Table 4. Refined PM Modeling Results for the FPL Sanford Orimulsion Burn

Averaging Time	Maximum Predicted Concentration (ug/m ³)		Allowable PSD Class II Increment		State of Florida AAQS for
	PSD (PM - TSP)	AAQS ^a (PM ₁₀)	for PM-TSP ^C (ug/m ³)		PM ₁₀₃ (ug/m ³)
Annual	0.4 (0.43) ^d	34.1 (34.3) ^d	19	*	50
24-hour ^b	6.2 (6.7) ^d	53.2 (53.7) ^d	37		150

- a. Includes PM_{10} background concentrations of 32 and 40 ug/m³ for the annual and 24-hour averaging times, respectively.
- b. Short-term values reported are highest, second-highest concentrations.
- c. Note: Proposed Class II PSD Increments for PM_{10} are 17 and 30 ug/m^3 , for the annual and 24-hour averaging times, respectively.
- d. Assumes 5 hours at 0.6 $1b/10^6$ BTU and 19 hours at 0.3 $1b/10^6$ BTU

Date: February 19, 1991

Kennard Kosky, P.E.

KBN Engineering & Applied Sciences

1034 N.W. 57th Street

Gainesville, FL 32605

(904) 331-9000

Florida Registration No. 14996