

FLORIDA KEYS ELECTRIC COOPERATIVE ASSOCIATION, INC. – FKEC

91805 OVERSEAS HIGHWAY P.O. BOX 700377, TAVERNIER, FL 33070-0377 PHONE (305) 852-2431 FAX: (305) 852-4794

Mr. Cleve Holladay
Dept. of Environmental Protection
Bureau of Air Resources
Mail Station 5505
2600 Blairstone Rd.
Tallahassee, FL 32399-2400

Post-it* Fax Note	7671	Date 3-4-9- # of pages 2
TO CLOVE HOLE	4343	From DEB . SHAW
Co./Dept. FDEY		Co. Free
Phone # 850/488	-1344	Phone + 305/852 -243/
Fax # 850/922 - (6979	Fax # 305/852-9129

Re: Design and engineering measures taken to reduce emissions on Unit #8.

4 March 1998

Dear Mr. Holladay:

As per you request of Monday, 3/2/98, I am faxing additional information describing exactly what measures were taken to reduce emissions from Unit #8 at the Marathon Generating Plant. The information was supplied by Mr. Robin Weeks of Engine Systems, Inc.

Please call me if you need more information or the fax is not legible. I will be working in the field later today and I can be reached at 305/852-6501. I will take my copy with me if you wish to discuss details. Thanks for your assistance, Cleve.

Sincerely,

Deborah A. Shaw, Ph.D.

Environmental Affairs Coordinator/Biologist

Enc:

Letter from Robin Weeks, ESI.

PC:

C. Russell

T. Planner

ENGINE SYSTEMS INC.

PO BOX 1928

ROCKY MOUNT NC 27602-1928

1220 S WASHINGTON STREET ROCKY MOUNT, NC, 27601

Fax Cover Sheet

DATE:

March 3, 1998

TÓ:

Chris Pankow

FKEC

PHONE:

305-743-5323

FAX:

305-743-9191

FROM:

Robin L Weeks

PHONE: FAX: 919-977-2720 919-446-3830

Sales Support/Engineering

Unit & Emissions modifications to Engine

CC.

RE:

Number of pages including cover sheet: 1

Mossage

The following modifications were made to the standard engine configuration to reach the emissions goals

- The four pass aftercoolers we used were of a higher flow rate design on the water side, i.e. through the tubes. This allowed us to use an aggressive flow rate of 150 gpm through each aftercooler core, and enabled a lowered airbox temperature relative to utilizing the standard aftercooler cores EMD provides with this engine.
- The separately cooled circuit uses the available sea water as a relatively cool medium in the heat exchanger. By utilizing the design value of 88°F sea water, we are able to supply the aftercooler cores with approximately 90-92°F fresh water on the engine side of the aftercooler huat exchanger. This greatly reduces the engine airbox temperature relative to using 175-180°F fresh water as would have been the case using the standard EMD cooling system.
- The 6° retarded fuel injection timing was the third modification. We originally intended to retard 4°, however after much discussion with Tim Paulson at EMD, it was decided that 6° retarded fuel injection timing was probably necessary to guarantee meeting our contractual requirements.

I believe the comment about fuel injectors concerns the spray tip pattern. EMD found that an older version of the injector tip was spraying some fuel directly onto the crowns of some of the valves, which caused incomplete atomization to occur. They changed the angle of the prifices in the spray tip to prevent this from occurring. All of their engines use the new pattern, and we did not change these.

I hope this clarifies the questions you have. Please forward this information to Dehorah. Shawjand Tim Planer.

Thank you

6132F121.DOC

Do though are a continuous combustion monitoring system

February 20, 1998

FKEC's facility was remodeled to reflect its request for a higher NO_x limit for Unit 8. The requested limit is 68 lb/hr or 8.57 g/s. The results of the modeling reflecting this change are shown below

Requested Emission Rates and Stack Parameters for FKEC

	Emission	Stack	Stack	Stack	Stack
Emission Units	Rate	Height	Temp	Vel	Diameter
	(g/s)	(m)	°K	(m/s)	(m)
Unit 8	8.57	11.79	625	34.6	0.71
Unit 1	2.96	6.15	669	27.3	0.71
Unit 2	3.85	6.15	669	27.3	0.71
Unit 3	4.64	11.43	677	38.9	0.66
Unit 4	4.44	11.43	677	38.9	0.66
Unit 5	5.11	11.43	677	38.9	0.66
Unit 6	4.72	7.20	664	23.8	0.76
Unit 7	4.40	7.20	664	23.8	0.76

Location of Emission Units in Smith

Emission Units	x (m)	y (m)
No. 8	0.0	0.0
No. 1	-71.1	-34.8
No. 2	-71.1	-28.2
No. 3	-6.7	0.0
No. 4	-14.8	0.0
No. 5	-20.4	0.0
No. 6	-74.0	-48 .9
No. 7	-74.0	-43.0

MODEL RESULTS FKEC

(All Values in ug/m³, annual average)

			<u> </u>	
	MET DATA	AAQS=100	PSD Class II=25	PSD ClassI SIL=0.1
		CONC	CONC	CONC
1987	Key West/Miami	77	18	0.04
1988	Key West/Miami	89	16	0.04
1989	Key West/Miami	89	18	0.03
1990	Key West/Miami	87	21	0.02
1991	Key West/Miami	97	21	0.02

Files: fk50_68.087 throuh fk50_68.091 for AAQS, fkspsd68.087 through fkspsd68.091 for PSD Class II; fkpsdc1.087 through fkpsdc1.090

FINAL TEST REPORT

EMISSIONS COMPLIANCE TEST PROGRAM

FLORIDA KEYS ELECTRIC COOPERATIVE

MARATHON FACILITY

PREPARED FOR:

Engine Systems, Inc. 1220 Washington Street

Rocky Mount, NC 27802-1928

CONCERNING:

NO_x, CO, VOC and Opacity Compliance Testing

Emission Unit #8 3.58 MW Diesel Electric Generator Florida Keys Electric Cooperative Association, Inc.

Marathon Facility December 17, 1997

PREPARED BY:

South Florida Environmental Services

6821 Vista Parkway North

West Palm Beach, Florida 33411

SFES #97-581

Ron C. Cook Jr.

Senior Project Director

Date

RECEIVED

JAN 2 8 1998

BUREAU OF AIR REGULATION

TABLE OF CONTENTS

1.	COMPENDIUM	p.	1
2	REFERENCE METHOD SAMPLING LOCATION	p.	3
3.	SAMPLE POINT LOCATIONS	p.	4
4.	SAMPLING TRAIN AND ANALYTICAL PROCEDURES	p.	5
5	OUALITY CONTROL PROCEDURES	n	11

APPENDICES

A	CEMS/VOC EMISSION CALCULATIONS
В	OPACITY OBSERVATIONS
C	CALIBRATION GAS CERTIFICATIONS
D	FIELD DATA SHEETS
E	STRIP CHARTS
F	NOMENCLATURE
G	FACILITY OPERATING DATA

1.0 COMPENDIUM

South Florida Environmental Services conducted an emissions compliance test program on behalf of Engine Systems, Inc. at Florida Keys Electric Cooperative Association, Inc. located in Marathon, Florida. The testing was conducted on the newly installed EMD generator set rated at 3.58 MW and took place on December 17, 1997.

The objective of the testing program was to determine the Compliance/Performance status of EMD diesel generator #8 with respect to oxides of nitrogen, carbon monoxide, total hydrocarbons and opacity limits. Set forth by the Florida, Department of Environmental Protection (FDEP) and Florida Keys Electric Cooperative.

All test methods and procedures were conducted in strict accordance with EPA Methods 3A, 7E, 9, 10 and 25A as found in the Federal Register (40CFR60), Appendix A. The approved test plan was adhered to throughout the program. All lb/MMBtu emission rates are based on the F-factor for oil in accordance with EPA Method 19.

The gaseous (CEM/VOC) sampling consisted of three 1-hour runs during the test program while the unit was operating at 100% of rated capacity. Finial results can be found in Table 1-1.

The opacity determination was an hour visible emissions run consisting of 240 readings, 4 readings per minute, from which the highest 6-minute average and maximum opacity values were obtained and reported as percent opacity. Finial results can be found in Table 1-2.

Ron C. Cook Jr. Senior Project Director, was responsible for all phases of the test program he was assisted by a team of qualified environmental professionals. Robin L. Weeks of Engine Systems, Inc. coordinated unit operation with testing. Tim Planner of Florida Keys Electric Cooperative was the company's representative.

1.0 COMPENDIUM (cont.)

The following tables summarize the results of the emissions testing program.

Table 1-1
Summary of Results
FKEC Emission Unit # 8
EMD Diesel Electric Generator

NOx

Run#	Time	ВНР	NOx Gms/bhp-hr	NOx lb/hr	NOx Tons/yr
1	1500-1600	4981	6.01	65.95	288.86
2	1635-1735	4988	6.01	66.09	289.47
3	1800-1900	4983	5.93	65,10	285.14
Average			5.98	65.71	287.82

 \mathbf{CO}

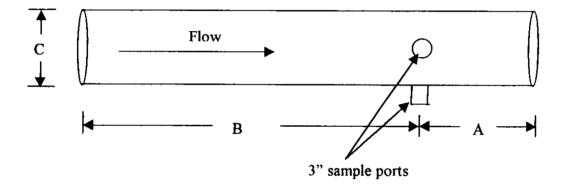
Run #	Time	ВНР	CO Gms/bhp-hr	CO lb/hr	CO Tons/yr
1	1500-1600	4981	.49	5.40	23.65
2	1635-1735	4988	.49	5.38	23.56
3	1800-1900	4983	.49	5.38	23,56
Average			.49	5.39	23.59

THC

Run #	Time	ВНР	THC Gms/bhp-hr	THC lb/hr	THC Tons/yr
1	1500-1600	4981	.15	1.70	7.45
2	1635-1735	4988	.16	1.72	7.53
3	1800-1900	4983	.15	1.69	7.40
Average			.15	1.70	7.46

Note: Tons/yr were calculated using 8760 hours or continuous operation

Table 1-2
Visible Emission Results


Unit #	Length of Test	Highest 6 min. Average	Readings above 20%
EMD #8	60	5.0%	NONE

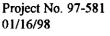
Project No. 97-581 01/16/98

2.0 REFERENCE METHOD SAMPLING LOCATION

The emissions were measured in the 2.3-foot diameter exhaust duct. The sampling location is indoors, and is accessible via a man lift platform. Two 3-inch diameter sampling ports are installed 90° apart. Figure 2-1 depicts the sampling location.

Description	Dimension
Port To Downstream (A)	9.5 feet
Upstream To Port (B)	23.5 feet
Duct Diameter (C)	2.3 feet
Number Of Ports	2

Figure 2-1
Stack Sampling Location



3.0 SAMPLING POINT LOCATIONS

The stack has an inside diameter of 2.3-feet at the sampling location. The distance from the sampling ports to the nearest downstream disturbance is 9.5 feet or 4.1 diameters. The distance from the nearest upstream disturbance to the sampling ports is 23.5 feet or 10.2 diameters. Based upon the requirements of Methods in Appendix B, Specification 2, the CEM probe was placed at a total of 3 sampling points. The CEM probe was marked according to the measurements in Table 3-1. A rake probe was used to satisfy this criteria.

Table 3-1
CEM Sampling Points

Traverse Point	Distance %	Probe Marking
1	16.7	4.68"
2	50.0	14.00"
3	83.3	23.32"

4.0 SAMPLING TRAIN AND ANALYTICAL PROCEDURES

The subject unit was tested for nitrogen oxides, carbon monoxide, opacity and volatile organic compound emissions. Each pollutant parameter was tested in strict accordance with official EPA procedures at the sampling locations described in Sections 1, 2 and 3. In this section, the test procedures that were used, including sampling and analysis, are discussed.

4.1 DESCRIPTION OF METHODOLOGY

4.1.1 Nitrogen Oxides

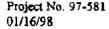
Nitrogen oxides were measured in accordance with EPA Method 7E. This Method utilizes continuous emissions monitoring instrumentation. South Florida Environmental Services uses a Thermo Electron Model 10A NOx chemiluminescent monitor with 8 ranges from 0-10,000 ppm. The instrument meets all of the performance specifications of the Method. It was calibrated before and after each test period using calibration gases prepared according to EPA Protocol #1. Three 60-minute runs were conducted.

4.1.2 Carbon Monoxide/Carbon Dioxide

Carbon monoxide was measured in accordance with EPA Method 10 and carbon dioxide in accordance with EPA Method. This Method utilizes continuous emissions monitoring instrumentation. South Florida Environmental services uses a Fuji Model 3400 non-dispersive infra red analyzer with a range of 0-500 ppm for CO and 0-25% for CO₂. The instrument meets all of the performance specifications of the Methods. It was calibrated before and after each test period using calibration gases prepared according to EPA Protocol #1. Three 60-minute runs were conducted.

4.1.3 Volatile Organic Compounds

VOCs (Total Hydrocarbons) were determined in accordance with EPA Method 25A. This method utilizes a FID analyzer which is calibrated with certified methane standards. South Florida Environmental Services uses a TECO Model #51 flame ionization analyzer with four ranges between 0-10,000 ppm. The instrument meets all of the performance specifications of the Method. It was calibrated before and after each test period using three concentrations of calibration gas in the working range of the instrument. The calibration gases were prepared according to EPA Protocol #1. Three 60-minute runs were conducted.


4.0 SAMPLING TRAIN AND ANALYTICAL PROCEDURES

4.1.4 Oxygen

Oxygen was measured in accordance with EPA Method 3A. This Method utilizes continuous emissions monitoring instrumentation. South Florida Environmental Services uses a Teledyne Model 326A analyzer with a range of 0-25%. The instrument meets all of the performance specifications of the Method. It was calibrated before and after each test period using calibration gases prepared according to EPA Protocol #1.

4.1.5 Opacity

Opacity observations were conducted in accordance with EPA Method 9. South Florida Environmental Services provided an EPA certified visible emissions observer. Measurements were made during each of the compliance test runs. Three 60-minutes runs were conducted. Each run consisted of 240 opacity observations which were recorded on Visible Emissions Data Sheets (appended).

4.0 SAMPLING TRAIN AND ANALYTICAL PROCEDURES (cont.)

4.2 DESCRIPTION OF CEM SAMPLING

4.2.1 CEM Sampling System

What follows is a description of the transportable continuous emissions monitor system that was used to quantify oxygen, carbon dioxide, oxides of nitrogen, and carbon monoxide, from the subject unit at the facility. The system meets all the specifications of Reference Methods 3A (O2/CO2), 7E (NOx), and 10 (CO).

Sample Probe - A stainless steel rake probe of sufficient length was used to sample at the location specified in Section 2.0.

Sample Line - Approximately 100' to 150' of 3/8" Teflon tubing (1/16" wall) was used to transport the sample gas from the probe to the sample conditioning system.

Sample Conditioning System-

Filter - A heated spun glass fiber filter was located at the end of the probe to remove particulate from the gas stream.

Condenser (2) - a Universal Analyzer Sample Cooler or ice cooled condenser was located near the probe for bulk moisture removal and a thermo-electric condenser system was located downstream from the pump to remove any remaining moisture from the gas stream

Sample Pump - A diaphragm type vacuum pump was used to draw gas from the probe through the conditioning system and to the analyzers. The pump head is stainless steel, the valve disks are Viton and the diaphragm is Teflon coated.

Calibration Valve - A t-valve, located at the base of the probe, allows the operator to select either the sample stream or inject calibration gas to the CEM system.

4.0 SAMPLING TRAIN AND ANALYTICAL PROCEDURES (cont.)

Sample Distribution System - A series of flow meters, valves and back pressure regulators allowed the operator to maintain constant flow and pressure conditions during sampling and calibration.

Gas Analyzers - capable of the continuous determination of O2, CO2, CO, and NOx concentrations in a sample gas stream. They each meet or exceed the following specifications:

Calibration Error

- Less than +2% of span for the zero, mid- and hi-

range calibration gases.

System Bias

- Less than ±5% of span for the zero, mid- or

hi-range calibration gases.

Zero Drift

- Less than ±3% of span over the period of

each test run.

Calibration Drift

- Less than ±3% of span over the period of each

test run.

Data Acquisition System - A Molytek strip chart/data logger system was used to record analyzer response to the sample and calibration gas streams. The chart recorder operated continuously while the data logger recorded thirty (30) minute interval averages.

The Molytek was linked, via an RS232 cable, to an IBM compatible computer system with a VGA screen. Data was written to file at fifteen (15) second intervals. Separate files for each run, and associated calibrations, were generated. Data was loaded into a spreadsheet for calculation of interval averages and emission rates. Preliminary reports were available on-site.

4.2.2 CEMS Sampling Procedures

All sampling and analytical procedures were conducted in accordance with EPA Reference Methods 3A, 7E, and 10 (40CFR60, Appendix A). The following is the sequence of events leading up to and including the compliance test:

Selection of Sampling Traverse Point Locations - Sampling point locations were determined prior to testing in accordance with EPA Methods 3A, 7E, and 10.

Determination of System Response Time - System response time was determined prior to testing. System response time was determined according to procedures delineated in Performance Specification 2 (40CFR60, Appendix B).

Project No. 97-581 01/16/98

4.0 SAMPLING TRAIN AND ANALYTICAL PROCEDURES (cont.)

Determination of Analyzer Calibration Error - Analyzer calibration error was determined immediately prior to testing in accordance with EPA Methods 3A, 7E, and 10.

Determination of Sampling System Bias - Sampling system bias was determined immediately prior to testing in accordance with EPA Methods 3A, 7E and 10.

Determination of Zero and Calibration Drift - Before and after each test run, each analyzer's response to zero and mid- or hi-range calibration gases were determined. The pre-and post-test analyzer responses were compared to determine drift. The results were evaluated based upon specifications defined in EPA Methods 3A, 7E and 10.

Data Reduction - An average pollutant/diluent concentration for each test run was determined from the data acquisition system. This data was then reduced to determine relative pollutant concentrations.

4.3 DESCRIPTION OF VOLATILE ORGANIC COMPOUNDS SAMPLING

4.3.1 **VOC Sampling Equipment**

Probe - A single opening 3/8" OD stainless steel probe was used at each sample location.

Calibration Valve - A three way valve was located at the end of each sample line to select either sample mode or system calibration mode.

Sample Line - A heated 3/8" OD Teflon sample line was used to transport the sample stream from the test locations to the analyzers. The lines were heated to the temperature of the sample duct, or to a maximum of 300°F, to maintain integrity of the sample.

System Calibration Line - A 1/4" OD Teflon tube was used to transfer calibration gas from the cylinder to the calibration valve.

VOC Analyzer - The analyzer used was a TECO Model #51 flame ionization analyzer (FIA).

Data Acquisition - The FIA's response was sent to a Molytek Data Acquisition System (DAS). The DAS recorded the response of each FIA on a strip chart recorder and IBM compatible computer via an RS-232 cable. The computer stored each analyzer's response at fifteen second intervals over the course of each run. Run averages were determined from all stored data points over the course of the run.

4.0 <u>SAMPLING TRAIN AND ANALYTICAL PROCEDURES</u> (cont.)

4.3.2 **VOC Sampling Procedures**

Calibrations - The FIA was calibrated prior to sampling using zero, low, mid and high calibration gases of certified cylinders of methane in a balance of nitrogen. Calibrations were conducted through the entire sample system. A description of the specific procedures is provided below.

Zero: The zero point of the analyzer was determined using a pre-purified cylinder of nitrogen. The zero point was analyzed for a minimum of five minutes to monitor drift before sampling commenced

High Span: The high calibration gas, $\sim 85\%$ of span, was introduced to the sample system and the response of the analyzer was adjusted accordingly.

Mid & Low Span: The mid and low calibration gases, ~50% and 30% of span respectively, were introduced to the sample system and the response of the analyzer was recorded. The analyzer met Method 25A criteria for accuracy.

Sampling - Once the analyzer was calibrated, the system calibration valve was switched to sample mode and sampling was conducted. The response time of the system was determined by the time the valve is actuated to the time the response of the FIA is 95% of the steady state sample value.

Post Calibration - Immediately following each test run, the sample system was switched into calibration mode, and the zero and mid span gas was introduced to monitor analyzer drift. All post calibrations met or exceeded the Method 25A criteria for drift.

5.0 QUALITY CONTROL PROCEDURES

Sampling was conducted by trained personnel with extensive experience in Reference Method sampling.

All sampling and analysis was conducted in strict accordance with EPA test procedures. The quality control procedures found in the EPA Quality Assurance Handbook for Air Pollution Measurement Systems was adhered to as well.

South Florida Environmental Services entire equipment inventory is on a schedule of routine maintenance and calibration. This includes meter boxes, thermocouples, barometers, pitot tubes, sampling nozzles and CEM instrumentation

All CEM analyzer and system calibrations were performed using NIST-traceable gas prepared in accordance with EPA Protocol #1.

All calculations were conducted in strict accordance with the equations found in the individual Methods. Emission rate calculations were conducted on a computer and the input data was checked by a person other than the original calculator to ensure that it is correct.

These specific procedures in addition to South Florida Environmental Services usual high standard of quality control I validated the results obtained in this test program. South Florida Environmental Services is staffed by a team of qualified, experienced environmental professionals. As the majority of our emissions testing work is done for compliance purposes, strict QC procedures are incorporated into our everyday work performance.

APPENDIX A CEMS/VOC EMISSION CALCULATIONS

$F(X) = \{ \{ \{ \{ \{ \}, \{ \} \} \} \} \} \} = \{ \{ \{ \{ \}, \{ \} \} \} \} \} = \{ \{ \{ \{ \}, \{ \} \} \} \} \} = \{ \{ \{ \}, \{ \} \} \} \} = \{ \{ \{ \}, \{ \} \} \} \} = \{ \{ \{ \}, \{ \} \} \} = \{ \{ \}, \{ \},$	
- 10 大名を成れる (2000年) カス・ストング (15年 6年 6年 6年 6年 6年 7年	
Code to the discontinuous and a final relation control of the cont	

Load = 3580 KW

PPMV NOx = 652.65 BTu/gl = 138870

O2 % DRY = 13.26 gl/hr = 242.43

Humidity = 0.008 lb/lbdry air Fuel

58.8 gr/lbdry air Density = 7.189 fb/gl

"K" = 0.994956 Air Temp = 70 ° F

NOx @15% O2 = NOx PPMV X (20.9-15(20.9-%O2) = 503.98 ppmvd

NOx Corrected = "K " X NOx @15% O2 = 501.44 ppmvd

CS NOx = NOx PPMV X (1.194 e - 7) = 7.79E-05 lb/scf

NOx lb/mmbtu = CS NOx X Fd X 20.9/(20.9-%O2) = 1.96 lb/mmbtu

Fd = 9190

Qs SCFM = NOx lb/hr / CS NOx / 60 = 14105 scfm

NOx lb/hr = NOx lb/btu X btu/gi X gl/hr = 65.95 lb/hr

NOx gms/ = NOx lb/hr x 454gms/lb / BHP = 6.01 gms/bhp-hr

BHP_HR

TEST BHP = 4981

PLANT LOCATION	FKEC Generaler#8	RUNY DATE	NOX2 ITOECOT
Load =	3580 KW		
PPMV NOx =	646.79	BTu/g! =	138870
O2 % DRY =	13.35	gl/hr =	242.27
Humidity =	0.008 lb/lbdry air 58.8 gr/lbdry air	Fuel Density =	7.189 lb/gl
"K" =	0.994956	Air Temp =	70 ° F
NOx @15% C	D2 = NOx PPMV X (20.9-15(20.9-%C)2) =	505.34 ppmv
NOx Corrected	= "K " X NOx @15% O2	=	502.79 ppmv
CS NOx	= NOx PPMV X (1.194 e -7)	=	7.72E-05 lb/scf
NOx lb/mmbtu	= CS NOx X Fd X 20.9/(20.9-9 Fd = 9190	6O2) =	1.96 lb/mmbtu
Qs SCFM	= NOx lb/hr / CS NOx / 60	=	14262 scfm
NOx lb/hr	= NOx ib/btu X btu/gi X gi/hi	· =	66.09 lb/hr
NOx gms/ BHP_HR	= NOx lb/hr x 454gms/lb / BHP	=	6.01
TEST BHP	= 4988		

LOCATION Generalor #8 DATE 179E097

Load = 3580 KW

PPMV NOx = 646.80 BTu/gl = 138870

O2 % DRY = 13.26 gl/hr = 241.47

Humidity = 0.008 lb/lbdry air Fuel

58.8 gr/lbdry air Density = 7.189 ib/gl

"K" = 1.017222 Air Temp = $60 \, ^{\circ}$ F

NOx @15% O2 = NOx PPMV X (20.9-15(20.9-%O2) = 499.49 ppmv

NOx Corrected = "K " X NOx @15% O2 = 508.09 ppmv

CS NOx = NOx PPMV X $(1.194 \, e \, -7)$ = $7.72E-05 \, lb/scf$

NOx lb/mmbtu = CS NOx X Fd X 20.9/(20.9-%O2) = 1.94 lb/mmbtu

Fd = 9190

Qs SCFM = NOx Ib/hr / CS NOx / 60 = 14050 scfm

NOx $\frac{1}{2}$ N

NOx gms/ = NOx lb/hr x 454gms/lb / BHP = 5.93

BHP_HR

TEST BHP = 4983

PLANT : FREC LOCATION : GENERATOR #6	RUNY DATE		
Load = 3580 KW			
PPMV CO = 87.94	BTu/gl	13887	0
O2 % DRY = 13.26	gl/hr	242.4	3
Humidity = 0.008 lb/lbdry air 58.8 gr/lbdry air	Fuel Density	7.18	9 lb/gl
"K" = 0.994956	Air Temp	70) ° F
	· · · · · ·		
CO @15% O2 = CO PPMVD X (20.9-15(20.9-%O2	=	67.90	ppmvd
CO Corrected = "K" X CO @15% O2	=	67.56	ppmvd
CS CO = CO PPMVD X (28.010/386.3)/1000000	=	6.38E-06	lb/scf
CO lb/mmbtu = CS CO X Fd X 20.9/(20.9-%O2) Fd = 9190	=	0.16	lb/mmbtu
Qs SCFM = CO lb/hr / CS CO / 60	=	14105	scfm
CO lb/hr = CO lb/btu X btu/gl X gl/hr	=	5.40	lb/hr
CO gms/ = CO lb/hr x 454gms/lb / BHP BHP_HR	=	0.49	gms/bhp-hr
TEST BHP = 4981			

	FREO TOR HE		RUN B DATE	i jaga Palagy Palagy	
Load =	3580 KW				•
PPMV CO	86.70		BTu/gl	13887	0
O2 % DRY =	13.35		gi/hr	242.2	7
Humidity =	0.008 lb/lbdry air 58.8 gr/lbdry air		Fuel Density	7.18	9 lb/gl
" K " =	0.994956		Air Temp	70	D°F
CO @15% O	2 = CO PPMVD X (20.9	9-15(20.9-%O2	=	67.74	ppmvd
CO Corrected	= "K " X CO @1	5% O2	=	67.40	ppmvd
cs co = c	O PPMVD X (28.010/38	86.3)/1000000	=	6.29E-06	lb/scf
CO lb/mmbtu	= CS CO X Fd X 20 Fd =	.9/(20.9-%O2) 9190	=	0.16	lb/mmbtu
Qs SCFM	= CO lb/hr / CS CO	/ 60	=	14262	scfm
CO lb/hr	= CO lb/btu X btu/g	gl X gl/hr	=	5.38	lb/hr
CO gms/ BHP_HR	= CO lb/hr x 454gn	ns/lb / BHP	=	0.49	gms/bhp-hr
TEST BHP	= 4988				

ECOATION	FXEC		y py y sala V piecesy	PROBLEMS
Load =	3580 KW			
PPMV CO =	87.98	BTu/gl	13887	0
O2 % DRY =	13.26	gl/hr	241.4	7
Humidity =	0.008 lb/lbdry air 58.8 gr/lbdry air	Fuel Density	7.18	9 lb/gi
"K" =	0.994956	Air Temp	70	o°F
				
CO @15% O	2 = CO PPMVD X (20.9-15(20.9-%O2	. =	67.94	ppmvd
CO Corrected	= "K " X CO @15% O2	=	67.60	ppmvd
CS CO = C	O PPMVD X (28.010/386.3)/1000000	=	6.38E-06	lb/scf
CO lb/mmbtu	= CS CO X Fd X 20.9/(20.9-%O2) Fd = 9190	=	0.16	lb/mmbtu
Qs SCFM	= CO lb/hr / CS CO / 60	=	14050	scfm
CO lb/hr	= CO lb/btu X btu/gl X gl/hr	=	5.38	lb/hr
CO gms/ BHP_HR	= CO lb/hr x 454gms/lb / BHP	=	0.49	gms/bhp-hr
TEST BHP	= 4983			

PATON B	ECHANICA DA LA CARRANTA NERATORAD	Parkara Date	ig <mark>ely</mark> an Tydecdy	
l and	0500 (//)			
Load =	3580 KW			
PPMVD THC =	48.36	BTu/gl =	13887	0
O2 % DRY =	13.26	gl/hr =	242.4	3
Humidity =	0.008 lb/lbdry air 58.8 gr/lbdry air	Fuel Density =	7.18	9 lb/gl
"K" = 0.	994956	Air Temp =	70	o°F
,——————————————————————————————————————				
THC @15% O2 =	THC PPMVD X (20.9-15(20.9-%)	O2) =	37.34	ppmvd
THC Corrected	= "K " X CO @15% O2	=	37.16	ppmvd
CS THC = THC	PPMVD X (16.043/386.3)/100000	=	2.01E-06	lb/scf
THC lb/mmbtu = C	S THC X Fd X 20.9/(20.9-%O2 Fd = 9190	=	0.05	lb/mmbtu
Qs SCFM =	THC lb/hr / CS THC / 60	z	14105	scfm
THC lb/hr =	THC lb/btu X btu/gl X gl/hr	=	1.70	lb/hr
THC gms/ = BHP_HR	THC lb/hr x 454gms/lb / BHP	=	0.15	gms/bhp-hr
TEST BHP =	4981			

CANT IN THEREOUS AND INCIDENT OF A SECOND OF THE SECOND OF	RUN A A DATE	NOXE 17DEG87	
Load = 3580 KW			
PPMVD THC = 48.36	BTu/gl =	138870)
O2 % DRY = 13.35	gl/hr =	242.27	7
Humidity = 0.008 lb/lbdry air 58.8 gr/lbdry air	Fuel Density =	7.189	lb/gl
"K" = 0.994958	Air Temp =	70	• F
	•		
THC @15% O2 = THC PPMVD X (20.9-15(20.9-%)	O2) =	37.78	ppmvd
THC Corrected = "K" X CO @15% O2	=	37.59	ppmvd
CS THC = THC PPMVD X (16.043/386.3)/100000	=	2.01E-06	lb/scf
THC lb/mmbtu = CS THC X Fd X 20.9/(20.9-%O2 Fd = 9190	· =	0.05	lb/mmbtu
Qs SCFM = THC lb/hr / CS THC / 60	=	14262	scfm
THC lb/hr = THC lb/btu X btu/gl X gl/hr	=	1.72	lb/hr
THC gms/ = THC lb/hr x 454gms/lb / BHP BHP_HR	=	0.16	gms/bhp-hr
TEST BHP = 4988			

PLAN CGATION	FK GE	W11777103313J08063856355	12 (1971) 40 (1971)		PROFIE BATE		GERME NUXA 470EC47	
Load	=	3580 KV	V					
PPMVD TH	C =	48.36			BTu/gl	=	13887	D
02 % DRY	=	13.26			gl/hr	=	241.4	7
Humidity	=	0.008 lb/l 58.8 gr/			Fuel Density	=	7.189	9 lb/gl
"K" =	= 0.9	94956			Air Temp) =	70) * F
	<u></u>	<u></u>			<u>.</u>		<u>-</u> .	
THC @15%	O2 =	ТНС РРМ	VD X (20.9-1	5(20.9-%0	D2) =		37.35	ppmvd
THC Correct	ed =	"K " X	CO @15%	O2	=		37.16	ppmvd
CS THC =	THC F	PPMVD X	(16.043/386.3	3)/100000	=		2.01E-06	lb/scf
THC lb/mmbt	u = CS	THC X	Fd X 20.9/(2 =	20.9-%O2 9190	=		0.05	lb/mmbtu
Qs SCFM	= T	HC lb/hr	CS THC /	60	=		14050	scfm
THC lb/hr	=	THC lb/bt	u X btu/gl	X gl/hr	=		1.69	lb/hr
THC gms/ BHP_HR	= .	THC lb/hr	x 454gms	/lb / BHP		=	0.15	gms/bhp-hr
TEST BHP	=	498:	3					

CALIBRATION CORRECTION SHEET

the contra agricultural de describer.	and the same of the control of the same	rest to the set of the
		"一件可能是一种制度的条件。"
8.0(0/.38(0))	0(Ct.)_i());((1));((2));((3));	
	okula jiraapi Ne	(**)
33.45%		
ENUTINE		

SYSTEM CALIBRATION DATA

	POLLUTANT	O2	CO2	co	SO2	NOX
	INITIAL ZERO	0.00	0.00	1.60		3.80
	FINAL ZERO	0.00	0.10	-0.10		5.00
Co=	AVG ZERO	0.00	0.05	0.75		4.40
	INIT SPAN	12.00	10.20	153.30		913.20
	FINAL SPAN	12.10	10.30	153.10		931.80
Cm=	AVG SPAN	12.05	10.25	153.20		922.50
Cma=	CAL GAS	12.30	10.40	154.00		902.00
	Cgas = (C'-Co)xC	ma/(Cm-Co)				
C'=	Raw RM Data	12.99	6.00	87.80		668.70
Cgas=	Adj. RM data	13.26	6.07	87.94		652.65

CALIBRATION CORRECTION SHEET

\$7.38 (T. 0.00 (7.8) (C. 0.00 (7.8)

SYS	TEM	CAL	IRR/	ACITA	DATA
OIC	ועום ו כ	UML		VII UN	IUAIA

•	POLLUTANT	02	CO2	co	SO2	NOX
	INITIAL ZERO	0.00	0.10	-0.10		5.00
	FINAL ZERO	0.00	0.20	1.10		2.40
Co=	AVG ZERO	0.00	0.15	0.50		3.70
	INIT SPAN	12.10	10.30	153,10		931.80
	FINAL SPAN	12.30	10.30	153.80		926.30
Cm=	AVG SPAN	12.20	10.30	153.45		929.05
Cma=	CAL GAS	12.30	10.40	154.00		902.00
	Cgas = (C'-Co)xC	ma/(Cm-Co)				
C'=	Raw RM Data	13.24	6.01	86.61		667.23
Cgas=	Adj. RM data	13.35	6.00	86.70		646.79

CALIBRATION CORRECTION SHEET

的现在分词,所以 是

	SYSTEM CALIBRA	ATION DATA				
•	POLLUTANT	O2	CO2	со	SO2	NOX
	INITIAL ZERO FINAL ZERO	0.00 0.00	0.20 0.20	1.10 3.50		2.40 2.40
Co=	AVG ZERO INIT SPAN FINAL SPAN	0.00 12.30 12.30	0.20 10.30 10.30	2.30 153.80 155.80		2.40 926.30 912.60
Cm=	AVG SPAN	12.30	10.30	154.80		919.45
Cma=	CAL GAS	12.30	10.40	154.00		902.00
	Cgas = (C'-Co)xCm	na/(Cm-Co)				
C,=	Raw RM Data	13.28	6.05	87.98		659.99
Cgas=	Adj. RM data	13.26	6.02	86.52		646.80

APPENDIX B OPACITY OBSERVATIONS

VISIBLE EMISSIONS TEST

DATA REDUCTION SHEET

COMPANY: FKEC DATE: 17DEC97

SOURCE: UNIT #8 RUN TIME: 1500-1600

MIN/SEC	0	15	30	45	MIN/SEC	0	15	30	45
MIN/SEC 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	555555555555555555555555555	1 5555555555555555555555555555555555555	0 55555555555555555555555555555555555	4 555555555555555555555555555555555555	31. 32. 33. 34. 35. 36. 37. 38. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.	5555555555555555555555555	1 555555555555555555555555555555555555	0 555555555555555555555555555555555555	4 555555555555555555555555555555555555
28. 29. 30.	5 5 5	5 5 5	5 5	5 5 5	58. 59. 60.	5 5 5	5 5 5	5 5 5	5 5 5

NUMBER OF READINGS ABOVE 20% - 0
HIGHEST SIX MINUTE AVERAGE - 5.0 %

OVERALL AVERAGE OPACITY - 5.0 %

READINGS RANGED FROM - 5 TO 5 %

EPA

VISIBLE EMISSION OBSERVATION FORM 1

Sun Wind

Declination

Form Number	Π	7	Page	1	a	2	
Confinued on V	OFORT	Number	 			Ť	

													٠	ــــــــــــــــــــــــــــــــــــــ	1	
06	379	illon (7			firme	Zα	٠,		Start		سر		End	me	00
K	*			7		E		7	6		50	/U	Corr	ment		70
Mn					- 1					-						
}		ک		5		<u>5</u>	_	کر ا م	-							
-		2		<u> </u>	_	3	_	5	_							
3				5	4	3		ک		<u> </u>						
1_4	_	کے.	_	5	_	3		ک				_				
5	_	5		5	_	<u>5</u>		<u>ک</u>								
6		<u>م</u>	-	5		ۍ		5	_							
,		5	-	<u>ح</u>		ح		5								
8		7	-	3	\exists	5	\neg	5	-		_		_			
9	T	7	1	{	7	3	-1	3	7						-	
10	7	7	-†	5	7	3	7	5	7						·	
11	_	5	1	5	+	<u> </u>	1	5	- -							
12	\dagger	<u></u>	\dagger	5	Т	<u>۔</u> ح	-1-	<u>ر</u> سر	+							
13	\dagger	<u> </u>	+	<u>ح</u>		<u>5</u>	+	<u></u>	-							
14	+		+	<u>5</u>	+	<u>-</u> 5	1	<u>ر</u> ح	-							
15	- [<u>5</u>	+	<u>ح</u> کی	╬	<u>د</u>	1		+							
16	╌	<u>5</u>	╁		+		+	<u>5</u>	┪-							
17	┤╴	<u>></u>	+	<u> </u>	╁	<u>5</u>	╁	<u>ی</u>	+							
18	-	<u>5</u>	1 -	<u>5</u>	7	<u>5</u>	╀	<u>5</u>	-					_		
		<u>5</u>	+-	<u>5</u>	+-	5	Т	<u>5</u>	╀							
19	+	<u> </u>	1	سعي	t	<u>5</u>	Ŀ	<u>~</u>	1							
20	1:	<u> </u>	Ļ	5	1-	<u>5</u>	-	5	-							
21		<u> </u>	Ļ,	5	_	_ک	١,	5	1							
22	1.	5	L	5	ي	<u></u>	۷	<u></u>	_							
23		5	•	\mathcal{L}	ي ا	<u></u>	L.	7	L							
24	3		ı	٦	رح	_	3									
25	Γ.	5	-	5	<	_	,	5	-							
26	3		4	5	· ·	7		_								
27	7	~		7	<u>-</u>	_	_	<u></u>	_							
26	,	一	3	一	<u>ب</u> ک	7	3						<u> </u>			
20	2	-		F	<u></u>	六	 ! 	5								
30	2	+		/		~	7	=								
<u>_</u>	2		_	۱ د	ث	<u> </u>	<u>ာ</u>					-				

Observery Richine (Print) Observery Richine (Print)	
Observant Signature	12/17/97
SFES	
Certified By ETA	0010 7/15/97
Contined By ETA	Date 7/15/57

Longitude

Additional Information

Califude

EPA VISIBLE EMISSION OBSERVATION FORM 1

VIOLET FIAIRONOLAL	S B S E R V A II O I I O I I O I I O I I O I
Method Bed (Circle One) Method 9 203A 2031	B Other
Company Name FKEC Facility Name	
SAME SAME	···
mn 29	State , Sp
Marathon	State FL 2p
Process / ye	Unit Operating Mode
Benerata #8	8
Control Equipment	Operating Mode
Describe Emission Point	
Leftmost	Silver Stack
=	Siver Clack
Height of Erriss Pl.	Helphi of Eviss. Pl. Rel. to Observer
Start ~.30 End ~.30 Distance to Emiss. Pt.	Start ~30 End 30 Direction to Emiss. Pt. (Degrees)
906 Tot 300	Start End
Verifical Angle to Obs. Pl.	Direction to Obs. Pt. (Degrees)
Start ~ /50 End ~ /50	lan CAO and GAO
Ostance and Direction to Observation Point	
Stort ~ 200 / 90°	End ~ 200 90°
Describe Emissions	South -
Start Sovoke	End SM6ke
son Lt Grey and Same	Attached Delached None
Describe Plume Brackground	Cla
Stort CK V Bockspround Color	ind Sky
stat Blue and Blue	Stort Scatter at End SAME
Wind Speed	Wind Direction
Start 5-10 End 5-16	Stort West and West
Start 70 End 65	55
Source Lay	Drow North Arrow
	□IN □MN
7 (
\ _	
X Observation	on Point /
1	[]4 /
/	
/	
/	
Observers	Position Side View Stack

ф

Wnd

Observ	aflon De	al e	Time Z	200	1530		End	me	
Sec	0	16	30	45	1	Corne		600	2
Mn 1	~	5	3	5				 -	
2	3	- 5	- 3	2					
3	5	-	5	5					
4	5	_5	کی	5					
5	5	5	5	5					
6	2	2	5	5	<u> </u>				
7	3	13	5	3~					
8	_ی	5	3	3	ļ				_
?	5	5	5	5	·				
10	5	5	5	5				· · · · · ·	
11	<u>5</u>	2	5	_5~					_
12	<u> حی</u>	5	5	5				·	
13	<u>5</u>	5	3	5				··· <u> </u>	
15	<u>حح</u>	حر	5	<u>ح</u> ی					
10	<u>~</u>	5	5	3	<u> </u>				
17	5	2	<u>ح</u> ی	_ی					
18	عی		_ح	5					
19	5	<u>ک</u>	5	5					
20	<u>ح</u> ح	5	5	5					
21	5	5		حر					
22	5-	_ }	(5	·				
23	<u>5</u>	5	<u>ح</u>	اسی					
.	1	5	- 1	5-					
. [<u>5</u>		<u> </u>	 -				
			1	5					
_ I	سح	ĺ	į.	5					
	- 1			3-					-

9

Chapter's Name (Phril) Row C Cook Jr	
Son Cloud 12	Date /2/17/97
SFES	
Certified by ETM	7/15/57

Longitude

drillonal Information

Latitude

APPENDIX C CALIBRATION GAS CERTIFICATIONS

NATIONAL SPECIALTY GASES 630 UNITED DRIVE DURHAM, NC 27713

(919)544-3772

EXP. DAT		5/29/	99	LAST	NDER#: 'ANALYSIS	DATE:	CC 50 5/29/9	_		ESSURE:		2000 PSIG	P.O. #:	43416
AETHOD:	TUIC OF	ANALYZE	D ACCO	200	500 A 500 A			<u> </u>	CUSTO	MER:	ON OR 5	SOUTHHEAS	T AIRGAS	DARDS-SEPTEMBER
COMPO	TRISSI.	NTTRIC (HOULD N	OT BE US	ED WHEN I	ABILITY PR	SSURE IS	BELOW 1.0	MEGAPA	SCALS (150	ON OF G PSIG).	ASEOUS CAL	IBRATION STAI	IDARDS-SEPTEMBER
STANDA		MINC	JXIDE			COMPONE	NT:	CARBON M	ONOXIDI	E				
SRM#:		1687B			-	STANDARI	•	<u>.</u>						
CYL.#:		CLM 989				SRM#:	;	16 3 0B						
CONC:			_		**	CYL.#	(CLM 9511						
oo.i.c.		986.0 PP1	viga.			CONC:		190 <i>A</i> PPM	,	•				
INSTRUM	ADDT.	DECTO -	-										\$	
MODEL#			IN CHEM	LUMINES	CENT :	INSTRUME	NZ: : 1	MOGES AND UN	T NDIR					
		951A	7			MODEL#		BOA						
SERIAL#:	="	0100532		•		SERIAL#:	3	2000172					*.	
LAST CAL		5/1/97	4 4			LAST CAL:		715/97						·
MEAN CO		E		#-		MEAN CO			6 PPM					
REPLICAT	LE CONC					REPLICA			OTEM :	+/-	2.29 P	TM		
DATE:	5/2	2/97	DATE:	5/2:	9/97	DATE.	5/22/9		A 7770		_			
	898	PPM	İ	906	PPM			PPM	ATE:	5/29/97				
	899	PPM	1	905	PPM			PM S			PM		<i>74</i>	
	898	PPM		906	PPM	•		PPM			PM			
BALANCE		NET COR		_						286 P	PM		<u> </u>	
		NITROGEN	· ·	TRACE	BASES: NIT	ROGEN DIO	XIDE < 0.	1 PPM						
REPLICA.		A				REPLICAT	F DATA					· ·		
DATE:	5/22/97				ľ	t t	5/22/97				R	EPLICATE 1	DATA	
Z	0	R	420.4	С	382.9	Z	0		400	_				
R	420.3	Z	0	С	383.2	R	490	R	490	C	28 6			
Z	0	С	383.0	R	420.5	z	47U 0	Z	0	С	286			
DATE	5/29/97					DATE:	5.729/97	С	284	R	489			
Z	0	R	440,4	С	404.7	Z	<i>אַלוכב</i> יכ 0	_						
R	440.5	Z	0	c	404.3	R	•	R.	490	С	285			
Z	0	С	404.9	R	440.6	Z	491	Z	0	С	28 6			
							0	C	286	R	490			
NALYST:	_			7 . 1		2= ZE 1	<u> </u>	ANDIDATE		ERENCE				

325 McCausland Court Cheshire, CT 06410 Phone (203) 250-6827 FAX: (203) 250-6842

Certificate of Analysis: E.P.A. Protocol Gas Mixture

Rec#

2085

Cylinder No: Cylinder Pressure:

Certification Date

CC46126 2000

3/31/97

Purchase Order #

Expiration Date: Laboratory:

100416

3/31/99 Cheshire, CT

Reference Standard Information:

Type NTRM Component

Nitric Oxide

Cvl. Number CC50149

Concentration

980 ppm

Instrumentation:

Instrument/Model/Serial No.

Nicolet/550/ACN9402102

Analytical Principle

FTIR

Analytical Methodology does not require correction for analytical interferences.

Certified Concentrations:

Component Constitution Accuracy Procedure Constitution Constitution Constitution Constitution Balance Vive
--

Analytical Results:

<u>1st (</u>	Component:	Nithe Oxide "***								
1st An	alysis Date:	3/24/97								
R	973.600	S	1766.300	Z	0.406	Conc	1778.244 ppm			
8	1768.300	Z	0.117	R	974.300	Cono	1778.741 ppm			
Z	0.226	R	974.200	s ¯	1766.800	Conc	1777.504 ppm			
		-		-		AVG:	1775.153 ppm			
2nd Analysis Date:		3/31/97	• .		8					
R	980.500	S	1785.000	Z	0.289	Conc	1784.327 ppm			
S	1766.700	Z -	0.336	R T	975.900	Conc	1774.396 ppm			
Z	0.363	R	974.700	s -	1773.100	Conc	1783.040 ppm			
		_	<u></u>			AVG:	1780.588 ppm			

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1993)" using the assay procedures listed.

Do not use cylinder below 150 psig.

Approved for Release

Scott Specialty Gases

1760 EAST CLUB BLVD, DURHAM, NC 27704

Phone: 919-220-0803

Fax: 919-220-0808

CERTIFICATE OF ANALYSIS:Interference-Free™ Multi-Component EPA Protocol Gas

EASTMOUNT ENVIRONMENTAL STEVEN BLAKE C/O S FLORIDA ENV SERV 6821 VISTA PARKWAY NORTH WEST PALM BEACH,FL 33411

Assay Laboratory

Project No.: 12-20784-003

P.O. No.: 2289

SCOTT SPECIALTY GASES 1750 EAST CLUB BLVD DURHAM,NC 27704

ANALYTICAL INFORMATION
This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gassous Calibration Standards:
Procedure #61 Beptember, 1883.
Cylinder Number:
ALMO11221
Cylinder Pressure***
1940 PSIG

ANALYTICAL ACCURACY**
+/- 1% NIST Traceable
+/- 1% NIST Traceable +/- 1% NIST Traceable +/- 1% NIST Traceable

Reference Value

2/19/1999

COMPONENT
CARBON MONOXIDE
NITRIC OXIDE A
SULFUR DIOXIDE A
SULFUR DIOXIDE A
OXIDES OF NITROGEN
NITROGEN OXYGEN FREE

1.5 DE NOT 150 When cylinder pressure is below 150 pbig.
... Audisthal South Any 15 tichitable of ustal known stret abil.

Do not use when cymater pressure is polow 100 perg.

Allighthat Souracy is inclusive of usual known error sources Which at last frichide precision of the measurement processes.

Profiled Souracy is inclusive of usual known error sources which seems is to hist standards.

This Protocol has been certified using consected hist 502 standard values, set EPA guidance dated 7/24/96 and will not correlate with uncorrected Protocols.

CERTIFIED CONCENTRATION P 154.7 P

122.8 124.7

REFERENCE STANDARD EXPIRATION DATE

TYPE/SRM NOTAL 1/08/98 7/10/97 8/24/97

CYLINDER NUMBER

 $\mathbf{t} E_{i,j}$

21 40.0617

R2 - 475.46

2340.1111

21 = 0.2334

R2 4 247.41

23=0.3822

Avd. Colloentration:

Ave. Consentration:

ALMOBO 148 ALMO42284

CONCENTRATION 474.0 FFM 247.8 PPM

COMPONENT CO/N2 NO/N2 S02/N2

INSTRUMENTATION
INSTRUMENT/MODEL/SEAIAL#
FTM System/8210/AA89400252
FTM System/8210/AA89400252
FTM System/8210/AA89400252
ANALYZEH READINGS

LAST BATE CALIBRATED

265.0 PPM

02/17/97 U2/17/07 02/17/97 ANALYTICAL PRINCIPLE

Scott Enhanced FTIA Scott Enhanced FTIR Scott Enhanced FTIA

Raference Gas Talest Gas

· Second Tried Analysis

Date: 62/10/07 Response Unit: PPM

Date: 02/19/97 Response Unit: PPM

R1 = 474,27

22=0.08#7

14# 184.b3

H1 = 247.30

22 = 0.3540

13=124.80

183.0

124.8

11 = 183.87

T2 = 163.86

M3 4 474.16

11 4 124.85

124.68

H3=247.72

r = Correlation Coefficient

First Triad Analysis

CARLOR INCINIONIDE Date: 02/11/87 Response Unit: PPM 21 = 0.0eso M1 = 475.08 T1 = 184.18 ŘŽ = 473.56 22-0.0411 12=183.70 T3=164.16 H3=474.78

Z3 aU 0730 T3 = 164.0

Nitric oxide a promise Unit: PPM 21 = 0.1947 | = 247.41 | 11 = 1247.41 | 12 = 23.40,2368 | T3 = 124.81 | H3 = 124. ti = 124.68

12=124.52 H3 = 247.77 Avg. Concentration: 124.7 PPM

SULFUR BIOXIDE

Date: 02/11/97 Response Unit: PPM Z1 = 0,0074 R1 = 264.88 T1 = 122.39

Hz=281.87.0 Z2=0.3377 Z3±0,2808 T3=122.86 T2= 122.82 H3 = 265.25 Ava. Censantiallein: 122.7 PPM

21 = 0.2000 A2=268.11 23 - 0.1043

R1 = 284.67 Z2 = U.3198 13 ± 123.14 Äve. Concentration:

Dala: 82/19/97 Haspones Unit: PPM 11 m 122.89

12±123.10 H3 = 265.32 122.0

Calibration Curva

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r=0.999990 Constants:

A = 0.000000B = 1.000000 C = 0.0000000D = 0.0000000E=0.000000

Concentration = A + Bx + Cx2 + Dx3 + Ex4

OPROBE OF 1 Constante:

A = 0.000000C = 0.0000000

R = 1 0000000 D = 0.000000E=0.000000

Concentration = A + Bx + Cx2 + Dx3 + Ex4

t=0.999990 Constants: B = 1.0000000

A = 0.000000C = 0.0000000

0000000 ± d E=0.000000

ANALYST:

Becker Notice:

THE PROPERTY OF THE PERSON OF

Scott Specialty Gases

1750 EAST CLUB BLVD, DURHAM, NC 27704

Phone: 919-220-0803

Fax: 919-220-0808

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS

Customer

EASTMOUNT ENVIRONMENTAL STEVEN BLAKE C/O S FLORIDA ENV SERV 8821 VISTA PARKWAY NORTH

Assay Laboratory

Project No.: 12-20784-001

P.O. No.: 2289

SCOTT SPECIALTY GASES 1750 EAST CLUB BLVD **DURHAM.NC 27704**

ANALYTICAL INFORMATION

WEST PALM BEACH, FL 33411

This birtifisation was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Standards;

Procedure #G1; September, 1993.

Cyllider Number: Cylinder Plasture * * *: AAL17320

Certification bate:

2/12/97

COMPONENT

OXYGÉN

CERTIFIED

10.4

Exp. Date:

2/12/2000

CARRON BIOXIDE

NITROGEN ?

CONCENTRATION

12.3

BALANCE

ANALYTICAL ACCURACY**

+/- 1% NIST TRACEABLE

+/- 1% NIST TRACEARLE

REFERENCE STANDARD

TYPE/BAM NO. NTAM TEGOD NTRM 2859

EXPIRATION DATE

4/30/97

11/30/98

CYLINDER NUMBER

ALM047898

AAL17320

CONCENTRATION

17.95 %

20.72 PCT

COMPONENT

CARBON DIOXIDE

OXYGEN

INSTRUMENTATION INSTRUMENT/MODEL/SERIAL#

VARIÁN 85/3400/0180 VÁŘIAN GC/3400/18804 LAST DATE CALIBRATED

01/31/97

01/13/97

ANALYTICAL PRINCIPLE

GC / TCD

gc / tcb

ANALYZER READINGS

First Triad Analysis

H-Heference Gas (Z = Zero Gas T - Test Gas Second Triad Analysis

r = Correlation Coefficient) Calibration Curve

CARBON DIO TOPE

Bite: 02/10/97 ponse Unit: AREA

Ž1 = 0.0000 22 - 0.0000

10.37

Concentration = A + 8x + Cx2 + Dx3 + Ex4 r = 0.999990

Constants:

A = 0.00

8 - 1.00 D = 0.00 C = 0.00 E = 0.00

UXYÜÉN

Unte: 02/12/97 Response Unit: AREA 21 - 0.0000 11 11 - 518460 Ti T1 = 305164

h2=\$17018 22 = 0.0000 23 ≤ 6.68bo

13-300023

T2 = 306069 A3-817592

17 - 878483

R3 = 1 17049

12.30

Concentration = A + Bx + Cx2 + Dx3 + Ex4

1=0.99999

Constants: 8-1.00

A = 0.00C = 0.00

D = 0.00

E=0.00

B. BECTON

Do not use While cylinder pressure is below 150 psig.

^{**} Analytical about of la inclusive of usual known error abuibās which at least include precision of the measurement processes.

Froduct carinad as +/- 1% analytical accuracy is directly traceable to NIST standards.

Scott Specialty Gases

1750 EAST CLUB BLVD, DURHAM, NC 27704

Phone: 919-220-0803

Fax: 919-220-0808

CERTIFICATE OF ANALYSIS:Interference-Free™ Multi-Component EPA Protocol Gas

Customer EASTMOUNT ENVIRONMENTAL STEVEN BLAKE C/O S FLORIDA ENV SERV 6821 VISTA PARKWAY NORTH WEST PALM BEACH, FL 33411

Assay Laboratory

Project No.: 12-20783-004 P.O. No.: 2289

SCOTT SPECIALTY GASES 1750 EAST CLUB BLVD **DURHAM,NC 27704**

ANALYTICAL INFORMATION

This certification was performed according to EPA Traceability Protocol For Assay & Certification of Gaseous Calibration Stendards;

Procedure #G1; September, 1993. Cylinder Number: ALM Cylinder Pressure***: 1790 ALM045678 1790 PSIG

Certification Date:

1/20/97

Exp. Date: . 1/20/1999

COMPONENT CARBON MONOXIDE SULFUR DIOXIDE * **OXIDES OF NITROGEN** NITROGEN - OXYGEN FREE

CERTIFIED CONCENTRATION 296.6 PPM 229.7 PPM 223.7 229.8 BALANCE

ANALYTICAL ACCURACY**
+7-1% NIST Treceable
+/-1% NIST Treceable
+/-1% NIST Treceable Reference Value

*** Do not use when cylinder pressure is below 150 pslg.

** Analytical accuracy is inclusive of usual known error sources which at least include precision of the measurement processes. Product certified as + /- 1% analytical accuracy is directly traceable to NIST standards.

* This Protocol has been certified using corrected NIST SO2 standard values, per SPA guidance dated 7/24/95 and will not correlate with uncorrected Protocols.

REFERENCE STANDARD

TYPE/SRM NO. EXPIRATION DATE CYLINDER NUMBER CONCENTRATION COMPONENT ALM024780 474.0 PPM CO/N2 NTRM 1685 7/10/97 ALM050988 247.5 PPM NO/N7 NTRM ROZED 5/24/97 ALM042108 265.0 PPM SO2/N2

INSTRUMENTATION

INSTRUMENT/MODEL/SERIAL# FTIR System/8220/AAB9400252

FTIR System/8220/AAB9400252 FTIR System/8220/AAB9400252

LAST DATE CALIBRATED

01/16/97 01/18/97

ANALYTICAL PRINCIPLE

Scott Enhanced FTIR Scott Enhanced FTIR Scott Enhanced STIR

ANALYZER READINGS

(Z=Zero Gas R=Reference Gas T=Test Gas r=Correlation Coefficient)

First Triad Analysis

Second Triad Analysis

CARBON MONOXIDE

Date: 01/13/97 Response Unit: PPM 21 = .0.058 R1 - 473.33 T1 = 295.77 R2 = 473.85 72-0.026 T2 - 206 A1 Z3 = -0.06413-296 66 R3 = 475.02 Avg. Concentration: 298.3

NITRIC OXIDE Dete: 01/13/97 Response Unit: PPM

Z1 = 0 2842 R2 = 247.96 Z3 = 0.3162

Avg. Concentration: 230.4 PPM

SULFUR DIOXIDE *

Date: 01/13/97 Response Unit: FPM T1 = 223.05 Z1 ~ 0.0659 R1 = 264.87 R2 = 264.88Z2=0.2208 T2 = 223.56 T3=223.41 R3 - 265.24 223.3

Date: 01/20/97 Response Unit; PPM R1 ~473.83 21-0.0246 T1-297.32 Z2 = 0.0192 T2 - 298.72 23-0.0449 T3 - 296.50 R3 -474.01 Avg. Concentration: 295.9

Date: 01/20/97 Response Unit: PPM

R1 = 247.48 T1 = 225.75 7 1928 T2 = 229.09 R2-247.53 Z3 = 0.205913 = 228.84N3=247.49 Avg. Concentration: 229 1

Date: 01/20/97 Response Unit: PPM 21 =-0.118 R1 = 285.38 71 - 224.11A2 = 264.98 Z2 = 0.0720 T2 - 224.19 23=0.0493 T3 - 224.20 R3 = 284.69 Avg. Concentration: 224.2

Calibration Curve

Concentration = A + Bx + Cx2 + Dx3 + Ex4r = 0.000000 Constants: A = 0.0000000

B = 1.0000000C = 0.0000000D = 0.0000000E = 0.000000

Concentration = A + Bx + Cx2 + Dx3 + Ex4

r = 0.888990Constants: A = 0.000000 B ~ 1.000000 C-0.000000 D = 0.000000 E = 0.000000

Concentration = A + 8x + CxZ + Dx3 + Ex4

r=0.999990 Constants: B ≈ 1.000000

D = 0.000000

A = 0.000000 C = 0.0000000E = 0.000000

Special Notes:

ANALYST: B. Rata g

Score Specialty Gases

1780 LAST CLUB BLVD, DURHAM, NG 27.

A 7 / 18 Pione 919-220-0803

Fax: 919-220-0808

CERTIFICATE OF ANALYSIS: EPA PROTOCOL GAS W

Customer - ES EASTMOUNT ENVIRONMENTAL STEVEN E A C C/O B ENDAID I EN CLE V 8821 Vis. Hadren ANORTH

Prolect No.: 12-20784-002 P.O. No.: 2289

Boundaries and the second Addator wild it to

2000 PSIG.

NITROGE

reselve la below 160 pel Do not us d Annua presente la below 160 pelos de Annua ve of usual known error * Applyticate

(III Cassous Calibration Standards;

ERD. Date: 2/12/2000 Consultation of the last

Latina Harmitte ideacon manual. ed agreeme

ANALYTICAL ACCURACY** 1% NIST THACEABLE

NI NEW NTAM 2659

ALMO CALL

COMPONENT CARBON DIOXIDE Oxygen

INECOM

VARIAN GC/S400/61 (日 京) 日本 VALIAN GC/3400/1804

ALDINAL CHILD

ANALYTICAL PRINCIPLE gc / tcb M BC / TCB

Z Zaro Gas

Cellbration Curve

INCLAREA Bate: 02/10/57 1 - 0.0000 0.0000 18 212-118487 118488 ... NS-117049

4818480 2 11 - 622388 48.8880 3 12 - 623180

Concentration = A + B# + C#2 + D#3 + E#4 Lid seeson Constants: A=0.00 B= 1.00 C=0.00 E=0.00

Boncámidion - A + Bx + Cx2 + Dx5 + Ex4

A=0.00. . d = 8.08 ±

Scott Specialty Gases, Inc.

: .. - - -5.71

1250 8491 8890 9890,

更具度特益者

Mts 22204

中海市海里士 智士學人名德德 百姓有事

新事来等,919~220~09008

CERTIFICATE OF ANALYSIS

111 CL09 104

(1) 本學與特殊監督下有机。每個數學不少監察

#1#4. #109S

17.1 是丰富丰富,在有原州属有人,共自商丰村

TO THE LAUNCE SCADING

11. 33411

#8000001 #1 12-10000 00a **全身禁制 有印度下 单字包含写下300**00 **1丁石州 サナ 1300327分0 - カ**角毛

0410: 3709795

3.7亿丰村的信仰、井平、商店两仓出土县仓库。

ARALYTICAL ACCURACY: 17-2%

OUTS TYSE : CERTICIES MASTER WAS

SOMEONEME ৰীম নিৰ্ভাৱনাত্ৰ 111 - 1904

REQUESTED BAS __CONC_MOLES_ 30. PPM

ANALYSIS 30.2 MOLES)

84L4NCE

2414408

K, COUKE

Scott Specialty Gases, Inc.

Ningst.

1750 EAST SEUD SEVO.

00084444

MO 22704

faces 919 220 0803

FFR: 919-220-0908

CERTIFICATE OF ANALYSIS

CONTROL ELDELDA

111004484146 SERVICES

4 4186 61006

THE CIBTA CARREAY SUCTO

州 三年 子有机性 亚巴角斑样

FL 33411

PROJECT #: 12-10020-006 PO#: 4001 #20351300

172M #1 12022751 #45

09TE: 3709795

STAUTHOUSE #1. AALGSOO.

ANAUYTTOAL ACCURACY: 17-2%

the control of the second control of the control of

PRICHO TYPE : CERTIFIED MOSTER DAS

COMPONENT #C) 1048 #110004 REQUESTED BAS __CONC_MOLES_ RS. PPM

PPM 86.1 PPM BALANCE 94L

ANALYSIS __(MOLES)_

BALANCE

19 181: Jan W. Carle

Scott Specialty Gases, Inc.

cirrord

1750 Cast Stud etvo.

0.08.048

MO 27704

Chome: 919-220-0003

Fer: 919-220-0808

CERTIFICATE OF ANALYSIS

ានមានថា នាក្សាស**ុស្ម**ា

THREE SERVICES

MIRS R1090

эг эт үтөгө раскмау мөрги

性 不上 介有机体 多恶有助针

61 33411

PROJECT #: 12-10800 005

20#: 4001 #20351300

TTEM 等于 120222751 大石机

ひ有手形は、 多ノクタノタギ

TALL TROOP #1 ALMODISTS

AMALYTICAL ACCUSACY: 17-28

arangan ang karangan karangan ang karangan karangan karangan karangan karangan karangan karangan karangan kara

TINGS TYPE : CERTIFIED MASTER GAS

DUMEUNENT 41.14446 411 0000

REQUESTED BAS

__CONC_MOLES_

BALANCE

ANALYSIS

总台机会特电机

APPENDIX D FIELD DATA SHEETS

ANALYZER CALIBRATION SHEET

CLIENT:	\mathcal{F}_{ℓ}	KEO	<u> </u>	····		OPERI	ATOR:	R Cook	<u> </u>	
PLANT:	111	wath	<i>1</i> 2V				DATE:	12/17	152	
LOCATIO								, ,		
	02		CO2	•	со	nnıı	SO2	DDM	иох	PPM
SPAN:		*		₹		PPM		PPM		E. E.M

GZ	AS / RANGE	CYLINDER VALUE	ANALYZER RESPONSE	ABSOLUTE DIFFERENCE	PERCENT SPAN
	LOW	0.0	0.0	0.0	0.0
.02	MID	12.3	12.2	0.1	O. Y
	HIGH	21.0	21.0	0.0	0.0
	LOW	0.0	0.0	0.0	0.0
C02	MID	10.4	10.4	0.0	0.0
	HIGH	18.16	18.4	0.24	1.2
	LOW	0.0	J. J	2.2	0.4
co	MID	154.0	154.2	0.2	0.1
	HIGH	296.6	257.3	0.7	0.1
	LOW	0.0			
502	MID				
_	HIGH				
	LOW	0.0	2.5	2.5	0./
NOX	MID	902	906.4	4. 4	0.2
	HIGH	1779.38	1758.9	120.48	1.02

PERCENT SPAN = (CYLINDER VALUE - ANALYZER RESPON)/SPAN * 100

(ALLOWED 2% SPAN)

SYSTEM CALIBRATION DATA SHEET

CLIENT: FKEC					TIME:/500 to/600			
PLANT:	Marc	thon			DATE:	12/17/5	7	
LOCATIO	ON: UN	it #8			RUN #:			
SPAN:	02	CO2	ł	со	SO2 PPM	PPM	кои	PPM

[-	- 	X			X		
	GNS	ANALYZER CAL RESPONSE	INIT BYSTEM CAL RESPON	TIAL SYSTEM BIAS %SPAN	FINA SYSTEM CAL RESPON	AL SYSTEM BIAS &SPAN	DRIFT
02	ZERO	0.0	0.0	0.0	0.0	0.0	0.0
	UPSCALE	12.2	12.0	-0.8	12.1	-0.4	0.4
co	ZERO	0.0	0.0	0.0	0./	6.5	0.4
	UPSCALE	10.4	10.2	-/.0.	10.3	-0-5	0.5
CO	ZERO	2,2	1.6	-0.1	-0./	-0.5	-0-3
11	PSCALE	154.2	153.3	-0.2	153.1	-0.2	-0.1
802	ZERO		~-	_	1		^
	PSCALE				-		
NOX	ZERO	J. 5	3.8	0.1	5.0	0.2	0.1
	PSCALE	906.4	913.2	0.7	931.8	2.5	1.9

SYSTEM CAL BIAS = (SYS CAL RESPON - ANALYZER RESPON)/SPAN * 100 (5%)
DRIFT = (FNL SYS CAL RESPON - INTL SYS CAL RESPON)/SPAN * 100 (3%)

	02	CO2	CO	802	NOx
RAW	12.59	6.00	87.80		668.70
CAL CORR	13.26	6.07	87.94		652.65
POUND PER	MILLION BY	TO 9MS/DHP-	0.49		6.01
POUND PER	HOUR		5.40		65.95
PLANT					
POUND PER	MILLION BT	U			
POUND PER	HOUR				

THE GAS/BHP-HR = 0.15

SYSTEM CALIBRATION DATA SHEET

CLIENT:	FKE	<u>C</u>		TIME://3	5 to/735	_
PLANT:	Marath	sh		DATE:	12/17/17	
LOCATION	· UNIT M	8		RUN #:	2	. <u></u>
SPAN:	02	CO2	CO P	SO2 PM	PPM	NOX PPI
BAB	ANALYZER CAL RESPONSE	INIT BYSTEM CAL RESPON	TIAL SYSTEM BIAS ASPAN	FINA SYSTEM CAL RESPON	AL SYSTEM BIAS RSPAN	DRIFT
ZERO O2	0.0	0.0	0.0	0.0	0.0	0.0
UPSCALE	12.2	12.1	-0.4	12.3	0.4	0.8
ZERO CO2	0.0	0.1	0.5	0.2	1.0	0.5
UPSCALE	10.4	10.3	-0.5	10.3	-0-5	0.0
ZERO CO	2.2	-0.1	-05	1.1	-0.7	0.2
UPSCALE	154.2	153.1	-0.2	153.8	-0.1	0.1
ZERO 802 —						
UPSCALE						

SYSTEM CAL BIAS = (SYS CAL RESPON - ANALYZER RESPON)/SPAN * 100 (5%)
DRIFT = (FNL SYS CAL RESPON - INTL SYS CAL RESPON)/SPAN * 100 (3%)

ZERO

UPSCALE

NOX -

	02	CO2	CO	802	NOX
RAW	13.24	6.01	86.61		667.23
CAL CORR	13.35	1.00	84.70		646.79
POUND PER	MILLION-BT	U GMS/BHD-			
POUND PER	HOUR				66.09
PLANT					
POUND PER	MILLION BT	U			
POUND PER	HOUR				

SYSTEM CALIBRATION DATA SHEET

CLIENT	: FKE			TIME: 180	0 to/900	
PLANT:	mar	ather		DATE:	13/17/67	
LOCATIO	ON: UN	it #8		RUN #:	3	
SPAN:	02	CO2	СО	SO2	NOX PPM	PPM

вир	ANALYZER CAL RESPONSE	INII SYSTEM CAL RESPON	FIAL BYSTEM BIAS RSPAN	FINA SYSTEM CAL RESPON	AL SYSTEM BIAS %SPAN	DRIFT
ZERO	0.0	0.0	0.0	0.0	0.0	0.0
O2	12.2	123	0.4	12.3	0.4	0.0
ZERO CO2	0.0	0.2	1.0	0.2	1,0	0.0
UPSCALE	10.4	10.3	-0.5	10.3	-0.5	0.0
ZERO CO	2.2	1.1	-0.2	3.5	0.3	0.5
UPSCALE	154.2	1538	-0.1	155.8	0.3	0.4
ZERO SO2		-		1	-	
UPSCALE	•	_	<u> </u>			
ZERO NOX	2.5	2.4	-0.1	2.4	-0.1	0.0
UPSCALE	906.4	926.3	2.0	9/2.6	0.6	-1.9

SYSTEM CAL BIAS = (SYS CAL RESPON - ANALYZER RESPON)/SPAN * 100 (5%)
DRIFT = (FNL SYS CAL RESPON - INTL SYS CAL RESPON)/SPAN * 100 (3%)

02	CO2	CO	802	NOx
13.26	4.05	87.98		659.55
13.26	4.02	86.52		648.80
R MILLION B	TU 9MS/BHP	75.25		5.93
R HOUR		250		65.10
MILLION BT	טי			
HOUR				
	/3, 26 /3. 26 R MILLION BY	13, 26 6.05 13.26 4.02 R MILLION BTU 9/15/BHP HR MILLION BTU	13.26 4.03 87.98 13.26 4.03 86.52 R MILLION BTU 975/BHP HR R HOUR MILLION BTU	13, 26 6.05 87.97 13.26 4.02 86.52 R MILLION BTU 975/8HP 488 R HOUR MILLION BTU

EPA METHOD 25A FIELD DATA SHEET ANALYZER ERROR DATA

LOCATION:	FREC		···-	
DATE:	12/17/97			
INSTRUMENT	: KS 55	RANGE:	_0_	то /ого

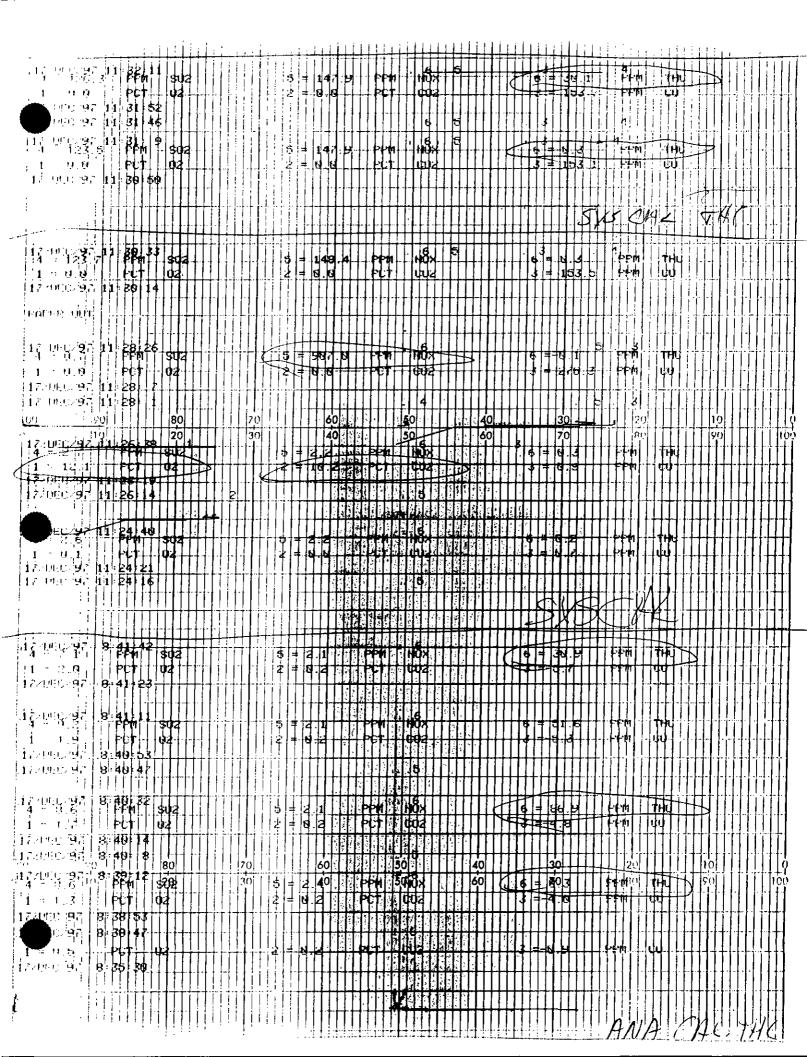
GAS	CALIBRATION CYLINDER VALUE (PPM)	ANALYZER RESPONSE (PPM)	ANALYZER ERROR
ZERO	0.0	0.3	0.3
LOW	30.2	30.9	0.7
MID	50.6	51.6	1.0
HIGH	86.1	86.9	0.8

ANALYZER	CYLINDER VALUE - ANALYZER RESPONSE		
CALIBRATION		X	100
ERROR	CYLINDER VALUE		

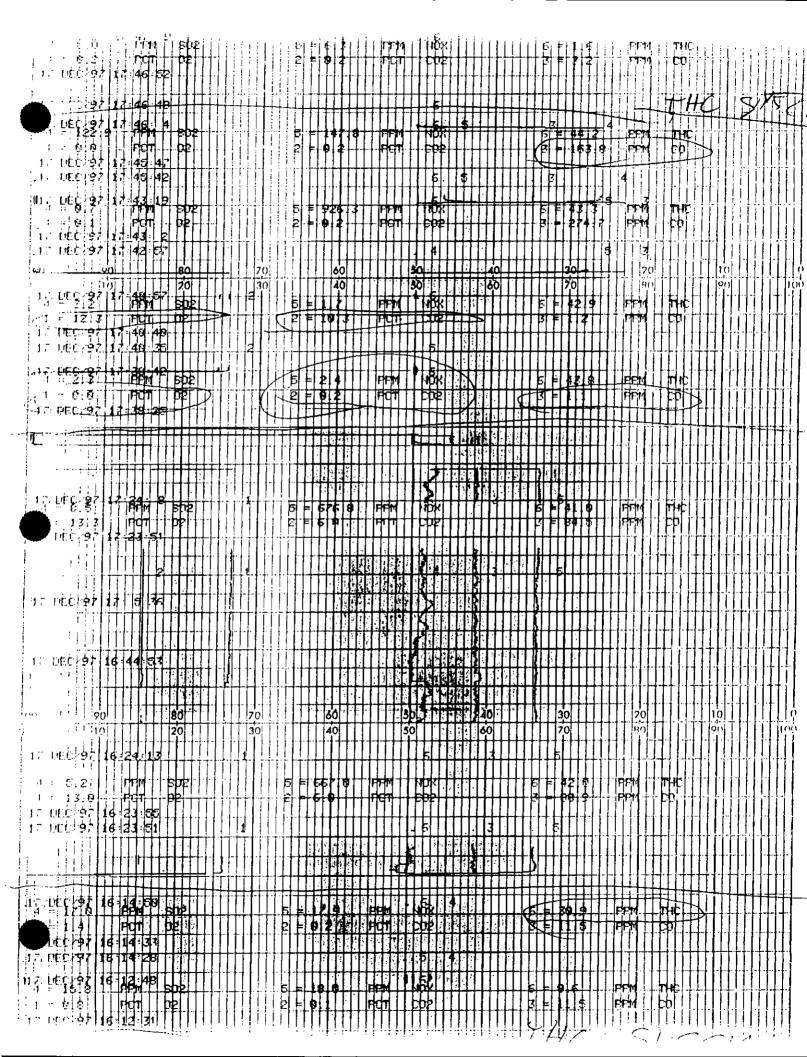
EPA METHOD 25A FIELD DATA SHEET SYSTEM DRIFT DATA

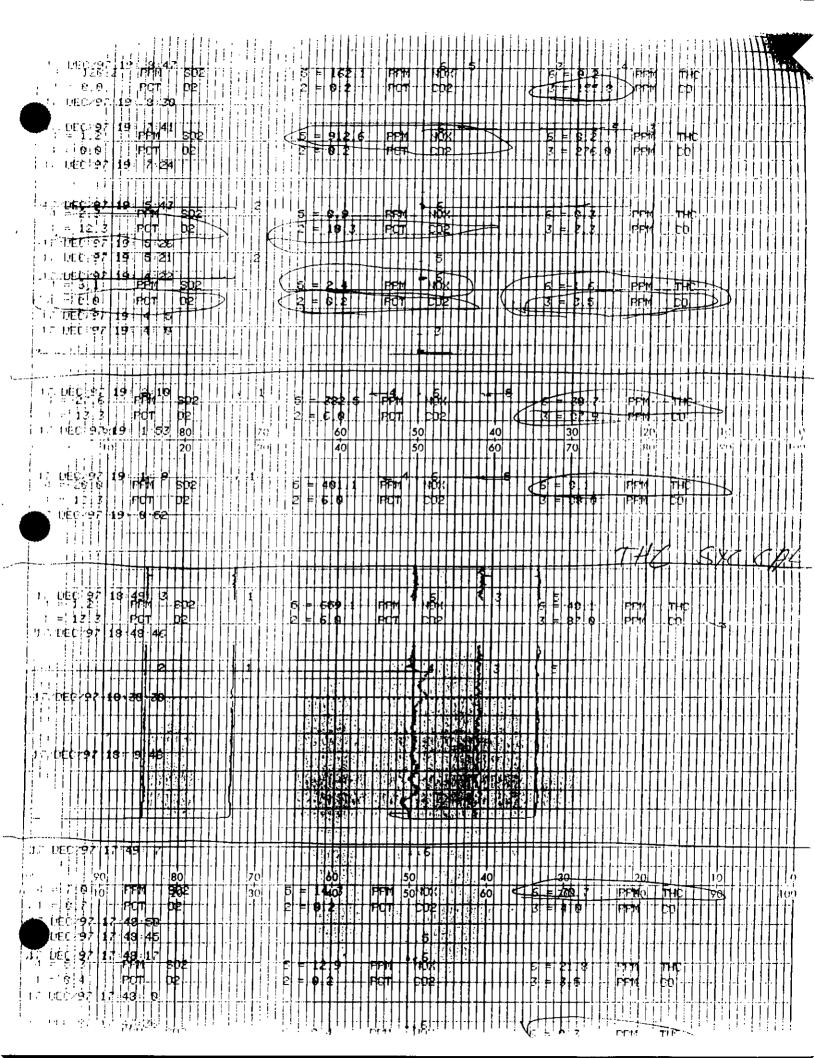
LOCATION: FKEC		RUN #:		<u>-3</u>	
DATE:	RUN TIME:	SEE	то	CEM	SXI CAC
INSTRUMENT: NS 55	RANGE:	O	то	100	

		INIT	IAL	FINA	L		
GAS	ANALYZER CAL RESPONSE	SYSTEM CAL RESPONSE	SYSTEM BIAS % SPAN	SYSTEM CAL RESPONSE	SYSTEM BIAS % SPAN	SYSTEM DRIFT	
ZERO	0.3	0.1	-0.2	0.6	0.3	0.5	48.36
SPAN	30.9	30.8	~ O. (30.9	0.0	0.1	
ZERO	0.3	0.6	0.3	6.3	0.0	-0.3	42.62
SPAN	30.9	30.9	0.0	30.7	-0.2	-0.2	,
ZERO	0.3	0.3	0.0	6./	-O.7	-0.2	47.10
SPAN	30.9	30.7	-0.2	30.7	-Ö. d	0.0	77.7


SISTEM	DRIFI				SI	PAN			,, ,	
eventm	DDTEU	_	SYSTEM	RESPONSE	IN.		RESPONSE			100
SYSTE	M BIAS	==		, , , , , , , , , , , , , , , , , , , ,	SPAN			x	100	
				EM RESPON					100	

APPENDIX E STRIP CHARTS




	60 50 6	0
	40 50 6	0 70 (en!
1 = 12 9 PET 02	5 # 6 74 74 74 74 74 74 74	5
0EC 97 14:55:16 302	*	
1 - 0 1 - 0 0 1 0 0 0 0 0 0 0 0 0 0	5 = 6.2 PPN NBX	
17/04d/97 14 48 12 11 11 11 11 11 11 11 11 11 11 11 11	5 = 2.6 P>n 1n0x \	6 = 12 1 1-1-191 1-191
17 06	5 ≟ 2 5 P>n ↑ NOS	6 = U 1 Frm Hu
·		1
17.0EC 97 14 45 4 502 128 7 PF4 S02 1 = 6 6 PCT 02 1 OEC 97 14 44 45	5 = 1617 PPM NAX C 2 = 8.5 PC 1 CO2	6 = 63.8 F4M TM 3 = 183.0 F4M UU
	70 30 30 30 30 30 30 30 30 30 30 30 30 30	30 h 20 h 10 h 10 h 10 h 10 h 10 h 10 h 1
17 DEC 97904 43 11 80 1 = 125 70 FFT 920 1 = 8 8 FFT 92 1 : 0EC 97 14:42 52		
17 UEU 97 14:41:59 17 3 7 PM S02 18 9 PCT 02	2 - 6 - 6 - 797 - 652 7 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
' ' i <u> - - - - - - - - - - - - </u>		
17 0E0/97 14:39:50 11 1 = 12.6 PEN 802 1 = 12.6 PEN 02 17 0E0/97 14:39 31	3 = 2070 P24 HOX.22 S = 10 P24 HOX.22 S = 10 P24 P25 P	
17. 0E0/9/7. 144: 391 31		
117 UEU 97 11 35 26 302 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		B = E2 5 PPM UU
; '		
17 UEC 97 13 53 57 36 36 1 12 510 50 50 50 50 50 50 50 50 50 50 50 50 50	1	2
100 97 10 53 82 70	1	

100 Met 20 16 31 44 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 = 6 N	
	ं = इस्कार मनम् । मेरीना । । । । । । । । । । । । । । । । । । ।	
1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	<u> </u>	
1 DEC 27018 36 59 80 1 70.		
A : : 13 010 PCT 020 30 1 DEC ST 15 30 PT 1		
1 - , DEG - 9-7 - BE - 2-9 2-4-4-4		
1: UEC 97 15 28 14 GZ : 17 5 PCT GZ 1: UEC 97 15 28 2	3 = 659.5	
1 : 'UEC 97 15 28 19		
1: 0EU 9: 15 25 53 - 17 0	5 = 065.5	本中中
1 (161) 16 25 14		
	s = 671 2 PM 1 1 1 1 2 2 3 1 1 1 1 2 5 5 5	4
	2 = 6.0 PMT (003 - 190)	
113 6 F17 G2		
	5 = 667 9 PPM 1 1 1 1 2 2 3 3 4 4 5 2 4 6 2	.p.p.
6.7 FFD SC2 79 17 CBO 79 105 1 43 20 30	S = 667 9 PPM 367 2 2 2 2 3 3 4 5 2 3 4	
1. IICC-9, 18 18/14		
0 E F610 SG2	5 = 666 8 PM 1 1 2 3 3 3 5 6 7 1 2 5 7	
- 0 2 FFN SC2 FFN SC2	S = GCS R PRN NOX A SECTION OF SECTION O	नेतान कारत इसम्बर्धाः
0 2 FFN SC2 - 1 D FC T		
1: (MLC 4- 11b) S B	5	+ + + + + + + + + + + + + + + + + + +
1.3.6 5 7 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
.r == # ± 1 PH-Pr SIP2	5 = 6 10 Hill 12 12 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	
1 == 18(0) PUT 187		<u> </u>
		::;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

		i i	i:	8		6	ሶ የር	71 T		Б D)2 2				į		-	. !		5j 2j	# #		1 8		to 			F	γr.	M T	<u> </u>		þ	k P	+	1				<u> </u>			E	=		1	4			ŗ	ir I	M M		1 t	rH cb	(- -			- -	- .	-		+	
										H	╁	-		! ! 	+	+-	+			1	-		1	ł	+		$\frac{1}{4}$	ľ		1	+		1		1	Н		H					Ž	1		1/		ļ		İ		\$	\	Z	1	₫	⇟	1	╁			H	H	 	
	M	þ	-	3	,	B	pp	M ³	Ħ	5	ė							-	ŀ	5	Ė		l S	\$	ļ	<u> </u>	1	F	F	H	Ţ	1	ð	7	Ŧ			Ħ					5	=		6 5	8	Ţ		4 F	F	M.	1		d,	ĘĪ		Ì	F	9	1	7		1	
	1 17		() ()	0		8	PC 9	7 2		þ				$ \cdot $					ŀ	2	ŧ		1	1	\downarrow	-		F	d	η 	-	1	P	? 		H		H	$\left\{ \right.$		4	Н	3	Ŀ		*	3	1		F	4F.	M			4		+	H	∤	-				+	4
		17			+	7		\mathbb{H}	H	H	+				+		- . 		-	\dagger	İ		+	\dagger	+	Н	\dagger	f	١	1	l					Ц	7	Ц	†		Ī	Ħ	1	Ī			-	+		. <u>.</u> . _		+	1	-	†	- -	+		-	-	1	H	1	†	1
:	į																			1	1		Ī	ľ			-	1						1	Ţ	П	1		1		1								- }			- '			Ţ.,		-								_
	14	: DE	\	3		d l	r 8	M	7	Į,	þ				. .	1	1		1	Ţ	F		,	ţ	٤		+	F	P	1	5		ĥ	1	ł	$\left. \right $	+	4	_	H	+	H	5	F	34	8	•	1		F	P	# 70 80		Ţ	1	Ļį.	- -		0			ļ 			•
;	1	≟ he	6	ا رو	າດ ເ	6	PC	T -5	73	20 20 20	+	† †	+			30	יייי	H	1	T	Ī		1	io		Ī	Ť	F	C	Π.	5	-(7	7	Ī		Ť	60	0				3		7			3		F		η : Β0		F	Þ				آر (الا		Ì				14
	117	tre	ł,	97	1	d	20 P	: 4	5						1.			-		-			Ţ	I	F		Ţ			I	-	1	#	-	ļ		Ţ	Ц	-	\prod	\downarrow	\prod	1			\prod	-	5		.].	,	3			-	- -		-				-		- .	
	13	_티	ę,	4	11		r f	×	5	酎	į		†		7				1	-		#	ł	•	ŀ	+	+		Ħ	+	Ħ	ţ	Ė	+	ļ	H	Ŧ	Ħ	Ŧ	H	Ŧ	П	5		1	9	Ą		İ	P	ᇕ	1	-	1	h D	-	1				1			+	
í	$\frac{1}{\sqrt{1}}$		<u>.</u> 1	9	1	6	6	- 2	R	Ħ	+	+	7		-		K	K	+	ļ		1	1	Ė			1			#			Ë	ł	ł		Ţ		Ī										Ï			-													
	1 *	Z DE	1	ቀ <i>ት</i>	1							 - -	1		7	-	-	! !	1	 -		+	-	ŀ		+	ŀ	H		-	H	+	F	\downarrow	-			H	1	$\ \cdot \ $	+	H	+		╀		-	<u> </u>	!			L		. j.		+				-	-		$\ $	+	
	1 1	14	*	**	1	+	的	*		į,	P	П	T				1				F	b	1	•		+	i	H	þ	1		+	1.00	ł	1	7			\dagger			ļ		<u>-</u>	+	7	\$		+	P	PÝ FÝ	1		Ţ	6	\$				- -				1	
۲.	1 -	E LYE	b.	4	1	đ	PL 4	-	F.	Ť		7		- - -	19			-	+							7	E	Ħ				Ī		Ī	7	· '					9				Ŧ	-	1]		-		+	F	Ē		-		-	-			-	-	
	. 1 .	tre	t i	φ >	1	6 :	4	-2	8	4				-					+	H	H	,]		15'r V-	1			1			\downarrow		ľ			+	+	\perp	H	+	╁	+	\parallel	+	-	ļ T	<u> </u>	ļ.		-	F		-		1		. l		1	-	! 		-	
	`••		Ħ					<u> </u>											1				ľ								1		š					1		f							1	Ì			1					1									
										T									Ţ	7.5				1441	1		115					i i	23.00	135	Sec.		1			100		Ţ		7	1		†		1		1		-	T			-	-		Ī			T.	T	
			.	Ħ	Ħ	Ħ	Ħ			+		Ħ		Ŧ		-			ŧ	Ė			1	1		4	H		Š	=	1			1	3		H	+		-	Н	+	H	+	+	-	ļ.	+	+	†		.	-	!		+	-	-		-				1	
	170	Δŧ	ζ	∳ ∤	1		4		1	5D.	- -			-	1				Ь			6	Į	100	5	1 2 2	y.		B	7	1	ļ	Ŋ		1			ŀ	1			ě					<u>.</u>		į.	E	h		1	'n	HC	1.									
	1	让	3	∮φ.	1			וו		3 12								Ţ	2			6		ź	-			4		1	1	þ	7	Š	4		H	1	$\ \ $	-		2		=	•		1			F	-M	-	į	þ	b	-			-				.		
	'	-		71 	[]					+		[- -		.	<u> </u>	+	$\frac{1}{1}$	H	+	18	ŀ		1	ç Ç	4	7	<u>!</u>	等	;	1		1	À	1	H	\dagger	H	+	╫	+	H	+	1	+			! 		ļ.			! !		+		-		+			1	-	
	1.,	L	برأ	<u> </u>	1	-		1	1			,							-			†	١		1	+		,	1	į.	1	Ċ	1		1.	T		1	Ħ	1				1									-		٠			Ĺ					1		1
		1	<u>چ</u> .	4		p,			Ų	4									-	Ĭ	_	Ļ		1	1				1	10.4	#	į.		100		1	H			-	\prod	4	H		₽			+	,		ا . الإد					$ \cdot $			-			1	- -		
	11	- 1	Ηí		; <u>4</u> :	a l.	- 4			+	-			ļ	 			+	-	H	- [-	1	i I	1	Ï	1		1		2) i	100	j.	10			H	+	H	\dagger	H	+	H	+	\dagger			+	[. 			-	+		+	11	+	†	+	\dagger	l	1	١.		†
		1		ļ	ol.					ВО		1				1 20					ľ	Ŀ	Ó	ij	Ī	Ĺ				4	ķ	ú	, i	, S. 18				40		1		1	П	3	o	1		1				0	-		1		1	[i]	-÷.			1	Ţ.		
,		í	-	1	0 -				1	20						30	.			4	3	1	4	3	1						/ 	21		7	A I	1	ľ	60 	H	+	H	+	H	+	/o †	1	-				H	0	1		-	$\left\{ \cdot \right\}$		۶	1		-	+	ł	Ì	Ĭ
		, í	<u> </u>	[]	\vdash	+	+	H	H	$\ \cdot \ $	+		+	1				$^{\perp}$	-	+	1			2	T	2						7	i L	A	T.		H	1		+	H	\dagger		+	Н	†		†		-	-	1			Ì		1	Ħ		Ì		1		İ	j
!												1			1		Ī				ŀ				ľ	1		ŀ		Į,	ŀ	1	Ī	5.77		Ĭ						I						1		Ţ			<u> </u>]		1					1	-		
:		. !				 -		-	\prod											\downarrow	1:		3	4	ŀ		+	ļ.	ł	10.00	ŀ	į		1						+	H	+	H	+	H	+	$\ \cdot \ $	-		٠.	ļ.,		1		-		-	-	+	-	-	+	-		-
			į				-	╁	H	+	<u> </u>	<u>!</u>	H		- [.	-	+	-		+	t	H	1		ŀ	1	+	+	ì	ž.	ŀ	-01-27	1	4	4	7	7			+	1	\dagger	H	+	H	+	-	+]	1		+	į.	Ì	\dagger	h	\dagger		1	i i		+			i
		!	i			-		-			†			ľ											1				î,	1	į	\$6.73		1	100	ï			7				1		Ц].				1			1		1		-		-	Ţ			
;	15°	ĻĖ	ը։ (Տե) 1	1		i i	39		n	2				+				ទ	-	-	6	5		þ	\prod	ة 1	H	í	*	ķ	*	6	1		4		$\ $		H	4	1	-	1	4		?			 	H	-		7	ŧ		-		-		-	-	-		-
	1	- i - i	1	. 0		1		<u> </u>	ļ	11	+	1	-	-	!		<u> </u> -	 	2		╬		+	4	╀			Ħ	1		() 	1					i i			H	+	13	╡		2	+	2	-		IPF	114	1		Ct	1.		+				+	-	1		
	ta Li	LIE		- 		, ,	'4 '2	36							-		İ		-	1	İ		†					†	¥ 1				ij	ij		H	2,41		;		1		-				+					1		Ţ					1		1]_			ļ
	14	UE)		37	1		4	4 5	ķ				-]				4	Ī	7		-	ŀ	į			4	X		ř	1	1	1			Ė		1	\coprod	1	4	+		4		4	$\ $	+	H E		+		7	F		ļ.		-		-	-	$\ $		
	ا ر	! ! - - -	<u>] [</u>		#	1		1 1	1	H	$\!$	+	+	\parallel	+	$\ \cdot\ $	+	$\ \cdot\ $	+	1		1 16		ļ	1			ľ			ţ.									H		J	+	H	1	H	+	H		 -		+	$\ \cdot\ $	L)	╀	+	+				+	\dagger	H	H	ŀ
1	1		-	;F	1	+	,	•	H	1	+	$\ \cdot\ $	+	++	-		-	H	4	Ē		f	f	ľ	r.		H	ļ			1.00						水	1. 日本日本日本の日本の日本日本日本日本日本日本日本日本日本日本日本日本日本日本日	1	Ħ		Ĭ	1 2				1	<u>ו</u>				1		Î		1					ļ	1			
	1 / 2 - 3	l i		,,	1								1.		-			Π	4			6	Ţ	ľ						ŀ	***	4	1000								\downarrow	H		Ē] 4∤		1		-	1 1 1		-			•	1	$\ \cdot\ $. -		$\ \cdot\ $	-	
İ	- 3		يأ راج	4	11	#	Hill		ıΚ	ΝĹ	1 L	1.1	- 1	ıl	i	ı	1	1	ฮ.	=	4 I	'n٠	- 14	1	6													ı– Tı		1 1								, I	- 1	~ PI															

.

APPENDIX F NOMENCLATURE

NOMENCLATURE

%DRE = percent destruction/removal efficiency

% ISO = percent isokinetic sampling rate

 $%CO_2$ = percent carbon dioxide by volume (dry)

 $^{9}H_{2}O$ = percent moisture

%N₂ = percent nitrogen by volume (dry) %O₂ = percent oxygen by volume (dry)

 $\mu g = micrograms$

 $\Delta H_{@}$ = pressure drop across orifice of meter for 0.75 CFM at standard conditions

 ΔP_{avg} = average velocity pressure

A_n = sampling nozzle cross-sectional area (ft2) Ar = acetone residue - result of blank evaporation

 A_s = stack cross sectional area (ft2)

B_{wo} = moisture content of stack gas; expressed as a decimal

C = final emissions data reported by CEMs, adjusted for calibration drift

• C' = raw emissions data reported by the CEMs, uncorrected for calibration drift.

Cm = average CEM response to initial and final span gas system calibration
Co = average CEM response to initial and final zero gas system calibration

 C_p = pitot tube coefficient

 C_s = concentration in stack gas in pounds per standard cubic foot $C_{s'}$ = concentration in stack gas in grains per standard cubic foot

 C_{s12} = concentration corrected to 12 percent CO_2 D_c = equivalent diameter of rectangular stack

 D_n = nozzle diameter in inches D_s = stack inside diameter in feet

Delta H(abs) = the meter orifice differential, absolute conditions in inches of mercury

Delta H = the meter orifice differential

dgm = dry gas meter

Dry Gas In = temperature of the dgm inlet in degrees Fahrenheit Dry Gas Out= temperature of the dgm outlet in degrees Fahrenheit

F factor = a factor representing a ratio of the volume of dry flue gases generated to the calorific

value of the fuel combusted

F_c = a factor representing a ratio of the volume of carbon dioxide generated to the calorific

value of the fuel combusted

Fw = a F factor on a wet basis dscf = dry standard cubic foot

dscfin = dry standard cubic foot per hour dscfin = dry standard cubic foot per minute

E = emission rate in pounds per million Btu

NOMENCLATURE (cont.)

End Meter = the dgm reading in cubic feet at the end of the sampling period

 F_d = F-factor dry standard cubic feet per million Btu at zero percent oxygen and at 68

FID = flame ionization detection F₀ = EPA method 3 fuel factor

fps = feet per second GC = gas chromatograph

GC/MS = gas chromatograph/mass spectrograph gr = grain of particulate; 1 lb. = 7000 grains

gr/dscf = grains per dry standard cubic foot

gr@12% = grains per dry standard cubic foot corrected to 12 percent oxygen gr@7% = grains per dry standard cubic foot corrected to 7 percent oxygen

Hg = mercury int/i = initial IN = inches

Int Meter = the dgm reading in cubic feet at the beginning of the test period

K = degrees Kelvin

PIT Coeff = pitot tube coefficient

lb/SCF = pounds per standard cubic foot

lb/hr = pounds per hour

lb/MMBtu = pounds per million Btu

Cma = concentration of the calibration gases

 M_d = dry molecular weight of flue gas

mg = milligrams

mg/DSCM = milligrams per dry standard cubic meter

ml = milliliters

MM5 = modified EPA method 5 MMBtu/hr = million Btu per hour

M_s = molecular weight of flue gas, wet basis
Md = molecular weight of flue gas, dry basis

ng = nanograms

NMHC = non-methane hydrocarbons
O = net run time in minutes

°C = degrees Celsius
°F = degrees Fahrenheit
°R = degrees Rankine

P bar = barometric pressure in inches of mercury
P stk = pressure of the stack in inches of water

Pabs = absolute pressure

NOMENCLATURE (cont.)

 ppm_{vd} = parts per million by volume, dry

Ps = flue gas static pressure in absolute pressure

P_{std} = standard absolute pressure at 29.92 inches of mercury
Qa = volumetric air flow rate actual cubic feet per minute

Q_s = volumetric air flow rate dry standard cubic feet per minute

rh = relative humidity scf = standard cubic feet

scfin = standard cubic feet per minute

T_m = dry gas meter temperature in degrees Fahrenheit

 T_s = flue gas temperature in degrees Fahrenheit t_{std} = standard temperature in degrees Fahrenheit

 T_{std} = standard absolute temperature

THC = total hydrocarbons

V = volume

VI = total volume of liquid collected in impingers and silica gel

V_m = volume of metered gas sampled in cubic feet

V_m std = volume of metered gas sample at dry standard conditions in dry standard cubic feet

VOC = volatile organic compounds

VS = average flue gas velocity in feet per second

V_{w std} = volume of water vapor in cubic feet wscfm = wet standard cubic feet per minute Y = dry gas meter calibration factor

APPENDIX G FACILITY OPERATING DATA

5845

File: 963612t.xls

SAE J1349-EDPS 218 engine test

DATE: 12-17-97	INLET AID P	BAROM "DC	AIRWET - P.S.I.	ETTET IL.A.			
SAE J1349	MILEI AIR - F	BAROM - HG	AIRWEI - P.S.L.	FUEL-IDS/hr	BHP-obs	RPM	AIRDRY-kpa
EMISS. TEST # 1	70	30.4892449	0.21	1742.82927	4981.3166	900	101.758144
Includes Power Factor>	>>>>>	Gen-obs MW					
		3.58					
		3.59		Site Perfo	rmance o	bservations	<u> </u>
BAROMETER-millibars		3.59		NOx - ppm>	652.65		
1017		3.59		%R. Humidity>	55		
		3.58		Air Temp-F>	70		
Start 3:00 PM (15:00)		3.59		Fuel temp-F>	97		
Stop 4:00 PM (16:00)		3.58		Barometer>	30.489		
6.01 gm NOx/BHP-hr		3.59	1-	Fuel rate-obs>	1742.8	<< <lbs. hour<="" td=""><td></td></lbs.>	
133 deg. F airbox		3.58		Fuel S.G.>	0.8633		
2.1 in. water exh. ba	ackpressure	3.59		Eng BHP-obs>	4981.3		
STD. DEVIATION>>>	>>>>>	0.004898979					
TEST at ESI-F	lorida Keys	Electr.	100% of I	RATED L	OAD -	TEST PO	NT
			0.965	<< <key in<="" td=""><td>Generator</td><td>efficiency (use</td><td>ed in column 'L'</td></key>	Generator	efficiency (use	ed in column 'L'
6 deg. ATDC t	iming	F	LOWDATA	METERS	USED	AS FUEL D	ATA INPUT
EDPS #218 PERFO	RMANCE CAL						
CALCULATIONS USE	EMD STANDAR	D CONDITIONS:	AIR IN=60°F FUE	L IN=60°F BAR	O M= 29.92"	lg FUEL S.G.=.8	45
O#963612E1	20G4B	ENG. S/N	T	JR80 S/N		900 RPM	P/N 5235595 INJECTOR
BAROMETER	INLET AIR	INLET FUEL	FUEL S.G.	FUEL RATE	OBS. K.W.	B.H.Pcorr.	B.S.F.Ccorr
IN. Hg.	DEG. F	Flowmeter DEG, F		LBS-OBSERVED	at GEN.	,	AIRBOX DRAINS CLOS
30.4892449	70	97	0.863	1743	3586	5009	0.3500
DATE: 12-17-97		TIME: 16:00:00	.8633 S.Gspec.	Flowdata	KW-corr.>>>	3736	AIRBOX P.S.I = 25.0
AVG. GPH/meter>>	242.43	TURBO P/N				EMD-gm/KWH >>>>	212.82
Test Time Period>>	1:00						
92.1		7.189	< <key fuel<="" in="" td=""><td>weight ner gal</td><td>ion at corr</td><td>ect Fuel Specifi</td><td>c Gravity</td></key>	weight ner gal	ion at corr	ect Fuel Specifi	c Gravity

12-15-97

Revised 12 16-97 T.P.

File: 963612t.xls

SAE J1349-EDPS 218 engine test

DATE: 12-17-97	INLET AIR - F	BAROM - "HG	AIRWET - P.S.I.	FUEL-lbs/hr	DUD		
SAE J1349			1111477 21 - 1 .3.1.	PUEL-IDS/III	BHP-obs	RPM	AIRDRY-kpa
EMISS. TEST # 2	70	30.4892449	0.21	1741.67903	4988.2621	900	101.750144
Includes Power Factor	·>>>>>>>>	Gen-obs MW			7,00,2021	500	101.758144
		3.59					
		3.59		Site Perfo	rmance o	bservations	Sep. Aftroool stats.
BAROMETER-millibars		3.58		NOx - ppm>	646.79		
1017		3.59		%R. Humidity>	55		LB pre A/C duct = 274 F
		3.59		Air Temp-F>	70		LB A/C water in = 72 F
Start 4:35 PM (16:35)		3.59		Fuel temp-F>	97		LB post A/C duct = 98 F
Stop 5:35 PM (17:35)		3.6		Barometer>	30.489		R8 pre A/C duct = 256 F
		3.59		Fuel rate-obs>	1741.7	<< <lbs. hour<="" td=""><td>RB A/C water in = 70 F</td></lbs.>	RB A/C water in = 70 F
135 deg. Fairbox		3.6		Fuel S.G.>	0.8633		R8 post AC duct = 93 F
1.9 in. water exh. b		3.59		Eng BHP-obs>	4988.3		RB A/C water out = 83 F
STD. DEVIATION>>		0.005385165				massamentening interior	10 × 0 × 00 = 83 F
TEST at ESI-F	lorida Keys	Electr.	100% of F	RATED L	OAD -	TEST PO	INT
	<u> </u>		0.965				ed in column 'L' o
deg. ATDC t		\mathbf{F}	LOWDATA	METERS	LISED	ACRITED D	ATA INPUT
EDPS #218 PERFOR	RMANCE CAL	CULATIONS p	er Tim Paulson -	EMD PM&LE	ngineering		AIAUITUI
ALCULATIONS USE	EMD STANDAR	D CONDITIONS:	AIR IN=60°F FUE	LIN=60°F BAR	OM=29 92"	Hg FUEL S.G,=,8	<u> </u>
O#963612E1	20G4B	ENG. S/N		IRBO S/N	I SINGL .	900 RPM	P/N 5235595 INJECTORS
BAROMETER	INLET AIR	INLET FUEL	FUEL S.G.	FUEL RATE	OBS. K.W.	B.H.Pcorr.	B.S.F.Ccorr.
IN. Hg.	DEG. F	Flowmeter DEG. F		LBS-OBSERVED	at GEN.		AIRBOX DRAINS CLOSE
30.4892449	70	97	0.863	1742	3591	5016	0.3493
		TIME: 17:35:00	.8633 S.Gspec.	Flowdata	KW-corr.>>>	3742	AIRBOX P.S.I = 26.1
ATE: 12-17-97			· · · · · · · · · · · · · · · · · · ·			EMD-gm/KWH >>>>	212.39
ATE: 12-17-97 VG. GPH/meter>>	242.27	TURBO P/N	ţ		J	S ALL >>>	£ 14.00
	242.27 1:00	TURBO P/N					
VG. GPH/meter>>			< <key fuel="" in="" td="" v<=""><td>veight per aal</td><td>lon at corr</td><td>ect Fuel Specie</td><td>c Gravity</td></key>	veight per aal	lon at corr	ect Fuel Specie	c Gravity
VG. GPH/meter>> Test Time Period>>			< <key fuel="" in="" td="" v<=""><td>veight per gal</td><td>lon at corr</td><td>ect Fuel Specifi</td><td>c Gravity</td></key>	veight per gal	lon at corr	ect Fuel Specifi	c Gravity

5845

File: 963612t.xls

SAE J1349-EDPS 218 engine test

DATE: 12-17-97	INLET AIR - F	BAROM - "HG	AIRWET . PST	FUEL-ibs/hr	BHP-obs	RPM	
SAE J1349			1323411,232 110121	1 OZZ-IDZII	. DIM -008	KFM	AIRDRY-kpa
EMISS. TEST # 3	70	30.4892449	0.21	1735.92783	4982.7057	900	101.758144
Includes Power Factor>	>>>>>	Gen-obs MW			i		
		3.58			<u> </u>		
		3.57		Site Perfo	rmance o	bservations	Sep. Aftroool stat
BAROMETER-millibars		3.59		NOx - ppm>	648.8		LB pre A/C duct = 275 F
1017		3.59		%R. Humidity>	55		LB A/C water in = 72 F
		3.59		Air Temp-F>	70		LB post A/C duct = 97 F
Start 6:00 PM (18:00)		3.59		Fuel temp-F>	97		LB AC water out = 82 f
Stop 7:00 PM (19:00)		3.59		Barometer>	30.489		RB pre AC dad = 267 i
5.93 gm NOx/BHP-hr		3.59		Fuel rate-obs>	1735.9	< <lbs hour<="" td=""><td>FIB A/C water in = 70 F</td></lbs>	FIB A/C water in = 70 F
131 deg. F airbox		3.59		Fuel S.G.>	0.8633		RB post A/C duct = 88 i
2.0 in. water exh. b	ackpressure	3.59		Eng BHP-obs>	4982.7		R8 AC water out = 82
STD. DEVIATION>>	>>>>>>	0.006403124				unum ministerio, pl. 75. in	10 40
TEST at ESI-F	lorida Keys	Electr.	100% of I	RATED L	OAD -	TEST PO	NT
			0.965	<<< <key in<="" td=""><td>Generator</td><td>r efficiency (us</td><td>ed in column 'L</td></key>	Generator	r efficiency (us	ed in column 'L
6 deg. ATDC t	iming	\mathbf{F}				AS FUEL D	
EDPS #218 PERFO	RMANCE CAL	CULATIONS p	er Tim Paulson -	EMD PM&I E	ngineering		
CALCULATIONS USE	EMD STANDAR	D CONDITIONS:	AIR IN=60°F FUE	L IN=60°F BAR	OM=29.92"	Hg FUEL S.G.=.8	45
O#963612E1	20G4B	ENG. S/N		JRBO S/N		900 RPM	P/N 5235595 INJECTO
BAROMETER	INLET AIR	INLET FUEL	FUEL S.G.	FUEL RATE	OBS. K.W.	B.H.Pcorr.	B.S.F.Ccor
IN. Hg.	DEG. F	Flowmeter DEG. F		LBS-OBSERVED	at GEN.		AIRBOX DRAINS CLO
30.4892449	70	97	0.863	1736	3587	5010	0.3485
ATE: 12-17-97		TIME: 19:00:00	.8633 S.Gspec.	Flowdeta	KW-cort.>>>	3738	AIRBOX P.S.1 = 26.3
VG. GPH/meter>>	241.47	TURBO P/N				EMD-gm/KWH >>>>	211.92
	1:00						
Test Time Period>>	1.00		<u>L</u>				
	1.00	7.189	< <key fuel<="" in="" td=""><td>weight per gal</td><td>lon at cor</td><td>ect Fuel Specifi</td><td>c Gravity</td></key>	weight per gal	lon at cor	ect Fuel Specifi	c Gravity

12-15-97

Revised 12 16-97 T.P.

FLORIDA KEYS ELECTRIC COOPERATIVE ASSOCIATION, INC. – FKEC

91605 OVERSEAS HIGHWAY P.O. BOX 700377, TAVERNIER, FL 33070-0377 PHONE (305) 852-2431 FAX; (305) 852-4794

Mr. Clair Fancy
Chief
Bureau of Air Regulation
Dept. of Environmental Protection
Mail Station 5505
2600 Blairstone Rd.
Tallahassee, FL 32399-2400

Re: PSD-FL-237. NOx emissions test result.

RECEIVED

JAN 2 8 1998

BUREAU OF AIR REGULATION

26 January 1998

Dear Mr. Fancy:

Enclosed are the results of the emissions compliance testing conducted on Florida Keys Electric Cooperative's Marathon Generating Plant Unit # 8 by South Florida Environmental Services. The engine passed all test parameters except for NOx, which was emitted at an average rate of 65.71 lbs/hr. FKEC's permitted limit for NOx is 62 lbs/hr. The 62 lbs/hr limit was based on theoretical calculations that I made over one year ago based on EPA emissions data (AP-42, which EPA acknowledges has limited value based on small sample sizes and variable operating conditions) and on manufacturer's estimates on fuel consumption and emissions rates (there were no units of this type and model running then so no real emissions data were available). Based on the data available to me at the time, I calculated that the uncontrolled NOx emissions of the EMD 20-710G4B would be 96.6 lbs/hr. Based on the manufacturer's claim of a 40% reduction in NOx emissions with the emissions reduction package that FKEC had ordered, I further reduced my emissions calculation by 36% (taking what I thought was a conservative approach) resulting in the projected 62 lbs/hr NOx emission rate.

In August 1997, FKEC's vendor informed us that the lowest feasible NOx emission rate would be 71 lbs/hr. I immediately contacted your office for guidance on how to change the hourly limit proposed in our draft permit which was at that time undergoing the public notice period. During August 1997, I had several conversations with David Knowles, Syed Arif and Al Linero of your Ft. Myers and Tallahassee offices. We were advised that we could write a "comment letter" on the draft permit and ask that the NOx hourly limit be increased to 71 lbs/hr. Doing that would have required further review by your office and another 30-day public notice period. FKEC did write a comment letter (copy enclosed for your reference), but elected not to send it because our construction schedule had no slack left for further delays. Instead, FKEC asked the vendor to strive for the best NOx emission rate possible under FKEC's specifications. The fact that the engine tested at an average NOx rate of 65.71 lbs/hr (significantly better than the

vendor thought feasible) demonstrates that our efforts to reduce NO_x were successful, but we were striving for an unrealistic goal. The technician conducting the emissions tests commented that he had never tested a cleaner running engine.

Where does this leave us? FKEC has already accepted a 50% reduction in operating hours for Units 1-7 at the Marathon Generating Plant. FKEC is reluctant to accept further limits on operating hours. It should be noted that while Unit # 8 is currently allowed unlimited operating hours, in reality, no unit can operate 8760 hours per year. So while Unit # 8 cannot meet the hourly NOx limit of 62 lbs/hr, it will never exceed the current 271 tons/yr annual limit. Therefore, FKEC requests an increase in the hourly NOx limit to 68 lbs/hr for our operating permit for Unit # 8 and for our Title V air operating permit.

Thank you for your consideration and assistance.

Sincerely,

Deborah A. Shaw, Ph.D.

Environmental Affairs Coordinator

Enc:

1) Draft comment letter.

2) Final Test Report - So. Fla. Environmental Services

PC: without test report.

C.A. Russell, CEO/GM, FKEC

T.E. Planer, Supt. Transmission, FKEC

D.M. Knowles, Air Program Administrator, FDEP

FLORIDA KEYS ELECTRIC COOPERATIVE ASSOCIATION, INC. – FKEC

91605 OVERSEAS HIGHWAY P.O. BOX 700377, TAVERNIER, FL 33070-0377 PHONE (305) 852-2431 FAX: (305) 852-4794

Mr. Clair Fancy Chief Bureau of Air Regulation Dept. of Environmental Protection Mail Station 5505 2600 Blairstone Rd. Tallahassee, FL 32399-2400

Re: PSD-FL-237. NOx emissions test result.

RECEIVED

JAN 28 1998

BUREAU OF AIR REGULATION

26 January 1998

Dear Mr. Fancy:

Enclosed are the results of the emissions compliance testing conducted on Florida Keys Electric Cooperative's Marathon Generating Plant Unit # 8 by South Florida Environmental Services. The engine passed all test parameters except for NOx, which was emitted at an average rate of 65.71 lbe/hr. FKEC's permitted limit for NOx is 62 lbs/hr. The 62 lbs/hr limit was based on theoretical calculations that I made over one year ago based on EPA emissions data (AP-42, which EPA acknowledges has limited value based on small sample sizes and variable operating conditions) and on manufacturer's estimates on fuel consumption and emissions rates (there were no units of this type and model running then so no real emissions data were available). Based on the data available to me at the time, I calculated that the uncontrolled NOx emissions of the EMD 20-710G4B would be 96.6 lbs/hr. Based on the manufacturer's claim of a 40% reduction in NOx emissions with the emissions reduction package that FKEC had ordered, I further reduced my emissions calculation by 36% (taking what I thought was a conservative approach) resulting in the projected 62 lbs/hr NOx emission rate.

In August 1997, FKEC's vendor informed us that the lowest feasible NOx emission rate would be 71 lbs/hr. I immediately contacted your office for guidance on how to change the hourly limit proposed in our draft permit which was at that time undergoing the public notice period. During August 1997, I had several conversations with David Knowles, Syed Arif and Al Linero of your Ft. Myers and Tallahassee offices. We were advised that we could write a "comment letter" on the draft permit and ask that the NOx hourly limit be increased to 71 lbs/hr. Doing that would have required further review by your office and another 30-day public notice period. FKEC did write a comment letter (copy enclosed for your reference), but elected not to send it because our construction schedule had no slack left for further delays. Instead, FKEC asked the vendor to strive for the best NOx emission rate possible under FKEC's specifications. The fact that the engine tested at an average NOx rate of 65.71 lbs/hr (significantly better than the

vendor thought feasible) demonstrates that our efforts to reduce NOx were successful, but we were striving for an unrealistic goal. The technician conducting the emissions tests commented that he had never tested a cleaner running engine.

Where does this leave us? FKEC has already accepted a 50% reduction in operating hours for Units 1-7 at the Marathon Generating Plant. FKEC is reluctant to accept further limits on operating hours. It should be noted that while Unit #8 is currently allowed unlimited operating hours, in reality, no unit can operate 8760 hours per year. So while Unit #8 cannot meet the hourly NOx limit of 62 lbs/hr, it will never exceed the current 271 tons/yr annual limit. Therefore, FKEC requests an increase in the hourly NOx limit to 68 lbs/hr for our operating permit for Unit #8 and for our Title V air operating permit.

Thank you for your consideration and assistance.

Sincerely,

Deborah A. Shaw, Ph.D.

Environmental Affairs Coordinator

Enc.

1) Draft comment letter.

2) Final Test Report - So. Fla. Environmental Services

PC: without test report.

C.A. Russell, CEO/GM, FKEC

T.E. Planer, Supt. Transmission, FKEC

D.M. Knowles, Air Program Administrator, FDEP

ENGINE SYSTEMS, INC.

P.O. Box 1928

1220 South Washington St. Rocky Mount, NC 27802-1928

Telephone: 919/977-2720

Fax:

919/446-1136 or 919/446-3830

Page 1 of 1

DOCUMENT TRANSMITTAL RECORD

To:	Florida Keys Electric Cooperative 91605 Overseas Highway	Date:	January 20, 1998
	Tavernier, FL 33070	Ref. S/N:	51229C-O-0050
Attn:	Tim Planer	Subject:	Marathon Generating Plant - Diesel Generating Set P.O. 961588 ESI Job No. 51229
Enclos	sed are the following:		

<u>Copies</u>	<u>Code</u>	Drawing/Document No.	Sheet	Rev.	Title/De	escription
3	В	N/A	All		Test Pro	est Report - Emissions Compliance ogram - Florida Keys Electric Cooperative on Facility
Code:	<u>A</u> <u>B</u> <u>C</u> <u>D</u> <u>E</u>	Submitted For Approval Submitted For Information Submitted For Comments Final Drawings/Documents I Issued For Construction	Enclosed		<u>F</u> <u>G</u> <u>H</u> <u>J</u>	Approved Approved As Noted Revise and Resubmit Not Approved Return Signed Copies
Remark	cs:			· -		

ned: Wanda O. Alaves Wanda D. Davis - Contract Administrator

Copy To:

R. Weeks

Doc. Control

South Florida Environmental Services

FINAL TEST REPORT

EMISSIONS COMPLIANCE TEST PROGRAM

FLORIDA KEYS ELECTRIC COOPERATIVE

MARATHON FACILITY

PREPARED FOR:

Engine Systems, Inc. 1220 Washington Street

Rocky Mount, NC 27802-1928

CONCERNING:

NO_x, CO, VOC and Opacity Compliance Testing Emission Unit #8 3.58 MW Diesel Electric Generator Florida Keys Electric Cooperative Association, Inc.

Marathon Facility December 17, 1997

PREPARED BY:

South Florida Environmental Services

6821 Vista Parkway North

West Palm Beach, Florida 33411

SFES #97-581

Ron C. Cook Jr.

Senior Project Director

Date

RECEIVED

JAN 2 8 1998

BUREAU OF AIR REGULATION

Parkway North, West Palm Beach, FL 33411 87-5300 Fax: 407-687-3676

TABLE OF CONTENTS

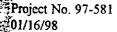
	COMPENDIUM	p. l
讀2	REFERENCE METHOD SAMPLING LOCATION	p. 3
三 3. 三 4.	SAMPLE POINT LOCATIONS	p. 4
4.	SAMPLING TRAIN AND ANALYTICAL PROCEDURES	ÿ. 5
	OLIALITY CONTROL PROCEDURES	p. 11

APPENDICES

Fir. La A	CEMS/VOC EMISSION CALCULATIONS
В	OPACITY OBSERVATIONS
C	CALIBRATION GAS CERTIFICATIONS
D	FIELD DATA SHEETS
ξ. S.E	STRIP CHARTS
F	NOMENCLATURE
7)- 2 C	EACH ITY ODED ATING DATA

1.0 COMPENDIUM

South Florida Environmental Services conducted an emissions compliance test program on behalf of Engine Systems, Inc. at Florida Keys Electric Cooperative Association, Inc. located in Marathon, Florida. The testing was conducted on the newly installed EMD generator set rated at 3.58 MW and took place on December 17, 1997.


The objective of the testing program was to determine the Compliance/Performance status of EMD diesel generator #8 with respect to oxides of nitrogen, carbon monoxide, total hydrocarbons and opacity limits. Set forth by the Florida, Department of Environmental Protection (FDEP) and Florida Keys Electric Cooperative.

All test methods and procedures were conducted in strict accordance with EPA Methods 3A, 7E, 9, 10 and 25A as found in the Federal Register (40CFR60), Appendix A. The approved test plan was adhered to throughout the program. All lb/MMBtu emission rates are based on the F-factor for oil in accordance with EPA Method 19.

The gaseous (CEM/VOC) sampling consisted of three 1-hour runs during the test program while the unit was operating at 100% of rated capacity. Finial results can be found in Table 1-1.

The opacity determination was an hour visible emissions run consisting of 240 readings, 4 readings per minute, from which the highest 6-minute average and maximum opacity values were obtained and reported as percent opacity. Finial results can be found in Table 1-2.

Ron C. Cook Jr. Senior Project Director, was responsible for all phases of the test program he was assisted by a team of qualified environmental professionals. Robin L. Weeks of Engine Systems, Inc. coordinated funit operation with testing. Tim Planner of Florida Keys Electric Cooperative was the company's representative.

1.0 COMPENDIUM (cont.)

The following tables summarize the results of the emissions testing program.

Table 1-1 Summary of Results FKEC Emission Unit # 8 EMD Diesel Electric Generator

NOx

Run#	Time	ВНР	NOx Gms/bhp-hr	NOx lb/hr	NOx Tons/yr
1	1500-1600	4981	6.01	65.95	288.86
2	1635-1735	4988	6.01	66.09	289.47
3	1800-1900	4983	5.93	65.10	285.14
Average			5.98	65.71	287.82

\mathbf{CO}

Run #	Time	ВНР	CO Gms/bhp-hr	CO lb/hr_	CO Tons/yr
1	1500-1600	4981	.49	5.40	23.65
2	1635-1735	4988	.49	5.38	23.56
3	1800-1900	4983	.49	5.38	23.56
Average			.49	5.39	23.59

THC

Run#	Time	ВНР	THC Gms/bhp-hr	THC lb/hr	THC Tons/yr
1	1500-1600	4981	.15	1.70	7.45
2	1635-1735	4988	.16	1.72	7.53
3	1800-1900	4983	.15	1.69	7.40
Average			.15	1.70	7.46

Note: Tons/yr were calculated using 8760 hours or continuous operation

Table 1-2
Visible Emission Results

		, <u> </u>	
Unit #	Length of Test	Highest 6 min. Average	Readings above 20%
EMD #8	60	5.0%	NONE

Project No. 97-581

201/16/98

