Turkey Point

 Units 6 \& 7

 Units 6 \& 7} COMPLETENESS RESPONSES
PSD Permit Application

Ms. Jeffrey F. Koerner, Administrator, New Source Review Section Florida Department of Environmental Protection Bureau of Air Regulation
111 South Magnolia St.
Tallahassee, FL 32399

Re: FPL Turkey Point Units 6 \& 7 Project Request for Additional Information Air Permit Application and Prevention of Significant Deterioration Analysis Project No. 0250003-013-AC (PSD-FL-409)

Dear Mr. Koerner:
Florida Power \& Light Company (FPL) is pleased to submit six (6) copies of its responses to the Air Permit Application and Prevention of Significant Deterioration Analysis Request for Additional Information issued by the Department on July 20, 2009 and July 30, 2009. The additional information is presented in the same order as requested from the Department. In addition, a Professional Engineer Certification is attached because additional information of an engineering nature is provided. A new certification statement by the authorized representative is not needed as no material changes are being made to the application by this submittal.

If you have any comments or questions regarding the attached, please feel free to contact me at (561) 6917518 or Matt Raffenberg at (561) 691-2808.

Sincerely, FLORIDA POWER \& LIGHT COMPANY

Attachment
cc: Timothy Gray, FDEP Southeast District Office Michael Halpin, FDEP Siting Office
Trina Vielhauer, FDEP Bureau of Air Regulation Peter Cunningham, Esq., Hopping Green \& Sams P.A. Kennard Kosky, Golder Associates Inc. Lennon Anderson, FDEP Southeast District Office
cc: Patrick Wong, Miami-Dade DERM
Mallika Muthias, Miami-Dade DERM
Dee Morris, National Park Service, Air Resources Division
Kathleen Forney, EPA Region 4
Heather Abrams, EPA Region 4
Ana M. Oquendo, EPA Region 4
Vickie Gibson, FDEP BAR Reading File
Randall R. Labauve, FPL
Matthew J. Raffenberg, FPL
Michael S. Tammaro, Esq., FPL

Professional Engineer Certification

1. Professional Engineer Name: Kennard F. Kosky

Registration Number: 14996

2. Professional Engineer Mailing Address...

Organization/Firm: Golder Associates Inc.**
Street Address: 6026 NW 1st Place
City: Gainesville State: FL Zip Code: 32607
3. Professional Engineer Telephone Numbers...

Telephone: (352) 336-5600 ext. 21156 Fax: (352) 336-6603
4. Professional Engineer E-mail Address: kkosky@golder.com
5. Professional Engineer Statement:
I, the undersigned, hereby certify, except as particularly noted herein*, that:
(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.
(3) If the purpose of this application is to obtain a Title V air operation permit (check here \square, if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.
(4) If the purpose of this application is to obtain an air construction permit (check here \mathbb{Q}, if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here \square, if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.
(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units' (check here \square, if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in sugh permit.

* Attach anypexeeptjan to certification statement.
**Bọard of Professional Engineers Certificate of Authorization \#00001670.

RESPONSES

FDEP-PSD-1. Based on information provided in the application, the Department understands the project proposes to install cooling towers to support proposed Nuclear Units 6 and 7 at the existing Turkey Point Plant. Each proposed nuclear unit will have three cooling lowers. Each cooling tower will have the following specifications.

Air Flow Specifications

Number of Cells: 12 cells with
cooling fans
Discharge Height: 67 feet
Diameter: 33.67
Exit Temperature: 104.7° F
Volumetric Flow Rate: 1,764,500
acfm

Circulating Water Flow Specifications

Total Circulating Water Flow: $210,366.7 \mathrm{gpm}$
PM Drift Rate: 0.0005\%
PM Emissions: 157.2 tons/year at 65,000 ppmw TDS PM 10 Emissions: 3.5 tons/year based on 4000 ppmw TDS ("TDS" means total dissolved solids in proposed cooling water.)
"PM" means particulate matter. "PM10" means particulate matter with a mean particle diameter of $\mathbf{1 0}$ microns or less.

1-a. Is the above an accurate description of the cooling towers proposed to support Nuclear Units 6 and 7?

RESPONSE: The information in the application concerning the description of the circulating water cooling towers is accurate, based on the available engineering design and the cooling requirements for the Westinghouse AP1000. FPL has selected the AP1000 as the plant design for the Project, a design certified by the NRC under 10 CFR 52. Table 2-1 shows the stack height at 67 feet and Figure 2-2 shows the elevation of the cooling tower stacks. The air flow specifications are per cell; there are 12 cells per tower. As noted in the Air Construction Permit Application and Prevention of Significant Deterioration (PSD) Analysis, the information presented in Table 2-1 is based on an SPX Cooling Technologies F41010A-6.6-12 Plus design (or an equivalent design).

1-b. The application indicates the cooling tower exhaust will be controlled by mist eliminators (3-pass Marley type). Do the estimated PM and PM10 emissions include control by this equipment?

RESPONSE: Yes, the estimated PM and PM_{10} cooling tower emissions are based on a mist eliminator design that will achieve a drift rate of 0.0005 percent. The mist eliminators will be 3 -pass Marley cellular type (Model TU12C) constructed of PVC (or an equivalent design) that will be designed to limit drift to 0.0005 percent of the circulating water rate of the cooling towers.

1-c. One source of cooling water is reclaimed water from the Miami-Dade South District Wastewater Treatment Plant (WWTP), which will be further treated at FPL's reclaimed water treatment facility at the Turkey Point Plant. The maximum TDS concentration was estimated at 4000 ppmw for purposes of estimating maximum PMIO emissions in the application.
(1-c-1) Provide the estimated PM emissions for a TDS concentration of 4000 ppmw.

FPL TURKEY POINT UNITS 6 \& 7

COMPLETENESS RESPONSES FOR AIR APPLICATION/PSD REPORT

RESPONSE: The PM emission rate for a TDS concentration of $4,000 \mathrm{ppmw}$ is $6.315 \mathrm{lb} / \mathrm{hr}$ for three circulating water cooling towers and was provided in Table A-1 of Appendix A of the construction air permit application. Table FDEP-PSD-1-c-1 presents the calculation in the same format as Table 2-1 of the application.

(1-c-2) Provide a chemical analysis of the organic and inorganic contaminants in the reclaimed water from the WWTP.

RESPONSE: Water quality data and analyses for reclaimed water are presented in Attachment FDEP-PSD-1-c-2. These analyses provide the major and trace constituents in the treated water obtained from Miami-Dade County Water and Sewer Department's (MDWASD's) South District Waste Water Treatment Plant. The reclaimed water used by Units 6 \& 7 will meet all of the relevant requirements of Chapter 62-610, F.A.C., including the requirements for cooling water applications found in Rule $62-610.668$, F.A.C. These rules allow the use of reclaimed water specifically in cooling towers. The reclaimed water will be further treated as described below.

> (1-c-3) Provide the treatment criteria that FPL will use to treat the reclaimed water for use in the cooling towers.

RESPONSE: The FPL reclaimed water treatment facility will provide nutrient removal, continuous water quality monitoring, flow equalization and metering, de-chlorination, disinfection, and pumping facilities. FPL reclaimed water treatment facility will include pumps, trickling filters, clarifiers, deep bed filters, and solids-handling equipment to reduce the levels of iron, magnesium, oil and grease, total suspended solids, nutrients, and silica. The effluent design criteria are listed below:

- Nitrogen: <1 milligram/liter (mg / L) (assumes influent nitrogen is all biodegradable)
- Phosphorus as P, Total: $<1 \mathrm{mg} / \mathrm{L}$
- Temperature: 25 to $31^{\circ} \mathrm{C}$
- Total Organic Carbon (TOC): 4.6 to $25.5 \mathrm{mg} / \mathrm{L}$
- $\mathrm{pH}: 6.3$ to 7.3 SU
- Total Dissolved Solids (TDS): 336 to $580 \mathrm{mg} / \mathrm{L}$
- Total Suspended Solids (TDS): $<5 \mathrm{mg} / \mathrm{L}$
- Fecal Coliform (FC): <25 Single Sample coliforms/100ml
- Total Free Residual Chlorine (TFRC): 0.5 to $1.0 \mathrm{mg} / \mathrm{L}$
(1-c-4) Identify the organic and inorganic contaminants in the treated water supplied to the cooling towers.

RESPONSE: The response to Comment FDEP-PSD-1-c-2 presents the available data regarding the constituents in the reclaimed water. The response to comment FDEP-PSD-1-c-3 identifies additional. treatment for certain parameters provided by the FPL reclaimed water treatment facility.

(1-c-5) What air quality impacts will result?

RESPONSE: The air quality impacts were presented in Section 6.0 of the PSD Report. The applicable pollutant for which the Department has ambient air quality standards and that is emitted when using treated reclaimed water is PM_{10}. Treated reclaimed water with a TDS of 4,000 parts per
million by weight (ppmw) in the circulating water has the highest PM_{10} emissions rate and was used in the modeling analysis. The maximum predicted air quality impacts for treated reclaimed water are 0.119 micrograms per cubic meter $\left(\mathrm{ug} / \mathrm{m}^{3}\right)$ and $4.934 \mathrm{ug} / \mathrm{m}^{3}$ for the annual and 24-hour averaging times. These impacts are less than the significant impact levels used by the Florida Department of Environmental Protection (FDEP) as a threshold for further air quality analysis.

> (1-c-6) The Department understands that the information presented in Tables A-1 through A-5 for estimating PM/PM10 emissions from cooling towers was based on the use of salt water. Provide information to support the contention that PM/PM10 emissions relationships will be similar with the use of treated reclaimed water.

RESPONSE: Tables A-1 through A-5 present information for the circulating water cooling towers (Tables A-1 through A-3) and the service water cooling towers (Tables A-4 and A-5). Tables A-1 through A-3 present PM/PM 10 emissions and particle distributions for treated reclaimed water and saltwater used in the circulating water cooling towers. Tables A-4 and A-5 present similar information for the service water cooling towers.

Table A-1 presents the range of PM and PM_{10} emissions for TDS concentrations in the circulating water from 1,000 ppmw to $65,000 \mathrm{ppmw}$ using the method of Riesman and Frisbie (2001) that was attached. Table A-1 also presents the PM_{10} as a percent of total PM and charts showing PM_{10} emissions rate as a function of TDS concentration. Similar information is presented in the Riesman and Frisbie article that was included in Appendix A of the air construction permit application. Table A- 2 presents the $\mathrm{PM} / \mathrm{PM}_{10}$ emissions and particle distribution for treated reclaimed water while Table A-3 presents the $\mathrm{PM} / \mathrm{PM}_{10}$ emissions and particle distribution for saltwater.

The method of Riesman and Frisbie (2001) applies to a wide range of TDS as evidenced by the wide range of TDS concentrations in the analysis (e.g., 1,000 to $12,000 \mathrm{ppmw}$). The TDS for treated reclaimed water in the circulating water is within the range evaluated by Riesman and Frisbie (2001). While for different TDS concentrations the $\mathrm{PM} / \mathrm{PM}_{10}$ emissions relationships are different, the initial drift aerosol is similar. The reason the initial drift aerosol is similar is that ultimate solid particle volume is a small percentage of the initial drift particle. For a TDS of $4,000 \mathrm{ppmw}$ the volume of the solid particle is 0.18 percent, while at the maximum TDS of $65,000 \mathrm{ppmw}$, the solid particle volume is 2.95 percent. This relationship is shown in Tables A-2 and A-3 of the appendix. As a result, differences in TDS will have a minor influence on the size of the initial drift particles, and the ultimate $\mathrm{PM} / \mathrm{PM}_{10}$ particle sizes are directly dependent on the TDS concentration.

1-d. The second source of water will be from radial collector wells, which will pull water from Biscayne Bay. The maximum TDS concentration of the saltwater was estimated at 65,000 ppmw for purposes of estimating maximum PM emissions in the application. Provide the estimated $\mathbf{P M}_{10}$ emissions for a TDS concentration of $\mathbf{6 5 , 0 0 0} \mathrm{ppmw}$. Provide a representative analysis of the actual TDS for this source of water.

RESPONSE: The radial collector well laterals will be located approximately 40 feet below Biscayne Bay and will recharge primarily from Biscayne Bay. The PM_{10} emission rate for a TDS concentration of $65,000 \mathrm{ppmw}$ is 0.312 pounds per hour ($\mathrm{lb} / \mathrm{hr}$) and was provided in Table A-1 of Appendix A of the air construction permit application. Table A-3 presents the particle size distribution used to calculate the emission rate. PM_{10} emission rates are calculated by interpolation of the Solid Particulate Diameter (second column from left on chart) and the Electric Power Research Institute (EPRI) \% Mass Smaller than the stated diameter (first column on the left). Recent analyses of
saltwater obtained from an aquifer pump test on the Turkey Point peninsula (i.e., the proposed location of the radial collector wells), presented as Attachment FDEP-PSD-1-d, support the range of TDS concentrations provided for saltwater.

1-e. Is it possible that the cooling water would be made up from a combination of these water sources?

RESPONSE: Yes, the circulating water cooling towers would be operated within the cycles of concentration indicated for the two sources of water, based on the TDS concentrations in the makeup water. Separately, the two sources of makeup water proposed as makeup to the circulating water cooling towers cover the range of TDS concentrations for the maximum potential PM and PM_{10} emissions for the circulating water cooling towers.

1-f. The review for Best Available Control Technology (BACT) in the application indicates that air-cooled condensers (ACC) are not technically feasible. However, the application also indicates that ACC are available and in use in cooler and arid climates where water is not available. Therefore, ACC are technically feasible and will result in much lower PM and PM $_{10}$ emissions. Please revise the BACT review to include ACC with a cost analysis.

RESPONSE: The Best Available Control Technology (BACT) evaluation identified air-cooled condensers (ACC) as an available cooling technology, but they were not discussed as an alternative control technology for particulate matter in the context of the proposed source. The evaluation of an applicant's BACT analysis should recognize how the applicant defines the proposed source, including its fundamental purpose or basic design. In this instance, FPL defined the proposed source - the cooling towers for Turkey Point Units 6 \& 7 - as mechanical draft cooling towers to be used for main steam cycle condenser cooling and service water cooling.

BACT is an emissions limitation based on the maximum degree of reduction of each pollutant emitted, which the Department determines is achievable through application of production processes, available methods, systems and techniques for control of each pollutant. Historically, the U.S. Environmental Protection Agency has not considered BACT as a means to redefine the design of the source when it considers available control alternatives. (See Draft New Source Review Workshop Manual, October 1990). As such, consideration of alternative control technologies that would result in a redesign of the source is typically not within the scope of a BACT analysis. EPA's NSR manual states that a technology is applicable if it can be "installed and operated on the source type under consideration."

The source under consideration in this instance is a mechanical draft cooling tower. The NRC certified Westinghouse AP1000 design is based on wet cooling towers so the use of air cooled condensers would redefine the source. The control technology is a high-efficiency drift eliminator with a design drift rate of 0.0005 percent - the top level particulate control for this type of cooling tower. Air cooled condensers cannot be "installed and operated" on the source type under consideration - mechanical draft cooling towers - and consequently a requirement to use air cooled condensers would redefine the source and change the design of Turkey Point Units 6 \& 7.

Nevertheless, information related to ACCs was provided in the PSD permit application and additional information is presented below to demonstrate that ACC is not feasible at this Project location based on the energy, economic and environmental impacts associated with its use. Additional information related to ACCs presented below is from EPA's Technical Development Document for the Proposed Section 316(b) Phase II Existing Facilities Rule (April 2002; EPA 821-R-02-003; www.epa.gov/ttn/nsr/gen/wkshpman.pdf) which was also used in the BACT analysis to show that this technology was not feasible.

Energy, Environmental, and Economic Impacts

As demonstrated below, the energy, environmental, and economic impacts associated with ACC preclude their use by FPL for this Project.

Energy and Economic Impacts

In the EPA Technical Development Document, technology and economic comparisons of oncethrough cooling, wet cooling towers and dry cooling towers are compared in detail for four locations (Boston, Jacksonville, Chicago and Seattle) and three types of generating technologies (nuclear, combined cycle and fossil steam), using standard power plants for the comparison. For a nuclear unit located in Jacksonville, the total energy penalty at 100 percent load is 10.7 percent for dry cooling while the total energy penalty for wet cooling is only 1.6 percent; a difference of 9.1 percent (refer to Table 5-4) as presented in the BACT evaluation. This would equate, for the AP1000, an energy penalty of $100.1 \mathrm{MW}(0.091 \times 1,100 \mathrm{MW})$.

In the economic comparisons of technologies involving dry cooling, EPA used a value of \$30/MW-hr (see page D-4). Using EPA's energy costs, the energy penalty would be $\$ 26,306,280$ per year per unit ($100.1 \mathrm{M} \times 8,760$ hour/year $\mathrm{x} \$ 30 / \mathrm{MW}$-hour). The economic penalty of energy alone would be $\$ 55,780.9$ per ton of PM removed ($\$ 26,306,280 \times 1 / 471.6$ tons/year/unit) and $\$ 2,481,724.5$ per ton of ${ }^{-} \mathrm{PM}_{10}$ removed ($\$ 26,306,280 \times 1 / 10.6$ tons/year/unit). As noted in the BACT evaluation, the capital costs for ACCs are also much greater than for mechanical draft cooling towers.

Environmental Impacts

Moreover, Turkey Point Units 6 \& 7 would avoid the emission of at least 6.6 million tons per year of $\mathrm{CO}_{2}, 532.3$ tons per year of $\mathrm{NO}_{\mathrm{x}}, 355$ tons per year of SO_{2} across FPL's generating system (Florida Public Service Commission, Final Order Granting Petition for Determination of Need for Proposed Nuclear Power Plants, Order No. PSC-08-0237-FOF-EI, April 11, 2008). The high energy penalty, coupled with the high capacity factors for nuclear units would result in additional emissions of at least 600,000 tons per year of $\mathrm{CO}_{2}, 48$ tons per year of NO_{x}, and 32 tons per year of SO_{2} due to replacement electrical generation if ACCs were used. This comparison assumes replacement from FPL's latest natural gas combined cycle unit (West County Energy Center). Actual emissions increases would be higher, since replacement energy would not be exclusively from the most efficient units. In contrast, there are no ambient air quality standards for PM. Further, predicted air quality impacts from the Units 6 \& 7 circulating water system cooling towers were determined to be less than the significant emission impact levels for PM_{10}.

It is clear from this information that ACCs are not feasible and are rejected as BACT for Turkey Point Units 6 \& 7 based on energy, economic and environmental impacts.

1-g. Add natural draft cooling towers to the BACT review and include a cost analysis.
RESPONSE: The design drift rate for natural draft cooling towers is the same as the mechanical draft cooling towers proposed for Turkey Point Units 6 \& 7. This drift rate of 0.0005 percent would not result in any change in PM or PM_{10} emissions. As a result, a cost analysis is not necessary. Moreover, the natural draft cooling towers are estimated to be over 300 feet high and would result in other potential environmental impacts (visual, space limitations, etc).

FDEP-PSD-2. The project also proposes to construct two service water cooling towers (one per nuclear unit) with the following specifications per tower.

Air Flow Specifications
Number of Cells: 2
Discharge Height: 63 feet
Diameter: 35 feet
Exit Temperature: $96.9^{\circ} \mathrm{F}$
Volumetric Flow Rate: 1,358,000 acfm

Circulating Water Flow Specifications
Total Circulating Water Flow: 21,000 gpm PM Drift Rate: 0.0005\% PM Emissions: 1.84 tons/year PM 10 Emissions: 0.35 tons/year (Emission based on high range of TDS in proposed cooling water.)

2-a. Is the above an accurate description of the proposed service water cooling towers?
RESPONSE: The information in the application concerning the description of the service water cooling towers is accurate based on the available engineering design and the cooling requirements for the Westinghouse AP1000. FPL has selected the AP100 as the plant design for the Project, a design certified by the NRC under 10 CFR 52. The stack height is 63 feet as shown in Table 2-2. Also, note that the air flow specifications above are for one cell, while the circulating water flow is for two cells. The PM emission rate of 1.84 tons/year listed above is for two units and the PM_{10} emission rate listed above is for one unit, based on the circulating water flow rate of $21,000 \mathrm{gpm}$. During normal operation, only one cell is operating and the circulating water flow rate is only $10,500 \mathrm{gpm}$.

2-b. The source of water for these cooling towers is potable water from Miami-Dade County. For purposes of estimating $\mathbf{P M} / \mathrm{PM}_{10}$ emissions, the TDS concentration was estimated at 4000 ppmw . What is the actual average TDS concentration for potable water from Miami-Dade County?

RESPONSE: The TDS concentration for potable water is approximately 318 ppmw which, when concentrated, would be $1,272 \mathrm{ppmw}$ in the service water cooling tower circulating water at 4 cycles of concentration. A TDS of $4,000 \mathrm{ppmw}$ was assumed to maximize the amount of PM_{10} emissions for the purpose of determining potential emissions. As shown in Table A-4, the maximum PM_{10} emissions occur at a TDS of 4,000 ppmw.

FDEP-PSD-3. See Table 3-3 in the application (Maximum Emissions Due to the Project

Compared to the PSD Significant Emissions Rates). Although the table indicates emissions of volatile organic compounds (VOC) will be less than the PSD significant emissions rate, the last column identifies the project as being subject to PSD review for VOC emissions. Please correct as necessary.

RESPONSE: Comment acknowledged, volatile organic compounds (VOC) emissions will be less than the PSD significant emissions rate. Please find attached a corrected Table 3-3.

FDEP-PSD-4. Please identify and quantify any hazardous air pollutants that will be emitted from the cooling tower project.

RESPONSE: Hazardous air pollutants (HAPs), as defined in Rule 62-210.200 Florida Administrative Code (F.A.C.), were estimated for the cooling towers using recent data on the constituents in the reclaimed water from MDWASD's South District Waste Water Treatment Plant (see the response to FDEP-PSD-1-c-2) and recent data on the constituents in saltwater obtained from an aquifer pump test located in the area where the radial collector well caissons will be located (see the response to FDEP-PSD-1-d). The concentrations in the makeup treated reclaimed water and saltwater are increased in the circulating water in the cooling tower by the cycles of concentration. The maximum values from the samples were used in the calculations. Where all the results were below the detection limit, the detection limit was used to bound the emission estimate.

Table FDEP-PSD-4-1 presents a summary of the HAP emissions from the circulating water cooling towers. As shown, the HAP emissions are 0.0644 tons/year when using treated reclaimed water and 0.0085 tons/year when using saltwater. These estimates are higher than expected since the detection limits were used to determine emissions and actual concentrations would be lower. As shown in the table, only 2 of 107 were above the detection limit for the saltwater sample analysis and 5 of 54 analyses were above the detection limit for reclaimed water.

HAPs were also estimated from the standby diesel generators, ancillary diesel generators, fire pump engines and general purpose engines. The estimated HAP emissions were based on AP-42 emission factors. Table FDEP-PSD-4-2 presents the estimated HAP emissions. As shown in the table, the maximum HAP emissions are 0.0476 tons/year.

The total emissions of HAPs from the Project are estimated to be 0.11 tons/year. This is far less than the generic exemptions in FDEP's Rule 62-210.300(3)(b)1.(III) for total hazardous air pollutants, i.e. 1.25 tons/year and this level of HAP emissions are considered insignificant [Rule 62-213.430(6)(b)].

FDEP-PSD-5. Will the temporary boilers be rental boilers? Will the temporary boilers be subject to New Source Performance Standards in Subpart Db of 40 CFR 60 or will this be determined when they are needed for service?

RESPONSE: The temporary boilers will likely be rented and will only be operated during construction of the Project. Any applicability of the New Source Performance Standards (NSPS) or other applicable regulations will be determined when the boilers are obtained. These temporary construction boilers were included as emission units in the application so that they would be authorized under the air construction permit issued for the Project.

FDEP-PSD-6. Will FPL own and operate the temporary concrete batch plant or will it be an existing concrete batch plant authorized by a previous Air General Permit?

RESPONSE: At this time, FPL plans to sub-contract one, three-unit, fully-automatic, 250 cubic yard/hour (maximum) per each unit (2 operating, 1 stand-by) capacity concrete batch plant. The sub-contractor will be responsible for erecting and operating the unit during construction of Turkey Point Units 6 \& 7. It is unknown if this concrete batch plant will have an Air General Permit. As a result, the concrete batch plant was included in the application so that this temporary facility would be authorized under an air construction permit issued for the Project.

FDEP-PSD-7. Provide a discussion of the PM emissions impacts to soils, vegetation and wildlife.

RESPONSE: Section 7.3.1 of the PSD Report provides a description of and impacts on the vegetation and soils in the vicinity of the Project: Potential impacts to wildlife due to air emissions are discussed in PSD Section 7.3.2. Additional information on this topic is provided below.

Particulate matter (PM), as defined in Rule 62-210.200(234) F.A.C., means any airborne finelydivided solid or liquid material. In the case of Turkey Point Units 6 \& 7, the largest amount of PM is emitted as drift when saltwater is used in the circulating water cooling towers.

Potential impacts to vegetation may occur from deposition of particulate matter from cooling tower drift. Vegetation may be affected by absorption of salts that accumulate in the soil as well as foliar deposition. Accumulation in soil will occur if the annual deposition rate of salt exceeds the rate at which salt is leached from the soil by rainfall. However, the vegetation surrounding the Site is dominated by coastal mangroves, specifically the salt-tolerant red mangrove (Rhizophora mangle), which has developed physiological characteristics to allow the plants to survive in highly saline soils and areas of salt spray. Rhizophora plants can sustain salinities up to two times concentrated seawater (Mallery and Teas, 1984). The area closest to the Site borders Biscayne Bay and is tidally influenced. The average salinity in Biscayne Bay near the Turkey Point peninsula is approximately 34 parts per thousand (ppt), which is close to the salinity of seawater. During wet periods, the salinity in the Bay is typically below average; during dry periods, the salinity in the Bay is typically above average.

The area where the potential impact of deposition to freshwater vegetation is greatest is the area west of the L-31E Canal. However, the vegetation in the area west of the L-31E Canal is salt tolerant. This area is comprised of sawgrass marsh with strands of forested wetlands classified as mixed wetland hardwoods that are comprised of a variety of native and exotic canopy species, including buttonwood, Australian pine, cocoplum, red mangrove, Brazilian pepper, and cabbage palm. As these species are salt tolerant, no adverse impacts will occur.

There will be no adverse potential impact of salt drift on wildlife in the vicinity of Turkey Point Units 6 \& 7 since the wildlife in the area is adapted to a saline environment.

It should be emphasized that the maximum drift occurs with the use of saltwater in the circulating water cooling towers. The use of reclaimed water results in particulate emissions that are 17 times lower than using saltwater.

Reference

Mallery, C.H. and H.J Teas, 1984. "The mineral ion relations of mangroves. I. Root cell compartments in a salt excluder and salt secreter species at low salinities." Plant and Cell Physiology 25, 1123-1131.

FDEP-PSD-8. The National Park Service commented on the modeled visibility impacts in the Biscayne National Park. Discuss the methods available to the FPL treatment facility that can be used to maintain the TDS content of the treated wastewater below 4000 ppmw to mitigate visibility impacts caused by PMIO emissions.

July 9, 2009 e-mail from Dee Morse of the National Park Service to Cleve Holladay of FDEP.
NPS Comment: We reviewed the Turkey Point Units 6 \& 7 PSD permit application. Based on the information in the application, Florida Power \& Light (FPL) proposes to construct and operate two $\mathbf{1 , 1 0 0}$ MW nuclear units at the existing Turkey Point facility. The emissions from the operation of Units 6 \& 7 will come from the circulating water cooling towers, standby diesel generators, ancillary diesel generators, diesel fire pump engines, diesel storage tanks, and general purpose diesel engines. The emissions from the associated equipment will trigger PSD review for particulate matter only. The total emission increases are reported to be 947 tons per year (TPY) of particulate matter, 35 TPY of nitrogen oxides, 4 TPY of volatile organic compounds and 0.02 TPY of sulfur dioxide. Upon review of the air quality modeling analyses, we find that the proposed emissions from the proposed operation of Turkey Point Units 6 \& 7 will not cause significant impacts at Everglades NP. However, the emissions may impact visibility at Biscayne NP. Results from the plume impact analysis (VISCREEN modeling) shows impacts exceed a delta \mathbf{E} of $\mathbf{2 . 0}$ and contrast values of $\mathbf{0 . 0 5}$ outside of the Class I area. Given the close proximity of the Turkey Point facility to Biscayne NP and potential plume impacts at Biscayne NP we ask that FPL look at mitigating measures to reduce emissions and the corresponding impacts.

RESPONSE: Based on the National Park Service (NPS) comment, a visibility analysis was conducted for Biscayne National Park (BNP). The paragraphs that follow present the methodology, results of the Level 1 Analysis, and results of the Level 2 Analysis. Also presented are the mitigation measures taken to reduce visibility impacts.

Methodology - The analysis to determine the potential adverse plume visibility effects in BNP was based on the screening approach suggested in the Workbook for Plume Visual Impact Screening and Analysis (EPA, 1992). EPA has computerized this approach in a program called the VISCREEN model. The VISCREEN model is currently recommended for use by the EPA to assess visual plume impacts in regulatory applications. The model can be used to calculate potential plume impacts of specific pollutant emissions for specific transport and meteorological dispersion conditions. The model can be applied in two successive levels of screening (referred to as Levels 1 and 2) without the need for extensive source, meteorological, or pollutant input. If the screening calculations demonstrate that during "worst-case" meteorological conditions, a plume is imperceptible or, if perceptible, is not likely to be considered objectionable ("adverse" or "significant" in the language of the EPA PSD and visibility regulations), further analysis of plume visual impact would not be required as part of the air quality review of the source. However, if the screening analyses demonstrate that the criteria are exceeded, plume visual impacts cannot be ruled out, and more
detailed analyses to ascertain the magnitude, frequency, location, and timing of plume visual impacts would be required.

The Level 1 screening analysis is designed to provide a conservative estimate of plume visual impacts (i.e., impacts that would be larger than those calculated with more realistic input and modeling assumptions). This analysis assumes worst-case meteorological conditions of stable stability (Pasquill-Gifford stability Class F) and a one meter per second (m / s) wind speed persisting for 12 hours in one direction towards BNP. The input required for the Level 1 analysis is limited to the following parameters:

- Emission rates of PM_{10} and NO_{x};
- Distance between the emission source and (a) the observer; (b) the closest NP boundary; and (c) the most distant NP boundary;
- Background visual range appropriate for the region in which the NP is located; and
- If available, emission rates of NO_{2}, soot, and primary sulfate $\left(\mathrm{SO}_{4}\right)$.

Visibility impacts are then determined for two parameters:

- Contrast of a plume against a viewing background such as the sky or a terrain feature; and
- Perceptibility of a plume on the basis of the color difference between the plume and the viewing background (Delta E).

Results are provided by the model for several scenarios based on the background view, the viewing angle, visibility improvement due to plumes located both inside and outside the Class I area, and the sun angle. The critical values for contrast and Delta E are 0.05 and 2.00 , respectively. If these levels are not exceeded by the proposed source, the source is considered to pass the Level 1 visibility analysis, and the source will not have a significant impact on the Class I area.

Results of Level 1 Analysis - The input parameters and results of the Level 1 analysis for the Project are presented in Figure FDEP-PSD-8-1. As shown, the Project will primarily emit PM_{10} and NO_{x}. The maximum short-term average emission rates used in the analysis are based on all generators and engines operating at least one hour on a given day, simultaneously. Although the pollutant determination modeling in the PSD application assumed 4 hours on a given day operation, the assumption that the engines operate 1 hour a day is still extremely conservative because these machines will actually operate only 4 hours per month. Using this assumption, total facility short term emission rates of PM_{10} and NO_{x}, for the VISCREEN analysis, are 15.32 and $5.89 \mathrm{lb} / \mathrm{hr}$, respectively. Primary NO_{2}, soot, and sulfates are not emitted in significant quantities by the generators and engines. Therefore, these emissions were set to zero.

The terrain between the Turkey Point plant area and BNP and within BNP, is totally flat. With no terrain feature that can be used as a viewing background, the visibility impacts were determined using the sky as the only viewing background. It should also be noted that these critical visual impacts are estimated for locations inside of BNP. Since no integral vistas have been identified for BNP, this evaluation did not evaluate vistas located outside the BNP area.

Because BNP is not a Class I area, the background visual range was not estimated using the FLAG report, and a background visual of 40 km was considered appropriate for the area. Other parameters input to the model were based upon default values given in the Workbook and incorporated into the computer model.

As shown in Figure FDEP-PSD-8-1, the Project's emissions are calculated to exceed the Level 1 visibility screening criteria at the NP. Because results from the Level 1 screening analysis exceed the visibility criteria, a Level 2 screening analysis was performed. The only difference in input between the Level 1 and Level 2 analyses is the meteorology assumed for plume transport and dispersion.

Results of Level 2 Analysis - The Level 2 screening analysis is designed to account for more realistic occurrences of meteorological conditions that would transport the plumes of the proposed units towards the NP. In this analysis, an assessment of the frequency of the wind direction, wind speed, and atmospheric stability classes is made to determine the frequency of conditions that are most likely to cause a potentially adverse plume visual impact. If the Level 1 default parameters are selected for addressing visual plume impacts, the VISCREEN model assigns an appropriate estimate of particle size and density for the emitted and background atmosphere particulate and worst-case plume dispersion conditions. For this analysis, the particle size and density for the emission sources were not changed.

The first step in the analysis is to construct a table that shows worst-case dispersion conditions ranked in order of decreasing severity and the frequency of occurrence of these conditions associated with the wind direction that could transport emissions toward BNP. Dispersion conditions are ranked by evaluating the product of the horizontal dispersion parameter (called sigma y) times the vertical dispersion parameter (called sigma z) times the wind speed. Sigma y and sigma z account for the amount of plume spreading or dispersion that will occur as a plume travels away from a source for a given stability class. The dispersion conditions are then ranked in ascending order of the value of the dispersion product term (i.e., sigma y times sigma z times the wind speed).

For the Level 2 analysis, it is assumed that steady-state plume conditions are unlikely to persist for more than 12 hours. Thus, if a transit time of more than 12 hours is required to transport a plume parcel from the emission source to a Class I area for a given dispersion condition, it is assumed that the plume material is more dispersed than a standard Gaussian plume model would predict. This enhanced dilution would result from daytime convective mixing and wind direction and speed changes.

To obtain the worst-case meteorological conditions, it is necessary to determine the dispersion conditions (i.e., a given wind speed and stability class associated with the wind direction that would transport emissions toward BNP) that have a dispersion product term with a cumulative probability of 1 percent. Thus, the dispersion condition is selected to address potential plume visual impacts such that the sum of all frequencies of occurrence worse than this condition totals 1 percent (i.e., about 4 days per year). The 1 -percentile meteorology is assumed to be worst-case plume visual impacts when the probability of worst-case meteorology, conditions is coupled with the probability of other factors being ideal for maximizing plume visual impacts. Dispersion conditions associated with transport times of more than 12 hours are not considered in this cumulative frequency.

For this study, the surface meteorological data from the NWS station in Miami from 2001 to 2005 were used to generate a frequency distribution of wind direction, wind speed, and stability occurrences based on the standardized stability array (STAR) program used for many air dispersion
model applications. An annual average wind rose for Miami, 2001 to 2005, is presented in Figure 2. The STAR program generates frequencies using 16 wind direction classes with each class covering a 22.5 -degree sector, 6 wind speed classes, and 6 stability classes. It should be noted that these data were used to address air quality impacts from the Project as presented in Section 6.0 of the PSD report.

Areas of BNP are located to the south-southeast counter-clockwise to the north-northwest of the Turkey Point Project Site, with the closest distances of approximately 0.5 km to the south-southeast. Therefore, the frequencies associated with winds that would blow from the Project to BNP were included in the analysis (i.e., south-southeast counter-clockwise through north-northwest). The highest frequency for any wind sector was used to determine the worst-case meteorology for impacts at the closest distance of 0.5 km , which was assumed for all wind direction sectors.

Since the approach is based on viewing the plume during the day when the sun is either in front or back of the observer, the frequencies are presented only for two 7 -hour periods during the daytime from $7 \mathrm{a} . \mathrm{m}$. to $1 \mathrm{p} . \mathrm{m}$. and $1 \mathrm{p} . \mathrm{m}$. to $7 \mathrm{p} . \mathrm{m}$. In effect, the criteria of 1 percent are applied to each 7 -hour period.

This analysis is presented in Table FDEP-PSD-8-1, which shows the dispersion product term, transport time to the nearest part of BNP (i.e., distance of 0.5 km), and the frequency associated with each wind direction. As indicated in Table FDEP-PSD-8-1, all of the meteorological conditions considered in the analysis could be transported to BNP in less than 12 hours. As a result, these conditions were all included in determining the worst-case meteorology using the cumulative probability of 1 percent.

During the daytime period, winds out of the south-southeast wind direction sector produced a cumulative frequency of at least 1 percent during slightly stable stability with a wind speed of 3.0 m / s. Slightly stable stability (Pasquill class E) and a wind speed of $3.0 \mathrm{~m} / \mathrm{s}$ was the critical meteorological condition. This weather condition was used to assess the potential visual plume impacts from the Project at the closest distance of 0.5 km .

The results of the visual plume impact analysis using the Level 2 meteorological condition for the Project are shown in Figure FDEP-PSD-8-3. As shown, the Project's values of Delta E and contrast are predicted to be less than the screening criteria.

Therefore, the pollutant emissions due to the project are highly unlikely to cause adverse visibility impairment in BNP.

Mitigation Measures -- As described in the PSD Report, PM and PM_{10} emissions from the circulating cooling towers will be designed to limit the drift rate to 0.0005 percent of the circulating water rate. This drift rate has been accepted as BACT for many projects involving wet cooling towers. Ultra low sulfur diesel fuel will be used in the standby and ancillary generators and fire pump engines that will primarily operate for maintenance testing. Testing is scheduled for 4 hours per month.

FDEP-PSD-9. The Department is still reviewing the air quality impact analysis and may later submit additional questions regarding this modeling analysis.

RESPONSE: Comment acknowledged. The response for FDEP-PSD-11 is provided to address the Department's separate request of July 30, 2009 for additional information related to modeling.

FDEP-PSD-10. Please address the following questions from Air Facilities Section of the MiamiDade County Environmental Resources Management (DERM).
a. DERM expressed concerns that non-metallic mineral rock mining equipment and operations may be included in the scope of the proposed project; however, no such information is provided with the PSD application. Provide information related to site-preparation and construction operations addressing any limestone excavation, grading and fill activities to be conducted. Include technical and design specifications on equipment and processes for crushing, conveying and screening operations.

RESPONSE: Crushing and screening are not anticipated to be done on the Turkey Point plant property. Construction activities such as limestone excavation, conveying, grading and backfilling will be conducted on the plant property, but these construction activities are not subject to regulation under the non-metallic mineral processing plant NSPS rules (Subpart OOO) or otherwise under FDEP's air rules.

The Project for which certification is being sought under the Florida Electrical Power Plant Siting Act (PPSA) includes a fill-source/water management feature approximately 4 miles northwest of the Turkey Point plant property where limestone will be excavated for use as fill for the Project. It is possible that crushing and/or grinding of limestone will also occur at the off-site fill source. Review of the off-site fill source is being performed as part of the Site Certification process.
b. The information in the PSD application regarding the use of "general purpose diesel engines" is limited in detail as to the number and type of engines, equipment the engines are to service, fuel tanks and day tanks to be associated with the engines, etc. Provide details including the design and technical specifications for the general purpose diesel engines similar to the information provided for the generator and fire pump engines.

RESPONSE: As described in the application, general purpose engines were included during operation and refueling/maintenance cycles to account for various general purpose diesel engines used in equipment such as cranes, compressors, etc. At this time, the design and technical specification of these engines have not been determined, and such information is unnecessary for these minor sources. Since these types of sources are classified as an "emission unit" under FDEP rules (Rule 62-210.200, F.A.C), emissions were included in the total emissions for the Turkey Point Units 6 \& 7 Project to account for the Project's "potential to emit." The precedent for accounting for these emissions in the manner used in the application was based on the FPL St. Lucie Nuclear Plant Federally Enforceable State Operating Permit (FESOP) that included fuel use restrictions on general purpose diesel engines to limit emission to less than 100 tons/year (Permit No. 1110071-005-AF). The emissions associated with Turkey Point Units 6 \& 7 were estimated based on the Annual Operating Reports (AORs) submitted to FDEP for the FPL St. Lucie Plant. To be conservative, the U.S. EPA emission factors contained in EPA publication AP-42, Compilation of Air Pollutant Emission Factors, were used to estimate emissions for these general purpose engines that were developed in the mid-1990s. It should be noted that EPA has established emission standards for these
engines as non-road diesel engine limits in 40 CFR 89, which will become more stringent for engines manufactured in the future. EPA's non-road regulations require lower emission limits than the emission rates in EPA's emission factors. Since by the time Unit 6 begins operation in 2018, many of the diesel engines in equipment used on the plant area will meet EPA's non-road diesel engine limits in 40 CFR 89, the emission estimates are conservative using EPA's AP-42 emission factors.
c. DERM expressed concerns that constituents in the cooling water will be emitted as particulates in the aerosol/drift exhaust from the cooling towers. Provide additional information regarding the chemical makeup of the proposed cooling water (both reclaimed and subsurface water) as well as a characterization of emissions from the cooling towers.
c-1) Provide water quality/chemical analysis reports for the reclaimed water to be received from the Miami-Dade Water and Sewer Department (WASD). Provide a process flow diagram with description of the proposed FPL reclaim treatment plant including characterization of plant effluent. Provide a technical discussion and analysis of the effect that the cooling tower (heat transfer) process has on the reclaim water constituents and the related air emissions (both criteria and hazardous air pollutants). Source water analysis constituents to be addressed include: TDS, total suspended solids, chlorides, organics and metals. In addition to PM and PM10, provide emissions calculations for other criteria pollutants and hazardous air pollutants.

Abstract

RESPONSE: Water quality data for reclaimed water obtained from MDWASD's South District Waste Water Treatment Plant are presented as Table FDEP-PSD-1-c-1. The information includes data on TDS, total suspended solids, chlorides, organics and metals. The response to FDEP-PSD-4 contains information on HAPs emissions when using treated reclaimed water. Information on VOC emissions that may be emitted when using treated reclaimed water is presented in Table FDEP-PSD-10 and is estimated to be 0.0008 tons/year when using treated reclaimed water. The VOC emissions were determined by assuming that all the volatiles and semi-volatiles from priority pollutant analyses were VOCs and the maximum values were used. Where all values for a particular parameter were below the detection limits, the detection limit was used to bound the emission estimate. As shown in Table FDEP-PSD-10, only 6 out of 39 analyses were above the detection limit for VOCs. c-2. Provide water quality/chemical analysis reports of cooling water to be used from radial collection wells. Provide evaluation on the effect that the cooling tower (heat transfer) process has on the radial collection well water constituents and the related air emissions (both criteria and hazardous air pollutants). Radial collection well water constituents to be addressed include: TDS, total suspended solids, chlorides, organics and metals. In addition to $\mathbf{P M}$ and $\mathbf{P M}_{10}$, provide emissions calculations for other criteria pollutants and hazardous air pollutants.

RESPONSE: Water quality data for saltwater is attached to the responses as part of FDEP-PSD-1d. These data are recent analyses of saltwater obtained from Biscayne Bay and an aquifer pump test located in the area where the radial collector well caissons will be located (i.e., the Turkey Point peninsula). The information includes data on TDS, total suspended solids, chlorides, organics and metals. The response to FDEP-PSD-4 contains information on HAPs emission when using saltwater. Table FDEP-PSD-10-1 presents emissions of VOCs when using saltwater, estimated to be 0.0019
tons/year. For the estimated VOC emissions from saltwater, the detection limits were used because none of the 138 analyses were above the detection limits of the analytical method.
d. DERM expressed concerns over the significant $\mathbf{P M} / \mathbf{P M}_{10}$ emissions that would result from the proposed wet circulating water cooling towers. Provide a comprehensive evaluation of alternative cooling technologies instead of the proposed mechanical draft cooling towers.

RESPONSE: Refer to the responses for FDEP-PSD-1-f and FDEP-PSD-1-g that present information related to BACT and alternative cooling systems.
e. Although not related directly to the PSD application, the DERM advises FPL of the following:
e-1. If any demolition activities or renovation of existing buildings is to occur during the proposed project, either on-site or off-site, all applicable asbestos notifications and surveys shall be submitted.

RESPONSE: Comments acknowledged.
e-2. If site-preparation and construction activities include open burning, Chapter 24 requires Open Burning Permits for Land Clearing be obtained from the Miami Dade County Fire Department.

RESPONSE: Land clearing debris associated with site preparation activities will be disposed of using open burning as necessary. Open burning will only be conducted for the purpose of nonrecurrent clearing of debris from land clearing. Open burning will also only be conducted after notification of Miami-Dade County Department of Environmental Management (DERM), MiamiDade County Fire Rescue Department (Fire Protection Division) and the Florida Division of Forestry. All open burning will be conducted in accordance with the requirements of Rule 62 $256.700(3)$, F.A.C. Land clearing materials not disposed of using open burning will be disposed of in accordance with the requirements of Chapter $62-701$, F.A.C.

FDEP-PSD-11: Provide the potential emissions of particulate matter with a mean aerodynamic diameter of $\mathbf{2 . 5}$ microns or less $\left(\mathbf{P M}_{2.5}\right)$ for the project.

Note: This comment was provided in a separate letter from FDEP Bureau of Air Regulation dated ' July 30, 2009.

RESPONSE: The PM $_{2.5}$ emissions can be directly calculated from the information in Table A-1 and A-2 of the application appendix. The use of treated reclaimed water with a TDS of $4,000 \mathrm{ppmw}$ would have the maximum $\mathrm{PM}_{2.5}$ emissions since the lower TDS results in smaller drift particles. The total PM emissions for $4,000 \mathrm{ppmw}$ TDS is $6.315 \mathrm{lb} / \mathrm{hr}$ per set of 3 towers as shown in Table A-1. The final particle size distribution is provided in the last two far right columns of Table A-2. As shown the final particle size closest to 2.5 microns is 2.441 microns which makes up 0.196% (i.e., 0.00196 as a fraction). Interpolating for 2.5 microns, the percentage is 0.2 , or 0.002 as a fraction. The $\mathrm{PM}_{2.5}$ emissions are therefore: $0.002 \times 6.315 \mathrm{lb} / \mathrm{hr}$ per tower $\times 2$ (for 3 cooling towers) $=0.0253$ $\mathrm{lb} / \mathrm{hr}$. The annual emissions are 0.11 tons/year for the circulating water cooling towers.

For the service water cooling towers, the total PM emissions for $4,000 \mathrm{ppmw}$ TDS is $0.021 \mathrm{lb} / \mathrm{hr}$ per towers as shown in Table A-4. The final particle size distribution is provided in the last two far right columns on Table A-5. As shown the final particle size closest to 2.5 microns is 2.441 microns which makes up 0.196% (or 0.00196 as a fraction). Interpolating for 2.5 microns the percentage is 0.2 or 0.002 as a fraction. The $\mathrm{PM}_{2.5}$ emissions are therefore: $0.002 \times 0.021 \mathrm{lb} / \mathrm{hr}$ per tower $\times 2$ (for 2 cooling towers) $=0.0004 \mathrm{lb} / \mathrm{hr}$. The annual emissions are 0.0002 tons/year for the circulating water cooling towers.
$\mathrm{PM}_{2.5}$ emissions were also estimated from the standby diesel generators, ancillary diesel generators, fire pump engines and general purpose engines using AP-42 emission factors. Table FDEP-PSD-11 presents the $\mathrm{PM}_{2.5}$ emissions as 1.26 tons/year.

The total estimated $\mathrm{PM}_{2.5}$ emissions for the Project are 1.27 tons/year.

ATTACHMENTS

March 19, 2009

CLIVE POWELL
MIAMI DADE WATER \& SEWER
SOUTH DISTRICT LABORATORY
8950 SW 232 ST.
Miami, FL 33170

RE:
Workorder: 901840
Project: ANNUAL SAMPLING

Dear CLIVE POWELL:
Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, February 19, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Kimmel
mkimmel@genapure.com

FL-NELAC E86240

Statement of uncertainty is available upon request.
 U undelected; $Q=$ out of hold

$U=$ undetected; $Q=$ out of hold
Enclosures

This report shall not be reproduced, except in full.

	SAMPLE SUMMARY				
Lab ID	Sample ID	Collector	Matrix	Date Collected	Date Received
901840001	REUSE EFFLUENT	CL	Drinking Water	$2 / 19 / 200900: 00$	$2 / 19 / 2009$
901840002	TRIP BLANK	CL	DI Water	$2 / 14 / 200900: 00$	$2 / 19 / 2009$

ANALYTICAL RESULTS

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Wet Chemistry - Subcontract

 		Wut						
Asbestos	0.18 U	1 MFL	0.18	0.18	1		2/28/2009 12:00	SU
Semivolatiles								
Fena 6		ajucalyeth 	REV2 8					
2,4,6-Trichlorophenol	0.27 U	ugh	0.27	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
2-Chlorophenol	0.22 U	ugh	0.22	4.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Anthracene	0.25 U	ught.	0.25	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Butyl benzyl phthalate	0.36 U	ugh	0.36	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Dimethyl phthalate	0.31 U	ug/L	0.31	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Naphthalene	0.34 U	ug/L	0.34	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Phenanthrene	0.294	ug/L	0.29	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Phenol	0.41 U	ugh.	0.41	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB

2,3,7,8-TCDD	ND	$2 \mathrm{ug} / \mathrm{L}$		1	2/20/2009 09:00	2/24/2009 15:29	TB
WRepartohmemoderak							
Nitrobenzene-d5 (S)	84	\%	10-117	1	2/20/2009 09:00	2/23/2009 15:18	TB

ANALYTICAL RESULTS

Lab ID:	901840001	Date Received: $2 / 19 / 2009$	Matrix:
Sample ID:	REUSE EFFLUENT/	Date Collected: $\mathbf{2 / 1 9 / 2 0 0 9}$	

Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	By
2-Fluorobiphenyl (S)	81	\%	10-112		1	2/20/2009 09:00	2/23/2009 15:18	TB
Terphenyl-d14 (S)	106	\%	20-146		1	2/20/2009 09:00	2/23/2009 15:18	TB
Phenol-d6 (S)	31	\%	10-59		1	2/20/2009 09:00	2/23/2009 15:18	TB
2-Fluorophenol (S)	53	\%	24-64		1	2/20/2009 09:00	2/23/2009 15:18	TB
2,4,6-Tribromophenol (S)	104	\%	52-121		1	2/20/2009 09:00	2/23/2009 15:18	TB

Pesticides

Aldrin	0.00139 U		ugh	0.00139	0.050	1	2/23/2009 15:30	2/25/2009 04:17	SB
Dieldrin	$0.00170 \cup$	4	ugh	0.00170	0.050	1	2/23/2009 15:30	2/25/2009 04:17	SB
Tetrachloro-m-xylene (S)	48		\%	32-137			2/23/2009 15:30	2/25/2009 04:17	SB
Decachlorobiphenyl (S)	39		\%	25-165			2/23/2009 15:30	2/25/2009 04:17	SB

Synthetic Organics

Picraration 13	diza			2736				3123	W第變
Carbofuran	0.25 U	3	ug/	0.25	2.0	1	2/25/2009 15:30	2/28/2009 09:58	SU
Oxamyl	0.18 U		ug/	0.18	2.0	1	2/25/2009 15:30	2/28/2009 09:58	su

Alachlor	0.058 U	3	ug/	0.058	0.21	1	2/26/2009 10:00	2/26/2009 22:34	SU
Atrazine (Aatrex)	0.027 U		ug/L	0.027	0.11	1	2/26/2009 10:00	2/26/2009 22:34	su
gamma-BHC (Lindane)	0.0053 U		ug/L .	0.0053	0.021	1	2/26/2009 10:00	2/26/2009 22:34	su
Chlordane(Technical)	0.037 U		ug/	0.037	0.21	1	2/26/2009 10:00	2/26/2009 22:34	su
Endrin	0.0021 U		ugh	0.0021	0.011	1	2/26/2009 10:00	2/26/2009 22:34	su
Heptachlor	0.0084 U		ugh	0.0084	0.042	1	2/26/2009 10:00	2/26/2009 22:34	su
Heptachlor epoxide	0.0042 U		ug/	0.0042	0.021	1	2/26/2009 10:00	2/26/2009 22:34	su
Hexachlorobenzene	0.026 U		ug/L	0.026	0.11	1	2/26/2009 10:00	2/26/2009 22:34	SU
Hexachlorocyclopentadiene	0.022 U		ugh	0.022	0.11	1	2/26/2009 10:00	2/28/2009 22:34	SU
Methoxychlor	0.022 U		ugh	0.022	0.11	1	2/26/2009 10:00	2/26/2009 22:34	SU
Simazine (Princep)	0.026 U		ugh	0.026	0.074	1	2/26/2009 10:00	2/26/2009.22:34	su
Toxaphene	0.23 U		ugh	0.23	1.1	1	2/26/2009 10:00	2/26/2009 22:34	su
Polychlorinated BiphenylsPCBS	0.11 U		ugh	0.11	0.11	1	2/26/2009 10:00	2/26/2009 22:34	su

Preparaith Methorye									
2,4-D	0.030 U	3	ugh	0.030	0.10	1	2/26/2009 09:00	2/27/2009 16:18	SU
Dalapon	0.66 U		ug/	0.66	1.0	1	2/26/2009 09:00	2/27/2009 16:18	SU
Dinoseb	0.090 U		ugh	0.090	0.20	1	2/26/2009 09:00	2/27/2009 16:18	SU
Pentachlorophenol	0.010 U		ug/L	0.010	0.040	1	2/26/2009 09:00	2/27/2009 16:18	SU
Picloram	0.010 U		ugh	0.010	0.10	1	2/26/2009 09:00	2/27/2009 16:18	SU
2,4,5-TP (Silvex)	0.0800		ugh	0.080	0.20	1	2/26/2009 09:00	2/27/2009 16:18	SU
Glyphosate	2.4 U		-	2.4	6.0			2/24/2009 03:55	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Volatiles

Chloroethane	0.710 U	ugh	0.710	1.00	1	2/21/2009 14:19	LN
Chloroform	18.0	ugh	0.572	1.00	1	2/21/2009 14:19	LN
cis-1,2-Dichioroethene	0.442 U	ugh	0.442	1.00	1	2/21/2009 14:19	LN
trans-1,2-Dichloroethene	0.410 U	ugh	0.410	1.00	1	2/21/2009.14:19	LN
1,1,1-Trichloroethane	0.132 U	ugh	0.132	0.500	1	2/21/2009 06:12	LN
1,1,2-Trichloroethane	0.088 U	ugh	0.088	0.500	1	2/21/2009 06:12	LN
1,1-Dichloroethane	0.075 U	ug/	0.075	0.500	1	2/21/2009 06:12	LN
1,1-Dichloroethene	0.086 U	ugh	0.086	0.500	1	2/21/2009 06:12	LN
1,2,4-Trichlorobenzene	0.117U	ug/L	0.117	0.500	1	2/21/2009 06:12	LN
1,2-Dichlorobenzene	0.076 U	ug/L	0.076	0.500	1	2/21/2009 06:12	LN
1,2-Dichloroethane	0.0704	ug/L	0.070	0.500	1	2/21/2009 06:12	LN
1,2-Dichloropropane	0.0934	ug/L	0.093	0.500	1	2/21/2009 06:12	LN
1,4-Dichlorobenzene	0.970	ug/L	0.150	0.500	1	2/21/2009 06:12	LN
Benzene	0.077 U	ugh	0.077	0.500	1	2/21/2009 06:12	LN
Bromodichloromethane	4.88	ugh	0.091	0.50	1	2/21/2009 06:12	LN
Bromoform	$0.15 \cup$	ugh	0.15	0.50	1	2/21/2009 06:12	LN
Carbon tetrachloride	0.134 U	ug/L	0.134	0.500	1	2/21/2009 06:12	. LN
Chlorobenzene	0.113 U	ug/L	0.113	0.500	1	2/21/2009 06:12	LN
Chloroform	16.2	ug/	0.077	0.50	1	2/21/2009 06:12	LN
Dibromochloromethane	1.62	ug/L	0.15	0.50	1	2/21/2009 06:12	LN
Ethylbenzene	0.070 U	ug/L.	. 0.070	0.500	1	2/21/2009 06:12	LN
Methylene chloride	0.117 U	ug/L	0.117	0.500	1	2/21/2009 06:12	LN
Styrene	0.040 U	ug/L	0.040	0.500	1	2/21/2009 06:12	LN
Tetrachloroethene	0.3901	ugh	0.148	0.500	1	2/21/2009 06:12	LN
Toluene	0.140 U	ug/L	0.140	0.500	1	2/21/2009 06:12	LN
Trichloroethene	0.121 U	ugh	0.121	0.500	1	2/21/2009 06:12	LN
Total Trihalomethanes	22.7	ug/L	0.47	2.0	1	2/21/2009 06:12	LN
Vinyl chloride	0.120 U	ug/L	0.120	0.500	1.	2/21/2009 06:12	LN
Xylene, m,p-	$0.134 U$	ug/L	0.134	0.500	1	2/21/2009 06:12	LN
Xylene, o-	0.0836	ug/	0.083	0.500	1	2/21/2009 06:12	LN
Xylenes (total)	0.2104	ug/L	0.210	0.500	1	2/21/2009 06:12	LN

CERTIFICATE OF ANALYSIS
This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Lab ID:	901840001
Sample ID:	REUSE EFFLUENT/

Date Received: 2/19/2009 Matrix: Drinking Water Date Collected: 2/19/2009

Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	By
cis-1,2-Dichloroethene	0.085 U	ug/L	0.085	0.500	1		2/21/2009 06:12	LN
trans-1,2-Dichloroethene	0.087 U	ug/L	0.087	0.500	1		2/21/2009 06:12	LN
WhRap								
4-Bromofluorobenzene (S)	. 95	\%	64-130		1		2/21/2009 14:19	LN
Dibromofluoromethane (S)	117	\%	69-134		1		2/21/2009 14:19	LN
Toluene d8 (S)	100	\%	63-127		1		2/21/2009 14:19	LN
M								
4-Bromofluorobenzene (S)	88	\%	70-130		1		2/21/2009 06:12	LN
1,2-Dichlorobenzene-d4 (S)	95	\%	70-130		1		2/21/2009 06:12	LN

ANALYTICAL RESULTS

Lab ID:	901840002	Date Received: 2/19/2009	Matrix:
Sample ID: DI Water	TRIP BLANKJ	Date Collected: $2 / 14 / 2009$	

Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	By
Volatiles								
1,1,1-Trichloroethane	0.132 U	ug/h	0.132	0.500	1		2/21/2009 01:59	LN
1,1,2-Trichloroethane	0.088 U	ug/L	0.088	0.500	1		2/21/2009 01:59	LN
1,1-Dichoroethane	0.075 U	ug/L	0.075	0.500	1		2/21/2009 01:59	LN
1,1-Dichloroethene	0.086 U	ugh	0.086	0.500	1		2/21/2009 01:59	LN
1,2,4-Trichlorobenzene	0.117 U	ugh	0.117	0.500	1		2/21/2009 01:59	LN
1,2-Dichlorobenzene	0.076 U	ug/L	0.076	0.500	1		2/21/2009 01:59	LN
1,2-Dichloroethane	0.070 U	ug/L	0.070	0.500	1		2/21/2009 01:59	LN
1,2-Dichloropropane	0.093 U	ug/L	0.093	0.500	1		2/21/2009 01:59	LN
1,4-Dichlorobenzene	0.150 U	ug/L	0.150	0.500	1		2/21/2009 01:59	LN
Benzene	0.077 U	ugh	0.077	0.500	1		2/21/2009 01:59	LN
Bromodichloromethane	0.091 U	ugh	0.091	0.50	1		2/21/2009 01:59	LN
Bromoform	0.15 U	ug/L	0.15	0.50	1		2/21/2009 01:59	LN
Carbon tetrachloride	0.134 U	ug/L	0.134	0.500	1		2/21/2009 01:59	LN
Chlorobenzene	0.113 U	ug/L	0.113	0.500	1		2/21/2009 01:59	LN
Chloroform	0.077 U	ug/L	0.077	0.50	1		2/21/2009 01:59	LN
Dibromochloromethane	0.15 U	ugh	0.15	0.50	1		2/21/2009 01:59	LN
Ethylbenzene	$0.070 \cup$	ug/L	0.070	0.500	1		2/21/2009 01:59	LN
Methylene chloride	0.117 U	ug/L	0.117	0.500	1		2/21/2009 01:59	LN
Styrene	0.040 U	ug/L	0.040	0.500	1		2/21/2009 01:59	LN
Tetrachloroethene	0.148 U	ug/L	0.148	0.500	1		2/21/2009 01:59	LN
Toluene	0.140 U	ug/L	0.140	0.500	1		2/21/2009 01:59	LN
Trichloroethene	0.121 U	ug/L	0.121	0.500	1		2/21/2009 01:59	LN
Total Trihalomethanes	0.47 U	ug/L	0.47	2.0	1		2/21/2009 01:59	LN
Vinyl chloride	0.120 U	ug/L	0.120	0.500	1		2/21/2009 01:59	LN
Xylene, mıp-	0.134 U	ug/L	0.134	0.500	1		2/21/2009 01:59	LN
Xylene, o-	0.083 U	ugh	0.083	0.500	1		2/21/2009 01:59	LN
Xylenes (total)	0.210 U	ug/L	0.210	0.500	1		2/21/2009 01:59	LN
cis-1,2-Dichloroethene	0.085 U	$u g / L$	0.085	0.500	1		2/21/2009 01:59	LN
trans-1,2-Dichloroethene	0.087 U	ug/L	0.087	0.500	1		2/21/2009 01:59	LN
4-Bromofluorobenzene (S)	86	\%	70-130		1		2/21/2009 01:59	LN
1,2-Dichlorobenzene-d4 (S)	95	\%	70-130		1		2/21/2009 01:59	LN
EDB Analysis								
1,2-Dibromo-3chloropropane	0.00310	. $u 9 / \mathrm{L}$	0.00310	0.020	1	2/23/2009	2/23/2009 23:37	LR
1,2-Dibromoethane	0.00640	ug/L	0.00640	0.010	1	2/23/2009	2/23/2009 23:37	LR
4-Bromofluorobenzene (S)	81	\%	70-130		1	2/23/2009	2/23/2009 23:37	LR

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full without the written consent of Genapure Analytical Services, inc..

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

1 Estimated value; between MDL and PQL

」 Estimated value.
V Present in blank.
[1] E86772
[2] The reported analyte is not NELAC certified
[3] E83079
[4] NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

CASE NARRATIVE

Sample Analysis Comments

Lab ID 901840001 Client ID REUSE EFFLUENT

Analyte/2,3,7,8-TCDD

The reported analyte is not NELAC certified

Analyte/2,4-D

[3] E83079

Analyte/Alachlor

[3] E83079

Analyte/Asbestos

[1] E86772

Analyte/Benzo(a)pyrene

[3] E83079

Analyte/Bis(2-Ethylhexyl)phthalate

[3] E83079
I = Estimated value; between MDL and PQL
$V=$ Present in blank.

Analyte/Carbofuran

[3] E83079

Analyte/Di(2-ethylhexyl)adipate

[3] E83079

Analyte/Dieldrin

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Diquat

[3] E83079

Analyte/Endothal

[3] E83079

Analyte/Glyphosate

[3] E83079

QUALITY CONTROL DATA

QC Batch:	EXTO/1744		Analysis Method:	EPA 625		
QC Batch Method:	EPA 625					
Associated Lab Samples:	901780001	901839001	901840001	901842001	901843002	
	901850002	901850003				

METHOD BLANK: 17506

LABORATORY CONTROL SAMPLE: 17507

Parameter	Units	Spike Conc.	LCS Result	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers
Semivolatiles					
Anthracene	ug/L	50	45.4	91	27-133
Benzo(a)pyrene	ug/L	50	44.4	89	17-163
Butyl benzyl phthalate	ug/L	50	52.7	105	0-152
Bis(2-Ethyihexyl)phthalate	ug/L	50	57.9	116	8-158
1,2-Dichlorobenzene	ugh.	50	33.9	68	32-129
Dimethyl phthalate	ugh	50	44.9	90	0-112
Hexachlorobenzene	ug / L	50	42.6	85	0-152
Hexachlorocyclopentadiene	ug/L	50	22.2	44	10-115
Naphthalene	$u g / L$	50	37.3	75	21-133
Phenanthrene	ug/L	50	43.9	88	54-120
2,4,6-Trichlorophenol	$u g /$ L	50	40.6	81	37-144

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17507
$\left.\begin{array}{llrrrr} & \text { Units } & \begin{array}{c}\text { Spike } \\ \text { Conc. }\end{array} & \begin{array}{c}\text { LCS } \\ \text { Result }\end{array} & \begin{array}{c}\text { LCS } \\ \%\end{array} & \begin{array}{c}\text { Rec Rec }\end{array} \\ \text { Parameter } & \text { ug/L } & 50 & 18.3 & 37 & 5-112 \\ \text { Limits Qualifiers }\end{array}\right]$

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

METHOD BLANK: 17514

Parameter	Units	Biank Result	Reporting Limit Qualifiers	
EDB Analysis				
1,2-Dibromo-3-chloropropane	ug/L	0.00310 U	0.00310	
1,2-Dibromoethane	ug / L		0.00640 U	0.00640
4-Bromofiuorobenzene (S)	$\%$	78	$70-130$	

LABORATORY CONTROL SAMPLE \& LCSD: 17515				17516					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	$\begin{aligned} & \text { LCS } \\ & \text { \% Rec } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \% \operatorname{Rec} \end{aligned}$	\% Rec Limit	RPD	Max ${ }^{\circ}$ RPD Qualifiers
EDB Analysis									
1,2-Dibromo-3-chloropropane	ug/L	0.252	0.278	0.287	110	114	72-150	4	20
1,2-Dibromoethane	ug/L	0.252	0.288	0.288	114	114	78-142	0	20
4-Bromofluorobenzene (S)	\%				78	77	70-130	1	20

MATRIX SPIKE SAMPLE: 17517
Original: 901791009

Parameter	Units	Original Result	Spike Conc.	MS Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers	
EDB Analysis							
1,2-Dibromo-3chloropropane	ug/L	0	0.252	0.287	114	70-130	
1,2-Dibromoethane	ug/L	0	0.252	0.288	114	70-130	
4-Bromofluorobenzene (S)	\%				76	70-130	

SAMPLE DUPLICATE: 17518

Parameter	Units	Original Result	DUP Result	RPD	Max
	RPD Qualifiers				

EDB Analysis
1,2-Dibromo-3 chloropropane 1,2-Dibromoethane
$\mathrm{ug} / \mathrm{L} \quad 0.00640 \mathrm{U}$

4-Bromofluorobenzene (S)

Original: 901742001

0

$0.00310 U$	0
$0.00640 U$	0

0

QUALITY CONTROL DATA

QC Batch:	MiSC/1114	Analysis Method:
QC Batch Method: SM 2150 B		

Associated Lab Samples:	901835002	901840001	901842001	901852001	901852002

METHOD BLANK: 17677

	Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers

| Wet Chemistry | | |
| :--- | :--- | :--- | :--- |
| Odor | TON | iU |

SAMPLE DUPLICATE: $17678 \quad$ Original: 901840001

	Units	Original Result	DUP Result	RPD	Max Rarameter
Wet Chemistry Odor	TON	16.0	16.0	0	20

QUALITY CONTROL DATA

| QC Batch: | LACH/1768 | | Analysis Method: | EPA 365.1 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| QC Batch Method: | EPA 365.1 | | | |

LABORATORY CONTROL SAMPLE \& LCSD: 17680 17681

Parameter	Units	Spike Conc.	$\begin{gathered} \text { LCS } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { LCSD } \\ & \text { Result } \end{aligned}$	$\begin{aligned} & \text { LCS } \\ & \text { \% Rec } \end{aligned}$	$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \end{aligned}$	\% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry									
Ortho Phosphate - P	mg/L-P	0.5	0.520	0.521	104	104	90-110	0	20

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17682				17683		Originat: 901818001					
		Original	Spike	MS	MSD	MS	MSD	\% Rec		Max	
Parameter	Units	Result	Conc.	Result	Result	\% Rec	\% Rec	Limit			Qualifiers
Wet Chemistry											
Ortho Phosphate -P	mg/L-P	0.247	0.5	0.768	0.770	104	105	90-110	1	20	

		QUALITY CONTROL DATA		
QC Batch:	HACH/1120		Analysis Method:	SM 2120B Color
QC Batch Method:	SM 21208 Color			
Associated Lab Samples:	901780001	901835001	901840001	901842001

METHOD BLANK: 17684

Parameter	Units.	Blank Result
Reporting Limit Qualifiers		

Wet Chemistry
Coior (True/Apparent) pcu $5.0 \mathrm{U} \quad 5.0$

ṠAMPLE DUPLICATE: 17685
Original: 901780001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
Wet Chemistry Color (True/Apparent)	pcu	300	300	0	20

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17691

Parameter	Units	Spike Conc.	LCS Result	LCS $\%$ Rec	$\%$ Rec Limits Qualifiers	
Aluminum	mg / L		5	5.16	103	$70-130$
Chromium	mg / L	1	1.05	105	$70-130$	
Copper	mg / L	1	1.06	106	$70-130$	
Iron	mg / L	5	5.34	107	$70-130$	
Nickel	mg / L	5	1.05	105	$70-130$	
Silver	mg / L	1	115	$70-130$		
Sodium	mg / L	0.5	0.577	109	$70-130$	
Zinc	mg / L	25	27.4	106	$70-130$	

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17692				17693		Original: 901838001				
Parameter	Units	Original Result	Spike Conc.	Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	MSD \% Rec	\% Rec Limit	RPD	Max RPD Qualifiers
Aluminum	mg / L	0.112	5	5.42	5.45	106	107	70-130	0.9	20
Chromium	mg / L	0.00445	1	1.06	1.08	105	107	70-130	2	20
Copper	mg / L	0.00733	1	1.07	1.08	107	108	70-130	0.9	20
Iron	mg / L	0.193	5	5.50	5.38	106	104	70-130	2	20
Nickel	mg/L.	0.00367	1	1.04	1.05	104	105	70-130	1	20
Silver	mg / L	-0.00322	0.5	0.605	0.580	121	116	70-130	4	20
Sodium	mg / L	238	25.	257	252	80	58	70-130	32	20
Zinc	mg/L	0.0633	1	1.14	1.16	107	109	70-130	2	- 20

QUALITY CONTROL DATA

QC Batch:	DIGM/1603
QC Batch Method:	EPA 200.8

Associated Lab Samples:	901738001	901738002	901742001	901742002	901802001	901835001
	901838001	901839001	901840001	901842001	901843002	901850001
	901850002	901850003				

METHOD BLANK: 17694

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Antimony	mg / L	0.0010 U	0.0010
Arsenic	mg / L	0.0016 U	0.0016
Barium	mg / L	0.0015 U	0.0015
Beryllium	mg / L	0.00085 U	0.00085
Cadmium	mg / L	0.00011 U	0.00011
Lead	mg / L	0.00075 U	0.00075
Manganese	mg / L	0.0011 U	0.0011
Selenium	mg / L	0.00082 U	0.00082
Thallium	mg / L	0.00027 U	0.00027

LABORATORY CONTROL SAMPLE: 17695

	Units	Spike Conc.	LCS Result	LCS \% Rec	\% Rec Limits Qualifiers
Parameter	mg / L	0.2	0.216	108	$85-115$
Antimony	mg / L	0.2	0.207	104	$85-115$
Arsenic	mg / L	0.2	0.204	102	$85-115$
Barium	mg / L	0.2	0.208	104	$85-115$
Beryllium	mg / L	0.2	0.202	101	$85-115$
Cadmium	mg / L	0.2	0.214	107	$85-115$
Lead	mg / L	0.2	0.210	105	$85-115$
Manganese	mg / L	0.2	0.199	100	$85-115$
Selenium	mg / L	0.2	0.211	106	$85-115$

Report ID: 901840-4599317
Page 18 of 45

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA									
MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17696				17697		Original: 901838001			
Parameter	Units	Original Result	Spike Conc.	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	$\begin{gathered} \text { MSD } \\ \text { Result } \end{gathered}$	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit RPD	Max RPD Qualifiers
Thallium	mg / L			0.209	0.210				Q

QUALITY CONTROL DATA

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc.

QUALITY CONTROL DATA

METHOD BLANK: 17702

LABORATORY CONTROL SAMPLE: 17703

Parameter	Units	Spike Conc.	LCS Result	LCS $\%$ Rec	\% Rec Limits Qualifiers
Volatiles					
Acrolein	ug / L	100	63.2	63	$2-93$
Dichlorodifluoromethane	ug / L	20	23.0	115	$46-174$
Chloromethane	ug / L	20	22.2	111	$46-173$
Report ID: $901840-4599317$					

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17703

CERTIFICATE OF ANALYSIS

This report shall nol be reproduced, except in full.

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17703

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17704				17705		Original: 901850001				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS \% Rec	MSD \% Rec	\% Rec Limit	RPD	Max RPD Qualifiers
Volatiles										
Acrolein	ug/L	0	100	54.2	55.4	54	55	2-93	2	20
Dichlorodifluoromethane	ug/L	0	20	18.6	18.6	93	93	46-174	0	20
Chloromethane	ugh	0	20	21.8	23.2	109	116	46-173	6	20
Vinyl chloride	ug / L	0	20	21.3	21.1	106	106	60-162	0	20
Bromomethane	ug/L	0	20	21.0	26.6	105	133	33-170	24	20 J,7
Chloroethane	ug/L	0	20	25.5	25.5	127	127	50-163	0	20
Trichlorofluoromethane	ug / L	0	20	21.5	20.4	108	102	52-173	6	20
1,1-Dichloroethene	ugh	0	20	17.5	17.8	87	89	54-157	2	20

QUALITY CONTROL DATA

MATRIX SPIKE SAMPLE: 18015
Original: 901840001

Parameter	Units	Original Result	Spike Conc.	MS Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	\% Rec Limits Qualifiers	
Volatiles							
Acrolein	ug/L	0	100	45.9	46	2-93	
Dichlorodifluoromethane	ug/L	0	20	20.6	103	46-174	
Chloromethane	ug/L.	0	20	26.0	130	46-173	
Vinyl chloride	ug/L	0	20	22.7	113	60-162	
Bromomethane	ug/L	0	20	19.6	98	33-170	
Chloroethane	ug/L	0	20	25.0	125	50-163	
Trichlorofluoromethane	ug/L	0	20	22.6	113	52-173	
1,1-Dichloroethene	ug/L	0	20	17.8	89	54-157	
Acetone	ug/L	5.93	50	58.4	105	24-225	
Methylene chloride	ug/L	0	20	21.8	109	42-182	
trans-1,2-Dichloroethene	$u g / L$	0	20	20.0	100	49-164	
Acrylonitrile	ug/L	0	100	113	113	3-107 6,J	
1,1-Dichloroethane	ug/L.	0	20	20.1	100	60-167	
cis-1,2-Dichloroethene	ug/L	0	20	19.2	96	51-157	
2-Butanone	$u g / L$	0	50	46.8	94	49-145	

Page 25 of 45

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431

Phone: (561) 447-7373
Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE SAMPLE: 18015
Original: 901840001

Report ID: 901840-4599317
Page 26 of 45

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

MATRIX SPJKE SAMPLE: 18015

Parameter	Units	Original Result	Spike Conc.	MS ; Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\%$ Rec Limits Qualifiers
Bromobenzene	ug/L	0	20	17.4	87	
diisopropyl Ether (DIPE)	ug/L	0	20	20.1	101	
Vinyl acetate	ug/L	0	20	5.19	26	
1,2-Dibromoethane	$u g / L$	0	20	19.0	95	
4-Chlorotoluene	ug/L	0	20	17.6	88	
t-amyl methyl ether (TAME)	ug/L	0	20	19.0	95	
Styrene	$u g / L$	0	20	0.458 U	0	70-130 6, J
n-Propylbenzene	ug/L	0	20	16.8	84	
4-Isopropyltoluene	ug/L	0	20	14.8	74	
Isopropylbenzene (Cumene)	ug/L	0	20	15.5	78	70-130
2-Chlorotoluene	ug/L	0	20	16.6	83	
1,2-Dibromo-3chloropropane	ug/L	0	20	17.1	85	70-130
1,2,3-Trichloropropane	ugh	0	20	18.0	90	
tert-Butylbenzene	ugh	0	20	17.6	88	
4-Bromofluorobenzene (S)	\%	95			96	64-130
Dibromofluoromethane (S)	\%	117			105	69-134
Toluene d8 (S)	\%	100			100	63-127

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17797

Parameter	Units	Spike Conc.	LCS Result	$\begin{aligned} & \text { LCS } \\ & \% \text { Rec } \end{aligned}$	\% Rec Limits Qualifiers
Pesticides					
Aldrin	ug/L	0.1	0.058	58	43-149
Dieldrin	$u g / L$	0.1	0.079	79	47-162
Tetrachloro-m-xylene (S)	\%			56	32-137
Decachlorobiphenyl (S)	\%	.		91	25-165

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17798				17799		Original: 901874005				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result		MSD \% Rec	\% Rec Limit	RPD	Max RPD Qualifiers
Pesticides										
Aldrin	ug/L	0	0.1	0.060	0.058	60	58	43-149	3	35
Dieldrin	$u g / L$	0	0.1	0.077	0.071	77	71	47-162	8	33
Tetrachloro-m-xylene (S)	\%					50	50	32-137	0	
Decachlorobiphenyl (S)	\%					79	79	25-165	0	

QUALITY CONTROL DATA

QUALITY CONTROL DATA

QC Batch: MSV/1452			Analysis Method:	EPA 524.2		
QC Batch Method: EPA 524.2						
Associated Lab Samples:	901834001	901835002	901835003	901838001	901838002	901840001
	901840002	901842001	901852001	901852002	901872001	901872002
	901873001	901873002				
METHOD BLANK: 17837						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifiers			
Volatiles						
Vinyl chloride	ugh	0.120 U	0.120			
1,1-Dichloroethene	ug/L	0.086U	0.086			
Methylene chloride	ug/L	0.117 U	0.117			
trans-1,2-Dichloroethene	ugiL	0.087 U	0.087			
cis-1,2-Dichloroethene	ug/L	0.085 U	0.085			
Chloroform	ugh	0.077 U	0.077			
1,2-Dichloroethane	$u g / L$	$0.070 \cup$	0.070			
1,1,1-Trichloroethane	ug/L	0.132 U	0.132			
Benzene	ugh	0.077 U	0.077	.		
Carbon tetrachloride	ugh	0.134 U	0.134			
1,2-Dichloropropane	ugh	0.093 U	0.093			
Trichloroethene	ug/L	0.121 U	0.121			
Bromodichloromethane	ug/L	0.091 U	0.091			
Toluene	ug/L	0.140 U	0.140			
Dibromochloromethane	ugh	0.15 U	0.15			
Tetrachloroethene	ug/L	0.148 U	0.148			
Chlorobenzene	ug/L	0.113 U	0.113			
Ethylbenzene	ugh	$0.070 \cup$	0.070		-	
Xylene, m,p-	ug/L	0.134 U	0.134	-		.
Bromoform	ugh	0.15 U	0.15			.
Styrene	ugh	0.040 U	0.040			
Xylene, o-	ug/L	0.083 U	0.083			
1,4-Dichlorobenzene	ugh	0.150 U	0.150			
1,2-Dichlorobenzene	ug/L	0:076U	0.076			
1,2,4-Trichlorobenzene	ug/L	0.117 U	0.117			
1,1-Dichloroethane	ug/L	0.075 U	0.075			
4-Bromofluorobenzene (S)	\%	88	70-130			
1,2-Dichlorobenzene-d4 (\$)	\%	93	70-130			
Xylenes (total)	ug/	0.210 U	0.210			

LABORATORY CONTROL SAMPLE: 17838

Parameter	Units	Spike Conc.	$\begin{gathered} \text { LCS } \\ \text { Result } \end{gathered}$	$\begin{gathered} \text { LCS } \\ \% \text { Rec } \end{gathered}$	\% Rec Limits Quallifiers	
Volatiles						
Vinyl chloride	ug/L	5	5.32	106	70-130	
1,1-Dichloroethene	ug/L	5	4.50	90	70-130	
Methylene chloride	ug/L	5	3.82	76	70-130	
Report ID: 901840-4599317 Page 32 of 45						

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17838

QUALITY CONTROL DATA

QC Batch:	MICP/1259
QC Batch Method:	BOD PREP

Analysis Method: SM 5210B BOD

Associated Lab Samples:	901835002	901840001	901842001	901852001	901852002	901853003
	901872001	901873001				

METHOD BLANK: 17849			
Barameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry BOD	mg / L	2.0 C	2.0

LABORATORY CONTROL SAMPLE: 17851
$\left.\begin{array}{lccccc} & \ddots & \text { Units } & \begin{array}{c}\text { Spike } \\ \text { Conc. }\end{array} & \begin{array}{c}\text { LCS } \\ \text { Result }\end{array} & \begin{array}{c}\text { LCS } \\ \% \text { Rec }\end{array}\end{array} \begin{array}{c}\text { \% Rec } \\ \text { Limits Qualifiers }\end{array}\right]$

QUALITY CONTROL DATA

QC Batch: SOLI/1497

Analysis Method: SM 2540 C

QC Batch Method: SM 2540 C

Associated Lab Samples:	901780001	901828002	901828004	901835001	901840001	901842001
	901852001	901852002	901872001	901873001	901880001	901894001
	901894002	901922001	901922002	901922003	901922004	901922005
	901922006					

METHOD BLANK: 17860			
Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Total Dissolved Solids(TDS)	mg / L	7.00 U	7.00

SAMPLE DUPLICATE: 17861
Original: 901828002

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers	
Wet Chemistry Total Dissolved Solids(TDS)	$\mathrm{mg} \ell$					

SAMPLE DUPLICATE: 17862

| | Original | DUP
 Parameter | Units | Result | Result |
| :--- | :---: | :---: | :---: | :---: | :---: |\quad RPD \quad| Max |
| :---: |
| RPD Qualifiers |

Wet Chemistry
Total Dissolved Solids(TDS) 772

Original: 901922006

744
3.7

20

Boca Raton, FL 33431
Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:	INPR/1470
QC Batch Method:	EPA 335.2
Associated Lab Samples:	901742001
	901840001
	901852001
	901910001

Analysis Method: EPA 335.4 Cyanide

QUALITY CONTROL DATA

QC Batch: \quad DIGM/1613

Associated Lab Samples:	901835001	901838001	901840001	901842001	901852001	901852002
	901872001	901873001	901901001	901910001	901919001	

METHOD BLANK: 17974

Parameter	Unils	Blank Result	Reporting Limit Qualifiers
Mercury	mg / L	0.000056 U	0.000056

LABORATORY CONTROL SAMPLE: 17975

Parameter	Units	Spike Conc.	LCS Result	LCS $\%$ Rec	\% Rec Limits Qualifiers
Mercury	mg / L	0.002	0.00175	88	$80-120$

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17976				17977		Original: 901838001				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Mercury	mg / L	3.3e-005	0.002	0.00200	0.00192	100	96	80-120	4	20 Q

QUALITY CONTROL DATA

QC Batch: INP	1473		Analysis Method:	EPA 365.1		
QC Batch Method: EPA	65.1					
Associated Lab Samples:	901780001	901840001	901841002	901841004	901842001	901852001
	901852002	901853003	901854003	901854005	901854006	901854007
	901855003	901857001	901896001	901896002	901896003	901896004
	901896005	901896006				
METHOD BLANK: 17990						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifiers			
Wet Chemistry						
Total Phosphorus	mg / L	0.004 U	0.004			

LABORATORY CONTROL SAMPLE \& LCSD: 17991				17992					
Parameter	Units	Spike Conc.	$\begin{aligned} & \text { LCS } \\ & \text { Result } \end{aligned}$	LCSD Result	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \end{aligned}$	\% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry									
Total Phosphorus	mg / L	0.5	0.512	0.521	102	104	90-110	1.9	20

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17995				17996		Originat: 901896005				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{gathered} \text { MSD } \\ \% \text { Rec } \end{gathered}$	\% Rec Limit		Max RPD Qualifiers
Wet Chemistry										
Total Phosphorus	mg / L	0.027	0.5	0.478	0.478	90.2	90.4	90-110		20

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

QC Batch:	IC/1193
QC Batch Method:	EPA 300.0

Associated Lab Samples:	901778002	901821001	901833017	901835001	901838001	901840001
	901841005	901842001	901852001	901852002	901872001	901896001
	901896002	901896004	901896006	901907003		

METHOD BLANK: 18051

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Chloride	mg / L	0.066 U	0.066

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 18054				18055		Original: 901833017			
		Original	Spike	MS	MSD	MS	MSD	\% Rec	Max
Parameter	Units	Result	Conc.	Result	Result	\% Rec	\% Rec	Limit RPD	RPD Qualifiers

Wet Chemistry
Chloride mg/h 2030207

QUALITY CONTROL DATA

QC Batch: $\quad \mathrm{PH} /$			Analysis Method:		SM4500	H-B		
QC Batch Method: SM4	00H-B							
Associated Lab Samples:	901835001	901838001	901840001		901842001		901852001	901852002
	901854001	901854004	901854005		901854009		901894001	901894002
	901896001	901896002	901896003		901896004		901896005	901896006
	901909001							
SAMPLE DUPLICATE: 18			riginal: 90189600					
		Original	DUP			Max		
Parameter	Units	Result	Result	RPD		RPD	ualifiers	
Wet Chemistry								
pH	pH unit	7.24	7.29	0.7		2		

QUALITY CONTROL DATA

QC Batch:	INPR/1484
QC Batch Method:	EPA 351.2
Associated Lab Samples:	901780001
	901841004
	901853003
	901880001

Analysis Method: EPA 351.2

LABORATORY CONTROL SAMPLE \& LCSD: 18614			18615						
		Spike	LCS	LCSD	LCS	LCSD	\% Rec		Max
Parameter	Units	Conc.	Result	Result	\% Rec	\% Rec	Limit	RPD	RPD Qualifiers
Wet Chemistry									
Total Kjeldahl Nitrogen	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	5	4.56	5.22	91.1	104	90-110	13.2	20

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: $18616 \quad 18617 \quad$ Original: 901811002

	Unils	Original Result	Spike Conc.	MS Result	MSD Result	MS $\%$ Rec	MSD $\%$ Rec	$\%$ Rec Limit RPD RPD Qualiflers		
Wet Chemistry Total Kjeldahl Nitrogen	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	6.44	5	9.74	11.0	66.1	92.1	$90-110$	32.9	20

Genapure ${ }^{*}$

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

J Estimated value.

Q
Holding time exceeded.
V Present in blank.
[5] NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limits establishing that there is no high biased result reported
[6] MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[7] NCR-\% RPD exceeds control limits

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method ${ }^{\text {a }}$	Analytical Batch
901840001	REUSE EFFLUENT	EPA 625	EXTO/1744	EPA 625	MSSV/1248
901840001	REUSE EFFLUENT	EPA 625	EXTO/1744	Semi-volatile Mass Spec Scan	MSSV/1248
901840001	REUSE EFFLUENT	EPA 504.1	EXTO/1746	EPA 504.1	GCSV/1399
901840002	TRIP BLANK.	EPA 504	EXTO/1746	EPA 504	GCSV/1399
901840001	REUSE EFFLUENT	SM 2150 B	MISC/1114		
901840001	REUSE EFFLUENT	EPA 365.1	LACH/1768		
901840001.	REUSE EFFLUENT	SM 2120 BColor	HACH/1120		
901840001	REUSE EFFLUENT	EPA 200.7	DIGM/1602	EPA 200.7	1CP/1374
901840001	REUSE EFFLUENT	EPA 200.8	DIGM/1603	EPA 200.8	ICPM/1076
. 901840001	REUSE EFFLUENT	EPA 624	MSV/1447		
901840001	REUSE EFFLUENT	EPA 350.1	LACH/1770		
901840001	REUSE EFFLUENT	SM 5540 C	INPR/1468	SM 5540 C	HACH/1123
901840001	REUSE EFFLUENT	-EPA 608	EXTO/1758	EPA 608	GCSV/1401
901840001	REUSE EFFLUENT	EPA 300.0	1C/1189		
901840001	REUSE EFFLUENT	EPA 524.2	MSV/1452		
901840002	TRIP BLANK	EPA 524.2	MSV/1452	.	
901840001	REUSE EFFLUENT	BOD PREP	MICP/1259	SM 5210 BOD	BOD/1220
901840001	REUSE EFFLUENT	SM 2540 C	SOLI/1497		

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
901840001	REUSE EFFLUENT	EPA 335.2	INPR/1470	EPA 335.4 Cyanide	LACH/1791
901840001	REUSE EFFLUENT	EPA 245.1	DIGM/1613	EPA 245.1	HG/1081
901840001	REUSE EFFLUENT	EPA 365.1	INPR/1473	EPA 365.1	LACH/1784
901840001	REUSE EFFLUENT	EPA 300.0	1C/1193		
901840001	REUSE EFFLUENT	SM4500H-B	PH/1052		
901840001	REUSE EFFLUENT	EPA 351.2	INPR/1484	EPA 351.2	LACH/1828
901840001	REUSE EFFLUENT	EPA 100.2	S_091	EPA 100.2	S_09/
901840001	REUSEEFFLUENT	EPA 508.1	S_051	EPA 508.1	S_051
901840001	REUSE EFFLUENT	EPA 515.3	S_05/	EPA 515.3	S_051
901840001	REUSE EFFLUENT	EPA 525.2	S_051	EPA 525.2	S_05
901840001	REUSE EFFLUENT	EPA 531.1	S_051	EPA 531.1	S_05l
901840001	REUSE EFFLUENT	EPA 547	S_05/	EPA 547	S_051
901840001	REUSE EFFLUENT	EPA 548.1	S_05	EPA 548.1	S_05/
901840001	REUSE EFFLUENT	EPA 549.2	S_051	EPA 549.2	S_051

March 20, 2009

CLIVE POWELL
MIAMI DALE WATER \& SEWER
SOUTH DISTRICT LABORATORY
8950 SW 232 ST.
Miami, FL 33170

RE:
Workorder: 901842
Project: ANNUAL SAMPLING

Dear CLIVE POWELL:
Enclosed are the analytical results for samples) received by the laboratory on Thursday, February 19, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.
If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Kimmel
mkimmel@genapure.com

FL-NELAC E86240

Statement of uncertainty is available upon request.
Enclosures 3231 NW 7th Avenue Boca Raton, FL 33431

| | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Lab ID | Sample ID | Collector | Matrix | Date Collected | Date Received |
| 901842001 | COMBINED EFFLUENT | CL | Wastewater | $2 / 19 / 2009$ | $2 / 19 / 2009$ |

ANALYTICAL RESULTS

Analytical Method: EPA 365.1

Report ID: 901842-4599249

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

Genapure

3231 NW 7th Avenue
Boca Raton, FL 33431
Phone: (561) 447-7373
Fax: (561) 447-7374

ANALYTICAL RESULTS

EDB Analysis

Preparation Method: EPA 504.1
Analytical Method: EPA 504.1

1,2-Dibromo-3chloropropane	0.00310 U	ug/L	0.0155	$\begin{array}{r} 0.0031 \\ 0 \end{array}$		2/23/2009 5:00:00 PM	2/24/2009 12:22:00 AM	LREL
1,2-Dibromoethane	0.00640 U	ugh 1	0.032	$\begin{array}{r} 0.0064 \\ 0 \end{array}$	1	2/23/2009 5:00:00 PM	2/24/2009 12:22:00 AM	LREL
4-Bromofluorobenzene (S)	78	\%		70-130	1	2/23/2009 5:00:00 PM	2/24/2009 12:22:00 AM	LREL
INORGANICS								
Rreparation Method: EPA 245.1	Analytical Method: EPA 245.1							
Mercury	0.000056 U	mg / L	$\begin{array}{r} 0.0002 \\ 8 \end{array}$	$\begin{array}{r} 0.0000 \\ 56 \end{array}$	1	2/23/2009 11:30:00 AM	2/23/2009 4:01:00 PM	ITUP
PrenarationMethod: ERA 200.7Aluminum	Analytical Method: EPA 200.7							
	0.046 U	mg / L	0.23	0.046	1	2/20/2009 11:00:00 AM	2/23/2009 10:26:50 PM	TBU T
Chromium	0.002501	mg / L	0.0055	0.0011	1	2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	TBU T
Copper	0.0096 U	mg / L	0.048	0.0096	1	2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	$\begin{aligned} & \text { TBU } \\ & T \end{aligned}$
Iron	0.140	mg / L	0.225	0.045	1	2/20/2009 11:00:00 AM	2/23/2009 10:26:50 PM	TBU
Nickel	0.0052 U	mg / L	0.026	0.0052	1	2/20/2009 11:00:00 AM	2/23/2009 10:26:50 PM	$\begin{aligned} & T B U \\ & T \end{aligned}$
Silver	0.0016 U	mg/L	0.008	0.0016	1	2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	$\begin{aligned} & \text { TBU } \\ & T \end{aligned}$
Sodium	78.8	mg/L	0.37	0.074	1	2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{T} \end{aligned}$
Zinc	0.01331	mg / L	0.0265	0.0053	1	2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{T} \end{aligned}$
Preparation Method: EPA 200.8	Analytical Methọd: EPA 200.8							
Antimony	0.0010 U	mg / L	0.005	0.0010	1	2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Arsenic	0.0016 U	mg / L	0.008	0.0016	1	2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Barium	0.00782	mg / L	0.0075	0.0015	1	2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Beryllium	0.00085 U	mg / L	$\begin{array}{r} 0.0042 \\ 5 \end{array}$	$\begin{array}{r} 0.0008 \\ 5 \end{array}$	1	2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR

Report ID: 901842-4599249

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Lab ID:	901842001
Sample ID:	COMBINED EFFLUENT

Date Received: 2/19/2009 Matrix: Wastewater Date Collected: 2/19/2009

Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	By	
Cadmium	0.00011 U	mg / L	0.0005	0.0001	$12 / 20 / 2009$	$11: 00: 00 \mathrm{AM}$	$2 / 24 / 2009$	$12: 20: 00 \mathrm{AM}$

Wet Chemistry - Subcontract
Analytical Method: EPA 100.2
Asbestos
Semivolatiles
Preparation Method: EPA 625

1,2,4-Trichlorobenzene	0.23U	ug/L	1.15	0.23		2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
1,2-Dichlorobenzene	0.34 U	ug/L	1.7	0.34	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
1,2-Diphenylhydrazine	0.23 U	ug/L	1.15	0.23	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
1,3-Dichlorobenzene	0.35 U	ug/L	1.75	0.35	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
1,4-Dichlorobenzene	0.6771	ug/L	1.4	0.28	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2,4,6-Trichlorophenol	0.27U	$u g / L$	1.35	0.27	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2,4-Dichlorophenol	0.43 U	ug/L	2.15	0.43	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2,4-Dinitrophenol	1.4 U	ug/L	7	1.4	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2,4-Dinitrotoluene	0.31 U	ug/L	1.55	0.31	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2,6-Dinitrotoluene	0.31 U	ug/L	1.55	0.31	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2-Chloronaphthalene	0.32 U	ug/L	1.6	0.32	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2-Chlorophenol	0.22 U	ug/L	1.1	0.22	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
2-Nitrophenol	0.24 U	ug/L	1.2	0.24	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
3,3'-Dichlorobenzidine	0.31 U	ug/L	1.55	0.31	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
4,6-Dinitro-2-methylphenol	0.35 U	ug/L	1.75	0.35	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM
4-Chloro-3-methylphenol	0.22 U	ug/L	1.1	0.22	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM

Report ID: 901842-4599249

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Lab ID:	901842001
Sample ID:	COMBINED EFFLUENT

Date Received: 2/19/2009 Matrix: Wastewater
Date Collected: $2 / 19 / 2009$

Parameters	Results Qual	Units	PQL	MDL	DF	Prepared	Analyzed	By
4-Chlorophenyl phenyl ether	0.45 U	ug/L	2.25	0.45	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM̀	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Acenaphthene	0.25 U	ug/L	1.25	0.25	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Acenaphthylene	0.26 U	ug/L ${ }^{\text {- }}$	1.3	0.26	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Anthracene	0.25 U	ug/L	1.25	0.25	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Benzidine	9.7 U	$u g / L$	48.5	9.7	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Benzo(a)anthracene	0.27 U	$u g / L$	1.35	0.27	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Benzo(a)pyrene	0.31 U	$u g / L$	1.55	0.31	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Benzo(b)fluoranthene	0.25 U	ug/L	1.25	0.25	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$)perylene	0.28 U	$u g / L$	1.4	0.28	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Benzo(k)fluoranthene	0.39 U	ug/L	1.95	0.39	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Bis(2-Chloroethoxy)methane	0.32 U	ug/L	1.6	0.32	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Bis(2-Chloroethyl)ether	0.46 U	ug/L	2.3	0.46	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Bis(2-Chloroisopropyl)ether	0.34 U	$u g / L$	1.7	0.34	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Bis(2-Ethylhexyl)phthalate	0.4501	ug/L	1	0.20	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
4-Bromophenyl phenyl ether	0.27 U	ug/L	1.35	0.27	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Butyl benzyl phthalate	0.36 U	ug/L	1.8	0.36	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Chrysene	0.28 U	ug/L	1.4	0.28	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Di-n-butyl phthalate	0.21 U	ug/L	1.05	0.21	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Di-n-octyl phthalate	0.28 U	ug/L	1.4	0.28	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Dibenz(a,h)anthracene	0.55 U	ug/L	2.75	0.55	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Diethyl phthalate	0.33 U	ug/L	1.65	0.33	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Dimethyl phthalate	0.31 U	ug/L	1.55	0.31	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \text { C } \end{aligned}$
2,4-Dimethylphenol	0.40 U	ug/L	2	0.40	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Fluoranthene	$0.20 \cup$	ug/L	1	0.20	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Fluorene	0.27 U	$u g / L$	1.35	0.27	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Hexachlorobenzene	0.32 U	ug/L	1.6	0.32	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Hexachlorobutadiene	0.45 U	ug/L	2.25	0.45	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, inc..

ANALYTICAL RESULTS

Lab ID:	901842001
Sample ID:	COMBINED EFFLUENT

Date Received: 2/19/2009
Date Collected: 2/19/2009

Matrix: Wastewater

Parameters	Results Qual	Units	PQL	MDL	DF	Prepared	Analyzed	By
Hexachlorocyclopentadiene	0.74 U	ug/L	3.7	0.74	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \text { C } \end{aligned}$
Hexachloroethane	0.36 U	ug/L	1.8	0.36	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \text { C } \end{aligned}$
Indeno(1,2,3-cd)pyrene	$0.26 U$	ug/L	1.3	0.26	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \text { C } \end{aligned}$
Isophorone	0.34 U	ug/L	1.7	0.34	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & C \end{aligned}$
Naphthalene	0.34 U	ug/L	1.7	0.34	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Nitrobenzene	0.31 U	ug/L	1.55	0.31	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \text { C } \end{aligned}$
4-Nitrophenol	0.79 U	ug/L	3.95	0.79	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Pentachlorophenol	0.67 U	ug/L	3.35	0.67	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \text { C } \end{aligned}$
Phenanthrene	$0.29 U$	ug/L	1.45	0.29	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Phenol	0.41 U	ug/L	2.05	0.41	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Pyrene	0.47 U	ug/L	2.35	0.47	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
n-Nitrosodi-n-propylamine	0.33 U	ug/L	1.65	0.33	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \text { C } \end{aligned}$
n-Nitrosodimethylamine	1.0 U	ug/L	5	1.0	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{c} \end{aligned}$
n-Nitrosodiphenylamine	0.31U	$u g / L$	1.55	0.31	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Nitrobenzene-d5 (S)	74	\%		10-117	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
2-Fluorobiphenyl (S)	71	\%		10-112	1	2/20/2009 9:00:00 AM .	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Terphenyl-d14 (S)	102	\%		20-146	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
Phenol-d6 (S)	29	\%		10-59	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
2-Fluorophenol (S)	48	\%		24-64	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$
2,4,6-Tribromophenol (S)	99	\%		52-121	1	2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	$\begin{aligned} & \text { TBU } \\ & \mathrm{C} \end{aligned}$

Pesticides								
Preparation Method: EPA 608 Analytical Méthod. ERA 608								
4,4'-DDD	0.000993 U	ug/L	$\begin{array}{r} 0.0049 \\ 65 \end{array}$	$\begin{array}{r} 0.0009 \\ 93 \end{array}$	1	2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
4,4'-DDE	0.00272 U	$4 \mathrm{ug} / \mathrm{L}$	0.0136	$\begin{array}{r} 0.0027 \\ 2 \end{array}$	1	2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CClC
4,4'-DDT	0.00120 U	ug/L	0.006	$\begin{array}{r} 0.0012 \\ 0 \end{array}$	1	2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Aldrin	0.00139 U	ug/L	$\begin{array}{r} 0.0069 \\ 5 \end{array}$	$\begin{array}{r} 0.0013 \\ 9 \end{array}$	1	2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Chlordane(Technical)	0.00630 U	ug/L	0.0315	$\begin{array}{r} 0.0063 \\ 0 \end{array}$	1	2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CClC

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Lab ID:	901842001
Sample ID:	COMBINED EFFLUENT

Date Received: 2/19/2009 Matrix: Wastewater
Date Collected: 2/19/2009

Parameters	Results Q		Units	PQL	MDL		Prepared	Analyzed	By
Dieldrin	0.00157 U	4	ug/L	$\begin{array}{r} 0.0078 \\ 5 \end{array}$	$\begin{array}{r} 0.0015 \\ 7 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endosulfan 1	$0.00215 U$	4	ug/L	$\begin{array}{r} 0.0107 \\ 5 \end{array}$	$\begin{array}{r} 0.0021 \\ 5 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endosulfan II	0.00129 U		ug/L	0.0064 5	$\begin{array}{r} 0.0012 \\ 9 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endosulfan sulfate	0.00153 U	4	ug/L	$\begin{array}{r} 0.0076 \\ 5 \end{array}$	$\begin{array}{r} 0.0015 \\ 3 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endrin	0.000717 U		ug/L	$\begin{array}{r} 0.0035 \\ 85 \end{array}$	$\begin{array}{r} 0.0007 \\ 17 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endrin aldehyde	0.000695 U		ug/L	$\begin{array}{r} 0.0034 \\ 75 \end{array}$	$\begin{array}{r} 0.0006 \\ 95 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endrin ketone	0.000969 U		ug/L	$\begin{array}{r} 0.0048 \\ 45 \end{array}$	$\begin{array}{r} 0.0009 \\ 69 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Heptachlor	0.00885 U	4	ug/L	$\begin{array}{r} 0.0442 \\ 5 \end{array}$	$\begin{array}{r} 0.0088 \\ 5 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Heptachlor epoxide	0.00121 U		ug/L	$\begin{array}{r} 0.0060 \\ 5 \end{array}$	$\begin{array}{r} 0.0012 \\ 1 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Methoxychlor	0.000900 U		ug/L	0.0045	$\begin{array}{r} 0.0009 \\ 00 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1016	0.012 U		ug/L	0.06	0.012		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1221	0.014 U		ug/L	0.07	0.014		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1232	0.190 U		ug/L	0.95	0.190		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
РСВ 1242	0.014 U		ug/L	0.07	0.014		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
РСВ 1248	0.00850 U		ug/L	0.0425	$\begin{array}{r} 0.0085 \\ 0 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1254	0.014 U		ug/L	0.07	0.014		2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1260	0.015 U		ug/	0.075	0.015		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	Ccic
Toxaphene	0.047 U		ug/	0.235	0.047		2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
alpha-BHC	$0.00313 U$	4	ug/L	$\begin{array}{r} 0.0156 \\ 5 \end{array}$	$\begin{array}{r} 0.0031 \\ 3 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
alpha-Chlordane	0.00118 U		ug/L	0.0059	$\begin{array}{r} 0.0011 \\ 8 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
beta-BHC	0.00196 U	4	ug/L	0.0098	$\begin{array}{r} 0.0019 \\ 6 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
delta-BHC	0.000904 U		ug/L	$\begin{array}{r} 0.0045 \\ 2 \end{array}$	$\begin{array}{r} 0.0009 \\ 04 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
gamma-BHC (Lindane)	0.00604 U	4	ug/L	0.0302	$\begin{array}{r} 0.0060 \\ 4 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
gamma-Chlordane	$0.00130 \cup$		ug/L	0.0065	$\begin{array}{r} 0.0013 \\ 0 \end{array}$		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Tetrachloro-m-xylene (S)	68		\%		32-137		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Decachlorobiphenyl (S)	38		\%		25-165		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Synthetic Organics									
Preparation Mêthod: EPA 5311 : Analytical Method: EPA 5311									
Carbofuran	0.25 U	2	ug/L	1.25	0.25		1 2/25/2009 3:30:00 PM	2/28/2009 2:24:00 AM	SUB
Oxamyl	0.18 U		ug/L	0.9	0.18		1 2/25/2009 3:30:00 PM	2/28/2009 2:24:00 AM	SUB
PreparationMethod: EPA508, Anăyical Method EPA 500.1									

ANALYTICAL RESULTS

Lab ID:	901842001
Sample ID:	COMBINED EFFLUENT

Date Received: 2/19/2009 Matrix: Wastewater
Date Collected: 2/19/2009

Parameters	Results Qual	Units	PQL	MDL		Prepared	Analyzed	By
Atrazine (Aatrex)	0.026 U	ug/L	0.13	0.026	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
gamma-BHC (Lindane)	0.0050 U	ug/L	0.025	0.0050	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Chlordane(Technical)	0.035 U	ug/L	0.175	0.035	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Endrin	0.0020 U	ug/L	0.01	0.0020	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Heptachior	0.0080 U	$u g / L$	0.04	0.0080	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Heptachior epoxide	0.0040 U	$u g / L$	0.02	0.0040	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Hexachlorobenzene	0.025 U	ugh	0.125	0.025	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Hexachlorocyclopentadiene	0.021 U	ug/L	0.105	0.021	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Methoxychior	0.021 U	ug/L	0.105	0.021	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Simazine (Princep)	0.025 U	ug/L	0.125	0.025	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Toxaphene	0.21 U	$u g / L$	1.05	0.21	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB
Polychlorinated Biphenyls-	0.10 U	ug / L	0.5	0.10	1	2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB

Preparation Method: EPA $515.3 \quad$ Analytical Method: EPA 515.3

2,4-D	0.030 U	2	ug/L	0.15	0.030	1	2/26/2009 9:00:00 AM	2/27/2009 5:07:00 PM	SUB
Dalapon	0.66 U		ugh	3.3	0.66	1	2/26/2009 9:00:00 AM	2/27/2009 5:07:00 PM	SUB
Dinoseb	0.090 U		ug/L	0.45	0.090	1	2/26/2009 9:00:00 AM	2/27/2009 5:07:00 PM	SUB
Pentachlorophenol	0.010 U		ug/L	0.05	0.010	1	2/26/2009 9:00:00 AM	2/27/2009 5:07:00 PM	SUB
Picloram	0.010 U		$u g / L$	0.05	0.010	1	2/26/2009 9:00:00 AM	2/27/2009 5:07:00 PM	SUB
2,4,5-TP (Silvex)	0.080 U		ug/L	0.4	0.080	1	2/26/2009 9:00:00 AM	2/27/2009 5:07:00 PM	SUB
Änalytical Method: EPA 547							:		
Glyphosate	2.4 U	2	ug/L	12	2.4	1		2/24/2009 4:08:00 AM	SUB
Preparation Methiod: EPA 548.1	Ana		Method						
Endothall	0.28 U	2	ug/L	1.4	0.28	1	2/25/2009 9:00:00 AM	2/28/2009 6:23:00 PM	SUB
Preparation Method: EPA 549.2	Anal		Method	9.2					\%
Diquat	0.22 U	2	ug/L	1.1	0.22	1	2/26/2009 7:58:00 PM	2/26/2009 7:58:00 PM	SUB
RTeparation Method: EPA 525 2	Anal		ctiod	5.2					
Benzo(a)pyrene	0.019 U	2	ug/L	0.095	0.019	1	2/25/2009 4:30:00 PM	2/26/2009 7:59:00 PM	SUB
Di(2-ethylhexyl)adipate	0.39 U		ug/L	1.95	0.39	1	2/25/2009 4:30:00 PM	2/26/2009 7:59:00 PM	SUB
Bis(2-Ethylhexyl)phthalate	0.660I	1	ug/L	2.55	0.51	1	2/25/2009 4:30:00 PM	2/26/2009 7:59:00 PM	SUB

Volatiles
Analytical Meithod: EPA 624

1,1,1-Trichloroethane	0.680 U	ug/L	3.4	0.680	1	2/23/2009 6:31:00 AM	LNE
1,1,2,2-Tetrachloroethane	0.570 U	ug/L	2.85	0.570	1	2/23/2009 6:31:00 AM	M ${ }_{\text {LNE }}$
							M
1,1,2-Trichloroethane	0.840 U	ug/L.	4.2	0.840	1	2/23/2009 6:31:00 AM	LNE
1,1-Dichloroethane	0.410 U	ug/l	205	0.410	1	2/23/2009 6:31:00 AM	M ${ }_{\text {LNE }}$
		ug/					M
1,1-Dichloroethene	0.640 U	ug/L	3.2	0.640	1	2/23/2009 6:31:00 AM	LNE

Report ID: 901842 - 4599249
Page 9 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Lab ID:	901842001
Sample ID:	COMBINED EFFLUENT

Date Received: 2/19/2009
Date Collected: 2/19/2009

Matrix: Wastewater

M

MDL	DF Prepared
0.897	1

Analyzed
$2 / 23 / 20096: 31: 00 \mathrm{AM}$
$2 / 23 / 20096: 31: 00 \mathrm{AM}$

2/23/2009 6:31:00 AM	M
	MNE
$2 / 23 / 20096: 31: 00 ~ A M ~$	LNE

2/23/2009 6:31:00 AM	LNE
$\dot{2}$	M
2/23/2009 6:31:00 AM	LNE

2/23/2009 6:31:00 AM	LNE
2/23/2009 6:31:00 AM	MNE
	M

	2/23/2009 6:31:00 AM
	LNE
	M
$2 / 23 / 20096: 31: 00 ~ A M ~$	LNE

$2 / 23 / 2009$ 6:31:00 AM	LNE
2/23/2009 6:31:00 AM	M
	LNE

$2 / 23 / 20096: 31: 00 \mathrm{AM}$	LNE
	M
$2 / 23 / 2009$ 6:31:00 AM	LNE

2/23/2009 6:31:00 AM	LNE
	M
2/23/2009 6:31:00 AM	LNE
	M

$2 / 23 / 2009$ 6:31:00 AM	LNE
2/23/2009 6:31:00 AM	LNE

2/23/2009 6:31:00 AM	LNE M
2/23/2009 6:31:00 AM	LNE
	M ${ }_{\text {LNE }}$
2/23/2009 6:31:00 AM	M
2/23/2009 6:31:00 AM	LNE
	M
2/23/2009 6:31:00 AM	LNE
	M
2/23/2009 6:31:00 AM	LNE
	M
2/23/2009 6:31:00 AM	LNE
	M
2/23/2009 6:31:00 AM	LNE
	M
2/23/2009 6:31:00 AM	LNE
	M
2/23/2009 6:31:00 AM	LNE
	M

Page 10 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,

Genapure

ANALYTICAL RESULTS

Lab ID:	901842001
Sample ID:	COMBINED EFFLUENT

Date Received: $2 / 19 / 2009 \quad$ Matrix: Wastewater
Date Collected: $2 / 19 / 2009$

Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	By
trans-1,2-Dichloroethene	0.410 U	ug/L	2.05	0.410	1	2/23/2009 6:31:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Analytical Method: EPA 524.2							
1,1,1-Trichloroethane	0.132 U	ug/L	0.66	0.132	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \text { M } \end{aligned}$
1,1,2-Trichloroethane	0.088 U	ug/L	0.44	0.088	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \text { M } \end{aligned}$
1,1-Dichloroethane	$0.075 \cup$	ug/L	0.375	0.075	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & M \end{aligned}$
1,1-Dichloroethene	0.086 U	ug/L	0.43	0.086	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
1,2,4-Trichlorobenzene	0.117 U	ug/L	0.585	0.117	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & M \end{aligned}$
1,2-Dichlorobenzene	0.076 U	ug/L	0.38	0.076	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & M \end{aligned}$
1,2-Dichloroethane	0.070 U	ug/L	0.35	0.070	1	2/21/2009 6:38:00 AM	LNE M
1,2-Dichloropropane	0.093 U	ug/L	0.465	0.093	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
1,4-Dichlorobenzene	1.14	ug/L	0.75	0.150	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Benzene	0.077 U	ug/L	0.385	0.077	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \text { M } \end{aligned}$
Bromodichloromethane	0.0914	ug/L	0.455	0.091	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & M \end{aligned}$
Bromoform	0.15 U	ug/L	0.75	0.15	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Carbon tetrachloride	0.134 U	ug/L	0.67	0.134	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Chlorobenzene	0.113 U	ug/L	0.565	0.113	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \mathrm{LNE} \\ & \mathrm{M} \end{aligned}$
Chioroform	1.66	ug/L	0.385	0.077	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Dibromochloromethane	0.15 U	ug/L	0.75	0.15	1	2/21/2009 6:38:00 AM	LNE M
Ethylbenzene	0.070U	ug/L	0.35	0.070	1	2/21/2009 6:38:00 AM	LNE M
Methylene chloride	0.117 U	ug/L	0.585	0.117	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Styrene	0.040 U	ug/L	0.2	0.040	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathbf{M} \end{aligned}$
Tetrachioroethene	0.4601	ug/L	0.74	0.148	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Toluene	0.140 U	ug/L	0.7	0.140	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Trichloroethene	0.121U	ug/L	0.605	0.121	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Total Trihalomethanes	1.661	ug/L	2.35	0.47	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Vinyl chloride	0.120 U	ug/L	0.6	0.120	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
Xylene, m,p-	0.134 U	ug/L	0.67	0.134	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$

Report ID: 901842-4599249

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc.. 3231 NW 7th Avenue Boca Raton, FL 33431

Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID: 901842001 Sample ID: COMBINED EF	ENT			Date Received: 2/19/2009 Date Collected: 2/19/2009		Matrix: Wastewater	
Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	By
Xylene, o-	0.083 U	ug/L	0.415	0.083	1	2/21/2009 6:38:00 AM	LNE M
Xylenes (total)	0.210 U	$u g / L$	1.05	0.210	1	2/21/2009 6:38:00 AM	LNE M
cis-1,2-Dichloroethene	0.085 U	$u g / L$	0.425	0.085	1	2/21/2009 6:38:00 AM	LNE M
trans-1,2-Dichloroethene	0.087 U	$u g / L$	0.435	0.087	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & M \end{aligned}$
Analytical Method: EPA 624						\because	
4-Bromofluorobenzene (S)	91	\%		64-130	1	2/23/2009 6:31:00 AM	$\begin{aligned} & \text { LNE } \\ & M \end{aligned}$
Dibromofluoromethane (S)	112	\%		69-134	1	2/23/2009 6:31:00 AM	$\begin{aligned} & \text { LNE } \\ & M \end{aligned}$
Toluene d8 (S)	99	\%		63-127	1	2/23/2009 6:31:00 AM	LNE M
Analytical Methods EPA 524.2	.		.		.	\therefore	
4-Bromofluorobenzene ($\$$)	91	\%		70-130	1	2/21/2009 6:38:00 AM	$\begin{aligned} & \text { LNE } \\ & \mathrm{M} \end{aligned}$
1,2-Dichlorobenzene-d4 (S)	99	\%		70-130	1	2/21/2009 6:38:00 AM	LNE \bar{M}

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

I

J Estimated value.

V \quad Present in blank.
[1]
E86772
[2] E83079
[3] NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limits establishing that there is no high biased result reported
[4] NCR-\% difference of results from primary and secondary columns is $\mathbf{> 4 0 \%}$, possible due to matrix interference. Detection limit elevated above lowest concentration.

CASE NARRATIVE

Sample Analysis Comments

Lab ID 901842001 Client ID COMBINED EFFLUENT

Analyte/2,4-D

[2] E83079

Analyte/4,4'-DDE

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Acrylonitrile

NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limits establishing that there is no high biased result reported

Analyte/Alachlor

[2] E83079

AnalytelAsbestos

[1] E86772

Analyte/Benzo(a)pyrene

[2] E83079

Analyte/Bis(2-Ethylhexyl)phthalate

$1=$ Estimated value; between MDL and PQL

Analyte/Carbofuran

[2] E83079

Analyte/Dieldrin

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Diquat

[2] E83079

Analyte/Endosulfan I

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Endosulfan sulfate

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Endothall

[2] E83079

Analyte/Glyphosate

[2] E83079

Analyte/Heptachlor

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

CASE NARRATIVE

Sample Analysis Comments

Lab ID 901842001 Client ID COMBINED EFFLUENT

Analyte/alpha-BHC

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/beta-BHC

NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.
Analytelgamma-BHC (Lindane)
NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

3231 NW 7th Avenue

 Boca Raton, FL 33431Phone: (561) 447-7373
Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch: EXTO/1744		Analysis Method:		EPA 625		
Associated Lab Samples:	901780001	901839001	901840001	901842001	901843002	901850001
METHOD BLANK: 17506						
Parameter	Units	Blank Result	Reporting Limit Qualifiers			
Semivolatiles						
Acenaphthene	ug/L	0.254	0.25			
Acenaphthylene	ug/L	0.26 U	0.26			
Anthracene	ug/L	0.25 U	0.25			
Benzidine	ug/L	9.70	9.7			
Benzo(a)anthracene	ug/L	0.27 U	0.27			
Benzo(a)pyrene	ug/L	0.314	0.31			
Benzo(b)fluoranthene	ugh	$0.25 U$	0.25			
Benzo(g,h,i)perylene	ug/L	0.28 U	0.28			
Benzo(k)fluoranthene	ug/L	0.394	0.39			
Bis(2-Chloroethoxy)methane	ug/L	0.32 U	0.32			
Bis(2-Chloroethyl)ether	ug/L	0.46 U	0.46			
Bis(2-Chloroisopropyl)ether	ug/L	0.34 U	0.34			
Bis(2-Ethylhexy)phthalate	ug/L	0.20 U	0.20			
4-Bromopheny! phenyl ether	ug/L	0.27 U	0.27			
Buty benzyl phthalate	ug/L	0.36 U	0.36			
2-Chloronaphthalene	ug/L	0.32 U	0.32			
4-Chlorophenyl phenyl ether	ug/L	0.45 U	0.45			
Chrysene	ug/L	0.28 U	0.28			
Dibenz(a,h)anthracene	ug/L	0.55 U	0.55			
1,2-Dichlorobenzene	ug/L	0.34 U	0.34			
1,3-Dichlorobenzene	ught.	0.350	0.35			
1,4-Dichlorobenzene	ug/L	0.28 U	0.28	.		
3,3'-Dichlorobenzidine	ug/L	0.31 U	0.31			
Diethyl phthalate	ug/L	0.33 U	0.33			
Dimethyl phthalate	ug/L	0.31 U	0.31			
Di-n-butyl phthalate	ug/L	0.210	0.21			
2,4-Dinitrotoluene	ug/L	0.31 U	0.31			
2,6-Dinitrotoluene	ug/L	0.31 U	0.31			
Di-n-octyl phthalate	ug/L	0.28 U	0.28			
Fluoranthene	ug/L	0.20 U	0.20			
Fluorene	ug/L	0.27 U	0.27			.
Hexachlorobenzene	ug/L	0.32 U	0.32			
Hexachlorobutadiene	ug/L	0.45 U	0.45			
Hexachlorocyclopentadiene	ug/L	0.74 U	0.74			
Hexachloroethane	ug/L	0.36 U	0.36			
Indeno(1,2,3-cd)pyrene	ug/L	0.26 U	0.26			
Isophorone	ug/L	0.34 U	0.34			
Naphthalene	ug/L	0.34 U	0.34			
Nitrobenzene	ug/L	0.31 U	0.31			
n -Nitrosodimethylamine	ug/L	1.0 U	1.0			
n-Nitrosodi-n-propylamine	ug/L	0.33 U	0.33			
n-Nitrosodiphenylamine	ug/L	0.31 U	0.31			

Report ID: 901842-4599249
Page 16 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

METHOD BLANK: 17506

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Phenanthrene	ug / L	0.29 U	0.29
Pyrene	ug / L	0.47 U	0.47
1,2,4-Trichlorobenzene	ug / L	0.23 U	0.23
2-Chlorophenol	ug / L	0.22 U	0.22
2,4-Dichlorophenol	ug / L	0.43 U	0.43
2,4-Dimethylphenol	ug / L	0.40 U	0.40
4,6-Dinitro-2-methylphenol	ug / L	0.35 U	0.35
2,4-Dinitrophenol	ug / L	1.4 U	1.4
2-Nitrophenol	ug / L	0.24 U	0.24
4-Nitrophenol	ug / L	0.79 U	0.79
4-Chloro-3-methylphenol	$-\mathrm{ug} / \mathrm{L}$	0.22 U	0.22
Pentachlorophenol	ug / L	0.67 U	0.67
Phenol	ug / L	0.41 U	0.41
2,4,6-Trichlorophenol	ug / L	0.27 U	0.27
Nitrobenzene-d5 (S)	$\%$	83	$10-117$
2-Fluorobiphenyl (S)	$\%$.83	$10-112$
Terphenyl-d14 (S)	$\%$	111	$20-146$
Phenoi-d6 (S)	$\%$	33	$10-59$
2-Fluorophenol (S)	$\%$	46	$24-64$
2,4,6-Tribromophenol (S)	$\%$	95	$52-121$

LABORATORY CONTROL SAMPLE: 17507

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA
LABORATORY CONTROL SAMPLE: 17507

3231 NW 7th Avenue
Boca Raton, FL 33431
Phone: (561) 447-7373
Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE SAMPLE: 17517 Original: 901791009

Parameter	Units	Original Result	Spike Conc.	MS Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers
EDB Analysis						
1,2-Dibromo-3chloropropane	ug/L	0	0.252	0.287	114	70-130
1,2-Dibromoethane	ug/L	0	0.252	0.288	114	70-130
4-Bromofluorobenzene (S)	\%				76	70-130

SAMPLE DUPLICATE: 17518
Original: 901742001

	Original	DUP	Max	
Parameter	Units	Result	Result	RPD

EDB Analysis

1,2-Dibromo-3- chloropropane	ug/L	0.00310 U	0
1,2-Dibromoethane ug/L 0.00640 U	0		
4-Bromofluorobenzene (S)	$\%$	72	6

QUALITY CONTROL DATA

QC Batch:	MISC/1114
QC Batch Method:	SM 2150 B

Analysis Method: \quad SM 2150 B
QC Batch Method: SM 2150 B

| Associated Lab Samples: | 901835002 | 901840001 | 901842001 | 901852001 | 901852002 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

METHOD BLANK: 17677

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Odor	TON	$1 U$	1

QUALITY CONTROL DATA

QUALITY CONTROL DATA

QUALITY CONTROL DATA.

QC Batch: DIGM/1603

QC Batch Method: EPA 200.8

Associated Lab Samples:	$\begin{aligned} & 901738001 \\ & 901838001 \\ & 901850002 \end{aligned}$	$\begin{aligned} & 901738002 \\ & 901839001 \\ & 901850003 \end{aligned}$	901742001 901840001	$\begin{aligned} & 901742002 \\ & 901842001 \end{aligned}$	$\begin{aligned} & 901802001 \\ & 901843002 \end{aligned}$	$\begin{aligned} & 901835001 \\ & 901850001 \end{aligned}$
METHOD BLANK: 17694						
Parameter	Units	Blank Result	Reporting Limit Qualifiers		\cdots	
Antimony	mg / L	0.0010 U	0.0010			
Arsenic	mg / L	0.0016 U	0.0016			
Barium	mg / L	0.0015 U	0.0015			
Beryllium	mg / L	0.00085 U	0.00085			
Cadmium	mg / L	0.00011 U	0.00011			
Lead	mg / L	0.000754	0.00075			
Manganese	mg / L	0.0011 U	0.0011			
Selenium	mg / L	0.00082 U	0.00082			
Thallium	mg / L	0.00027 U	0.00027			

LABORATORY CONTROL SAMPLE: 17695

Parameter	Units	Spike Conc.	LCS Result	LCS \% Rec	\% Rec Limits Qualifiers
Antimony	mg / L	0.2	0.216	108	$85-115$
Arsenic	mg / L	0.2	0.207	104	$85-115$
Barium	mg / L	0.2	0.204	102	$85-115$
Beryllium	mg / L	0.2	0.208	104	$85-115$
Cadmium	mg / L	0.2	0.202	101	$85-115$
Lead	mg / L	0.2	0.214	107	$85-115$
Manganese	mg / L	0.2	0.210	105	$85-115$
Selenium	mg / L	0.2	0.199	100	$85-115$
Thallium	mg / L	0.2	0.211	106	$85-115$

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA						
QC Batch: INPR/1468			Analysis Method:	SM $5540{ }^{\circ} \mathrm{C}$		
QC Batch Method: SM 5540 C						
Associated Lab Samples:	901780001	901835001	901838001	901840001	-901842001	901852001
	901852002	901872001	901873001			
METHOD BLANK: 17734						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifiers			
Wet Chemistry Surfactants	$\mathrm{mg} / \mathrm{L}-\mathrm{LAS}$	0.040 U	0.040			

QUALITY CONTROL DATA

QC Batch: EXTO/1758

| QC Batch Method: | EPA 608 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Associated Lab Samples: | 901839001 | 901840001 | 901842001 | 901843002 | 901850001 | 901850002 |
| | 901850003 | 901852001 | 901852002 | 901853002 | 901910001 | 901910002 |

METHOD BLANK: 17796

Parameter	Units	$\begin{array}{c}\text { Blank } \\ \text { Result }\end{array}$	
Pesticides	$\begin{array}{r}\text { Reporting } \\ \text { Limit }\end{array}$ Qualifiers		

LABORATORY CONTROL SAMPLE: 17797

Parameter	Units	Spike Conc.	LCS Result	LCS $\%$ Rec	$\%$ Rec Limits Qualifiers
Pesticides					
alpha-BHC	ug/L	0.1	0.067	67	$33-150$
beta-BHC	ug/L	0.1	0.078	78	$37-162$

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,
without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA
LABORATORY CONTROL SAMPLE: 17797

Parameter	Units	Spike Conc.	LCS Result	$\begin{array}{r} \text { LCS } \\ \text { \% Rec } \end{array}$	\% Rec Limits	
delta-BHC	ug/L	0.1	0.0131	13		
Chlordane(Technical)	ug/L		0.00630 U			
gamma-Chlordane	ug/L	0.1	0.076	76	39-147	
alpha-Chlordane	ug/L	0.1	0.076	76	43-151	
Heplachlor epoxide	ug/L	0.1	0.077	77	48-138	.
Endosulfan 1	ug/L	0.1	0.075	75	42-148	
4,4'-DDE	ug/L	0.1	0.0831	83	38-174	
Endosulfan II	ug/L	0.1	0.0841	84	19-214	
4,4'-DDD	ug/L	0.1	0.0871	87	28-209	
Endosulfan sulfate	ug/L	0.1	0.0781	78	10-218	
Methoxychlor	ug/L	0.1	0.095	95	10-317	
Endrin aldehyde	ug/L	0.1	0.0901	90	12-217	
Toxaphene	ug/L		0.047 U			
Endrin ketone	$u g / L$	0.1	0.0761	76	36-148	
PCB 1221	ug/L		0.014 U			
PCB 1232	$u g / L$		0.190 U			
PCB 1242	ug/L		0.014 U			
PCB 1248	ug/L		$0.00850 \cup$			
PCB 1254	$u g / L$		0.014 U			
PCB 1016	ughl		0.012 U			
PCB 1260	ug/L		0.015 U			
gamma-BHC (Lindane)	$u g / L$	0.1	0.070	70	33-155	
Heptachlor	ught	0.1	0.070	70	47-148	
Aldrin	$u g / L$	0.1	0.058	58	43-149	
Dieldrin	$u g / L$	0.1	0.079	79	47-162	
Endrin	$u g / L$	0.1	0.0871	87	41-189	
4,4'-DDT	ug/L	0.1	0.0871	87	14-228	
Tetrachloro-m-xylene (S)	\%			56	32-137	
Decachlorobiphenyl (S)	\%			91	25-165	

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17798				17799		Original: 901874005				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Pesticides										
alpha-BHC	ug/L	0	0.1	0.060	0.058	60	58	33-150	3	28
beta-BHC	ug/L	0	0.1	0.070	0.068	70	68	37-162	3	27
delta-BHC	ug/L	0	0.1	0.0121	0.0121	12	12		0	
Chlordane(Technical)	ug/L	0.00630 U 0.00630 U								
gamma-Chlordane	ug/L	0	0.1	0.061	0.057	61	57	39-147	7	24
alpha-Chlordane	ug/L	0	0.1.	0.073	0.068	73	68	43-151	7	28
Heptachlor epoxide	ug/L	0	0.1	0.075	0.070	75	70	48-138	7	24
Endosulfan 1	ug/L	0	0.1	0.074	0.068	74	68	42-148	8	24
4,4'-DDE	ug/L	0	0.1	0.0781	0.0741	78	74	38-174	5	33
Endosulfan 11	ug/L	0	0.1	0.0801	0.0781	80	78	19-214	3	33

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,
without the written consent of Genapure Analytical Services, Inc.

QUALITY CONTROL DATA

QC Batch:	IC/1189
QC Batch Method:	EPA 300.0

| Associated Lab Samples: | 901784001 | 901821001 | 901821002 | 901823001 | 901831002 | 901835001 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 901838001 | 901840001 | 901841001 | 901841004 | 901841005 | 901841006 |
| | 901842001 | 901852001 | 901852002 | 901854009 | 901855003 | 901872001 |

METHOD BLANK: 17825			
Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Nitrate	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	0.007 U	0.007
Nitrite	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	0.005 U	0.005
Fluoride	mg / L	0.030 U	0.030
Sulfate	mg / L	0.076 U	0.076

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17828				17829		Original: 901841001				Max RPD Qualifiers
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit		
Wet Chemistry										
Nitrate	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	0	25	26.7	26.0	107	104	90-110	3	20
Nitrite	$\mathrm{mg} / \mathrm{L}-$	0	25	25.7	23.9	103	96	90-110	7	20
Fluoride	mg / L			35.8	35.3					
Sulfate	mg / L			126	120					

3231 NW 7th Avenue Boca Raton, FL 33431

QUALITY CONTROL DATA

QC Batch:	MSV/1452
QC Batch Method:	EPA 524.2

Analysis Method: EPA 524.2

Associated Lab Samples:	901834001	901835002	901835003	901838001	901838002	901840001
	901840002	901842001	901852001	901852002	901872001	901872002

METHOD BLANK: 17837
$\left.\begin{array}{llcc} & & \text { Blank } \\ \text { Parameter } & \text { Resits } & \text { Reporting } \\ \text { Resimit Qualifiers }\end{array}\right]$

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,
without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA
LABORATORY CONTROL SAMPLE: 17838

QUALITY CONTROL DATA

QC Batch:	SOL//1497
QC Batch Method:	SM 2540 C
Associated Lab Samples:	901780001
	901852001
	901894002
	901922006

Analysis Method: SM 2540 C

901828002	901828004	901835001	901840001	901842001
901852002	901872001	901873001	901880001	901894001
901922001	901922002	901922003	901922004	901922005

METHOD BLANK: 17860

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Total Dissolved Solids(TDS)	mg / L	7.00 U	7.00

SAMPLE DUPLICATE: 17861 Original: 901828002

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers	
Wet Chemistry Total Dissolved Solids(TDS)	mg / L	101	96.0	5.1	20	

SAMPLE DUPLICATE: 17862
Original: 901922006

Parameter	Units		Original Result	DUP Result	RPD	Max RPD Qualifiers
Wet Chemistry Total Dissolved Solids(TDS)	mg / L		772	744	3.7	20

QUALITY CONTROL DATA						
QC Batch: MSV/1454			Analysis Method:	EPA 624	.	
QC Batch Method: EPA	EPA 624					
Associated Lab Samples:	901839001	901842001	901843002	901850002	901850003	901852002
	901852003	901853002	901908001	901908002	901910001	901910002
METHOD BLANK: 17874						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifi			
Volatiles						
Acrolein	ug/L	2.47 U	2.47			
Chloromethane	ug/L	0.524 U	0.524			
Vinyl chloride	$u \mathrm{~g} / \mathrm{L}$	0.506 U	0.506			
Bromomethane	ug/L	0.427 U	0.427			
Chloroethane	ugh	$0.710{ }^{\prime}$	0.710			
1,1-Dichloroethene	ug/L	0.640 U	0.640			
Methylene chloride	ug/L	0.240 U	0.240			
trans-1,2-Dichioroethene	ug/L	0.410 U	0.410			
Acrylonitrile	ug/L	0.955 U	0.955			
1,1-Dichloroethane	ug/L	0.410 U	0.410			
cis-1,2-Dichloroethene	$u g / L$	0.442 U	0.442			
Chloroform	ug/L	0.572 U	0.572			
1,1,1-Trichloroethane	ug/L	0.680 U	0.680	.		
Carbon tetrachloride	ug/L	0.468 U	0.468			
- Benzene	$u g / L$	0.621 U	0.621	.		
1,2-Dichloroethane	ug/L	0.897 U	0.897			
Trichloroethene	ug/L	0.821 U	0.821			
1,2-Dichloropropane	ug/L	0.725 U	0.725			
2-Chloroethylvinyl ether	$u g / L$	0.466 U	0.466			
Bromodichloromethane	ug/L	0.140 U	0.140			
cis-1,3-Dichloropropene	ug/L	0.664 U	0.664			
Toluene	ug/L	0.389 U	0.389			
trans-1,3-Dichloropropene	ug/L	0.522 U	0.522			
1,1,2-Trichloroethane	ug/L	0.840 U	0.840			
Tetrachloroethene	$u g / L$	0.312 U	0.312			
Dibromochloromethane	ug/L	0.378 U	0.378			
Chlorobenzene	$u g / L$	0.316 U	0.316			
Ethylbenzene	ug/L	$0.323 U$	0.323			
Bromoform	ug/L	0.486 U	0.486			
1,1,2,2-Tetrachloroethane	$u g / L$	0.570 U	0.570			
Xylene, m,p-	$u g / L$	0.639 U	0.639			
Xylene, o-	ug/L	0.341 U	0.341			
4-Bromofluorobenzene (S)	\%	92	64-130			
Dibromofluoromethane (S)	\%	117	69-134			
Toluene d8 (S)	\%	102	63-127			

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17875

		Spike	LCS Parameter	Units	Res.

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17876				17877		Original: 901852002				Max RPD Qualifiers
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	MSD \% Rec	\% Rec Limit		
Volatiles										
Acrolein	ug/L	0	100	33.7	35.1	34	35	2-93	3	20
Chloromethane	ug/L	0	20	23.3	23.8	116	119	46-173	3	20
Vinyl chloride	$u g / L$	0	20	24.4	23.6	122	118	60-162	3	20

			QU	Y C	OL						
MATRIX SPIKE \& MATRIX	IKE DU	ATE: 17		178			l: 9018	2002			
Parameter	Units	Original Result	Spike Conc.	Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers	
Bromomethane	ug/L	0	20	12.7	13.3	64	66	33-170	3	20	
Chloroethane	ug/L	0	20	29.1	27.7	145	138	50-163	5	20	
1,1-Dichloroethene	ug/L	0	20	23.5	22.9	118	115	54-157	3	20	
Methylene chloride	ug/L	0	20	24.8	23.4	124	117	42-182	6	20	
trans-1,2-Dichloroethene	ug/L	0	20	24.3	23.3	121	116	49-164	4	20	
Acrylonitrile	ug/L	0	100	125	122	125	122	3-107	2	20 J,5	
1,1-Dichloroethane	ug/L	0	20	23.2	23.1	116	116	60-167	0	20	
cis-1,2-Dichloroethene	ug/L	0	20	19.8	19.8	99	99	51-157.	0	20	
Chloroform	ug/L	1.93	20	21.6	21.5	98	98	60-164	0	20	
1,1,1-Trichloroethane	ug/L	0	20	19.9	20.3	100	102	45-154	2	20	
Carbon tetrachloride	ug/L	0	20	20.9	20.7	105	104	45-154	1	20	
Benzene	ug/L	0	20	19.3	19.2	96	96	59-158	0	20	
1,2-Dichloroethane	ug/L	0	20	21.7	21.7	109	108	45-166	0.9	20	
Trichloroethene	ug/L	0	20	20.2	20.0	101	100	59-152	1	20	
1,2-Dichloropropane	ug/L	0	20	19.8	19.6	99	98	65-155	1	20	
2-Chloroethylvinyl ether	ug/L	0	20	17.0	19.7	85	99	2-176	15	20	
Bromodichloromethane	ug/L	0	20	19.4	19.3	97	96	64-146	1	20	
cis-1,3-Dichloropropene	ug/L	0	20	19.3	20.0	96	100	53-146	4	20	
Toluene	ug/L	0.31	20	20.3	20.5	102	103	62-149	1	20	
trans-1,3-Dichloropropene	ug/L	- 0	20	18.3	18.5	91	93	51-150	2	20.	
1,1,2-Trichloroethane	ug/L	0	20	20.8	20.9	104	104	62-159	0	20	
Tetrachioroethene	$u g / L$	0.34	20	17.5	17.3	86	85	50-150	1	20	
Dibromochloromethane	ug/L	0	20	18.0	18.3	90	91	51-139	1	20	
Chlorobenzene	ug / L	0	20	17.4	17.9	87	90	64-144	3	20	
Ethylbenzene	ug / L	0	20	18.0	18.6	90	93	59-149	3	20	
Bromoform	ug / L	0	20	13.9	15.1	70	75	16-166	7	20	
1,1,2,2-Tetrachloroethane	ug/L	0	20	15.5	16.5	78	82	52-177	5	20	
Xylene, m,p-	ug/L	0	40	36.7	38.4	92	96	57-153	4	20	
Xylene, o-	ug/L	0	20	17.0	17.4	85	87	69-144	2	20	
4-Bromofluorobenzene (S)	\%	90				92	96	64-130	4	20	
Dibromofluoromethane (S)	\%	110				107	104	69-134	3	20	
Toluene d8 (S)	\%	99				102	104	63-127	2	20	

MATRIX SPIKE SAMPLE: 18014
Original: 901853002

Parameter	Units	Original Result	Spike Conc.	MS Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	\% Rec Limits Qualifiers
Volatiles						
Acrolein	ug/L	0	100	66.2	66	2-93
Chloromethane	ug/L	0	20	23.2	116	46-173
Vinyl chloride	ug/L	0	20	25.0	125	60-162
Bromomethane	ug/L	0	20	16.5	82	33-170
Chloroethane	$u g / L$	0	20	28.5	143	50-163
1,1-Dichloroethene	ug/L	0	20	23.9	119	54-157
Methylene chloride	ug/L	0.15	20	25.6	128	42-182
trans-1,2-Dichloroethene	ug/L	0	20	25.9	129	49-164
Acrylonitrile	ug/L	0	100	126	126	3-107 J,5

Report ID: 901842-4599249
Page 41 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,
without the written consent of Genapure Analytical Services, Inc..

Genapure

MATRIX SPIKE SAMPLE: : 18014

Parameter	Units	Original Result	Spike Conc.	MS Result		\% Rec Limits Qualifiers
1,1-Dichloroethane	ug/L	0	20	24.4	122	60-167
cis-1,2-Dichloroethene	ug/L	0	20	21.5	108	51-157
Chloroform	ug/L	18.9	20	37.2	92	60-164 J,5
1,1,1-Trichloroethane	ug/L	0	20	21.2	106	45-154
Carbon tetrachloride	ug/L	0	20	22.1	110	45-154
Benzene	ug/L	0	20	20.2	101	59-158
1,2-Dichloroethane	ug/L	0	20	21.7	109	45-166
Trichloroethene	ug/L	0	20	20.8	104	59-152
1,2-Dichloropropane	ug/L	0	20	21.0	105	65-155
2-Chloroethylvinyl ether	ug/L	0	20	2.651	13	2-176
Bromodichloromethane	$u g / L$	2.63	20	22.5	99	64-146.
cis-1,3-Dichloropropene	ug/L	0	20	18.4	92	53-146
Toluene	ug/L	8.84	20	29.4	103	62-149
trans-1,3-Dichloropropene	ug/L	0	20	18.5	92	51-150
1,1,2-Trichloroethane	ug/L	0	20	21.0	105	62-159
Tetrachloroethene	ug / L	0	20	18.4	92	50-150
Dibromochloromethane	$u g / L$	0.32	20	19.5	98	51-139
Chlorobenzene	$u g / L$	0	20	19.1	95	64-144
Ethylbenzene	ug/L	0	20	19.9	100	59-149
Bromoform	ug/L	0	20	15.6	78	16-166
1,1,2,2-Tetrachloroethane	ug/L	0	20	17.5	88	52-177
Xylene, m,p-	ug/L	0.24	40	40.5	101	57-153
Xylene, o-	ug/L	0	20	19.0	95	69-144
4-Bromofluorobenzene (S)	\%	86			96	64-130
Dibromofluoromethane (S)	\%	116			102	69-134
Toluene d8 (S)	\%	100			101	63-127

QUALITY CONTROL DATA						
QC Batch: INPR/1470		.	Analysis Method:	EPA 335.4		
QC Batch Method: EPA 335.2						
Associated Lab Samples:	901742001	901742002	901780001	901825001	901835001	901839001
	901840001	901842001	901843002	901850001	901850002	901850003
	901852001	901852002	901853002	901907001	901907002	901907003
	. 901910001					

METHOD BLANK: 17913

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Total Cyanide	mg / L	0.0040 U	0.0040

QUALITY CONTROL DATA

QC Batch: DIGM/1613			Analysis Method:	EPA 245.1			
QC Batch Method: EPA 245.1							
Associated Lab Samples:	901835001	901838001		901840001	901842001	901852001	901852002
	901872001	901873001	901901001	901910001	901919001		
METHOD BLANK: 17974							
		Blank	Reporting				
Parameter	Units	Result	Limit Qualifiers				
Mercury	mg / L	0.000056 U	0.000056				

LABORATORY CONTROL SAMPLE: 17975

Parameter	Units	Spike Conc.	LCS Result	LCS $\%$ Rec	\% Rec Limits Qualifiers
Mercury	mg / L	0.002	0.00175	88	$80-120$

-MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 17976			17977			Original: 901838001				
		Original	Spike	MS	MSD	MS	MSD	\% Rec		Max
Parameter	Units	Result	Conc.	Result	Result	\% Rec	\% Rec	Limit	RPD	RPD Qualifiers
Mercury	mg/L	3.3e-005	0.002	0.00200	0.00192	100	96	80-120	4	20 Q

QUALITY CONTROL DATA

QC Batch:	IC/1193				Analysis Method:	EPA 300.0	
QC Batch Method:	EPA 300.0						
Associated Lab Samples:	901778002	901821001	901833017	901835001	901838001	901840001	
	901841005	901842001	901852001	901852002	901872001	901896001	
	901896002	901896004	901896006	901907003			

METHOD BLANK: 18051

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Chloride	mg / L	0.066 U	0.066

QUALITY CONTROL DATA

QC Batch:	$\mathrm{PH} / 1052$
QC Batch Method:	$\mathrm{SM} 4500 \mathrm{H}-\mathrm{B}$

Associated Lab Samples: | 901835001 | |
| :--- | :--- |
| | 901854001 |
| | 901896001 |
| | 901909001 |

SAMPLE DUPLICATE: 18165
Original: 901896001

Parameter	Units	Original Result	DUP Result	RPD	Max
Wet Chemistry pH	\cdot	pH unit	7.24	7.29	0.7

Boca Raton, FL 33431
Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

| QC Batch: | SPCD/1026 | | Analysis Method: | EPA 120.1 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| QC Batch Method: | EPA 120.1 | | | | | |
| Associated Lab Samples: | 901784001 | 901785010 | 901785011 | 901841004 | 901841005 | 901842001 |
| | 901852001 | 901852002 | 901894001 | 901894002 | 901989001 | 901989002 |
| | 901989003 | 901989004 | 901989005 | 901989006 | | |

METHOD BLANK: 18272

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Specific Conductance	umhos/c	$2 U$	2

QUALITY CONTROL DATA

QC Batch:	INPR/1484
QC Batch Method:	EPA 351.2
Associated Lab Samples:	901780001
	901841004
	901853003
	901880001

901811002
901841005
901854003
Analysis Method: EPA 351.2

METHOD BLANK: 18613

Parameter	Units	Blank Result	Reporing Limit Qualifiers
Wet Chemistry Total Kjeldahl Nitrogen	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	0.2661	0.22

LABORATORY CONTROL SAMPLE \& LCSD:		18614		18615					
Parameter	Units	Spike Conc.	$\begin{array}{r} \text { LCS } \\ \text { Result } \end{array}$	$\begin{aligned} & \text { LCSD } \\ & \text { Result } \end{aligned}$	$\begin{array}{r} \text { LCS } \\ \% \operatorname{Rec} \end{array}$	$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \end{aligned}$	\% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry									
Total Kjeldahl Nitrogen	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	5	4.56	5.22	91.1	104	90-110	13.2	20

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 18616				18617		Original: 901811002				
Parameter	Units	Original Result	Spike Conc.	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	$\begin{aligned} & \text { MSD } \\ & \text { Result } \end{aligned}$	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	$\begin{gathered} \% \text { Rec } \\ \text { Limit } \end{gathered}$	RPD	Max RPD Qualifiers
Wet Chemistry										
Total Kjeldahl Nitrogen	$\mathrm{mg} / \mathrm{L}-\mathrm{N}$	6.44	5	9.74	11.0	66.1	92.1	90-110	32.9	20

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

J
Estimated value.

Q
Holding time exceeded.
V Present in blank.
[3] NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limits establishing that there is no high biased result reported
[5] MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[6] NCR-\% RPD exceeds control limits

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	QUALITY CONTROL CROSS REFERENCE TABLE				Analytical Batch
	Sample 10	QC Batch Method	QC Batch	Analytical Method	
901842001	COMBINED EFFLUENT	EPA 245.1	DIGM/1613	EPA 245.1	HG/1081
901842001	COMBINED EFFLUENT	EPA 365.1	INPR/1473	EPA 365.1	LACH/1784
901842001	COMBINED EFFLUENT	EPA 300.0	IC/1193		
-.					
901842001	COMBINED EFFLUENT	SM4500H-B	PH/1052		
901842001	COMBINED EFFLUENT	EPA 120.1	SPCD/1026		
901842001	COMBINED EFFLUENT	EPA 351.2	INPR/1484	EPA 351.2	LACH/1828
.					
901842001	COMBINED EFFLUENT	1613	S_061	1613	S_061
901842001.	COMBINED EFFLUENT	EPA 100.2	S_09\%	EPA 100.2	S_091
901842001	COMBINED EFFLUENT	EPA 508.1	S_05	EPA 508.1	S_05/
901842001	COMBINED EFFLUENT	EPA 515.3	S_05/	EPA 515.3	S_05/
901842001	COMBINED EFFLUENT	EPA 525.2	S_05/	EPA 525.2	S_05/
901842001	COMBINED EFFFLUENT	EPA 531.1	S_05/	EPA 531.1	S_05/
901842001	COMBINED EFFLUENT	EPA 547	S_05/	EPA 547	S_05/
901842001	COMBINED EFFLUENT	EPA 548.1	S_051.	EPA 548.1	S_05/
901842001	COMBINED EFFLUENT	EPA 549.2	S_05/	EPA 549.2	S 05/

(1) Genapure

3231 NW: 713 Awe، Boca Raton, FL. 33431

CHAIN OF CUSTODY RECORD wh:genagure rom

April 30, 2009

DEBORAH DAIGLE
HDR ENGINEERING
5426 BAY CENTER DR.
SUITE 400
Tampa, FL 33609

RE:
Workorder: 904015
Project: FPL

Dear DEBORAH DAIGLE:
Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, April 14, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Neshmah Castaneda
ncastaneda@genapure.com
Project Manager

FL-NELAC E86240

Statement of uncertainty is available upon request.
FL Qualifiers: I=value between MDL and PQL; V=value was positive in Biank; J=estimated value. See comment;
$U=$ undetected; $Q=$ out of hold
EPA Qualifiers: $B=$ value was positive in Blank; $J=$ estimated value. May be between MDL and PQL;
$U=$ undetected; $Q=$ out of hold
Enclosures

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,

SAMPLE SUMMARY

Lab ID	Sample 1D	Collector	Matrix	Date Collected	Date Received	Temp
904015001	PW-1	CL	Groundwater	$4 / 13 / 200916: 00$	$4 / 14 / 2009$	$10: 00$
904015002	TRIP BLANK	CL	DI Water	$4 / 13 / 200916: 00$	$4 / 14 / 2009$	$10: 00$

3231 NW 7th Avenue Boca Raton, FL 33431

Phone: (561) 447-7373

ANALYTICAL RESULTS

Lab ID:	$\mathbf{9 0 4 0 1 5 0 0 1}$
Sample ID:	PW-1/

Date Received: 4/14/2009 Matrix: Groundwater Date Collected: 4/13/2009 4:00:00 PM

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Lab ID: 904015001

Date Received: 4/14/2009 Matrix: Groundwater
Date Collected: 4/13/2009 4:00:00 PM
Sample ID: PW-1/

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Preparation Method: 3510C	Analytical Method SW-846 8151A								
2,4,5-T	0.345	U	ug/L	0.345	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
2,4,5-TP (Silvex)	0.492	U	ug/L	0.492	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
2,4-D	0.406	U	ug/L	0.406	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
2,4-DB	0.547	U	ugh	0.547	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
Dalapon	0.509	U	ugh	0.509	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
Dicamba	0.369	U	ug/L	0.369	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
Dichlorprop	0.399	U	ug/L	0.399	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
Dinoseb	0.509	U	ug/L	0.509	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MR
MCPA	47.7	U	ug/L	47.7	200	1	4/15/2009 08:30	4/16/2009 06:46	MR
MCPP	98.0	U	ug/	98.0	200	1	4/15/2009 08:30	4/16/2009 06:46	MR
DCAA (S)	66		\%	46-142		1	4/15/2009 08:30	4/16/2009 06:46	MR

Metals Analysis
Preparation Method: SW-846 7470 . Analytical Method SW-846 7470

Mercury	0.00013	U	mg / L	0.00013	0.00020	1	4/23/2009 09:45	4/23/2009 17:03	IT
Preparation Method: SW-846-3010A Analytical Method: SW-846 6010									
Aluminum	0.046	u	$\mathrm{mg} /$	0.046	0.20	1	4/15/2009 15:45	4/17/2009 03:40	TB
Antimony	0.0038	U	$\mathrm{mg} /$	0.0038	0.020	1	4/15/2009 15:45	4/17/2009 03:40	TB
Arsenic	0.0046	U	$\mathrm{mg} /$	0.0046	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TB
Barium	0.0159		mg /	0.0020	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TB
Beryllium	0.00067	U	mg / l	0.00067	0.0040	1	4/15/2009 15:45	4/17/2009 03:40	TB
Baron	4.41		mg / l	0.034	0.25	10	4/15/2009 15:45	4/17/2009 03:34	TB
Cadmium	0.00057	U	$\mathrm{mg} /$	0.00057	0.0050	1	4/15/2009 15:45	4/17/2009 03:40	TB
Calcium	471		mg / h	0.59	2.0	10	4/15/2009 15:45	4/17/2009 03:34	TB
Chromium	0.0011	U	mg / l	0.0011	0.0050	1	4/15/2009 15:45	4/17/2009 03:40	TB
Cobatt	0.00072	U	mg /	0.00072	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TB
Copper	0.0096	U	$\mathrm{mg} /$	0.0096	0.020	1	4/15/2009 15:45	4/17/2009 03:40	TB
Iron	0.189		$\mathrm{mg} /$	0.045	0.10	1	4/15/2009 15:45	4/17/2009 03:40	TB
Lead	0.0031	U	$\mathrm{mg} /$	0.0031	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TB
Magnesium	1430		$\mathrm{mg} /$	0.45	2.0	10	4/15/2009 15:45	4/17/2009 03:34	TB
Manganese	0.015	U6	$\mathrm{mg} /$	0.015	0.015	1	4/15/2009 15:45	4/17/2009 03:40	TB
Molybdenum	0.0030	U	$\mathrm{mg} /$	0.0030	0.0050	1	4/15/2009 15:45	4/17/2009 03:40	TB
Nickel	0.0175		mg / l	0.0052	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TB
Potassium	443		mg / l	3.50	10	10	4/15/2009 15:45	4/17/2009 03:34	TB
Selenium	0.0054	U	mg /	0.0054	0.030	1	4/15/2009 15:45	4/17/2009 03:40	TB
Silica	5.00		$\mathrm{mg} /$		0.30	1	4/15/2009 15:45	4/17/2009 03:40	TB
Silver	0.0016	U	mg/	0.0016	0.020	1	4/15/2009 15:45	4/17/2009 03:40	TB
Sodium	10000	v	mg / l	3.70	13	50	4/15/2009 15:45	4/17/2009 20:55	TB
Strontium	8.32		mg / l	0.015	0.15	10	4/15/2009 15:45	4/17/2009 03:34	TB
Tin	0.0042	U	mg / l	0.0042	0.025	1	4/15/2009 15:45	4/17/2009 03:40	TB
Titanium	0.0061	U	mg / l	0.0061	0.050	1	4/15/2009 15:45	4/17/2009 03:40	TB
Vanadium	0.0056	U	mg /	0.0056	0.020	1	4/15/2009 15:45	4/17/2009 03:40	TB
Zinc	7.27	v	mg / l	0.053	0.25	10	4/15/2009 15:45	4/17/2009 03:34	TB

[^0]Report ID: 904015-4792816

ANALYTICAL RESULTS

Lab ID:	904015001
Sample ID:	$\mathrm{PW}-1 /$

Date Received: 4/14/2009 Matrix: Groundwater
Sample ID: PW-1/
Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	By
Thallium	0.00027	U	mg / L	0.00027	0.0020	1	$4 / 16 / 2009$	$20: 00$
$4 / 21 / 2009$	$14: 09$	DF						

PAH
Preparation Method: 3510C Analytical Method: SW-846 8270C low PAH

1-Methylnaphthalene	0.026	\mathbf{U}	$u g / L$	0.026	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
2-Methylnaphthalene	0.030	U	ug/L	0.030	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Acenaphthene	0.027	U	ug/L	0.027	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Acenaphthylene	0.026	U	ugh	0.026	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Anthracene	0.0056	U	ug/L	0.0056	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Benzo(a)anthracene	0.011	U	ug/L	0.011	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
Benzo(a)pyrene	0.013	U	ug/L	0.013	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
Benzo(b)fluoranthene	0.015	U	ug/L	0.015	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
Benzo(g,h,i)perylene	0.014	U	ug/L	0.014	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
Benzo(k)fluoranthene	0.012	U	ug/L	0.012	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
Chrysene	0.017	U	ug/L	0.017	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
Dibenz(a,h)anthracene	0.0056	U	ug/L	0.0056	0.20	1	4/16/2009 13:30	4/17/2009 00:04	TB
Fluoranthene	0.0078	U	ug/L	0.0078	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Fluorene	0.011	U	ug/L	0.011	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Indeno(1,2,3-cd)pyrene	0.011	U	ug/L	0.011	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
Naphthalene	0.034	U	ug/L	0.034	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Phenanthrene	0.014	U	ug/L	0.014	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TB
Pyrene	0.0084	U	ug/L	0.0084	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TB
2-Fluorobiphenyl (S)	59.9		\%	10-116		1	4/16/2009 13:30	4/17/2009 00:04	TB
Nitrobenzene-d5 (S)	62.4		\%	10-112		1	4/16/2009 13:30	4/17/2009 00:04	TB
Terphenyl-d14 (S)	82.4		\%	20-128		1	4/16/2009 13:30	4/17/2009 00:04	TB

Organophosphorus Pesticides
Preparation Method: 3510c Analytical Method: SW-846 8141 A

Aspon	0.185	U	ug/L	0.185	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Azinphos-ethyl	0.130	U	ug/L	0.130	2.00	1	4/14/2009 23:00	4/16/2009 04:38	LR
Bolstar	0.202	U	ug/L	0.202	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Carbophenothion	0.063	U	ug/L	0.063	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Chlorpyrifos	0.121	U	ug/L	0.121	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Chlorpyrifos-methyl	0.137	U	ug/L	0.137	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Coumaphos	0.079	U	ug/L	0.079	1.50	1	4/14/2009 23:00	4/16/2009 04:38	LR
Crotoxyphos	0.078	U	ug/L	0.078	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Demeton-o	0.041	U	ug/L	0.041	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Demeton-s	0.062	U	ug/L	0.062	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Dichlorfenthion	0.190	U	ug/L	0.190	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Dichlorovos	0.075	U	ug/L	0.075	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Dicrotophos	0.175	U	ug/L	0.175	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Dimethoate	0.184	U	ug/L	0.184	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Dioxathion	0.110	U	$u g / L$	0.110	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Disulfoton	0.129	U	ug/L	0.129	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
EPN	0.132	U	ug/L	0.132	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Ethion	0.132	U	ug/L	0.132	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR

ANALYTICAL RESULTS

Lab ID: 904015001
Sample ID: PW-1/

Date Received: 4/14/2009 Matrix: Groundwater
Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Ethoprop	0.068	Y	ug/L	0.068	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Famphur	0.081	U	ug/L	0.081	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Fenithrothion	0.198	U	ug/L	0.198	0.500	- 1	4/14/2009 23:00	4/16/2009 04:38	LR
Fensulfothion	0.192	\cup	ug/L	0.192	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Fenthion	0.074	U	ug/L	0.074	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Leptophos	0.046	U	ug/L	0.046	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Merphos	0.208	U	ug/L	0.208	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Mevinphos	0.172	U	ug/L	0.172	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Naled	0.220	U	ug/L	0.220	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Phorate	0.177	U	ug/L	0.177	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Phosmet	0.102	U	ug/L	0.102	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Phosphamidon	0.311	U	ug/L	0.311	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Ronnel	0.054	U	ug/L	0.054	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
TEPP	0.189	U	ug/L	0.189	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Terbufos	0.063	$-\mathrm{U}$	ug/L	0.063	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Tetrachlorvinphos (Stirofos)	0.107	U	ug/L	0.107	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Thionazine	0.179	U	ug/L	0.179	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Tokuthion (Prothiophos)	0.106	U	ug/L	0.106	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Trichlorfon	1.09	U	ug/L	1.09	1.80	1	4/14/2009 23:00	4/16/2009 04:38	LR
Triphenyl Phosphate (S)	89		\%	43-134		1	4/14/2009 23:00	4/16/2009 04:38	LR
Tributyl Phosphate (S)	108		\%	44-125		1	4/14/2009 23:00	4/16/2009 04:38	LR

Semivolatiles
Preparatian Method:3510C Analytical Method: SW=846.8270C

1,2,4-Trichlorobenzene	1.5	U	ug/L	1.5
1,2-Dichlorobenzene	0.34	U	$u g / L$	0.34
1,2-Diphenylhydrazine	0.23	U	ug/L	0.23
1,3-Dichlorobenzene	0.35	U	ug/L	0.35
1,4-Dichlorobenzene	0.28	U	ug/L	0.28
2,4,5-Trichlorophenol	0.38	U	ug/L	0.38
2,4,6-Trichlorophenol	0.27	U	ug/L	0.27
2,4-Dichlorophenol	0.43	U	$u g / L$	0.43
2,4-Dinitrophenol	1.4	U	ug/L	1.4
2,4-Dinitrotoluene	0.31	U	ug/L	0.31
2,6-Dinitrotoluene	0.31	U	ug/L	0.31
2-Chloronaphthalene	0.32	U	ug/L	0.32
2-Chlorophenol	2.6	U	$u g / L$	2.6
2-Methyiphenol	0.22	U	ug/L	0.22
2-Nitroaniline	0.20	U	ug/L	0.20
2-Nitrophenol	0.24	U	ug/L	0.24
3,3'-Dichlorobenzidine	0.31	U	ug/L	0.31
3-Nitroaniline	0.28	U	ug/L	0.28
4,6-Dinitro-2-methylphenol	0.35	U	$u g / L$	0.35
4-Chioro-3-methylphenol	0.22	U	ugh	0.22
4-Chloroaniline	0.29	U	$u g / L$	0.29
4-Chlorophenyl phenyl ether	0.45	U	ught	0.45

4.0	1
4.0	1
4.0	1
4.0	1
4.0	1
4.0	1
1.0	1
0.53	1
10	1
0.45	1
0.39	1
4.0	1
4.0	1
4.0	1
50	1
4.0	1
4.0	1
50	1
10	1
4.0	1
4.0	1
4.0	1

4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB
4/16/2009 09:00	4/16/2009 18:02	TB

ANALYTICAL RESULTS

Lab ID:	$\mathbf{9 0 4 0 1 5 0 0 1}$	Date Received: $4 / 14 / 2009$	Matrix:
Sample ID:	PW-1/	Date Collected: $4 / 13 / 2009$ 4:00:00 PM	

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Aniline	0.28	U	ug/L	0.28	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Benzidine	9.7	U	ug/L	9.7	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Benzoic acid	2.0	U	ug/L	2.0	50	1	4/16/2009 09:00	4/16/2009 18:02	TB
Benzyl alcohol	0.22	U	ug/L	0.22	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Bis(2-Chloroethoxy)methane	0.32	U	ug/L	0.32	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Bis(2-Chloroethyl)ether	0.46	U	ug/L	0.46	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Bis(2-Chloroisopropyl)ether	0.34	U	ugh	0.34	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Bis(2-Ethylhexyl)phthalate	0.20	U	ug/L	0.20	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
4-Bromophenyl phenyl ether	0.27	U	ug/L	0.27	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Butyl benzyl phthalate	0.36	U	$u g / L$	0.36	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Carbazole	0.28	U	ug/L	0.28	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Di-n-butyl phthalate	0.21	U	ug/L	0.21	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Di-n-octyl phthalate	0.28	U	ug/L	0.28	1.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Dibenzofuran	0.29	U	ug/L	0.29	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Diethyl phthalate	0.33	U	ug/L	0.33	1.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Dimethyl phthalate	0.31	U	ug/L	0.31	1.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4-Dimethylphenol	0.40	U	ug/L	0.40	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Hexachlorobenzene	0.32	U	ug/L	0.32	1.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Hexachlorobutadiene	0.45	U	ug/L	0.45	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Hexachlorocyclopentadiene	0.70	U	ug/L	0.70	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Hexachloroethane	0.36	U	ug/L	0.36	2.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Isophorone	0.34	U	ug/L	0.34	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
4-Nitroaniline	0.24	U	ug/L	0.24	50	1	4/16/2009 09:00	4/16/2009 18:02	TB
Nitrobenzene	0.31	U	ug/L	0.31	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
4-Nitrophenol	0.79	U	ug/L	0.79	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Pentachlorophenol	0.70	U	ug/L	0.70	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Phenol	0.40	U	ug/L	0.40	1.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Pyridine	8.9	U	ug/L	8.9	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
m,p-Cresol	0.23	U	ug/L	0.23	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
n-Nitrosodi-n-propylamine	0.33	U	ug/L	0.33	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
n-Nitrosodimethylamine	3.4	U	ug/L	3.4	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
n-Nitrosodiphenylamine	0.31	U	ug/L	0.31	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Nitrobenzene-d5 (S)	58		\%	7.7-130		1	4/16/2009 09:00	4/16/2009 18:02	TB
2-Fluorobiphenyl (S)	58		\%	19-126		1	4/16/2009 09:00	4/16/2009 18:02	TB
Terphenyl-d14 (S)	62		\%	27-133		1	4/16/2009 09:00	4/16/2009 18:02	TB
Phenot-d6 (S)	34.5		\%	10-59		1	4/16/2009 09:00	4/16/2009 18:02	TB
2-Fluorophenol (S)	44		\%	28-62		1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4,6-Tribromophenol (S)	64		\%	48-132		1	4/16/2009 09:00	4/16/2009 18:02	TB
Analytical Method: EPA 300.1							- . . $:$!
Bromate	83	U4	ug/L	83	620	250		4/20/2009 13:42	SU

Volatiles
Analytical Method: SW-846 8260B

$1,1,1,2$-Tetrachloroethane	0.120	U	ug/L	0.120	1.00	1	$4 / 16 / 200916: 10$
$1,1,1$-Trichloroethane	0.682	U	ug/L	0.682	1.00	1	$4 / 16 / 200916: 10$
$1,1,2,2$-Tetrachloroethane	0.572	U	ug/L	0.572	LN		
1/16/2009 16:10							

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Anarytical Services, fnc..

analytical results

Lab ID:	904015001
Sample ID:	$\mathrm{PW}-1 /$

Date Received: 4/14/2009 Matrix: Groundwater
Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
1,1,2-Trichloroethane	0.841	U	ug/L	0.841	1.00	1		4/16/2009 16:10	LN
1,1-Dichloroethane	0.410	U	ug/L	0.410	1.00	1		4/16/2009 16:10	LN
1,1-Dichloroethene	0.638	U	ug/L	0.638	1.00	1		4/16/2009 16:10	LN
1,1-Dichloropropene	0.632	U	ug/L	0.632	1.00	1		4/16/2009 16:10	LN
1,2,3-Trichlorobenzene	0.686	U	ug/L	0.686	1.00	1		4/16/2009 16:10	LN
1,2,3-Trichloropropane	0.160	U	ug/L	0.160	1.00	1		4/16/2009 16:10	LN
1,2,4-Trichlorobenzene	0.538	U	ug/L	0.538	1.00	1		4/16/2009 16:10	LN
1,2,4-Trimethylbenzene	0.508	U	ug/L	0.508	1.00	1		4/16/2009 16:10	LN
1,2-Dibromo-3chloropropane	0.933	U	ug/L	0.933	1.00	1		-4/16/2009 16:10	LN
1,2-Dibromoethane	0.345	U	ug/L	0.345	1.00	1		4/16/2009 16:10	LN
1,2-Dichlorobenzene	0.584	U	ug/L	. 0.584	1.00	1		4/16/2009 16:10	LN
1,2-Dichloroethane	0.897	U	ug/L	0.897	1.00	1		4/16/2009 16:10	LN
1,2-Dichloropropane	0.725	U	ug/L	0.725	1.00	1		4/16/2009 16:10	LN
1,3,5-Trimethylbenzene	0.477	U	ug/L	0.477	1.00	1		4/16/2009 16:10	LN
1,3-Dichlorobenzene	0.558	U	ug/L	0.558	1.00	1		4/16/2009 16:10	LN
1,3-Dichloropropane	0.345	U	ug/L	0.345	1.00	1		4/16/2009 16:10	LN
1,4-Dichlorobenzene	0.537	U	ug/L	0.537	1.00	1		4/16/2009 16:10	LN
2,2-Dichloropropane	0.700	U	ug/L	0.700	1.00	1		4/16/2009 16:10	LN
2-Butanone	4.28	U	$u g / L$	4.28	10.0	1		4/16/2009 16:10	LN
2-Chloroethylvinyl ether	0.470	U	ug/L	0.470	1.00	1		4/16/2009 16:10	LN
2-Chlorotoluene	0.550	U	ug/L	0.550	1.00	1		4/16/2009 16:10	LN
2-Hexanone	1.83	U	ug/L	1.83	10.0	1		4/16/2009 16:10.	LN
4-Chlorotoluene	0.570	U	ug/L	0.570	1.00	1		4/16/2009 16:10	LN
4-Isopropyltoluene	0.380	U	ug/L	0.380	1.00	1		4/16/2009 16:10	LN
4-Methyl-2-pentanone	0.220	U	ug/L	0.220	1.00	1		4/16/2009 16:10	LN
Acetone	1.43	U	ug/L	1.43	10.0	1		4/16/2009 16:10	LN
Acrolein	2.47	U	ug/L	2.47	10.0	1		4/16/2009 16:10	LN
Acrylonitrile	0.955	U	ug/L	0.955	10.0	1		4/16/2009 16:10.	LN
Benzene	0.621	U	ugh	0.621	1.00	1		4/16/2009 16:10	LN
Bromobenzene	0.382	U	ug/L	0.382	1.00	1		4/16/2009 16:10	LN
Bromochloromethane	0.637	U	ug/L	0.637	1.00	1		4/16/2009 16:10	LN
Bromodichloromethane	0.100	U	$u g / L$	0.100	1.00	1		4/16/2009 16:10	LN
Bromoform	0.486	U	ug/L	0.486	1.00	1		4/16/2009 16:10	LN
Bromomethane	0.427	U	ug / L	0.427	1.00	1		4/16/2009 16:10	LN
n-Butylbenzene	0.564	U	$u g / L$	0.564	1.00	1		4/16/2009 16:10	LN
Carbon disulfide	0.650	U'	ug/L	0.650	10.0	1		4/16/2009 16:10	LN
Carbon tetrachloride	0.468	U	ug/L	0.468	1.00	1		4/16/2009 16:10	LN
Chlorobenzene	0.316	U	ug/L	0.316	1.00	1		4/16/2009 16:10	LN
Chloroethane	1.00	U	ug/L	1.00	1.00	1		4/16/2009 16:10	LN
Chloroform	0.572	U	ug/L	0.572	1.00	1		4/16/2009 16:10	LN
Chloromethane	0.524	U	ug/L	0.524	1.00	1		4/16/2009 16:10	LN
Dibromochloromethane	0.378	U	ug/L	0.378	1.00	1		4/16/2009 16:10	LN
Dibromomethane	0.739	U	ug/L	0.739	1.00	1		4/16/2009 16:10	LN
Dichlorodifluoromethane	0.525	U	ug/L	0.525	1.00	1		4/16/2009 16:10	LN
cis-1,3-Dichloropropene	0.664	U	$u g / L$	0.664	1.00	1		4/16/2009 16:10	LN

Report ID: 904015-4792816

ANALYTICAL RESULTS

Lab ID:	904015001
Sample ID:	PW-1/

Date Received: 4/14/2009 Matrix: Groundwater
Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522	1.00	1		4/16/2009 16:10	LN
Ethylbenzene	0.323	U	ug/L	0.323	1.00	1		4/16/2009 16:10	LN
Hexachlorobutadiene	0.763	U	ug/L	0.763	1.00	1		4/16/2009 16:10	LN
Isopropylbenzene (Cumene)	0.528	U	ug/L	0.528	1.00	1		4/16/2009 16:10	LN
Methyl-t-butyl ether	0.650	U	ug/L	0.650	1.00	1		4/16/2009 16:10	LN
Methylene chloride	0.580	U	ught	0.580	5.00	1		4/16/2009 16:10	LN
Naphthalene	0.417	U	ug / L	0.417	1.00	1		4/16/2009 16:10	LN
Styrene	0.458	U	ug/L	0.458	1.00	1		4/16/2009 16:10	LN
Tetrachloroethene	0.312	U	ug/L	0.312	1.00	1		4/16/2009 16:10	LN
Toluene	0.389	U	ug/L	0.389	1.00	1		4/16/2009 16:10	LN
Trichloroethene	0.821	U	ug/L	0.821	1.00	1		4/16/2009 16:10	LN
Trichlorofluoromethane	1.00	U	ug/L	1.00	1.00	1		4/16/2009 16:10	LN
Vinyl acetate	0.570	U	ug/L	0.570	10.0	1		4/16/2009 16:10	LN
Vinyl chloride	0.506	U	ug/L	0.506	1.00	1		4/16/2009 16:10	LN
Xylene, m,p-	0.639	\mathbf{U}	ug/L	0.639	2.00	1		4/16/2009 16:10	LN
Xylene, o-	0.341	U	ug/L	0.341	1.00	1		4/16/2009 16:10	LN
Xylenes (total)	0.980	U	ug / L	0.980	3.00	1		4/16/2009 16:10	LN
cis-1,2-Dichloroethene	0.442	U	ug/L	0.442	1.00	1		4/16/2009 16:10	LN
n-Propylbenzene	0.624	U	$u g / L$	0.624	1.00	1		4/16/2009 16:10	LN
sec-Butylbenzene	0.521	U	ug/L	0.521	1.00	1		4/16/2009 16:10	LN
tert-Butylbenzene	0.607	U	ug/L	0.607	1.00	1		4/16/2009 16:10	LN
trans-1,2-Dichloroethene	0.410	U	ug/L	0.410	1.00	1		4/16/2009 16:10	LN
4-Bromofluorobenzene (S)	85		\%	64-130		1		4/16/2009 16:10	LN
Dibromofluoromethane (S)	98		\%	69-134		1		4/16/2009 16:10	LN
Toluene d8 (S)	98		\%	63-127		1		4/16/2009 16:10	LN

Pesticides

Preparation Method: 3510 C . Analyticail Method: SW-846 8081A

4,4'-DDD	0.000993	U	ug / L	0.000993
4,4'-DDE	0.00148	U	ug / L	0.00148
4,4-DDT	0.00120	U	ug / L	0.00120
Aldrin	0.00139	U	ug / L	0.00139
Dieldrin	0.00106	U	ug / L	0.00106
Endosulfan I	0.00103	U	ug / L	0.00103
Endosulfan II	0.00103	U	ug / L	0.00103
Endosulfan sulfate	0.00279	U	ug / L	0.00279
Endrin	0.00717	U	ug / L	0.00717
Endrin aldehyde	0.000695	U	ug / L	0.000695
Endrin ketone	0.000969	U	ug / L	0.000969
Heptachlor	0.00152	U	ug / L	0.00152
Heptachlor epoxide	0.00236	I	ug / L	0.00121
Methoxychlor	0.000900	U	ug / L	0.000900
Toxaphene	0.047	U	ug / L	0.047
alpha-BHC	0.000924	U	ug / L	0.000924
alpha-Chlordane	0.00118	U	ug / L	0.00118
beta-BHC	0.00123	U	ug / L	0.00123

0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.050	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.050	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.050	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.050	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.100	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
3.00	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.050	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.050	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC
0.020	1	$4 / 14 / 200920: 00$	$4 / 16 / 200913: 39$	CC

ANALYTICAL RESULTS
 3231 NW 7th Avenue Boca Raton, FL 33431

Phone: (561) 447-7373
Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:	904015002
Sample ID:	TRIP BLANK/

$\begin{array}{lll}\text { Date Received: } & \text { 4/14/2009 Matrix: } \quad \text { DI Water } \\ \text { Date Collected: } & 4 / 13 / 2009 \text { 4:00:00 PM }\end{array}$

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Volatiles									
Analytical Method: SW-846	OB								
1,1,1,2-Tetrachioroethane	0.120	U	ug/L	0.120	1.00	1		4/16/2009 16:34	LN
1,1,1-Trichloroethane	0.682	U	ug/L	0.682	1.00	1		4/16/2009 16:34	LN
1,1,2,2-Tetrachloroethane	0.572	U	ug/L	0.572	1.00	1		4/16/2009 16:34	LN
1,1,2-Trichloroethane	0.841	U	ug/L	0.841	1.00	1		4/16/2009 16:34	LN
1,1-Dichloroethane	0.410	U	ug/L	0.410°	1.00	1		4/16/2009 16:34	LN
1,1-Dichloroethene	0.638	U	ug/L	0.638	1.00	1		4/16/2009 16:34	LN
1,1-Dichloropropene	0.632	U	$u g / L$	0.632	1.00	1		4/16/2009 16:34	LN
1,2,3-Trichlorobenzene	0.686	U	ug/L	0.686	1.00	1		4/16/2009 16:34	LN
1,2,3-Trichloropropane	0.160	U	ug/L	0.160	1.00	1		4/16/2009 16:34	LN
1,2,4-Trichlorobenzene	0.538	U	ug/L	0.538	1.00	1		4/16/2009 16:34	LN
1,2,4-Trimethylbenzene	0.508	U	ug/L	0.508	1.00	1		4/16/2009 16:34	LN
1,2-Dibromo-3chloropropane	0.933	U	ug/L	0.933	1.00	1		4/16/2009 16:34	LN
1,2-Dibromoethane	0.345	U	ug/L	0.345	1.00	1		4/16/2009 16:34	LN
1,2-Dichlorobenzene	0.584	U	$u g / L$	0.584	1.00	1		4/16/2009 16:34	LN
1,2-Dichloroethane	0.897	U	$u g / L$	0.897	1.00	1		4/16/2009 16:34	LN
1,2-Dichloropropane	0.725	U	$u g / L$	0.725	1.00	1		4/16/2009 16:34	LN
1,3,5-Trimethylbenzene	0.477	U	$u g / L$	0.477	1.00	1		4/16/2009 16:34	LN
1,3-Dichlorobenzene	0.558	U	ug/L	0.558	1.00	1		4/16/2009 16:34	LN
1,3-Dichloropropane	0.345	U	ug/L	0.345	1.00	1		4/16/2009 16:34	LN
1,4-Dichlorobenzene	0.537	U	ug/L	0.537	1.00	1		4/16/2009 16:34	LN
2,2-Dichloropropane	${ }^{\circ} 0.700$	U	ug/L	0.700	1.00	1		4/16/2009 16:34	LN
2-Butanone	4.28	U	ug/L	4.28	10.0	1		4/16/2009 16:34	LN
2-Chloroethylvinyl ether	0.470	U	ug/L	0.470	1.00	1		4/16/2009 16:34	LN
2-Chlorotoluene	0.550	U	$u g / L$	0.550	1.00	1		4/16/2009 16:34	LN
2-Hexanone	1.83	U	$u g / L$	1.83	10.0	1		4/16/2009 16:34	LN
4-Chlorotoluene	0.570	U	ug/L	0.570	1.00	1		4/16/2009 16:34	LN
4-Isopropyltoluene	0.380	U	ug/L	0.380	1.00	1		4/16/2009 16:34	LN
4-Methyl-2-pentanone	0.220	U	ug/L	0.220	1.00	1		4/16/2009 16:34	LN
Acetone	1.43	U	ug/L	1.43	10.0	1		4/16/2009 16:34	LN
Acrolein	2.47	U	ug/L	2.47	10.0	1		4/16/2009 16:34	LN
Acrylonitrile	0.955	U	ug/L	0.955	10.0	1		4/16/2009 16:34	LN
Benzene	0.621	U	$u g / L$	0.621	1.00	1		4/16/2009 16:34	LN
Bromobenzene	0.382	U	$u g / L$	0.382	1.00	1		4/16/2009 16:34	LN
Bromochloromethane	0.637	U	ug/L	0.637	1.00	1		4/16/2009 16:34	LN
Bromodichloromethane	0.100	U	ug/L	0.100	1.00	1		4/16/2009 16:34	LN
Bromoform	0.486	U	ug/L	0.486	1.00	1		4/16/2009 16:34	LN
Bromomethane	0.427	U	ug/L	0.427	1.00	1		4/16/2009 16:34	LN
n-Butylbenzene	0.564	U	$u g / L$	0.564	1.00	1		4/16/2009 16:34	LN
Carbon disulfide	0.650	U	ug/L	0.650	10.0	1		4/16/2009 16:34	LN
Carbon tetrachloride	0.468	U	$u g / L$	0.468	1.00	1		4/16/2009 16:34	LN
Chlorobenzene	0.316	U	$u g / L$	0.316	1.00	1		4/16/2009 16:34	LN
Chloroethane	1.00	U	$u g / L$	1.00	1.00	1		4/16/2009 16:34	LN
Chloroform	0.572	U	$u g / L$	0.572	1.00	1		- 4/16/2009 16:34	LN

ANALYTICAL RESULTS

Lab ID:	904015002
Sample ID:	TRIP BLANKI

Date Received: .4/14/2009 Matrix: DI Water
Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	-	PQL	DF	Prepared	Analyzed	By
Chloromethane	0.524	U	ug/L	0.524		1.00	1		4/16/2009 16:34	LN
Dibromochloromethane	0.378	U	ug/L	0.378		1.00	1		4/16/2009 16:34	LN
Dibromomethane	0.739	U	$u g / L$	0.739		1.00	1		4/16/2009 16:34	LN
Dichlorodifluoromethane	0.525	U	ug/L	0.525		1.00	1		4/16/2009 16:34	LN
cis-1,3-Dichloropropene	0.664	U	ug/L	0.664	.	1.00	1		4/16/2009 16:34	LN
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522		1.00	1		4/16/2009 16:34	LN
Ethylbenzene	0.323	U	ug/L	0.323		1.00	1		4/16/2009 16:34	LN
Hexachlorobutadiene	0.763	U	ug/L	0.763		1.00	1		4/16/2009 16:34	LN
Isopropylbenzene (Cumene)	0.528	U	ug/L	0.528		1.00	1		4/16/2009 16:34	LN
Methyl-t-butyl ether	0.650	U	$u g / L$	0.650		1.00	1		4/16/2009 16:34	LN
Methylene chloride	0.580	U	ug/L	0.580		5.00	1	.	4/16/2009 16:34	LN
Naphthalene	0.417	U	ug/L	0.417		1.00	1		4/16/2009 16:34	LN
Styrene	0.458	U	$u g / L$	0.458		1.00	1		4/16/2009 16:34	LN
Tetrachloroethene	0.312	U	$u g / L$	0.312		1.00	1		4/16/2009 16:34	LN
Toluene	0.389	U	ug/L	0.389		1.00	1		4/16/2009 16:34	LN
Trichloroethene	0.821	U	ug/L	0.821		1.00	1		4/16/2009 16:34	LN
Trichlorofluoromethane	1.00	U	$u g / L$	1.00		1.00	1		4/16/2009 16:34	LN
Vinyl acetate	0.570	U	ug/L	0.570		10.0	1		4/16/2009 16:34	LN
Vinyl chloride	0.506	U	ug/L	0.506		1.00	1		4/16/2009 16:34	LN
Xylene, m,p-	0.639	U	$u g / L$	0.639		2.00	1		4/16/2009 16:34	LN
Xylene, o-	0.341	U	$u g / L$	0.341		1.00	1		4/16/2009 16:34	LN
Xylenes (total)	0.980	U	ug/L	0.980		3.00	1		4/16/2009 16:34	LN
cis-1,2-Dichloroethene	0.442	U	ug/L	0.442		1.00	1		4/16/2009 16:34	LN
n-Propylbenzene	0.624	U	ug/L	0.624		1.00	1		4/16/2009 16:34	LN
sec-Butylbenzene	0.521	U	ug/L	0.521		1.00	1		4/16/2009 16:34	LN
tert-Butylbenzene	0.607	U	ug/L	0.607		1.00	1		4/16/2009 16:34	LN
trans-1,2-Dichloroethene	0.410	U	ug/L	0.410		1.00	1		4/16/2009 16:34	LN
4-Bromofluorobenzene (S)	82		\%	64-130			1		4/16/2009 16:34	LN
Dibromofluoromethane (S)	100		\%	69-134			1		4/16/2009 16:34	LN
Toluene d8 (S)	96		\%	63-127			1		4/16/2009 16:34	LN

Genapure

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

V	Present in blank.
$[1]$	E 14157
$[2]$	E87358
$[3]$	E83033
$[4]$	Detection limit has been elevated due to matrix interference.
$[5]$	E87854
$[6]$	

CASE NARRATIVE

Sample Analysis Comments

Lab ID 904015001 Client ID PW-1

Analyte/Arsenite (Trivalent As)

[2] E87358

Analyte/Asbestos

[5] E86772

Analyte/Bromate

[4] E83079

Analyte/Gross Alpha (Incl Uranium)

[3] E83033

Analyte/Manganese

Detection limit has been elevated due to matrix interference.

Analyte/Methane

[7] E87854

Analyte/Radium 226

[3] E83033

Analyte/Radium 228

[3] E83033

Analyte/See Attached

[1] E14157
[2] E87358

Genapure

QUALITY CONTROL DATA

QC Batch: EXTO/2010			Analysis Method: EPA 1664A			
QC Batch Method: EPA	EPA 1664A					
Associated Lab Samples:	903906001	903917001	903918001	903922001	903999001	904015001
	904047005	. 904048001	904049001	904050004	904058002	904072003
	904073004	904074003	904076003			
METHOD BLANK: 24131						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifiers	-		
Wet Chemistry						
Oil and Grease	mg/L	1.4 U	1.4			

QUALITY CONTROL DATA

QC Batch:	LACH/2030
QC Batch Method:	EPA 365.1
Associated Lab Samples:	903976001
	904029003
	904029009

	Analysis Method:	EPA 365.1		
903976002	903976003	904015001	904029001	904029002
904029004	904029005	904029006	904029007	904029008
904029010	904029011			

METHOD BLANK: 24283

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24465			24466		Original: 904030004					
	Original	Spike	MS	MSD	MS	MSD	\% Rec		Max	
Parameter Units	Result	Conc.	Result	Result	\% Rec	\% Rec	Limit	RPD	RPD	Qualifiers

Wet Chemistry

Ortho Phosphate $-P$	0.583	0.584	1	20

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,
without the writen consent of Genapure Analytical Ṣervices, lnc..

QUALITY CONTROL DATA

QC Batch: EX	2015		Analysis Method:	SW-846 8	W PAH	
QC Batch Method: 351						
Associated Lab Samples:	903950022	904006012	904006013	904015001	904060001	904062001
	904062002	904149001	904158010			
METHOD BLANK: 24428						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifiers			
PAH						
Acenaphthene	ug/L	0.027 U	0.027			
Acenaphthylene	ug/L	0.0264	0.026			
Anthracene	ug/L	0.0056 U	0.0056			
Benzo(a)anthracene	ug/L	0.011 U	0.011			
Benzo(b)fluoranthene	ug/L.	0.015 U	0.015			
Benzo(k)fluoranthene	ug/L	0.012 U	0.012			
Benzo(g,h,i)perylene	ug/L	0.014 U	0.014			
Benzo(a)pyrene	ug/L	0.013 U	0.013			
Chrysene	$u g / L$	0.017 U	0.017			
Dibenz(a,h)anthracene	ug/L	0.0056 U	0.0056			
Fluoranthene	ug/L	0.0078 U	0.0078			
Fluorene	ug/L	. 0.011 U	0.011			
Indeno(1,2,3-cd)pyrene	ug/L	0.011U	0.011			
1-Methyinaphthalene	ug/L	0.026 U	0.026			
2-Methyinaphthalene	ug/L	0.030 U	0.030			
Naphthalene	ug/L	0.0344	0.034			
Phenanthrene	ug/L	0.014 U	0.014			
Pyrene	ugh	0.0084 U	0.0084			
2-Fluorobiphenyl (S)	\%	54.9	10-116			
Nitrobenzene-d5 (S)	\%	50.6	10-112			
Terphenyl-d14 (S)	\%	79.6	20-128			

METHOD BLANK: 24809

Parameter	Units	- Blank Result	Reporting Limit Qualifiers	
PAH				
Acenaphthene	$u g / L$	0.027 U	0.027	
Acenaphthylene	ug/L	0.026 U	0.026	
Anthracene	ug/L	0.01101	0.0056 V	
Benzo(a)anthracene	ug/L	0.01971	0.011 V	
Benzo(b)fluoranthene	ug/L	0.015 U	0.015	
Benzo(k)fluoranthene	ug/L	0.01481	0.012	
Benzo(g,h,i)perylene	ug/L	0.014 U	0.014 V	
Benzo(a)pyrene	ug/L	0.01511	0.013 V	
Chrysene	ug/L	0.017 U	0.017 V	
Dibenz(a,h)anthracene	ug/L	0.01071	0.0056 V	
Fluoranthene	ug/L	0.01161	0.0078 V	
Fluorene	ug/L	0.01531	0.011 V	
Indeno(1,2,3-cd)pyrene	ug/L	0.01211	0.011 V	

QUALITY CONTROL DATA
METHOD BLANK: 24809

Parameter	Units	Blank Result	Reporting Limit Qualifiers
1-Methylnaphthalene	ug / L	0.026 U	0.026
2-Methylnaphthalene	ug / L	0.030 U	0.030
Naphthalene	ug / L	0.034 U	0.034
Phenanthrene	ug / L	0.01671	0.014 V
Pyrene	ug / L	0.01031	0.0084 V
2-Fluorobiphenyl (S)	$\%$	49.3	$10-116$
Nitrobenzene-d5 (S)	$\%$	44.7	$10-112$
Terphenyl-d14 (S)	$\%$	56.8	$20-128$

LABORATORY CONTROL SAMPLE: 24429						
Parameter	Units	Spike Conc.	LCS Result	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers	
PAH						
Acenaphthene	ug/L	5	3.30	66	23-100	
Acenaphthylene	ug/L	5	3.50	70	21-109	
Anthracene	ug/L	5	3.70	74	39-111	
Benzo(a)anthracene	ug/L	5	3.95	79	28-115	
Benzo(b)fluoranthene	ug/L	5	4.58	92	15-116	
Benzo(k)fluoranthene	ug/L	5	3.33	67	33-122	
Benzo(g, h , i) perylene	ug/L	5	4.03	81	29-120	
Benzo(a)pyrene	ug/L	5	3.95	79	27-119	
Chrysene	ug/L	5	3.74	75	11-115	
Dibenz(a,h)anthracene	ug/L	5	3.77	75	11-115	
Fluoranthene	ug/L	5	3.40	68	42-112	
Fluorene	ug/L	5	3.48	70	25-109	
Indeno($1,2,3$-cd) pyrene	ug/L	5	4.19	84	16-120	
1-Methylnaphthalene	ug/L	5	3.02	60	10-104	
2-Methylnaphthalene	ug/L	5	3.15	63	10-115	
Naphthalene	ug/L	5	3.08	62	12-102	
Phenanthrene	ug/L	5	3.63	73	38-108	
Pyrene	ug/L	5	4.35	87	36-123	
2-Fluorobiphenyl ($\$$)	\%			72.7	10-116	
Nitrobenzene-d5 ($\$$)	\%			67.7	10-112	
Terphenyl-d14 (S)	\%			86.3	20-128	!

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24430				24431		Original: 904031002				
Parameter	Units	Original Result	Spike Conc.	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
PAH										
Acenaphthene	$u g / L$	0	5	1.66	2.27	33	45	23-100	31	208
Acenaphthylene	ug/L	0.00798	5	1.83	2.53	37	51	21-109	32	208

QUALITY CONTROL DATA

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24430 24431 Original: 904031002

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Anthracene	ug/L	0.00413	5	2.40	2.92	48	58	39-111	19	20
Benzo(a)anthracene	ug/L	0	5	2.96	3.24	59	65	34-121	10	20
Benzo(b)fluoranthene	.ug/L	0.00374	5	3.04	3.27	61	65	27-119	6	20
Benzo(k)fluoranthene	ug/L	0.00303	5	3.17	3.83	63	77	29-120	20	20
Benzo(g,h,i)perylene	$u g / L$	0	5	3.05	3.42	61	68	15-116	11	20
Benzo(a)pyrene	ug/L	0	5	2.95	3.31	59	66	28-115	11	20
Chrysene	ug/L	0	5	2.76	3.36	55	67	33-122	20	20
Dibenz(a,h)anthracene	ug/L	0.00315	5	2.88	3.23	58	65	11-115	11	20
Fluoranthene.	ug/L	0.00422	5	2.58	3.14	52	63	42-112	19	20
Fluorene	$u g / L$	0.00574	5	1.91	2.59	38	52	25-109	31	208
Indeno(1,2,3-cd)pyrene	ug/L	0.0022	5	3.10	3.52	62	70	16-120	12	20
1-Methylnaphthalene	$u g / L$	0.0199	5	1.28	1.79	26	36	10-104	32	208
2-Methyinaphthalene	ug/L	0.0243	5	1.34	1.87	27	37	10-115	31	208
Naphthalene	ug/L	0.0623	5	1.40	2.03	27	39	12-102	36	208
Phenanthrene	ug/L	0.00654	5	2.37	2.89	47	58	38-108	21	208
Pyrene	ug/L	0.00432	5	2.89	3.41	58	68	36-123	16	20
2-Fluorobiphenyl (S)	\%					36.2	49.5	10-116	31	.
Nitrobenzene-d5 (S)	\%					35.3	50.5	10-112	35.4	
Terphenyl-d14 (S)	\%			.		52	61.4	20-128	16.6	

QUALITY CONTROL DATA

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

METHOD BLANK: 24436

	Units	Blank Result	Reporting Limit Qualifiers
Parameter	ug/L	0.23 U	0.23
m,p-Cresol	0.35 U	0.35	
4,6-Dinitro-2-methylphenol	ug / L	0.40 U	0.40
Phenol	ug / L	2.6 U	2.6
2-Chlorophenol	ug / L	0.28 U	0.28
1,4-Dichlorobenzene	ug / L	0.33 U	0.33
n-Nitrosodi-n-propylamine	ug / L	1.5 U	1.5
1,2,4-Trichlorobenzene	ug / L	0.22 U	0.22
4-Chloro-3-methylphenol	ug / L	0.79 U	0.79
4-Nitrophenol	ug / L	0.31 U	0.31
2,4-Dinitrotoluene	ug / L	0.70 U	0.70
Pentachlorophenol	ug / L	59	$7.7-130$
Nitrobenzene-d5 (S)	$\%$	22.6	$10-59$
Phenol-d6 (S)	$\%$	58	$19-126$
2-Fluorobiphenyl (S)	$\%$	40	$28-62$
2-Fluorophenol (S)	$\%$	62	$48-132$
2,4,6-Tribromophenol (S)	$\%$	59	$27-133$

METHOD BLANK: 24761

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Semivolatiles			
Benzidine	ug / L		
Benzoic acid	ug / L	2.7 U	9.7
Butyl benzyl phthalate	ug / L	2.0 U	2.0
Bis(2-Chloroethoxy)methane	ug / L	0.36 U	0.36
Bis(2-Chioroethyl)ether	ug / L	0.32 U	0.32
Bis(2-Chloroisopropyl)ether	ug / L		

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc.

QUALITY CONTROL DATA

METHOD BLANK: 24761

LABORATORY CONTROL SAMPLE: 24437

	Units	Spike Conc.	LCS Result	LCS $\%$ Rec	$\%$ Rec Limits Qualifiers
Parameter					
Semivolatiles	50	12.9	26	$10-104$	
Benzidine	ug/L	50	17.01	34	
Benzoic acid	ug/L	50	37.3	75	$10-152$

QUALITY CONTROL DATA
LABORATORY CONTROL SAMPLE: 24437

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc.

3231 NW 7th Avenue

QUALITY CONTROL DATA
LABORATORY CONTROL SAMPLE: 24437

Parameter	Spike Conc.	LCS Result	LCS $\%$ Rec	\% Rec Limits Qualifiers	
n-Nitrosodi-n-propylamine	ug / L	50	32.5	65	$43-136$
1,2,4-Trichlorobenzene	ug / L	50	34.7	69	$30-119$
4-Chloro-3-methylphenol	ug / L	50	36.0	72	$30-128$
4-Nitrophenol	ug / L	50	17.0	34	$10-73$
2,4-Dinitrotoluene	ug / L	50	32.1	64	$54-133$
Pentachlorophenol	ug / L	50	35.3	71	$29-142$
Nitrobenzene-d5 (S)	$\%$			75	$10-112$
Phenol-d6 (S)	$\%$			32.2	$10-59$
2-Fluorobiphenyl (S)	$\%$			69	$10-116$
2-Fluorophenol (S)	$\%$			49	$28-62$
2,4,6-Tribromophenol (S)	$\%$			78	$48-132$
Terphenyl-d14 (S)	$\%$			77	$20-128$

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24438				24439		Original: 904031004				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \cdot \mathrm{MS} \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Semivolatiles										
Benzidine	$u g / L$	0	50	13.6	9.7 U	27	12	10-104	77	208
Benzoic acid	ug/L	0	50	13.61	16.21	27	32		17	
Butyl benzyl phthalate	ugh	0	50	36.9	38.6	74	77	10-152	4	20
Bis(2Chloroethoxy)methane	ug/L	0	50	32.5	32.3	65	65	33-184	0	20
Bis(2-Chloroethyl)ether	$u g / L$	0	50	30.8	30.2	62	60		3	
Bis(2-Chloroisopropyl)ether	ug/L	0	50	30.6	29.7	61	59	36-166	3	20
Bis(2-Ethylhexyl)phthalate	$u g / L$	0	50	37.0	36.6	74	73	10-158	1	20
4-Bromophenyl phenyl ether	ug/L	0	50	40.2	38.9	80	78	53-127	3	20
Carbazole	ug/L	0	50	37.3	38.4	75	77	73-131	3	20
4-Chlorophenyl phenyl ether	$u g / L$	0	50	36.5	35.7	73	71	25-158	3	20
Dibenzofuran	ug/L	0	50	34.6	34.7	69	69		0	
1,2-Dichlorobenzene	$u g / L$	0	50	33.9	34.1	68	68	32-129	0	20
1,3-Dichlorobenzene	$u g / L$	0	50	31.1	30.1	62	60	10-172	3	20
3,3'-Dichlorobenzidine	$u g / L$	0	50	38.1	39.0	76	78	10-262	3	20
2,4-Dichlorophenol	ug/L	0	50	37.0	37.3	74	75	39-135	1	20
Diethyl phthalate	ug/L	0.0925	50	33.9	33.2	68	66	10-114	3	20
2,4-Dimethylphenol	ug/L	0	50	39.0	39.2	78	78	32-119	0	20
Dimethyl phthalate	$u g / L$	0.0899	50	36.3	35.2	73	70	10-112	4	20
Di-n-octyl phthalate	$u g / L$	0.0698	50	42.6	42.1	85	84	10-146	1	20
2,4-Dinitrophenol	$u g / L$	0	50	32.5	34.2	65	68	10-191	5	20
2,6-Dinitrotoluene	$u g / L$	0	50	32.5	31.3	65	63	39-139	3	20
Hexachlorobenzene	ug/L	0	50	36.1	36.5	72	73	10-152	1	20
Hexachlorobutadiene	ug/L	0	50	34.1	33.5	68	67	24-116	1	20
Hexachlorocyclopentadiene	ug/L	0	50	30.8	28.8	62	58	10-115	7	20
Hexachloroethane	ug/L	0	50	34.0	32.5	68	65	40-113	5	20

Report ID: 904015-4792816
Page 26 of 71

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the writen consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA
METHOD BLANK: 24440

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Ethion	ug / L	0.132 U	0.132
Thetrachlorvinphos (Stirofos)	ug / L	0.107 U	0.107
Trichlorfon	ug / L	1.09 U	1.09
Tokuthion (Prothiophos)	ug / L	0.106 U	0.106

LABORATORY CONTROL SAMPLE: 24441

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24441

Parameter	Units	Spike Conc.	LCS Result	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers	
Mevinphos	ug/L		0.172 U			
LABORATORY CONTROL SAMPLE: 24441						
Parameter	Units	Spike Conc.	LCS Result	$\begin{array}{r} \text { LCS } \\ \% \operatorname{Rec} \end{array}$	\% Rec Limits Qualifiers	
Organophosphorus Pesticides				.		
Phosmet	ug/L		0.102 U			
Disulfoton	ug/L		0.129 U			
Azinphos-ethyl	ug/L		0.130 U	.		
Coumaphos	ug/L		. 0.079 U			
Dicrotophos	ug/L		0.175 U			
Ethoprop	$u g / L$		0.068 U			
Famphur	ug/L		0.081 U			
Ethion	ug $/ \mathrm{L}$		0.132 U			
Tetrachlorvinphos (Stirofos)	$u g / L$		0.107 U			
Trichlorfon	ug/L		1.09 U			
Tokuthion (Prothiophos)	ug/L		0.106 U			

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24442 i 24443 Original: 904031006

Parameter	Units	Original	Spike	MS	MSD		$\begin{array}{r} \text { MSD } \\ \text { \% Rer } \end{array}$	\% Rec	RPD	Max
Parameter	Units	Result	Conc.	Result	Result	\% Rec	\% Rec	Limit	RPD	RPD Qualifiers

Organophosphorus
Pesticides
Chlorpyrifos

Demeton-s
Demeton-o.
Crotoxyphos
Dichlorovos
Fenithrothion
Ronnel
Terbufos
Fenthion
Leptophos
Tributyl Phosphate (S)

ug / L	0	2	2.23	2.24
ug / L	0	2	2.27	2.07
ug / L	0	2	2.07	1.83
ug / L			3.93	3.56
ug / L			0.3881	0.3261
ug / L	0	2	4.24	4.46
ug / L	0	2	2.10	1.78
ug / L	0	2	2.17	1.79
ug / L	0	2	1.89	1.71
ug / L	0	2	1.87	1.54
ug / L	0	2	2.42	2.11
ug / L	0	2	2.12	1.95

112	112	$21-148$	0	20
114	103	$46-133$	10	20
104	91	$44-122$	13	20
		$:$		
			5	
212	223		16	20
105	89	$12-128$	19	
109	90		10	20
94	85	$35-126$	10	
94	77	$48-124$	20	20
121	106		13	
106	97	$11-146$	9	20
103	91	$44-125$	12	
104	102	$43-134$	2	

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

QC Batch:	EXTO/2019
QC Batch Method:	3510 C

Analysis Method: SW-846 8082

Associated Lab Samples: 904015001
METHOD BLANK: 24444

Parameter	Units	Blank Result	Reporting Limit Qualifiers
PCBs			
PCB 1221	ug/L	0.014 U	0.014
PCB 1232	ug/L	0.190 U	0.190
PCB 1242	ug/L	0.010 U	0.010
PCB 1248	ug/L	0.00850 U	0.00850
PCB 1254	ug/L	0.014 U	0.014
PCB 1016	ug/L	0.012 U	0.012
PCB 1260	ug/L	0.015 U	0.015
Decachlorobiphenyl (S)	$\%$	121	$45-162$
Tetrachloro-m-xylene (S)	$\%$	96	$50-125$

LABORATORY CONTROL SAMPLE: 24445

Parameter	Units	Spike Conc.	LCS Result	LCS \% Rec	\% Rec Limits Qualifiers
PCBs					
PCB 1221	ug/L		0.014 U		
PCB 1232	$u g / L$		0.190 U		
PCB 1242	ug/L		0.010 U		
PCB 1248	ug/L		0.00850 U		\cdots
PCB 1254	ug/L		0.014 U		
PCB 1016	$u g / L$	1	1.17	11.7	12-176
PCB 1260	ug/L	1	1.27	127	10-180
Decachlorobipheny! (S)	\%			119	45-162
Tetrachloro-m-xylene (S)	\%			96	50-125

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24446				24447		Original: 904031007			MaxRPD RPD Qualifiers	
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS \% Rec	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit		
PCBs										
PCB 1221	ug/L			0.014 U	0.014 U					
PCB 1232	ug/L			0.1904	0.190 U					
PCB 1242	ug/L			0.010 U	0.010 U		.			
PCB 1248	$u g / L$			0.00850 U	0.00850 U					
PCB 1254	ug/L			0.014 U	0.014 U					
PCB 1016	ug/L	0	1	1.20	1.05	120	105	12-176	13	20
PCB 1260	$u g / L$	0	1	1.30	1.08	130	108	10-181	18	20

QUALITY CONTROL DATA

MATRIX SPIKE \& MATRIX	E DU	TE: 24		244		Orig	al: 9040	1007		
		Original	Spike	MS	MSD	MS	MSD	\% Rec		Max
Parameter	Units	Result	Conc.	Result	Result	\% Rec	\% Rec	Limit	RPD	RPD Qualifiers
Decachlorobiphenyl (S)	\%					125	117	45-162	7	
Tetrachloro-m-xylene (S)	\%					100	95	50-125	5	

QUALITY CONTROL DATA

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24450				24451		Original: 904031005				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Herbicides										
2,4-D	$u g / L$	0	5	3.43	3.45	69	69	29-146	0	20
2,4,5-T	ug/L	. 0	5	3.45	3.47	69	69	29-157	0	20
Dinoseb	ug/L	0	5	1.631	1.051	33	21		44	

3231 NW 7th Avenue
Boca Raton, FL 33431
Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24453

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24454				24455		Original: 904031008				Max RPD Qualifiers
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	MSD \% Rec	\% Rec Limit	RPD	
Pesticides										
alpha-BHC	ug/L	0	0.1	0.101	0.100	101	100		1	
beta-BHC	ug/L	0	0.1	0.090	0.097	90	97		7	
delta-BHC	ug/L	0	0.1	0.054	0.058	54	58		7	
Heptachlor epoxide	ug/L	0.00336	0.1	0.095	0.103	91	99		8	.
Endosulfan I	ug/L	0	0.1	0.0871	0.0951	87	95		9	
4,4'-DDE	$u g / L$	0	0.1	0.112	0.130	112	130		15	
Endosulfan li	ug/L	0	0.1	0.112	0.116	112	116		4	
4,4'-DDD	$u g / L$	0	0.1	0.114	0.121	114	121		6	
Endosulfan sulfate	ug/L	0	0.1	0.0981	0.112	98	112		13	
Methoxychlor	ug/L	0	0.1	0.181	0.192	181	192		6	
Endrin ketone	ug/L	0	0.1	0.138	0.151	138	: 151		9	
Endrin aldehyde	$u g / L$	0.00104	0.1	0.114	0.123	113	122	.	8	
alpha-Chlordane	ug/L	0	0.1	0.098	0.110	98	. 110		12	
gamma-Chlordane	ug/L	0	0.1	0.099	0.108	99	108		9	
gamma-BHC (Lindane)	ug/L	0	0.1	0.090	0.084	90	84	33-155	7	20
Heptachlor	ug/L	0	0.1	0.116	0.123	116	123	47-148	6	20
Aldrin	ug/L	0	0.1	0.087	0.093	87	93	43-149	7	20
Dieldrin	$u \mathrm{~g} / \mathrm{L}$	0	0.1	0.099	0.107	99	107	47-162	8	20
Endrin	ug/L	0	0.1	0.113	0.115	113	115	41-189	2	20
4,4'-DDT	ug/L	0	0.1	0.115	0.123	115	123	14-228	7	20
Tetrachloro-m-xylene (S)	\%					81	73	32-137	10	
Decachlorobipheņl (S)	\%					101	92	25-165	9	

Genapure

QUALITY CONTROL DATA

QC Batch:	INPR/1606
QC Batch Method:	EPA 365.1

Associated Lab Samples:	903914002	903914003	903926001	903926002	903998001	903998002
	.903998003	904015001	904020003	904032001	904032002	904032003

METHOD BLANK: 24467

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Total Phosphorus	mg / L	0.004 U	0.004

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24470				24471		Original: 903914002					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result		$\begin{gathered} \text { MSD } \\ \% \text { Rec } \end{gathered}$	\% Rec Limit	RPD	Max RPD	Qualifiers
Wet Chemistry											
Total Phosphorus	mg / L	0.061	0.5	0.543	0.546	96.4	97	90-110	0.62	20	

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24472 Original: 904032003

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry										
Total Phosphorus	mg / L	0.044	0.5	0.560	0.563	103	104	90-110	0.97	20

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24488

Parameter	Units	Spike Conc.	LCS Result	LCS \% Rec	\% Rec Limits Qualifiers
Metals Analysis					
Aluminum	mg / l	5	5.19	104	80-120
Antimony	mg / l	1	0.966	97	80-120
Arsenic	mg / l	1	1.04	104	80-120
Barium	mg / l	1	1.05	105	80-120
Beryllium	mg / l	1	1.06	106	80-120
Boron	mg/l	1	1.06	106	80-120

QUALITY CONTROL DATA
LABORATORY CONTROL SAMPLE: 24488

Parameter	Units	Spike Conc.	$\begin{array}{r} \text { LCS } \\ \text { Result } \end{array}$	$\begin{array}{r} \text { LCS } \\ \% \operatorname{Rec} \end{array}$	\% Rec Limits Qualifiers	
Cadmium	mg / l	1	1.05	105	80-120	
Calcium	mg / l	25	25.8	103	80-120	
Chromium	mg / l	1	1.04	104	80-120	
Cobalt	mg / l	1	1.04	104	80-120	
Copper	mg / l	1	1.06	106	80-120	
Iron	mg / l	5	5.37	107	80-120	
Lead	mg / l	1	1.12	112	80-120	\cdot
Magnesium	mg / l	25	25.7	103	80-120	
Manganese	mg / l	1	1.06	106	80-120	
Molybdenum	mg / n	1	1.00	100	80-120	
Nickel	mg / l	1	1.06	106	80-120	
Potassium	mg / l	. 10	9.78	98	80-120	
Selenium	mg / l	1	1.03	103	80-120	
Silver	mg / l	0.5	0.525	105	80-120	
Sodium	$\mathrm{mg} /$	25	24.2	97	80-120	
Strontium	mg / i	1	1.06	106	80-120	
Tin	$\mathrm{mg} / 1$	1	0.992	99	80-120	
Vanadium	$\mathrm{mg} /$	1	1.08	108	80-120	
Zinc	mg / l	1	1.07	107	80-120	
-Titanium	mg / l	1	1.00	100	80-120	

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24489				24490		Original: 903998001				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit		Max RPD Qualifiers
Metals Analysis										
Aluminum	mg / h	0.13	5	5.44	5.07	106	99	75-125	7	20
Antimony	mg / l	0.00167	1	0.982	0.978	98	98	75-125	0	20
Arsenic	mg / l	0.00266	1	1.07	0.990	107	99	75-125	8	20
Barium	mg / l	0.0132	1	1.07	0.994	106	98	75-125	8	20
Beryllium	mg / l	-1.19e-0	1.	1.07	0.982	107	98	75-125	9	20
Boron	mg / l	0.0344	1	1.11	1.03	108	100	75-125	8	20
Cadmium	mg / l	7.23e-00	1	1.07	0.990	107	99	75-125	8	20
Calcium	mg / l	116	25	144	141	110	97	75-125	13	20
Chromium	mg / h	-0.00143	1	1.04	0.964	104	96	75-125	8	20
Cobalt	mg/l	0.00015	1	1.04	0.959	104	96	75-125	8	20
Copper	mg / l	0.00061	1	1.05	0.976	105	98	75-125	7	20
Iron	mg / l	0.152	5	5.54	5.09	108	99	75-125	9	20
Lead	mg / l	-0.00159	1	1.13	1.04	113	104	75-125	8	20
Magnesium	mg / h	2.85	25	28.8	28.3	104	102	75-125	2	20
Manganese	mg / l	0.00936	1	1.07	0.982	106	97	75-125	9	20
Molybdenum	mg / l	0.00177	1	1.01	0.998	101	100	75-125	1	20
Nickel	mg / l	0.00069	1	1.06	0.983	106	98	75-125	8	20
Potassium	$\mathrm{mg} / 1$	1.39	10	11.5	11.4	101	101	75-125	0	20
Selenium	mg / l	-0.00061	1	1.05	0.965	105	96	75-125	9	20

QUALITY CONTROL DATA

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 2448924490 Original: 903998001

Parameter	Units	Original Result	Spike Conc.	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	MSD Result	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \operatorname{Rec} \end{array}$	\% Rec Limit		Max RPD Qualifiers
Silver	mg / l	0.00028	0.5	. 0.533	0.526	107	105	75-125	2	20
Sodium	mg/	7.25	25	32.1	31.8	99	98	75-125	1	20
Strontium	mg/	0.68	1	1.76	1.68	108	100	75-125	8	20
Tin	mg/l	-0.00104	1	1.00	0.986	100	99	75-125	1	20
Vanadium	mg / l	-0.00206	1	1.09	1.01	109	101	75-125	8	20
Zinc	mg/l	0.00693	1	1.09	1.01	109	100	75-125	9	20
Titanium	mg/l	0.00135	1	1.02	1.00	102	100	75-125	2	20

Genapure

QUALITY CONTROL DATA

QC Batch:	IC/1264
QC Batch Method:	EPA 300.0
Associated Lab Samples:	903957002
	904007001
	904032003
	904033011.

Analysis Method: EPA 300.0

903957003	903957010	903998001	903998002	903998003
904007002	904007003	904015001	904032001	904032002
904033005	904033006	904033007	904033008	904033009
904033013				

METHOD BLANK: 24499

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Bromide	mg / L	0.052 L	0.052
Nitrite	mg / L	0.005 U	0.005
Nitrate	mg / L	0.007 L	0.007
Fluoride	mg / L	0.030 U	0.030

LABORATORY CONTROL SAMPLE \& LCSD:		24500		24501					
Parameter	Units	Spike Conc.	$\begin{array}{r} \text { LCS } \\ \text { Result } \end{array}$	$\begin{aligned} & \text { LCSD } \\ & \text { Result } \end{aligned}$	$\begin{array}{r} \text { LCS } \\ \text { \% Rec } \end{array}$	$\begin{gathered} \text { LCSD } \\ \text { \% Rec } \end{gathered}$	\% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry									
Bromide	mg / L	2.5	2.42	2.42	97	97	90-110	0	20
Nitrite	mg / L	2.5	2.44	2.42	97	97	90-110	0	20
Nitrate	mg / L	2.5	2.46	2.46	98	98	90-110	0	20
Fluoride	mg / L	2.5	2.48	2.50	99.3	99.8	90-110	0.5	20

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24502				24503		Original: 904032001				
Parameter	Units	Original Result	Spike Conc.	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	MSD	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit		Max RPD Qualifiers
Wet Chemistry										
Bromide	mg / L	0	25	28.9	25.9	116	104	90-110	11	20
Nitrite	mg / L	0	25	26.0	22.5	104	90	90-110	14	20
Nitrate	mg / L	0	25	25.2	25.0	101	100	90-110	1	20
Fluoride	mg / L	0.395	25	26.6	26.4	105	104	90-110	0.96	20

QUALITY CONTROL DATA

QC Batch:	MICP/1360	Analysis Method:	SM 5210B BOD
QC Batch Method:	BOD PREP		
Associated Lab Samples: $\quad 904015001$			

METHOD BLANK: 24509

	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
BOD	mg / L	2.0 C	2.0

LABORATORY CONTROL SAMPLE: 24511

Parameter	Units	Spike Conc.	LCS Result	LCS $\%$ Rec	\% Rec Limits Qualifiers
Wet Chemistry	mg / L	198	171	86	$70-130$

SAMPLE DUPLICATE: 24512
Original: 904015001

Parameter	Units	Original Result	DUP Result	RPD	Max Wet Chemistry BOD
mg / L	40 C	40 U	0	20	

QUALITY CONTROL DATA

QC Batch:	PH/1074
QC Batch Method:	SM4500H-B
Associated Lab Samples:	903759001
	903926001

Analysis Method: SM4500H-B

| 903895001 | 903895002 | 903895003 | 903908001 | 903918001 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 903926002 | 903937001 | 903937002 | 904015001 | 904045001 |
| 904047004 | 904048001 | 904049001 | 904066001 | |

SAMPLE DUPLICATE: 24531
Original: 903937001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
Wet Chemistry pH	pH unit	7.47	7.64	2	20

QUALITY CONTROL DATA

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 24592 Original: 903957001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry							0		0	0
Total Cyanide	mg / L	0.0003	0.2	0.1749		87	0	90-110	0	0

MATRIX SPIKE SAMPLE: 24594

Parameter	Units	Original Result	Spike Conc.	- MS Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers
Wet Chemistry						
Total Cyanide	mg/L	0.0036	0.2	0.0222	11	90-110

QUALITY CONTROL DATA

QC Batch:	HACH/1191
QC Batch Method:	SW-846 7196A

Analysis Method: \quad SW-846 7196A

Associated Lab Samples: 904015001
METHOD BLANK: 24597

Genapure

 3231 NW 7th Avenue Boca Raton, FL 33431Phone: (561) 447-7373
Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch: SOL	SOLI/1688		Analysis Method:	SM 2540 D		
QC Batch Method: SM	SM 2540 D					
Associated Lab Samples:	903965001	903966002	903967001	903968001	903969003	903969004
	903977001	903977002	903999001	904015001	904017001	904017002
	904017003	904017004	904017005	904017007	904017008	904017009
	904047004	904118001				

SAMPLE DUPLICATE: 24621

	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
Wet Chemistry Total Suspended Solids mg / L 152	170	10.7	.	20	

QUALITY CONTROL DATA

Analysis Method: \quad SM 5540 C
QC Batch: INPR1611 Analysis Method: SM 5540 C
QC Batch Method: SM 5540 C

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

METHOD BLANK: 24668

LABORATORY CONTROL SAMPLE \& LCSD:		24669 Spike Conc.	24670				\% Rec Limit	RPD	Max RPD Qualifiers
Parameter	Units		LCS Result	LCSD Result	$\begin{array}{r} \text { LCS } \\ \% \operatorname{Rec} \end{array}$	$\begin{aligned} & \text { LCSD } \\ & \% \text { Rec } \end{aligned}$			
Volatiles									
Acetone	ug/L.	50	60.9	62.1	122	124		2	
Acrolein	ug/L	100	56.5	56.5	57	- 56		2	
Acrylonitrile	ug/L	100	99.9	98.4	100	98		2	
Bromochloromethane	ug/L.	20	18.9	18.9	94	94		0	
Bromodichloromethane	ug/L	20	18.0	18.0	90	90		0	
Bromoform	ug/L	20	19.3	19.3	96	96		0	
Bromomethane	ug/L	20	13.8	15.0	69	75		8	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

QUALITY CONTROL DATA

QC Batch:	SOLI/1689
QC Batch Method:	SM 2540 C
Associated Lab Samples:	903978001
	903998001
	904017003
	904040001

Analysis Method: SM 2540 C

903978002	903985002	903985005	903985007	903985009
903998002	903998003	904015001	904017001	904017002
904017004	904017005	904017007	904017008	904017009
904040002				

METHOD BLANK: 24735

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Total Dissolved Solids(TDS)	mg / L	7.00 U	7.00

SAMPLE DUPLICATE: 24736
Original: 903978001

	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
Wet Chemistry	Uneter		1180	1350	13.4

SAMPLE DUPLICATE: 24737
Original: 904017009

	Units	Original Result	DUP Result	RPD	RPD Qualifiers
Parameter					
Wet Chemistry	156	163	4.4	20	

QUALITY CONTROL DATA

 3231 NW 7th Avenue Boca Raton, FL 33431

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:	MISC/1185
QC Batch Method:	SM 2520 B

QUALITY CONTROL DATA

QC Batch:	IC/1272
QC Batch Method:	EPA 300.0

Associated Lab Samples:	903914001	903914002	903970001	904005001	904005003	904015001
	904040003	904054001	904054002	904055001	904055002	904056001
	904094001	904094002	904111001	904128001	904145001	904145002
	904160002					

METHOD BLANK: 25058			
Marameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Sulfate	mg / L	0.1351	0.076

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 25061				25062		Original: 903970001				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \operatorname{Rec} \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry										
Sulfate	mg / L	706	375	465	424	-64	-75	90-110	-16	20

Genapure

QUALITY CONTROL DATA

QC Batch:	INPR/1615
QC Batch Method:	EPA 351.2

Associated Lab Samples:	903813001	903944001	903998001	903998002	9003998003	904015001
	904020003	904028001	904032001	904032002	904032003	904056001
	904057001	904092001	904093001	904094001	904094002	

METHOD BLANK: 25077

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Total Kjeldahi Nitrogen	mg / L	0.22 U	0.22

LABORATORY CONTROL SAMPLE \& LCSD:			25078		25079					
			Spike	LCS	LCSTD	LCS	LCSD	\% Rec		Max
Parameter	Units	-	Conc.	Result	Result	\% Rec	\% Rec	Limit	RPD	RPD Qualifiers
Wet Chemistry										
Total Kjeldahl Nitrogen	mg / L		5	4.70	4.70	94	94	90-110	0	20

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 25410 . 25411 Original: . 904032003

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	MSD \% Rec	\% Rec Limit		Max RPD Qualifiers
Wet Chemistry										
Total Kjeldahl Nitrogen	mg / L	0.27	5	3.80	3.70	70.6	68.6	90-110	2.9	20

QUALITY CONTROL DATA

QC Batch:	LACH/2075
QC Batch Method:	EPA 350.1

Associated Lab Samples:	903909012	903909013	903909014	903909016	903926001	903926002
	903944002	903999001	904015001	904019001	904028001	904032001
	904032002	904047003	904048001	904049001	904050003	904058001

METHOD BLANK: 25189

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Ammonia	mg / L	0.017 U	0.017

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 25194				25195		Original: 904058001			Max RPD RPD Qualifiers		
Parameter	Units	Original Result	Spike Conc.	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \operatorname{Rec} \end{array}$	\% Rec Limit			
Wet Chemistry Ammonia	mg / L	0.742	2.5	3.51	3.50	111	110	90-110	0.9	20	

QUALITY CONTROL DATA

QC Batch: DIG	1864		sis Method:	SW-846	
QC Batch Method: SW	67470				
Associated Lab Samples:	904015001	904341001	904341002	904341003	904341004
METHOD BLANK: 25576					
Parameter	Units	Blank Result	Reporting Limit Qualifiers		
Metals Analysis					
Mercury	mg / L	0.00013 U	0.00013		

 Boca Raton, FL 33431

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:	IC/1281
QC Batch Method:	EPA 300.0

$\left.\begin{array}{lcccccc}\text { Associated Lab Samples: } & 903845001 & 904015001 & 904088002 & 904111001 & 904147002 & 904162004 \\ & 904173004 & 904215002 & 904215003 & 904223001 & 904385005 & 904385006\end{array}\right]$.

QUALITY CONTROL DATA

QC Batch:	MISC/1193
QC Batch Method:	EPA 410.4

Associated Lab Samples:	904015001	904047003	904048001	904049001	904050003	904067001
	904074006	904075005	904076006	904077003	904097001	904097002
	904111001	904156001	904157002	904211001	904258001	904290002
	904298001	904298002				

METHOD BLANK: 26177

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry	.		
COD	mg / L	6.7 U	6.7

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

J Estimated value.

V Present in blank.
[8] NCR-\% RPD exceeds control limits
[9] NCR-Result was based on a one-point calibration
[10] MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[11] MS and/or MSD recoveries outside control limits due to the high level of target analyte in the spiked sample. LCS and/or LCSD within limits. Data reported.
[12] NCR-\% difference of results from primary and secondary columns is $>40 \%$, possible due to matrix interference. Detection limit elevated above lowest concentration.

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
904015001	PW-1	EPA 1664A	EXTO/2010		
904015001	PW-1	EPA 365.1	LACH/2030		
904015001	PW-1	SM 4500-S F (20th Ed.)	HACH/1190		
904015001	PW-1	3510C	EXTO/2015	SW-846 8270C low PAH	MSSV/1351
904015001	PW-1	3510 C	EXTO/2017	SW-846 8270C	MSSV/1348
904015001	PW-1	3510 C	EXTO/2018	SW-846 8141A	GCSV/1542
904015001	PW-1	3510 C	EXTO/2019	SW-846 8082	GCSV/1557
904015001	PW-1	3510 C	EXTO/2020	SW-846 8151A	GCSV/1556
904015001	PW-1	3510 C	EXTO/2021	SW-846 8081A	GCSV/1546
904015001	PW-1	EPA 365.1	INPR/1606	EPA 365.1	LACH/2047
904015001	PW-1	SM 2130 B	MISC/1182		
904015001	PW-1	SW-846 3010A	DIGM/1827	SW-846 6010	ICP/1490
904015001	PW-1	EPA 300.0	IC/1264		
904015001	PW-1	BOD PREP	MICP/1360	SM 5210B BOD	BOD/1306
904015001	PW-1	SM4500H-B	PH/1074		
904015001	PW-1	SW-846 9012A	INPR/1610	SW-846 9012A	LACH/2052
904015001	PW-1	SW-846 7196A	HACH/1191	-	

[^1]
QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
904015001	PW-1	SM 2540 D	SOLI/1688		
904015001	PW-1	SM 5540 C	INPR/1611	SM 5540 C	HACH/1193
904015001	PW-1	SW-846 8260B	MSV/1616		
904015002	TRIP BLANK	SW-846 8260B	MSV/1616		
904015001	PW-1	SM 5310B	TOC/1111		
904015001	.PW-1	SM 2320 B	ALKA/1098		
904015001	PW-1	SM 4500 CO 2 D	ALKA1099		
904015001	PW-1	SM 2540 C	SOLI/1689		
904015001	PW-1	EPA 200.8	DIGM/1832	EPA 200.8	ICPM/1104
904015001	PW-1	SM 2520 B	MISC/1185		
904015001	PW-1	EPA 300.0	1-/1272	.	
904015001	PW-1	EPA 351.2	INPR/1615	EPA 351.2	LACH/2086
904015001	PW-1	EPA 350.1	LACH/2075		
904015001	PW-1	EPA 120.1	SPCD/1036		
904015001	PW-1	SW-846 7470	DIGM/1864	SW-846 7470	HG/1100
904015001	PW-1	EPA 300.0	IC/1281		
904015001	PW-1	EPA 410.4	MISC/1193		

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
904015001	PW-1	900.0	S_01/	900.0	S_01/
904015001	PW-1	903.1	S_01/	903.1	S_01/
904015001	PW-1	EPA 100.2	S_09/	EPA 100.2	S_09/
904015001	PW-1	EPA 300.1	S_051	EPA 300.1	S_05/
904015001	PW-1	EPA 7063 mod	S_36/	EPA 7063 mod	S_361
904015001	PW-1	EPA 906	S_33/	EPA 906	S_33/
904015001	PW-1	Krone1989/GCMS	S_371	Krone1989/GCMS	S_371
904015001	PW-1	RA-05	S_171	RA-05	S_171
904015001	PW-1	RSK 175	S_15/	RSK 175	S_151

3231 NW 7t Ava., Beca Raton, Fh 33431

C Genapure chain of custody record

32en NW 7h Avo. Eoco Riaton, FL334i

June 4, 2009

DEBORAH DAIGLE
HDR ENGINEERING
5426 BAY CENTER DR.
SUITE 400
Tampa, FL 33609

RE:
Workorder: 904913
Project: FPL 101650

Dear DEBORAİ DAIGLE:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, May 06, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Neshmah Castaneda
ncastaneda@genapure.com
Project Manager

FL-NELAC E86240

Statement of uncertainty is available upon request:
FL Qualifiers: I=value between MDL and PQL; V=value was positive in Blank; J=estimated value.See comment; $\mathrm{U}=$ undetected; $\mathrm{Q}=$ out of hold
EPA Qualifiers: $B=$ value was positive in Blank; J=estimated value. May be between MDL and PQL;
$\mathrm{U}=$ undetected; $\mathrm{Q}=\mathrm{out}$ of hold
Enclosures

SAMPLE SUMMARY

Lab ID	Sample ID	Collector	Matrix	Date Collected	Date Received	Temp
904913001	TRIP BLANK	CLIENT	DI Water	$5 / 5 / 200900: 00$	$5 / 6 / 2009$	$10: 15$
904913002	PW-1	CLIENT	Groundwater	$5 / 5 / 2009$	4	
$9: 35$	$5 / 6 / 2009$	$10: 15$	4			

ANALYTICAL RESULTS

Lab ID:	904913001
Sample ID:	TRIP BLANKI

Date Received: 5/6/2009 10:15 Matrix: DI Water Date Collected: 5/5/2009

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Volatiles									
Analytical Methód: SW-846 8260B									
1,1,1,2-Tetrachloroethane	0.120	U	ug/L	0.120	1.00	1		5/8/2009 02:35	LN
1,1,1-Trichloroethane	0.682	U	ug/L	0.682	1.00	1		5/8/2009 02:35	LN
1,1,2,2-Tetrachloroethane	0.572	U	ug/L	0.572	1.00	1		5/8/2009 02:35	LN
1,1,2-Trichloroethane	0.841	u	ug/L	0.841	1.00	1		5/8/2009 02:35	LN
1,1-Dichloroethane	0.410	U	ug/L	0.410	1.00	1		5/8/2009 02:35	LN
1,1-Dichloroethene	0.638	U	ug/L	0.638	1.00	1		5/8/2009 02:35	LN
1,1-Dichloropropene	0.632	U	ug/L	0.632	1.00	1		5/8/2009 02:35	LN
1,2,3-Trichlorobenzene	0.686	U	ug/L	0.686	1.00	1		5/8/2009 02:35	LN
1,2,3-Trichloropropane	0.160	U	ug/L	0.160	1.00	1		5/8/2009 02:35	LN
1,2,4-Trichlorobenzene	0.538	U	ug/L	0.538	1.00	1		5/8/2009 02:35	LN
1,2,4-Trimethylbenzene	0.508	U	ug/L	0.508	1.00	1		5/8/2009 02:35	LN
1,2-Dibromo-3chloropropane	0.933	U	ug/L	0.933	1.00	1		5/8/2009 02:35	LN
1,2-Dibromoethane	0.345	U	ug/L	0.345	1.00	1		5/8/2009 02:35	LN
1,2-Dichlorobenzene	0.584	U	ug/L	0.584	1.00	1		5/8/2009 02:35	LN
1,2-Dichloroethane	0.897	U	ug/L	0.897	1.00	1		5/8/2009 02:35	LN
1,2-Dichloropropane	0.725	U	ug/L	0.725	1.00	1		5/8/2009 02:35	LN
1,3,5-Trimethylbenzene	0.477	U	ug/L	0.477	1.00	1		5/8/2009 02:35	LN
1,3-Dichlorobenzene	0.558	U	ug/L	0.558	1.00	1		5/8/2009 02:35	LN
1,3-Dichloropropane	0.345	U	ug/L	0.345	1.00	1		5/8/2009 02:35	LN
1,4-Dichlorobenzene	0.537	U	ug/L	0.537	1.00	1		5/8/2009 02:35	LN
2,2-Dichloropropane	0.700	U	ug/L	0.700	1.00	1		5/8/2009 02:35	LN
2-Butanone	4.28	U	ug/L	4.28	10.0	1		5/8/2009 02:35	LN
2-Chloroethylvinyl ether	0.470	U	ug/L	0.470	1.00	1		5/8/2009 02:35	LN
2-Chlorotoluene	0.550	U	ug/L	0.550	1.00	1		5/8/2009 02:35	LN
2-Hexanone	1.83	U	ug/L	1.83	10.0	1		5/8/2009 02:35	LN
4-Chlorotoluene	0.570	U	ugh	0.570	1.00	1		5/8/2009 02:35	LN
4-Isopropyltoluene	0.380	U	ug/L	0.380	1.00	1		5/8/2009 02:35	LN
4-Methyl-2-pentanone	0.220	U	ug/L	0.220	1.00	1		5/8/2009 02:35	LN
Acetone	1.43	U	ug/L	1.43	10.0	1		5/8/2009 02:35	LN
Acrolein	2.47	U	ug/L	2.47	10.0	1		5/8/2009 02:35	LN
Acrylonitrile	0.955	U	ugh	0.955	10.0	1		5/8/2009 02:35	LN
Benzene	0.621	U	ug/L	0.621	1.00	1		5/8/2009 02:35	LN
Bromobenzene	0.382	U	ug/L	0.382	1.00	1		5/8/2009 02:35	LN
Bromochloromethane	0.637	U	ug/L	0.637	1.00	1		5/8/2009 02:35	LN
Bromodichloromethane	0.100	U	ug/L	0.100	1.00	1		5/8/2009 02:35	LN
Bromoform	0.486	U	ug/L	0.486	1.00	1		5/8/2009 02:35	LN
Bromomethane	0.427	U	ug/L	0.427	1.00	1		5/8/2009 02:35	LN
n-Butylbenzene	0.564	U	ug/L	0.564	1.00	1		5/8/2009 02:35	LN
Carbon disulfide	0.650	U	ug/L	0.650	10.0	1		5/8/2009 02:35	LN
Carbon tetrachloride	0.468	U	ug/L	0.468	1.00	1		5/8/2009 02:35	LN
Chlorobenzene	0.316	U	ug/L	0.316	1.00	1		5/8/2009 02:35	LN
Chloroethane	1.00	U	ug/L	1.00	1.00	1		5/8/2009 02:35	LN
Chloroform	0.572	U	ug/L	0.572	1.00	1		5/8/2009 02:35	LN

ANALYTICAL RESULTS

| Lab ID: | 904913001 | Date Received: | $5 / 6 / 2009$ | $10: 15$ |
| :--- | :--- | :--- | :--- | :--- | Matrix: \quad DI Water

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Chloromethane	1.03		ug/L	0.524	1.00	1		5/8/2009 02:35	LN
Dibromochloromethane	0.378	U	ug/L	0.378	1.00	1		5/8/2009 02:35	LN
Dibromomethane	0.739	U	ug/L	0.739	1.00	1		5/8/2009 02:35	LN
Dichlorodifluoromethane	0.525	U	ug/L	0.525	1.00	1		5/8/2009 02:35	LN
cis-1,3-Dichloropropene	0.664	U	ug/L	0.664	1.00	1		5/8/2009 02:35	LN
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522	1.00	1		5/8/2009 02:35	LN
Ethylbenzene	0.323	U	$u g / L$	0.323	1.00	1		5/8/2009 02:35	LN
Hexachlorobutadiene	0.763	U	ug/L	0.763	1.00	1		5/8/2009 02:35	LN
Isopropylbenzene (Cumene)	0.528	U	ug/L	0.528	1.00	1		5/8/2009 02:35	LN
Methyl-t-butyl ether	0.650	U	ug/L	0.650	1.00	1		5/8/2009 02:35	LN
Methylene chloride	1.16	1	ug/L	0.580	5.00	1		5/8/2009 02:35	LN
Naphthalene	0.417	U	ug/L	0.417	1.00	1		5/8/2009 02:35	LN
Styrene	0.458	U	$u g / L$	0.458	1.00	1		5/8/2009 02:35	LN
Tetrachloroethene	0.312	U	$u g / L$	0.312	1.00	1		5/8/2009.02:35	LN
Toluene	0.389	U	ug/L	0.389	1.00	1		5/8/2009 02:35	LN
Trichloroethene	0.821	U	ug/L	0.821	1.00	1		5/8/2009 02:35	LN
Trichlorofluoromethane	1.00	U	ug/L	- 1.00	1.00	1		5/8/2009 02:35	LN
Vinyl acetate	0.570	U	ug/L	0.570	10.0	1		5/8/2009 02:35	LN
Vinyl chloride	0.506	U	ug/L	0.506	1.00	1		5/8/2009 02:35	LN
Xylene, m,p-	0.639	U	$u g / L$	0.639	2.00	1		5/8/2009 02:35	LN
Xylene, o-	0.341	U	$u \mathrm{~L} / \mathrm{L}$	0.341	1.00	1		5/8/2009 02:35	LN
Xylenes (total)	0.980	U	$u g / L$	0.980	3.00	1		5/8/2009 02:35	LN
cis-1,2-Dichloroethene	0.442	U	ug/L	0.442	1.00	1		5/8/2009 02:35	LN
n-Propyibenzene	0.624	U	ug/L	0.624	1.00	1		5/8/2009 02:35	LN
sec-Butylbenzene	0.521	U	$u g / L$	0.521	1.00	1		5/8/2009 02:35	LN
tert-Butylbenzene	0.607	U	ug/L	0.607	1.00	1		5/8/2009 02:35	LN
trans-1,2-Dichloroethene	0.410	U	ug/L	0.410	1.00	1	.	5/8/2009 02:35	LN
4-Bromofluorobenzene (S)	100		\%	64-130		1		5/8/2009 02:35	LN
Dibromofluoromethane ($\$$)	119		\%	69-134		1		5/8/2009 02:35	LN
Toluene d8 (S)	97		\%	63-127		1		5/8/2009 02:35	LN

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Radiological Analysis

ANALYTICAL RESULTS

Lab ID:	904913002
Sample ID:	PW-1/

Date Received: 5/6/2009 10:15 Matrix: Groundwater Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Analytical Method 903.1									
Radium 226	$2.8+/-0.3$	1	$\mathrm{pCi} / \mathrm{l}$	0.20	0.20	1		5/19/2009 11:42	SU
Analytical Method: RA-05:									
Radium 228	1.4+/-0.6	1	$\mathrm{pCi} / \mathrm{l}$	0.70	0.70	1		5/19/2009 11:04	SU

Herbicides
Preparation Method: 3510C • Analytical Method: SW-846 8151A

2,4,5-T	0.345	U	ug/L	0.345	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
2,4,5-TP (Silvex)	0.492	U	ug/L	0.492	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
2,4-D	0.406	U	ug/L	0.406	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
2,4-DB	0.547	U	ug/L	0.547	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dalapon	0.509	U	ug/L	0.509	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dicamba	0.369	U	$u g / L$	0.369	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dichlorprop	0.399	U	ug/L	0.399	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dinoseb	0.509	U	ug/L	0.509	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
MCPA	47.7	U	ug/L	47.7	200	1	5/7/2009 18:30	5/9/2009 03:45	MR
MCPP	98.0	U	ug/L	98.0	200	1	5/7/2009 18:30	5/9/2009 03:45	MR
DCAA (S)	86		\%	46-142		1	5/7/2009 18:30	5/9/2009 03:45	MR

PCBs
Preparation Method: 35109 Analyticai Method: SW-846 8082

PCB 1016	0.012	U	$u g / L$	0.012	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1221	0.014	U	ug/L	0.014	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1232	0.190	U	ug/L	0.190	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1242	0.010	U	ug/L	0.010	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1248	0.00850	U	ug/L	0.00850	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1254	0.014	U	ug/L	0.014	0.500	1.	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1260	0.015	U	ug/L	0.015	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
Tetrachloro-m-xylene (S)	91		\%	50-125		1	5/7/2009 19:00	5/9/2009 09:27	MR
Decachlorobiphenyl (S)	117		\%	45-162		1	5/7/2009 19:00	5/9/2009 09:27	MR
Metals Analysis									
Prepatation Method SW-8467470 \& Anafytical Method: SW-846.7470									
Mercury	0.00013	U	mg / L	0.00013	0.00020	1	5/13/2009 11:30	5/14/2009 12:42	TI
Preparation Method: SW-846 3010A Analytical Method: SW-846 6010									
Antimony	0.0038	U	mg / l	0.0038	0.020	1	5/7/2009 14:00	5/8/2009 20:37	TB
Arsenic	0.0046	U	mg / A	0.0046	0.010	1	5/7/2009 14:00	5/8/2009 20:37	TB
Beryllium	0.00067	U	mg / l	0.00067	0.0040	1	5/7/2009 14:00	5/8/2009 20:37	TB
Cadmium	0.00057	U	mg / l	0.00057	0.0050	1	5/7/2009 14:00	5/8/2009 20:37	TB
Chromium	0.0011	U	mg / l	0.0011	0.0050	1	5/7/2009 14:00	5/8/2009 20:37	TB
Copper	0.0096	U	mg / l	0.0096	0.020	1	5/7/2009 14:00	5/8/2009 20:37	TB
Lead	0.00334	1	mg / l	0.0031	0.010	1	5/7/2009 14:00	5/8/2009 20:37	TB
Nickel	0.0052	U	mg / l	0.0052	0.010	1	5/7/2009 14:00	5/8/2009 20:37	TB
Selenium	0.0054	U	mg / l	0.0054	0.030	1	5/7/2009 14:00	5/8/2009 20:37	TB
Silver	0.0016	U	mg A	0.0016	0.020	1	5/7/2009 14:00	5/8/2009 20:37	TB
Zinc	0.0240	I	mg / l	0.0053	0.025	1	5/7/2009 14:00	5/8/2009 20:37	TB

Report ID: 904913-4928807

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

ANALYTICAL RESULTS

Lab ID:	$\mathbf{9 0 4 9 1 3 0 0 2}$	Date Received:	$5 / 6 / 2009$ '10:15 Matrix:
Sample ID:	PW-1/	Date Collected:	$5 / 5 / 2009$ 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Tokuthion (Prothiophos)	0.106	U	ug/L	0.106	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Trichlorfon	1.09	U	ug/L	1.09	1.80	1	5/7/2009 15:00	5/10/2009 01:33	LR
Tributyl Phosphate (S)	120		\%	44-125		1	5/7/2009 15:00	5/10/2009 01:33	LR
Triphenyl Phosphate (S)	122		\%	43-134		1	5/7/2009 15:00	5/10/2009 01:33	LR

Semivolatiles

Preparation Méthod: 3510¢	Analyti							,	
1,2,4-Trichlorobenzene	1.5	U	ug/L	1.5	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
1,2-Dichlorobenzene	0.34	U	ug/L	0.34	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
1,2-Diphenylhydrazine	0.23	U	ug/L	0.23	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
1,3-Dichlorobenzene	0.35	U	ug/L	0.35	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
1,4-Dichlorobenzene	0.28	U	ug/L	0.28	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4,5-Trichlorophenol	0.38	U	ug/L	0.38	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4,6-Trichlorophenol	0.27	U	ug/L	0.27	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dichlorophenol	0.43	U	ug/L	0.43	0.53	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dinitrophenol	1.4	U	ug/L	1.4	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dinitrotoluene	0.31	U	ug/L	0.31	0.45	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,6-Dinitrotoluene	0.31	U	ug/L	0.31	0.39	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Chloronaphthalene	0.32	U	ug/L	0.32	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Chlorophenol	2.6	U	ug/L	2.6	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Methylphenol	0.22	U	ug/L	0.22	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Nitroaniline	0.20	U	ug/L	0.20	50	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Nitrophenol	0.24	U	ug/L	0.24	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
3,3'-Dichlorobenzidine	0.31	U	ug/L	0.31	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
3-Nitroaniline	0.28	U	ug/L	0.28	50	1	5/7/2009 13:00	5/7/2009 18:04	TB
4,6-Dinitro-2-methylphenol	0.35	U	ug/L	0.35	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Chloro-3-methylphenol	0.22	U	$u g / L$	0.22	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Chloroaniline	0.29	U	ug / L	0.29	4.0	1	5/7/2009.13:00	5/7/2009 18:04	TB
4-Chlorophenyl phenyl ether	0.45	U	ug/L	0.45	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Aniline	0.28	U	ug/L	0.28	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Benzidine	9.7	U	ug/L	9.7	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
Benzoic acid	2.0	U	ug/L	2.0	50	1	5/7/2009 13:00	5/7/2009 18:04	TB
Benzyl alcohol	0.22	U	ug/L	0.22	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Bis(2-Chloroethoxy)methane	0.32	U	ug/L	0.32	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Bis(2-Chloroethyl)ether	0.46	U	ug/L	0.46	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Bis(2-Chloroisopropyl)ether	0.34	U	$u g / L$	0.34	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Bis(2-Ethythexyl)phthalate	0.20	U	ug/L	0.20	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Bromophenyl phenyl ether	0.27	U	ug/L	0.27	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Butyl benzyl phthalate	0.36	U	ug/L	0.36	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
Carbazole	0.28	U	ug/L	0.28	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Di-n-butyl phthaiate	0.21	U	ug/L	0.21	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Di-n-octyl phthalate	0.28	U	ug/L	0.28	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Dibenzofuran	0.29	U	ug/L	0.29	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
Diethyl phthalate	0.33	U	ug/L	0.33	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Dimethyl phthalate	0.31	U	ug/L	0.31	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dimethylphenol	0.40	U	ug/L	0.40	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Hexachlorobenzene	0.32	U	ug/L	0.32	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB

Report ID: 904913-4928807
Page 8 of 63

CERTIFICATE OF ANALYSIS
This report shall not be reproduced, except in full,

ANALYTICAL RESULTS

Lab ID:	904913002	Date Received:	$5 / 6 / 2009$ 10:15 Matrix:
Sample ID:	PW-1/	Date Collected:	5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Hexachlorobutadiene	0.45	U	ug/L	0.45	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Hexachlorocyclopentadiene	0.70	U	$u g / L$	0.70	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Hexachloroethane	0.36	U	ug/L	0.36	2.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Isophorone	0.34	U	ug/L	0.34	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Nitroaniline	0.24	U	ug/L	0.24	50	1	5/7/2009 13:00	5/7/2009 18:04	TB
Nitrobenzene	0.31	U	ug/L	0.31	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Nitrophenol	0.79	U	ug/L	0.79	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
Pentachlorophenol	0.70	U	ug/L	0.70	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
Phenol	0.40	U	ug / L	0.40	1.0	1	5/7/200913:00	5/7/2009 18:04	TB
Pyridine	8.9	U	ug/L	8.9	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
m,p-Cresol	0.23	U	ug/L	0.23	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
n-Nitrosodi-n-propylamine	0.33	U	ughl	0.33	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
n -Nitrosodimethylamine	3.4	U	ug/L	3.4	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
n-Nitrosodiphenylamine	0.31	U	ug/L	0.31	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Nitrobenzene-d5 (S)	72		\%	7.7-130		1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Fluorobiphenyl (S)	68		\%	19-126		1	5/7/2009 13:00	5/7/2009 18:04	TB
Terphenyl-d14 (S)	77		\%	27-133		1	5/7/2009 13:00	5/7/2009 18:04	TB
Phenol-d6 (S)	45.1		\%	10-59		1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Fluorophenol (S)	46		\%	28-62		1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4,6-Tribromophenol (S)	80		\%	48-132		1	5/7/2009 13:00	5/7/2009 18:04	TB

Volatiles

1,1,1,2-Tetrachloroethane	0.120	U	ug/L	0.120	1.00	1		5/8/2009 02:59	LN
1,1,1-Trichloroethane	0.682	U	ug/L	0.682	1.00	1		5/8/2009 02:59	LN
1,1,2,2-Tetrachloroethane	0.572	U	ug/L	0.572	1.00	1		5/8/2009 02:59	LN
1,1,2-Trichloroethane	0.841	U	ug/L	0.841	1.00	1		5/8/2009 02:59	LN
1,1-Dichloroethane	0.410	U	$u g / L$	0.410	1.00	1		5/8/2009 02:59	LN
1,1-Dichloroethene	0.638	U	$u g / L$	0.638	1.00	1		5/8/2009 02:59	LN
1,1-Dichloropropene	0.632 '	U	ug/L	0.632	1.00	1		5/8/2009 02:59	LN
1,2,3-Trichlorobenzene	0.686	U	$u g / L$	0.686	1.00	1		5/8/2009 02:59	LN
1,2,3-Trichloropropane	0.160	U	$u g / L$	0.160	1.00	1		5/8/2009 02:59	LN
1,2,4-Trichlorobenzene	0.538	U	$u g / L$	0.538	1.00	1		5/8/2009 02:59	LN
1,2,4-Trimethylbenzene	0.508	U	$u g / L$	0.508	1.00	1		5/8/2009 02:59	LN
1,2-Dibromo-3chloropropane	0.933	U	ug/L	0.933	1.00	1		5/8/2009 02:59	LN
1,2-Dibromoethane	0.345	U	ug/L	0.345	1.00	1		5/8/2009 02:59	LN
1,2-Dichlorobenzene	0.584	U	ug/L	0.584	1.00	1		5/8/2009 02:59	LN
1,2-Dichloroethane	0.897	U	ugh	0.897	1.00	1		5/8/2009 02:59	LN
1,2-Dichloropropane	0.725	U	ug/L	0.725	1.00	1		5/8/2009 02:59	LN
1,3,5-Trimethylbenzene	0.477	U	ug/L	0.477	1.00	1		5/8/2009 02:59	LN
1,3-Dichlorobenzene	0.558	U	ug/L	0.558	1.00	1		5/8/2009 02:59	LN
1,3-Dichloropropane	0.345	U	ug/L	0.345	1.00	1		5/8/2009 02:59	LN
1,4-Dichlorobenzene	0.537	U	ug/L	0.537	1.00	1		5/8/2009 02:59	LN
2,2-Dichloropropane	0.700	U	ug/L	0.700	1.00	1		5/8/2009 02:59	LN
2-Butanone	4.28	U	ug/L	4.28	10.0	1		5/8/2009 02:59	LN
2-Chloroethylvinyl ether	0.470	U	ugh	0.470	1.00	1		5/8/2009 02:59	LN

Report ID: 904913-4928807

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Lab ID:	$\mathbf{9 0 4 9 1 3 0 0 2}$
Sample ID:	PW-1/

Date Received: 5/6/2009 10:15 Matrix: Groundwater
Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL		PQL	DF	Prepared	Analyzed	By
2-Chlorotoluene	0.550	U	ug/L	0.550		1.00	1		5/8/2009 02:59	LN
2-Hexanone	1.83	U	ug/L	1.83		10.0	1		5/8/2009 02:59	LN
4-Chlorotoluene	0.570	U	ugh	0.570		1.00	1		5/8/2009 02:59	LN
4-Isopropyltoluene	0.380	U	ug/L	0.380		1.00	1		5/8/2009.02:59	LN
4-Methyl-2-pentanone	0.220	U	ug/L	0.220		1.00	1		5/8/2009 02:59	LN
Acetone	1.43	U	ug/L	1.43		10.0	1		5/8/2009 02:59	LN
Acrolein	2.47	U	ug/L	2.47		10.0	1	.	5/8/2009 02:59	LN
Acrylonitrile	0.955	U	ugh	0.955		10.0	1		5/8/2009 02:59	LN
Benzene	0.621	U	ug/	0.621		1.00	1		5/8/2009 02:59	LN
Bromobenzene	0.382	U	ug/L	0.382		1.00	1		5/8/2009 02:59	LN
Bromochloromethane	0.637	U	ug/L	0.637		1.00	1		5/8/2009 02:59	LN
Bromodichloromethane	0.100	U	ug/L	0.100		1.00	1		5/8/2009 02:59	LN
Bromoform	0.486	U	ug/L	0.486		1.00	1		5/8/2009 02:59	LN
Bromomethane	0.427	U	ug/L	0.427		1.00	1		5/8/2009 02:59	LN
n-Butylbenzene	0.564	U	ug/L	0.564		1.00	1		5/8/2009 02:59	LN
Carbon disulfide	0.650	U	ug/L	0.650 .		10.0	1		5/8/2009 02:59	LN
Carbon tetrachloride	0.468	U	ug/L	0.468		1.00	1		5/8/2009 02:59	LN
Chlorobenzene	0.316	U	ug/L	0.316		1.00	1		5/8/2009 02:59	LN
Chloroethane	1.00	U	ug/L	1.00		1.00	1		5/8/2009 02:59	LN
Chloroform	0.572	U	ug/L	0.572		1.00	1		5/8/2009 02:59	LN
Chloromethane	0.524	U	ug/L	0.524		1.00	1		5/8/2009 02:59	LN
Dibromochloromethane	0.378	U	ug/L	0.378		1.00	,		5/8/2009 02:59	LN
Dibromomethane	0.739	U	ug/L	0.739		1.00	1		5/8/2009 02:59	LN
Dichlorodifluoromethane	0.525	U	ug/L	0.525		1.00	1		5/8/2009 02:59	LN
cis-1,3-Dichloropropene	0.664	U	ug/L	0.664		1.00	1		5/8/2009 02:59	LN
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522		1.00	1		5/8/2009 02:59	LN
Ethylbenzene	0.323	U	ug/L	0.323	:	1.00	1		5/8/2009 02:59	LN
Hexachlorobutadiene	0.763	U	ug/L	0.763		1.00	1		5/8/2009 02:59	LN
Isopropylbenzene (Cumene)	0.528	U	ug/L	0.528		1.00	1	:	5/8/2009 02:59	LN
Methyl-t-butyl ether	0.650	U	ug/L	0.650		1.00	1		5/8/2009 02:59	LN
Methylene chloride	0.580	U	ug/L	0.580		5.00	1		5/8/2009 02:59	LN
Naphthalene	0.417	U	ug/L	0.417		1.00	1		5/8/2009 02:59	LN
Styrene	0.458	U	ug/L	0.458		1.00	1	8	5/8/2009 02:59	LN
Tetrachloroethene	0.312	U	ug/L	0.312		1.00	1		5/8/2009 02:59	LN
Toluene	0.389	U	ug/L	0.389		1.00			5/8/2009 02:59	LN
Trichloroethene	0.821	U	ug/L	0.821		1.00	1		5/8/2009 02:59	LN
Trichlorofluoromethane	1.00	U	ug/L	1.00		1.00	1		5/8/2009 02:59	LN
Vinyl acetate	0.570	U.	ug/L	0.570		10.0	1		5/8/2009 02:59	LN
Vinyl chloride	0.506	U	ug/L	0.506		1.00	1		5/8/2009 02:59	LN
Xylene, m,p-	0.639	U	ug/L	0.639		2.00	1		5/8/2009 02:59	LN
Xylene, o-	0.341	U	ug/L	0.341		1.00	1		5/8/2009 02:59	LN
Xylenes (total)	0.980	U	ug/L	0.980		3.00	1		5/8/2009 02:59	LN
cis-1,2-Dichloroethene	0.442	U	ug/L	0.442		1.00	1		5/8/2009 02:59	LN
n -Propylbenzene	0.624	U	ug/	0.624		1.00	1		5/8/2009 02:59	LN
sec-Butylbenzene	0.521	U	ugh	0.521		1.00	1		5/8/2009 02:59	LN
tert-Butylbenzene	0.607	U	ugh	0.607		1.00	1		5/8/2009 02:59	LN

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Lab ID: 904913002
Sample ID: PW-1/
Date Received: 5/6/2009 10:15 Matrix: Groundwater
Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
trans-1,2-Dichloroethene	0.410	U	ug/L	0.410	1.00	1		5/8/2009 02:59	LN
4-Bromofluorobenzene (S)	97		\%	64-130		1		5/8/2009 02:59	LN
Dibromofluoromethane (S)	113		\%	69-134		1		5/8/2009 02:59	LN
Toluene d8 (S)	96		\%	63-127		1		5/8/2009 02:59	LN

Pesticides
Preparation Method: 3510C Analytiçal Method: SW-846 8081A

4,4'-DDD	0.000993	U	ug/L	0.000993	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
4,4'-DDE	0.00148	U	ug/L	0.00148	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
4,4'-DDT	0.00120	U	ug/L	0.00120	0.100	1	5/7/2009 13:00	5/8/2009 23:54	cc
Aldrin	0.00139	U	ug/L	0.00139	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Dieldrin	0.00344	1	ug/L	0.00106	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endosulfan I	0.00316	1	ug/L	0.00103	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endosulfan II	0.00103	U	ug/L	0.00103	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endosulfan sulfate	0.00279	U	ug/L	0.00279	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endrin	0.00717	U	ug/L	0.00717	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endrin aldehyde	0.000695	U	ug/L	0.000695	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endrin ketone	0.000969	U	ug/L	0.000969	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Heplachlor	0.00152	U	ug/L	0.00152	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Heptachlor epoxide	0.00121	U	ug/L	0.00121	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Methoxychlor	0.000900	U	ug/L	0.000900	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Toxaphene	0.047	U	ug/L	0.047	3.00	1	5/7/2009 13:00	5/8/2009 23:54	CC
alpha-BHC	0.000924	U	ug/L	0.000924	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
alpha-Chlordane	0.00289	1	ug/L	0.00118	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
beta-BHC	0.00123	U	ug/L	0.00123	0.020	1	5/7/2009 13:00	5/8/2009 23:54	CC
delta-BHC	0.000904	U	ug/L	0.000904	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
gamma-BHC (Lindane)	0.000563	U	ug/L	0.000563	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
gamma-Chlordane	0.00130	U	ugh	0.00130	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Tetrachloro-m-xylene (S)	92		\%	32-137		1	577/2009 13:00	5/8/2009 23:54	cc
Decachlorobiphenyl (S)	90		\%	25-165		1	5/7/2009 13:00	5/8/2009 23:54	cc
PAH									
Preparation Method: 3510C Analytical Method: SW-846 8270C low PAH									
1-Methyinaphthalene	0.026	U	ug/L	0.026	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
2-Methylnaphthalene	0.030	U	ug/L	0.030	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Acenaphthene	0.027	U	ug/	0.027	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Acenaphthylene	0.026	U	ug/L	0.026	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Anthracene	0.0056	u	ug/L	0.0056	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Benzo(a)anthracene	0.011	U	ug/L	0.011	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Benzo(a)pyrene	0.013	u	ug/L	0.013	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Benzo(b)fluoranthene	0.015	u	ug/L	0.015	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Benzo(g,h,i)perylene	0.014	u	ug/L	0.014	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Benzo(k)fluoranthene	0.012	U	ug/L	0.012	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Chrysene	0.017	U	ug/L	0.017	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Dibenz(a,h)anthracene	0.0056	U	ug/L	0.0056	0.20	1	5/7/2009 22:45	5/8/2009 18:27	TB
Fluoranthene	0.0078	u	ug/L	0.0078	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Fluorene	0.011	U	ug/L	0.011	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB

Report ID: 904913-4928807

CERTIFICATE OF ANALYSIS
This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

ANALYTICAL RESULTS

Lab ID: $\mathbf{9 0 4 9 1 3 0 0 2}$ Sample ID: PW-1/					Date Received: 5/6/2009 10:15 Matrix: Date Collected: 5/5/2009 9:35:00 AM			Groundwater	
Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Indeno(1,2,3-cd)pyrene	0.011	U	ug/L	0.011	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Naphthalene	0.034	U	$u g / L$	0.034	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Phenanthrene	0.014	U	ug/L	0.014	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Pyrene	0.0084	U	ug/L	0.0084	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
2-Fluorobiphenyi (S)	57.2		\%	10-116		1	5/7/2009 22:45	5/8/2009 18:27	TB
Nitrobenzene-d5 (S)	61.5		\%	10-112		1	5/7/2009 22:45	5/8/2009 18:27	TB
Terphenyl-d14 (S)	69.9		\%	20-128		1	5/7/2009 22:45	5/8/2009 18:27	TB
Volatiles - Subcontract									
Analytical Method: RSK 175					\therefore		为 \because		\because
Dissolved Ethane	0.024	U	ug/L	0.024	1.00	1		5/18/2009 15:47	SU
Dissolved Ethene	0.030	U	ug/L	0.030	1.00	1		5/18/2009 15:47	SU
Methane	11.4	7	ug/L	0.116	5.00	1		5/18/2009 15:47	SU

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

Q Holding time exceeded.
$V \quad$ Present in blank.
[1] E83033
[2] E86772
[3] E83079
[4] E87225
[5] BOD sample result estimated due to the oxygen depletion being outside acceptable range.
[6] MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[7] E87854

Genapure

CASE NARRATIVE

Sample Analysis Comments

Lab ID 904913002 Client ID PW-1

Analyte/Arsenite (Trivalent As)

[4] E87225

Analyte/Asbestos

[2] E86772

Analyte/BOD

BOD sample result estimated due to the oxygen depletion being outside acceptable range.

Anialyte/Bromate

[3] E83079

Analyte/Bromide

MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.

Analyte/Fluoride

MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.

Analyte/Methane

[7] E87854

Analyte/Nitrite

MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.

Analyte/Radium 226

[1] E83033

Analyte/Radium 228

[1] E83033

QUALITY CONTROL DATA

QC Batch: LAC	LACH/2178		Analysis Method:	EPA 365.1		
QC Batch Method: EPA	EPA 365.1					
Associated Lab Samples:	904824001	904824002	904824003	904824004	904824005	904824006
	904824007	904824008	904824009	904824010	. 904824011	904913002

METHOD BLANK: 27217

Parameter Units	Blank Result	Reporting Limit Qualifiers				
Wet Chemistry Ortho Phosphate - P mg/L-P	0.005 U	0.005				
LABORATORY CONTROL SAMPLE \& LCSD:	27218	27219				
Parameter Units	$\begin{array}{lr}\text { Spike } & \text { LCS } \\ \text { Conc. } & \text { Result }\end{array}$	LCSD Result	LCS LCSD $\%$ Rec $\%$ Rec	\% Rec Limit	.RPD	Max RPD Qualifiers
Wet Chemistry Ortho Phosphate-P mg/L-P	0.50 .483	0.481	9796	90-110	1	20

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 27222				27223		Original: 904824011				
Parameter	Units	Original Result	Spike Conc.	$\underset{\text { Result }}{\text { MS }}$	MSD Result	$\begin{array}{r} \text { MS } \\ \% \operatorname{Rec} \end{array}$	$\begin{gathered} \text { MSD } \\ \% \operatorname{Rec} \end{gathered}$	\% Rec Limit		Max RPD Qualifiers
Wet Chemistry										
Ortho Phosphate-P	$\mathrm{mg} / \mathrm{L}-\mathrm{P}$	0.079	0.5	0.546	0.547	93	94	90-110	1	20

QUALITY CONTROL DATA

QC Batch: \quad IC/1	IC/1297		Analysis Method:	ÉPA 300.0	-	
QC Batch Method: EPA	EPA 300.0					
Associated Lab Samples:	904760003	904787001	904787002	904787003	904787004	904787005
	904789001	904791003	904879001	904879002	904883003	904884002
	904890001	904890002	904913002			

METHOD BLANK: 27280

	Units	Blank Result	Reporting Parameter
Wet Chemistry			
Bromide	mg / L	0.052 U	0.052
Nitrite	mg / L	0.005 U	0.005
Nitrate	mg / L	0.007 U	0.007
Fluoride	mg / L	0.030 U	0.030

Wet Chemistry

Bromide	mg/L	110

Nitrite
Nitrate
Fluoride

mg / L	0
mg / L	0
mg / L	0.584

	106	108
25	46.3	46.4
25	24.2	24.7
25	22.7	23.2

-18	-10	$90-110$	-55.	20
185	186	$90-110$	0.54	20
97	99	$90-110$	2	20
88.6	90.4	$90-110$	2	20

QUALITY CONTROL DATA

QUALITY CONTROL DATA

QUALITY CONTROL DATA

QC Batch:	INPR/1668
QC Batch Method:	SM 5540 C

| Associated Lab Samples: | 904913002 | 904917001 | 904917002 | 904917003 | 904917004 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

METHOD BLANK: 27290

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Surfactants	mg/L-LAS	0.040 U	0.040

QUALITY CONTROL DATA

QC Batch:	EXTO/2116
QC Batch Method:	3510 C
Associated Lab Samples:	904906004
	904938004
	904938023
	904948002

Analysis Method: \quad SW-846 8270C low PAH

904906005	904906006	904913002	904921001	904938002
904938008	904938011	904938014	904938015	904938018
904938026	904938030	904938031	904947004	904948001

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the witten consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27306

Parameter	Units	Spike Conc.	- LCS Result	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers	
Fluoranthene	ug/L	5	3.25	65	42-112	
Fluorene	ug/L	5	2.82	56	25-109	
Indeno(1,2,3-cd)pyrene	$u g / L$	5	3.34	67	16-120	
1-Methylnaphthalene	$u g / L$	5	2.43	49	10-104	
2-MethyInaphthalene	ug/L	5	3.05	61	10-115	
Naphthalene	ug/L	5	2.56	51	12-102	
Phenanthrene	ug/L	5	2.96	59	38-108	
Pyrene	ug/L	5	3.46	69	36-123	
2-Fluorobiphenyl (S)	\%			57.4	10-116	
Nitrobenzene-d5 (S)	\%			59.7	10-112	
Terphenyl-d14 (S)	\%			67	20-128	

MATRIX SPIKE SAMPLE: 27307
Original: 904934001

Parameter	Units	Original Result	Spike Conc.	$\begin{array}{r} \text { MS } \\ \text { Result } \end{array}$	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	\% Rec Limits	
PAH							
Acenaphthene	ug/L	0.019	5	2.98	60	23-100	
Acenaphthylene	ug/L	0.0111	5	3.25	65	21-109	
Anthracene	ug/L	0.00376	5	3.50	70	39-111	
Benzo(a)anthracene	ug/L	0	5	3.64	73	34-121	
Benzo(b)fluoranthene	ug/L	0.00393	5	3.08	62	27-119	
Benzo(k)fluoranthene	ug/L	$\cdot 0.00737$	5	4.36	87	29-120	
Benzo(g,h,i)perylene	ug/L	0	5	3.48	70	15-116	
Benzo(a)pyrene	ug/L	0.00954	5	3.85	77	28-115	
Chrysene	ug/L	0	5	3.66	73	33-122	
Dibenz(a, h)anthracene	ug/L	0	5	3.64	73	11-115	
Fluoranthene	ug/L	0	5	3.68	74	42-112	
Fluorene	ug/L	0	5	3.19	64	25-109	
Indeno(1,2,3-cd)pyrene	ug/L	0	5	3.70	74	16-120	
1-Methylnaphthalene	ug/L	0	5	2.45	49	10-104	
2-MethyInaphthalene	ug/L	0	5	3.15	63	10-115	
Naphthalene	ug/L	0	5	2.52	50	12-102	
Phenanthrene	ug/L	0.00736	5	3.36	67	38-108	
Pyrene	ug/L	0.00472	5	3.74	75	36-123	
2-Fluorobiphenyl (S)	\%				55.6	10-116	
Nitrobenzene-d5 (S)	\%				55.5	10-112	
Terphenyl-d14 (S)	\%				65.3	20-128	

QUALITY CONTROL DATA

QC Batch: EXTO/2117 Analysis Method: SW-846 $8270 C$

QC Batch Method: 3510C
Associated Lab Samples: 904913002904921001
METHOD BLANK: 27309
$\left.\begin{array}{llcc} & & \text { Blank } \\ \text { Result }\end{array} \quad \begin{array}{c}\text { Reporting } \\ \text { Limit } \\ \text { Parametifiers }\end{array}\right]$

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

METHOD BLANK: 27309

Parameter	Units	Blank Result	Reporting Limit Qualifiers
m,p-Cresol	ug/L	0.23 U	0.23
4,6-Dinitro-2-methylphenol	ug/L	0.35 U	0.35
Phenol	ug/L	0.40 U	0.40
2-Chlorophenol	ug/L	2.6 U	2.6
1,4-Dichlorobenzene	ug/L	0.28 U	0.28
n-Nitrosodi-n-propylamine	ug/L	0.33 U	0.33
1,2,4-Trichlorobenzene	ug/L	1.5 U	1.5
4-Chloro-3-methylphenol	$u g / L$	0.22 U	0.22
4-Nitrophenol	$u g / L$	0.79 U	0.79
2,4-Dinitrotoluene	ug/L	0.31 U	0.31
Pentachlorophenol	ug/L	0.70 U	0.70
Nitrobenzene-d5 (S)	\%	75	7.7-130
Phenol-d6 (S)	\%	36.5	10-59
2-Fluorobiphenyl (S)	\%	69	19-126
2-Fluorophenol (S)	\%	48	28-62
2,4,6-Tribromophenol (S)	\%	81	48-132
Terphenyl-d14 (S)	\%	78	27-133

LABORATORY CONTROL SAMPLE: 27310

CERTIFICATE OF ANALYSIS

Genapure

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27310

Parameter	Units	Spike Conc.	LCS Result	LCS \% Rec	\% Rec Limits			
2,6-Dinitrotoluene	ug/L	50	39.1	78	50-158			
Hexachlorobenzene	ug/L	50	39.2	78	10-152			
Hexachlorobutadiene	ug/L	50	34.5	69	24-116			
Hexachlorocyclopentadiene	ug/L	50	23.5	47	10-115			
Hexachloroethane	ug/L	50	35.7	71	40-113			
Isophorone	ug/L	50	41.6	83	21-196			
2-Methylphenol	ug/L	50	33.0	66	55-126			
Nitrobenzene	ug/L	50	39.1	78	35-180		*	
2-Nitrophend	ug/L	50	38.2	76	29-182			
n-Nitrosodimethylamine	ug/L	50	28.9	58	28-64			
n-Nitrosodiphenylamine	ug/L	50	36.7	73	42-113			
2,4,5-Trichlorophenol	ug/L	50	37.6	75				
2,4,6-Trichlorophenol	ug/L	50	39.2	78	37-144			
Benzyl alcohol	ug/L	50	36.4	73				
Aniline	ug/L	50	30.0	60				
Pyridine	ug/L	50	20.1	40				
3-Nitroaniline	ug/L	50	50.1	100				
4-Nitroaniline	ug/L	50	50.1	100				
Di-n-butyl phthalate	ug/L	50	39.2	78	62-154			
1,2-Diphenylhydrazine	ug/L		36.4					
2-Nitroaniline	ug/L	50	46.71	93				
2-Chloronaphthalene ,	ug/L	50	39.9	80	60-118			
4-Chloroariline	ug/L	50	39.7	79				
m,p-Cresal	ug/L		30.3					
4,6-Dinitro-2-methylphenol	ug/L	50	42.2	84	10-181			
Phenol	ug/L	50	17.3	35				
2-Chlorophenol	ug/L	50	33.8	68	25-117			
1,4-Dichlorobenzene	ug/L	50	37.4	75	30-116			
n-Nitrosodi-n-propylamine	ug/L	50	38.0	76	43-136			
1,2,4-Trichłrobenzene	ug/L	50	39.1	78	30-119			
4-Chloro-3-methyiphenol	ug/L	50	37.9	76	30-128			
4-Nitrophenol	ug/L	50	23.0	46	10-73			
2,4-Dinitrotoluene	ug/L	50	43.3	87	54-133	ษ		
Pentachlorophenol	ug/L	50	49.4	99	29-142			
Nitrobenzene-d5 (S)	\%			78	10-112			
Phenol-d6 (S)	\%			39.3	10-59			
2-Fluorobiphenyl (S)	\%			71	10-116			
2-Fluorophenol (S)	\%			49	28-62			
2,4,6-Tribromophenol (S)	\%			82	48-132			
Terphenyl-d14 (S)	\%			76	20-128			

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 27311				27312		Originai: 904934002				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \operatorname{Rec} \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Semivolatiles										
Benzidine	ug/L	0	50	21.2	17.0	42	34	10-104	21	208
Benzoic acid	ug/L	0	50	16.71	16.41	33	33		0	
Butyl benzyl phthalate	ug/L	0	50	36.8	36.3	74	73	10-152	1	20
Bis(2ug/L Chloroethoxy)methane			50	31.2	30.7	62	61	33-184	2	20
Bis(2-Chloroethyl)ether	ug/L	0	50	32.8	32.4	66	65		2	
Bis(2-Chloroisopropyl)ether	ug/L	0	50	32.5	30.9	65	62	36-166	5	20
Bis(2-Ethylhexyl)phthalate	ug/L	0	50	33.5	33.2	67	66	10-158	2	20
ether										
Carbazole	ug/L	0.0865	50	43.2	41.5	86	83	73-131	4	20
ether										
Dibenzofuran	ug/L	0.0821	50	37.9	37.3	76	75		1	
1,2-Dichlorobenzene	ug/L	0	50	33.8	33.2	68	66	32-129	3	20
1,3-Dichloropenzene	ug/L	0	50	31.1	29.6	62	59	10-172	5	20
3,3'-Dichlorobenzidine	ug/L	0	50	39.9	39.5	80	79	10-262	1	20
2,4-Dichlorophenol	ug/L	0	50	31.8	33.8	64	68	39-135	6	20
Diethyl phthalate	ug/L	0	50	36.9	34.4	74.	69	10-114	7	20
2,4-Dimethylphenol	ug/L	0	50	31.8	32.7	64	65	32-119	2	20
Dimethyl phthalate	ug/L	0	50	38.6	37.5	77	75	10-112	3	20
Di-n-octyl phthalate	ug/L	- 0.0735	50	31.9	30.5	64	61	10-146	5	20
2,4-Dinitrophenol	ug/L	0	50	41.3	38.3	83	77	10-191	8	20
2,6-Dinitrotoluene	ug/L	0	50	36.5	36.5	73	73	39-139	0	20
Hexachlorobenzene	ug/L	0	50	35.3	33.9	71	68	10-152	4	20
Hexachlorobutadiene	ug/L	0	50	30.1	29.2	60	58	24-116	3	20
Hexachlorocyclopentadiene	ug/L	0	50	20.6	19.6	41	39	10-115	5	20
Hexachloroethane	ug/L	0	50	29.8	29.9	60	60	40-113	0	20
Isophorone	ug/L	0	50	36.7	35.8	73	72	21-196	1	20
2-Methylphenoi	ug/L	0	50	28.5	28.5	57	57	55-126	0	20
Nitrobenzene	ug/L	0	50	33.0	34.0	66	68	35-180	3	20
2-Nitrophenol	ug/L	0	50	32.7	32.8	65	66	29-182	2	20
n -Nitrosodimethylamine	ug/L	0	50	25.5	24.7	51	49		4	
n-Nitrosodiphenylamine	ugh	0	50	34.6	33.7	69	67	42-113	3	20
2,4,5-Trichlorophenol	ug/L	0	50	36.3	35.0	73	70		4	
2,4,6-Trichlorophenol	ug/L	0	50	35.8	36.3	72	73	37-144	1.	20
Benzyl alcohol	$u g / L$	0	50	33.7	31.9	67	64		5	
Aniline	ug/L	0	50	27.9	24.9	56	50		11	
Pyridine	ug/L	0	50	17.5	13.0	35	26		30	
3-Nitroaniline	ug/L	0	50	48.11	46.61	96	93		3	
4-Nitroaniline	$u g / L$	0	50	48.11	46.61	96	93		3	
Di-n-butyl phthalate	$u \mathrm{~g} / \mathrm{L}$	0.0895	50	37.3	37.2	75	74	57-126	1	20
1,2-Diphenylhydrazine	ug/L			32.5	32.3					
2-Nitroaniline	ug/L	0	50	42.71	42.01	85	84		1	
2-Chloronaphthalene	ug/L	0	50	34.6	35.2	69	70	60-118	1	20
4-Chloroaniline	ug/L	0	50	36.3	33.4	73	67		9	
m,p-Cresol	$u g / L$			26.7	26.6					

Report ID: 904913-4928807
Page 25 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

3231 NW 7th Avenue
Boca Raton, FL 33431
Phone: (561) 447-7373
Fax: (561) 447-7374

			QUA	Y C	ROL					
MATRIX SPIKE \& MATRIX S	IKE DU	ATE: 273		273		Orig	l: 9049	4002		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS \% Rec	MSD \% Rec	\% Rec Limit		Max RPD Qualifiers
4,6-Dinitro-2-methylphenol	ug/L	0	50	40.0	38.6	80	77	10-181	4	20
Phenol	ug/L	0	50	15.3	15.3	31	31		0	
2-Chlorophenol	ug/L	0	50	30.0	28.9	60	58	23-134	3	20
1,4-Dichlorobenzene	ug/L	0	50	31.4	31.3	63	63	20-124	0	20
n-Nitrosodi-n-propylamine	ug/L	0	50	34.2	34.0	68	68	10-230	0	20
1,2,4-Trichlorobenzene	ug/L	0	50	31.8	32.3	64	65	44-142	2	20
4-Chloro-3-methylphenol	ug/L	0	50	35.0	34.7	70	69	22-147	1	20
4-Nitrophenol	ug/L	0	50	22.1	21.2	44	42	10-132	5	20
2,4-Dinitrotoluene	ug/L	0	50	39.8	39.1	80	78	54-133	3	20
Pentachlorophenol	ug/L	0	50	46.1	46.4	92	93	14-176	1	20
Nitrobenzene-d5 (S)	\%					70	68	10-112	3	
Phenol-d6 (S)	\%					36.4	36	10-59	1.1	
2-Fluorobiphenyl (S)	\%					61	62	10-116	2	
2-Fluorophenol (S)	\%					45	45	28-62	0	
2,4,6-Tribromophenol (S)	\%					81	79	48-132	3	
Terphenyl-d14 (S)	\%					72	71	20-128	1	

QUALITY CONTROL DATA

QC Batch:	EXTO/2118
QC Batch Method:	3510 C

LABORATORY CONTROL SAMPLE: 27314

Parameter	Units	Spike Conc.	LCS Result	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers	.
Pesticides						
alpha-BHC	ug/L	0.1	0.086	86		
beta-BHC	ug/L	0.1	0.109	109		
delta-BHC	ug/L	0.1	0.072	72		
Heptachior epoxide	ug/L	0.1	0.093	93		
Endosulfan I	ug/L	0.1	0.0941	94		
4,4'-DDE	$u g / L$	0.1	0.115	115		
Endosulfan II	ug/L	0.1	0.0981	98		
4,4'-DDD	ug/L	0.1	0.151	151		
Endosulfan sulfate	ug/L	0.1	0.120	120		
Methoxychlor	ug/L	0.1	0.185	185	.	
Endrin ketone	ug/L	0.1	0.130	130		
Report ID: 904913-4928807		.				Page 27 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27314

Parameter	Units	Spike Conc.	cs Result	$\begin{array}{r} \text { LCS } \\ \text { \% Rec } \end{array}$	\% Rec Limits Qualifiers	
Endrin aldehyde	ug/L	0.1	0.106	106		
alpha-Chlordane	ug/L	0.1	0.097	97		
gamma-Chlordane	ug/L	0.1	0.096	96		
Toxaphene	ug/L		0.047 U			
gamma-BHC (Lindane)	ug/L	0.1	0.090	90	33-155	
Heptachlor	ug/L	0.1	0.095	95	47-148	
Aldrin	$u g / L$	0.1	0.087	87	43-149	
Dieldrin	ug/L	0.1	0.095	95	47-162	
Endrin	ug/L	0.1	0.101	101	41-189	
4,4'-DDT	ug/L	0.1	0.119	119	14-228	
Tetrachloro-m-xylene (S)	\%			88	32-137	
Decachlorobiphenyl (S)	\%			101	25-165	

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 27315				27316		Original: 904934003				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS \% Rec	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Pesticides										
alpha-BHC	ug/L	0	0.1	0.079	0.061 .	79	61		26	
beta-BHC	ug/L	0	0.1	0.107	0.080	107	80		29	
delta-BHC	ug/L	0	0.1	0.074	0.055	74	55		29	
Heptachlor epoxide	$u g / L$	0	0.1	0.089	0.068	89	68		27	
Endosulfan 1	ug/L	0	0.1	0.0901	0.0701	90	70		25	
4,4'-DDE	$u g / L$	0	0.1	0.118	0.0921	118	92		25	
Endosulfan II	ug/L	0	0.1	0.0991	0.0781	99	78		24	
4,4'-DDD	$u g / L$	0	0.1	0.161	0.127	161	127		24	
Endosulfan sulfate	$u g / L$	0	0.1	0.125	0.0951	125	95		27	
Methoxychlor	$u g / L$	0	0.1	0.194	0.146	194.	146		28	
Endrin ketone	ug/L	0	0.1	0.133	0.102	133	102		26	
Endrin aldehyde	ug/L	0	0.1	0.0881	0.0591	88	59		39	
alpha-Chlordane	$u g / L$	0	0.1	0.092	0.071	92	71		26	
gamma-Chlordane	$u g / L$	0	0.1	0.087	0.068	87	68		25	.
Toxaphene	$u g / L$			0.047 U	0.047 U					
gamma-BHC (Lindane)	ug/L	0	0.1	0.084	0.063	84	63	33-155	29	208
Heptachlor	ug/L	0	0.1	0.088	0.066	88	66	47-148	29	208
Aldrin	ug/L	0	0.1	0.080	0.062	80	62	43-149	25	208
Dieldrin	ug/L	0	0.1	0.092	0.073	92	73	47-162	23	208
Endrin	$u g / L$	0	0.1	0.100	0.0791	100	79	41-189	23	208
4,4'-DDT	ug/L	0	0.1	0.120	0.0901	120	90	14-228	29	208
Tetrachloro-m-xylene (S)	\%					78	61	32-137	24	
Decachlorobiphenyl (S)	\%					97	79	25-165	20	

QUALITY CONTROL DATA

QC Batch:
EXTO/2119
Analysis Method: SW-846 8082
QC Batch Method: 3510C
Associated Lab Samples: 904913002
METHOD BLANK: 27317

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
PCBs				
PCB 1221	ug/L	0.014 U	0.014	
PCB 1232	ug/L	0.190 U	0.190	
PCB 1242	ug/L	0.010 U	0.010	
PCB 1248	ug/L	0.00850 U	0.00850	
PCB 1254	ugh	0.014 U	0.014	
PCB 1016	ug/L	0.012 U	0.012	
PCB 1260	ught.	0.015 U	0.015	
Decachlorobiphenyl (S)	\%	113	45-162	
Tetrachloro-m-xylene (\mathbf{S})	\%	95	50-125	

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 27319			27320			Original: 904934004				Max RPD Qualifiers	
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS \% Rec	MSD \% Rec	\% Rec Limit	RPD		
PCBs	\checkmark										
PCB 1221	$u g / L$			0.014 U	0.014 U						
PCB 1232	ug/L			$0.190 \cup$	0.190 U						
PCB 1242	ug/L			0.010 U	0.010 U						
PCB 1248	ug/L			0.00850 U	0.00850 U						
PCB 1254	ug/L			0.014 U	0.014 U						
PCB 1016	ug/L	0	1	1.04	0.976	104	98	12-176	6	20	
PCB 1260	ug/L	0	1	0.943	0.890	94	89	10-181	5	20	

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA										
MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 27319				27320		Original: 90		904934004		
Param		Original	Spike	MS	MSD	MS	MSD	$\% \text { Rec }$		Max
Parameter	Units		Conc.	Result	Result	\% Rec	\% Rec		RPD	RPD Qualifiers
Decachlorobiphenyl (\mathbf{S})	\%					110	101	45-162	9	
Tetrachloro-m-xylene (S)	\%					75	76	50-125	1	

QUALITY CONTROL DATA

QC Batch:
EXTO/2120
Analysis Method:
SW-846 8141A
QC Batch Method: 3510C
Associated Lab Samples: 904913002
METHOD BLANK: 27321

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full,
without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

METHOD BLANK: 27321

LABORATORY CONTROL SAMPLE: 27322

		Spike	LCS	LCS	\% Rec
Parameter	Units	Conc.	Result	\% Rec	Limits Qualifiers

Organophosphorus		
Pesticides		
Phosphamidon	ug / L	0.311 U
Aspon	ug / L	0.185 U
Phorate	ug / L	0.177 U
Bolstar	ug / L	0.202 U
Dichlorfenthion	ug / L	0.190 U
Dioxathion	ug / L	0.110 U
Naled	ug / L	0.220 U
Dimethoate	ug / L	0.184 U
TEPP	ug / L	0.189 U
Thionazine	ug / L	0.179 U
EPN	ug / L	0.132 U
Merphos	ug / L	0.208 U
Mevinphos	ug / L	0.172 U

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27322

Organophosphorus
Pesticides
Phosmet
Disulfoton
Azinphos-ethyl
Coumaphos
Dicrotophos

ug / L	0.102 U	0.102 U
ug / L	$0.129 U$	$0.129 U$
ug / L	0.130 U	0.130 U
ug / L	$0.079 U$	$0.079 U$
ug / L	0.175 U	0.175 U
ug / L	0.081 U	0.081 U
ug / L	0.068 U	0.068 U
ug / L	0.132 U	0.132 U
ug / L	0.106 U	0.106 U
ug / L	$1.09 U$	$1.09 U$

QUALITY CONTROL DATA

QC Batch: EXTO/2121

Analysis Method: SW-846 8151A
QC Batch Method: 3510C
Associated Lab Samples: 904913002

METHOD BLANK: 27325				
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
Dinoseb	ug/L	0.5090	0.509	
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
Herbicides				
2,4-D	ug/L	0.406 U	0.406	
2,4,5-T	ug/L	0.345 U	0.345	
2,4,5-TP (Silvex)	ug/L	0.492 U	0.492	
Dalapon	ug/L	0.509 U	0.509	
Dicamba	ug/L	0.369 U	0.369	
Dichlorprop	ug/L	0.3994	0.399	
MCPA	ug/L	47.7U	47.7	
MCPP	ug/L	98.0 U	98.0	
DCAA (S)	\%	75	46-142	

LABORATORY CONTROL SAMPLE: 27326					
Parameter	Units	Spike Conc.	$\begin{array}{r} \text { LCS } \\ \text { Result } \end{array}$	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers
Dinoseb	ug/L	5	2.90	58	
LABORATORY CONTROL SAMPLE: 27326					
Parameter	Units	Spike Conc.	$\begin{array}{r} \text { LCS } \\ \text { Result } \end{array}$	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers
Herbicides					
2,4-D	ug/L	5	4.41	88	29-146
2,4,5-T	ug/L	5	4.37	87	29-156
2,4,5-TP (Silvex)	ug/L	5	4.51	90	30-180
MCPA	ug/L	500	397	79	
Dalapon	ug/L	5	3.54	71	
Dicamba	ug/L	5	3.82	76	35-135
Dichlorprop	ug/L	5	4.07	81	36-148
MCPP	ug/L		388		
DCAA (S)	\%			84	46-142

Boca Raton, FL 33431
Phone: (561) 447-7373
Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 27327 . 27328 Original: 904934006

Parameter	Units	Original Result	Spike Conc.	MS Resuit	MSD	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \% \text { Rec } \end{array}$	\% Rec Limit		Max RPD Qualifiers
Dinoseb	ug/2.	0	5	2.98	2.98	60	60		0	
MATRIX SP	IKE D	ATE: 27	27328			Original: 904934006				

Parameter	Units	Original Result	Spike Conc.	MS Result	$\begin{aligned} & \text { MSD } \\ & \text { Result } \end{aligned}$	$\begin{array}{r} \text { MS } \\ \text { \% Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit		Max RPD Qualifiers
Herbicides										
2,4-D	ug/L	0	5	4.71	5.02	94	100	29-146	6	20
2,4,5-T	ug/L	0	5	4.68	4.87	94	; 97	29-157	3	20
2,4,5-TP (Silvex)	ug/L	0	5	4.79	5.01	96	100	30-180	4	20
MCPA	ug/L	0	500	442	449	88	90		2	
Dalapon	ug/L	0	5	4.06	4.70	81	94		15	
Dicamba	ughl	0	5	4.23	4.40	85	88	35-135	3	20
Dichlorprop	ug/L	0	5	4.49	4.50	90	90	36-148	0	20
MCPP	ug/			455	449					
DCAA (S)	\%					93	96	46-142	3	

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Analysis Method: EPA 1664A

QC Batch:	EXTO/2122
QC Batch Method:	EPA 1664A

| Associated Lab Samples: | 904913002 | 904916001 | 904919001 | 904920001 | 904927001 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 904932001 | 904933001 | | | |

METHOD BLANK: 27329

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Oil and Grease	mg / L	1.4 U	1.4

LABORATORY CONTROL SAMPLE: 27330

QUALITY CONTROL DATA						
QC Batch: DIGM/1920			Analysis Method:	SW-846 6010		
QC Batch Method: SW	SW-846 3010A					
Associated Lab Samples:	904776001	904776003	904776005	904776007	904833001	904833002
	904833003	904840001	904840002	904840003	904841002	904841003
	904845001	904913002	.	,		
METHOD BLANK: 27350						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifi			
Metals Analysis						
Antimony	mg / l	0.0038 U	0.0038			
Arsenic	mg / l	0.0046 U	0.0046			
Beryllium	mg / l	0.00067 U	0.00067		.	
Cadmium	mg / l	0.00057 U	0.00057	'		
Chromium	- mg/l	0.0011 U	0.0011			
Copper	$\mathrm{mg} / 1$	0.0096 U	0.0096			.
Lead	mg / l	0.0031 U	0.0031			
Nickel	mg / l	0.0052 U	0.0052			
Selenium	mg / l	0.0054 U	0.0054			
Silver	mg / l	0.0016 U	0.0016			
Zinc	$\mathrm{mg} / 1$	0.0053 U	0.0053			

LABORATORY CONTROL SAMPLE: 27351

			QU	Y	ROL					
MATRIX SP	IKE DU	ATE: 27		273			al: 9049	3002		
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	$\begin{array}{r} \text { MS } \\ \% \text { Rec } \end{array}$	$\begin{array}{r} \text { MSD } \\ \text { \% Rec } \end{array}$	\% Rec Limit	RPD	Max RPD Qualifiers
Arsenic	mg / l	0.00266	1	1.15	1.15	115	115		0	
Beryllium	mg / l	0	1	0.927	0.923	93	92		1	
Cadmium	mg / l	0	1	1.14	1.13	114	113		0.9	
Chromium	mg / l	0.00036	1	0.879	0.871	88	87		1	
Copper	mg / l	0	1	0.894	0.881	89	88		1	
Lead	mg / l	0.00334	1	0.862	0.860	86	86		0	
Nickel	mg / l	0	1	0.889	0.885	89	89		0	
Selenium	mg / l	0	1	1.12	1.12	112	112		0	
Silver	mg / l	0	0.5	0.670	0.670	134	134		0	
Zinc	mg / l	0.024	1	1.17	1.17	114	114		0	

QUALITY CONTROL DATA

QUALITY CONTROL DATA

QC Batch:	TOC/1122		Analysis Method:	SM 5310B			
QC Batch Method:	SM.5310B						
Associated Lab Samples:	904816001	904816002	904831001	904853001	904901001	9004902001	
	904902002	904902003	904902004	904902005	904902006	904902007	
		904902008	904913002	904939001	904939002	904939003	

METHOD BLANK: 27400

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Total Organic Carbon	mg / L	0.60 U	0.60

LABORATORY CONTROL SAMPLE: 27401

| Parameter | Units | Spike
 Conc. | LCS
 Result | LCS
 \% Rec | \% Rec
 Limits Qualifiers |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Wet Chemistry
 Total Organic Carbon | mg / L | 80 | 87.5 | 109 | $90-110 \quad ;$ |

MATRIX SPIKE \& MATRIX SPIKE DUPLICATE: 27403				27404		Original: 904816001					
		Original	Spike	MS	MSD	MS	MSD	\% Rec		Max	
Parameter	Units	Result	Conc.	Result	Result	\% Rec	\% Rec	Limit	PPD	RPD	Qualifiers
Wet Chemistry											
Total Organic Carbon	mg / L	19	80	. 105	104	107	106	90-110	0.9	10	

QUALITY CONTROL DATA

QUALITY CONTROL DATA						
QC Batch: MSV/1665			Analysis Method:	SW-846 8260B		
QC Batch Method: SW-84	SW-846 8260B					
Associated Lab Samples:	904913001	904913002	904947001	904947002	904947003	904947004
METHOD BLANK: 27497						
		Blank	Reporting			
Parameter	Units	Result	Limit Qualifiers			
Volatiles						
Acetone	ug/L	1.43 U	1.43			
Acrolein	ug/L	2.47 U	2.47			
Acrylonitrie	ug/L	0.955 U	0.955			
Bromochloromethane	ug/L	0.637 U	0.637			
Bromodichloromethane	ug/L	0.100 U	0.100			
Bromoform	ug/L	0.486 U	0.486			
Bromomethane	ug/L	0.427 U	0.427			
Carbon disulfide	ug/L	0.650 U	0.650			
Carbon tetrachloride	ug/L	0.468 U	0.468			
Chloroethane	ug/L	1.00 U	1.00			
Xylene, m,p-	ug/L	0.639 U	0.639			
Chloroform	ug/L	0.572 U	0.572			
Chloromethane	ug/L	0.524 U	0.524			
Dibromochloromethane	ug/L	0.378 U	0.378			
Dibromomethane	ug/L	0.739 U	0.739			
Dichlorodifluoromethane	ug/L	0.525 U	0.525			
1,1-Dichloroethane	ug/L	0.410 U	0.410			
1,2-Dichloroethane	ug/L	0.897 U	0.897			
cis-1,2-Dichloroethene	ug/L	0.442 U	0.442			
trans-1,2-Dichloroethene	ug/L	0.410 U	0.410			
Methylene chloride	ug/L	0.580 U	0.580 .			
1,2-Dichloropropane	ug/L	0.725 U	0.725			
cis-1,3-Dichloropropene	ug/L	0.664 U	0.664			
trans-1,3-Dichloropropene	ug/L	0.522 U	0.522			
Ethylbenzene	ug/L	0.323 U	0.323			
2-Hexanone	ug/L	1.83 U	1.83			
Isopropylbenzene (Cumene)	ug/L	0.528 U	0.528			.
2-Butanone	ug/L	4.28 U	4.28			
4-Methyl-2-pentanone	ug/L	0.220 U	0.220			
n -Propylbenzene	ug/L	0.624 U	0.624			
Styrene	ug/L	0.458 U	0.458		. . .	
Tetrachloroethene	ug/L	0.312 U	0.312		:	
1,1,1,2-Tetrachloroethane	ug/L	0.120 U	0.120			
1,1,2,2-Tetrachloroethane	ug/L	0.572 U	0.572			
1,2,4-Trichlorobenzene	ugh	0.538 U	0.538			
1,1,1-Trichloroethane	ug/L	0.682 U	0.682			
1,1,2-Trichloroethane	ug/L	0.841 U	0.841			
Trichlorofluoromethane	ug/L	1.00 U	1.00			
1,2,3-Trichloropropane	ug/L	0.160 U	0.160			
1,2,4-Trimethylbenzene	ug/L	0.508 U	0.508			
1,3,5-Trimethylbenzene	ug/L	$0.477 \cup$	0.477			
Vinyl chloride	ug/L	0.506 U	0.506			
Xylene, o-	ugh	0.341 U	0.341			

Report ID: 904913-4928807
Page 43 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

METHOD BLANK: 27497

LABORATORY CONTROL SAMPLE \& LCSD:		27498		27499					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	LCSD \% Rec	\% Rec Limit	RPD	Max RPD Qualifiers
Volatiles									
Acetone	ug/L	50	54.7	53.8	109	108		0.9	
Acrolein	ug/L	100	54.6	55.9	55	56		2	
Acrylonitrile	ug/L	100	98.2	94.8	98	95		3	-
Bromochloromethane	ug/L	20	18.9	17.4	95	87		9	
Bromodichloromethane	ug/L	20	20.0	19.8	100	99		1	
Bromoform	ug/L	20	20.5	20.3	102	102		0	
Bromomethane	$u g / L$	20	15.4	18.4	77	92		18	
Carbon disulfide	ug/L	20	17.8	17.1	89	85		5	
Carbon tetrachloride	ug/L	20	24.3	23.9	122	120		2	
Chloroethane	ug/L	20	24.1	24.0	121	120		0.8	

| | | | QUALITY CONTROL DATA | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LABORATORY CONTROL SAMPLE \& LCSD: | 27498 | | 27499 | | | |

Report ID: 904913-4928807
Page 45 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

QC Batch: MICP/1402			Analysis Method:		SM 5210B BOD	
QC Batch Method: BOD PREP						
Associated Lab Samples:	904849001	904850001	9049			
METHOD BLANK: 27635						
		Blank	Reporting			
Parameter	Units	Result	Limit	fiers		
Wet Chemistry						
BOD	mg / L	2.0 U	2.0			
LABORATORY CONTROL SAMPLE: 27637						
Parameter	Units	Spike Conc.	$\begin{aligned} & \text { LCS } \\ & \text { Result } \end{aligned}$	$\begin{array}{r} \text { LCS } \\ \% \text { Rec } \end{array}$	\% Rec Limits Qualifiers	
Wet Chemistry						
BOD	mg / L	198	174	88	70-130	
SAMPLE DUPLICATE: 27638			Original: 904850001			
		Original	DUP		Max	
Parameter	Units	Result	Result	RPD	RPD Qualifiers	,
Wet Chemistry						
BOD	mg / L	236	233	1	20	

Genapure

QUALITY CONTROL DATA

QC Batch:	SOLI/1761
QC Batch Method:	SM 2540 D

Analysis Method: SM 2540 D

Associated Lab Samples:	904769002	904833001	904847002	904848001	904848002	904849001
	904850001	904852001	904852002	904860001	904860002	904878001
	904911001	904911002	904912001	904913002	904932001	904933001
	904956001					

$\left.\begin{array}{lrl}\hline \text { METHOD BLANK: } 27771 & & \\ \text { Parameter } & \text { Units } & \begin{array}{r}\text { Blank } \\ \text { Result }\end{array}\end{array} \begin{array}{c}\text { Reporting } \\ \text { Limit Qualifiers }\end{array}\right]$
SAMPLE DUPLICATE: 27772 Original: 904848001

	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
Wet Chemistry		30.8	30.3	1.6	20

QUALITY CONTROL DATA

QC Batch:	MISC/1211-		Analysis Method:	EPA 410.4			
QC Batch Method:	EPA 410.4						
Associated Lab Samples:	904354001		904852001	904852002	904913002	904916001	904919002
	904973001	904973002	904973003	905024002	905041001	905049001	

METHOD BLANK: 27777

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry COD	mg / L	6.7 U	6.7

QUALITY CONTROL DATA						
QC Batch: HACH/1218 QC Batch Method: SM 4500-S F(20th Ed.)			Analysis Method:	SM 4500-S F(20th Ed.)		.
Associated Lab Samples:	904913002	904941002	904941003	904941004	905041001	905107001

METHOD BLANK: 27782

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Sulfide	mg / L	0.050 U	0.050

SAMPLE DUPLICATE: $27784 \quad$ Original: 904905002

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
Wet Chemistry					
Sulfide	mg / L	0.050 U	$0.050 \cup$	0	20

QUALITY CONTROL DATA

QC Batch:	INPR/1675
QC Batch Method:	EPA 365.1

QUALITY CONTROL DATA

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL DATA

QC Batch:	ALKA1111
QC Batch Method:	SM 2320 B

Associated Lab Samples:	904913002	904959001	904965001	904965002	904973001	904973002
	904973003	904974001	904974002	904977001	904977002	904990001
	904990002	904990003				

METHOD BLANK: 28011

	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Total Alkalinity	mg / L	0.02 U	0.02

SAMPLE DUPLICATE: 28635 Original: 904913002

	Units	Original Result	DUP Result	RPD	Max Parameter
Wet Chemistry					
Total Alkalinity	mg / L	150	148	1	

QUALITY CONTROL DATA

QC Batch:	IC/1310
QC Batch Method:	EPA 300.0
Associated Lab Samples:	904861001
	904893001
	904995002
	905212004

Analysis Method: EPA 300.0

METHOD BLANK: 28318

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry Chloride mg / L 0.066 U 0.066			

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

Q Holding time exceeded.
[6] MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[8] NCR-\% RPD exceeds control limits

QUALITY CONTROL CROSS REFERENCE TABLE

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full. without the written consent of Genapure Analytical Services, Inc..

QUALITY CONTROL CROSS REFERENCE TABLE

Company Nane: HOR Address:						
Addraes:						Cine: State: Zip:
Aftr: DeborakDang Faxd						
emall: deborah. dange ehdr mc.c.um						
Simplie Dunutare Phonee 43-382-567)						
4	$\begin{aligned} & \text { Sampin Late } \\ & \text { (Clint } \end{aligned}$	$\begin{gathered} \text { Coted } \\ \text { Dent } \end{gathered}$	Cosilige	noce		
Hes	MW-1	6/120]	11:35	aw	x	1
	Trip B6ank			2a		1
2	pw-1	5/5109	0935	Gw		
$3{ }^{3}$						
4						
5						
6						
7						
8						
-9						
0						

			LAB ANALYSIS				
Siming							
Tsic							
\%							
crater	.	-	,	,			
$\frac{\pi}{\frac{\pi}{2}}$	8	$\begin{aligned} & N \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & b \\ & \delta \end{aligned}$	0 \sim i		$\begin{aligned} & \frac{n}{3} \\ & \frac{5}{3} \\ & \frac{2}{2} \end{aligned}$	

198018

323: NW Ttin Ave., Boca Raton, FL 33431
CHAIN OF CUSTODY RECORD tog 904913 trs Quote: \qquad Page z_of 3 wwwonapure.com

\qquad
Cuminibu vemit in wim

REMARKS

Genapure Telephone:888-862-LAES or 561-447-7373 Fax: 888-456-4846 or 561-447-6136 Revision G101007
198020

Genapure Chali of Custody record
3231 NW Th Ave．，Boca Raton，Fl 33431 wrow．genapure，com

Company Name： 102		PO					
Address：							
Cily：		State：		zip：			
Atm：delocothilast．Faxi＊							
Projoct			Prolj 201450				
			Phoney 8438577				
 -4 -4	Sample Lathet （Chiml loy	Sonect Das	Ciblest The	Pasarix Cords：	部管		高资
i．e．	MW－1．	61604	$11: 35$	GW	X	\because	1
－1	$P x+1$	sistor	633	GN			
2							
3							
4							
－5							
6							
$\underline{7}$							
－8							
$\boxed{-9}$							
－0							

TABLES

TABLE 3-3
(REVISED)

TABLE 3-3
MAXIMUM EMISSIONS DUE TO THE PROJECT COMPARED TO THE
PSD SIGNIFICANT EMISSION RATES

	Pollutant Emissions (TPY)		
Potential Emissions from Project	Significant Emission Rate	PSD Review	
Pollutant	<1	40	No
Sulfur Dioxide	943.3	25	Yes
Particulate Matter [PM(TSP)]	24	15	Yes
Particulate Matter (PM ${ }_{10}$)	36	40	No
Nitrogen Dioxide	25	100	No
Carbon Monoxide	4	40	No
Volatile Organic Compounds	NEG	0.6	No
Lead	NEG	7	No
Sulfuric Acid Mist	NEG	3	No
Total Fluorides	NEG	10	No
Total Reduced Sulfur	NEG	10	No
Reduced Sulfur Compounds	NEG	10	No
Hydrogen Sulfide	NEG	0.1	No
Mercury			

Note: $\mathrm{NEG}=$ Negligible.
${ }^{\text {a }}$ Refer to Table 2-4.

TABLE FDEP-PSD-1-c-1

TABLE FDEP-PSD-1-c-1

ESTIMATED PHYSICAL, PERFORMANCE, AND EMISSIONS DATA FOR THE CIRCULATING WATER COOLING TOWERS FOR TURKEY POINT UNITS $6 \boldsymbol{\&} 7$

Parameter	Circulating Water Cooling Towers
Physical Data	
Number of Towers per Unit	3
Number of Cells per Tower	12
Cell Diameter, ft	33.67
Cell Stack Height, ft (fan stack height is 14 feet)	66.5
Tower Dimensions	
Height to Fan Deck, ft	53
Length, ft	259
Width, ft	240.7
Performance Data	
Discharge Velocity, $\mathrm{f} / \mathrm{min}$ per cell	1,982
Circulating Water Flow Rate (CWFR), gal/min (3 Cooling Towers)	631,100
Design hot water temperature, ${ }^{\circ} \mathrm{F}$	115.4
Design cold water temperature, ${ }^{\circ} \mathrm{F}$	91
Heat Rejected, million Btu/hr	7,628
Evaporation at Design Conditions, gal/min (3 Cooling Towers)	12,723
Design Air Flow Rate per cell, acfm	1,764,500
Liquid/ Gas (Air Flow) (L/G) Ratio	1.272
Hours of operation	8,760
Temperature of Exit Air, ${ }^{\circ} \mathrm{F}$	104.7
Emission Data	
Drift Rate (DR), percent	0.0005
Total Dissolved Solids (TDS) Concentration ${ }^{\text {b }}$, maximum ppmw	4,000
Solution Driff ${ }^{\text {c }}$ (SD), lb/hr	1,579.0
PM Drift ${ }^{\text {d }}$ lb/hr	6.316
tons/year/unit (3 towers)	27.7
tons/year (6 towers)	55.3
PM_{10} Driff ${ }^{\text {e }}$	
PM ${ }_{10}$ Emissions, $\mathrm{lb} / \mathrm{hr}$	2.42
. tons/year/unit (3 towers)	10.6
. tons/year (6 towers)	21.2

${ }^{2}$ Drift rate is the percent of circulating water.
${ }^{6}$ A TDS of 4,000 ppmw.
${ }^{6}$ Includes water and based on circulating water flow rate and drift rate (CWFR \times DR $\times 8.34 \mathrm{lb} / \mathrm{gal} ; 8.34 \mathrm{lb} / \mathrm{gal}$ used for maximum PM_{40}).
${ }^{\mathrm{d}}$ PM calculated based on total dissolved solids and solution drift (TDS x SD).
${ }^{e} \mathrm{PM}_{10}$ based on Calculating Realistic PM_{10} Emissions from Cooling Towers, Joel Riesman and Gordon Frisbie (2001). TDS is 4,000 ppmw. Result is maximum PM_{10} emissions. See Appendix A.

TABLE FDEP-PSD-4-1

TABLE FDEP-PSD-4-1

ESTIMATED HAP EMISSIONS

CIRCULATING WATER COOLING TOWERS - UNITS 6 AND 7

Parameter		Salt Water	Reclaimed Water
Physical Data			
Number of Towers per Unit	3		
Number of Cells per Tower	. 12		
Cycles of Concentration		1.5	4
Emission Data		,	
Drift Rate ${ }^{\text {a }}$ (DR), percent		0.0005	0.0005
Total HAP ppmw ${ }^{\text {b }}$		0.39	1.11
Number of Analyses for HAPs		107	54
Number of Analyses Above the Detection Limits		2	5
Solution Driff ${ }^{\text {c }}$ (SD), lb/hr		1,656.6	1,656.6
HAP Emissions ${ }^{\text {d }}$, $\mathrm{lb} / \mathrm{hr}$		0.0010	0.0073
tons/year/unit (3 towers)		0.0043	0.0322
tons/year (6 towers)		0.0085	0.0644

${ }^{\text {a }}$ Drift rate is the percent of circulating water.
${ }^{\text {b }}$ HAP concentration based on sample analysis. For concentrations that were reported below dectection limit calculations assume concentration at detection limit to be conseryative. The ppmw multiplied by the cycles of concentration to calculate emissions.
${ }^{\mathrm{c}}$ Includes water and based on circulating water flow rate and drift rate. (CWFR \times DR $\times 8.75 \mathrm{lb} / \mathrm{gal} \times 60 \mathrm{~min} / \mathrm{hr}$).
${ }^{\text {d }}$ HAP calculated based on total concentration and solution drift.

TABLE FDEP-PSD-4-2

ESTIMATED HAZARDOUS AIR POLLUTANT EMISSION DATA FOR DIESEL GENERATORS AND GENERAL PURPOSE DIESEL ENGINES ASSOCIATED WITH TURKEY POINT UNITS 6 \& 7

Parameter		Standby Diesel Generators		Ancillary Diesel Generators		Diesel Fire Pump Engines		General Purpose Engizes			
Performance											
Number for TP 6 \& 7		4		4		2		Various			
Heat input (MMBtu/hr) ${ }^{\text {(}}$ (MMBtu) ${ }^{\text {b }}$ (HHV)		39.12		0.39		2.32		8,106			
Maximum operation (hours)		96		96		96					
	Emission Factor (lb/MMBtu)	Emissions ${ }^{\text {c }}$		Emissions ${ }^{\text {c }}$		Emissions ${ }^{\text {a }}$		Emissions ${ }^{\text {c }}$		TOTAL	
Hazardous Air Pollutants		(lb/hr)	(TPY)	(lb/hr)	(TPY)	(lb/hr)	(TPY)	(lb/hr)	(TPY)	(lib/hr)	(TPY)
Benzene	$9.33 \mathrm{E}-04$	$1.46 \mathrm{E}-01$	7.01E-03	$1.46 \mathrm{E}-03$	$7.02 \mathrm{E}-05$	4.34E-03	2.08E-04	--	3.78E-03	1.52E-01	1.11E-02
Toluene	$4.09 \mathrm{E}-04$	$6.40 \mathrm{E}-02$	3.07E-03	$6.41 \mathrm{E}-04$	3.08E-05	$1.90 \mathrm{E}-03$	9.12E-05	--	$1.66 \mathrm{E}-03$	$6.66 \mathrm{E}-02$	$4.85 \mathrm{E}-03$
Xylenes	$2.58 \mathrm{E}-04$	$4.04 \mathrm{E}-02$	$1.94 \mathrm{E}-03$	$4.04 \mathrm{E}-04$	$1.94 \mathrm{E}-05$	$1.20 \mathrm{E}-03$	5.76E-05	--	$1.05 \mathrm{E}-03$	$4.20 \mathrm{E}-02$	$3.06 \mathrm{E}-03$
1,3-butadiene	3.91E-05	$6.12 \mathrm{E}-03$	$2.94 \mathrm{E}-04$	6.13E-05	2.94E-06	$1.82 \mathrm{E}-04$	8.72E-06	--	$1.58 \mathrm{E}-04$	$6.36 \mathrm{E}-03$	$4.64 \mathrm{E}-04$
Formaldehyde	$1.18 \mathrm{E}-03$	$1.85 \mathrm{E}-01$	8.86E-03	$1.85 \mathrm{E}-03$	$8.88 \mathrm{E}-05$	5.48E-03	2.63E-04	--	$4.78 \mathrm{E}-03$	1.92E-01	$1.40 \mathrm{E}-02$
Acetaldehyde	$7.67 \mathrm{E}-04$	$1.20 \mathrm{E}-01$	$5.76 \mathrm{E}-03$	$1.20 \mathrm{E}-03$	5.77E-05	$3.56 \mathrm{E}-03$	$1.71 \mathrm{E}-04$	-	$3.11 \mathrm{E}-03$	$1.25 \mathrm{E}-01$	$9.10 \mathrm{E}-03$
Acrolein	$9.25 \mathrm{E}-05$	$1.45 \mathrm{E}-02$	6.95E-04	$1.45 \mathrm{E}-04$	6.96E-06	4.30E-04	2.06E-05	-	3.75E.04	1.51E-02	$1.10 \mathrm{E}-03$
PAH											
Naphthalene	$8.48 \mathrm{E}-05$	$1.33 \mathrm{E}-02$	$6.37 \mathrm{E}-04$	$1.33 \mathrm{E}-04$	6.38E-06	$3.94 \mathrm{E}-04$	1.89E-05	--	3.44E-04	$1.38 \mathrm{E}-02$	1.01E-03
Acenaphthylene	5.06E-06	7.92E-04	3.80E-05	7.93E-06	3.81E-07	2.35E-05	1.13E-06	--	2.05E-05	$8.23 \mathrm{E}-04$	$6.00 \mathrm{E}-05$
Acenaphthene	1.42E-06	2.22E-04	$1.07 \mathrm{E}-05$	2.23E-06	$1.07 \mathrm{E}-07$	6.60E-06	3.17E-07	--	5.76E-06	$2.31 \mathrm{E}-04$	1.68E-05
Fluorene	2.92E-05	$4.57 \mathrm{E}-03$	2.19E-04	$4.58 \mathrm{E}-0.5$	2.20E-06	1.36E-04	6.51E-06	-	1.18E-04	$4.75 \mathrm{E}-03$	$3.46 \mathrm{E}-04$
Phenanthrene	$2.94 \mathrm{E}-05$	$4.60 \mathrm{E}-03$	2.21E-04	4.61E-05	$2.21 \mathrm{E}-06$	1.37E-04	6.56E-06	-	$1.19 \mathrm{E}-04$	$4.78 \mathrm{E}-03$	$3.49 \mathrm{E}-04$
Anthracene	$1.87 \mathrm{E}-06$	$2.93 \mathrm{E}-04$	$1.40 \mathrm{E}-05$	2.93E-06	1.41E-07	8.69E-06	4.17E-07	--	$7.58 \mathrm{E}-06$	$3.04 \mathrm{E}-04$	2.22E-05
Fluoranthene	$7.61 \mathrm{E}-06$	$1.19 \mathrm{E}-03$	5.72E-05	$1.19 \mathrm{E}-05$	5.72E-07	3.54E-05	1.70E-06	--	3.08E-05	$1.24 \mathrm{E}-03$	$9.03 \mathrm{E}-05$
Pyrene	$4.78 \mathrm{E}-06$	$7.48 \mathrm{E}-04$	3.59E-05	7.49E-06	3.60E-07	2.22E-05	$1.07 \mathrm{E}-06$	--	$1.94 \mathrm{E}-05$	$7.78 \mathrm{E}-04$	5.67E-05
Benzo(a)anthracene	$1.68 \mathrm{E}-06$	$2.63 \mathrm{E}-04$	1.26E-05	$2.63 \mathrm{E}-06$	$1.26 \mathrm{E}-07$	7.81E-06	3.75E-07	-	6.81E-06	$2.73 \mathrm{E}-04$	1.99E-05
Chrysene	$3.53 \mathrm{E}-07$	$5.52 \mathrm{E}-05$	2.65E-06	5.53E-07	$2.66 \mathrm{E}-08$	1.64E-06	7.87E-08	--	$1.43 \mathrm{E}-06$	$5.74 \mathrm{E}-05$	4.19E-06
Benzo(b)fluoranthene	$9.91 \mathrm{E}-08$	1.55E-05	$7.44 \mathrm{E}-07$	1.55E-07	$7.45 \mathrm{E}-09$	4.61E-07	$2.21 \mathrm{E}-08$	-	$4.02 \mathrm{E}-07$	$1.61 \mathrm{E}-05$	1.18E-06
Benzo(k)fluoranthene	$1.55 \mathrm{E}-07$	2.43E-05	1.16E-06	2.43E-07	1.17E-08	7.20E-07	3.46E-08	-	$6.28 \mathrm{E}-07$	$2.52 \mathrm{E}-05$	1.84E-06
Benzo(a)pyrene	$1.88 \mathrm{E}-07$.	$2.94 \mathrm{E}-05$	1.41E-06	$2.95 \mathrm{E}-07$	1.41E-08	$8.74 \mathrm{E}-07$	$4.19 \mathrm{E}-08$	-	$7.62 \mathrm{E}-07$	$3.06 \mathrm{E}-05$	2.23E-06
Indeno(1,2,3-cd)pyrene	3.75E-07	$5.87 \mathrm{E}-05$	2.82E-06	5.88E-07	$2.82 \mathrm{E}-08$	$1.74 \mathrm{E}-06$	8.37E-08	-	1.52E-06	$6.10 \mathrm{E}-05$	4.45E-06
Dibenz (a, h) anthracene	$5.83 \mathrm{E}-07$	9.12E-05	4.38E-06	9.14E-07	$4.39 \mathrm{E}-08$	2.71E-06	1.30E-07	-	2.36E-06	$9.49 \mathrm{E}-05$	6.92E-06
Benzo(g,h,i)pereylene	$4.89 \mathrm{E}-07$	$7.65 \mathrm{E}-05$	$3.67 \mathrm{E}-06$	$7.66 \mathrm{E}-07$	3.68E-08	2.27E-06	1.09E-07	-	$1.98 \mathrm{E}-06$	$7.96 \mathrm{E}-05$	5.80E-06
Total PAH	$1.68 \mathrm{E}-04$	$2.63 \mathrm{E}-02$	1.26E-03	$2.63 \mathrm{E}-04$	$1.26 \mathrm{E}-05$	7.81E-04	3.75E-05	--	$6.81 \mathrm{E}-04$	$2.73 \mathrm{E}-02$	1.99E-03
TOTAL HAPS	$4.01 \mathrm{E}-03$	6.28E-01	3.02E-02	6.29E-03	3.02E-04	1.87E-02	8.96E-04	-	1.63E-02	$6.53 \mathrm{E}-01$	$4.76 \mathrm{E}-02$

Sources: AP1000 Design Control Document; Chapter 8 http://www.nrc.gov/reactors/new-licensing/design-certap1000.html; Caterpillar, 2008
AP1000 DCD; Chapter 9; Table 9.5.4-1 2000 gpm fire pump; 300 ft head NFPA 20 Certified; Fairbanks Morse Fire Pumps, 2008
Emissions based on AP-42 Section 3.3 Gasoline and Diesel Industrial Engines; Table 3.3-2
${ }^{2}$ Hourly heat input for standby generators, ancillary generators, and fire pumps.
${ }^{\text {b }}$ Annual heat input for general purpose engines
${ }^{\text {c }}$ Total emissions for all engines

TABLE FDEP-PSD-8-1

PLUME VISUAL IMPACT ANALYSIS - SCREENING LEVEL 2 - IDENTIFICATION OF WORSE-CASE METEOROLOGICAL CONDITIONS

Dispersion Conditions						Transport Time to NP Area (hours) ${ }^{\text {a }}$	Frequency of Occurrence (percent) of Dispersion Conditions ${ }^{\text {c }}$				
Stability		Wind Speed (m / s)	Dispersion Parameter		Sigma Y x Sigma Z x Wind Speed ($\mathrm{m}^{3} / \mathrm{s}$)						
		Horizontal	Vertical	7 amm			p.m.	1 p.m	p.m.		
Category	Name		(sigma Y (m))	(sigma Z (m))			$\mathrm{f}^{\text {b }}$	cf ${ }^{\text {b }}$	$\mathrm{r}^{\text {b }}$	cf ${ }^{\text {b }}$	
SSE Wind Direction Sector											
F	Moderately Stable		1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderatly Stable	2	18.0	18.1	649	0.1	0.00	0.00	0.22	0.22	
E	Slighty Stable	1	27.0	27.3	737	0.1	0.00	0.00	0.00	0.22	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.00	0.00	0.22	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.00	0.00	0.47	0.69	
E	Slighty Stable	2	27.0	27.3	1,475.	0.1	0.00	0.00	0.16	0.85	
D	Neutral	2	36.1	24.8	1,790	0.1	0.03	0.03	0.06	0.91	
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.00	0.03	0.33	1.24	
D	Neutral	3	36.1	24.8	2,685	0.0	0.19	0.22	0.20	1.44	
E	Slighty Stable	4	27.0	27.3.	2,949	0.0	0.03	0.25	0.31	1.75	
D	Neutral	4	36.1	24.8	3,580	0.0	0.35	0.59	0.42	2.17	
E	Slighty Stable	5	27.0	27.3	3,686	0.0	0.01	0.60	0.07	2.25	
D	Neutral	5	36.1	24.8	4,475	0.0	0.56	1.16	0.62	2.87	
S Wind Direction Sector											
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F	Moderately Stable	2	18.0	18.1	649	0.1	0.02	0.02	0.25	0.25	
E	Slighly Stable	1	27.0	27.3	737	0.1	0.00	0.02	0.00	0.25	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.02	0.00	0.25	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.01	0.03	0.22	0.47	
E	Slighly Stable	2	27.0	27.3	1,475	0.1	0.02	0.05	0.10	0.57	
D	Neutral	2	36.1	24.8	1,790	0.1	0.07	0.12	0.09	0.66	
E	Slighly Stable	3	27.0	27.3	2,212	0.0	0.00	0.12	0.25	0.90	
D	Neutral	3	36.1	24.8	2,685	0.0	0.16	0.28	0.18	1.09	
E	Slighty Stable	4	27.0	27.3	2,949	0.0	0.02	0.30	0.17	1.26	
D	Neutral	4	36.1	24.8	3,580	0.0	0.32	0.62	0.44	1.70	
E	Slighty Stable	5	27.0	27.3	3,686	0.0	0.00	0.62	0.04	1.73	
D	Neutral	5	36.1	24.8	4,475	0.0	0.39	1.01	0.31	2.04	
SSW Wind Direction Sector											
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F	Moderately Stable	2	18.0	18.1	649	0.1	0.01	0.01	0.07	0.07	
E	Slighty Stable	1	27.0	27.3	737	0.1	0.00	0.01	0.00	0.07	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.01	0.00	0.07	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.00	0.01	0.08	0.16	
E	Slighty Stable	2	27.0	27.3	1,475	0.1	0.00	0.01	0.05	0.21	
D	Neutral	2	36.1	24.8	1,790	0.1	0.02	0.03	0.03	0.24	
E	Slighty Stable	3	27.0	27.3	2,212	0.0	0.01	0.04	0.12	0.36	
D	Neutral	3	36.1	24.8	2,685	0.0	0.07	0.11	0.06	0.42	
E	Slighty Stable	4	27.0	27.3	2,949	0.0	0.02	0.13	0.05	0.47	
D	Neutral	4	36.1	24.8	3,580	0.0	0.14	0.26	0.10	0.57	
E	Slighty Stable	5	27.0	27.3	3,686	0.0	0.02	0.28	0.00	0.57	
D	Neutral	5	36.1	24.8	4,475,	0.0	0.10	0.38	0.14	0.70	
SW Wind Direction Sector											
F	Moderately Stabie	,	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F	Moderately Stabie	2	18.0	18.1	649	0.1	0.00	0.00	0.05	0.05	
E	Slighty Stable	1	27.0	27.3	737	0.1	0.00	0.00	0.00	0.05	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.00	0.00	0.05	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.01	0.01	0.08	0.14	
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.00	0.01	0.03	0.16	
D	Neutral	2	36.1	24.8	1,790	0.1	0.10	0.11	0.02	0.18	
E	Slighty Stable	3	27.0	27.3	2,212	0.0	0.02	0.13	0.09	0.27	
D	Neutral	3	36.1	24.8	2,685	0.0	0.15	0.27	0.12	0.39	
E	Slighty Stable	4	27.0	27.3	2,949	0.0	0.01	0.28	0.04	0.43	
D	Neutral	4	36.1	24.8	3,580	0.0	0.08	0.37	0.16	0.58	
E	Slighty Stable	5	27.0	27.3	3,686	0.0	0.00	0.37	0.00	0.58	
D	Neutral	5	36.1	24.8	4,475	0.0	0.13	0.49	0.22	0.80	
wsw Wind Direction Sectior											
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F	Moderately Stable	2	18.0	18.1	649	0.1	0.02	0.02	0.02	0.02	
E	Slighty Stable	1	27.0	27.3	737	0.1	0.00	0.02	0.00	0.02	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.02	0.00	0.02	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.01	0.03	0.16	0.17	
E	Slighty Stable	2	27.0	27.3	1,475	0.1	0.00	0.03	0.01	0.18	
D	Neutral	2	36.1	24.8	1,790	0.1	0.03	0.05	0.05	0.23	
E	Slighty Stable	3	27.0	27.3	2,212	0.0	0.01	0.06	0.14	0.37	
D	Neutral	3	36.1	24.8	2.685	0.0	0.06	0.13	0.14	0.50	
E	Slighty Stable	4	27.0	27.3	2,949	0.0	0.00	0.13	0.32	0.82	
D	Neutral	4	36.1	24.8	3,580	0.0	0.14	0.26	0.27	1.10	
E	Slighly Stable	5	27.0	27.3	3,686	0.0	0.00	0.26	0.16	1.25	
D	Neutral	5	36.1	24.8	4,475	0.0	0.13	0.39	0.29	1.54	
w Wind Direction Sector											
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F	Moderately Stable	2	18.0	18.1	649	0.1	0.02	0.02	0.17	0.17	
E	Slighty Stable	1	27.0	27.3	737	0.1	0.00	0.02	0.00	0.17	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.02	0.00	0.17	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.02	0.04	0.18	0.36	
E	Slighly Stable	2	27.0	27.3	1,475	0.1	0.01	0.05	0.05	0.41	
D	Neutral	2	36.1	24.8	1,790	0.1	0.07	0.12	0.07	0.48	
E	Slighty Stable	3	27.0	27.3	2,212	0.0	0.01	0.13	0.14	0.62	
D	Neutral	3	36.1	24.8	2,685	0.0	0.16	0.29	0.16	0.78	
E	Slighty Stable	4	27.0	27.3	2,949	0.0	0.01	0.30	0.20	0.99	
D	Neutral	4	36.1	24.8	3,580	0.0	0.22	0.52	0.34	1.32	
E	Slighty Stable	5	27.0	27.3	3,686	0.0	0.00	0.52	0.14	1.46	
D	Neutral	5	36.1	24.8	4,475	0.0	0.16	0.68	0.36	1.82	

		Dispersion Conditions			Sigma Y x Sigma Z x Wind Speed ($\mathrm{m}^{3} / \mathrm{s}$)	Transport Time to NP Area (hours) ${ }^{n}$	Frequency of Occurrence (percent) of Dispersion Conditions ${ }^{\text {e }}$			
Stability		Wind Speed (m/s)	Dispersion Parameter							
		Horizontal (sigma \mathbf{Y} (m))	Vertical (sigma Z (m))	7 a.m			p.m.	1 p.m		
Category	Name			$\mathrm{f}^{\text {b }}$			cf ${ }^{\text {b }}$	$\mathrm{f}^{\text {b }}$	cf ${ }^{\text {b }}$	
WNW Wind Direction Sector										
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18.1	649	0.1 .	0.00	0.00	0.15	0.15
E	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.00	0.00	0.15
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.00	0.00	0.15
F	Moderately Stable	3	18.0	18.1	973	0.0	0.01	0.01	0.09	0.24
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.00	0.01	0.03	0.26
D	Neutral	2	36.1	24.8	1,790	0.1	0.06	0.07	0.06	0.33
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.00	0.07	0.14	0.47
D	Neutral	3	36.1	24.8	2,685	0.0	0.15	0.22	0.14	0.60
E	Slighty Stable	4	27.0	27.3	2,949	0.0	0.02	0.24	0.07	0.68
D	Neutral	4	36.1	24.8	3,580	0.0	0.14	0.37	0.16	0.84
E	Slighly Stable	5	27.0	27.3	3,686	0.0	0.00	0.37	0.05	0.89
D	Neutral	5	36.1	24.8	4,475	0.0	0.17	0.55	0.19	1.08
NW Wind Direction Sector										
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18.1	649	0.1	0.05	0.05	0.16	0.16
E	Slighty Stable	1	27.0	27.3	737	0.1	0.00	0.05	0.00	0.16
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.05	0.00	0.16
F	Moderately Stable	3	18.0	18.1	973	0.0	0.05	0.09	0.13	0.29
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.00	0.09	0.04	0.33
D	Neutral	2	36.1	24.8	1,790	0.1	0.04	0.13	0.08	0.41
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.01	0.14	0.15	0.56
D	Neutral	3	36.1	24.8	2,685	0.0	0.17	0.31	0.16	0.71
E	Slightly Stable	4	27.0	27.3	2,949	0.0	0.03	0.34	0.09	0.80
D	Neutral	4	36.1	24.8	3,580	0.0	0.22	0.56	0.36	1.16
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.02	0.58	0.05	1.21
D	Neutral	5	36.1	24.8	4,475	0.0	0.26	0.84	0.20	1.41
NNW Wind Direction Sector										
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18.1	649	0.1	0.08	0.08	0.17	0.17
E	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.08	0.00	0.17
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.08	0.00	0.17
F	Moderately Stable	3	18.0	18.1	973	0.0	0.05	0.13	0.26	0.43
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.01	0.14	0.13	0.56
D	Neutral	2	36.1	24.8	1,790	0.1	0.09	0.23	0.10	0.66
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.05	0.27	0.25	0.90
D	Neutral	3	36.1	24.8	2,685	0.0	0.33	0.60	0.17	1.08
E	Slightly Stable	4	27.0	27.3	2,949	0.0	0.07	0.68	0.17	1.25
D	Neutral	4	36.1	24.8	3,580	0.0	0.41	1.09	0.41	1.66
E	Slighty Stable	5	27.0	27.3	3,686	0.0	0.11	1.20	0.13	1.79
D	Neutral	5	36.1	24.8	4,475	0.0	0.41	1.61	0.26	2.04
N Wind Direction Sector										
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18.1	649	0.1	0.07	0.07	0.35	0.35
E	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.07	0.00	0.35
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.07	0.00	0.35
F	Moderately Stable	3	18.0	18.1	973	0.0	0.06	0.14	0.16	0.50
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.03	0.16	0.15	0.65
D	Neutral	2	36.1	24.8	1,790	0.1	0.10	0.26	0.09	0.74
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.11	0.37	0.09	0.83
D	Neutral	3	36.1	24.8	2,685	0.0	0.42	0.79	0.12	0.95
E	Slightly Stable	4	27.0	27.3	2,949	0.0	0.05	0.85	0.12	1.07
D	Neutral	4	36.1	24.8	3,580	0.0	0.33	1.18	0.39	1.46
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.04	1.21	0.02	1.48
D	Neutral	5	36.1	24.8	4,475	0.0	0.37	1.58	0.20	1.68

${ }^{0}$ Proposed project location is approximately
0.5 km from closest boundary of Class I area.
${ }^{\mathrm{b}} \mathrm{f}=$ frequency for given meteorological condition; cf= cumulative frequency up to and including condition.

- Based on surface meteorological data for 2001 to 2005 from the National Weather Service (NWS) station at the Tampa Intemational Airpor
${ }^{d}$ Approximately 95 percent of the Chassahowitzka NWA is downwind of the proposed project with a south-southeast wind direction.

TABLE FDEP-PSD-10 ESTIMATED VOC EMISSIONS
CIRCULATING WATER COOLING TOWERS - UNITS 6 AND 7

${ }^{\text {a }}$ Drift rate is the percent of circulating water.
${ }^{\mathrm{b}}$ HAP concentration based on sample analysis. For concentrations that were reported below dectection limit calculations assume concentration at detection limit to be conservative. The ppmw multiplied by the cycles of concentration to calculate emissions.
${ }^{\text {c }}$ Includes water and based on circulating water flow rate and drift rate. (CWFR x DR $\times 8.75 \mathrm{lb} / \mathrm{gal} \times 60 \mathrm{~min} / \mathrm{hr}$).
${ }^{d}$ HAP calculated based on total concentration and solution drift.

TABLE FDEP-PSD-11

TABLE FDEP-PSD-11
ESTIMATED PERFORMANCE AND EMISSION DATA FOR DIESEL GENERATORS AND
GENERAL PURPOSE DIESEL ENGINES ASSOCIATED WITH TURKEY POINT UNITS $6 \& 7$

Parameter	Standby Diesel Generators	Ancillary Diesel Generators	Diesel Fire Pump Engines	General Purpose Engines	Total
Performance					
Number for TP 6 \& 7	4	4	2	Various	
Rating (kW)	4,100	36			
Rating (hp)	5,831	51	330	<600	
Fuel	Diesel	Diesel	Diesel	Diesel	
Fuel Heat content (Btu/b) (HHV)	19,300	19,300	19,300	19,300	
Fuel density (lb/gal)	7.0	7.0	7.0	7.0	
Heat input (MMBtu/hr) ${ }^{\text {a }}$ (MMBtu) ${ }^{\text {b }}$ (HHV)	39.12	0.39	2.32	8,106	
Fuel usage (gallons/hr)	289.6	2.9	17.2		
Maximum operation (hours)	. 96	96	96		
Maximum fuel usage (gallons/yr/unit)	27,802	278	1,651		
Maximum fuel usage (gallons/yrf)	111,206	1,114	3,302	60,000	
Stack Parameters					
Number of Stacks	2	1	,		
Exhaust Flow (cfm; each stack)	16,428	311	1,750		
Stack Velocity (ff/sec; each stack)	60	60	60		
Exhaust Temperature (${ }^{\text {F }}$; each stack)	874	1,040	744		
Stack Height (ft; each stack)	40	93	17		
Stack Diameter (ft; each stack)	2.41	0.33	0.79		
Emissions				*	
PM/PM $\mathrm{M}_{10} / \mathrm{PM}_{2.5}{ }^{\text {d }}$ - Basis ($\left.\mathrm{g} / \mathrm{hp}-\mathrm{hr}\right)^{\mathrm{a}}(\mathrm{lb} / \mathrm{MMBtu})^{\text {b }}$	0.4	0.4	0.4	0.31	
Emission rate ($\mathrm{lb} / \mathrm{hr}$)	5.1	0.05	0.29		
(tpy/diesel engine)	0.25	0.002	0.014		
(tpy)	0.987	0.009	0.028	1.26	2.280

Sources: AP1000 Design Control Document; Chapter 8 http://www.nrc.gov/reactors/new-licensing/design-cert/ap1000.html; Caterpillar, 2008.
AP1000 DCD; Chapter 9; Table 9.5.4-1 2000 gpm fire pump; 300 ft head NFPA 20 Certified; Fairbanks Morse Fire Pumps, 2008.
${ }^{\text {a }}$ For standby generators and ancillary generators; emissions based on 40 CFR Part 60 Subpart IIII
${ }^{\text {b }}$ For general purpose engines; emissions based on AP-42 Section 3.3 Gasoline and Diesel Industrial Engines; Table 3.3-1.
${ }^{c}$ For general purpose engines the annual usage based on usages from FPL St. Lucie Nuclear Plant, FDEP Annual Operating Reports with margin.
${ }^{d} \mathrm{PM}_{2.5}$ emissions assumed equal to PM . Footnote b of $\mathrm{AP}-42$ Table 3.3-1 states: "All particulate is assumede to be $\leq 1 \mu \mathrm{~m}$ in size."

I
I
I
IIGURES

FIGURE FDEP-PSD-8-1
Visual Effects Screening Analysis for Source: TURKEY PT UNITS $6 \& 7$ Area: BISCAYNE NP

RESULTS
Asterisks (*) indicate plume impacts that exceed screening criteria
Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE Exceeded

Delta E Contrast

Backgrnd	Theta Azi Distance		Alpha	Delta E		Contrast		
			Crit	Plume	Crit	Plume		
SKY	10. 158.	1.0		11.	2.48	8.390*	. 05	. 073 *
SKY	140. 158.	1.0	11	2.00	3.977*	. 05	-.071*	
TERRAIN	10. 158.	1.0	11.	2.00	46.622*	. 05	.185*	
TERRAIN	140. 158.	1.0	11.	2.00	7.377*	. 05	.067*	

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

Delta E ===========
Backgrnd Theta Azi Distance Alpha Crit Plume

SKY	10.	5.	. 2	164.	2.00	13.674*	. 05	. 237*
SKY	140.	5.	. 2	164.	2.00	4.350*	. 05	-.131*
TERRAIN	10.	5.	. 2	164.	2.00	79.460*	. 05	. $410 *$
TERRAIN	140.	5.	. 2	164.	2.00	15.865*	. 05	.177*

Average Wind Speed Calm Winds	$3.61 \mathrm{~m} / \mathrm{s}$ 11.18%

Figure FDEP-PSD-8-2.
Annual Wind Rose for 2001 to 2005
At Miami International Airport, Florida (Station No. 12839)
FPL Turkey Point, Miami-Dade County, Florida

FIGURE FDEP-PSD-8-3

FIGURE FDEP-PSD-8-3
Visual Effects Screening Analysis for
Source: TURKEY PT UNITS 6\&7
Area: BISCAYNE NP
*** User-selected Screening Scenario Results ***
Input Emissions for

Particulates	5.89	$\mathrm{LB} / \mathrm{HR}$
NOx (as NO2)	15.32	$\mathrm{LB} / \mathrm{HR}$
Primary NO2	.00	$\mathrm{LB} / \mathrm{HR}$
Soot	.00	$\mathrm{LB} / \mathrm{HR}$
Primary SO4	.00	$\mathrm{LB} / \mathrm{HR}$

**** Default Particle Characteristics Assumed
Transport Scenario Specifications:

Background Ozone:
Background Visual Range:
Source-Observer Distance:
Min. Source-Class I Distance:
Max. Source-Class I Distance:
Plume-Source-Observer Angle:
Stability: 5
Wind Speed: $\quad 3.00 \mathrm{~m} / \mathrm{s}$
RESULTS
Asterisks (*) indicate plume impacts that exceed screening criteria
Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE Exceeded

Delta E
====ェッ===== ============

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

Delta E
$======$ = $===$
Backgrnd Theta Azi Distance Alpha

SKY	10.	5.	. 2	164.	2.00	3.531*	. 05	. 056 *
SK̇Y	140.	5.	. 2	164.	2.00	1.228	. 05	-. 034
TERRAIN	10.	5.	. 2	164.	2.00	37.316*	. 05	.118*
ERRAI	40	5	2	164	2.00	5.552	05	03

[^0]: Preparation Method: EPA $200.8 \quad$ Analytutical Method EPA 200.8

[^1]: Report ID: 904015-4792816

