

RECEIVED

APR 26 1991

DER-BAOM

April 22, 1991

Mr. Charles M. Collins
State of Florida Department of Environmental Regulation
Central Florida District
3319 Maguire Blvd., Suite 232
Orlando, Florida 32803

RE:

Orimulsion Test Burn Sanford Plant Unit No. 4

Continuous Emissions Monitor - Oxygen

Dear Mr. Collins:

As I discussed by telephone with Gary Kuberski of your staff on April 11, 1991, due to certain discrepancies observed during the stack emissions testing being conducted by Entropy Environmentalists, Inc., on April 10, 1991 FPL decided to replace the oxygen continuous emissions monitor (CEM). A new monitor was flown in by Spectrum Systems and installed on April 11th. On April 12th, after obtaining waiver from Mr. Kuberski from the five-day notification requirement, certification of the new CEM was started and will continue for 168 hours of operation. Upon completion, a new certification report will be prepared and submitted to you for your files.

Please note that the previously certified O₂ CEM has been left in operation, concurrently with the new one, until certification of said new CEM is completed. At that time, the old CEM will be removed.

Please call me at (407) 697-6926 if you have any questions.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

cc:

Cindy Phillips - DER/Tall

Gary Kuberski - DER/Orlando

April 22, 1991

Mr. A. Alexander, Deputy Assistant Secretary
State of Florida Department of Environmental Regulation
Central Florida District
3319 Maguire Blvd., Suite 232
Orlando, Florida 32803

RE:

Sanford Plant, Unit No. 4 Orimulsion Test Burn Fuel Analysis - As Received

Dear Mr. Alexander:

As required in specific condition No. 7e of the Department permit authorizing the Orimulsion Test Burn at FPL's Sanford Unit No. 4, enclosed please find a copy of the analysis of Orimulsion fuel received at the Jacksonville terminal on April 4, 1991.

Please call me at (407) 697-6926 if you have any questions.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

Enclosure

cc:

Cindy Phillips - DER/Tall

RECEIVED

POWER RESOURCES CENTRAL LABORATORY
FLORIDA POWER AND LIGHT COMPANY

APR 15 1991

STATE OF FLORIDA LABORATORY CERTIFICATION NUMBERS:

DRINKING WATER CERTIFICATION NUMBER: 56275 NV ESCHMITTING

AS-RECEIVED - PSN ORIMULSION

VESSEL: FRONT CONDOR (DELIVERY #6)

		DATE REPORTED: 04-08-91
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ANALYTICAL METHOD	RESULT
DENSITY @60F, g/cm3 DENSITY @60F, lbs/BBL		
BTU/LB	(ASTM D-240)	12956 * 4589 *
MBTU/BBL MBTU/TON	(10mt D 1550)	25912 *
<pre>% SULFUR VISCOSITY @ 30.6C, mPAS SHEAR RATE = 139.1</pre>	(ASTM D-1552) (ASTM D-4684)	2.8 * 559 *
% WATER % SEDIMENT	(ASTM D-95) (ASTM D-473)	28 * 0.22
% ASH % ASPHALTENES	(ASTM D-482) (IP-143)	0.22 8.5
VANADIUM (MG/KG) SODIUM (MG/KG) IRON (MG/KG)		253 59 7
NICKEL (MG/KG) MAGNESIUM (MG/KG) POUR POINT, F		66 281 36
SO2 (LBS/MILLION BTU) % CARBON, (BY WEIGHT)		4.3 * 60.87
<pre>% HYDROGEN, (BY WEIGHT) % NITROGEN, (BY WEIGHT) % OXYGEN, (BY DIFFERENCE</pre>	Ε)	7.74 0.59 ** <0.01
COMMENTS: * WITNESSED BY ** ANALYSIS P	Y THOMAS HAWES FOR CALER ERFORMED BY SCHWARZKOPF	
COPIES TO:		
R. ALLEN, JEN/NP	N/PLT M. MILLARES, J. NORMAN, I	PRS/EDO
E. BISHOP, JEN/NI	P K. OLEN, JRI	)/NP
E. CALLANDER, FR		_
D. CHRISTIAN, JPI M. HALPIN, PSN/PI		
D. KNUTSON, PRS/1		
R. LIPPMAN, FR/G		
ANALYZED BY: Yauson	J. Uzice	
CERTIFIED BY: HME	Hennell	DATE: 4/11/91



## FEDERAL EXPRESS

April 17, 1991

Ms. Cindy Phillips
State of Florida Department of Environmental Regulation
2600 Blair Stone Road
Tallahassee, Florida 32301

RE:

Sanford Plant, Unit No. 4 Orimulsion Test Burn

Weekly Compliance Reports - April 8-14, 1991

Dear Ms. Phillips:

As required by the specific conditions of the Department's permit and Order authorizing the Orimulsion Test Burn, enclosed please find the compliance reports for the week of April 8-14, 1991 as follows:

Required in Specific Condition No.	Report Title
8h & 8i (Order Condition No. 15)	Burn Schedule/Fuel Usage/Full Power Burn Days
8j (Order Condition No. 15)	Daily Opacity Logs
8j (Order Condition No. 15)	Summary - Opacity CEM 6-min. Averages
(Order Condition No. 18)	Opacity Research Status Report

Sanford Plant, Unit No. 4 Orimulsion Test Burn Weekly Compliance Reports Page 2

For your convenience, we have compiled all the above reports into one booklet. This format will be repeated for each reporting cycle throughout the Orimulsion Test Burn.

If you have any questions, please call me at (407) 697-6926.

Sincerely,

ŀ

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

**Enclosure** 

cc: Mr. A. Alexander - DER/Orlando (w/o encl.)



### FEDERAL EXPRESS

April 17, 1991

Mr. A. Alexander, Deputy Assistant Secretary
State of Florida Department of Environmental Regulation
Central Florida District
3319 Maguire Blvd., Suite 232
Orlando, Florida 32802

RE:

Sanford Plant, Unit No. 4 Orimulsion Test Burn

Weekly Compliance Reports - April 8-14, 1991

## Dear Mr. Alexander:

As required by the specific conditions of the Department's permit and Order authorizing the Orimulsion Test Burn, enclosed please find the compliance reports for the week of April 8-14, 1991 as follows:

Required in Specific Condition No.	Report Title	
8h & 8i (Order Condition No. 15)	Burn Schedule/Fuel Usage/Full Power Burn Da	ys
8j (Order Condition No. 15)	Daily Opacity Logs	
8j (Order Condition No. 15)	Summary - Opacity CEM 6-min. Averages	
(Order Condition No. 18)	Opacity Research Status Report	

Sanford Plant, Unit No. 4 Orimulsion Test Burn Weekly Compliance Reports Page 2

For your convenience, we have compiled all the above reports into one booklet. This format will be repeated for each reporting cycle throughout the Orimulsion Test Burn.

If you have any questions, please call me at (407) 697-6926.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

**Enclosure** 

cc:

Cindy Phillips - DER/Tall (w/o encl.)

# FPL SANFORD PLANT WEEKLY ORIMULSION SUMMARY

WEEK ENDING **04/14/91** ORIMULSION 4.572

HEAT VALUE

#6 OIL 6.322 HEAT VALUE

DAY	DATE	ORIMULSION	<b>FULL POWER</b>	#6 OIL
		BBLS BURNED	<b>BURN DAYS</b>	<b>BBLS BURNED</b>
MONDAY	04/08/91	16825	0.8	0
TUESDAY	04/09/91	15062	0.7	0
WEDNESDAY	04/10/91	16268	0.8	0
THURSDAY	04/11/91	16385	0.8	0
FRIDAY	04/12/91	14767	0.7	0
SATURDAY	04/13/91	0	0.0	4050
SUNDAY	04/14/91	0	0.0	66
TOTALS	Ø	79307	3.7	4116

Unit operated on 100% oil to accomodate system electrical demand requirements

Temporty 80% thru 5/31/91

**PLANT DAILY OPACITY EMISSIONS REPORT** Form 4954 (Non-Stocked) Rev. 2/84

UNIT NO. MON APR 4 (80% Orimulsion)

				Six	Six Minute Intervals > 80%								
Time	1	2	3	4	5	6	7	8	9	10		This Hour	
12MN	8162	91c2	94cr	91 cr	8202		85cr	87 CZ		8302		8	8
1AM									85cz	85 cz	1AM	2	10
2	83C2	82c2	8/02	8102			:				2	4	1.4
3				ļ							3		
4											4		
5	l						82 cz	-80cz	86 cm	8102	5	4	18
6			81 C2	80 C2	82 CZ	83.C2	84cz				6	5	23 24
7	85 02										7	7	2.4
.8											8		
9	L	-									9		
10											10		
11											11		
12N		ļ <u></u>	<u></u>								12N		
1P	<u> </u>		<u> </u>					· .			1P		
2	ļ		<u> </u>					93 CZ	88C2		2	2_	26
3											3		•
4											4		
5											5		
6											6		
7						C4 95	C4 100t	C489	C495	C488	7	5	3.1
8	C481	<u> </u>	C497		C485	C4 90	C488	C484			8	6	37
9										C493	9	2	39
10		C488	C485					C490	C434	C486	10	6	45
11	C484							C290	020	cz87	11	4	49

# MALFUNCTION

- MALFUNCTION
- 1 Monitor Out of Service
- 2 Burner Problem
- 3 Control Problem

- Document chart lab will provide reason codes

- 1 Start-Up
- 2 Shut-Down

START-UP/SHUT-DOWN

# C LOAD CHANGE/SOOT-BLOWING

- Rapid Load Change
- Soot-blowing
- Liming Boiler Cleaning Air Pre-heater

A rapid load change is defined as a change that occurs at the rate of 0.5% per minute or more and exceeds 10% of the units rated capacity and occurs when the unit is operating at greater than 10% of rated capacity, excluding startup and shutdown.

# **INSTRUCTIONS**

Fill in the opacity and reason code or codes in the appropriate box whenever the opacity exceeds 20% for any 6 minute period on the recorder. Example: 50A3 indicates an opacity reading of 50% attributed to control problems.

Tempor 80% thru 5/31/91

# **PLANT DAILY OPACITY EMISSIONS REPORT** Form 4954 (Non-Stocked) Rev. 2/84

UNIT NOT UE APR

				Six	Minute Inte	rvals > 80%							
Time	1	2	3	4	5	6	7	8	9	10		This Hour	
	c295(:										12MN	1	<b>t</b>
1AM	c2(8Di	C284	E286	-	•	•	C289	6293	Cr 86	c299	1AM	7. ~	8,
2	c284		C287	1298	C297	cr 87	c296	c293		c298	2	9	1.7:
3	C286	c284	c292				c284:		cr81		3	7	24
4	c283.	:	C281		c292	c288	c290.	c284	c295	c288	4	8	32
5	C280	486									5	7	34
6	/										6		
7				U82	80 c.2	800-2					7	4	38
8		810-2		· · · · · · · · · · · · · · · · · · ·							8	1	39
9											9		
10							<u></u>				10		<u> </u>
11						850-2	850-2	82c2	184 CZ	8602	11	5	44.
12N	9602	966-2	9402					8302	ł		12N	4	48:
1P											1P		
2				80: AZ	<u> </u>						2		49
3				•					<u> </u>		3	, , , , , , , , , , , , , , , , , , , ,	
4			86 4.X			<u> </u>					4	/	50
5			<u> </u>		<u> </u>		<u> </u>				5 .		
6											6		
7		<u> </u>	<u> </u>								7	,	
8											8		
9											9		
10											10		
11											11		

# **A MALFUNCTION**

#### MALFUNCTION

1 Monitor Out of Service

Document chart lab will provide reason codes

- 2 Burner Problem
- 3 Control Problem

START-UP/SHUT-DOWN

- 1 Start-Up
- 2 Shut-Down

# A rapid load change is defined as a change that occurs at the rate of 0.5% per minute or more and exceeds 10% of the units rated capacity and occurs when the unit is operating at greater than 10% of rated capacity, excluding startup and shutdown.

C LOAD CHANGE/SOOT-BLOWING

Rapid Load Change Soot-blowing Liming Boiler

Cleaning Air Pre-heater

## INSTRUCTIONS

Fill in the opacity and reason code or codes in the appropriate box whenever the opacity exceeds 20% for any 6 minute period on the recorder. Example: 50A3 indicates an opacity reading of 50% attributed to control problems.

(Temporary	80%	thru	5/31/91	7
				ノ

**PLANT DAILY OPACITY EMISSIONS REPORT** Form 4954 (Non-Stocked) Rev. 2/84

DATE

UNIT NO. 4 (80% Orimulsion)

				Six Minute Intervals > 80%									
Time	1	2	3	4	5	6	7	8	9	10		This Hour	Last 24 Hours
12MN			9702	8302		9/02	90 cz	97 CZ	98cz	100cz	12MN	7	7
1AM	100cz						82 C2				1AM		9
2		84 02	9202	100 CZ	85		·	90 c2		85 CZ	2	6	15
3	80.02		8202	8402	9602	9902	90 C2	87.02	86 CZ	-90 cz	3	9	29 27
4	85 cz	81 02	83 cz								4	3	27
5			8/C2	.,							5	1	28
6	84 cz		80 cz	8202	83 cz	81 cz		80 CZ	91 cz	89cz	6	8	36
7									•		7		
8											8		
9									-	·	9		
10											10	_	
11											11		
12N											12N		
1P				- 1							1P		•
2											2		
3		. : ·	-								3		
4									CZ 85		4	1	37.
5		CZ84	10	CZSI.	CZ91		CZ8-	7			5	4	41
6	,	t									· 6		
7											7		
8											8		
9											9		
10						- 3.					10		
11			C-78(a.	2490	E7 98	C-4 100	E4 100	249 Ce	8790	F4 90	11	8	49.
			V	<del> </del>							<del> </del>	<del></del>	

# A MALFUNCTION MALFUNCTION

- 1 Monitor Out of Service
- 2 Burner Problem
- 3 Control Problem
- 4 Other

# START-UP/SHUT-DOWN

- 1 Start-Up
  - 2 Shut-Down

#### C LOAD CHANGE/SOOT-BLOWING

- Rapid Load Change Soot-blowing Liming Boiler

- Cleaning Air Pre-heater

A rapid load change is defined as a change that occurs at the rate of 0.5% per minute or more and exceeds 10% of the units rated capacity and occurs when the unit is operating at greater than 10% of rated

#### INSTRUCTIONS

Fill in the opacity and reason code or codes in the appropriate box whenever the opacity exceeds 20% for any 6 minute period on the recorder. Example: 50A3 indicates an opacity reading of 50% attributed to control problems.

Temporary 80% thru 5/31/91

**PLANT DAILY OPACITY EMISSIONS REPORT** Form 4954 (Non-Stocked) Rev. 2/84

4 (80% Orimulsion) 1991

Time         1         2         3         4         5         6         7         8         9         10         This Hour         Last 24 Hours           12MN         1         1         2         1         10         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         2         2         1         2         2         2         1         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         3         4         2         2         2         3         4         2         6         2         2         2         2         2         2         3         3         1         4         3														rvals > 80%
12MN   12MN		1							8	-	. 1			
3	12MN	£ 100	产100	30 75	-	5799	491				C290	12MN		
3	1AM	=3 94	E3 91	C484			283	C-7 80		<u>دع</u> 22		1AM		12
3	2	C-7 86	2795	C3 91	5-7:91	C291	£ 3 8 Ce	5397	E7 84	6493	学96	2		22
4	3	子97	52 94	C-7 99	£7 88							3 ,	4	26
6	4											4		
7	5						·					5		
8 9 9 507 83 c7 9 50 c7 11 9 2 37  10 11 86 C7 80 C7 58 C7 80 C7 11 9 37  12N 12N 12N 12N 12P 1P 2 3 3 1 40 40 4 3 443  5 85 C7 87 C7 91 C7 5 1 4 3 443  6 8 8 9 9 9 10 10 10	6											6	7	28
8 9 9567 83 c7 9 2 33 10 10 10 11 11 11 11 11 11 11 11 11 11	7			0283	C-283	8262	-				-	7	3	31-
10	8											8		
11   36 Cr 80 Cr     58 Cr 80 Cr	9		9862		83 c2	•						9	2	3
12N	10											10		
1P     1P       2     83 cv     83 cv       3     -       4     83 cr     85 cr       5     85 cr       6     81 cr       7     6       8     8       9     9       10     10	11	86 C2	80 CY			28 CV	80 CZ					11	4	37
2	12N											12N		
3	1P											1P		
4       83C2       89C2       91C2       4       3       43         5       85C2       5       /       44         6       81C2       6       /       45         7       8       8       8         9       9       9         10       10       10	2						83 cr	'		8302	<b>-</b>	2	2	
4       83C2       89C2       91C2       4       3       43         5       85C2       5       1       44         6       81C2       6       1       45         7       8       8       8         9       9       9         10       10       10	3			-					9502			3	/	40
5     85cr       6     81cr       7     7       8     8       9     9       10     10	4	8302		9102								4	3	43
6   8 C2   6   45 7   8   8   9   9   10   10   10	5											5	/	44
8     9       10     10	6								81C2			6	/	45
9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	7											7		
10	8											8		
	9											9		
	10											10		
	11											11		

## MALFUNCTION

MALFUNCTION

- 1 Monitor Out of Service
- 2 Burner Problem
- 3 Control Problem 4 Other

# START-UP/SHUT-DOWN

1 Start-Up

Document chart lab will provide reason codes

2 Shut-Down

#### C LOAD CHANGE/SOOT-BLOWING

- Rapid Load Change
- Soot-blowing
- Liming Boiler
- Cleaning Air Pre-heater

A rapid load change is defined as a change that occurs at the rate of 0.5% per minute or more and exceeds 10% of the units rated capacity and occurs when the unit is operating at greater than 10% of rated

### INSTRUCTIONS

Fill in the opacity and reason code or codes in the appropriate box whenever the opacity exceeds 20% for any 6 minute period on the recorder. Example: 50A3 indicates an opacity reading of 50% attributed to control problems.

Temporary 80% thru 5/31/91



DATE .

UNIT NO. 4 (80% Orimulsion)

													Six Minute Intervals > 80%			
12MN	Time	1		1			1		1	1			This Hour			
1AM CPD 9 AC 9 SC 1 SC 2	12MN		10002	C) [ C)	4/02	4 8c2	9 20	8 602	- 27 Ocz		85c2	- 12MN	8			
2   P4C 95 C 95 C 2 8 C 2 9 C 9 C 2 7	1AM	0700	9 400	a Sur	,							1AM	3	[ ]		
5   5   7   7   7   7   8   8   9   9   9   9   10   11   11   11   1					8402	9502	95 CZ	86C2	97C2	8562	9902	2	ל			
5   5   7   7   7   7   8   8   9   9   9   9   10   11   11   11   1		9802	9602	340	0462	8702	88c2	93cz	9102	8202	8902	3		28		
5   5   7   7   7   7   8   8   9   9   9   9   10   11   11   11   1	4	280						8202	,			4		30		
7 次								1				5				
8   8   9   9   9   10   10   11   11   12   12   12   12	6				· .					84.67	3	6	N	32		
9- 10	7	284										7				
10	8				-							8				
11	9-											9				
12N	10											10				
1P (182 81C)	11				-							11				
1P (182 5 107	12N									C181		12N	1	33		
2   CAL   CAL   CAL   2   2   3   8   3   3   3   3   3   3   3   3	1P	2182	5 K2	-				-		1283		1P	3	36		
3 8 2 CM 9 1 CM 9 7 CM 8 CCM 4 3 CM 2 CM	2			C.82							c2/12	2	2_	38		
5	3	8702									•	3	/	29		
5	4		•	9102	1	970	<b>-</b>			8600	<u> </u>	4	3	42		
7         8         7         8           9         9         9         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10	5					<u> </u>			<u> </u>			5	/	43		
8     9       10     10	6	87cx					,					6	1	44		
9 9 9 10 10 10 10 10 10 10 10 10 10 10 10 10	7											7				
10 10	8											8				
	9						1					9				
11 11	10											10				
	11											11				

# **A MALFUNCTION MALFUNCTION**

- 1 Monitor Out of Service

Document chart lab will provide reason codes

- 2 Burner Problem
- 3 Control Problem

4 Other

- 1 Start-Up
- 2 Shut-Down

START-UP/SHUT-DOWN

# C LOAD CHANGE/SOOT-BLOWING

- *1 Rapid Load Change
  - Soot-blowing
- Liming Boiler Cleaning Air Pre-heater

A rapid load change is defined as a change that occurs at the rate of 0.5% per minute or more and exceeds 10% of the units rated capacity and occurs when the unit is operating at greater than 10% of rated capacity, excluding startup and shutdown

## **INSTRUCTIONS**

Fill in the opacity and reason code or codes in the appropriate box whenever the opacity exceeds 20% for any 6 minute period on the recorder. Example: 50A3 indicates an opacity reading of 50% attributed to control problems.

CONTINUOUS EMISSIONS MONITORING REPORT
FLORIDA POWER AND LIGHT
SANFORD PLANT
UNIT FOUR
OPACITY MONITOR
ORIMULSION TEST BURN PROJECT
APRIL 8-12, 1991

DATA COMPILED BY SPECTRUM SYSTEMS INC. PENSACOLA, FL

# SECTION 1 SIX MINUTE OPACITY AVERAGES

The following data was compiled from a copy of the original strip chart recordings provided to Spectrum Systems Inc. by Florida Power and Light for unit four at the Sanford Plant. Hourly averages were obtained by taking the sum of the valid six minute averages and dividing by the number of valid averages. This gives a real average based on known good minutes. The squares on the data table that are blacked in are the six minute averages that were deemed invalid due to calibrations happening, or any reason causing the integrated output from the opacity monitor to go to zero while the unit is on-line.

Opacity Monitors Six Minute Averages, April 08, 1991.

SIX MINUTE PERIOD	:00-:06	:06-:12	:12-18	:18-:24	:24-:30	:30-:36	:36-:42	:42-:48	:48-:54	:54-:60	
HOUR OF DAY											HOUR AVERAGE
12: A.M.	81	91	94	91	82	76	85	87	78.5	82.5	84.80
1: A.M.	75	77	72.5	78	73	74.5	75	79.8	85	85	77.48
2: A.M.	82.5	82	81	81	74	66	68	68	71	75	74.85
3: A.M.	78	73	74.5	71	71	68	72	68	69	74.5	71.90
4: A.M.	78.5	77	75		71	75.5	75	74	76.5	76	75.39
5: A.M.	77.5	79	77.5	78.5	76.8	77	82	80	76	80.5	78.48
6: A.M.	78	78	81	80	82	83.5	84	79	77	78	80.05
7: A.M.	82	79.8	76	79.8	78	72	71	69	68.5	68.5	74.46
8; A.M.	68	68	67.5	67	67	66.5	66.5	66.5	66	66.5	66.95
9: A.M.	65.5	65.5	65.5	66	66	66	66	65.8	65.6	65.5	65.74
10: A.M.	65.3	65	65	65	65	64.5	74	73	72	74	68.28
11: A.M.	77	70	71	78	71	66	66	65.8	65.7	65.5	69.60
12: NOON	65	65	65	65	64.5	65	65	64.5		65	64.89
1: P.M.	65	65	65	65	65	64.5	64.5	64.5	64,5	64.5	64.75
2: P.M.	64.5	64.5	65	70.2	66	70.5	76	96	88.5	70	73.12
3: P.M.	64	63	64	70	73	66	64	63.5	63.5	63.5	65.45
4: P.M.	63	65	63	62.5	62.2	62	62	62	62	62	62.57
5: P.M.	62	61.8	61.5	61.2	61	61	61	61	61	61	61.25
6: P.M.	61	60.8	60.5	60.5	60.5	60	62	64.5	65	66	62.08
7: P.M.	66	66	66	74.5	78	95	100	89	95	87.5	81.70
8: P.M.	81	72	97.5		85	89.5	88	84	73.5	68	82.06
9: P.M.	64	66	71	71	67	67	70.5	71.5	85	93	72.60
10: P.M.	83	88	85	76	71	73	74	80	84	86	80.00
11: P.M.	84	76	70	70	70	70	70	90.5	90	87	77.75

Opacity Monitors Six Minute Averages, April 9, 1991.

SIX MINUTE PERIOD	:00-:06	:06-:12	:12-18	118-:24	:24-:30	:30-:36	:36-:42	:42-:48	:48-:54	:54-:60	
HOUR OF DAY											HOUR AVERAGE
12: A.M.	95		71	71	72	72	71.5	71.5	71.5	73	74.28
1: A.M.	80.5	84	85.5	79.8	76.8	77	89	93	86	99	85.06
2: A.M.	84	92	81.5	98	97	87	96	93	77	98	90.35
3: A.M.	86	84	92		87	87	84	78	81	79	84.22
4: A.M.	83	77	80.2		92	88	90	84	95	88	86.36
5: A.M.	80	86.5	77.5	74	74	74	74	74	75	75	76.40
6: A.M.	75	75	75	75	76	76	76	75.5	75	74	75.25
7: A.M.	76	79	87	82	80	80	71	71	71	71	76.80
8: A.M.	71	81	74	71	70	71	71	74	71	69	72.30
9: A.M.	69	72	70	69	68.5	68.5	68.5	72	71	70	69.85
10: A.M.	69	70	70	71	70.5	69	68	70	70	68	69.55
11: A.M.	68	68	68.5	72	75	85	85	82	84	87	77.45
12: NOON	96	95.5	94		74	75	78	83	74	75	82.72
1; P.M.	75	70	70	70	70.5	70	70	70	70	70	70.55
2: P.M.	70.5	73	70	80	69.5	71	69	68	70.5	68.5	71.00
3: P.M.	68	68	68.5	68.5	69	69	69	69	70	70	68.90
4: P.M.	69	69	86	69	66.5	67	67	67	67	67	69.45
5: P.M.	67	67	66.5	66.5	67	67	67	69	67	67	67.10
6: P.M.	67	67	67	67	67	67	67	67	66.5	66.5	66.90
7: P.M.	68	68	68	68	68	68	68	68	66.5	66.5	67.70
8: P.M.	68	68	72		62	63	64	64	65	67	65.89
9: P.M.	65	65.5	64	61	60.5	62	63	62.5	63	64	63.05
10: P.M.	64	63	63	62	63	64	64	65	65	65	63.80
11: P.M.	65	65	65.5	65.5	65.5	66	66	66	66	66	65.65

Opacity Monitors Six Minute Averages, April 10, 1991.

SIX MINUTE PERIOD	:00-:06	:06-:12	:12-18	:18=:24	24-:30	:30-:36	:36-:42	:42-:48	:48-:54	:54-:60	
HOUR OF DAY											HOUR AVERAGE
12: A.M.	72	76	96.5	82.5	79	91	89.5	97	98	100	88.15
1: A.M.	100	79	70	67.5	71	71	82.5	74	72	70	75.70
2: A.M.	74.5	84.5	92	100	85	66	78	90	4 - 1/4	85.5	83.94
3: A.M.	80	78	82.5	84	96	99	92	87	86	90	87.45
4: A.M.	85	81	83	٠,	68	69	68	70	69	74	74.11
5: A.M.	63	67	81	68	68.5	68.5	68.5	69	69.5	68.5	69.15
6; A.M.	84	78	80	82	83	81	76	80	91	89	82.40
7: A.M.	74.5	70	71	71.5	74.5	71	67	64	76	71	71.05
8: A.M.	69	73	61	60	72	73	64	66	62	62	66.20
9: A.M.	62	61.5	61	61	60.5	60.5	60.4	60	60	61.5	60.84
10: A.M.	61.5	61.5	61.5	61.5	61.5	61.5	61	66	66	62	62.40
11: A.M.	67	72	74	70	70	72.5	72.5	65	62	62	68.70
12: NOON	60.5	60.3	60	100	60	60	60	60	61	60	60,20
1: P.M.	60	60.5	60.5	60.5	60.5	60.5	76	73.5	66	62	64.00
2: P.M.	69	68	67	75	63	59	59	59	59	60	63.80
3: P.M.	60	59.5	59.5	60	60	59	59	59	59	59.5	59.50
4: P.M.	61	68	65	66.2	72	76.2	76	71	85	78	71.84
5: P.M.	78	83	77	80.5	81	74.5	86	73	65	65	76.30
6: P.M.	65	67	68.5	72	69.5	70	70	67	68	70	68.70
7: P.M.	66	67	70	69	68.5	69	65	67	68	68	67.75
8: P.M.	68	70	68	150	66	67	67	66.5	68.5	64.5	67.28
9; P.M.	65	67.5	68	68	69	64	62	62	62	63	65.05
10: P.M.	65	65	65.5	65	65	65.5	66	66	67	67	65.70
11: P.M.	67	67.5	86.5	89.5	97	100	100	96	90	96	88.95

Opacity Monitors Six Minute Averages, April 11, 1991.

SIX MINUTE PERIOD	:00-:06	:06-:12	:12-18	:18-:24	:24-:30	:30-:36	:36-:42	:42-:48	:48-:54	:54-:60	
HOUR OF DAY											HOUR AVERAGE
12: A.M.	100	100	98		100	91	79		74	90	91.50
1; A.M.	94	91	84	75	72	83	80	78	92	76.5	82.55
2: A.M.	86	95	90	91	91	86	97	84	93.5	96	90.95
3: A.M.	97	94	99	88	78	77	76	74	74	74	83.10
4: A.M.	74	74	74		74.5	74.5	75	75	74.5	74.5	74.44
5: A.M.	74.5	74.5	74.5	74.5	74.5	74.5	74.5	74.5	74.5	74.5	74.50
6: A.M.	75	78	78	89	89	78	72	69.5	72	77	77.75
7: A.M.	79.8	78	83	83.5	82	73	72	72	71	71	76.53
8: A.M.	71	71	71	70.5	70.5	70.5	70	70	70	70	70.45
9: A.M.	72	98.5	77	81	78	79	71	70	70	70	76.65
10: A.M.	70	70	70	70	70	69.5	69.5	69	69	72	69.90
11: A.M.	86	80	77	76.5	88	80	73.5	69	68.5	68.5	76.70
12: NOON	68.5	68.5	68		68	68	68	68	68	68	68.11
1: P.M.	74	70	71	74	71	73	72	69	65	70	70.90
2: P.M.	74	68.5	75	76	76	83	77	74	83	69	75.55
3t P.M.	77	69	66	66	66	72	66	96	75	77	73.00
4: P.M.	83	89.5	91	71	71	68	73	69	63	62	74.05
5: P.M.	62	85	72.5	74	71	77	75	64	61	67	70.85
6; P.M.	63	67	70	70	73	71	68	80.5	64.5	62	68.90
7: P.M.	61.5	61	61	61	61	61	61	61	68	74	63.05
8: P.M.	61	65	73		61	60.5	60.4	60.2	61.2	61	62.59
9: P.M.	61	59	61	60	61	62	62	63	63	62.5	61.45
10: P.M.	63	63.2	63.6	64	64	64	64	64.5	64.5	65	63.98
11: P.M.	65	66	65	66	66	67	67	68	67	70	66.70

Opacity Monitors Six Minute Averages, April 12, 1991.

SIX MINUTE PERIOD	:00-:06	:06-:12	:12-18	:18-:24	:24-:30	:30-:36	:36-:42	:42-:48	:48-:54	:54-:60	
HOUR OF DAY											HOUR AVERAGE
12: A.M.	68	100	92	91	97.5	92	85.5	80	76	89	87.10
1: A.M.	100	99	95	72.5	74	72	73	71	74	72	80.25
2: A.M.	78	72	76	83.5	95.5	95	86	97	85	99	86.70
3: A.M.	98	96	84	94	87	87	93	91	82.5	89	90.15
4: A.M.	82				50	82	78	71	71	71	72.14
5: A.M.	71	71	72	72	72	72	71	71	71	71.5	71.45
6: A.M.	71.5	71.5	71.5	74	74	76	76	77	84	86	76.15
7: A.M.	84	73	77	76	74	67	66	66	66	66	71.50
8: A.M.	65	65	65	64.5	64	64	64	63	63.5	63.5	64.15
9: A.M.	65	65	65	65	64.5	64.2	64	64	64	64	64.47
10: A.M.	64	64	64	64	64	64	64	64	64	64	64.00
11: A.M.	63	63	63	63	63	63	62.5	62	62	62	62.65
12: NOON	62	62		39	67.5	76	77	78.5	80.5	71	68.17
1; P.M.	82	80	77	78	71	78	72.5	71	83	75	76.75
2: P.M.	70	82.5	67	66	66	67	68	69	92	82	72,95
3: P.M.	69.5	69.5	71	67	66	67	65	71	68	66	68,00
4: P.M.	67	68	91	66	97	75	74.5	63	88	71	76.05
5: P.M.	98	75	82	86	86	62	60	73	70	60	75.20
6: P.M.	87	74	61	57	57	56	56	56	55	55	61,40
7: P.M.	55	55	55	57	59	60.5	60	60	61	62	58.45
8: P.M.	63	63	64	<u> </u>	41	65	65	65	66	66	62.00
9: P.M.	66	65	65	64	62	59.5	56	54	49	41	58.15
10: P.M.	39	52	62	2	1			1 - 44 1		* .	31.20
11: P.M.			2								2.00

# Inter-Office Correspondence



To:

M.A. SMITH JEN/EDO

Date:

April 17, 1991

From:

M.P. HALPIN

Department:

PSN/PLT

Subject:

ORIMULSION WEEKLY REPORT

This is the seventh of a series of weekly reports detailing our efforts to reduce opacity while combusting orimulsion on Sanford Plant's Unit No. 4.

As previously reported, our findings on the magnesium to vanadium ratio and its correlation with opacity have been discussed with the fuel supplier, and a range of  $1.20\pm.05$  has been specified. We expect to receive this on our next shipment.

The only other area that appears to statistically affect opacity is excess air (air to fuel ratio) in the combustion process. Generally speaking, it appears that at low unit loads (50-60% and less) higher excess air than expected (based on our experience with oil and gas) is required to minimize opacity, whereas at high unit loads, lower excess air than expected is required to minimize opacity.

We are currently reviewing data to determine an "optimum" excess air vs. load curve with the desired outcome of minimizing opacity. it is anticipated that this curve should be developed within the next week.

M.P. Halp*i*n Ops. Supt.

MPH/t

cc: PSN C-29



April 17, 1991

RECEIVED

APR 2 4 1991

DER - BAQM

Mr. John Gray C/O Pinnacle Company 5445-6 Delaney Avenue Orlando, Florida 32801

RE:

Sanford Plant, Unit No. 4
Orimulsion Test Burn

Weekly Opacity Reports - April 8-14, 1991

Dear Mr. Gray:

As was agreed during the meeting held on March 5, 1991 between representatives of the Gray family and of FPL, attached please find a copy of the Weekly Opacity Research Status Report relevant to the Orimulsion Test Burn at our Sanford Plant, Unit No. 4 for the week of April 8-14, 1991. This is one of several reports submitted to the Florida DER on a weekly basis, as required by the Department's permit authorizing the Test Burn.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

Enclosure

cc:

Cindy Phillips - DER/Tall (w/o encl.)

Charles M. Collins - DER/Orlando (w/o encl.)

Sondra Gray - DeBary/Fla. (w/o encl.)



Q.

April 11, 1991

Mrs. Sondra Gray 37 Dirksen Drive DeBary, Florida 32713



RE:

Sanford Plant, Unit No. 4
Orimulsion Test Burn

Weekly Opacity Reports - April 1-7, 1991

Dear Mrs. Gray:

As was agreed during the meeting held on March 5, 1991 between representatives of the Gray family and of FPL, attached please find a copy of the Weekly Opacity Research Status Report relevant to the Orimulsion Test Burn at our Sanford Plant, Unit No. 4 for the week of April 1-7, 1991. This is one of several reports submitted to the Florida DER on a weekly basis, as required by the Department's permit authorizing the Test Burn.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

Enclosure

cc:

Cindy Phillips - DER/Tall (w/o encl.)

Charles M. Collins - DER/Orlando (w/o encl.)

John Gray - Orlando/Fla. (w/o encl.)

## Inter-Office Correspondence



To:

M.A. Smith

JEN EDO

Date:

April 10, 1991

From:

M.P. Halpin

Department:

Sanford Plant

Subject:

ORIMULSION WEEKLY REPORT

This is the sixth of a series of weekly reports detailing our efforts to reduce opacity while combusting Orimulsion on Sanford Plant's Unit No. 4.

The findings which were previously reported regarding the correlation between opacity and magnesium have been further investigated with our fuel supplier. According to the supplier, the magnesium is indeed a controllable parameter (with some limitations). In order to achieve a stable emulsification of the fuel, the manufacturer reports that magnesium must be added in at least a 1.1 to 1 ratio of magnesium to vanadium (respectively). They additionally report that occasional stability problems will develop with a 1.15 to 1 magnesium to vanadium ratio, and that generally speaking, the more magnesium added, the more stable the fuel and the less viscous.

Since Sanford Plant's combustion data represents a range of magnesium to vanadium ratios from 1.2 to 1 to 1.6 to 1, and since the opacity tends to increase with the higher magnesium, we currently plan to specify the next shipment to be  $1.20\pm.05$  magnesium to vanadium ratio.

This should confirm our analysis, however, the next shipment will not be available until approximately the fourth week in April (2-3 more weeks). The most recent shipment (received last week) was one of the higher magnesium contents we have received, and data will continue to be collected to validate our findings.

Mike Halpin

Operations Superintendent

Sanford Plant

dd

cc: PSN File C-29



REC

APR 12 1991

DER-BAQM

April 9, 1991

Mr. A. Alexander, Deputy Assistant Secretary State of Florida Department of Environmental Regulation Central Florida District 3319 Maguire Blvd., Suite 232 Orlando, Florida 32803

RE: SO₂ Emissions

Analyses of Fuel Oil Fired

March, 1991 - Sanford Power Plant

Dear Mr. Alexander:

As required by the DER Air Operating Permits for the units at the above facilities, enclosed are the analyses of Fuel Oil Fired at Sanford Units 3 and 5 for the March, 1991 sampling period.

Due to the current Orimulsion Test Burn on Sanford Unit No. 4, no oil was fired in that unit during the March, 1991 sampling period. Please note that, as agreed to by FPL and as reflected in the Modified Order dated February 28, 1991 authorizing the Test Burn in Unit No. 4, Sanford Unit No. 5 was not operated at all during the March, 1991 sampling period whenever Orimulsion was being burned in Sanford Unit No. 4.

If you have any questions, please call me at (407) 697-6926.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

Enclosure

cc: Cindy Phillips - DER/Tall

# FLORIDA POWER & LIGHT COMPANY POWER RESOURCES CENTRAL LABORATORY

STATE OF FLORIDA LABORATORY CERTIFICATION NUMBERS

DRINKING WATER CERTIFICATION NUMBER: 56275
ENVIRONMENTAL CHEMISTRY CERTIFICATION NUMBER: E56078

# SANFORD #3 FLANT AMALYSES OF FUEL OIL SIMED MARCH 1991

DATE SAMPLE RECEIVED AT LABORATORY	03-19-91
API GRAVITY	10.8
DENSITY, LB/GAL	8.281
DENSITY, LB/BBL	347.802
HEAT OF COMBUSTION, BYU/LB	18321
HEAT OF COMBUSTION, BTU/SAL	151715
HEAT OF COMBUSTION, MBTU/BBL	6372
WATER, % BY VOLUME	0.20
SEDIMENT, % BY WEIGHT	0.04
SULFUR, % BY WEIGHT	1.0
SULFUR DIOXIDE EQUIVALENT, LB/MBTU	1.09
ASH, % BY WEIGHT	0.04
PARTICULATE EQUIVALENT, LB/MBTU	0.02
VANADIUM IN ASH AS V205, % BY WEIGHT	10
VANADIUM IN OIL AS V2OS, PPM	36
VANADIUM IN DIL AS V, PPM	20
VISCOSITY, SSF @ 122F.	92
ASPHALTENES, % BY WEIGHT	2.9

RECEIVED

APR 0 1 1991

COPIES TO: PSN PLANT MGR.

R N ALLEN - JEN/EDO PLANT RESULTS DEPT

K WASHINGTON - PRS/EDD CERTIFIED BY:

ENV. PERMITTING

M. M. Onomel

## FLORIDA POWER & LIGHT COMPANY

## POWER RESOURCES CENTRAL LABORATORY

## MIAMI, FLORIDA

# SAMFORD #5 PLANT ANALYSES OF FUEL DIL FIRED MARCH 1991

DATE SAMPLE RECEIVED AT LABORATORY	03-20-91	
API GRAVITY	10.8	
DENSITY, LB/GAL	9.281	
DENSITY, LB/BBL	347.802	
HEAT OF COMBUSTION, BTU/LB	18187	
HEAT OF COMBUSTION, BTU/GAL	150607	
MEAT OF COMBUSTION, MBTU/BEL	6325	
WATER, % BY VOLUME	1.0	
SEDIMENT, % BY WEIGHT	0.07	
SULFUR, % BY WEIGHT	o.97	
SULFUR DIOXIDE EQUIVALENT, LB/MBTU	1.07	
ASH, % BY WEIGHT	0.05	
PARTICULATE EQUIVALENT, LB/MBTU	0.03	
VANADIUM IN ASH AS V205, % BY WEIGHT	5	
VANADIUM IN OIL AS V205, PPM	27	
VANADIUM IN OIL AS V, PPM	15	
VISCOSITY, SSF @ 122F	67	
ASPHALTENES, % BY WEIGHT	2.4	

RECEIVED

APR 0 1 1991

ENV. PERMITTING

COPIES TO: PSN PLANT MGR.

R N ALLEN - JENZEDO PLANT RESULTS DEPT

K WASHINGTON - PRS/EDO CERTIFIED BY:



P.O. Box 078768, West Palm Beach, #33407-0768 5500 Village Blvd.

RECE 1991

DER-BAQM

April 8, 1991

Mr. A. Alexander, Deputy Assistant Secretary State of Florida Department of Environmental Regulation Central Florida District 3319 Maguire Blvd., Suite 232 Orlando, Florida 32803

RE:

Sanford Plant, Unit No. 4 Orimulsion Test Burn Fuel Analysis - As Received

Dear Mr. Alexander:

As required in specific condition No. 7e of the Department permit authorizing the Orimulsion Test Burn at FPL's Sanford Unit No. 4, enclosed please find a copy of the analysis of Orimulsion fuel received at the Jacksonville terminal on March 21, 1991.

Please call me at (407) 697-6926 if you have any questions.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

Enclosure

cc:

Cindy Phillips - DER/Tall

APR 0 1 1991

POWER RESOURCES CENTRAL LABORATORY

FLORIDA POWER AND LIGHT COMPANY

STATE OF FLORIDA LABORATORY CERTIFICATION NUMBERS OF PERMITTING DRINKING WATER CERTIFICATION NUMBER: 56275 DRINKING WATER CERTIFICATION NUMBER: ENVIRONMENTAL CHEMISTRY CERTIFICATION NUMBER: E56078

## AS-RECEIVED - PSN ORIMULSION

HEAGET - PROVINCE CONTROL (BETTERDIC HEA

VESSEI	FRONT CONDOR (DEL	•
DATE COLL'D: 03-21-91 DATE	REC'D: 03-22-91	DATE REPORTED: 03-28-91
AA .	ALYTICAL METHOD	RESULT
DENSITY @60F, g/cm3	(ASTM D-4052)	1.0103 *
DENSITY @60F, lbs/BBL	(1.511. 5 4052)	354.107 *
BTU/LB	(ASTM D-240)	12608 *
MBTU/BBL	,	4465 *
MBTU/TON		25216 *
% SULFUR	(ASTM D-1552)	2.8 *
	(ASTM D-4684)	437 *
SHEAR RATE = $139.1$		
% WATER	(ASTM D-95)	30 *
	(ASTM D-473)	0.37
	(ASTM D-482)	0.16
% ASPHALTENES	(IP-143)	8.1
VANADIUM (MG/KG)		244
SODIUM (MG/KG)		73
IRON (MG/KG)		8
NICKEL (MG/KG) MAGNESIUM (MG/KG)		57 370
POUR POINT, F		279 33
SO2 (LBS/MILLION BTU)		4.4
% CARBON, (BY WEIGHT)		59.19
% HYDROGEN, (BY WEIGHT)		7.44
% NITROGEN, (BY WEIGHT)		0.59 **
% OXYGEN, (BY DIFFERENCE)		<0.01
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
COMMENTS: * WITNESSED BY THOM ** ANALYZED BY SCH	MAS HAWES FOR CALEB WARZKOPF LABORATORY.	BRETT.
COPIES TO:		
J. ALCANTARA, PSN/PLT	M. MILLARES,	JPE/EDO
R. ALLEN, JEN/NP E. BISHOP, JEN/NP	J. NORMAN, PR	S/EDO
E. BISHOP, JEN/NP	K. OLEN, JRD/	NP
E. CALLANDER, FR/GO D. CHRISTIAN, JPE/EDO M. HALPIN, PSN/PLT	J. POCE, FR/G	0
D. CHRISTIAN, JPE/EDO	R. RUHLMAN, P	SN/PLT
M. HALPIN, PSN/PLT	B. STUART, PS	N/PLT
D. KNUTSON, PRS/EDO	G. TABOR, FR/	GO
R. LIPPMAN, FR/GO	R. YOUNG, PSN	/ PLT

CERTIFIED BY:

April 4, 1991

RECEIVED

APR 8 1991

Mr. John Gray C/O Pinnacle Company 5445-6 Delaney Avenue Orlando, Florida 32801

DER BAOM

RE:

Sanford Plant, Unit No. 4

Orimulsion Test Burn

Weekly Opacity Reports - March 25-31, 1991

Dear Mr. Gray:

As was agreed during the meeting held on March 5, 1991 between representatives of the Gray family and of FPL, attached please find a copy of the Weekly Opacity Research Status Report relevant to the Orimulsion Test Burn at our Sanford Plant, Unit No. 4 for the week of March 25-31, 1991. This is one of several reports submitted to the Florida DER on a weekly basis, as required by the Department's permit authorizing the Test Burn.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:im

Enclosure

cc:

Cindy Phillips - DER/Tall (w/o encl.)

Charles M. Collins - DER/Orlando (w/o encl.)

Sondra Gray - DeBary/Fla. (w/o encl.)

Inter-Office Correspondence

Te:

M.A. Smith

Date:

April 4, 1991

From:

M.P. Halpin

Department:

Sanford Plant

Subject:

ORIMULSION AIR
OPERATING PERMIT

This is the fifth of a series of weekly reports detailing our efforts to reduce opacity while combusting Orimulsion on Sanford Plant's Unit No. 4.

As reported previously, a statistical analysis of the relationship between opacity and key operating parameters indicates that the strongest correlation exists between opacity and fuel flow. Further analysis has now been done on one relationship between opacity and each of the fuel constituents.

This most recent analysis focused on the following fuel parameters: ash, water, sulfur, vanadium, magnesium, hydrogen and carbon. Through the use of multiple regression with each of the above variables treated as independent and opacity as the dependent variable, the magnesium constituent was the only parameter which exhibited a strong correlation to opacity.

We now plan to discuss our findings with the fuel supplier to determine how much control they have over the magnesium quantity and what opportunities might exist for adjusting it as an aid to opacity minimization.

Michael P. Halpin

Operations Superintendent

Sanford Plant

MPH/dd

cc: PSN File C-29

March 26, 1991

RECEIVED

DER. BAQM Ms. Cindy Phillips State of Florida Department of Environmental Regulation 2600 Blair Stone Road Tallahassee, Florida 32301

RE:

Sanford Plant, Unit No. 4 Orimulsion Test Burn

SO₂ Excess Emissions Reports

Dear Ms. Phillips:

As you requested, attached please find copies of memos signed by R. T. Ruhlman, Sanford Plant Manager, stating that there were no exceedences of the Orimulsion Test Burn SO, limit during January and February, 1991. This report will be included in all monthly report booklets in the future.

If you have any questions, please call me at (407) 697-6926.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

Enclosure

cc:

A. Alexander - DER/Orlando Charles Collins - DER/ Orlando

W. H. Green - HBG&S A. R. Morrison - HBG&S

Inter-Office Correspondence

To:

M.A. Smith, PhD-Mgr FPL

Date:

3/22/91

From:

Env. Affairs R.T. Ruhlman

Department:

PSN/PLT

Subject:

SANFORD UNIT 4 ORIMULSION PROJECT

MONTHLY SULFUR DIOXIDE EXCESS EMISSION REPORT

During the month of January, 1991 sulfur dioxide emission did not exceed the 4.3 pounds per million BTU input allowed based on the continuous emission monitors.

R.T. Ruhlman Plant Manager Sanford Plant

RTR/t PSN C-29.1

Inter-Office Correspondence

To:

M.A. Smith, PhD-Mgr FPL

Date:

3/22/91

From:

Env. Affairs R.T. Ruhlman

Department:

PSN/PLT

Subject:

SANFORD UNIT 4 ORIMULSION PROJECT

MONTHLY SULFUR DIOXIDE EXCESS EMISSION REPORT

During the month of February, 1991 sulfur dioxide emission did not exceed the 4.3 pounds per million BTU input allowed based on the continuous emission monitors.

R.T. Ruhlman Plant Manager Sanford Plant

RTR/t PSN C-29.1

RECEIVED

MAR 2 5 1991

DER - BAQIVI

March 22, 1991

Mr. A. Alexander, Deputy Assistant Secretary
State of Florida Department of Environmental Regulation
Central Florida District
3319 Maguire Blvd., Suite 232
Orlando, Florida 32802

RE:

Sanford Plant, Unit No. 4 Orimulsion Test Burn

SO, CEM

Dear Mr. Alexander:

As I discussed by phone on March 8, 1991 with Pius Sanabani of your staff, attached is a copy of a memo from the Spectrum Systems Engineer on site at our Sanford Plant, describing the circumstances which led to an outage of the sulfur dioxide continuous emissions monitor on that date.

Please call me at (407) 697-6926 if you have any questions.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

Elsa a. Beshop

EAB:jm

Enclosure

cc:

Cindy Phillips - DER/Tall W. H. Green - HBG&S A. R. Morrison - HBG&S

At approximately 11:00 p.m. on 3/7/91, the desiccant filter on the dilution air to the SO2 continuous emission monitor clogged up and the resulting back pressure blew the air line off. The lack of dilution air caused the SO2 readings on Unit 4 to read higher than normal.

At 6:00 a.m. 3/8/91 Mr. R. A. Davis was contacted by the plant Operating Superintendent of the problem and he responded immediately. At approximately 7:00 a.m. the filter had been changed and the SO2 continuous emission was back running normally. All subsequent calibrations of the SO2 monitor read normal with no adjustments needed. There were no ill effects to the monitor whatsoever. The total down time was 8 hours.

R. A. Davis, Spectrum Systems Site Engineer

March 27, 1991

RECEIVED

APR 1 1991

Mrs. Sondra Gray 37 Dirksen Drive DeBary, Florida 32713

DER-BAQM

RE:

Sanford Plant, Unit No. 4 Orimulsion Test Burn

Weekly Opacity Reports - March 18-24, 1991

Dear Mrs. Gray:

As was agreed during the meeting held on March 5, 1991 between representatives of the Gray family and of FPL, attached please find a copy of the Weekly Opacity Research Status Report relevant to the Orimulsion Test Burn at our Sanford Plant, Unit No. 4 for the week of March 18-24, 1991. This is one of several reports submitted to the Florida DER on a weekly basis, as required by the Department's permit authorizing the Test Burn.

Please note that as you were previously informed, Sanford Unit 4 was taken off line on March 13, 1991 and returned to service on March 23, 1991.

Sincerely,

Elsa A. Bishop

Senior Environmental Coordinator Florida Power & Light Company

EAB:jm

Enclosure

cc:

Cindy Phillips - DER/Tall (w/o encl.)

Charles M. Collins - DER/Orlando (w/o encl.)

John Gray - Orlando/Fla. (w/o encl.)