

Identification of Facility

Department of Environmental Protection

190044-001-AC

Division of Air Resources Management

APPLICATION FOR AIR PERMIT - NON-TITLE V SOURCE

See Instructions for Form No. 62-210.900(3)

I. APPLICATION INFORMATION

1.	. Facility Owner/Company Name:								
	Ronnie + Linda Graves								
2.	Site Name:								
	SUMTER CREMTION SERVICES, INC.								
3.	Facility Identification Number: 1/90044 [x] Unknown								
4.	Facility Location:								
	Street Address or Other Locator:	Sour	thand ave	2					
	City: BUSHNELL C	ounty:		Zip Code: 33513					
5.	Relocatable Facility?		6. Existing Per	mitted Facility?					
	[] Yes [x] No		[] Yes	[x] No					
Ar	plication Contact		• .						
1.	Name and Title of Application Con	tact:	7	- CT-leasmonta					
			j	Dept. of Environmenta					
	A Cala I			Protection					
Ma	arco A. Salgado								
				MAY 25 2006					
En	gineer			MAI 25 2005					
				Southwest District					
2.	Application Contact Mailing Addre								
	Organization/Firm: Matthews Crea	mation]	Division (former	ly IEE Co.)					
	Street Address: 2045 Sprint Blvd.								
	City: Apopka	St	ate: FL	Zip Code: 32703					
3.	Application Contact Telephone Nur	mbers:							
	Telephone: (407)886-5533		Fax: (407)8	386-5990					
Ar	Application Processing Information (DEP Use)								
1.	Date of Receipt of Application:	5/2	25/06						
2.	Permit Number:	1191	2014-101-	Ar					

1

DEP Form No. 62-210.900(3) - Form

Purpose of Application

Air Operation Permit Application

Th	is	Application for Air Permit is submitted to obtain: (Check one)							
[] Initial non-Title V air operation permit for one or more existing, but previously unpermitted, emissions units.								
[]	Initial non-Title V air operation permit for one or more newly constructed or modified emissions units.							
		Current construction permit number:							
[]	Non-Title V air operation permit revision to address one or more newly constructed or modified emissions units.							
		Current construction permit number:							
		Operation permit number to be revised:							
[]	Initial non-Title V air operation permit under Rule 62-210.300(2)(b), F.A.C., for an existing facility seeking classification as a synthetic non-Title V source.							
		Current operation/construction permit number(s):							
[]	Non-Title V air operation permit revision for a synthetic non-Title V source. Give reason for revision; e.g., to address one or more newly constructed or modified emissions units.							
		Operation permit number to be revised:							
		Reason for revision:							
Ai	ir (Construction Permit Application							
Th	nis	Application for Air Permit is submitted to obtain: (Check one)							
[X	[]	Air construction permit to construct or modify one or more emissions units.							
]	Air construction permit to make federally enforceable an assumed restriction on the potential emissions of one or more existing, permitted emissions units.							
ſ	1	Air construction permit for one or more existing, but unpermitted, emissions units.							

2

Owner/Authorized Representative

1. Name and Title of Owner/Authorized Representative:										
Ronnie Graves - President										
2. Owner/Authorized Representative Mailing Address:										
Organization/Firm: SUMTER CREMATION SERVICES, IND Street Address: 720 East SouthLond ave										
City: BUSHNELL State: FL Zip Code: 335/3										
3. Owner/Authorized Representative Telephone Numbers: Telephone: $352-793-4477$ Fax: $352-793-1448$										
4. Owner/Authorized Representative										
this application. I hereby certify, inquiry, that the statements made that, to the best of my knowledge, are based upon reasonable techni emissions units and air pollution operated and maintained so as to pollutant emissions found in the subject that the permit, if granted by the Department										
Signature	Date									
	,									
* Attach letter of authorization if not	* Attach letter of authorization if not currently on file.									
·										
	currently on file.									
Professional Engineer Certification										
Professional Engineer Certification 1. Professional Engineer Name: Dal										
1. Professional Engineer Name: Dal	e E. Walter									
 Professional Engineer Name: Dal Registration Number: 56697 Professional Engineer Mailing Ad 	e E. Walter									
 Professional Engineer Name: Dal Registration Number: 56697 Professional Engineer Mailing Ad 	e E. Walter Idress: remation Division (formerly IEE Co.)									
 Professional Engineer Name: Dala Registration Number: 56697 Professional Engineer Mailing Adorganization/Firm: Matthews Cr 	e E. Walter Idress: remation Division (formerly IEE Co.)									
 Professional Engineer Name: Dala Registration Number: 56697 Professional Engineer Mailing Ad Organization/Firm: Matthews Cr Street Address: 2045 Sprint Blvd 	e E. Walter Idress: remation Division (formerly IEE Co.) I. State: FL Zip Code: 32703									
 Professional Engineer Name: Dala Registration Number: 56697 Professional Engineer Mailing Ad Organization/Firm: Matthews Cr Street Address: 2045 Sprint Blvd City: Apopka 	e E. Walter Idress: remation Division (formerly IEE Co.) I. State: FL Zip Code: 32703 Numbers: Fax: (407)886-5990									

DEP Form No. 62-210.900(3) - Form Effective: 2/11/99

4. Professional Engineer Statement:

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [x], if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [], if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Dalie.)altr	 t.		7	12012	206	
Signature		• •		Date		•	
	•		•		•		•

* Attach any exception to certification statement.

AL

No. 8509)

Empo or value month constructed by involitiod waterbook calls (chaok here Egypologie dem solumbie en cintern abung chengen dangbed og pom of this

an tur arak italih birak barapat di dipaputan dan pakir bir bir bir bir Migalif iya adagan birak paf

ร ให้เมษากระเทา รามีเห็นได้ผู้สหราชที่สุด เพื่อ

STATE OF SELECTION OF A CONTROL OF THE CONTROL OF STATE OF SELECTION DESIGNATION OF STATE OF

ONAL ENGINEER OF THE PROPERTY OF THE PROPERTY

DEP Form No. 62-210.900(3) - Form

Scope of Application

Emissions		Permit	Processing
Unit ID	Description of Emissions Unit	Type	Fee
	Dual chamber gas-fired cremation unit for	AC1F	\$250
001	animal remainsPower-Pak II		
-			
	· ·		
			•

Application Processing Fee

Check one: [X] Attached -	Amount: \$ <u>250</u> [j Not Applicable
---------------------------	-------------------------	------------------

DEP Form No. 62-210.900(3) - Form

Construction/Modification Information

1. Description of Proposed Project or Alterations:						
Installation of Matthews Cremation Division Power-Pak II Pet Cremator.						
2. Projected or Actual Date of Commencement of Construction:						
2. Projected or Actual Date of Commencement of Construction: JULY-AUGUST 2006 3. Projected Date of Completion of Construction: Oct-Nov 2006						
Application Comment						
Application Comment						

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1.	1. Facility UTM Coordinates:									
	Zone: 17	East (km)	: 391.571 Nort	th (km): 3170.276						
2.	Facility Latitude/Longitude:									
	Latitude (DD/MM/	SS): 28/39/18	Longitude (DD/MN	A/SS): 82/06/34						
3.	Governmental	4. Facility Status	5. Facility Major	6. Facility SIC(s):						
	Facility Code:	Code:	Group SIC Code:							
	0	C	65	6553						
_	P 31: 0	1: ::: 500 1								
7.	Facility Comment (limit to 500 characters):								

Facility Contact

1.	Name and Title of Facility Contact:
	RONNie Graves
2.	Facility Contact Mailing Address:
	Organization/Firm: 5 UMTER CREMATION SERVICES, INC
	Organization/Firm: 5 4MTER CREMATION SERVICES, INC. Street Address: 720 Eqst SouthLand Que
	City: BUSHNECL State: FL Zip Code: 33513
3.	Facility Contact Telephone Numbers:
	Telephone: Fax:
	352-793-4477 352-793-1448

7

DEP Form No. 62-210.900(3) - Form

Facility Regulatory Classifications

Check all that apply:

1.	[]	Small Business Stationary Source? [X] Unknown					
2.	[]	Synthetic Non-Title V Source?					
3.	[]	Synthetic Minor Source of Pollutants Other than HAPs?					
4.	[]	Synthetic Minor Source of HAPs?					
5.	[]	One or More Emissions Units Subject to NSPS?					
6.	[]	One or More Emission Units Subject to NESHAP Recordkeeping or Reporting?					
7.	Fa	cil	ity Regulatory Classifications Comment (limit to 200 characters):					
Tb	This facility is a minor source.							

Rule Applicability Analysis

This facility is subject to the general regulations found in 62-210.300 FAC and 62-212.300 FAC and specifically to the animal crematory regulations in 62-296.401(6) FAC.

B. FACILITY POLLUTANTS

List of Pollutants Emitted

1. Pollutant Emitted	2. Pollutant Classif.	3. Requested En	missions Cap	4. Basis for Emissions	5. Pollutant Comment
	0.00	lb/hour	tons/year	Сар	
PM	В	no cap	no cap		no emission rate cap
со	В	no cap no cap			no emission rate cap
		 !			
	,				

DEP Form No. 62-210.900(3) - Form

C. FACILITY SUPPLEMENTAL INFORMATION

Supplemental Requirements

1.	Area Map Showing Facility Location:						
	[X] Attached, Document ID: A	[]	Not Applicable	[]	Waiver Requested
2.	Facility Plot Plan:						
	[X] Attached, Document ID: B	[]	Not Applicable	[]	Waiver Requested
3.	Process Flow Diagram(s):						
	[X] Attached, Document ID: C	[]	No	ot Applicable	[]	Waiver Requested
4.	Precautions to Prevent Emissions of Un	con	fine	ed Particulate M	atter	:	
	[] Attached, Document ID:	[]	K] 1	Not Applicable	[]	Waiver Requested
5.	Supplemental Information for Construct				1:		
	[] Attached, Document ID:	[]	K]]	Not Applicable			
6.	Supplemental Requirements Comment:						
						•	
							•

DEP Form No. 62-210.900(3) - Form

III. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through G as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

A. GENERAL EMISSIONS UNIT INFORMATION

Emissions Unit Description and Status

1.	. Type of Emissions Unit Addressed in This Section: (Check one)				
[X	[X] This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).				
[process or production unit	mation Section addresses, as a single and activities which has at least so produce fugitive emissions.	, , ,		
[_	mation Section addresses, as a single and activities which produce fu	•		
	-	nit Addressed in This Section (lir	· · · · · · · · · · · · · · · · · · ·		
	•	ation unit for Human remains.	Matthews Cremation Division		
; N	; Model Power-Pak II				
3.	Emissions Unit Identification ID: 001	n Number:	√ [] No ID [] ID Unknown		
4.	Emissions Unit Status Code:	5. Initial Startup Date:	6. Emissions Unit Major Group SIC Code:		
	С		65		
7.	Emissions Unit Comment: (Limit to 500 Characters)			
Fu	Fuel is natural gas or LP gas.				
l					

DEP Form No. 62-210.900(3) - Form

Emissions Unit Information Section 1 of 1

Emissions Unit Control Equipment

1. Control Equipment/Method Description (limit to 200 characters per device or method):

The cremation unit is a multiple chamber design with a minimum secondary chamber operating temperature of 1600 °F.

2. Control Device or Method Code(s): 021

Emissions Unit Details

1.	Package Unit: cremation unit Manufacturer: Matthews Cremation Division	Model Number: Power-Pak II
2.	Generator Nameplate Rating:	MW
3.	Incinerator Information:	
	Dwell Temperature: >1200	°F
	Dwell Time: >1	seconds
	Incinerator Afterburner Temperature: >1600	°F

Emissions Unit Operating Capacity and Schedule

1.	Maximum Heat Input Rate:	2.2		mmBtu	/hr
2.	Maximum Incineration Rate:	150 (approx.)	lb/hr	1.8	tons/day
3.	3. Maximum Process or Throughput Rate:				
4.	. Maximum Production Rate:				
5.	Requested Maximum Operating S	chedule:			
	:	24 hours/day		7 days/	week
		52 weeks/year		8760 h	ours/year
6.	Operating Capacity/Schedule Com	nment (limit to 200	characters):		

The expected usage of this unit will be 2500 hours per year or less.

DEP Form No. 62-210.900(3) - Form

Emissions Unit Information Section 1 of 1

B. EMISSION POINT (STACK/VENT) INFORMATION

Emission Point Description and Type

1. Identification of Point on Plot Plan or Flow Diagram? stack		2. Emission Po	oint Type Code:		
3. Descriptions of Emission Po 100 characters per point):	1 0				
Single stack with unobstructe	Single stack with unobstructed vertical discharge.				
•	4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common:				
5. Discharge Type Code:	6. Stack Heig		7. Exit Diameter:		
V		feet	1.7 feet		
8. Exit Temperature:	9. Actual Vol	nated	10. Water Vapor:		
1200°F	Rate:	10. Water vapor.			
1200 1		acfm	10 70		
11. Maximum Dry Standard Flo			nission Point Height:		
750	dscfm			feet	
13. Emission Point UTM Coord	linates:			:	
	ast (km): 391.5		h (km): 3170.276		
14. Emission Point Comment (l	imit to 200 char	acters):	•		
UTM coordinates are estimated.					

13

DEP Form No. 62-210.900(3) - Form

Emissions Unit Information Section 1 of 1

C. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 1

Segment Description (Proc	1. Segment Description (Process/Fuel Type) (limit to 500 characters):			
Cremation of animal remain	ıs with gas fuel.			
,				
2. Source Classification Code 5-02-005-05	e (SCC):	3. SCC Units): 	tons
4. Maximum Hourly Rate: 0.075	5. Maximum 65	Annual Rate: 57	6.	Estimated Annual Activity Factor: n/a
7. Maximum % Sulfur: unknown	8. Maximum unkr	% Ash: nown	9.	Million Btu per SCC Unit:
10. Segment Comment (limit t	to 200 characters	s):	**********	***************************************
Actual annual rate expected	to be 188 tons (or less.		
Segment Description and Ra	ite: Segment	of		
1. Segment Description (Prod	cess/Fuel Type)	(limit to 500 ch	narac	eters):
2. Source Classification Code	e (SCC):	3. SCC Units		
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:
10. Segment Comment (limit t	to 200 characters	s):		

DEP Form No. 62-210.900(3) - Form

Pollutant Detail Information Page 1 of 5

D. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION

Potential Emissions

1. Pollutant Emitted: PM		2. Pollutant Regulatory Code: EL			
3. Primary Control Device	•	Control Device	5. Total Percent Efficiency		
Code: 021	Code:		of Control:		
6. Potential Emissions:			7. Synthetically Limited?		
0.51 lb/hour 2 .	.23 tons/year		[]		
8. Emission Factor: see com	ment		9. Emissions Method Code:		
Reference:					
			. 0		
10. Calculation of Emissions ((limit to 600 cha	racters):			
Emission Rate = 0.08 gr/dsc	Emission Rate = $0.08 \text{ gr/dscf } \times 750 \text{ dscf/min } \times 60 \text{ min/hr} / 7000 \text{ gr/lb} = 0.51 \text{ lb/hr}$				
Emission Rate (tpy) = $0.51 \text{ lb/hr} \times 8760 \text{ hr/yr} / 2000 \text{ lb/ton} = 2.23 \text{ ton/year}$			2.23 ton/year		
11. Pollutant Potential Emissions Comment (limit to 200 characters):					
Potential emissions based on concentration limit of 0.08 gr/		lscf.			
			·		

Allowable Emissions 1 of 1

1. Basis for Allowable Emissions Code:	2. Future Effective Date of A	Allowable		
rule	Emissions:			
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Em	issions:		
0.08 grains/dscf @ 7% O ₂	lb/hour	tons/year		
5. Method of Compliance (limit to 60 character	s):			
<u>*</u> `	Submission of an EPA method 5 stack test report from an identical cremation unit in			
Florida.	·			
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters): rule- 62-296.401(6)(a) FAC				

DEP Form No. 62-210.900(3) - Form

D. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION

Potential Emissions

1. Pollutant Emitted: CO		2. Pollutant Regulatory Code: EL		
3. Primary Control Device Code: 021	4. Secondary Code:	Control Device	5. Total Percent Efficiency of Control:	
	.5 tons/year		7. Synthetically Limited? []	
8. Emission Factor: see com	ment		9. Emissions Method Code:	
Reference:			0	
10. Calculation of Emissions ((limit to 600 cha	racters):		
Emission Rate = [100ppm x 1.14mg/cu.m. x 750 dscfm x 60 min/hr] / [453600 mg/lb x 35.3 cu.ft./cu.m.] = 0.33 lb/hr Emission Rate (tpy) = 0.33 lb/hr x 8760 hr/yr / 2000 lb/ton = 1.5 ton/year				
11. Pollutant Potential Emissions Comment (limit to 200 characters):				
Potential emissions based on	concentration	limit of 100 ppm		

Allowable Emissions 1 of 1

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable		
rule	Emissions:		
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
100 ppm @ 7% O ₂	lb/hour tons/year		
5. Method of Compliance (limit to 60 characters): Submission of an EPA method 5 stack test report from an identical cremation unit in Florida.			
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):			
rule- 62-296.401(6)(b) FAC			

DEP Form No. 62-210.900(3) - Form

Pollutant Detail Information Page 3 of 5

D. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION

Potential Emissions

1. Pollutant Emitted: NOx	2. Pollutant Regulatory Code: NS				
3. Primary Control Device 4. Secondary Code: n/a Code:	Control Device	5. Total Percent Efficiency of Control:			
6. Potential Emissions: 0.88 lb/hour 3.9 tons/year		7. Synthetically Limited? []			
8. Emission Factor: see comment		9. Emissions Method Code:			
Reference:		5			
10. Calculation of Emissions (limit to 600 cha	racters):				
Emission Rate (tpy) = $0.88 \text{ lb/hr} \times 8760 \text{ hr/y}$	/r / 2000 lb/ton =	3.9 ton/vear			
(P ,)					
		The same of the sa			
11. Pollutant Potential Emissions Comment (1	imit to 200 charac	ters):			
See attachment "Calculation of Emissions".					
Allowable Emissions Allowable Emissions	of				
1. Basis for Allowable Emissions Code:	2. Future Eff Emissions	ective Date of Allowable:			
3. Requested Allowable Emissions and Units	: 4. Equivalen	t Allowable Emissions:			
	1	lb/hour tons/year			
5. Method of Compliance (limit to 60 characters):					
6. Allowable Emissions Comment (Desc. of	6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):				
, , , , , , , , , , , , , , , , , , ,					

D. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION

Potential Emissions

1. Pollutant Emitted: SO ₂	2. Pollutant Regulatory Code: NS			
3. Primary Control Device 4. Secondary Code: n/a Code:	Control Device	5. Total Percent Efficiency of Control:		
6. Potential Emissions: 0.11 lb/hour 0.48 tons/year		7. Synthetically Limited? []		
8. Emission Factor: see comments		9. Emissions Method Code:		
Reference:		5		
10. Calculation of Emissions (limit to 600 cha	racters):			
Emission Rate $(tpy) = 0.11 lb/hr \times 8760 hr/y$	vr / 2000 lb/ton =	0.48 ton/year		
		•		
·				
		The state of the s		
11. Pollutant Potential Emissions Comment (limit to 200 characters):				
See attachment "Calculation of Emissions".				
Allowable Emissions Allowable Emissions	of			
1. Basis for Allowable Emissions Code:	2. Future Eff Emissions	ective Date of Allowable:		
3. Requested Allowable Emissions and Units	s: 4. Equivalent	t Allowable Emissions:		
	1	lb/hour tons/year		
5. Method of Compliance (limit to 60 characters):				
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):				

DEP Form No. 62-210.900(3) - Form

D. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION

Potential Emissions

1. Pollutant Emitted: VOC	2. Pollutant Regulatory Code: NS		
3. Primary Control Device 4. Secondary Code: n/a Code:	Control Device 5. Total Percent Efficiency of Control:		
6. Potential Emissions: 0.01 lb/hour 0.04 tons/year	7. Synthetically Limited? []		
8. Emission Factor: see comments	9. Emissions Method Code:		
Reference:	5		
10. Calculation of Emissions (limit to 600 cha	racters):		
Emission Rate (tpy) = 0.01 lb/hr x 8760 hr/yr / 2000 lb/ton = 0.04 ton/year			
11. Pollutant Potential Emissions Comment (limit to 200 characters): See attachment "Calculation of Emissions".			
Allowable Emissions Allowable Emissions	of		
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3. Requested Allowable Emissions and Units	4. Equivalent Allowable Emissions:		
	lb/hour tons/year		
5. Method of Compliance (limit to 60 characters):			
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):			
I .	•		

19

DEP Form No. 62-210.900(3) - Form

E. VISIBLE EMISSIONS INFORMATION (Only Emissions Units Subject to a VE Limitation)

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1. Visible Emissions Subtype:	2. Basis for Allowable Opacity:		
VE05	[X] Rule [] Other	
3. Requested Allowable Opacity:			
	ceptional Conditions:	20 %	
Maximum Period of Excess Opacity Allowe	ed:	3 min/hour	
4. Method of Compliance: EPA Method 9			
	•		
5. Visible Emissions Comment (limit to 200 c	haracters):		
,	,		
,			
F. CONTINUOUS MO	NITOR INFORMATION		
(Only Emissions Units Subj		g)	
Continuous Monitoring System: Continuous	Monitor 1 of 1		
1. Parameter Code: TEMP	2. Pollutant(s):		
3. CMS Requirement:	[X] Rule []	Other	
4. Monitor Information:			
Manufacturer: Partlow			
Model Number: MRC 5000	Serial Number: n	ot available	
5. Installation Date:	6. Performance Specification	on Test Date:	
7. Continuous Monitor Comment (limit to 200	characters):		
,	,		
Secondary combustion chamber temperature			
	•		

20

DEP Form No. 62-210.900(3) - Instructions Effective: 2/11/99

G. EMISSIONS UNIT SUPPLEMENTAL INFORMATION

Supplemental Requirements

	Process Flow Diagram [X] Attached, Document ID: C [] Not Applicable [] Waiver Requested					
2.	Fuel Analysis or Specification [] Attached, Document ID: [] Not Applicable [X] Waiver Requested					
3.	Detailed Description of Control Equipment [] Attached, Document ID: [X] Not Applicable [] Waiver Requested					
4.	Description of Stack Sampling Facilities [] Attached, Document ID: [X] Not Applicable [] Waiver Requested					
5.	Compliance Test Report					
	[X] Attached, Document ID: H [Stack test Report]					
	[] Previously submitted, Date:					
	[] Not Applicable					
6.	Procedures for Startup and Shutdown [] Attached, Document ID: [X] Not Applicable [] Waiver Requested					
7.	Operation and Maintenance Plan [] Attached, Document ID: [X] Not Applicable [] Waiver Requested					
8.	Supplemental Information for Construction Permit Application [X] Attached, Document ID: D,E,F [] Not Applicable					
9.	Other Information Required by Rule or Statute					
	[X] Attached, Document ID: H [X] Not Applicable					
10	Supplemental Requirements Comment:					
At At At	Attachment D: Calculation of emissions- Power-Pak II (NOx, SO2, VOC) Attachment E: Elevation drawings of cremation unit Attachment F: Cremator mass balance Attachment G: Training program approval letter					

21

DEP Form No. 62-210.900(3) - Instructions Effective: 2/11/99

Air Emissions Testing IE43-PPII, Power-Pak II Cremator

Reflections Pet Funeral Home Pinellas Park, Florida

May 7, 2002

Testing Performed By:

Southern Environmental Sciences, Inc.

Air Emissions Testing

IE43-PPII, Power-Pak II Cremator

Reflections Pet Funeral Home Pinellas Park, Florida

May 7, 2002

Table of Contents

		<u>Page</u>
1.0	INTRODUCTION	1
2.0	SUMMARY OF RESULTS	1
3.0	PROCESS DESCRIPTION	3
4.0	SAMPLING PROCEDURES	5
·	4.1 Methods4.2 Sampling Locations4.3 Sampling Trains4.4 Sample Collection4.5 Sample Recovery	5 5 7 7 10
5.0	ANALYTICAL PROCEDURE	10
	5.1 Pretest Preparation5.2 Analysis	10 10
APP	ENDIX	11

Project Participants
Certification
Visible Emissions Evaluation
Temperature Chart
Daily Log Sheet
Laboratory Data
Field Data Sheets
Gas Analysis Sheets
CO Strip Charts
Calibration Data
Calculations and Symbols
Field Data Sheets for Run #1

1.0 INTRODUCTION

Southern Environmental Sciences, Inc. conducted emissions testing of the Industrial Equipment & Engineering Company Model IE43-PPII, Power-Pak II cremator (serial number 0691201) on May 7, 2002. The unit is located at Reflections Pet Funeral Home in Pinellas Park, Florida (permit number 1030136-004-AC). Testing was conducted for the particulates, carbon monoxide, and visible emissions. Oxygen (O_2) concentrations were measured in order to correct results to $7\% O_2$.

2.0 SUMMARY OF RESULTS

The equipment was found to be in compliance with all applicable emission limiting standards. Results of the particulate and carbon monoxide testing for runs 2, 3, and 4 are summarized in Table 1.

The average measured particulate emission concentration was 0.022 grains per dry standard cubic foot (corrected to 7% O₂).

The average measured carbon monoxide emission concentration was 2.5 parts per million by volume (corrected to 7% O₂).

A visible emissions evaluation was conducted over a 60-minute period. The maximum three minute average opacity was 0 percent.

The data for the first run, run 1, were not valid because of a problem with the pitot tube used in the sampling train. The field data sheets for run 1 are included in the appendix. The data were not analyzed.

EMISSIONS TEST SUMMARY

Company: REFLECTION PET FUNERAL HOME

Source: IEE POWER-PAK II ANIMAL CREMATORY

	Run 2	Run 3	Run 4
Date of Run	5/7/02	5/7/02	5/7/02
Start Time (24-hr. clock)	1456	1628	1916
End Time (24-hr. clock)	1554	1742	2028
Vol. Dry Gas Sampled Meter Cond. (DCF)	31.172	47.554	50.327
Gas Meter Calibration Factor	1.000	1.000	1.000
Barometric Pressure at Barom. (in. Hg.)	30.15	30.09	30.08
Elev. Diff. Manom. to Barom. (ft.)	0	0	0
Vol. Gas Sampled Std. Cond. (DSCF)	30.172	45.527	48.276
Vol. Liquid Collected Std. Cond. (SCF)	2.801	5.587	6.177
Moisture in Stack Gas (% Vol.)	8.5	10.9	11.3
Molecular Weight Dry Stack Gas	29.62	29.36	29.40
Molecular Weight Wet Stack Gas	28.63	28.11	28.11
Stack Gas Static Press. (in. H2O gauge)	-0.02	-0.01	-0.01
Stack Gas Static Press. (in. Hg. abs.)	30.15	30.09	30.08
Average Square Root Velocity Head	0.167	0.196	0.199
Average Orifice Differential (in. H2O)	0.814	1.213	1.290
Average Gas Meter Temperature (Deg. F)	90.8	96.3	95.1
Average Stack Gas Temperature (Deg. F)	1393.5	1291.1	1207.3
Pitot Tube Coefficient	0.84	0.84	0.84
Stack Gas Vel. Stack Cond. (ft./sec.)	17.56	20.27	20.05
Effective Stack Area (sq. ft.)	2.18	2.18	2.18
Stack Gas Flow Rate Std. Cond. (DSCFM)	604	717	741
Stack Gas Flow Rate Stack Cond. (ACFM)	2,298	2,654	2,625
Net Time of Run (min.)	60.0	72.0	72.0
Nozzle Diameter (in.)	0.601	0.601	0.601
Percent Isokinetic	92.3	97.7	100.3
Oxygen (%)	8.4	10.7	10.0
Particulate Collected (mg.)	31.0	56.6	56.5
Particulate Emissions (lb./hr.)	0.082	0.118	0.115
Particulate Emissions (gr./DSCF)	0.016	0.019	0.018
Particulate Emissions (gr./DSCF @ 7% 02)	0.018	0.026	0.023
Avg. Particulate Emissions (gr./DSCF @ 7) Allowable Part. Emissions (gr./DSCF @ 7%)		0.022 0.08	
CO Emissions (ppm)	4.1	1.0	1.2
CO Emissions (ppm @ 7% O2)	4.6	1.4	1.6
Avg. CO Emissions (ppm @ 7% O2)	,,,	2.5	
Allowable CO Emissions (ppm @ 7% 02)		100	

Note: Standard conditions 68°F, 29.92 in. Hg

3.0 PROCESS DESCRIPTION

The Power-Pak II cremator has a multiple chamber design with a 150 pound per hour nominal burning capacity of animal remains. Animal remains are loaded into the primary chamber. The afterburner ignites and heats the secondary chamber to the required temperature. A process controller that automatically modulates the gas supply to the afterburner maintains the secondary chamber temperature.

After the secondary chamber has been heated sufficiently, the cremation burner ignites and the cremation process is initiated. A typical batch of animals takes 60 to 150 minutes to burn, but the time may vary depending upon various factors.

A gas flow schematic is shown in Figure 1. Process rates for the test are included in the appendix.

AIR SCHEMATIC

4.0 SAMPLING PROCEDURES

4.1 Methods

Particulate sampling and analyses were conducted in accordance with EPA Method 5 - Determination of Particulate Emissions from Stationary Sources, 40 CFR 60, Appendix A. Carbon monoxide emissions were conducted in accordance with EPA Method 10 - Determination of Carbon Monoxide Emissions from Stationary Sources, 40 CFR 60, Appendix A. The visible emissions evaluation was performed in accordance with EPA Method 9 - Visual Determination of the Opacity of Emissions from Stationary Sources, 40 CFR 60, Appendix A. The oxygen content of the stack was determined in accordance with EPA Method 3 - Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, and Dry Molecular Weight, 40 CFR 60, Appendix A.

4.2 Sampling Locations

Locations of the sample ports and stack dimensions are shown in Figure 2. Particulate sampling was accomplished by conducting horizontal traverses through each of two ports located on the stack at a 90° angle from one another. Twenty-four sample points were chosen in accordance with EPA Method 1 - Sample and Velocity Traverses for Stationary Sources, 40 CFR 60, Appendix A. Carbon monoxide and oxygen sampling were performed from the same sampling ports as the particulate sampling.

Stack Dimensions and Sample Port Locations, Reflections Pet Funeral Home, IEE Power-Pak II Animal Crematory, Reflections Pet Funeral Home, St. Petersburg, Florida

Figure 2.

4.3 Sampling Trains

The particulate sampling train consisted of a Nutech Corporation 3 foot water-cooled probe utilizing a heated stainless steel liner, heated glass fiber filter, and four impingers arranged as shown in Figure 3. Flexible tubing was used between the heated filter and the impingers. The first two impingers were each charged with 100 milliliters of water, the third served as a dry trap, and the fourth impinger was charged with indicating silica gel desiccant. The impingers were cooled in an ice and water bath during sampling. A Nutech Corporation control console was used to monitor the gas flow rates and stack conditions during sampling.

The carbon monoxide sampling train (Figure 4) consisted of a stainless steel probe, teflon sample line, condenser, silica gel and ascarite tubes, and a Thermo Environmental Instruments, Inc. Model 48 Gas Filter Correlation Carbon Monoxide Analyzer.

The oxygen sampling train consisted of a probe, sample line, tedlar bag in a rigid container, valve, vacuum pump and flow meter.

4.4 Sample Collection

Prior to particulate sampling, the pitot tubes were checked for leaks and the manometers were zeroed. A pretest leak check of the particulate sampling train was conducted by sealing the nozzle and applying a 15" Hg. vacuum. A leak rate of less than 0.02 cubic feet per minute was considered acceptable. Particulate sample was collected isokinetically for two and one half minutes at each of the points sampled.

The carbon monoxide analyzer was calibrated immediately before the beginning and after the end of the test by introducing known gases into the instrument through the sampling train. Zero and a calibration gas were also introduced after each run.

The tedlar bag used for obtaining an integrated oxygen sample was leak checked prior to the test by pressurizing it to 2 to 4 in. H_2O and allowing it to stand overnight. A deflated bag indicated a leak. A one hour integrated sample was obtained at a rate of 0.5 liters per minute for each run.

Carbon monoxide and oxygen sampling were conducted simultaneously with particulate sampling.

EPA Method 5 Sampling Train.

Figure 3.

4.5 Sample Recovery

A post test leak check of the particulate sampling train was performed at the completion of each run by sealing the nozzle and applying a vacuum equal to or greater than the maximum value reached during the sample period. A leak rate of less than 0.02 CFM or 4 percent of the average sampling rate (whichever was less) was considered acceptable. The nozzle and probe were brushed and rinsed with reagent grade acetone and the washings were placed in clean polyethylene containers and sealed. The glass fiber filter was removed from the holder with forceps and placed in a covered petri dish for return to the laboratory. The front half of the filter holder was rinsed with acetone and the washings were added to the nozzle and probe wash. The contents of the first three impingers were measured volumetrically and the silica gel in the fourth impinger was weighed to the nearest 0.1 gram for determination of moisture content.

Two calculations of the moisture content of the stack gas were made for each run, one from the impinger analysis and one from the assumption of saturated conditions based upon the average stack gas temperature and a psychrometric chart as described in EPA Method 4 - Determination of Moisture Content in Stack Gases, 40 CFR 60, Appendix A. The lower of the two values of moisture content was considered to be correct.

5.0 ANALYTICAL PROCEDURE

5.1 Pretest Preparation

The glass fiber filters for the particulate train were numbered, oven dried at 105° C for three hours, desiccated and weighed to a constant weight in preparation for the test. Results were recorded to the nearest 0.1 milligram. Filters were loaded into holders and a filter was set aside as a control blank. The impingers were charged as described in section 4.3 and the contents of the fourth impinger were weighed to the nearest 0.1 gram.

5.2 Analysis

Upon return to the laboratory, the particulate filters were removed from the containers with forceps, dried at 105° C for three hours, desiccated and weighed to a constant weight. Results were recorded to the nearest 0.1 milligram. The probe and nozzle washes and an acetone blank were measured volumetrically and transferred to clean, tared evaporating dishes and evaporated to dryness over low heat. The evaporating dishes were then oven dried at 105° C for three hours, desiccated and weighed to a constant weight. Results were recorded to the nearest 0.1 milligram. The total particulate reported is the sum of the filter weight gain and the weight gain of the evaporating dishes, corrected for the acetone blank.

EPA Method 10 Sampling Train.

Figure 4.

APPENDIX

Project Participants

Certification

Visible Emissions Evaluation

Temperature Chart

Daily Log Sheet

Laboratory Data

Field Data Sheets

Gas Analysis Sheets

CO Strip Charts

Calibration Data

Calculations and Symbols

Field Data Sheets for Run #1 (Not Analyzed)

PROJECT PARTICIPANTS AND CERTIFICATION

REFLECTION PET FUNERAL HOME IEE - POWER-PAK II ANIMAL CREMATORY

St. Petersburg, Florida

May 7, 2002

Project Participants:

Byron E. Nelson

Terry L. Wilson

Travis B. Nelson

Byron E. Nelson

Kenneth M. Roberts

Kenneth M. Roberts

Conducted the field testing.

Performed the visible emissions

evaluation.

Performed laboratory analyses.

Computed test results.

Certification:

I certify that to my knowledge all data submitted in this report is true and correct.

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 North Wheeler Street, Plant City, Florida 33566 (813)752-5014

VISIBLE EMISSIONS EVALUATION

15.117	s Pet Funeral Home				
Animal Cr	ematery				
ADDRESS					
Pineilas (Park, FL				
PERMIT NO. 1030136-004-14(COMPLIANCE?				
AIRS NO. 1030136	EU NO.				
PROCESS RATE 35c わななら	PERMITTED RATE 350 16/ho				
PROCESS EQUIPMENT IEE Power-P	aKII				
CONTROL EQUIPMENT	mber				
operating mode Natural gastired	AMBIENT TEMP. (°F) START~90STOP~90				
HEIGHT ABOVE GROUND LEVEL START ~ 15' STOP ~ 15'	HEIGHT REL. TO OBSERVER				
DISTANCE FROM OBSERVER START ~75' STOP ~75'	DIRECTION FROM OBSERVER START 45 STOP 45				
EMISSION COLOR	PLUME TYPE NA CONTIN. O INTERMITTENT O				
WATER DROPLETS PRESENT NO X YES D	IS WATER DROPLET PLUME NA ATTACHED D DETACHED D				
POINT IN THE PLUME AT WHICH OSTART Stack exit	OPACITY WAS DETERMINED STOP Stack exit				
DESCRIBE BACKGROUND START Trees	STOP Trees				
BACKGROUND COLOR START Green STOPG reen	SKY CONDITIONS START SEASONSTOP CIOUS				
WIND SPEED (MPH) START 6-3 STOP 6-3	WIND DIRECTION START W STOP NW				
AVERAGE OPACITY FOR HIGHEST PERIOD 570	RANGE OF OPAC, READINGS MIN. 0 75 MAX. 0 70				
SOURCE LAYOUT SKETCH	DRAW NORTH ARROW				
4. 94	Emission Point				
Sun * Wind	1				
Plume and Stack	Observer's Position				
	ation line				
Sun Location Line					
COMMENTS					

OBSERVATION DATE START TIME STOP TIME 5/7/02 2:52 Pm 3:52Pm									
SEC	0	15	30	45	SEC	0	15	30	45
MIN					MIN				
0	0	0	0	0	30	0	0	0	0
1	0	0	0	0	31	0	0	0	0
2	0	0	0	0	32	O	0	0	0
3	0	ပ	C	0	33	O	0	0	B
4	0	0	0	0	34	Ú	C	0	0
5	0	0	\mathcal{C}	0	35	C	0	0	0
6	٥	0	٥	0	36	C	0	0	0
7	0	C	C	0	37	0	0	0	0
8	0	0	0	0	38	0	0	0	0
9	0	0	0	۵	39	Ò		0	0
10	0	0	0	0	40	ح	0	٥	0
11	0	0	0	0	41	C	20	0	0
12	0	0	0	0	42	C	0	0	0
13	0	0	0	0	43	0	Q	0	0
14	0	0	0	0	44	C	0	0	0
15	0	0	0	S	45	0	0	0	0
16	0	0	0	0	46	0	0	0	0
17	0	0	0	0	47	2		0	0
18	0	0	0	0	48	C		0	0
19	0	C)	0	0	49	0		0	0
20	0	0	0	0	50	C	0	0	0
21		0	<u> </u>	0	51	C	10	0	0
22	0	0	<u>0</u>	0	52	9	10	0	0
23	0	0	0	0	53	2	10	0	0
24	0	4	٥	0	54	C	0	0	0
25	0	0	0	0	55	C	0 10	0	0
26	0	0	0	0	56	2	0	0	0
27	0	0	0	0	57	<u></u>		0	b
28	0	0	0	0	58	0	0 (0	0
29	0	0	0	0	59	10	10	0	0
Obse	rver:			4~	æn.	Z	1.1	عتله	
Certif	ied b	۷: ۴	Pz	م لح	ertifie	d at	Ta	mpa	PL
Date	Date Certified: 2/02 Exp. Date: 8/02								
I certify that all data provided to the person conducting the test was true and correct to the best of my knowledge:									
Signa	Signature: See Process Operational Title: Data								
Title:	Title: Data								

Chart Rewriter Parthon Model 51000011

Reflections Pet Funeral Home Cremation Log

					Home Cicinati	O	
Date	Time	Weight Loaded	Minimum Temperature	Total Run Time	Name of Pet Cremated	ID Tag #	Operator's Initials
5-762	11 "00 Am	350	156°	2.50	Communacs -		SEN.
	3ccpm	350	1652'	2.75	COMMUNALS - COMMUNALS		25NL
	715 PM	350	Ki52"	2.25	(CMMUNALS		FSM.
							
		·					

)

MOISTURE COLLECTED

Plant	Reflections Pet F	uneral	Home		·	
Unit Date Run N	Animal Cremato 5/7/02	~~1				
	Impinger Number	1	2	3	4	Weighed by:
	Final Weight (grams):	141.0	1130		260.3	70
	Initial Weight (grams):	100.0	100,0	<u> </u>	254.9	<u>iv</u>
	Difference (grams):	41.0	13.0	0	5.4	
	Total Condensate (grams):				59.4	
Unit Date Run N	Animal Crematory 5/7/02					
	Impinger Number	1	2	3	4	Weighed by:
	Final Weight (grams):	1966	106.0	<u>0.0</u>	266.4	BN
	Initial Weight (grams):	100.0	100,0	6.0	249.9	<u>8,0</u>
	Difference (grams):	96.0	6.6	0.0	16.5	
	Total Condensate (grams):				118.5	
Unit Date Run N	Animal Cremator	-4		·		
110111	Impinger Number	1	2	3	4	Weighed by:
	Final Weight (grams):	229.0	106.0	<u>0.0</u>	255.]	BN
	Initial Weight (grams):	1000	100,0	0.0	2471	BV
	Difference (grams):	1260	60	0.0	9.0	
	Total Condensate (grams):				131.0	

FIELD DATA SHEET

Source And Operator(s)	tions Pet Fune med trem /BN/TN		Run Number Date 24 hr Time at Start 24 hr Time at End	2 5/67/02 1554
Dimensions Dia⊠			Filter No(s).	6320
LxW□	20		Barometric Pressure ("Hg)	30.15
Static Press. ("H20)	-,02		Elev Diff. Mano. To Barom. (Ft)	
Meter Box No.	001		Ambient Temperature (°F)	80 ameter
Meter ∆H@	1.584	Assumptions		
Meter Correction Factor	1.000	% Moisture 10	Sample Train Leak Check:	_
Pitot Tube Cp	0.84	Stack Temp. 1400	Initial <u>0,006</u> CFM	@ <u>/S</u> "Hg
Nozzle ID	QTZ	Meter Temp	Final 0.012 CFM	@ <u>/'</u> 4"Hg
Nozzle Dia. (Inches)	.601	Md/Ms 1.02	Initial Pitot Tube (-)	(+)
Probe Length/Liner	3 35 QT2	K Factor 31.4	Final Pitot Tube (-)	(+)

/loist. Co	llected:- Im	p. No. 1	, Imp. No. 2 8	. 3 , In	np. No. 4	, Total	F	ilter Tare	Wt,	
Point No.	Sample Time (min.)	Meter Vol. Vm (ft³)	Vel. Head ΔP ("H₂O)	Orifice Diff. ΔH (″H₂O)	Stack Temp.,Ts (°F)	Meter Temp., Tm (°F)	Hot Box Temp. (°F)	Exit Temp. (°F)	Pump Vacuum ("Hg)	Other
1	0	143,567	1005	.17	1200	79	266	58	0,5	
2	2.5	144.31	009	.06	1300	79	265	58	1.0	
3	5	144.58	, 00£	1076	1377	79	261	58	1.0	
4	7.5	144.89	.002	,06	1468	79	2.45	58	0.5	ļ
5	10	144,98	.00%	.17	1442	80	241	58	1.0	ļ
6	12.5	145.69	,02	.63	1485	81	250	28	7.0	ļ
7	15^	146.48	.02	.63	1478	83	260	58	7.0	<u> </u>
8	17.5	147.71	.07	.63	1469	84	264	48	7.0	<u> </u>
9	70	148.92	.02	.63	1462	85	265	48	2.0	<u> </u>
10	22.5	150.16	102	,63	1436	37	262	48	7.0	<u> </u>
11	25	151.32	.02	.63	1413	89	250	48	7.0	
12	27.5	152,59	.03	, 94	1337	91	245	48	25	ļ
13	30 ,	154.05	,03	.94	1380	92	244	48	2.5	<u> </u>
14	32.5 2	155.61	.025	,78	1437	93	258	48	7.0	ļ
15	35 3	156,99	,03	,94	1475	45	265	48	2.5	ļ
16	37.5 4		,04	1.26	1482	97	263	48	3.0	ļ
17	405	160.19	.04	1.26	1413	97	264	48	3.0	<u> </u>
18	42.56		.04	1.26	1404	99	2.65	48	3.0	
19	45 7	163.75	.045	1,41	1394	100	263	48	3.5	ļ
20	47.5 g		1045	1.41	1389	10 1	262	48	3.5	
21	50 9	 	. ۵45	1.41	1372	101	263	48	3.5	<u> </u>
22	52.5 10	 	.04	1,26	1353	102	261	48	3.5	<u> </u>
23	55 11	171.18	104/	1.26	1285	103	260	48	35-	
_ 24	57.5 N		1039	1.10	1194	103	266	48	3.5	<u> </u>
	60	174,739		<u> </u>			<u> </u>			<u> </u>

Page ____ of ____

FIELD DATA SHEET

Company Reclect Source And Operator(s) RM Dimensions Dia LxW Static Press. ("H20) Meter Box No. Meter AH@ Meter Correction Factor Pitot Tube Cp Nozzle ID	mal Cramat	Assumptions % Moisture	10 1400	Run Number Date 24 hr Time at Start 24 hr Time at End Filter No(s). Barometric Pressure ("Hg) Elev Diff. Mano. To Barom. (Ft) Ambient Temperature (°F) Sample Train Leak Check: Initial OOGGCFM Final OOGGCFM	3 5/07/07 16:28 17 42 6321 30,09 0 50@metr @/5"Hg @7"Hg
•					~
		Meter Temp.	100		@ ng
Nozzle Dia. (Inches)	661	Md/Ms	1.04	Initial Pitot Tube (-)	(+)
Probe Length/Liner	3/2072	K Factor	31.4	Final Pitot Tube (-)	(+)

Sample Time (min.)	Meter Vol. Vm (ft³)	Vel. Head ΔP ("H₂O)	Orifice Diff. ΔH ("H₂O)	Stack Temp.,Ts (°F)	Meter Temp., Tm (°F)	Hot Box Temp. (°F)	Exit Temp. (°F)	Pump Vacuum ("Hg)	Othe
0	175,702	. 04	1,26	1269	89	225	50	3.0	
3	177.81	, 04	1.26	1266	90	256	50	3.0	<u> </u>
6	179,99	, oll	1.26	1278	90	259	50	3.0	
9	182.05	,04	1.26	1277	91	260	50	3.0	
12	183,51	,04	1.26	1282	92	261	51	3.5	
15	185,93	,04	1.26	1278	42	262	50	3.5	
18	187,90	, 04	1.26	1786	97	261	50	3.5	
21	189.81	,04	1.26	1287	92	260	49	4,0	
24	191,69	104	1,26	1290	93	260	49	3,5	
27	193.53	,04	1.26	1292	95	25%	49	4.0	
30	195,45	<u>, 035</u>	1.099	1295	97	246	49	4.5	
33	197,38	1035	1,099	1310	98	243	49	4,5	
36 1	199.28	.035	1,099	1311	98	232	49	4.5	
39 1	7501,72	.04	1,26	1292	4	230	49	6.0	<u> </u>
42 3	203.29	,હપ	1,26	1241	9 9	241	49	6.0	
45 4	205.3)	104	1,26	1291	100	248	44	6.0	
48 5	207,51	1035	1.099	1298	100	248	نرم	6.5	
516	209,59	.035	1.000	1364	100	256	49	6.0	
55 7	212.04	,04	1.26	1305	100	156	49	6.0	
57 g	213,41	,04	1.26	1243	100	760	49	6.5	
60 4	215,413	.04	1,26	1298	100	258	419	6.5	
1:03 10	217,413	104	1.26	12 046	101	えいつ	49	6.5	
1:06 ,,	219,41	, ७३5	1.099	1297	101	240	49	6.5	
1:09 12	221.34	,७७५	1,099	1301	101	241	50	6.5	
	0 3 6 9 12 15 18 21 24 27 30 33 36 1 39 1 42 3 48 5 5 5 5 6 6 6 6 6 6 6 6 6 7 6 6 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8	0 175.70x 3 177.81 6 179.49 9 182.05 12 183.5) 15 185.93 18 187.90 21 189.81 24 191.69 27 193.53 30 195.45 33 197.38 36, 199.38 36, 199.38 39, 205.3) 48, 205.3)	0 175.702 .04 3 177.81 .04 6 179.99 .04 9 182.05 .04 12 183.5) .04 15 185.93 .04 18 187.90 .04 21 189.81 .04 21 191.69 .04 21 193.53 .04 21 193.53 .04 21 193.53 .04 21 193.53 .04 21 193.53 .04 21 205.35 .04 42 3 203.29 .04 45 4 205.30 .04 46 4 205.30 .04 47 4 205.30 .04 48 5 207.51 .035 51 6 209.59 .035 55 7 212.04 .04 57 8 213.41 .04 60 4 215.43 .04 1:05, 217.43 .04 1:06, 219.41 .035 1:09.12 221.34 .035	0 175.702 .04 1.26 3 177.81 .04 1.26 6 179.99 .04 1.26 9 182.05 .04 1.26 12 183.5) .04 1.26 15 185.93 .04 1.26 18 187.90 .04 1.26 21 189.81 .04 1.26 21 189.81 .04 1.26 21 189.81 .04 1.26 21 191.69 .04 1.26 21 193.53 .04 1.26 21 193.53 .04 1.26 21 193.53 .04 1.26 21 193.53 .04 1.26 21 193.53 .04 1.26 21 193.53 .04 1.26 21 193.53 .04 1.26 22 193.25 .04 1.26 23 103.28 .035 1.099 34 126.25 .04 1.26 42 3 203.29 .04 1.26 45 4 205.3) .04 1.26 45 7 212.04 .04 1.26 57 212.04 .04 1.26 57 212.04 .04 1.26 57 212.04 .04 1.26 1:03 217.43 .04 1.26 1:06 217.21 .04 1.26 1:06 217.21 .04 1.26 1:07 27 221.34 .04 1.26	0 175.702 .04 1.26 1269 3 177.81 .04 1.26 1266 6 179.99 .04 1.26 1278 9 182.05 .04 1.26 1277 12 183.5) .04 1.26 1275 15 185.93 .04 1.26 1286 21 189.81 .04 1.26 1286 21 189.81 .04 1.26 1287 24 191.69 .04 1.26 1292 30 195.95 .035 1.099 1210 30 195.95 .035 1.099 1210 36 1 199.28 .035 1.099 1210 36 1 199.28 .035 1.099 1210 42 3 203.29 .04 1.26 1292 42 3 203.29 .04 1.26 1292 42 3 205.20 .04 1.26 1292 45 7 212.94 .09 1.26 1292 57 8 213.91 .09 1.26 1298 57 8 213.91 .09 1.26 1298 57 8 213.91 .09 1.26 1298 1:03 8 217.43 .04 1.26 1298 1:03 8 217.43 .04 1.26 1298 1:03 8 217.43 .04 1.26 1298 1:03 8 217.43 .04 1.26 1298 1:03 8 217.43 .04 1.26 1298 1:04 215.43 .04 1.26 1298 1:05 8 217.43 .04 1.26 1298 1:06 129.41 .035 1.099 1298	0	0 175.702 .04 1.26 1269 89 225 3 177.81 .04 1.26 1266 90 256 6 179.99 .04 1.26 1278 90 259 9 .182.05 .04 1.26 1277 91 260 12 183.5) .04 1.26 1278 92 261 15 185.93 .04 1.26 1286 92 262 21 189.81 .04 1.26 1286 92 262 21 189.81 .04 1.26 1286 92 262 24 191.69 .04 1.26 1292 95 258 30 195.45 .035 1.099 1210 98 243 36 199.38 .035 1.099 1210 98 243 36 199.38 .035 1.099 1210 98 243 37 1283.25 .04 1.26 1292 95 258 40 1283.25 .04 1.26 1292 95 258 36 199.38 .035 1.099 1210 98 243 37 1283.25 .04 1.26 1292 95 258 48 5 207.51 .035 1.099 121 98 232 48 5 207.51 .035 1.099 121 98 236 57 8 212.04 .04 1.26 1291 90 248 51 6 209.59 .035 1.099 1296 100 256 55 7 212.04 .04 1.26 1291 100 258 57 8 213.41 .04 1.26 1293 100 258 50 4 215.613 .04 1.26 1293 100 258 100 126 126 126 1293 100 258 100 126 126 1293 100 258 100 126 126 1293 100 258 100 126 126 1293 100 258 100 126 126 1293 100 258 100 126 126 1293 100 258 100 126 126 1293 100 258 100 126 126 1293 100 258	0 175.70x .cy 1.26 1269 89 225 50 3 177.81 .04 1.26 1266 90 256 50 6 179.99 .04 1.26 1278 90 259 50 9 182.05 .04 1.26 1277 91 260 50 12 183.5) .04 1.26 1278 92 261 51 15 185.93 .04 1.26 1278 92 261 51 15 1867.90 .04 1.26 1286 92 262 50 21 189.81 .04 1.26 1286 92 262 50 21 189.81 .04 1.26 1286 92 260 99 24 191.69 .04 1.26 1280 93 260 99 27 193.53 .04 1.26 1292 95 258 199 30 195.95 .035 1.099 1210 98 243 99 30 195.95 .035 1.099 1210 98 243 99 36 199.38 .035 1.099 1210 98 243 99 37 1283 109 .38 .035 1.099 1210 98 243 99 38 1 189.38 .035 1.099 1210 98 243 99 39 1 283125 .04 1.26 1292 99 149 40 2 3 205.39 .04 1.26 1292 99 149 41 2 3 205.39 .04 1.26 1292 99 149 42 3 205.39 .04 1.26 1292 99 149 45 7 2 25.39 .04 1.26 129 100 256 99 57 2 212.04 .04 1.26 1292 100 256 99 57 2 212.04 .04 1.26 1293 100 256 199 57 2 213.04 .04 1.26 1293 100 256 199 57 2 213.04 .04 1.26 126 120 258 199 100 2 217.13 104 1.26 126 120 258 199 100 2 217.13 104 1.26 126 126 120 241 199 100 2 217.23 104 105 106 126 126 127 149 100 2 217.24 121.24 1055 1.099 1300 1300 1200 1200 1256	0 175.702 .cy 1.26 1269 89 225 50 3.0 3 177.81 .04 1.26 1266 90 256 50 3.0 6 179.99 .o4 1.26 1278 90 259 50 3.0 9 182.05 .cu 1.26 1277 91 260 50 3.0 12 183.5) .c4 1.26 1277 91 260 50 3.0 13 185.93 .04 1.26 1278 92 261 51 3.5 15 185.93 .04 1.26 1278 92 261 51 3.5 18 167.90 .c4 1.26 1286 92 262 50 3.5 21 189.81 .04 1.26 1286 92 262 50 3.5 21 189.81 .04 1.26 1287 93 260 49 4.0 24 191.69 .04 1.26 1282 95 258 49 4.0 30 195.45 .035 1.099 120 98 243 49 4.5 33 197.38 .035 1.099 1210 98 243 49 4.5 34 1283 9 104 1.26 1292 99 249 40 6.0 46 2 205.30 .04 1.26 1292 99 248 19 40.5 31 1283 9 104 1.26 1292 99 248 19 40.5 31 1283 9 104 1.26 1292 99 248 19 40.5 31 1283 9 104 1.26 1292 99 248 19 6.0 46 2 205.30 .04 1.26 1292 99 248 19 6.0 47 2 205.30 .04 1.26 1292 99 248 19 6.0 48 2 207.51 .035 1.099 124 100 256 19 6.0 55 7 212.04 .04 1.26 1292 100 256 19 6.0 55 7 212.04 .04 1.26 1292 100 256 19 6.0 55 7 212.04 .04 1.26 1293 100 256 19 6.0 55 7 212.04 .04 1.26 1293 100 256 19 6.0 56 4 215.613.04 1.26 1293 100 256 19 6.5 100 129.12 221.34 104 1.5 100 129.14 221.34 105 109 240 256 19 6.5 100 129.14 221.34 105 109 240 256 109 256 1

Page _ l of \

FIELD DATA SHEET

Reflections Pet funeral Home Company Run Number Animal Crematory 5/7/01 Date Source 19:16 Operator(s) 24 hr Time at Start २० ५४ 24 hr Time at End 6323 Dimensions Dia 19 Filter No(s). Barometric Pressure ("Hg) LxW0 0 Elev Diff. Mano. To Barom. (Ft) Static Press. ("H2O) -0.0l Ambient Temperature (°F) 🔝 🤝 🞖 🖰 Meter Box No. 100 1,584 Meter ∆H@ Assumptions Meter Correction Factor 1.000 % Moisture 10 10 Sample Train Leak Check: 0.84 1400 1300 Initial a. CI&CFM @ 15 "Hg Pitot Tube Cp Stack Temp. Final C. CIG CFM @ 100 95 "Hg Nozzle ID QT2 Meter Temp. 1.04 1.64 Initial Pitot Tube (-) - +1 -1601 Nozzle Dia. (Inches) Md/Ms 31.4 32.9 Final Pitot Tube (-) - (+) Probe Length/Liner /QT2. K Factor

Moist. Collected:- Imp. No. 1 , Imp. No. 2 & 3 , Imp. No. 4 , Total Filter Tare Wt, Point Sample Meter Vol. Vel. Head Orifice Diff. Stack Meter Hot Box Exit Pump No. Time ٧m ΔΡ ΔН Temp.,Ts Temp., Tm Temp. Temp. Vacuum Other (ft3) ("H₂O) ("H₂O) (°F) (°F) (°F) ("Hg) (min.) (°F) 771 115 1,26 240 0 1297 90 1 04 1.26 1298 90 241 226,62 2 OLI 1,26 **228,74** 90 3 (۵ 252 57 3 04 1700 1,26 7 4 04 १2५० 91 23 3 233,15 Si ι) 1.26 C/ / 61 OH 1213 5 235,18 15 1.26 1211 91 04 70 6 51 337,30 1.48 045 ノンハウ 18 7 18 239.48 045 1.48 6/7 266 ٦ 1197 21 8 24 51 3.5 9 153 9 241,77 045 1.48 1199 3,5 243,80 1,32 9 249 51 27 .04 1191 10 301,15 249 246,00 035 1190 43 11 248,15 1,15 4-1 248 33 035 11011 12 36 95 150.19 1102 248 50 3.5 13 035 1.15 252,05 30 96 20 3.5 N 90 147 1,15 14) 035 4) 254,07 1,15 1188 96 248 50 4.0 15 Z 1035 45 50 721.06 .04 9 246 4.0 16 L 1,32 1187 258,14 .04 1187 SO 50 17 5 1,32 98 4.0 5 i 260.25 255 18 6 432 1182 44 50 4,5 .04 54 99 19 7 04 1.32 11811 ત્રે હ (50 45 51 264.40 20 5 COL 1.32 1187 50 5.0 100 166 60 .04 1184 52 5.0 21 ς 267 101 11.63 1176 52 5.0 04 22 (0 101 263 1:06 A70.63 اسام) . 1,32 163 5.0 23 11 470 101 il og 272.70 1,31 5.0 24 12 nu 1170 102 えらひ 1.12 274.762

PARTICULATE MATTER COLLECTED

Plant:

REFLECTIONS PET FUNERAL HOME

Unit No.

Animal Crematory

Analyzed by:	2 Do	

Less acetone blank, g. (Wa)

Weight of particulate matter, g.

0.0000

0.0565

Test Date: 5/7/02			Analyzed	1 by:	Vale	
Acetone blank container no. Acetone blank volume, ml.,(Va) Acetone blank final weight, g. Acetone blank tare weight, g. Acetone blank weight diff.,g.,(ma)		2W 200 102.9572 102.9572 0.0000		Filter blank no. Filter blank tare Filter blank final Filter weight diff.	weight, g.	6322 0.3424 0.3424 0.0000
Run No. Filter No. Liquid lost during transport, ml. Acetone wash container no. Acetone wash volume, ml. (Vaw)	2 6320 0 4 100	,	Container Number	WEIGHT OF	PARTICULATE C	COLLECTED Weight Gain
Acetone wash residue, g. (Wa)	0.0000		1 (Filter) 2 (Wash)	0.3525 103.1124	0.3382 103.0957	0.0143 0.0167
					0.031	
					blank, g. (Wa)	0.0000
				Weight of partic	culate matter, g.	0.0310
Run No. Filter No. Liquid lost during transport, ml.	3 6321 0		Container Number			
Acetone wash container no. Acetone wash volume, ml. (Vaw) Acetone wash residue, g. (Wa)	401 120 0,0000		1 (Filter)	Final Weight 0.3875	Tare Weight 0.3376	Weight Gain 0.0499
Acetorie Wash residue, g. (VVa)	0.0000		2 (Wash)	102.843	102.8363	0.0067
					TOTAL	0.0566
					blank, g. (Wa)	0.0000
				Weight of partic	culate matter, g.	0.0566
Run No. Filter No.	ት <i>2</i> ' 6323		Container	WEIGHT OF	PARTICULATE (COLLECTED
Liquid lost during transport, ml. Acetone wash container no. Acetone wash volume, ml. (Vaw)	0 9 135		Number	Final Weight	Tare Weight	Weight Gain
Acetone wash residue, g. (Wa)			1 (Filter) 2 (Wash)	0.38 107.1869	0.3404 107.17	0.0396 0.0169
			}		TOTAL	0.0565

GAS ANALYSIS DATA FORM

Plant Reflections Pet Funeral Home								
Unit Animal Gramatory	Test No. Z							
Date 5/7/02	Sampling Location Stack							
Sampling Time (24-hr Clock)								
Sample Type: Continuous 🗆 Integrated Bag 🔼	Grab (T)							
Analytical Method Orsa	Ambient Temperature ~ 55 %							
Operator Poll 2 500								

RUN →	1		2		3		Average		Molecular Weight of Stack
GAS ↓	Actual Reading	Net	Actual Reading	Net	Actual Reading	Net	Net Volume	Multiplier	Gas (Dry Basis) (Md)
CO ₂	8,0	8,0	\$,0	চ.৩	5.0	8.0	8.0	.44	352
O₂ (NET IS ACTUAL O₂ READING MINUS ACTUAL CO₂ READING)	14.4	8.4	16,4	4.8	16.4	8.4	8,7	.32	2.69
CO (NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)							383.6	.28	23.41
N₂ (NET IS 100 MINUS ACTUAL CO READING)								.28	
								TOTAL	29.62

GAS ANALYSIS DATA FORM

Plant Reflections Pat Funaral Home							
Unit Animal Crematory	Test No. 3						
Date 5/7/02_	Sampling Location Stack						
Sampling Time (24-hr Clock)							
Sample Type: Continuous 🗆 Integrated Bag 💢	Grab []						
Analytical Method STSR	Ambient Temperature ~ ?c of						
Operator Po Walgern							

RUN →				2	3		Average		Molecular Weight of Stack
GAS ↓	Actual Reading	Net	Actual Reading	Net	Actual Reading	Net	Net Volume	Multiplier	Gas (Dry Basis) (Md)
CO ₂	5,8	5.8	5.8	5.8	2-8	5.8	رئي	.44	2.55
O2 (NET IS ACTUAL O2 READING MINUS ACTUAL CO2 READING)	16.5	10.7	16.5	10.7	16.5	(0.7	10.7	.32	3.42
CO (NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)							₹83.5	.28	23.38
N₂ (NET IS 100 MINUS ACTUAL CO READING)								.28	
								TOTÁL	29.35

GAS AÑALYSIS DATA FORM

Plant Raflactions Pat	Funeral Home
Unit Animal Cramatory	Test No.
Date 5/7/02	Sampling Location Satack
Sampling Time (24-hr Clock)	
Sample Type: Continuous 🗆 Integrated Bag 🔼	Grab □
Analytical Method CSSR	Ambient Temperature ~ %
Operator Po N-1 5022	

RUN →	1		2 , `.		3		Average	;	Molecular Weight of Stack	
GAS ↓	Actual Reading	Net	Actual Reading	Net	Actual Reading	Net	Net Volume	Multiplier	Gas (Dry Basis) (Md)	
CO₂	4,5	6,5	6,5	6,5	6,5	کرم	ک وا	.44	2.86	
O, (NET IS ACTUAL O, READING MINUS ACTUAL CO, READING)	16,5	10.0	(6.5	(0,0	16.1	10.1	10.0	/ .32	3.20	
CO (NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)				•	·		}83.5	.28	2338	
N₂ (NET IS 100 MINUS ACTUAL CO READING)				·	,			.28		
·	·									

REFLECTIONS PET FUNERAL HOME
IEE POWER-PAK II ANIMAL CREMATORY
MAY 7, 2002
CARBON MONOXIDE
0 - 200 PPM
6 CM/HR CHART SPEED
PAGE 2 OF 2

DRY GAS METER CALIBRATION

Meter Box Number:

001

Barometric Pressure:

30.06

Date: 05/29/2001

Wet Test Meter No.:

P-576

Orifice	Gas ³	/olume	Temp	perature				
Manometer Setting (Delta H) in: H2O	Wet Test Meter (Vw) ft.*3	Dry Gas Meter (Vd) ft.^3	Wet Test Meter (Tw) Deg F	Dry Gas Meter (Td) Deg F	Time (THETA) Min.	Y	Delta H@i in, H2O	
0.50	5.000	5.054	86.5	93.5	11.5	1.001	1.505	
1.00	5.000	5.056	87.0	95.0	8.22	1.001	1.537	
1.50	10.000	10.103	87.0	95.0	13.60	1.001	1.577	
2.00	10.000	10.141	87.0	96.0	12.03	0.997	1.643	
3.00	10.000	10.159	87.0	99.0	9.77	0.999	1.616	
4.00	10.000	10.162	87.0	101.0	8.50	0.999	1.625	
	•:					1.000	1.584	

Delta H@ Acceptable Range Yi Acceptable Range

1.784 1.020 to to 1.384 0.980

Where:

Vw = Gas Volume passing through the wet test meter, ft.^3.

Vd = Gas Volume passing through the dry gas meter, ft.^3.

Tw = Temperature of the gas in the wet test meter, deg F.

Tdi = Average temperature of the gas in the dry gas meter, deg F.

Delta H = Pressure differential across orifice. in. H20.

Yi = Ratio of accuracy of wet test meter to dry gas meter for each run.

Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y =/- 0.05Y.

Pb = Barometric pressure, in, Hg

Theta = Time of calibration run, min.

SOUTHER ENVIRONMENTAL SCIENCES, INC. NOZZLE CALIBRATION

Date: 5/7/02 by: B. Nelson

Nozzle ID	Run No.	D ₁	D ₂	D ₃	ΔD	D _{AVG}	
atz	2 ALL 0600		.601	, 60	٥٥١ , ١٥٥،		

where:

 D_1 , D_2 , D_3 = Nozzle diameter measured on a different

diameter (inches).

Tolerance = 0.001 inches

 $\Delta D =$

 D_{avg}

Company Beflections Pat

Maximum difference in any two

measurements (inches). Tolerance = 0.004 inches

= Average of D_1, D_2, D_3

SAMPLE POINT LOCATIONS

tunere	il Hame						
Source: 1 Es 7000 En	ak 11						
Date: 43 5/7/02							
Stack/Duct Dimension	is: Za"diam						
Port Length: しん	i 1						
Points corrected for port length? Yes □ No □							
Sketch of St	ack/Duct						

Point No.	Distance from Duct Wall (inches)
1	7,0
2	7.8
3	8.9
3 4 5 9 7	10.0
S	11.5
6	13.6
	19.4
ર્જ	21.5
9	23.0
10	24.1
11	25.2
12_	26.8

TYPE S PITOT TUBE INSPECTION FORM

PITOT TUBE ID NUMBER	0	03			
INSPECTION DATE	04/01/02				
INSPECTED BY	M. Gierke				
PITOT TUBE ASSEMBLY LEVEL 7	YES	NO			
PITOT TUBE OPENINGS DAMAGED ?	YES (explain please)	NO			

ANGLE	MEASUREMENT	LIMITS
α1	4°	<10°
a2	2°	<10°
b1	2°	< 5°.
b2	3°	<5°
Υ	2°	
θ	2°	
A	0.660 inches	
z = A sin Y	.000 inches	< 1/8 inch
$w = A \sin \theta$.018 inches	< 1/32 inch
Pa	.330 inches	
Pb	.330 inches	
Dt	:390 inches	

COMMENTS:			
			
		· · · · · · · · · · · · · · · · · · ·	
CALIBRATION REQUIRED	YES	ΝO	

POSTTEST DRY GAS METER CALIBRATION FORM

Meter Box Number:

001

Wet Test Meter No.:

P-576

Date:

05/17/2002

Pretest Y:

1.00

Barometric Pressure:

30.1

Calibrated by: K. ROBERTS

Onfice	Gas Vo	lume	Temper				
Manometer Setting (Della H) in: H2O	Wet Test Meter (VW) ft *3	Dry Gas Meter (Vd) ft*3	Wet Test Meter (Tw) Deg F	Dry Gas Meter (Td) Deg F	Time (THETA) Min	Vacuum Selling in Hg	YI
2.00	10.000	10.014	76.50	79.00	11.45	10.00	0.998
2.00	10.000	10.165	76.00	85.00	11.30	10.00	0.995
2.00	10.000	10.199	75.50	88.00	11.40	10.00	0.998
					 	Average	0.997

Acceptable Limits

0.950

to

1.050

Yi = Vw Pb (Td + 460) Vd (Pb+DeltaH/13.6) (Tw + 460)

Where:

Vw = Gas volume passing through the wet test meter, ft.^3.

Vd = Gas volume passing through the dry gas meter, ft.^3.

Tw = Temperature of the gas in the wet test meter, deg F.

Tdi = Temperature of the inlet gas of the dry gas meter, deg F.

Tdo = Temperature of the outlet gas of the dry gas meter, deg F.

Delta H = Pressure differential across orifice. in. H20.

Yi = Ratio of accuracy of wet test meter to dry gas meter for each run.

Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y =/- 0.05Y,

Pb = Barometric pressure, in. Hg

Theta = Time of calibration run, min.

THERMOMETER CALIBRATIONS

Ref	Wet Test	Meter	Dry Gas I	Veter
Den E	Inlet Deal	Outlet Deg F	Inlet Oon E	Outiei Flea C
76.0	n/a	76.0	n/a	76.5
Difference	n/a	0.0	n/a	-0.5

Quality Control Limits = +/- 5 Deg F

SOUTHERN ENVIRONMENTAL SCIENCES, INC. THERMOMETER CALIBRATIONS

Calibrated By/Date: M. GIERKE 4/1/02

ALL TEMPERATURES ARE DEGREES RANKIN

	Calibrated By/Date: M. GIERF		ICE BATH			TF	PID WAT	:	BOI	BOILING WATER			HOT OIL		
ID No.	Туре	Range	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff	
T1	PT	2000° F	495	496	0.2%	539	537	0.4%	672	670	0.3%	860	861	0.1%	
Т2	РТ	2000° F	495	497	0.4%	539	537	0.4%	673	672_	0.1%	870	872	0.2%	
тз	PT	2000° F	495	497	0.4%	539	538	0.2%	673	671	0.3%	870 -	872	0.2%	
T4	PT	2000° F	494	496	0.4%	539	538	0.2%	- 674	672	0.3%	863	864	0.1%	
T5 ·	PT	2000° F	494	496	0.4%	539	538	0.2%	672	670	0.3%	860	862	0.2%	
T6	PT	2000° F	494	496	0.4%	539	537	0.4%	672	674	0.3%	852	854	0.2%	
Т7	РТ	2000° F	495	497	0.4%	539	538	0.2%	673	671	. 0.3%	853	854	0.1%	
T8	PT	2000° F	495	496	0.2%	539	537	0.4%	674	672	0.3%	864	865	0.1%	
Т9	PT .	2000° F	495	497	0.4%	539	538	0.2%	673	671	0.3%	854	856	0.2%	
Lab 14	вм	212° F	494	495	1 0	536	535	1°	672	673	1°		-	<u>-</u>	
15	вм	250° F	494	495	1 °	536	535	1°	672	672	1°	-	-	-	
16	вм	220° F	494	496	2°	536	536	0°	672	672	0°	-	. <u>-</u>		
SS110	вм	220° F	494	496	2°	540	539	2°	670	672	2°				
ss300	РТ	2000 °F	495	497	0.4%	540	538	0.4%	674	672	0.3%	850	852	0.2%	
SS301	PT	2000° F	. 495	497	0.4%	540	538	0.4%	672	670	0.3%	856	858	0.2%	
SS306	PT	2000° F	495	496	0.2%	540	538	0.4%	672	670	0.3%	856	858	0.2%	
2.5'PA	РТ	2000° F	495	496	0.2%	541	538	0.55%	673	672	0.1%	852	854	0.2%	
2.5'PB	РТ	2000° F	495	497	0.4%	541	538	0.55%	672	674	0.3%	856	858	0.2%	
3'P	PT	2000° F	495	497	0.4%	541	539	0.4%	673	675	0.3%	858	860	0.2%	
3'INC	РТ	2000° F	. 494	496	0.4%	540	538	0.4%	676	678	0.3%	852	854	0.2%	
5'PA	PT	2000° F	494	496	0.4%	540	539 .	0.2%	672	674	0.3%	856	858	0.2%	
5'PB	PT	2000° F	495	497	0.4%	540	538	0.4%	674	672	0.3%	856	858	0.2%	
5'PC	PT	2000° F	495	497	0.4%	540	538	0.4%	674	672	0.3%	856	858	0.2%	
5'VP	РТ	2000° F	495	497	0.4%	541	540	0.2%	676	678	0.3%	856	858	0.2%	
5'INC	PT	2000.° F	494	496	0.4%	542	540	0.4%	674	676	0.3%	850	852	0.2%	
8'PA	PT	2000° F	494	496	0.4%	541	538	0.55%	676	678	0.3%	856	858 -	0.2%	
8'PB	PT	2000° F	494	495	0.2%	541	539	0.4%	676	678	0.3%	856	858	0.2%	
10'P	PT	2000° F	494	495	0.2%	541	539	0.4%	674	676	0.3%	854	856	0.2%	

1204 North Wheeler Street St. Plant City, Florida 33566 (813) 752-5014

INSTRUMENT CALIBRATION

TEST DATA	
DATE	04/23/2002
COMPANY	REFLECTIONS PET FUNERAL HOME
SOURCE	IEE POWER-PAK II ANIMAL CREMATORY
PARAMETER	CARBON MONOXIDE
TECHNICIAN	K. ROBERTS

	MONITOR	RECORDER
MANUFACTURER	TECO	YOKOGAWA
MODEL NO.	48	
SERIAL NO.	48-27158-228	
RANGE (PPM)	1000	6 CM/HR

CALIBRATION GASES			
SUPPLIER	Air Products	Air Products	Air Products
CYLINDER#	SG112589	SG9175193	SG9170323
CONC. (%)	150	121	56.9
EXPIRATION DATE	06/06/2003	12/17/2002	04/25/2004

POINT	OBSERVED CONC.	ACTUAL CONC.	PERCENT DIFF.
1	0	0	0.00
3	56	56.9	-0.09
3	121.5	121	0.05
4	150	150	0.00

Regression Output:

Constant		-0.3555
Std Err of Y Est		0.6666
R Squared		0.9999
No. of Observations		4
Degrees of Freedom		2
X Coefficient(s)	1.0031	
Std Err of Coef	0.0057	

Air Products and Chemicals, Inc. * Rural Route #1, Tamaqua, PA 18252

ISO CERTIFICATION: 9002

CERTIFICATE OF ANALYSIS:

EPA PROTOCOL GAS STANDARD

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer:

Order No: SRP-341060-01

AIR PRODUCTS & CHEMICALS, INC.

Batch No: 255-9781E

112 WADE ROAD

PO:

LATHAM

NY 12110- Release:

Cylinder No:

SG9175193BAL

Bar Code No:

DMN402

Cylinder Pressure*: 2000 psig Certification Date: 12/17/1999

Expiration Date:

12/17/2002

CERTIFIED CO	NCENTRATION	REI	ERENCE STAND	ARDS	ANALYTICAL INSTRUMENTATION			
Component	Certified Concentration	Cylinder Number	Standard Typa	Standard Concentration	Instrument Make/Model	Serial Number	Last Calibration	Measurement Principal
CARBON MONOXIDE	121±2.38 PPM	SG9159519BAL	NTRM 82636	244.7 PPM	Hewlett Packar	2518A052	12/08/99	GC-FID

NITROGEN

Balance Gas

^{*} STANDARD SHOULD NOT BE USED BELOW 150 PSIG

Air Products and Chemicals, Inc. * 12722 S. Wentworth Avenue, Chicago, IL 60628

ISO CERTIFICATION: 9002

CERTIFICATE OF ANALYSIS:

EPA PROTOCOL GAS STANDARD

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer: 851 -1

Order No: CSS704108-01

APCI-LARGO

Batch No: 86181785

7900 118TH AVENUE NORTH

PO:

LARGO

FL 33773-

Release:

Cylinder No:

SG9170323BAL

Bar Code No:

FHK790

Cylinder Pressure*: 2000 psig Certification Date: 04/25/2001

Expiration Date:

04/25/2004

CERTIFIED CONCENTRATION REFERENCE STANDARDS			ARDS	ANALYTICAL INSTRUMENTATION				
Component	Certified Concentration	Cylinder Number	Standard Type	Standard Concentration	Instrument Make/Model	Serial Number	Last Calibration	Measurement Principal
CARBON MONOXIDE	56.9±.60 PPM	SG9161497BAL	NTRM 81679	99.90 PPM	HORIBA VIA-510	405079	04/01/01	NON DISPERSIVE INFRARED

NITROGEN

Balance Gas

* STANDARD SHOULD NOT BE USED BELOW 150 PSIG

EPA PROTOCOL GAS MIXTURE : CARBON MONOXIDE IN NITROGEN To reorder this mixture please use Mix ID:

Analyst: SUZANNE HAUTER (16921)

James Laas

Air Products and Chemicals, Inc. * 12722 S. Wentworth Avenue, Chicago, IL 60628

ISO CERTIFICATION: 9002

CERTIFICATE OF ANALYSIS:

EPA PROTOCOL GAS STANDARD

PERFORMED ACCORDING TO EPA TRACEABILITY PROTOCOL FOR ASSAY AND CERTIFICATION OF GASEOUS CALIBRATION STANDARDS (PROCEDURE #G1)

Customer: APCI-LARGO Order No: CSS-468280-01

Batch No: 861-70147

PO:

LARGO FL 34643-

7900 118TH AVENUE NORTH

Release:

Cylinder No:

SG112589BAL

Bar Code No:

DXD944

Cylinder Pressure*: 2000 psig

Certification Date: 06/06/2000

Expiration Date:

06/06/2003

CERTIFIED CO	NCENTRATION	REI	FERENCE STANI	DARUS	ANALYTICAL INSTRUMENTATION				
	Certified	Cylinder	Standard	Standard	Instrument	Serial	Last	Measurement	
Component	Concentration	Number	Type	! Concentration	Make/Model	Number	Calibration	Principal	
CARBON MONOXIDE	150±.98 PPM	SG9162920BAL	NTRM	244.7 PPM	HORIBA VIA-510	405079	05/25/00	NON DISPERSIVE INFRARED	

NITROGEN ...

Balance Gas

Analyst:

(16921)

Approved By:

James Laas

^{*} STANDARD SHOULD NOT BE USED BELOW 150 PSIG

DUSTOMER ACCOUNT : U9107-1

DRDER NO : CSS777971-01 SHIPPER NUMBER : 851036405

CUSTOMER ORDER NO: 0735

CUST ORD LINE/REL :

P.01

Jul-18-01 10:03A Air Products AIR PRODUCTS AND CHEMICALS, INC. 7900 118TH AVENUE NORTH LARGO, FL 33773

FELEPHONE (727) 541-3666

DATE: 17 JUL TIME: 17:27

* CERTIFICATE OF GAS ANALYSIS *

SOUTHERN ENVIRONMENTAL SCIENCES INC

MR. BYRON NELSON

1204 NORTH WHEELER STREET

PLANT CITY

FL 33566-

PRODUCT

: AIR

GRADE CYLINDER TYPE

: UHP/ZERO : STEEL A

VALVE DESCRIPTION

: 590HW BR .75T PACK WS NYL "A"H/DT

CYLINDER PRESSURE

: 2640 psig (at 70 degrees F)

REMARKS

: The information provided on this Certificate of Analysis conforms to

the requirements of the Purchase Order listed above. In accordance with our internal work instruction A-3.

products below are traceable to NIST.

)	BAR CODE SYLINDER NO	ACTUAL VOLUME	impurliy_		CI ICATIO	UNIT OF A ON MEASURE F	_	ANALYTICAL RESULT	UNIT OF MEASURE		
	- BATCH NO. 85401051	Anaiysis	Date 13 JUN 20	01 Expiration	Date	12 JUN 2008)	Jacksonville, FL	-		
	D6V9V5 86485197		gen al Hydrocarbons er		23.5 0.5 3.5	XV PPMV PPMU	B B I	21.7 6 0.1 6 0.15	XV PPMU PPMV	V V V	20 08 07C
	DJU634 969704594A	311.00 CF Oxy Tota Wat	al Hydrocarbons		23.5 0.5 3.5	7V PPHV PFHV	I B B	21.7 < 0.1 < 0.15	ZV PPMV PFMV	۷ ۷ ۷	20 08 07C
	* ANAL FREG: I = CON BATCH TEST PERFORMED		IDUALLY TESTED	B = CONTAMINANT DUT991 96130		TESTED S	= S0	FURCE ANALYSIS.	************		
	BATCH NO. 85401055	Analysis	Date 21 JUN 20	001 Expiration	Date	20 JUN 200	Ė	Jacksonville, F	L		
	FJU373 36057647A	311.00 CF Oxy Tot Wat	tal Myorocarbons		23.5 0.5 3.5	XV PPMV PPMV	I F B	21.8 0.1 0.15	XV PPMV PPMV	V V	20 08 07C

BATCH TEST PERFORMED ON CYLINDER:

ANAL FRED: I = CONTAMINANT INDIVIDUALLY TESTED B = CONTAMINANT BATCH TESTED S = SOURCE ANALYSIS.

DUU341 58619687

(CONTINUED)

CO EMISSION TEST CALCULATIONS

COMPANY: REFLECTIONS PET FUNERAL HOME

SOURCE: IEE POWER PAK II ANIMAL CREMATORY

TEST DATE: 05/07/2002
Data analyst: Ken Roberts

		Average					Taran Salah
			CO	Stack		Emissions	
	CO	O2	@ 7% O2	Flowrate			
Run No.	(ppm)	(%)	(ppm)	(dscfm)	mg/m3	lbs/ft3	lbs/hr
1	4.10	8.4	4.6	604	4.8	2.98E-007	0.011
2	1.00	10.7	1.4	717	1.2	7.27E-008	0.003
3	1.20	10.0	1.5	741	1.4	8.72E-008	0.004
Averages	2.10	9.7	2.5	687	2.4	1.53E-007	0.006

FORMULAS: $CO @ 7\% O2 = Actual CO \times (14/(21-\%02))$

mg/m3 = ppm x .041573 x molecular wt.

 $\frac{\text{lb/ft3} = \frac{\text{mg/m3}}{35.31 \text{ ft}^3/\text{m}^3 \times 1000 \text{mg/g} \times 453.59 \text{ g/lb}}$

lb/hr = lb/ft3 x flowrate x 60 min/hr

where: Pstd = 29.92 "Hg

Tstd = 528 deg R

EMISSIONS TEST CALCULATIONS

Plant:

REFLECTIONS PET FUNERAL HOME

30.09

<u>97.7</u>

20.27

Unit: Animal Crematory

Run No: 3

Test Date:

5/7

Data Input By: KRolain

Pbar = (Pbar at barom.) - (Elev. diff. barom. to = 30.09 -).1/100) = <u>30.09</u>		
Pm = Pbar + Delta H = 13.6	30.09 + 3	<u>1.213</u> = <u>30.18</u> 13.6		
$Vm(std) = (Vm) \times (Y) \times (Tstd, deg R) \times (Pm)$ $(Tm, deg R) \times (Pstd)$.			
= 47.554 x	1 x	528 x 30.18 556.3 x 29.92	= 45.527	
Vw(std) = Vic x (.04715) =	118.5 x	0.04715 = <u>5.587</u>		
$Bws \ = \ \frac{Vw(std)}{Vw(std) + Vm(std)}$	= 5.587	5.587 = + 45.527	0.109	
Bws @ saturation = 0.99 1 - Bws = 0.891	USE LOWE	R BWS		
Md = 0.44(%CO2) + .32(%O2) + .28(%N2+% = .44 x 5.8 = <u>assume</u> 29.356	6CO) + 32 x	10.7 + 0.28	78	
Ms = Md(1-Bws) + 18(Bws) = = <u>28.11</u>	29.356	0.891 + 18	• 0.109	
Ps = Pbar + <u>(Pg, in. H2O)</u> = 13.6	30.09 +	<u>-0.01</u> = <u>30.09</u>		
Vs = 85.49 x (Cp) x (avg sqrt delta P) x sqrt[(= 85.49 x = 20.27	Ts,~R)/(Ps)(Ms)] 0.84 x	0.196 x sqrt 1751.1	/ 30.09 x	28.11
An = [(Nozzle diam, in./12)^2 x 3.14159]	=[(0.601 /12)^2 x 3.14159] 4	= <u>0.00197</u>	
%I = (.09450) x (Ts,deg R) x (Vm(std) (Ps) x (Vs) x (An) x (Sample Time) x (1-	Bws)			
= 0.0945 x	1751.1 x	45.527		

0.00197

72

0.891

Southern Environmental Sciences, Inc.

1204 North Wheeler Street ☐ Plant City, Florida 33566-2354 ☐ (813) 752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS

 A_n = Cross-sectional area of nozzle, ft^2

 A_s = Cross-sectional area of stack, ft^2

 B_{ws} = Water vapor in gas stream, proportion by volume

 C_p = Pitot coefficient

C_s = Pollutant concentration, gr/DSCF

 F_d = Ratio of gas generated to heat value of fuel, DSCF/mm BTU

 ΔH = Average pressure differential across orifice, in. H_2O

%1 = Isokinetic variation, %

 M_d = Molecular weight of dry gas

 M_n = Total amount of pollutant collected, mg

 M_s = Molecular weight of stack gas

N = Normality of barium perchlorate titrant

 $\sqrt{\Delta P_{avg}}$ = Average of the square roots of the velocity heads

 P_{bar} = Barometric pressure at the sampling site, in. Hg

 P_g = Stack gas static pressure, in. H_2O

 P_m = Absolute pressure at the dry gas meter, in. Hg

 P_s = Absolute stack pressure, in. Hg

PMR = Pollutant mass rate, lb/hr

 P_{std} = Standard absolute pressure, 29.92 in. Hg

 θ = Total sampling time, minutes

EMISSIONS TEST CALCULATIONS

Plant:

Run No:

REFLECTIONS PET FUNERAL HOME

Unit:

Animal Crematory

Test Date: Data Input By:

5/7/02

As =
$$(Stack Diam., ft.)^2 \times 3.14$$
 = $(1.666667)^2 \times 3.14$ = $(2.18)^4$

As.eff =
$$\frac{As \times (total \ No. \ pts.-No. \ neg. \ pts.)}{(Total \ No. \ pts.)} = \frac{2.181662 \times (24) - (0)}{(24)} = \frac{2.18}{2.18}$$

$$Q = 60(As,eff)(Vs) = 60 \times 2.18 \times 20.27 = 2.654$$

Qstd =
$$\frac{\text{(Q)} \times (\text{Tstd}) \times (\text{Ps}) \times (\text{1-Bws})}{(\text{Ts,degR}) \times (\text{Pstd})}$$
 = $\frac{2653.936}{1751.125} \times \frac{528}{29.92} \times \frac{30.08926}{29.92} \times \frac{0.89069}{1751.125} \times \frac{1}{1751.125} \times \frac{1}{175$

<u>717</u> =

$$PMR = (Cs)(Qstd)(60) = 0.0036 \times 716.77617 \times 60 = 0.00$$

$$7000 = 7000$$

Emissions calculations in emissions test summary may differ slightly from example calculations due to rounding of some numbers in example.

Southern Environmental Sciences, Inc.

1204 North Wheeler Street ☐ Plant City, Florida 33566-2354 ☐ (813) 752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS

(Continued)

Q = Stack gas flowrate, ACFM

Q_{std} = Stack gas flowrate, DSCFM

T_m = Absolute average meter temperature, °R

T. = Absolute average stack gas temperature, °R

T_{std} = Standard absolute temperature, 528 °R

V_a = Volume of sample aliquot titrated, ml

V_{Ic} = Liquid collected in impingers and silica gel, grams

 V_m = Sample volume at meter conditions, DCF

 V_{mletdl} = Sample volume at standard conditions, DSCF

V_s = Stack gas velocity, ft/sec

 V_{solo} = Total volume of solution, ml /

V_t = Volume of barium perchlorate titrant used for the sample, ml

 V_{th} = Volume of barium perchlorate titrant used for the blank, ml

 V_{wistel} = Volume of water vapor in sample corrected to standard conditions, SCF

Y = Dry gas meter calibration factor

13.6 = Specific gravity of mercury

SOUT' RN ENVIRONMENTAL SCIEI ES, INC.

Page 1 of 1

Final Pitot Tube (-) _____ (+) ____

FIELD DATA SHEET

Act Funcial Home Reclections Run Number Company S. E Date 107/02 Source 24 hr Time at Start 1107 Operator(s) 24 hr Time at End 1204 Filter No(s). 6319 Dimensions Dial 20 ° 70 · i Barometric Pressure ("Hg) LxW□ Static Press. ("H20) Elev Diff. Mano. To Barom. (Ft) -.01 0 Meter Box No. 001 Ambient Temperature (°F) ~ 50 Meter DH@ 1.584 Assumptions 14 Sample Train Leak Check: Meter Correction Factor 1.000 % Moisture Initial 2217 CFM @ 6.84 1100 Pitot Tube Cp Stack Temp. "Hg 90 Final 0,000 CFM @ Nozzle ID Meter Temp. ゆてエ Initial Pitot Tube (-) ____ (+) ____ 601 Nozzle Dia. (Inches) Md/Ms 1.055

K Factor 34.1

3"55 QTZ

Probe Length/Liner

Filter Tare Wt. Moist. Collected:- Imp. No. 1 , Imp. No. 2 & 3 Imp. No. 4 Total Vel. Head Orifice Diff. Hot Box Exit Point Sample Meter Vol. Stack Meter Pump Other No. Time Vm ΛP ΛН Temp., Ts Temp., Tm Temp. Temp. Vacuum (ft^3) ("H,O) ("H,O) (°F) (°F) (°F) ("Hg) (min.) (°F) 60 1224 263 005 176.018 1 60 1863 25 03 176 65 001 2 60 ,01 1750 3 .009 30 4 01 74 5 009 80 12 へひ 6 005 1507 7 1448 001 8 005 9 1.0 004 56 10 1400 7.0 1147 85 .003 10 11 1.0 87 ID 1180 12 003 765 1.0 005 1430 86 1.0 13 7.60 009 1446 89 243 14 ,009 1452 30 90 746 15 37.5 01 91 16 40 009 1467 268 17 30 7,0 27 1454 42.5 6 008 265 18 008 259 19 1460 1457 139.14 20 ,007 748 21 005 1432 95 246 1,0 ,005 95 246 22 1.0 <u>.0</u>05 17 95 23 1306 1.0 252 006 .20 96 141.89 1.5 24 1308 262 42.623

MOISTURE COLLECTED

Plant	Reflections	Pet F	ineral	Home	_	
Unit Date Run N	Animal Cre 5/7/02	matori	1			
	Impinger Number	1	2	3	4	Weighed by:
	Final Weight (grams):	120,0	108.0	0	260,8	TW
	Initial Weight (grams):	100.0	100.0		257.4	WT
	Difference (grams):	20.0	8.0	0	3.4	
	Total Condensate (grams):				31.4	
Unit Date Run N	No					
	Impinger Number	1	2	3	4	Weighed by:
	Final Weight (grams):					
	Initial Weight (grams):		<u> </u>			
	Difference (grams):					
	Total Condensate (grams):					
Unit Date Run N	No					
	Impinger Number	1	2	3	4	Weighed by:
	Final Weight (grams):					
	Initial Weight (grams):					
	Difference (grams):					
	Total Condensate (grams):					

GAS ANALYSIS DATA FORM

PlantReflections Pot Funeral Home				
Unit Animal Cramatory	Test No.			
Date 5/7/02	Sampling Location Stack			
Sampling Time (24-hr Clock)				
Sample Type: Continuous 🗆 Integrated Bag 🗷	Grab □			
Analytical Method	Ambient Temperature ~ 500F			
Operator 8, Nalson				

RUN →	1			2		3	Average		Molecular Weight of Stack
GAS ↓	Actual Reading	Net	Actual Reading	Net	Actual Reading	Net	Net Volume	Multiplier	Gas (Dry Basis) (Md)
co,	8.6	8.6	45,C	ه. ه	€, la	8.6	6.0	.44	3.78
O ₂ (NET IS ACTUAL O ₂ READING MINUS ACTUAL CO ₂ READING)	16.7	₹.\	الها	€,1	16.7	8,1	8.1	.32	2.59
CO (NET IS ACTUAL CO READING MINUS ACTUAL O ₂ READING)							83.3	.28	23,32
N₂ (NET IS 100 MINUS ACTUAL CO READING)								.28	
					TOTAL	29.69			

CREMATOR MASS BALANCE

Matthews International Cremation Division Industrial Equipment & Engineering Co.

Model IE43-PPII (Power-Pak II) Crematory Incinerator, Fired on Natural Gas Pet Unit

7-Mar-06

THESE CALCULATIONS HAVE BEEN PREPARED TO EVALUATE THE COMBUSTION PROCESS IN THE POWER-PAK II CREMATORY INCINERATOR

Firing Rate

150 lb/hr =

75 % of

200 lbs/hr Rated Capacity)

Excess Air

100 %

THE INCINERATOR INSTITUTE OF AMERICA HAS PUBLISHED THE FOLLOWING SPECIFICATIONS COVERING AVERAGE WASTES.

WASTE TYPE	TYPE 0	TYPE 4
BTU PER POUND	8500	1000
POUND ASH PER POUND WASTE	0.05	0.05
POUND MOISTURE PER POUND WASTE	0.1	0.85
POUND COMBUSTIBLES PER POUND WASTE	0.85	0.1
HOURLY CONSUMPTION OF WASTE (LBS)	0.8	149.3

SPECIFICATIONS		
PRIMARY CREMATION BURNER FUEL CONSUMPTION	0.7	(MMBTU/HR)
SECONDARY CREMATION BURNER FUEL CONSUMPTION	0.5	(MMBTU/HR)
PRIMARY CHAMBER VOLUME (CU.FT)	64	
HEARTH AREA (SQ.FT)	26.4	
SECONDARY BURNER FUEL CONSUMPTION (MMBTU/HR)	1.2	
ADDITIONAL COMBUSTION AIR SUPPLIED		
THROAT AIR (SCFM)	233	
HEARTH AIR (SCFM)	133	
SEC. CHAMBER OPERATING TEMPERATURE (°F)	1600	
SECONDARY CHAMBER VOLUME (CU. FT)	74	
SEC. CHAMB. CROSS-SECTIONAL AREA (SQ. FT)	2.7	
FLAME PORT AREA (SQ. FT)	2.8	
MIXING BAFFLES AREA (SQ. FT)	1.4	

1. TOTAL FLUE PRODUCTS

A. PRIMARY BURNER NATURAL GAS USAGE

1150000 BTU/HR x <u>0.045 LBS/CF</u> = 52 LBS/HR 1000 BTU/CF

B. COMBUSTION AIR FOR PRIMARY BURNERS (100 % Excess Air)

1150000 BTU/HR x 2 x 0.075 LB/CF AIR = 1725 LBS/HR 100 BTU/SCF AIR = 383.3 SCFM

C. SECONDARY BURNER NATURAL GAS USAGE

D. COMBUSTION AIR FOR SECONDARY BURNER (100 % Excess Air) 2 x 0.075 LB/CF AIR 1200000 BTU/HR x = 1800 LBS/HOUR 100 BTU/SCF AIR = 400 SCFM E. PRODUCTS FROM TYPE 0 WASTE (CONTAINER) 0.95 LBS/LB BURNED x 1 LB/HR BURN RATE = 1 LBS/HOUR F. PRODUCTS FROM TYPE 4 WASTE (TISSUE) 0.95 LBS/LB WASTE x 149 LB/HR BURN RATE = 142 LBS/HOUR G. ADDITIONAL COMBUSTION AIR (THROAT & HEARTH AIR) 13980 SCF/HR 0.075 LB/CF AIR = 1049 LBS/HOUR Х 7980 SCF/HR Х 0.075 LB/CF AIR = 599 LBS/HOUR = 824 LBS/HR/CREMA1 = 4597 LBS/HOUR H. TOTAL FLUE PRODUCTS 2. VELOCITY AND TIME CALCULATIONS A. SCFM CALCULATION (PRODUCTS ASSUMED TO HAVE DENSITY CLOSE TO AIR) 4597 LBS/HR 13.35 STD. CU. FT/LB = 1023 SCFM 60 MIN/HR B. TOTAL PRODUCTS ACFM @ 1600 °F 2060 °RANKINE x 1023 CFM = 3975 ACFM 530 °RANKINE C. RETENTION TIME 74 CU.FT x 60 SECONDS = 1.12 SECONDS 3975 ACFM 1 MINUTE D. VELOCITY IN FLAME PORT 3975 ACFM 1 MINUTE = 23.7 FEET/SECOND 60 SECONDS 2.8 SQ. FT E. VELOCITY AT MIXING BAFFLES X 1 MINUTE 60 SECONDS = 47.3 FEET/SECOND 1.4 SQ. FT F. VELOCITY IN SECONDARY CHAMBER 3975 ACFM x 1 MINUTE 2.7 SQ. FT 60 SECONDS = 24.5 FEET/SECOND

CALCULATION OF EMISSIONS INDUSTRIAL EQUIPMENT & ENGINEERING COMPANY POWER-PAK II Animal

3/7/06

The flue gas flow rate for the Power-Pak II was chosen to give the highest emission expected rate.

The emission concentrations are from a test for a larger unit of similar design- the Ener-Tek cremator.

NITROGEN OXIDE (as nitrogen dioxide)

Highest emission concentration from test of the Ener-Tek unit: = 164 ppmv
The emission concentration is assumed to be the same for the Power-Pak II.

Estimated emission rate for Power-Pak II =

 $\frac{164 \text{ ppmv} \times 1.88 \text{ mg/m}^3/\text{ppmv} \times 0.0283 \text{ m}^3/\text{ft}^3 \times 750 \text{ dscfm} \times 60 \text{ min/hr}}{453,600 \text{ mg/lb}} = 0.88 \text{ lb/hr}$

<u>HYDROCARBONS (VOC)</u> (as methane)

Highest emission concentration from test of the Ener-Tek unit: = 5 ppmv
The emission concentration is assumed to be the same for the Power-Pak II.

Estimated emission rate for Power-Pak II =

 $\frac{5 \text{ ppmv x } 0.65 \text{ mg/m}^3/\text{ppmv x } 0.0283 \text{ m}^3/\text{ft}^3 \text{ x } 750 \text{ dscfm x } 60 \text{ min/hr}}{453,600 \text{ mg/lb}} = 0.01 \text{ lb/hr}$

SULFUR DIOXIDE

Highest emission concentration from test of the Ener-Tek unit: = 16 ppmv
The emission concentration is assumed to be the same for the Power-Pak II.

Estimated emission rate for Power-Pak II =

 $\frac{16 \text{ ppmv x } 2.61 \text{ mg/m}^3/\text{ppmv x } 0.0283 \text{ m}^3/\text{ft}^3 \text{ x } 657 \text{ dscfm x } 60 \text{ min/hr}}{453,600 \text{ mg/lb}} = 0.11 \text{ lb/hr}$

NOTES:

Conversion factors were taken from AP-42, Appendix A.

SPECIFICATIONS- Power-Pak II Pet

1.	Equipment Type A. Model No B. Underwriters Laboratories Listing and File No	IE43-PPII
2.	Dimensions A. Maximum Length B. Maximum Width C. Maximum Height D. Chamber Loading Opening	6' -5" 8' - 4"
3.	Weight	24,000 lbs.
4.	Utility/Air Requirements A. Gross Gas Input, Natural or LP Gas	7 inches w.c. or greater 11 inches w.c. or greater 230 volt, 3Ø or 1Ø, 60 hz (other available)
5.	Incineration Capacity A. Type 4 Material	150 lbs./hr.
6.	Typical Loading Capacity of Material A. Type 4 Material	400 to 800 lbs.
7.	Construction and Safety Standards	Incineration Institute of America, Underwriters Laboratories, Canadian Standards Association
8.	Steel Structure Construction A. Frame	3/8" plate 3/16" plate 12 gauge plate
9.	Stack Construction A. Inner Wall B. Outer Wall	4 ½" insulating firebrick or castable 12 gauge plate, type 304 s.s., welded seams
10.	Draft Nozzle Construction	Schedule 40 type 316 s.s. pipe
11.	Main Chamber Door Construction A. Steel Shell B. Outer Refractory C. Inner Refractory	1" insulating block
12.	Primary Chamber Wall Construction A. Outer Casing Wall B. Inner Frame/Air Compartment	

SPECIFICATIONS- Power-Pak II Pet

	C. Inner Casing Wall D. Outer Refractory Wall E. Inner Refractory Wall	5" insulating block
13.	Secondary Chamber Wall Construction A. Outer Casing Wall B. Inner Frame/Air Compartment C. Inner Casing Wall D. Outer Refractory Wall E. Inner Refractory Wall	2" air compartment 12 gauge plate 6" insulating block
14.	Refractory Temperature Ratings A. Standard Firebrick	2,600° F. 2,800° F. 2,550° F. 1,900° F.
15.	Chamber Volumes (not including external flues, stacks or chimneys) A. Primary Chamber B. Secondary Chamber	
16.	Emission Control Features A. Secondary Chamber with Afterburner B. Opacity Monitor and Controller with Visual and Audible Alarms C. Auxiliary Air Control System D. Microprocessor Temperature Control System	Included Included
17.	Operating Temperatures A. Primary Chamber B. Secondary Chamber	
18.	Secondary Chamber Retention Time A. Type 4 Material	> 1 second
19.	Ash Removal	Door functions as a heat shield. Sweep out through front door into a hopper that fills a collection pan.
20.	Safety Interlocks A. High Gas Pressure B. Low Gas Pressure C. Blower Air Pressure D. Door Position E. Opacity F. Motor Starter Function G. Chamber Temperature H. Motor Overload I. Flame Quality	Optional Optional Included Included Included Included Included Included Included Included Included

SPECIFICATIONS- Power-Pak II Pet

	J. Burner Safe Start	Included
22.	Burner Description	The nozzle mix burners used on this cremation equipment are industrial quality and designed for incinerator use.
23.	Ultraviolet Flame Detection	Ultraviolet flame detection has proven to be the most reliable means of flame safety. The system is completely sealed in a quartz capsule to eliminate problems, caused by moisture and dust created in the cremation process, which effect flame rod detectors.
24.	Operating Panel Indicating Lights	chest hame for detectors.
	A. Safe Run	Included
	B. Door Closed	Included
	C. Pollution Alarm	
	D. Afterburner On (Secondary Burner)	
	E. Cremation Burners On	
	F. Low Fire Cremation Burner On	
	G. Afterburner (Secondary Burner) Reset H. Cremation Burners Reset	
	I. Hearth Air	
	J. Throat Air Off	
25.	Automatic Timer Functions	
	A. Master Cycle	
	B. Afterburner (Secondary Burner)	
	C. Cremation Burners	
	D. Low Fire Cremation Burner	
	F. Throat Air	
	G. Pollution Monitoring	
	H. Afterburner (Secondary Burner) Prepurge	
	I. Cremation Burner Prepurge	
	J. Cool Down	Included
00	Estada Ciale	·
∠ b.	Exterior Finish A. Primer	2 coate rust inhibiting
	B. Finish	
	D. 1 (1)(3)1	2 coats textured limst
27.	Start-Up and Training	Startup of cremation equipment and training of operators to properly operate and maintain the equipment is performed on-site under actual operating conditions. Included is a comprehensive owner's manual, with details on
		the equipment, its components and proper operation.
28.	Environmental Submittals	Complete technical portion of state environmental permits. Engineering calculations, technical data, existing stack test results and

Lawton Chiles Governor

Florida Department of Environmental Protection

Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Virginia B. Wetherell Secretary

May 25, 1994

Mr. Paul F. Rahill, Vice President Industrial Equipment & Engineering Co. PO Box 547796 Orlando, FL 32854-7796

Re: Approval of Training Program for Operators of Human or Animal Crematories; Rule 17-296.401, F.A.C.

Dear Mr. Rahill:

On the basis of the trainers' credentials submitted on May 25, 1993 and May 25, 1994; and the content of the training programs submitted on August 4, 1992 and October 27, 1993; the Department has determined your training programs to be in the group of programs approved for the purpose of training cremation equipment operators statewide. The training programs shall consist of no less than eight hours of classroom instruction and on-site, hands-on training including start-up, operation of at least one cremation, shut-down of the equipment and one full cycle of preventive maintenance actions, using the actual equipment that the trainess will be operating at their facility.

Upon successful completion of your training course, each operator shall be issued a certificate of completion signed by the trainer. A copy of the training certificate for each operator having satisfactorily completed the training course must be submitted to the Department or approved Local Program Office within 15 days of training. For construction permit applications, a copy of this letter of authorization must be included with the application and the operator training must be performed at the time of startup.

This letter serves as certification of Ken Robinson, Rick Thomas, Roger Elliott, Billie Nunn, Dave Gifford, Steve Sidelinger, Tony Lombardi, and you, Paul Rahill, as trainers for operators of IEEE Power-Pak Junior, Power-Pak, Power-Pak II, Super Power-Pak, Ener-Tek II; Crawford series C-1000; All Crematory series L-1701; and B&L Systems series N20AA cremation incinerators using one of the training programs you submitted to the Department on August 4, 1992 or October 27, 1993. Approval must be obtained from the Department prior to any modification an approved training program.

Mr. Paul Rahill Page 2 of 2 Hay 25, 1994

Should you have any questions regarding this certification or need additional information, please contact Ms. Cindy Phillips at the above address, or call 904/921-9534.

Sincerely,

C. H. Fancy, P.E.

Chief

Bureau of Air Regulation

CHF/CLP

Ed Middleswart, NWD Chris Kirts, NED cc: Chuck Collins, CD Bill Thomas, SWD Isadore Goldman, SED David Knowles, SD

yellow shaded area is where Crematoy will be constructed

