Georgia-Pacific Corporation

Hudson Pulp & Paper Corp. A wholly-owned subsidiary

P.O. Box 919 Palatka, Florida 32077 Telephone (904) 325-2001

February 27, 1985

Mr. Bruce Mitchell State of Florida Department of Environmental Regulation Bureau of Air Quality Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32301

Dear Bruce:

Enclosed are 3 copies each of permit applications for adding particulate control devices to our No. 4 Combination Boiler and the No. 5 Oil Fired Power Boiler.

If there are any questions please contact me.

Sincerely,

W. R. Wilson

Environmental Supt.

mg enclosures

cc W. L. Baxter
John Brown, FDER, Jacksonville

STATE OF FLORIDA

DEPARTMENT OF ENVIRONMENTAL REGULATION

NORTHEAST DISTRICT

3426 BILLS ROAD
JACKSONVILLE, FLORIDA 32207

BOB GRAHAM GOVERNOR VICTORIA J. TSCHINKEL SECRETARY G. DOUG DUTTON DISTRICT MANAGER

APPLICATION TO OPERATE/CONSTRUCT AIR POLLUTION SOURCES

SOURCE TYPE: STEAM POWER BOILER OIL-FIRED [] New [X] Existing [
APPLICATION TYPE: [] Construction [X] Operation [] Modification (TO A054-45320)
COMPANY NAME: GEORGIA-PACIFIC CORPORATION COUNTY: PUTNAM
Identify the specific emission point source(s) addressed in this application (i.e. Lime
Kiln No. 4 with Venturi Scrubber; Peaking Unit No. 2, Gas Fired) NO. 5 POWER BOILER STACK
SOURCE LOCATION: Street STATE ROAD 216 (NORTH SIDE) City PALATKA
UTM: East 434.0 North 3283.4
Latitude 29° 41' 00"N Longitude 81° 40' 45"W
APPLICANT NAME AND TITLE: GEORGIA-PACIFIC CORPORATION
APPLICANT ADDRESS: P.O. BOX 919, PALATKA, FLORIDA 32077
SECTION I: STATEMENTS BY APPLICANT AND ENGINEER
A. APPLICANT
I am the undersigned owner or authorized representative* of GEORGIA-PACIFIC CORP.
I certify that the statements made in this application for a AIR EMISSION permit are true, correct and complete to the best of my knowledge and belief. Further I agree to maintain and operate the pollution control source and pollution contro facilities in such a manner as to comply with the provision of Chapter 403, Florid Statutes, and all the rules and regulations of the department and revisions thereof. also understand that a permit, if granted by the department, will be non-transferable and I will promptly notify the department upon sale or legal transfer of the permitteestablishment.
*Attach letter of authorization Signed:
Name and Title (Please Type)
Date: Telephone No
B. PROFESSIONAL ENGINEER REGISTERED IN FLORIDA (where required by Chapter 471, F.S.)

This is to certify that the engineering features of this pollution control project have been designed/examined by me and found to be in conformity with modern engineering principles applicable to the treatment and disposal of pollutants characterized in the permit application. There is reasonable assurance, in my professional judgment, that

DER Form 17-1.202(1) Effective October 31, 1982

¹ See Florida Administrative Code Rule 17-2.100(57) and (104)

	an effluent that complies with rules and regulations of the defurnish, if authorized by the o	s, when properly maintained and operated, will discharge all applicable statutes of the State of Florida and the partment. It is also agreed that the undersigned will wher, the applicant a set of instructions for the proper e pollution control facilities and, if applicable,				
	OLD /	Signed Hawld / Calp				
	A SURVICION SEL	Harold L. Culp, PE				
	8 C 18 C 8	Name (Please Type)				
	H PE 0029275 **	Ford, Bacon & Davis, Inc.				
	STATE OF	Company Name (Please Type)				
	May COULD FILE	P.O. Box 1894, Monroe, LA 71210				
	COSO ENTROPE	Mailing Address (Please Type)				
flo.	rida Registration No. 29275	Date: March 21, 1980 Telephone No. (318) 323-9000				
Α.	Describe the nature and extent and expected improvements in so	: GENERAL PROJECT INFORMATION of the project. Refer to pollution control equipment, urce performance as a result of installation. State in full compliance. Attach additional sheet if				
	(See	Attached Supplementary Report)				
8.	Schedule of project covered in	this application (Construction Permit-Application Only)				
	Start of Construction February	28, 1986 Completion of Construction November 28, 1986				
c.	for individual components/units	Control Equipment ents): (Note: Show breakdown of estimated costs only of the project serving pollution control purposes. It be furnished with the application for operation				
	Estimated cost of mul	ti-cell electrostatic precipitator, ducting, ash				
	removal and vertical	stack with all installed appurtenances = \$2,000,000				
D .	point, including permit issuence					
-	Permit No. A054-45320	dated January 22, 1982, expires September 30, 1986.				
	Consent Order OGC File dated January 7, 1985	e No. 83-0803 - Florida Dept. of Environmental Regulation				
DE R	form 17-1.202(1)					
Eff	fective October 31, 1982	Page 2 of 12				

	this is a new source or major modification, answer the following question or No. ${\sf NO}$	ons.
	Is this source in a non-attainment area for a particular pollutant?	NO
	a. If yes, has "offset" been applied?	
	b. If yes, has "Lowest Achievable Emission Rate" been applied?	
	c. If yee, list non-attainment pollutants.	
2.	Doas best available control technology (BACT) apply to this source? If yes, see Section VI.	NO
3.	Does the State "Prevention of Significant Deterioristion" (PSD) requirement apply to this source? If yes, see Sections VI and VII.	NO
4.	Do "Standards of Performance for New Stationary Sources" (NSPS) apply to this source?	NO
5.	Do "National Emission Standards for Hazardous Air Pollutants" (NESHAP) apply to this source?	NO
	"Ressonably Available Control Technology" (RACT) requirements apply this source?	NO
	a. If yea, for what pollutants?	

cation for any answer of "No" that might be considered questionable.

BEST AVAILABLE COPY

SECTION III: AIR POLLUTION SOURCES & CONTROL DEVICES (Other then Incinerators)

A. Raw Materials and Chemicals Used in your Process, if applicable:

Not Applicable Per Definition - Rule 17-2.100 (127), Process Weight

•	Contami	nants	Utilization	Relate to Flow Diagram	
Description	Туре	% Wt	Rate - lba/hr		
			ta ang ang ang ang ang ang ang ang ang an		

- B. Process Rate, if applicable: (See Section V, Item 1) For Information Only
 - 1. Total Process Input Rate (lbs/hr): To 31,550 lbs/hr No. 6 Oil plus Combustion Air
 - 2. Product Weight (lbs/hr): 475,000 lbs/hr, 1275 psig, 900 F Superheated Steam Maximum
- C. Airborne Contaminants Emitted: (Information in this table must be submitted for each emission point, use additional sheets as necessary)

Name of	Emission ¹		Allowed ² Emission Rate per	Requested Allowable ³ Emission	Potenti Emissi	Relate to Flow	
Contaminant	Maximum lbs/hr	Actual I/yr *	Rule	lpa/ht	lbs/yr	I/yr *	Diagram
Particulates	56.8	248.8	0.1 lbs/MBTU	56.8	.497,568.	248.8	Stack
so ₂	1564	6850	2.751bs/โВТU	1564	13,814,520	6907	Stack
Fuel NO(As NO	200	876	N/A	N/A	1,752,000	876	Stack
° co	0.15	0.66	N/A	N/A	1314	0.66	Stack
Methane Hydrocarbons	7.6	33.3	N/A	N/A	66,751	33.3	Stack

Opacity 20%, 40% 2M 20%, 40% 2M 20%, 40% 2M 30% Stack

See Section V, Item 2. *At 8760 hrs/yr No Sampling data - factored from AP-42 Chap. 1

Zeoforces realizable existing standards and waits (a.g. Rule 17.3 (DO(5)(h)) Table II Table

DER form 17-1.202(1) Effective November 30, 1982

²Reference applicable emission standards and units (e.g. Rule 17-2.600(5)(b)2. Table II, E. (1) - 0.1 pounds per million BTU heat input)

Calculated from operating rate and applicable standard.

⁴Emission, if source operated without control (See Section V, Item 3).

D. Control Devices: (See Section V, Item 4)

Name and Type (Model & Serial No.)	Contaminant	Efficiency	Range of Particles Size Collected (in microns) (If applicable)	Basis for Efficiency (Section V Item 5)
Electrostatic Pre-	Particulates	Up to 90%	1-100	Cost Effective
cipitator (Not				Design Basis
Selected From Vendor			<u> </u>	
Yet. Equipment Bids -				
Guaranteed Performance			'	
Data Not Yet Received)	<u> </u>			

£. Fuels

	Consum	ption*		
Type (Be Specific)	avg/hr	max./hr	Maximum Heat Input (MMBTU/hr)	
No. 6 Fuel 011	2750 ±	3810	568.9	

*Units: Natural Gas--MMCF/hr; Fuel Oils--gallons/hr; Cosl, wood, refuse, other--lbs/hr.

Fuel Analysis: (See Attached Report)

Percent Sulfur: 2½ Percent Ash: 0.15±

Density: 8.28 (10.9°AP1) lbs/gal Typical Percent Nitrogen: 0.54

Heat Capacity: 18,350 BTU/lb 151,938 BTU/gel

Other Fuel Contaminants (which may cause air pollution): Vanadium

F. If applicable, indicate the percent of fuel used for space heating.

Annual Average — Maximum — Pulp Mill

G. Indicate liquid or solid wastes generated and method of disposal.

35-50 lbs/hr ash to be collected and disposed of in a controlled landfill.

tack Heig	ht:	232 A	bove Grad	<u>le</u> ft. St	ack Diamete	r:	9	rt
ss flow R	ate: 231,50	0 ACFH_1	18,500	_DSCFM Ga	s Exit Temp	erature:	445	°F
ater Vapo	r Content:	10	-12	% Ve	locity:		60.6	FP
		SECT	ION IV:	INCINERATO	R INFORMATI	ON N/A		
Type of Wests	Type O (Plastics)			Type III (Garbage)	Type IV (Patholog- ical)	Type V (Liq.& Gas By-prod.)	Type VI (Solid By-pr	od.]
Actual lb/hr Inciner- ated								
Uncon- trolled (lbs/hr)								
escriptio	on of Waste			N.	/A			
			•		Design Csp	acity (lbs/	hr)	·
pproximat	ts Number of	Hours of	Operation	per day _	day/	wk	wke/yr	
anufactui	. e t		····	,		····		
ate Conal	tructed		 	Hodel	No.			~···
		Volume (ft) ³		lelease l/hr)	fue)	BTU/hr	Temperature (°F)	•
Primary (Chamber	·····						
Secondary	Chamber							
tack Heig	ght:	ſt.	Stack Dia	mter:	<u></u>	Stack 1	emp.	
	Rate:		ACFH	·	DSCFH+	Velocity: _	· · · · · · · · · · · · · · · · · · ·	F
as flow	· . ·		ion canac	ity, aubmi	it the emiss	iona rate i	in grains per	sta
1f 50 or	more tone per foot dry g	les correct	ed to 501	excess a	ir.			

DER form 17-1.202(1) Effective November 30, 1982

N/A				
Iltimate disposal of ash, etc.);	f any effluent other than that emitted from the stack (scrubber water			
	N/A			
				

NOTE: Items 2, 3, 4, 6, 7, 8, and 10 in Section V must be included where applicable.

SECTION V: SUPPLEMENTAL REQUIREMENTS

Please provide the following supplements where required for this application.

- 1. Total process input rate and product weight -- show derivation [Rule 17-2.100(127)]
- 2. To a construction application, attach basis of emission estimate (e.g., design calculations, design drawings, pertinent manufacturer's test data, etc.) and attach proposed mathods (e.g., FR Part 60 Methods 1, 2, 3, 4, 5) to show proof of compliance with applicable standards. To an operation application, attach test results or methods used to show proof of compliance. Information provided when applying for an operation permit from a construction permit shall be indicative of the time at which the test was made.
- 3. Attach basis of potential discharge (e.g., emission factor, that is, AP42 test).
- 4. With construction permit application, include design details for all air pollution control systems (e.g., for baghouse include cloth to air ratio; for acrubber include cross-section sketch, design pressure drop, etc.)
- 5. With construction permit application, attach derivation of control device(s) efficiency. Include test or design data. Items 2, 3 and 5 should be consistent: actual emissions = potential (1-efficiency).
- 6. An 8 1/2" x 11" flow diagram which will, without revealing trade secrets, identify the individual operations and/or processes. Indicate where raw materials enter, where solid and liquid waste exit, where gaseous emissions and/or airborne particles are evolved and where finished products are obtained.
- 7. An 8 1/2" x 11" plot plan showing the location of the establishment, and points of airborne emissions, in relation to the surrounding area, residences and other permanent structures and roadways (Example: Copy of relevant portion of USGS topographic map).
- 8. An 8 1/2" x 11" plot plan of facility showing the location of manufacturing processes and outlets for airborne emissions. Relate all flows to the flow diagram.

DER form 17-1,202(1) Effective November 30, 1982

9,	The appropriate application fee in accordance with Rule 17-4.05. The check should made payable to the Department of Environmental Regulation.						
10.	With an application for operation permit struction indicating that the source permit.	t, attach a Certificate of Completion of Con- was constructed as shown in the construction					
	SECTION YI: BEST AVAI	LABLE CONTROL TECHNOLOGY					
۸.	Are standards of performance for new stapplicable to the source?	ationary sources pursuant to 40 C.F.R. Part 60					
	[] Yes [X] No						
	Contaminant	Rate or Concentration					
8.	Has EPA declared the best aveilable coryes, attach copy)	ntrol technology for this class of sources (I					
	[] Yes [X] No						
	Conteminant	Rate or Concentration					
c.	What emission levels do you propose as I						
	Contaminant	Rate or Concentration					
	N/A						
D.	Describe the existing control and treat	ment technology (if any).					
	1. Control Device/System:	2. Operating Principles:					
	3. Efficiency: •	4. Capital Coets:					

DER Form 17-1.202(1) Effective November 30, 1982

*Explain method of determining

		·			
	5.	Useful Life:		6.	Operating Coats:
	7.	Energy:		8.	Haintenance Cost:
	9.	Emissions:			
		Contaminant			Rate or Concentration
					
	10.	Stack Parameters			
	a.	Height:	ft.	b.	Diameter: ft.
	c.	Flow Rate:	AÇFM	d.	Temperature: °F.
	е.	Velocity:	FPS		
ε.		cribe the control and treatment additional pages if necessary).	techn	olog	y available (As many types as applicable,
	1.,				
	a.	Control Device:		b.	Operating Principles:
	c.	Efficiency: 1		d.	Capital Cost:
	e.	Useful Life:		r.	Operating Coat:
	g.	Energy: ²		h.	Maintenance Cost:
	i.	Availability of construction ma	teria	la ar	nd process chemicals:
	j.	Applicability to manufacturing	proces	8888	
	k.	Ability to construct with contract within proposed levels:	rol de	evice	, install in available space, and operato
	2.				
	a .	Control Device:		ь.	Operating Principles:
	c.	Efficiency: 1		d.	Capital Coet:
	е.	Useful Life:		f.	Operating Coat:
	g.	Energy: ²		h.	Haintenance Cost:
	i.	Availability of construction ma	teria	ls ar	nd process chemicals:
1 E :	xplai nergy	in method of determining efficien y to be reported in units of elec	cy. trica	l po	wer - KWH design rate.

j. Applicability to manufacturing processes: Ability to construct with control device, install in available space, and operate within proposed levels: 3. Control Device: Operating Principles: Efficiency:1 c. Capital Cost: Useful Life: Operating Cost: 8. Energy: 2 h. Maintenance Cost: q. Availability of construction materials and process chemicals: i. Applicability to manufacturing processes: Ability to construct with control device, install in available space, and operate k. within proposed levels: 4. Control Devices b. Operating Principles: Efficiency: 1 d. Capital Costs: c. Operating Cost: Useful Life: Energy: 2 h. Maintenance Cost: Availability of construction materials and process chemicals: Applicability to manufacturing processes: Ability to construct with control device, install in available space, and operate within proposed levels: Describe the control technology selected: 2. Efficiency: 1 1. Control Device: Useful Life: 3. Capital Costs 6. Energy: 2 5. Operating Coat: 8. Manufacturer: 7. Maintenance Cost: Other locations where employed on similar processes: a. (1) Company: (2) Mailing Address: (4) State: (3) City: Explain method of determining efficiency.

DER Form 17-1.202(1) Effective November 30, 1982

 2 Energy to be reported in units of electrical power - KWH design rate.

(5) Environmental Manager:	•
(6) Telephone No.:	
(7) Emissions: ^l	
Contaminant	Rate or Concentration
(8) Process Rate; 1	•
b. (1) Company:	
(2) Mailing Address:	
(3) City:	(4) State:
(5) Environmental Manager:	
(6) Telephone No.:	
(7) Emissions: 1	
Contaminant	Rate or Concentration
(8) Process Rate: 1	· · · · · · · · · · · · · · · · · · ·
10. Reason for selection and descrip	tion of systems:
Applicant must provide this information available, applicant must state the reas	
SECTION VII - PREVENTI	ON OF SIGNIFICANT DETERIORATION
A. Company Monitored Data	N/A
1no. sitss T	SP Wind spd/dir
Period of Monitoring month	day year month day year
Other data recorded	
Attach all data or statistical summar	
*Specify bubbler (8) or continuous (C).	
DER Form 17-1.202(1) Effective November 30, 1982 P	age 11 of 12

SUPPLEMENTAL REPORT

INSTALLATION OF AN ELECTROSTATIC PRECIPITATOR ON THE NUMBER 5 POWER BOILER AT THE PALATKA, FLORIDA MILL OF GEORGIA-PACIFIC CORPORATION.

Background

The Number 5 boiler was erected in 1965 and is certified by an existing Operating Permit. The boiler fires Number 6 residual fuel oil exclusively and to date is not equipped with any emission control equipment. Permit-wise (A054-45320) the boiler has been rated at a maximum heat input rate of 465 MM BTU/Hr, thus its current emission rate is limited by this value.

The boiler has essentially met necessary emission criteria over the years but it's been found difficult to meet existing requirements using standard grades of Bunker C oils. Specific lower ash-sulfur oils have been purchased lately for the boiler enabling it to meet requirements on a more consistent basis.

Due to stack sampling difficulties and some alleged violations, various mutually acceptable solutions were arrived at recently by the Company and the Florida Department of Environmental Regulation which were contained in a January 1985 Consent Order. The Company has submitted a schedule for installing new emission control equipment on the boiler along with various intervals of stack monitoring and reportings of performance.

Proposed Project

Despite the knowledge that particulate removal equipment for oil based boiler flue gas streams is not always required to meet current emission standards (0.1 lbs/MM BTU/hr input) the Company has unilaterally decided to employ the best available control technology on this boiler at this time. This will allow the Company greater latitude in the selection of available, commercially plentiful and economic oil supplies without concern for random firing conditions that could encroach on current emission limits.

The Company has initiated the necessary engineering, planning, bld selection and procurement work necessary to install a high Intensity, multi-field, rigid frame electrostatic precipitator on this boiler per a schedule previously approved by the Department of Environmental Regulation.

Facility Details

A study of the present steaming facilities is underway including a computerized analysis of combustion conditions (see Exhibit 1). With

TABLE I

TYPICAL FUEL OIL ANALYSIS OF SUPPLIES USED BY GEORGIA-PACIFIC

PALATKA MILL*

Degrees API at 60°F	10.9
Specific Gravity at 60°F	0.99
Flash Point, °F	178
BS & W, %	1.65
Viscosity, SFS at 122°F	275
Asphaltene, %	9,9
Ash, %	0.15
Carbon, %	85.7
Hydrogen, %	10.6
Nitrogen, %	0.54
Sulfur, %	2,5
Oxygen, %	0.6
Vanadium, ppm	550
BTUs per pound	18,350

^{*}Analyzed by Fuel Engineering Company of New York in Thornwood, New York in 1984.

fuel oil, the unit has been found to demonstrate the following combustion design related characteristics:

1275 psig steam at 900°F = 1437.4 BTU/lb Feedwater at 445°F saturated = -424.1 BTU/lb

1013.3 BTU/Ib

Heat Input 1013.3 X 475,000 lbs/hr maximum firing capacity 84.6% efficiency

= 568,933,220 BTU/hr heat input with gross fuel requirement of 31,550 lbs/hr.

As noted in Section III (p.4) of the attached Application, under current Florida Regulations, the boiler particulate emission allowable is 56.8 lbs/hr rather than the 46.5 lbs/hr cited in the original permit.

Similarly SO₂ allowables (2.75 lbs/MM BTU/hr input) are 1564 lbs/hr contrasted to the former 1279 lbs/hr allowed. NO, CO and methane hydrocarbon values are also listed in Section III for Departmental purposes.

Despite these more applicable allowables, the Company is requiring that precipitator suppliers-bidders meet a particulate requirement of 0.08 lbs/MM BTU/hr at a flue gas flow of 267,000 acfm or about 15 percent over that derived from the combustion evaluation.

A simplified schematic of the proposed installation is depicted by Sketch C-1712-1 attached. The general plot plan of the entire mill is shown in Sketch C-1712-2 and the immediate boiler area layout is illustrated by Sketch C-1712-3.

An adjacent, similarly sized modern precipitator will be ducted together with this boiler (serving Number 4 combination fuel boiler certified by a separate Permit) for standby treatment purposes. The precipitator serving this boiler will be equipped with isolation dampers, a complete ash removal system and a separate 232 foot (above grade) stack outfitted with the necessary platforms, sampling ports, monoralis, etc. required for monitoring purposes.

A typical analysis of the fuel oil expected to be used in this service is listed in Table I. This and similar grades of oil will be purchased and should fall within the ranges shown.

		Was instrumentation EPA referenced or	its equivalent? [] Yas [] No
	b.	Was instrumentation calibrated in acc	ordance with Department procedures?
		[] Yes [] No [] Unknown	
. .	Het	teorological Data Used for Air Quality	Nodeling
	i.	Year(a) of data from	year month day year
	2.	Surface data obtained from (location)	
	3,	Upper air (aixing height) data obtain	ed from (location)
	4.	Stability wind rose (STAR) data obtai	ned from (location)
:.	Com	mputer Hodels Used	
	1.		Modified? If yes, attach description.
	2.		Modified? If yes, attach description.
	3.		Modified? If yea, attach description.
	4.		Modified? If yes, attach description.
		tach copies of all final model runs sho ple output tables.	wing input data, receptor locatione, and prin-
٥.	App	plicants Maximum Allowable Emission Det	a .
	Pol	llutent Emission Ret	•
	٠.	TSP	grame/sec
		502	grams/sec
Ε.	Eai	ission Data Usad in Hodeling	
	poi		on data required is source neme, description o coordinates, stack data, allowable emissions
F .	Att	tach all other information supportive t	o the PSD review.
G .	ble		the selected technology versus other applica- production, taxes, energy, etc.). Include the sources.

2. Instrumentation, Field and Laboratory

the requested best available control technology.

Attach acientific, engineering, and technical material, reports, publications, journals, and other competent relevant information describing the theory and application of

NO = 15.77 t/hr oil X 0.54% X 2.14 X 0.55 (NO is 95% NO) (N→NO) (Conversion) = 10.02 = 0.100 tons/hr NO = 200 lbs/hr NO

Potential emission, uncontrolled = 200 lbs/hr X 8760 hr/yr = 1,752,000 lbs/yr or = 876 tons/yr of fuel derived NO.

<u>co</u>

As taken from EPA AP-42 Chap. 1 data.
0.04 (3.81 M gal/hr oil) = 0.15 lbs/hr
= 1314 lbs/yr or
0.66 tons/yr of CO
Same for potential emission, uncontrolled.

Methane Hydrocarbons

As taken from EPA AP-42 Chap. 1 data.

2(3.81 M gal/hr oil) = 7.62 lbs/hr

= 66,751 lbs/yr or

33.3 tons/yr of m. hydrocarbons
Same for potential emission, uncontrolled.

Opacity

Per current State of Florida Regulations.

Other elements in the fuel oil will be converted through combustion to their basic oxidative states.

During operations, stack emissions will be analyzed per Permit requirements. EPA Standard Reference Methods (Method 1, 2, 3, 4, 5, 6, 7, 9, 10, 17, etc) would be utilized as may be required and applicable.

Closure

Georgia-Pacific Corporation intends to employ the best available control technology at this time to reduce particulate and related emissions from their Number 5 Power Boiler. A field erected, rigid frame electrostatic precipitator will be used. Internal collector (gas) velocities, specific (plate) collection area, wire length, rapper parameters and power inputs will be selected for the equipment to ensure appropriate design sizing. Full compliance with current State emissions requirements will be ensured.

Per attached Exhibit I the Company requests the appropriate heat input rating (BTU/hr) be established for this boiler and the related, allowable emission rates per Rule 17-2 be authorized as contained within the submitted Application Form 17-1.202(1).

cs/D985/A

Air Emissions

Although hydrocarbon-based particulate capture is more rigorous than inorganic ash removal using charged electrode technology, it is expected this technical application will ensure complete compliance with present particulate emission limits. Up to 90% removals under this low loading regime is expected.

Some minor SO₂ removals will also be experienced as some 5% of the carbonaceous sulfur based residue will be removed along with the captured ash agglomerates. Visual opacity levels will also be positively affected.

Derivation of various values used to develop the Table in Section III (C) of the Application are as follows:

Particulates

568.9 MM BTU/hr input at 0.1 lbs/MM BTU = 56.8 lbs/hr Ash = 31,550 lbs/hr oil X $\frac{0.15\%}{100}$ ash = 47.3 lbs/hr plus soot blows

Precipitator to remove up to 90%

Potential emission, uncontrolled = 56.8 lbs./hr X 8760 hrs/yr = 497.568 lbs/yr or 248.8 tons/yr

so₂

568.9 MM BTU/hr input at 2.75 lbs/MM BTU = 1564 lbs/hr $SO_2 = \frac{31,550}{2,000}$ t/hr oil X 2.5% S X 2 × .95 (S \rightarrow SO₂) (5% in ash dropout)

= $\frac{74.9}{100}$ = 0.749 tons/hr SO₂ = 1498 lbs/hr SO₂

and 1577 lbs/hr SO₂ with no ash dropout.

Potential emission, uncontrolled = 1577 lbs/hr X 8760 hrs/yr = 13,814,520 lbs/yr or 6907 tons/yr of SO₂

Fuel NO (excludes thermal NO)

Federal Criteria 0.3 lbs/MM BTU = 170.6 lbs/hr as NO_X (NO + NO_2)

2	**************************************	BEST AVAILABLE COPY	
	PERCENT COMBUSTIBLE IN ASH	2.0000 425.0000 80.0000	
	PERCENT RADIATION LOSSES TO PROPERTY LOSSES - 12 12 12 12 12 12 12 12 12 12 12 12 12	100000 A	
7			
,	ENTHALPY OF WATER VAPOR AT L-PSIA AND EXIT TEMP	1292/5073 9448/90000 //	
	HEAT LOSS DUE TO DRY GAS	7.5049%	
	HEAT LOSS DUE TO DRY GAS HEAT LOSS DUE TO HE AND FUEL HEAT HEAT LOSS DUE TO AIR HOTSTURE HEAT LOSS DUE TO COMBUSTIBLE TO REFISE	6/31044 0/18664 0/1874	
	HEAT LOSS DUE TO RADIATION HEAT LOSS DUE TO UNMEASURED LOSSES	0.38003 1.0000 3	
	TOTAL HEAT COSSES	130.0225 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	BOILER EFFICIENCY	84.60782	
3.			
7 3 3			

		BEST AVAILABLE COPY
	+ COMBUSTION CALCULATIONS+	
9		《 在自己的主义是是 这个
•	+ TOTALS FOR ALL FUELS +	
•	SE TOTAL FUEL RATE (LBS PERSHOUR)	51,0000
•		267,0000:
•		
•	TOTAL FLUE PRODUCT COZ	93 56 25
•	O A PROGRAMMENT TO THE ROLL OF	
9	TOTAL FUEL CARBON 27089)10, 1563
3		
3		
•		
3		
3		
3		
3		
9		
3		

ļ	******* * C O N	NBUSTION CALCU	L A T I D N S *		
,	EUE, NANGZ AA EVEL				
	FUEL USE RATE AS A	WEIGHT PERCENTAGE	100.000		2006 Man 1995 1996 1996 1996 1996 1996 1996 1996
,	Applystage	PUEL			
,	32 SULFUR 33 CARBON 30 HYDROGEN	2.50\$ 85.85\$ 10.80\$			
	29 NITROGEN 34 ASH 350	017085			
1 5	TOTAL PERCENTAG		214600%	一个学术 的	
)	TOTAL AIR (LBS PER	POUND FUEL)			
7	AT 121.40% THEORET	ICAL AIRE			
•	FLUE PRODUCT H2	O LLBS PER#EDUNO FUELS.	The second second		
	PERCENT FUEL HYDRO	GEN	10.8000	· · · · · · · · · · · · · · · · · · ·	TANK THE PROPERTY OF THE PARTY
7 77	PERCENT FUEL CARSO				为"数"来说"多"。"说是
X X				W. T. W. W.	
5 9 9					
9				A STATE OF THE STA	
7					
-					
1 0 2			**		
7					The second of the second

STATE OF FLORIDA

DEPARTMENT OF ENVIRONMENTAL REGULATION

NORTHEAST DISTRICT

3426 BILLS ROAD JACKSONVILLE, FLORIDA 32207

BOB GRAHAM GOVERNOR VICTORIA J. TSCHINKEL SECRETARY

> G. DOUG DUTTON DISTRICT MANAGER

	NSTRUCT AIR FOLLUTION SOURCES
SOURCE TYPE: Steam Power Boiler	[] New ^l [x] Existing ^l
APPLICATION TYPE: [] Construction [X] Op	eration [] Modification (To A054-58340)
COMPANY NAME: Georgia-Pacific Corporation	COUNTY: Putnam
Identify the specific emission point source	(s) addressed in this application (i.e. Lime
	nit No. 2, Gas Fired) No. 4 Combination Power Boiler Stack City Palatka
	North 3283.4
Latitude	
APPLICANT NAME AND TITLE: Georgia-Pacific	Corporation
APPLICANT ADDRESS: P.O. Box 919	Palatka, Florida 32077
SECTION 1: STATEMENTS	BY APPLICANT AND ENGINEER
A. APPLICANT	
I am the undersigned owner or authorize	ed representative* of Georgia-Pacific Corp.
I agree to maintain and operate the facilities in such a manner as to con Statutes, and all the rules and regulately also understand that a permit, if gran	this application for a Air Emission to the best of my knowledge and belief. Further, pollution control source and pollution control apply with the provision of Chapter 403, Floridations of the department and revisions thereof. I sted by the department, will be non-transferable ent upon sale or legal transfer of the permitted
*Attach letter of authorization	Signed:
	Name and Title (Please Type)
	Date: Telephone No.
B. PROFESSIONAL ENGINEER REGISTERED IN FLO	ORIDA (where required by Chapter 471, F.S.)

1 See Florida Administrative Code Rule 17-2.100(57) and (104)

DER Form 17-1.202(1) Effective October 31, 1982

Page 1 of 12

This is to certify that the engineering features of this pollution control project have been designed/examined by me and found to be in conformity with modern engineering principles applicable to the treatment and disposal of pollutants characterized in the permit application. There is reasonable assurance, in my professional judgment, that

	sn effluent that complies with rules and regulations of the de furnish, if authorized by the o	s, when properly maintained and operated, will discharge all applicable statutes of the State of Florida and the pertment. It is also agreed that the undersigned will wner, the applicant a set of instructions for the proper e pollution control facilities and, if applicable,
	OLD I	Signed Hawel 1 Gulp
	ROLD L CELL	Harold L. Culp, PE Name (Please Type)
	PE COSSESSE CONTRACTOR	
	STATE OF E	Ford, Bacon & Davis, Inc. Company Name (Please Type)
	100000 P	P.O. Box 1894, Monroe, LA 71210
	TRED ENGLE	Hailing Address (Please Type)
Flo	rida Registration No. 29275	Date: March 21, 1980 Telephone No. (318) 323-9000
	SECTION II	GENERAL PROJECT INFORMATION
Α.	and expected improvements in so	of the project. Refer to pollution control equipment, urce performence as a result of installation. State in full compliance. Attach additional sheet if
		(See Attached Supplementary Report)
в.	Schedule of project covered in	this application (Construction-Permit-Application-Only)
		28, 1986 Completion of Construction November 28, 1986 tion of Control Equipment
C.	Costs of pollution control syst for individual components/units	control Equipment (em(s): (Note: Show breakdown of estimated costs only of the project serving pollution control purposes.
	Estimated cost of	multi-cell electrostatic precipitator, ducting, ash
	removal and verti	cal stack with all installed appurtenances = \$2,150,000
D.	Indicate any provious DER permit point, including permit issuence	its, orders and notices associated with the emission ce and expiration dates.
	Permit No. A054-58	8340 Dated December 8, 1982, expires September 30, 1987.
	Consent Order OGC	File No. 83-0803 - Florida Dept. of Environmental
	Regulation dated .	January 7, 1985
	R Form 17-1.202(1) fective October 31, 1982	Page 2 of 12

		·
	this is a new source or major modification, answer the following questies or No. No.	ons.
•	ls this source in a non-attainment area for a particular pollutant?	No
	a. If yes, has "offset" been applied?	
	b. If yes, has "Lowest Achievable Emission Rate" been applied?	
	c. If yes, list non-attainment pollutants.	
2.	Does best available control technology (BACI) apply to this source? If yes, see Section VI.	No
3.	Does the State "Prevention of Significant Deterioristion" (PSD) requirement apply to this source? If yes, see Sections VI and VII.	No
٠.	Do "Standarda of Performance for New Stationary Sources" (NSPS) apply to this source?	No
٠.	Do "National Emission Standards for Hazardous Air Pollutants" (NESHAP) apply to this source?	No
	"Ressonably Available Control Technology" (RACT) requirements apply this source?	No
	s. If yes, for what pollutants?	

Attach all supportive information related to any answer of "Yes". Attach any justification for any answer of "No" that might be considered questionable.

SECTION III: AIR POLLUTION SOURCES & CONTROL DEVICES (Other than Incinerators)

A. Raw Materials and Chemicals Used in your Process, if applicable:

- 8. Process Rate, if applicable: (See Section V, Item 1) For Information Only

 To 97,900 lbs/hr Bark and/or 26,426 lbs/hr
 - 1. Total Process Input Rate (lbs/hr): No. 6 Oil Plus Combustion Air
 - 2. Product Weight (lbs/hr): 360,000 lbs/hr, 1275 psig, 900°F Superheated Steam
- C. Airborne Contaminants Emitted: (Information in this table must be submitted for each emission point, use additional sheets as necessary)

	Name of		issionl	Ailowed ² Emission Rate per	Requested Allowable 3 Emission	Potenti Emissi	on	Relate to flow
	Contaminant	Maxim lbs/		Rule 17-2	lbs/hr	lbs/yr	I/yr	Diagram
	Particulates Particulates	(011) 4 (Bark)]	3.3 190	0.1 1bs/M BTU 0.3 1bs/M BTU	43.3 130.1	379,308 1,314,000	190 657	Stack Stack
•	so ₂ (0i1)	1254	5492	2.751bs/MBTU	1254	11,571,960	5786	Stack
	Fuel NO(As NO)	168	736	N/A	N/A	1.471.680	736	Stack
4	CO (Bark)	97.9	429	N/A	N/A	857,604	429	Stack
	Methane Hydrocarbons	97.9	429	N/A	N/A	857.604	429	Stack
•	Opacity	30%, 4	0% 2m	30%, 40% 2m	30%, 40% 2m	40%		Stack

1 See Section V, Item 2. *At 8760 hrs/hr ANO Sampling Data - factored from AP-42 Chap.

1 Tables
2 Reference applicable emission standards and units (e.g. Rule 17-2.600(5)(b)2. Table II,

E. (1) - 0.1 pounds per million BTU heat input)
 SO₂-From oil only - used very infrequently, no SO₂ from bark.

3Calculated from operating rate and applicable standard.

Agaission, if source operated without control (See Section V, Item 3).

BEST AVAILABLE COPY

D. Control Devices: (See Section V, Item 4)

Name and Type (Model & Serial No.)	Contaminant	Efficiency	Range of Particles Size Collected (in microns) (If applicable)	Basis for Efficiency (Section V Item 5)
Electrostatic	Particulates	Up to 95%	1/2 - 60	Cost Effective
Precipitator				Design Basis
(Not Selected Yet,				
Bids-Guaranteed				
Performance Data Not				
Yet Received)			·	

£. Fuels

	Consur	ption*	
Type (Be Specific)	avg/hr	max./hr	Maximum Heat Input (MMBTU/hr)
No. 6 Fuel Oil	Supplemental - Varies	3192	433.8
Bark (Wood)	80,000 <u>+</u>	97,900	433.7

*Units: Natural Gas--MMCF/hr; fuel Oils--gallons/hr; Coal, wood, refuse, other--lbs/hr.

Fuel Analysis: (See Attached Report)

Percent Sulfur: 2 1/2 (oil) 0 (Bark) Percent Ash; 0.15±(oil), 2.0±(Bark)

Density: 8.28 (oil), 21 lbs/cf (Bark) lbs/gal Typical Percent Nitrogen: 0.54 (oil), 0.1 (Bark)

Heat Capacity: 18,350(oil), 4500(Bark) BTU/lb 151,938 (oil) BTU/gal

Other Fuel Contaminants (which may cause air pollution): Vanadium

F. If applicable, indicate the percent of fuel used for space heating. Unknown Paper and Pulp Annual Average —— Meximum —— Mill

0-900 lbs/hr	ash to be collected from the precipitator (excluding	mechanical
st collectors	and disposed of in a controlled landfill.	
		•

DER Form 17-1.202(1) Effective November 30, 1982

H. Emissi	on Stack Ge	ometry and	flow Cha	ractoristi	ics (Provi	ide data for a	ach stack):	
Stack Height: 232 Above Grade ft. Stack Diameter: 9								
Gas flow Rate: 198,000 ACFM 87,000 DSCFM Gas Exit Temperature: 440 of.								
Water Vapor Content: 18-21								
SECTION IV: INCINERATOR INFORMATION								
Type of Weste	Type () (Plastics)	Type I (Rubbish)		lype II (Garbage		og- (Liq.& Gas	Type VI (Solid By-prod.)	
Actual lb/hr Inciner- ated								
Uncon- trolled (lbs/hr)								
Description	on of Waste		-17-4	N/A				
					Design	Capacity (1be	/hr)	
Approxima	te Number of	Hours of	Operation	ber day	՝ d	ay/wk	wks/yr	
Hanufactu	181							
Date Cons	tructed		· · · · · · · · · · · · · · · · · · ·	Model	No	•		
		Voluma (ft)		Release U/hr)	Fuel Type BTU/hr		Temperature (°F)	
Primary	Chamber							
Secondar	y Chamber	·						
Stack Height: ft. Stack Diamter: Stack Temp.						Temp.		
Gas Flow Rate: ACFM DSCFM* Velocity: F						FPS		
	more tone ;					iasiona rate	in grains per stan-	
Type of pollution control device: [] Cyclone [] Wet Scrubber [] Afterburner								
			[]	Other (epe	cify)			

DER form 17-1.202(1) Effective November 30, 1982 Page 6 of 12

Brief descri	iption of	operating ch	aracteristic	28 of	control	devic	es:		
			N/A						<u> </u>
	•								
							· · · · · · · · · · · · · · · · · · ·		
Ultimate dia ash, etc.):	sposel of	any effluent	other than	that	emitted	from	the stack	(scrubber	water,
		· ·	N/A						
						 ,		,	
									· · · · · · · · · · · · · · · · · · ·
							·		

NOTE: Itema 2, 3, 4, 6, 7, 8, and 10 in Section V must be included where applicable.

SECTION V: SUPPLEMENTAL REQUIREMENTS

Please provide the following supplements where required for this application.

- Total process input rate and product weight -- show derivation [Rule 17-2.100(127)]
- 2. To a construction application, attach basis of emission estimate (e.g., design calculations, design drawings, pertinent manufacturer's test data, etc.) and attach proposed methods (e.g., fR Part 60 Methods 1, 2, 3, 4, 5) to show proof of compliance with applicable standards. To an operation application, attach test results or methods used to show proof of compliance. Information provided when applying for an operation permit from a construction permit shall be indicative of the time at which the test was made.
- 3. Attach basis of potential discharge (e.g., emission factor, that is, AP42 test).
- 4. With construction permit application, include design details for all air pollution control aystems (e.g., for baghouse include cloth to air ratio; for scrubber include cross-section sketch, design pressure drop, etc.)
- 5. With construction permit application, attach derivation of control device(s) efficiency. Include test or design data. Items 2, 3 and 5 should be consistent: actual emissions = potential (1-efficiency).
- 6. An 8 1/2" x 11" flow diagram which will, without revealing trade secrets, identify the individual operations and/or processes. Indicate where raw materials enter, where solid and liquid waste exit, where gaseous emissions and/or airborne particles are evolved and where finiahed products are obtained.
- 7. An 8 $1/2^n \times 11^n$ plot plan showing the location of the establishment, and points of airborne emissions, in relation to the surrounding area, residences and other permanent structures and readways (Example: Copy of relevant portion of USGS topographic map).
- 8. An 8 $1/2^n \times 11^n$ plot plan of facility showing the location of manufacturing processes and outlets for airborne emissions. Relate all flows to the flow diagram.

DER Form 17-1.202(1) Effective November 30, 1982

	•						
9.	The appropriate application fee in accordance with Rule 17-4.05. The check should be made payable to the Department of Environmental Regulation.						
10.	. With an application for operation permit, attach a Certificate of Completion of Construction indicating that the source was constructed as shown in the construction permit.						
	SECTION VI. BEST AVAI	LABLE CONTROL TECHNOLOGY					
A.	Are standards of performance for new sta applicable to the source?	stionary sources pursuant to 40 C.F.R. Part 60					
	[] Yea [X] No						
	Conteminant	Rate or Concentration					
<u></u>							
в.	Has EPA declared the best available conyes, attach copy)	tral technology for this class of sources (I					
	[] Yes (X) No						
	Contaminant	Rate or Concentration					
.,							
		· · · · · · · · · · · · · · · · · · ·					
c.	What emission levels do you propose as b	est svailable control technology?					
	Contaminant	Rate or Concentration					
***	N/A						
0.	Describe the existing control and treatm	ent technology (if any).					
	1. Control Device/System:	2. Operating Principles:					
	3. Efficiency:*	4: Capital Costa:					

*Explain method of determining DER form 17-1.202(1) Effective November 30, 1982

5.	Useful Life:		6.	Operating Casts:	·
7.	Energy:		8.	Maintenance Cost:	
9.	Emissions:				
	Contaminant			Rate or Concentration	
					
•	***************************************				
10.	Stack Parameters				
8.	Height:	ft.	b.	Diameter:	ft.
- C.	Flow Rate:	ACFH	d.	Temperature:	°F,
в.	Velocity:	FPS			
	cribe the control and treatment additional pages if necessary).		alog	y available (As many types as a	pplicable,
1.					
a.	Control Device:		b.	Operating Principles:	
c.	Efficiency: 1		· d.	Capital Cost:	
e.	Useful Life:		f.	Operating Cost:	
g.	Energy: ²		h.	Maintenance Cost:	
1.	Availability of construction ma	teria	ls an	d process chemicals:	
j.	Applicability to manufacturing	proces	8881		
k.	Ability to construct with cont within proposed levels:	rol de	vice	, install in evailable space, as	nd operate
2.					
a.	Control Device:		b.	Operating Principles:	
c.	Efficiency: 1		d.	Capital Coat:	
٠.	Useful Life:		f.	Operating Cost:	
g.	Energy: 2		h.	Maintenance Cost:	
i.	Availability of construction ma	toria:	la an	d process chemicals:	
	in method of determining efficien y to be reported in units of elec		l pow	er - KWH design rate.	

DER Form 17-1.202(1) Effective November 30, 1982 Page 9 of 12

Applicability to manufacturing processes: Ability to construct with control device, install in available space, and operate within proposed levels: 3. Control Devices Operating Principles: Efficiency: 1 Capital Cost: Useful Life: Operating Cost: Energy: 2 h. Maintenance Cost: Aveilability of construction materials and process chemicals: Applicability to manufacturing processes: j. Ability to construct with control device, install in available spece, and operate k. within proposed levels: 4. b. Operating Principles: Control Device: Efficiency: 1 Capital Costs: d. f. Operating Costs Useful Life: Energy: 2 h. Maintenance Coat: g. Availability of construction materials and process chemicals: i. Applicability to manufacturing processes: j. k. Ability to construct with control device, install in available apace, and operate within proposed levels: Describe the control technology selected: 2. Efficiency: 1. Control Device: 4. Useful Life: 3. Capital Cost: 6. Energy:2 5. Operating Cost: 8. Manufacturer: 7. Maintenance Cost: 9. Other locations where employed on similar proceeses: a. (1) Company: (2) Mailing Address: (4) States (3) City:

DER Form 17-1.202(1) Effective November 30, 1982

lexplain method of determining efficiency.

²Energy to be reported in units of electrical power - KWH design rate.

.•	
(5) Environmental Manager:	
(6) Telephone No.:	
(7) Emissions: L	
Contaminant	Rate or Concentration
(8) Process Rate: 1	
b. (1) Company:	
(2) Mailing Address:	
(3) City:	(4) State:
(5) Environmental Manager:	
(6) Telephone No.:	
(7) Émissions: 1	
Contaminant	Rate or Concentration
	· · · · · · · · · · · · · · · · · · ·
(8) Process Rate: 1	
10. Reason for selection and descr	ription of systems:
available, applicant must state the re	
SECTION VII - PREVEN	NTION OF SIGNIFICANT DETERIORATION N/A
A. Company Monitored Data	
Period of Monitoring	to / / / / / / / / / / / / / / / / / / /
Period of Monitoring	•
Period of Monitoring	to //
Period of Monitoring mani Other data recorded	maries to this application.

	8.	Was instrumentation EPA referen	nced or its equivalent?	[] Yes [] No
	٥.	Was instrumentation calibrated	in accordance with Dep	artment procedures?
		[] Yee [] No [] Unknown		
3.	Het	eorological Data Used for Air Q	uality Modeling	
	1.	Year(s) of data from aon	th day year month	day year
	2.	Surface data obtained from (lo	cation)	
	3.	Upper air (mixing height) data	obtained from (locatio	n)
	4.	Stability wind rose (STAR) dat	a obtained from (locati	on)
С.	Com	puter Hodels Used		
	1.		Hodified?	If yes, attach description.
	2.	Marking Market Annual Control of the	Hodified?	If yea, attach description.
	3.		Hadified?	If yea, attach description.
	4.	*	Modified?	If yes, attach description.
		ach copies of all final model rile output tables.	una showing input data,	receptor locations, and prin-
٥.	App	licants Maximum Allowabie Emiss	ion Data	
	Pol	lutent Emiss	ion Rate	,
		TSP		ams/sec
		so ²	91	ams/aec
E.	Emi	ssion Data Used in Modeling	,	
	poi	ach list of emission sources. int source (on NEDS point number i normal operating time.	Emission date required r), UTM coordinates, at	is source name, description of ack data, allowable emissions,
F.	Att	ach all other information suppo	rtive to the PSD review	ı .
G.	ble	cuss the social and economic is technologies (i.e., jobs, possible and the environmental is	syroli, production, ta	

2. Instrumentation, field end Laboratory

DER form 17-1.202(1) Effective November 30, 1982

the requested best available control technology.

H. Attach scientific, engineering, and technical material, reports, publications, jour-nals, and other competent relevant information describing the theory and application of

SUPPLEMENTAL REPORT

INSTALLATION OF AN ELECTROSTATIC PRECIPITATOR ON THE NUMBER 4 COMBINATION POWER BOILER AT THE PALATKA, FLORIDA MILL OF GEORGIA-PACIFIC CORPORATION.

Background

The Number 4 boiler was erected in 1965 and is certified by an existing operating permit. The boiler fires a combination of Number 6 residual fuel oil and bark (wood). The major fuel used in this boiler is bark due to its economic availability. The flue gas is treated for particulate removal at the present time through the use of three sets of mechanical collectors in series. Despite their pressure drops these have been found to be effective devices. Permit-wise (A054-58340) the boiler has been rated at a maximum heat input rate of 425 MM BTU/hr on bark (per original permit of December 8, 1982) and 360 MM BTU/hr on oil thus its current emission rate is limited by these values.

The boiler has essentially met necessary emission criteria over the years but it's been found difficult to meet existing requirements when operating at maximum capacity on bark, despite its multiple set of mechanical collectors.

Due to stack sampling difficulties and some alleged violations, various mutually acceptable solutions were arrived at recently by the Company and the Florida Department of Environmental Regulation which were contained in a January 1985 Consent Order. The Company has submitted a schedule for installing additional emission control equipment on the boiler along with various intervals of stack monitoring and reportings of performance.

Proposed Project

To ensure reliable, continuous removals of bark related sands and char the Company has decided to employ the best available control technology on this boiler at this time. This will allow the Company greater latitude in the selection of available bark and commercially plentiful oil supplies without concern for random firing conditions that could encroach on current emission limits.

The Company has initiated the necessary engineering, planning, bid selection and procurement work necessary to install a high intensity, multi-field, rigid frame electrostatic precipitator on this boiler per a schedule previously approved by the Department of Environmental Regulation.

Facility Details

A study of the present steaming facilities is underway including a computerized analysis of combustion conditions (see Exhibit I and II). With bark and fuel oil, the unit has been found to demonstrate the following combustion design related characteristics:

1275 psig steam at 900°F = 1437.4 BTU/lb Feedwater at 445°F saturated = -424.1 BTU/lb

1013.3 BTU/lb

Bark Heat Input 1013.3 X 300,000 lbs/hr capacity on bark only 70.09% efficiency

= 433,713,000 BTU/hr heat input with gross fuel requirement of 97,900 lbs/hr.

Fuel Oil Heat Input 1013.3 X 360,000 lbs/hr capacity on oil only 84.08% efficiency

= 433,858,230 BTU/hr heat input with gross fuel requirement of 26,426 lbs/hr

As noted in Section III (p.4) of the attached Application, under current Florida regulations, the boiler particulate emission allowable firing bark is 130.1 lbs/hr rather than the maximum 114 lbs/hr cited in the present permit.

Similarly SO₂ allowables from oil (2.75 lbs/MM BTU/hr input) are 1192.9 lbs/hr contrasted to the 962.5 lbs/hr permit limit. NO, CO and methane hydrocarbon values are also listed in Section III for Departmental purposes.

Despite these more applicable allowables, the Company is requiring that precipitator suppliers-bidders meet a particulate requirement of 0.25 lbs/MM BTU/hr at a flue gas flow of 30 percent over the base flow of 198,000 acfm derived from the combustion evaluation. However to allow appropriate standby capacity for the adjacent power boiler a peak design flow of 267,000 acfm is being used.

A simplified schematic of the proposed installation is depicted by Sketch C-1712-1 attached. The general plot plan of the entire mill is shown in Sketch C-1712-2 and the immediate boiler area layout is illustrated by Sketch C-1712-3.

An adjacent, similarly sized modern precipitator will be ducted together with this boiler (serving Number 5 power boiler certified by a separate Permit) for standby treatment purposes. The precipitator serving this

boiler will be equipped with isolation dampers, a complete ash removal system and a separate 232 foot (above grade) stack outfitted with the necessary platforms, sampling ports, monorails, etc. required for monitoring purposes.

A typical analysis of the wood waste (bark) and fuel oil expected to be used in this service is listed in Table I. These and similar grades of fuel will be purchased and should fall within the ranges shown.

TABLE I

TYPICAL FUEL OIL ANALYSIS OF SUPPLIES USED BY GEORGIA-PACIFIC

PALATKA MILL*

Degrees API at 60°F .	10.9
Specific Gravity at 60°F	0.99
Flash Point, °F	178
BS & W, &	1.65
Viscosity, SFS at 122°F	275
Asphaltene, %	9.9
Ash, %	0.15
Carbon, %	85.7
Hydrogen, %	10.6
Nitrogen, %	0.54
Sulfur, %	2.5
Oxygen, %	0.6
Vanadium, ppm	550
BTUs per pound	18,350

^{*}Analyzed by Fuel Engineering Company of New York in Thornwood, New York in 1984.

TABLE I (CONTINUED)

TYPICAL WOOD (HOGGED BARK) ANALYSIS OF SUPPLIES RECEIVED BY GEORGIA-PACIFIC

PALATKA MILL*

Weight, lbs/cf	21 ±
Dry Ash, %	2 +
Fixed Carbon, %	25.2
Hydrogen, &	3.1
Moisture, %	50.0
Oxygen, %	21.5
Volatile Matter, %	79
Nitrogen, %	0.1
Sulfur, %	0
Heating Value As Fired, BTU/Ib	4500

^{*} Analyzed By Georgia-Pacific Corporation

Air Emissions

With the main particulate loading comprised of inorganic sand and carbonaceous char, it is expected this technical application will ensure complete compliance with present particulate emission limits. Up to 95% removals under this loading regime are expected.

Some minor SO₂ removals (when oil is burned) will also be experienced as about 5% of the carbonaceous sulfur based residue will be removed along with the captured ash agglomerates. Visual opacity levels will also be positively affected.

Derivation of various values used to develop the Table in Section III (C) of the Application are as follows:

Particulates (Using Bark)

433.7 MM BTU/hr input at 0.3 lbs/MM BTU = 130.1 lbs/hr Ash = 97,900 lbs/hr bark $\frac{X}{100}$ 2% ash = 1958 lbs/hr plus soot blows

Precipitator to remove up to 95% leaving 98-124 lbs/hr
Potential emission, uncontrolled = 150 lbs./hr X 8760 hrs/yr
(Using existing triple set = 1,314,000 lbs/yr or of installed mechanical 657 tons/yr collectors.

Without collectors = 8760 tons/yr)
Ash = 26,426 lbs/hr oil X 0.15% ash = 39.6 lbs/hr < 43.3 lbs/hr allowed.

SO₂ (Using No. 6 Fuel Oil)

433.8 MM BTU/hr input at 2.75 lbs/MM BTU = 1192.9 lbs/hr $SO_2 = \frac{26,426}{2,000}$ t/hr oil X 2.5% S X 2 x .95 (S-+SO₂) (5% in ash dropout)

 $=\frac{62.7}{100\%} = 0.627 \text{ tons/hr SO}_2$

= $1254 lbs/hr SO_2$

and 1321 lbs/hr SO₂ with no ash dropout.

Potential emission, uncontrolled = 1321 lbs/hr X 8760 hrs/yr = 11,571,960 lbs/yr or 5786 tons/yr of SO₂

Fuel NO (excludes thermal NO using oil)

Federal Criteria 0.3 lbs/MM BTU = 130.1 lbs/hr as NO_x (NO + NO_2)

NO = 13.21 t/hr oil X 0.54% N X 2.14 X 0.55 (NO is 95% NO) (N→NO) (Conversion) (CE4-34)

 $=\frac{8.39}{100}=0.084$ tons/hr NO

= 168 lbs/hr NO

Potential emission, uncontrolled = 168 lbs/hr X 8760 hr/yr = 1,471,680 lbs/yr or = 736 tons/yr of fuel derived NO.

CO, Methane Hydrocarbons (Using Bark)

As taken from EPA AP-42 Chap. 1 data. Same factor for both emissions.

97,900 tons/hr (2 lbs/ton) = 97.9 lbs/hr

2,000 = 857,604 lbs/yr or

= 429 tons/yr of CO and

429 tons/yr of Methane Hydrocarbons

Opacity

Per current State of Florida Regulations.

Other elements in the fuel will be converted through combustion to their basic oxidative status.

During operations stack emissions will be analyzed per Permit requirements. EPA Standard Reference Methods (Method 1, 2, 3, 4, 5, 6, 7, 9, 10, 17, etc) would be utilized as may be required and applicable.

Closure

Georgia-Pacific Corporation intends to employ the best available control technology at this time to reduce particulate and related emissions from their Number 4 Combination Boiler. A field erected, rigid frame electrostatic precipitator will be used. Internal collector (gas) velocities, specific (plate) collection area, wire length, rapper parameters and power inputs will be selected for the equipment to ensure appropriate design sizing. Full compliance with current State emission requirements will be ensured.

Per attached Exhibit I and II the Company requests the appropriate heat input rating (BTU/hr) be established for this boiler and the related, allowable emission rates per Rule 17-2 be authorized as contained within the submitted Application Form 17-1.202(1).

BEST AVAILABLE COPY

6		
•••••••	***	
*CUNBUSILUN CALCULATIO	K 5 *	
FUEL NAME: DIL #6		
FUEL USE KATE AS A WEIGHT PERCENTAGE	190-9000 18400-0000	
CONSTITUENT PERCENT 2.50%		
33 CARBON 85.85% ,, 30 HYDROGEN 10.80% ,, 29 NITROGEN 0.70%		3 7 7
O.15% TOTAL PERCENTAGE 100.00%		
PERCENT EXCESS AIR	21-4000*	20 20 30
TOTAL AIR (LBS PER POUND FUEL) THEORETICAL AIR (LBS PER POUND FUEL)	16-6466 13-7122	
TOTAL ORY GAS (LBS PER POUND FUEL)	1.1816	37 36 30
PRODUCT COZ (LBS PER POUND PUEL) FLUE PRODUCT NITROGEN (LBS PER POUND FUEL) PERCENT FUEL HYDROGEN		
PERCENT FUEL SULFUR	10-8000 2-5000 0-0	
PERCENT FUEL CARSON	85,8500	
		33 34 34
	, ·	ro ro
	•	

٠,		<u>:</u>	
•			
•	* C U N B U S T T U N C A L C U I	A	
D	TOTALS FCR ALL	. U € L S .	
	****************************	*****	
,,,	TOTAL FUEL RATE (LBS PER HOURT	362358.6250 <u></u>	
	TOTAL (THEORETICAL PLUS EXCESS) COMBUSTION AIR	+39903-1879	
	AT TOTAL COMBUSTION AIR: TOTAL FLUE DRY GAS TOTAL FLUE PRODUCT H20		
71 22	TOTAL FLUE PRODUCT CG2		
	TOTAL FUEL HYDROGEN TOTAL FUEL SULFUR TOTAL FUEL DXYGEN TOTAL FUEL CARBON	1.10(1.0002	
77 77	TOT AL FUEL CARBON	2268671.4844	
7			
			47
7			
7			23 54 56 58
4			
1) , ,
		with the second	
			70

1			
5	•		
C	**************************************		
•	PERCENT COMBUSTIBLE IN ASH	2.0000	
	EXIT GAS TEMPERATURE (FAHRENHEIT) COMBUSTION AIR TEMPERATURE (FAHRENHEIT) PERCENT RADIATION LGSSES	80.0000 0.4000	
•	PERCENT HANGFACTURER'S OR UNMEASURED COSSES	1,5000	
	ENTHALPY OF WATER VAPOR AT 1 PSIA AND EXIT TEMP ENTHALPY OF LIQUID WATER AT COMBUSTION GAS TEMP	1252.5073	
•			
	HEAT LOSS DUE TO DRY GAS	7.50494 6.31844	
•	HEAT LOSS DUE TO AIR MOTSTURE HEAT LOSS DUE TO COMBUSTIBLE IN REFUSE HEAT LOSS DUE TO RADIATION	0.0023\$	
•	TOTAL HEAT LOSSES	15.91228	
) (1)	BOILER EFFICIENCY	84-08783	
•		•	
•			
•			
9 ·			
•			
3			
3 '4 3 '4			
3			
ľ			

BEST AVAILABLE COPY

[*]	F A N S I Z I N G +	A. Stein Co. St. St. St. St. St. St. St. St. St. St		
PERCENT EFFICIENCY OF FO	NCHES H20 F	7.5000 81.6000 0.5000		
PERCENT LEARAGE FOR FO F	AN	10.0000		
TOTAL VOLUME OF COMBUSTI HORSEPOWER FOR FORCED DR	ON AIR (CFA)	112332.1873 162.4067		
TOTAL HEAD FOR 15 FAN-11				
PERCENT EFFICIENCY OF ID PERCENT LEAKAGE FOR ID F PERCENT SAFETY PACTOR FO	AN	0.5000 10.000		
TOTAL VOLUME OF FLUE GAS	(CFM) ACTUAL	193627-1879		
HORSEPOWER FOR INDUCED D	RAFT FAN SETAGE COLLE	(CTORS) 426.4197		
	1.0000			
		A BOY		
			1485	

NO. 4 COMBINATION BOILER USING MAXIMUM BARK FEED ONLY AT LOAD OF 300,000 16s/hr. EXHIBIT

BEST AVAILABLE COPY

(c)					<u> </u>								4		
uit,					······································				ar Agil						
· · · · · · · · · · · · · · · · · · ·		10 10 10 10 10 10 10 10 10 10 10 10 10 1		en eng Mg		:	10 0 0 0 10 0 10 0 0 10 0 10 0 0 10 0 10 0 0 10 0 10 0 0 0 10 0 0 10 0 0 10 0 0 10 0 0 0								
- 													¥		
· .	▲ }}	1.0		4. 1	L C U L A T		*					. .	· ·		
		****	*****	S I Z	I N G	*****	*								
:		CLIENT	NAME		EORGIA PACI	FIC PA	LÄTKÄ	, FL	·.					. 3	
		DATE_OF	RUN_	A	2/05/85		 44		•	美					
· ·		2 2 3 3 3 3 3 3 3							·						
				,								•			

G	
+ C O M B U S T I O N. C A L C U L A T I O N	i S *
FUEL NAMES BARK (WOOD)	
FUEL USE RATE AS A WEIGHT PERCENTAGE	100.0000 4500.0000
FUEL CONSTITUENT PERCENT SO.OOK	
33 CARBON 23-40% 30 HYDROGEN 3-10% 31 DYYGEN 21-50%	
" 34 ASH 2.00% TOTAL PERCENTAGE 100.00%	
PERCENT EXCESS AIR	28-1000%
TOTAL AIR (LBS PER POUND FUEL)	3.6321 2.8353
AT 128.10% THEORETICAL AIR: TOTAL DRY GAS (LBS PER POUND FUEL) FLUE PRODUCT H20 (LBS PER POUND FUEL)	3.8336 0.8243
PRODUCT COZ (LBS PER POUND FUEL) FLUE PRODUCT NITROGEN (LBS PER POUND FUEL)	0.8574 2.7920
PERCENT FUEL HYDROGEN	3.1000 0.0 21.5000
PERCENT FUEL CARBON	23.4000

	2,0000
EXIT GAS TEMPERATURE (FAHRENHEIT) COMBUSTION AIR TEMPERATURE (FAHRENHEIT) PERCENT RADIATION LOSSES	429.0000 80.0000 0.4000
PERCENT MANUFACTURER'S OR UNMEASURED LOSSES	1.5000
ENTHALPY OF MATER VAPOR AT 1 PSIA AND EXIT TEMP	1250°1426 48°0000
HEAT LOSS DUE TO DRY GAS	6.9516\$
HEAT LOSS DUE TO HEAMO FUEL HEO	0.16418 0.12788 0.4000\$ 1.50008
BOILER EFFICIENCY	29_9017 x 70_0983 x

# F A N S I Z I N G *	
TOTAL HEAD FOR FD FAN (INCHES H20) PERCENT EFFICIENCY OF FD FAN PERCENT LEAKAGE FOR ED FAN	6.4000 81.6000 9.5000
PERCENT SAFETY FACTOR FOR FO FAN	10.0000
TOTAL VOLUME OF COMBUSTION AIR (CFM)	90562.4375 111.7292
TOTAL HEAD FOR ID FAN (INCHES H20) PERCENT EFFICIENCY OF ID FAN PERCENT LEAKAGE FOR ID EAN	
PERCENT SAFETY FACTOR FOR ID FAN	10.0000
TOTAL VOLUME OF FLUE GAS (CFM)	197681.0000 521.8777
34 39 4	
4] 	54 55