RECEIVED

MAR 14 2007

BUREAU OF AIR REGULATION

NITROGEN OXIDES
EMISSIONS TESTING
of the
CF INDUSTRIES, INC.
SULFURIC ACID PLANT D
Plant City, Florida

February 1, 2007

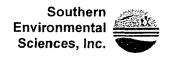
AIRS No. 0570005 E.U. ID No. 008 SES Reference No. 06S496

Conducted by:

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 North Wheeler Street Plant City, Florida 33563 Phone (813) 752-5014, Fax (813) 752-2475

Project Participants

Mark S. Gierke Malvin Hinsz


NITROGEN OXIDES EMISSIONS TESTING of the CF INDUSTRIES, INC. SULFURIC ACID PLANT D Plant City, Florida

February 1, 2007

TABLE OF CONTENTS

		ıge
1.0 INTRODUCTION	•	1
2.0 SUMMARY OF RESULTS		1
3.0 PROCESS DESCRIPTION		1
4.0 SAMPLING PROCEDURES		3
4.1 Methods 4.2 Sampling Locations 4.3 Sampling Train 4.4 Sample Collection		3 4
5.0 ANALYTICAL PROCEDURE		4
5.1 Analysis		4
FIGURES		5
APPENDIX		8

Project Participants
Certification
Process Operational Data
Field Data Sheets
Analyzer Strip Charts
Calibration Data
Calculations and Symbols

1.0 INTRODUCTION

Southern Environmental Sciences, Inc. conducted nitrogen oxides emissions testing of the CF Industries, Inc. Sulfuric Acid Plant D on February 1, 2007. This plant is located on State Road 39 in Plant City, Florida. Testing was performed to determine if the plant was operating in compliance with requirements of the Florida Department of Environmental Protection (FDEP) and the Environmental Protection Commission of Hillsborough County (EPCHC).

2.0 SUMMARY OF RESULTS

The plant was found to be in compliance with all applicable emission limiting standards. Results of the emissions test are summarized in Table 1. Allowable nitrogen oxides emissions from this source are limited to a maximum of 0.12 pounds per ton of 100% sulfuric acid produced. The average measured nitrogen oxides emission rate was 0.083 pounds per ton of 100% sulfuric acid produced.

3.0 PROCESS DESCRIPTION

Sulfuric Acid Plant D is a 2750 TPD (approximately) sulfur-burning, double-conversion, double-absorption plant of Leonard-Monsanto design. Sulfur is burned with dried atmospheric oxygen to produce sulfur dioxide (SO_2). The sulfur dioxide is catalytically oxidized to sulfur trioxide (SO_3) over a vanadium pentoxide catalyst bed. The sulfur trioxide so produced is absorbed in 98% sulfuric acid. The acid flows from each absorbing tower are combined to provide product acid. By the use of an intermediate absorbing tower, the

TABLE 1. EMISSIONS TEST SUMMARY

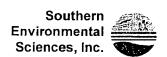
Company: CF INDUSTRIES, INC.
Source: SULFURIC ACID PLANT D

	Run 1	Run 2	Run 3	
Date of Run	2/1/07	2/1/07	2/1/07	
Process Rate (TPH)	106.6	105.5	105.1	
Start Time (24-hr. clock)	0920	1125	1245	
End Time (24-hr. clock)	1020	1225	1345	
Barometric Pressure at Barom. (in. Hg.)	30.12	30.12	30.12	
Elev. Diff. Manom. to Barom. (ft.)	0	0	0	
Moisture in Stack Gas (% Vol.)	0.0	0.0	0.0	
Molecular Weight Dry Stack Gas	28.00	28.00	28.00	
Molecular Weight Wet Stack Gas	28.00	28.00	28.00	
Stack Gas Static Press. (in. H2O gauge)	-0.20	-0.22	-0.24	
Stack Gas Static Press. (in. Hg. abs.)	30.11	30.10	30.10	
Average Square Root Velocity Head	0.503	0.491	0.499	
Average Stack Gas Temperature (°F)	160.1	161.4	161.3	
Pitot Tube Coefficient	0.82	0.82	0.82	
Stack Gas Vel. Stack Cond. (ft./sec.)	30.23	29.54	30.04	
Effective Stack Area (sq. ft.)	67.20	67.20	67.20	
Stack Gas Flow Rate Std. Cond. (DSCFM)	104,432	101,808	103,572	
Stack Gas Flow Rate Stack Cond. (ACFM)	121,899	119,088	121,133	
NOx Emissions (PPM)	10.6	12.9	12.0	11.8
NOx Emissions (lb./hr.)	7.95	9.39	8.90	8.75
NOx Emissions (lbs/ton of 100% acid) Allowable NOx Emissions (lbs./ton of 100%	0.075 acid)	0.089	0.085	0.083 0.12

Note: Standard conditions 68° F, 29.92 in. Hg

partial pressure of sulfur dioxide in the final converter is increased to drive the conversion reaction to a greater degree of completion, thus providing greater efficiency and cleaner atmospheric emissions.

The permitted process rate for this source is 2750 TPD based upon 100 percent H₂SO₄. Process rates during the test period were determined by plant personnel. Process operational data are included in the appendix.


4.0 SAMPLING PROCEDURES

4.1 Methods

All sampling was performed using methods currently acceptable to the FDEP. Nitrogen oxides sampling was conducted in accordance with EPA Method 7E - Determination of Nitrogen Oxides Emissions from Stationary Sources (Instrumental Analyzer Procedure), 40 CFR 60, Appendix A-4. Stack gas flow rates were determined in accordance with EPA Method 2 - Determination of Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tube), 40 CFR 60 Appendix A-1. The effluent gas stream was considered to be dry and the water vapor volume and moisture content were assumed to be zero percent as described in section 6.4 of EPA Method 8.

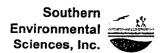
4.2 Sampling Locations

Locations of the sample ports and stack dimensions are shown in Figure 1. Nitrogen

oxides sampling was performed from the same sampling ports as the those used for determination of stack gas flow rate. Twenty four sample points were chosen in accordance with EPA Method 1 - Sample and Velocity Traverses for Stationary Sources, 40 CFR 60, Appendix A.

4.3 Sampling Train

The sampling train consisted of a stainless steel probe, calibration valve, heated teflon sample line, condenser and a Teledyne Instruments, Model 200EH Chemiluminiscent NO/NO_X Analyzer as shown in Figure 2.


4.4 Sample Collection

The analyzer was calibrated immediately prior to the beginning of the test by introducing known gases into the instrument through the sampling system. Zero and a high-range calibration gas were introduced after each run to check for instrument drift.

5.0 ANALYTICAL PROCEDURE

5.1 Analysis

The average nitrogen oxides concentration was determined for each one-hour test run. Based on the stack flow rate determinations, the concentrations were then converted to pound per hour and pound per ton emissions rates.

FIGURES

- Figure 1. Stack Dimensions and Sample Port Locations.
- Figure 2. EPA Method 7E Sampling Train.

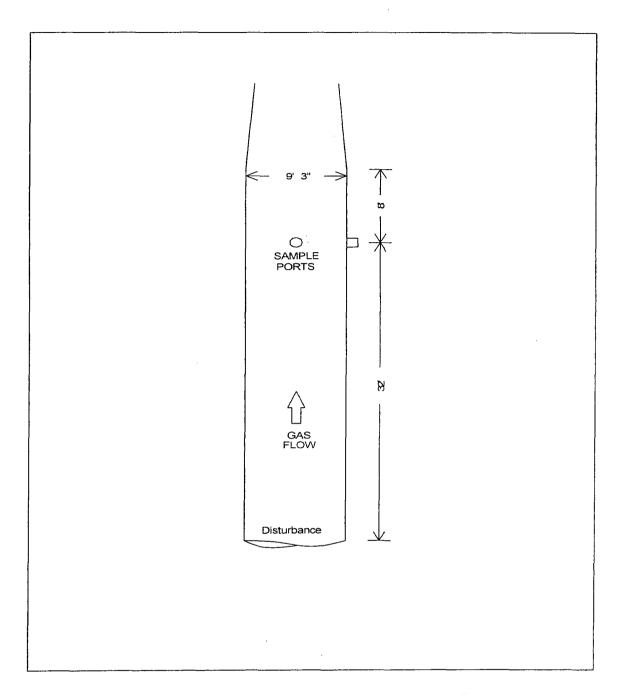


Figure 1. Stack Dimensions and Sample Port Locations, CF Industries, Inc., Sulfuric Acid Plant D, Plant City, Florida.

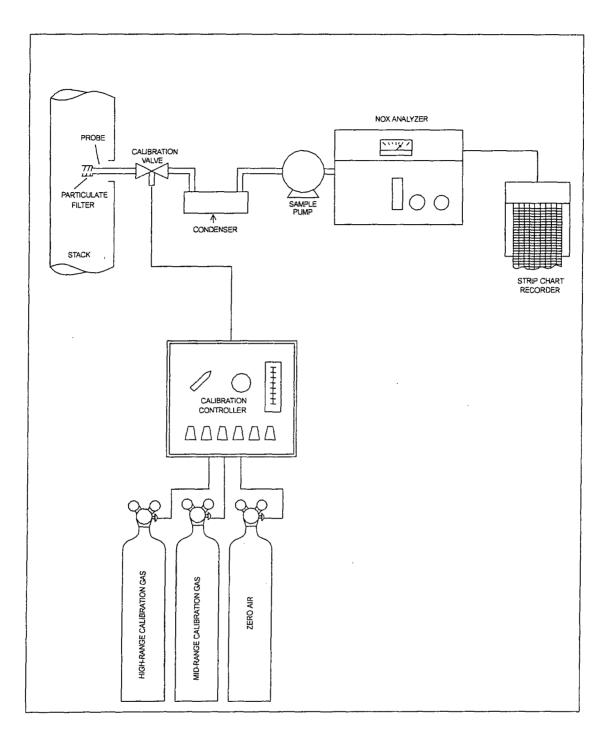
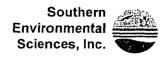



Figure 2. EPA Method 7E Sampling Train.

APPENDIX

Project Participants

Certification

Process Operational Data

Field Data Sheets

Analyzer Strip Charts

Calibration Data

Calculations and Symbols

PROJECT PARTICIPANTS AND CERTIFICATION CF INDUSTRIES, INC. SULFURIC ACID PLANT D Plant City, Florida

February 1, 2007

Project Participants:

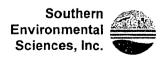
Mark S. Gierke Malvin Hinsz Conducted the field testing.

Frank Dlugos (CF Industries)

Provided process rates.

Mark S. Gierke

Computed test results.


Dale A. Wingler

Prepared the final test report.

Certification:

I certify that to my knowledge all data submitted in this report is true and correct.

Mark S. Gierke

Byron Nelson

From: Sent:

mark gierke [mgierke@sesfla.com] Friday, February 02, 2007 3:41 PM

To: Subject:

bnelson@sesfla.com FW: D SAP TIMES

----Original Message----

From: Dlugos, Frank [mailto:fdlugos@cfifl.com]

Sent: Friday, February 02, 2007 2:34 PM

To: mark gierke

Subject: RE: D SAP TIMES

Mark,

Here are the production tons per day for the runs that you had yesterday.

Run No.

1

2

3

Avg rate (TPD)

2559

2531

2522

Frank

----Original Message----

From: mark gierke [mailto:mgierke@sesfla.com]

Sent: Friday, February 02, 2007 10:40 AM

To: Dlugos, Frank Subject: D SAP TIMES

Hey Frank,

Here are the run times.

RUN NO 1 - 9:20-10:20

RUN NO 2 - 11:25-12:25

RUN NO 3 - 12:45-13:45

Anything else let me know.

Mark

The information contained in this communication is confidential and intended solely for the use of the addressee. It is the property of CF Industries, Inc. Unauthorized use, disclosure, forwarding or copying of this communication or any part thereof is strictly prohibited and may be unlawful. If you have received this communication in error, please notify the sender immediately by return e-mail and destroy this communication and all copies thereof, including all attachments.

BEST AVAILABLE COPY

∃yron Nelson

From:

Dlugos, Frank [fdlugos@cfifl.com]

ent:

Friday, February 02, 2007 10:21 AM

o:

bnelson@sesfla.com

c:

kroberts@sesfla.com

subject: D SAP NOx

°on,

e initial tons per day estimate for D SAP is 2533. I will provide you with the final number when you provide me with your testing

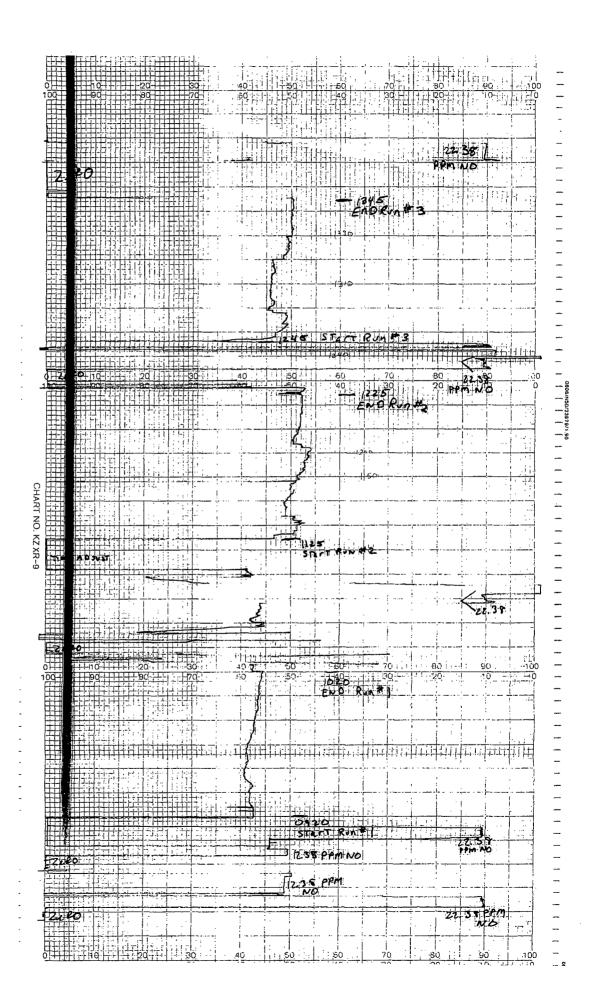
ase let me know your NOx results when you calculate them.

inks,
ink Dlugos
vironmental Supervisor
Industries, Inc.
int City Phosphate Complex
3) 364-5654
gos@cfifl.com

x 813 783-8068

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. Wheeler St., Plant City, Florida 33566 (813) 752-5014

VELOCITY TRAVERSE


SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. Wheeler St., Plant City, Florida 33566 (813) 752-5014

VELOCITY TRAVERSE

SOUTHERN ENVIRONMENTAL SCIENCES, INC. 1204 N. Wheeler St., Plant City, Florida 33566 (813) 752-5014

VELOCITY TRAVERSE

CF INDUSTRIES SAP "D" NITROGEN OXIDES 0 - 25 PPM 6 CM/HR 2/01/2007

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 North Wheeler St. Plant City, Florida 33566 (813) 752-5014

NITROGEN OXIDES ANALYZER CALIBRATION DATA

EPA METHOD 7E

COMPANY	CF INDUSTRIES
SOURCE	SULURIC ACID "D"
OPERATOR	M. GIERKE
DATE	02/01/2007
RUN #'S	1 THROUGH 3
INSTRU. SPAN RANGE	25 PPM

	Cylinder value (PPM)	Analyzer calibration responses (PPM)	Absolute difference (PPM)	Difference (% of Span)
Zero	0	0	0	0.0
Mid-range	12.35	12.450	0.1	0.4
High-range	22.38	22.45	0.07	0.3

SYSTEM CALIBRATION BIAS AND DRIFT DATA

			Initial	Initial Values		Final Values	
		Analyzer calibration	System calibration	System calibration	System calibration	System calibration	
		response	response	bias	response	bias	Drift
		(PPM)	(PPM)	(% of span)	(PPM)	(% of span)	(% of span)
Run 1	Zero	0	0	0.0	0	0.0	0.0
	Upscale	22.450	22.4	-0.2	22.5	0.2	0.4
Run 2	Zero	0	0	0.0	0	0.0	0.0
	Upscale	22.450	22.5	0.2	22.4	-0.2	-0.4
Run 3	Zero	0	0	0.0	0	0.0	0.0
	Upscale	22.450	22.4	-0.2	22.45	0.0	0.2

System Calibration Bias = System Cal. Response - Analyzer Cal. x 100
Span

SOUTHERN ENVIRONMENTAL SCIENCES, INC. PITOT TUBE CALIBRATION

Pitot Tube ID: 10A

Date: 11/22/06

Calibrated By: MH

Cp of Standard Pitot: 0.99

"A" SIDE CALIBRATION									
Run No.	Delta P std (in. H2O)	Delta P(s) (in. H2O)	Cp(s)	Deviation Cp(s) - Cp(A)					
1	0.52	0.75	0.82	0.00					
2	0.52	0.75	0.82	0.00					
33	0.52	0.75	0.82	0.00					
	Average →	Cp (SIDE A)	0.82	0.00					

"B"SIDE CALIBRATION										
Run No.	Delta P std (in. H2O)	Delta P(s) (in. H2O)	Cp(s)	Deviation Cp(s) - Cp(B)						
11	0.52	0.75	0.82	0.00						
2	0.52	0.75	0.82	0.00						
3	0.52	0.76	0.82	0.00						
	Average -	Cp (SIDE B)	0.82	0.00						

 $Cp(s) = Cp(std) x (Delta Pstd/Delta Ps)^1/2$

Average Deviation = Sum Cp(s)-Cp(A or B)Must be ≤ 0.01

 \overline{Cp} (SIDEA) \overline{Cp} (SIDE B) Must be ≤ 0.01

THERMOMETER CALIBRATIONS

Calibrated By/Date: Dale A, Wingler 3/17/06

TEMPERATURES ARE DEGREES RANKIN

			ICE BATH			TEPID WA	TEPID WATER BOILING WATER			HOT OIL				
ID No.	Туре	Range	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff	STD Therm	Temp	Deg or Diff
T1	PT	2000° F	500	505	1.00%	538	536	0.37%	622	623	0.16%	828	830	0.24%
T2	PT	2000° F	500	504_	0.80%	538	536	0.37%	627	628	0.16%	816	818	0.25%
Т3	PΤ	2000° F	500	501	0.20 %	_538_	535	0.56%	630	633	0.48%	818	822	0.50%
T4	PT	2000° F	500	502	0.40 %	. 538	536	0.37%	634	636	0.32%	820	824	0.49%
<u>T5</u>	РТ	2000° F	500	503	0.60%	. 538.	535	0.56%	640	639_	0.16%	820	818	0.24%
	PT	2000° F	500	504	0.80%	538	535.	0.56%	644	644	0.00%	824	820	0.49%
	PT	2000° F	500	503	0.60%	538	535	0.56%	646	645	.015%	824	820	0.49%
Т8	PT	2000° F	500	501	0.20%	538	536	0.37%	648	648	0.00%	816	820	0.49%
T9	PT	2000° F	500	502	0.40%	538	535	0.56%	650	651	0.15%	818	821	0,37%
SS110	вм	220° F	498	500	2°	_538	535	3 °	672	674	2°	<u> </u>	-	ļ
SS300	PT	2000 °F	498	498	0.00%	538	535	0.56%	672	674	0.30%	830	832	0.24%
SS301	PT	2000° F	498	499	0.20%	538	535	0.56%	672	672	0.00%	830	834	0.48%
SS306	PT	2000° F	498	500	0.40%	538	535	0.56%	672	674	0.30%	830	830	0.00%
2.5'PA	PT	2000° F	494	494	0.00%	524	523	0.19%	650	649	0.15%	754	754	0.00%
2.5'PB	PT	2000° F	498	500	0.40%	538	538	0.00%	661	662	0.15%	828	832	0.48%
3'P	РТ	2000° F	498	497	0.20%	538	537	0.19%	662	664	0.30%	828	830	0.24%
3'INC	PT	2000° F	497	497	0.00%	538	538	0.00%	660	659	0.15%	835	836	0.12%
5'PA	PT	2000° F	497	496	0.20%	538	539	.019%	662	660	0.30%	832	831	0.12%
5'PB	PT	2000° F	497	497	0.00%	538	540	0.37%	662	662	0.00%	832	834	0.24%
5'PC	PT	2000° F	497	497	0.00%	538	539	0.19%	664	664	0.00%	832	834	.024%
5'PD	PT	2000° F	497	498	0.20%	538	539	0.19%	664	664	0,00%	830	831	0.12%
5'PE	PT	2000° F	497	499	0.40%	538	538	0.00%	666	664	0.00%	830	832	0.24%
5'VP	PT	2000° F	497	495	0.40%	538	538	0.00%	662	664	0.30%	832	831	0.12%
5'INC	PT	2000° F	497	497	0.00%	538	537	0.19%	660	662	0.30%	836	835	0.12%
в'РА	PT	2000° F	496	498	0.40%	538	538	0.00%	_668	668	0.00%	834	833	0,12%
8'PB	PT	2000° F	496	498	0.40%	538	539	0.19%	669	.670	0.15%	834	834	0.00%
8'PC	PT	2000° F	496	497	0.20%	538	539	0.19%	670	671	0.15%	834	833	0.12%
8'PD	PT	2000° F	496	496	0.00%	538	539	0.19%	670	672	0.30%	834	832	0.24%
10'PA	PT	2000° F	498	501	0,60%	538	540	0.37%	656	658	.30%	840	842	0.24%
10'PB	PT	2000° F	498	500	0.40%	.538	540	0.37%	656	657	0.15%	840	838	0.24%

Certificate of Analysis: EPA Protocol Gas Mixture

Airgas Specialty Gases

600 Union Landing Road Riverton, NJ 08077 (856) 829-7878 Fax (856) 829-0571

www.airgas.com

Cylinder Number:

CC215989

Reference Number: 82-124042865-1 Expiration Date:

Cylinder Pressure:

1999.6 PSIG 8/19/2005

8/19/2007

Certification Date:

Laboratory:

ASG - Riverton - NJ

Certified Concentrations

Component	Concentration	Accuracy	Analytical Principle	Procedure
NITRIC OXIDE	12.35 PPM	+/- 1%	Chemiluminescence	G1
NITROGEN	Balance			

Total oxides of nitrogen

12.45 PPM

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences.

Notes:NOx - 1st analysis = 12.43ppm - 8/12/05

 $NOx - 2nd \ analysis = 12.46ppm - 8/19/05$

Analytical accuracy = +/-2% relative

Analytical principle = Chemiluminescence

Standard 6= NTRM XC019162B 20.18ppm NOX

Do not use cylinder below 150 psig.

Reference Standard Information

<u>Type</u>	Balance Gas	Component	<u>Cyl.Number</u>	Concentration
NTRM 82629	NITROGEN	NITRIC OXIDE	XC019242B	20.13 PPM

Analytical Results

1st Component	NITRIC OXID	ÞΕ	
1st Analysis Date	08/12/2005		
R 7.835	\$ 4.801	Z -0.004	Conc 12.32 PPM
S 4.818	Z 0.003	R 7.870	Conc 12.31 PPM
Z 0.004	R 7.842	S 4.819	Conc 12.36 PPM
			AVG: 12.33 PPM
2nd Analysis Date:	08/19/2005		
R 7.760	S 4.776	Z -0.003	Conc 12.37 PPM
S 4.762	Z 0.004	R 7.749	Conc 12.37 PPM
Z 0.005	R 7.735	S 4.769	Conc 12.39 PPM
			AVG: 12.37 PPM

Certificate of Analysis: EPA Protocol Gas Mixture

Airgas Specialty Gases 600 Union Landing Road Riverton, NJ 08077

Riverton, NJ 08077 (856) 829-7878 Fax (856) 829-0571 www.airgas.com

Cylinder Number: Cylinder Pressure: CC216072

Reference Number: 82-124042863-1

82-124042863-8/22/2007

Certification Date:

1999.6 PSIG 8/22/2005 Expiration Date: Laboratory:

ASG - Riverton - NJ

Certified Concentrations

Component	Concentration	Accuracy	Analytical Principle	Procedure
NITRIC OXIDE	22.38 PPM	+/- 1%	Chemiluminescence	G1
NITROGEN	Balance			

Total oxides of nitrogen

22.55 PPM

Certification performed in accordance with "EPA Traceability Protocol (Sept. 1997)" using the assay procedures listed. Analytical Methodology does not require correction for analytical interferences.

Notes:NOx - 1st analysis = 22.51 ppm - 08/15/2005

NOx - 2nd analysis = 22.58 ppm - 08/22/2005

Analytical accuracy = +/-1% relative

Analytical principle = Chemiluminescence

Standard = NTRM, XC019242B = 20.18 NOx/N2

Do not use cylinder below 150 psig.

Approval Signature ______

Reference Standard Information

<u>Type</u>	Balance Gas	Component	Cyl.Number	Concentration
NTRM 82629	NITROGEN	NITRIC OXIDE	XC019242B	20.13 PPM

Analytical Results

Analytical results							
1st Component	NITRIC OXID	DE					
1st Analysis Date:	08/15/2005						
R 7.918	S 8.819	Z -0 003	Conc 22.41 PPM				
S 8.824	Z 0.006	R 7 913	Conc 22.44 PPM				
Z 0.006	R 7.923	S 8.812	Conc 22.38 PPM				
			AVG: 22.41 PPM				
2nd Analysis Date:	08/22/2005						
R 7.889	S 8.759	Z -0.003	Conc 22.34 PPM				
S 8.774	Z 0.008	R 7.885	Conc 22.39 PPM				
Z 0.009	R 7.893	S 8.775	Conc 22.37 PPM				
			AVG: 22.36 PPM				

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 North Wheeler St. Plant City, Florida 33563 (813) 752-5014

NOX EMISSIONS TEST CALCULATIONS

COMPANY: CF NDUSTRIES

SOURCE: SULFURIC ACID "D'

TEST DATE: 02/01/2007 DATA ANALYST: M. GIERKE

	AVERAGE	STACK	STACK			
	CONC.	PRESS	FLOWRATE	EMISSIONS		
RUN NO.	(PPM)	(in. Hg)	(dscfm)	(mg/m3)	(lbs/ft3)	(lbs/hr)
1	10.6	30.11	104,432	20.32	1.27E-06	7.95
2	12.9	30.10	101,808	24.62	1.54E-06	9.39
3	12.0	30.10	103,572	22.95	1.43E-06	8.90
AVERAGE	11.8	30.10	103,271	22.63	1.41E-06	8.75

FORMULAS: mg/m3 = ppm x .041573 x molecular wt.

lb/ft3 = mg/m335.31 ft3/m3 x 1000 mg/g x 453.59 g/lb

lb/hr = lb/ft3 x flowrate x 60 min/hr

where:

Pstd = 29.92 "Hg

Tstd = $528 \deg R$

Molecular Wt. of NOx = 46

SOUTHERN ENVIRONMENTAL SCIENCES, INC.

1204 North Wheeler Street ☐ Plant City, Florida 33563-2354 ☐ (813) 752-5014

NOMENCLATURE USED IN STACK SAMPLING CALCULATIONS

 A_n = Cross-sectional area of nozzle, ft^2

 A_s = Cross-sectional area of stack, ft^2

B_{ws} = Water vapor in gas stream, proportion by volume

C_p = Pitot Coefficient

C_s = Pollutant concentration, gr/dscf or mg/dscf

F_d = Ratio of gas generated to heat input value of fuel, DSCF/mmBTU

 $\triangle H$ = Average pressure differential across orifice, in. H_2O

%I = Isokinetic Variation, %

M_d = Molecular weight of dry gas

M_a = Total amount of pollutant collected, mg

M_s = Molecular weight of stack gas

N = Normality of barium perchlorate titrant

 $\sqrt{\Delta P_{avg}}$ = Average of the square roots of the velocity heads

P_{bar} = Barometric pressure at the sampling site, in. Hg

P_o = Stack gas static pressure

 P_m = Absolute pressure at the dry gas meter, in. Hg

P_s = Absolute stack pressure, in. Hg

P_{std} = Standard absolute pressure, 29.92 in. Hg

 θ = Total sampling time, minutes

Q = Stack gas flowrate, ACFM

 Q_{strl} = Stack gas flowrate, DSCFM

T_m = Absolute average meter temperature, °R

T_s = Absolute average stack gas temperature, °R

 T_{sid} = Standard absolute temperature, °R

 V_a = Volume of sample aliquot titrated, ml

 V_{lc} = Liquid collected in impingers and silica gel, ml

 V_m = Sample volume at meter conditions, DCF

 $V_{m(std)}$ = Sample volume at standard conditions, DSCF

 V_s = Stack gas velocity, ft/sec

 V_{soln} = Total volume of solution, ml

V_t = Volume of barium perchlorate titrant used for sample, ml
 V_{tb} = Volume of barium perchlorate titrant used for blank, ml

 $V_{w(std)}$ = Volume of water vapor in sample corrected to standard conditions, SCF

Y = Dry gas meter calibration factor

13.6 = Specific gravity of mercury