

8400 Ward Parkway, P.O. Box 8405, Kansas City, Missouri 64114, (913) 458-2000

FAX NUMBER: 913-458-2934 913-458-2936 913-458-2939

FACSIMILE TRANSMISSION

TO: Al Linero COMPANY: FDEP FAX NUMBER: 850-922-6979	B&V PHASE: 0030
/V\	B&V FILE:
TELEPHONE NUMBER: 850-921-9523	
FROM: Tim Hillman	PAGE: / • F 7
EXTENSION: 7928 LOCATION: P3B4	DATE: <u>1/5/99</u>
NOTE TO RECEIVI	NG ODERATOR
In the event of incomplete transmiss	
In the event of mediaphoto durionnoc	, , , , , , , , , , , , , , , , , , ,
TRANSMITTAL DATE/TIME:	OPERATOR'S INITIALS
SUBJECT: KUA Unit 3 Draft Permit Application	NOC ton per year Calculation
MESSAGE: AI,	
As we discussed in our conference call this mornin emission calculations that demonstrate VOC emiss based on the highest gas and oil lb/h VOC emission Permit Application for the GE 7FA machine. The a from Attachment 1 of the PSD Air Permit Application reference.	sions are less than 100 tpy. The emissions are on levels assessed and included in the PSD Air applicable turbine performance data sheets on for Unit 3 are attached to this fax for
Maximum VOC lb/h emission rates for the GE 7FA Gas 3.2 lb/h: at conditions of 102 F with evaporat Oil 7.7 lb/h: at conditions of 19 F.	are as follows: live cooling and duct firing.
Assuming an entire year of gas firing, the calculate (3.2 lb/h)(8760 h/yr)/(2000 lb/ton) = 14.0 tpy	ed VOC tpy is as follows:
Assuming an 720 h/yr of oil firing, the calculated V((7.7 lb/h)(720 h/yr)/(2000 lb/ton) = 2.8 tpy	OC tpy is as follows:
Assuming 8,040 h/yr of gas firing and 720 h/yr oil fi [(3.2 lb/h)(8040 h/yr) + (7.7 lb/h)(720 h/yr)]/(2000 lb	firing, the calculated VOC tpy is as follows: b/ton) = 15.6 tpy
If you have any questions, please do not hesitate t	to call me at 913-458-7928.
Regards Tim Hillman	

CTG Model	GE 7FA 1x1 Combined Cycle	100	Percent Load - Du	ct Firing - NG & C	ю.
Ambient Relative Humicky, % 45 45 45 45 45 CTG Compressor Intel Temperature, F 84.7 102 84.7	CTG Model Combustor/NOx Emission Rete CTG Fuel Type CTG Load Level (percent of Base Load) CTG Performance Reference Evaporative Cooler On/Off	GE 7241FA OLN/15 ppm Natural Gas Base GE 05/21/98 On	GE 7241FA DLN/15 ppm Natural Gas Base GE 05/21/98 Off	GE 7241FA DLN/42 ppm Distilizate Base GE 05/21/98 On	GE 05/21/98 Off
Ambient Relative Humidity, % CTG Compressor Intel Temperature, F CTG Compr. Intel Relative Humidity, % 92 45 92 92 92 93 93 93 93 93 93 93 93 93 93 93 93 93	Ambinet Temperature	102	102	102	10
CTG Compressor Intel Temperature, F CTG Compr. Intel Relative Humidity, % 92 45 92 Atmospheric Pressure, paia 14,650 14,656 14,656 1 Site Elevation, it Fig. 14,650 14,650 14,650 14,650 14,650 15 Site Elevation, it Fig. 15 75 75 75 75 75 Fig. 178 Intel Losa, in H2O 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5 4,5				45	
### CTG Compr. Intel Relative Humidity, % ####################################	CTG Compressor Intel Temperature, F	1	102	84.7	10
Afmospheric Pressure, paia 14,656 14,656 14,656 14,658 1	CTG Compr. Inlet Relative Humidity. %		451	92	
Site Elevation, ft		14.656	14,656	14.658	14.65
Stratust Loss, in. H2O			75	781	
Natural Gas	niet Losa, In. H2O	4.5	4.5		
1		14.0	14.0	14 0	14
152,900		Natural Gas	Natural Gas	Distillato	Distillat
Gross CTG Heat Rate, Blu/kWh (LHV) Gross CTG Heat Input, MBtu/h (LHV) 1,480.07 1,400.85 1,656.99 1,5 CTG Heat Input, MBtu/h (HHV) 1,842.12 1,554.22 1,769.23 1,6 CTG Fuel Flow, Ib/h 0 0 0 94.100 9 CTG Steam Injection Flow, Ib/h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1	1	11	151.30
CTG Real Input, MBtu/h (LRV) 1,480.07 1,400.85 1,656.89 1,5 TG Reat Input, MBtu/h (HRV) 1,842.12 1,554.22 1,769.23 1,6 CTG Fuel Flow, Ib/h 70,550 66,770 89,150 8 CTG Water Injection Flow, Ib/h 0 0 94,100 9 CTG Steam Injection Flow, Ib/h 0 0 0 0 0 0 Injection Ratio CTG Exhaust Flow, Ib/h 3,307.000 3,184,000 3,416,600 3,29 CTG Exhaust Temperature, F 1,143 1,157 1,131 Duct Burner Heat Input, MBtu/h (LHV) 39.02 36.72 16.91 Duct Burner Heat Input, MBtu/h (HHV) 43.29 40,74 18.06 Stack Exhaust Pressure, In. H2O above Patin 0 0 0 Stack Exhaust Pressure, In. H2O above Patin 0 0 0 0 0 0 0 0 0 0 0 0 0		A			151,30
1,480.07	Gross CTG Heat Rate, BlukWh (LHV)	9,680	9,900		
TCG Fleet Input, MBtu/h (HHV) 1,842,12 1,769,23 1,6 CTG Fleet Riput, MBtu/h (HHV) 1,842,12 1,769,23 1,6 CTG Fleet Riput, MBtu/h (HHV) 1,842,12 1,769,23 1,6 CTG Fleet Riput, MBtu/h (HHV) 0 0 0 94,100 0 0 0 0 0 0 0 0 0 0 0 0		1 450 67	1.400.45	9 856 DO 7	1.585.6
CTG Fuel Flow, Ib/n 70.550 66,770 89,150 8 CTG Water Injection Flow, Ib/h 0 0 94,100 9 CTG Starm Injection Flow, Ib/h 0 0 0 94,100 9 CTG Starm Injection Flow, Ib/h 0 0 0 0 Injection Ratio 0,000 0,000 1,056 CTG Exhaust Flow, Ib/h 3,307,000 3,184,000 3,418,600 3,29 CTG Exhaust Temperature, F 1,143 1,157 1,131 Cuct Burner Heat Input, MBtu/h (LHV) 39,02 36,72 16,91 Cuct Burner Heat Input, MBtu/h (HHV) 43,29 40,74 18,06 Stack Exit Temperature, F 192 189 282 Stack Exit Temperature, F 192 189 282 Stack Exhaust Pressure, In. H2O above Patrn 0 0 0 0 Stack Diameter, 8 18,0 18,0				.,	1,693.0
CTG Water Injection Flow, Ib/h	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
CTG Steam Injection Flow, Ib/h CTG Steam Injection Flow, Ib/h CTG Exhaust Temperature, F 1,143 1,157 1,131 Cuct Burner Heat Input, MBhu/h (LHV) 39.02 36.72 16.91 Cuct Burner Heat Input, MBhu/h (HHV) 43.29 40.74 18.05 Stack Exhaust Pressure, In. H2O above Patm CTG Exhaust Pressure, In. H2O above Patm					85,31
Injection Ratio		U		94,1001	93,96
CTG Exhaust Flow, infn 3,307,000 3,184,000 3,418,600 3,29 CTG Exhaust Temperature, F 1,143 1,157 1,131 Duct Burner Heat Input, MBtuh (LHV) 39.02 38.72 16.91 Duct Burner Heat Input, MBtuh (HHV) 43.29 40.74 18.06 Stack Exit Temperature, F 192 189 282 Stack Exhaust Pressure, in, H2O above Patm 0 0 0 Stack Diameter, 8 18.0 18.0		, T	-,		
CTG Exhaust Temperature, F 1,143 1,157 1,131 Duct Burner Heat Input, MBtu/h (LHV) 39.02 36.72 16.91 Duct Burner Heat Input, MBtu/h (HHV) 43.29 40.74 18.05 Stack Exit Temperature, F 192 189 282 Stack Exhaust Pressure, in H2O above Patin 0 0 Stack Diameter, 8 18.0 18.0 18.0	Injection Ratio	0.000	0.000	1.056	1.10
Duct Burner Heat Input, MBhuh (LHV) 39.02 36.72 16.91 Duct Burner Heat Input, MBhuh (HHV) 45.29 46.74 16.05 Stack Exit Temperature, F 192 189 282 Stack Exhaust Pressure, In. H2O above Patm 0 0 0 Stack Diameter, 8 18.0 18.0					3,296,66
Stack Exit Temperature, F 192 189 282 Stack Exhaust Pressure, in: H2O above Patrn 0 0 0 Stack Diameter, it 18.0 18.0 18.0	CTG Exhaust Temperature, F	1,143	1,157	1,131	1,14
Stack Exit Temperature, F 182 189 282 Stack Exhaust Pressure, in, H2O above Patm 0 0 Stack Diameter, it 18.0 18.0 18.0					32.5
Stack Exhaust Pressure, in. H2O above Patrn 0 0 0 Stack Diameter, it 18.0 18.0 18.0	Duct Burner Heat Input, MBtu/h (HHV)	43.29	40.74	18.05	34.7
Stack Diameter, 1 18.0 18.0 18.0		t		785	27
ALL DEFINES, R	Stack Exit Temperature, F				
Stack Ext Velocity, 1/2 58.6 72.0	Stack Exhaust Pressure, in. H2O above Patm	0	0	0	78

B&V Project 59140.0031

Page 1

GE 7FA 1x1 Combined Cycle	* 100	Percent Load - Du	ct Firing - NG & L	00*
Cara Nama	Case 23	Case 24	Case 25	Casa 26
Case Name CTG Model	GE 7241FA	GE 7241FA	GE 7241FA	GE 7241FA
	,		DLN/42 ppm	DLN/42 ppm
Combustor/NOx Emission Rate	DLN/15 ppm	DLN/15 ppm	Distillate	Distilate
CTG Fuel Type	Natural Gas	Natural Gas		
CTG Load Level (percent of Base Load)	Base	Base	Base	Base
CTG Performance Reference	GE 05/21/98	GE 05/21/98	GE 05/21/98	GE 05/21/98
Evaporative Cooler On/Off	ij On ∥	Off	On	Off
HR\$G Duct Firing On/Off	On	On	On	On
CTG Exhaust Analysis (Volume Basis - Wet)				
02	12,19%	12.43%	11.06%	11.20
C02	3.70%	3,65%	5.29%	5.23
H2O	10.78%	10,09%	12,77%	12.32
N2	72.42%	72.92%	70.02%	70.37
	0.91%	0.92%	0.88%	0.88
S02	0.00001%	0.00001%	0.00114%	0.001149
Total	100.00%	100.00%	100.00%	100.00
1012)	100,00%	100.00%	100.00%	100.00
missions (at CTG exhaust flange)	15.0	15.01	42.0	42
NOx, ppmvd @ 15% C2	89.6	84.81	285.11	272
NOx, Ib/n as NO2	15.0	15.0	20.0	20
CO, ppmvd			17.4	17
CO, ppmvw	13.4	13.5		
CO, ppmvd @ 15% O2	12.3	12.5	14.4	. 14
CO, lath	44.1	42.7	59.4	57
UHC, ppmvd	7.85	7.79		<i>j</i> . 7. 5
UHC, ppmvw	7.00	7.00	7.00	7.0
UHC, ppmvd @ 15% O2	6.41	6.51	5.78	5.8
UHC, By/n as CH4	13.20	12.68	13.64	13.1
VOC, ppmvd	1.57	1.56	4.01	3.9
VOC, ppmvw	1.40	1.40	3.50	3.5
VOC, ppmvd @ 15% O2	1.28	1.30	2.89	2.9
VOC, Ib/h as CH4	2.64	2.54	6,82	6.5
SO2, ppmvd	0.13	0.13	13.12	12.0
SO2, ppmvw	0.12	0.12	11.45	11.3
\$02. tb/h	0.90	0.85	89.07	85.2
Particulates (TSP = PM10), lb/h (dry fillerables only)	18.00	18.00	43.00	43.0
CTG Fuel LHV, Btu/lb	20,980	20,980	18,586	18,58
CTG Fuel HHV, Btu/lb	23,277	23,277	19,845	19,84
HHV/LHV Ratio	1.1095	1.1095	1.0877	1.067
CTG Fuel Composition (Ultimate Analysis by Weight)			6 60000001	A AAAAAA
Ar	0.000000%	0.000000%	0.000000%	0.000000° 88.135000°
C	74.043570%	74.043570%	86.135000%	
H2	24.256660%	24.256660%	13.800000%	13.800000
N2	0.575950%	0.575950%	0.015000%	0.015000
02	1.123180%	1.123180% [0.000000%	0.000000
S	0.000640%	0.000640% i	0.050000%	0.0500009
Yotal	100.00%	100.00% (100.00%	100.00
CTG Wet (Total) Exhaust Gas Analysis				
Molecular Wt, Ibrinol	28.12	28,19	28.13	28.1
Gas Constant, ft-lbf/fom-R	54.937	54.798	54.930	54.84
Specific Volume, ff*3/lb	40.33	40.58	40,02	40.3
Exhaust Gas Flow, acrim	2,222,865	2,153,445	2,278.872	2,214,80
Specific Volume, sct/lb	13.40	13.46		13.4
			984 486	740,10
Exhaust Gas Flow, acfm	743,524	714,277	768, 166 3,416,600	

8&V Project 59140.0031

Page 2

Wall of

GE 7FA 1x1 Combined Cycle	* 100	Percent Load - Du	ct Firing - NG &	DO *
SE 7FA 1X1 Compined Cycle		To the second se		<u></u>
Case Name	Case 23	Case 24	Case 25	Case 26
TG Model	GE 7241FA	GE 7241FA	GE 7241FA	GE 7241FA
Combustor/NOx Emission Rate	DLN/15 ppm	DLN/15 ppm	DLN/42 ppm	DLNV42 ppm
TG Fuel Type	Natural Gas	Natural Gas	Distillate	Distilate
TG Load Level (percent of Basa Load)	Base	Base'	Base §	Base
TG Performance Reference	GE 05/21/98	GE 05/21/98	GE 05/21/98	GE 05/21/98
Evaporative Cooler On/Off	On	Off }	On §	Off
IRSG Duct Firing On/Off	On	On j	On	On
tack Exhaust Analysis (Volume Basis - Wet)	0.91%	0.91%	0.88%	0.88
Ar	3.79%	3.74%	5,32% (5.33
CO2	10,96%	10.27%	12,82%	12,41
H20	72,35%	72.85%	70.01%	70.33
N2	11,99%	12.23%	10.98%	11.049
02	0.00001%	0.00001%	0.00116%	0.001169
SO2 Total	100,00%	100,00%	100.00%	100.00
(08)	100.00%			
Stack Exhaust Gas Analysis (Wet)				
Molecular Wt, Ib/mol	28.11	28.18	28.131	28.1
Gas Constant, ft-biflbm-R	54.959	54,819	54,9301	54,84
Specific Volume, ft*3/lb	16.97	16.85	19,301	19.1
Exhaust Gas Flow, actm	935,656	894,665	1,099,299	1,053,84
Specific Volume, scf/lb	13.50	13.46	13.49	13.4
Exhaust Gas Flow, scfm	744,494 (714,670	768,370	740,49
Exhaust Gas Flow, lb/h	3,308,860	3,185,750	3,417,510	3,298,41
Emissions (at Stack exit)	-			7
NOx, ppmvd @15% O2 without SCR	15.2	15.2	41.8	41
NOx Ibh as NO2 without SCR	93.0	88.1	2\$6.5	275
NOx, ppmvd @15% O2 with SCR	4.0	4.0	11.1	11
NOx, lb/h as NO2 with SCR	24.5	23.2	76.1	73.
NH3 slip, porryd @15% O2 with SCR	10.0	10.0	10.0	10
NH3 slip, Ib/h with SCR	22.4	21.2	25.3	24.
CO, ppmvd without Catalyst	16.5	16.4	20.6	21.
CO, lb/h without Catalyst	48.4	46.7	61.2	61.
CO, ppmvd @ 15% C2 without Catalyst	13.1	13.4	14.7	15 21
CO, ppmvd with Catalyst	16.5	16.4	20.6 51.2	61.
CO, la/h with Catalyst	45.4	46.7	14.7	15
CO, ppmvd @ 15% O2 with Catalyst	13.1	13.4	13.26	13.2
SO2, ppmvd	0.14	0.13	11.56	11,6
\$O2. pomvw	0.12	0.12	89.98	88.9
SO2, lb/h	0.93	0.88	8.7	9
UHC, ppmvd	9.4	8.31	7.8	8
UHC, ppmvw	8.4	7.6	6.2	- 6
UHC, ppmvd @ 15% O2	7.5			
UHC, ppmvd @ 15% O2 UHC, lb/fi as CH4	15.8	15.1	14.7	15
UHC, ppmvd @ 15% O2 UHC, Ib/h as CH4 VOC, ppmvd	15.8 1.9	15.1 1.9	14.7 4.1	15
UHC, ppmvd @ 15% O2 UHC, Ib/h as CH4 VOC, ppmvd VOC ppmvw	15.8 1.9 1.7	15.1 1.9 1.7	14.7 4.1 3.6	15 4 3
UHC, ppmvd @ 15% O2 UHC, Ib/h as CH4 VOC, ppmvd VOC, ppmvw VOC, ppmvd VOC, ppmvd @ 15% O2	15.8 1.9 1.7 1.5	15.1 1.9 1.7 1.5	14.7 4.1 3.6 3.0	15 4 3 3
UHC, ppmvd @ 15% O2 UHC, Ib/h as CH4 VOC, ppmvd VOC, ppmvd @ 15% O2 VOC, Ib/h as CH4	15.8 1.9 1.7 1.7 1.5 (3.2)	15.1 1.9 1.7 1.5 3.0	14.7 4.1 3.6 3.0 7.0	15 4 3 3 7
UHC, ppmvd @ 15% O2 UHC, Ib/h as CH4 VOC, ppmvd VOC, ppmvw VOC, ppmvd VOC, ppmvd @ 15% O2	15.8 1.9 1.7 1.5	15.1 1.9 1.7 1.5	14.7 4.1 3.6 3.0	15 4 3

B&V Project 59140.0031

Page 3

		•			
KUA Cane Island Unit 3 GE 7FA 1x1 Combined Cycle	// \	* 100 Perc	ent Load - Distil	late Oil *	
Case Name CTG Model Combustor/NOx Emission Rate CTG Fuel Type CTG Load Level (percent of Base Load) CTG Performance Reference Evaporative Cooler On/Off HRSG Duct Firing On/Off	Case 12 GE 7241FA DLN/42 ppm Distrilate Base GE 05/21/98 Off Off	Case 13 GE 7241FA DLNV42 ppm Distribate Base GE 05/21/98 On Off	Case 14 GE 7241FA DLW42 ppm Distillate Basse GE 08/21/98 Off	Case 15 GE 7241FA DLN/42 ppm Distillate Bass GE 05/21/98 On Off	Case 16 GE 7241FA DLN/42 ppm Distillate Base GE 05/21/98 Off
Ambinet Temperature, F	18	72	72	102	102
Ambient Relative Humidity, %	35	74	74	45	4:
CTG Compressor Inlet Temperature, F	19	66.7	72	84.7	102
CTG Comor, Inlet Relative Humidity, %	\$5	96	74	92	4.
Aimospheric Pressure, osia	14.656	14.656	14.656	14.656	14.65
Site Elevation, R	75	75	75	75	7.
nlet Loss, in. H2O	4.5	4.5	4.5	4.5	4,(
Echaust Loss, in. H2O	14,0	14.0	14.0	14.0	14.0
CTG Fuel Type	Distillate I	Distillate	Detillate	Distillate	Distillate
Number of CTGs	1		1	104 500	151,300
Gross CTG Output, kW	189,300	174,000	171,500	181,500 10,290	10,486
Gross CTG Heat Rate, BlukWh (LHV)	10,090	10,110	10,150	10,2001	10,400
CTG Heat Input, MBbvh (LHV)	1,915,04	1,759,14	1,740,73	1,658,99	1,585.82
CTG Heat Input, MBlush (HHV)	2,039.42	1,878.90	1,858.65	1,769.23	1,693.03
CTG Fuel Flow, lb/h	102,770	94,650	93,660	89,150	85,310
CTG Water Injection Flow, to/h	131,760	110,720	111,020	94,100	93,980
CTG Steam Injection Flow, lb/h	0	0	O[O.	
Injection Ratio	1.262	1.170	1.185	1.058	1.101
TIG Exhaust Flow. b/h	3,901,400	3,586,520	3,552,540	3,416,600	3,298,660
CTG Exhaust Temperature, F	1,088	1,112	1,116	1,131	1,145
Duct Burner Heet Input, MBts/h (LHV)		0	0		
Duct Burner Heat Input, MBtu/h (HHV)	0	. 0	0(0)
Stack Exit Temperature, F	281	262	281	284	281
Stack Exhaust Pressure, in. H2O above Patm	0	0	0	0	
Stack Diameter, ft	18.0	18,0	18.0 74.5	18.0 72.2	18.0
	81.4	75.3			

- W - V - V - V

B&V Project 59140.0031

Page

GE 7FA 1x1 Combined Cycle		* 100 Perc	ent Load - Distil	ate Oil *	* 100 Percent Load - Distillate Oil *										
Case Name	Case 12	Case 13	Case 14	Case 15	Case 16										
CTG Model	. GE 7241FA .	GE 7241FA 🥇	GE 7241FA	GE 7241FA	GE 7241FA										
Combustor/NOx Emission Rate	DLN/42 ppm	DLN/42 ppm	DLN/42 ppm	DLN/42 ppm	DLN/42 ppm										
CTG Fuel Type	Distflate	Distillate	Distillate	. Distillate	O:stillate										
CTG Load Level (percent of Base Load)	Base	Base	Base	Base	Base										
CTG Performance Reference	GE 05/21/98	GE 05/21/98	GE 05/21/98 !	GE 05/21/98	GE 05/21/98										
Evaporative Cooler On/Off	Off	On !	Off i	On	Off										
HRSG Duct Firing On/Off	Off	Off	Off i	Off	Off										
TRAG DICE FILLY OFFOR	Oil .	J	<u> </u>												
TG Exhaust Analysis (Volume Basis - Wet)															
02	11.38%	1,13%	11.16%	11,06%	11.2										
CO2	5.36%	5.34%	5.34%	5.26%	5.23										
H2O	10 60%	11.90%	11.80%	1277%	12,3										
	71,76%	70.73%	70.81% (70.02%	70.3										
N2			0.89%	0.88%	0.84										
År	0.90%1	0.89%1		0.00114%	0,00114										
SO2	0.00117%	0.00116%	0.00116%		100.0										
Total	100.00%	100.00% [100.00%	100.00%	100.0										
Emissions (at CTG exhaust flange)	40.5	42.0	42.0	· // 11 - 142.0	4:										
NOx, ppmvd @ 15% O2	42.0			285.1	27										
NOx, b/h as NO2	328.5	302.6	299.4		21										
CO, ppmvd	20.0	20.01	20.0	20.0											
СО, ррптум	17.9	17.5	17.6	17.4											
CO, ppmvd @ 15% O2	14.51	14.31	14.4	14.4	10										
CO lb/h	68.9	62.7	62.2	59.4	5										
UHC, porrivd	7.83	7.95	7.94	8 02	7.										
UHC, ppmvw	7.00	7.001	7.00	7.00	7.										
UHC, pprovd @ 15% O2	5.68	5.70	5.70	5.78	5.										
	15.44	14.27	14.13	13.64	13.										
UHC, ib/h as CH4	3.91	3,971	3.97	4.01	3.										
VOC, pprivd		3.50	3.50	3.50	3										
VOC, ppmww	3.50 2.84	2.85	2.85	2.89											
VOC, ppmvd @ 15% O2			7.06	6.82											
VOC, lb/h as CH4	7.72	7.13		13.12	12										
SÖ2, ppmvd	13,041	13.19	13.17												
SO2, ppmvw	11.66	11.52	11,61	11.45	11.										
SO2, ID/h	102.67	84.56	93.57	89.07	85.										
Particulates (TSP = PM10), lb/h (dry filterables only)	44,00	44.00	44.00	43.00	43.										
CTG Fuel LHV, Blu/lib	18,586	18,586	18,586	18,586	18,5										
CTG Fuel HHV, Btu/lb	19,845	19,845	19,845	19,845	19,8										
HHV/LHV Ratio	1,0677	1.0677	1.0677	1.0677	1.06										
CTG Fuel Composition (Utilimate Analysis by Weight)															
Ar	0.000000%	0.000000%	0.000000%	0.000000%	0.0000										
C	86.135000%	66.135000%	86.135000%	85.135000%	88.13500										
H2	13.800000%	13.800000%	13.800000%	13.800000%	13.80000										
N2	0.015000%1	0.015000%	0.015000%	0.015000%	0.01500										
02	0.000000%	0.000000%	0.000000%	0.000000%	0,00000										
\$	0.050000%1	0.050000%	0.050000%	0.050000%	0.05000										
Total	100.00%	100.00%	100,00%	100.00%	100.0										
TG Wet (Total) Exhaust Gas Analysis	<u> </u>			<u> </u>											
Molecular Wt, tb/mol	28.37	28.23	28.24	28.13	28										
Gas Constant, ft-lbt/forn-R	54.449	54,729	54,708	54,930	54.0										
Specific Volume, it 'S/b	38.10	39.401	39.48	40.02	. 40										
		2,355,148)	2,337,571	2,278,872	2,214,1										
Exhaust Gas Flow, actm	2,477,389			13.49	13										
Specific Volume, schib	13.37	13.44	13.43												
Exhaust Gas Flow, actm	869,362	803,380	795,177	768,156	740,										
Exhaust Gas Flow, Ib/h	3,901,400	3,586,520	3,652,640	3,416,600	3,298,0										

B&V Project 59140.0031

Page 2

	* 100 Perc	ent Load - Disti	llate Oil *	
Case 12 GE 7241FA DLN/42 ppm Distitate Base GE 09/21/98 Off Off	Case 13 GE 7241FA DLN/42 ppm Distiliate Base GE 05/21/98 On	Case 14 GE 7241FA DLN/42 ppm Distillate Base GE 65/21/98 Off	Case 15 GE 7241FA DLN/42 ppm Distillate Base GE 05/21/99 On Off	Case 16 GE 7241FA DLN/42 ppm Distilate Base GE 05/21/98 Off Off
	1			
_	 -	<u>-</u>	<u> </u>	
				0.88 5.23
				5.23 12. 3 2
				70.37
11.38%				11.20
0.00117%	0.00116%	0.00116%	0.00114%	0.00114
100.00%	100.00%	100.00%	100.00%	100.00
		- 	<u> </u>	
28.37	28.23		28.13	28.1
54.449	54,729			54.84
				19.2 1,057,67
	1,149,480			1,057,67
				740,10
				3,296,66
3,551,444			11 18 311	,
				42 272
			·	11
87.3	80.4	79.6	75.8	72
10.0	10.0	10.0	10.0	10.
28,9				24.
				20. 67.
				14
			20.01	20
68.9	62.7	62.2	59.4	57
14.5	14.3	14.4		14
				12.9
				11.3
				83.2
				7
		5.7	5.8	- 5
15.4	14.3	14.1	13.6	13
3.9	4.0	4.0	4.0	4
3.5	3.5	3.5		3
2.8	2.81	2.9	2.9	2
	<i>)</i> 7.1	7.11	0.41	
	44.0	44.0	43.0	43.
	Distitate Base GE 05/21/98 Off Off Off Off Off Off Off Off Off Of	Distillate Base GE 05/21/98 Off Off Off Off Off Off Off Off Off Of	Distillate Base Base Base GE 05/21/98 GF 05/21	Disbitate Base Base Base Base Base Base Base Base GE 05/21/98 GF 06/21/98 GF

8&V Project 59140.0031

Page 3

8400 Ward Parkway, P.O. Box No. 8405, Kansas City, Missouri 64114, (913) 458-2000

Kissimmee Utility Authority Cane Island Unit 3

B&V Project 59140 December 1, 1998

Mr. Al Linero, P. E. Florida Department of Environmental Protection Twin Towers Office building 2600 Blair Stone Road Tallahassee, FL 32399-2400 RECEIVED

DEC 03 1998

BUREAU OF AIR REGULATION

Subject: Site Certification Application

Dear Mr. Linero:

Enclosed is the ELSA disk which accompanies the Sufficiency Responses to the SCA that Buck Oven is forwarding to you. I will send the second disk, Regional Haze, within the next 2-3 days.

Please call if we can be of further assistance.

Sincerely yours,

Myron Rollins

Mr

CC: C. Holladay

Regional Haze Analysis

A regional haze analysis was performed to evaluate the potential for visibility impairment (significant increase in uniform haze) at the Chassahowitzka Class I area. The regional haze analysis was performed in accordance with guidance published in the Interagency Workgroup on Air Quality Modeling (IWAQM) (EPA-454/R-93-015) document, as well as technical guidance and an example provide by the NPS. The methodology and input are described in Section 5.4 of the Site Certification Application; Appendix 10.7 – PSD Application for the Kissimmee Utility Authority Cane Island Project document submitted in August 1998 (hereinafter referred to as the Document).

The percent change in extinction was calculated for base load operation in both the simple and combined cycle operating using the refined modeling methodology presented in Section 4.0 of the Document. The analysis was performed using a background visual rage of 65 kilometers (km). The ISCST3 air dispersion model was used in the flat terrain mode to determine the maximum predict highest first-highest 24-hour impacts of NO_x and PM/PM₁₀ at a receptor placed at the closest boundary point of the park. Actual relative humidity data corresponding to the date of the maximum predicted NO_x impacts for each scenario were used in the regional haze calculations. It should be noted that the NO_x emission levels in this revised regional haze analysis are based on 9 ppm natural gas firing. The results of the analysis are presented in a spreadsheet included as Table 1 and the model results are included on the attached diskette.

As the results in Table 1 indicate, the percent change in extinction for each year and operating scenario is less than screening threshold for Level I analyses of 5 percent. Therefore, further analysis of potential visibility impairment is not warranted.

Table 1

Background Visibility
Background Extinction

65.0 km 0.06Q18 km^-1

Scenario Name	Actual 24-hr Impact (ug/m^3)	Date (yr/mo/dy/hr)	X Coordinate		NO2 Impact [ug/m^3]	NO3 (mpact (ug/m^3)	NH4NO3 (ug/m^3)	Minimum Daily Relative Humidity (%)	Maximum Daily Relative Humidity (%)	Average Daily Relative Humidity (%)	Estimated Relative Humidity Factor	NH4NO3 Source Extinction (km^-1)	Scenario Name	Actual 24-hr Impact (ug/m^3)	X Coordinate	Y Coordinate	PM Source Extinction (km^-1)	Source Change in Extinction (%)	
NOX 1967 NSCC1NG NSSC1NG	0 0803 0 0277	87070224 87061824	348451.5 348451.5	3165401.0 3165401.0		0 10839 0.03740	0 13983 0 04824	51 40	97 91	74 0 65 5	2 6 1.9	0 00109 0 00027	PM PSCC1NG PSSC1NG	0.0243 0.0081	348451.5 348451.5	3185401 0	0 00007 0.00002	1.93 0.50	PASS PASS
NOX 1988 NSCC1NG NSSC1NG	0.0698 0.0355	88020124 88020124	348451.5 348451.5	3165401.0 3165401.0		0 09416 0 04793	0 12147 0 06162	49 49	100 100	74.5 74.5	2 6 2 6	0 00095 0 00048	PM PSCC1NG PSSC1NG	0 0211 0 0104	348451.5 348451.5	3165401.0 3165401.0	0 00006 0 00003	1 68 0.85	PASS PASS
NOX 1989 NSCC1NG NSSC1NG	0 0832 0 0324	89091524 89101724	348451.5 348451.6	3165401.0 3165401.0		0 11227 0 04374	0 14482 0 05642	52 44	97 97	74 5 70 5	28 24	0 00113 0 00041	PM PSCC1NG PSSC1NG	0 0251 0 0095	348451.5 348451.5	3185401.0 3185401.0	0 00008 0 00003	2.00 0 72	PASS PASS
NOX 1990 NSCC1NG NSSC1NG	0 1091 0 0378	90020124 90020124	348451.5 348451.5	3165401.0 3165401.0		0.14723 0.05106	0.18993 0.06586	53 53	100 100	76 5 7 6 5	2 8 2 8	0 00160 0 00055	PM PSCC1NG PSSC1NG	0 0330 0 0111	348451 5 348451 5	3165401.0 3165401.0	0 00010 0 00003	2 82 0.97	PASS PASS
NOX 1991 NSCC1NG NSSC1NG	0.0961 0.0410	91020624 91020624	348451.5 348451.5	3165401.0 3165401.0		0.12976 0.05530	0.18739 0.07133	35 35	93 93	64.0 64.0	1.8 ,1.8	0 00090 0 00039	PM PSCC1NG PSSC1NG	0 0292 0 0120	348451.5 348451.5	3165401.0 3165401.0	0 00009 0 00004	1 65 0.70	PASS PASS

RECEIVED

DEC 01 1998

BUREAU OF AIR REGULATION

8400 Ward Parkway, P.O. Box No. 8405, Kansas City, Missouri 64114, (913) 458-2000

Kissimmee Utility Authority Cane Island Unit 3

B&V Project 59140 B&V File 15.0203 November 30, 1998

Florida Department of Environmental Protection Division of Air Resources Management Bureau of Air Regulation Twin Towers Office Building, MS #5505 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Subject:

Response to VOC Emission Level

Inquiry

Dear Cleve Holladay:

As requested in a telephone conversation on November 17, 1998, Black & Veatch is responding to FDEP's inquiry regarding the difference between the VOC emission values listed in Table 2-2 and Table 4-7 of Site Certification Application (SCA), Appendix 10.7 – Prevention of Significant Deterioration Air Permit Application document for Cane Island Unit 3. The differences are described below:

Table 2-2; PSD Applicability.

The emissions presented in Table 2-2 represent the worst-case potential to emit (PTE) for determining New Source Review (NSR) and Prevention of Significant Deterioration (PSD) applicability. The VOC PTE value listed in this table (173.3 tpy) is based on the worst-case maximum pound per hour emission rates, assuming the following conditions:

- Two possible combustion turbine manufacturers.
- Annual ambient temperature of 72 degrees Fahrenheit.
- Three operating loads (i.e., 100, 70, 50 percent).
- Changing operating scenarios (i.e., evaporative cooler on or off).
- Combined cycle or simple cycle operation.
- 8,040 and 720 hours per year of natural gas and distillate oil firing, respectively. Specifically, the worst-case VOC value is from the combined usage of natural gas at 50 percent load and fuel oil at 70 percent load, both for combined cycle operation. The above methodology is illustrated in a spreadsheet included as Attachment 3 of the SCA.

Project 59140 November 30, 1998 Page 2

<u>Table 4-7; Comparison of Maximum Predicted Impacts with the PSD Class II Significant impact Levels and the PSD De Minimis Monitoring Levels.</u>

The VOC value listed in this table (45.2 tpy) is based on 8,040 hours of natural gas firing and 720 hours of distillate oil firing during base load (100 percent) conditions at 72 degrees Fahrenheit ambient temperature. In addition to the emissions from the turbine, the VOC emissions from the distillate fuel oil storage tank were also included. This VOC value represents a more typical worst-case annual VOC emission rate for Unit 3.

Conservative methods were used to estimate the VOC emissions from Unit 3 for the permitting process. However, it is expected that actual annual VOC emissions will be less than the PSD De Minimis Monitoring Level.

If you have any questions, please to not hesitate to contact me at 913-458-7928.

Very truly yours.

Tim Hillman

Air Permit Coordinator

kil

cc: Ben Sharma, KUA

Robert Williams, FMPA

Department of Environmental Protection

Lawton Chiles Governor Virginia B. Wetherell Secretary

September 23, 1998

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. A. K. Sharma, P.E. Director of Power Supply Kissimmee Utility Authority Post Office Box 423219 Kissimmee, Florida 34742-3219

Re: DEP File Nos. PSD-FL-254, PA-98-38

Cane Island Unit No. 3 - Combined Cycle Turbine

Dear Mr. Sharma:

Subsequent to our letter dated August 17, 1998, the Park Service provided the attached letter regarding KUA's proposed Best Available Control Technology (BACT) determination and the PSD modeling.

Attached for your information is a copy of the technical evaluation for the 1500 megawatt (MW) Fort Myers Repowering project. Florida Power & Light proposed emission limits of 9 parts per million (ppm) of NO_X at start-up (in 2001) for six General Electric 7FA combustion turbines. These levels will be attained by Dry Low NO_X technology. FPL "netted out" of PSD and could have done so even at NO_X emission limits on the order of 40 ppm. The GE units will be permitted to emit 12 ppm of carbon monoxide (CO) and 1.4 ppm of volatile organic compounds (VOC).

• We have not yet received input from EPA. We will forward their comments to you as soon as we get them. We submitted our specific completeness/sufficiency questions through our Siting Office. If you have any questions regarding this matter, please call me at (850)921-9523.

Sincerely,

A. A. Linero, P.E. Administrator New Source Review Section

AAL/aal

Attachment

cc: Buck Oven, DEP PPSO Len Kozlov, DEP CD D. D. Schultz, P.E., B&V

file

Z 333 612 518

US Postal Service
Receipt for Certified Mail
No Insurance Coverage Provided.
Do not use for International Mail (See reverse)
Sent to
Street & Number
Post Office. State, & ZIP Code
Postage
Return: Receipt Showing to Whom, Date Delivery Fee
Return Receipt Showing to Whom, Date. & Addressee's Address
TOTAL Postage & Fees
Postmark or Date
Post Green Special Delivery Fee
Return: Receipt Showing to Whom, Date. & Addressee's Address
TOTAL Postage & Fees
Postmark or Date
Post Green Special Delivery Fee
Post Green Specia

on the reverse side?	SENDER: Complete items 1 and/or 2 for additional services. Complete items 3, 4a, and 4b. Print your name and address on the reverse of this form so that we card to you. Attach this form to the front of the mailpiece, or on the back if space permit. Write *Return Receipt Requested* on the mailpiece below the article. The Return Receipt will show to whom the article was delivered and delivered.	e does not		s (for an ee's Address ed Delivery	eipt Service.
BN ADDRESS completed	3. Article Addressed to: Mr. A. K. Sharmer, PE Director of Power Supply Kisciance Wilite auth. PO Bax 473219 Kissininee, F1 34742-3219	7. Date of De	Type Ind Mail Seipt for Merchandise Stivery Type Type Type Type Type Type Type Typ		you for using Return Rece
Is your RETUR	5. Received By: (Print Name) 6. Signature: (Addressee of Agent) X	and fee is	s's Address (Only in paid) Domestic Retu	·	Thank

United States Department of the Interior

FISH AND WILDLIFE SERVICE 1875 Century Boulevard Atlanta, Georgia 30345 September 11, 1998

RECEIVED

SEP 1 1 1998

BUREAU OF AIR REGULATION

Re: PSD-FL-254

Mr. C. H. Fancy Chief, Bureau of Air Regulation Florida Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road, MS 48 Tallahassee, Florida 32399-2400

KUA- PSD-F1-254

Dear Mr. Fancy:

Our Air Quality Branch has reviewed the Prevention of Significant Deterioration permit application for Kissimmee Utility Authority (KUA)'s proposal to add a new 250 MW combined cycle turbine (CCT) at the Cane Island Power Park. The facility is located 105 km southeast of Chassahowitzka Wilderness, a Class I air quality area administered by the Fish and Wildlife Service. Our comments are summarized below.

KUA's proposed control technology for emissions of nitrogen oxides (NO_x) lags well behind the more advanced technology used for similar turbines throughout the United States. Although the control technologies applied to CCTs found in EPA's RACT/BACT/LAER Clearinghouse (RBLC - Table 1) are split between dry low-NO_x combustors and selective catalytic reduction (SCR), our own compilation (Table 2) of more recent permit applications shows a clear trend toward installing SCR on these facilities. Unless KUA can demonstrate why it cannot achieve a similar level of control, we recommend that it revise its application to include SCR and meet a NO_x limit of 3.5-5.0 ppm, instead of the currently proposed limit of 15 ppm. If KUA refuses to install SCR without good reason, we shall recommend denial of the permit.

KUA assessed potential impacts to regional haze and visibility at Chassahowitzka incorrectly, using a background visual range (BVR) of 25 km. We have advised Mr. Cleve Holladay of your staff to have KUA conduct the analysis using a BVR of 65 km. It is our policy to protect those days with the best visibility because visibility is most sensitive to change under clean conditions. A BVR of 65 km represents the cleanest 20 percent of days at Chassahowitzka.

If you have questions, please contact Ms. Ellen Porter of our Air Quality Branch in Denver at 303/969-2617.

Sincerely yours,

Sam D. Hamilton Regional Director

Enclosures

Table 1. Gas Turbine Limits from RBLC

									<u> </u>	VOx Emissi	on Limits		Nox Emissi	on Limits
	Pro	ject Descrip	tion					Permit	Dry Lox-N	Ox Comb.	SC	R	Uncont	troiled
	Simple	Combined	Duct		Power Outpu	rt		Issue	Gas	Oli	Gas	Oll	Gas	Oil
Facility Name	Cycle	Cycle	Burner	MW	mmBtu/hr	HP	Permit #	Date	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
Alabama Power Company		Υ	Y	100	353	10566	AL-0115	Dec-97	15.0					
Mead Coated Board, Inc		Y			568		AL-0096	Mar-97	25.0					
Ecoelectrica		Y		461	1629	48709	PR-0004	Oct-96			7.0	9.0	1	
South Mississippi Electric		Y			1299		MS-0028	Apr-96						
Seminole Hardee Unit 3	1	Y		140	495	14792	FL-0104	Jan-96	15.0					
Brooklyn Navy Yard Cogen		Y		240	848	25358	NY-0044	Jun-95	·		3.5	10.0	/I	
Panda-Kathleen		Y		75	265	7925	FL-0102	Jun-95	15.0					
Hermiston Generating	1,	Υ_ :		-497	1696	50709	OR-0011	Apr-94			4.5			
Florida Power-Hines-Polk	T	Y		442	1510	45148	FL-0082	Feb-94	12.0	42.0				
Anilec Cogen		Y	Y		451		NY-0061	Jul-93					25	,
PSI Energy		Y			1775		IN-0053	May-93						
Sithe/Independence		Υ]	625	2133	63775		Nov-92		Ĺ	4.5			
Bear Island Paper		Y	Y	139	474		VA-0190	Oct-92			9.0	15.0		
Pasny/Holtsville		Υ	I	336	1146	34264	NY-0047	Sep-92	9.0					
Maui Electric Co		Ŷ		28			HI-0015	Jul-92						4
Tenaska WA Partners		Y	Υ	1	2	55	WA-0275	May-92			7.0			
Bermuda Hundred		Y	<u> </u>		1175		VA-0184	Mar-92			9.0	15.0)	
Maur Electric Co		Y		28			HI-0013	Dec-91	1			I		4
Linden Cogeneration		Ŷ		165	583	17434	NJ-0011	Aug-91						
Megan-Racine Associates		Υ	Υ		401 lb/mmbև	u?	NY-0057	Aug-89					42	
Berkshire, MA		Y]	272							3.5	9.0)	
Talahassee		Y		260					12.0	42.0				

Table 2. Permits Pending or Not Yet in RBLC

	<u> </u>								NOx E	nission Lim	its < 25 p)pm
		oject Descri						Permit	Dry Lox-N	Ox Comb.	SC	R
		Combined			ower Out	put		Issue	Gas	Oil	Gas	Oil
Facility Name/Location	Cycle	Cycle	Burner	MW	mBtu/h	HP	Permit #	Date	(ppm)	(ppm)	(ppm)	(ppm)
Androscoggin Energy		Υ		150	1857	55523	ME				6.0	
ARCO Watson Project							CA	Oct-97			5.0	
Bridgeport Energy Project											6.0	
Casco Bay Energy		, Y		520	1838	54943	ME				5.0	
Cogen Tech. Linden Venture		Y		581	1983	59275					3.5	
Dighton, MA							MA				3.5	
Enron		•	-				CA		· · ·		2.5	
Frontera Power		Υ		165	1435	42905	TX		15.0			
HDPP							CA				3.0	
Hermiston Generating		Υ					CA	Dec-95			4.5	
Lakeland McIntosh CCT	1	Ŷ		·			FL				7.5	
Lakeland McIntosh SCT	Y			250	883	26415	FL		9.0	42.0		
LaPoloma Generating		Υ		1048			CA			12.5	3.0	
Mississippl Pwr-Daniels Plt	1	Y					MS		Y		3.5	
Northwest Regional Power		Υ		448	1530	45746			9.0			
Rotterdam, N.Y.	j				-		NY				4.5	
Sacramento Power				115			CA	Dec-94			3.0	
Tiverton, RI							RI	200 04			3.5	

U.S.FISH&WILDLIFE SERVICE AIR QUALITY BRANCH

P.O. BOX 25287, Denver, CO 80225-0287

FACSIMILE COVER SHEET

Date: September 4, 1998

Telephone: (303) 969-2617

Fax: (303) 969-2822

To: Al Linero

From: Ellen Porter

Subject: KUA - Cane Island; you will receive signed letter in approximately one week.

Number of Pages: 3

(Including this cover sheet)

09:54

Mr. C. H. Fancy Chief, Bureau of Air Regulation Florida Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road, MS 48 Tallahassee, Florida 32399-2400

Re: PSD-FL-254

Dear Mr. Fancy:

Our Air Quality Branch (AQB) has reviewed the Prevention of Significant Deterioration (PSD) permit application for Kissimmee Utility Authority (KUA)'s proposal to add a new 250 MW combined cycle turbine (CCT) at the Cane Island Power Park. The facility is located 105 km southeast of Chassahowitzka Wilderness, a Class I air quality area administered by the U.S. Fish and Wildlife Service. The AQB's comments are brief and summarized below.

KUA's proposed control technology for emissions of nitrogen oxides (NO₂) lags well behind the more advanced technology used for similar turbines throughout the U.S. Although the control technologies applied to CCTs found in EPA's RACT/BACT/LAER Clearinghouse (RBLC - Table 1) are split between dry low-NO_x combustors and selective catalytic reduction (SCR), our own compilation (Table 2) of more recent permit applications shows a clear trend toward installing SCR on these facilities. Unless KUA can demonstrate why it cannot achieve a similar level of control, we recommend that it revise its application to include SCR and meet a NO_x limit of 3.5-5.0 ppm, instead of the currently proposed limit of 15 ppm. If KUA refuses to install SCR without good reason, we shall recommend denial of the permit.

KUA assessed potential impacts to regional haze and visibility at Chassahowitzka incorrectly, using a background visual range (BVR) of 25 km. We have advised Cleve Holladay of your staff to have KUA conduct the analysis using a BVR of 65 km. It is our policy to protect those days with the best visibility because visibility is most sensitive to change under clean conditions. A BVR of 65 km represents the cleanest 20 percent of days at Chassahowitzka.

09:54

If you have questions, please contact Ellen Porter of our Air Quality Branch in Denver at (303) 969-2617.

Sincerely,

Sam D. Hamilton Regional Director

Enclosures

cc: Doug Neeley, Chief

Air and Radiation Branch U.S. EPA, Region IV 100 Alabama St., SW Atlanta, Georgia 30303

bce: FWS-REG. 4: AQC

CHAS: Refuge Manager AQD-DEN: Ellen Porter

National Park Service - AIR

P.O. Box 25287 Denver, CO 80225

BUREAU OF

8400 Ward Parkway, P.O. Box No. 8405, Kansas City, Missouri 64114, (913) 458-2000

Kissimmee Utility Authority Cane Island Power Park

B&V Project 59104 B&V File 32.0304 August 31, 1998

Mr. Al Linero Florida Department of Environmental Protection Twin Towers Office Building 2600 Blair Stone Road, MS #5505 Tallahassee, FL 32399-2400

Subject: Site Tour

Dear Mr. Linero:

On behalf of the Kissimmee Utility Authority and the Florida Municipal Power Agency, Black & Veatch invites you and appropriate members of staff to attend a tour of the Cane Island Power Park beginning at 10 AM on Thursday, September 10, 1998. An agenda of the tour is enclosed. Lunch will be provided.

The Power Park is located at 6075 Old Tampa Highway, near Intercession City, which is southwest of Kissimmee. Old Tampa Highway can be reached by taking the US-192 East exit off I-4, or the US-192 West exit off the Florida Turnpike, to Poinciana Boulevard. Proceed south on Poinciana, then west on Old Tampa Highway. The Power Park has an entrance sign. Please use the speaker box at the front gate to indicate your arrival. The Control Room staff will open the gate. Proceed up the access road to the plant area. There will be signs directing you to a parking area and the Administration Building.

Please contact me or Myron Rollins by Tuesday, September 8, 1998, to indicate if you and other staff members will be able to attend the tour. My phone number is (913) 458-7563; Myron is at extension -7432.

Very truly yours, Black & Veatch_{LLP}

J. Michael Soltys
Licensing Manager

Mike Sollys

Enclosure

Cane Island Power Park Site Tour September 10, 1998

10 AM Meet in Administrative Office

Introductions Project History

Unit 3 Development/SCA Process

Control Room Water Quality Lab

11 AM Unit 1

Unit 2

Unit 3 Area

12:30 PM Lunch

1:15 PM Cane Island-Intercession City Transmission Line Corridor

Reedy Creek

2:00 PM Wetland Creation Site/GT*-4

2:30 PM GT-3

3:00 PM GT-2

3:30 PM GT-1

4:00 PM Return to Admin Office

Questions/Comments

^{*}Gopher Tortoise Management Area

Department of Environmental Protection

Lawton Chiles Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Virginia B. Wetherell Secretary

August 17, 1998

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. A. K. Sharma, P.E. Director of Power Supply Kissimmee Utility Authority Post Office Box 423219 Kissimmee, Florida 34742-3219

Re: DEP File Nos. PSD-FL-254, PA-98-38

Cane Island Unit No. 3 - Combined Cycle Turbine

Dear Mr. Sharma:

The Bureau of Air Regulation received a copy of the application for a Prevention of Significant Deterioration (PSD) permit. We are conducting a review in parallel with the rest of the Department under the requirements for projects subject to Power Plant Siting Act and will provide a Sufficiency Review through the Office of Power Plant Siting.

We did conduct a very preliminary review of the Best Available Control Technology (BACT) Determination for nitrogen oxides (NO_X) control and wanted to provide you with our initial thoughts. We received the attached letter from EPA Region IV in response to a permit application for the Santa Rosa Energy Center in Pace, Florida. That project proposed a BACT NO_X limit of 9 ppm by Dry Low NO_X (DLN) and 12 ppm under "Power Augmentation." The Alabama project referenced in EPA's letter has now been permitted with a limit of 3.5 ppm for NO_X. Another application is under review by the State of Mississippi and includes a NO_X proposal of 3.5 ppm for NO_X. Both projects are in attainment areas. Both projects, as well as the one in Florida are based on "F" units such as the GE7FA series or the Westinghouse 501F.

We expect a very similar completeness letter from EPA when reviewing your project. We recommend that you begin to reevaluate the BACT on NO_X under the following basis. Assume that uncontrolled emissions are 200 ppm. These are the typical concentrations given in the literature before reduction by lean pre-mix or wet injection technologies. Estimate the minimum cost to achieve 15, 9, 7.5 and 3.5 ppm by any combination of technologies. Calculate the marginal cost effectiveness based on the results of achieving emissions less than 15 ppm. Note that the least expensive option to achieve 12 ppm is not necessarily to supply a DLN combustor to achieve 15 and add an SCR unit to reach 12. It may be less expensive to start with a less expensive combustor capable of reaching 25-40 ppm and then adding the SCR unit. Other combinations than assumed in the application may reflect more accurately the cost-effectiveness of reaching the lower values.

Mr. A.K. Sharma Page 2 of 2 August 17, 1998

According to the application, the cost of the Hot SCR catalyst is given as \$3,520,000. According to information received by the Department for the Lakeland project, the cost of the "SCR catalyst system" was estimated at \$2,700,000 including: catalyst modules; internal support structures; ammonia injection grid; internally insulated ductwork with stainless steel liner to house AIG and SCR catalyst; ammonia injection grid; external AIG manifold with flow control valves; and ammonia vaporization/air dilution skid (28% ammonia to skid). The cost of replacement catalyst was estimated at \$1,600,000.

The unit for which the Department obtained the quote is a "G" unit. Therefore the cost should be less for an "F" unit. The basis was firing natural gas with very limited fuel oil use. It may be possible to turn off the ammonia and implement wet injection during the few hours of fuel oil use. Alternatively, higher limits can be set when using SCR on fuel oil than when using SCR on gas. This will minimize ammonia slip and bisulfate problems. It may also be possible to reduce the costs of conventional low temperature SCR by checking around with various vendors in addition to those who prepared the quotation given in the application.

One manufacturer has informed us they may provide a guarantee of 6 ppm for the "F" units for delivery in approximately two years using DLN technology. This is similar to what is presently achieved by your smaller combined cycle "E" unit.

With the above information and a discussion of the energy, social, economic, and environmental benefits of achieving low emissions by DLN, we may be in a better position to discuss these matters with EPA Region IV even if hot or conventional SCR appear cost-effective. Future information requests will be made through our Siting Office. If you have any questions regarding this matter, please call me at (850)921-9523.

Sincerely,

A. A. Linero, P.E. Administrator New Source Review Section

a a Lin 8/17

New Source Review Section

AAL/aal

Attachment

cc: Doug Neeley, EPA
John Bunyak, NPS
Buck Oven, DEP PPSO
Len Kozlov, DEP CD
D. D. Schultz, P.E., B&V

	US Postal Service Receipt for Cer No Insurance Coverage Do not use for Internation Sent In	Provided.
	Streat & Number Post Office, State) & ZIP-Cox	Haina
		ae A
	Certified Fee	\$
	Special Delivery Fee	
	Restricted Delivery Fee	
1995	Return Receipt Showing to Whom & Date Delivered	
, Apri	Re:um Receipt Showing to Whom, Date, & Addressee's Address	
800	TOTAL Postage & Fees	\$
PS Form 3800 , April 1995	Postmark or Date PSD-F1-254 PQL 98-38	8/18/98
S.	pa 98-38	

_			,
rse side?	SENDER: "Complete items 1 and/or 2 for additional services. "Complete items 3, 4a, and 4b. "Print your name and address on the reverse of this form so that we can return this card to you.		I also wish to receive the following services (for an extra fee):
revers	Attach this form to the front of the mailpiece, or on the back if space does not permit.		1. Addressee's Address
Je r	■Write*Return Receipt Requested* on the mailpiece below the article number. ■The Return Receipt will show to whom the article was delivered and the date delivered.		2. Restricted Delivery
P L			Consult postmaster for fee.
RETURN ADDRESS completed	3. Article Addressed to: A.K. Sharna, PE	4a. Article Number P 245 659 407 4b. Service Type Registered Express Mail Insured	
	Director of Power Supply.		
	Kusimmee U. Authority PO BOX 423219		
	Kosinnee, [-] 34742-3219 7.00		8-71.98
	5. Received By: (Print Name)	Addressee's Address (Only if requested and fee is paid)	
	A 60 A	and ree is	paid)
	8 your	6. Signature: (Addressee or Agent)	
_	PS Form 3811 . December 1994	2595-97-B-0179	Domestic Return Receipt

Date: 8/11/98 12:35:39 PM From: Patricia Comer TAL

Subject:

Patricia Comer TAL
Re: Kissimmee Utilities Authority
Scott Sheplak TAL

To:

I think Scott Goorland is looking into this. He's the PPSA attorney and I asked him to check this out. I don't think the statute was written with this situation in mind, but I defer to him.

Date: 8/11/98 12:33:15 PM From: Scott Sheplak TAL

Subject: Re: Kissimmee Utilities Authority

To: See Below

SUBJECT: Kissimmee Utilities Authority - Cane Island

Proposed new Unit Number 3

My understanding is that Section 403.509(3), F.S. applies to the Title V sources with FINAL Title V permits. A Title V application for new units must be filed 90 days before expiration of an air construction permit, but no later than 180 days after commencing operation (see Rule 62-213.420(1)(a)2., F.A.C.). The Title IV, acid rain SO2, application must be submitted 24 months prior to the date on which the unit commences operation (see Rule 62-214.320(1)(b), F.A.C.).

I took a look at the PSD application submitted. The projected date of completion of construction is June 1, 2001. The applicant identified the acid rain application deadline mentioned above.

To: Patricia Comer TAL
CC: Alvaro Linero TAL
CC: Kim Tober TAL
CC: Teresa Heron TAL
CC: Cleve Holladay TAL
CC: Scott Goorland TAL
CC: Clair Fancy TAL
CC: Tom Cascio TAL

Date: From:

8/11/98 12:00:09 PM Scott Goorland TAL

Subject:

Re: Kissimmee Utilities Authority

ma.

See Below

Scott. You may wish to review the materials we received to determine how

to comply with PPSA requirements related to draft Title V permits. Presumably it will be like the City of Tallahassee Purdom 8 project. Since

we do not yet put PSD applications for PPSA applications into ARMS, maybe

we can use the fact that you do use ARMS to review all Title V actions to

keep track (electronically) of this project. We ought to try to coordinate

notices to the extent feasible.

Al, the issue regarding Title V in this instance is a good question to raise. In Purdom, a draft Title V was already in existance at the time of certification under the PPSA. Here we have a different situation. While I think that coordination of notices is a good idea, I think we will have a problem in that we are opnly certifying a portion of the facility, but the Title V would apply to the entire facility. I'll be discussing the issue with Pat and Buck and reviewing the statute, and I'll get back to you on the issue some time mid next week after I finish deaing with some discovery on some other cases.

To: Alvaro Linero TAL Teresa Heron TAL To: To: Cleve Holladay TAL To: Hamilton Buck Oven TAL CC: Scott Sheplak TAL CC: Patricia Comer TAL TALCC: Clair Fancy CC: Clair Fancy TAL

Date: From:

Subject:

8/8/98 11:32:25 AM

Alvaro Linero TAL

Kissimmee Utilities Authority

To:

See Below

We receive an application to construct a new combustion turbine and heat recovery steam generator at Kissimmee Utilities Authority - Cane Island. It will be designated as Unit 3. It is being reviewed under the Power Plant Siting Act.

The implication is that we must satisfy EPA's requirements under delegated PSD program - 52.21(u). This also means that public participation (for PSD) must satisfy the requirements of 40CFR124.

Scott. You may wish to review the materials we received to determine how to comply with PPSA requirements related to draft Title V permits. Presumably it will be like the City of Tallahassee Purdom 8 project. Since we do not yet put PSD applications for PPSA applications into ARMS, maybe we can use the fact that you do use ARMS to review all Title V actions to keep track (electronically) of this project. We ought to try to coordinate notices to the extent feasible.

Teresa. This project is being assigned to you. Please let Kim know how to log it in the docket. I recommend that you clip and send the parts of the permit that EPA and NPS might actually need. That way you don't have to send a monster package that they won't look at.

Kim. The applications are in Syed's old office. Prepare the letters to EPA and NPS for Teresa to review. Add a statement in there to the effect that the project is being reviewed under Florida's Power Plant Siting Act and will satisfy the public participation requirements of 40CFR124 as well as the requirements of of 40CFR52.21.

Kim Tober TAL To: Teresa Heron TAL To: To: Cleve Holladay TAL CC: Scott Sheplak TAL Patricia Comer TAL CC: Scott Goorland CC: TAL Clair Fancy cc:

It we have to process

TV I'll nead to get

soreone moving on

it,

will be (or is) reving
16,55, el ?
Clair

Kim-To new KUA file

Clarical Act of the permit has not been issued KVA-Gne Island was not an existing acid rain under last years dealling. The application his not from verienced/processed. Jue Kahn has the application. Here's a question of whether we not we question of whether we not we have to do the THE V permit have to do the NO answer how we prosa/PSD. NO answer

yet from Sutt Govland.

Memorandum

Florida Department of **Environmental Protection**

RECEIVED

TO:

Al linero

Len Kozlov

Geof Mansfield

Mary Jean Yon

At = 1.2 1998

BUREAU OF AIR REGULATION

FROM:

Buck Oven

DATE:

August 10, 1998

SUBJECT:

Kissimmee Utilities Authority - Cane Island - Amendment to Application

PA 98-38, Module 8048

Kissimmee has submitted the enclosed amendments to the application reflecting the PE certification. NOTE: to Al, I am sending the original of the PSD/Title V certification to BAR.

cc: Scott Goorland

Black & Veatch

MEMORANDUM

KUA/FMPA
Cane Island Power Park
Site Certification Application
Volumes 2 & Appendix 10.7
Revision 1

To: Holders of KUA/FMPA Manual

From: Controlled Documents Center

Remove the superseded pages of your manual as identified below and insert the attached revised and new pages. Return your superseded pages in an interoffice envelope to the Controlled Documents Center (CDC). Your returned pages assure their removal and inadvertent use. After your manual has been updated, put the date, your name, and book number in the space provided below. Return this memorandum to the Controlled Documents Center, PGE by August 20, 1998.

Please note if you are a client or in a regional, global office, send back only the signoff memorandum.

Page to be deleted

Revision

Pages to be inserted

Revision

VOLUME 2
Cover Sheet

VOLUME 2

Cover Sheet includes Seal & Signature

August 6, 1998

APPENDIX 10.7

APPENDIX 10.7

<u>Air Permit Application Forms</u>
Professional Engineer Statement
I. Part 6-1 (no signature)

Air Permit Application Forms
Professional Engineer Statement
I. Part 6-1 (signature)

Prepared and Approved by Karen Berker

Date*08/06/98*

On this date I revised my manual to conform to the above.

Date______Book No. ____

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollutant control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection: and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [] if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [X] if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [] if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Signature

(seal)

8/6/90

Date

I. Part 6 - 1

DEP Form No. 62-210.900(1) - Form

Effective :-3:21-96

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollutant control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [] if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [X] if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [] if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Signature (seal)

8/6/ Date

I. Part 6 - 1

DEP Form No. 62-210.900(1) - Form

Effective: 3-21-96

- I, the undersigned, hereby certify, except as particularly noted herein*, that:
- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollutant control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection: and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [1 if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [X] if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [] if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

Signature

(seal)

I. Part 6 - 1

DEP Form No. 62-210.900(1) - Form

Effective: 3-21-96

I, the undersigned, hereby certify, except as particularly noted herein*, that:

- (1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollutant control equipment described in this Application for Air Permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection: and
- (2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.

If the purpose of this application is to obtain a Title V source air operation permit (check here [I if so), I further certify that each emissions unit described in this Application for Air Permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance schedule is submitted with this application.

If the purpose of this application is to obtain an air construction permit for one or more proposed new or modified emissions units (check here [X] if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.

If the purpose of this application is to obtain an initial air operation permit or operation permit revision for one or more newly constructed or modified emissions units (check here [] if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.

(seal)

I. Part 6 - 1

DEP Form No. 62-210.900(1) - Form

Effective: 3-21-96

CANE ISLAND POWER PARK UNITS 1-3

VOLUME 2

Donald D. Schult Date

Florida No. 30304 Black & Veatch 11401 Lamar

Overland Park, Kansas 66211

Submitted by:

Kissimmee Utility Authority and the Florida Municipal Power Agency

CANE ISLAND POWER PARK UNITS 1-3

VOLUME 2

Donald D. Schultz Date

Florida No. 30304 Black & Veatch 11401 Lamar Overland Park, Kansas 66211

Submitted by:

Kissimmee Utility Authority and the Florida Municipal Power Agency

CANE ISLAND POWER PARK UNITS 1-3

VOLUME 2

Donald D. Schultz Date

Florida No. 30304
Black & Veatch
11401 Lamar
Overland Park, Kansas 66211

Submitted by:

Kissimmee Utility Authority and the Florida Municipal Power Agency

CANE ISLAND POWER PARK UNITS 1-3

VOLUME 2

Donald D. Schultz Date

nald D. Schultz Dat Florida No. 30304 Black & Veatch 11401 Lamar

Overland Park, Kansas 66211

Submitted by:

Kissimmee Utility Authority and the Florida Municipal Power Agency