HYDRO SPA

Ocala Spa Manufacturing Facility TITLE V OPERATING PERMIT APPLICATION January 25, 2005

SOUTHWEST DISTRICT
JAN 2 6 2005

TAMPA

Prepared By:

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563

Department of SOUTHWEST DISTRICT

Note: A responsible official is not necessarily a designated representative under the Aug Rain Program. To become a designated representative, submit a certificate of representation to the U.S. Environmental Protection Agency (EPA) in accordance with 40 CFR Part 72.24.

Identification of Facility	
1. Facility Owner/Company Name:	
	OSPA
2. Site Name:	3. County:
Ocala Facility	Marion
4. Title V Air Operation Permit/Project No. (leave	e blank for initial Title V applications): Levision Application
	evision Application
Notification Type (Check one or more)	· · · · · · · · · · · · · · · · · · ·
•	cials for an initial Title V application.
RENEWAL: Notification of responsible office	
☐ CHANGE: Notification of change in respon	
Effective date of change in resp	onsible official(s)01/25/2005
Primary Responsible Official	
1. Name and Position Title of Responsible Officia	ıl:
Mr. Charles Wiley – P	Production Supervisor
2. Responsible Official Mailing Address:	
Organization/Firm: HYDRO SPA	
Street Address: 13055 49th Street North	
	ate: FL Zip Code: 34482
3. Responsible Official Telephone Numbers:	
Telephone: (727) 573 - 9611	Fax: (727) 573 - 7758
4. Responsible Official Qualification (Check one	or more of the following options, as applicable):
the corporation, or a duly authorized representative of overall operation of one or more manufacturing, propermit under Chapter 62-213, F.A.C. [] For a partnership or sole proprietorship, a general partnership or sole proprietorship.	operforms similar policy or decision-making functions for of such person if the representative is responsible for the duction, or operating facilities applying for or subject to a rtner or the proprietor, respectively. blic agency, either a principal executive officer or ranking
I, the undersigned, am a responsible official, as defi addressed in this notification. I hereby certify, base inquiry, that the statements made in this notification have authority over the decisions of all other respon	ined in Rule 62-210.200, F.A.C., of the Title V source and on information and belief formed after reasonable are true, accurate and complete. Further, I certify that I asible officials, if any, for purposes of Title V permitting.
Signature	Date

1

DEP Form No. 62-213.900(8)

Effective: 6-02-02

Additional Responsible Official 1. Name and Position Title of Responsible Official: Kenneth W. Sorah, Chief Operating Officier 2. Responsible Official Mailing Address: Organization/Firm: HYDRO SPA Street Address: 13055 49th Street North City: Clearwater State: FL Zip Code: 34482 3. Responsible Official Telephone Numbers: Telephone: (727) 573 - 9611 Fax: (727) 573 - 7758 4. Responsible Official Qualification (Check one or more of the following options, as applicable): [X] For a corporation, the president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213, F.A.C. [] For a partnership or sole proprietorship, a general partner or the proprietor, respectively. [] For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official. [] The designated representative at an Acid Rain source. Additional Responsible Official 1. Name and Position Title of Responsible Official: 2. Responsible Official Mailing Address: Organization/Firm: Street Address: City: State: Zip Code: 3. Responsible Official Telephone Numbers: Fax: (4. Responsible Official Qualification (Check one or more of the following options, as applicable): [] For a corporation, the president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decisionmaking functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213, F.A.C. [] For a partnership or sole proprietorship, a general partner or the proprietor, respectively. [] For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official.

DEP Form No. 62-213.900(8)

[] The designated representative at an Acid Rain source.

Effective: 6-02-02

Department of Environmental Protection

Division of Air Resource Management APPLICATION FOR AIR PERMIT - LONG FORM

LICATION TON AIRT ERMIT - LONG TORM

I. APPLICATION INFORMATION

Air Construction Permit - Use this form to apply for an air construction permit for a proposed project:

- subject to prevention of significant deterioration (PSD) review, nonattainment area (NAA) new source review, or maximum achievable control technology (MACT) review; or
- where the applicant proposes to assume a restriction on the potential emissions of one or more pollutants to escape a federal program requirement such as PSD review, NAA new source review, Title V, or MACT; or
- at an existing federally enforceable state air operation permit (FESOP) or Title V permitted facility.

Air Operation Permit – Use this form to apply for:

- an initial federally enforceable state air operation permit (FESOP); or
- an initial/revised/renewal Title V air operation permit.

1. Facility Owner/Company Name: HYDRO SPA

Air Construction Permit & Revised/Renewal Title V Air Operation Permit (Concurrent Processing Option)

- Use this form to apply for both an air construction permit and a revised or renewal Title V air operation permit incorporating the proposed project.

To ensure accuracy, please see form instructions.

Identification of Facility

2.	Site Name: OCALA FACILITY			
3.	Facility Identification Number: 0830151			
4.	Facility Location:			******
	Street Address or Other Locator: 5401 44th	`Avenue, NW		
	City: Ocala County:	Marion	Zip Code: 34482	
5.	Relocatable Facility?	~	V Permitted Facility?	
	☐ Yes ☐ No	☐ Yes	⊠ No	
A	pplication Contact			
1.	Application Contact Name: Mr. Charles W	liley, Production Sup	ervisor	
2.	Application Contact Mailing Address			
	Organization/Firm: HYDRO SPA			
	Street Address: 13055 49th Street Nort	ħ		
}	City: Clearwater S	State: FL	Zip Code: 33762	
3.	Application Contact Telephone Numbers			
	Telephone: (727) 573 - 9611 ext.	Fax: (727) 573	s - 7758	
4.	Application Contact Email Address:			
A	oplication Processing Information (DEP)	Use)		
1.	Date of Receipt of Application:	}		
2.	Project Number(s):	0830151	-002-AV	
3.	PSD Number (if applicable):			
4.	Siting Number (if applicable):			

DEP Form No. 62-210.900(1) - Form

Purpose of Application

This application for air permit is submitted to obtain: (Check one)
Air Construction Permit Air construction permit.
Air Operation Permit ☐ Initial Title V air operation permit revision. ☐ Title V air operation permit renewal. ☐ Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is required. ☐ Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is not required.
Air Construction Permit and Revised/Renewal Title V Air Operation Permit
(Concurrent Processing) ☐ Air construction permit and Title V permit revision, incorporating the proposed project. ☐ Air construction permit and Title V permit renewal, incorporating the proposed project.
Note: By checking one of the above two boxes, you, the applicant, are requesting concurrent processing pursuant to Rule 62-213.405, F.A.C. In such case, you must also check the following box:
☐ I hereby request that the department waive the processing time requirements of the air construction permit to accommodate the processing time frames of the Title V air operation permit.
Application Comment
The application is for the initial Title V Operating Permit for a new facility subject to the requirements of 40 CFR Part 63, Subpart WWWW. The air construction permit caps hazardous air pollutant emissions through a federally enforceable permit condition to levels less than 100 tons per year. The facility has been classified as synthetic minor source under the PSD program, a major source (HAP Emissions) under the Title V Program and a new major source under the Hazardous Air Pollutant Program.

2

DEP Form No. 62-210.900(1) - Form Effective: 06/16/03

Scope of Application

Emissions Unit ID Number	Description of Emissions Unit	Air Permit Type	Air Permit Proc. Fee
001	Reinforced Plastic Composites Production Facility and Associated Activities	TV	NA
<u></u>			

Application Processing Fee	
Check one: Attached - Amount:	Not Applicable

DEP Form No. 62-210.900(1) - Form Effective: 06/16/03

Owner/Authorized Representative Statement

Complete if applying for an air construction permit or an initial FESOP.

1. Owner/Authorized Representative Name:

Charles Wiley, Production Supervisor

2. Owner/Authorized Representative Mailing Address...

Organization/Firm: HYDRO SPA

Street Address: 13055 49TH Street, North

City: Clearwater

State: Florida

Zip Code: **33762**

3. Owner/Authorized Representative Telephone Numbers...

Telephone: (727) 573 - 9611

ext.

Fax: (727) 573 - 7758

4. Owner/Authorized Representative Email Address:

5. Owner/Authorized Representative Statement:

I, the undersigned, am the owner or authorized representative of the facility addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the statutes of the State of Florida and rules of the Department of Environmental Protection and revisions thereof and all other requirements identified in this application to which the facility is subject. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit.

Signature

Date

1-26-05

DEP Form No. 62-210.900(1) - Form

Effective: 06/16/03

4

Pr	ofessional Engineer Certification			
1.	Professional Engineer Name: Darrel James Graziani			
	Registration Number: 44685			
2.	Professional Engineer Mailing Address			
	Organization/Firm: Southern Environmental Sciences, Inc.			
	Street Address: 1204 North Wheeler Street			
	City: Plant City State: Florida Zip Code: 33563			
3.	Professional Engineer Telephone Numbers			
	Telephone: (813) 752 - 5014 ext.226 Fax: (813) 752 - 2475			
4.	Professional Engineer Email Address: dgraziani@sesfla.com			
5.	Professional Engineer Statement:			
	I, the undersigned, hereby certify, except as particularly noted herein*, that:			
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and			
	(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.			
	(3) If the purpose of this application is to obtain a Title V air operation permit (check here \square , if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.			
	(4) If the purpose of this application is to obtain an air construction permit (check here \square , if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here \square , if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.			
	(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units (check here \(\mathbb{X}\), if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions application for air construction permit and with all provisions application. Signature Date			
1	1-21-05			
1	Signature Date			
1,5				
* 4	Hydro Spa, Ocala Facility			

* Attachany exception to extrication state of the control of the c

A. GENERAL FACILITY INFORMATION

Fa	cility Location and	Type					
1.	Facility UTM Coor	2.	2. Facility Latitude/Longitude				
	Zone 17 East (km) 384.08			Latitude (1	OD/MM/	(SS) 29/14/9.6	
	Nort	th (km) 3234.5	66	Longitude	(DD/MN	M/SS) 82/11/34.8	
3.	Governmental Facility Code:	4. Facility S Code:	tatus 5.	Facility M Group SIC		6. Facility SIC(s): 3088	
7.	Facility Comment :					<u> </u>	
	The facility is located in Marion County which is designated as attainment for ozone, sulfur dioxide, carbon monoxide, and nitrogen dioxide, and unclassifiable for lead and PM-10. The facility is located more than 10 kilometers from the nearest PSD Class I area.						
Fa	cility Contact						
1.	Facility Contact N		Wiley Brodu	otion Sunon	door.		
2	Facility Contact N		Wiley, Produ	Cuon Super	risor		
2.	Facility Contact M Organization/Firm	•	·				
	· ·	: 13055 49 th Str	oot North				
			•	: Florida	7:-	Codo: 22762	
	-	: Clearwater		. FIORIUA	<u> </u>	Code: 33762	
3.	Facility Contact T Telephone: (727)	*	ext.	Fax: (72	7) 573 - 7	758	
4.	Facility Contact E	mail Address:					
Co	cility Primary Resp implete if an "appli cility "primary resp	cation respons	sible official	' is identifie	ed in Sec	tion I. that is not the	
1.	Facility Primary Re	esponsible Offic	cial Name:				
2.	Facility Primary Re Organization/Firm:	-	cial Mailing	Address			
	Street Address:					•	
	City	:	State:		Zip	Code:	
-		** 1 0 00	1.100.1.1	NT 1		·	
3.	Facility Primary Re	esponsible Office	ciai Telephor	ie Numbers.	•		
3.	Telephone: (esponsible Offic	ext.	e Numbers. Fax:	 ()	-	

DEP Form No. 62-210.900(1) - Form

Facility Regulatory Classifications

Check all that would apply *following* completion of all projects and implementation of all other changes proposed in this application for air permit. Refer to instructions to distinguish between a "major source" and a "synthetic minor source."

1.		Small Business Stationary Source	Unknown			
	<u> </u>					
2.	<u> </u>	Synthetic Non-Title V Source				
3.	\boxtimes	Title V Source				
4.		Major Source of Air Pollutants, Other than Hazardous A	Air Pollutants (HAPs)			
5.	\boxtimes	Synthetic Minor Source of Air Pollutants, Other than Ha	APs			
6.	\boxtimes	Major Source of Hazardous Air Pollutants (HAPs)				
7.		Synthetic Minor Source of HAPs				
8.		One or More Emissions Units Subject to NSPS (40 CFR	R Part 60)			
9.		One or More Emissions Units Subject to Emission Guid	lelines (40 CFR Part 60)			
10.	\boxtimes	One or More Emissions Units Subject to NESHAP (40	CFR Part 61 or Part 63)			
11.		Title V Source Solely by EPA Designation (40 CFR 70.	3(a)(5))			
12.	Fac	cility Regulatory Classifications Comment:				
		nthetic minor source under the Preconstruction Review Pr issions of less than 250 tons per year. (Rule 62-212.400, F				
	Major source under Section 112 of the federal Clean Air Act (Hazardous Air Pollutant (HAP) program) based on potential emissions of more than 10 tons of any individual HAP and 25 tons of total HAPS.					
	Major source under Title V (Chapter 62-213, F.A.C.) based on the HAP designation and potential emissions of VOC greater than 100 tons.					
	New Facility under 40 CFR Part 63, Subpart WWWW, limited to less than 100 tons per year of HAP emissions.					

DEP Form No. 62-210.900(1) - Form

List of Pollutants Emitted by Facility

2. Pollutant Classification	3. Emissions Cap [Y or N]?		
A- HAP/Title V	Y		
A – HAP/Title V	N		
A – Title V SM - PSD	Y		
	A - HAP/Title V A - HAP/Title V A - Title V		

B. EMISSIONS CAPS

Facility-Wide or Multi-Unit Emissions Caps

1. Pollutant Subject to Emissions Cap	2. Facility Wide Cap [Y or N]? (all units)	3. Emissions Unit ID No.s Under Cap (if not all units)	4. Hourly Cap (lb/hr)	5. Annual Cap (ton/yr)	6. Basis for Emissions Cap
voc	Y	001	NA	245	ESCPSD
HAP	Y	001	NA	98	ESCMACT

7. Facility-Wide or Multi-Unit Emissions Cap Comment:

The MACT Standard (40 CFR Part 63, Subpart WWWW) establishes total HAP emission limits for various operations. For new sources that cap annual emissions below 100 tons per year these standards include work practices and HAP content restrictions on resins.

For VOCs the facility is regulated through a cap and subject to the requirements of Rule 62-296.320, F.A.C. Since the facility is a new source under the PSD regulations, BACT would be triggered if VOC emissions exceed 250 TPY. As such, a facility wide cap on VOC emissions was established to avoid PSD and subsequent BACT that would require add-on controls not required by the MACT Standard.

9

C. FACILITY ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

	permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: ARAA-01 Previously Submitted, Date:
2	 Process Flow Diagram(s): (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: ARAA-02 Previously Submitted, Date:
3	Precautions to Prevent Emissions of Unconfined Particulate Matter: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: ARAA-03 Previously Submitted, Date:
A	Additional Requirements for Air Construction Permit Applications
1	. Area Map Showing Facility Location: Attached, Document ID: Not Applicable (existing permitted facility)
2	Description of Proposed Construction or Modification: Attached, Document ID:
3	Rule Applicability Analysis: Attached, Document ID:
4	List of Exempt Emissions Units (Rule 62-210.300(3)(a) or (b)1., F.A.C.): Attached, Document ID: Not Applicable (no exempt units at facility)
5	Fugitive Emissions Identification (Rule 62-212.400(2), F.A.C.): Attached, Document ID: Not Applicable
6	 Preconstruction Air Quality Monitoring and Analysis (Rule 62-212.400(5)(f), F.A.C.): Attached, Document ID: Not Applicable
7	Ambient Impact Analysis (Rule 62-212.400(5)(d), F.A.C.): Attached, Document ID: Not Applicable
8	R. Air Quality Impact since 1977 (Rule 62-212.400(5)(h)5., F.A.C.): Attached, Document ID: Not Applicable
S	Additional Impact Analyses (Rules 62-212.400(5)(e)1. and 62-212.500(4)(e), F.A.C.): Attached, Document ID: Not Applicable
	0. Alternative Analysis Requirement (Rule 62-212.500(4)(g), F.A.C.): Attached, Document ID: Not Applicable

DEP Form No. 62-210.900(1) - Form

Additional Requirements for FESOP Applications 1. List of Exempt Emissions Units (Rule 62-210.300(3)(a) or (b)1., F.A.C.): Attached, Document ID: Not Applicable (no exempt units at facility) Additional Requirements for Title V Air Operation Permit Applications 1. List of Insignificant Activities (Required for initial/renewal applications only): Attached, Document ID: **ARTV-01** Not Applicable (revision application) 2. Identification of Applicable Requirements (Required for initial/renewal applications, and for revision applications if this information would be changed as a result of the revision being sought): Attached, Document ID: ARTV-02 Not Applicable (revision application with no change in applicable requirements) 3. Compliance Report and Plan (Required for all initial/revision/renewal applications): Attached, Document ID: ARTV-03 Note: A compliance plan must be submitted for each emissions unit that is not in compliance with all applicable requirements at the time of application and/or at any time during application processing. The department must be notified of any changes in compliance status during application processing. 4. List of Equipment/Activities Regulated under Title VI (If applicable, required for initial/renewal applications only): Attached, Document ID: Equipment/Activities On site but Not Required to be Individually Listed Not Applicable 5. Verification of Risk Management Plan Submission to EPA (If applicable, required for initial/renewal applications only): Attached, Document ID:___ Not Applicable 6. Requested Changes to Current Title V Air Operation Permit: Not Applicable Attached, Document ID: Additional Requirements Comment

11

DEP Form No. 62-210.900(1) - Form

EMISSIONS UNIT INFORMATION Section [1] of [1]

III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application for air permit. Some of the subsections comprising the Emissions Unit Information Section of the form are optional for unregulated emissions units. Each such subsection is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised/renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. The air construction permitting classification must be used to complete the Emissions Unit Information Section of this application for air permit. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air construction permitting and insignificant emissions units are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

DEP Form No. 62-210.900(1) - Form

Section [1]

of [1]

A. GENERAL EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Emissions Unit Classification

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)						
	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.						
	☐ The emis	sions unit addressed d emissions unit.	in this Emissio	ns U	Init Information S	ecti	on is an
<u>En</u>	nissions Unit	Description and Sta	tus				
1.							
		ssions Unit Informaticess or production un			•		•
2.	Description of	of Emissions Unit Ad	dressed in this	Sec	tion:		
	Reinfo	orced Plastic Compos	ites Productior	ı Fac	cility and Associat	ed A	activities.
3.	Emissions U	nit Identification Nur	nber: 001				
4.	4. Emissions Unit Status 5. Commence Construction Code: 6. Initial Startup Code: 7. Emissions Unit Major Group Date: 8. Acid Rain Unit Major Group Date: ☐ Yes SIC Code: A Date: 03/11/2003 30						
9.	Package Unit			Ma	dal Nissaalaass		
10.	Manufacturer: Model Number: 0. Generator Nameplate Rating: MW						
		nit Comment:					
	This facility is a new source under the PSD regulations and the MACT Standard (40 CFR Part 63, Subpart WWWW)						

DEP Form No. 62-210.900(1) - Form

Section [1] of [1]

Emissions Unit Control Equipment

1.	Control Equipment/N	lethod(s) Description:

Low HAP Content Resins as Specified in Table 3 of 40 CFR Part 63, Subpart WWWW

Work Practices including use of non-HAP solvent cleaners; mechanical, nonatomized applicators; and manual applications as specified in Tables 3 and 4 of Subpart WWWW

The building ventilation system is used to disperse emissions into the atmosphere to avoid and/or minimize odor impacts off site.

2. Control Device or Method Code(s): 102

DEP Form No. 62-210.900(1) - Form

Section [1] of [1]

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

	Maximum Process or Throughp	ut Rate: 2,470 tons-resin/year	
2.	Maximum Production Rate:		
3.	Maximum Heat Input Rate:	million Btu/hr	
4.	Maximum Incineration Rate:	pounds/hr	
•		tons/day	
5.	Requested Maximum Operating	Schedule:	
		hours/day	days/week
		weeks/year	8,760 hours/year
6.	Operating Capacity/Schedule Co	omment:	
	The annual throughput rate is and the requested emissions c	based on allowable emission	o of 97 ih HAD/ton rooin

DEP Form No. 62-210.900(1) - Form

Section [1] of [1]

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1.	Identification of Point on Plot Plan or Flow Diagram: EU001			2.	Emission Point T 3	Type Code:	
3. Descriptions of Emission Points Comprising this Emissions Unit for VE Tracking: Building Exhaust Stacks Used for Building Ventilation and Resin/Foam/Stain Applications (Segments) 4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common:							
5.	 Discharge Type Code: Stack Height 			 :		7. Exit Diameter:	
8.	±			metric Flow Rate:		(1) feet 10. Water Vapor: Ambient %	
11	11. Maximum Dry Standard Flow Rate: dscfm		12.	Nonstack Emissi 6 feet	on Point Height:		
13	Zone: 17 Eas	Emission Point UTM Coordinates Zone: 17 East (km): 17 North (km): 17		14.	Latitude (DD/MI	Latitude/Longitude M/SS) 19/14/9.6 MM/SS) 82/11/34.8	
15	. Emission Point Co	mment	•				
	1 24 2 30 3 24 4 24 5 30	neter in. in. in. in. in. in.	Flow 10,084 ACF 13,630 ACF 10,084 ACF 10,084 ACF 13,630 ACF	M M M M			

DEP Form No. 62-210.900(1) - Form

Section [1]

of [1]

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 6

1. Segment Description (Process/Fuel Type):

Open Molding							
2. Source Classification Code (SCC): 3. SCC Units: Tons							
4. Maximum Hourly Rate: 0	5. Maximum 2,	Annual Rate:	6. Estimated Annual Activity Factor:				
7. Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:				
10. Segment Comment: Non-CR/HS & Tooling Resins (Table 3, Subpart WWWW) Both Mechanical Non-Atomized and Manual Applications The annual rate reported is not a cap. Tooling Resins are a small portion of the total resin usage.							
Segment Description and R	ate: Segment	2 of 6					
1. Segment Description (Pro	cess/Fuel Type):	***************************************					
	Resin Activ	rator					
2. Source Classification Cod 3-08-007-24	le (SCC):	3. SCC Units					
4. Maximum Hourly Rate:	5. Maximum	Annual Rate: 49	6. Estimated Annual Activity Factor: 1.5-2.0%				
7. Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:				
10. Segment Comment: The resin activator is used	d at a rate of 1.5 t	o 2.0 pounds per	100 pounds of resin.				

DEP Form No. 62-210.900(1) - Form

Section [1] of [1]

D. SEGMENT (PROCESS/FUEL) INFORMATION (CONTINUED)

Segment Description and Rate: Segment 3 of 6							
1. Segment Description (Process/Fuel Type):							
Resin Storage/Mixing							
2. Source Classification Cod	e (SCC):	3. SCC Uni					
3-08-007-20			llons				
4. Maximum Hourly Rate: 0	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor: 8,000 gal			
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:			
10. Segment Comment:	<u> </u>	**					
Bulk	Storage/Mixing (1	able 4. Subpar	t WWV	vwı			
	Storage and Day						
Segment Description and Ra	ate: Segment	4 of 6					
1. Segment Description (Pro	cess/Fuel Type):						
	Spray Foor	n Application					
	Эргау гоаг	n Application					
2. Source Classification Cod	le (SCC):	3. SCC Uni	ts:	_			
3-08-007-20				Tons			
4. Maximum Hourly Rate:	5. Maximum 250	Annual Rate:	6.	Estimated Annual Activity Factor:			
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:			
10. Segment Comment:	<u></u>						
	!! /!!!! !		ul. 49.*	45 . 54			
Trace amounts of HAP em must be accounted for wit							
•							

DEP Form No. 62-210.900(1) - Form

Section [1] of [1]

D. SEGMENT (PROCESS/FUEL) INFORMATION (CONTINUED)

Segment Description and Ra	ite: Segment 5	of <u>6</u>						
1. Segment Description (Prod	cess/Fuel Type):	· · · · · · · · · · · · · · · · · · ·						
	Classin	O						
	Cleaning	Operations						
		· · · · · · · · · · · · · · · · · · ·						
2. Source Classification Cod 3-08-007-03	e (SCC):	3. SCC Units: Tons						
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:				
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:				
10. Segment Comment:	<u> </u>		<u> </u>					
Non-HAP, VC	C-Containing So	olvents (e.g., Isop	ropa	anol. ect)				
,	_	bpart WWWW)	•	, ,				
Segment Description and Ra	ite: Segment	6 of 6	_					
1. Segment Description (Prod	cess/Fuel Type):							
	Miscellane	ous Materials						
		1						
2. Source Classification Cod- 3-08-007-99	e (SCC):	3. SCC Units: Tons						
4. Maximum Hourly Rate:	5. Maximum 10	Annual Rate:	6.	Estimated Annual Activity Factor:				
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:				
10. Segment Comment:			L.,					
VOC & HAP Containing Ma	terials such as h	ut not limited to \	Nate	er Based Stains. PVC				
Pipe Primers/Glues, ect								

DEP Form No. 62-210.900(1) - Form

Section [1]

of

[2]

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
HAPS	102		EL
H163			NS
VOC			EL
		· · · · · · · · · · · · · · · · · · ·	
<u> </u>			

EMISSIONS UNIT INFORMATION Section [1] of [1]

POLLUTANT DETAIL INFORMATION
Page [1] of [2]

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Pollutant Emitted: HAPS	2. Total Perce	ent Efficier	ncy of Control: Floor
Potential Emissions:			netically Limited?
lb/hour 98	tons/year	X Y	es
	applicable):		
·			
Emission Factor: NA			7. Emissions
			Method Code:
Reference: Mass Balance Calculation			2
Calculation of Emissions:			
See Document I	D No. EU001-07	,	
Pollutant Potential/Estimated Fugitive Emis	sions Commen	t:	·
POTENTIAL EMISSION	= ALLOWABLE	EMISSION	S
Based on Open Mo	lding non-CR/H	S Resin	
	Potential Emissions: Ib/hour	Potential Emissions: Ib/hour 98 tons/year	HAPS Potential Emissions: 1b/hour 98 tons/year Range of Estimated Fugitive Emissions (as applicable): to tons/year Emission Factor: NA Reference: Mass Balance Calculation

DEP Form No. 62-210.900(1) - Form

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1.	Pollutant Emitted: VOC	2. Total Perce	ent Efficie N	•	of Control:	
3.	Potential Emissions:				ally Limited?	
	lb/hour 245	tons/year	∑ Y	es	∐ No	
5.	Range of Estimated Fugitive Emissions (as	applicable):				
	to tons/year					
6.	Emission Factor: NA			7.	Emissions	
					Method Code:	
	Reference: Mass Balance Calculation				2	
8.	Calculation of Emissions:					
	See Document ID No. EU001-07					
9.	Pollutant Potential/Estimated Fugitive Emis	sions Commen	 t:	_		
	_					
	POTENTIAL EMISSION	= ALLOWABLE	EMISSION	IS		
	Based on facility wide	solvent/chemic	cal usages	į.		

22

DEP Form No. 62-210.900(1) - Form

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: H163	2. Total Percent Efficiency of Control: NA
3. Potential Emissions: lb/hour 96.5	4. Synthetically Limited? Tons/year Yes No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):
6. Emission Factor: 78.2 lb/ton of resin	7. Emissions Method Code:
Reference: 40 CFR Part 63, Subpart WWW	W 2
8. Calculation of Emissions: See Document I	
9. Pollutant Potential/Estimated Fugitive Emis	sions Comment:

23

DEP Form No. 62-210.900(1) - Form

POLLUTANT DETAIL INFORMATION Page [1] of [2]

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

emissions limitation.	
Allowable Emissions Allowable Emissions	<u>1</u> of <u>3</u>
Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units: 87 lb/ton	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
	oing System 3, Subpart WWWW
6. Allowable Emissions Comment (Description	n of Operating Method):
40 CFR Part 63. Subpart WWWW. Table 3 f	or Open Molding Operations – non-CR/HS .
	or open moraling operations men ereme.
Allowable Emissions Allowable Emissions	2 of 3
Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions: April 21, 2006
3. Allowable Emissions and Units: 254 lb/ton	4. Equivalent Allowable Emissions: lb/hour tons/year
	eping System 3, Subpart WWWW
6. Allowable Emissions Comment (Description	n of Operating Method):
	3 for Open Molding Operations – Tooling. n of Resin Use)
Allowable Emissions Allowable Emissions	3 of <u>3</u>
Basis for Allowable Emissions Code: ESCPSD	Future Effective Date of Allowable Emissions: Upon Permit Issuance
3. Allowable Emissions and Units: 245 tons per year	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	10/110th tolls/year
Recordke	eping System 3, Subpart WWWW
6. Allowable Emissions Comment (Descriptio	n of Operating Method):

DEP Form No. 62-210.900(1) - Form

EMISSIONS UNIT INFORMATION Section [1] of [1]

G. VISIBLE EMISSIONS INFORMATION

Complete if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

<u>V 13</u>	sidie Emissions Limitation: Visible	T:1111221	ons Emmanon I of I		
1.	Visible Emissions Subtype: VE20		2. Basis for Allowable Rule	Opacity: Other	
3.	Allowable Opacity: Normal Conditions: 20 % Maximum Period of Excess Opacity		cceptional Conditions:	100 % ⁽¹⁾ min/hour	
4.	Method of Compliance:				
		EPA M	ethod 9		
5.	Visible Emissions Comment:	,			
	General opacity standard (R	ule 62-	296.320, F.A.C.) applicable	facility wide.	
	Note: 1 - The exceptional condition	reflects	the Excess Emissions Rule of 62	2-210.700(1), F.A.C.	
Vis	sible Emissions Limitation: Visible	Emissi	ons Limitation of _		
1.	Visible Emissions Subtype:		2. Basis for Allowable Rule	Opacity: Other	
3.	Allowable Opacity:	_		•	
	Normal Conditions: % Maximum Period of Excess Opacity		cceptional Conditions: ed:	% min/hour	
4.	Method of Compliance:				
5.	Visible Emissions Comment:				

DEP Form No. 62-210.900(1) - Form

Section [1] of [1]

H. CONTINUOUS MONITOR INFORMATION

Complete if this emissions unit is or would be subject to continuous monitoring.

<u>Co</u>	Continuous Monitoring System: Continuous Monitor of					
1.	Parameter Code:	2. Pollu	tant(s):			
3.	CMS Requirement:	Rule		Other		
4.	Monitor Information Manufacturer:					
	Model Number:	Serial Number:				
5.	Installation Date:	6. Perfo	rmance Spe	cification Test Date	:	
	C. Maritani Gradama C. Linna	N. C				
	ntinuous Monitoring System: Continuous					
	Parameter Code:		ofof			
	Parameter Code:			Other		
1.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. P	ollutant(s):	Other		
3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer: Model Number:	2. P	ollutant(s):	Other		
3.	Parameter Code: CMS Requirement: Monitor Information Manufacturer:	2. P	ollutant(s):	Other	Date:	

DEP Form No. 62-210.900(1) - Form Effective: 06/16/03

Section [1] of [1]

H. CONTINUOUS MONITOR INFORMATION (CONTINUED)

Complete if this emissions unit is or would be subject to continuous monitoring.

1		inuous Monitor of		
1.	Parameter Code:	2. Pollutant(s):		
3.	CMS Requirement:	Rule Other		
4.	Monitor Information Manufacturer:			
	Model Number:	Serial Number:		
5.	Installation Date:	6. Performance Specification Test Date:		
7.	Continuous Monitor Comment:			
<u>C</u>	ontinuous Monitoring System: Conti	inuous Monitor of		
_				
1.	Parameter Code:	2. Pollutant(s):		
3.	Parameter Code: CMS Requirement:	2. Pollutant(s): Rule Other		
3.	CMS Requirement: Monitor Information			
3.	CMS Requirement: Monitor Information Manufacturer: Model Number:	Rule Other Serial Number:		
3.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other		
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:		
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:		
3. 4. 5.	CMS Requirement: Monitor Information Manufacturer: Model Number: Installation Date:	Rule Other Serial Number:		

DEP Form No. 62-210.900(1) - Form

EMISSIONS UNIT INFORMATION Section [1] of [1]

I. EMISSIONS UNIT ADDITIONAL INFORMATION

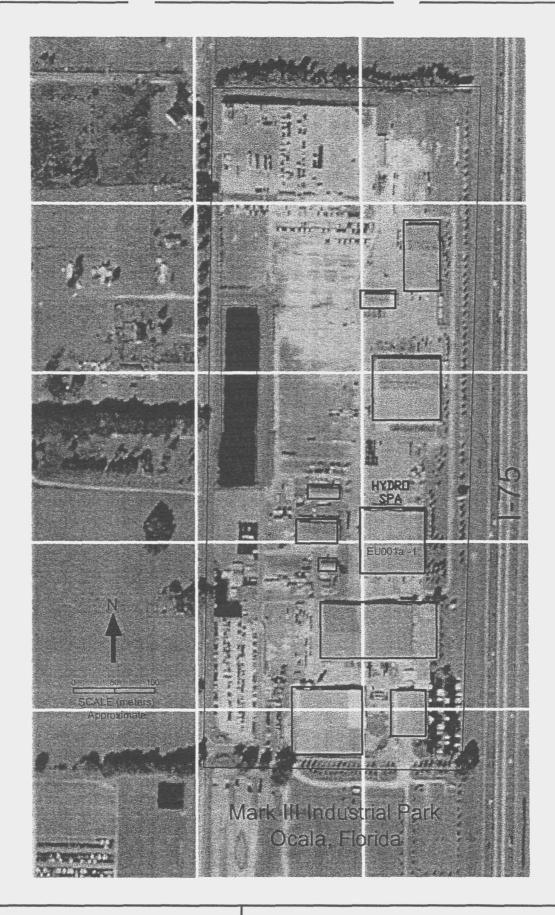
Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: ARAA-02 Previously Submitted, Date
2.	Fuel Analysis or Specification (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
3.	Detailed Description of Control Equipment (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date
4.	Procedures for Startup and Shutdown (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable (construction application)
5.	Operation and Maintenance Plan (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date Not Applicable
6.	Compliance Demonstration Reports/Records Attached, Document ID: Test Date(s)/Pollutant(s) Tested: Previously Submitted, Date:
	Test Date(s)/Pollutant(s) Tested: To be Submitted, Date (if known): Test Date(s)/Pollutant(s) Tested:
	Note: For FESOP applications, all required compliance demonstration records/reports must be submitted at the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute Attached, Document ID: <u>EU001-07</u> Not Applicable

DEP Form No. 62-210.900(1) - Form

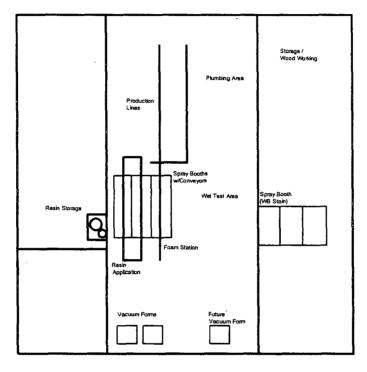
Section [1] of [1]

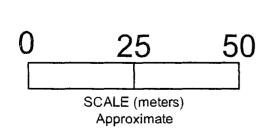
Addi	itional R	equirements	for Air C	Construction F	Permit Applications


1. Control Technology Review and Analysis (Rules 62-212.400(6) and 62-212.500(7),	
F.A.C.; 40 CFR 63.43(d) and (e)) Attached, Document ID: Not Applicable	
2. Good Engineering Practice Stack Height Analysis (Rule 62-212.400(5)(h)6., F.A.C., an	<u></u>
Rule 62-212.500(4)(f), F.A.C.)	
At tached, Document ID: Not Applicable	
3. Description of Stack Sampling Facilities (Required for proposed new stack sampling	
facilities only) Attached, Document ID: Not Applicable	
Attached, Document ID: Not Applicable	
Additional Requirements for Title V Air Operation Permit Applications	
1. Identification of Applicable Requirements	
Attached, Document ID: ARTV-02	
2. Compliance Assurance Monitoring	
Attached, Document ID: Not Applicable	
3. Alternative Methods of Operation	
Attached, Document ID: <u>EU001-13</u> Not Applicable	
4. Alternative Modes of Operation (Emissions Trading)	
Attached, Document ID: Not Applicable	
5. Acid Rain Part Application	
Certificate of Representation (EPA Form No. 7610-1)	
Copy Attached, Document ID:	
Acid Rain Part (Form No. 62-210.900(1)(a))	
Attached, Document ID:	
Previously Submitted, Date:	
Repowering Extension Plan (Form No. 62-210.900(1)(a)1.)	
Attached, Document ID:	
Previously Submitted, Date:	
New Unit Exemption (Form No. 62-210.900(1)(a)2.)	
Attached, Document ID:	
Previously Submitted, Date:	
Retired Unit Exemption (Form No. 62-210.900(1)(a)3.) Attached, Document ID:	
Previously Submitted, Date:	
Phase II NOx Compliance Plan (Form No. 62-210.900(1)(a)4.)	
Attached, Document ID:	
Previously Submitted, Date:	
Phase II NOx Averaging Plan (Form No. 62-210.900(1)(a)5.)	
Attached, Document ID:	
Previously Submitted, Date:	
Not Applicable □ Not Applicable	

DEP Form No. 62-210.900(1) - Form

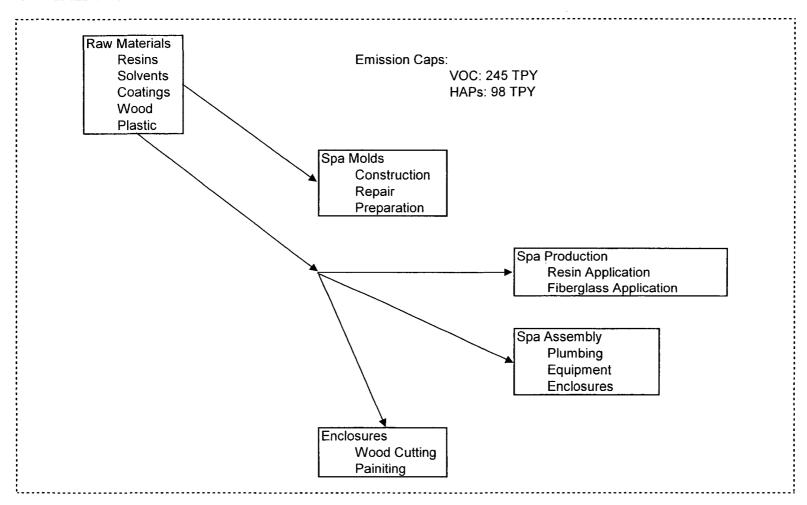
EMISSIONS UNIT INFORMATION Section [1] of [1] Additional Requirements Comment


DEP Form No. 62-210.900(1) - Form


DOCUMENT ID: ARAA-01 FACILITY PLOT PLAN

HYDRO SPA - OCALA FACILITY 5401 44th Ave., NW Ocala, Florida, 24482 SOUTHERN ENVIRONMENTAL SCIENCES, INC. PLANT CITY, FLORIDA 33563 Phone - (813) 752-5014

HYDRO SPA



HYDRO SPA - OCALA FACILITY 5401 44th Ave., NW Ocala, Florida, 24482 SOUTHERN ENVIRONMENTAL SCIENCES, INC. PLANT CITY, FLORIDA 33563 Phone - (813) 752-5014

DOCUMENT ID: ARAA-02 PROCESS FLOW DIAGRAM

HYDRO SPA SIMPLIFIED PROCESS FLOW DIAGRAM

DOCUMENT ID: ARAA-03 PRECAUTIONS TO PREVENT EMISSIONS OF UNCONFINED PARTICULATE MATTER

Document ID: ARAA-03 Precautions to Prevent Emissions of Unconfined Particulate Matter

Unconfined particulate matter emissions from the Hydro Ocala facility are expected to be minor since the manufacturing operations will be contained within the building. Potential emissions associated with the operation and maintenance of the facility include the following activities:

- Solid Waste Materials; and
- Roads & Parking Areas.

Reasonable precautions to prevent and/or control unconfined particulate matter emissions include the following:

- Solid Waste Materials: Proper disposal of wastes (e.g. saw dust, pipe cutting...) in a dumpster or similar container.
- Roads & Parking Areas: Clean-up of any spilled materials, the application of water, and the removal of accumulated materials on the paved areas.

DOCUMENT ID: ARTV-01 LIST OF INSIGNIFICANT ACTIVITIES

Document ID: ARTV-01 <u>List of Exempt and/or Insignificant Activities</u>

The following activities are either exempt or insignificant based on the Rules 62-210 or 62-213, F.A.C.:

Activity	Exempt or Insignificant			
Internal Combustion Engines associated with on-site activities including truck, cars, motorcycles, and forklifts.	1	1		
Vacuum Pumps associated with the Mold Setting Activities	1	1		
Space Heating Activities	1	1		
Laboratory Equipment used for chemical and/or physical analyses	1	1		
Fire and Safety Equipment	1	1		
Surface Coating Activities using coatings containing 5.0 percent or less VOCs, by volume, except that such emissions shall be calculated in to the facility-wide emissions for purposes of the VOC emissions cap.	1	٧		
Non-HAP and Non-VOC Solvent Storage and Cleaning Activities	V	V		
HAP and VOC Solvent Storage activities in containers of less than 55 gallons. (Excludes Bulk Storage)	٧	1		
Janitorial and Office Supplies and Materials containing small amounts of either HAPs or VOCs	٧	1		
Miscellaneous Material Usages of less than 100 pounds per year.	\ \ \	1		

DOCUMENT ID: ARTV-02 IDENTIFICATION OF APPLICABLE REQUIREMENTS

Document ID: ARTV-02 Identification of Applicable Requirements

The Ocala facility produces spa pools through an open molding process using styrene-containing resins. The source activities have been classified as "Reinforced Plastic Composites Production" and as a new source under the MACT Standard (40 CFR Part 63, Subpart WWWW). Under the current construction permit emissions are capped as follows:

- Volatile Organic Compounds (VOC): 245 tons/year
- Hazardous Air Pollutant Emissions: 98 tons/year

The facility is located more than 10 kilometers from the nearest PSD Class I Area, in an area designated either unclassifiable or attainment for the criteria air pollutants.

The facility is classified as follows:

- Synthetic Minor Source under the PSD Program (PTE < 250 TPY for PSD Pollutants).
- Major Source under the HAP Program (PTE >10 TPY Individual HAP & >25 TPY Total HAP).
- Major Source under the Title V Program.

The specific emission limiting regulations, permitting requirements and reporting requirements are discussed below.

Emission Limiting Standards

Based on the emissions caps and the area's attainment status for the pollutant ozone, VOC emissions have been capped below the major source threshold (250 tons per year) for PSD applicability and thus not subject to any case-by-case BACT determination or specific emission limiting standards.

As a major source of HAP emissions, with a promulgated MACT Standard, the source was not subject to a case-by-case MACT determination under 40 CFR Part 63.

As an new major source of HAP emissions, the source is subject to the emission limiting standards and work practice requirements contained in Tables 3 and 4 of the promulgated MACT Standard.

The facility is not subject to the major source RACT requirements of Rule 62-296.570, F.A.C. since the facility is not located in one of the designated counties.

The facility is not subject to the PM RACT requirements of Rule 62-296.700, F.A.C. since the facility's particulate matter emissions are associated with unconfined emissions and located more than 5 kilometers outside the Hillsborough County Maintenance Area.

The facility is subject to the General Pollutant Emission Limiting Standards of Rule 62-296.320, F.A.C. that specifies additional work practices to reduce emissions of VOC and organic solvents.

The facility is not subject to any federal NSPS standards.

Permitting Requirements

Based on the PTE associated with the applicable emission limiting standards and the emission caps, the facility is required to obtain a Title V operating permit under Chapters 62-210 and 62-213, F.A.C.

List of Applicable Regulations

Based on the applicable regulations and permitting requirements, the following is a list of applicable requirements:

List of Applicable Regulations

Rule 62-4.020, F.A.C	Rule 62-4.030, F.A.C.
Rule 62-4.040(1), F.A.C.	Rule 62-4.050(1), (2), (3), (4)(a)1., (4)(v),F.A.C.
Rule 62-4.050(5) – (8), F.A.C.	Rule 62-4.055(1) – (5), F.A.C.
Rule 62-4.070, F.A.C.	Rule 62-4.090, F.A.C.
Rule 62-4.100, F.A.C.	Rule 62-4.120(1) & (5), F.A.C.
Rule 62-4.130, F.A.C.	Rule 62-4.150, F.A.C.
Rule 62-4.160, F.A.C.	Rule 62-4.210, F.A.C.
Rule 62-4.220, F.A.C.	Rule 62-204.200, F.A.C.
Rule 62-204.800(2), F.A.C.	
Rule 62-204.800(9)(a), (b)8., (c), (d), & (e), F.A.C.	Rule 62-204.800(10)(a), (b)58., (c), (d) & (e), F.A.C.
Rule 62-204.800(13), F.A.C.	Rule 62-204.800(14), F.A.C.
Rule 62-204.800(22)(e), F.A.C.	Rule 62-210.200, F.A.C.
Rule 62-210.300(1), (2), (2)(a), F.A.C.	Rule 62-210.300(3)(a), (a)5, 9, 11, 12, 15, 20, 21, 22, 23, 24, 30. 31, 32, 33 F.A.C.
Rule 62-210.300(3)(b)1., F.A.C.	Rule 62-210.350(1), (3), F.A.C.
Rule 62-210.360(1), F.A.C.	Rule 62-210.370(3)(a) & (c), F.A.C.
Rule 62-210.550, F.A.C.	Rule 62-210.650, F.A.C.
Rule 62-210.700, F.A.C., except (2) & (3)	Rule 62-210.900(1), (5) & (7), F.A.C.
Rule 62-212.300, F.A.C.	Rule 62-212.400(2)(d)1., F.A.C.
Rule 62-213.205(1) & (4), F.A.C.	Rule 62-213.400, F.A.C.
Rule 62-213.410, F.A.C.	Rule 62-213.412, F.A.C., except (3)
Rule 62-213.413(1), (2) & (3) F.A.C.	Rule 62-213.420, F.A.C.
Rule 62-213.430(3), (4) & (6), F.A.C.	Rule 62-213.440, F.A.C.
Rule 62-213.460, F.A.C.	Rule 62-213.900(1) & (7), F.A.C.
Rule 62-296.320(1), (2), (3), (4)(b) & (4)(c), F.A.C.	Rule 62-297.310, F.A.C
Rule 62-297.401(9), F.A.C.	Rule 62-256.200, F.A.C.
Rule 62-256.300, F.A.C.	Rule 61-256.600, F.A.C
Rule 62-256.700(3), (4) & (5), F.A.C.	Rule 62-257.200, F.A.C.
Rule 62-257.301, F.A.C.	Rule 62-257.400, F.A.C.
Rule 62-257.900, F.A.C.	40 CFR 52.21
40 CFR 52.27	40 CFR Part 61, Subpart M

List of Applicable Regulations

40 CFR Part 63.1	40 CFR Part 63.2
40 CFR Part 63.3	40 CFR Part 63.4
40 CFR Part 63.5, except (d)(2)	40 CFR Part 63.6, except (e)(3), (f)(1), (h), (i), (j)
40 CFR Part 63.9, except (b)(4), (b)(5), (c), (d), (e), (f), (g)	40 CFR Part 63.10, except (b)(2), (c), (d)(3) – (5), (e)
40 CFR Part 63.12	40 CFR Part 63.13
40 CFR Part 63.14	40 CFR Part 63.15
40 CFR Part 63.5785(a)	40 CFR Part 63.5790(a), (b), (c)
40 CFR Part 63.5795(a) & (b)	40 CFR Part 63.5796
40 CFR Part 63.5797	40 CFR Part 63.5798
40 CFR Part 63.5799(a), (b) &(b)(1)	40 CFR Part 63.5800
40 CFR Part 63.5805(c), (e), (f), & (g)	40 CFR Part 63.5810
40 CFR Part 63.5835(a) & (c)	40 CFR Part 63.5840
40 CFR Part 63.5860(a)	40 CFR Part 63.5895(c), (d)
40 CFR Part 63.5900(a)(2), (a)(3), (a)(4)	40 CFR Part 63.5900(b), (c)
40 CFR Part 63.5905	40 CFR Part 63.5910, except (b)(6), (e), (f), (g),(h)
40 CFR Part 63.5915(a), (c), (d),	40 CFR Part 63.5920
40 CFR Part 63.5925	40 CFR Part 63.5935
40 CFR Part 63, Subpart WWWW – Table 1	40 CFR Part 63, Subpart WWWW – Table 2
40 CFR Part 63, Subpart WWWW – Table 3	40 CFR Part 63, Subpart WWWW - Table 4
40 CFR Part 63, Subpart WWWW – Table 5	40 CFR Part 63, Subpart WWWW – Table 6
40 CFR Part 63, Subpart WWWW – Table 7	40 CFR Part 63, Subpart WWWW – Table 8
40 CFR Part 63, Subpart WWWW – Table 9	40 CFR Part 63, Subpart WWWW – Table 13
40 CFR Part 63, Subpart WWWW – Table 14	40 CFR Part 63, Subpart WWWW – Table 15
40 CFR Part 63, Subpart WWWW – Appendix A	

DOCUMENT ID: ARTV-03 COMPLIANCE REPORT AND PLAN

COMPLIANCE REPORT & PLAN

INTRODUCTION

The Title V operating permit program defines a major source within Rule 62-210.200. F.A.C. Under this definition, the Ocala facility is classified as a major source based on potential emissions of 10 tons per year or more of styrene, 25 tons per year or more of total hazardous air pollutants (HAPs) and more than 100 tons per year of volatile organic compounds. Emissions are generated during the use of resins associated with the production of the spa pools and other miscellaneous activities. As a major source, the Ocala facility is required to have a Title V Operating Permit and to renew the permit every five (5) years. The current air construction permit is scheduled to expire on December 30, 2005 and submittal of the Title V permit application is due at least 180 prior to expiration.

Hydro Spa requested Southern Environmental Sciences, Inc. (SES) to develop the Title V application for the facility. As part of the application development process, SES reviewed the emissions inventory and completed a regulatory compliance assessment of the facility. SES's assessment focused on the following areas:

- Air Construction Permit and
- Federal and State Regulations.

The requirement to develop a Compliance Report is contained within Rule 62-210.900(1), F.A.C. as part of the instructions for completing the application form. In accordance with the instructions, the Compliance Report must address the compliance status of each emissions unit with respect to each applicable requirement and provide a description of the activities taken to achieve compliance. The Compliance Report forms the basis of the Compliance Certification, which must be signed by the Responsible Official. The signed Compliance Certification certifies the truth, accuracy, and completeness of the Compliance Report and the renewal application.

Based on the available information, the facility was found to be in compliance with the permitting requirements, the monitoring and reporting requirements, and the emission limiting in the current air construction permit.

SOURCE DESCRIPTION

The Ocala facility is engaged in the manufacture of spa pools and other miscellaneous activities. The operations include the preparation and repair of molds, the application of resins and fiberglass to the molds, product assembly, touch-up, equipment clean-up, and fugitive emissions from the building. The facility is located at 5401 44th Avenue, NW, Ocala, Marion County, Florida. The facility is located more than 10 kilometers from the nearest PSD Class I Area, in an area designated ether unclassifiable or attainment for the criteria air pollutants.

The facility is considered a new source under the federal and State preconstruction review regulations (40 CFR 52.21, Chapters 62-210.300, 62-212.300, and 62-212.400, F.A.C.). The facility is also classified as a major source under the Title III or hazardous air pollutant program (Title III of the 1990 CAAA) and as such a major source under the Title V operating permit program (40 CFR Part 70 and Chapters 62-210.200 and 62-213, F.A.C.

The facility contains a single regulated emissions units described as:

EU001 Reinforced Plastic Composites Production Facility and Associated Activities

In addition to the regulated emissions units, the facility includes insignificant and/or exempt emissions units and/or activities as listed in the permit application.

REGULATORY APPLICABILITY AND COMPLIANCE

The application contains the comprehensive list of air pollution regulations applicable to the facility. For purposes of the assessment, SES examined the existing regulations as of December 7, 2004 for purposes of assessing applicability and compliance. In addition, applicability and compliance were assessed against the following:

- Current Air Construction Permit and
- New Federal and State Regulations

The compliance assessment included contact with the Florida Department of Environmental Protection Inspector, a site visit on December 9, 2004, and the review and evaluation of the permit requirements, emission limitations, and other requirements as noted below.

PERMITS

Chapter 403.061(14) of the Florida Statues (FS) provides the FDEP with the authority to establish a permit system for the operation, construction or expansion of any air pollution source. Permits issued under this authorization are subject to the processing requirements of the Administrative Procedures Act, Chapter 120, F.S. The FDEP's permitting program begins in Chapter 62-4, F.A.C., which establishes the general requirements of the program including a prohibition on the construction, modification, or operation of a stationary installation without the appropriate and valid permits. Chapters 62-210, 62-212, 62-213 and 62-214, F.A.C. establish specific requirements of the FDEP's permitting programs.

Within Rule 62-210.300, F.A.C., the FDEP has established a requirement for all emissions units to obtain air pollution permits unless specifically exempted under 62-210.300(3) or exempted under the provisions of Chapter 62-4.040, F.A.C. The FDEP's specific permitting requirements for air pollution sources include the following:

- Rule 62-210.300(1) Requires air construction permits for new or modified emissions units;
- Rule 62-210.300(2) Requires air operation permits for all emissions units; and
- ◆ Rule 62-210.300(3) Categorical and generic emission unit exemptions.

The requirement for construction or modification permits includes major source permitting under the Prevention of Significant Deterioration (PSD) and New Sources Review for Nonattainment Areas (NSR-NAA) as specified in Rule 62-212, F.A.C. The requirement for operation permits includes major source permitting under Title V as specified in Rule 62-213, F.A.C. The Acid Rain permit requirements are contained within Rule 62-214, F.A.C.

EMISSION LIMITATIONS

Chapter 403.061(7) of the Florida Statues (FS) provides the FDEP with the authority to establish rules and regulations establishing emission limitations. The FDEP's emission limiting standards include both the general and specific requirements of Chapter 62-296, F.A.C. and the federal requirements adopted within Rule 62-204.800, F.A.C. In addition, Chapter 62-212, F.A.C., establishes Best Available Control Technology (BACT) and Lowest Achievable Emission Rate (LAER) requirements for new or modified major sources.

Within Chapter 62-296, F.A.C., the FDEP has adopted regulations that limit emissions and establish performance standards for a variety of emissions units. In addition, the FDEP has established emission limitation in the current operating permits. The regulations reviewed included the following:

- Rule 62-296.320, F.A.C. General Pollutant Emission Limiting Standards
- Rule 62-296.401-17, F.A.C Specific Emission Limiting and Performance Standards
- Rule 62-296.500, F.A.C. Reasonably Available Control Technology (RACT) for Volatile Organic Compounds (VOC) and Nitrogen Oxides (NOx) Emitting Facilities

- Rule 62-296.570, F.A.C. Reasonably Available Control Technology (RACT) for major VOC and NOx Emitting Facilities
- Rule 62-296.600, F.A.C. Reasonably Available Control Technology (RACT) for Lead
- Rule 62-296.700, F.A.C. Reasonably Available Control Technology (RACT) for Particulate Matter
- ◆ Rule 62-204.800(7), F.A.C. New Source Performance Standards (NSPS)
- ◆ Rule 62-204.800(8), F.A.C. National Emission Standards for Hazardous Air Pollutants (NESHAP) Part 61
- Rule 62-204.800(9), F.A.C. National Emission Standards for Hazardous Air Pollutants for Source Categories - Part 63

OTHER REQUIREMENTS

In addition to the requirements for permits and the emission limitations and performance standards presented above, compliance was also assessed versus the other federal and state requirements. These other requirements include any testing, recordkeeping, reporting, and/or notification requirements and can be specified either by regulation or contained within a specific condition of an air pollution permit.

The regulations and permits reviewed included the following:

Regulations

- ♦ Chapter 62-4, F.A.C. Permits
- ◆ Chapter 62-102, F.A.C. Rules of Administrative Procedures Rulemaking
- Chapter 62-103, F.A.C. Rules of Administrative Procedures Final Agency Action (Non-Rulemaking) and Appeal
- ♦ Chapter 62-150, F.A.C. Hazardous Substance Release Notification
- ♦ Chapter 62-210, F.A.C. Stationary Sources General Requirements
- ♦ Chapter 62-212, F.A.C. Stationary Sources Preconstruction Review
- ◆ Chapter 62-213, F.A.C. Operation Permits for Major Sources of Air Pollution
- Chapter 62-214, F.A.C. Requirements for Sources Subject to the Federal Acid Rain Program
- Chapter 62-252, F.A.C. Gasoline Vapor Control
- ◆ Chapter 62-256, F.A.C. Open Burning and Frost Protection Fires
- ◆ Chapter 62-257, F.A.C. Asbestos Removal
- ♦ Chapter 62-296, F.A.C. Stationary Sources Emission Standards
- ◆ Chapter 62-297, F.A.C. Stationary Sources Emissions Monitoring
- ◆ Chapter 120, F.S. Administrative Procedures Act
- ◆ Chapter 403, F.S. Environmental Control

Permit(s)

♦ 0830151-001-AC

The review examined the applicable regulations including procedural requirements and rights established under the regulations. The compliance assessment focused on specific requirements within the regulations that could be evaluated and a compliance status reported. These requirements included renewing permits, annual testing schedules, recordkeeping, and reporting requirements.

OBSERVATIONS AND FINDINGS

SES assessed compliance based on the emissions unit inventory, the regulations, and the current air construction permit. SES's findings included the following:

Permitting Requirements: SES noted that the Ocala Facility had not exceeded the emission caps contained in the current air construction permit for the calendar year 2004. As a result, the emissions unit

is being reported as *in compliance* with the preconstruction review permitting requirements of the Rules 62-4, 62-210.300 and 62-212.300, F.A.C. SES did note that the facility is required to obtain a Title V Operating Permit and that the purpose of the assessment was part of the Title V permit application process.

Emission Limitations: The air construction established the following emission caps:

- Volatile Organic Compounds (VOC): 245 tons per year (12-Month Rolling Total)
- Total Hazardous Air Pollutants (THAPs): 98 tons per year (12-Month Rolling Total)

The FDEP capped emissions based on the federally enforceable air construction permit. Based on the monthly reports, SES has found that the facility is in compliance with the emission limitations contained in the permit.

Other Requirements: Other requirements include raw material usage caps, monitoring, reporting and recordkeeping as specified in the air construction permit. The compliance evaluation was based on review of the available information. As noted above the facility was found to be in of compliance in December 2004with the construction permit requirements.

SES also noted that the enforcement action initiated in 2003 as a result of construction and operation of the facility without an air construction permit was resolved in early 2004. SES also evaluated applicability of the following regulations for purposes of renewing the Title V Operating Permit. These included the following:

- Compliance Assurance Monitoring (CAM) Plan Requirements Based on review of the regulations (40 CFR Part 64) SES determined that the regulation and associated requirements are not applicable to the Ocala Facility. This finding is based on the applicability of the regulation, which addresses the use of add-on air pollution control systems.
- ◆ MACT Standard Reinforced Plastic Composites Production (40 CFR Part 63, Subpart WWWW) Based on the final regulation, the Ocala Facility is classified as a new source and was required to be incompliance with the MACT requirements upon start-up. Based on the current resins and operating practices, the facility was found to be in compliance with the emission standards contained in Table 3 and the work practices of Table 4. As a new source with a total HAP limitation of less than 100 tons per year the facility is not subject to the addon air pollution control requirements. Currently, the facility is using non-atomized mechanical applicators and compliant resins.

COMPLIANCE PLAN

NA

Prepared By: Darrel J. Graziani, P.E., Southern Environmental Sciences, Inc.

Prepared For: HYDRO SPA - Ocala Facility

Signature

Date

DOCUMENT ID: EU001-07 OTHER INFORMATION REQUIRED BY RULE OR STATUTE

Raw Material Usages

2253 ton/yr Polyester Resin: 45.06 ton/yr Catalyst: Spray Foam 250 ton/yr Isopropanol 20 tons per year

Emission Estimates

Volatile Organic Compounds 229.34 Tons per Year Styrene 95.5 Tons per Year Methyl Ethly Ketone 0.9012 Tons per Year MDI 2.08E-03 Tons per Year Total HAPs 96.37 Tons per Year

Emission Calculations

Polyester Resin

Styrene Content 37.5 %wt, Ref: AOC - C888-FFG-30 VOC Content 5 %wt (Non-Styrene), Ref: AOC - C888-FFG-30 **Emission Factors** 84.75 lb-Styrene/ton-Resin, Table 1, Subpart WWWW 184.75 lb-VOC/ton-Resin, Mass Balance

Emission Estimates

Styrene 95.5 Tons per Year VOC 208.1 Tons per Year THAP 95.5 Tons per Year

Catalyst

2 %wt, Ref: Cadox M-30a & M-50A Products MEK Content: MEKP Content 35 %wt, Ref: Cadox M-50A Product **Emission Factors** 40 ib-MEK/ton-catalyst, Mass Balance 14 lb-MEKP/Ton-catalsyst, Mass Balance assuming 98% Consumption 54 lb-VOC/ton-Catalyst, Mass Balance (Sum MEK & MEKP)

Emission Estimates

MEK 0.9012 Tons per Year VOC 1.21662 Tons per Year THAP 0.9012 Tons per Year

Foam Adj. Fact. MDI Content 45 %wt, Ref: Stepan Mondur MR Light 1GM% 80 F 85 F 90 F 55 %wt, Ref: Stepan Mondur MR Light PMDI Content 40 0.46 0.47 0.47 **Emission Factor** 8.33E-06 lb/ton, Ref: MDI Emissions Estimator Sortware 45 0.51 0.53 0.56 50 0.55 0.65

Volume of Air 1000 ft^3/yr, based on 2 lb/ft^3 of foam. Temperature 302.44444 K, Process Temperature (~85 F) MDI Vapor Pressure 1.89E-05 mmHg, Ref: Appendix A, Table 1 MDI Mole. Weight 250.26 lb/lb-mol

Kmdi Adj. Factor 0.5325

Emissions

MDI 2.08E-03 Tons per Year

Isopropanol

100 %wt, Ref: Delta MSDS VOC Content

Emission Factor 6.55 lb/gal 20 tons per Year **Emissions**

Material Data & Emission Factors

Title V Operating Permit - Recordkeeping & Reporting Files

Ocala Facility

Marion County, Florida

ARMS No.: 0830151

Polyester Resin Data:

	Alexander of the second of the	The second second		HAPE	Fs (lb/ton) - App	VOC EFs (lb/ton) - App. Type					
	【1967年) - 1987年 - 19874 - 1987年 - 19874 - 1987年 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 19874 - 198	Density	HAP	Reference	V	OC .	Material Balance				
MSDS#	Material Name	(lb/gal)	(%wt)	Manual	Mechanical	Reserved	(%wt)	(lb/gal)	1.a.i	1.c.v	Reserved
R1	AOC C668-FFG-20 (37.5%)	9.504	37.5	108.70	84.75		5	NA	208.7	184.75	
R2	AOC C668-FFH-20 (35.4%)	9.504	35.4	96.69	78.16		5	NA	196.688	178.156	
R3	AOC C668-FFH-20 (35.4%)	9.504	35.4	96.69	78.16		0	NA	96.688	78.156	
R4				-105.80	-33.00			NA	-105.8	-33	
R5				-105.80	-33.00			NA	-105.8	-33	
R6				-105.80	-33.00			NA	-105.8	-33	
R7				-105.80	-33.00			NA	-105.8	-33	

Catalyst Data

		Density	MEĶ	MEKP	HAP/VOC E	Fs (lb/ton) - App	. Type
MSDS#	Material Name	(lb/gal)	(%wt)	(%wt)	MEK	MEKP	VOC
C1	Cadox M-30a Red	8.64	2	22	40	8.8	48.8
C2	Cadox M-50a Red	8.64	2	35	40	14	54
C3		•			0	0	0
C4					0	0	0
C5					0	0	0

Assumes 98% of MEKP is consummed in the reaction. (See App. For Ref.)

Foam Data

(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	The Committee of the co	Density	MDI		HAPNOC	EFs (lb/ton)
MSDS#	Material Name	(lb/gal)	(%wt)	(%wt)	MDI	VOC
F1	Stephan Mondur MR-Light	10.317	45	55	8.25E-06	8.25E-06
F2						
F3			l			
F4						
F5						

Ref.: MDI Estimator @85 F (See App. For Ref.)

MDI Adjustment Factor @85F 0.11994 Intercept

0.00896 Slope

Cleanup Solvents/Miscellaneous Materials

San		Density	HAP	voc	HAP/VOC	EFs (lb/gal)
MSDS#	Material Name	(lb/gal)	(%wt)	(%wt)	HAP	VOC
MM1	Isopropanol	6.55	0	100.00	0	6.55
MM2	Acetone	6.83	0	0.00	0	0
MM3	Eco Spa Stain	8.50	0	0.86	0	0.073
MM4	Redwood W/B Stain	8.84	0	8.26	0	0.73
MM5					0	0
MM6					0	0
MM7					0	0
MM8					0	0
ММ9					0	0
MM10			········		0	0
MM11					0	0
MM12					0	0
MM13					0	0

Title V Operating Permit - Recordkeeping & Reporting Files

Ocala Facility

ARMS No.: 0830151 Marion County, Florida

Data	Dan			Desire Ass		S One entry po		Mina Mari
Date	Day		A Name		lication (lbs)	Catalyst	Foam	Misc. Mat
VIM/YYYY)	(1-31)		Materials Name	Manual	Mechanical	(lbs)	(lbs)	(Gal)
01/2004	31	C1	Cadox M-30a Red			168		
01/2004	31	C2	Cadox M-50a Red			1533		
01/2004	31	F1	Stephan Mondur MR-Light				3550	
01/2004	31	MM1	Isopropanol					84
01/2004	31	MM2	Acetone					1005
01/2004	31	MM3	Eco Spa Stain					19
01/2004	31	MM4	Redwood W/B Stain					0
02/2004	29	R2	AOC C668-FFH-20 (35.4%)		62178			
02/2004	29	C1	Cadox M-30a Red			399		
02/2004	29	C2	Cadox M-50a Red			1472		
02/2004	29	F1	Stephan Mondur MR-Light				3000	
02/2004	29	MM1	Isopropanol					85
02/2004	29	MM2	Acetone					1480
02/2004	29	MM3	Eco Spa Stain					53
02/2004	29	MM4	Redwood W/B Stain					0
03/2004	31	R2	AOC C668-FFH-20 (35.4%)		84877			
03/2004	31	C1	Cadox M-30a Red		0,077	399		
03/2004	31	C2	Cadox M-50a Red			1360	·	
03/2004	31	F1	Stephan Mondur MR-Light		 	1000	4450	+
03/2004	31	MM1	Isopropanol		 		4400	111
03/2004	31	MM2	Acetone		 		-	2260
03/2004			Eco Spa Stain		 		<u> </u>	
	31	MM3			 			160
03/2004	31	MM4	Redwood W/B Stain		400 175			0
04/2004	30	R2	AOC C668-FFH-20 (35.4%)		120475			
04/2004	30	C1	Cadox M-30a Red		ļ	2443		<u> </u>
04/2004	30	C2	Cadox M-50a Red			984		
04/2004	30	F1	Stephan Mondur MR-Light				4470	
04/2004	30	MM1	Isopropanol					112
04/2004	30	MM2	Acetone					2560
04/2004	30	MM3	Eco Spa Stain					180
04/2004	30	MM4	Redwood W/B Stain				1	0
05/2004	31	R2	AOC C668-FFH-20 (35.4%)		119364	-		1
05/2004	31	C1	Cadox M-30a Red			1470		
05/2004	31	C2	Cadox M-50a Red			232		
05/2004	31	F1	Stephan Mondur MR-Light				1853	
05/2004	31	MM1	Isopropanol				1	165
05/2004	31	MM2	Acetone					2250
05/2004	31	MM3	Eco Spa Stain		1			200
05/2004	31	MM4	Redwood W/B Stain		 		 	0
06/2004	30	R2	AOC C668-FFH-20 (35.4%)	0	124343		<u> </u>	
06/2004	30	C1	Cadox M-30a Red		124040	2940	 	+
06/2004	30	C2	Cadox M-50a Red		+	0	 	
06/2004	30	F1	Stephan Mondur MR-Light		 	· · · · · ·	4387	
06/2004	30	MM1	Isopropanol		+		4301	247
06/2004	30	MM2			1		 	2767
	30	MM3	Acetone		+		 	
06/2004			Eco Spa Stain		+		 	215
06/2004	30	MM4	Redwood W/B Stain		400071			0
07/2004	31	R2	AOC C668-FFH-20 (35.4%)	0	136374	0750	-	_
07/2004	31	C1	Cadox M-30a Red		 	3752	ļ	
07/2004	31	C2	Cadox M-50a Red		}	32		
07/2004	31	F1	Stephan Mondur MR-Light	<u> </u>	1		3220	
07/2004	31_	MM1	Isopropanol				ļ	223
07/2004	31	MM2	Acetone					3738
07/2004	31	MM3	Eco Spa Stain					265
07/2004	31	MM4	Redwood W/B Stain					0
08/2004	31	R2	AOC C668-FFH-20 (35.4%)	0	94209			
08/2004	31	C1	Cadox M-30a Red			2331		
08/2004	31	C2	Cadox M-50a Red			0		
08/2004	31	F1	Stephan Mondur MR-Light				4964	
08/2004	31	MM1	Isopropanol		T	-	1	230
08/2004	31	MM2	Acetone				T	2720
08/2004	31	MM3	Eco Spa Stain		 		+	128
08/2004	31	MM4	Redwood W/B Stain		+	 	 	0
			AOC C668-FFH-20 (35.4%)	0	88728		+	
09/2004	30	R2		U	00120	1004	 	
09/2004	30	C1	Cadox M-30a Red		+	1281	+	-
09/2004	30	C2	Cadox M-50a Red			96		
09/2004	30	F1	Stephan Mondur MR-Light		1		6955	
09/2004	30	MM1	Isopropanol			L		255

Usage Data

Title V Operating Permit - Recordkeeping & Reporting Files

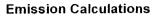
Ocala Facility

Marion County, Florida

ARMS No.: 0830151

			Materials Name	i chagolard i p	Usages	One entry p	oer line	
Date	Day:			Resins App	lication (lbs)	Catalyst	Foam	Misc. Mat.
(MM/YYYY)	(1-31)	MSDS #	Materials Name	* Manual	Mechanical	(lbs)	(lbs)	(Gal)
09/2004	30	MM2	Acetone					2324
09/2004	30	MM3	Eco Spa Stain					237
09/2004	30	MM4	Redwood W/B Stain					0
10/2004	31	R2	AOC C668-FFH-20 (35.4%)	0	120284			
10/2004	31	C1	Cadox M-30a Red			3206		
10/2004	31	C2	Cadox M-50a Red			552		
10/2004	31	F1	Stephan Mondur MR-Light				76.19	
10/2004	31	MM1	Isopropanol					105
10/2004	31	MM2	Acetone		•			3351
10/2004	31	MM3	Eco Spa Stain					0
10/2004	31	MM4	Redwood W/B Stain					0 :
11/2004	30	R2	AOC C668-FFH-20 (35.4%)	0	76477			
11/2004	30	C1	Cadox M-30a Red			994		
11/2004	30	C2	Cadox M-50a Red			328		
11/2004	30	F1	Stephan Mondur MR-Light				4858	
11/2004	30	MM1	Isopropanol					215
11/2004	30	MM2	Acetone					2058
11/2004	30	MM3	Eco Spa Stain					120
11/2004	30	MM4	Redwood W/B Stain					10
12/2004	31	R2	AOC C668-FFH-20 (35.4%)	0	51486			
12/2004	31	C1	Cadox M-30a Red			1239		
12/2004	31	C2	Cadox M-50a Red			848		
12/2004	31	F1	Stephan Mondur MR-Light				2504	
12/2004	31	MM1	Isopropanol					115
12/2004	31	MM2	Acetone					787
12/2004	31	MM3	Eco Spa Stain					155
12/2004	31	MM4	Redwood W/B Stain					0

Material Usage Data


Title V Operating Permit - Recordkeeping & Reporting Files

Ocala Facility

ARMS No.: 0830151

Marion County, Florida

a massa menganan salah	English and American	Montl	nly Material U	sages.	There is a second of the secon	12-Month Rolling Usages						
Date	Resins Appl	Resins Application (tons) Ca		Foam	MM/CS	Resins Appl	ication (tons)	Catalyst	Foam	MM/CS		
(MM/YYYY)	Manual	Mechanical	(tons)	(Tons)	(Gāl)	Manual	Mechanical	(tons)	(Tons)	(Gal)		
01/2004	0.00	26.20	0.85	1.78	1108.00	0.00	46.87	1.33	1.78	1108.00		
02/2004	0.00	31.09	0.94	1.50	1618.00	0.00	77.96	2.27	3.28	2726.00		
03/2004	0.00	42.44	0.88	2.23	2531.00	0.00	120.40	3.15	5.50	5257.00		
04/2004	0.00	60.24	1.71	2.24	2852.00	0.00	180.64	4.86	7.74	8109.00		
05/2004	0.00	59.68	0.85	0.93	2615.00	0.00	240.32	5.71	8.66	10724.00		
06/2004	0.00	62.17	1.47	2.19	3229.00	0.00	302.49	7.18	10.86	13953.00		
07/2004	0.00	68.19	1.89	1.61	4226.00	0.00	370.68	9.07	12.47	18179.00		
08/2004	0.00	47.10	1.17	2.48	3078.00	0.00	417.78	10.24	14.95	21257.00		
09/2004	0.00	44.36	0.69	3.48	2816.00°	0.00	462.15	10.93	18.42	24073.00		
10/2004	0.00	60.14	1.88	3.81	3456.00	0.00	522.29	12.81	22.23	27529.00		
11/2004	0.00	38.24	0.66	2.43	2403.00	0.00	560.53	13.47	24.66	29932.00		
12/2004	0.00	25.74	1.04	1.25	1057.00	0.00	565.60	14,03	25.92	30989.00		

Title V Operating Permit - Recordkeeping & Reporting Files

Ocala Facility

ARMS No.: 0830151

Marion County, Florida

12/2003	CS/MM 0.00E+00
12/2003 1 R2 AOC C668-FFH-20 (35.4%) 0.00E+00 8.08E-01 0.00E+00 0.	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
12/2003	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00
12/2003	0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00
01/2004 31 R2 AOC C668-FFH-20 (35.4%) 0.00E+00 1.02E+00 0.00E+00 0.00E+0	0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00
01/2004 31 R2 AOC C668-FFH-20 (35.4%) 0.00E+00 1.02E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00 2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
01/2004 31 C1 Cadox M-30a Red 0.00E+00 0.00E+00 1.68E-03 3.70E-04 0.00E+00 0	0.00E+00 0.00E+00 2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
01/2004 31 C2 Cadox M-50a Red 0.00E+00 0	0.00E+00 2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
01/2004 31 F1 Stephan Mondur MR-Light 0.00E+00	0.00E+00 2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
01/2004 31 MM1 Isopropanol 0.00E+00 0.00	2.75E-01 0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
01/2004 31 MM2 Acetone 0.00E+00	0.00E+00 6.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
01/2004 31 MM3 Ecc Spa Stain 0.00E+00 0.	6.94E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00
01/2004 31 MM4 Redwood W/B Stain 0.00E+00 0.00E+00 <t< td=""><td>0.00E+00 0.00E+00 0.00E+00 0.00E+00</td></t<>	0.00E+00 0.00E+00 0.00E+00 0.00E+00
02/2004 29 R2 AOC C668-FFH-20 (35.4%) 0.00E+00 1.21E+00 0.00E+00	0.00E+00 0.00E+00 0.00E+00
02/2004 29 C1 Cadox M-30a Red 0.00E+00 0.00E+00 3.99E-03 8.78E-04 0.00E+00 0	0.00E+00 0.00E+00
02/2004 29 C2 Cadox M-50a Red 0.00E+00 0.00E+00 1.47E-02 5.15E-03 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.99E-02 0.00E+00 02/2004 29 F1 Stephan Mondur MR-Light 0.00E+00 0.00E+	0.00E+00
02/2004 29 F1 Stephan Mondur MR-Light 0.00E+00	
02/2004 29 MM1 Isopropanol 0.00E+00 0.00	U.UULTUU
02/2004 29 MM2 Acetone 0.00E+00	2.78E-01
	0.00E+00
	1.94E-03
	0.00E+00
	3.64E-01
	0.00E+00
	5.85E-03
<u> </u>	0.00E+00
	3.67E-01
	0.00E+00
	6.58E-03
\ <u></u>	0.00E+00
	5.40E-01
05/2004 31 MM2 Acetone 0.00E+00 0.00E+0	0.00E+00
	7.31E-03
	0.00E+00
06/2004 30 R2 AOC C668-FFH-20 (35.4%) 0.00E+00 2.43E+00 0.00E+00 0	0.00E+00
	0.00E+00
	0.00E+00
	0.00E+00
	B.09E-01
<u>┣────────────────────────────────────</u>	0.00E+00
	7.86E-03

Title V Operating Permit - Recordkeeping & Reporting Files

ARMS No.: 0830151

Ocala Facility

Marion County, Florida

Carlo Carlo Acade	grangass service		Fig. 20 Section 1 Section (section)	Te jayang un	Hazan	dous Air Poli	ıtant Emission	s (tons)	· Print Style Joseph	Volatile Organic Compound Emissions (tons)				
Date	Day	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	sin 277		talyst	Foam	CS/MM		esin	T	I	1
(MM/YYYYY)	(1-31)	MSDS#	Materials Name	Manual	Mechanical	MEK	MEKP	MDI	HAPs	Manual	Mechanical	Catalyst	Foam	. CS/MM
06/2004	30	MM4	Redwood W/B Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
07/2004	31	R2	AOC C668-FFH-20 (35.4%)	0.00E+00	2.66E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.71E+00	0.00E+00	0.00E+00	0.00E+00
07/2004	31	C1	Cadox M-30a Red	0.00E+00	0.00E+00	3.75E-02	8.25E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.58E-02	0.00E+00	0.00E+00
07/2004	31	C2	Cadox M-50a Red	0.00E+00	0.00E+00	3.20E-04	1.12E-04	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.32E-04	0.00E+00	0.00E+00
07/2004	31	F1	Stephan Mondur MR-Light	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.64E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	6.64E-09	0.00E+00
07/2004	31	MM1	Isopropanol	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.30E-01
07/2004	31	MM2	Acetone	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
07/2004	31	MM3	Eco Spa Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	9.69E-03
07/2004	31	MM4	Redwood W/B Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
08/2004	31	R2	AOC C668-FFH-20 (35.4%)	0.00E+00	1.84E+00	0.00E+00	0.00E+00		0.00E+00			0.00E+00	0.00E+00	0.00E+00
	31	C1			0.00E+00			0.00E+00		0.00E+00	4.63E+00		0.00E+00	
08/2004			Cadox M-30a Red	0.00E+00		2.33E-02	5.13E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.84E-02		0.00E+00
08/2004	31	C2	Cadox M-50a Red	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
08/2004	31	F1	Stephan Mondur MR-Light	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.02E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.02E-08	0.00E+00
08/2004	31	MM1	Isopropanol	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.53E-01
08/2004	31	MM2	Acetone	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
08/2004	31	MM3	Eco Spa Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.68E-03
08/2004	31	MM4	Redwood W/B Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
09/2004	30	R2	AOC C668-FFH-20 (35.4%)	0.00E+00	1.73E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.36E+00	0.00E+00	0.00E+00	0.00E+00
09/2004 09/2004	30 30	C1 C2	Cadox M-30a Red Cadox M-50a Red	0.00E+00	0.00E+00 0.00E+00	1.28E-02	2.82E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.56E-02	0.00E+00	0.00E+00
09/2004	30	F1	Stephan Mondur MR-Light	0.00E+00 0.00E+00	0.00E+00	9.60E-04 0.00E+00	3.36E-04 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.30E-03	0.00E+00	0.00E+00
09/2004	30	MM1		0.00E+00	0.00E+00	0.00E+00		1.43E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.43E-08	0.00E+00
09/2004	30	MM2	Isopropanol			0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.35E-01
09/2004	30	MM3	Acetone	0.00E+00	0.00E+00		0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
09/2004	30	MM4	Eco Spa Stain	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	8.66E-03
	31		Redwood W/B Stain					0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10/2004 10/2004	31	R2 C1	AOC C668-FFH-20 (35.4%) Cadox M-30a Red	0.00E+00 0.00E+00	2.35E+00 0.00E+00	0.00E+00 3.21E-02	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00	5.91E+00	0.00E+00	0.00E+00	0.00E+00
10/2004		C2					7.05E-03	0.00E+00		0.00E+00	0.00E+00	3.91E-02	0.00E+00	0.00E+00
	31		Cadox M-50a Red	0.00E+00	0.00E+00	5.52E-03	1.93E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.45E-03	0.00E+00	0.00E+00
10/2004	31	F1	Stephan Mondur MR-Light	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.57E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.57E-08	0.00E+00
10/2004	31	MM1	Isopropanol	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.44E-01
10/2004	31	MM2	Acetone	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10/2004	31	MM3	Eco Spa Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
10/2004	31	MM4	Redwood W/B Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
11/2004	30	R2	AOC C668-FFH-20 (35.4%)	0.00E+00	1.49E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.76E+00	0.00E+00	0.00E+00	0.00E+00
11/2004	30	C1	Cadox M-30a Red	0.00E+00	0.00E+00	9.94E-03	2.19E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.21E-02	0.00E+00	0.00E+00
11/2004	30	C2	Cadox M-50a Red	0.00E+00	0.00E+00	3.28E-03	1.15E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.43E-03	0.00E+00	0.00E+00
11/2004	30	F1	Stephan Mondur MR-Light	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E-08	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.00E-08	0.00E+00
11/2004	30	MM1	Isopropanol	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.04E-01
11/2004	30	MM2	Acetone	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
11/2004	30	MM3	Eco Spa Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	4.39E-03
11/2004	30	MM4	Redwood W/B Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.65E-03
12/2004	31	R2	AOC C668-FFH-20 (35.4%)	0.00E+00	1.01E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	2.53E+00	0.00E+00	0.00E+00	0.00E+00
12/2004	31	C1	Cadox M-30a Red	0.00E+00	0.00E+00	1.24E-02	2.73E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.51E-02	0.00E+00	0.00E+00
12/2004	31	C2	Cadox M-50a Red	0.00E+00	0.00E+00	8.48E-03	2.97E-03	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.14E-02	0.00E+00	0.00E+00
12/2004	31	F1	Stephan Mondur MR-Light	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.16E-09	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.16E-09	0.00E+00
12/2004	31	MM1	Isopropanol	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.77E-01
12/2004	31	MM2	Acetone	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
12/2004	31	ммз	Eco Spa Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	5.67E-03
12/2004	31	MM4	Redwood W/B Stain	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00

HAP Emissions Data

Title V Operating Permit - Recordkeeping & Reporting Files

Ocala Facility

ARMS No.: 0830151

Marion County, Florida

Monthly HAP Emissions 12-Month Rolling HAP Emissions Date Resin Emissions (tons) Catalyst Foam MM/CS Totals Resins Application (tons) Catalyst MM/CS Foam Totals (MM/YYYY) Manual Mechanical (tons) (Tons) Manual Mechanical (tons) (Tons): (Tons) (Tons) (Tons) (Tons) 01/2004 0.00 1.02 0.0227 7.32E-09 0.00 1.05 0.00 1.83 0.04 0.00 0.00 1.87 02/2004 0.00 1.21 0.0247 6.18E-09 0.00 1.24 0.00 3.05 0.06 0.00 0.00 3.11 03/2004 0.00 1.66 0.0232 9.17E-09 0.00 1.68 0.00 4.70 0.08 0.00 0.00 4.79 04/2004 0.00 2.35 0.0431 9.22E-09 0.00 2.40 0.00 7.06 0.13 0.00 0.00 7.19 05/2004 0.00 2.33 0.0211 3.82E-09 0.00 2.35 0.00 9.39 0.15 0.00 0.00 9.54 06/2004 0.0359 9.04E-09 2.47 11.82 0.18 0.00 0.00 2.43 0.00 0.00 0.00 12.00 07/2004 0.00 2.66 0.0462 6.64E-09 2.71 14.72 0.00 14.49 0.23 0.00 0.00 0.00 1.02E-08 0.26 0.00 08/2004 0.00 1.84 0.0284 0.00 1.87 0.00 16.33 0.00 16.58 09/2004 0.0169 0.00 18.34 0.00 1.73 1.43E-08 0.00 1.75 0.00 18.06 0.28 0.00 20.73 10/2004 0.00 2.35 0.0466 1.57E-08 0.00 2.40 0.00 20.41 0.32 0.00 0.00 11/2004 1.00E-08 22.24 0.0166 0.00 0.00 21.90 0.34 0.00 0.00 0.00 1.49 1.51 12/2004 1.07E-07 22.45 5.16E-09 22.10 0.00 0.0266 0.00 1.03 0.00 0.35 0.00 1.01

VOC Emissions Data

Title V Operating Permit - Recordkeeping & Reporting Files

Ocala Facility

Marion County, Florida

ARMS No.: 0830151

		und Transfer (1986) Grant Control	Monthly VO	C Emissions	g govern filler mag (47.5) St. in a 18 ft (48.5)			12-	Month Rolling	VOC Emissi	ons	
Date	Resin Emis	sions (tons)	Catalyst	Foam	MM/CS	Totals	Resins Appl	ication (tons)	Catalyst	Foam	MM/CS	Totals
(MM/YYYY)	Manual	Mechanical	(tons)	(Tons)	(Tons)	(Tons)	Manual'	Mechanical	(tons)	(Tons)	(Tons)	(Tons)
01/2004	0.00	2.58	0.02	0.00	0.28	2.88	0.00	4.61	0.04	0.00	0.28	4.92
02/2004	0.00	3.06	0.02	0.00	0.28	3.36	0.00	7.67	0.06	0.00	0.56	8.28
03/2004	0.00	4.17	0.02	0.00	0.37	4.57	0.00	11.84	0.08	0.00	0.93	12.85
04/2004	0.00	5.92	0.04	0.00	0.37	6.34	0.00	17.76	0.13	0.00	1.30	19.19
05/2004	0.00	5.87	0.02	0.00	0.55	6.44	0.00	23.63	0.15	0.00	1.85	25.63
06/2004	0.00	6.11	0.04	0.00	0.82	6.97	0.00	29.75	0.18	0.00	2.66	32.60
07/2004	0.00	6.71	0.05	0.00	0.74	7.49	0.00	36.45	0.23	0.00	3.40	40.09
08/2004	0.00	4.63	0.03	0.00	0.76	5.42	0.00	41.09	0.26	0.00	4.16	45.51
09/2004	0.00	4.36	0.02	0.00	0.84	5.22	0.00	45.45	0.28	0.00	5.01	50.73
10/2004	0.00	5.91	0.05	0.00	0.34	6.31	0.00	51.36	0.32	0.00	5.35	57.03
11/2004	0.00	3.76	0.02	0.00	0.71	4.49	0.00	55.12	0.34	0.00	6.06	61.52
12/2004	0.00	2.53	0.03	5.16E-09	0.38	2.94	0.00	55.62	0.35	1.07E-07	6.44	62.42

Resin storage vessels, reservoirs, transfer systems, and collection systems are covered or shielded from the ambient air. Preform injection differs from direct die injection in that the injection chambers are not directly attached to the die.

Prepreg materials means reinforcing fabric received precoated with resin which is usually cured through the addition of heat.

Pultrusion means a continuous process for manufacturing composites that have a uniform cross-sectional shape. The process consists of pulling a fiber-reinforcing material through a resin impregnation chamber or bath and through a shaping die, where the resin is subsequently cured. There are several types of pultrusion equipment, such as open bath, resin injection, and direct die injection equipment.

Repair means application of resin or gel coat to a part to correct a defect, where the resin or gel coat application occurs after the part has gone through all the steps of its typical production process, or the application occurs outside the normal production area. For purposes of this subpart, rerouting a part back through the normal production line, or part of the normal production line, is not considered repair.

Resin transfer molding means a process for manufacturing composites whereby catalyzed resin is transferred or injected into a closed mold in which

fiberglass reinforcement has been placed.

Sheet molding compound (SMC) means a ready-to-mold putty-like molding compound that contains resin(s) processed into sheet form. The molding compound is sandwiched between a top and a bottom film. In addition to resin(s), it may also contain catalysts, fillers, chemical thickeners, mold release agents, reinforcements, and other ingredients. Sheet molding compound can be used in compression molding to manufacture reinforced plastic composites products.

Shrinkage controlled resin means a resin that when promoted, catalyzed, and filled according to the resin manufacturer's recommendations demonstrates less than 0.3 percent linear shrinkage when tested according to ASTM D2566.

SMC manufacturing means a process which involves the preparation of SMC.

Tooling gel coat means a gel coat that is used to form the surface layer of molds. Tooling gel coats generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Tooling resin means a resin that is used to produce molds. Tooling resins generally have high heat distortion temperatures, low shrinkage, high barcol hardness, and high dimensional stability.

Uncontrolled oven organic HAP emissions means those organic HAP

emissions emitted from the oven through closed vent systems to the atmosphere and not to a control device. These organic HAP emissions do not include organic HAP emissions that may escape into the workplace through the opening of panels or doors on the ovens or other similar fugitive organic HAP emissions in the workplace.

Uncontrolled wet-out area organic HAP emissions means any or all of the following: Organic HAP emissions from wet-out areas that do not have any capture and control, organic HAP emissions that escape from wet-out area enclosures. and organic HAP emissions from wet-out areas that are captured by an enclosure but are vented to the atmosphere and not to an add-on control device.

Unfilled means that there has been no addition of fillers to a resin or that less than 10 percent of fillers by weight of the total resin plus filler mixture has been added.

Vapor suppressant means an additive, typically a wax, that migrates to the surface of the resin during curing and forms a barrier to seal in the styrene and reduce styrene emissions.

Vapor-suppressed resin means a resin containing a vapor suppressant added for the purpose of reducing styrene emissions during curing.

White and off-white gel coat means a gel coat that contains 10 percent of more titanium dioxide by weight.

TABLE 1 TO SUBPART WWWW OF PART 63—EQUATIONS TO CALCULATE ORGANIC HAP EMISSIONS FACTORS FOR SPECIFIC OPEN MOLDING AND CENTRIFUGAL CASTING PROCESS STREAMS

[As required in §§ 63.5796, 63.5799(a)(1) and (b), and 63.5810(a)(1), to calculate organic HAP emissions factors for specific open molding and centrifugal casting process streams you must use the equations in the following table:]

If your operation type is a new or existing	And you use	With	Use this organic HAP Emissions Factor (EF) Equation for materials with less than 33 percent or- ganic HAP (19 percent or- ganic HAP for nonatom- ized gel coat) [23]	Use this organic HAP Emissions Factor (EF) Equation for materials with 33 percent or more or- ganic HAP (19 percent for nonatomized gel coat) 12.3
Open molding operation	a. Manual resin application	i. Nonvapor-suppressed resin. ii. Vapor-suppressed resin	EF = 0.126 × % HAP × 2000. EF = 0.126 × % HAP × 2000 × (1 – (0.5 × VSE factor)).	EF = ((0.286 × %HAP) - 0.0529) × 2000 EF = ((0.286 × %HAP) - 0.0529) × 2000 × (1 - (0.5 × VSE factor))
		iii. Vacuum bagging/ closed-mold curing with roll out. iv. Vacuum bagging/ closed-mold curing with- out roll-out,	EF = 0.126 × % HAP × 2000 × 0.8. EF = (0.126 × % HAP × 2000 × 0.5.	EF = ((0.286 × %HAP) - 0.0529) × 2000 × 0.8 EF = ((0.286 × %HAP) - 0.0529) × 2000 × 0.5
	b. Atomized mechanical resin application.	i. Nonvapor-suppressed resin. ii. Vapor-suppressed resin	EF = 0.169 × %HAP × 2000. EF = 0.169 × %HAP × 2000 × (1 – (0.45 × VSE factor)).	EF = ((0.714 × %HAP) - 0.18) × 2000 EF = ((0.714 × %HAP) - 0.18) × 2000 × (1 - (0.45 × VSE factor))

TABLE 1 TO SUBPART WWWW OF PART 63-EQUATIONS TO CALCULATE ORGANIC HAP EMISSIONS FACTORS FOR SPECIFIC OPEN MOLDING AND CENTRIFUGAL CASTING PROCESS STREAMS—Continued

[As required in §§ 63.5796, 63.5799(a)(1) and (b), and 63.5810(a)(1), to calculate organic HAP emissions factors for specific open molding and centrifugal casting process streams you must use the equations in the following table:]

If your operation type is a new or existing	And you use	With	Use this organic HAP Emissions Factor (EF) Equation for materials with less than 33 percent or- ganic HAP (19 percent or- ganic HAP for nonatom- ized gel coat) 123	Use this organic HAP Emissions Factor (EF) Equation for materials with 33 percent or more or- ganic HAP (19 percent for nonatomized gel coat) 123 EF = ((0.714 × %HAP) – 0.18) × 2000 × 0.85 EF = ((0.714 × %HAP) – 0.18) × 2000 × 0.55 EF = ((0.157 × %HAP) – 0.0165) × 2000 ĒF = ((0.157 × %HAP) – 0.0165) × 2000 × (1 – (0.45 × VSE factor)) EF = ((0.157 ×		
	c. Nonatomized mechan- ical resin application.	iii. Vacuum bagging/ closed-mold curing with roll-out, iv. Vacuum bagging/ closed-mold curing with- out roll-out, v. Nonvapor-suppressed resin. vi. Vapor-suppressed resin	EF = 0.169 × %HAP × 2000 × 0.85. EF = 0.169 × %HAP × 2000 × 0.55. EF = 0.107 × %HAP × 2000. EF = 0.107 × %HAP × 2000 × (1 – (0.45 × VSE factor)). EF = 0.107 × %HAP ×			
	d. Atomized mechanical resin application with robotic or automated spray control ⁴ .	with roll-out. viii. Vacuum bagging/ closed-mold curing with- out roll-out. Nonvapor-suppressed resin.	2000 × 0.85. EF = 0.107 × %HAP × 2000 × 0.55. EF = 0.169 × %HAP × 2000 × 0.77.	%HAP) - 0.0165) × 2000 × 0.85 EF = ((0.157 × %HAP) - 0.0165) × 2000 × 0.55 EF = 0.77 × ((0.714 × %HAP) - 0.18) × 2000		
	e. Filament application 5	i. Nonvapor-suppressed resin. ii. Vapor-suppressed resin	EF = 0.184 × %HAP × 2000. EF = 0.12 × %HAP × 2000	EF = ((0.2746 × %HAP) - 0.0298) × 2000 EF = ((0.2746 × %HAP) - 0.0298) × 2000 × 0.65		
·	f. Atomized spray gel coat application. g. Nonatomized spray gel coat application.	Nonvapor-suppressed gel coat. Nonvapor-suppressed gel coat.	EF = 0.446 × %HAP × 2000. EF = 0.185 × %HAP × 2000.	EF = ((1.03646 × %HAP) - 0.195) × 2000. EF = ((0.4506 × %HAP) - 0.0505) × 2000.		
	h. Manual gel coat applica- tion ⁵ .	Nonvapor-suppressed gel coat.	EF = 0.126 × % HAP × 2000 (for emissions esti- mation only, see foot- note 6).	EF = ((0.286 × %HAP) - 0.0529) × 2000 (for emissions estimation only, see footnote 6)		
2. Centrifugal casting operations. 7 %.	Heated air blown through molds. Vented molds, but air vented through the molds is not heated.	Nonvapor-suppressed resin. Nonvapor-suppressed resin.	EF = 0.558 × (%HAP) × 2000. EF = 0.026 × (%HAP) × 2000.	EF = 0.558 × (%HAP) × 2000. EF = 0.026 × (%HAP) × 2000.		

¹To obtain the organic HAP emissions factor value for an operation with an add-on control device multiply the EF above by the add-on control factor calculated using Equation 1 of §63.5810. The organic HAP emissions factors have units of lbs of organic HAP per ton of resin or gel coat

applied.

²Percent HAP means total weight percent of organic HAP (styrene, methyl methacrylate, and any other organic HAP) in the resin or gel coat prior to the addition of fillers, catalyst, and promoters. Input the percent HAP as a decimal, i.e. 33 percent HAP should be input as 0.33, not 33.

³The VSE factor means the percent reduction in organic HAP emissions expressed as a decimal measured by the VSE test method of appendix A to this subpart.

⁴This equation is based on a organic HAP emissions factor equation developed for mechanical atomized controlled spray. It may only be used for automated or robotic spray systems with atomized spray. All spray operations using hand held spray guns must use the appropriate mechanical atomized or mechanical nonatomized organic HAP emissions factor equation. Automated or robotic spray systems using nonatomized spray should use the appropriate nonatomized mechanical resin application equation.

⁵Applies only to filament application using an open resin bath. If resin is applied manually or with a spray gun, use the appropriate manual or mechanical application organic HAP emissions factor equation.

⁶Do not use this equation for determining compliance with emission limits in Tables 3 or 5 to this subpart. To determine compliance with emission limits you must treat all get coat as if it were applied as part of your get coat spray application operations. If you apply get coat by manual techniques only, you must treat the gel coat as if it were applied with atomized spray and use Equation 1.f. to determine compliance with the appropriate emission limits in Tables 3 or 5 to this subpart. To estimate emissions from manually applied gel coat, you may either include the gel coat quantities you apply manually with the quantities applied using spray, or use this equation to estimate emissions from the manually applied portion of your gel coat.

These equations are for centrifugal casting operations where the mold is vented during spinning. Centrifugal casting operations where the

mold is completely sealed after resin injection are considered to be closed molding operations.

Unified Emission Factors for Open Molding of Composites

July 23, 2001

Emission Rate in Pounds of Styrene Emitted per Ton of Resin or Gelcoat Processed

Styrene content in resin/gelcoat, % ⁽¹⁾	<33 ⁽²⁾	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	>50 ⁽²⁾
Manual	0.126 x %styrene x 2000	83	89	94	100	106	112	117	123	129	134	140	146	152	157	163	169	174	180	((0.286 x %styrene) - 0.0529) x 2000
Manual w/ Vapor Suppressed Resin VSR (3)			Manu	al emi	ssion	factor	listed a	bove]	x (1	- (0.50) x spe	cific VS	R redu	ction fa	ctor fo	reach	resin/s	uppres	sant fo	rmulation))
Mechanical Atomized	0,169 x %styrene x 2000	111	126	140	154	168	183	197	211	225	240	254	268	283	297	311	325	340	354	((0.714 x %styrene) - 0.18) x 2000
Mechanical Atomized with VSR (3)	Mechanical Atomized emission factor [listed above] x (1 - (0.45 x specific VSR reduction factor for each resin/suppressant formulation))																			
Mechanical Atomized Controlled Spray (4)	0.130 x %styrene x 2000	86	97	108	119	130	141	152	163	174	185	196	207	218	229	240	251	262	273	0.77 x ((0.714 x %styrene) - 0.18) x 2000
Mechanical Controlled Spray with VSR	Mechanical Atomized Controlled Spray emission factor [listed above] x (1 - (0.45 x specific VSR reduction factor for each resin/suppressant formulation))																			
Mechanical Non-Atomized	0.107 x %styrene x 2000	71	74	77	80	83	86	89	93	96	99	102	105	108	111	115	118	121	124	((0.157 x %styrene) - 0.0165) x 2000
Mechanical Non-Atomized with VSR (3)		Mechan	ical No	n-Aton	nized (emissi	on fact	or (list	ed abo	ve] x	(1 - (0.45 x	specific	VSR	eductio	n facto	r for ea	ch res	in/supp	ressant formulation))
Filament application	0.184 x %styrene x 2000	122	127	133	138	144	149	155	160	166	171	177	182	188	193	199	204	210	215	((0.2746 x %styrene) - 0.0298) x 2000
Filament application with VSR (3)	0.120 x %styrene x 2000	79	83	86	90	93	97	100	104	108	111	115	118	122	125	129	133	136	140	0.65 x ((0.2746 x %styrene) - 0.0298) x 2000
Gelcoat Application	0.445 x %styrene x 2000	294	315	336	356	377	398	418	439	460	481	501	522	543	564	584	605	626	646	((1.03646 x %styrene) - 0.195) x 2000
Gelcoat Controlled Spray Application (4)	0.325 x %styrene x 2000	215	230	245	260	275	290	305	321	336	351	366	381	396	411	427	442	457	472	0.73 x ((1.03646 x %styrene) - 0.195) x 2000
Gelcoat Non-Atomized Application (5)	SEE Nate 9 below	196	205	214	223	232	241	250	259	268	278	287	296	305	314	323	332	341	350	((0.4506 x %styrene) - 0.0505) x 2000
Covered-Cure after Roll-Out	d-Cure after Roll-Out Non-VSR process emission factor (listed above) x (0.80 for Manual <or> 0.85 for Mechanical)</or>																			
Covered-Cure without Roll-Out					Non-V	SR pro	cess e	missi	on fact	or (list	ed abo	ve} x	(0.50	for Mai	nual <	or> 0.5	5 for N	1echan	ical)	

Emission Rate in Pounds of Methyl Methacrylate Emitted per Ton of Gelcoat Processed

MMA content in gelcoat, % ⁽⁶⁾	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	≥20
Gel coat application ⁽⁷⁾	15	30	45	60	75	90	105	120	135	150	165	180	195	210	225	240	255	270	285	0.75 x %MMA x 2000

Notes

- 1 Including styrene monomer content as supplied, plus any extra styrene monomer added by the molder, but before addition of other additives such as powders, fillers, glass,...etc.
- Formulas for materials with styrene content < 33% are based on the emission rate at 33% (constant emission factor expressed as percent of available styrene), and for styrene content > 50% on the emission rate based on the extrapolated factor equations; these are not based on test data but are believed to be conservative estimates. The value for "% styrene" in the formulas should be input as a fraction. For example, use the input value 0.30 for a resin with 30% styrene content by wt.
- 3 The VSR reduction factor is determined by testing each resin/suppressant formulation according to the procedures detailed in the CFA Vapor Suppressant Effectiveness Test.
- SEE the CFA Controlled Spray Handbook for a detailed description of the controlled spray procedures
- 5 The effect of vapor suppressants on emissions from filament winding operations is based on the Dow Filament Winding Emissions Study.
- 6 Including MMA monomer content as supplied, plus any extra MMA monomer added by the molder, but before addition of other additives such as powders, fillers, glass,...etc.
- 7 Based on gelcoat data from NMMA Emission Study.
- 8 SEE the July 17, 2001 EECS report Emission Factors for Non-Atomized Application of Gel Coats used in the Open Molding of Composites for a detailed description of the non-atomized gelcoat testing.
- 9 Use the equation ((0.4506 x %styrene) 0.0505) x 2000 for gelcoats with styrene contents between 19% and 32% by wt.; use the equation 0.185 x %styrene x 2000 for gelcoats with less than 19% styrene content by wt

DOCUMENT ID: EU001-013 ALTERNATIVE METHODS OF OPERATION

Alternative Methods of Operation

The methods of operation include the following:

- Open Molding Operations using non-CR/HS Resins (Mechanical Applications);
- Open Molding Operations using Tooling Resins (Mechanical & Manual Applications); and
- Cleaning Activities using non-HAP solvents.