HOPPING GREEN SAMS & SMITH

PROFESSIONAL ASSOCIATION

ATTORNEYS AND COUNSELORS

123 SOUTH CALHOUN STREET

POST OFFICE BOX 6526

TALLAHASSEE, FLORIDA 32314

(850) 222-7500

FAX (850) 224-8551

FAX (850) 425-3415

GARY V. PERKO
MICHAEL P. PETROVICH
DAVID L. POWELL
WILLIAM D. PRESTON
CAROLYN S. RAEPPLE
DOUGLAS S. ROBERTS
D. KENT SAFRIET
GARY P. SAMS
TIMOTHY G. SCHOENWALDER
ROBERT P. SMITH
DAN R. STENGLE
CHERYL G. STUART
W. STEVE SYKES

OF COUNSEL

July 24, 2000

RECEIVED

JUL 24 2000

Mr. Clair Fancy
Bureau of Air Regulation
Department of Environmental Protection
2600 Blair Stone Road
Tallahassee, FL 32399

BUREAU OF AIR REGULATION

Re: Florida Power Corporation

Hines Energy Complex

Power Block 2

Application for Prevention of Significant Deterioration Permit

Dear Mr. Fancy:

المحمد والمعتادين

JAMES S. ALVES

BRIAN H. BIBEAU

WILLIAM H. GREEN

WADE L. HOPPING

RICHARD S. BRIGHTMAN

KEVIN B. COVINGTON PETER C. CUNNINGHAM RALPH A. DEMEO

GARY K. HUNTER, JR.

LEIGH H. KELLETT ROBERT A. MANNING

FRANK E. MATTHEWS

RICHARD D. MELSON

SHANNON L. NOVEY

ANGELA R. MORRISON

NORNHOL T NAHTANOL

On behalf of Florida Power Corporation, I wish to submit to the Department Florida Power Corporation's (FPC) application for a Prevention of Significant Deterioration Permit for FPC's Hines Power Block 2. This new electrical power plant will be located at the Hines Energy Complex in Polk County, Florida.

This PSD permit application is being submitted in parallel with FPC's Supplemental Site Certification Application for this project. The Site Certification Application has been filed with the Department's Office of Siting Coordination on this same date along with the required Site Certification Application fee. Any fees for this PSD permit application will be covered by this site certification fee.

Enclosed are three copies of the PSD Permit Application and one copy of the entire Site Certification Application, as requested by Mr. Al Linero.

July 24, 2000 Page 2

Should you or your staff have any questions concerning this PSD Application, please contact Mike Kennedy of FPC (727-826-4334). FPC looks forward to working with the Department in the successful permitting of this project.

Sincerely,

Douglas S. Roberts

Encls.

cc: Hamilton S. Oven

Scott A. Goorland, Esq. W. Jeffrey Pardue (FPC)

July 21, 2000

Hamilton Oven, P.E., Administrator Office of Siting Coordination Department of Environmental Protection 2699 Blair Stone Road Tallahassee, Florida 32399-2400 RECEIVED

JUL 24 2000

BUREAU OF AIR REGULATION

Dear Mr. Oven:

RE: Florida Power Corporation

Hines Energy Complex

Power Block 2

Supplemental Site Certification Application to PA 92-33

Florida Power Corporation (FPC) is pleased to submit to the Department FPC's Supplemental Site Certification Application for Hines Power Block 2 to be located at the Hines Energy Complex in Polk County.

Pursuant to Section 403.517, F.S., of the Florida Electrical Power Plant Siting Act, Chapter 403, Part II, F.S., FPC is seeking supplemental certification for the construction and operation of Power Block 2. This addition is a 530 MW (nominal) combined cycle facility fired by natural gas with distillate oil as a back-up fuel. Ultimate site capacity of 3000 MW was approved for the Hines Energy Complex in 1994 (DEP Case No. PA 92-33). The Conditions of Certification were subsequently modified in December 1995, August and December 1997. In March 2000, a post-certification Amendment was filed which is still under review. FPC anticipates seeking a separate modification for a new water resource project for the Hines Energy Complex site known as the Aquifer Recharge and Recovery Project (ARRP) in the near future. This modification will be independent of the supplemental site certification application.

Enclosed is Check #2074723, payable to the Department in the amount of \$50,00.00, pursuant to Rule 62-17.293(1)(d), F.A.C., for the supplemental certification of a combined cycle facility fueled by gas or distillate oil.

The application for supplemental certification addresses the environmental and socioeconomic impacts and benefits of Hines Power Block 2 by providing information in accordance with the Department's "Instruction Guide for Certification Applications: Electrical Power Plant Site, Associated Facilities, and Transmission Lines", DER Form 17-1.211(1), F.A.C. Since the Hines Energy Complex site has been previously certified for an ultimate site capacity of 3,000 MW, this application focuses on the specific impacts and benefits associated with the construction and operation of Power Block 2 on this site. The Siting Board has previously determined that

*Hamilton Oven, P.E. July 21, 2000 Page Two

FPC's Hines Energy Complex site is consistent and in compliance with the land use plans and zoning regulations of Polk County. Accordingly, a separate compilation on land use and zoning approvals is not included with this application.

FPC looks forward to working with the Department and the other agencies participating in the certification process. Should you, your staff, or any agency representatives have any questions concerning this application or FPC's project, please do not hesitate to contact either Manitia Moultrie (727/826-4267) or me at (727/826-4301).

Sincerely,

W. Jeffrey Pardue

Director

Environmental Services Department

Enclosure

PREFACE

Florida Power Corporation (FPC) is an investor-owned utility, which supplies electricity to about 4.4 million people in 32 Florida counties. FPC, headquartered in St. Petersburg, Florida, has served Florida for 100 years. FPC's mission is to provide safe, reliable, environmentally sound and competitively-priced energy to our customers.

In February, 1992, the Public Service Commission (PSC) determined the need existed for FPC to develop natural gas-fired combined-cycle generating capacity at FPC's Hines Energy Complex, an approximate 8,000-acre site in southwest Polk County. Moreover, the PSC found the need existed for the electricity to be provided by an initial 470 MW (nominal) power plant at that site.

Also in 1992, the Polk County Board of County Commissioners found the Hines Energy Complex site (formerly referred to by FPC as the "Polk County site") to be consistent and in compliance with the County's land use plans and zoning ordinances. The Siting Board entered a final order in February, 1993, confirming that the planned 3000 MW of generating capacity for the Hines Energy Complex is consistent and in compliance with the land use plans and zoning requirements of Polk County for that site. Since the site boundaries will not be increased by this application, land use and zoning issues are not at issue in this supplemental application, as provided by section 403.517(3), Florida Statutes.

In 1994, the Governor and Cabinet, sitting as the Siting Board, granted certification to FPC, to construct and operate Power Block 1 and for 3000 megawatts (MW) of ultimate site capacity at the Hines Energy Complex. (A copy of the 1994 Final Order Approving Certification, which includes the Conditions of Certification, is in Appendix 10.4.1. Appendix 10.4.2, 10.4.3, 10.4.4 and 10.4.12 contain the Final Orders Modifying Conditions of Certification rendered in

balance of siting criteria including location near power needs, minimal environmental impact, and cost. Development of the Hines Energy Complex site takes advantage of utilizing an already disturbed phosphate mine site for current and future power needs. Many of the environmental impacts associated with power development on new sites are not at issue here, since the site has been previously altered and disturbed by prior mining activity. The site has the further advantages of being close to FPC's load center and being served by electric transmission and rail and highway transportation facilities, which minimizes ancillary impacts.

In 1999, FPC began operation of Power Block 1 at the Hines Energy Complex. By this application, FPC is seeking supplemental certification for the construction and operation of Power Block 2, an additional 530 MW (nominal) of generation, under the Florida Electrical Power Plant Siting Act (PPSA), Chapter 403, Part II, Florida Statutes (F.S.).

To the extent the Siting Board's previous ultimate site capacity determination has already addressed the ultimate impacts and benefits of the development of 3000 MW of electrical generating capacity at the Hines Energy Complex site, they are not addressed in detail in this application. Instead, each area of potential impact and benefit addressed in the 1994 Certification is explained for informational purposes. Those areas of impact and benefit which were not addressed in the 1994 Certification due to a lack of detailed knowledge of the design of future generating units are addressed consistent with the requirements of DEP Form 17-1.211(1) for proposed Power Block 2.

This Supplemental Certification Application (SCA) is being filed pursuant to the requirements of the PPSA and Chapter 62-17, F.A.C. The SCA addresses the environmental and socioeconomic aspects of the additional generating unit at the Hines Energy Complex by presenting information on the existing natural and

CHAPTER 1

NEED FOR POWER AND PROPOSED FACILITIES

TABLE OF CONTENTS

Section/Title	<u> </u>	Page
1.1 NE	EED SUMMARY	1.1-1
1.2 PS	SC ORDER ON NEED	1.2-1
1.3 SI	TE SELECTION PROCESS	1.3-1
1.4 TE	ECHNOLOGY SELECTION	1.4-1

1.1 NEED SUMMARY

By the petition filed in August 1991 in Docket No. 910759-EI, Florida Power Corporation (Florida Power or FPC) requested that the Florida Public Service Commission (PSC, or the Commission) determine the need for four 235 MW, natural gas-fired combined-cycle (CC) generating units at FPC's Hines Energy Complex in Polk County, which were then referred to as Polk County Units 1 through 4. By Order No. 25805, issued February 25, 1992, the Commission approved the need for Polk County Units 1 and 2 (now combined into Hines Power Block 1), but deferred a decision on Units 3 and 4 (combined into Hines Power Block 2), because of several uncertainties regarding the timing of the need for Power Block 2. The order allowed Florida Power to return to the Commission when the timing of additional needs beyond that satisfied by the approved Units 1 and 2 became clearer.

On December 8, 1999, FPC announced plans to build the Hines Power Block 2, a 530 MW (nominal) natural gas-fired combined-cycle generating unit. The unit, which has an inservice date of November 2003, will insure the continuing adequacy of FPC's generating capacity. Further, the Florida Public Service Commission (FPSC) recently gave unanimous approval to increase from 15 percent to 20 percent the level of "reserve" electric generating capacity that utilities operating in the state are required to have (reserve margin) beginning in 2004. Hines Power Block 2 will contribute toward meeting that 20 percent reserve margin in FPC's service area. The addition of Power Block 2 will also improve the balance of total capacity resources between Company-owned generation and purchased power. As a result, in mid-July, 2000, FPC will initiate the required regulatory process by petitioning the Commission for the determination of need to construct Hines Power Block 2 at the Hines Energy Complex.

Prior to filing its petition for a need determination for Hines Power Block 2, in order to be sure FPC's customers' best interests are being served, FPC sought outside bids to provide the additional capacity, and evaluated all viable options to supply the incremental power needed. On January 26, 2000, FPC publicly solicited bids or proposals from qualified bidders, which were then compared with the Hines Power Block 2 option on numerous factors, including location, price, dispatchability, flexibility and reliability of the power offered as well as environmental considerations. The bids received were carefully evaluated on these factors. Based upon that detailed evaluation, the Hines Power Block 2 option has proven to be the most cost-effective option to supply the electricity needed in November 2003.

In addition to satisfying FPC's need for additional capacity, the unique characteristics of Hines Power Block 2 provide Florida Power with the means to address this need in the most expeditious and cost-effective manner possible. As an initial matter, it should be noted that Hines Power Block 2 had been originally scheduled for completion in the 1999-2000 time frame when submitted to the Commission for need approval in 1991. As a result, the unit has the advantage of considerable advance planning and design, as well as the scheduling and cost advantages of previously-secured equipment and construction options. Even more important to the unit's ability to be placed in service quickly is the availability of an existing plant site, selected because of its minimal environmental impact, with an infrastructure capable of accommodating Hines Power Block 2 with only minor additions. The infrastructure already in place at the Hines Energy Complex includes extensive site development (access roads, cooling pond, water treatment facilities, transmission facilities, etc.) that will support the two-unit operations at the site.

Based on the cost, scheduling, site, environmental, and utility control advantages of the proposed new plant, FPC will soon undertake the appropriate regulatory steps for approval of Power Block 2 by filing a petition for determination of need.

1.2 PSC ORDER ON NEED

As stated in Section 1.1, the required PSC regulatory process will commence in mid-July, 2000. FPC expects to complete the PSC approval process for building Power Block 2 by January 2001.

A copy of FPC's Petition for Need Determination will be submitted to the Department of Environmental Protection and other agency recipients of this SCA when the Petition is filed with the PSC. FPC expects to file the Petition with the PSC in mid-July, 2000. Upon receipt of the PSC final order determining the need for Hines Power Block 2, copies will be filed with the Division of Administrative Hearings' Administrative Law Judge assigned to the certification proceeding for Power Block 2 and distributed to the agencies receiving this SCA.

1.3 SITE SELECTION PROCESS

In January 1989, recognizing that its forecasts indicated a need for additional generation capacity, FPC began the comprehensive process of locating a suitable site for a large new generation facility which resulted in the selection and initial development of the Hines Energy Site in Polk County, Florida. A large site is desirable in order to maximize the economies of development and long-term operation.

Specifically, the objective of the site selection program was to determine a primary and alternate site that would be:

- Multi-unit and clean coal capable
- Technology- and fuel-flexible
- Cost effective
- Fully compatible with FPC's commitment to environmental protection
- In compliance with all government regulations
- Consistent with state and local land use policies

FPC used a systematic site selection approach to ensure that all of the above concerns were fully addressed. The process involved the following five phases, each with a specific objective:

Phase I

The first phase, **Area Screening**, began by screening the entire state of Florida. This phase screened out or eliminated areas that were either environmentally protected or clearly unsuited for development of the proposed facility. Phase I concluded by defining 172 large potential areas suitable for the project.

Phase Ii

The next phase, **Area Ranking**, ranked the 172 potential areas using criteria that evaluated environmental, socioeconomic and engineering issues. Phase II concluded by defining the top 60 candidate areas.

Phase III

The third phase, **Site Identification**, identified specific sites among the 60 candidate areas by conducting another screening process on a more refined geographic basis. Phase III concluded by defining 22 potential "semifinalist" sites.

Phase IV

The fourth phase, **Site Ranking**, ranked the 22 semifinalist sites using advanced criteria that further evaluated environmental, socioeconomic and engineering issues. Phase IV concluded by defining the top five candidate sites.

Phase V

The final phase, **Site Selection**, confirmed the Phase IV site ranking with additional field data and/or analytical evaluation. Phase V concluded in October 1990 by identifying the preferred and alternate sites.

Throughout this lengthy and careful process, FPC was assisted by an independent group of environmentalists, educators, and community leaders. This Environmental Advisory Group provided advice on matters of public concern, with their major function being to review plans for each of the five phases of the siting process and suggest changes in the evaluation process. FPC also systematically elicited the preferences of this independent panel to assist in the development of ranking criteria used in the evaluation process. In addition to the input received from the Environmental Advisory Group, FPC consulted with various regulatory agencies at specific points in the process to obtain their perspective on siting criteria.

As a result of this extensive statewide search, FPC selected a location in Polk County as the primary site of its next generating units and an alternative site in Hardee County. Both locations met FPC's goal for a large site capable of handling staged development of various generation and fuel options. The 1994 Certification found that the Hines Energy Complex site is capable of supporting 3,000 MW of total generation.

1.4 TECHNOLOGY SELECTION

1.4.1 Generation Alternatives

FPC's need for additional generation is based upon specific system reliability criteria. A system optimization tool was used to generate a significant number of potential generation expansion alternatives which would satisfy FPC's system reliability criteria. These alternatives were examined and compared to quantify the costs and benefits of a variety of generation expansion technologies, plant sizes, and construction options.

In developing these expansion alternatives, FPC considered four major constraints. First, the technologies used in alternative plans must meet FPC's criteria for technical feasibility, reliability, and potential cost effectiveness. Second, the alternative plans must result in a system that meets or exceeds FPC's reliability criteria during each year of the plan. Third, the alternative plan must be consistent with FPC's commitment to environmental protection. Finally, the alternative must represent a plan that is well integrated with the present operation and configuration of the FPC system.

The generation alternatives that were evaluated included combinations of pulverized coal (PC) units, combustion turbines (CTs), combined cycle (CCs), fluidized bed, gasification plants, and existing plant repowering operations. Each of the alternatives included generation units modeled to come into service between 2001 and 2008.

FPC's economic evaluation of these alternatives included cumulative present worth revenue requirement comparisons. In addition, FPC evaluated several uncertainties for each alternative based on the high, medium and low demand and energy forecasts; and the high, medium, and low fuel forecasts. The final result of this decision analysis was a

comparison of cumulative present worth revenue requirements of each of the alternatives on FPC's system.

A second combined cycle unit at the Hines Energy Complex emerged from all of these calculations as the most cost-effective alternative. In other words, these units are expected to lead to the lowest cost of service and the lowest rates, when viewed on a present value or present worth basis. The units also do not pose any unusual risks in the event that some of the key planning assumptions used by FPC turn out to vary according to their expected probability distribution.

1.4.2 Combined Cycle Design

The technology selected for the initial phases of the Hines Energy Complex is based on the use of modern, high efficiency gas-fired CTs and steam turbines (STs) configured in a "combined cycle" (CC). Generating stations are referred to as CC when they have two sequential electrical generating stages. The first stage of a CC plant is a CT, much like a utility peaking plant. In the second stage of the process, the hot gas from the CT is passed through a heat recovery steam generator (HRSG), where steam is produced and directed to the ST. The CT and ST can be designed to drive individual electrical generators or to drive a single generator.

The approximate average annual electrical output measured in MW for these CCs is expressed as the "nominal" output. Power Block 1 has a nominal output of 470 MW. Power Block 2 will have a nominal output of 530 MW. The actual output of either unit can vary seasonally above and below the nominal output.

In sum, because CC plants make excellent use of the energy in their input fuel, they have an extremely low heat rate. The modern CC power plant is one of the most efficient power cycles available today.

2.3.7 Meteorology and Ambient Air Quality

2.3.7.1 Meteorology

REGIONAL CLIMATE

The climate in central Florida is classified as subtropical with maritime influences from both the Atlantic Ocean and the Gulf of Mexico. Summers are long, warm, and relatively humid, while winters are mild because of the latitude and the warming influence of the Gulf Stream. Coastal locations average slightly warmer in winter and cooler in summer than do the inland areas. The summer heat is tempered by sea breezes along the coasts and by frequent afternoon or early evening thunderstorms in all areas. Thunderstorms, which on the average, occur on about one-half of the days in the summer, frequently are accompanied by a temperature drop of as much as 10 to 20 degrees. They cause high winds, heavy rain, occasional hail, and frequent lightning. Tornadoes that reach the surface are a rare occurrence in this part of the state, and very destructive tornadoes are almost nonexistent. Tornadoes are most likely to occur during seasonal changes when cool, dry air and warm, moist air clash.

Hurricanes are tropical cyclones in which winds reach speeds of 74 mph or more and blow in a large spiral around a relatively calm center. Near the center (eye), hurricane winds may gust to more than 200 mph, and the storm dominates the ocean surface and lower atmosphere over tens of thousands of square miles. The fastest non-gust wind speed (fastest mile of wind) recorded at Tampa was 84 mph, and the fastest 5-minute average was 75 mph. These both occurred with the passage of the Labor Day hurricane of September 3 to 5, 1935 (NOAA, 1977).

Gentle breezes occur almost daily in all areas. Because most of the large-scale wind patterns affecting Florida have passed over water surfaces, hot drying winds seldom occur. High local winds of short duration occur occasionally in connection with thunderstorms in summer and with cold fronts moving across the state in other seasons.

Climatological data for the site area are available from the weather service offices at Tampa (47 miles northwest), Orlando (62 miles northeast), and Lakeland (21 miles northnorthwest). Based on discussions with and recommendations from FDEP in association with the 1992 SCA, observations from the National Weather Service (NWS) station at Tampa International Airport are used as representative data for the site. The Local Climatological Data summary, from which the climatological data presented in this section are taken, is included as Appendix 10.5.3.

The humidity in Florida is generally high. Inland areas with greater temperature extremes experience slightly lower relative humidity, especially during times of hot weather. On the average, variations in relative humidity from one place to another are small; humidities range from about 50 to 65 percent during the afternoon hours to about 80 to 90 percent during the night and early morning hours.

Heavy fogs are usually confined to the night and early morning hours in the late fall, winter, and early spring months. On the average, they occur on about 21 days a year at Tampa. These fogs usually dissipate or thin soon after sunrise; heavy daytime fog is seldom observed in Florida.

The following temperature statistics are based on data collected from the Tampa station for the period-of-record 1961 through 1990, which is the latest 30-year period currently available that is used to describe normal averages by the NWS. These data are summarized in Appendix 10.5.3. The mean annual temperature is approximately 72°F

with monthly temperatures varying from a maximum of 90°F to a minimum of 50°F. Record extreme temperatures range from a low of 18°F to a record high of 99°F. Although the sun's elevation is nearly zenith during the summertime, temperatures do not exceed 100°F. The reason can be attributed to the high relative humidities with subsequent cloud cover formation and the resultant abundant convective-type precipitation.

For rainfall data, the nearest station that measures representative data for the plant site is Bartow. Average annual rainfall at Bartow is 53.43 inches. Lowest monthly average rainfall occurs in December with 2.00 inches, and highest monthly average rainfall occurs in July with 8.42 inches.

For the NWS station at Tampa, normal annual rainfall is approximately 44 inches. Typically, the rainy season begins in June and ends in September. Most of the summer rainfall is derived from local showers or thunderstorms. The highest normal monthly rainfall is approximately 7.6 inches and occurs in August. April is the driest month, with an average of approximately 1.2 inches of precipitation. The maximum rainfall in one day was 12.11 inches and occurred in July 1960. Record monthly precipitation also occurred in July 1960, when 20.59 inches of rain were recorded.

March has the highest mean monthly wind speed of 9.5 mph. The lowest mean monthly wind speed of 7.0 mph is usually encountered in August. An easterly prevailing wind direction is evident during most of the year. The annual average wind speed is 8.3 mph. The predominant wind direction during the 1987 to 1991 time period was from the east-northeast, which occurred approximately 12 percent of the time. Wind directions from the east, northeast, and east-southeast each occurred more than 8 percent of the time. A wind rose for Tampa is presented in Figure 2.3.7-1.

DISPERSION METEOROLOGY

STABILITY. Atmospheric stability in conjunction with general wind patterns and mixing height determines the potential of the atmosphere to disperse airborne pollutants. Atmospheric stability conditions are typically categorized as unstable, neutral, or stable. An unstable atmosphere is one in which rapid diffusion takes place in both the horizontal and vertical directions. In terms of temperature change with height, an unstable atmosphere is characterized by a sharp decrease in temperature with height. Neutral conditions, which are characterized by moderate decreases of temperature with height, are common in the atmosphere and are associated with moderate diffusion rates. A stable atmosphere is characterized by a slight decrease (less than 1°C per 100 meters), or even an increase in temperature with height, and greatly reduced diffusion rates in comparison with unstable or neutral atmospheric conditions.

The stability classifications discussed in this section are based on the Turner (1970) classification scheme, which assigns a stability on the basis of surface wind speed, cloud cover, and solar insolation.

During the summer months, unstable atmospheric conditions occur nearly 40 percent of the time due to strong insolation, whereas unstable conditions occur only 18 percent of the time in the winter months. Neutral conditions occur most frequently during the winter months due to the higher wind speeds and lower temperatures in this season. The occurrence of stable conditions is nearly uniform throughout the year, with a maximum occurrence of approximately 47 percent in the fall.

MIXING HEIGHT. An important parameter which describes the regional dispersion capability of the atmosphere is mixing height. Mixing height is simply the vertical extent of the surface layer within which relatively vigorous mixing of pollutants takes place.

FPC/2000 Supplemental SCA

Holzworth (1972) has compiled statistical summaries for mixing height at various locations throughout the United States based on twice daily radiosonde measurements. The abundance of moisture from the ocean around southern Florida creates high humidities and low-level cloudiness that absorb heat and generally prevent the mixing height from subsiding below 500 meters. Because mixing heights are dependent upon surface temperatures, afternoon levels reach above 1,400 meters under intense solar insolation. Lesser diurnal mixing height fluctuations occur at coastal stations in Florida, as compared to inland locations, due primarily to moderating effects of the ocean.

The Tampa upper air station has been considered regionally representative of the site by FDEP in previous applications, including the 1992 SCA. The Tampa data indicate that the site area experiences mixing heights that are typical of or higher than large areas of the eastern half of the United States. Thus, the site area experiences better than average dispersion conditions. The Tampa upper air data for 1987 through 1991 were included as part of the meteorological data input to the dispersion modeling evaluation of the Power Block 2 air quality impacts discussed in Sections 6 and 7 of the PSD permit application.

2.3.7.2 Ambient Air Quality

REGIONAL AIR QUALITY

The Hines Energy Complex is located in an area that FDEP currently classifies as attainment for all criteria pollutants. It is designated as Class II from a Prevention of Significant Deterioration (PSD) standpoint. The nearest Class I area is the Chassahowitzka National Wilderness Area, located approximately 118 km to the northwest.

Ambient air monitoring data are available that can be used to characterize the existing conditions in the vicinity of the site. FDEP data from these monitors for 1997 are summarized in Table 2.3.7-1. The nearest FDEP PM₁₀ data are from Mulberry. These data show that the maximum PM₁₀ concentrations are well below National and Florida Ambient Air Quality Standards (AAQS). In addition, historical Total Suspended Particulate (TSP) data for Polk County (1992 SCA) indicate that existing PM₁₀ concentrations would also be well below the AAQS.

SO₂ concentrations have been measured by FDEP at Mulberry and Nichols. FDEP data from 1999 show existing SO₂ concentrations at those nearby locations to be well below the AAQS.

Ozone (O_3) data are collected at two locations in Lakeland. FDEP data from 1999 show existing O_3 concentrations in Lakeland are within the AAQS.

Ambient data for nitrogen oxides (NO_x), carbon monoxide (CO), and lead (Pb) have been collected by FDEP only in the Tampa and Sarasota metropolitan areas. Given the rural nature of the site, existing concentrations of these pollutants, which are usually associated more closely with urban environments (since they are emitted primarily by mobile sources), should be well below the applicable standards at the plant site.

2.3.7.4 References

CFR (U.S. Code of Federal Regulations). Title 40, Section 52.21, Prevention of Significant Deterioration of Air Quality.

EPA (U.S. Environmental Protection Agency). 1987. Ambient Monitoring Guidelines for Prevention of Significant Deterioration (PSD). EPA-450/4-87-007. Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina.

Holzworth, C. C. 1972. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States. U.S. Environmental Protection Agency. AP-101, January, 1972.

NOAA (National Oceanic and Atmospheric Administration). 1998. Local Climatological Data Annual Summary with Comparative Data - Tampa, Florida. National Climatic Center. Asheville, North Carolina.

Turner, D. B. 1970. Workbook of Atmospheric Dispersion Estimates. U.S. Environmental Protection Agency. Research Triangle Park, North Carolina.

Florida Power Corporation. 1992. Polk County Site. Site Certification Application.

		TABLE 2	.3.7	-1		-			<u> </u>		
	REGIONAL 199	99 AMBIENT	ΓΑΙ	R QU	ALITY	Y DA'	TA				
POLLUTANT	LOCATION	SITE	#	T	CON	NCENTRATION (μg/m³)					
SO ₂					 		IOUR	ANNUAL ARITHMETIC MEAN			
				HIGH	2ND HIGH	HIGH	2ND HIGH				
	MULBERRY NICHOLS	1210500 1210520		183 149	136 120	50 47	50 34		18 10		
O_3				 	<u></u>	1	-HOU	IOUR			
	<u> </u>			HIGH 22			2ND	HIGH			
	LAKELAND LAKELAND TAMPA TAMPA TAMPA PLANT CITY	1210560 1210560 1205700 1205710 1205710 1205740	06 81 35 65		194 202 235 233 251 228			180 198 228 208 220 192			
NO ₂				ANNUAL ARITHMETIC MEAN				ÆAN			
***	TAMPA TAMPA ST. PETERSBURG	12057008 12057100 12103001	55		· · ·		18 20 12				
CO				1-HOUR 8-HOUR				OUR			
				HI	GH	2ND HI	GH	RIGH	2ND HIGH		
	TAMPA TAMPA TAMPA PLANT CITY	12057006 12057103 12057107 12057400	35 70	10,: 4,6 6,9 4,1	80	9,73 3,20 6,64 2,75	0 0	2,520 4,460	5,380 1,830 3,780 1,490		
PM ₁₀				24-HOUR ANNUA ARITHME							
		:		нісн		2ND HIGH		MEAN			
	MULBERRY MULBERRY	12105001 12105200		· · · · · · · · · · · · · · · · · · ·				22 22			
Pb			(QUARTERLY ARITHMETIC AVERAG			ERAGE				
				AN/ IAR	APR JUN		JUL SEP		OCT/ DEC		
	TAMPA TAMPA TAMPA	120571073 0.27 (0.41 0.17 0.08	0.13			1.02 0.07 0.01				
Source:	FDEP, 1999	120371074		.03		<u> </u>	0.03				

FIGURE 2.3.7 -1 TAMPA WIND ROSE

Hines Energy Complex

3.4 AIR EMISSIONS AND CONTROLS

Power Block 2 will consist of an additional two natural gas-fired CC units capable of producing approximately 530 MW (nominal). Specific information about these units is presented in the Prevention of Significant Deterioration (PSD) application included as Appendix 10.1.5.

The remainder of this section will address the air emissions and controls for the proposed development.

3.4.1 <u>Air Emission Types and Sources</u>

Following is a description of the sources and types of air emissions at the Hines Energy Complex.

3.4.1.1 <u>Sources</u>

The primary sources of air emissions for this proposed development are the two Siemens Westinghouse combustion turbine (CT) units. The best available control technology (BACT) for these sources is presented in Section 3.4.3.

3.4.1.2 Emissions

Estimated maximum emissions from each of the air emission point sources noted in Section 3.4.1.1 are tabulated in Table 3.4.1-1. The estimated emissions represent full load operating conditions and are not inclusive of background ambient concentrations introduced into the particular processes. It is anticipated that higher emission rates will occur for short periods of time when a unit is started from a cold start or possibly during a malfunction. A comparison of the significant emission rate thresholds given in the Table demonstrates that the project is subject to

PSD BACT review for nitrogen oxides (NO_x), sulfur dioxide (SO₂), sulfuric acid mist (SAM), carbon monoxide (CO), particulate matter (TSP and PM₁₀) and volatile organic compounds (VOCs).

3.4.1.3 <u>Emissions Inventory</u>

For source specific emissions, DEP Form 62-210.900(1), "Application For Air Permit - Long Form", has been completed for Power Block 2, a copy of which is included in Appendix 10.1.5. These emissions are based on a 100 percent capacity factor at full load.

3.4.2 <u>Air Emission Controls</u>

The proposed control technologies and associated emission rates for the regulated pollutants emitted from each of the primary sources on the site are tabulated in Table 3.4.2-1. A detailed BACT analysis, including an economic evaluation, was performed and is presented in Appendix 10.1.5, Section 4.0.

3.4.3 <u>Best Available Control Technology (BACT)</u>

This BACT discussion provides a preliminary "worst case" scenario of generation alternatives and the corresponding analysis of the air quality control alternatives for controlling pollutant emissions from the Hines Energy Complex.

Under the federal Clean Air Act (CAA), BACT represents an emission limitation based on the maximum degree of pollutant reduction determined on a case-by-case basis considering technical, economic, energy, and environmental considerations. However, BACT cannot be less stringent than the emission limits established by the applicable New Source Performance Standards (NSPS) for stationary sources.

FPC/2000 Supplemental SCA

This BACT analysis follows the general requirements of the EPA's draft "top down" BACT guidance document, which requires that the BACT analysis start by assuming the use of the most stringent control alternative. Other less efficient emission control technologies are evaluated if this most stringent alternative is determined to be technologically infeasible or unreasonable considering economic, energy, and environmental factors.

As discussed in Section 3.4.1, the following regulated pollutants exceed the PSD significant emission rate thresholds and are, therefore, subject to PSD review:

- Carbon Monoxide (CO)
- Nitrogen oxides (NO_x)
- Sulfur dioxide (SO₂)
- Particulate (TSP and PM₁₀)
- Volatile organic compounds (VOC)
- Sulfuric acid mist (SAM)

Consequently, the BACT analysis for Power Block 2 presented in Appendix 10.1.5, Section 4.0, addresses the control of emissions of these pollutants. Also included are discussions of the effects of the BACT systems selected on the emissions of other regulated pollutants.

3.4.4 <u>Design Data for Control Equipment</u>

Control equipment design information is included as part of the BACT analyses discussed in Section 3.4.3. Pollutant emission rates and specific control technologies are summarized in Table 3.4.2-1.

The CC units will be designed to minimize NO_x formation by the use of combustion controls, low NO_x burners and selective catalytic reduction (SCR). Water will be injected into the combustion zones to lower combustion temperatures and limit NO_x formation during oil firing. The annual emissions of other regulated pollutants which might be emitted from the CC units in quantities subject to PSD review (SO₂, CO, particulate matter [TSP/PM₁₀], VOCs and SAM) will be controlled by limiting the amount of fuel oil burned annually, limiting the sulfur content of the fuel, efficient operation of the CC facility, and utilizing good combustion control of the units.

3.4.5 <u>Design Philosophy</u>

Air quality control system designs are determined based on conservative design parameters. The parameters are developed to ensure that the air quality control system performance meets or exceeds the requirements specified by state and federal regulatory NSPS. Critical equipment that may affect the overall system reliability will have spare units in place to assure continuous operation. In addition, the application of top-down BACT (i.e., the evaluation of technical/engineering, economic, and environmental considerations) is used to determine appropriate air emission control technologies. The BACT analysis, discussed in Section 3.4.3, results in the selection of the best air quality control system for the particular site.

TABLE 3.4.1-1

MAXIMUM POTENTIAL ANNUAL EMISSIONS (530 MW)

AND PSD SIGNIFICANCE VALUES

Pollutant	Emissions (TPY)*;;	PSD Significant Emission Rate (TPY)	PSD Review Required (Yes/No)
Carbon Monoxide	744	100	Yes
Nitrogen Oxides	289	40	Yes
Sulfur Dioxide	137	40	Yes
Particulate Matter (PM ₁₀)	121	15	Yes
Total Suspended Particulates (TSP)	121	25	Yes
Volatile Organic Compounds	57	40	Yes
Lead	0.02	0.6	No
Sulfuric Acid Mist (SAM)	21	7	Yes

^{*} TPY = Tons per year for the proposed Power Block 2 project.

Basis: Annual Hours of Operation / CT Load Ambient Temp. Gas Oil NO_x 100% 59° F 7,760 1,000 SO₂ 100% 59° F 1,000 7,760 TSP/PM₁₀ 7,760 100% 59° F 1,000 Lead 100% 59° F 7,760 1,000 SAM 7,760 100% 59° F 1,000 CO 100% 59° F 4,760 1,000 60% 59° F 3,000 VOC 100% 59° F 4,760 1,000 3,000 60% 59° F

Source: Golder Associates, 2000.

Table 3.4.2-1. Summary of Proposed BACT Control Technologies and Emission Limits **Hines Energy Complex Power Block 2**

(Siemens Westinghouse 501FD CTs)

				Emission Limits ^a Concentration Mass		
Pollutant	Fuel	Load (%)	. Control Technology	(ppm)	(lb/hr	
TSP/PM ₁₀	Gas	All	Natural gas and limited use of	10%b	N/	
			low-sulfur fuel oil			
	Oil	All	Efficient and complete combustion	20%b	NA	
СО	Gas	100-65	Efficient and complete combustion	10	42	
	Oil	100-65	Efficient and complete combustion	30	106	
	Gas	60	Efficient and complete combustion	50	146	
VOC	Gas	100	Efficient and complete combustion	1.8	4.4	
	Oil	100-65	Efficient and complete combustion	10	21	
	Gas	80-60	Efficient and complete combustion	3.0	7.5	
NOX	Gas	100-60	Use of dry low-NO _X burners and SCR	3.5 ^C	23	
	Oil	100-60	Water injection and SCR	15 ^C	114	
S0 ₂ /SAM	Gas/Oil	All	Natural gas and limited use of	NA	NA	
			low-sulfur fuel oil			

inlet.

Source: Golder Associates, 2000.

Percent opacity, a surrogate for TSP/PM₁₀ limits.

С Based on a 24-hr block (7:00 a.m. to 7:00 a.m.) weighted average based on load as measured by CEMS.

4.5 AIR IMPACT

4.5.1 Air Quality Impacts

During the construction period, unavoidable air pollutant emissions are likely to occur from various construction-related activities. The most prevalent construction emissions are fugitive dust. However, minor emissions of nitrogen oxides (NO_x), sulfur dioxide (SO₂), carbon monoxide (CO), particulate matter, and volatile organic compounds (VOCs) are also likely during construction. Emissions of these pollutants generally are minimized through standard control measures.

4.5.1.1 Fugitive Dust

Fugitive dust is generally defined as natural and/or man-associated dusts that become airborne due to the forces of wind or human activity. Construction-phase fugitive dust emissions may be generated during site grading, excavation, vehicular activity, and production activities at an on-site concrete batch plant.

The quantities of fugitive dust emitted by the site construction vehicular traffic will be dependent on a number of factors, including the frequency of operations, specific operations being conducted, weather, and soil conditions. During construction, dust control measures will be used and will typically require moisture conditioning of the construction areas and along the defined roadways between these areas.

4.5.1.2 Other Air Pollutant Emissions

It is anticipated that total gaseous emissions during construction will be extremely small. Potential sources of VOC emissions include evaporative losses associated with on-site painting, refueling of construction equipment, and the application of adhesives and waterproofing chemicals. The frequency and extent of these activities are limited and they will have minimal impact on air quality.

Exhaust emissions from construction equipment will also contain small amounts of NO_{x} , SO_2 , CO, particulate matter, and VOCs resulting from incomplete combustion of fuel. However, due to the nature of heavy-duty diesel-powered construction vehicles, which allow for more complete combustion and less volatile fuels than spark-ignited engines, these emissions are relatively low.

Open burning will emit particulate matter, CO, hydrocarbons, sulfur oxides, and NO_x . Open burning of construction debris may occur if the composition of that debris consists of wood products and other relatively clean-burning components. Pollutant emissions from debris burning will depend upon the amount and moisture content of the debris.

4.5.2 Air Quality Control Methods

The impact of heavy construction activities and site preparation on air quality will be short term and confined to the immediate vicinity of the construction activity. This is primarily because most of the fugitive dust created by construction traffic and earth-moving operations consists of relatively large particles. These large particles tend to settle quickly rather than remain suspended for transport over long distances.

Job site guidelines for minimizing emissions of fugitive dust from identifiable construction sources will include a combination of the following techniques (if applicable):

- Contractors will be instructed to comply with any applicable state and local regulations governing open-bodied trucks hauling sand, gravel, or soil between on-site and off-site areas. This could include providing covers or moistening the load with water and wheel washing to reduce dusting.
- Areas disturbed during construction will be stabilized by mulching or seeding as soon as practicable.
- When construction occurs on bare ground, water (possibly together with wetting agents) will be used as necessary to suppress dust.
- Temporary vehicular surfaces of crushed rock may be used in high traffic areas. Areas not subject to heavy traffic or continual disturbance will be wetted down using nontoxic substances to suppress dust.
- On-site concrete batch plants will be equipped with dust control systems that effectively mitigate off-site impacts.
- Sandblasting operations will be located in isolated areas to minimize effects on adjacent work areas. Protective covers will also be utilized where practicable.

Only minor short-term air quality impacts are expected to result from open burning since these operations will be conducted in compliance with Florida Division of Forestry air pollution control regulations (Chapter 62-256 F.A.C.) which are applicable in rural areas.

Because of the mitigative measures that will be employed, it is not expected that vehicular emissions, fugitive dust, or smoke from open-burning operations will present any significant air quality problems during the construction period.

4.5.3 Ambient Air Quality Monitoring Program

Air quality monitoring for construction-related fugitive dust or other air pollutants is not being proposed. Periodic visual inspections of the job site will be conducted to ensure compliance with guidelines for minimizing emissions of fugitive dust during construction of the proposed facility.

5.6 AIR QUALITY IMPACTS

5.6.1 Impact Assessment

The air quality impacts of Power Block 2 are fully discussed in Sections 6, 7, and 8 of the PSD permit application provided as Appendix 10.1.5. Therefore, the analyses that address these air quality impacts are not repeated in their entirety in this section. A summary of the results of these analyses is presented in this section.

Air quality dispersion modeling analyses of the potential impacts of air emissions from the proposed Power Block 2 were performed for those pollutants which had proposed emissions greater than the PSD significant emission rates: Particulate Matter, SO₂, NO_x, CO, and SAM. These analyses were performed to address compliance with AAQS and PSD Class I and II increments. For SAM, since there are no AAQS or PSD increments, the maximum 24-hour average SAM impact for Power Block 2 was compared to the ambient reference concentration (ARC) of 2.4 ug/m³ that the Florida DEP formerly used to assess impacts for toxic air pollutants. The ARCs are no longer in effect for permitting purposes.

For both natural gas-firing and oil-firing conditions, the ISCST3 air dispersion model was used to determine the maximum ambient air quality impacts for nine modeling scenarios that covered the range of operating loads and air inlet temperatures that the combustion turbines for Power Block 2 would likely experience. For each fuel, the nine modeling scenarios were as follows:

Baseload operations for air inlet temperatures of 20°F, 59°F, and 90°F (natural gas-firing)/105°F (oil firing);

Hines Energy Complex

- 80% load for 20°F, 59°F, 90°F (natural gas-firing)/105°F (oil firing); and
- 60% load (for natural gas-firing)/65% load (oil-firing) for 20°F, 59°F, and 90°F (natural gas-firing)/105°F (oil firing).

Pollutant concentrations were predicted in a receptor grid containing more than 700 receptors that covered an area out to 50 kilometers from the site. Concentrations were predicted using five years of surface and upper air meteorological data for the years 1987 through 1991 from the National Weather Service (NWS) stations in Tampa and Ruskin, respectively. These data have been recommended and approved for use by the DEP in previous air permit applications to address air quality impacts for proposed sources locating in Polk County and adjacent counties.

In addition, pollutant concentrations were predicted at receptor locations placed at the boundary of the Chassahowitzka National Wilderness Area (NWA), which is located 118 kilometers from the plant site and is the nearest PSD Class I area. At distances beyond 50 km from a source, the EPA and FDEP currently recommend the CALPUFF model for predicting impacts. The CALPUFF model is a long-range transport model that was specifically developed for estimating the air quality impacts in areas that are more than 50 km from a source. As a result, the CALPUFF model was used to address impacts from Power Block 2 at the Chassahowitzka NWA.

The results of the ISCST3 and CALPUFF modeling analyses are summarized in Tables 5.6-1 and 5.6-2. In Table 5.6-1, the highest concentrations predicted for Power Block 2 for each pollutant are compared to the corresponding PSD Class II significance levels, PSD Class II increments, and ambient air quality standards. In Table 5.6-2, the highest concentrations predicted for Power Block 2 at the Chassahowitzka NWA are

Hines Energy Complex

compared to the PSD Class I significance levels. As shown in these tables, the maximum concentrations for all pollutants are predicted to be less than the EPA PSD significance levels. Therefore, Power Block 2 will not have a significant impact on the ambient air quality of central Florida. In addition, these modeling results demonstrate that the maximum impacts predicted for Power Block 2 will not cause or contribute to an exceedance of any PSD increments or ambient air quality standards. Finally, since the impact of Power Block 2 on the Chassahowitzka NWA is less than significant and based on a regional haze analysis performed, there will not be a significant impact to the visibility in the NWA.

TABLE 5.6.1-1
SUMMARY OF MAXIMUM CONCENTRATIONS PREDICTED FOR POWER BLOCK 2 COMPARED TO THE PSD
CLASS II SIGNIFICANT IMPACT LEVELS

Pollutant	Averaging Period	Maximum Concentration Predicted for Power Block 2 (a) (ug/m ³)	PSD Class II Significant Impact Level (ug/m ³)	PSD Class II Increment (ug/m ³)	Ambient Air Quality Standard ^(c) (ug/m ³)	Predicted Impact Greater than the PSD Significant Impact Level? (Yes/No)
Carbon Monoxide	1-Hour	34.9	2,000	N/A	40,000	No
	8-Hour	107	500	N/A	10,000	No
Nitrogen Dioxide	Annual	0.096	1	25	100	No
Sulfur Dioxide	3-Hour	17.8	25	512	1,300	No
	24-Hour	4.9	5	91	260	No
	Annual	0.038	1	20	60	No
Particulate Matter	24-Hour	3.0	5	30	150	No
(PM ₁₀₎ (b)	Annual	0.039	1	17	50	No
Sulfuric Acid Mist	24-Hour	0.75	N/A	N/A	N/A	N/A

⁽a) Concentrations are the highest values for this analysis.

N/A = Not applicable

Source: Golder, 2000

⁽b) As a conservative approach, all project emissions of particulate matter were assumed to be in the form of PMo.

⁽c) Florida AAQS, Rule 62-204.240

TABLE 5.6.1-2
SUMMARY OF MAXIMUM CONCENTRATIONS PREDICTED FOR POWER BLOCK 2
COMPARED TO THE PSD CLASS I SIGNIFICANT IMPACT LEVELS

Pollutant	Averaging Period	Maximum Concentration Predicted for Power Block 2 ^(a) (ug/m³)	PSD Class I Significant Impact Level (ug/m3)	Predicted Impact Greater than the PSD Significant Impact Level? (Yes/No)
Sulfur Dioxide (SO ₂)	3-Hour	0.46	1.0	NO
	24-Hour	0.12	0.2	NO
	Annual	0.0014	0.1	NO
Particulate Matter	24-Hour	0.033	0.3	NO
(PM ₁₀)	Annual	0.0010	0.2	NO
Nitrogen Dioxide (NO₂)	Annual	0.0013	0.1	NO

⁽a) Concentrations are the highest values for this analysis.

Source: Golder, 2000

Hines Energy Complex

10.1.5 Prevention of Significant Deterioration Permit Application

Following is a copy of the Prevention of Significant Deterioration (PSD) permit application for Power Block 2 submitted to the DEP pursuant to requirements of the Federal Clean Air Act.

PSD PERMIT APPLICATION

FOR

FLORIDA POWER CORPORATION HINES ENERGY COMPLEX POWER BLOCK 2

JUNE 2000

Florida Power Corporation
One Power Plaza
263 13th Ave. South
St. Petersburg, Florida 33701

Hines Energy Complex

APPLICATION FORMS

Department of Environmental Protection

Division of Air Resources Management

APPLICATION FOR AIR PERMIT - TITLE V SOURCE

See Instructions for Form No. 62-210.900(1)

I. APPLICATION INFORMATION

Identification of Facility

1.	Facility Owner/Company Name: Florida Power Corporation			
2.	Site Name:			
	Hines Energy Complex			
3.	Facility Identification Number:			[X] Unknown
4.	Facility Location: Street Address or Other Locator:	County	Road 5	55; 2.5 miles South of CR 640
	City: Bartow	County:	Polk	Zip Code: 33830
5.	Relocatable Facility? [] Yes [X] No		1	xisting Permitted Facility? X] Yes [] No

Application Contact

	· ·			
1.	Name and Title of A	pplication Contact:		-
	J. Michael Kennedy,	Manager Air Prograi	ns	
2.	Application Contact Organization/Firm:	Mailing Address: Florida Power Coi	rporation	
	Street Address:	One Power Plaza,	263-13th Ave S	
ĺ	City:	St. Petersburg	State: FL	Zip Code: 33701-5511
3.	Application Contact	Telephone Number	s:	
	Telephone: (727)	826 - 4334	Fax: (727	") 826 - 4216

Application Processing Information (DEP Use)

1. Date of Receipt of Application:	7-24-00
2. Permit Number:	1050234-004-AC
3. PSD Number (if applicable):	PSD-FL-296
4. Siting Number (if applicable):	PA 92-33

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

Purpose of Application

Air Operation Permit Application

This Application for Air Permit is submitted to obtain: (Check one)] Initial Title V air operation permit for an existing facility which is classified as a Title V source. [] Initial Title V air operation permit for a facility which, upon start up of one or more newly constructed or modified emissions units addressed in this application, would become classified as a Title V source Current construction permit number: [] Title V air operation permit revision to address one or more newly constructed or modified emissions units addressed in this application. Current construction permit number: Operation permit number to be revised: [] Title V air operation permit revision or administrative correction to address one or more proposed new or modified emissions units and to be processed concurrently with the air construction permit application. (Also check Air Construction Permit Application below.) Operation permit number to be revised/corrected: [] Title V air operation permit revision for reasons other than construction or modification of an emissions unit. Give reason for the revision; e.g., to comply with a new applicable requirement or to request approval of an "Early Reductions" proposal. Operation permit number to be revised: Reason for revision: Air Construction Permit Application This Application for Air Permit is submitted to obtain: (Check one) [X] Air construction permit to construct or modify one or more emissions units.] Air construction permit to make federally enforceable an assumed restriction on the potential emissions of one or more existing, permitted emissions units.] Air construction permit for one or more existing, but unpermitted, emissions units.

Owner/Authorized Representative or Responsible Official

1.	Name and Title of Owner/Authorized Represe	entative or Responsible Official:	
٠.	Traine and True of Owner, Lamorized Repress	man of respondent orman.	

W. Jeffrey Pardue, Director Environmental Services Department

2. Owner/Authorized Representative or Responsible Official Mailing Address:

Organization/Firm: Florida Power Corporation

Street Address: One Power Plaza, 263-13th Ave S

City: St. Petersburg

State: FL

Zip Code: 33701-5511

3. Owner/Authorized Representative or Responsible Official Telephone Numbers:

Telephone: (727) 826 - 4301

Fax: (727) 826 - 4216

4. Owner/Authorized Representative or Responsible Official Statement:

I, the undersigned, am the owner or authorized representative*(check here [], if so) or the responsible official (check here [], if so) of the Title V source addressed in this application, whichever is applicable. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof. I understand that a permit, if granted by the Department, cannot be transferred without authorization from the Department, and I will promptly notify the Department upon sale or legal transfer of any permitted emissions unit.

Signature

Date

7/19/00

Professional Engineer Certification

1. Professional Engineer Name: Kennard F. Kosky

Registration Number: 14996

2. Professional Engineer Mailing Address:

Organization/Firm: Golder Associates Inc.

Street Address: 6241 NW 23rd Street, Suite 500

City: Gainesville State: FL Zip Code: 32653-1500

3. Professional Engineer Telephone Numbers:

Telephone: (352) 336 - 5600 Fax: (352) 336 - 6603

^{*} Attach letter of authorization if not currently on file.

4. Professional Engineer Statement:

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [], if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [X], if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [], if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Signature May 26, 2000

Date

* Attach any exception to certification statement.

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

Scope of Application

Emissions Unit ID	Description of Emissions Unit	Permit Type	Processing Fee
	CT-1; Power Block 2	AC1A	
	CT-2; Power Block 2	AC1A	
<u> </u>			
-			

Application Processing Fee

Check one: [] Attached - Amount: \$:	[X]	Not Applicable
---------------------------------------	-------	----------------

Construction/Modification Information

1.	Description of Proposed Project or Alterations:
	Power Block 2 consists of two nominal 170 MW Siemens Westinghouse 501FD combustion turbines (CTs), two unfired heat recovery steam generators (HRSGs), and one 190 MW steam turbine; nominal rating of 530 MW combined cycle unit. See PSD Application. Fee included with Site Certification Application.

- 2. Projected or Actual Date of Commencement of Construction: 01 Nov 2001
- 3. Projected Date of Completion of Construction: 01 Jul 2003

Application Comment

This application has been submitted and will be reviewed within the Florida Power Plant Siting Act (PPSA). See PSD Application. Power Block 1 has permit PA-92-33; PSD-FL-195A.

DEP Form No. 62-210.900(1) - Form

9837576Y/F2/TV Effective: 2/11/99 5/26/00

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

	Facility UTM Co-Zone: 17		cm): 414.4	North (km): 3073.9
2.	Facility Latitude/Latitude (DD/MN	Longitude: A/SS): 27 / 47 / 19	Longitud	de (DD/MM/SS): 81 / 52 / 10
3.	Governmental Facility Code:	4. Facility Status Code:	5. Facility Group S	Major 6. Facility SIC(s): IC Code:
	0	С	49	4911

7. Facility Comment (limit to 500 characters):

Operation of Power Block 1 began in 1999. Power Block 1 is a nominal 470 MW combined cycle unit consisting of 2 CTs, 2 HRSG's and 1 steam turbine. The CTs fire natural gas with distillate oil as backup. The HRSGs are unfired. This application is for the addition of Power Block 2, a nominal 530 MW combined cycle application. See PSD Application.

Facility Contact

1.	Name and Title of Facility Contact:		
	Paul Crimi, Plant Manager		
2.	Facility Contact Mailing Address: Organization/Firm: Hines Energy Com Street Address: 7700 County Road		
	City: Bartow	State: FL	Zip Code: 33830
3.	Facility Contact Telephone Numbers: Telephone: (863) 519 - 6101	Fax: (863)	519 - 6110

Facility Regulatory Classifications

Check all that apply:

1.	[] Small Business Stationary Source? [] Unknown
2.	[X] Major Source of Pollutants Other than Hazardous Air Pollutants (HAPs)?
3.	Synthetic Minor Source of Pollutants Other than HAPs?
4. [Major Source of Hazardous Air Pollutants (HAPs)?
5. [Synthetic Minor Source of HAPs?
6. [X] One or More Emissions Units Subject to NSPS?
7. [] One or More Emission Units Subject to NESHAP?
8. [] Title V Source by EPA Designation?
9. F	Facility Regulatory Classifications Comment (limit to 200 characters):
List	of Applicable Regulations
62-21	2.400, F.A.C. See PSD Application
 .	

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

9. FACILITY POLLUTANTS

List of Pollutants Emitted

1. Pollutant	2. Pollutant	9. Requested E	missions Cap	4. Basis for Emissions	5. Pollutant Comment
Emitted	Classif.	lb/hour	tons/year	Cap	Comment
РМ	А				Particulate Matter – Total
SO ₂	Α				Sulfur Dioxide
NO _x	Α				Nitrogen Oxides
со	Α				Carbon Monoxide
voc	Α				Volatile Organic Compounds
SAM	Α				Sulfuric Acid Mist
			·		
		<u>.</u>			

9. FACILITY SUPPLEMENTAL INFORMATION

Supplemental Requirements

9.	Area Map Showing Facility Location:
	[X] Attached, Document ID: Fig. 1-1; PSD[] Not Applicable [] Waiver Requested
9.	Facility Plot Plan:
	[X] Attached, Document ID: Fig. 2-1; PSD[] Not Applicable [] Waiver Requested
9.	Process Flow Diagram(s):
	[X] Attached, Document ID: Fig. 2-2; PSD[] Not Applicable [] Waiver Requested
9.	Precautions to Prevent Emissions of Unconfined Particulate Matter:
	[X] Attached, Document ID: PSD Appl. [] Not Applicable [] Waiver Requested
9.	Fugitive Emissions Identification:
	[] Attached, Document ID: [X] Not Applicable [] Waiver Requested
9.	Supplemental Information for Construction Permit Application:
	[X] Attached, Document ID: PSD Appl. [] Not Applicable
9.	Supplemental Requirements Comment:

Additional Supplemental Requirements for Title V Air Operation Permit Applications

9.	List of Proposed Insignificant Activities: [] Attached, Document ID: [] Not Applicable
9.	List of Equipment/Activities Regulated under Title VI:
	[] Attached, Document ID:
	[] Equipment/Activities On site but Not Required to be Individually Listed
	[] Not Applicable
9.	Alternative Methods of Operation: [] Attached, Document ID: [] Not Applicable
9.	Alternative Modes of Operation (Emissions Trading):
	[] Attached, Document ID: [] Not Applicable
9.	Identification of Additional Applicable Requirements: [] Attached, Document ID: [] Not Applicable
9.	Risk Management Plan Verification:
	Plan previously submitted to Chemical Emergency Preparedness and Prevention Office (CEPPO). Verification of submittal attached (Document ID:) or previously submitted to DEP (Date and DEP Office:)
	[] Plan to be submitted to CEPPO (Date required:)
	[] Not Applicable
9.	Compliance Report and Plan:
	[] Attached, Document ID: [] Not Applicable
9.	Compliance Certification (Hard-copy Required): [] Attached, Document ID: [] Not Applicable

9. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through J as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

9. GENERAL EMISSIONS UNIT INFORMATION (All Emissions Units)

Emissions Unit Description and Status

_	2 colliption and Status			
9.	Type of Emissions Unit Addressed in This Section: (Check one)			
[:	X] This Emissions Unit Information Section addresses, as a single emissions unit, a single process or production unit, or activity, which produces one or more air pollutants and which has at least one definable emission point (stack or vent).			
[] This Emissions Unit Information Section addresses, as a single emissions unit, a group of process or production units and activities which has at least one definable emission point (stack or vent) but may also produce fugitive emissions.			
[] This Emissions Unit Information Section addresses, as a single emissions unit, one or more process or production units and activities which produce fugitive emissions only.			
9.	Regulated or Unregulated Emissions Unit? (Check one)			
[)	[] The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.			
[[] The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit.			
9.	Description of Emissions Unit Addressed in This Section (limit to 60 characters):			
	CT-1; Power Block 2			
4.	Emissions Unit Identification Number: [] No ID [x] ID Unknown			
9.	Emissions Unit 9. Initial Startup Status Code: Date: 9. Emissions Unit Major Group SIC Code: [X]			
9.	Emissions Unit Comment: (Limit to 500 Characters)			
	Siemens Westinghouse 501 FD combustion turbine firing natural gas with distillate oil back-up.			

12

Emissions Unit Control Equipment

1. Control Equipment/Method Description (Limit to 200 characters per device	_ .c	ontrol Equipment/Method De	escription (Limit to 200 characters per device	or method):
---	---------	----------------------------	--	-------------

Dry Low NO_x combustion-natural gas firing

Selective Catalytic Reduction (SCR) - natural gas firing/ distillate oil firing.

Water Injection - distillate oil firing

2. Control Device or Method Code(s): 25, 65, 28

Emissions Unit Details

1.	Package Unit:				
	Manufacturer: Siemens Westinghouse		Model Number:	501 FD	
2.	Generator Nameplate Rating:	170	MW		
3.	3. Incinerator Information:				
	Dwell Temperature:			°F	
	Dwell Time:			seconds	
	Incinerator Afterburner Temperature:			°F	

B. EMISSIONS UNIT CAPACITY INFORMATION (Regulated Emissions Units Only)

Emissions Unit Operating Capacity and Schedule

	Maximum Heat Input Rate:	1,83	30	mmBtu/hr
2.	Maximum Incineration Rate:	lb/hr		tons/day
3.	Maximum Process or Throughput I	Rate:		
4.	Maximum Production Rate:			<u> </u>
5.	Requested Maximum Operating Sc	hedule:		
	h	ours/day		days/week
	w	eeks/year 8	,760	hours/year
				· · · · · · · · · · · · · · · · · ·
	nominal rating.			perature; MW
	nominal rating.		·	
	nominal rating.			
	nominal rating.			and the second s
	nominal rating.			
	nominal rating.			
	nominal rating.			

Emissions Unit Information Section	1	of	2
------------------------------------	---	----	---

C. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

List of Applicable Regulations

	T	
See Attachment HEC-EU1-C		
See PSD Application		
	·	
·		

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

ATTACHMENT HEC-EU1-C

Applicable Requirements Listing

EMISSION UNIT ID: EU1

FDEP Rules:

Air Pollution Control-General l	Provisions:
62-204.800(7)(b)37. (State Onl	
62-204.800(7)(c) (State Only)	
62-204.800(7)(d)(State Only)	-
62-204.800(12) (State Only)	- Acid Rain Program
62-204.800(13) (State Only)	- Allowances
62-204.800(14) (State Only)	- Acid Rain Program Monitoring
62-204.800(16) (State Only)	- Excess Emissions (Potentially applicable over term
of permit)	
Stationary Sources-General:	
62-210.650	 Circumvention; EUs with control device
62-210.700(1)	- Excess Emissions;
62-210.700(4)	- Excess Emissions; poor maintenance
62-210.700(6)	- Excess Emissions; notification
Acid Rain:	
62-214.300	- All Acid Rain Units (Applicability)
62-214.320(1)(a),(2)	- All Acid Rain Units (Application Shield)
62-214.330(1)(a)1.	- Compliance Options (if 214.430)
62-214.340	- Exemptions (new units, retired units)
62-214.350(2);(3);(6)	- All Acid Rain Units (Certification)
62-214.370	- All Acid Rain Units (Revisions; correction;
	potentially applicable if a need arises)
62-214.430 required)	- All Acid Rain Units (Compliance Options-if
Stationary Sources-Emission S	Standards:
62-296.320(4)(b)(State Only)	- CTs/Diesel Units

62-296.320(4)(b)(State Only) - CTs/Diesel Units

Stationary Sources-Emission Monitoring (where stack test is required):

62-297.310(1)	- All Units (Test Runs-Mass Emission)
62-297.310(2)(b)	- All Units (Operating Rate; other than CTs;no CT)
62-297.310(3)	- All Units (Calculation of Emission)
62-297.310(4)(a)	- All Units (Applicable Test Procedures;Sampling
time)	
62-297.310(4)(b)	- All Units (Sample Volume)

62-297.310(4)(c) PM/H2SO4/F)	- All Units (Required Flow Rate Range-
PM/H2SO4/F) 62-297.310(4)(d) 62-297.310(4)(e) 62-297.310(5) 62-297.310(6)(a) 62-297.310(6)(c) 62-297.310(6)(d) 62-297.310(6)(f) 62-297.310(6)(g) 62-297.310(7)(a)1. 62-297.310(7)(a)2. 62-297.310(7)(a)3. 62-297.310(7)(a)4.a 62-297.310(7)(a)5. 62-297.310(7)(a)6. 62-297.310(7)(a)7. 62-297.310(7)(a)9. 62-297.310(7)(c) 62-297.310(7)(c)	- All Units (Calibration) - All Units (EPA Method 5-only) - All Units (Determination of Process Variables) - All Units (Permanent Test Facilities-general) - All Units (Sampling Ports) - All Units (Work Platforms) - All Units (Access) - All Units (Electrical Power) - All Units (Equipment Support) - Applies mainly to CTs/Diesels - FFSG excess emissions - Permit Renewal Test Required - Annual Test - PM exemption if <400 hrs/yr - PM FFSG semi annual test required if >200 hrs/yr - PM quarterly monitoring if >100 hrs/yr - FDEP Notification - 15 days - Waiver of Compliance Tests (Fuel Sampling) - Test Reports
	•

Federal Rules:

NSPS Subpart GG: 40 CFR 60.332(a)(1) 40 CFR 60.332(a)(3) 40 CFR 60.333 40 CFR 60.334 Gas) 40 CFR 60.335	 NOx for Electric Utility CTs NOx for Electric Utility CTs SO2 limits Monitoring of Operations (Custom Monitoring for Test Methods
NSPS General Requirements: 40 CFR 60.7(a)(1) 40 CFR 60.7(a)(2) 40 CFR 60.7(a)(3) 40 CFR 60.7(a)(4) (Physical/Operational Cycle) 40 CFR 60.7(a)(5) 40 CFR 60.7(b) (startup/shutdown/malfunction 40 CFR 60.7(c) (startup/shutdown/malfunction	- Notification and Recordkeeping
40 CFR 60.7(d) (startup/shutdown/malfunction 40 CFR 60.7(f) 2 yrs)	- Notification and Recordkeeping) - Notification and Recordkeeping (maintain records-

40 CFR 60.8(a)	- Performance Test Requirements
40 CFR 60.8(b)	- Performance Test Notification
40 CFR 60.8(c)	 Performance Tests (representative conditions)
40 CFR 60.8(e)	- Provide Stack Sampling Facilities
40 CFR 60.8(f)	- Test Runs
40 CFR 60.11(a)	- Compliance (ref. S. 60.8 or Subpart; other than
opacity)	
40 CFR 60.11(b)	- Compliance (opacity determined EPA Method 9)
40 CFR 60.11(c)	- Compliance (opacity; excludes
startup/shutdown/malfunction	
40 CFR 60.11(d)	- Compliance (maintain air pollution control equip.)
40 CFR 60.11(e)(2)	- Compliance (opacity; ref. S. 60.8)
40 ÇFR 60.12	- Circumvention
40 CFR 60.13(a)	- Monitoring (Appendix B; Appendix F)
40 CFR 60.13(c)	- Monitoring (Opacity COMS)
40 CFR 60.13(d)(1)	- Monitoring (CEMS; span, drift, etc.)
40 CFR 60.13(d)(2)	- Monitoring (COMS; span, system check)
40 CFR 60.13(e)	 Monitoring (frequency of operation)
40 CFR 60.13(f)	 Monitoring (frequency of operation)
40 CFR 60.13(h)	- Monitoring (COMS; data requirements)
Acid Rain-Permits:	
40 CFR 72.9(a)	- Permit Requirements
40 CFR 72.9(b)	- Monitoring Requirements
40 CFR 72.9(c)(1)	- SO2 Allowances-hold allowances
40 CFR 72.9(c)(2)	- SO2 Allowances-violation
40 CFR 72.9(c)(3)(iii)	- SO2 Allowances-Phase II Units (listed)
40 CFR 72.9(c)(4)	- SO2 Allowances-allowances held in ATS
40 CFR 72.9(c)(5)	- SO2 Allowances-no deduction for 72.9(c)(1)(i)
40 CFR 72.9(d)	- NOx Requirements
40 CFR 72.9(e)	- Excess Emission Requirements
40 CFR 72.9(f)	- Recordkeeping and Reporting
40 CFR 72.9(g)	- Liability
40 CFR 72.20(a)	- Designated Representative; required
40 CFR 72.20(b)	- Designated Representative; legally binding
40 CFR 72.20(c)	- Designated Representative; certification
requirements	
40 CFR 72.21	- Submissions
40 CFR 72.22	- Alternate Designated Representative
40 CFR 72.23	- Changing representatives; owners
40 CFR 72.24	- Certificate of representation
40 CFR 72.30(a)	- Requirements to Apply (operate)
40 CFR 72.30(b)(2)	- Requirements to Apply (Phase II-Complete)
40 CFR 72.30(c)	- Requirements to Apply (reapply before expiration)
40 CFR 72.30(d)	- Requirements to Apply (submittal requirements)
40 CFR 72.31	- Information Requirements; Acid Rain Applications

	· · · · · · · · · · · · · · · · · · ·
40 CFR 72.32	- Permit Application Shield
40 CFR 72.33(b)	- Dispatch System ID;unit/system ID
40 CFR 72.33(c)	- Dispatch System ID; ID requirements
2,2,2,4	- topacon of the second of the
40 CFR 72.33(d)	- Dispatch System ID;ID change
40 CFR 72.40(a)	- General; compliance plan
40 CFR 72.40(b)	- General; multi-unit compliance options
40 CFR 72.40(c)	- General; conditional approval
40 CFR 72.40(d)	- General; termination of compliance options
40 CFR 72.51	- Permit Shield
40 CFR 72.90	- Annual Compliance Certification
10 CI R 12.30	- Amuai Comphance Ceruncation
Allowances:	
40 CFR 73.33(a),(c)	- Authorized account representative
40 CFR 73.35(c)(1)	- Compliance: ID of allowances by serial number
10 C1 K 10.50(c)(1)	- Compliance. ID of anowances by serial number
Monitoring Part 75:	
40 CFR 75.4	- Compliance Dates;
40 CFR 75.5	- Prohibitions
40 CFR 75.10(a)(1)	- Primary Measurement; SO2;
40 CFR 75.10(a)(2)	- Primary Measurement; NOx;
40 CFR 75.10(a)(3)(iii)	- Primary Measurement; CO2; O2 monitor
40 CFR 75.10(b)	- Primary Measurement; Performance
Requirements	- Timpary Measurement, Terrormance
40 CFR 75.10(c)	- Primary Measurement; Heat Input; Appendix F
40 CFR 75.10(e)	- Primary Measurement; Optional Backup Monitor
40 CFR 75.10(f)	- Primary Measurement; Minimum Measurement
40 CFR 75.10(g)	- Primary Measurement; Minimum Recording
40 CFR 75.11(d)	- SO2 Monitoring; Gas- and Oil-fired units
40 CFR 75.11(e)	- SO2 Monitoring; Gaseous firing
40 CFR 75.12(a)	- NOx Monitoring; Coal; Non-peaking oil/gas units
40 CFR 75.12(a) 40 CFR 75.12(b)	- NOx Monitoring, Coal, Non-peaking oil/gas units - NOx Monitoring; Determination of NOx emission
40 CFR 73.12(b)	· · · · · · · · · · · · · · · · · · ·
40 CFR 75.13(b)	rate; Appendix F
• •	- CO2 Monitoring; Appendix G
40 CFR 75.13(c)	- CO2 Monitoring; Appendix F
40 CFR 75.14(c)	- Opacity Monitoring; Gas units; exemption
40 CFR 75.20(a)	- Initial Certification Approval Process; Loss of
Certification	The state of the state of the state of
40 CFR 75.20(b)	- Recertification Procedures (if recertification
necessary)	Continue Propositions (if we continue the
40 CFR 75.20(c)	- Certification Procedures (if recertification
necessary)	December Design to the 11
40 CFR 75.20(d)	- Recertification Backup/portable monitor
40 CFR 75.20(f)	- Alternate Monitoring system
40 CFR 75.21(a)	 QA/QC; CEMS; Appendix B (Suspended)
7/17/95-12/31/96)	04400 0 111 1 1
40 CFR 75.21(c)	- QA/QC; Calibration Gases

.

40 CFR 75.21(d)	- QA/QC; Notification of RATA
40 CFR 75.21(e)	- QA/QC; Audits
40 CFR 75.21(f)	- QA/QC; CEMS (Effective 7/17/96-12/31/96)
40 CFR 75.22	- Reference Methods
40 CFR 75.24	- Out-of-Control Periods; CEMS
40 CFR 75.30(a)(3)	- General Missing Data Procedures; NOx
40 CFR 75.30(a)(4)	- General Missing Data Procedures; SO2
40 CFR 75.30(b)	- General Missing Data Procedures; certified
backup monitor	
40 CFR 75.30(c)	- General Missing Data Procedures; certified
backup monitor	
40 CFR 75.30(d)	- General Missing Data Procedures; SO2 (optional
	before 1/1/97)
40 CFR 75.30(e)	- General Missing Data Procedures;
bypass/multiple stacks	
40 CFR 75.31	- Initial Missing Data Procedures (new/re-certified
CMS)	
40 CFR 75.32	- Monitoring Data Availability for Missing Data
40 CFR 75.33	- Standard Missing Data Procedures
40 CFR 75.36	- Missing Data for Heat Input
40 CFR 75.40	- Alternate Monitoring Systems-General
40 CFR 75.41	- Alternate Monitoring Systems-Precision Criteria
40 CFR 75.42	- Alternate Monitoring Systems-Reliability Criteria
40 CFR 75.43	- Alternate Monitoring Systems-Accessability Criteria
40 CFR 75.44	- Alternate Monitoring Systems-Timeliness Criteria
40 CFR 75.45	- Alternate Monitoring Systems-Daily QA
40 CFR 75.46	- Alternate Monitoring Systems-Missing data
40 CFR 75.47	- Alternate Monitoring Systems-Criteria for Class
40 CFR 75.48 40 CFR 75.53	 Alternate Monitoring Systems-Petition Monitoring Plan; revisions
40 CFR 75.54(a)	- Recordkeeping-general
40 CFR 75.54(a)	- Recordkeeping-general - Recordkeeping-operating parameter
40 CFR 75.54(c)	- Recordkeeping-SO2
40 CFR 75.54(d)	- Recordkeeping-NOx
40 CFR 75.54(e)	- Recordkeeping-CO2
40 CFR 75.54(f)	- Recordkeeping-Opacity
40 CFR 75.55(c)	- General Recordkeeping (Specific Situations)
40 CFR 75.55(e)	- General Recordkeeping (Specific Situations)
40 CFR 75.56	- Certification; QA/QC Provisions
40 CFR 75.60	- Reporting Requirements-General
40 CFR 75.61	- Reporting Requirements-Notification
cert/recertification	roporture rodomomorros riounivados.
40 CFR 75.62	- Reporting Requirements-Monitoring Plan
40 CFR 75.63	- Reporting Requirements-
Certification/Recertification	
40 CFR 75.64(a)	- Reporting Requirements-Quarterly reports;
	· · · I. · · · · · · · · · · · · · · · ·

submission

40 CFR 75.64(b)	- Reporting Requirements-Quarterly reports; DR
statement	• •
40 CFR 75.64(c)	- Rep. Req.; Quarterly reports; Compliance
Certification	
40 CFR 75.64(d)	- Rep. Req.; Quarterly reports; Electronic format
40 CFR 75.66	- Petitions to the Administrator (if required)
Appendix A-1 .	- Installation and Measurement Locations
Appendix A-2.	- Equipment Specifications
Appendix A-3.	- Performance Specifications
Appendix A-4.	- Data Handling and Acquisition Systems
Appendix A-5.	- Calibration Gases
Appendix A-6.	- Certification Tests and Procedures
Appendix A-7.	- Calculations
Appendix B	- QA/QC Procedures
Appendix C-1.	- Missing Data; SO2/NOx for controlled sources
Appendix C-2.	- Missing Data; Load-Based Procedure; NOx & flow
Appendix D	- Optional SO2; Oil-/gas-fired units
Appendix F	- Conversion Procedures
Appendix H	- Traceability Protocol

Acid Rain Program-Excess Emissions (these are future requirements):

40 CFR 77.3 - Offset F

- Offset Plans (future)

40 CFR 77.5(b)

- Deductions of Allowances (future)

40 CFR 77.6

- Excess Emissions Penalties (SO2 and NOx;future)

D. EMISSION POINT (STACK/VENT) INFORMATION (Regulated Emissions Units Only)

Emission Point Description and Type

1.	Identification of Point on Pl Flow Diagram? Fig 2-1			1	oint Type Code:	
3.	Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking (limit to 100 characters per point):					
	Exhausts through a single s	tack.				
4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common:						
5.	Discharge Type Code:	6. Stack Heig			7. Exit Diameter:	<i>C</i> .
	V		125	feet	19	feet
8.	Exit Temperature:	9. Actual Vol	umet	ric Flow	10. Water Vapor:	
	190 °F	Rate: 1,009	3 407	acfm		%
11.	Maximum Dry Standard Flo				mission Point Height:	
		dscfm				feet
13.	Emission Point UTM Coord	linates:				
	Zone: 17 E	ast (km): 414.4		Nort	h (km): 3073.9	
14.	Emission Point Comment (l	imit to 200 char	acter	s):		
	Temperature and flow for natural gas at 59°F turbine inlet; See Tables 2-1 and 2-2 in PSD application.					

E. SEGMENT (PROCESS/FUEL) INFORMATION (All Emissions Units)

<u>S</u>	egment Description and R	Rate: Segment_	1 of 2	
1.	Segment Description (Pro	ocess/Fuel Type)	(limit to 500 c	naracters):
	Natural Gas			
2.	Source Classification Cod	le (SCC):	3. SCC Unit	
	2-01-002-01		Million Cu	
4.	1.92	5. Maximum 15,564	Annual Rate:	6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur:			9. Million Btu per SCC Unit: 1,030
10	. Segment Comment (limit	to 200 characters	s):	_h,,
	Based on 1,030 BTU/CF (temperatures.	HHV); maximum	hourly at 20°F	annual at 59°F; turbine inlet
Se	gment Description and Ra			
1.	Segment Description (Prod	cess/Fuel Type)	(limit to 500 cl	naracters):
	Distillate Fuel Oil			
2	Source Classification Code	(SCC):	12 CCCTT	
	2-01-001-01	<u> </u>	3. SCC Unit 1,000 Gall	
4.	Maximum Hourly Rate: 14.9	5. Maximum A 13,683		6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum 9	6 Ash:	9. Million Btu per SCC Unit: 141.2
10.	Segment Comment (limit to	o 200 characters)):	
	BTU based on HHV of 141.	.2 MMBtu/1.000 c	iallons Angree	ate fuel usage of 27,365,000
	gallons per year requested	for Power Block	2.	ate luel usage of 27,505,000

F. EMISSIONS UNIT POLLUTANTS (All Emissions Units)

1. Pollutant Emitted	2. Primary Control	3. Secondary Control	4. Pollutant
	Device Code	Device Code	Regulatory Code
PM			EL
SO ₂			EL
NO _x	026	065	EL
со			EL
voc			EL
SAM			EL
		 	-

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

Emissions Unit Information Section	_1	of _	2	CT-1 Power Block 2
Pollutant Detail Information Page	1	of	6	Particulate Matter - Total

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

$\frac{-}{1}$	Pollutant Emitted:	2 T-4-	1 Dans of ECC					
1.			2. Total Percent Efficiency of Control:					
	PM							
3.	Potential Emissions:			4. Synthetically				
	64.8 lb/hour	60.3	tons/year	Limited? []			
5.	Range of Estimated Fugitive Emissions:							
L		,	to t	ons/year				
6.	Emission Factor:			7. Emissions				
	Reference: Siemens Westinghouse, 2	000		Method Code) :			
8.								
	0.0%							
	See Section 2.0 and Appendix A in PSD Appli	cation						
9	Pollutant Potential/Fugitive Emissions Comr	nent (limi	it to 200 aboss	otora):				
	Tomatic Total day Tugitive Emissions Com	mem (mm	it to 200 chara	cters).	Ì			
	Max lb/hr for oil firing at 20°F turbine inlet;	TPY at 59	°F turbine ink	et with 7,760 hrs/yr-	.			
	gas; equivalent of 1,000 hrs/yr/CT-oil.			•				
					ļ			
All	lowable Emissions Allowable Emissions 1	of	2					
1.	Basis for Allowable Emissions Code:	2. Futu	re Effective D	ate of Allowable				
	OTHER	Emi	ssions:					
3.	Requested Allowable Emissions and Units:	4. Equi	valent Allowa	ble Emissions:				
	10 % Opacity		7.3 lb/hour	34.4 tons/year				
5.	Method of Compliance (limit to 60 character	s):						
	EPA Method 9				}			
								
0.	Allowable Emissions Comment (Desc. of Op	erating M	lethod) (limit t	to 200 characters):				
	Gas Firing: lb/hr at 20°F turbine inlet; TPY for	8,760 hrs	/yr at 59°F turt	oine inlet.				
	•	•	-		- 1			
					1			

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

Emissions Unit Information Section		of	
Pollutant Detail Information Page	1	of	6

CT-1 - Power Block 2

Particulate Matter - Total

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1. Pollutant Emitted:	2. Total Percent Efficiency of Control:
РМ	
3. Potential Emissions:	4. Synthetically
lb/hour	tons/year Limited? []
5. Range of Estimated Fugitive Emissions:	
	to tons/year
6. Emission Factor:	7. Emissions
Reference:	Method Code:
8. Calculation of Emissions (limit to 600 chara	acters):
9. Pollutant Potential/Fugitive Emissions Com	iment (limit to 200 characters):
Allowable Emissions Allowable Emissions	2 of 2
Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable
OTHER	Emissions:
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
20% Opacity	64.8 lb/hour 29.8 tons/year
5. Method of Compliance (limit to 60 characte	ers):
• •	ers):
EPA Method 9	
• ,	
EPA Method 9 6. Allowable Emissions Comment (Desc. of O	perating Method) (limit to 200 characters):
EPA Method 9 6. Allowable Emissions Comment (Desc. of O	

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

Emissions Unit Information Section	1	of _	2	CT-1 - Power Block 2
Pollutant Detail Information Page	2	of	6	Sulfur Dioxide

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:				
	SO₂					
3.	Potential Emissions:	4. Syntheticall	v			
	105.6 lb/hour	68.4 tons/year Limited?	[]			
5.	Range of Estimated Fugitive Emissions:					
<u> </u>		to tons/year				
6.	Emission Factor:	7. Emissions	.			
	Reference: Siemens Westinghouse, 2	000 Method Coo	1e:			
8.	Calculation of Emissions (limit to 600 chara					
i	See Seeding 2.0 and Amount to A.1. Don A					
	See Section 2.0 and Appendix A in PSD Appli	cation				
Í						
			1			
9.	Pollutant Potential/Fugitive Emissions Comm	ment (limit to 200 characters):				
	May things and Sixter as poor and the same					
	Max lb/hr for oil firing at 20°F turbine inlet; T inlet with 7,760 hrs/yr-gas; equivalent of 1,000	PY at 59°F turbine inlet; TPY at 59°F turbin) hrs/vr/CT-oil.	ie			
	, , , , , , , , , , , , , , , , , , , ,	,, ,				
All	owable Emissions Allowable Emissions	of <u>2</u>				
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable				
	OTHER	Emissions:				
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:				
	Pipeline Gas	6 lb/hour 22.4 tons/year	.			
5.	5. Method of Compliance (limit to 60 characters):					
	Ford to the state of the state					
	Fuel Sampling - Vendor					
6.	Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					
Gas Firings 1h/hr at 20°5 turbing in lat. TDV 5 - 2 700 last at 20°5						
	Gas Firing: lb/hr at 20°F turbine inlet; TPY for 8,760 hrs/yr at 59°F turbine inlet.					
		•				
			- 1			

Emissions Unit Information Section	1	of _	2	CT-1 – Power Block 2
Pollutant Detail Information Page	2	of _	6	Sulfur Dioxide

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

<u> </u>	tentian delitive Emissions					
1.	Pollutant Emitted: .	2. Total Percent Efficie	ency of Control:			
	SO ₂					
3.	Potential Emissions:		4. Synthetically			
	lb/hour	tons/year	Limited? []			
5.	5. Range of Estimated Fugitive Emissions:					
	[] 1 [] 2 _ [] 3_	toto	ns/year			
6.	Emission Factor:		7. Emissions			
:	Reference:		Method Code:			
8.	Calculation of Emissions (limit to 600 chara-	cters):				
	•					
			•			
		(1) 'A 4 - 200 abases	<u> </u>			
9.	Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters):					
Al	lowable Emissions Allowable Emissions	2 of 2				
1.	Basis for Allowable Emissions Code:	2. Future Effective Da	ate of Allowable			
	OTHER	Emissions:	 -			
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowal	ole Emissions:			
	0.05 % Sulfur Oil	105.6 lb/hour	48.6 tons/year			
5.	Method of Compliance (limit to 60 characters):					
	E LOurs-Kan Mandan					
	Fuel Sampling - Vendor					
6.	. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					
	Oil Firing: Ib/hr at 20°F turbine inlet; TPY equivalent of 1,000 hrs/yr/CT-oil at 59°F turbine					
	inlet.					
1						

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

Emissions Unit Information Section _	1	of	2	CT-1 - Power Block 2
Pollutant Detail Information Page	3	of	6	Nitrogen Oxides

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

5. Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3 to tons/year 6. Emission Factor: Reference: Siemens Westinghouse, 1998 8. Calculation of Emissions (limit to 600 characters): Maximum Ib/hour based on oil-firing. See Section 2.0 and Appendix A in PSi Application. 9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max Ib/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions Code: OTHER 3. Requested Allowable Emissions and Units: 3.5 ppmvd at 15% O2 2. Future Effective Date of Allowable Emissions: 2. Future Effective Date of Allowable Emissions: 3.5 ppmvd at 15% O2 2. Sol Ib/hour 101.2 tons/year			
NO _x 3. Potential Emissions:	1. Pollutant Emitted:	2. Total Percent Efficie	ency of Control:
116.9 lb/hour 144.3 tons/year Limited? 5. Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3 to	NO _x		oney or condor.
5. Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3 to tons/year 6. Emission Factor: Reference: Siemens Westinghouse, 1998 7. Emissions Method Cod 2 8. Calculation of Emissions (limit to 600 characters): Maximum Ib/hour based on oil-firing. See Section 2.0 and Appendix A in PS Application. 9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max Ib/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions Code: OTHER 2. Future Effective Date of Allowable Emissions: 3. Requested Allowable Emissions and Units: 3. Sppmvd at 15% O2 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):			1
[] 1 [] 2 [] 3 to tons/year 6. Emission Factor: Reference: Siemens Westinghouse, 1998 7. Emissions Method Cod 2 8. Calculation of Emissions (limit to 600 characters): Maximum Ib/hour based on oil-firing. See Section 2.0 and Appendix A in PS Application. 9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max Ib/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions Code: OTHER 3. Requested Allowable Emissions and Units: 3. Future Effective Date of Allowable Emissions: 3. Fequested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: 3.5 ppmvd at 15% O2 2. Future Effective Date of Allowable Emissions: 25.0 lb/hour 101.2 tons/yea 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):		144.3 tons/year	Limited? [x]
Reference: Siemens Westinghouse, 1998 Rethod Cod 2 Read Section 2.0 and Appendix A in PS Application. PS Application. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max lb/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions Ode: OTHER Requested Allowable Emissions and Units: 3. Requested Allowable Emissions and Units: 3. Sppmvd at 15% O ₂ 2. Future Effective Date of Allowable Emissions: 3.5 ppmvd at 15% O ₂ 2. Equivalent Allowable Emissions: 3.5 ppmvd at 15% O ₂ 2. So lb/hour 101.2 tons/yea So Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	[]1 []2 []3	toto	ns/year
8. Calculation of Emissions (limit to 600 characters): Maximum lb/hour based on oil-firing. See Section 2.0 and Appendix A in PS Application. 9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max lb/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions 1 of 2 1. Basis for Allowable Emissions Code: OTHER 2. Future Effective Date of Allowable Emissions: 3. Requested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: 3.5 ppmvd at 15% O ₂ 2. Equivalent Allowable Emissions: 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	6. Emission Factor:		7. Emissions
Maximum Ib/hour based on oil-firing. See Section 2.0 and Appendix A in PSI Application. 9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max Ib/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions 1 of 2 1. Basis for Allowable Emissions Code: OTHER 2. Future Effective Date of Allowable Emissions: 3. Requested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: 3.5 ppmvd at 15% O2 25.0 lb/hour 101.2 tons/yea 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	<u> </u>		Method Code:
9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max lb/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions 1 of 2 1. Basis for Allowable Emissions Code: OTHER 3. Requested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: 3.5 ppmvd at 15% O2 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	8. Calculation of Emissions (limit to 600 chara	icters):	
Max lb/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas; equivalent of 1,000 hrs/yr/CT-oil. Allowable Emissions Allowable Emissions 1 of 2 1. Basis for Allowable Emissions Code: OTHER 3. Requested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: 3.5 ppmvd at 15% O2 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	Maximum lb/hour based on oil-firing. S Application.	ee Section 2.0 and Ap	pendix A in PSD
1. Basis for Allowable Emissions Code: OTHER 2. Future Effective Date of Allowable Emissions: Emissions: 4. Equivalent Allowable Emissions: 3.5 ppmvd at 15% O ₂ 25.0 lb/hour 101.2 tons/yea 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	Max lb/hr for oil firing at 20°F turbine inlet:		ŕ
OTHER Emissions: 3. Requested Allowable Emissions and Units: 3.5 ppmvd at 15% O ₂ 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	Allowable Emissions Allowable Emissions 1	of 2	
 Requested Allowable Emissions and Units: 4. Equivalent Allowable Emissions: 25.0 lb/hour 101.2 tons/yea Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters): 		Direct Direct To Date	e of Allowable
3.5 ppmvd at 15% O ₂ 25.0 lb/hour 101.2 tons/yea 5. Method of Compliance (limit to 60 characters): CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	3. Requested Allowable Emissions and Units:		e Emissions
CEM; part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m. 6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):		25.0 lb/hour	101.2 tons/year
6. Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):	5. Method of Compliance (limit to 60 characters	s):	
·	CEM; part 75; 24-hour block load-weighted av	erage; 7 a.m. to 7 a.m.	
Gas Firing: lb/hr at 20°F turbine inlet; TPY for 8,760 hrs/yr at 59°F turbine inlet.	6. Allowable Emissions Comment (Desc. of Op-	erating Method) (limit to	200 characters):
	Gas Firing: Ib/hr at 20°F turbine inlet; TPY for	8,760 hrs/yr at 59°F turbin	e inlet.

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

Emissions Unit Information Section	1	of _	2	CT-1 – Power Block 2
Pollutant Detail Information Page	3	of	6	Nitrogen Oxides

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2.	Total Percent Efficie	ency of Control:
	NO _X			
3.	Potential Emissions:			4. Synthetically
	lb/hour		tons/year	Limited? []
5.	Range of Estimated Fugitive Emissions:			
	[]1 []2 []3		toto	ns/year
6.	Emission Factor:			7. Emissions
	Reference:			Method Code:
8.	Calculation of Emissions (limit to 600 chara	cter	s):	
9.	Pollutant Potential/Fugitive Emissions Com	man:	(limit to 200 charac	tars):
). 	1 ondiant 1 otendan rugidive Emissions Com	поп	(IIIIII to 200 cilarac	icis).
!				
Al	lowable Emissions Allowable Emissions 2	2	of 2	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Da	te of Allowable
	OTHER		Emissions:	
3.	Requested Allowable Emissions and Units:	4.	Equivalent Allowab	le Emissions:
	15 ppmvd @ 15% O ₂		116.9 lb/hour	54.7 tons/year
5.	Method of Compliance (limit to 60 character	s):		
	CEM; Part 75; 24-hour block load-weighted av	⁄ега	ge; 7 a.m. to 7 a.m.	
6.	Allowable Emissions Comment (Desc. of Op	erat	ing Method) (limit to	200 characters):
	Oil Firing: lb/hr at 20°F turbine inlet; TPY equinlet.	ıivak	ent of 1,000 hrs/yr/CT	oil at 59°F turbine

Emissions Unit Information Section	1	of _	2	CT-1 - Power Block 2
Pollutant Detail Information Page	4	of	6	Carbon Monoxide

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units -Emissions-Limited and Preconstruction Review Pollutants Only)

r	otential/Fugitive Emissions					
1.	Pollutant Emitted:	2. Tota	l Percent Effi	iciency of Control:		
	со			,		
3.	Potential Emissions: 154 lb/hour	272		4. Synthetically		
5.		372	tons/year	Limited? []		
			to	tons/year		
6.	Emission Factor:		<u> </u>	7. Emissions		
	Reference: Siemens Westinghouse, 2			Method Code:		
8.	Calculation of Emissions (limit to 600 chara	cters):				
	See Section 2.0 and Appendix A in PSD Appli	cation				
Э. 	 Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max Ib/hr for gas firing at 60% load and 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr gas includes 3,000 hrs at 60% load; equivalent of 1,000 hrs/yr/CT-oil. 					
All	lowable Emissions Allowable Emissions 1	of	2			
1.	Basis for Allowable Emissions Code: OTHER	1	ture Effective	e Date of Allowable		
3.	Requested Allowable Emissions and Units:	4. Eq	uivalent Allo	owable Emissions:		
	10 ppmvd – Base Load/50 ppmvd at 60% load		154 lb/hour			
5.	Method of Compliance (limit to 60 characters	s):				
	EPA Method 10 @ 15% O ₂					
6.	Allowable Emissions Comment (Desc. of Op	erating M	lethod) (limit	to 200 characters):		
	Gas Firing: lb/hr at 20°F turbine inlet 60% 03,000 hours (60% load) at 59°F turbine inlet.	oad; TPY	for 5,760 hrs	s/yr (100% load) and		

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

Emissions Unit Information Section	1	of _	2	CT-1 – Power Block 2
Pollutant Detail Information Page	4	of	6	Carbon Monoxide

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of C	ontrol:
	со		
3.	Potential Emissions: 1b/hour		thetically ited? []
5.	Range of Estimated Fugitive Emissions:		
	[] 1 [] 2 [] 3	totons/year	
6.	Emission Factor:		ssions
	Reference:	Met	hod Code:
8.	Calculation of Emissions (limit to 600 chara	cters):	
9.	Pollutant Potential/Fugitive Emissions Com-	ment (limit to 200 characters):	
	•		
Al	lowable Emissions Allowable Emissions	2 of 2	
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of All Emissions:	owable
3	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emiss	ions:
	30 ppmvd	<u> </u>	tons/year
-5	Method of Compliance (limit to 60 character	<u> </u>	
J.	Wienied of Comphance (mint to co character	<i>5).</i>	
	EPA Method 10; Initial and Annual at Base Lo	ad	!
6.	Allowable Emissions Comment (Desc. of O	perating Method) (limit to 200 cha	racters):
	Oil Firing: Ib/hr at 20°F turbine inlet; TPY equinlet.	uivalent of 1,000 hrs/yr/CT-oil at 59	°F turbine

Emissions Unit Information Section	1	of _	2	CT-1 - Power Block 2
Pollutant Detail Information Page	5	of	6	Volatile Organic Compounds

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

	·
1. Pollutant Emitted:	2. Total Percent Efficiency of Control:
voc	
3. Potential Emissions:	4 S
22 lb/hour	4. Synthetically
5. Range of Estimated Fugitive Emission	Dillitou.
1	_
6. Emission Factor:	3 to tons/year
O. Emission Factor:	7. Emissions
Reference: Siemens Westingho	Method Code:
8. Calculation of Emissions (limit to 600	characters):
or Simulation of Simulations (initial to 000)	characters).
See Section 2.0 and Appendix A in PSD	Application
	44
O Dillion Division States	
9. Pollutant Potential/Fugitive Emissions	Comment (limit to 200 characters):
May lh/hr for oil firing at 20°E turking in	A-A-TOV -A FOOT 4 11 1 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A
(100% and 60% loads); equivalent of 1,0	llet; TPY at 59°F turbine inlet with 7,760 hrs/yr-gas
(**************************************	not maryno r-on.
Allowable Emissions Allowable Emission	ns 1 of 2
1 Basis for Allowable Emissions Code:	
OTHER OTHER	2. Future Effective Date of Allowable
	Emissions:
3. Requested Allowable Emissions and U	•
1.8 ppmvd – Baseload/ 3 ppmvd – 60% i	oad 5.3 lb/hour 20 tons/year
5. Method of Compliance (limit to 60 cha	racters):
	,
EPA Method 25A; at 15% O ₂	
6 Allowable Emissions Comment (Dose	of Operating Masks I) (Iimis a 200 I
	of Operating Method) (limit to 200 characters):
Gas Firing: Ib/hr at 60% load 20°F tur	bine inlet; TPY for 5,760 hrs/yr (100% load) and
3,000 hrs (60% load) at 59°F turbine inlet	t.
,	

Emissions Unit Information Section	1	of	2	CT-1 – Power Block 2
Pollutant Detail Information Page	5	of	6	Volatile Organic Compounds

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

Pollutant Emitted:	2. Total Percent Efficiency of Control:
voc	
3. Potential Emissions:	4. Synthetically tons/year Limited? []
5. Range of Estimated Fugitive Emissions:	tonsyour Enniced []
[] 1 [] 2 [] 3	totons/year
6. Emission Factor:	7. Emissions
Reference:	Method Code:
8. Calculation of Emissions (limit to 600 chara	icters):
9. Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):
	interior (interior de 200 cinaración).
Allowable Emissions Allowable Emissions	2 of 2
Basis for Allowable Emissions Code: OTHER	Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
10 ppmvw	22 lb/hour 10.5 tons/year
5. Method of Compliance (limit to 60 character	·s):
EPA Method 25A	
6. Allowable Emissions Comment (Desc. of O	perating Method) (limit to 200 characters):
Oil Firing: Ib/hr at 20°F turbine inlet; TPY equinlet.	rivalent of 1,000 hrs/yr/CT-oil at 59°F turbine

Emissions Unit Information Section	1	of _	2	CT-1 - Power Block 2
Pollutant Detail Information Page	6	of	6	Sulfuric Acid Mist

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2.	Tota	l Percent E	ficien	cy of Control:
L	SAM					
3.	Potential Emissions:				4	Synthetically
<u>_</u>	16.2 lb/hour	1	0.5	tons/year		Limited? []
5.						
<u> </u>			 .	to	tons	year
6.	Emission Factor: 10 % SO ₂				7	Emissions
	Reference: Golder, 2000					Method Code:
8.	Calculation of Emissions (limit to 600 chara	cter	s):			
	Emission Factor is converted to SAM. SAMPLICATION.	See	Secti	on 2.0 and	l Appe	endix A in PSD
Э. 	Pollutant Potential/Fugitive Emissions Communication Max lb/hr for oil firing at 20°F turbine inlet; TF gas; equivalent of 1,000 hrs/yr/CT-oil.					
All	owable Emissions Allowable Emissions	1	of	2		_
1.	Basis for Allowable Emissions Code: OTHER	2.		re Effective	Date	of Allowable
3.	Requested Allowable Emissions and Units:	4.	Equi	valent Allo	wable	Emissions:
	Pipeline Gas			0.9 lb/h	our	3.4 tons/year
5.	Method of Compliance (limit to 60 character	s):				
	Fuel Sampling - Vendor					
6.	Allowable Emissions Comment (Desc. of Op	erati	ng M	ethod) (lim	it to 20	00 characters):
·	Gas Firing: lb/hr at 20°F turbine inlet; TPY for		-	. ,		ĺ

Emissions Unit Information Section	1	of _	2	CT-1 – Power Block 2
Pollutant Detail Information Page	6	of	6	Sulfuric Acid Mist

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

	Pollutant Emitted:	2. Total Percent Efficiency of Control:
	SAM	
3.	Potential Emissions:	4. Synthetically
	lb/hour	tons/year Limited? []
5.	Range of Estimated Fugitive Emissions:	
		to tons/year
6.	Emission Factor:	7. Emissions Method Code:
	Reference:	Method Code.
8.	Calculation of Emissions (limit to 600 charac	cters):
[
9.	Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):
Al	lowable Emissions Allowable Emissions	
		2 of 2
1.	<u></u>	2. Future Effective Date of Allowable
3.	Basis for Allowable Emissions Code: OTHER Requested Allowable Emissions and Units:	
	OTHER	Future Effective Date of Allowable Emissions:
3.	OTHER Requested Allowable Emissions and Units:	Future Effective Date of Allowable Emissions: 4. Equivalent Allowable Emissions: 16.2 lb/hour 7.44 tons/year
3.	OTHER Requested Allowable Emissions and Units: 0.05 % Sulfur oil Method of Compliance (limit to 60 character)	Future Effective Date of Allowable Emissions: 4. Equivalent Allowable Emissions: 16.2 lb/hour 7.44 tons/year
3.	OTHER Requested Allowable Emissions and Units: 0.05 % Sulfur oil	Future Effective Date of Allowable Emissions: 4. Equivalent Allowable Emissions: 16.2 lb/hour 7.44 tons/year
3.	OTHER Requested Allowable Emissions and Units: 0.05 % Sulfur oil Method of Compliance (limit to 60 character Fuel Sampling - Vendor	2. Future Effective Date of Allowable Emissions: 4. Equivalent Allowable Emissions: 16.2 lb/hour 7.44 tons/year 7.5):
5.	OTHER Requested Allowable Emissions and Units: 0.05 % Sulfur oil Method of Compliance (limit to 60 character Fuel Sampling - Vendor Allowable Emissions Comment (Desc. of Open	2. Future Effective Date of Allowable Emissions: 4. Equivalent Allowable Emissions: 16.2 lb/hour 7.44 tons/year rs): perating Method) (limit to 200 characters):
5.	OTHER Requested Allowable Emissions and Units: 0.05 % Sulfur oil Method of Compliance (limit to 60 character Fuel Sampling - Vendor	2. Future Effective Date of Allowable Emissions: 4. Equivalent Allowable Emissions: 16.2 lb/hour 7.44 tons/year rs): perating Method) (limit to 200 characters):

Emissions	Unit	Information	Section	1	of	2

V	isible Emissions Limitation: Visible Emissi	ons Limitation 1 of 3	
1.	Visible Emissions Subtype: VE10	Basis for Allowable Opacity: Nule X Other	
3.	Requested Allowable Opacity:	•	
		sceptional Conditions: %	
	Maximum Period of Excess Opacity Allowe	ed: min/hour	
4.	Method of Compliance:		
	EPA Method 9.		
5.	Visible Emissions Comment (limit to 200 cl	haracters):	
	Gas Firing		
i 			
	I. CONTINUOUS MO	NITOR INFORMATION	
•		NITOR INFORMATION Subject to Continuous Monitoring)	
	(Only Regulated Emissions Units	Subject to Continuous Monitoring)	
	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous	Subject to Continuous Monitoring) Monitor1 of 2	
	(Only Regulated Emissions Units	Subject to Continuous Monitoring)	
	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM	Subject to Continuous Monitoring) Monitor1 of 2	
1. 3.	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information:	Subject to Continuous Monitoring) Monitor 1 of 2 2. Pollutant(s): NO _x	
1. 3.	(Only Regulated Emissions Units Intinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determine	Subject to Continuous Monitoring) Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other	
1. 3. 4.	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determine Model Number:	Subject to Continuous Monitoring) Monitor1 _ of _2 2. Pollutant(s): NO _x [X] Rule [] Other d Serial Number:	
1. 3.	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determine Model Number:	Subject to Continuous Monitoring) Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other	
 3. 4. 5. 	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determine Model Number:	Subject to Continuous Monitoring) Monitor1 _ of _ 2 2. Pollutant(s): NO _x [X] Rule [] Other d	
 3. 4. 5. 	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determine Model Number: Installation Date:	Subject to Continuous Monitoring) Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other d Serial Number: 6. Performance Specification Test Date: characters):	
 3. 4. 5. 	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determine Model Number: Installation Date: Continuous Monitor Comment (limit to 200 NOx CEM required by 40 CFR Part 75. A	Subject to Continuous Monitoring) Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other d Serial Number: 6. Performance Specification Test Date: characters):	
 3. 4. 5. 	(Only Regulated Emissions Units ontinuous Monitoring System: Continuous Parameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determine Model Number: Installation Date: Continuous Monitor Comment (limit to 200 NOx CEM required by 40 CFR Part 75. A	Subject to Continuous Monitoring) Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other d Serial Number: 6. Performance Specification Test Date: characters):	

\sim 1	- 4		D	DI.	! -	2
L I	-1	_	Power	ыс)CK	Z

Emissions Unit Information Section	1	of	2	
------------------------------------	---	----	---	--

<u>Vi</u>	sible Emissions Limitation: Visible Emissi	ons Limitation 2 of 3
1.	Visible Emissions Subtype:	2. Basis for Allowable Opacity:
	VE20	[] Rule [X] Other
3.	Requested Allowable Opacity: Normal Conditions: 20 % Ex Maximum Period of Excess Opacity Allower 20 % Ex	ceptional Conditions: % ed: min/hour
4.	Method of Compliance:	
	EPA Method 9.	
5.	Visible Emissions Comment (limit to 200 cl	naracters):
	Oil Firing	•
		•
<u>Co</u>		NITOR INFORMATION Subject to Continuous Monitoring) Monitor2 of2
1.	Parameter Code: EM	2. Pollutant(s): NO _x
3.	CMS Requirement:	[X] Rule [] Other
4.	Monitor Information:	
	Manufacturer: Siemens Westing	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment (limit to 200	characters):
	Parameter Code: WTF. Required by 40 Request NO_X CEM in lieu of WTF monitoring	CFR 60; Subpart GG; S.60.334; oil firing.
	•	•

<u>Visible Emissions Limitation:</u> Visible Emissions Limitation 3 of 3

1.	Visible Emissions Subtype: VE99	2. Basis for Allowable Opacity: [X] Rule [Other
3.	The second of th	cceptional Conditions: 100 %
4.	Method of Compliance:	
	None	
5.	Visible Emissions Comment (limit to 200 cl	haracters):
	FDEP Rule 62-210.700(2); allowed for 2 hours shutdown and malfunction.	s (120 minutes) per 24 hours for startup,
<u>Co</u>	I. CONTINUOUS MODE (Only Regulated Emissions Units ntinuous Monitoring System: Continuous Parameter Code:	
<u>.</u>		2. Pollutant(s)
3.	CMS Requirement:	[] Rule [] Other
4 . 5 .	Monitor Information: Manufacturer: Model Number: Installation Date:	Serial Number: 6. Performance Specification Test Date:
7.	Continuous Monitor Comment (limit to 200	characters):

Emissions Unit Information Section	1	of	2
---	---	----	---

J. EMISSIONS UNIT SUPPLEMENTAL INFORMATION (Regulated Emissions Units Only)

Supplemental Requirements

ſ	1	Process Flow Diagram
	1.	[X] Attached, Document ID: Fig 2-2 [] Not Applicable [] Waiver Requested
	2.	Fuel Analysis or Specification [X] Attached, Document ID: Tab 2-4/2-5 [] Not Applicable [] Waiver Requested
	3.	Detailed Description of Control Equipment [X] Attached, Document ID: Sec 4.0 [] Not Applicable [] Waiver Requested
	4.	Description of Stack Sampling Facilities [X] Attached, Document ID: PSD Appl. [] Not Applicable [] Waiver Requested
ľ	5.	Compliance Test Report
		Attached, Document ID:
l		Previously submitted, Date:
		[X] Not Applicable
	6.	Procedures for Startup and Shutdown [] Attached, Document ID: [X] Not Applicable [] Waiver Requested
	7.	Operation and Maintenance Plan [] Attached, Document ID: [X] Not Applicable [] Waiver Requested
	8.	Supplemental Information for Construction Permit Application [X] Attached, Document ID: PSD Appl. [] Not Applicable
	9.	Other Information Required by Rule or Statute [X] Attached, Document ID: PSD Appl. [] Not Applicable
	10.	Supplemental Requirements Comment:
ı		

Additional Supplemental Requirements for Title V Air Operation Permit Applications

11. Alternative Methods of Operation	
[] Attached, Document ID: [] Not Applicable	
12. Alternative Modes of Operation (Emissions Trading)	
[] Attached, Document ID: [] Not Applicable	
13. Identification of Additional Applicable Requirements	
[] Attached, Document ID: [] Not Applicable	
14. Compliance Assurance Monitoring Plan	
[] Attached, Document ID: [] Not Applicable	
15. Acid Rain Part Application (Hard-copy Required)	
[] Acid Rain Part - Phase II (Form No. 62-210.900(1)(a)) Attached, Document ID:	
[] Repowering Extension Plan (Form No. 62-210.900(1)(a)1.) Attached, Document ID:	
[] New Unit Exemption (Form No. 62-210.900(1)(a)2.) Attached, Document ID:	
[] Retired Unit Exemption (Form No. 62-210.900(1)(a)3.) Attached, Document ID:	
Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.) Attached, Document ID:	
Phase NOx Averaging Plan (Form No. 62-210.900(1)(a)5.) Attached, Document ID:	ľ
[] Not Applicable	

III. EMISSIONS UNIT INFORMATION

A separate Emissions Unit Information Section (including subsections A through J as required) must be completed for each emissions unit addressed in this Application for Air Permit. If submitting the application form in hard copy, indicate, in the space provided at the top of each page, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application.

A. GENERAL EMISSIONS UNIT INFORMATION (All Emissions Units)

Emissions Unit Description and Status

1.	Type of Emission	s Unit Addressed in This	s Section: (Check one)			
[X	process or produ		n addresses, as a single emis which produces one or more a on point (stack or vent).			
[process or produ		n addresses, as a single emis s which has at least one defi gitive emissions.			
]	-		n addresses, as a single emis s which produce fugitive em	-		
2.	Regulated or Unre	egulated Emissions Unit	? (Check one)			
[X	The emissions u emissions unit.	unit addressed in this Em	issions Unit Information Sec	ction is a regulated		
[] The emissions u emissions unit.	init addressed in this Em	issions Unit Information Sec	ction is an unregulated		
3.	Description of Em	nissions Unit Addressed	in This Section (limit to 60	characters):		
	CT-2; Power Block	< 2				
4.	Emissions Unit Id	entification Number		[] No ID [X] ID Unknown		
5.	Emissions Unit 6. Initial Startup 7. Emissions Unit Major 8. Acid Rain Unit? Status Code: Group SIC Code: [X] 49					
9.	Emissions Unit C	omment: (Limit to 500 C	Characters)			
	Siemens Westing back-up.	house 501 FD combust	ion turbine firing natural ga	as with distillate oil		

Emissions Unit Control Equipment

1.	Control Equipment/Method	Description (I	imit to 200	characters	per device	or method)
----	--------------------------	----------------	-------------	------------	------------	------------

Dry Low NO_x combustion-natural gas firing

Selective Catalytic Reduction (SCR) - natural gas firing/ distillate oil firing.

Water Injection - distillate oil firing

2. Control Device or Method Code(s): 25, 65, 28

Incinerator Afterburner Temperature:

Emissions Unit Details

1.	Package Unit: Manufacturer: Siemens Westinghouse		Model Number:	501 FD	
2.	Generator Nameplate Rating:	170	MW		
3.	Incinerator Information:		,	 .	-
	Dwell Temperature:			°F	
	Dwell Time:			seco	onds

DEP Form No. 62-210.900(1) - Form Effective: 2/11/99

°F

Emissions	Unit	Information	Section	2	of	2
7755410010110						

CT-2 - Power Block 2

B. EMISSIONS UNIT CAPACITY INFORMATION (Regulated Emissions Units Only)

Emissions Unit Operating Capacity and Schedule

2. Maximum Incineration Rate: Ib/hr tons/day 3. Maximum Process or Throughput Rate: 4. Maximum Production Rate: 5. Requested Maximum Operating Schedule:	1.	Maximum Heat Input Rate:		1,830	mmBtu/hr	
4. Maximum Production Rate: 5. Requested Maximum Operating Schedule: hours/day days/week weeks/year 8,760 hours/year 6. Operating Capacity/Schedule Comment (limit to 200 characters): Heat input is HHV with natural gas; heat input at 59°F turbine inlet temperature; MW	2.	Maximum Incineration Rate:	lb/hr		tons/day	
5. Requested Maximum Operating Schedule: hours/day days/week weeks/year 8,760 hours/year 6. Operating Capacity/Schedule Comment (limit to 200 characters): Heat input is HHV with natural gas; heat input at 59°F turbine inlet temperature; MW	3.	Maximum Process or Through	put Rate:			
hours/day days/week weeks/year 8,760 hours/year 6. Operating Capacity/Schedule Comment (limit to 200 characters): Heat input is HHV with natural gas; heat input at 59°F turbine inlet temperature; MW	4.	Maximum Production Rate:				
weeks/year 8,760 hours/year 6. Operating Capacity/Schedule Comment (limit to 200 characters): Heat input is HHV with natural gas; heat input at 59°F turbine inlet temperature; MW	5.	Requested Maximum Operation	g Schedule:			
6. Operating Capacity/Schedule Comment (limit to 200 characters): Heat input is HHV with natural gas; heat input at 59°F turbine inlet temperature; MW			hours/day		days/week	
Heat input is HHV with natural gas; heat input at 59°F turbine inlet temperature; MW			weeks/year	8,760	hours/year	
	6.	Operating Capacity/Schedule	Comment (limit to 200 cl	naracters):		
			gas; heat input at 59°F tu	rbine inlet tem	perature; MW	

C. EMISSIONS UNIT REGULATIONS (Regulated Emissions Units Only)

List of Applicable Regulations

		τ			···.	
See Attachment HEC-EU1-C						
See PSD Application				<u>.</u>		
						·
						•
			· · · · · ·			
				-	<u>-</u>	
		<u> </u>				
						
						
					· ·	
		· · · · · · · · · · · · · · · · · · ·				
						
		· · · · · ·				
					·	
						
			<u>.</u>	·	<u> </u>	
		······				
	\dashv				· · · · · · · · · · · · · · · · · · ·	
	_					

D. EMISSION POINT (STACK/VENT) INFORMATION (Regulated Emissions Units Only)

Emission Point Description and Type

1.	Identification of Point on Pl Flow Diagram? Fig 2-1	ot Plan or	2.	Emission Po	oint Type Code:	
3.	Descriptions of Emission Policy 100 characters per point):	oints Comprising	g this	Emissions (Jnit for VE Tracking	(limit to
	Exhausts through a single s	tack.				
4.	ID Numbers or Description	s of Emission Ur	nits w	vith this Emi	ssion Point in Commo	on:
			<u>.</u>			
5.	Discharge Type Code:	6. Stack Heigh		£	7. Exit Diameter:	f. at
	V		125	feet	19	feet
8.	Exit Temperature:	9. Actual Vol	umet	ric Flow	10. Water Vapor:	
	190 °F	Rate:	~ 40 7			%
11	. Maximum Dry Standard Flo		9,487		mission Point Height:	
		dscfm			=	feet
13	Emission Point UTM Coord	linates:				
	Zone: 17 E	ast (km): 414.4		North	h (km): 3073.9	
14	Emission Point Comment (l	imit to 200 char	acter:	s):		
	Temperature and flow for na application.	itural gas at 59°F	: turb	ine inlet; See	e Tables 2-1 and 2-2 in	PSD

E. SEGMENT (PROCESS/FUEL) INFORMATION (All Emissions Units)

Se	gment	<u>Descri</u>	<u>ptio</u>	<u>n</u> 2	ind Rate:	Segment	1	of	2	
								_		-
-	~		_							_

1.	Segment Description (Pre	ocess/Fuel Type)	(limit to 500 cl	naracters):
	Natural Gas			
L				
2.	Source Classification Coc 2-01-002-01	de (SCC):	3. SCC Units	
4.	Maximum Hourly Rate: 1.92	5. Maximum . 15,564	Annual Rate:	6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum 9	% Ash:	9. Million Btu per SCC Unit: 1,030
10	. Segment Comment (limit	to 200 characters):	
	Based on 1,030 BTU/CF temperatures.	(HHV); maximum	hourly at 20°F;	annual at 59°F; turbine inlet
	tomporatures.			
<u>Se</u>	gment Description and R	ate: Segment 2	of 2	
1.				naracters):
	Distillate Fuel Oil	• • •	`	,
	Same Cl. 'C. d' C. l	(0.00)	r	
Z. 	Source Classification Cod 2-01-001-01	e (SCC):	3. SCC Units 1,000 Galle	
	Maximum Hourly Rate: 14.9	5. Maximum A 13,683		6. Estimated Annual Activity Factor:
7.	Maximum % Sulfur:	8. Maximum %	Ash:	9. Million Btu per SCC Unit: 141.2
10.	Segment Comment (limit t	to 200 characters)		
	BTU based on HHV of 141 gallons per year requested	.2 MMBtu/1,000 g for Power Block 2	allons. Aggreg	ate fuel usage of 27,365,000
	•			
			<u>.</u>	

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

F. EMISSIONS UNIT POLLUTANTS (All Emissions Units)

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
	Device Code	Device Code	Regulatory Code
PM			EL
SO ₂			EL
NO _x	026	065	EL
со			EL
voc			EL
SAM			EL
-			
		-	

Emissions Unit Information Section	2	of _	2	CT-2 - Power Block 2
Pollutant Detail Information Page	1	of	6	Particulate Matter - Total

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2 Table
1.		2. Total Percent Efficiency of Control:
	PM	
3.	Potential Emissions:	4. Synthetically
	64.8 lb/hour	60.3 tons/year Limited? []
5.	Range of Estimated Fugitive Emissions:	
		to tons/year
6.	Emission Factor:	7. Emissions
	Reference: Siemens Westinghouse, 2	Method Code:
8.	Calculation of Emissions (limit to 600 chara	
	See Section 2.0 and Appendix A in PSD Appli	ication
9.	Pollutant Potential/Fugitive Emissions Comm	ment (limit to 200 characters):
	Max lb/hr for oil firing at 20°F turbine inlet; gas; equivalent of 1,000 hrs/yr/CT-oil.	TPY at 59°F turbine inlet with 7,760 hrs/yr-
Alle	owable Emissions Allowable Emissions	1 of 2
	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	10 % Opacity	7.3 lb/hour 34.4 tons/year
5.	Method of Compliance (limit to 60 character	s):
1	EPA Method 9	
6	Allowable Emissions Comment (Desc. of Op	erating Method) (limit to 200 characters):
	Gas Firing: lb/hr at 20°F turbine inlet; TPY for	ŕ

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

Emissions Unit Information Section	2	of _	2	CT-2 – Power Block 2
Pollutant Detail Information Page	1	of	6	Particulate Matter - Total

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:				
	PM					
3.	Potential Emissions: lb/hour	4. Synthetically tons/year Limited? []				
5.	Range of Estimated Fugitive Emissions:					
		toto				
6.	Emission Factor:	7. Emissions Method Code:				
	Reference:	Wiethod Code:				
8.	Calculation of Emissions (limit to 600 chara	cters):				
-	Palling at Property of the Control o	4' 200 1				
9.	Pollutant Potential/Fugitive Emissions Comm	ment (limit to 200 characters):				
All	lowable Emissions Allowable Emissions	2 of 2				
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable				
3	Requested Allowable Emissions and Units:	Emissions: 4. Equivalent Allowable Emissions:				
٥.	•					
_	20% Opacity	64.8 lb/hour 29.8 tons/year				
5.	Method of Compliance (limit to 60 character	rs):				
	EPA Method 9					
6.	Allowable Emissions Comment (Desc. of Or	perating Method) (limit to 200 characters):				
	Oil firing: lb/hr at 20°F turbine inlet; TPY equinlet.	ivalent of 1,000 hrs/yr/CT-oil at 59°F turbine				

Emissions Unit Information Section	2	of _	2	CT-2 - Power Block 2
Pollutant Detail Information Page	2	of	6	Sulfur Dioxide

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2	Tota	Percent Fi	fficien	cy of Control:
	SO ₂	- .	1011	ii i ci cciii Li	TICICI	ey of Control.
3.		_			1	4. Synthetically
	105.6 lb/hour	6	8.4	tons/year	l	Limited? []
5.	<u> </u>			4 -		,
6.	Emission Factor:	:		to		/year
0.						7. Emissions Method Code:
	Reference: Siemens Westinghouse, 2	000				2
8.	Calculation of Emissions (limit to 600 chara	cter	s):			
	See Section 2.0 and Americally A to DOD A 10	· 4.				
	See Section 2.0 and Appendix A in PSD Appli	catio	on			
9	Pollutant Potential/Fugitive Emissions Comm	neni	(lim	it to 200 ch	aracte	ra):
	2 STABLE I CONTRACT ESTATO DIMESTONS COMP		(11111	111 to 200 Cm	ar acte.	13).
	Max lb/hr for oil firing at 20°F turbine inlet; T	PY a	t 59°	F turbine inl	et; TP	Y at 59°F turbine
	inlet with 7,760 hrs/yr-gas; equivalent of 1,000) hrs	/yr/C	T-oil.		
All	lowable Emissions Allowable Emissions	i	of_	2		
1.	Basis for Allowable Emissions Code:	2.	Fut	re Effective	Date	of Allowable
	OTHER		Emi	issions:		
3.	Requested Allowable Emissions and Units:	4.	Equ	ivalent Allo	wable	Emissions:
	Pipeline Gas			6 lb/hou	Г	22.4 tons/year
5 .	Method of Compliance (limit to 60 character	s):				
	Fuel Campling Mandan					
	Fuel Sampling - Vendor					
6.	Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters):					
	·					
	Gas Firing: Ib/hr at 20°F turbine inlet; TPY for	8,76	i0 hr	s/yr at 59°F t	urbine	inlet.

Emissions Unit Information Section	2	of -	2	CT-2 – Power Block 2
Pollutant Detail Information Page	2	of	6	Sulfur Dioxide

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:
	SO ₂	
3.	Potential Emissions: 1b/hour	4. Synthetically tons/year Limited? []
5.	Range of Estimated Fugitive Emissions:	
	[] 1 [] 2 [] 3	toto
6.	Emission Factor:	7. Emissions
	Reference:	Method Code:
8.	Calculation of Emissions (limit to 600 chara	cters):
		·
9.	Pollutant Potential/Fugitive Emissions Comr	ment (limit to 200 characters):
All	lowable Emissions Allowable Emissions 2	2 of 2
1.	Basis for Allowable Emissions Code: OTHER	Future Effective Date of Allowable Emissions:
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	0.05 % Sulfur Oil	105.6 lb/hour 48.6 tons/year
5.	Method of Compliance (limit to 60 character	s):
	Fuel Sampling - Vendor	
6.	Allowable Emissions Comment (Desc. of Op	perating Method) (limit to 200 characters):
	-	- , ,
	Oil Firing: Ib/hr at 20°F turbine inlet; TPY equinlet.	ivalent of 1,000 hrs/yr/CT-oil at 59°F turbine

Emissions Unit Information Section	2	of _	2	CT-2 – Power Block 2
Pollutant Detail Information Page	3	of	6	Nitrogen Oxides

Emissions-Limited and Preconstruction Review Pollutants Only)

<u>Potentia</u>	l/Fugitive	<u>Emissions</u>

1.	Pollutant Emitted	2. Total Percent Efficie	ency of Control:				
	NO _x	2. Your Polocit Enforce	shey of Condon.				
3.		144.3 tons/year	4. Synthetically Limited? [X]				
5.	Range of Estimated Fugitive Emissions:						
<u> </u>		toto	ns/year				
6.	Emission Factor: Reference: Siemens Westinghouse, 1	998	7. Emissions Method Code:				
8.	Calculation of Emissions (limit to 600 chara		2				
	Maximum Ib/hour based on oil-firing. S Application.	ee Section 2.0 and Ap	pendix A in PSD				
9.	 Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max lb/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr-gas; equivalent of 1,000 hrs/yr/CT-oil. 						
All	owable Emissions Allowable Emissions 1	of 2					
1.	Basis for Allowable Emissions Code: OTHER	Future Effective Dar Emissions:	te of Allowable				
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowab	le Emissions:				
	3.5 ppmvd at 15% O ₂	25.0 lb/hour	101.2 tons/year				
5.	Method of Compliance (limit to 60 characters	s):					
	CEM; part 75; 24-hour block load-weighted av	erage; 7 a.m. to 7 a.m.					
6.	Allowable Emissions Comment (Desc. of Op	erating Method) (limit to	200 characters):				
	Gas Firing: lb/hr at 20°F turbine inlet; TPY for	8,760 hrs/yr at 59°F turbii	ne inlet.				

DEP Form No. 62-210.900(1) - Form

Effective: 2/11/99

2

Emissions Unit Information Section	2	of _	2	CT-2 – Power Block 2
Pollutant Detail Information Page	3	of	6	Nitrogen Oxides

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:					
	NO _x						
3.	Potential Emissions:		4. Synthetically				
	lb/hour	tons/year	Limited? []				
5.	Range of Estimated Fugitive Emissions:						
	[] 1 [] 2 [] 3	to to	ns/year				
6.	Emission Factor:		7. Emissions				
	Reference		Method Code:				
8.	Calculation of Emissions (limit to 600 charac	cters):					
		,					
	211	000 1					
9.	Pollutant Potential/Fugitive Emissions Comr	nent (limit to 200 charac	ters):				
i							
A 11	Jamakla Emissions Allowakla Emissions	of 2					
All		of 2					
1.	Basis for Allowable Emissions Code:	2. Future Effective Da	ite of Allowable				
	OTHER	Emissions:	1 72				
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowal	ole Emissions:				
	15 ppmvd @ 15% O ₂	116.9 lb/hour	54.7 tons/year				
5.	5. Method of Compliance (limit to 60 characters):						
	CEM; Part 75; 24-hour block load-weighted average; 7 a.m. to 7 a.m.						
6.	Allowable Emissions Comment (Desc. of Op	erating Method) (limit to	200 characters):				
	OH Picture III III as good sould be follow TOV		7 all a4 5005 Amelia a				
	Oil Firing: Ib/hr at 20°F turbine inlet; TPY equinlet.	ivalent of 1,000 hrs/yr/C	-on at 55°F turpine				

Emissions Unit Information Section _	2	of _	2	CT-2 - Power Block 2
Pollutant Detail Information Page	4	of	6	Carbon Monoxide

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Effici	ency of Control:			
	со	- Total Tolochi Ellion	ency of control.			
3.	Potential Emissions: 154 lb/hour	372 tons/year	4. Synthetically Limited? []			
5.	Range of Estimated Fugitive Emissions:		<u> </u>			
Ļ		toto	ns/year			
6.	Emission Factor: Reference: Siemens Westinghouse, 20	, , ,	7. Emissions Method Code:			
8.	Calculation of Emissions (limit to 600 charac	ters):	· ·			
	See Section 2.0 and Appendix A in PSD Application					
	9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max lb/hr for gas firing at 60% load and 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr-gas includes 3,000 hrs at 60% load; equivalent of 1,000 hrs/yr/CT-oil.					
	lowable Emissions Allowable Emissions 1	of				
1.	Basis for Allowable Emissions Code: OTHER	2. Future Effective I Emissions:	Date of Allowable			
3.	Requested Allowable Emissions and Units:	4. Equivalent Allow	able Emissions:			
	10 ppmvd – Base Load/50 ppmvd at 60% load	154 lb/hour	340 tons/year			
5.	Method of Compliance (limit to 60 characters)):				
	EPA Method 10 @ 15% O ₂					
6.	Allowable Emissions Comment (Desc. of Ope	rating Method) (limit to	200 characters):			
	Gas Firing: Ib/hr at 20°F turbine inlet 60% lo 3,000 hours (60% load) at 59°F turbine inlet.		,			

DEP Form No. 62-210.900(1) - Form

9837576Y/F2/TV Effective: 2/11/99 19 5/26/00

Emissions Unit Information Section	2	of _	2	CT-2 - Power Block 2
Pollutant Detail Information Page	4	of	6	Carbon Monoxide

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1. Pollutant Emitted:	2. Total Percent Efficiency of Control:
со	
3. Potential Emissions:	4. Synthetically
lb/hour	tons/year Limited? []
5. Range of Estimated Fugitive Emissions:	,
6. Emission Factor:	totons/year
Reference:	7. Emissions Method Code:
8. Calculation of Emissions (limit to 600 chara	
9. Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):
Allowable Emissions Allowable Emissions	2 of 2
Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
30 ppmvd	112 lb/hour 53 tons/year
5. Method of Compliance (limit to 60 character	s):
EPA Method 10; Initial and Annual at Base Lo	ad
6. Allowable Emissions Comment (Desc. of Op	perating Method) (limit to 200 characters):
Oil Firing: lb/hr at 20°F turbine inlet; TPY equinlet.	rivalent of 1,000 hrs/yr/CT-oil at 59°F turbine

Emissions Unit Information Section	2	of	2	CT-2 - Power Block 2
Pollutant Detail Information Page	5	of	6	Volatile Organic Compounds

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Effici	ency of Control:			
	voc					
3.	Potential Emissions: 22 lb/hour	28.4 tons/year	4. Synthetically Limited? []			
5.	Range of Estimated Fugitive Emissions:		<u> </u>			
	[]1 []2 []3	to to	ns/year			
6.	Emission Factor:		7. Emissions			
	Reference: Siemens Westinghouse, 2	000	Method Code:			
8.	Calculation of Emissions (limit to 600 chara	cters):	-			
	See Section 2.0 and Appendix A in PSD Application					
	9. Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max lb/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr-gas (100% and 60% loads); equivalent of 1,000 hrs/yr/CT-oil.					
Allo	owable Emissions Allowable Emissions	of 2				
	Basis for Allowable Emissions Code: OTHER	Future Effective Da Emissions:	te of Allowable			
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowab	le Emissions:			
ı	1.8 ppmvd – Baseload/ 3 ppmvd – 60% load	5.3 lb/hour	20 tons/year			
5 . 1	Method of Compliance (limit to 60 characters	s):				
1	EPA Method 25A; at 15% O ₂					
6	Allowable Emissions Comment (Desc. of Op	erating Method) (limit to	200 characters):			
;	Gas Firing: lb/hr at 60% load 20°F turbine i 3,000 hrs (60% load) at 59°F turbine inlet.	nlet; TPY for 5,760 hrs/y	र (100% load) and			

Emissions Unit Information Section	2	of _	2	CT-2 – Power Block 2
Pollutant Detail Information Page	5	of	6	Volatile Organic Compounds

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1. Pollutant Emitted:	2. Total Percent Efficiency of Control:
Voc	2. Total Forom Emolency of Condor.
3. Potential Emissions:	4. Synthetically
1b/hour 5. Range of Estimated Fugitive Emissions:	tons/year Limited? []
[] 1 [] 2 [] 3	totons/year
6. Emission Factor:	7. Emissions
Reference:	Method Code:
8. Calculation of Emissions (limit to 600 chara	acters):
o. Calculation of Lineshons (mint to 000 Chars	icters).
	·
O Pollutont Potential/Evolting Funician Com	
9. Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):
Allowable Emissions Allowable Emissions	2 of 2
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable
OTHER	Emissions:
3. Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
10 ppmvw	22 lb/hour 10.5 tons/year
5. Method of Compliance (limit to 60 character	's):
EPA Method 25A	
Era Method 25A	
6. Allowable Emissions Comment (Desc. of Op	perating Method) (limit to 200 characters):
Oil Firing: lb/hr at 20°F turbine inlet; TPY equinlet.	ivalent of 1,000 hrs/yr/CT-oil at 59°F turbine

DEP Form No. 62-210.900(1) - Form

Emissions Unit Information Section	2	of _	2	CT-2 - Power Block
Pollutant Detail Information Page	6	of	6	Sulfuric Acid Mis

Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2.	Tota	l Percent E	fficie	ncy	of Control	:	
	SAM								
3.	Potential Emissions: 16.2 lb/hour		0.5	tono/		4.	- ,	ılly	
5.			0.5	tons/year			Limited?		
J.	Range of Estimated Fugitive Emissions: [] 1 [] 2 [] 3			to	tor	ıs/y	ear		
6.	Emission Factor: 10 % SO ₂			-		7.	Emissions	}	
	Reference: Golder, 2000						Method C	ode:	
8.	Calculation of Emissions (limit to 600 chara	cters	<u>):</u>						
	Emission Factor is converted to SAM. See Section 2.0 and Appendix A in PSD Application.								
9.	 Pollutant Potential/Fugitive Emissions Comment (limit to 200 characters): Max lb/hr for oil firing at 20°F turbine inlet; TPY at 59°F turbine inlet with 7,760 hrs/yr-gas; equivalent of 1,000 hrs/yr/CT-oil. 								
Al	lowable Emissions Allowable Emissions	1	of	2					
1.	Basis for Allowable Emissions Code: OTHER	2.		re Effectiv	e Dat	te o	f Allowabl	e	
3.	Requested Allowable Emissions and Units:	4.	Equ	ivalent Alle	owab	le E	missions:		
	Pipeline Gas			0.9 lb/l	nour		3.4 tons/y	year	
5.	Method of Compliance (limit to 60 character	s):					<u></u>		
	Fuel Sampling - Vendor								
6.	Allowable Emissions Comment (Desc. of Op	erati	ng M	1ethod) (lin	nit to	200	characters	3):	
	Allowable Emissions Comment (Desc. of Operating Method) (limit to 200 characters): Gas Firing: Ib/hr at 20°F turbine inlet; TPY for 8,760 hrs/yr at 59°F turbine inlet.								

Emissions Unit Information Section	2	of _	2	CT-2 – Power Block 2
Pollutant Detail Information Page	6	of	6	Sulfuric Acid Mist

G. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION (Regulated Emissions Units Emissions-Limited and Preconstruction Review Pollutants Only)

Potential/Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:
	SAM	
3.	Potential Emissions:	4. Synthetically
	lb/hour	tons/year Limited? []
5.		,
		totons/year
6.	Emission Factor:	7. Emissions Method Code:
	Reference:	Wethou Code.
8.	Calculation of Emissions (limit to 600 chara	cters):
9.	Pollutant Potential/Fugitive Emissions Com	ment (limit to 200 characters):
All	lowable Emissions Allowable Emissions	2 of 2
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable
	OTHER	Emissions:
3.	Requested Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	0.05 % Sulfur oil	16.2 lb/hour 7.44 tons/year
5.	Method of Compliance (limit to 60 characte	rs):
	Fuel Sampling - Vendor	
6.	Allowable Emissions Comment (Desc. of O	perating Method) (limit to 200 characters):
	Oil Firing: Ib/hr at 20°F turbine inlet; TPY equinlet.	uivalent of 1,000 hrs/yr/CT-oil at 59°F turbine

$-\mathbf{V}$	isible Emissions Limitation: Visible Emissi	ons Limitation 1 of 3
1.	Visible Emissions Subtype: VE10	2. Basis for Allowable Opacity: [] Rule [X] Other
3.	1	sceptional Conditions:
4.	Method of Compliance:	
	EPA Method 9.	
5.	Visible Emissions Comment (limit to 200 ch	haracters):
!	Gas Firing	•
I	Gas i ling	
i I		
	I. CONTINUOUS MON	NITOR INFORMATION
	(Only Regulated Emissions Units S	Subject to Continuous Monitoring)
Co	I. CONTINUOUS MON (Only Regulated Emissions Units Sontinuous Monitoring System: Continuous Monit	Subject to Continuous Monitoring)
	(Only Regulated Emissions Units S	Subject to Continuous Monitoring)
1.	Only Regulated Emissions Units Stationary Monitoring System: Continuous Marameter Code: EM	Subject to Continuous Monitoring) Monitor 1 of 2
1. 3.	Only Regulated Emissions Units Sontinuous Monitoring System: Continuous Marameter Code: EM CMS Requirement: Monitor Information:	Subject to Continuous Monitoring) Monitor1 of2 2. Pollutant(s): NO _X [X] Rule [] Other
1. 3.	Only Regulated Emissions Units Statistical Continuous Monitoring System: Continuous Manufacturer: Code: EM CMS Requirement: Monitor Information: Manufacturer: Not Yet Determined	Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other
1. 3. 4.	Only Regulated Emissions Units Sontinuous Monitoring System: Continuous Marameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Model Number:	Subject to Continuous Monitoring) Monitor1 _ of _ 2 2. Pollutant(s): NO _x [X] Rule [] Other d Serial Number:
1. 3. 4.	Only Regulated Emissions Units Sontinuous Monitoring System: Continuous Marameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Model Number:	Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other
 3. 4. 5. 	Only Regulated Emissions Units Sontinuous Monitoring System: Continuous Marameter Code: EM CMS Requirement: Monitor Information: Manufacturer: Model Number:	Subject to Continuous Monitoring) Monitor 1 of 2 2. Pollutant(s): NO _X [X] Rule [] Other d Serial Number: 6. Performance Specification Test Date:
 3. 4. 7. 	(Only Regulated Emissions Units Stantinuous Monitoring System: Continuous Manufacturer: Not Yet Determined Model Number: Installation Date:	Monitor 1 of 2 2. Pollutant(s): NO _x [X] Rule [] Other d Serial Number: 6. Performance Specification Test Date: characters):

CT-2	– Power	Block	2

Emissions Unit Information Section 2	of	2
--------------------------------------	----	---

<u>Visible Emissions Limitation:</u> Visible Emissions Limitation 2 of 3				
1.	Visible Emissions Subtype: VE20	Basis for Allowable Opacity: Nule		
3.	Requested Allowable Opacity: Normal Conditions: 20 % Ex Maximum Period of Excess Opacity Allower	sceptional Conditions: % ed: min/hour		
4.	Method of Compliance:			
	EPA Method 9.			
5.	Visible Emissions Comment (limit to 200 c	haracters):		
	Oil Firing			
I. CONTINUOUS MONITOR INFORMATION (Only Regulated Emissions Units Subject to Continuous Monitoring) Continuous Monitoring System: Continuous Monitor 2 of 2				
	· · · · · · · · · · · · · · · · · · ·	Monitor 2 of 2		
1.	D	2 P-11		
	Parameter Code: EM	2. Pollutant(s): NO _X		
3.	Parameter Code: EM CMS Requirement:	2. Pollutant(s): NO _X [X] Rule [] Other		
	CMS Requirement: Monitor Information:			
	CMS Requirement: Monitor Information: Manufacturer: Siemens Westing	[X] Rule [] Other		
4.	CMS Requirement: Monitor Information: Manufacturer: Model Number: Siemens Westing	[X] Rule [] Other house Serial Number:		
	CMS Requirement: Monitor Information: Manufacturer: Model Number: Siemens Westing	[X] Rule [] Other		
4.	CMS Requirement: Monitor Information: Manufacturer: Model Number: Siemens Westing	[X] Rule [] Other house Serial Number: 6. Performance Specification Test Date:		
 4. 5. 	CMS Requirement: Monitor Information: Manufacturer: Model Number: Installation Date: Continuous Monitor Comment (limit to 200	[X] Rule [] Other house Serial Number: 6. Performance Specification Test Date: characters): CFR 60; Subpart GG; S.60.334; oil firing.		
 4. 5. 	CMS Requirement: Monitor Information: Manufacturer: Model Number: Installation Date: Continuous Monitor Comment (limit to 200) Parameter Code: WTF. Required by 40	[X] Rule [] Other house Serial Number: 6. Performance Specification Test Date: characters): CFR 60; Subpart GG; S.60.334; oil firing.		

Visible Emissions Limitation: Visible Emissions Limitation 3 1. Visible Emissions Subtype: 2. Basis for Allowable Opacity: **VE99** [X] Rule [] Other 3. Requested Allowable Opacity: Normal Conditions: % Exceptional Conditions: 100 % Maximum Period of Excess Opacity Allowed: 60 min/hour 4. Method of Compliance: None 5. Visible Emissions Comment (limit to 200 characters): FDEP Rule 62-210.700(2); allowed for 2 hours (120 minutes) per 24 hours for startup, shutdown and malfunction. I. CONTINUOUS MONITOR INFORMATION (Only Regulated Emissions Units Subject to Continuous Monitoring) Continuous Monitoring System: Continuous Monitor of 1. Parameter Code: 2. Pollutant(s): 3. CMS Requirement: [] Rule [] Other 4. Monitor Information: Manufacturer: Model Number: Serial Number: 5. Installation Date: 6. Performance Specification Test Date: 7. Continuous Monitor Comment (limit to 200 characters):

J. EMISSIONS UNIT SUPPLEMENTAL INFORMATION (Regulated Emissions Units Only)

Supplemental Requirements

1.	Process Flow Diagram [X] Attached, Document ID: Fig 2-2 [] Not Applicable [] Waiver Requested
2.	Fuel Analysis or Specification [X] Attached, Document ID: <u>Tab 2-4/2-5</u> [] Not Applicable [] Waiver Requested
3.	Detailed Description of Control Equipment [X] Attached, Document ID: Sec 4.0 [] Not Applicable [] Waiver Requested
4.	Description of Stack Sampling Facilities [X] Attached, Document ID: PSD Appl. [] Not Applicable [] Waiver Requested
5.	Compliance Test Report
	[] Attached, Document ID:
	[] Previously submitted, Date:
	[X] Not Applicable
6.	Procedures for Startup and Shutdown [] Attached, Document ID: [X] Not Applicable [] Waiver Requested
7.	Operation and Maintenance Plan [] Attached, Document ID: [X] Not Applicable [] Waiver Requested
8.	Supplemental Information for Construction Permit Application [X] Attached, Document ID: PSD Appl. [] Not Applicable
9.	Other Information Required by Rule or Statute [X] Attached, Document ID: PSD Appl. [] Not Applicable
10.	Supplemental Requirements Comment:

Additional Supplemental Requirements for Title V Air Operation Permit Applications

11. Alternative Methods of Operation
[] Attached, Document ID: [] Not Applicable
12. Alternative Modes of Operation (Emissions Trading)
[] Attached, Document ID: [] Not Applicable
13. Identification of Additional Applicable Requirements
[] Attached, Document ID: [] Not Applicable
14. Compliance Assurance Monitoring Plan
[] Attached, Document ID: [] Not Applicable
15. Acid Rain Part Application (Hard-copy Required)
[] Acid Rain Part - Phase II (Form No. 62-210.900(1)(a)) Attached, Document ID:
[] Repowering Extension Plan (Form No. 62-210.900(1)(a)1.) Attached, Document ID:
[] New Unit Exemption (Form No. 62-210.900(1)(a)2.) Attached, Document ID:
[] Retired Unit Exemption (Form No. 62-210.900(1)(a)3.) Attached, Document ID:
Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.) Attached, Document ID:
Phase NOx Averaging Plan (Form No. 62-210.900(1)(a)5.) Attached, Document ID:
[] Not Applicable

1.0 INTRODUCTION

Florida Power Corporation (FPC) has recently begun operation of Power Block 1, 470 megawatts (MW-nominal 500 MW) of combined cycle power generation at FPC's Hines Energy Complex. The generating units are located in the southwest portion of Polk County, about seven miles south-southwest of Bartow and five miles west-northwest of Fort Meade (see Figure 1-1). Future generating units are to be brought on-line sequentially, with the scheduling of units to match the estimated growth of demand through the ultimate site capacity of up to 3,000 MW. The expansion of generating capacity at the Hines Energy Complex will be accomplished using the most efficient generating technology throughout the life of the project. This approach offers FPC maximum flexibility and cost control as both technology advances and electrical demand increases.

Power Block 2 consists of two nominal 170 MW Siemens Westinghouse 501 FD combustion turbines (CTs), two unfired heat recovery steam generators (HRSGs), and one nominal 190 MW steam turbine generator (STG); i.e., a two-on-one configuration. The total nominal rating for Power Block 2 is approximately 530 MW. Pipeline quality natural gas will be utilized as the primary fuel with limited use of low sulfur fuel oil as the back-up fuel. Among the advantages of this combined cycle (CC) technology are its fuel flexibility, modularity, and efficiency. Because of the modularity of CC units, they can be sized and built incrementally to match demand without losing the economy of scale. Applications for the remaining site capacity will be submitted in the future, as appropriate.

The U.S. Environmental Protection Agency (EPA) has promulgated Prevention of Significant Deterioration (PSD) regulations (40 CFR 51.166), which require a permit review and approval for new or modified sources that increase air pollutant emissions above specified threshold levels. These emission threshold levels will be exceeded for several criteria pollutants during operation of Power Block 2. As a result, Power Block 2 is subject to PSD review for these pollutants. The Federal PSD regulations are implemented in Florida by the Florida Department of Environmental Protection (FDEP). FDEP's PSD regulations are codified in Rule 62-212.400 F.A.C. The technical information and analysis required by the federal and state PSD regulations are contained in this PSD permit application. Although this document will be an appendix to the Site Certification Application (SCA) and only addresses Power Block 2, it has been prepared as a standalone PSD permit application. The permit application is divided into eight major sections.

Hines Energy Complex

Presented in Section 2.0 is a description of the facility, including air pollutant emissions and stack parameters. Air quality review requirements and applicability are presented in Section 3.0. The best available control technology (BACT) evaluation is presented in Section 4.0. An ambient air quality monitoring data analysis is presented in Section 5.0, and the air quality modeling methodology, the results of the air quality impact assessment, and additional impacts analysis performed for the proposed project are presented in Sections 6.0, 7.0, and 8.0, respectively. Section 9.0 contains a list of references and materials cited.

SOURCE: 1002 SCA

FIGURE 1-1 SITE LOCATION MAP

c.\sug\fpcses\horson.dug

7

2.1 GENERAL DESCRIPTION

The proposed Power Block 2 project will consist of the construction of approximately 530 MW of generation. The CC configuration consists of two CTs, two HRSGs, and one steam turbine. In this "two-on-one" configuration, each of the two CTs are nominally rated at 170 MW, and the steam turbine has a nominal rating of 190 MW. Each CT will be served by a single HRSG, exhausting to an individual stack. There will be no HRSG bypass stacks for simple cycle operation. Also, there will be no supplemental firing of the HRSGs. The expected primary fuel is natural gas, with low sulfur fuel oil as a backup.

The CC units will utilize low sulfur fuel to limit sulfur dioxide (SO_2) emissions and sulfuric acid mist, selective catalytic reduction (SCR) to limit emissions of oxides of nitrogen (NO_x), and good combustion practices and clean fuels for the minimization of particulate matter (PM/PM_{10}), carbon monoxide (CO), volatile organic compounds (VOCs), and other (trace metals) emissions. The proposed emission control techniques are described in detail in Section 4.0 of this application.

2.2 PROPOSED SOURCE EMISSIONS AND STACK PARAMETERS

As the steam turbine is not a combustion source, estimated mass emissions are based on operation of only the CTs. However, the exhaust gas characteristics reflect flow through the HRSG (i.e., the characteristics reflect the impact of the steam turbine). Therefore, the estimated stack emissions that are representative of the advanced CT designs proposed for Power Block 2 are presented in Tables 2-1 and 2-2 for a 170 MW CT unit (refer to Appendix A for detailed turbine performance and emissions data). The exhaust parameters presented in these tables are reflective of the combined cycle configuration. These tables cover the natural gas and fuel oil cases for three compressor inlet temperatures: 1) the high temperature case of 105°F for oil and 90°F for gas, 2) the ISO reference temperature case of 59°F and 3) the low temperature case that represents the shaft limit or the maximum physical output of the equipment, i.e., 20°F for oil/natural gas. Maximum hourly emission rates for all pollutants, in units of pounds per hour (lb/hr) are projected to occur for operations at low compressor inlet temperature and base (100 percent) load operation. Maximum annual potential emission rates (after the application of BACT) for the proposed sources with respect to regulated criteria air pollutants and regulated non-criteria air pollutants are presented in Table 2-3.

Worst-case air quality impacts due to the proposed facility are a function of emission rate and plume rise. Although it is not practical to model all possible operating scenarios for the facility, a number of cases (combinations of operating conditions and fuel types) were examined to represent the range that will occur during actual operations. The low (20°F) and high (105°F oil/90°F gas) compressor inlet temperatures and a range of loads (100 to 60 percent for natural gas and 100 to 65 percent for oil) represent the range of combustion turbine performance and emissions/exhaust characteristics that will occur during normal operation. At high compressor inlet temperatures, the units cannot generate as much power because of lower inlet air density. To compensate for a portion of the loss of output (which can be on the order of 20 MW compared to referenced temperatures), inlet cooling is proposed to be installed ahead of the combustion turbine inlet. Therefore, the 59°F temperature case represents a conservative average temperature condition for estimating annual emissions for Power Block 2, inclusive of potential inlet cooling.

A review of the CT unit design information in Tables 2-1 and 2-2 indicates that the highest criteria air pollutant emission rates (SO₂, PM/PM₁₀, NO_x, CO, and VOCs) occur when burning fuel oil. Combustion of fuel oil also results in higher exhaust gas flow rates and stack exit temperatures, which are directly related to plume rise. Although the highest emission rates occur under the low compressor inlet temperature (20°F) condition, the lowest exhaust gas volumetric flow rate for the CC units occurs under the 105°F ambient temperature condition. Detailed discussion on the determination of worst-case impacts is presented in Section 6.0 (Air Quality Modeling Methodology).

Typical fuel analyses for natural gas and fuel oil are presented in Tables 2-4 and 2-5, respectively. For oil firing, it is requested that an aggregate annual fuel usage for Power Block 2 of 27,365,000 gallons be included as a permit condition. This equates to a maximum of 1,000 hours per year per combustion turbine of generation at full load (59° F).

2.3 SITE LAYOUT AND STRUCTURES

The site arrangement for the initial nominal 1,000 MW (combined Power Blocks 1 and 2) is depicted in Figure 2-1. This configuration arrangement includes the existing 470 MW

Hines Energy Complex

CC unit, as well as the proposed 530 MW Power Block 2, each with two CTs, two HRSGs, and one steam turbine. The four HRSG stacks are arranged in an east-west line. The flow diagram for a single 265 MW CC unit is depicted in Figure 2-2.

Stack sampling facilities will be constructed in accordance with Rule 62-297.310(6) F.A.C.

TABLE 2-1 COMBUSTION TURBINE UNIT (170 MW) ESTIMATED (1) PERFORMANCE ON NATURAL GAS				
CONDITIONS	Was a right			
Ambient Temperature (°F)	20	59	90	
Ambient Relative Humidity (%)	60	60	60	
Load Condition (%)	100	100	100	
Maximum Heat Input Rate (MMBtu/hr) ⁽²⁾	2,012	1,830	1,705	
EMISSIONS (lb/hr)				
Carbon Monoxide (10 ppm at 15% O₂)	46	42	37	
Nitrogen Oxides (3.5 ppmvd at 15% O ₂) ⁽³⁾	25.0	23.1	21.2	
Sulfur Dioxide	5.6	5.1	4.8	
Particulate Matter (PM₁₀)	8.5	7.9	7.2 -	
Opacity (%)	10	10	10	
VOCs (1.8 ppmvd at 15% O₂)	4.7	4.4	3.8	
Lead	Neg.	Neg.	Neg.	
Sulfuric Acid Mist	0.9	0.8	0.7 .	
STACK PARAMETERS				
Stack Height (ft)	125	125	125	
Stack Diameter (ft)	19.0	19.0	19.0	
Stack Gas Temperature (°F)	190	190	190	
Stack Gas Exit Velocity (ft/sec)	63.3	59.2	55.4	

Notes:

- (1) Emission estimates based on manufacturer's data; see Appendix A
- For CTs the heat-input rate is based on the higher heating value (HHV) of the fuel (1,030 Btu/SCF, 23,345 Btu/lb).
- (3) Not corrected to ISO conditions.

VOCs = Volatile Organic Compounds

Neg. = Negligible

Source: Seimens-Westinghouse, 2000

TABLE 2-2 COMBUSTION TURBINE UNIT (170 MW) ESTIMATED (1) PERFORMANCE ON FUEL OIL					
CONDITIONS					
Ambient Temperature (°F)	20	59	105		
Ambient Relative Humidity (%)	60	60	60		
Load Condition (%)	100	100	100		
Maximum Heat Input Rate (MMBtu/hr) ⁽²⁾	2,100	1,932	1,707		
EMISSIONS (lb/hr)					
Carbon Monoxide (30 ppmvd)	112	106	91		
Nitrogen Oxides (15 ppmvd at 15% O₂)	116.9	109.4	96.7		
Sulfur Dioxide	105.6	97.1	85.8		
Particulate Matter (PM ₁₀)	64.8	59.6	52.5		
Opacity (%)	20	20	20		
Volatile Organic Compounds (10 ppmvw)	22	21	19		
Lead ⁽⁴⁾	0.022	0.021	0.018		
Sulfuric Acid Mist	16	15	13		
STACK PARAMETERS					
Stack Height (ft)	125	125	125		
Stack Diameter (ft)	19.0	19.0	19.0		
Stack Gas Temperature (°F)	270	270	270		
Stack Gas Exit Velocity (ft/sec)	69.4	67.0	60		

Notes: (1) Emission estimates based on manufacturer's data; see Appendix A.

Source: Seimens-Westinghouse, 2000

⁽²⁾ For CTs the heat input rate is based on the higher heating value (HHV) of the fuel (19,892 Btu/lb).

TABLE 2-3

MAXIMUM POTENTIAL ANNUAL EMISSIONS (530 MW)

AND PSD SIGNIFICANCE VALUES

Pollutant	Emissions (TPY) ^a	PSD Significant Emission Rate (TPY)	PSD Review Required (Yes/No)
Carbon Monoxide	744	100	Yes
Nitrogen Oxides	289	40	Yes
Sulfur Dioxide	137	40	Yes
Particulate Matter (PM ₁₀)	121	15	Yes
Total Suspended Particulates	121	25	Yes
Volatile Organic Compounds	57	40	Yes
Lead	0.02	0.6	No
Sulfuric Acid Mist	21	7	Yes
Mercury	0.001	0.1	No
MWC Organics (2, 3, 7, 8 TCDD)	7.5 X 10 ⁻⁷	3.5 X 10 ⁻⁶	No
MWC Metals (Be & Cd)	0.007	15	No
MWC Gases (HCI)	0.4	40	No
Total HAPs	7.3	25⁵	No

^aTPY = Tons per year for the proposed Power Block 2 project.

Basis: Refer to Table A-25 in Appendix A.

MWC = municipal waste combustor.

Source: Golder, 2000

^bCriteria for review under 112 g regulations for determination of MACT.

TABLE 2-4					
TYPICAL NATURAL GAS ANALYSIS					
ANALYSIS	MOLE (%)				
Carbon Dioxide	0.576				
Ethane	2.18				
Hexanes Plus	0.0077				
Iso-Butane	0.064				
Methane	96.55				
Nitrogen	0.213				
Normal-Butane	0.063				
Pentanes Plus	0.018				
Propane	0.299				
Total:	100.000				
Specific Gravity (air at 1)	0.5782				

PROBLEM STATES AND STATES AND	
The Property Information	Parameters 1995 1995 1995 1995 1995 1995 1995 199
	THE REPORT OF THE PROPERTY OF THE PARTY OF T
where the second	and the second s
Line Man Malue (U.B.6)	
Heating Value (HHV)	130 Btu/cf
, ,	,
Total Culture (Manufacture)	4
Total Sulfur (Maximum)	1 grain/100 SCF
<u> </u>	J 700 001

Source: Florida Gas Transmission

TABLE 2-5 TYPICAL NO. 2 FUEL OIL ANALYSIS				
NO. 2 DISTILLATE OIL	PERCENT (BY WEIGHT)			
Carbon Residue	<0.01			
Nitrogen	0.015ª			
Sulfur	0.05°			
Ash	0.05 a			

Lower Heating Value: 17,290 Btu/lb Higher Heating Value: 19,892 Btu/lb

- Emission guarantees based on these values.
- The sulfur content is the maximum, as required by permit.

Source: FPC, 1999

FIGURE 2-1 SITE ARRANGEMENT

c:\dwg\fpcscs\borders.dwg

Hines Energy Complex

FIGURE 2-2
POWER BLOCK 2
PROCESS FLOW DIAGRAM
BASELOAD OPERATION, TURBINE INLET TEMPERATURE OF 59°F

3.0 AIR QUALITY REVIEW REQUIREMENTS AND APPLICABILITY

The following discussion pertains to the federal and state air regulatory requirements and their applicability to Power Block 2. These regulations must be satisfied before the proposed facility can be constructed and begin operation.

3.1 NATIONAL AND FLORIDA AMBIENT AIR QUALITY STANDARDS (NAAQS/FAAQS)

The applicable federal and state ambient air quality standards are presented in Table 3-1 (PSD increments are also presented in Table 3-1, but discussed in Section 3.2.2). The primary National Ambient Air Quality Standards and Florida Ambient Air Quality Standards (NAAQS/FAAQS) were promulgated to protect the public health, and the secondary NAAQS/FAAQS were promulgated to protect the public health and welfare from any known or anticipated adverse effects associated with the presence of pollutants in the ambient air. Polk County is an attainment area for all criteria pollutants, meaning that existing ambient concentrations meet the allowable standards.

3.2 PSD REVIEW REQUIREMENTS

3.2.1 General Requirements

Under the federal and FDEP Prevention of Significant Deterioration (PSD) permit review requirements, all major new or modified existing sources of air pollutants located in attainment areas and regulated under the Clean Air Act (CAA) must be reviewed and approved. A "major stationary source" is defined as any one of 28 specified source categories which has the potential to emit 100 tons per year (TPY) or more, or any other stationary source which has the potential to emit 250 TPY or more of any air pollutant regulated under the CAA. Fossil fuel-fired steam electric plants of more than 250 MMBtu/hr of heat input comprise one of the 28 specified source categories. As Power Block 2 constitutes a modification to an existing major source, the proposed project "potential to emit" is compared to the PSD significant emission rates (TPY). The term "potential to emit" means the capability, at maximum design capacity, to emit a pollutant after the application of control equipment. As presented earlier in Table 2-3, the potential emissions from the proposed project will exceed the significance rates for all

PSD Permit Application

criteria pollutants; therefore, the project is considered a modification to an existing major stationary source and is subject to PSD review.

PSD review is used to ensure that significant air quality deterioration will not result from the new or modified source located in an attainment area. The PSD regulations are contained in rule 62-212.400 F.A.C. Major sources and modifications are required to undergo the following analyses under PSD for each air pollutant emitted where potential emissions exceed the significant emission rates:

- A control technology analysis;
- An air quality impacts analysis; and
- An additional impacts analysis.

In addition to these analyses, a new source must also be reviewed with respect to Good Engineering Practice (GEP) stack height regulations (EPA, 1985a), New Source Performance Standards (NSPS), and any applicable state emission standard as discussed in Section 3.3.

3.2.2 PSD Increments/Classifications

In promulgating the 1977 Clean Air Act (CAA) Amendments, Public Law 95-95, Congress specified that certain increases above an air quality "baseline concentration" level for SO₂ and TSP concentrations would constitute "significant deterioration." The magnitude of the allowable increment depends on the classification of the area in which a new source (or modification) will be located or have a significant impact. Three classifications were designated based on criteria established in the CAA Amendments. Initially, Congress designated PSD areas as Class I (international parks, national wilderness areas, and memorial parks larger than 5,000 acres, and national parks larger than 6,000 acres) or as Class II (all areas not designated as Class I). No Class III areas, which would allow greater deterioration than Class II areas, were designated. EPA subsequently incorporated the requirements for classifications and area designation into the PSD regulations.

On October 17, 1988, the EPA promulgated regulations to prevent significant deterioration due to NO_X emissions and established PSD increments for NO_2 concentrations. The allowable PSD increments for SO_2 , TSP, and NO_2 are presented in Table 3-1. The FDEP has adopted the EPA PSD classification scheme and the allowable PSD increments for SO_2 , PM_{10} , and NO_2 .

The term "baseline concentration" is derived from federal and state PSD regulations and denotes a concentration level corresponding to a specified baseline date and contributions from certain additional baseline sources. The PSD regulations (40 CFR 51.166) define baseline concentration as the ambient concentration level which exists in the baseline area at the time of the applicable baseline date. Emission increases after the baseline date consume PSD increments. A baseline concentration is determined for each pollutant for which PSD increments are promulgated and a baseline date is established. The baseline concentration includes:

- The actual emissions representative of sources in existence on the applicable baseline date; and
- The allowable emissions of major stationary sources which commenced construction before January 6, 1975, for SO₂ and PM₁₀ concentrations, or before February 8, 1988, for NO₂ concentrations, but which were not in operation by the applicable baseline date.

The air quality analysis results which demonstrate project compliance with these requirements are presented in Section 7.0.

3.2.3 Control Technology

The control technology review requirements of the PSD regulations require that all applicable federal and state emission limiting standards be met and that Best Available Control Technology (BACT) be applied to control emissions from the source. The BACT requirements apply to all applicable regulated and unregulated air pollutants for which the increase in emissions from the source or modification exceeds significant emission rate.

PSD Permit Application

BACT is defined in rule 62-210.200 F.A.C. as:

An emission limitation, including a visible emissions standard, based on the maximum degree of reduction of each pollutant emitted which the Department, on a case by case basis, taking into account energy, environmental and economic impacts, and other costs, determines is achievable through application of production processes and available methods, systems and techniques (including fuel cleaning or treatment or innovative fuel combustion techniques) for control of each such pollutant.

- (a) If the Department determines that technological or economic limitations on the application of measurement methodology to a particular part of an emission unit or facility would make the imposition of an emission standard infeasible, a design, equipment, work practice, operational standard or combination thereof, may be prescribed instead to satisfy the requirement for the application of BACT. Such standard shall, to the degree possible, set forth the emissions reductions achievable by implementation of such design, equipment, work practice or operation.
- (b) Each BACT determination shall include applicable test methods or shall provide for determining compliance with the standard(s) by means which achieve equivalent results.

The requirements for BACT were incorporated within the PSD framework in the 1977 CAA Amendments. The primary purpose of BACT is to minimize consumption of PSD increments and thereby increase the potential for future economic growth without significantly degrading air quality. Guidelines for the evaluation of BACT can be found in the draft "New Source Review Workshop Manual" (EPA, 1990b) and the draft "Top-Down BACT Guidance Document" (EPA, 1990c). These guidelines were issued by EPA to provide a consistent approach to BACT and to ensure that the impacts of alternative emission control systems are measured by the same set of parameters. The "top-down" approach to BACT has been followed in this application. BACT is determined on a case-by-case basis, and BACT for a source in one area may not be the same for an identical source located in another area. BACT analyses for the same types of emissions units and

the same pollutants in different locations or situations may determine that different control strategies should be applied to the different sites, depending on site-specific factors.

The BACT requirements are intended to ensure that the control systems incorporated in the design of a proposed facility reflect the latest in control technologies used in a particular industry and take into consideration existing and future air quality in the vicinity of the proposed facility. BACT must, at a minimum, demonstrate compliance with NSPS for a source (if applicable). An evaluation of the air pollution control technologies and systems, including a cost-benefit analysis of alternative control technologies capable of achieving a higher degree of emission reduction than the proposed control technology, is required. The cost-benefit analysis requires the documentation of the materials, energy, and economic penalties associated with the proposed and alternative control systems, as well as the environmental benefits derived from these systems. A determination of BACT is to be based on sound judgement, balancing environmental benefits with energy, economic, and other impacts. Section 4.0 presents the BACT discussion and recommendations for this project.

3.2.4 Ambient Air Quality Monitoring Requirements

In accordance with the requirements of Rule 62-212.400(5)(f) F.A.C., any application for a PSD permit must contain an analysis of ambient air quality monitoring data in the area affected by the proposed major stationary source or major modification.

In accordance with Rule 62-212.400(5)(f)(2), ambient air monitoring for a period of up to one year may be required to satisfy the PSD monitoring requirements. A minimum of four months of data would be required. Existing data from the vicinity of the proposed source may be utilized if the data meet certain quality assurance requirements; otherwise, additional data may need to be gathered.

However, the FDEP PSD regulations include an exemption which excludes or limits the pollutants for which an ambient air quality analysis must be conducted (Rule 62-212.400(3)(e)). This exemption states that a proposed major stationary source or major modification from the monitoring requirements with respect to a particular pollutant if the emissions increase of the pollutant from the source or modification would cause, in any

PSD Permit Application

area, air quality impacts less than the *de minimis* air quality impact levels presented in Table 3-2.

Ambient air quality monitoring data is discussed in Section 5.0 of this application.

3.2.5 Source Impact Analysis

A source impact analysis of air quality must be performed for a proposed major source subject to PSD for each air pollutant for which the increase in emissions exceeds the significant emission rate. The PSD regulations specifically require the use of atmospheric dispersion models in performing air quality impact analysis, estimating baseline and future air quality levels, and determining compliance with NAAQS/FAAQS and allowable PSD increments. Reference EPA models must normally be used in performing the impact analysis. Use of nonreference EPA models requires EPA's consultation and prior approval. Guidance for the regulatory application of dispersion models is presented in the U.S. EPA "Guideline on Air Quality Models (Revised)" (EPA, 1997). The modelling methodology utilized for the source impact analysis is described in detail in Section 6.0 of this application.

3.2.6 Additional Impacts Analysis

In addition to air quality impact analyses, the PSD regulations require analyses of the impairment to visibility and the impacts on soils and vegetation that would occur as a result of the proposed source. These analyses are to be conducted primarily for PSD Class I areas. Impacts on air quality due to general commercial, residential, industrial, and other growth related activities associated with the source must also be addressed. These analyses are required for each pollutant emitted in significant quantities. Section 8.0 of this application contains the additional impact analyses.

3.3 OTHER REQUIREMENTS

In addition to the requirements of the PSD program, any new or modified source of air pollution must be reviewed with respect to the GEP stack height regulations (EPA, 1985a), the federal NSPS requirements, and any state-specific emission standards.

3.3.1 Good Engineering Practice (GEP) Stack Height

The 1977 CAA Amendments require under Section 123 that the degree of emission limitation required for control of any air pollutant not be affected by a stack height that exceeds GEP, or any other dispersion technique. On July 8, 1985, EPA promulgated final stack height regulations (EPA, 1985a).

The EPA's final stack height regulations define GEP stack height in part as the greater of:

(1) 65 meters, measured from the ground-level elevation at the base of the stack; or

(2)
$$H_a = H + 1.5 L$$

where:

H_g = GEP stack height, measured from the ground-level elevation at the base of the stack;

H = Height of nearby structure(s) measured from the ground-level elevation at the base of the stack; and

L = Lesser dimension, height or projected width of nearby structure(s).

The term "nearby" is defined by the GEP stack height regulations as a distance up to five times the lesser of the height or width dimensions of a structure or terrain feature, but not greater than 0.8 km. Although GEP stack height regulations require that the stack height credit used in modelling for determining compliance with NAAQS/FAAQS and PSD increments not exceed the GEP stack height, the actual stack height may be greater. In this case the proposed stacks for each unit is 125.0 feet (38.1 meters) above ground level. This height does not exceed the de minimus GEP stack height of 65m. See Section 6.7 of this application for a discussion of building downwash considerations for this project.

3.3.2 New Source Performance Standards (NSPS)

The CAA required the U.S. EPA to adopt standards of performance for new or modified stationary sources of air pollution. To date, the U.S. EPA has adopted regulations for approximately 80 stationary source categories. These regulations are contained in 40 CFR Part 60. A review of the regulations reveals that the Power Block 2 CC units are subject to a specific NSPS. Any source subject to a specific NSPS is also subject to the general provisions of 40 CFR 60 Subpart A.

3.3.2.1 General Provisions

The general provisions of the NSPS regulations are found in 40 CFR 60, Subpart A. The general provisions specify the notification and record keeping requirements (40 CFR 60.7), compliance with standards and maintenance requirements (40 CFR 60.11), and the monitoring requirements (40 CFR 60.13) for each affected source.

3.3.2.2 Combined Cycle Units

NSPS for combined cycle units are covered in 40 CFR 60 and potentially include: Subpart Da - Standards of Performance for Electric Utility Steam Generating Units for Which Construction is Commenced After September 18, 1978; in 40 CFR 60, Subpart Db - Standards of Performance for Industrial-Commercial-Institutional Steam Generating Units; and in 40 CFR 60, Subpart GG - Standards of Performance for Stationary Gas Turbines. Because the steam generators associated with Power Block 2 (i.e., HRSGs) will utilize only the waste heat from the combustion turbines, only the requirements of Subpart GG and Subpart A will apply.

Subpart GG regulates the CC units as electric utility stationary gas turbines and establishes emission limitations on both NO_x and SO_2 . The NO_x emission limitation is set by the following equation:

$$STD = 0.0075 \frac{(14.4)}{Y} + F$$

where:

STD = allowable NO_x emissions (percent by volume at 15 percent oxygen and on a dry basis).

Y = manufacturer's rated heat rate at manufacturer's rated load (kilojoules per watt hour) or actual measured heat rate based on lower heating value of fuel as measured at actual peak load for the facility. The value of Y shall not exceed 14.4 kilojoules per watt hour.

 $F = NO_x$ emission allowance for fuel-bound nitrogen as defined below:

Fuel-bound nitrogen (percent by weight)	F (NO _x percent by volume		
N<0.015	0		
0.015 <n<0.1< td=""><td>0.04(N)</td></n<0.1<>	0.04(N)		
0.1 <n<0.25< td=""><td>0.004 + 0.0067(N-0.1)</td></n<0.25<>	0.004 + 0.0067(N-0.1)		
N>0.25	0.005		

where:

N = the nitrogen content of the fuel (percent by weight).

This results in an emission limitation of 113.5 parts per million on a dry volume basis (ppmvd) at 15 percent oxygen for the proposed units when fired on natural gas and 112.7 ppmvd at 15 percent oxygen when fired on fuel oil. (These values do not include the allowance for fuel-bound nitrogen). The SO₂ emission limitations are set at 150 ppmvd corrected to 15 percent oxygen in the exhaust stream or a fuel sulfur content less than or equal to 0.8 percent by weight.

40 CFR 60 Subparts Da, Db, and Dc are not applicable to the CC units since the HRSGs will not be fired with any type of auxiliary fuel.

PSD Permit Application

3.3.2.3 Excess Emissions

The EPA has adopted general and specific recordkeeping and reporting requirements relating to excess emissions in 40 CFR 60.7(b) and 40 CFR 60.334(c). The EPA requirements specify maintaining records and submittal of a quarterly report (calendar year) on excess emissions associated with start-ups, shutdowns, malfunctions, inoperative continuous emission monitoring systems, low water-to-fuel ratio, and fuel sulfur content greater than 0.8% by weight. The reporting requirement includes submittal of the quarterly report even when no excess emissions occur. EPA has not adopted any specific time limits related to excess emissions from a CC unit, or from combustion turbine units regulated under 40 CFR Part 60, Subpart GG.

3.3.3 State-Specific and General Emission Standards

In addition to federal requirements, FDEP has adopted specific and general emission limiting and performance standards. These standards may be found in Rule 62-296, F.A.C. The requirements of these standards must be met along with any federal PSD or NSPS limitation or requirement.

3.3.3.1 General Emission Standards

The FDEP has adopted general particulate matter emission limits as well as general pollutant emission limits (Rule 62-296.320, F.A.C.). These limits apply when no specific emission standard is applicable.

3.3.3.2 Combined Cycle Units

The FDEP has not adopted any state-specific emission standards in Rule 62-296, F.A.C. relating to the operation of a CC unit. The FDEP has adopted the NSPS requirements of Subparts A and GG by reference in Rule 62-204.800, F.A.C. Based on the current FDEP rules, the CC units must meet the NSPS requirements as discussed in Section 3.3.2.2. In addition, a general opacity limit of less than 20 percent and a prohibition on emitting air pollutants that cause or contribute to an objectionable odor apply.

3.3.3.3 Excess Emissions

The FDEP has adopted standards relating to excess emissions in Rule 62-210.700, F.A.C. The rule allows excess emissions resulting from startup, shutdown, or malfunction of any source as long as best operational practices are applied and the excess emissions do not exceed 2 hours in any 24 hour period. Currently, the rule allows one exception from the 2 hour limit and that is for existing fossil fuel steam generators. The FDEP can authorize different excess emission parameters for other sources on a case-by-case basis.

Based on the intended operation of the CC units, FPC requests that the FDEP consider the operational variations of this equipment as well as the EPA's NSPS requirements on excess emissions and set an allowable excess emissions level for Power Block 2 as follows:

"Excess emissions from a combined cycle unit resulting from startup, shutdown, fuel switch, or malfunction shall be permitted for up to four (4) hours provided that best operational practices to minimize excess emissions are adhered to and the duration of the excess emissions shall be minimized."

3.4 SOURCE APPLICABILITY

3.4.1 Pollutant Applicability

The PSD regulations apply to the proposed generation project due to the attainment status for the Polk County Site. Polk County and the surrounding counties are designated as PSD Class II areas for SO₂, PM₁₀, and NO₂. The Polk County Site is located approximately 118 km southeast of the Chassahowitzka National Wilderness Area (NWA), the nearest PSD Class I area. The Chassahowitzka NWA is that portion of the Chassahowitzka National Wildlife Refuge which has been officially designated as wilderness.

Pollutant applicability for the proposed facilities is addressed in Sections 2.0 and 4.0 and briefly summarized here. The proposed Power Block 2 project is considered to be a modification to an existing major source under the PSD regulations. PSD review is required for any regulated pollutant for which the net increase in emissions exceeds the PSD significant emission rates presented in Table 2-5. As shown, the potential emissions for the proposed facilities will exceed the PSD significant emission rates for the following regulated pollutants: CO, NO_x, SO₂, PM₁₀, VOC, and sulfuric acid mist. The proposed project is subject to PSD review for these pollutants.

3.4.2 Ambient Air Quality Monitoring

Based upon the net increase in emissions from the proposed facility presented in Table 2-3, a PSD preconstruction ambient air monitoring analysis is required, as part of the air quality impact analysis for CO, NO₂, SO₂, PM₁₀, O₃ (based on VOC emissions), and sulfuric acid mist. However, if the net increase in a source's impact of a pollutant is less than the *de minimis* air quality impact level, as shown in Table 3-2, then preconstruction ambient air quality monitoring is not required for that pollutant. In addition, if an acceptable ambient air monitoring method for the pollutant has not been established by EPA, monitoring is not required.

Preliminary Dispersion modeling was performed to determine those pollutants which could be exempted from the monitoring requirement. As verified by the revised modelling PSD Permit Application

July 2000

Hines Energy Complex

analysis described in Sections 6.0 and 7.0, the increases in air quality impacts are predicted to fall below the *de minimis* impact levels presented in Table 3-2, therefore, preconstruction monitoring is not required. The results for these pollutants are presented in Section 5.0.

PSD Permit Application

Table 3-1. National and State AAQS, Allowable PSD Increments, and Significant Impact Levels

		AAQS (µg/m³)		PSD Increments (µg/m³)			
Pollutant	Averaging Time	Primary. Standard	Secondary Standard	Florida	Class I	Class II	Significant Impact Levels (µg/m³) ^b
Particulate Matter ^c	Annual Arithmetic Mean :	50	50	50	4	17	1
(PM10)	24-Hour Maximum	150	150	150	8	30	5
Sulfur Dioxide	Annual Arithmetic Mean	80	NA	60	2	20	1
	24-Hour Maximum	365	NA	260	5	91	5
	3-Hour Maximum	NA	1,300	1,300	25	512	25
Carbon Monoxide	8-Hour Maximum	10,000	10,000	10,000	NA	NA	500
	1-Hour Maximum	40,000	40,000	40,000	NA	NA	2,000
Nitrogen Dioxide	Annual Arithmetic Mean	100	100	100	2.5	25	1
Ozone	8-Hour Maximum ^c	157	157	157	NA	NA	NA
Lead	Calendar Quarter Arithmetic Mean	1.5	1.5	1.5	NA	NA	NA

Note: Particulate matter (PM10) = particulate matter with aerodynamic diameter less than or equal to 10 micrometers. NA = Not applicable, i.e., no standard exists.

Sources: Federal Register, Vol. 43, No. 118, June 19, 1978. 40 CFR 50; 40 CFR 52.21.

Chapter 62-272, F.A.C.

^a Short-term maximum concentrations are not to be exceeded more than once per year.

^b Maximum concentrations are not to be exceeded.

^{° 0.08} ppm; achieved when 3-year average of 99th percentile is 0.08 ppm or less. FDEP has not yet adopted these standards.

Table 3-2. PSD Significant Emission Rates and De Minimis Monitoring Concentrations

	- Y' 3.	De Minimis Monitoring	
Pollutant	Regulated Under	Significant Emission Rate (TPY)	Concentration (µg/m³)
			· contochadaon (μg/m)
Sulfur Dioxide	NAAQS, NSPS	40	13, 24-hour
Particulate Matter	NSPS	25	10, 24-hour
∥ [PM(TSP)]			,
Particulate Matter (PM10)	NAAQS	15	10, 24-hour
Nitrogen Dioxide	NAAQS, NSPS	40	14, annual
Carbon Monoxide	NAAQS, NSPS	100	575, 8-hour
Volatile Organic			·
Compounds (Ozone)	NAAQS, NSPS	40	100 TPY ^b
Lead	NAAQS	0.6	0.1, 3-month
Sulfuric Acid Mist	NSPS	7	NM
Total Fluorides	NSPS	3	0.25, 24-hour
Total Reduced Sulfur	NSPS	10	10, 1-hour
Reduced Sulfur	NSPS	10	10, 1-hour
Compounds			
Hydrogen Sulfide	NSPS	10	0.2, 1-hour
Mercury	NESHAP	0.1	0.25, 24-hour
MWC Organics	NSPS	3.5x10 ⁻⁶	NM
MWC Metals	NSPS	15	NM
MWC Acid Gases	NSPS	40	NM
MSW Landfill Gases	NSPS	50	NM

Note: Ambient monitoring requirements for any pollutant may be exempted if the impact of the increase in emissions is below *de minimis* monitoring concentrations.

NAAQS = National ambient air quality Standards.

NM = No ambient measurement method established; therefore, no de minimis

concentration has been established.

NSPS = New Source Performance Standards.

NESHAP = National Emission Standards for Hazardous Air Pollutants.

g/m³ = Micrograms per cubic meter. MWC = Municipal waste combustor.

MSW = Municipal solid waste.

- Short-term concentrations are not to be exceeded.
- No de minimis concentration; an increase in VOC emissions of 100 TPY or more will require monitoring analysis for ozone.
- ^c Any emission rate of these pollutants.

Sources: 40 CFR 52.21.

Rule 62-212.400

4.0 BEST AVAILABLE CONTROL TECHNOLOGY ANALYSIS

4.1 INTRODUCTION

This section of the PSD application provides a detailed BACT analysis for the Hines Energy Complex Power Block 2 installation of approximately 530 MW of combined cycle (CC) generation. The CC units will consist of two CTs, two HRSGs, and one steam turbine, termed a "two-on-one" configuration.

The project's potential annual emissions of the following regulated pollutants exceed the PSD significant emission rate thresholds and are, therefore, subject to BACT review:

- Carbon Monoxide (CO)
- Nitrogen Oxides (NO_x)
- Sulfur Dioxide (SO₂)
- Particulate Matter (PM/PM₁₀)
- Volatile Organic Compounds (VOC)
- Sulfuric Acid Mist (H₂SO₄)

This BACT analysis assumes that two CT units will be operating at an annual average inlet temperature of 59°F and an ambient relative humidity of 60 percent. These compressor inlet conditions represent a conservative estimate of annual average emissions, and account for the potential use of inlet cooling for the two CTs. In order to assure that conservatively high pollutant emission rates are used in the BACT analysis, the CT units are assumed to operate for 8,760 hours per year. For evaluating BACT for NO_x, natural gas firing is assumed for 7,760 hours at 100 percent load and distillate oil firing for 1,000 hours at 100 percent load (an aggregate of 29,365,000 gallons per year based on 1,000 hours of operation per year for each CTs at full load) for evaluating BACT for CO.

4.2 METHODOLOGY

This BACT analysis follows the general requirements of EPA's draft "top down" BACT guidance document (EPA, 1990c), which requires that the BACT analysis start by assuming the use of the most stringent control technology. Sources of information which

were used to identify control alternatives include:

- EPA's RACT/BACT/LAER Clearinghouse (RBLC) via the RBLC Information System database;
- Recent FDEP BACT determinations for similar facilities;
- Vendor information; and
- Florida Power Corporation (FPC) experience for similar projects.

Of the control alternatives identified, the less efficient alternatives are evaluated if the most stringent control technology is determined to be technologically infeasible or unreasonable considering economic, energy, and environmental factors. The economic analyses in this section are based on the procedures found in the Office of Air Quality Planning and Standards (OAQPS) Control Cost Manual (EPA, 1990b).

The final step is the selection of a BACT emission limitation corresponding to the most stringent, technically feasible control technology that was not eliminated based on energy, environmental, or economic impacts.

As indicated in Section 2.2, Table 2-3, projected annual emission rates of NOx, CO, VOCs, PM/PM10, SO2, and H2SO4 mist for Power Block 2 exceed the PSD significance rates and, therefore, are subject to a BACT analysis. Control technology analyses using the top-down BACT method are contained in Section 4.4 for combustion products (PM/PM10), Section 4.5 and 4.6 for products of incomplete combustion (CO and VOCs, respectively), and Sections 4.7 and 4.8 for acid gases (NOx, and SO2 and H2SO4 mist, respectively).

4.3 STATE AND FEDERAL EMISSION STANDARDS

This section provides a summary of potentially applicable emission standards at the state and federal level. The BACT emission limitations proposed for the Hines Energy Complex Power Block 2 are all more stringent than the applicable federal and state standards cited in the following summary.

FDEP emission standards for stationary sources are contained in Chapter 62-296, Stationary Sources-Emission Standards, F.A.C. This chapter contains general emission

standards for sources emitting PM (Rule 62-296.320, F.A.C.) that are applicable to the Project. Visible emissions are limited to a maximum of 20 percent opacity pursuant to Rule 62-296.320(4)(b), F.A.C. Emission standards applicable to sources located in non-attainment areas are contained in Rules 62-296.500 (for ozone areas) and 62-296.700, F.A.C. (for PM non-attainment areas). Because Power Block 2 is located in Polk County, Florida, and because this county is designated attainment for all criteria pollutants, these emission standards are not applicable. Finally, Rule 62-204.800, F.A.C., adopts federal New Source Performance Standards (NSPS) and National Emission Standards for Hazardous Air Pollutants (NESHAPS), respectively, by reference.

On the federal level, NSPS Subpart GG establishes emission limits for gas turbines that meet certain criteria. The Power Block 2 CTs qualify as electric utility stationary gas turbines and, therefore, are subject to the NOx and SO2 emission limitations of NSPS 40 CFR 60, Subpart GG, § 60.332(a)(1) and § 60.333, respectively. The proposed Hines Energy Complex Power Block 2 has no applicable NESHAP requirements. In addition, the total emissions of hazardous air pollutants (HAPs) are less than 10 tons per year for any single HAP and less than 25 tons per year for all HAPs. Therefore, marnimum achievable control technology (MACT) review is not required.

4.4 BACT ANALYSIS FOR PM/PM₁₀

4.4.1 Potential Control Technologies

Several control technologies commonly used to limit emissions of PM include baghouses, electrostatic precipitators (ESPs), wet scrubbers and mechanical collectors. The NSPS for CT units does not establish an emission limit for particulate matter. Further, a review of RBLC documents did not reveal any post-combustion particulate matter control technologies being used on CC units. All determinations were based on the use of clean fuels and good combustion practice.

The natural gas fuel to be used in the proposed CT units will contain only trace quantities of noncombustible material. The use of low sulfur fuel oil, as a back-up fuel, will be limited. In addition, the CTs proposed for Power Block 2 will use the latest combustor technology to maximize combustion efficiency and minimize PM/PM10 emission rates. In fact, the manufacturer's standard operating procedures will ensure as complete combustion of the fuel as possible.

4.4.2 Proposed BACT Emission Limitations

Based on the above analysis, it is proposed that BACT for PM/PM10 emissions from the CTs be the use of good combustion practices and clean fuels. The CTs will be fired primarily with natural gas, with limited low sulfur fuel oil backup capability. FPC requests that the use of fuel oil be limited to no more than 27,365,000 gallons per year. This requested quantity is consistent with the current permit limit for Power Block 1 and is based on an aggregate of 2,000 hours per year of operation between the two CTs at full load and 59°F. Since the only technically feasible alternative is proposed to be BACT, an economic and environmental analysis is not required and is not presented.

Due to the difficulties associated with stack testing exhaust streams containing very low PM/PM10 concentrations and consistent with recent FDEP BACT determinations for CTs, a visible emissions limit of 10/20 percent opacity for natural gas/fuel oil is proposed as a surrogate BACT limit for PM/PM10.

4.5 BACT ANALYSIS FOR CO

Carbon monoxide (CO) emissions result from the incomplete combustion of carbon and organic compounds. CTs have inherently low CO emissions, which are categorized as products of incomplete combustion of fossil fuels. High combustion temperatures, adequate excess air, and good fuel/air mixing during combustion will minimize CO emissions. Therefore, formation of CO is a function of the manufacturer's combustor design. Because lower combustion temperatures will result in a decrease in oxidation rates, emissions of CO will generally increase during turbine partial load conditions when combustion temperatures are lower.

4.5.1 Potential Control Technologies

A search of the RBLC was conducted for CO control determinations for natural gas fired CTs. A summary of the results is presented in Table 4-1. There are two available technologies for controlling CO from gas turbines: (1) combustion process design and good combustion practices and (2) oxidation catalysts.

4.5.1.1 Combustion Process Design

A combustor design based on high combustion temperatures, adequate excess air, and good fuel/air mixing during combustion will minimize CO emissions. Therefore, this control alternative is based on combustion chamber designs and operation practices that improve the oxidation process and minimize incomplete combustion. Due to the high combustion efficiency of CTs, CO emissions are inherently low.

4.5.1.2 Oxidation Catalysts

The oxidation catalyst process is based on a straight catalytic reaction requiring no additives. The reactions and catalysts used (platinum based) are similar to the catalytic oxidation technology used for automotive emission control. Products from the reaction include carbon dioxide and water. Catalytic oxidation systems are capable of CO reductions of between 50 and 80 percent. However, this reduction potential will be greater with higher initial concentrations of the pollutants.

4.5.1.3 Technical Feasibility

Combustion process design is considered to be technically feasible for the proposed CTs. Oxidation catalysts are susceptible to deactivation due to impurities present in the exhaust gas stream. Arsenic, iron, sodium, phosphorous, and silica, which are present in fuel oil, will all act as catalyst contaminants causing a reduction in catalyst activity and removal efficiencies. In spite of this, the addition of an oxidation catalyst was considered to be technically feasible for this BACT analysis. Significant CO oxidation will occur at any temperature above roughly 500°F. Inlet temperature must also be maintained below 1,350 to 1,400°F to prevent thermal aging of the catalyst which will reduce catalyst activity and removal efficiencies. Exhaust gas temperatures associated with the proposed project are within this performance range. Information regarding energy, environmental, and economic impacts of an oxidation catalyst for CO are provided in the following sections.

4.5.2 Energy and Environmental Impacts

There are no significant adverse energy or environmental impacts associated with the use of good combustion designs and operating practices to minimize CO emissions.

A catalyst that oxidizes CO to CO₂ will also oxidize SO₂ to SO₃. While firing fuel oil, 5 percent of the SO₂ in the flue gas will be converted to SO₃. When the SO₃ comes in contact with moisture, it will form sulfuric acid mist (H₂SO₄) that can cause corrosion damage to downstream plant equipment and damage to surrounding vegetation. H₂SO₄ created will also increase particulate emissions from the facility. Because CO emission rates from CTs are inherently low, further reductions through the use of oxidation catalysts will result in minimal air quality improvements, i.e., impacts are already well below the defined PSD significant impact levels for CO. The location of the Hines Energy Complex (Polk County, Florida) is classified attainment for all criteria pollutants. Modeling of CO emissions from the Project indicate that the maximum CO impacts, without oxidation catalyst, will be many times lower than the EPA and FDEP significant impact levels; there would be no air quality benefit with the addition of an oxidation catalyst to reduce the already low CO emissions.

Although CO has been well documented as a criteria pollutant, significant international pressure is now being exerted to reduce CO₂ emission levels in response to the suspected contributions of the gas to global warming. A CO oxidation catalyst could increase the CO₂ emissions from each unit by almost 442 pounds per hour (1,934 TPY assuming 8,760 hours per year of operation).

The application of an oxidation catalyst would result in a derate of approximately 0.2 percent (0.36 MW) of CT output. Since power demand will remain constant, this derate will be replaced by a combustion source that has higher CO emissions than the planned units at the Hines Energy Complex. Further the pressure drop across the catalyst bed and resulting increase in the unit's heat rate results in a potential energy loss of 30,543 MMBtu per year per CT of natural gas. This is equivalent to the use of about 31 million cubic feet (ft³) of additional natural gas annually.

4.5.3 Economic Impacts

An economic evaluation of an oxidation catalyst system was performed using the OAQPS factors and project-specific vendor information. Capital and annual operating costs for the oxidation catalyst control system are summarized in Tables 4-2 and 4-3, respectively.

The capital costs for the catalytic reduction system include the costs of the catalytic reactors and balance of plant equipment. Capital costs for the catalytic emission reduction system are based on budgetary quotations from equipment manufacturers. Annual operating costs include maintenance (predominantly catalyst replacement) and lost generation due to the pressure drop across the catalyst. The total capital cost for installation of the oxidation catalyst control system is estimated to be approximately \$1,675,200 per CT. The total annualized cost is estimated to be approximately \$712,400. The cost effectiveness (incremental emission reduction cost) of the oxidation catalyst was determined to be \$2,130 per ton of CO removed. This cost-effectiveness value is conservatively low due to the the conservative operation assumptions and is in the range that has typically not been deemed BACT for CO by DEP.

4.5.4 Proposed BACT Emission Limitations

The use of oxidation catalysts to control CO emissions from CTs have been generally installed on facilities located in CO non-attainment areas. The use of combustion controls results in CO emission rates from the proposed CTs that are inherently low and in the range established as BACT for similar sources in attainment areas. As discussed in the preceding paragraphs, there are also significant energy and environmental impacts associated with the use of this technology. Further reductions through the use of oxidation catalysts will result in no measurable benefit in air quality.

Use of state-of-the-art combustion design and good operating practices to minimize incomplete combustion are proposed as BACT for CO emissions. For all CT projects recently permitted by the FDEP, these control techniques have been considered by FDEP to represent BACT for CO emissions. Therefore, at base load operation, the proposed BACT for CO emissions from the CTs will be 10 ppmvd at 15 percent O₂ (42 lb/hr at 59 °F compressor inlet conditions) for natural gas and 30 ppmvd (106 lb/hr

at 59°F) for fuel oil, respectively. At 60 percent load while firing natural gas, emissions will not exceed 50 ppmvd at 15 percent O₂ (146 lb/hr at 59 °F).

4.6 BACT FOR VOCs

A small amount of VOCs will be emitted by the CT as a result of incomplete combustion. The control technology established as BACT in Florida has been overwhelmingly the use of combustion controls and clean fuels. The proposed BACT emission levels when firing natural gas are 1.8/3.0 ppmvd at 15 percent O₂ (4.4/5.0 lb/hr at 59 °F compressor inlet conditions) for 100 percent and 60 percent loads, respectively. When firing distillate oil, the proposed BACT emission rate is 10 ppmvw (21 lb/hr at 59 °F). These levels are within the BACT levels recently established for other similar sources. Moreover, at these low concentrations, the application of control technologies, such as oxidation catalysts, are uncertain. The environmental benefit of further reducing the amount of VOCs from the combustion turbines proposed for Power Block 2 would be insignificant.

4.7 BACT ANALYSIS FOR NO.

During combustion, two types of NO_{χ} are formed: thermal NO_{χ} and fuel NO_{χ} . Thermal NO_x emissions are generated through the oxidation of a portion of the nitrogen contained in the combustion air. Formation of nitrogen oxides through thermal NO_x can be limited by lowering combustion temperatures by staging combustion (a reducing atmosphere followed by an oxidizing atmosphere), or by post-combustion controls. Fuel NO_{x} arises from the oxidation of non-elemental nitrogen contained in the fuel. The conversion of fuel-bound nitrogen (FBN) to NO_x depends on the bound nitrogen content of the fuel. In contrast to thermal NO_x, fuel NO_x formation does not vary appreciably with combustion variables such as temperature or residence time. Presently, there are no combustion process or fuel treatment technologies available to control fuel NO_x emissions. For this reason, the gas turbine NSPS (Subpart GG) contains an allowance for FBN above 0.015 percent (see Section 4.3). NO_x emissions from combustion sources fired with fuel oil are higher than those fired with natural gas due to higher combustion temperatures and FBN contents. Natural gas may contain molecular nitrogen (N2); however the N2 found in natural gas does not contribute significantly to fuel NO_x formation. Typically, natural gas contains a negligible amount of FBN.

4.7.1 Potential Control Technologies

A review of the latest control technology determinations (RBLC summary in Table 4-4) indicates that the lowest NO_x emission limits established to date for a CC unit equipped with a dry low NO_x combustor in EPA Region IV ranges from 3.5 to 4 ppmvd corrected to 15 percent O_2 . This is for a natural gas-fired combined cycle (CC) unit and was based on the use of dry low NO_x combustors operating within a CT that can achieve 9 to 15 ppmvd in combination with a selective catalytic reduction (SCR) system achieving from 60 to 70 percent NO_x removal. Therefore, the most stringent control technology for NO_x emissions control with a CC unit using dry low NO_x combustors is an SCR system. Recent FDEP natural gas-fired CT NO_x BACT determinations of 9 ppmvd at 15 percent O_2 with dry low NO_x combustors and with levels ranging from 3.5 to 7.5 ppmvd at 15 percent O_2 with SCR. For oil firing, the BACT emission rate established by FDEP was 15 ppmvd at 15 percent O_2 using water injection and SCR.

Available technologies for controlling NO_x emissions from CTs include combustion process modifications and post-combustion exhaust gas treatment systems, as follows:

Combustion Process Modifications:

- Water/steam injection and good combustor design.
- Dry low- NO, combustor design/XONON™ catalytic combustor.

Post-Combustion Exhaust Gas Treatment Systems:

- Selective Catalytic Reduction (SCR).
- Selective Non-Catalytic Reduction (SNCR).
- SCO NO_x™

A description of each of the listed control technologies is provided in the following sections.

4.7.1.1 Water or Steam Injection and Good Combustor Design

Use of water or steam injection in the combustion zone of a CT unit can limit the amount of NO_X formed. Thermal NO_X formation is avoided due to lower combustion temperatures resulting from the water or steam injection. The degree of reduction in NO_X formation is somewhat proportional to the amount of water or steam injected into the turbine. Further, high purity water must be employed to prevent turbine corrosion and deposition of solids on the turbine blades.

Since the CT unit NSPS for NO_x was last revised, CTs have improved their tolerance to the water or steam necessary to control the NO_x emissions below the current NSPS level. However, there is still a point at which the amount of water or steam injected into the turbine seriously degrades the turbine's reliability and operational life. With the manufacturers' existing turbine designs and standard combustors, this generally occurs below a NO_x emission level of about 25 ppmvd when firing natural gas and 42 ppmvd when firing fuel oil in conventional combustion turbines. For the larger "F" class combustion turbines, wet injection has been used to achieve a level of 42 ppmvd when firing natural gas (i.e., FPL Lauderdale Repowering Project).

The advanced combustor designs available for Power Block 2 will be capable of achieving low NO_x emissions without the use of water or steam injection (dry) while firing natural gas. Considering the water use issues prevalent in Florida, dry low NO_x combustion controls are preferred. This analysis disregards further consideration of wet NO_x control CTs when natural gas is used.

4.7.1.2 Dry Low NO_x Combustor Design/ XONON™ Catalytic Combustor

CT manufacturers have committed that their future technology will support lower NO_x emissions without water injection on natural gas. Dry low NO_x combustors premix turbine fuel and air prior to combustion in the primary zone resulting in a homogeneous air/fuel mixture. For this reason, the peak and average flame temperature are the same, causing a decrease in thermal NO_x emissions in comparison to a conventional diffusion burner. The more recent designs are operated in total premix mode, but require a load transition to achieve optimal performance. Total premix mode generally occurs in the 50 to 65 percent load range. Currently, premix burners are limited in application to natural gas and loads above approximately 50 percent due to flame stability considerations.

During oil firing, water or steam injection is employed to control NO_x emissions. The Siemens Westinghouse dry low NO_x combustor design currently available is capable of combustor-controlled NO_x emissions of 25 ppmvd while burning natural gas. Fuel oil burning requires water injection and has NO_x emissions of 42 ppmvd. Fuel oil burning will be limited to no more than 27,365,000 gallons per year, based on an aggregate of 2,000 total hours per year between the two CTs at full load and is expected to have only a minor impact on water usage.

Catalytic combustors are being developed for low emission applications on turbines where the catalyst is internal to the combustion system. The $\mathsf{XONON}^\mathsf{TM}$ Combustion System is a catalytic combustion system developed by Catalytica Combustion Systems, Inc. which can achieve low emission levels of NO_x, CO and VOC. The XONON™ system combusts the fuel over a catalyst, reducing the temperature of combustion and providing for more complete combustion of the fuel. The system is referred to as "flameless combustion", where combustion temperatures are at conditions where limited NO_x formation occurs. However, the exhaust temperatures from a combustion turbine standpoint are still sufficient for the expansion of the gases through the turbine for power generation. Emission levels of NO_x at less than 2 ppm have been reported for the 1.5 MW Kawasaki gas turbine located at Sun Valley Power. Recently, this technology has been proposed for a 750 MW combined cycle facility. This facility, the Pastoria Energy Facility, is a project proposed by affiliates of Enron Corporation, which has a 15 percent interest in Catalytica Combustion Systems, Inc. Commercial operation is scheduled for the summer of 2003. Catalytica is currently working in collaboration with several gas turbine manufacturers including General Electric, Pratt & Whitney, Rolls Royce Allison and Solar. XONON™ is not considered technically feasible based on the lack of operating experience with "F" Class turbines.

4.7.1.3 Selective Catalytic Reduction

SCR is a post-combustion method for control of NO_x emissions. The SCR process combines vaporized ammonia with NO_x in the presence of a catalyst to form nitrogen and water. The vaporized ammonia is injected into the exhaust gases prior to passage through the catalyst bed. The following primary reactions take place:

$$4\dot{N}H_3 + 4NO + O_2 \Rightarrow 4N_2 + 6H_2O$$
 (1)

$$4NH_3 + 2NO_2 + O_2 \Rightarrow 3N_2 + 6H_2O$$
 (2)

The performance and effectiveness of SCR systems is directly dependent on catalyst operating temperatures. The optimum temperature range for SCR operation is 600 to 750°F. Below this temperature range, reduction reactions (1) and (2) above will not proceed, resulting in large quantities of ammonia slip. At temperatures exceeding the optimal range, oxidation of NH₃ will take place resulting in an increase in NO_x emissions. At temperatures above about 800°F, permanent damage to the catalyst occurs. NO_x removal efficiencies for SCR systems typically range from 70 to 90 percent.

Flue gas from a CT will typically range from 950°F to 1,100°F. Accordingly, an SCR device would be installed at an intermediate point of the HRSG after several rows of tubes, where a temperature of approximately 700°F occurs. The narrow SCR temperature window dictates that the SCR catalyst be precisely located in the HRSG. A recent report indicated that effective SCR operation becomes very difficult for units that see a variation in gas flow and temperature through the HRSG due to load changes or ambient temperature swings (Boericke, 1990). Another report indicates that maintaining the catalyst in the narrow SCR temperature window over the entire CC unit operating load range can be difficult (Shorr, 1991). Therefore, SCR performance will be difficult to maintain to very low NO_x levels if the CC unit load varies or if significant temperature swings occur. For the proposed Power Block 2, CT operation will be within 60 to 100 percent load where DLN NO_x reductions are consistent.

Catalyst NO_X reduction efficiency will be affected by the NO_X concentration at the SCR inlet. The reaction mechanism requires both NO_X and ammonia to occupy a catalytic reaction site at the same time. This is a random event. The lower the NO_X concentration, the less likely it is that any one ammonia gas molecule and NO_X gas molecule will meet on a reaction site. Therefore, as the SCR inlet concentration of NO_X decreases, the catalyst needs to become larger and/or the amount of ammonia added needs to be increased (leading to increased ammonia slip) for similar NO_X reduction efficiencies. The dry low NO_X combustors have relatively low NO_X emissions and will therefore require a greater volume of catalyst than a standard combustor would for the same NO_X removal efficiency.

Catalyst NO_x reduction efficiency also will be affected by the type of fuel being burned. When firing fuel oil, the SCR catalyst can oxidize up to 10 percent of the SO₂ in the flue gas to SO₃. Catalytic reduction efficiency is therefore reduced when available reaction

sites are occupied by sulfur compounds. Additionally, the ammonia present in the flue gas will react with the SO₃ to form ammonia sulfate salts and the water in the flue gas will react with the SO₃ to form sulfuric acid mist. The formation of ammonia sulfate salts will reduce the amount of ammonia available for reaction with the NO_x. Ammonium bisulfate, one of the ammonia salts formed, will also reduce a CC unit's thermal efficiency by coating the heat transfer surfaces of the HRSG and potentially limit unit availability due to forced outages for HRSG cleanup. Both the ammonia sulfate salts and the sulfuric acid mist will increase the amount of particulate matter emitted in the flue gas to a level of approximately 20 lbs/hr per CT in the form of ammonium salts. This particulate will predominately consist of matter less than 10 microns in size (PM₁₀).

Catalyst life expectancy also can be affected by the type of fuel burned. Catalyst poisoning can be caused by such trace elements as arsenic, beryllium, cadmium, chromium, copper, lead, manganese, mercury, and nickel, all of which can be found in fuel oil at low concentrations. Arsenic, the major poison, can be deposited on catalyst surfaces in the form of gaseous arsenic oxide, which can clog the small pores of the catalyst and prevent the ammonia/nitrogen oxide mixture from being catalytically oxidized.

4.7.1.4 Selective Non-Catalytic Reduction

Nitrogen oxide emissions from other types of combustion sources also have been controlled through installation of selective noncatalytic reduction (SNCR) systems such as Thermal DeNO_x and NO_xOUT. Chemical reactions for the Thermal DeNO_x process are as follows:

$$4NO + 4NH_3 + 0_2 \implies 4N_2 + 6H_20 \tag{3}$$

$$4 \text{ NH}_3 + 5 \text{ 0}_2 \Rightarrow 4 \text{NO} + 6 \text{ H}_2 \text{0}$$
 (4)

The NO_xOUT process is similar with the exception that urea is used in place of NH₃. The critical design parameter for both SNCR processes is the reaction temperature. At temperatures below 1,600°F, rates for both reactions decrease allowing unreacted NH₃ to exit with the exhaust stream. Temperatures between 1,600 and 2,000°F will favor Reaction (3), resulting in a reduction in NO_x emissions. Reaction (4) will dominate at temperatures above approximately 2,000°F causing an increase in NO_x emissions. Temperatures below 1,300°F result in ammonia slipping through the system unreacted without any corresponding reduction in NO_x emissions. As reported earlier, the

temperature at the outlet of a CT unit utilizing dry low NO_x combustors, is too low (950°F to 1,100°F) for such a system. Accordingly, this alternative is judged not to be technically feasible for application on a CC unit.

4.7.1.5 SCONO_x™

PSD Permit Application

 $SCONO_x^{TM}$ is a NO_x and CO control system exclusively offered by Goal Line Environmental Technologies (GLET). GLET is a partnership formed by Sunlaw Energy Corporation and Advanced Catalyst Systems, Inc. For turbines of 100 MW and larger, ABB Environmental has the license for the technology.

The SCONO $_x^{TM}$ system employs a single catalyst to simultaneously oxidize CO to CO $_2$ and NO to NO $_2$. NO $_2$ formed by the oxidation of NO is subsequently absorbed onto the catalyst surface through the use of a potassium carbonate absorber coating. The SCONO $_x^{TM}$ oxidation/absorption cycle reactions are:

$$CO + 1/2 O_2 \implies CO_2 \tag{5}$$

$$NO + 1/2 O_2 \Rightarrow NO_2$$
 (6)

$$2NO_2 + K_2CO_3 \Rightarrow CO_2 + KNO_2 + KNO_3$$
 (7)

CO₂ produced by reaction (5) and (6) is released to the atmosphere as part of the CT/HRSG exhaust gas stream.

As shown in Reaction (7), the potassium carbonate catalyst coating reacts with NO₂ to form potassium nitrites and nitrates. Prior to saturation of the potassium carbonate coating, the catalyst must be regenerated. This regeneration is accomplished by passing a dilute hydrogen-reducing gas across the surface of the catalyst in the absence of O₂. Hydrogen in the reducing gas reacts with the nitrites and nitrates to form water and elemental nitrogen. CO₂ in the regeneration gas reacts with potassium nitrites and nitrates to form potassium carbonate; this compound is the catalyst absorber coating present on the surface of the catalyst at the start of the oxidation/absorption cycle. The SCONO_xTM regeneration cycle reaction is:

$$KNO_2 + KNO_3 + 4 H_2 + CO_2 \implies K_2CO_3 + 4 H_2O_{(q)} + N_2$$
 (8)

Water vapor and elemental nitrogen are released to the atmosphere as part of the

July 2000

CT/HRSG exhaust stream. Following regeneration, the SCONO_x™ catalyst has a fresh coating of potassium carbonate, allowing the oxidation/absorption cycle to begin again. There is no net gain or loss of potassium carbonate after both the oxidation/absorption and regeneration cycles have been completed.

Since the regeneration cycle must take place in an oxygen-free environment, the section of catalyst undergoing regeneration is isolated from the exhaust gas stream using a set of louvers. Each catalyst section is equipped with a set of upstream and downstream louvers. During the regeneration cycle, these louvers close and valves open allowing fresh regeneration gas to enter and spent regeneration gas to exit the catalyst section being regenerated. At any given time, 75 percent of the catalyst sections will be in the oxidation/absorption cycle, while 25 percent will be in regeneration mode. A regeneration cycle is typically set to last for 3 to 5 minutes.

Regeneration gas is produced by reacting natural gas with O₂ present in ambient air. The SCONO_x™ system uses a gas generator produced by Surface Combustion. This unit uses a two-stage process to produce hydrogen and carbon dioxide. In the first stage, natural gas and ambient air are reacted across a partial oxidation catalyst at 1,900°F to form CO and hydrogen. Steam is added and the gas mixture is then passed across a low temperature shift catalyst, forming CO₂ and additional hydrogen. The resulting gas stream is diluted to less than 4 percent hydrogen using steam or another inert gas. The regeneration gas reactions are:

$$CH_4 + 1/2 O_2 + 1.88 N_2 \Rightarrow CO + 2 H_2 + 1.88 N_2$$
 (9)

$$CO + 2 H_2 + H_2O + 1.88 N2_2 \Rightarrow CO_2 + 3 H_2 + 1.88 N_2$$
 (10)

The SCONO $_x^{\text{TM}}$ operates at a temperature range of 300 to 700°F and, therefore, must be installed in the appropriate temperature section of a HRSG. For SCONO $_x^{\text{TM}}$ systems installed in locations of the HRSG above 500°F, a separate regeneration gas generator is not required. Instead, regeneration gas is produced by introducing natural gas directly across the SCONO $_x^{\text{TM}}$ catalyst that reforms the natural gas.

The SCONO $_x^{TM}$ system catalyst is subject to reduced performance and deactivation due to exposure to sulfur oxides. For this reason, an additional catalytic oxidation/absorption system (SCOSO $_x^{TM}$) to remove sulfur compounds is installed upstream of the SCONO $_x^{TM}$ catalyst. During regeneration of the SCOSO $_x^{TM}$ catalyst, either hydrogen

sulfide or SO_2 is released to the atmosphere as part of the CT/HRSG exhaust gas stream. The absorption portion of the $SCOSO_x^{TM}$ process is proprietary. $SCOSO_x^{TM}$ oxidation/absorption and regeneration reactions are:

CO +
$$1/2 O_2 \rightarrow CO_2$$
 (11)
SO₂ + $1/2 O_2 \rightarrow SO_3$ (12)
SO₃ + SORBER \rightarrow [SO₃ + SORBER] (13)
[SO₃ + SORBER] + 4 H₂ \rightarrow H₂S + 3 H₂O (14)

Utility materials needed for the operation of the $SCONO_x^{TM}$ control system include ambient air, natural gas, water, steam, and electricity. The primary utility material is natural gas used for regeneration gas production. Steam is used as the carrier/dilution gas for the regeneration gas. Electricity is required to operate the computer control system, control valves, and louver actuators.

Commercial experience to date with the SCONO_x[™] control system is limited to one small combined cycle (CC) power plant located in Los Angeles. This power plant, owned by GLET partner Sunlaw Energy Corporation, utilizes a GE LM2500 turbine equipped with water injection to control NO_x emissions to approximately 25 ppmvd. The SCONO_x[™] control system was installed at the Sunlaw Energy facility in December 1996 and has achieved a NO_x exhaust concentration of 3.5 ppmv resulting in an approximate 85 percent NO_x removal efficiency.

A second SCONO_xTM system was installed at the Genetics Institute Facility in Andover, Massachusetts in late 1998. The system is installed on a 5-MW Caterpillar Solar Turbine with a Deltak boiler. The NO_x emission limit is 2.5 ppmvd at 15-percent O₂. ABB Environmental reports that the system is operating successfully, although there have been incidents of high NO_x emissions that ABB Environmental attributes to combustion control problems and not to the SCONO_xTM system.

The SCONO_x™ control technology is not considered to be technically feasible because it has not been commercially demonstrated on large CTs. The CTs planned for the Hines Power Block 2 project, Siemens-Westinghouse 501F units, each have a nominal generating capacity of 170 MW which are approximately seven times larger than the nominal 25-MW GE LM2500 utilized at the Sunlaw Energy Corporation federal facility.

Technical issues associated with scale-up of the SCONO_x™ technology given the large differences in machine flow rates may be significant.

4.7.1.6 Technical Feasibility

All of the combustion process control technologies presented above (i.e., water/steam injection for oil firing and dry low NO, combustor design for gas firing) would be potentially feasible for the Power Block 2 CTs. Of the post-combustion stack gas treatment technologies. SNCR is not feasible because the temperature required for this technology (between 1,600 and 2,000°F) exceeds that found in CT exhaust gas streams (approximately 1,000°F). The XONON™ catalytic combustion technology and SCONO,™ control technology are not considered to be feasible because they have not been commercially demonstrated on large CTs. The CTs planned for the Hines Energy Complex Power Block 2, Siemens Westinghouse 501 FD units, each have a nominal generating capacity of 170 MW which are approximately six times larger than the nominal 25-MW GE LM2500 utilized at the Sunlaw Energy Corporation Los Angeles facility. Technical problems associated with scale-up of the $SCONO_x^{TM}$ technology given the large differences in machine flow rates are unknown. Additional concerns with the SCONO,™ control technology include process complexity (multiple catalytic oxidation / absorption / regeneration systems), reliance on only one supplier, and the relatively brief operating history of the technology.

The BACT analysis for NO_x for the Power Block 2 CTs evaluated the use of dry low NO_x combustors available from Siemens Westinghouse and the application of post-combustion SCR control technologies. The dry low NO_x combustors are expected to achieve 25 ppmvd corrected to 15 percent oxygen when firing natural gas and with water injection achieve 42 ppmvd corrected to 15 percent oxygen when firing distillate oil. Steam/water injection technology for natural gas firing was not evaluated because it results in NO_x emissions that are higher than those achieved by dry low NO_x combustor technology and has associated water use and lower heat rate considerations. Also, the water consumption and sludge treatment/disposal requirements associated with water/steam injection do not exist for dry low- NO_x combustors, making dry low NO_x combustor technology preferable to wet injection as the primary control for natural gas firing. The SCR system was evaluated based on achieving a NO_x concentration of 3.5 ppmvd corrected to 15 percent oxygen when firing only natural gas. This represents a control efficiency of about 86 percent which is at the upper ranges of removal

efficiencies established as BACT with SCR. Information regarding energy, environmental, and economic impacts and proposed BACT limits for NO_x are provided in the following sections.

4.7.2 Energy and Environmental Impacts

The use of advanced dry low NO_x combustor technology will not have a significant adverse impact on CT heat rate.

The installation of SCR technology will cause an increase in back pressure on the CTs due to the pressure drop across the catalyst bed. The back pressure would also increase with the installation of additional catalyst volume. Higher NOx removal will require additional catalyst volume resulting in greater energy penalty. The energy penalty would be approximately 0.3 percent for SCR installed on Power Block 2. Additional energy will be needed for the pumping of aqueous NH₃ from storage to the injection nozzles and generation of steam for NH₃ vaporization. Energy penalty due to CT back pressure is projected to be 4,730,400 kwh per year for each CT while reducing NOx to 3.5 ppmvd corrected to 15 percent oxygen. The total SCR energy penalty including dilution air fans is estimated to be 5,431,200 kwh per year for each CT which is equivalent to an energy loss of 52,600 MMBtu/yr. This is equivalent to the use of about 53 million ft³ of natural gas annually based on a gas heating value of 1,000 Btu per ft³.

There are no significant adverse environmental effects due to the use of advanced dry low NO_x combustor technology. Application of SCR technology results in the following environmental impacts:

- NH₃ emissions due to ammonia slip; NH₃ emissions are estimated to total 112 tpy (at base load and 59°F ambient temperature) for a typical SCR design and an ammonia slippage rate of 9 ppmvd at the 15 percent O₂ for each CT. Ammonia slip is much lower during the early stages of catalyst usage and increases with age. Increasing efficiency, such as reducing the already low exhaust NO_x emissions of 3.5 ppm to a lower level can also potentially increase ammonia slip. This is especially true because the SCR design is already at the upper range of its maximum reduction efficiency.
- Ammonium bisulfate and ammonium sulfate particulate emissions due to the

reaction of NH₃ with SO₃ present in the exhaust gases; as a result, total particulate matter emissions would increase. This effect is more of a concern when firing oil. The emission rates for both gas and oil accounted for additional formation of particulate due to the reaction of NH₃ and SO₃.

4.7.3 Economic Impacts

An assessment of economic impacts was performed by comparing control costs between a baseline case of advanced dry low NO_x combustor technology and baseline technology with the addition of SCR controls. As supplied by Siemens Westinghouse, the 501 FD unit is equipped with dry low NO_x combustors. Siemens Westinghouse does not offer any other option with respect to combustor type or design. Dry low-NO_x technology provided by Siemens Westinghouse is expected to achieve a NO_x exhaust concentration of 25 ppmvd at 15 percent O₂. SCR technology was premised to achieve NO_x concentrations of 3.5 ppmvd at 15 percent O₂ for natural gas firing and 15 ppmvd at 15 percent O₂ for oil firing. The NO_x concentration of 3.5 ppmvd is representative of the maximum NO_x removal efficiencies determined as BACT for natural gas fired CTs equipped with dry low NO_x combustor technology and SCR controls.

The cost impact analysis was conducted using the OAQPS factors and project-specific vendor estimate. Emission reductions were calculated assuming base load operation for 8,760 hr/yr at an annual average ambient temperature of 59°F (7,760 hours of gas firing and 1,000 hours of oil firing). Specific capital and annual operating costs for the SCR control system are summarized in Tables 4-5 and 4-6, respectively.

Cost effectiveness for the applicat ion of SCR technology to the Hines Energy Complex Power Block 2 for natural gas firing was determined to be \$2,610 per ton of NO_x removed. This control cost is for an SCR system achieving NO_x levels of 3.5 ppmvd at 15 percent oxygen while firing natural gas with an initial NO_x level of 25 ppmvd using dry low NO_x combustor technology available from Siemens Westinghouse and 15 ppmvd at 15 percent O₂ while firing distillate oil with an initial NO_x level of 42 ppmvd at 15 percent O₂ using water injection. Achieving NO_x levels of 3.5/15 ppmvd at 15 percent oxygen while firing natural gas and oil, respectively, results in a NO_x reduction of 823 tons/year (at 100 percent load).

4.7.4 Proposed BACT Emission Limitations

 NO_x BACT emission limits proposed for the Hines Energy Complex Power Block 2 CTs, are based on the application of dry low NO_x combustors achieving NOx levels to 25 ppmvd (load-weighted) and an SCR system achieving 3.5 ppmvd at 15 percent O_2 , 24-hour block weighted average, for gas firing and 15 ppmvd at 15 percent O_2 , 24-hour block weighted average for oil firing. The weighted average is requested to be based on load (i.e., the sum of the hourly ppmvd corrected to 15% O_2 multiplied by the hourly load over the block 24-hour period divided by the total load over the block 24-hour period). The emission level proposed for gas firing is equivalent to 0.16 lb/MW which is over 9 times lower than the recently promulgated EPA new source performance standards (NSPS) for steam electric units. This new NSPS has a NOx limit for new sources of 1.6 lb/MW (September 16, 1998; 63FR179).

4.8 BACT ANALYSIS FOR SO₂ AND H₂SO₄ MIST

4.8.1 Potential Control Technologies

The NSPS established by EPA for emissions from CTs sets a maximum SO₂ level in the flue gas of 150 ppmvd or a maximum fuel sulfur content of 0.8 percent by weight (40 CFR 60, Subpart GG). Technologies employed to control SO₂ and H₂SO₄ mist emissions from combustion sources consist of fuel treatment and post-combustion add-on controls; i.e., flue gas desulfurization (FGD) systems.

4.8.1.1 Fuel Treatment

Fuel treatment technologies are applied to gaseous, liquid, and solid fuels to reduce their sulfur contents prior to delivery to end fuel users. For wellhead natural gas containing sulfur compounds (e.g., hydrogen sulfide) and for crude oil, a variety of technologies are used by fuel suppliers to remove these sulfur compounds prior to delivery to customers.

4.8.1.2 Flue Gas Desulfurization

FGD systems remove SO₂ from exhaust streams by utilizing an alkaline reagent to form sulfite and sulfate salts. The reaction of SO₂ with the alkaline chemical can be performed using either a wet- or dry-contact system. FGD wet scrubbers typically employ sodium, calcium, or dual-alkali reagents using packed or spray towers. Wet FGD systems will generate wastewater and wet sludge streams requiring treatment and disposal. In a dry FGD system, an alkaline slurry is injected into the combustion process exhaust stream. The liquid sulfite/sulfate salts that form from the reaction of the alkaline slurry with SO₂ are dried by heat contained in the exhaust stream and subsequently removed by downstream PM control equipment

4.8.1.3 Technical Feasibility

Current RBLC documents do not list any natural gas- or fuel oil-fired CC units that are required to use flue gas desulfurization (FGD) systems to meet SO₂ or H₂SO₄ emission requirements. The maximum emissions rates for Power Block 2 using pipeline natural gas and distillate fuel are equivalent to 0.003 and 0.06 lb/MMBtu, respectively. These levels are clearly within the ranges established as BACT for other projects.

The high pressure drops across FGD systems make them technically infeasible for application on CC units. Also, addition of an FGD system would be an inappropriate method of SO₂ or H₂SO₄ control, because emissions of these pollutants will be low. The significant capital and operating costs associated with FGD would make the project economically infeasible.

4.8.2 Proposed BACT Emission Limitations

Because post-combustion SO₂ and H₂SO₄ mist controls are not applicable, use of low sulfur fuel is considered to represent BACT for the Hines Energy Complex Power Block 2 CTs. Natural gas utilized at the Project will contain no more than 1.0 grain of sulfur per 100 scf and the distillate fuel oil will contain no more than 0.05 percent sulfur, by weight. Based on economic, energy, and environmental considerations, firing natural gas as the primary fuel and limiting the amount of time low sulfur fuel oil operation will be allowed (i.e., a total of 27,365,000 gallons per year, based on an aggregate of 2,000 hours per year of operation at full load) is proposed as BACT for SO₂ and H₂SO₄ emissions.

4.9 SUMMARY OF PROPOSED BACT EMISSION LIMITS

Emission rates and methods of compliance proposed as BACT for each pollutant subject to review are summarized in Table 4-7.

1311.13 X 101.0 SCIVY NAT GAR 7.44 X 101.0 OFT RUSS ON

Kammer Ecody Exyle Talls Cooche ear R Bany's Bert CO. Bureanner Pasitieseur Gany's Bert CO. Bureanner Arabieseur Ear Bland Papes Company. U. Ear Bland Papes Company. U. Gordonsynle Bert Boy U. Gordonsynle Bert Boy U.

Jubio 6 1. E. Compare of Chair Application Company (Contraction (CACT) Decreases

BACI PED

		Continuent for Combustion July					<u>*</u>	
GORDONEVILLE ENERGY C.F.	Blota	Femilian	Parend Is suo Date	Uniterante Description	Capably land	CO E-t-seen Later	Central Markes	
GORDONEVILLE ENTRAVA O	VA VA	MI GIRTHATICH # 4080E RECESTRATION # 4080E	62647	FLABRES IT (EACH WITH A BIT	1.61 X LOID BRUNE N OAS	\$7 0000 (dantauni)		Oct 1
NEVADA POWER COMPANY, MARIY ALLEN PLAKING PLANT KAMINE BOUTH GLENE FALLE COCEN CO	NÝ	AGES	#2 662 #1842	FUNDAMES AN ISACH WITH A BY COMBUSTION TURBLE BLECKER POWER GENERATION	1.30 X (this) differs at Diff.	FF.UUDD LIMMANDERS	GOOD COMBUS TON PRACTICES	Mc1700
NORTHERN BIA ITS POWER COMPANY	80	414401 0212 00001 NONE	1/10/07	GE FRAME P CAR IDERNA	400.00 MW IB UM TO TO EACH!	155 6000 TPY EACH TURBUE!	PRECISION CONTROL FOR INE SOW NOR COMMISSION	DACIAN DEFIDAR
	AT	1-1/17-00976-00004 a	9/2/02 9/1/02	TURBUT, GRAPLE CYCLE, A BACH DEHERATOR, EMERGENCY MATURAL DASI	128.00 MW	8 0000 PPM, 11,0 EBH II 80,0000 PPM H38 LIAS	NO CONTROLS GOOD COMMUS NON TECHNIQUES	MO-10AB
PAGNYMOLITURISE COMMINED CYCLE PLANT WEPCU, PARIS BITS	NY	14722 00824/00001 6	B/1/82	PURBORE, COMMUNICATION CAN IL SO MEN	1.69 MINETUNE	B. SCOO COMMINSTRA	COMMUNICAL CONTROL	BACTESO
FLORIDA POWER CORPOSA RON FLORIDA POWER CORPOSA RON	ň	F1 FV 043 F1 F10 186	P-5845	TURBUES COMPLETION M	1148.00 MINETURE HASIP	4 boos 17 M	COMBUSTION CONTROL	BACLOTH
FLORIDA POWER CORPORA NON CHIE TRANSMIREGIN	i i	FL #80 100	6-17/02 0-17/02	TURBINE, CILL TURBINE, CILL	1028.00 MARKETUAN	26.0000 LEMAN (SEE NOTES)	0000 COMBUSTION FRACTICES	BACT GTH BACT #30
SARAHAC ENERGY COMPANY	Cert	@1 3@R)	0/12/02	TURBUE MATURAL CASHISH	1886.00 MMBTUM 1600.00 MP @ACHI	78 0000 1844	GOOD COMMUSTOW PEAC TICES	Bect #80
SA SAMAC ENERGY COMPANY	MY AT	6 COM 2 CO 1 COM COO CO 6	3/11/62	#J#HF## DUCT134	669 CO MINITURES EACH	CONCO SERVINETU	THE LEPECH WEE OF MA FURAL CAS	MCIPSD OMEN
MARI WELL ENERGY LINE TO PARTICE STONE	GA.	4611-073-10041	5/35/62 5/20/02	TURBINES COMMUNITOR IN MATURAL GASI TURBINE CAN ROLO LE EACH	1123.00 MWRTUNE EACHI	\$ 0000 PF M	OXIDATION CATALYST	BACTON-
MAN ELECTRIC COMPANY AND MARKAGE PRINCIPLE BANK AND	GA.	4711-073 (004)	1/2 1/0 2	TUMPRE, OLD AND DID EACH	1817.00 M WILLIAM B 1840.00 M BTLAMS	PLOODS PENYS & FULL LOAD	FUFL EPFC CLEAN BURNING HISTOR	BACTOTH
MOCCE YE RES SHE NOT SE TWICES MIDECE YE WEST CHE NOT SE TWICES SELVANT COORNESS NOM PARTNESS L.P.	10	146400 0135	>1045	FUARINE, COMMINED CYCLE COMMUS DON DUCT MUNICE SE SOCION	28.00 MW	26.0000 PPMYD @ RULL LDAG	RUEL SPECI CLEAN BLIMWING THE 18 COMBUSTION SECHNOLOGY AND EGY	Acteso Acteso
M DECE TE BEEF CHE BOT BE PAICE B	ÄŸ	148100 0133	6/24/02 6/24/02	DUCT MARKER (EF 200001) DE FRANK & GAS TURBINE (EF 200001)	Service manufactures	\$ 0400 Librarianty of Library	NO CONTROLS COMMUNICATION RECHNOLOGY AS EACH	MC1019
SEARISE COMMISA NOW PARTIES. L.F.	AY AY	4 0132 000/9/00002 0	41042	CACT BANKS BEION	432 20 MINETURE EACHS	10.0000 PTM 10.0HH	NO CONTROLS	#10-10 AB
BLANDE COMMEN, NOW PARTHERS, LP. SELECTOR CONTINUES FARTHERS LP. SELECTOR COMMEN, THE PARTHERS LP.	MY	4 0123 00078/00072 # 4 0123 00078/00002 #	6/16/02 6/16/02	DUCT BURNEY	173,00 MARKUME	0.0730 (BINNET) DAS 1009 0.0730 (BINNET) DAS (1009)	COMMITS TION CONTROLS	MACFORM MICOTOR
PELATRI COGENERATION PARTNERS LP. TENABLA WASHINGTON PARTNERS LP	MY	4 O177 GODTB/GUICH &	#1642	COMMUSTICM FURBINGS US USES MIN) COMMUSTICM FURBING (FS MIN)	1173.00 MMBTUHE EACH	16.0000 PP M	COMBLISTION CONTROL COMBLISTION CONTROLS	BACT-OTH
NORTHWEST PURSUE COMPORATION	WA	61-06 81LP362H 31 MOD, 81	629/67	COMERFER TION PLANT COMMINS OF YOUR	1173 OF MINERUNA 1.03 MINERUNA	PE CODO PP M	COMMUSTION CONTROL	MTG-10AB
MARRAGANSE I I ELECTRICALE WENDLAND POWER CO. RENTICEY WILLIAM COMPANY	co	# P80-4	6/28/02 6/13/02	BURNERS, DUCT, COEN	20 CO MANE PURK PLE BURNETS	20,0000 PPM @ 16% 02 4,0000 18416	COMBUSTION CONTROL	BACT-G1HI BACT-CED
ME SWINGY HIMDING OF STEED WELL IN LEG LY STREETHING STEEN LINCY AND INTER CONDINCY.	ŘΥ	C #2 006	2/10/2	FURBINE DAS AND DUCT SUBJECT FURBINE, 52 AUEL DILWATURAL DAS ISI	198G.CO MINETUN FACM	11.0000 PFM @ 159 02. GAS		Ø I H É A
M IMURA MENORS O SINGROVA MASSES RANDOM MASSES	YA	\$1020	2/242	TURBHE, COMBUSTION TURBHE, COMBUSTION TURBHE COMBUSTION	1900.00 MM BRUME EACHI 1176.00 MMBRUM HAT, DAS	76-0000 SEHR GACH)	COMBUSTION CONTROL	GACI##D
MANUFA HUNDRED ENGREY LINGTED FAR THE SOLUT	VA	61020 61020	2/207	TURBHE COMMUSION	11 \$7.00 MMBTUM HOZ BUEL OIL	#2 0000 LEMANNIT	RUMNACE DESIGN	BACTPBD BACTPBD
	CO	PW [6671 4	2/3/62	TURBUE, COMBUBITON, 2	440	228 2000 1/maximus	PURMACE DE SION	BACIFEO
BAYANNAM ELECTRIC AND POWER CO. BAYANNAM ELECTRIC AND POWER CO.	9A 9A	4811-061-0620	2/12/72	TURBRE GAS HEST SEACH FURBRES S	249.00 MIMBRUAY 1002.00 MIMBRUM, MAT GAS	PLOCOD PFM @ 18% 02 #.0000 PFM @ 16% 02	COMBJERON CONTROL	MCTPS0
HAWAN ELECTRIC HON I CO. Mr.C.		4811 051 8528 HI 8004	2/12/02	Tu Raines g. o	872.00 MMBTUM, MAT DAS 872.00 MMBTUM, #2 DIL	#.0000 PFM @ 16 H 02	RIEL BPEC: LOW SULFUR RUEL ON	BACT PEO
MARKA FARCING UGA LCO MIC	14 14	HI #0-06	2/12/07 2/12/07	TURBNE, RUEL OIL #2	20.00 MW	8 0000 PFM @ 15 S OF 20.0000 LBHIR @ 100H PEATLD	FUEL SPECE LOW SUCHOR FUEL OIL COMBUSTION DESIGN	BACTPED BACTPED
MAWAR ELECTRIC WORT CO., INC. MAWAR ELECTRIC WORT CO., INC.	H	HI \$0-04	3/12/02	TURBINE RUEL OIL 82 TURBINE RUEL OIL 82	70.00 MW 20.00 MW	₩ 4000 WH @ 75-< 100% PC/	COMBINETION ACCION	MACI PED
EAMINEM OF COME MATERIAL SAMES	NY NY	HI 90-04 404096 0005 00001	2/12/02	PURSINE, PASS DIS 87	20.00 MW		COMBISTION DESIGN	excreso
DUCE POWER CO. INICOUN COMPLETION FURBRES BEATION DUCE POWER CO. UNICOUN COMPLETION TURBRES ETA TION	NT NC	2121	12/31/81	GE FRAME & GAS FLASSING	BOOLOG MANUFLLAND	676-8000 LIGH @ 26-<50% PELD 0.0200 LIBHMETU, 10 LIBHE	COMEAN TON DESIGN	BACTPED BACTPED
MAIN ELECTRIC COMPANY, LTD.	NC NC	3131	12/20/61	TURBAC, COMBUSTION TURBAS, COMBUSTION	1313.00 MM BTUNK	ME COOK LIGHER	COMMUNE FOR CONTROL	BACTOTHE
SALAMATOO POWER HINGS	H	Ht 80-02	12/3/81	FURBINE AUEL OIL #1	1247.00 MM BTVAHR	80.0000 LBHR	COMBUS NON CONTROL	BACIPED
LAKE CORES UNITED		1234 00 PED FL 120	(2/3/8) 11/2001	FURBLE, GAS MILEO, 2 W/ WASTE HEAT SCHARE	1005.00 MMETUN	0.0000 SEE NOTES 70.0000 PPMY	GOOD COMBUS BON FRACTICES	MAG1#8D BAC1#8D
LATE COORS UM TEO	ř.	PSD FL-176	1/2001	DUCT BURNER, GAS RURBRE, GAR, TEACH	160,00 Metatyan	4.7000 LEMMEN	MOT OF MOX TURBULE	6AC1730
OUTVACO O HO LES COMMENCA	ř.	PRD FL 128	11/2001	TURBRE DIL 2 FACH	42.00 MW 42.00 MW	42 0000 PPM @ 169 D2	COMMITTION CONTROL	BACIPEO
CRUATOO U TRU THE COMMISSION	ñ	F80 H-172 P60 Ft 173	11/5/01	TURBAE, DAB. 4 EACH	25.00 MW	78.0000 PPM @ 16% 02 10.0000 PPM @ 16% 02	COMMUSTION CONTROL	Inc I Pso
BOUTHERN CAUTOMAN CAR	ä	2048008 (41)	11/6/81 10/20/01	PARTITE OIL 4 EACH	36.00 EW	10.0000 PM # 155 02	COMMUNICATION CONTROL	BACIPED BACIPED
SOUTHERN CAUPORNA GAR	ä	2948008 011	1070-01	PURRINE, GAR PIEGO PURRINE GAR PIEGO BOLAR MODEL H	47.84 MMBTUM 1400.00 HP	2 2400 PEM 40 14W 01	HOOM TEMPERABUM CHICA DON CATALINAS	encires
EL PARO HARDRAL CAR EL PARO NA RURAL CAR	AT AZ		107501	TURBUE GAR SCHARCENTAUR W	Mico.co HP	7 7440 PPH @ (4 t D)	MICH TEMP DEIDA DON CATALYST	SACT PED
FLORIGA POWER CHAIR BARRIER	FL.	PERFLANT	10726/91 10718/81	FURBRE DAT BOLAR CENTAURY	6600.00 HP	10 5000 PPM @ 16% 02 10.5000 PPM @ 16% 02	FUEL SPEC. LEAN FUEL MAX FUEL SPEC: LEAN FUEL ME	BACIFED BACIFED
EL PAGO NA MERAE GAS ECX POWER SYSTEMS, EMCOGEN NW COGENESA TION PROJECT	AZ		10:001	THREE SH. & CACH BARRES HAT, CAS FRANSM, CE FRAME S	\$2.00 MW	64 0000 18M	COMMITTION CONTROL	BACT-SD BACT-SD
CAROLEIA POWER AME DOWN CO.	¥^	P1-02	B/20/81	TARBOTES, COMBINED CYCLE COOKS OF SEASON A	12000.00 HP 122.00 MW	00.0000 PFM @ 16% OZ	LEAN BURN	BACT-PED
ENROR LOURDANA SHE BOY COMPANY	80 IA	9979-9093-CA 10-CC	8/23/91 8/5/91	RARGINE, I.C., TURBINE CAR 2	80.00 MW	10'0000 LEMDA & 124 05		BACIFED BACIFED
ALGONGLIU GAB TRANSMERION CO.	•	1120-1127	7/21/01	IDAMAS GAR 1	39.10 MARKUM	\$0.0000 PTM @ 164 D2	BASE CASE, NO ADDITIONAL CONTROLS	BACTPED
CHARLES LARGEN POWER PLANT CHARLES LARGEN POWER PLANT	FL	PSD ft 106	7/26/41	TURBLE GAS, I SACH	40 CO MANERUM BO CO MAN	G.1140 LBridge ID	BOOD COMBUSTION FRACTICES	BACTPED
BUMA E ENERGY MIC.	FL WA	PED F1 100	2/25/84 8/25/81	TURBRE, OIL, 1 EACH	80.00 MW	26.0000 PPH @ 15H 02 26.0000 PPH @ 15H 02	COMBUSTION CONTROL	MC10NF MC17SD
RAGMAND FOWER COMPANY FLORIDA POWER AND LIGHT	NV	ATOT	±17/±1	PURMINE, NATURAL GAS COMBUSTION FURMINE DENERATOS	08.00 MW	#.0000 PPM @ 15 V. (12	CO CAPACARI	BACTESO
FLOADA POWER AND MONT	FL	PSD FL 144	8/5/61	FURBAR, DAS, 4 LACH	34.60 MW 400.00 MW	8.0000 PPH	CONVERTER (CATALYTIC)	BACTESO
FLORIDA POWER AND UCHT	n A	PRD FL 148 PRD FL-148	Bright I	FURBINE CO. 4 EACH	400.00 MW	30 0000 PPM @ 181 C2 33 0000 PPM @ 161 C2	COMBUSTION CONTROL	MC1PED MC1PED
NOATHERN CONSOLIDATED POWER	PA	26 126 001	5/2-01	TURBHE, OIL 2 EACH TURBHER, GAS 2	400.00 MW	33 0000 PPM @ 161 02	COMBUSTION CONTROL	MACT PEO
EARS WOOD COOKING AA ROM L.F.	MT	BEYERAL SEE HOTES	441/41	TURBREW PRATURAL CARLIES	TARGET ENGLANDER MACHI	110.0000 T/YR	OXIDATION CATALYST	BACTPEO
CHARRON CHEMICAL	N.)	SEVERAL: SEE HOTES	4/1/61	FURBALE UT PUEL CALLED	1180.00 MMBTUANA (EACH)	0.0260 (BHMBT)	TURBINE DESIGN	OTHER
FLOWER AND LIGHT	co ft	90WE430 780 Ft-146	3/26/01 3/14/11	FURBINE 27, CE FRAME 6	13.00 N/W	G.COCCO LEVINAMETU 260.0000 T/YA LESS THAN	TURBNE DESIGN CO CATALYST	BACT OTHER
FLORIDA POWER AND LIGHT	71	780 FL 146	2/14/01	TURBNE, OAK, 4 EACH TURBNE, OK, 4 EACH	240.00 WW	30.0000 PFM @ 15% 02	COMPLISTION CONTROL	Dheld
NEVAGA COGENERATION ASSOCIATES #2 NEVAGA COGENERATION ASSOCIATES #1	WV	ASOL	1/13/01	COMBRED CYCLE POWER OF MEAN MAN	8200 MA SORES ON IND.	33 0000 PPM @ 15% D2	COMBUSTION CONTROL	6AC178D
HEWARK BAY COGENS RA BOW FA STAT HISHIP	MA.	A100	1/13/01 11/1/00	COMMINED-CYCLE POWER OF NEEDS THOM	ME CO MW to fat output	30.0000 LIMANS	CATALY RC CONVENTED	MACT PSD MACT PSD
NEWARL BAY COOLNESS From the Street Street	Ãί		11/1/00	TURBINE, PERCENTER PILES TURBINE, NATURAL DAS RISED	MAKOO MINISTUMB	G.CO.SC (January)	CATALYTIC CONVENTER CATALYTIC OXIGATION	BACIPSO
THE COCEN COCENERATION PLANT SCILLECTRIC AND GAS COMPANY - HAGODD STATION		201400 \$706 00001	B-5-00	GE LM2609 GAS PURENT	THE CO MAND TURNS	G.COSS LIPMANS?U	CA TALY DE OXIDA 1104	Mc I PSO
PEABOOT MUNICIPAL DOM FLAM	NY BC MA NY CA	MBC BE COM CB2	12/13/06	IN FE BNAL COMBUS DOM THERMS	214 SO MINUTUNA 110.00 MEGAWATTE	0.1010 (BrainePri 23 0000 (BRAIN	CATALTREQUERE	BACTESO
MEGAN BACING ASSOCIATION INC	- T	405 to 1 0544 00001	11/30/06	PUSHING M SEW MATHERAL PAR MAKA	417.00 MARRITURES	#2 0000 (BEA16 40 0000 PFM @ 159 02	0000 COMBIS BON PRACTICES	MC1 MC1 AED
UNOCAL TERM FRONT DARFLO	خذ	AM (88294 AMD 168296	71550	CE LINGGO N COMPINS D'ETCLE GAT REPRINE TURBINE GAT INTERNOTERS	401.00 (SHARK)	0.0700 LBWARTU, 11 LBMG	GOOD COMBUS NON PRACTICES NO CONTROLS	BACTOINE
TOYOTA MOTOR MANUFACTURNED U B.A. INC.	ÇĀ EV	8 1120 1-7 C46 113	11/4/06	TURBUSE, GAR OFMERAL ELECTRIC LAS MAN	0.00 76.00 MW	10.0000 PPM # 15M 02	DICIDATION CATALYST	BACIOTHE
UNION ELECTRIC CO	MO	95/P-014 FO (95/8-046	8/13/86 5/6/70	COMBUSTICIN MATURAL TRAC	0.00	946 1800 1800 9.0033 MANMEN	OXIDATION CATALYST	MCIONE
MEAGED, WILLIAMS REED BE SVICE MEGRIN ENERGY CENTER	MO MM	PEO HIM DES ES 4	427	CONSTRUCTION OF A NEW ON RINED COMBUSTION TURNS TURNNECODER, NA RURAL GAS (2)	627.00 MM BTLMR	403 OCCD 1PV		MCIPSD
TLOM M ENGROY CENTER	NY NY	472000 2004			POD-00 MMCF/DAY 214.10 MMBTUHE	27,8000 PPM @ 164 G2		BACIFED
LE DE BLE LABORATORIES	HY	472000 7084 702400 0006		(2) WESTROHOUSE WHO I OF THE SHEET AS AN ANNUAL OF	1400.00 MMRTUHII	0.1000 Litraria (U. 17.5 Libria 10.0000 PFM 28.0 Libria		BACTONES BACTONES
METHORE DAS & SISCING - PERTYMAN PLANT	MO			IZI GAB TURBNES EP PR 001018 1071 TURBNE, 140 MW NATURAL GAB RING SLECTRIC	110.00 Milightyang	40 0000 PP N. 17.4 LBAIR		MACIONES BAIDIDA
COLORADO POWER PARINERIME	to	91MR#33,1 2		TURBUFE, 2 MAT CAS & 2 DUCT GLENGES	140.00 MW	20.0000 PPM @ IBM (1>	GOOD COMBUSTION PRACTICES	BAICOTOR
				· · · · · · · · · · · · · · · · · · ·	MEGO MHETUM EACH FURBAL	27.4000 PPM @ 16% 02	Significant.	BACTFED
								MC1460
			21040	PURBONE, WITH DUCT MURNEY	170.00 MW	4 Mar. 12		
alabama power company - ingodore codeneration Olneral electric plarico	AL.	803 4073 201 (DOS NO. A				G.OSGO ESHAMBELS	EPROPRI COMBUSTION	
MENERAL ELECTRIC PLASTICS	AL	207 QOCO KOLO A 218 71 A M	42101	COMBINED CYCIA STURBNE AND DUCT BLICKERS	9.00	CORCO LIMITALIMATA		MACT 440
RINERAL ELECTRIC PLASTICS NDROSCOCION ENERGY LIMITED NDROSCOCION ENERGY LIMITED	AL	207 0008 K018 A 718 75 A N A-718 71 A N	\$2700 \$2100 \$2100		875.00 MINETUM FURBINE	74 2100 LBM NG	PROPER COMMUNICATION CATALYTIC DESIGNATION COMMUNICATION FOR CRICICAL	#ACT/FED
MARKAN ELECTRIC PLASTICS MPDROSCODISM EMERGY LIMITED MPDROSCODISM EMERGY LIMITED MPTCANDE AMERICA CORPORA NON MRT CORPORATION	AL ME ME LA	207 0000 Kora A 218 75-A m A-718 21 A m PED IA-422	627-06 3-21-00 3-21-00 3-1-00	GAS TURBNES COGEN, W/DUCT BURNERS GAS TURBNES COGEN, W/DUCT BURNERS DUCT BURNERS	875.00 MINETUM RUSSING 875.00 MINETUM RUSSING	74 2100 LBM NG 43,7300 LBM NG OIL	PROFER COMMUNITION CATALYTIC DATION GOOD COMMUNITION PRACTICES. CATALYTIC DATION TONG GOOD COMMUNITION PRACTICES.	BACTPED BACTPED
Orietak Butchac Plabics Napadocodia Beratu Umeeo Napadocodia Doomora Doom	AL ME ME LA	207 GOOD KOLD A 218 25-A N A-718 21 A N PRO IA-422 PRO IA-413	47/00 23/00 3/3/00 2/13/00 12/3/00 1	CAS TURBINES COOSH, W/DUCT SURMERS DAS TURBINES COOSH, W/DUCT SURMERS DUCT SURMER DUCT SURMES COOSH NAME NO. 2	875.00 MINETUM FURBINE	74 2100 LBM NG 41.2300 LBM NG OIL 26.0000 PPAN	PAORE COMMUTATION ACTAINTIC DISIGNATION, GOOD COMMUSTION PRACTICES. CATAINTIC DISIGNATION, GOOD COMMUSTION PRACTICES. GATAINTIC DISIGNATION, GOOD COMMUSTION PRACTICES.	BACTPED BACTPED BACTPED
RAMEAL ELICTRIC FLAR RCB MOROSCOGGOM SHA GOT UMMED MOROSCOGGOM SHA GOT UMMED MOROSCOGGOM SHA GOT UMMED MOROSCOGGOM SHA GOT UMMED MOROSCOGGOM MOROSCOGGO	AL ME ME LA CO AL	207 GOOB KO16 A 718 75 A W A 718 75 A W PEO LA 422 PEO LA 412 41 MRS2 211 GOOG	627-06 3-21-00 3-21-00 3-1-00	CAS TURBINES COOKH, WOULT BURNESS DAS TURBINES COOKH, WOULT BURNESS DUCT BURNESS DACT BURNESS COOKH UMP NO. 1 COOKS TURBINESS WIDELD BURNESS COOKS TURBINESS WIDELD BURNESS	\$75.00 MINETURE TURBINE \$75.00 MINETURE TURBINE 426.00 MINETURE 0.40 MINETURE STEAM 385.00 MINETURE	74 2100 UBH NG 43,7300 UBH NG DIL 26,0000 PPAN 63 6300 UBH R	PROFIS COMMUNITION FROM COMMUNITION OF COMMUNITION PRACTICES. CATALYTIC CARRANCES COMMUNITION PRACTICES GUIDD RESIDE, PROFIS COMMUNITION PRACTICES 39 EXCERGO COMO DESIGN, PROFIS COMMUNITION PRACTICES AND CATALOGUE AND CATALO	BACIPED BACIPED
Kuraal Euctric Plabrics Moroscoods full dy united Moroscoods full dy united Moroscoods full dy united Moroscoods full dy united Material data for a composation Material data for a composation Material data full data for a composation Moroscool data for a composati	AL ME ME LA	207 0008 K018 A 218 25-A M A-718 21-A M PEO LA 422 PEO LA 412 41 MR023	477-00 231-00 3/31-00 2/13-06 12/3/07 2/7-07	CAS TURBINES COOSH, W/DUCT SURMERS DAS TURBINES COOSH, W/DUCT SURMERS DUCT SURMER DUCT SURMES COOSH NAME NO. 2	875.00 MMBTUH TURBNE 875.00 MMBTUH TURBNE 476.00 MMBTUH 0.40 MMLBH BTEAM 305.00 MMBTUHR 170.00 MMBTUHR	76 2100 LBH NG 41:2300 LBH NG CIL 26:0000 PPAN 83 9500 MHH 35:0000 PPAN 9:55(.03 0.0000 LB MMB[U	PROFEE COMMUNICATION CATALYTIC COSTER ACRO, GOOD COMMUNICATION PRACTICES. CATALYTIC COSTERATION, GOOD COMMUNICATION PRACTICES. CATALYTIC COSTERATION COOD COMMUNICATION PRACTICES. 39 EXCESS 07 GOOD DE GOOD, PROFEE COMMUNICATION PRACTICES. 20 EXCESS 07 GOOD COMMUNICATION CONTRACTICES. 20 EXCESS 07 GOOD COMMUNICATION CONTRACTICES.	SACIPED SACIPED SACIPED SACIPED SACIPED SACIPED
RUREAL BUCTRC FLARCE MONOSCOGGIN BAFATT UNHTED MONOSCOGGIN BAFATT UNHTED MONOSCOGGIN BAFATT UNHTED MONOSCOGGIN BAFATT UNHTED MONOSCOGGIN BAFATT MONOSCOGGIN MONOSCOGGIN BAFATT MONOSCOGG	AL ME ME LA CO AL	207 GOOB KO16 A 718 75 A W A 718 75 A W PEO LA 422 PEO LA 412 41 MRS2 211 GOOG	\$2700 \$2100 \$2100 \$1100 \$1100 \$2700 \$2700 \$1200	ONE TURBANES COGEN, WOULT BURNERS ONE BLANKER OUCH BLANKER OUCH BLANKER COCKEN TURBANER COCKEN WINE NO. 2 COCKEN TURBANER WOULCH BLANKERS & BONERS DUCH BLANKERS WOULCH BLANKERS & BONERS	\$75.00 MINETURE TURBINE \$75.00 MINETURE TURBINE 426.00 MINETURE 0.40 MINETURE STEAM 385.00 MINETURE	76 2100 LBH NG 41:2300 LBH NG CIL 26:0000 PPAN 83 9500 MHH 35:0000 PPAN 9:55(.03 0.0000 LB MMB[U	PROFIS COMMUNITION FROM COMMUNITION OF COMMUNITION PRACTICES. CATALYTIC CARRANCES COMMUNITION PRACTICES GUIDD RESIDE, PROFIS COMMUNITION PRACTICES 39 EXCERGO COMO DESIGN, PROFIS COMMUNITION PRACTICES AND CATALOGUE AND CATALO	BACIPED BACIPED BACIPED BACIPED BACIPED

TABLE 4-2 DIRECT AND INDIRECT CAPITAL COSTS FOR CO CATALYST SIEMENS WESTINGHOUSE 501 FD COMBINED CYCLE COMBUSTION TURBINE

Cost Component	Costs continued	Basis of Cost Component
Direct Capital Costs	€° e²	
CO Associated Equipment	\$773,000	Vendor Quote
Flue Gas Ductwork	\$44,505	Variable Quote Vatavauk, 1990
Instrumentation	\$77,300	10% of SCR Associated Equipment
Sales Tax	\$46,380	6% of SCR Associated Equipment/Catalyst
Freight	\$38,650	5% of SCR Associated Equipment/Catalyst
Total Direct Capital Costs (TDCC)	\$979,835	
Direct Installation Costs		
Foundation and supports	\$78,387	8% of TDCC and RCC; OAQPS Cost Control Manual
Handling & Erection	\$137,177	14% of TDCC and RCC; OAQPS Cost Control Manual
Electrical	\$39,193	4% of TDCC and RCC; OAQPS Cost Control Manual
Piping	\$19,597	2% of TDCC and RCC; OAQPS Cost Control Manual
Insulation for ductwork	\$9,798	1% of TDCC and RCC; OAQPS Cost Control Manual
Painting	\$9,798	1% of TDCC and RCC; OAQPS Cost Control Manual
Site Preparation	\$5,000	Engineering Estimate
Buildings	\$0	
Total Direct Installation Costs (TDIC)	\$298,951	
Total Capital Costs	\$1,278,786	Sum of TDCC, TDIC and RCC
Indirect Costs		
Engineering	\$127,879	10% of Total Capital Costs; OAQPS Cost Control Manual
Construction and Field Expense	\$63,939	5% of Total Capital Costs; OAQPS Cost Control Manual
Contractor Fees	\$127,879	10% of Total Capital Costs; OAQPS Cost Control Manual
Start-up	\$25,576	2% of Total Capital Costs; OAQPS Cost Control Manual
Performance Tests	\$12,788	1% of Total Capital Costs; OAQPS Cost Control Manual
Contingencies	\$38,364	3% of Total Capital Costs; OAQPS Cost Control Manual
Total Indirect Capital Cost (TINDC)	\$396,424	
Total Direct, Indirect and Capital Costs (TDICC)	\$1,675,210	Sum of TCC and TInCC

TABLE 4-3

ANNUALIZED COST FOR CO CATALYST SIEMENS WESTINGHOUSE 501 FD COMBINED CYCLE COMBUSTION TURBINE

Cost Component	⇒ Cost :	Basis of Cost Estimate
Direct Annual Costs	North #168************************************	経験機能を対象を対象を対象として、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、
Operating Personnel	\$6,240	8 hours/week at \$15/hr
Supervision	\$936	15% of Operating Personnel; OAQPS Cost Control Manual
Catalyst Replacement	\$224,667	3 year catalyst life; base on Vendor Budget Quote
Inventory Cost	\$28,292	Capital Recovery (10.98%) for 1/3 catalyst
	' '	, visite of the manager
Contingency	\$7,804	3% of Direct Annual Costs
Total Bireat Canital Conta (TDCC)	#007.000	
Total Direct Capital Costs (TDCC)	\$267,939	
Energy Costs		
Heat Rate Penalty	\$222,697	0.2% of MW output; EPA, 1993 (Page 6-20) and \$3/mmBtu
,	1 4222,007	additional fuel costs
Total Energy Costs (TDEC)	\$222,697	
Indian A A		
Indirect Annual Costs		
Overhead Property Taylor	\$4,306	60% of Operating/Supervision Labor
Property Taxes Insurance	\$16,752	1% of Total Capital Costs
Annualized Total Direct Capital	\$16,752	1% of Total Capital Costs
Annualized Total Direct Capital	\$183,938	10.98% Capital Recovery Factor of 7% over 15 yrs times
Total Indirect Annual Costs	\$221.740	Sum of Torce
i otai ilitillett Allitudi CO\$(\$	\$221,748	
Total Annualized Costs	\$712,383	Sum of TDAC, TEC and TIAC
Cost Effectiveness	\$2,128	Gas-4,760 hrs at 100% load and 3,000 at 60% load;Oil-1,000 hrs 100%
_ 333	4-,120	load
	\$2,267	Net Emission Reduction
	, _ ,	

<u> </u>	State	Parent Murrian	Parent Issue Date	Undfret a Damies	Copacity lacel	MQ, Common Comp	Control Mathed
NAMES OF BUT BOARD HOURS TO UP	11	PRD 41 264 PRD 41/267	12:10:00 10:15:00	Tuttent consustration	300.00 MW (2 CMT 20 500.00 MW (2 CMT 20	9 0000 PM @ 15 S 02	01 OL 40K 2 6
PA, IL ECTRIC COMPANY (TEC) MIDIN POWER PROJECT	fi	PRD 51, 242 PRD 51, 244	10.15.00	Fulled GAS COMBARD CYCLE Fulled COMBURSON MARK CYCLE	ISSUE SE	19 1000 PMH @ 11 II 07	OLN QL (SLN2 & BLUME AS OLN QL (SLN2 &
R. PARD M. FORD LLC	ci	106-0066	10/1/00 1/10/00	FUNDOME COMMUNICATION AND AT IN A FEW THE 2 CHARLES	180.00 MW 182 MMC7A1	\$ 0000 FMH @ 15 S 02 QAS	DLM 2.5 GL ADVANCED DRY LOW NOX SURING 45 SCR WITH AMBRICAN IN RECTION
BAMA PURSE COMPANY - INCODORE CODENIGATION	A1	100 C006 5108 E08	4/15/00 3/16/00	Fulfilled COMMUNICAL AND GT 10F 52 WITH 2 CHIEFES	1 03 MACE/H	7,0000 PRMY @ 189 CZ GAS	SCR WITH ANALYSIA IN A CTION
ADOTTÉ INERET	ü	270 60 603 4060	2/0/20 1/0/20	Turbine Comments or your providing and Turbine Gas, Comments or your providing and Turbine Comments or your gas are Turbined Comments or summary or cost of Turbined Comments or summary or cost of Turbine Comments or summary or cost. 8	\$00.00 MW	0.0130 (@4m@TU 4.6000 (FM	DLN COMBUSTOR RECT. LNB REGACT BURNER SCH.
DIAGO BYRNOS UTKITIER JOLG OLONGA PAFTNERS, L.P.	čo	0410030		TURBON, GAR COMBONED CFCLE TURBONE, COMBONE MATURIAL GARFFRED	10000 MW FACH	6.0140 LEAGARTU 16.0000 PRAYE ABOVE 70% LOAD 16.0000 PRAYE @ 16.% CQ	SCR & DEN COMMUNICARE DURING GAS FRING STEAM/WATER IN ACTION DURING ON FRING POLICIFICATION PREVENTION BUILD IN 10 FORESTIME.
JOHA DE CONQUE PRATTOERE, L.P. JOHA DE CONQUE PRATTOERE, L.P. TOROCCE PLYMENT L.C.	64 84 84	4 11 149 0004 Pd1 0 4-11-149 0004 Pd1 0	12/15/00 12/16/00	TURBOR COMBUSTION SHAPE CYCLE &	ASWM CO.COS	15 0000 PTMVD @ 15% 02 47,0000 PM4VD @ 16% 02	USING 18 % EXCESS ARE MOX ENTERON IS SECAUSE OF MATURAL GAS. USING 18 % ENCESS ARE NOX ENTERON IS SECAUSE OF FUEL OR.
TOROCH PUMER LLC HAM ENERGY LESTED PARTMERS &	ME	A 74 2 74 A 44 A 73 b	12/4/66	Fullist, Companies CTCLE TWO Fullist, Companies CTCLE	IM CO WEIGH	2,6000 FM 5166 00	SELECTIVE CATALITIC MODULINA AND DAT 1 DW NOX BLIFFREE.
A BORA INTROVICE COTTAGE GROVE, L.F.	<u> </u>		12/4/00	FURBINE, COMBUSTION HATURAL GAS	800.00 MW FDTAL 241.00 MW	2.5000 PM & IB S 02 MAP OF 8 8000 PM @ IB S 07 DB CN 4.5000 PMDH @ IS E 07 ING	PRY LOW NOR BURNA 9
ANDON MITERNATE CORP. & CHAMP. CLEAN ENERGY BANKS POWER PLANT BARRY	FL MN MI	19300087-001 A-22-71-N-A		SUMBRIE, COMBUSTION HATURAL CLAS DEMERATOR COMBUSTION FURSING & DUCT BURNER FURSING, COMBINED CYCLS, NATURAL QUE		4.5000 PPMDV @15.EO7 (NG)	STATEGORY CATALTRIC REDUCTION 1904, WITH A NOX CEM AND A NOX PEM
	AL NA	503 1001 PSD 664 80 42	6/7/68 6/7/68 7/13/08 7/10/98 6/30/98	TURNER COMBUSTION NATURAL GAS	176 CO MW 810 CO MW(101AL) 276 CO MMR11AN	0.0000 PMLYO &16% 07 GAS 0.0110 ESAMETU	DAY LOW NOR BURNIN TO THE COMMON THE COMMO
CO AAY INE SET CO	ME	A 726 PRD-FL 246	7/13/98	TURBONE, COMMOND CYCLE NATURAL DASK TIMO	170 DO ME LACH	15.0000 PFM @15% 02	WELFORM CALLET MORE IN
MADO BERNELLE LITE BETTON POWER PLANT SEPORT EMERGY. LLC OF FALLANASMEE UTE BY MERVICES	FL CO CT	D41F132	9/30/98 9/30/98	FURNING COMBUSTION GAS FIRSTO WE FUEL OIL ALSO SHAPE CYCLE SURBOWS NATURAL GAS	2171.00 houghtuist	75.0000 PMA 6 15 9. 02 25.0000 PMA 6 15 9. 07 6.0000 PMA 941, GAS	DRY LOW NOW BURNINGS FOR BRANCE CYCL! SCA WHEN COMMAND CYCLE DRY LOW NOW COMMUNION
DEFORT ENERGY, LLC OF TALLAHASSEE UTE IT IN REVICES	Cr FL	0180180 & 0180181 PBD #1-236	6/26/66 5/26/66	BARTE CYCLE CHINNE BATURAL GAN HARBER COMBUSTION BODE: YM 3A, 2 MINE HARBER, COMBUSTION BODE: YM 3A, 2 MINE HARBER COMBUSTION BODE HARBER GHERAFOR COMBUSTION BATURAL GAS	1177.00 IMABICATION 260.00 MINAGEST PLE FLITTENS 1496.00 MINGELIA	6.0000 PFM NAT, GAS 6.0000 BE P2 DF BCMFRIN	DAY LOW MON BURNALE WAT HI SCHI DAN BURNALER WAT HI SCHI DAN BURNALERS WATHOM 7 9 BY GA
AAL ILECTRIC PLATFICS		207-0008 NO.18 A 224-21 A N	6/27/04 6/1/64 3/31/04	COMMEND CYCLE STATEMEN AND DUCT BURNESS	0.00 1808.00 NewHolson		DRY LOW NOT BLANCE ON TURBANT AND LOW HOX BURNETS ON DISCT BLANCES
ORCOGGE ENERGY LEATED ORCOGGE ENERGY LEATED	***		2/31/04		1906:00 MARSHAM FURBINE 676:00 MARSHAM FURBINE 676:00 MARSHAM FURBINE	3 5000 PM @ 16 % 02 6.0000 PM @ 16 6 02 MG	SICE AMERICANA PLUI CTICH ET ET EM AND CATAL YEIC REACT ORTO REDUCE HUE. LOW HOLD BURNEL BE LOW AND E COMPUTE CATA. SICE OF AND CASE THROUGH V
iaf iorka	DE	A FIE FLAN APC EFIDEOT COME A ALSHARPEN	3/31/04	GAS FUNDOSES CONTHE WOUCH SURVICES TURBOSES, COMMAND CYCLE 2	#76.00 BRANITHAN TURBAL	42.0000 PM B ISB OF NO CE. 10.0000 PM B ISB OF ETH GAS	TOW MODE BURNER THE LOW ADD COMPUTE THE BOST DURING CARE FRIENDS CARE. TOW MODE BURNERS THE LOW ADD BURNERS THAT IS BUS BURNERS THAT IS BUS CHOCK DUBLING OR LEBECT DURING CARE THAT IS BUS BURNERS THAT IS BUS BUT WHAT I FRIENDS ADD BURNERS THAT IS BUS BUT WHAT I FRIENDS ADD THAT IS BUT
ENT COMME HE THE CAST CASE	DE	APC 01/0401 COMED A ALTHARES	3/30/96 34/84 3/2/98	S'ALSO NA GE ROOFF RESCOSÒ METANY DES LIMBRES LIMBRES COMMESO CACLE S LIMBRES COMMESO CACLE S	879.80 MMETUH 879.80 MMETUH		MERCOUN MAICHEM WARE FAMOU ETHOLAS AND ETEAM IN ACTION WARE FAMALE EDH
HERM MATURAL CAS RES GENERATION PARTNERS, LIMITED PARTNERS APP	Ã,	412 0013 2001 AND 2002 204 0021-3001 AND 2002 CI 1362	1/2/96		\$140,00 HP \$140,00 HP	\$3,0000 18A-4 \$3,0000 18A-4	
OLION AMERICA CORPORATION	LA.	CI 1362 PEDLA 423	2/27/04	FURMER STATIONAL TO THE TOTAL CONTROL	99.90 NW 999.00 NWSTIAN		DRY LOW NOX BURNIES
ION POWER ASSOCIATES WALM POWER PARTIES, LP	2	M/TED 4	2/12/05	COMMUNICAL TURBUS, NATURAL GAS SURBORE, COMMUNICAL MESTINGHOLISS MODEL SO 10	206.02 MW	8.0000 PMW 8 1816 00	DAY LOW MOST ICH LANT MATER LANGUAGES FO SAMEN BOOK
CORPORATION	1.0	120621 PEG LA 612	2/12/08 2/2/98 12/30/07		2634.00 NMWTUNH 42.60 MW	0.0120 LBANKETU B.0000 PFMV HAT, GAS	DRY LOW HOR COMMUNICAN ECOMOLOGY IN COMMINCTION WITH 18TH ADD ON NOX COMINGS, IS STEAM WIR CTION AND BOY TO LIWIT NOW TO 8 PRIA FOR NATURAL GAS AND 26 PRIA FOR WARE GAS 180 % N21
MA POWER COMPANY ELL LIBAYERSTY	200	108 0016 3001 AND 3002 80 0001A	12/17/07	COMMUNITION LUMBRIE BY DUCT BURNER (COMMINED CYCLE)	100.00 MW 5.00 MW		DRY LOW NOX BURNERS
DI POWER ASSOCIATE, LF ESN CALFORNIA POWER AGENCY		4806066	10/0/07	TURBUE, COMMUNICAL TO TAKE OF 1 100 CT TURBUE COMMUNICATION OF 1 100 CT TURBUE CE FRAME 6 GAS TURBUE	1377.00 AMMSTUM	28 0000 PMW & 18 % 02 13.4200 LBM	BOLOWOX BURMER, LOW MOX BURNER DRY LOW NOX COMMUNITION FECHNOLOGY WITH 90R ADD-ON NOX CONTROL.
AN PARCENT COMP RE SPRINGS COMPRESSOR COM	CA WY	N 463 1 1 NO 333	19/2/97 9/79/97		325.00 (48/8112/et	28.0000 PMWO # 16% 02 2.0000 GG (#)	DAT LOW NOK (KUNNI 93
HEN CALFORNA FOWER AGENCY AR PRESME CORP. AR EPRINGS COMPRESSOR COM- HIRS POWER DE VECOPALNE, INC. HIRS POWER DE VECOPALNE, INC.	***	1 X 00 003 1 X 00 003	6/23/07 6/22/07 8/22/07	TOTAL CONTROL MENT PROMISE, ANTONIA, GAS 1980, 25A THOMAS CONTROL AND 124 TOTAL CONTROL TO THE STATE OF THE	23.40 MARTUN		DRY LOW HOX COMBUSTION BY CHINCLORY WITH BCR ADD ON HOX CONTROL. ORT LOW HOX COMBUSTION TECHNICIDE WITH SHIP ADD ON HOX CONTROL.
RBTY OF MEDICANE & DENTISTED OF NEW MESS Y	NI NI CA		8/28/87 8/18/87	COMPUSE ON TURBUR COOKINGATION CANTEL S	23.40 MARTUN 1792.00 Immilun 68.00 Immilun	20 2000 LBAI O 1870 LBANNETU HAT, GAS	
BURG (P. ERN CAL FORMA GAB COMPANY FONCE PARTIERS BRUSH COOLH FAC	CA	PED ANA 1875 6-1762-6-3				74 4000 [BB/H 26,0000 PMHYD @ 151 02	DRY LOW-MOX TECHNICA COLY WHICH ADCITES STAIGLD (IN SCHEDIE ED COMBUSTICAL DRY LOW MOX COMBUSTOR
	co	91M913 211 0004	3/21/01	COMMINGO CYCLE TURBOR 126 MAN RS & SCILERS COMMINGO CYCLE TURBOR 126 MAN RS & SCILERS	SO TO MINETURE 305 OO MINETURE EARLOO MINETURE		UNITOW NOW COMMUNICAN BERGET AND WATER IN JECTION F.O. OR. SERFUR CONTENT < =0.000.00 YET M. DEN HOKEFRING DAS WHIN WATER IN JECTION FRING CIK.
THE PLANTS COMPONATION BATCH SCUIM IS, AND THE STREAM COMPONE OF AREANSAS	44 44 44	PED AA 440 MI 21	200	TURBURGHERMEN, BAGE CODE NEWS TURBURGHERMEN BOATEN	4 hG-00 hear 87 Line 48	26.0000 PMYD@ 15% 07 (SAM) # 5000 PMY	
PRESTRUM PURSON SERVICE COMPANY OF ARRESTMENT OF A	**	FED NEI 427 NI 2	2/16/2 2/12/2/2 2/12/2/2 1/10/2/2 12/3/2/2	BCB.FR. COMMERCINGWASTI MEAN SICCOVERY COMMUNICAN INTERNA MATURAL CLAR	MANUFACTURE	SECULE FINE & IN CO.	CONTROL COMMUNICATION
MOUNCE BLIC	CA.	8-1012-0-1 AND 6-2 8-00-5-0	1710/87	INCLUSE LUCINIA CALLINGTON DE PARA VINCOVI ET COMPUTTON LUCINION PARA LUCIO CASA LUCIO RELAM MECRIL. 1100 BATURO CASA LUCIO LUCINOS COMINION CASA LUCIO LUCINOS CANTONIA CASA SERCE LUCIONES CANTONIA CASA SERCE LUCINION COMPUTANTO COMINION CONTROL LUCINION CONTROL LUCINION COMINION CONTROL LUCINION COMINION CONTROL LUCINION COMINION CONTROL LUCINION CONTROL	100,000 MW 13 800 MMRTUHRI		
IGNN NATURAL GAS COMPANY HMESTFAN PUSEIC BERVICE CONCURNAMINAM STATION	CA.	+300-00031	12/12/00	TURBONE, MATURAL GARANCO	8180.00 HORREPOWER	0.1000 EBSMBTU 110.0000 PFMV & IBB 00 DHV IB.0000 PFM MEEFAC, HOTES	MODEL COMMUNICAL MODEL
	***	P80 MH 632 M 1 PR 0102	12/12/06 11/4/08 10/1/08 10/1/06 6/5/06 7/51/08	COMBUSTION TURBOS, NATURAL CAS TURBOS S, COMPASO CYCLS CONFIDENTIALION	100.00 MW 481.00 MW	15,0000 PM WE FAC, NOTES	ANY OW HOLE COMBUSTION STEAMWASTER SHIELDING SHIELDING CATALYTIC REDUCTION (SECU- STEAMWASTER SHIELDING AND SHIELDING CATALYTIC REDUCTION (SECU- STEAMWASTER SHIELDING AND SHIELDING CATALYTIC REDUCTION (SECU-
ECTRICA L.P. IA MOROR COMPORATION BYCS OF H.A.	EEZ ES	FR 0102 CP051 8381 00012	10/1/06	TURBORE, COMMINED CYCLE COOL HERATICH	491.00 HW	73.0000 18/48 80.0000 18/48	TEAMWATER WASTIKM AND WESTING CATALYTIC REDUCTION (SCS)
MOLINI ANI POWER, LP LAINS INSTITUTE	PA.	DB 378.008	7/11/04	COMBUSTION TURBOR WITH HEAT RECOVERY BOLES	1680.00 km/g) (un-d) 163 00 MW	0 1200 (@AMETO 4,0000 PPM @ 16 8 02 16,0000 PPM @ 16 R 02 (@>76 R)	STEEMEN OF THE STATE OF THE CATE OF THE STATE OF THE STAT
CHERNICE OF COLO. FORT BY VALUE	င်ပိ	PERSON PENTAGE	9/14/94 9/1/94 4/11/96	MAINE CYCLE FURSOR MATURAL DATE COMBAILD CYCLE TURBONES (2) MATURAL	218 60 MW 471.00 MW		DER HOX . COMMITMENT TO UNSHADE THE DER FORM YERSONS ENTERING LOWER HORAS INES BECOME AVAILABLE
LINA POWER & LIGHT	NC NC	1517 1917	4/11/06		THE STATE OF THE S	617 2000 (B/H) IBO 0000 (B/H)	WATER MECTACH LUL MITTO COMMITTEE OF
	QA.	4817-038-11763	4/51/94 4/3/94 5/3/94	COMMUNITION FURBINE, & EACH COMMUNITION FURBINE, A EACH COMMUNITION FURBINE (2), MATURAL, GAR GOMBUNITION FURBINE (2), FUEL OIL		9 0000 PM/YD	WATER BUR CHON- PATE DOWN HOUR BURNING WITH BICK WATER BURNING HOUSE BOOK
ORGIA COOFIL HA GLAF COMPORATION	GA LA		1/3/94 3/29/94	SCHMUSTION FURSING (2), FUEL OIL SENSTALOR, NATURAL GAS FIRED TURBONS	118.00 MW 1121.00 MM 8143-4	20.0000 PMV9 26.0000 PMV CORE TO 16 E 07	WATER MECTION WITH BOR
	CO NC OA OA LA LA	PA-96 75 PA / PROPE 214 96-0241	3/26/84 1/1/96 11/12/86	GENERATOR, NATURAL GAS FIRED TURBANE COMMOND CTCLS COMMUNITHOR TURBANE ENGONES. COMMON RATION AS	140.00 MW	MANY COLORS	MATERIAND AND MATERIAN AND MATERIAND AND MAT
BOLA MITMANE MIST CITY ELECTING SYSTEM I CARRING CONFUNATION	ft	AC44 248304 (PB) FL 210	9/22/95	TURBUSE FORTHER TOP OF THE OCCUPIENT FOR ARTHURANT DEMONSTRATED AND TOP OCCUPIENT OF THE OCCUPIENT OCCUPI	WA CO.CO	89.0000 EPT 76.0000 PM @ 16.0 CP	AAL-UEL COMINGLER AD APRIO 10 CUTAN LOW NOX WATER MAICHAM
O BICO RECEIRO POMER AUTHORIE E APREPAL MERRES INDROCAME POMER FACELTE E	CA.	PRO 4.6.400 PR-0100		DEMERATOR GAS SURBOR COMMUNICATION FOR AN AN AND BURNES CYCLE FACIL	1313.00 km 61unm 246.00 km	SP WOOD FRANK COME TO THE CO.	WATER BY JECTILS. URLING MOST COMMUNITION STEAM IN JECTION RUSS SETSTEM USE OF NO. 3 F.O. INTRODUM CONTENT HON TO EXCERT O NO. BY WINNET.
	MO MO	0766.0023 0766.0023	1/21/04	COMMUNICAL FUNDAMENTAL BY MAN MANY E CYCLE EACH ADD OF A DUML FURL FINED T WAS PAC FURBING ADD OF A DUML FURL FINED Y WAS PAC FURBING	48 10 MW		BEAM MIRCHAN RUSSAS REFERENCES ON SECONDATION CONTINUED TO TACKING ON ON BY WIGHT. CONTINUED TO REGALATE THE FULL CONTINUED THE RATIO OF WAITE BOTHAL RING FRED RETHE TURBAGE CONTINUES TO REGALATE THE FULL CONTINUENCY ON THE SATIO OF WAITE TO THE SHIP OF THE TURBAGES
ELTH NATT TARD COOKIERALION PARTINING E.P. ELTH NATT TARD COOKIERATION PARTINING E.P.	AT	2 4 19 1 00 185,0000) 4	5/21/82	ADD OF A DUME FULL FINED YOM PAC (URSINE TURBING OIL FINED	340-00 MM 19-10 MA	36,0000 PPM 81 PG, 1 HE AVG 3 9000 PPM 8 16 E CZ 3 9000 PPM 6 16 E CZ	CONTROL STO REGIZATE THE FUEL CONSUMPTION AND THE SATIO OF WATER TO FUEL BEING THEO OF THE TURBORS
	MY 1	2-0101-00186/00/02 # ACES 251096-780 Ft 21#	6-6-96 6-6-96 6-1-9-6 6-3-1-9-6	TURBUSE OR FINES TURBUSE NATURAL GARDENCO COMMINSO CYCLE COMMINSTERN TURBUSE (TOTAL 115MW)	240 00 MW	3 9000 PM 0 16 ti O2	
OR AND GAMES PAPER PRODUCTS OF ICHARMS	PA.	BEFACE OF NOTES	6/31/04	TURBONE, NATURAL GAB Turbone, OM LIMOO SMATE CYCLE COMBUSTION TURBONE, OASING 2 OF BUP	BEST MARKET LINE	16.0000 PM 8 18 8 02 85.0000 PM 6 16 6 02	STEAM NACING
	H.	SAD-EF S15	6/1/06 4/11/06	SHAPE CYCLE CONSULTSON TURBUE, SASSING 2 OF B FILE	14.00 MW 14.00 MW	0.3400 LEARNETU 15.0000 PPM AT 16-5 DIFFORM 67.0000 PPM AT 16-5 ORFORM	ORY SOM NOX BURNIES OF FRAME UNIT, CAN ANNAL AN COMPUSIONS
BYLLE MEGICINAL LITETIES NOUNY GAS FRANSIASSION COMPANY	16	PBD #1, 217 1,00# \$4.00## 1,00# \$4.00##	1/11/06 2/31/06	OR FAIR COMMUNICATION TURBAGE TURBAGE COMMUNICATION TWO SOLAN CENTAUN	74.00 MW 2.10 MW EACH	47 0000 PTM AT 16% ORTOIN 0.0000 NOT APPLICABLE	WATER MUSCIKIN
Heimi éar fraherisson Company Déarlastice Compilation Louisana Ditage Grove, L.P.	NJ LA				2.19 MW SACH	43 3400 (RAI	
DITAGE GROVE, L.F.	MH	18200087 001 0386-016	3/2/06 3/1/08 2/78/08	TURBUSEHARD, GAS COOR REGATION COMMUNICAL PLANSMINGS HERATON	490.00 MM BTUPM 59.00 MMBTUPM	8 0000 PMAY 4 5000 PM 6 16 Y 07 GAS	DRY COM HOR BURNE EUCKARDUST KNI DE SON AND COYTROL STEET OF CASTALY TO EREKE HEADY (SCR) WASTER MARTINAL
E SISTRICT (LECTRIC CO. THOM OB. CO INCAM BASIN IN G. M. AN	M	PSD AM 265 M Z	2/78/96 1/11/86		86.22 MW biscopp MP	26) OLUG TET 7,4000 1990 4	WATER INJECTION. LEAN PREMISED COMMUNITION RECEIVED, OUT - DRIVEOW NOX
ral moorp whaquse LP Corwigo energy center	MY	\$13201 2010/00001 00007 251200 0311 00001	1/11/96 12/10/94	TURBURE MATURAL GAS (2) SEARCH VOL. GAS (URSON HP 200001) DE FRANK & GAS (URSON	ALC CO. DAMAGE LAND	25 0000 FPM	WATER MACCION STEAM MACCION
RECOGIN PLANT	MY MY MA MA MY MY MY	10003 250400 0221 (XXXX)	10/5/94 10/5/94 8/15/94	DE FRANCE GAS COMMINED CYCLE DE MICOEL F DE LINCOS GAS FUNDOS	933.00 (Brand)111 920.00 MARPIUM	25 0000 FPM 42,0000 FPM, 25 00 LEA-R 2 0000 FPM @ 15 E 02	SELECTIVE CATALYTIC MAKETERS AND OUT FOR MOTH COMMISSION
PIA POWER AND LIGHT		0830 0033	8/15/94 8/31/64	GE LIMECO GAS TURBOS STATUDANT GAS TURBOS	SCO.DO MARTINAS	\$0,0000 FFM 05 LBAH 82,0000 FFMOY 0 15% C2	WATER NACION
HEAD POWER AND LIGHT CAMPBLL SOLP	9G	0820 0033 11486	6/31/64 6/31/64	STATIONANT DAS TURBING STATIONANT DAS TURBING	1820.00 Maril Live	30000 PMOT # 155 C2	WATER MACTION
	ç.	8-2049 t 2	8/19/94 8/19/94	TUMBRE OF, COOKING STOLE BENEFIT VIS 2 TUMBRE OF, COOKINGSTON, 48 MW	1767.00 kmap1UA4 49.00 kma		
MENTO COSMERATION AUTHORITY PAG MENTO COSMERATION AUTHORITY PAG	#G 6 6 6 6 6 6 6 8 11 11 6 10 10 10 10 10 10 10 10 10 10 10 10 10	11430 11630	\$19.94 \$19.94 \$18.94 \$18.94	Turbest dat, compare crot Beneva vas 7 11.000 dat, compare crot Beneva vas 7 11.000 dat, compare crot Beneva vas 1 11.000 dat, compare crot la second dat 11.000 dat, compare crot la second dat, comp	421.40 MARTURA 421.40 MARTURA 421.40 MARTURA 421.40 MARTURA	6 0000 MM B 15 9 07	STEAM MACHON AND SHICTMI CATALYTIC MONCHON SHICTMY CATALYTIC SHOUCH AND WATER MACHON
	ÇĀ.	11430	418-04	Summer dat contests CTCLE LINECOD	431 40 haditus	3,0000 FM 8 16 1 92	MOTOR WE REAM WATCH AND STATE OF THE STATE OF THE STATE STATES OF THE ST
MENTO POWER AUTHORITY CAMPBILL SCEP BYON BENERATING CO.	Ċ.	1146e 30 0 1 19 a0113	979/94 3/3/64 6/10/64 6/10/64 6/31/64	TOTAL CAS, COMMED CYCLE DENIES VIL.2	1267.00 MARETURE 1668.00 Mareture	3,0000 PPM (8 15 H G2 3,0000 PPM (9 15 H G2 4 6000 PPM (9 16 H G2	
MYSSLF, IYADA NG.	MA.	A0118	Briores Artones	COMMUNICAL THRONG, DERIG & NATURAL GAS EUROPES NATURAL GAS (S. S. NATURAL GAS EUROPES NATURAL GAS (S. S. NATURAL GAS	140.00 MEGAWATE	TO LOCATE LEVIN	BCN LOW HOM BURNER
	C)	26 0021	6/31/64	INCOME MATCHAN CARTS)	190.00 MARTH 1770.00 MARTU	272,0000 18/44 4 6000 PM 8 16 5 02 26,0000 PM 8+ VCL 144 AVG	OFFECOW HOX COMMUNICOR SCR: COW HOX SUMBERS, AND WATER BY SCHOOL
E DEFFINCE ELECTRIC CO. L DIFFINCE ELECTRIC CO.	MO	0694 G16	6/17/84 6/17/84 8/12/84	BYETALL TWO MEN BANKS CYCLE TURBINED INSTALL TWO MEN BANKS CYCLE TURBINED SURBINE, COMBUSTION, MATURAL GAS	1345 CO Magiliplet 1345 CO Magiliplet	26.0030 PFM 61 YCK 1 HR AVG	LOW NOW BURNERS, AND WATER W. SCHOOL
PA FOWER COMPANY, ROBHEI LURSING PROJECT CAMPUS COMMERCATION COMPANY	GA TX	4911-074 15546 23842-PGD 18-827	8/13/94 6/7/94	SURBING, COMPUSION, NATURAL GAS	75.30 MW (TOTAL POWLS)	26.0000 PPM	LOW NOX BUMBER AND WATTR FIRCIEN WATER WHICHEN, FURL BEST, HALURAL GAS
	PA .	08.328.001	\$/2/94 4/22/94	GAS FARME OF THE HOODS WATER HEAT BORES		200,0000 IPF 21,0000 IBA-4	INSERNAL COMBUSTION CONTROLS BCR WITH LOW MOR COMBUSTORS
A PONER CORPORATION POLY COUNTY SITE OF POWER COMPORATION POLY COUNTY SITE	R.	PER 41-166 FED 41-166	2/25/84 2/26/94 2/24/84	FLEGOR HATURAL GAR(2) TLEGOR FLEL OL (2) TLEGORAGO, GAS COQUE	1810.00 MARTINA 1730.00 MARTINA	17,0000 PMYD 018 B 02 42,0000 PMYD 0 18 B 02	
MAINMAL PAPER POLE POWER STATION PAR POWER STATION	LA	PSD 4A 43(M-3) PSD 51-164	2/24/64	TIMBOEARRO, GAS COOKH	230.00 MM STUFFE FURSHE	25.0000 PPMY 15% 02 TURBUS 25.0000 PPMYD Ø 15 % 02	WATER WHICHON ONE COMMUNICATION COMPUSE ON CONTROL
ALE POWER STATION	R	PBD/L IN	2/24/04 2/24/04	TURBULE, BYHCAS (COAL GASSFICATION) TURBULE FUEL OIL	336.00 MM STUNK FURSHE 1366.00 MMSTUNK 1366.00 MMSTUNK	25 0000 PM4TP # 16 % 02 47,0000 PM4TP # 16 % 02	DAY LOW NOX COMBUST OR WE! OLECTION
JEBCOP CATHACE E.F. E COMN. PEDINAL COLD STORAGE COOFININATION	NT CA	228001 0296 00001 MCLAM 56211	1/16/84		481,00 871449 38.00 MW	47,0000 PM/D 8 16 5 02 47,0000 PM 26 1844 19617,0000 1844	ELI SM MI MCTION
COGINGATION (P TORANG AMOCIATES	AT.	PSO 41 208 \$11600 2015 00000		TURBUS NATURAL GAS FRED COMBINED CYCLE AND COG TURBUS NATURAL GAS 2	300 30 MMDTUM	15.0000 FFM @ 15% 02	WATER MACTION AND SCONOR MICO 2: CATALYST SYSTEMS WIST ALLEG AFTER THE HIPO BUT LOW NOR COMMISTION
ALL PRICE OF STRUCTURE CO (1) CEDING COMPRESSION	-	PRO AND SHOW?	12/1/02 10/20/03	CE LA 6000 BAS TURBAS TURBAS GAS INCO	660.00 SMETUNG 11267.00 HP	76.0000 PPM 47.0040 47.0000 PPM 6 15 00	STEAM IN SCHOOL FULL BY C. HATUMAL GAS CINEY SOLDHOX COMBUST OR DRY LOW HOLK FECHNEL DOY
(17 COOLHEADION - CAN BUSAN A MAE I BANGRESSION	CA FL	5 70 i ft. PBD 702	10/E/03 6/27/03	TRUMME, GAS DEMEGAL ELECTRIC MICEGL PG77718/APTUMBME GAS	140-00 MW		ORT FOR HOX COMMUNISTED AND A HIT SUPPORTED AT A REQUIRED AND RELACIONS CATALYTIC RESECTION CATALYTIC
MACE POWER PARTNERS, 1 MITED PARTNERS OF A BAST BANTHERSON COMPANY	ŶA.	71075	B115/83	Turking Condustrian Insuran Marks val 5 s	10.20 X100 BC//FR HAT BAS	26,0000 PMIN 9 15 II 02 131,0000 (Bridga 9 15 II 02 26,0000 PMIN 9 15 II 02	DAY LOW NOX COMMUNICAL DESIGN WATTH AVECTION
N THE BOY GOOTS & CHILING ANY EL LEVINGEND WLL NY THE BOY GOOTS & CHILING ANY EL LEVINGEND WLL NY AVER BENEVISCHE &	ä	609 3078 3003 (1012	7/23/03	TURBRE, MATURAL GAS TURBRE GAS COMBRED CYCLE OF LIMITOR	13600.00 BHF 480.00 MMETUH	O SHIP GMAP HE	All TOURS BALLOCOMING DOS COMMUNICATION
NEMERO CONTROL VALLEY FRANCING ALT	Ç.	11012	3/23/91	THERMS, GAS, SMALS CTCLS, OF LINESCO			SCE AND WATER MATCHON ALSO HAS CARRON ADSURPTION STEELAR REPORTER TO REMOVE ORGANISE DIGHES. SELECTIVE CATABLETIC REDUCTRIVE AND WATER REPORTION.
COOSH PLANT	MY	292900 044 8/0000 1 0000 7 939200 046 1			473 80 build tures 451,00 build tures	47.0000 PM 76.0000 PM 41 LBA48	STEAM MACIKA MOCONTROLE
	CA NJ	AM 272010 01 42 6231 10 01 47 8761	3/3/03 0/24/93	DE LIMEURY COMMINED CYCLE GAS TURBALE EF 200001 TURBME, DESEL & GENERAL OR LIST MOTE BY	0.00	163,0000 PMG 01 (8/4) 163,0000 PMG 01 (8/4) 8,3000 PMGY	FUEL DESC; LOW MOR DELBIC FUEL HOLES!
NE BAY CORNERATION PARTMETS OF 1.P.	NJ	01 42 4231 10 01 62 6241	4/8/81 4/8/82 h/17/82	TURBULE COMBUSTION NATURAL BASTISSO (2) TURBULE, COMBUSTION REPORTED FIRED (2)	617.00 SMAPTUAR EACHS	6.9000 FFMOV	gCA gca
BAT LP	FL FL MY	FED 61, 180 FED 61, 180	M17/02 M17/02	TURGORE, QAS TURGORE, CO.	1014 00 MMETUM 1840.00 MMETUM	16.0000 PPMOV 16.0000 PPM & 15 H DZ	OR FLOW NON COMMUNION
E (MERCY COMPANY)	NY	\$41303 0084			1910:00 MARTUAN 481:00 MARTUAN 311:00 MARTUAN	42,0000 PMI 6 15 T 02 32,0000 PMI	WATER BUJECTION ET EAST WIJECTION
AN EXPERT OF PARTICIPATE	CO MT	93W5Q67 472300 6276	M11/63 M10/63	TURBNE MATURAL GAR [3] GL FRAME) TURBNER (FFE 0000 F#)	311.00 MAINTUNIN		DAY LOW HON COMMUNICIPA WATER IN JECTION
MONTHAM							
BHOREHAM BASELINGUE PRED BASELINGUE AVIHORUE	ij,	292086 4162 00004 Ft 280 192	4/1/03	DE FEARE E DAE FURDING TURBUS, NATURAL GAS	BEO.00 MANIFULIA C20.70 MANIFULA BEO.00 MANIFULA	86,0000 PM +FBN & HEAT RATE 80,0000 PM 80 LBAM 15,0000 PM 8 16 E 07	THAN MOLICIAN ON COMPUSION

MES UTERY AUTHORY		PRD 182	Perent base 0454 477/03 3/76/03	Unit Mars on Description	Сервену Ста	HQ france (me	Control Market	
NASE UTILITY AUTHORYTY INTERCET FORMING COURT NATIONS INTERCET FORMING COURT NATIONAL INTERCET FORMING COURT NATIONAL INTERCET FORMING AUTHORITY INTERCET FORMING AUTHORITY INTERCET FORMING AUTHORITY INTERCET FORMING AUTHORITY INTERCET FORMING NATIONAL INTERCET.	47 G	#1048 91048 940003 ND24		FURDING FUEL CO. FURDING SID. PT FLEL CO. AND NAT. QUESTINGS	379.00 MARTHA #400-	47 0000 PMI & 15 % CP 42 0000 PMI & 15 % CP (CR.)	WATER MISCISM WATER MISCISM	MCIP
CHIA MERICIPAL PURIE E ALTEKNIET T CHIA MERICIPAL PURIE E ALTEKNIET E	OK #2	2016 C PRES	12/17/02	FURSING STATISMAST MARFINEDS WITH DUCT BURNER TURSING COMMUNICAL TURSING COMMUNICAL	40.05 kmy	0 0000 throat in 1044 65 0000 fru & 155 02		SE NO
NGALE PONES PASTNERS LP NDALE PONES PASTNERS LP		D FL 194 D FL-194	12/17/02	Turene conquerion Turene que	MOD NW	75 0000 FEL 0 16 5 02 15 0000 FEL 0 16 5 02	COMMUNICACIONINCI S	MACT O
MODERADENCE POWER PARTIE NO LAS BOOM STAYIN FALLS COMMERCIAN LACK AS	NY J	3616 00016 0000 F # 7970-00016/00001 0	12:14:03 11:24:02 11:00? 11:00? 11:00?	Turbine (California) in turbine (California) turbine (AE Turbine), CA (California) in turbine (AE Turbine), CA (California) in turbine (California) in turbine (California) in turbine (AE Turbine), California in	139.00 MMS1M4 139.00 MMS1M4 149.00 MMS1M4 140.00 MMS1M4 140.00 MMS1M4 159.00 MMS1M4 159.00 MMS1M4	42,0000 PENTO 8 16 % 02	ORT LOW NOW COMMUNT OR STEAM HAS CISON	BACT #
MERICAN MANUFACTURE OF THE STATE OF THE STAT	AT 6:	777040016000010 227060016000010	11/9/92 11/9/92	FURRISH COMBUSTION MAY, GAS & CL. FLEET (TOMAN)	MO.00 MAFILIER	42,0000 PMIND & 16 5 02 4 9000 PMI 55 0000 PMI	ECR AND DR F LOW MORE DRY LOW MORE ON SICK ONT LOW MORE ON SICK	BACT O
PERSY CO. MINERATED PARTIE TO P	,	101 10 52104		Follows: Conduction (76 pm) Totaline marches days on	Column CO COST	6 C0000 PPM 6 C0000 PPM		AACT O
AND PASS COMPANY LP	ÇA BI	11804 1840	19/3/92	TURBUS COMBUSTION BEATLAND GAS 424 MAY	MALOS MARILINAS	8,0000 PRINT MAT, GAS-1 8,0000 PRINT & 16 S DIVISEN	OF LOW HOLD OF BLA DAY LOW HOX BUMBLE COMMUNITION COVERG WATER MAJICHON & BOR MY ALFORNATIC AMMICHAE PLACE	BACT O BACT O
R AND PAPER COMPART & P. R. AND PAPER COMPART & P. R. AND PAPER COMPART & P.	VA 10	1840	10/30/92 10/30/92	TURBON, COMMERCIAN LZ P. SMO). TURBON COMMUNICATION DOLLARS, GAD: 42.6 EMP) TURBON COMMUNICATION DOLLARS, GAD: 42.6 EMP) TURBON, COMMUNICATION COM TURBON, COM TURBO	634.00 K10(8) BT LINE N. GAS 698.00 K10(8) BT LINE N. GAS	15,0000 PPM	MUSCING CATALYTIC MODICION (SCR.)	BACT #
MEYALL EMERGY (J.	VA RIA	DISTRATION / 40808		FURBOR FACELITY, GAS	0.00 1231.13 J1012; BCF/Y NAT GAS F.64 J1012; GPY FLIFL OIL	40 7000 BFF 245-0000 FOTAL TPT	WII BUT CALL THE SECOND CO.	BACT PA
MBYERT ENERGY L.P. MBYERG EMERGY L.P. A POWER COMPANY, HARRY MEEN MEACHO PEAND	YA M	GEFRATION # 10806 GEFRATION # 40806	8/26/07 8/26/02 8/26/02		F.E. THOUSE THE CO. S. P.	PEROCO TOTAL 1PT # 0000 PMOVARET @ INR 02 ## 0000 LESS-MARKET	BLECTIVE CATALITIC MEDICALION (BES) W/ WATER IN JEC BLICTIVE GALALITIC MODICTARY (BCS) BCR MINI WATER BURGETON	BACT P
A POWER COMPANY, HARRY ALLEN PLACING PLACE SOUTH SEEDS FALL & COMPANY	HV AL	133 14401 0212 00001	8/16/83 8/16/83	TURNING S (2) SEACH WITH A 20 COMMUNICAL TURNING SCECIMO POWER DENERATION OF FRAME & GAS TURNING	1.36 KIQIBI BELIN 27 CE	68-0000 (SEMMANT	WATER MURCISON AND BOD	BACT P BACT P BACT P
BOUTH OR HAND TALL E COME IN CO BOUTH OR HAND TALL E COME IN CO BOUTH OR HAND TALL E COME IN COME BOUTH OR HAND TO COME IN A MIT BOLL STREET COMERNED CYCLE PLANT BOLL STREET COMERNED CYCLE PLANT	#D #KG	M	9/16/2 9/10/62 9/2/62 9/1/62 9/1/62 9/2/62	OF FRAME & GAS TURBONE FUNDAME, SMALL CYCLE & FACH	600.00 MW (6 LINTS TO EACH)	84.0000 FFT EACH LUMBERS 82.0000 FFM. 76.6 LBA-6 24.0000 FFM. 9 15% OF DAS 92.0000 FFM. 8.0000 FFM.	WATER MACTION AND SOR LOW NOX COMMUNE ON WATER SIX CICKLY	BAC! #
HOLISVELE COMMED CTCLE PLANT	20 MG MY 14 MY 14 MY 14 WA 91 WA 91	1772 00026 0000 1 4 1772 00026 0000 1 4 1772 00026 0000 1 4	8/1/82 6/1/82	OF PARMER OF TAXABLE TURBORE, COMMUNICATION BASE (1800 MAY) TURBORE, COMMUNICATION BASE (1800 MAY) TURBORE, COMMUNICATION BASE (1800 MAY) OF ME BAS COT, THE RESERVEY PRATEINAL GLAB.	1146.00 MWTUAR (GAM)*	24.0000 PPM @ 19% OZ ILAS #2.0000 PPM	WASSE BUILDING FOR GAS A CHEEK LATION	BAC! P
	MT 14	#¥ 843	\$1,63 8/2662	GENERALOR, ENGINEET PRATURAL GAS.	1100 DESCRIPTION COMP.	\$.000 PM 1 XXX \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	OUT LOW MAIN LEAN MAIN SEGENT	BACT O
PARE DEL		44.013	6/28/02 6/17/02	TUMBORIE COMBURETON (A) TUMBOR	9.00 9.00	1 2000 EBRANDEU 95.0000 PPM @ 15E QZ 25.0000 PPM @ 15E QZ 52.0000 PPMPQ @ 16 E QZ 62.0000 PPMPQ @ 16 E QZ		BACT 6
A POWER CONFORMION MLSI FFELMI CONFORMION	H R	700 (60 700 (80		Turkked ca	1016.00 MARETURE 1806.00 MARETURE	62,0000 PALYO @ 16 % 00	9000 CARNET ON MACTICI 8	SACT P
A Delivery Co.		-90 /0	6r13/92 6r12/02 7/91/02	TURBLE BALLINGO TURBLE BALLING BARAIN	12100.00 HP 9600.00 HP (LAC)4	1,6000 Desire 2 (5 CS 1,6000 Desire 2 (5 CS	WET MUSICINGS ADVANCED DRY LOW WORLDCOMMUTTOR MY 07/01/051	
AC EMBOY COMPANY TEL EMBOY COMPANY	MY 60	7842 00 10800000 La 11 072 1084 F	7/91/02 2/20.03	INDING CONDUCTOR OF PARTURAL GAM	1123.00 MARTUNE EACH		FOR HOX COMBUST KIN	BACT O
ACCUME COMMUNITY TO WATER AND STATEMENT OF STATEMENT TO STATEMENT TO STATEMENT OF S	64 44 H	11 073 1064 I 60 06	7/26/02 3/20/02	TURBOR OL TORIO (7 EACHE		26,0000 PTM 8 16% CE 26,0000 PTM PD FUEL H AFLOW	MANDAL MATTER DE ACTION MANDAL SE VALUE DE LA COMP	MCI e
	MY 140		3/20/07 9/24/02 9/18/02	TURBOUT OIL FORD OF EACHS TURBOUT, COMMISSIO CYCLE COMBUSTICIN OR FRANCE & GAS TURBOUT SEP FOCOD 11	28.00 SW 437.30 SM#HUN#	47 2000 LBA4	WAILS IN A CTION	940141
COCHMENTION PARTMERS, L.P. COCHMENTION PARTMERS, L.P. A WASHINGTON PARTMERS, L.P.	HY 40	122 000 / B00002 # 1122 000 / B00002 #	9/16/92 8/16/92	COMBUSTION FURBING (25 4767 MW) COMBUSTION FURBING (25 4767		47 2000 LBAH 47,0000 PML 74 LBAH B.0000 PML GAS	終 EAM DIA C TICH 野 EAM DIA C TICH AND IIC中 野 EAM DIA C TICH	MACI C
AND WILDE CONCRATION		04 LP782(1-3) MOD. #1	8/16/82 8/26/82 8/26/82 4/13/82		1.03 sauglupes	75,0000 PPM GAS 7,0000 PPM & 15E OZ IGASI 95,0000 PPM B UKE 11,000		BACT 4
A WASHINGTON PARTIE BY L.P. A WASHINGTON PARTIE BY L.P. AWASHINGTON PARTIE BY L.P. AWAST ELECTRICHE W SAULAND POWER CO. RY URLING POOMER CO. RY URLING POOMER CO. A MARKET BY COMMENT OF PARTIE STOPP	40 TA	PMD 4 92 006	4/13/02	FURBRE, BOLAR TANNUS FURBRE, GAS AND DUCT BURNER	15:00 MM2TUNE 1300:00 MM2TUNE (ACH	6,0000 PPM B 16 UP 044	DAY COM HOR COMMUNICAL (BY 1-10-14/9) METACLINE CYLVETIC STOUCTION (BCB)	
A HAMORO (MENOY CHATTO PARTMENT OF A A HAMORO (MENOY CHATTO PARTMENT OF A	VA 810	030 030	3/3/92 3/3/92	TURBON, F2 FUEL OL MATURAL GAR (8) FURBON, COMBUSTION		#2,0000 PTM 8 16% CP, GAS	WAT IN MACTION	BACT 4
HAMORED EMEROT EMPTED PARTINE GRAP HAMORED EMEROT EMPTED PARTINE GRAP HAMORED EMEROT EMPTED PARTINE GRAP HOUGE GR. 4 TD.	VA 110	030	3/3/07 3/3/07 3/19/07	TURSON, COMBUSTION TURSON, COMBUSTION 2	1150.00 MARTINE EACH 1150.00 MARTINE MAT, DAS 1113.00 MARTINE MOS FUEL OR 0.00	9,0000 PPM & 16% D2 18,0000 PPM & 16% O2	BOT, STEAMING CTION BOT, STEAMING CTION	BACT-
MH ELECTRIC AND POWER CO.	GA 491	15007(1 &) 1 606 (d629		FLIMME, GAR FINED, & EACH TURBORS, B	246.00 Market IA		DET LOW MOST TECH	BACT - BACT - BACT -
MELECTRIC AND POWER CO. LECTRIC LIDER CO., INC. COLNERATION FED-MICLORY	64 481 18	11-061-8629	2/12/07 2/12/07	TURBOUR, B TURBOUR, B TURBOUR, PURE CR. 42	1022.00 MARTINE MAT GAS 812.00 MARTINE, 22 CL	29.0000 PMI @ 15 II 02 25.0000 PMI @ 15 II 02 0.0000 Mf MOLE	MAR WATER MICTION MAR WATER MICTION	BACI
COLMERATION FEO-MOLOCY PRESENT MICHIEL COMMAND	10	M A4017	1/21/03	FLISTERS, MATURAL GAS FARD	20.00 MW 10.00 X617 STUTE	0.0000 ME HONES 67.3000 EBHH 23.6720 EAH	COMMUNICATION WATCH SHAFFE IN ACTION	BACT 6
	F7 10	4000 C 201 COCO I	1/21/82 12/1/82 12/1/84 12/20/81	MILAN CHEANN &	WE CO.COS	150,0000 PTMPD & 15 to 00	EFEAN MARCHEN AND SCO	BACT 6
MES CO THEOTH COMMISSION LIMING STATION	MC 213); ?;		TURNE, COMMUNICAL	1513.00 GM PTUAM	42,0000 PPM ED 1 (BARE 118,0000 BARE	LOW AND REMARKS TO SELECT THE SEL	BACT BACT
	H 164	to est	12/2-01	TURBOUT, PUEL OL #2	2000 MM PENANG THE COLOR	261 0000 4 8446	MATERIAL COMMUNICA MAXMAN WATER NICOVIN	BACT
EM LEMTED	ft 700	0 81174 D 81178	11/20/01	TOWARD DAY SEATH	180k day sasangrupa 47,00 baw	12.0000 PM4 12.0000 PM49 72.0000 PM4 \$ 12.5 Cd	OOT 4 OW been To defeat to	BACT A BACT A BACT A
UTENES COMMISSION	9 75	361-123	11/20/81 11/20/81 11/4/81		47.00 MW	17,0000 Phi @ 195 CP	COMBUSTION CONTROL	BACT
H CAL FORMA GAS	F4 /180 CA 204	14000 411		Fulding, DAS, 4 EACH TURBER, DS, 4 EACH TURBER, DAS FRED	36.00 MW 36.00 MW	47,0000 Phi & 155 07 42,0000 Phi & 165 02 65,0000 Phi & 165 02	MET MACCION	BACT 4 BACT 4 BACT 4
n Calforna gas Matura gas	FI PED FI PED CA 204 CA 204 AZ	10000011	10/28/81 10/28/61	TURBON, GAR HIND, BOLAN MODEL H TURBON, GAR, BOLAN CENTAUR H	47.54 MARTUN 1800.00 M	8,0000 (FM/V) @ 15 t CQ 8,0000 (FM/ @ 15 t CQ		BACT P
NATURA BAS NATURA GAS			10/25/61	TURRER, GAS, BOLAR CINTAUR H TURRER, GAS, BOLAR CINTAUR H TURRER, GAS, BOLAR CINTAUR H	8500.00 HP	64.8000 PMI 6 15 E C2 47.0000 PMI 6 15 E C2	HON TIME BELLCT, CAT. MIDUCTUM	BACT P
MATURAL GAS POWLE GENERALIZH	AZ AZ FL PBD		10/26/01	TURBRE, GAR, BOLAR CHILARI H	6500.00 HP	95.1000 PFM @ 15% OF	DRY LOW NOR COMMUNICA FISE DPC: LEAN FLAC MAX	BACI P
MATURAL SAS	FL PED	P.FL-107	10/18/01 10/18/01	TURBUE CE. 4 EACH	\$600,00 HP \$2.00 MW	85.1000 PPM & 151. CF 42.0000 PPM & 161. CF 42.0000 PPM & 161. CF	DEL FOR HOR COMMUNICA	ACI P
Natural Gas Os CO.	AZ	91003		NUMBER OF BUILDING OF STAND TO THE STAND OF STAND	12000 00 HP 12000,00 HP	226,0000 PM 0 165 CD 42,0000 PM 0 165 CD		BACT &
E4 STREET AND LODGE NOW COURSEASION MOUNCE	WA #10	02	10/8/81 6/26/81		62 to bindfust 123.00 stw	STORE SAMON BY PROS MO O'CHES (Branslin	COM MOS BY MINE & THE STORE MEDICAL TO STORE AS THE STORE	BAC! A
CLISSONA LACKOT COMPANY LIN GAS FRANCISCO CO.	LA PED	10 0033 CA 10 CC	9/23/61	TURBUS, GAR, 2 TURBUS, GAR, 2 TURBUS, GAR, 2 TURBUS, GAR, 1 TURBUS, GAR, 1 TURBUS	40.00 mm	263,0000 (BH	WEAM WITCHEN AND BCC	BACIE
		HP 1127	7/31/01 7/25/01	TURBUS GAR 7	90 10 NEWSTUPN 49.00 SMARPTUPN	40.0000 PM @ 155 CD	HRO PLECT 0.07 LBLS LOW NOR COMBUSTION	BAC! 76
LANE 4 POWER PLANE DEROT NO.	FL 1980	PL 196	7/25/01 9/25/01 9/25/01	FLUTERIAL, CIL, L'EACH.	80.00 km 80.00 km	100,0000 PM 8 161 00 25,0000 PM 8 165 00 47,0000 PM 8 165 02	TET PLACEAGE	MCI-O
O POMER COMPANY POMER AND LEGIS	MA A30		6/17/01		MACO MW	evone sam e rea na	MET BURCHUM BCR	BACT PE
POWER AND LIGHT	FL PND	FFL 148 JL-148	8/6/81	COMMITTION TURING REPERATOR TURING, GAIL & SACH TURING, CO. 4 SACH	M 60 DW 400.00 DW	PARCO PROFILE DE LOS	MELECTIFE CATALTRIC REDUCTION (BOR) LOW MOX COMBUSTORS	
#CAS LB#TEO	PL PNO CA 421	#L-148 #L 148	Arbert Araras	FLISSHE, CR. 2 EACH FLISSHE, CR. 2 EACH FLISSHE, BAIL, FLECTISC OF HERATION	400.00 MA 400.00 MA	75.0000 PM @ 15% 02 42.0000 PM @ 15% 02		BACT P
N CONSCI DATED FORMS	PA 763	378 CO (Fundor, dar, slictor of Meration Tungon B, gar, 2 Tungon B, matural, gar: 21	400.00 MARTUM*	95,0000 PMM & 155 CO 2,5000 PMM/D & 155 CO 25,0000 PMM & 155 CO	LOW MOR COMBUTTORS SICK STEAM DURCTION	BACI #
DO COOLMERATION, L.F. N CHEMICAL	N) #1	ERAL: EEE HOTEG ERAL: EEE HOLES	4/1/01 4/1/01	TURBON BUATURAL GARASI TURBON BUAT FUEL CILI (2)	1100.00 MARTUAR EACH	6'08'30 (8'98'8)A 6'08'30 (8'98'8)A 3'9'000 64'9' 8 16'8' (5	RTEAM IN ACTION - BCR IN 186) BCR, DAY LOW HOM BUILDING	BACI F
N CHEMICAL	CO SON	15438 15438	2/25/01	Turbert 41. DE FALLES & Turbert 52. DE FRANCE &	1100.00 MMITUHN KACH	9.0829 (8.68491) 28.0000 FFM & 16.5 02	BCR AND WATTR MACTION WATER MACTION	BACT C
N CHEMICAL FERTALEER CONFORMICH POWER AND EIGHT	r. 740	FL-167	2/17/01	TURBUE, GAD TURBUE, GAS, & EACH	31.00 MW 34.00 MW	25.0000 PPM & 16% 00 0.0000 PPM & 16% 00 9.0000 PPM & 16% 00	6/4	PH10
Oner and Egyp Oner and User Orese Rayon Associates 22 Orese Rayon Associates 21 An Couldern Onerstations	ft mo	#1-145	2/13/04 2/14/01 2/14/01 1/13/01	TURING, QAS, 4 GACH FURING, DL, 4 GACH COMMING-CYCLE POWER GENERATION COMMING-CYCLE POWER GENERATION FURIOR GENERATION FURIOR EXPOSED FOR GENERATION FURIOR GENERATION FURIOR GENERATION FURIOR GENERATION FURIOR GENERATION	740.00 MW	47.0000 PM @ 18 8 00	COMPLIENCE CONTROL	BACI A
COLM CATION ASSOCIATE \$11	MY A38	0		COMBREO CYCLE POWER GLAFANTICH	PS CO MW POWER CORE III	66-0000 PPM & 16% CV 61 7600 156148	COMBUSION CONTROL SELECTIVE CATALYTIC SYSTEM ON CHI UNIT	BAC1
IAY COOMERATION PARTIMETERS IAY COOMERATION PARTIMETERS N COOMERATION PLANT	k.)		61/1/80 F1/1/80	I CHOOSE ELECTRICAL COMPANY AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSO	SECO NW FOFAL OUTPUT SECO NAMETURE SECO NAMETURE		SECUTIVE CATALYTIC SYSTEM ON CHE LIMIT STEAM HIS CTION AND SCO	BACI A
N COCKERALON PLANT HALF FORM PLANT		800 BJ05 0000 I	8440 8740	OF LICTOR GAS FOREIG	686.00 beettijee 214.00 beettijee	0.0030 LBANNEYU	PEAM M SCHOOL AND SCH	SACT A
GALE POINT PLANT GALE POINT PLANT GALE POINT PLANT	MO		6/25/00 6/25/00	TURBON SATURAL CAST FRED OF LANGUAGE CAST FRED OF LANGUAGE CAST AND SATURAL TURBON, OR NOW THOSE SATURAL FURBON, OR NOW THOSE SATURAL TURBON, OR NOW THAT HAND CAST FRED SATURAL TURBON, OR NOW THAT HAND CAST FRED SATURAL	104.00 MW	76 0000 PFM @ 16 S CO	WALES THE SERVER SERVER IN	BACT P
MLX POINT PLANT INCE POINT PLANT IS TRANSMISSING COMPANY	MO MO OR 160		8/26/80 6/26/80 6/26/80 6/16/80 6/21/80	FUNDER, SOLMY NATURAL GAB FIRD SUFCINC	104.00 MW	0.0720 (SAMBLES) 75.0000 PMS 9 158 02 64.0000 PMS 9 158 02 75.0000 PMS	BILLAW MCCTON AND SCE WALES MAY CHOOS OUR TO COMMISSION AND AND AND AND AND AND AND AND AND AN	BACT
	CR 18-0	1050 1050	61140	PLANSE: BY MAY MATURAL GAS FORD SECTION TURBOR GAS, COMPANIES WATERS TURBOR: 124 NOW ON FIND	94.00 May 104-09	25.0000 PM 6 15 CO	GLE I COMMISTION AND WATER IN ACTUM	BACT P BACT P
ATOMA A ATOMA			M21/80	TURBON, 124 MW CA FRAG TURBON, 124 MW NATURAL BAS FRAG	176.00 MW 125.00 MW	77,0000 PTM 9 143 00	CAST COMMUNICAL AND WATTR BLACKING LOW HOR SUMMA DO BODY WATTR RECIDEN	SACT P
E AND BAS COMPANY HAGIND STATION	NJ 9580 MA MRR MA MRR OR 18-00 MO MO CA 2040 NY 4021	o entre	3/2 3/80 12/11/86 11/33/66	TURBOR, 124 MW MATURAL BAS FRED TURBOR, RATURAL GAS FRED OFFIRMAL CONSUMERCY FLESSORS	11000 MMETURAL 11000 MEGAWATIS	92440 (BAMBIN	WATER MILICIAN AND BOR	BACT P
MARCHAL HIGHT PLANT MARCHAL HIGHT PLANT STRANSMITCH	MA 4400	40 COM 032	11/30/00	TURNE, MAYOR FIED	A 12.00 Acception	108.0000 1864R 40.0000 186 186 02		
MARTI AND INSCRIPT COORDINATION	OR 16 or MO	1076	11/30/86	1 CHISHOLD, SE SINT MAIL THOSE FAILS THE CONTROL OF	117.50 MMBSUM4 14 000.00 HP	78.0000 PM 0 188 02 47.0000 PM 0 188 02	WATER BUILDING WATER BUILDING WATER BUILDING COWNOON BUILDING	BACT C
MARYLAND SISCING COOPERATIVE (MALCOL SENERGY STRICKS CHE ASSOCIATES, INC.	NO Ca THE	0220101	10/1/89 10/1/89 8/20/00 8/5/00 2/15/00 11/1/90	COMPANDE HATCHER GABLES SALCING	90.00 WW 00.09	100 0000 19/m	WATER MICHEN WATER MICHEN	
	NY 4023	791 0266 00001	R/5/86	FURSION, NATURAL GASTINSO, QUET BURNING OF LINEOUS ACCOMMOND OF CLE GAS FUNDAME	34 BO MW 40100 LEAMINETU	6 0000 PM @ 15 B 02		BACT P
T LEGITO GLUM MARKEACTURING U S.A. INC.	CA # 17	188284 AND 1-38294 20 1 7	3:16:00 11/4/06	FURNIS, GAS STREET HOTES	9.00 26.00 ww	42,0000 PPMDY @ 16'S 02 # 0000 PPM @ 16'S (2) P4 8400 1840	WATER MIZETON MATER MIZETON MATER MIZETON	BACT O
	MO 04.78	PG14 10 0678 &16	20 2/06 6/6/79	FURBRIS, GARL GERBEAU ELECTRIC LES 2000 COMMUNICION PRÉSURAL GAS	0.00	e. kood i samerii	WATER MACTION AND BLICKING CATALYTIC REDUCTION	
MOTATORS	MT 4728	800 2064 600 0066		(3) WESPHONDER WHO 106 FURBINES COMMUNITION TURBING	872 00 MM BTM-48 1400.00 MMBTM-48	6242.0000 1PT	WATER IN ECTION FOR NOW ENGINEERS	eact e
GENERALION FART OF RESIDE	CO 01M	163 1-5 163 1000			110.00 Magli (Jed) 20.001 Magli (Je)	42 0000 FTM 15 LGAM 25,0000 FTM 8 16'S 00	STEAM WACHING	SACE OF
PORT PARTIE HERVEE I GAD & ILICING - PANTHAMP, AM	CO SILIS	MISS 1-2		TURBOR T MAT GAS & 2 OUCH BURNING S	205.00 MARTUH EACH TURNE	25,0000 (FM) () 16% (Q) 42,0000 (FM) () 16% (Q)	DAY KOW MON BURNER WATER ON JECTACAN	BACI PI
BAS SILICIBE - PARTMAN PLANT THE PROPERTY - PERFECUENT PLANT	140 140 140			TURBUSTOOPE, MATURAL GAR (5)	MODE MACHEN	42,0000 FTM @ 165 DE 9,0000 FTM @ 165 DE 85,0000 FTM @ 165 CE	ONT LOW MOX HOLMS HAL SEECT INC MODEL POSSETS! WATER OLD CHOCK	BACT AT BACT AT BACT AT
4	_			TURBOR, 140 MENATURAL GARANCO SCIETAC	140.00 88	IN ACCORD FROM SHIP COP	DEL Bries F. Co. HOX Brief 68	BACT #1
PORT PERSONNEL PROPERTY STATES AND ADDRESS	_							\$4C1 FE
AUG DROWS, U.P. LECTRIC PLASTICS	AL 6031	10017-001	\$/16/66 11/10/66	Futbox With Duct survice	1000 WW	0.0130 18ampty	DEM COMMUNITOR OF CT. END TO DUCE BURNING SER	
DOM ENGIGE CHAILED	M 3014	CODE HELE	L/27/00	GENERATOR COMMUNICAL FLARIDISES & DUCT BURNING ACCOMMEND OF CLEAR FLARIDISES AND DELICE BURNING AS	1999:00 MASTLINH(CTQ)	4 9000 FFMBY BYS BUZ UND	SET COME AND ALL THE MEMORIAN SHEET AND A CHEAR AND A ROOM MA BETCHER COLLAIN THE MEMORIAN SHEET AND A CHEAR AND A ROOM MA DAY LOW MOX BURNING ON FURBOUR AND LOW MOX BURNING ON TALL BURNING	BACT PE
GON ENLIGY LIMITED	in 250	4 71 AN (A 422	3/31/00 3/31/00	GAS FURSING S. COMM. MYCHICS SERVING US.	#16.00 SMARTLANS ELABORE	8.0000 PPM B 1610 02 NG CIL		10AB
CHE 4 COMPANY	ia Peri	LA 4 13	2/13/68 12/20/63	DUC! BUNKE	0.40 MAN BH STRAGE		LOW NOW ILLUMINES COM NOX SURINERS, WATER SIZECTION DURING CILL FRING	BACT PI
	CO 911.00	2016 HOR1 AND 3007	12/17/07 1/27/07	COMMITTION TURBOR W OLCY BURNERS (COMBARD CYCLE) COMMITTION TURBOR W OLCY BURNERS & SCR. (RE		0.0000 PTMF HAT, DAR 19.0000 PTM		BACT PE SACT PE SACT PE
TEO BOARD, INC. TEO BOARD, INC. INDE CORPORATION	AL 2010	2004	¥12#/		THE CO. MANUSCRIPPING	42,0000 PPM B 18% OF 9 1000 LB-MARYU MAW 9,1000 LB-MARYU	OR'S COM MODE BURNES. ONE SOCIAL BURNESS OF MACHINE CONTRACTION OF ANY PROPERTY OF SOCIAL SOCI	BACT PE
COP STRACUEL LP		A 589 D1 2010/00001 00007	8/22/06 13/10/04	OUC! BURNEY BP 4000011	/10.00 MM 8FUH-R	A LOOP LEADING TO MAKE	THE PROBABIT LIES FOR BURNER OF RATION OF NATURAL GAS. SPECIFIC BURNER OF RATION	PACE PE

	Table 6.4. Burnnery of Best Augustin Contral Feebnotogy (BACT) Determinating for Manager Co de price from	mare for Conductors Turbuses
--	---	------------------------------

u Sty Norte	n es	Prome Number	Power loads	UnitPlacese@escretor	Coner-by Inna)	MG, E-money Lorest	Carried Marked	
DECE DRAIGH AMECHATIA	HY	\$41,000 0311 00001	10/9/94	DUCT BURNEY	EL DO LAMBI UNIT	0 11/0 (BANDTU 3 51 (BAR	FUEL BPIC: NATURAL DAS DIA Y	
OCRPORT COOLH FACR IT Y	47	E11600 2016 00001	12/1/02	STACE (TURBONE AND BUCT BLANKE)	716 CO LIMITUAR	78 0000 PM 66 LBA-F	NO CONTRUBIC MATURAL BASINST THE TURBON MOR DATA	BACT OTHER
MITTE COMEN PLANT	47	182600 0444/00001 00007	1164/93	131 QUCT (NAME) RF / E 00001 00003)	M.10 AMBILIAN	9 7000 LBANNETU 18 8 LBANK		BACT CINE
MILE COOKS PLANT	MT	930300 0461	2/7/02	SUCT BURNER (P poccos)	70 00 MMB1U64	0.1000 [BAMMB10 7.0 [BAM	PLRL BRC; NATURAL GAS GR. Y	BACT OTHER
DECE ENERGY COMPANY	**	PROFIL ING	6/17/03	DUCT BURNER GAS	190,00 666011461	0 1000 [Bandle 7,0 [Brail	ZHE LOW NOX DUCT BURNER GOOD COMMUTEUM PRACES 45	BACI OTHER
POST BRITARY COMPANY	**	0000 EUE104	M1201	DUCT BURNER EF JOSSON	100.00 MARTINES	0.1000 (Sawaging & S. Linear	FUEL BYTC: NATURAL GARCINA Y	PACT PED
HURM MITCHEL FIRLD TERMATIKNAL PAPER CO. MATERIALI MALE	NT	292089 4143 00004	4/10/03	OUCI BUILDER	196 30 4449114491	0.7000 LBAMBIU, 16,2 LBAB		ksra
	*	104 0003 1074	1/11/03	TURBUE, IF ATKINANT IGAS FIREOF WITH OLICE BURING	40.00 MW	0.000 (Manufety (AA)	NO CONTROL III	BACT OTHER
NAMES DOOD WAVES FALLE COXEMERATION FACEST	N7	# 3339-00918/000014 d	11/6/02	BURNER DUCT	NO.00 MARKETURE		LOW MORE BUILDINGS THE DUCT BUILDING BY SECOND MESS THE TURBUNE	BACT PRO
MANAGE DECEMBER OF TALLES COCKER RATION JACKET	MT	# 7370-0001&00001-0	11/9/93	BURNER DUCT	99.00 MM871449	0.1900 Q.AMAPTU 0.1000 Q.AMAPTU	I CHE HOLE BLANGE	BACT OTHER
AMMERICAN CORNEYS L.P.	MY	8 4 9 3 8 400 2 2 70 1 4	11/6/02	BURNER, DUCT	KLOD MARTHAG		LOW NOW BURNER	BACT OTHER
AR ISLAND PAPER COMPANY, 6 P	YA	60840	10/20/92	Summers, Duict	128.00 X10(E) ET UAN N GAS	0.1000 LEANINGTU 8.0000 PM4	LOW WOX BURKER	BACT OTHER
AR HEARD PAPER COMPANY, L. P.	VA.	50640	10/80/92	ALMARA (N.C.)	128.00 K10(6) 611/A# 42 CM		ach /	BACT PED
AR IBLAND PAPER COMPANY, L.F.	VA	\$0\$4¢	19/90/02	BURNER DUCT (TOTAL)	128 CO ETOIG ETUARE	18 0000 PM4 30 6000 TPY	#29	8441 790
AMMI SCUTH GLENS FALLS COGEN CO .	MT	414101 0712 00001	NIG/97	DUCT BURNER (SEE MOLE 43)	44.00 MMF1MM		BCR	BACT PRO
MANAC ENERGY COMPANY	NT	B 0842 00106/00001 4	3/11/02	BURNARE DUCT IN	\$52.00 MMRTUNE LACH	42 0000 FFM, 87.4 (8A4R	NO CONTROLO	BACT OTHER
DECE-YEARS INCOOP MERVICES	NT	144400-0193	4/24/97	DUCT BURNER (FF 400001)	10:00 mmstrives	0.0800 teamstu	BCII	BACT Office
LEINE COGENERATION PARTNERS, L.P.	NT	4 G 122 G0076/00002 4	4/18/97	DUCT BURNIAS (2)	208.00 MMSTUMB MACIN	0.1100 (BAMBIU 1.21E+4)	PLES SPECI MATURAS CAS CAS T	BACT OTHER
LEME COOFNERATION PARTMERS, (P.	NT	4.0172.00078.00007.8	E-INDS	DUCT BURNER		P.DIB1 (@/Massiv Ca.)	LOW MORE BURNER AND SICK	BACT-OHER
URADAMETT ELECTRICAL W INCLAND PONER CO.		N PND 4	4/12/02	TURBOR GAS AND DUCT BURNER	17100 Mary Lunes	SAS UTSHANS! CHECK	LOW NOT BURNEY	BACT OTHER
SMALDA HARDRED ENERGY LINET EO PAR I MER INP	VA.	11020	3/3/52	BLANES CLICI	1260,00 MINETUN EACH	# 0000 FFM @ 15 T CZ. GAS	acr.	BACT OFFI
BADA HIRONO INING LANTID PARIMITES	YA	£1020	3/2/42	Butter out	187.00 MARKUM NAT GAS	F.0000 PRMY() (0) 16 % CI2	BCR ETEAM PHI.	BACT FEB
RMUDA HUNDRED ENERGY LONGED FARING SE	VA.	B1020	2/2/22	BURNER DUCK	166.00 MARTINA NOZ FULL DE	18 0000 FMAYD & 18% 02	SCR STEAM PV	BACT MID
ANNEAR SECOND MATURAL DAM LP		101000 0301 00001	12/31/41	DUCI BURNER	0.00	33 3000 1/18/April		
EE CORENTANTED	84	PMD (1. 174	11/20/01	DUCT BURNET BAS	60 00 beek tures	G.1000 LBANKBIU, \$19Am	NO CONTROL S	OFF TOAR
O COREN CORENERATION IN ANT	ii.v	78 2400 B 705 0000 s	64/10	COLNIQUE BURNER	HAD DO DO DO	0.1000 L&AMMETU	NOT BEOLUMED	
POSSELAG ENGROY BY STELLING	64	E040730101	9/25/59		FØT BD MANETUNA	O SCHO (BAMARIU	FULL BYC: NATURAL DAS ONLY	BACT PED
GAN GACHE ARROCKATER INC	- T	402201 0206 00001	1/40	TURBRE, NATURAL GASTRED DUCT BURNES	M to MW	8.0000 PM B 155 02	BCR. BISAM IN SCION	BACT-CTHER
DEFLE LABORATORES	77	363400 0006	40/40	COEMBUCI SURVEY	40.00 MMSTUNK	0.1000 (@mmg)U	FUEL WHICE MATURAL GAS CAR Y	SACI PED
ORM INTROT CENTER	21	172800 2064		IZI DUCT BURNERS IEP #8 00 (014 102)	MICO MANGELLINES	0.4060 [BAMASTIL 36.9 [BAM		BACT-OFHER
CRADO POWER PARTAGO P	70	91MR933 L 2		171 DUCT BURNER AP #5 00001 A21	714.40 MANGTUAR	O.G.170 LEAMASTU	FIRE BYIC: NATURAL GAS ONLY	BACT OF ME
	-	********		TURBORE 2 NAT GAS & 2 DUCT BURNETIE	385 00 MARTHA (ACH TURBA)	47,0000 PHI B IN E CD	WATER MACCION	BACT OFFICE BACT PED

•

TABLE 4-5 CAPITAL COST FOR SELECTIVE CATALYTIC REDUCTION FOR THE SIEMENS WESTINGHOUSE 501 FD COMBINED CYCLE COMBUSTION TURBINE

Cost Component	Cost	Basis of Cost Estimate
Direct Capital Costs	and market and the	
SCR Associated Equipment Ammonia Storage Tank Flue Gas Ductwork Instrumentation Taxes Freight	\$1,578,000 \$137,529 \$44,505 \$50,000 \$94,680 \$78,900	Vendor Estimate \$35 per 1,000 lb mass flow developed from vendor quotes Vatavauk, 1990 Additional NO _X Monitor and System 6% of SCR Associated Equipment and Catalyst 5% of SCR Associated Equipment
Total Direct Capital Costs (TDCC)	\$1,983,614	on dort Associated Equipment
Direct Installation Costs Foundation and supports Handling & Erection Electrical Piping Insulation for ductwork Painting Site Preparation Buildings	\$158,689 \$277,706 \$79,345 \$39,672 \$19,836 \$19,836 \$5,000 \$15,000	8% of TDCC and RCC; OAQPS Cost Control Manual 14% of TDCC and RCC; OAQPS Cost Control Manual 4% of TDCC and RCC; OAQPS Cost Control Manual 2% of TDCC and RCC; OAQPS Cost Control Manual 1% of TDCC and RCC; OAQPS Cost Control Manual 1% of TDCC and RCC; OAQPS Cost Control Manual 1% of TDCC and RCC; OAQPS Cost Control Manual Engineering Estimate Engineering Estimate
Total Direct Installation Costs (TDIC) Total Capital Costs (TCC)	\$615,084 \$2,598,699	Sum of TDCC, TDIC, and RCC
Indirect Costs Engineering PSM/RMP Plan Construction and Field Expense Contractor Fees Start-up Performance Tests Contingencies Total Indirect Capital Cost (TinCC) Total Direct, Indirect and Capital Costs (TDICC)	\$259,870 \$50,000 \$129,935 \$259,870 \$51,974 \$25,987 \$77,961 \$855,597 \$3,454,295	10% of Total Capital Costs; OAQPS Cost Control Manual Engineering Estimate 5% of Total Capital Costs; OAQPS Cost Control Manual 10% of Total Capital Costs; OAQPS Cost Control Manual 2% of Total Capital Costs; OAQPS Cost Control Manual 1% of Total Capital Costs; OAQPS Cost Control Manual 3% of Total Capital Costs; OAQPS Cost Control Manual

TABLE 4-6
ANNUALIZED COST FOR SELECTIVE REDUCTION FOR THE SIEMENS WESTINGHOUSE 501 FD COMBINED CYCLE OPERATION

Cost Component	Cost	Basis of Cost Estimate
Direct Annual Costs		
Operating Personnel	\$18,720	24 hours/week at \$15/hr
Supervision	\$2,808	15% of Operating Personnel; OAQPS Cost Control Manual
Ammonia	\$292,815	\$300 per ton for Aqueous NH₃
PSM/RMP Update	\$15,000	Engineering Estimate
Inventory Cost	\$40,004	Capital Recovery (10.98%) for 1/3 catalyst
Catalyst Cost	\$364,333	3 years catalyst life; Based on Vendor Budget Estimate
Contingency	\$22,010	3% of Direct Annual Costs
Total Direct Annual Costs (TDAC)	\$755,690	
Energy Costs		
Electrical	\$28,032	80 kW/h for SCR @ \$0.04/kWh times Capacity Factor
MW Loss and Heat Rate Penalty	\$334,045	0.3% of MW output; EPA, 1993 (Page 6-20)
Total Energy Costs (TEC)	\$362,077	
Indirect Annual Costs Overhead Property Taxes Insurance Annualized Total Direct Capital	\$188,606 \$34,543 \$34,543 \$379,282	60% of Operating/Supervision Labor 1% of Total Capital Costs 1% of Total Capital Costs 10.98% Capital Recovery Factor of 7% over 15 yrs times
Total Indirect Annual Costs (TIAC)	\$636,973	
Total Annualized Costs	\$1,754,741	Sum of TDAC, TEC, and TIAC
Cost Effectiveness	\$2,610	NO _x Reduction Only gas and oil
	\$3,267	Net Emission Reduction

Table 4-7.

Summary of Proposed BACT Control Technologies and Emission Limits Hines Energy Complex Power Block 2

(Siemens Westinghouse 501FD CTs)

	* .		Proposed Emission L Concentrati	Imitsa
Fuel	Load (%)	Control Technology	(ppm)	(lb/hr)
Gas	All	Natural gas and limited use of	10%b	NA
		low-sulfur fuel oil		
Oil	All	Efficient and complete combustion	20%ь	NA
Gas	100-65	Efficient and complete combustion	10	42
Oil	100-65	Efficient and complete combustion	30	106
Gas	60	Efficient and complete combustion	50	146
Gas	100	Efficient and complete combustion	1.8	4.4
Oil	100-65	Efficient and complete combustion	10	21
Gas	80-60	Efficient and complete combustion	3.0	7.5
Gas	100-60	Use of dry low-NOx burners and SCR	3.5c	23
Oil	100-60		15c	114
Gas/Oil	All	Natural gas and limited use of	NA	NA I
		low-sulfur fuel oil		
	Gas Oil Gas Gas Oil Gas Gas Oil Gas Gas Oil	Gas All Oil All Gas 100-65 Oil 100-65 Gas 60 Gas 100 Oil 100-65 Gas 80-60 Gas 100-60 Oil 100-60	Gas All Natural gas and limited use of low-sulfur fuel oil Oil All Efficient and complete combustion Gas 100-65 Efficient and complete combustion Oil 100-65 Efficient and complete combustion Gas 60 Efficient and complete combustion Gas 100 Efficient and complete combustion Oil 100-65 Efficient and complete combustion Oil 100-65 Efficient and complete combustion Gas 80-60 Efficient and complete combustion Gas 100-60 Use of dry low-NOx burners and SCR Oil 100-60 Water injection and SCR Gas/Oil All Natural gas and limited use of	Fuel Load (%) Control Technology (ppm) Gas All Natural gas and limited use of low-sulfur fuel oil Oil All Efficient and complete combustion 20%b Gas 100-65 Efficient and complete combustion 10 Oil 100-65 Efficient and complete combustion 30 Gas 60 Efficient and complete combustion 50 Gas 100 Efficient and complete combustion 1.8 Oil 100-65 Efficient and complete combustion 10 Gas 100 Efficient and complete combustion 1.8 Oil 100-65 Efficient and complete combustion 3.0 Gas 80-60 Efficient and complete combustion 3.0 Gas 100-60 Use of dry low-NOx burners and SCR 3.5c Oil 100-60 Water injection and SCR 15c Gas/Oil All Natural gas and limited use of NA

 NO_x is ppmvd at 15% O_2 gas and oil; CO is ppmvd at 15% O_2 for gas and ppmvd for oil; VOC is ppmvd at 15% O_2 for gas and ppmvw for oil. Max emissions at 59°F compressor inlet.

Source: Golder Associates, 2000.

Percent opacity, a surrogate for TSP/PM₁₀ limits.

Based on a 24-hr block (7:00 a.m. to 7:00 a.m.) weighted average based on load as measured by CEMS.

5.0 AMBIENT AIR QUALITY MONITORING DATA ANALYSIS

5.1 PSD PRECONSTRUCTION MONITORING APPLICABILITY

The maximum concentrations predicted for Power Block 2 emissions are compared to the monitoring *de minimis* levels in Table 5-1. Based on the worst-case proposed source emissions data and air quality modelling results for the proposed Power Block 2, ambient air quality monitoring is not required for SO₂, PM₁₀, NO₂, or CO because the maximum predicted impacts are less than the PSD pre-construction monitoring *de minimis* values for those pollutants (FDEP Rule 62-212.400). For ozone (O₃), annual volatile organic compound (VOC) emissions from Power Block 2 are estimated to be less than 100 tons per year. As a result, preconstruction monitoring data are also not required to be submitted as part of this application. For sulfuric acid mist, which is a noncriteria pollutant, although the proposed source's emissions are greater than the significant emission rate, EPA has established no acceptable monitoring method for this pollutant.

Therefore, FPC requests an exemption from the preconstruction monitoring for these pollutants.

TABLE 5-1
SUMMARY OF MAXIMUM MODELED POWER BLOCK 2 IMPACTS
COMPARED TO THE PSD MONITORING DE MINIMIS VALUES

Pollutant	Averaging Period	Highest Modeled Concentration (ug/m³)	PSD De Minimis Level (ug/m²)	Greater than the De Minimis
Sulfur Dioxide (SO₂)	24-Hour	4.9	13	NO
Particulate Matter (PM ₁₀)	24-Hour	3.0	10	NO
Nitrogen Dioxide (NO₂)	Annual	0.096	14	NO
Carbon Monoxide (CO)	8-Hour	36	575	NO
Volatile Organic Compounds (VOC)	Annual	57	100 TPY	NO
Sulfuric Acid Mist	NA	NA	NA	NA .
Source: Golder 2000				·

Source: Golder, 2000.

6.0 AIR QUALITY MODELLING APPROACH

This section summarizes the air quality modelling protocol and input parameters utilized in the air impact determinations presented in Section 7.0. Included are descriptions of the models, meteorology, options selected, listings of modelling parameters for the proposed facilities and existing sources, receptor locations, and step-by-step procedures that were used to develop the necessary projected impacts.

The scope of the required modelling analysis is limited to those pollutants that were determined to be subject to PSD review in Section 3.0, Table 2-5 (CO, NO_x, SO₂, PM, VOC (O₃), and sulfuric acid mist).

The proposed source emissions of sulfuric acid mist are shown in Table 2-5 to be above the PSD significant emission rates. However, the PSD regulations do not define significant impact levels nor are ambient air quality standards established for this pollutant. Hence, the air quality impact assessment for sulfuric acid mist is limited to prediction of the maximum impacts from the proposed facility.

6.1 GENERAL MODELLING APPROACH

The PSD regulations require an air quality impact assessment consisting of a proposed source significant impact area analysis, a PSD increment consumption analysis, an ambient air quality standards impact analysis, and an additional impacts analysis. These analyses are discussed in greater detail in the following sections under specific modelling methodologies. The modelling approach followed EPA and FDEP guidelines for determining compliance with applicable PSD increments and ambient air quality standards.

These results from the modeling analyses were compared to the PSD Class II and I significance levels for each pollutant in order to determine whether additional modelling

PSD Permit Application July 2000

was necessary. All predicted maximum concentrations were less than the PSD Class II and I significance values and *de minimis* monitoring levels.

6.2 MODEL SELECTION AND OPTIONS

6.2.1 Dispersion Model Selection

The selection of an air quality model to calculate air quality impacts for the Hines Energy Complex was based on its applicability to simulate impacts in areas surrounding the Project as well as at the PSD Class I area of the Chassahowitzka NWA, located about 118 km from the proposed source. Two air quality dispersion models were selected and used in these analyses to address air quality impacts for the proposed source. These models were:

- The Industrial Source Complex Short Term (ISCST3) dispersion model, and
- The California Puff model (CALPUFF)

The Industrial Source Complex Short-term (ISCST3, Version 99155) dispersion model (EPA, 1999) was used to evaluate the pollutant impacts due to the proposed source in nearby areas surrounding the site. This model is maintained by the EPA on its Internet website, Support Center for Regulatory Air Models (SCRAM), within the Technical Transfer Network (TTN). The ISCST3 model is designed to calculate hourly concentrations based on hourly meteorological data (i.e., wind direction, wind speed, atmospheric stability, ambient temperature, and mixing heights).

The ISCST3 model was used to provide maximum concentrations for the annual and 24-, 8-, 3-, and 1-hour averaging times. To estimate impacts due to emissions from the proposed source, an emission rate of 79.365 pounds per hour (lb/hr) or 10 grams per second (g/s) was initially used to produce relative concentrations as a function of the modeled emission rate (i.e., µg/m³ per 10 g/s). These impacts are referred to as generic pollutant impacts. Maximum air quality impacts for specific pollutants were then

PSD Permit Application

determined by multiplying the maximum pollutant-specific emission rate in lb/hr (g/s) to the maximum predicted generic impact divided by 79.365 lb/hr (10 g/s).

At distances beyond 50 km from a source, the CALPUFF model, Version 5.0 (EPA, 1998), is recommended for use by the EPA and FDEP. The CALPUFF model is a long-range transport model applicable for estimating the air quality impacts in areas that are more than 50 km from a source. The methods and assumptions used in the CALPUFF model were based on the latest recommendations for modeling analysis as presented in the Interagency Workgroup on Air Quality Models (IWAQM), Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (EPA, 1998). This model is also maintained by the EPA on the SCRAM website.

As a result, the CALPUFF model was used to perform the significant impact analysis for Power Block 2 at the Class I area of the Chassahowitzka NWA. The CALPUFF model was also used to assess the proposed source's impact on regional haze at the Class I area (see Section 8.0). Based on discussions with FDEP, the ISCST3 model was used to determine the "worst-case" operating load and ambient temperature that produced the proposed source's maximum impact at the Class I area. Based on that analysis, air quality impacts were then predicted with the CALPUFF model using the "worst-case" operating scenario to compare the source's impacts to Class I significant impact levels and potential contribution to regional haze. A more detailed description of the assumptions and methods used for the CALPUFF model is presented in Appendix B.

6.2.2 Dispersion Model Options

The area surrounding the Hines Energy Complex has been determined to be a rural area based upon the technique for urban/rural determinations documented in the EPA "Guideline on Air Quality Models", which applies land use criteria. Based upon this determination, the rural dispersion option was used in ISCST3 model.

The Regulatory Default option was used in the ISCST model for this analysis. The ISCST3 model was applied without terrain adjustment data because the area in which the Polk County Site is located has very little relief (e.g., a net change in ground level elevation in the range of only 10 feet). The ISCST3 model's building downwash options were applied because the stacks for the proposed sources will be less than the stack height at which downwash effects may occur.

In the 1992 PSD application for the Hines Energy Complex, expected emissions from both Power Block 1 and Power Block 2 were included in the dispersion modelling analysis. The analysis evaluated the total impact of the two power blocks with respect to PSD increment consumption and ambient air quality impacts. Power Block 1 has been constructed and is now operational. With approval from FDEP personnel obtained on November 23, 1998, it was determined that the analysis for proposed Power Block 2 should be updated to include use of the latest version of ISC and the most recently-approved five years of meteorological data. Therefore, this analysis re-evaluates the incremental impact of Power Block 2 on the ambient air quality surrounding the Hines Energy Complex. For purposes of model input, the two stacks for Power Block 2 were colocated; therefore, one source was input to the model.

The air quality impact assessment for PM assumed that all PM emissions were PM_{10} emissions. This assumption simplified the PM modelling analysis and makes for a conservative approach to modelling PM impacts.

Descriptions of the dispersion options for the CALPUFF model are presented in Appendix B.

6.3 METEOROLOGICAL DATA

The air quality modelling analysis used hourly preprocessed National Weather Service (NWS) surface meteorological data from Tampa, Florida, and concurrent twice-daily upper air soundings from Ruskin, Florida, for the years 1987 to 1991. The meteorological data were supplied by FDEP in the preprocessed format required by the ISCST3 model. The preprocessed hourly meteorological data file for each year of record used in the analysis contains randomized wind direction, wind speed, ambient temperature, atmospheric stability using the Turner (1970) stability classification scheme, and mixing heights. The anemometer height of 6.7 meters, used in the modelling analysis, was obtained from NWS Local Climatological Data summaries for Tampa.

These meteorological data are the most complete and representative of the region around the Project Site because both the Hines Energy Complex and the weather stations are located in areas that experience similar weather conditions, such as frontal passages. In addition, these data have been approved for use by the FDEP in previous air permit applications to address air quality impacts for other proposed sources locating in Polk County and adjacent counties.

For the CALPUFF model, additional meteorological parameters are needed (e.g., precipitation, relative humidity) to predict air quality concentrations than that required for the ISCST3 model. More detailed descriptions of the assumptions and methods used for processing the meteorological data and establishing the model domain are presented in Appendix B.

6.4 EMISSIONS INVENTORY

6.4.1 Proposed Source

The proposed combined-cycle facility will have the capability of firing natural gas and low sulfur fuel oil. The fuel scenarios evaluated for the proposed source include natural gas firing at 100%, 80%, and 60% load at 20°F, 59°F, and 90°F compressor air inlets temperature; and fuel oil firing at 100%, 80%, and 65% load at 20°F, 59°F, and 105°F compressor air inlets temperatures.

The emissions inventories for the proposed source and fuel scenarios identified above are presented in Appendix A. The pollutant emission rates shown in those tables are representative of BACT as demonstrated in Section 4.0. The air quality modelling analysis for the proposed sources assumed that maximum design capacity emissions represent actual emissions for purposes of determining PSD increment consumption.

The proposed source worst-case fuel scenario was determined by modelling each temperature and load scenario for each fuel using the ISCST3 model. The maximum impacts for the proposed source were predicted in the vicinity of the Hines Energy Complex when the source is firing fuel oil at full load at 105°F for all pollutants except CO. For CO, the maximum impacts were predicted when the source is firing natural gas at 60% load at 20°F. For PSD Class I impacts, the maximum impacts for the proposed source were predicted when the source is firing fuel oil at full load at 20°F. Complete ISCST3 model outputs have been submitted to the FDEP under separate cover.

6.4.2 Existing Sources

The results of the proposed source significant impact area analysis (which is described in Section 7.0) indicated that the proposed facility's air quality impacts are less than the PSD significant impact levels. Therefore, no additional significant impact modelling analysis for

PSD Permit Application

Hines Energy Complex

PSD Class II increment consumption or ambient air quality standard impact is necessary.

6.5 RECEPTOR LOCATIONS

A description of the receptor grids used in this modelling analysis is presented below.

6.5.1 Receptor Grid for Proposed Source Significant Impact Analysis

This modelling analysis used a polar receptor grid beginning at 500 meters (m) and extending out to cover a 50 kilometer (km) radius centered over the proposed source. The polar grid consisted of 36 radials, each separated by 10-degree increments and extending outward at ring distances of 500 m, 1 km, and 1.5, 2.0, 2.5, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, and 50.0 km with reference to the proposed source location.

In addition, receptors were placed at 100-meter intervals along the plant property boundary to assess the potential impact at the FPC property line. An additional Cartesian receptor grid with receptors placed at 100-meter intervals was input to assess concentrations near the property line closest to the source, which is to the southeast of the facility.

In total, the receptor grid which consisted of more than 700 receptors is shown in Figures 6-1 and 6-2.

The modelling results indicated no significant impacts for the PSD pollutants.

6.5.2 Receptor Grid for Class I PSD Analysis

A network of 13 discrete receptors was placed at the boundary of the Chassahowitzka NWA in order to reassess the potential incremental impact of the proposed source on that Class I area. The NWA receptors were obtained from the FDEP and were also used in the modelling analysis for the 1992 PSD application. The coordinates of these receptor points are listed in Table 6-1.

6.6 BUILDING DOWNWASH EFFECTS

Based on the building dimensions associated with structures planned at the Hines Energy Complex, the 38.1 meter stacks for the proposed Power Block 2 will be less than the calculated value (61.0 meters) at which downwash effects would not be expected to occur. Therefore, the potential for building downwash was considered in the modelling analysis.

The procedures used for addressing the effects of building downwash are those recommended in the ISC Dispersion Model User's Guide. The building height, length, and width are input to the Building Parameter Input Program (BPIP) model, which uses these parameters to create the effective wind direction-specific building dimensions for input to the model. For short stacks (i.e., physical stack height is less than $H_b + 0.5 L_b$, where H_b is the building height and L_b is the lesser of the building height or projected width), the Schulman and Scire (1980) method is used. If this method is used, then direction-specific building dimensions are input for H_b and L_b for 36 radial directions, with each direction representing a 10-degree sector.

For cases where the physical stack is greater than $H_b + 0.5 L_b$, the Huber-Snyder (1976) method is used. In the case of the proposed CC units, the HRSG structures are the dominant buildings of influence. The dimensions of the HRSG structures are 24.4 meters high (H_b) and 13.7 meters wide (M_W) . Since the proposed stack height of 38.1 meters is

Hines Energy Complex

more than $H_b + 0.5 L_b$, only the Huber-Snyder downwash algorithm is used by the ISCST model.

A summary of the BPIP model input and output files is provided in Appendix C.

TABLE 6-1
RECEPTOR GRID USED FOR PREDICTING CONCENTRATIONS AT THE PSD CLASS I AREA OF THE CHASSAHOWITZKA NWA

Point	UTM Co	ordinates	Distance	from Polk Co	unty Site(a)
	East (km)	North (km)	X (km)	Y (km)	Distance (km)
1	340.3	3,165.7	-74.0	91.82	117.9
2	340.3	3,167.7	-74.0	93.82	119.5
3	340.3	3,169.8	-74.0	95.92	121.1
4	340.7	3,171.9	-73.6	98.02	122.6
5	342.0	3,174.0	-72.3	100.12	123.5
6	343.0	3,176.2	-71.3	102.32	124.7
7	343.7	3,178.3	-70.6	104.42	126.0
8	342.4	3,180.6	-71.9	106.72	128.7
9	341.1	3,183.4	-73.2	109.52	131.7
10	339.0	3,183.4	-75.3	109.52	132.9
11	336.5	3,183.4	-77.8	109.52	134.3
12,	334.0	3,183.4	-80.3	109.52	135.8
13	331.5	3,183.4	-82.8	109.52	137.3

⁽a) Location of "zero point" for Hines Energy Complex is 414.300 km East; 3,073.880 km North

Source: FPC, 2000

FIGURE 6-1 RECEPTOR GRID FOR SIGNIFICANT IMPACT ANALYSIS

POWER BLOCK 2 RECEPTOR GRID WITHIN 5 KILOMETERS

FIGURES 6-1 and 6-2 RECEPTOR GRID FOR SIGNIFICANT IMPACT ANALYSIS (separate document)

7.0 AIR QUALITY IMPACT ANALYSIS RESULTS

This section summarizes the results of the modelling analyses conducted as described in Section 6.0.

7.1 Power Block 2

7.1.1 Worst-case Operation Analysis

As indicated in Section 6.4.1, the proposed Power Block 2 was evaluated for both the primary fuel, natural gas, and the back-up fuel, fuel oil, to determine the worst-case impacts. Since the emissions on fuel oil are higher for the criteria pollutants than for natural gas, the analysis of short-term impacts focused on the fuel oil case. Based on the results of the ISCST3, the maximum ground-level impacts were produced for full load when firing fuel oil, except for CO emissions, which produced maximum impacts at 60% load when firing natural gas. A summary of the maximum concentrations predicted for the proposed source for the combinations of operating loads and ambient temperatures is provided in Appendix D.

Annual average concentrations were estimated by assuming that the proposed source would operate by firing fuel oil for a maximum of 1,000 hours per year and natural gas for 7,760 hours per year. The annual average concentrations were obtained by adding the maximum annual average impacts predicted for oil firing (multiplied by 1,000 hours divided by 8,760 hours) to the maximum impacts for natural gas firing (multiplied by 7,760 hours divided by 8,760 hours).

7.1.2 Significant Impact Analysis

Once the worst-case operating scenario was determined, the next step in the analysis was to determine whether the ambient air quality impact from the proposed Power Block 2 is considered significant under the PSD rules. The worst-case emissions scenario for each pollutant was modeled at the receptor locations described in Section 6.5.1.

The results of the significant impact analysis are presented in Table 7-1. As indicated in Table 7-1, there were no predicted impacts greater than the PSD significant impact levels. Thus, no further analysis is required for purposes of PSD increment consumption and AAQS compliance analysis. A complete set of the ISCST3 model output files have been submitted to the FDEP under separate cover.

7.2 PSD INCREMENT ANALYSIS

7.2.1 Class II Area

Because the maximum predicted ambient air quality impacts are less than the PSD significance levels, no additional PSD Class II increment analysis is required.

7.2.2 Class I Area

Because the proposed project will be located approximately 118 km from the nearest boundary of the nearest Class I PSD area, the Chassahowitzka NWA, the impacts of the proposed project were modelled at the Class I area. In its proposed New Source Review reform package, EPA has proposed PSD significance levels for Class I areas. FDEP has approved the use of these proposed values for purposes of assessing significant impacts at Class I areas in Florida. These values are listed in Table 7-2.

July 2000

A summary of the project's maximum predicted impact on the Class I area is presented in Table 7-2. As indicated, the maximum impacts are predicted to be below the EPA significance values for PM, PM₁₀, SO₂, and NO₂. These results are based on using the CALPUFF model. Because the maximum impact of Power Block 2 emissions are predicted to be below the EPA significance values, no further analysis is required for those pollutants.

7.3 AIR TOXICS ANALYSIS

Concentrations of sulfuric acid mist were modelled with ISCST3 in the same way that SO₂ was modelled. As with SO₂, highest emissions of this pollutant occur while using fuel oil. The predicted maximum 24-hour average concentration of sulfuric acid mist is 0.75 ug/m³. This is well below the former FDEP ambient reference concentration (ARC) of 2.4 ug/m³. Therefore, no adverse impacts will occur from emissions of sulfuric acid mist from Power Block 2.

TABLE 7-1
SUMMARY OF MAXIMUM CONCENTRATIONS PREDICTED FOR POWER BLOCK 2
COMPARED TO THE PSD CLASS II SIGNIFICANT IMPACT LEVELS

	,	*	Locat	ion (b)	Year		Distance to	Predicted Impact Greater
Pollutant	Averaging Period	Maximum Predicted Concentration (a) (ug/m³)	X (m)	Y (m)	, , , , , , , , , , , , , , , , , , ,	Significant Impact Level (ug/m ³)	Significant Impact Level (km)	than the Significant Impact Level? (Yes/No)
Carbon Monoxide	1-Hour 8-Hour	34.9 107	-433 400	250 -200	1988 1991	2,000 500	None None	No No
Nitrogen Dioxide	Annual	0.096	3000	0	1987	1	None	No
Sulfur Dioxide	3-Hour 24-Hour Annual	17.8 4.9 0.038	400 400 3000	-200 -200 0	1991 1991 1987	25 5 1	None None None	No No No
Particulate Matter (PM ₁₀) (c)	24-Hour Annual	3.0 0.039	400 3000	-200 0	1991 1987	5 1	None None	No No
Sulfuric Acid Mist	24-Hour	0.75	400	-200	1991	N/A	N/A	N/A

- (a) Concentrations are highest values for this analysis; annual average concentrations based on firing natural gas and fuel oil for 7,760 and 1,000 hours, respectively.
- (b) With respect to zero point of 414.30 km E; 3,073.88 km N.
- (c) As a conservative approach, all project emissions of particulate matter were assumed to be in the form of PM₁₀.

N/A = Not applicable

Source: Golder, 2000.

TABLE 7-2
SUMMARY OF MAXIMUM CONCENTRATIONS PREDICTED FOR POWER BLOCK 2
COMPARED TO THE PSD CLASS I SIGNIFICANT IMPACT LEVELS

Pollutant	Averaging Period	Maximum Concentration Predicted for Power Block 2 (a) (ug/m²)	PSD Class I Significant Impact Level (ug/m3)	Predicted Impact Greater than the PSD Significant Impact Level? (Yes/No)
Sulfur Dioxide (SO₂)	3-Hour	0.46	1.0	NO
	24-Hour	0.12	0.2	NO
	Annual	0.0014	0.1	NO
Particulate Matter	24-Hour	0.033	0.3	NO
(PM ₁₀)	Annual	0.0010	0.2	NO
			_	
Nitrogen Dioxide (NO ₂)	Annual	0.0013	0.1	NO

⁽a) Concentrations are the highest values for this analysis.

8.0 ADDITIONAL IMPACTS ANALYSIS

8.1 INTRODUCTION

The PSD guidelines indicate that, in addition to demonstrating that the proposed source will neither cause nor contribute to violations of the applicable PSD increments and AAQS, an additional impacts analysis must be conducted for those pollutants subject to PSD review. As indicated in Table 2-5, those pollutants include CO, NO_x, SO₂, PM, VOC (O₃), and sulfuric acid mist. This additional impacts analysis includes an analysis of air quality impacts due to growth induced by the project, an analysis of air quality impacts on soils and vegetation, and an analysis of project impacts on visibility.

As has been demonstrated in Section 7.0 of this application, the proposed project will have an insignificant impact at the NWA, located from 118 to 135 km from the proposed source. In spite of this distance, FPC is providing a general assessment of the impact of Power Block 2 on air quality-related values (AQRV) analysis as a part of this application.

8.2 IMPACTS DUE TO GROWTH

The growth analysis considers air quality impacts due to emissions resulting from the industrial, commercial, and residential growth associated with the project. Only impacts related to permanent growth are considered; emissions from temporary sources and mobile sources are not addressed in the growth analysis. The analysis of socioeconomic effects presented in Chapter 7.0 of the Site Certification Application serves as the basis for this growth analysis.

Up to 500 people will be employed at the Hines Energy Complex site during any one year of the construction phase for Power Block 2, and approximately 4 new permanent jobs will be filled to operate the new facility. It is anticipated that the majority of the construction workers will commute from their current residences, whereas approximately 2 of the 4

new operational employees will migrate into the Polk County area. Based on the average household size of 2.53 persons, a total of 5 persons (workers and their families) are predicted to move into the area as a result of Power Block 2. This will have an insignificant impact on the population of Polk County.

Development of industries supporting the new CC facility are expected to be negligible. Raw materials consumed by the facility (fuels, supplies, etc.) will be delivered to the site in usable form from outside of the region. Further processing, such as water treatment, will be accomplished entirely onsite.

Electricity sales, on the other hand, will be spread out over a large region as part of FPC's generating capacity that will serve to meet increasing residential, commercial, and industrial demand throughout its system, which covers a large portion of the state of Florida.

In summary, there will be little residential growth associated with the FPC project, and there is little potential for new industrial development nearby as a result of the new facility. Impacts resulting from the new development are expected to be small and well-distributed throughout the area.

8.3 VEGETATION, SOILS, AND WILDLIFE ANALYSES

As previously discussed, the predicted maximum impacts from Power Block 2 on the NWA are less than the PSD Class I and Class II significance levels. Therefore, the project will have a negligible impact on the soils, vegetation, wildlife, and visibility of the area surrounding the plant as well as the more distant Class I area. A general discussion of air quality-related values (AQRVs) of the NWA follows.

The U.S. Department of the Interior (National Park Service) in 1978 administratively defined AQRVs to be:

PSD Permit Application

All those values possessed by an area except those that are not affected by changes in air quality and include all those assets of an area whose vitality, significance, or integrity is dependent in some way upon the air environment. These values include visibility and those scenic, cultural, biological, and recreational resources of an area that are affected by air quality.

Important attributes of an area are those values or assets that make an area significant as a national monument, preserve, or primitive area. They are assets that are to be preserved if the area is to achieve the purposes for which it was set aside.

In a November 1996 report entitled "Air Quality and Air Quality Related Values in Chassahowitzka National Wildlife Refuge and Wilderness Area," the US Fish and Wildlife Service discussed vegetation, soils, wildlife, visibility, and water quality as potential AQRVs in the NWA. Effects from air pollution on visibility have been evaluated in the NWA, but the other potential AQRVs have not been specifically evaluated by the Fish and Wildlife Service for Chassahowitzka. Since specific AQRVs have not been identified for the Chassahowitzka NWA, this AQRV analysis evaluates the effects of air quality on general vegetation types and wildlife found on the Chassahowitzka NWA.

Vegetation type AQRVs and their representative species types have been defined as:

Marshlands - black needlerush, saw grass, salt grass, and salt marsh cordgrass

Marsh Islands - cabbage palm and eastern red cedar

Estuarine Habitat - black needlerush, salt marsh cordgrass, wax myrtle

Hardwood Swamp - red maple, red bay, sweet bay and cabbage palm

Upland Forests - live oak, scrub oak, longleaf pine, slash pine, wax myrtle and saw palmetto

Mangrove Swamp - red, white and black mangrove

Wildlife AQRVs included: endangered species, waterfowl, marsh and waterbirds, shorebirds, reptiles and mammals.

A screening approach was used which compared the maximum predicted ambient concentration of air pollutants of concern in the Chassahowitzka NWR with effect threshold limits for both vegetation and wildlife as reported in the scientific literature. A literature search was conducted which specifically addressed the effects of air contaminants on plant species reported to occur in the NWR. While the literature search focused on such species as cabbage palm, eastern red cedar, lichens and species of the hardwood swamplands and mangrove forest, no specific citations that addressed these species were found. It was recognized that effect threshold information is not available for all species found in the Chassahowitzka NWR, although studies have been performed on a few of the common species and on other similar species which can be used as models. Maximum concentrations were predicted using the CALPUFF model as described in Sections 6.0 and 7.0.

8.3.1 Vegetation

The effects of air contaminants on vegetation occur primarily from sulfur dioxide, nitrogen dioxide, ozone, and particulates. Effects from minor air contaminants such as fluoride, chlorine, hydrogen chloride, ethylene, ammonia, hydrogen sulfide, carbon monoxide, and pesticides have been reported in the literature. However, most of these air contaminants have not resulted in major effects (i.e., crop damage). Some air contaminants, such as ethylene, are widely distributed but, due to low concentrations, do not result in injury to plants. Others such as CO do not cause damage at concentrations normally found under ambient concentrations. There are no predicted fluoride emissions from the proposed project.

Injury to vegetation from exposure to various levels of air contaminants can be termed acute, physiological or chronic. Acute injury occurs as a result of a short-term exposure to a high contaminant concentration and is typically manifested by visible injury symptoms ranging from chlorosis (discoloration) to necrosis (dead areas). Physiological or latent injury occurs as the result of a long-term exposure to contaminant concentrations below that which results in acute injury symptoms, while chronic injury results from repeated exposure to low concentrations over extended periods of time, often without any visible symptoms, but with some effect on the overall growth and productivity of the plant.

Since predicted maximum pollutant concentrations at the NWA are below significance levels, no adverse effects to vegetation will be caused by the proposed project.

8.3.2 Soils

Air contaminants can affect soils through fumigation by gaseous forms, accumulation of compounds transformed from the gaseous state, or by the direct deposition of particulate matter or particulate matter to which certain contaminants are absorbed. Gaseous fumigation of soils does not directly affect the soil but rather the organisms found in the soil. Concentrations several orders of magnitude higher than the predicted values are required before any adverse effects from fumigation are observed. It is more likely that effects on soils and the organisms (plants and animals) found in the soils could occur from the deposition of trace elements over the life of the project. Thus, this analysis of effects on soils specifically addresses the deposition of trace elements and potential pathways for movements into the vegetation.

8.3.2.1 Lead

Lead (Pb) is found naturally occurring in all plants, although it is nonessential for growth (Chapman, 1966; Valkovic, 1975; Gough and Shacklette, 1976). Plants vary in their sensitivity to lead. Many plants tolerate high concentrations of lead, while others exhibit retarded growth at 10 ppm in solution culture (Valkovic, 1975). Orange seedlings grown on soils with lead concentrations ranging from 150-200 ppm did not exhibit adverse effects (Chapman, 1966). Gough et al. (1979) reported that a lead soil concentration of 30 to 100 g/g generally retarded the growth of plants. The negligible amount of lead emissions from Power Block 2 will not contribute to a soil concentration toxic to plants.

8.3.2.2 **Mercury**

Mercury (Hg) is not an essential element for plant growth. It is typically used as a seed fungicide. In general, Hg is not concentrated in plants grown on soils containing normal levels of Hg. Soil bound Hg is typically not available for plant uptake, although many plants cannot prevent the uptake of gaseous Hg through the roots (Huckabee and

Jansen, 1975). Most higher vascular plants are resistant to toxicity from high Hg concentrations even though high concentrations are present in plant tissue. Concentrations of 0.5-50 ppm (HgCl₂) were found to inhibit the growth of cauliflower, lettuce, potato, and carrots (Bell and Rickard, 1974). Gough et al. (1979) noted apparently healthy Spanish moss plants with a mercury content of 0.5 mg/kg. The extremely small amount of mercury emissions from the proposed power block will not contribute to concentrations toxic to plants.

8.3.3 Wildlife

Compared with other threats to wildlife, such as pesticides, the toxicological relationships between air pollution and effects on wildlife are not well understood (Newman and Schreiber, 1988). The limited understanding is based primarily on reports of symptoms observed in the field and on information extrapolated from laboratory studies. Information on controlled wildlife studies is limited in the scientific literature. Most studies report symptoms of various air pollutants but do not provide toxicity levels. Those studies that do provide toxicity levels are limited to four air contaminants, SO₂, NO₂, O₃, and particulates.

Since the predicted maximum pollutant impacts are less than Class I significance levels, no adverse impacts to wildlife will occur from the proposed Power Block 2 emissions.

In addition to the impacts on wildlife from the primary pollutants, the Fish and Wildlife Service is concerned about the effects on wildlife resulting from acid deposition (FWS, 1992). Existing acid deposition conditions in Florida were investigated during the five year Florida Acid Deposition Study (ESE, 1986 and 1987) and the two year follow-up program called the Florida Acid Deposition Monitoring Program (ESE, 1988 and 1989). The data collected in these programs indicate that Florida precipitation is only about two-thirds as acidic as precipitation across the southeastern United States and less than half as acidic as precipitation in the midwestern and northeastern United States (ESE, 1988). There is no evidence of a temporal trend in precipitation acidity since the late 1970s (ESE, 1989).

The Clean Air Act Amendments of 1990 require significant reductions in SO₂ and NO₂ emissions from existing uncontrolled utility plants nationwide and some of these reductions will occur at plants in the general vicinity of the NWA. These emission reductions will undoubtedly improve on the already good estimated acid deposition conditions in the NWR.

Due to the small emission increases that will be caused by the proposed project and the resulting insignificant concentrations, increase, if any in acid deposition will be negligible.

8.4 IMPACTS UPON VISIBILITY

8.4.1 General

Visibility is an AQRV for the Chassahowitzka NWA. Visibility can take the form of plume blight for nearby areas, or regional haze for long distances (e.g., distances beyond 50 km). Because the Chassahowitzka NWA lies more than 50 km from the Hines Energy Complex, the change in visibility is analyzed as regional haze. Current regional haze guidelines characterize a change in visibility by either of the following methods:

- 1. Change in the visual range, defined as the greatest distance that a large dark object can be seen, or
- 2. Change in the light-extinction coefficient (b_{ext}).

The bext is the attenuation of light per unit distance due to the scattering and absorption by gases and particles in the atmosphere. A change in the extinction coefficient produces a perceived visual change that is measured by a visibility index called the deciview. The deciview (dv) is defined as:

$$dv = 10 \ln (1 + b_{exts} / b_{extb})$$

where:

 $\mathbf{b}_{\mathrm{exts}}$ is the extinction coefficient calculated for the source, and

 $\boldsymbol{b}_{\text{\tiny extb}}$ is the background extinction coefficient

PSD Permit Application

July 2000

A similar index that simply quantifies the percent change in visibility due to the operation of a source is calculated as:

$$\Delta\% = (b_{exts} / b_{extb}) \times 100$$

8.4.2 IWAQM Recommendations

The CALPUFF air modeling analysis followed the recommendations contained in the IWAQM Phase 2 Summary Report (EPA, 1998). A detailed description of the methods and assumptions used in this is presented in Appendix B. Air quality impacts for the refined analyses were calculated as follows:

- 1. Obtain maximum 24-hour sulfate (SO₄) and nitrate (NO₃) impacts, in units of micrograms per cubic meter (μg/m³).
- 2. Convert the SO₄ impact to ammonium sulfate $(NH_4)_2SO_4$ by the following formula: $(NH_4)_2SO_4 (\mu g/m^3) = SO_4 (\mu g/m^3) \times molecular weight (NH_4)_2SO_4 / molecular weight SO_4$ $(NH_4)_2SO_4 (\mu g/m^3) \times 133/06$

$$(NH_4)_2SO_4 (\mu g/m^3) = SO_4 (\mu g/m^3) \times 132/96$$

= $SO_4 (\mu g/m^3) \times 1.375$

- 3. Convert the NO₃ impact to ammonium nitrate (NH₄NO₃) by the following formula: NH₄NO₃ (μ g/m³) = NO3 (μ g/m³) x molecular weight NH₄NO₃ /molecular weight NO₃ NH₄NO₃ (μ g/m³) = NO₃ (μ g/m³) x 80/62 = NO₃ (μ g/m³) x 1.29
- 4. Compute b_{exts} (extinction coefficient calculated for the source) with the following formula:

$$b_{exts} = 3 \times NH_4NO_3 \times f(RH) + 3 \times (NH_4)_2SO_4 \times f(RH) + 3 \times PM_{10}$$

5. Compute b_{extb} (background extinction coefficient) using the background visual range (km) from the FLM with the following formula:

$$b_{extb} = 3.912 / Visual range (km)$$

6. Compute the change in extinction coefficients:

In terms of percent change of

$$dv = 10 ln (1 + b_{exts}/b_{extb})$$

visibility:

$$\Delta$$
% = (b_{exts} / b_{extb}) x 100

Based on the predicted SO₄, NO₃, and PM₁₀ concentrations, the Power Block 2's emissions are compared to a 5 percent change in light extinction of the background levels. This is equivalent to a change in deciview of 0.5.

8.4.3 Background Visual Ranges And Relative Humidity Factors

The background visual range is based on data representative of the top 20-percentile of visual range data measured at Chassahowitzka NWA. The background visual range for the Chassahowitzka NWA is 65 km and was provided by the FLM. The average relative humidity factor for each day during which the highest concentrations were predicted was computed by averaging the hourly relative humidity factor based on the hourly relative humidity for the 24-hour period. This factor was estimated by using data presented in the Federal Land Managers' Air Quality Related Values Workgroup (FLAG), Draft Phase I Report (October 1999).

8.4.4 Regional Haze Analysis

The results of the Phase 2 refined analysis for regional haze are summarized in Tables 8-1 through 8-3. As shown in Table 8-1, the maximum pollutant impacts were predicted to occur on August 16, 1990 (Julian Day 228) for SO₄, July 4, 1990 (Julian

PSD Permit Application

Day 185) for NO₃, and November 28, 1990 (Julian Day 332) for PM₁₀. The calculated average relative humidity factors for these days are presented in Table 8-2. The maximum changes in visibility due to the Project for these days are summarized in Table 8-3. As shown in Table 8-3, the maximum change in visibility on November 28 is estimated to be 3.19 percent or 0.319 deciviews. This impact is below the FLM's screening criteria of 5 percent or 0.5 deciview change. As a result, this indicates that the Power Block 2's emissions would not have an adverse impact on the existing regional haze at the PSD Class I area of the Chassahowitzka NWA.

TABLE 8-1

MAXIMUM POLLUTANT CONCENTRATIONS PREDICTED FOR POWER BLOCK 2, HINES ENERGY COMPLEX AT THE CHASSAHOWITZKA PSD CLASS I AREA

Pollutant	Maximum F	redicted Concer	trations" (µg/m²)
	July 4 (185)		November 28
SO ₄	0.0190	(228) 0.395 ^b	(332) 0.0157
NO ₃	0.0383 ^b	0.0134	0.0285
PM ₁₀	0.0988	0.0926	0.124 ^b

^a Predicted with CALPUFF model in the refined mode (Julian Day in parentheses)

^b Highest concentration predicted for specific pollutant. Maximum concentrations for SQ, NO₃, and PM₁₀ predicted for 100% load at 20°F.

TABLE 8-2
COMPUTED DAILY AVERAGE RH FACTORS FOR DAYS OF MAXIMUM IMPACTS
PREDICTED FOR POWER BLOCK 2, HINES ENERGY COMPLEX, AT THE PSD
CLASS I AREA OF THE CHASSAHOWITZKA NWA

HOUR	July 4	(185)*	August	16 (228)	Novemb	er (332)*
ENDING	RH(%)	f(RH)	RH(%)	f(RH)	RH(%)	f(RH)
0	90	4.7	87	3.8	97	15.1
1	82	3.0	90	4.7	97	15.1
2	85	3.4	94	8.4	97	15.1
3	87	3.	94	8.4	100	21.4
4	90	4.7	94	8.4	97	15.1
5	87	3.8	94	8.4	100	21.4
6	93	7.0	94	8.4	97	15.1
7	85	3.4	88	4.0	100	21.4
8	74	2.1	82	3.0	97	15.1
9	69	1.9	77	2.4	91	5.3
10	67	1.7	68	1.8	82	3.0
11	61 [.]	1.5	59	1.4	77	2.4
12	55	1.3	52	1.3	69	1.9
13	52	1.3	52	1.3	69	1.9
14	42	1.1	49	1.2	67	1.7
15	46	1.2	49	1.2	65	1.7
16	52	1.3	47	1.2	67	1.7
17	61	1.5	50	1.2	74	2.1
18	67	1.7	74	2.1	82	3.0
19	72	2.0	82	3.0	87	3.8
20	72	2.0	74	2.1	90	4.7
21	74	2.1	77	2.4	90	4.7
22	79	2.6	85	3.4	94	8.4
23	82	3.0	85	3.4	97	15.1
Average		2.59	· · · · · · · · · · · · · · · · · · ·	3.62		9.01

Note: RH = relative humidity; f(RH) = relative humidity factor

^a Hourly relative humidity data for 1990 from the National Weather Service station at the Tampa International Airport in Tampa, Florida. Julian day in parenthesis.

TABLE 8-3

SUMMARY OF THE REFINED REGIONAL HAZE ANALYSES FOR POWER BLOCK 2'S IMPACTS PREDICTED AT THE PSD CLASS I AREA OF THE CHASSAHOWITZKA NWA

Parameter.	Units	Service and the service of the service of	Maximum Co	oncentrations Project
		July 4 (185)	August 16 (228)	November 28 2 (332)
Maximum Predicted Concentration	μg/m³			
SO₄		0.0190	0.0395	0.0157
NO ₃		0.0383	0.0134	0.0285
PM ₁₀		0.0988	0.0926	0.124
Computer Concentrations	µg/m³			
(NH ₄) ₂ SO ₄		0.0262	0.0543	0.0216
NH₄NO₃		0.0494	0.0173	0.0367
Average Relative Humidity Factor ^a Background Visual Range (Vr) ^b Background Extinction Coefficient (b _{ext})	km ⁻¹	2.59 65 0.0602	3.62 65 0.0602	9.01 65 0.0602
Source Extinction Coefficients (bexts)	km ⁻¹			
(NH ₄) ₂ SO ₄		0.000203	0.000590	0.000584
NH₄NO₃		0.000384	0.000188	0.000992
PM ₁₀		0.000297	0.000278	0.000372
Total bexts		0.000883	0.001056	0.001948
Deciview Change		0.146	0.174	0.319
Percent Change (%)		1.46	1.74	3.19
Allowable Criteria (%)		5.0	5.0	5.0

Computed from relative humidity data measured in 1990 at the National Weather Service station at the Tampa International Airport, Florida

^b Provided by U.S. Fish and Wildlife Service

9.0

REFERENCES

- Allaway, W. H. 1968. Agronomic Controls over the Environmental Cycling of Trace Elements. In: Norman, A. G. (ed.). Advances in Agronomy. Vol. 20, Academic Press, New York.
- Aller, A. Javier, J. Luis Bernal, M. Jesus del Nozal, and Luis De ban. 1990. Effects of Selected Trace Elements in Plant Growth. J Sci Food Agric 51:447-479.
- Barrett, T. W. and H. M. Benedict. 1970. Sulfur Dioxide. <u>In</u>: Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas. Jackobsen, J. S. and A. C. Hill (eds.). Air Pollution Control Association. Pittsburgh, Pennsylvania.
- Bazzay, F. A., G. L. Rolfe, and R. W. Carlson. 1974. Effects of Cadmium on Photosynthesis and Transpiration of Excised Leaves of Corn and Sunflower. Physiologic Plantarum. 32:373-376.
- Bell, D. E. and W. H. Rickard. 1974. Environmental Impact Monitoring of Nuclear Power Plants. Part 7 - Terrestrial Ecology. Battelle Pacific Northwest Laboratories. Richland, Washington.
- Black & Veatch. 1992. Technical Data on Emissions in support of FPC Polk County Site Project. Kansas City, Missouri.
- Boericke, R. R. 1990. Emission Controls and Costs for Gas Turbine Applications. <u>In</u>: 34th General Electric Turbine State-of-the-Art Technology Seminar for Architect-Engineers and Engineer Constructors.
- Bowen, H.J.M. 1966. Trace Elements in Biochemistry. Academic Press, New York.

- Chapman, H.D. (ed) 1966. Diagnostic Criteria for Plants and Soils. University of California, Riverside. Division of Agricultural Sciences.
- Chappelka, A.H., B.I. Chevone, and T.E. Burk. 1988. Growth Response of Green and White Ash Seedlings to Ozone, Sulfur Dioxide and Simulated Acid Rain. Forest Science 34:1016-1029.
- Davis, Donald D., and John M. Shelly. 1992. Growth Response of Four Species of Eastern Hardwood Tree Seedlings Exposed to Ozone, Acidic Precipitation and Sulfur Dioxide. J. Air Waste Management Assoc 42:309-311.
- deSteiguer, J.E., John M. Pye, and Carolyn S. Love. 1990. Air Pollution Damage to U.S. Forests. A Survey of Perceptions and Estimates by Scientists. Journal of Forestry 17-22.
- Dvorak, A. J. and E. D. Pentecost, et al. 1977. Assessment of the Health and Environmental Effects of Power Generation in the Midwest. Vol. II, Ecological Effects (Draft Report) Argonne National Laboratory. Argonne, Illinois. As cited in FWS, 1978.
- Edgerton, E.S. and T.F. Lavery. 1990. Wet and Dry Deposition Across the Southeastern United States. In: Proceeding of the Florida Acidic Deposition Conference, Catis E. Watkins, ed. Tampa, Florida.
- EPA (U.S. Environmental Protection Agency). 1991. New Source Review (NSR) Program
 Transition Guidance. Memorandum from John S. Seitz, Director, Office of Air
 Quality Planning and Standards, Research Triangle Park, NC. March 11.
- EPA. 1990. BACT/LAER Clearinghouse A Compilation of Control Technology Determinations. EPA 450/3-90-015b. Prepared for the Office of Air Quality by PEI Associates Inc., Cincinnati, Ohio.

- EPA. 1990b. New Source Review Workshop Manual (Draft). Office of Air Quality Planning and Standards. October.
- EPA. 1990c. "Top Down" Best Available Control Technology Guidance Document (Draft).

 Office of Air Quality Planning and Standards. March 15.
- EPA. 1988. Toxic Air Pollutant Emission Factors A Compilation for Selected Air Toxic Compounds and Sources. EPA-450/2-88-006a. Prepared for the EPA by Radian Corporation. Research Triangle Park, North Carolina.
- EPA. 1988a. Compilation of Air Pollutant Emission Factors, Volume I: Stationary Point and Area Sources, AP-42, Supplement B. September.
- EPA. 1998 Industrial Source Complex (ISC) Dispersion Model User's Guide Volumes I and II.
- EPA. 1985. BACT/LAER Clearinghouse A Compilation of Control Technology

 Determinations. EPA 450/3-85-016b. Prepared for the Office of Air Quality by

 PEI Associates Inc., Cincinnati, Ohio.
- EPA. 1985a. Final Stack Height Regulation. Federal Register, Volume 50. Page 27892. July 8.
- EPA. 1976. Diagnosing Vegetation Injury Caused by Air Pollution. Developed for EPA by Applied Science Associates, Inc., EPA Contract No. 68-02-1344.
- EPA. 1973. Air Pollution Engineering Manual (AP-40). Research Triangle Park, NC.
- ESE (Environmental Science & Engineering). 1989. Florida Acid Deposition Monitoring
 Program 1988 Summary Report. PB91-100305. Gainesville, Florida.
- ESE. 1988. Florida Acid Deposition Monitoring Program 1987 Summary Report. PB89-152532. Gainesville, Florida.

PSD Permit Application

- ESE. 1987. Florida Acid Deposition Study: Five Year Data Summary; PB88-158779. Gainesville, Florida.
- ESE. 1986. Florida Acid Deposits Study, Final Report, A Synthesis of the Florida Acid Deposition Study; PB86-243359. Gainesville, Florida.
- Federation of American Societies for Experimental Biology. 1973. Effects of Low Concentrations of Sulfur Concentrations of Sulfur Dioxide on Vascular Plants. (Table). Biology Data Book, pp. 995-1015.
- FDEP (Florida Department of Environmental Protection). 1998. Air Quality Database.
- FPC (Florida Power Corporation). 1992. Site Certification Application for Engineering and Licensing of the Polk County Site.
- Foy, C.D. 1964. Toxic Factors in Acid Soils of the Southwestern United States as Related to the Response of Alfalfa to Lime. U.S. Dept. Agric. Prod. Res. Report 80.
- Gough, L.P., H.T. Schacklette, and A.A. Case. 1979. Element Concentrations Toxic to Plants, Animals, and Man. Geological Survey Bulletin 1466, U.S. Department of Interior, Washington, D.C.
- Gough, P., and H.T. Shacklette. 1976. Toxicity of Selected Elements to Plants,
 Animals, and Man An Outline. In: Geochemical Survey of the Western Energy
 Regions, Third Annual Progress Report, July. Appendix IV. U.S. Dept. of Interior.
 Geological Survey.
- Hart, Robin, Patricia G. Webb, R. Hilton Biggs, and Kenneth M. Portier. 1988. The Use of Lichen Fumigation Studies to Evaluate the Effects on New Emission Sources or Class I Areas. J. Air Pollut Control Assoc. 38:144-147.

- Heggestad, H. E. and W. W. Heck. 1971. Nature, Extent, and Variations of Plant Responses to Air Pollutants. Advances in Agronomy 23:111-145.
- Hogsett, W.E., M. Plocher, V. Wildman, D.T. Tingey, and J.P. Bennett. 1985. Growth Responses of Two Varieties of Slash Pine Seedlings to Chronic Ozone Exposures. Canada Journal of Botany 63:2369-2376.
- Huber, A. H. and W. H. Snyder. 1976. Building Wake Effects on Short Stack Effluents.

 Preprint Volume for the Third Symposium on Atmospheric Diffusion and Air

 Quality. American Meteorological Society, pp 235-242.
- Hyde, Adam G., Lloyd Law, Jr., Robert L. Weatherspoon, Melvin D. Cheyney, and Joseph J. Echenrode. 1977. Soil Survey of Hernando County, Florida. U.S. Department of Agriculture Soil Conservation Service.
- Jacobsen, J.S. 1977. Sulfur Dioxide Air Quality Standards for the Prevention of Losses to Agriculture and Forestry in California. Report to the State of California Air Resources Board (CARB). The Boyce Thompson Institute. Yonkers, New York.
- Jensen, Keith F. and Leon S. Dochinger. 1989. Response of Eastern Hardwood Species to Ozone, Sulfur Dioxide and Acid Precipitation. Journal of the Air Pollutant Control Assoc 39:852-855.
- Jones, H.C., D. Weber, and D. Balsillie. 1974. Acceptable Limits for Air Pollution Dosages and Vegetation Effects: Sulfur Dioxide. Presented at the 65th Annual Meeting of the Air Pollution Control Association. Denver, Colorado. Paper No. 74-225.
- Kamprath, E. J. 1972. Possible Benefits from Sulfur in the Atmosphere. Combustion. 16-17.

- Kothny, E.L. 1973. Trace Elements in the Environment. American Chemical Society. Washington, D.C.
- Krause, G.H.M. and H. Kaiser. 1977. Plant Response to Heavy Metal and Sulfur Dioxide. Environmental Pollution 12:63-71.
- Ledbetter, M.C., P.W. Zimmerman, and A.E. Hitchcock. 1959. The Histopathological Effects of Ozone on Plant Foliage. Contrib. Boyce Thompson Inst. 20:275-282.
- Linzon, S.N. 1973. Sulfur Dioxide Air Quality Standards for Vegetation. Presented at the 60th Annual Meeting of the Air Pollution Control Association. Chicago, Illinois. Paper No. 73-107.
- Lisk, D. 1972. Trace Metals in Soils, Plants, and Animals. Advances in Agronomy 24:267-325.
- Loomis, R.C. and W.H. Padgett. 1973. Air Pollution and Trees in the East. U.S. Department of Agriculture, Forest Service.
- MacLean, David C., Delbert C. McCune, Leonard H. Weinstein, Richard H. Maudl, and George N. Woodruff. 1968. Effects of Acute Hydrogen Fluoride and Nitrogen Dioxide Exposures on Citrus and Ornamental Plants of Central Florida.

 Environmental Science and Technology 2:444-449.
- Matsushima, J. and R.F. Brewer. 1972. Influence of Sulfur Dioxide and Hydrogen Fluoride as a Mix or Reciprocal Exposure on Citrus Growth and Development. J. Air Pollution Control Assoc 22:710-713.
- Moore/Bowers Group. 1992. Polk County Site, Socioeconomic and Demographic Support Data. Tampa, Florida.

- NAPAP. 1991. The U.S. National Acid Precipitation Assessment Program 1990

 Integrated Assessment Report. The NAPAP Office of the Director. Washington,
 D.C.
- NAPAP. 1991a. Acid Deposition: State of the Science and Technology. Summary

 Report of the U.S. National Acid Precipitation Assessment Program. Office of the

 Director. Washington, D.C.
- NAS (National Academy of Science). 1974. Committee on Biological Effects of Atmospheric Pollutants. Medical and Biological Effects of Environmental Pollutants Chromium. NAS. Washington, D.C.
- Newman, James R. and R.K. Schreiber. 1988. Air Pollution and Wildlife Toxicology: An Overlooked Problem. Environmental Toxicology and Chemistry 7:381-390.
- Newman, James R. 1980. Effects of Air Emissions on Wildlife Resources U.S. Fish and Wildlife Report FWS/OBS-80/40.1. U.S. Fish and Wildlife Service. Biological Services Program, National Power Plant Team. 32 pp.
- North Carolina DNR (Department of Natural Resources and Community Development).

 1985. A Screening Method for PSD. Letter from Mr. Eldewins Haynes, North
 Carolina DNR to Mr. Lewis Nagler, U.S. Environmental Protection Agency,
 Region IV. July 22.
- Okano, K., T. Machicla, and T. Toxsuka. 1989. Differences in Ability of NO₂ Absorption in Various Broad-leaved Tree Species. Environmental Pollution 58:1-17.
- Olsen, R. A. 1957. Absorption of Sulfur Dioxide from the Atmosphere by Cotton Plants. Soil Science 84:107-111.

- Pilny, Paul E., Charles T. Grantham, Joseph N. Seluister, and Daniel L. Stanley. 1988.

 Soil Survey of Citrus County Florida. U.S. Department of Agriculture Soil

 Conservation Service.
- Radian Corporation. 1991. Gas Turbine Selective Catalytic Reduction Procurement Guidelines. In: Electric Power Research Institute (EPRI) Publication 65-7254.
- Ragput, C.B.S., D.P. Ormrod, and W.D. Evans. 1977. The Resistance of Strawberry to Ozone and Sulfur Dioxide. Plant Disease Reporter 61:222-225.
- Reuther, W., P.F. Smith, and A. W. Specht. 1949. A Comparison of the Mineral Composition of Valencia Orange Leaves from the Major Producing Areas of the U.S. Proc. Fla. State Hortic. Soc. 62:38-45.
- Shackelette, Hansford T. and Josephine G. Boerngen. 1984. Element Concentrations in Soils and Other Surficial Materials of the Conterminous United States. U.S. Geological Survey Professional Paper 1270. U.S. Geological Survey. Washington, D.C. 105 pp.
- Shanklin, J. and T.T. Kozlowski. 1985. Effect of Flooding of Soil on Growth and Subsequent Responses of <u>Taxodium distichum</u> Seedlings to SO₂. Environmental Pollution 38:199-212.
- Shorr, Marvin M. 1991. NO_x Control for Gas Turbines: Regulations and Technology. The Cogeneration Journal 6(2):20-52.
- Sucoff, E. and W. Baily. 1971. Relative Tolerance of Woody Plants Grown in Minnesota to Five Air Pollutants Air Compilation of Ratings. Minnesota Forestry Research Notes. No. 227.

- Taylor, O.C. and D.C. MacLean. 1970. Nitrogen Oxides and the Peroxyacyl Nitrates. In:

 Recognition of Air Pollution Injury to Vegetation: A Pictorial Atlas. Jacobsen, J.S. and A.C. Hill (eds). Air Pollution control Association. Pittsburgh, Pennsylvania.
- Terman, G.L. 1978. Atmospheric Sulphur The Agronomic Aspects. Technical Bulletin Number 23. The Sulphur Institute. Washington, D.C.
- Thompson, C.R., E.G. Hensel, G. Kats, and O.C. Taylor. 1970. Effects of Continuous Exposure of Navel Oranges to Nitrogen Dioxide. Atmospheric Erosion 4:349-355.
- Thompson, C. Ray, and O.C. Taylor. 1969. Effects of Air Pollutants on Growth, Leaf Drop, Fruit Drop and Yield of Citrus Trees. Environmental Science and Technology 3:934-940.
- Thompson, C. Ray, O.C. Taylor, M.D. Thomas, and J.O. Ivie. 1967. Effects of Air Pollutants on Apparent Photosynthesis and Water Use by Citrus Trees.

 Environmental Science and Technology 1:644-650.
- Thompson, C.R., D.T. Tingey, and R.A. Reinert. 1974. Acceptable Limits for Air Pollution Dosages and Vegetation Effects: Nitrogen Dioxide. Presented at 67th Annual Meeting of Air Pollution Control Association. Denver, Colorado. Paper No. 74-227.
- Tingey, D.T., R.A. Reinert, J.A. Dunning, and W.W. Heck. 1971. Vegetation Injury from the Interaction of Nitrogen Dioxide and Sulfur Dioxide. Phytopathology 61:1506-1511.
- Tingey, D.T., R.A. Reinert, C. Wickliff, and W.W. Heck. 1973a. Chronic Ozone and/or Sulfur Dioxide Exposures Affect the Early Vegetation Growth of Soybean.

 Canadian Journal of Plant Science 53:875-879.

- Tingey, D.T., R.A. Reinert, J.A. Dunning, and W.W. Heck. 1973b. Foliar Injury Responses of Eleven Plant Species to Ozone/Sulfur Dioxide Mixtures.

 Atmospheric Environment 7:201-208.
- Treshow, M. 1970. Ozone Damage to Plants. Environmental Pollution 1:155-161.
- Turner, D. B. 1970. Workbook of Atmospheric Dispersion Estimates. U.S. Environmental Protection Agency. AP-26.
- U.S. Fish and Wildlife Service. 1996. Air Quality and Air Quality Related Values in Chassahowitzka National Wildlife Refuge and Wilderness Area. Department of the Interior. Denver, Colorado.
- Valkovic, V. 1975. Trace Element Analysis. Halsted Press. New York. 229 pp.
- White, K.L., A.C. Hill, and J.H. Bennett. 1974. Synergistic Inhibition of Apparent Photosynthesis Rate of Alfalfa by Combinations of Sulfur Dioxide and Nitrogen Dioxide. Environmental Science and Technology 6:574-576.
- Woodman, James N. 1987. Pollution-induced Injury in North American Forests: Facts and Suspicions. Tree Physiology 3:1-5.
- Zeevaert, A.J. 1976. Some Effects of Fumigating Plants for Short Periods with NO₂. Environmental Pollution 11:97-107.

APPENDIX A

Table A-1. Design Information and Stack Parameters for the FPC Hines Energy Center Stemens-Westinghouse 501F, Dry Low NO_X Combustor, Natural Gas, 100 % Load

		Ambient/Co	ompressor Inlet Temp	perature
Parameter	20 °F	59 °F	72°F	90°F
Combustion Turbine Performance			-	
Evaporative cooler status/ efficiency (%)	Off	Off	Off	Off
Ambient Relative Humidity (%)	60	60	60	55
Gross power output (MW) - Estimated	200.88	181.74	174.22	157.91
Gross heat rate (Btu/kWh, LHV) - Estimated	8,835	9,100	9,180	9,510
(Btu/kWh, HHV)	9,915	10,085	10,195	10,550
Heat Input (MMBtu/hr, LHV)- calculated	1,775	1,654	1,5 99	1,502
- provided	1,813	1,649	1,596	1,537
(MMBtu/hr, HHV) - calculated	2,012	1,830	1 <i>,7</i> 71	1,705
(HHV/LHV)	1.110	1.110	1.110	1.110
Fuel heating value (Btu/Ib, LHV)	21,039	21,039	21,039	21,039
(Btu/lb, HHV)	23,345	23,345	23,345	23,345
(HIHV/LHV)	1.110	1.110	1.110	1.110
CT Exhaust Flow				
Mass Flow (lb/hr)	3,885,997	3,624,720	3,504,549	3,353,000
Temperature (°F)	1,086	1,107	1,118	1,148
Maisture (% Vol.)	7.77	8.39	9.45	11.64
Oxygen (% Vol.)	12.52	12.53	12.32	11.99
Molecular Weight - calculated	28.46	28.39	28.27	28.04
- provided	28.46	28.39	28.27	28.03
- province				
Volume Flow (acfm)= [(Mass Flow (lb/hr) x 1,545 x	(Temp. CF)+ 460°F)1/	(Molecular weigh	x 2116.8] / 60 min/h	•
Mass flow (lb/hr)	3,885,997	3,624,720	3,504,549	3,353,000
Temperature (°F)	1,086	1,107	1,118	1,148
Molecular weight	28.46	28.39	28.27	28.04
Volume flow (acfm)- calculated	2,567,660	2,433,641	2,379,291	2,339,045
- provided		4,	- ,, -	
Frances				
Fuel Usage				
Fuel usage (lb/hr)= Heat Input (MMBtu/hr) x 1,000,0	00 Btu/MMBtu (Fuel)	Heat Content, Btu/	Ib (LHV))	
Heat input (MMBtwhr, LHV)	1,813	1,649	1,596	1,537
Heat content (Btw/lb, LHV)	21,039	21,039	21,039	
Fuel usage (lb/hr)- calculated			41,007	21,039
	86,180	78,380	75,850	-
	•		-	73,050
- provided	86,180	78,380	75,850 75,850	73,050 73,050
	86,180	78,380	75,850	21,039 73,050 73,050 920
- provided	86,180 86,180	78,380 78,380	75,850 75,850	73,050 73,050
- provided Heat content (Btu/cf, LHV)- assumed	86,180 86,180 920	78,380 78,380 920	75,850 75,850 920	73,050 73,050 920 0.0437
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (B/ft ²)	86,180 86,180 920 0.0437	78,380 78,380 920 0.0437	75,850 75,850 920 0.0437	73,050 73,050 920
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (B/ft) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG	86,180 86,180 920 0.0437 1,970,805	78,380 78,380 920 0.0437 1,792,431	75,850 75,850 920 0.0437 1,734,574	73,050 73,050 920 0.0437 1,670,542
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (Ib/ft ²) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft)	86,180 86,180 920 0.0437 1,970,805	78,380 78,380 920 0.0437 1,792,431	75,850 75,850 920 0.0437 1,734,574	73,050 73,050 920 0,0437 1,670,542
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (Ib/ft ²) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft)	86,180 86,180 920 0.0437 1,970,805	78,380 78,380 920 0.0437 1,792,431	75,850 75,850 920 0.0437 1,734,574	73,050 73,050 920 0,0437 1,670,542 125 19.0
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (Ib/ft') Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (°F)	86,180 86,180 920 0.0437 1,970,805	78,380 78,380 920 0.0437 1,792,431 125 19.0 190	75,850 75,850 920 0.0437 1,734,574 125 19.0 190	73,050 73,050 920 0,0437 1,670,542 125 19.0
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (Ib/ft') Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (*F) HRSG- Volume flow (acfm)= CT Volume flow (acfm)	86,180 86,180 920 0.0437 1,970,805 19.0 190) x [(HRSG Temp. (**)	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT T	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (°F) + 460)]	73,050 73,050 920 0.0437 1,670,542 125 19.0 190
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (Ib/ft') Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (F) HRSG- Volume flow (acfm)= CT Volume flow (acfm CT Volume flow (acfm)	86,180 86,180 920 0.0437 1,970,805 125 19.0 190 2,567,660	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT Tr 2,433,641	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (*F) + 460)] 2,379,291	73,050 73,050 920 0,0437 1,670,542 125 19.0 190
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (lb/ft) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (F) HRSG- Volume flow (acfm)= CT Volume flow (acfm CT Volume flow (acfm) CT Temperature (F)	86,180 86,180 920 0.0437 1,970,805 125 19.0 190 0) x [(HRSG Temp. (**) 2,567,660 1,086	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT T 2,433,641 1,107	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (°F) + 460)] 2,379,291 1,118	73,050 73,050 920 0.0437 1,670,542 125 19.0 190 2,339,045 1,148
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (lb/ft) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (F) HRSG- Volume flow (acfm) = CT Volume flow (acfm CT Volume flow (acfm) CT Temperature (F) HRSG Temperature (F)	86,180 86,180 920 0.0437 1,970,805 125 19.0 190 1 x [(HRSG Temp. (**) 2,567,660 1,086 190	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT T 2,433,641 1,107 190	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (°F) + 460)] 2,379,291 1,118 190	73,050 73,050 920 0.0437 1,670,542 125 19.0 190 2,339,045 1,148 190
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (lb/ft) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (F) HRSG- Volume flow (acfm) = CT Volume flow (acfm CT Volume flow (acfm) CT Temperature (F)	86,180 86,180 920 0.0437 1,970,805 125 19.0 190) x [(HRSG Temp. (**) 2,567,660 1,086	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT T 2,433,641 1,107	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (°F) + 460)] 2,379,291 1,118	73,050 73,050 920 0,0437 1,670,542
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (lb/ft) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (F) HRSG- Volume flow (acfm) = CT Volume flow (acfm CT Volume flow (acfm) CT Temperature (F) HRSG Temperature (F)	86,180 86,180 920 0.0437 1,970,805 1,970,805 1,90 1,90 1,086 1,086 1,079,547 (4) x 3.14159] / 60 sec/	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT Tr 2,433,641 1,107 190 1,009,487	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (°F) + 460)] 2,379,291 1,118 190 980,063	73,050 73,050 920 0,0437 1,670,542 125 19,0 190 2,339,045 1,148 190 945,509
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (Bt/ft) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (°F) HRSG- Volume flow (acfm) = CT Volume flow (acfm CT Volume flow (acfm) CT Temperature (°F) HRSG Temperature (°F) HRSG Volume flow (acfm)	86,180 86,180 920 0.0437 1,970,805 1,970,805 19.0 19.0 1,086 190 1,079,547 /4) x 3.14159] / 60 sec/	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT T 2,433,641 1,107 190 1,009,487	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (*F) + 460)] 2,379,291 1,118 190 980,063	73,050 73,050 920 0,0437 1,670,542 125 19,0 190 2,339,045 1,148 190 945,509
- provided Heat content (Btu/cf, LHV)- assumed Fuel density (lb/fr) Fuel usage (cf/hr)- calculated Stack and Exit Gas Conditions- HRSG Stack height (ft) Diameter (ft) Temperature (°F) HRSG- Volume flow (acfm) = CT Volume flow (acfm CT Volume flow (acfm) CT Temperature (°F) HRSG Temperature (°F) HRSG Volume flow (acfm) Velocity (ft/sec) = Volume flow (acfm) / [((diameter)²)]	86,180 86,180 920 0.0437 1,970,805 1,970,805 1,90 1,90 1,086 1,086 1,079,547 (4) x 3.14159] / 60 sec/	78,380 78,380 920 0.0437 1,792,431 125 19.0 190 F) + 460 K) / (CT Tr 2,433,641 1,107 190 1,009,487	75,850 75,850 920 0.0437 1,734,574 125 19.0 190 emp. (°F) + 460)] 2,379,291 1,118 190 980,063	73,050 73,050 920 0.0437 1,670,542 125 19.0 190 2,339,045 1,148 190

Source: Siemens-Westinghouse, 2000

Note: Universal gas constant = 1,545 ft-lb(force)*R; atmospheric pressure = 2,116.8 lb(force)*ft2

Table A-2 Mazznum Exussions for Criteria and Other Regulated Pollutants for the FPC Hanse Energy Center Summers-Westinghouse SOTF, Dry Low NO₂ Combustor, Netural Cas, 100 % Load

Farameter	20 °F	Ambient 59 Tr	Com press or Inlet T 72 F	emperatura 90/F
Hours of Operation	8,760	8,760	8,760	\$76
Personalism from CT and SCR				
articulate from CT = Emission rate (Brhr) from CT in Besis, Brhr - provided ⁴	enufacturer (fron 73	+ and back-hulf) 6.8	6.5	6.3
articulate from SCR = Sulfur trioxide (formed from o Particulate from conversion of SO ₂ = SO ₂ emissions (i	onversion of 50 ₂ lister) x Conversio) converts to equan	oruum suifata (#PM SOyTo SO; x	110)
Conversion of SO ₂ emission rate (B/hr)- calculated	5O, x № 5O, to (? 5.6	√ Η,),5Ο, π(ΝΗ,), 5,1	,5C2 de \$C3, 3.0	4.5
Conversion (%) from 5O ₂ to SO ₂	10	10	10	10
MW 50-y 50-y (80-64)	1.3	13	13	1.3
Commencion (%) from 5O ₃ to (NYL) ₂ (5O ₄) NW (NYL) ₃ 5O ₂ 5O ₃ (132/80)	100 1.7	100 1.7	100 1.7	100 1.2
Particulate (byter)- calculated	1.16	1.06	1.02	0.96
articulate (Bufur) from CT + SCR	85	7.9	7.5 32.9	7.2 31.5
(TPY) ikur Decede (b/hr)= Natural gas (ct/hr) z sulfur cor	37.1 January (200 eth z 1	34.4 26/7000 gr z (26.54		34.
uel uer (ct/hr)	1,970,805	1,792.431	1,734,574	1,6770,1
ulfur content (grains/ 100 cf) - assumed *	1	1	1	
5C ₂ /b \$ (64/32)	2	2	.2	
mission rate (Brhr)- calculated (Brhr)- provided (1 gp/100 cf)	5.6 5.5	5.1 3.1	5.0 5.0	4.2 4.3
(TPY)	24.7	22.4	21.7	20.5
trogen Oxides (Mrhr) = NOs(ppm) x ([20,9 x (1 - Mc 46 (mols. wgt NOx) x 60 mav/lw / [1545 x				scfan) x
mis, ppmed @15% O ₂ **	3.5	15	35	3.
Aciabara (%)	7.77	8.39	9,45	1154
hygen (%) •	1252	1253 2433441	12.32 2.379.291	11.99 2,339 ,04
okume Flow (acim) emperature (°F)	2,567,660 1,086	1,107	1,118	1,14
minion rate (B/hr)- calculated	25.2	23.1	223	21.1
(Brite)- provided	25.0	23.1	223	21.3 92.4
(TPY) [Ratio lb/hr provided/cslculeted]	109.5 0,993	101.2 1.002	97.7 0.998	1.003
urbon Monazide (Brhr) = CO(ppm) x { 20.9 x (1 - Mo 28 (mole: wgt CO) x 60 sniwhr/ 1545 x (1	inture(%)/100) -	О куде п(%)) ж 211	6.8 fb/ft2 x Volume i	flow (action) x
Spinor will column applied to a f	C: marbit r) + ec	(TT) = 1,000,000 (a	dj. for ppm)}	
lank, ppowd-calculated	12.4	12.2	124	
min, pprovid-calculated min, pprovid @ 15% O2-calculated	12.4 10	1 <u>2.2</u> 10	12.4	10
inia, ppgwd-calculated anis, ppgwd @ 15% OZ-calculated - provided *	12.4	12.2	124	10 10 11.6-
lesis, ppowd-calculated lesis, ppowd @ 15% O2-calculated - provided * forsiture (%) >xygen (%)	12.4 10 10 7.77 12.52	12.2 10 10 8.39 12.53	12.4 10 10 9.45 12.32	10 10 11.6- 11.9
ania, ppgavd-calculated ania, ppgavd-calculated provided ' provided ' provided ' provided ' provided by the state of the s	12.4 10 10 7.77 12.52 2,567,660	12.2 10 10 8.39 12.53 2,433,441	12.4 10 10 9.45	10 11.6 11.9 2,339,04
issis, ppowd-calculated see. ppowd @ 15% Ob-calculated - provided * Swygen (%) Odume Flow (ecfm) temperature (F)	12.4 10 10 7.77 12.52 2,567,660 1,086 43.8	12.2 10 10 12.53 2433.441 1,107 40.1	12.4 10 10 9.45 12.32 2,379,291 1,118 38.9	10 11.6- 11.9- 2,339,04 1,144 363
main, ppenvd-calculated min, ppenvd @ 15% O2-calculated provided ' provided	12.4 10 10 7.77 12.52 2,567,660 1,066 43.8 46.0	12.2 10 10 239 12.53 2,433,641 1,107 40.1 42.0	12.4 10 9.45 12.32 2.379.291 1.218 38.9 41.0	10 11.6 11.9 2,339,04 1,14 363 37.0
leais, ppowd - calculated esis, ppowd @ 15% O2- calculated - provided * forsture (%) Sygen (%) folume Flow (ecfm) temperature (*) Interiorn rise (brfur)- calculated from given ppowd	12.4 10 10 7.77 12.52 2,567,660 1,086 43.8	12.2 10 10 12.53 2433.441 1,107 40.1	12.4 10 10 9.45 12.32 2,379,291 1,118 38.9	10 11.6 11.9 2,339,0c 1,14 36.1 37.0 162.1
Sais, ppowd-calculated sees, ppowd @ 15% C2- calculated provided ' foreiture (%) Drygen (%) foliams Flow (acfm) femperature (F) Emission rase (Erfu)- calculated from given ppowd (Erfu)- provided (TPY) [Rates Evfu provided/calculated]	12.4 10 10 7.77 12.52 2,567,660 1,086 43.8 46.0 201.5 1,051	12.2 10 10 3.99 12.53 2,433.641 1,407 40.1 42.0 184.0 1,048	12.4 10 10 9.45 12.32 2.379.291 1.118 38.9 41.0 179.6 1.055	10 11.6 11.9 2,339,0c 1,14 36.1 37.0 162.1
main, ppenvd-calculated asis, ppenvd @ 15% O2-calculated provided provided (%) bygen (%) consense (%) (%) (%) (%) (%) (%) (%) (%)	12.4 10 10 7.77 12.52 2.567,660 1.056 43.8 46.0 201.5 1.051 114.8 larft2 x Volut. (CT immp.(*F) +	12.3 10 10 3.39 12.53 2.433.441 1,407 40.1 184.0 1.045 1.045 1.045 1.045 1.045	12.4 10 10 9.45 12.72 2.77-23 1.118 38.9 41.0 179.6 1.055 (adj. for ppm)]	10 11.5 11.9 2.33996 1,14 36:377, 162, 1.00
leain, ppowd-calculated see. ppowd @ 15% O2-calculated provided * foristure (%) Prygen (%) folume Flow (acfm) fompowhers (F) Emission rase (Brfut)-calculated from given ppenvd (TPY) [Rano Brfut provided/calculated] OCs (Brfut)= VOC(ppm) x [1 - Moisture(%) 100] x 2 16 (mots. wgt as methans) x 60 min/br / [1545 x 100] leain, ppenvd (m CFU-calculated leain, ppenvd (m CFU-calculated leain, ppenvd (m CFU-calculated leain, ppenvd (m CFU-calculated	12.4 10 10 7.77 12.52 2.567,660 1,086 43.8 46.0 201.5 1,051 114.5 Erft2 x Volu. (CT immp.*F) +	12.2 10 10 8.39 12.53 24.33.641 1,107 40.1 42.0 184.0 1.048 1	12.4 10 9.45 12.32 23.79.291 1.118 38.9 41.0 179.6 1.055 (adi, for ppm)]	10 11.5 11.5 2.339pb 1,34 36,1 37,1 162,2 1,007
inia, ppervd-calculated enia, ppervd @ 15% O2-calculated provided provided forishere (%) Exygen (%) Foliams Flow (ecfm) forishere (F) Inimials rate (Etht)-calculated from given ppervd (Etht)-provided (EP) [Rate Etht)-provided/calculated] OCs (Etht)-provided/calculated) OCs (Etht)-provided/calculated) if (mols. wgt as sethane) x 60 min/hr / [1545 x tams, ppervd @ 15% Oy calculated main, ppervd @ 15% Oy calculated asso, ppervd @ 15% Oy calculated provided "	12.4 10 10 7.77 12.52 2.567,660 1.056 43.8 46.0 201.5 1.051 114.8 larft2 x Volut. (CT immp.(*F) +	12.3 10 10 3.39 12.53 2.433.441 1,407 40.1 184.0 1.045 1.045 1.045 1.045 1.045	12.4 10 10 9.45 12.72 2.77-23 1.118 38.9 41.0 179.6 1.055 (adj. for ppm)]	10 11.5 11.9 2.339,04 1,14 36: 37: 162 1.00 FNAME? FNAME?
Sain, ppsavd-calculated lesis, ppsavd-calculated - provided - propert - provided - provided - provided - propert - provided -	12.4 10 10 10 7.77 12.52 2,567,660 1,086 45.8 46.0 201.5 116.8 larfi2 x Volum ((CT lemp,***P) + #NAME: #NAM	12.2 10 10 1.59 12.53 24.33.41 1.J.07 42.0 184.0	12.4 10 10 10 9.45 12.72 2379.291 13.18 38.9 41.0 179.6 1.035 («di, for ppm)] PNAME? PNAME? PNAME? 9.45	11.0 11.6 11.9 2,339,04 1,14 36: 37: 162 1,00 ename? ename? ename?
Senie, pppsvd-calculated senie, pppsvd-calculated provided provided provided foristure (%) Drygen (%) foristure (%) Foregreen (%) foristure (P) Entimision retse (Erfur)-calculated from given ppenvd (Erfur)-provided (TPY) [Rates Erfur provided/calculated] OCc (Erfur)- VOC(ppm) x [1 - Moisture(%) 100] x 2 16 (seole, wgt as methane) x 60 min/hr / [1545 x Benie, ppenvd (m CFUr calculated leain, ppenvd @ 15% Or calculated leain, ppenvd @ 15% Or calculated hoisture (%) Drygen (%) (Oklume Flow (acfun)	12.4 10 10 17.77 12.52 2.567,660 1.056 43.8 46.0 201.5 1.051 116.5 lorf2 x Volution (CT temp.(T) +	12.3 10 10 1.9 12.53 2.433A41 1,407 40.1 184.0 184.0 1.045 40.0 10.45 10.45 10.45 40.0 10.45 10.4	12.4 10 10 10 9.45 12.72 2379.27 1.118 38.9 41.0 1776 1.055 (adi, for ppm)] PNAMET PNAMET PNAMET PNAMET 1.252 12.27 2.279.291	11.6 11.6 11.9 2.339,0 1.44 34.3 37.0 162.1 1.007 ***********************************
main, promod-calculated ends, promod @ 15% O2-calculated provided provided (%) brygent (%) foliame Flow (acfm) emperature (F) ministion rate (Ethyl)-calculated from given promod (Ethyl)-provided (TPY) [Bases Ethyl-provided/calculated] OCs (Ethyl-provided/calculated) OCs (Ethyl-provided/calculated) 16 (mols west as sethane) x 60 min/thr / [1545 x min, promod @ 15% Oy calculated enin, promod @ 15% Oy calculated provided (%) brygent (%) colourse Flow (acfm) energy-main (F)	12.4 10 10 10 7.77 12.52 2,567,660 1,086 45.8 46.0 201.5 116.8 larfi2 x Volum ((CT lemp,***P) + #NAME: #NAM	12.2 10 10 1.59 12.53 24.33.41 1.J.07 42.0 184.0	12.4 10 10 10 9.45 12.72 2379.291 13.18 38.9 41.0 179.6 1.035 («di, for ppm)] PNAME? PNAME? PNAME? 9.45	11.6 11.6 11.9 2.339,0 13.4 34.3 37. 162. 1.007 ***********************************
inia, ppeavd - calculated ania, ppeavd @ 15% O2- calculated provided ' forinture (%) Arrygen (%) (Anima Flow (acfm) (animation rate (first) - calculated from given ppeavd (Brity) provided (from given ppeavd (Brity) provided (calculated) OCs (Brity) = VOC(ppen) = [1 - Moisture(%) 100] = 2 16 (mole wegt an methane) = 60 min/ter / [1545 = 16] min, ppeavd (m CFi) - calculated provided ' foliated for (%) Arrivated ' foliated Flow (acfm) seepressure (F) (Brity) - calculated	12.4 10 10 10 7.77 12.52 2,567,660 1,086 43.8 46.0 201.5 1,051 116.8 Erft2 x Volut (ICT immp/T) + PNAME? PNAME? PNAME? 12.52 2,567,660 PNAME? PNAME? PNAME?	12.2 10 10 2.99 12.53 12.53 13.61 1,007 40.1 42.0 184.0 1.048 6007) × 1.000,000 PNAME? FNAME? FNAME? FNAME? FNAME? FNAME? FNAME? FNAME?	12.4 10 10 10 9.5 12.7 12.77 291 1.118 38.9 410 1794 1.055 PNAMET	11 114 115 115 116 116 116 116 116 116 116 116
lasis, ppeaved-calculated asis, ppeaved @ 15% O2- calculated provided foristure (%) foristure (%) foristure (%) foristure (F) inission rate (blrtu)- calculated from given ppeaved (Brtu)- provided (IPY) [Rato Brhc provided/calculated] OCs (Brhr)= VOC(ppea) x [1 - Moisture(%) 100] x 2 16 (sools, wgr as stethane) x 60 min/te/ [1545 x 16 min, ppeaved @ 15% O7 calculated lasis, ppeaved @ 15% O7 calculated lasis (%) foliater (%) Graphy (%) Gather Fore (acts) icespownture (F) icespownture (F)	12.4 10 10 17.77 12.52 2.567,660 1.056 43.8 46.0 201.5 1.051 116.5 Erf2 x Volume (CT temp.CF) + #NAME? #NAME? 7.77 12.52 2.567,660 1.086	12.2 10 10 10 1.9 12.53 12.53 2.433.441 1,107 40.1 18.0 18.0 18.0 18.0 18.0 18.0 18.0 1	12.4 10 10 10 9.45 12.72 2379.291 13.18 38.9 41.0 179.6 1.055 (adi, for ppm)] PNAMET PNAMET PNAMET 1.318 9.45 1.232 2379.291 13.18 PNAMET	11.6 11.6 11.9 2.339,0 13.4 34.3 37. 162. 1.007 ***********************************
Sain, ppsivd-calculated lesis, ppsivd-calculated provided provided provided provided provided provided provided formpressure (F) Emission rate (Entry)-calculated from given ppenvd (Entry)-provided (TPY) [Rates Entry provided/calculated] OCc (Entry)= VOC(ppm) x [1 - Moisture(%) 100] x 2 16 (mole wegt as methane) x 60 min/hr / [1545 x 2 Main, ppenvd (m Ct)/-calculated lesis, ppenvd @ 15% Oy-calculated provided ** Moisture (%) Polymer (%) Volume Flow (acts) Interpretated (F) Entission rate (Entry)-calculated (Entry)-provided (TPY) [Ratio Entry provided/calculated]	12.4 10 10 17.77 12.52 2.567,660 1.086 4.0.8 46.0 201.5 10.51 116.5 leyf2 x Volution (CT temp.(*F) + #NAMET 7.77 12.52 2.567,660 1.086 #NAMET #NAMET #NAMET	12.2 10 10 10 10 1.59 12.53 2.433.641 1.1,07 40.1 42.0 184.0	12.4 10 10 10 9.45 12.27 2379.391 13.18 38.9 41.0 1776 646i, for ppm)] 6NAMET 6NAMET 6NAMET 8NAMET 8NAMET 8NAMET 8NAMET	11.64 11.54 11.54 13.59,00 13.44 35.0 162,1 13.00 6NAME? 6
inia, ppervd - calculated ania, ppervd @ 15% O2- calculated provided provided forinture (%) (%) (%) (%) (wopershure (F) (mission rate (khrly- calculated from given ppervd ((FY) ((Rate) khrly- provided ((FY) ((Rate) khrly- provided/calculated) 16 (sools wgt = sethane) x 60 minute / (1545 x (miss, ppervd @ 15% Oy calculated (mais, ppervd @ 15% Oy calculated (khrly- provided (fY) (fY) [Ratio first provided/calculated] and (khrly-) = NA Amission Rate Busis	12.4 10 10 17.77 12.52 2.567,660 1,056 40.8 46.0 201.5 1,051 116.5 Erf2 x Volume 6 (CT temp.(F) + #NAME?	12.2 10 10 10 10 19 12.53 12.53 2433441 1,107 40.1 164.0 164	12.4 10 10 10 9.45 12.27 2379.991 13.18 38.9 41.0 1776 6 1.055 6 6 6 6 6 6 6 6 7 7 7 7 8 7 8 1,118 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	### 11.00 11
main, ppervol-calculated mis. ppervol @ 15% O2-calculated provided provided provided provided provided provided provided (Sharp)-provided (TPY) (Bato Brhc provided/calculated) OCs (Brhr)= VOC(ppm) x [1 - Moisture(%) 100] x 2 16 (mois. wgt = methans) x 60 mirrhr / [1545 x mis. ppervol @ 15% Oy calculated mis. ppervol @ CFU-calculated mis. ppervol @ 15% Oy calculated mis. ppervol @ 15% Oy calculated mis. provided (Sharp)-calculated provided (Sharp)-calculated provided (Sharp)-calculated (Brhr)-provided (CFP) [Ratio Brhr provided/calculated] ed (Brhr)= NA mission rate (Brhr)-calculated	12.4 10 10 10 17.77 12.52 2,507,660 1,086 46.0 201.5 46.0 201.5 (CT immp/T) + 6NAME:	12.2 10 10 10 10 10 12.5 12.5 12.5 12.5 13.40 11.407 42.0 184.0 18	12.4 10 10 10 9.45 12.72 12.77 291 1.118 38.9 41.0 179.6 1.055 (wdj. for ppm)] PNAMET PNAMET PNAMET 1.118 PNAMET PNAMET PNAMET PNAMET PNAMET PNAMET PNAMET PNAMET PNAMET	110 114 1139 23390 1,144 357 162; 1,007 11,0
inia, ppervd-calculated enia, ppervd @ 15% O2-calculated provided provided foristure (%) bryger (%) folium Flow (ecfm) respectables (F) inimion rate (Brhr)-calculated from given ppervd (Brhr)-provided (TPY) [Rano Brhr provided/calculated] OCs (Brhr)= VOC(ppm) x [1 - Mointure(%) 100] x 2 16 (mole wgt as sethana) x 60 min/hr / [1545 x tamin, ppervd (m CH)-calculated enia, ppervd @ 15% O2-calculated ** foliums Flow (acts) foliums flow (Brhr)-calculated (Brhr)- provided (TPY) [Ratio Brhr provided/calculated] and (Brhr)= NA mission rate (Brhr) (TPY) secury (Brhr) = Basis (Brhr) secury (Brhr) = Basis (Brhr) Basis Input (MM) secury (Brhr) = Basis (Brhr) secury (Brhr) = Basis (Brhr) provided (Mhr) provided (Mhr) provided (Brhr) (TPY)	12.4 10 10 10 17 777 12.52 2,567,660 1,086 46.0 201.5 46.0 201.5 116.8 larfil x Volum 1(CT lamp, "T) + #NAME! #NAM	12.2 10 10 10 10 12.9 12.53 12.53 40.1 42.0 184.	12.4 10 10 10 9.45 12.72 2379.391 13.18 38.9 41.0 179.6 1.035 1.03	11.01 11.62 11.62 11.62 11.62 11.62 11.60
main, ppenvol-calculated mis. ppenvol @ 15% O2-calculated provided provided provided provided provided provided provided (Pry) [Rato Brhr provided(calculated) (Pry) [Rato Brhr provided(calculated) OCa (Brhr) = VOC(ppm) x [1 - Moistare(\$) 100] x 2 16 (mole wgt as methans) x 60 min/hr / [1545 x mis. ppenvol @ 15% O2 calculated provided ** foinkare (\$) provided (Pry) provided (Pry) [Rato Brhr provided/calculated] and (Brhr) = NA mission rate (Brhr) calculated (Brhr) = NA mission rate (Brhr) provided (Pry) [Rato Brhr provided/calculated] and (Brhr) = NA mission rate (Brhr) provided (Pry) [Rato Brhr provided (Pry) [Rato Brhr provided (Pry) [Rato Brhr provided (Pry) [Rato Brhr) = Basis (Brhr) mission pets (Brhr) (Pry) secury (Brhr) = Basis (Brhr) secury (Brhr) = Basis (Brhr) secury (Brhr) = Basis (Brhr) mission Brhr Provided provided (MM)	124 10 10 10 17 777 1252 2,567,660 1,086 45.8 46.0 201.5 1,051 116.8 Erft2 x Volument (CT immp/T) + PNAMET	12.2 10 10 10 2.99 12.53 12.53 13.61 1.007 40.1 42.0 184.0 1.048 6007) × 1.000,000 PNAME? FNAME?	12.4 10 10 10 9.5 12.7 12.7 12.7 13.8 38.9 110 1794 1.055 1.055 PNAMET	11.61 11.62 11.63
lasis, ppervd - calculated sels. ppervd @ 15% O2- calculated provided provided provided provided provided provided provided provided (CFY) provided (CFY) provided (CFY) plane Both provided/calculated (CFY) provided (CF	12.4 10 10 10 17 777 12.52 2.567,660 1.086 4.0.8 40.0 201.5 1.051 116.5 leyfiz x Volution (CT temp.(*F) + #NAMET #	12.2 10 10 10 10 10 10 10 10 10 10 10 10 10	12.4 10 10 10 10 10 9.45 12.22 2379.391 13.18 38.9 41.0 1776 1.055 6NAMET 6NAME	### 11.00
iniais, ppeaved - calculated ania, ppeaved @ 15% O2- calculated provided ' forinture (%) Strygers (%) foliams Flow (acfm) remperature (F) ininiaion pass (afths) - calculated from given ppeaved (Brhs) - provided (TPY) [Rates Brhs provided/calculated] OCs (Brhs) = VOC(ppea) x [1 - Moisture(%) 100] x 2 16 (moles wat as methane) x 60 min/hr / [1545 x temis, ppeaved (m CFL) - calculated provided ** foliams Flow (acfm) seapproximate (F) foliams Flow (acfm) seapproximate (F) interior rate (Brhs) - calculated (Brhs) - provided (TPY) [Ratio Brhs provided/calculated] sed (Brhs) = NA sed (Brhs) = NA sed (Brhs) = NA sed (Brhs) = NA sed (Brhs) = Basis (Br10 ¹² Bts) a Heart Input (MM min, Br10 ²³ Bts) best Input Rate (MMBstr/hr), HHV- CT - Duct Burner Total	124 10 10 10 17 777 1252 2,557,660 1,086 45.8 46.0 201.5 1,051 116.8 Erft2 x Volution (CTT immp/TF) + PNAMET PNAME	12.2 10 10 10 10 10 12.5 12.5 12.53.41 1,107 40.1 42.0 184.0 1.048 10.48 660°F) x 1,000,000 6NAME? 6	12.4 10 10 10 9.5 12.7 12.7 13.9 11.118 38.9 110 1794 1.055 PNAMET PNAM	110 114 115 1139 134 37, 162 139, 1100 1100 1100 1100 1100 1100 1100 11
iniais, ppeaved - calculated ania, ppeaved @ 15% O2- calculated provided ' forinture (%) Strygers (%) foliams Flow (acfm) remperature (F) ininiaion pass (afths) - calculated from given ppeaved (Brhs) - provided (TPY) [Rates Brhs provided/calculated] OCs (Brhs) = VOC(ppea) x [1 - Moisture(%) 100] x 2 16 (moles wat as methane) x 60 min/hr / [1545 x temis, ppeaved (m CFL) - calculated provided ** foliams Flow (acfm) seapproximate (F) foliams Flow (acfm) seapproximate (F) interior rate (Brhs) - calculated (Brhs) - provided (TPY) [Ratio Brhs provided/calculated] sed (Brhs) = NA sed (Brhs) = NA sed (Brhs) = NA sed (Brhs) = NA sed (Brhs) = Basis (Br10 ¹² Bts) a Heart Input (MM min, Br10 ²³ Bts) best Input Rate (MMBstr/hr), HHV- CT - Duct Burner Total	12.4 10 10 10 17 777 12.52 2.567,660 1.086 4.0.8 40.0 201.5 1.051 116.5 leyfiz x Volution (CT temp.(*F) + #NAMET #	12.2 10 10 10 10 10 10 10 10 10 10 10 10 10	12.4 10 10 10 10 10 9.45 12.22 2379.391 13.18 38.9 41.0 1776 1.055 6NAMET 6NAME	### 11.00 11
Basis, ppsovd-calculated lesis, ppsovd-calculated provided provided provided provided Chypyr (%) (Moisture (%) Conyent (%) (Moisture (F) Emission rete (Brht)-calculated from given ppmvd (Brht)-provided (TPY) [Rates Brht provided/calculated] OCc (Brht)= VOC(ppm) x [1 - Moisture(%) 100] x 2 16 (sools wgt as methane) x 60 min/hr / [1545 x Basis, ppmvd (m Ctt)-calculated sais, ppmvd (m Ctt)-calculated (sools wgt as methane) x 60 min/hr / [1545 x Basis, ppmvd (m Ctt)-calculated (sools ppmvd (m Ctt)-calculated (brht)-provided (Brht)-povided (Brht)-pov	12.4 10 10 10 17 777 12.52 2,557,660 1,086 46.0 201.5 46.0 201.5 116.8 larfil x Volume (ICT lemp, "F) + PNAME! FNAME! FNA	12.2 10 10 10 10 12.9 12.53 12.53 12.03 184.0 186.0 186.0 186.0 186.0	12.4 10 10 10 10 9.45 12.27 2379.39 1.318 38.9 41.0 170.6 17	110 114 115 1139 134 37, 162 139, 1100 1100 1100 1100 1100 1100 1100 11
leais, pperved-calculated seis, pperved @ 15% O2- calculated provided foristure (%) foristure (%) foristure (%) foristure (%) foristure (%) foristure (%) foristure (F) initiation rate (brtu)- calculated from given pperved (Brtu)- provided (IPY) [Rate Brtu provided/calculated] OCs (Brtu)= VOC(ppm) = [1 - Moisture(%) 100] x 2 16 (mols. wgt as methane) x 60 min/hr / [1545 x leais, pperved (m CPU)- calculated leais, provided ** foristure (%) Organ (%) (obtume Flore (actin) compressure (F) (intrinsion rate (Brtu)- calculated (Brtu)- provided (Brtu)- NA (mission rate (Brtu)- calculated intrinsion rate (Brtu) (PY) [Ratio Brtu provided/calculated] sed (Brtu)= NA (mission rate (Brtu) (PY) ercury (Brtu)= Basis (Br10) ¹² Basis = Heart Input (MM leais, Br10 ²³ Basis (Br10) ¹³ Basis = Heart Input (MM leais, Br10 ²³ Basis (Br10) ²³ Basis (Br10) ²³ Basis (Br10) ²³ (mission Rate (Brtu) (IPY) (IPY) (Iffuric Acid Mist = SO, emission rate (Brtu) x convex x AWH H ₂ SO, /MW SO, (%)66) Og emission rate (Brtu)	12.4 10 10 10 17 777 12.52 2.567,660 1.086 4.0.8 40.0 201.5 1.051 116.8 le/f2 x Volut (CT temp.(*P) + #NAMET #NAM	12.2 10 10 10 10 10 10 10 10 10 10 10 10 10	12.4 10 10 10 9.55 12.77 12.18 38.9 11.0 179.6 1.055 PNAMET PNAM	11.00 11.00
Sain, ppsivd-calculated lesis, ppsivd-calculated provided (Strhe) provided (Strhe) provided (Strhe) provided (Strhe) provided (Strhe) provided (Strhe) provided provided (Strhe) provided (Strhe) provided (Strhe) provided provided (Strhe) provided (Strhe) provided provided provided (Strhe) provided provided (Strhe) provided provided provided (Strhe) provided provided provided (Strhe) provided provided provided (Strhe) provided	12.4 10 10 10 10 17.77 12.52 2,567,660 1,064 46.0 201.5 116.8 ErR2 x Volution (CT Immp/T) + 6NAMET 6	12.2 10 10 10 10 10 12.5 12.5 12.5 12.5 13.40 11.407 140.0 154.0 155.0 1	12.4 10 10 10 10 9.45 12.27 2379.291 1.318 38.9 410 179.4 10.55 **PAMET** *	11.00 11.00
Basis, pppsvd-calculated Basis, pppsvd-calculated Provided P Morishure (%) Drygen (%) Morishure (%) Drygen (%) Morishure (%) Drygen (%) Morishure (%) Emission rate (farty)-calculated from given ppenvd (farty)-provided (farty)-grovided (farty)-g	12.4 10 10 10 17 777 12.52 2.567,660 1.086 4.0.8 40.0 201.5 1.051 116.8 le/f2 x Volut (CT temp.(*P) + #NAMET #NAM	12.2 10 10 10 10 10 10 10 10 10 10 10 10 10	12.4 10 10 10 9.55 12.77 12.18 38.9 11.0 179.6 1.055 PNAMET PNAM	PNAME? PNAME? 11.64 11.99 1.339,041 1.148 PNAME? PNAME?

Source: *Sistemere-Westinghouse, 2000.

*Colder Associates Inc. 1999.

*Electric Power Research Institute (EPRI), Electric Utility Trace Subviences Report, 1994 (Table B-12).

*For NO₂ emissions, data originally provided at 25 popred at 15% oxygen.

*For VOC emissions, data originally provided at 1.5 popred at 15% oxygen.

Table A-3. Maximum Emissions for Other Regulated PSD Pollutants for the FPC Hines Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Natural Gas, 100 % Load

		Ambient/C	ompressor Inlet Ten	perature
Parameter	20 °F	59 T	72°F	90°F
Hours of Operation	8,760	8,760	8,760	
Heat Input Rate (MMBtu/hr), HHV-CT	2,012	1.830	1,771	1,705
Duct burner	0	0	0	1,700
Total	2,012	1,830	1,771	1,705
2,3,7,8 TCDD Equivalents (lb/hr) = Basis (lb/10 ¹² Btu) x	Heat Input (MMBtu	ı/hr) / 1.000.000 MN	/Ber/10 ¹² Ber	
Basis, Ib/10 ¹² Btu	1.20E-06	1.20E-06	1.20E-06	1.206-06
Heat Input Rate (MMBtu/hr)	2.012	1.830	1.771	1.705
Emission Rate (Ib/hr)	2.41E-09	2.20E-09	2.12E-09	2.05E-09
(TPY)	1.06E-08	9.62E-09	9.31E-09	0.00E+00
Beryllium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MIN	(Bay/br) / 1 000 000 3	MMB+:///0 ¹² B+:		
Basis, lb/10 ¹² Btu	0.00E+00	0.00E+00	0.005 - 00	A
Heat Input Rate (MMBtu/hr)	2.012	1.830	0.00E+00	0.00E+00
Emission Rate (Ib/hr)	0.00E+00	0.00E+00	1,771	1,705
(TPY)	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
Fluoride (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MMB		MB40 ¹² Pr.	_	
Basis, Ib/10 ¹² Btu	0.00E+00			
Heat Input Rate (MMBtu/hr)		0.00E+00	0.00E+00	0.00E+00
Emission Rate (Ib/hr)	2,012	1,830	1,771	1,705
(TPY)	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00

Source: Electric Power Research Institute (EPRI), Electric Utility Trace Substances Report, 1994 (Table B-12). Emission factors for metals are questionable and not used.

Note: No emission factors for hydrogen chloride (HCl) from natural gas-firing.

Table A-4. Maximum Emissions for Hazardous Air Pollutants for the FPC Hines Energy Center Siemens-Westinghouse 501F, Dry Low NO $_{\rm X}$ Combustor, Natural Gas, 100 % Load

		A-his-e-	Compressor Inlet Te	· Member
Parameter	20 °F	59 °F	72°F	90°F
Hours of Operation	8,760	8,760	8,760	8,760
Heat Input Rate (MMBtu/tr), HHV-CT	2,012	1,830	1,771	1,705
Duct burner	0	0	0	O
Total	2,012	1,830	1,771	1,705
Antimony (lb/hr) = Basis (lb/10 ^{t2} Btu) x Heat Input (M				
Basis, lb/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/fir)	2,012	1,830	1, <i>7</i> 71 0.00E+00	1,705 0,00E+00
Emission Rate (lb/hr) (TPY)	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00
Benzene (lb/hr) = Basis (lb/10 ¹³ Btu) x Heat Input (M)	√Bnu/hr) / 1.000.000	MMBtu/10 [™] Btu		
Basis, Ib/10 ¹² Bru	8.00E-01	8.00E-01	8.00E-01	8.00E-01
Heat Input Rate (MMBtu/trr)	2,012	1,830	1,771	1,705
Emission Rate (lb/hr)	1.61E-03	1.46E-03	1.42E-03	1.36E-03
(ТРҮ)	7.05E-03	6.41E-03	6.20E-03	5.98E-03
Cadmium (lb/hr) = Basis (lb/10 ¹³ Btu) x Heat Input (M	IMBtu/hr)/1,000,00	0 MMBtu/10 ¹¹ Btu		
Basis, b/10 ¹² Bru	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	2,012	1,830	. 1,771	1,705
Emission Rate (lb/hr)	0.00+300.0	0.00+300.0	0.00E+00	0.00E+00
(TPY)	0.00+300.0	0.00E+00	0.00E+00	0.00E+00
Chromium (lb/hr) = Basis (lb/10 th Btu) x Heat Input (l				
Basis, Ib/10 ¹² Bru	0.00E+00	0.00+3(00.0	0.00E+00	0.00E+00
Heat Input Rate (MMBru/hr)	2,012	1,830 0.00E+00	1,771	1,705 0.00E+00
Emission Rate (lb/hr) (TPY)	0.04=300.0 0.04=300.0	0.00E+00	0.00E+00 0.00E+00	0.00E+00
Formaldehyde (lb/hr) = 10% of VOC lb/hr				
Emission Rate, b/10 ²² Btu	#NAME?	#NAME?	#NAME?	#NAME?
Heat Input Rate (MMBtu/hr)	2,012	1,830	1,771	1,705
Emission Rate (lb/hr) (TPY)	#NAME? #NAME?	#NAME? #NAME?	#NAME? #NAME?	#NAME? #NAME?
•				
Cobalt (lb/hr) = Basis (lb/10 th Btu) x Heat Input (MME				a aar . aa
Basis, Ib/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00	0.00E+00 1.705
Heat Input Rate (MMBtu/hr)	2,012 0.00E+00	1,830 0.00E+00	1,771 0.00E+00	0.00E+00
Emission Rate (lb/hr) (TPY)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Manganese (lb/hr) = Basis (lb/10 ²² Btu) x Heat Input (MWBhi/hrì/1000	100 MMBhs/10 ¹² Bt	u	
Basis, Ib/10 ²² Bru	0.00E+00	0.00E+00	0,00E+00	0.00E+00
Heat Input Rate (MIMBtu/hr)	2,012	1,830	1.771	1,205
Emission Rate (Ib/hr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(गर्भ)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Nickel (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MMB	hu/hr) / 1,000,000 M	MBtu/10 ¹² Btu		
Basis, By10 ¹¹ Btu	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	2,012	1,830	1,771	1,205
Emission Rate (lh/hr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Phosphorous (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input				A 2007 . A1
Basis, by10 ¹² Btu	0.00E+00	0.00E+00 1,830	0.00E+00 1,771	0.00E+00 1,705
Heat Input Rate (MMBtu/tr) Emission Rate (Ib/tr)	2,012 0.00E+00	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00€+00	0.00E+00
Selenium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (M)	MBtu/hr) / 1,000.000	MMBtu/10 ¹² Btu		
Basis, b/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	2,012	1,830	1,771	1,705
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.0+300.0	0.00E+00
Toluene (lb/hr) = Basis (Br/10 ¹² Btu) x Heat Input (MM				
Basis, 15/10 ¹² Btu	1.00E+01	1.00E+01	1.00E+01	1.00E+01
Heat Input Rate (MMBtu/hr)	2,012	1,630	1,771	1,705
Emission Rate (B/hr)	2.01E-02	1.83E-02	1 <i>.77</i> E-02 7 <i>.7</i> 6E-02	1.71E-02 7.47E-02
(TPY)	8.81E-02	8.01 E-02	/./DE-U4	7.47 5-02

Source: Electric Power Research Institute (EPRI), Electric Utility Trace Substances Report, 1994 (Table B-12).

Emission factors for metals are questionable and not used.

Table A-5. Design Information and Stack Parameters for the FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Natural Gas, 80 % Load

-	Ambi	ent/Compressor Inlet Temperat	ure
Parameter	20 °F	59 ° F	90 °F
Combustion Turbine Performance			
Evaporative cooler status/ efficiency (%)	Off	Off	Of:
Ambient Relative Humidity (%)	60	60	55
Gross power output (MW) - Estimated	160.80	145.19	127.40
Gross heat rate (Btw/kWh, LHV) - Estimated	9.255	9,516	10,065
(Btu/kWh, HIHV)	10,270	10,555	· · · · · · · · · · · · · · · · · · ·
Heat Input (MMBtu/hr, LHV)- calculated	1.488	1,382	11,170
- provided	1,385	,	1,282
(MMBtu/hr, HHV) - calculated	1,537	1,382	1,279
(HHV/LHV)	•	1,534	1,419
Fuel heating value (Btu/lb, LHV)	1.110	1.110	1.110
(Btu/ib, HHV)	21,039	21,039	21,039
- · · · · · · · · · · · · · · · · · · ·	23,345	23,345	23,345
(HHV/LHV)	1.110	1.110	1.110
CT Exhaust Flow			
Mass Flow (lb/hr)	3,497,411	3,302,475	3,118,517
Temperature (T)	1,006	1,032	1,083
Moisture (% Vol.)	7.10	7.75	9.14
Oxygen (% Vol.)	13.27	13.25	13.12
Molecular Weight - calculated	28.50	28.43	28.27
- provided	28.51	28.43	28.27
		20.20	20-44
Volume Flow (acfm) = [(Mass Flow (lb/hr) x 1,54	x (Temp. (T)+ 460T)	/ [Molecular weight v 2116 8] /	(A min/h-
Mass flow (lb/hr)	3,497,411	3,302,475	
Temperature (F)	1,006	1.032	3,118,517
Molecular weight	28.50	28.43	1,083
Volume flow (acfm)- calculated	2,188,271		28.27
	1 /نشر100بند	2,108,318	2,070,770
•			
ivel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,00 leat input (MMBtu/hr, LHV) leat content (Btu/lb, LHV) wel usage (lb/hr)- calculated - provided	1,385 21,039 65,830 65,830	1,382 21,039 65,710 65,710	1,279 21,039 60,790 60,790
ieat input (MMBh/hr, LHV) ieat content (Btu/lb, LHV) uel usage (lb/hr)- calculated - provided leat content (Btu/cf, LHV)	1,385 21,039 65,830 65,830	1,382 21,039 65,710	21,039 60,790
leat input (MMBh/hr, LHV) leat content (Btu/lb, LHV) uel usage (lb/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (lb/fr²)	1,385 21,039 65,830 65,830 920 0.0437	1,382 21,039 65,710 65,710 920 0.0437	21,039 60,790 60,790
leat input (MMBhi/hr, LHV) leat content (Bhi/lb, LHV) uel usage (lb/hr)- calculated - provided leat content (Bhi/cf, LHV) uel density (lb/fr ²)	1,385 21,039 65,830 65,830	1,382 21,039 65,710 65,710	21,039 60,790 60,790 920
teat input (MMBh/hr, LHV) teat content (Btu/lb, LHV) uel usage (lb/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (lb/ff²) uel usage (cf/hr)- calculated	1,385 21,039 65,830 65,830 920 0.0437	1,382 21,039 65,710 65,710 920 0.0437	21,039 60,790 60,790 920 0.0437
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (lb/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (lb/ft²) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG	1,385 21,039 65,830 65,830 920 0.0437 1,505,432	1,382 21,039 65,710 65,710 920 0.0437	21,039 60,790 60,790 920 0.0437
teat input (MMBh/hr, LHV) teat content (Bti/lb, LHV) uel usage (lb/hr)- calculated - provided leat content (Bti/cf, LHV) uel density (lb/hr)- uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432	1,382 21,039 65,710 65,710 920 0.0437	21,039 60,790 60,790 920 0.0437
teat input (MMBh/hr, LHV) iteat content (Btu/lb, LHV) uel usage (lb/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (lb/fr)- calculated usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432	1,382 21,039 65,710 65,710 920 0.0437 1,502,688	21,039 60,790 60,790 920 0.0437 1,390,175
teat input (MMBh/hr, LHV) teat content (Bti/lb, LHV) uel usage (lb/hr)- calculated - provided leat content (Bti/cf, LHV) uel density (lb/hr)- uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432	1,382 21,039 65,710 65,710 920 0.0437 1,502,688	21,039 60,790 60,790 920 0.0437 1,390,175
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (Ib/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (Ib/ft²) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft) tameter (ft) temperature (T)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0	1,382 21,039 65,710 65,710 920 0.0437 1,502,688	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (Ib/hr)- calculated - provided teat content (Btu/cf, LHV) uel density (Ib/fr²) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft) tameter (ft) tameter (ft) RSG- Volume flow (acfm)= CT Volume flow (acf	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0	1,382 21,039 65,710 65,710 920 0.0437 1,502,688	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (Ib/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (Ib/ft²) uel usage (cf/hr)- calculated cck and Exit Gas Conditions- HRSG ack height (ft) tameter (ft) emperature (T) RSG- Volume flow (acfm)= CT Volume flow (acf	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0	1,382 21,039 65,710 65,710 920 0.0437 1,502,688	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190
leat input (MMBh/hr, LHV) leat content (Btu/lb, LHV) uel usage (Ib/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (Ib/ft²) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft) ameter (ft) emperature (°F) RSG- Volume flow (acfm)= CT Volume flow (acf T Volume flow (acfm) T Temperature (°F)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0 190	1,382 21,039 65,710 65,710 920 0.0437 1,502,688 125 19.0 190 F) + 460 K) / (CT Temp. (°F) + 4 2,108,318	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (Ib/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (Ib/ft²) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft) iameter (ft) iameter (ft) remperature (T) RSG- Volume flow (acfm)= CT Volume flow (acf	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0 190 im) x ((HRSG Temp. (*1 2,188,271 1,006	1,382 21,039 65,710 65,710 920 0.0437 1,502,688 125 19.0 190 F) + 460 K)/(CT Temp. (°F) + 4 2,108,318 1,032	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190 60)] 2,070,770 1,083
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (Ib/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (Ib/ft²) uel usage (cf/hr)- calculated cck and Exit Gas Conditions- HRSG ack height (ft) tameter (ft) emperature (T) RSG- Volume flow (acfm)= CT Volume flow (acfm) T Volume flow (acfm) T Temperature (T)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0 190 im) x ((HRSG Temp. C1 2,188,271 1,006 190	1,382 21,039 65,710 65,710 920 0.0437 1,502,688 125 19.0 190 F) + 460 K)/(CT Temp. (°F) + 4 2,108,318 1,032 190	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190 60)] 2,070,770 1,063 190
teat input (MMBh/hr, LHV) teat content (Btu/b, LHV) uel usage (Ib/hr)- calculated - provided feat content (Btu/cf, LHV) uel density (Ib/fr) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft) tameter (ft) emperature (F) RSG- Volume flow (acfm) = CT Volume flow (acf T Volume flow (acfm) TT Temperature (F) IRSG Temperature (F) IRSG Volume flow (acfm)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0 190 im) x {(HRSG Temp. (°I 2,188,271 1,006 190 970,243	1,382 21,039 65,710 65,710 920 0.0437 1,502,688 125 19.0 190 F) + 460 K) / (CT Temp. (°F) + 4 2,108,318 1,032 190 918,503	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190 60)] 2,070,770 1,083
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (Btu/fb, LHV) uel usage (Btu/cf, LHV) uel density (Btu/cf, LHV) uel density (Bt/fr) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft) tameter (ft) temperature (F) RSG- Volume flow (acfm) = CT Volume flow (acf TT Volume flow (acfm) TT Temperature (F) tRSG Temperature (F) tRSG Volume flow (acfm)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0 190 190 190 190 190 190 190 19	1,382 21,039 65,710 65,710 920 0.0437 1,502,688 125 19.0 190 190 F) + 460 K)/(CT Temp. (°F) + 4 2,108,318 1,032 190 918,503	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190 60)] 2,070,770 1,063 190
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (B/hr)- calculated	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0 190 im) x {(HRSG Temp. (°1 2,188,271 1,006 190 970,243 P'/4) x 3,14159] / 60 sec/n 970,243	1,382 21,039 65,710 65,710 920 0.0437 1,502,688 125 19.0 190 F) + 460 K) / (CT Temp. (°F) + 4 2,108,318 1,032 190 918,503	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190 60)] 2,070,770 1,063 190
teat input (MMBh/hr, LHV) teat content (Btu/fb, LHV) uel usage (Btu/fb, LHV) uel usage (Btu/cf, LHV) uel density (Btu/cf, LHV) uel density (Bt/fr) uel usage (cf/hr)- calculated ck and Exit Gas Conditions- HRSG ack height (ft) tameter (ft) temperature (F) RSG- Volume flow (acfm) = CT Volume flow (acf TT Volume flow (acfm) TT Temperature (F) tRSG Temperature (F) tRSG Volume flow (acfm)	1,385 21,039 65,830 65,830 920 0.0437 1,505,432 125 19.0 190 190 190 190 190 190 190 19	1,382 21,039 65,710 65,710 920 0.0437 1,502,688 125 19.0 190 190 F) + 460 K)/(CT Temp. (°F) + 4 2,108,318 1,032 190 918,503	21,039 60,790 60,790 920 0.0437 1,390,175 125 19.0 190 60)] 2,070,770 1,083 190 872,327

Source: Siemens-Westinghouse, 2000.

Note: Universal gas constant = 1,545 ft-lb(force)/R; atmospheric pressure = 2,116.8 lb(force)/ft \sim

Table A-6. Maximum Enlissions for Criteria and Other Regulated Pollutants for the FPC Hinas-2 Energy Center Suprems-Westinghouse 501F, Dry Low NO₂ Combustor, Natural Gas, 80 % Load

and the same of th	20 7	Ambient/Compressor Inlet Temperatur 59 T	90.75
us of Operation	8.760	8,760	\$.760
eculate from CT and SCR			
iculate (Brits) = Emission rate (Brits) from ma	nufacturer (fron	r- and back-haif) 6.2	5.5
se, lb/hr + provided *	■.0	6.2	32
culute from SCR = Sulfur trioxide (formed fi	roes convenion o	of 5O ₂) converts to ammonium sulfate (=	FM _(d)
ticulate from conversion of SO ₂ = SO ₂ ethnic	ore (Be/hr) x Con 	yension SO; to SO; it to S	
SO ₂ emeniors rate (Brhr)- calculated	43	4.3	4.0
Conversion (%) from SO ₃ to SO ₃	10	10	10 1.3
MW SOY SO ₂ (8064) Communium (%) from SO ₂ to (NT-L) ₄ (SO ₄)	1.3 100	1.3 100	100
MW (NATA) SO/ SO; (132/80)	1.7	1.7	1.7
Particulate (Brits)- exculated	0.89	0.39	0.82
rticulate (lib/hr) from CT + SCR	75	7.1	6.3
(TP1)	32.0	31.0	27.7
Provide a Challanda Managal and Addition a suite		-A - 1 8-7000 /h 9C- /h 51/100	
ur Dioxide (lb/hr) = Netural gas (cb/hr) z sulfu			
el use (cirlur)	1,505,432	1,502,688	1,390,175
Nur content (grains/ 100 cf) - assumed * SO ₂ /b S (64/32)	1 2	1 2	1 2
riseion rate (B/hr)- caiculated	43	43	4.0
(Bulls)- provided (1 gol 00 cf)	4.60	4.30 18.8	3.80 37.4
तहरा	18.5	15.5	37.4
			(a-) -
ogen Oxides (B/hr)= NO _x (ppm) x {[20.9 x (1 46 (mole. wgt NO _x) x 60 min/hr/[1:	- Momeure(76)/11 545 x (CT temp.(00)] - Oxygen(%)} x 2116.8 x Volume no F) + 460°F) x 5.9 x 1,000,000 (edj. for pyr	m)] (actor) z
ià, ppared @15% O ₃ **	3.5	35	3.5
sature (%)	7.10	7.75	9.14
ygun (≦)	13.27	13.25	13.12 2 <i>0</i> 70.770
shurre Flow (acfm) supersture (°F)	2,186,271 1,006	2,108,318 1,032	2,00,270 1,063
remove tale (\$5/hr)- calculated	20.6	19.1	17.7
(Brite)- provided	20.4	19.1 #3.7	17.7 77.5
(TPY) [Ratio light provided/calculeted]	90.2 1.001	0.999	1.002
28 (mole, wgt CO) x 60 min/hr / [15 sis, ppmvd-calculated	45 z (CT lense) (7 11.2	F) + 460°F) x 1,000,000 (edj. for ppon)]	10.9
sis, ppowd @ 15% O _T calculated	10	10	10
- provided *	10 7.10	10 7.75	10 9.14
oisture (%) rygen (%)	13.27	13.25	13.12
have Flow (ecfm)	2,188,271	2,108,318	2,070,770 1,043
raperature (T) nasion rese (Bylu)- calculated from given pp	1,006 35.8	1,032 33.2	30.7
(Softer)- provided	36.0	35.0	33.0
(بريق)	166.4	153.3 1.053	144.3
		1444	
(Ratio In he provided/calculated)	1.062	11-1 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	
[Ratio Brhr provided/calculated] Ca (Brhr)= VOC(ppm) x [1 - Monture(%) 10 36 (mole, wgt as methere) x 60 min/hr / [:	OJ x 22 16.8 lb/R2 :	x Volume flow (actin) x (TF) + 460°F} x 1,000,000 (adj. for ppm)	1.074
Cs (Bylw) = VOC(ppp) x 1 - Monture(% y 10	OJ x 22 16.8 lb/R2 :	(TF) + 460'T) = 1,000,000 (46), for ppm) #NAME?	1.074 #NAMET
Cs (Brhr) = VOC(ppm) x [1 - Monture(% y 10 36 (mole. wgt as methane) x 60 min/hr/[; sis, ppmvd (as CH ₄)-calculated sis, ppmvd @ 15% O ₃ -calculated	0) x 2516.3 lb/\$2: 1543 x (CT limitp) #NAME? #NAME?	(TP) + 460" 1 ,000,000 (adj. 104 ppm) PNAME? PNAME?	1.074 #Namet #Namet
Cs (Brhr)= VOC(ppm) x [1 - Monture(S y 10 36 (mole, wgt as methane) x 60 min/hr / [1 sis, ppmred (as CHs)- calculated sis, ppmred @ 15% O ₂ -calculated - provided **	OJ x 2316.8 Ib/R2: 1543 x (CT limitp) PNAME? PNAME? PNAME?	(P) + 4607) = 1,000,000 (66), for ppm) PNAME? PNAME? PNAMET	1.074 #NAMET
Cs (Byhr) = VOC(ppm) x [1 - Monture(S y 10 36 (mole, wgt as methans) x 60 mie/hr / [: sis, ppmred (as Crt.)- calculated sis, ppmred (a) 15% O ₃ - calculated - provided ^{as} oisture (S)	0] x 2316.8 BvR2: 1545 x (CT temps #NAME? #NAME? #NAME? 7.10 13.27	(F) + 460°F) x 1,000,000 (46), for ppm) PNAME? PNAME! PNAME! 7.75 13.25	1.074 #NAMET #NAMET #NAMET #3.14 13.12
Cs (Briter) = VOC(ppm) x [1 - Monsture(% y 10 36 (mole, wgt as methans) x 60 min/hr/[: sis, ppmvd (as Cri ₄)- calculated sis, ppmvd @ 15% O ₂ - calculated - provided ** pisture (%) sygen (%) kume Flow (acfm)	0] x 2316.8 BvR2: 1545 x (CT immpi #NAME? #NAME? #NAME? 7.10 13.27 2188,271	(F) + 460°F) ± 1,000,000 (ed), for ppm)[PNAME? PNAME? PNAMET 7.75 13.25 2,108,318	1.074 #NAMET #NAMET #NAMET 9.14 13.12 2,070,770
Cs (Byhr) = VOC(ppm) x [1 - Monture(\$ y 10 36 (mole, wgt as methans) x 60 misv/hr / [1 sis, ppmvd (as Crl.)- calculated sis, ppmvd (a) 15% O ₃ - calculated - provided ** oisture (\$) shame Flow (acfm) impurether (?)	0) x 2216.8 bxf2: 1545 x (CT mmp. 4NAME? 4NAME? 5NAME? 7.10 13.27 2,188,271 1,006	(P) + 4607) ± 1,000,000 (ed), for ppm)(PNAME? PNAME? PNAME? 13.25 2,008,318 1,032	1.074 #NAMET #NAMET #NAMET 9.14 13.12 2,070,770
Cs (Bylvs)= VOC(ppm) x [1 - Monsture(S y 10 36 (mole. wgt as methans) x 60 min/hr/[: isi, pprovid (se CH ₄)- calculated sis, pprovid (@ 15% C)- calculated - provided ** picture (S) types (S) kune Flow (acfm) importance (F) sussess rate (Brhr)- calculated	0] x 2316.8 BvR2: 1545 x (CT immpi #NAME? #NAME? #NAME? 7.10 13.27 2188,271	(F) + 460°F) ± 1,000,000 (ed), for ppm)[PNAME? PNAME? PNAMET 7.75 13.25 2,108,318	1,074 #NAMET #NAMET #NAMET 13.12 2,070,770 1,063 #NAMET
Cs (Byhy)= VOC(ppm) x [1 - Monsture(S y 10 36 (mols. wgt as methane) x 60 min/hr/[: isis, ppreved (so CH ₄)- calculated isis, ppreved (\$9 15% Cy-calculated - provided ** picture (S) (ygan (S), hume Firm (actin) inpersture (F) instant rate (Ethely-calculated (Brhy)- provided (FP)	O k 23163 byf2: 1545 x (CT metp) 9NAME? 9NAME? 9NAME? 13.27 1,006 9NAME? 9NAME? 9NAME?	(P) + 4607) ± 1,000,000 (ed; for ppm)] PNAME? PNAME? PNAME? 13.25 2.108,318 1,032 PNAME? PNAME?	1.074 PNAMET PNAMET PNAMET 13.12 2.070,770 1.003 PNAMET 4.2
Cs (Bylus) = VOC(ppm) x [1 - Moniture(S y 10 36 (mole, wgt as methans) x 60 misv/hr / [1 sis, ppmvd (as Cri.)- calculated asis, ppmvd (2 15% O ₂ - calculated - provided ** oisture (S) sygma (S) sheare First (acfm) repressive (F) nisson rate (Erher) - calculated (Brlus) - provided (Brlus) - provided (TFY) [Ratio Bylus provided(calculated)	0) s 2316.8 br/2. 1545 x (CT temps PNAME? PNAME? PNAME? 7.10 13.27 2.186,271 1,006 PNAME? PNAME?	(F) + 4607) ± 1,000,000 (ed), for ppen)[PNAME? PNAME? 17.75 13.25 2.08,318 1,032 PNAME? PNAME?	1.074 #NAMET #NAMET #NAMET #NAMET #13.12 2.070,770 1.063
Cs (Bylur) = VOC(ppm) x [1 - Monsture(% y 10 36 (mole, wgt as methans) x 60 misv/hr / [1 sis, ppmvd (as CFL)- calculated ass, ppmvd (@ 15% Cy-calculated - provided ** provided (%) provided (%) provided (Bylur) - calculated (Bylur) - provided (Pylur) [Ratio Bylur provided (Calculated) (Bylur) - NA	O x 2163 bvR1: 1545 x (CT mmp) PNAMET PNAMET PNAMET 13.27 2.188,27 1.006 PNAMET PNAMET PNAMET PNAMET	(P) + 4607) ± 1,000,000 (ed; for ppm)] PNAME? PNAME? PNAME? 1,25 2,108,318 1,032 PNAME? PNAME? PNAME?	PNAMET PNAMET PNAMET PNAMET PLATE PLATE PNAMET LIST PNAMET LAG PNAMET LAG PNAMET
Cs (Brhr)= VOC(ppm) x [1 - Monture(S y 10 36 (mole, wgt as methane) x 60 min/hr/[: sis, pperved (as CH ₂)- calculated sis, pperved (\$15% O ₂ - calculated - provided ** positive (S) (ygan (S) hume Flow (acfm) reported (Brhr)- calculated (Brhr)- provided (Brhr) [Pri] [Ratio Brhr provided/calculated (Brhr) = NA signinh Rate Basis	O k 23163 byf2: 1545 x (CT metp) 9NAME? 9NAME? 9NAME? 13.27 1,006 9NAME? 9NAME? 9NAME?	(P) + 4607) ± 1,000,000 (ed; for ppm)] PNAME? PNAME? PNAME? 13.25 2.108,318 1,032 PNAME? PNAME?	PNAMET PNAMET PNAMET PNAMET 13.12 2070.770 1,083 PNAMET 144 FNAMET
La (Brhs) = VOC(ppm) x [1 - Monture(% y 10 36 (mole, wgt as methane) x 60 min/hr/[: is, ppmvd (as CH ₂)-calculated is, ppmvd (2 15% Cy-calculated - provided ** ishure (%) ygen (%) hame Firm (actim) superstrate (F) issuen rate (Ethr)-calculated (Ethr)-provided (Ethr)-provided (Ethr)-provided (Attr)-provided (Attr)	O k 2316.8 b/R2. 1545 x (CT mmp.) PNAME? PNAME? PNAME? PNAME? 13.27 2188.271 1,006 PNAME? PNAME? PNAME? PNAME? PNAME? PNAME?	(P) + 4607) ± 1,000,000 (ed; for ppen)] PNAME? PNAME? PNAME? 13.25 2,108.318 1,332 PNAME? PNAME? PNAME?	PNAMET PNAMET PNAMET PNAMET 13.12 2070.770 1,083 PNAMET 144 FNAMET
Ca (Bo'he) = VOC(ppm) x [1 - Monstaw(% y 10 36 (mole, wgt as methans) x 60 misv'hr / [1 iii, ppmvd (as CH _e)- calculated	O x 2316.3 bvf2.1 1545 x (CT temp) PNAMET PNAMET PNAMET PNAMET 1.100 13.27 1.006 PNAMET	(P) + 4607) ± 1,000,000 (ed, for ppen)] PNAME? PNAME? PNAME! 7.75 13.25 2.108,318 1,032 PNAME? PNAME? PNAME? PNAME? PNAME? PNAME? PNAME?	PNAMET PNAMET PNAMET PNAMET 13.12 2070,770 1,083 PNAMET 42 21 1&4 FNAMET NAMET
Cs (Byhr) = VOC(ppm) a [1 - Monsture(S y 10 36 (node, wgt as methans) x 60 min/hr / [1 sis, ppmvd (as CH ₂)- calculated sis, ppmvd (2 15% O ₇ - calculated - provided ** provided ** provided ** provided ** provided (Byhr) provided (TFY) provided (Byhr) = New (Byhr)	O x 2316.8 bxr2: 1545 x (CT mmps) PNAMET PNAMET PNAMET PNAMET 1.10 13.27 1.00 PNAMET RNAMET	(P) + 4607) ± 1,000,000 (ed; for ppm)] PNAME? PNAME? PNAME? 13.25 1.052 PNAME?	PNAMET PNAMET PNAMET PNAMET 13.12 2,070,770 1,083 PNAMET 42 18.66 PNAMET NAMET
Cs (Byfur) = VOC(ppm) a [1 - Monsture(% y 10 16 (prole, vegt as methane) x 60 min/hr / [1 sis, ppmvd (as Cri.)- calculated sis, ppmvd (\$15% O ₂ - calculated - provided ** provided ** provided (\$), hause Flow (acfm) repurstance (F) nasson rate (Brhr)- calculated (Brhr)- provided (TFT) [Ratio Brhr provided (TFT) [Ratio Brhr provided (SFT) (TFT) recury (Brhr) = NA masson rate (Brhr) recury (Brhr) = Basis (Br10 ¹² Btu) x Heat Input sis, Br10 ¹² Btu (SFT)	O x 2316.3 bvf2.1 1545 x (CT temp) PNAMET PNAMET PNAMET PNAMET 1.100 13.27 1.006 PNAMET	(P) + 4607) ± 1,000,000 (ed, for ppen)] PNAME? PNAME? PNAME! 7.75 13.25 2.108,318 1,032 PNAME? PNAME? PNAME? PNAME? PNAME? PNAME? PNAME?	### ##################################
Cs (Byhr) = VOC(ppm) a [1 - Monsture(S y 10 36 (node, wgt as methans) x 60 min/hr / [1 sis, ppmvd (as CH ₂)- calculated sis, ppmvd (2 15% O ₇ - calculated - provided ** provided ** provided ** provided ** provided (Byhr) provided (TFY) provided (Byhr) = New (Byhr)	O x 2316.3 bxf2.1 545 x (CT matp.) PNAMET PNAMET PNAMET PNAMET PNAMET 13.27 1.006 PNAMET	(P) + 4607) ± 1,000,000 (ed. for ppm)] PNAME? PNAME? PNAME? 775 13.25 2,003,116 1,002 PNAME?	PNAMET PNAMET PNAMET PNAMET 13.12 2070.770 1,083 PNAMET 4.2 18.4
Cs (Byhr) = VOC(ppm) a [1 - Monsture(S y 10 36 (mole, wgt as methans) x 60 min/hr / [1 sis, ppmvd (as CH ₂)-calculated sis, ppmvd (as CH ₂)-calculated - provided ** provided (Brhr)-calculated (Brhr)-provided (Brhr)-provided (TFY) [Ratio Byhr provided[calculated] d (Brhr)= NA pisation Rate Basis namion rate (Brhr) (TFY) provided (Brhr) = Basis (Br10 ¹³ Btu) x Heat Input sis, Br10 ²³ Btu * set Input Rate (Bol-Diu/hr) station Rate (Bohr) (TFY) for (TFY) for (The Rate (Bohr) (TFY) for (The Rate (Bohr) (TFY)	O x 2316.3 bxr2.1 545 x (CT temps) PNAMET PNAMET PNAMET PNAMET 13.00 13.27 1.00 PNAMET NA	(P) + 4607) ± 1,000,000 (ed; for ppm)] PNAME? PNAME? PNAME? 13.25 2.108,318 1,032 PNAME? PNAME? PNAME? PNAME? PNAME? NA NA NA NA NA NA NA NA NA 1,254 1,254 1,254 1,254 1,254 1,254 1,254 1,256 5,36E-06	### ##################################
Cs (Byfur) = VOC(ppm) x [1 - Monture(% y 10 16 (node, wgt as methans) x 60 min/hr / [1 sis, ppmvd (ss CFL) - calculated sis, ppmvd (\$15% O ₂ - calculated provided ** provided ** provided (%) hause Flow (acfm) repersture (F) nisson rete (brhr) - calculated (Brhr) - provided (Brhr) - provided (TFY) Ratio Brhr provided (TFY) Ratio Brhr provided (TFY) retry (Brhr) - Basis (Br10 ²³ Btu) x Heat Input sis, Br10 ²³ Btu (TFY) retry (Brhr) - Basis (Br10 ²³ Btu) x Heat Input sis, Br10 ²³ Btu (TFY) for the (Brhr) (TFY) furic Acid Mat = SO ₂ necession rate (Brhr) x to x MW H ₂ SO ₂ AMW SO ₂ (W	O x 2316.3 bxf2.1 PNAMET PNAMET PNAMET PNAMET PNAMET 13.27 1,006 PNAMET PNAME	(P) + 4607) ± 1,000,000 (ed; for ppm)] PNAME? PNAME? PNAME? 13.25 2.108,318 1,032 PNAME? PNAME? PNAME? PNAME? PNAME? NA NA NA NA NA NA NA NA NA 1,254 1,254 1,254 1,254 1,254 1,254 1,254 1,256 5,36E-06	### ##################################
Cs (Byhy) = VOC(ppm) x [1 - Monture(S y 10 36 (node, wgt as methans) x 60 min/hr / [1 sis, ppmvd (as CH ₂)- calculated sis, ppmvd (as CH ₂)- calculated - provided ** provided (Brhy)- p	O x 2316.3 bxr2.1 545 x (CT temps) PNAMET PNAMET PNAMET PNAMET 13.00 13.27 1.00 PNAMET NA	PNAME? PN	# NAME? #NAME? #NAME? #NAME? #1112 ##############################
Cs (Byfur) = VOC(ppm) x [1 - Monture(% y 10 16 (node, wgt as methans) x 60 min/hr / [1 sis, ppmvd (ss CFL) - calculated sis, ppmvd (\$15% O ₂ - calculated provided ** provided ** provided (%) hause Flow (acfm) repersture (F) nisson rete (brhr) - calculated (Brhr) - provided (Brhr) - provided (TFY) Ratio Brhr provided (TFY) Ratio Brhr provided (TFY) retry (Brhr) - Basis (Br10 ²³ Btu) x Heat Input sis, Br10 ²³ Btu (TFY) retry (Brhr) - Basis (Br10 ²³ Btu) x Heat Input sis, Br10 ²³ Btu (TFY) for the (Brhr) (TFY) furic Acid Mat = SO ₂ necession rate (Brhr) x to x MW H ₂ SO ₂ AMW SO ₂ (W	0 k 2316.8 bvR2: 1545 k (CT temps) 9NAMET 9NAMET 9NAMET 9NAMET 1.10 13.27 1,00 9NAMET 9NAMET 9NAMET 9NAMET 9NAMET 9NAMET 9NAMET 9NAMET 1,00 13.27 1,00 13.27 1,00 13.27 1,00 1,00 1,00 1,00 1,00 1,00 1,00 1,0	PNAME? PN	### ##################################

<sup>Singuate—Westinghouse, 2000.
Colder Associates Inc. 2000.
Discric Power Research Institute (EPRI), Electric Utility Trace Substances Report, 1994 (Table B-12).
For NO, emissions, data originally provised at 25 pperved at 15% oxygen.
For VOC emissions, data originally provided at 28 pperved at 15% oxygen.</sup>

Table A-7. Maximum Emissions for Other Regulated PSD Pollutants for the FPC HInes-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Natural Gas, 80 % Load

	Ambie	ent/Compressor Inlet Tempera	sture
Parameter	20 °F	59 °F	90 °F
-lours of Operation	8,760	8,760	8,760
2,3,7,8 TCDD Equivalents (lb/hr) = Basis	(Ib/10 ¹² Btu) x Heat Input (MM	Btu/hr) / 1,000,000 MMB tu/10 ¹	¹² Btu
Basis, Ib/10 ¹² Btu	1.20E-06	1.20E-06	1.20E-06
Heat Input Rate (MMBtu/hr)	1,537	1,534	1.419
Emission Rate (lb/hr)	1.84E-09	1.84E-09	1.70E-09
(TPY)	8.08E-09	8.06E-09	7.46E-09
Beryllium (lb/hr) = Basis (lb/10 ¹² Btu) x H	eat Input (MMBtu/hr) / 1,000,00	00 MMBtu/10 ¹² Btu	
Basis, Ib/10 ¹² Btu	0.00E+00	0	0
Heat Input Rate (MMBtu/hr)	1,537	1.534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00+300.0	0.00E+00	0.00E+00
Fluoride (lb/hr) = Basis (lb/10 ¹² Btu) x Hea	t Input (MMBtu/hr) / 1,000,000	MMBtu/10 ¹² Btu	
Basis, lb/10 ¹² Btu	0.00E+00	0	0
Heat Input Rate (MMBtu/hr)	1.537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00

Source: Electric Power Research Institute (EPRI), Electric Utility Trace Substances Report, 1994 (Table B-12).

Emission factors for metals are questionable and not used.

Note: No emission factors for hydrogen chloride (HCl) from natural gas-firing.

Table A-8. Maximum Emissions for Hazardous Air Pollutants for the FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low ${\rm NO_X}$ Combustor, Natural Gas, 80 % Load

		ent/Compressor Inlet Tempera	
Parameter	20 °F	59 °F	90 T
ours of Operation	8,760	8 <i>76</i> 0	8,760
ntimony (lb/hr) = Basis (lb/10 ¹² Btu) x F	leat Input (MMBtu/hr) / 1,000,00	0 MMBtu/10 ¹² Btu	
Basis, lb/10 ¹² Bru	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/lur)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00±+00	0.00E+00	0.00E+00
ienzene (lb/hr) = Basis (lb/10 ¹² Btu) x He	eat Input (MMBtu/hr) / 1,000,000	MMBtu/10 ¹² Btu	
Basis, lb/10 ¹² Bru	8.00E-01	8.00E-01	8.00E-01
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	1.23E-03	1.23E-03	1.14E-03
(TPY)	5.38E-03	5.38E-03	4.97E-03
admium (Ib/hr) = Basis (Ib/10 ¹² Bru) x H	leat Input (MMBtu/hr) / 1,000,00	0 MMBtu/10 ¹² Btu	
Basis, lb/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00+300.0
(TPY)	0.00E+00	0.00E+00	0.00E+00
hromium (lb/hr) = Basis (lb/10 ¹² Btu) x l	Heat Input (MMBtu/hr) / 1,000,0	00 MMBtu/10 ¹² Btu	
Basis, Ib/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBnz/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
ormaldehyde (lb/hr) = 10% of VOC lb/l Emission Rate, lb/10 ¹² Btu	nr #NAME?	#NAME?	#NAME?
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	#NAME?	#NAME?	#NAME?
(TPY)	#NAME?	#NAME?	#NAME?
obalt (lb/hr) = Basis (lb/10 ¹² Btu) x Heat	Input (MMBtu/hr) / 1,000,000 M	MBni/10 ¹² Bhi	
Basis, Ib/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
langanese (lb/hr) = Basis (lb/10 ¹² Btu) x	Heat Input (MMBtu/hr) / 1,000,0	00 MMBtu/10 ¹² Btu	
Basis, Ib/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(נאנו)	0.00E+00	6.00E+00	0.00E+00
licke! (lb/tur) = Basis (lb/10 ¹² Btu) × Fleat	Input (MMBtu/hr) / 1,000,000 M	MBtu/10 ¹² Btu	
Basis, Ib/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
hosphorous (lb/hr) = Basis (lb/10 ¹² Btu) :	x Heat Input (MMBhu/hr) / 1 000	000 MMBtu/10 ¹² Btu	
Basis, lb/10 ¹² Bru	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/tr)	1,537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(IPY)	0.00E+00	0.00E+00	0.00E+00
• •			
eienium (lb/hr) = Basis (lb/10 ¹² Bru) x He			0.005 . 50
Basis, By10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (lb/hr)	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00
(TPY)			0.002-700
oluene (jb/hr) = Basis (jb/10 ¹² Btu) x Hea			
Basis, lb/10 ¹² Btu	1.00E+01	1.00E+01	1.00E+01
Heat Input Rate (MMBtu/hr)	1,537	1,534	1,419
Emission Rate (Ib/hr)	1.54E-02	1.53E-02	1.42E-02
(TPY)	6.73E-02	6.72E-02	6.22E-02

Source: Electric Power Research Institute (EPRI), Electric Utility Trace Substances Report, 1994 (Table B-12). Emission factors for metals are questionable and not used.

Table A-9. Design Information and Stack Parameters for the FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_{X} Combustor, Natural Gas, 65 % Load

		nt/Compressor Inlet Tempera	ture
Parameter	20 F	59 °F	105 T
Combustion Turbine Performance			-
Evaporative cooler status/ efficiency (%)	Off	Off	Of
Ambient Relative Humidity (%)	80	80	6
Gross power output (MW)	130.28	117.71	98.49
Gross heat rate (Btu/kWh, LHV)	9,865	10,250	10,82
(Btu/kWh, HHV)	10,840	11,370	12,000
Heat Input (MMBtu/hr, LHV)- calculated	1,285	1,207	1,066
- provided	1,284	1,206	1,076
(MMBtu/hr, HHV) - provided	1,425	1,336	1,184
(HHV/LHV)	1.110	1.108	1.100
Fuel heating value (Btu/Ib, LHV)	21,038	21,038	21,036
. (Btu/lb, HHV)	23,345	23,345	23,345
(HHV/LHV)	1.110		
CT Exhaust Flow	1.110	1.110	1.110
Mass Flow (lb/hr)	3 000 355	0.007400	
• •	3,008,355	2,857,150	2,653,681
Temperature (°F)	1,051	1,087	1,089
Moisture (% Vol.)	7.17	7.84	10.90
Oxygen (% Vol.)	13.19	13.14	12.83
Molecular Weight - calculated	28.51	28.42	28.07
- provided	28.50	28.42	28.07
Volume Flow (acfm) = [(Mass Flow (lb/hr) x 1, Mass flow (lb/hr) Temperature (°F) Molecular weight Volume flow (acfm)- calculated - provided	3,008,355 1,051 28.51 1,939,295	7 [Molecular Weight x 2116.8] 2,857,150 1,087 28.42 1,891,657	2,653,681 1,089 28.07 1,781,152
uel Usage			
uel Usage	.000.000 Bhu/MMBhu (Fuel	Heat Content, Bhu/lb (LHV)	
uel Usage Fuel usage (lb/hr)= Heat Input (MMBtu/hr) x 1			1.076
uel Usage Fuel usage (Ib/hr) = Heat Input (MMBtu/hr) x 1 Heat input (MMBtu/hr, LHV)	1,284	1,206	1,076 21 ms
uel Usage Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 Heat input (MMBtu/hr, LHV) Heat content (Btu/lb, LHV)	1,284 21,038	1,206 21,038	21,038
uel Usage ruel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/lb, LHV) ruel usage (lb/hr)- calculated	1,284 21,038 61,032	1,206 21,038 57,325	21,038 51,146
uel Usage uel usage (Ib/hr) = Heat Input (MMBtu/hr) x 1 leat input (MMBtu/hr, LHV) leat content (Btu/lb, LHV)	1,284 21,038	1,206 21,038	21,038
uel Usage fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 Heat input (MMBtu/hr, LHV) Heat content (Btu/lb, LHV) fuel usage (lb/hr)- calculated - provided Heat content (Btu/cf, LHV)	1,284 21,038 61,032	1,206 21,038 57,325	21,038 51,146
uel Usage fuel usage (Ib/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/b, LHV) fuel usage (Ib/hr)- calculated - provided feat content (Btu/cf, LHV)	1,284 21,038 61,032 57,150	1,206 21,038 57,325 54,940	21,038 51,146 49,890
nel Usage uel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 leat input (MMBtu/hr, LHV) leat content (Btu/b, LHV) uel usage (lb/hr)- calculated - provided leat content (Btu/cf, LHV) uel density (lb/ft²)	1,284 21,038 61,032 57,150	1,206 21,038 57,325 54,940 920	21,038 51,146 49,890 920
uel Usage fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/b, LHV) fuel usage (lb/hr)- calculated	1,284 21,038 61,032 57,150 920 0.0437	1,206 21,038 57,325 54,940 920 0.0437	21,038 51,146 49,890 920 0.0437
uel Usage fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/b, LHV) fuel usage (lb/hr)- calculated	1,284 21,038 61,032 57,150 920 0.0437 1,395,652	1,206 21,038 57,325 54,940 920 0.0437 1,310,870	21,038 51,146 49,890 920 0.0437 1,169,565
tuel Usage tuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/h, LHV) uel usage (lb/hr)- calculated	1,284 21,038 61,032 57,150 920 0.0437 1,395,652	1,206 21,038 57,325 54,940 920 0.0437 1,310,870	21,038 51,146 49,890 920 0.0437 1,169,565
tivel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/h, LHV) fuel usage (lb/hr)- calculated - provided feat content (Btu/cf, LHV) fuel density (lb/ft³) fuel usage (cf/hr)- calculated fack and Exit Cas Conditions- HRSC fack height (ft) fixed transport (ft)	1,284 21,038 61,032 57,150 920 0.0437 1,395,652	1,206 21,038 57,325 54,940 920 0.0437 1,310,870	21,038 51,146 49,890 920 0.0437 1,169,565
uel Usage fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/b, LHV) fuel usage (lb/hr)- calculated - provided Heat content (Btu/cf, LHV) fuel density (lb/ft ³) fuel usage (cf/hr)- calculated ack and Exit Gas Conditions- HRSG tack height (ft) Xameter (ft)	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 190	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0
tivel Usage fivel usage (Ib/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/b, LHV) feat content (Btu/cf, LHV) feat content (B	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acfm) × [(HRSG Temp. (*	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 T) + 460 K)/(CT Temp. (°F) +	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190
tivel Usage tivel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 fleat input (MMBtu/hr, LHV) fleat content (Btu/b, LHV) uel usage (lb/hr)- calculated - provided fleat content (Btu/cf, LHV) uel density (lb/ft²) uel usage (cf/hr)- calculated tick and Exit Cas Conditions- HRSG tack height (ft) frameter (ft) emperature (°F) RSG- Volume flow (acfm) = CT Volume flow (acfm)	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acfm) × [(HRSG Temp. (*1,939,295)	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 190	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0
tiel Usage tuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 Icat input (MMBtu/hr, LHV) Icat content (Btu/h, LHV) uel usage (lb/hr)- calculated - provided Icat content (Btu/cf, LHV) uel density (lb/ft ³) uel usage (cf/hr)- calculated ack and Exit Gas Conditions- HRSG ack height (ft) iameter (ft) emperature (F) RSG- Volume flow (acfm) = CT Volume flow (CT Volume flow (acfm)) CT Temperature (F)	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acfm) × [(HRSG Temp. (*	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 T) + 460 K)/(CT Temp. (°F) +	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190
tivel Usage fivel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/h, LHV) fivel usage (lb/hr)- calculated	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acfm) × [(HRSG Temp. (*1,939,295)	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 F) + 460 K) / (CT Temp. (°F) + 1,891,657	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190
uel Usage Fuel usage (lb/tu) = Heat Input (MMBtu/tu) x 1 Heat input (MMBtu/tr, LHV) Heat content (Btu/lb, LHV) Fuel usage (lb/tr)- calculated - provided	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acim) × ((HRSG Temp. (*1,939,295) 1,051	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 190 F) + 460 K)/(CT Temp. (°F) + 1,891,657 1,087	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190 460)]
tivel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/h, LHV) fuel usage (lb/hr)- calculated	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (accim) × [(HRSG Temp. (*1,939,295) 1,051 190 834,243	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 (F) + 460 K)/(CT Temp. (°F) + 1,891,657 1,087 190 794,814	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190 460)]
tivel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 feat input (MMBtu/hr, LHV) feat content (Btu/h, LHV) fuel usage (lb/hr)- calculated	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acfm) × [(HRSG Temp. (* 1,939,295 1,051 190 834,243 http://doi.org/10.1001	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 (F) + 460 K)/(CT Temp. (°F) + 1,891,657 1,087 190 794,814	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190 460)] 1,781,152 1,089 190 747,417
tivel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 Heat input (MMBtu/hr, LHV) Heat input (MMBtu/hr, LHV) Heat content (Btu/hr) - calculated - provided Heat content (Btu/cf, LHV) Heat density (lb/ft²) Heat content (Btu/cf, LHV) HEAT Conditions HEAT HEAT Conditions HEAT HEAT Conditions HEAT HEAT Colume flow (acfm) = CT Volume flow (CT Volume flow (acfm) HEAT Temperature (F) HEAT Temperature (F) HEAT Temperature (F) HEAT Colume flow (acfm) HEAT Colume flow (acfm)	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acfm) × [(HRSG Temp. (*1,939,295) 1,051 190 834,243 her)²/4) × 3.14159} / 60 sec/834,243	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 (F) + 460 K)/(CT Temp. (°F) + 1,891,657 1,087 190 794,814 min 794,814	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190 1,781,152 1,089 190 747,417
tuel Usage Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1 Heat input (MMBtu/hr, LHV) Heat content (Btu/h, LHV) Fuel usage (lb/hr)- calculated - provided Heat content (Btu/cf, LHV) Fuel density (lb/ft ³) Fuel usage (cf/hr)- calculated ack and Exit Cas Conditions- HRSG tack height (ft) Financter (ft) Femperature (F) IRSG- Volume flow (acfm) = CT Volume flow (CT Volume flow (acfm) CT Temperature (F) HRSG Temperature (F) HRSG Volume flow (acfm) Felocity (ft/sec) = Volume flow (acfm) / [((diame)	1,284 21,038 61,032 57,150 920 0.0437 1,395,652 125 19.0 190 (acfm) × [(HRSG Temp. (* 1,939,295 1,051 190 834,243 http://doi.org/10.1001	1,206 21,038 57,325 54,940 920 0.0437 1,310,870 125 19.0 190 (F) + 460 K)/(CT Temp. (°F) + 1,891,657 1,087 190 794,814	21,038 51,146 49,890 920 0.0437 1,169,565 125 19.0 190 1,781,152 1,089 190 747,417

Source: Siemens-Westinghouse, 2000.

Note: Universal gas constant = 1,545 ft-lb(force)/R; atmospheric pressure = 2,116.8 lb(force)/ft²

Table A-10. Mananum Eminions for Criteria and Other Regulated Pollutants for the FPC Hann-2 Energy Center Secretar-Westinghouse 501F, Dry Low NO_X Combustor, Natural Gas, 65 % Load.

•		Ambunt/Compressor Inlet Temperat	w-
the second secon	20 7	59 T	1057
nurs of Operation	8,76 0	8,760	1,760
rticulate from CT and SCR			
urticulate (Brits) — Emission rate (Brits) from ma	numeturer (front	and back-half)	
Seeis, Brita *	5.7	5.4	4.9
urticulate from SCR = Sulfur trioxide (fortned fr	non conversion of	(SCL) movembre by anymonium suifate (s	PM.
articulate from convenion of 50y= 50y enters	res (Rofur) z Conv	remains SO ₂ to SO ₂ x ib SO ₂ /b SO ₂ x	- F Mygg
Conversion 50 ₃ emperior rate (B/hr)- untrainted	n of 50, z B 50, 4.0	INTERPORT OF THE SOUR SON	13
Conversion (%) from SO ₂ to SO ₃	10	10	10
MW 50-/ 50 ₂ (80/64)	13	13	1.3
MW (NH ₂) ₂ SO/ SO ₃ (132/80)	100 1.7	100 1 <i>3</i>	100 1.7
Particulate (Brhr)- calculated	0.002	0.77	0.69
Personaless (Softer) from CT + SCR	6.5	£	5.6
(177)	28.5	27.0	24.5
In the state of th		4	
dfur Dozide (lb/tr)= Natural gas (cf/tr) z sulfu	countries in c	7) x 1 (b-7/000 gr x (b-5/0 ₂ /a-5)/100	
uni une (ciffur)	1,395,∆52	1,310,670	1,169,563
iulfur content (grains/ 100 ct) - sesumed ^b b SO ₃ /Br S (64/32)	1 2	1 2	1 2
mission mild (Ib/hr)- calculated	4.0	1 . 7	נג
(Brhr)- provided (0.2 gp/100 cf) (not used) (TPY)	0.81 17.5	0.76	0.71
(iri)	1/3	16.4	14.6
trogen Oxides (Brhr)= NO ₄ (ppm) x ([20.9 x (1- 46 (mols. wat NOs) x 60 min/hr / [15		nj - Oxygen(%)} z 2216.8 z Yokume Bo) + 460°F) z 5.9 z 1,000,000 (adj. for ppe	
lmis, ppmvd @15% C ₃ ** 4oisture (%)	3.5 7.17	3.5 7.84	3.5 10.90
Daygen (%)	13.19	13.14	12.63
olume Flow (actin)	1,939,295	1,891,657	1,781,152
emperature (F) mission rate (B/hr)- calculated	1,051 17.9	1,087 16.8	1,089
(Britr)- provided	18.7	17.5	15.8
(TPY) [Ratio Brits provided/calculated]	81.8 1.044	76.7 1.042	69.0 1.054
poss sim provest carriers		1.0-2	1.0.4
uris, ppervd- calculated nois, ppervd @ 15% O ₂ - calculated	11.3 10	11.3 10	11.0 10
- provided *	10	10	10
loisture (%) xygen (%)	7.17 13.19	7.54 13.14	10.90 12.63
olume Flow (acts)	1,939,295	1,891,657	1,781,152
emperature (F)	1,001	1,047	1,089
mission rate (Brits)- calculated from given pp (Brits)- provided	31.1 33.0	29.2 31.0	26.0 28.0
(TPI)	144.5	135.5	122.6
[Relio S/hr provided/calculated]	1.061	1.062	1.078
Cs (lb/hr) = VOC(ppm) x [1 + Moisture(%)/ 100] 16 (mols. wgt as methure) x 60 min/hr / [15			
mis, ppowed (as CH _s)- calculated			
	#NAME?	anales?	ANAMET
use, powerd @ 15% O ₂ - calculated	#NAME?	PNAME?	PNAMET
ness, powered @ 15% O ₂ - calculated - provided **	SNAME? SNAME?	PNAMET	FNAME?
uis, ppmvd @ 15% O ₂ - calculated - provided ** costure (%)	SNAME? SNAME? 7.17	ønamet ønamet 7.84	FNAME? FNAME? 10.50
uis, pipervd @ 15% O ₂ - calculated - provided ** conture (%) rygen (%) share Flow (actor)	SNAME? SNAME?	PNAMET	FNAME?
usis, piperved @ 15% C ₂ - calculated - provided ** conduce (%) sygum (%) share Flow (scdis) suppreduce (*f)	#NAME? #NAME? 7.17 13.19 1,939,295 1,851	#NAMET #NAMET 7.84 13.14 1.891,657 1.007	#NAM67 #NAM67 10.90 12.43 1,781,132 1,999
usis, pipervel @ 15% O ₂ - calculated - provided ** contain (%) tygen (%) shared Flow (ecfen) temperature (*f) nuision rote (Rohe)- calculated	#NAME? #NAME? 7.17 13.19 1,939,295	enamet enamet 734 13.14 1,791,657 1,067 enamet	#NAME? #NAME! 10.90 12.83 1,781,152 1,999 #NAME?
usis, piperved @ 15% Cy - calculated - provided ** contains (%) stygens (%) shares (Tow (sectes) susperstates (**) nission rete (Brite)- calculated (Brite)- provided (Tit)	#NAME? #NAME? 7.17 13.19 1,939,295 1,951 #NAME? #NAME? #NAME?	enamet enamet 734 13.14 1.797,657 1.087 enamet enamet enamet	PNAMET PNAMET 10,90 12,43 1,781,132 1,669 PNAMET PNAMET PNAMET
sis, pipervid @ 13% C., - calculated - provided ** resture (%) ypen (%) have Flow (exten) mperature (*P) ission rete (te/tur)- calculated (te/tur)- provided	#NAME? #NAME? 7.17 13.19 1,939,295 1,851 #NAME? #NAME?	#NAME? #NAME? 7.34 13.14 1.791.657 1.007 #NAME?	#NAME7 #NAME7 10.90 12.43 1.781.132 1.789 #NAME7 #NAME7
nie, ppmred @ 13% Cp calculated	#NAME? #NAME? 7.17 13.19 1,939,295 1,951 #NAME? #NAME? #NAME?	enamet enamet 734 13.14 1.797,657 1.087 enamet enamet enamet	PNAMET PNAMET 10,90 12,43 1,781,132 1,669 PNAMET PNAMET PNAMET
sis, ppsered @ 15% C ₂ - calculated - provided ** contare (%) rypes (%) subsere (tore (scies) supereture (**) sinion rete (fe/try)- calculated (fe/try)- provided (ff/try)- provided (ff/try)- provided (ff/try)- provided (ff/try)- provided(calculated) (ff/try)- NA	FINAME? FINAME? 7.17 13.19 1,939.295 1,951 FINAME? FINAME? FINAME? FINAME?	PNAMET PNAMET 7.24 13.14 1.797.657 1.007 PNAMET PNAMET PNAMET PNAMET	PNAMET PNAMET 10.50 12.43 1.781.132 1.781.432 PNAMET PNAMET PNAMET PNAMET
sis, ppsered @ 15% C ₂ - calculated - provided ** organ (S) superstates (F) siasion rete (Britz) - calculated (Britz) - provided (Britz) - provided (TPY) [Ratio Strite provided/calculated] d (Britz) - NA casion Rate Socie siasion rate (Britz)	FINAMET FILT FILT FILT FILT FILT FINAMET	PNAMET PNAMET 734 13.14 1.971,857 1.087 PNAMET PNAMET PNAMET PNAMET PNAMET PNAMET PNAMET	PNAMET PNAMET 10.90 12.10 17.F1.139 PNAMET PNAMET PNAMET PNAMET PNAMET PNAMET
sis, ppsevd @ 13% C., - calculated	FNAMET FNAMET 7.17 13.19 1,939,295 1,951 FNAMET FNAMET FNAMET FNAMET FNAMET FNAMET	PNAMET PNAMET 734 13.14 1.PP1,657 1.DR7 PNAMET PNAMET PNAMET PNAMET PNAMET	FNAME? FNAME? 10.50 12.60 12.761.152 1.761.152 1.769.152
seis, ppeared @ 15% C ₂ - calculated - provided "" ombare (%) types (%) superstates (%) superstates (%) superstates (%) superstates (%) substates (%) substates (%) (substates (%)	FINAMET FINAMET 13.19 13.29 13.29 13.59 13.65 13.65 FINAMET FINAMET FINAMET FINAMET ANAMET AN	PNAMET PNAMET 734 13.14 1.791,857 1.087 PNAMET PNAMET PNAMET PNAMET PNAMET NAMET NAMET	PNAMET PNAMET 10.00 11.00 11.00 11.00 11.00 11.00 10.0
neis, piperred @ 13% Cycalculated - provided ** iombure (%) iombure (%) iombure (%) iombure (prov. (exical) iompure (exical) iompu	#NAME? #NAME? 13.19 13.99.295 13.51 #NAME? #NAME? #NAME? #NAME? NA	#NAME? #NAME? 7.84 13.14 1.391,657 1.087 #NAME? #NAME? #NAME? #NAME? #NAME? NAME?	PNAMET PNAMET PNAMET 10.90 12.80 1.7F1.132 1.7F1.132 1.FRH PNAMET PNAMET PNAMET PNAMET PNAMET NAMET PNAMET NAMET N
usis, piperred @ 15% Cy - calculated - provided ** (conture (%) strygen (%) superreture (**) mission rete (Refue)- calculated (Refue)- provided (Th't) [Ratio Refue provided/calculated] ad (Refue)- MA musion Rate Basis mission rete (Refue) (Th't) secury (Refue) - Basis (Refue) Basis (Refue) secury (Refue) - Basis (Refue) Basis (Refue) secury (Refue) - Basis (Refue) secury (Refue) - Basis (Refue) secury (Refue) secury (Refue) - Basis (Refue) secury (Refue) secury (Refue) secury (Refue)	#NAME? #NAME? 13.19 13.19 13.99 13.59 13.59 13.59 13.59 13.59 13.50 13.5	PNAMET PNAMET 7.34 13.14 1.971,657 1.087 PNAMET PNAMET PNAMET PNAMET PNAMET NAME NA	PNAMET PLAMET PLAMET 1050 1250 17F1,132 1,099 PNAMET PNAMET PNAMET PNAMET PNAMET NAMET PNAMET NAMET NA
usis, pipared @ 13% C) - calculated	#NAME? #NAME? 13.19 13.99.295 13.51 #NAME? #NAME? #NAME? #NAME? NA	#NAME? #NAME? 7.84 13.14 1.391,657 1.087 #NAME? #NAME? #NAME? #NAME? #NAME? NAME?	PNAMET PNAMET PNAMET 10.90 12.80 1.7F1.132 1.7F1.132 1.FRH PNAMET PNAMET PNAMET PNAMET PNAMET NAMET PNAMET NAMET N
seis, pipervell @ 15% C., - calculated - provided ** contact (%) rygen (%) superveture (F) superveture (S) superveture (#NAME? #NAME? 13.19 13.19 13.99 13.51 #NAME? #NAME? #NAME? #NAME? #NAME? NA	PNAME? PNAME? 7.24 13.14 1.797.657 1.007 PNAME? PNAME? PNAME? PNAME? NAME?	PNAMET PNAMET 10.50 12.10 17.F1.13 17.F1.13 1699 PNAMET PNAMET PNAMET PNAMET NAMET N
usis, piparvel @ 15% C2 - calculated	#NAME? #NAME? 13.19 13.19 13.99 13.51 #NAME? #NAME? #NAME? #NAME? NA	PNAMET PNAMET 7.34 13.14 1.191/57 1.087 PNAMET PNAMET PNAMET PNAMET NAMET NAME NA	PNAMET PLAMET 10.50 12.10 17F1.132 10/99 PNAMET PNAMET PNAMET PNAMET PNAMET ANAMET PNAMET PNA
asis, pparvel @ 15% O ₂ -calculated - provided ** tombare (%) hygen (%) others Elsev (exics) emperature (*) mission rote (bifur)- calculated (Briur)- provided (TPY) [Ratio Brive provided/calculated] and (Briur)= NA massion Rate Besis mission rote (bifur) (TPY) secury (Brive) = Basis (Brit0 th Bts) s Heat Input (f mis, Brit0 th Bts * ant Input Rate (JohCBruhr) ninsion Rate (Briur) (TPY) Nuric Acid Mist = 5O ₂ emission rote (Briur) a core s the selection of the first third (SpO ₂ /MeV SO ₂ (Shot) O ₂ emission rote (Briur)	#NAME? #NAME? 13.19 1.999.295 1.951 #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? *** *** ** ** ** ** ** ** ** ** ** **	PNAMET PNAMET 7.24 13.14 1.791,657 1.007 PNAMET PNA	PNAMET PNAMET 10.50 12.10 17.F1.13 17.F1.13 16.FF PNAMET PNAMET PNAMET PNAMET NAMET
suis, piparvel @ 15% O2-calculated	#NAME? #NAME? 13.19 13.19 13.99 13.51 #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? AMA NA	PNAMET PNAMET 7.34 13.14 1.791,857 1.792,857 PNAMET	PNAMET PLAMET PLAMET PLAMET PNAMET PN
seis, piperred @ 13% C) - calculated	#NAME? #NAME? 13.19 1.999.295 1.951 #NAME? #NAME? #NAME? #NAME? #NAME? #NAME? *** *** ** ** ** ** ** ** ** ** ** **	PNAMET PNAMET 7.24 13.14 1.791,657 1.007 PNAMET PNA	PNAMET PNAMET 10.50 12.15 1.7F1.15 1.FFF PNAMET PNAMET PNAMET PNAMET NAMET NAM

Source: *Samere-Westinghouse, 2000.

*Colder Associates Inc. 2000.

*Electric Power Remarch Institute (EPRI), Electric Unilly Truce Substances Report, 1994 (Table B-12).

*For NO₃ emissions, data originally provided at 25 ppered at 15% oxygen.

Table A-11. Maximum Emissions for Other Regulated PSD Pollutants for the FPC HInes-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Natural Gas, 65 % Load

	Ambie	ent/Compressor Inlet Tempera	ture
Parameter	20 °F	59 °F	105 °F
	0	00	0
Hours of Operation	8,760	8,760	8,760
2,3,7,8 TCDD Equivalents (lb/hr) = Basis	(lb/10 ¹² Btu) x Heat Input (MM	Btu/hr) / 1,000,000 MMBtu/10 ¹	² Btu
Basis, Ib/10 ¹² Btu	1.20E-06	1.20E-06	1.20E-06
Heat Input Rate (MMBtu/hr)	1,425	1,336	1,184
Emission Rate (lb/hr)	1.71E-09	1.60E-09	1.42E-09
(TPY)	7.49E-09	7.02E-09	6.22E-09
Beryllium (lb/hr) = Basis (lb/10 ¹² Btu) x H	eat Input (MMBtu/hr) / 1,000,0	00 MMBtu/10 ¹² Btu	
Basis, Ib/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,425	1,336	1.184
Emission Rate (Ib/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
Fluoride (lb/hr) = Basis (lb/10 ¹² Btu) x Hea	at Input (MMBtu/hr) / 1,000,000) MMBtu/10 ¹² Btu	
Basis, Ib/1012 Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,425	1,336	1.184
- · · · · · · · · · · · · · · · · · · ·	0.00E+00	0.00E+00	0.00E+00
Emission Rate (lb/hr)	U.UUETUU	0.002 1 00	

Source: Electric Power Research Institute (EPRI), Electric Utility Trace Substances Report, 1994 (Table B-12). Emission factors for metals are questionable and not used.

Table A-12. Maximum Emissions for Hazardous Air Pollutants for the FPC Hines-2 Energy Center Stemens-Westinghouse 501F, Dry Low ${\rm NO}_{\rm X}$ Combustor, Natural Gas, 65 % Load

_		ient/Compressor Inlet Temper	
Parameter	20 ሞ 0	5 9 ፑ 0	105 T
	<u></u>	U	
ours of Operation	8,760	8,760	8,760
ntimony (lb/hr) = Basis (lb/10 ¹² Btu) x I	leat input (MIMBtu/hr) / 1,000,00	00 MMBtu/10 ¹² Btu	
Basis, lb/1012 Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,425	1,336	1,184
Emission Rate (lb/hr)	0.00+300.0	0.90E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
enzene (lb/hr) = Basis (lb/10 ¹² Bru) x He	eat Input (MIMBtu/hr) / 1,000,000	MMBtu/10 ¹² Btu	
Basis, lb/10 ¹² Btu	8.00E-01	8.00E-01	8.00E-01
Heat Input Rate (MMBtu/hr)	1.425	1,336	1,184
Emission Rate (Ib/hr)	1.14E-03	1.07E-03	9.47E-04
(TPY)	4.99E-03	4.68E-03	4.15E-03
admium (lb/hr) = Basis (lb/10 ¹² Btu) x F	Seat Input (MMRtu/hr) / 1.000.00	O MM8nv/30 ⁽² Bhr	
Basis, lb/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
Heat Input Rate (MMBtu/hr)	1,425	1,336	1,184
imission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
uromium (lb/hr) = Basis (lb/10 ¹² Btu) x	Unit lamin A B (P). A 1 11 000 0	M 1 A 42 . 40 ¹² to	
nromium (Dynr) = Basis (Dy10 - Bhi) x . Iasis, Dy10 - Bhi	• •		0 00F
leat Input Rate (MMBtu/hr)	0.00E+00	0.00E+00	0.00E+00
neat Input Kate (MMBtu/hr) Emission Rate (lb/hr)	1,425 0,00E+00	1,336 0.00E+00	1,184 0.00E+00
(TPY)		0.00E+00	0.00E+00
(111)	0.00E+00	U.UUE+UU	U.UE+W
maldehyde (lb/hr) = 10% of VOC lb/			
mission Rate, Ib/10 ¹² Btu	≠NAME?	#NAME?	#NAME?
leat Input Rate (MMBtu/hr)	1,425	1,336	1,184
imission Rate (Ib/hr) (TPY)	#NAME?	#NAME?	#NAME?
(IFI)	#NAME?	#NAME7	#NAME?
balt (lb/hr) = Basis (lb/10 ¹² Btu) x Heat		MBtu/10 ¹² Btu	
asis, lb/10 ¹² Btu	0.00£+00	0.00E+00	0.00E+00
iest Input Rate (MMBtu/hr)	1,425	1,336	1,184
inission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
anganese (lb/hr) = Basis (lb/ 10^{12} Btu) x	Heat Input (MMBtu/hr) / 1,000,0	00 MMBtu/10 ¹² Btu	
lasis, lb/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
feat Input Rate (MMBtu/hr)	1,425	1,336	1,184
mission Rate (lb/hr)	0.00E+00	0.00E+00	0.D0E+00
(TPY)	0.00±+00	0.00E+00	0.00E+00
ckel (lb/hr) = Basis (lb/10 ¹² Btu) x Heat	Input (MMBtu/hr) / 1.000.000 M	MBtu/10 ¹² Btu	
asis, lb/10 ²² Btu	0.00E+00	0.00E+00	0.00E+00
leat Input Rate (MIMBtu/hr)	1,425	1,336	1,184
mission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(IPY)	0.00E+00	0.00E+00	0.00+300.0
osphorous (lb/hr) = Basis (lb/10 ¹² Btu) :	r Heat Innut (MMRevAv) / 1 000	000 MMBbi/J0 ¹² Rhi	
asis, lb/10 ¹² Btu	0.00E+00	0.00E+00	0.00+300.0
leat Input Rate (MMBhu/hr)	1,425	1,336	1,184
mission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(IPY)	0.00E+00	0.00E+00	0.00+00
• •			520E - 00
enium (lb/fur) = Basis (lb/10 ¹² Btu) x He			
ısis, lb/10 ¹² Btu	0.00E+00	0.00E+00	0.00E+00
eat Input Rate (MMBtu/tr)	1,425	1,336	1,184
mission Rate (lb/hr)	0.00E+00	0.00E+00	0.00E+00
(TPY)	0.00E+00	0.00E+00	0.00E+00
iuene (lb/hr) = Basis (lb/10 ¹² Btu) x Hea	t Input (MMBtu/hr) / 1,000,000 N	/IMBtu/10 ¹² Btu	
asis, lb/10 ¹² Bou	1.00E+01	1.00E+01	1.00E+01
ieat Input Rate (MMBtu/hr)	1,A25	1,336	1,184
mission Rate (lb/hr)	1.43E-02	1.34E-02	1.18E-02

Source: Electric Power Research Institute (EPRI), Electric Utility Trace Substances Report, 1994 (Table B-12) . Emission factors for metals are questionable and not used .

Table A-13. Design Information and Stack Parameters for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 100 % Load

	Turbine Inlet Ter	nperature	
20 °F	59 °F	72 °F	105 °F
191.9	184.5	178.4	163.1
	-		9,094
•	•	-	10,463
•	•	•	1,483
•	-	•	1,707
•		•	1,707
•			17,290
	•	•	19,892
1.150	1.150	1.150	1.150
3,826,829	3,680,420	3,558,433	3,253,093
3,826,829	3,680,420	3,558,433	3,253,093
1,070	1,100	1,110	1,130
7.12	7.74	8.79	11.04
11.99	11.99	11.78	11.40
28.78	28.68	28.56	28.32
,000 Btu/MMBtu (Fuel Heat Conter	nt, Btu/lb (LHV))	
1,825	1,679	1,625	1,483
17,290	17,290	17,290	17,290
105,570	97,130	94,000	85,790
105,570	97,130	94,000	85,790
1 14,869	13,680	13,239	12,083
125	125	125	125
19	19	19	19
(Temp. (°F)+ 460°	F)]/[Molecular w	eight x 2116.8]/	60 min/hr
3,826,829	3,680,420	3,558,433	3,253,093
1,070	1,100	1,110	1,130
28.78	28.68	28.56	28.32
2,475,210	2,434,870	2,379,489	2,222,073
41,254	40,581	39,658	37,035
2/4) x 3.141591/60) sec/min		
	_	270	270
			1,020,197
			1,020,197
07.4	67.0	U.ÇO	60.0
1	20 °F 191.9 9,513 10,945 1,825 2,100 2,100 17,290 19,892 1,150 3,826,829 3,826,829 1,070 7,12 11,99 28,78 ,000 Btu/MMBtu (1,825 17,290 105,570 105,570 105,570 14,869 125 19 (Temp. (°F)+ 460° 3,826,829 1,070 28,78 2,475,210 41,254	191.9 184.5 9,513 9,101 10,945 10,470 1,825 1,679 2,100 1,932 2,100 1,932 17,290 17,290 19,892 19,892 1.150 1.150 3,826,829 3,680,420 3,826,829 3,680,420 1,070 1,100 7.12 7.74 11.99 11.99 28.78 28.68 ,000 Btu/MMBtu (Fuel Heat Conter 1,825 1,679 17,290 17,290 105,570 97,130 105,570 97,130 105,570 97,130 105,570 97,130 114,869 13,680 125 125 19 19 (Temp. (*F) + 460*F)] / [Molecular w 3,826,829 3,680,420 1,070 1,100 28.78 28.68 2,475,210 2,434,870 41,254 40,581	191.9 184.5 178.4 9,513 9,101 9,109 10,945 10,470 10,480 1,825 1,679 1,625 2,100 1,932 1,870 17,290 17,290 17,290 19,892 19,892 19,892 1,150 1,150 1,150 3,826,829 3,680,420 3,558,433 3,826,829 3,680,420 3,558,433 1,070 1,100 1,110 7,12 7,74 8,79 11,99 11,99 11,78 28.78 28.68 28.56 ,000 Btu/MMBtu (Fuel Heat Content, Btu/lb (LHV)) 1,825 1,679 1,625 17,290 17,290 17,290 105,570 97,130 94,000 105

Note: Universal gas constant = 1,545 ft-lb(force)°R; atmospheric pressure = 2,116.8 lb(force)/ft²; 14.7 lb/ft³

Turbine inlet relative humidity is 20% at 35 °F, 60% at 59 and 75 °F, and 50% at 95 °F.

Source: Siemens/Westinghouse 2000,

Table A-14. Maximum Emissions for Criteria Pollutants for FPC Hines-2 Energy Center Siemens-Westinghouse 901F, Dry Low NO_X Combustor, Distillate, 100 % Load

	7	urbine Inlet Ter	nperature	
Parameter	20 °F	59 T	72.°F	105 T
Hours of Operation	1.000	1000	1 000	1,000
•	1,000	1,000	1,000	1,000
Particulate (lb/hr) = Emission rate (lb/hr) from manufa				
Basis (excludes H ₂ SO ₄), B/hr Emission rate (lb/hr)- provided	43 43.0	39.6	38.3 38.3	34.1 34.1
Elizabori tele (local) provided	₹5.0	314	362	29.4
Particulate from SCR = Sulfur trioxide (formed from o				=PM ₂₀)
Particulate from conversion of SO ₃ = SO ₃ emissions (I	né 503 x Ib SO3 to			
SO ₂ emission rate (lb/hr)- calculated	105.6	97.1	94.0	85.1
Conversion (%) from SO ₂ to SO ₃	10	10	10	10
MW 50/502 (80/64)	1.3	13	1.3	1.3
Conversion (%) from SO ₃ to (NH ₂) ₂ (SO ₂)	100	100	100	ıα
MW (NHJ), SO/ 50, (132/80)	1.7	1.7	1.7	13
Particulate (lb/hr)- calculated	21.77	20.03	19.39	17.69
Particulaté (Ib/lur) from CT + SCR	64.8	59.4	57. 7	52.5
Particulate (tons/year) from CT + SCR	32.4	29.5	28.8	26.2
Sulfur Dioxide (lb/hr) = Natural gas (lb/hr) x sulfur coc	ntent (%/100) x (%	SO ₂ /86 S)		
Fuel Sulfur Content	0.05%	0.05%	0.05%	0.05%
Fuel use (lb/hr)	105,570	97,130	94,000	85,790
1b SO ₂ /b S (64/32)	100,570	2	2	2
Emission rate (Ib/hr) - calculated	105.6	97.1	94.0	83.8
- provided	95	95	94	86
(TPY)	52.79	48.57	47.00	42.90
Nitrogen Oxides (lb/hr) = NO _x (ppm) x ([20.9 x (1 - Mo 46 (mole, wgt NOx) x 60 min/hr / [1545 x				
Besis, ppmvd @15% O ₂ Moisture (%) Oroman (%)	15 7.12	15 7.74 11.99	15 8.79	11.04
Mointure (%) Oxygen (%)	7.12 11. 9 9	7.74 11.99	8.79 11.78	11.04 11.4
Moisture (%) Oxygen (%) Turbine Flow (acfm)	7.12 11.99 1,180,983	7.74 11.99 1,139,394	8.79 11.78 1,106,387	11.04 11.4 1,020,197
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Ethaust Temperature (°F)	7.12 11.99 1,180,983 270	7.74 11.99 1,139,394 270	8.79 11.78 1,106,387 270	11.04 11.4 1,020,197 270
Mointure (%) Oxygen (%) Turbine Plow (acfm) Turbine Ethaust Temperature (°F) Emission rate (Ib/hr) - calculated	7.12 11.99 1,180,983 270 115.4	7.74 11.99 1,139,394 270 109.4	8.79 11.78 1,106,387 270 106.1	11.04 11.4 1,020,197 270 96.6
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Ethaust Temperature (°F)	7.12 11.99 1,180,983 270	7.74 11.99 1,139,394 270	8.79 11.78 1,106,387 270	11.04 11.4 1,020,197 270 96.6 96.7
Mointure (%) Oxygen (%) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (B/hr) - calculated - provided	7.12 11.99 1,180,983 270 115.4 116.9 58.5	7.74 11.99 1,139,394 270 109.4 109.4 54.7	8.79 11.78 1,106,387 270 106.1 105.9 53.0 ow (actin) x	15 11.04 11.4 1,020,197 270 96.5 96.7 48.4
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Ethaust Temperature (°F) Emission rate (Ib/hr) - calculated - provided (TPY) Carbon Monoxide (Ib/hr) = CO(ppm) x [1 - Moisture (%) 28 (mole. wgt CO) x 60 min/hr / [1545 x (%) Basis, ppmvd	7.12 11.99 1,180,983 270 115.4 116.9 58.5	7.74 11.99 1,139,394 270 109.4 109.4 54.7 /t2 x Vokume fic 0°F) x 1,000,000	8.79 11.78 1,106,387 270 106.1 105.9 53.0 ow (acfm) x (adj. for ppm)]	11.04 11.4 1,020,197 270 96.6 96.7 48.4
Mointure (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (Br/hr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 (y)100] x 2116.8 lb. CT temp.(TF) + 46	7.74 11.99 1,139,394 270 109.4 109.4 54.7 ft2 x Volume fic 0°F) x 1,000,000	8.79 11.78 1,106,387 270 106.1 105.9 53.0 ow (actim) x (adj. for ppm)]	11.04 11.4 1,020,197 270 96.6 96.7
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (TPY) Carbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(%) 28 (mole. wgt CO) x 60 min/hr / [1545 x (f) Basis, ppmvd Moisture (%) Turbine Flow (acfm)	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb. CT temp.(F) + 46	7.74 11.99 1,139,394 270 109.4 109.4 54.7 /t2 x Vokume fic 0°F) x 1,000,000	8.79 11.78 1,106,387 270 106.1 105.9 53.0 ow (acfm) x (adj. for ppm)]	11.04 11.4 1,020,197 270 96.6 96.7 48.4
Mointure (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (Br/hr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb. CT temp.(FF) + 46	7.74 11.99 1,139,394 270 109.4 109.4 54.7 762 x Volume fic 0°F) x 1,000,000	8.79 11.78 1,106,387 270 106.1 105.9 53.0 ow (actm) x (adj. for ppm)] 30 8.79	11.04 11.4 1,020,197 270 96.5 96.7 48.4
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (TPY) Carbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(%) 28 (mole. wgt CO) x 60 min/hr / [1545 x (f) Basis, ppmvd Moisture (%) Turbine Flow (acfm)	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 tb. CT temp.(*F) + 46 30 7.12 1,180,983 270 103.8	7.74 11.99 1,139,394 270 109.4 109.4 54.7 4t2 x Volume fit 0°F) x 1,000,000 7.74 1,139,394 270 99.4	8.79 11.78 1.106.387 270 106.1 105.9 53.0 (acdj. for ppm.)] 30 8.79 1.106.387 270 95.5	11.04 11.4 1,020,197 96.6 96.7 48.4 30 11.04 1,020,197 270
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) Carbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(%) 28 (mole. wgt CO) x 60 min/hr / [1545 x (f) Basis, ppmvd Moisture (%) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb. CT temp.(°F) + 46 3.0 7.12 1,180,983 270 103.8 112.0	7.74 11.99 1,139,394 270 109.4 109.4 54.7 7t2 x Vokume fix 0°F) x 1,000,000 30 7.74 1,139,394 270 99.4 106.0	8.79 11.78 1.106.387 270 106.1 105.9 53.0 (w (actin) x (adj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0	11.04 11.4 1,020,197 270 96.6 96.7 48.4 30 11.04 1,020,197 270 65.8 91.0
Mointure (%) Oxygen (%) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (Bvhr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb CT temp.(FF) + 46 30 7.12 1,180,983 270 103.8 112.0 56.0 8bow (actim) x	7.74 11.99 1,139,394 270 109.4 54.7 7t2 x Vokume fix 0°F) x 1,000,000 30 7.74 1,139,394 270 99.4 106.0 53.0	8.79 1.106.387 270 106.1 105.9 53.0 (acdj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0	11.04 11.4 1,020,197 270 96.5 96.7 48.4 30 11.04 1,020,197
Moisture (%) Oxygen (%) Turbine Flow (actm) Turbine Flow (actm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) Carbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(% 28 (mole, wgt CO) x 60 min/hr / [1545 x (t) Basis, ppmvd Moisture (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) OCS (lb/hr) = VOC(ppmvw) x 2116.8 lb/t2 x Volume 16 (mole, wgt as methane) x 60 min/hr / [1545 x Basis, ppmvw	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6)100] x 2116.8 lb. CT temp.(T) + 46 30 7.12 1.190,983 112.0 103.8 112.0 56.0 flow (sefm) x (CT temp.(T) + 46	7.74 11.99,394 270 109.4 109.4 54.7 7E2 x Vokume Rc 0°F) x 1,000,000 7.74 1,139,394 106.0 53.0	8.79 11.78 1.105,387 270 106.1 105.9 53.0 over (actim) x (actj. for ppm)] 30 8.79 1.106,387 270 95.5 102.0 51.0 0 (actj. for ppm)]	11.04 11.4 1,720,179 96.6 96.7 48.4 30 11.04 1,020,197 20 85.8 91.0 43.5
Mointure (%) Oxygen (%) Turbine Flow (acfm) Turbine Elow (acfm) Turbine Exhaust Temperature (°F) Emission rate (Bvhr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb. CT temp.(T) + 46 30 7.12 1,180,983 112.0 103.8 112.0 56.0 8ow (scfm) x (CT temp.(T) + 4	7.74 11.99 1,139,394 270 109.4 109.4 54.7 4t2 x Volume Re 0°F) x 1,000,000 7.74 1,139,394 270 99.4 106.0 53.0	8.79 1.106.387 270 106.1 105.9 53.0 ove (actim) x (actj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0 0 (actj. for ppm)]	11.04 11.4 1,020,197 270 96.6 96.7 48.4 30 11.04 1,020,197 270 85.8 91.0 43.5
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Enhaust Temperature (°F) Emission rate (lb/hr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb CT temp.(*F) + 46 30 7.12 1,180,983 270 103.8 112.0 56.0 flow (sefm) x (CT temp.(*F) + 4	7.74 11.99 1,139,394 270 109.4 54.7 4t2 x Vokume file 0°F) x 1,000,000 30 7.74 1,139,394 270 99.4 106.0 53.0	8.79 1.106.387 270 106.1 105.9 53.0 over (actim) x (adj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0 0 (adj. for ppm)]	11.04 11.4 1,020,197 270 96.5 96.7 48.4 30 11.04 1,020,197 270 65.8 91.0 45.5
Moisture (%) Oxygen (%) Turbine Flow (actm) Turbine Flow (actm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) Carbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(% 28 (mole, wgt CO) x 60 min/hr / [1545 x (t) Basis, ppmvd Moisture (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) OCS (lb/hr) = VOC(ppmvw) x 2116.8 lb/t2 x Volume 16 (mole, wgt as methane) x 60 min/hr / [1545 x Basis, ppmvw Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6)100] x 21 16.8 lb. CT temp.(T) + 46 30 7.12 1.190,983 112.0 103.8 112.0 56.0 flow (sefm) x (CT temp.(T) + 46 1,180,983 270 10,180,983	7.74 11.99,394 270 109.4 109.4 54.7 7E2 x Vokume Rc 0°F) x 1,000,000 7.74 1,139,394 108.0 53.0 10 2,434,670 1,100 20.53	8.79 11.78 1.106.387 270 106.1 105.9 53.0 over (actim) x (actj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0 0 (actj. for ppm)] 10 2.379,489 1.110 19.93	11.04 11.4 1,020,197 270 96.6 96.7 48.4 30 11.04 1,020,197 85.8 91.0 45.5
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Enhaust Temperature (°F) Emission rate (lb/hr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb. CT temp.(T) + 46 30 7.12 1,180,983 270 103.8 112.0 56.0 8ow (scfm) x (CT temp.(T) + 4 10 1,180,983 270 21.28 22.0	7.74 11.99 1,139,394 270 109,4 54.7 7t2 x Volume Re 0°F) x 1,000,000 7.74 1,139,394 106.0 53.0 1060°F) x 1,000,00 10 2,434,870 1,100 20.53 21.0	8.79 1.106.387 270 106.1 105.9 53.0 ove (actim) x (actj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0 0 (actj. for ppm)] 10 2.379,489 1.110 19.93 21.0	11.04 11.4 1,020,197 270 96.6 96.7 48.4 30 11.04 1,020,197 270 65.8 91.0 45.5
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Enhaust Temperature (°F) Emission rate (lb/hr) - calculated	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6)100] x 21 16.8 lb. CT temp.(T) + 46 30 7.12 1.190,983 112.0 103.8 112.0 56.0 flow (sefm) x (CT temp.(T) + 46 1,180,983 270 10,180,983	7.74 11.99,394 270 109.4 109.4 54.7 7E2 x Vokume Rc 0°F) x 1,000,000 7.74 1,139,394 108.0 53.0 10 2,434,670 1,100 20.53	8.79 11.78 1.106.387 270 106.1 105.9 53.0 over (actim) x (actj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0 0 (actj. for ppm)] 10 2.379,489 1.110 19.93	11.04 11.4 1,720,179 96.6 96.7 48.4 30 11.04 1,020,197 20 85.8 91.0 43.5
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhause Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) Earbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(%) 28 (mole, wgt CO) x 60 min/hr / [1545 x (for the continuous c	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb. CT temp.(T) + 46 30 7.12 1,180,983 270 103.8 112.0 56.0 8ow (scfm) x (CT temp.(T) + 4 10 1,180,983 270 21.28 22.0	7.74 11.99 1,139,394 270 109,4 54.7 7t2 x Volume Re 0°F) x 1,000,000 7.74 1,139,394 106.0 53.0 1060°F) x 1,000,00 10 2,434,870 1,100 20.53 21.0	8.79 1.106.387 270 106.1 105.9 53.0 ove (actim) x (actj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0 0 (actj. for ppm)] 10 2.379,489 1.110 19.93 21.0	11.04 11.4 11.020,197 96.6 96.7 45.4 1.020,197 207 257 45.5 10 2.222,073 1,120 18.36 19.36
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhaust Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) Larbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(%) 28 (mole. wgt CO) x 60 min/hr / [1545 x (for the continuation of the continuation o	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6/100] x 2116.8 lb. CT temp.(TF) + 46 30 7.12 1,180,983 270 103.8 112.0 56.0 8bow (scfm) x (CT temp.(TF) + 4 10 1,180,983 270 21.28 22.0 11.0	7.74 11.99 1,139,394 270 109.4 54.7 109.4 54.7 12 x Volume Re 0°F) x 1,000,000 7.74 1,139,394 106.0 53.0 1060°F) x 1,000,00 10 2,434,870 1,100 20.53 21.0 10.5	8.79 11.78 1.106.387 270 106.1 105.9 53.0 over (actim) x (aclj. for ppm)] 30 8.79 1.106,387 270 95.5 102.0 51.0 0 (aclj. for ppm)] 10 2,379,489 1,110 19.93 21.0 10.5	11.04 11.4 1,020,197 270 96.6 96.7 48.4 30 11.04 1,020,197 277 85.8 91.0 45.5 10 2,222,073 1,130 18.38 19.0 9.5
Moisture (%) Oxygen (%) Turbine Flow (acfm) Turbine Flow (acfm) Turbine Exhause Temperature (°F) Emission rate (lb/hr) - calculated - provided (IPY) Earbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(%) 28 (mole, wgt CO) x 60 min/hr / [1545 x (for the continuous c	7.12 11.99 1,180,983 270 115.4 116.9 58.5 6)100] x 21 16.8 lb. CT temp.(T) + 46 30 7.12 1.190,983 112.0 103.8 112.0 56.0 flow (sefm) x (CT temp.(F) + 46 1,180,983 270 10,180,983 270 11,190,983	7.74 11.99 1,139,394 270 109.4 109.4 54.7 ft2 x Vokume ft. 0°F) x 1,000,000 7.74 1,139,394 108.0 53.0 10 2,434,870 1,100 20.53 21.0 10.5	8.79 11.78 1.106.387 270 106.1 105.9 53.0 over (actim) x (adj. for ppm)] 30 8.79 1.106.387 270 95.5 102.0 51.0 0 (adj. for ppm)] 10 2.379,489 1.110 19.93 21.0 10.5	11.04 11.4 1,020,197 270 96.5 96.7 48.4 30 11.04 1,020,197 85.8 91.0 45.5 10 2,222,073 1,130 9,5

Note: ppmvd= parts per million, volume dry; O_2 = oxygen.

Source: Siemena/Westinghouse, 2000; Golder Associates, 2000; EPA, 1996 (AP-42 draft revisions)

Table A-15. Maximum Emissions for Other Regulated PSD Pollutants for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 100 % Load

	Ti	urbine <mark>Inlet</mark> Ten	perature	
Parameter	20 °F	59 °F	. 72 °F	105 °F
Hours of Operation	1,000	1,000	1,000	1,000
2,3,7,8 TCDD Equivalents (lb/hr) = Basis (lb/10 ¹² Bt.	ı) x Heat İnput (MMBt	tu/hr) / 1,000,000	MMBtu/10 ¹² Btu	
Basis *, lb/1012 Btu	3.80E-04	3.80E-04	3.80E-04	3.80E-04
Heat Input Rate (MMBtu/hr)	2.10E+03	1.93E+03	1.87E+03	1.87E+03
Emission Rate (lb/hr)	7.98E-07	7.34E-07	7.11E-07	7.11E-07
(ТРҮ)	3.99E-07	3.67E-07	3.55E-07	3.55E-07
Beryllium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MMBtu/hr) / 1,000,000	MMBtu/10 ¹² Bt	ц	
Basis ^a , lb/10 ¹² Btu	0.331	0.331	0.331	0.331
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (lb/hr)	6.95E-04	6.40E-04	6.19E-04	6.19E-04
(ТРҮ)	3.48E-04	3.20E-04	3.09E-04	3.09E-04
Fluoride (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (M	IMBtu/hr) / 1.000.000 N	/IMBtu/10 ¹² Btu		
Basis b, lb/10 ¹² Btu	32.54	32.54	32.54	32.54
Heat Input Rate (MMBtu/hr)	2.100	1.932	1.870	1,870
Emission Rate (lb/hr)	6.83E-02	6.29E-02	6.08E-02	6.08E-02
(TPY)	3.42E-02	3.14E-02	3.04E-02	3.04E-02
Hydrogen Chloride (lb/hr) = Basis (lb/10 ¹² Btu) x He	eat Input (MMBtu/hr)/	1,000,000 MMB	tu/10 ¹² Btu	
Basis 1, lb/10 ¹² Btu	2.07E+02	2.07E+02	2.07E+02	2.07E+02
Heat Input Rate (MMBtu/hr)	2.100	1.932	1,870	1,870
Emission Rate (lb/hr)	4.34E-01	3.99E-01	3.87E-01	3.87E-01
(TPY)	2.17E-01	2.00E-01	1.93E-01	1.93E-01
Mercury (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (M	[MBtu/hr) / 1.000.000 N	/MBtu/10 ¹² Btu		
Basis , lb/1012 Btu	6.26E-01	6.26E-01	6.26E-01	6.26E-01
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (lb/hr)	1.31E-03	1,21E-03	1.17E-03	1.17E-03
(TPY)	6.57E-04	6.05E-04	5.85E-04	5.85E-04
Sulfuric Acid Mist = Fuel Use (lb/hr) x sulfur (S) con x MW H ₂ SO ₄ /MW S (98/32)	tent (fraction) x conve	rsion of S to H ₂ S	⁶ O₄ (%)	
Fuel Usage (cf/hr)	105,570	97,130	94,000	85, 7 90
	52.79	48.57	47.00	42.90
Sulfur (lb/hr)	34./9			
Sulfur (lb/hr) lb H ₂ SO ₄ /lb S (98/32)	3.0625	3.0625	3.0625	3.0625
Sulfur (lb/hr)		3.0625 10	3.0625 10	3.0625 10
Sulfur (lb/hr) lb H ₂ SO ₄ /lb S (98/32)	3.0625			

Sources: * EPA, 1998 (AP-42 draft revisions)

^b EPA, 1981

 $^{^{\}circ}$ 4 ppm assumed based on ASTM D2880

d assumed based on combustion estimates from GE

Table A-16. Maximum Emissions for Hazardous Air Pollutants for FPC Hines-2 Energy Center Stemero-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 100 % Load

	1	Turbine Inlet Ten	perature	
Parameter	20 %	59 °F	72.°F	105 °F
Hours of Operation	1,000	1,000	1,000	1,000
Amenic (lb/hr) = Basis (lb/10 ¹¹ Btu) x Heat Input (M				
Besis a, lb/10 ¹² Btu	7.91E+00	7.91E+00	7.91E+00	7.91E+00
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (Ib/hr) (TPY)	1.66E-02 8.31E-03	1.53E-02 7.64E-03	1.48E-02 7.40E-03	1.48E-02 7.40E-03
Benzene (lb/hr) = Basis (lb/10 ¹¹ Btu) x Heat Input (l	A A A A A A A A A A A A A A A A A A A	ν. κασκ. σο [‡] Βι		
Basis *, lb/10 ¹² Btu	м <u>имъни</u> лту/ 1,000,0 1.1	иммыци в 1.1	1.1	1.1
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (lb/hr)	2.31E-03	2.13E-03	2.06E-03	2.06E-03
(TPY)	1.15E-03	1,06E-03	1.03E-03	1.03E-03
Cadmium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input	(M[MBhu/hr) / 1,000,0	000 MMBtu/10 ¹² 1	3tu	
Basis *, Ib/10 ¹² Btu	3.24	3.24	3.24	3.24
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (lb/hr)	6.80E-03	6.26E-03	6.06E-03	6.06E-03
(TPY)	3.40E-03	3.13E-03	3.03E-03	3.03E-03
Chromium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input	t (MMBtu/hr) / 1,000			
Basis * , Ib/10 ¹² Btu	6.76	6.76	6.76	6,76
Heat Input Rate (MMBtwhr)	2,100	1,932	1,870	1,870
Emission Rate (lb/hr)	1.42E-02	1.31E-02	1.26E-02	1.26E-02
(TP:X)	7.10E-03	6.53E-03	6.32E-03	6.32E-03
Formaldehyde (lb/hr) = 10% of VOC lb/hr			a 000 . 00	1 02F . 00
Emission Rate, Ib/10 ¹² Btu	1.05E+03	1.05E+03	1.05E+03	1.05E+03 1.870
Heat Input Rate (MMBtu/tu)	2,100	1,932 2,02E+00	1,870 1.96E+00	1.96E+00
Emission Rate (lb/hr) (TPY)	2.20E+00 1.10E+00	1.01E+00	9.79E-01	9.79E-01
Cobalt (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MN	JRHJAN / 1 000 000	MMRhi/IO ¹² Bhi		
Basis b, lb/10 ²² Btu	37	37	37	37
Heat Input Rate (MIMBtw/hr)	2.10E+03	1.93E+03	1.87E+03	1.87E+03
Emission Rate (lb/hr)	7.77E-02	7.15E-02	6.92E-02	6.92E-02
(TPY)	3.88E-02	3.57E-02	3.46E-02	3.46E-02
Manganese (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inpu	t (MMBtu/hr) / 1,000	0000 MMBы/10 ¹²	Bhu	
Basis *, Ib/10 ¹² Btu	432	432	432	432
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (Ib/hr)	9.07E-01	8.35E-01	8.08E-01	8.08E-01
(TPY)	4.54E-01	4.17E-01	4.04E-01	4.04E-01
Nickel (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MM	•			
Basis , lb/10 ¹² Bhi	86.3	86.3	86.3	86.3 1,870
Heat Input Rate (MMBtu/hr)	2,100 1.81E-01	1,932 1,67E-01	1,870 1.61E-01	1,61E-01
Emission Rate (lb/hr) (TPY)	9.06E-02	8.34E-02	8.07E-02	8.07E-02
Phosphorous (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inp	est (MARtes/hrt) / 1 ()	20 000 MMBas/10	¹² Bhu	
Basis , lb/1012 Btu	3.00E+02	3.00E+02	3.00E+02	3.00E+02
Heat Input Rate (MMBtu/hr)	2,100	1.932	1,870	1,870
Emission Rate (Bh/hr)	0.629999532	0.579632988	0.5609544	0.5609544
(TPY)	0.314999766	0.289816494	0.2804772	0.2804772
Selenium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (l	MMBhu/hr) / 1,000,0	00 MMBtu/10 ¹² B	nu.	
Basis ^a , lb/10 ¹² Btu	23	23	23	23
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (Ib/hr)	4.83E-02	4.44E-02	4.30E-02	4.30E-02
(IPY)	2.41E-02	2.22E-02	2.15E-02	2.15E-02
Toluene (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (M	(MBtu/hr)/1,000,000			
Basis *, lb/10 ¹² Btu	237	237	237	237
Heat Input Rate (MMBtu/hr)	2,100	1,932	1,870	1,870
Emission Rate (lb/hr)	4.98E-01	4.58E-01	4.43E-01	4.43E-01
(TPY)	2.49E-01	2.29E-01	2.22E-01	2.22E-01

Sources: *EPA, 1998 (AP-42 draft revisions)

EPA,1996 (AP-42,Table 3.1-4)

Table A-17. Design Information and Stack Parameters for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 80 % Load

.		Turbine Inlet Te	mperature	•	
Parameter	20 ℉	59 °F	72 °F	105 °F	
Combustion Turbine Performance					
Gross power output (MW) - Estimated	153.5	147.6	142.7	130.	
Gross heat rate (Btu/kWh, LHV) - Calculated	9,642	9,295	9,335	9.412	
(Btu/kWh, HIHV) - Calculated	10,707	10,321	10,366	10.45	
Heat Input (MMBtu/hr, LHV) - Calculated	1,480	1,372	1,332	1,228	
(MMBtu/hr, HHV) - Calculated	1,644	1,524	1.480	1.364	
(MMBtu/tr, HHV) - Provided	1,644	1,524	1.480	1.364	
Fuel heating value (Btu/lb, LHV)	17,290	17.290	17,290	17,290	
(Btu/lb, HHV)	19,200	19.200	19,200	19,200	
(HHV/LHV)	1,110	1.110	1.110	1.110	
CT Exhaust Flow	-1	******	1.110	1.110	
Mass Flow (lb/hr)	3,800,715	3,589,967	3,459,546	3,179,611	
	3,800,715	3,589,967	3,459,546	3,179,611	
Temperature (°F) - Estimated	1.120	1.140	1.150	1.170	
Moisture (% Vol.)	5.85	6.53	7.6	9.9	
Oxygen (% Vol.)	13.42	13.38	13.17	12.73	
Molecular Weight	28.81	28.73	28.61	28.36	
				22	
uel Usage					
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,000	0,000 Bhu/MMBhu (1	Fuel Heat Conter	nt. Bhu/lb (LHV))		
Heat input (MMBhi/hr, LHV)	1,480	1,372	1.332	1,228	
Heat content (Btu/lb, LHV)	17,290	17.290	17,290	17,290	
Fuel usage (lb/hr)- calculated	85,600	79,360	77,060	71,030	
- provided	85,600	79,360	77,060	71.030	
(gallons/hr) - calculated lb/gal = 7.1	12,056	11,177	10,854	10,004	
IRSG Stack			•		
CT - Stack height (ft)					
Diameter (ft)	125	125	125	125	
o-maries (ii)	19	19	19	19	
urbine Flow Conditions					
	C				
Turbine Flow (actin) = [(Mass Flow (lb/hr) x 1,545 x Mass flow (lb/hr)	(1emp. ('F)+ 460')	')] / [Molecular w			
Temperature (F)	3,800,715	3,589,967	3,459,546	3,179,611	
Molecular weight	1,120	1,140	1,150	1,170	
Volume flow (acfin)- calculated	28.81	28.73	28.61	28.36	
(ft3/s)- calculated	2,535,697	2,431,994	2,368,159	2,223,331	
(ICFS) CALUMIED	42,2 62	40,533	39,4 69	37,056	
RSG Stack Flow Conditions					
/elocity (ft/sec) = Volume flow (acfm) / [((diameter)	2/4) v 3 14150) / 40 .	sac/min			
CT Temperature (°F)				.	
CT volume flow (actin)	270	270	270	270	
(want)	1,171,556	1,109,597	1,073,761	995,725	
Diameter (ft)				•	
Diameter (ft) Velocity (ft/sec)- calculated	19 68.9	19 65.2	19 63.1	19 58.5	

Note: Universal gas constant = 1,545 ft-lb(force)/R; atmospheric pressure = 2,116.8 lb(force)/ft²; 14.7 lb/ft³ Turbine inlet relative humidity is 20% at 35 °F, 60% at 59 and 75 °F, and 50% at 95 °F. Source: Siemens/Westinghouse 2000,

Table A-18. Maximum Emissions for Criteria Pollutants for FPC Hines-2 Energy Center
. Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 80 % Load

Ph		urbine Inlet Tec		
Parameter	20 °F	59°F	72 °F	105 °F
Hours of Operation	1,000	1,000	1,000	1,000
Particulate (lb/hr) = Emission rate (lb/hr) from manu	facturer			
Basis (excludes H ₂ SO ₄), Ib/hr	34.7	32.2	31.2	29.7
Emission rate (lb/hr)- provided	34.7	32.2	31.2	29.7
Particulate from SCR = Sulfur trioxide (formed from Particulate from conversion of SO ₁ = SO ₂ emissions Conversion		1 50 ₂ to 50 ₃ x It	SOy/Ib SO ₂ ×	PM ₃₀)
SO ₂ emission rate (lb/hr)- calculated	85.6	79.4	77.1	71.0
Conversion (%) from SO ₂ to SO ₃	10	10	10	10
MW SO / SO ₂ (80/64) Conversion (%) from SO ₂ to (NH ₄) ₂ (SO ₄)	1.3 100	1.3 100	1.3 100	1.3 100
MW (NH ₂) SO/SO ₂ (132/80)	1.7	1.7	1.7	1.7
Particulate (lb/tr)- calculated	17.66	16.37	15.89	14.65
Particulate (Boths) from CT + SCR	52.4	48.6	47.1	44.3
articulate (tons/year) from CT + SCR	26.2	24.3	23.5	22.2
ılfur Dioxide (lb/hr) = Natural gas (lb/hr) x sulfur co	ontent (%/100) x (lb	SO ₂ / lb S)		
Fuel Sulfur Content	0.05%	0.05%	0.05%	0.05%
Fuel use (lb/hr) b SO ₂ /lb S (64/32)	85,600 2	79,360 2	77,060 2	71,030 2
mission rate (lb/hr) - calculated	2 85.6	79.4	77.1	71.0
- provided	86	79	77	71
(TPY)	42.80	39.68	38.53	35.52
Lasis, ppmvd @15% O ₂ Aoisture (%) Drygen (%)	15 5.85 13.42	15 6.53 13.38	15 7.6 13.17	15 9.9 12.73
Curbine Flow (acfm)	1,171,556	1,109,597	1,073,761	995,725
urbine Exhaust Temperature (°F)	270	270	270	270
mission rate (Ib/hr) - calculated	96.5	89.9	86.8	80.0
- pro vided (TPY)	96.6 48.3	89.4 44.7	86.9 43.5	80.0 40.0
rbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture 28 (mole, wgt CO) x 60 mir/hr/[1545 x				
asis, ppmvd	30	30	30	30
foisture (%)	5.85	6.53	7.6	9.9
urbine Flow (acfm)	1,171,556	1,109,597	1,073,761	995,725
urbine Exhaust Temperature (°F) nission rate (Byhr) - calculated	270 104.3	270 98.1	270 93.9	270 84.9
- provided	111.0	103.0	100.0	89.0
(ТРҮ)	55.5	51.5	50.0	44.5
Cs (B/hr) = VOC(ppmvw) x 2116.8 B/ft2 x Volum 16 (mole. wgt as methane) x 60 min/hr/[1545		60°F) x 1,000,00	0 (adj. for ppm)]	
asia momentu	10	10	10	10
	10 1.171.556	10 2.43 1. <i>9</i> 94	10 2.368,159	10 2.223.331
urbine Flow (acfm) urbine Exhaust Temperature (°F)	10 1,171,556 270	10 2,43 1,994 1,140	10 2,368,159 1,150	10 2,223,331 1,170
urbine Flow (actin) urbine Exhauat Temperature (°F) mission rate (B/hr) - calculated	1,171,556 270 21.11	2,431,994 1,140 19.99	2,368,159 1,150 19,35	2,223,331 1,170 17.94
urbine Flow (actin) urbine Exhaust Temperature (°F)	1,171,556 270	2,431,994 1,140	2,368,159 1,150	2,223,331 1,170
urbine Flow (acfm) urbine Exhauat Temperature (°F) mission rate (Ib/hr) - calculated - provided	1,171,556 270 21.11 21.0	2,431,994 1,140 19,99 22.0	2,368,159 1,150 19.35 21.0	2,223,331 1,170 17.94 19.0
urbine Flow (acfm) urbine Exhauat Temperature (°F) mission rate (Ib/hr) - calculated - provided (TPY)	1,171,556 270 21.11 21.0	2,431,994 1,140 19,99 22.0	2,368,159 1,150 19.35 21.0	2,223,331 1,170 17.94 19.0
urbine Flow (acfm) urbine Exhaust Temperature (°F) mission rate (B/hr) - calculated - provided (TPY) ad (B/hr) = NA mission Rate Basis (B/10 ¹² Btu)	1,171,556 270 21,11 21,0 10,5	2,431,994 1,140 19,99 22.0 11.0	2,368,159 1,150 19,38 21,0 10,5	2,223,331 1,170 17.94 19.0 9.5
Furbine Flow (acfm) Furbine Exhaust Temperature (*F) Emission rate (Bvhr) - calculated - provided (TPY) Final (Bvhr) = NA Emission Rate Basis (Bvhr) Emission rate (Bvhr)	1,171,556 270 21.11 21.0 10.5	2,431,994 1,140 19,99 22.0 11.0	2,368,159 1,150 19.38 21.0 10.5	2,223,331 1,170 17.94 19.0 9.5
	1,171,556 270 21,11 21,0 10,5	2,431,994 1,140 19,99 22.0 11.0	2,368,159 1,150 19,38 21,0 10,5	2,223,331 1,170 17.94 19.0 9.5

Note: ppmvd= parts per million, volume dry; O2= oxygen.

Source: Siemens/Westinghouse, 2000; Colder Associates, 2000; EPA, 1996 (AP-42 draft revisions)

Table A-19. Maximum Emissions for Other Regulated PSD Pollutants for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 80 % Load

	To	urbine Inlet Ten	nperature	
Parameter	20 °F	59 °F	72 °F	105 °F
Hours of Operation	1,000	1,000	1,000	1,000
2,3,7,8 TCDD Equivalents (lb/hr) = Basis (lb/10 ¹	² Btu) x Heat Input (MM	Btu/hr) / 1,000,0	000 MMBtu/10 ¹² B	tu
Basis ^a , lb/10 ¹² Btu	3.80E-04	3.80E-04	3.80E-04	3.80E-04
Heat Input Rate (MMBtu/hr)	1.64E+03	1.52E+03	1.48E+03	1.48E+03
Emission Rate (lb/hr)	6.25E-07	5.79E-07	5.62E-07	5.62E-07
(TPY)	3.12E-07	2.90E-07	2.81E-07	2.81E-07
Beryllium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat In	out (MMBtu/hr) / 1,000,0	00 MMBtu/10 ¹²	Btu	
Basis a, Ib/1012 Btu	0.331	0.331	0.331	0.331
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480
Emission Rate (lb/hr)	5.44E-04	5.04E-04	4.90E-04	4.90E-04
(TPY)	2.72E-04	2.52E-04	2.45E-04	2.45E-04
Fluoride (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inpo	ut (MMBtu/hr) / 1,000,000) MMBtu/10 ¹² B	tu	
Basis b, Ib/10 ¹² Btu	32.54	32.54	32.54	32.54
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480
Emission Rate (lb/hr)	5.35E-02	4.96E-02	4.81E-02	4.81E-02
(TPY)	2.67E-02	2.48E-02	2.41E-02	2.41E-02
Hydrogen Chloride (lb/hr) = Basis (lb/10 ¹² Btu)	x Heat Input (MMBtu/hr)/1,000,000 MN	/Btu/10 ¹² Btu	
Basis c, lb/1012 Btu	2.14E+02	2.14E+02	2.14E+02	2.14E+02
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480
Emission Rate (lb/hr)	3.52E-01	3.26E-01	3.17E-01	3.17E-01
(TPY)	1.76E-01	1.63E-01	1.58E-01	1.58E-01
Mercury (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inpu	et (MMBtu/hr) / 1.000.000	MMBtu/10 ¹² Br	TU:	
Basis a, Ib/10 ¹² Btu	6.26E-01	6.26E-01	6.26E-01	6.26E-01
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480
Emission Rate (lb/hr)	1.03E-03	9.54E-04	9.26E-04	9.26E-04
(TPY)	5.14E-04	4.77E-04	4.63E-04	4.63E-04
Sulfuric Acid Mist = Fuel Use (Ib/hr) \times sulfur (S) \times MW H ₂ SO ₄ /MW S (98/32)	content (fraction) x conv	rersion of S to H	⁷ ₂ SO₄ (%)	
Fuel Usage (cf/hr)	85,600	79,360	<i>7</i> 7,060	71,030
Sulfur (lb/hr)	42.80	39.68	38.53	35.52
Ib H ₂ SO ₄ /Ib S (98/32)	3.0625	3.0625	3.0625	3.0625
	**	10	10	10
Conversion to H ₂ SO ₄ (%) d	10	10	10	10
Conversion to H ₂ SO ₄ (%) ^d Emission Rate (lb/hr)	10 13.11	12.15	11.80	10.88

Sources: * EPA, 1998 (AP-42 draft revisions)

^b EPA, 1981

^c 4 ppm assumed based on ASTM D2880

^d assumed based on combustion estimates from GE

Table A-20. Maximum Emissions for Hazardous Air Pollutants for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 80 % Load

	Turbine Inlet Temperature				
Parameter	20 °F	59 °F	mperature 72 °F	105 T	
Hours of Operation	1,000	1,000	1,000	1,000	
Arsenic (lb/hr) = Basis (lb/10 ¹² Bhr) x Heat Input (l	MMBtu/hr) / 1,000,00	0 MMBtu/10 ¹² B	tu		
Basis *, lb/1012 Btu	7.91E+00	7.91E+00	7.91E+00	7.91E+00	
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480	
Emission Rate (lb/hr)	1.30E-02	1.21E-02	1.17E-02	1.17E-02	
· (TPY)	6.50E-03	6.03E-03	5.85E-03	5.85E-03	
Benzene (lb/hr) = Basis (lb/ 10^{12} Btu) x Heat Input	(MMBtu/hr) / 1,000,0	00 MMBtu/10 ¹²	Btu		
Basis * , By10 ¹² Btu	1.1	1.1	1.1	1.1	
Heat input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480	
Emission Rate (lb/hr)	1.81E-03	1.68E-03	1.63E-03	1.63E-03	
(TPY)	9.04E-04	8.38E-04	8.14E-04	8.14E-04	
Cadmium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input					
Basis *, lb/10 ¹² Btu	3.24	3.24	3.24	3.24	
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480	
Emission Rate (lb/hr)	5.33E-03	4.94E-03	4.79E-03	4.79E-03	
(ቦምነ)	2.66E-03	2.47E-03	2.40E-03	2.40E-03	
Chromium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inpu	ıt (MMBtu/hr) / 1,000	,000 MMBtu/10	¹² Btu		
Basis , lb/10 ¹² Btu	6.76	6.7 6	6.76	6.76	
Heat Input Rate (MMBns/hr)	1,644	1,524	1,480	1,480	
Emission Rate (lb/hr)	1.11E-02	1.03E-02	1.00E-02	1.00E-02	
(TPY)	5.56E-03	5.15E-03	5.00E-03	5.00E-03	
Formaldehyde (lb/hr) = 10% of VOC lb/hr					
Emission Rate, lb/10 ³² Btu	1.28E+03	1.28E+03	1.28E+03	1.28E+03	
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480	
Emission Rate (lb/hr) (TPY)	2.10E+00 1.05E+00	1.95E+00 9.73E-01	1.89E+00 9.45E-01	1.89E+00 9.45E-01	
• •				3.652-01	
Cobalt (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (M Basis b, lb/10 ¹² Btu					
	37	37	37	37	
Heat Input Rate (MMBtu/hr) Emission Rate (lb/hr)	1.64E+03	1.52E+03	1.48E+03 5.47E-02	1.48E+03 5.47E-02	
(TPY)	6.08E-02 3.04E-02	5.64E-02 2.82E-02	3.47E-02 2.74E-02	2.74E-02	
Manganese (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inpu			ll n		
manganese (kwis) = basis (kwis - bro) x rieat inpo Basis * , lb/10 ¹² Bro	н (мімівні/пг) / 1,000 432	,000 MMBΩ/10 432	BR4 432	432	
Heat Input Rate (MIMBtu/hr)	1,644	1.524	1.480	1.480	
Emission Rate (lb/hr)	7.10E-01	6.58E-01	6.39E-01	6.39E-01	
(TPY)	3.55E-01	3.29E-01	3.20E-01	3.20E-01	
Nickel (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MI	MBtu/hr) / 1,000,000 i	MMBtu/10 ¹² Btu			
Basis *, Ib/1012 Btu	86.3	86.3	86.3	86.3	
Heat Input Rate (MMBhu/hz)	1,644	1.524	1,480	1,480	
Emission Rate (lb/hr)	1.42E-01	1.31E-01	1.28E-01	1.28E-01	
(TPY)	7.09E-02	6.57E-02	6.38E-02	6.38E-02	
Phosphorous (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inp	out (MMBtu/hr) / 1,00	0,000 MMBtu/1	0 ¹² Btu		
Basis , Ib/10 ¹² Btu	3.00E+02	3.00E+02	3.00E+02	3.00E+02	
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480	
Emission Rate (Ib/hr)	0.493056	0.4571136	0.4438656	0.4438656	
(TPY)	0.246528	0.2285568	0.2219328	0.2219328	
Selenium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MMBtu/hr)/1,000,00	00 MMBtu/10 ¹² I	Btu		
Basis , lb/10 ¹² Btu	23	23	23	23	
Heat Input Rate (MMBtu/hr)	1,644	1,524	1,480	1,480	
Emission Rate (lb/hr)	3.78E-02	3.50E-02	3.40E-02	3.40E-02	
, (π ε χ)	1.89E-02	1.75E-02	1.70E-02	1.70E-02	
foluene (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (N	(MBtu/hr) / 1,000,000	MMBtu/1012 Bt	u		
Basis * , lb/10 ¹² Btu	237	237	237	237	
Heat Input Rate (MMBtw/hr)	1,644	1,524	1,480	1,480	
Emission Rate (lb/hr)	3,90E-01	3.61E-01	3.51E-01	3.51E-01	
(TPY)	1.95E-01	1.81E-01	1.75E-01	1.75E-01	

Sources: * EPA, 1998 (AP-42 draft revisions)
* EPA, 1996 (AP-42, Table 3,1-4)

Table A-21. Design Information and Stack Parameters for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 65 % Load

	Tı			
Parameter	20 °F	59 °F	72 °F	105 °F
Combustion Turbine Performance				. "
Gross power output (MW) - Estimated	124.7	119.9	116.0	106.0
Gross heat rate (Btu/kWh, LHV) - Calculated	9,997	9 <i>,</i> 733	9,834	10,036
(Btu/kWh, HHV) - Calculated	11,101	10,808	10,920	11,145
Heat Input (MMBtu/hr, LHV) - Calculated	1 ,24 7	1,167	1,140	1,064
(MMBtu/hr, HHV) - Calculated	1,385	1,296	1,266	1,182
(MMBtu/hr, HHV) - Provided	1,385	1,296	1,266	1,182
Fuel heating value (Btu/b, LHV)	17,290	17,290	17,290	17,290
(Btu/b, HHV)	19,200	19,200	19,200	19,200
(HHV/LHV)	1.110	1.110	1.110	1.110
CT Exhaust Flow				
Mass Flow (lb/hr)	3,491,217	3,298,903	3,219,964	3,009,818
Towns and the RD Patients I	3,491,217	3,298,903	3,219,964	3,009,818
Temperature (°F) - Estimated	1,170	1,180	1,190	1,200
Moisture (% Vol.)	4.99	5.71	6.78	9.08
Oxygen (% Vol.)	14.12	14.04	13.83	13.41
Molecular Weight	28.87	28.79	28.66	28.41
Fuel Usage				
Fuel usage (Ib/hr) = Heat Input (MMBtu/hr) :	z 1 000 000 Res/MMRes /	Fuel Heat Conte	one Reville (I LTV)	\
Heat input (MMBtu/hr, LHV)	1.247	1,167	1.140	1.064
Heat content (Btu/lb, LHV)	17,290	17,290	17,290	17,290
	· · · · · · · · · · · · · · · · · · ·	•	2.2	
ruei usage (ud/nr)- cauculaten	22 110	67 52B	65 960	•
Fuel usage (lb/hr)- calculated - provided	72,110 72,110	67,520 67,520	65,960 65,960	61,540
- provided (gallons/hr) - calculated lb/gal=	72,110 72,110 7.1 10,156	67,520 67,520 9,510	65,960 65,960 9,290	•
- provided	72,110	67,520	65,960	61,540 61,540
- provided (gallons/hr) - calculated lb/gal= HRSG Stack	72,110	67,520	65,960	61,540 61,540
- provided (gallons/hr) - calculated lb/gal= HRSG Stack	72,110 7.1 10,156	67,520 9,510	65,960 9,290	61,540 61,540 8,668
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions	72,110 7.1 10,156 125 19	67,520 9,510 125 19	65,960 9,290 125 19	61,540 61,540 8,668 125 19
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions	72,110 7.1 10,156 125 19	67,520 9,510 125 19	65,960 9,290 125 19	61,540 61,540 8,668 125 19
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Turbine Flow Conditions	72,110 7.1 10,156 125 19	67,520 9,510 125 19	65,960 9,290 125 19	61,540 61,540 8,668 125 19
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1)]	72,110 7.1 10,156 125 19 545 x (Temp. (°F) + 460°F	67,520 9,510 125 19 7)] / [Molecular v	65,960 9,290 125 19 weight x 2116.8] /	61,540 61,540 8,668 125 19
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr)	72,110 7.1 10,156 125 19 545 x (Temp. (°F) + 460°F 3,491,217	67,520 9,510 125 19 7)] / [Molecular v 3,298,903	65,960 9,290 125 19 weight x 2116.8] / 3,219,964	61,540 61,540 8,668 125 19 60 min/hr 3,009,818
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr) Temperature (*F)	72,110 7.1 10,156 125 19 545 x (Temp. (°F) + 460°F 3,491,217 1,170	67,520 9,510 125 19 7] / [Molecular v 3,298,903 1,180	65,960 9,290 125 19 weight x 2116.8] / 3,219,964 1,190	61,540 61,540 8,668 125 19 60 min/hr 3,009,818 1,200
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr) Temperature (°F) Molecular weight	72,110 7.1 10,156 125 19 545 x (Temp. (°F) + 460°F 3,491,217 1,170 28.87	67,520 9,510 125 19 7] / [Molecular v 3,298,903 1,180 28.79	65,960 9,290 125 19 weight x 2116.8] / 3,219,964 1,190 28.66	61,540 61,540 8,668 125 19 60 min/hr 3,009,818 1,200 28,41
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr) Temperature (°F) Molecular weight Volume flow (acfm) - calculated (ft3/s) - calculated HRSG Stack Flow Conditions	72,110 7.1 10,156 125 19 .545 x (Temp. (°F) + 460°F 3,491,217 1,170 28.87 2,397,803 39,963	67,520 9,510 125 19 (Molecular v 3,298,903 1,180 28.79 2,286,301 38,105	65,960 9,290 125 19 weight × 2116.8] / 3,219,964 1,190 28.66 2,255,019	61,540 61,540 8,668 125 19 60 min/hr 3,009,818 1,200 28,41 2,139,484
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr) Temperature (F) Molecular weight Volume flow (acfm) - calculated (ft3/s) - calculated IRSG Stack Flow Conditions	72,110 7.1 10,156 125 19 .545 x (Temp. (°F) + 460°F 3,491,217 1,170 28.87 2,397,803 39,963	67,520 9,510 125 19 (Molecular v 3,298,903 1,180 28.79 2,286,301 38,105	65,960 9,290 125 19 weight × 2116.8] / 3,219,964 1,190 28.66 2,255,019	61,540 61,540 8,668 125 19 60 min/hr 3,009,818 1,200 28,41 2,139,484
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr) Temperature (*F) Molecular weight Volume flow (acfm) - calculated (ft3/s) - calculated	72,110 7.1 10,156 125 19 .545 x (Temp. (°F) + 460°F 3,491,217 1,170 28.87 2,397,803 39,963	67,520 9,510 125 19 (Molecular v 3,298,903 1,180 28.79 2,286,301 38,105	65,960 9,290 125 19 weight × 2116.8] / 3,219,964 1,190 28.66 2,255,019	61,540 61,540 8,668 125 19 60 min/hr 3,009,818 1,200 28,41 2,139,484
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr) Temperature (*F) Molecular weight Volume flow (acfm)- calculated (ft3/s)- calculated IRSG Stack Flow Conditions Velocity (ft/sec) = Volume flow (acfm) / [((diameter) / [((diame	72,110 7.1 10,156 125 19 545 x (Temp. (°F) + 460°F 3,491,217 1,170 28.87 2,397,803 39,963 meter)²/4) x 3.14159] / 60	67,520 9,510 125 19 7] / [Molecular v 3,298,903 1,180 28.79 2,286,301 38,105 sec/min	65,960 9,290 125 19 weight × 2116.8] / 3,219,964 1,190 28.66 2,255,019 37,584	61,540 61,540 8,668 125 19 60 min/hr 3,009,818 1,200 28,41 2,139,484 35,658
- provided (gallons/hr) - calculated lb/gal= HRSG Stack CT - Stack height (ft) Diameter (ft) Furbine Flow Conditions Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1 Mass flow (lb/hr) Temperature (°F) Molecular weight Volume flow (acfm) - calculated (ft3/s) - calculated HRSG Stack Flow Conditions Velocity (ft/sec) = Volume flow (acfm) / [((diametric flow (acfm) /	72,110 7.1 10,156 125 19 545 x (Temp. (°F) + 460°F 3,491,217 1,170 28.87 2,397,803 39,963 meter)²/4) x 3.14159] / 60 270	67,520 9,510 125 19 7] / [Molecular v 3,298,903 1,180 28.79 2,286,301 38,105 sec/min 270	65,960 9,290 125 19 weight x 2116.8] / 3,219,964 1,190 28.66 2,255,019 37,584	61,540 61,540 8,668 125 19 60 min/hr 3,009,818 1,200 28,41 2,139,484 35,658

Note: Universal gas constant = 1,545 ft-lb(force)/R; atmospheric pressure = 2,116.8 lb(force)/ft², 14.7 lb/ft³

Turbine inlet relative humidity is 20% at 35 °F, 60% at 59 and 75 °F, and 50% at 95 °F.

Source: Siemens/Westinghouse 2000,

Table A-21. Design Information and Stack Parameters for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_x Combustor, Distillate, 65 % Load

	T			
Parameter	20 °F	urbine Inlet Ten 59 °F	72 °F	105 °F
Combustion Turbine Performance				
Gross power output (MW) - Estimated	124.7	119.9	116.0	106.0
Gross heat rate (Btu/kWh, LHV) - Calculated	9,997	9,733	9,834	10,036
(Btu/kWh, HHV) - Calculated	11,101	10,808	10,920	11,145
Heat Input (MMBtu/hr, LHV) - Calculated	1 <i>,24</i> 7	1,167	1,140	1,064
(MMBtu/hr, HHV) - Calculated	1,385	1,296	1,266	1,182
(MMBtu/hr, HHV) - Provided	1,385	1 ,29 6	1,266	1,182
Fuel heating value (Btu/lb, LHV)	17,290	17,290	17 ,2 90	17,290
(Btu/lb, HHV)	19,200	19 ,2 00	19 ,20 0	19,200
(HHV/LHV)	1.110	1.110	1.110	1.110
CT Exhaust Flow				
Mass Flow (lb/hr)	3,491,217	3,298,903	3,219,964	3,009,818
	3,491,217	3,298,903	3,219,964	3,009,818
Temperature (°F) - Estimated	1,170	1,180	1,190	1,200
Moisture (% Vol.)	4.99	5.71	6.78	9.08
Oxygen (% Vol.)	14.12	14.04	13.83	13.41
Molecular Weight	28.87	28.79	28.66	28.41
Fuel Usage				
Fuel usage (lb/hr) = Heat Input (MMBtu/hr) x 1,00	00,000 Btu/MMBtu (I	Fuel Heat Conte	nt, Btu/lb (LHV))
Heat input (MMBtu/hr, LHV)	1,247	1,167	1,140	1,064
Heat content (Btu/lb, LHV)	17,290	17,290	17,290	17,290
Fuel usage (lb/hr)- calculated	72,110	67,520	65,9 6 0	61,540
- provided	72,110	67,520	65,960	61,540
(gallons/hr) - calculated lb/gal = 7.	1 10,156	9,510	9,290	8,668
HRSG Stack				
CT - Stack height (ft)	125	125	125	125
Diameter (ft)	19	19	19	19
Turbine Flow Conditions			1	
Turbine Flow (acfm) = [(Mass Flow (lb/hr) x 1,545 ;	x (Temp. (°F)+ 460°I	F)] / [Molecular :	weight x 2116.81/	60 min/hr
Mass flow (lb/hr)	3,491,217	3,298,903	3,219,964	3,009,818
Temperature (°F)	1,170	1,180	1,190	1,200
Molecular weight	28.87	28.79	28.66	28.41
Volume flow (acfm)- calculated	2,397,803	2,286,301	2,255,019	2,139,484
(ft3/s)- calculated	39,963	38,105	37,584	35,658
HRSG Stack Flow Conditions				
Velocity (ft/sec) = Volume flow (acfm) / [((diameter	r)2 /4) × 3 141591 / 40	sec/min		
CT Temperature (°F)	270		270	270
CT volume flow (acfm)	1,073,863	270		
Diameter (ft)	• • •	1,017,683	997,675	940,858
Velocity (ft/sec)- calculated	19 63.1	19 59.8	19 58.6	19 55.3

Note: Universal gas constant = 1,545 ft-lb(force)°R; atmospheric pressure = 2,116.8 lb(force)/ft²; 14.7 lb/ft³

Turbine inlet relative humidity is 20% at 35 °F, 60% at 59 and 75 °F, and 50% at 95 °F.

Source: Siemens/Westinghouse 2000,

Table A-22. Maximum Emissions for Criteria Pollutants for FPC Hines-2 Energy Center Siemens-Westinghouse 501 F, Dry Low NO_X Combustor, Distillate, 65 % Load

	7	urbine Inlet Te	mperature	
Parameter	20 °F	59 °F	72 °F	105 °F
fours of Operation	1,000	1,000	1,000	1,α
'articulate (lb/hr) = Emission rate (lb/hr) from manu	facturer			
Basis (excludes H ₂ SO ₄), lb/hr	28.6	v	26.3	24.
Emission rate (fb/hr)- provided	28.6	27.0	26.3	24
articulate from SCR= Sulfur trioxide (formed from Particulate from conversion of SO_2 = SO_2 emissions	conversion of SO ₂) (Ib/hr) x Conversion of SO ₂ x Ib SO ₂ to	n 5O ₂ to 5O ₃ x I	SOyIb SQ ₂ x	-PM ₁₆)
SO ₂ emission rate (Ib/hr)- calculated	72.1	67.5	66.0	61.
Conversion (%) from SO ₂ to SO ₃	10	10	10	1
MW SO ₂ (SO ₂ (SO ₂ (SO ₂) = 0.71) (SO ₂)	1.3	1.3	1.3	1
Conversion (%) from SO ₃ to (NH ₂);(SO ₂) MW (NH ₂); SO ₂ SO ₃ (132/80)	100 1.7	100	100	10
Particulate (lb/hr)- calculated	1.7 14.87	1.7 13.93	1 <i>.7</i> 13.60	1. 12.6
Particulate (lb/hr) from CT + SCR	43.5	40.9	39.9	37.
Particulate (tors/year) from CT + SCR	21.7	20.5	20.0	18.
ulfur Dioxide (lb/hr) = Natural gas (lb/hr) x sulfur co	ontent (%/100) x (1b	SO ₃ /B ₅ S)		
Fuel Sulfur Content	0.05%	0.05%	0.05%	0.059
Fuel use (lb/hr)	72,110	67,520	65,960	61,54
lb SO ₂ /lb S (64/32) Emission rate (lb/hr) - calculated	2	2	2	
::maston rate (ibvnr) - calculated - provided	72.1 72	67.5 68	66.0	61.
(ТРҮ)	36.06	33.76	66 32.98	6 30.7
Moisture (%) Oxygen (%) Lurbine Flow (acfm)	4.99 14.12 1,073,863	5.71 14.04 1,017,683	6.78 13.83 997,675	9.00 13.41 940,856
Furbine Exhaust Temperature (°F) Emission rate (Ib/tu) - calculated	270 81.1	270 75.9	270 74.3	270 69.3
- provided	81.2	76.0	74.3	69.3
(ניבוז)	40.6	38.0	37.2	34.5
arbon Monoxide (lb/hr) = CO(ppm) x [1 - Moisture(28 (mole. wgt CO) x 60 mir/hr / [1545 x				
Basis, ppmvd	30	30	30	30
Moisture (%)	4.99	5.71	6.78	9.08
Furbine Flow (acfm) Furbine Exhaust Temperature (°F)	1,073,863	1,017,683	997,675	940,858
mission rate (lb/hr) - calculated	270 96.5	270 90.8	270 88.0	270 80.9
- provided	101.0	94.0	92.0	86.0
(ПРҮ)	50.5	47.0	46.0	43.0
OCs (By/hr) = VOC(pptnvw) x 2116.8 By/ft2 x Volume 16 (mole, wgt as methane) x 60 min/hr/[1545:		60°F) x 1,000,00	0 (adj. for ppm)]	
Basis, ppmvw	10	10	10	10
urbine Flow (acrm)	1,073,863	2,286,301	2,255,019	2,139,484
urbine Exhaust Temperature (°F)	270	1,180	1,190	1,200
imission rate (lb/hr) - calculated	19.35	18.34	17.98	16.95
- provided (TPY)	20.0 10.0	19.0 9.5	18.0 9.0	19.0 9.5
ad (lb/hr)= NA				
mission Rate Basis (Ib/10 ¹² Btu)	10.0	460	10.0	10.0
mission rate (lb/hr)	10.8 0.0150	10.8 0.0140	10.8 0.0137	10.8 0.0128
(TPY)	0.0075	0.0070	0.0068	0.0064
• •			- -	

Note: ppmvd = parts per million, volume dry; O_2 = oxygen.

Source: Sigmens/Westinghouse, 2000; Golder Associates, 2000; EPA, 1996 (AP-42 draft revisions)

Table A-23. Maximum Emissions for Other Regulated PSD Pollutants for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 65 % Load

	Ta			
Parameter	20 °F	59 °F	72 °F	105 T
Hours of Operation	1,000	1,000	1,000	1,000
2,3,7,8 TCDD Equivalents (lb/hr) = Basis (lb/10 ¹² E	Btu) x Heat Input (MM	Btu/hr) / 1,000,0	00 MMBtu/10 ¹² B	tu
Basis ^a , lb/10 ¹² Btu	3.80E-04	3.80E-04	3.80E-04	3.80E-04
Heat Input Rate (MMBtu/hr)	1.38E+03	1.30E+03	1.27E+03	1.27E+03
Emission Rate (lb/hr)	5.26E-07	4.93E-07	4.81E-07	4.81E-07
(TPY)	2.63E-07	2.46E-07	2.41E-07	2.41E-07
Beryllium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inpu	it (MMBtu/hr) / 1,000,0	00 MMBtu/10 ¹²	Btu	
Basis *, lb/10 ¹² Btu	0.331	0.331	0.331	0.331
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (lb/hr)	4.58E-04	4.29E-04	4.19E-04	4.19E-04
(ТРҮ)	2.29E-04	2.15E-04	2.10E-04	2.10E-04
Fluoride (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input	(MMBtu/hr) / 1,000,00	0 MMBtu/10 ¹² B	tu	
Basis b, lb/10 ¹² Btu	32.54	32.54	32.54	32.54
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (Ib/hr)	4.51E-02	4.22E-02	4.12E-02	4.12E-02
(TPY)	2.25E-02	2.11E-02	2.06E-02	2.06E-02
Hydrogen Chloride (lb/hr) = Basis (lb/10 ¹² Btu) x	Heat Input (MMBtu/h	r) / 1,000,000 MIN	/Btu/10 ¹² Btu	
Basis c, lb/10 ¹² Btu	2.14E+02	2.14E+02	2.14E+02	2.14E+02
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (lb/hr)	2.97E-01	2.78E-01	2.71E-01	2.71E-01
(TPY)	1.48E-01	1.39E-01	1.36E-01	1.36E-01
Mercury (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input	(MMBtu/hr) / 1.000.00	0 MMBtu/10 ¹² B	tu	
Basis a, lb/10 ¹² Btu	6.26E-01	6.26E-01	6.26E-01	6.26E-01
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (lb/hr)	8.67E-04	8.12E-04	7.93E-04	7.93E-04
(TPY)	4.33E-04	4.06E-04	3.96E-04	3.96E-04
Sulfuric Acid Mist = Fuel Use (lb/hr) x sulfur (S) o	ontent (fraction) x con	version of S to F	I ₂ SO ₄ (%)	
x MW H₂SO₄ /MW S (98/32)	77 410	£7 500	65,960	61,540
Fuel Usage (cf/hr)	72,110	67,5 2 0 33.76	32.98	30.77
Sulfur (lb/hr)	36.06 3.0635		3.0625	3.0625
Ib H ₂ SO ₄ /Ib S (98/32)	3.0625	3.0625		10
Conversion to H ₂ SO ₄ (%) ^d	10	10	10	9.42
Emission Rate (lb/hr)	11.04	10.34	10.10	
(TPY)	5.52	5.17	5.05	4.71

Sources: * EPA, 1998 (AP-42 draft revisions)

^b EPA, 1981

^c 4 ppm assumed based on ASTM D2880

^c assumed based on combustion estimates from GE

Table A-24. Maximum Emissions for Hazardous Air Pollutants for FPC Hines-2 Energy Center Siemens-Westinghouse 501F, Dry Low NO_X Combustor, Distillate, 65 % Load

_		lurbine Inlet Te	mperature	
Parameter	20 °F	59 °F	72. T F	105 T
Hours of Operation	1,000	1,000	1,000	1,000
Arsenic (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (M	IMBtu/hr) / 1,000,00	0 MMBtu/10 ¹² E	itu	
Basis , lb/10 ¹² Btu	7.91E+00	7.91E+00	7.91E+00	7.91E+00
Heat Input Rate (MMBhu/hr)	1,385	1,296	1,266	1,266
Emission Rate (lb/hr) (TPY)	1.10E-02 5.48E-03	1.03E-02 5.13E-03	1.00E-02 5.01E-03	1.00E-02 5.01E-03
Benzene (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (l	O. Gr. A. (1000 A	oo va can andi	D	
Basis *, lb/10 ¹² Btu	VLMLBRLIVRY) / [,000,0 1.1	₩.MB₩/10 [—] 1.1	BR1 1.1	1.1
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (lb/hr)	1.52E-03	1.43E-03	1.39E-03	1.39E-03
(ТРҮ)	7.61 E-04	7.13E-04	6.97E-04	6.97E-04
Cadmium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input			² Btu	
Basis *, lb/10 ¹² Btu	3.24	3.24	3.24	3.24
Heat Input Rate (MMBtu/hr) Emission Rate (Ib/hr)	1,385	1,296	1,266	1,266
(IPY)	4.49E-03 2.24E-03	4.20E-03 2.10E-03	4.10E-03 2.05E-03	4.10E-03 2.05E-03
				2.035-03
Chromium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input Basis ^a , lb/10 ¹² Btu	: (MMBtu/hr) / 1,000 6.76),000 MIMBtu/10 6.76	¹² Btu 6.76	6.76
Heat Input Rate (MMBtu/hr)	1.385	1,296	1,266	1,266
Emission Rate (lb/hr)	9.36E-03	8.76E-03	8.56E-03	8.56E-03
(TPY)	4.68E-03	4.38E-03	4.28E-03	4.28E-03
Formaldehyde (lb/hr) = 10% of VOC lb/hr				
Emission Rate, lb/1012 Btu	1.44E+03	1444.552304	1444.552304	1444.552304
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (Ib/hr)	2.00E+00	1.87E+00	1.83E+00	1.83E+00
(IPY)	1.00E+00	9.36E-01	9.15E-01	9.15E-01
Cobalt (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MN				
Basis , lb/10 ¹² Btu	37	37	37	37
Heat Input Rate (MMBtu/tr)	1.38E+03	1.30E+03	1.27E+03	1.27E+03
Emission Rate (lb/hr) (TPY)	5.12E-02 2.56E-02	4.80E-02 2.40E-02	4.69E-02 2-34E-02	4.69E-02 2.34E-02
Manganese (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input	AAAAA / 1 000	000 MARE 70	Ľa.	
Basis 6, lb/10 ¹² Btu	432	432	432	432
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (lb/hr)	5.98E-01	5.60E-01	5.47E-01	5.47E-01
(TPY)	2.99E-01	2.80E-01	2.74E-01	2.74E-01
vickel (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (MM	[Btu/hr) / 1,000,000 [MMBtu/10 ¹² Btu	l.	
Basis * , Ib/10 ¹² Btu	86.3	86.3	86.3	86.3
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (Ib/fur) (TPY)	1.19E-01 5.97E-02	1.12E-01 5.59E-02	1.09E-01 5.46E-02	1.09E-01 5.46E-02
hosphorous (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Inpo	e (MACRES As) / 1 (C	n ann Markey	O ^{LZ} Rhu	
Basis b, Ib/10 ¹² Bu	3.00E+02	3.00E+02	3.00E+02	3.00E+02
Heat Input Rate (MMBtu/hr)	1,385	1,296	1,266	1,266
Emission Rate (lb/hr)	0.4153536	0.3889152	0.3799296	0.3799296
(TPY)	0.2076768	0.1944576	0.1899648	0.1899648
elenium (lb/hr) = Basis (lb/10 ¹² Btu) x Heat Input (h	42MBtu/hr) / 1,000,00	00 MIMBtu/10 ¹² 1	Btu.	
Basis , lb/1012 Btu	23	23	23	23
Heat Input Rate (MMBtu/hr) Emission Rate (lb/hr)	1,385	1,296	1,266	1,266
(TPY)	3.18E-02 1.59E-02	2.98E-02 1.49E-02	2.91E-02 1.46E-02	2.91E-02 1.46E-02
oluene (lb/hr) = Basis (lb/10 ¹² Bhr) x Heat Input (Mi		MMBtu/10 ¹² Be	.u	
Basis *, lb/10 ¹² Btu	237	237	237	237
	1,385	1,296	1,266	1,266
Heat Input Rate (MMBtu/hr) Emission Rate (lb/hr) (TPY)	3.28E-01 1.64E-01	3.07E-01 1.54E-01	3.00E-01 1.50E-01	3.00E-01 1.50E-01

Sources: * EPA, 1998 (AP-42 draft revisions) * EPA, 1996 (AP-42, Table 3.1-4)

Table A-25 Summary of Maximum Potential Annual Emissions for the CT/HRSG

- .		Annual Emissions (tons/year)*		Ma	Maximum Emissions (tons/year)				
Load: Pollutant Hours:	Natural Gas 100% 8,760	Natural Gas 60% 3,000	Distillate Oil 100% 1,000	Case A	Case B	Case C	Case D	PSD Significant Emission Rates	
One Combustion Turbine- Combined Cycle									
SO ₂		22.4	5.4	48.6	22.4	20.1	68.4	66.1	40
PM/PM ₁₀		34.4	8.8	29.8	34.4	31.4	60.3	57.3	25/15
NO _x		101 ,	24	55	101.2	90.4	144.3	133.5	40
CO		184	219	53	184.0	340.0	216.0	372.0	100
VOC (as methane)		19.1	7.5	10.5	19.1	20.0	27.4	28.4	40
Sulfuric Acid Mist		3.4	0.8	7.4	3.4	3.1	10.5	10.1	7
Lead		0	0.00E + 00	1.04E-02	0.0E+00	0.0E + 00	1.0E-02	1.0E-02	0.6
Mercury		6.41E-06	1.54E-08	6.05E-04	6.4E-06	5.8E-06	6.1E-04	6.1E-04	0.1
MWC Organics (as 2,3,7,8-TCDD)		9.62E-09	2.30E-09	3.67E-07	9.6E-09	8.6E-09	3.8E-07	3.7E-07	3.50E-06
MWC Metals (Be & Cd)		0.0	0.0	3.4E-03	0.0E+00	0.0E+00	3.4E-03	3.4E-03	15
MWC Acid Gases (HCL)		0.0	0.0	0.2	0.0	0.0	0.2	0.2	40.0
Total HAPs		1.93	0.77	1,80	1.9	2.0	3.5	3.6	25
Two Combustion Turbines- Combined Cycle									
SO ₂		44.9	10.7	97.1	44.9	40.2	136.9	132.3	40
PM/PM ₁₀		69	18	60	69	63	121	115	25/15
NO _x		202	48	109	202	181	289	267	40
co		368	438	106	368	680	432	744	100
VOC (as methane)		38.1	15.0	21.0	38.1	40.1	54.8	56.7	40
Sulfuric Acid Mist		6.9	1.65	14.87	6.87	6.16	20.96	20.25	7
Lead		0.00E+00	0.00E + 00	2.09E-02	0.00E+00	0.00E + 00	2.09E-02	2.09E-02	0.6
Mercury		1.28E-05	3.07E-06	1.21E-03	1.28E-05	1.15E-05	1.22E-03	1.22E-03	0.1
MWC Organics (as 2,3,7,8-TCDD)	•	1.92E-08	4.61E-09	7.34E-07	1.92E-08	1.73E-08	7.51E-07	7.49E-07	3.50E-06
MWC Metals (Be & Cd)		0.00E+00	0.00E+00	6.90E-03	0.00E+00	0.002+00	6.90E-03	6.90E-03	15
MWC Acid Gases (HCL)		0.0	0.00	0.40	0.00	0.00	0.40	0.40	40.0
Total HAPs		3.9	1.55	3.60	3.87	4.09	7.02	7.25	25

^a Based on 59 °F compressor inlet air temperature

B.0 SUMMARY OF CALPUFF MODEL DESCRIPTION AND ASSUMPTIONS USED IN THE PSD CLASS I MODELING ANALYSES

B.1 INTRODUCTION

As part of the new source review requirements under Prevention of Significant Deterioration (PSD) regulations, new sources are required to address air quality impacts at PSD Class I areas. As part of the PSD analysis report submitted to the Florida Department of Environmental Protection (DEP), the air quality impacts due to the potential emissions of the proposed Power Block 2 of the Hines Energy Complex are required to be addressed at the PSD Class I area of the Chassahowitzka National Wildlife Area (NWA). The Chassahowitzka NWA is located approximately 118 km northwest of the proposed source and is the nearest Class I area to the proposed source. Other PSD Class I areas are located more than 200 km from the proposed source.

The evaluation of air quality impacts are not only concerned with determining compliance with PSD Class I increments but also assessing a source's impact on Air Quality Related Values (AQRVs), such as regional haze. Further, compliance with PSD Class I increments can be evaluated by determining if the source's impacts are less than the proposed U.S. Environmental Protection Agency (EPA) Class I significant impact levels. The significant impact levels are threshold levels that are used to determine the type of air impact analyses needed for the project. If the new source's impacts are predicted to be less than significant, then the source's impacts are assumed not to have a significant adverse affect on air quality and additional modeling with other sources is not required. However, if the source's impacts are predicted to be greater than the significant impact levels, additional modeling with other sources is required to demonstrate compliance with Class I increments.

Currently there are several air quality modeling approaches recommended by the Interagency Workgroup on Air Quality Models (IWAQM) to perform these analyses. The IWAQM consists of EPA and Federal Land Managers (FLM) of Class I areas who are responsible for ensuring that AQRVs are not adversely impacted by new and existing sources. These recommendations have been summarized in two documents:

- Interagency Workgroup on Air Quality Models (IWAQM) Phase 1 Report: Interim Recommendations for Modeling Long Range Transport and Impacts on Regional Visibility (EPA, 1993), referred to as the Phase 1 report; and
- Interagency Workgroup on Air Quality Models (IWAQM), Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (EPA, 1998), referred to as the Phase 2 report.

The recommended modeling approaches from these documents are as follows:

- Phase 1 report: screening analysis (Level 1)
- Phase 2 report: screening analysis
- Phase 2 report: refined analysis

For Power Block 2, air quality analyses were performed that assess the proposed source's impacts in the PSD Class I area of the Chassahowitzka NWA using the refined approach from the Phase 2 report for:

- Significant impact analysis; and
- Regional haze analysis.

The refined analysis approach was used instead of the screening analysis approach since the air quality impacts are based on generally more realistic assumptions, include more detailed meteorological data, and are estimated at locations at the Class I area.

B.2 GENERAL AIR MODELING APPROACH

The general modeling approach was based on using the Industrial Source Complex Short-term model (ISCST3, Version 99155) and the long-range transport model, California Puff model (CALPUFF, Version 5.0). The ISCST3 model is applicable for estimating the air quality impacts in areas that are within 50 km from a source. At distances beyond 50 km, the ISCST3 model is considered to overpredict air quality impacts because it is a steady-state model. At those distances, the CALPUFF model is recommended for use. Recently, the FLM have requested that air quality impacts, such as for regional haze, for a source located more than 50 km from a Class I area be predicted using the CALPUFF model. The Florida DEP has also recommended that the CALPUFF model be used to assess if the source has a significant impact at a Class I area located beyond 50 km from the source. As a result, a significant impact and regional haze analyses were performed using the CALPUFF model to assess Power Block 2's impacts at the Chassahowitzka NWA.

The methods and assumptions used in the CALPUFF model were based on the latest recommendations for a screening analysis as presented in the *Interagency Workgroup* on Air Quality Models (IWAQM), Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (EPA, 1998).

Based on discussions with DEP, the ISCST3 model can be used to determine the "worst-case" operating load and ambient temperature that produces a source's maximum impact at a Class I area. Based on that analysis, air quality impacts can then be predicted with the CALPUFF model using the "worst-case" operating scenario to compare the source's impacts to Class I significant impact levels and potential contribution to regional haze. For this proposed source, the ISCST3 model was used to determine the "worst-case" operating scenario that was then considered in the CALPUFF model. The methods and assumptions used in the ISCST3 were based on those presented in Section 6.0 of the PSD report.

A regional haze analysis was performed to determine the effect that Power Block 2's emissions will have on background regional haze levels at the Chassahowitzka NWA. In the regional haze analysis, the change in visual range, as calculated by a deciview change, was estimated for the proposed source in accordance with the IWAQM recommendations. Based on those recommendations, the CALPUFF model is used to predict the maximum 24-hour average sulfate (SO₄), nitrate (NO₃), and fine particulate (PM₁₀) concentrations as well as ammonium sulfate ((NH₄)₂SO₄) and ammonium nitrate (NH₄NO₃) concentrations. The change in visibility due to a source, estimated as a percentage, is then calculated based on the change from background data.

The following sections present the methods and assumptions used to assess the refined significant impact and regional haze analyses performed for the proposed source. The results of these analyses are presented in Sections 7.0 and 8.0 of the PSD report.

B.3 MODEL SELECTION AND SETTINGS

The California Puff (CALPUFF, version 5.0) air modeling system was used to assess the Power Block 2's impacts at the PSD Class I area for comparison to the PSD Class I significant impact levels and to the regional haze visibility criteria. CALPUFF is a non-steady state Lagrangian Gaussian puff long-range transport model that includes algorithms for building downwash effects as well as chemical transformations (important for visibility controlling pollutants), and wet/dry deposition. The CALPUFF meteorological and geophysical data preprocessor (CALMET, Version 5), a preprocessor to CALPUFF, is a diagnostic meteorological model that produces a three-dimensional field of wind and temperature and a two-dimensional field of other meteorological parameters. CALMET was designed to process raw meteorological, terrain and land-use databases to be used in the air modeling analysis. The CALPUFF modeling system uses a number of FORTRAN preprocessor programs that extract data

from large databases and converts the data into formats suitable for input to CALMET. The processed data produced from CALMET was input to CALPUFF to assess the pollutant specific impact. Both CALMET and CALPUFF were used in a manner that is recommended by the IWAQM Phase 2 Report (EPA, 1998).

B.3.1 CALPUFF Model Approaches and Settings

The IWAQM has recommended approaches for performing a Phase 2 refined modeling analyses that are presented in Table B-1. These approaches involve use of meteorological data, selection of receptors and dispersion conditions, and processing of model output.

The specific settings used in the CALPUFF model are presented in Table B-2.

B.3.2 Emission Inventory and Building Wake Effects

The CALPUFF model included the proposed source's emission, stack, and operating data as well as building dimensions to account for the effects of building-induced downwash on the emission sources. Dimensions for all significant building structures were processed with the Building Profile Input Program (BPIP), Version 95086, and were included in the CALPUFF model input. The PSD Analysis Report presents a listing of the proposed source's emissions and structures included in the analysis.

B.4 RECEPTOR LOCATIONS

For the refined analyses, pollutant concentrations were predicted in an array of 13 discrete receptors located at the CNWR area. These receptors are the same as those used in the PSD Class I analysis performed for the PSD Analysis Report.

B.5 METEOROLOGICAL DATA

B.5.1 Refined Analysis

CALMET was used to develop the gridded parameter fields required for the refined modeling analyses. The follow sections discuss the specific data used and processed in the CALMET model.

B.5.2 CALMET Settings

The CALMET settings contained in Table B-3 were used for the refined modeling analysis. With the exception of hourly precipitation data files, all input data files needed for CALMET were developed by the FDEP staff.

B.5.3 Modeling Domain

A rectangular modeling domain extending 250 km in the east-west (x) direction and 280 km in the north-south (y) direction was used for the refined modeling analysis. The extent of the modeling domain was selected by the Florida DEP staff for predicting impacts at the Chassahowitzka NWA. The southwest corner of the domain is the origin and is located at 27 degrees north latitude and 83.5 degrees west longitude. This location is in the Gulf of Mexico approximately 110 km west of Venice, Florida. For the processing of meteorological and geophysical data, the domain contains 25 grid cells in the x-direction and 28 grid cells in the y-direction. The domain grid resolution is 10 km. The air modeling analysis was performed in the UTM coordinate system.

B.5.4 Mesoscale Model – Generation 4 (MM4) Data

Pennsylvania State University in conjunction with the NCAR Assessment Laboratory developed the MM4 data set, a prognostic wind field or "guess" field, for the United States. The hourly meteorological variables used to create this data set (wind, temperature, dew point depression, and geopotential height for eight standard levels and up to 15 significant levels) are extensive and only allow for one data base set for the year 1990. The analysis used the MM4 data to initialize the CALMET wind field. The MM4 data have a horizontal spacing of 80 km and are used to simulate atmospheric variables within the modeling domain.

The MM4 subset domain was provided by FDEP and consisted of a 6 x 6- cell rectangle, with 80 km grid resolution, extending from the MM4 grid points (49,10) to (54,15). These data were processed to create a MM4.DAT file, for input to the CALMET model.

The MM4 data set used in the CALMET, although advanced, lacks the fine detail of specific temporal and spatial meteorological variables and geophysical data. These variables were processed into the appropriate format and introduced into the CALMET model through the additional data files obtained from the following sources.

B.5.5 Surface Data Stations and Processing

The surface station data processed for the CALPUFF analyses consisted of data from five NWS stations or Federal Aviation Administration (FAA) Flight Service stations for Gainesville, Tampa, Daytona Beach, Vero Beach, Fort Myers and Orlando. A summary of the surface station information and locations are presented in Table B-4. The surface station parameters include wind speed, wind direction, cloud ceiling height, opaque cloud cover, dry bulb temperature, relative humidity, station pressure,

and a precipitation code that is based on current weather conditions. The surface station data were processed by FDEP into a SURF.DAT file format for CALMET input.

Because the modeling domain extends largely over water, C-Man station data from Venice was obtained. These data were processed by Florida DEP into an over-water surface station format (i.e., SEA*.DAT) for input to CALMET. The over-water station data include wind direction, wind speed and air temperature.

B.5.6 Upper Air Data Stations and Processing

The analysis included three upper air NWS stations located in Ruskin, Apalachicola, and West Palm Beach. Data for each station were obtained from the Florida DEP in a format for CALMET input.

The data and locations for the upper air stations are presented in Table B-4.

B.5.7 Precipitation Data stations and Processing

Precipitation data were processed from a network of hourly precipitation data files collected from primary and secondary NWS precipitation-recording stations located within the latitude and longitudinal limits of the modeling domain. Data for 14 stations were obtained in NCDC TD-3240 variable format and converted into a fixed-length format. The utility programs PXTRACT and PMERGE were then used to process the data into the format for the PRECIP.DAT file that is used by CALMET. A listing of the precipitation stations used for the modeling analysis is presented in Table B-5.

B.5.8 Geophysical Data Processing

The land-use and terrain information data were developed by the FDEP for the modeling domain and were provided in a GEO.DAT file format for input to CALMET. Terrain elevations for each grid cell of the modeling domain were obtained from Digital Elevation Model (DEM) files obtained from US Geographical Survey (USGS). The DEM data was extracted for the modeling domain grid using the utility extraction program LCELEV. Land-use data were obtained from the USGS GIS.DAT which is based on the ARM3 data. The resolution of the GIS.DAT file is one-eighth of a degree in the east-west direction and one-twelfth of a degree in the north-south direction. Land-use values for the domain grid were obtained with the utility program CAL-LAND. Other parameters processed for the modeling domain by CAL-LAND include surface roughness, surface Albedo, Bowen ratio, soil heat flux, and leaf index field. The land-use parameter values were based on annual averaged values.

Table B-1.			
IWAQM Phase 2 Refined Modeling Analyses Recommendations			
Model Input/Output	Description		
Meteorology	Use CALMET (minimum 6 to 10 layers in the vertical; top layer must extend above the maximum mixing depth expected); horizontal domain extends 50 to 80 km beyond outer receptors and sources being modeled; terrain elevation and land-use data is resolved for the situation.		
Receptors	Within Class I area(s) of concern; obtain regulatory concurrence on coverage.		
Dispersion	 CALPUFF with default dispersion settings. Use MESOPUFF II chemistry with wet and dry deposition. Define background values for ozone and ammonia for area. 		
Processing	 For PSD increments: Use highest, second highest 3-hour and 24-hour average SO₂ concentrations; highest, second highest 24-hour average PM₁₀ concentrations; and highest annual average SO₂, PM₁₀ and NO₂ concentrations. 		
	2. For haze: process the 24-hour average SO4, NO3 and HNO3 values; compute a 24-hour average relative humidity factor (f(RH)) for the day during which the highest concentration was predicted for each species; calculate extinction coefficients for each species; and compute percent change in extinction using the FLM supplied background extinction.		
^a IWAQM Phase 2 Summary Report and Recommendations for Modeling Long Range Transport Impacts (EPA, 1998)			

Table B-2. CALPUFF Model Settings			
Parameter	Setting		
Pollutant Species	SO ₂ , SO ₄ , NO _X , HNO ₃ , and NO ₃ , and PM ₁₀		
Chemical Transformation	MESOPUFF II scheme		
Deposition	Include both dry and wet deposition, plume depletion		
Meteorological/Land Use Input	PCRAMMET (enhanced) for the screening analysis; CALMET for the refined analysis		
Plume Rise	Transitional, Stack-tip downwash, Partial plume penetration		
Dispersion	Puff plume element, PG /MP coefficients, rural mode, ISC building downwash scheme		
Terrain Effects	Partial plume path adjustment		
Output	Create binary concentration file including output species for SO ₄ , NO ₃ and PM ₁₀		
Model Processing	Highest predicted 24-hour SO4, NO3 and		
	PM ₁₀ concentrations for year		
Background Values ^a	Ozone: 80 ppb; Ammonia: 10 ppb		

^a Recommended values by the Florida DEP.

Table B-3. CALMET Settings			
Parameter	Setting Settin		
Horizontal Grid Dimensions	250 by 280 km, 10 km grid resolution		
Vertical Grid	9 layers		
Weather Station Data Inputs	6 surface, 3 upper air, 14 precipitation stations		
Wind model options	Diagnostic wind model, no kinematic effects		
Prognostic wind field model	MM4 data, 80 km resolution, 6 x 6 grid, used for wind field initialization		
Output	Binary hourly gridded meteorological data file for CALPUFF input		

Surface an	d Upper		le B-4. s Used in	the CALPL	JFF Ana	ılysis
			UTM	l Coordinat	es	
٠.	Station	WBAN	Easting	Northing	•	Anemomete
Station Name	Symbol	Number	(km)	(km)	Zone	r Height (m)
Surface Stations						
Tampa	TPA	12842	349.20	3094.25	17	6.7
Daytona Beach	DAB	12834	495.14	3228.05	17	9.1
Orlando	ORL	12815	468.96	3146.88	17	10.1
Gainesville	GNV	12816	377.40	3284.12	17	6.7
Vero Beach	VER	12843	557.52	3058.36	17	6.7
Fort Myers	FMY	12835	413.65	2940.38	17	6.1
Upper Air Stations						
Ruskin	TBW	12842	349.20	3094.28	17	NA
West Palm Beach	PBI	12844	587.87	2951.42	17	NA
Apalachicola	AQQ	12832	110.00 ^a	3296.00	16	NA

Equivalent coordinate for Zone 17; Zone 16 coordinate is 690.22 km.

Table B-5.	
Hourly Precipitation Stations Used in the CALPUFF An	alysis

治理的基础的工程等的工程		建設電UTN	1. Coordinates	隐附配件
Station Name (Florida)	Station	Easting	Northing :	Zone
	Number	(km)	(km)	2005
Brooksville 7 SSW	81048	358.03	3149.55	17
Daytona Beach WSO AP	82158	495.14	3228.09	17
Deland 1 SSE	82229	470.78	3209.66	17
Inglis 3 E	84273	342.63	3211.65	17
Lakeland	84797	409.87	3099.18	17
Lisbon	85076	423.59	3193.26	17
Lynne	85237	409.26	3230.30	17
Orlando WSO McCoy	86628	468.99	3146.88	17
Parrish	86880	366.99	3054.39	17
Saint Leo	87851	376.48	3135.09	17
St. Petersburg	87886	339.04	3072.21	17
Tampa WSCMO AP	88788	349.17	3094.25	17
Venice	89176	357.59	2998.18	17
Venus	89184	466.756	2996.09	17

APPENDIX C

BPIP (Dated: 95086)

DATE : 11/25/98 TIME : 14:45:52

BPIP data for Hines2 HRSG

BPIP PROCESSING INFORMATION:

The ST flag has been set for processing for an ISCST2 run.

Inputs entered in METERS will be converted to meters using a conversion factor of 1.0000. Output will be in meters.

UTMP is set to UTMN. The input is assumed to be in a local X-Y coordinate system as opposed to a UTM coordinate system. True North is in the positive Y direction.

Plant north is set to .00 degrees with respect to True North.

BPIP data for Hines2 HRSG

PRELIMINARY* GEP STACK HEIGHT RESULTS TABLE (Output Units: meters)

Stack Name	Stack Height	Stack-Building Base Elevation Differences	GEP** EQN1	Preliminary* GEP Stack Height Value
UNIT2	38.10	.00	61.00	65.00

- * Results are based on Determinants 1 & 2 on pages 1 & 2 of the GEP Technical Support Document. Determinant 3 may be investigated for additional stack height credit. Final values result after Determinant 3 has been taken into consideration.
- ** Results were derived from Equation 1 on page 6 of GEP Technical Support Document. Values have been adjusted for any stack-building base elevation differences.

Note: Criteria for determining stack heights for modeling emission limitations for a source can be found in Table 3.1 of the GEP Technical Support Document.

BPIP (Dated: 95086)

DATE : 11/25/98 TIME : 14:45:52

BPIP data for Hines2 HRSG

BPIP output is in meters

SO	BUILDHGT	UNIT2	24.40	24.40	24.40	24.40	24.40	24.40
\$O	BUILDHGT	UNIT2	24.40	24.40	24.40	24.40	24.40	24.40
so	BUILDHGT	UNIT2	24.40	24.40	24.40	24.40	24.40	24.40
SO	BUILDHGT	UNIT2	24.40	24.40	24.40	24.40	24.40	24.40
\$0	BUILDHGT	UNIT2	24.40	24.40	24.40	24.40	24.40	24.40
SO	BUILDHGT	UNIT2	24.40	24.40	24.40	24.40	24.40	24.40
SO	BUILDWID	UNIT2	21.31	28.26	34.36	39.42	43.28	45.82
so	BUILDWID	UNIT2	46.97	46.70	45.00	46.70	46.97	45.82
so	BUILDWID	UNIT2	43.28	39.42	34.36	28.26	21.31	13.70
so	BUILDWID	UNIT2	21.31	28.26	34.3€	39.42	43.28	45.82
SO	BUILDWID	UNIT2	46.97	46.70	45.00	46.70	46.97	45.82
SO	BUILDWID	UNIT2	43.28	39.42	34.36	28.26	21.31	13.70

```
'BPIP data for Hines2 HRSG'
'ST'
'METERS' 1.00
'UTMN' 0.00
'A' 1 0.0
4 24.4
 0.000
            0.000
 0.000
            45.000
 13.700
            45.000
13.700
            0.000
1
'UNIT2' 0.0 38.1
                       6.8
                                0.0
0
```

APPENDIX D

SUMMARY OF MAXIMUM CONCENTRATIONS PREDICTED FOR POWER BLOCK 2 BY OPERATING LOAD AND AIR INLET TEMPERATURE

Table D-1. Maximum Pollutant Concentrations Predicted for One Combustion Turbine in Combined Cycle Operation Firing Natural Fuel and Distillate Fuel Oil Based on Modeled Generic Emission Rate

-	<u>-</u>			Operating L	oed and	Rates (Byhr) Air Temperatu							by C			centrations (up ils Temperatur			
-		Base Loa		BO% Load			60% (NC)/65% Load(FO)		Averaging		Base Load		80% Load		60% (NG) /65% Load(FO)		oad(FO)		
Pollutant	20°F	59°F	90°F(NG)/ 105°F (FO)	20°F	59°F	90°F(NG) 105°F (FO)	20°F	59°F	90°F(NG)/ 105°F (FO)	Time	20 ° F	59°F	90°F(NG)/ 105°F (FO)	20°F	59°F	90°F(NG) 105°F (FO)	20°F	59°F	90°F(NC)/ 105°F (FO)
Natural Gae									-	·									
Generic	79.37	79.37	79.37	79.37	79.37	79.37	79.37	79.37	79.37	Annual	0.1230	0.1345	0.1447	0.1394	0.1571	0.1664	0.1924	0.2221	0.2411
(10 g/s)										24-Hour	2.8408	3.2647	3.5763	3.4281	3.7110	4.0386	4.7151	5.0154	5.2864
										8-Hour	5.4888	6.1829	6.8437	6.5344	7.1025	7.7247	8.9840	9.5138	9,9823
										3-Hour	10.2027	11.4684	12.6709	12.1083	13.1413	14.2708	16.5516	17.5092	18.3551
										1-Hour	18.0695	19.8541	21.5114	20.7403	22.2096	23.9629	27,5210	28.9907	30.2814
5O ₂	5.6	5.1	4.8	4.3	4.3	4.0	3.8	3.6	3.3	Annual	0.00873	0.00868	0.00870	0.00755	0.00850	0.00833	0.00914	0.01002	10010.0
										24-Hour	0.2015	0.2107	0.2151	0.1858	0.2006	0.2021	0.2239	0.2264	0.2195
										3-Hour	0.724	0.740	0.762	0.656	0.711	0.714	0.786	0.790	0.762
PM10	8.5	7.9	7.2	7.5	7.1	6.3	6.1 .	5.8	5.5	Annual	0.0131	0.0133	0.0131	0.0131	0.0140	0.0132	0.0147	0.0163	0.0166
										24-Hour	0.3029	0.3232	0.3237	0.3234	0.3313	0.3216	0.3611	0.3690	0.3650
NO _x	25.0	23.1	21.2	20.6	19.1	17.7	16.8	15.9	14.6	Annual	0.039	0.039	0.039	0.036	0.038	0.037	0.041	0.044	0,044
co	46,0	420	37.0	38.0	35.0	33.0	154.0	146.0	134.0	8-Hour	3.18	3.27	3.19	3.13	3.13	3.21	17.43	17.50	16.85
										1-Hour	10.47	10.51	10.03	9.93	9.79	9.97	53.40	53.33	51.13
Distillate Pue																			
Generic	79.37	79.37	79.37	79.37	79.37	79.37	79.37	79.37	79.37	Annual	0.0708	0.0741	0.0832	0.0717	0.0760	0.0858	0.0794	0.0637	0.0994
(10 g/s)										24-Hour	1.7604	1.8592	2.2787	1.7810	1.9301	2.3802	2.1105	2.2985	2.5810
										8-Hour	3.3783	3.5957	4.3951	3.4208	3.7561	4.6183	4.0223	4.4388	5.0524
										3-Hour	6.2390	6.6994	8.2033	6.3266	7.0282	8.6132	7.5181	8.2835	9.4091
• 4										1-Hour	11.7785	12.5418	14.8109	11.9646	13.0456	15.4148	13.7881	14.9296	16.5711
503	105.6	97.1	86.0	85.6	79.4	71.0	72.0	68.0	62.0	Annual	0.094	0.091	0.090	0.077	0.076	0.077	0.072	0.072	0.078
										24-Hour	2.34	2.28	2.47	1.92	1.93	2.13	1.91	1.97	2.02
										3-Hour	8.30	8.20	8.89	6.82	7.03	7.71	6.82	7.10	7.35
PM10	64.8	59.6	52.5	52.4	48.6	44.3	43.5	40,9	37.2	Annual	0.0577	0.0557	0.0551	0.0473	0.0465	0.0479	0.0435	0.0432	0.0466
										24-Hour	1.437	1.397	1.507	1.175	t.161	1.330	1.156	1.185	1.210
NO.	116.9	109.4	96.7	96.6	89.4	80.0	61.2	76.0	69.3	Annual	0.104	0.102	0.101	0.087	0.086	0.086	0.081	0.080	0.087
co	112.0	106.0	91.0	111.0	103.0	89.0	101.0	94.0	86.0	8-Hour	4.77	4.80	5.04	4.78	4.87	5.18	5.12	5.26	5.47
										1-Hour	16.62	16.73	16.98	16.73	16.93		17.55	17.68	17.96

Note: NG= natural gas; PO= fuel oil

Pollutant concentrations were based on a modeled or generic concentration predicted using a modeled emission rate of 79.37 lb/hr (10 g/s). Specific pollutant concentrations were estimated by multiplying the modeled concentration (at 10 g/s) by the ratio of the specific pollutant emission rate to the modeled emission rate of 10 g/s.

⁽¹⁾ Concentrations are based on highest predicted concentrations using five years of meteorological for 1987 to 1991 of surface and upper air data from the National Weather Service stations at Tampa International Airport and Ruskin, respectively.

Table D-2. Maximum Pollutant Concentrations Predicted for Two Combined-Cycle Combustion Turbines Firing Natural Gas and Distillate Fuel Oil by Operating Load and Inlet Ambient Temperature

•	Averaging	į	Base Load			80% Load	i	60% (N	G) /65% L	
Pollutant	T 1	20°F	eo0m	90°F(NG)/			90°F(NG)/			90°F(NG)/
1 Onutant	Time	20 F	59°F	105°F (FO)	20°F	59°F	105°F (FO)	20°F	59°F	105°F (FO)
latural Gas										
SO ₂	Annual	0.017	0.017	0.017	0.015	0.017	0.017	0.018	0.020	0.020
	24-Hour	0.403	0.421	0.430	0.372	0.402	0.404	0.448	0.453	0.439
	3-Hour	1.45	1.48	1.52	1.31	1.42	1.43	1.57	1.58	1.52
PM10	Annual	0.0262	0.0266	0.0262	0.0263	0.0281	0.0265	0.0295	0.0327	0.0333
	24-Hour	0.606	0.646	0.647	0.647	0.663	0.643	0.722	0.738	0.730
NO _x	Annual	0.078	0.078	0.077	0.072	0.076	0.074	0.081	0.089	0.089
со	8-Hour	6.36	6.54	6.38	6.26	6.26	6.42	34.9	35.0	33.5
	1-Hour	20.9	21.0	20.1	19.9	19.6	19.9	107	107	102
Distillate Fuel Oil										
. SO ₂	Annual	0.188	0.181	0.180	0.155	0.152	0.154	0.144	0.143	0.155
,	24-Hour	4.68	4.55		3.84	3.86	4.26	3.83	3.94	4.03
	3-Hour	16.6	16.4	17.8	13.6	14.1	15.4	13.6	14.2	14.3
PM10	Annual	0.115	0.111	0.110	0.0945	0.0930	0.0959	0.0870	0.0864	0.093
	24-Hour	2.87	2.79	3.01	2.35	2.36	2.66	2.31	2.37	2.43
NO _x	Annual	0.21	0.20	0.20	0.17	0.17	0.17	0.16	0.16	0.13
co	8-Hour	9.53	9.60	10.08	9.57	9.75	10.4	10.2	10.5	10.9
	1-Hour	33.2	33.5		33.5	33.9		35.1	35.4	

Note: NG= natural gas; FO= fuel oil

⁽¹⁾ Concentrations are based on highest predicted concentrations using five years of meteorological for 1987 to 1991 of surface and upper air data from the National Weather Service stations at Tampa International Airport and Ruskin, respectively.

Table D-3. Summary of Maximum Pollutant Concentrations Predicted for Two Combined-Cycle Combustion Turbines Compared to the EPA Class II Significant Impact Levels, PSD Class II Increments, and AAQS

		Max	imum Concentrat	ion (ug/m3)	EPA Class II Significant	PSD Class II	
	Averaging	•		Natural Gas/ Fuel Oil	Impact Levels	Increments	AAQS
Pollutant	Time	Natural Gas	Fuel Oil	Annual (1)	(ug/m³)	(ug/m³)	(ug/m³
SO ₂	Annual	0.018	0.19	0.038	1	25	60
2	24-Hour	0.45	4.9	NA	5	91	260
	3-Hour	1.6	17.8	NA	25	512	1,300
PM10	Annual	0.029	0.12	0.039	1	17	50
	24-Hour	0.72	3.0	NA	5	30	150
NO _x	Annual	0.081	0.21	0.096	1	25	100
CO	8-Hour	34.9	10.9	NA	500	NA	10,000
	1-Hour	107	35.9	NA .	2,000	NA	40,000

NA= not applicable

(1) Based on firing natural gas and fuel oil for the following hours:

Natural gas Fuel Oil 7,760 hours

1,000 hours

8,760 hours

Table D-4. Maximum Pollutant Concentrations Predicted for One Combustion Turbine Firing Natural Fuel and Distillate Fuel Oil In Combined-Cycle Operation at the PSD Class I Area of the Chassahowitzka NWA Based on Modeled Generic Emission Rate

		Base La	by Med	Operatio	18 Load a	ion Rates (lb/) and Air Tempe	rature						Ma	dmum Pred	Icted Conce	entrations (ug/			
•			90°P(NG)		80% La		60% (1	IC) /65%	Lord(PO)	Averaging		Base Load	Or i	Operating L	oad and Ali	Temperature	m) (1)		
Pollutant	20°F	59°P	105°P (PO)	20°F	***	90°F(NG)			90°F(NG)			Date LONG			60% Load			VG)/65% L	ord(EO)
			100 1 (10)	20 F	59°F	105°F (PO)	20°F	59°P	105°P (PO)	Time	20°F	59°F	90°F(NG)/ 105°F (PO)	20°F	59°P	90°F(NC)/ 105°F (PO)			90°F(NC
Natural Cas										·			<u> </u>		371	103 1 (110)	20°1°	59°P	105°F (PC
Generic	79.37	79.37	79,37	79.37	79.37	79.37	5 2 5-												
10 g/s)					.,,,,,	17.37	79.37	79.37	79.37	Annual	0.0077	0.0078	0.000						
										24-Hour	0.1025		0.0090	0.0079	0.0000	0.0082	0.0085	0.0086	
										8-Hour	0.1025	0.1050 0.3780	0.1072	0.1062	0.1081	0.1101	0.1139	0.0088	0.006
										3-Hour	0.7339		0.3879	0.3833	0.3917	0.4005	0.4173	0.1137	0.117
										1-Hour	1.2786	0.7560	0.7758	0.7667	0.7834	0.8009	0.8346		0.429
5O ₂	5.6	5.1	4.8							- 7.007	1.2700	1.3178	1.3532	1.3369	1.3666	1.3980	1.4580	0.8481	0.859
			*.0	4.3	4.3	4.0	3.8	3.6	3.3	Annual						12712	1.4.100	1.4821	1.503
									3.5	24-Hour	0.00055	0.00050	0.00048	0.00043	0.00043	9.00041	0.000.0		
											0.0073	8300.0	0.0064	0.0058	0.0059		0.00040	0.00039	0,0003
PM10	8.5	7.9								3-Hour	0.052	0.049	0.047	0.042	0.042	0.0055	0.0054	0.0052	0.004
		7.3	7.2	7.5	7.1	6.3	6.1	5.8	5.5					2.012	0.042	0.040	0.040	0.038	0.03
								VI.	3.3	Annual	0.0008	0.0008	0.0007	0.0007	0.0007	0.000-			
NO.	25.0									24-Hour	0.0109	0.0104	0.0097	0.0100	0.0007	0.0007	0.0007	0.0006	0.0006
,,,,,	45.0	23.1	21.2	20.6	19.1	17.7	16.8	15.9						0.0100	0.0097	0.0088	0.0087	0.0085	0.0081
istillate Fuel	•						*0.0	13.9	14.6	Annual	0.002	0.002	0.002	0.002					
eneric														0.002	0.002	0.002	0.002	0.002	0.002
0 g/s)	79.37	79.37	79.37	79.37	79.37	79.37	79.37												
u g/s)						,,,,,	17.31	79.37	79.37	Annual	0.0064	0.0066	0.0068						
										24-Hour	0.0840	0.0854	0.0894	0.0064	0.0066	0.0069	0.0067	0.0068	0.0070
÷.										8-filour	0.2845	0.2905	0.3025	0.0843	0.0663	0.0904	0.0876	0.0896	0.0070
										3-Hour	0.5689	0.5809		0.2859	0.2943	0.3118	0.2999	0.3083	0.3200
60										1-Hour	0.9890	1.0102	0.6150	0.5719	0.5887	0.6237	0.5999	0.6167	0.6401
50,	105.6	97.1	86.0	85,6	79.4	71.0	-4.					1.0102	1,0705	0.9942	1.0239	1.0859	1.0438	1.0735	
						71.0	72.0	68.0	62.0	Annual	0.009	0.008						1.07.55	1.1150
										24-Hour			0.007	0.007	0.007	0.006	0.006	0.006	
										3-Hour	0.11	0,10	O. to	0.09	0.09	0.08	0.08		0.005
PM10	64.8	59,6	52.5	52.4	48.6						0.76	0,71	0.67	0.62	0.59	0.56	0.06 0.54	0.08	0.07
				32.4	40.0	44.3	43.5	40.9	37.2	Annual	0.0052				•	0	0.34	0.53	0.50
										24-Hour		0.0049	0.0045	0.0042	0.0041	0.0038	0.0000		
NO _{s 1}	16.9	109.4	96.7							· · · · · · · · · · · · · · · · · ·	0.069	0.064	0,059	0.056	0.053	0.051	0.0037	0.0035	0.0033
	-		20.7	96.6	B9.4	80.0	81.2	76,0	69.3	Annual						0.0001	0.048	0.046	0,043
								•-	1.7,3	Citin (1)	0.009	0.009	0.008	0.006	0.002	0.007			

⁽¹⁾ Concentrations are based on highest predicted concentrations using five years of meteorological for 1987 to 1991 of surface and upper air data from the National Weather Service stations at Tampa International Airport and Ruskin, respectively.

Pollutant concentrations were based on a modeled or generic concentration predicted using a modeled emission rate of 79.37 lb/hr (10 g/s). Specific pollutant concentrations were estimated by multiplying the modeled concentration (at 10 g/s) by the ratio of the specific pollutant emission rate to the modeled emission rate of 10 g/s.

Table D-5. Maximum Pollutant Concentrations Predicted for Two Combined-Cycle Combustion Turbines Firing Natural Gas and Distillate Fuel Oll by Operating Load and Inlet Ambient Temperature at the PSD Class I Area of the Chassahowitzka NWA

Maximum Predicted Concentrations (ug/m³) by Operating Load and Air Temperature (1) Averaging Base Load 80% Load 60% (NG)/65% Load(FO) 90°F(NG)/ 90°F(NG)/ 90°F(NG) Pollutant Time 20°F 59°F 20°F 105°F (FO) 59°F 105°F (FO) 20°F 59°F 105°F (FO) Natural Gas SO₂ Annual 0.0011 0.0010 0.0010 0.0009 0.0009 0.0008 0.0008 0.0008 0.0007 24-Hour 0.0145 0.0135 0.0129 0.0115 0.0117 0.0110 0.0108 0.0104 0.0097 3-Hour 0.104 0.0976 0.0933 0.0831 0.0848 0.0802 0.0793 0.0766 0.0714 PM10 Annual 0.0016 0.0015 0.0014 0.0015 0.0014 0.0013 0.0013 0.0013 0.0012 24-Hour 0.0218 0.0208 0.0194 0.0200 0.0193 0.0175 0.0170 0.0174 0.0162 NO, 0.0049 0.0046 Annual 0.0043 0.0041 0.0039 0.0037 0.0036 0.0034 0.0032 Distillate Fuel Oil SO₂ Annual 0.0171 0.0160 0.0148 0.0139 0.0133 0.0123 0.0122 0.0117 0.0110 24-Hour 0.223 0.209 0.194 0.182 0.173 0.162 0.159 0.153 0.144 3-Hour 1.51 1.42 1.33 1.23 1.18 1.12 1.09 1.06 1.000 PM10 Annual 0.010 0.010 0.009 0.008 0.008 0.008 0.007 0.007 0.007 24-Hour 0.137 0.128 0.118 0.111 0.106 0.101 0.096 0.092 0.087 NO_x Annual 0.019 0.018 0.017 0.016 0.015 0.014 0.014 0.013 0.012

Note: NG= natural gas; FO= fuel oil

⁽¹⁾ Concentrations are based on highest predicted concentrations using five years of meteorological for 1987 to 1991 of surface and upper air data from the National Weather Service stations at Tampa International Airport and Ruskin, respectively.

Table D-6. Summary of Maximum Pollutant Concentrations Predicted for Two Combined-Cycle Combustion Turbines
Compared to the EPA Class I Significant Impact Levels and PSD Class I Increments

			Maximum Concentration	(ug/m3)	EPA Class I Significant	PSD Class I
	Averaging		maximali concentration	Natural Gas/ Fuel Oil	Impact Levels	Increments
Pollutant	Time	Natural Gas	Distillate Fuel Oil	Annual (1)	(ug/m³)	(ug/m ^{.3})
<u>SCST</u>						_
SO ₂	Annual	0.0011	0.017	0.0029	0.1	2
-	24-Hour	0.015	0.22	NA	0.2	5
,	3-Hour	0.104	1.51	NA	1.0	25
PM10	Annual	0.0016	0.010	0.0026	0.2	4
1 14110	24-Hour	0.022	0.137	NA	0.3	8
NO _x	Annual	0.005	0.019	NA	0.1	2.5
<u>CALPUFF</u>						
SO ₂	Annual	0.00040	0.0081	0.0013	0.1	2
•	24-Hour	0.0090	0.17	NA	0.2	5
. ,	3-Hour	0.023	0.45	NA	1.0	25
PM10	Annual	0.00085	0.0065	0.0015	0.2	4
1,1110	24-Hour	0.016	0.124	NA	0.3	8
NO _x	Annual	0.00064	0.003	0.00094	0.1	2.5

NA = not applicable

(1) Based on firing natural gas and fuel oil for the following hours:

 Natural gas
 7,760 hours

 Fuel Oil
 1,000 hours

 8,760 hours