

TEST REPORT For INITIAL COMPLIANCE TESTING

From
Two 1.6-MW Landfill Gas Fueled
Caterpillar Model No. G3520C Generator Engines

In Service at the

MARION COUNTY BASELINE LANDFILL

Located in OCALA, MARION COUNTY, FLORIDA

Prepared for

G2 ENERGY (MARION) LLC

Test Completion Date: March 25th, 2009 Report Submittal Date: May 6th, 2009

TRC Project Number 166478.0000.0000

TABLE OF CONTENTS

INTRODU	CTION	1
Table 1	Background Data	2
SUMMAR	Y OF RESULTS	4
Table 2	: Executive Summary	4
Table 3	: Summary of Results, Unit 1, Emissions Test Results	6
	: Summary of Results, Unit 2, Emissions Test Results	7
PROCESS	DESCRIPTION	8
ANALYTI	CAL TECHNIQUES	g
Table 5	: Analytical Instrumentation	13
Figure	1: Instrumental Sample System Diagram	14
QUALITY	ASSURANCE ACTIVITIES	15
APPENDI	CES:	
A. Fie	eld Data Sheets	
B. Ex	ample Calculations	
	ndfill Gas Analysis	
D. Qu	ality Assurance Activities	
	libration Certifications	
F. Lo	gged Data Records	
G. Op	perational Data	
	pacity Observations	
•	orida Department of Environmental Protection	
Aiı	r Construction Permit No. 0830124-006-AC	

RECEIVED

MAY 18 2009

BUREAU OF AIR REGULATION

INTRODUCTION

Exhaust emissions tests were conducted on Units 1 and 2, two 1.6 Megawatt (MW) Caterpillar Model No. G3520C landfill gas fired generator engines. These units, used to generate electrical power, are in service at the Marion County Board of County Commissioners (MCBCC) Baseline Landfill located in Ocala, Marion County, Florida. G2 Energy (Marion) LLC owns this power generation facility which is operated by Autotech II personnel. TRC – Air Measurements, Gainesville Office (TRC) conducted these tests on March 24th and 25th, 2009.

The purpose of this testing was to determine the status of initial compliance for Units 1 and 2 with respect to environmental standards and emission limits. The environmental limits for emissions are set forth by the Florida Department of Environmental Protection (FDEP) Air Construction Permit No. 0830124-006-AC. The testing also satisfied the specific monitoring requirements as set forth in 40 <u>CFR</u> 60, Subpart JJJJ "Standards of Performance for Stationary Spark Ignition Internal Combustion Engines". The tests followed the procedures set forth in 40 <u>CFR</u> 60, Appendix A, Methods 1, 3A, 4, 7E, 9, 10, 19, and 25A. In addition, the landfill gas was sampled and analyzed in accordance with EPA Method 3C.

Emissions from the engine were analyzed for compliance at full load operation in the exhaust stack for oxides of nitrogen (NO_X), carbon monoxide (CO), total hydrocarbon compounds (THC), methane (CH₄), oxygen (O₂), and carbon dioxide (CO₂) using continuous instrumental monitors. Volatile organic compound (VOC) emissions were determined by determining by subtracting the CH₄ emissions from the THC emissions. In addition, a 30-minute visible emissions (VE) test was conducted on each engine exhaust stack. The landfill gas fuel used to fire the engine was analyzed for permanent gases for use in determination of the fuel heating value of the landfill gas. Table 1 summarizes the background information pertinent to these tests.

This test report has been reviewed and approved for submittal to FDEP by the following representatives:

Richard Heyre
TRC - Air Measurements

1

TABLE 1 **BACKGROUND DATA**

Source Owner:

G2 Energy (Marion) LLC

400 Perimeter Center Terraces, Suite 900

Atlanta, Georgia 30346

Attention: Nick King, Managing Member

(770) 668-0220 Phone (770) 668-9796 Facsimile Email: n.king@g2energy.com

Testing Organization:

TRC - Air Measurements, Gainesville Office

6322 NW 18th Drive, Suite 170 Gainesville, Florida 32653

Attn: Leonard Brenner, Manager - Air Measurements

(352) 378-0332 Phone (352) 378-0354 Facsimile

Email: lbrenner@trcsolutions.com

Test Participants:

Florida Department of Environmental Protection

Garry Kuberski, Engineer Allen Rainey, Engineer

Autotech II

Jerry Brewer, Operator

TRC - Air Measurements, Gainesville Office

Leonard Brenner, Manager - Air Measurements

Chris Hank, Environmental Technician

Facility Location:

Marion County Board of County Commissioners

Baseline Landfill 5601 SE 66th Street Ocala, Florida 34480 (352) 245-2634 Phone

Regulatory Application:

These generator engines are state regulated under FDEP Air Construction Permit Number 0830124-006-AC.

Additionally, these engines are federally regulated under 40 CFR 60, Subpart JJJJ "Standards of Performance for

Stationary Spark Ignition Internal Combustion Engines".

Test Dates:

March 24th, and 25th, 2009

Emission Sampling Points:

Each unit is equipped with a circular stack, located outside of the building roof is approximately 32 feet tall with an internal diameter of 13 inches. Two 3-inch diameter sample ports are located perpendicular to each other in the horizontal ductwork in-side the building before the stack silencer. See Appendix A for stack diagrams. Access to the sample ports was provided by a ladder.

Source Description:

Two 1.6 MW Caterpillar Model G3520C internal combustion engine and generator sets are used to produce electrical power. These engines are fueled exclusively with landfill gas generated by the Baseline Landfill.

Test Methods:

EPA Method 1 was used to select gaseous stratification sampling point locations.

EPA Method 3A was used to determine carbon dioxide (CO₂) and oxygen (O₂) emissions.

EPA Method 3C was used to determine landfill gas composition, used in the determination of landfill gas as fuel heating values and fuel specific "F-factors".

EPA Method 4 was used for determination of stack gas moisture content using gravimetric analysis.

EPA Method 7E was used for determination of oxides of nitrogen (NO_X) emissions.

EPA Method 9 was used to determine visible emissions (VE) measurements determined as opacity by a certified observer.

EPA Method 10 was used for determination of carbon monoxide (CO) emissions.

EPA Method 19 was used for verification of volumetric flow rates by stoichiometric calculations based on O₂ and CO₂ "F Factors".

EPA Method 25A was used to determine volatile organic compounds (VOC) by using one flame ionization analyzer to determine total hydrocarbon compounds (THC) and by a second flame ionization analyzer equipped with a nonmethane cutter as described in 40 CFR 1065.265 to determine methane (CH₄) concentrations. VOC emissions were calculated by subtracting the methane emissions from the total hydrocarbon emissions.

SUMMARY OF RESULTS

G2 Energy (Marion) LLC (G2 Energy) operates a power generation facility at the Marion County Board of County Commissioners – Baseline Landfill in Ocala, Marion County, Florida. Two landfill gas fueled Caterpillar Model No. G3520C generator engines are in service at this facility and are used for the production of electricity. G2 Energy designates these generator engines as Unit 1 and Unit 2. The emissions from these engines are the subject of this report.

Table 2, the executive summary, signifies the performance for the generator engines with respect to initial compliance testing. The initial compliance test results are an average of the three test runs for each engine and are compared to the permit limits set forth in FDEP Air Construction Permit No. 0830124-006-AC and EPA 40 CFR 60, Subpart JJJJ performance specifications. NO_X, CO, and VOC emission rates are reported in terms of parts per million by volume (ppmv) at 15% excess O₂ on a dry basis and grams per brake brake-horsepower hour (g/bhp-hr). Visible emissions are reported in terms of percent opacity.

TABLE 2
Executive Summary

			FDEP/ EPA JJJJ
Parameter	Unit 1 Results	Unit 2 Results	Performace Specs
Generator Power Output (kW)	1601	1476	-
Unit Load (% of full load = 1.6 MW)	100%	92%	-
Engine Horsepower (bhp)	2235	1979	-
NO_X (ppmv @ 15% O_2 , dry basis)	86.9	90.9	220
NO _X (g/bhp-hr)	1.17	1.24	3.0
CO (ppmv @ 15% O ₂ , dry basis)	447	428	610
CO (g/bhp-hr)	3.68	3.54	5.0
VOC (ppmv @ 15% O ₂ , dry basis)	8.36	22.4	80
VOC (g/bhp-hr)	0.108	0.293	1.0
VE (% opacity)	0	0	20

The first step in the test matrix consisted of conducting an initial sampling traverse of each engine exhaust stack. The purpose of this sampling traverse was to check for changes in emissions concentration (stratification) within the exhaust stack. CO, O₂ and CO₂ concentrations

were measured at 12 traverse points using a 6×2 sample matrix, within the stack. No significant stratification was observed for the CO, O_2 , and CO_2 emissions from either unit. The stratification was less than 5% from the mean concentration. Therefore, sampling during the testing was conducted from a single point of average emissions from each stack.

Following the stratification test, TRC conducted three test runs at full load on each unit. Each test run was 60 minutes in duration. Emissions of NO_X, CO, THC, CH₄, VOC, and VE were determined. NO_X, CO, THC, CH₄, O₂, and CO₂ were measured using continuous instrumental monitors. A landfill gas fuel sample was collected during the three test runs on each unit for analysis of fuel composition and gross heating value. Co-incident with one of the test runs on each engine, a 30-minute VE test was conducted to determine opacity.

Tables 3 and 4 represent detailed summaries of the initial compliance results for Units 1 and 2. This tabular summary contains all pertinent operational parameters, landfill gas fuel data, ambient conditions, measured emissions, corrected concentrations, and calculated emission rates. NO_X, CO, and VOC emissions are reported in units of parts per million (ppmv) on a dry basis and ppmv, dry corrected to 15% excess O₂. THC and CH₄ emissions are reported in units of ppmv on a wet basis as propane. Mass emission rates for NO_X, CO, and VOC are reported in terms of pounds per hour (lbs/hr) and g/bhp-hr. VE are reported in terms of % opacity.

Volumetric flow and mass emission rates were determined by EPA Method 19. This technique employed a stoichiometric calculation based on measurements of diluent gas (O₂ or CO₂) concentration, "F Factors" determined from fuel composition, and the engine's fuel consumption rate. Examples of emission rate calculations and other calculations necessary for the presentation of the results of this section are contained in Appendix B.

The fuel analyses are contained in Appendix C of this report. These landfill gas analyses were obtained from the EPA Method 3C samples collected during the testing. One sample was collected for each unit over the entire period of testing. The landfill gas fuel composition was determined for use in EPA Method 19 equations as described above. The fuel composition and the TRC heating value and "F-factor" worksheets are in Appendix C.

A certified EPA Method 9 observer performed opacity readings on each engine exhaust stack. One 30-minute visible emission test run was conducted during the gaseous emissions testing. The testing was conducted when the sun was not directly overhead and with daylight present. EPA Method 9 requires the sun angle to be 140 degrees to the observer's back.

Appendix A contains the stack diagrams, the stratification results, and all field data sheets used during these tests. Appendix B contains examples of all calculations necessary for the reduction of the data presented in this report. Appendix C contains the landfill gas composition analyses and the TRC fuel calculation worksheets used to determine custom EPA Method 19 F-factors. Quality assurance activities are documented in Appendix D. Certificates of calibrations for TRC equipment and gases are contained in Appendix E of this report. Appendix F contains the records of logged data, displayed in one-minute intervals and rolling one-minute averages, used to record the reference method NO_X, CO, THC, CH₄, O₂, and CO₂ concentrations. Appendix G contains unit operational data reported in thirty-minute intervals. "Visible Emissions Observation Forms" and the observer certifications are in Appendix H. The FDEP permit is presented in Appendix I for reference purposes.

TABLE 3: Summary of Results Unit 1, Emissions Test Results

Company: G2 Energy (Marion) LLC Plant: MCBCC Baseline Landfill Location: Ocala, Florida Technicians: LJB, CDH Source: Unit 1, a Caterpillar G3520C

Source: Unit 1, a Caterpillar G3520C generator engine					
Test Number	U1-C-1	U1-C-2	U1-C-3		
Date	03/25/09	03/25/09	03/25/09		
Start Time (24 hour basis)	09:33	10:56	12:36		FDEP/EPA
Stop Time (24 hour basis)	10:33	11:56	13:36		Performance
Engine/Generator Operation				Averages	Specifications
Generator Power Output (kW)	1613	1603	1601	1606	
Engine Horsepower (bhp)	2163	2149	2146	2153	
Generator Amperage (Amps)	221	224	224	223	
Generator Voltage (kVolts)	4202	4186	4174	4187	
Generator Frequency (Hertz)	60	60	60	60	
Generator Power Factor	1.0	1.0	1.0	1.0	
Fuel Manifold Pressure (psig)	2.5	2.5	2.5	2.5	
Jacket Water Temperature (Inlet, °F)	127	143	147	139	
Jacket Water Temperature (Outlet, °F)	220	220	220	220	
Engine Oil Temperature (°F)	195	195	195	195	
Landfill Gas Fuel Data	522.0	522.0	522.0	533.0	
Fuel Heating Value (Btu/SCF, HHV)	532.8	532.8	532.8	532.8	
Fuel Specific Gravity	0.9783	0.9783	0.9783	0.9783	
O ₂ "F-factor" (DSCFex/MMBtu @ 0% excess air)	9432	9432	9432	9432	
CO ₂ "F-factor" (DSCFex/MMBtu @ 0% excess air)	1785	1785	1785	<i>1785</i>	
LFG CH ₄ Content (% volume, dry basis)	56.5	no data	no data	56.5	
LFG O ₂ Content (% volume, dry basis)	0.5	0.1	0.1	0.3	
Wellhead Vacuum ("H ₂ O)	11.0	10.3	9.4	10.3	
Fuel Flow Rate (SCFM)	513.7	498.3	495.7	502.6	
Heat Input (MMBtu/hr, Higher Heat Value)	16.42	15.93	15.85	16.07	
Ambient Conditions	- *2,5%				
Atmospheric Pressure ("Hg)	30.08	30.09	30.07	30.08	
Temperature (°F): Dry bulb	69.3	75.3	80.7	75.1	
(°F): Wet bulb	61.5	63.4	64.6	63.2	
Humidity (lbs moisture/lb of air)	0.0096	0.0094	0.0090	0.0094	
Measured Emissions					
NO _X (ppmv, dry basis)	201.1	194.4	197.1	197.5	
NO _X (ppmv @ 15% O ₂ , dry basis)	88.3	85.4	87.1	86.9	220
CO (ppmv, dry basis)	1031	1016	1002	1016	
CO (ppmv @ 15% O ₂ , dry basis)	453	446	443	447	610
THC (ppmv, wet basis as Propane)	488.8	453.0	442.8	461.5	
Methane (ppmv, wet basis as Propane)	470.8	432.9	431.8	445.2	
VOC (ppmv, dry basis as Propane)	20.8	23.5	12.8	19.0	
VOC (ppmv % 15% O ₂ , dry basis as Propane)	9.12	10.3	5.64	8.36	80
VE (% opacity)	0	_	_	0	20
O ₂ (% volume, dry basis)	7.46	7.47	7.55	7.49	
CO ₂ (% volume, dry basis)	12.21	12.20	12.12	12.18	
H ₂ O (% volume, from Method 4 sample train)	13.36	14.40	13.80	13.85	
Stack Volumetric Flow Rates	Y [*]		1112	3.53	
via EPA Method 19 O ₂ "F _d -factor" (SCFH, dry basis)	2.41E+05	2.34E+05	2.34E+05	2.36E+05	
via EPA Method 19 CO ₂ "F _c -factor" (SCFH, dry basis)	2.40E+05	2.33E+05	2.33E+05	2.36E+05	
Calculated Emission Rates (from EPA Method 19 flow	v rates)				
NO _x (lbs/hr)					
1	5.78	5.43	5.51	5.57	
CO (lbs/hr)	5.78		5.51 17.0		
CO (lbs/hr) VOC (lbs/hr)		5.43 17.3 0.629		3.57 17.5 0.514	
1 ' '	5.78 18.1	17.3	17.0	17.5	3.0
VOC (lbs/hr)	5.78 18.1 0.573	17.3 0.629	17.0 0.342	17.5 0.514	3.0 5.0

TABLE 4: Summary of Results Unit 2, Emissions Test Results

Company: G2 Energy (Marion) LLC
Plant: MCBCC Baseline Landfill
Location: Ocala, Florida
Technicians: LJB, CDH
Source: Unit 2, a Caterpillar G3520C generator engine

Source: Unit 2, a Caterpillar G3520C generator engine		2400,4000000000000000000000000000000000		ī	
Test Number	U2-C-1	U2-C-2	U2-C-3		
Date	03/25/09	03/25/09	03/25/09		
Start Time (24 hour basis)	14:17	16:10	17:27		FDEP/EPA
Stop Time (24 hour basis)	15:17	17:10	18:27		Performance
Engine/Generator Operation	1402	1450	1404	Averages	Specifications
Generator Power Output (kW)	1492	1452	1484	1476	
Engine Horsepower (bhp)	2001	1948	1990	1979	
Generator Amperage (Amps)	209 4165	205 4183	206 4192	207 4180	
Generator Voltage (kVolts) Generator Frequency (Hertz)	60	60	60	60	
Generator Power Factor	1.0	1.0	1.0	1.0	
Fuel Manifold Pressure (psig)	2.5	2.5	2.5	2.5	
Jacket Water Temperature (Inlet, °F)	143	137	140	2.3 140	
Jacket Water Temperature (Outlet, °F)	221	220	220	220	
Engine Oil Temperature (°F)	190	197	197	195	
Landfill Gas Fuel Data	150	107	157	173	
Fuel Heating Value (Btu/SCF, HHV)	546.5	546.5	546.5	546.5	
Fuel Specific Gravity	0.9774	0.9774	0.9774	0.9774	
O ₂ "F-factor" (DSCFex/MMBtu @ 0% excess air)	9389	9389	9389	9389	
CO ₂ "F-factor" (DSCFex/MMBtu @ 0% excess air)	1782	1782	1782	1782	
			· ·		
LFG CH ₄ Content (% volume, dry basis)	no data	no data	no data	no data	
LFG O ₂ Content (% volume, dry basis)	0.1	0.1	0.1	0.1	
Wellhead Vacuum ("H ₂ O)	8.2	7.2	7.7	7.7	
Fuel Flow Rate (SCFM)	465.0	447.3	455.7	456.0	
Heat Input (MMBtu/hr, Higher Heat Value)	15.25	14.67	14.94	14.95	
Ambient Conditions			3.77	dia.	3.47
Atmospheric Pressure ("Hg)	30.02	29.99	29.97	29.99	
Temperature (°F): Dry bulb	79.8	80.0	77.5	79.1	
(°F): Wet bulb	62.3	62.5	61.9	62.2	
Humidity (lbs moisture/lb of air)	0.0077	0.0078	0.0080	0.0078	
Measured Emissions				2.5	
NO _X (ppmv, dry basis)	203.3	205.8	200.0	203.0	
NO _X (ppmv @ 15% O ₂ , dry basis)	90.8	92.3	89. 7	90.9	220
CO (ppmv, dry basis)	965.2	949.9	948.9	954.7	
CO (ppmv @ 15% O ₂ , dry basis)	431	426	426	428	610
THC (ppmv, wet basis as Propane)	564.8	579.5	569.9	571.4	
Methane (ppmv, wet basis as Propane)	527.0	531.7	525.3	528.0	
VOC (ppmv, dry basis as Propane)	43.6	55.2	51.5	50.1	
VOC (ppmv % 15% O ₂ , dry basis as Propane)	19.5	24.7	23.1	22.4	80
VE (% opacity)	0	-	-	0	20
O ₂ (% volume, dry basis)	7.69	7.74	7.75	7.73	
CO ₂ (% volume, dry basis)	12.00	11.98	11.96	11.98	
H ₂ O (% volume, from Method 4 sample train)	13.30	13.38	13.33	13.34	
Stack Volumetric Flow Rates	10.00	10.00	10,00	10.0	
via EPA Method 19 O ₂ "F _d -factor" (SCFH, dry basis)	2.27E+05	2,19E+05	2.23E+05	2.23E+05	46
_ · · · · · · · · · · · · · · · · · · ·					
via EPA Method 19 CO ₂ "F _c -factor" (SCFH, dry basis)	2.26E+05	2.18E+05	2.23E+05	2.22E+05	
Calculated Emission Rates (from EPA Method 19 flo		5.35	5.33	5.40	k i
NO_X (lbs/hr)	5.50	5.37	5.32	5.40	
CO (lbs/hr)	15.9	15.1	15.4	15.5	
VOC (lbs/hr)	1.13	1.38	1.31	1.28	2.0
NO _X (g/bhp-hr)	1.25	1.25	1.21	1.24	3.0
CO (g/bhp-hr)	3.60	3.52	3.51	3.54	5.0
VOC (g/bhp-hr)	0.256	0.322	0.300	0.293	1.0

PROCESS DESCRIPTION

G2 Energy (Marion) LLC owns a power generation facility, operated by Autotech II, at the MCBCC Baseline Landfill in Ocala Marion County, Florida. The station uses two landfill gas fueled engines to provide electricity to the local power grid. The exhaust emissions from these units were measured to determine compliance with the FDEP construction permit. This section of the report provides a brief description of these engines.

The generator engines, Units 1 and 2, were manufactured by Caterpillar, Model 3520C, and are fueled exclusively with landfill gas generated from microbial decomposition of solid waste from the landfill. The engines are lean burning, four-cycle, turbo-charged, generator engines which use electronic ignition and air-to-fuel ratio controls to reduce pollutant emissions.

The engines are rated for production of 2233 brake-horsepower (bhp) and 1.6 MW at a speed of 1200 rotations per minute (rpm). The operating schedule for this engine is permitted for 8760 hours per year. These engines are permitted to operate solely on landfill gas as a fuel source.

The stack configurations for both engines are identical. Sample ports meeting the criteria of EPA Method 1 were located in a straight horizontal section of the exhaust pipe inside the building and before the silencer. The sample ports were 56 inches or 4.3 stack diameters upstream from the nearest flow disturbance, the engine silencer. Sampling ports were 151 inches or 11.6 stack diameters downstream from the nearest flow disturbance. Access to the stack was made available via a safety ladder. The diameter of the exhaust stack was 13.0 inches. Appendix A contains a field sketch of the stack configuration and sample port locations.

Autotech II personnel provided operational data from the engine instrument panels. Data sets were recorded at approximate 30-minute intervals during each test run; the average of this data was recorded in the summary tables. Copies of the original data are contained in Appendix G of this report.

ANALYTICAL TECHNIQUES

Emissions from two generator engines were measured at the MCBCC Baseline Landfill located in Ocala, Marion County, Florida. TRC performed these tests on March 24th and 25th, 2009 in order to determine the compliance status with regard to permitted emission limits. This section of the report describes the analytical techniques and procedures used during these tests.

The sampling and analysis procedures used during these tests conformed with those outlined in The Code of Federal Regulations, 40 CFR 60, Appendix A, Methods 1, 3A, 4, 7E, 9, 10, 19, and 25A. The stack gas analyses for NO_X, CO, THC, CH₄, O₂ and CO₂ were performed using continuous instrumental monitors. Exhaust gas analyses were performed on a dry basis for all compounds except THC and CH₄ emissions. Table 5 lists the instruments and detection principles used for these analyses. Manual sampling measurements included sampling for moisture content using a chilled water impingement sampling train. Landfill gas fuel sampling and analysis was conducted in accordance with EPA Method 3C.

The first step in the test matrix consisted of conducting an initial sampling traverse of each engine exhaust stack. The purpose of this sampling traverse was to check for changes in emissions concentration (stratification) within the exhaust stack. CO, O_2 and CO_2 concentrations were measured at 12 traverse points using a 6×2 sample matrix, within the stack. No significant stratification was observed for the CO, O_2 , and CO_2 emissions. The stratification was less than 5% from the mean concentration. Therefore, sampling during the testing was conducted from a single point of average emissions from each engine stack.

Following the stratification test, TRC conducted three test runs at full load on each unit. Each test run was 60 minutes in duration. Emissions of NO_X, CO, THC, CH₄, VOC, and VE were determined. NO_X, CO, THC, CH₄, O₂, and CO₂ were measured using continuous instrumental monitors. VOC emissions were determined by subtracting the CH₄ emissions from the THC emissions. A landfill gas fuel sample was collected during the entire period of the three test runs for analysis of fuel composition and gross heating value. One 30-minute VE test was conducted during these tests.

Provisions were made to introduce the calibration gases to the instrumental monitors via two paths: 1) directly to the instruments via the sample manifold quick-connects and flow meters, and 2) through the complete sampling system including the sample probe, filter, heat trace, condenser, manifold, and flow meters. The former method was used for quick, convenient calibration checks. The latter method was used to demonstrate that the sample was not altered due to leakage, reactions, or adsorption within the sampling system (sample system bias check). A NO_X standard calibration gas was introduced into the NO_X analyzer directly. Then the response from the NO_X analyzer was noted as the calibration gas was introduced at the probe. Any difference between the two responses in the instrument was attributed to the bias of the sample system. Following the span gas bias check, a zero gas bias check was performed on the NO_X analyzer using nitrogen to check for any zero bias of the sample system. In accordance with EPA Methods 3A and 10 this span and zero bias check procedure was repeated for the CO,

O₂, and CO₂ analyzers. Although not required by EPA Method 25A, this procedure was also conducted for the THC and CH₄ analyzers to maintain consistency in results reporting.

Figure 1 shows the set-up for sampling the engine exhaust stack with the continuous instrumental monitors. The gas sample was continuously pulled through a ³/₄-inch diameter stainless steel probe and transported via a 120-foot long, ³/₈-inch diameter heat-traced Teflon® line into the mobile laboratory using a stainless steel/Teflon® diaphragm pump. At the pump exit the pressurized sample was pushed into a heated sample manifold. The bulk of the gas stream then passed to a stainless steel minimum contact condenser to dry the sample stream and into the (dry) sample manifold. From the manifold, the sample was partitioned to the analyzers through glass and stainless steel flow meters for flow control of the sample.

All instruments were housed in an air-conditioned trailer-mounted mobile laboratory. Gaseous calibration standards were provided in aluminum cylinders with the concentrations certified by the vendor. EPA Protocol No. 1 was used to determine the cylinder concentrations where applicable, i.e., NO_X calibration gases.

EPA Method 1 procedures were used to determine the stratification test point locations for sampling per the requirements of EPA Methods 3A, 7E, and 10. The locations of the sample ports and traverse point distances for the turbine are denoted in the stack diagram located in Appendix A.

The stack gas analyses for CO_2 and O_2 concentrations were performed in accordance with procedures set forth in EPA Method 3A. Instrumental analyses were used in lieu of an Orsat or a Fyrite procedure due to the greater accuracy and precision provided by the instruments. The CO_2 analyzer was based on the principle of infrared absorption; the O_2 analyzer operated using a paramagnetic cell detector.

EPA Method was used to measure the moisture content of the stack gases. A chilled water impingement system was used in conjunction with a calibrated dry gas meter to pull a sample greater than 21 standard cubic feet (scf). A K-type (chromel-alumel) thermocouple was used in conjunction with a digital thermometer to determine the last impinger temperatures in the chilled liquids impingement sampling train. This parameter is measured to ensure that the gas stream is cooled to a minimum of 68 degrees Fahrenheit as required by sampling methodology. Determination of the moisture content was necessary to convert VOC wet concentrations to a dry basis. EPA Method 5 equations were used to calculate stack moisture content.

 NO_X emission concentrations were determined in accordance with EPA Method 7E. The NO_X analyzer operated on the principle of chemiluminescence. As required, the NO_X analyzer was equipped with a NO to NO_2 converter to allow for measurement of all forms of NO_X as per EPA's definition. This analyzer used a high temperature, approximately 650°C, converter to convert nitrogen dioxide (NO_2) in the sample stream to NO. Due to low NO_X concentrations in the engine exhaust, a temperature controlled NO_X analyzer, equipped with a chiller, was used to control instrument drift. NO_X mass emission rates were calculated as if all the NO_X were in the form of NO_2 . This approach corresponds to EPA's convention, however, it tends to overestimate the actual NO_X mass emission rates since the majority of NO_X is in the form of NO which has less mass per unit volume (i.e., lbs. of emissions per ppmv concentration) than NO_2 .

CO emission concentrations were quantified in accordance with procedures set forth in EPA Method 10. A continuous non-dispersive infrared (NDIR) analyzer was used for this purpose. This reference method analyzer was equipped with a gas correlation filter that removes most interference from moisture, CO₂, and other combustion products.

THC emissions were measured using the instrumental technique of EPA Method 25A for use in determination of VOC emissions. The FID detector used in this method received a heated wet sample to ensure against the possibility of any heavy hydrocarbon condensing out prior to analysis. Calibration gases were on a propane basis in air.

CH₄ emissions were measured using the instrumental technique of EPA Method 25A equipped with a non-methane cutter as described in 40 <u>CFR</u> 1065.265 for use in determination of VOC emissions. The FID detector used in this method received a heated wet sample to ensure against the possibility of any heavy hydrocarbon condensing out prior to analysis. Calibration gases were on a propane basis in air with the analyzer switched from THC mode during calibrations to CH₄-only mode during the test runs.

VOC emissions were determined by subtracting the methane emissions from the THC emissions for each test run. This approach is described in 40 <u>CFR</u> 60, Subpart JJJJ as a procedure for measuring VOC emissions in the stack of an engine. Additional information regarding this sampling technique may be found in 40 <u>CFR</u> 1065 "Engine Testing Procedures".

All data from the continuous monitoring instruments were logged into a computer file in 1-minute intervals and rolling 1-minute averages. A data logger with a computer generated display screen monitored, recorded, and averaged the emission concentrations. The program controlling the logging of data was also used to log quality assurance (QA) data. See Appendix F of this report for copies of the raw data and Appendix D for the QA data.

Visible emissions as opacity were determined via EPA Method 9. A 30-minute opacity test run was performed concurrently with a compliance test run on each engine. The visual emission observer was certified at an FDEP approved smoke school. Appendix H provides both the opacity observation sheets as well as observer certification documents.

The stoichiometric calculations of EPA Method 19 were used to calculate the stack volumetric flow rates and mass emission rates. These calculations are based on the heating value and the O_2 " F_d -factor" (DSCF of exhaust per MMBtu of fuel burned) for landfill gas. Method 19 flow rate determinations are also based on the excess air, as measured from the exhaust diluent concentrations, and the fuel flow rates. EPA Method 19 was used as the stack flow rate measurement technique for all testing. Appendix C contains this analysis as well as the TRC fuel calculation worksheets used for determination of heating values and diluent F-factors.

A landfill gas (LFG) fuel sample, collected into a stainless steel canister at less than 500 milliliters per minute, was analyzed for O₂, CO₂, CH₄, and N₂ in accordance with EPA Method 3C. These measurements were necessary to determine LFG heating value and EPA Method 19 "F-factors". The sampling train consisted of a flow controller, absolute pressure gauge, and an evacuated sample tank. The flow controller was attached to the sample tank through the use of stainless steel quick connects. Triangle Environmental Services, Inc. of Research Triangle Park, North Carolina conducted the analysis. Field sampling sheets are in Appendix A. A detailed

description of the sample analysis and the results are contained in Appendix C. TRC normalized all the results supplied by the analytical laboratory.

TRC personnel collected ambient absolute pressure, temperature, and humidity data during each test run. A wet bulb/dry bulb psychrometer equipped with a battery-operated fan was used to determine ambient temperature and humidity conditions. An aircraft-type aneroid barometer (altimeter) was used to measure absolute atmospheric pressure.

All emission calculations were conducted by a computer spreadsheet as shown in Tables 2 through 4 of this report. Example calculations were performed manually using a hand-held calculator in order to verify the formulas used in the spreadsheets. Example calculations are located in Appendix B of this report.

TABLE 5
ANALYTICAL INSTRUMENTATION

<u>Parameter</u>	Model and Manufacturer	Common Use Ranges	Sensitivity	Response Time (sec.)	<u>Detection Principle</u>
NOX	TECO	0-10 ppm	0.1 ppm	1.7	Thermal reduction of NO ₂ to NO.
	Model 42C	0-25 ppm 0-50, 0-100 ppi	m		Chemiluminescence of reaction of NO with O ₃ . Detection by PMT.
		0-200, 500 ppn			Inherently linear within 1% of full
		0-1,000 ppm 0-5,000 ppm			scale.
CO	TECO	0-1 ppm	0.1 ppm	60	Infrared absorption, gas filter
	Model 48	0-10 ppm			correlation detector, micro-
		0-30, 0-50 ppm	l		processor based linearization.
		0-100, 0-200 pp	pm		
		0-500, 0-1000	ppm		
CO_2	Servomex	0-5%	0.025%	< 10	Non-dispersive infrared absorption,
	1440	0-10%	0.05%	electronic lir	nearization of a
		0-15%	0.075%	logar	rithmic signal (Beer's Law)
O ₂	Servomex	0-5%	0.02% < 10	Parar	magnetic cell detector,
	1440	0-10%	0.02%	inherently lin	near.
		0-25%	0.02%	•	
VOC	California	0-10, 0-100,	10 ppb 2.0	Flam	e ionization of hydrocarbons
	Analytical	0-1000, 0-1000			inherently linear within 1% over
	Model 300-HFID	0-100,000 ppm			the range of the analyzer.
PM	AND HM-120	0-120 grams	0.0001g	n/a	Spring loaded pressure plate for
				gravi	imetric analysis
	Nutech 2010	0-1SCFM	n/a n/a		Sample Console with temperature
					controllers, sample pump, dry gas
					meter, orifice meter, and inclined
		•			manometer for isokinetic sampling

NOTE: Higher ranges available by sample dilution. Other ranges available via signal attenuation.

FIGURE 1 INSTRUMENTAL SAMPLE SYSTEM DIAGRAM Vent Sample System NO. CO Bias Check Line Analyzer Analyzer THC Analyzer Flowmeters Calibraton Gas Manifold Duct, Flue, or Stack Sample Manifold 八 Vent Flowmeters SS/Teflon® lce Sample Bath Pump CO2 02 Analyzer Condenser Vent 0001 TOO T-OO LOG Heat Traced Line Sample Stream Dry Gas Sample Line from Source TRC - Air Calibration Line Measurements **Quick Connects** 14 Calibration Gases

QUALITY ASSURANCE ACTIVITIES

A number of quality assurance activities were undertaken before, during, and after this testing project. This section of the report combined with the documentation in Appendices D and E describe each of those activities.

A multi-point calibration was performed for each instrument in the field prior to the collection of data. The instrument's linearity was checked by first adjusting the instrument's zero and span responses to zero nitrogen and an upscale calibration gas in the range of the expected concentrations. The instrument response was then challenged with other calibration gases of known concentration. The instrument's response was accepted as being linear if the response of the other calibration gases agreed within ± 2 percent of the analytical range (high-level calibration gas) from the predicted values. For the THC and CH₄ analyzers, the instrument's response was accepted as being linear if the response of the other calibration gases agreed within ± 5 percent of the certified calibration gas value. The response of the infrared absorption type CO and CO₂ analyzers is made linear through electronic suppression.

System bias checks were performed both before and after the sampling system was used for emissions testing. The sampling system's integrity was tested by comparing the responses of the NO_X analyzer to a calibration gas (and a zero gas) introduced via two paths as previously described in the *Analytical Techniques* section of this report. This system bias test was performed to assure that no alteration of the sample had occurred during the test due to leakage, reactions, or absorption. Similarly, system bias checks were performed on the THC, CH₄, CO, O₂, and CO₂ analyzers for added assurance of sample system integrity. The results of the system bias checks are available in Appendix D.

Prior to testing, a NO_X converter efficiency check was conducted as required by EPA Method 7E. The procedures used are detailed in Method 7E, Section 8.2.4. The NO_X analyzer was calibrated and then a NO_2 calibration gas was introduced directly to the analyzer. The average analyzer response over 5 minutes was recorded and the converter efficiency calculated from this average response. If the converter efficiency was at least 90 percent, then the converter is acceptable. Appendix D provides the results for the converter efficiency check.

The residence time of stack sampling and measurement system were estimated using the pump flow rate and the sampling system volume. The pump's rated flow rate is 1.2 scfm at 5 psig. The sampling system volume was approximately 0.28 scf. Therefore, the system had a minimum sample residence time of approximately 14 seconds.

The NO_X , CO, O_2 and CO_2 sampling and analysis system was checked for response time per the procedures outlined in EPA Method 7E, Section 8.2.5 and 8.2.6. The maximum response time did not exceed 80 seconds. The minimum sampling time per point selected was at least twice the maximum response time as determined during the initial system bias tests. The results of these response time tests are contained in Appendix D.

TRC and/or instrument vendors conducted interference response tests on the NO_X , CO, O_2 , and CO_2 analyzers. For the NO_X , CO, and O_2 analyzers, the sum of the interference responses for H_2O , C_3H_8 , CO, CO_2 and O_2 is less than 2 percent of the applicable full-scale span value. The instruments used for the tests meet the performance specifications for EPA Methods 3A, 7E, and 10 as written prior to the method updates. All of the analyzers predate the methodology updates as effective on August 14^{th} , 2006. The results of the interference tests are available in Appendix D of this report.

Each sampling system was leak checked by demonstrating that it could hold a vacuum greater than 15 inches of mercury ("Hg) for at least 1 minute with a decline of less than 1 "Hg. A leak test was conducted after each sample system was set up, i.e., before testing began, at the beginning and end of each test day, and before the system was dismantled, i.e., after testing was completed. This test was conducted to insure that ambient air was not diluting the sampling system. No leakage was detected.

As a minimum, before and after each test run, the analyzers were checked for zero and span drift. This allows test runs to be bracketed by calibrations and documents the precision of the data just collected. Calibration gases were introduced to the analyzers through the entire sampling system. Appendix D contains quality assurance tables that summarize the zero and span checks that were performed for each test run. The worksheets also contain the data used to correct the data for drift per EPA Method 7E, Equation 7E-5. NO_X, CO, O₂ and CO₂ data were corrected for drift as required by the test methods. Additionally, THC and CH₄ data were corrected for drift in order to be more consistent and accurate in the reporting of results.

The control gases used to calibrate the instruments were analyzed and certified by the compressed gas vendors to $\pm 1\%$ accuracy for all calibration gases. EPA Protocol No. 1 was used, where applicable, i.e., NO_X gases, to assign the concentration values traceable to the National Institute of Standards and Technology (NIST), Standard Reference Materials (SRM's). The gas calibration sheets as prepared by the vendor are contained in Appendix E.

Additional quality assurance activities were performed on the two THC analyzers, used for determination of VOC emissions. Both THC analyzers were calibrated using the same propane gases in air. A comparison against a methane standard was used to verify the consistency of the responses of the two analyzers to a different hydrocarbon. An 895 ppmv standard was used and both analyzers responses were within ±2% of each other and within ±5% of the anticipated response based upon analytical theory. TRC has proposed using a 200 to 300 ppmv standard in the test protocol, but the stack emissions were closer to the 895 ppmv gas and therefore, more representative. In addition, on the THC analyzer used for determination of methane emissions, the efficiency of the non-methane cutter was tested against an ethane and a propane standard. Breakthrough of VOC as ethane was 10.7% and breakthrough as propane was -0.4%; i.e., there was no breakthrough for propane. Since ethane is not classified by EPA as a VOC and propane is classified as a VOC, it was determined that no adjustments were necessary to correct for ethane emission breakthrough.

The moisture train sampling system was leak checked by demonstrating that it could hold a vacuum greater than the highest sampling vacuum for at least 1 minute with a leakage rate less than 0.02 cubic feet per minute (cfm). A leak test was conducted before each test run began and after each test run was completed. This leak check was performed in accordance with EPA

Method 4 to ensure that the sample was not diluted by ambient air. Leak checks were conducted at a vacuum higher than that used during sampling. No leaks greater than 0.02 cfm were detected.

The dry gas meter of the moisture train was calibrated prior to testing in accordance with EPA Method 5. The dry gas meter in the control box was calibrated and a flow curve and dry gas meter factor was generated using the calibrated orifice procedure. A post-test meter calibration check was performed upon return to the TRC Gainesville Office using the Y_{qa} check. All glassware was thoroughly washed, rinsed, dried, and stored to prevent contamination. The calibration certifications of the dry gas meter are found in Appendix E of this report.

Quality assurance procedures for laboratory analysis of the landfill gas for O_2 , CO_2 , CH_4 , and N_2 were conducted in accordance with EPA Method 3C protocols. Upon return to the TRC office samples were packed into a shipping container, sealed, and shipped with a chain-of-custody form to Triangle Environmental Services, Inc. Results of the quality assurance activities are reported with the lab results in Appendix C.

Appendix E also contains calibration data for the ancillary equipment used during this testing. An altimeter/barometer was used for determination of barometric pressure. A fanoperated psychrometer with NIST traceable thermometers was used to determine ambient and dew point temperatures. Other ancillary equipment includes analytical balance calibration data, angle finder calibration data, and caliper calibration data.

TRC collected and reported the enclosed test data in accordance with the procedures and quality assurance activities described in this test report. TRC makes no warranty as to the suitability of the test methods. TRC assumes no liability relating to the interpretation and use of the test data by others.

APPENDIXA: Field Data Sheets

SIGN IN SHEET

PROJECT NAME: 6 2 Energy Performance To	est _{DATE:} 3/24-25/ 2009
PROJECT NO.: \ 66478.0000.0000	PPEP Arr Construction PERMIT NO .: US 30124-006-AL
FACILITY/LOCATION: Base line Land Fill	
SOURCE(S): Units 1+2	

PARTICIPANTS					
TRC - Air Measurements, Gainesville Office					
FDEP					
62 Energy					
31					

REPRESENTATIVES:

NAME	AFFLIATION	JOB TITLE	PHONE NUMBER	Job Safety Review (Y/N)?
Chris Hank	TRC	Field Technician	352: 378: 0332	4
Leonard Brenner	TIRC	Manager Dr. Measurement	352-318-0332	. 4
FRARY KUBERCK.	FDEP	FUGINEEL	407-893-3992	N.
Allen Rainey	11	67	427-894-7555	N
JERRY BREWER	AdoteetI	Openator	352237-444/	N
)			

Circular Stack Sampling Traverse Point Layout (EPA Method 1)

Date: March 24, 2009
Plant: Marion County Baseline Landfill
Source: Unit 1
Technician(s): LJB, CDH

Port + Stack ID: 22.5 in.

Port Extension: (7+2.5) = 9.5 in.

Stack ID: (3 in.

Stack Area: 0.92 ft²

Total Req'd Traverse Pts: 12

No. of Traverse Pts: 6 /diam

No. of Traverse Pts: 6 /port

Stack Diagram (Side View showing major unit components, dimensions and nearest upstream & downstream flow disturbances)

Traverse	rengm	racioi (%	or manie	(CI)	Distance
Point	Numbe	er of Poin	ts per I	Diameter	from Reference
Number			•		Point (inches)
11011001	4	6	8	12_	1 0111 (1101105)
1	6.7	4.4	3.2	2.1	(0.07
2	25.0	14.6	10.5	6.7	11.40
3	75.0	29.6	19.4	11.8	\3.35
4	93.3	70.4	32.3	17.7	18.65
5		85.4	67.7	25.0	20.60
6		95.6	80.6	35.6	21.93
7			89.5	64.4	
8			96.8	75.0	<u> </u>
9				82.3	
10				88.2	
11				93.3	
12				97.9	
					

G2 Energy - MCBCC Baseline Landfill Unit 1 Generator Engine Stratification Test Results

Stratification Test	AVE CO	AVE O ₂	AVE CO ₂	CO	O_2	CO ₂
Traverse Point Number	(ppmv)	(% vol)	(% vol)	(% Dev)	(% Dev)	(% Dev)
1-1	1026.61	7.36	12.18	-0.6%	-0.1%	0.2%
1-2	1026.39	7.33	12.21	-0.6%	0.3%	-0.1%
1-3	1018.42	7.39	12.17	0.2%	-0.6%	0.3%
1-4	1027.27	7.36	12.20	-0.7%	-0.2%	0.0%
1-5	1017.54	7.33	12.24	0.2%	0.3%	-0.3%
1-6	1028.15	7.37	12.20	-0.8%	-0.3%	0.0%
2-1	1029.26	7.31	12.20	-0.9%	0.5%	0.0%
2-2	1021.96	7.31	12.19	-0.2%	0.5%	0.2%
2-3	1021.96	7.33	12.21	-0.2%	0.2%	-0.1%
2-4	1003.38	7.40	12.18	1.6%	-0.7%	0.2%
2-5	1011.34	7.37	12.21	0.9%	-0.3%	0.0%
2-6	1008.69	7.31	12.27	1.1%	0.5%	-0.5%
Averages	1020.08	7.35	12.21			
Minimum Reading	1003.38	7.31	12.17	-0.9%	-0.7%	-0.5%
Maximum Reading	1029.26	7.40	12.27	1.6%	0.5%	0.3%

Notes: Note: Sampling was conducted per EPA Method 7E, Section 8.1 using a 12-point traverse. Sampling conducted in the subsequent test runs using a 12-point traverse for the remainder of testing. Per EPA Methods 3A, 7E, and 10, Section 8.1 sampling may be conducted at a reduced number of sampling points if results of the stratification tests for one pollutant and one diluent meet methodology specifications. If the pollutant emissions are within 5% of the mean of the normalized concentration or within 0.5 ppmv for NO_X and/or CO concentrations and 0.3% volume for O₂ and/or CO₂ concentrations, then sampling may be conducted at a single traverse point. If the pollutant emissions are within 5% of the mean of the normalized concentration or within 1.0 ppmv for NO_X and/or CO concentrations and 0.5% volume for O₂ and/or CO₂ concentrations, then sampling may be conducted using a three point traverse along either the long or short measurement line specified

EPA Method 3C Field Data Sheet

Date: 3/25/2009	_
Plant: G2 Enersy	
Location: Baseline Land Fill	
Run Number: UI-C-	_
Technician(s): C.Hank	_
Sample Location: Blower Skid	
Sample Matrix: Landfill Gas	·
Date canister received from laboratory: 3/23	_Canister Serial No.: 8T025
Date canister returned to laboratory: 3/30/09	Canister leak check date: 3/23
Chain of Custody Form included with canister shipment to laboratory (Shipper's Initials): 4e5	Sampler/Flow controller ID:

Time (HH:MM)	Tank Pressure (mbar)	Flowmeter (cc/min)	Canister Temperature (°F)
0 9:33	476	35	65.6
09:53	489	35	07.2
10:13	515	35	684
10:33	540	35	69.8
10:53	565	35 35	71.0
11:13	593	35	72.4
(1:33	619	35	73:4
11:23	644	35	14.0
13:15	697 678	35 35	78.2
13:35	7/2	3 <i>5</i> 3 <i>5</i>	79.4
13:41 Encl	717	35	79.76
		**	
·			72.6°F

EPA Method 2: Moisture Content

Test Run No.	U1-C-1	U1-C-1	U1-C-3
Date	03/25/09	03/25/09	03/25/09
Start Time	09:33	10:56	12:36
Stop Time	10:33	11:56	13:36
Stack Moisture & Molecular Wt. via EPA Methods 3a & 4	in the		
O ₂ (% volume, dry basis)	7.46	7.47	7.55
CO ₂ (% volume, dry basis)	12.21	12.20	12.12
Beginning Meter Reading (ft ³)	800.315	843.800	888.305
Ending Meter Reading (ft ³)	843.206	887.110	931.881
Total Volume (ft ³)	42.891	43.310	43.576
Beginning Impingers Weight (g)	2592.6	2876.8	2808.8
Ending Impingers Weight (g)	2731.2	3028.6	2952.6
Net Weight Gain (g)	138.6	151.8	143.8
Dry Gas Meter Factor (K _d)	0.9879	0.9879	0.9879
Dry Gas Meter Temperature (°F average)	70.4	73.9	79.2
Atmospheric Pressure ("Hg, absolute)	30.08	30.09	30.07
Volume of Water Vapor Collected (SCF)	6.535	7.157	6.780
Volume of Air Metered (SCF)	42.392	42.530	42.353
Stack Gas Moisture (% volume)	13.36	14.40	13.80
Dry Gas Fraction	0.8664	0.8560	0.8620
Stack Gas Molecular Wt. (lbs/lb-mole)	28.62	28.49	28.55
Stack Moisture via Stoichiometry		Mixital Land	
Combustion Moisture (% volume @ 0% excess air)	17.70	17.70	17.70
Moisture Content (% volume, stoichiometric)	12.93	12.89	12.76

40 CFR 60 Methods 2 and 4 -- VELOCITY and MOISTURE

Project No. 166478, 2000 . 0000	Pitot ID NA	Date March 25, 2009
Client G 2 Exergy	PTCF/Cp NA	Operator L. Brenner
Facility Baseline Landfill	Internal Dimensions (in.)	Gauge Sensitivity (4, ca 6)
source Unit X 1	Barometric Pressure (in. Hg) 30.0%	Thermocouple ID Imp 4
Sampling Location Steek	Meter Box ID	Meter Box Y [.740
Condition Full Load	Meter ID 2 8 9 1 4	Meter Box Δ H@ 0. 9 8 7 9

Imp. Exit

Temp. (°F)

احا

59

66

اما

59

58

Silica Gel

CEM

Velocity Traverse Data Moisture Sample Data Run No. Run No. U1-C-1 Test Time DGM Temp. (°F) DGM P Static (in. H₂Q) Stack CO₂ (%) Stack O₂ (%) Clock Reading Elapsed ΔН Vacuum (24-hr) (ft³) (in. H₂O) (in. Hg) (min) Inlet Outlet Run\Time (24-hr) Start Stop 0 69 9:33 900.315 68 9:45 10 ₹07,535 68 Flue Gas Temp. 9:53 20 68 814565 (°F) 30 69 EC:01 922.232 40 73 828906 68 10:13 69 936.165 10:23 10:33 74 843 206 69 **Moisture Analysis Results** #3 Reagent D: 4.0 D: H 10 MT Sit Gel Final Weight (g) 740.6 627.4 777.0 58G.2 Initial Weight (g) 626.1 616.2 584.1 766.2 Net Moisture Weight Gain (g) 114.5 2.1 10.8 11.2 Total Moisture (g) 138.6 Leak Check Data O2 / CO2 Data Meterbox Pre-Test Post-Test Fyrite Orsat Vacuum (in Hg) 2.8 20.8 02 % Rate (cfm) 0,007 0.002 Pre-Test Poet-Test Pitot Tube **Test Location Schematic** 1. Include distances to disturbances and note what they are. 2. Show and label all ports. Note which was used for each test type. 3. Indicate the flow direction. D6Mme Temp: 70.36 Tobl Volume: 42.891

NA = Not Applicable Rev. 1 (5/2005)

AVERAGE

Checked By: 3/25/09 (Project Manager or QA Manager - sign and date)

imp. Exit Temp. (°F)

67

56

57

58

58

Silica Gel

CEM

40 CFR 60 Methods 2 and 4 -- VELOCITY and MOISTURE

Project No. 166748.0000.000	Pitot ID NA	Date 3/257 200 9
Client G 2 Enersy	PTCF/Cp NA	Operator L. Brenner
Facility Baseline Land Fill	Internal Dimensions (in.)	Gauge Sensitivity 0.001
Source Unit XI	Barometric Pressure (in. Hg) 30.09	Thermocouple ID Imp 4
Sampling Location Stack	Meter Box ID	Meter Box Y 1. 740
Condition Full Local	Meter ID 28414	Meter Box Δ H@ 0.9879

Condition	Full	Losd		Meter	ID 2	-8414	Meter	Вох ДН@	0.98	19
	locity Traverse	Data	<u> </u>			Moistu	re Sample Dat			
Run No.		/	Test	Time		DGM T	emp. (°F)	Run No.	1- C-2	
Stack CO ₂ (%)	Stack O ₂ (%)	P Static (in. H₂O)	Clock (24-hr)	Elapsed (min)	DGM Reading (ft³)	Inlet	Outlet	ΔH (In. H₂O)	Vacuum (in. Hg)	imp. Temp
Run/Time (24-hr)	Start	Stop	10.56	0	843800	73	69	にチ	3.5	6
	Flue Gas Temp.	:,/	11,00	10	851009	75	70	1.7	3.5	5
Poin No.	(°F)	Δ/P (in H₂O)	11716	20	858 348	76	71	1,7	3.5	5
			11,36	30	865.438	77	71	1.7	3.5	5
			11:36	40	372.685	77	7.3	1.7-	3.5	58
			11:46	50	879.850	78	73	1,7	3.5	58
		/	1156	60	887.110	78	74	1.7	3.5	59
						Moisture /	Analysis Resu	its	·	
	\/					#1	#2	#3	#4	Silica
	\/			Reagent DI H_O			D'. H. O	MT	Sil Gel	
				Fi	nal Weight (g)	862.8	644.1	588.1	933.6	
	$-$ \/ $-$			Init	ial Weight (g)	7406	627.4	586.2	912.6	\bot
-	$ \sqrt{}$		Net I	Moisture W	eight Gain (g)	122.2	16.7	1.9	11-0	
	-			Leak C	heck Data		Tot	tal Moisture (g)	1518	<u> </u>
	$-/ \setminus -$		Meterb	iox _F				O ₂ / C(O₂ Data	·
	-		· _		Pre-Test	Post-Test		Fyrite	Orsat	CEA
	/ · \ 			m (in Hg)	20.6	19.5	O ₂ %			
/	/		R	tate (cfm)	0.004	100,0	CO2 %			_
			Pitot Tu	De-	Pre-Test	Post-Test		Test Location	n Schematic	
/		\				·—	 Include dist they are. 	tances to distur	bances and note	e what
/ -					-	-	2. Show and I for each tes		Note which was	used
/							Indicate the	flow direction.		
/								•		
/				6	6M m	Temp	73.9	3		
_/						Volume		10		
/					,	10.00,110	-			
/		\longrightarrow								
,										

NA = Not Applicable Rev. 1 (5/2005)

AVERAGE

3-25-09 (Project Manager or QA Manager - sign and date)

40 CFR 60 Methods 2 and 4 -- VELOCITY and MOISTURE

Project No. 166978.0000.0000	Pitot ID	Date 3/25/2009
client G 2 Energy	PTCF/Cp NA	Operator L. Brenner
Facility Baseline Land Fill	Internal Dimensions (in.)	Gauge Sensitivity
Source Stack Unit & 1	Barometric Pressure (in. Hg) 30.07	Thermocouple ID Imp 4
Sampling Location Stack	Meter Box ID +	Meter Box Y . 7 4 0
Condition full Lock	Meter ID 28414	Meter Box Δ H@ 0. 9879

Moisture Sample Data **Velocity Traverse Data** Run No. Stack CO₂ (%) Stack O₂ (%) P Static (in. H₂Q Run Time (24 hr) **Start** Traverse Point No. Flue Gas Temp. Δ/P (in/H₂O) (°F) Moisture Analysis Results Tatal Moisture (g) **Leak Check Data** Meterbox Pre-Test Post-Test Vacuum (in Hg) 19.5 17.4 Rate (cfm) 0.003 0.003 Pitot Tube they are. for each test type. 3. Indicate the flow direction. 4 Note 1 impinger were forward thatel during line. 493

moisture Sample Data							
Test	Time		DGM Temp. (°F)		Run No.	U1-c-3	
Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³)	Inlet	Outlet	ΔH (in. H ₂ O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)
15:36	o	888.305	דד	76	1.7	3.8	66
12:46	10	895.760	80	76	1.7	3.8	59
12:56	20	903.035	81	רד	1.7	3.8	61
13:06	30	910,147	82	77	1.7	3.8	63
13:16	40	917.478	82	78	1.7	3.8	63
13:26	50	924,675	83	78	1.7	3.9	64
13:36	60	931.881	83	79	1,1	3.8	66

months Analysis Nestra								
	#1	#2	#3	#4	Silica Gel			
Reagent	D. WY	D: 4.0	MT	Sil Gel	7			
Final Weight (g)	848.3	×572.1	599.8	4932.4				
Initial Weight (g)		644.1	1,382	933.6				
Net Moisture Weight Gain (g)	205.3	-73.0	ルル	-1.2				

143.8

O ₂ / CO ₂ Data							
Fyrite Orsat CEM							
02 %							
CO2 %							

Test Location Schematic

- 1. Include distances to disturbances and note what
- 2. Show and label all ports. Note which was used

leak check but all moisture was recovered from drained

DGM ave Temp = 79.2 Total Volume = 4 3.576

NA = Not Applicable Rev. 1 (5/2005)

AVERAGE

3/25/09 (Project Manager or QA Manager - sign and date)

Circular Stack Sampling Traverse Point Layout (EPA Method 1)

Date: March 24, 2009
Plant: Marian County Baseline Landfill
Source: Unit 2
Technician(s): LJB, CDH

Port + Stack ID:_ 21.5 in. Port Extension: (7 + 2.5) =in. Stack ID:_ in. Stack Area: ft² 0.92 Total Req'd Traverse Pts:_ No. of Traverse Pts:_ /diam No. of Traverse Pts: /port 6

Stack Diagram (Side View showing major unit components, dimensions and nearest upstream & downstream flow disturbances)

Traverse Point Number		Factor (% er of Poi			Distance from Reference Point (inches)
	4	6	. 8	12	
1	6.7	4.4	3.2	2.1	(0.07
2	25.0	14.6	10.5	6.7	11.40
3	75.0	29.6	19.4	11.8	13,35
4	93.3	70.4	32.3	17.7	18.65
5		85.4	67.7	25.0	20.60
6		95.6	80.6	35.6	21.93
7			89.5	64.4	
8			96.8	75.0	
9				82.3	
10				88.2	
11				93.3	
12				97.9	

G2 Energy - MCBCC Baseline Landill
Unit 2 Generator Engine Stratification Test Results

Stratification Test	AVE CO	AVE O ₂	AVE CO ₂	CO	O_2	CO ₂
Traverse Point Number	(ppmv)	(% vol)	(% vol)	(% Dev)	(% Dev)	(% Dev)
1-1	948.30	7.69	11.85	2.5%	-0.7%	0.4%
1-2	1009.57	7.51	12.01	-3.8%	1.7%	-1.0%
1-3	990.11	7.62	11.89	-1.8%	0.3%	0.1%
1-4	962.68	7.68	11.85	1.0%	-0.6%	0.4%
1-5	928.17	7.63	11.91	4.6%	0.1%	-0.1%
1-6	1012.23	7.57	11.97	-4.0%	1.0%	-0.6%
2-1	962.90	7.70	11.85	1.0%	-0.8%	0.4%
2-2	955.60	7.68	11.82	1.8%	-0.5%	0.6%
2-3	942.33	7.67	11.86	3.1%	-0.4%	0.3%
2-4	995.42	7.48	12.03	-2.3%	2.0%	-1.1%
2-5	1000.73	7.66	11.90	-2.9%	-0.2%	0.0%
2-6	966.22	7.79	11.83	0.7%	-2.0%	0.6%
Averages	972.85	7.64	11.90	·		
Minimum Reading	928.17	7.48	11.82	-4.0%	-2.0%	-1.1%
Maximum Reading	1012.23	7.79	12.03	4.6%	2.0%	0.6%

Notes: Note: Sampling was conducted per EPA Method 7E, Section 8.1 using a 12-point traverse. Sampling conducted in the subsequent test runs using a 12-point traverse for the remainder of testing. Per EPA Methods 3A, 7E, and 10, Section 8.1 sampling may be conducted at a reduced number of sampling points if results of the stratification tests for one pollutant and one diluent meet methodology specifications. If the pollutant emissions are within 5% of the mean of the normalized concentration or within 0.5 ppmv for NO_x and/or CO concentrations and 0.3% volume for O₂ and/or CO₂ concentrations, then sampling may be conducted at a single traverse point. If the pollutant emissions are within 5% of the mean of the normalized concentration or within 1.0 ppmv for NO_x and/or CO concentrations and 0.5% volume for O₂ and/or CO₂ concentrations, then sampling may be conducted using a three point traverse along either the long or short measurement line

EPA Method 3C Field Data Sheet

Date: 3/ /2009	
Plant: G 2 Energy	
Location: Baseline Land fill	
Run Number: <u>U2-C-1 15 U2-C-3</u>	
Technician(s): CD+ + LBJ	
Sample Location: Blower Skid	
Sample Matrix: Land Pill Gas-	
Date canister received from laboratory: 3/23 Canister Serial	No.: 87018
Date canister returned to laboratory: 3/30/09 Canister leak ch	neck date: 3/25/09

Sampler/Flow controller ID:

0107070344168/00L

Chain of Custody Form included with canister

shipment to laboratory (Shipper's Initials): Yes

Time	Tank Pressure	Flowmeter	Canister
(HH:MM)	(mbar)	(cc/min)	Temperature (°F)
14:17	487 , 479	35	80.6
14:37	50テ	35	4.18
14:57	532	35	80.6
15 17	512	35	8 0. 6
15 37	595	3.5	80.4
1557	616	40	79.8
1617	680	40	19.6
1637	713	35	79.8
1657	738	35	79,4
17 17	762	35	78. E
1737	788	35	78.2
1757	821	35	77.8
18:30	842	35	77.4
			79.6°F

EPA Method 2: Moisture Content

Test Run No.	U2-C-1	U2-C-1	U2-C-3
Date	03/25/09	03/25/09	03/25/09
Start Time	14:17	16:10	17:27
Stop Time	15:17	17:10	18:27
Stack Moisture & Molecular Wt. via EPA Methods 3a & 4			
O ₂ (% volume, dry basis)	7.69	7.74	7.75
CO ₂ (% volume, dry basis)	12.00	11.98	11.96
Beginning Meter Reading (ft ³)	932.351	976.559	21.678
Ending Meter Reading (ft ³)	976.179	1021.087	65.565
Total Volume (ft ³)	43.828	44.528	43.887
Beginning Impingers Weight (g)	2594.8	2908.7	3051.4
Ending Impingers Weight (g)	2733.5	3051.4	3191.7
Net Weight Gain (g)	138.7	142.7	140.3
Dry Gas Meter Factor (K _d)	0.9879	0.9879	0.9879
Dry Gas Meter Temperature (°F average)	77.9	74.1	73.1
Atmospheric Pressure ("Hg, absolute)	30.02	29.99	29.97
Volume of Water Vapor Collected (SCF)	6.540	6.728	6.615
Volume of Air Metered (SCF)	42.619	43.563	42.997
Stack Gas Moisture (% volume)	13.30	13.38	13.33
Dry Gas Fraction	0.8670	0.8662	0.8667
Stack Gas Molecular Wt. (lbs/lb-mole)	28.60	28.59	28.59
Stack Moisture via Stoichiometry	Electric content and content		
Combustion Moisture (% volume @ 0% excess air)	17.77	17.77	17.77
Moisture Content (% volume, stoichiometric)	12.47	12.44	12.46

40 CFR 60 Methods 2 and 4 -- VELOCITY and MOISTURE

Project No. 166748, 0000, 0000	Pitot ID NA	Diate 3/25/2009
Client G 2 Energy	PTCF/Cp NA	Operator L. Bremer
Facility Baseline Land Fill	Internal Dimensions (in.)	Gauge Sensitivity O. OO /
Source Unit 2	Barometric Pressure (In. Hg) 30.02	Thermocouple ID Imp 4
Sampling Location Stack	Meter Box ID 14	Meter Box Y (. 74 0
Condition Full Local	Meter ID 28414	Meter Box Δ H@ 0.9879

Sampling Location Stack					Box ID	1+	Meter l	Box Y	1.740	
Condition Full Local					1D 2	8414	Meter I	Вох ДН@	0.98	7 9
	ocity Traverse	Data				Moistu	re Sample Data			
Run No.			Test	Time		DGM Temp. (°F)		Run No. U2-C-1		
Stack CO ₂ (%)	Stack O ₂ (%)	P Static (in. H ₂ O)	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³)	Iniet	Outlet	ΔH (in. H ₂ O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)
Run Vime (24-ar)	Start	Stop	14:17	0	932.351	78	78	1,7	3.5	61
[\		· /	14:27	10	939.648	80	78	1.7	3.5	57
Traverse Point No.	Flue Gas Temp. (°F)	Δ/P (in H ₂ O)	14:37	20	946922	81	77	1,7	3.5	59
			14:47	30	954246	१०	76	1,7	3.5	58
			14:57	40	961.624	79	76	1.7	3.5	59
			15:07	50	968.975	79	75	1.7	3.5	5.9
	7		15:17	60	976.179	79	75	1.7	3.5	60
\						Moisture /	Analysis Resu	lts		
						#1	#2	#3	#4	Silica Gei
					Reagent	D: 4.0	0.4.0	MT	Sil Gel	
				Flr	nal Weight (g)	787.8	580.2	601.6	763.9	
				Init	ial Weight (g)	668.9	572.1	5998	754.0	
			Net I	Moisture W	eight Gain (g)	118.9	8.1	1.0	9.9	/ .
	$A \perp$			Leak C	heck Data		Tot	Total Moisture (g) 138.7		
	_/ \		Metert	x x			O ₂ / CO ₂ Data			
	$\overline{}$		<u> </u>		Pre-Test	Post-Test		Fyrite	Orsat	CEM
	/		Vacuu	ım (in Hg)	17.3	16.5	O ₂ %			
	/		F	Rate (cfm)	0.000	0.002	CO2%			
	\		Pitot Tu	Par	Pre-Test	Post-Test		Test Location	n Schematic	,
/[/ Pilot i ub				\sim	+ [Include dist they are.	tances to distur	bances and not	e what
/					·	`	2. Show and I	abel all ports. st type.	Note which was	used
-		\ -					3. Indicate the	flow direction.		
/					\					
/				Q	5 PW ME	Temp	77.9			
					DODI VO	olune	43.828			
+										
/										
,		\ \ \								

NA = Not Applicable Rev. 1 (5/2005)

AVERAGE

3/25/09 (Project Manager or QA Manager - sign and date)

40 CFR 60 Methods	s 2 and 4 - VELOCITY a	Page 1 of 1
Project No. 166478, 0000 0000	Pitot ID NA	Date 3/25/2009
Client G2 Energy	PTCF/Cp NA	Operator L. Brenner
Facility Baseline Land Fill	Internal Dimensions (in.)	Gauge Sensitivity 0,00
Source Unit 2	Barometric Pressure (in. Hg) 29,99	Thermocouple ID Imp 4
Sampling Location Stack	Meter Box ID	Meter Box Y 1.740
Condition Full Load	Meter ID 28414	Meter Box Δ H@ 0.9879

Sampling Location Stack		Meter	Meter Box ID		Meter Box Y		1.740		
Condition Full Local			ID 2.9	8414	Meter	Вох ДН@	0.98	79	
Velocity Traverse Data			Moistu	re Sample Dat					
Run No.	Test	lime		DGM T	DGM Temp. (°F)		Run No. U2-C-2		
Stack CO ₂ (%) Stack O ₂ (%) P Static (In. H ₂ O)	Clock (24-hr)	Elapsed (min)	DGM Reading (ft ³)	Inlet	Outlet	∆H (in. H ₂ O)	Vacuum (in. Hg)	Imp. Exit Temp. (°F)	
Run\Time Start Stop (24-\text{tr})	16:10	0	976.559	74	72	1.7	3.2	65	
Traverse Flue Gas Temp.	16:20	10	984.751	77	72	17	3.1	55	
Traterse Flue Gas Temp.	16:30	20	991.834	76	72	1.7	3.1	57	
	16:40	30	999.897	76	72	1.7	3.2	59	
	16:50	40	1000.459	רר	72	1.7	3.2	61	
	17:00	50	1013.658	77	72	1,7	3.2	63	
	17:10	60	1021.087	רר	72	1.7	3,2	66	
		Moisture Analysis Results							
					#2	#3	#4	Silica Gel	
			Reagent	Dilto	D: H10	MT	5;1 G-1		
		Fir	ei Weight (g)	891.0	600.5	602.7	951.2		
		Init	al Weight (g)	787.8	580,2	601.6	937.1		
I V I	Net I	Moisture W	eight Gain (g)	109.2	20.3	1.1	15.1		
		Leak C	Leak Check Data			tal Moisture (g)	143	. <u>२</u>	
	Meterb	10x –			O ₂ / CO ₂ Data				
			Pre-Test	Post-Test		Fyrite	Orsat	CEM ,	
	Vacuu	m (in Hg)	16.7	16.3	O ₂ %				
V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	R	ate (cfm)	0.002	0.005	CO ₂ %				
	Be-	Pre-Test	Post-Test		Test Location	n Schematic	•		
Pitot Tube			\sim	*	Include dis they are.	tances to distur	bances and not	e what	
	, , , , ,		<u>·— 1</u>	**************************************		abel all ports.	Note which was	used	
						flow direction.			
	D GMANG TO				np 74.1				
			Tot	al Volu	lume 44.528				
	14,520								

NA = Not Applicable Rev. 1 (5/2005)

AVERAGE

40 CFR 60 Methods 2 and 4 -- VELOCITY and MOISTURE

Project No. 166478.0000.0000	Pitot ID V	Date 3/25/2009
Client G 2 Energy	PTCF/Cp NA	Operator L. Brenner
Facility Baseline Landfill	Internal Dimensions (in.)	Gauge Sensitivity
Source Unit 2	Barometric Pressure (in. Hg) 29.97	Thermocouple ID Imp 4
Sampling Location Stack	Meter Box ID	Meter Box Y 1.740
Condition Full Load	Meter ID 28414	Meter Box A H@ 0. 9879

Sanping Loca	31-4			terete	METER BOX ID			Michigan Box 1		
Condition Full Load					Meter ID 28식1식			Meter Box A H@ 0. 9879		
	elocity Traverse	Data				Moistu	re Sample Dat			
Run No.	_		st Time	DGM Ten		emp. (°F) Run No. U2 · C-			3	
Stack CO ₂ (%)		P Static (in. H ₂ O)	Clock (24-hr)			inlet	Outlet	A H (in. H₂O)	Vacuum (In. Hg)	Imp. Exit Temp. (°F)
Run\Time (24-hr)	Start	Stop	17:27	0	21.678	73	71	1.7	3.3	64
		: /	17:3	10	29.000	76	171	1.7	3.3	55
Traverse Point No.	Flue Gas Temp. (°F)	ΔP (in H ₂ O)	17:4	20	34.296	76	72	F.1	3.3	56
			17:5	7 30	43.598	75	72	1,7	3.3	56
			18:07	40	50.807	75	71	1,7	3.4	57
			18:17	50	58.127	75	71	1.7	3.4	58
			18:2	1 60	65.565	74	71	1.7	3,4	60
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/				Moisture	Analysis Resu	lts		,
	Λ					#1 K	∀ #2	#3	#4	Silica Gel
					Reagent	10 1 17 LU	D: 420	MT	sil Gel	
				F	inal Weight (g)	२१७.७	729.5	603.6	9609	/-
				lni	itial Weight (g)	0111	600.5	60a.7	951.2	
	\perp \vee		N	et Moisture V	Veight Gain (g)	0.7	129.0	0.9	9.7	
<u> </u>				Leak (Check Data		To	tal Moisture (g)	140.	3
j			Me	erbox				O ₂ / C	O₂ Data	
	/ _ \		·		Pre-Test	Post-Test		Fyrite	Orsat	CEM
	/\		Va	cuum (in Hg)	16.8	16.5	O ₂ %			
	/\		_	Rate (cfm)	0.004	0.002	CO2 %			
			Pitot	Tube	Pre-Test	Post-Pest		Test Locatio	n Schematic	·
/			i		>	·—	 Include dis they are. 	tances to distu	rbances and not	e what
		\perp			<u></u>	·	Show and for each te		Note which was	s used
/							3. Indicate the	e flow direction.		
		\rightarrow						721		
/		\rightarrow	DEMANE Temp 73,1							
			Total Volume 43.887							
/										
/ AVERAGE		· \								

NA = Not Applicable Rev. 1 (5/2005) Checked By:

4/2B/69 (Project Manager or QA Manager - sign and date)

AIPPENIDIX IB: Example Calculations

EXAMPLE COMPLIANCE TEST CALCULATIONS

Moisture Content via EPA Method 4

Refers to Test Run #U1-C-1

 V_{WC} = total volume of water vapor collected at STP

$$= K_2 \times MWC$$

$$= (0.04715 \times 138.6)$$

$$= 6.53499 \text{ ft}^3$$

$$V_{m(std)}$$
 = total volume metered at STP

$$= K_3 \times Y \times V_m \times \frac{P_{met}}{T_{met}}$$

=
$$17.64 \times .9879 \times 42.891 \times \frac{30.08}{530.4}$$

$$= 42.392 \text{ ft}^3$$

 $\mathbf{B_{ws}}$ = moisture content by EPA Method 4 w/ M-5 equations

$$= \frac{VWC}{VWC + VSTP}$$

$$= \frac{6.53499}{6.53499 + 42.392}$$

$$B_{WS} = 0.13356$$

= 13.35(6)% moisture

Stack Gas Molecular Weight, MW

Refers to Test Run #U1-C-1

= molecular wt of H_2O = 18 lb/lb-mole MW_{H_2O} = molecular wt of CO₂ = 44 lb/lb-mole MW_{CO_2} MW_{O_2} = molecular wt of O_2 = 32 lb/lb-mole MW_{N_2} = molecular wt of N_2 = 28 lb/lb-mole= concentration of CO_2 = 0.1221 (from analyzer) C_{CO_2} C_{O_2} = concentration of O_2 = 0.0746 (from analyzer) C_{N_2} = concentration of N_2 $= 1 - (C_{CO_2} + C_{O_2}) = 0.8033$ = dry gas fraction = $1-B_{ws}$ F_d = 0.86644Ms = molecular weight of stack gas (lb/lb-mole) = wt of H_2O + wt. of CO_2 + wt. of O_2 + wt. of N_2 = $(MW_{H2O} \times B_{ws}) + (F_d \times ((MW_{CO_2} \times C_{CO_2}) + (MW_{O_2} \times C_{O_2}) + (MW_{N_2} \times C_{N_2})))$ $= (18 \times 0.13356) + (0.86644 \times ((44 \times 0.1221) + (32 \times 0.0746) + (28 \times 0.8033)))$ M_{S} = 28.62 lb/lb-mole

Stack Gas Flow Rates via F-factors (Qd)

refers to Test Run #U1-C-1

Convert fuel flow to heat input:

Hg = heating value of nat. gas = 532.8 Btu/SCF (HHV) from fuel analysis

F = metered fuel flow = 513.7 SCFM

H = heat input (MMBtu/hr)

 $= Hg \times F \times 60/(1 \times 10^6) = 16.42 \text{ MMBtu/hr}$

Calculate flow rate using O2 F-factor:

 $C_{O_2} = O_2$ concentration in exhaust = 7.46% by vol, dry

O₂ F-factor = 9432 DSCF of Exhaust/MMBtu of fuel burned @ 0% excess air

 Qd_1 = Stack Exhaust Gas Flow Rate via O_2 F-factor

$$Qd_1 = \frac{H \times O_2F - factor \times 20.9}{20.9 - C_{O_2}}$$

$$Qd_1 = \frac{16.42 \times 9432 \times 20.9}{20.9 - 7.46}$$

 $Qd_1 = 2.40(8) \times 10^5 DSCFH$

Calculate flow rate using CO₂ F-factor:

Using same data as above, except:

CCO₂ = Concentration of CO₂ in exhuast = 12.21 % vol,dry (stack ave)

CO₂ F-factor = 1785 DSCF of CO₂/MMBtu of fuel burned @ 0% excess air

Qd₂ = Stack Exhaust Gas Flow Rate via CO₂ F-factor

$$Qd_2 = \frac{H \times CO_2 \text{ F-factor } \times 100}{CCO_2}$$

$$Qd_2 = \frac{16.42 \times 1785 \times 100}{12.21}$$

$$Qd_2 = 2.40 \times 10^5 DSCFH$$

Correction of NO_x Gas Concentrations, CNO_x

Refers to Test Run #U1-C-1

The logged data records were used for continuous instrumental monitor data. Analytical instruments tend to drift in their calibrations over time and with changes in atmospheric conditions. Span and zero gas bias drift checks (calibrations) were conducted prior to and following each test. The results of these calibrations were used to bracket and thus correct the raw gas concentrations into corrected (more accurate) gas concentrations. The calculation used for these correction is 40 <u>CFR</u> 60, Appendix A, Method 7E, Equation 7E-5.

 C_{Avg} = analyzer NO_x gas concentration, uncorrected for drift and bias

CAvg = 199.16 ppmv, uncorrected

C_o = Average of initial/final zero gas concentrations

= 4.03 ppmv

C_m = Average of initial/final span gas concentrations

= 249.48 ppmv

C_{ma} = Actual upscale cylinder span gas concentrations

= 253 ppmv

 C_{NO_x} = Effluent NO_x gas concentration, ppmv corrected

$$= (C_{NO_x} - C_0) \times \frac{C_{ma}}{C_m - C_0}$$

=
$$(199.16 - (4.03)) \times \frac{253}{249.48 - (4.03)}$$

 $C_{NO_x} = 201.1(3)$ ppmv NO_x , dry basis corrected

NOx Correction to 15% O2

refers to Test Run #U1-C-1

 C_{NOx} = observed NOx concentration = 201.13 ppmv (from analyzer) C_{O2} = concentration of oxygen = 7.46% volume (from analyzer)

NOx @15% O2 = NO_x emission concentration, corrected to 15% excess oxygen

$$= \frac{(C_{\text{NOx}} \times (20.9 - 15.0\% \text{ O}_2))}{20.9 - C_{\text{O}2}}$$

$$= \frac{201.13 \times 5.9}{20.9 - 7.46}$$

 $NOx @15\% O_2 = 88.3 ppmv @ 15\% excess O_2$

NOx Mass Emission Rate (lbs/hr)

Refers to Test Run #U1-C-1

 C_{NOx} = observed concentration of NOx = 201.13 ppmv

 MW_{NOx} = 46.01 lb/lb-mole for nitrogen dioxide

for an ideal gas, 385.15 SCF = 1.0 lb/mole

 Q_d = 2.408 x 10⁵ SCFH, dry (from O_2 "F-factor" calculated ex. flow)

 E_{NOx} = mass emission rate of NOx in (lb/hr)

$$= C_{\text{NOx}} \times 10^{-6} \times Q_{\text{d}} \times \frac{\text{MW}_{\text{NOx}}}{385.15}$$

= 201.13 x 10⁻⁶ x 2.408 x 10⁵ x
$$\frac{46.01}{385.15}$$

 $E_{NOx} = 5.78 \text{ lbs/hr of } NO_x$

CO Correction to 15% O2

refers to Test Run #U1-C-1

C_{CO} = observed CO concentration = 1031 ppmv (from analyzer)

 C_{O_2} = concentration of oxygen = 7.46 % volume (from analyzer)

CO @15% $O_2 = CO$ emission concentration, corrected to 15% excess oxygen

$$= \frac{(C_{CO} \times (20.9 - 15.0\% O_2))}{20.9 - C_{O_2}}$$

$$= \frac{1031 \times 5.9}{20.9 - 7.46}$$

 $CO @15\% O_2 = 453 \text{ ppmv } @15\% \text{ excess } O_2$

CO Mass Emission Rate (lbs/hr)

Refers to Test Run #U1-C-1

CO = observed concentration of CO = 1031 ppmv

 MW_{CO} = 28.01 lb/lb-mole for carbon monoxide

Q_d = 2.408 x 10⁵ SCFH, dry (from O₂ "F-factor" calculated ex. flow)

ECO = mass emission rate of CO in (lb/hr)

$$= C_{CO} \times 10^{-6} \times Q_{d1} \times \frac{MW_{CO}}{385.15}$$

=
$$1031 \times 10^{-6} \times 2.408 \times 10^{5} \times \frac{28.01}{385.15}$$

 $E_{CO} = 18.0(5)$ lbs/hr of CO

VOC emission concentration (ppmv, dry basis)

refers to Test Run #U1-C-1

C_{THC} = observed THC concentration = 488.8 ppmv as Propane, wet

C_{CH₄} = observed Methane concentration = 470.8 ppmv as Propane, wet

 F_d = dry gas fraction = 1-B_{ws} = 0.86644

C_{VOC} = VOC emission concentration, ppmv, dry basis

$$= \frac{(CTHC - CCH_4)}{F_d}$$

$$= \frac{488.8 - 470.8}{0.86644}$$

 $C_{VOC} = 20.7(7) \text{ ppmv } @ 15\% \text{ excess } O_2$

VOC Correction to 15% O2

refers to Test Run #U1-C-1

C_{VOC} = observed VOC concentration = 20.77 ppmv as Propane, dry C_{O2} = concentration of oxygen = 7.46% volume (from analyzer)

VOC @15% O₂ = VOC emission concentration, corrected to 15% excess oxygen $= \frac{(C_{VOC}x(20.9-15.0\%O_2))}{20.9-C_{O2}}$ $= \frac{20.77 \times 5.9}{20.9-7.46}$

 $VOC @15\% O_2 = 9.12 \text{ ppmv } @15\% \text{ excess } O_2$

VOC Mass Emission Rate (lbs/hr)

Refers to Test Run #U1-C-1

C_{VOC} = observed concentration of VOC = 20.77 ppmv as Propane, dry

 $MW_{C_3H_8} = 44.1 \text{ lb/lb-mole for Propane}$

Q_{d1} = 2.408 x 10⁵ SCFH, dry (from O₂ "F-factor" calculated ex. flow)

EVOC = mass emission rate of VOC in (lb/hr), including THC (e.g, methane)

=
$$C_{THC} \times 10^{-6} \times Q_d \times \frac{MW_{C_3H_8}}{385.15}$$

=
$$20.77 \times 10^{-6} \times 2.408 \times 10^{5} \times \frac{44.1}{385.15}$$

EVOC = 0.572(6) lbs/hr of VOC

NOx Mass Emission Rate (g/bhp•hr)

Refers to Test Run #U1-C-1

 $E_{NOx} = 5.78 \text{ lb/hr}$

HP = engine brake-specific horsepower = 2163 bhp

 NO_X em. = total mass emission rate of NO_X in (g/bhp•hr)

$$= \frac{E_{NOx} \times 454 \text{ g/lb}}{BHP}$$

$$= \frac{5.78 \text{ lb/hr} \times 454 \text{ g/lb}}{2163 \text{ hp}}$$

 NO_X em. = 1.21 g/bhp•hr

CO Mass Emission Rate (g/bhp•hr)

Refers to Test Run #U1-C-1

 $E_{CO} = 18.05 \text{ lb/hr}$ using the same formula as for the NO_X mass emission rate

$$= \frac{18.05 \, \text{lb/hr} \times 454 \, \text{g/lb}}{2163 \, \text{hp}}$$

CO em. = 3.79 g/bhp•hr (Differences due to rounding)

VOC Mass Emission Rate (g/bhp•hr)

Refers to Test Run #U1-C-1

 $E_{VOC} = 0.572(6) \text{ lb/hr}$

using the same formula as for the NO_X mass emission rate

$$=\;\frac{0.5726\,lb/hr\;x\;454\,g/lb}{2163\,hp}$$

VOC em. = $0.120 \text{ g/bhp} \cdot \text{hr}$

APPENDIX C: Landfill Gas Analysis

Gas Fuel F Factor & Heating Value Calculation

Company: G2 Energy

Location: Baseline Landfill - Ocala, Florida Sample Identification: Unit 1, Normalized

Date: March 25, 2009 Times: 9:33 to 13:41

CALCULATION OF DENSITY AND HEATING VALUE @ 60°F and 30 in Hg

				% volume		Component		Gross	Volume
	%	Molecular	Density	x		Gross	Weight	Heating Value	Fract.
Component	Volume	Wt.	(lb/ft3)	Density	weight %	Btu/lb	Fract. Btu	(Btu/SCF)	Btu
Hydrogen		2.016	0.0053	0.00000	0.0000	61100	0.00	319.1	0
Oxygen	0.9211	32.000	0.0846	0.00078	1.0412	0	0.00	0.0	0
Nitrogen	6.2835	28.016	0.0744	0.00467	6.2466	0	0.00	0.0	0
CO2	40.2687	44.010	0.1170	0.04711	62.9535	0	0.00	0.0	0
CO		28.010	0.0740	0.00000	0.0000	4347	0.00	322.0	0
Methane	52.5267	16.041	0.0424	0.02227	29.7586	23879	7106.07	996.7	523.538947
Ethane		30.067	0.0803	0.00000	0.0000	22320	0.00	1756.1	0
Ethylene		28.051	0.0746	0.00000	0.0000	21644	0.00	1614.0	0
Propane		44.092	0.1196	0.00000	0.0000	21661	0.00	2518.4	0
propylene		42.077	0.1110	0.00000	0.0000	21041	0.00	2336.0	0
Isobutane		58.118	0.1582	0.00000	0.0000	21308	0.00	3303.3	0
n-butane		58.118	0.1582	0.00000	0.0000	21257	0.00	3318.1	0
Isobutene		56.102	0.1480	0.00000	0.0000	20840	0.00	3068.0	0
Isopentane		72.144	0.1904	0.00000	0.0000	21091	0.00	3940.5	0
n-pentane		72.144	0.1904	0.00000	0.0000	21052	0.00	3948.4	0
n-hexane		86.169	0.2274	0.00000	0.0000	20940	0.00	4684.1	0
n-heptane		86.169	0.2274	0.00000	0.0000	20940	0.00	5419.8	0
H2S		34.076	0.0911	0.00000	0.0000	7100	0.00	647.0	0
total	100.00	Average	Density	0.07484	100.0000	Gross Heat	ing Value	Gross Heati	ng Value
		Specific	Gravity	0.97830		Btu/lb	7106	Btu/SCF	532.8

CALCULATION OF F FACTORS

						Weight Percents			
Component	Mol. Wt.	C Factor	H Factor	% volume	Fract. Wt.	Carbon	Hydrogen	Nitrogen	Oxygen
Hydrogen	2.016	0	1	0.00	0.0000		0		
Oxygen	32.000	0	0	0.92	29.4755				1.04511091
Nitrogen	28.016	0	0	6.28	176.0391			6.24181502	
CO2	44.010	0.272273	0	40.27	1772.2239	17.10900954			45.6830091
CO	28.010	0.42587	0	0.00	0.0000	0			0
Methane	16.041	0.75	0.25	52.53	842.5809	22.40652931	7.4688431		
Ethane	30.067	0.8	0.2	0.00	0.0000	0	0		
Ethylene	28.051	0.85714	0.14286	0.00	0.0000	0	0		
Propane	44.092	0.81818	0.181818	0.00	0.0000	0	0		
Propene	42.077	0.85714	0.14286	0.00	0.0000	.0	0		
Isobutane	58.118	0.82759	0.17247	0.00	0.0000	0	0		
n-butane	58.118	0.82759	0.17247	0.00	0.0000	0	0		
Isobutene	56.102	0.85714	0.14286	0.00	0.0000	0	0		
Isopentane	72.144	0.83333	0.16667	0.00	0.0000	0	0		
n-pentane	72.144	0.83333	0.16667	0.00	0.0000	0	0		
n-hexane	86.169	0.83721	0.16279	0.00	0.0000	0	0		
H2S	34.076	. 0	0.05869233	0.00	0.0000	0	0		
Totals				100.00000	2820.3194	39.51553886	7.47	6.24181502	46.72812

CALCULATED VALUES						
O2 F Factor (dry)	9432	DSCF of Exhaust/MM Btu of Fuel Burned @ 0% excess air				
O2 F Factor (wet)	11461	SCF of Exhaust/MM Btu of Fuel Burned @ 0% excess air				
Moisture F Factor	2029	SCF of Water/MM Btu of Fuel Burned @ 0% excess air				
Combust. Moisture	17.70	volume % water in flue gas @ 0% excess air				
CO2 F Factor	1785	DSCF of CO2/MM Btu of Fuel Burned @ 0% excess air				
Carbon Dioxide	18.93	volume % CO2 in flue gas @ 0% O2				
Predicted Fo Factor	1.10	EPA Method 3a Fo value				
Fuel VOC % (non-C1)	0.00%	non-methane fuel VOC content				
Fuel VOC % (non-C1,C2)	0.00%	non-methane non-ethane fuel VOC content				

Gas Fuel F Factor & Heating Value Calculation

Company: G2 Energy

Location: Baseline Landfill - Ocala, Florida Sample Identification: Unit 2, Normalized

Date: March 25, 2009 Times: 14:17 to 18:30

CALCULATION OF DENSITY AND HEATING VALUE @ 60°F and 30 in Hg

				% volume		Component		Gross	Volume
	%	Molecular	Density	x		Gross	Weight	Heating Value	Fract.
Component	Volume	Wt.	(lb/ft3)	Density	weight %	Btu/lb	Fract. Btu	(Btu/SCF)	Btu
Hydrogen		2.016	0.0053	0.00000	0.0000	61100	0.00	319.1	0
Oxygen	0.8756	32.000	0.0846	0.00074	0.9907	0	0.00	0.0	0
Nitrogen	4.1100	28.016	0.0744	0.00306	4.0897	0	0.00	0.0	0
CO2	41.1336	44.010	0.1170	0.04813	64.3655	0	0.00	0.0	0
CO		28.010	0.0740	0.00000	0.0000	4347	0.00	322.0	0
Methane	53.8808	16.041	0.0424	0.02285	30.5542	23879	7296.03	996,7	537.035213
Ethane		30.067	0.0803	0.00000	0.0000	22320	0.00	1756.1	0
Ethylene		28.051	0.0746	0.00000	0.0000	21644	0.00	1614.0	0
Propane		44.092	0.1196	0.00000	0.0000	21661	0.00	2518.4	0
propylene		42.077	0.1110	0.00000	0.0000	21041	0.00	2336.0	0
Isobutane		58.118	0.1582	0.00000	0.0000	21308	0.00	3303.3	0
n-butane		58.118	0.1582	0.00000	0.0000	21257	0.00	3318.1	0 ·
Isobutene		56.102	0.1480	0.00000	0.0000	20840	0.00	3068.0	0
Isopentane		72.144	0.1904	0.00000	0.0000	21091	0.00	3940.5	0
n-pentane		72.144	0.1904	0.00000	0.0000	21052	0.00	3948.4	0
n-hexane		86.169	0.2274	0.00000	0.0000	20940	0.00	4684.1	0
n-heptane		86.169	0.2274	0.00000	0.0000	20940	0.00	5419.8	0
H2S		34.076	0.0911	0.00000	0.0000	7100	0.00	647.0	0
total	100.00	Average	Density	0.07477	100.0000	Gross Heat	ing Value	Gross Heati	ng Value
		Specific		0.97739		Btu/lb	7296	Btu/SCF	546.5

CALCULATION OF F FACTORS

Totals

						Weight Percents			
Component	Mol. Wt.	C Factor	H Factor	% volume	Fract. Wt.	Carbon	Hydrogen	Nitrogen	Oxygen
Hydrogen	2.016	0	1	0.00	0.0000		0		
Oxygen	32.000	0	0	0.88	28.0183				0.99434879
Nitrogen	28.016	0	0	4.11	115.1465			4.086459021	
CO2	44.010	0.272273	0	41.13	1810.2903	17.49239541			46.7066931
CO	28.010	0.42587	0	0.00	0.0000	0			0
Methane	16.041	0.75	0.25	53.88	864.3017	23.0050477	7.66834923		
Ethane	30.067	0.8	0.2	0.00	0.0000	0	0		
Ethylene	28.051	0.85714	0.14286	0.00	0.0000	0	0		
Propane	44.092	0.81818	0.181818	0.00	0.0000	0	0		
Propene	42.077	0.85714	0.14286	0.00	0.0000	0	0		
Isobutane	58.118	0.82759	0.17247	0.00	0.0000	0	0		
n-butane	58.118	0.82759	0.17247	0.00	0.0000	0	0 .		
Isobutene	56.102	0.85714	0.14286	0.00	0.0000	0	0		
Isopentane	72.144	0.83333	0.16667	0.00	0.0000	0	0		
n-pentane	72.144	0.83333	0.16667	0.00	0.0000	0	0		
n-hexane	86.169	0.83721	0.16279	0.00	0.0000	0	0		
H2S	34.076	0	0.05869233	0.00	0.0000	0	0		

CALCULATED VALUES						
O2 F Factor (dry)	9389	DSCF of Exhaust/MM Btu of Fuel Burned @ 0% excess air				
O2 F Factor (wet)	11418	SCF of Exhaust/MM Btu of Fuel Burned @ 0% excess air				
Moisture F Factor	2028	SCF of Water/MM Btu of Fuel Burned @ 0% excess air				
Combust. Moisture	17.77	volume % water in flue gas @ 0% excess air				
CO2 F Factor	1782	DSCF of CO2/MM Btu of Fuel Burned @ 0% excess air				
Carbon Dioxide	18.98	volume % CO2 in flue gas @ 0% O2				
Predicted Fo Factor	1.10	EPA Method 3a Fo value				
Fuel VOC % (non-C1)	0.00%	non-methane fuel VOC content				
Fuel VOC % (non-C1,C2)	0.00%	non-methane non-ethane fuel VOC content				

100.00000 2817.7568 40.49744311

7.67

4.086459021 47.7010419

Method 3-C Analytical Results

prepared for

TRC Environmental Corporation

6322 NW 18th Drive, Suite 170 Gainesville, FL 32653

by

Triangle Environmental Services, Inc.

We, the undersigned, certify to the best of our knowledge that all analytical data presented in this report have been checked for completeness; that the results are accurate, error-free, legible, and have been obtained in accordance with approved protocol; and that all deviations and analytical problems are summarized in the "Comments on the Analyses" page(s).

Reviewed by:

Donna Nolen-Weathington Method 25 Supervisor

Approved by:

Wayne A. Stollings
President

Approved by:

John Y. Morimoto
QA Officer

Report

09066-25C

April 10, 2009

Triangle Environmental Services, Inc. COMMENTS ON THE ANALYSES

Report #09066-25C for TRC Environmental Corporation Project ID: 166478.0000.0000

Tanks Received: 4/1/09

Samples Analyzed: 4/2-7/09

Client Chain-of-Custody forms: 1 p

Abbreviations and Definitions:

DF: dilution factor(s)

CL: calibration limit = lowest concentration of initial calibration standard ×DF

RL: report limit = minimum detection limit (MDL) × DF J: flag for reported concentrations between RL and CL

Both samples: Laboratory preshipment and receipt pressure and temperature readings were used for the tank pre-

and post-test tank data, respectively. However, client post-test barometric pressure and temperature

data were used to determine the water vapor fraction.

Sample #2: The tank for this sample was partially depressurized prior to analysis, repressurized, and analyzed.

The reported final tank pressure is the original final tank pressure multiplied by the dilution factor.

TRIANGLE ENVIRONMENTAL SERVICES, INC. METHOD 3-C TABLE OF RESULTS

Name: TRC Environmental Corporation ID#09066-25C Analyzed: 4/2-7/09

Project ID: 166478.0000.0000

	Sample		Concentrat	ions (ppm) -		
	Description	02	N2	CH4	CO2	
1	Unit 1	9080	61941	517792	396956	
2	Unit 2	8846	41524	544363	415577	

Triangle Environmental Services, Inc. METHOD 3-C PROCEDURES

Report #09066-25C

CALIBRATION

Triplicate injections of a calibration gas mixture consisting of oxygen (\approx 2.5%), nitrogen (\approx 10%), carbon dioxide (\approx 25%), and methane (\approx 2%) are made immediately before and after each batch of samples. Daily response factors are calculated from the pre-batch integrated responses (average area count / concentration in ppm) and must agree within 20% of the response factors of the initial calibrations. Further, the post-batch response factors must agree within 5% of the pre-batch response factors. Both criteria must be met before the analyses are considered valid.

ANALYSIS

All samples, which include the daily calibration gas mixture and sample tanks, are analyzed in triplicate using a computer-interfaced gas chromatograph equipped with an automated gas sampling system and a thermal conductivity detector (TCD). O_2 , N_2 , CO, CH_4 , and CO_2 are eluted from the column and pass to the TCD.

CALCULATIONS

Calculations are done in accord with USEPA Method 3-C procedures. A sample calculation for one of the samples is provided in the report.

EQUIPMENT

Tanks are at a minimum twice evacuated and filled with ambient air filtered through charcoal and are then evacuated to below 10 mm Hg and monitored for at least an hour to check that the tanks do not leak more than 1 mm Hg/hour. They are then pressurized to greater than ambient pressure with helium, analyzed to ensure < 2 ppm CH_4 and < 20 ppm CO_2 , and stored for later use.

Certifications:

South Coast Air Quality Management District: ID# 94 LA 040 I

New Jersey NELAP ID: NC004

Pennsylvania DEP: Registration #68-3321

TRIANGLE ENVIRONMENTAL SERVICES, INC. METHOD 3-C SAMPLE CALCULATION

Note: All pressure values have been converted when necessary to mm Hg and all temperature values to Kelvin.

Name: TRC Environmental Corporation ID#09066-25C Analyzed: 4/2-7/09

Project ID: 166478.0000.0000

Sample # 1 Unit 1

DATA

Tank 8T025:

Volume (cu.m) = 0.008670Pressure Temp.(K) (mm Hg) 325.0 295.15 Presampling 513.0 300.65 Postsampling Final 1943.0 300.65 Barometric 764.0 Water Vapor 20.6

Calibration Data:

02 N2 CH4 CO₂ Response Factor (area units/ppmC) 28.71 31.19 25.75 37,20 Areas: 02 23,773 23,724 23,762 176,158 N2176,281 175,654 1,214,428 CH4 1,215,349 1,214,807 CO2 1,345,369 1,345,309 1,345,784

CALCULATIONS

Measured Concentrations (ppmC):

Cm(O2) = Area(O2) / RF(O2) = 23773 / 28.7 = 828.0 = 23724 / 28.7 = 826.3 = 23762 / 28.7 = 827.7

Cm(N2) = Area(N2)/RF(N2)= 176158 / 31.2 = 5647.9 = 176281 / 31.2 = 5651.8

= 176281 / 31.2 = 5651.8 = 175654 / 31.2 = 5631.7

Cm(CH4) = Area(CH4)/RF(CH4)

= 1214428 / 25.8 = 47162.3 = 1215349 / 25.8 = 47198.0 = 1214807 / 25.8 = 47177.0

Cm(CO2) = Area(CO2)/RF(CO2)

= 1345369 / 37.2 = 36165.8 = 1345309 / 37.2 = 36164.2 = 1345784 / 37.2 = 36177.0

Pressure-Temperature Ratio, Q(i) = P(i)/T(i):

postsampling tank: Q(1) = 513 / 300.65 = 1.706303presampling tank: Q(2) = 325 / 295.15 = 1.101135final tank: Q(3) = 1943 / 300.65 = 6.462664Volume Sampled (dscm) = 0.3857 x Tank Volume x [Q(1)-Q(2)]

Volume Sampled (dscm) = $0.3857 \times Tank \text{ Volume } \times [Q(1)-Q(2)]$ = $0.3857 \times 8.670001E-03 \times [1.7063 - 1.1011]$ = 0.002024

Averages and % Relative Standard Deviations (%RSD) of Cm's are calculated. (%RSD of C = %RSD of Cm)

Moisture Correction Factor, MCF:

Calculated Concentrations (ppm):

 $C(O2) = Q(3)/[Q(1)-Q(2)] \times Cm(O2)/MCF$ = $6.4627/(1.7063 - 1.1011) \times 827.3/0.9730 = 9080.1$

 $C(N2) = Q(3)/[Q(1)-Q(2)] \times Cm(N2)/MCF$ = 6.4627/(1.7063 - 1.1011) \times 5643.8/0.9730 = 61941.2

 $C(CH4) = Q(3)/[Q(1)-Q(2)] \times Cm(CH4)/MCF$ = 6.4627/(1.7063 - 1.1011) \times 47179.1/0.9730 = 517792.1

 $C(CO2) = Q(3)/[Q(1)-Q(2)] \times Cm(CO2)/MCF$ = 6.4627/(1.7063 - 1.1011) \times 36169.0/0.9730 = 396956.2

Triangle Environmental Services, Inc. METHOD 3-C SAMPLE QA/QC DATA

Report #09066-25C

DAILY ANALYZER CHECKS

Daily Calibration

Response Factor (RF) Checks

Requirement: Daily RF = Initial RF ± 20%

Triplicate injections of a mixture of O₂, N₂, CH₄, and CO₂ are made before and after each batch of samples.

Initial Calibration/Linearity

Triplicate injections of a calibration gas is made for each compound at three levels:

	Nomi	nal Concenti (ppm)	Initial RF 10/10/08	
O ₂	500	10,000	200,000	30.01
N ₂	500	50,000	700,000	31.27
CH ₄	500	50,000	500,000	25.50
CO ₂	500	50,000	200,000	36.61

Analyzer Linearity Check 2/5/98

$100x(1-RF/RF_{average})$	Requirement
max. dev. O ₂ : - 3.4%	± 10%
max. dev. N_2 : + 1.5%	± 10%
max. dev. CH ₄ : - 1.7%	± 10%
max. dev. CO_2 : + 0.6%	± 10%

EQUIPMENT CHECKS

Clean Sampling Equipment Check

Tank	< 2	ppm CH₄	@ 100%
	< 20	ppm CO ₂	@ 100%

Sample Tank Evacuation and Leak Check

Tank evacuated to $\le 10\,$ mm Hg absolute pressure, monitored for $\ge 1\,$ hour, and passed for use if no pressure change (< 1 mm Hg/hr) is noted.

Sample Tank Volumes

Tank weighed empty, filled with deionized distilled water (temperature recorded), and weighed to the nearest 2 g. Volume calculated based on density of water at that temperature and results recorded in permanent file.

Triangle Environmental Services, Inc. CALIBRATION DATA FOR THE ANALYSES

Client: TRC Environmental Corporation ID#09066-25C

Project ID: 166478.0000.0000

7-APR-9 2: Analyzer F Preanalysis Calibration Compound Conc. 8RSD Area(1) Area(2) Area(3) RF IRF %Diff. Average 02 24600.0 706160 707234 705170 706188 0.1% 28.71 30.01 -4.34% 0.2% 3108390 3105569 3096438 N2 99500.0 3103466 31.19 31.27 -0.25% CH4 20500.0 529192 527667 526785 527881 0.2% 25.75 25.50 0.98% CO2 243000.0 9037749 9045846 9037497 9040364 0.1% 37.20 36.61 1.62% Postanalysis Calibration Compound Conc. Average RF(post) RF(pre) Area(1) Area(2) Area(3) %Diff 24600 703478 703918 703621 703672 28.60 28.71 -0.4% N2 99500 3121874 3123161 3122154 3122396 31.38 31.19 0.6% CH4 20500 530342 530136 529532 530003 25.85 25.75 0.4% CO2 243000 9046390 9049763 9045557 9047236 37.23 37.20 0.1% Sample # 2 8T018 # 1 8T025

The second secon

BEST AVAILABLE COPY

Print Date: Wed Apr 08 08:44:03 2009 Page 1 of 1

Title

Run File : C:\STAR\RECALCF\TES_F024.RUN Method File : C:\STAR\CAL3C.MTH Sample ID : 1- 3C MIX CC93314

Injection Date: 7-APR-9 2:53 PM Calculation Date: 7-APR-9 3:13 PM

Detector Type: ADCB (10 Volts) Operator

Workstation: MS-DOS_6 Bus Address

: 16 : 10.00 Hz Instrument : Varian Star #1 Sample Rate : 20.002 min Run Time Channel : A = A

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: Percent

Peak No.	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Sep.	Width 1/2 (sec)	Status Codes
2 3	O2 N2 CH4 CO2	5.2771 23.2290 3.9547 67.5392	7.548 8.024 15.161 17.556	-0.052 -0.046 -0.089 -0.044	706160 3108390 529192 9037749	BV VB BB BB	13.6 18.4 9.7 12.2	
	Totals:	100.0000		-0.231	13381491			

Total Unidentified Counts: 0 counts

Identified Peaks: 4 Detected Peaks: 4 Rejected Peaks: 0

Multiplier: 1 Divisor: 1

Baseline Offset: 21 microVolts

Noise (used): 30 microVolts - fixed value Noise (monitored before this run): 80 microVolts

Could not format the injection information for this run.
Install the driver for the module at address 17 (type 8) to format this data.

Revision Log:

7-APR-9 3:13 PM: Calculated results from channel A using method: 'C:\STAR\CAL3C.MTH'

Error Log:

Sould not format the error log for the module at address 17 (type 8). Install the appropriate module driver to format this data.

ADC Board:

Original Notes:

Print Date: Wed Apr 08 08:44:20 2009 Page 1 of 1

Title

Run File : C:\STAR\RECALCF\TES_F027.RUN Method File : C:\STAR\3C.MTH Sample ID : 11- tank 8T018

Injection Date: 7-APR-9 4:15 PM Calculation Date: 7-APR-9 4:36 PM

Detector Type: ADCB (10 Volts) Operator

: 16 : 10.00 Hz Workstation: MS-DOS_6 Bus Address Sample Rate Instrument : Varian Star #1 : 20.002 min Channel Run Time : A = A

******* Star Chromatography Workstation ***** Version 4.5 **********

Run Mode : Analysis Peak Measurement: Peak Area Calculation Type: Percent

Peak No.	Peak Name	Result ()	Ret. Time (min)	Time Offset (min)	Area (counts)	Sep. Code	Width 1/2 (sec)	Status Codes
2 3	O2 N2 CH4 CO2	0.8078 4.0108 44.2652 48.7746	7.615 8.155 15.120 17.663	0.015 0.085 -0.130 0.063	23302 115698 1276886 1406966	BV VB BB BP	14.7 17.0 10.0 9.2	
	Totals:	97.8584		0.033	2822852			

Total Unidentified Counts: 61774 counts

Detected Peaks: 10 Rejected Peaks: 2 Identified Peaks: 4

Multiplier: 1 Divisor: 1

Baseline Offset: 100 microVolts

Noise (used): 110 microVolts - monitored before this run

Could not format the injection information for this run.
Install the driver for the module at address 17 (type 8) to format this data.

Error Log:

Could not format the error log for the module at address 17 (type 8). Install the appropriate module driver to format this data.

ADC Board:

TRIANGLE ENVIRONMENTAL SERVICES, INC. METHOD 3-C DATA REPORT

Name: TRC Environmental Corporation ID#09066-25C Analyzed: 4/2-7/09

Project ID: 166478.0000.0000

Sample # 1 Unit 1

TANK 8T025:

Volume (cu.m) = 0.008670

	Pressure	Temperature	P/T
	(mm Hg)	· (K)	
Presampling	325.0	295.15	1.101
Postsampling	513.0	300.65	1.706
Lab receipt	513.0	300.65	1.706
Final	1943.0	300.65	6.463
Barometric	764.0		
Water Vapor	20.6		

Field and laboratory postsampling pressure-temperature comparison:

Laboratory receipt P/T / Field postsampling P/T = 1.000

Volume Sampled (dscm) = 0.002024

<u>Calibration Data</u>:

	02	NΖ	CH4	COZ
Response Factor (area units/ppmC)	28.71	31.19	25.75	37.20
Report Limit [RL] (ppm)	374	801	161	267
Calibration Limit [CL] (ppm)	5361	5361	5244	5372

Areas:

02	23 , 773	23,724	23,762
N2	176,158	176,281	175,654
CH4	1,214,428	1,215,349	1,214,807
CO2	1,345,369	1,345,309	1,345,784

Concentrations:	ppm				
	Amount	±	SD	%RSD	
02	9080	±	10	0.1	
N2	61941	±	117	0.2	
CH4	517792	±	197	0.0	
CO2	396956	±	76	0.0	

TRIANGLE ENVIRONMENTAL SERVICES, INC. METHOD 3-C DATA REPORT

Name: TRC Environmental Corporation ID#09066-25C Analyzed: 4/2-7/09

Project ID: 166478.0000.0000

Sample # 2 Unit 2

TANK 8T018:

Volume (cu.m) = 0.008680

	Pressure	Temperature	P/T
•	(mm Hg)	(K)	
Presampling	325.0	295.15	1.101
Postsampling	619.0	300.65	2.059
Lab receipt	619.0	300.65	2.059
Final	3047.0	300.65	10.135
Barometric	761.7		
Water Vapor	25.8	•	

Field and laboratory postsampling pressure-temperature comparison:

Laboratory receipt P/T / Field postsampling P/T = 1.000

Volume Sampled (dscm) = 0.003206

<u>Calibration Data</u>:

•	02	N2	CH4	CQ2
Response Factor (area units/ppmC)	28.71	31.19	25.75	37.20
Report Limit [RL] (ppm)	371	794	159	265
Calibration Limit [CL] (ppm)	5313	5313	5196	5323

<u>Areas:</u>

02	23,302	23,211	23,051
N2	115,698	118,773	120,272
CH4	1,276,886	1,280,630	1,281,864
CO2	1,406,966	1,413,815	1,413,596

Concentrations:	pp	m		
	Amount	±	SD	%RSD
02	8846	±	48	0.5
N2	41524	±	819	2.0
CH4	544363	±	1103	0.2
CO2	415577	±	1146	0.3

Chain of Custody

Triangle Environmental Services, Inc. LABORATORY SAMPLE INFORMATION AND CHAIN-OF-CUSTODY FORM

Company Name: TRC				Project/Client 1D:	66478.0000	.0000	Date: 3/30/	09	
Contact Person: Leonard Brenn	e /	Phone #: 35	12-378-0		Process Type: Qn		145		
Latest Date Complete Set of Samples Expected at Lab: 4/\ -	০৭	Note: Normal Tur working days afte complete set of sa	r receipt of	Results Due Date: Report Package Due	Normal Date: Normal	····	Extra charge v		
Send Report to: Person Leonard	d Bren	ner		Send Invoice to:	Person Karen	Burd			
(Street address required for Fed Ex shipment of	· ·			(if different from report address)	(if different from report Company				
report) Address 6322 A	JW 18th Dr	ive Suite	170		Address 5540	Centervio	ew Drive.		
GA: nesville	_	•		٠.	Raleigh,	NC 2	7606	•	
Phone # 352 - 378-0337		2- 378-03			PO# G.5001				
✓ all applicable boxes	✓ all applicable boxes Analysis								
US EPA: Method 25 Method 3-C	□ Method 2	25-C (NMOC as	C [default])	SCAQMD: □ Metho	od 25.1 □ Met	hod 25.2		
# of Tank & Trap Samples:	# of Tank-O	nly Samples:	2	# of Trap-Only Sam	ples:	# of Bag Samples:			
□ Audit with Delay (extra charge)	□ Rush Turi (extra cha			☐ High Concentrations Possible☐ Call if Concentrations High		☐ Dilute High Concentrations (extra charge)		ıs	
Special Instructions: Please eme	il resul	to to 16	renner 🥏	tresolution	si, com				
Tanks for Analysis (Bags) (List IDs):				Traps for Analysis (List IDs):				·	
					Marine State				
				#. 					
TES Equipment	□ Client Eq	uipment		□ Client Equipment	to be Reconditioned				
Tanks, Unused for Reconditioning (List I	Ds):			Traps, Unused for Reconditioning (List IDs):					
			•					· · · · · · · · · · · · · · · · · · ·	
Relinquished by: Rogan Paul Osca	1,	Date: 3/30/09	Time: / 27,00/~	To: Fed G	×				
Tanks received at TES by:	Condition:	Date: 4/1/69	Time: 1:33	Traps received at PES by:	lika Island	Condition:	Date:	Time:	

(919) 361-2890 (919) 361-2890 (919) 361-2890

6661 S. Alston Avenue

Durham, NC 27713

FAX (919) 361-3474

APPENDIX ID: Quallity Assurance Activities

Linearity Check	NO _X -A	CO-A	O_2 -A	CO ₂ -A	THC-A	THC-B
Analyzer Range (ppmv), O2 & CO2 in % vol	454.00	2389.0	21.99	14.54	2000.0	2000.0
Low Level Certified Value (ppm or % vol)	na	na	na	na	562.0	562.0
Mid Level Certified Value (ppm or % vol)	253.00	1062.00	11.97	8.62	949.0	949.0
High Level Certified Value (ppm or % vol)	454.00	2389.00	21.99	14.54	1750.0	1750.0
Zero Target (% Span)	0.0	0.0	0.0	0.0	0.0	0.0
Low Level Target (% Span)	na	na	na	na	28.1	28.1
Mid Level Target (% Span)	55.7	44.5	54.4	59.3	47.5	47.5
High Level Target (% Span)	100.0	100.0	100.0	100.0	87.5	87.5
Zero Observed (% Span)	0.0	0.0	0.0	0.0	-0.5	0.0
Low Level Observed (% Span)	na	na	na	na	27.9	28.9
Mid Level Observed (% Span)	55.4	44.7	54.6	58.9	47.6	48.3
High Level Observed (% Span)	100.0	100.2	100.0	100.0	87.6	87.5
Zero Observed (ppm or % vol)	0.00	0.00	0.00	0.00	-9.00	0.00
Low Level Observed (ppm or % vol)	na	na	na	na	558.03	577.33
Mid Level Observed (ppm or % vol)	251.49	1067.09	12.00	8.56	951.05	965.00
High Level Observed (ppm or % vol)	454.10	2394.31	22.00	14.54	1752.10	1750.33
% Difference From Zero to Target	0.0	0.0	0.0	0.0	-0.5	0.0
% Difference From Low to Target	na	na	na	na	-0.7	2.7
% Difference From Mid to Target	0.3	-0.2	-0.1	0.4	0.2	1.7
% Difference From High to Target	0.0	-0.2	0.0	0.0	0.1	0.0
EPA Allowable % Difference from Target	±2% Span	±2% Span	±2% Span	±2% Span	±5% Cal Gas	±5% Cal Gas
Test Run U1-C-1	NO _X -A	CO-A	O ₂ -A	CO ₂ -A	THC-A	THC-B
Analyzer Range (ppm), O2 & CO2 in %	454	2389	21.99	14.54	2000	2000
Calibration Gas Certified Value (ppm or %)	253	1062	11.97	14.54	562	562
Target Calibration Gas (Span %)	55.7	44.5	54.4	100.0	28.1	28.1
Actual Zero Gas from Direct (Span %)	0.0	0.0	0.0	0.0	-0.5	0.0
Actual Calibration Gas from Direct (Span %)	55.4	44.7	54.6	100.0	27.9	28.9
Initial Readings						
Zero Gas (Span %)	0.0	0.0	0.2	0.4	-0.5	0.0
Calibration Gas (Span %)	54.1	45.4	54.3	99.9	27.9	28.9
Zero Gas (ppmv)	0.00	0.00	0.05	0.06	-9.00	0.00
Calibration Gas (ppmv)	245.45	1085.67	11.95	14.52	558.03	577.33
Final Readings				The state of the s		
Zero Gas (Span %)	100000000000000000000000000000000000000					
Calibration Gas (Span %)	1.8	0.0	0.2	0.4	-0.5	-0.1
Zero Gas (ppmv)	1.8	0.0	0.2	0.4	-0.5	-0.1
, • · · · · · · · · · · · · · · · · · ·	1.8 55.8	0.0 45.4	0.2 54.6	0.4 99.6	-0.5 28.1	-0.1 28.7
Zero Gas (ppmv)	1.8 55.8 8.06	0.0 45.4 0.00	0.2 54.6 0.05	0.4 99.6 0.06	-0.5 28.1 -9.00	-0.1 28.7 -1.67
Zero Gas (ppmv) Calibration Gas (ppmv)	1.8 55.8 8.06	0.0 45.4 0.00	0.2 54.6 0.05	0.4 99.6 0.06 14.48	-0.5 28.1 -9.00	-0.1 28.7 -1.67
Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations	1.8 55.8 8.06 253.51	0.0 45.4 0.00 1085.67	0.2 54.6 0.05 12.00	0.4 99.6 0.06 14.48	-0.5 28.1 -9.00 561.03	-0.1 28.7 -1.67 574.67
Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5%	1.8 55.8 8.06 253.51	0.0 45.4 0.00 1085.67	0.2 54.6 0.05 12.00	0.4 99.6 0.06 14.48	-0.5 28.1 -9.00 561.03	-0.1 28.7 -1.67 574.67
Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5%	1.8 55.8 8.06 253.51 1.8 0.4	0.0 45.4 0.00 1085.67 0.0 0.8	0.2 54.6 0.05 12.00 0.2 0.0	0.4 99.6 0.06 14.48 0.4 -0.4	-0.5 28.1 -9.00 561.03 0.0 0.2	-0.1 28.7 -1.67 574.67 -0.1
Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5% Zero Drift (Span %) (Run-Run) ≤3%	1.8 55.8 8.06 253.51 1.8 0.4 -1.8	0.0 45.4 0.00 1085.67 0.0 0.8 0.0	0.2 54.6 0.05 12.00 0.2 0.0 0.0	0.4 99.6 0.06 14.48 0.4 -0.4 0.0	-0.5 28.1 -9.00 561.03 0.0 0.2 0.0	-0.1 28.7 -1.67 574.67 -0.1 -0.1
Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift €alculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5% Zero Drift (Span %) (Run-Run) ≤3% Calibration Drift (Span %) ≤3%	1.8 55.8 8.06 253.51 1.8 0.4 -1.8	0.0 45.4 0.00 1085.67 0.0 0.8 0.0	0.2 54.6 0.05 12.00 0.2 0.0 0.0	0.4 99.6 0.06 14.48 0.4 -0.4 0.0	-0.5 28.1 -9.00 561.03 0.0 0.2 0.0	-0.1 28.7 -1.67 574.67 -0.1 -0.1
Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5% Zero Drift (Span %) (Run-Run) ≤3% Calibration Drift (Span %) ≤3% Run Results	1.8 55.8 8.06 253.51 1.8 0.4 -1.8 -1.8	0.0 45.4 0.00 1085.67 0.0 0.8 0.0 0.0	0.2 54.6 0.05 12.00 0.2 0.0 0.0 -0.2	0.4 99.6 0.06 14.48 0.4 -0.4 0.0 0.3	-0.5 28.1 -9.00 561.03 0.0 0.2 0.0 -0.2	-0.1 28.7 -1.67 574.67 -0.1 -0.1 0.1

Test Run U1-C-2	NO _x -A	CO-A	O ₂ -A	CO ₂ -A	THC-A	THC-B
Analyzer Range (ppm), O2 & CO2 in %	454	2389	21.99	14.54	2000	2000
Calibration Gas Certified Value (ppm or %)	253	1062	11.97	14.54	562	562
Target Calibration Gas (Span %)	55.7	44.5	54.4	100.0	28.1	28.1
Actual Zero Gas from Direct (Span %)	0.0	0.0	0.0	0.0	-0.5	0.0
Actual Calibration Gas from Direct (Span %)	55.4	44.7	54.6	100.0	27.9	28.9
Initial Readings			0	100.0		20.5
Zero Gas (Span %)	1.8	0.0	0.2	0.4	-0.5	-0.1
Calibration Gas (Span %)	55.8	45.4	54.6	99.6	28.1	28.7
Zero Gas (ppmv)	8.06	0.00	0.05	0.06	-9.00	-1.67
Calibration Gas (ppmv)	253.51	1085.67	12.00	14.48	561.03	574.67
Final Readings					100	
Zero Gas (Span %)	1.4	0.0	0.3	0.7	-0.5	-0.1
Calibration Gas (Span %)	54.8	46.8	54.8	99.2	27.9	29.9
Zero Gas (ppmv)	6.55	0.00	0.07	0.10	-9.00	-2.33
Calibration Gas (ppmv)	248.97	1117.52	12.05	14.42	558.03	598.33
Bias and Drift Calculations		()				
Zero Bias (% Span) (Run-Direct Cal) ≤5%	1.4	0.0	0.3	0.7	0.0	-0.1
Calibration Bias (% Span) ≤5%	-0.6	2.1	0.2	-0.8	0.0	1.1
Zero Drift (Span %) (Run-Run) ≤3%	0.3	0.0	-0.1	-0.3	0.0	0.0
Calibration Drift (Span %) ≤3%	1.0	-1.3	-0.2	0.4	0.2	-1.2
Run Results						
Raw Results (Span %)	42.9	44.1	34.2	83.5	21.4	23.6
Raw Results (ppmv or % vol)	194.71	1053.88	7.53	12.14	428.95	472.41
Corrected Results (ppmv or % vol)	194.4	1016	7.47	12.20	432.9	453.0
Test Run U1-C-3	NO _X -A	CO-A			THC-A	THC-B
Analyzer Range (ppm), O2 & CO2 in %	454	2389	21.99	14.54	2000	2000
Calibration Gas Certified Value (ppm or %)	253	1062	11.97	14.54	562	562
Target Calibration Gas (Span %)	55.7	44.5	54.4	100.0	28.1	28.1
Actual Zero Gas from Direct (Span %)	0.0	0.0	0.0	0.0	-0.5	0.0
Actual Calibration Gas from Direct (Span %)	55.4	44.7	54.6	100.0	27.9	28.9
Initial Readings						
Zero Gas (Span %)	1.4	0.0	0.3	0.7	-0.5	-0.1
Calibration Gas (Span %)	54.8	46.8	54.8	99.2	27.9	29.9
Zero Gas (ppmv)	6.55	0.00	0.07	0.10	-9.00	-2.33
Calibration Gas (ppmv)	248.97	1117.52	12.05	14.42	558.03	598.33
Final Readings	1.0	0.0	0.2	0.7	0.5	0.1
Zero Gas (Span %)	1.3	0.0	0.3	0.7	-0.5	-0.1
Calibration Gas (Span %)	54.3	47.2	54.8	99.2	28.1	29.6
Zero Gas (ppmv)	6.05	0.00	0.07	0.10	-9.00	-2.33
Calibration Gas (ppmv)	246.45	1128.14	12.05	14.42	561.03	592.67
Bias and Drift Calculations Zero Rice (% Span) (Rup Direct Cal) < 5%	1 2	0 O	0.2	Λ7	ΛΛ	Λ1
Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5%	1.3	0.0 2.6	0.3 0.2	0.7 -0.8	0.0 0.2	-0.1 0.8
Zero Drift (Span %) (Run-Run) \(\leq 3\%	-1.1 0.1	0.0	0.2	0.0	0.2	0.0
Calibration Drift (Span %) (Kuni-Kuni) 53%	0.1	-0.4	0.0	0.0	-0.2	0.0
Run Results	0.0	-0.7	0.0	0.0	-0.4	0.5
Raw Results (Span %)	42.8	44.4	34.7	82.8	21.4	23.4
Raw Results (ppmv or % vol)	194.33	1059.81	7.63	12.04	427.78	468.69
Corrected Results (ppmv or % vol)	197.1	1002	7.55	12.12	431.8	442.8
COLLANDA MODULA (Phills of 10 sol)	471.4	.002	,	14,14	121.0	774.0

Linearity Check	NO _X -A	CO-À	O ₂ -A	CO ₂ -A	THC-A	THC-B
Analyzer Range (ppmv), O2 & CO2 in % vol	454.00	2389.0	21.99	14.54	2000.0	2000.0
Low Level Certified Value (ppm or % vol)	na	na	na	na	562.0	562.0
Mid Level Certified Value (ppm or % vol)	253.00	1062.00	11.97	8.62	949.0	949.0
High Level Certified Value (ppm or % vol)	454.00	2389.00	21.99	14.54	1750.0	1750.0
Zero Target (% Span)	0.0	0.0	0.0	0.0	0.0	0.0
Low Level Target (% Span)	na	na	na	na	28.1	28.1
Mid Level Target (% Span)	55.7	44.5	54.4	59.3	47.5	47.5
High Level Target (% Span)	100.0	100.0	100.0	100.0	87.5	87.5
Zero Observed (% Span)	0.0	0.0	0.0	0.0	-0.5	0.0
Low Level Observed (% Span)	na	na	na	na	27.9	28.9
Mid Level Observed (% Span)	55.4	44.7	54.6	58.9	47.6	48.3
High Level Observed (% Span)	100.0	100.2	100.0	100.0	87.6	87.5
Zero Observed (ppm or % vol)	0.00	0.00	0.00	0.00	-9.00	0.00
Low Level Observed (ppm or % vol)	na	na	na	na	558.03	577.33
Mid Level Observed (ppm or % vol)	251.49	1067.09	12.00	8.56	951.05	965.00
High Level Observed (ppm or % vol)	454.10	2394.31	22.00	14.54	1752.10	1750.33
% Difference From Zero to Target	0.0	0.0	0.0	0.0	-0.5	0.0
% Difference From Low to Target	na	na	na	na	-0.7	2.7
% Difference From Mid to Target	0.3	-0.2	-0.1	0.4	0.2	1.7
% Difference From High to Target	0.0	-0.2	0.0	0.0	0.1	0.0
EPA Allowable % Difference from Target	±2% Span	±2% Span	±2% Span	±2% Span	±5% Cal Gas	±5% Cal Gas
			-	•		
Test Run U2-C-1	NO _X -A		O_2 -A		THC-A	100 m
Analyzer Range (ppm), O2 & CO2 in %	454	2389	21.99	14.54	2000	2000
Calibration Gas Certified Value (ppm or %)	253	1062	11.97	14.54	562	562
Target Calibration Gas (Span %)	55.7	44.5	54.4	100.0	28.1	28.1
Actual Zero Gas from Direct (Span %)	0.0	0.0	0.0	0.0	-0.5	0.0
Actual Calibration Gas from Direct (Span %)	55.4	44.7	54.6	100.0	27.9	28.9
Initial Readings						
Zero Gas (Span %)	1.3	0.0	0.3	0.7	-0.5	-0.1
Calibration Gas (Span %)	54.3	47.2	54.8	99.2	28.1	29.6
Zero Gas (ppmv)	6.05	0.00	0.07	0.10	-9.00	-2.33
Calibration Gas (ppmv)	246.45	1128.14	12.05	14.42	561.03	592.67
Final Readings						
Zero Gas (Span %)	1.6	0.0	0.3	0.6	-0.5	-0.1
Calibration Gas (Span %)	53.6	48.0	54.6	98.9	28.2	30.2
Zero Gas (ppmv)	7.06	0.00	0.07	0.08	-9.00	-2.67
Calibration Gas (ppmv)	243.43	1146.72	12.00	14.38	564.03	604.00
Bias and Drift Calculations						
Zero Bias (% Span) (Run-Direct Cal) ≤5%	1.6	0.0	0.3	0.6	0.0	-0.1
Calibration Bias (% Span) ≤5%	-1.8	3.3	0.0	-1.1	0.3	1.3
Zero Drift (Span %) (Run-Run) ≤3%	-0.2	0.0	0.0	0.1	0.0	0.0
Calibration Drift (Span %) ≤3%	0.7	-0.8	0.2	0.3	-0.1	-0.6
Run Results						
Raw Results (Span %)	43.6	43.3	35.2	81.8	26.3	30.1
Raw Results (ppmv or % vol)	198.12	1033.72	7.75	11.90	526.92	601.34
	203.3					

Test Run U2-C-2	NO _X -A	CO-A	O ₂ -A	CO ₂ -A	THC-A	ТНС-В
Analyzer Range (ppm), O2 & CO2 in %	454	2389	21.99	14.54	2000	2000
Calibration Gas Certified Value (ppm or %)	253	1062	11.97	14.54	562	562
Target Calibration Gas (Span %)	55.7	44.5	54.4	100.0	28.1	28.1
Actual Zero Gas from Direct (Span %)	0.0	0.0	0.0	0.0	-0.5	0.0
Actual Calibration Gas from Direct (Span %)	55.4	44.7	54.6	100.0	27.9	28.9
Initial Readings						
Zero Gas (Span %)	1.6	0.0	0.3	0.6	-0.5	-0.1
Calibration Gas (Span %)	53.6	48.0	54.6	98.9	28.2	30.2
Zero Gas (ppmv)	7.06	0.00	0.07	0.08	-9.00	-2.67
Calibration Gas (ppmv)	243.43	1146.72	12.00	14.38	564.03	604.00
Final Readings			The Superior of the Superior o			
Zero Gas (Span %)	1.6	0.0	0.3	0.6	-0.5	-0.1
Calibration Gas (Span %)	53.4	48.1	54.6	98.5	28.4	31.8
Zero Gas (ppmv)	7.06	0.00	0.07	0.08	-9.00	-2.33
Calibration Gas (ppmv)	242.42	1149.37	12.00	14.32	567.03	636.67
Bias and Drift Calculations		1				
Zero Bias (% Span) (Run-Direct Cal) ≤5%	1.6	0.0	0.3	0.6	0.0	-0.1
Calibration Bias (% Span) ≤5%	-2.0	3.4	0.0	-1.5	0.5	3.0
Zero Drift (Span %) (Run-Run) ≤3%	0.0	0.0	0.0	0.0	0.0	0.0
Calibration Drift (Span %) ≤3%	0.2	-0.1	0.0	0.4	-0.2	-1.6
Run Results	100					
Raw Results (Span %)	43.8	43.0	35.4	81.4	26.7	32.0
Raw Results (ppmv or % vol)	198.91	1026.81	7.78	11.84	534.58	639.78
Corrected Results (ppmv or % vol)	205.8	949.9	7.74	11.98	531.7	579.5
Tr						
Test Run U2-C-3	NO _X -A	MANAGE AND	O ₂ -A	NAME OF PERSONS AND	responses the second	ТНС-В
	0.4743 (20048 (20)	MANAGE AND	O ₂ -A	NAME OF PERSONS AND	responses the second	THC-B
Test Run U2-C-3	NO _X -A	CO-A	and the second of the second s	CO ₂ -A	THC-A	NATIONAL PROPERTY OF THE PROPE
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in %	NO _X -A	CO-A	21.99	CO ₂ -A	THC-A	2000
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %)	NO _X -A	CO-A 2389 1062	21.99 11.97	CO ₂ -A 14.54 14.54	THC-A 2000 562	2000 562
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %)	NO _X -A 454 253 55.7	2389 1062 44.5	21.99 11.97 54.4	CO ₂ -A 14.54 14.54 100.0	THC-A 2000 562 28.1	2000 562 28.1
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %)	NO _X -A 454 253 55.7 0.0	2389 1062 44.5 0.0	21.99 11.97 54.4 0.0	14.54 14.54 100.0 0.0	2000 562 28.1 -0.5	2000 562 28.1 0.0
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %)	NO _X -A 454 253 55.7 0.0	2389 1062 44.5 0.0 44.7	21.99 11.97 54.4 0.0	14.54 14.54 100.0 0.0 100.0	2000 562 28.1 -0.5	2000 562 28.1 0.0
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings	NO _X -A 454 253 55.7 0.0 55.4	2389 1062 44.5 0.0 44.7	21.99 11.97 54.4 0.0 54.6	14.54 14.54 100.0 0.0 100.0	2000 562 28.1 -0.5 27.9	2000 562 28.1 0.0 28.9
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %)	NO _X -A 454 253 55.7 0.0 55.4	2389 1062 44.5 0.0 44.7	21.99 11.97 54.4 0.0 54.6	14.54 14.54 100.0 0.0 100.0	2000 562 28.1 -0.5 27.9	2000 562 28.1 0.0 28.9
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv)	NO _X -A 454 253 55.7 0.0 55.4	2389 1062 44.5 0.0 44.7	21.99 11.97 54.4 0.0 54.6	14.54 14.54 100.0 0.0 100.0	2000 562 28.1 -0.5 27.9	2000 562 28.1 0.0 28.9 -0.1 31.8
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06	2389 1062 44.5 0.0 44.7	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (Span %)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5%	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04 244.44	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37 0.0 47.9 0.00 1144.07	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00	0.6 98.5 0.08 14.32 0.6 98.9 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (Span %) Zero Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04 244.44 1.1 -1.6	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37 0.0 47.9 0.00 1144.07	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00 0.2 54.6 0.05 12.00	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08 14.32 0.6 98.9 0.08 14.38	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03 -0.5 28.5 -9.00 570.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33 622.00
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5%	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04 244.44	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37 0.0 47.9 0.00 1144.07	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00 0.2 54.6 0.05 12.00	0.6 98.5 0.08 14.32 0.6 98.9 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03 -0.5 28.5 -9.00 570.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33 622.00
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (Span %) Zero Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04 244.44 1.1 -1.6	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37 0.0 47.9 0.00 1144.07	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00 0.2 54.6 0.05 12.00	14.54 14.54 100.0 0.0 100.0 0.6 98.5 0.08 14.32 0.6 98.9 0.08 14.38	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03 -0.5 28.5 -9.00 570.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33 622.00
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5% Zero Drift (Span %) (Run-Run) ≤3%	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04 244.44 1.1 -1.6 0.4	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37 0.0 47.9 0.00 1144.07	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00 0.2 54.6 0.05 12.00	0.6 98.5 0.08 14.32 0.6 98.9 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03 -0.5 28.5 -9.00 570.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33 622.00
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (Span %) Zero Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5% Zero Drift (Span %) (Run-Run) ≤3% Calibration Drift (Span %) Run Results Raw Results (Span %)	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04 244.44 1.1 -1.6 0.4 -0.4	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37 0.0 47.9 0.00 1144.07	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00 0.2 54.6 0.05 12.00 0.2 0.2 0.0 0.1 0.0	0.6 98.5 0.08 14.32 0.6 98.9 0.08 14.38	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03 -0.5 28.5 -9.00 570.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33 622.00
Test Run U2-C-3 Analyzer Range (ppm), O2 & CO2 in % Calibration Gas Certified Value (ppm or %) Target Calibration Gas (Span %) Actual Zero Gas from Direct (Span %) Actual Calibration Gas from Direct (Span %) Initial Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (ppmv) Final Readings Zero Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Calibration Gas (Span %) Zero Gas (ppmv) Calibration Gas (ppmv) Bias and Drift Calculations Zero Bias (% Span) (Run-Direct Cal) ≤5% Calibration Bias (% Span) ≤5% Zero Drift (Span %) (Run-Run) ≤3% Run Results	NO _X -A 454 253 55.7 0.0 55.4 1.6 53.4 7.06 242.42 1.1 53.8 5.04 244.44 1.1 -1.6 0.4 -0.4	2389 1062 44.5 0.0 44.7 0.0 48.1 0.00 1149.37 0.0 47.9 0.00 1144.07	21.99 11.97 54.4 0.0 54.6 0.3 54.6 0.07 12.00 0.2 54.6 0.05 12.00	0.6 98.5 0.08 14.32 0.6 98.9 0.08 14.32	2000 562 28.1 -0.5 27.9 -0.5 28.4 -9.00 567.03 -0.5 28.5 -9.00 570.03	2000 562 28.1 0.0 28.9 -0.1 31.8 -2.33 636.67 -0.1 31.1 -2.33 622.00 -0.1 2.2 0.0 0.7

G2 Energy - MCMCC Baseline Landfill, Unit 1, Logged QA Calibration Records

Run U1-C-1	3/25/2009	9:33:01 AM	10:33:01 AM					
Initial Linearity Test	Zero	Low	Mid	Span	L-Lin	M-Lin	S-Lin	
NOx-A (ppmv)	0	0	454.1	251.49	0	-0.02	0.33	
CO-A (ppmv)	0	0	2394.31	1067.09	0	-0.22	-0.21	
O2-A (% vol)	0	0	22	12	0	-0.05	-0.14	
CO2-A (% vol)	0	0	8.56	14.54	0	0.4	0	
THC-A (ppmv)	-9	951.05	1752.1	558.03	0.22	0.12	-0.71	
THC-B (ppmv)	0	965	1750.33	577.33	1.69	0.02	2.73	
Initial and Final Bias and Drift	I-Zero	I-Span	F-Zero	F-Span	Z-Bias	S-Bias	Z-Drift	S-Drift
NOx-A (ppmv)	0	245.45	8.06	253.51	1.78	0.44	-1.78	-1.78
CO-A (ppmv)	0	1085.67	0	1085.67	0	0.78	0	0
O2-A (% vol)	0.05	11.95	0.05	12	0.23	0	0	-0.23
CO2-A (% vol)	0.06	14.52	0.06	14.48	0.4	-0.4	0	0.27
THC-A (ppmv)	-9	558.03	- 9	561.03	0	0.17	0	-0.17
THC-B (ppmv)	0	577.33	-1.67	574.67	-0.1	-0.15	0.1	0.15
·								
Run Results and Cal Gases Used	Raw	Corrected	Ranges	Low Gas	Mid Gas	Span Gas		
NOx-A (ppmv)	199.16	201.1	454	0	454	253		
CO-A (ppmv)	1054.37	1031	2389	0	2389	1062		
O2-A (% vol)	7.48	7.46	21.99	0	21.99	11.97		
CO2-A (% vol)	12.19	12.21	14.54	0	8.62	14.54		
THC-A (ppmv)	467.23	470.8	2000	949	1750	562		
THC-B (ppmv)	500.86	488.8	2000	949	1750	562		

G2 Energy - MCMCC Baseline Landfill, Unit 1, Logged QA Calibration Records

Run U1-C-2	3/25/2009	10:56:00 AM	11:56:00 AM					
Initial Linearity Test	Zero	Low	Mid	Span	L-Lin	M-Lin	S-Lin	
NOx-A (ppmv)	0	0	454.1	251.49	0	-0.02	0.33	
CO-A (ppmv)	0	0	2394.31	1067.09	0	-0.22	-0.21	
O2-A (% vol)	0	0	22	12	0	-0.05	-0.14	
CO2-A (% vol)	0	0	8.56	14.54	. 0	0.4	0	
THC-A (ppmv)	-9	951.05	1752.1	558.03	0.22	0.12	-0.71	
THC-B (ppmv)	0	965	1750.33	577.33	1.69	0.02	2.73	
Initial and Final Bias and Drift	I-Zero	I-Span	F-Zero	F-Span	Z-Bias	S-Bias	Z-Drift	S-Drift
NOx-A (ppmv)	8.06	253.51	6.55	248.97	1.44	-0.56	0.33	1
CO-A (ppmv)	0	1085.67	0	1117.52	0	2.11	0	-1.33
O2-A (% vol)	0.05	12	0.07	12.05	0.34	0.23	-0.11	-0.23
CO2-A (% vol)	0.06	14.48	0.1	14.42	0.67	-0.8	-0.27	0.4
THC-A (ppmv)	-9	561.03	-9	558.03	0	0	0	0.17
THC-B (ppmv)	-1.67	574.67	-2.33	598.33	-0.13	1.2	0.04	-1.35
Run Results and Cal Gases Used	Raw	Corrected	Ranges	Low Gas	Mid Gas	Span Gas		
NOx-A (ppmv)	194.71	194.4	454	0	454	253		
CO-A (ppmv)	1053.88	1016	2389	0	2389	1062		
O2-A (% vol)	7.53	7.47	21.99	0	21.99	11.97		
CO2-A (% vol)	12.14	12.20	14.54	0	8.62	14.54		
THC-A (ppmv)	428.95	432.9	2000	949	1750	562		
THC-B (ppmv)	472.41	453.0	2000	949	1750	562		

G2 Energy - MCMCC Baseline Landfill, Unit 1, Logged QA Calibration Records

Run U1-C-3	3/25/2009	12:36:01 PM	1:36:01 PM					
Initial Linearity Test	Zero	Low	Mid	Span	L-Lin	M-Lin	S-Lin	
NOx-A (ppmv)	0	0	454.1	251.49	0	-0.02	0.33	
CO-A (ppmv)	0	0	2394.31	1067.09	0	-0.22	-0.21	
O2-A (% vol)	0	0	22	12	0	-0.05	-0.14	
CO2-A (% vol)	0	0	8.56	14.54	0	0.4	0	
THC-A (ppmv)	- 9	951.05	1752.1	558.03	0.22	0.12	-0.71	
THC-B (ppmv)	0	965	1750.33	577.33	1.69	0.02	2.73	
Initial and Final Bias and Drift	I-Zero	I-Span	F-Zero	F-Span	Z-Bias	S-Bias	Z-Drift	S-Drift
NOx-A (ppmv)	6.55	248.97	6.05	246.45	1.33	-1.11	0.11	0.56
CO-A (ppmv)	0	1117.52	0	1128.14	0	2.56	0	-0.44
O2-A (% vol)	0.07	12.05	0.07	12.05	0.34	0.23	0	0
CO2-A (% vol)	0.1	14.42	0.1	14.42	0.67	-0.8	0	0
THC-A (ppmv)	-9	558.03	-9	561.03	0	0.17	0	-0.17
THC-B (ppmv)	-2.33	598.33	-2.33	592.67	-0.13	0.88	0	0.32
Run Results and Cal Gases Used	Raw	Corrected	Ranges	Low Gas	Mid Gas	Span Gas		
NOx-A (ppmv)	194.33	197.1	454	0	454	253		
CO-A (ppmv)	1059.81	1002	2389	0	2389	1062		
O2-A (% vol)	7.63	7.55	21.99	0	21.99	11.97		·
CO2-A (% vol)	12.04	12.12	14.54	0	8.62	14.54		
THC-A (ppmv)	427.78	431.8	2000	949	1750	562		
THC-B (ppmv)	468.69	442.8	2000	949	1750	562		

G2 Energy - MCBCC Baseline Landfill, Unit 2, Logged QA Calibration Records

Run U2-C-1	3/25/2009	2:17:01 PM	3:17:01 PM					
Initial Limposity Toot	Zero	Low	Mid	Smon	L-Lin	M-Lin	S-Lin	
Initial Linearity Test		Low		Span				
NOx-A (ppmv)	0	0	454.1	251.49	0	-0.02	0.33	
CO-A (ppmv)	0	0	2394.31	1067.09	0	-0.22	-0.21	
O2-A (% vol)	0	0	22	12	. 0	-0.05	-0.14	
CO2-A (% vol)	0	0	8.56	14.54	0	0.4	0	
THC-A (ppmv)	-9	951.05	1752.1	558.03	0.2	0.1	-0.7	
THC-B (ppmv)	0	965	1750.33	577.33	1.7	0.0	2.7	
Initial and Final Bias and Drift	I-Zero	I-Span	F-Zero	F-Span	Z-Bias	S-Bias	Z-Drift	S-Drift
NOx-A (ppmv)	6.05	246.45	7.06	243.43	1.55	-1.78	-0.22	0.67
CO-A (ppmv)	0	1128.14	0	1146.72	0	3.33	0	-0.78
O2-A (% vol)	0.07	12.05	0.07	12	0.34	0	0	0.23
CO2-A (% vol)	0.1	14.42	0.08	14.38	0.53	-1.07	0.13	0.27
THC-A (ppmv)	- 9	561.03	-9	564.03	0	0.3	0	-0.15
THC-B (ppmv)	-2.33	592.67	-2.67	604	-0.13	1.33	0.02	-0.57
Run Results and Cal Gases Used	Raw	Corrected	Ranges	Low Gas	Mid Gas	Span Gas		
NOx-A (ppmv)	198.12	203.3	454	0	454	253		
CO-A (ppmv)	1033.72	965.2	2389	0	2389	1062		
O2-A (% vol)	7.75	7.69	21.99	0	21.99	11.97		
CO2-A (% vol)	11.9	12.00	14.54	0	8.62	14.54		
THC-A (ppmv)	526.92	527.0	2000	949	1750	562		
THC-B (ppmv)	601.34	564.8	2000	949	1750	562		

G2 Energy - MCBCC Baseline Landfill, Unit 2, Logged QA Calibration Records

Run U2-C-2	3/25/2009	4:10:15 PM	5:10:15 PM					
Initial Linearity Test	Zero	Low	Mid	Span	L-Lin	M-Lin	S-Lin	
NOx-A (ppmv)	0	0	454.1	251.49	0	-0.02	0.33	
CO-A (ppmv)	0	0	2394.31	1067.09	0	-0.22	-0.21	
O2-A (% vol)	0	0	22	12	0	-0.05	-0.14	
CO2-A (% vol)	0	0	8.56	14.54	0	0.4	0	
THC-A (ppmv)	-9	951.05	1752.1	558.03	0.2	0.1	-0.7	
THC-B (ppmv)	0	965	1750.33	577.33	1.7	0.0	2.7	
Initial and Final Bias and Drift	I-Zero	I-Span	F-Zero	F-Span	Z-Bias	S-Bias	Z-Drift	S-Drift
NOx-A (ppmv)	7.06	243.43	7.06	242.42	1.55	-2	0	0.22
CO-A (ppmv)	0	1146.72	0	1149.37	0	3.44	0	-0.11
O2-A (% vol)	0.07	12	0.07	12	0.34	0	0	0
CO2-A (% vol)	0.08	14.38	0.08	14.32	0.53	-1.47	0	0.4
THC-A (ppmv)	-9	564.03	-9	567.03	0	0.45	0	-0.15
THC-B (ppmv)	-2.67	604	-2.33	636.67	-0.12	2.97	-0.02	-1.63
Run Results and Cal Gases Used	Raw	Corrected	Ranges	Low Gas	Mid Gas	Span Gas		
NOx-A (ppmv)	198.91	205.8	454	0	454	253		
CO-A (ppmv)	1026.81	949.9	2389	0	2389	1062		
O2-A (% vol)	7.78	7.74	21.99	0	21.99	11.97		
CO2-A (% vol)	11.84	11.98	14.54	0	8.62	14.54		
THC-A (ppmv)	534.58	531.7	2000	949	1750	562		
THC-B (ppmv)	639.78	579.5	2000	949	1750	562		

G2 Energy - MCBCC Baseline Landfill, Unit 2, Logged QA Calibration Records

Run U2-C-3	3/25/2009	5:27:02 PM	6:27:02 PM					
Initial Linearity Test	Zero	Low	Mid	Span	L-Lin	M-Lin	S-Lin	
NOx-A (ppmv)	0	0	454.1	251.49	0	-0.02	0.33	
CO-A (ppmv)	0	0	2394.31	1067.09	0	-0.22	-0.21	
O2-A (% vol)	0	0	22	12	0	-0.05	-0.14	
CO2-A (% vol)	0	0	8.56	14.54	0	0.4	0	
THC-A (ppmv)	-9	951.05	1752.1	558.03	0.2	0.1	-0.7	
THC-B (ppmv)	0	965	1750.33	577.33	1.7	0.0	2.7	
Initial and Final Bias and Drift	I-Zero	I-Span	F-Zero	F-Span	Z-Bias	S-Bias	Z-Drift	S-Drift
NOx-A (ppmv)	7.06	242.42	5.04	244.44	1.11	-1.55	0.44	-0.44
CO-A (ppmv)	0	1149.37	0	1144.07	0	3.22	0	0.22
O2-A (% vol)	0.07	12	0.05	12	0.23	. 0	0.11	0
CO2-A (% vol)	0.08	14.32	0.08	14.38	0.53	-1.07	0	-0.4
THC-A (ppmv)	- 9	567.03	- 9	570.03	0	0.6	0	-0.15
THC-B (ppmv)	-2.33	636.67	-2.33	622	-0.12	2.23	0	0.73
Run Results and Cal Gases Used	Raw	Corrected	Ranges	Low Gas	Mid Gas	Span Gas		
NOx-A (ppmv)	193.66	200.0	454	0	454	253		
CO-A (ppmv)	1024.56	948.9	2389	0	2389	1062		
O2-A (% vol)	7.79	7.75	21.99	0	21.99	11.97		
CO2-A (% vol)	11.82	11.96	14.54	0	8.62	14.54		
THC-A (ppmv)	530.77	525.3	2000	949	1750	562		
THC-B (ppmv)	638.17	569.9	2000	949	1750	562		

Instrumental Analyses Quality Assurance Data

Dates:

March 24 and 25, 2009

Company:

G2 Energy

Facility:

Marion County BCC Baseline Landfill

Source ID:

Units 1 and 2, two Caterpillar Model G3520C Generator Engines

Location:

Ocala, Florida

Technicians:

LJB, CFF

Hydrocarbon Analyzer Response Factor Check

Methane Calibration Gas: 895.00 ppmv

Date: March 24, 2009

Response Factor Predicited = MW Propane / MW Methane = 44.0962/16.0426 = 2.7487

Response Factor Measured = Methane Concentration / Methane Response

THC-B = 895 / 334.3

THC-A = 895 / 327.0THC-A = 2.7370

THC-B = 2.6764

% Difference = THC -A = -0.4%

(Measured - Predicted) / Predicted * 100 THC-B = -2.6%

THC-A Hydrocarbon Analyzer Non-methane Cutter Breakthrough Check

Ethane Test Gas: 1409.2 ppmv

Date: March 24, 2009

Propane Test Gas: 1750 ppmv

% Breakthrough = (Measured Response) / Test Gas Concentration × 100 × (# Carbons Cal Gas/#Carbons Test Gas)

Ethane = 10.7%

Propane = -0.4%

System NO_X Converter Efficiency Test

Criteria: "At least 90% conversion efficiency" (EMC ALT-013)

Test Date:

03/24/09

Technician: LJB

NO ₂ / N ₂ Balance	Results
Certified Value	50.2 ppmv
Observed Value	49.21 ppmv
Converter Temperature	635.0 °C
Observation Time	5 minutes
Converter Efficiency	98.0%

17	Instrumental Sample System Leak Checks								
	Run	Vacuum	Leak Rate	_					
Date	Number	(inches Hg)	(inches Hg/min)	Pass					
03/24/09	pre U2-Strat	25.5	0.5	yes					
03/24/09	post U2-Strat	24.1	0.8	yes					
03/24/09	pre U1-Strat	25.9	0.1	yes					
03/24/09	post U1-Strat	27.3	0.4	yes					
03/25/09	pre U1-C-1	26.2	0.5	yes					
03/25/09	post U1-C-3	27.8	0.1	yes					
03/25/09	pre U2-C-1	26.2	0.3	yes					
03/25/09	post U2-C-3	27.0	0.2	yes					
Leak check criteria	is a decline of ≤1.0"	Hg vacuum/min at g	reater than 15.0" Hg vacuum	1.					

NOx Converter Efficiency Test - and - Hydrocarbon Analyzer Quality Assurance Tests G2 Energy - MCBCC Baseline Landfill

Run Number	Date	Time	NOx	AVE NOx		
			(ppmv)	(ppmv)		
START NOx-B Converter, 50.2	3/24/2009	13:19:02	49.15	49.15		
NOx-B Converter, 50.2	3/24/2009	13:20:02	49.24	49.14		
NOx-B Converter, 50.2	3/24/2009	13:21:02	49.15	49.16		
NOx-B Converter, 50.2	3/24/2009	13:22:02	49.24	49.19		
NOx-B Converter, 50.2	3/24/2009	13:23:02	49.34	49.21		
END NOx-B Converter, 50.2	3/24/2009	13:24:02	49.24	49.21		
Run Number	Date	Time	THC-A	THC-B	AVE THC-A	AVE THC-B
			(ppmv)	(ppmv)	(ppmv)	(ppmv)
START 895 Methane Response (THC)	3/24/2009	14:22:01	327.0	333.3	327.0	333.3
895 Methane Response (THC)	3/24/2009	14:23:01	327.0	334.0	327.0	334.1
895 Methane Response (THC)	3/24/2009	14:24:01	327.0	335.0	327.0	334.2
END 895 Methane Response (THC)	3/24/2009	14:25:01	327.0	334.7	327.0	334.3
Run Number	Date	Time	THC-A	THC-B	AVE THC-A	AVE THC-B
			(ppmv)	(ppmv)	(ppmv)	(ppmv)
START 1750 Propane Response	3/24/2009	14:31:07	-9.0	1753.0	-9.0	1753.0
1750 Propane Response	3/24/2009	14:32:07	-6.0	1764.0	-8.6	1759.7
1750 Propane Response	3/24/2009	14:33:07	-6.0	1764.0	-7.3	1761.7
END 1750 Propane Response	3/24/2009	14:34:07	-6.0	1762.7	-7.0	1762.0
START 1409.2 Ethane Response	3/24/2009	14:35:31	105.0	978.0	105.0	978.0
1409.2 Ethane Response	3/24/2009	14:36:30	102.0	979.7	102.3	979.5
1409.2 Ethane Response	3/24/2009	14:37:31	99.0	980.3	100.8	979.7
END 1409.2 Ethane Response	3/24/2009	14:38:31	99.0	979.0	100.4	979.5

Quality Assurance Report

EPA M-3A, 7E, and 10: NO_X, CO, O₂, and CO₂ THC Response Time G2 Energy - MCBCC Baseline Landfill

Date:

March 24, 2009

Technician:

LJB

Lab Unit #:

Trailer 13

Test Instrumentation								
Analyzer Make		Model Serial Number		Detection Method				
				Photodetection (of a chemi- luminescent reaction of nitric				
NO _X -A Analyzer	TECO	42C	42CHL-69541-363	oxide and ozone				
CO-A Analyzer	TECO	48C	48C-70472-365	IR Absorption/GFC Detector				
O ₂ -A Analyzer	Servomex	1440	1420C/2647	Paramagnetic Cell Detector				
				IR Absorption/Solid State				
CO ₂ -A Analyzer	Servomex	1440	01415/2537	Detector				

HRSG Sta	ck Test Conditions
Sample Line Vacuum	12.0 " Hg
Sample Manifold Pressure	9 psig
Analyzer Flow Meter Setting	1.0 lpm
Gas Standard Pressure	18 psig
Sample System Configuration:	120 ft. Heat Trace + Condenser

- Single Park	Response	e Time Test I	Results				
Parameter	NO _X	СО	O ₂	CO ₂			
Zero Gas Concentration	0.00	0.00	0.00	0.00			
Span Gas Concentration	147.30	1062.00	11.97	14.54			
Analyzer Full Scale Range	253.00	2389.00	22.00	14.54			
(A)	Upscale R	eponse Time	Testing				
Starting Value	4.75	0.00	0.00	0.00			
Final Average Response	150.71	1072.40	11.95	14.50			
Calculated 95% Response	143.41	1018.78	11.35	13.78			
Actual Response (≥95%)	149.22	1056.47	11.9	14.32			
Upscale Response Time (sec)	80	80	40	40			
	Downscale	Reponse Tim	e Testing		NAME OF TAXABLE PARTY.		
Starting Value	150.41	1069.74	11.93	14.50			
Final Response	2.08	0.00	-0.03	0.00			
Calculated 95% Response	9.50	53.49	0.57	0.73			
Actual Response (≥95%)	5.04	2.65	0.05	0.16			
Downscale Response Time (sec)	80	80	40	40			
Maximum System Response Tim		80	seconds				
Minmum Sampling Time Each S	Minmum Sampling Time Each Sample Point						
Sample Time Selected For Each	180	seconds					

Response Time Data G2 Energy - MCBCC Baseline Landfill

Run Number	Date	Time	NOx	СО	O2	CO2
			(ppmv)	(ppmv)	(% vol)	(% vol)
NOx Upscale Response Time						
NOx Upscale	3/24/2009	13:49:00	4.75	0.00	0.03	0.00
NOx Upscale	3/24/2009	13:49:20	4.75	0.00	0.03	0.00
NOx Upscale	3/24/2009	13:49:40	53.10	0.00	0.03	0.00
NOx Upscale	3/24/2009	13:50:00	118.07	0.00	0.00	0.00
NOx Upscale	3/24/2009	13:50:20	149.22	0.00	0.03	0.00
NOx Upscale	3/24/2009	13:50:40	150.41	0.00	0.00	0.00
NOx Upscale	3/24/2009	13:51:00	150.71	0.00	0.00	0.00
NOx Upscale	3/24/2009	13:51:20	150.71	0.00	0.00	0.00
NOx Upscale	3/24/2009	13:51:40	150.71	0.00	0.00	0.00
NOx Upscale	3/24/2009	13:52:00	150.71	0.00	0.00	0.00
O2 Upscale and NOx Downsca	le Response	Time				
O2 Upscale	3/24/2009	13:53:01	150.41	0.00	0.00	0.00
O2 Upscale	3/24/2009	13:53:21	150.41	0.00	0.00	0.00
O2 Upscale	3/24/2009	13:53:41	121.63	0.00	11.90	8.42
O2 Upscale	3/24/2009	13:54:01	56.66	0.00	11.93	8.46
O2 Upscale	3/24/2009	13:54:22	5.04	0.00	11.93	8.48
O2 Upscale	3/24/2009	13:54:42	2.97	0.00	11.93	8.50
O2 Upscale	3/24/2009	13:55:02	2.67	0.00	11.93	8.50
O2 Upscale	3/24/2009	13:55:22	2.37	0.00	11.93	8.50
O2 Upscale	3/24/2009	13:55:42	2.08	0.00	11.93	8.50
O2 Upscale	3/24/2009	13:56:02	2.08	0.00	11.95	8.50
O2 Downscale Response Time	,					
O2 Downscale	3/24/2009	13:56:43	1.78	0.00	11.93	8.52
O2 Downscale	3/24/2009	13:57:03	1.78	0.00	11.93	8.52
O2 Downscale	3/24/2009	13:57:23	1.78	0.00	0.05	0.12
O2 Downscale	3/24/2009	13:57:43	1.78	0.00	0.03	0.04
O2 Downscale	3/24/2009	13:58:03	1.78	0.00	0.00	0.04
O2 Downscale	3/24/2009	13:58:23	1.78	0.00	0.03	0.02
O2 Downscale	3/24/2009	13:58:43	1.78	0.00	0.00	0.02
O2 Downscale	3/24/2009	13:59:03	1.78	0.00	0.00	0.00
O2 Downscale	3/24/2009	13:59:23	1.48	0.00	0.00	0.00
O2 Downscale	3/24/2009	13:59:43	1.48	0.00	-0.03	0.00

Response Time Data G2 Energy - MCBCC Baseline Landfill

Run Number	Date	Time	NOx	СО	O2	CO2
			(ppmv)	(ppmv)	(% vol)	(% vol)
CO2 Upscale Response Time						
CO2 Upscale	3/24/2009	14:00:05	1.48	0.00	0.00	0.00
CO2 Upscale	3/24/2009	14:00:25	1.48	0.00	0.00	0.00
CO2 Upscale	3/24/2009	14:00:45	1.48	0.00	8.40	14.32
CO2 Upscale	3/24/2009	14:01:05	1.48	0.00	8.43	14.44_
CO2 Upscale	3/24/2009	14:01:25	1.19	0.00	8.43	14.48
CO2 Upscale	3/24/2009	14:01:45	0.89	0.00	8.43	14.48
CO2 Upscale	3/24/2009	14:02:05	0.89	0.00	8.43	14.50
CO2 Upscale	3/24/2009	14:02:25	0.89	0.00	8.43	14.50
CO2 Upscale	3/24/2009	14:02:45	0.89	0.00	8.43	14.50
CO2 Upscale	3/24/2009	14:03:05	0.89	0.00	8.43	14.50
CO Upscale and CO2 Downsc	ale Response	Time				
CO Upscale	3/24/2009	14:04:01	0.89	0.00	8.43	14.50
CO Upscale	3/24/2009	14:04:21	0.89	0.00	8.45	14.52
CO Upscale	3/24/2009	14:04:41	0.89	310.57	20.70	0.16
CO Upscale	3/24/2009	14:05:01	0.59	899.86	20.73	0.08
CO Upscale	3/24/2009	14:05:21	0.59	1056.47	20.75	0.06
CO Upscale	3/24/2009	14:05:41	0.59	1077.70	20.75	0.04
CO Upscale	3/24/2009	14:06:01	0.59	1069.74	20.78	0.04
CO Upscale	3/24/2009	14:06:21	0.59	1072.40	20.75	0.02
CO Upscale	3/24/2009	14:06:41	0.59	1067.09	20.78	0.02
CO Upscale	3/24/2009	14:07:01	0.59	1072.40	20.78	0.00
CO Downscale Response Time						
CO Downscale	3/24/2009	14:08:01	0.59	1069.74	20.78	0.00
CO Downscale	3/24/2009	14:08:21	0.59	. 1069.74	20.78	0.00
CO Downscale	3/24/2009	14:08:41	0.59	700.77	0.08	0.00
CO Downscale	3/24/2009	14:09:01	0.59	106.18	0.03	0.00
CO Downscale	3/24/2009	14:09:21	0.30	2.65	0.03	0.00
CO Downscale	3/24/2009	14:09:41	0.30	0.00	0.00	0.00
CO Downscale	3/24/2009	14:10:01	0.30	0.00	0.00	0.00
CO Downscale	3/24/2009	14:10:21	0.30	0.00	0.03	0.00
CO Downscale	3/24/2009	14:10:41	0.30	0.00	0.00	0.00
CO Downscale	3/24/2009	14:11:01	0.30	0.00	0.00	0.00

Continuous Emission Analyzer Interference Response Tests

Analyzer Interference Response Checks

(Frequency: Prior to initial use of sampling system or after alteration or modification.)

Test Date: September 27, 2002 Technician: RPQ

Mobile Lab: T-13(System A) Location: Gainesville, Florida

Analyzer	Manufacturer	Model	Serial Number	Detection Method/Comments
NO _X Analyzer	TECO	42C	42CHL-69541-363	Chemiluminescence with Ozone
CO Analyzer	TECO	48C	48C-70472-365	Infrared Absorption/GFC Detector
O ₂ Analyzer	Servomex	1440	1420C/2647	Paramagnetic Cell Detector
CO ₂ Analyzer	Servomex	1440	01415/2537	Infrared Absorption/ Solid State Detector
THC	California Analytical	300-HMFID	5N05002	Flame Ionization Detector

Interferrent	Test Gases	Analyzer Response (ppmv or % as applicable)					
Type Gas	Conc.	NO_X	CO	$\mathbf{O_2}$	\mathbf{CO}_2	THC	
A-1 (1) (4)	100	0-25 ppmv	0-50 ppmv	0-25% vol	0-15% vol	0-100 ppmv	
CO/Methane in air	885/919	0.1 ppmv			0.00 %		
Propane in air	2000	0.1 ppmv	0.4 ppmv		0.03 %	The second secon	
SO ₂ in N ₂	4400	0.2 ppmv	-0.3 ppmv	0.00 %	0.00 %	no data	
Air	dry instrument	< 0.1 ppmv	0.4 ppmv	100	0.03 %	no data	
Nitrogen	pre-purified	0.0 ppmv	0.3 ppmv	0.00 %	0.00 %	no data	
Air	UHC, CO free	0.0 ppmv	0.0 ppmv	Section 1	0.01 %	no data	
CO_2/O_2	4.54%/20.8%	< 0.1 ppmv	-0.2 ppmv			no data	
CO_2/O_2	8.004%/11.91%	< 0.1 ppmv	-0.4 ppmv		10 12 25	no data	
CO_2/O_2	12.62%/4.53%	< 0.1 ppmv	-0.6 ppmv		The state of the s	no data	
NO _X in N ₂	1209		0.4 ppmv	0.18 %	0.03 %	no data	

Continuous Emission Analyzer Interference Response Tests

Analyzer Interference Response Checks

(Frequency: Prior to initial use of sampling system or after alteration or modification.)

Test Date: July 8, 2004 Technician: JTH

Mobile Lab: T-13(System B) Location: Gainesville, Florida

Analyzer	Manufacturer	Model	Serial Number	Detection Method/Comments
NO _X Analyzer	TECO	42C	42CHL-69796-364	Chemiluminescence with Ozone
CO Analyzer	TECO	48	48-30083-237	Infrared Absorption/GFC Detector
O ₂ Analyzer	Servomex	1440	01440C1ST0/2868	Paramagnetic Cell Detector
CO ₂ Analyzer	Servomex	1440	01415C/1240	Infrared Absorption/ Solid State Detector
THC	California Analytical	300-HFID CE	4J11003	Flame Ionization Detector

Interferrent	Test Gases	Analyzer Response (ppmv or % as applicable)				olicable)
Type Gas	Conc.	NO _X	CO	O_2	· CO ₂	THC
		0-25 ppmv 🦠	0-50 ppmv	0-25% vol	0-15% vol	0-100 ppmv
CO/Methane in air	451/453	0.1 ppmv		APP of the product of	0.00 %	
Propane in air	20.3	· 0.1 ppmv	0.30 ppmv		0.02 %	
SO ₂ in N ₂	258	0.2 ppmv	-0.20 ppmv	0.00 %	0.00 %	no data
Air	UHC, CO free	- 0.07 ppmv	0.4 ppmv		0.03 %	no data
Nitrogen	pre-purified	0.0 ppmv	0.3 ppmv	0.00 %	0.00 %	no data
CO_2/O_2	4.5%/21.0%	< 0.1 ppmv	-0.10 ppmv	61.7	1000	no data
CO_2/O_2	8.52%/12.08%	< 0.1 ppmv	-0.4 ppmv	100 mg (100 mg)		no data
NO _X in N ₂	2725	20.00	0.4 ppmv	0.15 %	0.02 %	no data

AIPPENIDIX E: CALIBRATION CERTIFICATIONS

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

CE	PTI	FI	$\Gamma \Delta$	TE	ΛF.	ΔN	ΙΔΙ	.YSIS
UL			$\overline{}$		O.	~ 1'		

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Environmental

CYLINDER #:

CC-118522

SGI ORDER #:

125363

CYLINDER PRES: 2000 PSIG

ITEM#:

7

CGA OUTLET:

660

P.O.#:

G49048

PRODUCT CODE: TRC 4

CERTIFICATION DATE: 3/12/2008 EXPIRATION DATE:

3/12/2010

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Nitric Oxide	3/4/2008 3/12/2008	253.1 ppm 252.8 ppm	253 ppm	+/- 1%
NOx			253 ppm	Reference Value Only
			,	
-				

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

1121 211211 2 2 1111211112			
COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Nitric Oxide	GMIS-1	CC-256058	254 ppm
-			

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION DATE(S)
Nitric Oxide	CAI-400-CLD	6L09004	Cheml	2/26/2008
_				
				_

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

DATE: 3/12/2008

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

~	ERT	151	$\Gamma \Lambda$	TE	OF	Λŀ	NΙΛ	1 N	10	10
	СВІ				U	\boldsymbol{H}	v	_		

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Environmental

CYLINDER #:

CC-17785

SGI ORDER #: ITEM#:

129419

CYLINDER PRES: 2000 PSIG CGA OUTLET:

660

P.O.#:

G49602

PRODUCT CODE: TRC 4

CERTIFICATION DATE: 5/28/2008

EXPIRATION DATE:

5/28/2010

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Nitric Oxíde	5/21/2008	454.1 ppm	454 ppm	+/- 1%
·	5/28/2008	454.1 ppm		
NOx			454 ppm	Reference Value Only

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Nitric Oxide	NTRM-81687	CC-131153	992 ppm
_			
		-	

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION DATE(S)
Nitric Oxide	CAI-400-CLD	6L09004	Cheml	5/6/2008

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

5/28/2008 DATE:

ISO 9001:2000

Shipped from: 80 Industri	al Drive, Alpha, NJ	08865				
CERTIFICATE OF ANALYSIS			EPA PROTOCOL MIXTURE PROCEDURE #: G1			
CUSTOMER: SGI ORDER #: ITEM#: P.O.#: CERTIFICATION DATE:	TRC Environmenta 125363 6 G49048	.	CYLINDER # : CYLINDER PRES: CGA OUTLET: PRODUCT CODE:	660		
EXPIRATION DATE:	3/12/2010					
CERTIFICATION HISTORY	•					
	DATE OF	MEAN	CERTIFIED	ANALYTICAL		
COMPONENT	ASSAY	CONCENTRATION		ACCURACY		
Nitric Oxide	3/4/2008 3/12/2008	147.8 ppm 146.9 ppm	147.3 ppm	+/- 1%		
NOx			147.3 ppm	Reference Value Onl		
BALANCE	Nitrogen					
REFERENCE STANDARDS						
COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION			
Nitric Oxide	GMIS-1	CC-256058	254 ppm			
INSTRUMENTATION				·		
COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION DATE(S)		
Nitric Oxide	CAI-400-CLD	6L09004	Cheml	2/26/2008		

ANALYST: DATE: 3/12/2008

FRED PIKULA

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES.

DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

REC	FRTIFIC	ATION	OF	ANALYSIS	
Γ		A 1 1 1 1 1 1	V-	AIVALIOIO	

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Cubix

CYLINDER #:

CC-133604

SGI ORDER #:

131901

CYLINDER PRES: 1100 PSIG **CGA OUTLET:**

660

ITEM#: P.O.#:

G49607

CERTIFICATION DATE: 7/11/2008 EXPIRATION DATE: 7/11/2010

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Nitrogen Dioxide	12/19/2006	50.40 ppm	50.2 ppm	+/- 3%
	7/11/2008	49.97 ppm		

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: 4/5/2006,12/19/2006 by Spectra Gases

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Nitrogen Dioxide	GMIS-1	CC-230086	100 ppm
	_		

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION
				DATE(S)
Nitrogen Dioxide	Thermo 42i-HL	621417605	Cheml	7/11/2008

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:_		DATE:	7/11/2008
	FRED PIKULA	_	

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

RECERTIFICATION OF ANALYSIS

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

Cubix Corporation

CYLINDER #:

CC-118610

SGI ORDER #:

109383

CYLINDER PRES: 1800 PSIG

ITEM#:

CGA OUTLET:

590

P.O.#:

G48500

CERTIFICATION DATE: 6/5/2007

EXPIRATION DATE:

6/5/2010

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	3/4/2004	912.0 ppm	912.4 ppm	+/- 1%
	6/5/2007	912.7 ppm		
Methane	3/4/2004	894 ppm	895 ppm	+/- 1%
	6/5/2007	895 ppm		
			*	
	,			

BALANCE

Air

PREVIOUS CERTIFICATION DATES: 3/4/2004 by Spectra Gases

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	NTRM-81681	CC-133272	988 ppm
Methane	GMIS-1	CC-55777	993 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION
				DATE(S)
Carbon Monoxide	Horiba VIA-510	H0002L2Y	NDIR	5/24/2007
Methane	Horiba VIA-510	57141706	NDIR	6/5/2007

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

CODY HAMLIN

DATE: 6/5/2007

Liquid Technology Corporation

Industry Leader in Specialty Gases, Equipment and Service

Certificate of Analysis

Customer

TRC Environmental (Gainesville, Florida)

Date

March 13, 2009

Delivery Receipt

DR-24174

Product:

1400.0 ppm Ethane/Air - Certified Standard

Mixture Specifications

Cylinder Number:

CC-311352

Components

Requested

Actual

Ethane Air

1400.0 ppm Balance

1409.2 ppm Balance

- Certified Standard -

Traceability Information

Traceability Type

Traceable to

Blending Process:

Gravimetric

Mole Percent

Blend Tolerance:

Weight

NIST

Analytical Tolerance:

Gas Standard

Traceability Certificate:

822/266926-02

NIST

Cylinder Data

Cylinder Outlet:

CGA 590

Cylinder Volume:

140 Cubic Feet

Cylinder Pressure:

2000 psig, 70°F

Analytical Tolerance:

+/- 2.0%

Expiration Date:

March 13, 2012

Certified by:

Mike Duncan

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

CERT	IFIC	ΔTF	OF	ΔN	ΙΔΙ	YSIS
\mathbf{v}						

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Air Measurements

CYLINDER #:

CC-106662

SGI ORDER #:

120899

CYLINDER PRES: 2000 PSIG

ITEM#:

CGA OUTLET:

590

P.O.#:

G49039

PRODUCT CODE: TRC 21

CERTIFICATION DATE: 12/26/2007 EXPIRATION DATE:

12/26/2010

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	12/19/2007	1064 ppm	1062 ppm	+/- 1%
	12/26/2007	1059 ppm		
Propane	12/26/2007	562 ppm	562 ppm	+/- 1%
				•

BALANCE

Air

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	GMIS-1	CC-80922	2489 ppm
Propane	GMIS-1	CC-94356	501 ppm

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION
				DATE(S)
Carbon Monoxide	Horiba VIA-510	42331960012	NDIR	12/19/2007
Propane	H. Packard 6890	US00001434	GC - FID	12/12/2007
		_		
-				

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:	Cif
	CHERYL PATINO

DATE: 12/26/2007

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

\sim \sim	DTI	<i>C</i> ለግ	$\lambda = \lambda$	(NAL	vei	c
	r	UM I	JFP	$^{\prime\prime}$	ıoı	J

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Air Measurements

CYLINDER #:

CC-68312

SGI ORDER #:

120899

CYLINDER PRES: 2000 PSIG

ITEM#:

CGA OUTLET:

590

P.O.#:

G49039

PRODUCT CODE: TRC 21

CERTIFICATION DATE: 12/26/2007 EXPIRATION DATE:

12/26/2010

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	12/19/2007	2385 ppm	2389 ppm	+/- 1%
ř	12/26/2007	2392 ppm		
Propane	12/26/2007	949 ppm	949 ppm	+/- 1%
	_			

BALANCE

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	GMIS-1	CC-80922	2489 ppm
Propane	GMIS-1	CC-94356	501 ppm
			1.

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL #	DETECTOR	CALIBRATION
				DATE(S)
Carbon Monoxide	Horiba VIA-510	42331960012	NDIR	12/19/2007
Propane	H. Packard 6890	US00001434	GC - FID	12/12/2007

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:	a
	CHERYL PATINO

12/26/2007 DATE:

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

RECERTIFICATION OF ANALYSIS

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Environmental Corp

CYLINDER #:

CC-94790

SGI ORDER #:

120865

CYLINDER PRES: 1700 PSIG

ITEM#:

CGA OUTLET:

590

P.O.#:

G49039

PRODUCT CODE: TRC 21

CERTIFICATION DATE: 12/26/2007

EXPIRATION DATE:

12/26/2010

CERTIFICATION HISTORY

	DATE OF	MEAN	CERTIFIED	ANALYTICAL
COMPONENT	ASSAY	CONCENTRATION	CONCENTRATION	ACCURACY
Carbon Monoxide	4/30/2004	4564 ppm	4559 ppm	+/- 1%
	12/26/2007	4554 ppm		,
Propane	4/30/2004	1746 ppm	1750 ppm	+/- 1%
	12/26/2007	1754 ppm		
				_

BALANCE

PREVIOUS CERTIFICATION DATES: 4/30/2004 by Spectra Gases

REFERENCE STANDARDS

	• .		
COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Monoxide	GMIS-1	CC-114160	5011 ppm
Propane	GMIS-1	CC-79858	1.002 %

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION
				DATE(S)
Carbon Monoxide	Horiba VIA-510	42331960012	NDIR	12/26/2007
Propane	H. Packard 6890	US00001434	GC - FID	12/26/2007

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

CHERYL PATINO

DATE:

12/26/2007

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

CERTIFICATE OF ANALYSIS

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Cubix

CYLINDER #:

CC-75772

SGI ORDER #:

104875

CYLINDER PRES: 2000 PSIG

ITEM#:

CGA OUTLET:

590

P.O.#:

C47531 G 48024

CERTIFICATION DATE: 2/28/2007

EXPIRATION DATE: 2/28/2010

CERTIFICATION HISTORY

COMPONENT	DATE OF ASSAY	MEAN CONCENTRATION	CERTIFIED CONCENTRATION	ANALYTICAL ACCURACY
Carbon Dioxide	2/28/2007	14.54 %	14.54 %	+/- 1%
Oxygen	2/28/2007	8.47 %	8.47 %	+/- 1%
			ľ	

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Dioxide	NTRM-82745x	CC-79933	20.0 %
Oxygen	NTRM-82659x	CC-83906	22.8 %
			1

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION
				DATE(S)
Carbon Dioxide	CIA-300	S03001	NDIR	2/20/2007
Oxygen	CAI-300	S03001	PM	2/28/2007
		' -		

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:

JAMES SCHMIDT

DATE: 2/28/2007

Liquid Technology Corporation

Industry Leader in Specialty Gases, Equipment and Service Certificate of Analysis

- EPA PROTOCOL GAS -

Customer

TRC Environmental (Gainesville, Florida): SECI Coop, Inc

Date

January 30, 2009

Delivery Receipt

DR-23652

Gas Standard

4.50% CO2, 22.00% Oxygen/Nitrogen-EPA PROTOCOL

Final Analysis Date Expiration Date

January 30, 2009 January 30, 2012

Component

Carbon Dioxide, Oxygen

Balance Gas

Nitrogen

Analytical Data:

DO NOT USE BELOW 150 psig

EPA Protocol, Section No. 2.2, Procedure G-1

Reported Concentrations

Carbon Dioxide: 4.27% +/- 0.04%

Oxygen: 21.99% +/- 0.21%

Nitrogen: Balance

Reference Standards:

SRM/GMIS:

GMIS/GMIS

GMIS/GMIS

Cylinder Number:

CC-184980/CC-115946

CC-125554/CC-85469

Concentration:

1.02% CO2/N2-6.01% CO2/N2

20.99% O2/N2 - 25.30% O2/N2

Expiration Date:

11/24/10 - 07/23/10

04/02/11 - 08/09/10

Certification Instrumentation

Component:

Carbon Dioxide

Oxygen

Make/Model:

Hewlett Packard 5890 II

Servomex 244a

Serial Number:

3336A59393

1847

Principal of Measurement:

TCD

Paramagnetic

Last Calibration:

January 05, 2009

January 02, 2009

Cylinder Data

Cylinder Serial Number:

EB-0014648

Cylinder Outlet:

CGA 590

Cylinder Volume:

140 Cubic Feet

Cylinder Pressure:

2000 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-97/121.

Certified by:

Date:

January 30, 2009

Unmatched Excellence

ISO 9001:2000

Shipped from: 80 Industrial Drive, Alpha, NJ 08865

^	ED.			TE	\triangle E	A A	IAI	.YSIS
u	CK	IIГ	IUF		UL	An	IAL	. 1 313

EPA PROTOCOL MIXTURE

PROCEDURE #: G1

CUSTOMER:

TRC Cubix

CYLINDER #:

CC-130890

SGI ORDER #:

131933

CYLINDER PRES: 2000 PSIG

ITEM#:

1

CGA OUTLET:

590

P.O.#:

G49607

PRODUCT CODE: TRC 22

CERTIFICATION DATE: 7/8/2008 EXPIRATION DATE:

7/8/2011

CERTIFICATION HISTORY

COMPONENT	DATE OF ASSAY	MEAN CONCENTRATION	CERTIFIED CONCENTRATION	ANALYTICAL ACCURACY
Carbon Dioxide	7/8/2008	8.62 %	8.62 %	+/- 1%
Oxygen	7/8/2008	11.97 %	11.97 %	+/- 1%

BALANCE

Nitrogen

PREVIOUS CERTIFICATION DATES: None

REFERENCE STANDARDS

COMPONENT	SRM/NTRM#	CYLINDER#	CONCENTRATION
Carbon Dioxide	NTRM-82745x	CC-79933	20.0 %
Oxygen	NTRM-82659x	CC-237212	24.52 %

INSTRUMENTATION

COMPONENT	MAKE/MODEL	SERIAL#	DETECTOR	CALIBRATION
				DATE(S)
Carbon Dioxide	CAI-300	S03001	NDIR	7/8/2008
Oxygen	CAI-300	S03001	PM	6/23/2008

THIS STANDARD IS NIST TRACEABLE. IT WAS CERTIFIED ACCORDING TO THE EPA PROTOCOL PROCEDURES. DO NOT USE THIS STANDARD IF THE CYLINDER PRESSURE IS LESS THAN 150 PSIG.

ANALYST:	<i></i>	DATE:	7/8/2008	
. —	FRED PIKULA			_

Product/Calibration Data Sheet										
Device Information			Predicted		and the second					
Serial Number		14.30 A	verile de la companya	<u> </u>	Service Control					
0107070344268	Scale Reading (mm)	Flow (CCM)	Scale Reading (mm)	Flow (CCM)	Scale Reading (mm)	Flow (CCM)				
Model Number	150	255	99	110	48	27.8				
Sho-Rate	149	251	98	107	47	26.8 25.9				
Customer Name	148 147	248 244	97 96	103	45	25.5				
OMEGA ENGINEERING INC	146	241	95	101	13					
Customer PO Number	145	238	94	98.5						
66928	144	234	93	96.3						
	143	231	92	94.2						
Customer Fluid	142	228	91	92.1						
AIR	141	224	90 .	90						
Full Scale Flow	140 139	221	89 88	87.8 85.7						
250 CCM	139	218 215	87	83.6						
Reference Temperature	137	212	. 86	81.6						
70.00 °F	136	209	85	79.5						
Customer Pressure	135	205	84	77.6						
·	134	202	83	75.7	,					
0 psi(g)	133	199	82	73.8						
Customer Viscosity	132	196	81 80	72 70.2						
0.018cP	131	193 190	79	68.4						
Customer Temperature	129	187	78	66.7						
70 °F	128	185	77	65						
Customer Fluid Density	127	182	76	63.4						
1.000 S.G.	126	179	75	61.8						
1.500 B.G.	125	176	74	60.3						
Calibration Information	124	173	73	58.9						
	123	170	72 71	57.4 56		j				
Calibration Location	121	165	70	54,6						
Hatfield	120	162	69	53.3						
Calibration Procedure	119	159	68	51.9	•	J				
na	118	157	67	50.6						
a in Milliand a section of the contract of the	117	154	66	49.3						
Mechanical Information	116	151	65	48		1.				
Tube	115	149 146	64 63	45.4		i)				
R-2-15-AA	113	144	62	44.2						
L	112	141	61	43		[]				
Float	111	- 139	60	41.8		- 1				
1/8 Ball 316 SS, 316 SS	110	136	59	40.4		11				
Meter Accuracy	109	134	58	39.1						
5.	108	131	57 .	37.9 36.6						
Accuracy Scale	107 106	129	56 55	35.4						
% FS	105	124	54	34.2		ll li				
Customer Tag or Part #	104	121	53	33.1		11				
Customet 14g of 14ttm	103	119	52	32	•					
Poference Number	102	117	51	30.9][
Reference Number	101	114	50	29.8		- 11				
1	100		49	28.8		}				
:						i				

EPA Method 5 Initial Dry Gas Meter Calibration Critical Orifice Calibration

Model #: 2010-A-MST-C1 Serial #: 90450 Meter Box H

25-Nov-08

Barometric Pressure:

29.88 in Hg

METER CALIBRATION READINGS

		Volume	Volume	Volume	Initial Temper	ratures	Final Tempe	eratures		Orifice	K' Orifice	Ambient T	'emperatures
dН	Time	Initial	Final	Total	Inlet	Outlet	Inlet	Outlet	Vacuum	Serial#	Coefficient	Initial	Final
(in H2O)	(min)	(cu ft)	(cu ft)	(cu ft)	(deg F)	(deg F)	(deg F)	(deg F)	(in Hg)	(number)	(see above)	(deg F)	(deg F)
0.280	22.00	917.912	924.827	6.915	71.0	71.0	72.0	71.0	17.0	OV-40	0.2392	72.5	73.4
0.600	18.00	936.348	944.542	8.194	73.0	71.0	74.0	71.0	17.0	OV-48	0.3459	74.3	74.3
1.060	19.00	924.929	936.192	11.263	72.0	71.0	73.0	71.0	17.0	OV-55	0.4505	73.4	74.3
1.800	19.00	945.288	959.830	14.542	74.0	72.0	74.0	72.0	17.0	OV-63	0.5804	74.3	74.3
3.300	16.00	960.311	976.768	16.457	74.0	72.0	74.0	72.0	16.0	OV-73	0.7800	74.3	74.3

METER CALIBRATION RESULTS

******** DRY	GAS METER ******	•••	******* ORIF	ICE ******	*** DRY GAS	METER **	***** ORIF	ICE *****	
VOLUME	VOLUME	FLOW	VOLUME	VOLUME	CALIBRATI	ON FACTOR	CALIBRA	TION FACTOR	
CORRECTED	CORRECTED	RATE	CORRECTED	CORRECTED	•	Y		dH@	
Vm(std)	Vm(std)	(SCFM)	Vcr(std)	Vm(std)	Value	Variation	Value	Variation	
(cu ft)	(liters)		(cu ft)	(liters)	(number)	(number)	(in H2O)	(in H2O)	
6.868	194.5	0.312	6.811	192.9	0.992	0.004	1.634	-0.105	
8.130	230.2	0.452	8.048	227.9	0.990	0.002	1.679	-0.061	
11.198	317.1	0.589	11.069	313.4	0.989	0.001	1.752	0.013	
14.450	409.2	0.761	14.255	403.7	0.987	-0.001	1.797	0.057	
16.413	464.8	1.026	16.133	456.8	0.983	-0.005	1.837	0.097	
<u>FACTOR</u>	CRITERIA						CALIBRATION TEST RE	SULTS	PASS/FAIL
	Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.						Average Y: 0.9879		PASS
dH@	For Orifice Calibration Factor dH@, the orifice differential pressure in inches of H20 that equates to 0.75 cfm of air						Average dH@ 1.74		PASS

at 68 F and 29.92 inches of Hg, acceptable tolerance of individual values from the average is +-0.2.

EPA Method 5 Initial Dry Gas Meter Calibration K-Factor Selection Curve

Meter Box H

Model #: 2010-A-MST-C1
Serial #: 90450 Meter Box H

Date: 25-Nov-08
Barometric Pressure: 29.88 in Hg

Dry Gas Meter Temperature Display Calibration

Meter Box ID
DateHReference Calibrator
Serial NumberCL 23ACalibrated ByRoger OsierReference Calibration DateT 243911

Input Ter	nperature			Tempe	rature Readin	g from In	ndividual The	rmocoup	le Input¹		
						Channe	l Number				
Deg. F	Deg. R	1	% Diff	2	% Diff	3	% Diff	4	% Diff	5	% Diff
0	460	. 2	20.4%	3	-0.7%	3	0.7%	3	%-0.7%	3	- 40.7%
50	510	50	0.0%	51	-0:2%	51	-0.2%	51	-0.2%	50	0.0%
100	- 560	100	0.0%	100	0.0%	100	0.0%	100	-0.0%	100	0:0%
500	960	500	0.0%	500	0.0%	500	0.0%	500	0.0%	500	#0.0%
900	1360	902	-0.1%	902	-0.1%	902	-0.1%	902	-0.1%	902	-0.1%
1900	2360	1904	-0.2%	1905	-0.2%	1905	-0.2%	1904	-0.2%	1904	-0.2%
	· · · · · · · · · · · · · · · · · · ·	Pass	Pass	Pagg	Pass	Pass	Pass	Pass	Pass	Pass	Pass

¹ - Channel temperatures must agree with +/- 5 °F or 3 °C

Dry Gas Meter Thermocouple Calibration³

	Readout Display Temperature oF	Reference Thermometer °F	Percent Difference
Inlet Temp	72	72.6	0:11%
Outlet Temp	72	73	-0.19%

³ - Dry gas meter thermicouple is compared to an ASTM type mercury in glass reference thermometer

QA/QC Check: Sign and Date

²- Acceptable temperature difference is less than 1.5 %

Orifice Series	ov
Serial Number	40-73
Meter Gamma	0.9922

	Calibration Conditions
Date Started	20-Nov-08
Date Completed	20-Nov-08
Calibration Technician	EW

	Factors/Conversions						
Std Temp	293	K					
Std Press	760	mm Hg					
К,	0.386	K/mm Hg					

The Critical Orifice Coefficient, K', in English units, (ft^{3,6}R¹²)/(in.Hg*min), The Critical Orifice Coefficient, K', in Metric units, im2-K1/2 //mmHg*min) Standard Flow is in Liters/minute Celibration Data Results Reference Meter Critical Orifica Theoretical Outlet Amb Amb Outlet Orlfice Barometric Run Time Standardized Coefficient Metric Coefficient English 4. Variation from Date Critical Standard Flow DGM Orifice AH Volume initial Votume Final Volume Total Temp Temp Temp Temp Actual Vacuum Number Presente Elapsed Units Unite initial Final Initial Final Vacuum K' (<0.5%) O. (P.,) (V,-,) (V_mt) (V_m) (Vstd) (t_{emb(l)}) K. (4) (١__) (t,....) mm Hg mm H₂O % Lpm mm Hg min m³ m3 m3 * *c °c °C mm Hp see above2 see above 22-Jan-02 OV-40 753 355,418 10 6.2 4.1216 4.2111 0.0895 0.0874 24 25 25 26 571.5 1.989E-04 0.2394 0.08 8.6706 22-Jan-02 OV-40 753 355,418 10 4.2111 4.3006 0.0895 0.0874 25 24 26 26 571.5 1.991E-04 0.2396 0.17 8.6706 6.2 22-Jan-02 OV-40 753 10 6.2 4.3898 0.0871 24 25 26 25 571.5 1.983E-04 0.2386 -0.25 8.6415 355,416 4.3006 0.0892 1.988E-04 0.2392 8.6609 Average 22-Jan-02 OV-48 753 355.416 25 27 2.871E-04 0.3456 -0.11 12.5044 10 13.4 4.3898 4.5190 0.1292 0.1260 25 25 533.4 22-Jan-02 OV-48 753 12.5044 355.416 10 13.4 4.5190 4.6482 0.1292 0.1260 25 25 27 26 533.4 2.874E-04 0.3459 -0.02 22-Jan-02 OV-48 753 355,416 10 13.4 4.7776 25 25 26 27 533.4 2.878E-04 0.3464 0.13 12.5237 4.6482 0.1294 0.1262 2.875E-04 0.3459 12.5108 Average 22-Jan-02 OV-55 753 355.416 10 23.2 4,7776 4.9460 0.1684 0.1644 25 25 27 26 495.3 3.749E-04 0.4512 0.15 16.3139 22-Jan-02 OV-55 753 27 495.3 3.743E-04 0.4505 -0.02 16.2865 355.416 10 23.2 4.9460 5.1144 0.1884 0.1641 25 26 26 16.2400 22-Jan-02 495.3 0.4499 -0.14 OV-55 753 355,416 10 23.2 5.1144 5.2826 0.1682 0.1637 26 26 27 28 3.739E-04 16,2801 3.744E-04 0.4505 Average 22-Jan-02 OV-63 752 28 28 4.823E-04 0.5804 0.02 20.9059 354.944 5.2826 26 457.2 10 38 5.4991 0.2165 0.2107 26 20.9288 22-Jan-02 OV-63 752 354,944 26 27 28 27 457.2 4.824E-04 0.5806 0.04 10 38 5.4991 5.7162 0.2171 0.2109 457.2 4.820E-04 0.5800 20.8907 22-Jan-02 OV-63 752 354.944 15 38 5.7162 6.0418 0.3256 0.3158 27 27 27 29 4.822E-04 0.5804 20.9085 Average 28.0660 22-Jan-02 OV-73 752 354.944 10 70 6.0418 6.3330 0.2912 0.2829 27 28 29 30 393.7 6.491E-04 0.7812 0.15 6.480E-04 0.7798 -0.03 28.0386 22-Jan-02 OV-73 752 70 28 30 28 393.7 354,944 10 6.3330 6.6244 0.2914 0.2826 28 28.0386 6.474E-04 0.7791 -0.12 22-Jan-02 OV-73 752 354,944 10 70 6.9158 0.2914 28 28 28 29 393.7 6.6244 28.0477 6.482E-04 0.7800 Average

I certify that the spove Orlice Set was calibrated in accordance with USEPA Methods, CFR 40 Part 50. Appendix A, Method 5, Item 7.3

Signature USEPA Methods CFR 40 Part 50. Appendix A, Method 5, Item 7.3

$$V_{m(sd)} = \frac{K_1 V_m (P_{bur} + \frac{\Delta H}{13.6})}{T_m}$$

Equation to Calculate Standardized Flowrate (Given Ambient Barometric Pressure and Temperature Conditions: Page & Temp):

Q_{cr(std)}=K' * P_{bar}/T_{amb}1/3

CALIBRATION CERTIFICATIONS - APPENDIX TABLE

Alternative Method 5 Post-Test Calibration EPA Approved Alternative Method (ALT-009)

Post Test for G2 Energy (Baseline Landfill)

Meter Box #: Box H

Calibrated by:	R.Osier	Delta H @	1.740
5-Pt Cal Date:	11/25/2008	Gamma, initial	0.9879

- 1) Does the Meter Box pass the leak check procedure defined in 5.6 of Method 5 Yes No
- 2) Calculate Yqa for each test run using the following equation:

$$Y_{qa} = \frac{\theta}{V_{m}} \sqrt{\frac{0.0319 T_{m}}{\Delta H_{@}(P_{b} + \Delta \frac{H_{avg}}{13.6})^{M_{d}}} (\sqrt{\Delta H})_{avg}}$$

where:

dry gas meter calibration check value, dimensionless. Yqa total run time, min. Vm total sample volume measured by dry gas meter, dcf. Tm absolute average dry gas meter temp., °R. Pb barometric pressure, in. Hg. 0.0319 = (29.92/528)(0.75)2 (in. Hg/°/R) cfm2. **DHavg** average orifice meter differential, in. H20. DH@ orifice meter calibration coefficient, in. H2O. Md dry molecular weight of stack gas, lb/lb-mole. 29 dry molecular weight of air, lb/lb-mole. 13.6 specific gravity of mercury.

After each test run series, do the following:

Average the three or more Yqa's obtained from the test run series and compare this average with the dry gas meter calibration factor, Y. The average must be within 5 percent of Y.

If the average Yqa does not meet the +5 percent criterion, recalibrate the meter over the full range of orifice settings, as detailed in Section 5.3.1 of method 5. Then follow the procedure in Section 5.3.3 of Method 5.

No. 201	and Street Section					-670-660-4707	
	MET	10D 5 - ISC	KINETIC S	SAMPLING -			
Data from unit #2, 3/25/09	Test 1		Test 2		Test 3		Average
time	60		60	1	60		ŀ
Vm - total	43.828		44.528		43.887		
Tm avg	77.9	1	74.1		73.1		
Tm -R	538]	534	· .	533]	}
Barometric	30.02		29.99		29.97		
DH_{avg}	1.70		1.70]	1.70		
DH@	1.7400	7	1.7400		1.7400	1	ł
Md stack gas (dry MW)	30.21		30.22]	30.23		
Md Air	29.00]	29.00]	29.00		
Meter Box Gamma	0.9879		0.9879		0.9879	1	
QA Gamma	1.0003]	0.9814]	0.9949		
Difference:	1.3%		0.7%		0.7%		0.9%
within 5%?	YES		YES]	YES	1	PASS

THERMOCOUPLE CALIBRATION FORM (for TRC SOP AM-103)

Thormocouple Colibrator			061000			-		
Make:	Cambiator			Model:	1/9	Serial No.:	1/9	
Operator:	K. Os			_		Date:	12/30/0	8
Pretest:		Posttest:						
Thermocouple	Reference	Temp.		Criteria	Reference	Temp.		Criteria
ID	Temp 1, °F			Met	Temp 2, °F	Reading 2, °F	Criteria	Met
Last Improger H 1	71.8°F	71,1°F	±1.58°R	V	32°F	31.5°F	±1.52°K	V.
								,
							1	
Thermocouple	Reference	Temp.		Criteria	Reference	Temp.		Criteria
ID	Temp 3, °F	Reading 3, °F	Criteria	Met	Temp 4, °F	Reading 4, °F	Criteria	Met
:							,	
			,					
							,	
	Percent diffe	erence between ± 1.5%°R.	n the Refere	nce Ten	nperature an	d the Average	Temperat	ure
	-	_ + 460) - (Te	emn Readir	na + 46	∩)ĭ v 100			
	(Ref. Temp.		omp. Neduli	<u>19_1 +01</u>	C/1 X 100	11	M	

Figure 1. Thermocouple Calibration Sheet

QA/QC Check By:

Date:

PreciseCal Services, Inc.

CERTIFICATE OF CALIBRATION

			•					
Company	•	Measurements 8th Dr. Ste. 170 FL	s - FL 32656	Cert No:	1682 - 136 per N/A	97		
Item:	Scale, Precis	ion		Cal Date:	21-Nov-08]		
Model No:	VIC-1501	,		Cal Due Date:	21-Nov-09			
Control#	17956263			Item Found:	Within Tolerand	 e		
SN/ Other:	17956263			Item Returned:	Within Tolerand	e		
Manufacturer:	Acculab			Procedure#:	4-SCP-002			
Standard: 20 Unit: 20 Final Rdg:	100	0.2 g 500 1000 500.0 1000			grams			
Location	On-site	Temperature:	. 70	Humidity	56			
procedure. Thi	It is hereby certified that the above described instruments meets or exceeds all specifications as stated in the referenced procedure. This calibration is in accordance with the requirements of ANSI/NCSL Z540-1 and MIL STD 45662A, and is traceable to the National Institute of Standards and Technologies (NIST), or to intrinsic standards accepted as such by NIST.							
Standard#	Due Date	NIST#	St	andard# Due [Date NIS	Г# _.		
025	3/27/2009	27123-62				•		
	shall not be repr		II, without the	written approval of P	PreciseCal Services. QC'd by QC DC			

PreciseCal Services, Inc. 3044 Scherer Drive North St. Petersburg, FL 33716 Tel: 727-573-5063 Toll Free 877-450-4CAL FAX: 727-572-4227

Page 1 of 1

Email: Services@PreciseCal.com

ALTIMETER TEST RECORD

This unit was tested and inspected IAW FAR Part 43, Appendix E, and is approved for return to service.

WORK ORDER #: 15072 **BAROMETRIC SCALE ERROR TEST SCALE ERROR** 30.50 _ -/() 28.10 -100028.50_+ みら 30.90 ___ 29.00 30.99 _ + 500_ 29.50 $+1000_{-}$ +1500_ 29.92 +2000 **FRICTION TEST** +3000 +4000_ 20,000 1000 +6000 25,000 2000 +8000_ 3000 30,000 _ +10,000 5000 35,000 -_ +12,000 _ 10,000 _ 40,000 _ +14,000 _ 50,000 15,000 _ +16,000 _ $+18,000_{-}$ +2(),000 CASE LEAK TEST @ 18,000_ +22,000 _ CASE LEAK TEST @ 1,200_ +25,000 _ +30,000 _ HYSTERESIS TEST @ 50% +35,000 _ HYSTERESIS TEST @ 40%_ +40,000 __ +45,000 _ AFTER EFFECT _ +50,000 _ 30.23 START PRESSURE _____ 30,20 FINAL PRESSURE____ SERIAL NUMBER

PreciseCal Services, Inc.

CERTIFICATE OF CALIBRATION

Company	TRC Air N 6322 NW 18th Gainesville	Measurements o Dr. Ste. 170 FL 3:		Cert No:	1682 ⁻ 1 er N/A	3710
Item: Model No: Control# SN/ Other: Manufacturer:	Psychrometer 3312-20 Dual 57778 57778 Cole Parmer	Thermometer		Cal Due Date:	Within Toler Within Toler	
Wet Bulb Tolerance: ± 1°F Standard: 39.6 67.2 114.7						
Dry E T Standard: 39. Unit: 39 Final Rdg:	olerance: ± 1°	T114.7 115			PF	
procedure. Thi	s calibration is in ac	Temperature: described instruments cordance with the required tandards and Techno	uirements of AN	ISI/NCSL Z540-1 an	d MIL STD 4566	2A, and is
Standard# T475	Due Date 3/8/2009	NIST# 11881		dard# Due D		NIST#
	shall not be reprod J. Costello	fuced, except in full, Technician:		itten approval of P	reciseCal Service QC'd by	Ĉ CS

Email: Services@PreciseCal.com

THERMOCOUPLE DIGITAL INDICATOR CALIBRATION

		·			
Digital Thermometer			nce Calibartor	CL23A	
Manufacturer	Environmental Supply Comp	_	Manufacturer —		
Model	na	_	Model	CL23A	
Serial Number	FL-TRC-2	-	erial Number		
Date	December 9, 2008	Reference	e Calib. Date	Novembe	er 24, 2008
Thermometer - Filter	r		·		
Test	Calibration	Digital			
Point	Device	Indicator	¹ Difference	² Difference	Pass / Fai
Number	(°F)	(°F)	(°F)	(% abs)	
1	100.0	98.0	NA	-0.54	Pass
2	125.0	123.0	NA	-0.50	Pass
3	150.0	148.0	NA	-0.47	Pass
4	175.0	173.0	NA	-0.45	Pass
. 5	200.0	198.0	NA	-0.42	Pass
6	225.0	224.0	NA	-0.20	Pass
7	250.0	250.0	NA	0.00	Pass
8	275.0	273.0	NA	-0.36	Pass
9	300.0	298.0	NA	-0.35	Pass
10	325.0	324.0	NA	-0.17	Pass
hermometer - Probe					
Test	Calibration	Digital			
Point	Device	_	¹ Difference	² Difference	Pass / Fail
Number	(°F)	(°F)	(°F)	(% abs)	
1	100.0	100.0	NA NA	0.00	Pass
2	125.0	125.0	NA	0.00	Pass
3	150.0	150.0	NA	0.00	Pass
4	175.0	174.0	NA NA	-0.22	Pass
5	200.0	199.0	NA	-0.21	Pass
6	225.0	224.0	NA	-0.20	Pass
7	250.0	249.0	NA	-0.19	Pass
8	275.0	274.0	NA	-0.18	Pass
9	300.0	300.0	NA	0.00	Pass
10	325.0	326.0	NA	0.17	Pass

¹⁾ Acceptable EPA Method 4 tolerance must be within 2 deg F and 1.5% of absolute temperature (Deg R)

Calibrated By: _//one

Date: <u>09 Dec. 2008</u>

²⁾ Acceptable EPA Method 2 tolerance must be within 1.5% of absolute temperature (Deg R)

PreciseCal . Services, Inc.

OF CALIBRATION

Company	: TRC Air Me	easurements	- FL C	Cert No:	1700-	13832	
	6322 NW 18th I Gainesville	Or. Ste. 170 FL 32	2656	PO Numbe	er: N/A		
item:	Calibrator, Tem	perature, Electro	onic	Cal Date: 2	24-Nov-08		
Model No:	CL23A			=	24-Nov-09	_	
Control#	T-243911		lte	em Found: V	Vithin Tol	erance	·
SN/ Other:	T-243911		Item	Returned: V	Vithin Tol	erance	
Manufacturer:	Omega		Pr	ocedure#: 🛚 🖪	/IFR Manu	ıal	
Toleran	ce: MFR SPEC	S					
Location	- Lab	Townsetime	75	Li umidita	46		
Location	Lab	Temperature:	75	Humidity	42	2	
procedure. This	fied that the above do s callbration is in acc ational Institute of Sta	ordance with the rec	quirements of ANSI/	NCSL Z540-1 ar	nd MIL STD	45662A, a	and is
Standard#	Due Date	NIST#	Standard	# Due	e Date	NIS	T#
804	4/17/2009	27078-1	<u> </u>				
This certificat	e shall not be repro	duced, except in f	ull, without the wri	tten approval o	f PreciseCa	I Service:	s.
Created t	oy: J. Costello	Ted	chnician J. Ges	schwender		.QC'd by	

PreciseCal Services, Inc.

3044 Scherer Drive North St. Petersburg, FL 33716

Page 1 of 1

Tel: 727-573-5063 Toll Free: 877-450-4CAL

FAX: 727-572-4227

Email: Services@PreciseCal.com

PreciseCal Services, inc.

OF CALIBRATION

Company	, -	Measurements th Dr. Ste. 170 FL	s - FL 32656	Cert No: PO Numb	1700 - 140 er N/A)12
Item: Model No: Control#		, Glass Precision	<0.2°C	Cal Due Date:	25-Nov-08 25-Nov-09 Within Tolerand	
SN/ Other:	N/A				Within Tolerand	
Manufacturer:				Procedure#:		<u>,,, </u>
Standard: -7. Unit: -8 Final Rdg:	Tolerance: ± (990 15.976 16.0	0.1°C 31.964 32.0			ic	
Location	Lab	Temperature:	74	Humidity	48	
procedure. Th	is calibration is in a	described instrument coordance with the re Standards and Techno	quirements of ANS	SI/NCSL Z540-1 and	d MIL STD 45662A,	and is
Standard#	Due Date	NIST#	Stand	ard# Due D	ate , NIS	Γ#
T725	4/10/2009	27625-1				
921	8/19/2009	27603-1	·			
**						
This certificate	shall not be repro	duced, except in ful	without the writ	tten approval of Pr	reciseCal Services	
	J. Costello	Technician:	•		QC'd QC	

PreciseCal Services, Inc. 3044 Scherer Drive North St. Petersburg, FL 33716 Tel: 727-573-5063 Toll Free 877-450-4CAL FAX: 727-572-4227

Page 1 of 1

Email: Services@PreciseCal.com

THERMOCOUPLE DIGITAL INDICATOR CALIBRATION

	· ————————————————————————————————————				
Digital Thermometer	Fluke 51	Refer	Reference Calibartor		
Manufacturer	Fluke	_	Manufacturer	C	mega
Model_	Fluke 51		Mode	1 <u> </u>	L23A
Serial Number_	4470643	_	Serial Number	rT-2	243911
Date _	December 8, 2008	Refere	nce Calib. Date	Novemb	per 24, 2008_
Thermometer - Low R	Range (EPA Methods	2 and 4)	<u> </u>		
Test	Calibration	Digital			
Point	Device	Indicator	¹ Difference	² Difference	Pass / Fail
Number	(°F)	(°F)	(°F)	(% abs)	
1	0.0	0.0	0.00	0.00	Pass
2	20.0	20.2	-0.20	0.04	Pass
3	40.0	40.8	-0.80	0.16	Pass
4	60.0	60.8	-0.80	0.15	Pass
5	80.0	80.6	-0.60	0.11	Pass
6	100.0	100.0	0.00	0.00	Pass
7	120.0	120.2	-0.20	0.03	Pass
8	140.0	140.0	0.00	0.00	Pass
9	160.0	160.0	0.00	0.00	Pass
10	180.0	180.6	-0.60	0.09	Pass
hermometer - High R	ange (EPA Method 2)		•	
Test	Calibration	Digital			
Point	Device	Indicator	¹ Difference	² Difference	Pass / Fail
Number	(°F)	(°F)	(°F)	(% abs)	
1	0.0	0.0	NA	0.00	Pass
2	200.0	200.6	NA	0.13	Pass
3	400.0	400.0	NA	0.00	Pass
4	600.0	600.6	NA	0.07	Pass
5	800.0	800.0	NA	0.00	Pass .
6	1000.0	1000.8	NA	0.06	Pass
7	1200.0	1201.2	NA	0.08	Pass
8	1400.0	1400.6	NA	0.04	Pass
9	1600.0	1599.8	NA	-0.01	Pass
10	1800.0	1801.0	NA	0.05	Pass

¹⁾ Acceptable EPA Method 4 tolerance must be within 2 deg F and 1.5% of absolute temperature (Deg R)

Calibrated Ry: 1/22 and 1

Date: 12/8/2008

²⁾ Acceptable EPA Method 2 tolerance must be within 1.5% of absolute temperature (Deg R)

PreciseCal Services, Inc.

OF CALIBRATION

Compan	· J ·	Measurements	- FL	Cert No:	1700-1	3833
	Gainesville	FL 32	2656	PO Numb	er N/A	
Item	n: Thermocouple	Prohe		Cal Date:	25-Nov-08	;
Model No	,			Cal Due Date:		
Control				Item Found:		
SN/ Other				tem Returned:		
Manufacture				Procedure#:		
r						
	Tolerance: Ch	arted				
Standard: [0.028 50.006	100.022			°C	
Unit:	50.2	100.4				
Final Rdg: [
		<u> </u>				
	Tolerance:					
Standard:	Tolerance.					
Unit:				 		
Final Rdg:						
i iliai rag. L		<u> </u>				
Location:	Lab	Temperature:	74	Humidity	48	
It is baraby so	artified that the above	described instruments	moets of overes	le all enecifications	ac stated in the	referenced
-		ccordance with the req				
traceable to the	National Institute of	Standards and Technol	ogies (NIST), or	to intrinsic standard	ls accepted as su	uch by NIST.
Standard#	Due Date	NIST#	Standa	ard# Due D	ate 1	NIST#
T725	4/10/2009	27625-1				
921	8/19/2009	27603-1				
This certificat	te shall not be repro	duced, except in full,	without the writ	tten approval of P		es.
Created by	I Costollo	Technician:	J. Geschwen	der .	QC'd Q	C
Created by:	J. Costello	rechnician:	J. GESCHWEII	uei	·,	
					· UF	10°

Page 1 of 1

PreciseCal Services, Inc. 3044 Scherer Drive North St. Petersburg, FL 33716 Tel: 727-573-5063 Toll Free 877-450-4CAL

FAX: 727-572-4227

Email: Services@PreciseCal.com

APPENDIX F: Loxgged Data Riecords

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	ТНС-В	NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
START Run U1-C-1	3/25/2009	9:33:01	223.27	1101.59	7.33	12.30	441.03	484.00	223.27	1101.59	7.33	12.30	441.03	484.00
Run U1-C-1	3/25/2009	9:34:01	246.96	1114.87	7.45	12.20	489.03	528.67	216.53	1094.99	7.36	12.27	461.58	504.25
Run U1-C-1	3/25/2009	9:35:01	195.55	1019.31	7.40	12.24	459.03	488.33	222.91	1086.76	7.42	12.22	466.76	489.25
Run Ü1-C-1	3/25/2009	9:36:01	232.85	1101.59	7.48	12.18	507.03	358.33	211.00	1070.51	7.41	12.23	468.03	489.88
Run U1-C-1	3/25/2009	9:37:01	153.21	865.35	8.10	11.64	690.04	771.00	211.81	1061.36	7.50	12.15	507.63	528.48
Run U1-C-1	3/25/2009	9:38:01	122.47	878.62	7.38	12.24	384.02	435.67	193.11	1009.05	7.58	12.09	516.55	540.54
Run U1-C-1	3/25/2009	9:39:01	286.77	1207.77	6.95	12.64	366.02	400.67	192.84	1017.19	7.49	12.17	488.48	515.02
Run U1-C-1	3/25/2009	9:40:01	318.02	1194.50	7.30	12.36	450.03	477.00	205.95	1043.75	7.43	12.22	476.45	504.33
Run U1-C-1	3/25/2009	9:41:01	239.40	1061.78	7.43	12.24	459.03	506.33	216.64	1056.05	7.43	12.22	474.75	501.47
Run U1-C-1	3/25/2009	9:42:01	184.97	1051.16	7.40	12.26	465.03	508.33	215.43	1055.46	7.43	12.22	472.52	501.25
Run U1-C-1	3/25/2009	9:43:01	227.30	1069.74	7.50	12.18	492.03	535.00	214.80	1057.45	7.43	12.22	472.72	503.28
Run U1-C-1	3/25/2009	9:44:01	201.60	1021.96	7.48	12.20	462.03	495.67	214.49	1056.98	7.44	12.22	473.40	504.26
Run U1-C-1	3/25/2009	9:45:01	182.95	1064.43	7.33	12.32	453.03	496.33	211.35	1053.68	7.43	12.22	471.11	503.47
Run U1-C-1	3/25/2009	9:46:01	233.35	1090.98	7.53	12.14	480.03	533.00	211.58	1056.93	7.44	12.22	471.32	502.13
Run U1-C-1	3/25/2009	9:47:01	163.29	1000.73	7.40	12.26	444.03	495.67	210.51	1055.15	7.44	12.22	470.64	501.00
Run U1-C-1	3/25/2009	9:48:01	218.73	1109.56	7.40	12.24	468.03	502.33	208.36	1054.56	7.44	12.22	469.04	500.26
Run U1-C-1	3/25/2009	9:49:01	230.83	1069.74	7.50	12.18	462.03	503.33	209.94	1057.83	7.44	12.22	469.16	499.48
Run U1-C-1	3/25/2009	9:50:01	170.85	1032.58	7.38	12.28	432.02	468.33	208.90	1056.56	7.44	12.22	467.82	498.94
Run U1-C-1	3/25/2009	9:51:01	237.38	1104.25	7.50	12.16	468.03	508.33	208.09	1057.88	7.44	12.22	467.36	498.99
Run U1-C-1	3/25/2009	9:52:01	176.40	1040.54	7.45	12.22	474.03	506.67	208.14	1058.20	7.44	12.22	467.22	499.38
Run U1-C-1	3/25/2009	9:53:01	211.68	1037.89	7.50	12.16	462.03	509.00	208.10	1058.67	7.44	12.21	467.74	498.79
Run U1-C-1	3/25/2009	9:54:01	172.37	1043.20	7.33	12.30	441.03	281.00	206.66	1057.06	7.44	12.22	466.60	497.64
Run U1-C-1	3/25/2009	9:55:01	244.94	1098.94	7.50	12.18	486.03	531.67	206.59	1058.61	7.44	12.22	466.41	496.88
Run U1-C-1	3/25/2009	9:56:01	198.07	1021.96	7.48	12.20	459.03	502.67	207.08	1059.25	7.45	12.21	466.98	498.04
Run U1-C-1	3/25/2009	9:57:01	176.90	1059.12	7.35	12.30	453.03	499.67	205.69	1057.81	7.44	12.22	466.04	497.57
Run U1-C-1	3/25/2009	9:58:01	235.37	1101.59	7.53	12.16	492.03	537.00	205.72	1059.36	7.44	12.22	466.21	496.92
Run U1-C-1	3/25/2009	9:59:01	169.34	1003.38	7.45	12.22	465.03	490.67	206.07	1059.40	7.45	12.21	466.59	498.01
Run U1-C-1	3/25/2009	10:00:01	179.42	1061.78	7.35	12.30	450.03	493.00	204.70	1058.23	7.45	. 12.21	465.71	497.68
Run U1-C-1	3/25/2009	10:01:01	235.87	1104.25	7.55	12.14	492.03	543.67	204.74	1059.66	7.45	12.21	465.94	498.31
Run U1-C-1	3/25/2009	10:02:01	186.48	1006.03	7.50	12.18	459.03	510.00	205.16	1059.78	7.45	12.21	466.55	499.12
Run U1-C-1	3/25/2009	10:03:01	191.52	1085.67	7.50	12.16	477.03	420.00	204.11	1058.69	7.45	12.21	466.37	499.36

				-					AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	ТНС-В	NOx-A	CO-A	O2-A	CO2-A	THC-A	ТНС-В
Run Number	Date	Time	(ppmv)	(ppmv)	(% <u>vol</u>)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)_	(ppmv)
Run U1-C-1	3/25/2009	10:04:01	192.53	1043.20	7.55	12.14	471.03	531.00	204.42	1059.18	7.45	12.21	466.70	499.30
Run U1-C-1	3/25/2009	10:05:01	166.32	1021.96	7.45	12.22	453.03	493.33	203.65	1058.04	7.45	12.21	466.34	498.03
Run U1-C-1	3/25/2009	10:06:01	181.44	1075.05	7.45	12.20	459.03	457.33	202.92	1057.94	7.45	12.21	465.74	497.85
Run U1-C-1	3/25/2009	10:07:01	223.27	1080.36	7.60	12.08	483.03	466.33	203.26	1059.03	7.46	12.21	466.18	497.72
Run U1-C-1	3/25/2009	10:08:01	158.76	1006.03	7.43	12.22	444.03	494.67	202.91	1058.10	7.46	12.21	466.11	497.93
Run U1-C-1	3/25/2009	10:09:01	193.03	1069.74	7.43	12.24	447.03	487.67	202.18	1057.87	7.46	12.21	465.65	497.09
Run U1-C-1	3/25/2009	10:10:01	192.53	1093.63	7.45	12.22	468.03	515.67	201.70	1058.07	7.45	12.21	465.24	497.05
Run U1-C-1	3/25/2009	10:11:01	202.61	1056.47	7.55	12.14	471.03	527.00	202.19	1059.00	7.46	12.21	465.60	497.94
Run U1-C-1	3/25/2009	10:12:01	172.87	1051.16	7.48	12.20	456.03	496.67	201.74	1058.44	7.46	12.21	465.45	498.12
Run U1-C-1	3/25/2009	10:13:01	220.25	1072.40	7.58	12.12	492.03	539.33	201.77	1058.94	7.46	12.21	465.85	497.96
Run U1-C-1	3/25/2009	10:14:01	198.57	1037.89	7.58	12.12	477.03	529.33	201.86	1058.69	7.46	12.20	466.46	499.04
Run U1-C-1	3/25/2009	10:15:01	165.31	1032.58	7.43	12.26	450.03	498.67	201.15	1057.43	7.46	12.20	466.15	499.04
Run U1-C-1	3/25/2009	10:16:01	223.27	1085.67	7.58	12.12	486.03	507.33	201.11	1057.80	7.46	12.20	466.25	499.09
Run U1-C-1	3/25/2009	10:17:01	185.47	1006.03	7.53	12.16	465.03	505.00	201.34	1057.66	7.47	12.20	466.60	499.83
Run U1-C-1	3/25/2009	10:18:01	165.81	1037.89	7.35	12.28	438.03	483.67	200.55	1056.45	7.46	12.20	466.07	499.69
Run U1-C-1	3/25/2009	10:19:01	227.30	1098.94	7.53	12.14	480.03	462.33	200.47	1057.06	7.47	12.20	466.11	499.22
Run U1-C-1	3/25/2009	10:20:01	192.53	1016.65	7.55	12.14	450.03	510.00	200.79	1057.25	7.47	12.20	466.40	499.11
Run U1-C-1	3/25/2009	10:21:01	179.93	1064.43	7.48	12.20	468.03	514.33	200.21	1056.37	7.47	12.20	466.13	498.86
Run U1-C-1	3/25/2009	10:22:01	219.74	1072.40	7.60	12.08	489.03	515.33	200.40	1056.90	7.47	12.20	466.47	499.10
Run U1-C-1	3/25/2009	10:23:01	179.93	1006.03	7.55	12.14	456.03	514.67	200.29	1056.35	7.47	12.20	466.71	499.52
Run U1-C-1	3/25/2009	10:24:01	187.49	1061.78	7.50	12.16	462.03	515.67	199.72	1055.55	7.47	12.20	466.57	499.69
Run U1-C-1	3/25/2009	10:25:01	209.16	1056.47	7.60	12.10	486.03	356.00	199.85	1055.86	7.47	12.19	466.91	499.91
Run U1-C-1	3/25/2009	10:26:01	157.25	992.76	7.45	12.24	441.03	489.67	199.63	1055.15	7.47	12.19	466.77	499.88
Run U1-C-1	3/25/2009	10:27:01	187.99	1061.78	7.40	12.28	447.03	489.67	199.11	1054.71	7.47	12.19	466.30	499.63
Run U1-C-1	3/25/2009	10:28:01	228.81	1090.98	7.55	12.16	498.03	547.67	199.21	1055.27	7.47	12.19	466.42	499.46
Run U1-C-1	3/25/2009	10:29:01	195.05	1027.27	7.58	12.10	486.03	540.33	199.47	1055.31	7.48	12.19	466.94	500.35
Run U1-C-1	3/25/2009	10:30:01	159.77	998.07	7.43	12.26	441.03	476.00	199.07	1054.35	7.48	12.19	466.79	500.09
Run U1-C-1	3/25/2009	10:31:01	218.23	1106.90	7.45	12.22	477.03	421.67	198.71	1054.24	7.48	12.19	466.54	499.80
Run U1-C-1	3/25/2009	10:32:01	216.21	1059.12	7.60	12.10	498.03	560.33	199.13	1054.78	7.48	12.19	466.98	500.43
END Run U1-C-1	3/25/2009	10:33:01	181.44	1008.69	7.53	12.16	468.03	295.00	199.16	1054.37	7.48	12.19	467.23	500.86

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B	NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
START Run U1-C-2	3/25/2009	10:56:01	199.58	1085.67	7.43	12.24	420.02	433.67	199.58	1085.67	7.43	12.24	420.02	433.67
Run U1-C-2	3/25/2009	10:57:01	222.26	1056.47	7.63	12.08	447.03	487.33	223.45	1085.89	7.54	12.15	445.09	413.68
Run U1-C-2	3/25/2009	10:58:01	163.80	979.49	7.40	12.26	408.02	437.67	207.92	1043.14	7.53	12.15	433.42	439.67
Run U1-C-2	3/25/2009	10:59:01	215.71	1090.98	7.50	12.18	441.03	477.33	200.28	1041.40	7.50	12.18	429.34	446.23
Run U1-C-2	3/25/2009	11:00:01	210.67	1037.89	7.60	12.08	444.03	479.33	206.42	1047.47	7.52	12.16	434.92	456.59
Run U1-C-2	3/25/2009	11:01:01	162.29	984.80	7.43	12.26	405.02	337.33	202.48	1037.96	7.51	12.16	432.29	457.95
Run U1-C-2	3/25/2009	11:02:01	198.07	1088.32	7.43	12.24	432.02	470.00	198.56	1037.18	7.49	12.18	428.87	445.08
Run U1-C-2	3/25/2009	11:03:01	220.75	1051.16	7.58	12.10	450.03	491.33	202.68	1043.72	7.50	12.17	431.61	448.45
Run U1-C-2	3/25/2009	11:04:01	162.29	990.11	7.45	12.20	420.02	456.67	200.54	1038.15	7.50	12.17	430.90	451.00
Run U1-C-2	3/25/2009	11:05:01	207.65	1056.47	7.53	12.14	441.03	449.00	199.38	1038.63	7.50	12.17	430.71	447.70
Run U1-C-2	3/25/2009	11:06:01	205.13	1027.27	7.55	12.12	420.02	456.33	200.37	1039.88	7.51	12.17	431.97	451.24
Run U1-C-2	3/25/2009	11:07:01	170.85	1048.51	7.48	12.20	426.02	456.67	198.37	1037.30	7.50	12.17	431.01	452.01
Run U1-C-2	3/25/2009	11:08:01	182.45	1006.03	7.43	12.24	414.02	450.67	199.16	1039.13	7.51	12.17	430.50	450.75
Run U1-C-2	3/25/2009	11:09:01	221.25	1101.59	7.55	12.14	447.03	419.67	197.90	1039.33	7.50	12.17	430.15	452.04
Run U1-C-2	3/25/2009	11:10:01	213.19	1040.54	7.63	12.04	462.03	518.00	199.78	1041.51	7.51	12.17	431.96	453.09
Run U1-C-2	3/25/2009	11:11:01	154.73	966.22	7.45	12.22	417.02	460.00	199.05	1038.81	7.51	12.16	432.18	455.34
Run U1-C-2	3/25/2009	11:12:01	174.89	1053.81	7.40	12.26	402.02	451.67	197.02	1037.41	7.51	12.17	430.54	452.89
Rún U1-C-2	3/25/2009	11:13:01	229.32	1096.29	7.53	12.12	441.03	493.33	197.43	1040.37	7.50	12.17	430.54	454.44
Run U1-C-2	3/25/2009	11:14:01	172.37	998.07	7.45	12.18	414.02	426.00	198.26	1041.20	7.51	12.16	430.76	456.22
Run U1-C-2	3/25/2009	11:15:01	191.52	1093.63	7.45	12.20	429.02	481.67	196.90	1040.84	7.50	12.17	429.91	453.56
Run U1-C-2	3/25/2009	11:16:01	221.25	1037.89	7.58	12.10	426.02	486.33	198.24	1043.40	7.50	12.16	430.79	455.96
Run U1-C-2	3/25/2009	11:17:01	170.85	1040.54	7.43	12.24	405.02	451.67	197.10	1041.77	7.50	12.17	429.76	456.28
Run U1-C-2	3/25/2009	11:18:01	242.42	1117.52	7.55	12.12	447.03	492.00	197.13	1043.81	7.50	12.17	429.59	454.46
Run U1-C-2	3/25/2009	11:19:01	205.63	1016.65	7.58	12.08	426.02	487.67	198.31	1044.88	7.50	12.16	430.54	456.68
Run U1-C-2	3/25/2009	11:20:01	176.90	1051.16	7.45	12.20	420.02	477.00	197.27	1043.17	7.50	12.16	429.92	457.42
Run U1-C-2	3/25/2009	11:21:01	228.81	1085.67	7.63	12.04	456.03	514.00	197.72	1044.99	7.50	12.16	430.42	458.61
Run U1-C-2	3/25/2009	11:22:01	160.77	992.76	7.45	12.20	417.02	473.00	197.67	1044.36	7.51	12.16	430.38	460.14
Run U1-C-2	3/25/2009	11:23:01	182.95	1069.74	7.45	12.20	417.02	321.67	196.86	1044.37	7.50	12.16	429.76	460.52
Run U1-C-2	3/25/2009	11:24:01	229.82	1093.63	7.63	12.04	456.03	519.33	197.32	1046.25	7.51	12.16	430.13	460.76
Run U1-C-2	3/25/2009	11:25:01	175.89	1027.27	7.55	12.12	438.03	511.00	197.48	1046.28	7.51	12.16	430.51	462.59
Run U1-C-2	3/25/2009	11:26:01	166.32	1021.96	7.45	12.20	411.02	288.33	196.82	1045.75	7.51	12.16	430.06	462.92

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B	NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
Run U1-C-2	3/25/2009	11:27:01	181.44	1080.36	7.43	12.24	405.02	462.33	196.07	1045.94	7.50	12.16	429.01	460.93
Run U1-C-2	3/25/2009	11:28:01	232.34	1120.18	7.55	12.12	450.03	520.00	196.29	1047.97	7.50	12.16	428.92	461.77
Run U1-C-2	3/25/2009	11:29:01	209.16	1067.09	7.68	12.02	459.03	338.33	197.00	1049.25	7.51	12.16	429.70	463.05
Run U1-C-2	3/25/2009	11:30:01	171.86	998.07	7.50	12.16	417.02	474.67	196.77	1048.67	7.51	12.16	429.91	463.73
Run U1-C-2	3/25/2009	11:31:01	176.40	1061.78	7.43	12.22	405.02	471.00	195.91	1047.98	7.51	12.16	429.17	463.00
Run U1-C-2	3/25/2009	11:32:01	235.37	1128.14	7.55	12.12	453.03	515.00	196.18	1049.75	7.51	12.16	429.16	463.60
Run U1-C-2	3/25/2009	11:33:01	209.66	1051.16	7.65	12.04	447.03	508.67	196.96	1050.76	7.51	12.16	429.80	465.02
Run U1-C-2	3/25/2009	11:34:01	158.25	1016.65	7.43	12.24	405.02	448.33	196.29	1049.49	7.51	12.16	429.47	465.20
Run U1-C-2	3/25/2009	11:35:01	185.47	1112.21	7.48	12.18	441.03	500.33	195.74	1049.91	7.51	12.16	428.90	463.99
Run U1-C-2	3/25/2009	11:36:01	220.25	1061.78	7.60	12.08	435.02	497.00	196.48	1051.25	7.51	12.16	429.10	465.07
Run U1-C-2	3/25/2009	11:37:01	163.29	1040.54	7.48	12.22	408.02	477.33	195.93	1050.43	7.51	12.16	428.60	465.13
Run U1-C-2	3/25/2009	11:38:01	230.33	1098.94	7.63	12.06	453.03	526.00	195.99	1051.37	7.51	12.16	428.65	466.04
Run U1-C-2	3/25/2009	11:39:01	185.47	1048.51	7.60	12.08	444.03	523.67	196.17	1051.60	7.51	12.15	429.02	466.19
Run U1-C-2	3/25/2009	11:40:01	178.92	1032.58	7.50	12.16	408.02	475.00	195.92	1051.25	7.52	12.15	429.01	466.41
Run U1-C-2	3/25/2009	11:41:01	175.89	1072.40	7.45	12.20	405.02	459.00	195.37	1051.12	7.51	12.15	428.53	466.63
Run U1-C-2	3/25/2009	11:42:01	222.77	1112.21	7.60	12.08	444.03	504.67	195.40	1052.21	7.52	12.15	428.48	467.04
Run U1-C-2	3/25/2009	11:43:01	209.16	1056.47	7.65	12.04	462.03	533.00	195.89	1052.87	7.52	12.15	429.04	467.83
Run U1-C-2	3/25/2009	11:44:01	197.06	995.42	7.60	12.08	426.02	482.00	196.03	1052.56	7.52	12.15	429.51	469.07
Run U1-C-2	3/25/2009	11:45:01	165.31	1037.89	7.45	12.20	396.02	464.00	195.36	1051.51	7.52	12.15	429.11	469.10
Run U1-C-2	3/25/2009	11:46:01	175.89	1106.90	7.53	12.18	426.02	496.00	194.88	1051.89	7.52	12.15	428.57	468.48
Run U1-C-2	3/25/2009	11:47:01	223.27	1090.98	7.65	12.04	450.03	528.00	195.47	1053.23	7.52	12.15	428.86	469.49
Run U1-C-2	3/25/2009	11:48:01	177.41	1003.38	7.53	12.18	414.02	487.67	195.63	1053.21	7.52	12.15	428.98	470.10
Run U1-C-2	3/25/2009	11:49:01	172.37	1053.81	7.48	12.20	396.02	469.00	195.18	1052.89	7.52	12.15	428.57	469.41
Run U1-C-2	3/25/2009	11:50:01	210.17	1122.83	7.58	12.10	441.03	518.67	195.01	1053.51	7.52	12.15	428.42	469.84
Run U1-C-2	3/25/2009	11:51:01	206.13	1064.43	7.70	11.98	453.03	535.67	195.40	1054.26	7.53	12.15	428.92	470.80
Run U1-C-2	3/25/2009	11:52:01	154.73	990.11	7.50	12.18	402.02	476.00	195.06	1053.54	7.53	12.14	428.82	471.37
Run U1-C-2	3/25/2009	11:53:01	187.99	1088.32	7.50	12.18	420.02	488.00	194.51	1053.37	7.53	12.15	428.42	470.90
Run U1-C-2	3/25/2009	11:54:01	218.73	1088.32	7.68	12.04	453.03	434.00	194.91	1054.50	7.53	12.14	428.65	471.28
Run U1-C-2	3/25/2009	11:55:01	186.48	1027.27	7.68	12.02	453.03	535.00	195.10	1054.54	7.53	12.14	429.12	472.27
END Run U1-C-2	3/25/2009	11:56:01	163.80	1029.92	7.50	12.16	405.02	483.00	194.71	1053.88	7.53	12.14	428.95	472.41

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	ТНС-В	NOx-A	CO-A	O2-A	CO2-A	THC-A	тнс-в
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
START Run U1-C-3	3/25/2009	12:36:01	195.05	1019.31	7.70	12.00	435.02	496.00	195.05	1019.31	7.70	12.00	435.02	496.00
Run U1-C-3	3/25/2009	12:37:01	168.84	1014.00	7.50	12.16	396.02	301.00	171.37	994.03	7.59	12.09	414.27	458.36
Run U1-C-3	3/25/2009	12:38:01	218.73	1117.52	7.58	12.10	429.02	479.33	179.34	1036.07	7.56	12.11	413.92	439.36
Run U1-C-3	3/25/2009	12:39:01	226.29	1083.01	7.73	11.96	450.03	512.67	196.66	1059.55	7.59	12.09	425.65	461.64
Run U1-C-3	3/25/2009	12:40:01	168.84	987.45	7.60	12.08	420.02	472.00	198.23	1052.85	7.61	12.07	427.74	468.71
Run U1-C-3	3/25/2009	12:41:01	181.44	1059.12	7.53	12.14	411.02	462.00	192.46	1048.49	7.60	12.08	423.29	467.10
Run U1-C-3	3/25/2009	12:42:01	238.39	1114.87	7.73	11.96	456.03	334.00	195.26	1057.99	7.60	12.08	425.11	466.18
Run U1-C-3	3/25/2009	12:43:01	175.39	998.07	7.60	12.08	414.02	472.67	197.79	1057.07	7.61	12.07	426.65	462.59
Run U1-C-3	3/25/2009	12:44:01	185.47	1072.40	7.50	12.16	414.02	464.33	194.39	1054.28	7.60	12.08	423.23	460.89
Run U1-C-3	3/25/2009	12:45:01	220.25	1096.29	7.68	12.02	426.02	482.00	197.40	1061.30	7.60	12.07	424.33	464.07
Run U1-C-3	3/25/2009	12:46:01	171.86	1045.85	7.55	12.10	423.02	471.33	196.03	1059.36	7.60	12.07	423.53	463.78
Run U1-C-3	3/25/2009	12:47:01	230.33	1098.94	7.73	11.96	462.03	343.33	197.22	1062.75	7.60	12.07	425.26	466.47
Run U1-C-3	3/25/2009	12:48:01	185.97	1024.62	7.65	12.02	426.02	485.33	198.21	1062.25	7.61	12.06	427.07	467.28
Run U1-C-3	3/25/2009	12:49:01	173.37	1045.85	7.50	12.16	411.02	452.33	195.95	1058.74	7.61	12.07	425.85	464.86
Run U1-C-3	3/25/2009	12:50:01	235.87	1120.18	7.70	11.98	459.03	519.67	196.94	1061.95	7.61	12.07	426.56	466.67
Run U1-C-3	3/25/2009	12:51:01	210.17	1061.78	7.70	11.96	450.03	508.33	198.15	1062.61	7.61	12.06	428.29	469.47
Run U1-C-3	3/25/2009	12:52:01	164.81	1011.34	7.53	12.14	402.02	460.67	197.48	1060.21	7.61	12.06	427.86	467.36
Run U1-C-3	3/25/2009	12:53:01	196.56	1128.14	7.53	12.14	420.02	466.33	196.13	1060.73	7.60	12.07	426.42	466.58
Run U1-C-3	3/25/2009	12:54:01	221.25	1090.98	7.68	12.00	456.03	495.67	197.55	1064.34	7.61	12.07	427.33	466.21
Run U1-C-3	3/25/2009	12:55:01	206.13	1048.51	7.73	11.98	432.02	489.33	198.39	1064.88	7.61	12.06	428.75	468.63
Run U1-C-3	3/25/2009	12:56:01	159.77	1016.65	7.55	12.12	402.02	345.67	197.34	1062.11	7.61	12.06	428.30	468.69
Run U1-C-3	3/25/2009	12:57:01	209.16	1120.18	7.65	12.02	441.03	491.00	196.37	1062.39	7.61	12.07	427.59	466.19
Run U1-C-3	3/25/2009	12:58:01	179.42	1024.62	7.58	12.10	414.02	464.33	197.13	1063.25	7.61	12.06	427.45	466.79
Run U1-C-3	3/25/2009	12:59:01	177.91	1072.40	7.53	12.14	417.02	462.33	196.23	1062.76	7.61	12.07	426.43	466.18
Run U1-C-3	3/25/2009	13:00:01	221.76	1080.36	7.63	12.04	435.02	487.00	196.47	1064.52	7.61	12.07	426.60	466.88
Run U1-C-3	3/25/2009	13:01:01	185.47	1067.09	7.58	12.10	435.02	480.67	196.39	1064.23	7.61	12.07	426.73	467.07
Run U1-C-3	3/25/2009	13:02:01	221.76	1093.63	7.73	11.98	459.03	515.00	196.68	1065.32	7.61	12.07	427.47	468.28
Run U1-C-3	3/25/2009	13:03:01	190.01	1011.34	7.73	11.98	438.03	494.33	197.20	1065.13	7.61	12.06	428.45	469.53
Run U1-C-3	3/25/2009	13:04:01	162.29	1032.58	7.55	12.12	399.02	458.67	196.06	1062.66	7.61	12.06	427.95	468.83
Run U1-C-3	3/25/2009	13:05:01	184.46	1104.25	7.55	12.12	420.02	469.00	195.21	1062.52	7.61	12.06	426.91	468.08
Run U1-C-3	3/25/2009	13:06:01	219.24	1101.59	7.68	12.00	453.03	503.33	195.66	1064.18	7.61	12.06	427.10	467.23

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	ТНС-В	NOx-A	CO-A	O2-A	CO2-A	THC-A	тнс-в
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
Run U1-C-3	3/25/2009	13:07:01	211.17	1053.81	7.78	11.92	465.03	523.67	196.36	1064.65	7.61	12.06	428.01	468.54
Run U1-C-3	3/25/2009	13:08:01	181.94	995.42	7.70	11.98	441.03	500.00	196.45	1063.70	7.62	12.06	428.71	469.71
Run U1-C-3	3/25/2009	13:09:01	163.29	1037.89	7.53	12.14	399.02	451.33	195.35	1061.38	7.62	12.06	428.18	469.36
Run U1-C-3	3/25/2009	13:10:01	200.59	1112.21	7.60	12.06	435.02	446.00	194.85	1061.76	7.62	12.06	427.64	467.95
Run U1-C-3	3/25/2009	13:11:01	216.21	1059.12	7.73	11.96	450.03	503.33	195.59	1062.91	7.62	12.05	428.17	467.82
Run U1-C-3	3/25/2009	13:12:01	161.78	992.76	7.58	12.08	417.02	473.00	195.41	1061.81	7.62	12.05	428.29	468.35
Run U1-C-3	3/25/2009	13:13:01	169.34	1069.74	7.50	12.14	396.02	452.00	194.53	1060.80	7.62	12.05	427.54	468.00
Run U1-C-3	3/25/2009	13:14:01	235.37	1114.87	7.68	12.00	450.03	504.67	194.68	1062.06	7.62	12.06	427.48	467.97
Run U1-C-3	3/25/2009	13:15:01	201.09	1014.00	7.75	11.92	432.02	499.00	195.37	1062.43	7.62	12.05	428.24	468.84
Run U1-C-3	3/25/2009	13:16:01	161.78	1037.89	7.53	12.12	396.02	449.67	194.74	1060.78	7.62	12.05	427.89	468.15
Run U1-C-3	3/25/2009	13:17:01	201.60	1120.18	7.60	12.06	432.02	476.67	194.29	1061.11	7.62	12.05	427.44	467.97
Run U1-C-3	3/25/2009	13:18:01	218.23	1077.70	7.73	11.96	450.03	510.67	194.97	1062.24	7.62	12.05	427.90	468.67
Run U1-C-3	3/25/2009	13:19:01	172.87	995.42	7.58	12.08	399.02	448.00	195.10	1061.84	7.62	12.05	427.95	468.10
Run U1-C-3	3/25/2009	13:20:01	193.53	1104.25	7.60	12.08	426.02	472.67	194.55	1061.38	7.62	12.05	427.50	467.90
Run U1-C-3	3/25/2009	13:21:01	224.78	1077.70	7.75	11.94	444.03	509.33	195.22	1062.49	7.62	12.05	427.84	468.50
Run U1-C-3	3/25/2009	13:22:01	168.33	982.14	7.63	12.04	420.02	471.67	195.33	1061.91	7.62	12.05	428.09	468.38
Run U1-C-3	3/25/2009	13:23:01	173.88	1061.78	7.53	12.12	393.02	447.67	194.67	1061.04	7.62	12.05	427.48	468.05
Run U1-C-3	3/25/2009	13:24:01	234.86	1117.52	7.68	12.00	444.03	448.33	194.76	1061.85	7.62	12.05	427.35	468.07
Run U1-C-3	3/25/2009	13:25:01	213.69	1053.81	7.78	11.92	462.03	385.00	195.40	1062.31	7.62	12.05	427.91	468.71
Run U1-C-3	3/25/2009	13:26:01	186.98	987.45	7.73	11.94	426.02	492.33	195.57	1061.77	7.63	12.05	428.41	468.87
Run U1-C-3	3/25/2009	13:27:01	166.32	1048.51	7.58	12.10	411.02	462.00	194.93	1060.39	7.62	12.05	428.08	468.44
Run U1-C-3	3/25/2009	13:28:01	231.84	1090.98	7.75	11.92	450.03	516.33	195.07	1060.97	7.63	12.05	428.27	468.72
Run U1-C-3	3/25/2009	13:29:01	186.48	1003.38	7.70	11.98	420.02	483.00	195.32	1060.75	7.63	12.04	428.57	469.40
Run U1-C-3	3/25/2009	13:30:01	168.84	1051.16	7.55	12.10	396.02	451.67	194.80	1059.84	7.63	12.04	428.18	469.31
Run U1-C-3	3/25/2009	13:31:01	183.45	1101.59	7.53	12.12	417.02	302.67	194.43	1059.91	7.62	12.05	427.64	468.78
Run U1-C-3	3/25/2009	13:32:01	225.29	1093.63	7.73	11.94	453.03	515.67	194.81	1060.94	7.62	12.05	427.85	468.51
Run U1-C-3	3/25/2009	13:33:01	205.63	1048.51	7.75	11.92	459.03	524.00	195.10	1061.03	7.63	12.04	428.35	469.36
Run U1-C-3	3/25/2009	13:34:01	177.41	966.22	7.63	12.04	414.02	468.00	195.16	1060.37	7.63	12.04	428.61	469.79
Run U1-C-3	3/25/2009	13:35:01	169.85	1048.51	7.50	12.14	393.02	292.67	194.61	1059.51	7.63	12.04	428.23	469.38
END Run U1-C-3	3/25/2009	13:36:01	208.65	1138.76	7.55	12.10	429.02	475.33	194.33	1059.81	7.63	12.04	427.78	468.69

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B	NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B
Run Number	Date	Time			(% vol)	(% vol)					(% vol)	(% vol)		(ppmv)
START Run U2-C-1	3/25/2009	14:17:01	(ppmv) 145.65	(ppmv)		12.04	(ppmv) 432.02	(ppmv) 475.33	(ppmv)	(ppmv) 1008.69	7.58	12.04	(ppmv) 432.02	475.33
Run U2-C-1	3/25/2009	14:17:01		1008.69	7.58	12.04	432.02	509.33	145.65 158.39	1008.69	7.58	12.04	432.62	501.67
Run U2-C-1	3/25/2009		161.28	1051.16	7.58								450.76	518.38
Run U2-C-1		14:19:01	221.76	1109.56	7.73	11.92	489.03	555.33	176.94	1070.81	7.62	12.01		532.73
Run U2-C-1	3/25/2009	14:20:01	200.09	1053.81	7.78	11.90	519.03	583.00	187.63	1073.62	7.66	11.97	468.33	541.05
		14:21:01	192.02	1035.23	7.75	11.90	528.03	618.00	189.16	1064.91	7.68	11.95	481.69	
Run U2-C-1	3/25/2009	14:22:01	196.56	1045.85	7.73	11.92	519.03	620.33	189.92	1059.52	7.69	11.95	489.57	555.37
Run U2-C-1	3/25/2009	14:23:01	193.53	1027.27	7.78	11.88	531.03	618.00	191.06	1055.70	7.70	11.94	494.95	559.89
Run U2-C-1	3/25/2009	14:24:01	194.04	1029.92	7.75	11.90	519.03	584.33	191.29	1051.84	7.71	11.93	498.74	567.77
Run U2-C-1	3/25/2009	14:25:01	196.05	1024.62	7.75	11.90	528.03	637.00	192.04	1049.36	7.72	11.93	502.15	574.73
Run U2-C-1	3/25/2009	14:26:01	191.01	1016.65	7.75	11.90	516.03	600.33	192.16	1045.92	7.72	11.92	505.03	580.64
Run U2-C-1	3/25/2009	14:27:01	199.58	1021.96	7.75	11.90	522.03	625.00	192.52	1044.07	7.72	11.92	507.02	580.22
Run U2-C-1	3/25/2009	14:28:01	196.56	1021.96	7.75	11.90	528.03	620.00	192.94	1042.17	7.73	11.92	508.85	584.34
Run U2-C-1	3/25/2009	14:29:01	201.09	1032.58	7.75	11.88	534.03	455.00	193.32	1040.81	7.73	11.92	510.01	583.91
Run U2-C-1	3/25/2009	14:30:01	195.05	1027.27	7.75	11.88	528.03	613.33	193.66	1039.52	7.73	11.92	511.49	584.70
Run U2-C-1	3/25/2009	14:31:01	199.08	1027.27	7.75	11.90	528.03	620.33	193.96	1038.50	7.73	11.92	512.54	586.30
Run U2-C-1	3/25/2009	14:32:01	199.08	1024.62	7.75	11.88	531.03	616.67	194.30	1037.64	7.73	11.91	513.51	588.06
Run U2-C-1	3/25/2009	14:33:01	198.57	1032.58	7.75	11.90	531.03	626.00	194.52	1036.78	7.73	11.91	514.45	589.44
Run U2-C-1	3/25/2009	14:34:01	200.59	1040.54	7.75	11.90	537.03	621.33	194.83	1036.39	7.73	11.91	515.20	590.94
Run U2-C-1	3/25/2009	14:35:01	193.53	1019.31	7.73	11.92	537.03	614.00	195.10	1035.95	7.73	11.91	516.03	591.76
Run U2-C-1	3/25/2009	14:36:01	198.57	1032.58	7.70	11.94	528.03	528.00	195.22	1035.57	7.73	11.91	516.85	592.19
Run U2-C-1	3/25/2009	14:37:01	201.09	1032.58	7.70	11.92	525.03	601.00	195.61	1035.59	7.73	11.91	517.53	593.02
Run U2-C-1	3/25/2009	14:38:01	200.09	1032.58	7.73	11.92	528.03	511.00	195.87	1035.58	7.73	11.91	518.08	592.61
Run U2-C-1	3/25/2009	14:39:01	199.08	1024.62	7.73	11.90	534.03	602.67	195.99	1035.44	7.73	11.91	518.69	592.76
Run U2-C-1	3/25/2009	14:40:01	201.60	1035.23	7.73	11.90	528.03	602.67	196.07	1035.34	7.73	11.91	519.18	593.28
Run U2-C-1	3/25/2009	14:41:01	201.09	1037.89	7.75	11.90	525.03	602.67	196.22	1035.31	7.73	11.91	519.50	593.66
Run U2-C-1	3/25/2009	14:42:01	203.61	1040.54	7.75	11.90	534.03	611.67	196.41	1035.38	7.73	11.91	519.69	593.96
Run U2-C-1	3/25/2009	14:43:01	198.57	1035.23	7.75	11.88	522.03	447.33	196.56	1035.42	7.73	11.91	520.11	594.06
Run U2-C-1	3/25/2009	14:44:01	198.07	1027.27	7.75	11.90	522.03	619.33	196.62	1035.17	7.73	11.91	520.46	593.87
Run U2-C-1	3/25/2009	14:45:01	202.10	1037.89	7.75	11.88	534.03	630.33	196.73	1035.07	7.73	11.91	520.53	594.46
Run U2-C-1	3/25/2009	14:46:01	194.54	1027.27	7.78	11.86	531.03	628.00	196.75	1034.87	7.73	11.91	520.78	594.67
Run U2-C-1	3/25/2009	14:47:01	195.05	1029.92	7.80	11.86	534.03	455.33	196.63	1034.49	7.74	11.91	521.08	594.60

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	тнс-в	NOx-A	CO-A	O2-A	CO2-A	THC-A	тнс-в
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
Run U2-C-1	3/25/2009	14:48:01	190.01	1029.92	7.75	11.90	537.03	627.00	196.44	1034.12	7.74	11.91	521.52	594.67
Run U2-C-1	3/25/2009	14:49:01	199.58	1032.58	7.75	11.90	522.03	612.67	196.37	1033.99	7.74	11.91	521.73	595.51
Run U2-C-1	3/25/2009	14:50:01	204.12	1037.89	7.73	11.92	528.03	604.00	196.52	1034.17	7.74	11.91	521.83	595.54
Run U2-C-1	3/25/2009	14:51:01	203.61	1043.20	7.75	11.88	534.03	626.00	196.71	1034.34	7.74	11.91	521.96	595.92
Run U2-C-1	3/25/2009	14:52:01	200.59	1035.23	7.75	11.90	531.03	623.67	196.84	1034.35	7.74	11.91	522.17	596.63
Run U2-C-1	3/25/2009	14:53:01	199.08	1032.58	7.75	11.88	528.03	619.00	196.90	1034.33	7.74	11.91	522.41	597.38
Run U2-C-1	3/25/2009	14:54:01	201.09	1035.23	7.73	11.92	540.03	625.00	196.93	1034.24	7.74	11.91	522.64	596.93
Run U2-C-1	3/25/2009	14:55:01	200.09	1029.92	7.75	11.88	531.03	610.67	197.04	1034.25	7.74	11.91	522.85	596.53
Run U2-C-1	3/25/2009	14:56:01	201.09	1027.27	7.78	11.86	543.03	628.67	197.14	1034.15	7.74	11.91	523.07	597.08
Run U2-C-1	3/25/2009	14:57:01	201.09	1027.27	7.73	11.88	537.03	631.33	197.18	1034.04	7.74	11.91	523.43	597.79
Run U2-C-1	3/25/2009	14:58:01	202.61	1032.58	7.75	11.90	537.03	578.67	197.20	1033.90	7.74	11.91	523.66	598.27
Run U2-C-1	3/25/2009	14:59:01	203.11	1032.58	7.78	11.86	534.03	444.33	197.35	1034.00	7.74	11.90	523.82	598.51
Run U2-C-1	3/25/2009	15:00:01	200.09	1029.92	7.80	11.86	522.03	608.67	197.42	1033.90	7.74	11.90	523.94	598.47
Run U2-C-1	3/25/2009	15:01:01	194.04	1019.31	7.85	11.82	525.03	617.00	197.41	1033.65	7.74	11.90	524.06	598.82
Run U2-C-1	3/25/2009	15:02:01	194.54	1016.65	7.80	11.82	531.03	614.33	197.31	1033.28	7.74	11.90	524.21	598.48
Run U2-C-1	3/25/2009	15:03:01	192.53	1021.96	7.75	11.88	531.03	608.67	197.23	1033.02	7.74	11.90	524.43	598.11
Run U2-C-1	3/25/2009	15:04:01	195.55	1032.58	7.75	11.90	531.03	618.67	197.25	1033.05	7.74	11.90	524.60	598.51
Run U2-C-1	3/25/2009	15:05:01	196.56	1029.92	7.78	11.86	534.03	617.67	197.29	1033.04	7.74	11.90	524.80	598.84
Run U2-C-1	3/25/2009	15:06:01	199.58	1024.62	7.75	11.90	543.03	605.33	197.32	1033.00	7.75	11.90	525.10	599.19
Run U2-C-1	3/25/2009	15:07:01	198.57	1035.23	7.73	11.90	534.03	623.67	197.33	1032.91	7.75	11.90	525.33	599.62
Run U2-C-1	3/25/2009	15:08:01	200.09	1037.89	7.73	11.92	540.03	626.33	197.40	1033.03	7.75	11.90	525.59	600.12
Run U2-C-1	3/25/2009	15:09:01	200.59	1037.89	7.73	11.90	534.03	621.33	197.51	1033.18	7.75	11.90	525.84	599.87
Run U2-C-1	3/25/2009	15:10:01	201.09	1045.85	7.73	11.92	534.03	620.33	197.61	1033.32	7.74	11.90	525.95	600.33
Run U2-C-1	3/25/2009	15:11:01	210.67	1048.51	7.78	11.88	528.03	621.67	197.75	1033.61	7.74	11.90	526.04	600.68
Run U2-C-1	3/25/2009	15:12:01	206.64	1037.89	7.78	11.88	534.03	554.67	197.92	1033.70	7.74	11.90	526.14	600.20
Run U2-C-1	3/25/2009	15:13:01	196.56	1019.31	7.80	11.84	534.03	625.00	198.00	1033.64	7.75	11.90	526.22	600.31
Run U2-C-1	3/25/2009	15:14:01	198.57	1029.92	7.78	11.86	537.03	621.67	197.96	1033.49	7.75	11.90	526.40	600.74
Run U2-C-1	3/25/2009	15:15:01	200.59	1037.89	7.73	11.90	540.03	621.67	197.96	1033.46	7.75	11.90	526.58	601.10
Run U2-C-1	3/25/2009	15:16:01	204.12	1045.85	7.75	11.90	540.03	623.00	198.02	1033.61	7.75	11.90	526.79	601.06
END Run U2-C-1	3/25/2009	15:17:01	204.12	1037.89	7.78	11.86	531.03	613.00	198.12	1033.72	7.75	11.90	526.92	601.34

				_					4.7				4.7	4177
									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B	NOx-A	CO-A	O2-A	CO2-A	THC-A	тнс-в
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
START Run U2-C-2	3/25/2009	16:10:15	208.65	1024.62	7.78	11.84	534.03	634.33	208.65	1024.62	7.78	11.84	534.03	634.33
Run U2-C-2	3/25/2009	16:11:15	202.10	1011.34	7.78	11.84	534.03	642.33	205.88	1012.86	7.79	11.84	535.07	638.74
Run U2-C-2	3/25/2009	16:12:15	205.63	1011.34	7.80	11.82	546.03	654.33	205.70	1014.19	7.79	11.83	536.77	622.93
Run U2-C-2	3/25/2009	16:13:15	203.61	1021.96	7.78	11.86	543.03_	654.33	204.62	1014.06	7.79	11.84	537.86	631.52
Run U2-C-2	3/25/2009	16:14:15	204.62	1024.62	7.78	11.86	540.03	647.00	204.79	1015.31	7.78	11.84	537.01	634.37
Run U2-C-2	3/25/2009	16:15:15	204.62	1021.96	7.78	11.84	534.03	645.67	205.07	1016.74	7.78	11.84	536.69	636.65
Run U2-C-2	3/25/2009	16:16:15	202.61	1021.96	7.80	11.84	531.03	451.33	205.00	1017.45	7.78	11.84	535.81	636.67
Run U2-C-2	3/25/2009	16:17:15	197.57	1016.65	7.80	11.84	531.03	570.00	204.61	1017.88	7.78	11.83	535.76	627.95
Run U2-C-2	3/25/2009	16:18:15	195.55	1011.34	7.80	11.84	537.03	662.00	203.69	1017.82	7.79	11.83	536.25	631.17
Run U2-C-2	3/25/2009	16:19:15	197.06	1024.62	7.80_	11.82	534.03	655.00	202.82	1017.83	7.79	11.83	536.08	633.92
Run U2-C-2	3/25/2009	16:20:15	200.59	1035.23	7.78	11.84	540.03	640.00	202.32	1018.41	7.79	11.83	535.52	635.19
Run U2-C-2	3/25/2009	16:21:15	196.05	1027.27	7.78	11.86	534.03	654.33	202.09	1019.07	7.79	11.83	535.55	636.97
Run U2-C-2	3/25/2009	16:22:15	201.09	1032.58	7.75	11.86	540.03	667.33	201.90	1019.82	7.78	11.83	535.79	637.66
Run U2-C-2	3/25/2009	16:23:15	199.58	1029.92	7.75	11.86	543.03	444.33	201.74	1020.72	7.78	11.84	536.11	638.11
Run U2-C-2	3/25/2009	16:24:15	204.12	1035.23	7.78	11.84	540.03	664.67	201.74	1021.41	7.78	11.84	536.21	637.19
Run U2-C-2	3/25/2009	16:25:15	197.06	1027.27	7.80	11.82	543.03	665.67	201.78	1021.97	7.78	11.84	536.33	638.38
Run U2-C-2	3/25/2009	16:26:15	198.07	1019.31	7.80	11.82	537.03	667.67	201.52	1021.92	7.78	11.84	536.45	638.85
Run U2-C-2	3/25/2009	16:27:15	196.56	1027.27	7.78	11.86	537.03	661.33	201.12	1022.07	7.78	11.84	536.36	639.71
Run U2-C-2	3/25/2009	16:28:15	202.61	1037.89	7.78	11.84	537.03	654.67	200.87	1022.48	7.78	11.84	536.38	640.57
Run U2-C-2	3/25/2009	16:29:15	202.61	1040.54	7.78	11.84	540.03	663.33	200.77	1023.17	7.78	11.84	536.33	641.52
Run U2-C-2	3/25/2009	16:30:15	200.59	1029.92	7.80	11.84	537.03	660.33	200.74	1023.79	7.78	11.84	536.43	638.82
Run U2-C-2	3/25/2009	16:31:15	202.10	1027.27	7.78	11.84	540.03	661.67	200.64	1023.93	7.78	11.84	536.34	638.16
Run U2-C-2	3/25/2009	16:32:15	200.59	1035.23	7.78	11.84	537.03	669.67	200.59	1024.23	7.78	11.84	536.32	639.04
Run U2-C-2	3/25/2009	16:33:15	199.58	1029.92	7.75	11.88	534.03	664.00	200.56	1024.48	7.78	11.84	536.26	640.01
Run U2-C-2	3/25/2009	16:34:15	202.10	1037.89	7.78	11.84	537.03	659.33	200.55	1025.01	7.78	11.84	536.27	640.24
Run U2-C-2	3/25/2009	16:35:15	207.65	1032.58	7.80	11.82	537.03	660.67	200.58	1025.41	7.78	11.84	535.92	640.02
Run U2-C-2	3/25/2009	16:36:15	189.50	1021.96	7.80	11.82	540.03	668.00	200.45	1025.31	7.78	11.84	535.81	640.86
Run U2-C-2	3/25/2009	16:37:15	195.05	1029.92	7.78	11.84	540.03	669.33	200.16	1025.30	7.78	11.84	535.83	641.53
Run U2-C-2	3/25/2009	16:38:15	193.53	1035.23	7.78	11.84	543.03	643.33	200.01	1025.49	7.78	11.84	535.98	642.38
Run U2-C-2	3/25/2009	16:39:15	199.08	1035.23	7.78	11.86	543.03	660.00	199.86	1025.65	7.78	11.84	536.00	640.76
Run U2-C-2	3/25/2009	16:40:15	196.05	1032.58	7.78	11.86	528.03	661.67	199.78	1025.84	7.78	11.84	535.88	641.35

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	тнс-в	NOx-A	CO-A	O2-A	CO2-A	THC-A	ТНС-В
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
Run U2-C-2	3/25/2009	16:41:15	201.60	1032.58	7.75	11.86	531.03	659.00	199.74	1026.11	7.78	11.84	535.82	641.83
Run U2-C-2	3/25/2009	16:42:15	200.59	1032.58	7.75	11.88	531.03	656.00	199.80	1026.31	7.78	11.84	535.78	642.21
Run U2-C-2	3/25/2009	16:43:15	201.09	1027.27	7.78	11.86	540.03	423.00	199.89	1026.62	7.78	11.84	535.70	641.86
Run U2-C-2	3/25/2009	16:44:15	200.59	1029.92	7.75	11.88	537.03	655.67	199.91	1026.67	7.78	11.84	535.76	640.89
Run U2-C-2	3/25/2009	16:45:15	199.58	1019.31	7.78	11.84	534.03	647.33	200.02	1026.82	7.78	11.84	535.83	640.99
Run U2-C-2	3/25/2009	16:46:15	202.61	1021.96	7.78	11.84	537.03	661.67	200.00	1026.71	7.78	11.84	535.85	640.88
Run U2-C-2	3/25/2009	16:47:15	202.10	1016.65	7.80	11.82	531.03	645.00	200.02	1026.56	7.78	11.84	535.86	641.31
Run U2-C-2	3/25/2009	16:48:15	198.57	1021.96	7.78	11.84	531.03	652.00	200.05	1026.40	7.78	11.84	535.80	641.61
Run U2-C-2	3/25/2009	16:49:15	197.57	1027.27	7.75	11.86	534.03	646.67	200.06	1026.27	7.78	11.84	535.68	641.48
Run U2-C-2	3/25/2009	16:50:15	197.57	1019.31	7.78	11.84	531.03	635.67	200.09	1026.25	7.78	11.84	535.62	641.40
Run U2-C-2	3/25/2009	16:51:15	199.58	1021.96	7.78	11.84	522.03	631.67	200.06	1026.22	7.78	11.84	535.51	641.58
Run U2-C-2	3/25/2009	16:52:15	195.05	1019.31	7.78	11.84	528.03	645.33	200.05	1026.15	7.78	11.84	535.28	641.60
Run U2-C-2	3/25/2009	16:53:15	189.50	1006.03	7.78	11.82	525.03	525.67	199.91	1025.91	7.78	11.84	535.19	640.69
Run U2-C-2	3/25/2009	16:54:15	192.02	1019.31	7.75	11.86	525.03	641.33	199.78	1025.71	7.78	11.84	535.05	640.35
Run U2-C-2	3/25/2009	16:55:15	198.07	1021.96	7.78	11.84	528.03	644.33	199.72	1025.77	7.78	11.84	534.91	640.50
Run U2-C-2	3/25/2009	16:56:15	197.06	1029.92	7.80	11.84	531.03	643.67	199.66	1025.77	7.78	11.84	534.71	640.53
Run U2-C-2	3/25/2009	16:57:15	192.02	1027.27	7.78	11.84	534.03	652.67	199.55	1025.76	7.78	11.84	534.62	640.71
Run U2-C-2	3/25/2009	16:58:15	200.59	1029.92	7.78	11.84	534.03	654.33	199.46	1025.79	7.78	11.84	534.51	640.69
Run U2-C-2	3/25/2009	16:59:15	200.59	1029.92	7.73	11.88	534.03	581.00	199.46	1025.86	7.78	11.84	534.55	639.87
Run U2-C-2	3/25/2009	17:00:15	193.53	1027.27	7.80	11.84	525.03	649.00	199.49	1026.00	7.78	11.84	534.51	639.87
Run U2-C-2	3/25/2009	17:01:15	192.02	1021.96	7.78	11.82	537.03	651.00	199.40	1026.00	7.78	11.84	534.52	640.19
Run U2-C-2	3/25/2009	17:02:15	200.59	1035.23	7.78	11.84	534.03	653.00	199.31	1026.10	7.78	11.84	534.51	640.51
Run U2-C-2	3/25/2009	17:03:15	195.05	1029.92	7.75	11.84	531.03	615.33	199.33	1026.21	7.78	11.84	534.52	640.69
Run U2-C-2	3/25/2009	17:04:15	196.56	1040.54	7.78	11.84	525.03	648.33	199.27	1026.43	7.78	11.84	534.42	640.71
Run U2-C-2	3/25/2009	17:05:15	194.04	1027.27	7.78_	11.82	534.03	651.67	199.24	1026.60	7.78	11.84	534.39	640.90
Run U2-C-2	3/25/2009	17:06:15	199.08	1035.23	7.80	11.84	531.03	608.33	199.17	1026.66	7.78	11.84	534.32	640.67
Run U2-C-2	3/25/2009	17:07:15	196.56	1024.62	7.83	11.80	549.03	665.00	199.16	1026.71	7.78	11.84	534.34	640.77
Run U2-C-2	3/25/2009	17:08:15	194.54	1027.27	7.78	11.84	540.03	656.67	199.06	1026.67	7.78_	11.84	534.49	640.12
Run U2-C-2	3/25/2009	17:09:15	198.07	1032.58	7.78	11.82	540.03	665.00	198.98	1026.75	7.78	11.84	534.54	640.48
END Run U2-C-2	3/25/2009	17:10:15	197.06	1043.20	7.75	11.86	537.03	656.33	198.91	1026.81	7.78	11.84	534.58	639.78

_									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	ТНС-В	NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
START Run U2-C-3	3/25/2009	17:27:02	176.90	1037.89	7.78	11.82	561.03	637.33	176.90	1037.89	7.78	11.82	561.03	637.33
Run U2-C-3	3/25/2009	17:28:02	180.43	1037.89	7.78	11.82	561.03	643.33	176.21	1033.04	7.78	11.82	557.66	632.58
Run U2-C-3	3/25/2009	17:29:02	190.51	1040.54	7.78	11.84	564.03	612.00	180.40	1034.35	7.78	11.83	559.03	631.00
Run U2-C-3	3/25/2009	17:30:02	197.06	1040.54	7.80	11.82	570.03	637.67	184.44	1035.06	7.77	11.83	559.94	629.59
Run U2-C-3	3/25/2009	17:31:02	198.57	1035.23	7.78	11.84	561.03	626.33	187.24	1034.94	7.77	11.83	560.75	625.15
Run U2-C-3	3/25/2009	17:32:02	197.06	1024.62	7.80	11.82	567.03	632.33	189.33	1034.39	7.77	11.83	560.31	623.81
Run U2-C-3	3/25/2009	17:33:02	199.08	1029.92	7.78	11.82	561.03	631.67	190.27	1032.18	7.78	11.83	560.58	624.36
Run U2-C-3	3/25/2009	17:34:02	198.07	1032.58	7.75	11.84	549.03	625.67	191.34	1031.16	7.78	11.83	560.10	624.48
Run U2-C-3	3/25/2009	17:35:02	201.09	1032.58	7.78	11.84	561.03	609.33	192.44	1031.11	7.77	11.83	559.50	620.29
Run U2-C-3	3/25/2009	17:36:02	205.13	1043.20	7.78	11.84	555.03	621.67	193.23	1031.06	7.77	11.84	558.58	619.75
Run U2-C-3	3/25/2009	17:37:02	193.03	1016.65	7.80	11.82	561.03	622.67	194.00	1030.58	7.78	11.83	558.04	619.79
Run U2-C-3	3/25/2009	17:38:02	190.01	1006.03	7.78	11.84	558.03	619.33	193.82	1029.08	7.78	11.83	558.29	619.93
Run U2-C-3	3/25/2009	17:39:02	196.05	1008.69	7.78	11.84	555.03	617.67	193.89	1028.17	7.78	11.83	558.57	620.48
Run U2-C-3	3/25/2009	17:40:02	197.57	1016.65	7.78	11.84	552.03	521.33	194.18	1027.60	7.78	11.83	558.45	618.70
Run U2-C-3	3/25/2009	17:41:02	199.08	1024.62	7.78	11.82	543.03	608.67	194.55	1027.38	7.78	11.83	557.78	617.62
Run U2-C-3	3/25/2009	17:42:02	197.57	1021.96	7.80	11.82	546.03	610.33	194.94	1027.39	7.78	11.83	557.55	617.57
Run U2-C-3	3/25/2009	17:43:02	197.06	1014.00	7.80	11.80	561.03	535.67	195.16	1026.97	7.78	11.83	557.32	613.45
Run U2-C-3	3/25/2009	17:44:02	197.06	1021.96	7.78	11.82	555.03	619.33	195.01	1026.37	7.78	11.83	557.36	613.21
Run U2-C-3	3/25/2009	17:45:02	198.07	1027.27	7.78	11.82	552.03	617.33	195.08	1026.36	7.78	11.83	557.03	613.38
Run U2-C-3	3/25/2009	17:46:02	196.56	1027.27	7.80	11.82	549.03	524.67	195.17	1026.38	7.78	11.83	556.78	612.34
Run U2-C-3	3/25/2009	17:47:02	195.05	1024.62	7.78	11.82	552.03	618.33	195.24	1026.29	7.78	11.83	556.66	611.57
Run U2-C-3	3/25/2009	17:48:02	199.08	1024.62	7.78	11.82	555.03	622.00	195.32	1026.33	7.78	11.83	556.63	612.09
Run <u>U2-C-3</u>	3/25/2009	17:49:02	198.57	1032.58	7.80	11.80	564.03	619.00	195.47	1026.31	7.78	11.83	556.57	612.34
Run U2-C-3	3/25/2009	17:50:02	195.05	1027.27	7.75	11.86	543.03	553.33	195.43	1026.26	7.78	11.83	556.52	610.63
Run U2-C-3	3/25/2009	17:51:02	194.04	1029.92	7.78	11.82	555.03	617.67	195.44	1026.52	7.78	11.83	556.50	610.50
Run U2-C-3	3/25/2009	17:52:02	198.07	1029.92	7.75	11.84	558.03	612.00	195.45	1026.63	7.78	11.83	556.51	610.70
Run U2-C-3	3/25/2009	17:53:02	193.03	1021.96	7.78	11.82	564.03	616.00	195.50	1026.84	7.78	11.83	556.72	611.11
Run U2-C-3	3/25/2009	17:54:02	194.04	1019.31	7.80	11.82	570.03	620.67	195.44	1026.69	7.78	11.83	556.92	611.26
Run U2-C-3	3/25/2009	17:55:02	193.03	1027.27	7.80	11.82	555.03	605.33	195.40	1026.53	7.78	11.83	556.91	609.54
Run U2-C-3	3/25/2009	17:56:02	188.49	1016.65	7.80	11.80	555.03	607.67	195.24	1026.38	7.78	11.83	556.81	609.57
Run U2-C-3	3/25/2009	17:57:02	185.97	1014.00	7.80	11.80	555.03	613.67	194.99	1026.25	7.78	11.83	556.76	609.67

									AVE	AVE	AVE	AVE	AVE	AVE
			NOx-A	CO-A	O2-A	CO2-A	THC-A	тнс-в	NOx-A	CO-A	O2-A	CO2-A	THC-A	THC-B
Run Number	Date	Time	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)	(ppmv)	(ppmv)	(% vol)	(% vol)	(ppmv)	(ppmv)
Run U2-C-3	3/25/2009	17:58:02	186.98	1021.96	7.83	11.80	532.03	651.33	194.77	1026.14	7.78	11.83	530.99	640.16
Run U2-C-3	3/25/2009	17:59:02	192.53	1029.92	7.78	11.82	526.03	564.00	194.58	1026.19	7.78	11.82	531.00	640.24
Run U2-C-3	3/25/2009	18:00:02	196.56	1037.89	7.75	11.86	526.03	646.00	194.63	1026.42	7.78	11.83	530.94	640.38
Run U2-C-3	3/25/2009	18:01:02	197.57	1035.23	7.75	11.84	529.03	644.00	194.71	1026.79	7.78	11.83	530.90	638.94
Run U2-C-3	3/25/2009	18:02:02	194.04	1029.92	7.75	11.84	538.03	655.33	194.81	1027.07	7.78	11.83	530.96	639.13
Run U2-C-3	3/25/2009	18:03:02	195.05	1032.58	7.78	11.84	535.03	657.67	194.83	1027.30	7.78	11.83	531.11	639.61
Run U2-C-3	3/25/2009	18:04:02	195.55	1029.92	7.80	11.82	544.03	658.67	194.83	1027.42	7.78	11.83	531.27	639.90
Run U2-C-3	3/25/2009	18:05:02	196.05	1037.89	7.78	11.84	532.03	607.00	194.79	1027.41	7.78	11.83	531.30	640.11
Run U2-C-3	3/25/2009	18:06:02	191.01	1024.62	7.78	11.84	532.03	644.00	194.77	1027.45	7.78	11.83	531.43	640.38
Run U2-C-3	3/25/2009	18:07:02	195.05	1027.27	7.80	11.82	526.03	644.33	194.73	1027.38	7.78	11.83	531.40	640.13
Run U2-C-3	3/25/2009	18:08:02	194.04	1027.27	7.83	11.80	526.03	595.00	194.70	1027.29	7.78	11.83	531.24	638.61
Run U2-C-3	3/25/2009	18:09:02	189.50	1016.65	7.80	11.80	535.03	649.00	194.63	1027.04	7.78	11.83	531.24	638.55
Run U2-C-3	3/25/2009	18:10:02	192.53	1019.31	7.78	11.82	526.03	649.33	194.56	1026.87	7.78	11.82	531.18	638.74
Run U2-C-3	3/25/2009	18:11:02	194.04	1021.96	7.78	11.84	526.03	643.00	194.55	1026.75	7.78	11.82	531.11	638.97
Run U2-C-3	3/25/2009	18:12:02	194.54	1019.31	7.80	11.82	526.03	587.00	194.57	1026.69	7.78	11.82	530.97	638.05
Run U2-C-3	3/25/2009	18:13:02	191.52	1011.34	7.83	11.78	535.03	655.67	194.53	1026.44	7.78	11.82	530.91	637.97
Run U2-C-3	3/25/2009	18:14:02	186.98	1000.73	7.83	11.80	544.03	660.00	194.42	1026.06	7.79	11.82	530.93	638.27
Run U2-C-3	3/25/2009	18:15:02	182.95	1003.38	7.80	11.80	517.03	634.67	194.22	1025.56	7.79	11.82	530.88	637.78
Run U2-C-3	3/25/2009	18:16:02	185.97	1011.34	7.83	11.80	529.03	640.33	194.06	1025.28	7.79	11.82	530.87	637.97
Run U2-C-3	3/25/2009	18:17:02	186.48	1006.03	7.83	11.80	523.03	638.00	193.95	1025.00	7.79	11.82	530.81	638.17
Run U2-C-3	3/25/2009	18:18:02	185.47	1006.03	7.80	11.80	526.03	650.00	193.80	1024.67	7.79	11.82	530.80	638.42
Run U2-C-3	3/25/2009	18:19:02	187.49	1019.31	7.80	11.80	535.03	659.00	193.66	1024.49	7.79	11.82	530.83	638.71
Run U2-C-3	3/25/2009	18:20:02	192.02	1019.31	7.80	11.80	535.03	634.00	193.59	1024.38	7.79	11.82	530.87	638.00
Run U2-C-3	3/25/2009	18:21:02	194.54	1021.96	7.78	11.82	535.03	657.00	193.58	1024.39	7.79	11.82	530.91	638.26
Run U2-C-3	3/25/2009	18:22:02	195.55	1021.96	7.78	11.82	529.03	443.00	193.60	1024.41	7.79	11.82	530.97	638.40
Run U2-C-3	3/25/2009	18:23:02	195.55	1027.27	7.78	11.80	523.03	642.00	193.61	1024.43	7.79	11.82	530.95	638.03
Run U2-C-3	3/25/2009	18:24:02	196.05	1027.27	7.78	11.80	529.03	643.33	193.61	1024.40	7.79	11.82	530.89	638.13
Run U2-C-3	3/25/2009	18:25:02	194.04	1037.89	7.78	11.82	532.03	650.67	193.61	1024.41	7.79	11.82	530.93	638.33
Run U2-C-3	3/25/2009	18:26:02	195.55	1024.62	7.80	11.80	526.03	638.33	193.63	1024.47	7.79	11.82	530.88	638.48
END Run U2-C-3	3/25/2009	18:27:02	195.05	1029.92	7.83	11.78	532.03	651.00	193.66	1024.56	7.79	11.82	530.77	638.17

AIPPENDIX G: Operational Data

Unit Operational Data Baseline Landfill Unit 1

Dase	me Landim	OHIL I	- 7	
	933	1003	1037	
Test Run No.	01-C-1A	U1-C-113	101-C-1C	
Date 3/25/09	3/25/09	3/25/09	3/25/09	
Time	9:33	10,03	10173	
Engine/Generator Operation				Averages
Generator Power Output (kW) 1604	1625	1606	1609	1613
Generator Amperage (Amps) 22/	220	221	222	221
Generator Voltage (kVolts) 422)	4206	4205	4196	4202
Generator Frequency (Hertz) 60	60	60	60	60
Generator Power Factor /. O /	1.0	1.0	1.0	1.0
Fuel Manifold Pressure (psig)	INLEY Outlet	23	2.5	a ·5
Jacket Water Temperature (°F)	110/7 219/8	130/6 2207	14/6 200/	127 220 Inlet outlet
Engine Oil Temperature (°F) 195	195	198	195	195
Engine Fuel Data (Landfill Gas)				
LFG CH ₄ (% volume, dry basis) 20	56.5	56.5	No dola	56.5
LFG O ₂ (% volume, dry basis)	1.1	.3	.2	0.53
Wellhead Vacuum ("H ₂ O) 38.9	12.1	16.7	10.3	140
LFG Fuel Flow (SCFM)	540	403	Bya 498	513.67

Unit Operational Data Baseline Landfill Unit 1

	1056	1/26	1156	
Test Run No.	()\=C-2A	101-C-2B	() - C-2C	
Date 3/25/09	3/25/09	3/25/09	3/25/09	
Time	10:56	11:26	111.56	
Engine/Generator Operation				Averages
Generator Power Output (kW)	1606	1611	1591	1603
Generator Amperage (Amps)	726	w	w	224
Generator Voltage (kVolts)	4181	4186	4191	4186
Generator Frequency (Hertz)	60	60	60	60
Generator Power Factor	1.0)0	1.0	1.0
Fuel Manifold Pressure (psig)	2.5	25	25	2.5
Jacket Water Temperature (°F)	140/2 220/7	145/6 229/7	145/6 220/7	143 220
Engine Oil Temperature (°F)	198	195	195	195
Engine Fuel Data (Landfill Gas)				
LFG CH ₄ (% volume, dry basis)	No data	No data	Nodeta	No DIF
LFG O ₂ (% volume, dry basis)	1.2	()	•)	0.13
Wellhead Vacuum ("H ₂ O)	10.3	10.3	103	10.3
LFG Fuel Flow (SCFM)	500	498	497	498.3

Unit Operational Data Baseline Landfill Unit 1

	1236	106	136	
Test Run No.	U1-C-3A	U1-C-3B	UFC-3C	
Date 3[25] 09	3/25/09	3/25/09	3/25/09	
Time	12:36	13:06	13:36	
Engine/Generator Operation				Averages
Generator Power Output (kW)	1501	1608	1593	[60 <i>]</i>
Generator Amperage (Amps)	224	224	225	224
Generator Voltage (kVolts)	4181	4168	4173	4174
Generator Frequency (Hertz)	60	YD	60	60
Generator Power Factor	1.0	1-0	6.1	10
Fuel Manifold Pressure (psig)	2.5	2.5	2.5	2.5
Jacket Water Temperature (°F)	140/7 220/8	150/1 220/8	15% 22%	Intel Outlet 147 220
Engine Oil Temperature (°F)	195	198	195	195
Engine Fuel Data (Landfill Gas)				
LFG CH ₄ (% volume, dry basis)	no data	no data	no data	no deb
LFG O ₂ (% volume, dry basis)	,)		.	0,7
Wellhead Vacuum ("H ₂ O)	9.4	9.6	9.3	9,43
LFG Fuel Flow (SCFM)	503	498	486	495.7

Unit Operational Data Baseline Landfill Unit 2

<u></u>	2.17	247	317	
Test Run No.				
Date 3/25/09	3/25/09	3/25/09	3/25/09	
Time	14.17	FP.'P1	りちいす	
Engine/Generator Operation				Averages
Generator Power Output (kW)	1579	1436	1462	1492
Generator Amperage (Amps)	222	W	22	2 09
Generator Voltage (kVolts)	4168	4150	478	4165
Generator Frequency (Hertz)	[O]	60	60	60
Generator Power Factor	1.7	1.0	1.0	1.0
Fuel Manifold Pressure (psig)	25	25	2.5	2.5
Jacket Water Temperature (°F)	150/12 2/2	140/8 18	140/8 21/2	Inlet Outet 143 221
Engine Oil Temperature (°F)	178	WAR 197	195	190
Engine Fuel Data (Landfill Gas)				
LFG CH ₄ (% volume, dry basis)	no deta	no deta	no dala	no date
LFG O ₂ (% volume, dry basis)	. 1	.1,	•1,	0,1
Wellhead Vacuum ("H ₂ O)	9.6	7.5	7.5	8.2
LFG Fuel Flow (SCFM)	500	445	450	465.0

Unit Operational Data Baseline Landfill Unit 2

	4:10	4:40	5:10	
Test Run No.				
Date 3/25/19	3/25/09	3/25/09	3/25/09	
Time	(6'.10	16:40	เ7:เอ	
Engine/Generator Operation				Averages
Generator Power Output (kW)	1463	1453	1441	1452
Generator Amperage (Amps)	207	205	204	205
Generator Voltage (kVolts)	4178	4186	4184	4183
Generator Frequency (Hertz)	60.	["] სია	60	60
Generator Power Factor	1,0,	1.0	1.0	1.0
Fuel Manifold Pressure (psig)	2-5	2.5	28	2.5
Jacket Water Temperature (°F)	130/2 220/2	140/1 220	140/ NO	Inlet Outlet 137 220
Engine Oil Temperature (°F)	197	197	197	197
Engine Fuel Data (Landfill Gas)				
LFG CH ₄ (% volume, dry basis)	no deta	no data	no dete	steb on
LFG O ₂ (% volume, dry basis)	•)	r	• 1	0.1
Wellhead Vacuum ("H ₂ O)	7.1	7.3	7.2	7.2
LFG Fuel Flow (SCFM)	445	451	446	447.3

Unit Operational Data Baseline Landfill Unit 2

	5:27	5.57	6:27	
Test Run No.				
Date 3/25/09	3/25/09	3/25/09	3/25/09	
Time	17:27	17:57	18:27	
Engine/Generator Operation		A STATE OF THE STA		Averages
Generator Power Output (kW)	1474	1494	1483	1483.7
Generator Amperage (Amps)	205	201	205	206
Generator Voltage (kVolts)	4194	4189	4194	4192
Generator Frequency (Hertz)	60	60	60	60
Generator Power Factor	1.0	1.0	1.0	1.0
Fuel Manifold Pressure (psig)	2.5	2.5	25	2.5
Jacket Water Temperature (°F)	140/	140 200	149, 220	Inlet outlet 140 220
Engine Oil Temperature (°F)	197	197	197	197
Engine Fuel Data (Landfill Gas)				
LFG CH ₄ (% volume, dry basis)	no dob	no data	no deta	no data
LFG O ₂ (% volume, dry basis)	11	· /	. /	0-1
Wellhead Vacuum ("H ₂ O)	7.5	7.9	7.6	7.67
LFG Fuel Flow (SCFM)	452	461	454	455.67

AIPIPENIDIXX III: Opacity Observations

Visible Emission Observation Form

										-	
Method Used (Circle One) Method 9 203A 203B Other:		Project	Number	166	478.	ලලප	, ලුර	Pa	ge /	of .	/
Company Name C 1 F	_ 7	Observa 3	ation Date	<u> </u>	007	Start Tir	ne O 1		End Tim		_
Facility Name G2 Energy Facility Name Baseline Landfill Street Address 5601 SE 66 Street City Island Izla		Sec	0	15	30	45	Sec	0	15	30	45
Street Address CCO SE CE Street	1 [1	O	0	0	0	31				
	1	2	ø	0	0	0	32	\int			
	_	3	0	O	0	o	33				
Process IC Guaine Unit # Operating Mode 1 1613 KW] [4	O	0	0	Ø	34				I
Control Equipment Operating Mode Low Burn Corn bus him Worms 1] [5	0	0	0	0	35				
Describe Emission Point	ıſ	6	0	0	0	0	36	. \			
"32 tall stack w/ cover, rusted " 12"	+ [7	0	0	0	0	37				/
diameter 1st From Const, North of Bldg. Height of Emiss. Pt. Height of Emiss. Pt. Rel. to Observer	{ [B	0	0	0	0	38		١		
Start "32" End Same Start "45" End Same Distance to Erniss. Pt. Direction to Erniss. Pt. (Degrees)	$\{\ [$	9	0	Ø	0	0	39		\ .		
start 196435 End Same Start 1 398 End Same] [10	0	0	0	0	40		1		٠.
Verifical Angle to Obs. Pt. Direction to Obs. Pt. (Degrees) Start ~ 4] [11	0	0	0	0	41	`		-/	
Distance and Direction to Observation Point from Emission Point: Start Same as a love End Same	1 L	12	0	0	.0	0	42				Ĺ
Describe Emissions	i [13	0	0	0	Ø	43			1.	
Start None Visible End same Emission Color Water Droplet Plume	ł [14	0	O	0	0	44				
Start Clear End Same Attached Detached None] [15	0	o	0	O	45				
Describe Plume Background	1	16	0	0	0	0	46				
Start Sky End Same Sackground Color Sky Conditions	1 [17	อ	0	0	0	47.				
Start Blue End same start clear End Same Wind Speed Wind Direction	1	18	0	0	0	0	48			\Box	
Wind Speed Start 0-4 mph End Same Start SE End Same Armbiert Temp. Wet Butb Temp. RH Percent Start 70 Fod 71 62 ~ 63%	1 [19	0	0	0	0	49 .			-	
	֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֡֓֡֓֓֓֡֓֡	20,	O	0	0	0	50			\Box	
Source Layout Sketch Draw North Arrow		21.	٥	0	O	0	51			$oxed{igwedge}$	
		22	. O	0	O	0	52			\	
Road III		23	0	ပ	0	0	53				_
X Opservator Pours Utility		24	0	0	O	0	54	/			1
Poles	ΙL	25	0	0	0	0	55	\bot			1
TI - 52 RET		26	0	0	O	O	56				\perp
<u>~438</u> REF		27	O	B	0	0	57				
Observers Position		28	0	0	0	0	58				
Side Yew Side Yew Side Yew Side Yew		29	0	0	O	0	59				1
Sun Location Line Sun 💠		30	0	0	0	0	60				
ongitude Latitude Declination	O	oserver's	Name (P	ر ال		13 -	mk				
NA NA NA	Ot:	oserver's	Sanager		W.		<u></u>	Date 3	3/25	5/2	ପ ୭၅
Conducted during Run UI-C-I	√ O ₁	ganizati	on .	7.6	C			<u> </u>			
3	Œ	eritfied B	'WI	141,	ow			Date /	/ 9/	09	

Visible Emission Observation Form

· ·											
Method Used (Circle One) Method 9 203A 203B Other:		Projec	1 Number	547	8.00	900.	3000	٩	. (of)
Company Name C 2 6	$\overline{}$	Obser	vation Da	ate / 2	.009	Start T	ime 26		End Tir	156	
Facility Name Baseline Land Fill Street Address	\dashv	Sea		15	30	45	Sec	0	15	30	45
Street Address	\dashv	1	0	ß	0	0	31				
5601 SE 66 Street CHY Ocala State FL 2534480	\dashv	2	0	0	0	0	32				1
		3	0	0	0	0	33				
Process IC Gasine Unit * Operating Mode 1492kW	\Box	4	0	0	9	0	34				
Control Equipment Operating Mode Lean Burn (burks - Upras)		5	0	0	a	٥	35				
Describe Emission Point	_	6	0	0	G	0	38		1.		
~ 32 tall stack w/ cover rusted "IL"	_	7	0	0	0	0	37				
diameter, 1st From West. North of Bld. Halght of Emiss Pt. Hal to Observer	4	В	0	0	0	.0	38		, .		
Start 12 End Same Start 32' End Same Distance to Erriss. Pt. Direction to Erriss. Pt. (Degrees)		9	0	0	0	0	39				
start ~ 90 yds End Same start ~ 10° End Same	· .	. 10	0	0	0	0	40				
Verifical Angle to Obs. Pt. Direction to Obs. Pt. (Degrees) start End Start End Start Distance and Direction to Observation Point from Emission Point:		11	0	0	0	ð	41				
Distance and Direction to Observation Point from Emission Point: Start Sevice a.5 also we End Sevice		12	0	0	·O	0	42				
Describe Emissions	\exists	13	0	0	0	9	43				
Start None Visible End Same Emission Color Water Droplet Plume	_	14	0	0	0	0	44				
Start Clast End Same Attached Detached None	1	15	0	0	0	0	45				
Describe Plume Background		16	0	0	0	0	46				
Start Sky Background Color Start White End Same Start Scattered End Same	7	17	0	0	0	0	47				
wind Speed Wind Direction Start 6-4 mp L End Sauce Start SE End Sauce	\dashv	18	0	0	0	O	48				
Amblent Temp. RH Percent	١.	19	Ġ	.0	0	0	49 .				
	Ϊ.	20	0	0	0	O	50 1	_			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Source Layout Sketch Draw North Arrow Leachate	-	21.	Q	0	0	0	51				
Task	ŀ	22	0	0	0	0	52				
		23	0	0	0	0	53				
Observation Paints	7	24	0	0	0	0	54				
THE WAY THE WAY TO THE WAY WAY		25	0	0	0	0	55				•
□ <u>~32</u> ==		28	0	O	0	9	56				
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	ונ	27	٥	٥	0	0	57				
Observer's resmon V		28	G	0	0	0	58				
Side View Stock With Plume	=	29	0	O	0	0	59			$ \bot $	
Sun Location Line Sun +		30	0	0	U	G	60	·			
mgitude Declination	\dashv	Observers	Name (P	ini) (hris	Щ	ank				· · ·
NA NA NA	١	Observer's	Signature			- 17		Date	3/25	12004	
Confuctal during Run U2-c-1]	Organizatio	м <u>т</u>	RC					,	, 4007	
3	7	Certified By	,	Hlow		·		Date	1/9/	204	
									, ,		- 1

This certifies that...

Christopher Hank

...successfully completed a course in the methods of measurement of visible emissions from sources as specified by Federal Reference Methods 9 and 22 conducted by Eastern Technical Associates of Raleigh, North Carolina.

Jacksonville, Florida		May 30, 2006
Course Location 1		Date
The	Michael W. Jungford	<u> Marty J. Hughe</u> s
President	Director of Training	Instructor

Florida Department of Environmental Protection

Central District
3319 Maguire Boulevard, Suite 232
Orlando, Florida 32803-3767

Charlie Crist Governor

Jeff Kottkamp Lt. Governor

Michael W. Sole Secretary

NOTICE OF PERMIT

E-CORRESPONDENCE leonard.whitehead@marioncountyfl.org

Marion County Board of County Commissioners 5601 SE 66th Street Ocala, FL 34480

Attention: Leonard K. Whitehead, P.E., Director

Marion County - AP
Two Internal Combustion Engines
DEP File Number: 0830124-006-AC

Dear Mr. Whitehead:

Enclosed is Permit Number 0830124-006-AC to construct the above referenced source issued pursuant to Section(s) 403.087, Florida Statutes (F.S.).

Any party to this order (permit) has the right to seek judicial review of the permit pursuant to Section 120.68 F.S., by the filing of a Notice of Appeal pursuant to Rule 9.110 of the Florida Rules of Appellate Procedure with the Clerk of the permitting authority in the Legal Office; and by filing a copy of the Notice of Appeal accompanied by the applicable filing fees with the appropriate District Court of Appeal. The Notice of Appeal must be filed within 30 (thirty) days from the date this Notice is filed with the Clerk of the permitting authority.

Executed in Orlando, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

James N. Bradner, P.E. Program Administrator Air Resources Management

Date: July 15, 2008

JNB/az/jt

Copy: David H. Penoyer, P.E. (dpenoyer@scsengineers.com)
Nick King (nking@g2energy.com)

FILED, on this date, pursuant to Section 120.52, F. S., with the designated Department Clerk, receipt of which is hereby acknowledged.

Clerk July 15, 2008

Date

CERTIFICATE OF SERVICE

This is to certify that this NOTICE OF PERMIT ISSUANCE and all copies were mailed before the

close of business on July 15, 2008 to the listed persons, by

Florida Department of Environmental Protection

Governor Jeff Kottkamp

Charlie Crist

Lt. Governor

Michael W. Sole Secretary

Central District 3319 Maguire Boulevard, Suite 232 Orlando, Florida 32803-3767

Permittee:
Marion County Board of County Commissioners
-5601 SE 66th Street
Ocala, FL 34480

Attn: Leonard K. Whitehead, P.E., Director

I.D. Number: 0830124

Permit Number: 0830124-006-AC Expiration Date: June 30, 2013

County: Marion
Latitude/Longitude:

29° 07' 30"N/82° 03' 45"W

Project: Two Internal Combustion Engines

This permit is issued under the provisions of Chapter(s) 403, F.S., and Florida Administrative Code Rule(s) 62-210. The above named permittee is hereby authorized to perform the work or operate the facility shown on the application and approved drawing(s), plans, and other documents attached hereto or on file with the Department and made a part hereof and specifically described as follows:

The permittee may construct Two Internal Combustion Engines and generator sets. The spark ignition engines are Caterpillar, Model G3520C (2,233 bhp and 1.6 MW each). The engines are fired only by landfill gas conveyed from the existing flare station through a treatment system that consists of compression, dehydrating, and filtering processes prior to being combusted in the engines. The existing flare at the municipal solid waste facility will continue to operate to burn any excess landfill gas collected but not sent to the engines.

The existing municipal solid waste facility is classified as a Title V facility and is located at 5601 SE 66th Street, Ocala, Marion County, Florida.

GENERAL CONDITIONS:

- 1. The terms, conditions, requirements, limitations and restrictions set forth in this permit, are "permit conditions" and are binding and enforceable pursuant to Sections 403.141, 403.727, or 403.859 through 403.861, Florida Statutes (F.S.) The permittee is placed on notice that the Department will review this permit periodically and may initiate enforcement action for any violation of these conditions.
- 2. This permit is valid only for the specific processes and operations applied for and indicated in the approved drawings or exhibits. Any unauthorized deviation from the approved drawings, exhibits, specifications, or conditions of this permit may constitute grounds for revocation and enforcement action by the Department.
- 3. As provided in subsections 403.087(6) and 403.722(5), F.S., the issuance of this permit does not convey any vested rights or any exclusive privileges. Neither does it authorize any injury to public or private property or any invasion of personal rights, nor any infringement of federal, state, or local laws or regulations. This permit is not a waiver of or approval of any other Department permit that may be required for other aspects of the total project which are not addressed in this permit.
- 4. This permit conveys no title to land or water, does not constitute State recognition or acknowledgment of title, and does not constitute authority for the use of submerged lands unless herein provided and the necessary title or leasehold interests have been obtained from the State. Only the Trustees of the Internal Improvement Trust Fund may express State opinion as to title.
- 5. This permit does not relieve the permittee from liability for harm or injury to human health or welfare, animal, or plant life, or property caused by the construction or operation of this permitted source, or from penalties therefore; nor does it allow the permittee to cause pollution in contravention of Florida Statutes and Department rules, unless specifically authorized by an order from the Department.
- 6. The permittee shall properly operate and maintain the facility and systems of treatment and control (and related appurtenances) that are installed and used by the permittee to achieve compliance with the conditions of this permit, as required by Department rules. This provision includes the operation of backup and auxiliary facilities or similar systems when necessary to achieve compliance with the conditions of the permit and when required by Department rules.
- 7. The permittee, by accepting this permit, specifically agrees to allow authorized Department personnel, upon presentation of credentials or other documents as may be required by law and at reasonable times, access to the premises where the permitted activity is located or conducted to:
 - (a) Have access to and copy any records that must be kept under conditions of this permit:
 - (b) Inspect the facility, equipment, practices, or operations regulated or required under this permit; and
 - (c) Sample or monitor any substances or parameters at any location reasonably necessary to assure compliance with this permit or Department rules.

Reasonable time may depend on the nature of the concern being investigated.

- 8. If, for any reason, the permittee does not comply with or will be unable to comply with any condition or limitation specified in this permit, the permittee shall immediately provide the Department with the following information:
 - (a) A description of and cause of noncompliance; and
 - (b) The period of noncompliance, including dates and times; or, if not corrected, the anticipated time the noncompliance is expected to continue, and steps being taken to reduce, eliminate, and prevent recurrence of the noncompliance.

The permittee shall be responsible for any and all damages which may result and may be subject to enforcement action by the Department for penalties or for revocation of this permit.

GENERAL CONDITIONS:

- 9. In accepting this permit, the permittee understands and agrees that all records, notes, monitoring data and other information relating to the construction or operation of this permitted source which are submitted to the Department may be used by the Department as evidence in any enforcement case involving the permitted source arising under the Florida Statutes or Department rules, except where such use is prescribed by Section 403.111 and 403.73, F.S. Such evidence shall only be used to the extent it is consistent with the Florida Rules of Civil Procedure and appropriate evidentiary rules.
- 10. The permittee agrees to comply with changes in Department rules and Florida Statutes after a reasonable time for compliance; provided, however, the permittee does not waive any other rights granted by Florida Statutes or Department rules.
- 11. This permit is transferable only upon Department approval in accordance with Rules 62-4.120 and 62-730.300, Florida Administrative Code (F.A.C.), as applicable. The permittee shall be liable for any non-compliance of the permitted activity until the transfer is approved by the Department.
- 12. This permit or a copy thereof shall be kept at the work site of the permitted activity.
- 13. This permit also constitutes:
 - () Determination of Best Available Control Technology (BACT)
 - () Determination of Prevention of Significant Deterioration (PSD)
 - () Certification of compliance with State Water Quality Standards (Section 401, PL 92-500)
 - (X) Compliance with New Source Performance Standards
- 14. The permittee shall comply with the following:
 - (a) Upon request, the permittee shall furnish all records and plans required under Department rules.

 During enforcement actions, the retention period for all records will be extended automatically unless otherwise stipulated by the Department.
 - (b) The permittee shall hold at the facility or other location designated by this permit records of all monitoring information (including all calibration and maintenance records and all original strip chart recordings for continuous monitoring information) required by the permit, copies of all reports required by this permit, and records of all data used to complete the application for this permit. These materials shall be retained at least three years from the date of the sample, measurement, report, or application unless otherwise specified by Department rule.
 - (c) Records of monitoring information shall include:
 - 1. The date, exact place, and time of sampling or measurements;
 - 2. The person responsible for performing the sampling or measurements;
 - The dates analyses were performed;
 - The person responsible for performing the analyses;
 - The analytical techniques or methods used;
 - 6. The results of such analyses.
- 15. When requested by the Department, the permittee shall within a reasonable time furnish any information required by law which is needed to determine compliance with the permit. If the permittee becomes aware the relevant facts were not submitted or were incorrect in the permit application or in any report to the Department, such facts or information shall be corrected promptly.

Permittee: Marion County Board of County Commissioners

Permit Number: 0830124-006-AC

Expiration Date: June 30, 2013

SPECIFIC CONDITIONS:

OPERATING CONDITIONS

- 1. There is no limitation on the annual hours of operation.
 [Rule 62-210.200, (PTE), F.A.C. and permit 0830124-006-AC]
- 2. No person shall circumvent any pollution control device or allow the emissions of air pollutants without the applicable air pollution control device operating properly.

 [Rule 62-210.650, F.A.C.]
- 3. Each engine will be fired with landfill gas only at 1.6 MW of electrical power. [Rule 62-210.200(PTE), F.A.C. and permit 0830124-006-AC]
- 4. Excess laudfill gas not used as fuel in an engine must be flared in accordance with the requirements of 40 CFR60, Subpart WWW.

 [Rule 62-4.070, F.A.C.]

EMISSION LIMITS

- 5. No person shall cause, suffer, allow or permit the discharge of air pollutants which cause or contribute to an objectionable odor. An objectionable odor is defined as any odor present in the outdoor atmosphere which by itself or in combination with other odors, is or may be harmful or injurious to human health or welfare, which unreasonably interferes with the comfortable use and enjoyment of life or property, or which creates a nuisance.

 [Rules 62-296.320(2) and 62-210.200, F.A.C.]
- 6. Visible emissions from each source must comply with Rule 62-296.320(4)(b)1., F.A.C., and are limited to less than 20 percent opacity.
- 7. Each engine will be subject to the applicable emission limitations of 40CFR60, Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines. [Rule 62-204.800, F.A.C.]

COMPLIANCE

- 8. Each engine will be subject to the applicable compliance and testing requirements of 40CFR60, Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines.[Rule 62-204.800, F.A.C.]
- 9. The permittee shall design each engine stack to accommodate adequate testing and sampling locations in order to determine compliance with the applicable emission limits specified by this permit. [Rule 62-297.310(6), F.A.C.]
- 10. At least 15 days prior to the date on which each formal compliance test is due to begin, the permittee shall provide written notification of the test to the air compliance section of this office. The notification must include the following information: the date, time and location of each test; the name and telephone number of the facility's contact person who will be responsible for coordinating the test; and the name, company, and telephone number of the person conducting the test [Rule 62-297.310(7)(a)9, F.A.C.].

Permittee: Marion County Board of County Commissioners

Permit Number: 0830124-006-AC

Expiration Date: June 30, 2013

SPECIFIC CONDITIONS:

11. Testing of emissions shall be conducted with the emissions unit operation at permitted capacity. The maximum operating rate for each engine is 1.6 MW. Permitted capacity is defined as 90 to 100 percent of the maximum operation rate allowed by the permit. If it is impractical to test at permitted capacity, an emissions unit may be tested at less than the minimum permitted capacity; in this case, subsequent emissions unit operation is limited to 110 percent of the test load until a new test is conducted. Once the unit is so limited, operation at higher capacities is allowed for no more than 15 consecutive days for the purpose of additional compliance testing to regain the authority to operate at the permitted capacity [Rule 62-297.310(2), F.A.C.].

RECORDKEEPING AND DOCUMENT SUBMITTAL

- 12. Each engine will be subject to the applicable recordkeeping and document submittal requirements of 40CFR60, Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines. [Rule 62-204.800, F.A.C.]
- 13. The owner or operator shall submit a copy of the compliance test results to the air compliance section of this office within 45 days after the last sampling run of each test is completed [Rule 62-297.310(8), F.A.C].
- 14. The owner or operator shall complete DEP Form 62-210.900(5), F.A.C., "Annual Operating Report for Air Pollutant Emitting Facility" for each calendar year and submit it either electronically using the latest Department Electronic Annual Operating Report software or by hard copy to the air compliance of this office on or before March 1 of the following year, in accordance with Rule 62-210.370(3), F.A.C. The emissions shall be computed in accordance with the provisions of Rule 62-210.370(2), F.A.C., for purposes of the annual operating report.

PERMIT APPLICATION

15. The construction shall reasonably conform to the plans and schedule submitted in the application. If the permittee is unable to complete construction on schedule, he must notify the department in writing at least 90 days prior to the expiration of the construction permit and submit an application for an extension of the construction permit.

A Title V operating permit revision is required for operation of this source. To obtain a permit, the permittee must demonstrate compliance with the conditions of the construction permit and submit the application fee, along with the compliance test results, if required, and Application for Air Permit to the Department's Central Florida District Office [Rule 62-4.220, F.A.C.]. The application shall be submitted no later than 180 days after completion of construction and compliance testing.

[Rule 62-4.220, F.A.C.]

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

James N. Bradner, P.E. Program Administrator Air Resources Management

Issued: July 15, 2008