Midway Development Company, L.L.C. Houston, Texas RECEIVED

JUL 19 2000

BUREAU OF AIR REGULATION

ENSR®

Air Permit Application for Midway-St. Lucie Electric Generating Plant

ENSR Corporation
July 2000
Document Number 6792-123-510

Midway Development Company, L.L.C. Houston, Texas

Air Permit Application for Midway-St. Lucie Electric Generating Plant

RECEIVED

JUL 19 2000

BUREAU OF AIR REGULATION

ENSR Corporation
July 2000
Document Number 6792-123-510

CONTENTS

1.0	INTRODUCTION	1-1
2.0	PROJECT DESCRIPTION	2-1
3.0	EMISSIONS SUMMARY	3-1
	3.1 Criteria Pollutant Emissions	3-1
	3.2 Hazardous Air Pollutant Emissions	3-3
4.0	REFERENCES	4-1
ΑP	PPENDICES	
A	FDEP PERMIT APPLICATION FORMS	
В	EMISSION CALCULATIONS	

i

LIST OF TABLES

Table 3-1	Combustion Turbine Maximum Hourly Emission Rate Summary	. 3-2
Table 3-2	Annual Criteria Pollutant Emissions	.3-3
Table 3-3	HAP Emission Summary, Midway-St. Lucie Electric Generating Facility	. 3-4
Table 3-4	Summary of Proposed Permit Limits for Combustion Turbine, Natural Gas Operation	. 3-5
Table 3-5	Summary of Proposed Permit Limits for Combustion Turbine, Distillate Oil Operation	.3-5

LIST OF FIGURES

Figure 1-1	Site Location Map	. 1-2
Figure 2-1	Florida Midway Peaker Power Project (6) GE M6000 Simple Cycle	.2-3
Figure 2-2	Process Flow Diagram	. 2-4
Figure 2-3	CTG Relative Criteria Pollutant Emission Rates	. 2-5

1.0 INTRODUCTION

Midway Development Company, L.L.C. is proposing to construct and operate a simple cycle combustion turbine peaking electric generating facility in St. Lucie County, Florida. The Midway-St. Lucie Electric Generating Facility (the Facility) will be a non-utility power generating facility (merchant plant) designed to produce electric energy for sale to the wholesale power market.

The Facility will be sited on approximately 20 acres located in St. Lucie County, Florida (see Figure 1-1). The facility will consist of six GE LM6000 PC SPRINT® simple cycle combustion turbines with a nominal generating capacity of approximately 288 megawatts (MW). The plant will fire natural gas and low sulfur distillate fuel oil. Natural gas will be the primary fuel. Distillate fuel will be used as a back-up fuel, in the event that natural gas is unavailable to the facility. The turbines will use water injection to minimize NO_x formation and good combustion practices for control of CO and VOC emissions. The turbines will be equipped with inlet air chilling and SPRINT® (SPRay INTercooling) for power augmentation.

The facility is scheduled to begin producing power in June, 2001. Construction will take approximately 6 months with a planned start date of December 1, 2000 (upon receipt of all necessary local and environmental approvals).

As a peaking facility, the project will operate on an intermittent basis, primarily during periods when short-term electrical demand exceeds base load supply. Hence, the facility will run primarily during the peak demand hours of the summer months and to a limited extent on the coldest winter days. In order to be permitted as a minor source of air emissions, the facility will limit emissions of all criteria pollutants to less than 248 tons per year (TPY) by accepting an enforceable limitation on tons per year of all criteria pollutants emitted. NO_x and CO have been determined to be the limiting pollutants for major source status. As such, it is proposed that NO_x and CO emissions be limited to no more than 248 TPY, as measured by NO_x and CO continuous emission monitoring systems.

Section 2 of this application provides a more detailed project description. Section 3 presents a summary of the project emissions and the basis and methods used to calculate emissions. The required Florida Department of Environmental Protection (FDEP) application forms are presented in Appendix A, with supporting calculations for emissions included in Appendix B. As "new affected units" under Phase II of the Acid Rain Program, the facility is required to obtain SO₂ allowances. The application for the Phase II Acid Rain permit will be submitted shortly after this application is filed.

Figure 1-1 Site Location Map

2.0 PROJECT DESCRIPTION

The GE LM 6000 PC SPRINT® combustion turbine (CT) is a nominal 48 MW class industrial gas turbine. The LM 6000 is a 2-shaft gas turbine engine derived from the core of the CF6-80C2 - GE's high thrust, high efficiency aircraft engine. Over eighteen hundred CF6-80C2's are in service and over 2000 more are on order or option. The CF6-80C2 has logged more than 30,000,000 flight hours in the Boeing 747 and other wide-body aircraft, with a 99.88% dispatch reliability. GE used the extensive flight experience of the CF6-80C2 to create the LM 6000. Both engines have a common design and share most major parts. The Low Pressure Turbines, High Pressure Compressors, High Pressure Turbines, and Combustors are virtually identical. This use of flight-proven parts, produced in high volume, contributes to the low initial cost and high operating efficiency of the LM6000.

The GE LM6000 PC SPRINT® enhances the efficiency and output of the LM6000 gas turbine engine by injecting micro-droplets of atomized water into the interstage air stream between the Low Pressure Compressor and the High Pressure Compressor. The SPRINT® system increases the power output by as much as 20% at 90 °F and by improving the expected heat rate from 9,330 Btu/kWh LHV to 8,984 Btu/kWh LHV at 90 °F.

The proposed facility will utilize six GE LM6000 CTs, providing a total nominal generating capacity of approximately 288 MWs. Emissions from each turbine will be vented through stacks that are 45 feet tall and 10 feet in diameter. Figure 2-1 is a conceptual drawing depicting the layout of the proposed turbine configuration, Figure 2-2 is a process flow diagram for the proposed combustion turbines.

The turbines will be equipped to fire both natural gas and fuel oil, utilizing natural gas as the primary fuel. The project will not use any other fuel source for startup, shutdown, or backup. The Facility will have the ability to utilize power from the grid for startup. Electrical power produced by the project will be interconnected to the electric grid by a transmission line to FPL's transmission line in the vicinity of the property.

The Facility will use simple cycle power generation for peaking electrical generation for periods when short-term electrical demand exceeds base load supply. Peaking units have the ability to be brought on-and off-line quickly in response to fluctuations in electrical demand. Typical startup to 100% load and shutdown from 100% load can be achieved in approximately 20 minutes.

The Facility will be permitted and operated as a synthetic minor source under the Clean Air Act by accepting a permit limitation on tons per year of criteria pollutants emitted. Figure 2-3 illustrates the relative emissions rates of criteria pollutants from the proposed turbines. Based on the proposed permit limits, the most limiting pollutants are NO_x during distillate oil operation and CO during natural gas operation. Midway Development Company, LLC proposes to limit potential emissions from the Facility through the use of a Continuous Emission Monitoring System (CEMS) for NO_x and CO. By

limiting emissions of NO_x and CO to less than the major source threshold of 248 tons per year, it can be seen than none of the remaining criteria pollutants will exceed the 250 ton per year threshold. Although performance data has been included for operating conditions from 50% to 100% load, each CT will typically be operated at full (100%) load. Depending upon demand, all units may not be in operation.

The Facility will also incorporate two tanks used to store distillate oil for the combustion turbines and a fire-water pump engine. The on site oil storage requirements have been estimated to be a maximum of 1,500,000 gallons, with a maximum day storage tank requirement of 300,000 gallons. The working and breathing losses from the two tanks has been estimated using the Tanks 4.0 program to be 0.7 tons per year.

For emergency purposes the Facility will incorporate a fire water pump powered by a 250 hp diesel engine. The emissions from this engine have been estimated using AP-42 emission factors, assuming a maximum operation of 500 hours per year. Based on this operational limitation the fire water pump engine satisfies the applicable criteria of Rule 62-210.300(b)1 for exemption from permitting and thus has not been addressed in the Section III of the FDEP application forms. In addition, a 6 MMBtu/hour fuel gas heater will be included in the Facility design for use as a means to prevent condensation of moisture and hydrates in natural gas used in the gas turbines. This emissions unit also meets the criteria for the generic emissions unit exemption under Rule 62.210.300(b)1 and has not been included in Section III of the application forms.

Figure 2-3 CTG Relative Criteria Pollutant Emission Rates

3.0 EMISSIONS SUMMARY

This section discusses the basis and methods used to estimate potential emissions for the Facility.

The data used during the development of this application rely on process information developed by GE for Midway Development Company, L.L.C. The summary presented in Table 3-1 has been prepared for the six GE LM6000 PC SPRINT® combustion turbines. Similar to other machines, as combustion turbines age the performance achieved in practice will degrade from the initial condition. The most noticeable result of the aging process for combustion turbines is that the heat rate of the turbine will nise over time (i.e. efficiency will drop). The result of this aging effect is that to achieve the same electrical output more fuel will need to be consumed. To account for this aging effect the hourly emissions, presented in Table 3-1, include a 10% margin on the mass emission rate above what has been calculated from the manufacturer's performance data. This aging effect only influences the mass emission rate and not the emission concentration. The 10% margin is based on previous experience with similar combustion turbines.

Detailed emission calculations for these turbines are presented at 100%, 75%, and 50% load cases in Appendix B along with operating specifications at the following ambient conditions:

- 42°F dry bulb at 72% relative humidity,
- 90°F dry bulb at 65% relative humidity chilled to 50°F and 95% relative humidity.

The effect of the SPRINT® power augmentation system is included in both temperature cases.

3.1 Criteria Pollutant Emissions

The primary emission sources at the Facility will be the six CTs. Each CT, when used, will typically operate at 100% load, but may, at times, be operated down to 50% load. The turbines will fire natural gas, supplied directly to the site by pipeline and fuel oil, provided by onsite storage. Hourly emissions from these units were calculated from manufacturers' operating parameters and guaranteed in-stack concentrations for CO, NO_x, and VOC.

According to GE, limited data are available for particulate emissions; however, GE guarantees 4.5 lbs/hr per turbine while firing natural gas, including condensable and filterable particulate matter, under a load range of 50 to 100% of full load. Particulate emissions are estimated to be 20 lb/hour while firing fuel oil. As PM₁₀ emissions are based on manufacturer's guaranteed hourly emission rates, a worst case lb/MMBtu emission factor has been calculated from the lb/hr guarantee emission rate for purposes of calculating annual PM₁₀ emissions. SO₂ emissions were calculated using the manufacturers' supplied fuel consumption data and expected maximum fuel gas sulfur contents of 2.0 grains per 100 standard cubic feet for natural gas and 0.05% for fuel oil.

Table 3-1 Combustion Turbine Maximum Hourly Emission Rate Summary

Compound	Load					
•	(%)	90	42	90	42	
Emissi	ons for on	e GE LM 60		e - With Ma	rgin	
		(lb/h				
		Natural Gas		Distillate Oil		
NOx	100	46.3	47.1	78.7	79.9	
	75	36.6	36.5	62.8	62.1	
	50	27.8	27.6	47.7	47.3	
co	100	63.2	64.2	63.9	64.9	
	75	49.9	49.8	51.0	50.4	
***	50	37.9	37.6	38.7	38.4	
voc	100	7.2	7.3	6.5	6.6	
	75	5.7	5.6	5.2	5.2	
	50	4.3	4.1	4.0	3.9	
SO2	100	2.8	2.8	24.6	25.0	
	75	2.2	2.2	19.7	19.5	
	50	1.7	1.7	15.0	14.9	
Pb	100	0.000	0.000	0.007	0.007	
	75	0.000	0.000	0.005	0.005	
	50	0.000	0.000	0.004	0.004	
PM10	100	5.0	5.0	22.0	22.0	
				20.0	22.0	
	75	5.0	5.0	22.0	22.0	
Notes: Margin on Em	50 nissions	5.0 10%	5.0	22.0	22.0	
	50 nissions	5.0 10% M 6000 PC	5.0 SPRINT Tu	22.0	22.0	
Margin on Em Emissions fo	50 nissions r six GE Li	5.0 10% M 6000 PC (lb/h	5.0 SPRINT Tu r)	22.0 Irbines - W	22.0	
Margin on Em	50 nissions r six GE L	5.0 10% W 6000 PC (lb/h 278.1	5.0 SPRINT Tu r) 282.3	22.0 Irbines - W 472.0	22.0 ith Margi 479.4	
Margin on Em Emissions fo	50 nissions r six GE Li 100 75	5.0 10% W 6000 PC (lb/h 278.1 219.6	5.0 SPRINT Tu r) 282.3 219.1	22.0 Irbines - W 472.0 376.7	22.0 ith Margi 479.4 372.9	
Margin on Em Emissions fo NOx	50 nissions r six GE Li 100 75 50	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9	5.0 SPRINT Tu r) 282.3 219.1 165.6	22.0 1rbines - W 472.0 376.7 285.9	22.0 ith Margi 479.4 372.9 283.6	
Margin on Em Emissions fo	50 nissions r six GE Li 100 75 50 100	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1	22.0 urbines - W 472.0 376.7 285.9 383.1	22.0 ith Margi 479.4 372.9 283.6 389.2	
Margin on Em Emissions fo NOx	50 nissions r six GE Li 100 75 50 100 75	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7	22.0 472.0 376.7 285.9 383.1 305.8	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7	
Margin on Em Emissions fo NOx	50 nissions r six GE Li 100 75 50 100 75 50	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9	22.0 472.0 376.7 285.9 383.1 305.8 232.1	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2	
Margin on Em Emissions fo NOx	50 nissions r six GE LI 100 75 50 100 75 50 100	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2	22.0 (ith Marginal 2479.4 372.9 283.6 389.2 302.7 230.2 39.8	
Margin on Em Emissions fo NOx	50 nissions r six GE Li 100 75 50 100 75 50 100 75	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0	
Margin on Em Emissions fo NOx CO	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50	5.0 10% W 6000 PC (lb/h) 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5	
Margin on Em Emissions fo NOx	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2	
Margin on Em Emissions fo NOx CO	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75 50 100 75	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6 13.1	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9 13.1	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7 118.2	22.0 (ith Marginal 29.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2 117.1	
Margin on Em Emissions fo NOx CO VOC	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75 50 100 75	5.0 10% M 6000 PC (lb/h) 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6 13.1 10.0	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9 13.1 9.9	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7 118.2 89.8	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2 117.1 89.2	
Margin on Em Emissions fo NOx CO	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75 50 100 75	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6 13.1 10.0 0.0	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9 13.1 9.9 0.0	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7 118.2 89.8 0.0	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2 117.1 89.2 0.0	
Margin on Em Emissions fo NOx CO VOC	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75 50 100 75 50 100 75	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6 13.1 10.0 0.0 0.0	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9 13.1 9.9 0.0 0.0	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7 118.2 89.8 0.0 0.0	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2 117.1 89.2 0.0 0.0	
Margin on Em Emissions fo NOx CO VOC SO2	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75 50 100 75 50 100 75 50	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6 13.1 10.0 0.0 0.0 0.0	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9 13.1 9.9 0.0 0.0	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7 118.2 89.8 0.0 0.0	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2 117.1 89.2 0.0 0.0	
Margin on Em Emissions fo NOx CO VOC	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75 50 100 75 50 100 75	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6 13.1 10.0 0.0 0.0 0.0 29.7	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9 13.1 9.9 0.0 0.0 29.7	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7 118.2 89.8 0.0 0.0 0.0 132.0	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2 117.1 89.2 0.0 0.0 132.0	
Margin on Em Emissions fo NOx CO VOC SO2	50 nissions r six GE Li 100 75 50 100 75 50 100 75 50 100 75 50 100 75 50 100 75 50	5.0 10% M 6000 PC (lb/h 278.1 219.6 166.9 379.2 299.5 227.6 43.4 34.3 25.8 16.6 13.1 10.0 0.0 0.0 0.0	5.0 SPRINT Tur) 282.3 219.1 165.6 385.1 298.7 225.9 43.9 33.4 24.8 16.9 13.1 9.9 0.0 0.0	22.0 472.0 376.7 285.9 383.1 305.8 232.1 39.2 31.3 23.7 147.7 118.2 89.8 0.0 0.0	22.0 ith Margi 479.4 372.9 283.6 389.2 302.7 230.2 39.8 31.0 23.5 150.2 117.1 89.2 0.0 0.0	

Maximum hourly emission rates for each pollutant were established after reviewing the calculations for the two ambient temperatures at three turbine load conditions (50%, 75%, and 100%) that represent the range of expected operating conditions. The maximum emissions for all criteria pollutants are at 100% load, 42°F. The annual facility emissions of NO_x and CO will be limited through the use of CEMS, to a maximum of 248 tons per year. Although annual operation is restricted through the use of NO_x and CO CEMS rather than a fuel cap, an estimate of the maximum annual fuel consumption is used to calculate the maximum annual emissions of VOC, SO_2 , Pb, and PM_{10} .

Based on the guaranteed emission concentrations, during natural gas operation CO is the limiting pollutant, while during distillate oil operation NO_x is the limiting pollutant. The CO emissions presented in this application are based on a guaranteed CO emission concentration of 56 ppmvd @ 15% O_2 . This guaranteed concentration covers turbine operation over a broad range of ambient conditions, including extremely low temperatures that will not be experienced by a turbine used for summer peaking in Florida. At typical ambient temperatures for the Facility, Midway Development Company, L.L.C. expects actual CO emission concentrations to be substantially lower than the guaranteed emission concentration. Thus, annual emissions of VOC, SO_2 , Pb, and PM_{10} have been estimated assuming NO_x to be the limiting pollutant as not as much variability is expected in the NO_x concentration. The data used in this analysis is presented in Appendix B. Table 3-2 presents a summary of annual emissions for the six combustion turbines, the natural gas fuel heater, the distillate oil storage tank, and the fire-water pump engine. Tables 3-4 and 3-5 provide a summary of proposed permit limits for the combustion turbines.

Table 3-2 Annual Criteria Pollutant Emissions

Source Name	NO _x ⁽¹⁾	CO (1)	VOC (2)	SO ₂ (2)	Pb (2)	PM (2)	PM ₁₀ (2)
Annu	al Emission Rates (to	ns/year	-)				
LM 6000 Combustion Turbines.	245.5	247.2	41.6	85.0	0.02	125.1	125.1
Distillate Oil Storage Tank	N/A	N/A	0.9	N/A	N/A	N/A	N/A
Fire-Water Pump Engine	2.0	0.4	0.2	0.1	0.0	0.2	0.2
Natural Gas Fuel Heater	0.5	0.4	0.3	0.0	0.0	0.0	0.0
Total	248.0	248.0	43.0	85.1	0.02	125.3	125.3

Notes:

3.2 Hazardous Air Pollutant Emissions

Emissions of hazardous air pollutants (HAPs) were calculated to confirm that the Facility will <u>not</u> be a new major HAP source subject to preconstruction permitting under 40 CFR 63 Subpart B. HAP emissions (with the exception of formaldehyde) were derived from the April 2000 version of AP-42 Section 3.1 which provides emission factors for stationary combustion turbines. An emission factor for

⁽¹⁾ Limited by CEMS on NOx and CO.

⁽²⁾ Estimated from CEMS limitation on NO_x and CO. Annual emissions of VOC, SO_2 , Pb, and PM/PM_{10} increased by 10% margin.

formaldehyde was developed from a subset of the database used by EPA to develop the AP-42 emission factors (see Appendix B for details).

Annual HAP emissions are presented in Table 3-3. Total facility-wide emissions for all HAPs combined is 2.7 TPY with the largest single HAP being less than 1.1 TPY. Both of these values are well below the 25/10 tpy major source thresholds for HAPs.

Table 3-3 HAP Emission Summary, Midway-St. Lucie Electric Generating Facility

CTG Natural Gas		CTG Distil	late Oil	Facility		
	Emission Rate,		Emission	•	Emission Rate	
Pollutant	Per Turt	oine	Per Tur	bine	All CTGs	
	Max Hourly	Annual	Max Hourly	Annual	Max Hourly	Annual
	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(lb/hr)	(tpy)
			_			
1,3-Butadiene	2.01E-04	1.56E-04	7.20E-03	4.45E-03	4.32E-02	2.67E-02
Acetaldehyde	1.87E-02	1.45E-02	0.00E+00	0.00E+00	1.12E-01	8.70E-02
Acrolein	3.00E-03	2.32E-03	0.00E+00	0.00E+00	1.80E-02	1.39E-02
Benzene ^(a)	6.07E-03	4.70E-03	2.48E-02	1.53E-02	1.49E-01	9.17E-02
Ethylbenzene	1.50E-02	1.16E-02	0.00E+00	0.00E+00	9.00E-02	6.96E-02
Formaldehyde (b)	5.93E-02	4.59E-02	1.26E-01	7.78E-02	7.56E-01	4.67E-01
Naphthalene	6.09E-04	4.71E-04	1.58E-02	9.72E-03	9.45E-02	5.83E-02
PAHs	1.03E-03	7.98E-04	1.80E-02	1.11E-02	1.08E-01	6.67E-02
Propylene Oxide	1.36E-02	1.05E-02	0.00E+00	0.00E+00	8.15E-02	6.31E-02
Toluene ^(a)	3.18E-02	2.46E-02	0.00E+00	0.00E+00	1.91E-01	1.48E-01
Xylene	3.00E-02	2.32E-02	0.00E+00	0.00E+00	1.80E-01	1.39E-01
Arsenic	0.00E+00	0.00E+00	4.95E-03	3.06E-03	2.97E-02	1.83E-02
Beryllium	0.00E+00	0.00E+00	1.40E-04	8.61E-05	8.37E-04	5.17E-04
Cadmium	0.00E+00	0.00E+00	2.16E-03	1.33E-03	1.30E-02	8.00E-03
Chromium	0.00E+00	0.00E+00	4.95E-03	3.06E-03	2.97E-02	1.83E-02
Lead	0.00E+00	0.00E+00	6.30E-03	3.89E-03	3.78E-02	2.33E-02
Manganese	0.00E+00	0.00E+00	3.56E-01	2.19E-01	2.13E+00	1.32E+00
Mercury	0.00E+00	0.00E+00	5.40E-04	3.33E-04	3.24E-03	2.00E-03
Nickel	0.00E+00	0.00E+00	2.07E-03	1.28E-03	1.24E-02	7.67E-03
Selenium	0.00E+00	0.00E+00	1.13E-02	6.95E-03	6.75E-02	4.17E-02
·			L	 Facility T	l otal HAPs	2.7
			N	laximum Indi		1.3

Proposed emission limits for the combustion turbines during natural gas and distillate oil operation are presented in Tables 3-4 and 3-5, respectively. Annual limits for VOCs, SO_2 , PM_{10} , and Pb are not proposed to be included in the permit. This is because compliance with a 248 ton/year limit for NO_x

and CO will insure that these other pollutants are emitted in quantities considerably lower than the 250 ton/year major source threshold.

Table 3-4 Summary of Proposed Permit Limits for Combustion Turbine, Natural Gas Operation

	ppmvd @ 15% O ₂	Lb/hr¹ Each Turbine	CTG Annual Tons/Yr	Control Technology	Test Method
NO _x	25	47.1	245.5	Water Injection	Stack Test Ref. Method 19 & 20
СО	56	64.2	247.2	Good Combustion Practices	Stack Test Ref. Method 10 & 19
VOC	10	7.3		Good Combustion Practices	Stack Test Ref. Method 25a less Methane via bag sample & Method 18
SO₂	N/A	2.8	·	Low Sulfur Fuel (less than 2.0 grain S/100 SCF gas)	Fuel Monitoring
PM ₁₀	N/A	5.0	. ,	Low Sulfur and Ash Fuel (less than 2.0 grain S/100 SCF gas)	Stack Test Ref. Method 5 & 202

Table 3-5 Summary of Proposed Permit Limits for Combustion Turbine, Distillate Oil Operation

	Ppmvd @ 15% O ₂	Lb/hr¹ Each Turbine	CTG Annual Tons/Yr	Control Technology	Test Method
NO _x	42	79.9	245.5	Water Injection	Stack Test Ref. Method 19 & 20
СО	56	64.9	247.2	Good Combustion Practices	Stack Test Ref. Method 10 & 19
VOC	10	6.6		Good Combustion Practices	Stack Test Ref. Method 25a less Methane via bag sample & Method 18
SO ₂	N/A	25		Low Sulfur Fuel	Fuel Monitoring
Pb	N/A	<0.01		Low Ash Fuel	N/A
PM ₁₀	N/A	22		Low Sulfur and Ash Fuel	Stack Test Ref. Method 5 & 202
¹lb/hr fo	r each turbine is b	ased on 100% load	at 42°F and inc	ludes a margin of 10% represe	nting maximum potential to emit

4.0 REFERENCES

Pequot Publishing, 1997. Gas Turbine World 1997 Handbook.

Rasnic, John B., August 1987. Letter to Air Compliance Branch Chiefs, Regions I-IX, RC: NSPS Custom Fuel Monitoring.

U.S. EPA. September 1977. Standards Support and Environmental Impact Statement - Volume I: Proposed Standards of Performance for Stationary Gas Turbines. EPA 450/2-77-017a.

U.S. EPA. October 1990. New Source Review Workshop Manual. Draft.

U.S. EPA. October 1996. AP-42.

APPENDIX A

APPLICATION FOR AIR PERMIT -- TITLE V SOURCE DEP FORM NO. 62-210.900(1)

Department of Environmental Protection

Division of Air Resources Management

APPLICATION FOR AIR PERMIT - TITLE V SOURCE

See Instructions for Form No. 62-210.900(1)

I. APPLICATION INFORMATION

Identification of Facility

Identification of Facinity						
1. Facility Owner/Company Name:						
Midway Development Company, L.L.C.						
Site Name:						
Midway-St. Lucie Electric Gener	rating Plant					
3. Facility Identification Number:		ſ	✓] Unknown			
4. Facility Location:						
Street Address or Other Locator: 0.	.5 miles N an	d W of inte	rsection of US 95 and State			
712 (Midway Rd.)						
City: St. Lucie County: St. Lucie Zip Code:						
5. Relocatable Facility? 6. Existing Permitted Facility?						
[] Yes [/] No		[] Yes	[/] No			
Application Contact 1. Name and Title of Application Contact	ntact: Dave k	Kellermeyer	, Director			
Application Contact Mailing Address Organization/Firm: Midway Deve		npany, L.L.	.C.			
Street Address: 1400 Smith Street	t					
City: Houston	State:	TX	Zip Code: 77002-7631			
3. Application Contact Telephone Nu	ımbers:					
Telephone: (713) 853-3161		Fax: (713)	646-3037			
Application Processing Information	(DEP Use)					
1. Date of Receipt of Application:	7-19-	00				
2. Permit Number:	1110	00 099-001	'-AC			
3. PSD Number (if applicable):						
4. Siting Number (if applicable):						

DEP Form No. 62-210.900(1) - Form

Purpose of Application

Air Operation Permit Application

This	Application for Air Permit is submitted to obtain: (Check one)
[]	Initial Title V air operation permit for an existing facility which is classified as a Title V source.
[]	Initial Title V air operation permit for a facility which, upon start up of one or more newly constructed or modified emissions units addressed in this application, would become classified as a Title V source.
	Current construction permit number:
[]	Title V air operation permit revision to address one or more newly constructed or modified emissions units addressed in this application.
	Current construction permit number:
	Operation permit number to be revised:
[]	Title V air operation permit revision or administrative correction to address one or more proposed new or modified emissions units and to be processed concurrently with the air construction permit application. (Also check Air Construction Permit Application below.)
	Operation permit number to be revised/corrected:
[]	Title V air operation permit revision for reasons other than construction or modification of an emissions unit. Give reason for the revision; e.g., to comply with a new applicable requirement or to request approval of an "Early Reductions" proposal.
	Operation permit number to be revised:
	Reason for revision:
Air (Construction Permit Application
This	Application for Air Permit is submitted to obtain: (Check one)
[/]	Air construction permit to construct or modify one or more emissions units.
. []	Air construction permit to make federally enforceable an assumed restriction on the potential emissions of one or more existing, permitted emissions units.

[] Air construction permit for one or more existing, but unpermitted, emissions units.

2

Owner/Authorized Representative or Responsible Official

1.	Name and	Title of Owner	Authorized	Representative of	r Responsible	Official:
----	----------	----------------	------------	-------------------	---------------	-----------

Janet Dietrich - Managing Director

2. Owner/Authorized Representative or Responsible Official Mailing Address:

Organization/Firm: Midway Development Company, L.L.C.

Street Address: 1400 Smith Street

City: Houston

State: TX

Zip Code: 77002-7631

3. Owner/Authorized Representative or Responsible Official Telephone Numbers:

Telephone: (713) 853-4836

Fax: (713) 646-3239

4. Owner/Authorized Representative or Responsible Official Statement:

I, the undersigned, am the owner or authorized representative*(check here $[\]$, if so) or the responsible official (check here $[\]$, if so) of the Title V source addressed in this application, whichever is applicable. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof. I understand that a permit, if granted by the Department, cannot be transferred without authorization from the Department, and I will promptly notify the Department upon sale or legal transfer of any permitted emissions unit.

Signature Signature

7-18-00

Date

Professional Engineer Certification

1. Professional Engineer Name: Blair Burgess

Registration Number: 45460

2. Professional Engineer Mailing Address:

Organization/Firm: ENSR

Street Address: 2809 West Mall Drive

City: Florence

State: AL

Zip Code: **35630**

3. Professional Engineer Telephone Numbers:

Telephone: (256) 767-1210

Fax: (256) 767-1211

DEP Form No. 62-210.900(1) - Form

^{*} Attach letter of authorization if not currently on file.

4. Professional Engineer Statement:

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [], if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here $[\ \ \ \ \ \]$, if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [], if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance, with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

L

7/12/00

EMBOSSED METALLIC

DEP Form No. 62-210.900(1) - Form

^{*} Attach any exception to certification statement.

Scope of Application

Emissions		Permit	Processing
Unit ID	Description of Emissions Unit	Type	Fee
CT001 -	LM6000 Simple Cycle Combustion Turbines	AC1B	\$5,000
СТ06	(Six identical combustion turbines)		Similar emissions unit fee per Rule 62-4.050(4)(a)(4)
T001 -	Distillate Fuel Oil Storage Tanks	AC1E	\$250
T002			
FWP	Firewater Pump Diesel Engine	AC1F	\$250
NGH	Natural Gas Fuel Heater	ACIF	\$250

Application Processing Fee

Check one: [✓] Attached - Amount: \$5,750	[] Not Applicable
---	--------------------

Construction/Modification Information
1. Description of Proposed Project or Alterations
Midway Development Company, L.L.C. proposes to construct and operate a peaking electrical power generating facility at a greenfield site in St. Lucie County, Florida. The facility will consist of up to six (6) GE LM6000 combustion turbines operating in simple cycle mode; each turbine has a nominal generating capacity of 48 MW. The combustion turbines will be fired primarily with natural gas with low sulfur distillate oil as a backup fuel. NO _x emissions will be controlled with water injection. Permit conditions will limit total facility annual emissions to less than 248 tons per year of any regulated air pollutant in order to be permitted as a synthetic minor source with respect to Rule 62-212.400, Prevention of Significant Deterioration. Ancillary equipment includes one 1.5 million gallon distillate oil storage tank, one natual gas fuel heater and one emergency diesel fired IC engine driving a firewater pump.
2. Projected or Actual Date of Commencement of Construction:
December 1, 2000
3. Projected Date of Completion of Construction:
June 1, 2001
Application Comment

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1.	Facility UTM Coor	dinates:			·
1.	Zone: 17		m): 556.95	Nort	th (km): 3027.772
2.	Facility Latitude/Lo	ongitude:			
	Latitude (DD/MM/	SS): 27° 22' 26"N	Longitude	e (DD/MN	A/SS): 80° 25' 27"W
3.	Governmental	4. Facility Status	5. Facility	Major	6. Facility SIC(s):
	Facility Code:	Code:	Group SIC	Code:	
	0	C	49		4911
7.	Facility Comment (limit to 500 character	s):		
					•

Facility Contact

- 1. Name and Title of Facility Contact:
 - Dave Kellermeyer, Director
- 2. Facility Contact Mailing Address:

Organization/Firm: Midway Development Company, L.L.C.

Street Address: 1400 Smith Street

City: Houston State: TX Zip Code: 77002-7631

3. Facility Contact Telephone Numbers:

Telephone: (713) 853-3161 Fax: (713) 646-3037

DEP Form No. 62-210.900(1) - Form

Facility Regulatory Classifications

Check all that apply:

1. [] Small Business Stationary Source?	[] Unknown			
2. [] Major Source of Pollutants Other than	Hazardous Air Pollutants (HAPs)?			
3. [] Synthetic Minor Source of Pollutants	Other than HAPs?			
4. [] Major Source of Hazardous Air Pollut	tants (HAPs)?			
5. [] Synthetic Minor Source of HAPs?				
6. [✓] One or More Emissions Units Subject to NSPS?				
7. [] One or More Emission Units Subject	to NESHAP?			
8. [✓] Title V Source by EPA Designation?				
9. Facility Regulatory Classifications Commer	nt (limit to 200 characters):			
List of Applicable Regulations (Facility-wid	<u>e)</u>			
Title V Core List (3/21/96) of				
presumptively applicable requirements.				
	·			
The state of the s	1			

DEP Form No. 62-210.900(1) - Form

B. FACILITY POLLUTANTS

List of Pollutants Emitted

1. Pollutant Emitted	2. Pollutant Classif.	3. Requested Er	missions Cap	4. Basis for Emissions	5. Pollutant Comment
- Dimilou	Classii.	lb/hour	tons/year	Cap	Commont
NOX	A, SM (PSD/248 tpy)		248	ESCPSD	Units CT001-CT06, FWP + NGH included under NO _x cap.
СО	A, SM (PSD/248 tpy)		248	ESCPSD	Units CT001-CT06, FWP + NGH included under CO cap.
SO2	В				CT SO ₂ emissions and fuel sulfur content regulated under 40 CFR 60, Subpart GG
VOC	В		·		Unit T001 subject to record keeping requirements of 40 CFR 60, Subpart Kb
				,	

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

C. FACILITY SUPPLEMENTAL INFORMATION

Supplemental Requirements

1.	Area Map Showing Facility Location:										
	[] Attached, Document ID:_Fig. 1-1 [] 1	Not.	Applic	able	[}	Waiver	Requested	
2.	Facility Plot Plan:								_		
	[] Attached, Document ID: Fig. 2-1 []]	Not.	Applic	able	[}	Waiver	Requested	
3.	Process Flow Diagram(s):										
	[] Attached, Document ID: Fig. 2-2 []]	Not.	Applic	able	[]	Waiver	Requested	
4.	Precautions to Prevent Emissions of Unco	nfi	ine	d Pa	rticula	te Ma	atter	:			
	[] Attached, Document ID:[[🗸] 1	Not.	Applic	able	[]	Waiver	Requested	
5.	Fugitive Emissions Identification:										
	[] Attached, Document ID:[[🗸]]	Not.	Applic	able	[]	Waiver	Requested	
6.	Supplemental Information for Construction [✓] Attached, Document ID: ENSR Document ID:							10	[]	Not	
Αp	pplicable										
Ap	pplicable										
	Supplemental Requirements Comment:										

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

10

Additional Supplemental Requirements for Title V Air Operation Permit Applications

8. List of Proposed Insignificant Activities:
[Attached, Document ID: Section 2 [] Not Applicable
9. List of Equipment/Activities Regulated under Title VI:
[] Attached, Document ID:
[] Equipment/Activities On site but Not Required to be Individually Listed
[✓] Not Applicable
10. Alternative Methods of Operation:
[] Attached, Document ID: [✓] Not Applicable
11. Alternative Modes of Operation (Emissions Trading):
[] Attached, Document ID:[✓] Not Applicable
12. Identification of Additional Applicable Requirements:
[] Attached, Document ID: [✓] Not Applicable
13. Risk Management Plan Verification:
Plan previously submitted to Chemical Emergency Preparedness and Prevention
Office (CEPPO). Verification of submittal attached (Document ID:) or
previously submitted to DEP (Date and DEP Office:)
Plan to be submitted to CEPPO (Date required:
[✓] Not Applicable
14. Compliance Report and Plan:
[] Attached, Document ID: [✓] Not Applicable
15. Compliance Certification (Hard-copy Required):
[] Attached, Document ID:[✓] Not Applicable

DEP Form No. 62-210.900(1) - Form

III. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through J as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

A. GENERAL EMISSIONS UNIT INFORMATION (All Emissions Units)

Emissions Unit Description and Status

1. Type of Emissions Unit Addressed in Th	nis Section: (Check one)				
This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).					
process or production units and activit	✓] This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.				
	ion addresses, as a single emissions unit, one or more ies which produce fugitive emissions only.				
2. Regulated or Unregulated Emissions Un	it? (Check one)				
[The emissions unit addressed in this E emissions unit.	[The emissions unit addressed in this Emissions Unit Information Section is a regulated				
[] The emissions unit addressed in this E emissions unit.					
3. Description of Emissions Unit Addresse	3. Description of Emissions Unit Addressed in This Section (limit to 60 characters):				
	M6000 simple cycle combustion turbines (CT)				
	watts (MW). Each CT will be fired primarily				
with natural gas with low sulfur distil					
4. Emissions Unit Identification Number:	[✔] No ID				
ID: CT001 - CT06	[] ID				
Unknown					
5. Emissions Unit 6. Initial Startup	7. Emissions Unit Major 8. Acid Rain Unit?				
Status Code: Date:	Group SIC Code: [✔]				
C June 2001	49				
9. Emissions Unit Comment: (Limit to 500	·				
,	CT06) should be considered separate emissions				
	to one Emissions Unit Information Section has				
	ence since the information required in Subsections				
A through J is identical for each comb	oustion turbine.				

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 1 of 2

Emissions Unit Control Equipment

Each turbine will be equipped with water-injected combustors to control NO _x
formation.

1. Control Equipment/Method Description (Limit to 200 characters per device or method):

2. Control Device or Method Code(s): 028

Emissions Unit Details

1.	Package Unit:	
	Manufacturer: General Electric	Model Number: LM6000 PC Sprint
2.	Generator Nameplate Rating:	48 MW (nominal)
3.	Incinerator Information: N/A	
	Dwell Temperature:	°F
	Dwell Time:	seconds
	Incinerator Afterburner Temperature:	°F

DEP Form No. 62-210.900(1) - Form

B. EMISSIONS UNIT CAPACITY INFORMATION (Regulated Emissions Units Only)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Heat Input Rate: 4	69 mmE	Stu/hr HHV (ba	se load on na	iturai gas @ 42°r)
2.	Maximum Incineration Rate:	N/A	lb/hr	N/A	tons/day
3.	Maximum Process or Throughp	out Rate	: N/A	· · ·	
4.	Maximum Production Rate: N/A	A			
5.	Requested Maximum Operating	g Schedi	ule:		
		24 ho	ours/day		7 days/week
		52 we	eeks/year		8760¹ hours/year
6.	Operating Capacity/Schedule C 1 – Annual operations will be	limited	through the us	•	uous Emissions
6.			•	•	uous Emissions
5.		limited	through the us	•	uous Emissions
5.	1 – Annual operations will be	limited	through the us	•	uous Emissions
6.	1 – Annual operations will be	limited	through the us	•	uous Emissions
6.	1 – Annual operations will be	limited	through the us	•	uous Emissions
6.	1 – Annual operations will be	limited	through the us	•	uous Emissions
6.	1 – Annual operations will be	limited	through the us	•	uous Emissions

DEP Form No. 62-210.900(1) - Form

C. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

List of Applicable Regulations

40 CFR 60, Subpart A (General Provisions for New Source Performance Standards)	
40 CFR 60.332(a)(1) – NO, standards for	
Stationary Gas Turbines	
40 CFR 60.333 – SO ₂ standards for	
Stationary Gas Turbines	
40 CFR 60.334 – Monitoring Provisions for	
Stationary Gas Turbines	
40 CFR Part 72 – Acid Rain Program	
Requirements Regulations	
40 CFR Part 73 – Acid Rain Program SO ₂	
Allowances System	
40 CFR Part 75 – Acid Rain Program	
Continuous Emissions Monitoring	
Rule 62-296(4)(b)1 – Visible emissions	
·	
	•
	·
	* '

DEP Form No. 62-210.900(1) - Form

D. EMISSION POINT (STACK/VENT) INFORMATION (Regulated Emissions Units Only)

Emission Point Description and Type

			2. Emission Point Type Code: 1				
Flow Diagram? CT1 through CT6							
3. Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking (limit to 100 characters per point): Exhaust stacks for combustion turbines; one stack per turbine unit.							
4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common: N/A							
Discharge Type Code:	_	nt:	7. Exit Diameter:				
V	45 feet		10 feet				
Exit Temperature:	9. Actual Volumetric Flow		10. Water Vapor:				
842°F (NG)	Rate: 602,800 acfm (NG)		10.25 % (NG)				
845°F (Oil)			8.3 % (Oil)				
-	ow Rate:	12. Nonstack En	•				
0,397 dscfm (NG) 5,878 dscfm (Oil)		N/A	feet				
Emission Point UTM Coord	linates:						
Zone: 17 East (km): * North (km): *							
Emission Point Comment (1	imit to 200 char	acters):					
Exhaust temperatures and flow rates are at 100% load and 42° F operating conditions. Stack temperatures and flow rates will vary with load and ambient temperature. * For UTM coordinates of combustion turbine stacks, please see Attachment A.							
	Discharge Type Code: V Exit Temperature: 842°F (NG) 845°F (Oil) Maximum Dry Standard Flo 9,397 dscfm (NG) 6,878 dscfm (Oil) Emission Point UTM Coord Zone: 17 East (km): * N Emission Point Comment (1) Exhaust temperatures and ditions. Stack temperature.	100 characters per point): Exhaust stacks furbine unit. ID Numbers or Descriptions of Emission Unit Discharge Type Code: V Exit Temperature: 842°F (NG) 845°F (Oil) Maximum Dry Standard Flow Rate: 9,397 dscfm (NG) 6,878 dscfm (Oil) Emission Point UTM Coordinates: Zone: 200 characters per point): Exhaust temperatures and flow rates are additions. Stack temperatures and flow rates are additions. Stack temperatures and flow rates are additions. Stack temperatures and flow rates are additions.	ID Numbers or Descriptions of Emission Units with this Emission Units w	100 characters per point): Exhaust stacks for combustion turbines; one stack p turbine unit. ID Numbers or Descriptions of Emission Units with this Emission Point in Comm Discharge Type Code: V 6. Stack Height: 45 feet 7. Exit Diameter: 10 feet Exit Temperature: 842°F (NG) 842°F (NG) 845°F (Oil) Maximum Dry Standard Flow Rate: 397 dscfm (NG) 397 dscfm (NG) 397 dscfm (NG) 398 dscfm (Oil) Emission Point UTM Coordinates: Zone: 17 East (km): * North (km): * Emission Point Comment (limit to 200 characters): Exhaust temperatures and flow rates are at 100% load and 42° F operating ditions. Stack temperatures and flow rates will vary with load and ambient apperature.			

DEP Form No. 62-210.900(1) - Form

E. SEGMENT (PROCESS/FUEL) INFORMATION (All Emissions Units)

Segment Description and Ra	te:	Segment	1	of	2
	_	_		_	

1 Coment Description (Des	oogg/Engl Trees \ (1)-	mit to 500 -1	vorantara).					
1. Segment Description (Process/Fuel Type) (limit to 500 characters):								
Natural gas								
1. Source Classification Code (SCC): 2-01-002-01		3. SCC Units: Million Cubic Feet Burned						
6. Maximum Hourly Rate:	7. Maximum Ann	ual Rate:	6. Estimated Annual Activity					
0.4479	5163.89	•	Factor: N/A					
7. Maximum % Sulfur:	8. Maximum % A	sh:	9. Million Btu per SCC Unit:					
2 grains/100 SCF	N/A		1047					
10. Segment Comment (limit	to 200 characters):							
Annual operation will be restricted through the use of NOx and CO CEMS.								
Maximum Annual Rate	is an estimate only.							
	_							
		· ·						
Segment Description and Ra	ate: Segment2	_ of2						
2. Segment Description (Pro-	cess/Fuel Type) (lin	nit to 500 ch	aracters):					
No. 2 Distillate Fuel Oil			·					
2 9 01 15 11 01	(9,00)	OOOTT *						
	3. Source Classification Code (SCC): 3. SCC Units:							
2-01-001-0			usand Gallons Burned					
4. Maximum Hourly Rate:	I .		6. Estimated Annual Activity					
3.12	23120		Factor: N/A					
7. Maximum % Sulfur:	8. Maximum % Ash:		9. Million Btu per SCC Unit:					
0.05	Trace		144.5					
10. Segment Comment (limit to 200 characters):								
Annual operation will be restricted through the use of NOx and CO CEMS. Maximum								
Annual Rate is an estimate only.								

DEP Form No. 62-210.900(1) - Form

F. EMISSIONS UNIT POLLUTANTS (All Emissions Units)

. Pollutant Emitted	2. Primary Control	3. Secondary Control	4. Pollutant
	Device Code	Device Code	Regulatory Code
NOX	028		EL
СО			EL
PM			NS
PM10			NS
SO2			NS
VOC			NS
PB			NS
	-		
	_		

18

DEP Form No. 62-210.900(1) - Form

Pollutant Detail Information Page 1 of 6

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1. Pollutant Emitted: NOX 2. Total Percent Efficiency of Control:					
3. Potential Emissions: 79.9 lb/hour (per turbine) 246 tons/yea	4. Synthetically ar (total six turbines) Limited? [✓]				
5. Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3	totons/year				
6. Emission Factor: 0.162 lb/MMBtu (HHV) Reference: See Appendix B for emission	2				
Hourly emission rate is based on worst case en	8. Calculation of Emissions (limit to 600 characters): Hourly emission rate is based on worst case emission rate for both natural gas and distillate oil. Hourly emission rate includes a 10% margin. Annual NOx emissions will be restricted through the use of CEMS.				
9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters):					
Allowable Emissions Allowable Emissions	_1 of2				
Basis for Allowable Emissions Code: ESCPSD	Future Effective Date of Allowable Emissions: N/A				
3. Requested Allowable Emissions and Units: 246 tons/yr (CT1 –CT6)	4. Equivalent Allowable Emissions: N/A lb/hour N/A tons/year				
5. Method of Compliance (limit to 60 characters): Direct emissions monitoring of stack emissions using Part 75-certified CEMs					
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					

DEP Form No. 62-210.900(1) - Form

Pollutant Detail Information Page 2 of 6

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1. Pollutant Emitted: CO	2. Total Percent Efficiency of Control:				
3. Potential Emissions:	4. Synthetically				
64.9 lb/hour (per turbine) 247.2 tons/ye	ar (total six turbines) Limited? [✓]				
5. Range of Estimated Fugitive Emissions:					
[] 1 [] 2 [] 3	to tons/year				
6. Emission Factor: 0.131 lb/MMBtu (HHV)	7. Emissions				
	Method Code:				
Reference: See Appendix B for emission ca	alculations 2				
8. Calculation of Emissions (limit to 600 chara	cters):				
Hourly emission rate is based on worst case e	•				
oil. Hourly emission rate includes a 10% ma	rgin. Annual CO emissions will be				
restricted through the use of CEMS.					
9. Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):				
Allowable Emissions2 of2					
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable				
ESCPSD	Emissions: N/A				
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:				
248 tons/yr (CT1 – CT6)	N/A lb/hour N/A tons/year				
5. Method of Compliance (limit to 60 characte	re)·				
Direct emissions monitoring of stack emissions using certified continuous emissions					
monitors on each turbine stack					
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					

DEP Form No. 62-210.900(1) - Form

Pollutant Detail Information Page 3 of 6

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted: PM	2. Total Percent Efficie		ncy of Control:	
3.	Potential Emissions:			4. Synthetically	
	22.0 lb/hour(per turbine) 125.07 tons/year	r (tota	al six turbines)	Limited? [√]	
5.	Range of Estimated Fugitive Emissions:				
	[] 1 [] 2 [] 3	_	to tor	ns/year	
6. Emission Factor: 0.034 lb/MMBtu (HHV)				7. Emissions	
	Reference: See Appendix B for emiss:	ions (calculations	Method Code:	
				2	
Q	Calculation of Emissions (limit to 600 chara	cterci	•		
0.	Calculation of Emissions (mint to 000 chara-	cicis)	•		
Ho	ourly emission rate is based on worst case e	missi	on rate for both na	tural gas and	
	tillate oil. Hourly emission rate includes a			· ·	
	·		J		
0	Pollutant Potential/Fugitive Emissions Com-	ment	(limit to 200 charact	tare).	
٦.	9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters):				
Al	lowable Emissions Allowable Emissions		of N/A		
1.	Basis for Allowable Emissions Code:	2.	Future Effective Da	te of Allowable	
			Emissions:		
3.	Requested Allowable Emissions and Units:	4.	Equivalent Allowab	ole Emissions:	
			lb/hour t	ons/year	
5. Method of Compliance (limit to 60 characters):					
٠٠	We mid of complained (mile to ob character	13).			
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					
0.	1 Monable Dimesions Comment (Desc. of O	Poran	iie iviouiou) (iiiiit k	200 onaraotors).	

DEP Form No. 62-210.900(1) - Form

Pollutant Detail Information Page 4 of 6

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1. Pollutant Emitted: PM10	2. Total Percent Efficiency of Control:			
3. Potential Emissions:	4. Synthetically			
22.0 lb/hour (per turbine) 125.07 tons/year	(total six turbines) Limited? [✓]			
5. Range of Estimated Fugitive Emissions:				
[] 1 [] 2 [] 3	to tons/year			
6. Emission Factor: 0.034 lb/MMBtu (HHV)	7. Emissions			
Reference: See Appendix B for emiss	sions calculations Method Code:			
	2			
8. Calculation of Emissions (limit to 600 chara	otora):			
8. Calculation of Emissions (mint to 000 chara	icters).			
Hourly emission rate is based on worst case e	mission rate for both natural gas and			
distillate oil. Hourly emission rate includes a	-			
				
9. Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):			
7. Tollumit Fotontial Fugitive Dimessions Com	7. I officially deficience Emissions Comment (mint to 200 characters).			
Allowable Emissions Allowable Emissions	of N/A			
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable			
	Emissions:			
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:			
lb/hour tons/year				
5. Method of Compliance (limit to 60 characters):				
• `	,			
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):				
The state of the s				

22

DEP Form No. 62-210.900(1) - Form

Pollutant Detail Information Page 5 of 6

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	1. Pollutant Emitted: SO2 2. Total Percent Efficie		ency of Control:		
3.	Potential Emissions:		4. Synthetically		
	25 lb/hour (per turbine) 85.03 tons/year	r (total six turbines)	Limited? [✓]		
5.	Range of Estimated Fugitive Emissions:				
	[] 1 [] 2 [] 3	to tor	ns/year		
6.	Emission Factor: 0.051 lb/MMBtu (HHV)		7. Emissions		
	Reference: See Appendix B for emissi	ions calculations	Method Code: 2		
8.	Calculation of Emissions (limit to 600 charac	cters):			
TT.		issian nata fan hath na	tunal ass and		
	ourly emission rate is based on worst case en		iturai gas and		
ais	stillate oil. Hourly emission rate includes a	10% margin.			
		·			
9.	9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters):				
Al	Allowable Emissions of N/A				
1.	Basis for Allowable Emissions Code:	2. Future Effective Da	ate of Allowable		
		Emissions:			
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowal	ole Emissions:		
		lb/hour	tons/year		
5. Method of Compliance (limit to 60 characters):					
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					
	,		,		

DEP Form No. 62-210.900(1) - Form

Pollutant Detail Information Page 6 of 6

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1. Pollutant Emitted: VOC	2. Total Percent Efficiency of Control:			
3. Potential Emissions:	4. Synthetically			
7.3 lb/hour (per turbine) 41.6 tons/year (total six turbines) Limited? [✓]			
5. Range of Estimated Fugitive Emissions:				
[] 1 [] 2 [] 3	to tons/year			
6. Emission Factor: 0.014 lb/MMBtu (HHV)	7. Emissions			
Reference: See Appendix B for emiss	ions calculations Method Code:			
	2			
8. Calculation of Emissions (limit to 600 chara	cters):			
Havely amiggion note is based on warmst aggs of	mission wate for both notional gas and			
Hourly emission rate is based on worst case edistillate oil. Hourly emission rate includes a				
distinate on. Hourly emission rate includes a	10 /6 margin.			
9. Pollutant Potential/Fugitive Emissions Com	nent (limit to 200 characters):			
7. I ondant I otonidas I agritivo Emissions Comment (mint to 200 ondiactors).				
Allowable Emissions Allowable Emissions	of N/A			
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable			
	Emissions:			
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:			
	lb/hour tons/year			
5. Method of Compliance (limit to 60 characters):				
3. Wellod of Comphance (mint to 60 characters).				
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):				

H. VISIBLE EMISSIONS INFORMATION (Only Regulated Emissions Units Subject to a VE Limitation)

Visible Emissions Limitation:	Visible Emissions Limitation	1	of	1

1.	Visible Emissions Subtype:	2.	Basis for Allowab	le Opa	city:
	VE20		[🗸] Rule	[] Other
3.	Requested Allowable Opacity:				
	Normal Conditions: 20 % Ex	cep	tional Conditions:		% 0
	Maximum Period of Excess Opacity Allowe	ed:			min/hour
4.	Method of Compliance:				
	EPA Reference Method 9				
5.	Visible Emissions Comment (limit to 200 cl		•		
	The general visible emission standard rec	quir	ements of Rule 62-	296.3 2	20(4)(b)1, F.A.C.
	applies to each turbine stack.				
	,				
	I. CONTINUOUS MO				
	(Only Regulated Emissions Units	Sul	oject to Continuou	s Mor	iitoring)
<u>Co</u>	ontinuous Monitoring System: Continuous	Mo	nitor1 of1		
1.	Parameter Code: EM	2.	Pollutant(s): NO	X and	CO
3	CMS Requirement:	<u> </u>	Rule (NOX)		Other (CO)
	•	<u> </u>	1 Rule (NOA)		J Ouler (CO)
4.	Monitor Information: TBD				
	Manufacturer: TBD				
	Model Number: TBD		Serial Nun	ıber: 7	(BD
5.	Installation Date: Prior to start up	6.	Performance Spec	ificati	on Test Date:
			90 days after uni	t com	mences
			commercial oper	ation	in accordance
			with 40 CFR 75.4	l(b)(2))
				() ()	
7.	Continuous Monitor Comment (limit to 200	cha	aracters):		
	Annual emissions of NO, and CO from the			ed to a	a maximum of
	248 tons per year. Compliance with these				
	continuous emissions monitoring systems				
	TOMORROW OF MONTONING SYSTEMS		x mm		
1					

DEP Form No. 62-210.900(1) - Form

J. EMISSIONS UNIT SUPPLEMENTAL INFORMATION (Regulated Emissions Units Only)

Supplemental Requirements

1.	Process Flow Diagram
	[Attached, Document ID:Fig. 2-2 [] Not Applicable [] Waiver Requested
2.	Fuel Analysis or Specification
	[Attached, Document ID:App. B [] Not Applicable [] Waiver Requested
3.	Detailed Description of Control Equipment
	[] Attached, Document ID: [] Not Applicable [] Waiver Requested
4.	Description of Stack Sampling Facilities
	[] Attached, Document ID: [
5.	Compliance Test Report
	[] Attached, Document ID:
	[] Previously submitted, Date:
	[✓] Not Applicable
6.	Procedures for Startup and Shutdown
	[] Attached, Document ID:[
7.	Operation and Maintenance Plan
	[] Attached, Document ID: [
8.	Supplemental Information for Construction Permit Application
	[✓] Attached, Document ID: ENSR Doc. No. 6792-123-510
9.	Other Information Required by Rule or Statute
	[] Attached, Document ID: [✓] Not Applicable
10	. Supplemental Requirements Comment:

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 1 of 2

Additional Supplemental Requirements for Title V Air Operation Permit Applications

11. Alternative Methods of Operation
[] Attached, Document ID: [
12. Alternative Modes of Operation (Emissions Trading)
[] Attached, Document ID: [
13. Identification of Additional Applicable Requirements
[] Attached, Document ID: [
14 C 11 A 14 1 PI
14. Compliance Assurance Monitoring Plan
[] Attached, Document ID:[Not Applicable
15. Acid Rain Part Application (Hard-copy Required)
[] Acid Rain Part - Phase II (Form No. 62-210.900(1)(a))
Attached, Document ID:
[] Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
Attached, Document ID:
New Unit Exemption (Form No. 62-210.900(1)(a)2.)
Attached, Document ID:
[] Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)
Attached, Document ID:
[] Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)
Attached, Document ID:
Phase NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)
Attached, Document ID:
Not Applicable
[] Not Applicable

III. TANK EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through J as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

A. GENERAL EMISSIONS UNIT INFORMATION (All Emissions Units)

Emissions Unit Description and Status

1.	1. Type of Emissions Unit Addressed in This Section: (Check one)						
[] This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).						
[•	This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.						
[-		n addresses, as a single emiss s which produce fugitive em	-			
2.	Regulated or Uni	regulated Emissions Unit	? (Check one)				
[] The emissions emissions unit.		issions Unit Information Sec	ction is a regulated			
[•	[] The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.						
3.	3. Description of Emissions Unit Addressed in This Section (limit to 60 characters): Distillate fuel oil storage tanks						
4.	Emissions Unit Io ID: T001, T002	dentification Number:		[✓] No ID [] ID Unknown			
5.	Emissions Unit Status Code: C	6. Initial Startup Date: June 2001	7. Emissions-Unit Major Group SIC Code: 49	8. Acid Rain Unit?			
9.	9. Emissions Unit Comment: (Limit to 500 Characters) T001 - main storage tank T002 - day storage tank.						

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section 2 of 2

Emissions Unit Control Equipment

1.	Control Equipment/Method Description (Limit to 200 characters per device or method):	
	None	
,		
2.	Control Device or Method Code(s):	
En	nissions Unit Details	

1.	Package Unit:		
	Manufacturer: Model Number:		
2.	Generator Nameplate Rating:	MW	
3.	Incinerator Information:		
	Dwell Temperature:	c	PF
	Dwell Time:	S	seconds
-	Incinerator Afterburner Temperature:	C	°F

DEP Form No. 62-210.900(1) - Form

B. EMISSIONS UNIT CAPACITY INFORMATION (Regulated Emissions Units Only)

Emissions Unit Operating Capacity and Schedule

1.	Maximum Heat Input Rate:	N/A mmBtu/hr	•
2.	Maximum Incineration Rate:	N/A lb/hr	N/A tons/day
3.	Maximum Process or Throug	hput Rate: 24,300,000 g	al/year
4.	Maximum Production Rate: N	N/A	
5.	Requested Maximum Operati	ing Schedule:	
		24 hours/day	7 days/week
		52 weeks/year	8760 hours/year
6.	Operating Capacity/Schedule	Comment (limit to 200	characters):
		•	
			•

30

DEP Form No. 62-210.900(1) - Form

C. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

List of Applicable Regulations

·

DEP Form No. 62-210.900(1) - Form

D. EMISSION POINT (STACK/VENT) INFORMATION (Regulated Emissions Units Only)

Emission Point Description and Type

1. Identification of Point on Pi Flow Diagram? T001 + T0		2. Emission Po	oint Type Code: 4
3. Descriptions of Emission Policy 100 characters per point): I	N/A		
4. ID Numbers or Description			
5. Discharge Type Code: V	6. Stack Heig	ht: N/A feet	7. Exit Diameter: N/A feet
8. Exit Temperature: N/A	9. Actual Vol Rate: N/A		10. Water Vapor: N/A
11. Maximum Dry Standard Flo N/A dscfm	ow Rate:	12. Nonstack En	nission Point Height: N/A feet
13. Emission Point UTM Coord Zone: 17 East (km): * N			
14. Emission Point Comment (I * For UTM coordinates of Dis			chment A.

·32

DEP Form No. 62-210.900(1) - Form

E. SEGMENT (PROCESS/FUEL) INFORMATION (All Emissions Units)

Segment Description and Rate: Segment 1 of 1

1. Segment Description (Process/Fuel Type) (limit to 500 characters):				
Distillate fuel oil storage tanks				
2. Source Classification Cod	e (SCC):	3. SCC Units		
40301021			nd Gallons Throughput	
4. Maximum Hourly Rate: N/A	5. Maximum A		6. Estimated Annual Activity Factor: N/A	
7. Maximum % Sulfur:	8. Maximum 9	-	9. Million Btu per SCC Unit:	
N/A	N/		N/A	
10. Segment Comment (limit	to 200 characters): _.		
			•	
Segment Description and Ra	ite: Segment	of		
1. Segment Description (Pro	cess/Fuel Type)	(limit to 500 ch	aracters):	
			•	
		·		
	·			
2. Source Classification Cod	e (SCC):	3. SCC Unit		
	· (200).	J. 500 5	••	
4. Maximum Hourly Rate:	5. Maximum A	Annual Rate:	6. Estimated Annual Activity Factor:	
7. Maximum % Sulfur:	8. Maximum 9	% Ash:	9. Million Btu per SCC Unit:	
10. Segment Comment (limit)	to 200 characters):		
·				

DEP Form No. 62-210.900(1) - Form

F. EMISSIONS UNIT POLLUTANTS (All Emissions Units)

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
	<u>.</u>		
	-		
	•		
	,	•	
-			· ·

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted: VOC	2. Total Percent Efficiency of Control:		
3.	Potential Emissions:	4. Synthetically		
	lb/hour tor	Limited? []		
5.	Range of Estimated Fugitive Emissions:			
	[] 1 [] 2 [] 3	totons/year		
6.	Emission Factor:	7. Emissions		
	Reference:	Method Code:		
8.	Calculation of Emissions (limit to 600 chara	cters):		
9.	Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):		
		(
	Potential VOC emissions from distillate fu	iel oil storage tanks are less than 5 tons per		
	•	eporting in this subsection). See Appendix		
	B for emission calculations.			
<u>Al</u>	owable Emissions Allowable Emissions 1 o	f 1 N/A		
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable		
		Emissions:		
		4 8 1 4 4 1 1 8 1		
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
		lb/hour tons/year		
5.	Method of Compliance (limit to 60 character	rs):		
•				
6.	Allowable Emissions Comment (Desc. of O	perating Method) (limit to 200 characters):		
		8 (

35

DEP Form No. 62-210.900(1) - Form

H. VISIBLE EMISSIONS INFORMATION (Only Regulated Emissions Units Subject to a VE Limitation)

Visible Emissions Limitation: N/A

1. Vis	sible Emissions Subtype:	2.	Basis for Allowable	Opacity:	
			[] Rule	[](Other
3. Re	quested Allowable Opacity:				- "
No	rmal Conditions: % Ex	xcept	ional Conditions:		%
Ma	aximum Period of Excess Opacity Allowe	ed:			min/hour
4. Me	ethod of Compliance:				
	·				
5. Vis	sible Emissions Comment (limit to 200 cl	hara	eters):		

DEP Form No. 62-210.900(1) - Form

I. CONTINUOUS MONITOR INFORMATION (Only Regulated Emissions Units Subject to Continuous Monitoring)

Continuous Monitoring System: N/A

1.	Parameter Code:	2.	Pollutant(s):		
3.	CMS Requirement:	[] Rule (NOX)	[Other (CO)
4.	Monitor Information:				
	Manufacturer:				
	Model Number:		Serial Number:		
5.	Installation Date:	6.	Performance Specific	catio	on Test Date:
7.	Continuous Monitor Comment (limit to 200	cha	racters):		
			,		
			•		
			·		
			,		
			,		

J. EMISSIONS UNIT SUPPLEMENTAL INFORMATION (Regulated Emissions Units Only)

Supplemental Requirements N/A

_		
1.	1. Process Flow Diagram	
	[] Attached, Document ID: [] Not Applicable [] Waiver Re	quested
2.	2. Fuel Analysis or Specification	
	[] Attached, Document ID: [] Not Applicable [] Waiver Re	quested
2	3. Detailed Description of Control Equipment	.
٦.	[] Attached, Document ID: [] Not Applicable [] Waiver Re	anected
	[] Attached, Document ID [] Not Applicable [] waiver he	quesieu
4.	4. Description of Stack Sampling Facilities	
	[] Attached, Document ID: [] Not Applicable [] Waiver Re	quested
5.	5. Compliance Test Report	
	Attached, Document ID:	
	[] Previously submitted, Date:	
	[] Not Applicable	
6.	6. Procedures for Startup and Shutdown	
	[] Attached, Document ID: [] Not Applicable [] Waiver Re	quested
_	1) ('	
7.	7. Operation and Maintenance Plan	. 1
	[] Attached, Document ID: [] Not Applicable [] Waiver Re	quested
R	8. Supplemental Information for Construction Permit Application	
0.	[] Attached, Document ID:	
	[] Titudiou, Bootiment 15.	
9.	9. Other Information Required by Rule or Statute	
	[] Attached, Document ID: [] Not Applicable	
10	10. Supplemental Requirements Comment:	

Emissions Unit Information Section 2 of 2

Additional Supplemental Requirements for Title V Air Operation Permit Applications

11. Alternative Methods of Operation
[] Attached, Document ID: [] Not Applicable
12. Alternative Modes of Operation (Emissions Trading)
[] Attached, Document ID: [] Not Applicable
12 II vife view of Additional Applicable Degramments
13. Identification of Additional Applicable Requirements
[] Attached, Document ID: [] Not Applicable
14. Compliance Assurance Monitoring Plan
[] Attached, Document ID: [] Not Applicable
15. Acid Rain Part Application (Hard-copy Required)
[] Acid Rain Part - Phase II (Form No. 62-210.900(1)(a))
Attached, Document ID:
[] Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)
Attached, Document ID:
[] New Unit Exemption (Form No. 62-210.900(1)(a)2.)
Attached, Document ID:

[] Retired Unit Exemption (Form No. 62-210.900(1)(a)3.)
Attached, Document ID:
[] Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)
Attached, Document ID:
Phase NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)
Attached, Document ID:
Not Applicable
f 1 storetkings

ATTACHMENT A

UTM COORDINATES

Emission Source/ID Number	UTM Easting(km)	UTM Northing(km)
Combustion Turbines CT1-CT6	556.728 556.751 556.774 556.797 556.819 556.842	3028.562 3028.562 3028.562 3028.562 3028.562 3028.562
Distillate Oil Storage Tanks T001 and T002		3028.490 3028.495

APPENDIX B

EMISSION CALCULATIONS

Date 6/15/00 Author MDK Griffin

CASE NUMBER and OPERATION CONDITIONS		1	2	3	4	5	6
(1) AMBIENT TEMPERATURE, *F		\$27.00 Oct 15.00	### W42 # 100	-80 mm	.02	247 90 h	8-3-42 s-3+
(1) RELATIVE HUMIDITY, %		**************************************	7%			45 85% A.	\$400 1236 AND
CTG LOAD		20034-EX	100% %.	7591123	148.7696 1387	1.80%	16056 TO
SPRINT STATUS		ZTON SWY	ZESON	OFF	W ORP	OFF	TO PECAL
CHILLER STATUS		物製されの記載を	OFF OFF	ZIMOON JOSES	意志の特殊	THE OPENS	CONFIGURA
(1) CTG EFFECTIVE INLET TEMPERATURE, F		14 50 \$2.7				\$300 (A.)	
(1) CTG EFFECTIVE INLET RELATIVE HUMIDITY, %) \$565 9995 8175	图卷72873条	12×2677 ***	新发3.33.37.38	********	· 276代於
(1) CTG GROSS POWER OUTPUT, KW	ı	48,097.	AE 044 852	28,453	23,890	24,027	± \$24,522
(1) CTG FUEL CONSUMPTION, MMBtw/hr LHV		A 416	423	% 33t 0 % A	320:	r 281	2492
(1) CTG FUEL CONSUMPTION, IN/hr		21,919	22,282	17,347	17,316	13,195	13,111
CTG FUEL CONSUMPTION, MMBtw/hr HHV		461	469	365	364	277	276
(1) CTG EXHAUST GAS FLOW RATE, 1000 lb/hr		23 81,055 492	akt#4,07256a2	# 927 A	2815Y	74765	B90±
(1) STACK TEMPERATURE, *F		275 W 847 (319b	1:00E 842025	195938260955	李元明1600年	· 推翻中810 网络花	721-23035
· ·							
CTG STACK EXHAUST ANALYSIS (%VOL)							
(1) ARGON + NITROGEN			公司3,49%	72.83%		2013.21%%	
(1) OXYGEN		25.12.925500	12.09%:	*\$335\%I%		14.20%	
(1) CARBON DIOXIDE			3.38%)	:33.02%	2.87%	%3-2.725402	2.3154 M.Z
(1) WATER	18.015	500 TO 38% CO	CHE.10.25% 33	多第10.0/%	2.68.43%\\	SC18.80539CTF	7,02%
TOTAL		100,10%	100.09%	100.00%	99.99%	100.00%	100.00%
CTG EXHAUST MOLECULAR WEIGHT		28.14	28.17	28.07	28.30	28.14	28.42
CTG EXHAUST GAS FLOW RATE, Ib mot/hr		37,497	38,042	33,035	34,652	27,905	30,275
CTG EXHAUST GAS FLOW RATE, DRY, Ib moVhr		33,528	34,141	29,519	31,730	25,170	28,148
EXH, PARAMETERS @ STACK							
(5) STACK DIAMETER, ft		57.74.10 Take	多数数210 くつか	*PARE \$10 克特莱	**************************************	MARKO SEL	经过程00世纪
MOLECULAR WEIGHT		28.14	28.1/	28.07	28.30	28.14	28.42
STACK EXHAUST GAS FLOW RATE, IN/hr		1,055,075	1,071,758	927,360	980,640	785,160	860,400
SPECIFIC VOLUME, 19/16		33.9	33.7	33.4	31.4	32.9	29.9
VOLUMETRIC FLOW, acfm		596,093	602,782	518,881	512,663	431,177	428,379
EXIT VELOCITY, fl/sec		126.49	127.91	109.59	108.79	91.50	90.90
ACTUAL 02% DRY		14.5%	14.5%	15.1%	15.5%	15.7%	16.3%
MOLES EXHAUST GAS per HOUR WET		37,497	38,042	33,035	34,652	27,905	30,275
MOLES EXHAUST GAS per HOUR DRY		33,528	34,141	29,519	31,730	25,170	28,148
NO. ENICCION CALCIN ATION							
NOx EMISSION CALCULATION			!				!
		_121725 O . 1217	್ಷ 26.0 ≈%	500126.0 <i>0</i> 518	48725.0×44	25.0 (a)	25.0 TO
(1) LIMIT, ppmVd @ 15% O2		25 0 . E.C 2/.3	26.0 %% 2/.2	24.5	25.0 × 32.7	25.0 (* iii) 21.8	19.4
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd		2/.3	2/.2	24.5	22.7	21.8	19.4
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr as NO2		2/.3 42.1	27.2 42.8	24.5 33.3	22.7 33.2	21.8 25.3	19.4 25.1
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr as NO2		2/.3 42.1	27.2 42.8	24.5 33.3	22.7 33.2	21.8 25.3	19.4 25.1
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV		2/.3 42.1 0.091	27.2 42.8 0.091	24.5 33.3	22.7 33.2 0.091	21.8 25.3 0.091	19.4 25.1
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 CORRESPONDING MASS RATE, ID/Nr 85 NO2 CORRESPONDING EMISSIONS FACTOR, ID/MMBHU HHV CO EMISSION CALCULATION		2/.3 42.1 0.091	27.2 42.8 0.091	24.5 33.3 0.091	22.7 33.2 0.091	21.8 25.3 0.091	19.4 25.1 0.091
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hir as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2		27.3 42.1 0.091	27.2 42.8 0.091	24.5 33.3 0.091	22.7 33.2 0.091	21.8 25.3 0.091	19.4 25.1 0.091
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hir as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (6) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd		27.3 42.1 0.091	27.2 42.8 0.091	24.5 33.3 0.091	22.7 33.2 0.091 \$25.50 \$25.50 50.9	21.8 25.3 0.091 35.34367.422 48.9	19.4 25.1 0.091
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/hr		2/.3 42.1 0.091 \$\infty \cdot \frac{56}{61.2}\$ 57.5	2/.2 42.8 0.091	24.5 33.3 0.091 54.9 45.4	22.7 33.2 0.091 50.9 45.3	21.8 25.3 0.091 3.34.96	19.4 25.1 0.091 45.4 43.4 34.2
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/hr		2/.3 42.1 0.091 \$\infty \cdot \frac{56}{61.2}\$ 57.5	2/.2 42.8 0.091	24.5 33.3 0.091 54.9 45.4	22.7 33.2 0.091 50.9 45.3	21.8 25.3 0.091 3.34.96	19.4 25.1 0.091 45.4 43.4 34.2
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (6) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/hr CTG EMISSIONS FACTOR, Ib/MMBtu HHV		2/.3 42.1 0.091 61.2 57.5 0.125	2/.2 42.8 0.091 61.0 58.3 0.125	24.5 33.3 0.091	22.7 33.2 0.091 30.5 45.3 0.124	21.8 25.3 0.091 3.34.96	19.4 25.1 0.091 43.4 34.2 0.124
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hir as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG EX:haust, ppmVd (2) CTG EX:haust, ppmVd (3) CTG EX:haust, ppmVd (4) CTG EX:haust, ppmVd (5) CTG EX:haust, ppmVd (6) CTG EX:haust, ppmVd (7) CTG EX:haust, ppmVd (8) CTG EX:haust, ppmVd (9) CTG EX:haust, ppmVd (9) CTG EX:haust, ppmVd (10) CTG EX:ha		2/.3 42.1 0.091 61.2 57.5 0.125	2/.2 42.8 0.091 61.0 58.3 0.125	24.5 33.3 0.091	22.7 33.2 0.091 30.5 45.3 0.124	21.8 25.3 0.091 33.3896.4524 48.9 34.5 0.124	19.4 25.1 0.091 43.4 34.2 0.124
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/nr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMBtu HHV PARTICULATE EMISSION CALCULATION		2/.3 42.1 0.091 61.2 57.5 0.125	2/.2 42.8 0.091 61.0 58.3 0.125	24.5 33.3 0.091 54.9 45.4 0.124	22.7 33.2 0.091 \$50.9 45.3 0.124	21.8 25.3 0.091 48.9 34.5 0.124	19.4 25.1 0.091 43.4 34.2 0.124
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/nr 85 NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMB1u HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMB1u HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/nr CORRESPONDING EMISSIONS FACTOR, Ib/MMB1u HHV		2/.3 42.1 0.091 61.2 57.5 0.125	2/.2 42.8 0.091 61.0 58.3 0.125	24.5 33.3 0.091 54.9 45.4 0.124	22.7 33.2 0.091 \$50.9 45.3 0.124	21.8 25.3 0.091 48.9 34.5 0.124	19.4 25.1 0.091 43.4 34.2 0.124
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 CORRESPONDING MASS RATE, Ibbit as NO2 CORRESPONDING EMISSIONS FACTOR, IbbMMBtu HHV CO EMISSION CALCULATION (6) LIMIT, ppmVd @ 15% O2 CTG EXHAUST, ppmVd CTG EXHAUST, Ebbit CTG EMISSIONS FACTOR, IbMMBtu HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ibbit CORRESPONDING EMISSIONS FACTOR, IbMMBtu HHV VOC EMISSION CALCULATION		2/.3 42.1 0.091 61.2 57.5 0.125	27.2 42.8 0.091 61.0 58.3 0.125	24.5 33.3 0.091 34.9 45.4 0.124	22.7 33.2 0.091 30.9 45.3 0.124 30.94 45.3 0.0124	21.8 25.3 0.091 34.967422 46.9 34.5 0.124	19.4 25.1 0.001 43.4 34.2 0.124 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr 85 NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMB1u HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/hr CTG EMISSIONS FACTOR, Ib/MMB1u HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/hr CORRESPONDING EMISSIONS FACTOR, Ib/MMB1u HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2		2/.3 42.1 0.091 61.2 57.5 0.125	27.2 42.8 0.091 61.0 58.3 0.125	24.5 33.3 0.091 34.9 45.4 0.124	22.7 33.2 0.091 30.9 45.3 0.124 30.94 45.3 0.0124	21.8 25.3 0.091 48.9 34.5 0.124	19.4 25.1 0.001 43.4 34.2 0.124 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/nr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMBtu HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/nr CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVw		2/.3 42.1 0.091 51.2 57.5 0.125	27.2 42.8 0.091 61.0 58.3 0.125	24.5 33.3 0.091 34.9 45.4 0.124	22.7 33.2 0.091 20.9 45.3 0.124 20.9 45.3 0.124	21.8 25.3 0.091 48.9 34.5 0.124 22.24.5 0.016	19.4 25.1 0.091 43.4 34.2 0.124 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (6) LIMIT, ppmVd @ 15% O2 CTG EX:haust, ppmVd CTG EX:haust, ppmVd CTG EX:haust, ppmVd CTG EX:haust, ib/hr CTG EX:HAUST, Ib/hr CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EX:haust, ppmVw CTG MASS RATE, Ib/hr		27.3 42.1 0.091 51.2 51.2 57.5 0.125 0.010	27.2 42.8 0.091 61.0 58.3 0.125 2.14.5 0.010	24.5 33.3 0.091 34.9 45.4 0.124 0.012	22.7 33.2 0.091 50.9 50.9 45.3 0.124 0.012	21.8 25.3 0.091 48.9 48.9 34.5 0.124 2.24.5 0.016	19.4 25.1 0.091 43.4 34.2 0.124 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/nr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMBtu HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/nr CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVw		27.3 42.1 0.091 61.2 57.5 0.125 0.010	27.2 42.8 0.091 01.0 58.3 0.125 2-14.6 0.010	24.5 33.3 0.091 54.9 45.4 0.124 0.012	22.7 33.2 0.091 30.9 40.3 45.3 0.124 0.012	21.8 25.3 0.091 40.9 34.5 0.124 	19.4 25.1 0.091 43.4 34.2 0.124 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/nr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMBtu HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/nr CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVw CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMBtu HHV		27.3 42.1 0.091 51.2 51.2 57.5 0.125 0.010	27.2 42.8 0.091 01.0 58.3 0.125 2-14.6 0.010	24.5 33.3 0.091 34.9 45.4 0.124 0.012	22.7 33.2 0.091 50.9 50.9 45.3 0.124 0.012	21.8 25.3 0.091 48.9 48.9 34.5 0.124 2.24.5 0.016	19.4 25.1 0.091 43.4 34.2 0.124 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 CORRESPONDING MASS RATE, Ib/hr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (6) LIMIT, ppmVd @ 15% O2 CTG EXHAUST, ED/hr CTG EMISSIONS FACTOR, Ib/MMBtu HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/hr CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EXHAUST, ib/hr CTG EMISSION SFACTOR, Ib/MMBtu HHV PD EMISSION CALCULATION PD EMISSION CALCULATION		27.3 42.1 0.091 61.2 57.5 0.125 0.010	27.2 42.8 0.091 61.0 58.3 0.125 2-14.6 0.010	24.5 33.3 0.091 24.9 45.4 0.124 0.012 9.0 5.2 0.014	22.7 33.2 0.091 50.9 50.9 45.3 0.124 0.012	21.8 25.3 0.091 48.9 34.5 0.124 2.24.5 0.016 8.7 3.9	19.4 25.1 0.091 43.4 34.2 0.124 0.016 227.46.3 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/nr 85 NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG EMISSIONS PACTOR, Ib/MMB1U HHV CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMB1U HHV PARTICULATE EMISSION CALCULATION (2) CTG EM-HAUST, Ib/nr CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EMISSION FACTOR, Ib/n/mB1U HHV Pb EMISSION CALCULATION		27.3 42.1 0.091 51.2 51.2 57.5 0.125 0.010	27.2 42.8 0.091 01.0 58.3 0.125 2-14.6 0.010	24.5 33.3 0.091 34.9 45.4 0.124 0.012	22.7 33.2 0.091 20.9 20.9 45.3 0.124 27.14.5/4657 0.012	21.8 25.3 0.091 48.9 48.9 34.5 0.124 2.24.5 0.016	19.4 25.1 0.091 43.4 34.2 0.124 0.016
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 CORRESPONDING MASS RATE, Ib/hr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (6) LIMIT, ppmVd @ 15% O2 CTG EXHAUST, ED/hr CTG EMISSIONS FACTOR, Ib/MMBtu HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/hr CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EXHAUST, ib/hr CTG EMISSION SFACTOR, Ib/MMBtu HHV PD EMISSION CALCULATION PD EMISSION CALCULATION		2/.3 42: 0.091 61:2 57:5 0.125 0.125 0.100 0.010 0.010	27.2 42.8 0.091 61.0 58.3 0.125 2-14.5 0.010	24.5 33.3 0.091 24.9 45.4 0.124 0.012 9.8 5.2 0.014	22.7 33.2 0.091 50.9 45.3 0.124 67.34.85/44/5 0.012 9.1 5.1 0.014	21.8 25.3 0.091 48.9 34.5 0.124 0.016 8.7 3.9 0.014	19.4 25.1 0.091 43.4 43.4 2 0.124 0.016 7.8 3.8 0.014
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr 85 NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/hr CTG EMISSIONS FACTOR, Ib/MMB1U HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/hr CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVw CTG MASS RATE, Ib/hr CTG EMISSIONS FACTOR, Ib/MMB1U HHV Pb EMISSION CALCULATION PB EMISSION FACTOR, Ib/MMB1U STACK EMISSIONS, Ib/hr		2/.3 42: 0.091 61:2 57:5 0.125 0.125 0.100 0.010 0.010	27.2 42.8 0.091 61.0 58.3 0.125 2-14.5 0.010	24.5 33.3 0.091 24.9 45.4 0.124 0.012 9.8 5.2 0.014	22.7 33.2 0.091 50.9 45.3 0.124 67.34.85/44/5 0.012 9.1 5.1 0.014	21.8 25.3 0.091 48.9 34.5 0.124 0.016 8.7 3.9 0.014	19.4 25.1 0.091 43.4 43.4 2 0.124 0.016 7.8 3.8 0.014
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, ID/NI 85 NO2 CORRESPONDING EMISSIONS FACTOR, ID/MMBIU HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG EMISSION SPMVd CTG MASS RATE, ID/NI CTG EMISSIONS FACTOR, ID/MMBIU HHV PARTICULATE EMISSION CALCULATION (2) CTG EX-HAUST, ID/NI CORRESPONDING EMISSIONS FACTOR, ID/MMBIU HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EXHBUST, ID/NI CTG EMISSION FACTOR, ID/MMBIU HHV PD EMISSION CALCULATION PB EMISSION CALCULATION SOZ EMISSION CALCULATION SOZ EMISSION CALCULATION		2/.3 42: 0.091 61:2 57:5 0.125 0.125 0.100 0.010 0.010	27.2 42.8 0.091 61.0 58.3 0.125 2-14.5 0.010	24.5 33.3 0.091 24.9 45.4 0.124 0.012 9.8 5.2 0.014	22.7 33.2 0.091 50.9 45.3 0.124 67.34.85/44/5 0.012 9.1 5.1 0.014	21.8 25.3 0.091 48.9 34.5 0.124 0.016 8.7 3.9 0.014	19.4 25.1 0.091 43.4 43.4 2 0.124 0.016 7.8 3.8 0.014
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/nr as NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG Exhaust, ppmVd CTG MASS RATE, Ib/nr CTG EMISSIONS FACTOR, Ib/MMBtu HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/nr CORRESPONDING EMISSIONS FACTOR, Ib/MMBtu HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EXHAUST, Ib/nr CTG EMISSION FACTOR, Ib/MMBtu HHV Pb EMISSION CALCULATION PB EMISSION FACTOR, Ib/MMBtu STACK EMISSIONS, Ib/nr SO2 EMISSION CALCULATION (4) CTG EMISSIONS, Ib/nr		2/.3 42: 0.091 61:2 57:5 0.125 0.120 0.010 0.010 0.010 0.010	27.2 42.8 0.091 61.0 58.3 0.125 2-14.5 0.010 10.9 6.6 0.014	24.5 33.3 0.091 54.9 45.4 0.124 0.012 9.8 5.2 0.014	22.7 33.2 0.091 20.9 20.9 45.3 0.124 27.14.25(20.0) 27.15.1 0.014	21.8 25.3 0.091 49.9 34.5 0.124 0.016 8.7 3.9 0.014	19.4 25.1 0.091 43.4 34.2 0.124 0.016 7.8 3.8 0.014
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr 85 NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG EMISSIONS FACTOR, Ib/MMB1U HHV CTG MASS RATE, Ib/hr CTG EMISSIONS FACTOR, Ib/MMB1U HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/hr CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EXHBUST, ppmVw CTG MASS RATE, Ib/hr CTG EMISSION FACTOR, Ib/MMB1U HHV Pb EMISSION CALCULATION PB EMISSION FACTOR, Ib/MMB1U STACK EMISSIONS, Ib/hr CTG EMISSIONS, BADTOR (4) CTG EMISSIONS, FACTOR, Ib/MMB1U HHV		27.3 42.1 0.091 0.091 61.2 57.5 0.125 0.010 0.010 0.010 0.0 0.0 0.0 0.0 0.0 0	27.2 42.8 0.091 01.0 58.3 0.125 2.0.010 10.9 6.6 0.014	24.5 33.3 0.091 24.9 45.4 0.124 0.012 9.8 5.2 0.014	22.7 33.2 0.091 20.9 20.9 45.3 0.124 22.14.5/Mary 4.5/Mary 4.5/Mar	21.8 25.3 0.091 48.9 48.9 34.5 0.124 20.016 37.000 8.7 3.9 0.014	19.4 25.1 0.091 43.4 34.2 0.124 0.016 7.8 3.8 0.014
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, ID/NI BS NO2 CORRESPONDING EMISSIONS FACTOR, ID/MMBIU HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG EMISSION SPMVd CTG MASS RATE, ID/NI CTG EMISSIONS FACTOR, ID/MMBIU HHV PARTICULATE EMISSION CALCULATION (2) CTG EX-HAUST, ID/NI CORRESPONDING EMISSIONS FACTOR, ID/MMBIU HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EXHBUST, ID/NI CTG EMISSION FACTOR, ID/MMBIU HHV PD EMISSION CALCULATION PB EMISSION CALCULATION SOZ EMISSION CALCULATION (4) CTG EMISSIONS, ID/NI CTG EMISSION CALCULATION (5) CEMISSION CALCULATION (6) CTG EMISSIONS, ID/NI CTG EMISSION SACTOR, ID/MMBIU HHV STACK EMISSIONS, ID/NI CTG EMISSIONS, ID/NI CTG EMISSIONS, ID/NI CTG EMISSIONS, PACTOR, ID/MMBIU HHV STACK EMISSIONS, PACTOR, ID/MMBIU HHV		27.3 42: 0.091 0.091 0.091 0.125 57.5 0.125 0.010 5.37.005.66 0.014 0.0 0.0 0.0 0.0 0.0	27.2 42.8 0.091 61.0 58.3 0.125 0.010 10.9 6.6 0.014	24.5 33.3 0.091 24.9 45.4 0.124 0.012 24.6 0.012 25.0 0.014 0.0 0.0 0.0	22.7 33.2 0.091 50.9 45.3 0.124 57.3 4 第四回 0.012 57.3 4 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	21.8 25.3 0.091 46.9 34.5 0.124 0.016 37.70.0 8.7 3.9 0.014 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	19.4 25.1 0.091 43.4 34.2 0.124 0.016 7.8 3.8 0.014
(1) LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd @ 15% O2 LIMIT, ppmVd CORRESPONDING MASS RATE, Ib/hr 85 NO2 CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV CO EMISSION CALCULATION (8) LIMIT, ppmVd @ 15% O2 CTG EMISSIONS FACTOR, Ib/MMB1U HHV CTG MASS RATE, Ib/hr CTG EMISSIONS FACTOR, Ib/MMB1U HHV PARTICULATE EMISSION CALCULATION (2) CTG EXHAUST, Ib/hr CORRESPONDING EMISSIONS FACTOR, Ib/MMB1U HHV VOC EMISSION CALCULATION (3) LIMIT, ppmVd @ 15% O2 CTG EXHBUST, ppmVw CTG MASS RATE, Ib/hr CTG EMISSION FACTOR, Ib/MMB1U HHV Pb EMISSION CALCULATION PB EMISSION FACTOR, Ib/MMB1U STACK EMISSIONS, Ib/hr CTG EMISSIONS, BADTOR (4) CTG EMISSIONS, FACTOR, Ib/MMB1U HHV		27.3 42.1 0.091 0.091 61.2 57.5 0.125 0.010 0.010 0.010 0.0 0.0 0.0 0.0 0.0 0	27.2 42.8 0.091 01.0 58.3 0.125 2.0.010 10.9 6.6 0.014	24.5 33.3 0.091 24.9 45.4 0.124 0.012 9.8 5.2 0.014	22.7 33.2 0.091 20.9 20.9 45.3 0.124 22.14.5/Mary 4.5/Mary 4.5/Mar	21.8 25.3 0.091 48.9 48.9 34.5 0.124 20.016 37.000 8.7 3.9 0.014	19.4 25.1 0.091 43.4 34.2 0.124 0.016 7.8 3.8 0.014

SITE CONDITIONS

FUEL TYPE FUEL LHV, Btw/b FUEL LHV, Btw/SCF

FUEL SULFUR CONTENT [grains per 100 SCF]

Natural Ges %

CONTROL EQUIPMENT LIMITS

NOx PERMIT LIMIT, ppmVd @ 15% O2

37.75.25

- Notes

 1 Based on GE LM6000-PC SPRINT data provided in e-mail from Dave Kellermeyer (e-mail dated May 12, 2000).

 2 PM 10 Emission rato based on data provided in e-mail from Dave Kellermyer April 19, 2000

 3 VOC Emission rato based on data provided in e-mail from Dave Kellermyer April 19, 2000

 4 SO2 emissions calculated based on fuel sulfur content of 2 grains per 100 standard cubic feet.

 5 Stack diameter based on conversation with Dave Kellermeyer June 14, 2000

 6 CO emissions limit based on guaranteed value.

ENSR

Midway Development Company, L.L.C.
GE LM 6000 SPRINT Simple Cycle Emissions
EMISSIONS COMPUTATION PER SINGLE CTG Oil Fired CTG

Date 6/15/00 Author MDK Griffin

		_	_		-	_
	1	2	3		5	6
	300 M 300				8 200 TO	
	WAYES HE	BANK NO ROP	**************************************	CONTRACTOR OF THE PARTY OF THE	SE STATE OF THE	MAN THO M
	ATTENDO TANK	OTHER AND SERVICE	515251 77 :kss:::	30 847	100 % SD 45 15	20 To 42 CV
	**************************************	(maga-2-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4-1-4	**************************************	200000000000000000000000000000000000000	***************************************	minutes need
	14.500 MY 20 V	Salat Ellina	25 400 400 30	33/20/1000	1000-23-4-03 FB	*********
		22,777.252	155(7020ES	156 37,754 CC	3513,820 2	29778.623
		450	354	351	269	267
	1,052	A&X1,080 x80	320 5.05	### ##################################	A 31780 : XX	200.856
	**************************************	#100 840 5584	525 620 ASS	/JUS	WW.017 . 28	\$132.700 £
39 848	0.95%	*30.95%/Tak	0.88%	** 0.89% YE	\$\$50.80% \$\$	mico.89%
28 013	72.89%	340 74.16h 2	166 72.48% nic	98 74.085 × 34	727294 W	80770.72C
31 990	WE 13 1 74 W.	20613044000	S4213 5794 Vo.	12 14 20% av	206421W	18204
44,000	RULE PRO FIN	(2" N.M. 47864 (1")	Philips Commences	SAX2 9 0794 10195	20002.000	ATTER COMMIT
18.015						
1						99.99%
1						28.68
1						29,851
	33,693	34,320	29,397	31,653	25,115	28,125
	14.42%	14,44%	14.97%	15 45%	15.63%	16.23%
			<u> </u>			
	horselven asker	2 4 / 1898 8 (19, 9/*	12000000000000000000000000000000000000	77 75 4 60 CT 27	COURTS AND THE	V-PERSMANU
						28.68
	1.051,723	1,068,677	919,800	972,360	779,760	856,080
	33.5	33,4	33 4	31.2	32.6	29.7
	587 685	594 45R	512 127	505 839	428 334	424,201
						90.02
						16.2%
						29,851
	33,693	34,320	29,397	31,653	25,115	28,125
				-		
	. T 1 - S. 42 1 - 2 2	(368) 42 million	W. J. C. 42:125	0. 256 82:7395	Prade 12 3 22 6	SEE 342 TO
						33.2
						43.0
						0.1608
	0.1615	0.1613	0.1611	0.1610	0,1605	0.1005
		<u> </u>				
	80~47. 50 788%	\$94588 56 1.8156	Dist. 58 6.347	G . 32 50 3 tokis	7272250 . Week	©# 2,50 €
	61.5	61.3	56.3	51.7	50.0	44.3
	58					35
						0.1305
	0.1311	0.1310	0.1300	0.1307	0.1307	0.130
]						***************************************
	0.0452	0 0444	0.0565	0.0570	0.0/43	0.0748
		—	 	 	 	
	4421025 F	WAR 210 Hot	7 CA 13 D 15 F 1	1 200 no.55 v	3577002000	TOTAL STORY
						7.9
						7.4
						3.6
	0.0134	0,0134	0.0134	0.0134	0.0134	0 0133
				+		
	0.000014	0.000014	0.000014	0.000014	0.000014	0.00001
	0.006	0.000	0.005	0.000	0.00014	0.004
					I	L
	22.378	22.754	17.905	17.736	13.606	13.509
	22.3/8					
	0.0505	0.0505	0.0606	0.0505	0.0505	0.0506
	0.0505	0.0505	0.0606	0.0505	0.0505	0.0606
	39 848 28 013 31,996 44,000 18,015	39 946 0.035% 73 0.044 0.00 1.00 1.00 1.00 1.00 1.00 1.0	### 1995 ### 1995	### 1995 1995	### 1995 1995	### ### ### ### ### ### ### ### ### ##

SITE CONDITIONS
FUEL TYPE
FUEL LIVI, BILVID
FUEL LIVI, BILVID
FUEL LIVI, BILVISCF
FUEL LIVI, BILVISCF
FUEL SULFUR CONTENT [grains per 100 SCF]
FUEL SULFUR CONTENT [WKK]

CONTROL EQUIPMENT LIMITS

NOX PERMIT LIMIT, ppmVd @ 15% 02

2. 42

Leed Emission Factor for Oil AP-42 04/00 - Section 3.1

Emission Factor, Ib/MMBtu

1.40E-05

- Iddizs

 1. Based on GE LM6000-PC SPRINT data provided in e-mail from Dave Kellermeyer (e-mail dated May 12, 2000).

 2. PM10 emission rate sessumed to be double the natural gas PM10 emission rate.

 3. VOC Emission limit based on data provided in e-mail from Dave Kellermyer April 19, 2000

 4. SO2 emissions calculated based on fuel suther content of 0.05 wt %.

 5. Stack dameter based on conversation with Dave Kellermeyer June 14, 2000

 6. CO emissions limit based on guaranteed value.

CALCULATIONS AND COMPUTATIONS

Project: ENRON - Midway

Project: Number: 6792-123-510 Computed by: C. Godleski Date: 6/15/00

Subject: Natural Gas Heater - Emission Calculations Checked by: M. Griffin Date: 6/15/00

Emission Source:	Natural Gas Heater
Heat Input (MMBtu/hr):	6
Number of Units:	1
Sulfur Content of Fuel (grains/scf):	0.02
Fuel Heating Value, HHV (Btu/scf):	1047
LHV (Btu/scf):	946
Operating Hours per Year:	1500
Fuel Feed Rate (scf/HR):	5731

	Emission	Emission Rate	e - per Unit		
Compound	Factor (a)	Hourly (b)	Annual (c)		
	(Lbs/MMBtu)	(Lbs/Hr)	(Tons/Year)		
Criteria Pollutants					
Nitrogen Oxides	0.102	0.612	0.459		
Carbon Monoxid	0.09	0.54	0.405		
Volatile Organic	0.06	0.36	0.27		
Sulfur Oxides (d)	0.003	0.016	0.012		
Particulate	0.01	0.06	0.045		

Notes:

- (a) Emission Factors based on the information supplied by ENRON on 8/11/99.
- (b) Hourly Emission Rate (Lbs/Hr) = (Heat Input * Emission Factor)
- (c) Annual Emission Rate (Tons/Yr) = (Hourly Emission Rate, Lbs/Hr) * (Hour of Operation Per Year, Hr/Yr) / (2,000 Lbs/Ton)
- (d) Sulfur Oxides Emission Rate (Lbs/Hr) based on the sulfur content of the fuel.

CALCULATIONS AND COMPUTATIONS

Project: Midway Development Company, L.L.C.

Project Number: 6792-123-510 Computed by: M. Griffin Date: 5/30/00 Subject: Fire-Water Pump Emission Calculations Checked by: Date:

Emission Source:

Fire-Water Pump Engine

Source Type:

Diesel Fueled Reciprocating Engine

250 Horsepower

Operating Hours per Year:

500

	Em	ission	Emissi	on Rate
Compound	Fac	tor (a)	Hourly (b)	Annual (c)
	(Lbs/hp hr)	(lb/MMBtu)	(Lbs/Hr)	(Tons/Year)
Nitrogen Oxides	0.031		7.8	2.0
Carbon Monoxide	0.00668		1.7	0.4
Volatile Organic Carbon	0.00247		0.6	0.2
Sulfur Oxides	0.00205		0.5	0.1
Particulate	0.0022	-	0.6	0.2
Benzene	6.53E-06	9.33E-04	1.63E-03	4.08E-04
Toluene	2.86E-06	4.09E-04	7.16E-04	1.79E-04
Xylenes	2.00E-06	2.85E-04	4.99E-04	1.25E-04
Propylene	1.81E-05	2.58E-03	4.52E-03	1.13E-03
1,3-Butadiene	2.74E-07	3.91E-05	6.84E-05	1.71E-05
Formaldehyde	8.26E-06	1.18E-03	2.07E-03	5.16E-04
Acetaldehyde	5.37E-06	7.67E-04	1.34E-03	3.36E-04
Acrolein	6.48E-07	9.25E-05	1.62E-04	4.05E-05
PAH	1.18E-06	1.68E-04	2.94E-04	7.35E-05

Total HAPS

5.6 lb/year

Notes:

- (a) Emission Factors from AP-42, Section 3.3, Table 3.3-1
- (b) Hourly Emission Rate (Lbs/Hr) = (Emission Factor, Lbs/BHP) * (Horsepower, BHP)
- (c) Annual Emission Rate (Tons/Yr) = (Hourly Emission Rate, Lbs/Hr) * (Hour of Operation Per Year, Hr/Yr) / (2,000 Lbs/Ton)

Midway Development Company, L.L.C. - Annual Emissions Calculation

								Fuel Use C	alculation			Annual E	missions	
Pollutant		tural Gas Sho mission Limi			stillate Oil She Emission Lim		Compliance Method	Maximum CTG Emissions for Minor Source (2)	Natural Gas Annual Fuel Use ⁽⁶⁾	Distillate Oil Annual Fuel Use ⁽⁹⁾	Natural Gas Fired CTGs ⁽⁷⁾	Distillate Oil Fired CTGs ⁽⁷⁾	Worst Case CTG Emissions ⁽⁵⁾	Ancillary Equipment Emissions
	ppmvd @ 15% O2	Ib/MMBtu (HHV)	Max lb/hr (1)	ppmvd @ 15% O2	Ib/MMBtu (HHV)	Max lb/hr ⁽¹⁾		tons/year	MMBtu/yr (HHV)	MMBtu/yr (HHV)	(tpy)	(tpy)	(tpy)	(tpy)
NOx	25	0.091	47.1	42	0.162	79.9	CEMS	245.5	5,395,604	3,030,864	245.5	245.5	245.5	2.5
co	56	0.125	64.2	56	0.131	64.9	CEMS	247.2	3,955,200	3,774,046	247.2	198.5	247.2	8.0
VOC	10	0.014	7.3	10	0.013	6.6	Fuel Tracking	218.6	31,228,571	33,630,769	37.8	19.7	41.58	1.4
Pb	N/A	0	0	N/A	0.000014	0.007	Fuel Tracking	220	N/A	N/A	0	0.02	0.022	0.0
PM10 (3)	N/A	0.016	5	N/A	0.075	22	Fuel Tracking	219.8	27,475,000	5,861,333	43.2	113.7	125.07	0.2
SO2	N/A	0.005	2.8	N/A	0.051	25	Fuel Tracking	219.9	87,960,000	8,623,529	13.5	77.3	85.03	0.1
							Mi	Minimum Fuel Cap (4)		3,030,864	, i	Margin	10%	

Notes

- (1) Maximum hourly emission rate includes 10% margin.
- (2) CTG Emissions = Total Facility Emissions Fire Water Pump Engine Emissions
- (3) PM10 emissions limited based on Ib/hr emission rate, Ib/MMBtu value calculated only for demonstration of compliance with Minor Source Status.
- (4) NOx and CO limited based on CEMS. Fuel cap calculated to estimate emissions of VOC, PM10, and SO2. Minimum Fuel Cap is used for all pollutants.
- (5) Worst Case of Natural Gas and Distillate Oil Case. VOC, PM10, and SO2 emissions include a margin of 10%.
- (6) [Annual Fuel Use (MMBtu/yr (HHV)] = [Maximum CTG Emissions (tons/year)] x [2,000 lb/ton] / [Emission Factor (lb/MMBtu (HHV))]
- (7) [CTG Annual Emissions (tons/year)] = [Minimum Fuel Cap (MMBtu/yr (HHV))] * [Emission Factor (Ib/MMBtu (HHV))] / [2,000 lb/ton]

Calculations and Computations HAP Emissions from Combined Cycle CTG Facility

Project: Project Number:

Subject:

Midway Development Company, L.L.C.
6792-123-510
Natural Gas/Distillate Oil Fired Turbine Non-Criteria Regulated Pollutant Emissions Calculations

Computed by: M. Griffin Checked by:

Date: 5/12/00 Date:

						CTG Natural Gaa								1 1		ı		
								Comb	uetion	Dietill	ate Oil	CTG Na	tural Gas	CTG Die	tiliate Oil	Fac	ility	Facility
			Emission		E	mission		Maximum	egreyA	Maximum	Averge	Emlasi	on Rate,	Emissi	on Rate,	Emiss	on Rate	Major
Pollutant	Type ^(⊄)		Factor			Factor		Heat input,	Heat Input,	Heat Input,	Heat Input,	Per 1	urbine	PerT	urbine	Ali CTOs		Source
		AP-42 Section	n 3.1 04/00 - Com	bustion	AP-42 Section :	3.1 04/00 - Comb	ustion			' '	'							1
			ine Natural Gas			e No. 2 Fuel Oil		per turbine	per turbine	per turbine	per turbine	Hourty ^(e)	Annual [©]	Hourly ^(c)	Annual [©]	Hourty ^(v)	. Annuai [©]	1
		(lb/10 ⁶ scf)	(lb/MMBtu) ⁶⁰	Rating	(fb/10 ³ gallons)	(lb/MMBtu) ^{tq}	Rating	(MMBtu/Hr) ^{®)}	(MMBtu/Hr) ^{kd}	(MMBtwHr) ⁶⁾	(MMBtwHr) ^{kd}	(lb/hr)	((PY)	(lb/hr)	(tpy)	(lb/hr)	(tpy)	(Y/N)
1,3-Butadiene	HAP		4.30E-07	D		1.60E-05	D	469	469	450	450	2.01E-04	1565.04	7 205 02	4.45E-03	4 225 02	2 675 02	No.
Acetaldehyde	HAP		4.00E-05	C		1.002-03	"	469	469	450	450	1.87E-02					8.70E-02	
Acrolein	HAP		6.40E-06	l č				469	469	450	450	3.00E-03			0.00E+00			
Benzene (a)	HAP	1,36E-02	1.30E-05	"		5,50E-05	Ιc	469	469	450	450	6.07E-03			1.53E-02			
Ethylbenzene	HAP	1.30E-02	3.20E-05	С		9.50E-05	١ ٠	469	469	450	450 450	1.50E-02					6.96E-02	
Formaldehyde (h)	HAP	1.32E-01	1.27E-04	ľ		2.80E-04	۱ ۵	469	469	450	450	5.93E-02					4.67E-01	
	HAP	1.326-01	1.30E-06	С		3.50E-05	B	469	469	450	450	6.09E-04			9.72E-03			
Naphthalene PAHs	HAP		2.20E-06	l č		4.00E-05	l č	469	469	450	450	1.03E-03			1.11E-02			
Propylene Oxide	HAP		2.90E-05	ЬĎ		4.002-03	-	469	469	450	450	1.36E-02			0.00E+00			
Toluene (a)	HAP	7.10E-02	6.79E-05	"				469	469	450	450	3.18E-02			0.00E+00			
Xylene	HAP	7.10E-02	6.40E-05	С				469	469	450	450		2.40E-02 2.32E-02					
Arsenic	HAP		0.402-00	Ĕ		1.10E-05	О	469	469	450	450		0.00E+00					
Beryllium	HAP			-		3.10E-07	ΙĎ	469	469	450	450		0.00E+00					
Cadmlum	HAP			ΙE		4.80E-06	ΙĎ	469	469	450	450		0.00E+00		1.33E-03		8.00E-03	
Chromium	HAP			-		1.10E-05	ΙĎ	469	469	450	450		0.00E+00		3.06E-03			
Lead	HAP			ΙE		1.40E-05	ΙĎ	469	469	450	450		0.00E+00					
Manganese	HAP			E		7.90E-04	ΙĎ	469	469	450	450		0.00E+00					
Mercury	HAP			E		1.20E-06	D	469	469	450	450		0.00E+00				2.00E-03	
Nickel	HAP			1		4.60E-06	D	469	469	450	450	0.00E+00	0.00E+00	2.07E-03	1.28E-03	1.24E-02	7.67E-03	No
Selenium	HAP			1		2.50E-05	D	469	469	450	450	0.00E+00	0.00E+00	1.13E-02	6.95E-03	6.75E-02	4.17E-02	No
						l				l	l				I	l	l	1

Annual Fuel Use (MMBtu/yr)

CTG Natural Gas Maximum (9 4,350,720 CTG Distillate Oil Maximum () 3,333,951 Number of CTGs per Facility

Facility Total HAPs 2.7 No

No

Maximum Individuai HAP 1.3

Natural Gas Heating Value

1047 Btu/SCF (HHV)

- (a) Type = NC for Non-Criteria Pollutants, HAP/POM for compounds included as polycyclic organic matter or HAP for Hazardous Air Pollutant.
 (b) Maximum heat input rate for turbine is based on HHV data at an ambient temperature of 42°F and base load operating conditions.
- (c) Average heat input rate is based on data at an average ambient temperature of 42°F and base load operating conditions.
- (d) Emission Factor (ib/MMBtu) = (Emission Factor, Ib/10⁶ scf) / (Heat Value Btu/scf)
- (e) Houry Emission Rate (lb/hr) = [Heat input (MMBtu/Hr) * Emission Factor (lb/MMBtu)] (f) Annual Emission Rate (tons/year) = [Annual Heat input (MMBtu/Yr) * Emission Factor (lb/MMBtu) / (2,000 lb/ton)]
- (g) Emission Factors from CARB CATEF emission factor database for natural gas fired combustion turbines.
- (h) Modified from AP-42 Section 3.1 emissions database for aero derivative turbines.
- (i) Annual Fuel Use Increased by 10% margin.

Midway Development Company, L.L.C. - LM 6000 NSPS NO_x Emission Standard Calculation

Turbine General Electric Model LM 6000

Fuel Natural Gas

Nominal Maximum Electrical Capacity

49.0 MW

Maximum Energy Input

423 MMBtu/hr (LHV)

446,891,394 kJ/hr

Heat Rate

8,632 Btu/kWh

9.1 kJ/Wh

NSPS Subpart GG NOx Limit

0.0119% Volume % NOx @ 15% O2

119 ppmvd @ 15% O2

Turbine General Electric Model LM 6000

Fuel Distillate Oil

Nominal Maximum Electrical Capacity

48 MW

Maximum Energy Input

419 MMBtu/hr (LHV)

442,404,310 kJ/hr

Heat Rate

8,754 Btu/kWh

9.2 kJ/Wh

NSPS Subpart GG NOx Limit

0.0117% Volume % NOx @ 15% O2

117 ppmvd @ 15% O2

TANKS 4.0 Emissions Report - Detail Format Tank Identification and Physical Characteristics

Identification

User Identification: Midway-St. Lucie Main Storage Tank

City: West Palm Beach

State: FL

Company: Midway Development Company, LLC

Type of Tank: Vertical Fixed Roof Tank
Description: Vertical Fixed Roof Tank
Distillate Oil Storage Tank

Tank Dimensions

 Shell Height (ft):
 40.00

 Diameter (ft):
 85.00

 Liquid Height (ft):
 36.00

 Avg. Liquid Height (ft):
 32.00

 Volume (gallons):
 1,425,000.00

 Turnovers:
 17.05

 Net Throughput (gallyr):
 24,300,000.00

Is Tank Heated (y/n): N

Paint Characteristics

Shell Color/Shade: White/White Shell Condition: Good Roof Color/Shade: White/White Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft): 54.00 Slope (ft/ft) (Cone Roof): 1.27

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig): 0.03

Meteorological Data used in Emissions Calculations: West Palm Beach, Florida (Avg Atmospheric Pressure = 14.75 psia)

TANKS 4.0 Emissions Report - Detail Format Liquid Contents of Storage Tank

		Daily Liquid Surf. Temperatures (deg F)			Liquid Bulk Temp. Vapor Pressures (psia)					Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Mol. Weight	Fract.	Fract.	Weight	
Distillate fuel oil no. 2	Jan	71,89	67.27	76.51	74.74	0.0095	0.0082	0.0110	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Feb	72.69	67.68	77.70	74.74	0.0098	0.0083	0.0114	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Маг	74.77	69.73	79.82	74.74	0.0104	0.0089	0.0122	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Apr	76.65	71.30	82.01	74.74	0.0110	0.0093	0.0130	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	May	78.57	73.45	83.69	74.74	0.0117	0.0100	0.0137	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Jun	79.75	74.89	84.60	74.74	0.0121	0.0104	0.0141	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Jul	80.53	75.53	85.52	74.74	0.0124	0.0107	0.0145	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Aug	80.52	75.72	85.32	74.74	0.0124	0.0107	0.0144	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Sep	79.81	75.47	84.15	74.74	0.0122	0.0106	0.0139	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Oct	77.87	73.73	82.01	74.74	0.0115	0.0101	0.0130	130,0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Nov	75.11	71.02	79.20	74.74	0.0105	0.0093	0.0119	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Dec	72.81	68.52	77.10	74.74	0.0098	0.0085	0.0112	130,0000			188.00	Option 5: A=12.101, B=8907

TANKS 4.0 Emissions Report - Detail Format Detail Calculations (AP-42)

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Standing Losses (lb):	30.2056	30.5426	36.0976	39.2333	40.6276	38.1902	41.5875	39.7604	33.7010	31.3236	27.7662	28.4582
Vapor Space Volume (cu ft):	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448
Vapor Density (lb/cu ft):	0.0002	0,0002	0.0002	0.0002	0.0003	0,0003	0.0003	0,0003	0.0003	0.0003	0.0002	0.0002
Vapor Space Expansion Factor:	0.0309	0.0338	0.0339	0.0361	0.0342	0.0322	0.0332	0.0317	0.0283	0.0269	0.0267	0.0283
Vented Vapor Saturation Factor:	0.9871	0.9867	0.9859	0.9850	0.9841	0.9835	0.9832	0.9832	0.9835	0.9845	0.9857	0.9867
Tank Vapor Space Volume												
Vapor Space Volume (cu ft):	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448	147,537.0448
Tank Diameter (ft):	85.0000	85.0000	85.0000	85.0000	85,0000	85.0000	85.0000	85.0000	85.0000	85,0000	85.0000	85.0000
Vapor Space Outage (ft):	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000
Tank Shell Height (ft):	40.0000	40.0000	40.0000	40,0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000	40.0000
Average Liquid Height (ft):	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000
Roof Outage (ft):	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000
Roof Outaga (Cone Roof)									•			
Roof Outage (ft):	18,0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000	18.0000
Roof Height (ft):	54.0000	54.0000	54,0000	54.0000	54.0000	54,0000	54.0000	54.0000	54.0000	54.0000	54.0000	54.0000
Roof Slope (ft/ft):	1.2700	1.2700	1.2700	1.2700	1.2700	1.2700	1.2700	1.2700	1.2700	1.2700	1.2700	1.2700
Shell Radius (ft):	42.5000	42.5000	42.5000	42.5000	42.5000	42.5000	42.5000	42.5000	42.5000	42.5000	42.5000	42.5000
Vapor Density												•
Vapor Density (lb/cu ft):	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000	130,0000	130,0000	130,0000	130,0000	130,0000	130.0000	130.0000	130.0000	130.0000	130,0000	130.0000
Vapor Pressure at Daily Average Liquid							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
Surface Temperature (psia):	0.0095	0.0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	0.0105	0.0098
Daily Avg. Liquid Surface Temp. (deg. R):	531.5594	532,3604	534.4432	536,3228	538.2400	539.4187	540.1989	540.1925	539.4829	537.5424	534.7800	532.4804
Daily Average Ambient Temp. (deg. F):	65,1000	66,2000	70,0000	73.3500	77.6500	80,6000	82.2000	82,5000	81.6000	77.8000	72.2500	67.3500
Ideal Gas Constant R	55.1555	70.200					32.2333		0		, 2.2000	
(psia cuft / (lb-mol-deg R)):	10,731	10,731	10,731	10,731	10,731	10,731	10.731	10,731	10.731	10.731	10.731	10,731
Liquid Bulk Temperature (deg. R):	534.4067	534,4067	534.4067	534,4067	534.4067	534.4067	534,4067	534.4067	534.4067	534,4067	534.4067	534,4067
Tank Paint Solar Absorptance (Shell):	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700
Tank Paint Solar Absorptance (Roof):	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700
Daily Total Solar Insulation	0,1100	0.1100	0.1700	0.1700	0.1100	0.1100	0.1100	0.1700	000	0.1100	0.1100	0.1100
Factor (Btu/sqft day):	1,037.1556	1,273.2045	1,579.0528	1,881.0938	1,899.8128	1,810.9772	1,867.7685	1,764.6557	1,531.1450	1,331.2649	1,092.6779	985.7579
Vapor Space Expansion Factor								•				
Vapor Space Expansion Factor:	0.0309	0.0338	0.0339	0.0361	0.0342	0.0322	0.0332	0.0317	0.0283	0.0269	0.0267	0.0283
Daily Vapor Temperature Range (deg. R):	18.4729	20.0285	20.1883	21,4100	20.4911	19.4203	19,9786	19.1998	17.3683	16.5608	16.3611	17.1482
Daily Vapor Pressure Range (psia):	0.0028	0.0031	0,0033	0.0037	0.0037	0.0036	0.0038	0.0037	0.0032	0,0029	0.0027	0.0026
Breather Vent Press. Setting Range(psia):	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600
Vapor Pressure at Daily Average Liquid	0.0000	0.0000	0.0000	0.0000	0,000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Surface Temperature (psia):	0.0095	0,0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	. 0.0105	0.0098
Vapor Pressure at Daily Minimum Liquid	0.0000	0,0000	0.0104	0.0110	0.0117	0.0121	0.0124	0,0124	0.0122	0.0110	0.0100	0.0000
Surface Temperature (psia):	0.0082	0.0083	0.0089	0.0093	0.0100	0.0104	0.0107	0.0107	0.0106	0.0101	0.0093	0.0085
Vapor Pressure at Daily Maximum Liquid	0.0002	0.0000	0,0003	0.0033	0.0100	0.0104	0.0107	0.0101	0.0100	0.0101	0.0033	0.0000
Surface Temperature (psia):	0.0110	0.0114	0.0122	0.0130	0.0137	0.0141	0.0145	0.0144	0.0139	0.0130	0.0119	0.0112
Daily Avg. Liquid Surface Temp. (deg R):	531,5594	532.3604	534.4432	536.3228	538.2400	539,4187	540,1989	540.1925	539,4829	537.5424	534,7800	532,4804
Daily Min, Liquid Surface Temp. (deg R):	526.9412	527.3533	529.3961	530.9703	533.1172	534.5636	535,2043	535.3925	535.1408	537.5424	530,6897	528.1934
	536,1776	537.3676	539.4903	541.6753	543.3628	544.2737	545,1936	544.9924	543.8249	541.6826	538.8703	536,7675
Daily Max, Liquid Surface Temp. (deg R): Daily Ambient Temp. Range (deg. R):	18.8000	19.4000	17.6000	17.3000	543.3628 15.9000	544.2737 15.0000	545.1936 15.4000	15.0000	14.0000	14.2000	15.5000	17.3000
Montand Manual Colonialian Footon												
Vented Vapor Seturation Factor	0.0074	0.0007	0.0050	0.0050	0.0044	0.0005	0.0000	0.0000	0.0025	0.0045	0.0057	0.0007
Vented Vapor Saturation Factor:	0.9871	0.9867	0.9859	0.9850	0.9841	0.9835	. 0.9832	0.9832	0.9835	0.9845	0.9857	0.9867
Vapor Pressure at Daily Average Liquid	0.0005	0.0000	0.045		0.04:-	0.0404	0.0454	0.0404	0.0400	0.0445	0.0405	0.0000
Surface Temperature (psia):	0.0095	0.0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	0.0105	0.0098
Vapor Space Outage (ft):	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000	26.0000

7/5/00 3:27:14 PM Page 3

TANKS 4.0 Emissions Report - Detail Format Detail Calculations (AP-42)- (Continued)

Working Losses (lb): Vapor Molecular Weight (lb/ib-mole): Vapor Pressure at Daily Average Liquid	59.6105 130.0000	61.1326 130.0000	65.2513 130.0000	69.1761 130.0000	73.3916 130.0000	76.0940 130.0000	77.9307 130.0000	77.9153 130.0000	76.2436 130.0000	71.8323 130.0000	65.9398 130.0000	61,3634 130,0000
Surface Temperature (psia):	0.0095	0.0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	0.0105	0.0098
Net Throughput (gal/mo.): 2	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000	2,025,000.000
	0	0	0	0	0	0	0	0	0	0	0	0
Annual Turnovers:	17.0526	17.0526	17.0526	17.0526	17.0526	17.0526	17.0526	17.0526	17,0526	17.0526	17.0526	17.0526
Turnover Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000
Maximum Liquid Volume (gal): 1,	,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000	1,425,000.000
	0	0	0	0	0	0	0	0	0	0	0	0
Maximum Liquid Height (ft):	36.0000	36.0000	36.0000	36.0000	36.0000	36.0000	36.0000	36.0000	36.0000	36,0000	36.0000	36.0000
Tank Diameter (ft):	85,0000	85.0000	85,0000	85.0000	85.0000	85.0000	85.0000	85.0000	85.0000	85.0000	85.0000	85.0000
Working Loss Product Factor:	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000
Total Losses (lb):	89.8162	91,6752	101.3490	108.4094	114.0192	114.2842	119.5182	117.6757	109.9447	103.1559	93.7060	89.8216

Midway-St. Lucie Main Storage Tank Midway Development Company, LLC

TANKS 4.0 Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January , February , March , April , May , June , July , August , September , October , November , December

	Losses(lbs)								
Components	Working Loss	Breathing Loss							
Distillate fuel oil no. 2	835.88	417.49	1,253.38						

TANKS 4.0 Emissions Report - Detail Format Tank Identification and Physical Characteristics

Identification

User Identification: Midway-St. Lucie Fuel Oil Day Tank

City: West Palm Beach

State: FL

Company: Broward Development Company, LLC

Type of Tank: Vertical Fixed Roof Tank
Description: Vertical Fixed Roof Tank
Distillate Oil Day Storage Tank

Tank Dimensions

 Shell Height (ft):
 24.00

 Diameter (ft):
 50.00

 Liquid Height (ft):
 21.00

 Avg. Liquid Height (ft):
 21.00

 Volume (gallons):
 285,000.00

 Turnovers:
 85.26

 Net Throughput (gal/yr):
 24,300,000.00

Is Tank Heated (y/n):

Paint Characteristics

Shell Color/Shade: White/White
Shell Condition: Good
Roof Color/Shade: White/White
Roof Condition: Good

Roof Characteristics

Type: Cone

Height (ft): 32.00 Slope (ft/ft) (Cone Roof): 1.28

Breather Vent Settings

Vacuum Settings (psig): -0.03 Pressure Settings (psig): 0.03

Meteorological Data used in Emissions Calculations: West Palm Beach, Florida (Avg Atmospheric Pressure = 14.75 psia)

TANKS 4.0 Emissions Report - Detail Format Liquid Contents of Storage Tank

			y Liquid Surf. eratures (deg F)	1	Liquid Bulk Temp.	Vapor	Pressures (psi	n)	Vapor Mol.	Liquid Mass	Vapor Mass	Mol.	Basis for Vapor Pressure
Mixture/Component	Month	Avg.	Min.	Max.	(deg F)	Avg.	Min.	Max.	Weight	Fract.	Fract.	Weight	Calculations
Distillate fuel oil no. 2	Jan	71.89	67.27	76.51	74.74	0.0095	0,0082	0.0110	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Feb	72.69	67.68	77.70	74.74	0.0098	0.0083	0.0114	130.0000		188.00		Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Mar	74.77	69.73	79.82	74.74	0.0104	0.0089	0.0122	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Apr	76.65	71.30	82.01	74.74	0.0110	0.0093	0.0130	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	May	78.57	73.45	83.69	74.74	0.0117	0.0100	0.0137	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Jun	79.75	74.89	84.60	74.74	0.0121	0.0104	0.0141	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Jul	80.53	75.53	85.52	74.74	0.0124	0.0107	0.0145	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Aug	80.52	75.72	85.32	74.74	0.0124	0.0107	0.0144	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Sep	79.81	75.47	84.15	74.74	0.0122	0.0106	0.0139	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Oct	77.87	73.73	82.01	74.74	0.0115	0.0101	0.0130	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Nov	75.11	71.02	79.20	74.74	0.0105	0.0093	0.0119	130.0000			188.00	Option 5: A=12.101, B=8907
Distillate fuel oil no. 2	Dec	72.81	68.52	77.10	74.74	0.0098	0.0085	0.0112	130.0000			188.00	Option 5; A=12.101, B=8907

TANKS 4.0 Emissions Report - Detail Format Detail Calculations (AP-42)

Month:	January	February	March	April	May	June	July	August	September	October	November	December
Standing Losses (lb):	5.5278	5.5903	6.6099	7.1869	7,4455	7.0008	7,6250	7.2900	6.1779	5.7396	5.0847	5.2089
Vapor Space Volume (cu ft):	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834,4372	26,834.4372	26,834.4372
Vapor Density (lb/cu ft):	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003		0.0002
	0,0309	0.0338	0.0339	0.0002	0.0003	0.0322	0.0003	0.0317	0.0003	0.0003	0.0002	
Vapor Space Expansion Factor:				0.0361							0.0267	0.0283
Vented Vapor Saturation Factor:	0.9932	0.9930	0.9925	0.9921	0.9916	0.9913	0.9911	0.9911	0.9913	0.9918	0.9924	0.9930
Tank Vapor Space Volume												
Vapor Space Volume (cu ft):	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372	26,834.4372
Tank Diameter (ft):	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000
Vapor Space Outage (ft):	13.6667	13.6667	13.6667	13.6667	13.6667	13.6667	13,6667	13.6667	13.6667	13.6667	13.6667	13.6667
Tank Shell Height (ft):	24.0000	24.0000	24.0000	24.0000	24.0000	24.0000	24.0000	24.0000	24.0000	24.0000	24.0000	24.0000
Average Liquid Height (ft):	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000
Roof Outage (ft):	10.6667	10.6667	10.6667	10.6667	10.6667	10.6667	10.6667	10,6667	10.6667	10.6667	10.6667	10.6667
Reaf Orders (Case Reaf)												
Roof Outage (Cone Roof) Roof Outage (ft):	10.6667	10.6667	10.6667	10.6667	10.6667	10.6667	10.6667	10.6667	10.6667	10.6667	10,6667	10.6667
Roof Height (ft):	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000	32.0000
Roof Slope (ft/ft):	1.2800	1.2800	1.2800	1.2800	1.2800	1.2800	1.2800	1.2800	1.2800	1.2800	1.2800	1.2800
Shell Radius (ft):	25.0000	25.0000	25.0000	25,0000	25.0000	25.0000	25.0000	25,0000	25.0000	25.0000	25.0000	25.0000
Vapor Density												
Vapor Density (lb/cu ft):	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	0.0002
Vapor Molecular Weight (lb/lb-mole):	130.0000	130,0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000
Vapor Pressure at Daily Average Liquid		·										
Surface Temperature (psia):	0.0095	0.0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	0.0105	0.0098
Daily Avg. Liquid Surface Temp. (deg. R):	531.5594	532,3604	534.4432	536.3228	538.2400	539.4187	540,1989	540.1925	539.4829	537.5424	534.7800	532.4804
Daily Average Ambient Temp. (deg. F):	65,1000	66.2000	70.0000	73.3500	77.6500	80.6000	82.2000	82.5000	81.6000	77.8000	72.2500	67.3500
Ideal Gas Constant R												
(psia cuft / (lb-mol-deg R)):	10.731	10,731	10.731	10.731	10.731	10.731	10.731	10.731	10,731	10.731	10,731	10.731
Liquid Bulk Temperature (deg. R):	534.4067	534,4067	534.4067	534.4067	534.4067	534.4067	534.4067	534,4067	534,4067	534,4067	534.4067	534.4067
Tank Paint Solar Absorptance (Shell):	0.1700	0.1700	0.1700	0,1700	0.1700	0.1700	0.1700	0.1700	0.1700	0,1700	0.1700	0.1700
Tank Paint Solar Absorptance (Chor):	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700
Daily Total Solar Insulation	0.1700	0.1700	. 0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700	0.1700
Factor (Btu/sqft day):	1,037.1556	1,273.2045	1,579,0528	1,881.0938	1,899,8128	1,810,9772	1,867.7685	1,764,6557	1,531,1450	1,331.2649	1,092.6779	985.7579
racioi (biwsqii day).	1,037.1550	1,273.2045	1,579.0526	1,001.0930	1,099.0120	1,010.9772	1,007.7003	1,704.0007	1,551.1450	1,331.2045	1,032.0779	965,7579
Vepor Space Expansion Factor												
Vapor Space Expansion Factor:	0.0309	0.0338	0.0339	0.0361	0.0342	0.0322	0.0332	0.0317	0.0283	0.0269	0.0267	0.0283
Daily Vapor Temperature Range (deg. R):	18.4729	20.0285	20.1883	21.4100	20.4911	19.4203	19.9786	19.1998	17.3683	16.5608	16.3611	17.1482
Daily Vapor Pressure Range (psia):	0.0028	0.0031	0.0033	0.0037	0.0037	0.0036	0.0038	0.0037	0.0032	0.0029	0.0027	0.0026
Breather Vent Press. Setting Range(psia):	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600	0.0600
Vapor Pressure at Daily Average Liquid												
Surface Temperature (psia):	0.0095	0.0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	0.0105	0.0098
Vapor Pressure at Daily Minimum Liquid												
Surface Temperature (psia):	0,0082	0.0083	0.0089	0.0093	0.0100	0.0104	0.0107	0.0107	0.0106	0.0101	0.0093	0.0085
Vapor Pressure at Daily Maximum Liquid		0.0000	0.0000	2.4000	2.0.20		•.•.					0.0000
Surface Temperature (psia):	0.0110	0.0114	0.0122	0.0130	0.0137	0.0141	0.0145	0.0144	0.0139	0.0130	0.0119	0.0112
Daily Avg. Liquid Surface Temp. (deg R):	531.5594	532,3604	534,4432	536.3228	538,2400	539,4187	540.1989	540.1925	539.4829	537.5424	534.7800	532.4804
	526.9412	527.3533		530.3228 530.9703	538.2400	539,4167 534,5636	535,2043	535.3925	535,1408	533.4022	530.6897	528,1934
Daily Min. Liquid Surface Temp. (deg R):			529.3961									
Daily Max. Liquid Surface Temp. (deg R):	536,1776	537.3676	539.4903	541.6753	543.3628	544.2737	545,1936	544.9924	543.8249	541.6826	538.8703	536.7675
Daily Ambient Temp. Range (deg. R):	18.8000	19.4000	17.6000	17.3000	15.9000	15.0000	15.4000	15.0000	14.0000	14.2000	15.5000	17.3000
Vented Vapor Saturation Factor												
Vented Vapor Saturation Factor:	0.9932	0.9930	0.9925	0.9921	0.9916	0.9913	0.9911	0.9911	0.9913	0.9918	0.9924	0.9930
Vapor Pressure at Daily Average Liquid				. = .	•							
Surface Temperature (psia):	0.0095	0.0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	0.0105	0.0098
Vapor Space Outage (ft):	13.6667	13.6667	13.6667	13,6667	13.6667	13.6667	13.6667	13.6667	13.6667	13,6667	13,6667	13.6667
tapor opaco outago (ii).	10.0007	10.0007	10.0007	10.0007	10.0007	10.0001	10.0007		10.0001	10.0001	.0.0001	10.0007

7/5/00 3:36:41 PM

TANKS 4.0 Emissions Report - Detail Format Detail Calculations (AP-42)- (Continued)

Working Losses (lb): Vapor Molecular Weight (lb/lb-mole): Vapor Pressure at Daily Average Liquid	30.9092	31.6984	33,8340	35.8691	38.0549	39.4562	40.4085	40.4005	39.5337	37.2464	34.1910	31.8181
	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000	130.0000
Surface Temperature (psia): Net Throughput (gal/mo.):	0.0095	0.0098	0.0104	0.0110	0.0117	0.0121	0.0124	0.0124	0.0122	0.0115	0.0105	0.0098
	2.025.000.000	2.025.000.000	2.025,000.000	2.025,000.000	2.025.000.000	2.025.000.000	2.025.000.000	2.025.000.000	2.025.000.000	2.025.000.000	2.025.000.000	2.025.000.000
	0	0	0	0	0	0	0	0	0	0	0	0
Annual Turnovers:	85,2632	85.2632	85.2632	85.2632	85.2632	85.2632	85.2632	85.2632	85.2632	85.2632	85.2632	85.2632
Turnover Factor:	0.5185	0.5185	0.5185	0.5185	0.5185	0.5185	0.5185	0.5185	0.5185	0.5185	0.5185	0.5185
Maximum Liquid Volume (gal):	285,000.0000	285,000.0000	285,000.0000	285,000.0000	285,000,0000	285,000.0000	285,000.0000	285,000.0000	285,000.0000	285,000.0000	285,000.0000	285,000.0000
Maximum Liquid Height (ft):	21.0000	21.0000	21.0000	21.0000	21.0000	21.0000	21,0000	21.0000	21,0000	21.0000	21.0000	21.0000
Tank Diameter (ft): Working Loss Product Factor:	50,0000	50.0000	50.0000	50.0000	50,0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000	50.0000
	1,0000	1.0000	1.0000	1.0000	1,0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000	1.0000
Total Losses (lb):	36,4370	37.2887	40.4439	43.0560	45.5004	46.4569	48.0335	47.6905	45.7117	42.9859	39,2757	37.0270

TANKS 4.0 Emissions Report - Detail Format Individual Tank Emission Totals

Emissions Report for: January, February, March, April, May, June, July, August, September, October, November, December

	Losses(lbs)								
Components	Working Loss	Breathing Loss	Total Emissions						
Distillate fuel oil no. 2	433.42	76.49	509.91						

AL, Florence (256) 767-1210 AK, Anchorage (907) 561-5700 AK, Fairbanks (907) 452-5700 CA, Alameda (510) 748-6700 CA, Camarillo (805) 388-3775 CA, Glendale (818) 546-2090 CA, Irvine (949) 752-0403 CA, Sacramento (916) 362-7100 CO, Ft. Collins (970) 493-8878 Ft. Collins Tox Lab (970) 416-0916 CT, Stamford (203) 323-6620 FL, St. Petersburg (727) 898-9591 FL, Tallahassee (850) 385-5006 GA, Norcross (770) 209-7167 GA, Savannah (912) 898-0015 IL, Chicago (630) 836-1700 LA, Lafayette (337) 896-2430 ME, Portland (207) 773-9501 MD, Columbia (410) 884-9280 MA, Acton (978) 635-9500

MA, Buzzards Bay (508) 888-3900 MA. Northborough (508) 393-8558 MA, Woods Hole (508) 457-7900 MN, Minneapolis (952) 924-0117 NJ, Piscataway (732) 457-0500 NY, Albany (518) 453-6444 NY, Metro Area (914) 347-4990 NY, Rochester (716) 381-2210 NY, Syracuse (315) 432-0506 NC, Raleigh (919) 571-0669 OH, Cincinnati (513) 985-9186 OR, Portland (503) 224-7338 PA, Langhorne (215) 757-4900 PA, Pittsburgh (412) 261-2910 SC, Columbia (803) 216-0003 TX, Austin (512) 336-2425 TX. Dallas (972) 509-2250 TX. Houston (713) 520-9900 TX, San Antonio (210) 590-8393 WA, Redmond (425) 881-7700

ENSR International U.S.A., MA, Acton *(978) 266-4232*

Bolivia Brazil Bulgaria Canada China, Hong Kong Czech Republic Ecuador France Germany Greece Italy Malaysia Mexico Spain Turkey United Kingdom Venezuela

Internet www.ensr.com

P.O. Box 1188 Houston, TX 77251-1188

July 17, 2000

RECEIVED

JUL 19 2000

BUREAU OF AIR REGULATION

Mr. Al Linero, P.E. Administrator, New Source Review Section Florida Department of Environmental Protection 2600 Blair Stone Road Tallahassee, Florida 32399-2400

RE: Midway Development Company, LLC

Permit Application for Midway-St. Lucie Electric Generating Plant

Dear Mr. Linero:

On behalf of Midway Development Company, LLC, enclosed are four (4) copies of an air permit application for the Midway-St. Lucie Electric Generating Plant in St. Lucie County, Florida. This application is for a non-PSD permit for a simple cycle combustion turbine power plant consisting of 6 LM6000 dual-fuel units. Also enclosed is a check for \$5,750 to cover the permit application fee..

If you have any questions, please don't hesitate to call me at (713) 853-3161.

Sincerely, Enron North America

David A. Kellermeyer

David A Kellering

Director

Enclosures

J. Andleson

August 21, 2000

Enron North America Corp.

P.O. Box 1188 Houston, TX 77251-1188

RECEIVED

AUG 23 2000

BUREAU OF AIR REGULATION

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. Al Linero, PE Administrator, New Source Review Section Florida Department of Environmental Protection 2600 Blair Stone Road, MS#5505 Tallahassee, FL 32399-2400

RE: Medley Electric Generating Plant

Midway-St. Lucie Electric Generating Plant Broward-Thornborough Electric Generating Plant

Applications for Air Construction Permit Request to Terminate Application Review

Dear Mr. Linero:

On July 19, 2000 Enron North America submitted permit applications for air construction permits for the Medley and Midway-St. Lucie Electric Generating Facilities. A permit application for the Broward-Thornborough Electric Generating Plant was submitted on August 9, 2000. At the time of application submittal, the fees for permit review were also submitted. These applications were submitted in anticipation of achieving a June, 2001 startup date at one or more of these sites.

After a recent evaluation of the environmental and land use approvals required for these sites, we have decided that developing these projects for a start date in calendar year 2001 is not realistic. As a result, we are advising the Florida Department of Environmental Protection (DEP) to halt review of these permit applications.

It is our intention to continue development of these sites for projects that would be commercially viable in the year 2002. However, it is possible that for this later start date we would employ combustion turbine configurations that differ from those identified in the applications we have submitted. As a result, we feel that it would not be productive to receive permits for the LM6000 configuration.

Mr. A. A. Linero August 21, 2000 Page 2

Please feel free to contact me at (713) 853-3161 if you have any questions regarding this request.

Sincerely, Enron North America

David A. Kellermeyer

David A. Kellem

Director

cc: Greg Krause Steve Krimsky

Department of Environmental Protection

Jeb Bush Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

David B. Struhs Secretary

August 9, 2000

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Ms. Janet Dietrich Managing Director 1400 Smith Street Houston, Texas 77002-7631

Re: DEP File No. 0251029-001-AC and 1110099-001-AC Medley Electric Generating Plant

Midway-St. Lucie Electric Generating Plant

Dear Ms. Dietrich:

On July 19, 2000 the Department received your application and complete fee for an air construction permit for the above reference electric generating plant projects to be located at Dade and St. Lucie Counties. Based on our initial review, the application is incomplete. Pursuant to Rules 62-4, 62-204, 62-210, 62-212, and 62-297, F.A.C., please submit the information requested below:

- 1. Address all phases planned for these two projects, if any. [Rule 62-212.400(6)(b), F.A.C. and 40CFR51.166(j)(4)].
- 2. Submit a design and operating features of the GE LM6000PC SPRINT® including type of combustors, drawings, heat input curves, manufacturer's emissions performance vs load diagrams, etc. [Rule 62-4.070(3), F.A.C.]
- 3. Estimate emissions of sulfuric acid mist (SAM). [Rules 62-212.400(2)(d), F.A.C and 62-4.070(3), F.A.C.]

Rule 62-4.050(3), F.A.C. requires that all applications for a Department permit must be certified by a professional engineer registered in the State of Florida. This requirement also applies to responses to Department requests for additional information of an engineering nature. Permit applicants are advised that Rule 62-4.055(1), F.A.C. now requires applicants to respond to requests for information within 90 days.

If you have any questions regarding this matter, please call Teresa Heron at 850/921-9529 or e-mail her at teresa.heron@dep.state.fl.us.

Sincerely,

A.A. Linèro, P.E. Administrator New Source Review Section

Cc: Lennon Anderson SED Patrick Wong, DERM

Facsimile Cover Sheet

To: Al Linero

Company: Florida DEP

Phone: (850) 921-9523

Fax: (850) 922-6979

From: Dave Kellermeyer

Company: Enron North America

Phone: (713) 853-3161

Fax: (713) 646-3037

Date: 08/21/00

Pages including this

cover page: 3

Comments:

Al-

Please see attached re: pending permit applications.

Dave Kellermeyer

P.O. Box 1188 Houston, TX 77251-1188

Enron North America Corp.

August 21, 2000

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. Al Linero, PE Administrator, New Source Review Section Florida Department of Environmental Protection 2600 Blair Stone Road, MS#5505 Tallahassee, FL 32399-2400

RE: Medley Electric Generating Plant
Midway-St. Lucie Electric Generating Plant
Broward-Thomborough Electric Generating Plant
Applications for Air Construction Permit
Request to Terminate Application Review

Dear Mr. Linero:

On July 19, 2000 Enron North America submitted permit applications for air construction permits for the Medley and Midway-St. Lucie Electric Generating Facilities. A permit application for the Broward-Thomborough Electric Generating Plant was submitted on August 9, 2000. At the time of application submittal, the fees for permit review were also submitted. These applications were submitted in anticipation of achieving a June, 2001 startup date at one or more of these sites.

After a recent evaluation of the environmental and land use approvals required for these sites, we have decided that developing these projects for a start date in calendar year 2001 is not realistic. As a result, we are advising the Florida Department of Environmental Protection (DEP) to halt review of these permit applications.

It is our intention to continue development of these sites for projects that would be commercially viable in the year 2002. However, it is possible that for this later start date we would employ combustion turbine configurations that differ from those identified in the applications we have submitted. As a result, we feel that it would not be productive to receive permits for the LM6000 configuration.

Mr. A. A. Linero August 21, 2000 Page 2

Please feel free to contact me at (713) 853-3161 if you have any questions regarding this request.

Sincerely, Enron North America

David A. Kellermeyer

Director

cc: Greg Krause

Steve Krimsky