400	9.9500	9.5800
N₂+CO	Nitrogen plus carbon monoxide (dry volume %)	80.7000	80.4700	80.5200	80.5633
Vic	Total Liquid collected (ml)	234.70	222.40	236.90	
Vm	Volume metered, meter conditions (ft ³)	41.9500	42.0650	42.2400	
T _m	Dry gas meter temperature (°F)	75.1250	79.6250	85.5417	
Τs	Sample temperature (°F)	309.4167	308.0833	307.3333	308.2778
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.5000	1.5000	1.5000	
θ	Total sampling time (min)	60.0	60.0	60.0	
Flow Res	sults				
V _{wstd}	Volume of water collected (ft ³)	11.0450	10.4661	11.1485	10.8865
V _{mstd}	Volume metered, standard (dscf)	41.2383	41.0065	40.7305	40.9918
Ps	Sample gas pressure, absolute (in. Hg)	29.0809	29.0809	29.2353	29.1324
Pv	Vapor pressure, actual (in. Hg)	29.0809	29.0809	29.2353	29.1324
Bwo	Moisture measured in sample (% by volume)	21.1253	20.3334	21.4894	20.9827
B _{ws}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	21.1253	20.3334	21.4894	20.9827
M _d	MW of sample gas, dry (lb/lb-mole)	29.9300	29.8780	29.9732	29.9271
Ms	MW of sample gas, wet (lb/lb-mole)	27.4098	27.4628	27.4002	27.4243

Comments:

Average includes 3 runs.

041310 094420 OJP@

Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 26A HCI Parameters

Run No		1	2	3	Average
Date (2	010)	Mar 17	Mar 17	Mar 17	
Start Ti	me (approx.)	06:54	09:02	10:25	
Stop Tir	ne (approx.)	07:54	10:02	11:25	
Proces	s Conditions				
R _P	Steam Production Rate (Klbs/hour)	184.7	184.2	184.9	184.6
P ₁	Fabric Filter Inlet Temperature (°F)	323	320	319	321
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
Fc	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O ₂	Oxygen (dry volume %)	9.6500	10.3900	9.5300	9.8567
CO₂	Carbon dioxide (dry volume %)	9.6500	9.1400	9.9500	9.5800
Ts	Sample temperature (°F)	309.4167	308.0833	307.3333	308.2778
Bw	Actual water vapor in gas (% by volume)	21.1253	20.3334	21.4894	20.9827
Samplir	ng Data				
V _{mstd}	Volume metered, standard (dscf)	41.2383	41.0065	40.7305	40.9918
Laborat	ory Data				
mn	Total HCl collected (mg)	29.7475	21.2780	23.2276	
Hydroge	en Chloride (HCI) Results				
C _{sd}	HCI Concentration (lb/dscf)	1.5906E-06	1.1442E-06	1.2575E-06	1.3307E-06
C_{sd7}	HCI Concentration @7% O ₂ (lb/dscf)	1.9653E-06	1.5132E-06	1.5373E-06	1.6719E-06
C_{sd12}	HCI Concentration @12% CO ₂ (lb/dscf)	1.9779E-06	1.5022E-06	1.5165E-06	1.6655E-06
\mathbf{C}_{sd}	HCI Concentration (ppmdv)	16.8166	12.0967	13.2946	14.0693
C_{sd7}	HCl Concentration @7% O_2 (ppmdv)	20.7779	15.9985	16.2528	17.6764
C_{sd12}	HCI Concentration @12% CO ₂ (ppmdv)	20.9119	15.8819	16.0337	17.6092
Cw	HCI Concentration (ppmwv)	13.2641	9.6371	10.4377	11.1129
C_{sd}	HCI Concentration (mg/dscm)	25.4710	18.3221	20.1364	21.3099
C_{sd7}	HCl Concentration @7% O_2 (mg/dscm)	31.4709	24.2319	24.6171	26.7733
C_{sd12}	HCI Concentration @12% CO ₂ (mg/dscm)	31.6738	24.0553	24.2851	26.6714
C_{sd}	HCI Concentration (mg/Nm ³ dry)	27.3348	19.6627	21.6098	22.8691
C_{sd7}	HCI Concentration @7% O ₂ (mg/Nm ³ dry)	33.7736	26.0050	26.4183	28.7323
C_{sd12}	HCI Concentration @12% CO ₂ (mg/Nm ³ dry)	33.9914	25.8154	26.0621	28.6230
\mathbf{E}_{Fd}	HCI Rate - Fd-based (lb/MMBtu)	0.0283	0.0218	0.0221	0.0241
E _{Fc}	HCl Rate - Fc-based (lb/MMBtu)	0.0300	0.0228	0.0230	0.0253

042210 100954 ОЈР@_@

Prepared by Clean Alr Engineering Proprietary Software SS EPA26-1 Version 2006-10a (CI)

Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 5/29 (Particulate/Metals) Sampling, Velocity and Moisture Parameters

Run No.		1	2	3	Average
Date (201	0)	Mar 17	Mar 17	Mar 17	
Start Time	e (approx.)	06:50	09:26	11:59	
Stop Time	approx.)	09:03	11:38	14:11	
Sampling	Conditions				
Y _d	Dry gas meter correction factor	0.9898	0.9898	0.9898	
C,	Pitot tube coefficient	0.8050	0.8050	0.8050	
С, P,	Static pressure (in. H ₂ O)	-11.0000	-11.0000	-10.3000	
A _s	Sample location area (ft ²)	64.0000	64.0000	64.0000	
∩s P _{bar}	Barometric pressure (in. Hg)	30.00	30.00	30.00	30.0000
D _n	Nozzle diameter (in.)	0.2700	0.2700	0.2700	
O ₂	Oxygen (dry volume %)	8.7100	8.3000	8.7200	8.5767
CO ₂	Carbon dioxide (dry volume %)	10.4600	10.9400	10.8400	10.7467
-	Nitrogen plus carbon monoxide (dry volume %)	80.8300	80.7600	80.4400	80.6767
Vic	Total Liquid collected (ml)	442.10	478.40	464.40	00.07 07
V _{ic} V _m	Volume metered, meter conditions (ft ³)	72.2900	77.9350	76.6650	
vm Tm	Dry gas meter temperature (°F)	75.8000	80.2200	78.5800	
	Sample temperature (°F)	303,4400	304.0800	304.0000	303.8400
T₅ ∆H	Meter box orifice pressure drop (in. H ₂ O)	1.0824	1.2396	1.2104	505.0400
<u>д</u> гі Ө	Total sampling time (min)	125.0	125.0	125.0	
9	Total sampling (inte (min))	125.0	125.0	120.0	
Flow Res					
V _{watd}	Volume of water collected (ft ³)	20.8052	22.5135	21.8547	21.7245
V _{mstd}	Volume metered, standard (dscf)	70.858 7	75.7961	74.7826	73.8125
Ps	Sample gas pressure, absolute (in. Hg)	29.1912	29.1912	29.2426	29.2083
P,	Vapor pressure, actual (in. Hg)	29.1912	29.1912	29.2426	29.2083
Bwo	Moisture measured in sample (% by volume)	22.6973	22.9006	22.6151	22.7377
Bws	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	22.6973	22.9006	22.6151	22.7377
√∆P	Velocity head (√in. H₂O)	0.6736	0.7224	0.7136	0.7032
Md	MW of sample gas, dry (lb/lb-mole)	30.0220	30.0824	30.0832	30.0625
Ms	MW of sample gas, wet (lb/lb-mole)	27.2933	27.3155	27.3506	27.3198
Vs	Velocity of sample (fl/sec)	45.3811	48.6680	48.0009	47.3500
%I	Isokinetic sampling (%)	100.4415	100.5326	100.0090	100.3277
Qa	Volumetric flow rate, actual (acfm)	174,264	186,885	184,323	181,824
Q,	Volumetric flow rate, standard (scfm)	117,586	125,997	124,502	122,695
Q _{std}	Volumetric flow rate, dry standard (dscfm)	90,897	97,143	96,346	94,795
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	79,715	88,05 7	84,424	84,065
Qa	Volumetric flow rate, actual (acf/hr)	10,455,817	11,213,097	11,059,399	10,909,438
Q,	Volumetric flow rate, standard (scf/hr)	7,055,162	7,559,806	7,470,113	7,361,694
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	5,453,832	5,828,564	5,780,736	5,687,711
Qø	Volumetric flow rate, actual (m ³ /hr)	296,115	317,562	313,209	308,962
Q,	Volumetric flow rate, standard (m ³ /hr)	199,806	214,098	211,558	208,488
Q _{std}	Volumetric flow rate, dry standard (dry m3/hr)	154,456	165,068	163,714	161,079
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	135,454	149,630	143,456	142,847
Q,	Volumetric flow rate, normal (Nm ³ /hr)	186,183	199,501	197,134	194,272
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	143,925	153,814	152,552	150,097
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	126,219	139,428	133,675	133,107

Comments:

Average includes 3 runs.

Prepared by Clean Air Engineering Proprietary Software SS (SOKINETIC Version 2008-13d

Copyright @ 2006 Clean Air Engineering Inc.

041310 094501 INM @

USEPA Method 5/29 Filterable Particulate Parameters

Run No		1	2	3	Average
Date (20)10)	Mar 17	Mar 17	Mar 17	
	ne (approx.)	06:50	09:26	11:59	
	ne (approx.)	09:03	11:38	14:11	
	s Conditions				
Rp	Steam Production Rate (Klbs/hour)	184.2	184.2	183.5	184.0
P ₁	Fabric Filter Inlet Temperature (°F)	315	315	315	315
Fa	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F.	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
0 ₂	Oxygen (dry volume %)	8.7100	8.3000	8.7200	8.5767
CO₂	Carbon dioxide (dry volume %)	10.4600	10.9400	10.8400	10.7467
T _s	Sample temperature (°F)	303.4400	304.0800	304.0000	303.8400
Bw	Actual water vapor in gas (% by volume)	22.6973	22.9006	22.6151	22.7377
Gas Flo	Poto -				
Q,	Volumetric flow rate, actual (acfm)	174,264	186,885	184,323	181,824
Q,	Volumetric flow rate, standard (scfm)	117,586	125,997	124,502	122,695
Q _{std}	Volumetric flow rate, dry standard (dscfm)	90,897	97,143	96,346	94,795
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	79,715	88,057	84,424	84,065
Q,	Volumetric flow rate, actual (acf/hr)	10,455,817	11,213,097	11,059,399	10,909,438
Q,	Volumetric flow rate, standard (scf/hr)	7,055,162	7,559,806	7,470,113	7,361,694
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	5,453,832	5,828,564	5,780,736	5,687,711
Q	Volumetric flow rate, actual (m ³ /hr)	296,115	317,562	313,209	308,962
Q,	Volumetric flow rate, standard (m ³ /hr)	199,806	214,098	211,558	208,488
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	154,456	165,068	163,714	161,079
Qatd7	Volumetric flow rate, dry std@7%O2 (dry m3/hr)	135,454	149,630	143,456	142,847
Qs	Volumetric flow rate, normal (Nm ³ /hr)	186,183	199,501	197,134	194,272
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	143,925	153,814	152,552	150,097
Q _{std7}	Volumetric flow rate, dry normal @7%O2 (Nm3/hr)	126,219	139,428	133,675	133,107
Samplin	ig Data				
V _{mstd}	Volume metered, standard (dscf)	70.8587	75.7961	74.7826	73.8125
%1	Isokinetic sampling (%)	100.4415	100.5326	100.0090	100.3277
Laborate	ory Data				
m _{filter}	Matter collected on filter(s) (g)	0.00040	<0.00010	0.00100	
m,	Matter collected in solvent rinse(s) (g)	0.00075	0.00130	0.00123	
m'n	Total particulate matter collected (g)	0.00115	0.00130	0.00223	
Filterabl	e Particulate Results				
C _{ad}	Particulate Concentration (Ib/dscf)	3.5708E-08	3.7735E-08	6.5865E-08	4.6436E-08
C _{sd7}	Particulate Concentration @7% O2 (lb/dscf)	4.0717E-08	4.1628E-08	7.5166E-08	5.2504E-08
C _{ad12}	Particulate Concentration @12% CO ₂ (lb/dscf)	4.0965E-08	4.1391E-08	7.2913E-08	5.1756E-08
Ca	Particulate Concentration (lb/acf)	1.8625E-08	1.9615E-08	3.4428E-08	2.4223E-08
Cad	Particulate Concentration (gr/dscf)	0.0002	0.0003	0.0005	0.0003
Cad7	Particulate Concentration @7% O ₂ (gr/dscf)	0.0003	0.0003	0.0005	0.0004
C _{ad12}	Particulate Concentration @12% CO ₂ (gr/dscf)	0.0003	0.0003	0.0005	0.0004
Ca	Particulate Concentration (gr/acf)	0.0001	0.0001	0.0002	0.0002
C _{sd}	Particulate Concentration (mg/dscm)	0.5718	0.6043	1.0547	0.7436
C _{sd7}	Particulate Concentration @7% O ₂ (mg/dscm)	0.6520	0.6666	1.2037	0.8408
C _{sd12}	Particulate Concentration @12% CO ₂ (mg/dscm)	0.6560	0.6628	1.1676	0.8288
Ca	Particulate Concentration (mg/m ³ (actual,wet))	0.2983	0.3141	0.5513	0.3879
C _{sd}	Particulate Concentration (mg/Nm ³ dry)	0.6136	0.6485	1.1319	0.7980
C _{sd7}	Particulate Concentration @7% O_2 (mg/Nm ³ dry)	0.6997	0.7154	1,2918	0.9023
C _{ad12}	Particulate Concentration @12% CO ₂ (mg/Nm ³ dry)	0.7040	0.7113	1.2530	0.8895
Elb/hr	Particulate Rate (lb/hr)	0.1947	0.2199	0.3807	0.2651 0.1202
E _{kg/hr}	Particulate Rate (kg/hr)	0.0883	0.0997	0.1727	1.1613
E _{T/yr}	Particulate Rate (Ton/yr)	0.8530	0.9633 0.0006	1.6677 0.0011	0.0008
E _{Fd}	Particulate Rate - F _d -based (lb/MMBtu)	0.0006 0.0006	0.0006	0.0011	0.0008
EFc	Particulate Rate - F _c -based (Ib/MMBtu)	0.0000	0.0000	0.0011	
Commen					041310 084516 INM @_D
Averag	e includes 3 runs.				

Average includes 3 runs. Prepared by Clean Al: Engineering Proprietary Software 69 EPA 5-1 Version 2008-086

Copyright © 2006 Clean Air Engineering inc.

USEPA Method 5/29 Mercury (Hg) Emission Parameters

Run No.		1	2	3	Average
Date (20	-	Mar 17	Mar 17	Mar 17	
	ne (approx.)	06:50	09:26	11:59	
	ne (approx.)	09:03	11:38	14:11	
	s Conditions Steam Production Rate (Klbs/hour)	194.0	104.0	400 E	484.0
R _P		184.2	184.2	183.5	184.0
P ₁	Fabric Filter Inlet Temperature (°F)	315	315	315	315
F.	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F _c Cap	Carbon dloxIde-based F-factor (dscf/MMBtu) Capacity factor (hours/year)	1,820 8,760	1,820 8,760	1,820 8,760	1,820 8,760
•	nditions	-1	0,100	-,,	0,700
0 ₂	Oxygen (dry volume %)	8.7100	8.3000	8.7200	8.5767
CO ₂	Carbon dioxide (dry volume %)	10.4600	10.9400	10.8400	10.7467
Τ,	Sample temperature (°F)	303.4400	304.0800	304.0000	303.8400
в"	Actual water vapor in gas (% by volume)	22.6973	22.9006	22.6151	22.7377
Gas Flo	w Rate				
Q,	Volumetric flow rate, actual (acfm)	174,264	186,885	184,323	181,824
Q,	Volumetric flow rate, standard (scfm)	117,586	125,997	124,502	122,695
Q _{std}	Volumetric flow rate, dry standard (dscfm)	90,897	97,143	96,346	94,795
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dscfm)	79,715	88,057	84,424	84,065
Q,	Volumetric flow rate, actual (acf/hr)	10,455,817	11,213,097	11,059,399	10,909,438
Qs	Volumetric flow rate, standard (scf/hr)	7,055,162	7,559,806	7,470,113	7,361,694
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	5,453,832	5,828,564	5,780,736	5,687,711
Q,	Volumetric flow rate, actual (m ³ /hr)	296,115	317,562	313,209	308,962
Q,	Volumetric flow rate, standard (m ³ /hr)	199,806	214,098	211,558	208,488
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	154,456	165,068	163,714	161,079
Q _{std7}	Volumetric flow rate, dry std@7%O2 (dry m3/hr)	135,454	149,630	143,456	142,847
Q,	Volumetric flow rate, normal (Nm ^{3/hr)}	186,183	199,501	197,134	194,272
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	143,925	153,814	152,552	150,097
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	126,219	139,428	133,675	133,107
Samplin	-				
V _{mstd}	Volume metered, standard (dscf)	70.8587	75.7961	74.7826	73.8125
%I	Isokinetic sampling (%)	100.4415	100.5326	100.0090	100.3277
	ory Data				
т _{п-1b}	Fraction 1B (µg)	<0.1000	<0.1000	<0.1000	
m _{n-2b}	Fraction 2B (µg)	8.8257	8.9307	7.6261	
m _{n-3a}	Fraction 3A (µg)	<0.2000	<0.2000	<0.2000	
m _{n-3b}	Fraction 3B (µg)	<0.5000	<0.5000	<0.5000	
m _{n-3c}	Fraction 3C (µg)	<0.4000	<0.4000	<0.4000	
		0.0057			
m,	Total matter corrected for allowable blanks (µg)	8.8257	8.9307	7.6261	
<i>l</i> ercury	Results - Total		8.9307	7.6261	2 52105 10
Mercury C _{ed}	Results - Total Concentration (Ib/dscf)	2.7464E-10	8.9307 2.5980E-10	7.6261 2.2486E-10	2.5310E-10
Mercury C _{ad} C _{sd7}	Results - Total Concentration (Ib/dscf) Concentration @7% O ₂ (Ib/dscf)	2.7464E-10 3.1317E-10	8.9307 2.5980E-10 2.8661E-10	7.6261 2.2486E-10 2.5661E-10	2.8546E-10
Mercury C _{ad} C _{ad7} C _{ad12}	Results - Total Concentration (lb/dscf) Concentration @7% O ₂ (lb/dscf) Concentration @12% CO ₂ (lb/dscf)	2.7464E-10 3.1317E-10 3.1507E-10	8.9307 2.5980E-10 2.8661E-10 2.8498E-10	7.6261 2.2486E-10 2.5661E-10 2.4892E-10	2.8546E-10 2.8299E-10
fercury C _{ed} C _{sd7} C _{sd12} C _a	Results - Total Concentration (Ib/dscf) Concentration @7% O ₂ (Ib/dscf) Concentration @12% CO ₂ (Ib/dscf) Concentration (Ib/acf)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10	2.8546E-10 2.8299E-10 1.3194E-10
Mercury C _{ed} C _{sd7} C _{ed12} C _a C _{sd}	Results - Total Concentration (Ib/dscf) Concentration @7% O ₂ (Ib/dscf) Concentration @12% CO ₂ (Ib/dscf) Concentration (Ib/acf) Concentration (µg/dscm)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00
Mercury C _{ad} C _{ad7} C _{ad12} C _a C _a C _{sd} C _{sd7}	Results - Total Concentration (lb/dscf) Concentration @7% O2 (lb/dscf) Concentration @12% CO2 (lb/dscf) Concentration (lb/acf) Concentration (µg/dscm) Concentration @7% O2 (µg/dscm)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5897E+00	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00
Mercury C _{ad} C _{ad7} C _{ad12} C _a C _{ad} C _{sd7} C _{sd12}	Results - Total Concentration (lb/dscf) Concentration @7% O2 (lb/dscf) Concentration @12% CO2 (lb/dscf) Concentration (lb/acf) Concentration (µg/dscm) Concentration @7% O2 (µg/dscm) Concentration @12% CO2 (µg/dscm)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5897E+00 4.5635E+00	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00
fercury C _{sd} C _{sd7} C _{sd12} C _{sd} C _{sd} C _{sd7} C _{sd12} C _{sd12} C _{sd}	Results - Total Concentration (lb/dscf) Concentration @7% O2 (lb/dscf) Concentration @12% CO2 (lb/dscf) Concentration (lb/acf) Concentration (µg/dscm) Concentration @7% O2 (µg/dscm) Concentration @12% CO2 (µg/dscm) Concentration @12% CO2 (µg/dscm) Concentration @12% CO2 (µg/dscm)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5897E+00 4.5635E+00 4.1604E-03	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03
Nercury C _{sd} C _{sd} 7 C _{sd} 12 C _s C _{sd} 7 C _{sd} 12 C _{sd} 7 C _{sd} 7	Results - Total Concentration (lb/dscf) Concentration @7% O_2 (lb/dscf) Concentration @12% CO_2 (lb/dscf) Concentration (lb/acf) Concentration (µg/dscm) Concentration @7% O_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @7% O_2 (µg/dscm) Concentration @7% O_2 (µg/dscm)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.5635E+00 4.1604E-03 4.5897E-03	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5713E-03
Mercuny C _{sd} C _{sd7} C _{sd12} C _s C _{sd} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7}	Results - Total Concentration (lb/dscf) Concentration @7% O_2 (lb/dscf) Concentration @12% CO_2 (lb/dscf) Concentration (lb/acf) Concentration (µg/dscm) Concentration @7% O_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @7% O_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0149E-03 5.0455E-03	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5897E-03 4.5635E-03	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5713E-03 4.5317E-03
Aercury C _{od} C _{sd7} C _{sd12} C _{sd} C _{sd7} C _{sd12} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7}	Results - Total Concentration (lb/dscf) Concentration @7% O_2 (lb/dscf) Concentration @12% CO_2 (lb/dscf) Concentration (lb/acf) Concentration (µg/dscm) Concentration @12% O_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5635E+00 4.5635E-03 2.1626E+00	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5713E-03 4.5317E-03 2.1129E+00
Mercury C _{od} C _{sd7} C _{sd12} C _{sd} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7} C _{sd7}	Results - Total Concentration (lb/dscf) Concentration @7% O_2 (lb/dscf) Concentration @12% CO_2 (lb/dscf) Concentration (lb/acf) Concentration (ug/dscm) Concentration @7% O_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @12% CO_2 (µg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @7% O_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration @12% CO_2 (mg/dscm) Concentration (µg/m³ (actual,wet)) Concentration (µg/Nm³ dry)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00 4.7198E+00	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5635E+00 4.5635E-03 2.1626E+00 4.4648E+00	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00 3.8643E+00	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5713E-03 4.5317E-03 2.1129E+00 4.3496E+00
Aercury C _{sd} C _{sd7} C _{sd12} C _a C _{sd} C _{sd7} C _{sd12} C _{sd7} C _{sd12} C _{sd7} C _{sd7}	Results - Total Concentration (lb/dscf) Concentration @7% O_2 (lb/dscf) Concentration (lb/acf) Concentration @7% O_2 (µg/dscm) Concentration @12% CO2 (µg/dscm) Concentration @12% CO2 (µg/dscm) Concentration @12% CO2 (mg/dscm) Concentration @12% CO2 (mg/dscm) Concentration (µg/m³ (actual,wet)) Concentration (µg/Nm³ dry) Concentration @7% O2 (µg/Nm³ dry)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00 4.7198E+00 5.3819E+00	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5635E+00 4.5635E-03 2.1626E+00 4.4648E+00 4.9255E+00	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00 3.8643E+00 4.4100E+00	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5713E-03 4.5317E-03 2.1129E+00 4.3496E+00 4.9058E+00
Hercury C _{od} C _{sd7} C _{sd12} C _{sd7} C _{sd12}	Results - TotalConcentration (lb/dscf)Concentration @7% O_2 (lb/dscf)Concentration @12% CO_2 (lb/dscf)Concentration (lb/acf)Concentration (ug/dscm)Concentration @12% CO_2 (ug/dscm)Concentration @12% CO_2 (ug/dscm)Concentration @12% CO_2 (ug/dscm)Concentration @12% CO_2 (ug/dscm)Concentration @12% CO_2 (ug/dscm)Concentration @12% CO_2 (mg/dscm)Concentration @12% CO_2 (mg/dscm)Concentration (ug/m³ (actual,wet))Concentration (ug/Nm³ dry)Concentration @7% O_2 (ug/Nm³ dry)Concentration @12% CO_2 (ug/Nm³ dry)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00 4.7198E+00 5.3819E+00 5.4147E+00	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5635E+00 4.5635E-03 2.1626E+00 4.4648E+00 4.9255E+00 4.8974E+00	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00 3.8643E+00 4.4100E+00 4.2778E+00	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5713E-03 4.5317E-03 2.1129E+00 4.3496E+00 4.9058E+00 4.8633E+00
Aercury C _{8d} C _{3d7} C _{9d12} C ₈ C _{5d7} C _{5d7}	Results - TotalConcentration (lb/dscf)Concentration @7% O_2 (lb/dscf)Concentration @12% CO_2 (lb/dscf)Concentration (lb/acf)Concentration @7% O_2 (µg/dscm)Concentration @12% CO_2 (mg/dscm)Concentration @12% CO_2 (mg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @12% CO_2 (µg/Nm³ dry)Concentration @12% CO_2 (µg/Nm³ dry)Concentration @12% CO_2 (µg/Nm³ dry)Rate (lb/hr)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00 4.7198E+00 5.3819E+00 5.4147E+00 1.4978E-03	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5635E+00 4.1604E-03 4.5635E-03 2.1626E+00 4.4648E+00 4.9255E+00 4.8974E+00 1.5143E-03	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00 3.8643E+00 4.4100E+00 4.2778E+00 1.2999E-03	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5317E-03 4.5317E-03 2.1129E+00 4.3496E+00 4.9058E+00 4.8633E+00 1.4373E-03
Mercury C _{od} C _{sd7} C _{sd12} C _s C _{sd} C _{sd12} C _{sd2}	Results - TotalConcentration (lb/dscf)Concentration @7% O_2 (lb/dscf)Concentration @12% CO_2 (lb/dscf)Concentration (lb/acf)Concentration (ug/dscm)Concentration @7% O_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @7% O_2 (mg/dscm)Concentration @12% CO_2 (µg/Nm3 dry)Concentration @7% O_2 (µg/Nm3 dry)Concentration @12% CO_2 (µg/Nm3 dry)Rate (lb/hr)Rate (g/s)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00 4.7198E+00 5.3819E+00 5.4147E+00 1.4978E-03 1.8869E-04	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5635E+00 4.1604E-03 4.5635E-03 2.1626E+00 4.4648E+00 4.9255E+00 4.8974E+00 1.5143E-03 1.9076E-04	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00 3.8643E+00 4.4100E+00 4.2778E+00 1.2999E-03 1.6375E-04	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5713E-03 4.5317E-03 2.1129E+00 4.3496E+00 4.9058E+00 4.8633E+00 1.4373E-03 1.8107E-04
Mercury C _{sd} C _{sd} 7 C _{sd} 12 C _s C _{sd} C _{sd} 7 C _{sd} 12 C _{sd} C _{sd} 7 C _{sd} 12 C _{sd} C _{sd} 12 C _{sd} C _{sd} 12 C _{sd} C _{sd} 7 C _{sd} 12 C _{sd} C _{sd} 7 C br>C _{sd} 7 C C _{sd} 7 C C _{sd} 7 C C C _{sd} 7 C C C C C C C C C C C C C C C C C C C	Results - TotalConcentration (lb/dscf)Concentration @7% O_2 (lb/dscf)Concentration @12% CO_2 (lb/dscf)Concentration (lb/acf)Concentration (lb/acf)Concentration @7% O_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @7% O_2 (µg/dscm)Concentration @12% CO_2 (µg/lscm)Concentration @12% CO_2 (µg/lscm)Concentration @12% CO_2 (µg/lscm)Concentration @12% CO_2 (µg/lscm)Rate (lb/hr)Rate (g/s)Rate (Ton/yr)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00 4.7198E+00 5.3819E+00 5.4147E+00 1.4978E-03 1.8869E-04 6.5605E-03	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.5635E+00 4.1604E-03 4.5635E-03 2.1626E+00 4.4648E+00 4.9255E+00 4.8974E+00 1.5143E-03 1.9076E-04 6.6326E-03	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 3.9861E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00 3.8643E+00 4.4100E+00 4.2778E+00 1.2999E-03 1.6375E-04 5.6934E-03	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5317E-03 2.1129E+00 4.3496E+00 4.9058E+00 4.8633E+00 1.4373E-03 1.8107E-04 6.2955E-03
Mercury C _{sd} C _{sd7} C _{sd12} C _s C _{sd} C _{sd12} C _{sd} C _{sd12} C _{sd} C _{sd12} C _{sd} C _{sd12} C _{sd12} C _{sd12} C _{sd12} C _{sd} C _{sd12} C _{sd} C _{sd12} C _{sd} C _{sd7} C _{sd12} C _{sd} C _{sd7} C _{sd12} C _{sd} C _{sd7} C _{sd12} C _{sd} C _{sd12} C _{sd7} C _{sd12} C _{sd} C _{sd12} C _{sd12} C _{sd} C _{sd12} C _{sd} C _{sd12} C _{sd} C _{sd12} C _{sd12}	Results - TotalConcentration (lb/dscf)Concentration @7% O_2 (lb/dscf)Concentration @12% CO_2 (lb/dscf)Concentration (lb/acf)Concentration (ug/dscm)Concentration @7% O_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @12% CO_2 (µg/dscm)Concentration @7% O_2 (mg/dscm)Concentration @12% CO_2 (µg/Nm3 dry)Concentration @7% O_2 (µg/Nm3 dry)Concentration @12% CO_2 (µg/Nm3 dry)Rate (lb/hr)Rate (g/s)	2.7464E-10 3.1317E-10 3.1507E-10 1.4325E-10 4.3980E+00 5.0149E+00 5.0455E+00 4.3980E-03 5.0149E-03 5.0455E-03 2.2940E+00 4.7198E+00 5.3819E+00 5.4147E+00 1.4978E-03 1.8869E-04	8.9307 2.5980E-10 2.8661E-10 2.8498E-10 1.3505E-10 4.1604E+00 4.5635E+00 4.1604E-03 4.5635E+00 4.1604E-03 4.5635E-03 2.1626E+00 4.4648E+00 4.9255E+00 4.8974E+00 1.5143E-03 1.9076E-04	7.6261 2.2486E-10 2.5661E-10 2.4892E-10 1.1753E-10 3.6008E+00 4.1093E+00 3.9861E+00 3.6008E-03 4.1093E-03 3.9861E-03 1.8821E+00 3.8643E+00 4.4100E+00 4.2778E+00 1.2999E-03 1.6375E-04	2.8546E-10 2.8299E-10 1.3194E-10 4.0531E+00 4.5713E+00 4.5317E+00 4.0531E-03 4.5317E-03 2.1129E+00 4.3496E+00 4.9058E+00 4.8633E+00 1.4373E-03 1.8107E-04

Copyright © 2006 Clean Air Engineering Inc.

QA/QC_ Date _ .

USEPA Method 5/29 Beryllium (Be) Emission Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 17	Mar 17	Mar 17	
•	me (approx.)	06:50	09:26		
	me (approx.)	09:03	11:38		
	s Conditions				
R _P	Steam Production Rate (Klbs/hour)	184.2	184.2	183.5	184.0
P ₁	Fabric Filter Inlet Temperature (°F)	315	315		315
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
		0,700	0,700	0,700	0,700
	nditions				
O₂	Oxygen (dry volume %)	8.7100	8.3000	8.7200	8.5767
CO₂	Carbon dioxide (dry volume %)	10.4600	10.9400	10.8400	10.7467
ĩ,	Sample temperature (°F)	303.4400	304.0800	304.0000	303.8400
B _w	Actual water vapor in gas (% by volume)	22.6973	22.9006	22.6151	22.7377
Gas Flo	w Rate				
Q,	Volumetric flow rate, actual (acfm)	174,264	186,885	184,323	181,824
Q,	Volumetric flow rate, standard (scfm)	117,586	125,997	124,502	122,695
Q _{std}	Volumetric flow rate, dry standard (dscfm)	90,897	97,143	96,346	94,795
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	79,715	88,057	84,424	84,065
Q,	Volumetric flow rate, actual (acf/hr)	10,455,817	11,213,097	11,059,399	10,909,438
Q₅	Volumetric flow rate, standard (scf/hr)	7,055,162	7,559,806	7,470,113	7,361,694
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	5,453,832	5,828,564	5,780,736	5,687,711
Q,	Volumetric flow rate, actual (m ³ /hr)	296,115	317,562	313,209	308,962
Q,	Volumetric flow rate, standard (m ³ /hr)	199,806	214,098	211,558	208,488
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	154,456	165,068	163,714	161,079
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	135,454	149,630	143,456	142,847
Qs	Volumetric flow rate, normal (Nm ³ /hr)	186,183	199,501	197,134	194,272
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	143,925	153,814	152,552	150,097
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	126,219	139,428	133,675	133,107
Samplin	ng Data				
V _{mstd}	Volume metered, standard (dscf)	70.8587	75.7961	74.7826	73.8125
%1	Isokinetic sampling (%)	100.4415	100.5326	100.0090	100.3277
Laborat	any Doto				
Laborate mn	Total matter corrected for allowable blanks (µg)	<0.0500	<0.0500	<0.0500	
		-0.0000	~0.0000	-0.0000	
	m Results - Total	<1.5559E-12	<1 4548E 10	<1 4742E 10	41 40 40E 40
C _{sd}	Concentration (lb/dscf)	<1.7742E-12	<1.4546E-12	<1.4743E-12	<1.4949E-12 <1.6871E-12
C _{sd7}	Concentration @7% O_2 (lb/dscf)	<1.7850E-12	<1.6046E-12 <1.5955E-12	<1.6825E-12 <1.6320E-12	
C _{sd12} C _a	Concentration @12% CO ₂ (lb/dscf) Concentration (lb/acf)	<8.1158E-13	<7.5608E-12	<7.7060E-12	<1.6708E-12 <7.7942E-13
	Concentration (ug/dscm)	<2.4916E-02	<2.3293E-02		<2.3939E-02
C _{sd}		<2.8411E-02	<2.5696E-02	<2.3608E-02 <2.6942E-02	<2.7016E-02
C _{sd7}	Concentration @7% O ₂ (μ g/dscm)	<2.8584E-02	<2.5550E-02	<2.6135E-02	<2.6756E-02
C _{sd12}	Concentration @12% CO ₂ (µg/dscm) Concentration (mg/dscm)	<2.4916E-05	<2.3293E-05	<2.3608E-05	<2.3939E-05
C _{ed}				_	
Csd7	Concentration @7% O_2 (mg/dscm)	<2.8411E-05	<2.5696E-05	<2.6942E-05	<2.7016E-05
C _{sd12}	Concentration @12% CO_2 (mg/dscm)	<2.8584E-05	<2.5550E-05	<2.6135E-05	<2.6756E-05
C,	Concentration (µg/m ³ (actual,wet))	<1.2996E-02	<1.2108E-02	<1.2340E-02	<1.2481E-02
C _{ad}	Concentration ($\mu g/Nm^3 dry$)	<2.6739E-02	<2.4997E-02	<2.5336E-02	<2.5691E-02
C _{sd7}	Concentration @7% O ₂ (μ g/Nm ³ dry)	<3.0490E-02	<2.7576E-02	<2.8914E-02	<2.8993E-02
C _{sd12}	Concentration @12% CO ₂ (µg/Nm ³ dry)	<3.0676E-02	<2.7419E-02	<2.8047E-02	<2.8714E-02
Etevhr	Rate (lb/hr)	<8.4857E-06	<8.4780E-06	<8.5224E-06	<8.4954E-06
E _{g/s}	Rate (g/s)	<1.0690E-06	<1.0680E-06	<1.0736E-06	<1.0702E-06
E _{T/yr}	Rate (Ton/yr)	<3.7167E-05	<3.7134E-05	<3.7328E-05	<3.7210E-05
E _{Fd}	Rate - Fd-based (lb/MMBtu)	<2.5529E-08	<2.3090E-08	<2.4210E-08	<2.4276E-08 <2.5341E-08
EFc	Rate - Fc-based (lb/MMBtu)	<2.7072E-08	<2.4198E-08	<2.4753E-08	-2.33412-00

041310 094601 INM@_P

Prepared by Clean Air Engineering Proprietary Software SS Metals-1 Version 2006-12a Copyright © 2006 Clean Air Engineering Inc.

USEPA Method 5/29 Cadmium (Cd) Emission Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 17	Mar 17	Mar 17	
	ne (approx.)	06:50	09:26	11:59	
	ne (approx.)	09:03	11:38	14:11	
	s Conditions				
R _P	Steam Production Rate (Klbs/hour)	184.2	184.2	183.5	184.0
P₁	Fabric Filter Inlet Temperature (°F)	315	315	315	315
Fa	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F _c	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
		0,700	0,700	8,700	8,700
	nditions				
O ₂	Oxygen (dry volume %)	8.7100	8.3000	8.7200	8.5767
CO ₂	Carbon dioxide (dry volume %)	10.4600	10.9400	10.8400	10.7467
T _s	Sample temperature (°F)	303.4400	304.0800	304.0000	303.8400
B,	Actual water vapor in gas (% by volume)	22.6973	22.9006	22.6151	22.7377
Gas Flo	w Rate				
Q,	Volumetric flow rate, actual (acfm)	174,264	186,885	184,323	181,824
Q,	Volumetric flow rate, standard (scfm)	117,586	125,997	124,502	122,695
Q _{std}	Volumetric flow rate, dry standard (dscfm)	90,897	97,143	96,346	94,795
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	79,715	88,057	84,424	84,065
Qa	Volumetric flow rate, actual (acf/hr)	10,455,817	11,213,097	11,059,399	10,909,438
Q,	Volumetric flow rate, standard (scf/hr)	7,055,162	7,559,806	7,470,113	7,361,694
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	5,453,832	5,828,564	5,780,736	5,687,711
Q,	Volumetric flow rate, actual (m ³ /hr)	296,115	317,562	313,209	308,962
Q,	Volumetric flow rate, standard (m ³ /hr)	199,806	214,098	211,558	208,488
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	154,456	165,068	163,714	161,079
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	135,454	149,630	143,456	142,847
Q,	Volumetric flow rate, normal (Nm ³ /hr)	186,183	199,501	197,134	194,272
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	143,925	153,814	152,552	150,097
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	126,219	139,428	133,675	133,107
Samplin	g Data				
V _{mstd}	Volume metered, standard (dscf)	70.8587	75.7961	74.7826	73.8125
%	Isokinetic sampling (%)	100.4415	100.5326	100.0090	100.3277
Laborate	ory Data				
mn	Total matter corrected for allowable blanks (µg)	<0.2000	<0.2000	<0.2000	
Cadmiu	m Results - Total				
C _{sd}	Concentration (lb/dscf)	<6.2236E-12	<5.8182E-12	<5.8971E-12	<5.9797E-12
Csd7	Concentration @7% O2 (lb/dscf)	<7.0967E-12	<6.4185E-12	<6.7299E-12	<6.7484E-12
C _{sd12}	Concentration @12% CO ₂ (lb/dscf)	<7.1399E-12	<6.3820E-12	<6.5281E-12	<6.6834E-12
C,	Concentration (lb/acf)	<3.2463E-12	<3.0243E-12	<3.0824E-12	<3.1177E-12
C _{sd}	Concentration (µg/dscm)	<9.9663E-02	<9.3171E-02	<9.4434E-02	<9.5756E-02
C _{sd7}	Concentration @7% O2 (µg/dscm)	<1.1364E-01	<1.0278E-01	<1.0777E-01	<1.0807E-01
Csd12	Concentration @12% CO2 (µg/dscm)	<1.1434E-01	<1.0220E-01	<1.0454E-01	<1.0702E-01
C _{sd}	Concentration (mg/dscm)	<9.9663E-05	<9.3171E-05	<9.4434E-05	<9.5756E-05
Csd7	Concentration @7% O2 (mg/dscm)	<1.1364E-04	<1.0278E-04	<1.0777E-04	<1.0807E-04
C _{sd12}	Concentration @12% CO ₂ (mg/dscm)	<1.1434E-04	<1.0220E-04	<1.0454E-04	<1.0702E-04
C,	Concentration (µg/m ³ (actual,wet))	<5.1985E-02	<4.8430E-02	<4.9360E-02	<4.9925E-02
C _{sd}	Concentration (µg/Nm ³ dry)	<1.0696E-01	<9.9988E-02	<1.0134E-01	<1.0276E-01
C _{sd7}	Concentration @7% O_2 (µg/Nm ³ dry)	<1.2196E-01	<1.1030E-01	<1.1565E-01	<1.1597E-01
C _{sd12}	Concentration @12% CO_2 (µg/Nm ³ dry)	<1.2270E-01	<1.0968E-01	<1.1219E-01	<1.1486E-01
E _{lb/hr}	Rate (lb/hr)	<3.3943E-05	<3.3912E-05	<3.4090E-05	<3.3981E-05
E _{g/s}	Rate (g/s)	<4.2760E-06	<4.2721E-06	<4.2945E-06	<4.2809E-06
E _{T/yr}	Rate (Ton/yr)	<1.4867E-04	<1.4853E-04	<1.4931E-04	<1.4884E-04
E _{Fd}	Rate - Fd-based (lb/MMBtu)	<1.0212E-07	<9.2359E-08	<9.6839E-08	<9.7105E-08
EFc	Rate - Fc-based (lb/MMBtu)	<1.0829E-07	<9.6793E-08	<9.9010E-08	<1.0136E-07

041310 094610 INM @_P

USEPA Method 5/29 Lead (Pb) Emission Parameters

Run No	.	1	2	3	Average
Date (2	010)	Mar 17	Mar 17	Mar 17	
-	me (approx.)	06:50	09:26	11:59	
Stop Ti	me (approx.)	09:03	11:38	14:11	
Proces	s Conditions				
Rp	Steam Production Rate (Klbs/hour)	184.2	184.2	183.5	184.0
P ₁	Fabric Filter Inlet Temperature (°F)	315	315	315	315
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
Fe	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
•	Inditions			-, -	
O ₂	Oxygen (dry volume %)	8.7100	8.3000	8.7200	8.5767
CO₂	Carbon dioxide (dry volume %)	10.4600	10.9400	10.8400	10.7467
T,	Sample temperature (°F)	303.4400	304.0800	304.0000	303.8400
B,	Actual water vapor in gas (% by volume)	22.6973	22.9006	22.6151	22.7377
		12.00.0	22.0000	22.0101	
Gas Flo		174 264	196 995	104 222	494 924
Q,	Volumetric flow rate, actual (acfm)	174,264	186,885	184,323	181,824
Q,	Volumetric flow rate, standard (scfm)	117,586	125,997	124,502	122,695
Q _{std}	Volumetric flow rate, dry standard (dscfm)	90,897	97,143	96,346	94,795
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	79,715	88,057	84,424	84,065
Q,	Volumetric flow rate, actual (acf/hr)	10,455,817	11,213,097	11,059,399	10,909,438
. Q.	Volumetric flow rate, standard (scf/hr)	7,055,162	7,559,806	7,470,113	7,361,694
Q _{std}	Volumetric flow rate, dry standard (dscf/hr)	5,453,832	5,828,564	5,780,736	5,687,711
Q,	Volumetric flow rate, actual (m ³ /hr)	296,115	317,562	313,209	308,962
Qs	Volumetric flow rate, standard (m ³ /hr)	199,806	214,098	211,558	208,488
Q _{std}	Volumetric flow rate, dry standard (dry m ³ /hr)	154,456	165,068	163,714	161,079
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dry m ³ /hr)	135,454	149,630	143,456	142,847
Q۵	Volumetric flow rate, normal (Nm ³ /hr)	186,183	199,501	197,134	194,272
Q _{std}	Volumetric flow rate, dry normal (Nm ³ /hr)	143,925	153,814	152,552	150,097
Q _{std7}	Volumetric flow rate, dry normal @7%O ₂ (Nm ³ /hr)	126,219	139,428	133,675	133,107
Samplir	ng Data				
V _{mstd}	Volume metered, standard (dscf)	70.8587	75.7961	74.7826	73.8125
%l	Isokinetic sampling (%)	100.4415	100.5326	100.0090	100.3277
Laborat	ory Data				
m _n	Total matter corrected for allowable blanks (µg)	0.2760	0.2230	0.3748	
	sulta - Total				
C _{sd}	Concentration (Ib/dscf)	8.5888E-12	6.4883E-12	1.1052E-11	8.7098E-12
C _{sd7}	Concentration @7% O ₂ (lb/dscf)	9.7937E-12	7.1577E-12	1.2613E-11	9.8548E-12
C _{sd12}	Concentration @12% CO ₂ (lb/dscf)	9.8533E-12	7.1170E-12	1.2235E-11	9.7351E-12
Ca	Concentration (Ib/acf)	4.4800E-12	3.3726E-12	5,7769E-12	4.5432E-12
C _{sd}	Concentration (µg/dscm)	1.3754E-01	1.0390E-01	1.7698E-01	1.3947E-01
C _{sd7}	Concentration @7% O ₂ (µg/dscm)	1.5683E-01	1.1462E-01	2.0198E-01	1.5781E-01
C _{sd12}	Concentration @12% CO ₂ (µg/dscm)	1.5779E-01	1.1397E-01	1.9592E-01	1.5589E-01
C _{sd}	Concentration (mg/dscm)	1.3754E-04	1.0390E-04	1.7698E-04	1.3947E-04
C _{sd} 7	Concentration @7% O_2 (mg/dscm)	1.5683E-04	1.1462E-04	2.0198E-04	1.5781E-04
C _{sd7} C _{sd12}	Concentration @12% CO ₂ (mg/dscm)	1.5779E-04	1.1397E-04	1.9592E-04	1.5589E-04
C _{sd12} C _a	Concentration (µg/m ³ (actual,wet))	7.1741E-02	5.4008E-02	9.2510E-02	7.2753E-02
	Concentration (µg/m ⁻ (actual,wet)) Concentration (µg/Nm ³ dry)	1.4760E-01	1.1150E-02	9.2510E-02 1.8993E-01	1.4968E-01
C _{sd}		1.6831E-01	1.2301E-01	2.1676E-01	1.6936E-01
C _{sd7}	Concentration @7% O_2 (µg/Nm ³ dry)	1.6933E-01	1.2301E-01 1.2231E-01		1.6730E-01
C _{sd12}	Concentration @12% CO ₂ (µg/Nm ³ dry)			2.1026E-01	
Elevhr	Rate (lb/hr)	4.6842E-05	3.7817E-05	6.3890E-05	4.9516E-05
E _{g/s}	Rate (g/s)	5.9010E-06	4.7641E-06	8.0486E-06	6.2379E-06
E _{T/yr}	Rate (Tor/yr)	2.0517E-04	1.6564E-04	2.7984E-04	2.1688E-04
EFa	Rate - Fd-based (lb/MMBtu)	1.4093E-07	1.0300E-07	1.8149E-07	1.4180E-07
Efc	Rate - Fc-based (lb/MMBtu)	1. 4 944E-07	1.0794E-07	1.8556E-07	1.4765E-07

041310 094621 ↓NM @__P

Propaned by Clean Air Engineering Proprietary Software SS Metals-1 Version 2008-12a Copyright © 2008 Clean Air Engineering Inc.

USEPA Method 13B (Total Fluorides) Sampling, Velocity and Moisture Parameters

Run No.	1	2	3	Average
Date (2010)	Mar 16	Mar 16	Mar 16	
Start Time (approx.)	11:49	13:33	15:07	
Stop Time (approx.)	13:07	14:44	16:16	
Sampling Conditions				
Y _d Dry gas meter correction factor	0.9898	0.9898	0.9898	
C _p Pitot tube coefficient	0.8120	0.8120	0.8120	
P _g Static pressure (in. H ₂ O)	-10.6000	-10.6000	-10.6000	
A Sample location area (ft ²)	64.0000	64.0000	64.0000	
P _{bar} Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
D _n Nozzle diameter (In.)	0.2680	0.2680	0.2680	
O ₂ Oxygen (dry volume %)	9.9000	9.5300	9.7200	9.7167
CO ₂ Carbon dioxide (dry volume %)	9.7100	10.0400	9.9600	9.9033
N ₂ +CO Nitrogen plus carbon monoxide (dry	volume %) 80.3900	80.4300	80.3200	80.3800
Vic Total Liquid collected (ml)	204.20	213.70	209.20	
V _m Volume metered, meter conditions ((t ³) 36.8000	37.7600	36.5800	
T _m Dry gas meter temperature (°F)	71.8000	77.1200	78.5000	
T _s Sample temperature (°F)	297.9600	299.4400	298.8800	298.7600
∆H Meter box orifice pressure drop (in. I	H ₂ O) 1.0948	1.1520	1.0672	
θ Total sampling time (min)	62.5	62.5	62.5	
Flow Results				
V _{wetd} Volume of water collected (ft ³)	9.6097	10.0567	9.8450	9.8371
V _{mstd} Volume metered, standard (dscf)	36.4042	36.9891	35.7340	36.3758
Ps Sample gas pressure, absolute (in. I	Hg) 29.2706	29.2706	29.2706	29.2706
P, Vapor pressure, actual (in. Hg)	29.2706	29.2706	29.2706	29.2706
Bwo Moisture measured in sample (% by	volume) 20.8842	21.3764	21.5998	21.2868
Bwe Saturated moisture content (% by vo	olume) 100.0000	100.0000	100.0000	100.0000
B _w Actual water vapor in gas (% by volu	ime) 20.8842	21.3764	21.5998	21.2868
√∆P Velocity head (√in. H₂O)	0.6713	0.6926	0.6701	0.6780
M _d MW of sample gas, dry (lb/lb-mole)	29.9496	29.9876	29.9824	29.9732
M _s MW of sample gas, wet (lb/lb-mole)	27.4540	27.4251	27.3942	27.4244
V _s Velocity of sample (ft/sec)	45.2598	46.7645	45.2555	45.7599
%I Isokinetic sampling (%)	101.6122	100.7446	100.7835	101.0467
Q _a Volumetric flow rate, actual (acfm)	173,798	179,576	173,781	175,718
Q _s Volumetric flow rate, standard (scfm)) 118,441	122,140	118,286	119,622
Q _{std} Volumetric flow rate, dry standard (d	scfm) 93,705	96,031	92,736	94,158
Q _{std7} Volumetric flow rate, dry std@7%O ₂	(dscfm) 74,155	78,552	74,589	7 5,766
Q _a Volumetric flow rate, actual (acf/hr)	10,427,863	10,774,535	10,426,862	10,543,087
Q _s Volumetric flow rate, standard (scf/hi	, , ,	7,328,395	7,097,156	7,177,334
Q _{std} Volumetric flow rate, dry standard (d	scf/hr) 5,622,323	5,761,845	5,564,184	5,649,451
Q _a Volumetric flow rate, actual (m ³ /hr)	295,323	305,141	295,295	298,586
Q _s Volumetric flow rate, standard (m ³ /h	•	207,544	200,996	203,266
Q _{std} Volumetric flow rate, dry standard (d	• • •	163,179	157,581	159,996
Q _{atd7} Volumetric flow rate, dry std@7%O ₂	,	133,478	126,745	128,743
Q _s Volumetric flow rate, normal (Nm ³ /hr		193,394	187,291	1 89,40 7
Q _{std} Volumetric flow rate, dry normal (Nm	³ /hr) 148,371	152,053	146,837	149,087
Q _{std7} Volumetric flow rate, dry normal @79	%O₂ (Nm³/hr) 117,416	124,377	118,103	119,965

Comments:

Average includes 3 runs.

Propered by Clean Air Engineering Propriotary Software SS ISOKINETIC Varsion 2006-13d

Copyright @ 2006 Clean Air Engineering Inc.

041310 094754 НК L @

> QA/QC _____ Date _____

D - 36

USEPA Method 13B HF Parameters

Run No		1	2	3	Average
Date (20	010)	Mar 16	Mar 16	Mar 16	
• •	ne (approx.)	11:49	13:33	15:07	
	ne (approx.)	13:07	14:44	16:16	
•	Conditions				
Rp	Steam Production Rate (Klbs/hour)	183.7	183.9	184.2	183.9
P ₁	Fabric Filter Inlet Temperature (°F)	310	310	310	310
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
F	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Сар	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
•			-,		-,
O2	nditions Oxygen (dry volume %)	9.9000	9.5300	9.7200	9.7167
	Carbon dioxide (dry volume %)	9.7100	10.0400	9.9600	9.9033
T _a	Sample temperature ("F)	297.9600	299.4400	298.8800	298.7600
'a Bw	Actual water vapor in gas (% by volume)	20.8842	21.3764	21.5998	21.2868
		20.0012	21.07.04	21.0000	
Gas Flo		472 700	470 570	470 704	475 740
Q,	Volumetric flow rate, actual (acfm)	173,798	179,576	173,781	175,718
Q,	Volumetric flow rate, standard (scfm)	118,441	122,140	118,286	119,622
Q _{std}	Volumetric flow rate, dry standard (dscfm)	93,705	96,031	92,736	94,158
Q _{std7}	Volumetric flow rate, dry std@7%O ₂ (dscfm)	74,155 10,427,863	78,552 10,774,535	74,589 10,426,862	75,766
Q,	Volumetric flow rate, actual (acf/hr)	7,106,452	7,328,395	7,097,156	10,543,087 7,177,334
Q,	Volumetric flow rate, standard (scf/hr)	5,622,323	5,761.845	5,564,184	5,649,451
Q _{std}	Volumetric flow rate, dry standard (dscf/hr) Volumetric flow rate, actual (m ³ /hr)	295,323	305,141	295,295	298,586
Q_ Q_	Volumetric flow rate, actuar (m /hr) Volumetric flow rate, standard (m ³ /hr)	201,259	207,544	200,996	203,266
Q _{atd}	Volumetric flow rate, standard (m //m) Volumetric flow rate, dry standard (dry m ³ /hr)	159,227	163,179	157,581	159,998
Q _{std7}	Volumetric flow rate, dry standard (dry m 7m) Volumetric flow rate, dry std@7%O 2 (dry m ³ /hr)	126,007	133,478	126,745	128,743
Q _{std7}	Volumetric flow rate, normal (Nm ³ /hr)	187,537	193,394	187,291	189,407
Q _{atd}	Volumetric flow rate, dry normal (Nm ³ /hr)	148,371	152,053	146,837	149,087
Q _{std7}	Volumetric flow rate, dry normal (1411 / 147) Volumetric flow rate, dry normal @7%O 2 (Nm ³ /hr)	117,416	124,377	118,103	119,965
	· ·	,			,
Samplin	-	26 4042	26 0901	25 7240	26 2759
Vmstd	Volume metered, standard (dscf)	36.4042 101.6122	36.9891 100.7446	35.7340 100.7835	36.3758 101.0467
%1	Isokinetic sampling (%)	101.0122	100.7446	100.7835	101.0407
Laborato	-				
mn	Total HF collected (mg)	<0.0359	<0.0348	<0.0326	
Hydroge	n Fluoride (HF) Results				
C _{ad}	HF Concentration (Ib/dscf)	<2.1740E-09	<2.0752E-09	<2.0123E-09	<2.0872E-09
C _{ed7}	HF Concentration @7% O ₂ (lb/dscf)	<2.7472E-09	<2.5370E-09	<2.5019E-09	<2.5954E-09
C _{sd12}	HF Concentration @12% CO 2 (lb/dscf)	<2.6867E-09	<2.4804E-09	<2.4245E-09	<2.5305E-09
Ca	HF Concentration (lb/acf)	<1.1721E-09	<1.1098E-09	<1.0739E-09	<1.1186E-09
C _{ad}	HF Concentration (ppmdv)	<0.0419	<0.0400	<0.0388	<0.0402
C _{sd7}	HF Concentration @7% O ₂ (ppmdv)	<0.0529	<0.0489	<0.0482	<0.0500
C _{ed12}	HF Concentration @12% CO 2 (ppmdv)	<0.0518	<0.0478	<0.0467	<0.0488
C,	HF Concentration (ppmwv)	<0.0331	<0.0314	< 0.0304	<0.0317
Cad	HF Concentration (mg/dscm)	<0.0348	<0.0332	<0.0322	<0.0334
C _{ad7}	HF Concentration @7% O_2 (mg/dscm)	<0.0440	<0.0406	<0.0401	<0.0418
C _{sd12}	HF Concentration @12% CO 2 (mg/dscm)	<0.0430	<0.0397	<0.0388	<0.0405
C _a	HF Concentration (mg/m ³ (actual,wet))	<0.0188	<0.0178	< 0.0172	<0.0179
Ced	HF Concentration (mg/Nm ³ dry)	< 0.0374	<0.0357	<0.0346	<0.0359
C _{ed7}	HF Concentration @7% O ₂ (mg/Nm ³ dry)	<0.0472	<0.0436	<0.0430	<0.0446
C _{ed12}	HF Concentration @12% CO ₂ (mg/Nm ³ dry)	< 0.0462	< 0.0426	<0.0417	< 0.0435
E _{lb/hr}	HF Rate (lb/hr)	<0.0122	<0.0120	<0.0112	<0.0118
E _{kg/hr}	HF Rate (kg/hr)	<0.0055	<0.0054	<0.0051	<0.0053
E _{T/yr}	HF Rate (Ton/yr)	<0.0535	<0.0524	<0.0490	<0.0517
E _{Fd}	HF Rate - Fd-based (lb/MMBtu)	<0.000040	<0.000037	<0.000036	<0.000037 <0.000038
E _{Fc}	HF Rate - Fc-based (lb/MMBtu)	<0.000041	<0.000038	<0.000037	~0.000030

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2008-10a (F)

Copyright © 2008 Clean Air Engineering Inc.

041310 094754 HKL@_P

USEPA Method 26A (HCI) Sampling, Velocity and Moisture Parameters

Run No.		1	2	3	Average
Date (201	10)	Mar 16	Mar 16	Mar 16	
Start Time	e (approx.)	07:17	09:04	10:32	
Stop Time	e (approx.)	08:17	10:04	11:32	
Sampling	g Conditions				
Yd	Dry gas meter correction factor	0.9916	0.9916	0.9916	
C _p	Pitot tube coefficient	0.8400	0.8400	0.8400	
Pg	Static pressure (in. H ₂ O)	-2.1000	-2.0000	-2.2000	
As	Sample location area (ft ²)	60.1320	60.1320	60.1320	
P _{bar} .	Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
O ₂	Oxygen (dry volume %)	8.5900	8.2100	8.0700	8.2900
CO2	Carbon dioxide (dry volume %)	10.7200	11.0700	11.1600	10.9833
N₂+CO	Nitrogen plus carbon monoxide (dry volume %)	80.6900	80.7200	80.7700	80.7267
Vic	Total Liquid collected (ml)	159.80	161.60	148.40	
Vm	Volume metered, meter conditions (ft ³)	35.6100	36.2500	35.4550	
Tm	Dry gas meter temperature (°F)	70.4167	73.3333	77.4167	
Τs	Sample temperature (°F)	503.1667	509.5833	508.1667	506.9722
ΔH	Meter box orifice pressure drop (in. H ₂ O)	1.1583	1.2000	1.1750	
θ	Total sampling time (min)	60.0	60.0	60.0	
Flow Res	ults				
V _{wstd}	Volume of water collected (ft ³)	7.5202	7.6049	6.9837	7.3696
V _{mstd}	Volume metered, standard (dscf)	35.3886	35.8313	34.7771	35.3323
P₅	Sample gas pressure, absolute (in. Hg)	29.8956	29.9029	29.8882	29.8956
Pv	Vapor pressure, actual (in. Hg)	29.8956	29.9029	29.8882	29.8956
Bwo	Moisture measured in sample (% by volume)	17.5260	17.5082	16.7231	17.2524
B _{ws}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	17.5260	17.5082	16.7231	17.2524
Md	MW of sample gas, dry (lb/lb-mole)	30.0588	30.0996	30.1084	30.0889
Ms	MW of sample gas, wet (lb/lb-mole)	27.9454	27.9812	28.0835	28.0034

Comments:

Average includes 3 runs.

041310 094921 NSJ@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright © 2006 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 3 SDA Inlet

USEPA Method 26A HCI Parameters

Run No	».	1	2	3	Average
Date (2	010)	Mar 16	Mar 16	Mar 16	
Start Ti	me (approx.)	07:17	09:04	10:32	
Stop Tir	me (approx.)	08:17	10:04	11:32	
Proces	s Conditions				
RP	Steam Production Rate (Klbs/hour)	184.6	184.1	184.3	184.3
P ₁	Fabric Filter Inlet Temperature (°F)	310	310	310	310
Fd	Oxygen-based F-factor (dscf/MMBtu)	9,570	9,570	9,570	9,570
Fc	Carbon dioxide-based F-factor (dscf/MMBtu)	1,820	1,820	1,820	1,820
Cap	Capacity factor (hours/year)	8,760	8,760	8,760	8,760
Gas Co	nditions				
O ₂	Oxygen (dry volume %)	8.5900	8.2100	8.0700	8.2900
CO₂	Carbon dioxide (dry volume %)	10.7200	11.0700	11.1600	10.9833
Ts	Sample temperature (°F)	503.1667	509.5833	508.1667	506.9722
Bw	Actual water vapor in gas (% by volume)	17.5260	17.5082	16.7231	17.2524
Samplir	ng Data				
V _{mstd}	Volume metered, standard (dscf)	35.3886	35.8313	34.7771	35.3323
Laborat	ory Data				
m _n	Total HCl collected (mg)	860.2476	813.7980	9 1 0.7861	
Hydroge	en Chloride (HCI) Results				
C _{sd}	HCI Concentration (Ib/dscf)	5.3600E-05	5.0080E-05	5.7747E-05	5.3809E-05
C _{sd7}	HCI Concentration @7% O ₂ (lb/dscf)	6.0524E-05	5.4855E-05	6.2563E-05	5.9314E-05
C _{sd12}	HCI Concentration @12% CO ₂ (lb/dscf)	6.0001E-05	5.4287E-05	6.2094E-05	5.8794E-05
C _{sd}	HCI Concentration (ppmdv)	566.6961	529.4742	610.5397	568.9033
C _{sd7}	HCI Concentration @7% O ₂ (ppmdv)	639.8925	579.9599	661.4577	627.1033
C _{sd12}	HCI Concentration @12% CO ₂ (ppmdv)	634.3613	573.9557	656.4943	621.6038
Cw	HCI Concentration (ppmwv)	467.3771	436.7727	508.4384	470.8627
C_{sd}	HCI Concentration (mg/dscm)	858.3366	801.9589	924.7435	861.6797
C _{sd7}	HCI Concentration @7% O ₂ (mg/dscm)	969.2021	878.4263	1001.8656	949.8313
C _{sd12}	HCI Concentration @12% CO ₂ (mg/dscm)	960.8245	869.3322	994.3479	941.5015
C_{sd}	HCI Concentration (mg/Nm ³ dry)	921.1417	860.6389	992.4077	924.7294
C_{sd7}	HCI Concentration @7% O ₂ (mg/Nm ³ dry)	1040.1194	942.7014	1075.1728	1019.3312
C _{sd12}	HCI Concentration @12% CO ₂ (mg/Nm ³ dry)	1031.1288	932.9419	1067.1051	1010.3919
E _{Fd}	HCI Rate - Fd-based (lb/MMBtu)	0.8709	0.7893	0.9003	0.8535
E_{Fc}	HCI Rate - Fc-based (Ib/MMBtu)	0.9100	0.8234	0.9418	0.8917

042210 101340 N J J @_@

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2006-10a (CI) Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 3 FF Outlet

USEPA Method 26A (HCI) Sampling, Velocity and Moisture Parameters

Run No.		1	2	3	Average
Date (201	10)	Mar 16	Mar 16	Mar 16	
Start Tim	e (approx.)	07:17	09:04	10:32	
Stop Tim	e (approx.)	08:17	10:04	11:32	
Sampling	g Conditions				
Yd	Dry gas meter correction factor	0.9892	0.9892	0.9892	
Cp	Pitot tube coefficient	0.8400	0.8400	0.8400	
Pg	Static pressure (in. H ₂ O)	-10.4000	-11.2000	-10.7000	
As	Sample location area (ft ²)	64.0000	64.0000	64.0000	
Pbar	Barometric pressure (in. Hg)	30.05	30.05	30.05	30.0500
O ₂	Oxygen (dry volume %)	9.0300	9.1000	8.9200	9.0167
CO ₂	Carbon dioxide (dry volume %)	10.2700	10.2200	10.3800	10.2900
N ₂ +CO	Nitrogen plus carbon monoxide (dry volume %)	80.7000	80.6800	80.7000	80.6933
Vic	Total Liquid collected (ml)	235.50	240.70	247.10	
Vm	Volume metered, meter conditions (ft ³)	41.3400	41.3400	41.6050	
Τm	Dry gas meter temperature (°F)	56.3750	60.7083	65.4583	
Τs	Sample temperature (°F)	299.2500	300.3333	299.2500	299.6111
ΔH	Meter box orifice pressure drop (in. H_2O)	1.5000	1.5000	1.5000	
θ	Total sampling time (min)	60.0	60.0	60.0	
Flow Res	sults				
V _{wstd}	Volume of water collected (ft ³)	11.0826	11.3273	11.6285	11.3462
V _{mstd}	Volume metered, standard (dscf)	42.1331	41.7825	41.6702	41.8619
Ps	Sample gas pressure, absolute (in. Hg)	29.2853	29.2265	29.2632	29.2583
Pv	Vapor pressure, actual (in. Hg)	29.2853	29.2265	29.2632	29.2583
B _{wo}	Moisture measured in sample (% by volume)	20.8258	21.3281	21.8176	21.3239
B _{ws}	Saturated moisture content (% by volume)	100.0000	100.0000	100.0000	100.0000
Bw	Actual water vapor in gas (% by volume)	20.8258	21.3281	21.8176	21.3239
Md	MW of sample gas, dry (lb/lb-mole)	30.0044	29.9992	30.0176	30.0071
Ms	MW of sample gas, wet (lb/lb-mole)	27.5044	27.4400	27.3956	27.4467

Comments:

Average includes 3 runs.

041310 094846 LNK@

Copyright @ 2008 Clean Air Engineering Inc.

QA/QC _____ Date _____

D - 40

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 3 FF Outlet

USEPA Method 26A HCI Parameters

$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Stop Time (approx.) 08:17 10:04 11:32 Process Conditions Image: Steam Production Rate (Klbs/hour) 184.6 184.1 184.3 184.3 P1 Fabric Filter Inlet Temperature (°F) 310 310 310 310
Process Conditions R _P Steam Production Rate (Klbs/hour) 184.6 184.1 184.3 184.3 P ₁ Fabric Filter Inlet Temperature (°F) 310 310 310 310
R _P Steam Production Rate (Klbs/hour) 184.6 184.1 184.3 184.3 P ₁ Fabric Filter Inlet Temperature (°F) 310 310 310 310
R _P Steam Production Rate (Klbs/hour) 184.6 184.1 184.3 184.3 P ₁ Fabric Filter Inlet Temperature (°F) 310 310 310 310
P1 Fabric Filter Inlet Temperature (°F) 310 310 310 310
F _c Carbon dioxide-based F-factor (dscf/MMBtu) 1,820 1,820 1,820 1,820 1,820
Cap Capacity factor (hours/year) 8,760 8,760 8,760 8,760
Gas Conditions
O ₂ Oxygen (dry volume %) 9.0300 9.1000 8.9200 9.0167
CO2 Carbon dioxide (dry volume %) 10.2700 10.2200 10.3800 10.2900
Ts Sample temperature (°F) 299.2500 300.3333 299.2500 299.6111
Bw Actual water vapor in gas (% by volume) 20.8258 21.3281 21.8176 21.3239
Sampling Data
V _{mstd} Volume metered, standard (dscf) 42.1331 41.7825 41.6702 41.8619
m _n Total HCl collected (mg) 26.0913 32.8638 23.8845
Hydrogen Chloride (HCI) Results
C _{sd} HCI Concentration (lb/dscf) 1.3655E-06 1.7343E-06 1.2639E-06 1.4546E-06
C _{sd7} HCI Concentration @7% O ₂ (lb/dscf) 1.5990E-06 2.0430E-06 1.4664E-06 1.7028E-06
C _{sd12} HCl Concentration @12% CO ₂ (lb/dscf) 1.5955E-06 2.0364E-06 1.4611E-06 1.6977E-06
C _{sd} HCl Concentration (ppmdv) 14.4365 18.3364 13.3623 15.3784
C _{sd7} HCl Concentration @7% O ₂ (ppmdv) 16.9054 21.5996 15.5038 18.0030
C _{sd12} HCl Concentration @12% CO ₂ (ppmdv) 16.8684 21.5300 15.4477 17.9487
C _w HCl Concentration (ppmwv) 11.4300 14.4256 10.4470 12.1008
C _{sd} HCI Concentration (mg/dscm) 21.8660 27.7729 20.2390 23.2926
C _{sd7} HCl Concentration @7% O ₂ (mg/dscm) 25.6055 32.7155 23.4826 27.2679
C _{sd12} HCl Concentration @12% CO ₂ (mg/dscm) 25.5494 32.6100 23.3976 27.1857
C _{sd} HCI Concentration (mg/Nm ³ dry) 23.4660 29.8050 21.7199 24.9970
C _{sd7} HCl Concentration @7% O ₂ (mg/Nm ³ dry) 27.4791 35.1093 25.2008 29.2631
C _{sd12} HCl Concentration @12% CO ₂ (mg/Nm ³ dry) 27.4189 34.9961 25.1097 29.1749
E _{Fd} HCl Rate - Fd-based (lb/MMBtu) 0.0230 0.0294 0.0211 0.0245
E _{Fc} HCl Rate - Fc-based (lb/MMBtu) 0.0242 0.0309 0.0222 0.0257

042210 101254 LRK@_@

Prepared by Clean Air Engineering Proprietary Software SS EPA26-1 Version 2006-10a (CI)

Copyright © 2006 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. CleanAir Project No. 10955 Lime Silo

:

Visible Emission Parameters

Run	1	Time		Time	(sec)	_]	Time		Time	(sec)	
		(min)	15	30	45	60		(min)	15	30	45	60
Date (2010)	Mar 17	0	0	0	0	0		0	0	0	0	0
Start Time	10:26	1 2	0	0 0	0 0	0 0	1	1 2	0	0 0	0 0	0 0
		3	ŏ	ŏ	ŏ	ŏ		3	ŏ	ŏ	ŏ	õ
		4	0	0	0.	0		4	0	0	0	0
		5	0	0	0	0		5	0	0	0	0
		6	0	0	0	0 0		6 7	0	0 0	0 0	0 0
		7	0	0 0	0 0	0		8	o	ŏ	Ő	Ö
		9	ō	ŏ	ō	ō		9	Ō	Ō	Ō	Ō
		10	0	0	0	0		10	0	0	0	0
		11	0	0	0	0		11	0	0	0 0	0
		12 13	0	0 0	0 0	0 0		12 13	0	0 0	0 0	0 0
		14	ŏ	ŏ	õ	ŏ		14	õ	õ	õ	ō
		15	0	0	0	0		15	0	0	0	0
		16	0	0	0	0		16	0	0	0	0
		17	0	0 0	0 0	0 0	1	17 18	0	0 0	0 0	0 0
		18 19	0	ō	0	õ		19	ō	ŏ	ŏ	ŏ
		20	ō	õ	Ō	Ō		20	-	•		
		21	0	0	0	0		21				
		22	0	0	0 0	0 0		22 23				
		23 24	0	0 0	0	0		23				
		25	ō	õ	Ō	õ		25				
		26	0	0	0	0		26				
		27	0	0	0	0		27				
		28 29	0	0 0	0 0	0 0		28 29				
		30	ō	ŏ	õ	ŏ		30				
		31	0	0	0	0		31				
		32	0	0	0	0	[32				
		33 34	0	0 0	0 0	0 0		33 34				
		34	0	Ö	0	ŏ		35				
		36	0	Ō	0	0		36				
		37	0	0	0	0		37				
		38	0	0 0	0 0	0 0		38 39				
		39 40	0	ŏ	Ő	0		40				
		41	Ō	ō	Ō	Ō		41				
		42	0	0	0	0		42				
		43	0	0	0	0		43 44				
		44 45	0 0	0 0	0 0	0 0		44				
		46	õ	õ	ō	õ		46				
		47	0	0	0	0		47				
		48	0	0	0	0		48				
		49 50	0	0 0	0 0	0 0		49 50				
		50	0	ŏ	0	õ		51				
		52	0	ō	0	0		52				
		53	0	0	0	0		53				
		54	0	0	0	0		54 55				
		55 56	0 0	0 0	0 0	0 0		55				
		57	Ő	ō	ŏ	ŏ		57				
		58	0	0	0	0		58				
		59	0	0	0	0		59			acity	0

Average Opacity 0 Minimum Reading 0

Maximum Reading 0 No. of Readings >5% 0

, Prepared by CleanAir Engineering Proprietary Software SS EPA M9 Version 01-2003

Copyright © 2003 Clean Air Engineering Inc.

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-2

QA/QC DATA	i la Hallandi i di seconda di s	allanti in shifti i bilanin saya sa 1968ada	u – Miller Berland, Beller Brand Lee, Socher L	
			•	
			1	

This Page Intentionally Left Blank

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 1 FF Outlet

USEPA Method 5/29 (Particulate/Metals) QA/QC Results

Run No		1	2	3	
Date (20	010)	Mar 16	Mar 16	Mar 16	
	ne (approx.)	07:21	10:00	12:36	
Stop Tin	ne (approx.)	09:32	12:14	14:47	
Total Du	iration of Test Run (min.)	13 1	134	131	
Net San	npling Time (min.)	125	125	125	
Samplin	ng System Calibration Summary				
	Nozzle ID No:	270-1	270-1	270-1	
Dn	Nozzle Diameter (in):	0.270	0.270	0.270	
	Probe ID No:	67-8-4	67-8-4	67-8-4	
Cρ	Pitot Coefficient:	0.8050	0.8050	0.8050	
	Meter Box ID. No:	61-6	61-6	61-6	
Yd	Meter Box Yd - Field Sheet	0.9900	0.9900	0.9900	
	Meter Box Yd - Database	0.9900	0.9900	0.9900	
	Meter Box ∆H@ - Field Sheet	1.6820	1.6820	1.6820	
	Meter Box ∆H@ - Database	1.6820	1.6820	1.6820	
QA/QC					
	Final Leak Check				
	(a) 4% of Sampling Rate (cfm)	0.0257	0.0261	0.0265	
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200	
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200	
	Actual Final Leak Rate (cfm)	0.0020	0.0020	0.0030	
	Sample Volume				
	Minimum Volume Required (dscf)	60.00	60.00	60.00	
V _{mstd}	Actual Sample Volume (dscf)	80.553	81.154	81.553	
1	Alternative Method 5 Post-Test Calibration (EPA A				
√∆H _{avg}		1.1230	1.1375	1.1463	
Y_{qa}	Alternative Meter Calibration Factor	0.9879	0.9891	0.9860	Average
	Variation from full-test Y_d (average $\leq \pm 5\%$)	-0.2%	-0.1%	-0.4%	-0.2%
	Mean Isokinetic Sampling Rate Variation				
	Minimum Allowable (%)	90	90	90	
	Maximum Allowable (%)	110	1 1 0	110	
%1	Actual Variation (%)	98.77	99.71	99.31	
	Point-by-Point Isokinetic Variation				
	Number of points <90%	0	0	0	
	Number of points >110%	0	0	0	
	Number of points <80%	0	0	0	
	Number of points >120%	0	0	0	

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright @ 2008 Clean Air Engineering Inc.

QA/QC Date _____

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 FF Outlet

USEPA Method 5/29 (Particulate/Metals) QA/QC Results

Run No.		1	2	3
Date (20	10)	Mar 18	Mar 18	Mar 18
	e (approx.)	07:09	09:49	12:27
Stop Tim	e (approx.)	09:22	12:02	14:39
	ration of Test Run (min.)	133	133	132
Net Sam	pling Time (min.)	125	125	125
<u>Şamplin</u>	g System Calibration Summary			
	Nozzie ID No:	270-1	270-1	270-1
Dn	Nozzle Diameter (in):	0.270	0.270	0.270
	Probe ID No:	67-8-4	67-8-4	67-8-4
Cp	Pitot Coefficient:	0.8050	0.8050	0.8050
	Meter Box ID. No:	66-24	66-24	66-24
Yd	Meter Box Yd - Field Sheet	0.9904	0.9904	0.9904
	Meter Box Yd - Database	0.9904	0.9904	0.9904
	Meter Box ∆H@ - Field Sheet	1.7516	1.7516	1.7516
	Meter Box ∆H@ - Database	1.7516	1.7516	1.7516
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0271	0.0261	0.0273
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0040	0.0020	0.0030
	Sample Volume			
	Minimum Volume Required (dscf)	60.00	60.00	60.00
V _{mstd}	Actual Sample Volume (dscf)	84.183	79.341	82.110
•	Alternative Method 5 Post-Test Calibration (EPA AL	<u>T-009)</u>		
√∆H _{avg}	Average of Square Root of ΔH (in. W.C.)	1.2037	1.1523	1.1942
Y _{qa}	Alternative Meter Calibration Factor	0.9897	0.9931	0.9905
	Variation from full-test Y_d (average $\leq \pm 5\%$)	-0.1%	0.3%	0.0%
	Mean Isokinetic Sampling Rate Variation			
	Minimum Allowable (%)	90	90	90
	Maximum Allowable (%)	110	110	110
%	Actual Variation (%)	100.31	98.93	99.93
	Point-by-Point Isokinetic Variation			
	Number of points <90%	0	0	0
	Number of points >110%	0	0	0
	Number of points <80%	0	0	0
	Number of points >120%	0	0	0

Average 0.1%

041210 140125 KLN@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright © 2006 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 3 FF Outlet

USEPA Method 5/29 (Particulate/Metals) QA/QC Results

Run No		1	2	3
Date (20	010)	Mar 17	Mar 17	Mar 17
	ne (approx.)	06:50	09:26	11:59
	ne (approx.)	09:03	11:38	14:11
Total Du	iration of Test Run (min.)	133	132	132
Net San	npling Time (min.)	125	125	125
Samplir	ng System Calibration Summary			
	Nozzle ID No:	270-1	270-1	270-1
Dn	Nozzle Diameter (in):	0.270	0.270	0.270
Dn	Nozzie Diameter (m).	0.270	0.270	0.270
	Probe ID No:	67-8-4	67-8-4	67-8-4
C_p	Pitot Coefficient:	0.8050	0.8050	0.8050
	Meter Box ID. No:	66-14	66-14	66-14
Yd	Meter Box Yd - Field Sheet	0.9898	0.9898	0.9898
-	Meter Box Yd - Database	0.9898	0.9898	0.9898
	Meter Box ∆H@ - Field Sheet	1.7643	1,7643	1,7643
	Meter Box ∆H@ - Database	1.7643	1.7643	1.7643
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0231	0.0249	0.0245
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0000	0.0030	0.0030
	Sample Volume	0.0000	0.0000	0.0000
	Minimum Volume Required (dscf)	60.00	60.00	60.00
V _{mstd}	Actual Sample Volume (dscf)	70.859	75.796	74.783
11500	, , ,	I T 000)		
√∆H _{avg}	Alternative Method 5 Post-Test Calibration (EPA A Average of Square Root of Δ H (in. W.C.)	1.0334	1.1107	1.0965
	Alternative Meter Calibration Factor	0.9959	0.9959	0.9979
Y_{qa}	Variation from full-test Y_d (average $\leq \pm 5\%$)	0.9959	0.9959	0.9979
		0.078	0.078	0.078
	Mean Isokinetic Sampling Rate Variation			
	Minimum Allowable (%)	90	90	90
	Maximum Allowable (%)	110	110	110
%I	Actual Variation (%)	100.44	100.53	100.01
	Point-by-Point Isokinetic Variation			
	Number of points <90%	0	0	0
	Number of points >110%	0	0	0
	Number of points <80%	0	0	0
	Number of points >120%	0	0	0

04 1210 140058 INM @

Average 0.7%

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright @ 2006 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 1 FF Outlet

USEPA Method 13B (Total Fluorides) QA/QC Results

Run No.	,	1	2	3
Date (20	10)	Mar 17	Mar 17	Mar 17
Start Tin	ne (approx.)	11:46	13:15	14:45
Stop Tirr	ne (approx.)	12:56	14:27	15:53
	ration of Test Run (min.)	70	72	68
Net Sam	pling Time (min.)	63	63	63
<u>Samplin</u>	g System Calibration Summary			
	Nozzle ID No:	268-1	268-1	268-1
Dn	Nozzle Diameter (in):	0.268	0.268	0.268
	Probe ID No:	67-8-14	67-8-14	67-8-14
Cp	Pitot Coefficient:	0.8120	0.8120	0.8120
	Meter Box ID. No:	61-6	61-6	61-6
Yd	Meter Box Yd - Field Sheet	0.9900	0.9900	0.9900
	Meter Box Yd - Database	0.9900	0.9900	0.9900
	Meter Box △H@ - Field Sheet	1.6820	1.6820	1.6820
	Meter Box ∆H@ - Database	1.6820	1.6820	1.6820
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0275	0.0275	0.0265
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0010	0.0020	0.0020
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	42.732	42.452	41.153
	Alternative Method 5 Post-Test Calibration (EPA A			
√∆H _{avg}	Average of Square Root of ∆H (in. W.C.)	1.2034	1.2101	1.1602
Y_{qa}	Alternative Meter Calibration Factor	0.9949	1.0028	0.9931
	Variation from full-test Y_d (average $\leq \pm 5\%$)	0.5%	1.3%	0.3%
	Mean Isokinetic Sampling Rate Variation			
	Minimum Allowable (%)	90	90	90
	Maximum Allowable (%)	1 1 0	110	110
%I	Actual Variation (%)	100.12	99.42	101.21
	Point-by-Point Isokinetic Variation			
	Number of points <90%	0	1	0
	Number of points >110%	0	1	0
	Number of points <80%	0	0	0
	Number of points >120%	0	0	0

Average 0.7%

041210 144522 PNL@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright © 2006 Clean Air Engineering Inc.

E ~ 6

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 FF Outlet

USEPA Method 13B (Total Fluorides) QA/QC Results

•

Run No		1	2	3	
Date (20	010)	Mar 18	Mar 18	Mar 18	
	ne (approx.)	07:09	08:56	10:45	
Stop Tir	ne (approx.)	08:24	10:10	12:05	
Total Du	uration of Test Run (min.)	75	74	80	
Net San	npling Time (min.)	63	63	63	
Samplin	ng System Calibration Summary				
	Nozzle ID No:	268-1	268-1	268-1	
Da	Nozzle Diameter (in):	0.268	0.268	0.268	
	Probe ID No:	67.9.14	67.9.44	67.9.44	
c	Pitot Coefficient:	67-8-14	67-8-14	67-8-14	
Cp	Phot Coemcient:	0.8120	0.8120	0.8120	
	Meter Box ID. No:	66-14	66-14	66-14	
Yd	Meter Box Yd - Field Sheet	0.9898	0.9898	0.9898	
	Meter Box Yd - Database	0.9898	0.9898	0.9898	
	Meter Box ∆H@ - Field Sheet	1.7643	1.7643	1.7643	
	Meter Box ∆H@ - Database	1.7643	1.7643	1.7643	
QA/QC					
	Final Leak Check				
	(a) 4% of Sampling Rate (cfm)	0.0244	0.0239	0.0246	
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200	
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200	
	Actual Final Leak Rate (cfm)	0.0040	0.0020	0.0030	
	Sample Volume				
	Minimum Volume Required (dscf)	30.00	30.00	30.00	
V _{mstd}	Actual Sample Volume (dscf)	38.207	36.894	37.310	
	Alternative Method 5 Post-Test Calibration (EPA A	LT-009)			
√∆H _{avg}	Average of Square Root of ∆H (in. W.C.)	1.1156	1.0736	1.0938	
Y _{qa}	Alternative Meter Calibration Factor	1.0110	0.9988	0.9997	
-	Variation from full-test Y_d (average $\leq \pm 5\%$)	2.1%	0.9%	1.0%	
	Mean Isokinetic Sampling Rate Variation				
	Minimum Allowable (%)	90	90	90	
	Maximum Allowable (%)	110	110	110	
%1	Actual Variation (%)	98.31	99.17	98.03	
	Point-by-Point Isokinetic Vanation				
	Number of points <90%	2	0	0	
	Number of points >110%	1	0	0	
	Number of points <80%	2	0	0	
	Number of points >120%	0	0	0	

04 1210 144501 N 0 N @

Average 1.4%

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright @ 2006 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 3 FF Outlet

٠

USEPA Method 13B (Total Fluorides) QA/QC Results

Run No.		1	2	3
Date (20	10)	Mar 16	Mar 16	Mar 16
	ne (approx.)	11:49	13:33	15:07
	ne (approx.)	13:07	14:44	16:16
Total Du	ration of Test Run (min.)	78	71	69
Net Sam	pling Time (min.)	63	63	63
<u>Samplin</u>	g System Calibration Summary			
	Nozzle ID No:	268-1	268-1	268-1
Dn	Nozzle Diameter (in):	0.268	0.268	0.268
	Probe ID No:	67-8-14	67-8-14	67-8-14
C _p	Pitot Coefficient:	0.8120	0.8120	
Υp		0.0120	0.0120	0.8120
	Meter Box ID. No:	66-14	66-14	66-14
Yd	Meter Box Yd - Field Sheet	0.9898	0.9898	0.9898
	Meter Box Yd - Database	0.9898	0.9898	0.9898
	Meter Box ∆H@ - Field Sheet	1.7643	1.7643	1.7643
	Meter Box ∆H@ - Database	1.7643	1.7643	1.7643
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0236	0.0242	0.0234
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0020	0.0020	0.0020
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	36.404	36.989	35.734
	Alternative Method 5 Post-Test Calibration (EPA A	<u>LT-009</u>)		
√∆H _{avg}	Average of Square Root of ∆H (in. W.C.)	1.0442	1.0697	1.0297
Y_{qa}	Alternative Meter Calibration Factor	0.9851	0.9877	0.9829
	Variation from full-test Y_d (average $\leq \pm 5\%$)	-0.5%	-0.2%	-0.7%
	Mean Isokinetic Sampling Rate Variation			
	Minimum Allowable (%)	90	90	90
	Maximum Allowable (%)	110	110	110
%I	Actual Variation (%)	101.61	100.74	100.78
	Point-by-Point Isokinetic Variation			
	Number of points <90%	3	2	1
	Number of points >110%	5	2	1
	Number of points <80%	0	1	0
	Number of points >120%	1	. 1	0

Average -0.5%

041210 144530 HKL@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright © 2006 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 FF Outlet

USEPA Method 26A (HCI) QA/QC Results

tun No		1	2	3
)ate (20	010)	Mar 17	Mar 17	Mar 17
tart Tin	ne (approx.)	06:54	09:02	10:25
top Tim	ne (approx.)	07:54	10:02	11:25
otal Du	ration of Test Run (min.)	60	60	60
let Sam	npling Time (min.)	60	60	60
amplin	g System Calibration Summary			
	Nozzle ID No:	NA	NA	NA
Dn	Nozzle Diameter (in):	NA	NA	NA
	Probe ID No:	67-4-3	67-4-3	67-4-3
	Meter Box ID. No:	66-24	66-24	66-24
Y₫	Meter Box Yd - Field Sheet	0.9904	0.9904	0.9904
	Meter Box Yd - Database	0.9904	0.9904	0.9904
	Meter Box ∆H@ - Field Sheet	1.7516	1.7516	1.7516
	Meter Box ∆H@ - Database	1.7516	1.7516	1.7516
A/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0280	0.0280	0.0282
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0020	0.0020	0.0030
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	41.238	41.007	40.731
	Alternative Method 5 Post-Test Calibration (EPA A			
√∆H _{avg}	Average of Square Root of ΔH (in. W.C.)	1.2247	1.2247	1.2247
Y _{qa}	Alternative Meter Calibration Factor	0.9803	0.9826	0.9823
· qa				

041210 144927 OJP@

Average -0.9%

Prepared by Clean Air Engineering Proprietary Software SS (SOKINETIC Version 2006-13d

Copyright @ 2006 Clean Air Engineering Inc.

QA/QC ____ Date ____

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 FF Outlet

USEPA Method 23 (PCDD/F) QA/QC Results

Run No.		1	2	3
Date (20	10)	Mar 16	Mar 17	Mar 17
•	e (approx.)	08:44	06:54	12:53
	e (approx.)	13:36	12:19	17:26
Total Du	ration of Test Run (min.)	292	325	273
Net Sam	pling Time (min.)	250	250	250
<u>Samplin</u>	g System Calibration Summary			
	Nozzle ID No:	264-1	264-1	264-1
Dn	Nozzle Diameter (in):	0.264	0.264	0.264
	Probe ID No:	67-8-17	67-8-17	67-8-17
C _p	Pitot Coefficient:	0.8340	0.8340	0.8340
	Meter Box ID. No:	66-6	66-6	66-24
Yd	Meter Box Yd - Field Sheet	0.9901	0.9901	0.9904
- 0	Meter Box Yd - Database	0.9901	0.9901	0.9904
	Meter Box △H@ - Field Sheet	1.7870	1.7870	1.7516
	Meter Box ∆H@ - Database	1.7870	1.7870	1.7516
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0257	0.0275	0.0266
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0050	0.0050	0.0050
	Sample Volume			
	Minimum Volume Required (dscf)	120.00	120.00	120.00
V _{mstd}	Actual Sample Volume (dscf)	156.061	168.824	164.129
	Alternative Method 5 Post-Test Calibration (EPA A	<u>(LT-009</u>)		
√∆H _{avg}	Average of Square Root of ∆H (in. W.C.)	1.1356	1.2325	1.1676
Y _{qa}	Alternative Meter Calibration Factor	0.9855	0.9937	0.9808
	Variation from full-test Y_d (average $\leq \pm 5\%$)	-0.5%	0.4%	-1.0%
	Mean Isokinetic Sampling Rate Variation			
	Minimum Allowable (%)	90	90	90
	Maximum Allowable (%)	110	110	110
%I	Actual Variation (%)	97.97	100.32	101.57
	Point-by-Point Isokinetic Variation			
	Number of points <90%	0	0	0
	Number of points >110%	0	0	0
	Number of points <80%	0	0	0
	Number of points >120%	0	0	0

Average -0.4%

041210 145727 PM G @

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright © 2006 Clean Air Engineering Inc.

QA/QC _____ Date _____

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 1 SDA Inlet

USEPA Method 26A (HCI) QA/QC Results

Run No		1	2	3
Date (20	10)	Mar 18	Mar 18	Mar 18
Start Tin	ne (approx.)	07:02	09:26	11:49
Stop Tin	ne (approx.)	08:02	10:37	12:49
Total Du	ration of Test Run (min.)	60	71	60
Net Sam	ppling Time (min.)	60	60	60
Samplin	g System Calibration Summary			
	Nozzle ID No:	NA	NA	NA
Dn	Nozzle Diameter (in):	NA	NA	NA
	Probe ID No:	67-4-4	67-4-4	67-4-4
Cp	Pitot Coefficient:	0.8400	0.8400	0.8400
	Meter Box ID. No:	85-4	85-4	85-4
Yd	Meter Box Yd - Field Sheet	1.0085	1.0085	1.0085
	Meter Box Yd - Database	1.0085	1.0085	1.0085
	Meter Box ∆H@ - Field Sheet	1.7723	1.7723	1.7723
	Meter Box ∆H@ - Database	1.7723	1.7723	1.7723
<u>QA/QC</u>				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0247	0.0238	0.0237
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0030	0.0030	0.0030
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	38.191	36.424	35.652
	Alternative Method 5 Post-Test Calibration (EPA A	<u>LT-009</u>)		
√∆H _{avg}	Average of Square Root of ΔH (in. W.C.)	1.0916	1.0954	1.0954
Y _{qa}	Alternative Meter Calibration Factor	0.9680	1.0125	1.0264
-	Variation from full-test Y_d (average $\leq \pm 5\%$)	-4.0%	0.4%	1.8%

Average -0.6%

041210 145802 INK@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2005-13d

Copyright @ 2006 Clean Air Engineering Inc.

QA/QC _____ Date _____

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 1 FF Outlet

USEPA Method 26A (HCI) QA/QC Results

Run No.		1	2	3
Date (20	10)	Mar 18	Mar 18	Mar 18
•	e (approx.)	07:02	09:26	11:49
Stop Tim	e (approx.)	08:02	10:37	12:49
Total Dur	ration of Test Run (min.)	60	71	60
Net Sam	pling Time (min.)	60	60	60
Samplin	g System Calibration Summary			
Samping				
	Nozzle ID No:	NA	NA	NA
Dn	Nozzle Diameter (in):	NA	NA	NA
	Probe ID No:	67-4-3	67-4-3	67-4-3
Cp	Pitot Coefficient:	0.8400	0.8400	0.8400
	Meter Box ID. No:	85-2	85-2	85-2
Yd	Meter Box Yd - Field Sheet	1.0066	1.0066	1.0066
	Meter Box Yd - Database	1.0066	1.0066	1.0066
	Meter Box ∆H@ - Field Sheet	1.7759	1.7759	. 1.7759
	Meter Box ∆H@ - Database	1.7759	1.7759	1.7759
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0267	0.0266	0.0268
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0030	0.0010	0.0020
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	41.096	40.795	40.645
	Alternative Method 5 Post-Test Calibration (EPA ALT			
√∆H _{avg}	Average of Square Root of ∆H (in. W.C.)	1.2247	1.2247	1.2247
Y _{qa}	Alternative Meter Calibration Factor	1.0058	1.0118	1.0108
-	Variation from full-test Y_d (average $\leq \pm 5\%$)	-0.1%	0.5%	0.4%

Average 0.3%

041210 145813 NLK@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright @ 2008 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 SDA Inlet

USEPA Method 26A (HCI) QA/QC Results

Run No.		1	2	3
Date (20	10)	Mar 17	Mar 17	Mar 17
	ne (approx.)	06:54	09:02	10:25
Stop Tim	ne (approx.)	07:54	10:02	11:25
Total Du	ration of Test Run (min.)	60	60	60
Net Sam	pling Time (min.)	60	60	60
<u>Samplin</u>	g System Calibration Summary			
	Nozzie ID No:	NA	NA	NA
D _n	Nozzle Diameter (in):	NA	NA	NA
	Probe ID No:	67-4-5	67-4-5	67-4-5
C_p	Pitot Coefficient:	0.8400	0.8400	0.8400
	Meter Box ID. No:	61-8	61-8	61-8
Yd	Meter Box Yd - Field Sheet	0.9916	0.9916	0.9916
	Meter Box Yd - Database	0.9916	0.9916	0.9916
	Meter Box ∆H@ - Field Sheet	1.7580	1.7580	1.7580
	Meter Box ∆H@ - Database	1.7580	1.7580	1.7580
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0242	0.0243	0.0242
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0040	0.0030	0.0040
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	35.882	36.433	36.196
	Alternative Method 5 Post-Test Calibration (EPA A			
√∆H _{avg}	Average of Square Root of ΔH (in. W.C.)	1.0916	1.0954	1.0916
Y_{qa}	Alternative Meter Calibration Factor	1.0029	0.9981	0.9998
	Variation from full-test Y_d (average $\leq \pm 5\%$)	1.1%	0.7%	0.8%

Average 0.9%

041210 145824 KQ K @

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright @ 2006 Clean Air Engineering Inc.

QA/QC ____ Date ____ Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 2 FF Outlet

USEPA Method 26A (HCI) QA/QC Results

Run No.		1	2	3
Date (20	10)	Mar 17	Mar 17	Mar 17
Start Tim	ne (approx.)	06:54	09:02	10:25
Stop Tim	ne (approx.)	07:54	10:02	11:25
Total Du	ration of Test Run (min.)	60	60	60
Net Sam	pling Time (min.)	60	60	60
Samplin	g System Calibration Summary			
	Nozzle ID No:	NA	NA	NA
Dn	Nozzle Diameter (in):	NA	NA	NA
	Probe ID No:	67-4-3	67-4-3	67-4-3
	Meter Box ID. No:	66-24	66-24	66-24
Yd	Meter Box Yd - Field Sheet	0.9904	0.9904	0.9904
	Meter Box Yd - Database	0.9904	0.9904	0.9904
	Meter Box ∆H@ - Field Sheet	1.7516	1.7516	1.7516
	Meter Box ∆H@ - Database	1.7516	1.7516	1.7516
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0280	0.0280	0.0282
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0020	0.0020	0.0030
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	41.238	41.007	40.731
	Alternative Method 5 Post-Test Calibration (EPA A	LT-009)		
√∆H _{avg}	Average of Square Root of ∆H (in. W.C.)	1.2247	1.2247	1.2247
Y _{qa}	Alternative Meter Calibration Factor	0.9803	0.9826	0.9823
	Variation from full-test Y_d (average $\leq \pm 5\%$)	-1.0%	-0.8%	-0.8%

Average -0.9%

041210 145824 OJP@

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2008-13d

Copyright © 2006 Clean Air Engineering Inc.

Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 3 SDA Inlet

USEPA Method 26A (HCI) QA/QC Results

Run No		1	2	3	
Date (20	010)	Mar 16	Mar 16	Mar 16	
Start Tir	ne (approx.)	07:17	09:04	10:32	
Stop Tin	ne (approx.)	0 8 :17	10:04	11:32	
Total Du	iration of Test Run (min.)	60	60	60	
Net San	npling Time (min.)	60	60	60	
<u>Samplir</u>	ng System Callbration Summary				
	Nozzle ID No:	NA	NA	NA	
Dn	Nozzle Diameter (in):	NA	NA	NA	
	Probe ID No:	67-4-5	67-4-5	67-4-5	
Cp	Pitot Coefficient:	0.8400	0.8400	0.8400	
	Meter Box ID. No:	61-8	61-8	61 -8	
Yd	Meter Box Yd - Field Sheet	0.9916	0.9916	0.9916	
	Meter Box Yd - Database	0.9916	0.9916	0.9916	
	Meter Box ∆H@ - Field Sheet	1.7580	1.7580	1.7580	
	Meter Box ∆H@ - Database	1.7580	1.7580	1.7580	
QA/QC					
	Final Leak Check				
	(a) 4% of Sampling Rate (cfm)	0.0237	0.0242	0.0236	
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200	
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200	
	Actual Final Leak Rate (cfm)	0.0040	0.0030	0.0030	
	Sample Volume				
	Minimum Volume Required (dscf)	30.00	30.00	30.00	
V _{mstd}	Actual Sample Volume (dscf)	35.389	35.831	34.777	
	Alternative Method 5 Post-Test Calibration (EPA Al	LT-009)			
√∆H _{avg}	Average of Square Root of ΔH (in. W.C.)	1.0757	1.0954	1.0836	
Y_{qa}	Alternative Meter Calibration Factor	1.0054	1.0078	1.0230	
	Variation from full-test Y_d (average $\leq \pm 5\%$)	1.4%	1.6%	3.2%	

Average 2.1%

041210 145844 N S J @

Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright © 2006 Clean Air Engineering Inc.

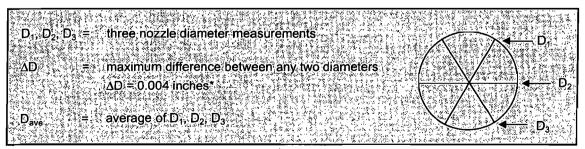
Wheelabrator North Broward, Inc. Clean Air Project No: 10955 Unit 3 FF Outlet

USEPA Method 26A (HCI) QA/QC Results

Run No.		1	2	3
Date (20		Mar 16	Mar 16	Mar 16
	ie (approx.)	07:17	09:04	10:32
•	e (approx.)	08:17	10:04	11:32
	ration of Test Run (min.)	60	60	60
Net Sam	pling Time (min.)	60	60	60
<u>Samplin</u>	g System Calibration Summary			
	Nozzle ID No:	NA	NA	NA
Dn	Nozzle Diameter (in):	NA	NA	NA
	Probe ID No:	67-4-3	67-4-3	67-4-3
Cp	Pitot Coefficient:	0.8400	0.8400	0.8400
	Meter Box ID. No:	61-11	61-11	61-11
Yd	Meter Box Yd - Field Sheet	0.9892	0.9892	0.9892
	Meter Box Yd - Database	0.9892	0.9892	0.9892
	Meter Box ∆H@ - Field Sheet	1.7379	1.7379	1.7379
	Meter Box ∆H@ - Database	1.7379	1.7379	1.7379
QA/QC				
	Final Leak Check			
	(a) 4% of Sampling Rate (cfm)	0.0276	0.0276	0.0277
	(b) Allowable Rate from Method (cfm)	0.0200	0.0200	0.0200
	Allowable Limit - minimum of a and b (cfm)	0.0200	0.0200	0.0200
	Actual Final Leak Rate (cfm)	0.0020	0.0010	0.0020
	Sample Volume			
	Minimum Volume Required (dscf)	30.00	30.00	30.00
V _{mstd}	Actual Sample Volume (dscf)	42.133	41.782	41.670
	Alternative Method 5 Post-Test Calibration (EPA AL	<u>.T-009</u>)		
√∆H _{avg}	Average of Square Root of ∆H (in. W.C.)	1.2247	1.2247	1.2247
Y_{qa}	Alternative Meter Calibration Factor	0.9790	0.9832	0.9811
	Variation from full-test Y_d (average $\leq \pm 5\%$)	-1.0%	-0.6%	-0.8%

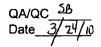
Average -0.8%

041210, 145856 LNK @


Prepared by Clean Air Engineering Proprietary Software SS ISOKINETIC Version 2006-13d

Copyright @ 2006 Clean Air Engineering Inc.

Nozzle Calibration Sheet


	Client	Wheeld broton North Roward	Project Number	0955
Date 3(15/10 Runs - 3	Calibrated by	5. Brown	Unit	
	Date	3(15/10		-3

	Nozzle Identification	1.4.4.X0.0.4/ BAY DENT MOL. C.	D ₂ (inches)	D ₃ (inches)	∆D (inches)	D _{ave} (inches)
5/29	0.270-1	0.270	0.270	0.271	0.00)	0.270
M23	0.264-1	0,265	0.264	0.263	0.002	0.264
M13.B	0.268-1	0.269	0.268	0.268	0.001	0.268
inlot	0.270-2	0.271	6-270	0-270	0.001	0.270
	0.270-3	0.270	0.270	0.270	0.000	0.270

* (40 CFR 60, Appendix A, Method 5, Section 5.1)

CDS005A-Nozzie.xls, August 2004 Copyright © 2004 Clean Air Engineering, Inc.

Meter Box Full Test Calibration

Meter Box No: 61-6

Date of Calibration: 7/17/2009

Meter Box Y_d: 0.9900

Calibration conducted by: OLEG LAVROV

Meter Box ∆H@: 1.6820

Barometric Pressure: 29.04

					indard Me s Volume (•		ter Box G olume (ft ³			td. Met Deratur	-		eter Box peratur		Time (min.)		ration ults
						V _{ds}			Vd			T _{ds}		To	T _d			
Q	ΔH	ΔP	Y _{ds}	Initial	Final	Net	Initial	Final	Net	In	Out	Avg.	In	Out	Avg.	Θ	Yd	∆н@
0.965	3.00	-1.70	1.0000	0.000	10.000	10.000	209.181	219.284	10.103	77.0	77.0	77.00	85.0	77.0	81.00	9.89	0.9854	1.7309
0.971	3.00	-1.70	1.0000	0.000	10.000	10.000	219.284	229.389	10.105	77.0	77.0	77.00	86.0	78.0	82.00	9.82	0.9870	1.7034
0.401	0.50	-1.00	1.0000	0.000	5.000	5.000	234.378	239.419	5.041	77.0	77.0	77.00	81.0	78.0	79.50	11.88	0.9927	1.6620
0.401	0.50	-1.00	1.0000	0.000	5.000	5.000	239.419	244.459	5.040	77.0	77.0	77.00	81.0	78.0	79.50	11.90	0.9929	1.6676
0.695	1.50	-1.50	1.0000	0.000	10.000	10.000	253.277	263.387	10.110	76.0	76.0	76.00	84.0	79.0	81.50	13.76	0.9917	1.6629
0.694	1.50	-1.50	1.0000	0.000	10.000	10.000	263.387	273.514	10.127	76.0	76.0	76.00	84.0	79.0	81.50	13.77	0.9900	1.6653
															Ā	verages	0.98996	1.68200

Nomenclature	Equations
$\begin{array}{lll} P_b & \text{Barometric Pressure (in. Hg)} \\ Q & \text{Flow Rate (cfm)} \\ \Delta H & \text{Orifice Pressure differential (in. H_2O)} \\ \Delta P & \text{Inlet Pressure Differential (in. H_2O)} \\ V_d & \text{Gas Meter Volume - Dry (ft^3)} \\ V_{ds} & \text{Standard Meter Volume - Dry (ft^3)} \\ T_d & \text{Average Meter Box Temperature ("F)} \\ T_o & \text{Outlet Meter Box Temperature ("F)} \\ T_{ds} & \text{Average Standard Meter Temperature ("F)} \\ T_d & \text{Meter Correction Factor (unitless)}, Y_i \leq Y_{avg} \pm 0.02 \\ Y_{ds} & \text{Standard Meter Correction Factor (unitless)} \\ \Delta H@ & \text{Orifice Pressure Differential giving 0.75 cfm} \\ \text{of air at 68"F and 29.92 in. Hg (in. H_2O)} \\ \Delta H@_{avg} \pm 0.2 \\ \Theta & \text{Duration of Run (minutes)} \end{array}$	$Y_{d} = (Y_{ds}) \left[\frac{V_{ds}}{V_{d}} \right] \left[\frac{T_{d} + 460}{T_{ds} + 460} \right] \left[\frac{P_{b} + \Delta P / 13.6}{P_{b} + \Delta H / 13.6} \right]$ $\Delta H @= \frac{(0.0319)(\Delta H)}{P_{b}(T_{o} + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{ds})(Y_{ds})} \right]^{2}$ $Q = \frac{17.64(V_{ds})(P_{b})}{(T_{ds} + 460)(\Theta)}$

Standard	Gauge
(in.Hg)	(in.Hg)
5.6	5.0
10.7	10.0
15.4	15.0
20.4	20.0
24.8	24.7

CD3005C-Meter Full, April 2004a Copyright @ 2004 Clean Air Engineering k

Meter Box - Pyrometer Calibration Sheet

Meter Box No: 61-6

Calibrated by: OLEG LAVROV

Date:

1/18/08

Client: _____

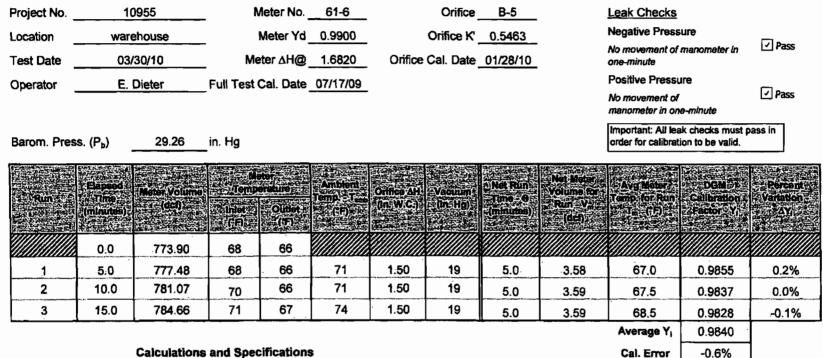
Type of Calibration: Full-Test

Office:

Temperature Scale Used: Fahrenheit

Pyrometer Reading Calibration for each Channel Reference Settings (°F) (°F) Stack Probe Filter Imp Out DGM In DGM Out Aux

Tolerance = ±2°F difference from reference setting.


Calibration Reference Information

Reference Used:	Omega CL23A	Serial No:	T-225950
Calibrated By:	JH Metrology	Exp date :	6/22/2010
Calibration Report No:	R044791		

Meter Box Critical Orifice Post-Test Calibration Data

Calculations and Specifications

$$Y_{i} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H_{13.6}) \times \sqrt{T_{amb} + 460}}$$
$$\Delta Y_{i} = \frac{Y_{i} - \overline{Y}_{i}}{\overline{Y}_{i}} \times 100 \qquad \text{Spec.} : \Delta Y_{i} \le \pm 2\%$$
$$Cal.Error = \frac{\overline{Y}_{i} - Y_{d}}{Y_{d}} \times 100 \qquad \text{Spec.} : Cal.Error \le \pm 5\%$$

CDS0058-Meter Post-CO, February 2004 Copyright © 2004 Clean Air Engineering, Inc.

Meter Box Full Test Calibration

Meter Box No: 61-8

Date of Calibration: 5/11/2009

•

Meter Box Y_d: 0.9916

Calibration Conducted by: OLEG LAVROV

Meter Box △H@: 1.7580

Barometric Pressure: 29.39

					andard Me s Volume			ter Box G olume (ft ³		Std. Meter Temperature (*F)			Meter Box Temperature ('F)			Time (min.)	Calibr Res	ration ults
						V _{ds}			Vd	Tis	Tos	T _{ds}	Τi	T。	T _d			
Q	ΔH	ΔΡ	Yds	Initial	Final	Net	Initial	Final	Net	In	Out	Avg.	In	Out	Avg.	Θ	Ya	∆н@
0.984	3.00	-1.70	1.0000	0.000	10.000	10.000	62.712	72.772	10.060	68.0	68.0	68.00	73.0	69.0	71.00	9.98	0.9880	1.7092
0.972	3.00	-1.70	1.0000	0.000	10.000	10.000	72.772	82.872	10.100	68.0	68.0	68.00	76.0	70.0	73.00	10.10	0.9878	1.7472
0.387	0.50	-1.10	1.0000	0.000	5.000	5.000	86.333	91.393	5.060	68.0	68.0	68.00	75.0	72.0	73.50	12.68	0.9944	1.8290
0.385	0.50	-1.10	1.0000	0.000	5.000	5.000	91.393	96.466	5.073	68.0	68.0	68.00	75.0	73.0	74.00	12.76	0.9928	1.8487
0.692	1.50	-1.30	1.0000	0.000	10.000	10.000	98.815	108.963	10.148	68.0	68.0	68.00	78.0	73.0	75.50	14.19	0.9924	1.7147
0.694	1.50	-1.30	1.0000	0.000	10.000	10.000	108.963	119.111	10.148	68.0	68.0	68.00	79.0	74.0	76.50	14.14	0.9943	1.6994
															A	verages	0.99164	1.75804

	Nomenclature	Equations
₽ _δ Q ΔH ΔP Vd Td To Tds Yd Yds ΔH@	Barometric Pressure (in. Hg) Flow Rate (cfm) Orifice Pressure differential (in. H ₂ O) Inlet Pressure Differential (in. H ₂ O) Gas Meter Volume - Dry (ft ³) Standard Meter Volume - Dry (ft ³) Average Meter Box Temperature ("F) Outlet Meter Box Temperature ("F) Average Standard Meter Temperature ("F) Meter Correction Factor (unitless), Y ₁ \leq Y _{avg} ±0.02 Standard Meter Correction Factor (unitless) Orifice Pressure Differential giving 0.75 cfm of air at 68"F and 29.92 in. Hg (in. H ₂ O) Δ H@ ₁ \leq Δ H@ _{evg} ±0.2 Duration of Run (minutes)	$Y_{d} = (Y_{ds}) \left[\frac{V_{ds}}{V_{d}} \right] \left[\frac{T_{d} + 460}{T_{ds} + 460} \right] \left[\frac{P_{b} + \Delta P / 13.6}{P_{b} + \Delta H / 13.6} \right]$ $\Delta H @= \frac{(0.0319)(\Delta H)}{P_{b}(T_{o} + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{ds})(Y_{ds})} \right]^{2}$ $Q = \frac{17.64(V_{ds})(P_{b})}{(T_{ds} + 460)(\Theta)}$

	Vacuum	Gauge
	Standard	Gauge
ł	(in.Hg)	(in.Hg)
	4.7	5.0
	9.6	10.0
	14.6	15.0
	19.5	20.0
	23.3	24.0

CDS005C-Mater Full, April 2004s Copyright © 2004 Clean Air Engineering inc.

Meter Box - Pyrometer Calibration Sheet

Meter Box No: 61-8

Calibrated by: OLEG LAVROV

Date:

Office:

Client:

Job No:

Temperature Scale Used: Fahrenheit

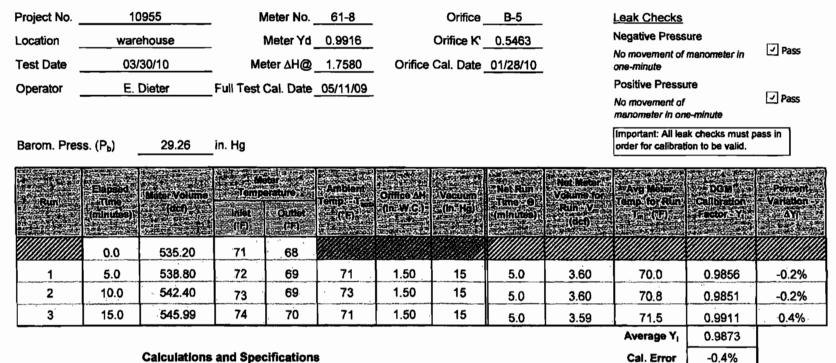
5/11/09

Type of Calibration: Full-Test

Calibration Reference Settings		Pyrometer Reading for each Channel (°F)												
(°F)	1	2	3	4	5	6	7							
	Stack	Probe	Filter	Imp Out	Aux	DGM In	DGM Out							
50	49	49	48											
100	99	99	98											
150	149	149	149		_									
200	199	199	199											
250	250	249	249											
300	300	299	299											
350	350	349	350											
400	400	399	399											
450	450	449	449											
500	500	499	499											
550	549	549	549											
600	599	599	599											

Tolerance = ±2°F difference from reference setting.

Calibration Reference Information


Reference Used:	Omega CL23A	Serial No:	T-225950
Calibrated By:	JH Metrology	Exp. Date:	10/13/2009
Calibration Report No	p:		

CDS005C Meter Full, April 2004a Copyright © 2004 Clean Air Engineering Inc.

.

Meter Box Critical Orifice Post-Test Calibration Data

Calculations and Specifications

$$Y_{l} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H_{13.6}) \times \sqrt{T_{amb} + 460}}$$
$$\Delta Y_{l} = \frac{Y_{l} - \overline{Y}_{l}}{\overline{Y}_{l}} \times 100 \qquad \text{Spec.: } \Delta Y_{l} \le \pm 2\%$$
$$Cal.Error = \frac{\overline{Y}_{l} - Y_{d}}{Y_{l}} \times 100 \qquad \text{Spec.: } Cal.Error \le \pm 5\%$$

CDS0058-Meter Post-CO, February 2004 Copyright @ 2004 Clean Air Engineering, Inc.

Meter Box Full Test Calibration

Meter Box No: 61-11

Date of Calibration: 7/20/2009

Meter Box Y_d: 0.9892

Calibration Conducted by: ____OLEG LAVROV

Meter Box ∆H@: 1.7379

Barometric Pressure: 29.33

					ndard Me Volume			Meter Box GasStd. MeterVolume (ft3)Temperature ("F)			Meter Box Temperature (°F)			Time (min.)		libration esults		
						V _{ds}			Vd	T _{is}	Tos	T _{ds}	T _i	T _o	T _d			
Q	ΔH	ΔP	Y _{ds}	Initial	Final	Net	Initial	Final	Net	١n	Out	Avg.	ิเก	Out	Avg.	Θ	Yd	∆H@
0.967	3.00	-1.80	1.0000	0.000	10.000	10.000	659.039	669.161	10.122	74.0	74.0	74.00	84.0	75.0	79.50	10.02	0.9862	1.7461
0.965	3.00	-1.80	1.0000	0.000	10.000	10.000	669,161	679.296	10.135	74.0	74.0	74.00	86.0	77.0	81.50	10.04	0.9886	1.7465
0.393	0.50	-1.10	1.0000	0.000	5.000	5.000	688.693	693.774	5.081	74.0	74.0	74.00	81.0	78.0	79.50	12.32	0.9902	1.7500
0.399	0.50	-1.10	1.0000	0.000	5.500	5.500	693.774	699.354	5.580	74.0	74.0	74.00	81.0	78.0	79.50	13.36	0.9918	1.7007
0.682	1.50	-1.40	1.0000	0.000	10.000	10.000	701.953	712.144	10.191	74.5	74.5	74.50	86.0	79.0	82.50	14.20	0.9887	1.7436
0.682	1.50	-1.40	1.0000	0.000	10.000	10.000	712.144	722.346	10.202	74.5	74.5	74.50	87.0	80.0	83.50	14.20	0.9895	1.7404
	-				Averages 0.989										0.98917	1.73789		

	Nomenclature	Equations
Q ΔH ΔP Vd Vd Td Td Td Yd Yd ΔH Q 4 4 4 4 4 4 4 4 4 4 4 4 4	Barometric Pressure (in. Hg) Flow Rate (cfm) Orifice Pressure differential (in. H ₂ O) Inlet Pressure Differential (in. H ₂ O) Gas Meter Volume - Dry (ft ³) Standard Meter Volume - Dry (ft ³) Average Meter Box Temperature (*F) Outlet Meter Box Temperature (*F) Average Standard Meter Temperature (*F) Meter Correction Factor (unitless), Y ₁ ≤Y _{avg} ±0.02 Standard Meter Correction Factor (unitless) Orifice Pressure Differential giving 0.75 cfm of air at 68°F and 29.92 in. Hg (in. H ₂ O) $\Delta H@_i \leq \Delta H@_{avg} \pm 0.2$ Duration of Run (minutes)	$Y_{d} = (Y_{ds}) \left[\frac{V_{ds}}{V_{d}} \right] \left[\frac{T_{d} + 460}{T_{ds} + 460} \right] \left[\frac{P_{b} + \Delta P / 13.6}{P_{b} + \Delta H / 13.6} \right]$ $\Delta H @= \frac{(0.0319)(\Delta H)}{P_{b}(T_{o} + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{ds})(Y_{ds})} \right]^{2}$ $Q = \frac{17.64(V_{ds})(P_{b})}{(T_{ds} + 460)(\Theta)}$

Standard	Gauge
(in.Hg)	(in.Hg)
5.3	5.0
10.2	10.0
14.9	15.0
19.7	20.0
24.4	25.0

COSCIEC-Mater Full April 2004a Convicte to 2004 Clasm Air Engineerie

Meter Box - Pyrometer Calibration Sheet

Meter Box No: 61-11

Calibrated by: OLEG LAVROV

Date:

Office: Client:

Job No:

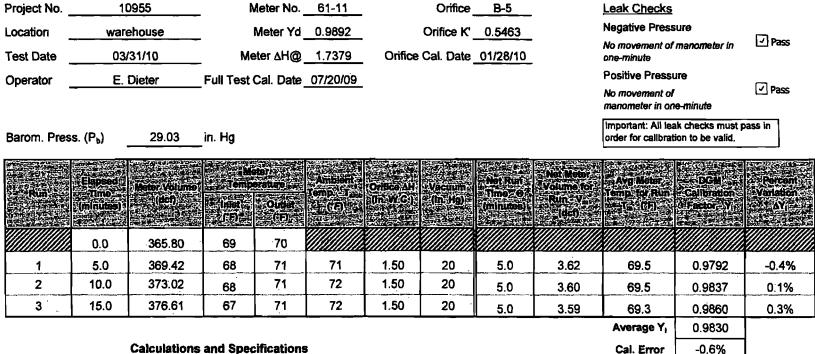
Type of Calibration: Full-Test

7/20/09

Temperature Scale Used: Fahrenheit

Calibration Reference Settings	Pyrometer Reading for each Channel (°F)										
(°F)	1	2	3	4	5	6	7				
	Stack	Probe	Filter	Imp Out	Aux	DGM In	DGM Out				
50	48	49	48								
100	98	99	98								
150	148	149	148								
200	198	199	198								
250	248	249	248				建設設				
300	298	299	298			的認識					
350	348	349	348			$\overline{\gamma}$					
400	398	39 9	398		調整						
450	448	449	448								
500	498	499	498								
550	548	549	548								
600	59 8	599	598		國語言						

Tolerance = ±2°F difference from reference setting.


Calibration Reference Information

Reference Used:	Omega CL23A	Serial No:	T-225950
Calibrated By:	JH Metrology	Exp date :	6/22/2010
Calibration Report No:	R044701		

CDS005C-Meter Full, April 2004a Copyright © 2004 Clean Air Engineering Inc.

Meter Box Critical Orifice Post-Test Calibration Data

Calculations and Specifications

$$Y_{i} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H_{13.6}) \times \sqrt{T_{amb} + 460}}$$
$$\Delta Y_{i} = \frac{Y_{i} - \overline{Y}_{i}}{\overline{Y}_{i}} \times 100 \qquad \text{Spec. : } \Delta Y_{i} \le \pm 2\%$$
$$Cal \ Error = \frac{\overline{Y}_{i} - Y_{d}}{Y_{i}} \times 100 \qquad \text{Spec. : } Cal \ Error \le \pm 5\%$$

CDS0058-Meter Past-CO, February 2004 Copyright © 2004 Clean Air Engineering, Inc.

Meter Box Full Test Calibration

Meter Box No:

66-6

Date of Calibration: 1/12/2010

Meter Box Y_d: 0.9901

Calibration Conducted by: OLEG LAVROV

Barometric Pressure: 29.64

Meter Box ∆H@: 1.7870

	Standard Meter Gas Volume (ft ³)				ter Box G olume (ft ³						eter Box perature		Time (min.)	_	bration sults			
T						V _{ds}			Vd	T _{is}	Tos	T _{ds}	Ti	T,	Td			
Q	ΔН	ΔP	Y _{ds}	Initial	Final	Net	Initial	Final	Net	In	Out	Avg.	In	Out	Avg.	Θ	Yd	∆H@
0.957	3.00	-1.80	1.0000	0.000	10.000	10.000	595.744	605.900	10.156	67.0	67.0	67.00	77.0	74.0	75.50	10.37	0.9887	1.8058
0.956	3.00	-1.80	1.0000	0.000	10.000	10.000	605.900	616.056	10.156	67.0	67.0	67.00	78.0	75.0	76.50	10.38	0.9905	1.8059
0.390	0.50	-1.20	1.0000	0.000	5.000	5.000	624.508	629.613	5.105	67.0	67.0	67.00	77.0	75.0	76.00	12.71	0.9920	1.8051
0.390	0.50	-1.20	1.0000	0.000	6.000	6.000	629.613	635.743	6.130	67.0	67.0	67.00	77.0	75.0	76.00	15.28	0.9913	1.8117
0.687	1.50	-1.50	1.0000	0.000	10.000	10.000	644.660	654.890	10.230	67.0	67.0	67.00	79.0	76.0	77.50	14.45	0.9896	1.7466
0.687	1.50	-1.50	1.0000	0.000	10.000	10.000	654.890	665.132	10.242	67.0	67.0	67.00	79.0	76.0	77.50	14.45	0.9884	1.7466
				Averages 0.99009												1,7869		

Averages 0.9	9009 1.78696
--------------	--------------

	Nomenclature	Equations
P _b Q ΔH ΔP V _{ds} T _d T _d Y _d Y _d ΔH@	Barometric Pressure (in. Hg) Flow Rate (cfm) Orifice Pressure differential (in. H ₂ O) Inlet Pressure Differential (in. H ₂ O) Gas Meter Volume - Dry (ft ³) Standard Meter Volume - Dry (ft ⁴) Average Meter Box Temperature ("F) Outlet Meter Box Temperature ("F) Average Standard Meter Temperature ("F) Meter Correction Factor (unitless), Y ₁ \leq Y _{avg} ±0.02 Standard Meter Correction Factor (unitless) Orifice Pressure Differential giving 0.75 cfm of air at 68"F and 29.92 in. Hg (in. H ₂ O) Δ H@ ₄ \leq Δ H@ _{avg} ±0.2 Duration of Run (minutes)	$Y_{d} = (Y_{ds}) \left[\frac{V_{ds}}{V_{d}} \right] \left[\frac{T_{d} + 460}{T_{ds} + 460} \right] \left[\frac{P_{b} + \Delta P / 13.6}{P_{b} + \Delta H / 13.6} \right]$ $\Delta H @= \frac{(0.0319)(\Delta H)}{P_{b}(T_{o} + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{ds})(Y_{ds})} \right]^{2}$ $Q = \frac{17.64(V_{ds})(P_{b})}{(T_{ds} + 460)(\Theta)}$

_	Vacuum	Gauge_
	Standard	Gauge
	(in.Hg)	(in.Hg)
	5.2	5.0
	10.1	10.0
	15.3	15.0
	20.2	20.0
	24.9	25.0
		<u> </u>

Meter Box - Pyrometer Calibration Sheet

Meter Box No:	66-6	Office:
Calibrated by:	OLEG LAVROV	Client:
Date:	1/12/10	Job No:
Temperature Scale	e Used: Fahrenheit	Type of Calibration: Full-Test

Calibration Reference Settings		Pyrometer Reading for each Channel (°F)								
(°F)	1	2	3	4	5	6	7			
	Stack	Probe	Filter	Imp Out	Aux	DGM In	DGM Out			
50	49	51	51							
100	99	101	101							
150	149	151	151							
200	199	201	201							
250	249	251	250							
300	299	301	300							
350	349	351	350							
400	399	401	400				REMOVED STATES			
450	449	451	450							
500	499	501	500							
550	549	551	550							
600	599	601	600							

Tolerance = ±2°F difference from reference setting.

Calibration Reference Information

Reference Used: Omega CL23A Calibrated By: JH Metrology

Serial No:

Date Calibrated:

Calibration Report No: R044701

T-225950

10/7/2010

COSDOSC-Meter Fuß, April 2004a Copyright © 2004 Clean Air Engineering Inc.

Meter Box Critical Orifice Post-Test Calibration Data

1	Project No.	10	955	N	leter No.	66-6		Orifice	C-5		Leak Checks		
ļ	Location	ware	ehouse		Meter Yd	0.9901		Orifice K	0.5643		Negative Pressure		[]
	Test Date	03/	31/10	Me	ter ∆H@	1.7870	Orifice	Cal. Date	02/03/10		No movement of manometer in one-minute		✓ Pass
,	Operator	E.	Dieter	Full Test	Cal. Date	01/12/10					Positive Pressu	Ire	_
				•							No movement of manometer in on		✓ Pass
Barom, Press. (P _b) 29.03 in. Hg									Important: All lea order for calibrat	,	ass in		
				Laboration of the second second	101				Net Run v	Net Meter	Ave Meter		
	Run		Meter sVolume	Contraction of the local state	eruteri	Amblent- Temps-Tem	Office AH	-Vecuum		all a second back of a second s	Temp (or Run	Calibration	Purcent. Vertetion6
		(esturior)	(dci)		Outer (E)	- 10-			(minutes))	Rún: V _a Sí (def)r	TE ED	Factor 11,	AY.
		0.0	47.30	72	71								
	1	5.0	51.04	72	71	70	1.70	18	5.0	3.74	71.5	0.9831	-0.3%
	2	10.0 ⁻	54.77	73	71	70	1.70	18	5.0	3.73	71.8	0.9862	0.0%
	3	15.0	58.49	73	72	71	1.70	18	.5.0	3.72	72.3	0.9889	0.3%

Calculations and Specifications

$$Y_{i} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H_{13.6}) \times \sqrt{T_{amb} + 460}}$$
$$\Delta Y_{i} = \frac{Y_{i} - \overline{Y}_{i}}{\overline{Y}_{i}} \times 100 \qquad \text{Spec.: } \Delta Y_{i} \le \pm 2\%$$
$$Cal.Error = \frac{\overline{Y}_{i} - Y_{d}}{Y_{d}} \times 100 \qquad \text{Spec.: } Cal.Error \le \pm 5\%$$

<u>CleanAir</u>

Average Y

Cal. Error

0.9861

-0.4%

CDS005B-Meter Post-CO, February 2004 Copyright © 2004 Clean Air Engineering, Inc.

Meter Box Full Test Calibration

Meter Box No:

66-14

Date of Calibration: 8/17/2009

Meter Box Y_d: 0.9898

Calibration Conducted by: 0. Lavrov

Meter Box ∆H@: 1.7643

Barometric Pressure: 29.21

				Standard Meter Gas Volume (ft ³)				Meter Box Gas Volume (ft ³)		-	Std. Meter Temperature ('F)			Meter Box Temperature ('F)		Time (min.)		ration ults
I						V _{ds}			Vd	T _{is}	Tos	T _{ds}	T _i	To	Τ _d			
Q	ΔH	ΔP	Y _{ds}	Initial	Final	Net	Initial	Final	Net	In	Out	Avg.	In	Out	Avg.	Θ	Yd	∆H@
0.943	3.00	-1.80	1.0000	0.000	10.000	10.000	473.148	483.260	10,112	77.0	77.0	77.00	86.0	79.0	82.50	10.18	0.9871	1.8165
0.938	3.00	-1.80	1.0000	0.000	10.000	10.000	483.260	493.403	10.143	77.0	77.0	77.00	88.0	81.0	84.50	10.23	0.9877	1.8276
0.392	0.50	-1.20	1.0000	0.000	5.000	5.000	502.282	507.357	5.075	77.0	77.0	77.00	85.0	82.0	83.50	12.24	0.9929	1.7410
0.392	0.50	-1.20	1.0000	0.000	5.000	5.000	507.357	512.444	5.087	77.0	77.0	77.00	85.0	82.0	83.50	12.25	0.9905	1.7439
0.680	1.50	-1.40	1.0000	0.000	10.000	10.000	521.145	531.347	10.202	77.5	77.5	77.50	89.0	84.0	86.50	14.09	0.9894	1.7272
0.680	1.50	-1.40	1.0000	0.000	10.000	10.000	531.347	541.532	10.185	77.5	77.5	77.50	89.0	84.0	86.50	14.10	0.9910	1.7296
									i						`A	verages	0.98976	1.76429

	Nomenclature	Equations
$\begin{array}{c} P_b \\ Q \\ \Delta H \\ \Delta P \\ V_d \\ T_d \\ T_o \\ T_{ds} \\ Y_d \\ Y_{ds} \\ \Delta H \\ \Theta \end{array}$	Barometric Pressure (in. Hg) Flow Rate (cfm) Orifice Pressure differential (in. H ₂ O) Inlet Pressure Differential (in. H ₂ O) Gas Meter Volume - Dry (ft ⁴) Standard Meter Volume - Dry (ft ⁴) Average Meter Box Temperature (*F) Outlet Meter Box Temperature (*F) Average Standard Meter Temperature (*F) Meter Correction Factor (unitless), Y ₁ \leq Y _{avg} \pm 0.02 Standard Meter Correction Factor (unitless) Orifice Pressure Differential giving 0.75 cfm of air at 68*F and 29.92 in. Hg (in. H ₂ O) Δ H@ ₁ \leq Δ H@ _{avg} \pm 0.2 Duration of Run (minutes)	$Y_{d} = (Y_{ds}) \left[\frac{V_{ds}}{V_{d}} \right] \left[\frac{T_{d} + 460}{T_{ds} + 460} \right] \left[\frac{P_{b} + \Delta P / 13.6}{P_{b} + \Delta H / 13.6} \right]$ $\Delta H @ = \frac{(0.0319)(\Delta H)}{P_{b}(T_{o} + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{ds})(Y_{ds})} \right]^{2}$ $Q = \frac{17.64(V_{ds})(P_{b})}{(T_{ds} + 460)(\Theta)}$

_Vacuum	Gauge
Standard	Gauge
(in.Hg)	(in.Hg)
5.6	5.0
10.5	10.0
15.8	15.0
20.6	20.0
25.2	25.0

CDS005C-Meter Full, April 2004a Copyright © 2004 Clean Air Engineering in

Meter Box - Pyrometer Calibration Sheet

Meter Box No:	66-14	Office:	
Calibrated by:	O. Lavrov	Client:	
Date:	8/17/09	Job No:	
Temperature Scal	e Used: Fahrenheit	Type of Calibration:	Full-Test

Calibration Reference Settings		Pyrometer Reading for each Channel (°F)									
(°F)	1	2	3	4	5	6	7				
	Stack	Probe	Filter	Imp Out	Aux	DGM In	DGM Out				
50	49	51	52								
100	99	101	. 102								
150	149	151	151								
200	199	201	202			li e e e					
250	249	251	252								
300	299	301	302			· · ·	· · ·				
350	349	351	351								
400	399	401	402								
450	449	451	452								
500	499	501	502		· · · · ·						
550	549	551	551								
600	599	601	602								

Tolerance = ±2°F difference from reference setting.

Serial No:

Exp.date :

Calibration Reference Information

Reference Used: Omega CL23A

Calibrated By: JH Metrology

Calibration Report No: _____R044701

T-225950

6/22/2010

Meter Box Critical Orifice Post-Test Calibration Data

Project No.	1(0955		Aeter No.	66-14		Orifice	C-5		Leak Checks		
Location	ware	ehouse	_	Meter Yd	0.9898		Orifice K'	0.5643		Negative Press	ure	
Test Date	03/	/30/10	Me	eter ∆H@	1.7643	Orifice	Cal. Date	02/03/10		No movement of one-minute	manometer in	🗹 Pass
Operator	E.	Dieter	Full Test	Cal. Date	08/17/09					Positive Pressu	Jre	-
				·						No movement of manometer in on		Pass
Barom, Press. (P _b) 29.26 in. Hg										bass in		
Rin	Elapsed Time	Meter Volume		erature	Amblent Temp: Tem	Ornice AH -(In-W(C))	Vection	Net Run	Net deter Volume to? Run: Va		Calibration	
	(minutas)		Jnlet (TF)	Outlet a				(minutes)	(def)	र्सान (ग्रिस	Pactor 7	$\sim N_0$
	0.0	753.30	73	71								
1	5.0	756.99	72	70	74	1.70	19	5.0	3.69	71.5	0.9927	0.0%
2	10.0	760.71	74	71	74	. 1.70	19	· 5.0	3.72	71.8	0.9852	-0.8%
3	15.0	764.38	75	71	73	1.70	19	5.0	3.67	72.8	1.0014	0.8%
										Average Y _l	0.9931	
		Calculations	ifications	6					Cal. Error	0.3%		

Calculations and Specifications

$$Y_{i} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H'_{13.6}) \times \sqrt{T_{amb} + 460}}$$
$$\Delta Y_{i} = \frac{Y_{i} - \overline{Y}_{i}}{\overline{Y}_{i}} \times 100 \qquad \text{Spec. : } \Delta Y_{i} \le \pm 2\%$$
$$Cal.Error = \frac{\overline{Y}_{i} - Y_{d}}{Y_{d}} \times 100 \qquad \text{Spec. : } Cal.Error \le \pm 5\%$$

CDS0058-Moter Pesi-CO, February 2004 Copyright © 2004 Clean Air Engineering, Inc.

Meter Box Full Test Calibration

Meter Box No:

66-24

Date of Calibration: 8/19/2009

Meter Box Y_d: 0.9904

Calibration Conducted by:

_ _ _ -

OLEG LAVROV

Barometric Pressure: 29.15

Meter Box ∆H@: 1.7516

			Standard Meter Gas Volume (ft ³)			Meter Box Gas Volume (ft ³)		Std. Meter Temperature ('F)			Meter Box Temperature ('F)			Time (min.)		ration ults		
						V _{ds}			Vd	T_{is}	Tos	T _{ds}	T,	T,	Τd			,
Q	ΔH	ΔP	Y _{ds}	Initial	Final	Net	Initial	Final	Net	In	Out	Avg.	in	Out	Avg.	Θ	Yď	∆H@
0.962	3.00	-1.80	1.0000	0.000	10.000	10.000	580.884	591.020	10.136	76.5	76.5	76.50	86.0	79.0	82.50	9.96	0.9856	1.7392
0.967	3.00	-1.80	1.0000	0.000	10.000	10.000	591.020	601.178	10.158	76.5	76.5	76.50	89.0	80.0	84.50	9.91	0.9871	1.7186
0.381	0.50	-1.10	1.0000	0.000	5.000	5.000	615.932	621.024	5.092	77.0	77.0	77.00	86.0	84.0	85.00	12.58	0.9925	1.8361
0.381	0.50	-1.10	1.0000	0.000	5.000	5.000	621.024	626.117	5.093	77.0	77.0	77.00	87.0	85.0	86.00	12.58	0.9942	1.8327
0.685	1.50	-1.50	1.0000	0.000	10.000	10.000	629.337	639.566	10.229	77.0	77.0	77.00	92.0	86.0	89.00	13.98	0.9919	1.6944
0.685	1.50	-1.50	1.0000	0.000	10.000	10.000	639.566	649.822	10.256	77.0	77.0	77.00	93.0	87.0	90.00	13.97	0.9911	1.6889
														-	A	000000	0.00042	4 7640

Averages 0.99042 1.75163

Nomenclature	Equations
PbBarometric Pressure (in. Hg)QFlow Rate (cfm)ΔHOrifice Pressure differential (in. H ₂ O)ΔPInlet Pressure Differential (in. H ₂ O)VdGas Meter Volume - Dry (ft ³)VdsStandard Meter Volume - Dry (ft ³)TdAverage Meter Box Temperature ("F)TdOutlet Meter Box Temperature ("F)TdsAverage Standard Meter Temperature ("F)TdsAverage Standard Meter Temperature ("F)TdsAverage Standard Meter Temperature ("F)TdsStandard Meter Correction Factor (united)ΔH@Orifice Pressure Differential giving 0.7of air at 68 "F and 29.92 in. Hg (in. H ₂ O)ΔH@ ₄ ≤ ΔH@ _{avg} ±0.2ΘDuration of Run (minutes)	$\begin{array}{c} \mathcal{Y}_{avg}\pm 0.02\\ \text{ttess})\\ \text{5 cfm} \end{array} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $

Vacuum	Gauge
	•
(in.Hg)	(in.Hg)
4.7	5.0
9.8	10.0
14.7	15.0
20.0	20.0
24.2	25.0

Meter Box - Pyrometer Calibration Sheet

Meter Box No:	66-24	Office:
Calibrated by:	OLEG LAVROV	Client:
Date:	8/19/09	Job No:
Temperature Scale	e Used: Fahrenheit	Type of Calibration: Full-Test

Calibration Reference Settings		Pyrometer Reading for each Channel (°F)										
(°F)	1	2	3	4	5	6	7					
	Stack	Probe	Filter	Imp Out	Aux	DGM In	DGM Out					
50	49	48	48			1						
100	99	98	98	· · ·								
150	149	148	148	T - 1								
200	199	198	198									
250	249	248	248									
300	299	298	299									
350	349	348	349									
400	399	398	398									
450	450	448	449			:						
500	499	498	499									
550	549	548	549									
600	599	598	599	;	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	an an an Andrewson br>An an Andrewson an An						

Tolerance = ±2°F difference from reference setting.

Calibration Reference Information

Reference Used:	Omega CL23A	Serial No:	T-225950
Calibrated By:	JH Metrology	Exp. Date :	6/22/2010
Calibration Report No:	RO44791		

CD8005C-Mater Fuß, April 2004a Copyright © 2004 Clean Air Engineering (nc.

Meter Box Critical Orifice Post-Test Calibration Data

Project No.	1()955	. •	leter No.	66-24		Orifice	<u>B-5</u>		Leak Checks		
Location warehouse		Meter Yd		0.9904		Orifice K'			Negative Press	ure	_	
Test Date03/30/10		30/10	– – – Meter ∆H@		1.7516	Orifice	Cal. Date	01/28/10		No movement of one-minute	✓ Pass	
Operator	E.	Dieter	- Full Test Cal. Date		08/19/09					Positive Pressu	Jre	_
			•							No movement of manometer in on		🗹 Pass
Barom. Pres	ss. (P _b)	29.26	in. Hg							Important: All lea order for calibrat		ass in
	Elapsed				Amblent			Net Run	Not Water	Avg Motor	DGM	Percent
Run		Meter Volume	Double for the state of the	eraturo	(emp Jac. (T)	Onffice AH (In W.C.)	Vacuum (In He)):		Run Ym	Temp. for Run	Calibration	Variation -
									(4cf)			
	0.0	253.50	69	67								
1	5.0	257.08	70	67	71	1.50	20	5.0	3.58	68.3	0.9878	0.2%
2	10.0	260.67	71	67	72	1.50	20	5.0	3.59	68.8	0.9851	-0.1%
3	15.0	264.26	73	69	74	1.50	20	5.0	3.59	70.0	0.9856	-0.1%
										Average Y _i	0.9861	
		Calculations	and Spec	ification	5					Cal. Error	-0.4%	1

CDS005B-Meter Post-CO, February 2004 Copyright © 2004 Class Air Engineering, inc

 $Y_{i} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H_{13.6}) \times \sqrt{T_{omb} + 460}}$

 $\Delta Y_{i} = \frac{Y_{i} - \overline{Y}_{i}}{\overline{Y}_{i}} \times 100 \qquad \text{Spec. : } \Delta Y_{i} \le \pm 2\%$ $Cal.Error = \frac{\overline{Y}_{i} - Y_{d}}{Y_{d}} \times 100 \qquad \text{Spec. : } Cal.Error \le \pm 5\%$

Meter Box Full Test Calibration

Meter Box No:

0

85-2

Date of Calibration: 11/17/2009 **Meter Box Y**_d: 1.0066

Calibration Conducted by: OLEG LAVROV

Barometric Pressure: 29.35

١

Meter Box ∆H@: 1.7759

					Indard Me Volume	·		ter Box G olume (ft ³		Std. Meter Temperature ('F)								Time (min.)		ration ults
						V _{ds}			Vd	T _{is}	Tos	T _{ds}	T,	T.	Td					
Q	ΔH	ΔP	Y _{ds}	Initial	Final	Net	Initial	Final	Net	In	Out	Avg.	In	Out	Avg.	Θ	Yd	∆H@		
0.966	3.00	-1.70	1.0000	0.000	10.000	10.000	200.383	210.311	9.928	67.5	67.5	67.50	77.0	74.0	75.50	10.16	1.0106	1.7539		
0.959	3.00	-1.70	1.0000	0.000	10.000	10.000	210.311	220.285	9.974	67.5	67.5	67.50	80.0	75.0	77.50	10.23	1.0097	1.7748		
0.388	0.50	-1.10	1.0000	0.000	5.000	5.000	222.808	227.844	5.036	68.0	68.0	68.00	75.0	75.0	75.00	12.65	1.0020	1.8126		
0.388	0.50	-1.10	1.0000	0.000	5.000	5.000	227.844	232.882	5.038	68.0	68.0	68.00	75.0	75.0	75.00	12.65	1.0016	1.8126		
0.683	1.50	-1.50	1.0000	0.000	10.000	10.000	237.848	247.883	10.035	68.0	68.0	68.00	81.0	75.0	78.00	14.36	1.0078	1.7518		
0.683	1.50	-1.50	1.0000	0.000	10.000	10.000	247.883	257.913	10.030	68.0	68.0	68.00	81.0	75.0	78.00	14.35	1.0083	1.7494		
							·			•		-		•	<u>م</u>	veranes	1 00665	1 775		

Averages 1.00665 1.77586

Equations
$(Y_{ds}) \left[\frac{V_{ds}}{V_d} \right] \left[\frac{T_d + 460}{T_{ds} + 460} \right] \left[\frac{P_b + \Delta P / 13.6}{P_b + \Delta H / 13.6} \right]$ $P = \frac{(0.0319)(\Delta H)}{P_b(T_o + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{ds})(Y_{ds})} \right]^2$ $\frac{(7.64(V_{ds})(P_b)}{(T_{ds} + 460)(\Theta)}$

Vacuum	Gauge
Standard	Gauge
(in.Hg)	(in.Hg)
4.9	5.0
10.1	10.0
15.3	15.0
20.5	20.0
25.3	25.0

CDS005C-Maker Full, April 2004a Copyright @ 2004 Chern Air Engineering Inc.

Meter Box - Pyrometer Calibration Sheet

Meter Box No: _____85-2 _____

Calibrated by: OLEG LAVROV

Office: _____

Client:

Job No:

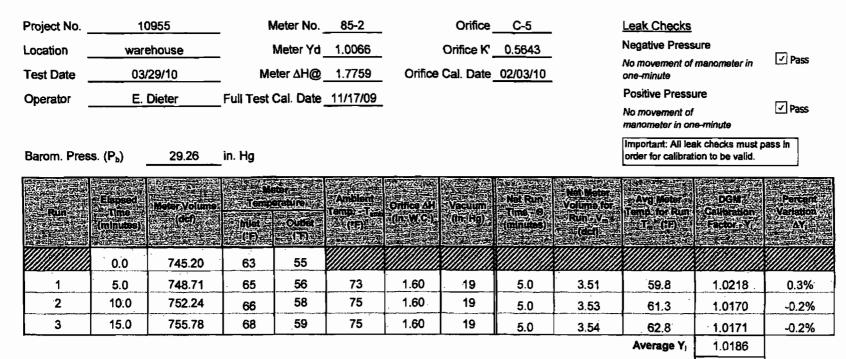
Date: <u>11/17/09</u>

Temperature Scale Used: Fahrenheit

Туре	of Calibration:	Full-Test

Calibration Reference Settings		Pyrometer Reading for each Channel (°F)									
(°F)	1	2	3	4	5	6	7				
	Stack	Probe	Filter	Imp Out	Aux	DGM In	DGM Out				
50	49	52	51								
100	98	101	101								
150	149	151	151								
200	200	201	201	Stand and	and the second	1 6 83 Au in	e Antonio a se				
250	251	252	251								
300	301	301	301	and a state of the second second second second second second second second second second second second second s		i . National and states of the	Stand in the state				
350	350	348	351			ana an ing sa sa sa sa sa sa sa sa sa sa sa sa sa					
400	400	401	400								
450	450	451	450	1998 - 10 yes							
500	500	502	500				ang sa sa sa sa sa sa sa sa sa sa sa sa sa				
550	550	551	550		Salar C.A.	с. 21 - 24 - 24 - 24 - 24 - 24 - 24 - 24 -	and a second second				
600	600	602	600		****	an an an an an an an an an an an an an a	<u>.</u>				

Tolerance = ±2°F difference from reference setting.


Calibration	Reference	Information

Reference Used:	Omega CL23A	Serial No:	T-225950
Calibrated By:	JH Metrology	Exp. Date:	10/7/2010
Calibration Report No:	R044791		

C03935C-Meter Full, April 2004a Copyright © 2004 Clean Air Engineering Inc.

Meter Box Critical Orifice Post-Test Calibration Data

Calculations and Specifications

$$Y_{i} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H_{13.6}) \times \sqrt{T_{amb} + 460}}$$
$$\Delta Y_{i} = \frac{Y_{i} - \overline{Y}_{i}}{\overline{Y}_{i}} \times 100 \qquad \text{Spec.} : \Delta Y_{i} \le \pm 2\%$$
$$Cal.Error = \frac{\overline{Y}_{i} - Y_{d}}{Y_{d}} \times 100 \qquad \text{Spec.} : Cal.Error \le \pm 5\%$$

CD80058-Motor Post-CO, February 2004 Copyright © 2004 Clean Air Engineering, Inc.

Cal. Error

1.2%

1

Meter Box Full Test Calibration

Meter Box No: 85-4

Date of Calibration: 11/25/2009

Meter Box Y_d: 1.0085

1.7723

29.09

Calibration Conducted by: **OLEG LAVROV**

Barometric Pressure:

Meter Box ∆H@:

_					indard Me s Volume (Meter Box Gas Volume (ft ³)		Std. Meter Temperature ('F)		Meter Box Temperature ('F)			Time (min.)	Calibration Results			
			Т			V _{ds}			Vd	T _{is}	T _{os}	T _{ds}	Ti	Т。	Td			
Q	ΔH	ΔΡ	Y _{ds}	Initial	Final	Net	Initial	Final	Net	In	Out	Avg.	In	Out	Avg.	Θ	Yd	∆н@
0.965	3.00	-1.70	1.0000	0.000	11.000	11.000	278.946	289.808	10.862	67.5	67.5	67.50	76.0	69.0	72.50	11.09	1.0103	1.7589
0.954	3.00	-1.70	1.0000	0.000	10.000	10.000	289.808	299.707	9.899	67.5	67.5	67.50	79.0	71.0	75.00	10.20	1.0125	1.7936
0.385	0.50	-1.10	1.0000	0.000	5.000	5.000	304.068	309.063	4.995	67.5	67.5	67.50	76.0	72.0	74.00	12.62	1.0092	1.8270
0.385	0.50	-1.10	1.0000	0.000	5.000	5.000	309.063	314.066	5.003	67.5	67.5	67.50	76.0	73.0	74.50	12.65	1.0086	1.8322
0.687	1.50	-1.30	1.0000	0.000	10.000	10.000	345.224	355.314	10.090	67.5	67.5	67.50	81.0	76.0	78.50	14.15	1.0046	1.7097
0.687	1.50	-1.30	1.0000	0.000	10.000	10.000	355.314	365.392	10.078	67.5	67.5	67.50	81.0	76.0	78.50	14.16	1.0058	1.7122
				-											A	verages	1.00850	1.77225

 	Nomenclature	Equations
P₅ Q ΔH V₀ T₀ T₀ T₀s Y₀ AH@ ∂	Barometric Pressure (in. Hg) Flow Rate (cfm) Orifice Pressure differential (in. H ₂ O) Inlet Pressure Differential (in. H ₂ O) Gas Meter Volume - Dry (ft ³) Standard Meter Volume - Dry (ft ³) Average Meter Box Temperature ('F) Outlet Meter Box Temperature ('F) Average Standard Meter Temperature ('F) Meter Correction Factor (unitless), Y ₁ \leq Y _{avg} ±0.02 Standard Meter Correction Factor (unitless) Orifice Pressure Differential giving 0.75 cfm of air at 68'F and 29.92 in. Hg (in. H ₂ O) Δ H@ ₁ \leq Δ H@ _{avg} ±0.2 Duration of Run (minutes)	$Y_{d} = (Y_{ds}) \left[\frac{Y_{ds}}{V_{d}} \right] \left[\frac{T_{d} + 460}{T_{ds} + 460} \right] \left[\frac{P_{h} + \Delta P / 13.6}{P_{h} + \Delta H / 13.6} \right]$ $\Delta H @= \frac{(0.0319)(\Delta H)}{P_{h}(T_{o} + 460)} \left[\frac{(T_{ds} + 460)\Theta}{(V_{ds})(Y_{ds})} \right]^{2}$ $Q = \frac{17.64(V_{ds})(P_{h})}{(T_{ds} + 460)(\Theta)}$

Vacuum	Vacuum Gauge							
Standard	Gauge							
(in.Hg)	(in.Hg)							
5.1	5.0							
9.9	10.0							
15.1	15.0							
19.5	20.0							
24.8	25.0							

CDS005C-Meter Full, April 2004a Copyright © 2004 Clean Ab Engineering Inc.

Meter Box - Pyrometer Calibration Sheet

Meter Box No:

Calibrated by: OLEG LAVROV

Date: 11/25/09

Office:

Job No:

Client:

Temperature Scale Used: Fahrenheit

85-4

Type of Calibration: Full-Test

Calibration Reference Settings	Pyrometer Reading for each Channel (°F)									
(°F)	1	2	3	4	5	6	7			
	Stack	Probe	Filter	Imp Out	Aux	DGM In	DGM Out			
50	49	52	52							
100	99	102	102							
150	150	152	152							
200	200	202	202			171%				
250	250	252	251			的机理	6			
300	300	302	-301							
350	350	352	351				如果。自			
400	400	401	401	E Carlos			111050			
450	450	452	452							
500	500	501	501	C SCHOLE			14.54 A.			
550	550	551	551	1			A CONTRACTOR			
600	600	601	601							

Tolerance = ±2°F difference from reference setting.

Calibration Reference Information

Reference Used:	Omega CL23A	Serial No:	T-225950
Calibrated By:	JH Metrology	Exp date :	10/7/2010
Calibration Report No:	R044701		

CDS005C-Meter Full, April 2004a Copyright (D 2004 Clean Air Engineering Inc

Meter Box Critical Orifice Post-Test Calibration Data

Project No.	1()955	N	leter No.	85-4		Orifice	C-5		Leak Checks		
Location	ware	ehouse	_ 1	Meter Yd	1.0085		Orifice K	0.5643		Negative Press	ure	
Test Date	03/	30/10	Me	ter ∆H@	1.7723	Orifice	Cal. Date	02/03/10		No movement of one-minute	manometer in	Pass
Operator	E.	Dieter	Full Test	Cal. Date	11/25/09					Positive Pressu	ıre	
			-							No movement of manometer in on		🗸 Pass
Barom. Pres	s. (P₀)	29.26	in. Hg							Important: All les order for calibrat		bass in
	Elapsed	Mirtar Volume		nor Prature	Ambient	Orifice AH		Net Rum	Net Menor v	Avy Meter x	DGM	Percent
Run	(minutes)		inhet e (1)	Outlet	Temp Tun (FF)	(in W.a))		Time (O) (minutes):	Volume for Run Va 24 (def)		Calibration Factor Y	Veriation
	0.0	77.40	70	67								
1	5.0	81.03	71	67	72	1.60	21	5.0	3.63	68.8	1.0061	0.0%
2	10.0	84.67	72	68	72	1.60	21	5.0	3.64	69.5	1.0047	-0.2%
3	15.0	88.30	73	68	73	1.60	.21	5.0	3.63	70.3	1.0080	0.2%
										Average Y _i	1.0063	
		Calculations	s and Spec	cification	5					Cal. Error	-0.2%	

CDS005B-Meter Pasi-CO, February 2004 Copyright © 2004 Clean Air Engineering, Inc.

 $Y_{i} = \frac{K \times P_{b} \times (T_{m} + 460) \times \theta}{17.64 \times V_{m} \times (P_{b} + \Delta H_{13.6}) \times \sqrt{T_{omb} + 460}}$

 $\Delta Y_i = \frac{Y_i - \overline{Y}_i}{\overline{Y}_i} \times 100 \qquad \text{Spec.}: \Delta Y_i \le \pm 2\%$

 $Cal.Error = \frac{\overline{Y}_{i} - Y_{d}}{Y_{d}} \times 100 \qquad \text{Spec.: } Cal.Error \leq \pm 5\%$

Sample F	Probe	Calibration
----------	-------	-------------

Probe Type:	M5 with	S-Type Pitot	-	I.D. Number;	67	7-4-4				
				Project Number:						
		States and the	rmocouple/Callbr	alion						
Reference Type	: Thermocouple	Reference I.D. No:	15-078-39	Pyrometer I.D. No:	80512890	Units: *F				
Point No.	Target Temp.	Reference Temp.	Indicated Temp.	Temp. Difference	% Difference*	Specification				
1	Ambient	75	75	0	0.00%					
2	200°F-250°F	233	235	-2	0.29%	%Difference ≤ 1.5				
	Based on Absolute Temperature (Rankine) Does thermocouple assembly meet specifications? YES									
		Pitot Tube Calibrat	ion (Wind Tunnel)	Method @ 50 ft/sec	建立498 5000					
Referen	ce Pitot I.D. No:	Wind Tunnel		Reference Pitot Cp:	0.99					
Pitot Side 'A' :				Abs. Deviation	Speci	fication				
Trial No.	Reference ∆P	Probe ∆P	Probe C _{p(S)} *	from Avg. C _{p(A)} **	Avg. C, Dev	lations ≤ 0.01				
1	0.539	0.771	0.828	0.000						
2	0.542	0.774	0.828	0.001						
3	0.540	0.775	0.826	0.001						
	Side 'A' A	verage Probe C _{p(A)} =	0.8273	0.0008						
Pitot Side 'B' :				Abs. Deviation	Specif	fication				
Trial No.	Reference ∆P	Probe ∆P	Probe C _{p(8)} *	from Avg. C _{p(B)} **	Avg. C _p Dev	iations ≤ 0.01				
1	0.545	0.778	0.829	0.001						
2	0.540	0.782	0.822	0.005						
3	0.546	0.773	0.832	0.004						
	Side 'B' A	verage Probe C _{p(B)} =	0.8278	0.0035						
'A' Average C _p 0.827	 ['B' Average C _p 0.828	= [Difference -0.001	-	fication ce∣≤ 0.01				
Does assen specifica		YES	•	lf "Yes", C _p = Ave values. If "No"	erage of Side 'A ', Pitot must be	•				
• <i>C</i> _{P(S)}	$=C_{P(STD)}\sqrt{\frac{1}{2}}$	$\frac{\Delta p_{(STD)}}{\Delta p_{(S)}}$	" Dev	$iation = C_{P(S)} $	$-\overline{C_P}_{(A \text{ or } B)}$					
		All/specifications an	from EPA-600/9	76-005 section 3 11						
Probe Cp=	0.828	Calibrated by:	B. ARNOLD		Date: _	06/29/2009				

CD 5002C-Phot_TNL, Dec 2008 Copyright © 2008 Clean Air Engineering Inc. Ľ,

Sample Probe Calibration

Probe Type		S-Type Pitot		I.D. Number: Project Number:	67	7-4-5
		The	mocouple Calib	-		
eference Type	e: Thermocouple	Reference I.D. No:	15-078-39	Pyrometer I.D. No:	80512890	Units: °F
Point No.	Target Temp.	Reference Temp.	Indicated Temp	Temp. Difference	% Difference*	Specificatio
<u> </u>	Ambient	69	67	2	0.38%	
2	200°F-250°F	241	237	4	0.57%	%Difference :
oes thermoco		meet specifications		YES		
STREET?	计算机	Pitot Tube Calibrat	on (Wind Tunnel	Method @ 49 ft/sec	口 \$1629.36.51	
Referen	nce Pitot I.D. No:	Wind Tunnel		Reference Pitot Cp:	0.99	
Pitot Side 'A' :				Abs. Deviation	Spec	ification
Trial No.	Reference ∆P	Probe ∆P	Probe C _{p(S)} *	from Avg. C _{p(A)} **	Avg. C _p Dev	/iations ≤ 0.0 [.]
1	0.551	0.773	0.836	0.001		
2	0.549	0.778	0.832	0.003		
_		o 777	0.837	0.002		
3	0.555	0.777	0.007	0.002		
		0.777 vørage Probe C _{p(A)} ≕	0.8348	0.002		
3	Side 'A' A				Speci	fication
	Side 'A' A			0.0021	•	
3 itot Side 'B' :	Side 'A' A	vørage Probe C _{p(A)} ≕	0.8348	0.0021 Abs. Deviation	•	
3 itot Side 'B' : Trial No.	Side 'A' A Reference ∆P	verage Probe C _{P(A)} ≕ Probe ∆P	0.8348 Probe C _{p(s)} *	0.0021 Abs. Deviation from Avg. C _{p(B)} **	•	
3 itot Side 'B' : Trial No. 1	Sidə 'A' A Reference ∆P 0.566 0.557 0.568	verage Probe C _{p(A)} = Probe ΔP 0.772 0.777 0.775	0.8348 Probe C _{p(S)} * 0.847	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003	•	
3 litot Side 'B' : Trial No. 1 2	Sidə 'A' A Reference ∆P 0.566 0.557 0.568	verage Probe C _{p(A)} = Probe ΔP 0.772 0.777	0.8348 Probe C _{p(5)} * 0.847 0.838	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003 0.006	•	
3 itot Side 'B' : Trial No. 1 2 3	Sidə 'A' A Reference ∆P 0.566 0.557 0.568	verage Probe C _{p(A)} = Probe Δ P 0.772 0.777 0.775 verage Probe C _{p(B)} =	0.8348 Probe C _{P(S)} * 0.847 0.838 0.847	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003 0.006 0.003 0.0039	Avg. C _p De∖	viations ≤ 0.01
3 Itot Side 'B' : Trial No. 1 2 3 3	Sidə 'A' A Reference ∆P 0.566 0.557 0.568	verage Probe C _{p(A)} = <u>Probe ΔP</u> 0.772 0.777 0.775 verage Probe C _{p(B)} = 'B' Average C _p	0.8348 Probe C _{P(S)} * 0.847 0.838 0.847	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003 0.006 0.003 0.003 0.0039 Difference	Avg. C _p De∖ Speci	riations ≤ 0.01 fication
3 itot Side 'B' : Trial No. 1 2 3	Sidə 'A' A Reference ∆P 0.566 0.557 0.568	verage Probe C _{p(A)} = Probe Δ P 0.772 0.777 0.775 verage Probe C _{p(B)} =	0.8348 Probe C _{P(S)} * 0.847 0.838 0.847	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003 0.006 0.003 0.0039	Avg. C _p De∖ Speci	viations ≤ 0.01
3 Itot Side 'B' : Trial No. 1 2 3 3	Side 'A' A Reference ∆P 0.566 0.557 0.568 Side 'B' Av 	verage Probe C _{p(A)} = <u>Probe ΔP</u> 0.772 0.777 0.775 verage Probe C _{p(B)} = 'B' Average C _p	0.8348 Probe C _{P(S)} * 0.847 0.838 0.847	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003 0.006 0.003 0.003 0.0039 Difference	Avg. C _p Dev Speci Differen	riations ≤ 0.01 fication ce ≤ 0.01 A' and 'B' Cp
3 itot Side 'B' : Trial No. 1 2 3 X' Average C _p 0.835 Does asset specific:	Side 'A' A Reference △P 0.566 0.557 0.568 Side 'B' Av 	verage Probe $C_{p(A)}$ = Probe ΔP 0.772 0.777 0.775 verage Probe $C_{p(B)}$ = 'B' Average C_p 0.844	0.8348 Probe C _{P(S)} * 0.847 0.838 0.847 0.8442	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003 0.006 0.003 0.0039 Difference -0.009 If "Yes", C _p = Ave	Avg. C _p Dev Speci (Differen erage of Side '. ', Pitot must bo	riations ≤ 0.01 fication ce ≤ 0.01 A' and 'B' Cp
3 itot Side 'B' : Trial No. 1 2 3 X' Average C _p 0.835 Does asset specific:	Side 'A' A Reference ΔP 0.566 0.557 0.568 Side 'B' Au mbly meet ations? $C_{P(STD)} \sqrt{\frac{1}{2}}$	verage Probe $C_{p(A)}$ = Probe ΔP 0.772 0.777 0.775 verage Probe $C_{p(B)}$ = 'B' Average C_p 0.844 YES $\Delta p_{(STD)}$ $\Delta p_{(S)}$	0.8348	0.0021 Abs. Deviation from Avg. C _{p(B)} ** 0.003 0.006 0.003 0.0039 Difference -0.009 If "Yes", C _p = Ave values. If "No"	Avg. C_p Dev Speci Different erage of Side ', ', Pitot must be $-\overline{C_P}(A \text{ or } B)$	riations ≤ 0.01 fication ce¦ ≤ 0.01 A' and 'B' Cp

CDS002C-Pitol_TNL, Dec 2008 Copyright @ 2008 Clean Air Engineering Inc.

Sample Probe Calibration

Probe Type:	M5 with	S-Type Pitot	-	I.D. Number:		7-8-4				
				Project Number:						
	l Hazer	The	rmocouple Calibr	ation is also in the						
Reference Type:	Thermocouple	Reference I.D. No:	15-078-39	_ Pyrometer I.D. No:	80512890	Units: °F				
Point No.	Target Temp.	Reference Temp.	Indicated Temp.	Temp. Difference	% Difference*	Specification				
1	Ambient	75	70	5	0.93%					
2	200°F-250°F	246	240	6	0.85%	%Difference ≤ 1.5				
	* Based on Absolute Temperature (Rankine) Does thermocouple assembly meet specifications? YES									
		Pitot Tube Calibrat	ion (Wind Tunnel	Method @ 49 ft/sec						
Referen	ce Pitot I.D. No:	Wind Tunnel		Reference Pitot Cp:	0.99					
Pitot Side 'A' :				Abs. Deviation	•	fication				
Trial No.	Reference ∆P	Probe ∆P	Probe C _{p(8)} *	from Avg. C _{p[A]} **	Avg. C _p Dev	viations ≤ 0.01				
1	0.538	0.814	0.805	0.000						
2	0.540	0.815	0.806	0.001						
3	0.539	0.816	0.805	0.001						
	Side 'A' A	verage Probe C _{p(A)} =	0.8052	0.0008						
Pitot Side 'B' :				Abs. Deviation	Speci	fication				
Trial No.	Reference ∆P	Probe AP	Probe C _{p(S]} *	from Avg. C _{p(B)} **	•	riations ≤ 0.01				
1	0.542	0.818	0.806	0.002	- •					
2	0.536	0.814	0.803	0.001						
3	0.538	0.818	0.803	0.001						
	Side 'B' A	verage Probe C _{p(B)} =	0.8039	0.0012						
				· · · · · · · · · · · · · · · · · · ·						
'A' Average C _p	_	'B' Average C _P		Difference	Speci	fication				
0.805	—	0.804	=	0.001)Differen	ce¦ ≤ 0.01				
Does assen specifica	•	YES		lf "Yes", C _p ≓ Ave values. if "No'	erage of Side '/ ', Pitot must be					
• <i>C</i> _{P(S)}	$= C_{P(STD)} \sqrt{\frac{1}{2}}$	$\frac{\Delta p_{(STD)}}{\Delta p_{(S)}}$	" Dev	viation = $ C_{P(S)} $	$-\overline{C_{P}}_{(A \text{ or } B)}$					
		All specifications an	n from EPA 600/9	7.6-005; section 3.1%;						
Probe Cp=		Calibrated by:			Date:	09/21/2009				

CDS002C-Pitol_TNL, Dec 2008 Copyright © 2008 Clean Air Engineering Inc.

1.1

		Sample	Probe Ca	libration	67	. g.1
Probe Type	: M5 with	S-Type Pitot		I.D. Number:		96-1
			-	Project Number:		
			rmocouple/Gullbr	ation		19-1.X
<u>新行到</u> 建20世纪过度表示的	and here and the second					
Reference Typ	e: Thermocouple	Reference I.D. No:	15-078-39	Pyrometer I.D. No:	80512890	Units
Point No.	Target Temp.	Reference Temp.	Indicated Temp.	Temp. Difference	% Difference*	Specific
1	Ambient	75	72	3	0.56%	
2	200°F-250°F	247	254	-7	0.99%	%Differen
			olute Temperature			
Does thermoc	ouple assembly	meet specifications	7	> YES		
		Disetti				
		Pitotalupe Calibrati		Méthod @ 60 ft/sec	ことなどなるようもお言語	王王王 王子王王
Refere	nce Pitot I.D. No:	Wind Tunnel		Reference Pitot Cp:	0.99	
						.
Pitot Side 'A'	· · · · · · · · · · · · · · · · · · ·	Deebe 4D	Dentro O. A	Abs. Deviation		fication
Trial No.	Reference AP	Probe <u>AP</u>	Probe C _{p(S)} *	from Avg. C _{p(A)} **	Avg. C _p Dev	
1	0.547	0.808	0.815	0.001		
2	0.548	0.813	0.813	0.001		
3	0.548	0.811	0.814	0.000		
	Side 'A' A	verage Probe C _{p(A)} =	0.8139	0.0008		
			r	Ale Declet	-	
Pitot Side 'B' :			Duch a	Abs. Deviation	•	fication
Trial No.		Probe ∆P	Probe C _{p(S)} *	from Avg. C _{p(B)} **	Avg. C _p Dev	lations 5 0
1	0.544	0.810	0.812	0.002		
2	0.543	0.810	0.811	0.000		
3	0.541	0.812	0.808	0.002		
	Side 'B' A	/erage Probe Ċ _{p(B)} ≓	0.8102	0.0014		
				D100	0	
'A' Average C _p	л — г	'B' Average Cp	r	Difference		ication
0.814	3 L	0.810	— L	0.004	Dimeterio	ce) ≤ 0.01
Deep appa	mbly most					and 'B'
Does asse specific		YES -		lf "Yes", C _p = Ave values if "No"	', Pitot must be	
••••••				values. Il No	, Phot most so	Teplaceu.
•		$\Delta p_{(STD)}$		1		
CP(S	$= C_{P(STD)} \sqrt{\frac{1}{2}}$	An	"Dev	$iation = C_{P(S)}$	$-C_{P(A \text{ or } B)}$	
	V	$\Delta P(s)$		1 . (3)	(
	CARL DEPENDENTS			6-005 section 3.1		THE OWNER
a shirt was	COLUMN STATES AND THE CASE					

Sample Probe Calibration

Probe Type:	M5 with	S-Type Pitot		I.D. Number:	67	-8-17
	the second second second second second second second second second second second second second second second s			Project Number:		
		The	rmocouple Calibr	atton Laster as the		
Reference Type	Thermocouple	Reference I.D. No:	15-078-39	Pyrometer I.D. No:	80512890	Units: °F
Point No.	Target Temp.	Reference Temp.	Indicated Temp.	Temp. Difference	% Difference*	Specification
1	Ambient	69	71	-2	0.38%	
2	200°F-250°F	240	235	5	0.71%	%Difference ≤ 1.5
Does thermoco		meet specifications		YES		ur Malifa Malanda Manakawa Ang Kanakawa Ang
		Ritot Tube Calibrat	ion (Wind Tunnel	Method @:50 ft/sec		
Referen	ce Pitot I.D. No:	Wind Tunnel		Reference Pitot Cp:	0.99	
Pitot Side 'A' :				Abs. Deviation	Speci	fication
Trial No.	Reference ∆P	Probe ∆P	Probe C _{p(S)} *	from Avg. C _{p(A)} **	Avg. C _p Dev	iations ≤ 0.01
1	0.566	0.790	0.838	0.001		
2	0.564	0.797	0.833	0.004		
3	0.568	0.790	0.840	0.003		
	Side 'A' A	verage Probe C _{p(A)} =	0.8368	0.0028		
Pitot Side 'B' :				Abs. Deviation	Specif	ilcation
Trial No.	Reference ∆P	Probe ∆P	Probe C _{p(S)} *	from Avg. C _{p(B)} **	Avg. C _p Dev	iations ≤ 0.01
1	0.548	0.769	0.836	0.005		
2	0.543	0.774	0.829	0.002		
3	0.548	0.782	0.829	0.003		
	Side 'B' A	verage Probe C _{p(B)} =	0.8315	0.0032		
'A' Average C _p 0.837	! — ['B' Average C _p 0.831	=	Difference 0.006	-	ication ce∣ ≤ 0.01
Does asser specifica	•	YES	→	lf "Yes", C _p ≃ Av values. If "No'	erage of Side 'A ', Pitot must be	
• <i>C</i> _{P(S)}	$=C_{P(STD)}\sqrt{1}$	$\frac{\Delta p_{(STD)}}{\Delta p_{(S)}}$	" Dev	viation = $ C_{P(S)} $	$-\overline{C_P}_{(A \text{ or } B)}$	
		All specifications an	o from ERA-600/9	76-005 section 3.1		
Probe Cp=		Calibrated by:			Date: _	03/04/2010

CDS002C-Pitol_TNL, Dec 2008 Copyright © 2008 Clean Air Engineering Inc.

AIR LIQUID	E Air Liquide America	S) scott-	Zerc
Shipped From:	1290 COMBERME TROY Phone: 248-58 C E R T I F I	MI 4	8083 Fax: 248-589-2134 F ANALYSIS
SCOTT BROW	ENGINEERING IN IOOD STREET		PROJECT #: 05-76361-001 PO#: 24559-66-65000 ITEM #: 0501813 AL
PALATINE		IL 60067	DATE: 29May2009
	8 #: AAL14589 SSURE: 02000 1	PSIG	
PURE MATER	IAL: NITROGEN		CA5# 7727-37-9
GRADE :	ZERO GAS	5	
PURITY: 99	.9988		
	IMPURITY THC	Maximum Concentrat 0.5 P	<u>tons</u> PM
·			
NALYST:	adrie		

		RATA	CLASS					
AIR LIQUIDE Air Liquide Ameri Specialty Gases L	CC Stratt	Dual-Anal	zed Calibration Standard					
1290 COMBERMERE STREET,	TROY, MI 48083	Phor	Phone: 248-589-2950 Fax: 248-589-213					
CERTIFICATE OF ACCUR	ACY: FPA Protoco	Gas						
Assay Laboratory		Custo	mer					
-	P.O. No.: 57534-7		N AIR ENGINEERING					
AIR LIQUIDE AMERICA SPECIALTY GA 1290 COMBERMERE STREET	SES LLC Project No.: 05-78		Allen W. Wood Street					
TROY, MI 48083			TINE IL 60067					
ANALYTICAL INFORMATION								
This certification was performed accord Procedure G-1; September, 1997.	ing to EPA Traceability Prot	ocol For Assay & Certific	ation of Gaseous Calibration Standards;					
	1033730 Certification D	ate: 27Jul2009	Exp. Date: 26Jul2012					
Cylinder Pressure***: 200	0 PSIG							
COMPONENT	CERTIFIED CONCENTRA		ALYTICAL COURACY** TRACEABILITY					
CARBON DIOXIDE	5.91 %		- 1% Direct NIST and NMi					
OXYGEN	14.1 %	6 +,	- 1% Direct NIST and NMi					
NITROGEN	B.	ALANCE						
REFERENCE STANDARD TYPE/SRM NO. EXPIRATION DATE NTRM 2300 01Nov2010 NTRM 2350 01Dec2011	CYLINDER NUMBER 1D002807 K016398	CONCENTRATION 23.04 % 23.20 %	COMPONENT CARBON DIOXIDE OXYGEN					
INSTRUMENTATION								
INSTRUMENT/MODEL/SERIAL#	<u>I</u>	DATE LAST CALIBRATED	ANALYTICAL PRINCIPLE					
97/2000/609015 CAI/1109/V03018		1 <i>6Ju</i> l2009 01Jul2009	NDIR PARAMAGNETIC					
ANALYZER READINGS								
(Z=Zer	o Gas R=Reference Ga		Correlation Coefficient)					
First Triad Analysis	Second Triad	Analysis	Calibration Curve					
CARBON DIOXIDE								
Date: 27Jul2009 Response Unit:MV Z1=0.00000 R1=102.5000 T1=43.00000			Concentration = A + Bx + Cx2 + Dx3 + Ex4 $r = 0.999992$					
R2=102,5000 Z2=0.00000 T2=43.00000		1	Constants: A = -0.00322681					
Z3=0.00000 T3=43.00000 R3=102.5000			B=0.13615338 C=-0.0005754					
Avg. Concentration: 5.909 %			D=1.402196-05 E=0					
OXYGEN	ı r							
Date: 28Jul2009 Response Unit:%			Concentration = $A + Bx + Cx^2 + Dx^3 + Ex^4$					
Z1=0.00000 R1=23.20000 T1=14.06000 R2=23.20000 Z2=0.00000 T2=14.06000			r=0.999992 Constants: A=-0.00675858					
R2=23.20000 22=0.00000 72=14.06000 72=14.06000 23=0.00000 73≈14.06000 R3=23.20000			B = 0.999864575 C = 0					
Avg. Concentration: 14.05 %			D=0 E=0					
APPROVED BY:								

÷

]	RATA CLASS	
	JIDE Air Liquide Ame	LLC	Scott	1	Dual-Analyzed Cali	bration Standard
1290	COMBERMERE STREET	r, troy	, MI 48083		Phone: 248-589	-2950 Fax: 248-589-2
CERTIFIC	ATE OF ACCU	RACY	: EPA Proto	ocol Gas		
Assay Laborato	Ω.				Customer	
	•		P.O. No.: 574		CLEAN AIR ENG	NEERING
AIR LIQUIDE A	MERICA SPECIALTY G	ASES LL	C Project No.: O	5-76738-005	DON ALLEN 500 W. WOOD S	TOFFT
TROY, MI 4808					PALATINE IL 6	
	-					
	INFORMATION					
•	n was performed accor September, 1997.	ding to	EPA Traceability	Protocol For Ass	ay & Certification of Gas	eous Calibration Standards;
Cylinder Numb	•	M0462	55 Certificatio	n Date: 0	9Jun2009 Exp.	Date: 08Jun2012
Cylinder Press	ure***: 20	00 PSI	3		-	
					ANALYTICAL	
COMPONENT	75	CER	TIFIED CONCEN 13.9	<u> 1 RATION (Mole</u> %	<u>s) ACCURACY</u> * +/- 1%	 TRACEABILITY Direct NIST and NMi
CARBON DIOXI			6.01	% %	+/- 1%	Direct NIST and NMi
NITROGEN				BALANCE	.,	
NTRM 1675	020ct2012 01Jan2010	K0065 K0012		13.93 10.03		OXIDE
NTRM 2658	01Jan2010	K0012	90	10.03	% OXYGEN	
INSTRUMENTAT	ION					
INSTRUMENT/MOL				DATE LAST	CALIBRATED	ANALYTICAL PRINCIPLE
PIR/2000/609015				11May		NDIR
CAI/110P/V03018				01Jun:	2009	PARAMAGNETIC
ANALYZER RI	ADINGS				·····	
•		ro Gas				- · · · •
First Tri	ad Analysis		Second T	riad Analysis	C.	alibration Curve
CARBON DIOXID	E	_				
Date: 09Jun2009	Response Unit:MV]			Concentrat	ion = A + Bx + Cx2 + Dx3 + Ex4
Z1=0.00000 R1=	80.60000 T1 = 80.30000				r == 0.99991	
	0.00000 T2=80.30000	1	1		Constants: B=0.1118	A = -0.00492643 14122 C = 0.00014738
	80.30000 R3=80.60000 13.86 %	΄			D=6.7609	
Avg. Concentration:	13.00 70 	J	L	•		
OXYGEN		,				
Date: 09Jun2009	lesponse Unit:%					cn = A + Bx + Cx2 + Dx3 + Ex4
	10.06000 T1 = 6.01000				r = 0.99999	-
	D.00000 T2 = 6.01000				Constants:	A=-0.00970246
					B ≈ 0.9998	
Z3 = 0.00000 T3 =	6.01000 R3 = 10.06000				D_0	E=0
	6.01000 R3 = 10.06000 6.005 %				D=0	E=0
Z3 = 0.00000 T3 =] /			D=0	E=0
Z3 = 0.00000 T3 =		[D-0	E=0
Z3 = 0.00000 T3 =	6.005 %	/			D-0	E=O

This Page Intentionally Left Blank

WHEELABRATOR NORTH BROWARD, INC. POMPANO BEACH, FL

CleanAir Project No: 10955-2

ASTM D 6866-08 AND 7459-08 CO2 SAMPLING/ANALYSIS RESULTS	F

This Page Intentionally Left Blank

٩:

WHEELABRATOR NORTH BROWARD POMPANO BEACH, FL

Client Reference No: CleanAir Project No: 10955-2

RESULTS	5							11			
				Ta	ble 2-14	k:					
	Air Flow Summary										
Run Number	Run Date	Run Time	Steam Flow Klbs/hour	Flue Gas Temp Deg F		O ₂ %	CO₂ %	CO₂ Sample Rate (ipm) ¹	Stack Flow 2RSD (%)	Air Flow, DSCFM	Air Flow, DSC FM@ 7%O2
1-O-M5/29-1		07:21-09:32	183.9	293	191,586	9.5	9.9	0.2	11.6%	105,082	85,956
1-O-M5/29-2_		10:00-12:14	184.4	295	191,421	9.5	9.9	0.2	12.2%	<u>104,870</u>	86,310
1-O-M5/29-3		12:36-14:47	183.4	301	193,814	9.7	9.8	0.2	15.3%	105,806	84,949
1-O-M13B-1		11:46-12:56	184.0	303	205,926	10.6	<u>9.1</u>	0.4	12.1%	111,627	83,118
1-O-M13B-2		13:15-14:27	184.0	302	207.433	10.1	9.6	.0,4	12.9%	111.678	86,530
<u>1-O-M13B-3</u>	3/17/2010	14:45-15:53	184.1	303	198,952	10.0	9,8	0.4	11.0%	106.345	83.699
		AVATOR				and a case of the state of the	the familie of the back for an				
2-O-M5/29-1		07:09-09:22	1 <u>83.9</u>	307	201,928	10,1	9.3	0.2	_13.9%	108,134	84,251
2-O-M5/29-2		9;49-12:02	182.9	308	193,105	9.8	9.6	0,2	10.0%	<u>103,333</u>	82.890
2-O-M5/29-3		12:27-14:39	183.9	308	199.217	<u>9</u> ,9	9,6	0,2	<u>16,8%</u>	105.806	83,856
2-O-M13B-1		07:09-08:24	183,9	306	190,226	10.0	9.3	0.4	14,3%	101.644	79,560
2-O-M13B-2		08:56-10:10	184.2	305	182,805	9,6	9,6	0,4	10.0%	97,309	78,827
2-O-M13B-3		10:45-12:05	183.0	306	185,088	10.2	9.1	0,4_	13,4%	99.545	76,986
2-O-M23-1		08:44-13:36	184.1	301	198,967	9.7	9.7	0.1	8.7%	107.335	86,640
2-O-M23-2		06:54-12:19	184.3	307	214,211	9.7	9.8	0.1	7.0%	113,400	91,046
2-O-M23-3	3/17/2010	12:53-17:26	183.9	308	203,730	10.3	9.5	0.1	8.8%	108,891	82,961
		MAX MODERA	的行政的政策			0023	100	512		南10月10月	編集1002編
3-O-M5/29-1	3/17/2010	06;50-09:03	184,2	303	174,264	8.7	10,5	0,2	16,1%	90,897	79,715
3-O-M5/29-2	3/17/2010	09:26-11:38	184.2	304	186,885	8.3	10.9	0.2	9.4%	97,143	88,057
3-O-M5/29-3	3/17/2010	11:59-14:11	183.5	304	184,323	8.7	10.8	0.2	12.1%	105,806	84,424
3-O-M13B-1	3/16/2010	11:4 <u>9-13:07</u>	183.7	298	173,798	9.9	9.7	0.4	8.5%	101,644	74,155
3-O-M13B-2	3/16/2010	13:33-14:44	183.9	299	179,576	9.5	10.0	0.4	11.4%	96,031	78,552
3-O-M13B-3		15:07-16:16	184,2	299	173.781	9.7	10.0	0.4	11.0%	92,736	74,589
		AV/CETO2			新口的新闻					17767.6C	. <u>/</u>
-	EDINA			3024	115 1924	- C A-2					02,70

 1 CO2 gas sample flow rate was within 10% of initial flow rate throughout all test runs.

In accordance with the EPA Greenhouse Gas (GHG) Monitoring, Reporting and Recordkeeping Regulations (MRRR) an integrated gas sample (IGS) of all FF Outlet isokinetic sample trains was collected in accordance with ASTM Method 7459-08. All of the test run IGS bags that met the 2 times relative standard deviation (2RSD) stack flow rate criteria (<30%) were proportionally combined into a single Tedlar® bag for analysis by Beta Analytic, Inc for Biogenic CO₂ utilizing ASTM Method D6866-08. All of the IGS bags were collected within 10% of the initial sample rate. The IGS bag collection rate is recorded on the field data sheets presented in Appendix G. The stack flow rate 2RSD is calculated and presented in the field data printouts (Appendix H) of this report. All outlet isokinetic samples met the 2RSD requirements.

ISO-17025 Accredited Testing Laboratory

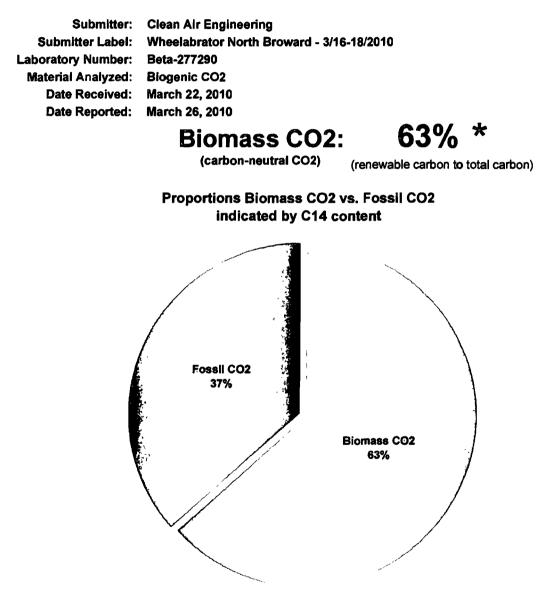
PJLA ISO/IEC 17025:2005 Testing Accreditation # 59423

Beta Analytic Inc. 4985 SW 74 Court Miami, Florida 33155 USA Tel: 305-667-5167 Fax: 305-663-0964 info@betalabservices.com www.betalabservices.com

Summary of Results : Biogenic CO2 Determination using ASTM-D6866

Submitter:	Mr. Scott A. Brown	Date Received:	March 22, 2010		
Company:	Company: Clean Air Engineering	Date Reported:	March 26, 2010		
Laboratory Number	Submitter Label	Material	Mean Biomass CO2 Content*		
 Beta-277290	Wheelabrator North Broward - 3/16-18/2010	Biogenic CO2	63%		

^{*} ASTM-D6866 cites precision on the Mean Biomass CO2 Content as +/- 3% (absolute). This is the most conservative estimate of error in the measurement of complex biomass containing solids and liquids based on empirical results. Real precision for readily combustible and homogenous materials (e.g. gasoline) and especially samples recieved as CO2 (e.g. flue gas or CEMS exhaust) can be as low as +/- 0.5-2%. The result only applies to the analyzed material. Fluctuations in carbon content within a batch of product, gasoline or flue gas must be determined separately (e.g. averaged measurements of multiple solids or liquids, and single measurement of the combination of gas aliquots collected over time). The accuracy of the result as it applies to the analyzed product, fuel, or flue gas relies upon all the carbon in the analyzed material originating from either recently respired atmospheric carbon dioxide (within the last decade) or fossil carbon (more than 50,000 years old). "Percent biomass" specifically relates % renewable (or fossil) carbon to total carbon, not to total mass or molecular weight. Mean Biomass CO2 estimates greater than 100% are assigned a value of 100% for simplification.



ISO-17025 Accredited Testing Laboratory

PJLA ISO/IEC 17025:2005 Testing Accreditation # 59423

Beta Analytic Inc. 4985 SW 74 Court Miami, Florida 33155 USA Tel: 305-667-5167 Fax: 305-663-0964 info@betalabservices.com www.betalabservices.com

Report of Biomass CO2 Content Analysis using ASTM-D6866

* ASTM-D6866 cites precision on the mean Biomass CO2 Result as +/- 3% (absolute). This is the most conservative estimate of error in the measurement of complex biomass containing solids and liquids based on empirical results. Real precision for readily combustible and homogenous materials (e.g. gasoline) and especially samples recieved as CO2 (e.g. flue gas or CEMS exhaust) can be as low as +/- 0.5-2%. The result only applies to the analyzed material. Fluctuations in carbon content within a batch of product, gasoline or flue gas must be determined separately (e.g. averaged measurements of multiple solids or liquids, and single measurement of the combination of gas aliquots collected over time). The accuracy of the result as it applies to the analyzed product, fuel, or flue gas relies upon all the carbon in the analyzed material originating from either recently respired atmospheric carbon dioxide (within the last few decades) or fossil carbon (more than 50,000 years old). "Percent biomass" specifically relates % renewable (or fossil) carbon to total carbon, not to total mass or molecular weight. Mean Biomass CO2 estimates greater than 100% are assigned a value of 100% for simplification.

ISO-17025 Accredited Testing Laboratory

PJLA ISO/IEC 17025:2005 Testing Accreditation # 59423

Beta Analytic Inc. 4985 SW 74 Court Miami, Florida 33155 USA Tel: 305-667-5167 Fax: 305-663-0964 info@betalabservices.com www.betalabservices.com

Explanation of Results

Biomass Analysis using ASTM-D6866

The application of ASTM-D6866 to derive a "Biomass CO2 content" for carbon dioxide effluents is built upon the same concepts as those used by the US Department of Agriculture to derive the biobased content of manufactured products containing biomass carbon. It is done by comparing a relative amount of radiocarbon (C14) in an unknown sample to that of a modern reference standard. The ratio in contemporary biomass will be 100% and the ratio in fossil materials will be zero. Carbon dioxide derived from combustion of a mixture of present day biomass and fossil carbon will yield an ASTM-D6866 result that directly correlates to the amount of biomass carbon combusted and carbon-neutral CO2 generated.

The modern reference standard is a National Institute of Standards and Technology (NIST) standard with a defined radiocarbon content of 100% contemporary carbon for the year AD 1950. AD 1950 was chosen since it represented a time prior to thermo-nuclear weapons testing which introduced large amounts of excess radiocarbon into the atmosphere with each explosion (termed "bomb carbor"). This was a logical point in time to use as a reference since this excess bomb carbon would change with increased or decreased weapons testing. A fixed correction for this effect is applied per the ASTM-D6866 requirements, applying specifically to carbon removed from the atmospheric CO2 reservoir since about 1996. Carbon removed prior to about 1996 will contain elevated radiocarbon signatures, not directly applicable to the ASTM-D6866 correction. Typical areas to which the correction may not apply are landfills more than 5-10 years old and to trees which began to grow more than 20 years ago.

Carbon dioxide effluent derived from combustion of 100% present day biomass will yield results of 100% renewable content. Carbon dioxide effluent derived from the combustion of 100% fossil fuel will yield results of 0% renewable content. Carbon dioxide produced from mixed fuels (biomass plus fossil fuel) will yield a percentage result in direct proportion to the biomass carbon consumed vs. fossil carbon consumed in the combustion. The final result is referred to as the MEAN BIOMASS CO2 CONTENT and assumes all the carbon in the carbon dioxide was derived from either present day living or fossil sources.

The results provided in this report involved materials provided without any source information. This situation is highly probable in a real life situation. The MEAN VALUE quoted in this report encompasses an absolute range of 6% (plus and minus 3% on either side of the MEAN BIOMASS CO2 CONTENT to account for variations in end component radiocarbon signatures (a conservative approximation). It is presumed that all materials are present day or fossil in origin and that the desired result is the amount of biomass component "present" in the material, not the amount of biomass material "used" in the manufacturing process. The most conservative interpretation of the reported percentages is as maximum values.

ASTM-D6866 results relate directly to the percentage carbon-neutral CO2 in an incineration effluent. A value of 71% renewable content measured on CO2 effluent would indicate that 71% of the exhausted CO2 was from biomass (29% from fossil fuel). It does not represent the weight of biomass combusted or the weight of fossil fuel combusted. This is advantageous since the weight of the fuels only indirectly relate to the up-take of carbon dioxide from the atmosphere. The respiration uptake compound was carbon dioxide and the combustion effluent was carbon dioxide. The ASTM-D6866 result directly and specifically relates to the amount of carbon-neutral CO2 consumed and expelled.

			Cł	IAIN O	F CUSTODY FORM	1						the second second second second second second second second second second second second second second second se	NB-10955-001.	
LIENT	Wheelabrato	or North Brow	PROJECT NO. 10955 22 W ANALYSIS REQUESTED					TED		i				
PLANT				-	DEPT. <u>66</u>	NE -	3	/			/			i
	MANAGER	Scott Brown	۱ <u>ــــــــــــــــــــــــــــــــــــ</u>	-		NO. OF CONTAINERS	ORIGINAL VOLUME	ASTM D6866					DITIONAL	
LAB NO.	RUN NO.	TES	T LOCATION	DATE	SAMPLE MATRIX	Q	ō	ASTI			<u> </u>	INFO	DRMATION	
	ali	Wheelabr	ator North Broward -	3/16-3/18	Tediar Bag	1		X						
		3/1	3/10 to 3/18/10											
			<u>.</u>							 				
				+	:	-		+					<u> </u>	
						+								
											ļ	<u> </u>		
5				<u> </u>			ļ		┣			<u> </u>		4
				+		+							<u> </u>	1
							+			+	<u> </u>	<u>}</u>		ţ
											+	<u> </u>		1
							+	-						
	d by (Signa			Baseline	by: (Signature)	_	Date / T		Poline	uished I	hyr /Sia	(autor	Date / Time	-
	with		Date / Time 3/19/10 :00		100 Boblially		5110		1		•			
Courier:	J		Date / Time	Relinquis	hed by. (Signature)		Date / T	ime	Recei	ived for A	Analysis	by zenecola.	Date / Time	
Special Ha	ndling Instruc	tions		_ _	This form was completed b	<u>.</u> y:		Ø			<u>M</u> TP4D	500 West Woo Palatine, IL 60	nd Street	
	warding Lab: PO Number:	Beta Anal	ytical		Scott Brown Signisture	Date	E			HI R I N G		(800) 627-003 (847) 991-338 www.cleanair	5 fax	

ł

F-7

This Page Intentionally Left Blank