Golder Associates Inc.

6241 NW 23rd Street, Suite 500 Gainesville, FL USA 32653 Telephone (352) 336-5600 Fax (352) 336-6603 www.golder.com

February 7, 2005

Florida Department of Environmental Protection Bureau of Air Regulation 2600 Blair Stone Road, MS #5505

Attention: Ms. Cindy Phillips, P.E.

RECEIVED'

FEB 08 2005

BUREAU OF AIR REGULATION

RE: Air Construction Permit Project No.: 0250020-016-AC

Request for Revision to Air Construction Permit No.: 0250020-010-AC

Tarmac Pennusco Cement Plant, Medley, Miami-Dade County

Dear Ms. Phillips:

Based on discussions at our meeting on December 15, 2004, and subsequent phone conversations with you concerning revision of Air Construction Permit No. 0250020-010-AC, Tarmac Pennusco Cement Plant (Tarmac) is submitting the attached revisions to its pending construction permit application. The revised application reflects the following changes:

- 1. Revised emission rate calculation tables (see Attachment A) reflecting several facility or operational modifications as described below:
 - Emissions from the Coal Mill, Kiln, Cooler, and Raw Mill are all vented through the Main Stack, which has a PM/PM₁₀ emission limit of 0.125 lb/ton of kiln feed. Previously, however, PM/PM₁₀ emissions from the Coal Mill have been calculated separately than those for the Main Stack. Based on the results of recent compliance tests for the Main Stack (see Attachment B), PM emissions from the Main Stack, during concurrent operation of the Kiln, Cooler, Raw Mill, and Coal Mill, are well below the permit limit of 0.125 lb/ton of kiln feed. As such, Tarmac requests that the permit limit for the Main Stack include emissions from the Coal Mill. Since the emission limit for the Main Stack is a function of the kiln feed rate, and Tarmac may operate the Coal Mill when the kiln is not operating, Tarmac requests that the Coal Mill be permitted to operate an additional 400 hours per year when the Kiln/Cooler/Raw Mill is not operating. PM emissions from the Coal Mill will still be vented from the Main Stack during these 400 hours. PM/PM₁₀ emissions resulting from operation of the Coal Mill, while the Kiln/Cooler/Raw Mill is down, are presented in Table 2-1. Tables 2-4 and 2-5 have been revised to indicate that the Main Stack emissions include emissions from the Coal Mill.
 - Removal of baghouses K347 and K447 associated with the Clinker Handling System (Table 2-2).
 - Modification of the finish mill operation to include Finish Mill Nos. 1, 3, 4, and 6 (i.e., Finish Mill No. 2 has been eliminated and Finish Mill No. 6 has been added). Note that Air Construction Permit No. 0250020-010-AC allowed construction of Finish Mill No. 6, but required both Finish Mill Nos. 1 and 2 to be shutdown upon startup of Finish Mill No. 6. The specifications and emissions for Finish Mill No. 6 are the same as those contained in Permit No. 0250020-010-AC.

- Limitation of the operating hours of all finish mills to 7,884 hours per year each (Table 2-3).
- Shutdown of the existing Slag Dryer (Emission Unit ID No. 020).
- 2. Revised Prevention of Significant Deterioration (PSD) Applicability Determination tables (see Attachment C) showing that New Source Review under PSD regulations is not triggered by this project.
- 3. Revised permit application forms reflecting the facility and operational modifications described above (Attachment D).
- 4. A description of the operation of the Finish Mill No. 3 O-Sepa Separator (Attachment E).

Thank you for consideration of this additional information. Please call or email me if you have any questions regarding this information at (352) 336-5600 or dbuff@golder.com.

Sincerely,

GOLDER ASSOCIATES INC.

Scott A. McCann, P.E.

Associate Engineer

David A. Buff, P.E., Q.E.P.

David a. Buff

Principal Engineer

DB/dmw

Enclosures

cc: A.A. Linero, DEP

S. Quaas, Tarmac America

P. Wong, DERM

Y:\Projects\2005'0537511 Tarmac Medley\4\4.1\020105\L020105 doc

ATTACHMENT A

EMISSION RATE CALCULATION TABLES

Table 2-1. Coal Handling System (EU ID No. 001) Potential Emission Rates

			Operating			·	Poten	tial PM/P	M_{10}
Emission	Equipment	New or	Hours	Exhaust 1	Flow Rate	Temperature	Em	ission Rat	ie ^a
Unit	ID No.	Existing	(hr/yr)	(acfm)	(dscfm)	(°F)	(gr/dscf)	(lb/hr)	(TPY)
Coal transfer	461.BF130	New	4,000	1,400	1,339	92	0.0095	0.11	0.22
Coal transfer Coal mill	461.BF230 461.BF300	New New	4,000 7,884	1,400 54,500	1,339 45,245	92 176	0.0095 0.01	0.11 3.88	0.22 0.78
Coal feeder	461.BF650	New	7,884	294	243	178	0.0095	0.02	0.08
Coal feeder	461.BF750	New	7,884	294	243	178	0.0095	0.02	0.08
Coal mill feed	461.BF350	New	7,884	5,500	5,261	92	0.01	0.45	1.78
					Revised	l Potential Emissi	on Rates =	4.59	3.15

^a PM₁₀ emission rate calculated as 100 percent of PM emission rate.

b The existing emission limit for the Main Stack (see Tables 2-4 and 2-5 for emissions from the Raw Mill and Pyroprocessing) of 0.125 lb/ton of dry clinker, includes emissions from the Coal Mill which are also vented to the atmosphere through the Main Stack. So that Tarmac may operate the coal mill when the Raw Mill and Pyroprocessing are down, 400 hours of emissions from the Coal Mill operating alone are included here. The emissions associated with the additional 7,484 hours of operation for the Coal Mill are included with the potential emissions for the Main Stack.

Table 2-2. Clinker Handling and Storage System (EU ID No. 002) Potential Emission Rates

			Operating					Potential	PM/PM ₁₀	
Emission	Equip.	New or	Hours	Exhaust 1	Flow Rate	_Temperature		Emissic	n Rate ^a	
Unit	ID No.	Existing	(hr/yr)	(acfm)	(dscfm)	(°F)	(gr/dscf)	(gr/acf)	(lb/hr)	(TPY)
Clinker Silos 21-23 & 26-28	F633	Existing	8,760	6,000		77		0.01	0.51	2.25
Clinker transfer	441.BF540	New	7,884	4,600	3,421	250	0.0095		0.28	1.10
Clinker silo	481.BF140	New	7,884	12,000	8,924	250	0.0095		0.73	2.86
Clinker transfer	481.BF540	New	8,760	4,700	3,495	250	0.0095		0.28	1.25
Clinker bins	481.BF330	New	8,760	6,100	4,536	250	0.0095		0.37	1.62
Clinker transfer	481.BF640	New	8,760	4,700	3,495	250	0.0095		0.28	1.25
Clinker transfer	481.BF730	New	8,760	18,700	13,906	250	0.0095		1.13	4.96
Clinker transfer	481.BF930	New	8,760	15,000	11,155	250	0.0095		0.91	3.98
					-	Revised Potenti	al Emission	Rates =	4.50	19.26

 $^{^{\}rm a}$ PM $_{\rm 10}$ emission rate calculated as 100 percent of PM emission rate.

Table 2-3. Finish Mills (EU ID No. 003) Potential Emission Rates

			Operating					Potential	PM/PM ₁₀	
Emission	Equipment	New or	Hours	Exhaust 1	Flow Rate	Temperature		Emissi	on Rate ^a	
Unit	ID No.	Existing	(hr/yr)	(acfm)	(dscfm)	(°F)	(gr/dscf)	(gr/acf)	(lb/hr)	(TPY)
inish Mill No. 1 Baghouse	F113	Existing	7,884	11,800				0.01	1.01	3.99
nish Mill No. 1 Baghouse	F130	Existing	7,884	12,000				0.01	1.03	4.05
nish Mill No. 3 Baghouse	F330	Existing	7,884	20,000				0.01	1.71	6.76
nish Mill No. 3 Baghouse	F332	Existing	7,884	13,500				0.01	1.16	4.56
nish Mill No. 3 Baghouse	533.BF340	New	7,884	77,800	65,307	169	0.0095		5.32	20.96
inish Mill No. 4 Baghouse	F432	Existing	7,884	17,000				0.01	1.46	5.74
inish Mill No. 4 Baghouse	F605	Existing	7,884	4,000				0.01	0.34	1.35
inish Mill No. 4 Baghouse	F603	Existing	7,884	8,000				0.01	0.69	2.70
inish Mill No. 4 Baghouse	F430	Existing	7,884	30,000				0.01	2.57	10.14
inish Mill No. 4 Baghouse	F604	Existing	7,884	8,000				0.01	0.69	2.70
inish Mill No. 6 Baghouse	531.BF01	New	7,884	97,300	80,905		0.0095		6.59	25.97
inish Mill No. 6 Baghouse	531.BF02	New	7,884	25,900	21,536		0.0095		1.75	6.91

^a PM₁₀ emission rate calculated as 100 percent of PM emission rate.

Table 2-4. Raw Mill and Pyroprocessing Unit System (EU ID No. 005) Potential Emission Rates

Equip.	New or	Operating Hours	Exhaust l	Flow Rate	Temperature		otential nission				Potentia Emissio	••
ID No.	Existing	(hr/yr)	(acfm)	(dscfm)	(°F)	(gr/dscf)	(lb/hr)		(TPY)		(lb/hr)	(TPY)
331.BF200	New	7,884	515,000	360,637	294	a	50.0	d	175.0	d	42.0 b,d	147.0 b,d
331.BF740	New	7,884	4,250	2,953	300	0.0095	0.24		0.95		0.24 °	0.95 °
341.BF350	New	8,760	3,760	3,112	178	0.0095	0.25		1.11		0.25 °	1.11 °
351.BF410	New	7,884	4,000	3,310	178	0.0095	0.27		1.06		0.27 °	1.06 °
351.BF440	New	7,884	4,760	3,939	178	0.0095	0.32		1.26		0.32 °	1.26 °
351.BF470	New	7,884	4,100	3,409	175	0.0095	0.28		1.09		0.28 ^e	1.09 °
331.BF645	New	7,884	3,500	2,910	175	0.0095	0.24		0.93		0.24 ^c	0.93 °
				Revised F	otential Emissi	ion Rates =	51.60		181.41		43.60	153.41
	Revise	d Potential I	Emission Ra	ates withou	ıt Kiln/Cooler/J	Raw Mill =	1.6		6.4		1.6	6.4

^a Emission note based on an emission factor of 0.125 lb/ton of dry kiln feed. See Table 2-5.

^b PM₁₀ emission rate calculated as 84 percent of PM emission rate.

^c PM₁₀ emission rate calculated as 100 percent of PM emission rate.

^d Includes emissions from the Coal Mill(EU ID No. 001) when the Kiln/Cooler/Raw Mill and Coal Mill are operating simultaneously.

Table 2-5. Dry Kiln, Cooler, and Raw Mill (EU ID No. 005) Potential Emissions Vented From the Main Stack

	Activity Fa	ectors	
Kiln Feed	l (Dry KF)	Clinker Pro	duction (CP)
24-hour	Maximum	Annual	Maximum
Average	Annual	Average	Annual
(TPH)	(TPY)	(TPH)	(TPY)
400	2,792,250	208 ^b	1,642,500

	Particulate M	atter			Sulfur Diox	ide			Nitrogen Oxi	des	
Emissio	n Factor	Emissi	on Rate ^c	Emissio	n Factor	Emissi	on Rate	Emissio	n Factor	Emissi	ion Rate
24-Hour Average (lb/ton dry KF)	Annual Average (lb/ton dry KF)	(lb/hr)	(TPY)	24-Hour Average (Ib/ton CP)	Annual Average (lb/ton CP)	(lb/hr)	(TPY)	24-Hour Average (lb/ton CP)	Annual Average (lb/ton CP)	(lb/hr)	(TPY)
0.125	0.125	50.0	175	1.540	0.981	320ª	806ª	3.46	2.38	720ª	1,953

	Carbon Mor	ıoxide		Vo	latile Organic C	ompounds			Sulfuric Acid	id Mist		
Emissio	n Factor	Emissi	on Rate	Emissio	n Factor	Emissi	on Rate	Emissio	n Factor	Emissi	on Rate	
24-Hour Average (Ib/ton CP)	Annual Average (lb/ton CP)	(lb/hr)	(TPY)	24-Hour Average (lb/ton CP)	Annual Average (lb/ton CP)	(lb/hr)	(TPY)	24-Hour Average (lb/ton CP)	Annual Average (lb/ton CP)	(lb/hr)	(TPY)	
2.76	1.77	576ª	1,457ª	0.190	0.189	40ª	155ª	0.0108	0.0108	2.24	8.86	

^a Permitted Limit.

^b Based on 7,884 hours per year of operation.

^c Includes Coal Mill (EU ID No. 001) emissions during concurrent operation of Kiln/Cooler/Raw Mill and Coal Mill. For emissions due to Coal Mill operating when when the Kiln/Cool/Raw Mill are shut down, see Table 2-1.

Table 2-6. Raw Material Handling and Storage System (EU ID No. 006) Potential Emission Rates

			Operating				Potential PM/PM ₁₀			
Emission	Equip.	New or	Hours	Exhaust 1	Flow Rate	Temperature	Em	ission Ra	te ^a	
Unit	ID No.	Existing	(hr/yr)	(acfm)	(dscfm)	(°F)	(gr/dscf)	(lb/hr)	(TPY)	
Lime/gyp silos	232.BF01	New	4,000	5,170	5,170	68	0.0095	0.42	0.84	
Additives	311.BF650	New	7,884	8,500	8,130	92	0.0095	0.66	2.61	
Additives	311.BF750	New	7,884	7,750	7,413	92	0.0095	0.60	2.38	
Additives	321.BF470	New	7,884	10,800	10,039	108	0.0095	0.82	3.22	
Additives	311.BF950	New	7,884	11,700	10,876	108	0.0095	0.89	3.49	
					Rovisad F	otential Emissi	on Pates =	3.39	12.54	

 $^{^{\}rm a}$ PM $_{10}$ emission rate calculated as 100 percent of PM emission rate.

ATTACHMENT B

SUMMARY OF STACK TEST RESULTS FOR THE MAIN STACK

PM/PM10 Compliance Testing November 16-19, 2004

SUMMARY OF PARTICULATE MATTER EMISSION TEST DATA

Plant : Titan American

Source/Unit : Kiln - Raw Mill "ON"

Date: November 17 and 18, 2004

										<u> </u>
				Dry Kiln				Pa	articulate Mat	ter
Run				Feed Rate	Stack Gas Flow Rate	Stack Gas Temperature	Stack Gas Moisture	Conc.	Emission Rate	Emission Rate
No.	Date	Time	Coal Mill	(Tons/hr)	(SCFMD)	(F)	(%)	(gr/dscf)	(Lbs/Hr)	(lb/ton DKF)
1 1	11/17/04	0824 - 0930	On	320.0	323,969	197	14.2	0.0028	7.71	0.024
2	11/17/04	1449 - 1602	Off	334.8	334,223	200	12.9	0.0021	6.00	0.018
3	11/18/04	1858 - 2002	Off	313.5	344,055	211	15.2	0.0023	. 6.92	0.022
StdDev				10.9	10,044	7	1,1	0.0003	0.85	0.003
Average				322.8	334,082	203	14.1	0.0024	6.88	0.021

PM/PM10 Compliance Testing November 16-19, 2004

SUMMARY OF PARTICULATE MATTER EMISSION TEST DATA

Plant : Titan American

Source/Unit : Kiln - Raw Mill "OFF"

Date: November 16 and 18, 2004

				Process				Pa	articulate Mat	ter
Run No.	Date	Time	Coal Mill	Weight Rate (Tons/hr)	Stack Gas Flow Rate (SCFMD)	Stack Gas Temperature (F)	Stack Gas Moisture (%)	Conc. (gr/dscf)	Emission Rate (Lbs/Hr)	Emission Rate (lb/ton DKF)
1 2	11/16/04 11/18/04	2005 - 2111 0920 - 1027	On On	319.7 314.3	299,034 353,523	377 352	8.6 8.3	0.0040 0.0026	10.23 7.82	0.032 0.025
StdDev Average				3.8 317.0	38,530 326,278	17 365	0.2 8.5	0.0010 0.0033	1.70 9.03	0.005 0.028

PM data extracted from: Koogler & Associates Test Report

Report Date: January 12, 2005

ATTACHMENT C

PSD APPLICABILITY DETERMINATION TABLES

Table 3-2. Future Maximum Annual Emissions From Material Handling Point Sources, Tarmac Pennsuco

Emission Unit	Emission Source	Point ID	Baghouse ID	Emission Basis	Potential Annual PM Emission Rate (TPY)	Potential Annual PM ₁₀ Emission Rate (TPY)
001	Coal Handling/Coal Mill System	003	6 baghouses	See Table 2-1	3.15	3.15
002	Clinker Handling and Storage	008	8 Baghouses	See Table 2-2	19.26	19.26
003	Finish Mill Nos. 1, 3, 4, and 6	010 - 013	12 baghouses	See Table 2-3	95.85	95.85
004	Cement Storage, Packhouse, & Loadout	014 - 016	11 Baghouses	As Permitted in 0250020-010-AC	25.80	25.80
005	Raw Mill and Pyroprocessing without Kiln/Cooler/Raw Mill	021	7 Baghouses	See Table 2-4	6.40	6.40
006	Raw Material Handling and Storage		5 Baghouses	See Table 2-6	12.54	12.54
				Total	163.00	163.00

Table 3-3. Summary of Quantifiable Fugitive Emissions for the New Cement Plant, Tarmac

		ed Annual ns (TPY)	Estimated Hourly Emissions (lb/hr)		
Source	PM	PM ₁₀	PM	PM ₁₀	
Coal Handling Facilities-Batch Drop	0.32	0.11	0.28	0.1	
Coal Handling Facilities-Vehicular Traffic	27.46	9.61	26.4	9.24	
Raw Material Blending Area ^b	<u>2.66</u>	0.93	<u>2.56</u>	0.89	
Total	30.44	10.65	29.24	10.23	

Notes:

^a Based on average hourly emissions assuming 2,080 hr/yr actual operation.

^b See Table A-1.

Table 3-7. Net Change in Emissions and PSD Significant Emission Rates, Tarmac Cement Plant Modification

			PSD Bas	seline Emi	ssions (TPY)	Future Potential Emissions (TPY)				PSD			
Pollutant	Kiln No. 2	Kiln No. 3	Material Handling Point Sources	Slag Dryer	Material Handling Fugitive Sources	Total	New Raw Mill Preheater/ Calciner/Kiln/ Cooler	Material Handling Point Sources	Material Handling Fugitive Sources	Total	Net Increase in Emissions (TPY)	Significant Emission Rate (TPY)	PSD Review Applies?	
Particulate Matter [PM(TSP)]	33.15	112.01	167.87	9.12	43.96	366.1	175.0	163.0	30.44	368.4	2.3	25	No	
Particulate Matter (PM ₀)	28.18	94.09	167.87	9.12	15.39	314.6	147.0	163.0	10.65	320.7	6.0	15	No	
Sulfur Dioxide	14.38	1,399.76		18.19		1,432.3	806			806.0	-626.3	40	No	
Nitrogen Dioxide	435.09	1,836.06		12.81	- -	2,284.0	1,953			1,953.0	-331.0	40	No	
Carbon Monoxide	52.65	1,312.25		3.20		1,368.1	1,457			1,457.0	88.9	100	No	
Votatile Organic Compounds	7.03	123.13		0.34		130.5	155			155.0	24.5	40	No	
Sulfuric Acid Mist	0.61	256.58		0.078		257.27	8.9			8.9	-248.4	7	No	
Lead	0.00757	0.03096		0.00080		0.0393	0.0465	٠ ــ		0.0465	0.0071	0.6	No	
Mercury .	0.00458	0.01875		0.00027		0.0236	0.0149			0.0149	-0.0087	0.1	No	

NEG = Negligible.

ATTACHMENT D

REVISED PERMIT APPLICATION FORMS

(Note: Forms for all emission units for PM/PM₁₀ are provided to be complete, although some emission units are not being revised.)

APPLICATION INFORMATION

Pr	ofessional Engineer Certification				
1.	Professional Engineer Name: David A. Buff				
	Registration Number: 19011				
2.	Professional Engineer Mailing Address				
	Organization/Firm: Golder Associates Inc.**				
	Street Address: 6241 NW 23 rd Street, Suite 500				
	City: Gainesville State: FL Zip Code: 32653-1500				
3.	Professional Engineer Telephone Numbers				
	Telephone: (352) 336 - 5600 ext. Fax: (352) 336 - 6603				
4.	Professional Engineer Email Address: dbuff@golder.com				
5.	Professional Engineer Statement:				
	I, the undersigned, hereby certify, except as particularly noted herein*, that:				
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and				
	(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.				
	(3) If the purpose of this application is to obtain a Title V air operation permit (check here \square , if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.				
	(4) If the purpose of this application is to obtain an air construction permit (check here \boxtimes , if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here \square , if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.				
	(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units (check here \square , if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.				
	Signature Date				
	(seal)				

^{*} Attach any exception to certification statement.

** Board of Professional Engineers Certificate of Authorization #00001670

Section [1] of [5] Coal Handling System

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter - Total

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1.	Pollutant Emitted:	2. Total Percent Efficiency of Control:				
3.	5. I otelitiai Elliissiolis.			 Synthetically Limited? Yes ☐ No 		
5.	Range of Estimated Fugitive Emissions (as to tons/year	applicable):				
6.	Emission Factor: See note below Reference:			7. Emissions Method Code: 2		
8.	Calculation of Emissions:					
	Includes 4.6 lb/hr and 3.15 TPY from the baging fugitive PM emissions. For hourly and annual Table 2-1 in Part B. For fugitive PM emission	al emission calc	ulations fe	or the baghouses, see		
9.	Pollutant Potential/Estimated Fugitive Emis Emissions from Coal Mill Baghouse are inclu concurrently with Kiln/Cooler/Raw Mill.			ons when operating		

Section [1] of [5] **Coal Handling System**

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter - Total

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -**ALLOWABLE EMISSIONS**

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

All	IOWADIE Emissions Allowable Emissions 1	OI <u>Z</u>	-				
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date Emissions:	of Allowable			
3.	Allowable Emissions and Units:	4.	Equivalent Allowable	Emissions:			
	0.0095 gr/dscf		4.6 lb/hour	3.2 tons/year			
5.	Method of Compliance: EPA Method 9 Test, except EPA Method 5 for	the	Coal Mill (461.BF300)				
6.	6. Allowable Emissions Comment (Description of Operating Method): Allowable in gr/dscf, applies to baghouses only, except for Coal Mill and Coal Mill feed baghouse. Allowable for these baghouses is 0.01 gr/dscf. Coal Mill allowable reflects 400 hr/yr operation when Kiln/Cooler/Raw Mill are shut down. See Table 2-1 in Part B for calculation of potential emissions.						
All	lowable Emissions Allowable Emissions 2	of <u>2</u>	-				
1.	Basis for Allowable Emissions Code: RULE	owable Emissions Code: 2. Future Effective Date of Allowable Emissions:					
3.	Allowable Emissions and Units: 3.59 p ^{A0.62}	4. Equivalent Allowable Emissions: 29.6 lb/hour 116.7 tons/year					
5.	Method of Compliance: EPA Method 9 test.						
6.	6. Allowable Emissions Comment (Description of Operating Method): Applies to Coal Mill only. Calculated based on maximum 24-hour block average usage rates of 30 TPH and 190,000 TPY. However, emissions from the coal mill are controlled using a baghouse to 3.88 lb/hr and 3.15 TPY (see Table 2-1 in Part B).						
All	owable Emissions Allowable Emissions	c	f				
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date Emissions:	of Allowable			
3.	Allowable Emissions and Units:	4.	Equivalent Allowable lb/hour	Emissions: tons/year			
5.	Method of Compliance:						
6.	Allowable Emissions Comment (Description	of (Operating Method):				

Section [1] of [5] Coal Handling System

POLLUTANT DETAIL INFORMATION

Page [2] of [2] Particulate Matter – PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1. Pollutant Emitted: PM ₁₀	2. Total Percent Efficiency of Control:			
3. Potential Emissions: 14.0 lb/hour 12.5	4. Synthetically Limited? ✓ Yes 🗆 No			
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: See note below Reference:	7. Emissions Method Code:			
8. Calculation of Emissions: Includes 4.6 lb/hr and 3.15 TPY (same as PM) for baghouses and 9.35 lb/hr and 9.72 TPY			
from fugitive PM emissions. For hourly and	, -			
9. Pollutant Potential/Estimated Fugitive Emis Emission from Coal Mill Baghouse are inclu concurrently with Kiln/Cooler/Raw Mill.	ssions Comment: ded in Main Stack emissions when operating			

Section [1] of [5] Coal Handling System

POLLUTANT DETAIL INFORMATION

Page [2] of [2] Particulate Matter – PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

l.	Basis for Allowable Emissions Code: OTHER	2. Future Effective Date of Allowable Emissions:					
3.	Allowable Emissions and Units: 0.0095 gr/dscf	4. Equivalent Allowable Emissions: 4.6 lb/hour 3.2 tons/year					
5.	Method of Compliance: EPA Method 9						
6.	Allowable Emissions Comment (Description Allowable in gr/dscf, applies to baghouses on baghouse. Allowable for these baghouses is 400 hr/yr operation when Kiln/Cooler/Raw Mill calculation of potential emissions.	ly, except for Coal Mill and Coal Mill feed 0.01 gr/dscf. Coal Mill allowable reflects					
<u>All</u>	owable Emissions Allowable Emissions	of					
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:					
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year					
5.	Method of Compliance:	·					
6.	Allowable Emissions Comment (Description	of Operating Method):					
All	owable Emissions Allowable Emissions	of					
1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:					
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year					
5.	Method of Compliance:						
6.	Allowable Emissions Comment (Description	of Operating Method):					

Section [2] of [5] Clinker Handling and Storage

POLLUTANT DETAIL INFORMATION Page [1] of [2]

Particulate Matter - Total

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Complete for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1.	Pollutant Emitted: PM	2. Total Percent Efficiency of Control:			
3.	Potential Emissions: 4.50 lb/hour 19.3	tons/year	4. Synth ⊠ Ye	netically Limited?	
5.	Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6.	Emission Factor: See comment. Reference:			7. Emissions Method Code: 0	
8.	Calculation of Emissions:			1	
İ	Assumed as 100 percent of PM emissions. S	See Table 2-2 in	Part B for	emission calculations.	
,					
				İ	
i					
9.	Pollutant Potential/Estimated Fugitive Emis	sions Comment	-		

DEP Form No. 62-210.900(1) – Form Effective: 06/16/03

1. Basis for Allowable Emissions Code:

Section [2] of [5] Clinker Handling and Storage

POLLUTANT DETAIL INFORMATION

2. Future Effective Date of Allowable

Page [1] of [2] Particulate Matter - Total

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Ellissions Allowable Ellissions 1 of 2	Allowable Emissions	Allowable	Emissions	1	of	2
--	---------------------	-----------	------------------	---	----	---

	OTHER	Emissions:				
3.	Allowable Emissions and Units: 0.0095 gr/dscf	4.	Equivalent Allowable E 3.99 lb/hour	Emissions: 17.0 tons/year		
5.	Method of Compliance: EPA Method 9	<u></u>				
6.	Allowable Emissions Comment (Description Allowable in gr/dscf applies to all Baghouses potential emission calculations.			n Part B for		
All	lowable Emissions Allowable Emissions 2	of <u>2</u>				
1.	Basis for Allowable Emissions Code: OTHER	ſ	Future Effective Date o Emissions:	f Allowable		
3.	Allowable Emissions and Units: 0.01 gr/dscf	4. Equivalent Allowable Emissions: 0.51 lb/hour 2.25 tons/yea				
5.	Method of Compliance: EPA Method 9					
6.	Allowable Emissions Comment (Description Allowable in gr/dscf applies to Baghouse F63		perating Method):			
<u>All</u>	owable Emissions Allowable Emissions	of				
1.	Basis for Allowable Emissions Code:		Future Effective Date o Emissions:	f Allowable		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable E lb/hour	Emissions: tons/year		
	Method of Compliance:					
6.	Allowable Emissions Comment (Description	of O	perating Method):			

Section [2] of [5] Clinker Handling and Storage

POLLUTANT DETAIL INFORMATION

Page [2] of [2] Particulate Matter – PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1.	Pollutant Emitted: PM ₁₀	2. Total Percent Efficiency of Control:			
3.	Potential Emissions:		4. Synth	etically Limited?	
	4.50 lb/hour 19.3	tons/year	⊠ Ye	es 🗌 No	
5.	Range of Estimated Fugitive Emissions (as	applicable):			
	to tons/year				
6.	Emission Factor: See comment.			7. Emissions	
				Method Code:	
	Reference:			0	
8.	Calculation of Emissions:				
0	Assumed as 100 percent of PM emissions. S			emission calculations.	
9.	Pollutant Potential/Estimated Fugitive Emis	sions Comment	i:		

Section [2] of [5] Clinker Handling and Storage

POLLUTANT DETAIL INFORMATION

Page [2] of [2] Particulate Matter – PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 2

1.	OTHER	2. Future Effective Date of Allowable Emissions:					
3.	Allowable Emissions and Units: 0.0095 gr/dscf	4.	Equivalent Allowable Emissions: 3.99 lb/hour 17.0 tons/year				
5.	Method of Compliance: EPA Method 9						
6.	Allowable Emissions Comment (Description Allowable in gr/dscf applies to Baghouse F63: emission calculations.						
<u>All</u>	lowable Emissions Allowable Emissions 2 o	of <u>2</u>	•				
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:				
3.	Allowable Emissions and Units: 0.01 gr/dscf	4.	Equivalent Allowable Emissions: 0.51 lb/hour 2.25 tons/year				
5.	Method of Compliance: EPA Method 9						
6.	Allowable Emissions Comment (Description Allowable in gr/dscf applies to Baghouse F633		Operating Method):				
All	lowable Emissions Allowable Emissions	o	f				
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:				
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year				
5.	Method of Compliance:						
6.	Allowable Emissions Comment (Description	of C	Operating Method):				

DEP Form No. 62-210.900(1) – Form Effective: 06/16/03

Section [3] of [5] Finish Mill Nos. 1, 3, 4, and 6

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter - Total

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1.	Pollutant Emitted: PM	2. Total Percent Efficiency of Control:			
3.	Potential Emissions:		_		ally Limited?
	24.31 lb/hour 95.85	tons/year	∑ Ye	es	□ No
5.	Range of Estimated Fugitive Emissions (as	applicable):			
	to tons/year				
6.	Emission Factor: See comment.			7.	Emissions
					Method Code:
	Reference:				0
8.	Calculation of Emissions:				
	See Part B, Table 2-3.				
					·
ı					
9.	Pollutant Potential/Estimated Fugitive Emiss	sions Comment	·•		
,	1 ondiant 1 otomical Estimated 1 agritte Emiss		••		

Section [3] of [5] Finish Mill Nos. 1, 3, 4, and 6

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter - Total

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

	Allowable	Emissions	Allowable	Emissions	1	of	2
--	-----------	------------------	-----------	------------------	---	----	---

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.01 gr/acf	4.	Equivalent Allowable Emissions: 10.65 İb/hour 42.0 tons/year
5.	Method of Compliance: EPA Method 9.	<u> </u>	,, <u> </u>
6.	Allowable Emissions Comment (Description Applies to all baghouses except Finish Mill No. 6 Baghouse Nos. 531.BF01 and 531.BF02.	o. 3 l	
<u>Al</u>	lowable Emissions Allowable Emissions 2	of <u>2</u>	_
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.0095 gr/dscf	4.	Equivalent Allowable Emissions: 13.66 lb/hour 53.8 tons/year
5.	Method of Compliance: EPA Method 9.		
6.	Allowable Emissions Comment (Description Permit limit applies to Finish Mill No. 3, Baghouse Nos. 531.BF01 and 531.BF02.		
Al	lowable Emissions Allowable Emissions	<u> </u>	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of C	Operating Method):

Section [3] of [5 Finish Mill Nos. 1, 3, 4, and 6

POLLUTANT DETAIL INFORMATION

Page [2] of [2] Particulate Matter – PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1.	Pollutant Emitted: 2. Total Percent Efficiency PM ₁₀			ency of Control:
3.	Potential Emissions:		4. Synth	etically Limited?
	24.31 lb/hour 95.85	tons/year	∑Ye	es 🗌 No
5.	Range of Estimated Fugitive Emissions (as	applicable):		
	to tons/year			
6.	Emission Factor: See comment.			7. Emissions Method Code:
	Reference:			0
8.	Calculation of Emissions:			
0	See Part B, Table 2-3.	iC.		·
9.	Pollutant Potential/Estimated Fugitive Emiss	sions Comment	:	

Section [3] of [5 Finish Mill Nos. 1, 3, 4, and 6

POLLUTANT DETAIL INFORMATION

Page [2] of [2] Particulate Matter – PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions	Allowable Emissions	1	of	2
---------------------	---------------------	---	----	---

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.01 gr/acf	4.	Equivalent Allowable Emissions: 10.65 lb/hour 42.0 tons/year
5.	Method of Compliance: EPA Method 9.		
6.	Allowable Emissions Comment (Description Applies to all baghouses except Finish Mill No. 6 Baghouse Nos. 531.BF01 and 531.BF02.	o. 3 l	
All	lowable Emissions Allowable Emissions 2	of <u>2</u>	<u>-</u>
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.0095 gr/dscf	4.	Equivalent Allowable Emissions: 13.66 lb/hour 53.8 tons/year
5.	Method of Compliance: EPA Method 9.		
6.	Allowable Emissions Comment (Description Permit limit applies to Finish Mill No. 3, Bagho Baghouse Nos. 531.BF01 and 531.BF02.		
All	lowable Emissions Allowable Emissions	0	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of C	Operating Method):

DEP Form No. 62-210.900(1) - Form

Effective: 06/16/03

Section [4] of [5] Raw Mill and Pyroprocessing Unit

POLLUTANT DETAIL INFORMATION Page [2] of [8]

Particulate Matter - Total

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

Pollutant Emitted: PM	2. Total Perc	eni Emcie	ency of Control:			
Potential Emissions:		-	netically Limited?			
51.6 lb/hour 181.4	tons/year	⊠ Ye	es 🗌 No			
•	applicable):					
		·- <u>-</u>				
Emission Factor: See Comment			7. Emissions			
_			Method Code:			
Reference:			0			
Calculation of Emissions:						
See Part B, Tables 2-4 and 2-5.						
			th the			
Kiln/Cooler/Raw Mill.						
	Potential Emissions: 51.6 lb/hour Range of Estimated Fugitive Emissions (as to tons/year Emission Factor: See Comment Reference: Calculation of Emissions: See Part B, Tables 2-4 and 2-5. Pollutant Potential/Estimated Fugitive Emis Includes emissions from the Coal Mill when the Coal Mill whe	Potential Emissions: 51.6 lb/hour Range of Estimated Fugitive Emissions (as applicable): to tons/year Emission Factor: See Comment Reference: Calculation of Emissions: See Part B, Tables 2-4 and 2-5. Pollutant Potential/Estimated Fugitive Emissions Comment Includes emissions from the Coal Mill when operating concurrence.	Potential Emissions: 51.6 lb/hour 181.4 tons/year Range of Estimated Fugitive Emissions (as applicable): to tons/year Emission Factor: See Comment Reference: Calculation of Emissions: See Part B, Tables 2-4 and 2-5. Pollutant Potential/Estimated Fugitive Emissions Comment: Includes emissions from the Coal Mill when operating concurrently with the potential process of the coal Mill when operating concurrently with the coal Mill when ope			

Section [4] of [5] Raw Mill and Pyroprocessing Unit

POLLUTANT DETAIL INFORMATION Page [2] of [8]

Particulate Matter - Total

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 4

1.	. Basis for Allowable Emissions Code: 2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units: 0.125 lb/ton dry Kiln feed	4.	Equivalent Allowabl 50.0 lb/hour	e Emissions: 175 tons/year
5.	Method of Compliance: Annual Method 5			
6.	Allowable Emissions Comment (Descripti Emission limit based on Permit No. 025002 only, and includes emissions from Coal Mil Kiln/Cooler/Raw Mill and Coal Mill are oper	0-010- <i>i</i> II (Emi:	AC. Applies to emission Unit ID 001) whe	

Allowable Emissions 2 of 4

1.	Basis for Allowable Emissions Code: RULE	Emissions:			
3.	Allowable Emissions and Units: 0.1 lb/ton dry Kiln feed	4.	Equivalent Allowable Emissions: 40.0 lb/hour 139.6 tons/year		
5.	Method of Compliance: Annual EPA Method 5				
6.	Allowable Emissions Comment (Description MACT 40 CFR 63.1345(a)(1) for cooler only ba emissions are emissions out the main stack.				

Allowable Emissions Allowable Emissions 3 of 4

1.	Basis for Allowable Emissions Code: RULE 2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units: 0.3 lb/ton dry Kiln feed	4.	Equivalent Allowable Emissions: 120.0 lb/hour 418.8 tons/year	
5.	Method of Compliance: Annual EPA Method 5			
6.	Allowable Emissions Comment (Description Emission limit is MACT 40 CFR 63.1343(c)(1) are emissions out main stack.		· •	

DEP Form No. 62-210.900(1) – Form Effective: 06/16/03

Section [4] of [5] Raw Mill and Pyroprocessing Unit

POLLUTANT DETAIL INFORMATION

Page [2] of [8] Particulate Matter - Total

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 4 of 4

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.0095 gr/dscf	4.	Equivalent Allowable Emissions: 1.60 lb/hour 6.4 tons/year
5.	Method of Compliance: Annual Method 5		
6.	Allowable Emissions Comment (Description Emission limit requested by applicant. Applie Kiln/Cooler/Raw Mill Baghouse No. 331.BF200	s to	emissions from baghouses other than
All	lowable Emissions Allowable Emissions	of_	_
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
	Method of Compliance: Allowable Emissions Comment (Description	of (Operating Method):
All	lowable Emissions Allowable Emissions _ o	f	
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of C	Operating Method):

Section [4] of [5] Raw Mill and Pyroprocessing Unit

POLLUTANT DETAIL INFORMATION Page [3] of [8]

Particulate Matter - PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1.	Pollutant Emitted: PM ₁₀	2. Total Perc	ent Efficie	ency of Control:
3.	Potential Emissions:		4. Synth	netically Limited?
	43.6 lb/hour 153.4	tons/year	⊠ Y€	es 🗌 No
5.	Range of Estimated Fugitive Emissions (as	applicable):		
	to tons/year			
6.	Emission Factor:			7. Emissions
	- a			Method Code:
	Reference:			0
8.	Calculation of Emissions:			
	See Part B, Table 2-4.			
	000 1 411 2, 142 10 2 11			
9.	Pollutant Potential/Estimated Fugitive Emis	sions Commen	t·	
7.	Includes emissions from the Coal Mill when			th the
	Kiln/Cooler/Raw Mill.			

Section [4] of [5] Raw Mill and Pyroprocessing Unit

POLLUTANT DETAIL INFORMATION

Page [3] of [8] Particulate Matter – PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions	Allowable	Emissions	1	of	2

1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units: 0.105 lb/ton dry Kiln feed	4.	Equivalent Allowable Er 42.0 lb/hour	nissions: 147.0 tons/year
5.	Method of Compliance: Annual Method 5			
6.	Allowable Emissions Comment (Description Emission limit based on Permit No. 0250020-0 only, and includes emissions from Coal Mill (Coal Mill are operating concurrently.	10-/	AC. Applies to emissions	
Al	lowable Emissions Allowable Emissions 2	of <u>2</u>	-	
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units: 100% of PM	4.	Equivalent Allowable Er 1.6 lb/hour	nissions: 6.4 tons/year
5.	Method of Compliance: Annual Method 9			
6.	Allowable Emissions Comment (Description Emission limit requested by applicant. Applie exhausting through Main Stack.			es not
Al	lowable Emissions Allowable Emissions _ o	of	-	
l.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable En lb/hour	missions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of	Operating Method):	

Section [5] of [5] Raw Material Handling

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter - Total

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

1.	Pollutant Emitted: PM	2. Total Percent Efficiency of Control:					
3.	Potential Emissions:		_	etically Limited?			
	3.39 lb/hour 12.5	tons/year	⊠ Y€	es No			
5.	Range of Estimated Fugitive Emissions (as	applicable):					
	to tons/year						
6.	Emission Factor: 0.0095 gr/dscf			7. Emissions			
				Method Code:			
	Reference: Applicant Request			0			
8.	Calculation of Emissions:						
	See Part B, Table 2-6.			•			
9.	Pollutant Potential/Estimated Fugitive Emis	sions Comment	t:				
	3						
l							

Section [5] of [5] Raw Material Handling

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter - Total

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS

Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions _ of _ 1. Basis for Allowable Emissions Code: 2. Future Effective Date of Allowable **OTHER Emissions:** 3. Allowable Emissions and Units: 4. Equivalent Allowable Emissions: 0.0095 gr/dscf 3.39 lb/hour 12.5 tons/year 5. Method of Compliance: **EPA Method 9** 6. Allowable Emissions Comment (Description of Operating Method): Applicant request. Allowable Emissions Allowable Emissions __ of ___ 2. Future Effective Date of Allowable 1. Basis for Allowable Emissions Code: **Emissions:** 3. Allowable Emissions and Units: 4. Equivalent Allowable Emissions: lb/hour tons/year 5. Method of Compliance: 6. Allowable Emissions Comment (Description of Operating Method): Allowable Emissions Allowable Emissions of 2. Future Effective Date of Allowable 1. Basis for Allowable Emissions Code: **Emissions:** 3. Allowable Emissions and Units: 4. Equivalent Allowable Emissions: lb/hour tons/year 5. Method of Compliance: 6. Allowable Emissions Comment (Description of Operating Method):

Section [5] of [5] Raw Material Handling

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter – PM₁₀

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Potential/Estimated Fugitive Emissions

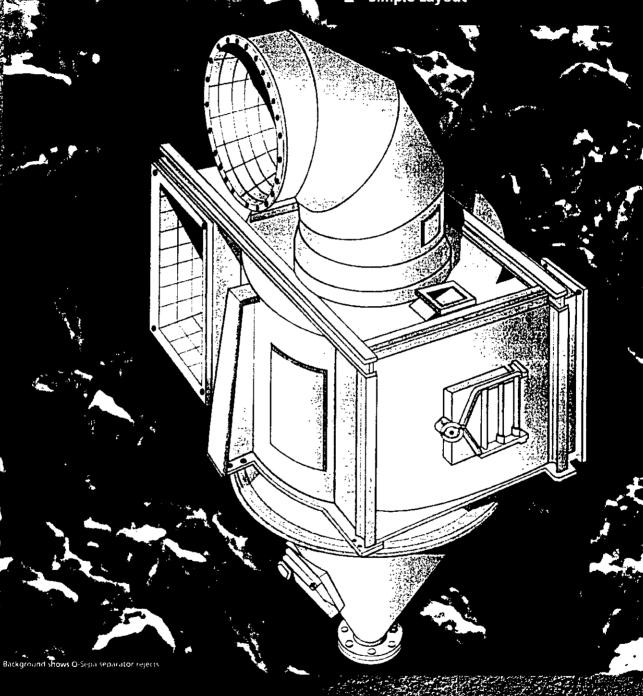
1.	Pollutant Emitted: PM ₁₀	2. Total Perc	ent Efficie	ency of Control:
3.	Potential Emissions:		4. Synth	netically Limited?
	3.39 lb/hour 12.5	tons/year	⊠ Y€	es No
5.	Range of Estimated Fugitive Emissions (as	applicable):		
	to tons/year			· · · · · · · · · · · · · · · · · · ·
6.	Emission Factor: 0.0095 gr/dscf			7. Emissions Method Code:
	Reference: Applicant Request			0
8.	Calculation of Emissions:			
	See Part B, Table 2-6. Pollutant Potential/Estimated Evoitive Emis	sions Common		
9.	Pollutant Potential/Estimated Fugitive Emis	sions Commen	t:	
				i
				1

Section [5] of [5] Raw Material Handling

POLLUTANT DETAIL INFORMATION

Page [1] of [2] Particulate Matter – PM₁₀

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION - ALLOWABLE EMISSIONS


Complete if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u>Al</u>	lowable Emissions Allowable Emissions _ o	f_	
1.	Basis for Allowable Emissions Code: OTHER	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units: 0.0095 gr/dscf	4.	Equivalent Allowable Emissions: 3.39 lb/hour 12.5 tons/year
5.	Method of Compliance: EPA Method 9		
6.	Allowable Emissions Comment (Description Applicant request.	of (Operating Method):
<u>Al</u>	lowable Emissions Allowable Emissions	of_	_
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):
<u>Al</u>	lowable Emissions Allowable Emissions	o	f
1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of (Operating Method):

ATTACHMENT E O-SEPA SEPARATOR INFORMATION

O-Sepa® Separator

- Low Maintenance
- High Efficiency
- Simple Layout

ELSMIDTH

Main Features

Proven Reliability

- 25 years design and operating experience
- Over 425 units worldwide

Cost Savings

- Reduced specific power consumption
- Increased grinding efficiency
- Low maintenance
- Integral cooling capability

Low Maintenance

- Wear protection targets specific abrasion mechanisms for each separator component
- Circulating oil lubrication system promotes exceptional bearing life

Reduced Capital Cost

- Compact design
- Simple Layout
- · Bolt together construction for low installation time

Flexibility

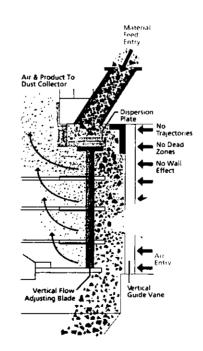
- New and Retrofit installations
- Raw and Cement Grinding
- High Blaine operation
- Standard and Mixed products
- Compatible with Semi-finish Grinding
- Full Gas recirculation optional
- Full size range

Stable operation

- Simple system control Precise, uniform separation
- Less fine returns to the mill

Better product quality

- High separator efficiency
- Improved product particle size distribution from first and second generation separators
- Increased cement quality
- Reduced coarse bypass in the product


The O-Sepa separator is the world standard in high-efficiency separation. F.L.Smidth has supplied O-Sepa separators since 1983.

There are now over 425 units installed worldwide.

The O-Sepa separator's success, based on its innovative design, continues as a result of superior performance and optimization. There are numerous features that place the O-Sepa separator at the top of industry lists for both performance and mechanical integrity.

INSTALLATION

The O-Sepa separator has a compact design requiring minimal space for installation. Its simple circuit layout allows the highly flexible separator to be applied in a variety of systems and to fit any new process requirement or existing system. Installation time for the O-Sepa separator is minimized by its bolted-flange design.



Balance of Forces

Classification Zone

The rotor's speed directly affects the centripetal force. The amount of airflow directly affects the drag force.

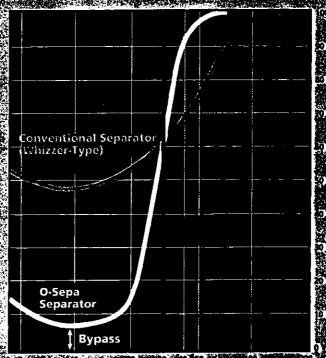
FLEXIBILITY

The O-Sepa separator is installed for cement and non-cement applications. The O-Sepa separator can be retrofit into existing ball mill circuits or installed in new mill systems.

A system with dedusting cyclones on the outlet (product) stream can be beneficial for retrofits to existing systems. In this arrangement there is less exhaust gas which can be an advantage in obtaining environmental permits. This compact system, which requires a smaller bag collector, is very flexible and can require less overall space than other system designs.

For new installations where a simpler system containing less equipment and fewer drives is desired a full vent arrangement is possible. In this arrangement the separator fan handles clean gas which reduces maintenance and allows for a higher efficiency fan design. Any recycled air is therefore clean and does not limit the duct arrangement. The dust loading is higher, but of a coarser size, which reduces dust collection problems. This system gives the maximum air cooling or maximum system temperature for controlling product quality.

In either arrangement it is possible for all of the classifying air to come from atmosphere. Because of this feature the O-Sepa has a superior cooling capability. The ability to control recirculating material temperatures reduces the chance of ball coating and pack set problems in silos. Further, in either system arrangement it is possible to take the mill vent gases through the separator eliminating the need for a separate dust collector and fan.


Typical Separator Efficiency Curve (Tromp Curve)

The O-Sepa separator properly classifies a higher proportion of feed materials.

The Tromp curve is a plot of the probability of a given size of particle in the separator feed that will be returned to the mill. Thus petter separation is indicated by higher probabilities for coarse material, and lower probabilities for fine material.

The Tromp curve is an effective tool when evaluating separator performance.
Calculations are based on separator feed, rejects, and product samples. The top side control, which can be determined from the curve, indicates if the seal is operating correctly. Also, the amount of bypass and the

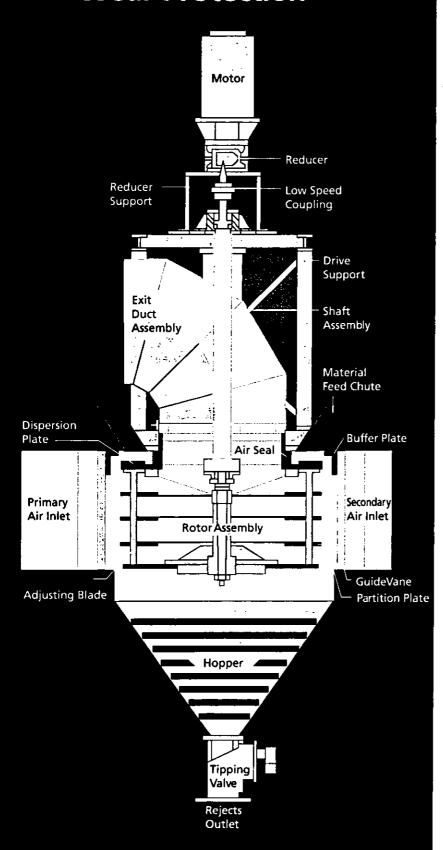
extent of the fines' tail can be determined.
These parameters along with the separator sinlet loading give an accurate depiction of the circuit.

OPERATION

Low Cost Operation

Compared to other separator designs the O-Sepa separator offers improved efficiency. Higher separation efficiency results in less fine material returning to the mill, which in turn reduces the mill power consumption at a given product fineness. System capacity is maximized through the combination of superior grinding efficiency and better product size distribution.

Stable operation is easily achieved through simple system control and precise, uniform separation. The results of superior efficiency and stable operation are evident through increased cement strength and a reduced amount of coarse material present in the product.


Low Maintenance

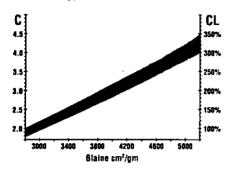
Maintenance in the O-Sepa is reduced by specifically addressing the cause and mechanism of wear in each area of the

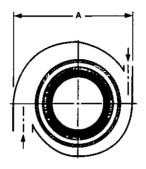
separator with the most effective wear protection materials. Ceramic tiles lining the separator inlet and exit ducts and the rotor shaft protect against jet abrasion from any dust entrained in the gas streams. The rotor vanes are coated with a spray ceramic for the same reason. The guide vanes around the rotor are made from chromium carbide bulk-welded plate to resist the impact of oversized material rejected from the rotor. The feed chutes are made from abrasion-resistant plate. The air seal and material distribution plate are made from impact and abrasion resistant NiHard castings. The use of dedicated wear materials reduces the maintenance requirements of the separator and saves overall operating costs.

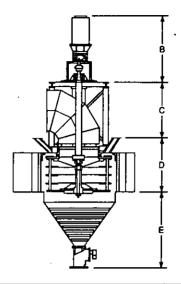
To maximize the protection of the separator bearings the O-Sepa separator incorporates a standard circulating lubrication system. The use of circulating lubrication system ensures a long bearing life.

Wear Protection

Wear Protection Components


Ceramic tile on inlet ducts, outlet ducts, and shaft assembly


- Spray ceramic coating on rotor
- Chromium carbide bulk-welded plate for guide vanes
- NiHard castings for air seal, distribution plate, and buffer ring
- Abrasion-resistant plate in feed chutes
- Autogenous hopper lining


How to Size an O-Sepa Separator

- Predict circulation factor. Circulation factor = \[\begin{pmatrix} 1 + \frac{\text{Circulating Load (\%)}}{100\%} \end{production} \] = \frac{\text{separator feed}}{\text{production}}
- Determine expected system production and feed rate to separator.

 (____ mtph production x ____ Circulation factor = ____ mtph feed)
- Pick the separator size (from the chart below) that has rated feed and production which are greater than those expected. If separator will produce several types of cements, use maximum feed and production.

Sizing Chart

Size	A (mm)	(mm)	C (mm)	0 (mm)	E (mm)	Typicat Drive Type	Rotor Diameter (mm)	Rotor Height (mm)	Speed (rpm)	Motor (kW)	Air (m3/min)	Feed (mtph)	Production (mtph)
N-250	1522	*2550	_	673	1604	V-belt	940	550	250-550	25	250	37.5	13
N-350	1757	1350	1190	798	1510	Vertical	1040	518	170-370	35	350	52.5	18
N-500	2109	1470	1396	956	1993	Vertical	1220	580	190-420	55	500	75	26
N-750	2517	1650	1676	1107	2310	Vertical	1460	730	170-360	75	750	112.5	38
N-1000	2714	1890	1693	1387	2505	Vertical	1660	850	150-320	90	1000	150	51
N-1500	3294	2220	2281	1434	2931	Vertical	2000	1060	120-260	110	1500	225	77
N-2000	3804	2500	2541	1643	2878	Vertical	2270	1240	105-230	150	2000	300	102
N-2500	4194	2590	2894	1791	3275	Vertical	2530	1390	95-205	185	2500	375	128
N-3000	4689	2610	3087	1933	3616	Horizontal	2760	1530	85-190	225	3000	450	153
N-3500	5154	2780	3408	2077	3861	Horizontal	2970	1660	80-175	260	3500	525	179
N-4000	5459	2880	3363	2515	4118	Horizontal	3150	1780	75-165	300	4000	600	204
N-4500	5750	2890	3744	2331	4171	Horizontal	3330	1900	70-155	335	4500	675	230
N-5000	6074	2900	3458	2806	4596	Horizontal	3480	2000	65-150	375	5000	750	255
N-5500	6300	3000	3454	3330	4900	Horizontal	3640	2100	60-145	410	5500	825	281
N-6000	6613	3010	3453	3607	5100	Horizontal	3850	2200	54-135	450	6000	900	306
N-7000	6991	3020	4736	3237	5500	Horizontal	4159	2371	50-125	525	7000	1050	357
* with V-belt drive, value is B+C													

www.flsmidth.com

Up-to-date addresses of worldwide subsidiaries and sales offices are available from our website.

DENMARK

F.L.Smidth A/S Vigerslev Allé 77 DK-2500 Valby Copenhagen Denmark

Tel: +45 36 18 10 00 Fax: +45 36 30 18 20 E-mail: info@flsmidth.com

US/

F.L.Smidth Inc. 2040 Avenue C Bethlehem, PA 18017-2188 United States

Tei: +1 - 610-264-6011 Tel: +1 - 800-523-9482 Fax: +1 - 610-264-6170 E-mail: info-us@flsmidth.com

NDIA

F.L.Smidth Ltd. Capital Towers 180, Kodambakkam High Road Nungambakkam Chennai 600 034 India

Tel: +91 - 44-52191234 Fax: +91 - 44-28279393 E-mail: indiainfo@flsmidth.com 04-2004-OSEP/