Table 4. Refined PM Modeling Results for the FPL Sanford Orimulsion Burn | Averaging
Time | Maximum Predicted Concentration (ug/m ³) | | Allowable PSD
Class II Increment | | State of
Florida
AAQS for | |----------------------|--|--|--|---|--| | | PSD
(PM - TSP) | AAQS ^a
(PM ₁₀) | for PM-TSP ^C (ug/m ³) | | PM ₁₀₃ (ug/m ³) | | Annual | 0.4 (0.43) ^d | 34.1 (34.3) ^d | 19 | * | 50 | | 24-hour ^b | 6.2 (6.7) ^d | 53.2 (53.7) ^d | 37 | | 150 | - a. Includes PM_{10} background concentrations of 32 and 40 ug/m³ for the annual and 24-hour averaging times, respectively. - b. Short-term values reported are highest, second-highest concentrations. - c. Note: Proposed Class II PSD Increments for PM_{10} are 17 and 30 ug/m^3 , for the annual and 24-hour averaging times, respectively. - d. Assumes 5 hours at 0.6 $1b/10^6$ BTU and 19 hours at 0.3 $1b/10^6$ BTU Date: February 19, 1991 Kennard Kosky, P.E. KBN Engineering & Applied Sciences 1034 N.W. 57th Street Gainesville, FL 32605 (904) 331-9000 Florida Registration No. 14996