FPL -SANFOND PCANT DAY 30: 6/21/90 89041B2/3-1 03/08/90

3.0 AIR QUALITY MODELING RESULTS

3.1 SIGNIFICANT IMPACT ANALYSIS

The maximum impact of the proposed increase in SO_2 emissions from Sanford Unit 4 is presented in Tables 3-1 and 3-2. The results indicate that the maximum predicted SO_2 concentrations are above the significant impact levels, and, therefore, further modeling analysis is required for this pollutant to demonstrate compliance with PSD increments and AAQS. Additional modeling with a receptor grid extended out to 50 km indicated that the proposed test burn is significant out to 50 km.

Maximum impacts for other pollutants for which the proposed test burn had a significant increase in emissions (see Table 2-4) were determined by ratioing the proposed allowable increase in emissions with that for SO_2 . The ratios are then converted to maximum concentrations by multiplying them against the maximum SO_2 impacts for each respective averaging time. The resulting maximum concentrations are presented in Table 3-3 for all significant pollutants. The table indicates that both PM and PM10 are below significant impact levels for the proposed fuel change to Unit 4.

Because maximum impacts for these pollutants do not exceed their significant impact levels, further modeling to determine compliance with allowable PSD increments and AAQS is required for SO₂ only.

As a result, an inventory of other SO_2 sources out to 50 km was evaluated for interaction with the Sanford plant. The maximum predicted PM concentrations were below the significant impact levels at all modeled distances. Because the proposed impacts for the test burn are not significant for PM, further modeling analysis is not required for that pollutant.

Table 2-4. Modeling Parameters for SO₂ Facilities Interacting With FPL Sanford

Model.			Emi:	ssions		Height	Velo	ocity	Tem	erature	Di	ameter
ID No.	Source	Name	lb/hr	(g/s)	ft	(m)	fps	(mps)	*F	(*K)	ft	(m)
20002	FPC	Turner #2	990	(124.7)	237	(72.3)	58	(17.7)	260	(400)	6.0	(1.83)
20003	FPC	Turner #3	2,255	(284.1)	237	(72.3)	79	(24.1)	315	(430)	6.0	(1.83)
20004	FPC	Turner #4	2,255	(284.1)	237	(72.3)	76	(23.2)	270	(405)	6.4	(1.95)
20012	Turner	GT 1&2	329	(40.6)	39	(11.9)	63	(19.2)	960	(789)	12.9	(3.93)
20034	Turner	GT 3&4	867	(109.0)	35	(10.7)	100	(30.5)	800	(755)	19.1	(5.82)
28012	FPC	Debary 1&2	143	(18.0)	30	(9.10)	20	(6.1)	320	(433)	2.5	(0.76)
28016	Debary	GT 1-6	1,764	(222.3)	30	(9.10)	70	(21.3)	750	(672)	7.8	(2.40)
99937	OUC .	Stanton Ena	9,430	(1188.2)	550	(167.6)	83	(25.3)	127	(326)	19.0	(5.79)
33001	C.A.Meyer	Pav	41	(5.2)	34	(10.4)	103	(31.4)	325	(436)	3.2	(0.98)
99903	New Symrma	Beach ^a	873.5	(110.1)	29	(8.8)	78	(23.8)	650	(616)	2.2	(0.67)
54001	Martin	Asphalt	122.3	(15.4)	20	(6.1)	90	(27.4)	325	(436)	~ 3,1	(0.94)

^{*}PSD increment-consuming source.

Table 3-1. Maximum Predicted Impacts For Unit 4's Increase in SO_2 Emissions--Screening Analysis

1982 1983 1984 1985 1986	3.0 3.1 3.4	360 240	5,000 4,000	-	-
1983 1984 1985	3.1	240	-		
1984 1985	3.4		→ . ∪∪∪	-	-
1985		240	5,000	-	-
	3.2	260	5,000	_	-
1900	3.1	240	4,000	-	-
1982	228	260	3,000	305	12
1983	264	160	1,300	82	12
1984	320	20	1,300	209	15
1985	260	300	1,000	193	12
1986	278	240	1,300	137	15
1982	45 ⁻	60	3.000	237	-
1983			•		
1984		230	1,300	82	-
1985	55	200	1,300	148	-
1986	51	300 -	3,000	273	-
	1984 1985 1986 1982 1983 1984 1985	1984 320 1985 260 1986 278 1982 45 1983 43 1984 53 1985 55	1984 320 20 1985 260 300 1986 278 240 1982 45 60 1983 43 300 1984 53 230 1985 55 200	1984 320 20 1,300 1985 260 300 1,000 1986 278 240 1,300 1982 45 60 3,000 1983 43 300 4,000 1984 53 230 1,300 1985 55 200 1,300	1984 320 20 1,300 209 1985 260 300 1,000 193 1986 278 240 1,300 137 1982 45 60 3,000 237 1983 43 300 4,000 130 1984 53 230 1,300 82 1985 55 200 1,300 148

Table 3-2. Maximum Predicted Impacts For Unit 4's Increase in SO_2 Emissions--Refined Analysis

Averaging Time	Year	Concentration $(\mu g/m^3)$	Dir. (°)	Dist. (m)	Day	Hour Ending	
Annual	1984	3.4	240	4900	-		·
3-Hour	1984	348	22	1200	209	15	F
24-Hour	1984 1985	56 59	226 202	1300 1100	259 148	-	

Table 3-3. Maximum Impact of Proposed Unit 4 Test Burn As Compared To Significant Impact Levels

	Mode	ling Applicabi	lity	Monitoring Applicability		
Pollutant/ Averaging Time	Maximum Impact (µg/m³)	Significant Impact Level (µg/m³)	Further Analysis Required?	De Minimus Air Quality Levels (µg/m³)	Monitoring Data Required?	
Sulfur Dioxi	<u>de</u>	,		;		
Annual	3.4	1	YES			
3-Hour	348	25	YES			
24-Hour	59	5	YES	13	YES	
Particulates	-TSP				,	
Annual	0.2	1	NO	NA		
24-Hour	3.9	5	NO			
<u>Particulates</u>	- PM10					
Annual	0.3	1	NO			
24-Hour	4.6	. 5	NO .	NA		
Sulfuric Aci	d Mist	•				
Annual	0.03	NAª		NAb		
•				•		

^aSignificant impact levels do not exist for Sulfuric Acid Mist. ^bNo ambient air measurement method exists.

3.2 AAQS ANALYSIS

The SO_2 impacts for the screening analysis due to all sources in the vicinity of the Sanford plant are presented in Table 3-4. The maximum SO_2 impacts for the refined analysis due to all sources in the vicinity of the Sanford plant are presented in Table 3-5. The maximum refined 3-hour, 24-hour, and annual average concentrations are 895, 254, and 31 micrograms per cubic meter $(\mu g/m^3)$, respectively, which are below the AAQS of 1300, 260, and 60 $\mu g/m^3$, respectively. Source contributions at each of these maximum modeled concentration are shown in Table 3-6. The Sanford plant's contributions to the maximum 3-hour, 24-hour, and annual concentrations are 23, 24, and 16 percent of the total concentration (including background) for each respective averaging time.

3.3 PSD ANALYSIS

The screening analysis results for SO_2 Class II increment consumption for the proposed Orimulsion test burn at the Sanford plant and other PSD sources in the Sanford plant's vicinity are presented in Table 3-7. Results from the refined analysis are presented in Table 3-8. The maximum 3-hour, 24-hour, and annual average concentrations are 348, 59, and 4.8 $\mu g/m^3$, respectively, which are 68, 65, and 24 percent of the allowable increments, respectively.

3.4 COMPARISON OF CURRENT AND PROPOSED PREDICTED IMPACTS

A comparison of maximum impacts for the current and proposed SO_2 emission scenarios for Sanford are presented in Table 3-9. Maximum impacts for the current emissions limit of 1.65 lb/ 10^6 Btu for Units 3, 4, and 5 are 6.3, 85, and 484 μ g/m³, for the annual, 24-hour, and 3-hour averaging times, respectively. The corresponding State of Florida AAQS are 60, 260, and 1,300 μ g/m³, respectively.

The proposed emissions produced slightly higher impacts. The maximum proposed impacts due to Sanford are 7.5, 115, and 667 μ g/m³. The increases in the maximum impact are 19 percent for annual averaging, 35 percent for 24-hour averaging, and 37 percent for 3-hour averaging.

Table 3-4. Maximum Predicted Total $\mathrm{SO_2}$ Concentrations From the Screening Analysis for Comparison to AAQS

	Conce	entration ($\mu g/m^3$)					
		Total	Due To	Receptor L	ocationª	Period		
Averaging Period	Total	Modeled Sources	Background	Direction (°)	Distance (km)	Julian Day	Hour Ending	Year
3-hour ^b	895	795	100	60	7.0	165	12	1982
	850	750	100	60	7.5	136	15	1983
	885	785	100	60	6.5	225	15	1984
•	879	779	100	[,] 60	7.0	285	15	1985
	850	750	100	70	6.5	142	15	1986
24-hour ^b	254	226	28	60	7.0	165	24	1982
	174	146	28	50	6.0	122	24	1983
	209	181	28	70	6.5	155	24	1984
	193	165	28	60	7.0	73	24	1985
	204	176	28	70	7.0	118	24	1986
Annual	30	26	4	350	4.0			1982
	30	. 26	4	350	5.0			1983
	31	27	4	340	3.0	٠		1984
	29	25	4	360	3.0			1985
	29	25	4	340	3.0			1986
			•		·			

Note: AAQS are 1,300 $\mu g/m^3$, 3-hour 260 $\mu g/m^3$, 24-hour 60 $\mu g/m^3$, annual

^aRelative to the location of the Sanford plant.
^bHighest, second-highest concentrations predicted for this averaging period.

Table 3-5. Maximum Predicted Total SO_2 Concentrations From the Refined Analysis for Comparison to AAQS

	Conce							
Averaging Period	Total	<u>Total</u> Modeled Sources	Due To Background	Receptor I Direction (°)		Juliar Day	eriod Hour Ending	Year
3-hourb	895	795	100	60	7.0	165	12	1982
24-hour	254	226	28	60	7.2	165	24	1982
Annual	31	27	4	346	3.0			1984

Note: AAQS are 1,300 $\mu \rm g/m^3$, 3-hour 260 $\mu \rm g/m^3$, 24-hour 60 $\mu \rm g/m^3$, annual

*Relative to the location of the Sanford plant.

bHighest, second-highest concentrations predicted for this averaging period.

Table 3-6. Source Contributions to the Maximum SO_2 Concentrations Predicted in the Refined Analysis

	Concentration $(\mu g/m^3)$						
Source	Annual	24-hour	3-hour				
Sanford	4.9	61.4	202.6				
Turner	9.1	163.6	588.2				
DeBary	7.3	0.4	4.3				
OUC Stanton Energy Center	0.5	0.0	0.0				
C.A. Meyer	0.2	0.2	0.0				
New Smyrna Beach Utility	1.0	0.0	0.0				
Martin Asphalt	4.3	<u> </u>	0.0				
Total	27.3	225.7	795.1				

Table 3-7. Maximum Predicted $\mathrm{SO_2}$ Concentrations From the Screening Analysis for Comparison to PSD Class II Increments

•	Maximum	Receptor L	ocation ^a		Period		
Averaging	Concentration	Direction	Distance	Julian	Hour	Year	
Period	(μg/m³)	(°)	(km)	Day	Ending		
3-hour ^b	228	260	3.0	305.	12	1982	
	264	160	1.3	82	12	1983	
	320	20	1.3	209	15	1984	
	260	300	1.0	193	12	1985	
•	279	240	1.3	137	15	1986	
24-hourb	45	260	4.0	305	24	1982	
*	44	300	4.0	130	24	1983	
	54	230	1.3	82	24	1984	
	55	200	1.3	148	24	1985	
	51	300	3.0	273	24	1986	
Annual	4.3	360	4.0			1982	
	4.1	240	4.0			1983	
	4.7	300	4.0	- -		1984	
•	4.7	120	5.0			1985	
	4.7	120	4.0			1986	

^{*}Relative to the location of the Sanford plant.

bHighest, second-highest concentrations predicted for this averaging period.

Table 3-8. Maximum Predicted SO₂ Concentrations From the Refined Analysis for Comparison to PSD Class II Increments

	Maximum	Receptor L	ocationa	P	PSD		
veraging Period	Concentration (µg/m ³)	Direction (*)	Distance (km)	Julian Day	Hour Ending	Year	Class II Increment
3-Hourb	348	22	1.2	209	15	1984	512
24-Hourb	59	202	1.1	148	24	1985	91
Annual	4.8	126	4.4	-	-	1984	20

⁸Relative to the location of the Sanford plant.

bHighest, second-highest concentrations predicted for this averaging period.

Table 3-9. Comparison of Maximum SO₂ Predicted Impacts For Various Emission Strategies--Refined Analysis

Emission Scenario	Averaging Time	Year	Concentration (µg/m ³)	Direction (*)	Distance (m)	Day	Hour Ending
Current Emissions:	Annual	1984	6.3	240	3,700	-	
Units 3, 4, and 5 at	24-Hour	1985	85	202	1,100	148	-
1.65 lb/10 ⁶ Btu	3-Hour	1984	484	20	1,100	209	15
Proposed Emissions:	Annual	1984	7.5	240	4,300	-	-
Units 3, 5, at 1.1	24-Hour	1985	115	202	1,100	148	-
1b/10 ⁶ Btu, Unit 4 at 4.3 1b/10 ⁶ Btu	3-Hour	1984	667	22	1,200	209	15
Maximum PSD Increment	Annual	1984	1.5	302	5,300	_	_
Consumed from	24-Hour	1985	32 '	202	1,200	148	-
Current to Proposed Emission Scenario	3-Hour	1984	188	22	1,200	209	15

The maximum increments consumed in going from the current to proposed emission scenario are 1.5 $\mu g/m^3$ for annual averaging, 32 $\mu g/m^3$ for 24-hour averaging, and 188 $\mu g/m^3$ for 3-hour averaging. The allowable PSD increments are 20, 19, and 512 $\mu g/m^3$, respectively.

3.5 CONCLUSIONS

The proposed Orimulsion test burn in Sanford Unit 4 will produce maximum predicted SO_2 and PM concentrations that are expected to comply with the AAQS and PSD Class II increments. These results are based on PM emission rates for the proposed test burn that include excess emissions occurring for 3 hours during a 24-hour period at all three units.

For PM, the maximum concentration due to the test burn alone is predicted to be less than the significant impact levels. For SO_2 , the maximum concentrations due to emissions from the Sanford plant and other sources are predicted to be below the AAQS and PSD Class II increments.

4.0 ADDITIONAL IMPACT ANALYSIS

4.1 IMPACTS ON VEGETATION

The response of vegetation to atmospheric pollutants is influenced by the concentration of the pollutant, duration of the exposure and the frequency of exposures. The pattern of pollutant exposure expected from the facility is that of a few episodes of relatively high ground-level concentration which occur during certain meteorological conditions interspersed with long periods of extremely low ground-level concentrations. If there are any effects of stack emissions on plants they will be from the short-term higher doses. A dose is the product of the concentration of the pollutant and the duration of the exposure. The impact of the Sanford Unit 4 test burn on regional vegetation was assessed by comparing pollutant doses that are predicted from modeling with threshold doses reported from the scientific literature which could adversely affect plant species typical of those present in the region.

4.1.1 SULFUR DIOXIDE

The maximum total 3-hour average SO_2 concentration resulting from the test burn is predicted to be 448 $\mu g/m^3$ [348 $\mu g/m^3$ (Table 3-2) plus 100 $\mu g/m^3$ background]. This concentration is predicted to occur about 1.2 km (0.75 mile) north-northeast of the stacks and represents the concentration that would occur during the worst-case meteorological conditions of the past five years. The maximum 3-hour average ground-level concentration predicted for the other four years are 85 percent or less of the maximum concentration. Concentrations decrease with distance beyond the location of the maximum concentration.

The maximum total predicted 24-hour average SO_2 concentration resulting from the test burn is 87 $\mu g/m^3$ [59 $\mu g/m^3$ (Table 3-2) plus 28 $\mu g/m^3$ background] and is located approximately 1.1 km (0.70 mile) south-southeast of the stacks. The maximum total predicated annual SO_2 concentration is 7.4 $\mu g/m^3$ [3.4 $\mu g/m^3$ (Table 3-2) plus 4 $\mu g/m^3$ background]. This concentration is predicted to occur 4.9 km (3.1 miles) to the southwest of the stacks.

These concentrations and averaging times can be compared with SO_2 doses known to adversely affect plant species that are presented in Table 4-1. The expected doses from the test burn combined with background sources are much lower than doses known to cause a detrimental effect on vegetation.

4.1.2 PARTICULATE MATTER--TSP AND PM10

Predicted impacts of these pollutants are less than the significant impact levels (see Table 3-3). As a result, no impacts are expected to occur to vegetation as a result of temporarily increasing PM/PM10 emissions.

4.2 IMPACTS TO SOILS

SO₂ that reaches the soil by deposition from the air is converted by physical and biotic processes to sulfates. (Particulates have no affect on soils at the levels predicted.) The effects can be beneficial to plants if sulfates in native soils are less than plant requirements for optimum growth. However, sulfates can also increase acidity of unbuffered soils, causing adverse effects due to changes in nutrient availability and cycling. The predicted concentrations of SO₂ from stack emissions are not expected to have a significant adverse effect on soils in the vicinity because:

- 1. The predicted concentrations are low;
- 2. Fertilizer and ground limestone is generally applied to lands being used for crops, pasture, and citrus; and
- 3. Emissions of SO_2 from the proposed test burn are equivalent to or less than quantities previously emitted and permitted for.

Therefore, the facility is not expected to have a significant adverse impact on regional vegetation or soils.

4.3 IMPACTS DUE TO ADDITIONAL GROWTH

A limited number of additional personnel will be temporarily added to the current plant personnel complement. These additional personnel are expected to have an insignificant effect on the residential, commercial, and industrial growth in Volusia County.

Table 4-1. SO_2 Doses Reported to Affect Plant Species Similar to Vegetation in the Region of the Sanford Plant

Pollutant	Species	Dose and Effect	Reference
SO ₂	Strawberry	1,040 μ g/m³ for 6 hours per day for 3 days had no affect on growth	Rajput <u>et al</u> ., 1977
SO ₂	Citrus	$2,080~\mu g/m^3$ for 23 days with 10 day interruption reduced leaf area	Matsushima and Brewer, 1972
SO ₂	Ryegrass	42 μ g/m³ for 26 weeks or 367 μ g/m³ for 131 days reduced dry weight	Bell <u>et al</u> ., 1979 Ayazaloo and Bell, 1981
SO ₂	Tomato	1,258 μ g/m³ for 5 hours per day, for 57 days, reduced growth	Kohut <u>et al</u> ., 1983
SO ₂	Duckweed	390 μ g/m³ for 6 weeks reduced growth	Fankhauser <u>et</u> <u>al</u> ., 1976
SO ₂	Lichens (Parmotrema and Ramalina spp.)	$400~\mu g/m^3$ 6 hours per week for $10~\text{weeks}$ reduced CO_2 uptake and biomass gain of Ramalina, not Parmotrema	Hart <u>et</u> <u>al</u> ., 1988
SO ₂	Bald Cypress	1,300 and 2,600 $\mu g/m^3$ for 48 hours. Only 2,600 $\mu g/m^3$ reduced leaf area.	Shanklin and Kozlowski, 1985
SO ₂	Green Ash	210 μ g/m³ for 4 hours per day, 5 days per week for 6 weeks reduced growth	Chappelka <u>et</u> <u>al</u> ., 1988

Orimulsion will be delivered by truck every week to the facility in the same manner as residual oil. As a result, no additional impacts will occur.

Therefore, no air quality related impacts associated with residential, commercial and industrial growth are anticipated.

4.4 IMPACTS TO VISIBILITY

The Sanford Plant is located greater than 100 km from a Class I area; pursuant to Chapter 17-2.500(5)(d)1.e., F.A.C., a visibility impact analysis is not required.