Turkey Point Units 6 & 7

RECEIVED

OCT 14 2009

BUREAU OF AIR REGULATION

October 9, 2009

FPLNNP-09-0635

Ms. Jeffrey F. Koerner, Administrator, New Source Review Section Florida Department of Environmental Protection Bureau of Air Regulation 111 South Magnolia St. Tallahassee, FL 32399

Re:

FPL Turkey Point Units 6 & 7 Project Request for Additional Information

Air Permit Application and Prevention of Significant Deterioration Analysis

Project No. 0250003-013-AC (PSD-FL-409)

Dear Mr. Koerner:

Florida Power & Light Company (FPL) is pleased to submit six (6) copies of its responses to the Air Permit Application and Prevention of Significant Deterioration Analysis Request for Additional Information issued by the Department on July 20, 2009 and July 30, 2009. The additional information is presented in the same order as requested from the Department. In addition, a Professional Engineer Certification is attached because additional information of an engineering nature is provided. A new certification statement by the authorized representative is not needed as no material changes are being made to the application by this submittal.

If you have any comments or questions regarding the attached, please feel free to contact me at (561) 691-7518 or Matt Raffenberg at (561) 691-2808.

Sincerely,

FLORIDA POWER & LIGHT COMPANY

Barbara P. Linkiewicz

Director of Environmental Licensing

Attachment

cc:

Timothy Gray, FDEP Southeast District Office

Michael Halpin, FDEP Siting Office

Trina Vielhauer, FDEP Bureau of Air Regulation

Peter Cunningham, Esq., Hopping Green & Sams P.A.

Kennard Kosky, Golder Associates Inc.

Lennon Anderson, FDEP Southeast District Office

cc: Patrick Wong, Miami-Dade DERM
Mallika Muthias, Miami-Dade DERM
Date Maria National Real Continuation Air I

Dee Morris, National Park Service, Air Resources Division

Kathleen Forney, EPA Region 4 Heather Abrams, EPA Region 4 Ana M. Oquendo, EPA Region 4

Vickie Gibson, FDEP BAR Reading File

Randall R. Labauve, FPL Matthew J. Raffenberg, FPL Michael S. Tammaro, Esq., FPL

APPLICATION INFORMATION

Professional Engineer Certification

1.	Professional Engineer Name: Kennard F. Kosky
	Registration Number: 14996
2.	Professional Engineer Mailing Address
	Organization/Firm: Golder Associates Inc.**
	Street Address: 6026 NW 1st Place
	City: Gainesville State: FL Zip Code: 32607
3.	Professional Engineer Telephone Numbers
	Telephone: (352) 336-5600 ext. 21156 Fax: (352) 336-6603
4.	Professional Engineer E-mail Address: kkosky@golder.com
5.	Professional Engineer Statement:
	I, the undersigned, hereby certify, except as particularly noted herein*, that:
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions
	unit(s) and the air pollution control equipment described in this application for air permit, when
	properly operated and maintained, will comply with all applicable standards for control of air
	pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and
	(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for
	calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an
	emissions unit addressed in this application, based solely upon the materials, information and
	calculations submitted with this application.
	(3) If the purpose of this application is to obtain a Title V air operation permit (check here \square , if
	so), I further certify that each emissions unit described in this application for air permit, when
	properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan
	and schedule is submitted with this application.
	(4) If the purpose of this application is to obtain an air construction permit (check here \boxtimes , if so)
	or concurrently process and obtain an air construction permit and a Title V air operation permit
	revision or renewal for one or more proposed new or modified emissions units (check here \square , if
	so), I further certify that the engineering features of each such emissions unit described in this
	application have been designed or examined by me or individuals under my direct supervision and
	found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.
	(5) If the purpose of this application is to obtain an initial air operation permit or operation permit
	revision or renewal for one or more newly constructed or modified emissions units (check here \square ,
	if so), I further certify that, with the exception of any changes detailed as part of this application,
	each such emissions unit has been constructed or modified in substantial accordance with the
	information given in the corresponding application for air construction permit and with all
	provisions contained in such permit.
	17 moderate 17 2/ 10/10/0 9
	Signature Date
	(seal). 145

* Attach any exception to certification statement.

**Board of Professional Engineers Certificate of Authorization #00001670.

DEP Form No. 62-240.900(1) - Form Effective: 3/16/08

RESPONSES

FDEP-PSD-1. Based on information provided in the application, the Department understands the project proposes to install cooling towers to support proposed Nuclear Units 6 and 7 at the existing Turkey Point Plant. Each proposed nuclear unit will have three cooling lowers. Each cooling tower will have the following specifications.

Air Flow Specifications

Number of Cells: 12 cells with

cooling fans

Discharge Height: 67 feet

Diameter: 33.67

Exit Temperature: 104.7° F Volumetric Flow Rate: 1,764,500

acfm

Circulating Water Flow Specifications

Total Circulating Water Flow:

210,366.7 gpm

PM Drift Rate: 0.0005%

PM Emissions: 157.2 tons/year at

65,000 ppmw TDS

PM 10 Emissions: 3.5 tons/year

based on 4000 ppmw TDS

("TDS" means total dissolved solids

in proposed cooling water.)

"PM" means particulate matter. "PM10" means particulate matter with a mean particle diameter of 10 microns or less.

1-a. Is the above an accurate description of the cooling towers proposed to support Nuclear Units 6 and 7?

RESPONSE: The information in the application concerning the description of the circulating water cooling towers is accurate, based on the available engineering design and the cooling requirements for the Westinghouse AP1000. FPL has selected the AP1000 as the plant design for the Project, a design certified by the NRC under 10 CFR 52. Table 2-1 shows the stack height at 67 feet and Figure 2-2 shows the elevation of the cooling tower stacks. The air flow specifications are per cell; there are 12 cells per tower. As noted in the Air Construction Permit Application and Prevention of Significant Deterioration (PSD) Analysis, the information presented in Table 2-1 is based on an SPX Cooling Technologies F41010A-6.6-12 Plus design (or an equivalent design).

1-b. The application indicates the cooling tower exhaust will be controlled by mist eliminators (3-pass Marley type). Do the estimated PM and PM10 emissions include control by this equipment?

RESPONSE: Yes, the estimated PM and PM_{10} cooling tower emissions are based on a mist eliminator design that will achieve a drift rate of 0.0005 percent. The mist eliminators will be 3-pass Marley cellular type (Model TU12C) constructed of PVC (or an equivalent design) that will be designed to limit drift to 0.0005 percent of the circulating water rate of the cooling towers.

1-c. One source of cooling water is reclaimed water from the Miami-Dade South District Wastewater Treatment Plant (WWTP), which will be further treated at FPL's reclaimed water treatment facility at the Turkey Point Plant. The maximum TDS concentration was estimated at 4000 ppmw for purposes of estimating maximum PMIO emissions in the application.

(1-c-1) Provide the estimated PM emissions for a TDS concentration of 4000 ppmw.

October 2009

FPL TURKEY POINT UNITS 6 & 7 COMPLETENESS RESPONSES FOR AIR APPLICATION/PSD REPORT

RESPONSE: The PM emission rate for a TDS concentration of 4,000 ppmw is 6.315 lb/hr for three circulating water cooling towers and was provided in Table A-1 of Appendix A of the construction air permit application. Table FDEP-PSD-1-c-1 presents the calculation in the same format as Table 2-1 of the application.

(1-c-2) Provide a chemical analysis of the organic and inorganic contaminants in the reclaimed water from the WWTP.

RESPONSE: Water quality data and analyses for reclaimed water are presented in Attachment FDEP-PSD-1-c-2. These analyses provide the major and trace constituents in the treated water obtained from Miami-Dade County Water and Sewer Department's (MDWASD's) South District Waste Water Treatment Plant. The reclaimed water used by Units 6 & 7 will meet all of the relevant requirements of Chapter 62-610, F.A.C., including the requirements for cooling water applications found in Rule 62-610.668, F.A.C. These rules allow the use of reclaimed water specifically in cooling towers. The reclaimed water will be further treated as described below.

(1-c-3) Provide the treatment criteria that FPL will use to treat the reclaimed water for use in the cooling towers.

RESPONSE: The FPL reclaimed water treatment facility will provide nutrient removal, continuous water quality monitoring, flow equalization and metering, de-chlorination, disinfection, and pumping facilities. FPL reclaimed water treatment facility will include pumps, trickling filters, clarifiers, deep bed filters, and solids-handling equipment to reduce the levels of iron, magnesium, oil and grease, total suspended solids, nutrients, and silica. The effluent design criteria are listed below:

- Nitrogen: <1 milligram/liter (mg/L) (assumes influent nitrogen is all biodegradable)
- Phosphorus as P, Total: <1 mg/L
- Temperature: 25 to 31 °C
- Total Organic Carbon (TOC): 4.6 to 25.5 mg/L
- pH: 6.3 to 7.3 SU
- Total Dissolved Solids (TDS): 336 to 580 mg/L
- Total Suspended Solids (TDS): <5 mg/L
- Fecal Coliform (FC): <25 Single Sample coliforms/100ml
- Total Free Residual Chlorine (TFRC): 0.5 to 1.0 mg/L

(1-c-4) Identify the organic and inorganic contaminants in the treated water supplied to the cooling towers.

RESPONSE: The response to Comment FDEP-PSD-1-c-2 presents the available data regarding the constituents in the reclaimed water. The response to comment FDEP-PSD-1-c-3 identifies additional treatment for certain parameters provided by the FPL reclaimed water treatment facility.

(1-c-5) What air quality impacts will result?

RESPONSE: The air quality impacts were presented in Section 6.0 of the PSD Report. The applicable pollutant for which the Department has ambient air quality standards and that is emitted when using treated reclaimed water is PM₁₀. Treated reclaimed water with a TDS of 4,000 parts per

million by weight (ppmw) in the circulating water has the highest PM₁₀ emissions rate and was used in the modeling analysis. The maximum predicted air quality impacts for treated reclaimed water are 0.119 micrograms per cubic meter (ug/m³) and 4.934 ug/m³ for the annual and 24-hour averaging times. These impacts are less than the significant impact levels used by the Florida Department of Environmental Protection (FDEP) as a threshold for further air quality analysis.

(1-c-6) The Department understands that the information presented in Tables A-1 through A-5 for estimating PM/PM10 emissions from cooling towers was based on the use of salt water. Provide information to support the contention that PM/PM10 emissions relationships will be similar with the use of treated reclaimed water.

RESPONSE: Tables A-1 through A-5 present information for the circulating water cooling towers (Tables A-1 through A-3) and the service water cooling towers (Tables A-4 and A-5). Tables A-1 through A-3 present PM/PM₁₀ emissions and particle distributions for treated reclaimed water and saltwater used in the circulating water cooling towers. Tables A-4 and A-5 present similar information for the service water cooling towers.

Table A-1 presents the range of PM and PM₁₀ emissions for TDS concentrations in the circulating water from 1,000 ppmw to 65,000 ppmw using the method of Riesman and Frisbie (2001) that was attached. Table A-1 also presents the PM₁₀ as a percent of total PM and charts showing PM₁₀ emissions rate as a function of TDS concentration. Similar information is presented in the Riesman and Frisbie article that was included in Appendix A of the air construction permit application. Table A-2 presents the PM/PM₁₀ emissions and particle distribution for treated reclaimed water while Table A-3 presents the PM/PM₁₀ emissions and particle distribution for saltwater.

The method of Riesman and Frisbie (2001) applies to a wide range of TDS as evidenced by the wide range of TDS concentrations in the analysis (e.g., 1,000 to 12,000 ppmw). The TDS for treated reclaimed water in the circulating water is within the range evaluated by Riesman and Frisbie (2001). While for different TDS concentrations the PM/PM₁₀ emissions relationships are different, the initial drift aerosol is similar. The reason the initial drift aerosol is similar is that ultimate solid particle volume is a small percentage of the initial drift particle. For a TDS of 4,000 ppmw the volume of the solid particle is 0.18 percent, while at the maximum TDS of 65,000 ppmw, the solid particle volume is 2.95 percent. This relationship is shown in Tables A-2 and A-3 of the appendix. As a result, differences in TDS will have a minor influence on the size of the initial drift particles, and the ultimate PM/PM₁₀ particle sizes are directly dependent on the TDS concentration.

1-d. The second source of water will be from radial collector wells, which will pull water from Biscayne Bay. The maximum TDS concentration of the saltwater was estimated at 65,000 ppmw for purposes of estimating maximum PM emissions in the application. Provide the estimated PM_{10} emissions for a TDS concentration of 65,000 ppmw. Provide a representative analysis of the actual TDS for this source of water.

RESPONSE: The radial collector well laterals will be located approximately 40 feet below Biscayne Bay and will recharge primarily from Biscayne Bay. The PM₁₀ emission rate for a TDS concentration of 65,000 ppmw is 0.312 pounds per hour (lb/hr) and was provided in Table A-1 of Appendix A of the air construction permit application. Table A-3 presents the particle size distribution used to calculate the emission rate. PM₁₀ emission rates are calculated by interpolation of the Solid Particulate Diameter (second column from left on chart) and the Electric Power Research Institute (EPRI) % Mass Smaller than the stated diameter (first column on the left). Recent analyses of

saltwater obtained from an aquifer pump test on the Turkey Point peninsula (i.e., the proposed location of the radial collector wells), presented as Attachment FDEP-PSD-1-d, support the range of TDS concentrations provided for saltwater.

1-e. Is it possible that the cooling water would be made up from a combination of these water sources?

RESPONSE: Yes, the circulating water cooling towers would be operated within the cycles of concentration indicated for the two sources of water, based on the TDS concentrations in the makeup water. Separately, the two sources of makeup water proposed as makeup to the circulating water cooling towers cover the range of TDS concentrations for the maximum potential PM and PM₁₀ emissions for the circulating water cooling towers.

1-f. The review for Best Available Control Technology (BACT) in the application indicates that air-cooled condensers (ACC) are not technically feasible. However, the application also indicates that ACC are available and in use in cooler and arid climates where water is not available. Therefore, ACC are technically feasible and will result in much lower PM and PM₁₀ emissions. Please revise the BACT review to include ACC with a cost analysis.

RESPONSE: The Best Available Control Technology (BACT) evaluation identified air-cooled condensers (ACC) as an available cooling technology, but they were not discussed as an alternative control technology for particulate matter in the context of the proposed source. The evaluation of an applicant's BACT analysis should recognize how the applicant defines the proposed source, including its fundamental purpose or basic design. In this instance, FPL defined the proposed source - the cooling towers for Turkey Point Units 6 & 7 - as mechanical draft cooling towers to be used for main steam cycle condenser cooling and service water cooling.

BACT is an emissions limitation based on the maximum degree of reduction of each pollutant emitted, which the Department determines is achievable through application of production processes, available methods, systems and techniques for control of each pollutant. Historically, the U.S. Environmental Protection Agency has not considered BACT as a means to redefine the design of the source when it considers available control alternatives. (See Draft New Source Review Workshop Manual, October 1990). As such, consideration of alternative control technologies that would result in a redesign of the source is typically not within the scope of a BACT analysis. EPA's NSR manual states that a technology is applicable if it can be "installed and operated on the source type under consideration."

The source under consideration in this instance is a mechanical draft cooling tower. The NRC certified Westinghouse AP1000 design is based on wet cooling towers so the use of air cooled condensers would redefine the source. The control technology is a high-efficiency drift eliminator with a design drift rate of 0.0005 percent - the top level particulate control for this type of cooling tower. Air cooled condensers cannot be "installed and operated" on the source type under consideration – mechanical draft cooling towers – and consequently a requirement to use air cooled condensers would redefine the source and change the design of Turkey Point Units 6 & 7.

Nevertheless, information related to ACCs was provided in the PSD permit application and additional information is presented below to demonstrate that ACC is not feasible at this Project location based on the energy, economic and environmental impacts associated with its use. Additional information related to ACCs presented below is from EPA's Technical Development Document for the Proposed Section 316(b) Phase II Existing Facilities Rule (April 2002; EPA 821-R-02-003; www.epa.gov/ttn/nsr/gen/wkshpman.pdf) which was also used in the BACT analysis to show that this technology was not feasible.

Energy, Environmental, and Economic Impacts

As demonstrated below, the energy, environmental, and economic impacts associated with ACC preclude their use by FPL for this Project.

Energy and Economic Impacts

In the EPA Technical Development Document, technology and economic comparisons of once-through cooling, wet cooling towers and dry cooling towers are compared in detail for four locations (Boston, Jacksonville, Chicago and Seattle) and three types of generating technologies (nuclear, combined cycle and fossil steam), using standard power plants for the comparison. For a nuclear unit located in Jacksonville, the total energy penalty at 100 percent load is 10.7 percent for dry cooling while the total energy penalty for wet cooling is only 1.6 percent; a difference of 9.1 percent (refer to Table 5-4) as presented in the BACT evaluation. This would equate, for the AP1000, an energy penalty of 100.1 MW (0.091 × 1,100 MW).

In the economic comparisons of technologies involving dry cooling, EPA used a value of \$30/MW-hr (see page D-4). Using EPA's energy costs, the energy penalty would be \$26,306,280 per year per unit (100.1 M \times 8,760 hour/year x \$30/MW-hour). The economic penalty of energy alone would be \$55,780.9 per ton of PM removed (\$26,306,280 \times 1/471.6 tons/year/unit) and \$2,481,724.5 per ton of PM₁₀ removed (\$26,306,280 \times 1/10.6 tons/year/unit). As noted in the BACT evaluation, the capital costs for ACCs are also much greater than for mechanical draft cooling towers.

Environmental Impacts

Moreover, Turkey Point Units 6 & 7 would avoid the emission of at least 6.6 million tons per year of CO₂, 532.3 tons per year of NO_x, 355 tons per year of SO₂ across FPL's generating system (Florida Public Service Commission, Final Order Granting Petition for Determination of Need for Proposed Nuclear Power Plants, Order No. PSC-08-0237-FOF-EI, April 11, 2008). The high energy penalty, coupled with the high capacity factors for nuclear units would result in additional emissions of at least 600,000 tons per year of CO₂, 48 tons per year of NO_x, and 32 tons per year of SO₂ due to replacement electrical generation if ACCs were used. This comparison assumes replacement from FPL's latest natural gas combined cycle unit (West County Energy Center). Actual emissions increases would be higher, since replacement energy would not be exclusively from the most efficient units. In contrast, there are no ambient air quality standards for PM. Further, predicted air quality impacts from the Units 6 & 7 circulating water system cooling towers were determined to be less than the significant emission impact levels for PM₁₀.

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

FPL TURKEY POINT UNITS 6 & 7 COMPLETENESS RESPONSES FOR AIR APPLICATION/PSD REPORT

It is clear from this information that ACCs are not feasible and are rejected as BACT for Turkey Point Units 6 & 7 based on energy, economic and environmental impacts.

1-g. Add natural draft cooling towers to the BACT review and include a cost analysis.

RESPONSE: The design drift rate for natural draft cooling towers is the same as the mechanical draft cooling towers proposed for Turkey Point Units 6 & 7. This drift rate of 0.0005 percent would not result in any change in PM or PM₁₀ emissions. As a result, a cost analysis is not necessary. Moreover, the natural draft cooling towers are estimated to be over 300 feet high and would result in other potential environmental impacts (visual, space limitations, etc).

FDEP-PSD-2. The project also proposes to construct two service water cooling towers (one per nuclear unit) with the following specifications per tower.

Air Flow Specifications

Number of Cells: 2 Discharge Height: 63 feet

Diameter: 35 feet

Exit Temperature: 96.9° F

Volumetric Flow Rate: 1,358,000 acfm

Circulating Water Flow Specifications

Total Circulating Water Flow: 21,000 gpm

PM Drift Rate: 0.0005% PM Emissions: 1.84 tons/year PM 10 Emissions: 0.35 tons/year

(Emission based on high range of TDS in

proposed cooling water.)

2-a. Is the above an accurate description of the proposed service water cooling towers?

RESPONSE: The information in the application concerning the description of the service water cooling towers is accurate based on the available engineering design and the cooling requirements for the Westinghouse AP1000. FPL has selected the AP100 as the plant design for the Project, a design certified by the NRC under 10 CFR 52. The stack height is 63 feet as shown in Table 2-2. Also, note that the air flow specifications above are for one cell, while the circulating water flow is for two cells. The PM emission rate of 1.84 tons/year listed above is for two units and the PM₁₀ emission rate listed above is for one unit, based on the circulating water flow rate of 21,000 gpm. During normal operation, only one cell is operating and the circulating water flow rate is only 10,500 gpm.

2-b. The source of water for these cooling towers is potable water from Miami-Dade County. For purposes of estimating PM/PM₁₀ emissions, the TDS concentration was estimated at 4000 ppmw. What is the actual average TDS concentration for potable water from Miami-Dade County?

RESPONSE: The TDS concentration for potable water is approximately 318 ppinw which, when concentrated, would be 1,272 ppmw in the service water cooling tower circulating water at 4 cycles of concentration. A TDS of 4,000 ppmw was assumed to maximize the amount of PM_{10} emissions for the purpose of determining potential emissions. As shown in Table A-4, the maximum PM_{10} emissions occur at a TDS of 4,000 ppmw.

FDEP-PSD-3. See Table 3-3 in the application (Maximum Emissions Due to the Project

Compared to the PSD Significant Emissions Rates). Although the table indicates emissions of volatile organic compounds (VOC) will be less than the PSD significant emissions rate, the last column identifies the project as being subject to PSD review for VOC emissions. Please correct as necessary.

RESPONSE: Comment acknowledged, volatile organic compounds (VOC) emissions will be less than the PSD significant emissions rate. Please find attached a corrected Table 3-3.

FDEP-PSD-4. Please identify and quantify any hazardous air pollutants that will be emitted from the cooling tower project.

RESPONSE: Hazardous air pollutants (HAPs), as defined in Rule 62-210.200 Florida Administrative Code (F.A.C.), were estimated for the cooling towers using recent data on the constituents in the reclaimed water from MDWASD's South District Waste Water Treatment Plant (see the response to FDEP-PSD-1-c-2) and recent data on the constituents in saltwater obtained from an aquifer pump test located in the area where the radial collector well caissons will be located (see the response to FDEP-PSD-1-d). The concentrations in the makeup treated reclaimed water and saltwater are increased in the circulating water in the cooling tower by the cycles of concentration. The maximum values from the samples were used in the calculations. Where all the results were below the detection limit, the detection limit was used to bound the emission estimate.

Table FDEP-PSD-4-1 presents a summary of the HAP emissions from the circulating water cooling towers. As shown, the HAP emissions are 0.0644 tons/year when using treated reclaimed water and 0.0085 tons/year when using saltwater. These estimates are higher than expected since the detection limits were used to determine emissions and actual concentrations would be lower. As shown in the table, only 2 of 107 were above the detection limit for the saltwater sample analysis and 5 of 54 analyses were above the detection limit for reclaimed water.

HAPs were also estimated from the standby diesel generators, ancillary diesel generators, fire pump engines and general purpose engines. The estimated HAP emissions were based on AP-42 emission factors. Table FDEP-PSD-4-2 presents the estimated HAP emissions. As shown in the table, the maximum HAP emissions are 0.0476 tons/year.

The total emissions of HAPs from the Project are estimated to be 0.11 tons/year. This is far less than the generic exemptions in FDEP's Rule 62-210.300(3)(b)1.(III) for total hazardous air pollutants, i.e. 1.25 tons/year and this level of HAP emissions are considered insignificant [Rule 62-213.430(6)(b)].

FDEP-PSD-5. Will the temporary boilers be rental boilers? Will the temporary boilers be subject to New Source Performance Standards in Subpart Db of 40 CFR 60 or will this be determined when they are needed for service?

RESPONSE: The temporary boilers will likely be rented and will only be operated during construction of the Project. Any applicability of the New Source Performance Standards (NSPS) or other applicable regulations will be determined when the boilers are obtained. These temporary construction boilers were included as emission units in the application so that they would be authorized under the air construction permit issued for the Project.

FDEP-PSD-6. Will FPL own and operate the temporary concrete batch plant or will it be an existing concrete batch plant authorized by a previous Air General Permit?

RESPONSE: At this time, FPL plans to sub-contract one, three-unit, fully-automatic, 250 cubic yard/hour (maximum) per each unit (2 operating, 1 stand-by) capacity concrete batch plant. The sub-contractor will be responsible for erecting and operating the unit during construction of Turkey Point Units 6 & 7. It is unknown if this concrete batch plant will have an Air General Permit. As a result, the concrete batch plant was included in the application so that this temporary facility would be authorized under an air construction permit issued for the Project.

FDEP-PSD-7. Provide a discussion of the PM emissions impacts to soils, vegetation and wildlife.

RESPONSE: Section 7.3.1 of the PSD Report provides a description of and impacts on the vegetation and soils in the vicinity of the Project. Potential impacts to wildlife due to air emissions are discussed in PSD Section 7.3.2. Additional information on this topic is provided below.

Particulate matter (PM), as defined in Rule 62-210.200(234) F.A.C., means any airborne finely-divided solid or liquid material. In the case of Turkey Point Units 6 & 7, the largest amount of PM is emitted as drift when saltwater is used in the circulating water cooling towers.

Potential impacts to vegetation may occur from deposition of particulate matter from cooling tower drift. Vegetation may be affected by absorption of salts that accumulate in the soil as well as foliar deposition. Accumulation in soil will occur if the annual deposition rate of salt exceeds the rate at which salt is leached from the soil by rainfall. However, the vegetation surrounding the Site is dominated by coastal mangroves, specifically the salt-tolerant red mangrove (*Rhizophora mangle*), which has developed physiological characteristics to allow the plants to survive in highly saline soils and areas of salt spray. *Rhizophora* plants can sustain salinities up to two times concentrated seawater (Mallery and Teas, 1984). The area closest to the Site borders Biscayne Bay and is tidally influenced. The average salinity in Biscayne Bay near the Turkey Point peninsula is approximately 34 parts per thousand (ppt), which is close to the salinity of seawater. During wet periods, the salinity in the Bay is typically above average.

The area where the potential impact of deposition to freshwater vegetation is greatest is the area west of the L-31E Canal. However, the vegetation in the area west of the L-31E Canal is salt tolerant. This area is comprised of sawgrass marsh with strands of forested wetlands classified as mixed wetland hardwoods that are comprised of a variety of native and exotic canopy species, including buttonwood, Australian pine, cocoplum, red mangrove, Brazilian pepper, and cabbage palm. As these species are salt tolerant, no adverse impacts will occur.

There will be no adverse potential impact of salt drift on wildlife in the vicinity of Turkey Point Units 6 & 7 since the wildlife in the area is adapted to a saline environment.

It should be emphasized that the maximum drift occurs with the use of saltwater in the circulating water cooling towers. The use of reclaimed water results in particulate emissions that are 17 times lower than using saltwater.

Reference

Mallery, C.H. and H.J Teas, 1984. "The mineral ion relations of mangroves. I. Root cell compartments in a salt excluder and salt secreter species at low salinities." *Plant and Cell Physiology* 25, 1123-1131.

FDEP-PSD-8. The National Park Service commented on the modeled visibility impacts in the Biscayne National Park. Discuss the methods available to the FPL treatment facility that can be used to maintain the TDS content of the treated wastewater below 4000 ppmw to mitigate visibility impacts caused by PMIO emissions.

July 9, 2009 e-mail from Dee Morse of the National Park Service to Cleve Holladay of FDEP.

NPS Comment: We reviewed the Turkey Point Units 6 & 7 PSD permit application. Based on the information in the application, Florida Power & Light (FPL) proposes to construct and operate two 1,100 MW nuclear units at the existing Turkey Point facility. The emissions from the operation of Units 6 & 7 will come from the circulating water cooling towers, standby diesel generators, ancillary diesel generators, diesel fire pump engines, diesel storage tanks, and general purpose diesel engines. The emissions from the associated equipment will trigger PSD review for particulate matter only. The total emission increases are reported to be 947 tons per year (TPY) of particulate matter, 35 TPY of nitrogen oxides, 4 TPY of volatile organic compounds and 0.02 TPY of sulfur dioxide. Upon review of the air quality modeling analyses, we find that the proposed emissions from the proposed operation of Turkey Point Units 6 & 7 will not cause significant impacts at Everglades NP. However, the emissions may impact visibility at Biscayne NP. Results from the plume impact analysis (VISCREEN modeling) shows impacts exceed a delta E of 2.0 and contrast values of 0.05 outside of the Class I area. Given the close proximity of the Turkey Point facility to Biscayne NP and potential plume impacts at Biscayne NP we ask that FPL look at mitigating measures to reduce emissions and the corresponding impacts.

RESPONSE: Based on the National Park Service (NPS) comment, a visibility analysis was conducted for Biscayne National Park (BNP). The paragraphs that follow present the methodology, results of the Level 1 Analysis, and results of the Level 2 Analysis. Also presented are the mitigation measures taken to reduce visibility impacts.

Methodology – The analysis to determine the potential adverse plume visibility effects in BNP was based on the screening approach suggested in the Workbook for Plume Visual Impact Screening and Analysis (EPA, 1992). EPA has computerized this approach in a program called the VISCREEN model. The VISCREEN model is currently recommended for use by the EPA to assess visual plume impacts in regulatory applications. The model can be used to calculate potential plume impacts of specific pollutant emissions for specific transport and meteorological dispersion conditions. The model can be applied in two successive levels of screening (referred to as Levels 1 and 2) without the need for extensive source, meteorological, or pollutant input. If the screening calculations demonstrate that during "worst-case" meteorological conditions, a plume is imperceptible or, if perceptible, is not likely to be considered objectionable ("adverse" or "significant" in the language of the EPA PSD and visibility regulations), further analysis of plume visual impact would not be required as part of the air quality review of the source. However, if the screening analyses demonstrate that the criteria are exceeded, plume visual impacts cannot be ruled out, and more

FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

FPL TURKEY POINT UNITS 6 & 7 COMPLETENESS RESPONSES FOR AIR APPLICATION/PSD REPORT

detailed analyses to ascertain the magnitude, frequency, location, and timing of plume visual impacts would be required.

The Level 1 screening analysis is designed to provide a conservative estimate of plume visual impacts (i.e., impacts that would be larger than those calculated with more realistic input and modeling assumptions). This analysis assumes worst-case meteorological conditions of stable stability (Pasquill-Gifford stability Class F) and a one meter per second (m/s) wind speed persisting for 12 hours in one direction towards BNP. The input required for the Level 1 analysis is limited to the following parameters:

- Emission rates of PM₁₀ and NO_x;
- Distance between the emission source and (a) the observer; (b) the closest NP boundary; and (c) the most distant NP boundary;
- Background visual range appropriate for the region in which the NP is located; and
- If available, emission rates of NO₂, soot, and primary sulfate (SO₄).

Visibility impacts are then determined for two parameters:

- Contrast of a plume against a viewing background such as the sky or a terrain feature; and
- Perceptibility of a plume on the basis of the color difference between the plume and the viewing background (Delta E).

Results are provided by the model for several scenarios based on the background view, the viewing angle, visibility improvement due to plumes located both inside and outside the Class I area, and the sun angle. The critical values for contrast and Delta E are 0.05 and 2.00, respectively. If these levels are not exceeded by the proposed source, the source is considered to pass the Level 1 visibility analysis, and the source will not have a significant impact on the Class I area.

Results of Level 1 Analysis – The input parameters and results of the Level 1 analysis for the Project are presented in Figure FDEP-PSD-8-1. As shown, the Project will primarily emit PM₁₀ and NO_x. The maximum short-term average emission rates used in the analysis are based on all generators and engines operating at least one hour on a given day, simultaneously. Although the pollutant determination modeling in the PSD application assumed 4 hours on a given day operation, the assumption that the engines operate 1 hour a day is still extremely conservative because these machines will actually operate only 4 hours per month. Using this assumption, total facility short term emission rates of PM₁₀ and NO_x, for the VISCREEN analysis, are 15.32 and 5.89 lb/hr, respectively. Primary NO₂, soot, and sulfates are not emitted in significant quantities by the generators and engines. Therefore, these emissions were set to zero.

The terrain between the Turkey Point plant area and BNP and within BNP, is totally flat. With no terrain feature that can be used as a viewing background, the visibility impacts were determined using the sky as the only viewing background. It should also be noted that these critical visual impacts are estimated for locations inside of BNP. Since no integral vistas have been identified for BNP, this evaluation did not evaluate vistas located outside the BNP area.

Because BNP is not a Class I area, the background visual range was not estimated using the FLAG report, and a background visual of 40 km was considered appropriate for the area. Other parameters input to the model were based upon default values given in the Workbook and incorporated into the computer model.

As shown in Figure FDEP-PSD-8-1, the Project's emissions are calculated to exceed the Level 1 visibility screening criteria at the NP. Because results from the Level 1 screening analysis exceed the visibility criteria, a Level 2 screening analysis was performed. The only difference in input between the Level 1 and Level 2 analyses is the meteorology assumed for plume transport and dispersion.

Results of Level 2 Analysis – The Level 2 screening analysis is designed to account for more realistic occurrences of meteorological conditions that would transport the plumes of the proposed units towards the NP. In this analysis, an assessment of the frequency of the wind direction, wind speed, and atmospheric stability classes is made to determine the frequency of conditions that are most likely to cause a potentially adverse plume visual impact. If the Level 1 default parameters are selected for addressing visual plume impacts, the VISCREEN model assigns an appropriate estimate of particle size and density for the emitted and background atmosphere particulate and worst-case plume dispersion conditions. For this analysis, the particle size and density for the emission sources were not changed.

The first step in the analysis is to construct a table that shows worst-case dispersion conditions ranked in order of decreasing severity and the frequency of occurrence of these conditions associated with the wind direction that could transport emissions toward BNP. Dispersion conditions are ranked by evaluating the product of the horizontal dispersion parameter (called sigma y) times the vertical dispersion parameter (called sigma z) times the wind speed. Sigma y and sigma z account for the amount of plume spreading or dispersion that will occur as a plume travels away from a source for a given stability class. The dispersion conditions are then ranked in ascending order of the value of the dispersion product term (i.e., sigma y times sigma z times the wind speed).

For the Level 2 analysis, it is assumed that steady-state plume conditions are unlikely to persist for more than 12 hours. Thus, if a transit time of more than 12 hours is required to transport a plume parcel from the emission source to a Class I area for a given dispersion condition, it is assumed that the plume material is more dispersed than a standard Gaussian plume model would predict. This enhanced dilution would result from daytime convective mixing and wind direction and speed changes.

To obtain the worst-case meteorological conditions, it is necessary to determine the dispersion conditions (i.e., a given wind speed and stability class associated with the wind direction that would transport emissions toward BNP) that have a dispersion product term with a cumulative probability of 1 percent. Thus, the dispersion condition is selected to address potential plume visual impacts such that the sum of all frequencies of occurrence worse than this condition totals 1 percent (i.e., about 4 days per year). The 1-percentile meteorology is assumed to be worst-case plume visual impacts when the probability of worst-case meteorology conditions is coupled with the probability of other factors being ideal for maximizing plume visual impacts. Dispersion conditions associated with transport times of more than 12 hours are not considered in this cumulative frequency.

For this study, the surface meteorological data from the NWS station in Miami from 2001 to 2005 were used to generate a frequency distribution of wind direction, wind speed, and stability occurrences based on the standardized stability array (STAR) program used for many air dispersion

model applications. An annual average wind rose for Miami, 2001 to 2005, is presented in Figure 2. The STAR program generates frequencies using 16 wind direction classes with each class covering a 22.5-degree sector, 6 wind speed classes, and 6 stability classes. It should be noted that these data were used to address air quality impacts from the Project as presented in Section 6.0 of the PSD report.

Areas of BNP are located to the south-southeast counter-clockwise to the north-northwest of the Turkey Point Project Site, with the closest distances of approximately 0.5 km to the south-southeast. Therefore, the frequencies associated with winds that would blow from the Project to BNP were included in the analysis (i.e., south-southeast counter-clockwise through north-northwest). The highest frequency for any wind sector was used to determine the worst-case meteorology for impacts at the closest distance of 0.5 km, which was assumed for all wind direction sectors.

Since the approach is based on viewing the plume during the day when the sun is either in front or back of the observer, the frequencies are presented only for two 7-hour periods during the daytime from 7 a.m. to 1 p.m. and 1 p.m. to 7 p.m. In effect, the criteria of 1 percent are applied to each 7-hour period.

This analysis is presented in Table FDEP-PSD-8-1, which shows the dispersion product term, transport time to the nearest part of BNP (i.e., distance of 0.5 km), and the frequency associated with each wind direction. As indicated in Table FDEP-PSD-8-1, all of the meteorological conditions considered in the analysis could be transported to BNP in less than 12 hours. As a result, these conditions were all included in determining the worst-case meteorology using the cumulative probability of 1 percent.

During the daytime period, winds out of the south-southeast wind direction sector produced a cumulative frequency of at least 1 percent during slightly stable stability with a wind speed of 3.0 m/s. Slightly stable stability (Pasquill class E) and a wind speed of 3.0 m/s was the critical meteorological condition. This weather condition was used to assess the potential visual plume impacts from the Project at the closest distance of 0.5 km.

The results of the visual plume impact analysis using the Level 2 meteorological condition for the Project are shown in Figure FDEP-PSD-8-3. As shown, the Project's values of Delta E and contrast are predicted to be less than the screening criteria.

Therefore, the pollutant emissions due to the project are highly unlikely to cause adverse visibility impairment in BNP.

Mitigation Measures -- As described in the PSD Report, PM and PM₁₀ emissions from the circulating cooling towers will be designed to limit the drift rate to 0.0005 percent of the circulating water rate. This drift rate has been accepted as BACT for many projects involving wet cooling towers. Ultra low sulfur diesel fuel will be used in the standby and ancillary generators and fire pump engines that will primarily operate for maintenance testing. Testing is scheduled for 4 hours per month.

FDEP-PSD-9. The Department is still reviewing the air quality impact analysis and may later submit additional questions regarding this modeling analysis.

RESPONSE: Comment acknowledged. The response for FDEP-PSD-11 is provided to address the Department's separate request of July 30, 2009 for additional information related to modeling.

FDEP-PSD-10. Please address the following questions from Air Facilities Section of the Miami-Dade County Environmental Resources Management (DERM).

a. DERM expressed concerns that non-metallic mineral rock mining equipment and operations may be included in the scope of the proposed project; however, no such information is provided with the PSD application. Provide information related to site-preparation and construction operations addressing any limestone excavation, grading and fill activities to be conducted. Include technical and design specifications on equipment and processes for crushing, conveying and screening operations.

RESPONSE: Crushing and screening are not anticipated to be done on the Turkey Point plant property. Construction activities such as limestone excavation, conveying, grading and backfilling will be conducted on the plant property, but these construction activities are not subject to regulation under the non-metallic mineral processing plant NSPS rules (Subpart OOO) or otherwise under FDEP's air rules.

The Project for which certification is being sought under the Florida Electrical Power Plant Siting Act (PPSA) includes a fill-source/water management feature approximately 4 miles northwest of the Turkey Point plant property where limestone will be excavated for use as fill for the Project. It is possible that crushing and/or grinding of limestone will also occur at the off-site fill source. Review of the off-site fill source is being performed as part of the Site Certification process.

b. The information in the PSD application regarding the use of "general purpose diesel engines" is limited in detail as to the number and type of engines, equipment the engines are to service, fuel tanks and day tanks to be associated with the engines, etc. Provide details including the design and technical specifications for the general purpose diesel engines similar to the information provided for the generator and fire pump engines.

RESPONSE: As described in the application, general purpose engines were included during operation and refueling/maintenance cycles to account for various general purpose diesel engines used in equipment such as cranes, compressors, etc. At this time, the design and technical specification of these engines have not been determined, and such information is unnecessary for these minor sources. Since these types of sources are classified as an "emission unit" under FDEP rules (Rule 62-210.200, F.A.C), emissions were included in the total emissions for the Turkey Point Units 6 & 7 Project to account for the Project's "potential to emit." The precedent for accounting for these emissions in the manner used in the application was based on the FPL St. Lucie Nuclear Plant Federally Enforceable State Operating Permit (FESOP) that included fuel use restrictions on general purpose diesel engines to limit emission to less than 100 tons/year (Permit No. 1110071-005-AF). The emissions associated with Turkey Point Units 6 & 7 were estimated based on the Annual Operating Reports (AORs) submitted to FDEP for the FPL St. Lucie Plant. To be conservative, the U.S. EPA emission factors contained in EPA publication AP-42, Compilation of Air Pollutant Emission Factors, were used to estimate emissions for these general purpose engines that were developed in the mid-1990s. It should be noted that EPA has established emission standards for these

engines as non-road diesel engine limits in 40 CFR 89, which will become more stringent for engines manufactured in the future. EPA's non-road regulations require lower emission limits than the emission rates in EPA's emission factors. Since by the time Unit 6 begins operation in 2018, many of the diesel engines in equipment used on the plant area will meet EPA's non-road diesel engine limits in 40 CFR 89, the emission estimates are conservative using EPA's AP-42 emission factors.

- c. DERM expressed concerns that constituents in the cooling water will be emitted as particulates in the aerosol/drift exhaust from the cooling towers. Provide additional information regarding the chemical makeup of the proposed cooling water (both reclaimed and subsurface water) as well as a characterization of emissions from the cooling towers.
 - c-1) Provide water quality/chemical analysis reports for the reclaimed water to be received from the Miami-Dade Water and Sewer Department (WASD). Provide a process flow diagram with description of the proposed FPL reclaim treatment plant including characterization of plant effluent. Provide a technical discussion and analysis of the effect that the cooling tower (heat transfer) process has on the reclaim water constituents and the related air emissions (both criteria and hazardous air pollutants). Source water analysis constituents to be addressed include: TDS, total suspended solids, chlorides, organics and metals. In addition to PM and PM10, provide emissions calculations for other criteria pollutants and hazardous air pollutants.

RESPONSE: Water quality data for reclaimed water obtained from MDWASD's South District Waste Water Treatment Plant are presented as Table FDEP-PSD-1-c-1. The information includes data on TDS, total suspended solids, chlorides, organics and metals. The response to FDEP-PSD-4 contains information on HAPs emissions when using treated reclaimed water. Information on VOC emissions that may be emitted when using treated reclaimed water is presented in Table FDEP-PSD-10 and is estimated to be 0.0008 tons/year when using treated reclaimed water. The VOC emissions were determined by assuming that all the volatiles and semi-volatiles from priority pollutant analyses were VOCs and the maximum values were used. Where all values for a particular parameter were below the detection limits, the detection limit was used to bound the emission estimate. As shown in Table FDEP-PSD-10, only 6 out of 39 analyses were above the detection limit for VOCs.

c-2. Provide water quality/chemical analysis reports of cooling water to be used from radial collection wells. Provide evaluation on the effect that the cooling tower (heat transfer) process has on the radial collection well water constituents and the related air emissions (both criteria and hazardous air pollutants). Radial collection well water constituents to be addressed include: TDS, total suspended solids, chlorides, organics and metals. In addition to PM and PM₁₀, provide emissions calculations for other criteria pollutants and hazardous air pollutants.

RESPONSE: Water quality data for saltwater is attached to the responses as part of FDEP-PSD-1d. These data are recent analyses of saltwater obtained from Biscayne Bay and an aquifer pump test located in the area where the radial collector well caissons will be located (i.e., the Turkey Point peninsula). The information includes data on TDS, total suspended solids, chlorides, organics and metals. The response to FDEP-PSD-4 contains information on HAPs emission when using saltwater. Table FDEP-PSD-10-1 presents emissions of VOCs when using saltwater, estimated to be 0.0019

tons/year. For the estimated VOC emissions from saltwater, the detection limits were used because none of the 138 analyses were above the detection limits of the analytical method.

d. DERM expressed concerns over the significant PM/PM₁₀ emissions that would result from the proposed wet circulating water cooling towers. Provide a comprehensive evaluation of alternative cooling technologies instead of the proposed mechanical draft cooling towers.

RESPONSE: Refer to the responses for FDEP-PSD-1-f and FDEP-PSD-1-g that present information related to BACT and alternative cooling systems.

- e. Although not related directly to the PSD application, the DERM advises FPL of the following:
- e-1. If any demolition activities or renovation of existing buildings is to occur during the proposed project, either on-site or off-site, all applicable asbestos notifications and surveys shall be submitted.

RESPONSE: Comments acknowledged.

e-2. If site-preparation and construction activities include open burning, Chapter 24 requires Open Burning Permits for Land Clearing be obtained from the Miami Dade County Fire Department.

RESPONSE: Land clearing debris associated with site preparation activities will be disposed of using open burning as necessary. Open burning will only be conducted for the purpose of non-recurrent clearing of debris from land clearing. Open burning will also only be conducted after notification of Miami-Dade County Department of Environmental Management (DERM), Miami-Dade County Fire Rescue Department (Fire Protection Division) and the Florida Division of Forestry. All open burning will be conducted in accordance with the requirements of Rule 62-256.700(3), F.A.C. Land clearing materials not disposed of using open burning will be disposed of in accordance with the requirements of Chapter 62-701, F.A.C.

FDEP-PSD-11: Provide the potential emissions of particulate matter with a mean aerodynamic diameter of 2.5 microns or less (PM_{2.5}) for the project.

Note: This comment was provided in a separate letter from FDEP Bureau of Air Regulation dated July 30, 2009.

RESPONSE: The PM_{2.5} emissions can be directly calculated from the information in Table A-1 and A-2 of the application appendix. The use of treated reclaimed water with a TDS of 4,000 ppmw would have the maximum PM_{2.5} emissions since the lower TDS results in smaller drift particles. The total PM emissions for 4,000 ppmw TDS is 6.315 lb/hr per set of 3 towers as shown in Table A-1. The final particle size distribution is provided in the last two far right columns of Table A-2. As shown the final particle size closest to 2.5 microns is 2.441 microns which makes up 0.196% (i.e., 0.00196 as a fraction). Interpolating for 2.5 microns, the percentage is 0.2, or 0.002 as a fraction. The PM_{2.5} emissions are therefore: 0.002×6.315 lb/hr per tower × 2 (for 3 cooling towers) = 0.0253 lb/hr. The annual emissions are 0.11 tons/year for the circulating water cooling towers.

For the service water cooling towers, the total PM emissions for 4,000 ppmw TDS is 0.021 lb/hr per towers as shown in Table A-4. The final particle size distribution is provided in the last two far right columns on Table A-5. As shown the final particle size closest to 2.5 microns is 2.441 microns which makes up 0.196 % (or 0.00196 as a fraction). Interpolating for 2.5 microns the percentage is 0.2 or 0.002 as a fraction. The PM_{2.5} emissions are therefore: 0.002×0.021 lb/hr per tower × 2 (for 2 cooling towers) = 0.0004 lb/hr. The annual emissions are 0.0002 tons/year for the circulating water cooling towers.

 $PM_{2.5}$ emissions were also estimated from the standby diesel generators, ancillary diesel generators, fire pump engines and general purpose engines using AP-42 emission factors. Table FDEP-PSD-11 presents the $PM_{2.5}$ emissions as 1.26 tons/year.

The total estimated PM_{2.5} emissions for the Project are 1.27 tons/year.

ATTACHMENTS

> Phone: (561) 447-7373 Fax: (561) 447-7374

March 19, 2009

CLIVE POWELL MIAMI DADE WATER & SEWER SOUTH DISTRICT LABORATORY 8950 SW 232 ST. Miami, FL 33170

RE:

Workorder:

901840

Project:

ANNUAL SAMPLING

Dear CLIVE POWELL:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, February 19, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Kimmel mkimmel@genapure.com

FL-NELAC E86240

Statement of uncertainty is available upon request.
FL Qualifiers: I=value between MDL and PQL; V=value was positive in Blank; J=estimated value.See comment; U=undetected; Q=out of hold

EPA Qualifiers: B=value was positive in Blank; J=estimated value. May be between MDL and PQL;

U=undetected; Q=out of hold

Enclosures

Report ID: 901840 - 4599317

Page 1 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

SAMPLE SUMMARY

Lab ID	Sample ID	Collector	Matrix	Date Collected	Date Received
901840001	REUSE EFFLUENT	CL	Drinking Water	2/19/2009 00:00	2/19/2009
901840002	TRIP BLANK	CL.	DI Water	2/14/2009 00:00	2/19/2009

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901840001

Date Received: 2/19/2009

Matrix:

Drinking Water

Sample ID:

REUSE EFFLUENT/

Date Collected: 2/19/2009

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Wet Chemistry									
Malylical Method SN 2540 C									
Total Dissolved Solids(TDS)	392		mg/L	7.00	10.0	1		2/23/2009 13:10	AR
reparation Method (ERA/35)	2 1 7	alytica	il Method	EPA 351/2-1					
Total Kjeldahl Nitrogen	26.9	٧	mg/L-N	2.2	4.0	10	3/2/2009 18:00	3/3/2009 11:50	IG
Preparation Method EPA 885		nalytica	Metrod	EPA-385/4 Cy	anide				
Fotal Cyanide	0.0176		mg/L	0.0040	0.0100	1	2/24/2009 10:22	2/24/2009 13:57	IG
Analytical Method SM 2120B									
Color (True/Apparent)	30.0		pcu	5.0	5.0	1		2/20/2009 07:45	ZE
Analytical Method EPA 3504									
Ammonia	30.4	V	mg/L-N	0.087	0.25	5	TANING IS WIND WITCHES	2/20/2009 12:52	IG
Analylical Method EPA 300.0									
Chloride Elvorido	121 0.300U		mg/L mg/L	1.33 0.300	10.0 2.00	20 10		2/23/2009 16:12 2/20/2009 19:09	AD AD
Fluoride Vitrate	0.300U 0.074U		mg/L-N	0.300	0.500	10		2/20/2009 19:09	AD
viu a co Vitrite	0.053U		mg/L-N	0.053	0.500	10		2/20/2009 19:09	AD
Sulfate	34.2		mg/L	0.755	5.00	10		2/20/2009 19:09	AD
Preparation Method, BOD PR	EP##	iálytica	l Method	SM:5210B:B0	Dis s				
BOD	2.0U	J	mg/L	2.0	2.0	1	2/20/2009 19:30	2/25/2009 09:45	LG
nalytical Method SM 2150 B									
Odor	16.0		TON	1 .	1	1		2/20/2009 07:10	ZE
reparation Method SM 5540	C A	ialytica	l Method	SM-5540(C)					
Surfactants	0.1241		mg/L-LAS	0.040	0.200	1	2/20/2009 10:40	2/20/2009 10:40	AR
nalytical Method ERA 365									
Ortho Phosphaté - P Fotal Phosphorus	2.82 2.72		mg/L-P mg/L	0.027 0.022	0.075 0.075	5 5	2/24/2009 08:30	2/20/2009 13:33 2/24/2009 12:28	TA ZE
analytical Method SM4500H									
oH	7.21		pH unit	0.100	0.100	1		2/24/2009 12:55	AD
EDB Analysis									
reparation Method: EPA 504	il Air	alytica	l Method: I	PA 504/1					
,2-Dibromo-3-	0.00310U		ug/L	0.00310	0.020	1	2/23/2009 17:00	2/23/2009 23:14	LR
chloropropane I,2-Dibromoethane	0.00640U		ug/L	0.00640	0.010	1	2/23/2009 17:00	2/23/2009 23:14	LR
I IN PIDIOLITOCUIALIE	3.555750		~yı	0.00070	0.010		- EUIEUUG 11.UU	シャイン・コン・コー	LIN

Report ID: 901840 - 4599317

Page 3 of 45

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901840001

Date Received: 2/19/2009

Matrix:

Drinking Water

Sample ID:

REUSE EFFLUENT/

Date Collected: 2/19/2009

Parameters Results Qual Units MDL PQL DF Prepared Analyzed By

11.4	On	GM	4411	J
Pr	epa	ial	О'n	M

Mercury	0.000056	mg/L	0.000056	0.00020	1	2/23/2009 11:30	2/23/2009 15:54	IT
aPreparation Method EP/	12007; Analy	ical Method	FIER/A 2007					
Aluminum	0.046U	mg/L	0.046	0.20	1	2/20/2009 11:00	2/23/2009 22:20	TB
Chromium	0.003631	mg/L	0.0011	0.0050	1	2/20/2009 11:00	2/24/2009 14:28	TB
Copper	0.0096U	mg/L	0.0096	0.020	1	2/20/2009 11:00	2/24/2009 14:28	TB
Iron	0.172	mg/L	0.045	0.10	1	2/20/2009 11:00	2/23/2009 22:20	ТВ
Nickel	0.0052U	mg/L	0.0052	0.010	1	2/20/2009 11:00	2/23/2009 22:20	TB
Silver	0.0016U	mg/L	0.0016	0.020	1	2/20/2009 11:00	2/24/2009 14:28	ТВ
Sodium	78.0	mg/L	0.074	0.25	1	2/20/2009 11:00	2/24/2009 14:28	TB
Zinc	0.0285	mg/L	0.0053	0.025	1	2/20/2009 11:00	2/24/2009 14:28	ТВ
Preparation Method EPA	NAMES OF THE PARTY		PED ASSINGACES	ururan dereka belok			NS00-700-01-01-01-01-01-01-01-01-01-01-01-01-0	
Freparation Method EPA	Alaly	ical Metrioc	I EFAVZUU O					
Antimony	0.001011	ma/l	0.0010	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DE

repared of twelf	2000 Allaly	icar webloc						
Antimony	0.0010ป	mg/L	0.0010	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DF
Arsenic	0.0016U	mg/L	0.0016	0.0040	1	2/20/2009 11:00	2/24/2009 00:16	DF
Barium	0.00645	mg/L	0.0015	0.0040	1	2/20/2009 11:00	2/24/2009 00:16	DF
Beryllium	0.00085U	mg/L	0.00085	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DF
Cadmium	0.00011U	mg/L	0.00011	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DF
Lead	0.00075€	mg/L	0.00075	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DF
Manganese	0.0123	mg/L	0.0011	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DF
Selenium	0.00082U	mg/L	0.00082	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DF
Thallium	0.00027U	mg/L	0.00027	0.0020	1	2/20/2009 11:00	2/24/2009 00:16	DF

Wet Chemistry - Subcontract

Analytical Method: EPA11	002						
Asbestos -	0.18U	1	MFL	0.18	0.18 1	2/28/2009 12:00	SU

Semivolatiles

Semivolatiles							•	
Preparation Method EPA	625) A	nalytical Method	PEPA-625					
2,4,6-Trichlorophenol	0.27U	ug/L	0.27	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
2-Chlorophenol	0.22U	ug/L	0.22	4.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Anthracene	0.25U	ug/L	0.25	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Butyl benzyl phthalate	0.36U	ug/L	0.36	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Dimethyl phthalate	0.31U	ug/L	0.31	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB ·
Naphthalene	0.34U	ug/L	0.34	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Phenanthrene	0.29U	ug/L	0.29	1.0	1	2/20/2009 09:00	2/23/2009 15:18	ТВ
Phenol	0.41U	ug/L	0.41	1.0	1	2/20/2009 09:00	2/23/2009 15:18	TB
Preparation Method EPA	FOR THE WA	nalviical Method	Semi Volatile	Mass Snec Sc	anuay			
			SECULO PAR					
2,3,7,8-TCDD	ND	2 ug/L			1	2/20/2009 09:00	2/24/2009 15:29	ТВ
Preparation Method EPA	625 # A	nalviical Method	EPA 625					

2/20/2009 09:00

Report ID: 901840 - 4599317

Nitrobenzene-d5 (S)

Page 4 of 45

TB

2/23/2009 15:18

10-117

> Phone: (561) 447-7373 Fax: (561) 447-7374

> > SB

SB

SB

SB

ANALYTICAL RESULTS

Lab ID:

901840001

Date Received: 2/19/2009

Matrix:

2/23/2009 15:30

2/23/2009 15:30

2/23/2009 15:30

2/23/2009 15:30

Drinking Water

2/25/2009 04:17

2/25/2009 04:17

2/25/2009 04:17

2/25/2009 04:17

2/27/2009 16:18

2/27/2009 16:18

2/27/2009 16:18

2/24/2009 03:55

Sample ID:

REUSE EFFLUENT/

0.00139U

48

39

0.00170U 4

Date Collected: 2/19/2009

Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	Ву
2-Fluorobiphenyl (S)	81	%	10-112		1	2/20/2009 09:00	2/23/2009 15:18	ТВ
Terphenyl-d14 (S)	106	%	20-146		1	2/20/2009 09:00	2/23/2009 15:18	TB
Phenol-d6 (S)	31	%	10-59		1	2/20/2009 09:00	2/23/2009 15:18	TB
2-Fluorophenol (S)	53	%	24-64		1	2/20/2009 09:00	2/23/2009 15:18	TB
2,4,6-Tribromophenol (S)	104	%	52-121		1	2/20/2009 09:00	2/23/2009 15:18	ТВ
Pesticides						*		

0.050

0.050

1

1

0.00139

0.00170

32-137

25-165

ug/L

ug/L

%

%

ug/L

ug/L

ug/L

ug/L

0.010

0.010

0.080

2.4

0.010U

0.010U

0.080U

2.4U

Decachlorobiphenyl (S)
Synthetic Organics

Tetrachloro-m-xylene (S)

Aldrin

Dieldrin

Officions organiss							:		
Preparation:Method:EPA 55	M A	nalyti	cal Method	EPA-5311					
Carbofuran	0.25∪	3	ug/L	0.25	2.0	1	2/25/2009 15:30	2/28/2009 09:58	SU
Oxamyl	0.18U		ug/L	0.18	2.0	1	2/25/2009 15:30	2/28/2009 09:58	รบ
	27 C 17 22 C C C C C C C C C C C C C C C C C C	Y-2004	en en execute remains re		SCHOOLOGICE SHAMEN SHOWN OF SHALLS	HOLIFECTIO		teratrasterioromonomon	Cara-action reserve
Preparation Method EPA 508	A desired	nalyti	al Method	EPA 508310					
Alachlor	0.058U	3	ug/L	0.058	0.21	1	2/26/2009 10:00	2/26/2009 22:34	SU
Atrazine (Aatrex)	0.027U		ug/L	0.027	0.11	1	2/26/2009 10:00	2/26/2009 22:34	SU
gamma-BHC (Lindane)	0.0053U		ug/L	0.0053	0.021	1	2/26/2009 10:00	2/26/2009 22:34	SU
Chlordane(Technical)	0.037U		ug/L	0.037	0.21	1	2/26/2009 10:00	2/26/2009 22:34	SU
Endrin	0.0021U		ug/L	0.0021	0.011	1	2/26/2009 10:00	2/26/2009 22:34	SU
Heptachlor	0.0084U		ug/L	0.0084	0.042	1	2/26/2009 10:00	2/26/2009 22:34	SU
Heptachlor epoxide	0.0042U		ug/L	0.0042	0.021	1	2/26/2009 10:00	2/26/2009 22:34	SU
Hexachlorobenzene	0.026U		ug/L	0.026	0.11	1	2/26/2009 10:00	2/26/2009 22:34	SU
Hexachlorocyclopentadiene	0.022U		ug/L	0.022	0.11	1	2/26/2009 10:00	2/26/2009 22:34	SU
Methoxychlor	0.022U		ug/L	0.022	0.11	1	2/26/2009 10:00	2/26/2009 22:34	SU
Simazine (Princep)	0.026U		ug/L	0.026	0.074	1	2/26/2009 10:00	2/26/2009 22:34	SU
Toxaphene	0.23U		ug/L	0.23	1.1	1	2/26/2009 10:00	2/26/2009 22:34	SU
Polychlorinated Biphenyls-	0.11U		ug/L	0.11	0.11	1	2/26/2009 10:00	2/26/2009 22:34	SU
PCB\$			•					•	
Preparation Method/EPA/515	Kalen Kasara	31(4)	al Method:	EDA 51512		KENES.			
2,4-D	0.030Ų	3	ug/L	0.030	0.10	1	2/26/2009 09:00	2/27/2009 16:18	SU
Dalapon	0.66U		ug/L	0.66	1.0	1	2/26/2009 09:00	2/27/2009 16:18	su
Dinoseb	0.090U		ug/L	0.090	0.20	1	2/26/2009 09:00	2/27/2009 16:18	SU

0.040

0.10

0.20

6.0

1

1

2/26/2009 09:00

2/26/2009 09:00

2/26/2009 09:00

Report ID: 901840 - 4599317

Analytical Method, EPA 547

Pentachlorophenol

2,4,5-TP (Silvex)

Picloram

Glyphosate

Page 5 of 45

SU

SU

SU

SU

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901840001

Date Received: 2/19/2009

Matrix:

Drinking Water

Sample ID:

DELIGE EEEL HEN.

Date Collected: 2/19/2009

Sample ID: REUSE EFFL	LUENT/	•		Date Collec	cted: 2	2/19/2009		
Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Endothall	0.28U	3 ug/L	0.28	9.0	1	2/28/2009 09:00	2/28/2009 18:06	SU
tBréparation Mainodo⊞PA 54	9.2	malyilicaliMelijio	LEPA 549/2		10 T			
Diquat	0.22U	3 ug/L	0.22	0.40	1	2/25/2009 15:20	2/26/2009 19:46	SU
(Preparation Method) EPAS2	52 /	yalyilaliMeine	I EPA/525\2					
Benzo(a)pyrene	0.020U	3 ug/L	0.020	0.10	1	2/26/2009 13:00	2/27/2009 05:15	SU
Di(2-ethylhexyl)adipate	0.40U	3 ug/L	0.40	1.7	1	2/26/2009 13:00	2/27/2009 05:15	SU
Bis(2-Ethylhexyl)phthalate	1.601	V,3,I ug/L	0.52	2.1	1	2/26/2009 13:00	2/27/2009 05:15	SU
Volatiles					~~~			
Analytical Methods #PA 624								
1,2-Dichlorobenzene	0.584U	ug/L	0.584	1.00	1		2/21/2009 14:19	LN
Chloroethane	0.710U	ug/L	0.710	1.00	1		2/21/2009 14:19	LN
Chloroform	18.0	ug/L	0.572	1.00	1		2/21/2009 14:19	LN
cis-1,2-Dichloroethene	0.442U	ug/L	0.442	1.00	1		2/21/2009 14:19	LN
trans-1,2-Dichloroethene	0.410U	ug/L	0.410	1.00	1		2/21/2009 14:19	LN
Analytical Method, ERA 524	2	Table 194						
1,1,1-Trichloroethane	0.132U	ug/L	0.132	0.500	1	, , , , , , , , , , , , , , , , , , , ,	2/21/2009 06:12	LN
1,1,2-Trichloroethane	U880.0	ug/L	0.088	0.500	1		2/21/2009 06:12	LN
1,1-Dichloroethane	0.075U	ug/L	0.075	0.500	1		2/21/2009 06:12	LN
1,1-Dichloroethene	0.086U	ug/L	0.086	0.500	1		2/21/2009 06:12	LN
1,2,4-Trichlorobenzene	0.117U	ug/L	0.117	0.500	1		2/21/2009 06:12	LN
1,2-Dichlorobenzene	0.076U	ug/L	0.076	0.500	. 1		2/21/2009 06:12	LN
1,2-Dichloroethane	0.070U	ug/L	0.070	0.500	1		2/21/2009 06:12	LN
1,2-Dichloropropane	0.093U	ug/L	0.093	0.500	1		2/21/2009 06:12	LN
1,4-Dichlorobenzene	0.970	ug/L	0.150 ⁻	0.500	1	•	2/21/2009 06:12	LN
Benzene	0.077U	ug/L	0.077	0.500	1		2/21/2009 06:12	LN
Bromodichloromethane	4.88	ug/L	0.091	0.50	1		2/21/2009 06:12	LN
Bromoform	0.15U	ug/L	0.15	0.50	1		2/21/2009 06:12	LN
Carbon tetrachloride	0.134U	ug/L	0.134	0.500	1		2/21/2009 06:12	· LN
Chlorobenzene	0.113U	ug/L	0.113	0.500	1	,	2/21/2009 06:12	LN
Chloroform	16.2	ug/L	0.077	0.50	1		2/21/2009 06:12	LN
Dibromochloromethane	1.62	ug/L	0.15	0.50	1		2/21/2009 06:12	LN
Ethylbenzene	0.070U	ug/L.	0.070	0.500	1		2/21/2009 06:12	LN
Methylene chloride	0.117U	ug/L	0.117	0.500	1		2/21/2009 06:12	LN
Styrene	0.040U	ug/L	0.040	0.500	1		2/21/2009 06:12	LN
Tetrachloroethene	0.3901	ug/L	0.148	0.500	1		2/21/2009 06:12	LN .
Toluene	0.140U	ug/L	0.140	0.500	1		2/21/2009 06:12	LN
Trichloroethene	0.121U	ug/L	0.121	0.500	1		2/21/2009 06:12	LN
Total Trihalomethanes	22.7	ug/L	0.47	2.0	1		2/21/2009 06:12	LN
Vinyl chloride	0.120U	ug/L	0.120	0.500	1 -	•	2/21/2009 06:12	LN
Xylene, m,p-	0.134U	ug/L	0.134	0.500	1		2/21/2009 06:12	LN
Xylene, o-	0.083U	ug/L	0.083	0.500	1		2/21/2009 06:12	LN
Xylenes (total)	0.210U	ug/L	0.210	0.500	1		2/21/2009 06:12	LN

Report ID: 901840 - 4599317

Page 6 of 45

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

> > LN

ANALYTICAL RESULTS

Lab ID:

901840001

1,2-Dichlorobenzene-d4 (S)

Date Received: 2/19/2009

Matrix:

Drinking Water

2/21/2009 06:12

Sample 1D:

REUSE EFFLUENT/

Date Collected: 2/19/2009

Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	Ву
cis-1,2-Dichloroethene	0.085U	ug/L	0.085	0.500	1		2/21/2009 06:12	LN
trans-1,2-Dichloroethene	0.087U	ug/L	0.087	0.500	1		2/21/2009 06:12	LN
Analytical Method EPA 624								
4-Bromofluorobenzene (S)	95	%	64-130		318.55 1		2/21/2009 14:19	LN
	117	%	69-134		1		2/21/2009 14:19	LN
Dibromofluoromethane (S)	1 1 7							

70-130

Results

0.121U

0.47U

0.120U

0.134U

0.083U

0.210U

0.085U

0.087U

86

95

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

%

%

0.121

0.47

0.120

0.134

0.083

0.210

0.085

0.087

70-130

70-130

Qual Units

MDL

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431

> Phone: (561) 447-7373 Fax: (561) 447-7374

> > Ву

LN

ANALYTICAL RESULTS

Lab ID:

901840002

Date Received: 2/19/2009

PQL

Matrix:

DI Water

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

2/21/2009 01:59

Analyzed

Sample ID:

Parameters

TRIP BLANK/

Date Collected: 2/14/2009

DF

Prepared

Volatiles 1,1,1-Trichloroethane 0.132U ug/L 0.132 0.500 2/21/2009 01:59 IN ug/L U880.0 0.088 0.500 1,1,2-Trichloroethane 1 2/21/2009 01:59 LN ug/L 1.1-Dichloroethane 0.075U 0.075 0.500 1 2/21/2009 01:59 LN 1,1-Dichloroethene 0.086U 0.086 0.500 2/21/2009 01:59 ug/L LN 1,2,4-Trichlorobenzene 0.117U ug/L 0.117 0.500 2/21/2009 01:59 LN 1,2-Dichlorobenzene 0.076U ug/L 0.076 0.500 2/21/2009 01:59 LN ug/L 1.2-Dichloroethane 0.070U 0.070 0.500 2/21/2009 01:59 IN 1.2-Dichloropropane 0.093U ua/L 0.093 0.500 2/21/2009 01:59 LN 1,4-Dichlorobenzene 0.150U ug/L 0.150 0.500 2/21/2009 01:59 LN Benzene 0.077U ug/L 0.077 0.500 2/21/2009 01:59 LN Bromodichloromethane 0.091U ug/L 0.091 0.50 2/21/2009 01:59 LN Bromoform 0.1511 ug/L 0.50 2/21/2009 01:59 0.15IN Carbon tetrachloride 0.134U ug/L 0.134 0.500 2/21/2009 01:59 LN Chlorobenzene 0.113U ug/L 0.113 0.500 2/21/2009 01:59 LN Chloroform 0.077U ug/L 0.077 0.50 2/21/2009 01:59 LN Dibromochloromethane ug/L 0.15U 0.15 0.50 2/21/2009 01:59 LN 0.070U ug/L 0.070 0.500 2/21/2009 01:59 LN Ethylbenzene 0.117U 0.117 0.500 Methylene chloride ug/L 2/21/2009 01:59 LN Styrene 0.040U ug/L 0.040 0.500 2/21/2009 01:59 LN Tetrachloroethene 0.148U ug/L 0.1480.500 2/21/2009 01:59 LN Toluene 0.140U 0.140 0.500 LN ug/L 2/21/2009 01:59

0.500

0.500

0.500

0.500

0.500

0.500

0.500

1

2.0

EDB Analysis

Trichloroethene

Vinyl chloride

Xylene, m,p-

Xylenes (total)

Xylene, o-

Total Trihalomethanes

cis-1,2-Dichloroethene

trans-1,2-Dichloroethene

4-Bromofluorobenzene (S)

1,2-Dichlorobenzene-d4 (S)

Preparation Method EPA 50	4 - Analy	ical Method	EPA 504					
1,2-Dibromo-3-	0.00310U	ug/L	0.00310	0.020	1	2/23/2009 17:00	2/23/2009 23:37	LR
chloropropane		•						
1,2-Dibromoethane	0.00640U	ug/L	0.00640	0.010	1	2/23/2009 17:00	2/23/2009 23:37	LR
4-Bromofluorobenzene (S)	81	%	70-130		1	2/23/2009 17:00	2/23/2009 23:37	LR

Report ID: 901840 - 4599317

Page 8 of 45

Estimated value; between MDL and PQL

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

ı

J	Estimated value.
٧	Present in blank.
[1]	E86772
[2]	The reported analyte is not NELAC certified
[3]	E83079
[4]	NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Report ID: 901840 - 4599317

> Phone: (561) 447-7373 Fax: (561) 447-7374

CASE NARRATIVE

Sample Analysis Comments

Lab ID 901840001 Client ID REUSE EFFLUENT

Analyte/2,3,7,8-TCDD

The reported analyte is not NELAC certified

Analyte/2,4-D

[3] E83079

Analyte/Alachlor

[3] E83079

Analyte/Asbestos

[1] E86772

Analyte/Benzo(a)pyrene

[3] E83079

Analyte/Bis(2-Ethylhexyl)phthalate

[3] E83079

I = Estimated value, between MDL and PQL

V = Present in blank.

Analyte/Carbofuran

[3] E83079

Analyte/Di(2-ethylhexyl)adipate

[3] E83079

Analyte/Dieldrin

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Diquat

[3] E83079

Analyte/Endothail

[3] E83079

Analyte/Glyphosate

[3] E83079

Report ID: 901840 - 4599317

Page 10 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/1744 .

Analysis Method:

EPA 625

QC Batch Method: **EPA 625**

Associated Lab Samples:

901780001 901850002

901839001 901850003 901840001

901842001

901843002

901850001

METHOD BLANK: 17506

METHOD BLANK: 17506					-		
		Blank	Reporting	_			
Parameter	Units	Result	Limit Qualit	fiers			
Semivolatiles							•
Anthracene	ug/L	0.25U	0.25				
Benzo(a)pyrene	ug/L	0.31U	0.31				
Bis(2-Ethylhexyl)phthalate	ug/L	0.20U	0.20				
Butyl benzyl phthalate	ug/L	0.36U	0.36				
1,2-Dichlorobenzene	ug/L	0.34U	0.34				
1,4-Dichlorobenzene	ug/L	0.28U	0.28		•		
Dimethyl phthalate	ug/L	0.31U	0.31				
Hexachlorobenzene	ug/L	0.32U	0.32				
Hexachlorocyclopentadiene	ug/L	0.74U	0.74				
Naphthalene	ug/L	0.34U	0.34	•			
Phenanthrene	ug/L	0.29U	0.29				
1,2,4-Trichlorobenzene	ug/L	0.23U	0.23				
2-Chiorophenoi	ug/L	0.22U	0.22			•	•
Pentachlorophenol	ug/L	0.67∪	0.67				-
Phenol	ug/L	0.41U	0.41				
2,4,6-Trichlorophenoi	ug/L	0.27U	0.27				
Nitrobenzene-d5 (S)	%	83	10-117				
2-Fluorobiphenyl (S)	%	83	10-112				
Terphenyl-d14 (S)	%	111	20-146				-
Phenol-d6 (S)	%	33	10-59			**	•
2-Fluorophenol (S)	%	46	24-64				
2,4,6-Tribromophenol (S)	%	95	52-121				

LABORATORY CONTROL SAMPLE: 17507

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Semivolatiles .					· · · · · · · · · · · · · · · · · · ·	
Anthracene	ug/L	50	45.4	91	27-133	
Benzo(a)pyrene	ug/L	50	44.4	89	17-163	
Butyl benzyl phthalate	ug/L	50	52.7	105	0-152	
Bis(2-Ethylhexyl)phthalate	ug/L	50	57.9	116	8-158	
1,2-Dichlorobenzene	ug/L	50	33.9	68	32-129	
Dimethyl phthalate	ug/L	50	44.9	90	0-112	
lexachlorobenzene	ug/L	50	42.6	85	0-152	
lexachlorocyclopentadiene	ug/L	50	22.2	44	10-115	
laphthalene	ug/L	50	37.3	75	21-133	
Phenanthrene	ug/L	50	43.9	. 88	54-120	
2,4,6-Trichlorophenol	ug/L	50	40.6	81	37-144	

Report ID: 901840 - 4599317

Page 11 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17507

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Phenol	ug/L	50	18.3	37	5-112	
2-Chlorophenol	ug/L	50	34.5	69	23-134	
1,4-Dichlorobenzene	ug/L	50	33.9	68	20-124	
1,2,4-Trichlorobenzene	ug/L	50	35.1	70	44-142	
Pentachlorophenol	ug/L	50	48.4	97	14-176	
Nitrobenzene-d5 (S)	%			82	39-117	
2-Fluorobiphenyl (S)	%		•	83	40-112	
Terphenyl-d14 (S)	%			112	31-146	
Phenol-d6 (S)	%.	•		39	10-59	
2-Fluorophenol (S)	%			49	24-64	
2,4,6-Tribromophenol (S)	%			102	52-121	•

MATRIX SPIKE & MATRIX S	PIKE DUPLICATE: 17508			1750	17509		Original: 901791008				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Semivolatiles							_				
Anthracene	ug/L	0.0575	50	42.2	43.2	84	86	27-133	2	20	
Benzo(a)pyrene	ug/L	0.0785	50	42.2	43.7	84	87	17-163	4	20	
Butyl benzyl phthalate	ug/L	0	50	51.0	50.9	. 102	102	0-152	0	20	
Bis(2-Ethylhexyl)phthalate	ug/L	0	50	55.1	54.6	110	109	8-158	0.9	20	
1,2-Dichlorobenzene	ug/L	0	50	31.4	32.1	63	64	32-129	2	20	
Dimethyl phthalate	ug/L	0.0703	50	41.5	42.9	83	86	0-112	4	20	
Hexachlorobenzene	ug/L	0	50	39.1	39.4	78	79	0-152	1	20	,
Hexachlorocyclopentadiene	ug/L	0	50	18.4	19.9	37	40	10-115	8	20	- 1
Naphthalene	ug/L	0	50	33.7	33.9	67	68	21-133	1	20	}
Phenanthrene	ug/L	0.0608	50	41.5	41.9	83	84	54-120	1	20	
2,4,6-Trichlorophenol	ug/L	0	50	37.5	38.8	75	78	37-144	4	20	
Phenol	ug/L	0	50	16.9	16.9	34	34	5-112	0	20	
2-Chlorophenol	ug/L	0	50	31.3	32.9	63	66	23-134	5	20	
1,4-Dichlorobenzene	ug/L	0	50	30.4	31.5	61	63	20-124	3	20	
1,2,4-Trichlorobenzene	ug/L	0	50	31.4	32.6	63	65	44-142	3	20	
Pentachiorophenol	ug/L	0	50	46.9	46.3	94	93	14-176	1	20	
Nitrobenzene-d5 (S)	%					74	74	39-117	0		
2-Fluorobiphenyl (S)	%					76	80	40-112	5		
Terphenyl-d14 (S)	% .					106	105	31-146	0.9		
Phenol-d6 (S)	%					36	36	10-59	0		
2-Fluorophenol (S)	%				•	46	47	24-64	2		
2,4,6-Tribromophenol (S)	%					97	93	52-121	4		

Report ID: 901840 - 4599317

Page 12 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/1746

Analysis Method:

EPA 504

QC Batch Method:

EPA 504

901742002

901742001 901838001

Units

%

901838002

901780001

901780002

901835001

901835003

Associated Lab Samples:

901852002

901852003

Blank

901840001 901872001 901840002 901872002 901842001 901873001 901852001 901873002

METHOD BLANK: 17514

4-Bromofluorobenzene (S)

Reporting

Result

Limit Qualifiers

EDB Analysis

Parameter

1,2-Dibromo-3-chloropropane ug/L 1,2-Dibromoethane ug/L

0.00310U 0.00640U 78 0.00310 0.00640 70-130

LABORATORY CONTROL SAMPLE & LCSD: 17515

17516

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
EDB Analysis 1,2-Dibromo-3-chloropropane	ug/L	0.252	0.278	0.287	110	114	72-150	· 4	20	
1,2-Dibromoethane 4-Bromofluorobenzene (S)	ug/L %	0.252	0.288	0.288	114 78	114 77	78-142 70-130	0	20 20	,

MATRIX SPIKE SAMPLE: 17517

Original: 901791009

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
EDB Analysis 1,2-Dibromo-3-	ug/L	0	0.252	0.287	114	70-130	
chloropropane 1,2-Dibromoethane 4-Bromofluorobenzene (S)	ug/L %	0	0.252	0.288	114 76	70-130 70-130	•

SAMPLE DUPLICATE: 17518

Original: 901742001

Parameter	Units	Original [.] Result	DUP Result	RPD	Max RPD Qualifiers
EDB Analysis					
1,2-Dibromo-3- chloropropane	ug/L	0.00310U	0.00310U	0	
1,2-Dibromoethane	ug/L	0.00640U	0.00640U	0	
4-Bromofluorobenzene (S)	%	76	72	6	

Report ID: 901840 - 4599317

Page 13 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

901842001

QC Batch:

MISC/1114

Analysis Method:

SM 2150 B

901852001

QC Batch Method: SM 2150 B Associated Lab Samples:

901840001

901852002

METHOD BLANK: 17677

Parameter

Reporting

Limit Qualifiers

Wet Chemistry

Odor

TON

Units

901835002

10

Blank

Result

1

SAMPLE DUPLICATE: 17678

Original: 901840001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualif	fiers	
Wet Chemistry Odor	TON	16.0	16.0	0	20	,	

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/1768

Analysis Method:

EPA 365.1

QC Batch Method: Associated Lab Samples:

EPA 365.1

901818001

mg/L-P

901822001

901840001

901842001

METHOD BLANK: 17679

Blank

Reporting

Parameter Units Result

Limit Qualifiers

Wet Chemistry

Ortho Phosphate - P

0.005U

0.005

LABORATORY CONTROL SAMPLE & LCSD: 17680

17681

LCS LCSD Spike LCS LCSD % Rec Max **Parameter** Units Result Result % Rec % Rec Limit RPD **RPD** Qualifiers Conc. Wet Chemistry Ortho Phosphate - P 0.5 0.520 0.521 104 104 Q 20 mg/L-P 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17682

17683

Original: 901818001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS .% Rec	MSD % Rec	% Rec Limit F	RPD	Max RPD Qualiflers	
Wet Chemistry Ortho Phosphate - P	mg/L-P	0.247	0.5	0.768	0.770	104	105	90-110	1	20	

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

HACH/1120

Analysis Method:

SM 2120B Color

QC Batch Method: Associated Lab Samples:

SM 2120B Color

901780001

901835001

901840001

901842001

METHOD BLANK: 17684

Parameter

Reporting

Units

Blank Result

Limit Qualifiers

Wet Chemistry

Color (True/Apparent)

pcu

5.0U

5.0

SAMPLE DUPLICATE: 17685

Original: 901780001

Original Units Result Parameter

DUP Result

Max RPD

0

RPD Qualifiers

Wet Chemistry Color (True/Apparent)

pcu

300 300

20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1602

Analysis Method:

EPA 200.7

QC Batch Method:

: EPA 200.7

901826001

901827001

901828002

901828004

901829001

901835001

901823001 901835001 901850003

901838001 901840001

901842001

901850001

901850002

METHOD BLANK: 17690

Associated Lab Samples:

Parameter	Units	Blank Reşult	Reporting Limit Qualifiers			
Aluminum	mg/L	0.046U	0.046			
Chromium	mg/L	0.0011U	0.0011	**		
Copper i	mg/L	0.0096U	0.0096			
Iron	mg/L	0.045U	0.045			
Nickel	mg/L	0.0052U	0.0052			
Silver	mg/L	0.0016U	0.0016			
Sodium	mg/L	0.074U	0.074			
Zinc	mg/L	0.0053U	0.0053			

LABORATORY CONTROL SAMPLE: 17691

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Aluminum	. mg/L	5	5.16	103	70-130	
Chromium	mg/L	1	1.05	105	70-130	
Соррег	mg/L	1	1.06	106	70-130	
Iron	mg/L	5	5.34	107	70-130	
Nickel	mg/L	1	1.05	105	70-130	
Silver	mg/L	0.5	0.577	115	70-130	
Sodium	mg/L	25	27.4	109	70-130	
Zinc	mg/L	1	1.06	106	70-130	

MATRIX SPIKE & MA	ATRIX SPIKE DUI	PLICATE: 176	92	1769	3	Origi	nal: 9018	38001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD	Qualifiers
Aluminum	mg/L	0.112	5	5.42	5.45	106	107	70-130	0.9	20	
Chromium	mg/L	0.00445	· 1	1.06	1.08	105	107	70-130	2	20	
Copper	mg/L	0.00733	1	1.07	1.08	107	108	70-130	0.9	20	•
Iron	mg/L	0.193	5	5.50	5.38	106	104	70-130	2	20	
Nickel	mg/L	0.00367	1	1.04	1.05	104	105	70-130	1	20	
Silver	mg/L	-0.00322	0.5	0.605	0.580	121	116	70-130	4	20	
Sodium	mg/L	238	25	257	252	. 80	58	70-130	32	20	
Zinc	mg/L	0.0633	1	1.14	1.16	107	109	70-130	2	· 20	

Report ID: 901840 - 4599317

Page 17 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1603

Analysis Method:

EPA 200.8

QC Batch Method:

EPA 200.8

901738002

•

901742002

901802001

901835001

Associated Lab Samples:

901738001 901838001

901850002

901738002 901839001 901850003 901742001 901840001

901842001

901843002

901850001

METHOD BLANK: 17694

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Antimony	mg/L	0.0010U	0.0010	
Arsenic	mg/L	0.0016U	0.0016	
Barium	mg/L	0.0015U	0.0015	
Beryllium	mg/L	0.00085U	0.00085	
Cadmium	mg/L	0.00011U	0.00011	
Lead	mg/L	0.00075U	0.00075	
Manganese	mg/L	0.0011U	0.0011	
Selenium	mg/L	0.00082U	0.00082	
Thallium	mg/L	0.00027U	0.00027	

LABORATORY CONTROL SAMPLE: 17695

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Antimony	mg/L	0.2	0.216	108	85-115	
Arsenic	mg/L	0.2	0.207	104	85-115	
Barium	mg/L	0.2	0.204	102	85-115	,
Berylliùm	mg/L	0.2	0.208	104	85-115	
Cadmium	mg/L	0.2	0.202	101	85-115	
Lead	mg/L	0.2	0.214	107	85-115	
Manganese	mg/L	0.2	0.210	105	85-115	:
Selenium	mg/L	0.2	0.199	100	85-115	ı
Thallium	mg/L	0.2	0.211	. 106	85-115	

MATRIX SPIKE & MA	ATRIX SPIKE DUF	LICATE: 1769	9 6 	1769	7	Origi	nal: 9018	38001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qua	alifiers
Antimony	mg/L			0.214	0.222					Q	
Arsenic	mg/L			0.200	0.205					Q	•
Barium	mg/L	0.00704	0.2	0.201	0.208	97	101	70-130	4	20 Q	
Beryllium	mg/L			0.202	0.207					Q	
Cadmium	mg/L			0.188	. 0.198					Q	
Lead	mg/L			0.212	0.215					Q	
Manganese	mg/L	0.0177	0.2	0.207	0.208	95	95	70-130	0	20 Q	
Selenium	mg/L			0.187	0.195					Q	

Report ID: 901840 - 4599317

Page 18 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17696

17697

Original: 901838001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec M Limit RPD RF		
Thallium	mg/L			0.209	0.210				Q	

Report ID: 901840 - 4599317

Page 19 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MSV/1447

Analysis Method:

EPA 624

QC Batch Method: EPA 624

Associated Lab Samples: 901840001

901843001

901850001

901850004

901852001

901853005

			47700
METHOD	HI.	ANA:	177UZ

		Blank	Reporting				
Parameter	Units	Result	Limit Qual	ifiers			
Volatiles			-			·	······
Acrolein	ug/L	2.47U	2.47				
Dichlorodifluoromethane	ug/L	0.525U	0.525				
Chloromethane	ug/L	0.524U	0.524				
Vinyl chloride	ug/L	0.506U	0.506				
Bromomethane	ug/L	0.427U	0.427				
Chloroethane	ug/L	0.710U	0.710				
Trichlorofluoromethane	ug/L	0.493U	0.493				•
1,1-Dichloroethene	ug/L	0.640U	0.640				
Acetone	ug/L	5.921	1.43 J			÷	
Methylene chloride	ug/L	0.240U	0.240				
trans-1,2-Dichloroethene	ug/L	0.410U	0.410			•	
Acrylonitrile	ug/L	0.955U	0.955				
1,1-Dichloroethane	ug/L	0.410U	0.410				
cis-1,2-Dichloroethene	ug/L	0.442U	0.442				
2-Butanone	ug/L	4.28U	4.28				
Chloroform	ug/L	0.572U	0.572				
1.1.1-Trichloroethane	ug/L	U086.0	0.680				
Carbon tetrachloride	ug/L	0.468U	0.468 .				
Benzene	ug/L	0.621U	0.621				
1,2-Dichloroethane	ug/L	0.897U	0.897				
Trichloroethene	ug/L	0.821U	0.821		•		
1,2-Dichloropropane	ug/L	0.725U	0.725				
2-Chloroethylvinyl ether	ug/L	0.466U	0.466				
Bromodichloromethane	ug/L	0.140U	0.140				
cis-1,3-Dichloropropene	ug/L	0.664U	0.664				
4-Methyl-2-pentanone	ug/L	0.220U	0.220				
Toluene	ug/L	0.389U	0.389				
trans-1,3-Dichloropropene	ug/L	0.522U	0.522				
1,1,2-Trichloroethane	ug/L	0.840U	0.840				•
Tetrachloroethene	ug/L	0.312U	0,312				
Dibromochloromethane	ug/L	0.378U	0.378				
Chlorobenzene	ug/L .	0.316U	0.316				
1,1,1,2-Tetrachloroethane	ug/L	0.120U	0.120				
Ethylbenzene	ug/L	0.323U	0.323				
Bromoform	ug/L	0.486U	0.486				
1,1,2,2-Tetrachloroethane	ug/L	0.570U	0.570				
1,4-Dichlorobenzene	ug/L	0.537U	0.537				
n-Butylbenzene	ug/L	0Y					
1,2-Dichlorobenzene	ug/L	0.584U	0.584				
Naphthalene	ug/L	0.417U	0.417				
Methyl-t-butyl ether	ug/L	0.650U	. 0.650				` '
Xylene, m.p-	ug/L	0.639U	0.639	•			
Xylene, o-	ug/L	0.341U	0.341				
•				•		•	

Report ID: 901840 - 4599317

Page 20 of 45

CERTIFICATE OF ANALYSIS

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 17702

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
1,2,4-Trimethylbenzene	ug/L	0.272U	0.272	
1,3,5-Trimethylbenzene	ug/L	0.202U	0.202	
1,3-Dichloropropane	ug/L	0Y		
cis-1,4-Dichloro-2-Butene	ug/L	0Y		
1,1-Dichloropropene	ug/L	0.630U	0.630	
2-Hexanone	ug/L	0Y		
2,2-Dichloropropane	ug/L	0Y		,
Ethyl tert-butyl ether (ETBE)	ug/L	0Y	•	
n-Butyl alcohol	ug/L	8.50U	8.50	
Methyl iodide	ug/L	0Y		
Dibromomethane	ug/L	0.739U	0.739	
Bromochloromethane	ug/L	0Υ		•
Carbon disulfide	ug/L	0Υ		
t-Butanol (TBA)	ug/L	0Y		
Trichlorotrifluoroethane	ug/L	0Y		
1,2,3-Trichlorobenzene	ug/L	0Y		
sec-Butylbenzene	ug/L	0Y		
1,4 Dioxane	ug/L	0Y		
1,2,4-Trichlorobenzene	ug/L	0.538U	0.538	•
trans-1,4-Dichloro-2-butene	ug/L	0Y		
Bromobenzene	ug/L	0Y		
diisopropyl Ether (DIPE)	ug/L	0Y		
Vinyl acetate	ug/L	0Y		•
1,2-Dibromoethane	ug/L	0Y		
4-Chlorotoluene	ug/L	OY.		
t-amyl methyl ether (TAME)	ug/L	0Y		
Styrene	ug/L	0.458U	0.458	
n-Propylbenzene	ug/L	0Y		•
4-Isopropyltoluene	ug/L	OY		' ,
Isopropylbenzene (Cumene)	ug/L	0.209U	0.209	
2-Chlorotoluene	ug/L	0Y		
1,2-Dibromo-3-chloropropane	ug/L	0.933U	0.933	• •
1,2,3-Trichloropropane	ug/L	0Y		• •
tert-Butylbenzene	ug/L	0Y		
4-Bromofluorobenzene (S)	%	93	64-130	
Dibromofluoromethane (S)	%	111	69-134	
Toluene d8 (S)	%	97	63-127	

LABORATORY CONTROL SAMPLE: 17703

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
Volatiles	ua/l	100	62.0	62	2.02
Acrolein Dichlorodifluoromethane	ug/L ug/L	20	63.2 23.0	63 115	2-93 46-174
Chloromethane	ug/L	20	22.2	111	46-173

Report ID: 901840 - 4599317

Page 21 of 45

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17703

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Vinyl chloride	ug/L	20	23.6	118	60-162	
Bromomethane	ug/L	20	18.0	90	33-170	
Chloroethane	ug/L	20	28.1	141	50-163	
Trichlorofluoromethane	ug/L	20	23.7	118	52-173	
1,1-Dichloroethene	ug/L	20	21.7	109	54-157	
Acetone	ug/L	50	57.6	115	70-130	
Methylene chloride	ug/L	20	23.0	115	42-182	
trans-1,2-Dichloroethene	ug/L	20	23.0	115	49-164	
Acrylonitrile	ug/L	100	111	111	3-107 5,J	
1,1-Dichloroethane	ug/L	20	22.1	111	60-167	
cis-1,2-Dichloroethene	ug/L	20	20.8	104	51-157	
2-Butanone	ug/L	50	48.4	97	49-145	
2-Butanone Chloroform	ug/L	20	20.5	102	60-164	
1,1,1-Trichloroethane	ug/L	20	20.2	101	45-154	
	ug/L ug/L	20	21.0	105	45-154 45-154	
Carbon tetrachloride	-		20.0		59-158	
Benzene	ug/L	20	20.0 22.1	100		
1,2-Dichloroethane	ug/L	20		110	45-166	
Trichloroethene	ug/L	20	20.3	101	59-152	
1,2-Dichloropropane	ug/L	20	21.0	105	65-155	
2-Chloroethylvinyl ether	ug/L	20	19.8	99	2-176	
Bromodichloromethane	ug/L	20	20.3	101	64-146	
cis-1,3-Dichloropropene	ug/L	20	20.9	105	53-146	
4-Methyl-2-pentanone	ug/L	50	50.4	101	70-130	
Toluene	ug/L	20	21.4	107	62-149	
trans-1,3-Dichloropropene	ug/L	20	20.0	100	51-150	
1,1,2-Trichioroethane	ug/L	20	22.7	113	62-159	
Tetrachloroethene	ug/L	. 20	19.1	96	50-150	
Dibromochloromethane	ug/L	· 20	20.2	101	51-139	
Chlorobenzene	ug/L	20.	20.4	102	64-144	
1,1,1,2-Tetrachloroethane	ug/L	20	20.8	104	70-130	
Ethylbenzene	ug/L	20	21.3	106	59-149	
Bromoform	ug/L	20	15.3	76	16-166	
1,1,2,2-Tetrachloroethane	ug/L	20	18.7	94	52-177	
1,4-Dichlorobenzene	ug/L	20	18.6	93	60-142	
n-Butylbenzene	ug/L	20	19.4	97		
1,2-Dichlorobenzene	ug/L	20	18.8	94	63-139	
Naphthalene	ug/L	20	19.1	96		
Methyl-t-butyl ether	ug/L	20	20.9	105	48-172	
Xylene, m,p-	ug/L	40 .	43.2	108	57-153	
Xylene, o-	ug/L	20	20.3	101	69-144	
1,2,4-Trimethylbenzene	ug/L	20	20.3	102	70-130	
1,3,5-Trimethylbenzene	ug/L	20	. 21.1	105	70-130	
1,3-Dichloropropane	ug/L	20	20.3	101		•
cis-1,4-Dichloro-2-Butene	ug/L	20	14.2	71	,	
1,1-Dichloropropene	ug/L	20	20.9	105	•	
2-Hexanone	ug/L	50	49.7	99		
2,2-Dichloropropane	ug/L	20	19.4	97		
Ethyl tert-butyl ether (ETBE)	ug/L	. 20	22.5	112	•	

Report ID: 901840 - 4599317

Page 22 of 45

CERTIFICATE OF ANALYSIS

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17703

	•	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
n-Butyl alcohol	ug/L	50	42.5	85	70-130
Methyl iodide	ug/L	20	11.8	59	
Dibromomethane	ug/L	20	20.5	103	
Bromochloromethane	ug/L	20	20.4	102	
Carbon disulfide	ug/L	20	24.2	121	
t-Butanol (TBA)	ug/L	500	501	100	
Trichlorotrifluoroethane	ug/L	20	20.7	104	
1,2,3-Trichlorobenzene	ug/L	20	19.1	96	
sec-Butylbenzene	ug/L	20	19.6	98	
1,4 Dioxane	ug/L	500	465	93	
1,2,4-Trichlorobenzene	ug/L	- 20	16.7	84	
trans-1,4-Dichloro-2-butene	ug/L	20	15.8	79	
Bromobenzene	ug/L	20	18.4	92	
diisopropyl Ether (DIPE)	ug/L	20	21.7	109	
Vinyl acetate	ug/L	20	19.5	98	
1,2-Dibromoethane	ug/L	20	20.1	100	
4-Chlorotoluene	ug/L	20	19.6	98	
t-amyl methyl ether (TAME)	ug/L	20	20.2	101	•
Styrene	ug/L	20	17.9	89	70-130
n-Propylbenzene	ug/L	20	19.6	98	•
4-Isopropyltoluene	ug/L	20 ·	17.9	90	
Isopropylbenzene (Cumene)	ug/L	20	18.6	93	70-130
2-Chlorotoluene	ug/L	. 20	19.5	97	•
1,2-Dibromo-3- chloropropane	ug/L	20 .	16.9	84	70-130
1,2,3-Trichloropropane	ug/L	20	18.1	90	•
tert-Butylbenzene	ug/L	20	20.3	102	•
4-Bromofluorobenzene (S)	%			95	64-130
Dibromofluoromethane (S)	%			105	69-134
Toluene d8 (S)	%			103	63-127

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17704				1770	5 .	Origi	nal: 9018	50001	,	
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualiflers
Volatiles				-				•		
Acrolein	ug/L	0	100	54.2	55.4	54	55	2-93	2	20
Dichlorodifluoromethane	ug/L	0	20	18.6	18.6	93	93	46-174	0	20
Chloromethane	ug/L	0	20	21.8	23.2	109	116	46-173	.6	20
Vinyi chloride	ug/L	0	20	21.3	21.1	106	106	60-162	0	20
Bromomethane	ug/L	0	20	21.0	26.6	105	133	33-170	24	20 J,7
Chloroethane	ug/L	0	20	25.5	25.5	127	127	50-163	0	20
Trichlorofluoromethane	ug/L	0	20	21.5	20.4	108	102	52-173	6	20
1,1-Dichloroethene	ug/L	0	20	17.5	17.8	87	89	54-157	2	20

Report ID: 901840 - 4599317

Page 23 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17704

17705

Original: 901850001

Parameter	Units	Original Resu l t	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec	RPD	Max	Qualifiers	
			50	59.3					· · ·		Qualiford	
Acetone	ug/L	15.6 0	20	22.5	56.7 20.4	87 112	82 102	24-225	6 9			
Methylene chloride	ug/L	0				94		42-182				
trans-1,2-Dichloroethene	ug/L		. 20	18.8	19.4		97	49-164	3		•	
Acrylonitrile	ug/L	0	100	104	104	104	104	3-107	0			
1,1-Dichloroethane	ug/L	0	20	19.4	19.1	97	95	60-167	2			
cis-1,2-Dichloroethene	ug/L	_	20	17.9	17.8	89	89	51-157	0			
2-Butanone	ug/L	0	50	41.3	40.4	83	81	49-145	2			
Chloroform	ug/L	2.93	20	21.1	20.8	91	89	60-164	2			
1,1,1-Trichloroethane	ug/L	0	20	16.6	16.5	83	83	45-154	0			
Carbon tetrachloride	ug/L	0	- 20	16.9	16.6	85	83	45-154	Ź.			
Benzene	ug/L	0	20	16.9	17.0	85	85	59-158	0			
1,2-Dichloroethane	ug/L	0	20	20.0	19.3	100	97	45-166	3			
Trichloroethene	ug/L	0	20	16.4	16.8	82	84	59-152	2			
1,2-Dichloropropane	ug/L	. 0	20	18.7	18.2	93	91	65-155	2			•
2-Chloroethylvinyl ether	ug/L	0	20	2.821	2.851	14	14	2-176	0			
Bromodichloromethane	ug/L	0.66	20	19.4	18.7	94	90	64-146	4			
cls-1,3-Dichloropropene	ug/L	0	20	16.1	16.1	81	80	53-146	1			
4-Methyl-2-pentanone	ug/L	0	50	38.8	39.9	78	80	48-140	3	20	÷	
Toluene	ug/L	0.44	20	17.9	18.2	87	89	62-149	2	20		
trans-1,3-Dichloropropene	ug/L	0	20	17.2	17.0	86	85	51-150	1	20		
1,1,2-Trichloroethane	ug/L	0	20	20.3	19.5	102	98	62-159	4	- 20		
Tetrachioroethene	ug/L	0.24	20	15.2	15.0	76	75	50-150	. 1	20		
Dibromochloromethane	ug/L	0.16	20	19.7	18.9	98	94	51-139	4	20		
Chlorobenzene	ug/L	0	20	17.5	17.9	· 87	89	64-144	. 2	20		
1,1,1,2-Tetrachloroethane	ug/L	0	20	18.3	18.7	92	93	70-130	1	20		
Ethylbenzene	ug/L	0	20	17.4	17.7	87	89	59-149	2	20		
Bromoform	ug/L	0	20	16.6	16.4	83	82	16-166	1	20		
1,1,2,2-Tetrachioroethane	ug/L	0	20	16.3	16.6	81	83	52-177	2	20		
1,4-Dichlorobenzene	ug/L	0.72	20	16.5	16.6	. 79	80	60-142	1	20		
n-Butylbenzene	ug/L	0	20	14.9	15.8	74	79		7			
1,2-Dichlorobenzene	ug/L	0	20	16.1	16.4	80	82	63-139	. 2	20		
Naphthalene	ug/L	0	20	14.4	16.1	72	80		11	20		
Methyl-t-butyl ether	ug/L	0	20	18.4	18.5	92	93	48-172	1	20		
Xylene, m,p-	ug/L	0	40	34.9	35.8	87	89	57-153	2	20		
Xylene, o-	ug/L	. 0	20	16.7	16.8	84	84	69-144	0	20		,
1,2,4-Trimethylbenzene	ug/L	0	20	16.0	16.9	80	84	70-130	5			
1,3,5-Trimethylbenzene	ug/L	0	20	16.2	17.0	81	85	70-130	5	20		
1,3-Dichloropropane	ug/L	. 0	20	18.0	18.0	90	90		ō			
cis-1,4-Dichloro-2-Butene	ug/L	.0	20	12.8	12.9	64	65		2			
1,1-Dichloropropene	ug/L	0	20	16.1	16.1	81	80		1	20		
2-Hexanone	ug/L	Ö	50	38.3	39.7	77	79		3		*	
2,2-Dichloropropane	ug/L	0	20	14.4	.14.2	72	71		1			
Ethyl tert-butyl ether (ETBE)	ug/L ug/L	. 0	20	19.3	19.4	96	97		1			
n-Butyl alcohol	ug/L ug/L	0	50	34.4	31.7	69	63	70-130	9	20		
•	ug/L ug/L	. 0	20	8.85	8.32	44	42	,0-130	5 5			
Methyl iodide	-	0	20 20	18.8	18.0	94	90		4			
Dibromomethane	ug/L	0	20 20									
Bromochloromethane	ug/L			17.9	17.8	90	89		1			
Carbon disulfide	ug/L	0	20	18.5	18.3	93	92		1			

Report ID: 901840 - 4599317

Page 24 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17704

17705

Original: 901850001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit R		Max PD Qualifiers
t-Butanol (TBA)	ug/L	2.71	500	421	417		83		1	
Trichlorotrifluoroethane	ug/L	0	20	16.1	15.9	. 80	80		Ó	
1,2,3-Trichlorobenzene	ug/L	ŏ	20	15.0	15.9	75	- 80		6	
sec-Butylbenzene	ug/L	ő	20	14.1	14.7	70	74		6	
1,4 Dioxane	ug/L	. 0:	500	371	382	74	76		3	
1.2.4-Trichlorobenzene	ug/L	ő	20	13.5	14.1	68	70		3	•
trans-1,4-Dichloro-2-butene	ug/L	ő	20	14.5	14.8	72	74		3	
Bromobenzene	ug/L	Ö	20	16.0	16.5	80	82		2	
diisopropyl Ether (DIPE)	ug/L	0	20	18.3	18.3	91	92		1	
Vinyl acetate	ug/L	0	20	17.3	17.1	86	86		ò	
1,2-Dibromoethane	ug/L	Ö	20	17.7	17.8	89	89		0	<i>p</i> -
4-Chlorotoluene	ug/L	0	20	16.2	16.5	81	83		2	
t-amyl methyl ether (TAME)	ug/L	0	20	17.3	17.4	87	87		0	
Styrene	ug/L	0	20	13.2	13.0	66	65	70-130	2	20 6,J
n-Propylbenzene	ug/L	0	20	15.4	16.0	77	80	70-130	4	20 0,5
4-Isopropyltoluene	ug/L	0	20	12.8	13.7	64	68		6	
sopropylbenzene	ug/L	0	20	14.0	14.8	70	74	70-130	6	20
(Cumene) 2-Chlorotoluene	!!	0	20	16.1	46.6	04	83			
z-Chlorotoldene 1,2-Dibromo-3- chloropropane	ug/L ug/L	. 0	20	14.5	16.6 15.5	81 72	78	70-130	2 8	20
1,2,3-Trichloropropane	ug/L	0	20	16.2	16.3	81	82		1	•
tert-Butylbenzene	ug/L	0	20	15.8	16.2	79	81		3	
4-Bromofluorobenzene (S)	%	95				93	98	64-130	5	20
Dibromofluoromethane (S)	%	114				107	105	69-134	2	20
Toluene d8 (S)	%	99				100	101	63-127	1	20

MATRIX SPIKE SAMPLE: 18015

Original: 901840001

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
Volatiles			,	· -		
Acrolein	ug/L	0 .	100	45.9	46	. 2-93
Dichlorodifluoromethane	· ug/L	0	20	20.6	103	46-174
Chloromethane	ug/L	0	20	26.0	130	46-173
Vinyl chloride	ug/L	0	20	22.7	113	60-162
Bromomethane	ug/L	0	20	19.6	98	33-170
Chloroethane	ug/L	0	20	25.0	125	50-163
Trichlorofluoromethane	ug/L	: 0	20	22.6	113	52-173
1,1-Dichloroethene	ug/L	. 0	20	17.8	89	54-157
Acetone	ug/L	5.93	50	58.4	105	24-225
Methylene chloride	ug/L	0	20	21.8	109	42-182
trans-1,2-Dichloroethene	ug/L	0 .	20	20.0	100	49-164
Acrylonitrile	ug/L	0	100	113	113	3-107 6,J
1,1-Dichloroethane	ug/L	0	20	20.1	100	60-167
cis-1,2-Dichloroethene	ug/L	0	20	19.2	96	51-157
2-Butanone	ug/L	0	50	46.8	94	49-145

Report ID: 901840 - 4599317

Page 25 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE SAMPLE: 18015

Original: 901840001

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
raiaillelei	UINS	Result	Conc.	Result	76 Rec	drints Quainters
Chloroform	ug/L	. 18	20	34.4	82	60-164
1,1,1-Trichloroethane	ug/L	0	20	17.5	87	45-154
Carbon tetrachloride	ug/L	0	20	17.6	88	45-154
Benzene	ug/L	0	20	17. 9	89	59-158
1,2-Dichloroethane	ug/L	0	20	20.7	103	45-166
Trichloroethene	ug/L	0	20	17.5	88	59-152
1,2-Dichloropropane	ug/L	0	20	19.7	98	65-155
2-Chloroethylvinyl ether	ug/L	0	20	2.841	-14	2-176
Bromodichloromethane	ug/L	5.59	20	24.5	95	64-146
cis-1,3-Dichloropropene	ug/L	· 0	20	17.3	86	53-146
4-Methyl-2-pentanone	ug/L	0	50	44.8	90	48-140
Toluene	ug/L	0.15	20	19.1	95	62-149
trans-1,3-Dichloropropene	ug/L	. 0	20	18.3	91	51-150
1,1,2-Trichloroethane	HO/I	0	20	21.3	107	62-159
Tetrachloroethene	ug/L	0.33	20	16.1	79	50-150
Dibromochloromethane	ug/L	1.58	20	22.1	102	51-139
Chlorobenzene	ug/L	0	20	18.9	94	64-144
1,1,1,2-Tetrachioroethane	ug/L	0	20	19.6	98	70-130
Ethylbenzene	ug/L	Ö	20	18.9	95	59-149
Bromoform	ug/L	Ö	20	17.2	86	16-166
1,1,2,2-Tetrachloroethane	ug/L	ő	20	18.5	92	52-177
1.4-Dichlorobenzene	ug/L	1.36	20	18.2	84	60-142
n-Butylbenzene	ug/L	0	20	16.4	82	00-142
1,2-Dichlorobenzene	ug/L	0	20	17.7	88	63-139
Naphthalene	ug/L	0	20	18.2	91	03-139
Methyl-t-butyl ether	•	0	20	19.9	99	48-172
	ug/L	0	40	38.0	95	
Xylene, m,p-	ug/L	0	20		95 91	57-153
Xylene, o-	ug/L		20	18.2		69-144
1,2,4-Trimethylbenzene	ug/L	0		17.3	86	70-130
1,3,5-Trimethylbenzene	ug/L	0	20	8.30	42	70-130 6,J
1,3-Dichloropropane	ug/L	. 0	20	19.5	97	•
cis-1,4-Dichloro-2-Butene	ug/L	0	20	14.1	70	
1,1-Dichloropropene	ug/L	0	20	17.3	86	
2-Hexanone	ug/L	, o	50	45.4	91	
2,2-Dichloropropane	ug/L	0	20	15.4	77	
Ethyl tert-butyl ether (ETBE)	ug/L	0	20	20.9	105	
n-Butyl alcohol	ug/L	0	50	37.4	75	70-130
Methyl iodide	ug/L	. 0	20	2.30	12	
Dibromomethane	ug/L	0	20	19.7	99	
Bromochloromethane	ug/L ′.	0	20	18.8	94	
Carbon disulfide	ug/L	0	20	19.4	97	
-Butanol (TBA)	ug/L	2.26	500	510	102	
Trichlorotrifluoroethane	ug/L	0	20	16.3	82	
1,2,3-Trichlorobenzene	ug/L	0	20	17.5	88	
sec-Butylbenzene	ug/L	0	20	16.0	80	
1,4 Dioxane	ug/L	0	500	454	91	
1,2,4-Trichlorobenzene	ug/L	Ō	20	15.2	76	
trans-1,4-Dichloro-2-butene	ug/L	Ö	20	15.6	78	

Report ID: 901840 - 4599317

Page 26 of 45

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE SAMPLE: 18015

Original: 901840001

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
Bromobenzene	ug/L	0	20	17.4	87	
disopropyl Ether (DIPE)	ug/L	0	20	20.1	101	•
Vinyl acetate	ug/L	0	· 20	5.19	26	
1,2-Dibromoethane	ug/L	0	20	19.0	95	•
4-Chlorotoluene	ug/L	0	20	17.6	88	
t-amyl methyl ether (TAME)	ug/L	0	20	19.0	. 95	
Styrene	ug/L	0	20	0.458U	0	70-130 6.J
n-Propylbenzene	ug/L	0	20	16.8	84	
4-Isopropyltoluene	ug/L	. 0	20	14.8	74	•
Isopropylbenzene (Cumene)	ug/L	0	20	15.5	78	70-130
2-Chlorotoluene	ug/L	0. ·	20	16.6	83	
1,2-Dibromo-3- chloropropane	ug/L	0	20	17.1	85	70-130
1,2,3-Trichloropropane	ug/L	0	20	18.0	90	
tert-Butylbenzene	ug/L	0	20	17.6	88	*
4-Bromofluorobenzene (S)	%	. 95			96	64-130
Dibromofluoromethane (S)	%	117			105	69-134
Toluene d8 (S)	%	100	•		100	63-127

Report ID: 901840 - 4599317

Page 27 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/1770

Analysis Method:

EPA 350.1

QC Batch Method:

EPA 350.1

901811001

901811002

901821001 901842001

901821002

901823001

901840001

METHOD BLANK: 17706

Associated Lab Samples:

Blank

901841006

Reporting

Parameter

Units

901841005

Result

Limit Qualifiers

Wet Chemistry

Ammonia

mg/L-N

0.02341

0.017

LABORATORY CONTROL SAMPLE & LCSD: 17707

17708

Parameter

Spike Units Conc.

mg/L-N

LCS Result LCSD LCS LCSD Result % Rec % Rec % Rec Limit Max

RPD Qualifiers

Wet Chemistry

Ammonia

2.5

2.70

2.70

108 108

90-110

0

RPD

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17709

17710

Original: 901810001

Parameter

Original Units Result Spike Conc. Result

MS MSD Result

MS % Rec

MSD % Rec % Rec Limit RPD RPD Qualifiers

Max

Wet Chemistry

Ammonia

mg/L-N

2.13 2.14 20

Report ID: 901840 ~ 4599317

Page 28 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1468

Analysis Method:

SM 5540 C

QC Batch Method:

SM 5540 C

901780001

901852002

Units

901835001 901872001

901838001 901873001

901840001

901842001

901852001

METHOD BLANK: 17734

Associated Lab Samples:

Parameter

Result

Blank Reporting

Limit Qualifiers

Wet Chemistry

Surfactants

mg/L-LA 0.040U

0.040

LABORATORY CONTROL SAMPLE & LCSD: 17735

17736

Spike Parameter Units Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

Max RPD

RPD Qualifiers

Wet Chemistry Surfactants

mg/L-LA

0.997

1

0.979 100

98 80-120

MS

101

% Reç

2

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17737

17738

Original: 901844002

MSD

% Rec

Original Spike MS Parameter Units Result Conc. Result Wet Chemistry Surfactants 0.271 1.28 mg/L-LA

1.27

MSD

Result

100 80-120

% Rec

20 1

Max Limit RPD RPD Qualifiers

Report ID: 901840 - 4599317

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/1758

Analysis Method:

EPA 608

Original: 901874005

QC Batch Method:

EPA 608

901839001 901850003 901840001 901852001 901842001 901852002 901843002 901853002 901850001 901910001

901850002 901910002

METHOD BLANK: 17796

Associated Lab Samples:

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Pesticides				
Aldrin	ug/L	0.00139U	0.00139	
Dieldrin	ug/L	0.00106U	0.00106	
Tetrachioro-m-xylene (S)	%	49	32-137	
Decachlorobiphenyl (S)	% ·	74	25-165	

LABORATORY CONTROL SAMPLE: 17797

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17798

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
Pesticides					
Aldrin	ug/L	0.1	0.058	58	43-149
Dieldrin	ug/L	. 0.1	0.079	79	47-162
Tetrachloro-m-xylene (S)	%			56	32-137
Decachlorobiphenyl (S)	%			91	25-165

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit R	RPD	Max RPD Qualifiers
Pesticides Aldrin	ua/l	n	0.1	0.060	0.058	60	58	43-149	3	35

17799

ug/L 0.077 0.071 77 71 47-162 8 Tetrachloro-m-xylene (S) 50 50 32-137 % 0 Decachlorobiphenyl (S) % 79 79 25-165 0

33

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1189

Analysis Method:

EPA 300.0

QC Batch Method: EPA 300.0
Associated Lab Samples: 9013

901784001 901838001 901842001 901821001 901840001 901852001 901821002 901841001 901852002 901823001 901841004 901854009

901831002 901841005 901855003 901835001 901841006 901872001

901873001

METHOD BLANK: 17825

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Wet Chemistry			
Nitrate	mg/L-N	0.007U	0.007
Nitrite	mg/L-N	0.005U	0.005
Fluoride	mg/L	0.030U	0.030
Sulfate	mg/L	0.076U	0.076

LABORATORY CONTROL SAMPLE & LCSD: 17826

17827

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Wet Chemistry			•				· - · · ·			
Nitrate	mg/L-N	2.5	2.58	2.61	103	104	90-110	1	20	
Nitrite	mg/L-N	2.5	2.44	2.46	97	98	90-110	1	20	
Fluoride	mg/L	2.5	2.54	2.59	102	104	90-110	1.9	20	
Sulfate	mg/L	7.5	7.64	7.69	102	103	90-110	1	20	

MATRIX SPIKE &	MATRIX SPIKE	E DUPLICATE: 17828
MICHIAL OF HAT O		- 001 60/11-, 11020

17829

Original: 901841001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry										<u></u>
Nitrate	mg/L-N	0	25	26.7	26.0	107	104	90-110	3	20
Nitrite	mg/L-N	0	25	25.7	23.9	103	96	90-110	7	20
Fluoride	mg/L			35.8	35.3					
Sulfate	mg/L			126	120					

Report ID: 901840 - 4599317

Page 31 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MSV/1452

Analysis Method:

QC Batch Method:

EPA 524.2

EPA 524.2

Associated Lab Samples:

901834001 901840002 901835002 901842001 901835003

901838001

901838002

901840001

901873001

901873002

901852001

901852002

901872001

901872002

METHOD BLANK: 17837

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Volatiles				
Vinyl chloride	ug/L	0.120U	0.120	•
1,1-Dichloroethene	ug/L	0.086Ú	0.086	
Methylene chloride	ug/L	0.117U	0.117	
trans-1,2-Dichloroethene	ug/L	0.087U	0.087	
cis-1,2-Dichloroethene	ug/L	0. 0 85U	0.085	
Chloroform	ug/L	0.077U	0.077	
1,2-Dichloroethane	ug/L	0.070U	0.070	•
1,1,1-Trichloroethane	ug/L	0.132U	0.132	
Benzene	ug/L	0.077U	0.077	
Carbon tetrachioride	ug/L	0.134U	0.134	
1,2-Dichloropropane	ug/L	0.093U	0.093	
Trichloroethene	ug/L	0.121U	0.121	
Bromodichloromethane	ug/L	0. 0 91U	0.091	
Toluene	ug/L	0.140U	0.140	
Dibromochloromethane	ug/L	0.15U	0.15	
Tetrachloroethene	ug/L	0.148U	0.148	
Chlorobenzene	ug/L	0.113U	0.113	
Ethylbenzene	ug/L	0.070U	0.070	•
Xylene, m,p-	ug/L	0.134U	0.134	•
Bromoform	ug/L	0.15U	0.15	
Styrene	ug/L	0.040U	0.040	
Xylene, o-	ug/L	0.083U	0.083	
1,4-Dichlorobenzene	ug/L	0.150U	0.150	
1,2-Dichlorobenzene	ug/L	0:076U	0.076	
1,2,4-Trichlorobenzene	ug/L	0.117U	0.117	
1,1-Dichloroethane	ug/L	0.075U	0.075	
4-Bromofluorobenzene (S)	%	- 88	70-130	
1,2-Dichlorobenzene-d4 (\$)	%	93	70-130	
Xylenes (total)	ug/L	0.210U	0.210	

LABORATORY CONTROL SAMPLE: 17838

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Volatiles		·				
Vinyl chloride	ug/L	5	5.32	106	70-130	
1,1-Dichloroethene	ug/L	5	4.50	90	70-130	
Methylene chloride	ug/L	5	3.82	76	70-130	

Report ID: 901840 - 4599317

Page 32 of 45

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17838

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	· .
trans-1,2-Dichloroethene	ug/L	5	4.47	89	70-130	
cis-1,2-Dichloroethene	ug/L	5	4.14	83	70-130	
Chloroform	ug/L	5	4.35	87	70-130	
1,2-Dichloroethane	ug/L	5	4.32	86	70-130	
1,1,1-Trichloroethane	ug/L	5	4.31	86	70-130	
Benzene	ug/L	5	4.18	84	70-130	
Carbon tetrachloride	ug/L	5	4.38	88	70-130	
1,2-Dichloropropane	ug/L .	5	4.32	86	70-130	
Trichloroethene	ug/L	5	4.52	90	70-130	
Bromodichloromethane	ug/L	5	4.08	81.6	70-130	
Toluene	ug/L .	5 .	4.45	89	70-130	
Dibromochloromethane	ug/L	5	4.62	92.4	70-130	
Tetrachloroethene	ug/L	5	4.66	93	70-130	
Chlorobenzene	ug/L	5	4.76	95	70-130	
Ethylbenzene	ug/L	5	4.51	90	70-130	
Xylene, m,p-	ug/L	. 10	9.01	90	70-130	
Bromoform	ug/L	5	4.06	81.2	70-130	
Styrene	ug/L	5	4.23	85	70-130	
Xylene, o-	ug/L	5	4.35	87	70 - 130	
1,4-Dichlorobenzene	ug/Ļ	5	4.71	94	70-130	
1,2-Dichlorobenzene	ug/L	. 5	4.62	92	70-130	
1,2,4-Trichlorobenzene	ug/L	5	4.29	86	70-130	
1,1-Dichloroethane	ug/L	5	4.46	89	70-130	
4-Bromofluorobenzene (S)	%			99	70-130	
1,2-Dichlorobenzene-d4 (S)	%			99	70-130	•
Xylenes (total)	ug/L		13.4			

Report ID: 901840 - 4599317

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431 Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MICP/1259

901835002

901872001

mg/L

Analysis Method:

SM 5210B BOD

QC Batch Method: Associated Lab Samples:

BOD PREP

901840001

901873001

901842001

901852001

901852002

901853003

METHOD BLANK: 17849

Blank

Reporting

Parameter Units Result

Limit Qualifiers

Wet Chemistry

BOD

2.0U

2.0

LABORATORY CONTROL SAMPLE: 17851

Parameter Units

Spike Conc.

LCS Result

LCS % Rec % Rec

Limits Qualifiers

Wet Chemistry

BOD

mg/L

198

107

54

85-115 J

SAMPLE DUPLICATE: 17852

Original: 901842001

Original Result Parameter Units

mg/L

DUP Result

5.68

RPD

0.9

Max **RPD Qualifiers**

20

Wet Chemistry BOD

5.63

Report ID: 901840 - 4599317

Page 34 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

SOLI/1497

Analysis Method:

SM 2540 C

QC Batch Method: SM 2540 C

901780001

901828002

Associated Lab Samples:

METHOD BLANK: 17860

901852001 901894002 901852002 901922001 901828004 901872001 901922002 901835001 901873001 901922003 901840001 901880001 901922004 901842001 901894001 901922005

901922006

Parameter

Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Total Dissolved Solids(TDS)

mg/L

7.00U

7.00

SAMPLE DUPLICATE: 17861

Original: 901828002

Parameter

Original Units Result

DUP Result

RPD

Max **RPD Qualifiers**

Wet Chemistry Total Dissolved Solids(TDS) mg/L

96.0

5.1

20

20

SAMPLE DUPLICATE: 17862

Original: 901922006

Parameter Units Original Result

772

101

DUP Result

RPD:

Max **RPD Qualifiers**

Wet Chemistry

Total Dissolved Solids(TDS)

744

3.7

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1470

Analysis Method:

EPA 335.4 Cyanide

QC Batch Method:

EPA 335.2

901742002

901780001

901825001

901835001

901839001

Associated Lab Samples:

901742001 901840001

901842001 901852002

901843002 901853002 901850001 901907001 901850002 901907002 901850003 901907003

METHOD BLANK: 17913

Reporting Blank

Wet Chemistry

Parameter

Units

901852001

901910001

Result

Limit Qualifiers

Total Cyanide

mg/L

0.0040U

0.0040

LABORATORY CONTROL SAMPLE & LCSD: 17914

17915

Parameter

Spike Units Conc.

mg/L

LCS Result

0.2

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit **RPD**

0

Max **RPD Qualifiers**

Wet Chemistry

Total Cyanide

0.2132 0.2143

107

107 90-110

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17916

17917

MS

Original: 901742001

Parameter

Original Result

0

Spike Conc. Result

MSD Result

MS % Rec

MSD % Rec % Rec

Max Limit RPD RPD Qualifiers

Wet Chemistry **Total Cyanide**

mg/L

Units

0.1988

0.2040

99

102 90-110 20

Report ID: 901840 - 4599317

Page 36 of 45

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431 Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1613

Analysis Method:

EPA 245.1

QC Batch Method: EPA 245.1

Associated Lab Samples:

901835001 901872001

901838001 901873001 901840001 901901001

901842001 901910001 901852001 901919001

901852002

METHOD BLANK: 17974

Parameter

Blank Units Result Reporting

Limit Qualifiers

Mercury

mg/L

0.000056U

0.000056

LABORATORY CONTROL SAMPLE: 17975

Parameter

Units

Spike Conc.

LCS Result

LCS % Rec % Rec Limits Qualifiers

Mercury

mg/L

Units

0.002

0.00175

88

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17976

17977

Original: 901838001

80-120

Parameter

Original Result

3.3e-005

Spike Conc.

MS Result

MSD Result % Rec

MSD % Rec % Rec

Max Limit RPD RPD Qualifiers

Mercury

mg/L

0.002

0.00200

0.00192

100

MS

80-120 96

20 Q

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1473

Analysis Method:

EPA 365.1

QC Batch Method:

EPA 365.1

Associated Lab Samples:

901780001 901852002 901855003

901896005

901840001 901853003 901857001

901896006

901841002 901854003 901896001

901841004 901854005 901896002 901842001 901854006 901896003 901852001 901854007 901896004

METHOD BLANK: 17990

Units

Reporting

Blank Result

Limit Qualifiers

Wet Chemistry

Parameter

Total Phosphorus

mg/L

0.004U

0.004

LABORATORY CONTROL SAMPLE & LCSD: 17991

17992

Parameter ' Units

Spike Conc.

0.5

LCS Result

LCSD LCS LCSD Result % Rec % Rec

102

% Rec Limit

Max RPD

RPD Qualifiers

Wet Chemistry **Total Phosphorus**

mg/L

mg/L

0.512

0.521

104 90-110

1.9

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17995

17996

Original: 901896005

Parameter

Original Units Result Spike Conc.

MS Result

MSD Result % Rec

MSD % Rec % Rec

Max

Limit RPD RPD Qualifiers

Wet Chemistry **Total Phosphorus**

0.027

0.478

0.478

90.2

90.4 90-110 0.22 20

Report ID: 901840 - 4599317

Page 38 of 45

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1193

Analysis Method:

EPA 300.0

QC Batch Method: EPA 300.0

Associated Lab Samples: 901778002 901821001

901841005 901896002 901842001 901896004 901833017 901852001 901896006

901835001 901852002 901907003

901838001 901872001 901840001 901896001

METHOD BLANK: 18051

Parameter

Reporting

Blank Result

Limit Qualifiers

Wet Chemistry

Chloride

mg/L

Units

0.066U

0.066

LABORATORY CONTROL SAMPLE & LCSD: 18052

18053

Parameter Units Spike Conc.

5

LCS Result

LCS LCSD LCSD Result % Rec % Rec % Rec Limit

Max RPD

RPD Qualifiers

Wet Chemistry Chloride

mg/L

5.10

102

104 90-110 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 18054

18055

5.19

Original: 901833017

Parameter

Original Result

Spike Conc.

MS Result

MSD Result % Rec

MS MSD % Rec % Rec

2

Max

Limit RPD RPD Qualifiers

Wet Chemistry Chloride

mg/L

Units

203

207

Report ID: 901840 - 4599317

Page 39 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

PH/1052

Analysis Method:

SM4500H-B

QC Batch Method:

SM4500H-B

901835001

901838001

901840001

901842001 901854009 901852001

901852002

Associated Lab Samples: 901854001

901896001 901909001

901854004 901896002

901854005 901896003 901896004 901894001 901896005 901894002 901896006

SAMPLE DUPLICATE: 18165

Original: 901896001

Original DUP Max **RPD Qualifiers** Parameter Result Units Result **RPD** Wet Chemistry pΗ pH unit 7.24 7.29 0.7 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1484

Analysis Method:

EPA 351.2

QC Batch Method:

€PA 351.2

Associated Lab Samples:

METHOD BLANK: 18613

901780001 901841004 901811002 901841005 901854003

901821001 901841006 901854006 901821002 901842001 901854008

901823001 901852001 901855003 901840001 901852002 901857001

901853003 901880001

Units

Blank Reporting

Result

Limit Qualifiers

Wet Chemistry

Parameter

Total Kjeldahl Nitrogen

mg/L-N

0.2661

0.22

LABORATORY CONTROL SAMPLE & LCSD: 18614

18615

Parameter Units

Spike Conc.

5

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

Max **RPD**

RPD Qualifiers

Wet Chemistry

Total Kjeldahl Nitrogen mg/L-N 4.56

Spike

Conc.

5

5.22 91.1

MSD

11.0

90-110

13.2

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 18616

18617

Original: 901811002

Parameter Wet Chemistry

Total Kjeldahl Nitrogen

Units Result

mg/L-N

Original

6.44

MS Result Result

9.74

MS % Rec

66.1

MSD % Rec

92.1

Max

20

Limit RPD RPD Qualiflers 90-110 32.9

% Rec

Report ID: 901840 - 4599317

Page 41 of 45

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

- J Estimated value.
- Q Holding time exceeded.
- V Present in blank.
- [5] NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limits establishing that there is no high biased result reported
- [6] MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
- [7] NCR-% RPD exceeds control limits

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
901840001	REUSE EFFLUENT	EPA 625	EXTO/1744	EPA 625	MSSV/1248
901840001	REUSE EFFLUENT	EPA 625	EXTO/1744	Semi-volatile Mass Spec Scan	MSSV/1248
901840001	REUSE EFFLUENT	EPA 504.1	EXTO/1746	EPA 504.1	GCSV/1399
901840002	TRIP BLANK	EPA 504	EXTO/1746	EPA 504	GCSV/1399
901840001	REUSE EFFLUENT	SM 2150 B	MISC/1114		
901840001	REUSE EFFLUENT	EPA 365.1	LACH/1768		
901840001.	REUSE EFFLUENT	SM 2120B Color	HACH/1120	٠,	
901840001	REUSE EFFLUENT	EPA 200.7	DIGM/1602	EPA 200.7	ICP/1374
901840001	REUSE EFFLUENT	EPA 200.8	DIGM/1603	EPA 200.8	ICPM/1076
901840001	REUSE EFFLUENT	EPA 624	MSV/1447		
901840001	REUSE EFFLUENT	EPA 350.1	LACH/1770	•	
901840001	REUSE EFFLUENT	SM 5540 C	INPR/1468	SM 5540 C	HACH/1123
901840001	REUSE EFFLUENT	·EPA 608	EXTO/1758	EPA 608	GCSV/1401
901840001	REUSE EFFLUENT	EPA 300.0	IC/1189		
901840001	REUSE EFFLUENT	EPA 524.2	MSV/1452		
901840002	TRIP BLANK	EPA 524.2	MSV/1452		
901840001	REUSE EFFLUENT	BOD PREP	MICP/1259	SM 5210B BOD	BOD/1220
901840001	REUSE EFFLUENT	SM 2540 C	SOLI/1497		•

Report ID: 901840 - 4599317

Page 43 of 45

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
901840001	REUSE EFFLUENT	EPA 335.2	INPR/1470	EPA 335.4 Cyanide	LACH/1791
901840001	REUSE EFFLUENT	EPA 245.1	DIGM/1613	EPA 245.1	HG/1081
901840001	REUSE EFFLUENT	EPA 365.1	INPR/1473	EPA 365.1	LACH/1784
901840001	REUSE EFFLUENT	EPA 300.0	IC/1193		
901840001	REUSE EFFLUENT	SM4500H-B	PH/1052		
901840001	REUSE EFFLUENT	EPA 351.2	INPR/1484	EPA 351.2	LACH/1828
901840001	REUSE EFFLUENT	EPA 100.2	S_09/	EPA 100.2	S_09/
901840001	REUSE EFFLUENT	EPA 508.1	S_05/	EPA 508.1	S_05/
901840001	REUSE EFFLUENT	EPA 515.3	S_05/	EPA 515.3	S_05/
901840001	REUSE EFFLUENT	EPA 525.2	S_05/	EPA 525.2	S_05/
901840001	REUSE EFFLUENT	EPA 531.1	S_05/	EPA 531.1	S_05/
901840001	REUSE EFFLUENT	EPA 547	S_05/	EPA 547	S_05/
901840001	REUSE EFFLUENT	EPA 548.1	S_05/	EPA 548.1	S_05/
901840001	REUSE EFFLUENT	EPA 549.2	S_05/	EPA 549.2	S_05/

~ Report ID: 901840 - 4599317

Page 44 of 45

	5	Con	∕ ∩ ∀ `\ ₹ ₹	***/^*	,			ىد				F CU	STO	DY R	ECOF	RD			6. C	upor gai,	ES Enco	Codes la	
No.		Gen				. 1	.og.	9	0/8	40	T#.	\$_ <u>.</u>		luote:_		T A.	Page	of	A A	mar Visi', selfe ribes L'her sear Liter	PEN PROPERTY OF THE PROPERTY O	t container:	
32	231-1	W 7th:Ave., Bi www.gena		FL 33431				-		wines Cocke		V. 100 C.		B ANA	15	640		15	STREET COURS	mber Prests men Glass of Jar	G (443)	iotid	
Comp	oniy	Name: MIA	1. DADE	WASS	PO#5E	359	/							E ANIA	YSS				Skole): Ekzenpi	201, 405, 802 0: 4037 = 40:	Plane, Sec.	il Copi gRier effort Self Aur	
Addro	\$8:	995D-S	<u> ح</u> درر	2-97					120	· · · · · · · · · · · · · · · · · · ·		 	 	ļ	-	 	ļ						
Gily:	#	Jane 1	State:	- <u> </u>	Zip:	-] 350		C			 	╂	-		1	+		BD	Co2d Weste	MAN YES		
Ann:		1145 10	De	/ Fax#_S	27-7			V		7			1	-	 	 			EPRE PE	Bod Geographi CKI Personan	Add Add	ió Majór Meisia Messe Mag Major Major Aous	
email	-	_rowe	المراجع والمحادث	This		20:	5) <u>V</u>		\$ 4	*	13			 	 			W. SVI	Monaceacus: Mata Dould Ground Water		Adus Go Water	
Projec	1	unuar	Sall	2.Proj#					<u>ရ</u>	3/	} \$ \$	35 4							DFF No.	Dituent initialia		Income punctivi	
Samp Signa	les.	20	laur	Phone	305	 1.750'	00	ري ري		30	4 11	631					1.				res/Code E. HCL), içar	
		Sample Label	College	B KENNESON SH				SE SE		2 3 4 2 5 5	200	153			-		1	ă	A Not L. HN C. His	04 (04)	F. MeOH G. NacS20s	JUNICAA Ki Zo Acesan	
		(Client ID)	Date	Time	Code!		E Š	Sarti Carti		39R	NA.	33	Ì		· .				D. Wal	201	H. NaHSO	D. Olher	1
		MW-1	6/16/0	11.35	GW	X										F of C SIz	ontainers o Typo		7.	F	EMARK	S	
	The	so Want	,				ľ	8			Ü	例)	尸	Ш	P	H							N N N N N N N N N N N N N N N N N N N
_2	Ž4	rice ta	5/19/	ZUHC	WW		1	9		J		中人	19	16)1	(S)	6 (9	80 (i	160 p	CX	ucc.	3059	39320	
_3	<u>/ ~ ~ ~</u>	J)					1]		H	160	326	(A) le	His .						*	
4				1		\prod	1			J .		Į.	口				口一			,		7.7.8	-
5				1		M	1] .] .	口一		口	口	口一	口一				;	- 	
_6				-	-					J			H			Ŭ ─	T.						
7				1			1]:		Li-	l			<u> </u>					······································		
_8		· · · · · · · · · · · · · · · · · · ·	1	1			1			J			口		口一	T	口				· · · · · · · · · · · · · · · · · · ·		
9		 		1			1] -		口		10	丁		口			11 (.	11 111		
0				 	 		$\neg \dagger$		-	J					口						<u> </u>		1
		A) podujeti (17) Podujeti (17)		Short Hol	d				QA/C) C Rep	ari Leve			Co	OK.		los	neutralia Confinenta	9		Canlers #		
(v.		Walter Janes Lea		N.				NO'4	. 1	33	Other			1.7	. અ:	ms		:	1 .	·			
	u e	Inti An	0	90	alion); () A	91	コス		1.0					A AVI	istion)	\$ 5 D		Tinie		1	atyUse C	nive	
		Puis	10-	MAN	11/A=>	5	در در در در	p) r	<u> </u>		1	11		12	1	7/	al.	123		MACT upon on Wat look	Tomo (fia	1==	
	,	March 0	~~	Gro		21	19/1	2 /	5.2		17	Tho	لإج	100	7	2	14/11	17-25	Figgores	Maary Edvid Within boldin Mela letiici?	p dina?	#===	
		TOTAL ST		1216	 	2	11/4	4	2.0	2		1		†	GM		אמורוו	13.00	Volatio i	butújásik filé dagy nyglejny p mana mizany	eddichiaco y		
Gen	apu	re Telephon	e:888-86;	2-LABS	or 561-	447-7	373	Fax:	388-4	56-48	46 or 5	61-447-	5136 R	evision	Giotoo	7		!	T. T.	-	122		

	·					
i						
1						
i		•				
			·		,	
i						
				,		
1						
1				·		
•						
1						
1				•		
•						

> Phone: (561) 447-7373 Fax: (561) 447-7374

March 20, 2009

CLIVE POWELL MIAMI DADE WATER & SEWER SOUTH DISTRICT LABORATORY 8950 SW 232 ST. Miami, FL 33170

RE:

Workorder:

901842

Project:

ANNUAL SAMPLING

Dear CLIVE POWELL:

Enclosed are the analytical results for sample(s) received by the laboratory on Thursday, February 19, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Kimmel

mkimmel@genapure.com

FL-NELAC E86240

Statement of uncertainty is available upon request.

Enclosures

Report ID: 901842 - 4599249

Page 1 of 53

Phone: (561) 447-7373

Fax: (561) 447-7374

SAMPLE SUMMARY

Lab ID	Sample ID	Collector	Matrix	Date Collected	Date Received
901842001	COMBINED EFFLUENT	CL	Wastewater	2/19/2009	2/19/2009

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901842001

Date Received: 2/19/2009

Matrix:

Wastewater

Sample ID: **COMBINED EFFLUENT** Date Collected: 2/19/2009

Cample 15. Combines El Le							
Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	Ву
Wet Chemistry							
Analytical Method: SM 2540 C	:	:-			•		
Total Dissolved Solids(TDS)	439	mg/L	35	7.00	1	2/23/2009 1:10:00 PM	ARI- O
Preparation Method: EPA 351.2	Analytical l	Method: EPA	351.2				
Total Kjeldahl Nitrogen	28.5 V	mg/L-N	11	2.2	10 3/2/2009 6:00:00 PM	3/3/2009 11:50:00 AM	IGO N
Preparation Method: EPA 335.2	Analytical I	Method: EPA	335.4 Cya	nide			
Total Cyanide	0.00591	mg/L	0.02	0.0040	1 2/24/2009 10:22:00 AM	2/24/2009 1:57:00 PM	IGO N
Analytical Method: SM 2120B Colo	r						
Color (True/Apparent)	40.0	pcu	25	5.0	1	2/20/2009 7:45:00 AM	ZES C
Analytical Method: EPA 350.1							
Ammonia	29.0 V	mg/L-N	0.435	0.087	5	2/20/2009 12:53:38 PM	IGO N
malytical Method: EPA 300.0	. 13 () ()	· • • • •				energia de la composição de la composição La composição de la composição d	1. 1.1.15
Chloride	118	mg/L	6.65	1.33	20	2/23/2009 4:50:00 PM	ADE S
Fluoride	0.300U	mg/L	1.5	0.300	10	2/20/2009 8:50:00 PM	ADE S
Vitrate	0.074U	mg/L-N	0.37	0.074	10	2/20/2009 8:50:00 PM	ADE S
Nitrite	0.053U	mg/L-N	0.265	0.053	10	2/20/2009 8:50:00 PM	ADE S
Sulfate	37.0	mg/L	3.775	0.755	10	2/20/2009 8:50:00 PM	ADE S
Preparation Method BOD PREP	Analytical I	Method: SM 5	210B BQ[)	Normalista Normalista (Normalista (Normalista (Normalista (Normalista (Normalista (Normalista (Normalista (Normalista (No		
BOD	5.63 J	mg/L	10	2.0	1 2/20/2009 7:30:00 PM	2/25/2009 9:45:00 AM	LGA R
malýtical Method: EPA 1664A			į.	•			
Oil and Grease	13.5	mg/L	7	1.4	1	2/23/2009 4:00:00 PM	JSU
nalytical Method: SM 2150 B				: :	The second secon		
Odor	16.0	TON	5	1	1	2/20/2009 7:10:00 AM	ZES C
Preparation Method: SM 5540 C	Analytical I	Method: SM 5	540 C				
Surfactants	0.1141	mg/L-LAS	0.2	0.040	1 2/20/2009 10:40:00 AM	2/20/2009 10:40:00 AM	ARH

Report ID: 901842 - 4599249

Page 3 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901842001

Date Received: 2/19/2009

Matrix:

Wastewater

Sample ID:

COMBINED EFFLUENT

Date Collected: 2/19/2009

Ortho Phosphate - P Total Phosphorus	2.38 2.51						
Total Phosphorus	2 51	mg/L-P	0.135	0.027	5	2/20/2009 1:36:56 PM	TAA
	2.01	mg/L	0.11	0.022	5 2/24/2009 8:30:00 AM	2/24/2009 12:30:06 PM	ZES C
Analytical Method: SM4500H-B							
Н	7.26	pH unit	0.5	0.100	1	2/24/2009 12:55:00 PM	ADE S
Analytical Method: EPA 120.1			Ϋ́,				,
Specific Conductance	737	umhos/c m	10	2	1	2/25/2009 12:00:00 PM	ADE S
EDB Analysis	A - 1 H - 1		504.4				
reparation Method: EPA 504.1	177	Method: EPA	-	`.			
1,2-Dibromo-3- chloropropane	0.00310U	ug/L	0.0155	0.0031 0	1 2/23/2009 5:00:00 PM	2/24/2009 12:22:00 AM	LRE
1,2-Dibromoethane	0.00640U	ug/L	0.032	0.0064	1 2/23/2009 5:00:00 PM	2/24/2009 12:22:00 AM	LRE
4-Bromofluorobenzene (S)	78	%		70-130	1 2/23/2009 5:00:00 PM	2/24/2009 12:22:00 AM	LRE
NORGANICS	. Francisco						
Preparation Method: EPA 245.1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Method: EPA		Agrica			
Mercury	0.000056U	mg/L	0.0002 8	0.0000 56	1 2/23/2009 11:30:00 AM	2/23/2009 4:01:00 PM	ITUF
Preparation Method: EPA 200.7	Analytical	Method: EPA	200.7				
Aluminum	0.046U	mg/L	0.23	0.046	1 2/20/2009 11:00:00 AM	2/23/2009 10:26:50 PM	TBU T
Chromium	0.002501	mg/L	0.0055	0.0011	1 2/20/2009 _, 11:00:00 AM	2/24/2009 2:34:52 PM	TBU T
Copper	0.0096U	mg/L	0.048	0.0096	1 2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	TBU T
Iron	0.140	mg/L	0.225	0.045	1 2/20/2009 11:00:00 AM	2/23/2009 10:26:50 PM	TBU T
Nickel	0.0052U	mg/L	0.026	0.0052	1 2/20/2009 11:00:00 AM	2/23/2009 10:26:50 PM	TBU T
Silver	0.0016U	mg/L	0.008	0.0016	1 2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	TBU T
Sodium	78.8	mg/L	0.37	0.074	1 2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	TBU T
Zinc	0.01331	mg/L	0.0265	0.0053	1 2/20/2009 11:00:00 AM	2/24/2009 2:34:52 PM	TBL T
Preparation Method: EPA 200.8	Analytical	Method: EPA	A 200.8				
Antimony	0.0010U	mg/L	0.005	0.0010	1 2/20/2009 11:00:00 AM		DFI
Arsenic	0.0016U	mg/L	0.008	0.0016	1 2/20/2009 11:00:00 AM		DFI
Barium	0.00782	mg/L	0.0075	0.0015	1 2/20/2009 11:00:00 AM		DFII
Beryllium	0.00085U	mg/L	0.0042 5	0.0008 5	1 2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFI

Report ID: 901842 - 4599249

Page 4 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID: Sample ID: 901842001

COMBINED EFFLUENT

Date Received: 2/19/2009

Matrix:

Wastewater

Date Collected: 2/19/2009

Parameters	Results Qu	al Units	PQL	MDL	DF Prepared	Analyzed	Ву
Cadmium	0.00011U	mg/L	0.0005 5	0.0001	1 2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Lead	0.00075U	mg/L	0.0037 5	0.0007	1 2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Manganese	0.0125	mg/L	0.0055	0.0011	1 2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Selenium	0.00082U	mg/L	0.0041	0.0008	1 2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Thallium	0.00027U	mg/L	0.0013 5	0.0002 7	1 2/20/2009 11:00:00 AM	2/24/2009 12:20:00 AM	DFIR
Analytical Method: 1613			-				•
2,3,7,8-TCDD	5.0U	ug/L	25	5.0	1	3/4/2009 6:50:00 PM	SUB
Wet Chemistry - Subcontract Analytical Method::EPA 100.2							
Asbestos	0.18U	1 MFL	0.9	0.18	1	2/28/2009 1:00:00 PM	SUB
Semivolatiles Preparation Method; EPA 625	Analytic	al Method: E	PA 625				
1,2,4-Trichlorobenzene	0.23U	ug/L	1.15	0.23	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
1,2-Dichlorobenzene	0.34U	ug/L	1.7	0.34	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU
1,2-Diphenylhydrazine	0.23U	ug/L	1.15	0.23	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	C TBU C
1,3-Dichlorobenzene	0.35U	ug/L	1.75	0.35	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
1,4-Dichlorobenzene	0.6771	ug/L	1.4	0.28	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2,4,6-Trichlorophenol	0.27U	ug/L	1.35	0.27	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2,4-Dichlorophenol	0.43U	ug/L	2.15	0.43	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2,4-Dinitrophenol	1.4U	ug/L	7	1.4	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2,4-Dinitrotoluene	0.31U	ug/L	1.55	0.31	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2,6-Dinitrotoluene	0.31U	ug/L	1.55	0.31	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2-Chloronaphthalene	0.32U	ug/L	1.6	0.32	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2-Chlorophenol	0.22U	ug/L	1.1	0.22	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2-Nitrophenol	0.24U	ug/L	1.2	0.24	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
3,3'-Dichlorobenzidine	0. 31 U	ug/L	1.55	0.31	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
1,6-Dinitro-2-methylphenol	0.35U	ug/L	1.75	0.35	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
1-Chloro-3-methylphenol	0.22U	ug/L	1.1	0.22	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU

Report ID: 901842 - 4599249

Page 5 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID: Sample ID: 901842001

COMBINED EFFLUENT

Date Received: 2/19/2009

Matrix: Wastewater

Date Collected: 2/19/2009

Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	Ву
4-Chlorophenyl phenyl ether	0.45U	ug/L	2.25	0.45	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Acenaphthene	0.25U	ug/L	1.25	0.25	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Acenaphthylene	0.26U	ug/L	1.3	0.26	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Anthracene	0. 25 U	ug/L	1.25	0.25	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Benzidine	9.7U	ug/L	48.5	9.7	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Benzo(a)anthracene	0.27U	ug/L	1.35	0.27	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Benzo(a)pyrene	0.31U	ug/L	1.55	0.31	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Benzo(b)fluoranthene	0.25U	ug/L	1.25	0.25	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Benzo(g,h,i)perylene	0.28U	ug/L	1.4	0.28	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Benzo(k)fluoranthene	0.39U	ug/L	1.95	0.39	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU
Bis(2-Chloroethoxy)methane	0.32U	ug/L	1.6	0.32	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU
Bis(2-Chloroethyl)ether	0.46U	ug/L	2.3	0.46	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Bis(2-Chloroisopropyl)ether	0.34U	ug/L	1.7	0.34	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Bis(2-Ethylhexyl)phthalate	0.4501	ug/L	1	0.20	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
4-Bromophenyl phenyl ether	0.2 7 U	ug/L	1.35	0.27	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Butyl benzyl phthalate	0.36U	ug/L	1.8	0.36	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Chrysene	0.28U	ug/L	1.4	0.28	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Di-n-butyl phthalate	0.21U	ug/L	1.05	0.21	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Di-n-octyl phthalate	0.28U	ug/L	1.4	0.28	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Dibenz(a,h)anthracene	0.55U	ug/L	2.75	0.55	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU
Diethyl phthalate	0.33U	ug/L	1.65	0.33	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Dimethyl phthalate	0.31U	ug/L	1.55	0.31	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
2,4-Dimethylphenol	0.40U	ug/L	2	0.40	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Fluoranthene	0.20U	ug/L	1	0.20	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Fluorene	0.2 7 U	ug/L	1.35	0.27	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Hexachlorobenzene	0.32U	ug/L	1.6	0.32	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C
Hexachlorobutadiene	0.45U	ug/L	2.25	0.45	1 2/20/2009 9:00:00 AM	2/23/2009 3:35:00 PM	TBU C

Report ID: 901842 - 4599249

Page 6 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901842001

Date Received: 2/19/2009

വര

Matrix:

Wastewater

Sample ID: COMBINED EFFLUENT

Date Collected: 2/19/2009

Parameters	Results Qual	Units	PQL	MDL	DF Prepared Analy	zed By
Hexachlorocyclopentadiene	0.74U	ug/L	3.7	0.74	1 2/20/2009 9:00:00 AM 2/23/3	2009 3:35:00 PM TE
Hexachloroethane	0.36U	ug/L	1.8	0.36	1 2/20/2009 9:00:00 AM 2/23/3	2009 3:35:00 PM TE
Indeno(1,2,3-cd)pyrene	0.26U	ug/L	1.3	0.26	1 2/20/2009 9:00:00 AM 2/23/3	C 2009 3:35:00 PM TE
Isophorone	0.34U	ug/L	1.7	0.34	1 2/20/2009 9:00:00 AM 2/23/3	. C 2009 3:35:00 PM TE C
Naphthalene	0.34U	ug/L	1.7	0.34	1 2/20/2009 9:00:00 AM 2/23/3	2009 3:35:00 PM TE
Nitrobenzene	0.31U	ug/L	1.55	0.31	1 2/20/2009 9:00:00 AM 2/23/	2009 3:35:00 PM TE
4-Nitrophenol	0.79U	ug/L	3.95	0.79	1 2/20/2009 9:00:00 AM 2/23/3	2009 3:35:00 PM TE
Pentachlorophenol	0.67U	ug/L	3.35	0.67	1 2/20/2009 9:00:00 AM 2/23/3	2009 3:35:00 PM TE
Phenanthrene	0.29U	ug/L	1.45	0.29	1 2/20/2009 9:00:00 AM 2/23/	2009 3:35:00 PM TE
Phenol	0.41U	ug/L	2.05	0.41	1 2/20/2009 9:00:00 AM 2/23/2	C 2009 3:35:00 PM TE C
Pyrene	0.47U	ug/L	2.35	0.47	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE C
n-Nitrosodi-n-propylamine	0.33U	ug/L	1.65	0.33	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE
n-Nitrosodimethylamine	1.0U	ug/L	5	1.0	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE C
n-Nitrosodiphenylamine	0.31U	ug/L	1.55	0.31	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE
Nitrobenzene-d5 (S)	74	%		10-117	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE
2-Fluorobiphenyl (S)	71	%		10-112	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE
Terphenyl-d14 (S)	102	%		20-146	1 2/20/2009 9:00:00 AM 2/23/2	C 2009 3:35:00 PM TE C
Phenol-d6 (S)	29	%		10-59	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE
2-Fluorophenol (S)	48	%		24-64	1 2/20/2009 9:00:00 AM 2/23/2	C 2009 3:35:00 PM TE C
2,4,6-Tribromophenol (S)	99	%		52-121	1 2/20/2009 9:00:00 AM 2/23/2	2009 3:35:00 PM TE
Pesticides		1 L. F. 11 (1) (1) (1) (1) (1) (1) (1) (1) (1)	Section of the second section of the second	ortholical foot. and from		and the second s
Preparation Method: EPA 608						
4,4'-DDD	0.000993U	ug/L	0.0049 65	0.0009 93	1 2/23/2009 3:30:00 PM 2/25/2	2009 4:37:41 AM C
1,4'-DDE	0.00272U 4	ug/L	0.0136	0.0027	1 2/23/2009 3:30:00 PM 2/25/2	2009 4:37:41 AM C
1,4'-DDT	0.0012 <u>0</u> U	ug/L	0.006	0.0012	1 2/23/2009 3:30:00 PM 2/25/2	2009 4:37:41 AM C
Aldrin	0.00139U	ug/L	0.0069	0.0013	1 2/23/2009 3:30:00 PM 2/25/2	2009 4:37:41 AM C
Chlordane(Technical)	0.00630U	ug/L	0.0315	-	1 2/23/2009 3:30:00 PM 2/25/2	2009 4:37:41 AM C

Report ID: 901842 - 4599249

Page 7 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID: Sample ID: 901842001

COMBINED EFFLUENT

Date Received: 2/19/2009

Matrix:

Wastewater

Date Collected: 2/19/2009

Campio in Communication						- 10.200		
Parameters	Results 0	Qual	Units	PQL	MDL	DF Prepared	Analyzed	Ву
Dieldrin	0.00157U	4	ug/L	0.0078	0.0015 7	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endosulfan I	0.00215U	4	ug/L	0.0107	0.0021	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endosulfan II	0.00129U		ug/L	0.0064	0.0012	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endosulfan sulfate	0.00153U	4	ug/L	0.0076	9 0.0015 3	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endrin	0.000717U		ug/L	0.0035 85	0.0007 17	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endrin aldehyde	0.000695U		ug/L	0.0034 75	0.0006 95	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Endrin ketone	0.000969U		ug/L	0.0048 45	0.0009	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Heptachlor	0.00885U	4	ug/L		0.0088	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Heptachlor epoxide	0.00121U		ug/L	0.0060	-	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Methoxychlor	0.000900U		ug/L	0.0045	0.0009	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1016	0.012U		ug/L	0.06	0.012	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1221	0.014U		ug/L	0.07	0.014	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1232	0.190U		ug/L	0.95	0.190	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1242	0.014U		ug/L	0.07	0.014	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1248	0.00850U		ug/L	0.0425	0.0085	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1254	0.014U		ug/L	0.07	0.014	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
PCB 1260	0.015U		ug/L	0.075	0.015	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Toxaphene	0.047U		ug/L	0.235	0.047	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
alpha-BHC	0.00313U	4	ug/L	0.0156 5	0.0031	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
alpha-Chlordane	0.00118U		ug/L	0.0059	0.0011	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
beta-BHC	0.00196U	4	ug/L	0.0098	0.0019	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
delta-BHC	0.000904U		ug/L	0.0045 2	•	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
gamma-BHC (Lindane)	0.00604U	4	ug/L	0.0302		1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
gamma-Chlordane	0.00130U		ug/L	0.0065	0.0013	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Tetrachloro-m-xylene (S)	68		%		32-137	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Decachlorobiphenyl (S)	38		%		25-165	1 2/23/2009 3:30:00 PM	2/25/2009 4:37:41 AM	CCIC
Synthetic Organics Preparation Method: EPA 53	1.1. Analy	tical l	Method: E	PA 531.1	a and the second			
Carbofuran	0.25U	2	The section of the	1. 25	0.25	1 2/25/2009 3:30:00 PM	2/28/2009 2:24:00 AM	SUB
Oxamyl	0.23U 0.18U	~	ug/L ug/L	0.9	0.23	1 2/25/2009 3:30:00 PM	2/28/2009 2:24:00 AM	SUB
	•	Ballari Ballari	•		ا بارس چسر ا	. 225/2003 J.JU.UU ITIVI		JUD
Preparation Method: EPA 50	Programme Analy	ucai	vieniod: E	PA 508.1]			
Alachior	0.055U	2	ug/L	0.275	0.055	1 2/25/2009 10:00:00 AM	2/25/2009 10:30:00 PM	SUB

Report ID: 901842 - 4599249

Page 8 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901842001

Sample ID:

Date Received: 2/19/2009

Matrix:

Wastewater

Date Collected: 2/19/2009 **COMBINED EFFLUENT**

Parameters	Results Qu	al Units	PQL	MDL	DF Prepared Analyzed	Ву
Atrazine (Aatrex)	0.026U	ug/L	0.13	0.026	1 2/25/2009 10:00:00 AM 2/25/2009 10	:30:00 PM SUB
gamma-BHC (Lindane)	0.0050U	ug/L	0.025	0.0050	1 2/25/2009 10:00:00 AM 2/25/2009 10	:30:00 PM SUB
Chlordane(Technical)	0.035U	ug/L	0.175	0.035	1 2/25/2009 10:00:00 AM 2/25/2009 10	:30:00 PM SUB
Endrin	0.0020U	ug/L	0.01	0.0020	1 2/25/2009 10:00:00 AM 2/25/2009 10	:30:00 PM SUB
Heptachlor	U0800.0	ug/L	0.04	0.0080	1 2/25/2009 10:00:00 AM 2/25/2009 10	:30:00 PM SUB
Heptachlor epoxide	0.0040U	ug/L	0.02	0.0040	1 2/25/2009 10:00:00 AM 2/25/2009 10	:30:00 PM SUB
Hexachlorobenzene	0.025U	ug/L	0.125	0.025	1 2/25/2009 10:00:00 AM 2/25/2009 10	
Hexachlorocyclopentadiene	0.021U	ug/L	0.105	0.021	1 2/25/2009 10:00:00 AM 2/25/2009 10	
Methoxychlor	0.021U	ug/L	0.105	0.021	1 2/25/2009 10:00:00 AM 2/25/2009 10	
Simazine (Princep)	0.025U	ug/L	0.125	0.025	1 2/25/2009 10:00:00 AM 2/25/2009 10	
Toxaphene	0.21U	ug/L	1.05	0.21	1 2/25/2009 10:00:00 AM 2/25/2009 10	
Polychlorinated Biphenyls- PCBS	0.10U	ug/L	0.5	0.10	1 2/25/2009 10:00:00 AM 2/25/2009 10	:30:00 PM SUB
Preparation Method: EPA 515.3	Analytic	al Method: EP	A 515.3			
2,4-D	0.030U	2 ug/L	0.15	0.030	1 2/26/2009 9:00:00 AM 2/27/2009 5:0	7:00 PM SUB
Dalapon	0.66U	ug/L	3.3	0.66	1 2/26/2009 9:00:00 AM 2/27/2009 5:0	7:00 PM SUB
Dinoseb	0.090U	ug/L	0.45	0.090	1 2/26/2009 9:00:00 AM 2/27/2009 5:0	7:00 PM SUB
Pentachlorophenol	0.010U	ug/L	0.05	0.010	1 2/26/2009 9:00:00 AM 2/27/2009 5:0	7:00 PM SUB
Picloram	0.010U	ug/L	0.05	0.010	1 2/26/2009 9:00:00 AM 2/27/2009 5:0	7:00 PM SUB
2,4,5-TP (Silvex)	U080.0	ug/L	0.4	0.080	1 2/26/2009 9:00:00 AM 2/27/2009 5:0	7:00 PM SUB
Analytical Method: EPA 547		4.7	. 1			
Glyphosate	2.4U	2 ug/L	12	2.4	1 2/24/2009 4:0	8:00 AM SUB
Preparation Method: EPA 548.1	Analytic	al Method: EP	A 548.1			
Endothall	0.28U	2 ug/L	1.4	0.28	1 2/25/2009 9:00:00 AM 2/28/2009 6:2	3:00 PM SUB
Preparation Method: EPA 549.2	Analytic	al Method: EP	A 549.2			in the second
Diquat	0.22U	2 ug/L	1.1	0.22	1 2/26/2009 7:58:00 PM 2/26/2009 7:5	
Preparation Method: EPA 525.2	Analytica	al Method: EP	Á 525.2			
Benzo(a)pyrene	0.019U	2 ug/L	0.095	0.019	1 2/25/2009 4:30:00 PM 2/26/2009 7:5	9:00 PM SUB
Di(2-ethylhexyl)adipate	0.39U	ug/L	1.95	0.39	1 2/25/2009 4:30:00 PM 2/26/2009 7:5	9:00 PM SUB
Bis(2-Ethylhexyl)phthalate	0.6601	l ug/L	2.55	0.51	1 2/25/2009 4:30:00 PM 2/26/2009 7:5	9:00 PM SUB
Volatiles	,					
Analytical Method: EPA 624	٠.	1				•
1,1,1-Trichloroethane	0. 680U	ug/L	3.4	0.680	1 2/23/2009 6:3	1:00 AM LNE
1,1,2,2-Tetrachloroethane	0.570U	ug/L	2.85	0.570	1 2/23/2009 6:3	1:00 AM LNE
1,1,2-Trichloroethane	0.840U	ug/L	4.2	0.840	1 2/23/2009 6:3	
1,1-Dichloroethane	0.410U	ug/L	2.05	0.410	1 2/23/2009 6:3	
1,1-Dichloroethene	0.640U	ug/L	3.2	0.640	1 2/23/2009 6:3	1:00 AM LNE

Report ID: 901842 - 4599249

Page 9 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901842001

Date Received: 2/19/2009

Matrix:

Wastewater

COMBINED EFFLUENT Sample ID:

Date Collected: 2/19/2009

Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	Ву
1,2-Dichloroethane	0.897U	ug/L	4.485	0.897	1	2/23/2009 6:31:00 AM	LNE M
1,2-Dichloropropane	0.725U .	ug/L	3.625	0.725	1	2/23/2009 6:31:00 AM	LNE M
2-Chloroethylvinyl ether	0.466U	ug/L	2.33	0.466	1	2/23/2009 6:31:00 AM	LNE M
Acrolein	2.47U	ug/L	12.35	2.47	1	2/23/2009 6:31:00 AM	LNE M
Acryloniţrile	0.955U 3,J	ug/L	4.775	0.955	1	2/23/2009 6:31:00 AM	LNE M
Benzene	0.621U	ug/L	3.105	0.621	1	2/23/2009 6:31:00 AM	LNE M
Bromodichloromethane	0.140U	ug/L	0.7	0.140	1 .	2/23/2009 6:31:00 AM	LNE M
Bromoform	0.486U	ug/L	2.43	0.486	. 1	2/23/2009 6:31:00 AM	LNE M
Bromomethane	0.427U	ug/L	2.135	0.427	1	2/23/2009 6:31:00 AM	LNE M
Carbon tetrachloride	0.468U	ug/L	2.34	0.468	1 .	2/23/2009 6:31:00 AM	LNE M
Chlorobenzene	0.316U	ug/L	1.58	0.316	1	2/23/2009 6:31:00 AM	LNE M
Chloroethane	0.710U	ug/L	3.55	0.710	1 .	2/23/2009 6:31:00 AM	LNE M
Chloroform	1.64	ug/L	2.86	0.572	1	2/23/2009 6:31:00 AM	LNE:
Chloromethane	0.524U	ug/L	2.62	0.524	1	2/23/2009 6:31:00 AM	LNE M
Dibromochloromethane	0.378U	ug/L	1.89	0.378	.1	2/23/2009 6:31:00 AM	LNE M
cis-1,3-Dichloropropene	0.664U	ug/L	3.32	0.664	1	2/23/2009 6:31:00 AM	. LNE
trans-1,3-Dichloropropene	0.522U	ug/L	2.61	0.522	1	2/23/2009 6:31:00 AM	LNE M
Ethylbenzene	0.323U	ug/L	1.615	0.323	1	2/23/2009 6:31:00 AM	LNE M
Methylene chloride	0.240U	ug/L	1.2	0.240	1	2/23/2009 6:31:00 AM	LNE M
Tetrachiloroethene	0.3701	ug/L	1.56	0.312	1	2/23/2009 6:31:00 AM	LNE M
Toluene	0.389U	ug/L	1.945	0.389	1	2/23/2009 6:31:00 AM	LNE M
Trichloroethene	0.821U	ug/L	4.105	0.821	1	2/23/2009 6:31:00 AM	LNE M
Vinyl chloride	0.506U	ug/L	2.53	0.506	1	2/23/2009 6:31:00 AM	LNE M
Xylene, m,p-	0.639U	ug/L	3.195	0.639	1	2/23/2009 6:31:00 AM	LNE M
Xylene, o-	0.341U	ug/L	1.705	0.341	1 .	2/23/2009 6:31:00 AM	LNE M
Xylenes (total)	0.980U	ug/L	4.9	0.980	1	2/23/2009 6:31:00 AM	LNE M
cis-1,2-Dichloroethene	0.442U	ug/L	2.21	0.442	1 .	2/23/2009 6:31:00 AM	LNE M

Report ID: 901842 - 4599249

Page 10 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901842001

010-12001

Date Received: 2/19/2009

Matrix:

Wastewater

Sample ID: COMBINED EFFLUENT

Date Collected: 2/19/2009

Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	Ву
trans-1,2-Dichloroethene	0.410U	ug/L	2.05	0.410	1	2/23/2009 6:31:00 AM	LNE M
Analytical Method: EPA 524,2							
1,1,1-Trichloroethane	0.132U	ug/L	0.66	0.132	1 .	2/21/2009 6:38:00 AM	LNE M
1,1,2-Trichloroethane	0.088U	ug/L	0.44	0.088	1	2/21/2009 6:38:00 AM	LNE M
1,1-Dichloroethane	0.075U	ug/L	0.375	0.075	1	2/21/2009 6:38:00 AM	LNE M
1,1-Dichloroethene	0.086U	ug/L	0.43	0.086	1	2/21/2009 6:38:00 AM	LNE M
1,2,4-Trichlorobenzene	0.117U	ug/L	0.585	0.117	1	2/21/2009 6:38:00 AM	LNE M
1,2-Dichlorobenzene	0.076U	ug/L	0.38	0.076	1	2/21/2009 6:38:00 AM	LNE M
1,2-Dichloroethane	0.070U	ug/L	0.35	0.070	1	2/21/2009 6:38:00 AM	LNE M
1,2-Dichloropropane	0.093U	ug/L	0.465	0.093	1	2/21/2009 6:38:00 AM	LNE M
1,4-Dichlorobenzene	1.14	ug/L	0.75	0.150	1	2/21/2009 6:38:00 AM	LNE
Benzene	0.077U	ug/L	0.385	0.077	1	2/21/2009 6:38:00 AM	M LNE
Bromodichloromethane	0.091U	ug/L	0.455	0.091	1	2/21/2009 6:38:00 AM	M LNE
Bromoform	0.15U	ug/L	0.75	0.15	1	2/21/2009 6:38:00 AM	M LNE
Carbon tetrachloride	0.134U	ug/L	0.67	0.134	1	2/21/2009 6:38:00 AM	M LNE
Chlorobenzene	0.113U	ug/L	0.565	0.113	1	2/21/2009 6:38:00 AM	LNE
Chloroform	1.66	ug/L	0.385	0.077	1	2/21/2009 6;38:00 AM	M LNE
Dibromochloromethane	0.15U	ug/L	0.75	0.15	1	2/21/2009 6:38:00 AM	M LNE
Ethylbenzene	0.070U	ug/L	0.35	0.070	1	2/21/2009 6:38:00 AM	M LNE
Methylene chloride	0.117U	ug/L	0.585	0.117	1	2/21/2009 6:38:00 AM	M LNE
Styrene	0.040U	ug/L	0.2	0.040	1	2/21/2009 6:38:00 AM	M LNE
Tetrachloroethene	0.4601	ug/L	0.74	0.148	1	2/21/2009 6:38:00 AM	M LNE
Toluene	0.140U	ug/L	0.7	0.140	1	2/21/2009 6:38:00 AM	M LNE
Trichloroethene	0.121U	ug/L	0.605	0.121	1	2/21/2009 6:38:00 AM	M LNE
Total Trihalomethanes	1.66!	ug/L	2.35	0.47	1	2/21/2009 6:38:00 AM	M LNE
Vinyl chloride	0.120U	ug/L	0.6	0.120	1	2/21/2009 6:38:00 AM	M LNE
Xylene, m,p-	0.134U	ug/L	0.67	0.134	1	2/21/2009 6:38:00 AM	M LNE

Report ID: 901842 - 4599249

Page 11 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

901842001

Date Received: 2/19/2009

Matrix:

Wastewater

COMBINED EFFLUENT Sample ID:

Date Collected: 2/19/2009

Parameters	Results Qual	Units	PQL	MDL	DF Prepared	Analyzed	Ву
Xylene, o-	0.083U	ug/L	0.415	0.083	1	2/21/2009 6:38:00 AM	LNE M
Xylenes (total)	0.210U	ug/L	1.05	0.210	1	2/21/2009 6:38:00 AM	LNE M
cis-1,2-Dichloroethene	0.085U	ug/L	0.425	0.085	1	2/21/2009 6:38:00 AM	LNE M
trans-1,2-Dichloroethene	0.087U	ug/L	0.435	0.087	1	2/21/2009 6:38:00 AM	LNE M
Analytical Method: EPA 624						ing the state of t	
4-Bromofluorobenzene (S)	91	%		64-130	1	2/23/2009 6:31:00 AM	LNE M
Dibromofluoromethane (S)	112	%		69-134	1	2/23/2009 6:31:00 AM	LNE M
Toluene d8 (S)	99	%		63-127	1	2/23/2009 6:31:00 AM	LNE M
Analytical Method: EPA 524.2						A ·	
4-Bromofluorobenzene (S)	91	%		70-130	1	2/21/2009 6:38:00 AM	LNE M
1,2-Dichlorobenzene-d4 (S)	99	%		70-130	1	2/21/2009 6:38:00 AM	LNE M

Report ID: 901842 - 4599249

Page 12 of 53

Estimated value; between MDL and PQL

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

	•
J	Estimated value.
v .	Present in blank.
[1]	E86772
[2]	E83079
[3]	NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limits establishing that there is no high biased result reported
[4]	NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

)

> Phone: (561) 447-7373 Fax: (561) 447-7374

CASE NARRATIVE

Sample Analysis Comments

Lab ID 901842001 Client ID COMBINED EFFLUENT

Analyte/2,4-D

[2] E83079

Analyte/4,4'-DDE

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Acrylonitrile

NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limits establishing that there is no high biased result reported

Analyte/Alachlor

[2] E83079

Analyte/Asbestos

[1] E86772

Analyte/Benzo(a)pyrene

[2] E83079

Analyte/Bis(2-Ethylhexyl)phthalate

I = Estimated value; between MDL and PQL

Analyte/Carbofuran

[2] E83079

Analyte/Dieldrin

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Diquat

[2] E83079

Analyte/Endosulfan I

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Endosulfan sulfate

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/Endothall

[2] E83079

Analyte/Glyphosate

[2] E83079

Analyte/Heptachlor

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Report ID: 901842 - 4599249

Page 14 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

CASE NARRATIVE

Sample Analysis Comments

Lab ID 901842001 Client ID COMBINED EFFLUENT

Analyte/alpha-BHC

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/beta-BHC

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Analyte/gamma-BHC (Lindane)

NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

Report ID: 901842 - 4599249

Page 15 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/1744

Analysis Method:

EPA 625

QC Batch Method:

EPA 625

901780001 901850002

901839001 901850003 901840001

901842001

901843002

901850001

METHOD	BLANK:	17506
--------	--------	-------

Associated Lab Samples:

		Blank	Reporting		
Parameter	Units	Result	Limit Qualifiers		
Semivolatiles					
Acenaphthene	ug/L	0.25U	0.25		
Acenaphthylene	ug/L	0.26U	0.26		•
Anthracene	ug/L	0.25U	0.25		
Benzidine	ug/L	9.7U	9.7		
Benzo(a)anthracene	ug/L	0.27U	0.27	•	
Benzo(a)pyrene	ug/L	0.31U	0.31		
Benzo(b)fluoranthene	ug/L	0.25U	0.25		
Benzo(g,h,i)perylene	ug/L	0.28U	0.28		
Benzo(k)fluoranthene	ug/L	0.39U	0.39		
Bis(2-Chloroethoxy)methane	ug/L	0.32U	0.32		
Bis(2-Chloroethyl)ether	ug/L	0.46U	0.46		
Bis(2-Chloroisopropyl)ether	ug/L	0.34U	0.34		
Bis(2-Ethylhexyl)phthalate	ug/L	0.20U	0.20	·	
4-Bromophenyl phenyl ether	ug/L	0.27U	0.27		
Butyl benzyl phthalate	ug/L	0.36U	0.36	•	
2-Chloronaphthalene	ug/L	0.32U	0.32	•	
4-Chlorophenyl phenyl ether	ug/L	0.45U .	0.45		
Chrysene	ug/L	0.28U	0.28		
Dibenz(a,h)anthracene	ug/L	0.55U	0.55		
1,2-Dichlorobenzene	ug/L	0.34U	0.34		
1,3-Dichlorobenzene	ug/L	0.35U	0.35		
1,4-Dichlorobenzene	ug/L	0.28U	0.28		
3,3'-Dichlorobenzidine	ug/L	0.31U	0.31	,	
Diethyl phthalate	ug/L	0.33U	0.33		
Dimethyl phthalate	ug/L	0.31U	0.31	,	
Di-n-butyl phthalate	ug/L	0.21U	0.21	•	
2,4-Dinitrotoluene	ug/L	0.31U	0.31		
2,6-Dinitrotoluene	ug/L	0.31U	0.31	•	
Di-n-octyl phthalate	ug/L	0.28U	0.28		
Fluoranthene	ug/L	0.20U	0.20		
Fluorene	ug/L	0.27U	0.27		
Hexachlorobenzene	ug/L	0.32U	0.32		
Hexachlorobutadiene	ug/L	0.45U	0.45		
Hexachlorocyclopentadiene	ug/L	0.74U	0.74		
Hexachloroethane	ug/L	0.36U	0.36		
Indeno(1,2,3-cd)pyrene	ug/L	0.26U	0.26		
Isophorone	ug/L	0.34U	0.34		
Naphthalene	ug/L	0.34U	0.34	•	
Nitrobenzene	ug/L	0.31U	. 0.31		
n-Nitrosodimethylamine	ug/L	1.0U	1.0		
n-Nitrosodi-n-propylamine	ug/L	0.33U	0.33		
	ug/L	0.31U	0.31		

Report ID: 901842 - 4599249

Page 16 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 17506

Parameter	Units	Blank Result	Reporting Limit Qualifiers
Phenanthrene	ug/L	0.29U	0.29
Pyrene	ug/L	0.47U	0.47
1,2,4-Trichlorobenzene	ug/L	0.23U	0.23
2-Chlorophenol	ug/L	0.22U	0.22
2,4-Dichlorophenol	ug/L	0.43U	0.43
2,4-Dimethylphenol	ug/L	0.40U	0.40
4,6-Dinitro-2-methylphenol	ug/L	0.35U	0.35
2,4-Dinitrophenol	ug/L	1.4U	1.4
2-Nitrophenol	ug/L	0.24U	0.24
4-Nitrophenol	ug/L	0.79U	0.79
4-Chloro-3-methylphenol	- ug/L	0.22U	0.22
Pentachlorophenol	ug/L	0.67U	0.67
Phenol	ug/Ľ	0.41U	0.41
2,4,6-Trichlorophenol	ug/L	0.27U	0.27
Nitrobenzene-d5 (S)	%	83	10-117
2-Fluorobiphenyl (S)	%	· 83	10-112
Terphenyl-d14 (S)	%	111	20-146
Phenol-d6 (S)	%	33	10-59
2-Fluorophenol (S)	%	46	24-64
2,4,6-Tribromophenol (S)	% .	95	52-121

LABORATORY CONTROL SAMPLE: 17507

Barrandan	11.2	Spike	LCS	LCS	% Rec
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers
Semivolatiles			•		
Acenaphthylene	ug/L	50	42.5	85	33-145
Anthracene	ug/L	50	45.4	91	27-133
Benzo(a)anthracene	ug/L	50	48.5	97	33-143
Benzo(b)fluoranthene	ug/L	50	38.0	76	24-159
Benzo(k)fluoranthene	ug/L	50	46.4	93	11-162
Benzo(g,h,i)perylene	ug/L	50	50.3	101	0-219
Benzo(a)pyrene	ug/L	50	44.4	89	17-163
Butyl benzyl phthalate	ug/L	50	52.7	105	0-152
Bis(2- Chloroethoxy)methane	ug/L	50	41.2	82	33-184
Bis(2-Chloroethyl)ether	ug/L	50	- 38.9	78	12-158
Bis(2-Chloroisopropyl)ether	ug/L	50	38.9	78	36-166
Bis(2-Ethylhexyl)phthalate	ug/L	50	57.9	116	8-158
4-Bromophenyl phenyl ether	ug/L	50	48.9	98	53-127
4-Chlorophenyl phenyl ether	ug/L	50	41.0	82	25-158
Chrysene	ug/L	50	42.7	85	17-168
Dibenz(a,h)anthracene	ug/L	50 ·	49.3	99	0-227
1,2-Dichlorobenzene	ug/L	50	33.9	68	32-129

Report ID: 901842 - 4599249

Page 17 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17507

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
rarameter	Units	COIIC.		76 Rec	Limits Quainers	
1,3-Dichlorobenzene	ug/L	50	32.6	65	0-172	
3,3'-Dichlorobenzidine	ug/L	50	39.6	79	0-262	
2,4-Dichlorophenol	ug/L	50	36.3	73	39-135	
Diethyl phthalate	ug/L	50	44.7	89	0-114	
2,4-Dimethylphenol	ug/L	50	41.5	83	32-119	
Dimethyl phthalate	ug/L	50	44.9	90	0-112	
Di-n-octyl phthalate	ug/L	50	56.7	113	4-146	
2,4-Dinitrophenol	ug/L	50	37.3	75	0-191	
2,6-Dinitrotoluene	ug/L	50	41.9	84	50-158	
Fluoranthene	ug/L	50	47.5	95	26-137	
Fluorene	ug/L	50	42.6	85 -	59-121	
Hexachlorobenzene	ug/L	50	42.6	85	0-152	•
Hexachlorobutadiene	ug/L	50	32.7	65	24-116	
Hexachlorocyclopentadiene	ug/L	. 50	22.2	44	10-115	
Hexachloroethane	ug/L	50	34.0	68	40-113	
Isophorone	ug/L	50	46.2	92	21-196	
Indeno(1,2,3-cd)pyrene	ug/L	50	48.4	97	0-171	
4,6-Dinitro-2-methylphenol	ug/L	50	32.8	66	0-181	
Naphthalene	ug/L	50	37.3	75	21-133	
Nitrobenzene	ug/L	50	39.7	79	35-180	
n-Nitrosodimethylamine	ug/L	50	27.1	54		
2-Nitrophenol	ug/L	50	36.3	73	29-182	
Phenanthrene	ug/L	50	43.9	88	54-120	
2,4,6-Trichlorophenol	ug/L	50	40.6	81	37-144	
Di-n-butyl phthalate	ug/L	50	51.5	103	57-126	
2-Chloronaphthalene	ug/L	50	39.8	80	60-118	
Phenol	ug/L	50	18.3	37	5-112	
2-Chlorophenol	ug/L	50	34.5	69	23-134	
n-Nitrosodi-n-propylamine	ug/L	50	42.4	85	0-230	
1,4-Dichlorobenzene	ug/L	50	33.9	68	20-124	
n-Nitrosodiphenylamine	ug/L	50	40.4	81	42-113	
1,2,4-Trichlorobenzene	ug/L	50	35.1	70	44-142	
4-Chloro-3-methylphenol	ug/L	50	40.6	81	22-147	
Acenaphthene	ug/L	50	39.7	79	47-145	
4-Nitrophenol	ug/L	50	25.1	50	0-132	
2,4-Dinitrotoluene	ug/L	50	41.1	82	39-139	
Pentachiorophenol	ug/L	50	48.4	97	14-176	
Pyrene	ug/L	50	47.2	94	52-115	
Benzidine	ug/L	50	9.7U	16	10-104	
Nitrobenzene-d5 (S)	%			82	39-117	
2-Fluorobiphenyl (S)	%	,		83	40-112	
Terphenyl-d14 (S)	% %			112	31-146	
Phenol-d6 (S)	%			39	10-59	
, ,	% %			39 49	24-64	
2-Fluorophenol (S)	% %			102	52-121	

Report ID: 901842 - 4599249

Page 18 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17508

17509

Original: 901791008

Semivolatiles Acenaphthylene		Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Qualifiers
Acenaphthylene								<u>-</u>		-	
,	ug/L	0.0859	50	38.4	39.9	77	80	33-145	4	20	
Anthracene	ug/L	0.0575	50	42.2	43.2	84	86	27-133	2	20	
Benzo(a)anthracene	ug/L	. 0	. 50	47.6	48.6	95	97	33-143	2	20	
Benzo(b)fluoranthene	ug/L	0	50	36.9	40.6	74	81	24-159	.9	20	
Benzo(k)fluoranthene	ug/L	0	50	43.2	39.4	- 86	. 79	11-162	8	20	
Benzo(g,h,i)perylene	ug/L	0	50	45.2	46.9	90	94	0-219	4	20	
Benzo(a)pyrene	ug/L	0.0785	50	42.2	43.7	84	87	17-163	4	20	
Butyl benzyl phthalate	ug/L	0	50	51.0	50.9	- 102	102	0-152	0	20	
Bis(2-	ug/L	0	50	38.0	37.1	76	74	33-184	3	20	
Chloroethoxy)methane											•
Bis(2-Chloroethyl)ether	ug/L	0	50	34.8	36.2	70`	72	12-158	3	20	
Bis(2-Chloroisopropyl)ether	ug/L	0	50	35.6	36.7	71	73	36-166	3		
Bis(2-Ethylhexyl)phthalate	ug/L	0	50	55.1	54.6	110	109	8-158	0.9	20	
4-Bromophenyl phenyl ether	ug/L	0	50	45.4	45.7	91	91	53-127	0	20	
4-Chlorophenyl phenyl ether	ug/L	0	50	38.0	39.6	76	79	25-158	4	20	
Chrysene	ug/L	0	50	41.2	41.3	82	83	17-168	1	20	
Dibenz(a,h)anthracene	ug/L	0	50	47.2	48.1	94	96	0-227	2	20	
1,2-Dichlorobenzene	ug/L	0	50	31.4	32.1	63	64	32-129	2	20	
1,3-Dichlorobenzene	ug/L	0	50	29.4	30.7	59	61	0-172	3	20	
3,3'-Dichlorobenzidine	ug/L	0	50	40.9	40.1	. 82	80	0-262	2	20	
2,4-Dichlorophenol	ug/L	ō	50	33.1	33.8	66	68	39-135	3		
Diethyl phthalate	ug/L	0	50	42.7	45.5	85	91	0-114	7	20	
2,4-Dimethylphenol	ug/L	Ó	50	38.4	37.1	77	74	32-119	4	. 20	
Dimethyl phthalate	ug/L	0.0703	50	41.5	42.9	83	86	0-112	4	20	
Di-n-octyl phthalate	ug/L	0	50	54.2	54.1	108	108	4-146	0	20	
2,4-Dinitrophenol	ug/L	0	50	35.5	35.6	71	71	0-191	ō	20.	
2,6-Dinitrotoluene	ug/L	ō	50	38.5	38.2	77	76	50-158	1	20	
Fluoranthene	ug/L	ō	50	46.4	45.5	93	91	26-137	2	20	
Fluorene	ug/L	0.0657	50	39.2	40.8	78	82	59-121	- 5	20	
Hexachlorobenzene	ug/L	0.0007	50	39.1	39.4	78	79	0-152	1	20	
Hexachlorobutadiene	ug/L	0	50 °	30.3	31.2	61	62	24-116	2	20	
Hexachlorocyclopentadiene	ug/L	0	50	18.4	19.9	37	40	10-115	8	20	•
Hexachloroethane	ug/L	Ö	50	30.0	32.0	60	64	40-113	6	20	
Isophorone	ug/L	. 0	50	42.6	42.3	85	85	21-196	0	20	
Indeno(1,2,3-cd)pyrene	ug/L	0	50	47.0	48.4	94	97	0-171	3	20	
4,6-Dinitro-2-methylphenol	ug/L	ő	50	30.1	29.6	60	59	0-181	2	20	•
Naphthalene	ug/L	0	50	33.7	33.9	67	68	21-133	1	20	
Nitrobenzene	ug/L	0	50	35.5	35.5	71	71	35-180	Ö	20	
n-Nitrosodimethylamine	ug/L	0	50	25.6	26.0	51	52		2		
2-Nitrophenol	ug/L	0	50	32.7	33.6	65	67	29-182	3	20	
Phenanthrene	ug/L	0.0608	50	41.5	41.9	83	84	54-120	1	20	
2,4,6-Trichlorophenol	ug/L	. 0.0000	50	37.5	38.8	75	78	37-144	4	20	
Di-n-butyl phthalate	ug/L ug/L	0	50 50	48.8	49.8	98	100	57-126	2	20	
2-Chloronaphthalene	ug/L	0.0739	50 50	35.7	36.8	71	74	60-118	4	20	
Phenol	ug/L ug/L	0.07.39	50 50	16.9	16.9	34	34	5-112	0	20	

Report ID: 901842 - 4599249

Page 19 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17508

17509

Original: 901791008

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
2-Chlorophenol	ug/L	0	50	31.3	32.9	63	66	23-134	5	20	
n-Nitrosodi-n-propylamine	ug/L	0	50	37.4	38.4	75	77	0-230	3	20	
1,4-Dichlorobenzene	ug/L	0	- 50	30.4	31.5	61	63	20-124	3	20	
n-Nitrosodiphenylamine	ug/L	0	50	38.9	39.2	78	78	42-113	0	20	
1,2,4-Trichlorobenzene	ug/L	0	50	31.4	32.6	63	. 65	44-142	3	20	
4-Chloro-3-methylphenol	ug/L	0	50	37.5	37.4	75	75	22-147	0	20	
Acenaphthene	ug/L	0	- 50	35.9	37.5	72	75	47-145	4	20	
4-Nitrophenol	ug/L	0	50	24.3	24.3	49	49	0-132	0	20	
2,4-Dinitrotoluene	ug/L	, 0	50	39.3	39.8	79	80	39-139	1	20	
Pentachlorophenol	ug/L	0	50	46.9	46.3	94	93	14-176	1	20	
Pyrene	ug/L	0.0488	50	44.5	44.2	89	88	52-115	1	20	
Benzidine	ug/L	0	50	9.7U	9.7U	16	9	10-104	56	20	6,5
Nitrobenzene-d5 (S)	%					74	74	39-117	0		
2-Fluorobiphenyl (S)	%				•	76	80	40-112	5		
Terphenyl-d14 (S)	%					106	105	31-146	0.9		
Phenol-d6 (S)	%					36	36	10-59	0		
2-Fluorophenol (S)	%				•	46	47	24-64	2		
2,4,6-Tribromophenol (S)	%					97	93	52-121	4		

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/1745

Analysis Method:

EPA 1664A

QC Batch Method:

EPA 1664A

Associated Lab Samples:

901783001 901850001 901783002 901850002

901789001 901850003 901839001 901853002 901842001

901843002

METHOD BLANK: 17510

Parameter

Units

mg/L

Reporting

Limit Qualifiers

Wet Chemistry

Oil and Grease

1.4U

Blank

Result

1.4

LABORATORY CONTROL SAMPLE: 17511

Spike Conc.

LCS Result

LCS % Rec % Rec **Limits Qualifiers**

Wet Chemistry

Parameter

Oil and Grease

mg/L

Units

200

Spike

186

93

78-114

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17512

17513

MS

Result

Original: 901791010

MSD

% Rec

Parameter Wet Chemistry Oil and Grease

Units Result Conc. mg/L 0.36 200

Original

184

181

MSD

Result

92

MS

% Rec

90 70-130

% Rec

2

Limit RPD RPD Qualifiers 20

Max

Report ID: 901842 - 4599249

Page 21 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

901872001

QC Batch:

EXTO/1746

Analysis Method:

EPA 504.1

QC Batch Method:

EPA 504

Associated Lab Samples:

901742001 901838001

901852002

901742002 901838002

901780001 901840001

901780002 901840002 901872002

901835001 901842001 901873001

901835003 901852001 901873002

METHOD BLANK: 17514

4-Bromofluorobenzene (S)

Blank	
Dooult	

901852003

Reporting

Parameter Units **Limit Qualifiers** Result **EDB Analysis** ug/L 0.00310U 0.00310

1,2-Dibromo-3-chloropropane 1,2-Dibromoethane

ug/L 0.00640U

0.00640 70-130 78

LABORATORY CONTROL SAMPLE & LCSD: 17515

17516

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
EDB Analysis				•					
1,2-Dibromo-3-chloropropane	ug/L	0.252	0.278	0.287	110	114	72-150	4	20 `
1,2-Dibromoethane	ug/L	0.252	0.288	0.288	114	114	78-142	0	20
4-Bromofluorobenzene (S)	%				78	77	70-130	1	•

MATRIX SPIKE SAMPLE: 17517

Original: 901791009

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
EDB Analysis							
1,2-Dibromo-3- chloropropane	ug/L	. 0	0.252	0.287	114	70-130	
1,2-Dibromoethane	ug/L	0	0.252	0.288	114	70-130	
4-Bromofluorobenzene (S)	%			·	76	70-130	

SAMPLE DUPLICATE: 17518

Original: 901742001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers
EDB Analysis					
1,2-Dibromo-3- chloropropane	ug/L		0.00310U	0	
1,2-Dibromoethane	ug/L		0.00640U	0	
4-Bromofluorobenzene (S)	%		72	6	,

Report ID: 901842 - 4599249

Page 22 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MISC/1114

Analysis Method:

SM 2150 B

QC Batch Method:

SM 2150 B

O... 2100

Associated Lab Samples:

e 00193500

901840001 901842001

901852001

901852002

METHOD BLANK: 17677

Blank Result Reporting

Parameter

Units

Limit Qualifiers

Wet Chemistry

Odor

TON

1U

1

SAMPLE DUPLICATE: 17678

Original: 901840001

.

Original Result

DUP Result

RPD

Max RPD Qualifiers

20

Wet Chemistry Odor

Parameter

TON

Units

16.0

16.0

0

Report ID: 901842 - 4599249

Page 23 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/1768

Analysis Method:

EPA 365.1

QC Batch Method:

EPA 365.1

Associated Lab Samples: 901818001 901822001

901840001

901842001

METHOD BLANK: 17679

Blank

Parameter

Reporting

Units

Result

Limit Qualifiers

Wet Chemistry

Ortho Phosphate - P

mg/L-P

0.005U

0.005

LABORATORY CONTROL SAMPLE & LCSD:

17680

Spike

Conc.

17681

Parameter

Units

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit Мах

RPD Qualifiers

Wet Chemistry

Ortho Phosphate - P

mg/L-P

0.5

0.520

0.521

104 104 90-110

MS

0

RPD

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17682

17683

Original: 901818001

MSD

105

% Rec

Spike MS MSD Original Parameter Units Result Conc. Result Result % Rec Wet Chemistry mg/L-P Ortho Phosphate - P 0.247 0.5 0.768

104 0.770

90-110

% Rec

20

Max

Limit RPD RPD Qualifiers

Report ID: 901842 - 4599249

Page 24 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

HACH/1120

Analysis Method:

SM 2120B Color

QC Batch Method:

SM 2120B Color

901780001

Units

pcu

901835001

Result

5.0U

901840001

901842001

Associated Lab Samples:
METHOD BLANK: 17684

Blank

Reporting

Limit Qualifiers

Wet Chemistry

Parameter

Color (True/Apparent)

5.0

SAMPLE DUPLICATE: 17685

Original: 901780001

Original DUP Max **RPD Qualifiers** Parameter Units Result Result **RPD** Wet Chemistry Color (True/Apparent) 300 300 0 20 pcu

Report ID: 901842 - 4599249

Page 25 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1602

Analysis Method:

EPA 200.7

QC Batch Method:

EPA 200.7

901823001 901826001 901835001 901838001 901827001 901840001 901828002 901842001

901828004 901850001 901829001 901850002

901850003

METHOD BLANK: 17690

Associated Lab Samples:

Parameter	Units	Blank Result	Reporting Limit Qualifiers		
Aluminum	mg/L	0.046U	0.046	·	
Chromium	mg/L	0.0011U	0.0011		
Copper	mg/L	0.0096U	0.0096		
Iron ·	mg/L	0.045U	0.045		
Nickel	mg/L	0.0052U	0.0052		
Silver	mg/L	0.0016U	0.0016		
Sodium	mg/L	0.074U	0.074		
Zinc	mg/L	0.0053U	0.0053	•	

LABORATORY CONTROL SAMPLE: 17691

•	• •	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers	
Aluminum	mg/L	5	5.16	103	70-130	
Chromium	mg/L	1	1.05	105	70-130	
Copper	mg/L	1	1.06	106	70-130	
Iron	mg/L	5	5.34	107	70-130	
Nickel	mg/L	1	1.05	105	70-130	
Silver	mg/L	0.5	0.577	115	. 70-130	
Sodium	mg/L	25	27.4	109	70-130	
Zinc	mg/L	1	1.06	106	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	17692
--	-------

17693

Original: 901838001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers	
Aluminum	mg/L	0.112	5	5.42	5.45	106	107	70-130	0.9	20	
Chromium	mg/L	0.00445	1	1.06	1.08	105	107	70-130	2	20	
Copper	mg/L	0.00733	1	1.07	1.08	107	108	70-130	0.9	20	
Iron	mg/L	0.193	5	5.50	5.38	106	104	70-130	2	20	
Nickel	mg/L	0.00367	1	1.04	1.05	104	105	70-130	1	20	
Silver	mg/L	-0.00322	0.5	0.605	0.580	121	116	70-130	4	20	
Sodium	mg/L	238	.25	257	252	80	58	70-130	32	20	
Zinc	mg/L	0.0633	1	1.14	1.16	107	109	70-130	2	20	

Report ID: 901842 - 4599249

Page 26 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1603

Analysis Method:

QC Batch Method:

EPA 200.8

EPA 200.8

Associated Lab Samples:

901738001

901838001

901850002

901738002 901839001

901850003

901742001 901840001

901742002 901842001

901802001 901843002 901835001 901850001

METHOD BLANK: 17694

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Antimony	mg/L	0.0010U	0.0010	
Arsenic	mg/L	0.0016U	0.0016	•
Barium	mg/L	0.0015U	0.0015	,
Beryllium	mg/L	0.00085U	0.00085	
Cadmium	mg/L	0.00011U	0.00011	•
Lead	mg/L	0.00075U	0.00075	
Manganese	mg/L	0.0011U	0.0011	
Selenium	mg/L	0.00082U	0.00082	
Thallium	mg/L	0.00027U	0.00027	

LABORATORY CONTROL SAMPLE: 17695

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Antimony	mg/L	0.2	0.216	108	85-115	
Arsenic	mg/L	0.2	0.207	104	85-115	
Barium	mg/L	0.2	0.204	102	85-115	
Beryllium	mg/L	0.2	0.208	104	85-115	•
Cadmium	mg/L	0.2	0.202	101	85-115	
Lead	mg/L	0.2	0.214	107	85-115	
Manganese	mg/L	0.2	0.210	105	85-115	•
Selenium	mg/L	0.2	0.199	. 100	85-115	
Thallium	mg/L	0.2	0.211	106	85-115	

MATRIX SPIKE & MA	MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17696				17697 Original: 901838001						v.
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Antimony	mg/L			0.214	0.222						Q
Arsenic	mg/L			0.200	0.205						Q ·
Barium	mg/L	0.00704	0.2	0.201	0.208	97	101	70-130	4	20	Q
Beryllium	mg/L			0.202	0.207						Q
Cadmium	mg/L			0.188	0.198	•					Q
Lead	mg/L			0.212	0.215						Q
Manganese	mg/L	0.0177	0.2	0.207	0.208	95	95	70-130	0	20	Q
Selenium	mg/L	•		0.187	0.195						Q

Report ID: 901842 - 4599249

Page 27 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17696

17697

Original: 901838001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max RPD Qualifiers	
Thallium	mg/L			0.209	0.210				Q	

Report ID: 901842 - 4599249

Page 28 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/1770

Analysis Method:

EPA 350.1

QC Batch Method:

EPA:350.1

Associated Lab Samples:

901811001

901841005

901811002 901841006

0.02341

901821001 901842001

901821002

901823001

901840001

METHOD BLANK: 17706

Parameter

Units

Blank Result

Reporting Limit Qualifiers

Wet Chemistry

Ammonia

mg/L-N

0.017

LABORATORY CONTROL SAMPLE & LCSD:

17707

17708

Parameter Units

Spike Conc.

2.5

LCS Result

LCSD LCS LCSD Result % Rec % Rec % Rec Limit

RPD

Max **RPD Qualifiers**

Wet Chemistry

Ammonia

mg/L-N

2.70

2.70

108 108 90-110

20

0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17709

17710

Original: 901810001

Parameter Wet Chemistry Original Result

Spike Conc.

MS Result

MSD Result

MS % Rec

MSD % Rec

% Rec Limit RPD RPD Qualifiers

Max

Ammonia

mg/L-N

Units

2.13

2.14

20 1

Report ID: 901842 - 4599249

Page 29 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1468

Analysis Method:

SM 5540 C

QC Batch Method:

SM 5540 C

Associated Lab Samples:

901780001

901852002

901835001 901872001 901838001 901873001

901840001

901842001

901852001

METHOD BLANK: 17734

Parameter

Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Surfactants

0.040U mg/L-LAS

0.040

LABORATORY CONTROL SAMPLE & LCSD:

17735

17736

Parameter

Spike Conc.

Original

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

RPD

Max **RPD Qualifiers**

Wet Chemistry

Surfactants

mg/L-LAS

Units

0.997

0.979

100 98

80-120

2

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17737

1

17738

MS

Result

Original: 901844002

MSD

% Rec

Parameter Wet Chemistry Surfactants

Units Result 0.271

mg/L-LAS

1

Spike

Conc.

1.28

1.27

MSD

Result

101

MS

% Rec

100 80-120

% Rec

20

Max Limit RPD RPD Qualifiers

Report ID: 901842 - 4599249

Page 30 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/1758

Analysis Method:

QC Batch Method:

EPA 608

EPA 608

Associated Lab Samples:

901839001

901850003

901840001 901852001 901842001 901852002 901843002 901853002 901850001 901910001 901850002 901910002

METHOD BLANK: 17796

Parameter	Units	Blank Result	Reporting Limit Qua	alifiers	
Pesticides					
alpha-BHC	ug/L	0.000924U	0.000924		
beta-BHC	ug/L	0.00123U	0.00123		
delta-BHC	ug/L	0.000904U	0.000904	•	
Chlordane(Technical)	ug/L	0.00630U	0.00630	,	
gamma-Chlordane	ug/L	0.00130U	0.00130		
alpha-Chlordane	ug/L	0.00118U	0.00118		
Heptachlor epoxide	ug/L	0.00121U	0.00121	•	
Endosulfan I	ug/L	0.00103U	0.00103		
4,4'-DDE	ug/L	0.00148U	0.00148		
Endosulfan II	ug/L	0.00129U	0.00129		-
4,4'-DDD	ug/L	0.000993U	0.000993		
Endosulfan sulfate	ug/L	0.000279U	0.000279	•	
Methoxychlor	ug/L	0.000900U	0.000900		
Endrin aldehyde	ug/L	0.000695U	0.000695		•
Toxaphene	ug/L:	0.047U	0.047		
Endrin ketone	ug/L	0.000969U	0.000969	·	
PCB 1221	ug/L	0.014U	0.014		
PCB 1232	ug/L	0.190U	0.190		
PCB 1242	ug/L	0.014U	0.014		
PCB 1248	ug/L	0.00850U	0.00850		
PCB 1254	ug/L	0.014U	0.014		
PCB 1016	ug/L	0.012U	0.012		
PCB 1260	ug/L	0.015U	0.015	•	
gamma-BHC (Lindane)	ug/L	0.000563U	0.000563		
Heptachlor	ug/L	0.00152U	0.00152		
Aldrin	ug/L	0.00139U	0.00139	•	
Dieldrin	ug/L	0.00106U	0.00106		
Endrin	ug/L	0.000717U	0.000717		
4,4'-DDT	ug/L	0.00120U	0.00120		
Tetrachloro-m-xylene (S)	%	49	32-137		
Decachlorobiphenyl (S)	%	74	25-165		

LABORATORY CONTROL SAMPLE: 17797

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Pesticides				•		
alpha-BHC	ug/L	0.1	0.067	67	33-150	
beta-BHC	ug/L	0.1	0.078	78	37-162	

Report ID: 901842 - 4599249

Page 31 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17797

Parameter	Units .	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
delta-BHC	ug/L	0.1	0.0131	. 13		
Chlordane(Technical)	ug/L		0.00630U			
gamma-Chlordane	ug/L	0.1	0.076	7 6	39-147	
alpha-Chlordane	ug/L	0.1	0.076	76	43-151	
Heptachlor epoxide	ug/L	0.1	0.077	77	48-138	
Endosulfan I	ug/L	0.1	0.075	75	42-148	
4,4'-DDE	ug/L	0.1	0.0831	83	38-174	
Endosulfan II	ug/L	0.1	0.0841	84	19-214	
4,4'-DDD	ug/L	0.1	0.0871	87	28-209	
Endosulfan sulfate	ug/L	0.1	0.0781	78	10-218	
Methoxychlor	ug/L	0.1	0.095	95	10-317	
Endrin aldehyde	ug/L	0.1	0.0901	90	12-217	
Toxaphene	ug/L		0.047U		•	
Endrin ketone	ug/L	0.1	0.0761	76	36-148	
PCB 1221	ug/L		0.014U			
PCB 1232	ug/L		0.190U			
PCB 1242	ug/L		0.014U			
PCB 1248	ug/L		0.00850U			
PCB 1254	ug/L		0.014U			
PCB 1016	· ug/L		0.012U			
PCB 1260	ug/L		0.015U			
gamma-BHC (Lindane)	ug/L	0.1	0.070	70	33-155	
Heptachlor	ug/L	0.1	0.070	70	47-148	
Aldrin	ug/L	0.1	0.058	58	43-149	•
Dieldrin	ug/L	0.1	0.079	79	47-162	
Endrin	ug/L	0.1	0.0871	87	41-189	
4,4'-DDT	ug/L	0.1	0.0871	87	14-228	
Tetrachloro-m-xylene (S)	· %			56	32-137	
Decachlorobiphenyl (S)	%			91	25-165	

MATRIX SPIKE & MATRIX	SPIKE DUPL	ICATE: 1779	8	1779	9	Origir	nal: 90187	4005			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifier	s
Pesticides									-		
alpha-BHC	ug/L	0	0.1	0.060	0.058	60	58	33-150	3	28	
beta-BHC	ug/L	0	0.1	0.070	0.068	70	68	37-162	. 3	27	
delta-BHC	ug/L	0	0.1	0.0121	0.0121	12	12		0		
Chlordane(Technical)	ug/L		(0.00630U (0.00630U						
gamma-Chlordane	ug/L	0	0.1	0.061	0.057	61	57	39-147	7	24	
alpha-Chlordane	ug/L	0	0.1.	0.073	0.068	73	68	43-151	7	. 28	
Heptachlor epoxide	ug/L	0	0.1	0.075	0.070	75	70	48-138	7	24	
Endosulfan I	ug/L	0	0.1	0.074	0.068	74	68	42-148	8	24	
4,4'-DDE	ug/L	0	0.1	0.0781	0.0741	78	74	38-174	5	33	
Endosulfan il	ug/L	. 0	0.1	0.0801	0.0781	80	78	19-214	3	33	

Report ID: 901842 - 4599249

Page 32 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17798

17799

Original: 901874005

Parameter	Units	Original Result	Spike . Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
4,4'-DDD	ug/L	0	0.1	0.0821	0.0791	82	79	28-209	4	36	
Endosulfan sulfate	ug/L	. 0	0.1	0.0731	0.0711	73	71.	10-218	3	35	
Methoxychlor	ug/L	0	0.1	0.084	0.083	84	83	10-317	1	26	
Endrin aldehyde	ug/L	0	0.1	0.0701	0.0711	70	71	12-217	1	24	
Toxaphene	ug/L			0.047U	0.047U						
Endrin ketone	ug/L	0	. 0.1	0.0731	0.0721	73	72	36-148	1	26	٠
PCB 1221	ug/L			0.014U	0.014U						
PCB 1232	ug/L			0.190U	0.190U						•
PCB 1242	ug/L			0.014U	0.014U						
PCB 1248	ug/L			0.00850U	0.00850U						
PCB 1254	ug/L	•		0.014U	0.014U						
PCB 1016	ug/L			0.012U	0.012U						
PCB 1260	ug/L			0.015U	0.015U						
gamma-BHC (Lindane)	ug/L	Ó	0.1	0.065	0.061	65	61	33-155	6	26	
Heptachlor	ug/L	0	0.1	0.063	0.062	63	62	47-148	2	30	•
Aldrin	ug/L	0	0.1	0.060	0.058	60	58	43-149	3	35	
Dieldrin	ug/L	0	0.1	0.077	0.071	77	71	47-162	8	33	
Endrin	ug/L ·	0	0.1	0.0811	0.0761	81	76	41-189	6	32	
4,4'-DDT	ug/L	0	0.1	0.0781	0.0761	78	76	14-228	3	28	
Tetrachloro-m-xylene (S)	%					50	50	32-137	0		
Decachlorobiphenyl (S)	%					79	79	25-165	0		

Report ID: 901842 - 4599249

Page 33 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1189

Analysis Method:

EPA 300.0

QC Batch Method:

Associated Lab Samples:

METHOD BLANK: 17825

EPA 300.0

901821001 901840001 901852001 901821002 901841001

901852002

901823001 901841004 901854009 901831002 901841005 901855003 901835001 901841006 901872001

901842001 901873001

901784001

901838001

Blank Reporting Parameter Units Result Limit Qualifiers Wet Chemistry Nitrate 0.007 mg/L-N 0.007U Nitrite 0.005 mg/L-N 0.005U mg/L Fluoride 0.030U 0.030 Sulfate 0.076U 0.076 mg/L

LABORATORY CONTROL SAMPLE & LCSD: 17826 17827 Spike LCS LCSD LCS LCSD % Rec Max Parameter Units Conc. Result Result % Rec % Rec Limit **RPD RPD Qualifiers** Wet Chemistry Nitrate mg/L-N 2.5 2.58 2.61 103 104 90-110 20 1 Nitrite mg/L-N 2.5 2.44 2.46 97 98 90-110 20 Fluoride mg/L 2.5 2.54 2.59 102 104 90-110 1,9 20 Sulfate 7.69 102 90-110 20 mg/L 7.5 7.64 103

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17828				1782	9	Original: 901841001					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualifiers	
Wet Chemistry						•					
Nitrate	mg/L-N	0	25	26.7	26.0	107	104	90-110	3	20	
Nitrite	mg/L-N	0	25	25.7	23.9	103	96	90-110	7	20	
Fluoride	mg/L			35.8	35.3						
Sulfate	mg/L			126	120						

Report ID: 901842 - 4599249

Page 34 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MSV/1452

Analysis Method:

QC Batch Method:

EPA 524.2

EPA 524.2

Associated Lab Samples:

901834001 901835002 901840002 901842001 901835003 901852001

901838001

901838002

901840001

901873001

901873002

901852002

901872001

901872002

METHOD BLANK: 17837

		Blank	Reporting		
Parameter	Units	Result	Limit Qualifiers	;	
Volatiles					
Vinyl chloride	ug/L	0.120U	0.120		
1,1-Dichloroethene	ug/L	0.086U	0.086		
Methylene chloride	ug/L	0.117U	0.117		
trans-1,2-Dichloroethene	ug/L	0.087U	0.087		
cis-1,2-Dichloroethene	ug/L	0.085U	0.085		
Chloroform	ug/L	0.077U	0.077		
1,2-Dichloroethane	ug/L	0.070U	0.070		
1,1,1-Trichloroethane	ug/L	0.132U	0.132		
Benzene	ug/L	0.077U	0.077		
Carbon tetrachloride	ug/L	0.134U	0.134		
1,2-Dichloropropane	ug/L	0.093U	0.093		
Trichloroethene	ug/L	0.121U	0.121		
Bromodichloromethane	ug/L	0.091U	0.091		
Toluene	ug/L	0.140U	0.140		
Dibromochloromethane	ug/L	0.15U	0.15	•	
Tetrachloroethene	ug/L	0.148U	0.148		
Chlorobenzene	ug/L	0.113U	0.113		
Ethylbenzene	ug/L	0.070U	0.070		
Xylene, m,p-	ug/L	0.134U	0.134		
Bromoform	ug/L	0.15U	0.15		
Styrene	ug/L	0.040U	0.040		
Xylene, o-	ug/L	0.083U	0.083		
1,4-Dichlorobenzene	ug/Ľ	0.150U	0.150		
1,2-Dichlorobenzene	ug/L	0.076U	0.076		
1,2,4-Trichlorobenzene	ug/L	0.117U	0.117		
1,1-Dichloroethane	ug/L	0.075U	0.075		
4-Bromofluorobenzene (S)	%	88	70-130		
1,2-Dichlorobenzene-d4 (S)	%	93	70-130	•	
Xylenes (total)	ug/L	0.210U	0.210		

LABORATORY CONTROL SAMPLE: 17838

•		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers	
Volatiles						
Vinyl chloride	ug/L	5	5.32	106	70-130	
1,1-Dichloroethene	ug/L	5	4.50	90	70-130	
Methylene chloride	ug/L	5	3.82	76	70-130	

Report ID: 901842 - 4599249

Page 35 of 53

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17838

	•	Spike	LCS	LCS	% Rec	
Parameter	Units	Conc	Result	% Rec	Limits Qualifiers	
trans-1,2-Dichloroethene	ug/L	5	4.47	89	70-130	
cis-1,2-Dichloroethene	ug/L	5	4.14	83	70-130	
Chloroform	ug/L	5	4.35	. 87	70-130	
1,2-Dichloroethane	ug/L	5	4.32	86	70-130	
1,1,1-Trichloroethane	ug/L	5	4.31	86	70-130	
Benzene	ug/L	5	4.18	84	70-130	
Carbon tetrachloride	ug/L	5	4.38	88	70-130	
1,2-Dichloropropane	ug/L	5	4.32	86	70-130	
Trichloroethene	ug/L	5 ·	4.52	90	70-130	
Bromodichloromethane	ug/L	5	4.08	81.6	70-130	
Toluene	ug/L	5	4.45	89	70-130	
Dibromochloromethane	ug/L	5	4.62	92.4	70-130	
Tetrachloroethene	ug/L	. 5	4.66	93	70-130	
Chlorobenzene	ug/L	5	4.76	95	70-130	
Ethylbenzene	ug/L	5	4.51	90	70-130	
Xylene, m,p-	ug/L	10	9.01	90	70-130	
Bromoform	ug/L	5	4.06	81.2	70-130	
Styrene	ug/L	5	4.23	85	70-130	
Xylene, o-	ug/L	5	4.35	87	70-130	
1,4-Dichlorobenzene	ug/L	5	4.71	94	70-130	
1,2-Dichlorobenzene	ug/L	, 5	4.62	92	70-130	
1,2,4-Trichlorobenzene	ug/L	5	4.29	86	70-130	
1,1-Dichloroethane	ug/L	5	4.46	89	70-130	
4-Bromofluorobenzene (S)	%		•	99	70-130	
1,2-Dichlorobenzene-d4 (S)	%			99	70-130	
Xylenes (total)	ug/L		13.4		•	

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MICP/1259

Analysis Method:

SM 5210B BOD

QC Batch Method:

BOD PREP

Associated Lab Samples:

901835002

901872001

mg/L

901840001 901873001 901842001

901852001 901852002 901853003

METHOD BLANK: 17849

Parameter Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

BOD

2.0U

2.0

LABORATORY CONTROL SAMPLE: 17851

Parameter

Spike LCS Conc. Result

LCS % Rec % Rec

Limits Qualifiers

Wet Chemistry BOD

mg/L

Units

198

107

54

85-115 J

SAMPLE DUPLICATE: 17852

Original: 901842001

Original DUP Max RPD **RPD Qualifiers** Parameter Units Result Result · Wet Chemistry BOD mg/L 5.63 5.68 0.9 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

SOLI/1497

Analysis Method:

SM 2540 C

QC Batch Method:

SM 2540 C

901828002

901828004

901835001

901840001 901880001

901842001

Associated Lab Samples:

901780001 901852001 901894002 901922006

901852002 901922001 901872001 901922002 901873001 901922003

901922004

901894001 901922005

METHOD BLANK: 17860

Parameter

Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Total Dissolved Solids(TDS)

mg/L

7.00U

7.00

SAMPLE DUPLICATE: 17861

Original: 901828002

Parameter

Original Result DUP

RPD

Max

Wet Chemistry Total Dissolved Solids(TDS)

101

Result

96.0

DUP

Result

RPD Qualifiers

20

Max

RPD Qualifiers

SAMPLE DUPLICATE: 17862

Original: 901922006

Parameter

Wet Chemistry Total Dissolved Solids(TDS)

mg/L

Units

Units

mg/L

772

Original

Result

744

3.7

RPD

5.1

20

Report ID: 901842 - 4599249

Page 38 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MSV/1454

EPA 624

QC Batch Method:

EPA 624

Analysis Method:

Associated Lab Samples:

901839001

901852003

901842001 901853002

901843002 901908001

901850002 901908002

901850003 901910001 901852002 901910002

METHOD BLANK: 17874

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Volatiles				
*		0.4711	0.47	
Acrolein	· ug/L	2.47U	2.47	
Chloromethane	ug/L	0.524U	0.524	
Vinyl chloride	ug/L	0.506U	0.506	
Bromomethane	ug/L	0.427U	0.427	•
Chloroethane	ug/L	0.710U	0.710	
1,1-Dichloroethene	ug/L	0.640U	0.640	
Methylene chloride	ug/L	0.240U	0.240	
trans-1,2-Dichloroethene	ug/L	0.410U	0.410	•
Acrylonitrile	ug/L	0.955U	0.955	
1,1-Dichloroethane	ug/L	0.410U	0.410	
cis-1,2-Dichloroethene	ug/L	0.442U	0.442	
Chloroform	ug/L	0. 572 U	0.572	•
1,1,1-Trichloroethane	ug/L	0.680∪	0.680	
Carbon tetrachloride	ug/L	0.468U	0.468	
Benzene	ug/L	0.621U	0.621	
1,2-Dichloroethane	ug/L	0.897U	0.897	
Trichloroethene	ug/L	0.821U	0.821	
1,2-Dichloropropane	ug/L	0.725U	0.725	
2-Chloroethylvinyl ether	ug/L	0.466U	0.466	
Bromodichloromethane	ug/L	0.140U	0.140	
cis-1,3-Dichloropropene	ug/L	0.664U	0.664	
Toluene	ug/L	0.389U	0.389	
trans-1,3-Dichloropropene	ug/L	0.522U	0.522	
1,1,2-Trichloroethane	ug/L	0.840U	0.840	
Tetrachloroethene	ug/L	0.312U	0.312	
Dibromochloromethane	ug/L	0.378∪	0.378	
Chlorobenzene	ug/L	0.316U	0.316	
Ethylbenzene	ug/L	0.323U	0.323	
Bromoform	ug/L	0.486U	0.486	
1,1,2,2-Tetrachloroethane	ug/L	0.570U	0.570	
Xylene, m,p-	ug/L	0.639U	0.639	
Xylene, o-	ug/L	0.341U	0.341	
4-Bromofluorobenzene (S)	%	92	64-130	
Dibromofluoromethane (S)	%	117	69-134	
Toluene d8 (S)	%	102	63-127	

Report ID: 901842 - 4599249

Page 39 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 17875

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers		
		Conc.	resuit		Limits Qualifiers	_ ,	 _
Volatiles							
Acrolein	ug/L	100	69.1	69	2-93		
Chloromethane	ug/L	20	23.2	116	46-173		
Vinyl chloride	ug/L	20	25.4	127	60-162		
Bromomethane	ug/L	20	19.2	96	33-170		
Chloroethane	ug/L	20	30.0	150	50-163		
1,1-Dichloroethene	ug/L	20	22.2	111	54-157		
Methylene chloride	ug/L	20	23.1	115	42-182		
trans-1,2-Dichloroethene	ug/L	20	22.7	113	49-164	•	
Acrylonitrile	ug/L	100	113	113	3-107 3,J		
1,1-Dichloroethane	ug/L	20	22.0	110	60-167		
cis-1,2-Dichloroethene	ug/L	20	19.4	97	51-157		
Chloroform	ug/L	20	19.2	96	60-164		
1,1,1-Trichloroethane	ug/L	20	19.4	97	45-154		
Carbon tetrachloride	ug/L	20	20.2	101	45-154		
Benzene	ug/L	20	18.7	94	59-158		
1,2-Dichloroethane	ug/L	20	20.9	104	45-166		
Trichloroethene	ug/L	20	19.0	95	59-152		
1,2-Dichloropropane	ug/L	20	19.3	97	65-155		
2-Chloroethylvinyl ether	ug/L	20	13.8·	69	2-176		
Bromodichloromethane	ug/L	20	18.2	91	64-146		
cis-1,3-Dichloropropene	ug/L	20	19.3	96	53-146		
Toluene	ug/L	20	19.7	99	62-149		
trans-1,3-Dichloropropene	ug/L	20	17.9	89	51-150		
1,1,2-Trichloroethane	ug/L	20	19.9	. 99	62-159		
Tetrachloroethene	ug/L	20	16.7	84	50-150		
Dibromochloromethane	ug/L	20	17.2	86	51-139	•	•
Chlorobenzene	ug/L	20	17.2	86	64-144		
Ethylbenzene	ug/L	20	18.2	91	59-149	•	
Bromoform	ug/L	20	12.8	64	16-166		
1,1,2,2-Tetrachloroethane	ug/L	20	16.1	80	52-177		
Xylene, m.p-	ug/L	40	36.7	92	57-153		
Xylene, o-	ug/L	20	30.7 17.4	92 87	69-144		
4-Bromofluorobenzene (S)	wyrz %	20	17.77	95	64-130		
Dibromofluoromethane (S)	%			95 103	69-134		
` .	% %						
Toluene d8 (S)	70		•	103	63-127		

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17876			17877		Original: 901852002						
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Volatiles						•					
Acrolein	ug/L	0	100	33.7	35.1	34	35	2-93	3	20	
Chloromethane	ug/L	0	20	23.3	23.8	116	119	46-173	3	20	
Vinyl chloride	ug/L	0	20	24.4	23.6	122	118	60-162	3	20	

Report ID: 901842 - 4599249

Page 40 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17876

17877

Original: 901852002

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	\$
Bromomethane	ug/L	0	20	12.7	13.3	64	66	33-170	3	20	-
Chloroethane	ug/L ug/L	0	20	29.1	27.7	145	138	50-163	5	20	
1,1-Dichloroethene	ug/L ug/L	0	20	23.5	22.9	118	115	54-157	3	20	
	-				23.4	124				20	
Methylene chloride	ug/L	0	. 20	24.8			117	42-182	6		
trans-1,2-Dichloroethene	ug/L	0	20	24.3	23.3	121	116	49-164	4	20	
Acrylonitrile	ug/L	0	100	125	122	125	122	3-107	2	20 J,5	
1,1-Dichloroethane	ug/L	0	20	23.2	23.1	116	116	60-167	0	20	
cis-1,2-Dichloroethene	ug/L .	0	20	19.8	19.8	99	99	51-157	0	20	
Chloroform	ug/L	1.93	20	21.6	21.5	98	98	60-164	0	20	
1,1,1-Trichloroethane	ug/L .	0	20	19.9	20.3	100	102	45-154	2	20	
Carbon tetrachloride	ug/L	0	20	20.9	20.7	105	104	45-154	1	20	
Benzene	ug/L	0	20	19.3	19.2	96	96	59-158	0	20	
1,2-Dichloroethane	ug/L	0	20	21.7	21.7	109	108	45-166	0.9	20	
Trichloroethene	ug/L	0	20	20.2	20.0	101	. 100	59-152	1	20	
1,2-Dichloropropane	ug/L	0	20	19.8	19.6	99	98	65-155	1	20	
2-Chloroethylvinyl ether	ug/L	0	20	17.0	19.7	85	99	2-176	15	20	
Bromodichloromethane	ug/L	0	20	19.4	19.3	97	96	64-146	1	20	•
cis-1,3-Dichloropropene	ug/L	0	20	19.3	20.0	96	100	53-146	4	20	
Toluene	ug/L	0.31	20	20.3	20.5	102	103	62-149	1	20	
trans-1,3-Dichloropropene	ug/L	0	. 20	18.3	18.5 `	. 91	93	51-150	2	20 -	
1,1,2-Trichloroethane	ug/L	0	20	20.8	20.9	104	104	62-159	0	20	
Tetrachloroethene	ug/L	0.34	20	17.5	17.3	86	85	50-150	1	20	
Dibromochloromethane	ug/L	0	20	18.0	18.3	90	91	51-139	1	20	
Chlorobenzene	ug/L	Ö	20	17.4	17.9	87	90	64-144	3	20	
Ethylbenzene	ug/L	o	20	18.0	18.6	90	93	59-149	3	20	
Bromoform	ug/L	Ö	20	13.9	15.1	70	75	16-166	7	20	
1,1,2,2-Tetrachloroethane	ug/L	0	20	15.5	16.5	78	82	52-177	5	20	•
Xylene, m,p-	ug/L	0	40	36.7	38.4	92	96	57-153	4	20	
Xylene, m,p- Xylene, o-	ug/L ug/L	0	20	17.0	17.4	85	87	69-144	2	20	
4-Bromofluorobenzene (S)	w	90	20	17.0	17.4	92	96	64-130	4	20	
Dibromofluoromethane (S)	% %	110				107	104	69-134	3	20	
· ·	% %	99				107		63-127	-	20	
Toluene d8 (S)	70	99				102	104	03-12/	2	20	

MATRIX SPIKE SAMPLE: 18014

Original: 901853002

	,	Original	Spike	MS	MS	% Rec
Parameter	Units	Result	Conc.	Result	% Rec	Limits Qualifiers
Volatiles						
Acrolein	ug/L	0 '	100	66.2	66	2-93
Chloromethane	ug/L	0	20	23.2	116	46-173
Vinyl chloride	ug/L	0	20	25.0	125	60-162
Bromomethane	ug/L	0	20	16.5	82	33-170
Chloroethane	ug/L	0	20	28.5	143	50-163
1,1-Dichloroethene	ug/L	. 0	20	23.9	119	54-157
Methylene chloride	ug/L	0.15	20	25.6	128	42-182
trans-1,2-Dichloroethene	ug/L	0	20	25.9	129	49-164
Acrylonitrile	ug/L	. 0	100	126	126	3-107 J,5

Report ID: 901842 - 4599249

Page 41 of 53

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE SAMPLE: 18014

Original: 901853002

Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers
1,1-Dichloroethane	ug/L	0	20	24.4	122	60-167
cis-1,2-Dichloroethene	ug/L	ő	20	21.5	108	51-157
Chloroform	ug/L	18.9	20	37.2	92	60-164 J.5
1,1,1-Trichloroethane	ug/L	0	20	21.2	106	45-154
Carbon tetrachloride	ug/L	.0	20	22.1	110	45-154
Benzene	ug/L	. 0	20	20.2	101	59-158
1.2-Dichloroethane	ug/L	o .	20	21.7	109	45-166
Trichloroethene	ug/L	. 0	20	20.8	104	59-152
1,2-Dichloropropane	ug/L	0	20	21.0	105	65-155
2-Chloroethylvinyl ether	ug/L	0	20	2.651	13	2-176
Bromodichloromethane	ug/L	2.63	20	22.5	99	64-146
cis-1,3-Dichloropropene	ug/L	0	20	18.4	92 ·	53-146
Toluene	ug/L	8.84	20	29.4	103	62-149
trans-1,3-Dichloropropene	ùg/L	0	20	18.5	92	51-150
1,1,2-Trichloroethane	ug/L	0	20	21.0	105	62-159
Tetrachloroethene	ug/L	0.	20	18.4	92	50-150
Dibromochloromethane	ug/L	0.32	20	19.5	98	51-139
Chlorobenzene	ug/L	0	20	19.1	95	64-144
Ethylbenzene	ug/L	· 0	20	19.9	100	59-149
Bromoform	ug/L	0	. 20	15.6	78	16-166
1,1,2,2-Tetrachloroethane	ug/L	0	20	17.5	88	52-177
Xylene, m,p-	ug/L	0.24	40	40.5	101	57-153
Xylene, o-	ug/L	0	20	19.0	95	69-144
4-Bromofluorobenzene (S)	%	86			96	64-130
Dibromofluoromethane (S)	%	116			102	69-134
Toluene d8 (S)	%	100			101	63-127

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1470

EPA 335.4 Cyanide

QC Batch Method:

EPA 335.2

Analysis Method:

Associated Lab Samples:

901742001

901840001

901852001

901910001

mg/L

Units

901742002 901842001

901852002

901780001 901843002 901853002 901825001 901850001 901907001

901835001 901850002 901907002 901839001 901850003 901907003

METHOD BLANK: 17913

Parameter Units Blank Reporting

Result

Limit Qualifiers

Wet Chemistry

· Total Cyanide

0.0040U

0.0040

LABORATORY CONTROL SAMPLE & LCSD:

17914

17915

Spike Conc.

LCS LCSD Result

LCS LCSD Result % Rec % Rec

% Rec Limit

Max -RPD

RPD Qualifiers

Wet Chemistry **Total Cyanide**

Parameter

mg/L

0.2132 0.2

0.2143

107 107

90-110

20

0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17916

17917

Original: 901742001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit f	RPD	Max RPD Qualifiers
Wet Chemistry Total Cyanide	mg/L	0	0.2	0.1988	0.2040	99	102	90-110	3	20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1613

Analysis Method:

EPA 245.1

QC Batch Method:

EPA 245.1

Associated Lab Samples:

901835001

901838001 901873001 901840001 901901001 901842001 901910001 901852001 901919001

901852002

METHOD BLANK: 17974

Parameter

Units

Reporting

Blank Result

Limit Qualifiers

Mercury

Parameter

mg/L

901872001

0.000056U

0.000056

LABORATORY CONTROL SAMPLE: 17975

Units

Spike Conc.

LCS Result

LCS % Rec

88

% Rec

Limits Qualifiers

Mercury mg/L

0.002 0.00175

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17976

17977

MS

Original: 901838001

Parameter Mercury

Original Units Result mg/L 3.3e-005

Spike Conc. Result 0.002 0.00200

MSD Result 0.00192

MS % Rec 100

MSD % Rec

96

% Rec

80-120

Max Limit RPD RPD Qualifiers

20 Q

Report ID: 901842 - 4599249

Page 44 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1473

Analysis Method:

EPA 365.1

QC Batch Method:

EPA 365.1

Associated Lab Samples:

901780001 901852002 901855003

901896005

901840001 901853003 901857001

901896006

Blank

Result

901841002 901854003 901896001

901841004 901854005 901896002 901842001 901854006 901896003

901852001 901854007 901896004

METHOD BLANK: 17990

Parameter Wet Chemistry

Total Phosphorus

Units

mg/L.

Reporting

Limit Qualifiers

0.004U

0.004

LABORATORY CONTROL SAMPLE & LCSD:

17991

17992

Parameter Units

Spike Conc.

0.5

0.027

LCS . Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit Max

RPD Qualifiers

Wet Chemistry

Total Phosphorus

Total Phosphorus mg/L 0.512

0.521

0.478

102

90-110 104

1.9

RPD

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 17995

17996

Original: 901896005

90.4

Original Parameter Units Result Wet Chemistry

mg/L

Spike MS Conc. Result

0.5

MSD Result

0.478

MS % Rec % Rec

90.2

MSD % Rec Max

Limit RPD RPD Qualifiers

90-110 0.22 20

Report ID: 901842 - 4599249

Page 45 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1193

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples:

901778002 901841005

901896002

901821001 901842001 901896004 901833017 901852001 901896006 901835001 901852002 901907003 901838001 901872001

901840001 901896001

METHOD BLANK: 18051

Blank

Reporting 4

Parameter

Units

Result

Limit Qualifiers

Wet Chemistry

Chloride

mg/L 0.066U 0.066

LABORATORY CONTROL SAMPLE & LCSD:

18052

18053

Parameter

Spike Units Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

Max RPD

RPD Qualifiers

Wet Chemistry Chloride

mg/L

5.10

5.19

102

90-110

2

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 18054

18055

Original: 901833017

Parameter

Spike Original Result Conc.

5

MS Result

MSD Result

MS % Rec

104

MSD % Rec

% Rec

Max

Limit RPD RPD Qualifiers

Wet Chemistry Chloride

mg/L

Units

203

207

Report ID: 901842 - 4599249

Page 46 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

PH/1052

Analysis Method:

QC Batch Method:

SM4500H-B

SM4500H-B

Associated Lab Samples:

901838001

901840001

901842001

901852001 901894001 901852002 901894002 -

SAMPLE DUPLICATE: 18165

901835001 901854001 901896001 901909001

901854004 901896002 901854005 901896003 901854009 901896004

901896005

901896006

Original: 901896001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers	
Wet Chemistry pH	pH unit	7.24	7.29	0.7	20	

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

SPCD/1026

Analysis Method:

EPA 120.1

QC Batch Method:

EPA 120.1

Associated Lab Samples:

901784001 901852001 901989003 901785010 901852002 901989004 901785011 901894001 901989005 901841004 901894002 901989006

901841005 901989001

901842001 901989002

METHOD BLANK: 18272

Blank

Reporting

Parameter

Units

Result

Limit Qualifiers

Wet Chemistry

Specific Conductance

umhos/c

2U

2

SAMPLE DUPLICATE: 18273

Original: 901784001

Parameter

Units

Original Result

DUP Result

1407

RPD

Max **RPD Qualifiers**

Wet Chemistry

Specific Conductance

umhos/c

1384

2

Report ID: 901842 - 4599249

Page 48 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1484

Analysis Method:

QC Batch Method:

EPA 351.2

EPA 351.2

Associated Lab Samples:

901780001

901841004

901853003

901880001

901811002 901841005 901854003

Blank

Result

901821001 901841006 901854006 901821002 901842001 901854008 901823001 901852001 901855003 901840001 901852002 901857001

METHOD BLANK: 18613

Units

Reporting

Limit Qualifiers

Wet Chemistry

Parameter

Total Kjeldahl Nitrogen

mg/L-N 0.2661 0.22

LABORATORY CONTROL SAMPLE & LCSD: 18614

18615

Spike Parameter Units Conc.

LCS LCSD LCS LCSD Result Result % Rec % Rec

% Rec Max Limit **RPD**

RPD Qualifiers

Wet Chemistry

Total Kjeldahl Nitrogen

mg/L-N 5

Original

Result

4.56

Spike

Conc.

5

5.22 91.1 104 90-110 13.2

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 18616

18617

Original: 901811002

MSD

92.1

Parameter Wet Chemistry Total Kjeldahl Nitrogen

mg/L-N

Units

6.44

9.74

MS

Result

11.0

MSD

Result

66.1

MS

% Rec

% Rec

% Rec

Max

Limit RPD RPD Qualifiers

90-110 32.9 20

Report ID: 901842 - 4599249

Page 49 of 53

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

j	Estimated value.
Q	Holding time exceeded.
v	Present in blank.
[3]	NCR-LCS and/or LCSD recoveries above acceptable limits. The reported target analyte is below detection limit establishing that there is no high biased result reported
[5]	MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[6]	NCR-% RPD exceeds control limits

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
901842001	COMBINED EFFLUENT	EPA 625	EXTO/1744	EPA 625	MSSV/1248
901842001	COMBINED EFFLUENT	EPA 1664A	EXTO/1745		
901842001	COMBINED EFFLUENT	EPA 504.1	EXTO/1746	EPA 504.1	GCSV/1399
901842001	COMBINED EFFLUENT	SM 2150 B	MISC/1114		
901842001	COMBINED EFFLUENT	EPA 365.1	LACH/1768		
901842001	COMBINED EFFLUENT	SM 2120B Color	HACH/1120		
901842001	COMBINED EFFLUENT	EPA 200.7	DIGM/1602	EPA 200.7	ICP/1374
901842001	COMBINED EFFLUENT	EPA 200.8	DIGM/1603	EPA 200.8	ICPM/1076
901842001	COMBINED EFFLUENT	EPA 350.1	LACH/1770	·	
901842001	COMBINED EFFLUENT	SM 5540 C	INPR/1468	SM 5540 C	HACH/1123
901842001	COMBINED EFFLUENT	EPA 608	EXTO/1758	EPA 608	GCSV/1401
901842001	COMBINED EFFLUENT	EPA 300.0	IC/1189		
901842001	COMBINED EFFLUENT	EPA 524.2	MSV/1452		
901842001	COMBINED EFFLUENT	BOD PREP	MICP/1259	SM 5210B BOD	BOD/1220
901842001	COMBINED EFFLUENT	SM 2540 C	SOLI/1497	. ·	`
901842001	COMBINED EFFLUENT	EPA 624	MSV/1454		
901842001	COMBINED EFFLUENT	EPA 335.2	INPR/1470	EPA 335.4 Cyanide	LACH/1791

Report ID: 901842 - 4599249

Page 51 of 53

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
901842001	COMBINED EFFLUENT	EPA 245.1	DIGM/1613	EPA 245.1	HG/1081
901842001	COMBINED EFFLUENT	EPA 365.1	INPR/1473	EPA 365.1	LACH/1784
901842001	COMBINED EFFLUENT	EPA 300.0	IC/1193		
901842001	COMBINED EFFLUENT	SM4500H-B	PH/1052		
901842001	COMBINED EFFLUENT	EPA 120.1	SPCD/1026		
901842001	COMBINED EFFLUENT	EPA 351.2	INPR/1484	EPA 351.2	LACH/1828
901842001	COMBINED EFFLUENT	1613	S_06/	1613	S_06/
901842001	COMBINED EFFLUENT	EPA 100.2	S_09/	EPA 100.2	S_09/
901842001	COMBINED EFFLUENT	EPA 508.1	S_05/	EPA 508.1	S_05/
901842001	COMBINED EFFLUENT	EPA 515.3	S_05/	EPA 515.3	S_05/
901842001	COMBINED EFFLUENT	EPA 525.2	S_05/	EPA 525.2	S_05/
901842001	COMBINED EFFLUENT	EPA 531.1	S_05/	EPA 531.1	S_05/
901842001	COMBINED EFFLUENT	EPA 547	S_05/	EPA 547	S_05/
901842001	COMBINED EFFLUENT	EPA 548.1	S_05/	EPA 548.1	S_05/
901842001	COMBINED EFFLUENT	EPA 549.2	S_05/	EPA 549.2	S_05/

Report ID: 901842 - 4599249

Page 52 of 53

3231 NW 7th Ave., Boca Raton, FL 33431 www.genapure.com	CHAIN OF CUSTODY RECORD 901842 T#SQuote:	AV Antest Vid E5 Ensors Bangles CV Chest Val Priv Proporational of P. C. Disest Vol. P. Plant V. C. Disest Vol. Priv Proporational of P. C. Disest Vol. Antifect Lear P. Disest Johnson Co. C. Disest Are Dispose Dolly AP Anteon Plants AP Anteon Glass Society Jos. 400, Sec. 1807, Shore of L., 4074 cities.
Company Name: HiAmidd D = WSD PO# 5859 / Address: \$900 Subdect Sp. 32 / 7C Attn: Clive Rule Faxe 3050 (885 20 email: Cfbue Callian, Dr. De. Cul Project Name NAU AT Subdect Roll Sampler Signature Roll Collect Collect Matrix (Client ID) Date Time Code 25 25 25 25 25 25 25 25 25 25 25 25 25	STANDER STANDE	Exemple 4-927 a fee Platis, 8ex5-in8ex Soil Jier Continue
1 Coubined Garbon 11:35 GW X 1 1 Coubined Garbon 24AC UW 0 2 Try p Blan		REMARKS -O/DPU -O/DPU
Short-fold Short-fold State of the Short-fold State of the Short-fold Short-fold State of the Short-fold Sho	GA/QC ASSOCIATION GOO. (A) INTERPRETATION OF THE COMPANY OF THE CO	Continuation

•					
-		,			
1					
-					
1					
1					
				•	
1					
1					
-					
1					
•					
3					
_					

> Phone: (561) 447-7373 Fax: (561) 447-7374

April 30, 2009

DEBORAH DAIGLE HDR ENGINEERING 5426 BAY CENTER DR. SUITE 400 Tampa, FL 33609

RE:

Workorder:

904015

Project:

FPL

Dear DEBORAH DAIGLE:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, April 14, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Neshmah Castaneda ncastaneda@genapure.com Project Manager

FL-NELAC E86240

Statement of uncertainty is available upon request.

FL Qualifiers: I=value between MDL and PQL; V=value was positive in Blank; J=estimated value.See comment;

U=undetected; Q=out of hold

EPA Qualifiers: B=value was positive in Blank; J=estimated value. May be between MDL and PQL;

U=undetected; Q=out of hold

Enclosures

Report ID: 904015 - 4792816

Page 1 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

SAMPLE SUMMARY

Lab ID	Sample ID	Collector	Matrix	Date Collected	Date Received	Тетр
904015001	PW-1	CL	Groundwater	4/13/2009 16:00	4/14/2009 10:00	4
904015002	TRIP BLANK	CL	DI Water	4/13/2009 16:00	4/14/2009 10:00	4

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

Sample ID: PW-1/

-1/ Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Wet Chemistry	<u> </u>				•••••				
Analytical Method: SM 2540 C									
Total Dissolved Solids(TDS)	35800		mg/L	350	500	50		4/16/2009 16:30	AR
Preparation Method: EPA 351.2	2	Analytica	al Method	1: EPA 351.2					
Total Kjeldahl Nitrogen	0.379	1	mg/L	0.22	0.40	1	4/20/2009 16:00	4/22/2009 12:49	IG
Analytical Method: EPA 350.1			_						
Ammonia	0.133		mg/L	0.017	0.050	1		4/21/2009 12:22	IG
Analytical Method: EPA 300.0	i., 0,		·	-					;
Bromide	101		mg/L	0.522	5.00	10		4/15/2009 03:03	AD
Chloride	20700		mg/L	199	1500	3000		4/24/2009 15:28	AD
Fluoride	0.300	U	mg/L	0.300	2.00	10		4/15/2009 03:03	AD
Nitrate	0.074	U	mg/L	0.074	0.500	10		4/15/2009 03:03	AD
Nitrite	0.053	U	mg/L	0.053	0.500	10		4/15/2009 03:03	AD
Sulfate	2530	٧	mg/L	15.1	100	200		4/20/2009 19:52	AD
Analytical Method: EPA 410.4							h ·		
COD	1510		mg/L	33.5	50.0	5		4/30/2009 16:58	AR
Analytical Method: SM 2320 B									A = 1 15
Total Alkalinity	154		mg/L	0.02	0.05	1	•	4/16/2009 12:00	JC
Preparation Method: BOD PRE	P	Analytica	l Method	I: SM 5210B BOD				1 14 K	
BOD	40	U	mg/L	40	40	20	4/14/2009 20:00	4/19/2009 12:45	RB
Analytical Method: SM 5310B									
Total Organic Carbon	2.5		mg/L	0.60	1.0	1		4/16/2009 08:46	LP
Analytical Method: EPA 1664A			_	•					Back C
Oil and Grease	1.5	1	mg/L	1.4	4.0	1	··, • • • • • • • • • • • • • • • • • •	4/15/2009 15:00	∦ ≯⊬ ≾ Js
Analytical Method: SW-846 719		•				•		er cy myra	5 5 975
Chromium VI	0.007	Ü	mg/L	0.007	0.010	1	ं केंग्रा वे क्री	4/14/2009 15:30	نيان AD
Preparation Method: SW-846 90			-	I: SW-846 9012A	0.010	•	÷ .,		W _f
Total Cyanide	0.0032	U	mg/L	0.0032	0.0050	1	4/16/2009 13:40	4/16/2009 16:57	IG
Analytical Method: SM 4500 CC		·		0.000_	0.000	·	1 10/2000 (0110		4 2 3 4
Bicarbonate Alkalinity	156		mg/L	2.0	2.0	1		4/16/2009 14:00	JC
Preparation Method: SM 5540 0		Analytica	. •	: SM 5540 C	2.0	•	+ 1.	170/2000 141.00	
Surfactants	0.040	U		AS 0.040	0.200	1	4/15/2009 15:45	4/15/2009 15:45	AR
Analytical Method: SM 2130 B	5.0.0	•			5.200	•			
Turbidity	0.67	1	NTU	0.05	1.0	1	. •	4/14/2009 17:00	ZE
Analytical Method: SM 2520 B		1	1410	0.03	1.0	•	* *		-,
计可编制 计记录系统经验证 化二苯				0.4	0.4		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
Salinity	8.6			0.1	0.1	1		4/17/2009 15:30	AD

Report ID: 904015 - 4792816

Page 3 of 71

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

Sample ID: PW-1/

Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Analytical Method: SM 4500-S	F(20th Ed.)								
Sulfide	8.00		mg/L	0.800	1.00	1		4/14/2009 18:00	AR
Analytical Method: EPA 365.1									
Ortho Phosphate - P	0.030		mg/L-P	0.005	0.015	1	• •	4/15/2009 08:18	ZE
Total Phosphorus	0.063		mg/L	0.004	0.015	1	4/15/2009 09:30	4/15/2009 15:50	ZE
Analytical Method: SM 2540 D)								
Total Suspended Solids	23.9		mg/L	2.0	4.0	1	•	4/16/2009 14:05	MF
Analytical Method: SM4500H-	В								
рH	7.01		pH unit	0.100	0.100	1	•	4/15/2009 13:30	AD
Analytical Method: EPA 120.1			•						
Conductivity	21300		umhos/c m	2.0	2.0	1		4/23/2009 14:30	SM
Subcontract Analysis Analytical Method: EPA 906				. One	··		÷		
See Attached	Attached	U1			,	1	•	4/17/2009 12:00	SU
Analytical Method: Krone1989	/GCMS				٠.	•		47172000 12.00	
See Attached	Attached	U2	+ 3		f 1 1.4	1		4/23/2009 21:13	SU
Analytical Method: 903.1	1				t	•		472072009 21.13	∯:;
Radium 226	2.6+/-0.3	U3	pCi/l	0.20	0.20	1		4/27/2009 10:52	SU
Analytical Method: 900.0		•	ρο		0.20		e de la e	4/21/2009 10.32	30
Gross Alpha (Incl Uranium)	53.4+/-	U3	pCi/l	43	43	1		4/24/2000 42:E2	CLI
• •	28.8		·		43	'		4/24/2009 13:52	SU
Gross Beta	44+/-29.8	U	pCi/l	41	41	1		4/24/2009 13:52	SU
Radiological Analysis Analytical Method: RA-05						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			<u> </u>
Radium 228	<0.9+/-0.6	U3	pCi/l	0.90	0.90	294 5 € 1		4/27/2009 11:12	SU
PCBs									
Preparation Method: 3510C	Analytical Me	ethod:	SW-846 8	082			1.0		
PCB 1016	0.012	U	ug/L	0.012	0.500	1	4/15/2009 18:00	4/18/2009 08:42	MR
PCB 1221	0.014	U	ug/L	0.014	0.500	1	4/15/2009 18:00	4/18/2009 08:42	MR
PCB 1232	0.190	υ	ug/L	0.190	0.500	1	4/15/2009 18:00	4/18/2009 08:42	MR
PCB 1242	0.010	U	ug/L	0.010	0.500	1	4/15/2009 18:00	4/18/2009 08:42	MR
PCB 1248	0.00850	U	ug/L	0.00850	0.500	1	4/15/2009 18:00	4/18/2009 08:42	MR
PCB 1254	0.014	U	ug/L	0.014	0.500	1	4/15/2009 18:00	4/18/2009 08:42	MR
PCB 1260	0.015	U	ug/L	0.015	0.500	1	4/15/2009 18:00	4/18/2009 08:42	MR
Decachlorobiphenyl (S)	121		%	45-162		1	4/15/2009 18:00	4/18/2009 08:42	MR
Tetrachloro-m-xylene (S)	95		%	50-125		1	4/15/2009 18:00	4/18/2009 08:42	MR
Herbicides									

Report ID: 904015 - 4792816

Page 4 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

Sample ID:

PW-1/

Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qua	l Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Preparation Method: 3510C	Analytical N	/lethod	SW-846	8151A				-	1.
2,4,5-T	0.345	U	ug/L	0.345	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MF
2,4,5-TP (Silvex)	0.492	Ũ	ug/L	0.492	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MI
2,4-D	0.406	Ū	ug/L	0.406	2.00	1	4/15/2009 08:30	4/16/2009 06:46	MI
2,4-DB	0.547	Ü	ug/L	0.547	2.00	1	4/15/2009 08:30	4/16/2009 06:46	М
Dalapon	0.509	Ü	ug/L	0.509	2.00	1	4/15/2009 08:30	4/16/2009 06:46	M
Dicamba	0.369	Ü	ug/L	0.369	2.00	1	4/15/2009 08:30	4/16/2009 06:46	M
Dichlorprop	0.399	Ü	ug/L	0.399	2.00	1	4/15/2009 08:30	4/16/2009 06:46	M
Dinoseb	0.509	Ü	ug/L	0.509	2.00	1	4/15/2009 08:30	4/16/2009 06:46	M
MCPA	47.7	Ü	ug/L	47.7	200	1	4/15/2009 08:30	4/16/2009 06:46	M
MCPP .	98.0	U	ug/L	98.0	200	1	4/15/2009 08:30	4/16/2009 06:46	MF
DCAA(S)	66	Ū	%	46-142	200	1	4/15/2009 08:30	4/16/2009 06:46	MI
Metals Analysis									
Preparation Method: SW-846	7470 A	nalytic	al Method	; SW-846 7470					
Mercury	0.00013	U	mg/L	0.00013	0.00020	1	4/23/2009 09:45	4/23/2009 17:03	IT
Preparation Method: SW-846	3010A A	nalytic	al Method	I: SW-846 6010					
Aluminum	0.046	Ü	mg/l	0.046	0.20	1	4/15/2009 15:45	4/17/2009 03:40	TE
Antimony	0.0038	υ	mg/l	0.0038	0.020	1	4/15/2009 15:45	4/17/2009 03:40	TE
Arsenic	0.0046	U	mg/l	0.0046	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TE
Barium	0.0159		mg/l	0.0020	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TE
3eryllium	0.00067	U	mg/l	0.00067	0.0040	1	4/15/2009 15:45	4/17/2009 03:40	TE
Boron	4.41		mg/i	0.034	0.25	10	4/15/2009 15:45	4/17/2009 03:34	TE
Cadmium	0.00057	υ	mg/l	0.00057	0.0050	1	4/15/2009 15:45	4/17/2009 03:40	TE
Calcium	471		mg/l	0.59	2.0	10	4/15/2009 15:45	4/17/2009 03:34	TE
Chromium	0.0011	U	mg/l	0.0011	0.0050	1	4/15/2009 15:45	4/17/2009 03:40	TE
Cobalt	0.00072	U	mg/l	0.00072	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TE
Copper	0.0096	U	mg/l	0.0096	0.020	1	4/15/2009 15:45	4/17/2009 03:40	TE
ron	0.189		mg/l	0.045	0.10	1	4/15/2009 15:45	4/17/2009 03:40	TE
_ead	0.0031	U	mg/l	0.0031	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TE
Magnesium	1430		mg/l	0.45	2.0	10	4/15/2009 15:45	4/17/2009 03:34	TE
Manganese	0.015	U6	mg/i	0.015	0.015	1	4/15/2009 15:45	4/17/2009 03:40	TE
Molybdenum	0.0030	U	mg/l	0.0030	0.0050	1	4/15/2009 15:45	4/17/2009 03:40	TE
Nickel	0.0175		mg/l	0.0052	0.010	1	4/15/2009 15:45	4/17/2009 03:40	TE
Potassium	443		mg/l	3.50	10	10	4/15/2009 15:45	4/17/2009 03:34	TE
Selenium	0.0054	U	mg/l	0.0054	0.030	1	4/15/2009 15:45	4/17/2009 03:40	TE
Silica	5.00		mg/l		0.30	1	4/15/2009 15:45	4/17/2009 03:40	TE
Silver	0.0016	U	mg/l	0.0016	0.020	1	4/15/2009 15:45	4/17/2009 03:40	TE
Sodium	10000	v	mg/l	3.70	13	50	4/15/2009 15:45	4/17/2009 20:55	TE
Strontium	8.32	-	mg/l	0.015	0.15	10	4/15/2009 15:45	4/17/2009 03:34	TE
Tin	0.0042	U	mg/l	0.0042	0.025	1	4/15/2009 15:45	4/17/2009 03:40	TE
Titanium	0.0042	U	mg/i	0.0061	0.050	1	4/15/2009 15:45	4/17/2009 03:40	TE
/anadium	0.0056	Ü	mg/l	0.0056	0.030	1	4/15/2009 15:45	4/17/2009 03:40	TE
Zinc	7.27	v	mg/l	0.053	0.025	10	4/15/2009 15:45	4/17/2009 03:34	TE

Report ID: 904015 - 4792816

Page 5 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

Sample ID: PW-1/ Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	l Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Thallium	0.00027	U	mg/L	0.00027	0.0020	1	4/16/2009 20:00	4/21/2009 14:09	DF
PAH									
Preparation Method: 3510C	Analytical M	lethod:	SW-846	8270C low PAH					
1-Methylnaphthalene	0.026	υ	ug/L	0.026	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
2-Methylnaphthalene	0.030	U	ug/L	0.030	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Acenaphthene	0.027	U	ug/L	0.027	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Acenaphthylene	0.026	U	ug/L	0.026	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Anthracene	0.0056	υ	ug/L	0.0056	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Benzo(a)anthracene	0.011	IJ	ug/L	0.011	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Benzo(a)pyrene	0.013	Ū	ug/L	0.013	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Benzo(b)fluoranthene	0.015	U	ug/L	0.015	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Benzo(g,h,i)perylene	0.014	U	ug/L	0.014	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Benzo(k)fluoranthene	0.012	Ū	ug/L	0.012	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Chrysene	0.017	Ü	ug/L	0.017	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Dibenz(a,h)anthracene	0.0056	Ū	ug/L	0.0056	0.20	1	4/16/2009 13:30	4/17/2009 00:04	TE
Fluoranthene	0.0078	Ū	ug/L	0.0078	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Fluorene	0.011	Ū	ug/L	0.011	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Indeno(1,2,3-cd)pyrene	0.011	Ü	ug/L	0.011	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Naphthalene	0.034	Ū	ug/L	0.034	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Phenanthrene	0.014	Ü	ug/L	0.014	1.0	1	4/16/2009 13:30	4/17/2009 00:04	TE
Pyrene	0.0084	Ü	ug/L	0.0084	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
2-Fluorobiphenyl (S)	59.9	Ū	%	10-116	0.10	1	4/16/2009 13:30	4/17/2009 00:04	TE
Nitrobenzene-d5 (S)	62.4		%	10-112		1	4/16/2009 13:30	4/17/2009 00:04	TE
Terphenyl-d14 (S)	82.4		%	20-128		1	4/16/2009 13:30	4/17/2009 00:04	TE
Organophosphorus Pestic	ides								
Preparation Method: 3510C	Analytical N	/lethod:	SW-846	8141A					
Aspon	0.185	U	ug/L	0.185	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Azinphos-ethyl	0.130	Ü	ug/L	0.130	2.00	1	4/14/2009 23:00	4/16/2009 04:38	LF
Bolstar	0.202	Ü	ug/L	0.202	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Carbophenothion	0.063	Ü	ug/L	0.063	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Chlorpyrifos	0.121	Ü	ug/L	0.121	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Chlorpyrifos-methyl	0.137	Ü	ug/L	0.137	0.500	i	4/14/2009 23:00	4/16/2009 04:38	LF
Coumaphos	0.079	Ü	ug/L	0.079	1.50	1	4/14/2009 23:00	4/16/2009 04:38	LF
Crotoxyphos	0.078	Ü	ug/L	0.078	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Demeton-o	0.070	U	ug/L ug/L	0.075	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Demeton-s	0.062	U	ug/L ug/L	0.062	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Dichlorfenthion	0.002	U	ug/L ug/L	0.190	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Dichloroyos	0.190	Ü	ug/L ug/L	0.075	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
	0.075 0.175	U	•	0.075		1			LF
Dicrotophos Dimethects	0.175 0.184	U	ug/L	0.175 0.184	0.500	1	4/14/2009 23:00	4/16/2009 04:38	
Dimethoate Diovethion			ug/L		0.500		4/14/2009 23:00	4/16/2009 04:38	LI
Dioxathion	0.110	U	ug/L	0.110	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Disulfoton	0.129	U	ug/L	0.129	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
EPN	0.132	U	ug/L	0.132	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF
Ethion	0.132	U	ug/L	0.132	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LF

Report ID: 904015 - 4792816 Page 6 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

1.2,4-Trichlorobenzene	Sample ID: PW-1/	•				Date Collec	cted: 4	1/13/2009 4:00:00 PM		
Famphur	Parameters	Results	Qua	al Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Fensitrothion	Ethoprop	0.068	Ų	ug/L	0.068	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Fensuliothion	Famphur	0.081	U	ug/L	0.081	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Fenthion	Fenithrothion	0.198	U	ug/L	0.198	0.500	11	4/14/2009 23:00	4/16/2009 04:38	LŖ
Leptophos	Fensulfothion	0.192	Ü	ug/L	0.192	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Memphos	Fenthion	0.074	U	ug/L	0.074	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Mevinphos	Leptophos	0.046	U	ug/L	0.046	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Naled	Merphos	0.208	U	ug/L	0.208	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Phorate	Mevinphos	0.172	U	ug/L	0.172	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Phosmet	Naled	0.220	U	ug/L	0.220	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Phosphamidon	Phorate	0.177	U.	ug/L	0.177	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Ronnel	Phosmet	0.102	U	ug/L	0.102	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
TEPP	Phosphamidon	0.311	U	ug/L	0.311	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Terbufos 0.063 -U ug/L 0.063 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Tetrachlorvinphos (Stirofos) 0.107 U ug/L 0.107 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Thionazine 0.179 U ug/L 0.179 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Tokuthion (Prothiophos) 0.106 U ug/L 0.106 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Tokuthion (Prothiophos) 0.106 U ug/L 0.106 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Trichlorfon 1.09 U ug/L 1.09 1.80 1 4/14/2009 23:00 4/16/2009 04:38 LR Triphenyl Phosphate (S) 89 % 43-134 1 4/14/2009 23:00 4/16/2009 04:38 LR Triphenyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,2-Dichlorobenzene 0.34 U ug/L 0.23 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,3-Dichlorobenzene 0.28 U ug/L 0.38 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,3-Dichlorobenzene 0.28 U ug/L 0.38 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.28 U ug/L 0.31 0.35 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.28 U ug/L 0.31 0.35 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/20	Ronnel	0.054	U	ug/L	0.054	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Tetrachlorvinphos (Stirofos) 0.107 U ug/L 0.107 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Thionazine 0.179 U ug/L 0.179 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Thionazine 0.108 U ug/L 0.106 0.500 1 4/14/2009 23:00 4/16/2009 04:38 LR Trichlorfon 1.09 U ug/L 1.09 1.80 1 4/14/2009 23:00 4/16/2009 04:38 LR Trichlorfon 1.09 U ug/L 1.09 1.80 1 4/14/2009 23:00 4/16/2009 04:38 LR Trichlorfon 1.09 U ug/L 1.09 1.80 1 4/14/2009 23:00 4/16/2009 04:38 LR Triphyl Phosphate (S) 89 % 43-134 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 09:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 158 W 158	TEPP	0.189	U	ug/L	0.189	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Thionazine	Terbufos	0.063	- U	ug/L	0.063	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Tokuthion (Prothiophos) 0.106 U ug/L 1.09 1.00 1.09 1.00 1.00 1.01 1.0	Tetrachlorvinphos (Stirofos)	0.107	U	ug/L	0.107	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Trichlorfon 1.09 U ug/L 1.09 1.80 1 4/14/2009 23:00 4/16/2009 04:38 LR Triphenyl Phosphate (S) 89 % 43-134 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/16/2009 23:00 4/16/2009 18:02 TB 1,2-Dichlorobenzene 0.34 U ug/L 0.34 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,2-Dichlorobenzene 0.25 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,3-Dichlorobenzene 0.28 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-5-Trichlorophenol 0.38 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.43 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.43 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.26 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.25 U ug/L 0.26 5 0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3-Dichloro	Thionazine	0.179	U	ug/L	0.179	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Trichlorfon 1.09 U ug/L 1.09 1.80 1 4/14/2009 23:00 4/16/2009 04:38 LR Triphenyl Phosphate (S) 89 % 43-134 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR TR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 18:02 TB 1,2-Diphenylhydrazine 0.34 U ug/L 0.34 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,2-Diphenylhydrazine 0.25 U ug/L 0.25 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.28 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.38 U ug/L 0.27 1.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.31 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.43 U ug/L 0.31 0.35 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.31 U ug/L 0.31 0.35 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.32 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitro-	Tokuthion (Prothiophos)	0.106	U	ug/L	0.106	0.500	1	4/14/2009 23:00	4/16/2009 04:38	LR
Triphenyl Phosphate (S) 89 % 43-134 1 4/14/2009 23:00 4/16/2009 04:38 LR Tributyl Phosphate (S) 108 % 44-125 1 4/14/2009 23:00 4/16/2009 04:38 LR Semivolatiles Preparation/Method: 35:10C	Trichlorfon	1.09	U	ug/L	1.09	1.80	1	4/14/2009 23:00	4/16/2009 04:38	LR
Semivolatiles Preparation Method 3510C Analytical Method SW-846-8270C	Triphenyl Phosphate (S)	89		-	43-134		1	4/14/2009 23:00	4/16/2009 04:38	LR
Preparation:Method: 3510C Analytical, Method: SW-846 8270C	Tributyl Phosphate (S)	108		%	44-125	•	1	4/14/2009 23:00	4/16/2009 04:38	LR
1.2,4-Trichlorobenzene	Semivolatiles									
1,2-Dichlorobenzene 0.34 U ug/L 0.34 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,2-Diphenylhydrazine 0.23 U ug/L 0.23 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,3-Dichlorobenzene 0.35 U ug/L 0.35 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.28 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,5-Trichlorophenol 0.38 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,5-Trichlorophenol 0.27 U ug/L 0.27 1.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrobluene 0.31 U ug/L 0.31 0.35 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrobluene 0	Preparation Method: 3510C	Analytical N	lethod	SW-846	8270C	ing and the second			i i albina	Kadal
1,2-Diphenylhydrazine 0.23 U ug/L 0.23 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,3-Dichlorobenzene 0.35 U ug/L 0.35 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.28 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,5-Trichlorophenol 0.38 U ug/L 0.38 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Erichlorophenol 0.27 U ug/L 0.27 1.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrotoluene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,-Chlorophenol 2.6 U ug/L 0.32 4.0 1 4/16/2009 09:00 <td< td=""><td>1,2,4-Trichlorobenzene</td><td>1.5</td><td>U</td><td>ug/L</td><td>1.5</td><td>4.0</td><td>1</td><td>4/16/2009 09:00</td><td>4/16/2009 18:02</td><td>ТВ</td></td<>	1,2,4-Trichlorobenzene	1.5	U	ug/L	1.5	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
1,3-Dichlorobenzene 0.35 U ug/L 0.35 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 1,4-Dichlorobenzene 0.28 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,5-Trichlorophenol 0.38 U ug/L 0.38 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,6-Trichlorophenol 0.27 U ug/L 0.27 1.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrotoluene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,-Chloronaphthalene 0.32 U ug/L	1,2-Dichlorobenzene	0.34	U	ug/L	0.34	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB.
1,4-Dichlorobenzene 0.28 U ug/L 0.28 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,5-Trichlorophenol 0.38 U ug/L 0.38 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,6-Trichlorophenol 0.27 U ug/L 0.27 1.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 1.4 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrotoluene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22	1,2-Diphenylhydrazine	0.23	U	ug/L	0.23	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4,5-Trichlorophenol 0.38 U ug/L 0.38 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4,6-Trichlorophenol 0.27 U ug/L 0.27 1.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 1.4 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrotoluene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitroaniline 0.20 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18	1,3-Dichlorobenzene	0.35	U	ug/L	0.35	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4,6-Trichlorophenol 0.27 U ug/L 0.27 1.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 1.4 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U<	1,4-Dichlorobenzene	0.28	U	ug/L	0.28	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 1.4 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrotoluene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 </td <td>2,4,5-Trichlorophenol</td> <td>0.38</td> <td>U</td> <td>ug/L</td> <td>0.38</td> <td>4.0</td> <td>1</td> <td>4/16/2009 09:00</td> <td>4/16/2009 18:02</td> <td>TB</td>	2,4,5-Trichlorophenol	0.38	U	ug/L	0.38	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4-Dichlorophenol 0.43 U ug/L 0.43 0.53 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrophenol 1.4 U ug/L 1.4 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,4-Dinitrotoluene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 2.6 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 <td>2,4,6-Trichlorophenol</td> <td>0.27</td> <td>U</td> <td>ug/L</td> <td>0.27</td> <td>1.0</td> <td>1</td> <td>4/16/2009 09:00</td> <td>4/16/2009 18:02</td> <td>TB</td>	2,4,6-Trichlorophenol	0.27	U	ug/L	0.27	1.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4-Dinitrotoluene 0.31 U ug/L 0.31 0.45 1 4/16/2009 09:00 4/16/2009 18:02 TB 2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chloronaphthalene 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 2.6 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitroaniline 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35<		0.43	U	ug/L	0.43	0.53	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2,6-Dinitrotoluene 0.31 U ug/L 0.31 0.39 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chloronaphthalene 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 2.6 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitroaniline 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.29 U ug/L 0.	2,4-Dinitrophenol	1.4	U	ug/L	1.4	10	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2-Chlorophenol 2.6 U ug/L 2.6 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 2.6 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitrophenol 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	2,4-Dinitrotoluene	0.31	U	ug/L	0.31	0.45	1	4/16/2009 09:00	4/16/2009 18:02	TB
2-Chloronaphthalene 0.32 U ug/L 0.32 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Chlorophenol 2.6 U ug/L 2.6 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitroaniline 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	2,6-Dinitrotoluene	0.31	U	ug/L	0.31	0.39	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2-Chlorophenol 2.6 U ug/L 2.6 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitroaniline 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	2-Chloronaphthalene	0.32	U	•	0.32	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2-Methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitroaniline 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	2-Chlorophenol	2.6	υ	•	2.6	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2-Nitroaniline 0.20 U ug/L 0.20 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB				-						
2-Nitrophenol 0.24 U ug/L 0.24 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	• •			-						
3,3'-Dichlorobenzidine 0.31 U ug/L 0.31 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB				•						
3-Nitroaniline 0.28 U ug/L 0.28 50 1 4/16/2009 09:00 4/16/2009 18:02 TB 4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	•			_						
4,6-Dinitro-2-methylphenol 0.35 U ug/L 0.35 10 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	· ·									
4-Chloro-3-methylphenol 0.22 U ug/L 0.22 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB 4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB				-						
4-Chloroaniline 0.29 U ug/L 0.29 4.0 1 4/16/2009 09:00 4/16/2009 18:02 TB	• •			-						
· · · · · · · · · · · · · · · · · · ·	• •		_	_			-			
	4-Chlorophenyl phenyl ether	0.45	Ü	ug/L	0.45	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB

Report ID: 904015 - 4792816

Page 7 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

Sample ID: PW-1/

Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	By
Aniline	0.28	U	ug/L	0.28	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Benzidine	9.7	U	ug/L	9.7	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Benzoic acid	2.0	U	ug/L	2.0	50	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Benzyl alcohol	0.22	U	ug/L	0.22	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Bis(2-Chloroethoxy)methane	0.32	IJ	ug/L	0.32	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Bis(2-Chloroethyl)ether	0.46	U	ug/L	0.46	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Bis(2-Chloroisopropyl)ether	0.34	U	ug/L	0.34	4.0	1	4/16/2009 09:00	4/16/2009 18:02	тв
Bis(2-Ethylhexyl)phthalate	0.20	U	ug/L	0.20	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
4-Bromophenyl phenyl ether	0.27	υ	ug/L	0.27	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Butyl benzyl phthalate	0.36	υ	ug/L	0.36	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Carbazole	0.28	U	ug/L	0.28	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Di-n-butyl phthalate	0.21	U	ug/L	0.21	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Di-n-octyl phthalate	0.28	U	ug/L	0.28	1.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Dibenzofuran	0.29	U	ug/L	0.29	10	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Diethyl phthalate	0.33	ប	ug/L	0.33	1.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Dimethyl phthalate	0.31	U	ug/L	0.31	1.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2,4-Dimethylphenol	0.40	U.	ug/L	0.40	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Hexachlorobenzene	0.32	U	ug/L	0.32	1.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Hexachlorobutadiene	0.45	U	ug/L	0.45	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Hexachlorocyclopentadiene	0.70	U	ug/L	0.70	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
Hexachloroethane	0.36	U	ug/L	0.36	2.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Isophorone	0.34	Ū	ug/L	0.34	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
4-Nitroaniline	0.24	Ü	ug/L	0.24	50	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Nitrobenzene	0.31	Ū	ug/L	0.31	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
4-Nitrophenol	0.79	Ū	ug/L	0.79	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Pentachlorophenol	0.70	Ū	ug/L	0.70	10	1	4/16/2009 09:00	4/16/2009 18:02	TB
Phenol	0.40	Ū	ug/L	0.40	1.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Pyridine	8.9	Ū	ug/L	8.9	10	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
m,p-Cresol	0.23	Ū	ug/L	0.23	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
n-Nitrosodi-n-propylamine	0.33	Ü	ug/L	0.33	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
n-Nitrosodimethylamine	3.4	Ū	ug/L	3.4	4.0	1	4/16/2009 09:00	4/16/2009 18:02	TB
n-Nitrosodiphenylamine	0.31	Ū	ug/L	0.31	4.0	1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Nitrobenzene-d5 (S)	58	_	%	7.7-130		1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2-Fluorobiphenyl (S)	58		%	19-126		1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Terphenyl-d14 (S)	62		%	27-133		1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Phenol-d6 (S)	34.5		%	10-59		1	4/16/2009 09:00	4/16/2009 18:02	ТВ
2-Fluorophenol (S)	44		%	28-62		1	4/16/2009 09:00	4/16/2009 18:02	TB
2,4,6-Tribromophenol (S)	64		%	48-132		1	4/16/2009 09:00	4/16/2009 18:02	ТВ
Analytical Method: EPA 300.1	-		70	40"132		•	47 10/2003 03:00		
Bromate	83	U4	ug/L	83	620	250		4/20/2009 13:42	SU
Volatiles							,		
Analytical Method: SW-846 8	260B								
1,1,1,2-Tetrachloroethane	0.120	U	ug/L	0.120	1.00	1		4/16/2009 16:10	LN
1,1,1-Trichloroethane	0.682	Ū	ug/L	0.682	1.00	1		4/16/2009 16:10	LN
1,1,2,2-Tetrachloroethane	0.572	Ū	ug/L	0.572	1.00	1		4/16/2009 16:10	LN

Report ID: 904015 - 4792816

Page 8 of 71

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

Sample ID: PW-1/ Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual Units	MDL	PQL	DF	Prepared	Analyzed	Ву
1,1,2-Trìchloroethane	0.841	U ug/L	0.841	1.00	1		4/16/2009 16:10	LN
1,1-Dichloroethane	0.410	U ug/L	0.410	1.00	1		4/16/2009 16:10	LN
1,1-Dichloroethene	0.638	U ug/L	0.638	1.00	1		4/16/2009 16:10	LN
1,1-Dichtoropropene	0.632	U ug/L	0.632	1.00	1		4/16/2009 16:10	LN
1,2,3-Trichlorobenzene	0.686	U ug/L	0.686	1.00	1		4/16/2009 16:10	LN
1,2,3-Trichloropropane	0.160	U ug/L	0.160	1.00	1		4/16/2009 16:10	LN
1,2,4-Trichlorobenzene	0.538	U ug/L	0.538	1.00	1	•	4/16/2009 16:10	LN
1,2,4-Trimethylbenzene	0.508	U ug/L	0.508	1.00	1		4/16/2009 16:10	LN
1,2-Dibromo-3-	0.933	U ug/L	0.933	1.00	1		4/16/2009 16:10	LN
chloropropane	•	•						
1,2-Dibromoethane	0.345	U ug/L	0.345	1.00	1		4/16/2009 16:10	LN
1,2-Dichlorobenzene	0.584	U ug/L	0.584	1.00	1		4/16/2009 16:10	LN
1,2-Dichloroethane	0.897	U ug/L	0.897	1.00	1		4/16/2009 16:10	, LN
1,2-Dichloropropane	0.725	U ug/L	0.725	1.00	1		4/16/2009 16:10	LN
1,3,5-Trimethylbenzene	0.477	U ug/L	0.477	1.00	1		4/16/2009 16:10	LN
1,3-Dichlorobenzene	0.558	U ug/L	0.558	1.00	1		4/16/2009 16:10	LN
1,3-Dichloropropane	0.345	U ug/L	0.345	1.00	1		4/16/2009 16:10	LN
1,4-Dichlorobenzene	0.537	U ug/L	0.537	1.00	1		4/16/2009 16:10	LN
2,2-Dichloropropane	0.700	U ug/L	0.700	1.00	1		4/16/2009 16:10	LN
2-Butanone	4.28	U ug/L	4.28	10.0	1		4/16/2009 16:10	LN
2-Chloroethylvinyl ether	0.470	U ug/L	0.470	1.00	1		4/16/2009 16:10	LN
2-Chlorotoluene	0.550	U ug/L	0.550	1.00	1		4/16/2009 16:10	LN
2-Hexanone	1.83	U ug/L	1.83	10.0	1		4/16/2009 16:10	LN
4-Chlorotoluene	0.570	U ug/L	0.570	1.00	1		4/16/2009 16:10	LN
4-Isopropyltoluene	0.380	U ug/L	0.380	1.00	1		4/16/2009 16:10	LN
4-Methyl-2-pentanone	0.220	U ug/L	0.220	1.00	1		4/16/2009 16:10	LN
Acetone	1.43	U ug/L	1.43	10.0	1		4/16/2009 16:10	LN
Acrolein	2.47	U ug/L	2.47	10.0	1		4/16/2009 16:10	LN
Acrylonitrile	0.955	U ug/L	0.955	10.0	1		4/16/2009 16:10	LN
Benzene	0.621	U ug/L	0.621	1.00	1		4/16/2009 16:10	LN
Bromobenzene	0.382	U ug/L	0.382	1.00	1		4/16/2009 16:10	LN
Bromochloromethane	0.637	U ug/L	0.637	1.00	1		4/16/2009 16:10	LN
Bromodichloromethane	0.100	-	0.100	1.00	1		4/16/2009 16:10	LN
Bromoform	0.486		0.486	1.00	1		4/16/2009 16:10	LN
Bromomethane	0.427	•	0.427	1.00	1		4/16/2009 16:10	LN
n-Butylbenzene	0.564	U ug/L	0.564	1.00	1		4/16/2009 16:10	LN
Carbon disulfide	0.650	U` ug/L	0.650	10.0	1		4/16/2009 16:10	LN
Carbon tetrachloride	0.468	U ug/L	0.468	1.00	1		4/16/2009 16:10	LN
Chlorobenzene	0.316	U ug/L	0.316	1.00	1		4/16/2009 16:10	LN
Chloroethane	1.00	U ug/L	1.00	1.00	1		4/16/2009 16:10	LN
Chloroform	0.572	U ug/L	0.572	1.00	1		4/16/2009 16:10	LN
Chloromethane	0.524	U ug/L	0.524	1.00	1		4/16/2009 16:10	LN
Dibromochloromethane	0.378	U ug/L	0.378	1.00	1		4/16/2009 16:10	LN
Dibromomethane	0.739	U ug/L	0.739	1.00	· 1		4/16/2009 16:10	LN
Dichlorodifluoromethane	0.525	U ug/L	0.525	1.00	1		4/16/2009 16:10	LN
cis-1,3-Dichloropropene	0.664	U ug/L	0.664	1.00	1		4/16/2009 16:10	LN

Report ID: 904015 - 4792816

Page 9 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015001

Date Received: 4/14/2009

Matrix:

Groundwater

Sample ID: PW-1/

Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522	1.00	1		4/16/2009 16:10	LN
Ethylbenzene	0.323	U	ug/L	0.323	1.00	1		4/16/2009 16:10	LN
Hexachlorobutadiene	0.763	U	ug/L	0.763	1.00	1		4/16/2009 16:10	LN
Isopropylbenzene (Cumene)	0.528	U	ug/L	0.528	1.00	1		4/16/2009 16:10	LN
Methyl-t-butyl ether	0.650	U	ug/L	0.650	1.00	1		4/16/2009 16:10	LN
Methylene chloride	0.580	U	ug/L	0.580	5.00	1		4/16/2009 16:10	LN
Naphthalene	0.417	U	ug/L	0.417	1.00	1		4/16/2009 16:10	LN
Styrene	0.458	U	ug/L	0.458	1.00	1		4/16/2009 16:10	LN
Tetrachloroethene	0.312	U	ug/L	0.312	1.00	1		4/16/2009 16:10	LN
Toluene	0.389	U	ug/L	0.389	1.00	1		4/16/2009 16:10	LN
Trichloroethene	0.821	U	ug/L	0.821	1.00	1		4/16/2009 16:10	LN
Trichlorofluoromethane	1.00	U	ug/L	1.00	1.00	1		4/16/2009 16:10	LN
Vinyl acetate	0.570	U	ug/L	0.570	10.0	1		4/16/2009 16:10	LN
Vinyl chloride	0.506	U	ug/L	0.506	1.00	1		4/16/2009 16:10	LN
Xylene, m,p-	0.639	U	ug/L	0.639	2.00	1		4/16/2009 16:10	LN
Xylene, o-	0.341	U	ug/L	0.341	1.00	1		4/16/2009 16:10	LN
Xylenes (total)	0.980	U	ug/L	0.980	3.00	1		4/16/2009 16:10	LN
cis-1,2-Dichloroethene	0.442	U	ug/L	0.442	1.00	1		4/16/2009 16:10	LN
n-Propylbenzene	0.624	U	ug/L	0.624	1.00	1		4/16/2009 16:10	LN
sec-Butylbenzene	0.521	U	ug/L	0.521	1.00	1		4/16/2009 16:10	LN
tert-Butylbenzene	0.607	U	ug/L	0.607	1.00	1		4/16/2009 16:10	LN
trans-1,2-Dichloroethene	0.410	U	ug/L	0.410	1.00	1		4/16/2009 16:10	LN
4-Bromofluorobenzene (S)	85		%	64-130		1		4/16/2009 16:10	LN
Dibromofluoromethane (S)	98		%	69-134		1		4/16/2009 16:10	LN
Toluene d8 (S)	98		%	63-127		1		4/16/2009 16:10	LN
Pesticides									
Preparation Method: 3510C	Analytical M	ethod:	SW-846	8081A					
4,4'-DDD	0.000993	U	ug/L	0.000993	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
4,4'-DDE	0.00148	U	ug/L	0.00148	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
4,4'-DDT	0.00120	ูบ	ug/L	0.00120	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Aldrin	0.00139	U	ug/L	0.00139	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
Dieldrin	0.00106	U	ug/L	0.00106	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
Endosulfan I	0.00103	U	ug/L	0.00103	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Endosulfan II	0.00103	U	ug/L	0.00103	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Endosulfan sulfate	0.00279	U	ug/L	0.00279	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Endrin	0.00717	U	ug/L	0.00717	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Endrin aldehyde	0.000695	U	ug/L	0.000695	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Endrin ketone	0.000969	U	ug/L	0.000969	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Heptachlor	0.00152	U	ug/L	0.00152	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
Heptachlor epoxide	0.00236	1	ug/L	0.00121	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
Methoxychlor	0.000900	U	ug/L	0.000900	0.100	1	4/14/2009 20:00	4/16/2009 13:39	CC
Toxaphene	0.047	Ū	ug/L	0.047	3.00	1	4/14/2009 20:00	4/16/2009 13:39	CC
alpha-BHC	0.000924	Ū	ug/L	0.000924	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
alpha-Chlordane	0.00118	Ū	ug/L	0.00118	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
beta-BHC	0.00123	Ũ	ug/L	0.00123	0.020	1	4/14/2009 20:00	4/16/2009 13:39	CC

Report ID: 904015 - 4792816

Page 10 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID: Sample ID: 904015001

PW-1/

5001 E

Date Received: 4/14/2009

Matrix:

Groundwater

Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
delta-BHC	0.000904	U	ug/L	0.000904	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
gamma-BHC (Lindane)	0.000563	U	ug/L	0.000563	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
gamma-Chlordane	0.00130	U	ug/L	0.00130	0.050	1	4/14/2009 20:00	4/16/2009 13:39	CC
Tetrachloro-m-xylene (S)	71		%	32-137		1	4/14/2009 20:00	4/16/2009 13:39	CC
Decachlorobiphenyl (S)	87		%	25-165		1	4/14/2009 20:00	4/16/2009 13:39	CC
Wet Chemistry - Subcontra Analytical Method: EPA 100.									
Asbestos	0.18	U5	MFL	0.18	0.18	1		4/16/2009 17:00	SU
Analytical Method: EPA 7063	3 mod								
Arsenite (Trivalent As)	2	U2	ug/L	2	2	1		4/27/2009 12:00	SU
Volatiles - Subcontract Analytical Method: RSK 175									
Dissolved Ethane	0.024	Ū	ug/L	0.024	1.00	1		4/16/2009 18:20	SÚ
Dissolved Ethene	0.030	U	ug/L	0.030	1.00	1		4/16/2009 18:20	. SU
Methane	20.3	7	ug/L	0.116	5.00	1		4/16/2009 18:20	SU

Report ID: 904015 - 4792816

Page 11 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015002

Date Received: 4/14/2009

Matrix:

DI Water

Sample ID: TRIP BLANK/

Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qua	l Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Volatiles									
Analytical Method: SW-846 8	3260B						•		
1,1,1,2-Tetrachloroethane	0.120	Ü	ug/L	0.120	1.00	1	•	4/16/2009 16:34	LN
1,1,1-Trichloroethane	0.120	U	ug/L ug/L	0.682	1.00	1		4/16/2009 16:34	LN
1,1,2,2-Tetrachloroethane	0.572	U	ug/L ug/L	0.572	1.00	1		4/16/2009 16:34	LN
1,1,2-Trichloroethane	0.841	U	ug/L ug/L	0.841	1.00	1		4/16/2009 16:34	LN
1,1-Dichloroethane	0.410	Ü	ug/L ug/L	0.410	1.00	1		4/16/2009 16:34	LN
1.1-Dichloroethene	0.638	U	•	0.410	1.00	1		4/16/2009 16:34	LN
	0.632	U	ug/L	0.632	1.00	1			LN
1,1-Dichloropropene 1,2,3-Trichlorobenzene	0.686	U	ug/L	0.632	1.00	1		4/16/2009 16:34	LN
• •		U	ug/L		1.00	1		4/16/2009 16:34	
1,2,3-Trichloropropane	0.160		ug/L	0.160		1		4/16/2009 16:34	LN
1,2,4-Trichlorobenzene	0.538	U	ug/L	0.538	1.00	-		4/16/2009 16:34	LN
1,2,4-Trimethylbenzene	0.508	U	ug/L	0.508	1.00	1		4/16/2009 16:34	LN
1,2-Dibromo-3- chloropropane	0.933	U	ug/L	0.933	1.00	1		4/16/2009 16:34	LN
1,2-Dibromoethane	0.345	U	ug/L	0.345	1.00	1		4/16/2009 16:34	LN
1,2-Dichlorobenzene	0.584	Ü	ug/L	0.584	1.00	1		4/16/2009 16:34	LN
1,2-Dichloroethane	0.897	Ü	ug/L	0.897	1.00	1		4/16/2009 16:34	LN
1,2-Dichloropropane	0.725	Ü	ug/L	0.725	1.00	1		4/16/2009 16:34	LN
1,3,5-Trimethylbenzene	0.477	Ü	ug/L ug/L	0.477	1.00	1		4/16/2009 16:34	LN
1,3-Dichlorobenzene	0.558	Ü	ug/L	0.558	1.00	1		4/16/2009 16:34	LN
1,3-Dichloropropane	0.345	Ü	ug/L	0.345	1.00	1		4/16/2009 16:34	LN
1,4-Dichlorobenzene	0.537	Ü	ug/L	0.537	1.00	1		4/16/2009 16:34	LN
2,2-Dichloropropane	0.700	Ü	ug/L ug/L	0.700	1.00	1		4/16/2009 16:34	LN
2-Butanone	4.28	U	•	4.28	10.0	1			LN
	4.26 0.470	U	ug/L	4.20 0.470	1.00	1		4/16/2009 16:34	LN
2-Chloroethylvinyl ether 2-Chlorotoluene		_	ug/L					4/16/2009 16:34	
2-Hexanone	0.550	U	ug/L	0.550	1.00	1 1		4/16/2009 16:34	LN
_ · · · · · · · · · · · · · · · · · · ·	1.83	U	ug/L	1.83	10.0	-		4/16/2009 16:34	LN
4-Chlorotoluene	0.570	U	ug/L	0.570	1.00	1		4/16/2009 16:34	LN
4-Isopropyltoluene	0.380	U	ug/L	0.380	1.00	1		4/16/2009 16:34	LN
4-Methyl-2-pentanone	0.220	U	ug/L	0.220	1.00	1		4/16/2009 16:34	LN
Acetone	1.43	U	ug/L	1.43	10.0	1		4/16/2009 16:34	LN
Acrolein	2.47	U	ug/L	2.47	10.0	1		4/16/2009 16:34	LN
Acrylonitrile	0.955	U	ug/L	0.955	10.0	1		4/16/2009 16:34	LN
Benzene	0.621	U	ug/L	0.621	. 1.00	1		4/16/2009 16:34	LN
Bromobenzene	0.382	U	ug/L	0.382	1.00	1		4/16/2009 16:34	LN
Bromochloromethane	0.637	U	ug/L	0.637	1.00	1		4/16/2009 16:34	LN
Bromodichloromethane	0.100	U	ug/L	0.100	1.00	1		4/16/2009 16:34	LN
Bromoform	0.486	U	ug/L	0.486	1.00	1		4/16/2009 16:34	LN
Bromomethane	0.427	U	ug/L	0.427	1.00	1.		4/16/2009 16:34	LN
n-Butylbenzene	0.564	U	ug/L	0.564	1.00	1		4/16/2009 16:34	LN
Carbon disulfide	0.650	U	ug/L	0.650	10.0	1		4/16/2009 16:34	LN
Carbon tetrachloride	0.468	U	ug/L	0.468	1.00	1		4/16/2009 16:34	LN
Chlorobenzene	0.316	U	ug/L	0.316	1.00	1		4/16/2009 16:34	LN
Chloroethane	1.00	U	ug/L	1.00	1.00	1		4/16/2009 16:34	LN
Chloroform	0.572	U	ug/L	0.572	1.00	1		4/16/2009 16:34	LN

Report ID: 904015 - 4792816

Page 12 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904015002

Date Received: 4/14/2009

Matrix:

DI Water

Sample ID:

TRIP BLANK/

Date Collected: 4/13/2009 4:00:00 PM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Chloromethane	0.524	U	ug/L	0.524	1.00	1		4/16/2009 16:34	LN
Dibromochloromethane	0.378	U	ug/L	0.378	1.00	1		4/16/2009 16:34	LN
Dibromomethane	0.739	U	ug/L	0.739	1.00	1		4/16/2009 16:34	LN
Dichlorodifluoromethane	0.525	Ù	ug/L	0.525	1.00	1	•	4/16/2009 16:34	LN
cis-1,3-Dichloropropene	0.664	U	ug/L	0.664	1.00	1		4/16/2009 16:34	LN
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522	1.00	1		4/16/2009 16:34	LN
Ethylbenzene	0.323	U	ug/L	0.323	1.00	1		4/16/2009 16:34	LN
Hexachlorobutadiene	0.763	U	ug/L	0.763	1.00	1	,	4/16/2009 16:34	LN
Isopropylbenzene (Cumene)	0.528	U	ug/L	0.528	1.00	1		4/16/2009 16:34	LN
Methyl-t-butyl ether	0.650	U	ug/L	0.650	1.00	1		4/16/2009 16:34	LN
Methylene chloride	0.580	U	ug/L	0.580	5.00	1		4/16/2009 16:34	LN
Naphthalene	0.417	U	ug/L	0.417	1.00	1		4/16/2009 16:34	LN
Styrene	0.458	U	ug/L	0.458	1.00	1		4/16/2009 16:34	LN
Tetrachloroethene	0.312	U	ug/L	0.312	1.00	1		4/16/2009 16:34	LN
Toluene	0.389	U	ug/L	0.389	1.00	1		4/16/2009 16:34	LN
Trichloroethene	0.821	U	ug/L	0.821	1.00	1		4/16/2009 16:34	LN
Trichlorofluoromethane	1.00	U	ug/L	1.00	1.00	1	•	4/16/2009 16:34	LN
Vinyl acetate	0.570	U	ug/L	0.570	10.0	1		4/16/2009 16:34	LN.
Vinyl chloride	0.506	Ú	ug/L	0.506	1.00	1		4/16/2009 16:34	LN
Xylene, m,p-	0.639	U	ug/L	0.639	2.00	1	•	4/16/2009 16:34	LN
Xylene, o-	0.341	U	ug/L	0.341	1.00	1		4/16/2009 16:34	LN
Xylenes (total)	0.980	U	ug/L	0.980	3.00	1		4/16/2009 16:34	LN
cis-1,2-Dichloroethene	0.442	U	ug/L	0.442	1.00	1		4/16/2009 16:34	LN
n-Propylbenzene	0.624	ับ	ug/L	0.624	1.00	1		4/16/2009 16:34	LN
sec-Butylbenzene	0.521	U	ug/L	0.521	1.00	1		4/16/2009 16:34	LN
tert-Butylbenzene	0.607	U	ug/L	0.607	1.00	1		4/16/2009 16:34	LN
trans-1,2-Dichloroethene	0.410	U	ug/L	0.410	1.00	1		4/16/2009 16:34	LN
4-Bromofluorobenzene (S)	82		%	64-130	•	1		4/16/2009 16:34	LN
Dibromofluoromethane (S)	100		%	69-134		1		4/16/2009 16:34	LN
Toluene d8 (S)	96		%	63-127		1		4/16/2009 16:34	LN

Report ID: 904015 - 4792816

Page 13 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

V .	Present in blank.
[1]	E14157
[2]	E87358
[3]	E83033
[4]	E83079
[5]	E86772
[6]	Detection limit has been elevated due to matrix interference.
. [7]	E87854

Report ID: 904015 - 4792816

Page 14 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

CASE NARRATIVE

Sample Analysis Comments

Lab ID 904015001 Client ID PW-1

Analyte/Arsenite (Trivalent As)

[2] E87358

Analyte/Asbestos

[5] E86772

Analyte/Bromate

[4] E83079

Analyte/Gross Alpha (Incl Uranium)

[3] E83033

Analyte/Manganese

Detection limit has been elevated due to matrix interference.

Analyte/Methane

[7] E87854

Analyte/Radium 226

[3] E83033

Analyte/Radium 228

[3] E83033

Analyte/See Attached

[1] E14157

[2] E87358

Report ID: 904015 - 4792816

Page 15 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2010

Analysis Method:

EPA 1664A

QC Batch Method:

EPA 1664A

903906001

903917001

903918001 904049001

903922001 904050004 903999001

904015001

904047005 904073004

904048001 904074003

904076003

904058002

904072003

METHOD BLANK: 24131

Associated Lab Samples:

Reporting

Parameter

Units

Blank Result

Limit Qualifiers

Wet Chemistry

Oil and Grease

mg/L

1.4U

1.4

LABORATORY CONTROL SAMPLE: 24132

Parameter

Spike Units Conc.

Result

% Rec

LCS

% Rec

Limits Qualifiers

Wet Chemistry

Oil and Grease

mg/L

200

197

LCS

98

78-114

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24133

24134

Original: 903952010

Original Spike MS MSD MS MSD % Rec Max Parameter Units Result Limit RPD RPD Qualifiers Conc. Result Result % Rec % Rec Wet Chemistry Oil and Grease 194 201 mg/L 1.2 200 97 100 70-130 3 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/2030

Analysis Method:

EPA 365.1

QC Batch Method:

EPA 365.1

Associated Lab Samples:

903976001

903976002 904029004

904029010

903976003 904029005 904029011

904015001 904029006 904029001 904029007 904029002 904029008

METHOD BLANK: 24283

Blank

Reporting

Parameter

Units

904029003

904029009

Result

Limit Qualifiers

Wet Chemistry

Ortho Phosphate - P

mg/L-P

0.005U

0.005

LABORATORY CONTROL SAMPLE & LCSD:

24284

24285

Parameter

Spike Units Conc.

LCS Result

LCS LCSD **LCSD** Result % Rec % Rec

% Rec

MS

% Rec

Limit

Max

RPD Qualifiers

Wet Chemistry

Ortho Phosphate - P

mg/L-P

mg/L-P

0.5

0.536

0.536 107 107

90-110

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24465

24466

Original: 904030004

Parameter

Original Units Result

Spike MS Conc. Result

MSD Result

MSD % Rec

% Rec

RPD

0

Max

Limit RPD RPD Qualifiers

Wet Chemistry Ortho Phosphate - P

0.583

0.584

20

Report ID: 904015 - 4792816

Page 17 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

HACH/1190

Analysis Method:

SM 4500-S F(20th Ed.)

QC Batch Method: SM Associated Lab Samples:

SM 4500-S F(20th Ed.)

903814001 904010001 903814002 904010002

Blank

Result

903865001 904010003 903865002 904015001 903953001

903953002

METHOD BLANK: 24291

Units

mg/L

Units

Reporting

Limit Qualifiers

Wet Chemistry

Sulfide

Parameter

U008.0

Spike

Conc.

0.800

LABORATORY CONTROL SAMPLE: 24292

4292

LCS Result LCS % Rec % Rec

/o v

Limits Qualifiers

Wet Chemistry Sulfide

Parameter

mg/L

10

8.80

88

70-130

SAMPLE DUPLICATE: 24293

Original: 903814001

Parameter	Units	Result	Result	RPD	RPD Qualifiers
Wet Chemistry Sulfide	mg/L	1.20	1.20	0	20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2015

Analysis Method:

SW-846 8270C low PAH

QC Batch Method:

3510C

. Associated Lab Samples:

903950022 904062002

904006012 904149001

904006013 904158010

904015001 904060001 904062001

METHOD BLANK: 24428

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	rs
PAH	•			
Acenaphthene	ug/L	0.027U	0.027	٠.
Acenaphthylene	ug/L	0.026U	0.026	
Anthracene	ug/L	0.0056บ	0.0056	
Benzo(a)anthracene	ug/L	0.011U	0.011	
Benzo(b)fluoranthene	ug/L	0. 015 U	0.015	
Benzo(k)fluoranthene	ug/L	0.012U	0.012	
Benzo(g,h,i)perylene	ug/L	0.014U	0.014	
Benzo(a)pyrene	ug/L	0.013U	0.013	
Chrysene	ug/L	0.017U	0.017	
Dibenz(a,h)anthracene	ug/L	0.0056U	0.0056	
Fluoranthene	ug/L	0.0078U	0.0078	
Fluorene	ug/L	0.011U	0.011	
Indeno(1,2,3-cd)pyrene	ug/L	0.011U	0.011	
1-Methylnaphthalene	ug/L	0.026U	0.026	
2-Methylnaphthalene	ug/L	0.030U	0.030	
Naphthalene	ug/L	0.034U	0.034	
Phenanthrene	ug/L	0.014U	0.014	
Pyrene	ug/L	0.0084U	0.0084	
2-Fluorobiphenyl (S)	%	54.9	10-116	
Nitrobenzene-d5 (S)	%	50.6	10-112	
Terphenyl-d14 (S)	%	79.6	20-128	

METHOD BLANK: 24809

		· Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
PAH				
Acenaphthene	ug/L	0.027U	0.027	
Acenaphthylene	ug/L	0.026U	0.026	
Anthracene	ug/L	0.01101	0.0056 V	
Benzo(a)anthracene	ug/L	0.01971	0.011 V	
Benzo(b)fluoranthene	ug/L	0.015U	0.015	
Benzo(k)fluoranthene	ug/L	0.01481	0.012	
Benzo(g,h,i)perylene	ug/L	0.014U	0.014 V	•
Benzo(a)pyrene	ug/L	0.01511	0.013 V	
Chrysene	ug/L	0.017U	0.017 V	
Dibenz(a,h)anthracene	ug/L	0.01071	0.0056 V	
Fluoranthene	ug/L	0.01161	0.0078 V	
Fluorene	ug/L	0.01531	0.011 V	
Indeno(1,2,3-cd)pyrene	ug/L	0.01211	0.011 V	

Report ID: 904015 - 4792816

Page 19 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 24809

Parameter	Units	Blank Result	Reporting Limit Qualifiers
1-Methylnaphthalene	ug/L	0.026U	0.026
2-Methylnaphthalene	ug/L	0.030U	0.030
Naphthalene	ug/L	0:034U	0.034
Phenanthrene	ug/L	0.01671	0.014 V
Pyrene	ug/L	0.01031	0.0084 V
2-Fluorobiphenyl (S)	%	49.3	10-116
Nitrobenzene-d5 (S)	%	44.7	10-112
Terphenyl-d14 (S)	%	56.8	20-128

LABORATORY CONTROL SAMPLE: 24429

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
			1100011		Elling dadingo	
PAH						
Acenaphthene	ug/L	5	. 3.30	66	23-100	
Acenaphthylene	ug/L	5	3.50	70	21-109	
Anthracene	ug/L	5	3.70	74	39-111	
Benzo(a)anthracene	ug/L	5	3.95	79	28-115	
Benzo(b)fluoranthene	ug/L	5	4.58	92	15-116	
Benzo(k)fluoranthene	ug/L	5	3.33	67	33-122	•
Benzo(g,h,i)perylene	ug/L	5	4.03	81	29-120	
Benzo(a)pyrene	ug/L	· 5	3.95	79	27-119	
Chrysene	ug/L	5	3.74	75	11-115	
Dibenz(a,h)anthracene	ug/L	5	3.77	75	11-115	*
Fluoranthene	ug/L	5	3.40	68	42-112	
Fluorene	ug/L	5	3.48	70	25-109	
Indeno(1,2,3-cd)pyrene	ug/L	5	4.19	84	16-120	
1-Methylnaphthalene	ug/L	5	3.02	60	10-104	
2-Methylnaphthalene	ug/L	5	3.15	63	10-115	
Naphthalene	ug/L	5	3.08	62	12-102	
Phenanthrene	ug/L	5	3.63	73	38-108	
Pyrene	ug/L	5	4.35	87	36-123	
2-Fluorobiphenyl (S)	%			72.7	10-116	
Nitrobenzene-d5 (S)	%			67.7	10-112	
Terphenyl-d14 (S)	%			86.3	20-128	, .

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24430			2443	1	Original: 904031002						
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
PAH Acenaphthene Acenaphthylene	ug/L ug/L	0 0.00798	5 5	1.66 1.83	2.27 2.53	33 37	45 51	23-100 21-109	31 32	20 8 20 8	

Report ID: 904015 - 4792816

Page 20 of 71

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24430

24431

Original: 904031002

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Anthracene	ug/L	0.00413	5	2.40	2.92	48	58	39-111	19	20	
Benzo(a)anthracene	ug/L	0 ·	5	2.96	3.24	59	65	34-121	10	20	
Benzo(b)fluoranthene	.ug/L	0.00374	5	3.04	3.27	61	- 65	27-119	6	20	
Benzo(k)fluoranthene	ug/L	0.00303	5	3.17	3.83	63	77	29-120	20	20	
Benzo(g,h,i)perylene	ug/L	0	5	3.05	3.42	61	68	15-116	11	20	
Benzo(a)pyrene	ug/L	0 -	5	2.95	3.31	59	66	28-115	11	20	
Chrysene	ug/L	0	5	2.76	3.36	55	67	33-122	20	20	
Dibenz(a,h)anthracene	ug/L	0.00315	5	2.88	3.23	58	- 65	11-115	11	20	
Fluoranthene	ug/L	0.00422	5	2.58	3.14	52	63	42-112	19	20	
Fluorene	ug/L	0.00574	5	1.91	2.59	38	52	25-109	31	20 8	
Indeno(1,2,3-cd)pyrene	ug/L	0.0022	5	3.10	3.52	62	70	16-120	12	20	
1-Methylnaphthalene	ug/L	0.0199	5	1.28	1.79	26	36	10-104	32	20 8	
2-Methylnaphthalene	ug/L	0.0243	5	1.34	1.87	27	37	10-115	31	20 8	
Naphthalene	ug/L	0.0623	5	1.40	2.03	27	39	12-102	36	20 8	
Phenanthrene	ug/L	0.00654	5	2.37	2.89	47	58	38-108	21	20 8	
Pyrene	ug/L	0.00432	5	2.89	3.41	58	68	36-123	16	20	
2-Fluorobiphenyl (S)	%					36.2	49.5	10-116	31		
Nitrobenzene-d5 (S)	%					35.3	50.5	10-112	35.4		
Terphenyl-d14 (S)	%					52	61.4	20-128	16.6		

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2017

Analysis Method:

SW-846 8270C

QC Batch Method:

3510C

Associated Lab Samples:

903997001

903997002

904015001

904066001

904118001

		Blank	Reporting				
Parameter	Units	Result	Limit Qualifiers				
Semivolatiles							
Benzidine	ug/L	9.7U	9.7				
Benzoic acid	ug/L	2.0U	2.0				
Butyl benzyl phthalate	ug/L	0.36U	0.36				
Bis(2-Chloroethoxy)methane	ug/L	0.32U	0.32				
Bis(2-Chloroethyl)ether	ug/L	0.46U	0.46				
Bis(2-Chloroisopropyl)ether	ug/L	0.34U	0.34	•			
Bis(2-Ethylhexyl)phthalate	ug/L	0.2721	0.20 V				
4-Bromophenyl phenyl ether	ug/L	0.27U	0.27				
Carbazole	. ug/L	0.28U	0.28				
4-Chlorophenyl phenyl ether	ug/L	0.45U	0.45				
Dibenzofuran	ug/L	0.29U	0.29				
1,2-Dichlorobenzene	ug/L	0.34U	0.34				•
1,3-Dichlorobenzene	ug/L	0.35U	0.35				
3,3'-Dichlorobenzidine	ug/L	0.31U	0.31		•		
2,4-Dichlorophenol	ug/L	0.43U	0.43				
Diethyl phthalate	ug/L	0.33U	0.33				
2,4-Dimethylphenol	ug/L	0.40U	0.40				
Dimethyl phthalate	ug/L	0.31U	0.31				
Di-n-octyl phthalate	ug/L	0.28U	0.28				
2,4-Dinitrophenol	ug/L	1.4U	1.4				
2,6-Dinitrotoluene	ug/L	0.31U	0.31				
Hexachlorobenzene	ug/L	0.32U	0.32		•		
Hexachlorobutadiene	ug/L	0.45U	0.45				
Hexachlorocyclopentadiene	ug/L	0.70U	0.70				
Hexachloroethane	ug/L	0. 36 U	0.36				
Isophorone	ug/L	0.34U	0.34				
2-Methylphenol	ug/L	0.22U	0.22				
Nitrobenzene	ug/L	0.31U	. 0.31				
2-Nitrophenol	ug/L	0.24U	0.24				
n-Nitrosodimethylamine	ug/L	3.4U	3.4				
n-Nitrosodiphenylamine	ug/L	0.31U	0.31				
2,4,5-Trichlorophenol	ug/L	0.38U	0.38				
2,4,6-Trichlorophenol	ug/L	0.27∪	0.27			1	
Benzyl alcohol	ug/L	0.22U	0.22				
Aniline	ug/L	0.28U	0.28			•	
Pyridine	ug/L	8.9U	8.9				
3-Nitroaniline	ug/L	0.28U	0.28				
4-Nitroaniline	ug/L	0.24U	0.24			•	
Di-n-butyl phthalate	ug/L	0.21U	0.21				
1,2-Diphenylhydrazine	ug/L	0.23U	0.23				
2-Nitroaniline	ug/L	0.20U	0.20				
2-Chloronaphthalene	ug/L	0.32U	0.32				
4-Chloroaniline	ug/L	0.29U	0.29				

Report ID: 904015 - 4792816

Page 22 of 71

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 24436

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
m,p-Cresol	ug/L	0.23U	0.23	:
4,6-Dinitro-2-methylphenol	ug/L	0.35U	0.35	
Phenol	ug/L	0.40U	0.40	
2-Chlorophenol	ug/L	2. 6 U	2.6	
1,4-Dichlorobenzene	ug/L	0.28U	0.28	
n-Nitrosodi-n-propylamine	ug/L	0.33U	0.33	
1,2,4-Trichlorobenzene	ug/L	1.5∪∖	1.5	
4-Chloro-3-methylphenol	ug/L	0.22U	0.22	•
4-Nitrophenol	ug/L	0.79U	0.79	
2,4-Dinitrotoluene	ug/L	0.31U	0.31	. •
Pentachlorophenol	ug/L	0.70U	0.70	
Nitrobenzene-d5 (S)	%	59	7.7-130	
Phenol-d6 (S)	%	22.6	10-59	
2-Fluorobiphenyl (S)	%	. 58	19-126	
2-Fluorophenol (S)	%	40	28-62	,
2,4,6-Tribromophenol (S)	%	62	48-132	
Terphenyl-d14 (S)	%	59	27-133	

METHOD BLANK: 24761

		Blank	Reporting
Parameter	Units	Result	Limit Qualifiers
Semivolatiles			
Benzidine	ug/L	9.7∪	9.7
Benzoic acid	ug/L	2. 0U	2.0
Butyl benzyl phthalate	ug/L	0.36U	0.36
Bis(2-Chloroethoxy)methane	ug/L	0.32U	0.32
Bis(2-Chloroethyl)ether	ug/L	0.46U	0.46
Bis(2-Chloroisopropyl)ether	ug/L	0.34U	0.34
Bis(2-Ethylhexyl)phthalate	ug/L	0.20U	0.20
4-Bromophenyl phenyl ether	· ug/L	0.27U	0.27
Carbazole	ug/L	0.28U	0.28
4-Chlorophenyl phenyl ether	ug/L	0.45U	0.45
Dibenzofuran	ug/L	0.29U	` 0.29
1,2-Dichlorobenzene	ug/L	0.34U	0.34
1,3-Dichlorobenzene	ug/L	0.35U	0.35
3,3'-Dichlorobenzidine	ug/L	0.31U	0.31
2,4-Dichlorophenol	ug/L	0.43U	0.43
Diethyl phthalate	ug/L	0.33U	0.33
2,4-Dimethylphenol	ug/L	0.40U	0.40
Dimethyl phthalate	ug/L	0.31U	0.31
Di-n-octyl phthalate	ug/L	0.28U	0.28
2,4-Dinitrophenol	ug/L	. 1.4U	1.4
2,6-Dinitrotoluene	ug/L	0.31U	0.31
Hexachlorobenzene	ug/L	0.32U	0.32
Hexachlorobutadiene	ug/L	0.45U	0.45
Hexachlorocyclopentadiene	ug/L	0. 70 U	0.70

Report ID: 904015 - 4792816

Page 23 of 71

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 24761

rameter Un	Blank Result	Reporting Limit Qualifiers		
xachloroethane ug/	0.36U	0.36		-
phorone ug/	0.34U	0.34		
Methylphenol ug/	0.22U	0.22	•	
trobenzene ug/	0.31U	0.31		
Nitrophenol ug/	0.24U	0.24		
Nitrosodimethylamine ug/	3.4U	3.4		
Nitrosodiphenylamine ug/	0.31U	0.31		
1,5-Trichlorophenol ug/	0.38U	0.38		
1,6-Trichlorophenol ug/	0.27U	0.27		
enzyl alcohol ug/	0.22U	0.22	· .	
iline ug	0.28U	. 0.28		
ridine ug,	8.9U	8.9		
Nitroaniline ug/	0.28U	0.28		
Nitroaniline ug/	0.24U	0.24		
-n-butyl phthalate ug	0.21U	· 0.21		
2-Diphenylhydrazine ug/	0.23U	0.23	•	
Nitroaniline ug	0.20U	0.20		
Chloronaphthalene ug	0.32U	0.32		
Chloroaniline ug	0.29U	0.29	•	•
p-Cresol ug	0.23U	0.23		
6-Dinitro-2-methylphenol uga	0.35∪	0.35		
nenol ug.	0.40U	0.40		
Chlorophenol ug	2.6U	2.6		
4-Dichlorobenzene ug	0.28U	0.28		
Nitrosodi-n-propylamine ug	0.33U	0.33	•	
2,4-Trichlorobenzene ug	1.5U	1.5	•	
Chloro-3-methylphenol ug	0.22U	0.22		
Nitrophenol ug	0.79U	0.79		•
4-Dinitrotoluene ug	0.31U	0.31		
entachlorophenol ug	0.70U	0.70	•	
trobenzene-d5 (S) %	74	7.7-130		
nenol-d6 (S) %	29.5	10-59	•	
Fluorobiphenyl (S) %	76	19-126		
Fluorophenol (S) %	42	28-62		
4,6-Tribromophenol (S) %	. 89	48-132	•	•
rphenyl-d14 (S) %	84	27-133		
4,6-Tribromophenol (S) %	. 89	48-132		· · · · · · · · · · · · · · · · · · ·

LABORATORY CONTROL SAMPLE: 24437

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Semivolatiles						
Benzidine	ug/L	50	12.9	26	10-104	•
Benzoic acid	ug/L	50	17.01	34	•	•
Butyl benzyl phthalate	ug/L	50	37.3	75	10-152	

Report ID: 904015 - 4792816

Page 24 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24437

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
						
Bis(2-	ug/L	50	34.7	69	33-184	
Chloroethoxy)methane Bis(2-Chloroethyl)ether	ug/L	50	30.8	62	12-158	
3is(2-Chloroisopropyl)ether	ug/L ug/L	50	30.5	61	36-166	
3is(2-Ethylhexyl)phthalate	ug/L ug/L	50	38.5	77	10-158	
4-Bromophenyl phenyl	-	50 50	39.7	77 79	53-127	
ether	ug/L	50	39.1	79	33-127	
Carbazole	ug/L	50	39.2	78	44-140	
4-Chlorophenyl phenyl	ug/L	50	35.6	71	25-158	
ether	Ü					
Dibenzofuran	ug/L	50	34.6	69		
1,2-Dichlorobenzene	ug/L	50	35.4	71	32-129	
1,3-Dichlorobenzene	ug/L	50	31.1	62	10-172	
3,3'-Dichlorobenzidine	ug/L	50	39.1	78	10-262	
2,4-Dichlorophenol	ug/L	50	38.2	76	10-191	
Diethyl phthalate	ug/L	50	33.7	67	10-114	
2,4-Dimethylphenol	ug/L	50	40.0	80	32-119	
Dimethyl phthalate	ug/L	50	35.5	71	10-112	
Di-n-octyl phthalate	ug/L	50	43.2	86	10-146	
2,4-Dinitrophenol	ug/L	50	32.7	65	29-182	
2,6-Dinitrotoluene	ug/L	50	31.2	62	50-158 ·	
-lexachlorobenzene	ug/L	50	37.5	75	10-152	
Hexachlorobutadiene	ug/L	50	34.3	69	24-116	
-lexachlorocyclopentadiene	ug/L	50	30.7	61	10-115	
Hexachloroethane	ug/L	50	33.9	68	40-113	
sophorone	ug/L	50	38.0	76	21-196	
2-Methylphenol	ug/L	50	29.1	. 58	55-126	
Nitrobenzene	ug/L	50	35.1	70	35-180	
2-Nitrophenol	ug/L	50 ·	39.0	78	29-182	
n-Nitrosodimethylamine	ug/L	50	24.0	48	28-64	
n-Nitrosodiphenylamine	ug/L	50	35.2	70	42-113	
2,4,5-Trichlorophenol	ug/L	50	35.3	71		
2,4,6-Trichlorophenol	ug/L	50	40.3	81	37-144 .	
Benzyl alcohol	ug/L	50	29.9	60	•	
Aniline	ug/L	50	23.3	47		
Pyridine	ug/L	50	15.2	30		
3-Nitroaniline	ug/L	50	34.41	69		
1-Nitroaniline	ug/L	50	34.41	69		
Di-n-butyl phthalate	ug/L	50	39.3	79	62-154	
1,2-Diphenylhydrazine	ug/L		34.9			
2-Nitroaniline	ug/L	50	36.41	73		
2-Chloronaphthalene	ug/L	50	37.2	74	60-118	
4-Chloroaniline	ug/L	50	32.7	65		
m,p-Cresol	ug/L		27.3			
4,6-Dinitro-2-methylphenol	ug/L	50	30.6	61	10-181	
Phenol	ug/L	50	14.5	29		
2-Chlorophenol	ug/L	50	31.9	64	25-117	
1,4-Dichlorobenzene	ug/L	50	31.5	63	30-116	

Report ID: 904015 - 4792816

Page 25 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24437

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
n-Nitrosodi-n-propylamine	ug/L	50	32.5	65	43-136	
1,2,4-Trichlorobenzene	ug/L	50	34.7	69	30-119	
4-Chloro-3-methylphenol	ug/L	50	36.0	72	30-128	
4-Nitrophenol	ug/L	50	17.0	34	10-73	
2,4-Dinitrotoluene	ug/L	50	32.1	64	54-133	
Pentachlorophenol	ug/L	50	35.3	71	29-142	•
Nitrobenzene-d5 (S)	%			75	10-112	
Phenol-d6 (S)	%			32.2	10-59	
2-Fluorobiphenyl (S)	% .			69	10-116	•
2-Fluorophenol (S)	%			49	28-62	
2,4,6-Tribromophenol (S)	%			78	48-132	
Terphenyl-d14 (S)	%			77	20-128	

			PIKE DUPLICATE: 24438			Original: 904031004				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Semivolatiles						-				
Benzidine	ug/L	0	50	13.6	9.7U	27	12	10-104	77	20 8
Benzoic acid	ug/L	0	50	13.61	16.21	27	32	•	17	
Butyl benzyl phthalate	ug/L	0	. 50	36.9	38.6	74	77	10-152	4	20
Bis(2-	ug/L	0.	50	32.5	32.3	65	65	33-184	0	20
Chloroethoxy)methane									_	
Bis(2-Chloroethyl)ether	ug/L	0	50	30.8	30.2	62	60		3,	
Bis(2-Chloroisopropyl)ether	ug/L	0	50	30.6	29.7	61	59	36-166	3	-
Bis(2-Ethylhexyl)phthalate	ug/L	0	50	37.0	36.6	74	73	10-158	1	20
4-Bromophenyl phenyl ether	ug/L	0	50	40.2	38.9	80	78	53-127	3	20
Carbazole	ug/L	0	50	37.3	38.4	75	77	73-131	3	20
4-Chlorophenyl phenyl ether	ug/L	0	50	36.5	35.7	73	71	25-158	3	20
Dibenzofuran	ug/L	0 -	50	34.6	34.7	69	69		0	
1,2-Dichlorobenzene	ug/L	0	50	33.9	34.1	68	68	32-129	0	20
1,3-Dichlorobenzene	ug/L	0	50	31.1	30.1	. 62	60	10-172	3	20
3,3'-Dichlorobenzidine	ug/L	0	50	38.1	39.0	76	78	10-262	3	20
2,4-Dichlorophenol	ug/L	0	50	37.0	37.3	74	75	39-135	1	20
Diethyl phthalate	ug/L	0.0925	50	33.9	33.2	68	66	10-114	3	20
2,4-Dimethylphenol	ug/L	0	50	39.0	39.2	78	78	32-119	0	20
Dimethyl phthalate	ug/L	0.0899	50	36.3	35.2	73	70	10-112	4	20
Di-n-octyl phthalate	ug/L	0.0698	50	42.6	42.1	85	84	10-146	1	20
2,4-Dinitrophenol	ug/L	0	50	32.5	34.2	65	68	10-191	5	20 ·
2.6-Dinitrotoluene	ug/L	0	50	32.5	31.3	65	63	39-139	3	20
Hexachlorobenzene	ug/L	0	50	36.1	36.5	72	73	10-152	1	20
Hexachlorobutadiene	ug/L	ō	50	34.1	33.5	68	67	24-116	1	20
Hexachlorocyclopentadiene	ug/L	Ō	50	30.8	28.8	62	58	10-115	7	20
Hexachloroethane	ug/L	Ö	50	34.0	32.5	68	65	40-113	5	

Report ID: 904015 - 4792816 Page 26 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24438

24439

Original: 904031004

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Isophorone	ug/L	0	50	36.3	36.2	73	72	21-196	1	20	
2-Methylphenol	ug/L	0	50	31.0	30.1	62	60	55-126	3	20	
Nitrobenzene	ug/L	0	50	34.6	33.2	69	66	35-180	4	20	
2-Nitrophenol	ug/L	0	50	37.9	36.4	76	73	29-182	4	20	
n-Nitrosodimethylamine	ug/L	0	50	24.2	24.1	48	48	•	0		
n-Nitrosodiphenylamine	ug/L	0	50	34.6	35.3	69	71	42-113	3	20	
2,4,5-Trichlorophenol	ug/L	0	50	35.2	33.5	70	67		4		
2,4,6-Trichlorophenol	ug/L	0	50	40.2	38.3	80	77	37-144	4	20	
Benzyl alcohol	ug/L	0	50	29.9	29.1	60	58		3		
Aniline	ug/L	0	50	22.7	22.6	45	45		0		
Pyridine	ug/L	0	50	14.9	14.3	30	29		3		
3-Nitroaniline	ug/L	0	- 50	34.81	35.61	. 70	71		1		
4-Nitroaniline	ug/L	0	50	34.81	35.61	70	71		1		
Di-n-butyl phthalate	ug/L	0.0938	50	38.9	39.2	78	78	57-126	0	20	
1,2-Diphenylhydrazine	ug/L		,	34.1	34.1		,				
2-Nitroaniline	ug/L	0	50	37.11	37.31	74	75		1		
2-Chloronaphthalene	ug/L	0	50	36.7	35.3	73	71	60-118	3	20	
4-Chloroaniline	ug/L	0	50	31.3	32.1	63	64		2		
m,p-Cresol	ug/L			28.8	28.8						
4,6-Dinitro-2-methylphenol	ug/L	0	50	29.5	30.3	59	. 61	10-181	3	20	
Phenol	ug/L	0	50	15.9	15.2	32	30		6		•
2-Chlorophenol	ug/L	0	50	32.9	30.5	66	61	23-134	8	20	
1,4-Dichlorobenzene	ug/L	0.	-50	32.5	31.1	65	62	20-124	5	20	
n-Nitrosodi-n-propylamine	ug/L	0	50	32.1	32.3	64	65	10-230	2	20	
1,2,4-Trichlorobenzene	ug/L	0	50	33.7	33.6	67	67	44-142	0	20	
4-Chloro-3-methylphenol	ug/L	. 0	50	35.0	35.8	70	72	22-147	3	20	
4-Nitrophenol	ug/L	0	50	19.0	17.0	38	34	10-132	11	20	
2,4-Dinitrotoluene	ug/L	0	50	33.4	33.2	67	66	54-133	2	20	
Pentachlorophenol	ug/L	0	50	34.4	35.2	69	70	14-176	1	20	
Nitrobenzene-d5 (S)	%					72.	71	10-112	1		
Phenol-d6 (S)	%				,	34.6	33.9	10-59	2		
2-Fluorobiphenyl (S)	%					69	67	10-116	3		
2-Fluorophenol (S)	%					52	48	28-62	8		
2,4,6-Tribromophenol (S)	%					78	78	48-132	0		
Terphenyl-d14 (S)	%					75	77	20-128	3		

Report ID: 904015 - 4792816

Page 27 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2018

Analysis Method:

SW-846 8141A

QC Batch Method:

3510C

903945015

903950013

903950014

903950015

904015001

Associated Lab Samples:
METHOD BLANK: 24440

		Blank	Reporting				
Parameter	Units	Result	Limit Qualifiers	;			
Organophosphorus Pesticide		,					
Carbophenothion	ug/L	0.063U	0.063		۸.		
Chlorpyrifos	ug/L	0.121U	0.121		•		
Chlorpyrifos-methyl	ug/L	0.137U	0.137				
Demeton-s	ug/L	0.062U	0.062				
Demeton-o	ug/L	0.041U	0.041				
Crotoxyphos	ug/L	0.078U	0.078				·
Dichlorovos	u g/ L	0.075U	0.075				
Fenithrothion	ug/L	0.198U	0.198				
Ronnel	ug/L	0.054U	0.054				
Terbufos	ug/L	0.063U	0.063				
Fenthion	ug/L	0.074U	0.074	•			ŧ
Leptophos	ug/L	0.046U	0.046	• ,			
Tributyl Phosphate (S)	%	93	44-125				
Triphenyl Phosphate (S)	%	93	43-134				
		Blank	Reporting				•
Parameter	Units	Result	Limit Qualifiers	\$			
Organophosphorus Pesticide	es						
Phosphamidon	ug/L	0.311U	.0.311				
Aspon	ug/L	0.185U	0.185				
Phorate	ug/L	0.177U	0.177				
Bolstar .	ug/L	0.202U	0.202				
Dichlorfenthion	ug/L	0.190U	0.190				
Dioxathion	ug/L	0.110U	0.110	,			
Fensulfothion	ug/L	0.192U	0.192	•			
Naled	ug/L	0.220U	0.220				
Dimethoate	ug/L	0.184U	0.184				
Thionazine	ug/L	0.179U	0.179				
TEPP	ug/L	0.189U	0.189				
EPN	ug/L	0.132U	0.132				
Merphos	ug/L	0.208U	0.208				
Mevinphos	ug/L	0.172U	0.172				
		Blank	Reporting				
Parameter	Units	Result	Limit Qualifiers	s			
Organophosphorus Pesticide	es						
Phosmet	ug/L	0.102U	0.102				
Disulfoton	ug/L	0.129U	0.129				
Azinphos-ethyl	ug/L	0.130U	0.130				
Coumaphos	ug/L	0.079U	0.079				
Dicrotophos	ug/L	0.175U	0.175				
Ethoprop	ug/L	0.068U	0.068				
Famphur	ug/L	0.081U	0.081		•		

Report ID: 904015 - 4792816

Page 28 of 71

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 24440

Parameter ,	Units	Blank Result	Reporting Limit Q	ualifiers		
Ethion	ug/L	0.132U	0.132			
Tetrachlorvinphos (Stirofos)	ug/L	0.107U	0.107			
Trichlorfon	ug/L	1.09U	1.09			
Tokuthion (Prothiophos)	ug/L	0.106U	0.106			
LABORATORY CONTROL S	SAMPLE: 2444	 1			·	
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers	
Organophosphorus Pesticides						
Carbophenothion	ug/L	. 2	2.34	117	21-148	
Chlorpyrifos	ug/L	2	2.38	119	46-133	
Chlorpyrifos-methyl	ug/L	. 2	2.21	111	44-122	
Demeton-s	ug/L		4.33			
Demeton-o	ug/L		0.4071			•
Crotoxyphos	ug/L	. 2	4.24	212		
Dichlorovos	ug/L	2	1.56	78	12-128	
Fenithrothion	ug/L	2	1.55	78		
Ronnel	ug/L	2	2.07	104	35-126	
Terbufos	ug/L	. 2	1.79	90	48-124	
Fenthion	ug/L	2	2.11	105		
Leptophos	ug/L	2	2.14	107	11-146	
Tributyl Phosphate (S)	%			97	44-125	
Triphenyl Phosphate (S)	%			101	43-134	
LABORATORY CONTROL S	AMPLE: 2444	1				
		Spike	LCS	LCS	% Rec	ı
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers	
Organophosphorus Pesticides						
Phosphamidon	ua/l		0.31111			

Parameter	Units	Conc.	Result	% Rec	Limits Q
Organophosphorus Pesticides					
Phosphamidon	ug/L		0.311U		
Aspon	ug/L		0.185U		
Phorate	ug/L		0.177U	•	
Bolstar	ug/L		0.202U		
Dichlorfenthion	ug/L		0.190U		
Dioxathion	ug/L		0.110U		•
Fensulfothion	ug/L		0.192U		•
Naled	ug/L		0.220U		
Dimethoate	ug/L		0.184U		
Thionazine	ug/L		0.179U		
TEPP	ug/L	_	0.189U		
EPN	ug/L		0.132U		
Merphos	ug/L		0.208U		

Report ID: 904015 - 4792816

Page 29 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24441

Parameter	Units	•	ike nc.	LCS Result	LC % Re		% Rec Limits Q	ualifiers			·
Mevinphos	ug/L			0.172U							
LABORATORY CONTROL S.	AMPLE:	24441									
•		Sr	ike	LCS	LC	cs	% Rec				
Parameter	Units	Co	nc.	Result	% R	ec	Limits Q	ualifiers			
Organophosphorus					,						- 111 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
Pesticides				0.40011	,						
Phosmet	ug/L		•	0.102U							
Disulfoton	ug/L			0.129U							
Azinphos-ethyl	ug/L			0.130U	•						
Coumaphos	ug/L			0.079U							
Dicrotophos	ug/L			0.175U							
Ethoprop	ug/L			0.068U							
Famphur	ug/L			0.081U							
Ethion	ug/L			0.132U							
Tetrachlorvinphos (Stirofos)	ug/L			0.107U							
Trichlorfon	ug/L			1.09U							
Tokuthion (Prothiophos)	ug/L			0.106U							
				0.106U							
	ug/L	PLICATE: 2444	2	0.106U 2444	3 (Origin	nal: 90,400	31006			
Tokuthion (Prothiophos)	ug/L			2444						May	_
Tokuthion (Prothiophos)	ug/L	PLICATE: 2444 Original Result	2 Spike Conc.		MSD Result	Origi MS % Rec	mal: 90403 MSD % Rec	% Rec	RPD	Max RPD	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus	ug/L PIKE DUP	Original	Spike	2444 MS	MSD	MS	MSD	% Rec	RPD		Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides	ug/L PIKE DUP Units	Original Result	Spike Conc.	2444 MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		RPD	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion	ug/L PIKE DUP Units ug/L	Original Result	Spike Conc.	2444: MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	0	RPD 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos	ug/L PIKE DUP Units ug/L ug/L	Original Result	Spike Conc.	2444: MS Result 2.23 2.27	MSD Result 2.24 2.07	MS % Rec 112 114	MSD % Rec 112 103	% Rec Limit 21-148 46-133	0	20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl	ug/L PIKE DUP Units ug/L ug/L ug/L	Original Result	Spike Conc.	2444: MS Result 2.23 2.27 2.07	MSD Result 2.24 2.07 1.83	MS % Rec	MSD % Rec	% Rec Limit 21-148 46-133 44-122	0	RPD 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s	ug/L PIKE DUP Units ug/L ug/L ug/L ug/L ug/L	Original Result	Spike Conc.	2444: MS Result 2.23 2.27 2.07 3.93	MSD Result 2.24 2.07 1.83 3.56	MS % Rec 112 114	MSD % Rec 112 103	% Rec Limit 21-148 46-133	0	20 20	Qualifiers
Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o	ug/L Units Ug/L ug/L ug/L ug/L ug/L ug/L	Original Result	Spike Conc.	2444: MS Result 2.23 2.27 2.07 3.93 0.388I	MSD Result 2.24 2.07 1.83 3.56 0.326l	MS % Rec 112 114 104	MSD % Rec 112 103 91	% Rec Limit 21-148 46-133 44-122	0 10 13	20 20	Qualifiers
Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos	ug/L Units Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Original Result	Spike Conc.	2444: MS Result 2.23 2.27 2.07 3.93 0.388I 4.24	2.24 2.07 1.83 3.56 0.326l 4.46	MS % Rec 112 114 104	MSD % Rec 112 103 91	% Rec Limit 21-148 46-133 44-122	0 10 13	20 20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos Dichlorovos	ug/L Units Ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L u	Original Result	Spike Conc.	24443 MS Result 2.23 2.27 2.07 3.93 0.388I 4.24 2.10	2.24 2.07 1.83 3.56 0.326l 4.46 1.78	MS % Rec 112 114 104 212 105	MSD % Rec 112 103 91 223 89	% Rec Limit 21-148 46-133 44-122	0 10 13 5	20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos Dichlorovos Fenithrothion	ug/L Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original Result	Spike Conc.	2444 MS Result 2.23 2.27 2.07 3.93 0.388I 4.24 2.10 2.17	2.24 2.07 1.83 3.56 0.326l 4.46 1.78 1.79	MS % Rec 112 114 104 212 105 109	MSD % Rec 112 103 91 223 89 90	% Rec Limit 21-148 46-133 44-122	0 10 13 5 16 19	20 20 20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos Dichlorovos Fenithrothion Ronnel	ug/L Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original Result	Spike Conc.	24443 MS Result 2.23 2.27 2.07 3.93 0.388I 4.24 2.10 2.17 1.89	2.24 2.07 1.83 3.56 0.326l 4.46 1.78 1.79	MS % Rec 112 114 104 212 105 109 94	MSD % Rec 112 103 91 223 89 90 85	% Rec Limit 21-148 46-133 44-122 12-128 35-126	0 10 13 5 16 19	20 20 20 20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos Dichlorovos Fenithrothion Ronnel Terbufos	ug/L Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original Result 0 0 0 0 0 0 0 0 0 0 0	Spike Conc. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24443 MS Result 2.23 2.27 2.07 3.93 0.388I 4.24 2.10 2.17 1.89 1.87	2.24 2.07 1.83 3.56 0.326l 4.46 1.78 1.79 1.71	MS % Rec 112 114 104 212 105 109 94 94	MSD % Rec 112 103 91 223 89 90 85 77	% Rec Limit 21-148 46-133 44-122	0 10 13 5 16 19 10 20	20 20 20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos Dichlorovos Fenithrothion Ronnel Terbufos Fenthion	ug/L Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original Result 0 0 0 0 0 0 0 0 0 0 0 0 0	Spike Conc. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24443 MS Result 2.23 2.27 2.07 3.93 0.388I 4.24 2.10 2.17 1.89 1.87 2.42	2.24 2.07 1.83 3.56 0.326l 4.46 1.78 1.79 1.71 1.54 2.11	MS % Rec 112 114 104 212 105 109 94 94 121	MSD % Rec 112 103 91 223 89 90 85 77 106	% Rec Limit 21-148 46-133 44-122 12-128 35-126 48-124	0 10 13 5 16 19 10 20	20 20 20 20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos Dichlorovos Fenithrothion Ronnel Terbufos Fenthion Leptophos	ug/L Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original Result 0 0 0 0 0 0 0 0 0 0 0	Spike Conc. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24443 MS Result 2.23 2.27 2.07 3.93 0.388I 4.24 2.10 2.17 1.89 1.87	2.24 2.07 1.83 3.56 0.326l 4.46 1.78 1.79 1.71	MS % Rec 112 114 104 212 105 109 94 94 121 106	MSD % Rec 112 103 91 223 89 90 85 77 106 97	% Rec Limit 21-148 46-133 44-122 12-128 35-126 48-124 11-146	0 10 13 5 16 19 10 20 13	20 20 20 20 20	Qualifiers
Tokuthion (Prothiophos) MATRIX SPIKE & MATRIX S Parameter Organophosphorus Pesticides Carbophenothion Chlorpyrifos Chlorpyrifos-methyl Demeton-s Demeton-o Crotoxyphos Dichlorovos Fenithrothion Ronnel Terbufos Fenthion	ug/L Units Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original Result 0 0 0 0 0 0 0 0 0 0 0 0 0	Spike Conc. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24443 MS Result 2.23 2.27 2.07 3.93 0.388I 4.24 2.10 2.17 1.89 1.87 2.42	2.24 2.07 1.83 3.56 0.326l 4.46 1.78 1.79 1.71 1.54 2.11	MS % Rec 112 114 104 212 105 109 94 94 121	MSD % Rec 112 103 91 223 89 90 85 77 106	% Rec Limit 21-148 46-133 44-122 12-128 35-126 48-124	0 10 13 5 16 19 10 20	20 20 20 20 20	Qualifiers

Report ID: 904015 - 4792816

Page 30 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24442

24443

Original: 904031006

		Original	Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD Qualifiers
Organophosphorus	:									·
Pesticides										
Phosphamidon	ug/L			0.311U	0.311U					
Aspon	ug/L	1		0.185U	0.185U					
Phorate	ug/L			0.177U	0.177U					
Bolstar	ug/L			0.202U	0.202U					
Dichlorfenthion	ug/L			0.190U	0.190U					
Dioxathion	ug/L			0.110U	0.110U					
Fensulfothion	ug/L			0.192U	0.192U					
Naled [′]	ug/L		•	0.220U	0.220U					
Dimethoate	ug/L			0.184U	0.184U					
Thionazine	ug/L			0.179U	0.179U			·		
TEPP	ug/L			0.189U	0.189U					
EPN	ug/L			0.132U	0.132U					
				0.208U	0.208U					
Merphos	ug/L									
Mevinphos	ùg/L	ICATE: 2444	12	0.172U __	0.172U		nai: 9040:	31006		
Mevinphos MATRIX SPIKE & MATRIX S	ug/L PIKE DUPI	Original	Spike	0.172U _. 2444 MS	0.172U 3 MSD	MS	nal: 90403	% Rec	·	Max
Mevinphos	ùg/L			0.172U __	0.172U 3	J		% Rec	RPD	Max RPD Qualifiers
Mevinphos MATRIX SPIKE & MATRIX SI Parameter Organophosphorus	ug/L PIKE DUPI	Original	Spike	0.172U _. 2444 MS	0.172U 3 MSD	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides	ug/L PIKE DUPL Units	Original	Spike	0.172U 2444 MS Result	0.172U 3 MSD Result	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet	ug/L PIKE DUPL Units ug/L	Original	Spike	0.172U	0.172U 3 MSD Result	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton	ug/L Units ug/L ug/L	Original	Spike	0.172U	0.172U 3 MSD Result 0.102U 0.129U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl	ug/L Units ug/L ug/L ug/L	Original	Spike	0.172U	0.172U 3 MSD Result 0.102U 0.129U 0.130U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl Coumaphos	ug/L Units ug/L ug/L ug/L ug/L	Original	Spike	0.172U	0.172U 3 MSD Result 0.102U 0.129U 0.130U 0.079U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl Coumaphos Dicrotophos	ug/L Units ug/L ug/L ug/L ug/L ug/L ug/L	Original	Spike	0.172U	0.172U 3 MSD Result 0.102U 0.129U 0.130U 0.079U 0.175U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl Coumaphos	ug/L Units ug/L ug/L ug/L ug/L	Original	Spike	0.172U 2444 MS Result 0.102U 0.129U 0.130U 0.079U 0.175U 0.068U	0.172U 3 MSD Result 0.102U 0.129U 0.130U 0.079U 0.175U 0.068U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl Coumaphos Dicrotophos	ug/L Units ug/L ug/L ug/L ug/L ug/L ug/L	Original	Spike	0.172U 2444 MS Result 0.102U 0.129U 0.130U 0.079U 0.175U 0.068U 0.081U	0.172U 3 MSD Result 0.102U 0.129U 0.130U 0.079U 0.175U 0.068U 0.081U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl Coumaphos Dicrotophos Ethoprop	ug/L Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Original	Spike	0.172U 2444 MS Result 0.102U 0.129U 0.130U 0.079U 0.075U 0.068U 0.081U 0.132U	0.172U 3 MSD Result 0.102U 0.129U 0.130U 0.079U 0.175U 0.068U 0.081U 0.132U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl Coumaphos Dicrotophos Ethoprop Famphur	ug/L Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original	Spike	0.172U 2444 MS Result 0.102U 0.129U 0.130U 0.079U 0.075U 0.068U 0.081U 0.132U 0.107U	0.172U 3 MSD Result 0.102U 0.129U 0.130U 0.079U 0.175U 0.068U 0.081U 0.132U 0.107U	MS	MSD	% Rec	RPD	
Mevinphos MATRIX SPIKE & MATRIX Si Parameter Organophosphorus Pesticides Phosmet Disulfoton Azinphos-ethyl Coumaphos Dicrotophos Ethoprop Famphur Ethion	ug/L Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/	Original	Spike	0.172U 2444 MS Result 0.102U 0.129U 0.130U 0.079U 0.075U 0.068U 0.081U 0.132U	0.172U 3 MSD Result 0.102U 0.129U 0.130U 0.079U 0.175U 0.068U 0.081U 0.132U	MS	MSD	% Rec	RPD	

Report ID: 904015 - 4792816

Page 31 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2019

Analysis Method:

SW-846 8082

QC Batch Method:

3510C

Associated Lab Samples:

904015001

RACT	Γ	D 1	A BILL.	24444

Parameter	Units	Blank Result	Reporting Limit Qualifiers	· .
PCBs		:		
PCB 1221	ug/L	0.014U	0.014	
PCB 1232	ug/L	0.190U	0.190	
PCB 1242	ug/L	0.010U	0.010	
PCB 1248	ug/L	0.00850U	0.00850	•
PCB 1254	ug/L	0.014U	0.014	•
PCB 1016	ug/L	0.012U	0.012	
PCB 1260	ug/L	0.015U	0.015	•
Decachlorobiphenyl (S)	%	121	45-162	·
Tetrachloro-m-xylene (S)	.%	96	50-125	

LABORATORY CONTROL SAMPLE: 24445

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
PCBs						
PCB 1221	ug/L		0.014U			
PCB 1232	ug/L		0.190U	•		
PCB 1242	ug/L		0.010U			
PCB 1248	ug/L		0.00850U			
PCB 1254	ug/L		0.014U			
PCB 1016	ug/L	1	1.17	11.7	12-176	
PCB 1260	ug/L	1	1.27	127	10-180	
Decachlorobiphenyl (S)	%			119	45-162	
Tetrachloro-m-xylene (S)	% -			96	50-125	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24446				244	47	Original: 904031007					
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifie	rs
PCBs									•		
PCB 1221	ug/L			0.014U	0.014U						
PCB 1232	ug/L			0.190U	0.190U						
PCB 1242	ug/L			0.010U	0.010U						
PCB 1248	ug/L			0.00850U	0.00850U						
PCB 1254	ug/L			0.014U	0.014U						
PCB 1016	ug/L	0	1	1.20	1.05	120	105	12-176	13	20	
PCB 1260	ug/L	0	1	1.30	1.08	130	108	10-181	18	20	

Report ID: 904015 - 4792816

Page 32 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24446

24447

Original: 904031007

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	Max RPD RPD Qualifiers
Decachlorobiphenyl (S)	%					125	117	45-162	7
Tetrachloro-m-xylene (S)	%		•			100	95	50-125	5

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2020

Analysis Method:

SW-846 8151A

QC Batch Method:

3510C

Associated Lab Samples:

903945015

903950013

903950014

903950015

904015001

METHOD BLANK: 24448

METHOD BLAINK, 24440	•			
Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Herbicides				
2,4-D	ug/L	0.406U	0.406	
2,4,5-T	ug/L	0.345U	. 0.345	
2,4,5-TP (Silvex)	ug/L	0.492U	0.492	
2,4-DB	ug/L	0.547U	0.547	
Dalapon	ug/L	0.509U	0.509	
Dicamba	ug/L	0.369U	0.369	
Dichlorprop	ug/L	0.399U	0.399	
Dinoseb	ug/L	0.509U	0.509	
MCPA	ug/L	47.7U	47.7	4
MCPP	ug/L	98.0U	98.0	
DCAA (S)	%	53	46-142	

LABORATORY CONTROL SAMPLE: 24449

Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	t
·					
ug/L	5	2.90	58	29-146	,
=	5	2.89	58	29-156	
_	5	1.211	24.		
=	5	3.11	62	30-180	
-	500	246	49		
ug/L	5	2.95	59		
ug/L	5	2.60	52	. 35-135	
ug/L	5.	2.81	56	36-148	
ug/L		341	•	•	
ug/L	. 5	3.73	75	18-195	
%		,	61	46-142	
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Units Conc. ug/L 5	Units Conc. Result ug/L 5 2.90 ug/L 5 2.89 ug/L 5 1.211 ug/L 5 3.11 ug/L 500 246 ug/L 5 2.95 ug/L 5 2.60 ug/L 5 2.81 ug/L 5 3.73 %	Units Conc. Result % Rec ug/L 5 2.90 58 ug/L 5 2.89 58 ug/L 5 1.211 24 ug/L 5 3.11 62 ug/L 500 246 49 ug/L 5 2.95 59 ug/L 5 2.60 52 ug/L 5 2.81 56 ug/L 341 41 ug/L 5 3.73 75	Units Conc. Result % Rec Limits Qualifiers ug/L 5 2.90 58 29-146 ug/L 5 2.89 58 29-156 ug/L 5 1.21l 24 ug/L 5 3.11 62 30-180 ug/L 500 246 49 ug/L 5 2.95 59 ug/L 5 2.60 52 35-135 ug/L 5 2.81 56 36-148 ug/L 341 341 41 ug/L 5 3.73 75 18-195

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24450				2445	1	Origi	nal: 9040				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Herbicides								·			
2,4-D	ug/L	0	5	3.43	3.45	69	69	29-146	0	20	
2,4,5-T	ug/L	.0	5	3.45	3.47	69	69	29-157	0	20	
Dinoseb	ug/L	. 0	5	1.63(1.051	33	21		44		

Report ID: 904015 - 4792816

Page 34 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24450

24451

Original: 904031005

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
2,4,5-TP (Silvex)	ug/L	0	5	3.69	3.73	74	75	30-180	1	20
MCPA	ug/L	0	500	297	308	59(62		5	
Dalapon	ug/L	0	5	3.56	3.43	71	69		3	
Dicamba	ug/L	0	5	3.11	3.21	62	64	35-135	3	20
Dichlorprop	ug/L	0	5	3.28	3.45	66 ′	69	36-148	4	20
MCPP	ug/L	•		396	` 455					
2,4-DB	ug/L	0	5	4.23	4.23	85	85	18-195	0	20
DCAA(S)	%					71	76	46-142	7	

Report ID: 904015 - 4792816

Page 35 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2021

903945015

Analysis Method:

SW-846 8081A

QC Batch Method: Associated Lab Samples:

3510C

903950013

903950014

903950015

904015001

METHOD BLANK: 24452

Parameter	Units	Blank Result	Reporting Limit Qualifiers		-
		TOOLIC	Limit Quantors		
Pesticides		•			
alpha-BHC	ug/L	0.000924U	0.000924		
beta-BHC	ug/L	0.00123U	0.00123		
delta-BHC	ug/L	0.000904U	0.000904		
Heptachlor epoxide	ug/L	0.00121U	0.00121	·	•
Endosulfan I	ug/L	0.00103U	0.00103		
4,4'-DDE	ug/L	0.00148U	0.00148		
Endosulfan II	ug/L	0.00103U	0.00103		
4,4'-DDD	ug/L	0.000993U	0.000993		
Endosulfan sulfate	ug/L	0.00279U	0.00279		
Methoxychlor	ug/L	0.000900U	0.000900		
Endrin ketone	ug/L	0.000969U	0.000969		
Endrin aldehyde	ug/L	0.000695U	0.000695		
alpha-Chlordane	ug/L	0.00118U	0.00118		
gamma-Chlordane	ug/L	0.00130U	0.00130		
gamma-BHC (Lindane)	ug/L	0.000563U	0.000563		
Heptachlor	ug/L	0.00152U	0.00152	,	
Aldrin	ug/L	0.00139U	0.00139	•	
Dieldrin	ug/L	0.00106U	0.00106		
Endrin	ug/L	0.00717U	0.00717		
4,4'-DDT	ug/L	0.00120U	0.00120		
Tetrachloro-m-xylene (S)	%	82	32-137		
Decachlorobiphenyl (S)	%	93	25-165		

LABORATORY CONTROL SAMPLE: 24453

Parameter	Units	Spike Conc.	LCS Result	. LCS % Rec	% Rec Limits Qualifiers
Pesticides					
alpha-BHC	ug/L	0.1	0.087	87	
beta-BHC	ug/L	0.1	0.089	89	
delta-BHC	ug/L	0.1	0.052	52	
Heptachlor epoxide	ug/L	0.1	0.095	95	
Endosulfan I	ug/L	0.1	0.0881	88	
4,4'-DDE	ug/L	0.1	0.118	118	
Endosulfan II	ug/L	0.1	0.118	118	
4,4'-DDD	ug/L	0.1	0.113	113	
Endosulfan sulfate	ug/L	0.1	0.104	104	
Methoxychlor	ug/L	0.1	0.187	187	
Endrin ketone	ug/L	0.1	0.144	144	
Endrin aldehyde	. ug/L	0.1	0.118	118	

Report ID: 904015 - 4792816

Page 36 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24453

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
alpha-Chlordane	ug/L	0.1	0.102	102		
gamma-Chlordane	ug/L	0.1	0.100	100	•	
gamma-BHC (Lindane)	ug/L	′ 0.1	0.086	86	33-155	
Heptachlor	ug/L	0.1	0.119	119	47-148	
Aldrin	ug/L	0.1	0.088	88	43-149	
Dieldrin	ug/L	0.1	0.100	100	47-162	
Endrin	ug/L	0.1	0.125	125	41-189	
4,4'-DDT	ug/L	0.1	0.119	119	14-228	•
Tetrachloro-m-xylene (S)	%			71	32-137	
Decachlorobiphenyl (S)	%			95	25-165	•
_						

MATRIX SPIKE & MATRIX	SPIKE DUP	LICATE: 2445	54	2445	5	Origi	nal: 9040	31008				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers	
Pesticides		·				-						
alpha-BHC	ug/L	. 0	0.1	0.101	0.100	101	100		1	,		
beta-BHC	ug/L	, 0	0.1	0.090	0.097	90	97		7			
delta-BHC	ug/L	. 0	0.1	0.054	0.058	54	58		7			
Heptachlor epoxide	ug/L	0.00336	0.1	0.095	0.103	91	99		8			
Endosulfan I	ug/L	0	0.1	0.0871	0.0951	87	95		9			
4,4'-DDE	ug/L	0	0.1	0.112	0.130	112	130	•	15			
Endosulfan li	ug/L	0	0.1	0.112	0.116	112	116		4			
4,4'-DDD	ug/L	0	0.1	0.114	0.121	114	121		6			-
Endosulfan sulfate	ug/L	0	0.1	0.0981	0.112	98	112		13		,	•
Methoxychlor	ug/L	0	0.1	0.181	0.192	. 181	192		6			
Endrin ketone	ug/L	0	0.1	0.138	0.151	138	151		9			
Endrin aldehyde	ug/L	0.00104	0.1	0.114	0.123	113	122		8			
alpha-Chlordane	ug/L	0	0.1	0.098	0.110	98	110		12			
gamma-Chlordane	ug/L	0	0.1	0.099	0.108	99	108		9			
gamma-BHC (Lindane)	ug/L	0	0.1	0.090	0.084	90	84	33-155	7	20		
Heptachlor	ug/L	0	0.1	0.116	0.123	116	123	47-148	6	20		
Aldrin	ug/L	0	0.1	0.087	0.093	87	93	43-149	7	20		
Dieldrin	ug/L	0	0.1	0.099	0.107	99	107	47-162	8	20		
Endrin	ug/L	0	0.1	0.113	0.115	113	115	41-189	2	20		
4,4'-DDT	ug/L	0	0.1	0.115	0.123	115	123	14-228	7	20		
Tetrachloro-m-xylene (S)	%	•				81	73	32-137	10		•	
Decachlorobiphenyl (S)	%					101	92	25-165	9			

Report ID: 904015 - 4792816

Page 37 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1606

Analysis Method:

EPA 365.1

Associated Lab Samples:

QC Batch Method:

EPA 365.1

903914003 904015001

Blank

Result

903926001 904020003 903926002 904032001

903998001 904032002 903998002 904032003

METHOD BLANK: 24467

Parameter

Units

mg/L

903914002

903998003

Reporting **Limit Qualifiers**

Wet Chemistry

Total Phosphorus

0.004U

0.004

LABORATORY CONTROL SAMPLE & LCSD:

24468

0.5

24469

Parameter Units

Spike Conc.

Original

Result

Original

Result

0.044

LCS Result

LCSD LCS LCSD Result % Rec % Rec % Rec Limit

Max RPD

RPD Qualifiers

20

Wet Chemistry Total Phosphorus

mg/L

0.517

Spike

Conc

Spike

Conc.

0.5

0.513

103 103

90-110

0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24470

24471

MS

Result

Original: 903914002

Parameter

mg/L 0.061

Units

0.5 0.543

0.546

MSD

Result

MSD % Rec % Rec

97

Max Limit RPD RPD Qualifiers

Wet Chemistry **Total Phosphorus**

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24472

Units

24473

MS

Result

Original: 904032003

% Rec

MS MSD

% Rec

Max

Limit RPD RPD Qualifiers

20

Wet Chemistry **Total Phosphorus**

Parameter

mg/L

0.560

0.563

MSD

Result

103

% Rec

MS

96.4

% Rec

104

90-110 0.97 20

90-110 0.62

Report ID: 904015 - 4792816

Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MISC/1182

Analysis Method:

SM 2130 B

QC Batch Method:

SM 2130 B

Associated Lab Samples:

903998001

904034003

903998002 904034004

903998003 904034005

904015001

904034001

904034002

METHOD BLANK: 24474

Reporting

Parameter

Units

Blank Result

Limit Qualifiers

Wet Chemistry

Turbidity

NTU

0.05U

0.05

SAMPLE DUPLICATE: 24475

Original: 903998001

Parameter Units Original Result

DUP Result

RPD

Max **RPD Qualifiers**

Wet Chemistry

Turbidity

NTU

1.4

20

Report ID: 904015 - 4792816

Page 39 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1827

Analysis Method:

SW-846 6010

QC Batch Method:

SW-846 3010A

903998001 904015001 904039004 903998002 904032001 904039005 903998003 904032002 904039006 904010001 904032003 904039007 904010002 904039002 904039008 904010003 904039003 904040003

METHOD BLANK: 24487

Associated Lab Samples:

		Blank	Reporting	
Parameter	Units	Result	Limit Q	ualifiers
Metals Analysis				
Aluminum	mg/l	0.046U	0.046	
Antimony	mg/l	0.0038U	0.0038	•
Arsenic	mg/l	0.0046U	0.0046	
Barium	mg/l	0.0020U	0.0020	
Beryllium	mg/l	0.00067U	0.00067	
Boron	mg/l	0.0034U	0.0034	
Cadmium	mg/l	0.00057U	0.00057	•
Calcium	mg/l	0.059U	0.059	,
Chromium	mg/l	0.0011U	0.0011	
Cobalt	mg/l	0.00072U	0.00072	
Copper	mg/l	0.0096U	0.0096	
Iron	mg/l	0.045U	0.045	
Lead	· mg/l	0.0031U	0.0031	
Magnesium	mg/l	0.045U	0.045	
Manganese	mg/l	0.0044U	0.0044	
Molybdenum	mg/l	0.0030U	0.0030	
Nickel	mg/l	0.0052∪	0.0052	
Potassium	mg/l	0.35U	0.35	
Selenium	mg/l	0.0054U	0.0054	,
Silver	mg/l	0.0016U	0.0016	
Sodium	mg/l	0.1951	0.074	
Strontium	mg/l	0.0015U	0.0015	
Tin	mg/l	0.0042U	0.0042	
Vanadium	mg/i	0.0056U	0.0056	
Zinc	mg/i	0.006081	0.0053	
Titanium	mg/l	0.0061U	0.0061	

LABORATORY CONTROL SAMPLE: 24488

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Metals Analysis						
Aluminum	mg/l	5	5.19	104	80-120	
Antimony	·mg/l	1	0.966	97	80-120	
Arsenic	mg/l	1	1.04	104	80-120	
Barium	mg/l	1	1.05	105	80-120	
Beryllium	mg/l	1	1.06	106	80-120	
Boron	mg/l	1	1.06	. 106	80-120	

Report ID: 904015 - 4792816

Page 40 of 71

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 24488

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Cadmium	mg/l	1	1.05	105	80-120	t.
Calcium	mg/l	25	25.8	103	80-120	
Chromium	mg/l	1	1.04	104	80-120	
Cobalt	mg/i	1	1.04	104	80-120	
Copper	mg/l	1	1.06	106	80-120	
Iron	mg/l	5	5.37	107	80-120	
Lead	mg/l	1	1.12	112	80-120	
Magnesium	mg/i	25	25.7	103	80-120	
Manganese	mg/l	1	1.06	106	80-120	
Molybdenum	mg/i	1	1.00	100	80-120	
Nickel	mg/t	1	1.06	106	80-120	
Potassium	mg/l	.10	9.78	98	80-120	
Selenium	mg/l	1	1.03	103	80-120	
Silver	mg/l	0.5	0.525	105	80-120	
Sodium	mg/l	25	24.2	97	80-120	
Strontium	mg/i	1	1.06	106	80-120	
Tin	mg/l	1	0.992	99	80-120	
Vanadium	mg/l	1	1.08	108	80-120	
Zinc	mg/l	1 .	1.07	107	80-120	
Titanium	mg/l	1	1.00	100	80-120	

MATRIX SPIKE & MAT	ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24489			2449	24490 Orig		nal: 9039	98001			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	ŔPD	Max RPD	Qualifiers
Metals Analysis											
Aluminum	mg/l	0.13	5	5.44	5.07	106	99	75-125	7	20	
Antimony	mg/l	0.00167	1	0.982	0.978	98	98	75-125	0	20	
Arsenic	mg/l	0.00266	1	1.07	0.990	107	99	75-125	8	20	
Barium	mg/i	0.0132	1	1.07	0.994	106	98	75-125	8	20	
Beryllium	mg/l	-1.19e-0	1 -	1.07	0.982	107	98	75-125	9	20	•
Boron	mg/l	0.0344	1	1.11	1.03	108	100	75-125	8	20	
Cadmium	mg/l	7.23e-00	1	1.07	0.990	107	99	75-125	8	20	
Calcium	mg/l	116	25	144	141	110	97	75-125	13	20	
Chromium	mg/l	-0.00143	1	1.04	0.964	104	96	75-125	8	20	
Cobalt	mg/l	0.00015	1	1.04	0.959	104	96	75-125	8	20	
Copper	mg/l	0.00061	1	1.05	0.976	105	98	75-125	7	20	
Iron	mg/l	0.152	5	5.54	5.09	108	99	75-125	9	20	
Lead	mg/l	-0.00159	1	1.13	1.04	113	104	75-125	8	20	
Magnesium	mg/l	2.85	25	28.8	28.3	104	102	75-125	2	20	
Manganese	mg/l	0.00936	1	1.07	0.982	106	97	75-125	9	20	
Molybdenum	mg/l	0.00177	1	1.01	0.998	101	100	75-125	1	20	
Nickel	mg/l	. 0.00069	1	1.06	0.983	106	98	75-125	8	20	
Potassium	mg/l	1.39	10	11.5	11.4	101	101	75-125	0	20	
Selenium	mg/l	-0.00061	1	1.05	0.965	105	96	75-125	9	20	

Report ID: 904015 - 4792816

Page 41 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24489

24400

Original: 903998001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit		Max RPD Qualific	ers
Silver	mg/l	0.00028	0.5	0.533	0.526	107	105	75-125	2	20	
Sodium'	mg/l	725	25	32.1	31.8	99	98	75-125	1	20	
Strontium	mg/l	0.68	1	1.76	1.68	108	100	75-125	8	20	
Tin	mg/l	-0.00104	1	1.00	0.986	100	99	75-125	1	20	
Vanadium	mg/l	-0.00206	. 1	1.09	1.01	109	101	75-125	8	20	
Zinc .	mg/l	0.00693	1	1.09	1.01	109	100	75-125	9	. 20	
Titanium	mg/l	0.00135	1	1.02	1.00	102	100	75-125	2	20	

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1264

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

903957002 904007001 904032003

904033011

903957003 904007002 904033005

904033013

903957010 904007003 904033006 903998001 904015001 904033007 903998002 904032001 904033008 903998003 904032002 904033009

METHOD BLANK: 24499

Associated Lab Samples:

Parameter	Units	Blank Result	Reporting Limit Qualifiers		
Wet Chemistry	, , , , , , , , , , , , , , , , , , , ,	.		-	
Bromide	mg/L	0.052U	0.052		
Nitrite	mg/L	0.005U	0.005		
Nitrate	mg/L	0.007U	0.007		
Fluoride	mg/L	0.030U	0.030		

LABORATORY CONTROL SAMPLE & LCSD: 24500

24501

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry									
Bromide	mg/L	2.5	2.42	2.42	97	97	90-110	0	20
Nitrite	mg/L	2.5	2.44	2.42	97	97	90-110	0	20
Nitrate	mg/L	2.5	2.46	2.46	98	98	90-110	0	20
Fluoride	mg/L	2.5	2.48	2.50	99.3	99.8	90-110	0.5	20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24502

24503

Original: 904032001

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry										
Bromide	mg/L	0	25	28.9	25.9	116	104	90-110	11	20
Nitrite	mg/L	0	. 25	26.0	22.5	104	90	90-110	14	20
Nitrate	mg/L	0	25	25.2	25.0	101	100	90-110	1	20
Fluoride	mg/L	0.395	25	26.6	26.4	105	104	90-110	0.96	20

Report ID: 904015 - 4792816

Page 43 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MICP/1360 BOD PREP Analysis Method:

SM 5210B BOD

Associated Lab Samples:

QC Batch Method:

904015001

METHOD BLANK: 24509

Blank

Reporting

Parameter

Units Result

Limit Qualifiers

Wet Chemistry

BOD

mg/L

Units

mg/L

2.0U

2.0

LABORATORY CONTROL SAMPLE: 24511

Spike Conc.

LCS Result LCS % Rec % Rec

Limits Qualifiers

Parameter
Wet Chemistry

BOD

198

171

86 70-130

SAMPLE DUPLICATE: 24512

Original: 904015001

DUP Original Max Parameter Units Result Result **RPD RPD Qualifiers** Wet Chemistry BOD mg/L 40U 40U 0 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

PH/1074

Analysis Method:

QC Batch Method:

SM4500H-B

SM4500H-B

Associated Lab Samples:

903759001

903895001

903895002

903895003

903908001

903918001

903926001 904046001

903926002 904047004 903937001 904048001

903937002 904049001

904015001 904066001 904045001

SAMPLE DUPLICATE: 24531

Original: 903937001

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers	
Wet Chemistry pH	pH unit	7.47	7.64	2	20	•

Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1610

Analysis Method:

SW-846 9012A

QC Batch Method:

EPA 335.2

Associated Lab Samples:

903957001

903957002 903957009 903957004 903999001

903957005 904015001 903957006 904075003 903957007 904077004

903957008 904111001

METHOD BLANK: 24589

Blank Result Reporting

Units

Limit Qualifiers

Wet Chemistry

Parameter

Total Cyanide

mg/L 0.0032U 0.0032

LABORATORY CONTROL SAMPLE & LCSD:

24590

24591

Parameter

Spike Units Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec % Rec Limit

Max **RPD Qualifiers**

Wet Chemistry **Total Cyanide**

mg/L

0.2 0.2086

0.2077

104

104 90-110 0

RPD

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24592

Original: 903957001

Wet Chemistry **Total Cyanide**

Original Parameter Units Result

Spike Conc.

MS MSD Result Result

MS % Rec

MSD % Rec % Rec

Limit RPD RPD Qualifiers

0 0

0 0

Max

0 mg/L 0.0003 0.2 0.1749 87 0

MATRIX SPIKE SAMPLE: 24594

Original: 904075003

Original Parameter Units Result

Spike Conc.

MS Result

MS % Rec

11

% Rec

Limits Qualifiers

Wet Chemistry **Total Cyanide**

mg/L 0.0036

0.2

0.0222

90-110

90-110

Report ID: 904015 - 4792816

Page 46 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

HACH/1191

Analysis Method:

SW-846 7196A

QC Batch Method: SW-846 7196A **Associated Lab Samples:**

904015001

METHOD BLANK: 24597

Blank

Reporting

Parameter

Units

Result

Limit Qualifiers

Wet Chemistry Chromium VI

mg/L

Units

0.007U

0.007

LABORATORY CONTROL SAMPLE & LCSD:

24598

24599

Parameter

Spike Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

RPD

1

Max **RPD Qualifiers**

Wet Chemistry

Chromium VI mg/L

0.2

Original

0.200

0.198

100

99 85-115 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24600

24601

MS

Original: 904015001

Parameter Wet Chemistry Result Conc.

Spike

Result Result

MSD % Rec

MS % Rec

MSD % Rec

Max Limit RPD RPD Qualifiers

Chromium VI 0.005 mg/L

Units

0.203 0.2

0.203

102

85-115 102

20 0

Report ID: 904015 - 4792816

Page 47 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

SOLI/1688

Analysis Method:

SM 2540 D

QC Batch Method:

SM 2540 D

Associated Lab Samples:

METHOD BLANK: 24620

903965001 903977001 904017003 903966002 903977002 904017004

904118001

903967001 903999001 904017005 903968001 904015001 904017007

903969003 904017001 904017008 903969004 904017002 904017009

904047004

Parameter Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Total Suspended Solids

mg/L

1.0U

1.0

SAMPLE DUPLICATE: 24621

Original: 903969004

Original DUP Max Parameter Units Result RPD **RPD Qualifiers** Result Wet Chemistry 152 **Total Suspended Solids** mg/L 170 10.7 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1611

Analysis Method:

SM 5540 C

QC Batch Method:

SM 5540 C

904015001

904111001

Associated Lab Samples: METHOD BLANK: 24643

Blank

Reporting

Parameter

Limit Qualifiers

Units

Result

Wet Chemistry

Surfactants

mg/L-LAS

0.040U

0.040

LABORATORY CONTROL SAMPLE & LCSD:

24645

Parameter

Spike Units Conc.

LCS Result

LCSD Result % Rec % Rec

LCS LCSD

% Rec Limit

RPD

Max **RPD Qualifiers**

Wet Chemistry Surfactants

mg/L-LAS

Units

mg/L-LAS

1

0.976

0.972

98

97 80-120 20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24646

24647

Original: 904015001

Parameter Wet Chemistry

Spike Original Result Conc. Result

MSD MS Result

MS % Rec

MSD % Rec

% Rec

Max Limit RPD RPD Qualifiers

Surfactants

0.005

0.923

0.934

92

93 80-120

20

Report ID: 904015 - 4792816

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MSV/1616

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 8260B

Associated Lab Samples: 903997001 904000003

904016003

904114006

903997002 904000004 904114001

904114007

903997003 904015001 904114002 903997004 904015002 904114003 904000001 904016001 904114004 904000002 904016002 904114005

METHOD BLANK: 24668

		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
Volatiles				
Acetone	ug/L 🕠	1.43U	1.43	
Acrolein	ug/L	2.47U	2.47	ı
Acrylonitrile	ug/L	0.955U	0.955	
Bromochloromethane	ug/L	0.637U	0.637	
Bromodichloromethane	ug/L	0.100U	0.100	
Bromoform	ug/L	0.486U	0.486	
Bromomethane	ug/L	0.4501	0.427 J,9	
Carbon disutfide	ug/L	0.650U	0.650	
Carbon tetrachloride	ug/L	0.468U	0.468	
Chloroethane	ug/L	1.00U	1.00	
Xylene, m,p-	ug/L	0.639U	0.639	
Chloroform	ug/L	0.572U	0.572	
Chloromethane	ug/L	0.524U	0.524	
Dibromochloromethane	ug/L	0.378U	0.378	
Dibromomethane	ug/L	0.739U	0.739	
Dichlorodifluoromethane	ug/L	0.525U	0.525	
1,1-Dichloroethane	ug/L	0.410U	0.410	
1,2-Dichloroethane	ug/L	0.897U	0.897	
cis-1,2-Dichloroethene	ug/L	0.442U	0.442	
trans-1,2-Dichloroethene	ug/L	0.410U	0.410	
Methylene chloride	ug/L	0.610	0.580	
1,2-Dichloropropane	ug/L	0.725U	0.725	•
cis-1,3-Dichloropropene	ug/L	0.664U	0.664	•
trans-1,3-Dichloropropene	ug/L	0.522U	0.522	
Ethylbenzene	ug/L	0.323U	0.323	
2-Hexanone	ug/L	1.83U	1.83	
Isopropylbenzene (Cumene)	ug/L	0.528U	0.528	
2-Butanone	ug/L	4.28U	4.28	
4-Methyl-2-pentanone	ug/L	0.220U	0.220	
n-Propylbenzene	ug/L	0.624U	0.624	
Styrene	ug/L	0.458U	0.458	
Tetrachloroethene	ug/L	0.312U	0.312	
1,1,1,2-Tetrachloroethane	ug/L	0.120U	0.120	
1,1,2,2-Tetrachloroethane	ug/L	0.572U	0.572	
1,2,4-Trichlorobenzene	ug/L	0.538U	0.538	
1,1,1-Trichloroethane	ug/L	0.682U	0.682	
1,1,2-Trichloroethane	ug/L	0.841U	0.841	
Trichlorofluoromethane	ug/L	1.00U	1.00	
1,2,3-Trichloropropane	ug/L	0.160U	0.160	
1,2,4-Trimethylbenzene	ug/L	0.508U	0.508	

Report ID: 904015 - 4792816

Page 50 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 24668

Parameter	Units	Blank Result	-	oorting Limit C	Qualifier	s						
1,3,5-Trimethylbenzene	ug/L	0.477U		0.477				<u>-</u>	-			-
Vinyl chloride	ug/L	0.506U		0.506								
Xylene, o-	ug/L	0.341U		0.341								
1,2-Dibromo-3-chloropropane	ug/L	0.933U		0.933								
1,2-Dibromoethane	ug/L	0.345U		0.345								
Vinyl acetate	ug/L	0.570U		0.570								
Methyl-t-butyl ether	ug/L	0.650U		0.650								
4-Isopropyltoluene	ug/L	0.380U		0.380								
2,2-Dichloropropane	ug/L	0.700U		0.700								
1,1-Dichforopropene	ug/L	0.632U		0.632								
2-Chloroethylvinyl ether	ug/L	0.470U		0.470					1			
1,3-Dichloropropane	ug/L	0.345U		0.345								
Bromobenzene	ug/L	0.382U		0.382						•		
2-Chlorotoluene	ug/L	0.550U		0.550			•					
4-Chlorotoluene	ug/L	0.570U		0.570								
tert-Butylbenzene	ug/L	0.607U		0.607								
sec-Butylbenzene	ug/L	0.521U		0.521		•						
1,3-Dichlorobenzene	ug/L	0.558U		0.558								
1,4-Dichlorobenzene	ug/L	0.537U		0.537								
n-Butylbenzene	ug/L	0.564U		0.564								
1,2-Dichlorobenzene	ug/L	0.584U		0.584			·					
Hexachlorobutadiene	ug/L	0.763U		0.763								
Naphthalene	ug/L	0.417U		0.417		,	•					
1,2,3-Trichlorobenzene	ug/L	0.686U		0.686								
1,1-Dichloroethene	ug/L	0.638U		0.638								
Benzene	ug/L	0.621U		0.621								
Trichloroethene	ug/L	0.821U		0.821					•			
Toluene	ug/L	· 0.389U		0.389								
Chlorobenzene	ug/L	0.316U		0.316								
4-Bromofluorobenzene (S)	%	86	€	4-130			•					
Dibromofluoromethane (S)	%	98	E	9-134 È	•							
Toluene d8 (S)	%	98	6	3-127					•			
Xylenes (total)	ug/L	0.980U	•	0.980					•			
LABORATORY CONTROL SAI	MPLE & LCSD:	24669		24670				٠.			· .	
Parameter	Units	Spike Conc. R	LCS Result	LCSD Result		LCSD % Rec	% Rec Limit	RPD	Max RPD Q	ualifiers		

Spike LCS LCSD LCS LCSD % Rec Max	LABORATORY CONTROL SAMPLE	SD: 24669		24670						
Acetone ug/L 50 60.9 62.1 122 124 2	Parameter Un		meter					 RPD .		
	Volatiles		iles		•			 		
Applein upl 100 56.5 58.5 57 - 58 2	Acetone ug/	50	one .	60.9	62.1	122	124	2		
	Acrolein ug/	100	ein	56.5	56.5	57	56	2		
Acrylonitrile ug/L 100 99.9 98.4 100 98 2	Acrylonitrile ug/	100	onitrile	99.9	98.4	100	98	2		
Bromochloromethane ug/L. 20 18.9 18.9 94 94 0	Bromochloromethane ug/	20	ochloromethane	18.9	18.9	94	94	0		
Bromodichloromethane ug/L. 20 18.0 18.0 90 90 0	Bromodichloromethane ug/	20	odichloromethane	18.0	18.0	90	90	0		
Bromoform ug/L 20 19.3 19.3 96 96 0	Bromoform ug/	20	oform	19.3	19.3	96	96	0		
Bromomethane ug/L 20 13.8 15.0 69 75 8	Bromomethane ug/	20	omethane	13.8	15.0	69	75	8	•	

Report ID: 904015 - 4792816

Page 51 of 71

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE & LCSD: 24669

24670

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Carbon disulfide	ug/L	20	34.7	34.2	174	171		2		
Carbon tetrachloride	ug/L	. 20	22.1	21.9	110	110		0		
Chloroethane	ug/L	20	21.8	18.7	109	93		16		
Xylene, m,p-	ug/L	40	43.1	43.5	108	109		0.9		
Chloroform	ug/L	20	18.7	18.5	93	93	•	0	•	
Chloromethane	ug/L	20	11.7	9.94	59	50		17		
Dibromochloromethane	ug/L	20	19.2	19.3	96	97		1		
Dibromomethane	ug/L	20	18.8	18.9	94	94		0		
Dichlorodifluoromethane	ug/L	20	19.2	18.1	96	91		5		
1,1-Dichloroethane	ug/L	20	21.9	21.3	110	107		3		
1,2-Dichloroethane	ug/L	20	19.6	19.5	98	98		0		
cis-1,2-Dichloroethene	ug/L	20	.20.6	20.3	103	102	•	1		
trans-1,2-Dichloroethene	uġ/L	20	24.6	24.7	123	123		0		
Methylene chloride	ug/L	20	20.3	19.3	102	97		5		•
1,2-Dichloropropane	ug/L	20	19.7	19.6	98	98		Ö		
cis-1,3-Dichloropropene	ug/L	. 20	20.0	19.8	100	99		1		
trans-1,3-Dichloropropene	ug/L ug/L	.20	19.4	19.3	97	96		1		
Ethylbenzene	ug/L ug/L	20	21.1	20.9	105	105		Ó		
2-Hexanone	ug/L ug/L	50	54.2	52.1	108	103		4		
Isopropylbenzene (Cumene)	ug/L	20	18.6	19.1	93	96		3		
2-Butanone		50 50	53.5	51.7	107	103		4	•	
4-Methyl-2-pentanone	ug/L ug/L	50 50	53.5 51.7	49.0	107	98		5		
• •	-	20	20.3	21.0	103	105		. 4		•
n-Propylbenzene	ug/L	20	18.3	18.2	92			1		
Styrene Tetrachloroethene	ug/L ug/L	20	22.9	23.1	114	115		0.9		
	-	20		19.1	96	95				
1,1,1,2-Tetrachloroethane	ug/L		19.3	17.1				1		
1,1,2,2-Tetrachloroethane	ug/L	20	16.6		83			2		
1,2,4-Trichlorobenzene	ug/L	20	18.3	18.4	91	92		1		
1,1,1-Trichloroethane	ug/L	20	20.7	21.2	103			3		
1,1,2-Trichloroethane	ug/L	20	19.6	19.2	98	96		2		
Trichlorofluoromethane	ug/L	20	26.3	23.3	131	117		11		
1,2,3-Trichloropropane	ug/L	20	20.7	20.7	103			0		
1,2,4-Trimethylbenzene	ug/L	20	20.2	20.5	101	103		2		
1,3,5-Trimethylbenzene	ug/L	20	20.0	20.9	100			5		
Vinyl chloride	ug/L	20	24.2	20.9	121	105		14		
Xylene, o-	ug/L	20	20.3	20.1	101	100		1		
1,2-Dibromo-3-chloropropane	ug/L	20	15.3	15.7	76			. 3		
1,2-Dibromoethane	ug/L	20	18.6	18.7	93			, 0		
Vinyl acetate	ug/L	20	17.6	16.5	88			6		
Methyl-t-butyl ether	ug/L	20	18.9	18.7	95			2		
4-Isopropyltoluene	ug/L	20	21.0	20.9	105			1		
2,2-Dichloropropane	ug/L	20	21.5	21.1	107			0.9		
1,1-Dichloropropene	ug/L	20	20.0	19.8				1		
2-Chloroethylvinyl ether	ug/L	20	19.1	18.7				2		
1,3-Dichloropropane	ug/L	20	19.2	19.2				0		
Bromobenzene	ug/L	20	17.6	17.9	88	90		2		t,
2-Chlorotoluene	ug/L	20	18.4	18.9	92	94		2		
4-Chlorotoluëne	ug/L	20	17.9	18.6	90	93		3		

Report ID: 904015 - 4792816

Page 52 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE & LCSD: 24669

24670

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
tert-Butylbenzene	ug/L	20	20.9	22.0	104	110		6	
sec-Butylbenzene	ug/L	20	22.6	22.6	113	113		. 0	
1,3-Dichlorobenzene	ug/L	20	18.2	18.1	91	91		0	
1,4-Dichlorobenzene	ug/L	20	18.3	18.3	91	.91		0	
n-Butylbenzene	ug/L	20	22.4	22.8	112	114		2	
1,2-Dichlorobenzene	ug/L	20	18.0	18.2	90	. 91		1	
Hexachlorobutadiene	ug/L	20	20.8	21.4	104	107		3	
Naphthalene	ug/Ĺ	20	19.2	19.3	96	96		0	
1,2,3-Trichlorobenzene	ug/L	20	18.4	19.0	92	95		3	
1,1-Dichloroethene	ug/L	20	28.0	26.9	140	135	62-141	4	20
Benzene	ug/L	. 20	20.0	20.4	100	102	65-141	2	20
Trichloroethene	ug/L	20	21.8	21.9	109	109	65-140	0	20
Toluene	ug/L	20	20.8	21.0	104	105	64-139	1	20
Chlorobenzene	ug/L	20	19.5	19.5	97	98	48-146	1	20
4-Bromofluorobenzene (S)	%				85	89	64-130	5	
Dibromofluoromethane (S)	%,				99	98	69-134	1	
Toluene d8 (S)	%				99	98	63-127	1	
Xylenes (total)	ug/L		63.4	63.6			•.		

Report ID: 904015 - 4792816

Page 53 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

TOC/1111

Analysis Method:

SM 5310B

QC Batch Method:

SM 5310B

Associated Lab Samples: 903971002 904092001

mg/L

904012001 904097001 904015001 904097002

904019001

904028001

904086001

LABORATORY CONTROL SAMPLE & LCSD: 24691

24692

Spike Units Conc.

LCS Result

83.8

LCSD LCS LCSD Result % Rec % Rec % Rec Limit

Max RPD

RPD Qualifiers

Wet Chemistry

Parameter

Total Organic Carbon

80

82.2

105

103 90-110

MS

2

10

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24693

24694

Original: 904015001

Parameter Units

Original Spike Result Conc.

MS Result

Result

MSD

% Rec

MSD % Rec

% Rec

Max

10

Limit RPD RPD Qualifiers

Wet Chemistry **Total Organic Carbon** mg/L 2.5 80 83.8 82.9 102 101 90-110

Report ID: 904015 - 4792816

Page 54 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

ALKA/1098

Analysis Method:

SM 2320 B

QC Batch Method:

SM 2320 B

Associated Lab Samples:

903879001 904015001 904039005

904088004

903885001 904038002 904039006

Blank

Result

0.02U

903885002 904038003 904039007

903976001 904039002 904088001

903976002 904039003 904088002

903976003 904039004 904088003

METHOD BLANK: 24695

Parameter

Units

Reporting

Limit Qualifiers

Wet Chemistry **Total Alkalinity**

mg/L

0.02

LABORATORY CONTROL SAMPLE & LCSD:

24696

24697

Spike Conc.

250

LCS LCSD Result

LCS LCSD Result % Rec % Rec % Rec Limit

> Max **RPD Qualifiers**

RPD

1

Max **RPD Qualifiers**

Wet Chemistry **Total Alkalinity**

Parameter

Units

mg/L

243

244

97 98 90-110

20

SAMPLE DUPLICATE: 24698

Original: 903885001

Parameter Wet Chemistry **Total Alkalinity**

mg/L

Units

128

Original

Result

128

DUP

Result

0

RPD

Report ID: 904015 - 4792816

Page 55 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

SOLI/1689

Analysis Method:

SM 2540 C

QC Batch Method:

SM 2540 C

903978002

903985002

903985005

903985007 904017001 903985009

Associated Lab Samples:

903978001 903998001 904017003 904040001

mg/L

903998002 904017004 904040002

903998003 904017005 904015001 904017007

904017008

904017002 904017009

METHOD BLANK: 24735

Parameter

Units

Reporting

Limit Qualifiers

Wet Chemistry

Total Dissolved Solids(TDS)

7.00U

Original

Result

1180

Original

Result

Blank

Result

7.00

SAMPLE DUPLICATE: 24736

Original: 903978001

Parameter

Units

DUP Result

RPD

Max **RPD Qualifiers**

RPD Qualifiers

Wet Chemistry

Total Dissolved Solids(TDS) mg/L

1350

13.4

20

Max

SAMPLE DUPLICATE: 24737

Original: 904017009

DUP

Result

Parameter Wet Chemistry

Total Dissolved Solids(TDS)

Units

156

163

4.4

RPD

20

Report ID: 904015 - 4792816

Page 56 of 71

Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1832

Analysis Method:

EPA 200.8

QC Batch Method:

EPA 200.8

903890001

903890002

903891001 903997003 903891002 904015001 903902001 904055001 903902002 904055002

METHOD BLANK: 24762

Associated Lab Samples:

Blank

Reporting

Parameter

Units

903951001

904111001

Result

903951002

904147002

Limit Qualifiers

Metals Analysis

Thallium

mg/L 0.00027U

0.00027

LABORATORY CONTROL SAMPLE: 24763

Parameter

r Units

Spike Conc. LCS Result

LCS % Rec % Rec

% κес Limits Qualifiers

Metals Analysis

Thallium

mg/L

0.2

0.205

102

85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 24764

24765

Original: 903890001

Parameter

Units

Original

Result

Spike Conc.

ke MS c. Result MSD Result MS % Rec MSD % Rec % Rec Limit Max

Limit RPD RPD Qualifiers

Metals Analysis

Thallium

mg/L

0.211

0.213

Report ID: 904015 - 4792816

Page 57 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

Salinity

MISC/1185

Analysis Method:

SM 2520 B

20

QC Batch Method:

SM 2520 B

Associated Lab Samples: 903584001

904005003

ppt

903730001 904005004 903730002 904015001 903730003 904040001

46.2

904005001 904040002 904005002 904040003

SAMPLE DUPLICATE: 24831

Original: 903584001

0.8

DUP Original Max Result Result RPD RPD Qualifiers Parameter Units Wet Chemistry

0.50

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1272

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples:

903914001 904040003 904094001

904160002

903914002 904054001 904094002

903970001 904054002 904111001

904005001 904055001 904128001

904005003 904055002 904145001 904015001 904056001 904145002

METHOD BLANK: 25058

Parameter

Units

Reporting

Limit Qualifiers

Wet Chemistry

Sulfate mg/L 0.1351

Blank

Result

0.076

LABORATORY CONTROL SAMPLE & LCSD:

25059

25060

Spike Conc.

LCS LCSD Result

LCS LCSD Result % Rec % Rec

96

% Rec Limit

Max **RPD Qualifiers**

Wet Chemistry Sulfate

Parameter

mg/L

Units

7.5

7.23

96

90-110

20

RPD

0

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 25061

25062

7.19

Original: 903970001

Original Spike MS MSD MS MSD % Rec Max Limit RPD RPD Qualifiers Parameter Units % Rec Result Conc. Result Result % Rec Wet Chemistry Sulfate mg/L 706 375 465 424 -64 -75 90-110 -16 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1615

Analysis Method:

EPA 351.2

QC Batch Method:

EPA 351.2

Associated Lab Samples:

903813001

904020003

904057001

903944001 904028001 904092001 903998001 904032001 904093001 903998002 904032002 904094001

903998003 904032003 904094002 904015001 904056001

METHOD BLANK: 25077

Blank

Parameter

Units

mg/L

mg/L

Units

mg/L

Units

mg/L

Reporting

Result

Limit Qualifiers

Wet Chemistry

Total Kjeldahl Nitrogen

0.22U

0.22

LABORATORY CONTROL SAMPLE & LCSD: 25078 25079

Spike Parameter Units Conc.

LCS LCSD

LCS LCSD Result % Rec % Rec % Rec Limit

Max **RPD Qualifiers**

Wet Chemistry

Total Kjeldahl Nitrogen

5

4.70

Result

4.70

90-110

MS

111

70.6

% Rec

0

RPD

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 25080

5

- 5

Spike

Conc.

25081

MS

Result

Original: 903944001

MSD

Result

5.45

MSD % Rec % Rec

90-110

Max Limit RPD RPD Qualifiers

20

Total Kjeldahl Nitrogen

Parameter

Wet Chemistry

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 25410

5.57 25411

Original: 904032003

109

Parameter

Original Result

Original

Result

0.199

Spike MS Conc. Result

MSD MS Result % Rec

MSD % Rec

% Rec

Max

1.8

Limit RPD RPD Qualifiers

20

Wet Chemistry Total Kjeldahl Nitrogen

0.27

3.80

3.70

68.6

90-110 2.9

Report ID: 904015 - 4792816

Page 60 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/2075

Analysis Method:

EPA 350.1

QC Batch Method:

EPA 350.1

Associated Lab Samples:

903909012 903944002 904032002 903909013 903999001 904047003

903909014 904015001 904048001

903909016 904019001 904049001

903926001 904028001 904050003 903926002 904032001 904058001

METHOD BLANK: 25189

Blank

Reporting

Parameter

Units

Result

0.017U

Limit Qualifiers

Wet Chemistry

Ammonia

mg/L

0.017

LABORATORY CONTROL SAMPLE & LCSD:

25190

25191

Parameter

Spike Units Conc.

LÇS Result

LCSD LCS LCSD Result % Rec % Rec % Rec Limit Max

RPD Qualifiers

Wet Chemistry

Ammonia

mg/L 2.5 2.55

102 2.60

104

MS

111

% Rec

90-110

RPD

2

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 25194

Units

mg/L

25195

MS

Result

Original: 904058001

MSD

110

% Rec

Parameter Wet Chemistry Ammonia

Original Spike Result Conc.

0.742

2.5 3.51

3.50

MSD

Result

% Rec

90-110

Max

Limit RPD RPD Qualifiers

20

0.9

Report ID: 904015 - 4792816

Page 61 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1864

Analysis Method:

SW-846 7470

QC Batch Method: SW Associated Lab Samples:

SW-846 7470

904341001

904341002

904341003

904341004

METHOD BLANK: 25576

Blank

Parameter

Units

904015001

Result

Reporting Limit Qualifiers

Metals Analysis

Mercury

mg/L

0.00013U

0.00013

LABORATORY CONTROL SAMPLE: 25577

Parameter

Units

Spike Conc.

LCS Result LCS % Rec % Rec

Limits Qualifiers

Metals Analysis

Mercury

mg/L

0.002

0.00204

102

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 25578

25579

Original: 904015001

Spike MS MS MSD Original MSD % Rec Max Parameter % Rec Limit RPD RPD Qualifiers Units Result Conc. Result Result % Rec Metals Analysis 0.002 - 0.00220 Mercury mg/L 3.3e-005 0.00215 110 108 75-125 2 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1281

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples:

903845001

904015001 904215002 904405001

904088002 904215003 904405002 904111001 904223001 904147002 904385005 904162004 904385006

METHOD BLANK: 25762

Reporting

Parameter

Units

mg/L

904173004

904393001

Blank Result

Limit Qualifiers

Wet Chemistry

Chloride

0.066U

0.066

LABORATORY CONTROL SAMPLE & LCSD:

25763

25764

Parameter

Spike Conc.

Original

Result

214

LCS **LCSD** Result

LCS LCSD Result % Rec % Rec % Rec Limit Max

RPD Qualifiers

Wet Chemistry

Chloride

mg/L

Units

mg/L

Units

5 4.94 4.97

99

99 90-110 0

RPD

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 25765

25766

Original: 903845001

Parameter

Spike Conc. Result

MS MSD Result

MS % Rec

MSD % Rec % Rec

Max

Limit RPD RPD Qualifiers

Wet Chemistry Chloride

250

485

474

108

104

90-110

20

Report ID: 904015 - 4792816

Page 63 of 71

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MISC/1193

Analysis Method:

EPA 410.4

Associated Lab Samples:

QC Batch Method:

EPA 410.4

904015001

904074006

904047003 904075005

904048001 904076006

904049001 904077003 904050003 904097001 904067001 904097002

904111001 904298001 904156001 904298002 904157002

904211001

904258001

904290002

METHOD BLANK: 26177

Reporting

Units

Blank Result

Limit Qualifiers

Wet Chemistry

Parameter

COD

mg/L

6.7U

6.7

LABORATORY CONTROL SAMPLE & LCSD: 26178

26179

Parameter Units

Spike Conc.

Original

Result

24

LCS Result LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

Max RPD

RPD Qualifiers

Wet Chemistry COD

mg/L

200

202

207 101

104

90-110

3

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 26180

26181

MS

221

Original: 904097002

MSD

% Rec

% Rec

20

Max Limit RPD RPD Qualifiers

Parameter Wet Chemistry COD

Units mg/L Conc. Result

Spike

200

220

MSD

Result

98

MS

% Rec

98 90-110

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

J	Estimated value.
V	Present in blank.
[8]	NCR-% RPD exceeds control limits
[9]	NCR-Result was based on a one-point calibration
[10]	MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[11]	MS and/or MSD recoveries outside control limits due to the high level of target analyte in the spiked sample. LCS and/or LCSD within limits. Data reported.
[12]	NCR-% difference of results from primary and secondary columns is >40%, possible due to matrix interference. Detection limit elevated above lowest concentration.

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

904015001 PW-1 EPA 1664A EXTO/2010 904015001 PW-1 EPA 365.1 LACH/2030 904015001 PW-1 SM 4500-S F(20th Ed.) HACH/1190	1-846 8270C low MSSV/13
	1-846 8270C low MSSV//13
904015001 PW-1 SM 4500-S F(20th Ed.) HACH/1190	-846 8270C low MSSV//13
	7-846 8270C low MSSV//13
904015001 PW-1 3510C EXTO/2015 SW-PAH	
904015001 PW-1 3510C EXTO/2017 SW-	/-846 8270C MSSV/13
904015001 PW-1 3510C EXTO/2018 SW	/-846 8141A GCSV/15
904015001 PW-1 3510C EXTO/2019 SW	/-846 8082 GCSV/15
904015001 PW-1 3510C EXTO/2020 SW	/-846 8151A GCSV/15
904015001 PW-1 3510C EXTO/2021 SW-	/-846 8081A GCSV/15
904015001 PW-1 EPA 365.1 INPR/1606 EPA	A 365.1 LACH/20
904015001 PW-1 SM 2130 B MISC/1182	
904015001 PW-1 SW-846 3010A DIGM/1827 SW	/-846 6010 ICP/1490
904015001 PW-1 EPA 300.0 IC/1264	
904015001 PW-1 BOD PREP MICP/1360 SM	1 5210B BOD BOD/130
904015001 PW-1 SM4500H-B PH/1074	
904015001 PW-1 SW-846 9012A INPR/1610 SW	V-846 9012A LACH/20
904015001 PW-1 SW-846 7196A HACH/1191	

Report ID: 904015 - 4792816

Page 66 of 71

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

	QUALIT	CONTROL OROSS REI	LINEITOL IADE	_	Analytical
Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Batch
904015001	PW-1	SM 2540 D	SOLI/1688		
904015001	PW-1	SM 5540 C	INPR/1611	SM 5540 C	HACH/1193
904015001	PW-1	SW-846 8260B	MSV/1616		
904015002 ·	TRIP BLANK	SW-846 8260B	MSV/1616		
904015001	· PW-1	SM 5310B	TOC/1111 .		
904015001	.PW-1	SM 2320 B	ALKA/1098		
904015001	PW-1	SM 4500 CO2 D	ALKA/1099		
904015001	PW-1	SM 2540 C	SOLI/1689		
904015001	PW-1	EPA 200.8	DIGM/1832	EPA 200.8	ICPM/1104
904015001	PW-1	SM 2520 B	MISC/1185		
904015001	PW-1	EPA 300.0	IC/1272	·	
904015001	PW-1	EPA 351.2	INPR/1615	EPA 351.2	LACH/2086
904015001	PW-1	EPA 350.1	LACH/2075		
904015001	PW-1	EPA 120.1	SPCD/1036		
904015001	PW-1	SW-846 7470	DIGM/1864	SW-846 7470	HG/1100
904015001	PW-1	EPA 300.0	IC/1281	·	
904015001	PW-1	EPA 410.4	MISC/1193		•
		•			

Report ID: 904015 - 4792816

Page 67 of 71

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
904015001	PW-1	900.0	S_01/	900.0	S_01/
904015001	PW-1	903.1	S_01/	903.1	S_01/
904015001	PW-1	EPA 100.2	S_09/	EPA 100.2	S_09/
904015001	PW-1	EPA 300.1	S_05/	EPA 300.1	S_05/
904015001	PW-1	EPA 7063 mod	S_36/	EPA 7063 mod	S_36/
904015001	PW-1	EPA 906	S_33/	EPA 906	S_33/
904015001	PW-1	Krone1989/GCMS	S_37/	Krone1989/GCMS	S_37/ .
904015001	PW-1	RA-05	S_17/	RA-05	S_17/
904015001	PW-1	RSK 175	S_15/	RSK 175	S_15/

Report ID: 904015 - 4792816

Page 68 of 71

1	•				-60			1	11/2		: 3	- 0	24
	٠.	400	.:	1 t.t		٠.			N		t:		. ;
	1			Gen		. : _		وأساموك	ويتؤوندان			٠.	,
	٠.	<i>18</i> 19			1	1	11			÷.			٠.
		Secret II			a	١	"		1	٠,			
	٠,					1	Ana	ivtic	al Ser	4.	ce	s. le	3C
		15.47							رن بر باس	` .		-4 36	~~

() Gena	ıpu	re dal Serv	ices, inc		_og#	Ū	\ 164	HA SIS	IN O			DY F	ECO	Ŕ P	Page	of		Conte	PPV Proj PLC Pau PLJ Plan	om Serepter imagraed viol rist container die das	
3	231 NW 7th Ave., Boo www.genapt	a Raton, F			3 %	- 100 	i kan Siring	ings () Books ()	dere.					ing in a second of the second			to some	363	CL Clear Litter AP Archar Placis AG Archar Diese SU Beil der	WHIRL P	oo beg Tedler bog Jahiri paa Ibin Jusi	
Com	any Name: MDR			PO#								LA	BIAN	YLYSI	S				Other Six(s): 2nz, 4nz, 8 Exemple: toxP = 4	z. 160z. 320z o	e.1L. 40ml other	
Addr			:			,		imple :	W					ar is come. Ag glása-fi	¥ 5.74 5 a				Sunci de la		Semioloman minor	
City.		State		Ζ ιρ:			4	EC .		1				V MARK					SD Sole Wase	atrix Cos		
Attn:			Fax#		¥	<u> </u>		pH j	<u>.</u> 9	4	12	12	12	为"特. g.\ 基 8次 年		- I			SE Seciment	. DW DX SU SI	asio Water 120/20 Pive Water 120/20 Water 180/20 Water	1
ómall	debond day	اعك	adrun.	مدعب	***************************************		- 12 € - 12 €	odes 🥳	<u>r</u>	\mathcal{L}	B	4 12	-n						PE Pendeum NA Monaquecu ML Miss David	N WB Z	theores suids Water L	, 1 ,
Proje	FPL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	diam.					g .	e i			i i						96	OV Cibind We EFF Ellimoni Me influent	ier O Si	(Please Specify)	
Same	·(영리 1월2 1802.)		Proj#				<u>0.8</u> . ()	ig 10	3	8			2 2			A TANAL S		ANIPLE RCRA 6		Pres/Cod	es	
Signa	luio (g#(\$L)	Phone				a disali	:	388	35	81.37							EXA!	A None B HXCx	E HCL F MoOH	L los	
4	Sample Label (Client ID)	Collect Date	Collect Time	Metric Code	eld	K (V int	omsalme.	č	707	3	3	a c						Ď	C. HzSOx D. N&OH	G. NazSZO: H. NaHSO:		
i.e.	MW-1	6/16/04	11:35	GW	X		1	1952		. 7. X. I						ontainers ze Type		II 16ozP		REMAR	KS	
1	The Block			ACW	2.50.00		7	72	P, ta	æ.	4	2	7 W . 1	10/2	W					***************************************		
_2	Pw-i	4/13/4		W				Ŀ		Ŋ		12	H	木	JJ (M	Д					
3				ā.								L	H	TY.						(i)		
_4			, ,		. 17				4/						II.		L			13 13		
5				41			, 2 kg 2 kg	T Pir	X.357 				4	3 🗓	J	3	P				~	
_6				, , , , ,								J	J	Ш	ľ				\$5 A\$ (1)			7
_7	2.82		j* 2" - 14									y J	IJ		Ú		口				112	Acid series
8		1		5.			3			IJ		J.		. Ā	7		IJ.					
9			is a sur													Ù	IJ			······································	₹ :	3
_0			Ž.,									26					ЦŢ					
e se s	Control of the second	i i i i i i i i i i i i i i i i i i i	hait Hok					OA/O	Rep	ort Leve	ĺ		Ci	oc ok	li	itials	Requi Cett	red State fication		Ceolers	#'s-	
	N Vent Propuleted	, Y	100	1			None	ia Jawa	2 1 9	Cities		i Svy Svyded Svyded	f i		m			r d				
ice III	m — Felinquisi	ed by	$\mathcal{G}_{\mathcal{A}}$	40,000,000,000,000,000	4.2	Pale:		6 7u)		STORES.	eçelved	59 -> 7/		filiation		>ate ₩	T T	me		Lab Use Cara	only	
	一场后	Ž	400		i Bi 2	5 °0'		1800		H	dr.	36	172	<u>ير</u>	1743 U		/200	1-11	Sample INTACT up Received on Wat to Proper Preservative	7 Temp Sc		

Genapure: Telephone:888-862-LABS; or 561-447-7373 Fax: 888-456-4846 or 561-447-6136 Revision G101007

2			•
	and a second	1,	
737 M		and the same of th	
		apure	
-		Analytical Services	, Inc.
- "		7 68 · 5 ·	

CHAIN OF CUSTODY RECORD

	· / · · · ·	. V.S. a 28	11	. `.		100	1.7
	UNT	こしりり	3	Sa ŠTAR	1639 ^T		
V	46	7.4.1.0	KļāĘ,	1,75	<u> </u>	H. (5)	Quote

Armher Vicil
Court Vicil
Plantic
Armher Liter
Cheer Liter
Armher Planti
Armher Clear RC R KOLE R

3231 NW 7th Ave., Bo www.gena								AP Amber Parity TECLAR B. Teclar bag AG Archer Gloss West P Vovs pox SJ Ses Ja: G Gates kip	
Company Name: HDR		PO#			LAB ANALYSIS	5		Co-id Sinots): 202, 402, 802, 1802, 3202 or 1L, 40ml come Exemple: 4027 = 402 Photic, 8045,4:802 504 der	
Address:			\$2000						
City:	State:	Zip:	TRO					Matrix Codes*	
Aftn:	Fax#		24	7 2	211212	1212		SO SOS AFW Analysi First World SE Sadaners OW Detrling Water OL ON SU Surface Water	
email: debord.	daylake	axe-bor	Co. 3 A 2	A A	A PA	B C		NA Mongueous BW Source Weter	
Project			2 2					ME Mass Desired A Au GW/ Christoph Matters O Other EMS Efficient 1 Pleased Specify)	
Name PPL	Proje	and the second s	me fer			1 36	# 2	Pres/Codes	
Sampler Signature	Phone#	· · · · · · · · · · · · · · · · · · ·			\$ \$	Same Same	₩ > XE	A No. C. E. HOL. W. Tie.	
Sample Label	Callect Collect		Bennad Dies 72	2 2	2 2 2 3	1	,	B. HND) F. MeOH J. MCAA D. HeSOA G. Neu S2O: K. 25 Aceteus D. NEOH H. Nei HSOA O. Celher	
(Client ÎD) #	Date Time	Sold Office Broad State			8 3 है	2 3	3		. Sirat
i.e. MW-1	6/16/04 11:35	GW X 1				# of Containes ScarType	:	REMARKS	
1 PW-1	4/13/09 1600								ORIGINAL
2				J 126	X pland#O	(d) _M] . 8
3				I U Y		ďď	J		Taxa.
				J	الأوارية الأراث				
5									
52 E 43 A7 E 43 A7 E									1
26	7								
<u> </u>									10
									r grand
1	Short Ho		CA/QC Repo	it Level	COCOK	iniliais Haata Sanara Kora	Required State Certification	Coolers if s	
The following		iation Date	Time	COhec	Annalis	(V) Date	[algorithme] S	Lab Use Only	
		(6/2	1800	AN MON	7. 17. T		20.76	Sample Intact Open arrivat	\$ 17 m
	0				400	11111	7.4.707	Proper Preservatives Instituted?	
	人名英· 阿 拉克						- 222 da 253	Principles of within boulding them? Curronly seems incom?	
	M. Make							Voletile rood without bearispens? Propor Containors bearif	
Constitue Telephon	ADD BEAL ADD	A. EGY 347 7979 E.			20 05 35155 030100		ran hariw		

197569

Genapure Analytical Services, Inc.	O G	enapure Analytical Services, Inc.	
-------------------------------------	-----	--------------------------------------	--

CHAIN OF CUSTODY RECORD

Log# 104015	T#\$	 Quote:

Page of

/ Kiniber Visi ES. Encoire Sampler (
Princip Visi PPV Princip Complete Visit Visit PPV Princip Complete Visit Visit Princip Visit Princip Visit Visit

3231 NW 7th Ave., Boca Raton, FE 33431 www.genapure.com	Land Company of the C	AP Armber Plazzic TEOLAR B Touler bag AG Amber Class White P White bet GU Sol Sar G Galon day Other
Company Name: HDQ PO#	LAB ANAL	LYSIS Social 2014, 4014, 6014,
Address	Sample Services (Fig. 2) Servi	The state of the s
City: State: Zip:	19 <mark>16年 - 21年 - 37</mark> (4、生活 25年 - 22年)	Matrix Codes
Attri: Eax#	4 1	SC Soit AFW Analyze From Water SE Southers DW Director Water
email: deborah, daugh endring com		PE Potribliam AQ Aqueous HA Randolpholis Spr Equiros Natur AL Mark Unitr A 20
Project		GW Ground Winer O Ciner Plants Spirity
Name FPL Proje 60/650	20 % Co. 10	
Sampler Signature Pall Dov (Phoné#	Sarah Marana Mar	Pres/Codes A/None EHCL Like BY-HNO EMBOH AMCAN
Sample Label Collect Collect Matrix 1 2 2 5 5 C		A A Anone Et HCL Low BY HIGH BY HIGH A MCAA' CHISCO G. Neis State BY HIGH BY HIGH A MCAA' C. HISTON H. Nais State C. O'chise
(Client ID) Dete Time Code 東島 あり 青	1 2 2 3 4	principles of Balancia, Contrainer of the Assault and
e. MW-1 6/16/04 11:35 GW X 1		# C Containers
1 Pw-1 1/13/09 1600		
		OUNT OLAPOITGE WAS GEA
<u>-9</u>		
3		
9		
		Proguited States
Stion Hold	OA/QC Report Level COC	OK Initials Conflication Coolers # S Conflication Conflication Coolers # S
	Now Coar	
1 Deliton har 445-00	on Representation and a contraction of the contract	ation Date Time Lab Use Only UNIVERSAL TO Suppose INTRACT Upon mentals.
0		Properties on Well to 7 Temp
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Reducings within beiding smart Deninter, seals transport
		Vocatile nocid without historiament? Proper Containers Uncert?

Genapure Telephone:888-862-LABS or 561-447-7373 Fax: 888-456-4846 or 561-447-6136 Revision G101007

•				
- 1				
- 1				
•			·	
-				
1				
•				
•	·			
•				
- -				
•				
•				

> Phone: (561) 447-7373 Fax: (561) 447-7374

June 4, 2009

DEBORAH DAIGLE HDR ENGINEERING 5426 BAY CENTER DR. SUITE 400 Tampa, FL 33609

RE:

Workorder:

904913

Project:

FPL 101650

Dear DEBORAH DAIGLE:

Enclosed are the analytical results for sample(s) received by the laboratory on Wednesday, May 06, 2009. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Neshmah Castaneda ncastaneda@genapure.com Project Manager

FL-NELAC E86240

Statement of uncertainty is available upon request:

FL Qualifiers: I=value between MDL and PQL; V=value was positive in Blank; J=estimated value.See comment;

U=undetected; Q=out of hold

EPA Qualifiers: B=value was positive in Blank; J=estimated value. May be between MDL and PQL;

U=undetected; Q=out of hold

Enclosures

Report ID: 904913 - 4928807

Page 1 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

SAMPLE SUMMARY

Lab ID	Sample ID	Collector	Matrix	Date Collected	Date Received	Temp
904913001	TRIP BLANK	CLIENT	DI Water	5/5/2009 00:00	5/6/2009 10:15	4
904913002	PW-1	CLIENT	Groundwater	5/5/2009 09:35	5/6/2009 10:15	4

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913001

Date Received: 5/6/2009 10:15 Matrix:

DI Water

Sample ID: TR

TRIP BLANK/

Date Collected: 5/5/2009

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
/olatiles						<u>-</u>			
Analytical Method: SW-846 8	3260B								
1,1,1,2-Tetrachloroethane	0.120	U	ug/L	0.120	1.00	1	•	5/8/2009 02:35	LN
1,1,1-Trichloroethane	0.682	Ü	ug/L ug/L	0.682	1.00	1		5/8/2009 02:35	LN
1,1,2,2-Tetrachloroethane	0.572	Ü	ug/L	0.572	1.00	1		5/8/2009 02:35	LN
1,1,2-Trichloroethane	0.841	Ü	ug/L ug/L	0.841	1.00	1		5/8/2009 02:35	LN
1,1-Dichloroethane	0.410	Ü	ug/L ug/L	0.410	1.00	1		5/8/2009 02:35	LN
1,1-Dichloroethene	0.638	Ü	ug/L ug/L	0.638	1.00	1		5/8/2009 02:35	LN
1,1-Dichloropropene	0.632	Ü	ug/L ug/L	0.632	1.00	1		5/8/2009 02:35	LN
1,2,3-Trichlorobenzene	0.686	Ü	ug/L ug/L	0.686	1.00	1		5/8/2009 02:35	LN
1,2,3-Trichloropropane	0.160	Ü	ug/L	0.160	1.00	1		5/8/2009 02:35	LN
1,2,4-Trichlorobenzene	0.100	U	-	0.538	1.00	1		5/8/2009 02:35	LN
1,2,4-Trimethylbenzene	0.508	U	ug/L	0.508	1.00	1		5/8/2009 02:35	LN
1,2,4-11111ettiyloetizette 1,2-Dibromo-3-	0.933	U	ug/L	0.933	1.00	1		5/8/2009 02:35	LN
chloropropane	0.933	U	ug/L	0.833	1.00	•		3/0/2009 02.33	LIN
1,2-Dibromoethane	0.345	U	ug/L	0.345	1.00	1		5/8/2009 02:35	LN
1.2-Dichlorobenzene	0.584	U	ug/L	0.584	1.00	1		5/8/2009 02:35	LN
1,2-Dichloroethane	0.897	U	ug/L	0.897	1.00	1		5/8/2009 02:35	LN
,2-Dichloropropane	0.725	U	ug/L	0.725	1.00	1		5/8/2009 02:35	LN
1,3,5-Trimethylbenzene	0.477	Ū	ug/L	0.477	1.00	1		5/8/2009 02:35	LN
1,3-Dichlorobenzene	0.558	Ū	ug/L	0.558	1.00	1		5/8/2009 02:35	. LN
1,3-Dichloropropane	0.345	Ü	ug/L	0.345	1.00	1		5/8/2009 02:35	LN
,4-Dichlorobenzene	0.537	Ū	ug/L	0.537	1.00	1		5/8/2009 02:35	LN
2,2-Dichloropropane	0.700	Ū	ug/L	0.700	1.00	1		5/8/2009 02:35	LN
2-Butanone	4.28	Ū	ug/L	4.28	10.0	1		5/8/2009 02:35	LN
2-Chloroethylvinyl ether	0.470	Ū	ug/L	0.470	1.00	1		5/8/2009 02:35	LN
2-Chlorotoluene	0.550	Ū	ug/L	0.550	1.00	1		5/8/2009 02:35	LN
2-Hexanone	1.83	Ü	ug/L	1.83	10.0	1		5/8/2009 02:35	LN
I-Chlorotoluene	0.570	Ū	ug/L	0.570	1.00	1		5/8/2009 02:35	LN
I-Isopropyltoluene	0.380	ū	ug/L	0.380	1.00	1		5/8/2009 02:35	LN
I-Methyl-2-pentanone	0.220	Ũ	ug/L	0.220	1.00	1		5/8/2009 02:35	LN
Acetone	1.43	Ü	ug/L	1.43	10.0	1		5/8/2009 02:35	LN
Acrolein	2.47	Ü	ug/L	2.47	10.0	1		5/8/2009 02:35	LN
Acrylonitrile	0.955	Ü	ug/L	0.955	10.0	1		5/8/2009 02:35	LN
Benzene	0.621	Ü	ug/L	0.621	1.00	1		5/8/2009 02:35	LN
Bromobenzene	0.382	Ŭ	ug/L	0.382	1.00	1		5/8/2009 02:35	LN
Bromochloromethane	0.637	Ü	ug/L	0.637	1.00	1		5/8/2009 02:35	LN
Bromodichloromethane	0.100	Ü	ug/L	0.100	1.00	1		5/8/2009 02:35	LN
Bromoform	0.486	Ŭ	ug/L	0.486	1.00	1		5/8/2009 02:35	LN
Bromomethane	0.427	U	ug/L ug/L	0.427	1.00	1		5/8/2009 02:35	LN
n-Butylbenzene	0.564	Ü	ug/L	0.564	1.00	1		5/8/2009 02:35	LN
Carbon disulfide	0.650	U	ug/L ug/L	0.650	10.0	1		5/8/2009 02:35	LN
Carbon discinide	0.650	U	-	0.468	1.00	1		5/8/2009 02:35	LN
Chlorobenzene	0.466	U	ug/L	0.468 0.316	1.00	1		5/8/2009 02:35	LN
Chloroethane	1.00	U	ug/L ug/L	1.00	1.00	1		5/8/2009 02:35	LN
	4 4 8 3 4		11/7/3						i N

Report ID: 904913 - 4928807

Page 3 of 63

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913001

Date Received: 5/6/2009 10:15 Matrix:

DI Water

Sample ID:

TRIP BLANK/

Date Collected: 5/5/2009

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Chloromethane	1.03		ug/L	0.524	· 1.00	1		5/8/2009 02:35	LN
Dibromochloromethane	0.378	U	ug/L	0.378	1.00	1		5/8/2009 02:35	LN
Dibromomethane	0.739	U	ug/L	0.739	1.00	1		5/8/2009 02:35	LN
Dichlorodifluoromethane	0.525	U	ug/L	0.525	1.00	1		5/8/2009 02:35	LN
cis-1,3-Dichloropropene	0:664	U	ug/L	0.664	1.00	1		5/8/2009 02:35	LN
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522	1.00	1		5/8/2009 02:35	LN
Ethylbenzene	0.323	U	ug/L	0.323	1.00	1		5/8/2009 02:35	LN
Hexachlorobutadiene	0.763	U	ug/L	0.763	1.00	1		5/8/2009 02:35	LN
Isopropylbenzene (Cumene)	0.528	Ü	ug/L	0.528	1.00	1		5/8/2009 02:35	LN
Methyl-t-butyl ether	0.650	U	ug/L	0.650	1.00	1		5/8/2009 02:35	LN
Methylene chloride	1.16	ı	ug/L	0.580	5.00	1		5/8/2009 02:35	LN
Naphthalene	0.417	U	ug/L	0.417	1.00	1		5/8/2009 02:35	LN
Styrene	0.458	U	ug/L	0.458	1.00	, 1	•	5/8/2009 02:35	LN
Tetrachloroethene	0.312	U	ug/L	0.312	1.00	1		5/8/2009 02:35	LN
Toluene	0.389	U	ug/L	0.389	1.00	1		5/8/2009 02:35	LN
Trichloroethene	0.821	U	ug/L	0.821	1.00	1		5/8/2009 02:35	LN
Trichlorofluoromethane	1.00	U	ug/L	· 1.00	1.00	1		5/8/2009 02:35	LN
Vinyl acetate	0.570	U	ug/L	0.570	10.0	1		5/8/2009 02:35	LN
Vinyl chloride	0.506	U	ug/L	0.506	1.00	1		5/8/2009 02:35	LN
Xylene, m,p-	0.639	U	ug/L	0.639	2.00	1	•	5/8/2009 02:35	LN
Xylene, o-	0.341	U	ug/L	0.341	1.00	1		5/8/2009 02:35	LN
Xylenes (total)	0.980	U	ug/L	0.980	3.00	1		5/8/2009 02:35	LN
cis-1,2-Dichloroethene	0.442	U	ug/L	0.442	1.00	1		5/8/2009 02:35	LN
n-Propylbenzene	0.624	U	ug/L	0.624	1.00	1	•	5/8/2009 02:35	LN
sec-Butylbenzene	0.521	U	ug/L	0.521	1.00	1		5/8/2009 02:35	LN
tert-Butylbenzene	0.607	U	ug/L	0.607	1.00	1		5/8/2009 02:35	LN
trans-1,2-Dichloroethene	0.410	U	ug/L	0.410	1.00	1		5/8/2009 02:35	LN
4-Bromofluorobenzene (S)	100		%	64-130		1		5/8/2009 02:35	LN
Dibromofluoromethane (S)	119		%	69-134		1		5/8/2009 02:35	LN
Toluene d8 (S)	97		%	63-127		1		5/8/2009 02:35	LN

Report ID: 904913 - 4928807

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913002

Date Received: 5/6/2009 10:15 Matrix:

Groundwater

Sample ID: PW-1/

Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Wet Chemistry								.	
Analytical Method: SM 2540 C			1 1						
Total Dissolved Solids(TDS)	33800		mg/L	350	500	50		5/6/2009 16:45	AR
Preparation Method: EPA 351.		nalytic		EPA 351.2				,	•
Total Kjeldahl Nitrogen	0.494		mg/L	0.22	0.40	1	5/12/2009 18:00	5/13/2009 13:20	IG
Analytical Method: EPA 350.1									
Ammonia	0.182		mg/L	0.017	0.050	1		5/12/2009 12:38	IG
Analytical Method: EPA 300.0			···•			, .	10 mg 1 mg		
Bromide	110	6	mg/L	0.522	5.00	10	GeV 2	5/6/2009 23:16	AD
Chloride	19400	J	mg/L	133	1000	2000		5/14/2009 08:14	AD
Fluoride	0.584	.16	mg/L	0.300	2.00	10		5/6/2009 23:16	AD
Nitrate	0.074	U	mg/L	0.074	0.500	10		5/6/2009 23:16	AD
Nitrite	0.053	U6	mg/L	0.053	0.500	10		5/6/2009 23:16	AD
Sulfate	2540	V,Q	mg/L	15.1	100	200		5/13/2009 21:33	AD
Analytical Method: EPA 410.4		oran Grand			,		a Salara Bart		
COD	1550		mg/L	67.0	100	10		5/12/2009 09:00	AR
Analytical Method: SM 2320 B							الرية الأراد الأراد		
Total Alkalinity	150	er i tr	mg/L	0.02	0.05	1	·····································	5/13/2009 13:30	LP
Preparation Method: BOD PRE		nalytica		SM 5210B BOI				3/13/2009 13:30	L
BOD		34.177	12,151,40	ili			EIEI0000 40 45	5/44/0000 44:00	. 10
Analytical Method: SM 5310B	<206	. 5	mg/L	40	40	20	5/5/2009 19:45	5/11/2009 11:30	JC
		7			i.	F77 - 9 - 57	for the first terms of the first		
Total Organic Carbon	2.1	4.	mg/L	0.60	1.0	1		5/12/2009 22:00	LP
Analytical Method: EPA 1664A		1.5	1.446						
Oil and Grease	1.7		mg/L	1.4	4.0	1		5/7/2009 15:35	JS
Preparation Method: SW-846 9	012A A	nalytica	il Method:	SW-846 9012A	h hadaasi	· 1. 15 +	e nakata na kita k	Land Francisco	
Total Cyanide	0.0032	U	mg/L	0.0032	0.0050	1	5/7/2009 11:20	5/7/2009 14:47	IG
Preparation Method: SM 5540	C A	nalytica	il Method:	SM 5540 C		T 1 T T T T T T	r Karaba		
Surfactants	0.040	U	mg/L-LAS	0.040	0.200	-55 € 15 - 1	5/6/2009 19:11	5/6/2009 20:00	AR
	专出 成战"	- 18 A		Sales de la Maria		i e	on the syndyn yr		17.
, no establicated epotentium process general. Furbidity	3.7 (本) 1 0.21	`⊹`\$'** •	NTU	0.05	1.0	("왕 시아 1		5/6/2009 17:15	ZE
Analytical Method: SM 4500-S		1 (1947)	NIU	0.05	1.0	: . · •	S. S. Britania	5/0/2009 17:15	<u> </u>
近世紀10年前1月2日新聞 (新版基本) 史日紀第二	点。\$P\$1987年中中	1. 10 11	计例为专业		the last				
Sulfide	0.415		mg/L	0.050	0.063	1		5/12/2009 17:20	AR
Analytical Method: EPA 365.1	针流形术	- P 1	1903	科图 机工业	* 1.5 20 \$2 3			ing Palaka ing Palaka	
Ortho Phosphate - P	0.033		mg/L-P	0.005	0.015	1		5/6/2009 17:44	ZE
Total Phosphorus	0.085	. H.	mg/L	0.004	0.015	1	5/12/2009 18:15	5/13/2009 15:55	ZE
Analytical Method: SM 2540 D		走艺术		Salar Land Co					
Total Suspended Solids	21.2		mg/L	2.0	4.0	1	•	5/11/2009 14:10	MF
Analytical Method: EPA 120.1	tititi			a.英字:直肠8内	まだ。 物理などのよう				+4
Conductivity	15500	DE DE ÁL.	umhos/cn	នាធ្នាក់ក្រាក់ពី]	Water Fire	1	n in men hahas en sytés	5/11/2009 16:00	AD
	-					-			

Report ID: 904913 - 4928807

Page 5 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913002

Date Received: 5/6/2009 10:15 Matrix:

Groundwater

Sample ID: PW-1/ Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Analytical Method: 903.1				1 14				•	:
Radium 226	2.8+/-0.3	1	pCi/l	0.20	0.20	1		5/19/2009 11:42	SU
Analytical Method: RA-05		٠.,						3. 13.2333 111.2	
Radium 228	1.4+/-0.6	1	pCi/l	0.70	0.70	1		5/19/2009 11:04	SU
Herbicides									
Preparation Method: 3510C	Analytical N	/lethod:	SW-846	8151A					
2,4,5-T	0.345	U	ug/L	0.345	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
2,4,5-TP (Silvex)	0.492	Ü	ug/L	0.492	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
2,4-D	0.406	Ü	ug/L	0.406	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
2,4-DB	0.547	Ü	ug/L	0.547	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dalapon	0.509	Ü	ug/L	0.509	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dicamba	0.369	,Ü	ug/L	0.369	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dichlorprop	0.399	Ü	ug/L	0.399	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
Dinoseb	0.509	U	•	0.509	2.00	1	5/7/2009 18:30	5/9/2009 03:45	MR
MCPA	47.7	U	ug/L ug/L	47.7	200	1	5/7/2009 18:30	5/9/2009 03:45	MR
MCPP		U	-			1			
DCAA (S)	98.0 86	U	ug/L %	98.0 46-142	200	1	5/7/2009 18:30 5/7/2009 18:30	5/9/2009 03:45 5/9/2009 03:45	MR MR
PCBs	00		/0	40.142		•	0///2003 10:00	3/3/2003 03.40	1411 (
Preparation Method: 3510C	Analytical N	Vethod	SW-846	8082					
2.77. 法法法律自由的数字的一定在5.6.2.	(1) (1) (2) (2) (2) (2) (2) (2)(3) (2) (2) (2) (2) (2) (2) (2)(4) (2) (2) (2) (2) (2)(5) (2) (2) (2) (2) (2)(6) (2) (2) (2) (2)(7) (2) (2) (2) (2)(8) (2) (2) (2) (2)(8) (2) (2)<!--</td--><td>die ann.</td><td></td><td>関われ きょくさいかい</td><td></td><td></td><td></td><td></td><td></td>	die ann.		関われ きょくさいかい					
PCB 1016	0.012	U	ug/L	0.012	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1221	0.014	U	ug/L	0.014	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1232	0.190	U	ug/L	0.190	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1242	0.010	U	ug/L	0.010	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1248	0.00850	U	ug/L	0.00850	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1254	0.014	U	ug/L	0.014	0.500	1.	5/7/2009 19:00	5/9/2009 09:27	MR
PCB 1260	0.015	U	ug/L	0.015	0.500	1	5/7/2009 19:00	5/9/2009 09:27	MR
Tetrachloro-m-xylene (S)	91		%	50-125		1	5/7/2009 19:00	5/9/2009 09:27	MR
Decachlorobiphenyl (S)	117		%	45-162		1	5/7/2009 19:00	5/9/2009 09:27	MR
Metals Analysis	,								
Preparation Method: SW-84	6.7470	Analytic	al Method	I: SW-846 7470	ar Paragain Salah.		Francis Commence		
Mercury	0.00013	υĺ	mg/L	0.00013	0.00020	1	5/13/2009 11:30	5/14/2009 12:42	TI
Preparation Method: SW-84	6 3010A /	Analytic	al Method	I: SW-846 6010	, ,				
Antimony	0.0038	Ú	mg/l	0.0038	0.020	1	5/7/2009 14:00	5/8/2009 20:37	тв
Arsenic	0.0046	U	mg/l	0.0046	0.010	1	5/7/2009 14:00	5/8/2009 20:37	ТВ
Beryllium	0.00067	Ú	mg/l	0.00067	0.0040	1	5/7/2009 14:00	5/8/2009 20:37	ТВ
Cadmium	0.00057	Ū	mg/l	0.00057	0.0050	1	5/7/2009 14:00	5/8/2009 20:37	ТВ
Chromium	0.0011	Ü	mg/i	0.0011	0.0050	1	5/7/2009 14:00	5/8/2009 20:37	TB
Copper	0.0096	Ü	mg/l	0.0096	0.020	1	5/7/2009 14:00	5/8/2009 20:37	ТВ
Lead	0.00334	ı	mg/l	0.0031	0.020	1	5/7/2009 14:00	5/8/2009 20:37	TB
Nickel	0.0052	Ü	mg/l	0.0051	0.010	1	5/7/2009 14:00	5/8/2009 20:37	TB
Selenium	0.0052	U	-	0.0054	0.030	1	5/7/2009 14:00	5/8/2009 20:37	ТВ
Silver	0.0054	U	mg/l mg/l	0.0054	0.030	1	5/7/2009 14:00	5/8/2009 20:37	TB
		1.1	11301/0	W WILL			. # / / / URISE [44 UK]		115

Report ID: 904913 - 4928807

Page 6 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913002

Date Received: 5/6/2009 10:15 Matrix:

Groundwater

Sample ID: PW-1/ Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qua	l Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Preparation Method: EPA	200.8	Analytic	al Method	f: EPA 200.8	-			****	,
Thallium Analytical Method: EPA 30	0.00027 0.1	U	mg/L	0.00027	0.0020	1	5/7/2009 11:30	5/12/2009 22:44	DF
Bromate	100	U3	ug/L	100	750	300		5/12/2009 19:22	SU
Wet Chemistry - Subcont			-3						
Analytical Method: EPA 10									
mialylical Method. LFA 10	0.2								
Asbestos	0.18	U2	MFL	0.18	0.18	1		5/14/2009 18:00	SU
Analytical Method: EPA 70	63 mod								
Arsenite (Trivalent As)	2	U4	ug/L	2	2	1	•	5/21/2009 12:00	SU
Organophosphorus Pest	icides		_						
Preparation Method: 3510		Method	I: SW-846	8141A				;	
					0.500		E/7/0000 4E-00	E/40/0000 04-00	
Aspon Asianhaa athul	0.185	U	ug/L	0.185	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Azinphos-ethyl	0.130	U	ug/L	0.130	2.00	1	5/7/2009 15:00	5/10/2009 01:33	LR
Bolstar	0.202	U	ug/L	0.202	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Carbophenothion	0.063	U	ug/L	0.063	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Chlorpyrifos	0.121	U	ug/L	0.121	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Chlorpyrifos-methyl	0.137	U	ug/L	0.137	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Coumaphos	0.079	U	ug/L	0.079	1.50	1	5/7/2009 15:00	5/10/2009 01:33	LR
Crotoxyphos	0.078	U	ug/L	0.078	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Demeton-o	0.041	U	ug/L	0.041	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Demeton-s	0.062	U	ug/L	0.062	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Dichlorfenthion	0.190	U	ug/L	0.190	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Dichlorovos	0.075	U	ug/L	0.075	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Dicrotophos	0.175	U	ug/L	0.175	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Dimethoate	0.184	U	ug/L	0.184	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Dioxathion	0.110	U	ug/L	0.110	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Disulfoton	0.129	U	ug/L	0.129	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
EPN	0.132	U	ug/L	0.132	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Ethion	0.132	U	ug/L	0.132	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Ethoprop	0.068	U	ug/L	0.068	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Famphur	0.081	U.	ug/L	0.081	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Fenithrothion	0.198	U	ug/L	0.198	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Fenthion	0.074	U	ug/L	0.074	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Leptophos	0.046	U	ug/L	0.046	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Merphos	0.208	U	ug/L	0.208	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Mevinphos	0.172	U	ug/L	0.172	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Naled .	0.220	U	ug/L	0.220	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Phorate	0.177	Ū	ug/L	0.177	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Phosmet	0.102	Ü	ug/L	0.102	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Phosphamidon	0.311	Ü	ug/L	0.311	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Ronnel	0.054	Ü	ug/L	0.054	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
TEPP	0.189	Ü	ug/L ug/L	0.189	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Terbufos	0.063	U	ug/L ug/L	0.063	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Thionazine	0.003	U	ug/L ug/L	0.003	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR

Report ID: 904913 - 4928807

Page 7 of 63

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913002

Date Received: 5/6/2009 10:15 Matrix:

Groundwater

Sample ID: PW-1/ Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Tokuthion (Prothiophos)	0.106	U	ug/L	0.106	0.500	1	5/7/2009 15:00	5/10/2009 01:33	LR
Trichlorfon	1.09	U	ug/L	1.09	1.80	1	5/7/2009 15:00	5/10/2009 01:33	LR
Tributyl Phosphate (S)	120		%	44-125		1	5/7/2009 15:00	5/10/2009 01:33	LR
Triphenyl Phosphate (S)	122		%	43-134		1	5/7/2009 15:00	5/10/2009 01:33	LR
Semivolatiles									
Preparation Method: 3510C	Analytical I	Method:	SW-846	8270C					u diki
1,2,4-Trichlorobenzene	1.5	U	ug/L	1.5	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
1,2-Dichlorobenzene	0.34	U	ug/L	0.34	4.0	1	5/7/2009 13:00	5/7/2009 18:04	тв
1,2-Diphenylhydrazine	0.23	U	ug/L	0.23	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
1,3-Dichlorobenzene	0.35	U	ug/L	0.35	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
1,4-Dichlorobenzene	0.28	U	ug/L	0.28	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4,5-Trichlorophenol	0.38	U	ug/L	0.38	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
2,4,6-Trichlorophenol	0.27	U	ug/L	0.27	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dichlorophenol	0.43	U	ug/L	0.43	0.53	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dinitrophenol	1.4	U	ug/L	1.4	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dinitrotoluene	0.31	U	ug/L	0.31	0.45	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,6-Dinitrotoluene	0.31	U	ug/L	0.31	0.39	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
2-Chloronaphthalene	0.32	U	ug/L	0.32	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Chlorophenol	2.6	U	ug/L	2.6	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Methylphenol	0.22	U	ug/L	0.22	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Nitroaniline	0.20	. U	ug/L	0.20	50	1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Nitrophenol	0.24	U	ug/L	0.24	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
3,3'-Dichlorobenzidine	0.31	U	ug/L	0.31	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
3-Nitroaniline	0.28	U	ug/L	0.28	50	1	5/7/2009 13:00	5/7/2009 18:04	TB
4,6-Dinitro-2-methylphenol	0.35	U	ug/L	0.35	10	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
4-Chloro-3-methylphenol	0.22	U	ug/L	0.22	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Chloroaniline	0.29	υ	ug/L	0.29	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Chlorophenyl phenyl ether	0.45	U	ug/L	0.45	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Aniline	0.28	U	ug/L	0.28	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Benzidine	9.7	U	ug/L	9.7	10	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Benzoic acid	2.0	U	ug/L	2.0	50	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Benzyl alcohol	0.22	U	ug/L	0.22	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Bis(2-Chloroethoxy)methane	0.32	U	ug/L	0.32	4.0	1	5/7/2009 13:00	5/7/2009 18:04	тв
Bis(2-Chloroethyl)ether	0.46	U	ug/L	0.46	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Bis(2-Chloroisopropyl)ether	0.34	U	ug/L	0.34	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Bis(2-Ethylhexyl)phthalate	0.20	U	ug/L	0.20	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
4-Bromophenyl phenyl ether	0.27	Ū	ug/L	0.27	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Butyl benzyl phthalate	0.36	Ū	ug/L	0.36	10	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Carbazole	0.28	Ū	ug/L	0.28	4.0	-1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Di-n-butyl phthalate	0.21	Ū	ug/L	0.21	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Di-n-octyl phthalate	0.28	Ų.	ug/L	0.28	1.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Dibenzofuran	0.29	Ü	ug/L	0.29	10	1	5/7/2009 13:00	5/7/2009 18:04	тв
Diethyl phthalate	0.33	Ü	ug/L	0.33	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Dimethyl phthalate	0.33	Ü	ug/L	0.31	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
2,4-Dimethylphenol	0.40	Ū	ug/L ug/L	0.40	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Hexachlorobenzene	0.40	Ü	ug/L	0.32	7.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ

Report ID: 904913 - 4928807

Page 8 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913002

_ . _ . .

Date Received: 5/6/2009 10:15 Matrix:

Groundwater

Sample ID: PW-1/

Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Hexachlorobutadiene	0.45	U	ug/L	0.45	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Hexachlorocyclopentadiene	0.70	U	ug/L	0.70	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Hexachloroethane	0.36	U	ug/L	0.36	2.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Isophorone	0.34	U	ug/L	0.34	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
4-Nitroaniline	0.24	U	ug/L	0.24	50	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Nitrobenzene	0.31	υ	ug/L	0.31	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
4-Nitrophenol	0.79	υ	ug/L	0.79	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
Pentachlorophenol	0.70	U	ug/L	0.70	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
Phenol	0.40	U	ug/L	0.40	1.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
Pyridine	8.9	U	ug/L	8.9	10	1	5/7/2009 13:00	5/7/2009 18:04	TB
m,p-Cresol	0.23	U	ug/L	0.23	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
n-Nitrosodi-n-propylamine	0.33	U	ug/L	0.33	4.0	1	5/7/2009 13:00	5/7/2009 18:04	TB
n-Nitrosodimethylamine	3.4	U	ug/L	3.4	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
n-Nitrosodiphenylamine	0.31	U	ug/L	0.31	4.0	1	5/7/2009 13:00	5/7/2009 18:04	ТВ
Nitrobenzene-d5 (S)	72		%	7.7-130		1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Fluorobiphenyl (S)	68		%	19-126		1	5/7/2009 13:00	5/7/2009 18:04	TB
Terphenyl-d14 (S)	77		%	27-133		1	5/7/2009 13:00	5/7/2009 18:04	TB
Phenol-d6 (S)	45.1		%	10-59		1	5/7/2009 13:00	5/7/2009 18:04	TB
2-Fluorophenol (S)	46		%	28-62		1.	5/7/2009 13:00	5/7/2009 18:04	TB
2,4,6-Tribromophenol (S)	80		%	48-132		1 `	5/7/2009 13:00	5/7/2009 18:04	TB
Volatiles .									
Analytical Method: SW-846 8	260B			symboly out the contribution of the state of		HEE			nene
1,1,1,2-Tetrachloroethane	0.120	U	ug/L	0.120	1.00	7-44623 1		5/8/2009 02:59	UNEAU SEL LN
1,1,1-Trichloroethane	0.682	Ú	ug/L	0.682	1.00	1		5/8/2009 02:59	LN
1,1,2,2-Tetrachloroethane	0.572	Ū	ug/L	0.572	1.00	1		5/8/2009 02:59	LN
1,1,2-Trichloroethane	0.841	Ū	ug/L	0.841	1.00	1	•	5/8/2009 02:59	LN
1,1-Dichloroethane	0.410	Ū	ug/L	0.410	1.00	1		5/8/2009 02:59	LN
1,1-Dichloroethene	0.638	Ū	ug/L	0.638	1.00	1		5/8/2009 02:59	LN
1,1-Dichloropropene	0.632	Ü	ug/L	0.632	1.00	1	,	5/8/2009 02:59	LN
1,2,3-Trichlorobenzene	0.686	Ŭ	ug/L	0.686	1.00	1	·	5/8/2009 02:59	LN
1,2,3-Trichloropropane	0.160	Ü	ug/L	0.160	1.00	1		5/8/2009 02:59	LN
1,2,4-Trichlorobenzene	0.538	Ü	ug/L	0.538	1.00	1		5/8/2009 02:59	LN
1,2,4-Trimethylbenzene	0.508	Ü	ug/L	0.508	1.00	1		5/8/2009 02:59	LN
1,2-Dibromo-3-	0.933	Ü	ug/L	0.933	1.00	1		5/8/2009 02:59	LN
chloropropane	0.000	·	ugr=	0.000	1.00	•	*	0/0/2000 02.00	
1,2-Dibromoethane	0.345	U	ug/L	0.345	1.00	1		5/8/2009 02:59	LN
1,2-Dichlorobenzene	0.584	U	ug/L	0.584	1.00	1		5/8/2009 02:59	LN
1,2-Dichloroethane	0.897	U	ug/L	0.897	1.00	1		5/8/2009 02:59	LN
1,2-Dichloropropane	0.725	U.	ug/L	0.725	1.00	1		5/8/2009 02:59	LN
1,3,5-Trimethylbenzene	0.477	U	ug/Ľ	0.477	1.00	1		5/8/2009 02:59	LN
1,3-Dichlorobenzene	0.558	U	ug/L	0.558	1.00	1		5/8/2009 02:59	LN
1,3-Dichloropropane	0.345	Ū	ug/L	0.345	1.00	1		5/8/2009 02:59	LN
1,4-Dichlorobenzene	0.537	Ū	ug/L	0.537	1.00	1		5/8/2009 02:59	LN
2,2-Dichloropropane	0.700	U	ug/L	0.700	1.00	1		5/8/2009 02:59	LN
2-Butanone	4.28	Ū	ug/L	4.28	10.0	1		5/8/2009 02:59	LN
2-Chloroethylvinyl ether	0.470	Ū	ug/L	0.470	1.00	1		5/8/2009 02:59	LN

Report ID: 904913 - 4928807

Page 9 of 63

CERTIFICATE OF ANALYSIS

Groundwater

Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913002

Sample ID: PW-1/

Date Received: 5/6/2009 10:15 Matrix:

Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
2-Chlorotoluene	0.550	U	ug/L	0.550	1.00	1		5/8/2009 02:59	LN
2-Hexanone	1.83	U	ug/L	1.83	10.0	1	•	5/8/2009 02:59	LN
4-Chlorotoluene	0.570	U	ug/L	0.570	1.00	1	•	5/8/2009 02:59	LN
1-Isopropyltoluene	0.380	U	ug/L	0.380	1.00	1		5/8/2009 02:59	LN
4-Methyl-2-pentanone	0.220	U	ug/L	0.220	1.00	1		5/8/2009 02:59	LN
Acetone	1.43	U	ug/L	1.43	10.0	1	•	5/8/2009 02:59	LN
Acrolein	2.47	U	ug/L	2.47	10.0	1	•	5/8/2009 02:59	LN
Acrylonitrile	0.955	U	ug/L	0.955	10.0	1		5/8/2009 02:59	LN
Benzene .	0.621	U	ug/L	0.621	1.00	1	•	5/8/2009 02:59	LN
Bromobenzene	0.382	U	ug/L	0.382	1.00	1		5/8/2009 02:59	LN
Bromochloromethane	0.637	. U	ug/L	0.637	1.00	1		5/8/2009 02:59	LN
3romodichloromethane	0.100	U	ug/L	0.100	1.00	1		5/8/2009 02:59	LN
Bromoform	0.486	U	ug/L	0.486	1.00	1		5/8/2009 02:59	LN
3romomethane	0.427	U	ug/L	0.427	1.00	1		5/8/2009 02:59	LN
n-Butylbenzene	0.564	υ	ug/L	0.564	1.00	1		5/8/2009 02:59	LN
Carbon disulfide	0.650	Ų	ug/L	0.650	10.0	1		5/8/2009 02:59	LN
Carbon tetrachloride	0.468	U	ug/L	0.468	1.00	1 .		5/8/2009 02:59	LN
Chlorobenzene	0.316	U	ug/L	0.316	1.00	1		5/8/2009 02:59	LN
Chloroethane :	1.00	U	ug/L	1.00	1.00	1		5/8/2009 02:59	LN
Chloroform	0.572	U	ug/L	0.572	1.00	1 🕻		5/8/2009 02:59	LN
Chloromethane	0.524	U	ug/L	0.524	1.00	1		5/8/2009 02:59	LN
Dibromochloromethane	0.378	U	ug/L	0.378	1.00	1		5/8/2009 02:59	LN
Dibromomethane	0.739	U	ug/L	0.739	1.00	1		5/8/2009 02:59	LN
Dichlorodifluoromethane	0.525	U	ug/L	0.525	1.00	1		5/8/2009 02:59	LN
cis-1,3-Dichloropropene	0.664	U	ug/L	0.664	1.00	1		5/8/2009 02:59	LN
trans-1,3-Dichloropropene	0.522	U	ug/L	0.522	1.00	1		5/8/2009 02:59	LN
Ethylbenzene	0.323	U	ug/L	0.323	1.00	1		5/8/2009 02:59	LN
lexachlorobutadiene	0.763	U	ug/L	0.763	1.00	1		5/8/2009 02:59	LN
sopropylbenzene (Cumene)	0.528	U	ug/L	0.528	1.00	1	4	5/8/2009 02:59	LN
Methyl-t-butyl ether	0.650	U	ug/L	0.650	1.00	1		5/8/2009 02:59	LN
Methylene chloride	0.580	U	ug/L	0.580	5.00	1	•	5/8/2009 02:59	LN
Naphthalene	0.417	Ü	ug/L	0.417	. 1.00	1		5/8/2009 02:59	LN
Styrene	0.458	U	ug/L	0.458	1.00	1		5/8/2009 02:59	LN
Tetrachloroethene	0.312	U	ug/L	0.312	. 1.00	1	<i>></i>	5/8/2009 02:59	LN
Toluene	0.389	U	ug/L	0.389	1.00	1		5/8/2009 02:59	LN
Trichloroethene	0.821	Ü	ug/L	0.821	1.00	1		5/8/2009 02:59	LN
Frichlorofluoromethane	1.00	Ū	ug/L	1.00	1.00	1		5/8/2009 02:59	LN
Vinyl acetate	0.570	Ū,	ug/L	0.570	10.0	1		5/8/2009 02:59	LN
/inyl chloride	0.506	Ü	ug/L	0.506	1.00	1		5/8/2009 02:59	LN
Kylene, m,p-	0.639	Ü	ug/L	0.639	2.00	1		5/8/2009 02:59	LN
Xylene, o-	0.341	Ü	ug/L	0.341	1.00	1		5/8/2009 02:59	LN
Xylenes (total)	0.980	ŭ	ug/L	0.980	3.00	1		5/8/2009 02:59	LN
cis-1,2-Dichloroethene	0.442	Ü	ug/L	0.442	1.00	1		5/8/2009 02:59	LN
n-Propylbenzene	0.624	Ü	ug/L	0.624	1.00	1		5/8/2009 02:59	LN
sec-Butylbenzene	0.521	Ü	ug/L	0.521	1.00	1		5/8/2009 02:59	LN
tert-Butylbenzene	0.607	U	ug/L	0.607	1.00	1		5/8/2009 02:59	LN

Report ID: 904913 - 4928807

Page 10 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID:

904913002

Date Received: 5/6/2009 10:15 Matrix:

Groundwater

Sample ID: PW-1/

Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
rans-1,2-Dichloroethene	0.410	U	ug/L .	0.410	1.00	1		5/8/2009 02:59	LN
I-Bromofluorobenzene (S)	97		%	64-130		1		5/8/2009 02:59	LN
Dibromofluoromethane (S)	113		%	69-134		1		5/8/2009 02:59	LN
Toluene d8 (S)	96		%	63-127		1		5/8/2009 02:59	LN
Pesticides									
Preparation Method: 3510C	Analytical N	ethod:	SW-846	8081A					
I,4'-DDD	0.000993	U	ug/L	0.000993	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
1,4'-DDE	0.00148	U	ug/L	0.00148	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
I,4'-DDT	0.00120	U	ug/L	0.00120	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Aldrin	0.00139	U	ug/L	0.00139	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Dieldrin	0.00344	ı	ug/L	0.00106	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endosulfan I	0.00316	ŀ	ug/L	0.00103	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endosulfan II	0.00103	U	ug/L	0.00103	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endosulfan sulfate	0.00279	U	ug/L	0.00279	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endrin	0.00717	U	ug/L	0.00717	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endrin aldehyde	0.000695	U	ug/L	0.000695	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
Endrin ketone	0.000969	U	ug/L	0.000969	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
leptachlor	0.00152	U	ug/L	0.00152	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
leptachlor epoxide	0.00121	Ū	ug/L	0.00121	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Methoxychlor	0.000900	Ū	ug/L	0.000900	0.100	1	5/7/2009 13:00	5/8/2009 23:54	CC
oxaphene	0.047	Ū	ug/L	0.047	3.00	1	5/7/2009 13:00	5/8/2009 23:54	CC
ilpha-BHC	0.000924	Ū	ug/L	0.000924	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
Ipha-Chlordane	0.00289	Ĭ	ug/L	0.00118	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
eta-BHC	0.00123	Ü	ug/L	0.00123	0.020	1	5/7/2009 13:00	5/8/2009 23:54	CC
lelta-BHC	0.000904	Ū	ug/L	0.000904	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
jamma-BHC (Lindane)	0.000563	Ū	ug/L	0.000563	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
amma-Chlordane	0.00130	Ū	ug/L	0.00130	0.050	1	5/7/2009 13:00	5/8/2009 23:54	CC
etrachloro-m-xylene (S)	92	•	%	32-137	0.000	1	5/7/2009 13:00	5/8/2009 23:54	CC
Decachlorobiphenyl (S)	90		%	25-165		1	5/7/2009 13:00	5/8/2009 23:54	CC
PAH						•		5,5,5,5,5	
reparation Method: 3510C	Analytical M	lethod:	SW-846	8270C low PAH				•••	ii Ar yaa la
-Methylnaphthalene	0.026	U	ug/L	0.026	1.0	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
2-Methylnaphthalene	0.030	U	ug/L	0.030	1.0	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
cenaphthene	0.027	U	ug/L	0.027	1.0	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
cenaphthylene	0.026	U	ug/L	0.026	1.0	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Anthracene	0.0056	Ū	ug/L	0.0056	1.0	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Benzo(a)anthracene	0.011	Ū	ug/L	0.011	0.10	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Benzo(a)pyrene	0.013	Ū	ug/L	0.013	0.10	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Benzo(b)fluoranthene	0.015	Ü	ug/L	0.015	0.10	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Benzo(g,h,i)perylene	0.014	Ü	ug/L	0.014	0.10	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Benzo(k)fluoranthene	0.014	Ü	ug/L	0.014	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Chrysene	0.012	U	ug/L	0.012	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
Dibenz(a,h)anthracene	0.0056	U	ug/L ug/L	0.0056	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
niveriz (a, i i)ai iu ii avei ie			•						
luoranthene	0.0078	U	ug/L	0.0078	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB

Report ID: 904913 - 4928807 Page 11 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS

Lab ID: Sample ID: 904913002

PW-1/

Date Received: 5/6/2009 10:15 Matrix:

Groundwater

Date Collected: 5/5/2009 9:35:00 AM

Parameters	Results	Qual	Units	MDL	PQL	DF	Prepared	Analyzed	Ву
Indeno(1,2,3-cd)pyrene	0.011	υ	ug/L	0.011	0.10	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Naphthalene	0.034	U	ug/L	0.034	1.0	1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Phenanthrene	0.014	U	ug/L	0.014	1.0	1	5/7/2009 22:45	5/8/2009 18:27	TB
Pyrene	0.0084	U	ug/L	0.0084	0.10	1	5/7/2009 22:45	5/8/2009 18:27	TB
2-Fluorobiphenyl (S)	57.2		%	10-116		1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Nitrobenzene-d5 (S)	61.5		%	10-112		1	5/7/2009 22:45	5/8/2009 18:27	TB
Terphenyl-d14 (S)	69.9		%	20-128		1	5/7/2009 22:45	5/8/2009 18:27	ТВ
Volatiles - Subcontract									
Analytical Method: RSK 175	1 m x 1 m							$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4
Dissolved Ethane	0.024	U	ug/L	0.024	1.00	1	a. F	5/18/2009 15:47	SU
Dissolved Ethene	0.030	Ū	ug/L	0.030	1.00	1		5/18/2009 15:47	· SU
Methane	11.4	7	ug/L	0.116	5.00	1		5/18/2009 15:47	SU

> Phone: (561) 447-7373 Fax: (561) 447-7374

ANALYTICAL RESULTS QUALIFIERS

PARAMETER QUALIFIERS

Q	Holding time exceeded.
V	Present in blank.
[1]	E83033
[2]	E86772
[3]	E83079
[4]	E87225
[5]	BOD sample result estimated due to the oxygen depletion being outside acceptable range.
. [6]	MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
[7]	E87854

> Phone: (561) 447-7373 Fax: (561) 447-7374

CASE NARRATIVE

Sample Analysis Comments

Analyte/Arsenite (Trivalent As)

[4] E87225

Analyte/Asbestos

[2] E86772

Analyte/BOD

BOD sample result estimated due to the oxygen depletion being outside acceptable range.

Analyte/Bromate

[3] E83079

Analyte/Bromide

MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.

Analyte/Fluoride

MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.

Analyte/Methane

[7] E87854

Analyte/Nitrite

MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.

Analyte/Radium 226

[1] E83033

Analyte/Radium 228

[1] E83033

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/2178

Analysis Method:

EPA 365.1

QC Batch Method:

EPA 365.1

Associated Lab Samples:

904824001

904824007

mg/L-P

904824002 904824008 904824003 904824009 904824004 904824010 904824005 904824011

904824006 904913002

METHOD BLANK: 27217

Parameter Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Ortho Phosphate - P

0.005U

0.005

LABORATORY CONTROL SAMPLE & LCSD: 27218

27219

Parameter Units Spike Conc.

0.5

LCS Result

LCSD LCS LCSD Result % Rec % Rec % Rec Limit Max

20

Wet Chemistry

Ortho Phosphate - P mg/L-P

0.483

0.481

97 96

90-110

.RPD

RPD Qualifiers

27223

Original: 904824011

Parameter Wet Chemistry Units Result

Spike Conc.

MS Result

MSD Result

MS % Rec

MSD % Rec % Rec

Max Limit RPD RPD Qualifiers

Ortho Phosphate - P mg/L-P

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27222

0.079

Original

0.5

0.546

0.547

93

94 90-110

20

Report ID: 904913 - 4928807

Page 15 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1297

Analysis Method:

ĖPA 300.0

QC Batch Method:

EPA 300.0

904787001 904787002 904787003

904787004

904787005

Associated Lab Samples:

904760003 904789001 904890001

904791003 904890002 904879001 904913002 904879002

904883003

904884002

METHOD BLANK: 27280

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Wet Chemistry			,	
Bromide	mg/L	0.052U	0.052	
Nitrite	mg/L	0.005U	0.005	
Nitrate	mg/L .	0.007U	0.007	
Fluoride	mg/L	0.030U	0.030	

LABORATORY CONTROL SAMPLE & LCSD: 27281

27282

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Vet Chemistry									
Bromide	mg/L	2.5	2.65	2.71	106	108	90-110	2	20
Vitrite	mg/L	2.5	2.63	2.68	105	107	90-110	2	20
Nitrate	mg/L	. 2.5	2.61	2.65	104	106	90-110	2	20
Fluoride	mg/L	2.5	2.72	2.75	109	110	90-110	0.91	20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27283

27284

Original: 904913002

ć

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Wet Chemistry									•	
Bromide	mg/L	110	25	106	108	-18	-10	90-110	-55.	20
Nitrite	mg/L	0	25	46.3	46.4	185	186	90-110	0.54	20
Nitrate	mg/L	0	25	24.2	24.7	97	99	90-110	2	20
Fluoride	mg/L	0.584	25	22.7	23.2	88.6	90.4	90-110	2	20

Report ID: 904913 - 4928807

Page 16 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

SOLI/1753

Analysis Method:

SM 2540 C

QC Batch Method:

SM 2540 C

Associated Lab Samples: 904895004

904918003

904918009

904913002 904918004

904914002 904918005

904914004 904918006

904918001 904918007 904918002 904918008

METHOD BLANK: 27285

Blank

Reporting

Limit Qualifiers

Wet Chemistry

Parameter

Total Dissolved Solids(TDS)

mg/L

Units

7.00U

Result

· 7.00

SAMPLE DUPLICATE: 27286

Original: 904895004

Parameter

Original Units

DUP

Max

Result

Result

359

RPD

RPD Qualifiers

Wet Chemistry

Total Dissolved Solids(TDS) mg/L 406

Original

124

12.3

9.3

20

SAMPLE DUPLICATE: 27287

Original: 904914004

Parameter Wet Chemistry Total Dissolved Solids(TDS) Units Result

mg/L

DUP Result

113

RPD

Max **RPD Qualifiers**

20

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MISC/1205

Analysis Method:

SM 2130 B

QC Batch Method: SM 2130 B Associated Lab Samples: 9049

904913002

METHOD BLANK: 27288

Blank

Reporting

Parameter

Units

Result

Limit Qualifiers

Wet Chemistry

Turbidity

NTU

0.05U

0.05

SAMPLE DUPLICATE: 27289

Original: 904905002

Parameter	Units	Original Result	DUP Result	RPD	Max RPD Qualifiers	
Wet Chemistry Turbidity	NTU	0.571	0.591	3	20	

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1668

Analysis Method:

SM 5540 C

QC Batch Method:

SM 5540 C

904913002 904917001

904917002

904917003

904917004

Associated Lab Samples:
METHOD BLANK: 27290

Blank Parameter Units Result

Reporting

Limit Qualifiers

Wet Chemistry

Surfactants

mg/L-LAS 0.040U

0.040

LABORATORY CONTROL SAMPLE & LCSD: 27291

27292

Parameter

Units

LCS Result LCSD LCS LCSD Result % Rec % Rec

SD G Rec

% Rec Limit

RPD

Max RPD Qualifiers

Wet Chemistry

Surfactants mg/L-LAS

LAS 1 0.9

Spike

Conc.

0.948

0.948

95

95 80-120

0.

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27293

27294

Original: 904917002

Original Spike MS MSD MS MSD % Rec Max Units Result Conc. Limit RPD RPD Qualifiers Parameter Result Result % Rec % Rec Wet Chemistry mg/L-LAS Surfactants 0 0.902 80-120 0.909 90 91 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2116

Analysis Method:

SW-846 8270C low PAH

QC Batch Method:

3510C

Associated Lab Samples:

904906004 904938004

904906005 904938008 904938026 904906006 904938011

904913002 904938014

904921001 904938015 904938002 904938018

904938023 904948002 904938030

904938031

904947004

904948001

METHOD BLANK: 27305

Parameter	Units	Blank Result	Reporting Limit Qualifiers	•
PAH	<u>. </u>			
Acenaphthene	ug/L	0.027U	0.027	
Acenaphthylene	ug/L	0.026U	0.026	
Anthracene	ug/L	0.0056U	0.0056	,
Benzo(a)anthracene	ug/L	0.011U	0.011	
Benzo(b)fluoranthene	ug/L	0.015U	0.015	
Benzo(k)fluoranthene	ug/L	0.012U	0.012	
Benzo(g,h,i)perylene	ug/L	0.014U	0.014	
Benzo(a)pyrene	ug/L	0.013U	0.013	
Chrysene	ug/L	0.017U	0.017	
Dibenz(a,h)anthracene	ug/L	0.0056U	0.0056	
Fluoranthene	ug/L	0.0078U	0.0078	
Fluorene	ug/L	0.011U	0.011	
Indeno(1,2,3-cd)pyrene	ug/L	, 0.011U	0.011	•
1-Methylnaphthalene	ug/L	0.026U	0.026	
2-Methylnaphthalene	ug/L	0.030U	0.030	
Naphthalene	ug/L	0.034U	0.034	
Phenanthrene	ug/L	0.014U	0.014	`
Pyrene	ug/L	0.0084U	0.0084	
2-Fluorobiphenyl (S)	%	58	10-116	
Nitrobenzene-d5 (S)	%	61.1	10-112	
Terphenyl-d14 (S)	%	71.4	20-128	·

LARCRATOR	ORTION VS	SAMPLE:	27306

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
PAH						
Acenaphthene	ug/L	5	2.78	56	23-100	
Acenaphthylene	ug/L	5	2.91	58	21-109	
Anthracene	ug/L	5	2.96	59	39-111	
Benzo(a)anthracene	ug/L	5	3.42	68	28-115	
Benzo(b)fluoranthene	ug/L	5	2.91	58	15-116	,
Benzo(k)fluoranthene	ug/L	5	3.95	79	33-122	
Benzo(g,h,i)perylene	ug/L	5	3.22	64	29-120	
Benzo(a)pyrene	ug/L	5	3.42	68	27-119	
Chrysene	ug/L	5	3.39	68	11-115	
Dibenz(a,h)anthracene	ug/L	5	3.31	66	11-115	

Report ID: 904913 - 4928807

Page 20 of 63

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27306

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	· .	
Fluoranthene	ug/L	5	3.25	65	42-112		
Fluorene	ug/L	5	2.82	56	25-109		
Indeno(1,2,3-cd)pyrene	ug/L	5	3.34	. 67	16-120		
1-Methylnaphthalene	ug/L	, 5	2.43	49	10-104		
2-Methylnaphthalene	ug/L	5	3.05	61	10-115		
Naphthalene	ug/L	5	2.56	51	12-102		
Phenanthrene	ug/L	5	2.96	59	38-108		
Pyrene	ug/L	5	3.46	69	36-123		
2-Fluorobiphenyl (S)	%			57.4	10-116		
Nitrobenzene-d5 (S)	%			59.7	10-112		
Terphenyl-d14 (S)	%			67	20-128	•	

MATRIX SPIKE SAMPLE: 27307			Original: 9049	34001	•		
Parameter	Units	Original Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits Qualifiers	
PAH							
Acenaphthene	ug/L	0.019	5 ·	2.98	60	23-100	
Acenaphthylene	ug/L	0.0111	5	3.25	65	21-109	
Anthracene	ug/L	0.00376	5	3.50	70	39-111	
. Benzo(a)anthracene	ug/L	0	5	3.64	73	34-121	
Benzo(b)fluoranthene	ug/L	0.00393	5	3.08	62	27-119	
Benzo(k)fluoranthene	ug/L	0.00737	5	4.36	87	29-120	
Benzo(g,h,i)perylene	ug/L	0	- 5	3.48	70	15-116	
Benzo(a)pyrene	ug/L	0.00954	5	3.85	77	28-115	
Chrysene	ug/L	0	5	3.66	73	33-122	
Dibenz(a,h)anthracene	ug/L	0	5	3.64	73	11-115	
Fluoranthene	ug/L	0	5	3.68	74	42-112	
Fluorene	ug/L	0	5	3.19	64	25-109	
Indeno(1,2,3-cd)pyrene	ug/L	0	5	3.70	74	16-120	
1-Methylnaphthalene	ug/L	0	5	2.45	49	10-104	•
2-Methylnaphthalene	ug/L	0	5	3.15	63	10-115	
Naphthalene	ug/L	0	5	2.52	50	12-102	
Phenanthrene	ug/L	0.00736	5	3.36	67	38-108	
Pyrene	ug/L	0.00472	5	3.74	75	36-123	
2-Fluorobiphenyl (S)	%				55.6	10-116	
Nitrobenzene-d5 (S)	%				55.5	10-112	
Terphenyl-d14 (S)	%				65.3	20-128	

Report ID: 904913 - 4928807

Page 21 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2117

Analysis Method:

SW-846 8270C

QC Batch Method:

3510C

Associated Lab Samples: 904913002

904921001

ACT	$\Delta \Omega$	DI	A KILZ.	27300

Parameter	Units	Blank Result	Reporting Limit Qualifiers		
Semivolatiles		· · · · · · · · · · · · · · · · · · ·	···		
Benzidine	· ug/L	9.7U	9.7	·	
Benzoic acid	ug/L	2.0U	2.0		
Butyl benzyl phthalate	ug/L	0.36U	0.36	1	
Bis(2-Chloroethoxy)methane	ug/L	0.32U	0.32		
Bis(2-Chloroethyl)ether	ug/L	0.46U	0.46		
Bis(2-Chloroisopropyl)ether	ug/L	0.34U	0.34	•	
Bis(2-Ethylhexyl)phthalate	ug/L	0.20U	0.20		
4-Bromophenyl phenyl ether	ug/L	0.27U	0.27	•	
Carbazole	ug/L	0.28U	0.28		
4-Chlorophenyl phenyl ether	ug/L	0.45U	0.45		
Dibenzofuran	ug/L	0.29U	0.29		
1,2-Dichlorobenzene	ug/L	0.34U	0.34	•	
1,3-Dichlorobenzene	ug/L	0.35U	0.35		
3,3'-Dichlorobenzidine	ug/L	0.31U	0.31		
2,4-Dichlorophenol	ug/L	0.43U	0.43		-
Diethyl phthalate	ug/L	0.33U	0.33	•	
2,4-Dimethylphenol	ug/L	0.40Û	0.40		
Dimethyl phthalate	ug/L	0.31U	0.31		
Di-n-octyl phthalate	ug/L	0.28U	0.28		
2,4-Dinitrophenol	ug/L	1.4U	1.4		
2,6-Dinitrotoluene	ug/L	0.31U	0.31		
Hexachlorobenzene	ug/L	0.32U	0.32	•	
Hexachlorobutadiene	ug/L	0.45U	0.45	·	
Hexachlorocyclopentadiene	ug/L	0.70U	0.70		
Hexachloroethane	ug/L	0.36U	0.36		
Isophorone	ug/L	0.34U	0.34	:	
2-Methylphenol	ug/L	0.22U	0.22		
Nitrobenzene	ug/L	0.31U	0.31		
2-Nitrophenol	ug/L	0.24U	0.24		
n-Nitrosodimethylamine	ug/L	3.4U	3.4		
n-Nitrosodiphenylamine	ug/L	0.31U	0.31		
2,4,5-Trichlorophenol	ug/L	0.38U	0.38		
2,4,6-Trichlorophenol	ug/L	0.27U	0.27		
Benzyl alcohol	ug/L	0.22U	0.22		
Aniline	ug/L	0.28U	0.28		
Pyridine	ug/L	8.9U	8.9		
3-Nitroaniline	ug/L	0.28U	0.28		
4-Nitroaniline	ug/L	0.24U	0.24	•	
Di-n-butyl phthalate	ug/L	0.21U	0.21		
1,2-Diphenylhydrazine	ug/L	0.23U	0.23	•	
2-Nitroaniline	ug/L	0.20U	0.20		
2-Chloronaphthalene	ug/L	0.32U	0.32		
4-Chloroaniline	ug/L	0.29U	0.29		

Report ID: 904913 - 4928807

Page 22 of 63

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 27309

Parameter	Units	Blank Result	Reporting Limit Qualifiers	
m,p-Cresol	ug/L .	0.23U	0.23	
4,6-Dinitro-2-methylphenol	ug/L	0.35U	0.35	
Phenol	ug/L	0.40U	0.40	
2-Chlorophenol	ug/L	2.6U	2.6	
1,4-Dichlorobenzene	ug/L	0.28U	0.28	
n-Nitrosodi-n-propylamine	ug/L	0.33U	0.33	
1,2,4-Trichlorobenzene	ug/L	1.5U	1.5	
4-Chloro-3-methylphenol	ug/L	0.22U	0.22	
4-Nitrophenol	ug/L	0.79U	0.79	
2,4-Dinitrotoluene	ug/L.	0.31U	0.31	•
Pentachlorophenol	ug/L	0.70U	0.70	
Nitrobenzene-d5 (S)	%	75	7.7-130	
Phenol-d6 (S)	%	36.5	10-59	
2-Fluorobiphenyl (S)	%	69	19-126	
2-Fluorophenol (S)	%	48	28-62	
2,4,6-Tribromophenol (S)	%	81	48-132	
Terphenyl-d14 (S)	%	78	27-133	

LABORATORY CONTROL SAMPLE: 27310

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Semivolatiles						
Benzidine	ug/L	50	22.4	45	10-104	
Benzoic acid	ug/L	50	16.71	33		
Butyl benzyl phthalate	ug/L	50	39.5	79	10-152	
Bis(2- Chloroethoxy)methane	ug/L	50	36.8	. 74	33-184	
Bis(2-Chloroethyl)ether	ug/L	50	37.1	74	12-158	
Bis(2-Chloroisopropyl)ether	ug/L	50	37.0	74	36-166	
Bis(2-Ethylhexyl)phthalate	ug/L	50	36.0	72	10-158	
4-Bromophenyl phenyl ether	ug/L	50	40.2	80	53÷127	
Carbazole	ug/L	50	45.3	91	44-140	
4-Chlorophenyl phenyl ether	ug/L	50	38.9	78	25-158	·
Dibenzofuran	ug/L	50	40.7	81		
1,2-Dichlorobenzene	ug/L	50	39.0	78	32-129	
1,3-Dichlorobenzene	ug/L	50	35.5	71	10-172	
3,3'-Dichlorobenzidine	ug/L	50	42.7	85	10-262	
2,4-Dichlorophenol	ug/L	50	37.7	75	10-191	
Diethyl phthalate	ug/L	50	37.9	76	10-114	
2,4-Dimethylphenol	ug/L	50	38.2	76 .	32-119	
Dimethyl phthalate	ug/L	50	40.4	81 .	10-112	
Di-n-octyl phthalate	ug/L	50	33.4	67	10-146	
2,4-Dinitrophenol	ug/L	50	41.5	83	29-182	

Report ID: 904913 - 4928807

Page 23 of 63

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27310

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Parameter	Onks	Conc.	Result	% Rec	Limits Qualifiers	
2,6-Dinitrotoluene	ug/L	50	39.1	78	50-158	
Hexachlorobenzene	ug/L	50	39.2	78	10-152	
Hexachlorobutadiene	ug/L	50	34.5	69	24-116	
Hexachlorocyclopentadiene	ug/L	50	23.5	47	10-115	
Hexachloroethane	ug/L	50	35.7	71	40-113 `	
Isophorone	ug/L	- 50	41.6	83	21-196	
2-Methylphenol	ug/L	50	33.0	66	55-126	•
Nitrobenzene	ug/L	50	39.1	78	35-180	4
2-Nitrophenol	ug/L	50	38.2	76	29-182	
n-Nitrosodimethylamine	ug/L	50	28.9	58	28-64	
n-Nitrosodiphenylamine	ug/L	50	36.7	73	42-113	
2,4,5-Trichlorophenol	ug/L	50	37.6	75		
2,4,6-Trichlorophenol	ug/L	50	39.2	78	37-144	
Benzyl alcohol	ug/L	50	36.4	73		
Aniline	ug/L	50	30.0	60		
Pyridine	ug/L	50	20.1	40		
3-Nitroaniline	ug/L	50	50.1	100		
4-Nitroaniline	ug/L	50	50.1	100		
Di-n-butyl phthalate	ug/L	50	39.2	78	62-154	
1,2-Diphenylhydrazine	ug/L		36.4			·
2-Nitroaniline	ug/L	50	46.7 1	93		
2-Chloronaphthalene	ug/L	50	39.9	80	60-118	
4-Chloroaniline	ug/L	50	39.7	79		
m,p-Cresol	ug/L	•	30.3			
4,6-Dinitro-2-methylphenol	ug/L	50	. 42.2	84	10-181	
Phenol	ug/L	50	17.3	35		
2-Chlorophenol	ug/L	50	33.8	68	25-117	
1,4-Dichlorobenzene	ug/L	. 50	37.4	75	30-116	
n-Nitrosodi-n-propylamine	ug/L	50	38.0	76	43-136	
1,2,4-Trichlorobenzene	ug/Ľ	50	- 39.1	78	30-119	
4-Chloro-3-methylphenol	ug/L	50	37.9	76	30-128	
4-Nitrophenol	ug/L	50	23.0	46	10-73	
2,4-Dinitrotoluene	ug/L	50	43.3	87	54-133	
Pentachlorophenol	ug/L	50	49.4	99	29-142	
Nitrobenzene-d5 (S)	%			78	10-112	
Phenol-d6 (S)	%			39.3	10-59	
2-Fluorobiphenyl (S)	%			71	10-116	
2-Fluorophenol (S)	%			49	28-62	
2,4,6-Tribromophenol (S)	%			82	48-132	
Terphenyl-d14 (S)	%			76	20-128	

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27311

27312

Original: 904934002

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD	MS % Poo	MSD % Poo	% Rec	DDD	Max	Ouglifiors
		- Nesuit	CONC.	Kesuit	Result	% Rec	% Rec	Limit	KPU	KPU	Qualifiers
Semivolatiles	_	_								•	
Benzidine	ug/L	0	50	21.2	17.0	42	34	10-104	21	20	8
Benzoic acid	ug/L	0	50	16.71	16.41	33	33		0		
Butyl benzyl phthalate	ug/L	0	50	36.8	36.3	74	73	10-152	1	20	
Bis(2- Chloroethoxy)methane	ug/L	. 0	50	31.2	30.7	62	61	33-184	2	20	
Bis(2-Chloroethyl)ether	ug/L	0	50	32.8	32.4	66	65		2		
Bis(2-Chloroisopropyl)ether	ug/L	0	50	32.5	30.9	65	62	36-166	5	20	
Bis(2-Ethylhexyl)phthalate	ug/L	0	50	33.5	33.2	67	66	10-158	2	20	
4-Bromophenyl phenyl ether	ug/L	0	50	37.3	37.2	75	74	53-127	1	20	
Carbazole .	ug/L	0.0865	50	43.2	41.5	86	. 83	73-131	4	20	
4-Chlorophenyl phenyl ether	ug/L	0	50	35.5	36.2	71	72	25-158	1	20	
Dibenzofuran	ug/L	0.0821	50	37.9	37.3	76	75		1		
1,2-Dichlorobenzene	ug/L	Ō	50	33.8	33.2	68	66	32-129	3	20	
1,3-Dichlorobenzene	ug/L	0	50	31.1	29.6	62	59	10-172	5	20	
3,3'-Dichlorobenzidine	ug/L	- 0	50	39.9	39.5	80	79	10-262	1	20	
2,4-Dichlorophenol	ug/L	0	50	31.8	33.8	64	68	39-135	6	20	
Diethyl phthalate	ug/L	0	50	36.9	34.4	74	69	10-114	7	20	
2,4-Dimethylphenol	ug/L	0	50	31.8	32.7	64	65	32-119	2	20	
Dimethyl phthalate	ug/L	0	50	38.6	37.5	77	75	10-112	3	20	
Di-n-octyl phthalate	ug/L	0.0735	50	31.9	30.5	64	61	10-146	5	20	
2,4-Dinitrophenol	ug/L	0	50	41.3	38.3	83	77	10-191	8	20	
2,6-Dinitrotoluene	ug/L	0	50	36.5	36.5	73	73	39-139	0	20	
Hexachlorobenzene	ug/L	0	50	35.3	33.9	71	68	10-152	4	20	
Hexachlorobutadiene	ug/L	0	50	30.1	29.2	60	58	24-116	3	20	•
Hexachlorocyclopentadiene	ug/L	0	- 50	20.6	19.6	41	39	10-115	5	20	
Hexachloroethane	ug/L	0	50	29.8	29.9	60	60	40-113	0	20	
Isophorone	ug/L	0	50	36.7	35.8	73	72	21-196	1	20	•
2-Methylphenol	ug/L	0	50	28.5	28.5	57	57	55-126	0	20	
Nitrobenzene	ug/L	0	50	33.0	34.0	66	68	35-180	3	20	
2-Nitrophenol	ug/L	0	50	32.7	32.8	65	66	29-182	2	20	
n-Nitrosodimethylamine	ug/L	0	50	25.5	24.7	51	49		4		
n-Nitrosodiphenylamine	ug/L	0	. 50	34.6	33.7	69	67	42-113	3	20	
2,4,5-Trichlorophenol	ug/L	0	50	36.3	35.0	73	70		4		_
2,4,6-Trichlorophenol	ug/L	0	50	35.8	36.3	72	73	37-144	1.	20	
Benzyl alcohol	ug/L	. 0	50	33.7	31.9	67	64		5		
Aniline	ug/L	0	50	27.9	24.9	56	50		11		
Pyridine	ug/L	0	50	17.5	13.0	35	26		30		
3-Nitroaniline	ug/L	0	50	48.11	46.61	96	93		3		
4-Nitroaniline	ug/L	0	50	48.11	46.61	96	93		3		
Di-n-butyl phthalate	ug/L	0.0895	50	37.3	37.2	75	74	57-126	1	20	
1,2-Diphenylhydrazine	ug/L			32.5	32.3						
2-Nitroaniline	ug/L	0	50	42.71	42.01	85	84		1		
2-Chloronaphthalene	ug/L	0	50	34.6	35.2	69	70	60-118	1	20	
4-Chloroaniline	ug/L	0	50	36.3	33.4	73	67	•	9		
m,p-Cresol	ug/L			26.7	26.6						

Report ID: 904913 - 4928807

Page 25 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27311

27312

Original: 904934002

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
4,6-Dinitro-2-methylphenol	ug/L	0	50	40.0	38.6	. 80	77	10-181	4	20
Phenol	ug/L	0	50	15.3	15.3	31	31		0	
2-Chlorophenol	ug/L	0	50	30.0	28.9	60	58	23-134	3	20
1,4-Dichlorobenzene	ug/L	0	50	31.4	31.3	63	63	20-124	0	20
n-Nitrosodi-n-propylamine	ug/L	0	50	34.2	34.0	68	68	10-230	0	20
1,2,4-Trichlorobenzene	ug/L	0	50	31.8	32.3	64	65	44-142	2	20
4-Chloro-3-methylphenol	ug/L	0	50	35.0	34.7	70	69	22-147	1	20
4-Nitrophenol	ug/L	0	50	22.1	21.2	44	. 42	10-132	5	20
2,4-Dinitrotoluene	ug/L	0	50	39.8	39.1	80	78	54-133	3	20
Pentachlorophenol	ug/L	0	50	46.1	46.4	92	93	14-176	1	20
Nitrobenzene-d5 (S)	%					70	68	10-112	3	
Phenol-d6 (S)	%					36.4	36	10-59	1.1	
2-Fluorobiphenyl (S)	.%					61	62	10-116	2	
2-Fluorophenol (S)	%					45	45	28-62	0	
2,4,6-Tribromophenol (S)	%					81	79	48-132	3	
Terphenyl-d14 (S)	%					72	71	20-128	1	

Report ID: 904913 - 4928807

Page 26 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

904941003

QC Batch:

EXTO/2118

Analysis Method:

SW-846 8081A

QC Batch Method:

3510C

904913002

904941002

Associated Lab Samples:
METHOD BLANK: 27313

WETTOD BEARING 27.515				
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	S .
Pesticides				
alpha-BHC	ug/L	0.000924U	0.000924	
beta-BHC	ug/L	0.00123U	0.00123	
delta-BHC	ug/L	0.000904U	0.000904	
Heptachlor epoxide	ug/L	- 0.00121U	0.00121	
Endosulfan I	ug/L	0.00103U	0.00103	
4,4'-DDE	ug/L	0.00148U	0.00148	
Endosulfan II	ug/L.	0.00103U	0.00103	
4,4'-DDD	ug/L	0.000993U	0.000993	
Endosulfan sulfate	ug/L	0.00279U	0.00279	
Methoxychlor	ug/L	0.000900U	0.000900	
Endrin ketone	ug/L	0.000969U	0.000969	
Endrin aldehyde	ug/L	0.000695U	0.000695	
alpha-Chlordane	ug/L	0.00118Ú	0.00118	
gamma-Chlordane	ug/L	0.00130U	0.00130	
Toxaphene	ug/L	0.047U	0.047	
gamma-BHC (Lindane)	ug/L	0.000563U	0.000563	
Heptachlor	ug/L	0.00152U	0.00152	
Aldrin	ug/L	0.00139U	0.00139	
Dieldrin	ug/L	0.00106U	0.00106	
Endrin	ug/L	0.00717U	0.00717	
4,4'-DDT	ug/L	0.00120U	0.00120	
Tetrachloro-m-xylene (S)	%	62	32-137	•
Decachlorobiphenyl (S)	%	79	25-165	

LABORATORY CONTROL SAMPLE: 27314

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers
Pesticides				• •	
alpha-BHC	ug/L	0.1	0.086	86	•
beta-BHC	ug/L	0.1	0.109	109	,
delta-BHC	ug/L	0.1	0.072	72	
Heptachlor epoxide	· ug/L	0.1	0.093	93	
Endosulfan I	ug/L	0.1	0.0941	94	
4,4'-DDE	ug/L	0.1	0.115	115	
Endosulfan II	ug/L	0.1	0.0981	98	
4,4'-DDD	ug/L	0.1	0.151	151	
Endosulfan sulfate	ug/L	0.1	0.120	120	
Methoxychlor	ug/L	0.1	0.185	185	
Endrin ketone	ug/L	0.1	0.130	130	

Report ID: 904913 - 4928807

Page 27 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27314

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Endrin aldehyde	ug/L	0.1	0.106	106		
alpha-Chlordane	ug/L	0.1	0.097	97		
gamma-Chlordane	ug/L	0.1	0.096	96		
Toxaphene	ug/L		0.047U			
gamma-BHC (Lindane)	ug/L	0.1	0.090	90	33-155	
Heptachlor	ug/L	0.1	0.095	95	47-148	
Aldrin	ug/L	0.1	0.087	87	43-149	
Dieldrin	ug/L	0.1	0.095	95	47-162	
Endrin	ug/L	0.1	0.101	101	41-189	
4,4'-DDT	ug/L	0.1	0.119	.119	14-228	
Tetrachloro-m-xylene (S)	%			88	32-137	
Decachlorobiphenyl (S)	%			101	25-165	

MATRIX SPIKE & MATRIX :	SPIKE DUPLICATE: 27315			2731	6	Origi	nal: 9049:	34003			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit F	RPD	Max RPD Qualifiers	
Pesticides		4								-	
alpha-BHC	ug/L	0	0.1	0.079	0.061.	79	61		26		
oeta-BHC	ug/L	0	0.1	0.107	0.080	107	80		29		
delta-BHC	ug/L	0	0.1	0.074	0.055	74	55		29		
Heptachlor epoxide	ug/L	0	0.1	0.089	0.068	89	68		27		
Endosulfan I	ug/L	0	0.1	0.0901	0.0701	90	70		25		
1,4'-DDE	ug/L	0	0.1	0.118	0.0921	118	92		25		
Endosulfan II	ug/L	0	0.1	0.0991	0.0781	. 99	78		24	,	
1,4'-DDD	ug/L	0	0.1	0.161	0,127	161	127		24		
Endosulfan sulfate	ug/L.	0	0.1	0.125	0.0951	125	95		27		
Methoxychlor	ug/L	0	0.1	0.194	0.146	194	146		28		
Endrin ketone	ug/L	0	0.1	0.133	0.102	133	102		26		
Endrin aldehyde	ug/L	0	0.1	0.0881	0.0591	88	59		39		
alpha-Chlordane	ug/L	0	0.1	0.092	0.071	92	71		26		
gamma-Chlordane	ug/L	0	0.1	0.087	0.068	87	68		25		
Toxaphene	ug/L			0.047U	0.047U						
gamma-BHC (Lindane)	ug/L	0	0.1	0.084	0.063	84	63	33-155	29	20 8	
Heptachlor	ug/L	0	0.1	0.088	0.066	88	66	47-148	29	20 8	
Aldrin	ug/L	0	0.1	0.080	0.062	80	62	43-149	25	20 8	
Dieldrin	ug/L	0	0.1	0.092	0.073	92	73	47-162	23	20 8	
Endrin	ug/L	0	0.1	0.100	0.0791	100	79	41-189	23	20 8	
4,4'-DDT	ug/L	0	0.1	0.120	0.0901	· 120	90	14-228	29	20 8	
Tetrachloro-m-xylene (S)	%					78	61	32-137	24		
Decachlorobiphenyl (S)	%					97	79	25-165	20		

Report ID: 904913 - 4928807

Page 28 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2119

Analysis Method:

SW-846 8082

QC Batch Method:

3510C

Associated Lab Samples:

904913002

R	Γ	A NIL.	27317

Parameter	Units	Blank Result	Reporting Limit Qualifiers				
PCBs				<u>. </u>			
PCB 1221	ug/L	0.014U	0.014				
PCB 1232	ug/L	0.190U	0.190				
PCB 1242	ug/L	0.010U	0.010				
PCB 1248	ug/L	0.00850U	0.00850				
PCB 1254	ug/L	0.014U	0.014			~	
PCB 1016	ug/L	0.012U	0.012				
PCB 1260	ug/L	0.015U	0.015		•	•	
Decachlorobiphenyl (S)	%	113	45-162				
Tetrachloro-m-xylene (S)	%	95	50-125		•		

LABORATORY CONTROL SAMPLE: 27318

•		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers	
PCBs						
PCB 1221	ug/L		0.014U			
PCB 1232	ug/L		0.190U			,
PCB 1242	ug/L		0.010U			
PCB 1248	ug/L		0.00850U			
PCB 1254	ug/L		0.014U			
PCB 1016	ug/L	1	0.957	96	12-176	
PCB 1260	ug/L	1	0.802	80 ·	10-180	
Decachlorobiphenyl (S)	%			91	· 45-162	
Tetrachloro-m-xylene (S)	%			71	50-125	

MATRIY SPIKE &	MATRIX SPIKE DUPLICATE:	27310

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27319					20	Origi	nal: 9049				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
PCBs	2										
PCB 1221	ug/L		•	0.014U	0.014U						
PCB 1232	ug/L			0.190U	0.190U						
PCB 1242	ug/L			0.010U	0.010U						
PCB 1248	ug/L			0.00850U	0.00850U						
PCB 1254	ug/L			0.014U	0.014U						
PCB 1016	ug/L	0	1	1.04	0.976	104	98	12-176	6	20	
PCB 1260	ug/L	0	1	0.943	0.890	94	89	10-181	5	20	

Report ID: 904913 - 4928807

Page 29 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27319

27320

Original: 904934004

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit F	Max RPD RPD	Qualifiers	
Decachlorobiphenyl (S) Tetrachloro-m-xylene (S)	%					110 75	101 76	45-162 50-125	9 1		

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2120

Analysis Method:

SW-846 8141A

QC Batch Method:

3510C

Associated Lab Samples:

904913002

METH	4OD	RI:	$\Delta NK \cdot$	27321

		Blank	Reporting				
Parameter	Units	Result	Limit Qualifiers				
Organophosphorus Pesticide	es						
Carbophenothion	ug/L	0.063U	0.063				
Chlorpyrifos	ug/L	0.121U	0.121				
Chlorpyrifos-methyl	ug/L	0.137U	0.137				
Demeton-s	ug/L	0.062U	0.062				
Demeton-o	ug/L	0.041U	0.041				
Crotoxyphos	· ug/L	0.078∪	0.078			•	
Dichlorovos	ug/L	0.075U	0.075				
Fenithrothion	ug/L	0.198U	0.198				
Ronnel .	ug/L	0.054U	0.054				
Terbufos	ug/L	0.063U	0.063		,		
Fenthion	ug/L	0.074U	0.074	•			
Leptophos	ug/L	0.046U	0.046				
Tributyl Phosphate (S)	%	97	44-125				
Triphenyl Phosphate (S)	%	98	43-134				
, , , , , ,		Blank	Reporting	•			
Parameter	Units	Result	Limit Qualifiers				
Organophosphorus Pesticide			•		-		
Organophosphorus Festicius Phosphamidon	ug/L	0.311U	0.311				
Aspon	ug/L ug/L	0.185U	0.311				
Phorate	•						
	ug/L	0.177U	0.177				
Bolstar	ug/L	0.202U	0.202				
Dichlorfenthion	ug/L	0.190U	0.190				
Dioxathion	ug/L	0.110U	0.110				
Naled	ug/L	0.220U	0.220				
Dimethoate	ug/L	0.184U	0.184				
TEPP	ug/L	0.189U	0.189				
Thionazine	ug/L	0.179U	. 0.179				
EPN	ug/L	0.132U	0,132				
Merphos	ug/L	0.208U	0.208		•	,	
Mevinphos	ug/L	0.172U	0.172				
		Blank	Reporting				
Parameter	Units	Result	Limit Qualifiers				
Organophosphorus Pesticide	95						
Phosmet	ug/L	0.102U	0.102				
Disulfoton	ug/L	0.129U	0.129				
Azinphos-ethyl	ug/L	0.130U	0.129				
Coumaphos	ug/L ug/L	0.130U 0.079U	0.130				
Dicrotophos	-		·				
•	ug/L	0.175U	0.175	•			
Famphur Ethanian	ug/L	0.081U	0.081				
Ethoprop	ug/L	0.068U	0.068				
Ethion	ug/L	0.132U	0.132				

Report ID: 904913 - 4928807

Page 31 of 63

CERTIFICATE OF ANALYSIS

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 27321

Parameter	Units	Blank Result	Reporting Limit Qu	ualifiers			
Tokuthion (Prothiophos)	ug/L	0.106U	0.106				
Trichlorfon	ug/L	1.09U	1.09				
						٠	
LABORATORY CONTROL	SAMPLE: 2732	2					
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers		
Carbophenothion	ug/L	2	2.25	113	21-148		
Chlorpyrifos	ug/Ļ	2	2.10	105	46-133		
Chlorpyrifos-methyl	ug/L	. 2	2.04	102	44-122		
Demeton-s	ug/L		0.3771				
Crotoxyphos	ug/L	2	2.64	132	•		
Demeton-o	ug/L		1.82				
Dichlorovos	ug/L	2	2.08	104	12-128		
Fenithrothion	ug/L	2	2.09	104			
Ronnel	ug/L	2	2.03	102	35-126		
Terbufos	ug/L	2	1.96	98	48-124		
Fenthion	ug/L	2	2.10	105			
Leptophos	ug/L	2	2.19	109	11-146		
Tributyl Phosphate (S)	%			101	44-125		
Triphenyl Phosphate (S)	%			120	43-134		. ·
LABORATORY CONTROL	SAMPLE: 2732	2 .					
		Spike	LCS	LCS	% Rec		
Parameter	Units	Conc.	Result	% Rec	Limits Qualifiers		•
Organophosphorus Pesticides						•	
Phosphamidon	ug/L		0.311U				
Aspon	ug/L		0.185U				,
Phorate	ug/L		0.177U				
Bolstar	ug/L		0.202U		•		•
Dichlorfenthion	ug/L		0.190U		,		
Dioxathion	ug/L		0.110U				
Naled	ug/L		0.220U				
Dimethoate	ug/L		0.184U				
TEPP	ug/L		0.189U				
Thionazine	ug/L		0.179U		•		
EPN	ug/L		0.132U				
Merphos	ug/L		0.208U				
Mevinphos	ug/L		0.172U				

Report ID: 904913 - 4928807

Page 32 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE: 27322

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Organophosphorus Pesticides					,	
Phosmet	ug/L		0.102U			,*
Disulfoton	ug/L		0.129U			
Azinphos-ethyl	ug/L		0.130U			
Coumaphos	ug/L		0.079U			
Dicrotophos	ug/L		0.175U			
Famphur	ug/L		0.081U			
Ethoprop	ug/L		0.068U			
Ethion	ug/L		0.132U			
Tokuthion (Prothiophos)	ug/L		0.106U			
Trichlorfon	ug/L		1.09U		•	
)					

MATRIX SPIKE & MATRIX	.ICATE: 2732	23	2732	27324		nal: 9049:	•				
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qu	alifiers
Carbophenothion	ug/L	0	2	1.98	2.18	99	109	21-148	10	20	
Chlorpyrifos	ug/L	0	2	2.07	2.00	104	100	46-133	4	20	
Chlorpyrifos-methyl	ug/L	0	2	2.07	2.00	104	100	44-122	4	20	
Demeton-s	ug/L			0.3601	0.3811						
Crotoxyphos	ug/L	0	2	2.57	2.42	129	121		6		
Demeton-o	ug/L			1.80	1.81						
Dichlorovos	ug/L	0	2	2.09	2.16	104	108	12-128	4	20	
Fenithrothion	ug/L	0	2	2.06	2.17	103	109		6		
Ronnel	ug/L	0	2	2.01	2.00	101	100	35-126	1	20	
Terbufos	ug/Ļ	0	2	2.03	1.99	101	100	48-124	1	20	
Fenthion	ug/L	0	2	2.05	2.04	103	102		1		
Leptophos	ug/L	. 0	2	2.06	1.93	103	97	11-146	6	20	
Tributyl Phosphate (S)	%					109	102	44-125			
Triphenyl Phosphate (S)	%					112	106	43-134			

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	27323	27324	Original:	904934005
--	-------	-------	-----------	-----------

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Phosphamidon	ug/L		•	0.311U	0.311U	,					
Aspon	ug/L			0.185U	0.185U						
Phorate	ug/L	•		0.177U	0.177U						
Bolstar .	ug/L			0.202U	0.202U						
Dichlorfenthion	ug/L			0.190U	0.190U					′	ī.
Dioxathion	ug/L			0.110U	0.110U						
Naled	ug/L			0.220U	0.220U						
Dimethoate	ug/L			0.184U	0.184U					•	

Report ID: 904913 - 4928807

Page 33 of 63

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27323

27324

Original: 904934005

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers	
TEPP	ug/L			0.189U	0.189U							_
Thionazine	ug/L			0.179U	0.179U							
EPN	ug/L			0.132U	0.132U							
Merphos	ug/L			0.208U	0.208U							
Mevinphos	ug/L			0.172U	0.172U			•				
MATRIX SPIKE & MATRIX	SPIKE DUPL	.ICATE: 2732	23	2732	4	Origi	nal: 9049	34005				
	v	Original	Spike	MS	MSD	MS	MSD	% Rec		Max		
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec		RPD		Qualifiers	
Organophosphorus Pesticides												
Phosmet	ug/L			0.102U	0.102U							
Disulfoton	ug/L			0.129U	0.129U							
Azinphos-ethyl	ug/L			0.130U	0.130U					,		
Coumaphos	ug/L			0.079U	0.079U							
Dicrotophos	ug/L			0.175U	0.175U		t			•		
Famphur	ug/L			0.081U	0.081U							
Ethoprop	ug/L			0.068U	0.068U	•		•				
Ethion	ug/L			0.132U	0.132U							
				0.106U	0.106U							
Tokuthion (Prothiophos)	ug/L											

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2121

904913002

QC Batch Method: 3510C

0/2121 An

Analysis Method:

SW-846 8151A

Associated Lab Samples:	
METHOD BLANK: 27325	

- Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Dinoseb	ug/L	0.509U	0.509	
Parameter	Units	Blank Result	Reporting Limit Qualifiers	
Herbicides				
2,4-D	ug/L	0.406U	0.406	
2,4,5-T	ug/L	0.345U	0.345	
2,4,5-TP (Silvex)	ug/L	0.492U	0.492	
Dalapon	ug/L	0.509U	0.509	•
Dicamba	ug/L	0.369U	0.369	
Dichlorprop	ug/L	0.399U	0.399	
MCPA	ug/L	47.7U	47.7	
MCPP	ug/L	98.0U	98.0	
DCAA(S)	%	75	46-142	

LABORATORY CONTROL SAMPLE: 27326

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits Qualifiers	
Dinoseb	ug/L	. 5	2.90	58		

LABORATORY CONTROL SAMPLE: 27326

Parameter	Units	Spike Conc.	LCS Result	LCS % Réc	% Rec Limits Qualifiers	
Herbicides						
2,4-D	.ug/L	5	4.41	88	29-146	
2,4,5-T	ug/L	5	4.37	87	29-156	•
2,4,5-TP (Silvex)	ug/L	5	4.51	90	30-180	
MCPA	ug/L	500	397	79		
Dalapon	ug/L	5	3.54	71		
Dicamba	ug/L	5	3.82	76	35-135	
Dichlorprop	ug/L	5	4.07	81	36-148	
MCPP	ug/L		388			
DCAA (S)	%			84	46-142	

Report ID: 904913 - 4928807

Page 35 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27327

27328

Original: 904934006

		Original	Spike	MS	MSD	MS	MSD	% Rec		Max	c
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec		RPD	RPD	Qualifiers
Dinoseb	ug/L	0	5	2.98	2.98	60	60		0		
MATRIX SPIKE & MATE	RIX SPIKE DUPL	ICATE: 2732	27	2732	8	Origi	nal: 9049:	34006			
		Original	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Qualifiers
Herbicides											
2,4-D	ug/L	0	. 5	4.71	5.02	94	100	29-146	6	20	
2,4,5-T	ug/L	0	5	4.68	4.87	· 94	, 97	29-157	3	20	
2,4,5-TP (Silvex)	ug/L	0	5	4.79	5.01	96	100	30-180	4	20	
MCPA	ug/L	0	500	442	449	88	90		2		
Dalapon	ug/L	0	5	4.06	4.70	81	94		15	·	
Dicamba	ug/L	0	5	4.23	4.40	85	88	35-135	3	20	
Dichlorprop	ug/L	0	5	4.49	4.50	90	90	36-148	0	20	
MCPP	ug/L			455	449						
DCAA (S)	%	•				93	96	46-142	3		

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

EXTO/2122

Analysis Method:

EPA 1664A

QC Batch Method:

EPA 1664A

Associated Lab Samples:

904913002

904916001 904933001

904920001 904919001

904927001

904928001

METHOD BLANK: 27329

Parameter

Units

mg/L

904932001

Blank Result

1.4U

Reporting

Limit Qualifiers

Wet Chemistry

Oil and Grease

1.4

LABORATORY CONTROL SAMPLE: 27330

Parameter

Original

1.2

Spike

LCS Result

LCS % Rec % Rec

Limits Qualifiers

Wet Chemistry Oil and Grease Units

mg/L

Conc.

200

188

94

78-114

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27331

27332

MS

189

Original: 904934007

Parameter Units Wet Chemistry Oil and Grease mg/L

Spike Result Conc. Result

200

MSD Result

190

MS % Rec

95

MSD % Rec

95

% Rec

70-130

Max

Limit RPD RPD Qualifiers

0 20

Report ID: 904913 - 4928807

Page 37 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1920

Analysis Method:

SW-846 6010

QC Batch Method:

SW-846 3010A

Associated Lab Samples: 904776001 904833003

904845001

904776003 904840001 904776005

904776007

904833001

904833002

904913002

904840002

904840003

904841002

904841003

METHOD BLANK: 27350

	•	Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
Metals Analysis	-			
Antimony	mg/l	0.0038U	0.0038	
Arsenic	mg/l	0.0046U	0.0046	
Beryllium	mg/l	0.00067U	0.00067	
Cadmium	mg/l	0.00057U	0.00057	•
Chromium	mg/l	0.0011U	0.0011	•
Copper	mg/l	0.0096U	0.0096	
Lead	mg/l	0.0031U	0.0031	
Nickel	mg/l	0.0052U	0.0052	•
Selenium	mg/l	0.0054U	0.0054	
Silver	mg/l	0.0016U	0.0016	
Zinc	mg/i	0.0053U	0.0053	

LABORATORY CONTROL SAMPLE: .27351

Parameter	Units	Spike Conc.	. LCS Result	LCS % Rec	% Rec Limits Qualifiers	
raiametei	- Onits	COIIC.	Result	76 NGC		
Metals Analysis						
Antimony	· mg/l	1	0.998	100	80-120	
Arsenic	. mg/l	1	1.01	101	80-120	
Beryllium	mg/l	1	0.990	99	80-120	
Cadmium	mg/l	1	0.999	100	80-120	
Chromium	mg/l	1	0.984	98	80-120	
Copper	mg/l	1	0.997	100	80-120	
Lead	mg/i	1	0.994	99	80-120	
Nickel	mg/l	1	0.985	98	80-120	
Selenium	mg/l	1	0.979	98	80-120	
Silver	mg/l	0.5	0.507	101	80-120	
Zinc	mg/l	1	1.01	101	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	2/352	2/35

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27352				2735	3	Origi	nal: 90491			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit RPD	Max RPD Qualifiers	•
Metals Analysis Antimony	mg/l	0 ·	1	1.10	1.10	110	110	0		

Report ID: 904913 - 4928807

Page 38 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27352

27353

Original: 904913002

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Max Limit RPD RPD Qualifie	ers_
Arsenic	mg/l	0.00266	1	1.15	1.15	115	115	0	
Beryllium	mg/l	0	1	0.927	0.923	93	92	1	
Cadmium	mg/l	0	1	1.14	1.13	114	113	0.9	
Chromium	mg/l	0.00036	1	0.879	0.871	88	87	1	
Copper	mg/l	0	1	0.894	0.881	89	88	1	
Lead	mg/l	0.00334	1 .	0.862	0.860	86	86	0	
Nickel	mg/l	0	1	0.889	0.885	89	89	• 0	
Selenium	mg/l	0	1	1.12	1.12	112	112	0	
Silver	mg/l	0	0.5	0.670	0.670	134	134	0	
Zinc	mg/l	0.024	1	1.17	1.17	114	114	0	

Report ID: 904913 - 4928807

Page 39 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1922

Analysis Method:

EPA 200.8

QC Batch Method:

EPA 200.8

904765002

904782002

904825001

904913002

Associated Lab Samples:
METHOD BLANK: 27358

Blank

Reporting

Parameter

Units

904765001

Result

Limit Qualifiers

Metals Analysis

Metals An

mg/L

0.00027U

0.00027

LABORATORY CONTROL SAMPLE: 27359

Units

Spike Conc. LCS Result LCS % Rec % Rec

Limits Qualifiers

Metals Analysis

Parameter

Thallium

mg/L

0.2

0.206

103

85-115

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27360

27361

Original: 904825001

MSD Original Spike MS MS MSD % Rec Limit RPD RPD Qualifiers Units Parameter Result Conc. Result Result % Rec % Rec Metals Analysis Thallium mg/L 0.00064 0.2 0.220 0.226 110 113 70-130 3 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

TOC/1122

Analysis Method:

SM 5310B

QC Batch Method:

SM.5310B

Associated Lab Samples:

904816001

904902002

904902008

mg/L

904816002 904902003 904913002

904831001 904902004 904939001 904853001 904902005 904939002 904901001 904902006 904939003

904902001 904902007

METHOD BLANK: 27400

Parameter Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Total Organic Carbon

0.600

0.60

LABORATORY CONTROL SAMPLE: 27401

Parameter Units Spike Conc.

80

LCS Result

LCS % Rec

109

% Rec

Limits Qualifiers

Wet Chemistry

Total Organic Carbon

mg/L

87.5

90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27403

27404

Original: 904816001

MSD MS MSD MS % Rec Original Spike Max Parameter Result % Rec % Rec Limit RPD RPD Qualifiers Units Conc. Result Result Wet Chemistry **Total Organic Carbon** 107 105 104 106 90-110 0.9 10 mg/L 19 80

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1669

Analysis Method:

SW-846 9012A

QC Batch Method:

EPA 335.2

904825001 904917003 904892001 904917004 904892003 904920001 904913002 904939004 904917001

904917002

METHOD BLANK: 27410

Associated Lab Samples:

Parameter

Units

Rep

Reporting Limit Qualifiers

Wet Chemistry

Total Cyanide

mg/L

0.0032U

Blank

Result

0.0032

LABORATORY CONTROL SAMPLE & LCSD:

27411

27412

Parameter

Units

Spike Conc.

0.2

Original

Result

LCS Result LCSD LCS LCSD Result % Rec % Rec

101

% Rec Limit Max RPD RPD

2

Max RPD Qualifiers

Wet Chemistry Total Cyanide

mg/L

0.2013

0.1981

99

90-110

20

MATRIX SPIKE SAMPLE: 27413

Original: 904825001

Spike

Conc.

Parameter Units

Wet Chemistry
Total Cyanide mg/L

mg/L 0.0058

0.2042

MS

Result

MS % Rec

99

% Rec Limits Qualifiers

90-110

MATRIX SPIKE SAMPLE: 27415

Original: 904920001

0.2

Parameter
Wet Chemistry
Total Cyanide

mg/L

Units

0.0038

Original

Spike Conc.

0.2

MS Result

0.2075

MS % Rec

· 104

% Rec Limits Qualifiers

- Cilino Qui

90-110

Report ID: 904913 - 4928807

Page 42 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MSV/1665

Analysis Method:

SW-846 8260B

QC Batch Method:

SW-846 8260B

Associated Lab Samples: 904913001 904913002

904947001

904947002

904947003

904947004

METHOD BLANK: 27497		•		•
		Blank	Reporting	
Parameter	Units	Result	Limit Qualifiers	
Volatiles		•		
Acetone	ug/L	1.43U	1.43	
Acrolein	ug/L	2.47U	2.47	·
Acrylonitrile	ug/L	0.955U	0.955	
Bromochloromethane	ug/L	0.637U	0.637	
Bromodichloromethane	ug/L	0.100U	0.100	·
Bromoform	ug/L	0.486U	0.486	
Bromomethane	ug/L	0.427U	0.427	•
Carbon disulfide	ug/L	0.650U	0.650	•
Carbon tetrachloride	ug/L	0.468U	0.468	
Chloroethane	ug/L	1.00U	1.00	
Xylene, m,p-	ug/L	0.639U	0.639	•
Chloroform	ug/L	0.572U	0.572	
Chloromethane	ug/L	0.524U	0.524	·
Dibromochloromethane	ug/L	0.378U	0.378	
Dibromomethane	ug/L	0.739U	0.739	
Dichlorodifluoromethane	ug/L	0.525U	0.525	
1,1-Dichloroethane	ug/L	0.41 0 U	0.410	
1,2-Dichloroethane	ug/L	0.897U	0.897	
cis-1,2-Dichloroethene	ug/L	0.442U	0.442	
trans-1,2-Dichloroethene	ug/L	0.410U	0.410	
Methylene chloride	ug/L	0.580U	0.580	
1,2-Dichloropropane	ug/L	0.725U	0.725	
cis-1,3-Dichloropropene	ug/L	0.664U	0.664	
trans-1,3-Dichloropropene	ug/L	0.522U	0.522	
Ethylbenzene	ug/L	0.323U	0.323	
2-Hexanone	ug/L	1.8 3 U	1.83	
Isopropylbenzene (Cumene)	ug/L	0.528U	0.528	
2-Butanone	ug/L	4.28U	4.28	
4-Methyl-2-pentanone	ug/L	0.22 0 U	0.220	•
n-Propylbenzene	ug/L	0.624U	0.624	
Styrene	ug/L	0.45 8 U	0.458	
Tetrachloroethene	ug/L	0.312U	0.312	· ·
1,1,1,2-Tetrachloroethane	ug/L	0.12 0 U	0.120	
1,1,2,2-Tetrachloroethane	ug/L	0.572U	0.572	
1,2,4-Trichlorobenzene	ug/L	0.538U	0.538	
1,1,1-Trichloroethane	ug/L	0.682U	0.682	
1,1,2-Trichloroethane	ug/L	0.841U	0.841	
Trichlorofluoromethane	ug/L	1.00U	1.00	
1,2,3-Trichloropropane	ug/L	0.160U	0.160	
1,2,4-Trimethylbenzene	ug/L	0.508U	0.508	
1,3,5-Trimethylbenzene	ug/L	0.477U	0.477	
Vinyl chloride	ug/L	0.506Ü	0.506	
Xylene, o-	ug/L	0.341U	0.341	
	-			

Report ID: 904913 - 4928807

Page 43 of 63

CERTIFICATE OF ANALYSIS

Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

METHOD BLANK: 27497

Parameter	Units	Bla Res		eporting Limit C	Qualifiers	3	_		
1,2-Dibromo-3-chloropropane	ug/L	0.933	BU	0.933	_				
1,2-Dibromoethane	ug/L	0.34	5U	0.345					
Vinyl acetate	ug/L	0.570)U ·	0.570					•
Methyl-t-butyl ether	ug/L	0.650	U	0.650					
4-Isopropyltoluene	ug/L	0.380)U	0.380					
2,2-Dichloropropane	ug/L	0.70)U	0.700					
1,1-Dichloropropene	ug/L	0.632	2U .	0.632		•			
2-Chloroethylvinyl ether	ug/L	0.470	DU	0.470					
1,3-Dichloropropane	ug/L	0.34	5U	0.345		•			
Bromobenzene	'ug/L	0.38	2U	0.382					*
2-Chlorotoluene	ug/L	0.55	DU .	0.550					N
4-Chlorotoluene	ug/L	0.57	OU	0.570					
tert-Butylbenzene	ug/L	0.60	7U	0.607					·
sec-Butylbenzene	ug/L	0.52		0.521					•
1,3-Dichlorobenzene	ug/L	0.55		0.558					
1,4-Dichlorobenzene	ug/L	0.53		0.537					
n-Butylbenzene	ug/L	0.56		0.564					
1.2-Dichlorobenzene	ug/L	0.58		0.584					
Hexachlorobutadiene	ug/L	0.76		0.763					
Naphthalene	ug/L	0.41		0.417					
1,2,3-Trichlorobenzene	ug/L	0.68		0.686					
1,1-Dichloroethene	ug/L	0.63		0.638					
Benzene	ug/L	0.62		0.621					
Trichloroethene	ug/L	0.82		0.821					
Toluene	ug/L	0.38		0.389					,
Chlorobenzene	ug/L	0.31	••	0.316	,				•
4-Bromofluorobenzene (S)	%		06	64-130	•				
Dibromofluoromethane (S)	%		13	69-134					
Toluene d8 (S)	%		97	63-127					•
Xylenes (total)	ug/L	0.98		0.980					•
Aylones (total)	ug/=	0.00		0.000					
LABORATORY CONTROL SA	MPLE & LCSD:	27498		27499					
Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers
Volatiles									
Acetone	ug/L	50	54.7	53.8	109	108		0.9	•
Acrolein	ug/L	100	54.6	55.9	55	56		2	
Acrylonitrile	ug/L	100	98.2	94.8	98	95		3	<i>.</i>
Bromochloromethane	ug/L	20	18.9	17.4		87		9	•
Bromodichloromethane	ug/L	20	20.0	19.8				1	
Bromoform	ug/L	20	20.5	20.3				Ö	
Bromomethane	ug/L ug/L	20	15.4	18.4		92		18	
Carbon disulfide		20	17.8	17.1				5	
	ug/L							2	
Carbon tetrachloride	ug/L	20	24.3	23.9					
Chloroethane	ug/L	20	24.1	24.0	121	120		8.0	

Report ID: 904913 - 4928807

Page 44 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE & LCSD: 27498

27499

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max . RPD Qualifiers
Xylene, m,p-	ug/L	40	42.7	43.3	107	108	-	0.9	
Chloroform	ug/L	20	20.8	19.9	104	100		4	
Chloromethane	ug/L	20	17.2	16.3	86	82		5	
Dibromochloromethane	ug/L	20	22.0	22.1	110	111		0.9	
Dibromomethane	ug/L	20	20.1	19.7	100	99		1	
Dichlorodifluoromethane	ug/L	20	22.3	21.3	111	107		4	
1,1-Dichloroethane	ug/L	20	20.2	19.9	101	100		1	
1,2-Dichloroethane	ug/L	20	23.0	22.5	115	113		. 2	
cis-1,2-Dichloroethene	ug/L	20	19.6	18.9	98	94		4	
trans-1,2-Dichloroethene	ug/L	20	20.8	19.8	104	99		5	
Methylene chloride	ug/L	20	19.1	18.9	96	94		2	
1,2-Dichloropropane	ug/L	20	18.8	18.5	94	93		1	•
cis-1,3-Dichloropropene	ug/L	· 20	20.0	19.6	100	98		2	
trans-1,3-Dichloropropene	ug/L	20	20.0	19.7	100	98		2	
Ethylbenzene	ug/L	20	21.0	21.2	105	106		0.9	
2-Hexanone	ug/L,	50	60.5	62.0	121	. 124		2	
Isopropylbenzene (Cumene)	ug/L	20	18.0	18.1	90	91		1	
2-Butanone	ug/L	50	55.8	53.3	112	107		5	
4-Methyl-2-pentanone	ug/L	50	52.7	54.5	105	109		4	
n-Propylbenzene	ug/L	20	19.3	19.9	97	100		3	
Styrene	ug/L	20	20.1	20.5	100	102		2	
Tetrachloroethene	ug/L	20	22.1	22.8	111	114		3	
1,1,1,2-Tetrachloroethane	ug/L	20	22.1	22.5	110	113		3	
1,1,2,2-Tetrachloroethane	ug/L	20	17.6	17.8	88	89		1	
1,2,4-Trichlorobenzene	ug/L	· 20	20.5	20.7	103	104		1.	
1,1,1-Trichloroethane	ug/L	20	22.4	22.9	112	115		3	
1,1,2-Trichloroethane	ug/L	20	18.9	18.2	94	91		3	
Trichlorofluoromethane	ug/L	20	19.5	19.4	. 98	97		1	
1,2,3-Trichloropropane	ug/L	20	21.4	22.2	107	111		4	
1,2,4-Trimethylbenzene	ug/L	20	21.6	22.1	108	111		3	
1,3,5-Trimethylbenzene	ug/L	20	20.5	21.4	103	107		4	
Vinyl chloride	ug/L	- 20	23.2	23.4	116	117		0.9	
Xylene, o-	ug/L	20	19.3	19.8	96	99		3	
1,2-Dibromo-3-chloropropane	ug/L	20	19.4	21.0	97	105		8	
1,2-Dibromoethane	ug/L	20	20.3	20.3	101	101		0	
Vinyl acetate	ug/L	20	16.2	16.4	81	82		1	
Methyl-t-butyl ether	ug/L	20	20.7	20.6	103	103		. 0	•
4-Isopropyltoluene	ug/L	20	19.4	19.8	97	- 99		2 -	
2,2-Dichloropropane	ug/L	20	22.6	22.4	113	112		0.9	
1,1-Dichloropropene	ug/L	20	23.6	23.1	118	115		3	4
2-Chloroethylvinyl ether	ug/L	20	16.9	17.6	85	88		3	
1,3-Dichloropropane	ug/L	20	19.8	20.1	99	101		2	
Bromobenzene	ug/L	20	18.5	18.0	92	90		2	
2-Chlorotoluene	ug/L	20	19.2	19.9	96	100		4	
4-Chlorotoluene	ug/L	20	19.0	19.6	95	98		3	
tert-Butylbenzene	ug/L	20	20.2	21.0	101	105		4	
sec-Butylbenzene	ug/L	20	20.1	20.9	100	105		5	
out buy monte on to	~9, ~	20	19.1	19.6	.00	98		3	

Report ID: 904913 - 4928807

Page 45 of 63

CERTIFICATE OF ANALYSIS

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

LABORATORY CONTROL SAMPLE & LCSD: 27498

27499

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
1,4-Dichlorobenzene	ug/L	20	18.7	19.2	94	96		2		
n-Butylbenzene	ug/L	20	21.5	21.9	108	110		2	•	
1,2-Dichlorobenzene	ug/L	20	19.1	19.6	96	98		2		
Hexachlorobutadiene	ug/L	20	21.6	22.6	108	113		5		
Naphthalene	ug/L	20	18.5	18.7	92	94		2		
1,2,3-Trichlorobenzene	ug/L	20	20.7	22.0	104	110		6		
1,1-Dichloroethene	ug/L	20	20.9	19.8	104	99	62-141	5	20	
Benzene	ug/L	20	17.7	17.4	88	87	65-141	1	20	
Trichloroethene	ug/L	20	20.1	20.6	100	103	65-140	3	20	
Toluene	ug/L	20	19.2	18.6	. 96	93	64-139	3	20	
Chlorobenzene	ug/L	20	19.9	20.1	100	101	48-146	1	20	
4-Bromofluorobenzene (S)	%				94	95	64-130	1		
Dibromofluoromethane (S)	%				111	108	69-134	3		
Toluene d8 (S)	%				100	99	63-127	` 1		
Xylenes (total)	ug/L		61.9	63.0						

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MICP/1402

Analysis Method:

SM 5210B BOD

QC Batch Method:

BOD PREP

Associated Lab Samples: 904849001

904850001

METHOD BLANK: 27635

Blank Result 904913002

Reporting

Parameter

Units

Limit Qualifiers

Wet Chemistry

BOD

mg/L

2.0U

2.0

LABORATORY CONTROL SAMPLE: 27637

Parameter

Units

Spike Conc.

LCS Result

LCS % Rec

% Rec

Limits Qualifiers

Wet Chemistry

BOD

mg/L

198

236

174

88

70-130

SAMPLE DUPLICATE: 27638

Original: 904850001

Original Units Parameter Result Wet Chemistry

Result

RPD

Max **RPD Qualifiers**

BOD

mg/L

233

DUP

20

Report ID: 904913 - 4928807

Page 47 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

SOLI/1761

Analysis Method:

SM 2540 D

QC Batch Method:

SM 2540 D

904769002 904850001 904833001 904852001 904847002 904852002 904848001 904860001 904848002 904860002 904849001 904878001

904911001

904956001

904911002

904912001

904913002

904932001

904933001

METHOD BLANK: 27771

Associated Lab Samples:

Units

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Parameter

Total Suspended Solids

mg/L

1.0U

1.0

SAMPLE DUPLICATE: 27772

Original: 904848001

Original DUP Max **RPD Qualifiers** Result RPD Parameter Units Result Wet Chemistry **Total Suspended Solids** mg/L 30.8 30.3 1.6 20

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

MISC/1211 -

Analysis Method:

EPA 410.4

QC Batch Method:

EPA 410.4

Associated Lab Samples:

904354001

904973001

mg/L

904852001 904973002

Blank

Result

904852002 904973003 904913002 905024002 904916001 905041001

904919002 905049001

METHOD BLANK: 27777

Parameter

Units

Reporting

Limit Qualifiers

Wet Chemistry

COD

6.7U

6.7

LABORATORY CONTROL SAMPLE & LCSD: 27778 27779

Spike Conc.

200

LCS LCSD

202

LCS LCSD Result % Rec % Rec % Rec Limit

RPD

Max **RPD Qualifiers**

Wet Chemistry

Parameter

COD

Units

mg/L

Result

194 101

97 90-110

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27780

27781

Original: 904973003

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result .	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD Qualifiers	
Wet Chemistry COD	mg/L	27	200	220	216	96	94	90-110	2	20	

Phone: (561) 447-7373

Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

HACH/1218

Analysis Method:

SM 4500-S F(20th Ed.)

QC Batch Method:

SM 4500-S F(20th Ed.)

Associated Lab Samples:

904913002

904941002

904941003

904941004

905041001

905107001

METHOD BLANK: 27782

Blank

Reporting

Parameter

Units

Result

Limit Qualifiers

Wet Chemistry

Sulfide

mg/L

0.050U

0.050

LABORATORY CONTROL SAMPLE: 27783

Units

Spike Conc.

LCS Result

LCS % Rec % Rec

Limits Qualifiers

Wet Chemistry

Parameter

Sulfide

mg/L

10

8.80

88

70-130

SAMPLE DUPLICATE: 27784

Original: 904905002

Parameter

Units Result

DUP Result

RPD

Max

RPD Qualifiers

Wet Chemistry

Sulfide

mg/L

0.050U

Original

0.050U

0

20

Report ID: 904913 - 4928807

Page 50 of 63

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1675

Analysis Method:

QC Batch Method:

EPA 365.1

EPA 365.1

Associated Lab Samples:

904875001

904882001

904875002

904875003

904876001 904884002 904879001 904888003 904879002 904890001

904890002 905020042

904882002 904891001

904883003 904913002

904924001

904924002

905020041

METHOD BLANK: 27809

Blank

0.004U

Reporting

Parameter

Units

Result

Limit Qualifiers

Wet Chemistry

Total Phosphorus

mg/L

0.004

LABORATORY CONTROL SAMPLE & LCSD:

27810

Spike

Conc.

0.5

Original

Result

Original

Result

0.003

27811

LCSD

LCS LCSD

Result % Rec % Rec

MSD

Result

MSD

0.509

% Rec Limit **RPD**

Max **RPD Qualifiers**

Wet Chemistry

Parameter

Total Phosphorus

mg/L

Units

0.480

LCS

Result

0.488 95.9

97.7

90-110

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27812

Spike

Conc.

27813

MS

Original: 905020041

1.9

Max

Wet Chemistry

Parameter

2.5

4.74

Result

4.70 100 % Rec

MSD

90-110

% Rec

Limit RPD RPD Qualifiers

20 Q

Total Phosphorus

mg/L 2.23 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27814

Units

MS

% Rec

98.7 Original: 904879001

102

Max

1.3

Parameter Wet Chemistry

Total Phosphorus

mg/L

Units

Conc. 0.5

Spike

Result

27815

MS

0.513

Result % Rec

MS

103

MSD % Rec

% Rec

Limit RPD RPD Qualifiers

20 90-110 0.98

Report ID: 904913 - 4928807

Page 51 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

LACH/2194

Analysis Method:

EPA 350.1

QC Batch Method: Associated Lab Samples:

EPA 350.1

904873002

904873001 904876001 904890001

904878002 904890002

904873003 904879001 904891001

904875001 904879002 904913002 904875002 904882001 905020041

904875003 904882002 905020042

METHOD BLANK: 27867

Blank

Reporting

Units

mg/L

Result

Limit Qualifiers

Wet Chemistry

Ammonia

Parameter

0.017U

0.017

LABORATORY CONTROL SAMPLE & LCSD:

27868

27869

Parameter Units

Spike Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec % Rec Limit

90-110

Max RPD

0

RPD Qualifiers

Wet Chemistry

Ammonia

mg/L

mg/L

2.5

2.73

2.73 109 109

MS

105

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27872

27873

MS

Result

Original: 904878002

MSD

105

Parameter Wet Chemistry

Ammonia

Original Spike Units Result Conc.

0

2.5

2.62

2.62

MSD

Result

% Rec % Rec % Rec

Limit RPD RPD Qualifiers

Max

90-110 0 20

Report ID: 904913 - 4928807

Page 52 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

INPR/1684

Analysis Method:

EPA 351.2

QC Batch Method:

EPA 351.2

Associated Lab Samples:

904879001 904888003 904912001 904879002 904890001 904913002

904882001 904890002 904941001

904882002 904891001 904965002

904883003 904911001 904968001

904884002 904911002

METHOD BLANK: 27996

Blank Result Reporting

Limit Qualifiers

Wet Chemistry

Parameter

Total Kjeldahl Nitrogen

mg/L

Units

0.22U

0:22

LABORATORY CONTROL SAMPLE & LCSD:

27997

5

27998

Parameter Units

Spike Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

Max **RPD Qualifiers**

RPD

Wet Chemistry

Total Kjeldahl Nitrogen

mg/L

5.01

4.99

100 99.8

90-110

0.2

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 27999

28000

Original: 904882001

Original Parameter Units Result Spike Conc.

5

5

MSD MS Result Result

5.35

6.68

MS % Rec

108

MSD % Rec % Rec

Max

Limit RPD RPD Qualifiers

20

Wet Chemistry Total Kieldahl Nitrogen

mg/L 0.877 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 28602

Units

mg/L

6.27 28603

Original: 904890001

89.5

Parameter Wet Chemistry

Total Kjeldahl Nitrogen

Original Spike Result Conc.

1.15

MS MSD Result Result

6.44

MS % Rec

106

MSD % Rec

111

% Rec Max Limit RPD RPD Qualifiers

90-110 18.7

90-110 4.6 20

Report ID: 904913 - 4928807

Page 53 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

ALKA/1111

Analysis Method:

SM 2320 B

QC Batch Method:

SM 2320 B

904913002 904973003 904959001 904974001 904965001 904974002 904965002

904973001

904973002

904990002

904990003

904977001

904977002

904990001

METHOD BLANK: 28011

Associated Lab Samples:

Blank

Reporting

Parameter

Units

Result

Limit Qualifiers

Wet Chemistry

Total Alkalinity

mg/L

0.02U

0.02

LABORATORY CONTROL SAMPLE & LCSD:

28012

28013

Parameter

Units

Spike Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec

98

% Rec Limit Max

RPD Qualifiers

Wet Chemistry

Total Alkalinity

mg/L

250

244

240

90-110

2

RPD

20

SAMPLE DUPLICATE: 28635

Original: 904913002

DUP

Result

RPD

RPD Qualifiers

Wet Chemistry **Total Alkalinity**

Parameter

mg/L

Units

150

Original

Result

148

Report ID: 904913 - 4928807

Page 54 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

DIGM/1953

Analysis Method:

SW-846 7470

QC Batch Method:

Associated Lab Samples:

METHOD BLANK: 28227

SW-846 7470

904913002 905146005

905010001 905146007 905116002 905146009 905116005 905146011

905136002 905146013 905146003 905146015

905146017

Blank Result Reporting

Limit Qualifiers

Metals Analysis

Mercury

Parameter

mg/L

Units

0.00013U

0.00013

LABORATORY CONTROL SAMPLE: 28228

Parameter

Units

Spike Conc.

LCS Result LCS

% Rec

% Rec

Limits Qualifiers

Metals Analysis

Mercury

mg/L

0.002

0.00182

91

80-120

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 28229

28230

Original: 904905002

Parameter Units Original Spike Result Conc.

MS MSD Result Result

MS %.Rec

MSD % Rec

% Rec Limit RPD RPD Qualifiers

Max

20

Metals Analysis Mercury

mg/L

-0.00013

0.002 0.00190 0.00203

95

102 75-125

Report ID: 904913 - 4928807

Page 55 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1308

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

904861002 904872001

904918003

904863001 904872002 904918006

904863002 904872003 904983001

904866001 904913002 904983002 904869001 904918001 904983003

METHOD BLANK: 28265

Associated Lab Samples:

Blank

Reporting

Parameter

Units

mg/L

904861001

904870001

904918002

Result

Limit Qualifiers

Sulfate

Wet Chemistry

0.1641

0.076

LABORATORY CONTROL SAMPLE & LCSD:

28266

Spike

Conc.

7.5

28267

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit Max

RPD Qualifiers

Parameter Wet Chemistry

Sulfate mg/L

Units

7.22

96

96 90-110 0

RPD

20

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 28268

7.23

28269

Original: 904983001

Parameter

Original Units Result

Spike MS Conc. Result

MSD Result

MS % Rec

MSD % Rec

% Rec

Max

Limit RPD RPD Qualifiers

Wet Chemistry Sulfate

mg/L 449 75

560

563

148

90-110 152

20

Report ID: 904913 - 4928807

Page 56 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA

QC Batch:

IC/1310

Analysis Method:

EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples:

904861001 904893001 904995002 904861002 904913002 905193001 904863001 904918001 905193002 904863002 904918002 905195003 904869001 904918003 905197001

904870001 904995001 905197002

905212004

METHOD BLANK: 28318

Units

mg/L

Blank Result

Reporting

Limit Qualifiers

Wet Chemistry

Chloride

Parameter

0.066U

0.066

LABORATORY CONTROL SAMPLE & LCSD:

28319

28320

Units Parameter

Spike Conc.

LCS Result

LCSD LCS LCSD Result % Rec % Rec

% Rec Limit

Max RPD

RPD Qualifiers

Wet Chemistry

Chloride

mg/L

4.91

Spike

Conc.

4.96

98 99 90-110

1

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 28321

5

28322

Original: 905193002

Parameter

Original Result

MS Result

MSD Result

243

MS % Rec

MSD % Rec % Rec

Max

20

Limit RPD RPD Qualifiers

Wet Chemistry Chloride

mg/L

Units

243

0.82 20

Report ID: 904913 - 4928807

Page 57 of 63

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL DATA QUALIFIERS

QUALITY CONTROL PARAMETER QUALIFIERS

Q Holding time exceede	Q	Holding	time	exceede
------------------------	---	---------	------	---------

- [6] MS and/or MSD recoveries outside control limits. However, LCS and/or LCSD within limits. Data reported.
- [8] NCR-% RPD exceeds control limits

Report ID: 904913 - 4928807

Page 58 of 63

Report ID: 904913 - 4928807

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431

> Phone: (561) 447-7373 Fax: (561) 447-7374

> > Page 59 of 63

QUALITY CONTROL CROSS REFERENCE TABLE

Lab ID	 Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
904913002	 PW-1	EPA 365.1	LACH/2178		
904913002	PW-1	EPA 300.0	IC/1297 ,		
904913002	PW-1	SM 2540 C	SOLI/1753	•	
904913002	PW-1	SM _. 2130 B	MISC/1205		
904913002	PW-1 .	SM 5540 C	INPR/1668	SM 5540 C	HACH/1214
904913002	PW-1	3510C	EXTO/2116	SW-846 8270C low PAH	MSSV/1383
904913002	PW-1	3510C	EXTO/2117	SW-846 8270C	MSSV/1381
904913002	PW-1	3510C	EXTO/2118	SW-846 8081A	GCSV/1613
904913002	PW-1	3510C	EXTO/2119	SW-846 8082	GCSV/1619
904913002	PW-1	3510C	EXTO/2120	SW-846 8141A	GCSV/1624
904913002	PW-1	3510C	EXTO/2121	SW-846 8151A	GCSV/1618
904913002	PW-1	EPA 1664A	EXTO/2122	•	
904913002	PW-1	SW-846 3010A	DIGM/1920	SW-846 6010	ICP/1551
904913002	PW-1	EPA 200.8	DIGM/1922	EPA 200.8	ICPM/1117
904913002	PW-1	SM 5310B	TOC/1122		
904913002	PW-1	SW-846 9012A	INPR/1669	SW-846 9012A	LACH/2181
904913001	TRIP BLANK	SW-846 8260B	MSV/1665		

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

Genapure Analytical Services, Inc. 3231 NW 7th Avenue Boca Raton, FL 33431

> Phone: (561) 447-7373 Fax: (561) 447-7374

QUALITY CONTROL CROSS REFERENCE TABLE

.ab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
04913002	PW-1	SW-846 8260B	MSV/1665	-	
004913002	PW-1	BOD PREP	MICP/1402	SM 5210B BOD	BOD/1344
04913002	PW-1	SM 2540 D	SOLI/1761	,	
04913002	PW-1	EPA 410.4	MISC/1211		
04913002	PW-1	SM 4500-S F(20th Ed.)	HACH/1218		
04913002	PW-1	EPA 365.1	INPR/1675	EPA 365.1	LACH/2208
04913002	PW-1	EPA 350.1	LACH/2194		
04913002	PW-1	EPA 120.1	SPCD/1040		
04913002	PW-1	EPA 351.2	INPR/1684	EPA 351.2	LACH/2228
04913002	. PW-1	SM 2320 B	ALKA/1111		
04913002	PW-1	SW-846 7470	DIGM/1953	SW-846 7470	HG/1107
04913002	PW-1	EPA 300.0	IC/1308		
04913002	PW-1	EPA 300.0	IC/1310		
04913002	PW-1	903.1	S_17/	903.1	S_17/
04913002	PW-1	EPA 100.2	S_09/	EPA 100.2	S_09/
04913002	PW-1	EPA 300.1	S_05/	EPA 300.1	S_05/
04913002	PW-1	EPA 7063 mod	S_36/	EPA 7063 mod	S_36/
04913002	PW-1	RA-05	S_17/	RA-05	S_17/
004913002	PW-1	RSK 175	S_15/	RSK 175	S_15/

Report ID: 904913 - 4928807

Page 60 of 63

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Genapure Analytical Services, Inc..

	ſ	1
Page	L_o	f

	www.genapu	ne.com									سريستونسنس								Ortune	n .849 .
Company	Name: HDR			PO#				ر <u>مردنگانگور</u>	grift d Norweg			LAB	ANA	LYSIS					Sizojs): Zoz, foz, Soz, 18az, 32as st Example: 4az? - 4az Passio, Saxi-	ti somi other I-Boz Sali Jar
Address:	_			······				Sample												. 3.3
City:		State:		Zip:				THE											Matrix Code	Sin Weser
Attn: D	eborch Da	<u> 4</u>	Fax#		***************************************	**************************************		pH	************************	***************************************	ļ								60 See AFW Ast SE Sedment DW On	riyter Frees Water King Water
email: (deborah. Jau	Leh	dr me	. wm				Pres Codes	•	~	,	1							PE Petroleum AO ADI	fase Vieter Isaus Irce Water
Project Name	FPL		Proj#	····			A CONTRACTOR OF THE PARTY OF TH	ters					702	×		· F		PLE 1A 5010	ATL Mass. Liquide & AF GW Ground Water O CUP EFF Enthanni INF Wilhers	(Piesse Specify)
Sampler Signature	Sample Label (Client ID)	Collect Date	Phone# Collect	Matrix Code	82-	S67	tainers	Parameters	1808	8082	9 7	8270	NO3, MEAS,	PP Meduls	S	to, ob,	125	EXAMPL Diss.8RCRA	Pres/Code A. None E. HCL B. HNOs F. McOH C. HaSO4 G. Naes2Oc D. NaOH H. NaHSO4	1, Ice J. MCAA K 2h Acetute Q. Other
#		4 1 1 1 1			E E	i i i	00			C _V		77	5	0_		ووسوسون	1	1 55		
i.e.	MW-1	6/16/04	11:35	GW	Х		1						1 1 12	ar igni	Siz	entainers aType		16ozP	REMARK	(S
1 1/	rip Blank			AFW			\perp		<u>. 1</u>	Ħ_	1	FV	ഥ	Щ	Ш	Ш	h			
2 P	W-1	5/5/01	0935	GW						H	H	H	H	H	H	H	H			
_3										Ш		Ш	口				P		,	
4				<u> </u>					I	口一		口一	口一			口	口			
5	***************************************								ù l	口	口一	b	し て		b^-	<u> </u>	一		***************************************	
-				-					<u>.</u>											· · · · · · · · · · · · · · · · · · ·
_6					-							17.1					Η			
_7				ļ	_	┝╌┼				F	F	Ι.		F	<u> </u>	F -	F-			
_8				ļ		<u> </u>				二	<u> </u>	丰—	二	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
_9				ļ				3	<u> </u>	<u> </u>	<u> </u>	二		L	<u> </u>	<u> </u>	<u> </u>			
_0							À K						لل							
: Standard	FAT FATO MET	£16/5.\$	hort Hol	da .				QA	/QC Ref	ort Level	ing and a second	Sing.	COC	OK.	jh	jials .	Recul Cust	red State Bostion	Coolers #	
O _m	Chind Parting	v./	N				Nec	×4	2s	Other_	······		у	. N					***************************************	
attem; «	Relinguist	led by		ation _a ¿	k	Date:			ทอ 🔑		occived t	W. Jan		ation	مسحديي	ate		inje, 💛 .	De Marging - Lab Use (Only No No.
	Mun	4	G		-		\leftarrow	1110	_	پِد	<u>ل اساع</u>	304F	HO		5-5		120		Barrigha INTACT upon univor? Received on Was içe? Temp 22c	
	DalulDe	 	Hos	<u> </u>	3-	<u>5-07</u>	<u>'</u>	123	0	 	N _c		GA	≥	5/6	104	10%	1>	Proper Precervatives indicated? Flactives within heiding time?	+
		~									· · · · · · · · · · · · · · · · · · ·	***************************************	<u> </u>	***************************************		<u></u>			Custody reals intect? Volatio rec'd without headspace? Proper Centamers Used?	

Genapure Tetephone:888-862-LABS or 561-447-7373 Fax: 888-456-4846 or 561-447-6136 Revision G101007

198018

3231 NW 7th Ave., Boca Raton, FL 33431

NA Gon Affiliation Received by Lab Use Only Date Time HOR 5-5-65 1230 Sample INTACT upon emvet? Processed on Wet ton? Temp 4 4 GN 10,15 Received within holding time? Contractly seems brings? Valoria rec'd without headquace wooer Containers Used?

COC OK

QAVQC Report Level

Genapure Telephone:888-862-LABS or 561-447-7373 Fax: 888-456-4846 or 561-447-6136 Revision G101007

Short Hold

198020

Coolers #'s>

Required State

Initials

CHAIN OF CUSTODY RECORD

Log# 104410

T#S

Quote:

Page 3 of 3

Archar Viel ES Encore Serror Clair Viel ES Encore Serror Clair Viel PPV Progressives of Paulic PL C Plantic onnium Exter Liter EL J Paulic Jan Clear Unio 2 Spice 189 Archar Plastic TEDLAR B Todlar in

	www.genapu	ire.com			-	***************************************						,			>					SJ Soil Jer Other	6 6	erjous spirit	ı
Comp	pany Name: HDR			PO#					1. P. 1.				LAB	ANA	LYSIS			\$	4	Sizo(n): Poz. 40z, 8 Example: 46zP = 4	oz Plastic, So	cr 1 <u>L</u> 4(tni ofi r 8Judoz Soli J	W
Addre	358 2	······································						9ample			\perp			,	. *								
City:		State:		Zip:				TRC						.		•					latříx Co		21,346
Attn:	deborahdaigh		Fax#					ρН			\perp		,	SAME	ر مينو . بر					SD Sold Weste SO Solt SE Sodiment	OW I	Nasta Wijter Analyta Fres W Ostraling Waser	ater
	debonh.de		e hd -	inc. c	·o**	,		Pree. Codes	*			,								SE Sedimeni OL Ot PE Petroleum NA Noraqueau	SU :	Surface Water Aquenus Sixurca Water	
Projec Name	d col			બ કહે				Parameters	•		ŀ	1228							LE 4,6010	ML Mac. Liquid GW Ground Wis EFF Efficient INF Influent	A (Nr Other (Picasa Sp	,,
Samp	Chi Clerk	ay/-	Phone#	85-3	12-5	えわ	i.	ame	-Ę	3		7,							EXAMP s.sRCRA	A, None	Pres/Co.	des	
8.50 #	Sample Label (Client ID)	Collect Date	Collect Time	Matrix Code:	Field Filtered	fistegytty. Okc(Ynkij i	Total A of: containers	Par	Asbudas	Dissolud	022	Red 224/228	£						EXA Diss.aRt	B. HNO3 C. HZSO4 D. NaCH	F. MeOH G. Na2820 H. NaHSO	J. MC S K. Zn.	AA Aqeteria
i.e.	I-WN	6/16/04	11:35	GW	x		1									# of Co Size	ntainers Type		1 16oz P		REMAF	≀KS	
_1	Pw-1	5/5/09	6130	GW		\prod			l	LA	F		П										
_2										P	1	I											
_3										I	F	J			I	口一	I					***************************************	
_4						П				口	F	J		J		П	U	U	13.3		······		
_5						П				口	1	J	J		U	J	U		\$ 430 B				
_6								3 (2) 8		口	丰	J	J	П		口一	J	J					
_7										口	F		口一			口		口		·		***	
8					T	П				口	丰	I	J		口一		I	口					
_9					1	M			<u> </u>	口	丰	I	口		口			口一			***************************************		
_0					T	H			Ĵ		丰	Ι .	口		J				\$ 300 \$ 300 \$ 300				
15889	7. A.F. BECCH 21		hort Hol	d s j		15		OΑ	oc aer	on Leve	31.	& J.	BH A	COC	OK	Ini	als (Hequir	ed State ication		Coclers	# s	43 10
Υ,	The second second	٧,	N.				Non		2:					\bigcirc	N	GX	•						
die	m Belinquish		5# Affili	ation	100	Date:			វាច-្		Rece	ived b	ggray.		iation :		ite		ne 🦠		Lab Use	Only	
!	1 Debail	<u>ag_</u>	HE	N.	5-	5 0	ᆜ	123	6				···							Sancia INTACT up Received on Wet k	on arrival?		~·
		U								<u> </u>	G	W		CV	ڬ	5/6	109	10:01	5	Proper Preservative	e processos		
																1 1				Received within hole Cuspody seals into:	17	‡ =	
															***************************************					Wolelle ren'ti withou Proper Containers I		1.	

Genapure Telephone:888-862-LABS or 561-447-7373 Fax: 888-456-4846 or 561-447-6136 Revision G101007

198019

OFIGINAL

TABLES

TABLE 3-3 (REVISED)

TABLE 3-3
MAXIMUM EMISSIONS DUE TO THE PROJECT COMPARED TO THE PSD SIGNIFICANT EMISSION RATES

	Pollutant Emiss	ions (TPY)	
Pollutant	Potential Emissions from Project*	Significant Emission Rate	PSD Review
Sulfur Dioxide	<1	40	No
Particulate Matter [PM(TSP)]	943.3	25	Yes
Particulate Matter (PM ₁₀)	24	15	Yes
Nitrogen Dioxide	36	40	No
Carbon Monoxide	25	100	No
Volatile Organic Compounds	4	40	No
Lead	NEG	0.6	No
Sulfuric Acid Mist	NEG	7	No
Total Fluorides	NEG	3	No
Total Reduced Sulfur	NEG	. 10	No
Reduced Sulfur Compounds	NEG	10	No
Hydrogen Sulfide	NEG	10	No
Mercury	NEG	0.1	No

Note: NEG = Negligible.

^a Refer to Table 2-4.

TABLE FDEP-PSD-1-c-1

TABLE FDEP-PSD-1-c-1 ESTIMATED PHYSICAL, PERFORMANCE, AND EMISSIONS DATA FOR THE CIRCULATING WATER COOLING TOWERS FOR TURKEY POINT UNITS 6 & 7

Parameter	Circulating Water Cooling Towers
Physical Data	
Number of Towers per Unit	3
Number of Cells per Tower	12
Cell Diameter, ft	33.67
Cell Stack Height, ft (fan stack height is 14 feet)	66.5
Tower Dimensions	
Height to Fan Deck, ft	53
Length, ft	259
Width, ft	240.7
Performance Data	
Discharge Velocity, ft/min per cell	1,982
Circulating Water Flow Rate (CWFR), gal/min (3 Cooling Towers)	631,100
Design hot water temperature, °F	115.4
Design cold water temperature, °F	91
Heat Rejected, million Btu/hr	7,628
Evaporation at Design Conditions, gal/min (3 Cooling Towers)	12,723
Design Air Flow Rate per cell, acfm	1,764,500
Liquid/ Gas (Air Flow) (L/G) Ratio	1.272
Hours of operation	8,760
Temperature of Exit Air, °F	104.7
Emission Data	, , , , , , , , , , , , , , , , , , ,
Drift Rate ^a (DR), percent	0.0005
Total Dissolved Solids (TDS) Concentration ^b , maximum ppmw	4,000
Solution Drift ^e (SD), lb/hr	1,579.0
PM Drift ^d , lb/hr	6.316
tons/year/unit (3 towers)	27.7
tons/year (6 towers)	55.3
PM ₁₀ Drift ^e	
PM ₁₀ Emissions, lb/hr	2.42
tons/year/unit (3 towers)	10.6
tons/year (6 towers)	21.2

^a Drift rate is the percent of circulating water.

^b A TDS of 4,000 ppmw.

^c Includes water and based on circulating water flow rate and drift rate (CWFR x DR x 8.34 lb/gal; 8.34 lb/gal used for maximum PM₁₀).

^d PM calculated based on total dissolved solids and solution drift (TDS x SD).

^e PM₁₀ based on Calculating Realistic PM₁₀ Emissions from Cooling Towers, Joel Riesman and Gordon Frisbie (2001). TDS is 4,000 ppmw. Result is maximum PM₁₀ emissions. See Appendix A.

TABLE FDEP-PSD-4-1

October 2009 0938-7652

TABLE FDEP-PSD-4-1 ESTIMATED HAP EMISSIONS CIRCULATING WATER COOLING TOWERS - UNITS 6 AND 7

Parameter		Salt Water	Reclaimed Water
Physical Data		·	·
Number of Towers per Unit	3	•	•
Number of Cells per Tower	. 12		
Cycles of Concentration		1.5	4 '
Emission Data	·	,	
Drift Rate ^a (DR), percent		0.0005	0.0005
Total HAP ppmw ^b		0.39	1.11
Number of Analyses for HAPs		107	54
Number of Analyses Above the Detection Limits		2	5
Solution Drift ^c (SD), lb/hr		1,656.6	1,656.6
HAP Emissions ^d , lb/hr		0.0010	0.0073
tons/year/unit (3 towers)	ì	0.0043	0.0322
tons/year (6 towers)	•	0.0085	0.0644

^a Drift rate is the percent of circulating water.

b HAP concentration based on sample analysis. For concentrations that were reported below dectection limit calculations assume concentration at detection limit to be conservative. The ppmw multiplied by the cycles of concentration to calculate emissions.

^c Includes water and based on circulating water flow rate and drift rate. (CWFR x DR x 8.75 lb/gal x 60 min/hr).

^d HAP calculated based on total concentration and solution drift.

TABLE FDEP-PSD-4-2

TABLE FDEP-PSD-4-2
ESTIMATED HAZARDOUS AIR POLLUTANT EMISSION DATA FOR DIESEL GENERATORS AND
GENERAL PURPOSE DIESEL ENGINES ASSOCIATED WITH TURKEY POINT UNITS 6 & 7

Parameter		Star	ıdby	Anci	llarv	Diese	l Fire	Genero	l Purpose		
I al alletei			enerators_	Diesel Ge			Engines		gines		
Performance											
Number for TP 6 & 7			4 .	4	ļ	:	2	· Va	rious		
Heat input (MMBtu/hr) ^a (MMBtu) ^b (HHV)		39	.12	0.3	39	2.	32	8,	106		
Maximum operation (hours)		9	16	9	6	· 9					
	Emission Factor	Emis	sions °	Emiss	ions °	Emis	sions °	Emis	ssions ^c	то	TAL
Hazardous Air Pollutants	(lb/MMBtu)	(lb/hr)	(TPY)	(lb/hr)	(TPY)	(lb/hr)	(TPY)	(lb/hr)	(TPY)	(lb/hr)	(TPY)
Benzene	9,33E-04	1.46E-01	7.01E-03	1.46E-03	7.02E-05	4.34E-03	2.08E-04		3.78E-03	1.52E-01	1.11E-02
Toluene	4.09E-04	6.40E-02	3.07E-03	6.41E-04	3.08E-05	1.90E-03	9.12E-05		1.66E-03	6.66E-02	4.85E-03
Xylenes	2.58E-04	4.04E-02	1.94E-03	4.04E-04	1.94E-05	1.20E-03	5.76E-05		1.05E-03	4.20E-02	3.06E-03
1,3-butadiene	3.91E-05	6.12E-03	2.94E-04	6.13E-05	2.94E-06	1.82E-04	8.72E-06		1.58E-04	6.36E-03	4.64E-04
Formaldehyde	1.18E-03	1.85E-01	8.86E-03	1.85E-03	8.88E-05	5.48E-03	2.63E-04		4.78E-03	1.92E-01	1.40E-02
Acetaldehyde	7.67E-04	1.20E-01	5,76E-03	1.20E-03	5.77E-05	3.56E-03	1.71E-04		3.11E-03	1.25E-01	9.10E-03
Acrolein	9.25E-05	1.45E-02	6.95E-04	1.45E-04	6.96E-06	4.30E-04	2.06E-05		3.75E-04	1.51E-02	1.10E-03
PAH											
Naphthalene	8.48E-05	1.33E-02	6.37E-04	1.33E-04	6.38E-06	3.94E-04	1.89E-05		3.44E-04	1.38E-02	1.01E-03
Acenaphthylene	5.06E-06	7.92E-04	3.80E-05	7.93E-06	3.81E-07	2.35E-05	1.13E-06		2.05E-05	8.23E-04	6.00E-05
Acenaphthene	1.42E-06	2.22E-04	1.07E-05	2.23E-06	1.07E-07	6.60E-06	3.17E-07		5.76E-06	2.31E-04	1.68E-05
Fluorene	2.92E-05	4.57E-03	2.19E-04	4.58E-05	2.20E-06	1.36E-04	6.51E-06		1.18E-04	4.75E-03	3.46E-04
Phenanthrene	2.94E-05	4.60E-03	2.21E-04	4.61E-05	2.21E-06	1.37E-04	6.56E-06		1.19E-04	4.78E-03	3.49E-04
Anthracene	1.87E-06	2.93E-04	1.40E-05	2.93E-06	1.41E-07	8.69E-06	4.17E-07		7.58E-06	3.04E-04	2.22E-05
Fluoranthene	7.61E-06	1.19E-03	5.72E-05	1.19E-05	5.72E-07	3.54E-05	1.70E-06		3.08E-05	1.24E-03	9.03E-05
Ругепе	4.78E-06	7.48E-04	3.59E-05	7.49E-06	3.60E-07	2.22E-05	1.07E-06		1.94E-05	7.78E-04	5.67E-05
Benzo(a)anthracene	1.68E-06	2.63E-04	1.26E-05	2.63E-06	1.26E-07	7.81E-06	3.75E-07		6.81E-06	2.73E-04	1.99E-05
Chrysene	3.53E-07	5.52E-05	2.65E-06	5.53E-07	2.66E-08	1.64E-06	7.87E-08		1.43E-06	5.74E-05	4.19E-06
Benzo(b)fluoranthene	9.91E-08	1.55E-05	7.44E-07	1.55E-07	7.45E-09	4.61E-07	2.21E-08		4.02E-07	1.61E-05	1.18E-06
Benzo(k)fluoranthene	1.55E-07	2.43E-05	1.16E-06	2.43E-07	1.17E-08	7.20E-07	3.46E-08		6.28E-07	2.52E-05	1.84E-06
Benzo(a)pyrene	1.88E-07	2.94E-05	1.41E-06	2.95E-07	1.41E-08	8.74E-07	4.19E-08		7.62E-07	3.06E-05	2.23E-06
Indeno(1,2,3-cd)pyrene	3.75E-07	5.87E-05	2.82E-06	5.88E-07	2.82E-08	1.74E-06	8.37E-08		1,52E-06	6.10E-05	4.45E-06
Dibenz(a,h)anthracene	5.83E-07	9.12E-05	4.38E-06	9.14E-07	4.39E-08	2.71E-06	1.30E-07		2.36E-06	9.49E-05	6.92E-06
Benzo(g,h,i)pereylene	4.89E-07	7.65E-05	3.67E-06	7.66E-07	3.68E-08	2.27E-06	1.09E-07		1.98E-06	7.96E-05	5.80E-06
Total PAH	1.68E-04	2.63E-02	1.26E-03	2.63E-04	1.26E-05	7.81E-04	3.75E-05	••	6.81E-04	2.73E-02	1.99E-03
TOTAL HAPS	4.01E-03	6.28E-01	3.02E-02	6.29E-03	3.02E-04	1.87E-02	8.96E-04		1.63E-02	6.53E-01	4.76E-02

Sources: AP1000 Design Control Document; Chapter 8 http://www.nrc.gov/reactors/new-licensing/design-cert/ap1000.html; Caterpillar, 2008. AP1000 DCD; Chapter 9; Table 9.5.4-1 2000 gpm fire pump; 300 ft head NFPA 20 Certified; Fairbanks Morse Fire Pumps, 2008. Emissions based on AP-42 Section 3.3 Gasoline and Diesel Industrial Engines; Table 3.3-2.

^a Hourly heat input for standby generators, ancillary generators, and fire pumps.

^b Annual heat input for general purpose engines.

^c Total emissions for all engines.

TABLE FDEP-PSD-8-1

TABLE FDEP-PSD-8-1
PLUME VISUAL IMPACT ANALYSIS - SCREENING LEVEL 2 - IDENTIFICATION OF WORSE-CASE METEOROLOGICAL CONDITIONS

		Disper	sion Conditions Dispersion	n Parameter	Sigma Y x Sigma Z	Transport Time to	Frequency of Occurrence (percent) of Dispersion Conditions ^c				
	Stability	Wind Speed	Horizontal	Vertical	x Wind Speed	NP Area	7 a.m. to	1 p.m.	1 p.m. to		
Category	Name	(m/s)	(sigma Y (m))	(sigma Z (m))	. (m³/s)	(hours) ^a	L _p	cf ^b	L _P	cf b	
SE Wind D	irection Sector										
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F E	Moderately Stable Slightly Stable	2 1	18.0 27.0	18.1 27.3	649 737	0.1 0.1	0.00 0.00	0.00 0.00	0.22 0.00	0.22 0.22	
	Neutral	1	36.1	24.8	895	0.1	0.00	0.00	0.00	0.22	
	Moderately Stable	3	18.0	18.1	973	0.0	0.00	0.00	0.47	0.69	
	Slightly Stable	2	27.0	27.3	1,475	0.1	0.00	0.00	0.16	0.85	
	Neutral	. 2	36.1	24.8	1,790	0.1	0.03	0.03	0.06	0.91	
E D	Slightly Stable	3 3	27.0 36.1	27.3	2,212	0.0	0.00 0.19	0.03	0.33 0.20	1,24 1,44	
	Neutral Slightly Stable	3 4	27.0	24.8 27.3	2,685 2,949	0.0	0.19	0.22 0.25	0.20	1.44	
	Neutral	4	36.1	24.8	3,580	0.0	0.35	0.59	0.42	2.17	
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.01	0.60	0.07	2.25	
D	Neutral	5	36.1	24.8	4,475	0.0	0.56	1.16	0.62	2.87	
Wind Direc	ction Sector										
	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
	Moderately Stable	2 .	18.0	18.1	649	0.1	0.02	0.02	0.25	0,25	
	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.02	0.00	0.25	
	Neutral	1	36.1	24.8	895	0.1	0.00	0.02	0.00	0.25	
	Moderately Stable Slightly Stable	3 2	18.0 27.0	18.1 27.3	973 1,475	0.0 0.1	0.01 0.02	0.03 0.05	0,22 0,10	0.47 0.57	
	Neutral	2	36.1	24.8	1,473 1,790	0.1	0.02		, 0.09	0.66	
	Slightly Stable	3	27.0	27.3	2,212	0.0	0.00	0.12	0.25	0.90	
D	Neutral	3	36.1	24.8	2,685	0.0	0.16	0.28	0.18	1.09	
	Slightly Stable	4	27.0	27.3	2,949	0.0	0.02	0.30	0.17	1.26	
D E	Neutral Slightly Stable	4 5	36.1 27.0	24.8 27.3	3,580 3,686	0.0 0.0	0.32 0.00	0.62 0.62	0.44 0.04	1.70 1.73	
D	Neutral	5	36.1	27.3 24.8	3,686 4,475	0.0	0.00	1.01	0.04	2.04	
	<u>Direction Sector</u> Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
	Moderately Stable	2	18.0	18.1	649	0.1	0.01	0.01	0.07	0.07	
E	Slightly Stable	1	27.0	27.3	737	. 0.1	0.00	0.01	0.00	0.07	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.01	0.00	0.07	
	Moderately Stable	3	18.0	18.1	973	0.0	0.00	0.01	0.08	0.16	
E D	Slightly Stable Neutral	2 2	27.0 36.1	27.3 24.8	1,475 1,790	0.1 0.1	0.00 0.02	0.01 0.03	0.05 0.03	0.21 0.24	
E	Slightly Stable	3	27.0	24.8 27.3	1,790 2,212	0.1	0.02	0.03	0.03	0.24	
D	Neutral	. 3	36.1	24.8	2,685	0.0	0.07	0.11	0.06	0.42	
E	Slightly Stable	4	27.0	27.3	2,949	0.0	0.02	0.13	0.05	0.47	
D	Neutral	4	36.1	24.8	3,580	0.0	0.14	0.26	0.10	0.57	
E D	Slightly Stable Neutral	5 5	27.0 36.1	27.3 24.8	3,686 4,475,	0.0 0.0	0.02 0.10	0.28 0.38	0.00 0.14	0.57 0.70	
W Wind Di	rection Sector										
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F E	Moderately Stable Slightly Stable	2 1	18.0 27.0	18.1 27.3	649 737	0.1 0.1	0.00 0.00	0.00 0.00	0.05 0.00	0.05 0.05	
D	Neutral	1	36.1	27.3 24.8	73 7 895	0.1	0.00	0.00	0.00	0.05	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.01	0.01	0.08	0.14	
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.00	0.01	0.03	0.16	
D	Neutral	2	36.1	24.8	1,790	0.1	0.10	0.11	0.02	0.18	
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.02	0.13	0.09	0.27	
E ·	Neutral Slightly Stable	3 4	36.1 27.0	24.8 27.3	2,685 2,949	0.0 0.0	0.15 0.01	0.27 0.28	0.12 0.04	0.39 0.43	
D D	Neutral	4	36.1	24.8	3,580	0.0	0.01	0.28	0.16	0.58	
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.00	0.37	0.00	0.58	
D	Neutral	5	36.1	24.8	4,475	0.0	0.13	0.49	0.22	0.80	
JSW Wind	Direction Sector										
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00	
F	Moderately Stable	2	18.0	18.1	649	0.1	0.02	0.02	0.02	0.02	
E	Slightly Stable	1	27.0	27.3	737	0, 1	0.00	0.02	0.00	0.02	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.02	0.00	0.02	
F	Moderately Stable	3 2	18.0 27.0	18.1 27.3	973 1.475	0.0	0,01 0,00	0.03 0.03	0.16 0.01	0.1 7 0.18	
E D	Slightly Stable Neutral	2	27.0 36.1	27.3 24.8	1,475 1,790	0.1 0.1	0.00	0.03	0.01	0.18	
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.01	0.06	0.14	0.37	
D	Neutral	3	36.1	24.8	2,685	0.0	0.06	0.13	0.14	0.50	
E	Slightly Stable	4	27.0	27.3	2,949	0.0	0.00	0.13	0.32	0.82	
D E	Neutral Slightly Stable	4 ⁻ 5	36.1 27.0	24.8 27.3	3,580 3,686	0.0 0.0	0.14 0.00	0.26 0.26	0.27 0.16	1.10 1.25	
D D	Neutral	5	36.1	24.8	3,686 4,475	0.0	0.00	0.39	0.16	1.54	
										à	
/ Wind Dire F	ection Sector Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0,00	
F	Moderately Stable	2	18.0	18.1	649	0.1	0.02	0.02	0.17	0.17	
E	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.02	0.00	0.17	
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.02	0.00	0.17	
F	Moderately Stable	3	18.0	18.1	973	0.0	0.02	0.04	0.18	0.36	
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.01	0.05	0.05	0.41	
D E	Neutral Slightly Stable	2 3	36.1 27.0	24.8 27.3	1,790 2,212	0.1 0.0	0.07 0.01	0.12 0.13	0.07 0.14	0.48 0.62	
D	Neutral	3	36.1	24.8	2,685	0.0	0.16	0.19	0.16	0.78	
Е	Slightly Stable	4	27.0	27.3	2,949	0.0	0.01	0.30	0.20	0.99	
D	Neutral	4	36.1	24.8	3,580	0.0	0.22	0.52	0.34	1.32	
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.00	0.52	0.14	1.46	

TABLE FDEP-PSD-8-1
PLUME VISUAL IMPACT ANALYSIS - SCREENING LEVEL 2 - IDENTIFICATION OF WORSE-CASE METEOROLOGICAL CONDITIONS

		Disper	sion Conditions			Transport	Fr		currence (perce	nt)
	Ctabilit-	Wt 2 6 2		Parameter Vantinal	Sigma Y x Sigma Z	Time to			Conditions c	. 7
Category	Stability Name	Wind Speed (m/s)	Horizontal (sigma Y (m))	Vertical (sigma Z (m))	x Wind Speed (m ³ /s)	NP Area (hours) *	f b	o 1 p.m.	f b	cf ^b
				(-g						
NW Wind	Direction Sector Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18.1	649	0.1	0.00	0.00	0.15	0.15
E	Slightly Stable	1	27.0		737	0.1	0.00	0.00	0.00	0.15
	- -	1		27.3						
D	Neutral	l -	36.1	24.8	895	0.1	0.00	0.00	0.00	0.15
F	Moderately Stable	3	18.0	18.1	973	0.0	0.01	0.01	0.09	0.24
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.00	0.01	0.03	0.26
D	Neutral	2	36.1	24.8	1,790	0.1	0.06	0.07	0.06	0.33
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.00	0.07	0.14	0.47
D	Neutral	3	36.1	24.8	2,685	0.0	0.15	0.22	0.14	0.60
E	Slightly Stable	4	27.0	27.3	2,949	0.0	0.02	0.24	0.07	0.68
D	Neutral	4	36.1	24.8	3,580	0.0	0.14	0.37	0.16	0.84
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.00	0.37	0.05	0.89
D	Neutral	5	36.1	24.8	4,475	0.0	0.17	0.55	0.19	1.08
		<u>,</u>	30.1	27.0	7,412	0.0	V.17	0.55	0.17	.,00
	irection Sector									• • •
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18,1	649	0.1	0.05	0.05	0.16	0.16
E	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.05	0.00	0.16
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.05	0.00	0.16
F	Moderately Stable	. 3	18.0	18.1	973	0.0	0.05	0.09	0.13	0.29
E	Slightly Stable	2	27.0	27.3	1,475	0,1	0.00	0.09	0.04	0.33
D	Neutral	2	36.1	24.8	1,790	0.1	0.04	0.13	0.08	0.41
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.01	0.14	0.15	0,56
D	Neutral	3	36.1	24.8 ⁻	2,685	0.0	0.17	0.31	0.15	0.71
E		4			·					0.80
	Slightly Stable	•	27.0	27.3	2,949	0.0	. 0.03	0.34	0.09	
D	Neutral	4	36.1	24.8	3,580	0.0	0.22	0.56	0.36	1.16
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.02	0.58	0.05	1.21
D	Neutral	5	36.1	24.8	4,475	0.0	0.26	0.84	0.20	1.41
<u>NW</u> Wind	Direction Sector									
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18.1	649	0.1	0.08	0.08	0.17	0.17
E	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.08	0.00	0.17
D	Neutral			24.8	895	0.1	0.00	0.08	0.00	0.17
		3	36.1							0.17
F	Moderately Stable	_	18.0	18.1	973	0.0	0.05	0.13	0.26	
E	Slightly Stable	2	27.0	27.3	1,475	0.1	0.01	0.14	0.13	0.56
D	Neutral	2	36.1	24.8	1,790	0.1	0.09	0.23	0.10	0.66
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.05	0.27	0.25	0.90
D	Neutral	3	36.1	24.8	2,685	0.0	0.33	0.60	0.17	1.08
Е	Slightly Stable	4	27.0	27.3	2,949	0.0	0.07	0.68	0.17	1.25
D	Neutral	4	36.1	24.8	3,580	0.0	0.41	1.09	0.41	1.66
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.11	1.20	0.13	1.79
D.	Neutral	5	36.1	24.8	4,475	0.0	0.41	1.61	0.26	2.04
I Wind Di-	ection Sector			•						
		•	100	10.1	22.4		0.00	0.00	0.00	0.00
F	Moderately Stable	1	18.0	18.1	324	0.1	0.00	0.00	0.00	0.00
F	Moderately Stable	2	18.0	18.1	649	0.1	0.07	0.07	0.35	0.35
E	Slightly Stable	1	27.0	27.3	737	0.1	0.00	0.07	0.00	0.35
D	Neutral	1	36.1	24.8	895	0.1	0.00	0.07	0.00	0.35
F	Moderately Stable	3	18.0	18.1	973	0.0	0.06	0.14	0.16	0.50
Е	Slightly Stable	2	27.0	27.3	1,475	0.1	0.03	0.16	0.15	0.65
D	Neutral	2	36,1	24.8	1,790	0.1	0.10	0.26	0.09	0.74
E	Slightly Stable	3	27.0	27.3	2,212	0.0	0.11	0.20	0.09	0.83
D	Neutral	3					0.11		0.09	0.85
		3 4	36.1	24.8	2,685	0.0		0.79		
E	Slightly Stable	4	27.0	27.3	2,949	0.0	0.05	0.85	0.12	1.07
D	Neutral	4	36.1	24.8	3,580	0.0	0.33	1.18	0.39	1.46
E	Slightly Stable	5	27.0	27.3	3,686	0.0	0.04	1.21	0.02	1.48
D	Neutral	5	36.1	24.8	4,475	0.0	0.37	1.58	0.20	1.68

^a Proposed project location is approximately

^{0.5} km from closest boundary of Class I area.

b f= frequency for given meteorological condition; cf= cumulative frequency up to and including condition.

^o Based on surface meteorological data for 2001 to 2005 from the National Weather Service (NWS) station at the Tampa International Airport.

d Approximately 95 percent of the Chassahowitzka NWA is downwind of the proposed project with a south-southeast wind direction.

TABLE FDEP-PSD-10

October 2009 0938-7652

TABLE FDEP-PSD-10 ESTIMATED VOC EMISSIONS CIRCULATING WATER COOLING TOWERS - UNITS 6 AND 7

Parameter		Salt Water	Reclaimed Water
Physical Data	•		
Number of Towers per Unit	3		• •
Number of Cells per Tower	12		
Cycles of Concentration /		1.5	. 4
Emission Data			
Drift Rate ^a (DR), percent		0.0005	0.0005
Total VOC ppmw ^b	,	0.089	0.055
Number of Analyses for HAPs	•	138	39
Number of Analyses Above the Detection Limits		0	6
Solution Drift ^c (SD), lb/hr		1,656.6	1,656.6
VOC Emissions ^d , lb/hr		0.00022	0.00009
tons/year/unit (3 towers)		0.00097	0.00040
tons/year (6 towers)	•	0.0019	0.0008

^a Drift rate is the percent of circulating water.

b HAP concentration based on sample analysis. For concentrations that were reported below dectection limit calculations assume concentration at detection limit to be conservative. The ppmw multiplied by the cycles of concentration to calculate emissions.

^c Includes water and based on circulating water flow rate and drift rate. (CWFR x DR x 8.75 lb/gal x 60 min/hr).

^d HAP calculated based on total concentration and solution drift.

TABLE FDEP-PSD-11

TABLE FDEP-PSD-11
ESTIMATED PERFORMANCE AND EMISSION DATA FOR DIESEL GENERATORS AND
GENERAL PURPOSE DIESEL ENGINES ASSOCIATED WITH TURKEY POINT UNITS 6 & 7

Parameter	Standby Diesel Generators	Ancillary Diesel Generators	Diesel Fire Pump Engines	General Purpose Engines	Total
Performance		•			
Number for TP 6 & 7	4	4	2	Various	
Rating (kW)	4,100	36			
Rating (hp)	5,831	51	330	<600	
Fuel	Diesel	Diesel	Diesel	Diesel	
Fuel Heat content (Btu/lb) (HHV)	19,300	19,300	19,300	19,300	
Fuel density (lb/gal)	7.0	7.0	7.0	7.0	
Heat input (MMBtu/hr) ^a (MMBtu) ^b (HHV)	39.12	0.39	2.32	8,106	
Fuel usage (gallons/hr)	289.6	2.9	17.2	0,100	
Maximum operation (hours)	96	96	96		
Maximum fuel usage (gallons/yr/unit)	27,802	278	1,651		
Maximum fuel usage (gallons/yrf	111,206	1,114	3,302	60,000	
Stack Parameters					
Number of Stacks	2	1	1		
Exhaust Flow (cfm; each stack)	16,428	311	1,750		
Stack Velocity (ft/sec; each stack)	60	60	60		
Exhaust Temperature (°F; each stack)	874		744		
Stack Height (ft; each stack)	40	1,040 93	/ 44 17		
Stack Height (it, each stack) Stack Diameter (ft; each stack)	2.41			•	
Stack Diameter (II, each Stack)	2.41	0.33	0.79		
<u>Emissions</u>				٠	
PM/PM ₁₀ /PM _{2,5} ^d - Basis (g/hp-hr) ^a (lb/MMBtu) ^b	0.4	0.4	0.4	0.31	
Emission rate (lb/hr)	5.1	0.05	0.29	,	
(tpy/diesel engine)	0.25	0.002	0.014		
(tpy)	0.987	0.002	0.028	1.26	2.280

Sources: AP1000 Design Control Document, Chapter 8 http://www.nrc.gov/reactors/new-licensing/design-cert/ap1000.html; Caterpillar, 2008. AP1000 DCD; Chapter 9; Table 9.5.4-1 2000 gpm fire pump; 300 ft head NFPA 20 Certified; Fairbanks Morse Fire Pumps, 2008.

^a For standby generators and ancillary generators; emissions based on 40 CFR Part 60 Subpart IIII

^b For general purpose engines; emissions based on AP-42 Section 3.3 Gasoline and Diesel Industrial Engines; Table 3.3-1.

^c For general purpose engines the annual usage based on usages from FPL St. Lucie Nuclear Plant, FDEP Annual Operating Reports with margin.

^d PM_{2.5} emissions assumed equal to PM. Footnote b of AP-42 Table 3.3-1 states: "All particulate is assumede to b≤ 1μm in size."

FIGURES

Visual Effects Screening Analysis for Source: TURKEY PT UNITS 6&7

Area: BISCAYNE NP

Level-1 Screening

Input Emissions for

Particulates. 5.89 LB /HR NOx (as NO2) 15.32 LB /HR Primary NO2 .00 LB /HR Soot .00 LB /HR .00 LB /HR Primary SO4

**** Default Particle Characteristics Assumed

Transport Scenario Specifications:

Background Ozone: .04 ppm Background Visual Range: 40.00 km Source-Observer Distance: .50 km Min. Source-Class I Distance: .50 km Max. Source-Class I Distance: 10.00 km Plume-Source-Observer Angle: 11.25 degrees

Stability:

Wind Speed: 1.00 m/s

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE Exceeded

					Delta E		Contrast	
					====	=====	====	======
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
=======================================	=====	===	======	=====	====	=====	====	=====
SKY	10.	158.	1.0	11.	2.48	8.390*	. 05	.073*
SKY	140.	158.	1.0	11.	2.00	3.977*	.05	071*
TERRAIN	10.	158.	1.0	11.	2.00	46.622*	.05	.185*
TERRAIN	140.	158.	1.0	11.	2.00	7.377*	.05	.067*

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

					Delta E		Contrast	
					========		=====	======
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
=======	=====	===	======	=====	====	=====	====	=====
SKY	10.	5.	. 2	164.	2.00	13.674*	.05	.237*
SKY	140.	5.	.2	164.	2.00	4.350*	.05	131*
TERRAIN	10.	5.	. 2	164.	2.00	79.460*	.05	.410*
TERRAIN	140.	5.	.2	164.	2.00	15.865*	.05	.177*

October 2009 0938-7652

Average Wind Speed 3.61 m/s Calm Winds 11.18%

Figure FDEP-PSD-8-2. Annual Wind Rose for 2001 to 2005 At Miami International Airport, Florida (Station No. 12839) FPL Turkey Point, Miami-Dade County, Florida

Source: National Climatic Data Center, 2001-2005; Golder, 2009.

Visual Effects Screening Analysis for

Source: TURKEY PT UNITS 6&7

Area: BISCAYNE NP

*** User-selected Screening Scenario Results *** Input Emissions for

Particulates	5.89	LB /HR
NOx (as NO2)	15.32	LB /HR
Primary NO2	.00	LB /HR
Soot	.00	LB /HR
Primary SO4	.00	LB /HR

**** Default Particle Characteristics Assumed

Transport Scenario Specifications:

Background Ozone:	.04	ppm
Background Visual Range:	40.00	km
Source-Observer Distance:	.50	km
Min. Source-Class I Distance:	.50	km
Max. Source-Class I Distance:	10.00	km
Plume-Source-Observer Angle:	11.25	degrees
Stability: 5		

3.00 m/sWind Speed:

RESULTS

Asterisks (*) indicate plume impacts that exceed screening criteria

Maximum Visual Impacts INSIDE Class I Area Screening Criteria ARE Exceeded

					Delta E		Contrast	
					=====	======	=====	==== ==
Backgrnd	Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
=======	=====	===	=======	====	====	=====	====	====
SKY	10.	158.	1.0	11.	3.66	2.868	.06	.013
SKY	140.	158.	1.0	11.	2.00	1.296	.06	019
TERRAIN	10.	158.	1.0	11.	2.00	16.493*	.06	.045
TERRAIN	140.	158.	1.0	11.	2.00	2.026*	.06	.015

Maximum Visual Impacts OUTSIDE Class I Area Screening Criteria ARE Exceeded

				Delta E		Contrast	
				=		=====	======
Theta	Azi	Distance	Alpha	Crit	Plume	Crit	Plume
=====	===	=======	=====	=== =	=====	====	=====
10.	5.	.2	164.	2.00	3.531*	.05	.056*
-	5.	.2	164.	2.00	1.228	.05	034
10.	5.	.2	164.	2.00	37.316*	.05	.118*
140.	5.	.2	164.	2.00	,5.552*	.05	.039
	10. 140. 10.	10. 5. 140. 5. 10. 5.	10. 52 140. 52 10. 52	10. 52 164. 140. 52 164. 10. 52 164.	Theta Azi Distance Alpha Crit 10. 52 164. 2.00 140. 52 164. 2.00 10. 52 164. 2.00	10. 52 164. 2.00 3.531* 140. 52 164. 2.00 1.228 10. 52 164. 2.00 37.316*	Theta Azi Distance Alpha Crit Plume Crit