

FLORIDA MINING & MATERIALS

CONSTRUCTION MATERIALS DIVISION

P. O. BOX 6, BROOKSVILLE, FLORIDA 34605-0006 TELEPHONE (904) 796-7241

C. M. COLEMAN, JR.
VICE PRESIDENT & GENERAL MANAGER

November 29, 1989

Mr. C. H. Fancy, P.E. Bureau of Air Regulation Florida Department of Environmental Regulation Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Dear Mr. Fancy:

Enclosed is an application to amend the existing construction permit for Florida Mining & Materials' number two kiln at its Brooksville, Florida cement plant. The amendments are requested in order to allow this kiln to operate at maximum efficiency, with slightly higher clinker production rates.

Stack test data shows that the kiln is operating in compliance with the permit's hourly emission limits for sulfur dioxide, nitrogen dioxide and particulates. Therefore, no changes are requested in the currently permitted hourly emission rates of those pollutants. The application includes a request for increased hourly emission levels for carbon monoxide and total hydrocarbons, to accurately reflect both current operating practices and operating at increased production rates. Increases in these two parameters are explained in the text of the application.

Please note that none of the amendments requested herein pertain to Florida Mining's proposal to burn waste fuels. Florida Mining requests these amendments to reflect operations with coal and conventional fuel and to enable the plant to step up production to meet the increased demand in the market.

Sincerely.

. M. Coleman, Jr.

Vice President and General Manager

CMC, Jr:gm Enclosure FLORIDA MINING & MATERIALS

4438

CEMENT DIVISION P O BOX 6 BROOKSVILLE, FL 34605-0005

November 30,

PAY TO THE ORDER OF _

Florida Department of Environmental Regulation

\$1,000.00

Sun Bank and Trust Company Brooksville Office P.O. Box 156 Brooksville, FL 34805-0156

Modification Air Permit

PETTY CASH ACCOUNT

DOLLARS

APPLICATION TO AMEND AIR POLLUTION SOURCE PERMIT

FLORIDA MINING AND MATERIALS NO. 2 KILN

December 1, 1989

Volume I

Cross/Tessitore & Associates 4763 South Conway Road, Suite F. Orlando, Florida 32812 (407) 851-1484 F03.178/R5092.Doc

TABLE OF CONTENTS

	PAG	<u>E</u>
<u>VOLUME I</u>		
Application Form	1	Ĺ
Supplemental Information:	13	}
Section II		
Supplemental Information:	17	ı
Section III		
Supplemental Information:	. 28	,)
Section V		
Supplemental Information: Section VII	55	

#1,000 pd, 10-4-89 | Lept.#11768:

RECEIVED

į

Ac 27- 193494

DEC 4 1989

DER ABAGMTI	ON TO	OPERATE	/construct	ΛIR	POLLUTION	SOURCES
-------------	-------	---------	------------	-----	-----------	---------

D .			
SOURCE TYPE:	Portland Cement Plant	[] New ¹	[X] Existing !
APPLICATION TYPE	: "[] Construction [] (Operation [X]	Modification
COMPANY NAME:	Florida Mining and Material	s	COUNTY: Hernando
Identify the spe	cific emission point sour	ce(s) addresse	d in this application (i.e. Lime
Kilm No. 4 with	Venturi Scrubber; Peaking	Unit No. 2, G	as Fired) <u>No. 2 Cement Kiln</u>
SOURCE LOCATION:	Street U.S. Highway 98		City NW of Brooksville
	UTM: East 17-356.00		North 3169.89
			Longitude <u>82 ° 28 ' 25 "</u> W
APPLICANT NAME A	ND TITLE: C.M. Coleman, Jr	., Vice Presi	dent
APPLICANT ADDRES	S: P.O. Box 6, Brooksville	, Florida 34	605-0006
	SECTION I: STATEMENT	S BY APPLICAN	T AND ENGINEER
A. APPLICANT			
I am the und	ersigned owner or authoriz	ed representa	tive* of Florida Mining & Materials
permit are to I agree to facilities i Statutes, an also understand I will pestablishmen	rue, correct and complete maintain and operate the n such a manner as to cod all the rules and regula and that a permit, if graromptly notify the department.	to the best of pollution comply with the stions of the need by the d	ion for a Modification f my knowledge and belief. Further ontrol source and pollution control provision of Chapter 403, Floridadepartment and revisions thereof. Repartment, will be non-trunsferable or legal transfer of the permitted
Accaem receer o	r auchorización		
		Name a	an, Jr., Vice President nd Title (Please Type)
		Date: ////	89 Telephone No. (904) 796-7241
B. PROFESSIONAL	ENGINEER REGISTERED IN FL	, ,	required by Chapter 471, F.S.)

This is to certify that the engineering features of this pollution control project have been designed/examined by me and found to be in conformity with modern engineering principles applicable to the treatment and disposal of pollutants characterized in the permit application. There is reasonable assurance, in my professional judgment, that

1 See Florida Administrative Code Rule 17-2.100(57) and (104)

DER Form 17-1.202(1) Effective October 31, 1982

Page 1 of 12

furnish, if authorized by	he department. It is also agreed that the undersigned will the owner, the applicant a set of instructions for the proper of the pollution control facilities and, if applicable,
pollution sources.	
	Signed Joseph & Centre
	Joseph L. Pessitore, P.E.
	Name (Please Type)
	Cross/Tessitore & Associates, P.A.
	Company Name (Please Type)
	4763 South Conway Road, Orlando, FL 32812
	Malling Address (Please Type)
ide Registration No. 2337	4 Date: 17/18 Telephone No. (407) 851-1484
SECTI	ON II: GENERAL PROJECT INFORMATION
and expected improvements	tent of the project. Refer to pollution control equipment, in source performance as a result of installation. State esult in full compliance. Attach additional sheet if
See Sur	pplemental Information: Section II
Schedule of project covere	d in this application (Construction Permit Application Only)
Start of Construction	Completion of Construction
for individual components/ Information on actual coat permit.) The following inf	system(s): (Note: Show breakdown of estimated costs only units of the project serving pollution control purposes. such a shall be furnished with the application for operation formation represents the initial costs associated with the existional air pollution control equipment will be required for the
Baghouse Equipment	\$2,825,000.00
Erection	\$2,800,000.00
TOTAL	\$5,625,000.00
	permits, orders and notices associated with the emission summer and expiration dates.
See Sup	oplemental Information: Section II
<u>}</u>	

Is this source in a non-attainment area for a particular pollutant? NO If yea, has "offset" been applied? b. If yea, has "Lowest Achievable Emission Rate" been applied? c. If yea, list non-attainment pollutants. Does best available control technology (BACI) apply to this source? YES1 fryes, see Section VI. Does the State "Prevention of Significant Deterioriation" (PSD) requirement apply to this source? If yea, see Sections VI and VII. Do "Standards of Performance for New Stationary Sources" (NSPS) YES apply to this source? Do "National Emission Standards for Hazardous Air Pullutants" NO "Ressonably Available Control Technology" (RACI) requirements apply			
a. If yes, has "offset" been applied? b. If yes, has "lowest Achievable Emission Rate" been applied? c. If yes, list non-attainment pollutants. Does best available control technology (BACI) apply to this source? YES1 Toes the State "Prevention of Significant Deterioriation" (PSD) requirement apply to this source? If yes, see Sections VI and VII. Do "Standards of Performance for New Stationary Sources" (NSPS) YES apply to this source? Do "National Emission Standards for Hazardous Air Pollutants" NO "Reasonably Available Control Technology" (RACI) requirements apply this source?			
a. If yea, has "offset" been applied? b. If yea, has "Lowest Achievable Emission Rate" been applied? c. If yea, list non-attainment pollutants. Does best available control technology (BACI) apply to this source? YES1 for yea, see Section VI. Does the State "Prevention of Significant Deterioriation" (PSD) requirement apply to this source? If yea, see Sections VI and VII. Do "Standards of Performance for New Stationary Sources" (NSPS) YES apply to this source? Do "National Emission Standards for Hazardous Air Pullutants" NO "Reasonably Available Control Technology" (RACI) requirements apply this source?	r ti Yee	his is a new source or major modification, answer the following quest or No)	iona.
b. If yes, has "Lowest Achievable Emission Rate" been applied? c. If yes, list non-attainment pollutants. Does best available control technology (BACI) apply to this source? If yes, see Section VI. Does the State "Prevention of Significant Deterioriation" (PSD) requirement apply to this source? If yes, see Sections VI and VII. Po "Standards of Performance for New Stationary Sources" (NSPS) Sepply to this source? Do "National Emission Standards for Hazardous Air Pollutants" (NESHAP) apply to this source? NO "Ressonably Available Control Technology" (RACI) requirements apply this source?	•	Is this source in a non-attainment area for a particular pollutant?	NO
c. If yes, list non-attainment pollutants. Does best available control technology (BACI) apply to this source? If yes, see Section VI. Does the State "Prevention of Significant Deterioriation" (PSD) requirement apply to this source? If yes, see Sections VI and VII. Do "Standards of Performance for New Stationary Sources" (NSPS) Apply to this source? Do "National Emission Standards for Hazardous Air Pollutants" (NESHAP) apply to this source? "Ressonably Available Control Technology" (RACI) requirements apply this source?	Ę	. If yes, has "offset" been applied?	
Does best available control technology (BACI) apply to this source? If yes, see Section VI. Does the State "Prevention of Significant Deterioriation" (PSD) requirement apply to this source? If yes, see Sections VI and VII. Do "Standards of Performance for New Stationary Sources" (NSPS) apply to this source? Do "National Emission Standards for Hazardous Air Pollutants" (NESHAP) apply to this source? "Ressonably Available Control Technology" (RACI) requirements apply this source?	ŧ	. If yes, has "Lowest Achievable Emission Rate" been applied?	
If yes, see Section VI. Does the State "Prevention of Significant Deterioristion" (PSD) requirement apply to this source? If yes, see Sections VI and VII. Do "Standards of Performance for New Stationary Sources" (NSPS) YES apply to this source? Do "National Emission Standards for Hazardous Air Pullutants" NO (NESHAP) apply to this source? NO "Ressonably Available Control Technology" (RACT) requirements apply this source?	ď	. If yes, list non-attainment pollutants.	
requirement apply to this source? If yes, see Sections VI and VII. YES Do "Standards of Performance for New Stationary Sources" (NSPS) apply to this source? Do "National Emission Standards for Hazardous Air Pullutants" (NESHAP) apply to this source? "Ressonably Available Control Technology" (RACT) requirements apply this source?			YES 1
spply to this source? Do "National Emission Standards for Hazardous Air Pullutants" (NESHAP) apply to this source? "Reasonably Available Control Technology" (RACT) requirements apply this source?		Does the State "Prevention of Significant Deterioriation" (PSD) requirement apply to this source? If yes, see Sections VI and VII.	YES ²
"Reseasonably Available Control Technology" (RACT) requirements apply no this source?			YES
			NO
e. If yes, for what pollutants?			NO
	đ	. If yes, for what pollutants?	

Attach all supportive information related to any anamer of "Yes". Attach any justification for any answer of "No" that might be considered questionable.

All supportive data is included in the Supplemental

Information Sections of this Application.

- l BACT has been determined for particulate emissions under the previous Permit AC 27-30450; BACT has been determined for Sulfur Dioxide and Nitrogen Dioxide (NOx) under the previous Permit AC 27-138850. No BACT review was required for Carbon Monoxide and volatile organic compound emissions.
- 2 PSD compliance for particulate, Sulfur Dioxide and Nitrogen Dioxide (NOx) was established under previous Permit AC 27-138850 (PSD-FL-124).

7 Form 17-1.202(1) fective October 31, 1982

SECTION III: AIR POLLUTION SOURCES & CONTROL DEVICES (Other than Inclnerators)

Raw Materials and Chemicals Used in your Process, if applicables

	Conte	inanta	Utilization	
Description	Гуре	# Ht	Rate - 1ba/hr	Relate to Flow Diagram
mestone	Particulate	0.02	207,640	
qand/Clay	Particulate	0.08	20,774	SEE SUPPLEMENTAL
y Ash	Particulate	0.14	26,182	INFORMATION: SECTION V
aurolite	Particulate	1.40	2,704	FIGURE V-1
dill Scale	Particulate	1.40	2,704	

3. P	rocess Rate,	11	appilcable:	(500	Section	٧,	Item	1)
------	--------------	----	-------------	------	---------	----	------	----

·: 1.	Total Process Input Rate (1bs/hr):	260,000	130 TPH VS 120 TPH	Enner
} .	Product Weight (lbe/hr):	159,250	79.60 tol 15. 73.57PH	1 8 % INCH
	· · · · · · · · · · · · · · · · · · ·			

Airborne Contaminante Emitted: (Information in this table must be submitted for each emission point, use additional cheets as necessary)

Name of	Emission ¹	Allowed ² Emission Rote per	Allowabla ³	Potenti Emisol		Relate to Flow
Contaminant	Haximum Actual lbs/hr T/yr	Rule 17-2	lbe/hr	lbn/hr	T/yr	Diagram
	SEE SUPPLEMENTAL I	NFORMATION:	SECTION III,	TABLE III-I		
:						
· · · · · · · · · · · · · · · · · · ·						

¹ See Section V, Item 2.

² eference applicable emission standards and units (e.g. Rule 17-2.600(5)(b)2. Table II, E. (1) = 0.1 pounds per million 8TU heat input)

³ imlevilated from operating cate and applicable atandard.

Emission, if source operated without control (See Section V, Item 3).

CR Form 17-1.202(1)
**Tfontive Hovember 10, 1902

Control Devices: (See Section V, Item 4)

Name and Type (Model & Serial No.)	Contaminant	Efficiency	Range of Particles Size Collected (in microns) (If applicable)	Basis for Efficiency (Section V Item 5)
Tuller Reverse Air	Particulate	99.9%	0-60	Testing
(Variable Cycle)				
•				
•				

Fuels

	Consur	nption*	
Type (Be Specific)	avg/hr	max./hr	Maximum Heat Input (MMBTU/hr)
Caal 17,229 112,59	20,640 lb/hr	24,000 1b/hr 30% racing	
liolite *	1,779 gal/hr	2,069 gal/hr	300
<u>-</u>			
			-

20%

	ntal Information: Section III, Tables III-2 and III-3. Percent Ash:
	lbs/gal Typical Percent Nitrogen:
	BTU/16BTU/
. If applicable, indicate	the percent of fuel used for space heating.
. If applicable, indicate	
. If applicable, indicate ual Average	the percent of fuel used for space heating.
. If applicable, indicate - ual Average . Indicate liquid or soli	the percent of fuel used for space heating. Maximum

Form 17-1.202(1)

ffective November 30, 1982

Page 5 of 12

To be used during start-up of kiln operations and during periods when raw materials feed is stopped and kiln temperature must be maintained.

	ht:			ft.	Stack Diame	ter:	16.0
as Flow R	ate: 300,	000_ACFM	199,000	_DSCFM	Gas Exit Te	mperature:	~386
iter Vapo	r Content:	~10		*	Velocity: _	24.87	F
		CCCX	701 74	INCINCAL	700 THEODMA	TION N/A	
		3261	IUN IVI	INCINCAN	TOR INFORMA	IION N/A	
Type of Waste						g⊸ (Liq.& Ga:	Type VI s (Solid By-prod.
Actual lb/hr nciner- ated							
Uncon- trolled lbs/hr)					,		
		l		L		.l	<u> </u>
ital Weig	ht Incinera	ted (lbs/h	r)			apacity (1bs	/hr)
otal Weig	ht Incinera e Number of	ted (lbs/h	r) Operation	per day	Design C	apacity (1bs	/hr)wks/yr
otal Weig oproximat unufactur	ht Incinera e Number of er	ted (lbs/h	r)	per day	Design C	apacity (1bs	
tal Weig proximat nufactur	ht Incinera e Number of er	ted (lbs/h	r) Operation Heat R	per day	Design C	apacity (lbs	wks/yr
tal Weig proximat nufactur te Const	ht Incinera e Number of er ructed	ted (lbs/h Hours of	r) Operation Heat R (BIU	per day Mode	Design C da 1 No Fu	apacity (lbs	wks/yr
tal Weig proximat nufactur te Const	ht Inciners e Number of er ructed	ted (lbs/h Hours of Volume (ft) ³	r) Operation Heat R (BIU	per day Mode elease /hr)	Design C da 1 No Fu	apacity (lbs	wks/yr
tal Weig proximat nufactur te Const	ht Incinera e Number of er ructed hamber	ted (lbs/h Hours of Volume (ft) ³	r) Operation Heat R (BIU	per day Mode elease /hr)	Design C ds	elBIU/hr	wks/yr
tal Weig proximat nufactur te Const rimary C econdary	ht Inciners e Number of er ructed hamber Chamber	ted (lbs/h Hours of Volume (ft) ³	r) Operation Heat R (BTU	per day Mode elease /hr) .	Design C ds	elStack	Temperature
tal Weig proximat nufactur te Const rimary C secondary ack Heig	ht Incinera e Number of er ructed hamber Chamber ht:	ted (lbs/h Hours of Volume (ft) ³ ft.	T) Operation Heat R (BTU Stack Dia	per day Mode elease /hr) mter:	Design C ds 1 No Type DSCFM mit the emi	el BIU/hr Stack	Wks/yr
proximationufacturate Constitute	ht Incinera e Number of er ructed hamber Chamber ht: ate: more tons p	Volume (ft) ³ er day des	Heat R (BIU Stack Dia ACFM ign capaced to 50%	mter:	Design C ds	el BIU/hr Stack	Temperature (°F) Tempf in grains per ste

.

h, etc.):			om the stack	(acrubber water
	· · · · · ·	 	 	

SECTION V: SUPPLEMENTAL REQUIREMENTS

See Supplemental Information: Section V Please provide the following supplements where required for this application.

- 1 Total process input rate and product weight -- show derivation [Rule 17-2.100(127)]
- 2. To a construction application, attach basis of emission estimate (e.g., design calculations, design drawings, pertinent manufacturer's test data, etc.) and attach proposed methods (e.g., FR Part 60 Methods 1, 2, 3, 4, 5) to show proof of compliance with applicable standards. To an operation application, attach test results or methods used to show proof of compliance. Information provided when applying for an operation permit from a construction permit shall be indicative of the time at which the test was made.
- 7. Attach basis of potential discharge (e.g., emission factor, that is, AP42 test).
- 4. With construction permit application, include design details for all air pollution control systems (e.g., for baghouse include cloth to air ratio; for scrubber include cross-section sketch, design pressure drop, etc.)
- 5. With construction permit application, attach derivation of control device(s) efficiency. Include test or design data. Items 2, 3 and 5 should be consistent: actual emissions = potential (1-efficiency).
- 6. An B 1/2" x II" flow diagram which will, without revealing trade secrets, identify the individual operations and/or processes. Indicate where raw materials enter, where solaid and liquid waste exit, where gaseous emissions and/or airborns particles are evolved and where finished products are obtained.

An 8 1/2" x 11" plot plan showing the location of the establishment, and points of airborne emissions, in relation to the surrounding area, residences and other permanent atructures and roadways (Example: Copy of relevant portion of USGS topographic map).

An 0.1/2" x 11" plot plan of facility showing the location of manufacturing processes and outlets for airborne emissions. Relate all flows to the flow diagram.

DER Form 17-1.202(1) Trective November 30, 1982

Page 7 of 12

5	The appropriate	application fee	in accordance	with Rule 17-4.05.	The check	should be
	made payable to	the Department o	of Environmental	l Reguletion.		

10.	With an a	pplication f	ог орегв	tion permit,	attach a	Certifi	cate of	Comple	tion of	Con-
1	struction	indicating	that the	SOUTCE Was	s construc	ted as	ahown .	in 'the	constru	ction
1	permit.									

t-actification to	[] Yes [] No	
	Contaminant	Rate or Concentration
	Hos EPA declared the best available c	ontrol technology for this class of sources (If
	[] Yes [] No	•
	Conteminant	Rate or Concentration
	What emission levels do you propose as	
	Conteminant	Rate or Concentration
_		
	Describe the existing control and trea	tment technology (if any).
	1. Control Device/System:	2. Operating Principles:
	3. Efficiency:*	4. Capital Conta:

	5.	Useful Life:		6.	Operating Costs:	
<u>:</u>	7.	Energy:		8.	Maintenance Cost:	
	9.	Emiesions:				
:		Conteminant			Rate or Concentration	
<u> </u>	····	· · · · · · · · · · · · · · · · · · ·				
<u></u>						
		<u> </u>				<u> </u>
	10.	Stack Parameters				
	а.	Height:	ſŧ.	ь.	Diameter: .	ft.
	c.	Flow Rate:	ACFM	d.	Temperature:	°F.
:	е.	Velocity:	FPS			
Ε.		cribe the control and treatment additional pages if necessary).	techn	alog	y available (As many types as	applicable
No.	1.				•	
	8.	Control Device:		ь.	Operating Principles:	
•	c.	Efficiency: 1		đ.	Capital Cost:	
1	е.	Useful Life:		f.	Operating Cost:	
•	g.	Energy: ²		h.	Maintenance Cost:	
1	i .	Availability of construction ma	terial	s an	d process chemicals:	
_	j.	Applicability to manufacturing	ргосез	9 e 9 :		
•	k.	Ability to construct with contract within proposed levels:	rol de	vice	, install in available space, a	and operat
	2.					
	а.	Control Device:		b.	Operating Principles:	
1	c.	Efficiency: 1		d.	Capital Cost:	
	е.	Useful Life:		f.	Operating Cost:	
	g.	Energy: ²		h.	Maintenance Cost:	
	i .	Availability of construction ma	terial	a an	d process chemicals:	
l _{Exp} -2 _{Ene}	lai ergy	n method of determining efficien to be reported in units of elec	cy. trical	рож	er - KWH design rate.	
		m 17-1.202(1) ve November 30, 1982	Page	9 of	12	

- Applicability to manufacturing processes: 1. Ability to construct with control device, install in available apace, and operate within proposed levels: 3. Operating Principles: Control Device: R. Efficiency: 1 Capital Cost: d. c. Operating Cost: Useful Life: ٢. e. Energy: 2 Maintenance Cost: q. Availability of construction materials and process chemicals: i. Applicability to manufacturing processes: j. Ability to construct with control device, install in available apace, and operate within proposed levels: 4. Control Device: Operating Principles: в. Efficiency: 1 d. Capital Costs: c. Useful Life: Operating Cost: e. Energy: Z Maintenance Cost: g. Availability of construction materials and process chemicals: Applicability to manufacturing processes: j. Ability to construct with control device, install in available space, and operate within proposed levels: Describe the control technology selected: 2. Efficiency: 1 Control Device: Capital Coat: Useful Life: Energy: 2 5. Operating Cost: Manufacturer: 7. Maintenance Cost: Other locations where employed on similar processes: a. (1) Company: (2) Mailing Address: (4) State: (3) City:
- insplain method of determining efficiency. Thergy to be reported in unita of alactrical power - KWN design rate.

	(5) Environmental Manager:						
	(6) Telephone No.:						
i	(7) Emissions:1		•				
,	Contaminant			Rate or	Concentr	ation	
•							
, -							
1							
	(8) Process Rate: 1						
	b. (1) Company:						
7	(2) Mailing Address:						
	(3) City:		(4) State:	:			
į	(5) Environmental Manager:						
	(6) Telephane No.:						
1	(7) Emissions: ¹						
Ì	Contaminant			Rate or	Concentr	ation	
				e Comment			
).Ē							
:							
;	(B) Process Rate: 1						
F F	10. Reason for selection and	description	of systems:	:			
l Ap	oplicant must provide this info vailable, applicant must state	ormation whe the reason(s	n available) why.	, Shoul	d this in	nformatie	on not b
	SECTION VII -	PREVENTION O	F SIGNIFICA	NT DETERI	ORATION 1	I/A	
A_{\bullet}	Company Monitored Data						
	lno, sites	TSP _	()_ so ² • _	·-·	_ Wind s	pd/dir
		/ month d					
•	Other data recorded						
	Attach all data or statistics						
۰, ۵ د	encify bubbler (B) or continuou	в (С).					
DE F	Form 17-1.202(1) ective November 30, 1982	Page	ll of 12				

` '	2.	Instrumentation,	Field and Laboratory	
	я.	Was Instrumentati	ion EPA referenced or i	ts equivalent? [} Yes [] No
	, b.	Was instrumentati	ion calibrated in accord	dance with Department procedures?
		[] Yee [] No	[] Unknown	
8.	Het	eorological Data U	Jeed for Air Quality Hoc	ieling
	1.	5 Year(s) of	data from 0 / 01/month day	70 to 02 / 08 / 74 year month day year
	2.	Surface data obta	sined from (location) Ta	mpa/Station No. 12842
	3.	Upper air (mixing	g height) data obtained	from (location)*
	4.	Stability wind ro	ose (STAR) data obtained	from (location)*
с.	Com	puter Models Used		
ì	1.	Industrial Source	e Complex - Short Term	Modified? If yes, attach description.
i	2.			Modified? If yes, attach description.
:	3.			Modified? If yes, attach description.
	4			Modified? If yes, attach description.
, 1	Att: cip	ach copies of all le output tables.	final model runs showin	g input data, receptor locations, and prin
C ₄₄ ;	Арр	licents Maximum Al	lowable Emission Data	
Ē	Pol	lutant	Emission Rate	•
1	1	TSP		grams/sec
	5	502		grams/sec
E ;	Emis	saion Data Used in	Modeling	
	pain	ach list of emissic ot source (on NEDS normal operating (- point number), UTM cad	ata required is source name, description o ordinates, stack data, allowable emissions
۲.	Atta	och all other info	rmation supportive to t	he PSD review.
ί	ore	technologies (j.,	d economic impact of the e., jobs, payroll, pro ironmental impact of the	e selected technology versus other applica- oduction, taxes, energy, etc.). Include e sources.
**	0.0.13	i, and other compet	igineering, and technic tent relevant information ailable control technolo	al material, reports, publications, jour- on describing the theory and application of ogy.
		* For Complete ou Section VII	tput listing and modeling	ng parameters see Supplemental Information:
		17-1.202(1) November 30, 198	82 Page 12 c	of 12

12

SUPPLEMENTAL INFORMATION: SECTION II

- 1. Project Description
- 2. Table II-1 Permitting and Compliance Activities

SECTION II

PROJECT DESCRIPTION

The subject of this Permit Application is the revision of Florida Mining and Materials' (FM&M) current construction permit for the No. 2 Kiln (Source E-19). This application does not involve any physical modifications to the kiln. Rather, these permit amendments are requested to enable FM&M to operate at a higher rate of production to meet the market's increasing demands for cement, and to improve the efficiency of the operation. The change for the CO limit is proposed so that the parameter will cover all the CO emissions from the kiln, not merely those that result from burning coal.

The requested revisions to the permit include the following: 1) An increase in the permitted clinker production rate; 2) An increase in the permitted coal consumption rate; 3) An increase in the permitted maximum annual hours of operation; 4) The use of Flolite (a refined oil product) during start-up of the kiln; 5) Operation of the kiln without the raw mill; 6) Increases in the annual emissions for SO_2 and NO_x (the kiln is operating in compliance with the hourly emissions limits, but the increase in the number of operating hours will result in higher annual emissions); 7) increases in the permit's limits for emissions of CO and VOC's.

The permit's current CO limit is based solely on EPA's AP-42 emissions factor for coal combustion sources. The kiln exit gases, however, also contain non-combustion related CO that is generated in the process from the chemical reactions that occur in the calcination of calcium carbonate in the kiln. Therefore, stack testing and monitoring cannot accurately determine compliance with only the combustion source limit. For that reason, a revised CO limit is proposed to accurately reflect the CO that is generated from both coal combustion and the process. In addition, the proposed CO limit includes adjustments based on operations at the higher operating hours limit.

The revised CO limit would include an <u>actual</u> emissions increase of 15.3 tpy from combustion sources, reflecting the increased operating hours and increased coal feed rate. Except for that incremental increase, the proposed higher limit would reflect the kiln's current CO emissions from <u>both</u> coal combustion and the process. The actual emissions increase resulting from increased coal consumption and greater hours of operation is, therefore, well below the 100 tpy significance threshold.

The VOC limit included in the application is based on EPA's proposed limit for industrial furnaces and is representative of good operating practices. The proposed increase in VOC limit would result in an actual annual increase of 20.6 tons of emissions, which is significantly less than the significance threshold of 40 tpy for VOC's

Estimated emissions resulting from these source revisions and relating to the current Permit Number AC27-138850, are detailed in the supporting information for Sections III and V of this Application. The baghouse currently operated with

the No. 2 Kiln will remain as the air pollution control device, thus continuing to provide Best Available Control Technology (BACT), as previously determined.

The current permit for the No. 2 Kiln specifically prohibits kiln operation when the raw mill is down. This prohibition was based on the fact that the raw mill, which receives the hot kiln exhaust gases prior to the baghouse, provides some additional scrubbing for the removal of acid gases. This was especially critical during the operation under Permit A027-65207 which limited the SO₂ emissions from the kiln to 3 pounds per hour. However, the recent permit allows SO₂ emissions of 12 pounds per hour and the dependence on the raw mill scrubbing is no longer critical. Test results, provided in Exhibit V-1, show that SO₂ and NO_x emissions do not exceed the current allowable levels while the raw mill is down.

Further, in order to optimize the kiln productivity, it is necessary to operate the kiln when feed is available but the raw mill is inoperative due to maintenance and/or insufficient feed storage capacity. For these reasons a revision of the permit conditions is requested to allow kiln operation while the raw mill is down. A summary of the proposed permit revisions is provided below.

	Parameter	Curre	nt Limit	Proposed Limit		
1)	Production Rate	120	T/hr	130	T/hr	
2)	Coal Consumption Rate	10.5	T/hr	12	T/hr	
3)	Operating Hours	7,896	hr/yr	8,400	hr/yr	
4)	Raw Mill	Up		Up,	/Down	
5)	Flolite * (Equivalent to No. 5 Oil Specification)			*250	hr/yr	
6)	Carbon Monoxide	8.9	lb/hr	79.2	lb/hr	
7)	Volatile Organic Compounds	2.7	lb/hr	7.4	lb/hr	

^{*} Used only during start-up of kiln operations and during periods when raw materials feed is stopped and kiln temperature must be maintained. Annual usage hours are approximate.

TABLE II-1
PERMITTING AND COMPLIANCE ACTIVITIES

Activity	Number	Issued	Expired
Construction Permit	AC27-30450	July 25, 1980	December 31, 1983
Operating Permit	A027-65207	August 16, 1983	August 16, 1988
Consent Order	OGC-86-1471	January 23, 1987	
Consent Order	OGC-87-1685	September 1, 1988	
Construction Permit	AC27-138850	November 3, 1988	January 1, 1990

SUPPLEMENTAL INFORMATION: SECTION III

1.	Table III-1	Regulated Air Pollutant Summary
2.	Table III-2	Airborne Contaminants Emitted
3.	Table III-3	Fuels Summary
4.	Table III-4	Fuels Data
5	Evhibit III 1	Flolita Manufacturar's Data

TABLE III-1
AIRBORNE EMISSIONS SUMMARY

	Proposed Allowable Emissions		Allowed Emission Rate	Current Allowable	Potential Emissions		Relate to ⁽¹⁾	
<u>Parameter</u>	lbs/hr	T/yr	Per Rule 17-2	Emissions lbs/hr	lbs/hr	T/yr	Flow Diagram	
Particulate	21.6	90.72	N/A ⁽²⁾	21.6	21.6	90.72	E-19	
Sulfur Dioxide	12.0	50.4	N/A ⁽³⁾	12.0	12	50.4	E-19	
Nitrogen Dioxide (NO _X)	244.0	1025	N/A ⁽³⁾	250	244.0	1025	E-19	
Volatile Organic Compounds	7.44	31.3	N/A ⁽⁴⁾	2.7	7.44	31.3	E-19	
Carbon Monoxide	79.2	332.6	N/A ⁽⁴⁾	8.9	79.2	332.6	E-19	
Opacity	10 %		Rule 17-2.660	20 %	10 %		E-19	

⁽¹⁾ See Figure V-6.

⁽²⁾ Allowable emissions for particulate were established by BACT determination as stated in original Construction Permit AC27-30450.

⁽³⁾ Allowable emissions for these compounds have been previously established by BACT determination as stated in existing Construction Permit AC 27-138850.

⁽⁴⁾ Current limits for these compounds have been previously established under the original Construction Permit AC 27-30450.

TABLE III-2
AIRBORNE EMISSIONS COMPARISON

the state of the s							
Parameter	∕ P A∐	ermit owable	ίς Pro Alle	posed owable T/yr	Actual Emissions Increase T/yr	Significant Net** Increase T/yr	
Particulate	21.6	85.3	21.6	90.72	5.42	25	
Sulfur Dioxide	12.0	47.4	12.0	50.4	3.0	40	
Nitrogen Dioxide (NO _X)	250.0	987.0	244.0	1025	38	40	
Volatile Organic Compounds	2.7	10.7	7.44	31.3	20.6	40	
Carbon Monoxide	8.9	35.1	79.2	332.6	52.7 *	100	

^{*} See Calculations included in Supplemental Information: Section V of this application. Emissions of Carbon Monoxide from the process source which have not previously been considered are not included as an emissions increase.

^{**} Based on PSD significance criteria.

TABLE III-3 FUELS SUMMARY

Fuel Type	Consumption Avg./hr Max./hr		Maximum Heat Input (Btu/hr)	
Coal	20,640 lb/hr	24,000 lb/hr	3.0 x 10 ⁸	
Flolite ⁽¹⁾	1,779 lb/hr	2,069 lb/hr	3.0 x 10 ⁸	

⁽¹⁾ Flolite will only be used during start-up of kiln operations and during periods when raw materials feed is stopped and kiln temperature must be maintained, and flolite is normally used only as a substitute for coal. In cases where flolite and coal are used cocurrently, the maximum heat input rate will not exceed 3.0 x 108 Btu/hr.

TABLE III-4 ADDITIONAL FUELS DATA

Fuel Type	Heat Capacity	Sulfur Content
Coal	12,500 Btu/lb	1.0 %
Flolite	145,000 Btu/gal	1.0 %

EXHIBIT III-1 FLOLITE MANUFACTURER'S DATA

Flolite is a blend of "on-specification" re-refined oil and virgin fuel oils which has the physical characteristics of #5 oil. Flolite will only be used during start-up of kiln operations and during periods when raw materials feed is stopped and kiln temperature must be maintained.

The precise formulation of Flolite is proprietary information of the International Petroleum Corporation (IPC); however, virgin fuel normally constitutes less than 50% of the blended product. The following items are presented as Flolite specifications:

- A release from the Federal EPA which states their position that IPC's finished product is equivalent to virgin fuel oil.
- A copy of a certified analysis which is indicative of IPC's typical specifications for finished product.
- A copy of the Department of Environmental Regulation's approval for use of IPC's Flolite.

Page 1 of 5

Florida Department of Environmental Regulation

Their Tovers Office fileg. • 2600 Blate Stone Road • Hillahassee, Florida 32399-2400

Bob Martinez, Governor Date Toverhumann, Secretary John Shearer, Assistant Secretary

January 23, 1989

Mr. A. M. Malatino, President International Environmental Services, Inc. 105 S. Alexander Street Plant City, Florida 33566

Dear Mr. Malatino:

In reference to the analysis (enclosed) on the re-refined oil submitted on January 13, I do not have any objections to the use of this product as a phosphate flutation oil.

Phosphate companies using this re-refined oil annually would not be required to register with the Department as a used oil collection and recycling facility. Also, annual reports and recordkeeping would not be required of them.

If you have any further questions or comments, please let me know.

Sincerely,

David H. Kelley

Environmental Specialist Bureau of Waste Planning

David H. Kelley

and Regulation

DHK/ps

Englosure

cc: Clabe Polk

Page 2 of 5

INTERNATIONAL ENVIRONMENTAL SERVICES, INC.

105 South Alexander St. • Plant City, Florida 33586 • (813) 754-2373 Thimps (913) 220-0870 + Milaint Office 1-500-637-9078 + FAX (513) 754-3700 Florida Wats 1-800-762-1104

CERTIFIED ANALYSIS

TO: INTERNATIONAL ENVIRONHENTAL SERVICES PROJECT NO. IES #5 OIL

ATTN: MR. TONY MALATINO

105 SOUTH ALEXANDER STREET SAMPLED BY: IES

PLANT CITY, FL. 33566

DATE COLLECTED: 1-04-89

DATE COMPLETED: 1-10-89 IDENTIFICATION: RE-REFINED OIL .

API GRAVITY AT GO DECREES F 25~28 **SULFUR** 0.50% VISCOSITY 55U AT 100 DEGREES F 240 POUR POINT, DEGREES F O DEGREES F ASPHALTINES <1.0% BEDIMENT BY EXTRACTION TRACE WATER BY DISTILLATION & TRACE TOTAL BOTTOM BEDIMENT AND WATER 1.0% MAX CADHIUM PPM < 0.3 LEAD PPM (LEACHABLE) BY <5.0 E. P. TOXICITY ARSENIC PPM <1.0 CHRONIUM PPM <1.3 POLYCHLORINATED BIPHENYLS (PCD'8) BDL* PLASHPOINT 150 DEGREES MIN

BELOW DETECTION LIMIT (1.0 PPM)

estile entrossed in	[] mg/l (ppin) [] ug/l (ppb) [] mg/kg (ppin) [] ug/kg (ppb)	contined by Lord deproy A. Milatera
---------------------	---	-------------------------------------

iblate of Florida Destification: E84160 and HRS 64300

"Standard Methods for the Examination of Water and Westewater", Latest Edillon, APTA, AWYA, and WPCF phyllor METHODE: other EPA approved methods which most FDEA protocol, unique otherwise designative.

EMALITY CONTROL: Quality Assurance Project Plan No. 870319G. Quality Ansurance Quality Control No. 873190

Page 3 of 5

NOTE NEXT TO LAST FARMARAPIS

INFORMATION DULLETIN FOR PUBLIC RELEASE:
EPA CONCERNS ABOUT THE USED OIL RECYCLING SYSTEM

The Environmental Protection Agency (EPA) is becoming increasingly concerned about disruptions in the used oil recycling system that are occurring because of the fall in virgin fuel oil prices and because of misunderstanding and confusion about EPA's regulations.

There are only a few presently effective requirements for used oil management. Used oil generators should not mix spent solvents with used oils. These mixtures must be managed as hazardous wastes. Used oil fuel dealers must register with EPA. They may sell off-specification used oil fuels (used oil fuels with high metals concentrations) only to industrial burners. On-specification used oil fuels may be sold to anyone. Off-specification used oil burners must register with the Agency.

Background

In 1980 and 1984 Amendments to the Resource Conservation and Recovery Act (RCRA), Congress directed EPA to consider regulating, used oils to protect human health and the environment. At the same time, however, EPA must consider the impacts of regulations on used oil recycling, on small businesses, and small generators. EPA has divided the used oil regulatory program into three stages.

- (1) EPA has begun regulation of used oil recycling with a rule to
 - * discourage mixing hazardous wastes, such as spent solvents, into used oils; and
 - ban the combustion of used oil fuels with high metals concentrations in non-industrial facilities, such as schools and apartments.

This rule was proposed on January 11, 1985; promulgated on November 29, 1985; and became fully effective on May 29, 1986.

- Harma (2) We have also begun the next stage-of regulating the used out system with the proposed listing and management standards published on November 29, 1905. EPA is now evaluating the many public comments received in response to this notice (and a supplementary March 10, 1986 notice). We expect to make final decisions this fall. These final rules will be effective six months after publication.
- devices that burn used oil fuels with high metals content. The rules are expected to be proposed this fall, at the earliest. Final decisions should be completed by the end of 1987. Again, final rules will be effective alx months after that.

Page 4 of 5

Current Problems

There are two major problems in the used oil recycling system. First, generators are confused about the status of used oil. Many are surprised that they often must pay to have used oil hauled away. Second, industrial burners are confused about the status of used oil. Many have stopped burning used oil.

Used Oil Generators

Used oil is commonly produced from engine, machine, and vehicle maintenance. Used oils are typically recycled -- usually as fuel, either on-site or after sale to used oil collectors. In the past, generators were paid as much as forty cents per gallon for used oil (in mid-1985, twenty cents per gallon was most typical). The price paid to generators was high because virgin fuel prices were high. The recent fall in virgin fuel prices has depressed used oil prices. Because of this, some generators are now paying for used oil pickups.

The only Federal rule that currently applies to used oil generators is the prohibition on mixing hazardous wastes, such as spent solvents, with used oil. The resulting mixture (regard-less of halogen concentrations) is regulated as a hazardous waste, and the facility has to comply with hazardous waste generator regulations. Used oil itself is not currently listed as a Federal hazardous waste. There are no other used oil rules that apply to used oil generators.

Used Oil Collectors, Processors, and Marketers

Used oil businesses have greater responsibilities under EPA's regulatory framework. When these facilities sell (or use) as fuel used oil that contains toxic metals, they are responsible for sending it to the proper type of burner. These "off-specification" used oils may be sold only to industrial burners. Used oil may be off-specification because of arsenic, cadium, chromium, lead, inorganic halogens, or flashpoint. Facilities selling off-spec used oils must notify EPA.

Used oil fuels that are on specification are essentially equivalent to virgin fuels. Under the used oil rules, on-spec oil is totally exempt from regulation. Pacilities that are the first to claim that used oil fuels meet the specification must also notify the Agency.

Because these used oil businesses control the quality and destinations of recycled used oils, EPA's upcoming regulatory strategy focuses on these facilities. The Agency is evaluating the comments received on the proposal.

Page 5 of 5

Used Oil Burners

The final rule of November 29 required industrial facilities that wished to burn off-specification used oil to notify the We wanted to establish some accountability and a means of tracking the sale of off-specification fuels to the proper facilities. The notification to merely a one-time requirement that serves the limited purpose of aiding in implementation of the ban on burning off-specification used oil fuels in nonindustrial boilers. By notifying, burners do not indicate that they are burning hazardous waste. Nor does notification bind burners to follow any particular standards for burning or storing the used oil fuel. For our convenience, we suggested that facilities notify the Agency using a modified hazardous waste notification form (Form 8700-12). Our intent was not to suggest that off-specification used oil fuels were hazardous wastes, nor . that these facilities were hazardous waste facilities. Facilities are free to notify using other means, provided that all required information is provided.

The only Federal requirements from the November 29 final rule that apply to burners who purchase or receive off-specification used oil fuel are limited "paperwork" standards, namely:

- to notify the Agency as an off-specification used oil burner (§266.44(b))(a one-time requirement),
- to inform used oil suppliers that the burner has notified the Agency, and will burn off-spec oil in an industrial device only (§266.44(c)), and
- 3. to keep invoices of shipments received (§266.44(e)).

At this time, there are no other Federal requirements that apply.

Used oil is not now a Federally-listed hazardous waste. The

November 29 final rule does not impose any Federal storage
requirements for used oils. EPA does not require used oil
facilities to obtain liability insurance for storage or burning
of used oil. The November 29 final rule does not require facilities
burning off-spec used oil fuel to have air pollution control devices.

exempt from regulation. Burners of on-spec oil need not notify the Agency. We judge specification used oil fuels to be essentially equivalent to virgin fuel oils. There are no plans to change this finding.

For Further Information

EPA is concerned about the current state of the used oil recycling system. We will continue to consider impacts on used oil recycling in our deliberations. If you have additional uestions, please contact the RCRA/Superfund Hotline (800/424-3346 or 202/382-3000).

SUPPLEMENTAL INFORMATION: SECTION V

1.	Table V-1	and Production Rates
2.	Table V-2	Emissions Summary
3.	Emissions Calcu	ılations
4.	Figure V-4	Process Flow Diagram
5.	Figure V-5	USGS Topographical Map
6.	Figure V-6	Facility Plot Plan

TABLE V-1
CURRENT AND PROPOSED FEED PRODUCTION
AND HEAT INPUT RATES

	Current	Proposed	
Kiln Minerals Feed	120 T/hr	130 T/hr	1 83%
Clinker Production Rate	142,000 lb/hr	159,250 lb/hr	112.1%
Maximum Heat Input	2.1×10^{8} Btu/hr	3.0 x 10 ⁸ Btu/hr	- 42.8%

TABLE V-2
EMISSIONS SUMMARY

_	Uncontrolled Emissions*			Proposed Maximum	
<u>Parameter</u>	(lb/hr)	(T/yr)	Basis	(lb/hr)	(T/yr)
Particulate	19,502	81,908	Permit AC27-138850	21.6	90.72
Sulfur Dioxide	1,295	4,705	Permit AC27-138850	12.0	50.4
Nitrogen Dioxide (NO _x)	244	1,025	Permit AC27-138850	244.0**	1,025 **
Volatile Organic Compounds	7.44 ·	31.3	Proposed Limit	7.44**	31.3 **
Carbon Monoxide	79.2	332.6	Proposed Limit	79.2**	332.6 **

^{*} These emissions assume no pollution control, are for calculation purposes only, and do not reflect actual operating conditions.

^{**} It is assumed that no control is provided by the baghouse, but CO VOC's and NO_X are controlled by the system combustion controls, through the use of oxygen and hydrocarbon continuous monitoring of kiln combustion gases. For the case of CO, the limit of 79.2 lb/hr actually represents only 12.0 lb/hr from the combustion source. The process source accounts for an estimated 67.2 lb/hr of emissions. A complete discussion of CO emissions is provided on Page 36 of this application.

EMISSIONS CALCULATIONS

The calculations included in this section provide estimates of potential emissions, actual emissions, and control device removal efficiencies, where appropriate for the following parameters: 1) Particulate, 2) Sulfur Dioxide, 3) Nitrogen Dioxide (NO_X), 4) Carbon Monoxide, and 5) Volatile Organic Compounds.

EMISSIONS CALCULATIONS

(continued)

1. PARTICULATE

The proposed hourly actual emissions rate for particulate is the same as the currently permitted level. However, because this application includes an increase in hours of operation, the annual actual emissions rate (tons/yr) must increase proportionally. In order to determine the efficiency of the air pollution control device, the potential emission loading to the baghouse is calculated based on an emissions factor from the EPA Guidance Document AP-42, Table 8.6-1.

Calculation of Estimated Actual Emissions:

Estimated Actual Emissions = 21.6 lb/hr

(Permit AC27-138850)

= (21.6 lb/hr x 8,400 hr/yr)

÷ (2,000 lb/ton)

= 90.72 T/yr

Calculation of Potential Emissions:

Potential Emissions = 21.6 lb/hr

= 90.72 T/yr

Calculation of Control Device Removal Efficiency:

Uncontrolled Emissions Factor = 245.0 lb/ton clinker

Proposed Production Rate = 79.6 T/hr clinker

Potential Emission Loading = $(245 \text{ lb/ton}) \times (79.6 \text{ T/hr})$

to Baghouse

= 19,502.0 lb/hr

Control Device Removal Efficiency = (19,502 lb/hr - 21.6 lb/hr)

 \div (19,502 lb/hr)

= 99.9%

(continued)

2. SULFUR DIOXIDE

The proposed hourly actual emissions rate for Sulfur Dioxide is the same as previously permitted. However, because this application includes an increase in hours of operation, the annual actual emissions rate (tons/yr) must increase proportionally. Sulfur Dioxide is generated in the cement kiln from two sources: 1) The minerals present in the raw process feed, and 2) The combustion of fuel (coal). Uncontrolled emissions factors for Sulfur Dioxide, found in the EPA Guidance Document AP-42, are used in calculating the potential loading to the baghouse from each source.

Calculation of Estimated Actual Emissions:

Estimated Actual Emissions = 12 lb/hr

(Permit AC27-138850)

= (12 lb/hr x 8,400 hr/yr)

÷ (2,000 lb/ton)

 $= 50.4 \text{ T/yr SO}_2$

Calculation of Potential Emissions:

Potential Emissions = 12 lb/hr

 $= 50.4 \text{ T/yr SO}_2$

Calculation of Control Device Removal Efficiency:

Mineral Source:

Sulfur Dioxide Emission Factor = 10.2 lb SO₂/ton clinker

(from AP-42)

Clinker Production Rate = 79.6 T/hr

Uncontrolled Emissions = (79.6 tons clinker/hr)

x (10.2 lb sulfur/ton clinker)

= 811.9 lb/hr

= (811.9 lb/hr x 8,400 hr/yr)

÷ (2,000 lb/ton)

 $= 3,410 \text{ T/yr } SO_2$

(continued)

Calculation of Control Device Removal Efficiency: (continued)

Fuel Source:

Maximum Fuel Consumption Rate = 24,170 lb/hr

Maximum Fuel Sulfur Content = 1%

Conversion Factor = 2 lb $SO_2/lb S$

Fuel Source:

Uncontrolled Emissions = (24,170 lb fuel/hr) x (0.01 lb sulfur/lb fuel)

x (2 lb SO_2/lb S)

 $= 483 \text{ lb/hr } \text{SO}_2$

= (483 lb/hr x 8,400 hr/yr)

- (2,000 lb/ton)

 $= 2,029 \text{ T/yr SO}_2$

Estimated Total Potential Emissions Loading to Baghouse

= 483 lb/hr + 811.9 lb/hr

 $= 1,295 lb/hr so_2$

= 3,410 T/yr + 1,295 T/yr

 $= 4,705 \text{ T/yr SO}_2$

Control Device Removal Efficiency

= (1,295 lb/hr - 12 lb/hr)

 \div (1,295 lb/hr)

= 99.1%

(continued)

3. NITROGEN DIOXIDE (NO_x)

Nitrogen Dioxide (NO_X) emissions are a function of the kiln combustion process only. It is assumed that no control is provided by the fabric filter.

Calculations of Estimated Actual Emissions:

Estimated Actual Emissions = 244 lb/hr NO_X

= (244 lb/hr x 8,400 hr/yr)

÷ (2,000 lb/ton)

= 1,025 T/yr

Calculations of Potential Emissions:

Potential Emissions = 244 lb/hr

Control Device Removal Efficiency = 0%

= 1,025 T/yr

(continued)

4. CARBON MONOXIDE

Currently, the No. 2 Kiln is permitted for allowable Carbon Monoxide emissions of 8.9 lb/hr. The intent of this application is to modify this permitted allowable level in three ways: 1) To account for Carbon Monoxide generated as a result of chemical reactions inherent in the manufacturing process, 2) To increase the emissions level to account for an increase in the coal feed rate, and 3) To increase the emissions level (in tons per year) to account for an increase in annual operating hours. Calculations addressing each of these factors were conducted by considering the Carbon Monoxide from combustion and process sources separately.

4.1 <u>Combustion Source</u>

Carbon Monoxide formation occurs within the cement kiln in two ways: 1) From the combustion source, through the combustion of fuel (coal), and 2) From the process source, as a product of the chemical reactions inherent in the manufacturing process. The existing permit limit was based on calculations which were included in the original construction permit application, and which were based only on the coal combustion source of Carbon Monoxide. Using a published emissions factor of 1 lb CO/ton coal from EPA's AP-42 Guidance Document, the theoretical actual emissions were calculated corresponding to a coal feed rate of 8.9 tons/hr, based on original Construction Permit AC 27-30450. Because the modifications proposed in this permit application include an increase in coal feed rate, an increase in Carbon Monoxide emissions due to combustion is justified. This increased level is calculated as follows:

Calculation of Proposed Actual Emissions from Combustion Source:

CO Emission Factor = 1 lb/ton of coal burned (AP-42 Table 1.1-1/2)

Actual Emissions = (1 lb CO/ton coal) x (12 T/hr)

= 12 lb/hr

= (12 lb/hr) x (8,400 hr/yr)÷ (2,000 lb/ton)

= 50.4 T/yr

4.2 Process Source

As stated before, the current limit does not account for Carbon Monoxide generated as part of the chemical process reactions. Thus, the permitted allowable level has not accurately represented the true actual emissions of Carbon Monoxide. In order to determine what quantity of emissions results from this process source, the following analysis was developed.

(continued)

A. Development of Process Chemical Reactions

The basis of the cement manufacturing process is the calcination of Calcium Carbonate (CaCO₃), which is the main constituent of the raw materials feed to the kiln. This reaction is represented by the following equation:

$$CaCO_{3(s)}$$
 ----> $CaO_{(s)} + CO_{2(g)}$

As the reaction occurs, the raw materials are processed and Carbon Dioxide is produced. However, in the high temperature kiln environment, a portion of this Carbon Dioxide decays to form Carbon Monoxide. This reaction occurs according to the following equation:

$$co_{2}$$
 <----> $co + 1/2 o_{2}$

In order to determine the quantity of Carbon Monoxide formed within the cement kiln, it is necessary to determine the equilibrium constant for this reaction corresponding to the average kiln temperature. The following section provides a derivation of the equilibrium constant expression.

B. Derivation of Equilibrium Constant (K_D) Expression

Theoretical Reaction

$$co_2 \stackrel{<----}{-----} co + 1/2 o_2$$
 Equation 1

An equation for the equilibrium constant, K_p , specific to this reaction can be written:

$$K_{p} = \frac{[N_{CO}] [N_{CO}]^{\frac{1}{2}}}{[N_{CO2}]} \times \frac{(P)^{\frac{1}{2}}}{(Nm)^{\frac{1}{2}}}$$
 Equation 2

(continued)

Incomplete Reaction

 CO_2 ----> ZCO_2 + XCO + YO_2 Equation 3

Using stoichiometry, the following relations can be developed from Equation 3:

C Balance: 1 = Z + X Equation 4

O Balance: 2 = 2Z + X + 2Y Equation 5

Solving Equation 4 for Z in terms of X:

Z = 1 - X Equation 6

Substituting Equation 6 for Z into Equation 5:

2 = 2 (1-X) + X + 2Y Equation 7

Simplifying Equation 7 to solve for Y in terms of X:

2Y = X

Y = X/2 Equation 8

By definition, the following equation can be written for Nm:

Nm = X + Y + Z Equation 9

Substituting Equation 6 for Z and Equation 8 for Y into Equation 9:

Nm = X + 1 - X - X/2 Equation 10

Simplifying Equation 10:

Nm = 1 + X/2 Equation 11

(continued)

Substituting Equation 11 into Equation 2 and simplifying:

$$K_p = \frac{X (Y)^{\frac{1}{2}}}{Z} \times \frac{(P)^{\frac{1}{2}}}{(X + Y + Z)^{\frac{1}{2}}}$$

$$K_p = \frac{X (X/2)^{\frac{1}{2}}}{(1 - X)} \times \frac{(P)^{\frac{1}{2}}}{(1 + X/2)^{\frac{1}{2}}}$$

$$K_p = \frac{X (X/2)^{\frac{1}{2}}}{(1 - X)} \times \frac{(P)^{\frac{1}{2}}}{(2 + X/2)^{\frac{1}{2}}}$$

$$K_p = \frac{(X)^{-3/2}}{(1 - X)} \times \frac{(P)^{\frac{1}{2}}}{(2 + X)^{\frac{1}{2}}}$$

Equation 12

Substituting P = 1 atm into Equation 12:

STEPHENSON OF STREET

$$K_{p} = \frac{(X)^{-3/2}}{(1 - X)(2 + X)^{\frac{1}{2}}}$$

Equation 13

(continued)

C. Calculation of Current Actual Emissions from Process Source

In order to use the expression developed in Section B, values for K_D were obtained corresponding to a temperature range of 1,000°F to 3,500°F. Using the calcination reaction stoichiometry along with the current permitted raw material feed rate of 120 tons/hr, the following calculations were developed:

$$K_p = \frac{(X)^{-3/2}}{(1 - X)(2 + X)^{\frac{1}{2}}}$$
 Equation 1

X = Moles of Carbon Monoxide

Using the values of K_p obtained, as well as Equations 1 and 2, the graph shown in Figure V-1 was developed. This establishes the formation of Carbon Monoxide as a function of kiln temperature. Figure V-2 provides a temperature profile for the No. 2 Kiln. By calculating the mean temperature and narrowing the range to within 1,500°F and 3,000°F, the graph included in Figure V-3 was developed. This shows a Carbon Monoxide emissions rate of 62.0 lb/hr for the mean kiln temperature of 2,422°F. The emissions calculations for the current permitted conditions and this process source of Carbon Monoxide are therefore provided as follows:

(continued)

Process Source:

D. Calculation of Proposed Actual Emissions from Process Source

Because the modifications proposed in this application include an increase in the raw materials feed rate, an increase in the actual emissions of Carbon Monoxide generated from the process source is therefore justified. A calculation of this increased level of actual emissions is provided below:

Current Actual Emissions
(Process Source)

Proposed Actual Emissions
(Process Source)

= (62.0 lb/hr)

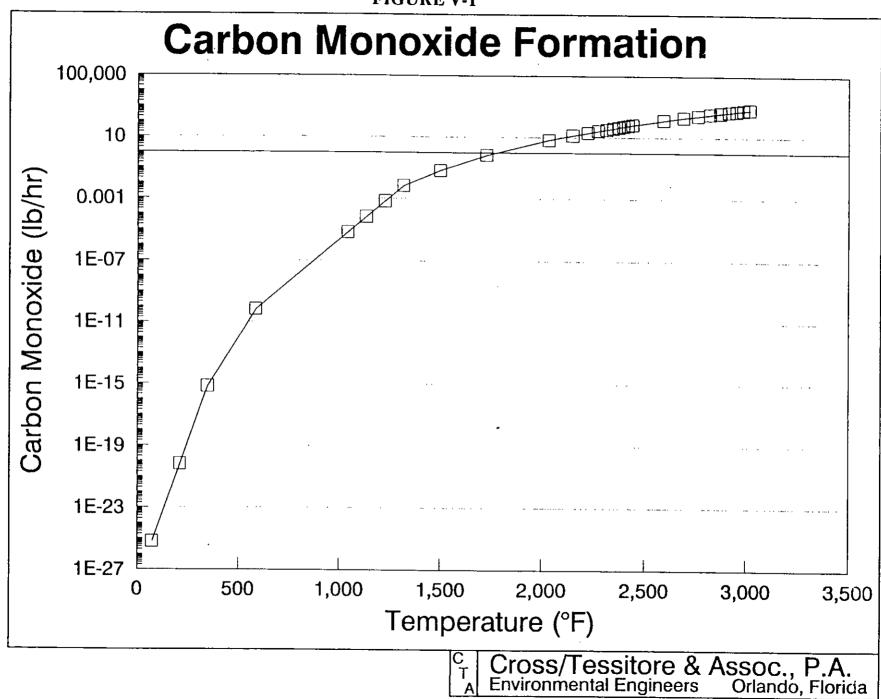
\[\frac{(130 \ \text{T/hr proposed raw materials feed)}}{(120 \ \text{T/hr current raw materials feed)}} \]

= 67.2 lb/hr

= (67.2 lb/hr) \times (8,400 \ \text{hr/yr})

\[\div (2,000 lb/ton) \]

= 282.2 \ \text{T/yr}


(continued)

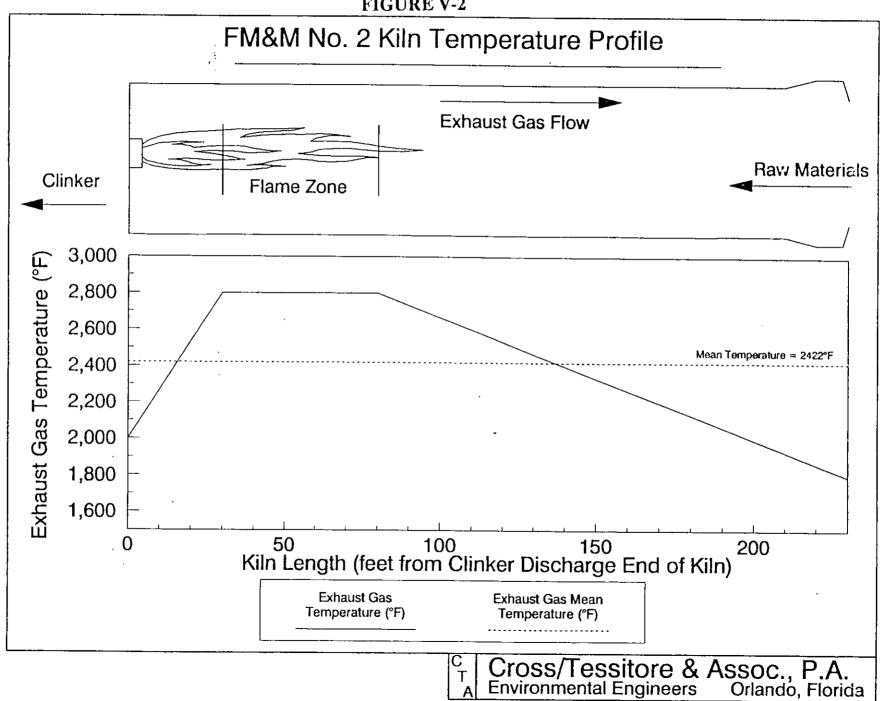

CARBON MONOXIDE EMISSIONS SUMMARY

Table V-3 is provided as a summary of the emissions calculations presented for Carbon Monoxide. Estimated potential emissions are considered equal to proposed actual emissions. It is assumed that the baghouse provides no control of Carbon Monoxide emissions. A review of this table shows that, although the proposed actual emissions level of 79.2 lb/hr is significantly higher than the current permitted level, a large part of the difference between the two can be attributed to the process source of Carbon Monoxide, which has never been considered before. The net increase in actual emissions is insignificant, and is due simply to the proposed increases in coal feed rate and hours of operation.

In order to substantiate the calculated value of 79.2 lb/hr for proposed actual emissions of Carbon Monoxide, Exhibit V-1 provides a data summary sheet compiled during performance testing of the No. 2 Kiln, conducted on May 23, 1989. Exhibit V-2 provides additional data on typical levels of Carbon Monoxide emitted by a cement kiln.

Table V-4 provides a comparison of ground level concentrations, determined through air dispersion modeling, with applicable standards.

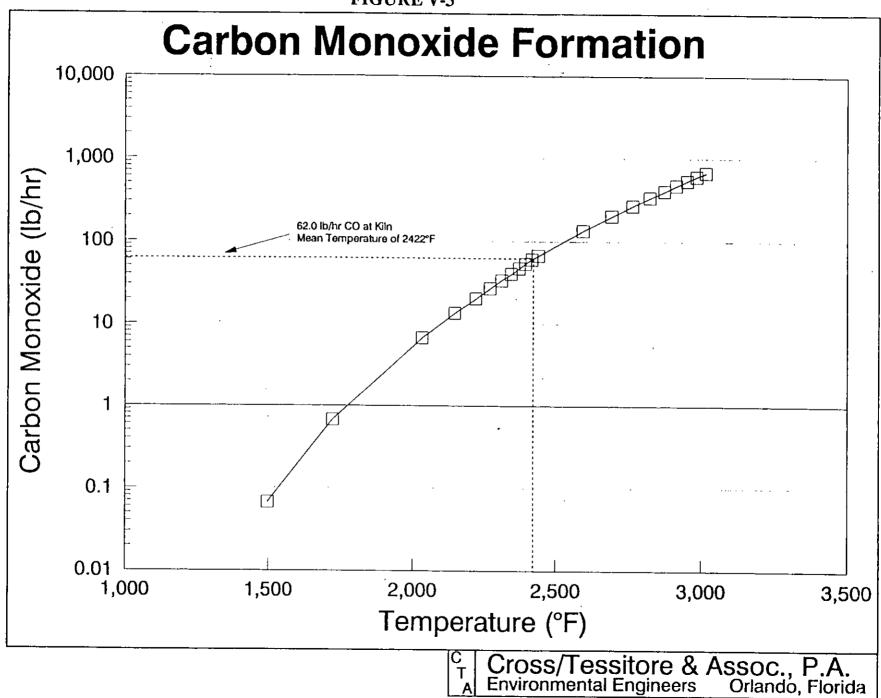


TABLE V-3

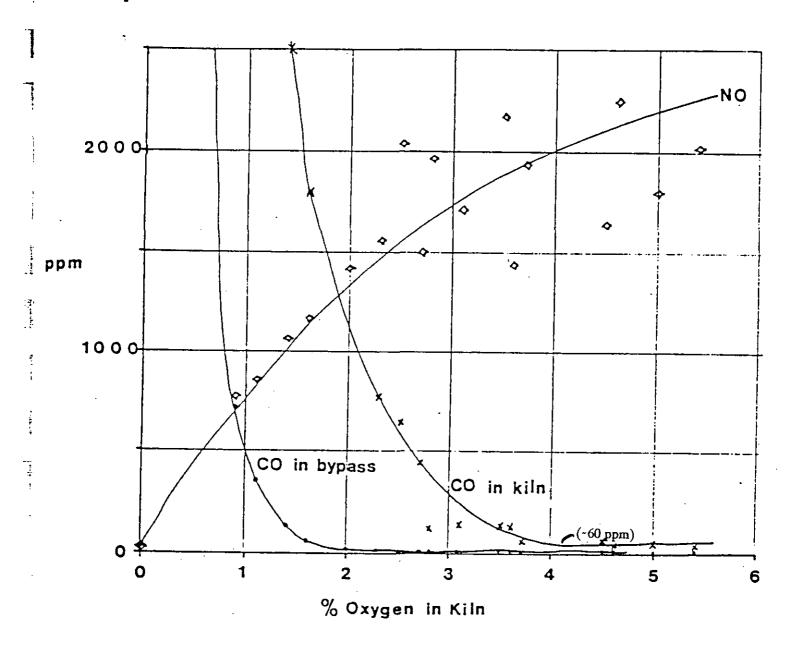
CARBON MONOXIDE

EMISSIONS SUMMARY

	Current Permitted Level (lb/hr) (T/yr)		Current Actual Emissions (lb/hr) (T/yr)		Proposed Actual Emissions (lb/hr) (T/yr)		Net Emissions Increase (lb/hr) (T/yr)	
Combustion Source	8.9	35.1	8.9	35.1	12.0	50.4	3.1	15.3
Process Source			62.0	244.8	67.2	282.2	5.2	37.4
TOTAL	8.9	35.1	70.9 47. 4	- 279.9 - 1 72. 7	-79:2 24:2	- 332.6	~ 8.3 ⊛.√	- 52.7 -

EXHIBIT V-1
FLORIDA MINING AND MATERIALS TESTING SUMMARY

011 P. 1 42, Says-fost dans on May 2: 15. 10/17-19: 1469

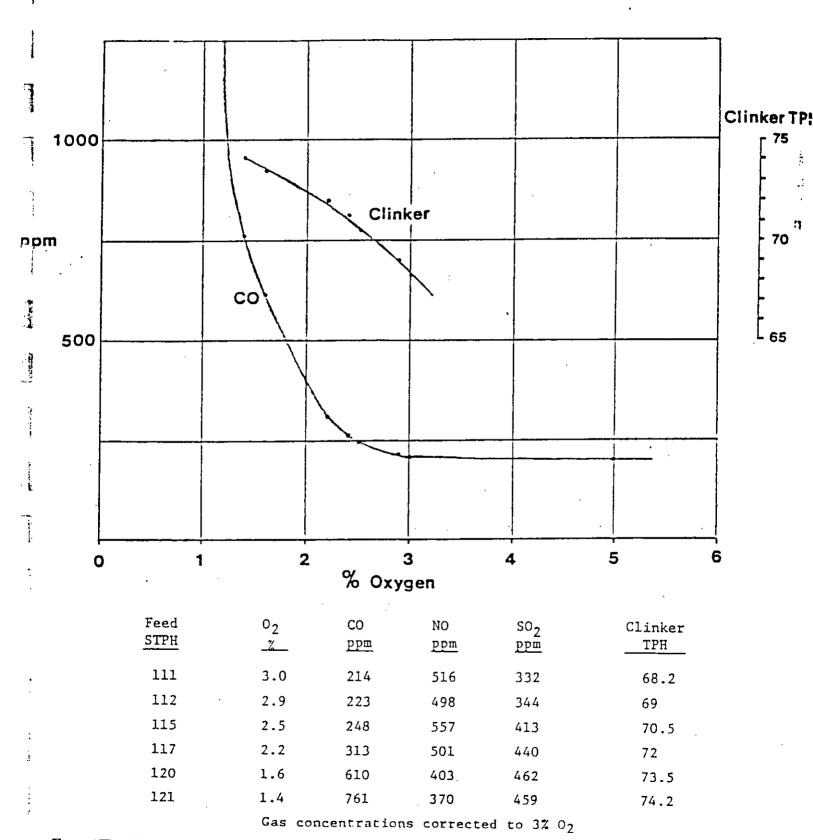

	Test Results 10/17-19 , 1907			
	Kiln Feed Rate (ton/hr)	Emissions (lb/hr) = **/***/	Current Allowable Emissions (lb/hr)	
		6 Mag	tir)	
Particulate	130	7.51	21.6	
Sulfur Dioxide	130	0.44 (1)	12.0	
Nitrogen Dioxide (NO _x)	130	135 (1)	250	
Carbon Monoxide	130	39.5 (1)	8.9	
	130	· 44.8 12.	5,16 8-67 - E	
Volatile Organic Compounds	130	5.4	#J7 % 1 2.7	

(1) These measured emissions represent kiln operation while the raw mill is down.

EXHIBIT V-2

Page 1 of 2

Fig. 3 CO and NO vs Oxygen in Kiln


From "The Use of Carbon Monoxide and Other Gases for Process Control", by Eric R. Hansen. Submitted for the 1985 I.E.E.E. Conference.

NOTE: CO in bypass can be considered representative of the combustion source. CO in kiln can be considered representative of both the combustion and process sources.

EXHIBIT V-2

Page 2 of 2

Fig. 4 CO and production vs % Oxygen at ID Fan

From "The Use of Carbon Monoxide and Other Gases for Process Control", by Eric R. Hansen. Submitted for the 1985 I.E.E.E. Conference.

TABLE V-4
COMPARISON OF CARBON MONOXIDE IMPACT LEVELS

Averaging Time	Maximum ⁽¹⁾ Ground Level Impact (ug/m ³)	Location of ⁽²⁾ Maximum Impact East North		Significant ⁽³⁾ Impact Levels (ug/m ³)	National ⁽⁴⁾ Ambient Air Quality Standard (ug/m ³)
l-Hour	832,79	356, 000	3, 168, 700	2,000	40.000
8-Hour			. ,	ŕ	40,000
0-11041	395.68	356, 000	3, 168, 700	500	10,000

٦,

⁽¹⁾ Calculated based on dispersion coeficients developed through ISCST dispersion modeling. For complete modeling output listing, see Volume II of this application

⁽²⁾ UTM coordinates in meters (source location: East 356, 100 West 3, 168, 700).

⁽³⁾ From DER 17-2.100 (180).

⁽⁴⁾ From DER 17-2.300.

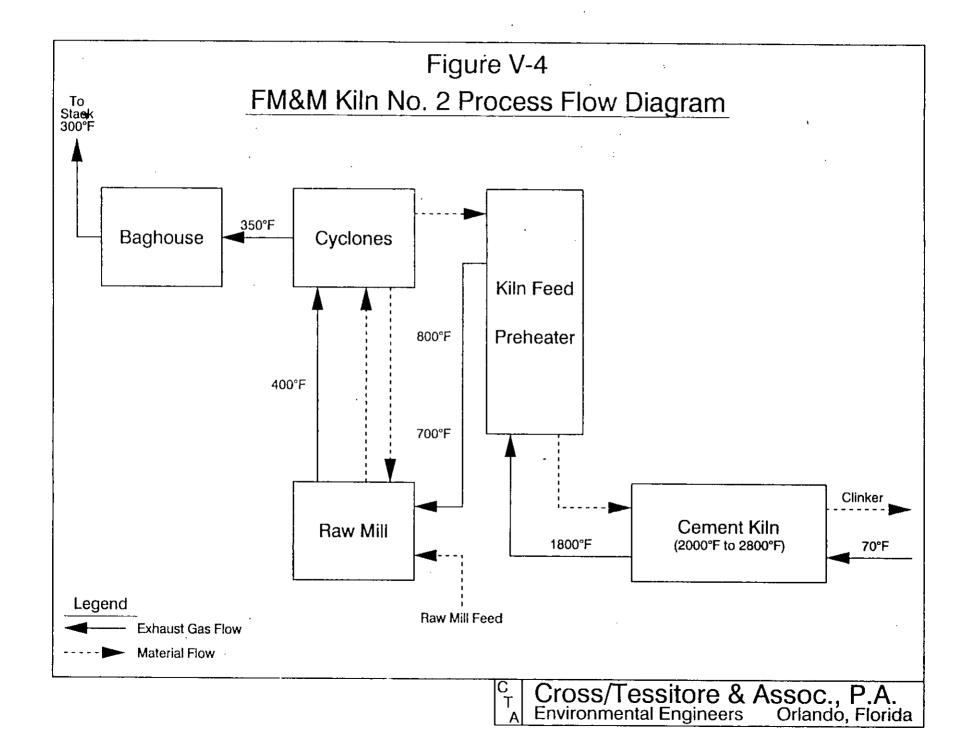
(continued)

5. VOLATILE ORGANIC COMPOUNDS (TOTAL HYDROCARBONS)

It is estimated that an achievable actual emissions concentration for the No. 2 Kiln is 20 ppm (as carbon). This level is consistent with the EPA's proposed level for industrial furnaces and believed to be representative of good operating procedures. Control of volatile organic compounds (hydrocarbons) is achieved through properly maintained combustion conditions within the kiln system. It is assumed that no control is provided by the fabric filter. The following provides a calculation of the estimated potential and actual emissions rate based on the EPA's proposed levels.

Estimated Potential Emissions

$$= \frac{(20 \text{ ppm}) \text{ x } (12 \text{ g/mole}) \text{ x } (199,000 \text{ cu. ft/min}) \text{ x } (60)}{(385 \text{ ft}^3) \text{ x } (10^{+6})}$$


= 7.44 lb/hr

= 31.3 T/yr

Control Device Removal Efficiency

= 0%

Estimated Actual Emissions

FIGURE V-5 USGS TOPOGRAPHICAL MAP