

Robby A. Odom
Plant Manager
Crystal River Fossil Plant & Fuel Operations

May 6, 2011

Mr. Jeff Koerner, P.E. Florida Department of Environmental Protection Division of Air Resource Management 2600 Blair Stone Road MS 5500 Tallahassee, Florida 32399-2400

Re:

Crystal River Energy Complex (Facility ID No. 0170004) Units 4 and 5 – Temporary Use of Sodium Bicarbonate Request for Exemption from Permitting Requirements

Dear Mr. Koerner:

As part of the ongoing efforts to help mitigate the negative effects associated with handling and storage of the fly ash collected from Units 4 and 5 that contains undesirable levels of ammonia, a sodium bicarbonate product is being added in the fly ash collection system. To date this activity has been conducted manually by plant personnel adding bags of the material to the system. In an effort to automate the process, Progress Energy Florida (PEF) is proposing to bring onsite temporary storage containment vessels capable of storing and transporting the material to the fly ash collection system. This storage and transportation system will be completely contained, with the exception of an air ventilation system on the storage unit (to vent air during filling operations) and a ventilation system associated with the vacuum system used to transport the material to the fly ash collection system. Particulate emissions from the ventilation systems are controlled by the use of a baghouse that removes particulate matter from the air prior to it being emitted to the atmosphere. A separate storage and transportation system is required for each unit (two system total; one for Unit 4 and one for Unit 5).

Two storage options are currently under evaluation, each having similar overall emissions potential. Approval for either of the options is requested. In the first option a 100 ton storage "pig" will be used to store the material and transfer the material to a metering silo, where it will be transferred for use in the fly ash system. In the second option two 49 ton storage silos will be used in tandem to feed the metering silo. In either option, a delivery truck will pneumatically fill the storage container (pig or silo) directly with the material. The expected delivery and transfer duration is up to two hours once per day per unit. The particulate matter in the air vented during the loading process will be controlled by a baghouse (Belgrade: 375 cfm flow rate; 0.10 grain/cfm emission rate) attached to the silo. The material will then be transferred from the metering silo to the fly ash collection system via a vacuum system venting air through a separate baghouse (MAC: 350 acfm flow rate; 0.01 grain/cfm emission rate) for a proposed duration of up to 12 hours per day. The proposed system may be installed on both Units 4 and 5. Please refer to the enclosed documents for a process diagram of each of the material handling system options as well as manufacture's information on the baghouses.

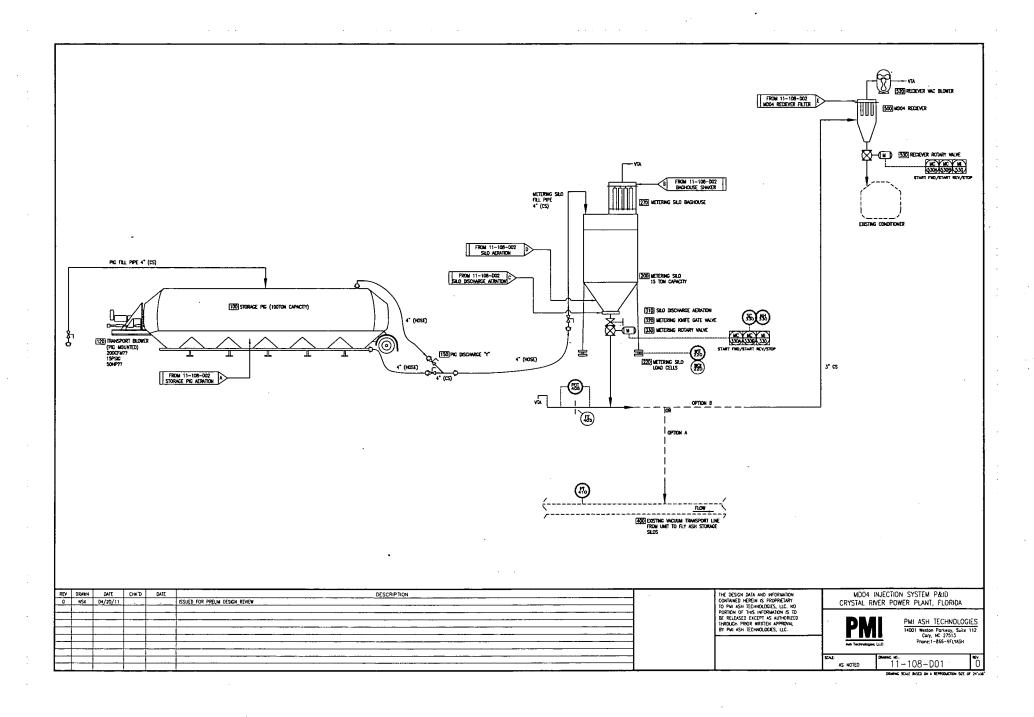
Based on the above baghouse flow rates and operational durations, along with the manufacturer's emission rating on the baghouses, the predicted particulate matter emissions are not expected to exceed 0.424 bs/day (0.077 tons/yr) per system.

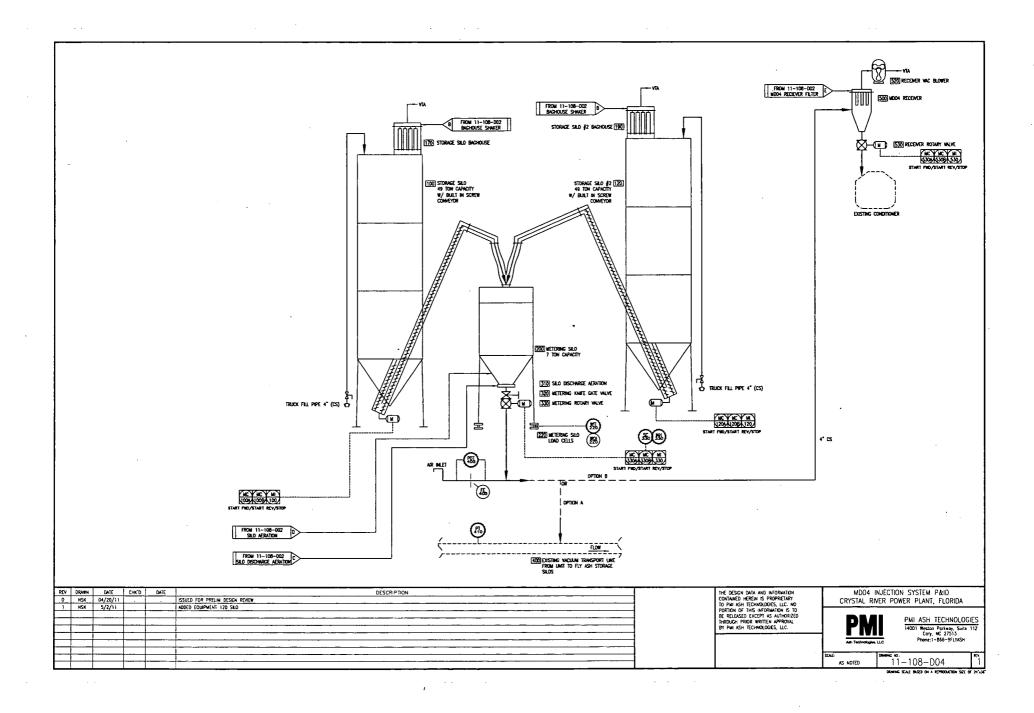
Crystal River Steam Plant 15760 W. Powerline Street CN77 Crystal River, FL 34428 PEF plans to use these systems on a temporary basis while other ammonia mitigation projects are being evaluated. Should the need arise to permanently install the systems described in this letter, PEF understands the need to apply for an air construction permit associated with the installation of permanent equipment and air emission sources.

Based on the temporary nature of this project and the minimal amount of potential emissions associated with the use of the proposed systems, PEF respectfully requests an exemption from permitting this activity in accordance with the allowances established in Rule 62-4.040, F.A.C.

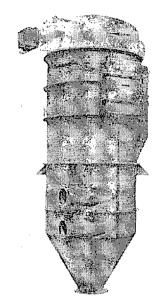
If you have any questions or concerns, please contact Jamie Hunter at (727) 820-5764 or John. Hunter@PGNmail.com. Thank you very much for your consideration of this request.

I, the undersigned, am the responsible official as defined in Chapter 62-210,200, F.A.C., of the Title V source for which this document is being submitted. I hereby certify, based on the information and belief formed after reasonable inquiry, that the statements made and data contained in this document are true, accurate, and complete.

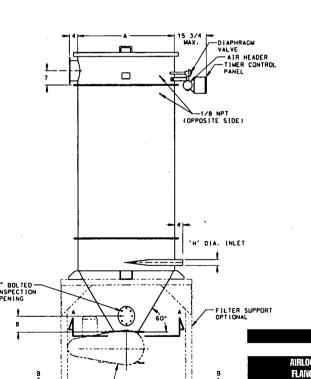

Best regards,

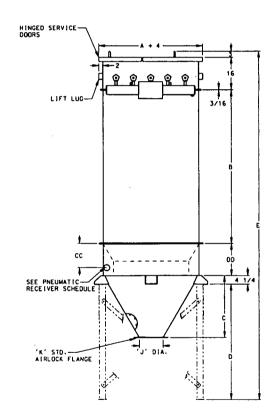

Robby A. Odom

Manager, Crystal River Fossil Plant & Fuel Operations


Enclosures

cc: Cindy Mulkey, FDEP Siting Office




RT Filter with Pneumatic Receiver

When fitted with a pneumatic receiver, the MAC RT filter becomes an excellent product receiver. Product enters the filter and is discharged from the bottom through an airlock. Centrifugal force separates the product from the airstream and gently discharges it.

MAC offers this filter in two styles: without the hopper (Style II) the filter is ideally suited as a bin vent filter for storage tanks, work bins and surge hoppers. With a 60° hopper (Style III) the filter receives dust through the hopper inlet and discharges the collected dust through an airlock for dust disposal or recycling.

Dimensions (IN.)												
AIRLOCK	'J' DIA.	RT FILTER / 'C' DIWIENSION										
FLANGE	DISCHARGE	7	14	21	32	39	52	62	80			
FTA/TRA-30, 9X9, MID20	8	177/16	277/8	331/8	45¾16							
FTA/TRA-80, MD40	10	153/4	261/8	323/16	437/16	485/8	531/8	641/4	72			
12X12, MD76	12	14	243/8	301/16	4111/16	467/8	521/8	62½	701/4			
15X15	14			283/4	40	451/8	50¾	60¾	68%16			
15X15	15			277/8	391/8	445/16	491/2	597/8	673/4			
MD139	16			27	38¼	437/16	485/8	59	667/8			
18X18	18			251/4	36½	4111/16	467/8	575/16	651/8			
MD260	19	*****	,	243/8	35%	407/8	46	567/16	641/4			
MD400	20		~~~~	231/2	34¾	40	451/8	55%16	63¾			

HOPPER SCHEDULE

FABRIC FILTERS

Point N	lumber (from flow di	agram)	Manufacturer & Model No. (if available)						
			Beigrade Steel Tank Co Belle 150						
Nar	ne of Abatement Dev	vice '.	Type of Particulate Controlled						
	Belle 150 Dust House)	Cement Dust						
		SAS STREAM CH	IARACTERISTICS	S					
Flow Ra	te (acfm)	Gas Stream Te	emperature (°F)	Particulate Grain Loading (grain/sc					
Design Maximum	Average Expected			Inlet	Outlet				
375	375	A ml	pient	N/A	0.01				
Pressure Drop		Water Vapo	r Content of	Fan Re	quirements				
(in F	120)	Effluent Stream (b water/lb dry air)	(hp)	(cubic ft/min)				
	5"	Ami	oient	N/A	N/A				
		PARTICULATE	DISTRIBUTION						
·		(by w	eight)						
Micron	Range	· In	let	Outlet					
0.0	- 0.5	0	%	99.98%					
0.5	- 1.0	3	%	0.02%					
1.0	- 5.0	17	7%	0.00%					
5.0 -	10.0	18	3%	0.00%					
10.0	- 20.0	2'	1%	0.00%					
over	20.0	. 4	1%	0.00%					
		FILTER CHAR	ACTERISTICS						
Filtering Velocity	Bag Diameter	Bag Length	Number of Bags	Number of Compartments					
acfm/sq ft of cloth)	(inches)	(inches)		in Baghouse					
2.5	8"	48"	18	1					
Bag rows will be:			Walkways will be pr	ovided between b	anks of bags:				
	Staggered		No						
Filtering Material:	PE 37 100% Polyeste	er 9oz.							
Describe Bag Clean	ing Method and Cyc	le:	Air Vibrator Shaker						
Capital Installed Co	st:	\$1,900	Annual Operating Cost: \$50						

FILTER EMISSIONS STATEMENT FOR 16 oz. Dacron Polyester Bags

MAC Equipment, Inc. warrants its filters to be free of mechanical defects for a period of one year from the date of shipment in accordance with the "Warranty and Limitation" statement included with the original proposal.

MAC Equipment, Inc. also expects the emissions of its new 16 oz. Dacron Polyester bags, when properly installed, applied and maintained, and when operated per the design parameters referenced in the original proposal and in accordance with the manufacturers operations manuals, to emit no more than approximately 0.010 gr / dscf of air based on dry dust particle sizes of 2 microns and larger.

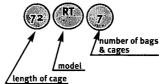
The Buyer will be responsible for any emissions testing expense and MAC Equipment Inc. reserves the right to be present during any emission tests and shall be notified at least 2 weeks prior to the testing. Emissions testing must be conducted within 30 days of start-up, or 60 days from equipment shipment.

Misuse, abuse, operating outside the stated parameters, and / or water, oil, or hydrocarbons will void the emissions expectation. MAC Equipment, Inc. shall not be held responsible for any failures or excess emissions due to upset operating conditions.

This emissions expectation is contingent upon MAC Equipment receiving a process dust sample for testing, analysis, and approval. Such testing could indicate another filter media as a more suitable choice. The expected emissions are also contingent upon an inlet grain loading acceptable to MAC Equipment.

Under no circumstances will MAC Equipment, Inc. be liable or responsible for incidental or consequential damages.

Greg Huffstetler Account Executive, Filtration 6/27/06



Standard Specifications

- · Carbon steel or 304 stainless steel construction*
- · Pneumatic receiver
- Rated to 40" w.c. static pressure
- · Full welded exterior and skip welded interior
- Timing board enclosures: NEMA 12
- · Top mounted hinged access doors
- Venturi nozzles and bag cups: mineral reinforced nylon
- · Bag cages: galvanized carbon steel
- Bags: 16oz. singed dacron polyester
- Lifting lugs: Two on top plenum
- Inspection door:
 - Units with 18" long bags have an 18" x 17" tall boited inspection panel
 - Units with bags longer than 18" have an 18" wide hinged inspection door
- · Pressure differential gauge kit
- 60° hopper flanged to housing (Style III only)
- MAC white paint
- *stainless steel includes housing, hopper and tubesheet with all carbon steel flanges and reinforced ribs

Options

- 316 stainless steel
- 10 gauge carbon steel construction rated to 20" static pressure
- 304 stainless steel flanges for 304 stainless steel filters
- · High entry inlet with bag protectors
- 70° hopper slope (style III only)
- Aluminum Venturi
- NEMA 4, 7 or 9 timer enclosure
- Exhaust weather hood with birdscreen 4 x 4 mesh (Style II only)
- · Carbon steel service platform with ladder and safety cage
- · T-handle food grade door
- Structural steel legs, 12" clearance
- · Flanged air inlet
- Mount pads
- Side mounted or top mounted fans (restrictions exist please contact your MAC Sales Representative)

Each RT filter comes with an informational model number to better identify it.

	FLIER	NO. OF	Dimensions (IN.)									MAXIMUM		THREW
MODEL	AREA	BAGS	A	8	C	D	E	G	Н	J	К	AIRLOCK	SCFM	LBS.
18RT7	17	7	28	22	177/16	403/4	95¾16	10 DIA.	3	8	MD 20	MD 40	3.3	570
36RT7	34	7	28	40	177/16	40¾	113 ¾16	10 DIA.	3	8	MD 20	MD 40	3.3	720
54RT7	52	7	28	58	177/16	.403/4	131¾16	10 DIA.	3	8	MD 20	MD 40	3.3	820
72RT7	69	7	28	76	177/16	403/4	1493/16	10 DIA.	3	8	MD 20	MD 40	3.3	910
18RT14	34	14	40	22	26½	51	1097/16	10 DIA.	5	10	MD 40	MD 40	4.7	990
36RT14	69	14	40	40	26⅓	51	1277/16	10 DIA.	5	10	MD 40	MD 40	4.7	1100
54RT14	104	14	40	58	261/8	51	1457/16	10 DIA.	5	10	MD 40	MD 40	4.7	1290
72RT14	138	14	40	76	261/8	51	1637/16	10 DIA.	5	10	MD 40	MD 40	4.7	1440
96RT14	185	14	40	100	26⅓	51	1877/16	10 DIA.	5	10	MD 40	MD 40	4.7	1570
38RT21	104	21	47	40	323/16	57	1367/16	10 X 20	6	10	MD 40	MD 40	5.4	1690
54RT21	156	21	47	58	323/16	57	1547/16	10 X 20	6	10	MD 40	MD 40	5.4	1920
72 RT21	209	21	47	76	32¾16	57	1727/16	10 X 20	6	10	MD 40	MD 40	5.4	2090
98RT21	278	21	47	100	323/16	57	1967/16	10 X 20	6	10	MD 40	MD 40	5.4	2340
54RT32	239	32	60	58	437/16	68¼	1651/16	10 X 20	6	10	MD 40	MD 40	6.5	2610
72RT32	318	32	60	76	437/16	681/4	18311/16	10 X 20	6	10	MD 40	MD 40	6.5	2890
96RT32	425	32	60	100	437/16	68¼	2071/16	10 X 20	6	10	MD 40	MD 40	6.5	3250
54RT39	291	39	66	58	48%	73½	17515/16	10 X 30	8	10	· MD 40	MD 40	7.5	3260
72RT39	388	39	66	76	485/8	73½	19315/16	10 X 30	8	10	MD 40	MD 40	7.5	3500
96RT39	518	38	66	100	485/8	73½	21715/16	10 X 30	8	10	MD 40	MD 40	7.5	3810
72RT52	518	52	72	76	537/a	785/s	1991/16	10 X 30	8	10	MD 40	MD 40	9.1	4080
96RT52	690	52	72	100	531/a	78%	2231/16	10 X 30	8	10	MD 40	MD 40	9.1	4440
72RT62	817	62	84	76	621/2	891/4	21211/16	10 X 45	10	12	MD 75	MD 139	10.6	4800
96RT62	828	62	84	100	621/2	89¼	23611/16	10 X 45	10	12	MD 75	MD 139	10.6	5220
72RT80	787	80	93	76	667/8	97	2201/16	10 X 45	10	16	MD 139	MD 139	13.2	5610
96RT80	1082	80	93	100	667/8	97	2447/16	10 X 45	10	16	MD 139	MD 139	13.2	6060

