

TITLE V PERMIT REVISION APPLICATION

Request for Permanent Hydrated Lime Injection System Crystal River North Power Plant Facility ID No. 0170004

REPORT

Submitted To: Air Quality Division Department of Environmental Protection 2600 Blair Stone Road MS 5000 Tallahassee, FL 32399

Submitted By: Golder Associates Inc. 5100 W. Lemon Street, Suite 208 Tampa, FL 33609 USA

Distribution: 4 Copies—Florida Department of Environmental Protection 1 Copy—Duke Energy Florida 1 Copy—Golder Associates Inc.

November 2013

A world of capabilities delivered locally 1302150

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation

Table of Contents

PART I—APPLICATION REPORT

1.0	INTRODUCTION	1
2.0	PROJECT DESCRIPTION	2
3.0	COMPLIANCE DEMONSTRATION	4
3.1	SAM Compliance Testing	4
3.2	SAM Operating Protocol (SAM SOP)	5
3.3	SAM CAM Plan	5
3.4	CO BACT Limit	6

List of Figures

Appendix A- Figure 1 Site Map Appendix A- Figure 2 Project Location Appendix A- Figure 3 Sorbent Injection Point Locations Appendix A- Figure 4 Sorbent Injection System

List of Appendices

Appendix A Project Figures

PART II—FDEP APPLICATION FOR AIR PERMIT

1.0 INTRODUCTION

Duke Energy Florida, Inc. (DEF) is submitting this application for a Title V (TV) permit revision for the Crystal River Energy Complex (CREC). Specifically, this application serves to incorporate the conditions of the air construction permit associated with the permanent hydrated lime injection system into a revised TV permit for Crystal River Units 4 and 5 (Crystal River North or CRN). In addition, the application requests incorporation of the final revised CO BACT limit into the TV revision.

DEF's CREC is located in Citrus County, Florida. Units 4 and 5 are fossil fuel-fired electric utility steam generators with dry bottom, wall fired boilers rated at 760 megawatts (MW), with a heat input capacity of 7,200 MMBtu/hr. The boilers are capable of burning bituminous coal, a bituminous coal and bituminous coal briquette mixture, and used oil. No. 2 oil can be used as a startup fuel, and natural gas can be used for startup and for low-load flame stabilization. Air pollution control equipment includes: low-NOx burners, an SCR system, an acid mist mitigation (AMM) system, an ESP, and a FGD system. Flue gas exhausts through the stack at ~130 °F. The AMM system is used for the control of SAM emissions and uses hydrated lime as the sorbent for primary control and ammonia injection as the method of secondary (backup) control.

In early 2011, DEF requested authorization for the temporary installation and operation of a demonstration injection system at Crystal River North using alternative sorbents to evaluate additional methods for reducing SAM emissions. Authorization was issued May 16, 2011 by the Florida Department of Environmental Protection (FDEP) through a revision to Permit No. PSD-FL-383D (FDEP Project No. 0170004-026-AC). Subsequently, Permit No. 0170004-037-AC (PSD-FL-383F), revised permit No. 0170004-026-AC to authorize a permanent hydrated lime injection system at Units 4 and 5. The construction activities that were authorized under this permit have now been substantially completed and compliance has been demonstrated.

Therefore, this application serves to incorporate the conditions of the air construction permit associated with the permanent hydrated lime injection system into a revised TV permit for Crystal River Units 4 and 5. In addition, the application requests incorporation of the final revised CO BACT limit into the TV revision. The air permit application consists of the appropriate application form required by the FDEP, Form 62-210.900(1), effective 3/11/2010 (see Part II of this application package). This air application report is divided into the following major sections:

- Section 1.0 provides the Project background;
- Section 2.0 provides a description of the Project;
- Section 3.0 provides a summary of the compliance demonstration required for this TV revision request; and
- Appendix A -- Project Figures.

2.0 **PROJECT DESCRIPTION**

This permitting action allows for permanent operation of a hydrated lime [Ca(OH)₂] injection system for SAM control. DEF selected hydrated lime as the best available sorbent because of ease of material handling, as well as the extent to which it has been used in the US. Hydrated lime has also been used on some of DEF's generating units in North Carolina with encouraging results.

The use of hydrated lime, which has been successfully demonstrated at Crystal River, will also have the co-benefit of reducing the level of ammonia (NH_3) in the fly ash. Eliminating the need for NH_3 for SAM mitigation significantly reduces the amount of NH_3 compounds retained with the fly ash. This has the benefit of improving handling and storage operations, as well as the beneficial reuse of the fly ash.

Additional detail on this permanent installation project is presented in the attached appendix. Appendix A consists of Figures 1 through 4, depicting a site map, the project location, sorbent injection point locations and the permanent sorbent injection system, respectively. This permanent system is proposed to be used in lieu of the current NH₃ injection system for control of SAM emissions, although the current NH₃ injection system will be retained for backup.

The sorbent is transported from the sorbent silo to the injection point(s) in the flue gas stream via a pneumatic conveying system. The locations of the permanent dry sorbent injection points include a combination of locations (e.g., SCR outlet, air heater outlet, ESP outlet) to optimize the system, as shown in Figure 3.

Figure 4 presents an overview of the dry sorbent storage and pneumatic conveying equipment associated with the permanent injection system. As shown in Figure 4, there is a new air emission source associated with the dry sorbent storage and injection system for each of the two steam units, for a total of two new emission points. These new sources are related to potential emissions that occur when displaced air entrains dust particles as the sorbent storage vessels are filled. To minimize these emissions, the exhaust from the storage vessels and the pneumatic conveyor are routed through fabric filters prior to exhausting to the ambient air; thus the fabric filters associated with each silo for each unit are the only new emission points. Each silo has dedicated rotary valves and blowers for pneumatic delivery of the sorbent to sets of lances mounted in flue gas ducts at various locations. The sorbent storage system has an estimated flow rate of 2,000 standard cubic feet per minute (scfm) through the dust collection system during loading operations, which is estimated to occur for six hours per day.

The sorbent injection rates will vary based on emission control levels and operational parameters at each of the sorbent injection locations. The sorbent reacts with the acidic compounds in the flue gas stream to form particulate matter that is further removed in the ESP and/or in the wet scrubber.

The emission estimates associated with material handling from the sorbent storage and transfer system assume year-round operation and are therefore considered to be a conservative estimate of potential emissions. The baghouse control system is designed to a particulate emissions design rate of 0.015 grains per standard cubic feet of exhaust gas flow.

The bag filters in the design specification ensure compliance with the visible emissions standard of less than 5 percent opacity when averaged over a six-minute period. In addition, the project will not cause or allow fugitive dust emissions to cause or contribute to substantive complaints or excess visible emissions beyond the property boundary. Haul roads and material handling operations are maintained in a manner that will minimize fugitive dust emissions.

The potential emissions from the permanent sorbent storage and injection systems for Units 4 and 5 at Crystal River are considered to be insignificant since the proposed activity emits less than 5 tons per year (TPY) of any criteria pollutant. New source review for the proposed project was not triggered since the potential to emit (PTE) $PM_{2.5}$ emission estimate is less than the 10 tons per year emission increase threshold.

3.0 COMPLIANCE DEMONSTRATION

The air construction permit for the hydrated lime injection system specified that various actions, notifications and reports be completed to demonstrate compliance, as part of this TV revision request. This permit application package, therefore, includes the completed FDEP Form No. 62-210.900(1), and all required supplemental material (e.g., compliance test reports, standard operating protocols, a CAM Plan, site location map, process schematics, unregulated and insignificant activities, etc.).

With respect to the SAM emission control system (AMM system), periods of startup, maintenance and repair are addressed differently. Previous permit language (Specific Condition B.15b) was meant to address situations when the AMM system would not be operable, assuming that there would be no backup control. Therefore, there is language requiring specific SAM testing while burning compliance coal to ensure that an operating option existed that was appropriate for these operating modes. However, the current configuration envisions the hydrated lime injection system as the primary means of SAM emissions control, with the previously used ammonia injection system retained as the backup system. This is addressed in the revision submittal in the attachment that requests TV permit language revisions.

The hydrated lime injection system, described in the air construction permit as Emission Unit No. 032, consists of the hydrated lime storage and transfer system. The hydrated lime injection system and miscellaneous ancillary equipment, as constructed, were evaluated for consistency with the proposed construction that was described in the construction permit. The system was found to have been constructed as previously described. This permanent system is proposed to be used in lieu of the current ammonia injection system, although the current system will be retained for backup.

3.1 SAM Stack Testing

As part of this project, and in accordance with Air Permit No. 0170004-037-AC, Specific Condition No. A.16, as issued by the FDEP, DEF conducted a series of preliminary performance tests on Units 4 and Unit 5 to determine SAM emissions rates under a variety of unit operating conditions in order to refine the injection rates when operating with the permanent system. In addition, Specific Condition A.19 required that compliance testing be conducted when the performance and tuning testing had been completed.

The hydrated lime AMM system performance testing was conducted on Crystal River Units 4 and 5 on August 26, 2013 through August 31, 2013. Additional hydrated lime AMM system tuning and optimization was conducted on October 8, 2013 and October 9, 2013. The injection rates for compliance testing were based on results from performance testing and refined following the tuning of the hydrated lime AMM system. Annual compliance testing for Crystal River Unit 4 was conducted on September 17, 2013 and on October 10, 2013. Compliance testing for Crystal River Unit 5 was conducted on September 18, 2013 and on October 11, 2013.

5

A total of 28 tests were performed on Unit 4 and a total of 23 tests were performed on Unit 5. These referenced test reports are included as an attachment to the application forms (Attachment CR-EU3-I1). In addition, a summary of the test results are presented in Tables 1 through 6 of the SAM Standard Operating protocol (SAM SOP) document (see Attachment CR-EU32-I1).

3.2 SAM Operating Protocol (SAM SOP)

In addition to the SAM performance testing, a revised SAM Standard Operating Protocol (SAM SOP) is required to be submitted to the Department after the test data are evaluated and implemented in the form of a correlation curve. The purpose of this SAM SOP is to outline how the AMM system will be operated at various load levels and operating conditions, based upon the results of the SAM performance tests.

It is DEF's interpretation that the SAM SOP serves as the basis for implementing the SAM "correlation curve/algorithm" that will be used to demonstrate ongoing compliance with the permitted SAM emission limits. This protocol document is intended to be separate from the permit, so that it can be modified in the future (as necessary) without a requirement to update the permit documents.

Although the permit language suggests that DEF was to "conduct a minimum 1-hour test run to determine the SAM emissions for at least nine (9) different operating conditions", that permit language dates back to the original air construction permit, and was developed based on potential unknown effects of various operational conditions associated with the originally designed ammonia based AMM system. During the initial commissioning of that system, the testing addressed various operational conditions. This information was used to develop the original Operating Protocol (for the ammonia system).

In general, DEF found that the only major effect on SAM emissions (at a consistent fuel sulfur level) was based on the sorbent injection rate. When DEF transitioned to the temporary hydrated lime system, the initial testing to develop the temporary hydrated lime AMM system operating protocol became more focused on interpreting the "nine different operating conditions" more as different injection rates/locations at different loads. That concept has carried forward to the recent testing of the permanent hydrated lime AMM system. Therefore, the testing that was conducted to support this permitting action was used as the basis for the new/revised operating protocol (the SAM SOP) developed to direct current operation of the AMM system.

3.3 SAM CAM Plan

The purpose of the performance test program was to document the impact of the AMM system injection rates on reducing SAM emissions and to develop a correlation curve between the injection rate, unit operating conditions/loads, and measured SAM emissions. Once the curve was developed (based upon the performance test data), it was programmed into the Distributed Control System (DCS) of each unit in

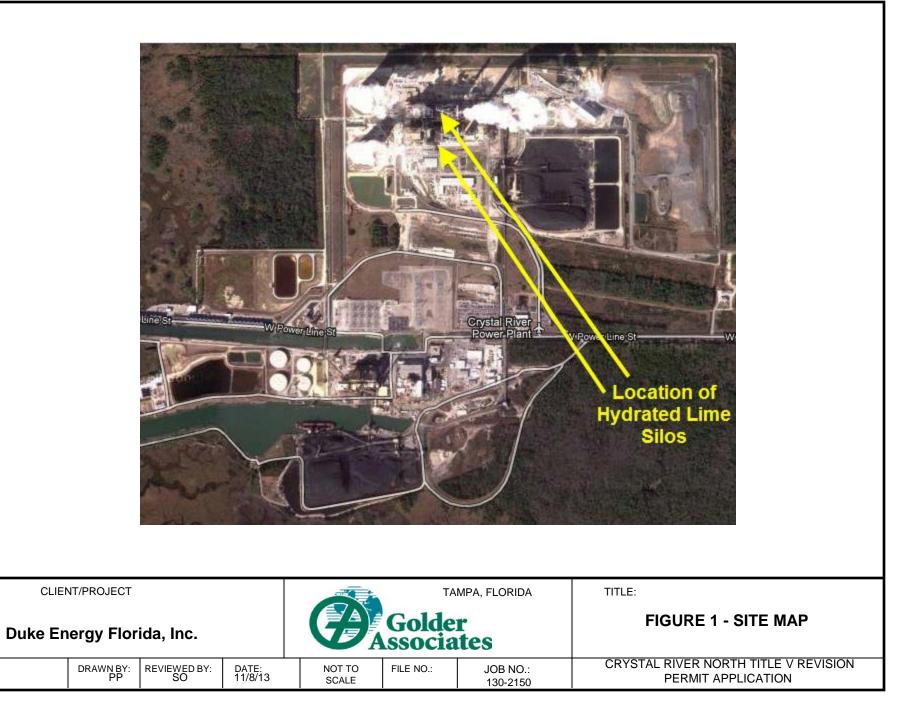
1302150

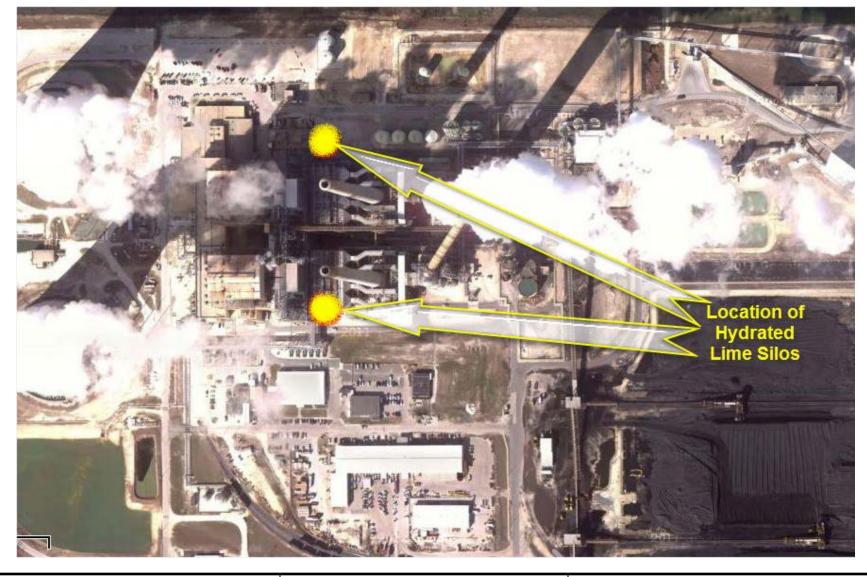
order to continuously demonstrate compliance with the permitted SAM limit of 0.009 lb/mmBtu at any operating load level over each unit's range of operation (while the AMM system is operating).

The SAM emissions control equipment includes a hydrated lime based acid mist mitigation (AMM) system as the primary control. In addition, the original ammonia based AMM system remains available as a backup control system. In order to control the amount of SAM that is exhausted through the stack, AMM systems have been installed that inject hydrated lime (primary system) or ammonia (back-up system) into the flue gas stream to reduce the concentration of SAM entering the flue gas desulfurization (FGD) system and out the stack.

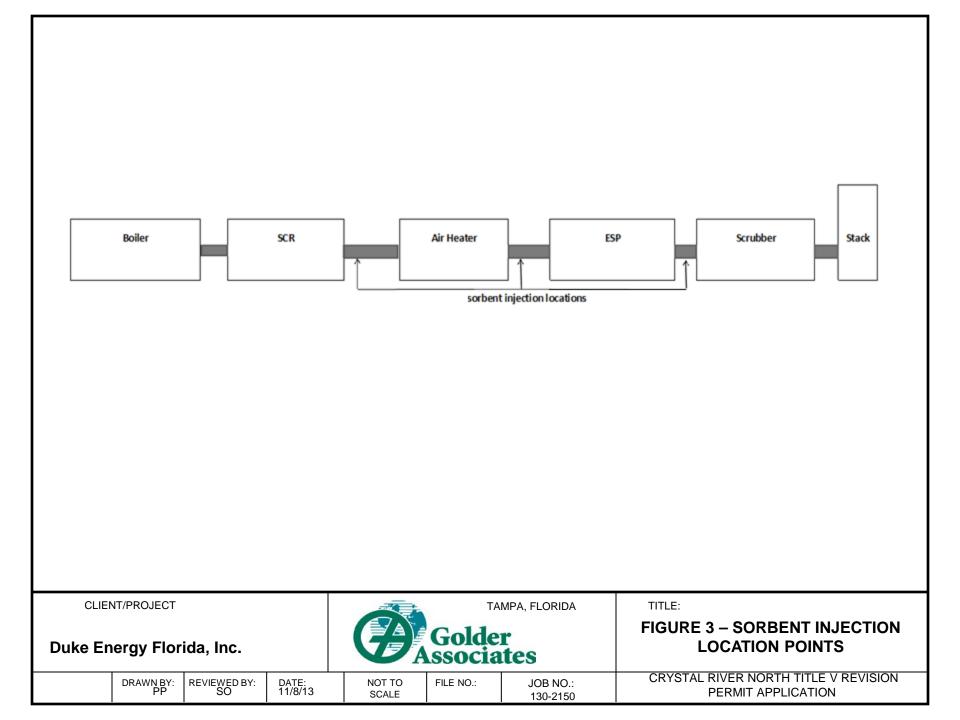
The purpose of this SAM CAM Plan (see Attachment CR-EU3-I2) is to outline how the AMM system (both the primary hydrated lime injection system and the backup ammonia injection system) will be operated at various load levels and operating conditions, based upon the results of the AMM performance test. The required level of AMM injection was determined during performance tests and following system tuning. Test data taken over three operating load levels (i.e., approximately 250 MW, 500 MW and full load) were used to interpolate an AMM injection curve over each unit's range of operation. The AMM system injection rate will be continuously monitored and recorded. The injection flow rate monitoring system will be properly calibrated, operated, and maintained in accordance with Rule 62-297.520, F.A.C.

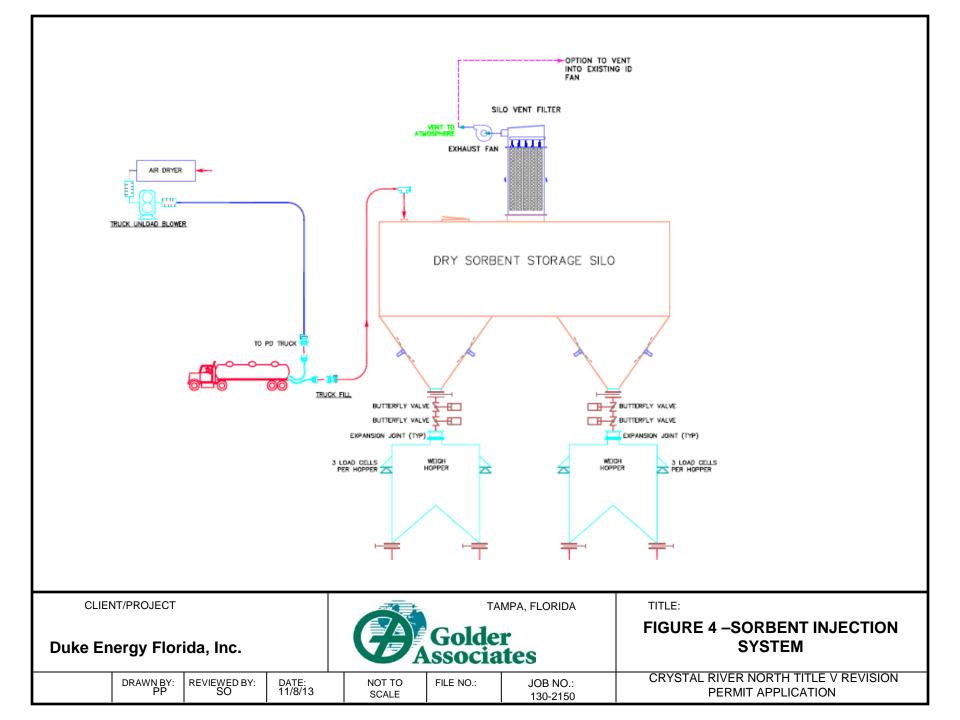
It should be noted that compliance testing is required annually for SAM emissions for these units, as well as within 60 days of an increase of the fuel sulfur content of 0.5 percent or more. Such an increase in fuel sulfur content would also require an adjustment to the calibrated injection rates, as detailed in the attached SAM CAM Plan.


3.4 CO BACT Limit


Finally, Permit No. 0170004-030-AC (PSD-FL-383E), which was issued on June 30, 2011, revised the CO BACT limit for Units 4 and 5 from an interim standard of 0.17 pound per million British thermal units (lb/MMBtu) to a final standard of 0.10 lb/MMBtu. Apparently, this final standard was not incorporated by the Department into the current revised TV permit, which was issued on June 13, 2012. Therefore, this permit revision request is also included in this TV permit revision application package.

H:\PROJECTS\2013\1302150 DEF CR TV Revision Application.docx




APPENDIX A PROJECT FIGURES

CLIE	NT/PROJECT				TA	MPA, FLORIDA	TITLE:
Duke Energy Florida, Inc.			Golder			FIGURE 2 – PROJECT LOCATION	
	DRAWN BY: PP	REVIEWED BY: SO	DATE: 11/8/13	NOT TO SCALE	FILE NO.:	JOB NO.: 130-2150	CRYSTAL RIVER NORTH TITLE V REVISION PERMIT APPLICATION

PART II FDEP APPLICATION FOR AIR PERMIT

Department of Environmental Protection

Division of Air Resource Management

APPLICATION FOR AIR PERMIT - LONG FORM

I. APPLICATION INFORMATION

Air Construction Permit – Use this form to apply for an air construction permit:

- For any required purpose at a facility operating under a federally enforceable state air operation permit (FESOP) or Title V air operation permit;
- For a proposed project subject to prevention of significant deterioration (PSD) review, nonattainment new source review, or maximum achievable control technology (MACT);
- To assume a restriction on the potential emissions of one or more pollutants to escape a requirement such as PSD review, nonattainment new source review, MACT, or Title V; or
- To establish, revise, or renew a plantwide applicability limit (PAL).

Air Operation Permit – Use this form to apply for:

- An initial federally enforceable state air operation permit (FESOP); or
- An initial, revised, or renewal Title V air operation permit.

To ensure accuracy, please see form instructions.

Identification of Facility

	1. Facility Owner/Company Name: DUKE	ENERGY FLORIDA	, INC.
2.	Site Name: CRYSTAL RIVER POWER PLAN	IT	
3.	Facility Identification Number: 0170004		
4.	Facility Location		
	Street Address or Other Locator: NORTH O	F CRYSTAL RIVER,	WEST OF U.S. 19
	City: CRYSTAL RIVER County:	CITRUS	Zip Code: 34428
5.	Relocatable Facility?	6. Existing Title	V Permitted Facility?
	☐ Yes ⊠No	🖾 Yes	□ No

Application Contact

1. Application Contact Name:
JAMIE HUNTER, LEAD ENVIRONMENTAL SPECIALIST
2. Application Contact Mailing Address Organization/Firm: DUKE ENERGY FLORIDA, INC.
Street Address: 299 FIRST AVENUE, NORTH, FL 903
City: ST. PETERSBURG State: FL Zip Code: 33701
3. Application Contact Telephone Numbers
Telephone: (727) 820-5764 ext. Fax: 727) 820-5229
4. Application Contact E-mail Address: Jamie.Hunter@duke-energy.com

Application Processing Information (DEP Use)

1. Date of Receipt of Application:	3. PSD Number (if applicable):
2. Project Number(s):	4. Siting Number (if applicable):

Purpose of Application

This application for air permit is being submitted to obtain: (Check one)
Air Construction Permit
Air construction permit.
Air construction permit to establish, revise, or renew a plantwide applicability limit (PAL).
Air construction permit to establish, revise, or renew a plantwide applicability limit (PAL), and separate air construction permit to authorize construction or modification of one or more emissions units covered by the PAL.
Air Operation Permit
☐ Initial Title V air operation permit.
⊠ Title V air operation permit revision.
Title V air operation permit renewal.
☐ Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is required.
☐ Initial federally enforceable state air operation permit (FESOP) where professional engineer (PE) certification is not required.
Air Construction Permit and Revised/Renewal Title V Air Operation Permit (Concurrent Processing)
Air construction permit and Title V permit revision, incorporating the proposed project.
Air construction permit and Title V permit renewal, incorporating the proposed project.
Note: By checking one of the above two boxes, you, the applicant, are requesting concurrent processing pursuant to Rule 62-213.405, F.A.C. In such case, you must also check the following box:
☐ I hereby request that the department waive the processing time requirements of the air construction permit to accommodate the processing time frames of the Title V air operation permit.

Application Comment

Duke Energy Florida, Inc. is submitting this application for a Title V permit revision for the Crystal River Energy Complex (CREC) to request approval of operating changes following the construction of a permanent hydrated lime injection system (01740004-037-AC) for Crystal River Units 4 and 5.

Additionally, this application includes the revised CO BACT standard for Units 4 and 5 from an interim standard of 0.17 pound per million British thermal units (Ib/MMBtu) to a final standard of 0.10 Ib/MMBtu based on Permit No. 0170004-030-AC (PSD-FL-383E), which was issued on June 30, 2011.

Scope of Application

Emissions Unit ID Number	Description of Emissions Unit	Air Permit Type	Air Permit Processing Fee
004	Unit 4 Fossil Fuel Steam Generator	AV02	NA
003	Unit 5 Fossil Fuel Steam Generator	AV02 AV02	NA
032	Hydrated Lime Storage and Transfer System	AV02	NA

Application Processing Fee

Check one: Attached - Amount:_____

⊠ Not Applicable

DEP Form No. 62-210.900(1) – Form Effective: 03/11/2010

Owner/Authorized Representative Statement

Complete if applying for an air construction permit or an initial FESOP.

1.	Owner/Authorized Representative Name :		
2.	Owner/Authorized Representative Mailing Address		
	Organization/Firm:		
	Street Address:		
	City: State: Zip Code:		
3.	Owner/Authorized Representative Telephone Numbers		
	Telephone: () ext. Fax: ()		
4.	Owner/Authorized Representative E-mail Address:		
5.	Owner/Authorized Representative Statement:		
	<i>I, the undersigned, am the owner or authorized representative of the corporation, partnership, or other legal entity submitting this air permit application. To the best of my knowledge, the statements made in this application are true, accurate and complete, and any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department.</i>		
	Signature Date		

Application Responsible Official Certification

Complete if applying for an initial, revised, or renewal Title V air operation permit or concurrent processing of an air construction permit and revised or renewal Title V air operation permit. If there are multiple responsible officials, the "application responsible official" need not be the "primary responsible official."

 Application Responsible Official Qualification (Check one or more of the following options, as applicable): For a corporation, the president, secretary, treasurer, or vice-president of the corporation in charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213, F.A.C. For a partnership or sole proprietorship, a general partner or the proprietor, respectively. For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official. The designated representative at an Acid Rain source or CAIR source. Application Responsible Official Mailing Address Organization/Firm: DUKE ENERGY FLORIDA, INC Street Address: 299 FIRST AVENUE, NORTH, CN77 City: ST PETERSBURG State: FLORIDA Zip Code: 33701 Application Responsible Official Telephone Numbers Telephone: (352) 501-5230 ext. Fax: (352) 501-5787 Application Responsible Official Certification: the undersigned, am a responsible Official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment des
 charge of a principal business function, or any other person who performs similar policy or decision-making functions for the corporation, or a duly authorized representative of such person if the representative is responsible for the overall operation of one or more manufacturing, production, or operating facilities applying for or subject to a permit under Chapter 62-213, F.A.C. For a partnership or sole proprietorship, a general partner or the proprietor, respectively. For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official. The designated representative at an Acid Rain source or CAIR source. 3. Application Responsible Official Mailing Address Organization/Firm: DUKE ENERGY FLORIDA, INC Street Address: 299 FIRST AVENUE, NORTH, CN77 City: ST PETERSBURG State: FLORIDA Zip Code: 33701 4. Application Responsible Official Telephone Numbers Telephone: (352) 501-5230 ext. Fax: (352) 501-5787 5. Application Responsible Official Certification: I, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions found in the sto complete stores of the store addressions found in the storemet described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
 For a municipality, county, state, federal, or other public agency, either a principal executive officer or ranking elected official. The designated representative at an Acid Rain source or CAIR source. Application Responsible Official Mailing Address Organization/Firm: DUKE ENERGY FLORIDA, INC Street Address: 299 FIRST AVENUE, NORTH, CN77 City: ST PETERSBURG State: FLORIDA Zip Code: 33701 Application Responsible Official Telephone Numbers Telephone: (352) 501-5230 ext. Fax: (352) 501-5787 Application Responsible Official E-mail Address: Jay.Chesser@Duke-Energy.com Application Responsible Official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
 officer or ranking elected official. The designated representative at an Acid Rain source or CAIR source. 3. Application Responsible Official Mailing Address Organization/Firm: DUKE ENERGY FLORIDA, INC Street Address: 299 FIRST AVENUE, NORTH, CN77 City: ST PETERSBURG State: FLORIDA Zip Code: 33701 4. Application Responsible Official Telephone Numbers Telephone: (352) 501-5230 ext. Fax: (352) 501-5787 5. Application Responsible Official E-mail Address: Jay.Chesser@Duke-Energy.com 6. Application Responsible Official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
 Application Responsible Official Mailing Address Organization/Firm: DUKE ENERGY FLORIDA, INC Street Address: 299 FIRST AVENUE, NORTH, CN77 City: ST PETERSBURG State: FLORIDA Zip Code: 33701 Application Responsible Official Telephone Numbers Telephone: (352) 501-5230 ext. Fax: (352) 501-5787 Application Responsible Official E-mail Address: Jay.Chesser@Duke-Energy.com Application Responsible Official Certification: the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
Organization/Firm: DUKE ENERGY FLORIDA, INC Street Address: 299 FIRST AVENUE, NORTH, CN77 City: ST PETERSBURG State: FLORIDA Zip Code: 33701 4. Application Responsible Official Telephone Numbers Telephone: (352) 501-5230 ext. Fax: (352) 501-5787 5. Application Responsible Official E-mail Address: Jay.Chesser@Duke-Energy.com 6. Application Responsible Official Certification: 1, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
City: ST PETERSBURGState: FLORIDAZip Code: 337014. Application Responsible Official Telephone Numbers Telephone: (352) 501-5230ext. Fax: (352) 501-57875. Application Responsible Official E-mail Address:Jay.Chesser@Duke-Energy.com6. Application Responsible Official Certification:II, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
 4. Application Responsible Official Telephone Numbers Telephone: (352) 501-5230 ext. Fax: (352) 501-5787 5. Application Responsible Official E-mail Address: Jay.Chesser@Duke-Energy.com 6. Application Responsible Official Certification: I, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
Telephone:(352) 501-5230ext.Fax:(352) 501-57875.Application Responsible Official E-mail Address:Jay.Chesser@Duke-Energy.com6.Application Responsible Official Certification:1, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
 6. Application Responsible Official Certification: I, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
I, the undersigned, am a responsible official of the Title V source addressed in this air permit application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
application. I hereby certify, based on information and belief formed after reasonable inquiry, that the statements made in this application are true, accurate and complete and that, to the best of my knowledge, any estimates of emissions reported in this application are based upon reasonable techniques for calculating emissions. The air pollutant emissions units and air pollution control equipment described in this application will be operated and maintained so as to comply with all applicable standards for control of air pollutant emissions found in the
revisions thereof and all other applicable requirements identified in this application to which the Title V source is subject. I understand that a permit, if granted by the department, cannot be transferred without authorization from the department, and I will promptly notify the department upon sale or legal transfer of the facility or any permitted emissions unit. Finally, I certify that the facility and each emissions unit are in compliance with all applicable requirements to which they are subject, except as identified in compliance plan(s) submitted with this application.
Signature III II/13/2013 Date

DEP Form No. 62-210.900(1) – Form Effective: 03/11/2010

Professional Engineer Certification

1.	Professional Engineer Name: Scott H. Osbourn	
	Registration Number: 57557	
2.		
	Organization/Firm: Golder Associates Inc.*	
	Street Address: 5100 West Lemon St., Suite 208	
	City: Tampa State: FL Zip Code: 33609	
3.	Professional Engineer Telephone Numbers	
	Telephone: (813) 287-1717 ext. 53304 Fax: (813) 287-1716	
4.	Professional Engineer E-mail Address: sosbourn@golder.com	
5.	Professional Engineer Statement:	
	I, the undersigned, hereby certify, except as particularly noted herein*, that:	
	(1) To the best of my knowledge, there is reasonable assurance that the air pollutant emissions unit(s) and the air pollution control equipment described in this application for air permit, when properly operated and maintained, will comply with all applicable standards for control of air pollutant emissions found in the Florida Statutes and rules of the Department of Environmental Protection; and	
	(2) To the best of my knowledge, any emission estimates reported or relied on in this application are true, accurate, and complete and are either based upon reasonable techniques available for calculating emissions or, for emission estimates of hazardous air pollutants not regulated for an emissions unit addressed in this application, based solely upon the materials, information and calculations submitted with this application.	
	(3) If the purpose of this application is to obtain a Title V air operation permit (check here \Box , if so), I further certify that each emissions unit described in this application for air permit, when properly operated and maintained, will comply with the applicable requirements identified in this application to which the unit is subject, except those emissions units for which a compliance plan and schedule is submitted with this application.	
	(4) If the purpose of this application is to obtain an air construction permit (check here \Box , if so) or concurrently process and obtain an air construction permit and a Title V air operation permit revision or renewal for one or more proposed new or modified emissions units (check here \Box , if so), I further certify that the engineering features of each such emissions unit described in this application have been designed or examined by me or individuals under my direct supervision and found to be in conformity with sound engineering principles applicable to the control of emissions of the air pollutants characterized in this application.	
	(5) If the purpose of this application is to obtain an initial air operation permit or operation permit revision or renewal for one or more newly constructed or modified emissions units (check here \square , if so), I further certify that, with the exception of any changes detailed as part of this application, each such emissions unit has been constructed or modified in substantial accordance with the information given in the corresponding application for air construction permit and with all provisions contained in such permit.	
	- CARDESIN	
	Signature Date	11.
	(seal)	11
DE	oard of Professional Engineers Certificate of Authorization # 00001670 No. 57557 EP Form No. 62-210.900(1) – Form state OF fective: 03/11/2010 6	VIIIVEER *
	-auttion	

II. FACILITY INFORMATION

A. GENERAL FACILITY INFORMATION

Facility Location and Type

1. Facility UTM CoordinatesZone 17East (km)334.3North (km)3204.5		2. Facility Latitude/Longitude Latitude (DD/MM/SS) 28/57/34 Longitude (DD/MM/SS) 82/42/01		
3. Governmental Facility Code: 0	4. Facility StatusCode:A	 Facility Major Group SIC Code: 49 	 Facility SIC(s): 4911 	
7. Facility Comment :				

Facility Contact

1.	Facility Contact Name: JAMIE HUNTER, LEAD ENVIRONMENTAL SPECIALIST
2.	Facility Contact Mailing Address Organization/Firm: DUKE ENERGY FLORIDA, INC
	Street Address: 299 FIRST AVENUE, NORTH, : @903
	City: ST PETERSBURG State: FLORIDA Zip Code: 33701
3.	Facility Contact Telephone Numbers:
	Telephone: (727) 820-5764 ext. Fax:
4.	Facility Contact E-mail Address: Jamie.Hunter@duke-energy.com

Facility Primary Responsible Official

Complete if an "application responsible official" is identified in Section I that is not the facility "primary responsible official."

1.	Facility Primary Responsibl	le Officia	al Name:			
2.	Facility Primary Responsibl	le Officia	al Mailing Add	ress		
	Organization/Firm:		_			
	Street Address:					
	City:		State:		Zip Code:	
3.	Facility Primary Responsible	le Officia	al Telephone N	umbers		
	Telephone: () - ex	xt.	Fax: () -			
4.	Facility Primary Responsible	le Officia	al E-mail Addre	ess:		

DEP Form No. 62-210.900(1) – Form Effective: 03/11/2010

Facility Regulatory Classifications

Check all that would apply *following* completion of all projects and implementation of all other changes proposed in this application for air permit. Refer to instructions to distinguish between a "major source" and a "synthetic minor source."

- 1. Small Business Stationary Source
 Unknown

 2. Synthetic Non-Title V Source
 Unknown
- 3. X Title V Source
- 4. X Major Source of Air Pollutants, Other than Hazardous Air Pollutants (HAPs)
- 5. Synthetic Minor Source of Air Pollutants, Other than HAPs
- 6. X Major Source of Hazardous Air Pollutants (HAPs)
- 7. Synthetic Minor Source of HAPs
- 8. One or More Emissions Units Subject to NSPS (40 CFR Part 60)
- 9. One or More Emissions Units Subject to Emission Guidelines (40 CFR Part 60)

10. One or More Emissions Units Subject to NESHAP (40 CFR Part 61 or Part 63)

- 11. Title V Source Solely by EPA Designation (40 CFR 70.3(a)(5))
- 12. Facility Regulatory Classifications Comment:

List of Pollutants Emitted by Facility

1. Pollutant Emitted	2. Pollutant Classification	3. Emissions Cap [Y or N]?
PM/PM ₁₀ /PM _{2.5}	A	N
СО	A	N
VOC	A	N
SO ₂	A	N
NO _x	A	N
SAM	A	N

B. EMISSIONS CAPS

1. Pollutant Subject to Emissions	2. Facility- Wide Cap [Y or N]?	3. Emissions Unit ID's Under Cap (if not all units)	4. Hourly Cap (lb/hr)	5. Annual Cap (ton/yr)	6. Basis for Emissions Cap
Сар	(all units)	(II not all units)			
7. Facility-W	ide or Multi-Unit	Emissions Cap Con	nment:		
<u> </u>					

Facility-Wide or Multi-Unit Emissions Caps

C. FACILITY ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	 Facility Plot Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) □ Attached, Document ID: Previously Submitted, Date: <u>May 20, 2009</u>
2.	 Process Flow Diagram(s): (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) □ Attached, Document ID: Previously Submitted, Date: <u>May 20, 2009</u>
3.	 Precautions to Prevent Emissions of Unconfined Particulate Matter: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) □ Attached, Document ID: Previously Submitted, Date: <u>May 20, 2009</u>
Ac	Iditional Requirements for Air Construction Permit Applications- NA
1.	Area Map Showing Facility Location: Attached, Document ID: Not Applicable (existing permitted facility)
2.	Description of Proposed Construction, Modification, or Plantwide Applicability Limit (PAL): Attached, Document ID:
3.	Rule Applicability Analysis:
4.	List of Exempt Emissions Units: Attached, Document ID: Not Applicable (no exempt units at facility)
5.	Fugitive Emissions Identification: Attached, Document ID: Not Applicable
6.	Air Quality Analysis (Rule 62-212.400(7), F.A.C.):
7.	Source Impact Analysis (Rule 62-212.400(5), F.A.C.): Attached, Document ID: Not Applicable
8.	Air Quality Impact since 1977 (Rule 62-212.400(4)(e), F.A.C.): Attached, Document ID: Not Applicable
9.	Additional Impact Analyses (Rules 62-212.400(8) and 62-212.500(4)(e), F.A.C.): Attached, Document ID: Not Applicable
10	. Alternative Analysis Requirement (Rule 62-212.500(4)(g), F.A.C.):

C. FACILITY ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for FESOP Applications -NA

1.	List of Exempt Emissions Units:	
	Attached, Document ID:	□ Not Applicable (no exempt units at facility)

Additional Requirements for Title V Air Operation Permit Applications

1.	List of Insignificant Activities: (Required for initial/renewal applications only) Attached, Document ID: Not Applicable (revision application)
2.	Identification of Applicable Requirements: (Required for initial/renewal applications, and for revision applications if this information would be changed as a result of the revision being sought)
	Attached, Document ID: <u>CR-1</u>
	□ Not Applicable (revision application with no change in applicable requirements)
3.	Compliance Report and Plan: (Required for all initial/revision/renewal applications) NA Attached, Document ID:
	Note: A compliance plan must be submitted for each emissions unit that is not in compliance with all applicable requirements at the time of application and/or at any time during application processing. The department must be notified of any changes in compliance status during application processing.
4.	List of Equipment/Activities Regulated under Title VI: (If applicable, required for initial/renewal applications only) Attached, Document ID:
	Equipment/Activities Onsite but Not Required to be Individually Listed
	⊠ Not Applicable
5.	 Verification of Risk Management Plan Submission to EPA: (If applicable, required for initial/renewal applications only) Attached, Document ID: Not Applicable
6.	Requested Changes to Current Title V Air Operation Permit:
	Attached, Document ID: Not Applicable

C. FACILITY ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Facilities Subject to Acid Rain, CAIR, or Hg Budget Program

1. Acid Rain Program Form	IS:
11	on (DEP Form No. 62-210.900(1)(a)):D:Image: Display Submitted, Date: May 20, 2009Acid Rain source)
Phase II NO _X Averaging Attached, Document I Not Applicable	Plan (DEP Form No. 62-210.900(1)(a)1.): D: Previously Submitted, Date: <u>May 20, 2009</u>
New Unit Exemption (D ☐ Attached, Document I ☑ Not Applicable	EP Form No. 62-210.900(1)(a)2.): D: Previously Submitted, Date:
 2. CAIR Part (DEP Form N Attached, Document Not Applicable (not a 	ID: Previously Submitted, Date: May 20, 2009

Additional Requirements Comment

EMISSIONS UNIT INFORMATION Section [1] of [3] EU 004 - Unit 4 Fossil Fuel Steam Generator III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for an initial, revised or renewal Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application. Some of the subsections comprising the Emissions Unit Information Section is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for an air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised or renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes, and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this application that is subject to air construction permitting and for each such emissions unit that is a regulated or unregulated unit for purposes of Title V permitting. (An emissions unit may be exempt from air construction permitting but still be classified as an unregulated unit for Title V purposes.) Emissions units classified as insignificant for Title V purposes are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

A. GENERAL EMISSIONS UNIT INFORMATION

<u>Title V Air Operation Permit Emissions Unit Classification</u>

1.	-	air operation permit. S	? (Check one, if applying kip this item if applying	-
	emissions unit	unit addressed in this E	missions Unit Informati	ion Section is a regulated
Er	nissions Unit Desci	ription and Status		
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)	
	process or proc	duction unit, or activity,	ion addresses, as a singl which produces one or ion point (stack or vent)	-
	of process or p	roduction units and acti	-	e emissions unit, a group one definable emission
			-	e emissions unit, one or fugitive emissions only.
2.	Description of Em	issions Unit Addressed	in this Section:	
Fo	ssil Fuel Steam Gen	erator-4 (Phase II Acid F	tain Unit)	
3.	Emissions Unit Ide	entification Number: 00)4	
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit
	Status Code:	Construction	Date:	Major Group
	А	Date: October 2012	12/1/1982	SIC Code:
8.		Applicability: (Check al	l that apply)	
	🛛 Acid Rain Uni			
	CAIR Unit			
9.	Package Unit:			
	Manufacturer:	1	Model Number:	
10	. Generator Namepl	ate Rating: 760 MW		
11	. Emissions Unit Co	omment:		
Pu	Iverized Coal Dry Bo	ottom Boiler, Wall-Fired.		

Emissions Unit Control Equipment/Method: Control 1 of 6

- 1. Control Equipment/Method Description: Alkali Injection
- 2. Control Device or Method Code: 032

Emissions Unit Control Equipment/Method: Control 2 of 6

1. Control Equipment/Method Description: Flue Gas Desulfurization (FGD)

2. Control Device or Method Code:039

Emissions Unit Control Equipment/Method: Control 3 of 6

- Control Equipment/Method Description: Electrostatic Precipitator (ESP)- High Efficiency (95.0 – 99.9%)
- 2. Control Device or Method Code:010

Emissions Unit Control Equipment/Method: Control <u>4</u> of <u>6</u>

- 1. Control Equipment/Method Description: Low NOx Burners (LNB)
- 2. Control Device or Method Code:205

Emissions Unit Control Equipment/Method: Control **5** of **6**

- 1. Control Equipment/Method Description: Selective Catalytic Reduction (SCR)
- 2. Control Device or Method Code:139

Emissions Unit Control Equipment/Method: Control **6** of **6**

- 1. Control Equipment/Method Description: Wet Limestone Injection
- 2. Control Device or Method Code:042

EMISSIONS UNIT INFORMATION Section [1] of [3] EU 004 - Unit 4 Fossil Fuel Steam Generator

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1. Maximum Process or Throughput Rate	2:	
2. Maximum Production Rate:		
3. Maximum Heat Input Rate: 7,200 milli	ion Btu/hr	
4. Maximum Incineration Rate: pounds/	hr	
tons/day	7	
5. Requested Maximum Operating Sched	lule:	
24 ho	ours/day	7 days/week
52 W	/eeks/year	8,760 hours/year
6. Operating Capacity/Schedule Commer	nt:	
The maximum annual average heat input is The maximum heat input is 7,200 MMBtu/h midnight). Compliance is demonstrated by as monitored by the existing operating data	r, based on a 24-hour collecting the fuel fe	block average (midnight to eed rate and fuel heating values

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1. Identification of Point on I Flow Diagram: EU 004	Plot Plan or	2. Emission Point 7 1	Гуре Code:
3. Descriptions of Emission I	Points Comprising	g this Emissions Unit	for VE Tracking:
4. ID Numbers or Description			
5. Discharge Type Code: V	 Stack Height 550 feet 	:	 Exit Diameter: 30.5 feet
8. Exit Temperature: 130°F ^a	 9. Actual Volut 2,205,195 act 	metric Flow Rate: fm ^a	10. Water Vapor: % ^a
11. Maximum Dry Standard F	low Rate: dscfm	12. Nonstack Emissi	ion Point Height: feet
13. Emission Point UTM CooZone:17East (km):North (km)	rdinates 334.7768 : 3205.39342	14. Emission Point I Latitude (DD/M) Longitude (DD/N)	,
15. Emission Point Comment:			
Stack parameters provided for	100% load and ma	aximum heat input of 7	7,200 MMBtu/hr.

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 4

1. Segment Description (Process/Fuel Type):

Bituminous coal & bituminous coal briquette mixture

2	 Source Classification Code 10100202 	e (SCC):	3. SCC Units: Tons Bitum		s Coal Burned
4	Maximum Hourly Rate: 316.5	5. Maximum 2,618,373.6		6.	Estimated Annual Activity Factor:
7	 Maximum % Sulfur: 5.5 lb/MMBtu SO₂ 	8. Maximum	% Ash:	9.	Million Btu per SCC Unit: 22.75

10. Segment Comment:

Based on bituminous coal and coal briquette high heating value (HHV) of 11,375 Btu/lb.

The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight).

Maximum hourly rate = 7,200 MMBtu/hr /11,375 Btu/lb *1ton/2000 lb = 316.5 tons/hr

The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. Maximum annual rate = 6,800 MMBtu/hr /11,375 Btu/lb *1ton/2000 lb *8,760 hr/yr = 2618373.6 tons/yr

Segment Description and Rate: Segment 2 of 4

2. Source Classification Cod 10100501	le (SCC):	3. SCC Units 1000 Gallons D		ate Oil (No. 1 & 2) Burned
 Maximum Hourly Rate: 48.297 	5. Maximum	Annual Rate:	6.	Estimated Annual Activity Factor:
7. Maximum % Sulfur: 0.73	8. Maximum 0.1	% Ash:	9.	Million Btu per SCC Unit: 138

EMISSIONS UNIT INFORMATION Section [1] of [3] EU 004 - Unit 4 Fossil Fuel Steam Generator

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment <u>3</u> of <u>4</u>

1. Segment Description (Process/Fuel Type):

Natural gas as startup and low-load flame stabilization fuel

2. Source Classification Code (SCC): 10100601		3. SCC Units: Million Cubic Feet Natural Gas Burned			
4. Maximum Hourly Rate:	5. Maximum A	Annual Rate:	6.	Estimated Annual Activity Factor:	
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:	
10. Segment Comment:					
Natural gas as startup and low-load flame stabilization fuel					

Segment Description and Rate: Segment 4 of 4

1. Segment Description (Process/Fuel Type):					
On specification used oil					
2. Source Classification Code (SCC):		3. SCC Units:			
10101302		1000 Gallor	ns Waste Oil Burned		
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:	6. Estimated Annual Activity Factor:		
7. Maximum % Sulfur:	8. Maximum % Ash:		9. Million Btu per SCC Unit:		
10. Segment Comment:					
Used oil specification: Arsenic 5 PPM, Cadmium 2 PPM, Chromium 10 PPM, Lead 100 PPM, Total Halogens 1000 PPM, PCB 50 PPM, 10 million gal/12 month limit for all 4 steam generating units					

(FFSG 1, 2, 4, & 5)

DEP Form No. 62-210.900(1) – Form Effective: 03/11/2010

EMISSIONS UNIT INFORMATION Section [1] of [3] EU 004 - Unit 4 Fossil Fuel Steam Generator

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
Total PM/PM ₁₀	010		EL
СО			EL
VOC			EL
SO ₂	039		EL
SAM	042	032	EL
NO _x	139	205	EL

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

 Pollutant Emitted: Total PM/PM₁₀ 	2. Total Perc	cent Efficiency of Control:			
3. Potential Emissions:	•	4. Synthetically Limited?			
	tons/year	\Box Yes \boxtimes No			
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year					
6. Emission Factor: 0.03 lb/MMBtu		7. Emissions Method Code: 2			
Reference: BACT					
8.a. Baseline Actual Emissions (if required):	8.b. Baseline 24-month Period:				
tons/year	From:	To:			
9.a. Projected Actual Emissions (if required): 9.b. Projected Monitoring Period:					
tons/year	5 years 10 years				
 10. Calculation of Emissions: The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). lb/hr = 7,200 MMBtu/hr * 0.03 lb/MMBtu = 216 lb/hr (based on a 3-run test average conducted at permitted capacity The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. TPY = 6,800MMBtu/hr*0.03 lb/MMBtu * 8760 hrs/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 759.5 TPY PM₁₀ is assumed to be equal to PM. 					
11. Potential, Fugitive, and Actual Emissions Comment:					

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u>Allowable Emissions</u> Allowable Emissions <u>1</u> of <u>1</u>

3. Allowable Emissions and Units: 0.03 lb/MMBtu heat input4. Equivalent Allowable Emissions: 216 lb/hour216 lb/hour759.5 tons/year	1. Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
		1

5. Method of Compliance:

EPA Method 5 or 5B; Annually.

6. Allowable Emissions Comment (Description of Operating Method): Emission based on a 3 run test average determined by EPA Method 5 or 5B [Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383]

Allowable Emissions _____ Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	of	Operating Method):

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date Emissions:	of Allowable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable lb/hour	Emissions: tons/year
5.	Method of Compliance:	1		
6.	Allowable Emissions Comment (Description	of (Dperating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: CO	2. Total Percent Efficiency of Control:			
3.Potential Emissions: 720 lb/hour2,531.	6 tons/year 4. S	ynthetically Limited?] Yes ⊠ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: 0.10 lb/MMBtu Reference: BACT (Permit No. 0170004-030-AC)		7. Emissions Method Code:1A		
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-mc From: To:	onth Period:		
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Moni □ 5 years □	0		
10. Calculation of Emissions:				
The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 0.10 lb/MMBtu * 7,200 MMBtu/hr = 720 lb/hr				
The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. TPY = 6,800 MMBtu/hr *0.10 lb/MMBtu * 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 2,531.6 TPY				
11. Potential, Fugitive, and Actual Emissions Comment:				

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1. Basis for A RULE	llowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable 0.10 lb/MMI	Emissions and Units: 3tu	4. Equivalent Allowable Emissions:720 lb/hour 2,531.6 tons/year
5. Method of CO CEMS	Compliance:	
 6. Allowable Emissions Comment (Description of Operating Method): Emissions (Ib/MMBtu) based on a 30 day rolling average excluding startup, shutdown, malfunctions. Emissions (Ib/hr) based on a 30-day rolling average for all periods of operation including startup, shutdown, and malfunctions. [Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383]. 		

Allowable Emissions _____ of _____

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	of Operating Method):

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allo Emissions:	owable
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissi	ions:
		lb/hour	tons/year
5.	Method of Compliance:		
6.	Allowable Emissions Comment (Description	f Operating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: VOC	2. Total Perc	cent Efficiency of Control:	
3. Potential Emissions:		4. Synthetically Limited?	
28.8 lb/hour 101 .2	2 tons/year	\Box Yes \boxtimes No	
5. Range of Estimated Fugitive Emissions (as	applicable):		
to tons/year			
6. Emission Factor: 0.004 lb/MMBtu		7. Emissions	
		Method Code:	
Reference: Vendor Specification/Proc	cess Knowledge	e 2	
8.a. Baseline Actual Emissions (if required):		24-month Period:	
tons/year	From: T	То:	
9.a. Projected Actual Emissions (if required):	9.b. Projected	d Monitoring Period:	
tons/year	🗌 5 yea	ars 🗌 10 years	
10. Calculation of Emissions:			
The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight).			
lb/hr = 0.004 lb/MMBtu * 7,200 MMBtu/hr = 28.8 lb/hr			
The maximum annual average heat input is 6,800	0 MMBtu/hr, bas	sed on a 30 day rolling average.	
TPY = 6,800 MMBtu/hr *0.004 lb/MMBtu * 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 101.2 TPY			
11. Potential, Fugitive, and Actual Emissions Comment:			

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of All Emissions:	owable
3.	Allowable Emissions and Units: 0.004 lb/MMBtu	4.	Equivalent Allowable Emission 28.8 lb/hour 10	sions: 1.2 tons/year
5.	Method of Compliance: EPA Method 18, 25, or 25A; base load.			
Em 023	Allowable Emissions Comment (Description hission based on a 3 run test average determin 3-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-3 70004-016-AC; PSD-FL-383]	ed b	y EPA Method 25A [Permit No	

Allowable Emissions Allowable Emissions	of
1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	n of Operating Method):

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allow Emissions:	vable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissio lb/hour	ns: tons/year
5. Method of Compliance:				
6.	Allowable Emissions Comment (Description	of (Operating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: SO ₂	2. Total Percent Efficiency of Control:			
3. Potential Emissions:		4. Synthetically Limited?		
1,944 lb/hour 6,835 .4				
5. Range of Estimated Fugitive Emissions (as	applicable):			
to tons/year				
6. Emission Factor: 0.27 lb/MMBtu		7. Emissions		
		Method Code:		
Reference: Based on modeled impac	ts.	2		
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month Period:		
tons/year	From: To:			
9.a. Projected Actual Emissions (if required):	9.b. Projected	d Monitoring Period:		
tons/year	☐ 5 yea	ars 🗌 10 years		
10. Calculation of Emissions:				
The maximum heat input is 7,200 MMBtu/hr, bas	ed on a 24-hou	r block average (midnight to		
midnight).				
lb/hr = 7,200 MMBtu/hr * 0.27 lb/MMBtu = 1,944 lk	o/hr			
The maximum annual average heat input is 6,800				
TPY = 6,800 MMBTu/hr* 0.27 lb/MMBtu* 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 6,835.4				
TPY 11. Potential, Fugitive, and Actual Emissions Comment:				

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
Allowable Emissions and Units: D.27 lb/MMBtu heat input	4. Equivalent Allowable Emissions:1,944 lb/hour 6,835.4 tons/year

5. Method of Compliance:

As determined by CEMS data, SO₂ emissions shall not exceed 0.27 lb/MMBtu based on a 30-day rolling average for all periods of operation including startup, shutdown, and malfunction. As determined by CEMS data, SO2 emissions shall not exceed 1,944 lb/hr/unit based on a 24-hour block average excluding startup, shutdown, and malfunction of the FGD system.

Allowable Emissions Comment (Description of Operating Method):
Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC;
PSD-FL-383A, and 0170004-016-AC; PSD-FL-383

Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Emissions:	f Allowable
3.	Allowable Emissions and Units: %	4.	Equivalent Allowable E lb/hour	missions: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allow Emissions:	wable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emission	ons:
			lb/hour	tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Dperating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: SAM	2. Total Percent Efficiency of Control:			
3.Potential Emissions:64.8 lb/hour227.9	9 tons/year	4. Synth □Ye	netically Limited? es ⊠ No	
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year				
6. Emission Factor: 0.009 lb/MMbtu Reference: BACT/Vendor Specification/Process Knowledge			7. Emissions Method Code:2	
8.a. Baseline Actual Emissions (if required): tons/year8.b. Baseline 24-month F From: To:			Period:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected	Monitorii ars 🗌 10	0	
10. Calculation of Emissions: The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 7,200 MMBtu/hr * 0.009 Ib/MMBtu = 64.8 lb/hr. The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. TPY = 6,800*0.009 lb/MMBtu * 8760 hrs/yr * 1 ton/2000 lb * 0.85 Capacity Factor =227.9 TPY				
11. Potential, Fugitive, and Actual Emissions Comment:				

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: RULE	2.	Future Effective Date of All Emissions:	owable
3.	Allowable Emissions and Units: 0.009 lb/MMBtu	4.	Equivalent Allowable Emiss 64.8 lb/hour 22	sions: 7.9 tons/year

5. Method of Compliance:

SAM CAM Plan (Attachment CR-EU3-I2) used for continuous compliance.

Hydrated lime injection system as the primary means of SAM emissions control, with the previously used ammonia injection system retained as the backup system.

6. Allowable Emissions Comment (Description of Operating Method):

Compliance based on 3 run test average determined by EPA Method 8 or 8a except during periods of maintenance and repair as authorized in permit No. 0170004-023-AC. [Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383]

Allowable Emissions Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowat Emissions:	ole
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions lb/hour tons/yea	
5.	Method of Compliance:			
6	Allowable Emissions Comment (Description	of (Operating Method).	

6. Allowable Emissions Comment (Description of Operating Method):

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		wable	
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions:lb/hourtons/year		ons: tons/year	
5.	. Method of Compliance:				
6.	. Allowable Emissions Comment (Description of Operating Method):				

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: NOx2. Total Perc		Efficiency of Control:			
3.Potential Emissions: 3,384 lb/hour2,08	5 tons/year	Synthetically Limited? □ Yes ⊠ No			
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year					
6. Emission Factor: 0.47 lb/MMBtu Reference: Acid Rain		7. EmissionsMethod Code:0			
8.a. Baseline Actual Emissions (if required): tons/year8.b. Baseline 24-month Period: From: To:					
9.a. Projected Actual Emissions (if required): tons/year					
10. Calculation of Emissions:					
The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 7,200 MMBtu/hr * 0.47 Ib/MMBtu = 3,384 Ib/hr.					
As determined by CEMS data, NOx emissions not to exceed 2,085 TPY based on a 12-month rolling average for all periods of operation including startup, shutdown, and malfunction.					
11. Potential, Fugitive, and Actual Emissions Comment:					

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1. Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:				
 Allowable Emissions and Units: 0.47 lb/MMBtu heat input 	4. Equivalent Allowable Emissions: 3,384 lb/hour tons/year				
5. Method of Compliance: EPA Method 7E: Continuous Emission Monitoring (CEM), annual average.					
EPA Method 7E: Continuous Emission Monitorin	g (CEM), annual average.				

Allowable Emissions _____ of _____

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable
	Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	-
	lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	n of Operating Method):

1	Basis for Allowable Emissions Code:	2.	Future Effective Date of Alloy	vable
1.	Dasis for Anowable Emissions Code.	2.	Emissions:	wable
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emission	ons:
			lb/hour	tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 2

1.	Visible Emissions Subtype:	2. Basis for Allowable	1 .			
	VE10 – Visible Emissions	🛛 Rule	Other			
3.	Allowable Opacity:					
	Normal Conditions: 10 % Ex	xceptional Conditions:	20 %			
	Maximum Period of Excess Opacity Allow	ed:	6 min/hour			
	Method of Compliance:					
Det	termined by EPA Method 9					
5.	Visible Emissions Comment:					
	Determined by EPA Method 9 [Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383].					

Visible Emissions Limitation: Visible Emissions Limitation 2 of 2

1.	Visible Emissions Subtype:		2.	Basis for Allow	able Opacity:
	VE – Visible Emissions			🛛 Rule	□ Other
3.	Allowable Opacity:				
	Normal Conditions:	20 % Ex	cept	ional Conditions	s: %
	Maximum Period of Excess (Opacity Allowe	ed:		min/hour
	Method of Compliance: DMS in ductwork .				
5. Th	Visible Emissions Comment: e COM measurements also ser		for	he PM CAM Plar	۱.

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 6

1.	Parameter Code: EM	2.	Pollutant(s): NO _x
3.	CMS Requirement:	\boxtimes	Rule 🗌 Other
4.	Monitor Information Manufacturer: THERMO (TEI) Model Number: 42 I		Serial Number: CM09040029
5.	Installation Date: MAY 13, 2010	6.	Performance Specification Test Date: JULY 12, 2010
7.	Continuous Monitor Comment:		
40	CFR 75, NOX		

Continuous Monitoring System: Continuous Monitor 2 of 6

1.	Parameter Code: EM	2. Pollutant(s): SO ₂
3.	CMS Requirement:	Rule 🗌 Other
4.	Monitor Information Manufacturer: THERMO (TEI)	
	Model Number: 43I	Serial Number: CM09040035
5.	Installation Date: MAY 13, 2010	6. Performance Specification Test Date: JULY 12, 2010
7.	Continuous Monitor Comment:	
40	CFR 75, SO₂	

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor <u>3</u> of <u>6</u>

1.	Parameter Code:	2. Pollutant(s):
	VE – Visible Emissions (opacity)	РМ
3.	CMS Requirement:	Rule 🗌 Other
4.	Monitor Information Manufacturer: Teledyne	
	Model Number: Lighthawk 560	Serial Number:
		5601946, 5601497, 5601948, 5601949
5.	Installation Date: May 13, 2010	6. Performance Specification Test Date: June 9, 2010
7.	Continuous Monitor Comment:	
40	CFR 75	

<u>Continuous Monitoring System:</u> Continuous Monitor <u>4</u> of <u>6</u>

 Parameter Code: CO₂ – Carbon Dioxide 	2. Pollutant(s): CO ₂					
3. CMS Requirement:	Rule 🗌 Other					
4. Monitor Information Manufacturer: Siemens						
Model Number: Ultramat 6	Serial Number: F-NR.N1-X2-795					
5. Installation Date: May 13, 2010	 Performance Specification Test Date: July 12, 2010 					
7. Continuous Monitor Comment:						
40 CFR 75	40 CFR 75					

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

<u>Continuous Monitoring System:</u> Continuous Monitor <u>5</u> of <u>6</u>

1.	Parameter Code: FLOW – Volumetric Flow Rate	2. Pollutant(s):
3.	CMS Requirement:	Rule 🗌 Other
4.	Monitor Information Manufacturer: Teledyne Model Number: Ultraflow 150	Serial Number: 1501014
5.	Installation Date: May 13, 2010	6. Performance Specification Test Date: July 12, 2010
7.	Continuous Monitor Comment:	
40	CFR 75	

Continuous Monitoring System: Continuous Monitor 6 of 6

1. Parameter Code:	2. Pollutant(s):
CO – Carbon Monoxide	CO
3. CMS Requirement:	Rule 🗌 Other
4. Monitor Information	
Manufacturer: THERMO (TEI)	
Model Number: 481	Serial Number:
5. Installation Date:	6. Performance Specification Test Date:
May 13, 2010	July 12, 2010
7. Continuous Monitor Comment:	
40 CFR 60	

EMISSIONS UNIT INFORMATION

Section [1] of [3] EU 004 - Unit 4 Fossil Fuel Steam Generator I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 20, 2009</u>
2.	 Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 20, 2009</u>
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date June 18, 2012 and November 9, 2010
4.	 Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) □ Attached, Document ID: Previously Submitted, Date <u>May 20, 2009</u>
	□ Not Applicable (construction application)

Compliance Demonstration Reports/Records:					
Test Date(s)/Pollutant(s) Tested: October 9, 2013/Sulfuric Acid Mist					
 Previously Submitted, Date: 1. EPA Method 5 or 5A stack test results for particulate matter 					
Test Date(s)/Pollutant(s) Tested: 2/21/09, 8/4/2010 and 8/5/2010					
2.	EPA Method 10 stack test re	esults for carbon monoxide			
	Test Date(s)/Pollutant(s) Tested:	2/6/2009 - 2/12/2009			
3.	EPA Method 18, 25, or 25A s	stack test results for volatile organic compounds			
Test Date(s)/Pollutant(s) Tested: 3/3/2009					
4.	EPA Method 6C stack test re	esults			
	Test Date(s)/Pollutant(s) Tested:	August 2010			
5.	EPA Method 7E stack test re	esults			
	Test Date(s)/Pollutant(s) Tested:	August 2010			
6.	EPA Method 9 stack test re	sults			
	Test Date(s)/Pollutant(s) Tested:	8/4/2010 and 8/5/2010			
	To be Submitted, Date (if known)	a			
Test Date(s)/Pollutant(s) Tested:					
No	te: For FESOP applications, all re	quired compliance demonstration records/reports must be submitted at			
		ir operation permit applications, all required compliance demonstration the time of application, or a compliance plan must be submitted at the			
 reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application. Other Information Required by Rule or Statute: Attached, Document ID: Not Applicable 					
					 □ □ 1. 2. 3. 4. 5. 6. □ □ □ No the ptim

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),		
	F.A.C.; 40 CFR 63.43(d) and (e)):		
	□ Attached, Document ID: ⊠ Not Applicable		
2.	. Good Engineering Practice Stack Height Analysis (Rules 62-212.400(4)(d) and 62-		
	212.500(4)(f), F.A.C.):		
	□ Attached, Document ID: ⊠ Not Applicable		
3.	. Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities		
	only)		
	□ Attached, Document ID: Not Applicable		

Additional Requirements for Title V Air Operation Permit Applications

1.	Identification of Applicable Requirements: ⊠ Attached, Document ID: <u>CR-1</u>	
2.	Compliance Assurance Monitoring: Attached, Document ID: <u>CR-EU3-I2ª</u>	□ Not Applicable
3.	Alternative Methods of Operation:	⊠ Not Applicable
4.	Alternative Modes of Operation (Emissions	Trading): ⊠ Not Applicable

Additional Requirements Comment

^aSAM CAM Plan attached

EMISSIONS UNIT INFORMATION Section [2] of [3] EU 003 - Unit 5 Fossil Fuel Steam Generator III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for an initial, revised or renewal Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application. Some of the subsections comprising the Emissions Unit Information Section is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for an air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised or renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes, and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this application that is subject to air construction permitting and for each such emissions unit that is a regulated or unregulated unit for purposes of Title V permitting. (An emissions unit may be exempt from air construction permitting but still be classified as an unregulated unit for Title V purposes.) Emissions units classified as insignificant for Title V purposes are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

A. GENERAL EMISSIONS UNIT INFORMATION

<u>Title V Air Operation Permit Emissions Unit Classification</u>

1.	. Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	 The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit. The emissions unit addressed in this Emissions Unit Information Section is an unregulated emissions unit. 					
Er	nissions Unit Desci	ription and Status				
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)			
	process or proc	duction unit, or activity,	ion addresses, as a singl which produces one or ion point (stack or vent)	-		
	of process or p	roduction units and acti	Ŭ	e emissions unit, a group one definable emission		
			•	e emissions unit, one or e fugitive emissions only.		
2.	Description of Em	issions Unit Addressed	in this Section:			
Fo	ssil Fuel Steam Gen	erator-5 (Phase li Acid F	Rain Unit)			
3.	Emissions Unit Ide	entification Number: 00	03			
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit		
	Status Code:	Construction	Date:	Major Group		
	А	Date: October 2012	12/1/1984	SIC Code:		
8.		Applicability: (Check al	l that apply)			
	Acid Rain Uni					
	CAIR Unit					
9.						
	Manufacturer:	I	Model Number:			
10	10. Generator Nameplate Rating: 760 MW					
11	. Emissions Unit Co	omment:				
Pu	Pulverized Coal Dry Bottom Boiler, Wall-Fired.					
	· · · · · · · · · · · · · · · · · · ·					

Emissions Unit Control Equipment/Method: Control 1 of 6

- 1. Control Equipment/Method Description: Alkali Injection
- 2. Control Device or Method Code: 032

Emissions Unit Control Equipment/Method: Control 2 of 6

1. Control Equipment/Method Description: Flue Gas Desulfurization (FGD)

2. Control Device or Method Code:039

Emissions Unit Control Equipment/Method: Control 3 of 6

- Control Equipment/Method Description: Electrostatic Precipitator (ESP)- High Efficiency (95.0 – 99.9%)
- 2. Control Device or Method Code:010

Emissions Unit Control Equipment/Method: Control <u>4</u> of <u>6</u>

- 1. Control Equipment/Method Description: Low NOx Burners (LNB)
- 2. Control Device or Method Code:205

Emissions Unit Control Equipment/Method: Control **5** of **6**

- 1. Control Equipment/Method Description: Selective Catalytic Reduction (SCR)
- 2. Control Device or Method Code:139

Emissions Unit Control Equipment/Method: Control **6** of **6**

- 1. Control Equipment/Method Description: Wet Limestone Injection
- 2. Control Device or Method Code:042

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1. Maximum Process	or Throughput Rate:	
2. Maximum Producti	ion Rate:	
3. Maximum Heat Inp	out Rate: 7,200 million Btu/hr	
4. Maximum Incinera	tion Rate: pounds/hr	
	tons/day	
5. Requested Maximu	Im Operating Schedule:	
	24 hours/day	7 days/week
	52 weeks/year	8,760 hours/year
6. Operating Capacity	/Schedule Comment:	
The maximum annual a The maximum heat inpu midnight). Compliance	Vschedule Comment: verage heat input is 6,800 MMBtu/hr, base ut is 7,200 MMBtu/hr, based on a 24-hour is demonstrated by collecting the fuel fee isting operating data monitoring system.	block average (midnight to

C. EMISSION POINT (STACK/VENT) INFORMATION (Optional for unregulated emissions units.)

Emission Point Description and Type

1. Identification of Point on F Flow Diagram: EU003	Plot Plan or	2. Emission Point 7	Гуре Code:			
3. Descriptions of Emission F	Points Comprising	g this Emissions Unit	for VE Tracking:			
4. ID Numbers or Description	4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common:					
5. Discharge Type Code: V	6. Stack Height: 550 feet		 Exit Diameter: 30.5 feet 			
8. Exit Temperature: 130 °F ^a	 9. Actual Volumetric Flow Rate: 2,205,195 acfm^a 		10. Water Vapor: % ^a			
11. Maximum Dry Standard Fl Dscfm	11. Maximum Dry Standard Flow Rate: Dscfm12. Nonstack Emission Point Height: feet					
13. Emission Point UTM CoorZone:17East (km):North (km):	334.7768	14. Emission Point Latitude/Longitude Latitude (DD/MM/SS) Longitude (DD/MM/SS)				
North (km): 3205.39342 Longitude (DD/MM/SS) 15. Emission Point Comment: Stack parameters provided for 100% load and maximum heat input of 7,200 MMBtu/hr.						

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment 1 of 4

1. Segment Description (Process/Fuel Type):

Bituminous coal & bituminous coal briquette mixture

2. Source Classification Code (SCC): 10100202			3. SCC Units: Tons Bituminous Coal Burned		
4	Maximum Hourly Rate: 316.5	5. Maximum Annual Rate: 2,618,373.6		6.	Estimated Annual Activity Factor:
7	 Maximum % Sulfur: 5.5 lb/MMBtu SO₂ 	8. Maximum	% Ash:	9.	Million Btu per SCC Unit: 22.75

10. Segment Comment:

Based on bituminous coal and coal briquette high heating value (HHV) of 11,375 Btu/lb.

The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight).

Maximum hourly rate = 7,200 MMBtu/hr /11,375 Btu/lb *1ton/2000 lb = 316.5 tons/hr

The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. Maximum annual rate = 6,800 MMBtu/hr /11,375 Btu/lb *1ton/2000 lb *8,760 hr/yr = 2618373.6 tons/yr

Segment Description and Rate: Segment 2 of 4

1. Segment Description (Process/Fuel Type):						
Distillate fuel oil used as an ig	niter fuel					
2. Source Classification Code 10100501	e (SCC):	3. SCC Units: 1000 Gallons D		ate Oil (No. 1 & 2) Burned		
4. Maximum Hourly Rate: 48.297	5. Maximum Annual Rate:		6.	Estimated Annual Activity Factor:		
7. Maximum % Sulfur: 0.73	8. Maximum 9 0.1	% Ash:	9.	Million Btu per SCC Unit: 138		
10. Segment Comment: Distillate fuel oil used as an igi	niter fuel for start	up and low-load	flam	ne stabilization		

D. SEGMENT (PROCESS/FUEL) INFORMATION

Segment Description and Rate: Segment <u>3</u> of <u>4</u>

1. Segment Description (Process/Fuel Type):

Natural gas as startup and low-load flame stabilization fuel

2. Source Classification Code 10100601	e (SCC):	3. SCC Units: Million Cul		eet Natural Gas Burned		
4. Maximum Hourly Rate:	5. Maximum Annual Rate:		6.	Estimated Annual Activity Factor:		
7. Maximum % Sulfur:	8. Maximum % Ash:		9.	Million Btu per SCC Unit:		
10. Segment Comment:						
Natural gas as startup and low	-load flame stabi	lization fuel				

Segment Description and Rate: Segment 4 of 4

1. Segment Description (Pro	1. Segment Description (Process/Fuel Type):							
On specification used oil	On specification used oil							
2. Source Classification Cod	e (SCC):	3. SCC Units:						
10101302		1000 Gallor	ns Waste Oil Burned					
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:	6. Estimated Annual Activity Factor:					
7. Maximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:					
10. Segment Comment:								
	Used oil specification: Arsenic 5 PPM, Cadmium 2 PPM, Chromium 10 PPM, Lead 100 PPM, Total Halogens 1000 PPM, PCB 50 PPM, 10 million gal/12 month limit for all 4 steam generating units							

(FFSG 1, 2, 4, & 5)

DEP Form No. 62-210.900(1) – Form Effective: 03/11/2010

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
Total PM/PM ₁₀	010		EL
СО			EL
VOC			EL
SO ₂	039		EL
SAM	042	032	EL
NO _x	139	205	EL

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: Total PM/PM ₁₀	2. Total Percent Efficiency of Control:			
3. Potential Emissions:		5	etically Limited?	
216 lb/hour 759.5	tons/year	□Yes	No No	
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: 0.03 lb/MMBtu			 Emissions Method Code: 2 	
Reference: BACT				
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month	Period:	
tons/year	From:	Т	0:	
9.a. Projected Actual Emissions (if required):	9.b. Projected	l Monitorin	ng Period:	
tons/year	5 year	s 🛛 10 year	S	
tons/year 5 years 10 years 10. Calculation of Emissions: The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 7,200 MMBtu/hr * 0.03 Ib/MMBtu = 216 Ib/hr (based on a 3-run test average conducted at permitted capacity The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. TPY = 6,800MMBtu/hr*0.03 Ib/MMBtu * 8760 hrs/yr * 1 ton/2000 Ib * 0.85 Capacity Factor = 759.5 TPY PM ₁₀ is assumed to be equal to PM.				
11. Potential, Fugitive, and Actual Emissions Comment:				

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

<u>Allowable Emissions</u> Allowable Emissions <u>1</u> of <u>1</u>

3. Allowable Emissions and Units: 0.03 lb/MMBtu heat input4. Equivalent Allowable Emissions: 216 lb/hour216 lb/hour759.5 tons/year	1. Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
		1

5. Method of Compliance:

EPA Method 5 or 5B; Annually.

6. Allowable Emissions Comment (Description of Operating Method): Emission based on a 3 run test average determined by EPA Method 5 or 5B [Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383]

Allowable Emissions _____ Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year		
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of	Operating Method):	

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allowable Emissions:	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year	
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: CO	2. Total Percent Efficiency of Control:			
3.Potential Emissions: 680 lb/hour2,531.	•	hetically Limited? es ⊠ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: 0.10 lb/MMBtu Reference: BACT (Permit No. 0170004-030-AC)		7. Emissions Method Code:1A		
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-month From: To:	n Period:		
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitor □ 5 years □ 10	0		
10. Calculation of Emissions:				
The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 0.10 Ib/MMBtu * 6,800 MMBtu/hr = 680 Ib/hr				
The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. TPY = 6,800 MMBtu/hr *0.10 lb/MMBtu * 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 2,531.6 TPY				
11. Potential, Fugitive, and Actual Emissions Comment:				

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

	—		
 Basis for Allowable Emissions Code: RULE 	2. Future Effective Date of Allowable Emissions:		
3. Allowable Emissions and Units:0.10 lb/MMBtu	4. Equivalent Allowable Emissions:720 lb/hour 2,531.6 tons/year		
5. Method of Compliance: CO CEMS			
 6. Allowable Emissions Comment (Description of Operating Method): Emissions (lb/MMBtu) based on a 30 day rolling average excluding startup, shutdown, malfunctions. Emissions (lb/hr) based on a 30-day rolling average for all periods of operation including startup, shutdown, and malfunctions. [Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383]. 			

Allowable Emissions _____ of _____

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year		
5. Method of Compliance:			
6. Allowable Emissions Comment (Description	of Operating Method):		

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year		
5.	Method of Compliance:	<u> </u>		
6.	Allowable Emissions Comment (Description	of (Dperating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: VOC	2. Total Percent Efficiency of Control:				
3. Potential Emissions:		4. Synthetically Limited?			
28.8 lb/hour 101 .	2 tons/year	\Box Yes \boxtimes No			
5. Range of Estimated Fugitive Emissions (as	applicable):				
to tons/year					
6. Emission Factor: 0.004 lb/MMBtu		7. Emissions			
		Method Code:			
Reference: Vendor Specification/Pro	cess Knowledge	e 2			
8.a. Baseline Actual Emissions (if required):	8.b. Baseline	24-month Period:			
tons/year	From: T	Го:			
9.a. Projected Actual Emissions (if required):	9.b. Projected	d Monitoring Period:			
tons/year	🗌 5 yea	ars 🔲 10 years			
10. Calculation of Emissions:					
The maximum heat input is 7,200 MMBtu/hr, bas midnight).	ed on a 24-hour	r block average (midnight to			
lb/hr = 0.004 lb/MMBtu * 7,200 MMBtu/hr = 28.8 lb/hr					
The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average.					
TPY = 6,800 MMBtu/hr *0.004 lb/MMBtu * 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 101.2 TPY					
11. Potential, Fugitive, and Actual Emissions C	omment:				

EMISSIONS UNIT INFORMATION Section [2] of [3] Simple-Cycle Combustion Turbine EU 003 - Unit 5 Fossil Fuel Steam Generator

Page [3] of [6] Volatile Organic Compounds - VOC

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -

ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1.	Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units: 0.004 lb/MMBtu	4.	Equivalent Allowable Emissions: 28.8 lb/hour 101.2 tons/year		
5.	5. Method of Compliance: EPA Method 18, 25, or 25A; base load.				
En 02:	6. Allowable Emissions Comment (Description of Operating Method): Emission based on a 3 run test average determined by EPA Method 25A [Permit Nos. 0170004- 023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383]				

Allowable Emissions _____ of _____

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:		
	lb/hour tons/year		
5. Method of Compliance:			
6. Allowable Emissions Comment (Description	of Operating Method):		

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissi lb/hour	ons: tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Dperating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: SO ₂	2. Total Percent Efficiency of Control:			
3.Potential Emissions:1,944 lb/hour6,835.4	nthetically Limited? Yes ⊠ No			
5. Range of Estimated Fugitive Emissions (as applicable): to tons/year				
6. Emission Factor: 0.27 lb/MMBtu Reference: Based on modeled impac	ts.	7. Emissions Method Code: 2		
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-month Period: From: To:			
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitoring Period: □ 5 years □ 10 years			
10. Calculation of Emissions: The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 7,200 MMBtu/hr * 0.27 Ib/MMBtu = 1,944 Ib/hr				
The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. TPY = 6,800 MMBTu/hr* 0.27 lb/MMBtu* 8760 hr/yr * 1 ton/2000 lb * 0.85 Capacity Factor = 6,835.4				
11. Potential, Fugitive, and Actual Emissions C				

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:
Allowable Emissions and Units: D.27 lb/MMBtu heat input	4. Equivalent Allowable Emissions:1,944 lb/hour 6,835.4 tons/year

5. Method of Compliance:

As determined by CEMS data, SO₂ emissions shall not exceed 0.27 lb/MMBtu based on a 30-day rolling average for all periods of operation including startup, shutdown, and malfunction. As determined by CEMS data, SO2 emissions shall not exceed 1,944 lb/hr/unit based on a 24-hour block average excluding startup, shutdown, and malfunction of the FGD system.

6. Allowable Emissions Comment (Description of Operating Method): Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383

Allowable Emissions Allowable Emissions _____ of _____

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
 Allowable Emissions and Units: % 	4. Equivalent Allowable Emissions: lb/hour tons/year		
5. Method of Compliance:			

6. Allowable Emissions Comment (Description of Operating Method):

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons	/year
5.	Method of Compliance:	1		
6.	Allowable Emissions Comment (Description	of (Operating Method):	

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

1. Pollutant Emitted: SAM	2. Total Percent Efficiency of Control:			
3.Potential Emissions:64.8 lb/hour227.9	9 tons/year	netically Limited? es ⊠ No		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):			
6. Emission Factor: 0.009 lb/MMbtu Reference: BACT/Vendor Specification	on/Process Kno [,]	wledge	7. Emissions Method Code:2	
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-month Period: From: To:			
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitoring Period: □ 5 years □ 10 years			
10. Calculation of Emissions: The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 7,200 MMBtu/hr * 0.009 Ib/MMBtu = 64.8 lb/hr. The maximum annual average heat input is 6,800 MMBtu/hr, based on a 30 day rolling average. TPY = 6,800*0.009 lb/MMBtu * 8760 hrs/yr * 1 ton/2000 lb * 0.85 Capacity Factor =227.9 TPY				
11. Potential, Fugitive, and Actual Emissions Comment:				

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

1. Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units:0.009 lb/MMBtu	4. Equivalent Allowable Emissions:64.8 lb/hour227.9 tons/year	

5. Method of Compliance:

SAM CAM Plan (Attachment CR-EU3-I2) used for continuous compliance.

Hydrated lime injection system as the primary means of SAM emissions control, with the previously used ammonia injection system retained as the backup system.

6. Allowable Emissions Comment (Description of Operating Method):

Compliance based on 3 run test average determined by EPA Method 8 or 8a except during periods of maintenance and repair as authorized in permit No. 0170004-023-AC. [Permit Nos. 0170004-023-AC; PSD-FL-383C, 0170004-022-AC; PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, and 0170004-016-AC; PSD-FL-383]

Allowable Emissions _____ of _____

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions: lb/hour tons/year			
5. Method of Compliance:				
6. Allowable Emissions Comment (Description of Operating Method):				

Allowable Emissions Allowable Emissions of

1.	Basis for Allowable Emissions Code:	2.	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emission lb/hour	ons: tons/year	
5.	5. Method of Compliance:				
6.	5. Allowable Emissions Comment (Description of Operating Method):				

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL/ESTIMATED FUGITIVE EMISSIONS

(Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive and Baseline & Projected Actual Emissions

1. Pollutant Emitted: NOx	2. Total Percent E	Efficiency of Control:
3.Potential Emissions: 3,384 lb/hour2,08	5 tons/year	Synthetically Limited? □ Yes ⊠ No
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):	
6. Emission Factor: 0.47 lb/MMBtu Reference: Acid Rain		7. EmissionsMethod Code:0
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline 24-m From: To:	onth Period:
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Mor	6
10. Calculation of Emissions:		
The maximum heat input is 7,200 MMBtu/hr, based on a 24-hour block average (midnight to midnight). Ib/hr = 7,200 MMBtu/hr * 0.47 Ib/MMBtu = 3,384 Ib/hr.		
As determined by CEMS data, NOx emissions not to exceed 2,085 TPY based on a 12-month rolling average for all periods of operation including startup, shutdown, and malfunction.		
11. Potential, Fugitive, and Actual Emissions Comment:		

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions 1 of 1

	-	
1. Basis for Allowable Emissions Code: RULE	2. Future Effective Date of Allowable Emissions:	
3. Allowable Emissions and Units:0.47 lb/MMBtu heat input	4. Equivalent Allowable Emissions:3,384 lb/hour tons/year	
5. Method of Compliance: EPA Method 7E: Continuous Emission Monitoring (CEM), annual average.		

Allowable Emissions _____ of ____

1. Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:
3. Allowable Emissions and Units:	4. Equivalent Allowable Emissions:
	lb/hour tons/year
5. Method of Compliance:	
6. Allowable Emissions Comment (Description	on of Operating Method):

Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2.	Future Effective Date of Allo	wable
			Emissions:	
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissi	ons:
			lb/hour	tons/year
5.	Method of Compliance:			
6.	Allowable Emissions Comment (Description	of (Operating Method):	

Section [2] of [3] EU 003 - Unit 5 Fossil Fuel Steam Generator

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 2

 Visible Emissions Subtype: VE10 – Visible Emissions 	 Basis for Allowable Opacity: ⊠ Rule □Other 	
 Allowable Opacity: Normal Conditions: 10 % Ex Maximum Period of Excess Opacity Allower 	aceptional Conditions: 20 % ed: 6 min/hour	
4. Method of Compliance: Determined by EPA Method 9		
5. Visible Emissions Comment: Determined by EPA Method 9 [Permit Nos. 01700 PSD-FL-383B, 0170004-019-AC; PSD-FL-383A, ar		

Visible Emissions Limitation: Visible Emissions Limitation 2 of 2

 Visible Emissions Subtype: VE – Visible Emissions 	2. Basis for Allowable Opacity: ⊠ Rule □ Other
3. Allowable Opacity: Normal Conditions: 20 % Ex Maximum Period of Excess Opacity Allower	ceptional Conditions: % ed: min/hour
4. Method of Compliance: COMS in ductwork.	
5. Visible Emissions Comment: The COM measurements also serve as the basis	for the PM CAM Plan.

Section [2] of [3] EU 003 - Unit 5 Fossil Fuel Steam Generator H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor 1 of 6

1.	Parameter Code: EM	2.	Pollutant(s): NO _x
3.	CMS Requirement:	\boxtimes	Rule 🗌 Other
4.	Monitor Information Manufacturer: THERMO (TEI) Model Number: 42 I		Serial Number: CM08450036
5.	Installation Date: November 24, 2009	6.	Performance Specification Test Date: January 29, 2010
7.	Continuous Monitor Comment:		
40	CFR 75, NOX		

Continuous Monitoring System: Continuous Monitor 2 of 6

1.	Parameter Code: EM	2. Pollutant(s): SO ₂
3.	CMS Requirement:	Rule 🗌 Other
4.	Monitor Information Manufacturer: THERMO (TEI) Model Number: 43I	Serial Number: CM08080023
5.	Installation Date: November 24, 2009	6. Performance Specification Test Date: January 29, 2010
7.	Continuous Monitor Comment:	
40	CFR 75, SO ₂	

Section [2] of [3] EU 003 - Unit 5 Fossil Fuel Steam Generator H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

Continuous Monitoring System: Continuous Monitor <u>3</u> of <u>6</u>

 Parameter Code: VE – Visible Emissions (opacity) 	2. Pollutant(s): PM
3. CMS Requirement:	Rule 🗌 Other
4. Monitor Information Manufacturer: Teledyne	
Model Number: Lighthawk 560	Serial Number:
	5601893, 5601894, 5601895, 5601896
5. Installation Date: November 24, 2009	6. Performance Specification Test Date: December 17, 2009
7. Continuous Monitor Comment:	
40 CFR 75	

Continuous Monitoring System: Continuous Monitor 4 of 6

1.	Parameter Code: CO ₂ – Carbon Dioxide	2. Pollutant(s): CO ₂
3.	CMS Requirement:	Rule 🗌 Other
4.	Monitor Information Manufacturer: Siemens Model Number: Ultramat 6	Serial Number: F-NR.NI-WD-270
5.	Installation Date: November 24, 2009	6. Performance Specification Test Date: January 29, 2010
7.	Continuous Monitor Comment:	
40	CFR 75	

Section [2] of [3] EU 003 - Unit 5 Fossil Fuel Steam Generator H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

<u>Continuous Monitoring System:</u> Continuous Monitor <u>5</u> of <u>6</u>

1.	Parameter Code: FLOW – Volumetric Flow Rate	2. Pollutant(s):
3.	CMS Requirement:	Rule 🗌 Other
4.	Monitor Information Manufacturer: Teledyne	
	Model Number: Ultraflow 150	Serial Number: 1500996
5.	Installation Date: November 24, 2009	6. Performance Specification Test Date: January 29, 2010
7.	Continuous Monitor Comment:	
40	CFR 75	

<u>Continuous Monitoring System:</u> Continuous Monitor <u>6</u> of <u>6</u>

1.	Parameter Code: CO – Carbon Monoxide	2. Pollutant(s): CO
3.	CMS Requirement:	⊠ Rule □ Other
4.	Monitor Information Manufacturer: THERMO (TEI) Model Number: 48	Serial Number: CM09040057
5.	Installation Date: November 24, 2009	6. Performance Specification Test Date: January 29, 2010
	Continuous Monitor Comment: CFR 60	

EMISSIONS UNIT INFORMATION Section [2] of [3] EU 003 - Unit 5 Fossil Fuel Steam Generator I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	 Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 20, 2009</u>
2.	 Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) ☑ Attached, Document ID: Previously Submitted, Date <u>May 20, 2009</u>
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) ☑ Attached, Document ID: Previously Submitted, Date June 18, 2012 and November 9, 2010
4.	 Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date May 20, 2009 Not Applicable (construction application)

_						
6.	Compliance Demonstration Reports/Records: Attached, Document ID: <u>CR-EU3-I1</u>					
	Test Date(s)/Pollutant(s) Tested: October 9, 2013/Sulfuric Acid Mist					
	 Previously Submitted, Date: 1. EPA Method 5 or 5A stack test results for particulate matter 					
	Test Date(s)/Pollutant(s) Tested:	7/22/2009				
	2. EPA Method 10 stack test re	sults for carbon monoxide				
	Test Date(s)/Pollutant(s) Tested:	7/22/2009				
	3. EPA Method 18, 25, or 25A s	tack test results for volatile organic compounds				
	Test Date(s)/Pollutant(s) Tested:	7/22/2009				
	4. EPA Method 6C stack test re	sults				
	Test Date(s)/Pollutant(s) Tested:	March 1, 2010				
	5. EPA Method 7E stack test re	sults				
	Test Date(s)/Pollutant(s) Tested:	7/22/2009, March 1, 2010				
	6. EPA Method 9 stack test res	sults				
	Test Date(s)/Pollutant(s) Tested:	7/22/2009, 5/21/2010, 5/25/2010				
	To be Submitted, Date (if known):	l:				
	Note: For FESOP applications, all rec the time of application. For Title V ai reports/records must be submitted at the time of application.	quired compliance demonstration records/reports must be submitted at r operation permit applications, all required compliance demonstration he time of application, or a compliance plan must be submitted at the				
7.	Other Information Required by Rule o					

EMISSIONS UNIT INFORMATION Section [2] of [3] EU 004 - FFSG, Unit 4

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.	Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7), F.A.C.; 40 CFR 63.43(d) and (e)):			
	□ Attached, Document ID:			
2.	Good Engineering Practice Stack Height Analysis (Rules 62-212.400(4)(d) and 62-212.500(4)(f), F.A.C.):			
	□ Attached, Document ID: ⊠ Not Applicable			
3.	Description of Stack Sampling Facilities: (Required for proposed new stack sampling facilities only)			
	Attached, Document ID: Not Applicable			

Additional Requirements for Title V Air Operation Permit Applications

1.	Identification of Applicable Requirements: ⊠ Attached, Document ID: <u>CR-1</u>	
2.	Compliance Assurance Monitoring: ⊠ Attached, Document ID: <u>CR-EU3-I2ª</u>	□ Not Applicable
3.	Alternative Methods of Operation:	⊠ Not Applicable
4.	Alternative Modes of Operation (Emissions	Trading): ⊠ Not Applicable

Additional Requirements Comment

^aSAM CAM Plan attached.

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System III. EMISSIONS UNIT INFORMATION

Title V Air Operation Permit Application - For Title V air operation permitting only, emissions units are classified as regulated, unregulated, or insignificant. If this is an application for an initial, revised or renewal Title V air operation permit, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each regulated and unregulated emissions unit addressed in this application. Some of the subsections comprising the Emissions Unit Information Section is appropriately marked. Insignificant emissions units are required to be listed at Section II, Subsection C.

Air Construction Permit or FESOP Application - For air construction permitting or federally enforceable state air operation permitting, emissions units are classified as either subject to air permitting or exempt from air permitting. The concept of an "unregulated emissions unit" does not apply. If this is an application for an air construction permit or FESOP, a separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit subject to air permitting addressed in this application for air permit. Emissions units exempt from air permitting are required to be listed at Section II, Subsection C.

Air Construction Permit and Revised/Renewal Title V Air Operation Permit Application – Where this application is used to apply for both an air construction permit and a revised or renewal Title V air operation permit, each emissions unit is classified as either subject to air permitting or exempt from air permitting for air construction permitting purposes, and as regulated, unregulated, or insignificant for Title V air operation permitting purposes. A separate Emissions Unit Information Section (including subsections A through I as required) must be completed for each emissions unit addressed in this application that is subject to air construction permitting and for each such emissions unit that is a regulated or unregulated unit for purposes of Title V permitting. (An emissions unit may be exempt from air construction permitting but still be classified as an unregulated unit for Title V purposes.) Emissions units classified as insignificant for Title V purposes are required to be listed at Section II, Subsection C.

If submitting the application form in hard copy, the number of this Emissions Unit Information Section and the total number of Emissions Unit Information Sections submitted as part of this application must be indicated in the space provided at the top of each page.

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System

A. GENERAL EMISSIONS UNIT INFORMATION

<u>Title V Air Operation Permit Emissions Unit Classification</u>

1.	Regulated or Unregulated Emissions Unit? (Check one, if applying for an initial, revised or renewal Title V air operation permit. Skip this item if applying for an air construction permit or FESOP only.)					
	The emissions unit addressed in this Emissions Unit Information Section is a regulated emissions unit.					
	The emissions unregulated en	unit addressed in this En nissions unit.	nissions Unit Informati	on Section is an		
En	nissions Unit Desci	ription and Status				
1.	Type of Emissions	Unit Addressed in this	Section: (Check one)			
	process or proc	s Unit Information Section duction unit, or activity, east one definable emission	which produces one or	_		
	of process or p	s Unit Information Section roduction units and active vent) but may also prod	vities which has at least	e emissions unit, a group one definable emission		
		s Unit Information Section or production units and a		e emissions unit, one or fugitive emissions only.		
2.	The hydrated lime components: a hyd filter (silo vent filte and hydrated lime	issions Unit Addressed i storage system for each drated lime storage silo, v r), rotary valves and blov injection lances. There is ns point for the system s	unit will consist of the f which is controlled by a wers for pneumatic deliv s one emission point for	dust collector fabric very of the hydrated lime		
3.	Emissions Unit Ide	entification Number: 03	2			
4.	Emissions Unit	5. Commence	6. Initial Startup	7. Emissions Unit		
	Status Code:	Construction	Date:	Major Group		
	Α	Date: October 2012	July 2013	SIC Code:		
8		Applicability: (Check all	that apply)	7		
0.	Acid Rain Uni		(inter uppig)			
	CAIR Unit	·				
9.	Package Unit:					
	Manufacturer:	Ν	Iodel Number:			
10	. Generator Namepl	ate Rating: MW				
	. Emissions Unit Co drated lime injectior	omment: n system for SAM reducti	on for currently authoriz	zed coal fuel blends		

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System

Emissions Unit Control Equipment/Method: Control <u>1</u> of <u>1</u>

 Control Equipment/Method Description: EP-1 and EP-2: Dust collector fabric filter (silo vent filter) 	
2. Control Device or Method Code: 018	

Emissions Unit Control Equipment/Method: Control _____ of _____

- 1. Control Equipment/Method Description:
- 2. Control Device or Method Code:

Emissions Unit Control Equipment/Method: Control _____ of ____

- 1. Control Equipment/Method Description:
- 2. Control Device or Method Code:

Emissions Unit Control Equipment/Method: Control _____ of ____

1. Control Equipment/Method Description:

2. Control Device or Method Code:

EMISSIONS UNIT INFORMATIONSection [3]of [3]EU032 - Hydrated Lime Storage and Transfer System

B. EMISSIONS UNIT CAPACITY INFORMATION

(Optional for unregulated emissions units.)

Emissions Unit Operating Capacity and Schedule

1. Maximum Process or Thro	oughput Rate: 2,000 scfm during	loading operations		
2. Maximum Production Rate	e:			
3. Maximum Heat Input Rate	e: million Btu/hr ^a			
4. Maximum Incineration Ra	te: pounds/hr			
	tons/day			
5. Requested Maximum Oper	rating Schedule:			
	6 hours/day	7 days/week		
	52 weeks/year	2,184 hours/year		
6. Operating Capacity/Sched	ule Comment:			
The silo dust collector vent will have a flow rate of approximately 2,000 scfm during the loading operations, which are estimated to occur for 6 hours per day.				

DEP Form No. 62-210.900(1) – Form Effective: 03/11/2010

C. EMISSION POINT (STACK/VENT) INFORMATION

(Optional for unregulated emissions units.)

Emission Point Description and Type

1.	 Identification of Point on Plot Plan or Flow Diagram: 		2. Emission Point 7 3	Type Code:		
3.						
4.	4. ID Numbers or Descriptions of Emission Units with this Emission Point in Common:					
5.	Discharge Type Code: P	6. Stack Height feet	:	7. Exit Diameter: feet		
8.	8. Exit Temperature: 9. Actual Volu 77°F ^a acfm ^a		netric Flow Rate:	10. Water Vapor: % ^a		
11.	11. Maximum Dry Standard Flow Rate: dscfm12. Nonstack Emission Point Height: Various feet					
13. Emission Point UTM Coordinates Zone: East (km): North (km):		14. Emission Point Latitude/Longitude Latitude (DD/MM/SS) Longitude (DD/MM/SS)				
15	15. Emission Point Comment:					

To the extent practicable, the hydrated lime handling and storage operations shall be enclosed and confined to prevent fugitive dust emissions

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System

D. SEGMENT (PROCESS/FUEL) INFORMATION

<u>Segment Description and Rate:</u> Segment <u>1</u> of <u>1</u>

1. H	Segment Description (I lydrated Lime Storage and	• 1	· ·	Unit 5		
	ource Classification Code 0501615	e (SCC):	3. SCC Units: Million Cubi	c Feet Processed		
	laximum Hourly Rate: . 24	5. Maximum <i>2</i> 525.6	Annual Rate:	6. Estimated Annual Activity Factor:		
7. M	laximum % Sulfur:	8. Maximum	% Ash:	9. Million Btu per SCC Unit:		
Max H Max A	10. Segment Comment: Max Hourly Rate: 2,000 scfm x 60 min/hr / 10 ⁶ x 2 units (Unit 4 &5)= 0.24 million cubic feet Max Annual Rate: 2,000 scfm x 60 min/hr / 10 ⁶ x 6 hr/day x 365 day/yr x 2 units (Unit 4 &5)= 525.6 million cubic feet					

Segment Description and Rate: Segment _ of _

1. Segment Description (Prod	cess/Fuel Type):					
2. Source Classification Code	2. Source Classification Code (SCC): 3. SCC Units:					
4. Maximum Hourly Rate:	5. Maximum	Annual Rate:		Estimated Annual Activity Factor:		
7. Maximum % Sulfur:	8. Maximum	% Ash:	9.	Million Btu per SCC Unit:		
10. Segment Comment:						

EMISSIONS UNIT INFORMATIONSection [3]of [3]EU032 - Hydrated Lime Storage and Transfer System

E. EMISSIONS UNIT POLLUTANTS

List of Pollutants Emitted by Emissions Unit

1. Pollutant Emitted	2. Primary Control Device Code	3. Secondary Control Device Code	4. Pollutant Regulatory Code
PM/PM ₁₀	018		WP

F1. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION – POTENTIAL, FUGITIVE, AND ACTUAL EMISSIONS (Optional for unregulated emissions units.)

Complete a Subsection F1 for each pollutant identified in Subsection E if applying for an air construction permit or concurrent processing of an air construction permit and a revised or renewal Title V operation permit. Complete for each emissions-limited pollutant identified in Subsection E if applying for an air operation permit.

Potential, Estimated Fugitive, and Baseline & Projected Actual Emissions

1. Pollutant Emitted: PM/PM ₁₀	2. Total Percent Efficiency of Control:			
3. Potential Emissions:0.51 lb/hour0.56	tons/year	4. Synthetically Limited?tons/year□Yes□YesNo		
5. Range of Estimated Fugitive Emissions (as to tons/year	applicable):		_	
6. Emission Factor: 0.015 grains/dscf Reference: Manufacturer specification			7. Emissions Method Code:3	
8.a. Baseline Actual Emissions (if required): tons/year	8.b. Baseline From:		Period: To:	
9.a. Projected Actual Emissions (if required): tons/year	9.b. Projected Monitoring Period: 5 years 10 years			
10. Calculation of Emissions: 2,000 scfm x 60 min/hr x 0.015 grains/dscf x 1.4286E-4 lbs/grain x 2 units (Unit 4 &5)= 0.51 lbs/hr 2,000 scfm x 60 min/hr x 2,184 hr/yr x 0.015 grains/dscf x 1.4286E-4 lbs/grain x 2 units (Unit 4 &5)= = 0.56 tons/yr				
11. Potential, Fugitive, and Actual Emissions Comment:				

F2. EMISSIONS UNIT POLLUTANT DETAIL INFORMATION -ALLOWABLE EMISSIONS

Complete Subsection F2 if the pollutant identified in Subsection F1 is or would be subject to a numerical emissions limitation.

Allowable Emissions _____ of ____ -- NA

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:				
3.	Allowable Emissions and Units:	4.	4. Equivalent Allowable Emissions: lb/hour tons/year			
5.	Method of Compliance:					
6.	Allowable Emissions Comment (Description	of C	Deerating Method):			

Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:			
3.	Allowable Emissions and Units:	4.	Equivalent Allowable Emissions: lb/hour tons/year		
5.	Method of Compliance:				
6. Allowable Emissions Comment (Description of Operating Method):					

Allowable Emissions _____ of _____

1.	Basis for Allowable Emissions Code:	2. Future Effective Date of Allowable Emissions:		
3.	Allowable Emissions and Units:	4.	e Emissions: tons/year	
5.	Method of Compliance:	1		
6.	Allowable Emissions Comment (Description	of (Dperating Method):	

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System

G. VISIBLE EMISSIONS INFORMATION

Complete Subsection G if this emissions unit is or would be subject to a unit-specific visible emissions limitation.

Visible Emissions Limitation: Visible Emissions Limitation 1 of 1

1. Visible Emissions Subtype: VE10 – Visible Emissions	2. Basis for Allowable Opacity: ⊠ Rule □Other				
 Allowable Opacity: Normal Conditions: 5% Ex Maximum Period of Excess Opacity Allowation 	cceptional Conditions: % ed: 6 min/hour				
4. Method of Compliance: EPA Method 9					
 5. Visible Emissions Comment: Visible emissions from each dust collector fabric filter exhaust shall not exceed 5% opacity based on a 6-minute average. Please see Attachment CR-EU32-I2 for a copy of the EPA Method 9 stack test results for opacity. 					

Visible Emissions Limitation: Visible Emissions Limitation _ of _

1.	Visible Emissions Subtype:		2. Basis for Allowa	ble Opacity:
3.	Allowable Opacity:		·	
	Normal Conditions:	% E	xceptional Conditions:	%
	Maximum Period of Excess Opa	city Allow	red:	min/hour
4.	Method of Compliance:			
5.	Visible Emissions Comment:			

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System

H. CONTINUOUS MONITOR INFORMATION

Complete Subsection H if this emissions unit is or would be subject to continuous monitoring.

<u>Continuous Monitoring System:</u> Continuous Monitor _ of _

1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	

Continuous Monitoring System: Continuous Monitor _ of _

1.	Parameter Code:	2. Pollutant(s):
3.	CMS Requirement:	Rule Other
4.	Monitor Information Manufacturer:	
	Model Number:	Serial Number:
5.	Installation Date:	6. Performance Specification Test Date:
7.	Continuous Monitor Comment:	

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System I. EMISSIONS UNIT ADDITIONAL INFORMATION

Additional Requirements for All Applications, Except as Otherwise Stated

1.	 Process Flow Diagram: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 20, 2009</u>
2.	 Fuel Analysis or Specification: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 20, 2009</u>
3.	Detailed Description of Control Equipment: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date June 18, 2012
4.	 Procedures for Startup and Shutdown: (Required for all operation permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Attached, Document ID: Previously Submitted, Date <u>May 20,2009</u>
	□ Not Applicable (construction application)
5.	Operation and Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Image: Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Image: Maintenance Plan: (Required for all permit applications, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Image: Maintenance Plan: (Required for all permit applications, except Title V air operations, except Title V air operations, except Title V air operation permit revision applications if this information was submitted to the department within the previous five years and would not be altered as a result of the revision being sought) Image: Maintenance Plan: (Required for all permit applications, except Title V air operations, except Title
	□ Not Applicable (construction application)
6.	Compliance Demonstration Reports/Records: Attached, Document ID: <u>CR-EU32-I2</u> Test Date(s)/Pollutant(s) Tested: <u>October 9-10, 2013/ VE</u>
	 Previously Submitted, Date:
	the time of application. For Title V air operation permit applications, all required compliance demonstration reports/records must be submitted at the time of application, or a compliance plan must be submitted at the time of application.
7.	Other Information Required by Rule or Statute: Attached, Document ID: Not Applicable

Section [3] of [3] EU032 - Hydrated Lime Storage and Transfer System

I. EMISSIONS UNIT ADDITIONAL INFORMATION (CONTINUED)

Additional Requirements for Air Construction Permit Applications

1.		Control Technology Review and Analysis (Rules 62-212.400(10) and 62-212.500(7),				
	F.A.C.; 40 CFR 63.43(d) and (e)):					
	Attached, Document ID: Not Applie	cable				
2.	. Good Engineering Practice Stack Height Analysis (Rules 62-212.400(4)(d) and 62-					
	212.500(4)(f), F.A.C.):					
	Attached, Document ID: Not Applie	cable				
3.	3. Description of Stack Sampling Facilities: (Required for prop	oosed new stack sampling facilities				
	only)					
	Attached, Document ID: Not Applie	cable				

Additional Requirements for Title V Air Operation Permit Applications

1.	Identification of Applicable Requirements: ⊠ Attached, Document ID: <u>CR-1</u>	
2.	Compliance Assurance Monitoring:	
	Attached, Document ID:	⊠ Not Applicable
3.	Alternative Methods of Operation:	
	Attached, Document ID:	⊠ Not Applicable
4.	Alternative Modes of Operation (Emissions	Trading):
	Attached, Document ID:	⊠ Not Applicable

Additional Requirements Comment

ATTACHMENT CR-1 IDENTIFICATION OF APPLICABLE REQUIREMENTS

Regulation	EU Nos.
40 CFR 60, Subpart A, NSPS General Provisions	003, 004, 016
40 CFR 60, Subpart D, Standards of Performance for Fossil-Fuel-Fired Steam Generators for Which Construction is Commenced After August 17, 1971	003, 004
40 CFR 60, Subpart IIII, Standards of Performance for Stationary Compression Ignition Internal Combustion Engines	029
40 CFR 60, Subpart JJJJ, Standards of Performance for Stationary Spark Ignition Internal Combustion Engines	030
40 CFR 60, Subpart OOO, Standards of Performance for Nonmetallic Mineral Processing Plants	023
40 CFR 63, Subpart ZZZZ, National Emissions Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines	028, 029, 030
40 CFR 63, Subpart Y, Standards of Performance for Coal Preparation Plants.	016
40 CFR 75 Acid Rain Monitoring Provisions	001, 002, 003, 004
Rule 62-296.405, F.A.C.	001, 002
Rule 62-210.370, F.A.C.	001, 002, 003, 004, 006, 008, 009, 010, 013, 014, 015, 016, 020
Rule 62-210.700, F.A.C.	001, 002, 003, 004, 006, 008, 009, 010, 013, 014, 015, 016, 020, 033
Rule 62-213.410, F.A.C.	001, 002, 003, 004, 006, 008, 009, 010, 013, 014, 015, 016, 020, 033
Rule 62-213.440, F.A.C.	001, 002, 003, 004, 006, 008, 009, 010, 013, 014, 015, 016, 020, 033
Rule 62-297.310, F.A.C.	001, 002, 003, 004, 006, 008, 009, 010, 013, 014, 015, 016, 020, 033

ATTACHMENT CR-EU3-I1 COMPLIANCE DEMONSTRATION REPORTS/RECORDS SULFURIC ACID MIST (SAM) AUGUST-OCTOBER 2013

COMPLIANCE TEST REPORT FOR DUKE ENERGY FLORIDA CRYSTAL RIVER PLANT UNIT 4 & 5 October 10 & 11, 2013

Job # 13-369

Test Report Date: 11-07-13

November 7, 2013

I, Josh Punch, hereby certify that the data obtained for Duke Energy Florida at the Crystal River Plant on Units 4 & 5 are in accordance with procedures set forth by the USEPA. This report accurately represents the data obtained from the testing procedures and analysis of this data.

I, Carl Vineyard, hereby certify that I have reviewed this report and to the best of my knowledge, the data presented herein is complete and accurate.

Carl Vineyard, P.E., QSTI Test Engineer

Grace Consulting, Inc. 1855 Sipe Road Conover, NC 28613

Toll Free: 1-877-GCI-TEST Phone: 828-855-0217 Fax: 828-855-0217 gcitest.com

INTRODUCTION .	÷1	÷4	166	<u>.</u> :	$T_{\mathbf{k}}$	ia -		1
SUMMARY OF TEST RESU	ILTS	-	1.20	5	15	e.	75	2
SAMPLING AND ANALYTIC		OCEDU	IRES		16	2	95	3
APPENDIX								
Sample Calculations)	8	ŝ	22	ē	ġ.	8	4
Test Data Sheets	1 2	*	2	•			5	5
GCI Calibration Data	2	×	Sil	i::	*	24	8	6
Calibration Sheets/G	as Certi	ification	Sheets	5	Yi -	SI	20	7
Laboratory Reports			•	-	(*) (*)		162	8
Accreditation	ι÷.	30). E	E.	90	æ	(0)	9

INTRODUCTION

INTRODUCTION

This report presents the results of the emissions tests performed for Duke Energy Florida at the Crystal River Plant, Units 4 & 5.

The purpose of the tests was to determine the emissions of the units for compliance. The results can be found in the Summary of Test Results section of this report.

The testing was performed by Grace Consulting, Inc., located at 1855 Sipe Road, Conover, NC 28613. Present during the testing were Josh Punch, Matt Sanford, Brian Dice and Joey Niglio from Grace Consulting, Inc. Jon Hays was present to observe the testing from Duke Energy.

The tests were performed on October 10 & 11, 2013. The testing was completed in accordance with USEPA test methods as published in the July 1, 2013 Federal Register, - "Standards of Performance for New Stationary Sources" and subsequent revisions.

The sampling and analytical procedures can be found in the Sampling and Analytical Procedures section of this report. The raw field data and the equations used to determine the final results are presented in the Appendix section.

SUMMARY OF TEST RESULTS

<u>SUMMARY OF TEST RESULTS</u> The following presents the results of the emissions tests performed for Duke Energy Florida at the Crystal River Plant, Unit 4 & 5.

PARTICULATE EMISSIONS Method 5B Unit 4

<u>Run #</u>	Test Date	mg/ACM	lb/hr	<u>lb/mmBtu</u>
1	10-10-13	6.774	62.25	0.008
2	10-10-13	5.898	54.18	0.007
3	10-10-13	7.765	70.16	0.009
Avg.		6.812	62.20	0.008

AMMONIA EMISSIONS CTM-027 Unit 4

Run #	Test Date	ppm dry	lb/hr	lb/mmBtu
1	10 10 12	0.041	0.00	2.510.05
1	10-10-13	0.041	0.20	2.51E-05
2	10-10-13	<0.019	<0.09	<1.16E-05
3	10-10-13	< 0.021	<0.10	<1.26E-05
Avg.		<0.027	<0.13	<1.64E-05

H2SO4 EMISSIONS Method 8A Unit 4

Run #	Test Date	ppm wet	lb/hr	lb/ <u>mmBtu</u>
1	10-10-13	1,45	48.68	0.0061
2	10-10-13	1.48	50.09	0.0062
3	10-10-13	1.45	48.27	0.0060
Avg.		1.46	49.01	0.0061

VISIBLE EMISSIONS Unit 4

Run #	Test Date	Time	%Opacity
1	10-10-13	17:00-18:00	6.6

PARTICULATE EMISSIONS Method 5B Unit 5

Run #	Test Date	mg/ACM	lbs/hr	lb/mmBtu
1	10-11-13	7.967	73.24	0.009
2	10-11-13	5.380	49.13	0.006
3	10-11-13	7.549	69.55	0.008
Avg.		6.965	63.97	0.008

AMMONIA EMISSIONS CTM-027 Unit 5

Run #	Test Date	ppm dry	lbs/hr	lb/mmBtu
1	10-11-13	< 0.021	< 0.10	<1.26E-05
2	10-11-13	0.044	0.22	2.71E-05
3	10-11-13	<0.017	<0.09	<1.05E-05
Avg.		<0.027	<0.14	<1.67E-05

H2SO4 EMISSIONS Method 8A Unit 5

<u>Run #</u>	Test Date	ppm wet	lb/hr	lb/mmBtu
1	10-11-13	0.96	31.86	0.0039
2	10-11-13	0.91	30.19	0.0037
3	10-11-13	1.08	35.86	0.0044
Avg.		0.98	32.64	0.0040

VISIBLE EMISSIONS Unit 5

Run #	Test Date	Time	%Opacity
1	10-11-13	14:15-15:15	5.6

The complete results can be found on the computer printouts following.

GRACE CONSULTING, INC. Particulate Analysis

Duke Energy Florida Crystal River Unit 4 13-364

Run Number			3	2	3
Date			10/10/2013	10/10/2013	10/10/2013
Location			Unit 4	Unit 4	Unit 4
Comment			Method 5B	Method 5B	Method 5E
Start Time			12:00	15:25	18:00
End Time			14:19	17:39	20:13
Barometric Pressure	In. Hg.	Pb	29,60	29.60	29.60
Static Pressure	in. H2O	Pf	-0.54	-0.62	-0.59
Condensate Collected	grams	Vic	340.7	343.6	337.2
Volume Sampled	dcf	Vm	89.742	87.834	86.189
Meter Correction Factor		Y	0.996	0.996	0.996
Pitot Tube Correction Factor		Pc	0.840	0.840	0.840
Square Root of Delta P			0.905	0.906	0.891
Orifice Pressure	In. H2O		1,598	1.643	1.580
Meter Temperature	Degree F		101	104	103
Flue Temperature	Degree F		127	126	126
Percent CO2	%		13.00	12.90	12.90
Percent O2	%		6.20	6.40	6.10
Diameter of Nozzle	In.		0.224	0.224	0.224
Area of Flue	Sq. ft.		754.768	754.768	754.768
Sample Time	min.		120	120	120
Weight Gain	grams		0.0210	0.0177	0.0229
F-Factor	grama		9,780	9,780	9,780
			0,700	5,100	0,100
Absolute Flue Pressure	in. Hg	Ps	29.56	29.55	29.56
Corrected Sample Volume	dscf	Vms	83.56	81.35	79.96
Measured Moisture of Flue Gas	%	Bws	16.13%	16.61%	16.59%
Calculated Saturated Moisture	%	Bwsat	14.12%	13.75%	13.75%
Moisture used for Calculations	%	Bwsu	14.12%	13.75%	13.75%
Molecular Weight	lb/lb-mole	Ms	28.59	28.63	28.62
Velocity of Flue Gas	fps	Vs	54.17	54.15	53.26
Volume of Flue Gas	ACFM	Vo	2,452,937	2,452,125	2,411,867
Volume of Flue Gas	DSCFM	Qsd	1,872,061	1,882,397	1,851,653
Dust Concentration	lb/dscf	Wd	5.54E-07	4.80E-07	6.32E-07
Dust Concentration	lb/hr	Wh	62.25	54.18	70.16
Dust Concentration	gr/acf	Wa	2.96E-03	2.58E-03	3.39E-03
Dust Concentration	gr/dscf	Ws	3.88E-03	3.36E-03	4.42E-03
sokinetic Rate	%	%	105.0	102.7	102.6
Sample Volume @ Stack Conditions	dacm	Vstack	2.6624	2,5884	2.5438
Sample Volume @ Standard Cond	dscm	Vms (metric)	2.3660	2.3037	2.2642
Particulate Concentration	mg/acm (wet)	Cpm(stack)	6.774	5.898	7.765
Particulate Concentration	mg/wscm	Opin(Billon)	7.622	6.627	8.724
	· · · · · · · ·				
Particulate Concentration Particulate Concentration	mg/DSCM		8.876 7.622	7.683 6.627	10.114 8.724
	mg/Ncm lb/mmBtu	DI	0.008	0.007	0.009
Particulate Emissions Approximate Heat Input	mmBtu/hr		8077.991	8012.079	8044.284
verages: Flue Temp.:	126.3			lb/dscf 5.	.55E-07
ACFM:	2,438,976			lb/hr	62.20
DSCFM:	1,868,703				.98E-03
Percent O2:	6.23%				.89E-03
mmBtu/hr	8044.785			lb/mmBtu	0.008

GRACE CONSULTING, INC. Ammonia Analysis

Duke Energy Florida Crystal River Unit 4 13-364

Date 10/10/2013 10/10/2013 10/10/2013 Location Unit 4 Unit 4 Unit 4 Comment 12:00 15:25 18:00 Start Time 12:00 15:25 18:00 Barometric Pressure In. Hg. Pb 29:60 29:60 Static Pressure In. H2:0 Pf -0.54 -0.62 -0.59 Condensate Collected grams Vic 340.7 343.5 337.2 Valume Sampled dcf Vm 89.742 87.834 68.189 Meter Correction Factor Pc 0.840 0.840 0.840 0.840 Square Root Data P 0.905 0.906 0.896 0.896 0.896 Orflice Pressure In. H2:0 1.598 1.643 1.580 1.643 1.580 Orflice Pressure Degree F 127 128 128 128 Flue Temperature Degree F 13.00 12.90 12.90 120 Percent C2 %	Run Number			1	2		3
Comment CTM-027 CTM-027 <t< td=""><td>Date</td><td></td><td></td><td>10/10/2013</td><td>10/10/2013</td><td>1</td><td>10/10/2013</td></t<>	Date			10/10/2013	10/10/2013	1	10/10/2013
Start Time 12:00 15:25 18:00 End Time 14:19 17:39 20:13 Barometric Pressure In. Hg. Pb 29:60 29:60 29:60 Statt Dressure In. HZO Pf -0.54 -0.62 -0.59 Condensate Collected grams Vic 343.6 -337.2 Volume Sampled dcf Vm 89.742 67.834 68.189 Meter Correction Factor Y 0.996 0.996 0.996 0.996 Chiftee Pressure In. HZO 1.596 1.643 1.580 Meter Temperature Degree F 127 126 128 Percent CO2 % 6.20 6.40 0.840 0.244 Olareter of Nozzle In. 0.224 0.224 0.224 0.224 Arms of Flue Sq. ft. 754.768 754.768 754.768 754.768 Sample Time min. 120 120 120 120 120 120 120 120 <td>Location</td> <td></td> <td></td> <td>Unit 4</td> <td>Unit 4</td> <td></td> <td>Unit 4</td>	Location			Unit 4	Unit 4		Unit 4
End Time 14:19 17:39 20:13 Barometric Pressure In. Hg. Pb 29:60 29:61 20:00 20:00 20:00 20:00 20:00 20:00 20:00 20:00 20:00 20:00 20:00	Comment			CTM-027	CTM-027		CTM-027
Barometric Pressure In. Hg. Pb 29.60 <td>Start Time</td> <td></td> <td></td> <td>12:00</td> <td>15:25</td> <td></td> <td>18:00</td>	Start Time			12:00	15:25		18:00
Static Pressure In. H2O Pf -0.54 -0.62 -0.53 Condensate Collected grams Vic 340.7 343.6 337.2 Volume Sampled dcf Vim 89.742 87.834 66.189 Meter Correction Factor Y 0.996 0.996 0.996 0.996 Pitot Tube Correction Factor Pc 0.840 0.840 0.840 0.840 Orffice Pressure In. H2O 1.598 1.643 1.580 1.843 Meter Temperature Degree F 101 104 103 Flue Temperature Degree F 101 104 103 Percent C2 % 6.20 6.40 6.10 Diameter of Nozzie In. 0.224 0.224 0.224 Area of Fue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Armonia Colected grams 0.0000308 < 0.0000304	End Time			14:19	17:39		20:13
Static Pressure In. H2O Pf -0.54 -0.62 -0.59 Condensate Collected grams Vic 340.7 343.6 337.2 Volume Sampled dcf Vim 89.742 87.834 86.189 Meter Correction Factor Y 0.996 0.996 0.996 Pito Tube Correction Factor Pc 0.840 0.840 0.840 Square Root of Delta P 0.905 0.906 0.881 Orfice Pressure In. H2O 1.598 1.643 1.580 Meter Temperature Degree F 101 104 103 Percent O2 % 6.20 6.40 6.10 Diameter of Nozzle In. 0.224 0.224 0.224 Arma of Flue Sq. ft. 754.768 754.768 754.768 754.768 Sample Time min. 120 120 120 120 Armonia Collected grams 0.0000885 0.0000304 <0.0000303	Barometric Pressure	In. Hg.	Pb	29.60	29.60		29.60
Volume Sampled dcf Vm 89.742 87.834 86.189 Meter Correction Factor Y 0.996 0.996 0.996 0.996 Pitot Tube Correction Factor Pc 0.840 0.840 0.840 0.840 Square Root of Delta P 0.905 0.906 0.891 1.558 1.643 1.580 Meter Temperature Degree F 101 104 103 1.580 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.26 1.20 1	Static Pressure	-	Pf	-0.54	-0.62		-0.59
Mater Consistion Factor Y 0.996 0.996 0.996 Pilot Tube Correction Factor Pc 0.840 0.840 0.840 Square Root of Delta P 0.905 0.906 0.891 Orifice Pressure In. H2O 1.538 1.643 1.580 Meter Temperature Degree F 127 126 128 Percent CO2 % 6.20 6.40 6.10 Diameter of Nozzle In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 120 Armonia Collected grams 0.0000885 <0.0000304	Condensate Collected	grams	VIc	340.7	343.6		337.2
Meter Correction Factor Y 0.996 0.996 0.996 Pitot Tube Correction Factor Pc 0.840 0.840 0.840 Square Root of Delta P 0.905 0.906 0.840 Office Pressure In. H2O 1.598 1.643 1.580 Meter Temperature Degree F 101 104 103 Flue Temperature Degree F 127 126 128 Percent C2 % 6.20 6.40 6.10 Diameter of Nozzle In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Armonia Collected grams 0.0000685 0.0000304 0.0000330 F-Factor 9,780 9,780 9,780 9,780 9,780 Absolute Flue Pressure in. Hg Ps 29,56 29.55 29.56 Carceted Sample Volume dscf Vms 83.56	Volume Sampled	-	Vm	89.742	87.834		86.189
Square Root of Delta P 0.905 0.906 0.891 Orifice Pressure In. H2O 1.588 1.643 1.580 Meter Temperature Degree F 101 104 103 Piue Temperature Degree F 127 126 128 Percent CO2 % 6.20 6.40 6.10 Diameter of Nozzle In. 0.224 0.224 0.224 Oparater of Nozzle In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 120 Armmonia Collected grams 0.0000865 < 0.0000304			Y	0.996	0.996		0.996
Option for other In. H2O 1.588 1.643 1.580 Meter Temperature Degree F 101 104 103 Flue Temperature Degree F 127 126 126 Percent CO2 % 6.20 6.40 6.10 Diameter of Nozzie In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Armonia Collected grams 0.0000685 0.0000304 <	Pitot Tube Correction Factor		Pc	0.840	0.840		0.840
Meter Temperature Degree F 101 104 103 Flue Temperature Degree F 127 126 128 Percent CO2 % 13.00 12.90 12.90 Percent CO2 % 6.20 6.40 6.10 Diameter of Nozzle In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Ammonia Collected grams 0.0000685 <0.0000304	Square Root of Delta P			0.905	0.906		0.891
International Solution Degree F 127 126 126 Percent CO2 % 13.00 12.90 12.90 Percent CO2 % 6.20 6.40 6.10 Diameter of Nozzie In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Ammonia Collected grams 0.0000685 < 0.0000304	Orifice Pressure	In. H2O		1.598	1.643		1.580
Percent CO2 % 13.00 12.90 12.90 Percent CO2 % 6.20 6.40 6.10 Diameter of Nozzle In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Armonia Collected grams 0.0000685 <0.0000304	Meter Temperature	Degree F		101	104		103
Percent CO2 % 13.00 12.90 12.90 Percent O2 % 6.20 6.40 6.10 Diameter of Nozzle In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Armmonia Collected grams 0.0000685 < 0.0000304	•	Degree F		127	126		126
Diameter of Nozzle In. 0.224 0.224 0.224 Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Armonia Collected grams 0.0000805 < 0.0000304		%		13.00	12.90		12.90
Area of Flue Sq. ft. 754.768 754.768 754.768 Sample Time min. 120 120 120 Arrmonia Collected grams 0.0000885 < 0.0000304	Percent O2	%		6.20	6.40		6.10
Sample Time min. 120 120 120 Ammonia Collected grams 0.0000685 < 0.0000304		In.		0.224	0.224		0.224
Animonia Collected grams 0.0000885 < 0.0000304 < 0.0000330 F-Factor grams 0.0000885 < 0.0000304	Area of Flue	Sq. ft.		754.768	754.768		754.768
Ammonia Collected F-Factor grams 0.0000685 9,780 < 0.0000304 9,780 < 0.0000304 9,780 Absolute Flue Pressure Corrected Sample Volume in. Hg Ps 29.56 29.55 29.56 Corrected Sample Volume dscf Vms 83.56 81.35 79.96 Measured Moisture of Flue Gas % Bws 16.13% 16.61% 16.59% Calculated Saturated Moisture % Bwsat 14.12% 13.75% 13.75% Molecular Weight Ib/Ib-mole Ms 28.59 28.63 28.62 Velocity of Flue Gas fps Vs 54.17 54.15 53.26 Volume of Flue Gas DSCFM Qsd 1.872,061 1.882,397 1.851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 < 8.24E-10	Sample Time	min.		120	120		120
Absolute Flue Pressure in. Hg Ps 29.56 29.55 29.56 Corrected Sample Volume dsof Vms 63.56 81.35 79.96 Measured Moisture of Flue Gas % Bws 16.13% 16.61% 16.59% Calculated Saturated Moisture % Bwsat 14.12% 13.75% 13.75% Moisture used for Calculations % Bwsu 14.12% 13.75% 13.75% Molecular Weight Ib/lb-mole Ms 28.59 28.63 28.62 Velocity of Flue Gas fps Vs 54.17 54.15 53.26 Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 <	•	grams		0.0000685	< 0.0000304	<	0.0000330
Automatic Initial Provide the construction Provide the constent construction Provide the construction	F-Factor			9,780	9,780		9,780
Absolute Trobotic Initig For Initig For Initig For Initig For	Abashita Ekia Proceiura	in Ha	Be	29.56	29.55		29.56
Measured Moisture of File Gas % Bws 16.13% 16.61% 16.59% Calculated Saturated Moisture % Bwsat 14.12% 13.75% 13.75% Moisture used for Calculations % Bwsu 14.12% 13.75% 13.75% Moisture used for Calculations % Bwsu 14.12% 13.75% 13.75% Molecular Weight Ib/lb-mole Ms 28.59 28.63 28.62 Velocity of Flue Gas fps Vs 54.17 54.15 53.26 Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 <		•					
Calculated Saturated Moisture % Bwsat 14.12% 13.75% 13.75% Moisture used for Calculations % Bwsu 14.12% 13.75% 13.75% Molecular Weight Ib/lb-mole Ms 28.59 28.63 28.62 Velocity of Flue Gas fps Vs 54.17 54.15 53.26 Volume of Flue Gas ACFM Vo 2,452,937 2,452,125 2,411,867 Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 < 8.24E-10	1						
Moisture used for Calculations % Bwsu 14.12% 13.75% Moisture used for Calculations % Bwsu 14.12% 13.75% Molecular Weight Ib/lb-mole Ms 28.59 28.63 28.62 Velocity of Flue Gas fps Vs 54.17 54.15 53.26 Volume of Flue Gas ACFM Vo 2,452,937 2,452,125 2,411,867 Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 <							
Molecular Weight Ib/Ib-mole Ms 28.59 28.63 28.62 Velocity of Flue Gas fps Vs 54.17 54.15 53.26 Volume of Flue Gas ACFM Vo 2,452,937 2,452,125 2,411,867 Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 < 8.24E-10							
Velocity of Flue Gas fps Vs 54.17 54.15 53.26 Volume of Flue Gas ACFM Vo 2,452,937 2,452,125 2,411,867 Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 <							
Volume of Flue Gas ACFM Vo 2,452,937 2,452,125 2,411,867 Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 <	-						
Volume of Flue Gas DSCFM Qsd 1,872,061 1,882,397 1,851,653 Ammonia Concentration Ib/dscf Wd 1.81E-09 <	•						
Ammonia Concentration Ib/dscf Wd 1.81E-09 8.24E-10 < 9.10E-10 Ammonia Concentration ppm 0.041 0.019 0.021 Ammonia Concentration Ib/hr Wh 0.20 0.09 0.10 Ammonia Concentration gr/acf Wa 9.66E-06 4.43E-06 4.89E-06 Ammonia Concentration gr/dscf Ws 1.27E-05 5.77E-06 6.37E-06 Isokinetic Rate % %I 105.0 102.7 102.6 Sample Volume @ Stack Conditions dacm Vstack 2.6624 2.5884 2.5438 Sample Volume @ Standard Cond dscm Vms (metric) 2.3660 2.3037 2.2642 Ammonia Concentration mg/acm (wet) Cpm(stack) 0.022 0.011 0.011							
Ammonia Concentration ppm 0.041 < 0.019						<	
Ammonia ConcentrationIb/hrWh0.20<0.09<0.10Ammonia Concentrationgr/acfWa9.66E-06<			790				
Ammonia Concentrationgr/acfWa9.66E-06< 4.43E-06< 4.89E-06Ammonia Concentrationgr/dscfWs1.27E-05< 5.77E-06			Wh			<	
Ammonia Concentration gr/dscf Ws 1.27E-05 < 5.77E-06 < 6.37E-06 Isokinetic Rate % %I 105.0 102.7 102.6 Sample Volume @ Stack Conditions dacm Vstack 2.6624 < 2.5884							
Isokinetic Rate % %I 105.0 102.7 102.6 Sample Volume @ Stack Conditions dacm Vstack 2.6624 <		•				<	
Sample Volume @ Stack ConditionsdacmVstack2.6624< 2.5884< 2.5438Sample Volume @ Standard ConddscmVms (metric)2.3660< 2.3037		•					
Sample Volume @ Standard ConddscmVms (metric)2.3660< 2.3037< 2.2642Ammonia Concentrationmg/acm (wet)Cpm(stack)0.022< 0.010						<	
Ammonia Concentrationmg/acm (wet)Cpm(stack)0.022< 0.010< 0.011Ammonia Concentrationmg/wscm0.025< 0.011	. –						
Ammonia Concentrationmg/wscm0.025< 0.011< 0.013	. –						
	,		- million and			<	
Ammonia Concentration md/DSCM 0.029 < 0.013 < 0.013	Ammonia Concentration	mg/DSCM		0.029	< 0.013	<	0.015
Ammonia Concentration mg/Ncm 0.025 < 0.011 < 0.013							
Ammoniae Emissions Ib/mmBtu DI 2.51E-05 < 1.16E-05 < 1.26E-05		-	DI				
Approximate Heat Input mmBtu/hr 8077.991 < 8012.079 < 8044.284							
Averages: Flue Temp.: 126.3 lb/dscf < 1.18E-09	Averages: Flue Temp.:	126.3			lb/dscf	< 1.18E-09	
ACFM: 2,438,976 ppm < 0.027	· ·						
DSCFM: 1,868,703 b/hr < 0.13							
Percent O2: 6.23% gr/acf < 6.33E-06							
mmBtu/hr 8044.785 gr/dscf < 8.26E-06					•		
Ib/mmBtu < 1.64E-05							

Mois Calc 1	Alternative met					stack gas:					
Saturation Vapor Perssure Tab	le:	%M 0.141203	Tf 127	Tw 127	Td 127	Pb 29.6	P(abs)	P static 9 -0.54		Percent Moisture	14.12
Psychrometric Calculation:		RH 100	Tf 127.00	Tw 127	Td 127.00	Pb 29.6	P(abs) 29.5602	Lb/Lb 9 -0.622			
Water Vapor Pressure in Proportion by volume of v Water Vapor pressure at Absolute pressure of a ga Proportion by volume of v Absolute pressure at the Water vapor pressure in a Absolute pressure of duct	rater vapor in gas saturated conditio s mixture (Pmix): rater vapor in a ga vet bulb and dry b gas mixture (Eo)	mixture for s ns and wet b us (Bwo): pulb temperat	aturated could temper	onditions (B ature (E'):		(4.1734 0.141203 4.174 29.56029 0.141183 29.56029 4.1734 29.56029	e' From V Pmix Bwo Pa eo	Vvp_Table			
Dry Bulb Wet Bulb Pr	ometric essure Specific PSIA Humidity		stm32	stm	SDS	spa	sw	c12	c13	w	
127 127	0 -0.622	100		2.051414	•		-0,622	1021.118	0	-0.622	
	100% Relativ	e Humidity C	Calculations stm32	s Appear Be stm	elow This Po sps	oint. spa	SW	c12	c13	w	
			2.931112	2.051414	2.051414	-2.05141	-0.622	1021.118	o	-0.622	
Mois Calc 2	Alternative meth	ods for dete	rmination o	f moisture o	content in s	tack gas:					
Saturation Vapor Perssure Tabl	e:	%M 0.137475 RH	Tf 126 Tf	Tw 126 Tw	Td 126 Td	Pb 29.6 Pb	P(abs) 29.55441 P(abs)	P static -0.62 Lb/Lb		Percent Moisture	13.75
Psychrometric Calculation:		100	126.00	126	126.00	29.6	29.55441	-0.622			
Water Vapor Pressure in g Proportion by volume of w Water Vapor pressure at s Absolute pressure of a gaz Proportion by volume of w Absolute pressure at the w Water vapor pressure in a Absolute pressure of duct	ater vapor in gas i aturated condition mixture (Pmix): ater vapor in a gas ret bulb and dry bu gas mixture (Eo):	mixture for sa is and wet bu s (Bwo): ub temperatu	aturated co ulb tempera	nditions (Bv ature (E'):		0,137455 29.55441	e' From W Pmix Bwo Pa eo	wp_Table			
Dry Bulb Wet Bulb Pre	ometric ssure Specific 'SIA Humidity	Relative Humidity %	stm32	stm	sps	spa	sw	c12	c13	w	
126 126	0 -0.622	100	2.847691	1.996595	1.996595	-1.9966	-0.622	1021.684	0	-0.622	
	100% Relativ	e Humidity C	alculations	Appear Bel	low This Po	int.					
			stm32	stm	sps	spa	SW	c12	c13	w	
Mois Calc 3			2.847691	1.996595	1.996595	-1.9966	-0.622	1021.684	0	-0.622	
	Alternative meth	ods for deter %M	mination of Tf	f moisture c Tw	ontent in st Td	ack gas: Pb	P(abs)	P static			
Saturation Vapor Perssure Table	κ.	0.137465	126	126	126	29.6	29.55662	-0.59		Percent Moisture	13,75
Psychrometric Calculation		RH 100	Tf 126.00	Tw 126	Td 126.00	Pb 29.6	P(abs) 29.55662	Lb/Lb -0.622			
Water Vapor Pressure in g Proportion by volume of wa Water Vapor pressure at se Absolute pressure of a gas Proportion by volume of wa Absolute pressure at the w Water vapor pressure in a g Absolute pressure of duct g	ter vapor in gas m aturated condition mixture (Pmix): ter vapor in a gas at bulb and dry bu gas mixture (Eo):	nixture for sa s and wet bu s (Bwo):	turated cor lb tempera	nditions (Bw ture (E'):		0.137465 4.063 29.55662 0.137445 29.55662	e' From W Pmix Bwo Pa eo	vp_Table			
Dry Bulb Wet Bulb Pre	metric ssure Specific SIA Humidity	Relative Humidity %	stm32	stm	sps	spa	sw	c12	c13	w	
	0 -0.622			1.996595		-1.9966	-0.622	1021.684	0	-0.622	
	100% Relative		alculations stm32	Appear Bei stm	ow This Poi sps	nt. spa	sw	c12	c13	w	
				1.996595		-1.9966	-0.622	1021.684	0	-0.622	

Sampling System Bias Check and Measured Value Correction

	Corrected Percent, Dry Basis 13.00 12.90 12.90
	Gas 9.071 9.071 9.071
	Upscale Gas Drift -0.72 0.44 0.44
	Final Upscale Gas Bias 9.06 9.14
Duke Energy Florida Crystal River - Unit 4 Method 5B	Initial Upscale Gas Bias 9.11 8.98 9.06
Duke Ene Crystal Ri Metho	Zero Gas Drift -0.22 -0.33 0.17
	Final Zero Gas Bias 0.11 0.05 0.08
10/10/2013 CO2 18.14	Initial Zero Gas Bias 0.15 0.11 0.05
Date: Pollutant: Monitor Span:	Average Measured Percent 12.88 12.77 12.95
M	Run Number 2 3

Eq. 6C-1 Cgas = (Cavg - Co) * Cma / (Cm - Co)

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Cm = Average of initial and final system calibration bias check responses Co = Average of initial and final system calibration bias check responses Cma = Actual concentration of the upscale calibration gas, percent Cgas = Effluent gas concentration, dry basis, percent for the upscale calibration gas, percent for the zero gas, percent where:

Sampling System Bias Check and Measured Value Correction

	⊃ 0
	Final Upscale Gae Bioc
Energy Florida al River - Unit 4 Method 5B	Initial Upscale
Duke Energy Florida Crystal River - Unit 4 Method 5B	Zero Gas Drift
	Final Zero Gas Rias
10/10/2013 02 21.96	Initial Zero Gas Bias
Date: Pollutant: Monitor Span:	Average Measured Percent
Mor	Run Number

Corrected	6.20
Percent,	6.40
Dry Basis	6.10
Calibration Gas	10.93 10.93 10.93
Upscale Gas Drift	0.82 -0.64 0.68
Final	11.13
Upscale	10.99
Gas Bias	11.14
Initial	10.95
Upscale	11.13
Gas Bias	10.99
Zero Gas Drift	-0.27 0.50 -0.27
Final	0.05
Zero Gas	0.16
Bias	0.10
Initial Zero Gas Bias	0.11 0.05 0.16
Average	6.29
Measured	6.47
Percent	6.26
Run Number	τα σ

Cgas = (Cavg - Co) * Cma / (Cm - Co) Eq. 6C-1

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Cm = Average of initial and final system calibration bias check responses Co = Average of initial and final system calibration bias check responses Cma = Actual concentration of the upscale calibration gas, percent Cgas = Effluent gas concentration, dry basis, percent for the upscale calibration gas, percent for the zero gas, percent where:

GRACE CONSULTING, INC. H2SO4 Analysis

Duke Energy Florida Crystal River Unit 4 13-369

Run Number			7		2		3
Date			10/10/2013	3	10/10/2013		10/10/2013
Location			Unit 4	-	Unit 4		Unit 4
Comment			Method 8A	1	Method 8A		Method 8A
Start Time			12:00		15:25		18:00
End Time			13:00		16:25		19:00
Barometric Pressure	In. Hg.	Pb	29.6		29.6		29.6
Static Pressure	In. H2O	Pf	-0.54		-0.62		-0.59
Volume Sampled	dcf	Vm	20.698		20,795		21.424
Meter Correction Factor		Y	1.001		1.001		1.001
Pitot Tube Correction Factor		Pc	0.840		0.840		0.840
Square Root of Delta P			0.905		0.906		0.891
Orifice Pressure	In. H2O		0.45		0.45		0.45
Meter Temperature	Degree F		91		95		95
Fiue Temperature	Degree F		127		126		126
Percent CO2	%		12.9		13.00		12.90
Percent O2	%		6.30		6.30		6.10
Area of Flue	Sq. ft.		754.768		754.768		754.768
Sample Time	min.		30		30		60
H2SO4 Collected	grams		0.0038645		0.0039455		0.0039815
F-Factor	9.4		9,780		9,780		9,780
			0,100		-,		-1
Absolute Flue Pressure	in. Hg	Ps	29.56		29.55		29.56
Corrected Sample Volume	dscf	Vms	19.66		19.61		20.21
Calculated Saturated Moisture	%	Bwsat	14. 12%		13.75%		13.75%
Moisture used for Calculations	%	Bwsu	14.12%		13.75%		13.75%
Molecular Weight	lb/lb-mole	Ms	28.58		28.64		28.62
Velocity of Flue Gas	fps	Vs	54.18		54.14		53.26
Volume of Flue Gas	ACFM	Vo	2,453,379		2,451,681		2,411,867
Volume of Flue Gas	DSCFM	Qsd	1,872,398		1,882,056		1,851,653
H2SO4 Concentration	lb/dscf	Wd	4.33E-07		4.44E-07		4.34E-07
H2SO4 Concentration	ppm dry		1.71		1.75		1.71
H2SO4 Concentration	ppm wet		1.45		1.48		1.45
H2SO4 Concentration	lb/hr	Wh	48.68		50.09		48.27
H2SO4 Concentration	gr/acf	Wa	2.32E-03		2.38E-03		2.33E-03
H2SO4 Concentration	gr/dscf	Ws	3.03E-03		3.10E-03		3.04E-03
H2SO4 Emissions	lb/mmBtu	DI	0.0061		0.0062		0.0060
Averages: Flue Temp.:	126,3333			H2SO4 Emis	lb/dscf	4.37E-07	
Averages. File temp	2,438,976				lb/hr	49.01	
DSCFM:	1,868,703				gr/acf	2.34E-03	
Percent O2:	6.23%				gr/dscf	2.34L-03 3.06E-03	
H2SO4 ppm wet:	0.23%				lb/mmBtu	0.0061	
	1.40				ID/TITIDU	0.0001	

Sampling System Bias Check and Measured Value Correction

Duke Energy Florida Crystal River - Unit 4

10/10/2013	C02	18.14	
Date:	Pollutant:	Monitor Span:	

Corrected Percent, Dry Basis	12.90	13.00	12.90
Gas	9.071	9.071	9.071
Upscale Gas Drift	-0.72	0.44	0.44
Final Upscale Gas Bias	8.98	9.06	9.14
Initial Upscale Gas Bias	9.11	8.98	9.06
Zero Gas Drift	-0.22	-0.33	0.17
Final Zero Gas Bias	0.11	0.05	0.08
Initial Zero Gas Bias	0.15	0.11	0.05
Average Measured Percent	12.84	12.89	12.89
Run Number	-	2	ო

Cgas = (Cavg - Co) * Cma / (Cm - Co) Eq. 6C-1

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Cm = Average of initial and final system calibration bias check responses for the upscale calibration gas, percent Cma = Actual concentration of the upscale calibration gas, percent Co = Average of initial and final system calibration bias check responses Cgas = Effluent gas concentration, dry basis, percent for the zero gas, percent where:

Sampling System Bias Check and Measured Value Correction

Duke Energy Florida Crystal River - Unit 4

10/10/2013 O2 21.96 Pollutant: Monitor Span:

Date:

Corrected	6.30
Percent,	6.30
Dry Basis	6.10
Calibration Gas	10.93 10.93 10.93
Upscale Gas Drift	0.82 -0.64 0.68
Final	11.13
Upscale	10.99
Gas Bias	11.14
Initial	10.95
Upscale	11.13
Gas Bias	10.99
Zero Gas Drift	-0.27 0.50 -0.27
Final	0.05
Zero Gas	0.16
Bias	0.10
Initial Zero Gas Bias	0.11 0.05 0.16
Average	6.37
Measured	6.42
Percent	6.23
Run Number	0 0 - 0

Cgas = (Cavg - Co) * Cma / (Cm - Co) Eq. 6C-1

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Cm = Average of initial and final system calibration bias check responses Cma = Actual concentration of the upscale calibration gas, percent Co = Average of initial and final system calibration bias check responses Cgas = Effluent gas concentration, dry basis, percent for the upscale calibration gas, percent for the zero gas, percent where:

GRACE CONSULTING, INC. Particulate Analysis

Duke Energy Florida Crystal River Unit 5 13-364

Run Number			1	2	3
Date			10/11/2013	10/11/2013	10/11/2013
Location			Unit 5	Unit 5	Unit 5
Comment			Method 5B	Method 5B	Method 5B
Start Time			11:00	14:15	16:50
End Time			13:14	16:29	19:03
Barometric Pressure	In. Hg.	Pb	29.62	29.62	29.62
Static Pressure	In. H2O	Pf	-0.57	-0.63	-0.55
Condensate Collected	grams	Vic	352.7	369.1	372.8
Volume Sampled	dcf	Vm	86,894	86.914	87.583
Meter Correction Factor		Y	0.996	0.996	0.996
Pitot Tube Correction Factor		Pc	0.840	0.840	0.840
Square Root of Delta P			0.906	0.900	0.908
Orifice Pressure	In. H2O		1.610	1.615	1.628
Meter Temperature	Degree F		99	103	102
Flue Temperature	Degree F		127	127	127
Percent CO2	%		13.20	13.20	13.20
Percent O2	%		6.10	6.20	6.00
Diameter of Nozzle	ln.		0.224	0.224	0.224
Area of Flue	Sq. ft.		754.768	754.768	754.768
Sample Time	min.		120	120	120
Weight Gain	grams		0.0240	0.0161	0.0228
F-Factor			9,780	9,780	9,780
Absolute Flue Pressure	in. Hg	Ps	29.58	29.57	29.58
Corrected Sample Volume	dscf	Vms	81.25	80.69	81.46
Measured Moisture of Flue Gas	%	Bws	16.99%	17.74%	17.75%
Calculated Saturated Moisture	%	Bwsat	14.11%	14.11%	14.11%
Moisture used for Calculations	%	Bwsu	14.11%	14.11%	14.11%
Molecular Weight	lb/lb-mole	Ms	28.61	28.62	28.61
Velocity of Flue Gas	fps	Vs	54.19	53.83	54.31
Volume of Flue Gas	ACFM	Vo	2,453,832	2,437,628	2,459,331
Volume of Flue Gas	DSCFM	Qsd	1,874,056	1,861,358	1,878,365
Dust Concentration	lb/dscf	Wd	6.51E-07	4.40E-07	6.17E-07
Dust Concentration	lb/hr	Wh Wa	73.24 3.48E-03	49.13 2.35E-03	69.55 3.30E-03
Dust Concentration Dust Concentration	gr/acf	wa Ws	3.46E-03 4.56E-03	2.35E-03 3.08E-03	3.30E-03 4.32E-03
Isokinetic Rate	gr/dscf %	%	4.302-03	104.0	4.322-03
Sample Volume @ Stack Conditions	dacm	Vstack	2.5874	2.5701	2.5940
Sample Volume @ Stack Conditions Sample Volume @ Standard Cond	dscm	Vms (metric)	2.3008	2.2850	2.3940
Particulate Concentration	mg/acm (wet)	Cpm(stack)	7.967	5.380	7.549
Particulate Concentration	mg/wscm		8.959	6.052	8,489
Particulate Concentration	mg/DSCM		10.431	7.046	9.884
Particulate Concentration	mg/Ncm		8.959	6.052	8.489
Particulate Emissions	lb/mmBtu	DI	0.009	0.006	0.008
Approximate Heat Input	mmBtu/hr		8141.613	8031.807	8215.470
Averages: Flue Temp.:	127.0			[b/dscf 5.69E-07	
ACFM:	2,450,264			lb/hr 63,97	
DSCFM:	1,871,260			gr/acf 3.04E-03	
Percent O2:	6.10%			gr/dscf 3.99E-03	
mmBtu/hr	8129.630			lb/mmBtu 0.008	

GRACE CONSULTING, INC. Ammonia Analysis

Duke Energy Florida Crystal River Unit 5 13-364

Run Number				21	2			3
Date				10/11/2013	10/11/201:	3		10/11/2013
Location				Unit 5	Unit 5			Unit 5
Comment				CTM-027	CTM-027			CTM-027
Start Time				11:00	14:15			16:50
End Time				13:14	16:29			19:03
Barometric Pressure	In. Hg.	Pb		29.62	29.62			29.62
Static Pressure	In. H2O	Pf		-0.57	-0.63			-0.55
Condensate Collected	grams	VIc		352.7	369.1			372.8
Volume Sampled	def	Vm		86.894	86.914			87,583
Meter Correction Factor		Y		0.996	0.996			0.996
Pitot Tube Correction Factor		Pc		0.840	0.840			0.840
Square Root of Delta P				0.906	0.900			0.908
Orifice Pressure	In. H2O			1.610	1.615			1.628
Meter Temperature	Degree F			99	103			102
Flue Temperature	Degree F			127	127			127
Percent CO2	%			13,20	13.20			13.20
Percent O2	%			6.10	6.20			6.00
Diameter of Nozzle	ln.			0.224	0.224			0.224
Area of Flue	Sq. ft.			754.768	754.768			754.768
Sample Time	min.			120	120		6	120
Ammonia Collected	grams		<	0.0000335	0.0000713		<	0.0000284
F-Factor				9,780	9,780			9,780
Absolute Flue Pressure	in. Hg	Ps		29.58	29.57			29.58
Corrected Sample Volume	dscf	Vms		81.25	80,69			81.46
Measured Moisture of Flue Gas	%	Bws		16.99%	17.74%			17.75%
Calculated Saturated Moisture	%	Bwsat		14.11%	14.11%			14.11%
Moisture used for Calculations	%	Bwsu		14.11%	14.11%			14.11%
Molecular Weight	ib/lb-mole	Ms		28.61	28.62			28.61
Velocity of Flue Gas	fps	Vs		54.19	53.83			54.31
Volume of Flue Gas	ACFM	Vo		2,453,832	2,437,628			2,459,331
Volume of Flue Gas	DSCFM	Qsd		1,874,056	1,861,358			1,878,365
Ammonia Concentration	lb/dscf	Wd	<	9.09E-10	1.95E-09		<	7.69E-10
Ammonia Concentration	ppm		<	0.021	0.044		<	0.017
Ammonia Concentration	lb/hr	Wh	<	0.10	0.22		<	0.09
Ammonia Concentration	gr/acf	Wa	<	4.86E-06	1.0 4E-0 5		<	4.11E-06
Ammonia Concentration	gr/dscf	Ws	<	6.36E-06	1.36E-05		<	5.38E-06
Isokinetic Rate	%	%I		103.1	104.0			104.1
Sample Volume @ Stack Conditions	dacm	Vstack	<	2.5874	2.5701		<	2.5940
Sample Volume @ Standard Cond	dscm	Vms (metric)	<	2.3008	2.2850		<	2.3067
Ammonia Concentration	mg/acm (wet)	Cpm(stack)	<	0.011	0.024		<	0.009
Ammonia Concentration	mg/wscm		<	0.013	0.027		<	0.011
Ammonia Concentration	mg/DSCM		<	0.015	0.031		<	0.012
Ammonia Concentration	mg/Ncm	-	<	0.013	0.027		<	0.011
Ammonia Emissions	lb/mmBtu	DI	<	1.26E-05	2.71E-05		<	1.05E-05
Approximate Heat Input	mmBtu/hr		<	8141.613	8031,807		<	8215.470
Averages: Flue Temp.:	127.0				lb/dscf	<	1.21E-09	
ACFM:	2,450,264				ppm	<	0.027	1
DSCFM:	1,871,260				lb/hr	<	0.14	
Percent O2:	6.10%				gr/acf	<	6.46E-06	
mmBtu/hr	8129.630				gr/dscf	<	8.46E-06	ļ
L					 lb/mmBtu	<	1.67E-05	

Mois Calc 1

		A	locostive me	بداد محك جامع ماف	4		a content in	stock ase:					
			centarive Inte										
Saturation	Vapar Dama	ma Tabla		%M	Tf	Tw	Td	Pb	P(abs)				
Samanou	Vapor Perssu	na (adie;		0.14111 RH	8 <u>127</u> Tf	127	127	29.62	29.5780		1	Percent Moisture	14
Psychrome	etric Calculatio	on:			127.00	Tw 127	Td 127.00	Pb 29.62	P(abs)	Lb/Lb	1		
									29.5780	9 -0.622	1		
Proportio Water Va Absolute Proportion Absolute Water vaj	n by volum por pressu pressure of n by volum pressure at	e of water re at satur f a gas mb e of water t the wet b re in a gas	vapor in ga ated conditi- ture (Pmix) vapor in a g ulb and dry mixture (Eo	as (Bwo): bulb tempera	saturated o bulb tempe	conditions (E rature (E'):	er assembly ∃w):	(4.1734 0.141111 4.174 29.57809 0.141098 29.57809 4.1734 29.57809	B bw e'From V P Pmix Bwo Pa eo	Vvp_Table			
Temperat	hure	Barome	ric	Relative									
Dry Bulb		Pressu											
deg. F	deg. F	PSIA	Humidit		stm32	stm	sps	spa	sw	c12	c13	W	
										012	010	**	
127	127	0	-0.622	100	2.931112	2 2.051414	2.051414	-2.05141	-0.622	1021.118	0	-0.622	
			100% Dolati	ve Humiditu	Colouistian	o Annon D.	alaw This D						
				ve Humidity	stm32	s Appear Bi stm	elow Inis P Sps	oint. spa	sw	c12	c13	W	
					JULIOL	9411	aha	oha	344	012	613	w	
	~				2.931112	2.051414	2.051414	-2.05141	-0.622	1021.118	0	-0.622	
lois Calc	2	A.14 -		nada for dot		- 6							
		Alte	mative met	hods for dete %M	rmination o					D -4-41-			
Saturation V	apor Perssure	e Table:		0.141139		Tw 127	Td 127	Pb 29.62	P(abs) 29.57368	P static -0.63		Percent Moisture	4.4
				RH	Tf	Tw	Td	29.62 Pb	P(abs)	Lb/Lb			14.
sychrometr	ic Calculation	:		100	127.00	127	127.00	29.62	29.57368				
						,				· , · · · · · · · · · · · · · · · · · ·			
roportion	by volume	a gas mixt of water v the wet bu	apor in a ga	s (Bwo): ulb temperat	ure assemi	bly (Pa):		29.57368 0.141119 29.57368	Bwo				
roportion bsolute p Vater vapo bsolute p	by volume ressure at f or pressure ressure of c	of water v the wet bu in a gas n duct gas (f	apor in a ga Ib and dry b hixture (Eo): Po):	ub temperat	ure assemi	bly (Pa):		0.141119 29.57368	Bwo Pa eo				
Proportion Obsolute p Water vapo	by volume ressure at t or pressure ressure of o re Wet Bulb	of water v the wet bu in a gas n duct gas (f Barometr Pressure	apor in a ga lb and dry b hixture (Eo): Po): c Specific	ulb temperat Relative Humidity			805	0.141119 29.57368 4.1734 29.57368	Bwo Pa eo Po	c12	c13	W	
Proportion obsolute p Vater vapo obsolute p emperatu Pry Bulb	by volume ressure at t or pressure ressure of o	of water v the wet bu in a gas n duct gas (f Barometr	apor in a ga Ib and dry b hixture (Eo): Po): c	ulb temperat Relative Humidity	ure assemi stm32	bly (Pa): stm	sps	0.141119 29.57368 4.1734	Bwo Pa eo	c12	c13	w	
Proportion Ibsolute p Vater vapo Ibsolute p emperatu ery Bulb eg. F	by volume ressure at t or pressure ressure of o re Wet Bulb	of water v the wet bu in a gas n duct gas (f Barometr Pressure	apor in a ga lb and dry b hixture (Eo): Po): c Specific	ulb temperat Relative Humidity	stm32		·	0.141119 29.57368 4.1734 29.57368 spa	Bwo Pa eo Po	c12 1021.118	c13 0	w -0.622	
roportion bsolute p /ater vapo bsolute p emperatu ry Bulb eg. F	by volume ressure at 1 or pressure ressure of o re Wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622	Relative Relative Humidity % 100	stm32 2.931112	stm 2.051414	2.051414	0.141119 29.57368 4.1734 29.57368 spa -2.05141	Bwo Pa eo Po sw				
roportion bsolute p Vater vapo bsolute p emperatu ry Bulb eg. F	by volume ressure at 1 or pressure ressure of o re Wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622	ulb temperat Relative Humidity %	stm32 2.931112 alculations	stm 2.051414 Appear Bel	2.051414 low This Po	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int.	Bwo Pa eo Po sw -0.622	1021.118	0	-0.622	
roportion bsolute p /ater vapo bsolute p emperatu ry Bulb eg. F	by volume ressure at 1 or pressure ressure of o re Wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622	Relative Relative Humidity % 100	stm32 2.931112	stm 2.051414	2.051414	0.141119 29.57368 4.1734 29.57368 spa -2.05141	Bwo Pa eo Po sw				
roportion bsolute p /ater vapo bsolute p emperatu ry Bulb eg. F	by volume ressure at f or pressure ressure of o re Wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622	Relative Relative Humidity % 100	stm32 2.931112 Calculations stm32	stm 2.051414 Appear Bel stm	2.051414 low This Po sps	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int. spa	Bwo Pa eo Po sw -0.622 sw	1021.118 c12	0 c13	-0.622 W	
roportion bsolute p /ater vap bsolute p emperatu ry Bulb eg. F 27	by volume ressure at f or pressure ressure of o re Wet Bulb deg. F 127	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 1	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ	Relative Humidity % 100 e Humidity C	stm32 2.931112 Galculations stm32 2.931112	stm 2.051414 Appear Bel stm 2.051414	2.051414 low This Po sps 2.051414	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int. spa -2.05141	Bwo Pa eo Po sw -0.622	1021.118	0	-0.622	
Proportion boolute p Vater vap boolute p emperatu ry Bulb eg. F 27	by volume ressure at f or pressure ressure of o re Wet Bulb deg. F 127	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 1	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ	Relative Humidity % 100 e Humidity C	stm32 2.931112 calculations stm32 2.931112 mination of	stm 2.051414 Appear Bel stm 2.051414 Fmoisture c	2.051414 low This Po sps 2.051414 ontent in sta	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int. spa -2.05141 ack gas:	Bwo Pa eo Po sw -0.622 sw	1021.118 c12	0 c13	-0.622 W	
Proportion obsolute p Vater vap obsolute p emperatu ry Bulb eg. F 27 lois Calc 3	by volume ressure at 1 pr pressure ressure of c re Wet Bulb deg. F 127	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 1 1 Alter	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ	Relative Humidity % 100 e Humidity C ods for deter %M	stm32 2.931112 Calculations stm32 2.931112 mination of Tf	stm 2.051414 Appear Bel stm 2.051414 f moisture co Tw	2.051414 low This Po sps 2.051414 ontent in sta Td	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int. spa -2.05141 ack gas: Pb	Bwo Pa eo Po -0.622 sw -0.622 P(abs)	1021.118 c12 1021.118 P static	0 c13	-0.622 W	
Proportion ubsolute p Vater vap boolute p emperatu ry Bulb eg. F 27	by volume ressure at f or pressure ressure of o re Wet Bulb deg. F 127	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 1 1 Alter	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111	stm32 2.931112 alculations stm32 2.931112 mination of Tf 127	stm 2.051414 Appear Bel stm 2.051414 f moisture co Tw 127	2.051414 low This Po sps 2.051414 ontent in sta Td 127	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int. spa -2.05141 ack gas: Pb 29.62	Bwo Pa eo Po -0.622 sw -0.622 <u>P(abs)</u> 29.57956	1021.118 c12 1021.118 P static -0.55	0 c13	-0.622 W	14.1
roportion bsolute p /ater vap bsolute p emperatu ry Bulb eg. F 27 ois Calc 3 turation Va	by volume ressure at 1 pr pressure ressure of o re Wet Bulb deg. F 127 3 3	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 1 1 Alter	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH	stm32 2.931112 alculations stm32 2.931112 mination of Tf 127 Tf	stm 2.051414 Appear Bel stm 2.051414 moisture co Tw 127 Tw	2.051414 low This Po sps 2.051414 ontent in sta Td 127 Td	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb	Bwo Pa eo Po -0.622 sw -0.622 <u>P(abs)</u> <u>29.57956</u> <u>P(abs)</u>	1021.118 c12 1021.118 P static -0.55 Lb/Lb	0 c13	-0.622 w -0.622	14.1
roportion boolute p vater vap boolute p emperatu ry Bulb eg. F 27 ois Calc 3	by volume ressure at 1 pr pressure ressure of c re Wet Bulb deg. F 127	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 1 1 Alter	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111	stm32 2.931112 alculations stm32 2.931112 mination of Tf 127	stm 2.051414 Appear Bel stm 2.051414 f moisture co Tw 127	2.051414 low This Po sps 2.051414 ontent in sta Td 127	0.141119 29.57368 4.1734 29.57368 spa -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb	Bwo Pa eo Po -0.622 sw -0.622 <u>P(abs)</u> 29.57956	1021.118 c12 1021.118 P static -0.55	0 c13	-0.622 w -0.622	14.1
roportion bsolute p /ater vap bsolute p emperatu ry Bulb eg. F 27 ois Calc 3 turation Val ychrometric ater Vapo oportion t ater Vapo oportion t solute pre oportion t solute pre oportion t	by volume ressure at f or pressure ressure of of re Wet Bulb deg. F 127 3 por Perssure calculation: or Pressure oy volume of a by volume of a by volume of a by volume of a	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mb of water va at saturate gas mixtu of water va to saturate gas mixtu f water va a saturate gas mixtu	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ native meth dcondition re (Pmix): por in a gas por in a gas por in a gas	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and on bixture for sa s and wet bu	stm32 2.931112 calculations stm32 2.931112 mination of Tf 127 Tf 127.00 dry bulb the turated cor Ib temperat	stm 2.051414 Appear Bel stm 2.051414 f moisture cr Tw 127 Tw 127 ermometer a nditions (Bw ture (E'):	2.051414 low This Po sps 2.051414 ontent in sta Td 127 Td 127.00 assembly (0.141119 29.57368 4.1734 29.57368 29.57368 -2.05141 int. spa -2.05141 int. spa -2.05141 ack gas: Pb 29.62 -29.62 -29.62 -29.62 -29.62 -29.57366 0.141111 4.174 29.57356 0.141011 29.57356	Bwo Pa eo Po sw -0.622 sw -0.622 P(abs) 29.57956 P(abs) 29.57956 ea bw b' From Wv Pmix Bwo Pa eo	1021.118 c12 1021.118 P static -0.55 Lb/Lb -0.622	0 c13	-0.622 w -0.622	14.1
roportion bsolute p /ater vap bsolute p. emperatury Bulb 29. F 27 ois Calc 3 turation Val ychrometric ater Vapo oportion t ater Vapo oportion t solute pre ater vapo solute pre ater vapo solute pre ater vapo solute pre	by volume ressure at 1 pr pressure ressure of of the Wet Bulb deg. F 127 3 por Perssure by volume c calculation: or Pressure by volume c essure of a by volume c essure of a b	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mb of water va at saturate gas mixtu f water va at saturate gas mixtu f water va at saturate gas mixtu f water va at saturate gas mixtu	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ native meth dcure passin por in gas n ed condition re (Pmix): por in a gas por in a gas and dry bu xture (Eo): D):	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and d bixture for sa s and wet bu (Bwo): lb temperatu Relative Humidity	stm32 2.931112 calculations stm32 2.931112 mination of Tf 127 Tf 127.00 dry bulb the turated cor Ib temperat	stm 2.051414 Appear Bel stm 2.051414 f moisture cr Tw 127 Tw 127 semometer a ditions (Bw ture (E'):	2.051414 low This Po sps 2.051414 ontent in str Td 127 Td 127.00 assembly ():	0.141119 29.57368 4.1734 29.57368 29.57368 -2.05141 int. spa -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb 29.62 4.1734 0.141111 4.174 29.57956 0.141091 129.57956 0.1479566 0.147956	Bwo Pa eo Po sw -0.622 sw -0.622 <u>sw</u> -0.622 <u>P(abs)</u> <u>29.57956</u> <u>P(abs)</u> <u>29.57956</u> <u>P(abs)</u> <u>29.57956</u> <u>Po</u> ea bw e' From Wv Pmix Bwo Pa eo Po	1021.118 c12 1021.118 P static -0.55 Lb/Lb -0.622	0 c13 0	-0.622 w -0.622 Percent Moisture	14.1
roportion besolute p /ater vapo boolute p. emperatury Bulb 29. F 27 bis Calc 3 turation Val ychrometric ater Vapo sportion t ater vapo solute pro ter vapo solute pro mperature / Bulb	by volume ressure at a propressure (Wet Bulb deg. F 127 3 por Perssure craculation: or Pressure or pressure essure of a by volume of essure of a por volume of essure of a por pressure i assure of a essure of a	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mb of water va at saturate gas mixturate gas mixt	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 200% Relativ native meth dure passin por in gas n ed condition re (Pmix): por in a gas and dry bu xture (Eo): p):	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and o bxture for sa s and wet bu (Bwo): Ib temperatu Relative	stm32 2.931112 calculations stm32 2.931112 mination of Tf 127 Tf 127.00 dry bulb the turated cor Ib temperat	stm 2.051414 Appear Bel stm 2.051414 f moisture cr Tw 127 Tw 127 ermometer a nditions (Bw ture (E'):	2.051414 low This Po sps 2.051414 ontent in sta Td 127 Td 127.00 assembly (0.141119 29.57368 4.1734 29.57368 29.57368 spa -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb 29.62 9.62 4.1734 0.141111 4.174 29.57956 0.141091 29.57956 4.1734 0.141091	Bwo Pa eo Po sw -0.622 sw -0.622 P(abs) 29.57956 P(abs) 29.57956 ea bw b' From Wv Pmix Bwo Pa eo	1021.118 c12 1021.118 P static -0.55 Lb/Lb -0.622	0 c13	-0.622 w -0.622	14.1
roportion bsolute p /ater vapo bsolute p. emperatury P Bulb eg. F 27 ois Calc 3 turation Val ychrometric ater Vapo poortion t ater Vapo solute pro ater vapor solute pro	by volume ressure at 1 pr pressure ressure of of the Wet Bulb deg. F 127 3 por Perssure by volume c calculation: or Pressure by volume c essure of a by volume c essure of a b	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mb of water va at saturate gas mixtu f water va at saturate gas mixtu f water va at saturate gas mixtu f water va at saturate gas mixtu	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 00% Relativ native meth dcure passin por in gas n ed condition re (Pmix): por in a gas por in a gas and dry bu xture (Eo): D):	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and o hixture for sa s and wet bu (Bwo): lb temperatu Relative Humidity %	stm32 2.931112 calculations stm32 2.931112 mination of 	stm 2.051414 Appear Bel stm 2.051414 f moisture co Tw 127 Tw 127 semometer a ditions (Bw ture (E'):	2.051414 low This Po sps 2.051414 ontent in sta Td 127 Td 127.00 assembly ():	0.141119 29.57368 4.1734 29.57368 -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.57956 0.141111 4.174 29.57956 0.141111	Bwo Pa eo Po sw -0.622 sw -0.622 P(abs) 29.57956 P(abs) 29.57956 P(abs) 29.57956 ea bw b' From Wv Pmix Bwo Pa eo Po	1021.118 c12 1021.118 <u>P static -0.55 Lb/Lb</u> -0.622 p_Table	0 c13 0	-0.622 w -0.622 Percent Moisture	14.1
roportion bsolute p /ater vapo bsolute p. emperatury Bulb eg. F 27 bis Calc 3 turation Val ychrometric ater Vapo solute pro- solute pro- s	by volume ressure at f or pressure ressure of of the Wet Bulb deg. F 127 3 por Perssure contraction: or Pressure essure of a by volume of essure of a by volume of essure of d assure of d wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mi of water va at saturatu of water va at saturatu of water va at saturatu f water va as mi uct gas (P Barometric Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 200% Relativ native meth d condition re (Pmix): por in gas n red condition re (Pmix): por in a gas and dry bu xture (Eo): D): Specific Humidity -0.622	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and o bxture for sa s and wet bu (Bwo): lb temperatu Relative Humidity % 100	stm32 2.931112 calculations stm32 2.931112 mination of Tf 127 Tf 127.00 dry bulb the turated cor lb temperat re assemble stm32 2.931112	stm 2.051414 Appear Bel stm 2.051414 f moisture cr Tw 127 Tw 127 stm 127 (Bw ture (E'): ly (Pa): stm 2.051414	2.051414 low This Po sps 2.051414 ontent in str Td 127 Td 127.00 assembly ()):	0.141119 29.57368 4.1734 29.57368 29.57368 -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb 29.62 4.1734 0.141111 4.174 29.57956 0.141091 29.57956 0.141091 29.57956 0.141091 29.57956 0.141091 29.57956 5.5795	Bwo Pa eo Po sw -0.622 sw -0.622 P(abs) 29.57956 P(abs) 29.57956 P(abs) 29.57956 ea bw b' From Wv Pmix Bwo Pa eo Po	1021.118 c12 1021.118 P static -0.55 Lb/Lb -0.622	0 c13 0	-0.622 w -0.622 Percent Moisture	14.1
roportion bsolute p vater vap bsolute p emperatury P Bulb eg. F 27 ois Calc 3 turation Val ychrometric ater Vapor oportion t ater Vapor oportion t solute pro ater vapor solute pro ater vapor solute pro ater vapor solute pro ater vapor solute pro ater vapor solute pro ater vapor solute pro	by volume ressure at f or pressure ressure of of the Wet Bulb deg. F 127 3 por Perssure contraction: or Pressure essure of a by volume of essure of a by volume of essure of d assure of d wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mi of water va at saturatu of water va at saturatu of water va at saturatu f water va as mi uct gas (P Barometric Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 200% Relativ native meth d condition re (Pmix): por in gas n red condition re (Pmix): por in a gas and dry bu xture (Eo): D): Specific Humidity -0.622	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and o hixture for sa s and wet bu (Bwo): lb temperatu Relative Humidity %	stm32 2.931112 calculations stm32 2.931112 mination of Tf 127 Tf 127.00 dry bulb the turated cor Ib temperat turated cor Ib temperat stm32 2.931112 alculations /	stm 2.051414 Appear Bel stm 2.051414 f moisture cr Tw 127 Tw 127 stm 127 y (Pa): stm 2.051414 Appear Belo	2.051414 low This Po sps 2.051414 ontent in sta Td 127 Td 127.00 assembly (): sps 2.051414 ow This Poir	0.141119 29.57368 4.1734 29.57368 29.57368 -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb 29.62 4.1734 0.141111 29.57356 0.141091 29.57956 0.141091 29.57956 4.1734 29.57956 5.25795756 5.25795	Bwo Pa eo Po sw -0.622 sw -0.622 P(abs) 29.57956 P(abs) 29.57956 P(abs) 29.57956 P(abs) 29.57956 Swo Pa eo Po sw -0.622	1021.118 c12 1021.118 P static -0.55 Lb/Lb -0.622 p_Table c12 1021.118	0 c13 0 c13 c13	-0.622 w -0.622 Percent Moisture	14.1
roportion bsolute p Vater vap bsolute p emperatu- ry Bulb eg. F 27 ois Calc 3 ituration Val ychrometric ater Vapo oportion t ater Vapo oportion t solute pre ater vapo issolute pre imperature	by volume ressure at f or pressure ressure of of the Wet Bulb deg. F 127 3 por Perssure contraction: or Pressure essure of a by volume of essure of a by volume of essure of d assure of d wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mi of water va at saturatu of water va at saturatu of water va at saturatu f water va as mi uct gas (P Barometric Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 200% Relativ native meth dure passin por in gas n ed condition re (Pmix): por in a gas and dry bu xture (Eo): D): Specific Humidity -0.622	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and o bxture for sa s and wet bu (Bwo): lb temperatu Relative Humidity % 100	stm32 2.931112 calculations stm32 2.931112 mination of Tf 127 Tf 127.00 dry bulb the turated cor lb temperat re assemble stm32 2.931112	stm 2.051414 Appear Bel stm 2.051414 f moisture cr Tw 127 Tw 127 stm 127 (Bw ture (E'): ly (Pa): stm 2.051414	2.051414 low This Po sps 2.051414 ontent in str Td 127 Td 127.00 assembly ()):	0.141119 29.57368 4.1734 29.57368 29.57368 -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb 29.62 4.1734 0.141111 4.174 29.57956 0.141091 29.57956 0.141091 29.57956 0.141091 29.57956 0.141091 29.57956 5.5795	Bwo Pa eo Po sw -0.622 sw -0.622 P(abs) 29.57956 P(abs) 29.57956 P(abs) 29.57956 ea bw b' From Wv Pmix Bwo Pa eo Po	1021.118 c12 1021.118 <u>P static -0.55 Lb/Lb</u> -0.622 p_Table	0 c13 0	-0.622 w -0.622 Percent Moisture	14, 1
Proportion bisolute p Vater vap bisolute p emperatury Puble eg. F 27 ois Calc 3 turation Val ychrometric ater Vapo oportion t ater Vapo oportion t ater vapo oportion t ater vapo oportion t ater vapo oportion t ater vapo oportion t generatur y Bulb g. F	by volume ressure at f or pressure ressure of of the Wet Bulb deg. F 127 3 por Perssure contraction: or Pressure essure of a by volume of essure of a by volume of essure of d assure of d wet Bulb deg. F	of water v the wet bu in a gas n duct gas (f Barometr Pressure PSIA 0 11 Alter Table: in gas mi of water va at saturatu of water va at saturatu of water va at saturatu f water va as mi uct gas (P Barometric Pressure PSIA 0	apor in a ga b and dry b hixture (Eo): Po): C Specific Humidity -0.622 200% Relativ native meth dure passin por in gas n ed condition re (Pmix): por in a gas and dry bu xture (Eo): D): Specific Humidity -0.622	Relative Humidity % 100 e Humidity C ods for deter %M 0.141111 RH 100 g a wet and o nixture for sa s and wet bu (Bwo): lb temperatu Relative Humidity % 100	stm32 2.931112 calculations stm32 2.931112 mination of <u>Tf</u> 127 127 dry bulb the turated cor lb temperat re assemble stm32 2.931112 stm32	stm 2.051414 Appear Bel stm 2.051414 f moisture cr Tw 127 Tw 127 stm 127 y (Pa): stm 2.051414 Appear Belo	2.051414 low This Po sps 2.051414 ontent in sta Td 127 Td 127.00 assembly (): sps 2.051414 ow This Poir sps	0.141119 29.57368 4.1734 29.57368 -2.05141 int. spa -2.05141 ack gas: Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.62 Pb 29.62 Spa 4.1734 4.1734 29.57956 0.1411091 4.1734 29.57956 5pa -2.05141	Bwo Pa eo Po sw -0.622 sw -0.622 <u>P(abs)</u> 29.57956 P(abs) 29.57956 P(abs) 29.57956 ea bw b' From Wv Pmix Bwo Pa eo Po Sw -0.622 sw	1021.118 c12 1021.118 P static -0.55 Lb/Lb -0.622 p_Table c12 1021.118	0 c13 0 c13 c13	-0.622 w -0.622 Percent Moisture w -0.622	14.1

2

Sampling System Bias Check and Measured Value Correction

	Corrected Percent, Dry Basis 13.20 13.20 13.20
	Gas 9.071 9.071 9.071
	Upscale Gas Drift 0.55 -0.99 0.83
	Final Upscale 9.15 8.97 9.12
Duke Energy Florida Crystal River - Unit 5 Method 5B	Initial Upscale Gas Bias 9.15 8.97
Duke Ene Crystal Ri Metho	Zero Gas Drift 0.39 -0.17 -0.61
	Final Zero Gas Bias 0.16 0.13 0.02
10/11/2013 CO2 18.14	Initial Zero Gas Bias 0.09 0.16 0.13
Date: Pollutant: Monitor Span:	Average Measured Percent 13.14 13.16 13.16
Σ	Run Number 3

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Co = Average of initial and final system calibration bias check responses Cm = Average of initial and final system calibration bias check responses Cma = Actual concentration of the upscale calibration gas, percent Cgas = Effluent gas concentration, dry basis, percent for the upscale calibration gas, percent for the zero gas, percent where:

Sampling System Bias Check and Measured Value Correction

Duke Energy Florida Crystal River - Unit 5

Method 5B

10/11/2013 O2

Date: Pollutant:

	Corrected Percent, Dry Basis	6 10	6.20	6.00
	Calibration Gas	10.93	10.93	10.93
	Upscale Gas Drift	-0.32	0.64	0.23
	Final Upscale Gas Bias	10.92	11.06	11.11
	Initial Upscale Gas Bias	10.99	10.92	11.06
	Zero Gas Drift	-0.36	0.27	0.23
	Final Zero Gas Bias			
21.96	Initial Zero _Z Gas Bias	0.13	0.05	0.11
Monitor Span:	Average Measured Percent	6.18	6.24	6.16
Mor	Run Number		2	ო

Cgas = (Cavg - Co) * Cma / (Cm - Co) Eq. 6C-1

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Cm = Average of initial and final system calibration bias check responses Co = Average of initial and final system calibration bias check responses Cma = Actual concentration of the upscale calibration gas, percent Cgas = Effluent gas concentration, dry basis, percent for the upscale calibration gas, percent for the zero gas, percent where:

GRACE CONSULTING, INC. H2SO4 Analysis

Duke Energy Florida Crystal River Unit 5 13-369

Run Number			1		2		3
Date			10/11/201:	3	10/11/2013		10/11/2013
Location			Unit 5		Unit 5		Unit 5
Comment			Method 8A	A	Method 8A		Method 8A
Start Time			11:00		14:15		16:50
End Time			12:00		15:15		17:5 0
Barometric Pressure	In. Hg.	Pb	29.62		29.62		29.62
Static Pressure	in. H2O	Pf	-0.57		-0.63		-0.55
Volume Sampled	dcf	Vm	21.158		20.79		20,611
Meter Correction Factor		Y	1.001		1.001		1.001
Pitot Tube Correction Factor		Pc	0.840		0,840		0.840
Square Root of Delta P			0.906		0.9		0.908
Orifice Pressure	In. H2O		0.45		0.45		0.45
Meter Temperature	Degree F		94		95		96
Flue Temperature	Degree F		127		127		127
Percent CO2	%		13,20		13.20		13.20
Percent O2	%		6.10		6.10		6.00
Area of Flue	Sq. ft.		754.768		754.768		754.768
Sample Time	min.		60		60		60
H2SO4 Collected	grams		0.0025707		0.0024057		0.0028017
F-Factor	-		9,780		9,780		9,780
Absolute Flue Pressure	in. Hg	Ps	29.58		29.57		29.58
Corrected Sample Volume	dscf	Vms	20.01		19.62		19.42
Calculated Saturated Moisture	%	Bwsat	14.11%		14. 1 1%		14.11%
Moisture used for Calculations	%	Bwsu	14.11%		14.11%		14.11%
Molecular Weight	ib/lb-mole	Ms	28.61		28.61		28.61
Velocity of Flue Gas	fps	Vs	54.19		53.83		54.31
Volume of Flue Gas	ACFM	Vo	2,453,832		2,437,774		2,459,331
Volume of Flue Gas	DSCFM	Qsd	1,874,056		1,861,469		1,878,365
H2SO4 Concentration	lb/dscf	Wd	2.83E-07		2.70E-07		3.18E-07
H2SO4 Concentration	ppm dry		1.12		1.06		1.25
H2SO4 Concentration	ppm wet		0.96		0.91		1.08
H2SO4 Concentration	lb/hr	Wh	31.86		30.19		35,86
H2SO4 Concentration	gr/acf	Wa	1.51E-03		1.45E-03		1.70E-03
H2SO4 Concentration	gr/dscf	Ws	1.98E-03		1.89E-03		2.23E-03
H2SO4 Emissions	lb/mmBtu	DI	0.0039		0.0037		0.0044
Averages: Flue Temp.:	127			H2SO4 Emis:	lb/dscf	2.91E-07	
ACFM:	2,450,312				lb/hr	32.64	
DSCFM:	1,871,297				gr/acf	1.55E-03	
Percent O2:	6.07%				gr/dscf	2.03E-03	
H2SO4 ppm wet:	0.98				lb/mmBtu	0.0040	

Sampling System Bias Check and Measured Value Correction

Florida	5
ш	tal River.
Duke	Cryst

10/11/2013 CO2 18.14

Date: Pollutant:

Monitor Span:

Corrected Percent, Dry Basis 13.20 13.20 13.20
Gas 9.071 9.071
Upscale Gas Drift 0.55 0.99 0.83
Final Upscale Gas Bias 9.15 8.97 9.12
Initial Upscale Gas Bias 9.05 9.15 8.97
Zero Gas Drift 0.39 -0.17 -0.61
Final Zero Gas Bias 0.16 0.13 0.02
Initial Zero Gas Bias 0.09 0.16 0.13
Average Measured Percent 13.17 13.15 13.15
Run Number 3

where: Cgas = Effluent gas concentration, dry basis, percent

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Co = Average of initial and final system calibration bias check responses

for the zero gas, percent Cm = Average of initial and final system calibration bias check responses for the upscale calibration gas, percent

Cma = Actual concentration of the upscale calibration gas, percent

Sampling System Bias Check and Measured Value Correction

Duke Energy Florida Crystal River - Unit 5

•			
10/11/2013	02	21.96	
Date:	Pollutant:	Monitor Span:	

Corrected	6.10
Percent,	6.00
Dry Basis	6.00
Calibration Gas	10.93 10.93 10.93
Upscale Gas Drift	-0.32 0.64 0.23
Final	10.92
Upscale	11.06
Gas Bias	11.11
Initial	10.99
Upscale	10.92
Gas Bias	11.06
Zero Gas Drift	-0.36 0.27 0.23
Final	0.05
Zero Gas	0.11
Bias	0.16
Initial Zero Gas Bias	0.13 0.05 0.11
Average	6.16
Measured	6.19
Percent	6.16
Run Number	− 0 0

Cgas = (Cavg - Co) * Cma / (Cm - Co) Eq. 6C-1

Cavg = Average gas concentration indicated by gas analyzer, dry basis, percent Cm = Average of initial and final system calibration bias check responses Co = Average of initial and final system calibration bias check responses Cgas = Effluent gas concentration, dry basis, percent for the upscale calibration gas, percent for the zero gas, percent where:

Cma = Actual concentration of the upscale calibration gas, percent

Robby A. Odom Station Manager, Crystal River Steam Plant & Fuel Operations

October 30, 2013

Submitted electronically: <u>ftp://ftp.dep.state.fl.us/pub/incoming</u>

Mr. Erin Anthony DiBacco Environmental Manager - Compliance & Enforcement Florida Department of Environmental Protection Southwest District 13051 N. Telecom Parkway Temple Terrace, FL 33637

Dear Mr. DiBacco:

Re: Submittal of Compliance Test Report Crystal River Facility Facility ID: 0170004 EU-004 and EU-003 (Unit 4 & Unit 5)

As required by our Title V Air Operation Permit No. 017004-035-AV, Duke Energy Florida respectfully submits the attached compliance test reports conducted on Crystal River Power Plant Unit 4 and Unit 5.

These tests were conducted on September 17 and 18, 2013 in accordance with permit Specific Condition in Section III.B.33 and III.B.25. Each Unit was tested for sulfuric acid mist (SAM), particulate matter (PM), visible emissions (VE) and ammonia (NH3) slip.

The results show that compliance for the above requirements were demonstrated by both Units with the following exception: Crystal River Unit 4 did not achieve compliance with the SAM standard. Please note that this Unit was able to successfully achieve compliance during a follow-up test conducted on October 9, 2013. The test report for that date will be submitted to the Department at a later date.

If you have any questions concerning the contents of this submittal, please contact Mr. Jamie Hunter (727) 820-5764 or Ms. Cynthia Wilkinson (352) 501-5153.

I, the undersigned, am the responsible official as defined in Chapter 62-210.200, F.A.C., of the Title V source for which this document is being submitted. I hereby certify, based on the information and belief formed after reasonable inquiry, that the statements made and data contained in this document are true, accurate, and complete.

Sincerely, for For For Rob Oban

Robby A. Odom Station Manager, Crystal River Steam Plant & Fuel Operations

Enclosure - Compliance Test Reports 20-6542-04-001 & 20-6542-05-001

Air Emissions Test Report

Completed for:

Duke Energy Florida, Inc. Crystal River Energy Complex Unit 4 (EU -004)

Test Report Number: 20-6542-04-001

Test Completed: September 17, 2013

Air Emissions Test Report

Duke Energy Florida, Inc. Crystal River, Unit 4 (EU -004) Crystal River, Florida

C.E.M. Solutions Project No.: 6542

Testing Completed: September 17, 2013

C.E.M. Solutions, Inc. Report Number: 20-6542-04-001

C.E.M. Solutions, Inc. 1183 E. Overdrive Circle Hernando, Florida 34442 Phone: 352-489-4337

Declaration of Conformance to ASTM D 7036-04: Standard Practice for Competence of Air Emission Testing Bodies

C.E.M. Solutions operates in conformance with the requirements of ASTM D 7036-04: Standard Practice for Competence of Air Emission Testing Bodies through the use of a quality system which incorporates a quality manual, internal audit system, systematic training of personnel and rigorous review of test methods and operating procedures.

Joe Conti Quality Assurance Manager C.E.M. Solutions

Statement of Validity

I hereby certify the information and data provided in this emissions test report for tests performed at the Duke Energy Florida Inc. Crystal River facility conducted on September 17, 2013 are complete and accurate to the best of my knowledge.

Joe Conti

Quality Assurance Manager, C.E.M. Solutions, Inc.

Project Background

Name of Source Owner:	Duke Energy
Address of Owner:	One Power Plaza 299 First Avenue North St. Petersburg, FL 33701
Source Identification:	Facility: 0170004 Emissions Unit: EU-004
Location of Source:	Citrus County, Florida
Type of Operation:	SIC Code 4911
Tests Performed:	Method 1 – Traverse Points Method 2 – Stack Gas Volumetric Flow and Velocity Method 3A – Determination of Molecular Weight Method 4 – Stack Gas Moisture Content Method 5B – Particulate Matter NCASI Method 8A – Sulfuric Acid Mist Method 9 – Determination of Opacity of Emissions Conditional Test Method 027 –Ammonia Slip Determination
Test Supervisor (QSTI):	Mr. Matt Savin
Test Technicians:	Mr. Derek Kopera Mr. Josh Cooper
Date(s) Tests Conducted:	September 17, 2013: Compliance and Gas RATA
Site Test Coordinator:	Charles Dufeny of Duke Energy Florida
State Regulatory Observers:	No Observers Present

Table of Contents

1.0 Introduction	
1.1 Errors and Omissions	.1
2.0 Facility Description	.3
2.1 Process Equipment	
2.2 Regulatory Requirements	.3
3.0 Test Program/Operating Conditions	.4
4.0 Test Methods	
4.1 Sample and Velocity Traverse Points	
4.2 Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tubes)	
4.2.1 Method 2 Quality Assurance/Quality Control Procedures	
4.3 CO ₂ and O ₂ Orsat Analyzer Method	
4.3.1 Method 3B Quality Assurance/Quality Control Procedures	
4.4 Moisture Content Determination	
4.4.1 Method 4 Quality Assurance/Quality Control Procedures	
4.5 Particulate Matter Determination	
4.5.1 Sample Recovery and Analysis	
4.5.2 Quality Assurance/Quality Control Procedures	
4.6 Sulfuric Acid Mist (NCASI Method 8A)	
4.6.1 Sample Recovery and Analysis	
4.6.2 Quality Assurance/Quality Control Procedures	
4.7 Ammonia Slip Test	
4.7.1 Quality Assurance/Quality Control Procedures	
4.8 Visible Emission Determination	
5.0 Test Results	
5.1 Particulate Matter	
5.2 Ammonia Slip (NH ₃)	
5.3 Sulfuric Acid Mist (SAM)	
5.4 Visible Emissions	12

List of Tables

Table 1: Compliance Test Results	2
Table 2: Emissions Limitations and Standards	3
Table 3: Summary of EPA Reference Methods	5
Table 4: Isokinetics Summary	8
Table 5: Compliance Test Summary	

Appendices

Appendix A: Facility Operating Data
Appendix B: Mathematical Equations
Appendix C: Sample Location Diagram/Traverse Points
Appendix D: Reference Method QA/QC
Appendix E: Reference Method Data
Appendix E-1: Particulate Matter & Ammonia Slip Test Data
Appendix E-2: Sulfuric Acid Mist Test Data
Appendix E-3: Method 9
Appendix E-4: Laboratory Analysis Report
Appendix F: Accreditations and Certifications

1.0 Introduction

Duke Energy Florida, Inc. retained C.E.M. Solutions, Inc. to perform emissions testing to determine levels of particulate matter (PM), ammonia slip (NH_3), sulfuric acid mist (SAM) and visible emission (VE) from Unit 4 boiler exhaust.

The test program was used to determine the compliance status of Unit 4 in regards to its emissions limitations and standards outlined in Title V Air Operating Permit 0170004-035-AV. The test program and results are presented and discussed in this report. Target pollutants include the following:

- PM (in lb/mmBtu and lb/hr)
- VE (in percent)
- SAM (in lb/mmBtu and lb/hr)
- NH₃ (in ppmv)

Charles Dufeny of Duke Energy Florida coordinated plant operations throughout the test program. All testing was conducted in accordance with test methods promulgated by the Florida Department of Environmental Protection.

The test program and results are presented and discussed in this report and are summarized in Table 1.

1.1 Errors and Omissions

The initial visible emission test performed on the Unit 4 emission point showed one six-minute average above 10 percent opacity. While this is in compliance with the permitted opacity standard, it was determined that due to the Unit 4 and 5 emissions plumes combing near the stack exhaust point that an accurate visible emission reading could not be performed. In an effort to confirm compliance, the Unit 5 load was reduced to a lower level and a second V.E. was conducted on the combined plumes. The second V.E. showed that all six-minute average opacity reading were below 10 percent. Please note the V.E. reported in this document for Unit 4 is biased high due to the reading of a combined Unit 4 and Unit 5 plume.

Table 1: Compliance Test ResultsCrystal River Energy ComplexUnit 4

Dellecterat	RATA Result / Reported	RATA Limit / Permitted Emissions	Compliance Test
Pollutant	Emissions Rate	Rate	Status (Pass/Fail)
PM	0.011 lb/mmBtu	0.030 lb/mmBtu	PASS
	85.4 lb/hr	216 lb/hr	
NH ₃	0.4 ppmvd	5 ppmvd	PASS
SAM	0.0150 lb/mmBtu, 106.4 lb/hr	0.009 lb/mmBtu 64.8 lb/hr	Exceedence
VE	7.1 %	≤10 % except for one 6- minute period per hour of not more than 20%	PASS

2.0 Facility Description

Crystal River Unit 4 is a fossil fuel steam generator consisting of a dry bottom wall-fired boiler, rated at 760 MW, 7,200 MMBtu/hr. Primary fuel is bituminous coal or a bituminous coal and bituminous coal briquette mixture. Number 2 fuel oil and natural gas may be burned as a startup fuel and for low load flame stabilization.

2.1 **Process Equipment**

Fossil Fuel Steam Generator, Unit 4 is a pulverized coal, dry bottom, wall-fired boiler. Emissions are controlled from the unit with a high efficiency electrostatic precipitator, a selective catalytic reduction system and a flue gas desulfurization system. Emissions are exhausted through a 550 ft. stack.

2.2 Regulatory Requirements

The facility was required to conduct emissions testing to determine PM, NH_3 , SAM and visible emissions (VE) in accordance with permit number 0170004-035-AV. The CO RATA is required to be conducted while the source is operating at 90% of the operating range. The Unit 4 emissions limitations and standards are summarized in Table 2.

Table 2: Emissions Limitations and StandardsCrystal River Energy ComplexUnit 4

Pollutant/Standard	RATA or Emission Limit
PM	0.030 lb/mmBtu
	216 lb/hr
NH ₃	5 ppmvd
SAM	0.009 lb/mmBtu
	64.8 lb/hr
VE	≤10 % ²

¹ The difference between monitor and reference method mean values applies to low emitters only

² six-minute average

3.0 Test Program/Operating Conditions

The compliance status of the Unit 4 PM, NH₃, SAM and VE emissions, in regards to Title V Operating Permit 0170004-035-AV, was tested on September 17, 2013.

For the compliance test, the Unit 4 heat input averaged 7066.0 mmBtu/hr while operating on 100 percent solid fuel, which correlates to 98.1 percent of the maximum heat input (7,200 mmBtu/hr). Soot blowing occurred during the first PM sampling run.

Unit 4 fuel flow and fuel analysis reports are located in Appendix A.

Fuel flow and fuel analysis reports were provided by Duke Energy Florida.

4.0 Test Methods

All testing was performed in accordance with methods approved by the USEPA and FDEP. The following discusses the methods, as well as quality assurance and sample handling procedures.

Table 3 summarizes the EPA test methods utilized to complete the test program.

EPA Method	Description	
1	Sample and Velocity Traverses for Stationary Sources	
2	Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot)	
3	Gas Analysis for Determining Dry Molecular Weight	
4	Moisture Content in Stack Gases	
5B	Particulate Emissions from Stationary Sources	
NCASI 8A	Determination of Sulfuric Acid Mist	
9	Opacity (Visible Emissions)	
CTM-027	Determination of Ammonia Slip	

Table 3: Summary of EPA Reference Methods Crystal River Energy Complex Unit 4

4.1 Sample and Velocity Traverse Points

Sample and velocity traverse points were determined utilizing EPA Method 1.

The inner stack diameter, at the sample location, of the Unit 4 exhaust stack is 31' (372"). The sample location for the stack is 10.06 diameters (312') downstream from the nearest disturbance and 3.35 diameters upstream (104') from the stack exit.

Four (4) ports, located 90 degrees from each other, were used at the sample location. Particulate matter and ammonia slip sampling was conducted at a total of 12 points (3 points per port). Traverse points were located at 4.4%, 14.6% and 29.6% of the inner diameter, from the inside wall of the stack. A single point, over 1 meter from the stack wall was used for sulfuric acid mist sampling. Three (3) 60-minute compliance runs were conducted. A diagram of the sample location can be viewed in Appendix C.

4.2 Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tubes)

Method 2 was used to determine the volumetric flow rate of the stack effluent gas.

Stack temperature differential pressure readings were taken with an S type pitot tube and Type K temperature sensor at each sample traverse point.

4.2.1 Method 2 Quality Assurance/Quality Control Procedures

The S type pitot tube was inspected visually and measured to meet the design specifications of EPA Method 2, for a pitot coefficient of 0.84.

The incline manometer and each leg of the pitot tube was leak checked before and immediately after each test run.

Thermocouple sensors were calibrated prior to the test program and a post test check was performed after testing completion.

The incline manometer was leveled and zeroed before each test run.

Appendix D contains the completed QA/QC forms.

4.3 CO₂ and O₂ Orsat Analyzer Method

Stack gas dry molecular weight was determined utilizing Method 3B.

Gas samples were taken at each sample traverse, stored in leak free Tedlar bags and analyzed for concentrations of Oxygen (O_2) and Carbon Dioxide (CO_2) using an Orsat analyzer.

4.3.1 Method 3B Quality Assurance/Quality Control Procedures

The orsat was leak checked prior to use and immediately following sample analysis. The sample gas was passed through the orsat system 3 times prior to analysis to ensure that a representative sample was in the orsat train. The sample was passed through the CO_2 and O_2 absorbent a minimum of 3 times for each analysis.

4.4 Moisture Content Determination

Moisture content of the stack gas was determined by Method 4.

Stack gas was sampled at each traverse point, passed through pre-weighed impingers and then through a calibrated dry gas meter. Moisture is removed from the sample gas in the pre-weighed impingers, which are submerged in an ice bath, and later analyzed for moisture weight gain. Moisture is determined based upon the amount of moisture weight gain and sample gas collected.

Field moisture data sheets are also located in Appendix E.

4.4.1 Method 4 Quality Assurance/Quality Control Procedures

The moisture sampling train was leak checked prior to each test run at approximately 15" Hg and immediately after each run at a vacuum higher than the highest vacuum recorded during the respective test run. Results are recorded on the moisture field data sheets.

Weighing to determine moisture content was conducted with a balance having an accuracy of 0.1 grams.

Gas temperature at the exit of the impingers was maintained at less than 68 degrees Fahrenheit.

4.5 Particulate Matter Determination

USEPA Method 5B was used to determine particulate emissions. Stack gas was extracted isokinetically from the gas stream; particulate emissions are measured gravimetrically by determining the amount of particulate matter collected on the glass nozzle and quartz fiber filter. The probe liner temperature was maintained at 320 degrees Fahrenheit.

Sample volume was measured by passing the gas through a set of weighed impingers used for moisture content, then passed through a calibrated dry gas meter. An S type pitot tube is attached to the probe to measure stack gas velocity and to maintain sampling conditions between 90% and 110% isokinetics. A type K temperature sensor is also attached to the probe to measure the stack gas temperature.

Isokinetic conditions were maintained throughout each test run of the test program as demonstrated in Table 4.

A minimum of 60 dscf of sample was taken each test run over a sampling period of approximately 120 minutes. Run 4 for ammonia was 60 minutes in duration.

Method 5B/CTM-027 field data sheets are located in Appendix E.

4.5.1 Sample Recovery and Analysis

After each sample run, the nozzle and filter holder ahead of the filter were brushed and rinsed with acetone. Contents were stored in a leak free container for transport to the laboratory. The impingers were weighed for increase, to the nearest 0.5 gram, to determine moisture gain.

Particulate matter was determined by drying each filter to a constant weight and recorded to the nearest 0.1 mg. Sample from the probe nozzle and filter holder were evaporated in a tared beaker at ambient temperature, oven dried at 160 °F for 6 hours and then cooled in a desiccator and weighed to a constant weight, and recorded to the nearest 0.1 mg.

Appendix E contains the analytical results for each run.

4.5.2 Quality Assurance/Quality Control Procedures

The probe nozzles were inspected and measured across three different diameters to determine the appropriate nozzle diameter.

Before and after each test run, the manometer was leveled and zeroed. Leak checks of the sampling train were conducted before and immediately after each test run.

The dry gas meter was fully calibrated within six months prior to the test program using a set of EPA critical orifices. Post test program dry meter checks were completed to verify the accuracy of the meter's Y_i.

Completed QA/QC forms are located in Appendix D.

Table 4: Isokinetic Summary Crystal River Energy Complex Unit 4

	% Isokinetic					
Unit	Run 1	Run 2	Run 3	Average	Tolerance	
4	97.9	100.1	103.5	100.5	90 – 110%	

4.6 Sulfuric Acid Mist (NCASI Method 8A)

NCASI Method 8A was used to determine the volume of sulfuric acid mist (SAM) present in the flue gas. Each gas stream was sampled for one hour at a constant sample rate of approximately 10 lpm¹.

The Method 8A sample train consisting of a quartz glass probe, heated to $600^{\circ}F \pm 25^{\circ}F$, a heated quartz filter ($600^{\circ}F \pm 25^{\circ}F$) used to filter particulate, a condenser (set to a temperature of $150^{\circ}F \pm 10^{\circ}F$) used to condense and capture H₂SO₄, and a quartz fiber filter used to capture H₂SO₄. An impinger train, composed of the following impingers, following the condenser. The first two impingers contained 100 ml of deionized water, the third impinger was empty and the final impinger contained a pre-weighed amount of indicating silica gel.

4.6.1 Sample Recovery and Analysis

A 15 minute purge with clean dry ambient air was conducted at the average sampling rate used during the sample run. After the purge, the H_2SO_4 condenser was rinsed multiple times with deionized water. The condenser wash was collected in a laboratory prepared polyethylene sample bottle. The probe and the quartz filter holder were rinsed with DI water and the rinse was discarded.

Appendix E contains the analytical results for each run.

4.6.2 Quality Assurance/Quality Control Procedures

Before and after each test run, the manometer was leveled and zeroed. Leak checks of the sampling train were conducted before and immediately after each test run.

The dry gas meter was fully calibrated within six months prior to the test program using a set of EPA critical orifices. Post test program dry meter checks were completed to verify the accuracy of the meter's Y_i.

Completed QA/QC forms are located in Appendix D.

4.7 Ammonia Slip Test

Ammonia concentrations were determined using EPA Conditional Test Method 27 (CTM-027).

¹ As stated in the compliance test protocol, the Method 8A testing cannot be performed isokinetically since the sample flow rates are too high. This will not allow for enough time for the thermal drop in the sample gas through the condenser.

Stack gas-samples were extracted isokinetically with the same sampling train for the Method 5B testing, for a period of 120 minutes. Gas samples were pulled from the stack through a glass nozzle and glass lined probe in to a heated filter box containing the Method 5B quartz filter. The gas was then transported, via an unheated Teflon line, to an impinger train. The impinger train consisted of two Greenburg-Smith (G-S) impingers (impingers 1 and 2) and two modified G-S impingers with the tips removed (impingers 3 and 4) all connected in series in an ice bath. Impingers 1 and 2 were charged with 100ml of 0.1N sulfuric acid (H_2SO_4) solution. The third was left empty and the fourth impinger was loaded with a pre-weighed amount of silica gel.

The volume of the liquid (catch) in each of the first three impingers was recorded for future use. Each impinger catch was transferred into individual, clean 500-ml HDPE containers. Each container was then labeled and stored on ice for shipment to the laboratory, where the samples were analyzed within 2 weeks after their collection.

An ion chromatograph equipped with a conductivity detector was used for ammonium ion separation and quantitation to analyze the samples. At a minimum, the first two impingers were analyzed for ammonia breakthrough.

Pre and post impinger weights, field data collection, and lab analysis results are presented in Appendix G.

4.7.1 Quality Assurance/Quality Control Procedures

The sample train was leak checked prior to and following each test run at or above the highest vacuum recorded during the test run in accordance with the test method.

Prior to conducting each test run, the impinger train was chilled in ice for at least 10 minutes as specified in the test method.

All sample train glassware was cleaned prior to each test run with deionized (DI) water.

Following each test run, the back half of the filter housing was rinsed with DI water and stored in the same storage container as the catch from impinger 1. Impingers 1 and 2 were rinsed with DI water after recovery and stored with the impinger catch from its perspective impinger as well. QA/QC forms can be viewed in Appendix E.

4.8 Visible Emission Determination

USEPA Method 9 was utilized to determine visible emissions.

Visible emissions observations were performed by a FDEP certified visible emissions reader. Readings were taken at 15 second intervals and reduced into six minute averages as required by the applicable EPA standard. One-sixty minute visible emissions test run was performed while the unit was operating at maximum capacity.

Method 9 data summary, field data and VE reader's certification are located in Appendix E.

5.0 Test Results

The following presents the results of the test program. Supporting calculations and field data summaries are presented in Appendix B and E, respectively. Table 5 summarizes the results of the test program.

5.1 Particulate Matter

The three-run average particulate matter emissions during the test program was 0.011 lb/mmBtu and 85.4 lb/hr, passing the permitted emission limits of 0.030 lb/mmBtu and 216 lb/hr.

5.2 Ammonia Slip (NH₃)

The three-run average for ammonia slip during the test program was 0.4 ppmvd, passing the permitted emission limit of 5 ppmvd.

5.3 Sulfuric Acid Mist (SAM)

The three-run average for SAM during the test program was 0.0150 lb/mmBtu and 106.4 lb/hr exceeding the permitted emission limits of 0.009 lb/mmbtu and 64.8 lb/hr.

5.4 Visible Emissions

The highest six-minute average visible emissions observed from the Unit 4 stack during the 60 minute visible emission observation was 7.1 percent opacity, passing the 10 percent emission limit.

Parameter	Run 1	Run 2	Run 3	Average	Limit
PM	0.013 102.2	0.012 92.5	0.008 61.5	0.011 Ib/mmBtu 85.4 lb/hr	0.030 lb/mmBtu 216 lb/hr
NH3	1.0	0.2	0.0	0.4 ppmvd	5 ppmvd
SAM	0.0195 139.2	0.0158 113.4	0.0096 66.4	0.0150 Ib/mmBtu 106.4 Ib/hr	0.009 lb/mmBtu 64.8 lb/hr
VE	11.3 %*	7.1 %	N/A	7.1%	≤10 % except for one 6-minute period per hour of not more than 20%

Table 5: Compliance Test Summary Crystal River Energy Complex Unit 4

*Run not used due to combined plumes.

Air Emissions Test Report

Completed for:

Duke Energy Florida, Inc. Crystal River Energy Complex Unit 5 (EU -003)

Test Report Number: 20-6542-05-001

Test Completed: September 18, 2013

Air Emissions Test Report

Duke Energy Florida, Inc. Crystal River, Unit 5 (EU -003) Crystal River, Florida

C.E.M. Solutions Project No.: 6542

Testing Completed: September 18, 2013

C.E.M. Solutions, Inc. Report Number: 20-6542-05-001

C.E.M. Solutions, Inc. 1183 E. Overdrive Circle Hernando, Florida 34442 Phone: 352-489-4337

Declaration of Conformance to ASTM D 7036-04: Standard Practice for Competence of Air Emission Testing Bodies

C.E.M. Solutions operates in conformance with the requirements of ASTM D 7036-04: Standard Practice for Competence of Air Emission Testing Bodies through the use of a quality system which incorporates a quality manual, internal audit system, systematic training of personnel and rigorous review of test methods and operating procedures.

oe Conti

Quality Assurance Manager C.E.M. Solutions

Statement of Validity

I hereby certify the information and data provided in this emissions test report for tests performed at the Duke Energy Florida Inc. Crystal River facility conducted on September 18, 2013 are complete and accurate to the best of my knowledge.

(Joe Conti Quality Assurance Manager, C.E.M, Solutions, Inc.

Project Background

Name of Source Owner:	Duke Energy
Address of Owner:	One Power Plaza 299 First Avenue North St. Petersburg, FL 33701
Source Identification:	Facility: 0170004 Emissions Unit: EU-003
Location of Source:	Citrus County, Florida
Type of Operation:	SIC Code 4911
Tests Performed:	Method 1 – Traverse Points Method 2 – Stack Gas Volumetric Flow and Velocity Method 3A – Determination of Molecular Weight Method 4 – Stack Gas Moisture Content Method 5B – Particulate Matter NCASI Method 8A – Sulfuric Acid Mist Method 9 – Determination of Opacity of Emissions Conditional Test Method 027 –Ammonia Slip Determination
Test Supervisor (QSTI):	Mr. Matt Savin
Test Technicians:	Mr. Derek Kopera Mr. Josh Cooper
Date(s) Tests Conducted:	September 18, 2013: Compliance and Gas RATA
Site Test Coordinator:	Charles Dufeny of Duke Energy Florida
State Regulatory Observers:	No Observers Present

Table of Contents

1.0	Introduction	1
2.0	Facility Description	3
2.1	Process Equipment	3
2.2	Regulatory Requirements	3
3.0	Test Program/Operating Conditions	4
4.0	Test Methods	5
4.1		
4.2	Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tubes)	6
-	A.2.1 Method 2 Quality Assurance/Quality Control Procedures	
	CO ₂ and O ₂ Orsat Analyzer Method	
	A.3.1 Method 3B Quality Assurance/Quality Control Procedures	6
	Moisture Content Determination	7
	A.1 Method 4 Quality Assurance/Quality Control Procedures	
	Particulate Matter Determination	
-	5.1 Sample Recovery and Analysis	
-	4.5.2 Quality Assurance/Quality Control Procedures	
	Sulfuric Acid Mist (NCASI Method 8A)	
	6.1 Sample Recovery and Analysis	
-	4.6.2 Quality Assurance/Quality Control Procedures	
	Ammonia Slip Test	
	.7.1 Quality Assurance/Quality Control Procedures1	
	Visible Emission Determination1	
5.0	Test Results1	
5.1	Particulate Matter1	
5.2		
5.3		
5.4	Visible Emissions1	2

List of Tables

Table 1: Compliance Test Results	2
Table 2: Emissions Limitations and Standards	3
Table 3: Summary of EPA Reference Methods	5
Table 4: Isokinetics Summary	8
Table 5: Compliance Test Summary	12

Appendices

Appendix A: Facility Operating Data
Appendix B: Mathematical Equations
Appendix C: Sample Location Diagram/Traverse Points
Appendix D: Reference Method QA/QC
Appendix E: Reference Method Data
Appendix E-1: Particulate Matter & Ammonia Slip Test Data
Appendix E-2: Sulfuric Acid Mist Test Data
Appendix E-3: Method 9
Appendix E-4: Laboratory Analysis Report
Appendix F: Accreditations and Certifications

1.0 Introduction

Duke Energy Florida, Inc. retained C.E.M. Solutions, Inc. to perform emissions testing to determine levels of particulate matter (PM), ammonia slip (NH₃), sulfuric acid mist (SAM) and visible emission (VE) from Unit 5 boiler exhaust.

The test program was used to determine the compliance status of Unit 5 in regards to its emissions limitations and standards outlined in Title V Air Operating Permit 0170004-035-AV. The test program and results are presented and discussed in this report. Target pollutants include the following:

- PM (in lb/mmBtu and lb/hr)
- VE (in percent)
- SAM (in lb/mmBtu and lb/hr)
- NH₃ (in ppmv)

Charles Dufeny of Duke Energy Florida coordinated plant operations throughout the test program. All testing was conducted in accordance with test methods promulgated by the Florida Department of Environmental Protection.

Unit 5 was found to be in compliance with the permitted emissions limitations as summarized in Table 1. The test program and results are presented and discussed in this report.

Table 1: Compliance Test ResultsCrystal River Energy ComplexUnit 5

Pollutant	RATA Result / Reported Emissions Rate	RATA Limit / Permitted Emissions Rate	Compliance Test Status (Pass/Fail)
PM	0.005 lb/mmBtu	0.030 lb/mmBtu	PASS
	38.5 lb/hr	216 lb/hr	
NH ₃	0.0 ppmvd	5 ppmvd	PASS
SAM	0.0028 lb/mmBtu, 19.2 lb/hr	0.009 lb/mmBtu 64.8 lb/hr	PASS
VE	6.3 %	≤10 %	PASS

2.0 Facility Description

Crystal River Unit 5 is a fossil fuel steam generator consisting of a dry bottom wall-fired boiler, rated at 760 MW, 7,200 MMBtu/hr. Primary fuel is bituminous coal or a bituminous coal and bituminous coal briquette mixture. Number 2 fuel oil and natural gas may be burned as a startup fuel and for low load flame stabilization.

2.1 **Process Equipment**

Fossil Fuel Steam Generator, Unit 5 is a pulverized coal, dry bottom, wall-fired boiler. Emissions are controlled from the unit with a high efficiency electrostatic precipitator, a selective catalytic reduction system and a flue gas desulfurization system. Emissions are exhausted through a 550 ft. stack.

2.2 Regulatory Requirements

The facility was required to conduct emissions testing to determine PM, NH_3 , SAM and visible emissions (VE) in accordance with permit number 0170004-035-AV. The CO RATA is required to be conducted while the source is operating at 90% of the operating range. The Unit 5 emissions limitations and standards are summarized in Table 2.

Table 2: Emissions Limitations and StandardsCrystal River Energy ComplexUnit 5

Pollutant/Standard	RATA or Emission Limit
РМ	0.030 lb/mmBtu
Pivi	216 lb/hr
NH ₃	5 ppmvd
SAM	0.009 lb/mmBtu
	64.8 lb/hr
VE	≤10 % ²

¹ The difference between monitor and reference method mean values applies to low emitters only

² six-minute average

3.0 Test Program/Operating Conditions

The compliance status of the Unit 5 PM, NH₃, SAM and VE emissions, in regards to Title V Operating Permit 0170004-035-AV, was tested on September 18, 2013.

For the compliance test, the Unit 5 heat input averaged 6843.1 mmBtu/hr while operating on 100 percent solid fuel, which correlates to 95.0 percent of the maximum heat input (7,200 mmBtu/hr). Soot blowing occurred during the first PM sampling run.

Unit 5 fuel flow and fuel analysis reports are located in Appendix A.

Fuel flow and fuel analysis reports were provided by Duke Energy Florida.

4.0 Test Methods

All testing was performed in accordance with methods approved by the USEPA and FDEP. The following discusses the methods, as well as quality assurance and sample handling procedures.

Table 3 summarizes the EPA test methods utilized to complete the test program.

EPA Method	Description
1	Sample and Velocity Traverses for Stationary Sources
2	Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot)
3	Gas Analysis for Determining Dry Molecular Weight
4	Moisture Content in Stack Gases
5B	Particulate Emissions from Stationary Sources
NCASI 8A	Determination of Sulfuric Acid Mist
9	Opacity (Visible Emissions)
CTM-027	Determination of Ammonia Slip

Table 3: Summary of EPA Reference Methods Crystal River Energy Complex Unit 5

4.1 Sample and Velocity Traverse Points

Sample and velocity traverse points were determined utilizing EPA Method 1.

The inner stack diameter, at the sample location, of the Unit 5 exhaust stack is 31' (372"). The sample location for the stack is 10.06 diameters (312') downstream from the nearest disturbance and 3.35 diameters upstream (104') from the stack exit.

Four (4) ports, located 90 degrees from each other, were used at the sample location. Particulate matter and ammonia slip sampling was conducted at a total of 12 points (3 points per port). Traverse points were located at 4.4%, 14.6% and 29.6% of the inner diameter, from the inside wall of the stack. A single point, over 1 meter from the stack wall was used for sulfuric acid mist sampling. Three (3) 60-minute compliance runs were conducted. A diagram of the sample location can be viewed in Appendix C.

4.2 Stack Gas Velocity and Volumetric Flow Rate (Type S Pitot Tubes)

Method 2 was used to determine the volumetric flow rate of the stack effluent gas.

Stack temperature differential pressure readings were taken with an S type pitot tube and Type K temperature sensor at each sample traverse point.

4.2.1 Method 2 Quality Assurance/Quality Control Procedures

The S type pitot tube was inspected visually and measured to meet the design specifications of EPA Method 2, for a pitot coefficient of 0.84.

The incline manometer and each leg of the pitot tube was leak checked before and immediately after each test run.

Thermocouple sensors were calibrated prior to the test program and a post test check was performed after testing completion.

The incline manometer was leveled and zeroed before each test run.

Appendix D contains the completed QA/QC forms.

4.3 CO₂ and O₂ Orsat Analyzer Method

Stack gas dry molecular weight was determined utilizing Method 3B.

Gas samples were taken at each sample traverse, stored in leak free Tedlar bags and analyzed for concentrations of Oxygen (O_2) and Carbon Dioxide (CO_2) using an Orsat analyzer.

4.3.1 Method 3B Quality Assurance/Quality Control Procedures

The orsat was leak checked prior to use and immediately following sample analysis. The sample gas was passed through the orsat system 3 times prior to analysis to ensure that a representative sample was in the orsat train. The sample was passed through the CO_2 and O_2 absorbent a minimum of 3 times for each analysis.

4.4 Moisture Content Determination

Moisture content of the stack gas was determined by Method 4.

Stack gas was sampled at each traverse point, passed through pre-weighed impingers and then through a calibrated dry gas meter. Moisture is removed from the sample gas in the pre-weighed impingers, which are submerged in an ice bath, and later analyzed for moisture weight gain. Moisture is determined based upon the amount of moisture weight gain and sample gas collected.

Field moisture data sheets are also located in Appendix E.

4.4.1 Method 4 Quality Assurance/Quality Control Procedures

The moisture sampling train was leak checked prior to each test run at approximately 15" Hg and immediately after each run at a vacuum higher than the highest vacuum recorded during the respective test run. Results are recorded on the moisture field data sheets.

Weighing to determine moisture content was conducted with a balance having an accuracy of 0.1 grams.

Gas temperature at the exit of the impingers was maintained at less than 68 degrees Fahrenheit.

4.5 Particulate Matter Determination

USEPA Method 5B was used to determine particulate emissions. Stack gas was extracted isokinetically from the gas stream; particulate emissions are measured gravimetrically by determining the amount of particulate matter collected on the glass nozzle and quartz fiber filter. The probe liner temperature was maintained at 320 degrees Fahrenheit.

Sample volume was measured by passing the gas through a set of weighed impingers used for moisture content, then passed through a calibrated dry gas meter. An S type pitot tube is attached to the probe to measure stack gas velocity and to maintain sampling conditions between 90% and 110% isokinetics. A type K temperature sensor is also attached to the probe to measure the stack gas temperature.

Isokinetic conditions were maintained throughout each test run of the test program as demonstrated in Table 4.

A minimum of 60 dscf of sample was taken each test run over a sampling period of approximately 120 minutes. Run 4 for ammonia was 60 minutes in duration.

Method 5B/CTM-027 field data sheets are located in Appendix E.

4.5.1 Sample Recovery and Analysis

After each sample run, the nozzle and filter holder ahead of the filter were brushed and rinsed with acetone. Contents were stored in a leak free container for transport to the laboratory. The impingers were weighed for increase, to the nearest 0.5 gram, to determine moisture gain.

Particulate matter was determined by drying each filter to a constant weight and recorded to the nearest 0.1 mg. Sample from the probe nozzle and filter holder were evaporated in a tared beaker at ambient temperature, oven dried at 160 °F for 6 hours and then cooled in a desiccator and weighed to a constant weight, and recorded to the nearest 0.1 mg.

Appendix E contains the analytical results for each run.

4.5.2 Quality Assurance/Quality Control Procedures

The probe nozzles were inspected and measured across three different diameters to determine the appropriate nozzle diameter.

Before and after each test run, the manometer was leveled and zeroed. Leak checks of the sampling train were conducted before and immediately after each test run.

The dry gas meter was fully calibrated within six months prior to the test program using a set of EPA critical orifices. Post test program dry meter checks were completed to verify the accuracy of the meter's Y_i.

Completed QA/QC forms are located in Appendix D.

Table 4: Isokinetic Summary Crystal River Energy Complex Unit 5

	% Isokinetic				
Unit	Run 1	Run 2	Run 3	Average	Tolerance
4	97.9	100.1	103.5	100.5	90 – 110%

4.6 Sulfuric Acid Mist (NCASI Method 8A)

NCASI Method 8A was used to determine the volume of sulfuric acid mist (SAM) present in the flue gas. Each gas stream was sampled for one hour at a constant sample rate of approximately 10 lpm¹.

The Method 8A sample train consisting of a quartz glass probe, heated to $600^{\circ}F \pm 25^{\circ}F$, a heated quartz filter ($600^{\circ}F \pm 25^{\circ}F$) used to filter particulate, a condenser (set to a temperature of $150^{\circ}F \pm 10^{\circ}F$) used to condense and capture H₂SO₄, and a quartz fiber filter used to capture H₂SO₄. An impinger train, composed of the following impingers, following the condenser. The first two impingers contained 100 ml of deionized water, the third impinger was empty and the final impinger contained a pre-weighed amount of indicating silica gel.

4.6.1 Sample Recovery and Analysis

A 15 minute purge with clean dry ambient air was conducted at the average sampling rate used during the sample run. After the purge, the H_2SO_4 condenser was rinsed multiple times with deionized water. The condenser wash was collected in a laboratory prepared polyethylene sample bottle. The probe and the quartz filter holder were rinsed with DI water and the rinse was discarded.

Appendix E contains the analytical results for each run.

4.6.2 Quality Assurance/Quality Control Procedures

Before and after each test run, the manometer was leveled and zeroed. Leak checks of the sampling train were conducted before and immediately after each test run.

The dry gas meter was fully calibrated within six months prior to the test program using a set of EPA critical orifices. Post test program dry meter checks were completed to verify the accuracy of the meter's Y_i.

Completed QA/QC forms are located in Appendix D.

4.7 Ammonia Slip Test

Ammonia concentrations were determined using EPA Conditional Test Method 27 (CTM-027).

¹ As stated in the compliance test protocol, the Method 8A testing cannot be performed isokinetically since the sample flow rates are too high. This will not allow for enough time for the thermal drop in the sample gas through the condenser.

Stack gas-samples were extracted isokinetically with the same sampling train for the Method 5B testing, for a period of 120 minutes. Gas samples were pulled from the stack through a glass nozzle and glass lined probe in to a heated filter box containing the Method 5B quartz filter. The gas was then transported, via an unheated Teflon line, to an impinger train. The impinger train consisted of two Greenburg-Smith (G-S) impingers (impingers 1 and 2) and two modified G-S impingers with the tips removed (impingers 3 and 4) all connected in series in an ice bath. Impingers 1 and 2 were charged with 100ml of 0.1N sulfuric acid (H_2SO_4) solution. The third was left empty and the fourth impinger was loaded with a pre-weighed amount of silica gel.

The volume of the liquid (catch) in each of the first three impingers was recorded for future use. Each impinger catch was transferred into individual, clean 500-ml HDPE containers. Each container was then labeled and stored on ice for shipment to the laboratory, where the samples were analyzed within 2 weeks after their collection.

An ion chromatograph equipped with a conductivity detector was used for ammonium ion separation and quantitation to analyze the samples. At a minimum, the first two impingers were analyzed for ammonia breakthrough.

Pre and post impinger weights, field data collection, and lab analysis results are presented in Appendix G.

4.7.1 Quality Assurance/Quality Control Procedures

The sample train was leak checked prior to and following each test run at or above the highest vacuum recorded during the test run in accordance with the test method.

Prior to conducting each test run, the impinger train was chilled in ice for at least 10 minutes as specified in the test method.

All sample train glassware was cleaned prior to each test run with deionized (DI) water.

Following each test run, the back half of the filter housing was rinsed with DI water and stored in the same storage container as the catch from impinger 1. Impingers 1 and 2 were rinsed with DI water after recovery and stored with the impinger catch from its perspective impinger as well. QA/QC forms can be viewed in Appendix E.

4.8 Visible Emission Determination

USEPA Method 9 was utilized to determine visible emissions.

Visible emissions observations were performed by a FDEP certified visible emissions reader. Readings were taken at 15 second intervals and reduced into six minute averages as required by the applicable EPA standard. One-sixty minute visible emissions test run was performed while the unit was operating at maximum capacity.

Method 9 data summary, field data and VE reader's certification are located in Appendix E.

5.0 Test Results

The following presents the results of the test program. Supporting calculations and field data summaries are presented in Appendix B and E, respectively. Table 5 summarizes the results of the test program.

5.1 Particulate Matter

The three-run average particulate matter emissions during the test program was 0.005 lb/mmBtu and 38.5 lb/hr, passing the permitted emission limits of 0.030 lb/mmBtu and 216 lb/hr.

5.2 Ammonia Slip (NH₃)

The three-run average for ammonia slip during the test program was 0.0 ppmvd, passing the permitted emission limit of 5 ppmvd.

5.3 Sulfuric Acid Mist (SAM)

The three-run average for SAM during the test program was 0.0028 lb/mmBtu and 19.2 lb/hr passing the permitted emission limits of 0.009 lb/mmbtu and 64.8 lb/hr.

5.4 Visible Emissions

The highest six-minute average visible emissions observed from the Unit 5 stack during the 60 minute visible emission observation was 6.3 percent opacity, passing the 10 percent emission limit.

Parameter	Run 1	Run 2	Run 3	Average	Limit
PM	0.005 41.0	0.005 35.6	0.005 38.8	0.005 Ib/mmBtu 38.5 Ib/hr	0.030 Ib/mmBtu 216 Ib/hr
NH3	0.0	0.0	0.0	0.0 ppmvd	5 ppmvd
SAM	0.0031 21.3	0.0020 13.4	0.0033 22.9	0.0028 lb/mmBtu 19.2 lb/hr	0.009 lb/mmBtu 64.8 lb/hr
VE	6.3 %	N/A	N/A	6.3%	≤10 %

Table 5: Compliance Test Summary Crystal River Energy Complex Unit 5

*Run not used due to combined plumes.

PEF Crystal River Unit 5 Compliance Test September 18, 2013

Robby A. Odom Station Manager, Crystal River Steam Plant & Fuel Operations

October 15, 2013

Submitted via email: swd air@dep.fl.us

Mr. Erin Anthony DiBacco Environmental Manager - Compliance & Enforcement Florida Department of Environmental Protection Southwest District 13051 N. Telecom Parkway Temple Terrace, FL 33637

Dear Mr. DiBacco:

Re: Sulfuric Acid Mist (SAM) Performance Test Submittal: Crystal River Facility EU-003 & EU-004 Title V Air Operating Permit 0170004-037-AC (PSD-FL-383F)

Duke Energy is providing a copy of the SAM performance test conducted from August 26-31, 2013 for Crystal River Units 4 &5.

Please contact Jamie Hunter at (727) 820-5764 or Cynthia Wilkinson at (352) 501-5153 if you have any questions.

I hereby certify that, based on the information and belief formed after reasonable inquiry, the statements and information in the attached documents are true, accurate and complete.

Sincerely,

Robby A. Odom Station Manager, Crystal River Steam Plant & Fuel Operations

Enclosure – SAM Performance Test Report # 20-6420-0405

Sulfuric Acid Mist Test Report

Completed for:

Duke Energy Florida, Inc. Crystal River Energy Complex Units 4 & 5 (EU -003 & -004)

Test Report Number: 20-6420-0405

Test Completed: August 26 - 31, 2013

Sulfuric Acid Mist Test Report

Duke Energy Florida, Inc. Crystal River, Unit 5 (EU -003) Crystal River, Florida

C.E.M. Solutions Project No.: 6420

Testing Completed: August 26 - 31, 2013

C.E.M. Solutions, Inc. Report Number: 20-6420-0405

C.E.M. Solutions, Inc. 1183 E. Overdrive Circle Hernando, Florida 34442 Phone: 352-489-4337

Declaration of Conformance to ASTM D 7036-04: Standard Practice for Competence of Air Emission Testing Bodies

C.E.M. Solutions operates in conformance with the requirements of ASTM D 7036-04: Standard Practice for Competence of Air Emission Testing Bodies through the use of a quality system which incorporates a quality manual, internal audit system, systematic training of personnel and rigorous review of test methods and operating procedures.

i

loe Conti

Quality Assurance Manager, & E.M. Solutions, Inc.

Statement of Validity

I hereby certify the information and data provided in this emissions test report for tests performed at the Duke Energy Florida Inc. Crystal River facility conducted on August 26 through August 31, 2013 are complete and accurate to the best of my knowledge.

Λ Joe Conti

Quality Assurance Manager, C.E.M. Solutions, Inc.

Project Background

Name of Source Owner:	Duke Energy
Address of Owner:	One Power Plaza 299 First Avenue North St. Petersburg, FL 33701
Source Identification:	Facility: 0170004 Emissions Unit: EU-003 and EU-004
Location of Source:	Citrus County, Florida
Type of Operation:	SIC Code 4911
Tests Performed:	Method 1 – Traverse Points Method 2 – Stack Gas Volumetric Flow and Velocity Method 3A – Determination of Molecular Weight Method 4 – Stack Gas Moisture Content NCASI Method 8A – Sulfuric Acid Mist
Test Supervisor (QSTI):	Mr. Matthew Savin
Test Technicians:	Mr. Derek Kopera Mr. Josh Cooper
Date(s) Tests Conducted:	August 26, 2013: 4 SAM runs on Unit 4 and 5 August 27, 2013: 2 runs on Units 4 and 5 August 28, 2013: 4 runs on Unit 4 and 5 August 29, 2013: 4 runs on Unit 4, 1 run on Unit 5 August 30, 2013: 2 runs on Unit 4 August 31, 2013: 3 runs on Unit 4
Site Test Coordinator:	Cynthia Wilkinson of Duke Energy Florida
State Regulatory Observers:	No Observers Present

Table of Contents

1.0	Introduction	1
2.0	Facility Description	2
2.1	Process Equipment	2
3.0	Test Program/Operating Conditions	
4.0	Test Methods	4
4.1	Sample and Velocity Traverse Points	4
4.2	2 CO ₂ and O ₂ Orsat Analyzer Method	4
4	4.2.1 Method 3B Quality Assurance/Quality Control Procedures	5
4.3	B Moisture Content Determination	5
4	4.3.1 Method 4 Quality Assurance/Quality Control Procedures	5
4.4	Sulfuric Acid Mist (NCASI Method 8A)	5
4	4.4.1 Sample Recovery and Analysis	6
4	4.4.2 Quality Assurance/Quality Control Procedures	6
5.0	Test Results	8

List of Tables

Table 1:	Summary of EPA Reference Methods	4
	Unit 4 Compliance Test Summary	
Table 3:	Unit 5 Compliance Test Summary	9

List of Figures

Figure 1.	NCASI Method 8A Sampling Train	7
riguie i.		1

Appendices

- Appendix A: Mathematical Equations
- Appendix B: Sample Location Diagram/Traverse Points
- Appendix C: Reference Method QA/QC
- Appendix D: Reference Method Data
- Appendix E: Laboratory Analysis Report

1.0 Introduction

Duke Energy Florida retained C.E.M. Solutions, Inc. to conduct emissions testing to determine levels of sulfuric acid mist (SAM) emitted from the Unit 4 and Unit 5 boiler exhaust (emissions units EU-004 and -003 respectively) at its facility located in Crystal River, Florida.

The test program was conducted to commission the new permanent lime injection systems. Target pollutants include the following:

• SAM (in lb/mmBtu and lb/hr)

Cynthia Wilkinson of Duke Energy Florida coordinated plant operations throughout the test program. All testing was conducted in accordance with test methods promulgated by the Florida Department of Environmental Protection.

The Sulfuric Acid Mist emitted from Units 4 and 5 are summarized in Section 5 of this report.

2.0 Facility Description

Crystal River Units 4 and 5 are fossil fuel steam generators both consisting of dry bottom wall-fired boilers, rated at 760 MW, 7,200 MMBtu/hr. Primary fuel is bituminous coal or a bituminous coal and bituminous coal briquette mixture. Number 2 fuel oil and natural gas may be burned as a startup fuel and for low load flame stabilization.

2.1 Process Equipment

Fossil Fuel Steam Generator, Units 4 and 5 are pulverized coal, dry bottom, wallfired boilers. Emissions are controlled from the unit with a high efficiency electrostatic precipitator, a selective catalytic reduction system and a flue gas desulfurization system. Emissions are exhausted through a 550 ft. stack.

3.0 Test Program/Operating Conditions

The test program was conducted to determine SAM emissions from August 26 to August 31, 2013.

During the test program Units 4 and 5 were run at various load and Heat Inputs. Heat Input levels were provided by Duke Energy Florida during testing.

4.0 Test Methods

All testing was performed in accordance with methods approved by the USEPA and FDEP. The following discusses the methods, as well as quality assurance and sample handling procedures.

Table 1 summarizes the EPA test methods utilized to complete the test program.

Table 1: Summary of EPA Reference Methods
Crystal River Energy Complex
Units 4 and 5

EPA Method	Description				
1	Sample and Velocity Traverses for Stationary Sources				
2	Stack Gas Velocity and Volumetric Flow Rate (Type S Pite				
3	Gas Analysis for Determining Dry Molecular Weight				
4	Moisture Content in Stack Gases				
NCASI 8A	Determination of Sulfuric Acid Mist				

4.1 Sample and Velocity Traverse Points

Sample and velocity traverse points were determined utilizing EPA Method 1.

The inner stack diameter, at the sample location, of the Unit 5 exhaust stack is 31' (372"). The sample location for the stack is 10.06 diameters (312') downstream from the nearest disturbance and 3.35 diameters upstream (104') from the stack exit.

A single point, over 1 meter from the stack wall was used for sulfuric acid mist sampling. Three (3) 60-minute compliance runs were conducted. A diagram of the sample location can be viewed in Appendix B.

4.2 CO₂ and O₂ Orsat Analyzer Method

Stack gas dry molecular weight was determined utilizing Method 3B.

Gas samples were taken at each sample traverse, stored in leak free Tedlar bags and analyzed for concentrations of Oxygen (O_2) and Carbon Dioxide (CO_2) using an Orsat analyzer.

4.2.1 Method 3B Quality Assurance/Quality Control Procedures

The orsat was leak checked prior to use and immediately following sample analysis. The sample gas was passed through the orsat system 3 times prior to analysis to ensure that a representative sample was in the orsat train. The sample was passed through the CO_2 and O_2 absorbent a minimum of 3 times for each analysis.

4.3 Moisture Content Determination

Moisture content of the stack gas was determined by Method 4.

Stack gas was sampled at each traverse point, passed through pre-weighed impingers and then through a calibrated dry gas meter. Moisture is removed from the sample gas in the pre-weighed impingers, which are submerged in an ice bath, and later analyzed for moisture weight gain. Moisture is determined based upon the amount of moisture weight gain and sample gas collected.

Field moisture data sheets are also located in Appendix D.

4.3.1 Method 4 Quality Assurance/Quality Control Procedures

The moisture sampling train was leak checked prior to each test run at approximately 15" Hg and immediately after each run at a vacuum higher than the highest vacuum recorded during the respective test run. Results are recorded on the moisture field data sheets.

Weighing to determine moisture content was conducted with a balance having an accuracy of 0.1 grams.

Gas temperature at the exit of the impingers was maintained at less than 68 degrees Fahrenheit.

4.4 Sulfuric Acid Mist (NCASI Method 8A)

NCASI Method 8A was used to determine the volume of sulfuric acid mist (SAM) present in the flue gas. Each gas stream was sampled for one hour at a constant sample rate of approximately 10 lpm. Method 8A testing cannot be performed isokinetically since the sample flow rates are too high. This will not allow for enough time for the thermal drop in the sample gas through the condenser.

The Method 8A sample train consisting of a quartz glass probe, heated to $600^{\circ}F$ $\pm 25 \,^{\circ}F$, a heated quartz filter ($600^{\circ}F \pm 25 \,^{\circ}F$) used to filter particulate, a condenser (set to a temperature of $150^{\circ}F \pm 10^{\circ}F$) used to condense and capture H₂SO₄, and a quartz fiber filter used to capture H₂SO₄. An impinger train,

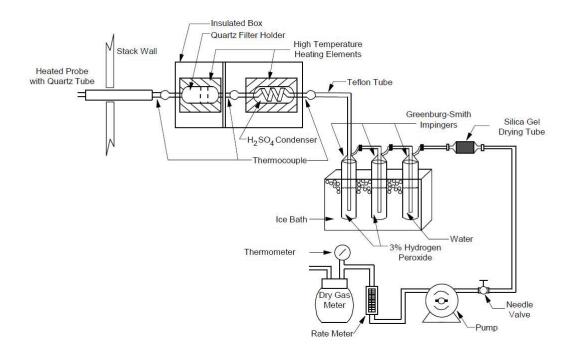
DEF Crystal River SAM Test August 26, 2013

Page 5 of 9

composed of the following impingers, following the condenser. The first two impingers contained 100 ml of deionized water, the third impinger was empty and the final impinger contained a pre-weighed amount of indicating silica gel.

4.4.1 Sample Recovery and Analysis

A 15 minute purge with clean dry ambient air was conducted at the average sampling rate used during the sample run. After the purge, the H₂SO₄ condenser was rinsed multiple times with deionized water. The condenser wash was collected in a laboratory prepared polyethylene sample bottle. The probe and the quartz filter holder were rinsed with DI water and the rinse was discarded.


Appendix D contains the analytical results for each run.

4.4.2 Quality Assurance/Quality Control Procedures

Before and after each test run, the manometer was leveled and zeroed. Leak checks of the sampling train were conducted before and immediately after each test run.

The dry gas meter was fully calibrated within six months prior to the test program using a set of EPA critical orifices. Post test program dry meter checks were completed to verify the accuracy of the meter's Y_i.

Completed QA/QC forms are located in Appendix C.

Figure 1: NCASI Method 8A Sampling Train

5.0 Test Results

The following presents the results of the test program. Supporting calculations and field data summaries are presented in Appendix A and D, respectively. Tables 2 and 3 summarize the results of the test program.

	SAM				
Run	Date	Heat Input	lb/mmbtu	lb/hr	
1	8/26/2013	7185	0.0087	62.8	
2	8/26/2013	7328	0.0082	59.8	
3	8/26/2013	7478	0.0084	62.8	
4	8/26/2013	7543	0.0128	96.6	
5	8/27/2013	2916	0.0004	1.2	
6	8/27/2013	5110	0.0074	37.6	
7	8/28/2013	6825	0.0129	88.1	
8	8/28/2013	6634	0.0288	191.0	
9	8/28/2013	7464	0.0191	142.6	
10	8/28/2013	7473	0.0192	143.4	
11	8/29/2013	7404	0.0073	54.1	
12	8/29/2013	7491	0.0100	75.1	
13	8/29/2013	7519	0.0199	149.3	
14	8/29/2013	7536	0.0066	49.4	
15	8/30/2013	5220	0.0001	0.3	
16	8/30/2013	3081	0.0046	14.2	
17	8/31/2013	7147	0.0036	25.4	
18	8/31/2013	7377	0.0039	28.5	
19	8/31/2013	7375	0.0108	79.5	

Table 2: Unit 4 Compliance Test Summary Crystal River Energy Complex Unit 4

Run	Data		S	۹M
	Date	Heat Input	lb/mmbtu	lb/hr
1	8/26/2013	7401	0.0089	65.8
2	8/26/2013	7457	0.0084	62.8
3	8/26/2013	7568	0.0110	83.1
4	8/26/2013	7616	0.0131	100.0
5	8/27/2013	2848	0.0006	1.6
6	8/27/2013	5084	0.0113	57.7
7	8/28/2013	7540	0.0052	39.1
8	8/28/2013	7761	0.0111	86.3
9	8/28/2013	7772	0.0155	120.3
10	8/28/2013	7788	0.0077	59.7
11	8/29/2013	7567	0.0056	42.3

Table 3: Unit 5 Compliance Test Summary
Crystal River Energy Complex
Unit 5

ATTACHMENT CR-EU3-I2 COMPLIANCE ASSURANCE MONITORING SULFURIC ACID MIST (SAM)

COMPLIANCE ASSURANCE MONITORING PLAN (CAM PLAN) for

SULFURIC ACID MIST (SAM)

Duke Energy Florida Crystal River Plant Units 4 and 5

November 2013

I. EMISSION UNITS REQUIRING CAM PLANS

A. CAM Rule Applicability Definition

This Title V Operation Permit Revision application incorporates the provisions of Permit Nos. PSD-FL-383 (Project No. 0170004-037-AC and, therefore, requires changes to conditions of the current Title V Air Operation Permit No. 0170004-035-AV to incorporate these provisions. As a result of the process changes authorized under these construction permits, the development of a CAM Plan is required for emissions of sulfuric acid mist (SAM). This submittal represents Duke Energy Florida's (DEF) SAM CAM Plan for Crystal River Units 4 and 5.

The SAM emissions control equipment includes a hydrated lime based acid mist mitigation (AMM) system as the primary control. In addition, the original ammonia based AMM system remains available as a back-up control system. In order to control the amount of SAM that is exhausted through the stack, AMM systems have been installed that inject hydrated lime (primary system) or ammonia (back-up system) into the flue gas stream to reduce the concentration of SAM entering the flue gas desulfurization (FGD) system and out the stack. The objective of injecting hydrated lime into the flue gas is to react it with the SO₃ and condensed SAM to reduce the SO₃ concentration and produce solid calcium sulfate material.

The required level of AMM injection was determined during performance tests and following system tuning. Test data taken over three operating load levels (i.e., approximately 250 MW, 500 MW and full load) were used to interpolate an AMM injection curve over each unit's range of operation.

As part of the Title V renewal/revision process, EPA, through regulations adopted in Title 40, Part 64 of the Code of Federal Regulations (40 CFR 64), is requiring submittal of Compliance Assurance Monitoring (CAM) Plans. This regulation has been incorporated by reference by FDEP in Rule 62-204.800 and implemented in Rule 62-213.440.

CAM plans are required for all Title V permitted emission units using control devices to meet federally enforceable emission limits or standards with pre-control emissions greater than "major" source thresholds. The term "major" is defined as in the Title V Regulations (40 CFR 70), but applied on a source-by-source basis. However, there are some specific exemptions to the applicability of the CAM Rule.

Specifically exempted from the CAM Rule are emissions units subject to requirements under Stratospheric Ozone Regulations (40 CFR 82), the Acid Rain Program (40 CFR 72), or that are part of an emission cap included in the Title V Permit. Also exempt are emission units subject to New Source Performance Standards (40 CFR 60) and National Emission Standards for Hazardous Air Pollutants (40 CFR 63) promulgated after 11/15/1990, as these sources have equivalent monitoring requirements included as part of the standard.

B. Emissions Units Requiring CAM Plans

A review of emission units at Crystal River was conducted to determine the applicability of the CAM Rule. The evaluation process resulted in a determination that Units 4 and 5 (DEP Emission Unit ID Nos. 004 and 003) are subject to the CAM requirements. Specific exemptions to the applicability of the CAM Rule were also considered in this evaluation. However, specific to emissions of SAM, a CAM Plan is required to be submitted for Units 4 and 5.

Crystal River Unit 4 (E.U. ID No. 004)

Fossil Fuel Steam Generator Unit 4 is a pulverized coal, wet bottom, wall-fired unit. The unit is rated at 760 MW and 7,200 mmBtu/hr while burning bituminous coal with light fuel oil as a startup and low-load flame stabilization fuel. The configuration of the emissions control system, including an AMM system for control of SAM emissions, was summarized above in Section I.A. Emissions are exhausted through a 550 ft. stack.

This emission unit is regulated under Acid Rain, Phase I and II and Rule 62-210.300, F.A.C., 40 CFR 60 Subpart D, Standards of Performance for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971; and, Power Plant Siting Certification PA 77-09 conditions. Fossil fuel fired steam generator Unit 4 began commercial operation in 1982.

Crystal River Unit 5 (E.U. ID No. 003)

Fossil Fuel Steam Generator Unit 5 is a pulverized coal, wet bottom, wall-fired unit. The unit is rated at 760 MW and 7,200 mmBtu/hr while burning bituminous coal with light fuel oil as a startup and low-load flame stabilization fuel. The configuration of the emissions control system, including an AMM system for control of SAM emissions, was summarized above in Section I.A. Emissions are exhausted through a 550 ft. stack.

This emission unit is regulated under Acid Rain, Phase I and II and Rule 62-210.300, F.A.C., 40 CFR 60 Subpart D, Standards of Performance for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971; and, Power Plant Siting Certification PA 77-09 conditions. Fossil fuel fired steam generator Unit 5 began commercial operation in 1984.

II. CAM PLAN FOR SULFURIC ACID MIST EMISSIONS

A. Emissions Background

Compliance testing is required annually for SAM emissions for these units, as well as within 60 days of an increase of the fuel sulfur content of 0.5% or more. In addition, the AMM system injection rate is required to be continuously monitored and recorded. The injection flow rate monitoring system must be properly calibrated, operated, and maintained in accordance with Rule 62-297.520, F.A.C.

B. Emissions Units Correlations

As part of the AMM system project, DEF conducted a series of performance tests on Units 4 and 5 to determine SAM emissions rates under a variety of unit operating conditions.

The purpose of performance test program was to document the impact of the AMM system injection rate on reducing the SAM emissions and to develop a correlation curve between the injection rate, unit operating conditions/loads, and measured SAM emissions. Once the curve was developed (based upon the performance test data), it was programmed into the Distributed Control System (DCS) of each unit in order to continuously demonstrate compliance with the permitted SAM limit of 0.009 lb/mmBtu at any operating load level over each unit's range of operation (while the AMM system is operating).

The purpose of this SAM CAM Plan is to outline how the AMM system will be operated at various load levels and operating conditions, based upon the results of the AMM performance test.

C. Rationale for Selection of the Indicator Ranges

The results of the performance testing show that compliance with the permitted SAM limit of 0.009 lb/mmBtu will be met, provided that the AMM injection rate is <u>at least 80% of the baseline amount</u> required to react with the SAM. Taking this into account, the automated control system curve was programmed using the 100% baseline amount of injection required to control the SAM emissions.

The control system curve was set up on a "MW versus AMM lb/hr (@ 100% of the baseline value)" basis. That is, depending upon the MW currently being generated by the unit, the amount of AMM injection (in lb/hr) will be automatically adjusted, per the programmed curve. The MW and AMM injection levels are directly proportional to one another, so as the MW generated by the unit increases, the amount of AMM injection will also be increased.

Appendix A of this document illustrates the AMM system curve for firing 5 lbs SO₂/mmBtu coal for each MW value (in 50 MW increments) over the normal operating range of 250-760 MW.

Based on the above discussion, current experience suggests that, if at least 80% of the injection rate curves are maintained on a one-hour average basis, reasonable assurance will be provided that the corresponding SAM emissions standards will be met. When an excursion occurs, corrective action will be initiated as described in Table 2, beginning with an evaluation of the occurrence, to determine the action required (if any) to correct the situation. All excursions will be documented.

III. Monitoring Approach - Table 1 (Units 4 and 5)

Table 1	Indicator
Indicator	AMM injection rate.
Measurement Approach	See attached injection rate curves in Appendix A
Indicator Range	An excursion is defined as an injection rate (1-hour block averaging time) that is less than 80% of the injection rate curve.
	Excluding periods of startup, shutdown and malfunction, pursuant to Rule 62-210.700.
	Periods of load change shall also be excluded. A load change occurs when the operational capacity of the unit is in the 10% to 100% capacity range, other than startup or shutdown, which exceeds 10% of the unit's rated capacity and which occurs at a rate of 0.5% per minute or more.
	An excursion will trigger an evaluation of operation of the boiler and the AMM system. Corrective action will be taken as necessary. Any excursion will trigger recordkeeping and reporting requirements.
Data Representativeness	SAM emission measurements are recorded annually at the stack.
Verification of Operational Status	NA
QA/QC Practices and Criteria	The injection flow rate monitoring system must be properly calibrated, operated, and maintained in accordance with Rule 62-297.520, F.A.C. Calibration information is recorded through a data acquisition system (DAS).
Monitoring Frequency	AMM injection rate is monitored continuously.
Data Collection Procedures	Hourly averages are recorded through the DAS. Daily reports with all hourly averages are generated.
Averaging Period	The averaging period for AMM injection rate is a 1-hour block average.

IV. Corrective Action Procedures Summary – Table 2 (Units 4 and 5)

		Description		
l.	Initiation of Corrective Action Procedures	Corrective action shall be initiated with the discovery of a one-hour block average of the AMM injection rate less than the levels that define an excursion (as defined in Appendix A). The plant staff that made the discovery shall immediately notify the Shift Supervisor. This action describes a corrective action trigger.		
11.	Time of Completion of Corrective Action Procedures	Corrective actions will be taken within the time frames and in accordance with the AMM system malfunction provisions of the permit.		
111.	Corrective Action	 The Shift Supervisor will implement the following as a corrective action. Perform operational diagnostics to identify cause of the excursion; If operational diagnostics indicate a malfunction of the AMM system, the reason for failure will be identified; and AMM system operation will be restored to minimize SAM emissions. 		

APENDIX A

AMM INJECTION VERSUS LOAD CURVES

Figure 1: Hydrated Lime Figure 2: Ammonia

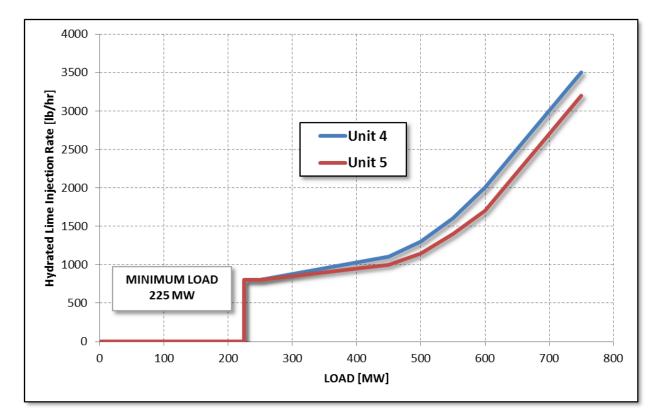


FIGURE 1 – Hydrated Lime Injection versus Load Curve 5 lb SO2/mmBtu Coal

LOAD	HYDRATED LIME INJECTION RATE*		
	UNIT 4	UNIT 5	
[MW]	[lb/hr]	[lb/hr]	
<250	800	800	
400	1000	900	
450	1100	1000	
500	1300	1150	
550	1600	1400	
600	2000	1700	
700	3000	2700	
725	3250	2950	
>750	3500	3200	

*Note: All hydrated lime injection rates are based on 5 lbs SO₂/mmBtu coal. If coal sulfur levels (in terms of lbs SO₂/mmBtu) differ significantly the hydrated lime injection rate may be adjusted based on a ratio of the new sulfur level vs. the 5 lbs SO₂/mmBtu sulfur level. The only future adjustment to the curve would be down, if and when a lower sulfur coal is going to be consistently burned (this is not anticipated). In that case, the curve could be adjusted down by 20 percent, for example, for coal at a 4 lbs SO₂/mmBtu sulfur level.

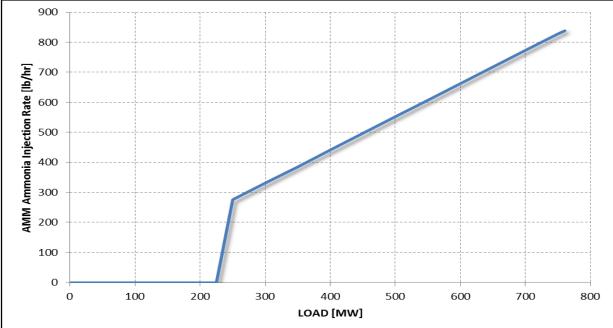


FIGURE 2 – Ammonia Injection versus Load Curve 5 lb SO2/mmBtu Coal

MW LOAD	LB/HR INJECTION
	Ammonia*
<250	276
300	332
350	387
400	442
450	497
500	553
550	608
600	663
650	719
700	774
750	829
760	840

*Note: All ammonia injection rates are based on 5 lbs SO₂/mmBtu coal. If coal sulfur levels (in terms of lbs SO₂/mmBtu) differ significantly the hydrated lime injection rate may be adjusted based on a ratio of the new sulfur level vs. the 5 lbs SO₂/mmBtu sulfur level. The only future adjustment to the curve would be down, if and when a lower sulfur coal is going to be consistently burned (this is not anticipated). In that case, the curve could be adjusted down by 20 percent, for example, for coal at a 4 lbs SO2/mmBtu sulfur level.

	00		
		1	1
			i

ATTACHMENT CR-EU32-I1 OPERATION AND MAINTENANCE PLAN HYDRATED LIME STORAGE AND TRANSFER SYSTEM

HYDRATED LIME ACID MIST MITIGATION SYSTEM OPERATING PROTOCOL

Duke Energy Florida Crystal River Plant Units 4 and 5

November 2013

HYDRATED LIME ACID MIST MITIGATION SYSTEM OPERATING PROTOCOL DUKE ENERGY FLORIDA CRYSTAL RIVER PLANT UNITS 4 AND 5 November 2013

Background

In July 2013, Duke Energy Florida, Inc. (DEF) completed the installation of a permanent hydrated lime based acid mist mitigation (AMM) system at the Crystal River Plant to reduce sulfuric acid mist (SAM) emissions on Unit #4 and Unit #5 (air construction permit #0170004-037-AC). This system replaced the originally installed ammonia based acid mist mitigation system, which has been retained as a back-up AMM system. (Note: The original ammonia based AMM system operating protocol will be followed during its use in the back-up mode.)

The hydrated lime AMM system performance testing was conducted on Crystal River Units 4 and 5 on August 26, 2013 through August 31, 2013. Additional hydrated lime AMM system tuning and optimization was conducted on October 8, 2013 and October 9, 2013. Compliance testing at Crystal River Units 4 and 5 was conducted in September and again in October, 2013. The information below includes results of all of the stack testing conducted and the operating protocol required for continuous operation of the permanent hydrated lime based AMM system.

SAM Testing Summary

The hydrated lime based AMM system performance testing for SAM emissions started on August 26, 2013 and was finished on August 31, 2013. The tuning of the hydrated lime based AMM system was conducted on October 8, 2013 and October 9, 2013. A total of 28 tests were performed on Unit 4 and a total of 23 tests were performed on Unit 5. A summary of test results is listed in Tables 1 through 4.

Annual compliance testing for Crystal River Unit 4 was conducted on September 17, 2013 and on October 10, 2013. Compliance testing for Crystal River Unit 5 was conducted on September 18, 2013 and on October 11, 2013. A summary of results for compliance testing is listed in Table 5 and Table 6. The injection rates for compliance testing were based on results from performance testing and refined following the tuning of the hydrated lime AMM system.

The operating conditions for both units were stabilized at least for 2 hours before testing began. Stack testing was performed under normal operating conditions at full load with an adequate supply of normal or routine coal (sulfur content in coal for each test is in last column of every test results table). All testing was performed by a third party contractor using independent testing equipment installed on both Units at the stack.

Crystal River #4 Hydrated Lime Performance Testing					
DATE	TIME	LOAD	HYD. LIME INJECTION	STACK H ₂ SO ₄	COAL SO ₂
	TIVIL	[MW]	[lb/hr]	[lb/mmBtu]	[lb/mmBtu]
8/26/2013	08:45-09:45	756	2566	0.0087	5.056
8/26/2013	11:30-12:30	762	2684	0.0082	5.018
8/26/2013	13:55-14:55	764	2607	0.0084	5.010
8/26/2013	16:20-17:20	764	2319	0.0128	5.079
8/27/2013	03:20-04:20	249	1031	0.0004	4.485
8/27/2013	08:20-09:20	499	945	0.0074	5.010
8/28/2013	10:30-11:30	762	2834	0.0129	4.895
8/28/2013	13:00-14:00	764	2201	0.0288	5.013
8/28/2013	15:00-16:00	759	2179	0.0191	5.113
8/28/2013	17:15-18:15	758	2400	0.0192	5.102
8/29/2013	08:45-09:45	763	2506	0.0073	5.005
8/29/2013	10:55-11:55	760	2310	0.0100	4.980
8/29/2013	13:07-14:07	763	1642	0.0199	4.958
8/31/2013	14:00-15:00	755	2589	0.0108	5.063

Table 1 – Summary of Unit #4 Performance Tests

Table 2 – Summary of Unit #4 Tuning

Crystal River #4 Tuning					
DATE	TIME	LOAD	HYD. LIME INJECTION	STACK H ₂ SO ₄	COAL SO₂
DATE	TIME	[MW]	[lb/hr]	[lb/mmBtu]	[lb/mmBtu]
10/8/2013	11:55-12:25	725	3259	0.0044	4.994
10/8/2013	14:30-15:00	724	3155	0.0056	5.107
10/8/2013	16:30-17:00	724	2708	0.0110	5.088
10/8/2013	17:30-18:00	724	2587	0.0123	5.009
10/9/2013	12:21-12:51	725	3117	0.0056	4.967
10/9/2013	13:55-14:25	724	3374	0.0047	4.971
10/9/2013	16:15-16:45	726	2863	0.0085	5.218
10/9/2013	17:00-17:30	724	3007	0.0085	5.281

Table 3 – Summary of Unit #5 Performance tests

Cı	Crystal River #5 Hydrated Lime Performance Testing					
DATE	TIME	TIME LOAD [INJECTION]		STACK H ₂ SO ₄	COAL SO ₂	
DATE	TIME		[lb/mmBtu]	[lb/mmBtu]		
8/26/2013	08:45-10:13	754	2934	0.0089	4.754	
8/26/2013	11:30-12:30	755	2996	0.0084	4.839	
8/26/2013	13:55-14:55	759	3016	0.0110	4.853	
8/26/2013	16:20-17:20	764	2569	0.0131	4.682	
8/27/2013	03:20-04:20	250	1123	0.0006	4.455	
8/27/2013	08:20-09:20	499	1126	0.0113	4.974	
8/28/2013	10:30-11:30	764	3141	0.0052	4.683	
8/28/2013	13:00-14:00	763	2819	0.0111	4.735	
8/28/2013	15:00-16:00	767	2572	0.0155	4.831	
8/28/2013	17:15-18:15	763	2908	0.0077	4.728	
8/29/2013	10:55-11:55	767	3015	0.0056	4.899	

Table 4 – Summary of Unit #5 Tuning

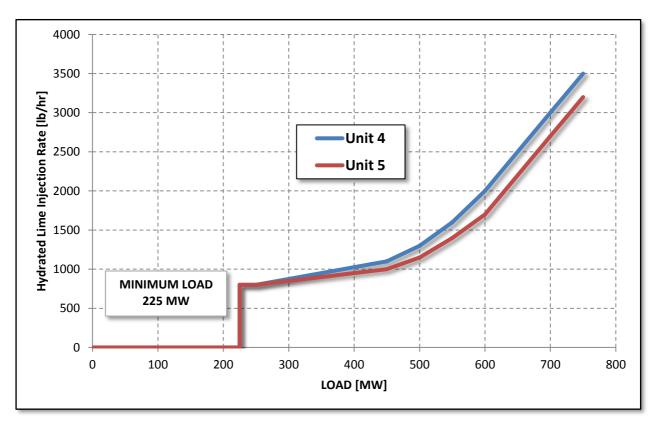
Crystal River #5 Tuning					
DATE	TIME	LOAD	HYD. LIME INJECTION	STACK H ₂ SO ₄	COAL SO₂
DATE		TIME	[MW]	[lb/hr]	[lb/mmBtu]
10/8/2013	11:55-12:28	725	3261	0.0023	5.140
10/8/2013	13:45-14:15	725	3195	0.0036	5.035
10/8/2013	16:30-17:00	724	2860	0.0044	5.106
10/8/2013	17:30-18:00	725	2930	0.0042	5.183
10/9/2013	13:10-13:40	724	2918	0.0046	4.926
10/9/2013	14:35-15:05	725	2907	0.0039	4.890

Table 5 – Summary of Unit #4 Compliance tests

Crystal River #4 Compliance Testing*					
DATE	TIME	LOAD	HYD. LIME INJECTION	STACK H ₂ SO ₄	COAL SO₂
DATE		[MW]	[lb/hr]	[lb/mmBtu]	[lb/mmBtu]
9/17/2013	09:45-10:45	762	2947	0.0195	5.001
9/17/2013	13:20-14:20	763	2978	0.0158	4.947
9/17/2013	18:00-19:00	767	2988	0.0096	3.333
10/10/2013	12:00-13:00	725	3273	0.0061	5.003
10/10/2013	15:25-16:25	726	3288	0.0063	5.062
10/10/2013	18:00-19:00	725	3342	0.0061	5.167

Table 6 – Summary of Unit #5 Compliance tests

Crystal River #5 Compliance Testing*					
DATE		LOAD	HYD. LIME INJECTION	STACK H ₂ SO ₄	COAL SO₂
DATE	TIME	[MW]	[lb/hr]	[lb/mmBtu]	[lb/mmBtu]
9/18/2013	08:30-09:30	764	3199	0.0031	2.409
9/18/2013	12:25-13:25	767	3215	0.0020	3.537
9/18/2013	16:05-17:05	763	3145	0.0033	3.992
10/11/2013	11:00-12:00	725	2968	0.0040	5.206
10/11/2013	14:15-15:15	725	2981	0.0038	5.227
10/11/2013	16:50-17:50	725	2976	0.0044	5.390


*Note: September 2013 Compliance testing was repeated in October 2013 due to several operating complications of hydrated lime AMM system during the September testing, including the boiler not being in stable conditions and variances in the coal sulfur levels during the testing.

Operating Protocol for Continued Operation of the Permanent Hydrated Lime AMM System

Sufficient testing was conducted that shows that compliance with the SAM emission standard is achievable for all operational loads. The table below shows compliance injection rates for hydrated lime and the corresponding SAM emission levels for compliance testing (average from last 3 compliance tests).

Unit	Load	Hydrated Lime Injection Rate Demand Actual		STACK H₂SO₄
				112004
[-]	[MW]	[lb/hr] [lb/hr]		[lb/mmBtu]
4	725	3250	3301	0.0062
5	725	2950	2975	0.0041

Based on the information from performance and compliance testing, the hydrated lime injection vs. load curve that demonstrates compliance with permitted SAM emission limit is shown below. This curve is based on fuel sulfur content equivalent to 5 lbs SO_2 /mmBtu and normal operating conditions.

The above injection rate vs. load curve was implemented as part of the DCS automatic control for both units for continued operation of the permanent hydrated lime based acid mist mitigation system. The following are tabulated data for the injection curve implemented in the DCS:

LOAD	HYDRATED LIME INJECTION RATE*	
	UNIT 4	UNIT 5
[MW]	[lb/hr]	[lb/hr]
<250	800	800
400	1000	900
450	1100	1000
500	1300	1150
550	1600	1400
600	2000	1700
700	3000	2700
725	3250	2950
>750	3500	3200

*Note: All hydrated lime injection rates are based on 5 lbs SO₂/mmBtu coal. If coal sulfur levels (in terms of lbs SO₂/mmBtu) differ significantly, the hydrated lime injection rate may be adjusted based on a ratio of the new sulfur level vs. the 5 lbs SO₂/mmBtu sulfur level. The only future adjustment to the curve would be down, if and when a lower sulfur coal is going to be consistently burned (this is not anticipated). In that case, the curve could be adjusted down by 20 percent, for example, for coal at a 4 lbs SO₂/mmBtu sulfur level.

ATTACHMENT CR-EU32-I2 COMPLIANCE DEMONSTRATION REPORTS/RECORDS VISIBLE EMISSIONS OCTOBER 9-10, 2013

Robby A. Odom Station Manager, Crystal River Steam Plant & Fuel Operations

October 30, 2013

Submitted via email: SWD_AIR@dep.state.fl.us

Mr. Erin Anthony DiBacco Environmental Manager - Compliance & Enforcement Florida Department of Environmental Protection Southwest District Office 13051 North Telecom Parkway Temple Terrace, FL 33637-0926

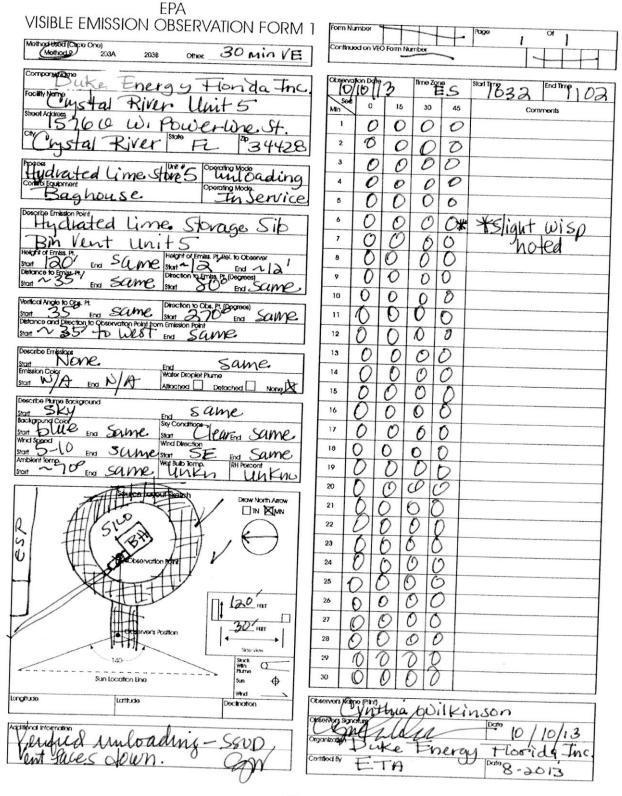
Re: Submittal of Compliance Test Report Crystal River Facility Facility ID: 0170004-037-AC EU-032 (Hydrated Lime Storage and Transfer System)

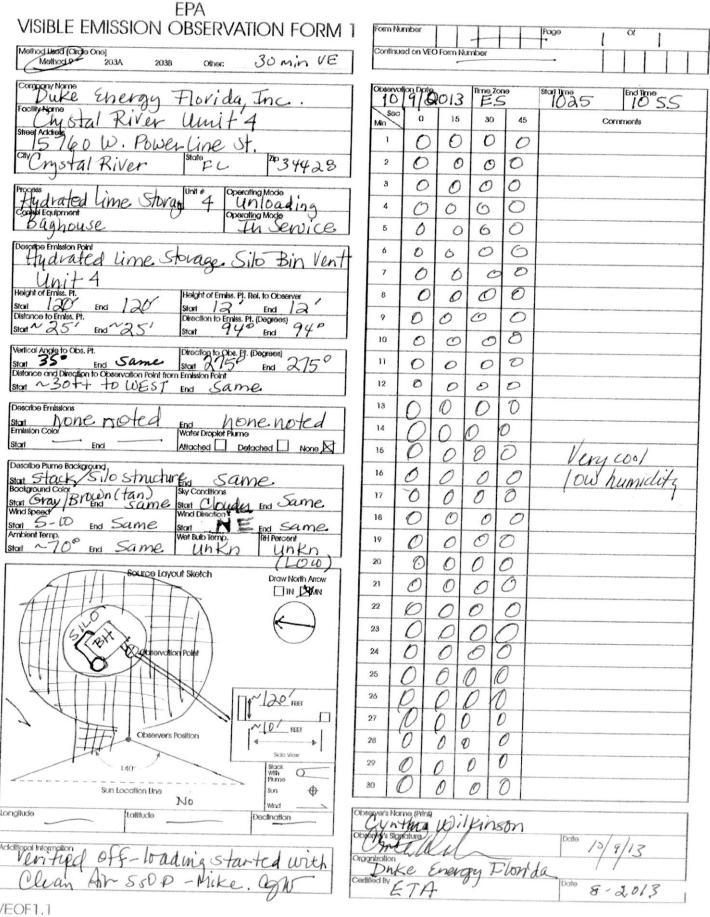
Dear Mr. DiBacco,

As required by our Title V Air Construction Permit No. 017004-037-AC, Duke Energy respectfully submits this compliance test report conducted on emission point EU-032 - hydrated lime storage silo on Unit 4 and Unit 5.

These tests were conducted on October 9 and 10, 2013 in accordance with permit Specific Condition in Section 3.H.6.

The results show that compliance for the above requirements were demonstrated.


If you have any questions concerning the contents of this submittal, please contact Mr. Jamie Hunter (727) 820-5764 or Ms. Cynthia Wilkinson at (352) 501-5053.


I hereby certify that, based on the information and belief formed after reasonable inquiry, the statements and information in the attached documents are true, accurate and complete.

Sincerely,

Robby A. Odom Station Manager, Crystal River Steam Plant & Fuel Operations

Enclosure

VEOF1.1

At Golder Associates we strive to be the most respected global group of companies specializing in ground engineering and environmental services. Employee owned since our formation in 1960, we have created a unique culture with pride in ownership, resulting in long-term organizational stability. Golder professionals take the time to build an understanding of client needs and of the specific environments in which they operate. We continue to expand our technical capabilities and have experienced steady growth with employees now operating from offices located throughout Africa, Asia, Australasia, Europe, North America and South America.

+ 27 11 254 4800
+ 852 2562 3658
+ 61 3 8862 3500
+ 356 21 42 30 20
+ 1 800 275 3281
+ 55 21 3095 9500

solutions@golder.com www.golder.com

Golder Associates Inc. 5100 W. Lemon Street, Suite 208 Tampa, FL 33609 USA Tel: (813) 287-1717 Fax: (813) 287-1716

