Tel 850.444.6111

# RECEIVED

SEP 24 2012

DIVISION OF AIR RESOURCE MANAGEMENT



September 21, 2012

Jeff Koerner Office of Permitting and Compliance Florida Department of Environmental Protection 2600 Blair Stone Road Mail Stop 5500 Tallahassee, Florida 32399-2400

Subject:

Gulf Power Company Crist Plant

Air Construction Permit Nos .0330045 - 028 and 029 Sulfuric Acid Mist Testing Completion Report

Dear Mr. Koerner:

Attached please find the Sulfuric Acid Mist Testing Completion Report for Gulf Power's Plant Crist, located in Pensacola, Florida. Gulf Power believes that the attached report demonstrates reasonable assurance that operation of the plant's hydrated lime injection and flue gas desulfurization systems provide adequate compliance with the plant's SAM emission cap, and verifies the use of the EPRI SO3 prediction equations.

Should you have any questions regarding the report please feel free to contact me at 850.444.6144.

Sincerely,

Greg Terry, P.E

Air Quality Programs Supervisor Gulf Power Environmental Affairs

cc:

Rick Bradburn-FDEP Northwest District

Jim Vick-Gulf Power Dwain Waters- Gulf Power Terry Wright-Gulf Power Jora Maxwell-Gulf Power Robert Jernigan-Gulf Power



**Gulf Power Plant Crist Sulfuric Acid Mist Testing Completion Report** 

# CERTIFICATION BY RESPONSIBLE OFFICIAL

"I, the undersigned, am the responsible official, as defined in Chapter 62-210.200, F.A.C., for the Title V source for which this report is being submitted. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made and data contained in this report are true, accurate and complete."

**Responsible Official Signature:** 

Michael L. Burroughs

Vice-President and Senior Production Officer

# Gulf Power Company Plant Crist Sulfuric Acid Mist Testing Completion Report

On March 22, 2010, Gulf Power Company's Plant Crist was issued a final air construction permit (Permit # 0330045-028-AC) which authorized a Selective Catalytic Reduction (SCR) system to be constructed and operated on Unit 6. This permit also included the installation of a Hydrated Lime Injection (HLI) system in the combined ductwork prior to the FGD. A second Air Construction Permit (Permit # 0330045-029-AC) was granted to Plant Crist on May 3, 2010, which allowed the plant to burn a higher sulfur coal (HSC) blend in Units 4-7. Both the SCR construction permit and HSC construction permit incorporate testing requirements to quantify the impact of various control equipment on Sulfuric Acid Mist (SAM). On October 24, 2011, Gulf Power was granted permission to delay the testing requirements set forth in the HSC construction permit until after completion of the Unit 6 SCR.

The SCR on Unit 6 was brought into service on May 16, 2012. Gulf Power's contractor conducted SAM (SO3) testing at the inlet and outlet of the Unit 6 SCR on July 25, 2012. Testing was conducted at the outlet of the FGD over the course of several days. Low load testing was completed on June 29, 2012, and mid and full load testing was conducted on August 6-10, 2012. The operational parameters recorded during each test run, as required by Conditions 8 and 13 of the HSC Permit, can be found in Appendix A, Tables 1 and 2. All test reports are attached in Appendix B.

#### **Test Results and Discussion**

On July 25, 2012, Gulf Power's contractor conducted SO3 testing at the inlet and outlet of Unit 6's SCR. The inlet and outlet were tested concurrently during 3 test runs with Unit 6 at full load. The operating data from this testing can be found in Appendix A, Table A1. Table 1, below, is a comparison of the inlet and outlet test rate to EPRI predicted SO3 conversion rates.

| Table | 1  | Unit 6 | SCR | SO3           | Conver | sion Data |  |
|-------|----|--------|-----|---------------|--------|-----------|--|
| Lable | 1. | OILLO  | SCI | $\mathcal{S}$ | COHVEL | SIOH Data |  |

| Rom Ø   | Roon Date     | RunStart | R000 (300)         | (1002 teelf teelful | Indet EPRI 508 | Oxilet Test SOS | Outlet Fri 503 |  |
|---------|---------------|----------|--------------------|---------------------|----------------|-----------------|----------------|--|
|         | 0000/636J/xxy | ppama    | labarana liban/lar |                     | Tilyandl       | lbm/br          | (Cara)/Car     |  |
| 1       | 7/25/12       | 9:15     | 10:15              | 123.2               | 123.4          | 181.3           | 226.7          |  |
| 2       | 7/25/12       | 12:20    | 13:20              | 132.4               | 124.3          | 230.9           | 228.2          |  |
| 3       | 7/25/12       | 13:55    | 14:55              | 124.7               | 124.2          | 259.8           | 228.2          |  |
| Average | 7/25/2012     | •        | •                  | 126.8               | 124.0          | 224.0           | 227.7          |  |

As shown above, the average tested conversion across the Unit 6 SCR catalyst is within 3% difference from the average EPRI predicted SO3 conversion. As a result, Gulf believes the use of the EPRI methodology is verified and will continue to utilize the EPRI SO3 prediction equations to demonstrate permit compliance

Additional testing was conducted on Units 5, 6, and 7 at the outlet of the FGD on June 29, 2012 and from August 6, 2012 to August 10, 2012 to determine the optimum hydrated lime injection rate, quantify the SO3 reductions resultant from the HLI system and FGD, and further verify the EPRI SO3 conversion equations. Operational data, as required by

Conditions 8 and 13 of the HSC Permit can be found in Appendix A, Table A2, and complete test reports from Gulf's contractor and be found in Appendix B.

To determine the optimum HLI operating rate, full load testing was conducted on August 6, 2012 using varying hydrated lime injection rates. A total of 6 1-hour runs were completed utilizing duplicate runs with hydrated lime feedrates of 5%, 10%, and 20% feeder speed. Table 2 below summarizes the test results.

Table 2. Hydrated Lime Injection Optimization

| Rum (# | Rum මන්වෙ   | Run Start   | Run God     | Mapag    | COLUMBE SERVICE SERVIC | Actual Test SOS | Projected EPRI SOB | Control Efficiency |
|--------|-------------|-------------|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------|--------------------|
|        | @\\mm\\\\\\ | Colomonical | Colomonical | <b>%</b> | (Com/Am                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ad/aadl         | (1) Tale           | %                  |
| 1      | 8/6/12      | 9:45        | 10:45       | 5.2      | 210.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 107.9           | 110.9              | 2.7                |
| 2      | 8/6/12      | 11:00       | 12:00       | 5.2      | 211.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101.6           | 110.8              | 8.3                |
| 3      | 8/6/12      | 12:20       | 13:20       | 10.1     | 396.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.9            | 110.6              | 33.2               |
| 4      | 8/6/12      | 13:30       | 14:30       | 10.1     | 384.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.9            | 111.1              | 45.1               |
| 5      | 8/6/12      | 14:40       | 15:40       | 19.6     | 689.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50.3            | 110.7              | 54.6               |
| 6      | 8/6/12      | 15:50       | 16:50       | 19.7     | 713.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.9            | 110.6              | 61.3               |

These results verified 58% average reduction from the EPRI predicted pre-HLI and FGD calculation, and established an optimum injection rate of 20% HLI feeder speed for the remainder of the testing program.

Upon determining the optimum HLI rate, the Gulf test plan included optimization study of two operating conditions: FGD without HLI and FGD with HLI. The results of these testsare summarized in Tables 3 and 4 and illustrated in Chart 1.

For the FGD without HLI, as shown in Table 3, the study shows that FGD control efficiency decreases as plant load increases, as the FGD is designed to control SO2 primarily, as opposed to SO3.

For the FGD and HLI, as presented in Table 4, the study shows a range of SO3 control efficiencies based on load. At full load, the HLI feed rate was 19%, and at low load the HLI rate was 10%. These study results compare favorably with EPRI projections.

Table 3. FGD SO3 Control Efficiency

| Rem # | Rum Date    | RunStart | Grown Ernel | Plant Load | HUSpeed | HU Rate  | Actual Test 2008 | Projected EPRI 508 | Reduction |
|-------|-------------|----------|-------------|------------|---------|----------|------------------|--------------------|-----------|
|       | @@\/mm\/yyy | ggaaaa   | Commedd     | 0XXXX      | %       | Tilyandl | 16my/6m2         | (bm/br             | %         |
| 1     | 6/29/12     | 9:20     | 10:20       | 446.6      | 0.0     | 0.0      | 12.6             | 64.6               | 80.5      |
| 2     | 6/29/12     | 11:10    | 12:10       | 450.1      | 0.0     | 0.0      | 27.7             | 64.4               | 57.0_     |
| 1     | 8/7/12      | 9:30     | 10:30       | 580.1      | 0.0     | 0.0      | 26.3             | 72.2               | 63.6      |
| 2     | 8/7/12      | 10:40    | 11:40       | 581.3      | 0.0     | 0.0      | 33.3             | 72,3               | 54.0      |
| 3     | 8/7/12      | 12:45    | 13:45       | 772.2      | 0.0     | 0.0      | 60.3             | 100.4              | 39.9      |
| 4     | 8/7/12      | 13:55    | 14:55       | 775.2      | 0.0     | 0.0      | 54.6             | 101.0              | 46.0      |
| 1     | 8/8/12      | 10:45    | 11:45       | 875.2      | 0.0     | 0.0      | 78.4             | 113.8              | 31.1      |
| 2     | 8/8/12      | 11:55    | 12:55       | 874.8      | 0.0     | 0.0      | 86.9             | 113.6              | 23.5      |
| 3     | 8/8/12      | 13:50    | 14:50       | 907.8      | 0.0     | 0.0      | 106.9            | 124.3              | 14.0      |
| 4     | 8/8/12      | 15:05    | 16:05       | 907.8      | 0.0     | 0.0      | 52.8             | 124.5              | 57.6      |

Table 4. Combined FGD and HLI SO3 Control Efficiency

| Run# | Run Date | Run Start | Run End | Plant Load | <b>HLI Speed</b> | <b>HLI Rate</b> | Actual Test SO3 | Projected EPRI SO3 | Reduction |
|------|----------|-----------|---------|------------|------------------|-----------------|-----------------|--------------------|-----------|
|      | dd/mm/yy | hh:mm     | hh:mm   | MW         | %                | lbm/hr          | lbm/hr          | lbm/hr             | %         |
| 1    | 6/29/12  | 12:55     | 13:55   | 452.5      | 4.5              | 161.4           | 26.83           | 64.6               | 58.5      |
| 2    | 6/29/12  | 14:40     | 15:40   | 448.2      | 4.5              | 141.6           | 27.78           | 64.4               | 56.9      |
| 1    | 8/9/12   | 9:10      | 10:10   | 566.3      | 10.1             | 355.2           | 27.79           | 72.2               | 61.5      |
| 2    | 8/9/12   | 10:20     | 11:20   | 565.9      | 10.1             | 359.9           | 15.14           | 72.3               | 79.1      |
| 3    | 8/9/12   | 12:40     | 13:40   | 759.8      | 15.1             | 509.9           | 27.51           | 100.4              | 72.6      |
| 4    | 8/9/12   | 13:50     | 14:50   | 759.6      | 15.1             | 558.0           | 21.15           | 101.0              | 79.1      |
| 1    | 8/10/12  | 8:55      | 9:55    | 869.4      | 18.2             | 595.1           | 37.11           | 113.8              | 67.4      |
| 2    | 8/10/12  | 10:05     | 11:05   | 875.8      | 18.2             | 591.4           | 57.58           | 113.6              | 49.3      |
| 3    | 8/10/12  | 11:35     | 12:35   | 872.1      | 18.2             | 596.8           | 57.92           | 124.3              | 53.4      |
| 4    | 8/10/12  | 13:25     | 14:25   | 911.4      | 19.1             | 606.9           | 55.36           | 134.9              | 59.0      |
| 5    | 8/10/12  | 14:35     | 15:35   | 914.1      | 19.4             | 607.4           | 49.61           | 145.5              | 65.9      |

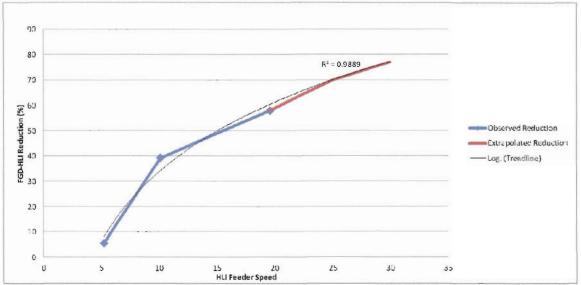



Chart 1. FGD-HLI SO3 Reduction

An extrapolation of the HLI optimization study data was performed to determine the effect of increasing HLI feedrates on FGD and HLI control efficiency. Based off of the results of the extrapolation, Gulf proposes to operate the Plant Crist hydrated lime injection system at 25% feeder speed at full plant load. The extrapolation shows that operating the HLI at 25% feeder speed yields a combined FGD and HLI control efficiency of 70%. This operating speed gives an increase of 20% control efficiency over operating at the tested feeder speeds during the full load optimization study. By operating the HLI system at 25% feeder speed, Gulf concludes that applying the extrapolated 20% increase in control efficiency to the average control efficiencies observed over all load ranges tested on June 29, 2012 and August 9 and 10, 2012, an ultimate combined FGD and HLI control efficiency of 75% is achieved.

Table A1. Unit 6 SCR SO3 Coversion Testing Operating Parameters

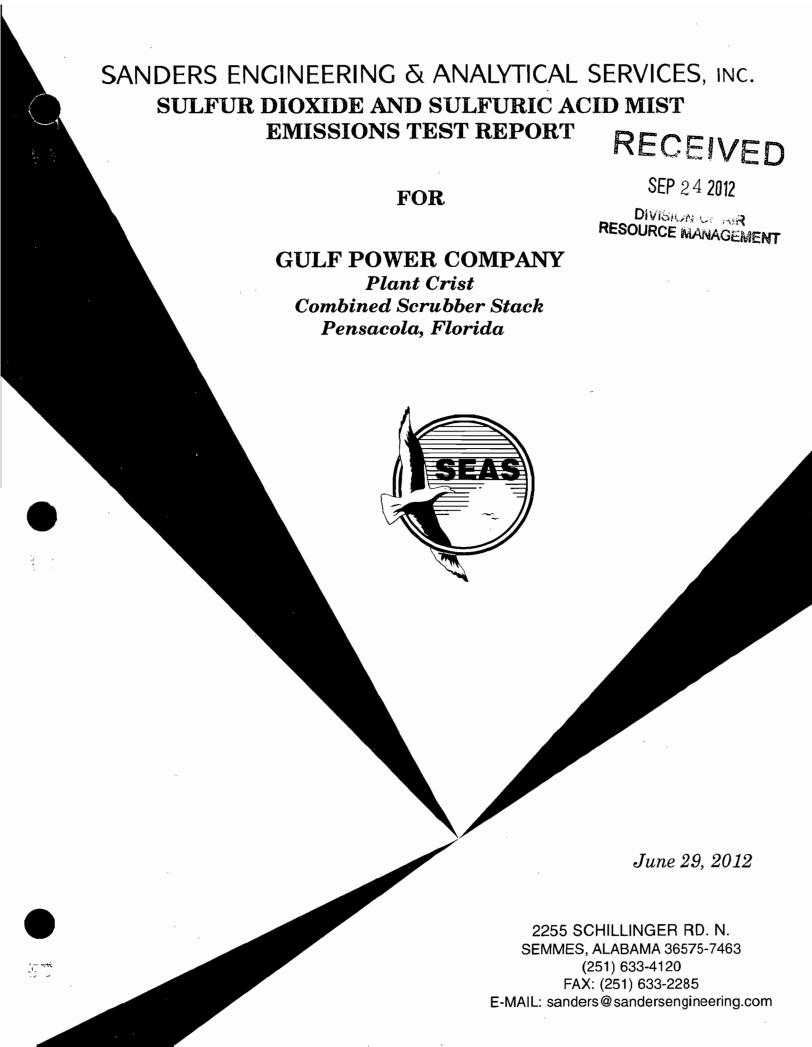

| Rwn & | Rum Date | Rwn Start | Rwn <b>E</b> md | 9     | 6 Coal  | 6H1      | 60padity | 6SCRNH3 |
|-------|----------|-----------|-----------------|-------|---------|----------|----------|---------|
|       | mm/dd/yy | hhamm     | තිරුකාරය        | MW    | ldps/hr | mmbtw/br | %        | nd/mell |
| 1     | 7/25/12  | 9:15      | 10:15           | 328.1 | 287.1   | 3363.3   | 2.6      | 377.3   |
| 2     | 7/25/12  | 12:20     | 13:20           | 329.9 | 289.2   | 3387.9   | 2.9      | 372.1   |
| 3     | 7/25/12  | 13:55     | 14:55           | 328.9 | 289.2   | 3387.5   | 3.0      | 426.0   |

Table A2. Plant Wide SO3 Testing Operating Parameters

| ඩ <b>ෆා</b> # | Rundate       | Run Sterit | Rem මාත්  | Blood | රෑලු  | 710ක්         | Plantload | S@al         | <b>ි</b> ලෙනු | 7@ා      | 8 <b>8</b> 0 | GM        | 700         | SOmetry | 6@podity | 7@padby |
|---------------|---------------|------------|-----------|-------|-------|---------------|-----------|--------------|---------------|----------|--------------|-----------|-------------|---------|----------|---------|
|               | 10000/COG/XXY | مسطانا     | Collegeon | MM    | 03333 | <b>100000</b> | 020007    | callymadical | (11)mm/(bbr   | (1)\math | ഡിയർത്ത      | ග්රුණ්ඩකා | ගැන්නිගැන්න | 88      | 83       | 88      |
| 1             | 8/6/12        | 9:45       | 10:45     | 80.2  | 326.8 | 508.5         | 915.5     | 68.8         | 289.5         | 439.9    | 807.0        | 3388.5    | 5275.4      | 11.5    | 2.4      | 0.8     |
| 2             | 8/6/12        | 11:00      | 12:00     | 80.0  | 326.9 | 507.9         | 914.8     | 68.7         | 289.5         | 438.9    | 806.2        | 3388.7    | 5263.7      | 10.4    | 2.6      | 0.8     |
| 3             | 8/6/12        | 12:20      | 13:20     | 77.7  | 328.2 | 508.0         | 913.9     | 66.3         | 289.4         | 439.2    | 777.3        | 3387.5    | 5267.4      | 7.2     | 2.5      | 1.0     |
| 4             | 8/6/12        | 13:30      | 14:30     | 80.0  | 327.9 | 507.9         | 915.8     | 68.8         | 290.4         | 440.1    | 807.0        | 3398.7    | 5278.7      | 9.9     | 2.3      | 0.9     |
| 5             | 8/6/12        | 14:40      | 15:40     | 80.0  | 328.0 | 507.9         | 915.8     | 68.5         | 290.7         | 437.9    | 803.8        | 3403.0    | 5251.2      | 8.7     | 2.2      | 1.0     |
| 6             | 8/6/12        | 15:50      | 16:50     | 80.0  | 327.8 | 508.0         | 915.8     | 68.4         | 290.0         | 437.9    | 802.5        | 3393.9    | 5252.2      | 8.9     | 2.2      | 0.9     |
|               |               |            |           |       |       |               |           |              |               |          |              |           |             |         |          |         |
| _1_           | 6/29/12       | 9:20       | 10:20     | 45.1  | 0.0   | 401.5         | 446.6     | 42.0         | 0.0           | 340.0    | 612.7        | 0.0       | 4881.5      | 6.3     | 3.3      | 0.9     |
| 2             | 6/29/12       | 11:10      | 12:10     | 46.9  | 0.0   | 403.2         | 450.1     | 43.0         | 0.0           | 338.2    | 628.2        | 0.0       | 4855.3      | 7.8     | 3.5      | 0.9     |
| 11            | 8/7/12        | 9:30       | 10:30     | 79.6  | 220.2 | 280.3         | 580.1     | 68.4         | 194.7         | 250.7    | 828.7        | 2285.0    | 2864.9      | 7.9     | 2.4      | 0.5     |
| 2             | 8/7/12        | 10:40      | 11:40     | 80.0  | 220.2 | 281.1         | 581.3     | 67.8         | 195.3         | 250.7    | 821.4        | 2292.3    | 2865.1      | 7.7     | 2.6      | 0.4     |
| 3             | 8/7/12        | 12:45      | 13:45     | 80.0  | 324.8 | 367.4         | 772.2     | 67.8         | 285.1         | 320.4    | 811.0        | 3348.4    | 3601.4      | 8.2     | 2.9      | 0.4     |
| 4             | 8/7/12        | 13:55      | 14:55     | 80.0  | 324.9 | 370.3         | 775.2     | 67.7         | 286.3         | 323.3    | 810.2        | 3362.0    | 3634.0      | 8.3     | 2.9      | 0.4     |
| 1             | 8/8/12        | 10:45      | 11:45     | 50.0  | 324.9 | 500.2         | 875.2     | 44.0         | 286.3         | 427.1    | 516.7        | 3337.1    | 5045.3      | 6.6     | 2.4      | 0.6     |
| 2             | 8/8/12        | 11:55      | 12:55     | 50.0  | 325.0 | 499.7         | 874.8     | 43.9         | 285.9         | 426.4    | 515.9        | 3331.9    | 5036.6      | 6.6     | 2.5      | 0.7     |
| 3             | 8/8/12        | 13:50      | 14:50     | 76.0  | 324.9 | 506.9         | 907.8     | 65.1         | 285.0         | 433.7    | 783.6        | 3412.5    | 5095.4      | 6.3     | 2.5      | 0.8     |
| 4             | 8/8/12        | 15:05      | 16:05     | 76.0  | 325.0 | 506.8         | 907.8     | 64.7         | 285.1         | 435.5    | 778.9        | 3413.2    | 5116.3      | 6.3     | 2.3      | 0.7     |
|               |               |            |           |       |       |               |           |              |               |          |              |           |             |         |          |         |
| 1             | 6/29/12       | 12:55      | 13:55     | 48.1  | 0.0   | 404.5         | 452.5     | 44.2         | 0.0           | 340.6    | 645.2        | 0.0       | 4890.3      | 6.3     | 3.9      | 0.8     |
| 2             | 6/29/12       | 14:40      | 15:40     | 45.0  | 0.0   | 403.1         | 448.2     | 41.8         | 0.0           | 340.4    | 610.2        | 0.0       | 4887.1      | 6.7     | 3.9      | 0.9     |
| 1             | 8/9/12        | 9:10       | 10:10     | 55.0  | 230.6 | 280.7         | 566.3     | 47.4         | 203.1         | 252.3    | 559.0        | 2387.6    | 2952.3      | 6.7     | 2.3      | 0.5     |
| 2             | 8/9/12        | 10:20      | 11:20     | 55.0  | 230.0 | 280.9         | 565.9     | 47.8         | 202.8         | 253.8    | 563.8        | 2384.0    | 2969.5      | 13.2    | 2.4      | 0.5     |
| 3             | 8/9/12        | 12:40      | 13:40     | 55.0  | 324.9 | 379.9         | 759.8     | 47.7         | 284.0         | 332,3    | 564.2        | 3273.8    | 3819.8      | 7.6     | 2.3      | 0.7     |
| 4             | 8/9/12        | 13:50      | 14:50     | 55.0  | 324.9 | 379.8         | 759.6     | 47.9         | 284.5         | 331.2    | 566.1        | 3278.7    | 3808.0      | 8.7     | 2.3      | 0.6     |
| 1             | 8/10/12       | 8:55       | 9:55      | 72,6  | 308.1 | 488.8         | 869.4     | 61.2         | 269.6         | 425.0    | 729.2        | 3155.9    | 5030.4      | 8.4     | 2.3      | 0.9     |
| 2             | 8/10/12       | 10:05      | 11:05     | 79.0  | 307.9 | 489.0         | 875.8     | 66.2         | 269.0         | 425.0    | 788.8        | 3149.2    | 5030.4      | 8.6     | 2.4      | 1.0     |
| 3             | 8/10/12       | 11:35      | 12:35     | 79.0  | 299.6 | 493.5         | 872.1     | 66.3         | 256.8         | 424.2    | 790.1        | 3006.4    | 5020.4      | 8.4     | 2.5      | 0.9     |
| 44            | 8/10/12       | 13:25      | 14:25     | 75.1  | 327.5 | 508.7         | 911.4     | 60.4         | 283.1         | 440.2    | 720.0        | 3359.7    | 5258.2      | 8.6     | 2.3      | 1.0     |
| 5             | 8/10/12       | 14:35      | 15:35     | 76.8  | 328.1 | 509.2         | 914.1     | 65.5         | 284.2         | 443.3    | 780.5        | 3372.4    | 5294.9      | 7.4     | 2.4      | 1.1     |

Table A2. Plant Wide SO3 Testing Operating Parameters (continued)

| Rom Ø | Rum මන්ල       | RunStant   | Rum End     | FGD lidet S02 | FCD Owlet SO2 | SSNGRUTGO | 69 CRIMB | 7SERVIJB | CTU Speed | COURETCE . | FGD Lime Feed | Test 508 |
|-------|----------------|------------|-------------|---------------|---------------|-----------|----------|----------|-----------|------------|---------------|----------|
|       | 00000/ddd//yyy | Concentral | Colberrance | addami/andl   | wdmm\mdl      | Obm/for   | ග්රුණ්   | (Com/Cor | %         | (bm/br     | gal/min       | (Dmy/br  |
| 1 .   | 8/6/12         | 9:45       | 10:45       | 2.734         | 0.061         | 43.9      | 417.9    | 564.9    | 5.2       | 210.0      | 161.3         | 107.9    |
| 2     | 8/6/12         | 11:00      | 12:00       | 2.771         | 0.052         | 43.6      | 425.3    | 576.3    | 5.2       | 211.9      | 179.5         | 101.6    |
| 3     | 8/6/12         | 12:20      | 13:20       | 2.762         | 0.036         | 42.0      | 434.0    | 576.0    | 10.1      | 396.7      | 194.0         | 73.92    |
| 4     | 8/6/12         | 13:30      | 14:30       | 2.810         | 0.030         | 42.5      | 430.6    | 581.4    | 10.1      | 384.8      | 200.3         | 60.94    |
| 5     | 8/6/12         | 14:40      | 15:40       | 2.857         | 0.031         | 45.0      | 427.5    | 586.4    | 19.6      | 689.4      | 198.1         | 50.28    |
| 6     | 8/6/12         | 15:50      | 16:50       | 2.856         | 0.026         | 42.9      | 431.6    | 590.5    | 19.7      | 713.5      | 189.8         | 42.87    |
|       |                |            |             |               |               |           |          |          |           |            |               |          |
| 11    | 6/29/12        | 9:20       | 10:20       | 2.771         | 0.066         | 0.0       | 0.2      | 457.5    | 0.0       | 12.1       | 132.5         | 12.59    |
| 2     | 6/29/12        | 11:10      | 12:10       | 2.779         | 0.057         | 12.3      | 0.0      | 461.7    | 0.0       | 5.8        | 132.6         | 27.7     |
| 1     | 8/7/12         | 9:30       | 10:30       | 3.063         | 0.033         | 43.0      | 294.7    | 258.7    | 0.0       | 13.6       | 136.3         | 26.29    |
| 2     | 8/7/12         | 10:40      | 11:40       | 3.106         | 0.033         | 44.3      | 297.1    | 251.5    | 0.0       | 21.6       | 134.5         | 33.25    |
| 3     | 8/7/12         | 12:45      | 13:45       | 3.135         | 0.048         | 44.1      | 424.1    | 354.0    | 0.0       | 16.7       | 156.2         | 60.34    |
| 4     | 8/7/12         | 13:55      | 14:55       | 3.152         | 0.051         | 42.7      | 409.9    | 361.8    | 0.0       | 30.9       | 176.7         | 54.55    |
| 1     | 8/8/12         | 10:45      | 11:45       | 3.126         | 0.085         | 25.1      | 455.3    | 629.6    | 0.0       | 15.6       | 208.4         | 78.42    |
| 2     | 8/8/12         | 11:55      | 12:55       | 3.128         | 0.079         | 24.6      | 456.4    | 641.0    | 0.0       | 33.8       | 211.2         | 86.9     |
| 3     | 8/8/12         | 13:50      | 14:50       | 3.168         | 0.064         | 40.8      | 455.7    | 646.4    | 0.0       | 6.5        | 219.8         | 106.9    |
| 4     | 8/8/12         | 15:05      | 16:05       | 3.165         | 0.065         | 40.7      | 459.9    | 650.2    | 0.0       | 9.2        | 221.5         | 52.82    |
|       |                |            |             |               |               |           |          |          |           |            |               |          |
| 1     | 6/29/12        | 12:55      | 13:55       | 2.785         | 0.053         | 19.7      | 0.4      | 472.8    | 4.5       | 161.4      | 119.3         | 26.83    |
| 2     | 6/29/12        | 14:40      | 15:40       | 2.765         | 0.069         | 0.0       | 0.2      | 455.2    | 4.5       | 141.6      | 105.1         | 27.75    |
| 1     | 8/9/12         | 9:10       | 10:10       | 3.091         | 0,127         | 34.6      | 315.6    | 190.8    | 10.1      | 355.2      | 103.2         | 27.79    |
| 2     | 8/9/12         | 10:20      | 11:20       | 3.118         | 0.113         | 34.4      | 319.4    | 256.8    | 10.1      | 359.9      | 118.3         | 15.14    |
| 3     | 8/9/12         | 12:40      | 13:40       | 3.148         | 0.070         | 34.9      | 455.3    | 397.3    | 15.1      | 509.9      | 184.1         | 27.51    |
| 4     | 8/9/12         | 13:50      | 14:50       | 3.154         | 0.060         | 34.7      | 458.2    | 396.5    | 15.1      | 558.0      | 200.3         | 21.15    |
| 1     | 8/10/12        | 8:55       | 9:55        | 3.227         | 0.090         | 37.8      | 350.1    | 564.8    | 18.2      | 595.1      | 221.4         | 37.11    |
| 2     | 8/10/12        | 10:05      | 11:05       | 3.286         | 0.073         | 42.6      | 351.1    | 563.9    | 18.2      | 591.4      | 226.4         | 57.58    |
| 3     | 8/10/12        | 11:35      | 12:35       | 3.307         | 0.075         | 43.2      | 371.2    | 561.9    | 18.2      | 596.8      | 223.4         | 57.92    |
| 4     | 8/10/12        | 13:25      | 14:25       | 3.280         | 0.066         | 42.3      | 434.6    | 626.5    | 19.1      | 606.9      | 235.4         | 55.36    |
| 5     | 8/10/12        | 14:35      | 15:35       | 3.190         | 0.069         | 40.8      | 435.1    | 629.7    | 19.4      | 607.4      | 233.4         | 49.61    |



# REPORT CERTIFICATION

I have reviewed the "Sulfur Dioxide and Sulfuric Acid Mist Emissions Test Report" for the testing performed for Gulf Power Company on the Combined Scrubber Stack located at the Pensacola, Florida facility. I hereby certify that it is authentic and accurate to the best of my knowledge.

Date.

Signature:

Isaac Smith Operations Manager

# TABLE OF CONTENTS

| INTRODUCTION                                             | 1  |
|----------------------------------------------------------|----|
| DESCRIPTION OF SAMPLING PROGRAM                          | 2  |
| SUMMARY AND DISCUSSION OF RESULTS                        | 3  |
| PROCESS DESCRIPTION                                      | 5  |
| Source Air Flow                                          | 6  |
| SAMPLE POINT LOCATION                                    | 7  |
| SULFUR DIOXIDE AND SULFURIC ACID MIST SAMPLING PROCEDURE |    |
| (CTM-013)                                                | 8  |
| Sample Recovery                                          | 9  |
| Sample Analysis Procedures                               | 9  |
| QUALITY ASSURANCE                                        | 11 |
| Calibrations                                             | 11 |
| Pitot Tubes                                              | 12 |
| Differential Pressure Gauges                             | 12 |
| Temperature Sensors                                      | 12 |
| Nozzles                                                  | 12 |
| Dry Gas Meter                                            | 13 |
| Orifice                                                  | 13 |
| APPENDIX A QUALITY CONTROL OF TESTING EQUIPMENT          | 14 |
| APPENDIX B FIELD DATA                                    | 17 |
| APPENDIX C SAMPLE CALCULATIONS                           | 26 |

# LIST OF TABLES

TABLE I. SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS ......4

# **ILLUSTRATIONS**

| FIGURE 1. | AIR FLOW SCHEMATIC                 | 6 |
|-----------|------------------------------------|---|
| FIGURE 2. | STACK OUTLET SAMPLE POINT LOCATION | 7 |
| FIGURE 3. | CTM13 SAMPLING TRAIN               | 8 |

#### 1. INTRODUCTION

Sanders Engineering & Analytical Services, Inc. (SEAS) performed sulfur dioxide and sulfuric acid mist emissions testing June 29, 2012, for Gulf Power Company on the Combined Scrubber Stack located at the Plant Crist facility in Pensacola, Florida. The testing was performed in accordance with the applicable procedures as specified at **CTM Method 013** as published by the National Council of Air and Stream Improvement for the determination of sulfuric acid vapor or mist and sulfur dioxide emissions from Kraft Recovery Furnaces. Further discussions of the test methods are included later in the report.

The purpose of the testing was to gain additional information concerning the emission rate of sulfuric acid mist from the unit. The testing was conducted by Mr. Mark Christian, Mr. Brett Horton, Mr. Bill Ward, Mr. Chase Stanley, and Mr. Andrew Byerley of Sanders Engineering & Analytical Services, Inc., and was coordinated with Mr. John Rampulla of Gulf Power Company.

#### 2. DESCRIPTION OF SAMPLING PROGRAM

The sampling program consisted of sulfuric acid mist emissions testing in compliance with US EPA methods. The following is a brief description of these types of tests. The gas sample was extracted from the stack through a glass probe onto a quartz fiber filter for CTM-013 maintained at 500 degrees Fahrenheit. The filter catches all solid sulfates. Upon leaving the filter, the gas passes through a condenser and a series of impingers containing peroxide and silica gel. Calibrations of the testing equipment are included in Appendix A. A detailed description of the testing procedures and schematic of the sampling train is presented in Section 6. The field data sheets for this testing are presented in Appendix B. Sample calculations of Run 1 are included in Appendix C.

# 3. SUMMARY AND DISCUSSION OF RESULTS

There were no unusual problems experienced during the performance of the testing. The results of the sulfuric acid mist emissions testing are presented in Table I.

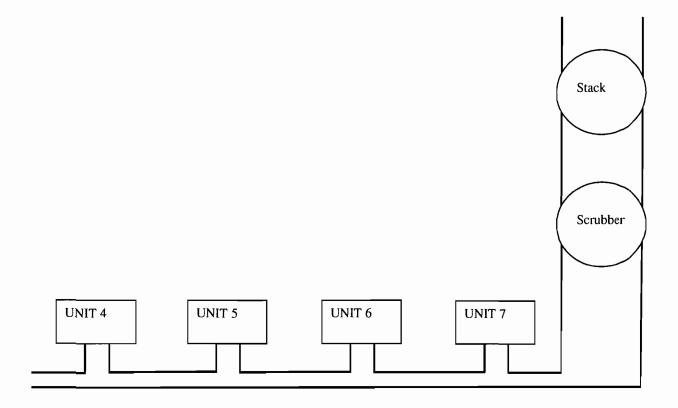
# TABLE I. SULFUR DIOIXDE AND SULFURIC ACID MIST TEST RESULTS GULF POWER COMPANY PLANT CRIST - FGD STACK

CTM-013 Controlled Condensation Quartz Filter

| Title of Run                         |                   | RUN 1     | RUN 2     | RUN 3     | RUN 4     |
|--------------------------------------|-------------------|-----------|-----------|-----------|-----------|
| Date                                 | Month/Day/Year    | 6/29/2012 | 6/29/2012 | 6/29/2012 | 6/29/2012 |
| Sampling Time -Start                 | Military          | 0920      | 1110      | 1255      | 1440      |
| Sampling Time -Stop                  | Military          | 1020      | 1210      | 1355      | 1540      |
| Number of Ports                      | dimensionless     | 1         | 1         | 1         | 1         |
| Number of Points per Port            | dimensionless     | 1         | 1         | i         | 1         |
| Stack Static Pressure                | Inches Water      | -0.35     | -0.35     | -0.35     | -0.35     |
| Barometric Pressure                  | Inches Mercury    | 29.69     | 29.69     | 29.69     | 29.69     |
| Standard Orifice Pressure AH@        | Inches Water      | 1.971     | 1.971     | 1.971     | 1.971     |
| Meter Correction Factor              | dimensionless     | 0.978     | 0.978     | 0.978     | 0.978     |
| Oxygen Concentration                 | Mole Percent O2   | 10.00     | 10.00     | 9.50      | 9.50      |
| Carbon Dioxide Concentration         | Mole Percent CO2  | 10.0      | 10.0      | 10.0      | 10.0      |
| Volume of Gas Metered                | Actual Cubic Feet | 40.802    | 40.676    | 42.826    | 41.557    |
| Volume of Water Collected            | Milliliters       | 115.50    | 108.80    | 110.20    | 97.00     |
| Sampling Time                        | Minutes           | 60.0      | 60.0      | 60.0      | 60.0      |
| Area of Stack                        | Square Feet       | 962.113   | 962.113   | 962.113   | 962.113   |
| Average Orifice Pressure (ΔH)        | Inches Water      | 1.5       | 1.5       | 1.5       | 1.5       |
| Average Stack Temperature            | Degrees F         | 121       | 122       | 123       | 124       |
| Average Meter Temperature            | Degrees F         | 91        | 94        | 94        | 92        |
| Final Volume of SO2 Solution         | Milliliters       | 360       | 389.00    | 393.00    | 347.00    |
| Final Volume of H2SO4 Solution       | Milliliters       | 36.00     | 41.00     | 49.00     | 34.00     |
| Normality of Titrant (BaCl2)         | Equivalence/Liter | 0.00473   | 0.00473   | 0.00473   | 0.00473   |
| Volume of Aliquot (SO2)              | Milliliters       | 5.00      | 5.00      | 5.00      | 5.00      |
| Volume of Aliquot (H2SO4)            | Milliliters       | 25.00     | 25.00     | 25.00     | 25.00     |
| Volume of Titrant for SO2 Blank      | Milliliters       | 0.00      | 0.00      | 0.00      | 0.00      |
| Volume of Titrant for H2SO4 Blank    | Milliliters       | 0.00      | 0.00      | 0.00      | 0.00      |
| Volume of Titrant For SO2 Aliquot    | Milliliters       | 4.46      | 3.69      | 3.01      | 3.58      |
| Volume of Titrant For H2SO4 Aliquot  | Milliliters       | 6.56      | 12.65     | 10.91     | 15.47     |
| Mass of Sulfur Dioxide Collected     | ug                | 48,702    | 43,539    | 35,821    | 37,628    |
| Mass of Sulfuric Acid Mist Collected | ug                | 2,193     | 4,817     | 4,965     | 4,885     |

Calculations

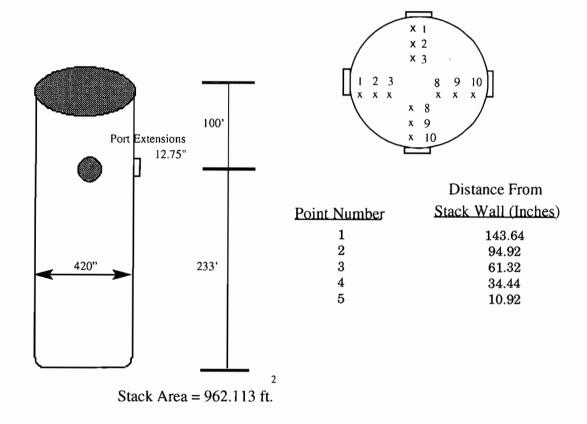
| Standard Temperature (° F) =       | 68                 | RUN 1      | RUN 2     | RUN 3     | RUN 4     |
|------------------------------------|--------------------|------------|-----------|-----------|-----------|
| Standard Pressure (inches of Hg) = | 29.92              |            |           |           |           |
| Volume of Gas Sampled              | Standard Dry       | 38.102     | 37.739    | 39.739    | 38.742    |
|                                    | Cubic Fcet         |            |           |           |           |
| Molecular Wt. of Stack Gas (dry)   | LB/LB-MOLE         | 30.00      | 30.00     | 29.98     | 29.98     |
|                                    |                    |            |           |           |           |
| Water vapor in Stack Gas           | Percent            | 12.0       | 11.9      | 11.5      | 10.5      |
|                                    |                    | Saturated  |           |           |           |
| Average Stack Gas Velocity         | Feet per second    | 36.1       | 35.9      | 35.4      | 35.9      |
| Stack Gas Flow Rate                | Actual Cubic       | 2,085,094  | 2,069,866 | 2,042,269 | 2,073,161 |
| State Gas Flow Rate                | Feet Per Minute    | 2,00.7,074 | 2,007,000 | 2,042,207 | 2,073,101 |
| Stack Gas Flow Rate                | Standard Wet Cubic | 1,877,802  | 1,862,859 | 1.835.129 | 1,859,560 |
| out out for full                   | Feet Per Minute    | 1,077,002  | 1,002,000 | 1,000,120 | 1,057,500 |
| Stack Gas Flow Rate                | Standard Dry Cubic | 1.653.367  | 1,640,313 | 1.623,288 | 1,663.553 |
|                                    | Feet Per Minute    | ,          | ,,-       | , ,       | ,         |
| Post Test Meter Correction Check   | dimensionless      | 0.97       | 0.97      | 0.93      | 0.95      |
| Percent Difference                 | Allowed 5% Average | -1.0       | -0.3      | -5.3      | -2.7      |
|                                    |                    |            |           |           |           |
| CONCENTRATION OF CHEMICAL IN       | Sulfur Dioxide     | 45.139     | 40,743    | 31,833    | 34,299    |
| STACK GAS (ug/m3)                  | Sulfuric Acid      | 2,033      | 4,508     | 4,412     | 4,453     |
|                                    |                    |            |           |           |           |
| CONCENTRATION OF CHEMICAL IN       | Sulfur Dioxide     | 16.94      | 15.29     | 11.95     | 12.87     |
| STACK GAS (PPM)                    | Sulfuric Acid      | 0.50       | 1.11      | 1.08      | 1.09      |
|                                    |                    |            |           |           |           |
| EMISSION RATE OF CHEMICAL          | Sulfur Dioxide     | 279.54     | 250.32    | 193.55    | 213.72    |
| (LBS/HR)                           | Sulfuric Acid      | 12.59      | 27.70     | 26.83     | 27.75     |
|                                    |                    |            |           |           |           |


#### 4. PROCESS DESCRIPTION

The process consists of a steam electric generating unit firing bituminous coal for the production of electric energy. The coal is received by barge, and loaded directly onto the conveyor feeding the plant or onto the stockpile and later loaded onto the conveyor belt transporting the coal to the plant. The coal from the conveyor is loaded into bunkers capable of holding between 36 to 48 hours supply of coal. The coal is then fed to pulverizing mills before being fired in the unit through the burners. Upon combustion of the coal in the fire box, approximately 20 percent of the ash falls to the bottom of the boiler and is removed by the ash removal system. The remaining 80 percent exits with the flue gases through the heat exchange and economizer sections of the furnace, and is collected by electrostatic precipitators.

# 4.1. Source Air Flow

The air flow schematic which depicts the passage of the flue gases exhausted from Plant Crist, Scrubber Stack, is presented in Figure 1.

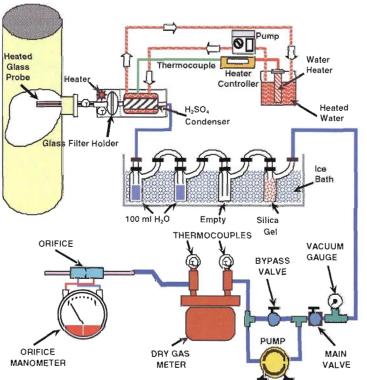

FIGURE 1. AIR FLOW SCHEMATIC



#### 5. SAMPLE POINT LOCATION

The sample point locations and outlet duct schematic for the combined scrubber stack are presented in Figure 2.

Figure 2. Stack Outlet Sample Point Location




# 6. SULFUR DIOXIDE AND SULFURIC ACID MIST SAMPLE PROCEDURE (CTM-013)

The sampling procedure utilized is that approved by the United States Environmental Protection Agency for sampling and analysis of sulfuric acid mist for certain sources at kraft pulp mills. A brief description of the procedure is as follows:

The glass sample probe and quartz filter and filter holder are heated to 500 degrees Fahrenheit or greater to prevent condensation of sulfuric acid mist. The filter was used to collect any particulate which may contain sulfates (sodium sulfate, calcium sulfate, etc). If any sulfuric acid mist was collected on the filter it was evaporated to the gaseous state and passed through the train to be collected in the condenser portion.

Figure 3. CTM-013 Sampling Train



The condenser was

maintained between 167 and 187 degrees Fahrenheit to allow condensation of the sulfuric acid mist without collecting other sulfur compounds particularly sulfur dioxide. The temperature was maintained by circulating heated water through the shell of the condenser. The temperature of the circulating water was controlled by a thermocouple inserted in the condenser.

Upon leaving the condenser, the gas enters a series of impingers. The first two impingers were partially filled with 100 milliliters of three percent hydrogen peroxide. The next impinger was left empty. Preweighed 6 to 16-mesh indication silica gel was added to the last impinger. The sampling equipment, manufactured by Lear Siegler (Model 100) or Sanders Engineering (Model 200), was assembled as shown in the attached drawing. The system was leak checked by plugging the inlet to the nozzle and pulling a 15-inch mercury vacuum. A leakage rate not in excess of 0.02 cubic feet per minute was considered acceptable.

Crushed ice was placed around the impingers. The probe and hot box were preheated to 500 degrees Fahrenheit and the condenser water was heated to between 167 and 187 degrees Fahrenheit and circulated through the condenser. When the equipment reached the desired temperature, the flow was adjusted to one-half cubic foot per minute. Readings of the dry gas meter volume, temperature, and flow rate were recorded on the field data sheet every five minutes. At the conclusion of each run, the pump was turned off, final readings were recorded, and final system leak checks were performed. The sample train was purged by drawing clean ambient air through the system for five minutes at the average flow rate used for sampling.

# 6.1. Sample Recovery

The impingers were disconnected after purging. The nozzle, probe, and filter were rinsed with deionized water using multiple rinses for good washing, and the rinse was then discarded. The sulfuric acid mist condenser was rinsed with deionized water and the wash solution was collected in Container 1. The volume of liquids in the first two impingers were recorded to determine stack gas moisture content and then placed in container 2 and rinsed with deionized water.

# 6.2. Sample Analysis Procedures

The volume of sample for the container was recorded on the data sheet. If a noticeable amount of liquid was lost, the sample was either voided or methods, subject to the approval of the test administrator, were used to correct the final results. The entire contents of Container 1 were transferred into a 250 milliliter Erlenmeyer flask and 100% isopropyl alcohol was added to give an 80 percent isopropyl alcohol solution. An aliquot of this solution was pipetted into a 250

milliliter Erlenmeyer flask; two to four drops of thorin indicator were added and titrated to a pink endpoint barium chloride. The titration was repeated with a second aliquot of sample and the values were averaged. Replicate titrations must agree within one percent or 0.2 milliliters, whichever is greater.

For container 2, an aliquot of the solution was pipetted into a 250 ml Erlenmeyer flask and a volume of 100% Isopropanol equal to four times the sample aliquot was added to the sample. The sample was titrated in the same procedure as container 1.

# 6. QUALITY ASSURANCE

In order to ensure the accuracy of all the data collected in the field and at the laboratory, SEAS has instituted a comprehensive quality assurance and quality control program. New or repaired items requiring calibration are calibrated before their initial use in the field. Equipment with calibration that may change with use is calibrated before and after each use. When an item is found to be out of calibration, the unit is either discarded or repaired, and then recalibrated before being returned to service. All equipment is periodically recalibrated in full regardless of the results of the regular inspections or its present calibration status. Calibrations are performed in a manner consistent with the EPA reference methods recommended in the "Quality Assurance Handbook for Air Pollution Measurement Systems" published by the US Environmental Protection Agency. To the maximum degree possible all calibrations are traceable to the National Institute of Standards & Technology (NIST).

In order to ensure that the test will be performed in a timely manner without undue delays, SEAS sampling vans are equipped with duplicate sampling devices for almost every device needed to perform the test. If a particular device is broken or does not pass inspection, a second device is available immediately at the site for use. Any device which appears to be outside calibration, or in need of repair is tagged in the field and repaired, calibrated, or discarded immediately upon return to the laboratory.

#### 6.1. Calibrations

Certain pieces of equipment need to be calibrated before and after each test. Those items include the pitot tubes, the differential pressure gauges, the dry gas meter, and the nozzles used for the particulate testing. The following is a brief description of the calibration procedures for each of these important devices.

#### 6.1.1. Pitot Tubes

All pitot tubes are the S-type as required by EPA Reference Method 2 (40 CFR, Part 60, Appendix A, Method 2). This method contains certain geometric standards for the construction of S-type pitot tubes. All of SEAS pitot tubes are constructed according to these standards. According to the EPA any pitot tube constructed to these standards will have a coefficient of  $0.84 \pm 0.02$ . To ensure the exact value of SEAS pitot tubes, all pitot tubes are initially calibrated in SEAS wind tunnel to determine the exact pitot coefficient. This coefficient should not change unless the pitot is physically damaged. Each pitot tube is checked before going to the field to make sure it meets the geometry as specified. Any pitot tube which does not meet the specifications is not used in the test.

## 6.1.2. Differential Pressure Gauges

SEAS uses several different types of pressure gauges including oil tube manometers, water tube manometers, magnehelics, and current output electronic load cells. Each of these devices are inspected before taken to the field and are inspected for leaks during each test. The magnehelics and load cells are tested against an incline manometer water gauge to ensure accuracy.

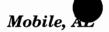
### 6.1.3. Temperature Sensors

All temperature sensors used in SEAS sampling program are either mercury in-glass thermometers or type K thermocouples. These thermocouples are physical devices which produce a voltage proportional to the temperature. The thermocouple reading device is calibrated before and after each series of tests to ensure accuracy of  $\pm$  2 percent. The calibration of the thermocouple is accomplished by NIST traceable calibrated reference thermocouple potentiometer system.

#### 6.1.4. Nozzles

The inside diameter of each nozzle is measured to the nearest 0.001 inches prior to its initial use. Upon arriving in the field each nozzle is again measured

with a micrometer on three different points on the diameter to ensure its original measurement and that the nozzle is perfectly round. If the difference between the maximum and minimum diameters measured does not exceed 0.003 inches, the nozzle is acceptable; otherwise, this nozzle is discarded and another is selected. At the end of each test the nozzles are again remeasured on three different points on the diameter to ensure that during the test the nozzle has not become dented or deformed.


### 6.1.5. Dry Gas Meter

The dry gas meter is initially calibrated against a spirometer transfer standard. During the initial calibration, a five point calibration curve is made at a minimum of one-half inch water column orifice pressure up to four inches water column orifice pressure. After each test, the dry gas meter calibration factor is checked by performing three repetitions at a representative flow rate experienced during the test. If the final calibration does not agree with the initial calibration within five percent the calibration which yields the lowest volume of sample pulled is used in the calculations. The dry gas meter is repaired and a new five initial five point calibration is performed.

### **6.1.6.** *Orifice*

The flow meter orifice is used to establish isokinetic sampling rates during the test. The orifice is calibrated with the dry gas meter at the same time under the same conditions. The orifice is calibrated over a wide range of flow rates and the arithmetic mean of the orifice calibration is used for sampling purposes. The orifice is recalibrated every time the gas meter is recertified.

| Sanders Engineering & Analytical Services, Inc. | Mobile, AL |
|-------------------------------------------------|------------|
|                                                 |            |
|                                                 |            |
| · ·                                             |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
| APPENDIX A QUALITY CONTROL OF TESTING EQ        | UIPMENT    |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |
|                                                 |            |



# **INITIAL METER BOX CALIBRATION**

| Calibrated E | By: MMC             |                  | BOX #:     | S-101   | Date:      | 10/26/2009 |            |         |                        |                  |         |         |      |
|--------------|---------------------|------------------|------------|---------|------------|------------|------------|---------|------------------------|------------------|---------|---------|------|
|              |                     |                  | Orifice #: | 1       | Orifice #: | 3          | Orifice #: | 8       | Reference 33103        | Unit             | RUN 4   | RUN 5   | ı    |
|              |                     | Unit             | RUN 1      | RUN 2   | RUN 1      | RUN 2      | RUN 1      | RUN 2   | Field Meter DH         | In. H₂O          | 3.00    | 3.00    | 1    |
| Meter        | DH                  | In. H₂O          | 0.70       | 0.70    | 1.18       | 1.17       | 1.74       | 1.75    | Initial Gas Volume     | Ft.              | 822.694 | 840.724 | 1    |
|              | Initial Gas Volume  | Ft. <sup>3</sup> | 746.000    | 751.300 | 758.200    | 767.400    | 777.400    | 784.800 | Final Gas Volume       | Ft. <sup>3</sup> | 840.724 | 855.503 | ]    |
|              | Final Gas Volume    | Ft. <sup>3</sup> | 750.900    | 757.700 | 766.800    | 776.800    | 784.400    | 795.500 | Initial Temp. Out      | °F               | 80      | 81      | 1    |
|              | Initial Temp. Out   | °F               | 72         | 73      | 75         | 75         | 76         | 77      | Final Temp. Out        | °F               | 80      | 79      | 1    |
|              | Final Temp. Out     | °F               | 73         | 75      | 75         | 76         | 77         | 75      | Reference Meter Y      | Dimensionless    | 0.952   | 0.952   |      |
|              | Vacuum              | In. Hg           | 21.5       | 22.0    | 21.5       | 21.5       | 20.5       | 20.5    | Initial Gas Volume     | Ft.3             | 653.674 | 671.391 |      |
|              | Ambient Temp.       | °F               | 73         | 73      | 74         | 76         | 76         | 75      | Final Gas Volume       | Ft.3             | 671.391 | 685.968 | 1    |
| В            | arometric Pressure  | In. Hg           | 29.81      | 29.81   | 29.81      | 29.81      | 29.81      | 29.81   | Initial Temp.          | °F               | 77      | 75      |      |
|              | Time                | sec              | 629        | 820     | 860        | 939        | 576        | 882     | Final Temp.            | °F               | 75      | 74      |      |
|              | K'                  |                  | 0.3506     | 0.3506  | 0.4476     | 0.4476     | 0.5423     | 0.5423  | Barometric Pressure    | In. Hg           | 29.81   | 29.81   |      |
| ALCULATIO    | NS                  |                  |            |         |            |            |            |         | Time                   | sec              | 1155    | 944     |      |
| Tota         | l Meter Gas Volume  | Actual Ft.3      | 4.900      | 6.400   | 8.600      | 9.400      | 7.000      | 10.700  | Volume Field Meter     | ACF              | 18.03   | 14.779  |      |
|              | Time                | Minutes          | 10.483     | 13.667  | 14.333     | 15.650     | 9.600      | 14.700  | Volume Field Meter     | SDCF             | 17.687  | 14.498  |      |
| Volum        | e through the Meter | SDCF without Y   | 4.847      | 6.313   | 8.477      | 9.257      | 6.890      | 10.562  | Volume Reference Meter | ACF              | 17.72   | 14.577  |      |
| Volume       | through the Orifice | SDCF             | 4.746      | 6.187   | 8.276      | 9.020      | 6.703      | 10.274  | Volume Reference Meter | SDCF             | 17.381  | 14.341  |      |
|              | Calculated Y        | Dimensionless    | 0.979      | 0.980   | 0.976      | 0.974      | 0.973      | 0.973   |                        |                  | 0.983   | 0.989   | 0.97 |
|              | Difference          | Allowable 0.02   | 0.001      | 0.002   | -0.002     | -0.004     | -0.006     | -0.006  |                        |                  | 0.004   | 0.011   |      |
|              | Calculated DH@      |                  | 1.905      | 1.899   | 1.969      | 1.958      | 1.985      | 1.999   |                        |                  | 2.046   | 2.008   | 1.97 |
|              | Difference          | e Allowable 0.2  | -0.066     | -0.072  | -0.002     | -0.013     | 0.014      | 0.028   |                        |                  | 0.075   | 0.037   |      |

**Magnehelic Calibrations** 

| Device  | Calibration  | Delta F      | •       |  |  |
|---------|--------------|--------------|---------|--|--|
|         | Standard     | Magnehelic   |         |  |  |
| Units   | inches water | inches water | Percent |  |  |
| Reading | Reference    | Sample       | Error   |  |  |
| 1       | 0.35         | 0.36         | 0.0     |  |  |
| 2       | 0.96         | 0.98         | 2.1     |  |  |
| 3       | 1.73         | 1.75         | 1.2     |  |  |

Allowed Error = 5% of Reading

Thermocouple Calibrations

| Device  | Calibration | Thermo     | couple  |
|---------|-------------|------------|---------|
|         | Standard    | Dete       | ctor    |
| Units   | Degrees F.  | Degrees F. | Percent |
| Reading | Reference   | Sample     | Error   |
| 1       | 32          | 33         | 0.2     |
| 2       | 165         | 165        | 0.0     |
| 3       | 500         | 494        | -0.6    |

Allowed Error = 1.5% of Absolute Temperature (Degrees Rankin);
Absolute Temperature = Temperature in Degrees Fahrenheit. + 460

| Sanders | <b>Engineering</b> | & | Analytical | Services, | Inc. |
|---------|--------------------|---|------------|-----------|------|

|                                       | Ma    | gneh | elic C | alibra | tion |       |       |      |       |       |      |      |  |
|---------------------------------------|-------|------|--------|--------|------|-------|-------|------|-------|-------|------|------|--|
| serial number                         |       | 101  |        |        | 102A |       |       | 102C |       | 103A  |      |      |  |
|                                       |       |      |        |        |      |       |       |      |       |       |      |      |  |
| Span (in H2O)                         | 0.25  | 2    | 25     | 0.25   | 2    | 25    | 0.25  | 2    | 25    | 0.25  | 2    | 10   |  |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.00 | 0.00   | 0.00   | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |
| Device Reading (in H2O)               | 0.000 | 0.00 | 0.00   | 0.00   | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |
| % Difference (Allowed = 0.05)         | 0.00  | 0.00 | 0.00   | 0.00   | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |
| Reference Reading @ 50% Span (in H2O) | 0.120 | 0.95 | 4.73   | 0.125  | 1.00 | 9.64  | 0.131 | 0.90 | 9.30  | 0.12  | 0.95 | 5.15 |  |
| Device Reading (in H2O)               | 0.122 | 0.96 | 4.90   | 0.126  | 0.98 | 9.75  | 0.129 | 0.88 | 9.00  | 0.12  | 0.92 | 5.20 |  |
| % Difference (Allowed = 0.05)         | 1.67  | 1.05 | 3.59   | 0.80   | 2.00 | 1.14  | 1.53  | 2.22 | 3.23  | 2.56  | 3.16 | 0.97 |  |
| Reference Reading @ 90% Span (in H2O) | 0.220 | 1.88 | 23.50  | 2.32   | 1.85 | 23.30 | 0.250 | 2.00 | 22.80 | 0.248 | 1.91 | 9.50 |  |
| Device Reading (in H2O)               | 0.222 | 1.83 | 24.20  | 2.300  | 1.90 | 24.00 | 0.243 | 1.97 | 23.30 | 0.240 | 1.95 | 9.20 |  |
| % Difference (Allowed = 0.05)         | 0.91  | 2.66 | 2.98   | 0.86   | 2.70 | 3.00  | 2.80  | 1.50 | 2.19  | 3.23  | 2.09 | 3.16 |  |

| serial number                         |       |       | 10    | 03B  |      |      |       | 104  |      |
|---------------------------------------|-------|-------|-------|------|------|------|-------|------|------|
|                                       |       |       |       |      |      |      |       |      |      |
| Span (in H2O)                         | 0.25  | 0.5   | 1     | 2    | 5    | 25   | 0.25  | 2    | 10   |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Device Reading (in H2O)               | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| % Difference (Allowed = 0.05)         | 0.000 | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Reference Reading @ 50% Span (in H2O) | 0.130 | 0.260 | 0.50  | 9.40 | 2.43 | 9.70 | 0.120 | 0.99 | 4.73 |
| Device Reading (in H2O)               | 0.124 | 0.260 | 0.48  | 9.40 | 2.54 | 9.50 | 0.120 | 0.98 | 4.90 |
| % Difference (Allowed = 0.05)         | 4.615 | 0.00  | 4.00  | 0.00 | 4.53 | 2.06 | 0.000 | 1.02 | 3.47 |
| Reference Reading @ 90% Span (in H2O) | 0.261 | 0.500 | 0.85  | 1.89 | 4.52 | 24.5 | 0.248 | 1.67 | 8.20 |
| Device Reading (in H2O)               | 0.249 | 0.495 | 0.81  | 1.88 | 4.64 | 25.0 | 0.240 | 1.74 | 8.60 |
| % Difference (Allowed = 0.05)         | 4.598 | 1.00  | 4.71  | 0.53 | 2.65 | 2.04 | 3.333 | 4.02 | 4.65 |

| serial number                         |       | 105  |      |       | 106  |      |
|---------------------------------------|-------|------|------|-------|------|------|
|                                       |       |      |      |       |      |      |
| Span (in H2O)                         | 0.25  | 2    | 25   | 0.5   | 4    | 15   |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Device Reading (in H2O)               | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| % Difference (Allowed = 0.05)         | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Reference Reading @ 50% Span (in H2O) | 0.122 | 0.97 | 8.90 | 0.233 | 1.86 | 8.00 |
| Device Reading (in H2O)               | 0.123 | 0.95 | 9.30 | 0.232 | 1.95 | 7.90 |
| % Difference (Allowed = 0.05)         | 0.820 | 2.11 | 4.30 | 0.431 | 4.62 | 1.27 |
| Reference Reading @ 90% Span (in H2O) | 0.239 | 1.92 | 24.5 | 0.470 | 3.60 | 14.4 |
| Device Reading (in H2O)               | 0.235 | 1.98 | 23.7 | 0.461 | 3.60 | 14.8 |
| % Difference (Allowed = 0.05)         | 1.702 | 3.03 | 3.38 | 1.952 | 0.00 | 2.70 |
| Calibration Date 12/30/2008 By MC     |       |      |      |       |      |      |

# APPENDIX B FIELD DATA

# Sanders Engineering & Analytical Services, Inc.

2255 Schillinger Rd. N. Office: (251) 633-4120 Semmes, Al. 36575 Fax: (251) 633-2285 lower COMPANY Gulf DATE 6-28-12 OPERATOR TBH PLANT Crist DHa\_ 1.97/ BOX No. 5-101 UNIT FGD Stack METHOD CEM - 013 PROBE # STD. WT. (gm) 2000 BALANCE No. 105 BALANCE RESPONCE (gm) \_ 2000.4 Run Z Run Run Nozzle Filter Nozzle Filter Nozzłe Filter Calibration Number Calibration Number Calibration Number METER READING METER READING METER READING 565.076 <u>523,802</u> 483.000 JO8. 04 LEAK CHECK **LEAK CHECK LEAK CHECK** System Pftot System Pre Pre Pre Pre 12 10 10 001 .004 VOLUME OF **VOLUME OF VOLUME OF** LIQUID WATER COLLECTED LIQUID WATER COLLECTED LIQUID WATER COLLECTED Imp 3 Imp 2 Imp 1 Imp 4 Imp 1 Imp 3 Imp 4 Imp 1 Imp 2 Imp 3 110 88 110 10.8 10 Total 128.8 1122 GAS ANALYSIS STATIC **GAS ANALYSIS** STATIC GAS ANALYSIS STATIC 35 10% 9.5% 10% co. 10% co, 10% 10% CO, CO BAROMETRIC CO 29.69 Page 1 of Form Revised 10/10/08

# Sanders Engineering & Analytical Services, Inc.

| 2255 Schillinger Rd<br>Semmes, Al. 3657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                        |                 |              | Office: (251)<br>Fax: (251) | 633-412<br>633-2285 | 0               |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------|-----------------|--------------|-----------------------------|---------------------|-----------------|---------------|
| COMPANY Gulf Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                        | DA <sup>-</sup> | re 6.7       | 9-12                        | OPERAT              | OR TB           | Н             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                        |                 |              | <br>_ DHa <u>_/, 9</u>      |                     |                 |               |
| - 4 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |                        |                 |              | 213                         |                     |                 |               |
| BALANCE No. 105 STD. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VT. (gm)          | 2000                   | В               | ALANCE F     | RESPONCE                    | (gm)                | 2666            | .4            |
| Run <u>4</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , R               | นก                     |                 | -            | , R                         | เนก                 |                 | -             |
| Nozzie Filter<br>Calibration Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | zzle<br>oration        |                 | lter<br>mber |                             | zzie<br>oration     | -               | liter<br>mber |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                        |                 |              |                             |                     |                 |               |
| Inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n                 | ches                   | -               |              | - to                        | ches                | -               |               |
| METER READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   | METER R                | EADING          |              |                             | METER R             | EADING          |               |
| 629.757 Fenal Fena   | - tma             | <del>,          </del> | hna/            | _            | - I-end                     | -                   | - two           | -             |
| Hotel Interal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                        | Man             | _            | hio                         |                     | Intai           |               |
| 41,557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <del>-</del>      |                        | Not             |              |                             |                     | Net             | _             |
| LEAK CHECK System Pitot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s                 | LEAK C                 | HECK<br>Pito    | ıt           | s                           | LEAK C              | HECK<br>Pito    | ot            |
| Pre Post Pre Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pre               | Post                   | Pre             | Post         | Pre                         | Post                | Pre             | Post          |
| 17 10 Impact Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                        | Impact          | Impact       | l                           |                     | Impact          | Impact        |
| In. Hg In. Hg Static Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | In. Hg            | In Hg                  | Static          | Static       | in. Hg                      | In. Hg              | Stanc           | Static        |
| On 1.000 on same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | cfm               | cta                    |                 |              | cfm                         | cim                 |                 |               |
| VOLUME OF LIQUID WATER COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Liqu              | VOLUM<br>ID WATER      |                 | ED           | Liqu                        | WOLUM<br>NATER      | E OF<br>COLLECT | ED            |
| Imp1 Imp2 Imp3 Imp4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | imp 1             | imp2                   | Imp 3           | Imp 4        | Imp 1                       | lmp 2               | Imp 3           | Imp 4         |
| 187 (b) / 1917.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Final             | Final                  | Final           | Final        | Finel                       | Final               | Finel           | Filmed        |
| (00 160   1997)<br>  1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988   1988 | Initial           | tottal                 | Initial         | trifta)      | Initial                     | initial             | Initial         | intthei       |
| 8Z 7 / 8.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Net               | Nel -                  | Net             | Not          | Net                         | Ngt                 | Not             | Nei           |
| Total <u>97.0</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                        | Total           |              |                             |                     | Total           | <del></del>   |
| GAS ANALYSIS STATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GAS AN            | ALYSIS                 | STA             | TIC          | GAS AN                      | ALYSIS              | STA             | TIC           |
| o, <u>q.5%</u> 35<br>co, <u>10%</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CO <sup>5</sup> — |                        | In. F           | 1,0          | O <sub>2</sub>              | — .                 | In. i           | <del>40</del> |
| CO BAROMETRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | co                |                        | BAROM           | ETRIC        | co                          |                     | BAROM           | ETRIC         |
| 61. Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   | -                      | in. F           | 49           | l                           |                     | in. P           | 10            |

| Port # |          | Gas<br>Meter           | Velocity<br>Head             | Orifice<br>Head              |       | Tempe  | rature °F       |              |               |
|--------|----------|------------------------|------------------------------|------------------------------|-------|--------|-----------------|--------------|---------------|
| Point# | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H <sub>2</sub> O) | ΔH<br>(In. H <sub>2</sub> O) | Stack | Filter | Conds.<br>Isok. | Gas<br>Meter | Vac<br>(In. F |
|        | 9:20     | 483.000                |                              | 1.5                          |       | 505    | 171             | 91           | 4             |
|        | :25      | 485.6                  | _                            | 1.5                          |       | 511    | 169             | 90           | 4             |
|        | : 30     | 489.9                  |                              | 1.5                          |       | 510    | 163             | 89           | 4             |
|        | : 35     | 497.1                  |                              | 1.5                          |       | 512    | 165             | 89           | 4             |
|        | : 40     | 496.7                  |                              | 1.5                          |       | 503    | 166             | 90           | 4             |
|        | : 45     | 499.4                  |                              | 1.5                          |       | 505    | 168             | 90           | 4             |
|        | : 50     | 503.6                  |                              | 1.5                          |       | 506    | 174             | 91           | 4             |
|        | : 55     | 506.8                  |                              | 1.5                          |       | 512    | 175             | 91           | 4             |
|        | 10:00    | 510.0                  |                              | 1.5                          |       | 508    | 174             | 91           | 4             |
|        | : 05     | 513.4                  | _                            | 1.5                          |       | 502    | 176             | 92           | 4             |
|        | : 10     | 517.0                  |                              | 1.5                          |       | 504    | 175             | 92           | 4             |
|        | : 15     | 520.9                  |                              | 1.5                          |       | 505    | 172             | 92           | 4             |
| Stop   | 10 .20   | 523,802                |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        | : 1      |                        |                              |                              |       |        |                 | ,            | $\vdash$      |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        | : 1      |                        |                              |                              |       |        |                 |              |               |
|        | :        | -                      |                              |                              |       |        |                 |              | İ             |
|        | : 1      |                        |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        |          |                        |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        | -               |              |               |
|        | . 1      |                        |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        | :        |                        |                              |                              |       |        |                 |              |               |
|        | :        | -                      |                              |                              | -     |        |                 |              |               |
|        |          |                        |                              |                              |       |        |                 |              |               |
|        |          |                        |                              |                              |       |        |                 | _            | -             |
|        |          |                        |                              |                              |       |        |                 |              |               |
|        |          |                        |                              |                              |       |        |                 |              |               |
|        | ulf Powe | er - C                 |                              | Date                         |       | 29-12  |                 | ·            |               |

| Port #                               |         | Gas<br>Meter           | Velocity<br>Head             | Orifice<br>Head |       | Temper | ature °F |              |                 |
|--------------------------------------|---------|------------------------|------------------------------|-----------------|-------|--------|----------|--------------|-----------------|
| Point#                               | Time    | Volume<br>(Cubic Feet) | ΔP<br>(In. H <sub>2</sub> O) | ΔH<br>(In. H₂O) | Stack | Filter | Cond.    | Gas<br>Meter | Vac.<br>(In. Ho |
|                                      | 11:10   | 524.4                  |                              | 1,5             |       | 513    | 178      | 93           | 4               |
| _                                    | : 15    | 527.0                  |                              | 1.5             |       | 510    | 176      | 93           | 4               |
|                                      | : 20    | 530.8                  |                              | 1.5             |       | 511    | 175      | 94           | 4               |
|                                      | : 75    | 534.1                  | ٠                            | 1.5             |       | 515    | 177      | 94           | ¥               |
|                                      | : 30    | 537.2                  |                              | 1,5             |       | 517    | 179      | 94           | 4               |
|                                      | : 35    | 539.9                  |                              | 1.5             |       | 509    | 180      | 94           | 4               |
|                                      | : 40    | 543.3                  |                              | 1.5             |       | 5 63   | 175      | 95           | 4               |
|                                      | . 45    | 546.7                  |                              | 1.5             |       | 510    | 172      | 95           | 4               |
|                                      | : 50    | 550.4                  |                              | 1.5             |       | 514    | 169      | 95           | 4               |
|                                      | : 55    | 554,3                  |                              | 1.5             |       | 516    | 170      | 95           | 4               |
|                                      | 12:00   | 558,4                  |                              | 1.5             |       | 512    | 172      | 95           | 4               |
| _                                    | :05     | 562.1                  |                              | 1.5             |       | 51     | 167      | 95           | 4               |
| Stop                                 | 12:10   | 565.076                |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          | _            |                 |
|                                      | :       |                        |                              |                 |       |        |          | _            |                 |
| _                                    | :       |                        |                              |                 |       | _      |          | _            |                 |
| _                                    | : .     |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          | _            |                 |
| _                                    | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | . :     |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          | <u>.</u> .   |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       | _                      |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
|                                      | :       |                        |                              |                 |       |        |          |              |                 |
| m Revised 8/24/02<br>Ompany: <u></u> | ulf Pow | er -                   | Crist                        | Date            | e: 6- | 29-12  | Paga     | •            | _               |
| Site: F(                             | D Stac  | k ct.                  | n-013                        | Run #           | t:    | 2      | Of       |              |                 |

| Port #  |       | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |       | Temper | ature °F |              |                |
|---------|-------|------------------------|------------------|-----------------|-------|--------|----------|--------------|----------------|
| Point#  | Time  | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H₂O) | Stack | Filter | Cond.    | Gas<br>Meter | Vac.<br>(In. H |
|         | 12:55 | 565.200                |                  | 1,5             |       | 516    | 178      | 93           | 4              |
|         | 13:00 | 568.7                  |                  | 1.5             |       | 517    | 177      | 93           | 4              |
|         | :05   | 571.5                  |                  | 1.5             |       | 5 20   | 1フフ      | 93           | 4              |
|         | :10   | 574.6                  |                  | 1,5             |       | 514    | 178      | 94           | 4              |
|         | : 15  | 578.0                  |                  | 1,5             |       | 512    | 179      | 94           | 4              |
|         | . 20  | 581.1                  |                  | <u> </u>        |       | 5 13   | 176      | 4            | 4              |
|         | : 25  | 5 84.4                 |                  | ر.،             |       | 513    | 174      | 95           | 4              |
|         | : 30  | 5 87.8                 |                  | 1,5             |       | 515    | 175      | 95           | 4              |
|         | : 35  | 593,5                  |                  | 1,5             |       | 516    | 176      | 95           | 4              |
|         | : 40  | 598.0                  |                  | 1,5             |       | 5 15   | 177      | 95           | 4              |
|         | . 45  | 601.1                  |                  | 1,5             |       | 511    | 176      | 95           | 4              |
|         | : 50  | 604.2                  |                  | 1.5             |       | 510    | 177      | 95           | 4              |
| Stop    | 13:55 | 608.026                |                  |                 |       |        |          | •            |                |
| r       | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        | _        |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        | _        |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       | _      |          |              |                |
| -       | :     |                        |                  |                 | _     |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          | 7            |                |
|         | :     | -                      |                  |                 |       |        |          |              |                |
|         | :     |                        |                  |                 |       |        |          |              |                |
|         | :     |                        |                  | Ī               |       |        |          | İ            |                |
|         |       | n/er -                 |                  |                 |       |        |          |              | _              |
| Site: P | 6D St | ack ct                 | m-013            | Run #           | :3    | •      | Of       |              |                |

| Port #                       |          | Gas<br>Meter           | Velocity<br>Head             | Orifice<br>Head              | Temperature °F |        |       |              |             |
|------------------------------|----------|------------------------|------------------------------|------------------------------|----------------|--------|-------|--------------|-------------|
| Point#                       | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H <sub>2</sub> O) | ΔH<br>(In. H <sub>2</sub> O) | Stack          | Filter | Cond. | Gas<br>Meter | Vac.        |
|                              | 14:40    | 608.200                |                              | 1.5                          |                | 509    | 173   | 91           | 4           |
|                              | : 45     | 611.5                  |                              | 1.5                          |                | 515    | 175   | 91           | 4           |
|                              | :50      | 614.6                  |                              | 1.5                          |                | 516    | 176   | 91           | 4           |
|                              | : 55     | 5.05                   |                              | 1.5                          |                | 517    | 177   | 91           | 4           |
|                              | 15:00    | 623,4                  |                              | 1.5                          |                | 516    | 178   | 92           | 4           |
|                              | : 05     | 626.8                  |                              | 1.5                          |                | 511    | 177   | 92           | 4           |
|                              | :10      | 630.0                  |                              | 1.5                          |                | 513    | 178   | 97           | 4           |
|                              | :15      | 633.1                  |                              | 1.5                          |                | 515    | 176   | 50           | 4           |
|                              | : 20     | 637.2                  |                              | 1,5                          |                | 97     | 175   | 92           | 14          |
|                              | :25      | 640,4                  |                              | 1.5                          |                | 570    | 169   | 92           | 4           |
| 1                            | : 30     | 643,3                  |                              | 1.5                          |                | 509    | 173   | 92           | 4           |
|                              | : 35     | 646.7                  |                              | . 1,5                        |                | 513    | 172   | 97           | 4           |
| Stop                         | 15:40    | 649.757                |                              |                              |                |        |       |              |             |
| -1-7                         | :        |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        |                              |                              |                |        |       |              | 1           |
|                              | :        |                        |                              |                              |                |        |       | -            | 1           |
|                              | :        |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        |                              |                              | _              |        | 1     |              |             |
|                              | :        |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        |                              |                              |                |        |       |              |             |
|                              | - :      |                        |                              |                              |                | _      |       |              |             |
|                              | :        |                        |                              |                              |                |        |       |              |             |
|                              | : 1      |                        |                              |                              |                |        |       |              |             |
|                              | : 1      |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        |                              |                              |                |        |       |              | -           |
|                              | :        |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        | 1                            |                              |                |        |       |              |             |
|                              | : 1      |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        | -                            |                              |                |        |       |              |             |
|                              | :        |                        |                              |                              |                |        |       |              |             |
|                              | :        |                        |                              |                              |                |        |       |              |             |
| ]                            | :        |                        |                              |                              |                |        |       |              | <del></del> |
| m Revised 8/24/02<br>ompany: | Sulf Pon | jer -                  | Cnist                        | Date                         | e: 6-7         | 9-12   | Page  | 9            |             |
| Site: F(                     | SD Star  | k c                    | Em-013                       | Run #                        | : <u> </u>     |        | Of    |              | •           |

| TITLE                                    | PROJECT                                   |
|------------------------------------------|-------------------------------------------|
| Continued From Page                      |                                           |
|                                          |                                           |
| Ctm-013 (Combrolled Condensate           | <u></u>                                   |
| Run 11 Hz504                             | 5 Øz.                                     |
| Sample volume = 36ml<br>aliquot = 25ml   | sample volume = 360 mL                    |
| aliquot = 25mL                           | aliquot = 5mL                             |
| Final 7.06                               | Final 4.95 4.97                           |
| Initial 0.5                              | Initial 6.5 0.5                           |
| 6.56                                     | 4.45 4.47                                 |
|                                          | X=4.46                                    |
| Run Z HzSO4                              | 50z                                       |
| Sample volume=41mL<br>a liquot = 25mL    | sample volume = 389 mL<br>a liquot = 5 mL |
| a'liquot = 25m2                          | a liquot = 5mL                            |
| inal 9.5 4.15                            | Final 4.18 4.20                           |
| Initial 0.5 0.5                          | Initia 0.5 0.5                            |
| 9.0 3.65<br>12.65                        | <b>3.68</b> 3.70                          |
| 12.65                                    | X=3.69                                    |
| Jun 3 HzSO4                              | 5.0z                                      |
| Sample volume = 49 mL                    | sample volume = 393aL                     |
| aliquot = 25mc                           | aliquot = 5mL                             |
| inal 9.5, 2.41                           | Final 3.49 3.52                           |
| initial 0.5 0.5                          | Initial 0.5 0.5                           |
| <u> </u>                                 | <u> </u>                                  |
| 10,-11                                   | X = 3.4g5                                 |
| un 4   Hz 504                            | 502                                       |
| Sample volume = 34 mL<br>aliquot = 25 mL | Sample volume = 347aL                     |
| a figure 25 al                           | aliquet = 5mL                             |
| inal 9,5 6,97                            | Final 4.07 4.08                           |
| [nitial 0.5 + 0.5                        | Initial 0.5 0.5                           |
| 9.0 6.47                                 | 3.57 3.58                                 |
| 15.47                                    | <u></u> ∓3,575                            |
|                                          |                                           |
|                                          |                                           |
|                                          | ./.1                                      |
|                                          | MINUMAN                                   |
|                                          | 7-7-17                                    |
|                                          | Continued To Page                         |
| NATURE                                   | DATE                                      |

Sanders Engineering & Analytical Services, Inc.

| 2tm-013                                        |     |
|------------------------------------------------|-----|
| f; Iten Runs 1-4   Sample volume= 75 aL        | 3(  |
| Runs 1-4 Sample volume= 75 mL  aliquot = 25 mL |     |
| Final 0.61 0.62                                |     |
| Initial 0.5 0.6                                | 3.5 |
| 0.11 0.12<br>X=0.115                           |     |
| <del>ludit</del>                               | 40  |
| Sample volume=100ml al:quet=10ml               |     |
| Final 1.81 1.81<br>Initial 0.5 0.5             | 45  |
| 1.3 1.3<br>X=1.31                              |     |
| SHATURED CONTINUED TO Page                     |     |
| 12 Sh Sh Hatan 7-3-12                          |     |

APPENDIX C SAMPLE CALCULATIONS

# SAMPLE CALCULATIONS, RUN 1 GULF POWER COMPANY PLANT CRIST - FGD STACK CTM-013 Controlled Condensation Quartz Filter

Absolute Stack Pressure (inches Mercury)

$$P_s = P_{bar} + \frac{\overline{P_g}}{13.6}$$
 $P_g = \text{Stack Static Pressure (inches Water)} = -0.35$ 
 $P_{bar} = \text{Barometric Pressure (inches Mercury)} = 29.69$ 
 $P_s = 29.66$ 

Absolute Pressure at the Dry Gas Meter (inches Mercury)

$$P_{m} = P_{bar} + \frac{\Delta H}{13.6}$$

$$P_{bar} = \text{Barometric Pressure (inches Mercury)} = \frac{\Delta H}{13.6}$$

 $\Delta H$  = Average pressure difference of orifice (inches Water) = 1.88

 $P_m = 29.83$ 

29.69

Average Stack Gas Velocity (feet per second)

$$V_{s} = K_{p}C_{p}\sqrt{\Delta P}\sqrt{\frac{\overline{T}_{s}}{M_{s}P_{s}}}$$

$$Kp = Pitot tube constant \sqrt{\frac{(lb/lb - mole) (inches Hg)}{(^{\circ}R) (inches H2O)}} = 85.49$$

$$C_p = Pitot tube coefficient_{(dimensionless)} = 0.84$$

$$\sqrt{\Delta P} = Velocity head of stack gas_{(inches H2O)} = 0.6112$$

$$Ts = Average absolute temperature of stack, degrees Rankin = 581.2$$

$$M_s = Molecular weight of stack gas; wet basis_{(lb/lb mole)} = 28.59$$

$$P_s = Absolute stack pressure_{(inches Mercury)} = 29.66$$

$$V_c = 36.3$$

#### Volume of Gas Sampled Measured by Dry Gas Meter

(corrected to standard conditions, SDCF)

$$Vm(Std) = K_1 V_m Y \left[ \frac{P_{bar} + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}} \right]$$

 $K_1 = Degrees R/inches Mercury = 17.64$ 

 $V_m$  = Volume of gas sample as measured by dry gas meter (actual cubic feet) = 47.42

 $Y = Dry gas meter calibration factor_{(dimensionless)} = 0.9890$ 

 $P_{bar} = Barometric Pressure_{(inches Mercury)} = 29.69$ 

 $\Delta$  H = Average pressure difference of orifice (inches H2O) = 1.88

 $T_m = \text{Average absolute temperature of the dry gas, degrees Rankin} = 542.4$ 

 $V_{m(Std)} = 45.485$ 

#### **Volume of Water Vapor in Gas Sample**

$$V_{w (Std)} = 0.04^{\circ}/0^{\circ}/V_{lc}$$

 $V_{lc}$  = Total volume of liquid collected in impingers and silica gel (milliliters) = 129.0

 $V_{w(Std)} = 6.071$ 

# Water Vapor in the Gas Stream proportion by volume (dimensionless)

$$B_{ws} = \frac{V_{w(Std)}}{V_{m(Std)} + V_{w(Std)}}$$

 $V_{w \text{ (std)}} = Volume \text{ of water in gas sample (corrected to standard conditions)} = 6.071$ 

 $V_{m(std)} = Volume of sample measured by dry gas meter_{(standard conditions)} = 45.485$ 

 $B_{ws} = 0.118$ 

## Molecular Weight of Stack Gas (dry basis, lb/lb mole)

## $M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2 + \%CO)$

 $%CO_2 = Number percent by volume_{(dry basis from gas analysis)} = 10.0$ 

 $\%O_2$  = Number percent by volume (dry basis from gas analysis) = 10.0

 $\%N_2 + \%CO = Number percent by volume_{(dry basis from gas analysis)} = 80.0$ 

 $M_d = 30.00$ 

## Molecular Weight of Stack Gas (wet basis, lb/lb mole)

$$M_s = M_d(1 - B_{ws}) + 18(B_{ws})$$

 $M_d$  = Molecular weight of stack gas (dry basis, lb/lb mole) = 30.00

 $B_{ws}$  = Water vapor in the gas stream (proportion by volume, dimensionless) = 0.118

 $M_s = 28.59$ 

## Volumetric Flow Rate (actual cubic feet per minute)

$$Q_a = (V_s) (A_s) (60)$$

 $V_s = \text{Average stack gas velocity}_{\text{(feet per second)}} = 36.3$ 

 $A_s = Cross sectional area of stack_{(feet squared)} = 962.1128$ 

 $Q_a = 2,097,585$ 

# Volumetric Flow Rate (standard dry cubic feet per minute)

$$Q_s = Q_a (1 - B_{ws}) \frac{(528)}{\overline{T_s}} \frac{(P_s)}{29.92}$$

Q<sub>a</sub> = Volumetric flow rate (actual cubic feet per minute) = 2,097,585

 $B_{ws}$  = Water vapor in the gas stream (proportion by volume, dimensionless) = 0.118

Ts = Average absolute temperature of stack, degrees Rankin = 581.2

 $P_s$  = Absolute stack pressure (inches Mercury) = 29.66

 $Q_s = 1,665,684$ 

# Volumetric Flow Rate (standard wet cubic feet per minute)

$$Q_{sw} = Q_a \frac{(528)}{\overline{T_s}} \frac{(P_s)}{29.92}$$

 $Q_a = Volumetric flow rate_{(actual cubic feet per minute)} = 2,097,585$ 

Ts = Average absolute temperature of stack, degrees Rankin = 581.2

 $P_s$  = Absolute stack pressure (inches Mercury) = 29.66

 $Q_{sw} = 1,887,996$ 

### Volume of Gas Sampled Through Nozzle (actual cubic feet)

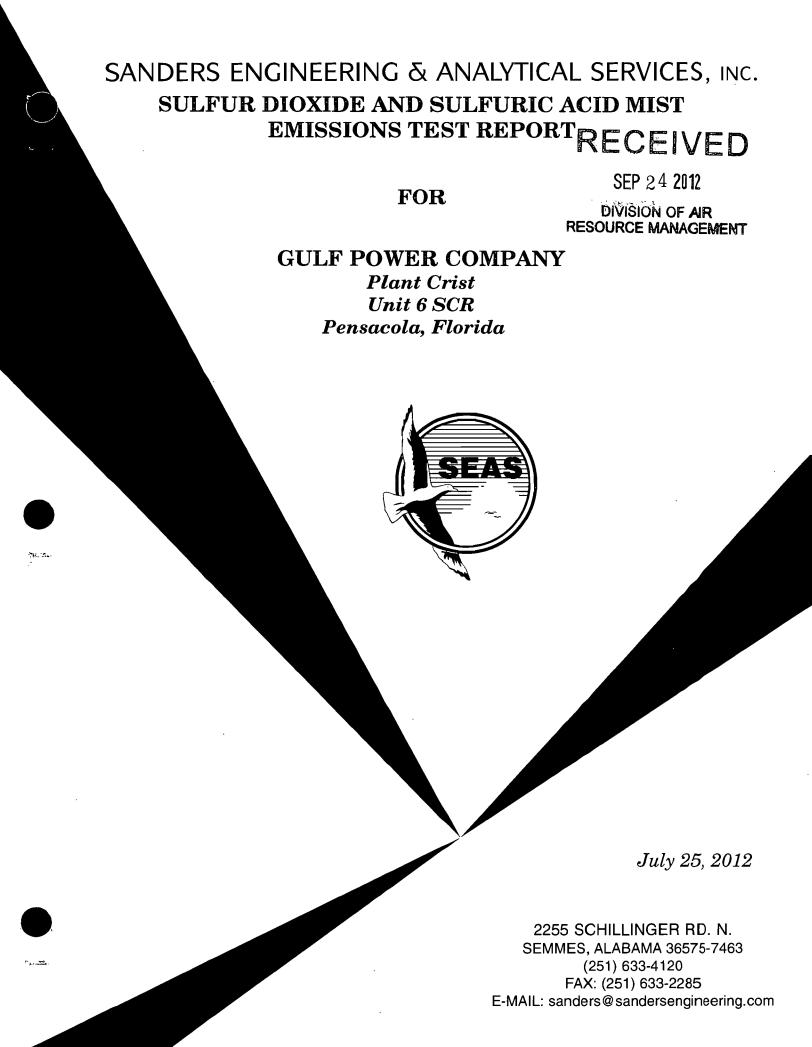
$$V_{n} = \left[ (0.002669)(V_{lc}) + Y \frac{V_{m}}{\overline{T_{m}}} \left( P_{bar} + \frac{\overline{\Delta H}}{13.6} \right) \right] \frac{\overline{T_{s}}}{P_{s}}$$

 $V_{lc}$  = Total volume of liquid collected in impingers and silica gel (milliliters) = 129.0

Y = Dry gas meter calibration factor (dimensionless) = 0.9890

 $V_m$  = Volume of gas sample as measured by dry gas meter (actual cubic feet) = 47.423

Tm = Average absolute temperature of dry gas meter, degrees Rankin = 542.4


 $P_{bar}$  = Barometric Pressure (inches Mercury) = 29.69

 $\Delta H$  = Average pressure difference of orifice (inches Water) = 1.88

Ts = Average absolute temperature of stack, degrees Rankin = 581.2

 $P_s$  = Absolute stack pressure (inches Mercury) = 29.66

 $V_n = 57.281$ 



### REPORT CERTIFICATION

I have reviewed the "Sulfur Dioxide and Sulfuric Acid Mist Emissions Test Report" for the testing performed for Gulf Power Company on the Plant Crist Unit 6 SCR located at the Pensacola, Florida facility. I hereby certify that it is authentic and accurate to the best of my knowledge.

Date: 8/16/12 Signature: 211

Environmental Engineer

#### TABLE OF CONTENTS

| INTRODUCTION                                     | 1  |
|--------------------------------------------------|----|
| DESCRIPTION OF SAMPLING PROGRAM                  | 2  |
| SUMMARY AND DISCUSSION OF RESULTS                | 3  |
| PROCESS DESCRIPTION                              | ε  |
| SULFURIC ACID MIST SAMPLING PROCEDURE (CTM-013)  | 7  |
| Sample Recovery                                  | 8  |
| Sample Analysis Procedures                       | 8  |
| SULFURIC ACID MIST SAMPLING PROCEDURE (CTM-013A) | 10 |
| Sample Recovery                                  | 11 |
| Analytical Procedures                            | 12 |
| QUALITY ASSURANCE                                | 13 |
| Calibrations                                     | 13 |
| Pitot Tubes                                      | 14 |
| Differential Pressure Gauges                     | 14 |
| Temperature Sensors                              | 14 |
| Nozzles                                          | 14 |
| Dry Gas Meter                                    | 15 |
| Orifice                                          | 15 |
| APPENDIX A QUALITY CONTROL OF TESTING EQUIPMENT  | 16 |
| APPENDIX B FIELD DATA                            | 20 |
| APPENDIX C. SAMPLE CALCULATIONS                  | 31 |

## LIST OF TABLES

| TABLE I.  | SULFUR DIOXIDE AND SULFURIC ACID MIST TEST |    |
|-----------|--------------------------------------------|----|
|           | RESULTS - INLET                            | .4 |
| TABLE II. | SULFUR DIOXIDE AND SULFURIC ACID MIST TEST |    |
|           | RESULTS - OUTLET                           | .5 |

#### **ILLUSTRATIONS**

| FIGURE 1. | CTM-013 SAMPLING TRAIN  | 7  |
|-----------|-------------------------|----|
| FIGURE 2. | CTM-013A SAMPLING TRAIN | 10 |

#### 1. INTRODUCTION

Sanders Engineering & Analytical Services, Inc. (SEAS) performed sulfur dioxide and sulfuric acid mist emissions testing on July 25, 2012, for Gulf Power Company on the Plant Crist 6 SCR and outlet located at the Plant Crist facility in Pensacola, Florida. The testing was performed in accordance with the applicable procedures as specified at **CTM Method 013 and 013a** as published by the National Council of Air and Stream Improvement for the determination of sulfuric acid vapor or mist and sulfur dioxide emissions from Kraft Recovery Furnaces. Further discussions of the test methods are included later in the report.

The purpose of the testing was to gain additional information concerning the emission rate of sulfuric acid mist from the unit. The testing was conducted by Mr. Mark Christian, Mr. Brett Horton, and Mr. Thomas Creighton of Sanders Engineering & Analytical Services, Inc., and was coordinated with Mr. John Rampulla of Gulf Power Company.

#### 2. DESCRIPTION OF SAMPLING PROGRAM

The sampling program consisted of sulfuric acid mist emissions testing in compliance with US EPA methods. The following is a brief description of these types of tests. The gas sample was extracted from the stack through a glass probe onto a glass fiber filter for CTM-013A and a quartz fiber filter for CTM-013, all maintained at 500 degrees Fahrenheit. The filter catches all solid sulfates. Upon leaving the filter, the gas passes through a condenser and a series of impingers and silica gel directly into a series of impingers containing Isopropanol and peroxide. Calibrations of the testing equipment are included in Appendix A. A detailed description of the testing procedures and schematic of the sampling train is presented in Section 6. The field data sheets for this testing are presented in Appendix B. Sample calculations of Run 1 are included in Appendix C.

#### 3. SUMMARY AND DISCUSSION OF RESULTS

There were no unusual problems experienced during the performance of the testing. The results of the sulfuric acid mist emissions testing are presented in Tables I and II.

# TABLE I. SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS (METHOD 13A) GULF POWER COMPANY CRIST UNIT 6 - SCR INLET PENSACOLA, FLORIDA

| Title of Run                         |                   | <u>RUN 1</u> | RUN 2     | RUN 3     |
|--------------------------------------|-------------------|--------------|-----------|-----------|
| Date                                 | Month/Day/Year    | 7/25/2012    | 7/25/2012 | 7/25/2012 |
| Sampling Time -Start                 | Military          | 0915         | 1220      | 1355      |
| Sampling Time -Stop                  | Military          | 1015         | 1320      | 1455      |
| Number of Ports                      | dimensionless     | 1            | 1         | 1         |
| Number of Points per Port            | dimensionless     | 1            | 1         | 1         |
| Stack Static Pressure                | Inches Water      | -22.00       | -22.00    | -22.00    |
| Barometric Pressure                  | Inches Mercury    | 29.94        | 29.94     | 29.94     |
| Standard Orifice Pressure AH@        | Inches Water      | 1.869        | 1.869     | 1.869     |
| Meter Correction Factor              | dimensionless     | 0.989        | 0.989     | 0.989     |
| Oxygen Concentration                 | Mole Percent O2   | 8.50         | 8.50      | 8.00      |
| Carbon Dioxide Concentration         | Mole Percent CO2  | 12.0         | 10.0      | 10.0      |
| Volume of Gas Metered                | Actual Cubic Feet | 40.101       | 40.615    | 40.904    |
| Volume of Water Collected            | Milliliters       | 74.6         | 71.1      | 57.5      |
| Sampling Time                        | Minutes           | 60.0         | 60.0      | 60.0      |
| Average Orifice Pressure (ΔH)        | Inches Water      | 1.5          | 1.5       | 1.5       |
| Average Stack Temperature            | Degrees F         | 573          | 575       | 575       |
| Average Meter Temperature            | Degrees F         | 93           | 98        | 98        |
| Final Volume of SO2 Solution         | Milliliters       | 382          | 424       | 360       |
| Final Volume of H2SO4 Solution       | Milliliters       | 138          | 168       | 188       |
| Normality of Titrant (BaCl2)         | Equivalence/Liter | 0.0097       | 0.0097    | 0.0097    |
| Volume of Aliquot (SO2)              | Milliliters       | 1            | . 1       | 1         |
| Volume of Aliquot (H2SO4)            | Milliliters       | 25           | 25        | 25        |
| Volume of Titrant for SO2 Blank      | Milliliters       | 0.00         | 0.00      | 0.00      |
| Volume of Titrant for H2SO4 Blank    | Milliliters       | 0.00         | 0.00      | 0.00      |
| Volume of Titrant For SO2 Aliquot    | Milliliters       | 28.28        | 22.75     | 25.48     |
| Volume of Titrant For H2SO4 Aliquot  | Milliliters       | 0.68         | 3.75      | 4.48      |
| Mass of Sulfur Dioxide Collected     | ug                | 3,359,299    | 3,000,060 | 2,852,327 |
| Mass of Sulfuric Acid Mist Collected | ug                | 1,774        | 12,000    | 16,025    |

#### Calculations

| Standard Temperature (° F) =                                |                                       | <u>RUN 1</u>     | <u>RUN 2</u>     | RUN 3          | <u>AVERAGE</u>   |
|-------------------------------------------------------------|---------------------------------------|------------------|------------------|----------------|------------------|
| Standard Pressure (inches of Hg) =<br>Volume of Gas Sampled | = 29.92<br>Standard Dry<br>Cubic Feet | 38.065           | 38.179           | 38,439         | 38.228           |
| Molecular Wt. of Stack Gas (dry)                            | LB/LB-MOLE                            | 30.26            | 29.94            | 29.92          | 30.04            |
| Water vapor in Stack Gas                                    | Percent                               | 8.4              | 8.1              | 6.6            | 7.7              |
| Post Test Meter Correction Check                            | dimensionless                         | 1.00             | 1.00             | 1.00           | 1.00             |
| Percent Difference                                          | Allowed 5% Average                    | 1.6              | 1.4              | 0.7            | 1.2              |
| CONCENTRATION OF CHEMICAL IN                                | Sulfur Dioxide                        | 3,116,563        | 2,775,016        | 2,620,508      | 2,837,362        |
| STACK GAS (ug/m3)                                           | Sulfuric Acid                         | 1,646            | 11,100           | 14,722         | 9,156            |
| CONCENTRATION OF CHEMICAL IN STACK GAS (PPM)                | Sulfur Dioxide<br>Sulfuric Acid       | 1,169.56<br>0.40 | 1,041.39<br>2.72 | 983.41<br>3.61 | 1,064.79<br>2.24 |

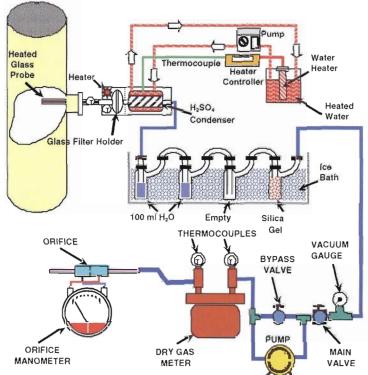
# TABLE II. SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS (METHOD 13) GULF POWER COMPANY PLANT CRIST UNIT 6 - SCR OUTLET PENSACOLA, FLORIDA

| Title of Run                         |                   | RUN 1     | RUN 2     | RUN 3     |
|--------------------------------------|-------------------|-----------|-----------|-----------|
| Date                                 | Month/Day/Year    | 7/25/2012 | 7/25/2012 | 7/25/2012 |
| Sampling Time -Start                 | Military          | 0915      | 1220      | 1355      |
| Sampling Time -Stop                  | Military          | 1015      | 1320      | 1455      |
| Number of Ports                      | dimensionless     | 1         | 1         | 1         |
| Number of Points per Port            | dimensionless     | 1         | 1         | 1         |
| Stack Static Pressure                | Inches Water      | -24.00    | -24.00    | -24.00    |
| Barometric Pressure                  | Inches Mercury    | 29.94     | 29.94     | 29.94     |
| Standard Orifice Pressure ΔH@        | Inches Water      | 2.491     | 2.491     | 2.491     |
| Meter Correction Factor              | dimensionless     | 0.962     | 0.962     | 0.962     |
| Oxygen Concentration                 | Mole Percent O2   | 8.00      | 7.00      | 7.00      |
| Carbon Dioxide Concentration         | Mole Percent CO2  | 11.0      | 12.5      | 12.5      |
| Volume of Gas Metered                | Actual Cubic Feet | 37.774    | 34.350    | 32.424    |
| Volume of Water Collected            | Milliliters       | 56.7      | 71.3      | 69.2      |
| Sampling Time                        | Minutes           | 60.0      | 60.0      | 60.0      |
| Average Orifice Pressure (ΔH)        | Inches Water      | 1.5       | 1.5       | 1.5       |
| Average Stack Temperature            | Degrees F         | 537       | 540       | 539       |
| Average Meter Temperature            | Degrees F         | 91        | 94        | 93        |
| Final Volume of SO2 Solution         | Milliliters       | 320       | 350       | 340       |
| Final Volume of H2SO4 Solution       | Milliliters       | 48        | 47        | 38        |
| Normality of Titrant (BaCl2)         | Equivalence/Liter | 0.0097    | 0.0097    | 0.0097    |
| Volume of Aliquot (SO2)              | Milliliters       | 1         | 1         | 1         |
| Volume of Aliquot (H2SO4)            | Milliliters       | 3         | 5         | 5         |
| Volume of Titrant for SO2 Blank      | Milliliters       | 0.00      | 0.00      | 0.00      |
| Volume of Titrant for H2SO4 Blank    | Milliliters       | 0.00      | 0.00      | 0.00      |
| Volume of Titrant For SO2 Aliquot    | Milliliters       | 21.60     | 25.70     | 28.15     |
| Volume of Titrant For H2SO4 Aliquot  | Milliliters       | 3.35      | 12.53     | 16.23     |
| Mass of Sulfur Dioxide Collected     | ug                | 2,149,742 | 2,797,588 | 2,976,734 |
| Mass of Sulfuric Acid Mist Collected | ug                | 25,524    | 56,064    | 58,718    |

#### **Calculations**

| Standard Temperature (° F) =                             |                                 | <u>RUN 1</u>   | <u>RUN 2</u>      | <u>RUN 3</u>      | <b>AVERAGE</b>    |
|----------------------------------------------------------|---------------------------------|----------------|-------------------|-------------------|-------------------|
| Standard Pressure (inches of Hg) = Volume of Gas Sampled | Standard Dry                    | 34.967         | 31.625            | 29.888            | 32.160            |
| Molecular Wt. of Stack Gas (dry)                         | Cubic Feet<br>LB/LB-MOLE        | 30.08          | 30.28             | 30.28             | 30.21             |
| Water vapor in Stack Gas                                 | Percent                         | 7.1            | 9.6               | 9.8               | 8.8               |
| Post Test Meter Correction Check                         | dimensionless                   | 0.93           | 1.02              | 1.08              | 1.01              |
| Percent Difference                                       | Allowed 5% Average              | -3.8           | 5.8               | 12.0              | 4.65              |
| CONCENTRATION OF CHEMICAL IN                             | Sulfur Dioxide                  | 2,171,108      | 3,123,952         | 3,517,203         | 2,937,421         |
| STACK GAS (ug/m3)                                        | Sulfuric Acid                   | 25,777         | 62,604            | 69,380            | 52,587            |
| CONCENTRATION OF CHEMICAL IN                             | 0.16 DI 11                      | 91476          | 1 172 24          | 1 210 01          | 1 102 24          |
| STACK GAS (PPM)                                          | Sulfur Dioxide<br>Sulfuric Acid | 814.76<br>6.32 | 1,172.34<br>15.35 | 1,319.91<br>17.01 | 1,102.34<br>12.89 |

#### 4. PROCESS DESCRIPTION


The process consists of a steam electric generating unit firing bituminous coal for the production of electric energy. The coal is received by barge, and loaded directly onto the conveyor feeding the plant or onto the stockpile and later loaded onto the conveyor belt transporting the coal to the plant. The coal from the conveyor is loaded into bunkers capable of holding between 36 to 48 hours supply of coal. The coal is then fed to pulverizing mills before being fired in the unit through the burners. Upon combustion of the coal in the fire box, approximately 20 percent of the ash falls to the bottom of the boiler and is removed by the ash removal system. The remaining 80 percent exits with the flue gases through the heat exchange and economizer sections of the furnace, and is collected by electrostatic precipitators.

# 5. SULFUR DIOXIDE AND SULFURIC ACID MIST SAMPLING PROCEDURE (EPA Method CTM-013)

The sampling procedure utilized is that approved by the United States Environmental Protection Agency for sampling and analysis of sulfuric acid mist for certain sources at kraft pulp mills. A brief description of the procedure is as follows:

The glass sample probe and quartz filter and filter holder are heated to 500 degrees Fahrenheit or greater to prevent condensation of sulfuric acid mist. The filter was used to collect any particulate which may contain sulfates (sodium sulfate, calcium sulfate, etc). If any sulfuric acid mist was collected on the filter it was evaporated to the gaseous state and passed through the train to be collected in the condenser portion.

Figure 1. CTM-013 Sampling Train



The condenser was

maintained between 167 and 187 degrees Fahrenheit to allow condensation of the sulfuric acid mist without collecting other sulfur compounds particularly sulfur dioxide. The temperature was maintained by circulating heated water through the shell of the condenser. The temperature of the circulating water was controlled by a thermocouple inserted in the condenser.

Upon leaving the condenser, the gas enters a series of impingers. The first two impingers were partially filled with 100 milliliters of three percent hydrogen peroxide. The next impinger was left empty. Preweighed 6 to 16-mesh indication silica gel was added to the last impinger. The sampling equipment, manufactured by Lear Siegler (Model 100) or Sanders Engineering (Model 200), was assembled as shown in the attached drawing. The system was leak checked by plugging the inlet to the nozzle and pulling a 15-inch mercury vacuum. A leakage rate not in excess of 0.02 cubic feet per minute was considered acceptable.

Crushed ice was placed around the impingers. The probe and hot box were preheated to 500 degrees Fahrenheit and the condenser water was heated to between 167 and 187 degrees Fahrenheit and circulated through the condenser. When the equipment reached the desired temperature, the flow was adjusted to one-half cubic foot per minute. Readings of the dry gas meter volume, temperature, and flow rate were recorded on the field data sheet every five minutes. At the conclusion of each run, the pump was turned off, final readings were recorded, and final system leak checks were performed. The sample train was purged by drawing clean ambient air through the system for five minutes at the average flow rate used for sampling.

#### 5.1. Sample Recovery

The impingers were disconnected after purging. The nozzle, probe, and filter were rinsed with deionized water using multiple rinses for good washing, and the rinse was then discarded. The sulfuric acid mist condenser was rinsed with deionized water and the wash solution was collected in Container 1. The volume of liquids in the first two impingers were recorded to determine stack gas moisture content and then placed in container 2 and rinsed with deionized water.

### 5.2. Sample Analysis Procedures

The volume of sample for the container was recorded on the data sheet. If a noticeable amount of liquid was lost, the sample was either voided or methods, subject to the approval of the test administrator, were used to correct the final results. The entire contents of Container 1 were transferred into a 250 milliliter Erlenmeyer flask and 100% isopropyl alcohol was added to give an 80 percent isopropyl alcohol solution. An aliquot of this solution was pipetted into a 250

milliliter Erlenmeyer flask; two to four drops of thorin indicator were added and titrated to a pink endpoint barium chloride. The titration was repeated with a second aliquot of sample and the values were averaged. Replicate titrations must agree within one percent or 0.2 milliliters, whichever is greater.

For container 2, an aliquot of the solution was pipetted into a 250 ml Erlenmeyer flask and a volume of 100% Isopropanol equal to four times the sample aliquot was added to the sample. The sample was titrated in the same procedure as container 1.

#### SULFURIC ACID MIST SAMPLING PROCEDURE (CTM-013A) 6.

The sampling procedure is that specified in CTM-013A. A brief description of this procedure is as follows:

The first impinger was partially filled with 100 milliliters of 80 percent isopropyl alcohol. The second and third impingers were filled with 100 milliliters of three percent hydrogen peroxide. The forth impinger was left empty to act as a moisture trap.

Preweighed 6 to 16 mesh indication silica gel was added to the The last impinger. sampling equipment manufactured by Lear Siegler (Model 100) or Sanders Engineering (Model 200) assembled as shown in the attached drawing. The system was leak checked by plugging the inlet to the nozzle and pulling a 15-inch mercury vacuum. Α leakage rate not in

MAGNEHELIC GAUGE HEATED NOZZLE TEMPERATURE DISPLAY HEATED AREA FILTER HOLDER SS SHEATH THERMOCOUPLE (CF BATH SO2 absorbind S-TYPE SO3 absorbing Silica solution PITOT Gel solution THERMOCOUPLES OBIFICE VACUUM **BYPASS** MAIN DRY GAS MAGNEHELIC VALVE METER GAUGE

Figure 2. CTM-013A Sampling Train

excess of 0.02 cubic feet per minute is considered acceptable.

The inside dimensions of the stack liner were measured and recorded. The required numbers of sample points were marked on the probe for easy visibility. The range of velocity pressure, percent moisture, and temperature of the effluent gases were determined. From this data the correct nozzle size and nomograph multiplication factor were determined.

The probe and hotbox heaters were adjusted to provide a temperature of 500 degrees Fahrenheit (± 25). Crushed ice was placed around the impingers. The nozzle was placed on the first traverse point with the tip pointing directly into the gas stream. The pump was started immediately and the flow adjusted to a delta H of 1.5. At the conclusion of each run the pump was turned off, final readings recorded, and final system leak checks were performed. Clean air was then pulled through the sample train for 15 minutes at the rate during the test.

#### 6.1. Sample Recovery

Care was exercised in moving the collection train to the sample recovery area to minimize the loss of collected sample. The volume of solution in the first impinger was measured. The contents of the first impinger was placed in container one along with the washings of the impingers with 80% Isopropanol. The volume of solution in the second and third impingers was measured. The contents of the second and third impingers were placed in container two, along with the washing of the glassware from the end of the second impinger to the inlet of the last impinger with deionized water. The contents of the last impinger were weighed and recorded on the field data sheet.

#### 6.2. Analytical Procedures

The volume of sample containers were noted and recorded. An aliquot of each container was titrated using barium chloride as the titrate. This titrate was standardized against a standard 0.01 N sulfuric acid solution. Replicate titrations were performed until the volume of titrate agreed within 0.2 milliliters. The results of the titrations of the two containers were reported as sulfuric acid mist and sulfur dioxide.

#### 7. QUALITY ASSURANCE

In order to ensure the accuracy of all the data collected in the field and at the laboratory, SEAS has instituted a comprehensive quality assurance and quality control program. New or repaired items requiring calibration are calibrated before their initial use in the field. Equipment with calibration that may change with use is calibrated before and after each use. When an item is found to be out of calibration, the unit is either discarded or repaired, and then recalibrated before being returned to service. All equipment is periodically recalibrated in full regardless of the results of the regular inspections or its present calibration status. Calibrations are performed in a manner consistent with the EPA reference methods recommended in the "Quality Assurance Handbook for Air Pollution Measurement Systems" published by the US Environmental Protection Agency. To the maximum degree possible all calibrations are traceable to the National Institute of Standards & Technology (NIST).

In order to ensure that the test will be performed in a timely manner without undue delays, SEAS sampling vans are equipped with duplicate sampling devices for almost every device needed to perform the test. If a particular device is broken or does not pass inspection, a second device is available immediately at the site for use. Any device which appears to be outside calibration, or in need of repair is tagged in the field and repaired, calibrated, or discarded immediately upon return to the laboratory.

#### 7.1. Calibrations

Certain pieces of equipment need to be calibrated before and after each test. Those items include the pitot tubes, the differential pressure gauges, the dry gas meter, and the nozzles used for the particulate testing. The following is a brief description of the calibration procedures for each of these important devices.

#### 7.1.1. Pitot Tubes

All pitot tubes are the S-type as required by EPA Reference Method 2 (40 CFR, Part 60, Appendix A, Method 2). This method contains certain geometric standards for the construction of S-type pitot tubes. All of SEAS pitot tubes are constructed according to these standards. According to the EPA any pitot tube constructed to these standards will have a coefficient of  $0.84 \pm 0.02$ . To ensure the exact value of SEAS pitot tubes, all pitot tubes are initially calibrated in SEAS wind tunnel to determine the exact pitot coefficient. This coefficient should not change unless the pitot is physically damaged. Each pitot tube is checked before going to the field to make sure it meets the geometry as specified. Any pitot tube which does not meet the specifications is not used in the test.

#### 7.1.2. Differential Pressure Gauges

SEAS uses several different types of pressure gauges including oil tube manometers, water tube manometers, magnehelics, and current output electronic load cells. Each of these devices are inspected before taken to the field and are inspected for leaks during each test. The magnehelics and load cells are tested against an incline manometer water gauge to ensure accuracy.

#### 7.1.3. Temperature Sensors

All temperature sensors used in SEAS sampling program are either mercury in-glass thermometers or type K thermocouples. These thermocouples are physical devices which produce a voltage proportional to the temperature. The thermocouple reading device is calibrated before and after each series of tests to ensure accuracy of  $\pm$  2 percent. The calibration of the thermocouple is accomplished by NIST traceable calibrated reference thermocouple potentiometer system.

#### 7.1.4. *Nozzles*

The inside diameter of each nozzle is measured to the nearest 0.001 inches prior to its initial use. Upon arriving in the field each nozzle is again measured

with a micrometer on three different points on the diameter to ensure its original measurement and that the nozzle is perfectly round. If the difference between the maximum and minimum diameters measured does not exceed 0.003 inches, the nozzle is acceptable; otherwise, this nozzle is discarded and another is selected. At the end of each test the nozzles are again remeasured on three different points on the diameter to ensure that during the test the nozzle has not become dented or deformed.

#### 7.1.5. Dry Gas Meter

The dry gas meter is initially calibrated against a spirometer transfer standard. During the initial calibration, a five point calibration curve is made at a minimum of one-half inch water column orifice pressure up to four inches water column orifice pressure. After each test, the dry gas meter calibration factor is checked by performing three repetitions at a representative flow rate experienced during the test. If the final calibration does not agree with the initial calibration within five percent the calibration which yields the lowest volume of sample pulled is used in the calculations. The dry gas meter is repaired and a new five initial five point calibration is performed.

#### **7.1.6.** *Orifice*

The flow meter orifice is used to establish isokinetic sampling rates during the test. The orifice is calibrated with the dry gas meter at the same time under the same conditions. The orifice is calibrated over a wide range of flow rates and the arithmetic mean of the orifice calibration is used for sampling purposes. The orifice is recalibrated every time the gas meter is recertified.

| Sanders Engineering & | & Analytical Services, Inc. | Mobile, AL  |
|-----------------------|-----------------------------|-------------|
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       | •                           |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
| APPENDIX A            | QUALITY CONTROL OF TESTING  | EQUIPMENT   |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
|                       |                             |             |
| Gulf Power Company    | Page 16 of 33               | Plant Crist |



#### **INITIAL METER BOX CALIBRATION**

| Calibrated B | y: JCS              |                  | BOX #:     | C-133   | Date:      | 3/9/2012 |            |         |                        |                      |            |         | - 1  |
|--------------|---------------------|------------------|------------|---------|------------|----------|------------|---------|------------------------|----------------------|------------|---------|------|
|              |                     | _                | Orifice #: | 1       | Orifice #: | 3        | Orifice #: | 8       | Reference 33103        | Unit                 | RUN 4      | RUN 5   | 1    |
|              |                     | Unit             | RUN 1      | RUN 2   | RUN 1      | RUN 2    | RUN 1      | RUN 2   | Field Meter DH         | In. H <sub>2</sub> O | 2.50       | 3.50    | 1    |
| Meter        | DH                  | In. H₂O          | 0.97       | 0.97    | 1.53       | 1.52     | 2.17       | 2.17    | Initial Gas Volume     | Ft.*                 | 279.600    | 285.200 | ]    |
|              | Initial Gas Volume  | Ft. <sup>3</sup> | 242.700    | 252.900 | 258.100    | 263.200  | 269,400    | 274.500 | Final Gas Volume       | Ft. <sup>3</sup>     | 285.200    | 290.300 |      |
|              | Final Gas Volume    | Ft. <sup>3</sup> | 252.900    | 258.100 | 263.200    | 269.400  | 274.500    | 279.600 | Initial Temp. Out      | ٩F                   | 77         | 77      |      |
|              | Initial Temp. Out   | °F               | 75         | 75      | 75         | 75       | 75         | 75      | Final Temp. Out        | °F                   | 77         | 77      | 1    |
|              | Final Temp. Out     | ۰F               | 75         | 75      | 75         | 75       | 75         | 76      | Reference Meter Y      | Dimensionless        | 0.952      | 0.952   | 1    |
|              | Vacuum              | In. Hg           | 28.0       | 28.0    | 23.0       | 23.0     | 22.0       | 22.0    | Initial Gas Volume     | Ft.3                 | 59.200     | 64.665  | 1    |
|              | Ambient Temp.       | °F               | 72         | 72      | 72         | 72       | 72         | 72      | Final Gas Volume       | Ft. <sup>3</sup>     | 64.665     | 69.665  | 1    |
| Ba           | rometric Pressure   | In. Hg           | 30.26      | 30.26   | 30.26      | 30.26    | 30.26      | 30.26   | Initial Temp.          | °F                   | 77         | 77      | 1    |
|              | Time                | sec              | 1279       | 644     | 500        | 608      | 416        | 416     | Final Temp.            | °F                   | <b>7</b> 7 | 77      | ]    |
|              | K'                  |                  | 0.3506     | 0.3506  | 0.4476     | 0.4476   | 0.5423     | 0.5423  | Barometric Pressure    | In. Hg               | 30.26      | 30.260  | 1    |
| ALCULATION   | 18                  |                  |            |         |            |          |            |         | Time                   | sec                  | 430        | 329     | 1    |
| Total        | Meter Gas Volume    | Actual Ft.3      | 10.200     | 5.200   | 5.100      | 6.200    | 5.100      | 5.100   | Volume Field Meter     | ACF                  | 5.60       | 5.100   | ]    |
|              | Time                | Minutes          | 21.317     | 10.733  | 8.333      | 10.133   | 6.933      | 6.933   | Volume Field Meter     | SDCF                 | 5.600      | 5.113   | ]    |
| Volume       | through the Meter   | SDCF without Y   | 10.201     | 5.200_  | 5.107      | 6.209    | 5.115      | 5.110   | Volume Reference Meter | ACF                  | 5.47       | 5.000   | ] .  |
| Volume t     | through the Orifice | SDCF             | 9.805      | 4.937   | 4.894      | 5.951    | 4.933      | 4.933   | Volume Reference Meter | SDCF                 | 5.432      | 4.970   | ]    |
|              | Calculated Y        | Dimensionless    | 0.961      | 0.949   | 0.958      | 0.958    | 0.964      | 0.965   |                        |                      | 0.970      | 0.972   | 0.96 |
| •            | Difference          | Allowable 0.02   | -0.001     | -0.013  | -0.004     | -0.004   | 0.002      | 0.003   |                        |                      | 0.008      | 0.010   |      |
| C            | alculated DH@       |                  | 2.586      | 2.586   | 2.510      | 2.493    | 2.432      | 2.430   |                        |                      | 2.463      | 2.424   | 2.49 |
|              | Difference          | e Allowable 0.2  | 0.096      | 0.096   | 0.019      | 0.003    | -0.058     | -0.061  |                        |                      | -0.027     | -0.067  |      |

**Magnehelic Calibrations** 

| Device  | Calibration  | Delta I          | )       |
|---------|--------------|------------------|---------|
|         | Standard     | Magnehelic       |         |
| Units   | inches water | inches water     | Percent |
| Reading | Reference    | Sample           | Error   |
| 1       | 0.49         | 0.49             | 0.0     |
| 2       | 1.80         | 1.87             | 3.9     |
| 3       | 0.90         | 0.87 <b>-3.3</b> |         |

Allowed Error = 5% of Reading

Thermocouple Calibrations

| Device  | Calibration | Thermo     | couple  |
|---------|-------------|------------|---------|
|         | Standard    | Dete       | ctor    |
| Units   | Degrees F.  | Degrees F. | Percent |
| Reading | Reference   | Sample     | Error   |
| 1       | 100         | 96         | -0.7    |
| 2       | 300         | 299        | -0.1    |
| 3       | 450         | 446        | -0.4    |

Allowed Error = 1.5% of Absolute Temperature (Degrees Rankin); Absolute Temperature = Temperature in Degrees Fahrenheit. + 460



#### **INITIAL METER BOX CALIBRATION**

| Calibrated By: | DM               |                  | BOX #:     | SEAS-201 | Date:      | 3/13/2012 |            |        |                        |                      |         |         |     |
|----------------|------------------|------------------|------------|----------|------------|-----------|------------|--------|------------------------|----------------------|---------|---------|-----|
|                |                  |                  | Orifice #: | 1        | Orifice #: | 3         | Orifice #: | 8      | Reference 33103        | Unit                 | RUN 4   | RUN 5   | 1   |
|                |                  | Unit             | RUN 1      | RUN 2    | RUN 1      | RUN 2     | RUN 1      | RUN 2  | Field Meter DH         | In. H <sub>2</sub> O | 2.50    | 3.50    |     |
| Meter          | DH               | In. H₂O          | 0.75       | 0.75     | 1.15       | 1.15      | 1.65       | 1.65   | Initial Gas Volume     | Ft."                 | 0.000   | 0.000   |     |
| Ini            | itial Gas Volume | Ft. <sup>3</sup> | 0.000      | 0.000    | 0.000      | 0.000     | 0.000      | 0.000  | Final Gas Volume       | Ft. <sup>3</sup>     | 10.770  | 12.807  |     |
| Fi             | nal Gas Volume   | Ft. <sup>3</sup> | 6.971      | 5.579    | 5.323      | 5.921     | 6.435      | 9.333  | Initial Temp. Out      | °F                   | 70      | 76      |     |
|                | nitiai Temp. Out | °F               | 67         | 68       | 68         | 68        | 69         | 76     | Final Temp. Out        | °F                   | 71      | 76      | 1   |
|                | Final Temp. Out  | °F               | 68         | _68      | 68         | 69        | 69         | 76     | Reference Meter Y      | Dimensionless        | 0.952   | 0.952   |     |
|                | Vacuum           | In. Hg           | 21.0       | 21.0     | 21.0       | 21.0      | 20.0       | 20.0   | Initial Gas Volume     | Ft. <sup>3</sup>     | 133.740 | 159.202 |     |
|                | Ambient Temp.    | °F               | 68         | 68       | 68         | 68        | 68         | 76     | Final Gas Volume       | Ft.3                 | 144.638 | 172.208 | ]   |
| Baro           | metric Pressure  | In. Hg           | 30.24      | 30.24    | 30.24      | 30.24     | 30.24      | 30.24  | Initial Temp.          | °F                   | 70      | 76      |     |
|                | Time             | sec              | 900        | 720      | 540        | 600       | 540        | 780    | Final Temp.            | °F                   | 71      | 76      |     |
|                | K'               |                  | 0.3506     | 0.3506   | 0.4476     | 0.4476    | 0.5423     | 0.5423 | Barometric Pressure    | In. Hg               | 30.24   | 30.24   | ]   |
| CALCULATIONS   |                  |                  |            |          |            |           |            |        | Time                   | sec                  | 720     | 720     | ]   |
| Total Me       | ter Gas Volume   | Actual Ft.3      | 6.971      | 5.579    | 5.323      | 5.921     | 6.435      | 9.333  | Volume Field Meter     | ACF                  | 10.77   | 12.807  | ]   |
|                | Time             | Minutes          | 15.000     | 12.000   | 9.000      | 10.000    | 9.000      | 13.000 | Volume Field Meter     | SDCF                 | 10.895  | 12.854  | ]   |
| Volume the     | rough the Meter  | SDCF without Y   | 7.062      | 5.647    | 5.393      | 5.993     | 6.515      | 9.326  | Volume Reference Meter | ACF                  | 10.90   | 13.006  | ]   |
| Volume thre    | ough the Orifice | SDCF             | 6.921      | 5.537    | 5.301      | 5.891     | 6.423      | 9.208  | Volume Reference Meter | SDCF                 | 10.958  | 12.944  |     |
|                | Calculated Y     | Dimensionless    | 0.980      | 0.981    | 0.983      | 0.983     | 0.986      | 0.987  | _                      |                      | 1.006   | 1.007   | 0.9 |
|                | Difference       | Allowable 0.02   | -0.009     | -0.009   | -0.006     | -0.006    | -0.003     | -0.002 |                        |                      | 0.017   | 0.018   |     |
| Cal            | culated DH@      |                  | 2.012      | 2.010    | 1.895      | 1.893     | 1.853      | 1.856  |                        |                      | 1.717   | 1.713   | 1.8 |
|                | Difference       | Allowable 0.2    | 0.143      | 0.141    | 0.026      | 0.024     | -0.016     | -0.012 |                        |                      | -0.152  | -0.155  |     |

Magnehelic Calibrations

| Device  | Calibration  | Delta I      | P       |
|---------|--------------|--------------|---------|
|         | Standard     | Magneh       | elic    |
| Units   | inches water | inches water | Percent |
| Reading | Reference    | Sample       | Error   |
| 1       | 1.32         | 1.31         | 0.0     |
| 2       | 0.72         | 0.71         | -1.4    |
| 3       | 0.48         | 0.49         | 2.1     |

Allowed Error = 5% of Reading

Thermocouple Calibrations

| Device  | Calibration | Thermo     | couple  |
|---------|-------------|------------|---------|
|         | Standard    | Dete       | ector   |
| Units   | Degrees F.  | Degrees F. | Percent |
| Reading | Reference   | Sample     | Error   |
| 1       | 150         | 150        | 0.0     |
| 2       | 212         | 213        | 0.1     |
| 3       | 400         | 400        | 0.0     |

Allowed Error = 1.5% of Absolute Temperature (Degrees Rankin);

Absolute Temperature = Temperature in Degrees Fahrenheit. + 460



|                                       | Magnehelic Calibration |      |       |           |      |       |       |      |       |       |      |      |  |
|---------------------------------------|------------------------|------|-------|-----------|------|-------|-------|------|-------|-------|------|------|--|
| serial number                         |                        | 101  |       | 102A 102C |      |       |       | 103A |       |       |      |      |  |
|                                       |                        |      |       |           |      |       |       |      |       |       |      |      |  |
| Span (in H2O)                         | 0.25                   | 2    | 25    | 0.25      | 2    | 25    | 0.25  | 2    | 25    | 0.25  | 2    | 10   |  |
| Reference Reading @ 0% Span (in H2O)  | 0.000                  | 0.00 | 0.00  | 0.00      | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |
| Device Reading (in H2O)               | 0.000                  | 0.00 | 0.00  | 0.00      | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |
| % Difference (Allowed = 0.05)         | 0.00                   | 0.00 | 0.00  | 0.00      | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |
| Reference Reading @ 50% Span (in H2O) | 0.120                  | 0.95 | 4.73  | 0.125     | 1.00 | 9.64  | 0.131 | 0.90 | 9.30  | 0.12  | 0.95 | 5.15 |  |
| Device Reading (in H2O)               | 0.122                  | 0.96 | 4.90  | 0.126     | 0.98 | 9.75  | 0.129 | 0.88 | 9.00  | 0.12  | 0.92 | 5.20 |  |
| % Difference (Allowed = 0.05)         | 1.67                   | 1.05 | 3.59  | 0.80      | 2.00 | 1.14  | 1.53  | 2.22 | 3.23  | 2.56  | 3.16 | 0.97 |  |
| Reference Reading @ 90% Span (in H2O) | 0.220                  | 1.88 | 23.50 | 2.32      | 1.85 | 23.30 | 0.250 | 2.00 | 22.80 | 0.248 | 1.91 | 9.50 |  |
| Device Reading (in H2O)               | 0.222                  | 1.83 | 24.20 | 2.300     | 1.90 | 24.00 | 0.243 | 1.97 | 23.30 | 0.240 | 1.95 | 9.20 |  |
| % Difference (Allowed = 0.05)         | 0.91                   | 2.66 | 2.98  | 0.86      | 2.70 | 3.00  | 2.80  | 1.50 | 2.19  | 3.23  | 2.09 | 3.16 |  |

| serial number                         |       |       | 10    | 03B  |      |      | 104   |      |      |
|---------------------------------------|-------|-------|-------|------|------|------|-------|------|------|
|                                       |       |       |       |      |      |      |       |      |      |
| Span (in H2O)                         | 0.25  | 0.5   | 1     | 2    | 5    | 25   | 0.25  | 2    | 10   |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Device Reading (in H2O)               | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| % Difference (Allowed = 0.05)         | 0.000 | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Reference Reading @ 50% Span (in H2O) | 0.130 | 0.260 | 0.50  | 9.40 | 2.43 | 9.70 | 0.120 | 0.99 | 4.73 |
| Device Reading (in H2O)               | 0.124 | 0.260 | 0.48  | 9.40 | 2.54 | 9.50 | 0.120 | 0.98 | 4.90 |
| % Difference (Allowed = 0.05)         | 4.615 | 0.00  | 4.00  | 0.00 | 4.53 | 2.06 | 0.000 | 1.02 | 3.47 |
| Reference Reading @ 90% Span (in H2O) | 0.261 | 0.500 | 0.85  | 1.89 | 4.52 | 24.5 | 0.248 | 1.67 | 8.20 |
| Device Reading (in H2O)               | 0.249 | 0.495 | 0.81  | 1.88 | 4.64 | 25.0 | 0.240 | 1.74 | 8.60 |
| % Difference (Allowed = 0.05)         | 4.598 | 1.00  | 4.71  | 0.53 | 2.65 | 2.04 | 3.333 | 4.02 | 4.65 |

| serial number                         |       | 105  |      |       | 106  |      |
|---------------------------------------|-------|------|------|-------|------|------|
|                                       |       |      |      |       |      |      |
| Span (in H2O)                         | 0.25  | 2    | 25   | 0.5   | 4    | 15   |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Device Reading (in H2O)               | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| % Difference (Allowed = 0.05)         | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Reference Reading @ 50% Span (in H2O) | 0.122 | 0.97 | 8.90 | 0.233 | 1.86 | 8.00 |
| Device Reading (in H2O)               | 0.123 | 0.95 | 9.30 | 0.232 | 1.95 | 7.90 |
| % Difference (Allowed = 0.05)         | 0.820 | 2.11 | 4.30 | 0.431 | 4.62 | 1.27 |
| Reference Reading @ 90% Span (in H2O) | 0.239 | 1.92 | 24.5 | 0.470 | 3.60 | 14.4 |
| Device Reading (in H2O)               | 0.235 | 1.98 | 23.7 | 0.461 | 3.60 | 14.8 |
| % Difference (Allowed = 0.05)         | 1.702 | 3.03 | 3.38 | 1.952 | 0.00 | 2.70 |
| Calibration Date 12/30/2008 By MC     |       |      |      |       |      |      |

APPENDIX B FIELD DATA

# Sanders Engineering & Analytical Services, Inc.

| 2255 Schillinger Rd<br>Semmes, Al. 3657                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            | Office: (251) 633-4120<br>Fax: (251) 633-2285 |                         |                              |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------|-------------------------|------------------------------|--|--|--|--|
| COMPANY Gulf Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            | DATE 7-25-12 OPERATOR MC                      |                         |                              |  |  |  |  |
| PLANT Unit 6 SCR total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ł BOX                      | No                                            | DHa 1869_               | Y 0.989                      |  |  |  |  |
| UNITSCR_Inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | METHOD CT / 3 A                               | PROBE                   | #_ <i>J</i> /A               |  |  |  |  |
| BALANCE No. 102 A STD. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VT. (gm) <u>ಇಲ</u> ಲ್ಲ     | BALANCE R                                     | ESPONCE (gm)            | 2 <i>∞</i> 0,5               |  |  |  |  |
| Run <u>1</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Run<br>                    | 2                                             | Run<br>                 | 3                            |  |  |  |  |
| Nozzle Filter<br>Calibration Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Nozzle<br>Calibration      | Filter<br>Number                              | Nozzie<br>Calibration   | Filter<br>Number             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | W.A. Inches                |                                               | A                       |                              |  |  |  |  |
| METER READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | METER R                    | EADING                                        | METER 1<br>40,904       | READING                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I                          | i- prasi                                      | )-mad                   | hatasi                       |  |  |  |  |
| O to OO states                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40.615                     | India)                                        | <u> </u>                |                              |  |  |  |  |
| 40.101 Not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>40.6/7</u> -            | Net                                           | 100, 107                | Not                          |  |  |  |  |
| LEAK CHECK System Pitot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LEAK C                     | HECK<br>Pitot                                 | LEAK CHECK System Pitot |                              |  |  |  |  |
| Pre Post Pre Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pre Post                   | Pre Post                                      | Pre Post                | Pre Post                     |  |  |  |  |
| 10 11 Impact Impact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10 16                      | WA WA                                         | 10 11                   | Impacy Impacy                |  |  |  |  |
| In hig In hig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | h.Ha h.Ha                  | NA NA                                         | 3,000 0.018             | ND NA                        |  |  |  |  |
| ctm 7-15-11 dm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ctrn clm                   | 777                                           | cfm cfm                 | 102                          |  |  |  |  |
| VOLUME OF<br>LIQUID WATER COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VOLUM                      |                                               | VOLUM                   | ME OF<br>R COLLECTED         |  |  |  |  |
| Imp 1 Imp 2 Imp 3 Imp 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Imp 1 Imp 2                | lmp3 lmp4                                     | imp 1 imp 2             | Imp 3 imp 4                  |  |  |  |  |
| 45 139 /42 1975.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 62 156                     | 130 2007 4                                    | 67 145                  | 127 2020,0                   |  |  |  |  |
| Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred   Pred | 100 100<br>Initial Initial | /2 /979.3                                     | 100 (00                 | 19.7 2002.9                  |  |  |  |  |
| ~55 39 42 48.6<br>Net Net Net Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -38 57                     | 30 23.1                                       | -33 45<br>Not Not       | 27 18.5<br>Nat Nat           |  |  |  |  |
| Total _74.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            | Total                                         |                         | Total <u>57.5</u>            |  |  |  |  |
| GAS ANALYSIS STATIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GAS ANALYSIS               | STATIC                                        | GAS ANALYSIS            | STATIC                       |  |  |  |  |
| o. 8.5% ~22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0, 8.5%                    |                                               | 0. <u>8.0%</u>          | -22_<br>in. H <sub>2</sub> 0 |  |  |  |  |
| 00, <u>[273</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | co, <u>/0 %</u>            |                                               | co. 100%                |                              |  |  |  |  |
| BAROMETRIC  29. ¶ 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ∞ <i>∠</i>                 | BAROMETRIC<br>2394                            | co <u>/</u>             | BAROMETRIC<br>29.74          |  |  |  |  |
| in. Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            | b. Hg                                         | Page 1 of               | tn. Hg                       |  |  |  |  |

| Port #                         |        | Gas<br>Meter           | Velocity<br>Head                              | Orifice<br>Head              |        | Temper  | ature °F |              |                  |
|--------------------------------|--------|------------------------|-----------------------------------------------|------------------------------|--------|---------|----------|--------------|------------------|
| Point#                         | Time   | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)                               | ΔH<br>(in. H <sub>2</sub> O) | Stack  | Filter  | lmp.     | Gas<br>Meter | Vac.<br>(In. Hg) |
| 1-1                            | 9:15   | 0.540                  |                                               | 15                           | 573    | 502     | 41       | 92           | 7                |
| ٠                              | 9:20   | 35                     |                                               | 1.5                          | )      | 500     | 41       | 90           | 7                |
|                                | 9:25   | 7.0                    |                                               | 1.5                          |        | 603     | 41       | 90           | 7                |
|                                | 9:30   | 10.3                   |                                               | 1.5                          |        | 504     | 42       | 91           | 8                |
|                                | 9:35   | 14,2                   |                                               | 45                           |        | 502     | 43       | 92           | 8                |
|                                | 9:42   | 16.8                   |                                               | 1.5                          |        | 503     | 43       | 72           | 7                |
|                                | 9:45   | 195                    |                                               | 1.5                          |        | 503     | 43       | <b>آ</b> 2   | 4                |
|                                | 9 50   | 23.6                   |                                               | 15                           |        | 501     | 44       | 73           | 9                |
|                                | 9:55   | 26.8                   |                                               | 1.5                          |        | 502     | 45       | 94           | 9                |
|                                | 10:00  | 30.1                   |                                               | 1.5                          |        | \$500   | 46       | 94           | /0               |
| .,                             | كه: د) | 33.2                   |                                               | 1.5                          |        | 501     | 46       | 75           | 10               |
|                                | 13:13  | 365                    |                                               | 1.5                          |        | 502     | 47       | 75           | 10               |
| end                            | 12:15  | 40.101                 |                                               |                              | _ ·    |         |          |              |                  |
|                                | ;      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
| <u> </u>                       | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         | _        |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          | _            |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         | _        | _            |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        | _                                             |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          |              |                  |
|                                | :      |                        |                                               |                              |        |         |          | _            |                  |
|                                | :      |                        |                                               |                              | -      |         |          |              |                  |
|                                |        |                        |                                               |                              |        |         |          |              |                  |
|                                | : 1    |                        |                                               |                              |        |         | -        |              |                  |
| om Revised 8/24/02<br>Company: | Sulf P | ower                   | -                                             | Date                         | : 7-25 | 5-12    | Page     | e            |                  |
|                                |        | SCR Inle               | <u>+                                     </u> |                              | _      | CTM-13A | -        |              |                  |

| Port #          |          | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |             | Tempe            | ature °F |              |                                                  |
|-----------------|----------|------------------------|------------------|-----------------|-------------|------------------|----------|--------------|--------------------------------------------------|
| Point#          | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(in. H₂O) | Stack       | Filter           | lmp.     | Gas<br>Meter | Vac.<br>(in. Ho                                  |
|                 | 12:20    | 0.000                  |                  | 1.5             | 675         | 505              | 47       | 45           | 5                                                |
|                 | :25      | 37                     |                  | 1.5             |             | 503              | 47       | 95           | 5                                                |
|                 | :30      | 6.6                    |                  | 1.5             |             | 502              | 47       | 76           | 6                                                |
|                 | : 35     | 10:1                   |                  | 15              |             | 503              | 48       | 96           | و                                                |
|                 | : 40     | 13.8                   |                  | 1.5             |             | 501              | 49       | 98           | 6                                                |
|                 | : 45     | 17,3                   |                  | 15              |             | 505              | 50       | 78           | 7                                                |
|                 | : 50     | 203                    |                  | 1.5             |             | 504              | 50       | 99           | 7                                                |
|                 | : 55     | 235                    |                  | 1.5             |             | 502              | 50       | 99           | フ                                                |
|                 | 13:00    | 27. <i>0</i>           |                  | 1.5             |             | 603              | 50       | 75           | 7                                                |
|                 | : 05     | 30.60                  |                  | 15              |             | 502              | 51       | 100          | 8                                                |
|                 | : 10     | 33.5                   |                  | 1.5             |             | 504              | 51       | 101          | 8                                                |
|                 | : 15     | 37 4                   | _                | 1.5             |             | 506              | 51       | 100          | 8                                                |
| enc             | 15:20    |                        |                  | •               | 1           |                  |          |              |                                                  |
|                 | :        | 1 -                    |                  |                 |             |                  |          |              |                                                  |
|                 | :        |                        |                  |                 |             |                  |          | _            |                                                  |
|                 | :        |                        |                  |                 |             | -                |          |              |                                                  |
|                 | :        |                        |                  |                 |             |                  |          |              |                                                  |
|                 | :        |                        |                  |                 |             |                  |          |              |                                                  |
|                 | :        |                        |                  |                 |             |                  |          |              |                                                  |
|                 | ;        |                        |                  |                 |             |                  |          |              |                                                  |
|                 | :        |                        |                  |                 |             |                  |          |              |                                                  |
|                 | :        |                        |                  |                 |             |                  |          |              |                                                  |
|                 | :        |                        |                  |                 | ,           |                  |          |              |                                                  |
|                 |          |                        |                  |                 |             |                  |          |              |                                                  |
|                 |          |                        |                  |                 |             |                  |          |              | <del>                                     </del> |
|                 | :        |                        |                  |                 |             |                  |          |              | L                                                |
|                 | :        |                        |                  |                 |             | +                |          |              |                                                  |
|                 | :        |                        |                  |                 |             | +                |          |              |                                                  |
|                 | :        |                        |                  |                 |             | +                |          |              |                                                  |
|                 | :        |                        |                  |                 |             | <del> </del>     |          |              |                                                  |
|                 |          |                        | -                |                 |             | <del> </del>     |          |              |                                                  |
|                 |          |                        |                  |                 |             | <del> </del>     |          |              |                                                  |
|                 |          |                        |                  |                 |             | <del>  -  </del> |          |              |                                                  |
| Revised 8/24/02 | <u> </u> |                        |                  |                 |             |                  |          |              |                                                  |
| mpany: _(       | oulf for | rel                    |                  | Dat             | e: 7-a      | 5-12             | Page     | e            | _                                                |
| Site: C         | cist 6   | scr outlet             |                  | Run             | #: <u>2</u> | C7M-13           | A Of     |              | _                                                |

| Port #                          | 1        | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head              |                 | Tempe    | rature °F    |              |                 |
|---------------------------------|----------|------------------------|------------------|------------------------------|-----------------|----------|--------------|--------------|-----------------|
| Point#                          | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H <sub>2</sub> O) | Stack           | Filter   | Imp.         | Gas<br>Meter | Vac.<br>(In. Hg |
| 1                               | 13:55    | ව.පම                   |                  | 1.5                          | 575             | 504      | 47           | 99           | 8               |
|                                 | 14:00    | 3.4                    |                  | 1.5                          |                 | 502      | 45           | 98           | 8               |
|                                 | 14:05    | 6.8                    |                  | 1,5                          |                 | 50)      | 43           | 99           | 8               |
|                                 | 14:10    | 9:9                    |                  | 1.5                          |                 | 502      | 44           | 99           | 8               |
|                                 | 14:15    | 13.3                   |                  | 1.5                          |                 | 603      | 44           | જ જ          | 9               |
|                                 | 14:23    | 16.6                   | <u></u>          | 1.5                          |                 | 505      | 46           | 28           | 5               |
|                                 | 14:25    | 19.7                   |                  | 15_                          |                 | 506      | 45           | 78           | 10              |
|                                 | H 30     | 23:3                   |                  | 1.5                          |                 | 503      | 47           | 58           | P               |
|                                 | 14:35    | 26.7                   |                  | 1.5                          |                 | 504      | 48           | 98           | 10              |
|                                 | 14:40    | 30.0                   |                  | 15                           |                 | 500      | 49           | 98           | 11              |
|                                 | 14:45    | 37.7                   |                  | 1.5                          |                 | 502      | 50           | タブ           | U               |
|                                 | 14:50    | 37.0                   |                  | 1.5                          |                 | 501      | 50           | 97           | 11              |
| end                             | 14:55    | 40.904                 |                  |                              |                 |          |              |              |                 |
| ,                               | 19:0     |                        | ļ                | _                            |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 | <u> </u> | -            |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 | L        |              |              | L               |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | : ,      |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        | _                      |                  |                              |                 |          |              |              |                 |
|                                 |          |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 | , , , ,  |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 | `. ·.    |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
|                                 | :        |                        |                  |                              |                 |          |              |              |                 |
| om Revised 8/24/02<br>Company:( | sulf Pon | N _                    |                  | Date                         | e: <u>7-2</u> 8 | 1.1.2    | Page         |              |                 |
| Site:                           | Crist (  | O SCR 1                | nlet_            | Run (                        | #: <u>3</u>     | <u> </u> | <u>A.</u> Of |              |                 |

### Sanders Engineering & Analytical Services, Inc.

|                                                  | 255 Schillinger Rd.<br>Semmes, Al. 3657 |                              | Office: (251) 633-4120<br>Fax: (251) 633-2285 |                                     |                     |  |  |  |
|--------------------------------------------------|-----------------------------------------|------------------------------|-----------------------------------------------|-------------------------------------|---------------------|--|--|--|
| COMPANY Gul                                      | f Power                                 |                              | DATE 7-25-12 OPERATOR 184                     |                                     |                     |  |  |  |
| PLANT Crist                                      |                                         | вох                          |                                               | DHa 2,49/                           |                     |  |  |  |
| UNIT 6 SCR                                       | Outlet                                  |                              |                                               | 013 PROBE #                         |                     |  |  |  |
| BALANCE No. 10                                   | <u> </u>                                | VT. (gm) <u> </u>            | BALANCE F                                     | RESPONCE (gm)                       | 2000.1              |  |  |  |
| Run _                                            |                                         | Run                          |                                               | Run                                 | _3                  |  |  |  |
| Nozzie<br>Calibration                            | Filter<br>Number                        | Nozzie<br>Calibration        | Filter<br>Number                              | Nozzie<br>Calibration               | Filter<br>Number    |  |  |  |
| Inchas                                           |                                         | Jaciffs                      |                                               | Inches                              |                     |  |  |  |
| METER REAL                                       | DING                                    | METER RI<br>311.595          | EADING                                        | METER R                             | EADING              |  |  |  |
| 276.674<br>238.900                               | huta                                    | 277,245                      | imasi                                         | 3/1/1/1                             |                     |  |  |  |
| 37.774                                           | Net                                     | 34.350                       | Net .                                         | 32,4 Z4<br>Nai                      |                     |  |  |  |
| LEAK CHE<br>System                               | CK<br>Pitot                             | LEAK CI<br>System            | HECK<br>Pitot                                 | LEAK CHECK System Pitot             |                     |  |  |  |
| Pre Post                                         | Pre Post                                | Pre Post                     | Pre Post                                      | Pre Post                            | Pre Post            |  |  |  |
| 10 11                                            | Impact Impact                           | 10 11                        | Impact Impact                                 | 12 11                               | Impact Impact       |  |  |  |
| in. Hg In. Hg . 005 . 00 Z                       | Static Static                           | in. Hg in. Hg<br>. 003 . 003 | Static Static                                 | ,604 .005                           | Static Static       |  |  |  |
| VOLUME O                                         |                                         | VOLUME<br>LIQUID WATER       |                                               | VOLUME OF<br>LIQUID WATER COLLECTED |                     |  |  |  |
| , i , i                                          | mp3 lmp4                                | imp1 imp2                    | lmp3 lmp4                                     | imp 1 imp 2                         | Imp3 Imp4           |  |  |  |
| 132 1/2<br>Final Final                           | / 1732.4<br>Final; Final                | 153 108                      | 1742.7                                        | 154 107<br>Final Final              | / 1750.9            |  |  |  |
| 100 100                                          | 17 19.7<br>1901ai Initial               | 100 10b                      | Ø 1737.4                                      | 100 100                             | 1742.7              |  |  |  |
| 37 17 Net                                        | 7   12.7                                | 53 8                         | 10.3                                          | 54 7                                | 8,Z                 |  |  |  |
| 1                                                | rotal <u>56.7</u>                       |                              | Total 71,3                                    |                                     | Total 109.2         |  |  |  |
| GAS ANALYSIS                                     | STATIC                                  | GAS ANALYSIS                 | STATIC                                        | GAS ANALYSIS                        | STATIC              |  |  |  |
| 0. <u>7%                                    </u> | - 24.0                                  | 0. 7%                        | - 24.0                                        | o. <u>7%</u>                        | -24,0               |  |  |  |
| co. <u>11%</u>                                   |                                         | co, <u>17.5%</u>             |                                               | co. 12.5%                           |                     |  |  |  |
| co <u>/</u> _                                    | BAROMETRIC<br>Z 9 94                    | co <u>/</u> -                | BAROMETRIC<br>29.94                           | co <u> </u>                         | BAROMETRIC<br>29.94 |  |  |  |
| Form Revised 10/10/08                            |                                         | •                            |                                               | Page 1 of                           |                     |  |  |  |

| Port #                         |       | Gas<br>Meter           | Velocity<br>Head               | Orifice<br>Head              |       | Temper   | ature °F |              |                |
|--------------------------------|-------|------------------------|--------------------------------|------------------------------|-------|----------|----------|--------------|----------------|
| Point#                         | Time  | Volume<br>(Cubic Feet) | . ΔP<br>(In. H <sub>2</sub> O) | ΔH<br>(In. H <sub>2</sub> O) | Stack | Filter ' | Cond.    | Gas<br>Meter | Vac.<br>(In. H |
|                                | 9:15  | 738.900                | X                              | 1.5                          | 537   | 500      | 165      | 89           | 5              |
|                                | :20   | 243.5                  | ,                              | 1.5                          |       | 510      | 168      | 89           | 5              |
|                                | : 25  | 246.1                  |                                | 1.5                          |       | 511      | 172      | 8 0          | 5              |
|                                | : 30  | Z49.4                  |                                | 1.5                          |       | 508      | 175      | 90           | 6              |
|                                | : 35  | 253.0                  |                                | 1.5                          |       | 511      | 176      | 90           | 6              |
|                                | : 40  | 255.6                  |                                | 1.5                          |       | 5/3      | 177.     | 91           | 6              |
|                                | : 45  | 758.8                  |                                | 1.5                          |       | 507      | 173      | 92           | 7              |
|                                | :50   | 261.6                  |                                | 1.5                          |       | 512      | 175      | 92           | 8              |
| <del>_</del>                   | :55   | 264.5                  |                                | 1.5                          |       | 515      | 176      | 92           | 8              |
|                                | 10:00 | 767.8                  |                                | 1.5                          |       | 516      | 178.     | 93           | 8              |
|                                | :05   | 8.075                  |                                | 1.5                          |       | 511      | 175      | 93           | 8              |
|                                | :10   | 274.7                  |                                | 1.5                          |       | 508      | 175      | 93           | 9              |
| Stop                           | 10:15 | 276.674                |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          | _        |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     | I                      | _                              |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          | -        |              |                |
|                                | :     |                        |                                |                              |       |          |          | ·            |                |
|                                | :     | _                      |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          | _            |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                |       |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
|                                |       |                        |                                |                              |       |          |          |              |                |
|                                | :     |                        |                                |                              |       |          |          |              |                |
| m Revised 8/24/02<br>ompany: 6 |       | wer -<br>SCR C         | 0/3                            |                              |       | 25-12    | Page     |              | -              |

| Port #   |         | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |          | Temper   | ature °F | _            |                |
|----------|---------|------------------------|------------------|-----------------|----------|----------|----------|--------------|----------------|
| Point#   | Time    | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H₂O) | Stack    | · Filter | Cover,   | Gas<br>Meter | Vac.<br>(in. H |
|          | 12:20   | 277.245                |                  | 1. 5            | 540      | 501      | 170      | 93           | 7              |
|          | : 25    | 779.5                  |                  | 1.5             |          | 503      | 171      | 93           | 2              |
|          | : 30    | 282.8                  |                  | 1.5             |          | 510      | 168      | 94           | 7              |
|          | : 35    | 285.7                  |                  | 1.5             |          | 512      | 174      | 94           | 8              |
|          | : 40    | 288.9                  |                  | 1.5             |          | 5 15     | 173      | 94           | 8              |
|          | : 45    | 291.5                  |                  | 1.5             |          | 513      | 176      | 94           | 8              |
|          | : 50    | 294.3                  |                  | 1.5             |          | 512      | 174      | 95           | 9              |
|          | : 55    | 297.1                  |                  | 1.5             |          | 516      | 175      | 94           | ٩              |
|          | 13:00   | 300.0                  |                  | 1,5             |          | 5 19     | 176      | 94           | 9              |
|          | :65     | 303.1                  |                  | 1.5             |          | 518      | 174      | 94           | 9              |
|          | :10     | 305.7                  |                  | 1.5             |          | 513      | 173      | 95           | 9              |
|          | : 15    | 308.9                  |                  | 1.5             |          | 510      | 170      | 95           | 9              |
|          | :20     | 311.595                |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              | <u> </u>       |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          | l            |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | : [     |                        |                  |                 |          |          |          |              |                |
|          | ·:      |                        |                  |                 | _        |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          | _            |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | : .     |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | : .     |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
|          | :       |                        |                  |                 |          |          |          |              |                |
| npany:   | Suf F   | Power - C              | rist             | Date            | e: 7 - 7 | 25-12    | Page     |              | -              |
| Site: Uw | it 6 50 | R Outlet               | ctm-01           | 3_ Run (        | #:7      | 2        | Of       |              |                |

| Port #          |          | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |        | Tempera | ature °F |              |               |
|-----------------|----------|------------------------|------------------|-----------------|--------|---------|----------|--------------|---------------|
| Point#          | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H₂O) | Stack  | Filter  | Coylel.  | Gas<br>Meter | Vac<br>(in. H |
|                 | 13:55    | 311.737                |                  | 1.5             | 539    | 508     | 170      | 94           | 7             |
|                 | 14:00    | 313.5                  |                  | 1.5             |        | 511     | ודן      | 94           | 7             |
|                 | :05      | 317.7                  |                  | 1,5             |        | 510     | 170      | 94           | 7             |
|                 | :10      | 320.2                  |                  | 1.5             |        | 513     | 172      | 94           | 7             |
|                 | : 15     | 327, 8                 |                  | 1.5             |        | 514     | 171      | 94           | 7             |
|                 | : 20     | 325.4                  |                  | 1,5             |        | 512     | 171      | 93           | 8             |
|                 | : 25     | 378.3                  |                  | 1.5             |        | 515     | 173      | 93           | 8             |
|                 | :30      | 331.2                  |                  | 1.5             |        | 514     | 176      | 93           | 9             |
|                 | : 35     | 333.8                  |                  | 1.5             |        | 510     | 173      | 93           | 9             |
|                 | : 40     | 336.0                  |                  | 1.5             |        | 5/1     | 168      | 93           | 9             |
|                 | : 45     | 338.9                  |                  | 1.5             |        | 512     | 169      | 93           | 9             |
|                 | : 50     | 341.8                  |                  | 1.5             |        | 509     | 171      | 93           | 9             |
| Stop            | 14 : 55  | 344.161                |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | : 1      |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         | •        |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | : 1      |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
|                 |          |                        |                  |                 | _      |         |          |              |               |
|                 |          |                        |                  |                 | _      |         |          |              |               |
|                 |          |                        |                  |                 | -      | -       |          |              |               |
|                 | :        |                        |                  |                 |        |         |          |              |               |
| Revised 8/24/02 | Gulf Por | ver - C                | ist              |                 | e. 7-2 | 5-/7.   | Pane     |              |               |
|                 |          | CR Outlet              |                  |                 |        |         |          |              |               |

| rle                            | PROJECT                                |
|--------------------------------|----------------------------------------|
| tinued From Page               | · · · · · · · · · · · · · · · · · · ·  |
|                                |                                        |
|                                |                                        |
|                                |                                        |
| f                              |                                        |
| Standardization of Bol         |                                        |
| Int oliquet of 0.1000          |                                        |
| INT SILVER DE CITOS            | 1 1/4 HT304 ( 05454)14 1 06 16 - 103 ) |
| Fire) 9.5 1.85                 | 9.5 1.83                               |
|                                | 5 5                                    |
| toitiel 5 5                    | -3                                     |
| 15 A.:                         | 10.35                                  |
| 10.35                          | 10.77                                  |
| M u = u v                      |                                        |
| $N_{\nu} = N_{\nu} V_{\nu}$    | 15.1-1                                 |
| .]065(1) = N, ()<br>N, = 0.004 | (2-24-)                                |
| Nr > 0.004                     |                                        |
| 21 0 TIA ( MAA 17 A            |                                        |
| SCR FIET LTM-13A               |                                        |
| 0 . 7                          | 0 1 2 1 2                              |
| Kun Lap                        | Kunt Inp d-1                           |
| Total sample 138-L             | Total Sandi = 382                      |
| Aliquat = 25 mL                | Hogest Inc                             |
| <u>`</u>                       | 7 1 0 2 0 2 2 2                        |
| Final 1.15 1.20                | 7:00 95 95 7.95                        |
| Intel as .5                    | 1,1,4,5                                |
| - Jo                           | T 4 . No.                              |
| .675                           | Evol 12 1882 19 170 383                |
|                                | - Fatial 5 5 5 5                       |
| Run I Imp                      |                                        |
| Otal Sample = 168              | Fre 25 3.75 28.25                      |
| Aliquet = 15 mL                | Tritical O 15 Z= 28, 275               |
|                                |                                        |
| Final 4.3 4.7                  | Kun 2 Imp 2-3                          |
| Initial 15 5                   | Total Sample = 424 ms                  |
| 3.8 3.7                        | Aliquet InL                            |
| 3.75                           |                                        |
|                                | Finel 20 3.15-22.65                    |
|                                | Initial 0 .5 \$ = 22.75                |
|                                |                                        |
|                                | F 1 20 3.35 = 22.85                    |
|                                | Taities 0 5                            |
|                                |                                        |
|                                |                                        |
|                                |                                        |
|                                |                                        |
|                                |                                        |
|                                |                                        |
|                                | Continued To Page                      |
| TURE                           | DATE                                   |

| TITLE                                 | PROJECT                  |
|---------------------------------------|--------------------------|
| Continued From Page                   |                          |
|                                       |                          |
|                                       |                          |
|                                       |                          |
| Bun 3 Ingl                            | Rung Imp 2-3             |
| Total Sample = 188-L                  | Total Sample = 360       |
| Aliquot = 25mb                        | Higy = tought            |
|                                       |                          |
| Final 4.95 5.00                       | Finel 20 6.0 : 25.5      |
| Initial 5                             | <u> Icities 0 5 25.4</u> |
| 4.43. 4.5                             |                          |
| 4.475                                 | Final 20 5.95 = 23.45    |
|                                       | Icition D :5             |
| 010 111 17 11 1                       | 7                        |
| SCR Outlet CTM-1                      | 3                        |
| 0 1                                   |                          |
| Rual Londenson (H250m)                | Run L SON Trups          |
| Total sample = 48mL                   | Total Sample = 320 ml    |
| Aliquet = Day Sin 3ml                 | Algust - /m/             |
| FIARAT                                | 4E 40 V                  |
|                                       | Tinal 1.5 9 9 : 21.5     |
| - <del> </del>                        | X = 21.6                 |
| Find 4.85  Tital 0.5'                 | Fin. 1 D L.L = 21.7      |
|                                       |                          |
| 3.35                                  | <u> </u>                 |
| Run 2 condensor                       | Run 2 502                |
| TILL So la = 42 -1                    | Total Sample = 350 m     |
| Total Sample = 47 ml<br>Aliquet = 5 m | Alignot - Im             |
| Mig day 0.4                           | Trita Martin             |
| Final 9.5 4.05 9.5 40                 | Final 6.1 20 20 6.3      |
| Jaitel 0.5 + 0.5 0.5 0.5              | Tailie 05 + 0 0 + 05     |
| 90 355 90 3.5                         | 5.6 20 20 15.8           |
| 12.55 17.5                            | 25.6 25.8                |
| 12.525                                | 25.7                     |
| Run 3 condensor                       | Run 3 502                |
| Total Sumple = 38 ml                  | Total Sample = \$40 ml   |
| Aliquet = 5n1                         | Aliquet = Iml            |
|                                       |                          |
| Final 5.5 7.65 #8 p.U                 | Fine 20.0 8.55 20.0 8.   |
| Taitial 05 05 05 +00                  | Taita 0.0 + 0.5 0.0 4 0. |
| 9.0 + 7.15 6.3 10                     | 8C 8.05 CO.0 + 8.2       |
| 16.15 16.3                            | 28.0.5 28.25             |
| 16.225                                | 28,15                    |
|                                       |                          |
|                                       |                          |
|                                       |                          |
| ·                                     | Continued To Page        |

Sanders Engineering & Analytical Services, Inc.

Mobile, AL

APPENDIX C SAMPLE CALCULATIONS

# SAMPLE CALCULATIONS, RUN 1 GULF POWER COMPANY PLANT CRIST UNIT 6 - SCR OUTLET PENSACOLA, FLORIDA

Absolute Stack Pressure (inches Mercury)

$$P_{s} = P_{bar} + \frac{\overline{P_{g}}}{13.6}$$

$$P_{g} = \text{Stack Static Pressure (inches Water)} = -24.00$$

$$P_{bar} = \text{Barometric Pressure (inches Mercury)} = 29.94$$

$$P_{g} = 28.18$$

Absolute Pressure at the Dry Gas Meter (inches Mercury)

$$P_{m} = P_{bar} + \frac{\overline{\Delta H}}{13.6}$$

$$P_{bar} = \text{Barometric Pressure }_{(\text{inches Mercury})} = 29.94$$

$$\Delta H = \text{Average pressure difference of orifice }_{(\text{inches Water})} = 1.50$$

$$P_{m} = 30.05$$

#### **Volume of Gas Sampled Measured by Dry Gas Meter**

(corrected to standard conditions, SDCF)

$$Vm(Std) = K_1 V_m Y \begin{bmatrix} \frac{P_{bar} + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}} \end{bmatrix}$$

$$K_1 = \text{Degrees R/inches Mercury} = 17.64$$

$$V_m = \text{Volume of gas sample as measured by dry gas meter}_{(actual cubic feet)} = 37.77$$

$$Y = \text{Dry gas meter calibration factor}_{(dimensionless)} = 0.9620$$

$$P_{bar} = \text{Barometric Pressure}_{(inches Mercury)} = 29.94$$

$$\Delta H = \text{Average pressure difference of orifice}_{(inches H2O)} = 1.50$$

$$T_m = \text{Average absolute temperature of the dry gas, degrees Rankin} = 550.8$$

$$V_{m (Std)} = 34.967$$

#### **Volume of Water Vapor in Gas Sample**

$$V_{w (Std)} = 0.04^{\circ}/0^{\circ}/V_{lc}$$
 $V_{lc} = Total volume of liquid collected in impingers and silica gel_{(milliliters)} = 56.7$ 
 $V_{w (Std)} = 2.668$ 

### Water Vapor in the Gas Stream proportion by volume (dimensionless)

$$B_{ws} = \frac{V_{w(Std)}}{V_{m(Std)} + V_{w(Std)}}$$

 $V_{w \text{ (std)}} = Volume \text{ of water in gas sample (corrected to standard conditions)} = 2.668$ 

 $V_{m(std)} = V_{olume}$  of sample measured by dry gas meter (standard conditions) = 34.967

 $B_{ws} = 0.071$ 

#### Molecular Weight of Stack Gas (dry basis, lb/lb mole)

$$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2 + \%CO)$$

 $%CO_2$  = Number percent by volume (dry basis from gas analysis) = 11.0

 $%O_2$  = Number percent by volume (dry basis from gas analysis) = 8.0

 $%N_2+%CO = Number percent by volume (dry basis from gas analysis) = 81.0$ 

 $M_d = 30.08$ 

#### Molecular Weight of Stack Gas (wet basis, lb/lb mole)

$$M_s = M_d(1 - B_{ws}) + 18(B_{ws})$$

 $M_d$  = Molecular weight of stack gas (dry basis, lb/lb mole) = 30.08

 $B_{ws}$  = Water vapor in the gas stream (proportion by volume, dimensionless) = 0.071

 $M_s = 29.22$ 

#### Volume of Gas Sampled Through Nozzle (actual cubic feet)

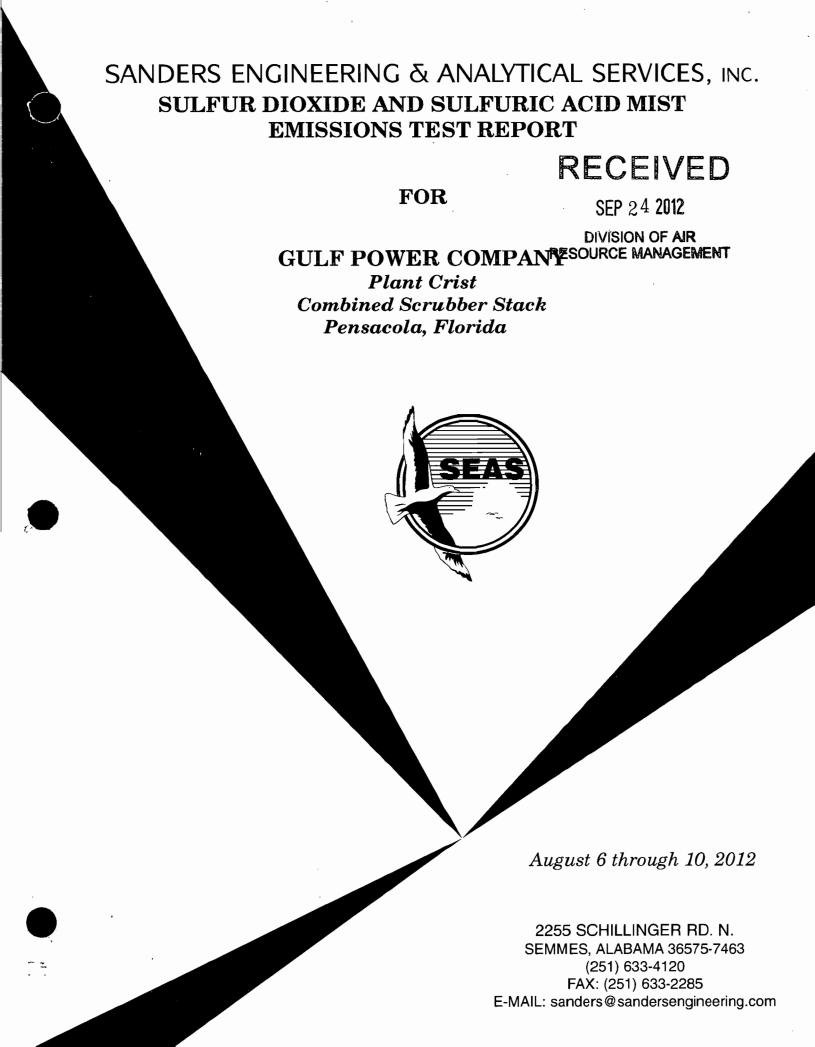
$$V_{n} = \left[ (0.002669)(V_{lc}) + Y \frac{V_{m}}{\overline{T_{m}}} \left( P_{bar} + \frac{\overline{\Delta H}}{13.6} \right) \right] \frac{\overline{T}_{s}}{P_{s}}$$

 $V_{lc}$  = Total volume of liquid collected in impingers and silica gel (milliliters) = 56.7

Y = Dry gas meter calibration factor (dimensionless) = 0.9620

 $V_m$  = Volume of gas sample as measured by dry gas meter (actual cubic feet) = 37.774

Tm = Average absolute temperature of dry gas meter, degrees Rankin = 550.8


 $P_{bar}$  = Barometric Pressure (inches Mercury) = 29.94

 $\Delta H = Average pressure difference of orifice (inches Water) = 1.50$ 

Ts = Average absolute temperature of stack, degrees Rankin = 996.7

 $P_s$  = Absolute stack pressure (inches Mercury) = 28.18

 $V_n = 75.489$ 



### REPORT CERTIFICATION

I have reviewed the "Sulfur Dioxide and Sulfuric Acid Mist Emissions Test Report" for the testing performed for Gulf Power Company on the Combined Scrubber Stack located at the Pensacola, Florida facility. I hereby certify that it is authentic and accurate to the best of my knowledge.

Date: 8/17/12 Signature: Eric Jones

**Environmental Engineer** 

#### TABLE OF CONTENTS

| INTRODUCTION                                             | 1  |
|----------------------------------------------------------|----|
| DESCRIPTION OF SAMPLING PROGRAM                          | 2  |
| SUMMARY AND DISCUSSION OF RESULTS                        | 3  |
| PROCESS DESCRIPTION                                      | 9  |
| Source Air Flow                                          | 10 |
| SAMPLE POINT LOCATION                                    | 11 |
| SULFUR DIOXIDE AND SULFURIC ACID MIST SAMPLING PROCEDURE |    |
| (CTM-013)                                                | 13 |
| Sample Recovery                                          | 14 |
| Sample Analysis Procedures                               | 14 |
| QUALITY ASSURANCE                                        | 16 |
| Calibrations                                             | 16 |
| Pitot Tubes                                              | 17 |
| Differential Pressure Gauges                             | 17 |
| Temperature Sensors                                      | 17 |
| Nozzles                                                  | 17 |
| Dry Gas Meter                                            | 18 |
| Orifice                                                  | 18 |
| APPENDIX A QUALITY CONTROL OF TESTING EQUIPMENT          | 19 |
| APPENDIX B FIELD DATA                                    | 22 |
| ADDENDIY C SAMDLE CALCULATIONS                           | 50 |

#### LIST OF TABLES

| TABLE I.   | SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS |    |
|------------|----------------------------------------------------|----|
|            | AUGUST 6, 2012                                     | 4  |
| TABLE II.  | SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS |    |
|            | AUGUST 7, 2012                                     | 5  |
| TABLE III. | SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS |    |
|            | AUGUST 8, 2012                                     | .6 |
| TABLE IV.  | SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS |    |
|            | AUGUST 9, 2012                                     | .7 |
| TABLE V.   | SULFUR DIOXIDE AND SULFURIC ACID MIST TEST RESULTS |    |
|            | AUGUST 10, 2012                                    | 8  |

#### **ILLUSTRATIONS**

| FIGURE 1. | AIR FLOW SCHEMATIC                 | .10 |
|-----------|------------------------------------|-----|
| FIGURE 2. | STACK OUTLET SAMPLE POINT LOCATION | .11 |
| FIGURE 3. | CTM13 SAMPLING TRAIN               | .13 |

#### 1. INTRODUCTION

Sanders Engineering & Analytical Services, Inc. (SEAS) performed sulfur dioxide and sulfuric acid mist emissions testing August 6 through 10, 2012, for Gulf Power Company on the Combined Scrubber Stack located at the Plant Crist facility in Pensacola, Florida. The testing was performed in accordance with the applicable procedures as specified at **CTM Method 013** as published by the National Council of Air and Stream Improvement for the determination of sulfuric acid vapor or mist and sulfur dioxide emissions from Kraft Recovery Furnaces. Further discussions of the test methods are included later in the report.

The purpose of the testing was to gain additional information concerning the emission rate of sulfuric acid mist from the unit. The testing was conducted by Mr. Mark Christian and Mr. Brett Horton of Sanders Engineering & Analytical Services, Inc., and was coordinated with Mr. John Rampulla of Gulf Power Company.

#### 2. DESCRIPTION OF SAMPLING PROGRAM

The sampling program consisted of sulfuric acid mist emissions testing in compliance with US EPA methods. The following is a brief description of these types of tests. The gas sample was extracted from the stack through a glass probe onto a quartz fiber filter for CTM-013A maintained at 500 degrees Fahrenheit. The filter catches all solid sulfates. Upon leaving the filter, the gas passes through a condenser and a series of impingers containing peroxide and silica gel. Calibrations of the testing equipment are included in Appendix A. A detailed description of the testing procedures and schematic of the sampling train is presented in Section 6. The field data sheets for this testing are presented in Appendix B. Sample calculations of Run 1 are included in Appendix C. Flowrates were provided by Gulf Power Company using the CEMS located on the FGD stack.

#### 3. SUMMARY AND DISCUSSION OF RESULTS

There were no unusual problems experienced during the performance of the testing. The results of the sulfuric acid mist emissions testing are presented in Tables I through V.

## TABLE I. SULFURIC ACID MIST TEST RESULTS GULF POWER COMPANY PLANT CRIST - FGD STACK Monday, August 06, 2012

| RUN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                      |                | CTM-013 (                               | Controlled Con | densation) qua | rtz filter                              |             |           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------|-----------------------------------------|----------------|----------------|-----------------------------------------|-------------|-----------|
| Sampling Time - Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Title of Pun                         |                |                                         |                | , ·            |                                         | RIIN 5      | RIIN 6    |
| Sampling Time Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      | Month/Day/Voor |                                         |                |                |                                         |             |           |
| Sampling Time Stop   Milliary   1045   1200   1320   1430   1540   1550   1500   1040   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   1540   154 |                                      |                |                                         |                |                |                                         |             |           |
| Number of Ports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | •              |                                         |                |                |                                         |             |           |
| Number of Points per Port   dimensionless   12   12   12   12   12   12   12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | •              |                                         |                |                |                                         |             |           |
| Stack Static Fressure   Inches Water   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10   -0.10 |                                      |                | •                                       |                |                |                                         |             | -         |
| Racementic Pressure   Inches Morcury   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77   29,77 | •                                    |                |                                         |                |                |                                         |             |           |
| Standard Orifice Pressure AH@   Inches Water   1,869   1,869   1,869   1,869   1,869   1,869   1,869   1,869   1,869   1,869   1,869   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989   0,989 |                                      |                |                                         |                |                |                                         |             | ****      |
| Moder Correction Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | ,              |                                         |                |                |                                         |             |           |
| Oxygen Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                      |                |                                         |                |                |                                         |             |           |
| Carbon Dioxide Concentration   Mole Percent COZ   10.5   10.5   11.0   11.0   10.0   10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                |                                         |                |                |                                         |             |           |
| Volume of Water Collected   Milbilliers   135.8   40.461   39.858   39.761   39.660   39.416   Volume of Water Collected   Milbilliers   135.8   140.64   142.6   144.2   142.0   136.2   32.2   32.3   32.5   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14.2   14. | • •                                  |                |                                         |                |                |                                         |             |           |
| Value of Water Collected   Milliliters   135.8   146.4   142.6   144.2   142.0   156.2   Sampling Time   Minues   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0   60.0  |                                      |                |                                         |                |                |                                         |             |           |
| Sampling Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                                         |                |                |                                         |             |           |
| Average Orifice Pressure (AH)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                |                                         |                |                |                                         |             |           |
| Average Stack Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                |                                         |                |                |                                         |             |           |
| Average Meter Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                |                                         |                |                |                                         |             |           |
| Final Volume of SO2 Solution   Millilliers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                |                                         |                |                |                                         |             |           |
| Final Volume of H2SO4 Solution   Milliliters   44.0   34.5   22.0   42.5   28.0   53.5     Normality of Titrant (BaC12)   Equivalence/Liter   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0049   0.0 | •                                    | •              |                                         |                |                |                                         |             |           |
| Normality of Titrant (BaCl2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                |                                         |                |                |                                         |             |           |
| Volume of Aliquot (SO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      |                |                                         |                |                |                                         |             |           |
| Volume of Aliquot (H2SO4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | •                                    | •              |                                         |                |                |                                         |             |           |
| Volume of Titrant for SO2 Blank   Millilliers   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0 | • • •                                |                |                                         |                |                |                                         |             |           |
| Volume of Titrant for H2SO4 Blank   Milliliters   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   | •                                    |                |                                         |                |                |                                         |             |           |
| Volume of Titrant For SO2 Aliquot   Millilitiers   5.5.3   4.39   2.49   2.46   2.41   1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                |                                         |                |                |                                         |             |           |
| Volume of Titrunt For H2SO4 Aliquot   Millilitiers   26,98   12.76   14.85   6.34   7.81   3.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      |                |                                         |                |                |                                         |             |           |
| Mass of Sulfur Dioxide Collected   ug   69,178   54,694   34,667   35,098   32,352   26,147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                    |                |                                         |                |                |                                         |             |           |
| Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calculations   Calc | •                                    |                |                                         |                |                |                                         |             |           |
| Standard Temperature (* F) = 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                      | -              | /                                       |                |                |                                         |             |           |
| Standard Temperature (° F) = 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Mass of Sulfuric Acid Mist Collected | ug             | 11,322                                  | 10,497         | 7,790          | 6,420                                   | 5,214       | 4,388     |
| Standard Pressure (inches of Hg) = 29.92   Standard Dry   Cubic Feet   Standard Dry   Dubic Feet   Standard Dry   Stack Gas (dry)   LB/LB-MOLE   Standard Dry   Stack Gas (dry)   LB/LB-MOLE   Standard Dry   Stack Gas (dry)   Stack Gas   Percent   Standard   Sta |                                      |                | Calculat                                | ions           |                |                                         |             |           |
| Nolecular Wt. of Stack Gas (dry)   Standard Dry Cubic Feet   r Minute   Stack Gas Flow Rate   Standard Wet Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per M | Standard Temperature (° F) =         | : 68           | RUN 1                                   | RUN 2          | RUN 3          | RUN 4                                   | RUN 5       | RUN 6     |
| Cubic Feet   Bold   B | Standard Pressure (inches of Hg) =   | 29.92          |                                         |                |                |                                         |             |           |
| Molecular Wt. of Stack Gas (dry)         LB/LB-MOLE         30.12         30.12         30.16         30.16         30.00         30.00           Water vapor in Stack Gas         Percent         11.2         11.6         12.6         12.5         11.3         11.0           Stack Gas Flow Rate         Actual Cubic Feet Per Minute         3,456,995         3,510,271         3,493,313         3,512,075         3,474,324         3,471,370           Stack Gas Flow Rate         Standard Wet Cubic Feet Per Minute         3,135,741         3,176,746         3,144,682         3,163,832         3,149,192         3,151,503           Stack Gas Flow Rate         Standard Dry Cubic Feet Per Minute         2,784,701         2,807,700         2,747,009         2,768,274         2,792,535         2,803,582           Percent Difference         Allowed 5% Average         1.1         1.0         1.8         1.5         2.3         3.1           CONCENTRATION OF CHEMICAL IN STACK GAS (ug/m3)         Sulfur Dioxide Sulfuric Acid         63,206         50,340         31,973         32,130         29,826         24,325           CONCENTRATION OF CHEMICAL IN STACK GAS (PPM)         Sulfur Dioxide Sulfuric Acid         23,72         18.89         12.00         12.06         11.19         9.13           EMISSION RAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Volume of Gas Sampled                | •              | 38.652                                  | 38.369         | 38.291         | 38.577                                  | 38.307      | 37.960    |
| Stack Gas Flow Rate   Actual Cubic   Saturated   Sat | Molecular Wt. of Stack Gas (dry)     |                | 30.12                                   | 30.12          | 30.16          | 30.16                                   | 30.00       | 30.00     |
| Stack Gas Flow Rate   Actual Cubic   Saturated   Sat | Water vapor in Stock Cas             | Darceni        | 11.2                                    | 11.6           | 12.6           | 12.5                                    | 113         | 11.0      |
| Stack Gas Flow Rate   Actual Cubic Feet Per Minute   Standard Wet Cubic Feet Per Minute   Standard Wet Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Percent Difference   Allowed 5% Average   1.1   1.0   1.8   1.5   2.3   3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | water vapor in stack Gas             | reiceili       |                                         |                |                |                                         |             |           |
| Stack Gas Flow Rate   Standard Wet Cubic Feet Per Minute   Standard Wet Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet Per Minute   Standard Dry Cubic Feet  | Stock Cas Flow Pate                  | Actual Cubic   |                                         |                |                |                                         |             |           |
| Stack Gas Flow Rate         Standard Wet Cubic Feet Per Minute         3,135,741         3,176,746         3,144,682         3,163,832         3,149,192         3,151.503           Stack Gas Flow Rate         Standard Dry Cubic Feet Per Minute         2,784,701         2,807.700         2,747,009         2,768.274         2,792,535         2.803,582           Percent Difference         Allowed 5% Average         1.1         1.0         1.8         1.5         2.3         3.1           CONCENTRATION OF CHEMICAL IN SUlfur Dioxide STACK GAS (ug/m3)         Sulfuric Acid         63,206         50,340         31,973         32,130         29,826         24,325           CONCENTRATION OF CHEMICAL IN SUlfur Dioxide         23,72         18.89         12.00         12.06         11.19         9.13           STACK GAS (PPM)         Sulfuric Acid         2.54         2.37         1.76         1.44         1.18         1.00           EMISSION RATE OF CHEMICAL         Sulfur Dioxide         659,26         529,40         328,97         333,15         31,97         255,44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stack Gas Flow Rate                  |                | 3,430,553                               | 3,510,271      | 3,473,313      | 3,512,075                               | 3,474,524   | 3,471370  |
| Stack Gas Flow Rate   Standard Dry Cubic   2,784,701   2,807.700   2,747,009   2,768.274   2,792,535   2,803,582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Stack Cas Flow Rate                  |                | 3 135 741                               | 3 176 746      | 3.144.682      | 3 163 832                               | 3 149 192   | 3.151.503 |
| Stack Gas Flow Rate   Standard Dry Cubic   2,784,701   2,807.700   2,747,009   2,768.274   2,792,535   2,803,582     Percent Difference   Allowed 5% Average   1.1   1.0   1.8   1.5   2.3   3.1     CONCENTRATION OF CHEMICAL IN   Sulfur Dioxide   63,206   50,340   31,973   32,130   29,826   24,325     STACK GAS (ug/m3)   Sulfuric Acid   10,345   9,661   7,184   5,877   4.807   4.802     CONCENTRATION OF CHEMICAL IN   Sulfur Dioxide   23,72   18.89   12.00   12.06   11.19   9,13     STACK GAS (PPM)   Sulfuric Acid   2.54   2.37   1.76   1.44   1.18   1.00     EMISSION RATE OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328,97   333,15   311.97   255,44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659,26   529,40   328, | Stack Cas Flow Rate                  |                | 3,133,741                               | 3,170,740      | 5,1 11,002     | 5,105,052                               | 3,1 12,122  | 3,1311301 |
| Percent Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Stack Gas Flow Rate                  |                | 2.784.701                               | 2.807.700      | 2.747.009      | 2.768.274                               | 2.792.535   | 2.803.582 |
| CONCENTRATION OF CHEMICAL IN   Sulfur Dioxide   Sulfurio Acid   Sulfur Dioxide   STACK GAS (ug/m3)   Sulfur Dioxide   Sulfur Dioxide   STACK GAS (ug/m3)   Sulfur Dioxide   Sulfur Dioxide   STACK GAS (ug/m3)   Sulfur Dioxide   Sulfur Dioxide   STACK GAS (ug/m3)   Sulfur Dioxide    THE CHAIN THE                        |                | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 2,0071700      | _,, .,,,,,,,   | _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | _,,,,_,,,,, | _,,,,,,,, |
| STACK GAS (ug/m3)         Sulfuric Acid         10,345         9,661         7,184         5,877         4.807         4.082           CONCENTRATION OF CHEMICAL IN SUlfur Dioxide STACK GAS (PPM)         Sulfur Dioxide Sulfurio Acid         23.72         18.89         12.00         12.06         11.19         9.13           EMISSION RATE OF CHEMICAL         Sulfur Dioxide         659.26         529.40         328.97         333.15         311.97         255.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Percent Difference                   |                | 1.1                                     | 1.0            | 1.8            | 1.5                                     | 2.3         | 3.1       |
| STACK GAS (ug/m3)         Sulfuric Acid         10,345         9,661         7,184         5,877         4.807         4.082           CONCENTRATION OF CHEMICAL IN SUlfur Dioxide STACK GAS (PPM)         Sulfur Dioxide Sulfurio Acid         23.72         18.89         12.00         12.06         11.19         9.13           EMISSION RATE OF CHEMICAL         Sulfur Dioxide         659.26         529.40         328.97         333.15         311.97         255.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CONCENTRATION OF CHEMICAL IN         | Sulfur Dioxide | 63,206                                  | 50.340         | 31.973         | 32.130                                  | 29.826      | 24,325    |
| CONCENTRATION OF CHEMICAL IN   Sulfur Dioxide   23.72   18.89   12.00   12.06   11.19   9.13     STACK GAS (PPM)   Sulfurio Acid   2.54   2.37   1.76   1.44   1.18   1.00     EMISSION RATE OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97   255.44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97   255.44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97   255.44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97   255.44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97   255.44     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15   311.97     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97   333.15     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   529.40   328.97     CONCENTRATION OF CHEMICAL   Sulfur Dioxide   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   659.26   |                                      |                |                                         |                |                |                                         |             |           |
| STACK GAS         (PPM)         Sulfurio Acid         2.54         2.37         1.76         1.44         1.18         1.00           EMISSION RATE OF CHEMICAL         Sulfur Dioxide         659.26         529.40         328.97         333.15         311.97         255.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | In many time   |                                         |                |                |                                         |             |           |
| STACK GAS         (PPM)         Sulfurio Acid         2.54         2.37         1.76         1.44         1.18         1.00           EMISSION RATE OF CHEMICAL         Sulfur Dioxide         659.26         529.40         328.97         333.15         311.97         255.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CONCENTRATION OF CHEMICAL IN         | Sulfur Dioxide | 23.72                                   | 18.89          | 12.00          | 12.06                                   | 11.19       |           |
| EMISSION RATE OF CHEMICAL Sulfur Dioxide 659.26 529.40 328.97 333.15 311.97 255.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                    |                | 2.54                                    | 2.37           | 1.76           | 1.44                                    | 1.18        | 1.00      |
| 107.00 101.00 70.00 (0.00 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                    |                |                                         |                |                |                                         |             |           |
| (LBS/HR) Sulfuric Acid 107.90 101.60 73.92 60.94 50.28 42.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | EMISSION RATE OF CHEMICAL            | Sulfur Dioxide |                                         |                |                |                                         |             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (LBS/HR)                             | Sulfuric Acid  | 107.90                                  | 101.60         | 73.92          | 60.94                                   | 50.28       | 42.87     |

## TABLE II. SULFURIC ACID MIST TEST RESULTS GULF POWER COMPANY PLANT CRIST - FGD STACK Tuesday, August 07, 2012

|                                      |                                  | COTTAN DATE OF | C411-1-C     | domento Nec     | -4- <b>6</b> 314- |
|--------------------------------------|----------------------------------|----------------|--------------|-----------------|-------------------|
|                                      |                                  | ,              |              | densation) quar |                   |
| Title of Run                         |                                  | <u>RUN 1</u>   | <u>RUN 2</u> | <u>RUN 3</u>    | <u>RUN 4</u>      |
| Date                                 | Month/Day/Year                   | 8/7/2012       | 8/7/2012     | 8/7/2012        | 8/7/2012          |
| Sampling Time -Start                 | Military                         | 0930           | 1040         | 1245            | 1355              |
| Sampling Time -Stop                  | Military                         | 1030           | 1140         | 1345            | 1455              |
| Number of Ports                      | dimensionless                    | 1              | 1            | 1               | 1                 |
| Number of Points per Port            | dimensionless                    | 12             | 12           | 12              | 12                |
| Stack Static Pressure                | Inches Water                     | -0.15          | -0.15        | -0.15           | -0.15             |
| Barometric Pressure                  | Inches Mercury                   | 29.69          | 29.69        | 29.69           | 29.69             |
| Standard Orifice Pressure ∆H@        | Inches Water                     | 1.869          | 1.869        | 1.869           | 1.869             |
| Meter Correction Factor              | dimensionless                    | 0.989          | 0.989        | 0.989           | 0.989             |
| Oxygen Concentration                 | Mole Percent O2                  | 0.01           | 10.0         | 10.0            | 9.5               |
| Carbon Dioxide Concentration         | Mole Percent CO2                 | 10.0           | 10.0         | 10.0            | 10.5              |
| Volume of Gas Metered                | Actual Cubic Feet                | 39.579         | 39.745       | 39.720          | 39.323            |
| Volume of Water Collected            | Milliliters                      | 125.2          | 127.7        | 132.5           | 132.8             |
| Sampling Time                        | Minutes                          | 60.0           | 60.0         | 60.0            | 60.0              |
| Average Orifice Pressure (ΔH)        | Inches Water                     | 1.5            | 1.5          | 1.5             | 1.5               |
| Average Stack Temperature            | Degrees F                        | 114            | 118          | 118             | 121               |
| Average Meter Temperature            | Degrees F                        | 80             | 85           | 93              | 93                |
| Final Volume of SO2 Solution         | Milliliters                      | 406.0          | 412.0        | 417.0           | 422.0             |
| Final Volume of H2SO4 Solution       | Milliliters                      | 38.5           | 28.0         | 37.0            | 48.5              |
| Normality of Titrant (BaCl2)         | Equivalence/Liter                | 0.0049         | 0.0049       | 0.0049          | 0.0049            |
| Volume of Aliquot (SO2)              | Milliliters                      | 5.0            | 5.0          | 5.0             | 5.0               |
| Volume of Aliquot (H2SO4)            | Milliliters                      | 10.0           | 10.0         | 10.0            | 10.0              |
| Volume of Titrant for SO2 Blank      | Milliliters                      | 0.00           | 0.00         | 0.00            | 0.00              |
| Volume of Titrant for H2SO4 Blank    | Milliliters                      | 0.00           | 0.00         | 0.00            | 0.00              |
| Volume of Titrant For SO2 Aliquot    | Milliliters                      | 2.45           | 2.49         | 3.79            | 4.47              |
| Volume of Titrant For H2SO4 Aliquot  | Milliliters                      | 4.19           | 7.31         | 7.92            | 5.46              |
| Mass of Sulfur Dioxide Collected     | ug                               | 30,918         | 31,953       | 49,160          | 58,753            |
| Mass of Sulfuric Acid Mist Collected | ug                               | 3,846          | 4,880        | 6,987           | 6,308             |
|                                      | Calcula                          | ations         |              |                 |                   |
| 0. 1.15                              |                                  | DIN 1          | DINA         | DIN 2           | DUN 4             |
| Standard Temperature (° F) =         |                                  | <u>RUN 1</u>   | <u>RUN 2</u> | <u>RUN 3</u>    | <u>RUN 4</u>      |
| Standard Pressure (inches of Hg) =   |                                  | 20 120         | 37.946       | 27 200          | 37.005            |
| Volume of Gas Sampled                | Standard Dry                     | 38.120         | 37.940       | 37.390          | 37.003            |
| Molecular Wt. of Stack Gas (dry)     | Cubic Feet<br>LB/LB-MOLE         | 30.00          | 30.00        | 30.00           | 30.06             |
| Molecular W. Of Stack Gas (dry)      | CB/CB-MOLE                       | 30.00          | 50.00        | 30.00           | 30.00             |
| Water vapor in Stack Gas             | Percent                          | 9.7            | 10.8         | 10.9            | 11.8              |
|                                      |                                  | Saturated      | Saturated    | Saturated       | Saturated         |
| Stack Gas Flow Rate                  | Actual Cubic                     | 2,388,234      | 2,416,292    | 3,025,549       | 3,039,829         |
|                                      | Feet Per Minute                  |                |              |                 |                   |
| Stack Gas Flow Rate                  | Standard Wet Cubic               | 2,180,303      | 2,190,951    | 2,741,015       | 2,741,693         |
|                                      | Feet Per Minute                  |                | 1054540      | *               | 2 440 220         |
| Stack Gas Flow Rate                  | Standard Dry Cubic               | 1,969,667      | 1,954,529    | 2,441,069       | 2,419,329         |
| Post Test Meter Correction Check     | Feet Per Minute<br>dimensionless | 1.02           | 1.02         | 1.02            | 1.03              |
|                                      | difficusioness                   |                |              |                 |                   |
| Percent Difference                   | Allowed 5% Average               | 2.6            | 2.7          | 3.5             | 4.4               |
| CONCENTRATION OF CHEMICAL IN         | Sulfur Dioxide                   | 28,643         | 29,737       | 46,432          | 56,070            |
| STACK GAS (ug/m3)                    | Sulfuric Acid                    | 3,563          | 4,542        | 6,599           | 6,020             |
|                                      |                                  |                |              |                 |                   |
| CONCENTRATION OF CHEMICAL IN         | Sulfur Dioxide                   | 10.75          | 11.16        | 17.42           | 21.04             |
| STACK GAS (PPM)                      | Sulfuric Acid                    | 0.87           | 1.11         | 1.62            | 1.48              |
|                                      | (a                               |                | 015.50       | 10 1 7 1        | 500.10            |
| EMISSION RATE OF CHEMICAL            | Sulfur Dioxide                   | 211.32         | 217.70       | 424.54          | 508.10            |
| (LBS/HR)                             | Sulfuric Acid                    | 26.29          | 33.25        | 60.34           | 54.55             |

#### TABLE III. SULFURIC ACID MIST TEST RESULTS **GULF POWER COMPANY** PLANT CRIST - FGD STACK Wednesday, August 08, 2012

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | CTM-013 (      | Controlled Con  | densation) qua | rtz filter |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|-----------------|----------------|------------|
| Title of Run                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    | RUN 1          | RUN 2           | RUN 3          | RUN 4      |
| Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Month/Day/Year     | 8/8/2012       | 8/8/2012        | 8/8/2012       | 8/8/2012   |
| Sampling Time -Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                  | 1045           | 1155            | 1350           | 1505       |
| Sampling Time -Stop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Military           | 1145           | 1255            | 1450           | 1605       |
| Number of Ports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Military           | 1143           |                 |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dimensionless      | 12             | 1<br>12         | 1              | 1          |
| Number of Points per Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | dimensionless      |                |                 | 12             | 12         |
| Stack Static Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Inches Water       | -0.15          | -0.15           | -0.15          | -0.15      |
| Barometric Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Inches Mercury     | 29.73          | 29.73           | 29.73          | 29.73      |
| Standard Orifice Pressure AH@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inches Water       | 1.869          | 1.869           | 1.869          | 1.869      |
| Meter Correction Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dimensionless      | 0.989          | 0.989           | 0.989          | 0.989      |
| Oxygen Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mole Percent O2    | 9.5            | 9.5             | 10.0           | 10.0       |
| Carbon Dioxide Concentration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mole Percent CO2   | 10.0           | 10.0            | 10.0           | 10.0       |
| Volume of Gas Metered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Actual Cubic Feet  | 38.844         | 39.134          | 39.165         | 39.635     |
| Volume of Water Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Milliliters        | 138.1          | 136.5           | 141.2          | 139.1      |
| Sampling Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Minutes            | 60.0           | 60.0            | 60.0           | 60.0       |
| Average Orifice Pressure (∆H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Inches Water       | 1.5            | 1.5             | 1.5            | 1.5        |
| Average Stack Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Degrees F          | 120            | 118             | 115            | 118        |
| Average Meter Temperature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Degrees F          | 84             | 82              | 80             | 80         |
| Final Volume of SO2 Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Milliliters        | 410.0          | 451.0           | 441.0          | 426.0      |
| Final Volume of H2SO4 Solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Milliliters        | 35.5           | 34.5            | 54.0           | 31.0       |
| Normality of Titrant (BaCl2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Equivalence/Liter  | 0.00480        | 0.00480         | 0.00480        | 0.00480    |
| Volume of Aliquot (SO2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Milliliters        | 5.0            | 5.0             | 5.0            | 5.0        |
| Volume of Aliquot (H2SO4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Milliliters        | 10.0           | 10.0            | 10.0           | 10.0       |
| Volume of Titrant for SO2 Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Milliliters        | 0.00           | 0.00            | 0.00           | 0.00       |
| Volume of Titrant for H2SO4 Blank                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Milliliters        | 0.00           | 0.00            | 0.00           | 0.00       |
| Volume of Titrant For SO2 Aliquot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Milliliters        | 6.45           | 5.16            | 5.11           | 4.97       |
| Volume of Titrant For H2SO4 Aliquot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 9.58           |                 |                |            |
| Mass of Sulfur Dioxide Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Milliliters        | 9.38<br>81,184 | 11.00<br>71.428 | 8.36<br>69.167 | 7.38       |
| Mass of Sulfuric Acid Mist Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug                 | 7,999          | 8,926           | 0-,            | 65,048     |
| Wass of Sulfuric Acid Wist Collected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | иg                 | 1,399          | 0,920           | 10,618         | 5,381      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Calcula            | ations         |                 |                |            |
| Standard Temperature (° F) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 68               | RUN 1          | RUN 2           | RUN 3          | RUN 4      |
| Standard Pressure (inches of Hg) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    | 20112          | 110111          | KONO           | <u> </u>   |
| Volume of Gas Sampled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Standard Dry       | 37.187         | 37.591          | 37.755         | 38.213     |
| v statile of stati battiples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cubic Feet         | 37.107         | 31.371          | 311100         | 30.213     |
| Molecular Wt. of Stack Gas (dry)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LB/LB-MOLE         | 29.98          | 29.98           | 30.00          | 30.00      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                |                 |                |            |
| Water vapor in Stack Gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Percent            | 11.4           | 10.8            | 10.0           | 0.11       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Saturated      | Saturated       | Saturated      | Saturated  |
| Stack Gas Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Actual Cubic       | 3,436,318      | 3,415,392       | 3,500,253      | 3,515,960  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feet Per Minute    |                |                 |                |            |
| Stack Gas Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard Wet Cubic | 3,109,724      | 3,101,049       | 3,192,849      | 3,187,759  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feet Per Minute    |                |                 |                |            |
| Stack Gas Flow Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Standard Dry Cubic | 2,756,202      | 2,766,871       | 2,873,676      | 2,836,137  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Feet Per Minute    |                |                 |                |            |
| Post Test Meter Correction Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dimensionless      | 1.04           | 1.03            | 1.03           | 1.01       |
| Percent Difference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Allowed 5% Average | 4.9            | 4.0             | 3.7            | 2.5        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                | -               |                |            |
| CONCENTRATION OF CHEMICAL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sulfur Dioxide     | 77,097         | 67,103          | 64,697         | 60,113     |
| STACK GAS (ug/m3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sulfuric Acid      | 7,596          | 8,385           | 9,932          | 4,973      |
| GOL ONLINE MAN CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTRO | I=                 | 60.00          | 05.10           | 61.50          | 22.65      |
| CONCENTRATION OF CHEMICAL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sulfur Dioxide     | 28.93          | 25.18           | 24.28          | 22.56      |
| STACK GAS (PPM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sulfuric Acid      | 1.86           | 2.06            | 2.43           | 1.22       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I                  | #07.03         | 407.10          | 201.00         | 730 55     |
| EMISSION RATE OF CHEMICAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sulfur Dioxide     | 795.93         | 695.43          | 696.38         | 638.59     |
| (LBS/HR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sulfuric Acid      | 78.42          | 86.90           | 106.90         | 52.82      |

## TABLE IV. SULFURIC ACID MIST TEST RESULTS GULF POWER COMPANY PLANT CRIST - FGD STACK Thursday, August 09, 2012

|                                       |                                       | CTM 013 (       | Cantrallad Can  | densation) quai          | etz filtor      |
|---------------------------------------|---------------------------------------|-----------------|-----------------|--------------------------|-----------------|
| Title of Run                          |                                       |                 |                 |                          |                 |
|                                       | Manual (Day (V ann                    | <u>RUN 1</u>    | <u>RUN 2</u>    | <u>RUN 3</u><br>8/9/2012 | <u>RUN 4</u>    |
| Date CANA                             | Month/Day/Year                        | 8/9/2012        | 8/9/2012        | 1240                     | 8/9/2012        |
| Sampling Time -Start                  | Military                              | 0910<br>1010    | 1023<br>1123    | 1340                     | 1350            |
| Sampling Time -Stop                   | Military                              |                 |                 |                          | 1450            |
| Number of Ports                       | dimensionless                         | l<br>12         | 1               | 1                        | 1               |
| Number of Points per Port             | dimensionless                         | 12              | 12              | 12                       | 12              |
| Stack Static Pressure                 | Inches Water                          | -0.15           | -0.15           | -0.15                    | -0.15           |
| Barometric Pressure                   | Inches Mercury                        | 29.70           | 29.70           | 29.70                    | 29.70           |
| Standard Orifice Pressure ΔH@         | Inches Water                          | 1.869           | 1.869           | 1.869                    | 1.869           |
| Meter Correction Factor               | dimensionless                         | 0.989           | 0.989           | 0.989                    | 0.989           |
| Oxygen Concentration                  | Mole Percent O2                       | 10.0            | 9.5             | 10.0                     | 10.0            |
| Carbon Dioxide Concentration          | Mole Percent CO2                      | 10.0            | 10.0            | 9.5                      | 9.5             |
| Volume of Gas Metered                 | Actual Cubic Feet                     | 40.248          | 40.241          | 39.989                   | 40.558          |
| Volume of Water Collected             | Milliliters                           | 132.2           | 131.3           | 134.6                    | 137.5           |
| Sampling Time                         | Minutes                               | 60.0            | 60.0            | 60.0                     | 60.0            |
| Average Orifice Pressure (ΔH)         | Inches Water                          | 1.5             | 1.5             | 1.5                      | 1.5             |
| Average Stack Temperature             | Degrees F                             | 122             | 121             | 122                      | 123             |
| A verage Meter Temperature            | Degrees F                             | 81              | 80              | 75                       | 82              |
| Final Volume of SO2 Solution          | Milliliters                           | 432.0           | 420.0           | 432.0                    | 415.0           |
| Final Volume of H2SO4 Solution        | Milliliters                           | 48.5            | 35.5            | 32.0                     | 34.0            |
| Normality of Titrant (BaCl2)          | Equivalence/Liter                     | 0.00494         | 0.00494         | 0.00494                  | 0.00494         |
| Volume of Aliquot (SO2)               | Milliliters                           | 5.0             | 5.0             | 5.0                      | 5.0             |
| Volume of Aliquot (H2SO4)             | Milliliters                           | 10.0            | 10.0            | 10.0                     | 10.0            |
| Volume of Titrant for SO2 Blank       | Milliliters                           | 1.08            | 1.08            | 1.08                     | 1.08            |
| Volume of Titrant for H2SO4 Blank     | Milliliters                           | 0.00            | 0.00            | 0.00                     | 0.00            |
| Volume of Titrant For SO2 Aliquot     | Milliliters                           | 9.91            | 7.23            | 5.18                     | 5.01            |
| Volume of Titrant For H2SO4 Aliquot   | Milliliters                           | 5,48            | 4.12            | 6.60                     | 4.75            |
| Mass of Sulfur Dioxide Collected      | ug                                    | 120,768         | 81,777          | 56,076                   | 51,636          |
| Mass of Sulfuric Acid Mist Collected  | ug                                    | 4,203           | 2,312           | 3,341                    | 2,554           |
|                                       | Calcula                               | ations          |                 |                          |                 |
| Standard Temperature (° F) =          | : 68                                  | RUN 1           | RUN 2           | RUN 3                    | RUN 4           |
| Standard Pressure (inches of Hg) =    |                                       | 110111          | 110111          |                          |                 |
| Volume of Gas Sampled                 | Standard Dry<br>Cubic Feet            | 38.742          | 38.759          | 38.911                   | 38.914          |
| Molecular Wt. of Stack Gas (dry)      | LB/LB-MOLE                            | 30.00           | 29.98           | 29.92                    | 29.92           |
| Water vapor in Stack Gas              | Percent                               | 12.1            | 11.9            | 12.3                     | 12.5            |
| Water Vapor in Stack Gas              | reicent                               | Saturated       | Saturated       | Saturated                | Saturated       |
| Stack Gas Flow Rate                   | Actual Cubic<br>Feet Per Minute       | 2,431,419       | 2,434,226       | 3,087,590                | 3,098,653       |
| Stack Gas Flow Rate                   | Standard Wet Cubic                    | 2,189,292       | 2,194,649       | 2,778,526                | 2,784,892       |
| Stack Gas Flow Rate                   | Feet Per Minute<br>Standard Dry Cubic | 1,923,547       | 1,933,705       | 2,438,152                | 2,436,642       |
| Post Test Meter Correction Check      | Feet Per Minute<br>dimensionless      | 1.00            | 1.00            | 1.00                     | 0.99            |
| Percent Difference                    | Allowed 5% Average                    | 1.0             | 1.0             | 1.2                      | 0.5             |
| CONCENTRATION OF CHEMICAL IN          | Sulfur Dioxide                        | 110.086         | 74,511          | 50,894                   | 46,860          |
| STACK GAS (ug/m3)                     | Sulfuric Acid                         | 3,832           | 2,107           | 3,032                    | 2,318           |
| CONCENTRATION OF CHEMICAL IN          | Sulfur Dioxide                        | 41.31           | 27.96           | 19.10                    | 17.59           |
| STACK GAS (PPM)                       | Sulfuric Acid                         | 0.94            | 0.52            | 0.74                     | 0.57            |
| EMISSION RATE OF CHEMICAL<br>(LBS/HR) | Sulfur Dioxide                        | 793.15<br>27.61 | 539.67<br>15.26 | 464.78<br>27.69          | 427.68<br>21.15 |
| (1373/11K)                            | Sulfuric Acid                         | 47.01           | 13.20           | 27.07                    | ±1.1J           |

## TABLE V. SULFURIC ACID MIST TEST RESULTS GULF POWER COMPANY PLANT CRIST - FGD STACK Friday, August 10, 2012

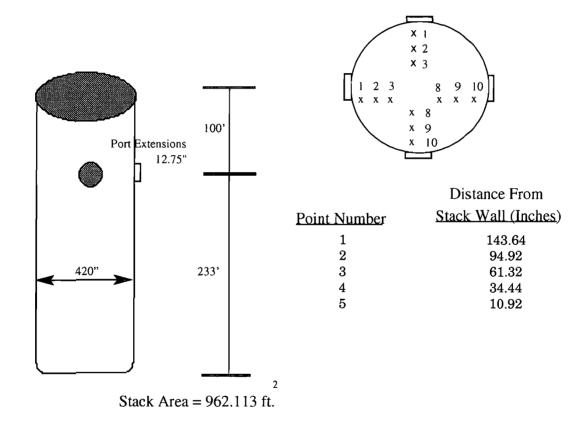
|                                                                        |                      | CTM          | 1-013 (Controll | ed Condensatio | n) guartz filter |              |
|------------------------------------------------------------------------|----------------------|--------------|-----------------|----------------|------------------|--------------|
| Title of Run                                                           |                      | RUN 1        | RUN 2           | RUN 3          | RUN 4            | RUN 5        |
| Date                                                                   | Month/Day/Year       | 8/10/2012    | 8/10/2012       | 8/10/2012      | 8/10/2012        | 8/10/2012    |
| Sampling Time -Start                                                   | Military             | 0855         | 1005            | 1135           | 1325             | 1435         |
| Sampling Time -Stop                                                    | Military             | 0955         | 1105            | 1235           | 1425             | 1535         |
| Number of Ports                                                        | dimensionless        | 1            | 1103            | 1233           | 1423             | 1555         |
|                                                                        |                      | 12           | 12              | 12             | 12               | 12           |
| Number of Points per Port                                              | dimensionless        |              |                 |                |                  |              |
| Stack Static Pressure                                                  | Inches Water         | -0.15        | -0.15           | -0.15          | -0.15            | -0.15        |
| Barometric Pressure                                                    | Inches Mercury       | 29.75        | 29.75           | 29.75          | 29.75            | 29.50        |
| Standard Orifice Pressure △H@                                          | Inches Water         | 1.869        | 1.869           | 1.869          | 1.869            | 1.869        |
| Meter Correction Factor                                                | dimensionless        | 0.989        | 0.989           | 0.989          | 0.989            | 0.989        |
| Oxygen Concentration                                                   | Mole Percent O2      | 10.0         | 9.5             | 10.0           | 0.01             | 10.0         |
| Carbon Dioxide Concentration                                           | Mole Percent CO2     | 9.5          | 10.0            | 10.0           | 10.0             | 10.0         |
| Volume of Gas Metered                                                  | Actual Cubic Feet    | 39.995       | 40.158          | 39.802         | 39.584           | 39.802       |
| Volume of Water Collected                                              | Milliliters          | 144.6        | 144.5           | 146.5          | 143.2            | 142.2        |
| Sampling Time                                                          | Minutes              | 60.0         | 60.0            | 60.0           | 60.0             | 60.0         |
| Average Orifice Pressure (ΔH)                                          | Inches Water         | 1.5          | 1.5             | 1.5            | 1.5              | 1.5          |
| Average Stack Temperature                                              | Degrees F            | 124          | 124             | 124            | 125              | 125          |
| Average Meter Temperature                                              | Degrees F            | 80           | 76              | 73             | 76               | 76           |
| Final Volume of SO2 Solution                                           | Milliliters          | 437.0        | 428.0           | 426.0          | 421.0            | 433.0        |
| Final Volume of H2SO4 Solution                                         | Milliliters          | 41.5         | 32.5            | 27.0           | 27.5             | 40.5         |
| Normality of Titrant (BaCl2)                                           | Equivalence/Liter    | 0.00494      | 0.00494         | 0.00494        | 0.00461          | 0.00461      |
| Volume of Aliquot (SO2)                                                | Milliliters          | 5.0          | 5.0             | 5.0            | 5.0              | 5.0          |
| Volume of Aliquot (H2SO4)                                              | Milliliters          | 10.0         | 10.0            | 10.0           | 10.0             | 10.0         |
| Volume of Titrant for SO2 Blank                                        | Milliliters          | 1.08         | 1.08            | 1.08           | 1.08             | 1.08         |
| Volume of Titrant for H2SO4 Blank                                      | Milliliters          | 0.00         | 0.00            | 0.00           | 0.00             | 0.00         |
| Volume of Titrant For SO2 Aliquot                                      | Milliliters          | 7.34         | 6.40            | 6.63           | 6.64             | 5.88         |
| Volume of Titrant For H2SO4 Aliquot                                    | Milliliters          | 5.12         | 9.10            | 10.79          | 10.70            | 6.92         |
|                                                                        |                      | 86,540       | 72,088          | 74,853         | 69,138           | 61.421       |
| Mass of Sulfur Dioxide Collected  Mass of Sulfuric Acid Mist Collected | ug                   | 5,145        | 7,168           | 7,058          | 6,653            | 6.337        |
| Mass of Sulfuric Acid Mist Collected                                   | ug                   | 3,143        | 7,106           | 7,036          | 0,033            | 0,331        |
|                                                                        | C                    | Calculations |                 |                |                  |              |
|                                                                        | 40                   | TATUAL 1     | DUN A           | DUN 2          | DATE A           | DUNG         |
| Standard Temperature (° F) =                                           |                      | <u>RUN 1</u> | <u>RUN 2</u>    | <u>RUN 3</u>   | <u>RUN 4</u>     | <u>RUN 5</u> |
| Standard Pressure (inches of Hg) =                                     |                      | 20.604       | 20.015          | 20.000         | 20.522           | 20.207       |
| Volume of Gas Sampled                                                  | Standard Dry         | 38.604       | 39.015          | 38.899         | 38.523           | 38.387       |
|                                                                        | Cubic Feet           | 20.02        | 20.00           | 20.00          | 20.00            | 20.00        |
| Molecular Wt. of Stack Gas (dry)                                       | LB/LB-MOLE           | 29.92        | 29.98           | 30.00          | 30.00            | 30.00        |
| Water was a la Charle Con                                              | D                    | 120          | 12.0            | 12.0           | 12.1             | 12.4         |
| Water vapor in Stack Gas                                               | Percent              | 13.0         | 12.9            | 13.0           | 13.1             | 13.4         |
| Charle Care Plans Bada                                                 | A 1 (2) N .          | Saturated    | Saturated       | Saturated      | Saturated        | Saturated    |
| Stack Gas Flow Rate                                                    | Actual Cubic         | 3,397,730    | 3,389,361       | 3,433,191      | 3,485,772        | 3,524,590    |
| Charle Car Plan Par                                                    | Feet Per Minute      | 2.051.409    | 2.044.226       | 2 002 015      | 2 120 127        | 2 124 702    |
| Stack Gas Flow Rate                                                    | Standard Wet Cubic   | 3,051,408    | 3,044,326       | 3,082,815      | 3,129,137        | 3,134,702    |
| St. L.C. III. D.                                                       | Feet Per Minute      | 2 (55 420    | 2.650.171       | 2 (01 0(0      | 2 720 207        | 2716010      |
| Stack Gas Flow Rate                                                    | Standard Dry Cubic   | 2,655,438    | 2,650,171       | 2,681,860      | 2,720,307        | 2,716,019    |
| D . T                                                                  | Feet Per Minute      | 1.00         | 1.00            | 1.00           | 1.01             | 1.01         |
| Post Test Meter Correction Check                                       | dimensionless        | 1.00         | 1.00            | 1.00           | 1.01             | 1.01         |
| Percent Difference                                                     | Allowed 5% Average   | 1.6          | 0.8             | 1.3            | 2.1              | 2.0          |
| Tercent Difference                                                     | Allowed J.R. Avelage | 1.0          | 0.0             |                |                  |              |
| CONCENTRATION OF CHEMICAL IN                                           | Sulfur Dioxide       | 79,166       | 65,252          | 67,957         | 63,381           | 56,506       |
| STACK GAS (ug/m3)                                                      | Sulfuric Acid        | 4,706        | 6,488           | 6,407          | 6,099            | 5,830        |
|                                                                        | • •                  |              |                 |                |                  |              |
| CONCENTRATION OF CHEMICAL IN                                           | Sulfur Dioxide       | 29.71        | 24.49           | 25.50          | 23.79            | 21.20        |
| STACK GAS (PPM)                                                        | Sulfuric Acid        | 1.15         | 1.59            | 1.57           | 1.50             | 1.43         |
|                                                                        | I~annio titin        |              |                 |                | ,                | 5            |
| EMISSION RATE OF CHEMICAL                                              | Sulfur Dioxide       | 787.40       | 647.72          | 682.64         | 645.80           | 574.84       |
| (LBS/HR)                                                               | Sulfuric Acid        | 46.81        | 64.41           | 64.36          | 62.15            | 59.31        |
| (DDOTTE)                                                               | r>amaric Atia        | 10.01        | J               | 3 1.50         | 02,10            | 27131        |


#### 4. PROCESS DESCRIPTION

The process consists of a steam electric generating unit firing bituminous coal for the production of electric energy. The coal is received by barge, and loaded directly onto the conveyor feeding the plant or onto the stockpile and later loaded onto the conveyor belt transporting the coal to the plant. The coal from the conveyor is loaded into bunkers capable of holding between 36 to 48 hours supply of coal. The coal is then fed to pulverizing mills before being fired in the unit through the burners. Upon combustion of the coal in the fire box, approximately 20 percent of the ash falls to the bottom of the boiler and is removed by the ash removal system. The remaining 80 percent exits with the flue gases through the heat exchange and economizer sections of the furnace, and is collected by electrostatic precipitators.

#### 4.1. Source Air Flow

The air flow schematic which depicts the passage of the flue gases exhausted from Plant Crist, Scrubber Stack, is presented in Figure 1.

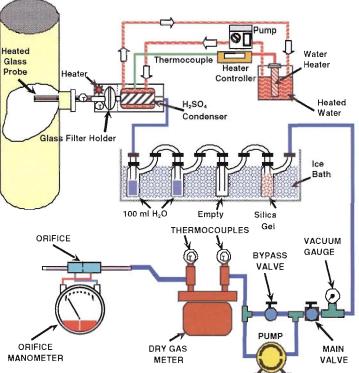

FIGURE 1. AIR FLOW SCHEMATIC



#### 5. SAMPLE POINT LOCATION

The sample point locations and outlet duct schematic for the combined scrubber stack are presented in Figure 2.

Figure 2. Stack Outlet Sample Point Location




## 6. SULFUR DIOXIDE AND SULFURIC ACID MIST SAMPLE PROCEDURE (CTM-013)

The sampling procedure utilized is that approved by the United States Environmental Protection Agency for sampling and analysis of sulfuric acid mist for certain sources at kraft pulp mills. A brief description of the procedure is as follows:

The glass sample probe and quartz filter and filter holder are heated to 500 degrees Fahrenheit or greater to prevent condensation of sulfuric acid mist. The filter was used to collect any particulate which may contain sulfates (sodium sulfate, calcium sulfate, etc). If any sulfuric acid mist was collected on the filter it was evaporated to the gaseous state and passed through the train to be collected in the condenser portion.

Figure 3. CTM-013 Sampling Train



The condenser was

maintained between 167 and 187 degrees Fahrenheit to allow condensation of the sulfuric acid mist without collecting other sulfur compounds particularly sulfur dioxide. The temperature was maintained by circulating heated water through the shell of the condenser. The temperature of the circulating water was controlled by a thermocouple inserted in the condenser.

Upon leaving the condenser, the gas enters a series of impingers. The first two impingers were partially filled with 100 milliliters of three percent hydrogen peroxide. The next impinger was left empty. Preweighed 6 to 16-mesh indication silica gel was added to the last impinger. The sampling equipment, manufactured by Lear Siegler (Model 100) or Sanders Engineering (Model 200), was assembled as shown in the attached drawing. The system was leak checked by plugging the inlet to the nozzle and pulling a 15-inch mercury vacuum. A leakage rate not in excess of 0.02 cubic feet per minute was considered acceptable.

Crushed ice was placed around the impingers. The probe and hot box were preheated to 500 degrees Fahrenheit and the condenser water was heated to between 167 and 187 degrees Fahrenheit and circulated through the condenser. When the equipment reached the desired temperature, the flow was adjusted to one-half cubic foot per minute. Readings of the dry gas meter volume, temperature, and flow rate were recorded on the field data sheet every five minutes. At the conclusion of each run, the pump was turned off, final readings were recorded, and final system leak checks were performed. The sample train was purged by drawing clean ambient air through the system for five minutes at the average flow rate used for sampling.

#### 6.1. Sample Recovery

The impingers were disconnected after purging. The nozzle, probe, and filter were rinsed with deionized water using multiple rinses for good washing, and the rinse was then discarded. The sulfuric acid mist condenser was rinsed with deionized water and the wash solution was collected in Container 1. The volume of liquids in the first two impingers were recorded to determine stack gas moisture content and then placed in container 2 and rinsed with deionized water.

#### 6.2. Sample Analysis Procedures

The volume of sample for the container was recorded on the data sheet. If a noticeable amount of liquid was lost, the sample was either voided or methods, subject to the approval of the test administrator, were used to correct the final results. The entire contents of Container 1 were transferred into a 250 milliliter Erlenmeyer flask and 100% isopropyl alcohol was added to give an 80 percent isopropyl alcohol solution. An aliquot of this solution was pipetted into a 250

milliliter Erlenmeyer flask; two to four drops of thorin indicator were added and titrated to a pink endpoint barium chloride. The titration was repeated with a second aliquot of sample and the values were averaged. Replicate titrations must agree within one percent or 0.2 milliliters, whichever is greater.

For container 2, an aliquot of the solution was pipetted into a 250 ml Erlenmeyer flask and a volume of 100% Isopropanol equal to four times the sample aliquot was added to the sample. The sample was titrated in the same procedure as container 1.

#### 7. QUALITY ASSURANCE

In order to ensure the accuracy of all the data collected in the field and at the laboratory, SEAS has instituted a comprehensive quality assurance and quality control program. New or repaired items requiring calibration are calibrated before their initial use in the field. Equipment with calibration that may change with use is calibrated before and after each use. When an item is found to be out of calibration, the unit is either discarded or repaired, and then recalibrated before being returned to service. All equipment is periodically recalibrated in full regardless of the results of the regular inspections or its present calibration status. Calibrations are performed in a manner consistent with the EPA reference methods recommended in the "Quality Assurance Handbook for Air Pollution Measurement Systems" published by the US Environmental Protection Agency. To the maximum degree possible all calibrations are traceable to the National Institute of Standards & Technology (NIST).

In order to ensure that the test will be performed in a timely manner without undue delays, SEAS sampling vans are equipped with duplicate sampling devices for almost every device needed to perform the test. If a particular device is broken or does not pass inspection, a second device is available immediately at the site for use. Any device which appears to be outside calibration, or in need of repair is tagged in the field and repaired, calibrated, or discarded immediately upon return to the laboratory.

#### 7.1. Calibrations

Certain pieces of equipment need to be calibrated before and after each test. Those items include the pitot tubes, the differential pressure gauges, the dry gas meter, and the nozzles used for the particulate testing. The following is a brief description of the calibration procedures for each of these important devices.

#### 7.1.1. Pitot Tubes

All pitot tubes are the S-type as required by EPA Reference Method 2 (40 CFR, Part 60, Appendix A, Method 2). This method contains certain geometric standards for the construction of S-type pitot tubes. All of SEAS pitot tubes are constructed according to these standards. According to the EPA any pitot tube constructed to these standards will have a coefficient of  $0.84 \pm 0.02$ . To ensure the exact value of SEAS pitot tubes, all pitot tubes are initially calibrated in SEAS wind tunnel to determine the exact pitot coefficient. This coefficient should not change unless the pitot is physically damaged. Each pitot tube is checked before going to the field to make sure it meets the geometry as specified. Any pitot tube which does not meet the specifications is not used in the test.

#### 7.1.2. Differential Pressure Gauges

SEAS uses several different types of pressure gauges including oil tube manometers, water tube manometers, magnehelics, and current output electronic load cells. Each of these devices are inspected before taken to the field and are inspected for leaks during each test. The magnehelics and load cells are tested against an incline manometer water gauge to ensure accuracy.

#### 7.1.3. Temperature Sensors

All temperature sensors used in SEAS sampling program are either mercury in-glass thermometers or type K thermocouples. These thermocouples are physical devices which produce a voltage proportional to the temperature. The thermocouple reading device is calibrated before and after each series of tests to ensure accuracy of  $\pm$  2 percent. The calibration of the thermocouple is accomplished by NIST traceable calibrated reference thermocouple potentiometer system.

#### 7.1.4. Nozzles

The inside diameter of each nozzle is measured to the nearest 0.001 inches prior to its initial use. Upon arriving in the field each nozzle is again measured

with a micrometer on three different points on the diameter to ensure its original measurement and that the nozzle is perfectly round. If the difference between the maximum and minimum diameters measured does not exceed 0.003 inches, the nozzle is acceptable; otherwise, this nozzle is discarded and another is selected. At the end of each test the nozzles are again remeasured on three different points on the diameter to ensure that during the test the nozzle has not become dented or deformed.

#### 7.1.5. Dry Gas Meter

The dry gas meter is initially calibrated against a spirometer transfer standard. During the initial calibration, a five point calibration curve is made at a minimum of one-half inch water column orifice pressure up to four inches water column orifice pressure. After each test, the dry gas meter calibration factor is checked by performing three repetitions at a representative flow rate experienced during the test. If the final calibration does not agree with the initial calibration within five percent the calibration which yields the lowest volume of sample pulled is used in the calculations. The dry gas meter is repaired and a new five initial five point calibration is performed.

#### 7.1.6. *Orifice*

The flow meter orifice is used to establish isokinetic sampling rates during the test. The orifice is calibrated with the dry gas meter at the same time under the same conditions. The orifice is calibrated over a wide range of flow rates and the arithmetic mean of the orifice calibration is used for sampling purposes. The orifice is recalibrated every time the gas meter is recertified.

|   | Sanders Engineering & Analytical Services, Inc. | Mobile, AL |
|---|-------------------------------------------------|------------|
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
| _ | APPENDIX A QUALITY CONTROL OF TESTING EQUIT     | PMENT      |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 | ,          |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |
|   |                                                 |            |

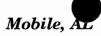




#### **INITIAL METER BOX CALIBRATION**

| Calibrated By: | DM                      |                  | BOX #:     | SEAS-201 | Date:      | 3/13/2012 |            |        |                        |                      |         |         |       |
|----------------|-------------------------|------------------|------------|----------|------------|-----------|------------|--------|------------------------|----------------------|---------|---------|-------|
|                |                         |                  | Orifice #: | 1        | Orifice #: | 3         | Orifice #: | 8      | Reference 33103        | Unit                 | RUN 4   | RUN 5   | 1     |
|                |                         | Unit             | RUN 1      | RUN 2    | RUN 1      | RUN 2     | RUN 1      | RUN 2  | Field Meter DH         | In. H <sub>2</sub> O | 2.50    | 3.50    | 1     |
| Meter          | DH                      | In. H₂O          | 0.75       | 0.75     | 1.15       | 1.15      | 1.65       | 1.65   | Initial Gas Volume     | Ft."                 | 0.000   | 0.000   |       |
| Ini            | itia/ Gas Volume        | Ft. <sup>3</sup> | 0.000      | 0.000    | 0.000      | 0.000     | 0.000      | 0.000  | Final Gas Volume       | Ft. <sup>3</sup>     | 10.770  | 12.807  |       |
| Fi             | nai Gas Volume          | Ft.3             | 6.971      | 5.579    | 5.323      | 5.921     | 6.435      | 9.333  | Initial Temp. Out      | ٩F                   | 70      | 76      |       |
| - 1            | <i>nitial</i> Temp. Out | °F               | 67         | 68       | 68         | 68        | 69         | 76     | Final Temp. Out        | °F                   | 71      | 76      |       |
| i              | Final Temp. Out         | °F               | 68         | 68       | 68         | 69        | 69         | 76     | Reference Meter Y      | Dimensionless        | 0.952   | 0.952   |       |
|                | Vacuum                  | In. Hg           | 21.0       | 21.0     | 21.0       | 21.0      | 20.0       | 20.0   | Initial Gas Volume     | Ft. <sup>3</sup>     | 133,740 | 159.202 |       |
|                | Ambient Temp.           | °F               | 68         | 68       | 68         | 68        | 68         | 76     | Final Gas Volume       | Ft.3                 | 144.638 | 172.208 | 1     |
| Baro           | metric Pressure         | In. Hg           | 30.24      | 30.24    | 30.24      | 30.24     | 30.24      | 30.24  | Initial Temp.          | ۰F                   | 70      | 76      |       |
|                | Time                    | sec              | 900        | 720      | 540        | 600       | 540        | 780    | Final Temp.            | °F                   | 71      | 76      | ]     |
|                | K,                      |                  | 0.3506     | 0.3506   | 0.4476     | 0.4476    | 0.5423     | 0.5423 | Barometric Pressure    | In. Hg               | 30.24   | 30.24   |       |
| CALCULATIONS   |                         |                  |            |          |            |           |            |        | Time                   | sec                  | 720     | 720     |       |
| Total Me       | ter Gas Volume          | Actual Ft.3      | 6.971      | 5.579    | 5.323      | 5.921     | 6.435      | 9.333  | Volume Field Meter     | ACF                  | 10.77   | 12.807  |       |
| -              | Time                    | Minutes          | 15.000     | 12.000   | 9.000      | 10.000    | 9.000      | 13.000 | Volume Field Meter     | SDCF                 | 10.895  | 12.854  |       |
| Volume the     | rough the Meter         | SDCF without Y   | 7.062      | 5.647    | 5.393      | 5.993     | 6.515      | 9.326  | Volume Reference Meter | ACF                  | 10.90   | 13.006  |       |
| Volume thro    | ough the Orifice        | SDCF             | 6.921      | 5.537    | 5.301      | 5.891     | 6.423      | 9.208  | Volume Reference Meter | SDCF                 | 10.958  | 12.944  |       |
|                | Calculated Y            | Dimensionless    | 0.980      | 0.981    | 0.983      | 0.983     | 0.986      | 0.987  |                        |                      | 1.006   | 1.007   | 0.989 |
|                | Difference              | Allowable 0.02   | -0.009     | -0.009   | -0.006     | -0.006    | -0.003     | -0.002 | 1                      |                      | 0.017   | 0.018   |       |
| Cal            | culated DH@             |                  | 2.012      | 2.010    | 1.895      | 1.893     | 1.853      | 1.856  |                        |                      | 1.717   | 1.713   | 1.869 |
|                | Difference              | Allowable 0.2    | 0.143      | 0.141    | 0.026      | 0.024     | -0.016     | -0.012 | 1                      |                      | -0.152  | -0.155  |       |

Magnehelic Calibrations


| magneticile Galibrations |              |                  |         |  |  |  |  |  |  |  |  |
|--------------------------|--------------|------------------|---------|--|--|--|--|--|--|--|--|
| Device                   | Calibration  | ibration Delta P |         |  |  |  |  |  |  |  |  |
|                          | Standard     | Magnehelic       |         |  |  |  |  |  |  |  |  |
| Units                    | inches water | inches water     | Percent |  |  |  |  |  |  |  |  |
| Reading                  | Reference    | Sample           | Error   |  |  |  |  |  |  |  |  |
| 1                        | 1.32         | 1.31             | 0.0     |  |  |  |  |  |  |  |  |
| 2                        | 0.72         | 0.71             | -1.4    |  |  |  |  |  |  |  |  |
| 3                        | 0.48         | 0.49             | 2.1     |  |  |  |  |  |  |  |  |

Allowed Error = 5% of Reading

**Thermocouple Calibrations** 

| Device  | Calibration | Thermocouple |         |  |  |
|---------|-------------|--------------|---------|--|--|
|         | Standard    | Detector     |         |  |  |
| Units   | Degrees F.  | Degrees F.   | Percent |  |  |
| Reading | Reference   | Sample       | Error   |  |  |
| 1       | 150         | 150          | 0.0     |  |  |
| 2       | 212         | 213          | 0.1     |  |  |
| 3       | 400         | 400 0.0      |         |  |  |

Allowed Error = 1.5% of Absolute Temperature (Degrees Rankin);
Absolute Temperature = Temperature in Degrees Fahrenheit. + 460



| Magnehelic Calibration                |       |      |       |       |      |       |       |      |       |       |      |      |  |  |
|---------------------------------------|-------|------|-------|-------|------|-------|-------|------|-------|-------|------|------|--|--|
| serial number                         |       | 101  |       |       | 102A |       |       | 102C |       | 103A  |      |      |  |  |
|                                       |       |      |       |       |      |       |       |      |       |       |      |      |  |  |
| Span (in H2O)                         | 0.25  | 2    | 25    | 0.25  | 2    | 25    | 0.25  | 2    | 25    | 0.25  | 2    | 10   |  |  |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |  |
| Device Reading (in H2O)               | 0.000 | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |  |
| % Difference (Allowed = 0.05)         | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00  | 0.00  | 0.00 | 0.00 |  |  |
| Reference Reading @ 50% Span (in H2O) | 0.120 | 0.95 | 4.73  | 0.125 | 1.00 | 9.64  | 0.131 | 0.90 | 9.30  | 0.12  | 0.95 | 5.15 |  |  |
| Device Reading (in H2O)               | 0.122 | 0.96 | 4.90  | 0.126 | 0.98 | 9.75  | 0.129 | 0.88 | 9.00  | 0.12  | 0.92 | 5.20 |  |  |
| % Difference (Allowed = 0.05)         | 1.67  | 1.05 | 3.59  | 0.80  | 2.00 | 1.14  | 1.53  | 2.22 | 3.23  | 2.56  | 3.16 | 0.97 |  |  |
| Reference Reading @ 90% Span (in H2O) | 0.220 | 1.88 | 23.50 | 2.32  | 1.85 | 23.30 | 0.250 | 2.00 | 22.80 | 0.248 | 1.91 | 9.50 |  |  |
| Device Reading (in H2O)               | 0.222 | 1.83 | 24.20 | 2.300 | 1.90 | 24.00 | 0.243 | 1.97 | 23.30 | 0.240 | 1.95 | 9.20 |  |  |
| % Difference (Allowed = 0.05)         | 0.91  | 2.66 | 2.98  | 0.86  | 2.70 | 3.00  | 2.80  | 1.50 | 2.19  | 3.23  | 2.09 | 3.16 |  |  |

| serial number                         |       | 103B  |       |      |      |      |       | 104  |      |  |
|---------------------------------------|-------|-------|-------|------|------|------|-------|------|------|--|
| Span (in H2O)                         | 0.25  | 0.5   | 1     | 2    | 5    | 25   | 0.25  | 2    | 10   |  |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |  |
| Device Reading (in H2O)               | 0.000 | 0.000 | 0.000 | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |  |
| % Difference (Allowed = 0.05)         | 0.000 | 0.00  | 0.00  | 0.00 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |  |
| Reference Reading @ 50% Span (in H2O) | 0.130 | 0.260 | 0.50  | 9.40 | 2.43 | 9.70 | 0.120 | 0.99 | 4.73 |  |
| Device Reading (in H2O)               | 0.124 | 0.260 | 0.48  | 9.40 | 2.54 | 9.50 | 0.120 | 0.98 | 4.90 |  |
| % Difference (Allowed = 0.05)         | 4.615 | 0.00  | 4.00  | 0.00 | 4.53 | 2.06 | 0.000 | 1.02 | 3.47 |  |
| Reference Reading @ 90% Span (in H2O) | 0.261 | 0.500 | 0.85  | 1.89 | 4.52 | 24.5 | 0.248 | 1.67 | 8.20 |  |
| Device Reading (in H2O)               | 0.249 | 0.495 | 0.81  | 1.88 | 4.64 | 25.0 | 0.240 | 1.74 | 8.60 |  |
| % Difference (Allowed = 0.05)         | 4.598 | 1.00  | 4.71  | 0.53 | 2.65 | 2.04 | 3.333 | 4.02 | 4.65 |  |

| serial number                         |       | 105  |      |       | 106  |      |
|---------------------------------------|-------|------|------|-------|------|------|
|                                       |       |      |      |       |      |      |
| Span (in H2O)                         | 0.25  | 2    | 25   | 0.5   | 4    | 15   |
| Reference Reading @ 0% Span (in H2O)  | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Device Reading (in H2O)               | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| % Difference (Allowed = 0.05)         | 0.000 | 0.00 | 0.00 | 0.000 | 0.00 | 0.00 |
| Reference Reading @ 50% Span (in H2O) | 0.122 | 0.97 | 8.90 | 0.233 | 1.86 | 8.00 |
| Device Reading (in H2O)               | 0.123 | 0.95 | 9.30 | 0.232 | 1.95 | 7.90 |
| % Difference (Allowed = 0.05)         | 0.820 | 2.11 | 4.30 | 0.431 | 4.62 | 1.27 |
| Reference Reading @ 90% Span (in H2O) | 0.239 | 1.92 | 24.5 | 0.470 | 3.60 | 14.4 |
| Device Reading (in H2O)               | 0.235 | 1.98 | 23.7 | 0.461 | 3.60 | 14.8 |
| % Difference (Allowed = 0.05)         | 1.702 | 3.03 | 3.38 | 1.952 | 0.00 | 2.70 |
| Calibration Date 12/30/2008 By MC     |       |      |      |       |      |      |

#### APPENDIX B FIELD DATA

### Sanders Engineering & Analytical Services, Inc.

|                                 | 2255 Schillinger Rd<br>Semmes, Al. 3657 |                         | (                | Office: (251) 633-412<br>Fax: (251) 633-2285 |                     |  |  |  |
|---------------------------------|-----------------------------------------|-------------------------|------------------|----------------------------------------------|---------------------|--|--|--|
| COMPANY _G                      | uf Power                                |                         | DATE_8-6         | OPERAT                                       | OR 174/6H           |  |  |  |
| PLANT Cast                      |                                         | BOX                     | No. 5-201        | DHa_ <i>1.869</i>                            | Y 0.989             |  |  |  |
| UNIT FGD                        | Stack Outle                             | ,                       | METHOD CTM-      | 13 PROBE #                                   | ·                   |  |  |  |
| BALANCE No/                     | <u>ಾ A</u> STD. V                       | VT. (gm) <u>გაის. მ</u> | BALANCE R        | ESPONCE (gm)                                 | 99.7.9              |  |  |  |
| Run                             | _1_                                     | Run<br>                 | 2                | Run<br>                                      | 3                   |  |  |  |
| Nozzie<br>Calibration           | Fitter<br>Number                        | Nozzie<br>Calibration   | Filter<br>Number | Nozzle<br>Calibration                        | Filter<br>Number    |  |  |  |
| NA<br>Exha                      |                                         | NA inches               | /A               |                                              |                     |  |  |  |
| METER R<br>५०.॥०                | EADING                                  | METER R                 | EADING           | METER F                                      | EADING              |  |  |  |
| 6.000                           | F ahal                                  | 0.000                   | निर्ध            | 0.000                                        | HANN                |  |  |  |
| 40.110                          | विकास                                   | 40.461                  | htel             | 39,858                                       |                     |  |  |  |
| <u>40.1₹0</u>                   | Net                                     | - 10.761 -              | Not              | 91.090 -                                     | Noi                 |  |  |  |
| LEAK C<br>System                | HECK<br>Pitot                           | LEAK C<br>System        | HECK<br>Pitot    | LEAK C                                       | CHECK<br>Pitot      |  |  |  |
| Pre Post                        | Pre Post                                | Pre Post                | Pre Post         | Pre Post                                     | Pre Post            |  |  |  |
| 10 11                           | Impact Impact                           | 11 11                   | Impact Impact    | 10 12                                        | Impact Impact       |  |  |  |
| in. Hg in. Hg                   | Static Static                           | .008 .004               | Startic Starte   | 100 3 .005                                   | Startic Startic     |  |  |  |
| VOŁUN                           |                                         | VOLUM<br>LIQUID WATER   |                  | VOLUN<br>LIQUID WATER                        |                     |  |  |  |
| Imp 1 Imp 2                     | imp 3 imp 4                             | lmp 1 lmp 2             | Imp 3 Imp 4      | lmp1 lmp2                                    | Imp 3 Imp 4         |  |  |  |
| 187 128                         | 1762.4                                  | 217 117                 | 1774.8           | 217 116                                      | 1784.4              |  |  |  |
| 100 10 <sup>9</sup>             | 1741.6                                  | 100 100                 | 1762.4           | 100 100                                      | 1774.8              |  |  |  |
| 87 28                           | 20.8                                    |                         | 12.4             | 117 16                                       | 7 9.6               |  |  |  |
| Net Net                         | Total <u>135.8</u>                      | '' Net ' Net            | Total 146.4      | Net Net                                      | Total 142.6         |  |  |  |
| GAS ANALYSIS                    | STATIC                                  | GAS ANALYSIS            | STATIC           | GAS ANALYSIS                                 | STATIC              |  |  |  |
| 0, 11%                          | -0.1                                    | 0, 11%                  | - O . L          | 02 10%                                       | <u>-0, [</u>        |  |  |  |
| co, <u>10.5%</u><br>co <u>/</u> |                                         | ∞. <u>10.5%</u>         |                  | co. 11%                                      | 0.4001/57710        |  |  |  |
| ω                               | BAROMETRIC<br>79.77                     | co <u> </u>             | BAROMETRIC       | w                                            | BAROMETRIC<br>79.77 |  |  |  |
| Form Revised 10/10/06           | ui ng                                   |                         | es. ng           | Page 1 of                                    | u. ny               |  |  |  |

| 2255 Schillinger Rd.<br>Semmes, Al. 3657    |                                     | Office: (251) 633-4120<br>Fax: (251) 633-2285 |
|---------------------------------------------|-------------------------------------|-----------------------------------------------|
| COMPANY Gulf Power                          | DATE_ <u>8-6</u>                    | -12 OPERATOR MC/TBH                           |
| PLANT Crist                                 | BOX No. <u>\$-201</u>               | DHa 1.869 Y .989                              |
| UNIT FGD Stack                              | METHOD <u>Ctm-</u>                  | 013 PROBE #                                   |
| BALANCE No. 101 A STD. V                    | VT. (gm) <u>2000</u> BALANCE R      | ESPONCE (gm)                                  |
| Aun <u>4</u>                                | Run <u>5</u>                        | Hun <u>6</u>                                  |
| Nozzie Filter<br>Calibration Number         | Nozzie Filter<br>Calibration Number | Nozzie Filter<br>Calibration Number           |
| NA                                          |                                     |                                               |
| METER READING                               | METER READING                       | METER READING                                 |
| D 000                                       | 0.000                               | 0.000                                         |
| 30.761 mttes                                | 39.660 tretal                       |                                               |
| No.                                         | No. No.                             | Nea Nea                                       |
| LEAK CHECK<br>System Pitot                  | LEAK CHECK System Pitot             | LEAK CHECK System Pitot                       |
| Pre Post Pre Post                           | Pre Post Pre Post                   | Pre Post Pre Post                             |
| 10 9 Impact Impact                          | In. Ho In. Ho                       | 17 10 Impact Impact                           |
| h. Hg h. Hg Steller Steller                 | ,008 Sante Sante                    | .007 .003 Sunta State                         |
| dm dm                                       | chin din                            | dm dm                                         |
| VOLUME OF<br>LIQUID WATER COLLECTED         | VOLUME OF<br>LIQUID WATER COLLECTED | VOLUME OF<br>LIQUID WATER COLLECTED           |
| Imp1 Imp2 Imp3 Imp4                         | lmp1 lmp2 lmp3 lmp4                 | Imp1 Imp2 Imp3 Imp4                           |
| 219 117 / 1792.6                            | 719 115 / 1800.6                    | 7/6 114 / 1806.8                              |
| 100 100 / 1784.4<br>british british british | 100 100 / 1797.6                    | 100 100 / 1800-6                              |
| 119 17 / 8.2                                | 119 15 / 8.0                        | 16 14 6.2                                     |
| Total 144.7                                 | Total 142.0                         | Total 136-2                                   |
| GAS ANALYSIS STATIC                         | GAS ANALYSIS STATIC                 | GAS ANALYSIS STATIC                           |
| 0, 10%0.1                                   | 0. 10% -0.1                         | 02 10% -0.1                                   |
| CO, 11 %                                    | CO2 10%                             | CO <sub>2</sub> 10%                           |
| CO BAROMETRIC                               | CO BAROMETRIC Z 9, 17               | CO BAROMETRIC 79.77                           |
|                                             | th. Hg                              | 1                                             |

| Port #                           |         | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |         |             | emperature ' | F    |              |                  |
|----------------------------------|---------|------------------------|------------------|-----------------|---------|-------------|--------------|------|--------------|------------------|
| Point#                           | Time    | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H₂O) | Stack   | Filter      | Condenser    | Imp. | Gas<br>Meter | Vac.<br>(In. Hg) |
| 1-1                              | 9:45    | 0.33                   |                  | 1.5             | 119     | 502         | 167          | 43   | 74           | 7                |
|                                  | 9:50    | 3,3                    |                  | 15              | 118     | 503         | 170          | 43   | 976          | 7_               |
|                                  | 9:55    | 6.7                    |                  | 1.5             | 119     | 502         | 171          | 43   | 80           | 7                |
|                                  | 10:00   | 10,1                   |                  | 1.5             | 118     | 501         | 172          | 43   | 30           | 4                |
|                                  | 10:05   | 13.4                   |                  | 1.5             | 119     | <i>5</i> 02 | 173          | 43   | ४०           | 6                |
|                                  | 10:10   | 16.8                   |                  | 1.5             | 119     | 504         | 173          | 43   | 81           | 6                |
| Ĺ                                | 10:15   | 20.1                   |                  | 1.5             | 118     | 506         | 171          | यप   | 81           | 6                |
|                                  | 20:20   | 23.4                   |                  | 1.5             | 120     | 503         | 174          | 44   | 83           | 6                |
|                                  | 10:25   | 26.8                   |                  | 1.5             | 119     | 500         | 170          | 45   | 85           | 6                |
|                                  | 10:30   | 30 <i>.9</i>           |                  | 1.5             | 120     | 501         | 169          | 45   | 84           | 6                |
|                                  | 10:35   | 33.5                   |                  | 1.5             | /25     | 502         | 170          | 46   | 84           | 6                |
|                                  | 10:40   | 36.8                   |                  | 1.5             | 119     | 500         | 165          | 46   | 86           | 6                |
|                                  | 10:45   | 40,113                 |                  |                 | <u></u> |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             | _            |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      | _            |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
| · .                              | :       |                        |                  |                 |         |             |              |      |              |                  |
|                                  | :       |                        |                  |                 |         |             |              |      |              |                  |
| Form Revised 8/24/02<br>Company: | alf Po  | Ne(                    |                  | Date            | e: 8-6- | -12         | Page         | 9    |              |                  |
| Site:                            | lant Co | st FGD s               | tack outl        | <u>et</u> Run i | #: 1    |             | Of           |      |              |                  |

| Port #               |              | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head              |       | T      | emperature ° | F    |              |                  |
|----------------------|--------------|------------------------|------------------|------------------------------|-------|--------|--------------|------|--------------|------------------|
| Point#               | Time         | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂U)  | ΔH<br>(In. H <sub>2</sub> O) | Stack | Filter | Condenser    | lmp. | Gas<br>Meter | Vac.<br>(In. Hg) |
| 1-1                  | 11:00        | 0.000                  |                  | 1.5                          | 121   | 509    | 166          | 43   | 89           | 6                |
|                      | :05          | 3.3                    |                  | 1.5                          | 121   | 510    | 167          | 43   | 89           | 6                |
|                      | :10          | 6.5                    |                  | 1.5                          | 120   | 505    | 167          | 44   | 89           | 6                |
|                      | :15          | 1.0                    |                  | 1.5                          | 119   | 506    | 167          | 44   | 39           | 6                |
|                      | : 20         | 13.3                   |                  | 1,5                          | 120   | 503    | 168          | 44   | 89           | 6                |
|                      | <u>: 25</u>  | 17.0                   |                  | 1.5                          | 170   | 505    | 166          | 45   | 89           | 6_               |
|                      | : 30         | ZO. 4                  |                  | 1.5                          | 121   | 507    | 167          | 45   | 90           | 6                |
|                      | : 35         | 23.6                   |                  | 1.5                          | _1.19 | 508    | 166          | 44   | 90           | 6_               |
|                      | : 40         | 27.0                   |                  | 1.5                          | 122   | 506    | 167          | 45   | 90           | 6                |
|                      | : 45         | 30.5                   |                  | 1.5                          | 121   | 503    | 167          | 44_  | 91           | 6                |
|                      | :50          | 33.7                   |                  | 1.5                          | 121   | 504    | 168          | 45   | 92           | 6_               |
|                      | : 55         | 36.9                   |                  | 1.5                          | 119   | 506    | 166          | 45   | 92           | 6                |
| Stop                 | 12:00        | 40.461                 |                  |                              |       |        |              |      | ļ            |                  |
| ,                    | : '          |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
| _                    | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | <del>:</del> |                        |                  |                              |       |        |              |      |              |                  |
|                      | <u>:</u>     |                        |                  |                              |       |        |              |      |              |                  |
|                      | ;            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        | -            |      |              | -                |
|                      | _:           |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
|                      | :            | -                      |                  | _                            |       |        |              |      |              |                  |
|                      | :            |                        |                  |                              |       |        |              |      |              |                  |
| Form Revised 8/24/02 | :            |                        |                  |                              |       |        |              |      |              |                  |
| Company:             |              | wer -                  | -                |                              |       |        |              | ·    |              |                  |
| Site: ct             | m-013        |                        | CASS             | + Run #                      | t:Z   |        | Of           |      |              |                  |

| Port #                                |         | Gas<br>Meter           | Velocity<br>Head | Orlfice<br>Head | -        | т        | emperature ° | rF |              |                 |
|---------------------------------------|---------|------------------------|------------------|-----------------|----------|----------|--------------|----|--------------|-----------------|
| Point#                                | Time    | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔΗ<br>(In. Η₂Ο) | Stack    | Filter   | Condenser    |    | Gas<br>Meter | Vac.<br>(In. Ho |
| )- I                                  | R:20    | 0.600                  |                  | 1.5             | 124      | 504      | 169          | 42 | 88           | 6               |
|                                       | : 25    | 3 2                    |                  | 1.5             | 124      | 563      | 169          | 42 | 87           | 6               |
|                                       | : 30    | 6.7                    |                  | 1.5             | 123      | 506      | 171          | 43 | 86           | 6               |
|                                       | : 35    | 10.1                   |                  | 1.5             | 122      | 50%      | 170          | 43 | 85           | 6               |
|                                       | :40     | 13.5                   |                  | 1,5             | 124      | 507      | 169          | 43 | 84           | 6               |
|                                       | . 45    | 16.8                   |                  | .5              | 173      | 510      | 169          | 43 | 83           | 6               |
| -                                     | : 56    | 19.9                   |                  | 1.5             | 175      | 509      | 170          | 44 | 28           | 6               |
|                                       | :55     | 73.2                   |                  | 1.5             | 551      | 511      | 171          | 45 | 80           | 6               |
|                                       | 13:00   | 26.7                   |                  | 1.5             | 124      | 506      | 168          | 45 | 80           | 6               |
|                                       | : 05    | 29.9                   |                  | 1.5             | 123      | 507      | 169          | 45 | 80           | 6               |
|                                       | :10     | 33.8                   |                  | 1.5             | 124      | 505      | 170          | 46 | 80           | 6               |
|                                       | : 15    | 37.1                   |                  | 1,5             | 123      | 564      | 168          | 46 | 79           | 6               |
| Stop                                  | 13:70   | 39.858                 |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 | ,        |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    | _            |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       | ]                      |                  |                 |          | <u> </u> |              |    |              |                 |
|                                       | :       |                        | _                |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
| -                                     | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       |         |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              | _               |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
|                                       | :       |                        |                  |                 |          |          |              |    |              |                 |
| m Revised 8/24/02<br>ompany: <u>C</u> | ulf Pou | ver -                  | FGD Sta          | ack_ Date       | <u> </u> | 6-12     | Page         |    |              |                 |
|                                       |         | 13                     |                  |                 |          |          |              |    |              |                 |

| Port #                                  |             | Gas<br>Meter           | Velocity<br>Head | Orilice<br>Head | ·             |        | emperature ° | ·F   |              |                  |
|-----------------------------------------|-------------|------------------------|------------------|-----------------|---------------|--------|--------------|------|--------------|------------------|
| Point#                                  | Time        | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂U)  | ΔH<br>(In. H₂O) | Stack         | Filter | Condenser    | imp. | Gas<br>Meter | Vac.<br>(in. Hg) |
| 1-1                                     | 13:30       | 0.000                  |                  | 1.5             | 124           | 510    | 167          | 41   | 77           | 6                |
|                                         | : 35        | 3.6                    |                  | 1.5             | 173           | 512    | 166          | 41   | 77           | 6                |
|                                         | : 40        | 9.7                    | _                | 1.5             | 123           | 509    | 166          | 47   | 78           | 6                |
|                                         | : 45        | 11.4                   |                  | 1,5             | 122           | 508    | 167          | 41   | 78           | 6                |
|                                         | :50         | 14.2                   |                  | 1,5             | 124           | 506    | 168          | 42   | 78           | 6                |
|                                         | : 55        | 16.5                   |                  | 1,5             | 122           | 508    | 167          | 43   | 78           | 6                |
|                                         | 14:00       | 19.4                   |                  | 1.5             | 123           | 569    | 167          | 43   | 78           | 6                |
|                                         | :05         | 77.1                   |                  | 1.5             | 123           | 510    | 1107         | 44   | 78           | 6                |
|                                         | :10         | 24.8                   |                  | 1,5             | 124           | 507    | 168          | 44   | 77           | 6                |
|                                         | : 15        | 28.9                   |                  | 1.5             | 123           | 506    | 168          | 44   | 77           | 6                |
|                                         | : <b>Z0</b> | 33. Ø                  |                  | 1.5             | 122           | 508    | 169          | 44   | 77           | 6                |
|                                         | : 75        | 36.6                   |                  | 1.5             | 173           | 510    | 168          | 45   | 77           | 6                |
| Stop                                    | 14:30       | 39.761                 |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              | _                |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | : _         |                        |                  |                 |               |        |              |      |              |                  |
|                                         | ;           |                        |                  |                 |               |        |              |      |              |                  |
| _                                       | :           |                        |                  |                 | _             |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | : .         |                        |                  |                 |               |        |              |      |              |                  |
|                                         | : ]         |                        |                  |                 |               |        |              |      |              |                  |
| _                                       | :           |                        |                  |                 |               |        |              |      |              |                  |
|                                         | :           |                        |                  |                 |               |        |              |      |              |                  |
| om Rovisod 8/24/02<br>Company: <u>C</u> | ulf Pr      | wer -                  | FGD :            | Stack Date      | :_ <u>8</u> - | 6-12   | Page         |      |              |                  |
|                                         | (m-013      |                        |                  | Run#            |               |        |              |      |              |                  |

| :40<br>:45<br>:50 | Meter<br>Volume<br>(Cubic Feet)<br>0.000<br>3.4<br>6.3 | Head<br>ΔP<br>(In. H <sub>2</sub> U) | ΔH<br>(In. H <sub>2</sub> U) | Stack 123 | Filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Condenser | 1mp.                                                                                                                                        | Gas<br>Meter | Vac.<br>(In. Hg |
|-------------------|--------------------------------------------------------|--------------------------------------|------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|
| :45<br>:50        | 3.4                                                    |                                      |                              | 123       | 569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17/       | 411                                                                                                                                         | G            |                 |
| :50               |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              | 6               |
|                   | 1-2                                                    |                                      | 1.5                          | 122       | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 45                                                                                                                                          | 79           | 6               |
| : 55              |                                                        |                                      | 1.5                          | 120       | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170       | 45                                                                                                                                          | 79           | 6               |
|                   | 9.9                                                    |                                      | 1.5                          | 120       | 511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 171       | 45                                                                                                                                          | 79           | 6               |
| : 00              | 13.1                                                   |                                      | 1,5                          | 119       | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172       | 45                                                                                                                                          | 80           | 6               |
| : 05              | 16.3                                                   |                                      | 1.5                          | 120       | 507                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 171       | 46                                                                                                                                          | 80           | 6               |
| : [0]             | 19.5                                                   |                                      | 1.5                          | 118       | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172       | 46                                                                                                                                          | 30           | 6               |
| : 15              | 72.3                                                   |                                      | 1.5                          | 119       | 512                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 172       | 47                                                                                                                                          | 80           | 6               |
|                   |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              | 6               |
| : 25              |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              | 6               |
|                   |                                                        |                                      |                              | -         | 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •         |                                                                                                                                             |              | 6               |
| 35                |                                                        |                                      | 1.5                          | 118       | 503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170       | 44                                                                                                                                          | 81           | 6               |
| :40               | 39.660                                                 |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| : _               |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| : -               |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| :                 |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              | ļ               |
| :                 |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| :                 |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| : -               |                                                        |                                      | -                            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| :                 |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
|                   |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
|                   |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              | <b>-</b>        |
|                   |                                                        | -                                    |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
|                   |                                                        |                                      |                              | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             | -            |                 |
|                   |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -                                                                                                                                           |              |                 |
|                   |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             | -            |                 |
| :                 |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              | _               |
| : -               |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              | _               |
|                   |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| <del>: +</del>    |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| $\div$            |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           |                                                                                                                                             |              |                 |
| : +               |                                                        |                                      |                              |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | -                                                                                                                                           |              |                 |
|                   | : 20<br>: 25<br>: 30<br>: 36<br>: 40                   | : 20                                 | : ZO                         | : 20      | 1.5   119   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5   117   1.5 | 20   25.8 | 1.5   119   509   172     1.5   118   506   171     30   32.7   1.5   117   508   171     35   36.1   1.5   118   503   170     40   39.660 | 1.5          | 1.5             |

| Port #         |           | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |               | Temper  | ature °F |              |               |
|----------------|-----------|------------------------|------------------|-----------------|---------------|---------|----------|--------------|---------------|
| Point#         | Time      | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(in. H₂O) | Stack         | Filter  | Cond.    | Gas<br>Meter | Vac<br>(In. H |
| 1-1            | 15:50     | 0.000                  |                  | 1.5             | 122           | 510     | 172      | 80           | 6             |
|                | : 55      | 3.5                    |                  | 1.5             | 120           | 513     | 171      | 80           | 6             |
|                | 16:00     | 4.2                    |                  | 1,5             | 119           | 5 11    | 171      | 80           | 6             |
|                | : 05      | 10.0                   |                  | 1.5             | 120           | 516     | 171      | 81           | 6             |
|                | :10       | 13.7                   |                  | 1.5             | 118           | 517     | 170      | 81           | 6             |
|                | :15       | 17.0                   |                  | 1.5_            | 119           | 509     | 171      | 82           | 6             |
|                | : 70      | 8.05                   |                  | 1.5             | 119           | 507     | 171      | 87           | 6             |
|                | : 25      | 22.6                   |                  | 1,5             | 118           | 510     | 172      | 82           | 6             |
| <u> </u>       | : 30      | 76.7                   |                  | 1.5             | 117           | 511     | 177      | 82           | 6             |
|                | : 35      | 29.9                   |                  | 1.5             | 118           | 507     | 171      | 28           | 6             |
|                | : 40      | 33.1                   |                  | 1.5             | 116           | 506     | 169      | 83           | 6             |
|                | : 45      | 35.8                   |                  | 1,5             | 116           | 502     | 170      | 83           | 6             |
| Stop           | 16:50     | 39.416                 |                  |                 |               |         | •        |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              | ļ             |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                |           |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                |           |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          | _            |               |
|                | :         |                        |                  |                 |               |         |          | _            |               |
|                | :         | -                      |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
| ı              | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
|                | :         |                        |                  |                 |               |         |          |              |               |
| mpany: 6/24/02 | uf Pow    | er – F                 | GD Stac          | CL_ Dat         | e: <u>8</u> - | 6-12    | Page     | 9            | _             |
| a a.!          | m-013     |                        | 0 : 41           | _               |               | ,       |          |              |               |
| Site: Lit      | W - U   2 |                        | U (1.71          | Run             | #:            | <u></u> | _ 5      |              |               |

|                           | 2255 Schillinger Rd<br>Semmes, Al. 3657 |                        | (                   | Office: (251) 633-412<br>Fax: (251) 633-228            |                     |
|---------------------------|-----------------------------------------|------------------------|---------------------|--------------------------------------------------------|---------------------|
| COMPANY G                 | ulf Power                               |                        | DATE 8-7            |                                                        | OR TBH LAC          |
|                           |                                         |                        | (No. <u>5-70/</u>   |                                                        |                     |
| UNIT FGD                  | Stack                                   | <del>_</del>           | METHOD ctm-         | 013 PROBE                                              | ¥                   |
| BALANCE No                | 101 A STD. V                            | NT. (gm) 2000          | BALANCE R           | ESPONCE (gm)                                           | 2.006.5             |
| Run                       |                                         | Run                    |                     | Run                                                    | 3_                  |
| Nozzie<br>Calibration     | Filter<br>Number                        | Nozzie<br>Calibration  | Filter<br>Number    | Nozzie<br>Calibration                                  | Filter<br>Number    |
| A                         | <i>NA</i>                               | M/A<br>triched         |                     | A                                                      | <i>NA</i>           |
| 39,579<br>0.000<br>39,579 | PEADING Prod                            | 39.745<br>0.000        | PRADING PRADI       | METER F<br>39.720<br>Head<br>0.000<br>Island<br>39.720 | PHAN                |
| <u>39.579</u>             | Het                                     | 39.745                 | Not                 | 39.720<br>Not                                          | Net                 |
| LEAK (<br>System          | CHECK<br>Pitot                          | LEAK (                 | CHECK<br>Pitot      | LEAK (                                                 | CHECK<br>Pitot      |
| Pre Post                  | Pre Post                                | Pre Post               | Pre Post            | Pre Post                                               | Pre Post            |
| 10 8                      | implica imposer                         | 11 9                   | Impact Impact       | 16 10                                                  | Impact Impact       |
| .003 .067                 | Static Static                           | tn. Hg tn. Hg          | Static Static       | 008 .004                                               | Static Static       |
| LIQUID WATE               | ME OF<br>R COLLECTED                    |                        | RCOLLECTED          | VOLUM<br>LIQUID WATER                                  | RCOLLECTED          |
| Imp1 Imp2                 | Imp 3 Imp 4                             | Imp1 Imp2              | Imp 3 Imp 4         | imp1 Imp2                                              | Imp3 Imp4           |
| Final Final               | 1810.8<br>  Final   Final               | 704 110<br>Final Final | Final Final         | 208 114<br>Final Final                                 | Final Prod          |
| 100 loo                   | 1801.6                                  | 100 100                | (n) 17575           | trittled initial                                       | Actied hytes        |
| 100   16                  | Net Hat                                 | 104 10<br>Nat Nat      | 13.7                | 108 14<br>Net Het                                      | 10.5                |
|                           | Total 125.7                             |                        | Total _17.7.7       |                                                        | Total _132.5        |
| GAS ANALYSIS              | STATIC                                  | GAS ANALYSIS           | STATIC              | GAS ANALYSIS                                           | STATIC              |
| 02 16%                    | -0.15                                   | 0. 10%                 | -0.15               | 0, 120                                                 | -0.15               |
| co, 10%                   | nt rips                                 | co. <u>10%</u>         |                     | CO, 12.0                                               | ar ulfo             |
| co <u> </u>               | BAROMETRIC<br>29.69                     | co <u>/</u>            | BAROMETRIC<br>79.69 | co                                                     | BAROMETRIC<br>29.69 |
| Form Revised 10/10/08     |                                         |                        |                     | Page 1 of                                              |                     |

|                                                     | 2255 Schillinger Rd.<br>Semmes, Al. 3657 |                |                  |                     | •              | Office: (251)<br>Fax: (251) |                 |                 |               |
|-----------------------------------------------------|------------------------------------------|----------------|------------------|---------------------|----------------|-----------------------------|-----------------|-----------------|---------------|
| COMPANY G                                           | alf Powen                                |                |                  | DA                  | TE <u>8-7-</u> | 12                          | OPERATO         | OR <u>7/3 4</u> | 1/110         |
|                                                     |                                          |                | BOX              | No. <u>ら</u> -      | -201           | DHa/.                       | 869             | Y .98           | 7             |
|                                                     | Hack                                     |                |                  | METHO               | D <u>ctur</u>  | 0131                        | PROBE #         |                 |               |
| BALANCE No.                                         | 10 LASTD. V                              | VT. (gm)       | 2000             | В                   | ALANCE R       | ESPONCE                     | (gm)            | 2.000.          | 5             |
| Run                                                 | _4_                                      | F              | lun              |                     | -              | R                           | un              |                 | -             |
| Nozzle<br>Calibration                               | Fliter<br>Number                         |                | ozzie<br>bration |                     | lter<br>nber   |                             | zzie<br>oration |                 | ilter<br>mber |
| NA<br>Inches                                        | <i>NA</i>                                |                | uchos            |                     |                |                             | C/MI3           |                 |               |
| METER                                               | READING                                  |                | METER R          | EADING              |                |                             | METER R         | EADING          |               |
| 39,323<br>HIRS                                      | HINN                                     |                | <u>u</u> -       | Free                | _              | Hina                        | <del>-</del> -  | Final           | _             |
| 0.000                                               | Install                                  | - tekt         | <del></del> -    | intro               | _              |                             | <del></del> -   | (m/ner          | _             |
| 39.323                                              | Res                                      |                |                  | Mar                 |                | He                          | <del></del> -   | Net             | _             |
| LEAK (<br>System                                    | CHECK<br>Pitot                           | s              | LEAK C           | <b>HECK</b><br>Pito | t              | s                           | LEAK C          | HECK<br>Pito    | ot            |
| Pre Post                                            | Pre Post                                 | .Pre           | Post             | Pre                 | Post           | Pre                         | Post            | Pre             | Post          |
| 11 9                                                | impact (profact                          |                |                  | impact              | Impact         |                             |                 | Impact          | Impact        |
| tn. Hg tn. Hg                                       | Static Static                            | tn. Hg         | In. Hg           | Static              | Static         | tn. Hg                      | In. Hg          | Static          | Static        |
| .001 .001                                           |                                          | cim            | elm              | <u> </u>            |                | cim                         | c/m             | <u> </u>        |               |
|                                                     | ME OF<br>R COLLECTED                     |                | VOLUM            | -                   | En             |                             | VOLUM           |                 | ED            |
| imp 1 imp 2                                         | Imp 3 Imp 4                              | Imp 1          | Imp 2            | Imp 3               | Imp 4          | imp 1                       | Imp 2           | Imp 3           | Imp 4         |
| 210 112                                             | / 1837.5                                 | Fined          | Finel            | Final               | Final          | Fines                       | Final           | Fines           | Final         |
| 100 100                                             | 7 1821.7                                 |                |                  |                     |                |                             |                 |                 |               |
| 110 1Z                                              | ydited intital                           | louisi         | inklei           | initial             | Indust         | तिसंख                       | Initial         | INIE            | (mittles      |
| Net Net                                             | Net Net                                  | Net            | Nat              | Net                 | Net            | Net                         | Net             | Nat             | Net           |
|                                                     | Total <u>132.8</u>                       |                |                  | Total               |                |                             |                 | Total           |               |
| GAS ANALYSIS                                        | STATIC                                   | GAS AN         | ALYSIS           | STA                 | TIC            | GAS AN                      | alysis          | STA             | TIC           |
| 0, <u>95</u><br>co, <u>101</u>                      | - 0.15<br>In.H <sub>2</sub>              | O <sub>2</sub> |                  | - In. i             | <del>40</del>  | CO <sup>2</sup>             | <b>–</b> .      | ln.             | 1,0           |
| co, <del>////////////////////////////////////</del> | BAROMETRIC                               | CO             |                  | BAROM               | ETBLC          | co                          |                 | BAROM           | FTRIC         |
| ··                                                  | 29,69                                    | 30 <u></u>     |                  | In. I               | _              |                             |                 | BANOR<br>In. 7  |               |
| Form Revised 10/10/08                               |                                          |                |                  |                     | •              | 1                           | Page 1 of _     |                 |               |

| Port #                         |           | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |               | Temper   |       |              |                 |
|--------------------------------|-----------|------------------------|------------------|-----------------|---------------|----------|-------|--------------|-----------------|
| Point#                         | Time      | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H₂O) | Stack         | Filter   | Cond. | Gas<br>Meter | Vac.<br>(In. Hg |
| 1-1                            | 9:30      | (2,000                 |                  | 1.5             | 113           | 561      | 165   | 80           | ما              |
|                                | : 35      | 3.3                    |                  | 1.5             | 114           | 502      | 165   | 80           | 6               |
|                                | :40       | 6.7                    |                  | 1.5             | 117           | 504      | 165   | 80           | 6               |
| <u>-</u>                       | : 45      | 9.9                    |                  | 1.5             | 11/           | 507      | 166   | 80           | 6               |
|                                | :50       | 13.0                   |                  | 1.5             | 115           | 508      | 167   | 80           | 6               |
|                                | : 55      | 16.1                   |                  | 1.5             | 114           | 505      | 167   | 80           | 6               |
|                                | 10:60     | 19.4                   |                  | 1.5             | 115           | 509      | 167   | 86           | 6               |
|                                | :05       | 77.9                   |                  | 1.5             | 115           | 5//      | 168   | <u> </u>     | 6               |
|                                | :10       | 76.3                   |                  | 1.5             | 115           | 512      | 167   | 80           | 6               |
| • • •                          | : 15      | 29.7                   |                  | 1.5             | 114           | 509      | 168   | 80           | 6_              |
|                                | . 20      | 9.58                   |                  | 1.5             | 112           | 508      | 169   | 80_          | 6               |
|                                | : 25      | 36.0                   |                  | 1.5             | 114           | 510      | 169   | 80           | 6               |
| Stop                           | 10:30     | 39.579                 |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
|                                | : 1       |                        |                  |                 |               |          |       |              |                 |
|                                | ; [       |                        |                  |                 |               |          |       | =            |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
| _                              | :         |                        |                  |                 |               |          |       |              |                 |
|                                | <u>i.</u> |                        |                  |                 |               |          |       |              |                 |
|                                | ;         |                        |                  |                 |               |          |       |              |                 |
|                                | ;         |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        | _                |                 |               |          |       |              |                 |
|                                | : [       |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
| _                              | :         |                        |                  |                 |               |          |       |              | '               |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  | -               |               |          |       |              |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  |                 |               |          |       |              |                 |
|                                | :         |                        |                  |                 | _             |          | _     |              |                 |
| om Revised 8/24/02<br>Company: | ulf Pow   | er - FC                | SD Stack         | <u>/</u>        | e: <u>8</u> - | 7-12     | Page  | ·            | _               |
| Site: C£                       | m-013     |                        | Cvist            | Run             | #:            | <u> </u> | Of    |              |                 |

| Port #                            |           | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |       | Temper | ature °F |              |                  |
|-----------------------------------|-----------|------------------------|------------------|-----------------|-------|--------|----------|--------------|------------------|
| Point#                            | Time      | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In, H₂O) | Stack | Filter | Cond.    | Gas<br>Meter | Vac.<br>(tn. Hg) |
| 1-1                               | 10:40     | 6.000                  |                  | 1,5             | 118   | 511    | 170      | 84           | 6                |
|                                   | . นุร     | 3.2                    |                  | 1.5             | 119   | 511    | 170      | 84           | 6                |
|                                   | : 50      | 6.3                    |                  | 1.5             | 118   | 507    | 171      | 84           | 6                |
|                                   | : 55      | 9.8                    |                  | 1,5             | 119   | 508    | 171      | 75           | 6                |
|                                   | 11:00     | 13.4                   |                  | 1,5             | 119   | 506    | 176      | 85           | 6                |
|                                   | :05       | 16.7                   |                  | 1.5             | 120   | 509    | 170      | 85           | 6                |
|                                   | : 10      | 19.9                   |                  | 1,5             | 119   | 504    | 169      | 85           | 6                |
|                                   | : 15      | 77.6                   |                  | 1.5             | 118   | 507    | 169      | 85           | 6                |
|                                   | :20       | 25.0                   |                  | 1,5             | 118   | 508    | 168      | 85           | 6                |
|                                   | : 25      | 28.7                   |                  | 1.5             | 116   | 510    | 169      | 85           | 6                |
|                                   | : 30      | 33.1                   |                  | 1.5             | 113   | 511    | 170      | 85           | 6                |
|                                   | : 35      | 36.5                   |                  | 1.5             | 114   | 512    | 170      | 85           | 6                |
| Stop                              | 11:40     | 39.745                 |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
| -                                 | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 | _     |        |          |              |                  |
|                                   | : -       |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        | i        |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        | i        |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   |           |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       | _      |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
|                                   | :         |                        |                  |                 |       |        |          |              |                  |
| Form Revised 8/24/02<br>Company:C | ulf Power | - F(                   | SD Sta           | CK Dat          | e:    | 1-12   | Page     | ·            | -                |
| Site: C£                          | M-013     |                        | Crist            | Run             | #:    | Z      | Of       |              |                  |

| Port #            |          | Gas<br>Meter           | Velocity<br>Head             | Orifice<br>Head |             | Temper | ature °F |              |                                                  |
|-------------------|----------|------------------------|------------------------------|-----------------|-------------|--------|----------|--------------|--------------------------------------------------|
| Point#            | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H <sub>2</sub> O) | ΔH<br>(In. H₂O) | Stack       | Filter | Cond.    | Gas<br>Meter | Vac<br>(in. H                                    |
| 1-/               | 12:45    | 0.000                  |                              | 1.5             | 116         | 513    | 172      | 90           | 6                                                |
|                   | : 50     | 3.4                    |                              | 1.5             | 117         | 512    | 171      | 91           | 6                                                |
|                   | :55      | 6.7                    |                              | 1.5             | 118         | 515    | 171      | 91           | 6                                                |
|                   | 13:00    | 10.0                   |                              | 1.5             | 118         | 511    | 171      | 92           | 6                                                |
|                   | :05      | 13.2                   |                              | 1.5             | 117         | 509    | 171      | 92           | 6                                                |
|                   | :10      | 16.5                   |                              | 1.5             | 118         | 510    | 172      | 93           | 6                                                |
|                   | : 15     | 20.0                   |                              | 1.5             | 118         | 509    | 171      | 93           | 6                                                |
|                   | : 70     | 73.6                   |                              | 1.5             | 118         | 508    | 170      | 93           | 6                                                |
|                   | : 25     | 27.1                   |                              | 1.5             | 119         | 506    | 171      | 93           | 6                                                |
|                   | : 30     | 5 .95                  |                              | 1.5             | 118         | 507    | 170      | 94           | 6                                                |
|                   | : 35     | 32.8                   |                              | 1,5             | 120         | 507    | 172      | 94           | 6                                                |
|                   | : 40     | 36.4                   | ·                            | 1,5             | 120         | 569    | 172      | 94           | 6                                                |
| Stop              | 13:45    | 39.77.0                |                              |                 | , , , , ,   |        |          |              |                                                  |
| _5_15/5           | :        |                        |                              |                 |             |        |          |              |                                                  |
|                   |          |                        |                              |                 |             |        |          |              |                                                  |
|                   |          |                        |                              |                 |             |        |          |              |                                                  |
|                   |          |                        |                              |                 |             |        |          |              |                                                  |
|                   | :        |                        |                              |                 |             |        |          |              |                                                  |
|                   | :        |                        |                              |                 |             |        |          |              |                                                  |
|                   | :        |                        |                              |                 |             |        |          |              |                                                  |
|                   | :        |                        |                              |                 | · ·· · · ·  |        |          |              |                                                  |
|                   | :        |                        |                              |                 | ***         |        |          |              |                                                  |
|                   | :        |                        |                              |                 |             |        |          |              |                                                  |
|                   |          |                        |                              |                 |             |        |          |              |                                                  |
|                   |          |                        |                              |                 |             |        | _        |              | ĺ                                                |
|                   | :        |                        |                              |                 |             |        | -        | <del></del>  |                                                  |
|                   | :        |                        |                              |                 |             | -:     |          |              |                                                  |
|                   |          |                        |                              |                 |             |        |          |              | <del>                                     </del> |
|                   | :        |                        |                              |                 |             |        |          |              |                                                  |
|                   | :        |                        |                              |                 |             |        |          |              | l                                                |
|                   |          |                        | -                            |                 |             |        | -        |              |                                                  |
|                   | : -      |                        |                              |                 |             |        |          |              |                                                  |
|                   | : -      |                        |                              |                 |             |        |          |              |                                                  |
| m Revised 6/24/02 | :        |                        |                              |                 |             |        |          |              |                                                  |
|                   | ulf Powe | <u>- F</u>             | GD Stac                      | K Dat           | e: <u> </u> | 7-12   | Page     | ·            | _                                                |
|                   | m-013    |                        | Crist                        |                 | , .         | ١ .    | Of       |              |                                                  |

| Port #                                   |          | Gas<br>Meter           | Velocity<br>Head             | Orifice<br>Head |                 | Temper | ature °F |              |                 |
|------------------------------------------|----------|------------------------|------------------------------|-----------------|-----------------|--------|----------|--------------|-----------------|
| Point#                                   | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H <sub>2</sub> O) | ΔΉ<br>(in. H₂O) | Stack           | Filter | Couch.   | Gas<br>Meter | Vac.<br>(In. Hg |
| 1-/                                      | 13:55    | 0.000                  |                              | 1,5             | 120             | 515    | 173      | 95           | 6               |
|                                          | 14:00    | 3.2                    |                              | 1.5             | 121             | 513    | 174      | 95           | 6               |
|                                          | :05      | 6.1                    |                              | 1.5             | 121             | 510    | 174      | 95           | 6               |
|                                          | :10      | 9.8                    |                              | 1.5             | 121             | 511    | 174      | 94           | 6               |
|                                          | . 15     | 17.5                   |                              | 1.5             | 120             | 514    | 174      | 94           | 6               |
|                                          | . 20     | 16.0                   |                              | 1,5             | 126             | 513    | 173      | 93           | 6               |
|                                          | : 25     | 19.3                   |                              | 1.5             | 121             | 514    | 173      | <i>5 P</i>   | 6               |
|                                          | 30       | 27.4                   |                              | 1.5             | 119             | 511    | 172      | 97           | 6               |
|                                          | : 35     | 25.7                   |                              | 1.5             | 171             | 509    | 174      | 91           | 6               |
|                                          | : 40     | 28.8                   |                              | 1.5             | 75              | 508    | 173      | 91           | 6               |
|                                          | : 45     | 32.9                   |                              | 1.5             | 121             | 506    | 174      | 90           | 6               |
|                                          | : 50     | 36.1                   |                              | 1.5             | 121             | 505    | 174      | 90           | 6               |
| Stop                                     | 14 : 55  | 39,323                 |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | <u>:</u> |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
| _                                        | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | _ :      |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | . :      |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | :        |                        |                              |                 |                 |        |          |              |                 |
|                                          | _ :      |                        |                              |                 |                 |        |          |              |                 |
| m Revised 8/24/02<br>company: <u>C</u> L | UA Power | 21 -                   | FGD Sta                      | zek Dat         | e: <u>8-7</u> - | - 12   | Page     | )            | -               |
| Site: ct                                 | m-013    |                        | Crist                        | Run':           | #:              | 4      | Of       |              |                 |

| 2255 Schillinger Ro<br>Semmes, Al. 365                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    | ice: (251) 633-412<br>ix: (251) 633-2285                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COMPANY Gulf Power                                     | DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TE 8-8-                                            | 17_ OPERATO                                                                             | OR TBH/MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PLANT_Crist                                            | BOX No. <u>う-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>201</i> D                                       | Ha 1.869                                                                                | Y_,989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| UNIT FGD Stack                                         | METHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BALANCE No. 10/ A STD.                                 | NT. (gm) <u>ZOOO</u> B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ALANCE RES                                         | PONCE (gm)Z                                                                             | 2,000,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Run/                                                   | 8un <u>Z</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 1                                                | Run                                                                                     | _3_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Nozzie Filter<br>Calibration Number                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | liter<br>mber                                      | Nozzie<br>Calibration                                                                   | Filter<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA NA                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                           | NA<br>inches                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| METER READING                                          | METER READING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    | METER R<br>39.165                                                                       | EADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0.000                                                  | 0.000 Head                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _                                                  | 0.000                                                                                   | Hinsi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HOLE HEAVE                                             | 39.134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                  | intig                                                                                   | (n/Sal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 38.944                                                 | 34,131 Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                  | 39, <u>1</u> 65                                                                         | Net                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LEAK CHECK System Pitot                                | LEAK CHECK<br>System Pite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ot                                                 | LEAK C<br>System                                                                        | HECK<br>Pitot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pre Post Pre Post                                      | .Pre Post Pre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Post                                               | Pre Post                                                                                | Pre Post                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1) 10 Impact Impact                                    | to Ho In Ho                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A Imper                                            | 11 9                                                                                    | Impact Impact*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .00Z .06Z Stantc                                       | .008 .002 Share                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Static                                             | .010 .007                                                                               | Static Static                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ctm ctm -                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                    |                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VOLUME OF                                              | VOLUME OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | cim cim                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| VOLUME OF<br>LIQUID WATER COLLECTED                    | VOLUME OF LIQUID WATER COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ED                                                 | VOLUM<br>LIQUID WATER                                                                   | COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIQUID WATER COLLECTED                                 | LIQUID WATER COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ED<br>Imp 4                                        | VOLUM<br>LIQUID WATER<br>Imp 1 Imp 2                                                    | COLLECTED<br>Imp 3 Imp 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | LIQUID WATER COLLECT   Imp 1   Imp 2   Imp 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED Imp 4                                           | VOLUM LIQUID WATER Imp 1 Imp 2 Z17 116 Finel Fred                                       | COLLECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | LIQUID WATER COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ED<br>Imp 4                                        | VOLUM LIQUID WATER Imp 1 Imp 2 717 116 Final 100 100 Initial Malad                      | Imp 3 Imp 4    18 hb.   Free   | LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | LIQUID WATER COLLECT   Imp 1   Imp 2   Imp 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ED Imp 4                                           | VOLUM LIQUID WATER Imp 1 Imp 2 Z17 116 Finel Fred                                       | COLLECTED<br>Imp 3 Imp 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | LIQUID WATER COLLECT Imp 1 Imp 2 Imp 3  Z14 I3 Final Final Final Imp 2 Imp 3  IDO IDO IMP Imp 1 Imp 3  IN IMP IMP IMP IMP IMP IMP IMP IMP IMP IMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ED Imp 4                                           | VOLUM LIQUID WATER Imp 1 Imp 2 717 116 Final 100 100 Initial Malad                      | Imp 3 Imp 4    18 hb.   Free   | LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | LIQUID WATER COLLECT Imp 1 Imp 2 Imp 3  Z 1 4 1 1 3 Fines Fines Fines IDO IOO Intel Intel Intel ITO IOO Not Not Not Not Total  GAS ANALYSIS STA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Imp 4  1850.9  Fred  1841.4  PLES  No. 1           | VOLUM LIQUID WATER Imp 1 Imp 2 Z1 7 116 Final Final IDO 100 Intitis kidal IJ 16 Het Nat | COLLECTED   Imp 3   Imp 4   Imp 3   Imp 4   Imp 4   Imp 4   Imp 5   Imp 6    |
| LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | LIQUID WATER COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Imp 4  1850.9 Final 1841.4 9.55 Mil 5 TIC 5        | VOLUM LIQUID WATER Imp 1 Imp 2 717 116 Final Final 100 100 Initial Nate IMP 1 Nat       | COLLECTED   Imp 3   Imp 4   Imp 3   Imp 4   Imp 4   Imp 4   Imp 5   Imp 6    |
| LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | Liquid Water Collect   Imp 1   Imp 2   Imp 3     p 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3   Imp 3 | Imp 4  1853.9  From 1841.4  METAL  131.5  TIC  5   | VOLUM LIQUID WATER Imp 1 Imp 2 717 116 Final Final 100 100 Initial Initial INITIAL Nati | COLLECTED   Imp 3   Imp 4   Imp 3   Imp 4   Imp 4   Imp 4   Imp 5   Imp 6    |
| LIQUID WATER COLLECTED   Imp 1   Imp 2   Imp 3   Imp 4 | LIQUID WATER COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Imp 4  1850.9  Final  1841.4  METAL  131.5  TIC  5 | VOLUM LIQUID WATER Imp 1 Imp 2 717 116 Final Final 100 100 Initial Nate IMP 1 Nat       | COLLECTED   Imp 3   Imp 4   Imp 3   Imp 4   Imp 4   Imp 4   Imp 5   Imp 6    |

Plant Crist

Page 1 of

|                       | 2255 Schillinger Rd<br>Semmes, Al. 3657 |                |                  |                 |              | Office: (251<br>Fax: (251) |                  |                 |               |
|-----------------------|-----------------------------------------|----------------|------------------|-----------------|--------------|----------------------------|------------------|-----------------|---------------|
| COMPANY Gu            | 1 F Power                               |                |                  | DA <sup>*</sup> | TE 8-8       | -12                        | OPERAT           | OR <i>18.</i> ∦ | luc.          |
|                       |                                         |                |                  |                 |              |                            |                  |                 |               |
|                       | stack                                   |                |                  |                 |              |                            |                  |                 |               |
|                       | <u>101Å</u> STD. V                      |                |                  |                 |              |                            |                  |                 |               |
| Run                   | 4                                       |                | lun              |                 | -            |                            | lun              |                 | -             |
| Nozzie<br>Calibration | Filter<br>Number                        |                | ozzie<br>bration |                 | lter<br>mber |                            | ozzie<br>oration |                 | liter<br>mber |
| N A<br>inches         |                                         |                | nches            | _               |              |                            | ichės —          |                 | <u> </u>      |
| METER R               | EADING                                  |                | METER R          | EADING          |              |                            | METER R          | EADING          |               |
| 39,635                | HAM                                     |                |                  | ) ELES          | _            |                            | <del></del> .    | Fgizi           | _             |
| 0.000                 | Indiai                                  |                | <del></del> -    | in tal          | _            |                            | <del>,</del> -   | inipël          | _             |
| <u>39,635</u> .       | Nei                                     |                | <del>-</del>     | NGE             | _            | <del></del>                |                  | Nes             | _             |
| LEAK C                | HECK<br>Pitot                           |                | LEAK C           | HECK<br>Pito    |              |                            | LEAK C           | HECK<br>Pito    |               |
| Pre Post              | PrePost                                 | .Pre           | Post             | Pre             | Post         | Pre                        | Post             | Pre             | Post          |
| 10 10                 | Impacz Impacz                           |                |                  | impact          | Impact       | 1                          | İ                | Impact          | impect        |
| In. Hg In. Hg         | Static Static                           | in. Hg         | In Hg            | Static          | Static       | In. Hg                     | in. Hg           | Stade           | Static        |
| .001 1003             |                                         | ctm            | cfra             |                 |              | alm                        | am am            | I.              |               |
| VOLUN<br>LIQUID WATER |                                         |                | VOLUM<br>VATER   |                 | <b>-</b> 0   |                            | VOLUM            | E OF<br>COLLECT |               |
| Imp 1 Imp 2           | Imp 3 Imp 4                             | Imp 1          | Imp 2            | Imp 3           | imp 4        | imp 1                      | mp 2             | Imp 3           | lmp 4         |
| Z16 115               | / 1868.2                                | Fine           | Final            | Final           | Final        | Final                      | Final            | Final           | Finad         |
| 100 100               | / 1860.1                                | Inidal         | Initial          | Initial         | initias      | Inidat                     | Initial          | Initial         | Initial       |
| 116 15                | 7 8.1                                   |                |                  |                 |              |                            |                  |                 |               |
| Net Net               | Total 139.1                             | Net            | Net              | Total           | Net          | Not                        | Nel              | Total           | Net           |
| GAS ANALYSIS          | STATIC                                  | GAS AN         | ALYSIS           | STA             | TIC          | GAS AN                     | ALYSIS           | STA             | TIC           |
| O. 10%                | - M.15                                  | O <sub>2</sub> |                  | tn. i           |              | Oʻ                         | - ,              | in. i           | 10            |
| co. 10%               |                                         | co             | _                |                 |              | CO,                        |                  | 21.7            |               |
| co                    | BAROMETRIC<br>29.73                     | co             |                  | MORAB           |              | co                         | _                | BAROM           |               |
| Form Revised 10/10/08 | IA. Hg                                  |                |                  | 1a. i           | 10           |                            | Page 1 of        | in. ?           | 13            |

| Port #          |           | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |               | Tempe  | rature °F |              |               |
|-----------------|-----------|------------------------|------------------|-----------------|---------------|--------|-----------|--------------|---------------|
| Point#          | Time      | Volume<br>(Cubic Feet) | ∆P<br>(In. H₂O)  | ΔH<br>(in. H₂O) | Stack         | Filter | Cove      | Gas<br>Meter | Vac<br>(In. H |
| 1-1             | 10:45     | 0.000                  |                  | 1.5             | 119           | 508    | 170       | 84           | 6             |
|                 | :50       | 3.1                    |                  | 1.5             | 119           | 508    | 17/       | 84           | 6             |
|                 | :55       | 6.2                    |                  | , 5             | 118           | 507    | 169       | 84           | 6             |
|                 | 11:00     | 9,3                    |                  | 1.5             | 118           | 509    | 170       | 84           | 6             |
|                 | :05       | 12.6                   |                  | 1.5             | 1/9           | 510    | 171       | 84           | 6             |
|                 | :10       | 15,8                   |                  | 1.5             | 118           | 512    | 171       | 84           | 6             |
|                 | :15       | 13.4                   |                  | 1.5             | 120           | 510    | 170       | 84           | 6             |
|                 | : 20      | 21.6                   |                  | 1.5             | 120           | 511    | 171       | 84           | 6             |
|                 | : 25      | 25.7                   |                  | 1.5             | 119           | 508    | 172       | 84           | 6             |
|                 | :30       | 29.2                   |                  | 1.5             | 122           | 509    | 170       | 84           | 6             |
|                 | : 35      | 32.4                   |                  | 1.5             | 121           | 510    | 171       | 84           | 6             |
|                 | :40       | 35.5                   |                  | 1.5             | 121           | 509    | 171       | 84           | 6             |
| Stop            | 11:45     | 38.844                 |                  |                 |               |        |           |              |               |
|                 |           |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           | -            |               |
|                 | :         |                        | _                |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | : [       |                        |                  |                 |               |        |           |              |               |
| _               | :         |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        | -                |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 |           |                        |                  |                 |               |        | _         |              |               |
| _               | :         |                        |                  |                 |               |        |           |              |               |
|                 |           |                        |                  |                 |               |        |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | :         | -                      |                  |                 |               | _      |           |              |               |
|                 | :         |                        |                  |                 |               |        |           |              |               |
|                 | : :       |                        |                  |                 | -             |        |           |              |               |
| Revised 8/24/02 |           |                        |                  |                 |               |        |           |              |               |
| رکی mpany: ک    | alf Power | <u> - F</u>            | GD Sta           | ck_ Dat         | e: <u>है-</u> | 8-12   | Page      |              | _             |
|                 | m-013     |                        | Crist            |                 |               |        |           |              |               |

| Port #    |          | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |                | Tempen | ature °F |              |                 |
|-----------|----------|------------------------|------------------|-----------------|----------------|--------|----------|--------------|-----------------|
| Point#    | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H₂O) | Stack          | Filter | Comp.    | Gas<br>Meter | Vac.<br>(In. Hg |
| 1-1       | 11:55    | 0.000                  |                  | 1.5             | 118            | 506    | 173      | 83           | 6               |
|           | 12:00    | 3.3                    |                  | 1.5             | 118            | 509    | 173      | 83           | 6               |
|           | :05      | 6.7                    |                  | 1.5             | 116            | 508    | 172      | 82           | 6               |
|           | : 10     | 9,5                    |                  | 1.5             | 117            | 508    | 171      | 32           | 6               |
|           | : 15     | 17.3                   |                  | 1,5             | 117            | 511    | 170      | 87           | 6               |
|           | : 20     | 16.0                   |                  | 1.5             | 118            | 510    | 170      | 82           | 6               |
|           | : 25     | 19.2                   |                  | 1.5             | 1 19           | 510    | 170      | 82           | 6               |
|           | : 30     | 23.1                   |                  | 1.5             | 118            | 517    | 171      | 8 Z          | 6               |
|           | : 35     | 27.7                   |                  | 1.5             | 17             | 513    | 170      | 82           | 6               |
|           | : 40     | 79.8                   |                  | 1.5             | 117            | 510    | 170      | 87           | 6               |
|           | : 45     | 32.3                   |                  | 1,5             | 118            | 507    | 171      | 82           | 6               |
|           | :50      | 35.6                   |                  | 5               | 118            | 506    | 172      | 82           | 6               |
| Stop      | 12:55    | 39.134                 |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        | _                |                 |                |        |          |              |                 |
|           | ;        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        | _                |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
|           | :        |                        |                  |                 |                |        |          |              |                 |
| ompany: G | ulf Powe | c - FG                 | D Stack          | Date            | e: <u>8</u> -8 | 8-12   | Page     |              |                 |
| Site: ct  | m- 013   |                        | Caisi            | Hun i           | #: <u>Z</u>    |        | Of       |              |                 |

| Port #            |             | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |              | Temper |       |              |                 |
|-------------------|-------------|------------------------|------------------|-----------------|--------------|--------|-------|--------------|-----------------|
| Point#            | Time        | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(In. H₂O) | Stack        | Filter | Cond, | Gas<br>Meter | Vac.<br>(In. Hg |
| 1-1               | 13:50       | 0.000                  |                  | [, 5            | 114          | 503    | 177   | 81           | 6               |
|                   | : 55        | 3. Z                   |                  | 1.5             | 115          | 507    | 178   | 81           | 6               |
|                   | 14:00       | 6.3                    |                  | 1.5             | 114          | 510    | 180   | 81           | 6               |
|                   | :05         | 9,7                    |                  | 1.5             | 116          | 511    | 173   | 30           | 6               |
|                   | : 10        | 12.9                   |                  | 1.5             | 115          | 513    | 168   | 36           | 6               |
|                   | : 15        | 16.1                   |                  | 1,5             | 115          | 509    | 170   | 80           | 6               |
|                   | : 20        | 19.7                   |                  | 1.5             | 116          | 508    | 171   | 80           | 6               |
|                   | : 25        | 27.75                  |                  | 1.5             | 115          | 506    | 169   | 80           | 6               |
|                   | : 30        | \$5.8                  |                  | 1.5             | 115          | 505    | 168   | 80           | 6               |
|                   | : 35        | 29.5                   |                  | 1.5             | 116          | 507    | 169   | 80           | 6               |
|                   | :40         | 32.7                   |                  | 1.5             | 115          | 503    | 170   | 80           | 6               |
|                   | : 45        | 34.2                   |                  | 1.5             | 113          | 502    | 167   | 80           | 6               |
| Stop              | 14: 50      | 39.165                 |                  |                 |              |        |       |              |                 |
|                   | :           |                        |                  |                 |              |        |       |              | _               |
|                   | ;           |                        |                  |                 |              |        |       |              |                 |
|                   | :           |                        | -                |                 |              |        | -     |              |                 |
|                   | :           |                        |                  |                 |              |        |       |              |                 |
|                   | :           |                        |                  | `               |              |        |       | _            |                 |
|                   | :           |                        |                  |                 |              |        |       |              | T               |
|                   | :           |                        |                  |                 |              |        |       |              |                 |
|                   | :           |                        |                  |                 |              |        |       |              |                 |
|                   | :           |                        |                  |                 |              |        |       |              |                 |
|                   | :           |                        |                  |                 | <del></del>  |        |       |              |                 |
|                   | :           |                        |                  | ,               |              | -      |       |              | 1               |
|                   | :           |                        |                  |                 |              |        |       |              |                 |
|                   | : 1         |                        |                  |                 |              |        | -     |              | <b>—</b>        |
|                   | :           |                        |                  |                 |              |        |       |              | 1               |
|                   | <del></del> |                        |                  |                 |              |        |       |              | † —             |
|                   | :           |                        |                  |                 |              |        |       |              |                 |
|                   | :           |                        |                  |                 | <del>_</del> |        |       | <u></u>      |                 |
|                   | - : -       |                        |                  |                 | _            |        |       |              |                 |
|                   | - : -       |                        |                  |                 |              |        |       |              |                 |
|                   | - ; -       |                        |                  |                 |              |        |       |              | Ī               |
| m Revised 8/24/02 | ulf Pon     | ver -                  | FGD :            | Stack Dat       | e: 8-2       | 8-12   | Page  | ,            |                 |
|                   | m - 013     |                        |                  | + Run           |              |        |       |              |                 |

| Port #                                |          | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |               | Temper | ature °F |              |                |
|---------------------------------------|----------|------------------------|------------------|-----------------|---------------|--------|----------|--------------|----------------|
| Point#                                | Time     | Volume<br>(Cubic Feet) | ΔP<br>(In. H₂O)  | ΔH<br>(in. H₂O) | Stack         | Filter | Cond.    | Gas<br>Meter | Vac.<br>(In. H |
| 1-1                                   | 15:05    | 0.000                  |                  | 1.5             | 117           | 501    | 165.     | 80           | 6              |
|                                       | :10      | 3.3                    |                  | 1.5             | 117           | 565    | 168      | 80           | 6              |
|                                       | : 15     | 6.5                    |                  | 1.5             | 118           | 567    | 168      | 86           | 6              |
|                                       | : 20     | 9.8                    |                  | 1.5             | 119           | 506    | 172      | 30           | 6              |
|                                       | : 25     | 12.7                   |                  | 1.5             | 121           | 510    | 175      | 80           | 6              |
|                                       | : 30     | 15.6                   |                  | 1.5             | 170           | 568    | 173      | 80           | 6              |
|                                       | : 35     | 19.5                   |                  | 1.5             | 171           | 507    | 170      | 30           | 6              |
|                                       | : 40     | 22.9                   |                  | 1.5             | 118           | 511    | 170      | 80           | 6              |
| _                                     | : 45     | Z5. 8                  |                  | 1.5             | 119           | 512    | 170      | 81           | 6              |
|                                       | : 50     | 29.4                   |                  | 1.5             | 118           | 509    | 170      | 81           | 6              |
|                                       | : 55     | 33.3                   |                  | 1.5             | 116           | 50 8   | 169      | 80           | 6              |
| _                                     | 16:00    | 36.5                   |                  | 1.5             | 117           | 504    | 170      | δΩ           | 6              |
| 5+0P                                  | 16:05    | 39.635                 |                  |                 |               |        |          |              |                |
| · · · · · · · · · · · · · · · · · · · | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        | j                      |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
| _                                     | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
| _                                     | :        |                        |                  |                 | _             |        |          |              |                |
| _                                     | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | ;        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       | :        |                        |                  |                 |               |        |          |              |                |
|                                       |          |                        |                  |                 |               |        |          |              |                |
|                                       | . :      |                        |                  |                 |               |        |          |              |                |
| npany: 6                              | ulf Powe | c - 1                  | FGD St           | ack Dat         | e: <u>8</u> - | 8-12   | Page     | ,            | _              |
| Site: <u>c.t</u>                      | m-013    |                        | Crist            | Run             | #:            | 4      | Of       |              |                |

| 2255 Schillinger Rd.<br>Semmes, Al. 3657                 |                                         | 1                               | Office: (251)<br>Fax: (251) | 633-412<br>633-2285 | 0              |                   |
|----------------------------------------------------------|-----------------------------------------|---------------------------------|-----------------------------|---------------------|----------------|-------------------|
| COMPANY Coult Power                                      |                                         |                                 |                             |                     |                |                   |
| PLANT_Crist                                              | BOX                                     | No. <u>S-2</u> シ                | DHa                         |                     | Υ              |                   |
| UNIT FGO outlet                                          |                                         | METHODCTA                       | -13                         | PROBE #             | _ N            |                   |
| BALANCE NoSTD. V                                         | VT. (gm) <u>೩೦६೦.೮</u>                  | BALANCE R                       | ESPONCE                     | (gm)                |                |                   |
| Aun <u>1</u>                                             | Run                                     | 2                               | R<br>I                      | นก                  |                | -                 |
| Nozzle Filter<br>Calibration Number                      | Nozzie<br>Celibration                   | Filter<br>Number                |                             | ezzie<br>eration    |                | lter<br>mber      |
| mothes — MA                                              | W D wiches                              | NA                              | - वि                        | ohes                |                |                   |
| METER READING                                            | METER RE 40,24(                         | EADING .                        | FEE                         | METER R             | EADING         | _                 |
| 0,000 trical trical 40,048                               | 40.241                                  | instead Not                     | latin                       |                     | Initial<br>Not | <del>-</del><br>- |
| LEAK CHECK<br>System Pitot                               | LEAK CH<br>System                       | HECK<br>Pitot                   | s                           | LEAK C              | HECK<br>Pito   | -                 |
| Pre Post Pre Post                                        | Pre Post                                | Pre Post                        | Pre                         | Post                | Pre            | Post              |
| in Hg in Hg                                              | In. Hg In. Hg  J. U. J. U. U. J.        | State: State                    | tin. Hg                     | In. Hg              | State          | State             |
| VOLUME OF LIQUID WATER COLLECTED Imp 1 Imp 2 Imp 3 Imp 4 | VOLUME<br>LIQUID WATER (<br>Imp 1 Imp 2 | COLLECTED                       | LIQU<br>imp 1               | VOLUM<br>ND WATER   | COLLECT        |                   |
| 701 116 1834,8<br>Finel Finel Finel Finel                | 207 113<br>Final Final                  | Imp 3   Imp 4                   | Finel                       | Imp 2               | Imp 3          | Imp 4             |
| hitel Instal Mul Initial                                 | 100 100 Inded Indus                     | 1 8 34 8  <br> India1   Initial | Inhiaj                      | hitial              | Incal          | (mrad             |
| 104 16 / 12.2                                            | 107 13                                  | / 11,3                          | Not -                       | Net                 | Na             | Ná                |
| Total 1342                                               | _                                       | Total (3/.3                     |                             |                     | Total          |                   |
| GAS ANALYSIS STATIC                                      | GAS ANALYSIS                            | STATIC                          | GAS ANA                     | ALYSIS              | STA            | TIC               |
| 0, <u>10.0</u> /1.                                       | 0, 95%                                  | -0.15                           | O,                          |                     |                |                   |
| CO. 120%                                                 | 00, 10,2% -                             | tn. H <sub>i</sub> O            | CO <sub>2</sub>             | '                   | tn, ì          | o,i               |
| BAROMETRIC 29.73                                         | ∞ ∠                                     | BAROMETRIC<br>のうつつ              | ∞                           | _                   | BAROM          |                   |
| in, Hg                                                   |                                         | tn. Hg                          |                             |                     | ln. i          | 19                |

|                        | 2255 Schillinger Rd<br>Semmes, Al. 3657 |                              | •                                       | Office: (251)<br>Fax: (251)           |                        |                 |               |
|------------------------|-----------------------------------------|------------------------------|-----------------------------------------|---------------------------------------|------------------------|-----------------|---------------|
| COMPANY _C             | alf Power                               |                              | DATE                                    | 9-12                                  | OPERAT                 | OR              | 1134          |
| PLANT Cris             | <u>t</u>                                | BOX                          | No. <u>5-201</u>                        | DHa                                   |                        | Υ               |               |
| UNIT_FGD               | outlet                                  |                              | METHOD CTM-                             |                                       |                        |                 |               |
| BALANCE No             | STD. V                                  | VT. (gm)                     | BALANCE R                               | ESPONCE                               | (gm)                   |                 |               |
| Run                    | _3_                                     | Run                          | <u> ન</u>                               | l R                                   | תט                     |                 | -             |
| Nozzie<br>Calibration  | Filter<br>Number                        | Nozzie<br>Calibration        | Filter<br>Number                        |                                       | <b>zzie</b><br>oration |                 | itter<br>mber |
| NA<br>victor           |                                         | W.D.                         | -NA                                     |                                       | chas                   |                 |               |
| METER I                | READING                                 | METER R                      | EADING                                  |                                       | METER R                | EADING          |               |
| <u> </u>               | trutusi                                 | 0.350                        | Indial                                  | l                                     |                        | hitai           | _             |
| <u> </u>               | u picar                                 | 40.558                       | *************************************** | -                                     |                        |                 |               |
| Hall                   | Net                                     | Ne Ne                        | Not                                     | ***                                   |                        | Net             | _             |
| LEAK (<br>System       | CHECK<br>Pitot                          | LEAK C<br>System             | HECK<br>Pitot                           | s                                     | LEAK C                 | HECK<br>Pito    | ot            |
| Pre Post               | Pre Post                                | Pre Post                     | Pre Post                                | Pre                                   | Post                   | Pre             | Post          |
| 10 10                  | Impaca Angest                           | 11 12                        | Impact A Impact                         |                                       |                        | Impact          | Impact        |
| 0.332 0,393            | State: State                            | 6.00 U.007                   | Sperie Static                           | in, Hg                                | tn. Hg                 | State           | Stelle        |
| dm dm                  |                                         | cim ctm                      |                                         | dm                                    | etm                    |                 |               |
| VOLUI<br>LIQUID WATE   | ME OF<br>R COLLECTED                    | VOLUM                        |                                         | LIQU                                  | VOLUM<br>IID WATER     | E OF<br>COLLECT | ΈD            |
| Imp 1 Imp 2            | Imp 3 Imp 4                             | Imp 1 Imp 2                  | Imp 3 / Imp 4                           | Imp 1                                 | Imp 2                  | Imp 3           | imp 4         |
| 211 113                | 11956.7                                 | 213 110                      | 18712                                   |                                       |                        |                 |               |
| First First            | Final Final                             | Final Final                  | Final Final 1956.7                      | Final                                 | Final                  | Final           | feul          |
| Initial Initial        | trydel Initial                          | tribed India                 | Interest Interest 145                   | Initial                               | trytisi                | Indal           | Instal        |
| Nat Nat                | 134, 60°                                | Nel Net                      | 11:0                                    | Net                                   | Net -                  | Nat             | Net           |
|                        | Total Total                             | -                            | Total / 37.5                            |                                       |                        | Total           |               |
| GAS ANALYSIS           | STATIC                                  | GAS ANALYSIS                 | STATIC                                  | GAS AN                                | ALYSIS                 | STA             | ATIC          |
| 0. 10.3 %              | - p.15                                  | 0, 10.2%                     | -0.15<br>b.H.0                          | O <sub>2</sub>                        | _                      | in.             | н,о           |
| co. 9.5/2              |                                         | ∞. <u>9.5</u> / <sub>5</sub> |                                         | CO <sup>5</sup>                       |                        |                 |               |
| ∞ <u>/</u> _           | BAROMETRIC                              | co <u>/</u>                  | BAROMETRIC<br>2970                      | · · · · · · · · · · · · · · · · · · · | -                      | BARON           |               |
| Form Revised 10/10/06  | in. Hg                                  |                              | m. Hg                                   |                                       | Page 1 of              | br              | ng            |
| COULT LIAMSER 101/0/06 |                                         |                              |                                         |                                       | aye i u                |                 |               |

| Port #                   |           | Gas<br>Meter           | Velocity<br>Head<br>Con Ap- | Orifice<br>Head              |                | Temper   | ature °F |              |                 |
|--------------------------|-----------|------------------------|-----------------------------|------------------------------|----------------|----------|----------|--------------|-----------------|
| Point#                   | Time      | Volume<br>(Cubic Feet) | (In: H <sub>2</sub> O)      | ΔH<br>(In. H <sub>2</sub> O) | Stack          | Filter   | Imp.     | Gas<br>Meter | Vac.<br>(in. Hg |
|                          | 9:10      | 0.000                  | 170                         | 1.5                          | 121            | 504      | +7045    | 79           | 6               |
|                          | 9:15      | 3.3                    | 170                         | 1.5                          | 121            | 501      | 45       | 79           | 6               |
|                          | د2: و     | 6.7                    | 170                         | 1.5                          | 122            | 503      | 44       | 79           | 6               |
|                          | 9:25      | 10.1                   | 171                         | 1.5                          | 122            | 503      | 44       | 280          | 6               |
|                          | 9:30      | 13.4                   | 170                         | 1.5                          | 122            | 504      | 44       | 80           | 6               |
| _                        | 9:35      | 16.9                   | 170                         | 15                           | 122            | 505      | વધ       | 8.0          | 6               |
|                          | 9:42      | 20.6                   | 170                         | 1.5                          | 122            | 503      | 44       | 81           | 6               |
|                          | 9:45      | 235                    | פדן                         | 1.5                          | 122            | 502      | 45       | 81           | 6               |
|                          | 9:50      | 270                    | 171                         | 1.5                          | 122            | 505      | 46       | 83           | 6               |
|                          | 9:55      | 30.5                   | 110                         | 1.5                          | 122            | 504      | 46       | 83           | 6               |
|                          | 10:00     | 33.6                   | 170                         | 1.5                          | 122            | 506      | 46       | 80           | 6               |
|                          | کی: دا    | 36.9                   | 170                         | 1.4                          | 122            | 502      | 46       | 81           | 6               |
|                          | 10:10     | 40.248                 | -                           |                              |                |          |          |              |                 |
|                          | :         | -                      |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          | _            |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          | -            |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | ·;        |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              | •              | -        |          |              |                 |
|                          | :         |                        |                             |                              |                |          | 1        |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
|                          | :         |                        |                             |                              |                |          |          |              |                 |
| 1                        |           |                        |                             |                              |                |          |          |              |                 |
|                          |           |                        |                             |                              |                |          |          |              |                 |
|                          | - :       |                        |                             |                              | -              |          |          |              |                 |
| evised 8/24/02<br>npany: | oulf Powe | ec .                   |                             | Date                         | e: <u>8-9-</u> | 12       | Page     |              | -               |
| Site:F                   | -60 O     | Alet                   |                             | Run i                        | #:             | <u> </u> | Of       |              |                 |

| Port #  |            | Gas<br>Meter           | Velocity<br>Head | Orifice<br>Head |          | Temper | ature °F |              |                 |
|---------|------------|------------------------|------------------|-----------------|----------|--------|----------|--------------|-----------------|
| Point#  | Time       | Volume<br>(Cubic Feet) | JH. H₂O)         | ΔΗ<br>(In. H₂O) | Stack    | Filter | lmp.     | Gas<br>Meter | Vac.<br>(in. Hg |
|         | 10:23      | 0.004                  | 170              | 1.5             | 121      | 506    | 43       | 80           | 6               |
|         | 10:28      | 3:4                    | 170              | 15              | 121      | 507    | 43       | 80           | 6               |
|         | 10:33      | 6.8                    | 170              | 1.5             | 121      | 502    | 43       | 80           | 6               |
|         | 10:38      | 910.0                  | 170              | 1.5             | 121      | 561    | 43       | 80           | 6               |
|         | 1243       | 13.3                   | 170              | 1.5             | 121      | 503    | 43       | 80           | 6               |
|         | 10:418     | 16.8                   | <b>{75</b>       | 1.5             | 121      | 502    | 4/3      | 79           | 6               |
|         | 10:53      | 20.2                   | 170              | 1.5             | 121      | 502    | 43       | 79           | 6               |
|         | 10:58      | 235                    | 170              | 1.5             | 122      | 503    | 42       | 8=           | 6               |
|         | 11:03      | 27.0                   | 170              | 1.5             | 121      | 504    | 42       | 81           | 6               |
|         | 11 :08     | 30.1                   | 170              | 1.5             | 121      | 503    | 42       | 81           | 6               |
|         | 11:13      | 33.5                   | 7 2              | 1.5             | 121      | 505    | 42       | 81           | ر               |
|         | 11:14      | 37.0                   | 170              | 1.5             | 121      | 504    | 42       | 81           | د               |
|         | 11:23      | 40.241                 | 177              | 1.5             | 122      | 505    | 43       | 81           | -6              |
|         | :          |                        |                  |                 |          |        |          |              | •               |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
| -       | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
|         | :          |                        |                  |                 |          |        |          |              |                 |
| npany:( | Gulf Power | Crist                  |                  | Date            | e:_ &- ? | 1-12   | Page     | •            | _               |
| Site:   | EGD .0     | Hlet                   |                  | Run             | #:       | ·      | Of       |              |                 |

| Port # |         | Gas<br>Meter           | Velocity Orifice Head Head |                 | Temper       | ature °F |      |              |                 |
|--------|---------|------------------------|----------------------------|-----------------|--------------|----------|------|--------------|-----------------|
| Point# | Time    | Volume<br>(Cubic Feet) | (lpi. H <sub>2</sub> O)    | ΔH<br>(In. H₂O) | Stack        | Filter   | Imp. | Gas<br>Meter | Vac.<br>(In. Hg |
| start  | 12:40   | 0.000                  | טרו                        | 15              | 122          | 506      | 45   | 73           | 6               |
|        | 12:15   | 3,2                    | 172                        | 1.5             | رگار         | 505      | 44   | 72           | 6               |
|        | 12:50   | 6.6                    | 173                        | 1.5             | 123          | 502      | (14  | 72           | 6               |
|        | 12:55   | ا,⊳                    | 172                        | 1.5             | 122          | 501      | 43   | 72           | 6               |
|        | 13:00   | 136                    | 173                        | 1.5             | 123          | 503      | 43   | 72           | 6               |
|        | 12:85   | ط.ط۱                   | 171                        | 1.5             | 122          | 607      | 213  | 73           | S               |
|        | 13:40   | 19.9                   | 170                        | 1.5             |              | 504      | 43   | 74           | Ь               |
|        | 13:45   | 23.4                   | 172                        | 1.5             | [2.2         | 502      | 45   | 75           | 6               |
|        | 1390    | 26.7                   | 171                        | 15              | 122          | 503      | 43   | 75           | 6               |
|        | 13:25   | 300                    | 171                        | 1.5             | ا کھا        | 502      | 44   | つフ           | 6               |
|        | 13:30   | 33.3                   | 170                        | 15              | 122          | 501      | 414  | 78           | 6               |
| _      | 13:35   | 36.6                   | 170                        | 1.5             | 122          | 503      | 44   | 75           | 6               |
| end    | 13:40   | 3334                   | 165                        | 1.5             | 122          | 502      | 45   | 79           | 6               |
|        | 13:35   |                        |                            |                 |              |          |      |              |                 |
| end    | 13:40   |                        |                            |                 |              |          |      |              |                 |
|        | :       |                        |                            |                 |              |          |      |              |                 |
|        | :       |                        |                            |                 |              |          |      |              |                 |
|        | :       | -                      |                            |                 |              | _        |      |              |                 |
|        | :       |                        |                            |                 |              |          | ***  |              | _               |
|        | ;       |                        |                            |                 |              |          |      |              |                 |
|        | : 1     |                        |                            |                 |              |          |      |              |                 |
|        | : !     |                        |                            |                 |              |          |      |              |                 |
|        | :       |                        |                            |                 |              |          |      |              |                 |
|        | :       |                        |                            |                 |              |          |      |              |                 |
|        | :       |                        | Ī                          |                 |              |          |      |              |                 |
|        |         |                        | 1                          |                 |              |          | 1:5  |              |                 |
|        | :       |                        |                            |                 |              |          |      |              |                 |
|        | :       |                        |                            |                 |              |          |      |              |                 |
|        | :       |                        |                            |                 |              | i        |      |              |                 |
|        |         |                        |                            |                 |              |          |      |              | ·<br>           |
|        |         |                        |                            |                 |              |          |      |              |                 |
|        |         |                        |                            |                 |              |          |      |              |                 |
|        | :       | _                      |                            |                 |              |          |      |              |                 |
| mpany: | It Powe | c Plant (              | Cast                       | Date            | e: <u> </u>  | 9-12     | Page | ə            | _               |
| Site:  | 6D 00-  | Het                    |                            | Run #           | ı: <u>"3</u> |          | Of   |              |                 |

| Port #      |          | Gas<br>Meter           | Velocity<br>Head    | Orifice<br>Head |             | Temper | ature °F | ·            |                  |
|-------------|----------|------------------------|---------------------|-----------------|-------------|--------|----------|--------------|------------------|
| Point#      | Time     | Volume<br>(Cubic Feet) | Ap card<br>(In/H2O) | ΔH<br>(In. H₂O) | Stack       | Filter | imp.     | Gas<br>Meter | Vac.<br>(In. Hg) |
| start       | 13:50    | 0.000                  | เาฉ                 | 1.5             | 124         | 508    | 42       | 81           | 5                |
|             | 13:55    | 3.4                    | 175                 | 1.5             | 122         | 507    | 42       | ८८           | 6                |
|             | 14:00    | 6.8                    | 178                 | 1.5             | 123         | 503    | 40       | ೫೨           | 6                |
|             | 14:05    | 101                    | 175                 | 1.5             | 123         | 502    | 40       | 84           | 6                |
| •           | 14:10    | 13:3                   | 172                 | 1.5             | 124         | 523    | 41       | 83           | 6                |
|             | 14:15    | 16:9                   | 171                 | 15              | 123         | 50)    | યહ       | \$4          | ۵                |
|             | 14:20    | 18.9                   | 170                 | 15              | 123         | 507    | 4/1      | . 84         | 6                |
|             | 14:25    | 23.8                   | 170                 | 1.5             | 123         | 508    | 43       | 84           | 6                |
|             | 14:30    | 27.5                   | 170                 | 1.5             | 123         | 506    | 40       | 23           | 6                |
|             | 14:35    | 30.8                   | 170                 | 1.5             | 192         | 506    | 40       | 81           | G                |
| _           | 14:40    | 34.1                   | 170                 | 1.5             | 123         | 502    | 41       | 80           | 6                |
|             | 14:46    | 37.4                   | 170                 | 1.5             | 122         | 501    | 41       | 79           | ه                |
| end         | 14:50    | 40558                  |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          | _            |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | : ,      |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              | _                |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             | _      |          | _            |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 |             |        |          |              |                  |
|             | :        |                        |                     |                 | -           |        |          | _            |                  |
|             | :        |                        |                     |                 |             |        |          | _            |                  |
|             |          |                        |                     |                 |             |        |          |              |                  |
|             |          |                        |                     |                 |             | -      |          | -            |                  |
| <del></del> |          |                        |                     |                 |             | 1      | 1        | _            |                  |
|             | :        |                        |                     | _               |             |        |          |              | 1                |
| Company:    | oulf Por | us Plant               | Crist               | Dat             | e:          | 9-12   | Page     | 9            | -                |
| Site:       | 600      | Het                    |                     | Run :           | #: <u> </u> | _      | Of       |              |                  |

|                                                                          | 2255 Schillinger Rd.<br>Semmes, Al. 3657 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Office: (251) 633-4120<br>Fax: (251) 633-2285                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                               |  |  |
|--------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|--|--|
| COMPANY 6                                                                | ulf Power _                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE_8-1=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OPERAT                                                                  | OR MC/BH                                      |  |  |
| PLANT Cris                                                               | . <del>t</del>                           | BOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | No. 5-201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DHa                                                                     | _Y                                            |  |  |
| UNIT FGD                                                                 | 0.16                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | METHOD CTA-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                                               |  |  |
| BALANCE No.                                                              | STD. V                                   | VT. (gm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BALANCE R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ESPONCE (gm)                                                            |                                               |  |  |
| Run                                                                      |                                          | Run<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Run                                                                     | _5_                                           |  |  |
| Nozzie<br>Calibration                                                    | Filter<br>Number                         | Nozzie<br>Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Filter<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nozzie<br>Calibration                                                   | Filter<br>Number                              |  |  |
| NA<br>inches                                                             |                                          | - A justines                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _ <i>M</i> _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - MA<br>siches                                                          | -NA                                           |  |  |
| METER F - つり、802 - Free - 0.002 - BBT - 39,803                           | tina                                     | METER R  39.58'  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1990  1 | EADING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39,802                                                                  |                                               |  |  |
| LEAK (<br>System                                                         |                                          | LEAK C<br>System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LEAK (<br>System                                                        |                                               |  |  |
| Pre Post  10 10  In Hg  0.00 0,00                                        | Pre Post Impact Static                   | Pre Post    O     O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pre Post Impact Status Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pre Post    1                                                           | Pre Post Impact Impact State                  |  |  |
| VOLUM<br>LIQUID WATE                                                     | ME OF<br>R COLLECTED                     | VOLUM<br>LIQUID WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VOLUM<br>LIQUID WATER                                                   |                                               |  |  |
| Imp 1 Imp 2  21 9 1114  Final Final  Policy India  Not Net  GAS ANALYSIS | Imp 3 Imp 4 / 155.2                      | lmp1 lmp2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | imp 3 imp 4  18,46.4 Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Freat Fre | Imp 1 Imp 2  2.15 11.6 Final Final  1.00 Initial Physical  Not  Red Not | Imp 3 Imp 4    19576   Final   1846.9     Net |  |  |
| 0, 10.0%                                                                 | -0.15                                    | 0, 10.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0, (3.0%                                                                | 70/5                                          |  |  |
| co. 120%                                                                 | ts. HyO                                  | co. 13070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h. H <sub>i</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00. 10%                                                                 | n.H <sub>i</sub> O                            |  |  |
| co <u></u>                                                               | BAROMETRIC<br>2975                       | ∞ ∠                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BAROMETRIC<br>29.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ∞ ∠                                                                     | BAROMETRIC<br>25.75<br>h. Hg                  |  |  |
| Form Revised 10/10/06                                                    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page 1 of                                                               |                                               |  |  |

|                                                           | 2255 Schillinger Rd.<br>Semmes, Al. 3657 |                        | (                         | Office: (251) 633-4120<br>Fax: (251) 633-2285 |                      |               |  |  |  |
|-----------------------------------------------------------|------------------------------------------|------------------------|---------------------------|-----------------------------------------------|----------------------|---------------|--|--|--|
| COMPANY                                                   | ulf Power_                               |                        | DATE 8-10                 | OPERA                                         | TOR                  | /BH           |  |  |  |
| PLANT_C(13)                                               | <u> </u>                                 | BOX                    | No. <u> S-ない</u>          | DHa                                           | _Y                   |               |  |  |  |
| UNIT_FGO                                                  |                                          |                        | METHOD CTA                |                                               |                      |               |  |  |  |
| BALANCE No.                                               | STD. V                                   | VT. (gm)               | BALANCE R                 | ESPONCE (gm) _                                |                      |               |  |  |  |
| Run                                                       | _1_                                      | Run<br>                |                           | Run<br>I                                      |                      | -             |  |  |  |
| Nozzle<br>Calibration                                     | Filter<br>Number                         | Nozzle<br>Calibration  | Filter<br>Number          | Nozzle<br>Calibration                         |                      | lter<br>mber  |  |  |  |
| MA<br>Inches                                              | . ———                                    | NA nohea               |                           | Inches                                        |                      |               |  |  |  |
| METER R                                                   | EADING                                   | METER A<br>43.15 8     | EADING                    | METER READING                                 |                      |               |  |  |  |
|                                                           | retal                                    | 000,                   | tridical                  |                                               |                      | _             |  |  |  |
| 31.955                                                    | mai .                                    | 42.158                 | Nei                       |                                               |                      | _             |  |  |  |
| **                                                        | <del>1)41</del>                          | ļ <b>~</b>             | Net                       | Nam —                                         | Nel                  |               |  |  |  |
| LEAK C                                                    | HECK<br>Pitot                            | LEAK C                 | HECK<br>Pitot             | LEAN<br>System                                | CHECK<br>Pito        | t             |  |  |  |
| Pre Post                                                  | Pre Post                                 | Pre Post               | Pre Post                  | Pre Post                                      | Pre_                 | Post          |  |  |  |
| 11 10                                                     | Impact Amount                            | 10 S<br>br. Hg br. Hg  | Impact Impact             |                                               | impact               | Impact        |  |  |  |
| in. Hg In. Hg<br>ال ال  Static Static                            | 6. Hg 10. Hg 0.00      | Statio Static             | in. Hg in. Hg                                 | State                | Static        |  |  |  |
| VOLUM<br>LIQUID WATER                                     |                                          | VOLUM<br>LIQUID WATER  |                           |                                               | JME OF<br>ER COLLECT | ED            |  |  |  |
| Imp1 Imp2                                                 | imp3 / Imp4                              | imp1 imp2              | Imp3 Imp4                 | lmp1 lmp2                                     | lmp3                 | Imp 4         |  |  |  |
| 71 112                                                    |                                          | 214 117<br>Final Final | 1821.2<br>  Final   Final | Final Final                                   | Finai                | Fina)         |  |  |  |
| 103   133   Install   111   12                            | 216                                      | 100 103<br>minul minul | 1807.7                    | Initial Initial                               | Index                | (ntiel        |  |  |  |
| Not Not                                                   | / 21,6<br>Nat Nea                        | 114 17                 | / 13D                     | Nat Net                                       | Nei I                | Net           |  |  |  |
|                                                           | Total 144.U                              |                        | Total 1445                |                                               | Total                |               |  |  |  |
| Gas analysis<br>0, 10.0 40                                | STATIC                                   | GAS ANALYSIS           | STATIC                    | GAS ANALYSIS                                  | STA                  | ПС            |  |  |  |
| co. 9.5%                                                  | In H <sub>1</sub> ,0                     | 0, 7/2 %               | 10. ( )                   | O,                                            |                      | <del>40</del> |  |  |  |
| co <u>Z</u>                                               | BAROMETRIC                               | co                     | BAROMETRIC                | ω <u> </u>                                    | BAROM                | ETRIC         |  |  |  |
| -                                                         | 27/10<br>In Hg                           | -                      | 25.75<br>h.Hg             |                                               |                      | <del></del>   |  |  |  |
| Form Revised 10/10/06                                     |                                          |                        |                           | Page 1 o                                      | f                    |               |  |  |  |

| Port #  |      | Gas<br>Meter           | Velecity<br>Head        | Orifice<br>Head              |                | Temper | ature °F       |              |                 |
|---------|------|------------------------|-------------------------|------------------------------|----------------|--------|----------------|--------------|-----------------|
| Point#  | Time | Volume<br>(Cubic Feet) | (in. [H <sub>2</sub> O) | ΔH<br>(In. H <sub>2</sub> O) | Stack          | Filter | Imp.           | Gas<br>Meter | Vac.<br>(in. Hg |
| start   | 8:55 | 0000                   | 170                     | 1.5                          | 124            | 603    | 1-R            | 32           | 8               |
|         | 9:00 | .3.4                   | 170                     | 1.5                          | 125            | 505    | 42             | フ٩           | 5               |
|         | 9:05 | . 6.8                  | 170                     | 1.5                          | 124            | 504    | પડ             | 8=           | 5               |
|         | 9:10 | . 10.2                 | 170                     | 1.5                          | 125            | 503    | <del>ዛ</del> گ | 8,1          | 5               |
|         | 9:15 | . 13.5                 | 170                     | 1.5                          | 124            | 502    | 42             | 83           | 5               |
|         | 9:20 | 16.5                   | 170                     | 1.5                          | 125            | 505    | 42             | 84           | 5               |
|         | 9:35 | 19.9                   | 170                     | 1.5                          | 124            | 502    | 43             | 80           | 5               |
|         | 9:30 | 23.2                   | 170                     | 1.5                          | 124            | 505    | 44             | 80           | 5               |
|         | 9:35 | 26.5                   | 175                     | 15                           | 124            | 506    | 44             | 80           | 5               |
|         | 9:40 | 27.7                   | 170                     | 1.5                          | 124            | 525    | 45             | 78           | 5               |
|         | 9:45 | 32.7                   | 170                     | 15                           | 125            | 507    | 45             | 77           | 5               |
|         | 9:50 | 36.5                   | 170                     | 1.5                          | 124            | 506    | 45             | 75           | 5               |
| end     | 9:55 | 39,955                 |                         | <u> </u>                     |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | :    | ·                      |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         |      |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | : !  | ,                      |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        | _              |              |                 |
|         | : '  |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              | _              |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | ;    |                        |                         |                              |                |        |                |              |                 |
|         | :    | ; ·                    |                         |                              |                |        |                |              |                 |
|         | :    | ,                      |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         | :    |                        |                         |                              |                |        |                |              |                 |
|         |      | er Plan                | + Cist                  | Date                         | e: <i>8-10</i> | 2-12   | Page           |              | -               |
| Site: F | 60 a | Alet                   |                         | Run #                        | #:_1           |        | _ Of           |              |                 |

|                               |          | Gas                             | Velocity                      | Orifice                 |                |                  |       |              |                 |
|-------------------------------|----------|---------------------------------|-------------------------------|-------------------------|----------------|------------------|-------|--------------|-----------------|
| Port #<br>Point#              | Time     | Meter<br>Volume<br>(Cubic Feet) | Head<br>کا⊃ صفرا<br>(In./H₂O) | Head<br>∆H<br>(In. H₂O) | Stack          | Temper<br>Filter | Imp.  | Gas<br>Meter | Vac.<br>(in. Hg |
| start                         | 10:05    | 0.00                            | 173                           | 1.5                     | 124            | 501              | 12747 | 73           | 6               |
|                               | 10:10    | 34                              | 170                           | 1.5                     | 124            | 502              | 47    | フス           | 6               |
|                               | 10:15    | 6,8                             | 170                           | 15                      | 124            | 501              | 4/8   | フユ           | 6               |
|                               | 10:20    | 10.2                            | 170                           | 1.5                     | 125            | 504              | 48    | 72           | C               |
|                               | 10:25    | 13.5                            | 173                           | 1.5                     | 124            | 505              | 116   | 74           | 6               |
|                               | 12:33    | 16.7                            | 172                           | 1.5                     | 124            | 506              | 116   | 75           | 6               |
|                               | 10:35    | 20.2                            | 175                           | 1.5                     | 124            | 505              | 47    | 76           | 6               |
|                               | 10:40    | 23.5                            | 170                           | 1.5                     | 125            | 506              | 47    | 79           | 6               |
|                               | 10:45    | 26.8                            | 170                           | 1.5                     | 124            | 507              | 47    | 79           | 6               |
|                               | (3:52    | 30.3                            | 170                           | 1.5                     | 124            | 508              | 46    | 81           | 6               |
|                               | 10:55    | 33.3                            | 170                           | 1.5                     | 125            | 504              | 46    | 82           | 6               |
|                               | 11:00    | 36.9                            | 170                           | 1.5                     | 124            | 522              | 47    | 82           | 6               |
| end                           | 11:05    | 40.158                          |                               | A,                      |                |                  |       |              |                 |
|                               | :        |                                 |                               | P                       |                |                  |       |              |                 |
|                               | :        |                                 |                               |                         |                |                  |       |              |                 |
|                               | :        |                                 | -                             |                         |                |                  |       |              |                 |
|                               | :        |                                 |                               |                         |                |                  |       |              |                 |
|                               | :        |                                 |                               |                         |                |                  |       |              |                 |
|                               | :        |                                 | _                             |                         |                |                  |       |              |                 |
|                               | :        |                                 |                               |                         | , .            |                  |       |              |                 |
|                               | :        |                                 | , ,                           |                         |                |                  |       |              |                 |
|                               | :        |                                 |                               | ,                       |                |                  |       |              |                 |
|                               | :        | 1 .                             |                               |                         |                |                  |       |              |                 |
|                               | :        |                                 |                               |                         |                |                  |       | _            |                 |
|                               | <u> </u> |                                 |                               |                         |                |                  |       |              |                 |
|                               | :        | -                               |                               |                         | ř.             |                  |       |              |                 |
|                               | :        |                                 |                               |                         |                |                  |       |              |                 |
|                               | :        |                                 |                               |                         |                | -                |       |              |                 |
|                               | <u>:</u> |                                 |                               |                         |                |                  |       |              |                 |
|                               |          |                                 |                               |                         |                |                  |       | _            |                 |
|                               |          |                                 | -                             |                         |                |                  |       | _            |                 |
|                               |          |                                 |                               |                         |                | :                |       |              |                 |
|                               | :        |                                 |                               |                         |                |                  |       |              |                 |
| Tom Revised 8/24/02  Company: |          | ower Pla                        | at Co                         | 5 Dat                   | e: <i>8-</i> / | 0-12             | Page  |              | _               |
| Site:                         | F.60     | Outlet                          |                               | Run                     | #: <u>2</u>    |                  | Of    |              | _               |

| Port #                              |           | Gas<br>Meter           | Velocity<br><b>⊿fig⊇</b> d       | Orifice<br>Head              |               | Temner | ature °F |              |               |
|-------------------------------------|-----------|------------------------|----------------------------------|------------------------------|---------------|--------|----------|--------------|---------------|
| Point#                              | Time      | Volume<br>(Cubic Feet) | AP cond<br>(In.H <sub>2</sub> O) | ΔH<br>(In. H <sub>2</sub> O) | Stack         | Filter | Imp.     | Gas<br>Meter | Vac<br>(In. H |
| shad                                | 11:35     | ر ډ د رن               | 170                              | 15                           | 125           | 4507   | 45       | 76           | 6             |
|                                     | 11:40     | 33                     | 170                              | 1.5                          | 125           | 509    | 46       | 81           | 6             |
|                                     | 11:45     | 6.4                    | <i>17°</i>                       | 1.5                          | 124           | 506    | 47       | 80           | 6             |
|                                     | 11:50     | 10.0                   | 170                              | 1.5                          | 125           | 503    | 45       | 76           | 6             |
|                                     | 11:55     | 133                    | 170                              | 1.5                          | 125           | 504    | 46       | 73           | 6             |
|                                     | 12:00     | 16.7                   | 170                              | 1.5                          | 124           | 552    | 46       | 72           | 6             |
|                                     | 12:05     | 15.9                   | 170                              | 1.5                          | 124           | 503    | 47       | 70           | 6             |
|                                     | 12:10     | 23.5                   | 170                              | 1,5                          | 124           | 526    | 48       | 68           | 6             |
|                                     | 12:15     | 26.6                   | 170                              | 1.5                          | 124           | 507    | 47       | 48           | 6             |
| · · - · - · · · · · · · · · · · · · | 12:20     | 30.0                   | 170                              | 1.5                          | 125           | 511    | 47       | 69           | 6             |
|                                     | 12:25     | 33.3                   | 170                              | 1.5                          | 124           | 501    | 46       | 72           | C             |
|                                     | 12:30     | 36.6                   | 170                              | 15                           | 124           | 504    | 46       | 74           | 6             |
| en                                  | 12:35     | 39.802                 |                                  |                              | ,             |        |          |              |               |
|                                     | :         |                        |                                  |                              | _             |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  | ·                            |               |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        | -        |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  |                              | _             |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | : 1       |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  |                              |               | '      |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          |              |               |
|                                     | ;         |                        |                                  |                              |               | -      |          |              |               |
|                                     | : 1       |                        |                                  |                              |               |        |          |              |               |
|                                     | ;         |                        |                                  |                              | -             |        |          |              |               |
|                                     | :         |                        |                                  |                              |               |        |          | _            |               |
|                                     | :         |                        |                                  |                              |               |        | -        |              |               |
| evised 8/24/02<br>ipany:(           | sulf Powe | r Plant (              | Cirst                            | Date                         | s: <u>8-1</u> | 0-12   | Page     |              | -             |
|                                     | 6D out    |                        |                                  | Run #                        | t: 3          |        |          |              |               |

| Port #                       |          | Gas<br>Meter           | Velocity<br>Head      | Orifice<br>Head |                            | Tempera | ature °F |              |                 |
|------------------------------|----------|------------------------|-----------------------|-----------------|----------------------------|---------|----------|--------------|-----------------|
| Point#                       | Time     | Volume<br>(Cubic Feet) | ( <del>M. H₂O</del> ) | ΔΗ<br>(In. H₂O) | Stack                      | Filter  | lmp.     | Gas<br>Meter | Vac.<br>(In. Hg |
| start                        | 13:25    | 600.0                  | 170                   | 15              | 9125                       | 510     | 45       | 74           | 6               |
|                              | 13:30    | 3.6e                   | 170                   | 15              | 124                        | 508     | 46       | 74           | <i>.</i> 6      |
|                              | 13:35    | 26.6                   | 170                   | 15              | 124                        | 510     | 45       | 74           | 6               |
|                              | 13:40    | 9.9                    | 170                   | 1.5             | 125                        | 507     | 45       | 75           | 6               |
|                              | 13:45    | 13.3                   | เนอ                   | 15              | 125                        | 505     | 46       | 76           | 6               |
|                              | 13:50    | 16.6                   | 170                   | 1.5             | ızıy                       | 501     | 47       | 75           | ۷               |
|                              | 13:55    | 18.9                   | 170                   | 1.5             | 124                        | 504     | 45       | 74           | 6               |
|                              | 14:00    | 22.2                   | いつの                   | 1.5             | 125                        | 504     | 44       | 75           | 6               |
|                              | 14:05    | 25,4                   | 170                   | 1.5             | 125                        | 505     | 45       | 76           | Ċ               |
|                              | 14:00    | 27.9                   | 170                   | 1.5             | 125                        | 507     | 48       | 77           | G               |
|                              | 14:15    | 31.2                   | 120                   | 1.5             | 134                        | 506     | 49       | 78           | 6               |
|                              | 14:20    | 34,5                   | 170                   | 1.5             | la5                        | 507     | 50       | 78           | 6               |
| ene                          | 14:25    | 39.584                 | 120                   | 1.5             | 125                        | -5      |          |              |                 |
|                              |          |                        | ·                     |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              |          |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        | _                     |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          | -            |                 |
|                              |          |                        |                       |                 |                            |         |          |              |                 |
|                              |          |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         | ·        |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 | -                          |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
|                              | :        |                        | -                     |                 |                            |         |          |              |                 |
|                              | :        |                        |                       |                 |                            |         |          |              |                 |
| Paussa                       | ;        |                        |                       |                 |                            |         |          |              |                 |
| m Revised 8/24/02<br>OMPANY: | Gulf Pow | ur Plant               | Crist                 | Date            | e: <u>\$</u> -1 <b>0</b> 0 | -/2     | Page     | ,            | _               |
| Site: F                      | `6D C    | offet                  |                       | Run (           | <sub>#:</sub> 3            |         | Of       |              |                 |

| Port # |       | Gas<br>Meter           | Velecity<br>Head               | Orifice<br>Head |                              | Tempera | Temperature °F |              |                 |
|--------|-------|------------------------|--------------------------------|-----------------|------------------------------|---------|----------------|--------------|-----------------|
| Point# | Time  | Volume<br>(Cubic Feet) | ΔΡ (<br>( <del>Iπ. H</del> 2O) | ΔH<br>(In. H₂O) | Stack                        | Filter  | lmp.           | Gas<br>Meter | Vac.<br>(In. Ho |
| start  | 14:35 | 0000                   | 170                            | 1,5             | 125                          | 509     | 49             | 81           | 6               |
|        | 14:40 | 3.7                    | 170                            | 15              | 125                          | 510     | 50             | 81           | 6               |
|        | 14:45 | 69                     | 170                            | 15              | 125                          | 509     | 5)             | 78           | C               |
|        | 14:50 | 10.0                   | 170                            | 15              | 125                          | 505     | 51             | 75           | 6               |
|        | 14:55 | 13.3                   | 170                            | 1.5             | 125                          | 510     | 50             | 73           | C               |
|        | 16:00 | 16.6                   | 170                            | 1.5             | 125                          | 508     | <del>5</del> 2 | フス           | ۶               |
|        | 15:05 | 20.1                   | 170                            | 1.5             | 126                          | 505     | 52             | 7.0          | 6               |
|        | 15:10 | 23.4                   | 120                            | 1.5             | 125                          | 504     | 53             | 74           | ک               |
|        | 15:15 | 26.7                   | 170                            | 1.5             | 126                          | 506     | 52             | 75           | G               |
|        | 15:20 | 20. 40.8               | 170                            | 1.5             | 125                          | 508     | 53             | 76           | حر              |
|        | 15:25 | 33.1                   | t 7.0                          | 1.5             | 125                          | 511     | 53             | 78           | 6               |
|        | 15.30 | 36.3                   | 170                            | 1.5             | 125                          | 505     | 53             | フフ           | 6               |
| red    | 15:35 | 39,700                 |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 | _                            |         |                | _            |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         | _              |              |                 |
|        |       |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         | _              |              |                 |
|        | ;     | -                      |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | :     |                        |                                |                 |                              |         |                |              |                 |
|        | - I P | ower Plant             | - (                            | +               | 82                           | 1.2-12  |                |              |                 |
|        |       | Outlet                 |                                |                 | e: <u>8 -</u><br>#: <u>5</u> |         |                | ·            | -               |

TITLE **PROJECT** Continued From Page Coult Power CTM-13 FGD offet Juyust 9+10 2012 Standardization of Ballz 9.5 2.92 9,3 + 90 + 225 = 20.25 20,42 2.42 10 ₹= 20.335 (0.1005)(1) = x/20.335 N.V. = N.V. X= 0.00494 81 8-9-11 sample wolver = 485 mL condessos entch aliquatualume = 5 mL aliquet volume = 10 ml 5,95 600 9.68 9.70 5.50 545 9.18 9.20 R= 5,475 x = 29/ 20 RA 8-9-11 sample volume Hand catch sample volume = 420 condensor wash aliquet volume = 5 4.58 aliquot volume = 10mL 465 7.71 05 775 4115 0.5 415 05 408 X=7.23 7.21 7.25 R3 sandle volume = 32,0 Halla catch condensy wash aliqued volume =10mb 719 7.00 05 5. 62 5.74 6.60 6:5 0,50 0.50 X = 5.18 35 5.24 5.12 8-9-1) RU condensa wish sample volume = Haon cotel 5.52 40 5,27 5 32 5.50 0.50 050 623 050 5.00 6.02 X = 5:01 4.77 472 45 Continued To Page SIGNATURE DATE

воок **PROJECT** TITLE Continued From Page 8-10-12 sample volume = 415 the Og cartch sample volume condensor (insa 5 5.53 5.70 7.85 0.50 050 5.70 TX = 5.115 5.03 7.35 7.32 8-10-12 82 Hara catch sample valuence condonsor first Banflevoline = 325 ml gliquid volume = 9.58 9.62 7.00 6.70 0,50 0,50 0.50 050 X= 6401 x= 910 6.50 9.08 9.12 B3 8-12-12 Habs rotch conditions sample uslume = 27.0 ml sample volume = 426 aliquatiolone - 5mc aliquat volume= 10n1 10.0 9,5 1.70 710 95 237 7.16 0.5 25 0.5 050 دی،ه 0.5 250 90 + 1.87 = N.87 1.2 = 10.7 X=10.785 Standaridization of Ballz INL 010041N 42504 3.85° 95 95 3.70 250 a5 25 70199 × 320 = 2.70 (1)(0.1000) 0.00462 N 21.775 8-10-12 sample volume = 421 nl Haoz ratch coul since symple value = 27,5 aligust valumo = 54L 35 Aliquet volume = 10mL 1-55 110.0 25 6.72 90 1.5: 11.0) 9.5 = 664 aug -10,7 = 10.85 aug 40 8-10-12 15433 Ve = 40.5 Va 10 2 H2O2 cold = 1bod 10.0 2-78 D: ay: 6.92 avy= 11.77 2.28 Continued To Page Read C South

| TIT            |                | <u> </u>   |         | P    | ROJECT   |                |                                         |
|----------------|----------------|------------|---------|------|----------|----------------|-----------------------------------------|
| Conti          | nued From Page |            |         |      |          |                |                                         |
| $\vdash$       | lea an an al   | bland      |         | 11 0 | 8-6 t    | 8-8            | 3.1.1                                   |
| <del>  -</del> | 150AOpanol     | 0.5        | 10mL    |      | 2.5      | 0.5            | 5mil ah                                 |
| 5              | <u>05</u>      | <u>0,5</u> | alignot |      | <u> </u> | 0.5            | x=0                                     |
|                | 0              | . 0        | 1179001 |      | 0        | <del>-0,</del> | X > U                                   |
|                | \\\ \neq 0     | 7 <u> </u> |         |      | •        |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                | 40,6           | lank       | 8588    | -10  | SAL ali  | Tust .         | 1                                       |
| 10             | 1.55           |            | 1.61    |      |          |                |                                         |
|                | 0.5            |            | 0.5     |      |          |                |                                         |
|                | 1.05           |            | 1.11    | X=   | 108      |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
| 15             |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                | _          |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
| 20             |                |            |         |      |          |                |                                         |
| 20             |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
| <u> </u>       |                |            |         |      |          |                | ,                                       |
|                |                |            |         |      |          |                |                                         |
| 25             |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
| 30             |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      | _        |                |                                         |
| ļ              |                |            |         |      |          |                |                                         |
| 35             |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                | ·              |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
| 40             |                |            |         |      |          |                |                                         |
| ·              |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
| 45             |                | ·          |         |      |          |                |                                         |
|                |                |            |         |      |          |                |                                         |
|                |                |            |         |      |          |                | 1 to 1 to 1 to 1 to 1 to 1 to 1 to 1 to |
|                |                |            |         |      |          |                | Continued To Page                       |
| SIGNATI        | URE            |            |         |      | Ď        | ATE            |                                         |
|                |                |            |         |      |          |                |                                         |

APPENDIX C SAMPLE CALCULATIONS

# SAMPLE CALCULATIONS, RUN 1 GULF POWER COMPANY PLANT CRIST - FGD STACK Monday, August 06, 2012

Absolute Stack Pressure (inches Mercury)

$$Ps = P_{bar} + \frac{\overline{P_g}}{13.6}$$

 $P_g = \text{Stack Static Pressure}_{\text{(inches Water)}} = -0.10$ 

 $P_{bar}$  = Barometric Pressure (inches Mercury) = 29.77

 $P_{\rm s} = 29.76$ 

### Absolute Pressure at the Dry Gas Meter (inches Mercury)

$$P_{m} = P_{bar} + \frac{\overline{\Delta H}}{13.6}$$

 $P_{har}$  = Barometric Pressure (inches Mercury) = 29.77

 $\Delta H = \text{Average pressure difference of orifice}_{\text{(inches Water)}} = 1.50$ 

 $P_{\rm m} = 29.88$ 

### **Volume of Gas Sampled Measured by Dry Gas Meter**

(corrected to standard conditions, SDCF)

$$Vm(Std) = K_1 V_m Y \left[ \frac{P_{bar} + \frac{\overline{\Delta H}}{13.6}}{\overline{T_m}} \right]$$

 $K_1 = Degrees R/inches Mercury = 17.64$ 

 $V_m$  = Volume of gas sample as measured by dry gas meter (actual cubic feet) = 40.11

 $Y = Dry gas meter calibration factor_{(dimensionless)} = 0.9890$ 

 $P_{bar}$  = Barometric Pressure (inches Mercury) = 29.77

 $\Delta$  H = Average pressure difference of orifice (inches H2O) = 1.50

 $T_m = \text{Average absolute temperature of the dry gas, degrees Rankin} = 540.8$ 

 $V_{m(Std)} = 38.652$ 

#### Volume of Water Vapor in Gas Sample

$$V_{w (Std)} = 0.04^{\circ}/0^{\circ}/V_{lc}$$

 $V_{lc}$  = Total volume of liquid collected in impingers and silica gel (milliliters) = 103.5

 $V_{w \, (Std)} = 4.872$ 

### Water Vapor in the Gas Stream proportion by volume (dimensionless)

$$B_{ws} = \frac{V_{w(Std)}}{V_{m(Std)} + V_{w(Std)}}$$

 $V_{w \text{ (std)}} = \text{Volume of water in gas sample}_{\text{ (corrected to standard conditions)}} = 4.872$ 

 $V_{m(std)}$  = Volume of sample measured by dry gas meter (standard conditions) = 38.652

 $B_{ws} = 0.112$ 

### Molecular Weight of Stack Gas (dry basis, lb/lb mole)

### $M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%N_2 + \%CO)$

 $%CO_2 = Number percent by volume (dry basis from gas analysis) = 10.5$ 

 $\%O_2$  = Number percent by volume (dry basis from gas analysis) = 11.0

 $%N_2+%CO = Number percent by volume (dry basis from gas analysis) = 78.5$ 

 $M_d = 30.12$ 

### Molecular Weight of Stack Gas (wet basis, lb/lb mole)

$$M_s = M_d(1 - B_{ws}) + 18(B_{ws})$$

 $M_d$  = Molecular weight of stack gas (dry basis, lb/lb mole) = 30.12

 $B_{ws}$  = Water vapor in the gas stream (proportion by volume, dimensionless) = 0.112

 $M_s = 28.76$ 

## Volume of Gas Sampled Through Nozzle (actual cubic feet)

$$V_{n} = \left[ (0.002669)(V_{lc}) + Y \frac{V_{m}}{\overline{T_{m}}} \left( P_{bar} + \frac{\overline{\Delta H}}{13.6} \right) \right] \frac{\overline{T}_{s}}{P_{s}}$$

| ` ` ' ]                                                                                 |        |
|-----------------------------------------------------------------------------------------|--------|
| $V_{lc}$ = Total volume of liquid collected in impingers and silica gel (milliliters) = | 103.5  |
| Y = Dry gas meter calibration factor (dimensionless) =                                  | 0.9890 |
| $V_m$ = Volume of gas sample as measured by dry gas meter (actual cubic feet) =         | 40.110 |
| Tm = Average absolute temperature of dry gas meter, degrees Rankin =                    | 540.8  |
| P <sub>bar</sub> = Barometric Pressure (inches Mercury) =                               | 29.77  |
| $\Delta H$ = Average pressure difference of orifice (inches water) =                    | 1.50   |
| Ts = Average absolute temperature of stack, degrees Rankin =                            | 578.7  |
| $P_s$ = Absolute stack pressure (inches Mercury) =                                      | 29.76  |
| $V_{\rm p} =$                                                                           | 47.984 |