MEMORANDUM

TO:

John Reynolds

FROM:

Bill Proses

DATE:

June 14, 1996

SUBJECT: Sulfuric Acid Plant Compliance Test Reports

Bill Thomas requested that I send you the attached compliance tests. I hope they provide the information you need.

 $\mathcal{M}(\mathcal{M})$

P.O. Box 9002 - Bartow, Florida 33830 - Telephone 941-534-9610 - FAX 941-534-9680 Certified Mail P 013 142 583

Febuary 27, 1996

Mr. B. Proses Florida Dept, of Environmental Protection 3804 Coconut Palm Drive Tampa, Florida 33619

Subject: Cargill Fertilizer, Inc Testing - Bartow Plant

Compliance Test Results

#5 SULFURIC ACID PLANT AC53-271436 AIRS

105-0046-033

Dear Sir:

Please find enclosed a copy of the compliance test conducted on the aboved mentioned facility. As noted in the tests the facility was well within the limits of the permit.

If you have any questions or need additional information, feel free to give me a call at (813) 534-9616.

Sincerely,

David Blanc

Environmental Specialist

EMISSIONS TESTING
of the
CARGILL FERTILIZER, INC.
SULFURIC ACID PLANT NO. 5
Bartow, Florida

January 29, 1996

FDEP Permit No. AC53-271436

SES Reference No. 95S270

I HAVE REVIEWED THIS REPORT AND IT (DOES)
DOES NOT) INDICATE COMPLIANCE WITH THE
DATE 3/25/96 BY

Project Participants

Byron E. Nelson Mark S. Gierke David W. Nichols

EMISSIONS TESTING of the CARGILL FERTILIZER, INC. SULFURIC ACID PLANT NO. 5 Bartow, Florida

January 29, 1996

TABLE OF CONTENTS

		<u>P</u>	<u>age</u>
1.0	INTRODUCTION		1
2.0	SUMMARY OF RESULTS	•	1
3.0	PROCESS DESCRIPTION		4
4.0	SAMPLING PROCEDURES		5
	4.1 Methods4.2 Sampling Locations4.3 Sampling Train4.4 Sample Collection4.5 Sample Recovery		5 5 7 7 9
5.0	ANALYTICAL PROCEDURE	. 1	10
	5.1 Pretest Preparation		
APF	PENDIX	. 1	1
	Project Participants Certification Visible Emissions Evaluation Process Operational Data Laboratory Data Field Data Sheets Analyzer Strip Charts Calibration Data Calculations and Symbols		

1.0 INTRODUCTION

Southern Environmental Sciences, Inc. conducted sulfur dioxide, sulfuric acid mist, and nitrogen oxides emissions tests and a visible emissions evaluation of the Cargill Fertilizer, Inc. Sulfuric Acid Plant No. 5 on January 29, 1996. This plant is located on State Road 60, West of Bartow, Florida. Testing was performed to determine if the plant was operating in compliance with requirements of the Florida Department of Environmental Protection (FDEP).

2.0 SUMMARY OF RESULTS

The plant was found to be in compliance with all applicable emission limiting standards. Results of the nitrogen oxides, sulfur dioxide and sulfuric acid mist tests are summarized in Table 1.

Allowable sulfur dioxide emissions from this source are limited to a maximum of 4 pounds per ton of 100% sulfuric acid produced and 433.3 pounds per hour. The average measured sulfur dioxide emission rate was 3.55 pounds per ton of 100% sulfuric acid produced and 327.3 pounds per hour.

Allowable sulfuric acid mist emissions from this source are limited to a maximum of 0.15 pounds per ton of 100% sulfuric acid produced and 16.25 pounds per hour. The average measured sulfuric acid mist emission rate was 0.02 pounds per ton of 100% sulfuric acid produced and 1.52 pounds per hour.

TABLE 1. EMISSIONS TEST SUMMARY

Company: CARGILL FERTILIZER, INC.

Source: Bartow - Sulfuric Acid Plant No. 5

	Run 1	Run 2	Run 3
Date of Run	01/29/96	01/29/96	01/29/96
Production Rate (TPH 100% Acid)	92.3	92.3	92.3
Start Time (24-hr. clock)	0946	1125	1254
End Time (24-hr. clock)	1049	1227	1356
Vol. Dry Gas Sampled Meter Cond. (DCF)	53.102	53.565	53.914
Gas Meter Calibration Factor	1.010	1.010	1.010
Barometric Pressure at Barom. (in. Hg.)	30.12	30.12	30.12
Elev. Diff. Manom. to Barom. (ft.)	190	190	190
Vol. Gas Sampled Std. Cond. (DSCF)	54.138	53.929	53.928
Vol. Liquid Collected Std. Cond. (SCF)	0.00	0.00	0.00
Moisture in Stack Gas (% Vol.)	0.00	0.00	0.00
Molecular Weight Dry Stack Gas	30.00	30.00	30.00
Molecular Weight Wet Stack Gas	30.00	30.00	30.00
Stack Gas Static Press. (in. H2O gauge)	-0.41	-0.43	-0.40
Stack Gas Static Press. (in. Hg. abs.)	29.90	29.90	29.90
Average Square Root Velocity Head	0.840	0.829	0.830
Average Orifice Differential (in. H2O)	2.531	2.577	2.628
Average Gas Meter Temperature (°F)	66.5	73.2	76.8
Average Stack Gas Temperature (°F)	149.9	150.3	151.7
Pitot Tube Coefficient	0.84	0.84	0.84
Stack Gas Vel. Stack Cond. (ft./sec.)	49.75	49.13	49.23
Effective Stack Area (sq. ft.)	35.78	35.78	35.78
Stack Gas Flow Rate Std. Cond. (DSCFM)	92,411	91,193	91,179
Stack Gas Flow Rate Stack Cond. (ACFM)	106,820	105,482	105,704
Net Time of Run (min.)	60	60	60
Nozzle Diameter (in.)	-0.250	0.250	0.250
Percent Isokinetic	102.6	103.5	103.5

TABLE 1. EMISSIONS TEST SUMMARY (con't)

Company: CARGILL FERTILIZER, INC.

Source: Bartow - Sulfuric Acid Plant No. 5

	Run 1	Run 2	Run 3	·
Date of Run	01/29/96	01/29/96	01/29/96	
Production Rate (TPH 100% Acid)	92.3	92.3	92.3	
Start Time (24-hr. clock)	0946	1125	1254	
End Time (24-hr. clock)	1049	1227	1356	
,				Average
H2SO4 Emissions (lb./hr.)	1.60	1.59	1.36	1.52
H2SO4 Emissions (lb./ton of 100% acid)	0.017	0.017	0.015	0.02
Allowable H2SO4 Emissions (lbs./hr.)				16.25
Allowable H2SO4 Emissions (lb./ton of 1	00% acid)			0.15
SO2 Emissions (lb./hr.)	329.5	326.5	326.00	327.3
SO2 Emissions (lb./ton of 100% acid)	3.57	3.54	3.53	3.55
Allowable SO2 Emissions (lbs./hr.)				433.3
Allowable SO2 Emissions (lbs./ton of 10	0% acid)			4.0
Method 8 Measured SO2 Conc. (PPM)	358	359	359	359
Continuous Monitor SO2 Conc. (PPM)	370	370	370	370
Percent Difference	3.4	3.0	3.1	3.2
NOx Emissions (ppm)	14.6	15.8	16.8	16
NOx Emissions (lb./hr.)	9.7	10.3	10.9	10.3
NOx Emissions (lbs/ton of 100% acid)	<i>-</i> 0.10	0.11	0.12	0.11
Allowable NOx Emissions (lbs./hr.)				13
Allowable NOx Emissions (lbs./ton of 10	0% acid)	•		0.12

Note: Standard conditions 68°F, 29.92 in. Hg

The allowable nitrogen oxides emission rate for this source is 0.12 pounds per ton of 100% sulfuric acid produced and 13 pounds per hour. The average measured nitrogen oxides emission rate was 0.11 pounds per ton of 100% sulfuric acid produced and 10.3 pounds per hour.

A visible emissions evaluation was performed over a one hour period. The maximum opacity observed was zero percent with a maximum 6 minute average of zero percent, well within the allowable limit of ten percent.

3.0 PROCESS DESCRIPTION

The No. 5 Sulfuric Acid plant is a 2600 TPD (approximately) sulfur-burning, add-on double-conversion, double-absorption plant of Leonard-Monsanto design. Sulfur is burned with dried atmospheric oxygen to produce sulfur dioxide (SO₂). The sulfur dioxide is catalytically oxidized to sulfur trioxide (SO₃) over a vanadium pentoxide catalyst bed. The sulfur trioxide so produced is absorbed in 98% sulfuric acid. The acid flows from each absorbing tower are combined to provide product acid. By the use of an intermediate absorbing tower, the partial pressure of sulfur dioxide in the final converter is increased to drive the conversion reaction to a greater degree of completion, thus providing greater efficiency and cleaner atmospheric emissions.

The permitted process rate for this source is 2600 tons per day, based upon 100 percent H_2SO_4 . Process rates during the test period were determined by plant personnel.

4.0 SAMPLING PROCEDURES

4.1 Methods

All sampling was performed using methods currently acceptable to the FDEP. Sulfur dioxide and sulfuric acid mist sampling and analyses were conducted in accordance with EPA Method 8 - Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions from Stationary Sources, 40 CFR 60, Appendix A. Nitrogen oxides sampling was conducted in accordance with EPA Method 7E - Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure), 40 CFR 60, Appendix A. The visible emissions evaluation was performed using procedures described in EPA Method 9 - Visual Determination of the Opacity of Emissions from Stationary Sources, 40 CFR 60, Appendix A.

The effluent gas stream was considered to be dry and the water vapor volume and moisture content were assumed to be zero percent as described in section 6.4 of EPA Method 8.

4.2 Sampling Locations

Locations of the sample ports and stack dimensions are shown in Figure 1. Sulfuric acid mist and sulfur dioxide emissions were sampled by conducting horizontal traverses through each of two ports located at a ninety degree angle from one another on the circular stack. Twenty four sample points were chosen in accordance with EPA Method 1 - Sample and Velocity Traverses for Stationary Sources, 40 CFR 60, Appendix A.

Figure 1. Stack Dimensions and Sample Port Locations, Cargill Fertilizer, Inc., Sulfuric Acid Plant No. 5, Bartow, Florida.

Nitrogen oxides sampling was performed from the same sampling ports as the sulfuric acid mist and sulfur dioxide sampling.

4.3 Sampling Trains

The sulfuric acid mist and sulfur dioxide sampling train consisted of a stainless steel nozzle, a Nutech Corporation 8 foot heated borosilicate glass lined probe, a glass filter bypass tube, a glass fiber filter and four impingers arranged as shown in Figure 2. The first impinger was charged with 100 milliliters of 80 percent isopropanol. The second and third impingers were each charged with 100 milliliters of 3 percent hydrogen peroxide and the fourth impinger was charged with indicating silica gel desiccant. The impingers were cooled in an ice and water bath during sampling. A Nutech Corporation control console was used to monitor the gas flow rates and stack conditions during sampling.

The nitrogen oxides sampling train consisted of a stainless steel probe, heated teflon sample line, condenser and a Thermo Environmental Instruments, Inc. Model 10S Chemiluminescent NO/NO_x Analyzer.

4.4 Sample Collection

Prior to sulfuric acid mist and sulfur dioxide sampling, the pitot tubes were checked for leaks and the manometers were zeroed. A pretest leak check of the sample line was conducted by sealing the nozzle and applying a 15" Hg vacuum. A leak rate of less than 0.02 cubic feet per minute (CFM) was considered acceptable. Sample was collected

Figure 2. EPA Method 8 Sampling Train.

isokinetically for two and one half minutes at each of the points sampled.

The nitrogen oxides analyzer was calibrated immediately prior to the beginning of the test by introducing known gases into the instrument through the sampling system. Zero and a mid-range calibration gas were introduced after each run to check for instrument drift.

Nitrogen oxides sampling was conducted simultaneously with sulfuric acid mist and sulfur dioxide.

4.5 Sample Recovery

A post test leak check of the sulfuric acid mist and sulfur dioxide sampling train was performed at the completion of each run by sealing the nozzle and applying a vacuum equal to or greater than the maximum value reached during the sample run. A leak rate of less than 0.02 CFM or 4 percent of the average sampling rate (whichever was less) was considered acceptable. The probe was then disconnected, the ice bath was drained and the remaining part of the sample train was purged by drawing charcoal filtered air through the system for fifteen minutes at the average flow rate used during sampling. The nozzle and probe were then rinsed with 80 percent isopropanol and the rinsings were placed into a clean polyethylene container along with the contents of the first impinger. The glass fiber filter was removed from the holder with forceps and placed in the same container. The filter bypass tube, first impinger, front half of the filter holder and associated connecting glassware were then rinsed with 80 percent isopropanol and the

rinsings were added to the above container. The second and third impingers, associated connecting glassware, and back half of the filter holder were rinsed with distilled, deionized water into a clean polyethylene container. This container also held the impinger solutions for transportation back to the laboratory for subsequent analysis.

5.0 ANALYTICAL PROCEDURE

5.1 Pretest Preparation

The 3 percent hydrogen peroxide solution was prepared from 30 percent reagent grade hydrogen peroxide and distilled, deionized water on the morning of the test. The 80 percent isopropanol solution was prepared from 100 percent reagent grade isopropanol and distilled, deionized water. Both solutions were kept and transported on ice to and from the sampling location. The impingers were charged as described in section 4.3.

5.2 Analysis

After recovery, the samples were analyzed using procedures outlined in EPA Method 8
- Determination of Sulfuric Acid Mist and Sulfur Dioxide Emissions From Stationary
Sources, 40 CFR 60, Appendix A. Duplicate titration results were obtained in milliliters
of barium perchlorate titrant. The averages of these titration values were used to
compute the sulfur dioxide and sulfuric acid mist concentrations.

APPENDIX

Project Participants

Certification

Visible Emissions Evaluation

Process Operational Data

Laboratory Data

Field Data Sheets

Calibration Data

Calculations and Symbols

PROJECT PARTICIPANTS AND CERTIFICATION

CARGILL FERTILIZER, INC. Sulfuric Acid Plant No. 5

Bartow, Florida

January 29, 1996

Project Participants:

Byron E. Nelson Mark S. Gierke David W. Nichols Conducted the field testing.

Byron E. Nelson

Performed the visible emissions evaluation.

David Blanc (Cargill)

Provided process rates.

R.E. Burk (Cargill)

Performed laboratory

analyses.

Kenneth M. Roberts

Computed test results.

Kenneth M. Roberts

Prepared the final test

report.

Certification:

I certify that to my knowledge all data submitted in this report is true and correct.

Kenneth M. Roberts

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street, Plant City, Florida 33566 (813)752-5014

VISIBLE EMISSIONS EVALUATION

COMPANY Cargill Fertilizer						
UNIT SulFuric Acid Plant No.5						
ADDRESS Highway 60 west						
Bartow Florida						
PERMIT NO.	COMPLIANCE?					
AC 53-27 4360 PROCESS RATE 10070	PERMITTED RATE					
92.3784 Acid	108.3TPH (2600TPO)					
PROCESS EQUIPMENT Sulfyriz aci	d plant					
CONTROL EQUIPMENT	. `					
Dauble absor	AMBIENT TEMP. (°F)					
Continuous	START US STOP ~ 70					
HEIGHT ABOVE GROUND LEVEL START 2 00 STOP 2 90'	HEIGHT REL. TO OBSERVER START 200 STOP 200					
DISTANCE FROM OBSERVER START 500'STOP 500'	DIRECTION FROM OBSERVER START 315°STOP 315°					
EMISSION COLOR	PLUME TYPE NA CONTIN. INTERMITTENT					
WATER DROPLETS PRESENT NO D YES	IS WATER DROPLET PLUME NA ATTACHED □ DETACHED □					
POINT IN THE PLUME AT WHICH O	DPACITY WAS DETERMINED STOP Stackexit					
DESCRIBE BACKGROUND START SKY	STOP SKY					
BACKGROUND COLOR START White	SKY CONDITIONS START 70 70 5TOP 70 970					
WIND SPEED (MPH) START 3-5 STOP 3-5	WIND DIRECTION START NE STOP NE					
AVERAGE OPACITY FOR HIGHEST PERIOD 0 970	RANGE OF OPAC. READINGS MIN. 57-MAX. 57.					
SOURCE LAYOUT SKETCH	DRAW NORTH ARROW					
SAPS Emission Point						
Sun * Wind	SAP4					
Plume and Stack	Observer's Position					
14	100					
Sun Loca	tion Line					
COMMENTS						
						
						

EVALUATION									
OBSER	VATIO 29	DATE DATE DATE		ART T			STOP I		5
SEC	0	15	30	45	SEC	0	15	30	45
MIN					MIN				,
0	0	0	0	0	30	0	0	0	0
1	0	0	0	0	31	0	0	0	0
2 0 0 0 0 32 0 0 0									
3 0 0 0 0 33 0 0 0 0									
4	0	0	0	0	34	0	0	0	0
5	0	0	0	0	35	0	0	0	0
6	0	0	0	0	36	0	0	0	0
7	0	0	0	0	37	0	0	0	0
8	0	0	0	0	38	0	0	0	0
9	0	0	0	0	39	0	0	0	0
10	0	0	0	0	40	0	0	0	0
11	0	0	0	0	41	0	0	0	0
12	0	0	0	0	42	0	0	O	0
13	0	0	0	0	43	۵.	0	0	0
14	0	0	0	0	44	0	0	0	0
15	0	0	0	0	45	0	0	0	0
16	0	0	0	0	46	0	0	0	0
17	0	0	0	0	47	0	0	0	0
18	0	0	0	0	48	0	0	0	0
19	0	0	0	0	49	0	0	0	0
20	0	0	0	0	50	٥	0	0	0
21	0	0	0	0	51	<u></u>	0	0	0
22	0	0	0	0	52	0	0	0	0
23	0	0	0	0	53	0	0	0	0
24	0	0	0	0	54	0	0	0	0
25	0	0	0	0	55	0	0	0	0
26	8	0	0	0	56	0	0	0	0
27	0	0	0	0	57	0	0	0	0
28	0	0	9	٥	58	0	0	0	0
29	٥	0	0	0	59	0	0	0	0
Obser	ver:	PC) Y ^	2	5	لما	42		
Certifi	ied by	:FDO	EP ru E	TACE	ertified	at:	Tar	بر طامر	_
Date (Certifi	ed: 8	1/30/	95 Ex	cp. Da	te:	3/,	196	
l certify true and							ting the	test w	as
Signat	ture:						-		
Title:									1

F-807 T-941 P-001

FEB 22 '96 16:14

Plant Name: Cargill Fertilizer, Inc. Bartow, FL

Test For: Sulfur Dioxide and Acid Mist

Test Date: January 29, 1996

Source ID:

#5 SULFURIC ACID PLANT

Time Sampled: 9:45 - 1:45

Test Type: Compliance Test

Test Conducted By: Southern Environmental Sciences, Inc.

#5 SULFURIC ACID PLANT (5SAP)

PARAMETERS	UNITS	9:45am	10:45am	11:45am	12:45pm	1:45pm		Average
PRODUCTION RATE	TPH	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	XXXXX	92.3
TURBO BLOWER							· · · · · · · · · · · · · · · · · · ·	·
RPM	cycles/min	4110	4110	4110	4110	4110	. 	4110
Outlet Press, H20	H20	250	250	250	250	250		250
ABSORB TOWER								
Acid In <85	С	72	72	72	72	72		72
FINAL TOWER								
Acid Temp In <112	c.	86	86	86	86	86		86
Acid Temp Out <85	С	64	64	64	65	65		64.4
Water Temp In	С	27	27	27	30	30		28.2
Water Temp Out	С	40	40	40	44	44		41.6
DRYING TOWER				_,		······································		
Acid In Temp	С	56	56	56	59	59		57.2
Acid Temp Out <60	С	29	29	29	32	32		30.2
SULFUR BURNER								
Gas Exit Temp	С	1151	1153	1153	1152	1152		1152.2
STACK EMISSIONS								
Dupont SO2 Anal <400	ppm	368	354	354	363	363		360.4
502	lbs/ton	3.33	3.24	3.24	3.31	3.31		3.286
32	%	4.1	4.2	4.2	4.2	4.2		4.18
DRYING TOWER				· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
% H2SO4	%	95.6	95.5	95.5	95.6	95.6		95,56

Operator Name	Signature

			//			
0	2	0		60	20	00
	Jan. 29- 14-,00	S B			0.00	
962	0-9 0-502 50mm/h 6REEN				Pêriso	2
	- OTESNA					
		:				SOUNCE AS
						Fe SYDK
	<u>:</u>	:				
	2	ŝ		50	30	03
4						
						1.2
1	შიი. 28. 12: სს	S 6				
.	មិន \$82 ១ \$82 ១៤៣៣/৮ ភេទីឆ្ន				PPMS	2 C.
		,				<i>z</i>
- 	1					£
- 1						Ĭ
5	· · · · · · · · · · · · · · · · · · ·	3		20	80	60
-			•			
						MV59518 64 1116
		<u> </u>				
						S =
-1	Jan - 29-	96				3
980	Jan. 29- 10:00 6 \$02				1000 FPMS0	2
-	SCART H					
	2	2	11/	£0	8 0	1001
		·	1			S •
į				1/24/	10 17 2 10	00 E

b://a 96. 6a abu

30 1 400 1 040

٠,

÷.

22.80

F3304 and 802 Titrations

EDWOS: 45 SAC

Average

Run 3-A

Run 3-B Run 3-C Average

Jaio 1-30-96.

		inalysis:	
•		Aliquot	5
	Aliquot	Factor	Ba(ClO4)2
Run 1-A	and Jan1	5	2.90
Run 1-B	(2.90
Run 1-C			
Average			
Run 2-A	100/500	5	2.90
Run 2-8		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2.90
Run 2-C)		
Average			
Run 3-A	100/5.00	5	2.48
Run 3-B			2.48
Aun 3-C		,	
Average			
	H2SO4 Blank; 6), UZ-	
	The section of Devices	TO THE OWNER OF THE PARTY OF TH	
	Normality of Ba(ClO4)2	2 8.009999	
A STATE OF THE PROPERTY OF THE PARTY OF THE	SO2	Analysis	
		Aliquot	ml
	Allquot	Factor	Ba(ClO4)2
Run 1-A	5/1000	2.00	22.82-
Run 1-8		(27.8/
Run 1-C			
Average			
Run 2-A	5/1000	2011	2284
Run 2-B	1	(72.82
Run 2-C)	

Analysist:

5/1000

SO2 Blank:

0.01

200

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street \Box Plant City, Florida \Box 33566 \Box (813) 752 -5014

CHAIN OF CUSTODY RECORD Analytical Request

Compliance

Client Caraill	Send Report To Byron Nelson
Project No. 955270	Address 1204 N. wheeler ST
Project Name Sulfuric Acid Plant#5	Plant city, Fl 33566
Project Manager David NicholS	Requested Due Date

ITEM NO.	SAMPLE DESCRIPTION	TIME SAMPLED	MATRIX	PRESERVATIVES	REQUESTED ANALYSIS	ANALYSIS METHOD
1	80% IPA - Imp#1	Run #1			CD /	METHOD
	3% H202 - IMP 243	1			302/ACIP	\Diamond
2	80% IPA - Imp#1	Pun#2			Mist	O
2	3% H202 - Imp# 2043				. 0.	
3	80% IPA - Imp#1	Run#3				·
3	3% H202 - Imp#2+3	1				
B	80% IPA	Blank				
B	3% HZOZ					
		l l				

Sampled By (PRINT)	David Nichols	Sample Recieved By (Print	Don Jernstrom	Recieved for Analysis By (PRINT)	
Sampler Signature	Quil Dinl	Signature	Do fersh	Signature	
Date Sampled	1/29/96	Date Recieved	1/29/96	Date Recieved	

Comments:	_

Page 1 of 1

FIELD DATA SHEET

Company Run Number Source Date Operator(s) 24 hr Time at Start 24 hr Time at End Dimensions Dia. Filter No(s). L x Wa Impinger Set No. Stack Static Press. ("H2O) Barometric Press. ("Hg) Elev.Diff. Mano. to Barom. (ft) 190 Meter Box No. 004 Meter AH@ 1.882 Ambient Temperature (°F) Assumptions: Sample Train Leak Check: Initial 0.012 CFM@_ Meter Correction Factor 1.010 % Moisture 0.84 Pitot Cp Stack Temp. #20 Final 0.012 CFM@ Nozzle ID Meter Temp. .250 Nozzle Dia. (inches) Initial Pitot Tube (-) Md/Ms Probe Length/Liner K Factor Final Pitot Tube (-)

Point No.	Sample Time (min.)	Meter Vol. Vm (ft³)	Velocity Head,∆P ("H₂0)	Orifice Diff., ΔH ("H ₂ 0)	Stack Temp., Ts (°F)	Meter Temp., Tm (°F)	Hot Box Temp. (°F)	Exit Temp. (°F)	Pump Vacuum ("Hg)	Other
1	0	205.701	.61	2.27	145	61	NA	56	5.0	
2	2.5	207.70	.65	2.42	148	61		53	5.0	
3	5	309.85	.71	2.64	149	62		53	5.5	
4	7.5	312.06	.15	2.79	150	62		56	6.0	
5	10	814.30	.78	2.90	151	63	Srq.	54	6.5	
Ģ	12.5	816.63	.79	2.94	151	63		53	6.5	
7	15	819.03	.79	2.94	151	64		53	6.5	
8	12.5	821.30	.80	2.98	151	64		52	6.5	·
9	20 "	823.63	.77	2.87	151	65		52	6.5	j
10	72.5	826.08	.77	2.87	151	66		52	6.5	
11	25	828.26	.58	2.16	149	67		50	5.0	
12	27.5	830.28	.56	2.09	148	67		50	5.0	
13	30	832.23	.62	2.31	146	67	\perp	58	.5.0	
14	32.5	334.33	.64	2.38	149	67		52	5.0	
15	35	336,45	.74	2.76	151	68		52	6.0	
16	37.5	38.70	.78	2.90	152	69		53	6.5	
17	40	341.02	.79	2,94	152	७९		53	6.5	
18	42.5	3 43.37	.80	2.98	152	69		54	6,5	
19	45	245.70	, % ०	2.98	152	70		54	6.5	
20	47.5	848.13	,17	2.87	152	70		54	ره, ج	
21	50	850.39	.75	2.79	152	70		55	6.0	
22	52.5	852.71	.45	2.42	149	70		55	5.5	
23	55	354.83	,56	2.09	148	71		56	5.0	
24	57.5	856.83	155	2.05	148	71		56	5.0	

Page _ of _

FIELD DATA SHEET

Company Run Number Source Date Operator(s) 24 hr Time at Start 24 hr Time at End Filter No(s). Dimensions Dia.pp Impinger Set No. L x Wa 30.1 Stack Static Press. ("H2O) Barometric Press. ("Hg) Meter Box No. Elev.Diff. Mano. to Barom. (ft) Ambient Temperature (°F) _ Meter △H@ 1-882 Assumptions: Sample Train Leak Check: Meter Correction Factor % Moisture Pitot Cp Initial 0.008 CFM@ Stack Temp. Final 0.010 Nozzle ID CFM@ Meter Temp. 250 Nozzle Dia. (inches) Md/Ms Initial Pitot Tube (-) Probe Length/Liner Final Pitot Tube (-) K Factor

Point Na.	Sample Time (min.)	Meter Vol. Vm (ft³)	Velocity Head,∆P ("H₂0)	Orifice Diff., ΔH ("H ₂ 0)	Stack Temp., Ts (°F)	Meter Temp., Tm (°F)	Hot Box Temp. (°F)	Exit Temp. (°F)	Pump Vacuum ("Fig)	Other
1	0	873.10	.51	1,90	142	69	NA	65	4.5	
2	2.5	874-95	163	2.35	145	10		63	5.0	
3	5	877.20	.71	2,64	148	69		62	5.0	
4	7.5	879.41	.75	2.79	150	70		62	5.5	
5	10	881,65	.18	2.90	150	70		62	6.0	
6	12.5	884.00	,79	2,94	151	70		62	6.5	
7	15	886.36	.17	2,87	152	71		62	6.0	
8	17.5	888.70	.79	2.94	152	72		63,	6.0	
9	20	891.11	.75	2.79	152	72		63	6.0	
10	22.5	893.45	.71	2.64	152	73		63	6.0	
11	25	895.71	.62	2.31	150	_73		64	5.5	
12	27.5	897,92	155	2.05	150	74		64	5.0	
١ 13	<i>3D</i>	699,95	58	2.16	151	73		63	5.0	
14	32.5	902.00	,69	2.57	148	74		64	5.0	
315	35	904.15	. 71	2.64	151	74		62	5.5	
16	37.5	906-41	.77	2,87	152	75		62	6.0	
₅ 17	40	908.75	,78	2-90	152	75		63	6.0	
18	42.5	911.12	178	2.90	152	75		64	6.0	
119	45	913.50	+77	2.87	153	75		65	6.5	
20	47.5	916.10	.80	2.98	153	76		64	70	
ጓ21		918.25	,78	2.90	153	76		64	7.0	
22	52.5	920.67	.63	2,35	152	77		63	50	
*23	1	922.94	,51	1.90	150	77		65	50	
24	57.5	124.81	.45	1.68	146	77		65	5.0	i

FIELD DATA SHEET

Company Source Operator(s)

Run Number Date 24 hr Time at Start 24 hr Time at End Filter No(s).

L x W Stack Static Press. ("H,O)

Dimensions Diana

Meter Box No.

Impinger Set No. Barometric Press. ("Hg) Elev.Diff. Mano. to Barom. (ft) 190

Ambient Temperature (°F)

Meter AH@ Meter Correction Factor Pitot Cp

1-010

Assumptions: % Moisture Stack Temp. Meter Temp.

Sample Train Leak Check: Initial 0.000 CFM@ Final 0.007

CFM@

Nozzle ID Nozzle Dia. (inches) Probe Length/Liner

250

Md/Ms K Factor

Initial Pitot Tube (-) Final Pitot Tube (-)

Point No.	Sample Time (min.)	Meter Vol. Vm (ft²)	Velocity Head,∆P ("H₂0)	Orifice Diff.,	Stack Temp., Ts (°F)	Meter Temp., Tm (°F)	Hot Box Temp. (°F)	Exit Temp. (°F)	Pump Vacuum ("Hg)	Other
1	0	940.586	.55	2,08	146	76	MA	65	5.0	
2	2.5	942.60	:68	2.58	150	76		64	50	
3	5	945.36	.72	2.73	15	77_		63	5.0	
4	7.5	947,00	.80	8.03	152	77		62	6.5	· .
5	10	949.48	.82	3.11	<i>16</i> 3	79		63	6.5	
6	12.5	951.85	,80	3.03	152	79		62	6.5	
7	15	954.3D	, 78	2,96	153	79		63	6.0	
8	17.5	956.67	,78	2,96	153	79		63	6.0	
9	20	959.03	.77	2.92	153	80		64	6.0	
10	22,5	961.46	.66	2.50	153	80		64	5.5	
11	25	963.74	,52	1.97	152	80	1	65	5.0	
12	27.5	965.70	.54	2.05	150	80		64	5.0	
; 13	30	967.711	-60	2,27	15.1	79		64	5.0	
:14	32.5	970.00	,67	2.16	150	80		63	5.0	
² 15	35	972,04	.65	2.46	151	80		62	නට	
16	37.5	974-20	.76	2.88	153	80		58	5.0	
517	40	976,84	.79	2,99	153	82		57	5.0	
18	425	978-53	. 78	2-96	153	82		57	6.0	
719	45	980.90	,76	2.88	153	85		57	6.0	
20	47.5	98330	.79	2.99	153	82		58	6.5	
ှိ21	50	985.70	.75	2.84	153	82		59	6.5	
22	52.5	988.04	072	2.73	153	83		59	6,0	
¹¹ 23	55	990.62	,56	2.12	152	83		59	5.0	
24	57.5 60	992.44	,49	1.86	148	82		59	5,0	

994,50

1204 North Wheeler St. Plant City, Florida 33566 (813) 752-5014

NITROGEN OXIDES ANALYZER CALIBRATION DATA

EPA METHOD 7E

COMPANY	CARGILL FERTILIER, INC BARTOW
SOURCE	SULFURIC ACID PLANT # 5
OPERATOR	B. NELSON
DATE	01/29/96
RUN#S	ALL
INSTRU. SPAN RANGE	25

	Cylinder	Analyzer calibration	Absolute	
	value (PPM)	responses (PPM)	difference (PPM)	Difference (% of Span)
Zero	0	0	0	0.0
Mid-range	13.3	13	0.3	1.2
High-range	19.6	19.6	0	0.0

SYSTEM CALIBRATION BIAS AND DRIFT DATA

			Initial V	/alues	Final Va	alues	
		Analyzer calibration response (PPM)	System calibration response (PPM)	System calibration bias (% of span)	System calibration response (PPM)	System calibration bias (% of span)	Drift (% of span)
Run 1	Zero	0	0	0.0	0	0.0	0.0
	Upscale	13.0	13.1	0.4	13.6	2.4	2.0
Run 2	Zero	0	0	0.0	0	0.0	0.0
	Upscale	13.0	13.6	2.4	13.9	3.6	1.2
Run 3	Zero	0	0	0.0	0	0.0	0.0
	Upscale	13.0	13.9	3.6	13.9	3.6	0.0

System Calibration Bias = System Cal. Response - Analyzer Cal. x 100
Span

NOZZLE CALIBRATION

Date: 1/29/96 by: 1 Siele

Nozzle ID	Run No.	D ₁	D ₂	D ₃	ΔD (INCHES)	D _{AVG}
#10	1-3	, 251	,250	.250	1520	·520
	-		-			

where:

 D_1 , D_2 , D_3

Nozzle diameter measured on a different

diameter (inches).

Tolerance = 0.001 inches

 ΔD

Maximum difference in any two

measurements (inches).

Tolerance = 0.004 inches

 D_{avg}

Average of D₁,D₂,D₃

SAMPLE POINT LOCATIONS

Company: Cargill Fentilizen, Bartow
Source: HZSOY # 5
Date: 1/29/96
Stack/Duct Dimensions: 31" dia
Port Length: NIA
Points corrected for port length? Yes □ No ☑
Sketch of Stack/Duct
·

Point No.	Distance from Duct Wall (inches)
l	17
3 4	5.4
3	q. ₆
4	14.3
5	20.3
6	28.8
7	52.2
8	60.8
	66.7
10	71.4
11	75.6
12	79.3
	· ·

Dry Gas Meter Calibration

Meter Box Number :

004

Barometric Pressure:

30.00

Date:

6/26/95

Wet Test Meter #:

656687

Orifice		/citame	Tem	eratire				
Manometer Setting (DELTA H) in. H2O	Wet Test Meter (Vw)	Gas Meter (Vd)	(Tw)	Gas Meter	(Trietzi)	Ą	Deta H@i in: H2O	
0.50	5.094	5.110	67.5	75.5	13.11	1.011	1.818	
1.00	5.094	5.084	67.0	75.3	9.32	1.015	1.835	
1.50	10.188	10.172	67.0	77.0	15.45	1.017	1.885	
2.00	10.188	10.204	66.5	74.0	13.42	1.008	1.903	
3.00	10.188	10.225	67.5	77.0	10.98	1.007	1.908	
4.00	10.188	10.205	69.0	77.3	9.57	1.004	1.943	
						1.010	1.882	
						Max. Diff.	0.124	

where:

Vw= Gas Volume passing through the std test meter, ft.^3.

Vd = Gas Volume passing through the dry gas meter, ft^3

Tw = Temperature of the gas in the std test meter, deg. F.

Td = Average temperature of the gas in the dry gas meter, Deg F.

Delta H = Pressure differential across orifice, in. H20.

Yi = Ratio of accuracy of std test meter to dry gas meter for each run.

Y = Average ratio of accuracy of std test meter to dry gas meter.

Pb = Barometric pressure, in. Hg.

Theta = Time of calibration run, min.

POSTTEST DRY GAS METER CALIBRATION FORM

Meter Box Number:

004

Wet Test Meter#:

P-576

Date: 02/08/96

Pretest Y:

1.010

Barometric Pressure:

30.26

	Gas v	olume	Temp	erature			
Onfice Manometer setting (Delta H) in: H20	Wet Test Meter (Vw) ft.^3	Dry Gas Meter (Vd) ft.*3	Wet Test Meter (Tw) Deg F	Dry Gas Meter (Td) Deg F	Time (Theta) min	Vacuum Setting in. Hg	Yi
3.00	10.188	10.426	57.00	78.00	11.34	10.00	1.010
3.00	10.188	10.562	59.00	82.00	11.56	10.00	1.000
3.00	10.188	10.562	61.00	86.00	11.75	10.00	1.004
						Average	1.004

Acceptable Limits

0.960

to

1.06

Where:

Vw = Gas Volume passing through the wet test meter, ft.^3.

Vd = Gas volume passing through the dry gas meter, ft^3.

Tw = Temperature of the gas in the wet test meter, deg F.

Tdi = Temperature of the inlet gas of the dry gas meter, Deg F.

Tdo = Temperature of the outlet gas of the dry gas meter, Deg F.

Td = Average temperature of the gas in the dry gas meter, Deg F.

Delta H = Pressure differential across orifice, in. H2O.

Yi = Ratio of accuracy of wet test meter to dry gas meter for each run.

Y = Average ratio of accuracy of wet test meter to dry gas meter for all three runs; tolerance = pretest Y + 1/-0.05Y.

Pb = Barometric pressure, in. Hg.

Theta = Time of calibration run, min.

THERMOMETER CALIBRATIONS

Ref.	Wet To	est Meter	Dry Ga	s Meter
deg F	inlet deg F	Outlet deg F	inlet deg F	Outlet deg F
57.0	n/a	59.0	59.0	58.0
Difference	n/a	2.0	2.0	1.0

Quality Control Limit +/- 5 deg F

PYROMETER CALIBRATION

Pyrometer # = Box 004

Cal. Date = 4/10/95

Cal. By Mark Gierke

Cal. Unit = Transmation. Inc. Model 1064P, Thermocouple Calibrator

Cal. Unit SN = B76413

Cal. Unit Cal. Date =4/5/95

Calibrator Reading	Pyrometer Reading		
0	. 1		
50	49		
100	98		
200	200		
300	300		
400	399		
500	497		
750	749		
1000	998		
1250	1248		
1500	1496		
1750	1743		
1990	1986		

Southern Environmental Sciences, Inc.

TYPE S PITOT TUBE INSPECTION FORM

PITOT TUBE ID NUMBER	008	
INSPECTION DATE	June	22, 1995
INSPECTED BY	M. Dale	

PITOT TUBE ASSEMBLY LEVEL?	YES	NO
PITOT TUBE OPENINGS DAMAGED?	YES (explain below)	(3)

ANGLE	MEASUREMENT	LIMITS
α1	1 °	<10°
α2	1 °	<10°
β1	2 °	<5°
β2	1 °	<5°
Υ	2 °	
θ	1°	
Α	1.002 inches	
z = A sin γ	.035 inches	< 1/8 inch
w = A sin θ	.017 inches	< 1/32 inch
P _A	.502 inches	
P _B	.500 inches	
D _T	.376 inches	

COMMENTS:		
		·
		· · · · · · · · · · · · · · · · · · ·
CALIBRATION REQUIRED?	YES	NO

SOUTHERN ENVIRONMENTAL SCIENCES, INC. THERMOMETER CALIBRATIONS

6/21/95 Calibrated By: M. Glerke Date: ALL TEMPERATURES ARE IN DEGREES RANKIN ICE BATH **TEPID WATER BOILING WATER** HOT OIL STD. Therm. Deg. or STD. Therm. Deg. or STD. STD. Therm. Deg. or Therm. Deg. or % Diff. ID No. Туре Range Temp Temp Temp Temp % Diff. Temp Temp % Diff. Temp Temp % Diff. 2.5' PA 0.4% PT 0.4% 0.3% 0.2% 0.2% 2.5' PB PT 0.0% 0.15% 0.3% 0.6% 3'P PT 0.2% 0.3% 0.2% 0.4% 3' INC PT 0.4% 0.15% 0.3% 5'PA PT 0.6% 0.2% 0.2% 0.45% 5'PB PT 0.6% 0.4% 0.3% 0.2% 5' PC PT 0.6% 0.4% 0.45% 0.2% PT 0.4% 8'P 0.4% 0.45% 0.2% 0.2% 10'P PT 0.4% 0.3% 0.2% BM ВМ вм PT 0.2% PT 0.4% 280-01B PT 0.0% 0.4% SS300 PT 0.6% 0.45% 0.4% PT 0.4% 0.8% 0.3% SS301 0.2% BM SS110 SS306 BM 0.2% SS211 0.2% PT ВМ LAB I4 BM BM ВМ BM 0.1% 0.4% 0.4% T1 PT 0.3% 0:5% **T2** PT 0.6% 0.4% 0.3% 0.3% PT 0.6% 0.4% 0.3% 0.4% **T3** 0.6% 0.2% 0.45% 0.4% **T4** PT 0.2% **T5** PT 0.4% 0.4% 0.3% 0.4% 0.2% 0.3% PT 0.45% **T6** 0.4% 0.2% 0.45% 0.4% **T7** PT 0.6% 0.2% 5'VP PT 0.4% 0.3%

QUALITY CONTROL LIMITS: Impinger Thermometers +/- 2 deg, Bimetallic Thermometers (BM) +/- 5 deg, Pyrometers/Thermocouples (PT) +/- 1.5%

1204 North Wheeler St. Plant City, Florida 33566 (813) 752-5014

NOX EMISSIONS TEST CALCULATIONS

COMPANY: CARGILL FERTILIER, INC. - BARTOW

SOURCE: SULFURIC ACID PLANT #5

TEST DATE: 01/29/96 ATA ANALYST: B. NELSON

where:

	AVERAGE	STACK	STACK			
	CONC.	PRESS	FLOWRATE		EMISSIONS	
RUN NO.	(PPM)	(in, Hg)	(dscfm)	(mg/m3)	(lbs/ft3)	(lbs/hr)
1	14.6	29.90	92,411	27.9	1.74E-06	9.7
2	15.8	29.90	91,193	30.2	1.89E-06	10.3
3	16.8	29.90	91,179	32.1	2.01E-06	11.0
AVERAGE	15.7	29.9	91,594	30.1	1.88E-06	10.3

FORMULAS: $mg/m3 = ppm \times .041573 \times molecular wt$.

lb/ft3 = mg/m335.31 ft3/m3 x 1000 mg/g x 453.59 g/lb

lb/hr = lb/ft3 x flowrate x 60 min/hr

Pstd = 29.92 "Hg

Tstd = 528 deg R

Molecular Wt. of NOx = 46

EMISSIONS TEST CALCULATIONS

Plant: Unit: Run No: CARGILL FERTILIZER, INC.

Bartow - Sulfuric Acid Plant No. 5

1/29/96 Test Date:

Calculated By:

Pbar = (Pbar at barom.) - (Elev. diff. barom. to manom., ft.) x (.1/100)

30.12

190

X (0.1/100) 29.93

Pm = Pbar + Delta H 13.6

29.93

2.577318 13.6 30.12

Vm(std) = (Vm)(Y)(Tstd,deg R)(Pm)

(Tm,deg R)(Pstd)

53,565

1.01

533.2083

528

30.11951 29.92

0

53.929

Vw(std)

Vw(std) + Vm(std)

 $Vw(std) = Vlc \times (.04715) =$

0

0.04715

53.92942

Bws @ saturation =

Bws =

1 - Bws =

ERR

0

30

USE LOWER BWS

Md = 0.44(%CO2) + .32(%O2) + .28(%N2+%CO)

.44

.32

0.28

Ms = Md(1-Bws) + 18(Bws) =

assume

30

78

0

Ps = Pbar + (Pg, in. H2O) =

13.6

-0.4313.6

18

Vs = 85.49(Cp)(avg sqrt delta P)[sqrt((Ts,deg R)/(Ps)(Ms))] X

85.49 = 42.77

0.84

0.0945

49.12801

29.93

0.829374

x sqrt

462.6277

29.90

29.89838

0

30

An = (Nozzle diam, in./12)^2 x 3.14 =

0.25 /12)^2 x 3.14

610.2917

0.000341

0.000341

%I = (.09450)(Ts, deg R)(Vm(std))

(Ps)(Vs)(An)(Sample Time)(1-Bws)

103.5

29.89838

53.92942

EMISSIONS TEST CALCULATIONS

Plant:

CARGILL FERTILIZER, INC. Bartow - Sulfuric Acid Plant No. 5

1/29/96 Test Date:

Unit: Run No:

Calculated By:

6.75)² x 3.14 = 35.78 As = (Stack Diam., ft.) 2 x 3.14

As.eff = As(total No. pts.-No. neg. pts.) 35.78467 (Total No. pts.)

Q = 60(As,eff)(Vs) =

60

35.78

49.13

105,482

91192.7

x 60

528 Qstd = (Q)(Tstd)(Ps)(1-Bws)29.90 610.2917 (Ts,deg R)(Pstd) 29.92

91,193

PMR(SO2) = (Vt-Vtb)(N)(VsolnVa)(32.03)(Qstd)601000(453.6)(Vm(std))

22.82

453.6 326.5

 $PMR(H2SO4) = \underbrace{(Vt-Vtb)(N)(VsolnVa)(49.04)(Ostd)60}_{1000(453.6)(Vm(std))}$

2.9 0.009994 49.04 91192.7 x 60 1000 53.92942 453.6

1.59 =

Southern Environmental Sciences, Inc.

1204 North Wheeler Street ☐ Plant City, Florida 33566-2354 ☐ (813) 752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS

 A_n = Cross-sectional area of nozzle, ft^2

A_s = Cross-sectional area of stack, ft²

 B_{ws} = Water vapor in gas stream, proportion by volume

 C_p = Pitot coefficient

C_s = Pollutant concentration, gr/DSCF

F_d = Ratio of gas generated to heat value of fuel, DSCF/mm BTU

 ΔH = Average pressure differential across orifice, in. H_2O

% = Isokinetic variation, %

 M_d = Molecular weight of dry gas

M_n = Total amount of pollutant collected, mg

 M_s = Molecular weight of stack gas

N = Normality of barium perchlorate titrant

 $\sqrt{\Delta P_{avg}}$ = Average of the square roots of the velocity heads

 P_{bar} = Barometric pressure at the sampling site, in. Hg

 P_g = Stack gas static pressure, in. H_2O

 P_m = Absolute pressure at the dry gas meter, in. Hg

P_s = Absolute stack pressure, in. Hg

PMR = Pollutant mass rate, lb/hr

P_{std} = Standard absolute pressure, 29.92 in. Hg

 θ = Total sampling time, minutes

Southern Environmental Sciences, Inc.

1204 North Wheeler Street ☐ Plant City, Florida 33566-2354 ☐ (813) 752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS

(Continued)

Q = Stack gas flowrate, ACFM

 Q_{std} = Stack gas flowrate, DSCFM

 T_m = Absolute average meter temperature, ${}^{\circ}R$

T_s = Absolute average stack gas temperature, °R

 T_{std} = Standard absolute temperature, 528 °R

V_a = Volume of sample aliquot titrated, ml

V_{ic} = Liquid collected in impingers and silica gel, grams

 V_m = Sample volume at meter conditions, DCF

 V_{mistdl} = Sample volume at standard conditions, DSCF

V_s = Stack gas velocity, ft/sec

 V_{soln} = Total volume of solution, ml

V_t = Volume of barium perchlorate titrant used for the sample, ml

 V_{tb} = Volume of barium perchlorate titrant used for the blank, ml

V_{w(std)} = Volume of water vapor in sample corrected to standard conditions, SCF

Y = Dry gas meter calibration factor

13.6 = Specific gravity of mercury